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Prof. Dr. Peter Bastian





To my beloved wife and children

Pavla, Zuzana and ................



Hereby, I would like to express my sincere gratitude to all the people who sup-
ported my efforts to work on this thesis.

First and foremost, I am grateful to both of my supervisors, Dr. Vı́t Pr̊uša
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Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg

Vedoućı disertačńı práce:
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Abstrakt : V předložené práci se věnujeme studiu fyzikálńıch systémů sestávaj́ıćıch
alespoň ze dvou nemı́sitelných tekutin, kde každá z nich vyplňuje jinou část pro-
storu a tvoř́ı takzvanou fázi. S prouděńım v́ıcefázových tekutin se často setkáváme
v pr̊umyslových aplikaćıch, což přirozeným zp̊usobem zvyšuje poptávku po nume-
rických simulaćıch tohoto fyzikálńıho jevu. Výzkum prováděný v rámci předložené
práce je motivován snahou modelovat proces výroby plochého plaveného skla.
Studované systémy jsou matematicky popsány pomoćı takzvaných model̊u s ne-
ostrým rozhrańım, přičemž práci samotnou lze tematicky rozdělit do dvou část́ı.

Ve fyzikálně zaměřené části práce nejprve odvod́ıme standardńı modely s ne-
ostrým rozhrańım a jejich zobecněné varianty. Zvolený postup se oṕırá o pojem
v́ıcesložkového kontinua a jeho d̊ukladnou termodynamickou analýzu. Důležitou
součást́ı odvozeńı je kritické posouzeńı předpoklad̊u, které svou podstatou ve-
dou k odlǐsným model̊um pro daný systém. Námi nově zformulovaná tř́ıda mo-
del̊u typu Cahn–Hilliard–Navier–Stokes–Fourier (CHNSF) je využitelná při mo-
delováńı neizotermálńıch proces̊u. Modely spadaj́ıćı do této tř́ıdy popisuj́ı směs
separabilńıch, tepelně vodivých newtonských tekutin, které jsou bud’ stlačitelné
nebo nestlačitelné. Jednotlivé modely zachycuj́ı kapilárńı a tepelné jevy uvnitř
tenkého fázového rozhrańı, kde fakticky docháźı k mı́seńı tekutin.

Ve výpočetńı části práce se soustřed́ıme na vývoj efektivńıho a zároveň ro-
bustńıho numerického řešiče pro vybraný izotermálńı model popisuj́ıćı nestlači-
telné tekutiny. Navržené numerické schéma, založené na metodě konečných prvk̊u,
rozděluje na úrovni časové diskretizace systém ř́ıd́ıćıch rovnic na menš́ı pod-
systémy. Podstatnou část diskuze věnujeme návrhu moderńı předpodmiňovaćı
strategie pro výpočetně nejnáročněǰśı podsystém, který koresponduje se systémem
nestlačitelných rovnic typu Navier–Stokes s variabilńımi koeficienty. Numerické
schéma je implementováno s využit́ım výpočetńı platformy FEniCS. Vlastńı zdro-
jový kód, zprostředkovávaj́ıćı možnost provádět simulace v́ıcefázového prouděńı
v paralelńım módu ve 2D i 3D, je dostupný v nově vyvinuté knihovně MUFLON
založené na FEniCS platformě.

Kĺıčová slova: Modely s neostrým rozhrańım, v́ıcesložkové systémy, v́ıcefázové
prouděńı, rovnice typu Cahn–Hilliard, rovnice typu Navier–Stokes–Fourier, před-
podmı́něńı, výroba plaveného skla.
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Chapter 1

Introduction

Suspensions, solutions and colloids are physical systems that can be generally
denoted as multi-component systems or mixtures. Such physical systems are fre-
quently met in many industrial applications ranging from production of wheat
flour, through petroleum refining process, to disposal of nuclear waste. As a nat-
ural consequence, mathematical models have been developed to describe the be-
haviour of such mixtures.

Description and modelling of physical processes involving co-existence of mul-
tiple components and their mutual interaction has been a very challenging topic
for decades and the problem has been tackled by variety of different modelling
approaches. The standard approach, which is applied also in this thesis, is based
on the rational treatment of multi-component systems as interacting continua.
As such, it fits in to the classical framework of continuum thermodynamics and
it is described in numerous publications; see, for example, Eckart (1940), Bowen
(1976), Atkin and Craine (1976a,b), Truesdell (1984), Samohýl (1987), Rajagopal
and Tao (1995) or Hutter and Jöhnk (2004).

The thesis is devoted to the study of physical systems that are composed of
several chemically non-reacting components, each of them representing a uniform
material that is physically distinct and separable from the other materials in-
volved. In particular, we concentrate our study to flows of several immiscible
fluids that occupy different regions of space in a fixed domain. (Think about oil
and water in a container.)

The separate regions are often called phases, which is the term that brings us
to the concept of multi-phase flows. From a broader perspective, a physical system
described in the previous paragraph is generally referred to as a multi-component
fluid. This term better characterizes the fact that our derivation of mathematical
models describing multi-phase flows is based on the multi-component descrip-
tion of the underlying physical system. Even though there is a subtle difference
between ‘phase’ and ‘component’, as each phase can be in fact comprised of
several mixed material components (see Section 3.1.1), we shall use both terms
interchangeably1. The fact that the fluids are immiscible is associated with the
inherent presence of interfaces that are formed between them.

1In accordance with the idealization that each fluid involved in our considered physical
system corresponds to exactly one component.

1



CHAPTER 1. INTRODUCTION

In principle, there are two major ways of representing the interfaces in math-
ematical models. First, in classical hydrodynamics, the interface separating two
immiscible fluids is treated as being sharp, meaning that it is represented as a dis-
continuity of density and tangential velocity. The standard fluid equations are
then posed in the bulk on both sides of the interface and jump conditions are
prescribed across the surface of discontinuity. An alternative option is to replace
the sharp interface by a narrow transition layer of finite thickness, so-called dif-
fuse interface, across which the fluids are allowed to mix. Even though it may
sound strange to allow for mixing of immiscible fluids, it is just a reflection of par-
tial miscibility that real fluids always exhibit at the molecular level. The major
advantage of this approach is the ability to describe critical phenomena like topo-
logical changes due to merging/splitting of individual phases or their interaction
with walls in the computational domain.

Nice example of a three-component system of the above type can be identified
in glass industry in the so-called float glass forming process. We shall describe
this ingenious technology within the next section to motivate our research. Af-
ter that, we shall briefly review the two modelling concepts that can be used
to mathematically describe the process, with particular emphasis on the diffuse
interface approach. Main objectives, research results and the outline of the thesis
are advertised in the remainder of this introductory chapter.

1.1 Motivation: Float glass forming process

The float glass forming process, also known as the Pilkington process or simply
the float process, is the standard industrial scale process for making flat glass.
The technology was developed in the late 1950s and quickly became the universal
method for producing high-quality flat glass. Nowadays, a modern float glass line
produces in average of several hundred tonnes of glass each day and supplies it to
a variety of different markets including automotive, architectural, and many other
technical applications. An excellent historical overview of earlier techniques for
making flat glass and the development of the float process is given in the survey
by Pilkington (1969), who describes the process as follows:

In the float process, a continuous ribbon of glass moves out of the
melting furnace and floats along the surface of an enclosed bath of
molten tin (Figure 1.1). The ribbon is held in a chemically controlled
atmosphere at a high enough temperature for a long enough time for
the irregularities to melt out and for the surfaces to become flat and
parallel. Because the surface of the molten tin is dead flat, the glass
also becomes flat.

The ribbon is then cooled down while still advancing across the
molten tin until the surfaces are hard enough for it to be taken out of
the bath without the rollers marking the bottom surface; so a ribbon
is produced with uniform thickness and bright fire polished surfaces
without any need for grinding and polishing.

2



1.1. MOTIVATION: FLOAT GLASS FORMING PROCESS
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Molten glass

Controlled atmosphere
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FLOAT GLASS PROCESS
[schematic diagram]

Figure 1.1: Schematic diagram of the float glass forming process.

The progressive growth in demand for high-quality flat glass pressures its
manufactures to increase production. However, higher production rates in the
float process lead to higher temperature and velocity gradients inside the tin bath.
It is well known that the difficult operating conditions may induce formation of
optical defects that cannot be corrected later, see Prieto et al. (2002). Moreover,
high temperatures inside the tin bath (around 1000◦C) make it complicated and
costly to carry out detailed experiments that would help us to better understand
these issues. Naturally, computational fluid dynamics (CFD) becomes a handy
and powerful tool which provides us with the possibility to gain insight into
the process and eventually optimize its various parts. This is typically done
not only to meet customer’s specific demands (for instance on the thickness of
produced glass sheets), but generally to improve the overall performance of the
manufacturing line (energy consumption savings, minimal contamination of the
final product by impurities coming from the furnace, etc.).

The use of CFD techniques requires identification of a suitable mathemati-
cal model for the process. This is a challenging task as one has to deal with
a multi-component system with free boundaries, for which it is necessary to in-
corporate the surface tension effects. From the point of view of numerical simula-
tions, the problem is furthermore complicated by the presence of multiple length
scales2, large temperature/viscosity variations3 and large density contrasts (see
Table 1.1).

The whole process can be intuitively split into the three main stages as in-
dicated in Figure 1.2. In the same figure, we show the visualization of the first
stage of the process corresponding to the flow of the glass melt down an inclined
plane (spout lip) and its impact on the tin bath. The second stage of the pro-
cess is the stretching of the glass ribbon which is nicely illustrated in Figure 1.3.
Finally, the third stage represents the cooling process of formed sheets of glass.
The actual process of forming thus takes place in the first and the second stage
respectively. The idea is to implement an iterative coupling (through the velocity
and stress components) between the two stages that are otherwise modelled as
separate processes. Such coupling should be effected along a transverse cross-
section artificially made somewhere inside the tin bath, sufficiently far from the
inlet.

2The typical industrial floats are about 60 m long and 4–8 m wide, while the equilibrium
thickness of the glass ribbon is only about 7 mm.

3The glass suffers a gradual cooling from approximately 1050 ◦C to 600 ◦C, while its viscosity
varies by several orders of magnitude along the float due to the significant dependence on the
temperature.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Inlet of molten glass in the float process.

The key physical mechanism in the second stage of the process is the tem-
perature variation of the viscosity, which allows one to control—through the
temperature distribution inside the tin bath—the thickness and solidification of
the ribbon4. If we view the ribbon from the top, as in Figure 1.3, we can say that
the longitudinal and transverse dimensions of the ribbon dominate its thickness.
This suggests that one can try to model this part of the process by exploiting
a variant of thin film approximation; see, for example, Narayanaswamy (1977,
1981), Popov (1982, 1983). On the other hand, no characteristic length scale
can be identified in the proximity of the inlet, where we need to capture three-
dimensional effects such as wet back flow. Therefore, a full mathematical model
describing multi-component flows needs to be employed in this stage of the pro-
cess.

(a) Forces acting on the ribbon. (b) Temperature/viscosity profile along the
longitudinal axis of the bath.

Figure 1.3: Top-down view of glass ribbon stretching as part of the float process.
[Both figures were reproduced from Pilkington (1969).]

4The thickness can be additionally controlled mechanically by adjusting the lehr speed and
by using the so-called edge rolls (gearwheels placed close to the edges of the glass ribbon).
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1.1. MOTIVATION: FLOAT GLASS FORMING PROCESS

Fernández Oro et al. (2008) successfully used volume-of-fluid method with
surface tensions incorporated via continuum surface force formulation to simulate
the first stage of the float process5. Their approach was based on the following
simplifying assumptions:

• The three immiscible components involved in the float process—the molten
glass, the molten tin and the non-reactive protective atmosphere consist-
ing of a mixture of nitrogen (approximately 94%) and hydrogen (approxi-
mately 6%)—are all treated as incompressible, viscous Newtonian fluids.

• The temperature variations in between the inlet and (artificial) outlet po-
sitions at the very beginning of the float process are neglected, so that the
transport of molten glass is assumed to occur at a constant temperature.

The thesis is devoted to the development of a different class of models that are
well suited to such types of simulations. Compared to the techniques used by
Fernández Oro et al. (2008), where the interfaces were treated as being sharp,
the models developed here are based on the aforementioned concept of diffuse
interface. This approach allows not only for relatively easier implementation, but
also for consistent incorporation of the surface tension effects and the thermal
effects.

The applicability of a particular three-component diffuse interface model in
the float process, under the above simplifying assumptions, was recently doc-
umented in Řehoř et al. (2017). Figure 1.4 shows the typical outcome of the
transient simulation of the first stage of the float process. Even though the typi-
cal length scale characterizing the interface thickness is much larger in numerical

Figure 1.4: Diffuse interface approach applied in the float glass forming process
to model the interaction of three immiscible fluids (glass/tin/nitrogen).

5To implement a physics-based interface tracking, the original volume-of-fluid method de-
veloped by Hirt and Nichols (1981) was combined with the continuum surface force approach
suggested by Brackbill et al. (1992); see also Gueyffier et al. (1999).
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CHAPTER 1. INTRODUCTION

simulations than in reality, let us point out that a very fine resolution of the
computational mesh is needed to properly capture the interface dynamics. This
inherently calls for the need to use high performance computing (HPC) platforms,
ideally in combination with adaptive mesh refinement6.

The model described in Řehoř et al. (2017) fits into a wider class of diffuse
interface models that are developed and studied in the first, modelling part of the
thesis (Chapters 2–4). In the second, computational part (Chapters 5–6), we shall
identify the origin of computational issues previously encountered in simulations
of glass/tin/nitrogen system, and we shall address possible improvements in the
implementation of the model. Let us recall the main issues now.

Known computational issues

Table 1.1 captures density and viscosity values of individual components in the
glass/tin/nitrogen system. Due to high density contrast between molten tin
and nitrogen, which are both low viscosity fluids, we observe an occurrence
of spurious velocity oscillations in the vicinity of the interface (see Figure 1.5a).
Their presence in the simulation can eventually cause that the numerical solution
blows up in finite time.

The most straightforward way of how to make the computations in the indus-
trial setting feasible is to artificially increase the viscosity of the “problematic”
components. As discussed in Řehoř et al. (2017), in some specific situations it
might be sufficient to increase the viscosity of tin and nitrogen by three orders of
magnitude without significantly affecting the expected outcome of the simulation
(see Figure 1.5b). In the future, we would like to avoid this inconsistent approach
by improving the applied numerical discretization, see Section 6.4.

In the typical industrial setting, one needs to handle large scale computa-
tions effectively (see Figure 1.6 for illustration of the typical problem size). It is
well-known that the parallel direct sparse solvers, which were used in Řehoř
et al. (2017) to resolve intermediate systems of algebraic equations, do not scale
optimally on HPC platforms. To this end, we will develop an efficient and robust
iterative solver which will result in computationally less costly simulations, see
Section 5.4.

Material
Density
[kg/m3]

Viscosity (realistic)
[Pa · s]

Viscosity (modified)
[Pa · s]

Glass 2 500 100 100
Tin 6 770 0.001 1.0
Nitrogen 1.225 18× 10−5 0.18

Table 1.1: Density and viscosity values for glass/tin/nitrogen system. Data taken
from Fernández Oro et al. (2008).

6In this particular example we take the advantage of the fact that we are able to estimate
the expected position of the interfaces, and we prepare the locally refined mesh a priori.
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1.2. A BRIEF REVIEW OF APPLIED MODELLING CONCEPTS

(a) Realistic viscosity values. (b) Modified viscosity values.

Figure 1.5: Glass droplet placed onto the tin bath for realistic and modified
viscosity of the tin and the protective atmosphere surrounding the droplet.

Figure 1.6: Snapshots capturing the glass flow over the spout lip and its impact
onto the tin bath in 3D (simulation with modified viscosity values). The compu-
tation of 2 500 time steps took about 55 hours on 80 CPUs. Problem size: 3×105

degrees of freedom for the discrete Cahn-Hilliard system; 1.5 × 106 degrees of
freedom for the discrete Navier-Stokes system.

1.2 A brief review of applied modelling concepts

The problem of proper description of the evolution of sharp interfaces is very
challenging from the numerical point of view. The two main approaches of how
to treat the moving interfaces in numerical simulations are front tracking and
front capturing methods; see, for instance, the references given in Kim (2012).
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In the front tracking methods, including the volume-of-fluid method mentioned
in the previous section, the position of the interface is explicitly traced. (This is
typically achieved with the aid of Lagrangian particles that are advected by the
velocity field.) In the front capturing methods, the interface is implicitly captured
by a contour of a particular scalar field.

The typical representative of the latter computational approach is the so-
called level set method; see, for example, Osher and Sethian (1988) or Sussman
et al. (1994). The scalar field that is used to capture the sharp interface is intro-
duced as an artificial level set function. In order to avoid unwanted instabilities
at the interface, it is necessary to consider an explicit smoothing of the flow
discontinuities. This in turn leads to the interfacial layer of finite thickness in
numerical simulations. From this point of view, the method could be seemingly
identified with the idea to work with the concept of diffuse interface. Since the
type of smoothing can substantially affect obtained solutions, it seems natural to
consider a physically realistic scalar field instead of an artificial level set function
with the aim to describe physical processes inside the interfacial layer in a ther-
modynamically consistent way7. Let us point out that this approach will allow
us to naturally include surface tension effects into the model.

The diffuse interface models that are studied in this thesis are based on the
description of mixing within the interfacial layers. Such mixing can be conve-
niently described in terms of mass or volume fractions, although it is equally
possible to choose any other set of so-called order parameters that are appro-
priately related to partial densities of individual fluids. The thermodynamically
consistent description is based on the postulate that the Helmholtz free energy
density (at a fixed temperature) is determined not only by the actual composi-
tion of the mixture at a given point but also by its composition at neighboring
points. This fundamental idea can be traced to van der Waals (1893). It was
first constructively used by Cahn and Hilliard (1958) who proposed a model for
the description of separation of components in binary mixtures.

In its original form, the now classic Cahn–Hilliard (CH) model does not take
into account coupling between diffusion and mechanics, as the separation process
is assumed to be governed exclusively by the diffusion. In this setting, the model
describes solids and fluids equally well. Recall that we are interested in flows of
several immiscible fluids. With respect to our target application described in the
preceding section, we shall assume that flows of individual fluids can be described
by the classical Navier–Stokes (NS) model. Nevertheless, the coupling of both
models is highly non-trivial. In fact, there is a wide variety of competing mod-
els of the Cahn–Hilliard–Navier–Stokes (CHNS) type available in the literature
nowadays.

Most of the recent works refer to the so-called “Model H”, due to Hohenberg
and Halperin (1977), as to the model that consistently couples fluid flow and
CH diffusion for a conserved order parameter. Its thermodynamic consistency
was established in Gurtin et al. (1996). The model has been successfully used
to simulate two-component flows of incompressible fluids with matched densities;

7By the thermodynamic consistency of a model we mean its compatibility with the second
law of thermodynamics.
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1.3. OBJECTIVES

see, for example, Chella and Viñals (1996). However, the last couple of require-
ments makes this model inapplicable in many interesting problems where the
incompressible components have different densities (or where the fluids are com-
pressible). As a consequence, numerous alternative generalizations of “Model H”
have appeared in the literature. To name a few, let us mention the models devel-
oped by Boyer (2002), Ding et al. (2007) and Abels et al. (2012). These models
were discussed and numerically compared by Aland and Voigt (2012). The ther-
modynamically consistent extension of “Model H” was provided by Lowengrub
and Truskinovsky (1998). A comprehensive overview of possible generalizations
of CH equations within the thermodynamic framework adopted in the thesis can
be found in Heida et al. (2012b). For further references, the reader is kindly
referred to the review papers by Anderson et al. (1998) and Kim (2012).

The majority of models mentioned above have been used to simulate flows
in the classical isothermal setting with the temperature being fixed to a uniform
constant value. Only a few exceptions can be found in the literature. For instance,
Jasnow and Viñals (1996) modified “Model H” to study thermo-capillary flow
with an externally imposed temperature gradient. A non-isothermal model for
two-component fluids was studied in Sun et al. (2009), where a linearization
of the internal energy balance was used in order to describe the evolution of
the temperature. The thermodynamically consistent extension of “Model H”
into a general non-isothermal setting with a variable temperature field has been
recently analyzed by Eleuteri et al. (2015), see also Eleuteri et al. (2016). This
extension, however, remains restricted to the special case of two different viscous
incompressible fluids of equal density. A non-isothermal reformulation of the
model proposed by Lowengrub and Truskinovsky (1998) appears in the recent
interesting article due to Freistühler and Kotschote (2017).

1.3 Objectives

The thesis has the following two main objectives:

• Comprehensive thermodynamic analysis of diffuse interface models in a non-
isothermal setting.

• Development and implementation of numerical solvers for simulations of
physical systems described by diffuse interface models.

The expected outcome of the first objective is the explicitly formulated evolu-
tion equation for the temperature, which could be used in numerical simulations
of some relevant non-isothermal problems. The second objective is motivated by
the importance of modern CFD tools in industrial applications. The float glass
forming process described in Section 1.1 was chosen as the target application for
the development of efficient numerical solvers in the context of diffuse interface
models.

9
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1.4 Research results

When modelling a simultaneous flow of several immiscible fluids with the aid of
diffuse interface approach, it is common practice to combine the CH equations
(describing the separation of fluids) with the NS equations (describing the flow).
The resulting mathematical model is thus represented by a system of coupled
partial differential equations (PDEs) involving a single velocity field, shared by
all fluids, as an unknown variable. The coupling of equations is not unique
and the different models exhibit different levels of coupling. Loosely speaking,
CH and NS equations can be either more coupled or less coupled depending on
assumptions made on the material properties of individual fluids and especially
on the particular choice of the averaged velocity field.

From the modelling point of view, the main novelty of the present work is
twofold. Firstly, it comes with a unified consistent derivation of a wide class of
existing diffuse interface models, including the variants with non-matching con-
stant densities or compressible components. Secondly, it provides the extension
of the models into a general non-isothermal setting. In this sense we reveal the
class of Cahn–Hilliard–Navier–Stokes–Fourier (CHNSF) models with explicitly
formulated evolution equation for the temperature.

Our derivation is based on the description of the multi-component systems on
the level of individual components. We carefully elaborate the kinematical con-
cept of mass-/volume-averaged velocity and we also discuss various choices of or-
der parameters (mass/volume fractions, partial densities) suitable for modelling of
fully-compressible (FC), quasi-incompressible (QI) and fully-incompressible (FI)
mixtures; see diagram in Figure 1.7.

Currently, there is a number of well-developed numerical solvers designed to
tackle the systems of PDEs corresponding to selected models of the above type.
In the thesis we apply the finite element method (FEM) for the purpose of numer-
ical discretization and we utilize the principles of automated scientific computing
offered within the FEniCS Project. The automation of FEM facilitates the im-
plementation of the specific solution approaches, which is a difficult task due to
the complexity of the models. On top of the FEniCS computing platform we de-
velop the MUlti-phase FLow simulatiON library MUFLON, see Section 5.3.1.
The idea is to provide the scientific community with a tool for testing different
diffuse interface models and their FEM-based discretizations.

The key result from the point of view of the development of efficient numerical
solvers resides in the identification of the solution strategy that is applicable in
computationally demanding simulations of industrial processes. In Řehoř et al.
(2017), we have elaborated some practical issues concerning the implementation of
the specific FI-CHNS model, in which the incompressible NS equations constitute
numerically the most demanding subset of the system. In the thesis, we propose
a fast iterative solver using modern mathematical methods with the application
to incompressible NS equations with variable coefficients. We address the issues
concerning feasibility of numerical simulations with real parameter values and we
briefly discuss some methods with the capability to suppress numerical artifacts
arising due to the presence of density contrasts in combination with low viscosity.
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1.5. OUTLINE

The following list summarizes the major contributions of this work:

• Theoretical extension of existing diffuse interface models into a general non-
isothermal setting.

• Implementation of the framework for testing different discretization schemes
for diffuse interface models using the FEniCS computing platform.

• Implementation of state-of-the-art preconditioning strategies for solving in-
compressible NS equations (with variable coefficients).

• Identification of the source of errors arising in numerical simulations of flows
of multi-component systems described by diffuse interface models in critical
regimes with density contrasts and low viscosities.

1.5 Outline

The thesis is organized as follows. In Chapter 2 we first briefly discuss fundamen-
tal concepts introduced in the theory of interacting continua for the mathematical
description of mixtures. We formulate a basic set of assumptions with the help
of which we will distinguish between compressible and incompressible mixtures.
As a next step, we postulate balance equations for individual components of the
mixture. At the same time, we adopt a certain type of model reduction in order
to provide a transition from the general detailed description on the level of indi-
vidual components towards a reduced description used in the context of diffuse
interface models.

Chapter 3 is devoted to a thermodynamically consistent derivation of diffuse
interface models. The models lead to a system of PDEs of CHNSF type. The
derivation is based on the specification of constitutive assumptions for the specific
Helmholtz free energy and the entropy production. Special attention is paid to
models for two-component systems. We show that the derived binary models
consistently reduce to their well-known isothermal counterparts, and we discuss
under which conditions they retain the capability to properly describe single-
component fluids.

Full specification of diffuse interface models describing isothermal flows of several
immiscible incompressible fluids is discussed in Chapter 4. We accept a set of
consistency/reduction conditions which bring us to the elaborated form of the
Helmholtz free energy involving the state-of-the-art multi-well potential function,
as well as to the particular choice of the mobility coefficients that characterize one
of the dissipation mechanisms identified in the entropy production. In this way
we derive the system of evolutionary equations for the FI-CHNS model, which is
then suplemented by a set of boundary and initial conditions.

11
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CHAPTER 1. INTRODUCTION

In Chapter 5 we discuss numerical discretization of FI-CHNS model. Using the
techniques originally developed for binary and ternary systems, we propose an
unconditionally stable scheme which leads to a computationally decoupled formu-
lation of the problem. A single iteration of the resulting time-stepping algorithm
requires solving a nonlinear system of algebraic equations corresponding to the
CH part of the problem, followed by solving a saddle-point system of algebraic
equations arising from the Oseen type linearization of the NS equations. A special
attention is paid to efficient numerical solution strategies for the latter subprob-
lem based on the application of appropriate preconditioning techniques.

Our implementation of the various discretization schemes is verified through a se-
ries of numerical experiments covered by Chapter 6. These experiments include
code verification by the method of manufactured solutions and classical rising
bubble benchmark. On top of that, we add two simplified problems character-
ized by the presence of a single interface between low viscosity components with
a density contrast (for instance air/water interface). These two examples help to
better understand the source of numerical errors that typically occur near such
interfaces in the form of spurious velocity oscillations.

Finally, in Chapter 7 we summarize the results of the thesis and we discuss
possible future directions for the follow-up research.

12
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classification of mixtures on the level of material properties

classification of mixtures on the level of mathematical description

MIXTURES

Figure 1.7: Two-level diagram for the classification of mixtures in the context of diffuse interface modelling; see Section 2.1 for the
precise definition of applied assumptions and order parameters, and Definition 2.5 for the specification of the averaged velocity.
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Chapter 2

Theory of Interacting Continua:
Foundations

In this chapter we shall recall some of the basic concepts introduced within the
theory of interacting continua, one of the frameworks developed to provide suit-
able description of mixtures1. Mathematical basis of the framework was laid down
in the works by Truesdell (1957a,b), Truesdell and Toupin (1960).

The aim of the chapter is to introduce the key concepts particularly suitable for
the description of flows of multi-component fluids, see Chapter 1. Recall that the
fluid-like components are assumed to be immiscible and we aim to describe their
mutual interaction in terms of diffuse interface models. There are multiple ways of
deriving such type of models; see references given in Section 1.2. Our approach is
based on the componentwise formulation of balance equations (balances of mass,
linear and angular momentum, energy and entropy) which are accepted as basic
postulates valid for “any” material.

This detailed description of our considered physical system is subsequently
reduced as we are interested in developing a model where we distinguish only
the individual partial densities of the components and otherwise we treat the
mixture as a whole, that is, as a single homogenized continuous medium. In
principle, the reduction is based on defining primitive mixture properties (such
as mixture density, velocity, stress tensor, and so on) and on describing their
evolution by balance equations derived from the aforementioned postulates. The
reduced equations are therefore still universally valid for “any” material, meaning
that they equally describe flows of the multi-component fluids composed either of
oil and water, or those composed of molten tin and molten glass. The properties
of the materials involved must be specified by appropriate constitutive relations
the derivation of which is the subject of Chapter 3.

In the current chapter, we will at least distinguish between compressible and
incompressible multi-component systems (regarding the material properties). As
illustrated in the middle part of the diagram in Figure 1.7, we assume that a cer-
tain set of constraints can be applied for each such system. A formal definition
of these constraints—in the form of fundamental assumptions—is given in Sec-
tion 2.1.

1Occasionally, we will use the term theory of mixtures.
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2.1. FUNDAMENTAL ASSUMPTIONS

In Section 2.2 we introduce basic kinematic quantities for mixtures including
the concept of averaged velocity. The diffuse interface models encountered in the
literature are not consistent regarding the choice of this quantity. Some authors
prefer to work with the mass-averaged velocity, others tend to use its volume-
averaged counterpart. It is well known that the second one is divergence free,
which is not generally true for the first one. From this point of view, the models
based on the volume-averaged velocity might be more convenient for numerical
treatment. On the other hand, the models based on the mass-averaged velocity
are fully consistent with the componentwise description of the same system. In
contrast to this, some additional levels of approximation usually must be accepted
in the other case. Our objective here is to provide the derivation of the different
diffuse interface models in a unified framework.

The cornerstone of this framework is laid in Section 2.3 where we formulate
the reduced balance equations with respect to the two choices of the averaged
velocity. Different form of these balance equations brings us to another possible
classification of multi-component systems which is illustrated in the bottom part
of Figure 1.7. In Section 2.4 we introduce basic thermodynamic quantities. Fi-
nally, Section 2.5 summarizes the evolution equations in the form appropriate for
the subsequent derivation of the constitutive relations.

2.1 Fundamental assumptions

Let us consider a mixture consisting of N components. The theory of interacting
continua is built on the assumption of co-occupancy which states that all compo-
nents co-exist, in a homogenized sense, at each point of the domain occupied by
the mixture in the observed space2. In the next paragraph, we will explain this
concept using basic terms from continuum mechanics the detailed explanation of
which can be found for example in Gurtin et al. (2010).

Let Bi denote the continuous body associated with the i-th component (for
i = 1, . . . , N). It is an abstract set of material points that can be embedded into
the classical Euclidean space R3. Let κref

i (Bi) and κti(Bi) denote an arbitrary
reference configuration of the body and the current configuration of the body at
time t respectively. The mappings κref

i and κti are linked through the deformation
function which will be introduced in Section 2.2 to formally describe the motion
of the continuous body. Following the above statement, one can say that the
domain occupied by the mixture in the observed space at time t corresponds to
the intersection of current configurations of all components. We will denote this
domain by Ωt for simplicity. In principle, the assumption of co-occupancy says
that each point x ∈ Ωt can be seen as the position occupied by a material point,
or particle, belonging to each component, see Figure 2.1.

Remark 2.1. Let us make some remarks on the notation used within the thesis.
The usual summation convention is not used and summations are always shown

2The assumption of co-occupancy is of course just a mathematical abstraction that allows
one to introduce the quantities associated with each component and use them, taking into
account mutual interactions of the components, to describe properties of the mixture as a whole.
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Figure 2.1: Assumption of co-occupancy.

explicitly. In order to avoid cumbersome statements of the type “for all times t
in a given time interval”, we shall simply write “for all t” having in mind that we
are restricting ourselves to a time interval chosen for observations.

Let Pt ⊂ Ωt be an arbitrary open subset of the current configuration of the
mixture. Let m(Pt) and v(Pt) denote the mass and the volume of the mixture as
a whole associated with Pt. Similarly, let mi(Pt) and vi(Pt) denote the mass and
the volume of the i-th component associated with Pt. Using these measures one
can introduce three distinct notions of density. First, the density of the mixture
as a whole is given by

% =
dm

dv
, (2.1a)

where ‘dm’ denotes the mass contained in an infinitesimal volume ‘dv’; see Noll
(1959) for the formalization thereof. On top of that we will distinguish between
the partial density of the i-th component,

%i =
dmi

dv
, (2.1b)

and the material (true) density of the i-th component,

%̂i =
dmi

dvi
. (2.1c)

The latter corresponds to the density of the component before mixing. Last but
not least, we introduce the mass fractions (concentrations) by

ci =
dmi

dm
, (2.1d)

and the volume fractions (porosities) by

φi =
dvi
dv

. (2.1e)
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2.1. FUNDAMENTAL ASSUMPTIONS

One can observe that

%i = %ci = %̂iφi. (2.2)

Relations in (2.2) will be extensively used in subsequent discussion.
In order to understand the behaviour of the mixture as a whole it is natural

to require that exactly N considered components contribute to the evolution of
the system and there is no other component that would not be included among
them. This leads us to the constraint relating the measures m, mi in the following
sense.

Assumption 1 (Mass additivity constraint). We assume that any mixture fulfills
the mass additivity constraint (MAC), that is

m(Pt) =
N∑

i=1

mi(Pt) (2.3)

for any Pt ⊂ Ωt.

The development of numerical simulations in the thesis is restricted exclusively
to multi-component systems composed of incompressible fluids with constant ma-
terial densities3. Such multi-component systems are in our terminology classified
as incompressible mixtures.

Assumption 2 (Incompressibility of components). We assume that components
of any incompressible mixture are mechanically and thermally incompressible in
the sense that

%̂i are positive constants for i = 1, . . . , N. (2.4)

When dealing with incompressible mixtures we will always assume that the vol-
ume of the mixture as a whole equals the sum of the volumes of individual com-
ponents. (We say that the excess volume of mixing is zero.)

Assumption 3 (Volume additivity constraint). We assume that any incompress-
ible mixture fulfills the volume additivity constraint (VAC), that is

v(Pt) =
N∑

i=1

vi(Pt) (2.5)

for any Pt ⊂ Ωt.

3In principle, it would be possible to consider here the class of materials that are mechan-
ically incompressible and thermally compressible or expansible. In such a case, the material
densities would be treated as known positive functions of the temperature. This would introduce
an unnecessary complexity into the governing equations with regard to practical applications
of our interest. To illustrate this, in Appendix A we formulate balance of mass for mixtures
formed by the components belonging to this class of materials.
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CHAPTER 2. THEORY OF INTERACTING CONTINUA: FOUNDATIONS

Note that this is a severe restriction which is not true in general cases4. Never-
theless, this constraint will allow us to express the total density of the mixture
as a linear function of volume fractions, which is the relation often used in the
context of diffuse interface modelling.

Let us once again emphasize that all multi-component systems in the thesis
are considered to obey Assumption 1 automatically. If no other assumptions can
be applied, we shall refer to such systems as to compressible mixtures. On the
other hand, Assumptions 2 and 3 characterize incompressible mixtures.

Consequences of mass additivity constraint

Since m(Pt) =
∫
Pt %dv and mi(Pt) =

∫
Pt %i dv, see (2.1a) and (2.1b) respectively,

from (2.3) it immediately follows that

% =
N∑

i=1

%i. (2.6)

With respect to the first equality in (2.2), we see that equation (2.6) is equivalent
to the constraint

N∑

i=1

ci = 1. (2.7)

Consequences of volume additivity constraint

Similarly as in the previous case, we observe that the statement (2.5), together
with (2.1e), yields the identity

N∑

i=1

φi = 1. (2.8)

Based on this constraint it is possible to find the expressions for the total density
in terms of N material densities, or their reciprocal values

γ̂i
def
=

1

%̂i
, (2.9)

and (N −1) volume fractions, or mass fractions respectively. (In that respect, we
shall omit the N -th component of the mixture without loss of generality.)

Lemma 2.2. Let Assumptions 1–3 hold. Further, let φ = [φ1, . . . , φN−1]> and
c = [c1, . . . , cN−1]> denote (N − 1)-component vectors of volume fractions and
mass fractions respectively. Then the total density % can be expressed as

%v(φ)
def
=

N−1∑

i=1

(%̂i − %̂N)φi + %̂N , (2.10a)

%m(c)
def
=

1∑N−1
i=1 (γ̂i − γ̂N) ci + γ̂N

. (2.10b)

4For example, a mixture of isopropyl alcohol and water exhibits excess volume of mixing
which is negative.
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2.2. KINEMATICS OF MIXTURES

Proof. Using %i = %̂iφi in (2.6), we get % =
∑N

i=1 %̂iφi. Clearly, φN can be elimi-
nated using the constraint (2.8). The resulting expression corresponds to (2.10a).

From (2.2) it follows that φi = %γ̂ici. Using this expression in (2.8), we get
%
∑N

i=1 γ̂ici = 1. If we use the constraint (2.7) to eliminate cN , we obtain the
expression for % in the form (2.10b).

2.2 Kinematics of mixtures

Let κref
i (Bi) be a fixed but otherwise arbitrary reference configuration of the i-th

component of the mixture. The motion of the body Bi is given by the mapping χi
that assigns to each particle Xi ∈ κref

i (Bi) and each time t a point x = χi(Xi, t)
in the current configuration of the mixture. The point x is referred as the spatial
point occupied by Xi at time t.

Remark 2.3. The mapping χi, called the deformation function of the i-th com-
ponent, is assumed to be invertible for each time t and smooth enough such that
the corresponding derivatives are well defined in the classical sense.

We consider N particles X1, . . . ,XN , each of them associated with the cor-
responding component of the mixture. Due to the assumption of co-occupancy,
these particles are allowed to occupy a single spatial point x ∈ Ωt. The descrip-
tion of the motion of the mixture as a whole is thus given by N relations

x = χi(Xi, t). (2.11)

Since we are primarily interested in the description of fluid mixtures, it is conve-
nient to work with the Eulerian description of scalar, vector and tensor fields. In
this respect we introduce partial velocity for each component through

vi(x, t)
def
=

∂χi(Xi, t)

∂t

∣∣∣∣
Xi=χ

−1
i (x,t)

. (2.12)

If g is any quantity represented as Eulerian scalar field, then its material time
derivative following the i-th component is defined by

dig(x, t)

dt
def
=

dg(χi(Xi, t), t)

dt

∣∣∣∣
Xi=χ

−1
i (x,t)

(2.13)

It corresponds to the variation of the given quantity with respect to time at the
material point Xi that at time t occupies the spatial position x. Using the chain
rule and (2.12), it follows from (2.13) that

dig(x, t)

dt
=
∂g(x, t)

∂t
+ vi(x, t) · ∇g(x, t). (2.14)

The short form5 of the above formula reads

dig

dt
=
∂g

∂t
+ vi · ∇g. (2.15)

Obviously, the analogous definitions can be obtained for Eulerian vector fields
and Eulerian tensor fields.

5We shall omit the arguments (x, t) whenever no confusion concerning variables can arise.
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CHAPTER 2. THEORY OF INTERACTING CONTINUA: FOUNDATIONS

Remark 2.4. Similarly to the theory of single continuum, one can introduce the
deformation gradient Fi, the left and the right Cauchy-Green tensors Bi, Ci and
other deformation measures based on the relation (2.11). However, introduction
of these quantities is not necessary for our purposes.

In the theory of mixtures, it is often convenient to introduce an averaged
velocity associated with the mixture as a whole and work with it without the
need to distinguish between individual partial velocities. This is the case also
in the context of diffuse interface models. In what follows we shall work with
mass-averaged6 and volume-averaged velocity fields.

Definition 2.5 (Mass-averaged velocity, volume-averaged velocity). The mass-
averaged velocity field is defined by

vm def
=

N∑

i=1

civi, (2.16a)

while the volume-averaged velocity field is defined by

vv def
=

N∑

i=1

φivi. (2.16b)

In the forthcoming manipulations with balance equations, we shall initially
work with an arbitrary averaged velocity v without the need to precisely specify
its structure. Afterwards, we shall examine consequences of the specific choice of
the averaged velocity according to Definition 2.5.

Remark 2.6. The material time derivative associated with velocity v is defined
by the formula (2.15) with vi replaced by v and it is denoted simply by d

dt
. If we

need to emphasize that we are working explicitly with the mass-averaged or the
volume-averaged velocity, we use the notation dm

dt
or dv

dt
respectively.

Definition 2.7 (Diffusion velocity, diffusive fluxes). Let v is an averaged velocity
field associated with the current configuration of the mixture. The vector

ui
def
= vi − v (2.17a)

is called the diffusion velocity of the i-th component relative to v. With this
definition of ui we further introduce the quantities

i
def
= %iui, ̃i

def
= φiui, (2.17b)

that are referred to as the diffusive mass flux and the diffusive volume flux of the
i-th component respectively. The total diffusive mass flux and the total diffusive
volume flux are then obtained as

J
def
=

N∑

i=1

i, J̃
def
=

N∑

i=1

̃i. (2.17c)

6The mass-averaged velocity is also known as barycentric velocity.
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2.2. KINEMATICS OF MIXTURES

The quantities introduced in the above Definition 2.7 naturally depend on the
choice of the averaged velocity. If we need to emphasize which averaged velocity
is being used, we will equip these quantities with the corresponding superscript
according to Definition 2.5. This notation is summarized in Table 2.1 at the end
of the current section.

Taking into account (2.2) we observe that the fluxes in (2.17b) are related
through simple formula

̃i = γ̂ii. (2.18)

Moreover, from the above definitions it follows that

J =
N∑

i=1

%iui =
N∑

i=1

%i (vi − v) = %vm − %v, (2.19a)

J̃ =
N∑

i=1

φiui =
N∑

i=1

φi (vi − v) = vv − v, (2.19b)

where we have used (2.6) in the last equality in (2.19a), and (2.8) in the last
equality in (2.19b). We immediately see that

Jm =
N∑

i=1

m
i = 0, J̃v =

N∑

i=1

̃v
i = 0, (2.20)

while the remaining pair of total diffusive fluxes is given by

Jv = % (vm − vv) , J̃m = vv − vm. (2.21)

Based on these relations we will demonstrate in the following paragraph that the
difference of the averaged velocities introduced in Definition 2.5 is not identically
zero in a general case.

In later discussions we will need the following expressions for J̃m and Jv in
terms of (N − 1) diffusive volume fluxes. First, from the sequence of identities

J̃m = J̃m − 1
%̂N
Jm =

∑N
i=1 ̃

m
i − 1

%̂N

∑N
i=1 %̂i̃

m
i =

∑N−1
i=1

(
1− %̂i

%̂N

)
̃m
i we observe

that

J̃m =
N−1∑

i=1

r̂i̃
m
i , (2.22)

where we have introduced the shorthand notation

r̂i
def
= 1− %̂i

%̂N
, i = 1, . . . , N − 1. (2.23)

Second, from Jv = Jv − %̂N J̃v =
∑N

i=1 %̂i̃
v
i −

∑N
i=1 %̂N ̃

v
i we obtain

Jv =
N−1∑

i=1

(%̂i − %̂N) ̃v
i . (2.24)

Both fluxes J̃m and Jv are therefore identically zero in the special case with
matching material densities, but otherwise can attain non-zero values.
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CHAPTER 2. THEORY OF INTERACTING CONTINUA: FOUNDATIONS

Table 2.1: Notation for diffusion related quantities with emphasized choice of the
averaged velocity field, see Definitions 2.5 and 2.7.

um
i diffusion velocity relative to mass-averaged velocity vm

uv
i diffusion velocity relative to volume-averaged velocity vv

m
i density weighted diffusion velocity relative to vm

v
i density weighted diffusion velocity relative to vv

Jm sum of density weighted diffusion velocities relative to vm

Jv sum of density weighted diffusion velocities relative to vv

̃m
i volume fraction weighted diffusion velocity relative to vm

̃ v
i volume fraction weighted diffusion velocity relative to vv

J̃m sum of volume fraction weighted diffusion velocities relative to vm

J̃v sum of volume fraction weighted diffusion velocities relative to vv

2.3 Balance equations

Based on the assumption of co-occupancy we have observed that the motion of
the mixture results from the motion of its individual components, see (2.11).
By virtue of such an observation, we formulate balance equations for individual
components, taking into account terms describing their mutual interaction, and
we accept them as basic postulates.

The detailed description of the mixture on the level of individual components
is however not required in many practical applications. In such a case, the mixture
can be treated as a single homogenized continuous medium for which we formulate
the governing equations in terms of averaged quantities7. The fact that we are
dealing with the mixture is then captured by supplementary evolution equations
for quantities describing the actual composition of the mixture, typically mass
or volume fractions. The equivalence of the two approaches in a specific case of
chemically non-reacting binary mixtures is discussed for example in Souček et al.
(2014).

Depending on the level of description, it is possible to distinguish between
several classes of mixture models; see for example the classification introduced
in Hutter and Jöhnk (2004), where it is also possible to find the comprehensive
exposition concerning balance equations and their general formulations. We for-
mulate the equations in their local forms in the current configuration, and we
directly employ several simplifying assumptions with regard to practical applica-
tions of our interest. (For example, we do not allow for mass exchange between the
components, and each component is considered to form a non-polar continuum.)
As already mentioned, diffuse interface models are based on the componentwise
formulation of the balance of mass, while the balances for linear and angular

7According to the commonly accepted principle, see Truesdell (1984), the motion of the
mixture is assumed to be governed by the same equations as is a single body. Such postulate,
however, a priori determines the structure of primitive quantities associated with the mixture
as a whole.
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momentum, energy and entropy are considered for the mixture as a whole8.
A certain type of model reduction must be applied in order to obtain the

balance equations for the mixture as a whole from their counterparts postulated
on the level of individual components. The reduction is based on the reformula-
tion of these postulates in terms of the averaged velocity v and related diffusive
fluxes i or ̃i, see Definition 2.7. These “artificially” introduced fluxes are then
included among the unknown fields for which we will need to derive appropri-
ate constitutive relations, see Chapter 3. Tables 2.2–2.3 provide an overview of
the balance equations in their general forms reflecting the choice of the averaged
velocity according to Definition 2.5.

2.3.1 Balance of mass

Let us consider a mixture of chemically non-reacting components, which means
that no transfer of mass between the components is allowed. Local form of the
balance of mass for individual components reads

∂%i
∂t

+ div (%ivi) = 0, i = 1, . . . , N. (2.25)

The quantity %ivi represents the mass flux of the i-th component in the mixture.
Let v is an averaged velocity field as in Definition 2.7. We split the mass flux

in two parts following the identity

%ivi = %iv + %i(vi − v), (2.26)

where the first term on the right hand side can be interpreted as the advective
mass flux of the i-th component (with respect to the mixture), while the second
term coincides with i introduced in (2.17b). Using the decomposition (2.26) we
can now rewrite the equations in (2.25) to take the form

∂%i
∂t

+ div (%iv) = − div i, i = 1, . . . , N, (2.27a)

or equivalently9

d%i
dt

+ %i div v = − div i, i = 1, . . . , N. (2.27b)

In the previous paragraph we have just made the transition from the descrip-
tion of the mass balance in terms of %i and vi towards the equivalent description
in terms of %i, v and i. The latter description brings us to the reduced model
in which each i is treated as an unknown flux that needs to be specified by
a constitutive relation. This is a natural consequence of the trade-off of N partial
velocities for a single velocity field.

Equations in (2.27) describe the evolution of partial densities which uniquely
determine composition of the mixture in a given point of current configuration.

8According to Hutter and Jöhnk (2004), such models are classified as class I mixture models.
9See Remark 2.6 for the exact meaning of the symbol d

dt .
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In the context of diffuse interface models we usually work with a set of so-called
order parameters (phase-field variables) that characterize the underlying physical
system exactly in the above sense. The set of partial densities therefore becomes
a natural candidate to take the role of order parameters. In principle, we can
work with an arbitrary set of variables provided that we can relate them to partial
densities. We will discuss other possible choices at the end of the current section.

In the next step we will replace one of the equations in (2.27b) with an al-
ternative equation the form of which depends on whether we are dealing with
compressible or incompressible multi-component systems.

Lemma 2.8 (Balance of mass for compressible mixtures). Let Assumption 1
holds. Then the system of equations

d%i
dt

+ %i div v = − div i, i = 1, . . . , N − 1, (2.28a)

d%

dt
+ % div v = − divJ , (2.28b)

is equivalent to (2.27b).

Proof. By summing up N equations of (2.27b), one obtains the balance of
mass for the mixture as a whole in the form (2.28b), see (2.6) and (2.17c). This
equation then can be used to replace an arbitrary equation in (2.27b).

Lemma 2.9 (Balance of mass for incompressible mixtures). Let Assumptions
1–3 hold. Then the system of equations

d%i
dt

+ %i div v = − div i, i = 1, . . . , N − 1, (2.29a)

div v = − div J̃ , (2.29b)

is equivalent to (2.27b).

Proof. We first show that constraint (2.29b) can be obtained from N equations
of (2.27b). Using %i = %̂iφi and i = %̂i̃i in (2.27b), we get

%̂i
dφi
dt

+ φi

(
d%̂i
dt

+ %̂i div v

)
= − div (%̂i̃i), i = 1, . . . , N. (2.30)

Since the material densities are assumed to be positive constants, their material
derivatives vanish and we can divide the i-th equation by %̂i. By summing up
the resulting equations, applying the constraint (2.8) and using the notation
introduced in Definition 2.7, we get the equation (2.29b).

Next, following Lemma 2.2 we know that the total density % is given by

% =
N−1∑

i=1

(
1− %̂N

%̂i

)
%i + %̂N . (2.31)
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(This expression is obtained by using φi = %i/%̂i in (2.10a).) Now, if %1, . . . , %N−1

solve (2.29a) and v fulfills the constraint (2.29b), we can show that % satisfies the
mass balance equation (2.28b). Indeed, we have

d%

dt
+ % div v =

N−1∑

i=1

(
1− %̂N

%̂i

)(
d%i
dt

+ %i div v

)
+ %̂N div v

= −
N−1∑

i=1

(
1− %̂N

%̂i

)
div i + %̂N div v = − divJ + %̂N div

(
v + J̃

)
,

and the last term vanishes in virtue of (2.29b). In this sense we have derived (2.28)
from (2.29) and we already know that (2.28) is equivalent to (2.27b).

Equations in (2.28) describe the evolution of %1, . . . , %N−1 and % respectively.
Once these quantities are known, the density %N can be recovered from (2.6). In
this sense we still have the complete information about the actual composition
of the mixture. On the other hand, the density % for incompressible mixtures is
given by (2.31) and it is not treated as an independent variable anymore. The
complete characterization of the underlying system is in this case given by only
(N − 1) partial densities that are required to satisfy the same equations as in
the compressible case. However, there is one subtle difference. The velocity field
in (2.29a) must obey the relation in (2.29b) which can be seen, by analogy with
the theory of single continuum, as the constraint related to incompressibility10 of
the mixture as a whole.

It remains to discuss consequences associated with the choice of the averaged
velocity field. Following the discussion at the end of Section 2.2, see (2.19)–(2.24),

we know that Jm = J̃v = 0, but Jv and J̃m can generally attain non-zero values.
Therefore, we observe that the total mass balance (2.28b) reduces to the classical
form with zero right hand side if v = vm, but some diffusive mass flow appears on
the right hand side if v = vv. At the same time, we see that the volume-averaged
velocity field satisfies the classical incompressibility constraint

div vv = 0, (2.32a)

while the mass-averaged velocity field is generally non-solenoidal as it obeys the
relation

div vm = − div J̃m. (2.32b)

From this point of view, the mixture as a whole can be partly compressible even
though its components are incompressible. This brings us to the concept of quasi-
incompressibility as it was used by Lowengrub and Truskinovsky (1998).

Now we are ready to explain the origin of the classification introduced in the
bottom part of Figure 1.7. When dealing with compressible mixtures we shall

10A single continuous body is considered to be incompressible if it obeys the constraint
div v = 0. (So it can undergo only isochoric motions.) See, for example, Gurtin et al. (2010)
for the detailed discussion of the concept of incompressibility.
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work exclusively with the mass-averaged velocity and we shall talk about FC
description. In case of incompressible mixtures we shall distinguish between QI
and FI descriptions. The first one is obtained with non-solenoidal velocity vm,
the other one is obtained with solenoidal velocity vv.

Table 2.2 provides an overview of the specific form of the mass balance equa-
tions with respect to two different definitions of the averaged velocity and three
specific choices of order parameters (partial densities, mass fractions and volume
fractions).

On the choice of order parameters

In the remainder of this section we want to restate (2.28a), and hence also (2.29a),
in terms of general order parameters. As we have already mentioned, in order
to do so, we need to supply a relation between the order parameters and partial
densities.

Let ϕ = [ϕ1, . . . , ϕN−1]> is a vector of (N − 1) order parameters. Suppose
that %1, . . . , %N−1 are given functions of ϕ and possibly %, that is %i = %i(ϕ, %)
for i = 1, . . . , N − 1. Then, using the chain rule, it can be shown that (2.28a) is
in fact equivalent to

N−1∑

j=1

∂%i
∂ϕj

dϕj
dt

+

(
%i − %

∂%i
∂%

)
div v = − div i +

∂%i
∂%

divJ , i = 1, . . . , N − 1.

(2.33)

Let us briefly discuss several specific sets of order parameters:

• Partial densities as order parameters. Let ϕi = %i for i = 1, . . . , N−1. Then
ϕi ∈ [0, %̂i] and we have the simple relation %i(ϕ, %) = ϕi which implies

∂%i
∂ϕj

= δij,
∂%i
∂%

= 0,

where δij denotes the Kronecker delta. Not surprisingly, in this trivial case
the equations in (2.33) take their original forms given by (2.28a).

• Mass fractions as order parameters. Let ϕi = ci for i = 1, . . . , N − 1. Then
ϕi ∈ [0, 1] and in virtue of (2.2) we have %i(ϕ, %) = %ϕi. The last relation
yields

∂%i
∂ϕj

= %δij,
∂%i
∂%

= ϕi.

• Volume fractions as order parameters. Let ϕi = φi for i = 1, . . . , N − 1.
Then ϕi ∈ [0, 1] and in virtue of (2.2) we have %i(ϕ, %) = %̂iϕi. The last
relation yields

∂%i
∂ϕj

= %̂iδij,
∂%i
∂%

= 0.
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• Differences of volume fractions as order parameters. Let ϕi = φi − φN for
i = 1, . . . , N − 1 and let

∑N
i=1 φi = 1 holds. Then ϕi ∈ [−1, 1] and we have

%i(ϕ, %) = %̂i

(
ϕi − 1

N

∑N−1
j=1 ϕj + 1

N

)
. The last relation yields

∂%i
∂ϕj

= %̂i

(
δij −

1

N

)
,

∂%i
∂%

= 0.

Compared to previous choices, the equations in (2.33) are strongly coupled
in this case.

Remark 2.10. Other admissible sets of order parameters for incompressible mix-
tures are discussed for example in Dong (2015). Note that the author formulates
the mass balance equations (2.29) in different variables, namely %̄i = %i − %N .
Straightforward use of volume fractions as order parameters then leads to the
coupled system of equations, unlike to our formulation.

2.3.2 Balance of linear momentum

Local form of the balance of linear momentum for individual components of
a chemically non-reacting mixture is postulated as

∂(%ivi)

∂t
+ div (%ivi ⊗ vi) = divTi + %ibi + li, i = 1, . . . , N, (2.34)

where Ti denotes the Cauchy stress tensor, bi is the specific external body force,
and li is the internal body force due to the local interaction between the i-th
component and other components11. We assume that no excess momentum in
the mixture is produced by the interaction forces li, which means that

N∑

i=1

li = 0. (2.35)

Using definitions (2.17a) and (2.17b), the products on the left hand side
of (2.34) can be rewritten as

%ivi = %iv + i, (2.36a)

%ivi ⊗ vi = %iv ⊗ v + %iui ⊗ ui + i ⊗ v + v ⊗ i. (2.36b)

Substitution of these identities into (2.34) yields

∂(%iv)

∂t
+ div (%iv ⊗ v) = div (Ti − %iui ⊗ ui) + %ibi

+ li − div (i ⊗ v)− div (v ⊗ i)−
∂i
∂t
, i = 1, . . . , N. (2.37)

11The internal body force li is also called the interaction force or the momentum production.
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If we differentiate the products on the left hand side of (2.37) and if we make use
of the mass balance (2.27a), we end up with the following form of (2.34), namely

%i
dv

dt
= div (Ti − %iui ⊗ ui) + %ibi

+ li − [(div v) I +∇v] i −
di
dt
, i = 1, . . . , N. (2.38)

Now we are ready to formulate balance of linear momentum for the mixture
as a whole. Summing up N equations in (2.38) with the use of (2.6), we get the
equation

%
dv

dt
= divT + %b− [(div v) I +∇v]J − dJ

dt
, (2.39)

where we have introduced the averaged specific external body force, b
def
=
∑N

i=1cibi,
and the averaged stress tensor

T def
= TI −

N∑

i=1

%iui ⊗ ui, TI
def
=

N∑

i=1

Ti. (2.40)

Note that the definition of T includes diffusion velocities which depend on the
choice of the averaged velocity, see Definition 2.7. Therefore, we will distinguish
between Tm and Tv whenever needed.

Balance of linear momentum with mass-averaged velocity

The mass-averaged velocity field is usually privileged regarding the two facts.
First, the total linear momentum is defined as the sum of partial moments %ivi
which corresponds to %vm. Second, equation (2.39) with v = vm reduces to
standard form

%
dmvm

dt
= divTm + %b, (2.41)

which coincides with the balance of linear momentum for a single continuum.

Balance of linear momentum with volume-averaged velocity

Let Assumptions 1–3 hold and let v = vv. Then (2.39) becomes

%
dvvv

dt
+ [∇vv]Jv = divTv + %b− dvJv

dt
. (2.42)

With the use of the total mass balance, see Table 2.2, the above equation can
be manipulated to take the form

∂(%vv)

∂t
+ div (vv ⊗ (%vv + Jv)) = divTv + %b− dvJv

dt
. (2.43)

According to (2.21), we see that %vv +Jv coincides with %vm. The left hand side
of the previous equation thus corresponds to the time change of the quantity %vv
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contained in a control volume (associated with the mixture) that is advected with
velocity vm. Upon rearranging the terms in (2.43), we can rewrite this equation
in the form of the balance of %vv with respect to vv, namely

∂(%vv)

∂t
+ div (%vv ⊗ vv) = div (Tv − vv ⊗ Jv) + %b− dvJv

dt
. (2.44)

Remark 2.11. Note that Abels et al. (2012) in their derivation12 of the diffuse
interface model for incompressible two-phase flows assume that the inertia due to
the motion of the fluid relative to the gross motion is negligible. In other words,
they neglect the last term on the right hand side of (2.44).

2.3.3 Balance of angular momentum

Supposing that each component of the chemically non-reacting mixture can be
treated as a non-polar continuum, local form of the balance of angular momentum
for individual components reads13

∂(x× %ivi)
∂t

+ div ((x× %ivi)⊗ vi)
= div (x× Ti) + x× %ibi + x× li + ai, i = 1, . . . , N, (2.45)

where ai plays the same role as li in (2.34). The angular momentum production
caused by the local interaction of the i-th component with the other components
is composed of the moment of the momentum production x× li and the spin pro-
duction14 ai. Just as (2.35) represents the fact that no excess linear momentum
in the mixture is produced by the interaction forces, the production terms ai are
subjected to similar condition, namely

N∑

i=1

ai = 0. (2.46)

It can be shown, see Bowen (1976), that under this condition the sum of the
partial stresses becomes a symmetric tensor even though Ti alone does not have
to meet this requirement. Recalling the introduced notation for the averaged
stress tensor (2.40), we have

TI = T>I (2.47)

and it is clear that T is also symmetric regardless the choice of the averaged
velocity field (because %iui ⊗ ui is always symmetric).

12Abels et al. (2012) use the notation T ≡ Tv and T̃ ≡ Tv − vv ⊗ Jv.
13The quantity x × Ti is a linear transformation that assigns to each vector u the vector

x× (Tiu).
14Here we use the terminology that was used also by Hutter and Jöhnk (2004). Other

commonly used terms for the vector quantity ai are the moment of momentum supply or the
angular momentum supply, see for example Bowen (1976) and Rajagopal and Tao (1995).
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CHAPTER 2. THEORY OF INTERACTING CONTINUA: FOUNDATIONS

We conclude this section by accepting the condition for symmetry of the
averaged stress tensor, that is

T = T>, (2.48)

as the equivalent formulation of the balance of angular momentum for the mixture
as a whole.

2.3.4 Balance of energy

Local form of the balance of energy for individual components of the mixture
reads

∂(%iEi)

∂t
+ div (%iEivi) = div

(
T>i vi − qi

)

+ vi · (%ibi) + %iqi + ei, i = 1, . . . , N, (2.49)

where Ei represents the specific energy for the i-th component and can be further
decomposed into the sum of internal and kinetic energy, that is

Ei
def
= ei +

1

2
|vi|2 , (2.50)

qi denotes the energy flux, qi is the specific external energy supply (radiation),
and finally ei corresponds to the energy production caused by the interaction of
the i-th component with other components.

In what follows, we assume that all components share a single temperature
field. Such an assumption is in accordance with the chosen level of description.
It allows us to work with a single equation representing the balance of energy
for the mixture as a whole in the final reduced model. In analogy to condi-
tions (2.35) and (2.46), we require that interaction between the components does
not contribute to the sum of internal and kinetic energy of the mixture, that is

N∑

i=1

ei = 0. (2.51)

Balance of the total energy for the mixture as a whole will be obtained as
the sum of equations in (2.49). Let v is an averaged velocity as in the previous
sections. By use of the definition of the diffusion velocity (2.17a), it follows
from (2.50) that

N∑

i=1

%iEi =
N∑

i=1

%iei +
1

2

N∑

i=1

%i |ui|2 +
1

2
% |v|2 + v · J . (2.52)

(Note that the last term on the right hand side vanishes if v is chosen as the mass-
averaged velocity, see (2.20).) The standard definition of the specific internal
energy for the mixture as a whole reads

e
def
= eI +

1

2

N∑

i=1

ci |ui|2 , eI
def
=

N∑

i=1

ciei. (2.53)
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When balancing the total energy for the mixture, we use the notation

E
def
= e+

1

2
|v|2 , (2.54)

even though the total energy of the mixture is given by
∑N

i=1 %iEi = %E + v · J ,
see (2.52). Another identities that will be useful in the forthcoming algebraic
manipulations read

N∑

i=1

T>i v = T>v +
N∑

i=1

%i (ui · v)ui, (2.55)

which can be obtained from (2.40), and

N∑

i=1

%iEiui =
N∑

i=1

%i

(
ei +

1

2
|ui|2

)
ui +

1

2
|v|2 J +

N∑

i=1

%i (ui · v)ui, (2.56)

which follows from (2.50) and definitions in (2.17). Last but not least, we intro-
duce the averaged energy flux by

q
def
= qI +

1

2

N∑

i=1

%i |ui|2 ui, qI
def
=

N∑

i=1

(
qi − T>i ui + %ieiui

)
, (2.57)

and the averaged specific external energy supply by q
def
=
∑N

i=1 ciqi.
With the above definitions15 and identities we are ready to add up the equa-

tions in (2.49). In the first approach we get

∂(%E)

∂t
+ div (%Ev) +

∂(v · J)

∂t
+ div [(v · J)v] + div

(
1

2
|v|2 J

)

= div
(
T>v − q

)
+

N∑

i=1

i · bi + %v · b+ %q. (2.58)

which can be further manipulated into the form

∂(%E)

∂t
+ div (%Ev) = div

(
T>v − 1

2
|v|2 J − q

)
+

N∑

i=1

i · bi + %q

+ %v · b− (div v)v · J − d(v · J)

dt
. (2.59)

As a next step, we derive the evolution equation for the internal energy e.
First of all, note that div

(
T>v

)
= T : ∇v + v · divT. Following the discussion

in Section 2.3.3, we know that T is symmetric. Therefore, one can replace ∇v in

the previous formula by its symmetric part D def
= 1

2

(
∇v +∇v>

)
. Similarly, we

15Note that q, e and E depend on the particular choice of the averaged velocity. To emphasize
which of the two velocities (2.16) is being used, we will mark those quantities in Table 2.3 by
the corresponding superscript (following the notation introduced in Table 2.1).
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manipulate the second term under the divergence on the right hand side of (2.59)
by noting that div (1

2
|v|2 J) = 1

2
|v|2 divJ+v·[∇v]J . Straightforward application

of decomposition (2.54) in equation (2.59), followed by the use of (2.28b), yields

%
de

dt
− e divJ = T : D− div q +

N∑

i=1

i · bi + %q

− v ·
(
%

dv

dt
− divT− %b+ [(div v) I +∇v]J +

dJ

dt

)
− J · dv

dt
. (2.60)

The terms inside round brackets vanish by virtue of the balance of linear momen-
tum (2.39). The remaining step is to reuse the same equation also in the last
term on the right hand side of (2.60). In doing so, we arrive at

%
de

dt
− e divJ = T :

(
D +∇sym (%−1J)

)
− div qe

+
N∑

i=1

i · (bi − b) + %q + %−1J ·
(

[(div v) I +∇v]J +
dJ

dt

)
, (2.61)

where we have introduced the generalized energy flux

qe
def
= q + %−1TJ , (2.62)

and ∇sym (%−1J) denotes symmetric part of ∇(%−1J).

Remark 2.12. Note that the last product on the right hand side in (2.61) can
be further manipulated to obtain

%
de

dt
− e divJ =

(
T + %−1J ⊗ J

)
:
(
D +∇sym (%−1J)

)
− div q̃e

+
N∑

i=1

i · (bi − b) + %q +
1

2%
|J |2 div v +

d

dt

(
1

2%
|J |2

)
, (2.63)

with the generalized energy flux

q̃e
def
= q + %−1TJ +

1

2%2
|J |2 J . (2.64)

Very often, certain approximations are made in the formulation of the balance
of energy for a mixture. Typically, one can neglect all terms that are second and
higher order in diffusion velocities. In this sense we have T ≡ TI, e ≡ eI and also
qe ≡ qI + %−1TIJ . If we additionally neglect time and space derivatives of these
terms, we end up with the equation which formally matches (2.61) without the
last term on the right hand side, that is

%
de

dt
− e divJ = T :

(
D +∇sym (%−1J)

)
− div qe +

N∑

i=1

i · (bi − b) + %q. (2.65)
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Balance of energy with mass-averaged velocity

The equation for the balance of the sum of internal and kinetic energy (2.59)
reduces to

%
dmEm

dt
= div (Tmvm − qm) + %vm · b+

N∑

i=1

m
i · bi + %q. (2.66)

Except the penultimate term, equation (2.66) is identical to the usual energy
equation in the theory of single continuum. If we assume b1 = . . . = bN = b,
then this term becomes Jm · b which is equal to zero, see (2.20).

The evolution equation for the internal energy takes the standard form as
well, namely

%
dmem

dt
= Tm : Dm − div qm

e +
N∑

i=1

m
i · (bi − b) + %q. (2.67)

According to (2.62) we see that qm
e = qm in this case.

Balance of energy with volume-averaged velocity

Let Assumptions 1–3 hold and let v = vv. The corresponding form of the bal-
ance of total energy Ev can be obtained by reusing the balance of linear momen-
tum (2.42) in the last term in the equation

dv(%Ev)

dt
= div

(
Tvvv − 1

2
|vv|2 Jv − qv

)
+ %vv · b

+
N∑

i=1

 v
i · bi + %q − dv(vv · Jv)

dt
, (2.68)

but we will not do it here.
The only term that vanishes in equation (2.61) is the one with the divergence

of velocity. The resulting equation reads

%
dvev

dt
− ev divJv = Tv :

(
Dv +∇sym (%−1Jv)

)
− div qv

e

+
N∑

i=1

 v
i · (bi − b) + %q + %−1Jv ·

(
[∇vv]Jv +

dvJv

dt

)
. (2.69)

Note that the left hand side in this case corresponds to dv

dt
(%ev).

Remark 2.13. It is a common practice, see for example Gurtin et al. (1996),
Abels et al. (2012) and Dong (2014a), to neglect not only the inertia—as we
have already commented in Remark 2.11—but also the kinetic energy due to the
motion of the components relative to the bulk motion. It means that, in addition
to dvJ

dt
, one neglects also the last term in (2.68). It is easy to verify that in such

a case the balance of internal energy reads

%
dvev

dt
− ev divJv = Tv : Dv − div qv

e +
N∑

i=1

 v
i · bi + %q. (2.70)
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(Let us remark that qv
e = qv in this case.) The penultimate term corresponds to

rate of work of the external body forces due to diffusion effects. In many practical
situations it seems relevant to neglect this term as well.

2.3.5 Balance of entropy

The procedure is merely the same as in the above sections. Local form of the
evolution of the entropy for individual components reads

∂(%iηi)

∂t
+ div (%iηivi) = − divhi + %isi + ξi, i = 1, . . . , N, (2.71)

where ηi is the specific entropy, hi is the entropy flux, si denotes the specific ex-
ternal entropy supply and finally ξi is the entropy production term. The mixture

entropy production term is defined simply by ξ
def
=
∑N

i=1 ξi. The second law of
thermodynamics requires that this term is non-negative, that is ξ ≥ 0.

Introducing an averaged velocity v, taking the sum of N equations in (2.71)
and using the balance of mass (2.28b), one obtains the evolution equation for the

total specific entropy η
def
=
∑N

i=1 ciηi. This equation reads

%
dη

dt
− η divJ = − div qη + %s+ ξ, (2.72)

provided that we define the averaged entropy flux

qη
def
=

N∑

i=1

(hi + %iηiui) , (2.73)

together with the averaged specific external entropy supply s
def
=
∑N

i=1 cisi.

Balance of entropy with mass-averaged velocity

With the choice v = vm we can write equation (2.72) in the standard form

%
dmη

dt
= − div qm

η + %s+ ξ. (2.74)

Balance of entropy with volume-averaged velocity

The entropy balance with v = vv reads

%
dvη

dt
− η divJv = − div qv

η + %s+ ξ. (2.75)

The left hand side in this case corresponds to dv

dt
(%η).
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B

A
L

A
N

C
E

E
Q

U
A

T
IO

N
S

Table 2.2: Balance of mass for the N -component system formulated in terms of different sets of order parameters for two different
choices of the averaged velocity (according to Definition 2.5). The balance equations are presented in the general form appropriate
for both type of mixtures (compressible and incompressible, see Figure 1.7).

Order

parameter* Mass-averaged velocity Volume-averaged velocity

ϕi

N−1∑

β=1

∂%i
∂ϕβ

dmϕβ
dt

+

(
%i − %

∂%i
∂%

)
div vm = −div m

i

N−1∑

β=1

∂%i
∂ϕβ

dvϕβ
dt

+

(
%i − %

∂%i
∂%

)
div vv = −div  v

i +
∂%i
∂%

divJv

ϕi = %i
dm%i

dt
+ %i div vm = −div m

i

dv%i
dt

+ %i div vv = −div  v
i

ϕi = ci %
dmci
dt

= −div m
i %

dvci
dt

= −div  v
i + ci divJv

ϕi = φi
dmφi

dt
+ φi div vm = −div ̃mi

dvφi
dt

+ φi div vv = −div ̃vi

Total mass
balance†

dm%

dt
+ %div vm = 0

dv%

dt
+ %div vv = −divJv

Incompress.
constraint‡

div vm = −
N−1∑

i=1

r̂i div ̃mi div vv = 0

* Balance equations for individual constituents are considered for i = 1, . . . , N − 1. (The equations for the case with ϕi = φi are obtained provided
that material densities are constants, see Assumption 2.)
† Balance of mass for the mixture as a whole. This equation is redundant from the individual mass balances in the case of incompressible mixtures.
‡ The constraint applies only for incompressible mixtures. The constants r̂i, given by relative differences 1− %̂i

%̂N
, have been introduced in (2.23).
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A
C
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IN

G
C

O
N

T
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U
A

:
F

O
U

N
D

A
T

IO
N

S

Table 2.3: General form of the balance equations for the mixture as a whole formulated for two different choices of the
averaged velocity (according to Definition 2.5).

Balance Mass-averaged velocity Volume-averaged velocity*

Linear
momentum

%
dmvm

dt
= divTm + %b %

dvvv

dt
= divTv + %b− [(div vv) I +∇vv]Jv − dvJv

dt

Angular
momentum

Tm = (Tm)> Tv = (Tv)>

Total
energy

%
dmEm

dt
= div

(
(Tm)>vm − qm

)
%

dvEv

dt
= div

(
(Tv)>vv − 1

2
|vv|2 Jv − qv

)
+ Ev divJv

+%vm · b+
N∑

i=1

m
i · bi + %q +

N∑

i=1

 v
i · bi + %q + vv · (%b− (div vv)Jv)− dv(vv · Jv)

dt

Internal
energy†

%
dmem

dt
= Tm : Dm − div qm

e + %q %
dvev

dt
= Tv :

(
Dv +∇sym (%−1Jv)

)
+ ev divJv − div qv

e + %q

+

N∑

i=1

m
i · (bi − b) +

N∑

i=1

 v
i · (bi − b) + %−1Jv ·

(
[(div vv) I +∇vv]Jv +

dvJv

dt

)

Entropy %
dmη

dt
= −div qm

η + %s+ ξ %
dvη

dt
= η divJv − div qv

η + %s+ ξ

* For incompressible mixtures we have the constraint div vv = 0 and Jv is in that case given by (2.24), that is Jv =
∑N−1
i=1 (%̂i − %̂N ) ̃vi .

† The (generalized) energy fluxes are given by qm
e = qm and qv

e = qv + %−1TvJv, see (2.62).
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2.3.6 Derived evolution equations

In the subsequent derivations, we will need evolution equations for ∇ci and ∇φi,
which can be obtained as a direct consequence of the corresponding balance equa-
tions for ci and φi respectively.

Let v is a general averaged velocity and let ϕ is a vector of order parameters
satisfying (2.33). The choice ϕ = c leads to the relation %i = %ϕi and the balance
equations in (2.33) reduce to the simple form

%
dci
dt

= − div i + ci divJ , i = 1, . . . , N − 1. (2.76)

From the definition of the material time derivative it follows that

d∇ci
dt

=
∂∇ci
∂t

+
[
∇(2)ci

]
v. (2.77)

Application of the gradient to the i-th equation in (2.76) yields

(∇%)
dci
dt

+ %
∂∇ci
∂t

+ %∇(v · ∇ci) = −∇(div i − ci divJ). (2.78)

In the next step we first solve (2.77) for ∂t (∇ci), we use the result in the second
term on the left hand side of the previous equation and, at the same time, we use
the identity ∇(v · ∇ci) =

[
∇v>

]
∇ci +

[
∇(2)ci

]
v to reformulate the third term.

After that, we reuse (2.76) to substitute into the first term and rearrange the
terms. The resulting equation reads

%
d∇ci

dt
= −%

[
∇v>

]
∇ci −∇(div i − ci divJ) + (div i − ci divJ)

∇%
%
. (2.79)

Finally, we put together the last two terms on the right hand side and we divide
the equation by %. The evolution of the quantity ∇ci is therefore given by

d∇ci
dt

= −
[
∇v>

]
∇ci −∇

(
1

%
(div i − ci divJ)

)
. (2.80)

Let Assumption 2 holds. By repeating the above procedure with (2.30) instead
of (2.76), we derive the evolution equation for ∇φi, namely

d∇φi
dt

= −
[
∇v>

]
∇φi −∇(φi div v + div ̃i). (2.81)

2.3.7 Simplifying assumptions

In the remainder of the thesis we shall suppose that the gravitational force is the
only external body force acting on the system. Therefore, we assume that

b1 = . . . = bN = b = g, (2.82)

where g denotes the vector of gravitational acceleration. On top of that, we shall
assume the absence of external energy and entropy supplies, which means that
we put

q = 0, s = 0 (2.83)
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in the relevant balance equations.
Looking at Table 2.3, we can observe that the structure of balance equations is

more complicated in the case with volume-averaged velocity. Keep in mind that
the discussed equations have been obtained as a result of the model reduction,
which should be understood as being the fundamental level of approximation in
our description of multi-component systems. In order to proceed to the derivation
of diffuse interface models using FI description, we will need to accept some
additional levels of approximation.

In Section 2.5.3, we discuss three such approximation levels, each of them be-
ing based on omission of some particular terms in the equations. For this purpose
we introduce auxiliary coefficients Θ0,Θ1 and Θ2 to appear in front of the dis-
cussed terms, see (2.95). These so-called toggle coefficients are allowed to attain
the values of either one or zero depending on the chosen level of approximation
as discussed in Summary 7.

2.4 Preliminary thermodynamic considerations

Extending the classical concepts from equilibrium thermodynamics (see Callen
(1985)) to non-equilibrium setting, we assume that the specific entropy η intro-
duced in Section 2.3.5 is a differentiable function of the specific internal energy
e and other state variables; see also de Groot and Mazur (1984). The models of
our primary interest are expected to properly describe dynamics of the interfaces
formed between the immiscible components of the mixture, taking into account
capillary effects. As we have already mentioned in Chapter 1, van der Waals
(1893) in his study of the nature of capillarity used density gradients to model
the surface energy of the interfaces. Based on this idea, we include gradients of
some density-related quantities among the state variables mentioned above. In
particular, inspired by the work of Heida et al. (2012b), we shall assume that

η = η (e, %, ϕ1, . . . , ϕN−1,∇ϕ1, . . . ,∇ϕN−1) , (2.84)

where ϕ = [ϕ1, . . . , ϕN−1]> is the vector of order parameters representing either
mass or volume fractions. Note that we have directly applied the constraint∑N

i=1 ϕi = 1, see (2.7) and (2.8) respectively, to exclude ϕN and ∇ϕN from the
set of independent state variables.

From this point of view, we do not include balance of entropy among govern-
ing equations for a given model. Nevertheless, the presented form of the entropy
balance will be used for identification of the entropy producing processes, which
is the crucial step in thermodynamically consistent derivation of constitutive re-
lations for the Cauchy stress tensor, the energy flux and the diffusive fluxes.

Remark 2.14. For convenience reasons, let us introduce the shorthand notation
for expressions of the type (2.84), which in that particular case reads

η = η (e, %,ϕ,∇ϕ) .

Here, the gradient should be understood to be applied componentwise.
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2.4. PRELIMINARY THERMODYNAMIC CONSIDERATIONS

We further assume that η is an increasing function with respect to e, thus it
can be inverted to obtain the specific internal energy as a differentiable function
of the specific entropy and other state variables. In particular, we have

e = e (η, %,ϕ,∇ϕ) . (2.85)

The thermodynamic temperature ϑ and the thermodynamic pressure pth are de-
fined through partial derivatives of e, namely

ϑ
def
=

∂e

∂η
, pth

def
= %2 ∂e

∂%
. (2.86)

(Due to the above monotonicity assumption, we see that ϑ is strictly positive.)
The definitions in (2.86) allow us to introduce other thermodynamic potentials

using the Legendre transformation. The convenient potential for our needs is the
specific Helmholtz free energy ψ, which is defined by

ψ
def
= e− ϑη. (2.87)

Provided that the first formula in (2.86) allows for inversion, we may express the
entropy in terms of the temperature (and other state variables), which in turn
yields

ψ = ψ (ϑ, %,ϕ,∇ϕ) . (2.88)

By application of the chain rule on (2.87), it can be shown that

η = −∂ψ
∂ϑ

, pth = %2∂ψ

∂%
. (2.89)

When deriving the evolution equation for the temperature, we find it convenient
to work with the specific heat at constant volume cv, which can be introduced
through16

cv
def
= −ϑ∂

2ψ

∂ϑ2
. (2.90)

The derivation of diffuse interface models in Chapter 3 is based on the precise
specification of ψ in (2.88), although in theory we could work with (2.85) instead.
The former option is however more convenient from the practical point of view,
because the temperature—unlike the entropy—is directly measurable. Moreover,
our objective is the inclusion of the evolution equation for ϑ in a system of PDEs
representing the relevant model in a general non-isothermal setting.

Finally, let us mention that we put ϕ = c in (2.88) whenever we are dealing
with compressible mixtures. On the other hand, we prefer to work with ϕ = φ in
case of incompressible mixtures. Our choice is motivated by the fact that % can
be expressed as a linear function in terms of φ, see (2.10a), which will become
advantageous later in numerical simulations. Moreover, the density does not
explicitly appear in the evolution equations for volume fractions, see Table 2.2.

16The definition (2.90) is tantamount to

cv(ϑ, %,ϕ,∇ϕ) =
∂

∂ϑ

[
e(η, %,ϕ,∇ϕ)|η=η(ϑ,%,ϕ,∇ϕ)

]
.
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2.5 Summary: Governing equations

We consider a mixture of N chemically non-reacting fluids, that are referred to
as components of the mixture. We distinguish between compressible and incom-
pressible mixtures; see Figure 1.7 and fundamental assumptions in Section 2.1.

For each component we have postulated balances of mass, linear momentum,
angular momentum, energy and entropy. These equations have been reformu-
lated in terms of an averaged velocity v and related diffusive fluxes, i or ̃i,
associated with individual components, see Definition 2.7. Balance equations
for the mixture as a whole have been obtained by adding up their reformulated
componentwise counterparts, and by introducing relevant averaged quantities in-
cluding the Cauchy stress tensor T and the energy flux qe, see (2.40) and (2.62)
respectively.

The approach explained above has brought us to a reduced model in which
the diffusive fluxes, the Cauchy stress tensor and the energy flux are treated as
unknown fields that must be specified by constitutive relations. Tables 2.2–2.3
offer an overview of the balance equations in their general forms.

Final forms of governing and complementary equations, presented below with
respect to three different descriptions according to the classification in Figure 1.7,
are obtained by appealing to simplifying assumptions discussed in Section 2.3.7.
The governing equations are formulated for the unknowns φ or c, v, e, and
possibly %. On the other hand, the specific entropy η is assumed to be a given
function of e and other state variables, see (2.84). For practical purposes we shall
however work with a constitutive assumption for the Helmholtz free energy ψ,
see (2.88), and we shall replace the equation for e with the corresponding equation
for the temperature ϑ. These ideas have been briefly discussed in Section 2.4.

A couple of remarks on the notation follows. First, since each of the afore-
mentioned descriptions is associated with the specific choice of the velocity field,
we shall omit the superscripts ‘m’ and ‘v’, that have been used to differentiate
between the averaged quantities so far. Second, we do not include the balance of
angular momentum explicitly into the forthcoming recapitulation of the governing
equations. As mentioned in Section 2.3.3, its equivalent formulation

T = T> (2.91)

is assumed to hold in all three cases listed below. Moreover, in the balance of
internal energy we shall consider the standard decomposition of the stress tensor
into its spherical and traceless (deviatoric) parts, that is

T = mI + Tδ, m
def
=

1

3
trT, (2.92)

where m is known as the mean normal stress. We will use this kind of decompo-
sition also for other tensors quite frequently in the next chapter17.

Finally, let us remark that m plays a role of Lagrange multiplier enforcing the
constraint (2.29b) in the case of incompressible mixtures. In this sense it becomes

17The traceless part of a general tensor A is defined by Aδ def
= A− 1

3 (trA) I.
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an unknown field that must be obtained as part of the solution of governing
equations, thus only Tδ can be specified by a constitutive relation in this case.

2.5.1 Fully-compressible description

Summary 1: Basic characteristics of FC description

• Properties of the components: mass additive (Assumption 1).

• Velocity field: mass-averaged (Definition 2.5).

• Order parameters: vector of mass fractions c = [c1, . . . , cN−1]>.

• Total density: independent unknown variable.

Summary 2: FC description of the model

• Governing equations:

%
dci
dt

= − div i, i = 1, . . . , N − 1, (2.93a)

d%

dt
= −% div v, (2.93b)

%
dv

dt
= divT + %g, (2.93c)

%
de

dt
= Tδ : Dδ +m div v − div qe. (2.93d)

• Unknown fields: c, %,v, e.

• Fields requiring constitutive relations: T = mI + Tδ, qe, i.

• Complementary fields: cN = 1−∑N−1
i=1 ci, N = −∑N−1

i=1 i.

• Complementary equations:

d∇ci
dt

= −
[
∇v>

]
∇ci −∇

(
1

%
div i

)
, i = 1, . . . , N − 1. (2.93e)

• Balance of entropy:

%
dη

dt
= − div qη + ξ. (2.93f)
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2.5.2 Quasi-incompressible description

Summary 3: Basic characteristics of QI description

• Properties of the components: mass additive, constant material densi-
ties, volume additive (Assumptions 1–3).

• Velocity field: mass-averaged (Definition 2.5).

• Order parameters: vector of volume fractions φ = [φ1, . . . , φN−1]>.

• Total density: given by % =
∑N−1

i=1 (%̂i − %̂N)φi + %̂N (Lemma 2.2).

Summary 4: QI description of the model

• Governing equations (with T = mI + Tδ):

dφi
dt

= −φi div v − div ̃i, i = 1, . . . , N − 1, (2.94a)

div v = −
N−1∑

i=1

r̂i div ̃i, (2.94b)

%
dv

dt
= divT + %g, (2.94c)

%
de

dt
= Tδ : Dδ +m div v − div qe, (2.94d)

• Unknown fields: φ,m,v, e.

• Fields requiring constitutive relations: Tδ, qe, ̃i.

• Complementary fields: φN = 1−∑N−1
i=1 φi, ̃N = − 1

%̂N

∑N−1
i=1 %̂i̃i.

• Complementary equations:

d%

dt
= −% div v, (2.94e)

d∇φi
dt

= −
[
∇v>

]
∇φi −∇(φi div v + div ̃i), i = 1, . . . , N − 1.

(2.94f)
• Balance of entropy:

%
dη

dt
= − div qη + ξ. (2.94g)
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2.5.3 Fully-incompressible description

Summary 5: Basic characteristics of FI description

• Properties of the components: mass additive, constant material densi-
ties, volume additive (Assumptions 1–3).

• Velocity field: volume-averaged (Definition 2.5).

• Order parameters: vector of volume fractions φ = [φ1, . . . , φN−1]>.

• Total density: given by % =
∑N−1

i=1 (%̂i − %̂N)φi + %̂N (Lemma 2.2).

Summary 6: FI description of the model

• Governing equations (with T = mI + Tδ and J =
∑N−1

i=1 (%̂i − %̂N) ̃i):

dφi
dt

= − div ̃i, i = 1, . . . , N − 1, (2.95a)

div v = 0, (2.95b)

%
dv

dt
+ Θ2 [∇v]J = divT + %g −Θ0

dJ

dt
, (2.95c)

%
de

dt
−Θ2 e divJ = Tδ :

(
D + Θ1∇sym (%−1J)

)δ − div qe

+ Θ1m div (%−1J) + Θ1%
−1J ·

(
[∇v]J + Θ0

dJ

dt

)
.

(2.95d)
• Unknown fields: φ,m,v, e.

• Fields requiring constitutive relations: Tδ, qe, ̃i.

• Complementary fields: φN = 1−∑N−1
i=1 φi, ̃N = −∑N−1

i=1 ̃i.

• Complementary equations:

d%

dt
= −Θ2 divJ , (2.95e)

d∇φi
dt

= −
[
∇v>

]
∇φi −∇(div ̃i), i = 1, . . . , N − 1. (2.95f)

• Balance of entropy:

%
dη

dt
−Θ2η divJ = − div qη + ξ. (2.95g)
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Summary 7: Additional levels of approximation for FI description

0. The term that brings additional complexity into the balance of linear
momentum (2.42) is the material time derivative of J . To cope with
this term in the forthcoming derivations, one would need to identify evo-
lution equations for diffusive fluxes ̃i. These equations would contain
the interaction terms li, which in turn must be specified by appealing
to some constitutive relations, see Souček et al. (2014). Such detailed
approach is not covered within the thesis. Instead, we accept ad hoc
assumption that the term dJ

dt
in (2.95d) simply vanishesa. Hereafter,

we always put

Θ0 = 0. (2.96a)

In this sense the model is not consistent from the perspective of the
transition from the componentwise formulation of the balance equations
towards the current level of description with the equations formulated
for the mixture as a whole.

1. Similar complication arises in balance of total energy (2.68), where the
additional complexity appears due to the material time derivative of
the term v ·J . If we accept another ad hoc assumptions that have been
commented in Remark 2.13, we end up with governing equations (2.95)
in which

Θ1 = Θ0 = 0. (2.96b)

Models based on this type of approximations were previously derived
by Abels et al. (2012) and Dong (2014a), but they were applied only
in the classical isothermal setting. Our primary objective here is to
provide a variant of the model appropriate for computer simulations of
multi-component flows in the extended non-isothermal setting.

2. Another possible level of approximation is to neglect the “correction”
term (multiplied by Θ2) on the left hand side of (2.95c); for its precise
meaning see the discussion below (2.42). In such a case we put

Θ2 = Θ1 = Θ0 = 0. (2.96c)

As noted by Dong (2014a), this term represents the effect of the mo-
mentum flux associated with the mass transport at the scale of the
diffuse interface layer. We should therefore neglect also the right hand
side of (2.95e) together with related terms in (2.95d) and (2.95g). (If
the previous approximations were ad hoc, then this one is ad hoc.)

aOne possible interpretation of this approximation step is the requirement that the
interplay between the interaction forces and partial stresses is such that dJ

dt = 0 is always
satisfied. However, it is not a physically based argument. The other possible interpretation
has been commented in Remark 2.11.
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Chapter 3

Diffuse Interface Models

Our objective in this chapter is to propose a mathematical model suitable for
the description of flows of N immiscible fluids, taking into account capillary
effects at the interfaces between them, as well as the thermal effects. Diffuse
interface models represent one particular class of mathematical models with such
capabilities.

The standard approach to the derivation of diffuse interface models is based on
the choice of an appropriate ansatz for the free energy of the considered system.
A promising candidate must ensure separation of the components into their pure
states and, at the same time, allow for their partial mixing within a thin interfacial
regions.

In Section 3.1 we first discuss the standard form of such an ansatz for two-
component (binary) systems at a constant temperature. Then, we discuss its
possible extensions that can be used in the general non-isothermal setting with
variable temperature field. The proposed function is then accepted as the con-
stitutive assumption and it is extensively used in subsequent manipulation with
the governing equations formulated in the preceding chapter. The purpose of the
manipulation is twofold. The first aim is the identification of entropy producing
processes in the model, which is crucial for the proposal of constitutive relations
defining the Cauchy stress tensor, the energy flux and the diffusive fluxes respec-
tively. These relations are obtained directly from a thermodynamically consistent
constitutive assumption on the structure of the entropy production. The second
aim is a consistent derivation of the temperature equation. Both procedures are
described in detail in Sections 3.2–3.4, covering the three cases that have been
summarized in Section 2.5.

The combination of the derived constitutive relations and the particular form
of the balance equations eventually leads to a system of PDEs of CHNSF type.
In order to apply the models, we need to specify all material parameters such
as viscosity and thermal conductivity for the individual components, as well as
parameters characterizing the properties of the continua in the interfacial region
in between the individual components. Concerning the viscosity and the thermal
conductivity at the interfacial mixed region, we opt for a certain type of interpo-
lation that facilitates smooth transition of viscosity/conductivity from one pure
component in the other. This is briefly discussed in Section 3.5. Other parame-
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ters characterizing the interface, such as surface tension, are treated as genuine
physical quantities. The entire specification of the free energy ansatz is a com-
plicated matter, especially for general N -component systems with N ≥ 3. In
Section 3.6 we discuss at least the special case of binary fluids (N = 2). We also
demonstrate how the generalized models developed within the current chapter
reduce to some existing binary models which are available in the mathematical
literature.

Remark 3.1. Another class of diffuse interface models, based on the approach
outlined in Chapter 2, can be obtained if we replace diffusion effects in the model
by reaction effects. This can be achieved by considering zero diffusive fluxes
and non-zero reaction terms in the equations describing balance of mass. The
corresponding governing equations in combination with suggested constitutive
assumption yield a system of PDEs of Allen–Cahn–Navier–Stokes–Fourier (AC-
NSF) type, see Heida et al. (2012a). The derivation of the temperature equation,
and the corresponding classification of relevant diffuse interface models, may be
discussed in future research.

3.1 Constitutive assumptions

At this point we shall continue our discussion initiated in Section 2.4. Before
that, we shall briefly discuss the so-called phase separation process in binary
systems. The main purpose of this little detour is to motivate our later choice
of the function representing the specific Helmholtz free energy for incompressible
multi-component systems, recall (2.88).

3.1.1 Motivation: Phase separation in binary systems

Description of phase separation

A model which describes the phenomenon of phase separation in binary systems
was proposed by Cahn and Hilliard (1958). Imagine a mixture that exists in
a state of isothermal equilibrium at a high temperature, for example a molten
iron-nickel alloy. The phase separation is a process during which the mixture
separates into its two components, or more precisely, a process during which we
observe formation of a structure with two distinct phases1. It typically occurs
if the mixture is quenched to a uniform fixed temperature ϑ̂iso below a critical
temperature ϑcrit.

Remark 3.2. Note that the observed phases are not necessarily occupied by the
pure components. Each such phase can be created by a homogenized material
which contains—regarding its detailed chemical composition—contributions from
both components, although one of them predominates.

The derivation of the CH model is based on a free energy, usually called

1The term phase here refers to a region of space occupied by a material that is chemically
uniform, physically distinct and separable from other materials.

46



3.1. CONSTITUTIVE ASSUMPTIONS

Ginzburg–Landau energy, of the form

FGL(ϑ̂iso;ϕ1)
def
=

∫

Ω

(
A(ϑ̂iso)

2
|∇ϕ1|2 +B(ϑ̂iso)f(ϑ̂iso;ϕ1)

)
dx. (3.1)

Here, Ω is a fixed spatial domain occupied by the mixture and coefficients A(ϑ̂iso)
and B(ϑ̂iso) are assumed to be positive. Recall that ϑ̂iso is a fixed parameter,
therefore we use semicolon to separate it from other variables. In particular, the
only variable in the current case is a single order parameter ϕ1 = ϕ1(x, t) which
describes the composition of the mixture. We assume that ϕ1(x, t) ∈ [0, 1] is
a concentration of the first component (iron), while the corresponding concentra-
tion of the second component (nickel) is given by ϕ2(x, t) = 1− ϕ1(x, t) ∈ [0, 1].
It immediately follows that regions of pure iron and pure nickel are characterized
by ϕ1 = 1 and ϕ1 = 0 respectively. We shall refer to them as to the pure phases.

The function f : (0, ϑcrit)×R→ R in (3.1) represents a potential function with
two distinct minima—one for each of the two observed phases—which are often
called wells. A microscopically motivated double-well potential in our notation
takes the form

flog(ϑ̂iso;ϕ1) = ϑ̂iso [(ϕ1 lnϕ1 + (1− ϕ1) ln (1− ϕ1)] + 2ϕ1(1− ϕ1)ϑcrit, (3.2)

cf. Cahn and Hilliard (1958) and Cahn (1959). Figure 3.1a illustrates flog for

ϑcrit = 1 and different values of ϑ̂iso. The minima of this function are located at
the two points corresponding to ϕ1 = 1

2
± β0(ϑ̂iso), where β0(ϑ̂iso) is the positive

root of

ϑcrit

ϑ̂iso

=
1

4β
ln

(
1 + 2β

1− 2β

)
, (3.3)

cf. Copetti and Elliott (1992). The curve plotted in Figure 3.1b represents the
right hand side of (3.3) and its intersection with an arbitrary horizontal line
corresponding to ϑcrit/ϑ̂iso = const. > 1 determines the roots in question. We
immediately see that the minima asymptotically approach the pure phases as
ϑ̂iso/ϑcrit → 0+.

The considered closed physical system evolves towards its equilibrium state
characterized by ϕ1 that minimizes the Ginzburg–Landau energy (3.1) subject to
the conservative condition d

dt

∫
Ω
ϕ1dx = 0. The first term on the right hand side

of (3.1) is significant whenever ϕ1 varies rapidly in space. Hence, its minimization
gives rise to interfacial regions and accounts for capillary effects. The second term
corresponds to the bulk free energy away from the interfaces. Its minimization
penalizes values of ϕ1 away from 1

2
±β0(ϑ̂iso). Based on our previous observations,

we can conclude that the considered mixture separates into its (almost) pure
components if the quench is deep, that is, if ϑ̂iso � ϑcrit.

The corresponding evolution equation describing the phase separation process
reads

∂ϕ1

∂t
= div

(
M(ϑ̂iso;ϕ1)∇

(
B(ϑ̂iso)f ′(ϑ̂iso;ϕ1)− A(ϑ̂iso)∆ϕ1

))
. (3.4)
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Here, M(ϑ̂iso;ϕ1) ≥ 0 (M(ϑ̂iso;ϕ1) 6≡ 0) denotes the so-called mobility function,
and by f ′ we denote the derivative of f with respect to ϕ1. This fourth-order
nonlinear PDE is known as the Cahn-Hilliard equation. Its various derivations
were recently reviewed in Lee et al. (2014).

Obviously, the Cahn-Hilliard equation (3.4) can be restated in the form of two
second-order equations

∂ϕ1

∂t
= div

(
M(ϑ̂iso;ϕ1)∇µ1

)
, (3.5a)

µ1 = B(ϑ̂iso)f ′(ϑ̂iso;ϕ1)− A(ϑ̂iso)∆ϕ1. (3.5b)

Here, µ1 denotes the so-called generalized chemical potential. (This quantity will
be formally introduced later in the current chapter.) In the standard case, the
Cahn-Hilliard equation is supplemented with the homogeneous Neumann bound-
ary conditions

∇ϕ1 · n = 0 on ∂Ω, (3.6a)

∇µ1 · n = 0 on ∂Ω, (3.6b)

where n denotes the outward unit normal vector to the domain boundary ∂Ω.
The first condition is a natural condition associated with the variational problem
of minimizing the Ginzburg–Landau energy (3.1). Due to this condition the
interfaces remain perpendicular to the domain boundary. The second condition
enforces zero flux across the domain boundary. In particular, this boundary
condition implies

d

dt

∫

Ω

ϕ1dx =

∫

Ω

∂ϕ1

∂t
dx =

∫

Ω

div
(
M(ϑ̂iso;ϕ1)∇µ1

)
dx

=

∫

∂Ω

M(ϑ̂iso;ϕ1)∇µ1 · n ds = 0. (3.7)
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Figure 3.1: Thermodynamically consistent double-well potential.
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Approximations of the logarithmic potential

The logarithmic potential (3.2) is often approximated by a quartic polynomial of
the form

fpol(ϑ̂iso;ϕ1) =

(
ϕ1 −

1

2
+ β0(ϑ̂iso)

)2(
ϕ1 −

1

2
− β0(ϑ̂iso)

)2

, (3.8)

which retains the double-well structure with the two minima at 1
2
±β0(ϑ̂iso), taking

into account their dependency on ϑcrit/ϑ̂iso via (3.3). The Cahn-Hilliard equation
with this form of the potential function was extensively studied in the past from
the analytical and numerical points of view; see for example Novick-Cohen and
Segel (1984), Elliott (1989), Copetti and Elliott (1990).

Remark 3.3. Note that approximation of (3.2) by a quartic polynomial is rel-
evant especially if ϑ̂iso ≈ ϑcrit. In cases with ϑ̂iso � ϑcrit it is more appropriate
to use an approximation in the form of the non-smooth double-obstacle poten-
tial which was introduced by Oono and Puri (1988), see also Blowey and Elliott
(1991). The setting with this type of potential function becomes more compli-
cated, when compared to the smooth polynomial approximation, due to its non-
differentiability. As a consequence, some special treatment of the double-obstacle
potential is required in the applied numerical methods. For detailed information
we refer to the recent work by Bosch (2016) and references therein.

Recall that the aim of the thesis is to propose models for description of flows
of multi-component systems that are already found in their separate states with
a multi-phase structure involving only pure phases and mixed interfaces. In
principle, we are not interested in the description of the phase separation itself,
but a relevant choice of the free energy will help us to keep the required structure.

Assumption 4 (Multi-phase structure). We assume that the multi-component
system of our interest keeps its multi-phase structure regardless the temperature
variations. Except mixed interfacial regions, the multi-phase structure involves
only pure phases in the sense of spatial regions occupied by the pure components.

Let us emphasize that the temperature variations are supposed to occur on
moderate scales sufficiently below the critical temperature ϑcrit. Following the
above assumption, we simply put β0(ϑ̂iso) = 1

2
in (3.8), which brings us to the

classical double-well potential in the form of the fourth-order polynomial function

f(ϕ1) = ϕ2
1 (1− ϕ1)2 . (3.9)

Now we are ready to associate the coefficients A,B in (3.1) with the two positive
parameters, ε and σ12, where the fist one represents the approximate interface
thickness and the second one denotes the surface tension between the components.
Note that the surface tension is the physical quantity which generally depends on
the temperature, see for example Adam (1941), while ε is a numerical parameter
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that is considered to be fixed in the applications. It can be shown that2

A(ϑ̂iso) = aσ12(ϑ̂iso)ε, B(ϑ̂iso) = bσ12(ϑ̂iso)ε−1, (3.10a)

where a and b are positive constants given by the shape of the potential function.
In particular, the fourth-order polynomial potential (3.9) yields

a =
max[0,1]

√
f∫ 1

0

√
f

=
3

2
, b =

1

2 max[0,1]

√
f
∫ 1

0

√
f

= 12. (3.10b)

Transition to Helmholtz free energy

The total free energy Ψ of our considered system at time t is given by integrating
the specific Helmholtz free energy multiplied by the total density, namely

Ψ(t) =

∫

Ω

%ψ(ϑ, %, ϕ1,∇ϕ1)dx. (3.11)

Let us fix the temperature to a uniform temperature ϑ̂iso as above. By comparing
the integrands in (3.1) and (3.11) we obtain the relation

ψ(ϑ̂iso; %, ϕ1,∇ϕ1) =
1

%

(
A(ϑ̂iso)

2
|∇ϕ1|2 +B(ϑ̂iso)f(ϑ̂iso;ϕ1)

)
, (3.12)

which gives us the basic idea about the structure of the constitutive assumption
for the specific Helmholtz free energy. Our further objective is to generalize the
above relation to allow for temperature variations, both spatial and temporal.

3.1.2 Non-isothermal extension of double-well potential

Compressible binary systems

In case of compressible binary systems we accept the constitutive assumption of
the form

ψ(ϑ, %, c1,∇c1) =
1

2
εσ12(ϑ) |∇c1|2 + ψth(ϑ, %, c1), (3.13)

which mimics the ansatz used in (Lowengrub and Truskinovsky, 1998, Eq. (3.31)).
The first term on the right hand side of (3.13) generalizes the corresponding
term in (3.12) by taking into account the temperature-dependent surface tension,
together with a constant parameter ε representing the typical length scale for the
interface thickness divided by a characteristic density, cf. (3.10a). Note that the
explicit presence of the variable density % is suppressed in this term, so that the
thermodynamic pressure pth is given by

pth = %2∂ψth

∂%
, (3.14)

2The expressions for coefficients A,B can be obtained by analyzing the one-dimensional
equilibrium profile with a single interface on the whole real axis, see (Boyer and Minjeaud,
2014, Appendix A).
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cf. (2.89). The function ψth is assumed to reduce to a standard form—applicable
in the context of the Navier–Stokes–Fourier (NSF) equations—if only one com-
ponent is present in our considered physical system. (We will not discuss the
detailed structure of ψth as the study of compressible models is not of our pri-
mary interest in this thesis.)

Incompressible binary systems

In case of incompressible binary systems we suggest to work with the constitutive
assumption of the form

ψ(ϑ, %, φ1,∇φ1) =
1

%
ψ̃(ϑ, φ1,∇φ1). (3.15)

Recall that the density % is in this case given by %(φ1) = (%̂1 − %̂2)φ1 + %̂2, see

Lemma 2.2. It remains to specify the Helmholtz free energy density ψ̃. In the
classical isothermal setting, with a fixed uniform temperature ϑ̂iso, we shall require
that ψ̃ reduces to

ψ̃(ϑ̂iso;φ1,∇φ1) =
aε

2
σ12(ϑ̂iso) |∇φ1|2 +

b

ε
σ12(ϑ̂iso)f(φ1), (3.16)

with f given by (3.9) and a, b given by (3.10b). Recall that this particular choice of
the double-well potential is consistent with the Assumption 4. The corresponding
generalization to the non-isothermal setting with variable temperature field reads

ψ̃(ϑ, φ1,∇φ1) =
aε

2
σ12(ϑ) |∇φ1|2 + ψ̃0(ϑ, φ1). (3.17)

The function ψ̃0 in the above relation must not violate the Assumption 4. It
means that the separation of the system into pure components—characterized by
φ1 = 0 and φ1 = 1—must remain the most stable state irrespective of the actual
value of the temperature. Note that it does not necessarily mean that ψ̃0 must
have its local minima at φ1 = 0 and φ1 = 1. It must be convex at these points,
namely

∂2ψ̃0

∂φ2
1

∣∣∣∣∣
φ1=0

> 0,
∂2ψ̃0

∂φ2
1

∣∣∣∣∣
φ1=1

> 0, (3.18a)

and any other admissible state satisfying VAC must be energetically less conve-
nient3. Another restriction on the choice of ψ̃0 arises from the definition of the
specific heat at constant volume cv, see (2.90), which can be rewritten in the
current notation as

cv = −ϑ
%

∂2ψ̃

∂ϑ2
= −ϑ

%

(
aε

2

d2σ12

dϑ2
|∇φ1|2 +

∂2ψ̃0

∂ϑ2

)
.

3In Figure 3.2b, we observe that each plot representing the free energy density ψ̃0, for
our specific choice (3.19) at a fixed value of ϑ, lies above the double tangent which represents
the energy value in the state with two pure components as it goes through the pair of points
[1, ψ̃1(ϑ)] and [0, ψ̃2(ϑ)].
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Clearly, it is natural to assume that the value of cv in the pure phases coincides
with the specific heat of individual components. This is guaranteed by requiring

∂2ψ̃0

∂ϑ2

∣∣∣∣∣
φ1=1

= − %̂1

ϑ
ĉv,1,

∂2ψ̃0

∂ϑ2

∣∣∣∣∣
φ1=0

= − %̂2

ϑ
ĉv,2, (3.18b)

where ĉv,1 and ĉv,2 are assumed to be constants for simplicity. Last but not least,

we must ensure that (3.17) reduces to (3.16), meaning that ψ̃0 must satisfy

ψ̃0

∣∣∣
ϑ=ϑ̂iso

=
b

ε
σ12(ϑ̂iso)f(φ1). (3.18c)

We suggest to work with ψ̃0 in the form

ψ̃0(ϑ, φ1) =
b

ε
σ12(ϑ̂iso)f(φ1) + (ψ̃1(ϑ)− ψ̃2(ϑ))φ1 + ψ̃2(ϑ), (3.19)

where ψ̃1 and ψ̃2 represent free energy densities in the bulk of the domains oc-
cupied by the pure components. Note that ψ̃0 in the above form automatically
satisfies (3.18a). With respect to (3.18b), we see that ψ̃i (for i ∈ {1, 2}) must be
a solution of the second-order ordinary differential equation (ODE)

d2ψ̃i
dϑ2

= − %̂i
ϑ

ĉv,i. (3.20)

We choose the solution satisfying the initial conditions

ψ̃i

∣∣∣
ϑ=ϑ̂iso

= 0,
dψ̃i
dϑ

∣∣∣∣∣
ϑ=ϑ̂iso

= 0, (3.21)

where the first one implies (3.18c), while the second one fixes the entropy of the
pure components. It immediately follows that

ψ̃i(ϑ) = −%̂iĉv,i

[
ln

(
ϑ

ϑ̂iso

)
− ϑ− ϑ̂iso

ϑ

]
ϑ, (3.22)

see Figure 3.2a.

Remark 3.4. Both conditions in (3.21) are admissible from the point of view
of the classical thermodynamics, which is primarily concerned with changes in
thermodynamic quantities—like the Helmholtz free energy or the entropy—and
not their absolute values.
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0 1 2 3
ϑ

−4

−2

0
ψ̃
i(
ϑ

)

ψ̃1 (ĉv,1 = 1.0)

ψ̃2 (ĉv,2 = 4.0)

(a) The Helmholtz free energy den-
sity (3.22) for individual components with
matching densities %̂1 = %̂2 = 1, but dif-
ferent values of the specific heat at con-
stant volume.

0 1
φ1

−0.3

0.0

0.3

0.6

ψ̃
0(
ϑ
,φ

1)

ϑ = 1.0 ϑ̂iso

ϑ = 1.4 ϑ̂iso

ϑ = 0.8 ϑ̂iso

(b) The extended double-well poten-
tial (3.19) with ψ̃1, ψ̃2 depicted in (a) and
ε = σ12 = b = 1. The full line corresponds
to the double-well potential (3.9) which is
often used in the isothermal setting.

Figure 3.2: Non-isothermal extension of the polynomial double-well potential for
an incompressible system consisting of two components with ĉv,1 = 1 and ĉv,2 = 4.

The reference temperature is set to ϑ̂iso = 1.

3.1.3 Constitutive assumption for compressible systems

We assume that the specific Helmholtz free energy ψ, for a multi-component
system consisting of N compressible components, is a given function of the form

ψ (ϑ, %, c,∇c) =
ε

4

N−1∑

i,j=1

λij(ϑ)∇ci · ∇cj + ψth(ϑ, %, c), (3.23)

which is required to reduce to (3.13) if N = 2. Here, λij are temperature-
dependent entries of a symmetric positive definite (SPD) matrix Λ∈R(N−1)×(N−1).
These so-called mixing surface energy coefficients are related to pairwise surface
tensions. The required properties of the matrix Λ are important from both phys-
ical and mathematical point of view. We defer further discussion about the
admissible choice of Λ to Chapter 4.

In addition to thermodynamic quantities introduced in Section 2.4, we define

µci
def
=
∂ψ

∂ci
, ς̃ ci

def
= %

∂ψ

∂∇ci
, (3.24)

where µci is the specific chemical potential of the i-th component, while ς̃ ci may
be interpreted as the generalized surface energy associated with the variation of
the mass fraction of the i-th component.
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3.1.4 Constitutive assumption for incompressible systems

We assume that the specific Helmholtz free energy ψ, for multi-component sys-
tems consisting of N incompressible components, is a given function of the form

ψ(ϑ, %,φ,∇φ) =
1

%
ψ̃ (ϑ,φ,∇φ) , (3.25)

with % = %(φ) given by (2.10a). Similarly as in the previous case of compressible

systems, the Helmholtz free energy density ψ̃ is assumed to take the form

ψ̃(ϑ,φ,∇φ) =
aε

4

N−1∑

i,j=1

λij(ϑ)∇φi · ∇φj + ψ̃0(ϑ,φ), (3.26)

and it is required to reduce to (3.17) if N = 2. Based on the non-isothermal
extension of the double-well potential, which has been proposed in Section 3.1.2,
we further suggest to work with

ψ̃0(ϑ,φ) =
b

ε
F (φ) +

N−1∑

i=1

(ψ̃i(ϑ)− ψ̃N(ϑ))φi + ψ̃N(ϑ). (3.27)

Here, F is a potential function with multi-well structure which appropriately
extends the double-well potential (3.9), and ψ̃i corresponds to the Helmholtz free
energy density of the i-th component given by (3.22). It is straightforward to
verify that the specific heat at constant volume cv, see (2.90), reduces to

cv(φ) =
1

%(φ)

(
N−1∑

i=1

(%̂iĉv,i − %̂N ĉv,N)φi + %̂N ĉv,N

)
, (3.28)

provided that ψ̃i are given by (3.22) and λij in (3.26) are independent of the
temperature. It is worth noting that the previous formula is of the same structure
as the analogous relation for the total density (2.10a). The precise specification
of λij and F will be discussed in Section 4.1.

In contrast to compressible multi-component systems, the density % in (3.25)
is not a classical state variable and the thermodynamic pressure pth loses its
original meaning. Indeed, by virtue of (2.89) we obtain the formal relation

pth = −ψ̃, (3.29)

which will be used in the forthcoming derivations. We also define

µ̃ φ
i

def
=

∂ψ̃

∂φi
, ς̃ φi

def
=

∂ψ̃

∂∇φi
, (3.30)

where µ̃ φ
i denotes the chemical potential of the i-th component and ς̃ φi is the

generalized surface energy associated with the variation of the volume fraction of
the i-th component.
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3.2 Fully-compressible model

3.2.1 Identification of the entropy production

Applying the material time derivative to ψ = ψ(ϑ, %, c,∇c), see (3.23), we get

dψ

dt
= −ηdϑ

dt
+
pth

%2

d%

dt
+

N−1∑

i=1

(
µci

dci
dt

+
1

%
ς̃ ci ·

d∇ci
dt

)
, (3.31)

where we have used the notation introduced in (2.89) and (3.24). Similarly, we
apply the material time derivative to (2.87) and substitute the result to the left
hand side of (3.31). Doing so, we arrive to the identity

de

dt
− ϑdη

dt
=
pth

%2

d%

dt
+

N−1∑

i=1

(
µci

dci
dt

+
1

%
ς̃ ci ·

d∇ci
dt

)
. (3.32)

Next, we multiply (3.32) by %, rearrange the terms and substitute from the system
of equations (2.93). We obtain the evolution equation for the entropy in the form

%ϑ
dη

dt
= Tδ : Dδ + (m+ pth) div v − div qe +

N−1∑

i=1

µci div i

+
N−1∑

i=1

ς̃ ci ·
([
∇v>

]
∇ci +∇

(
1

%
div i

))
. (3.33)

The objective is to identify the entropy flux qη and the entropy production term
ξ in this equation, cf. (2.93f). The summation on the second line in (3.33) can be
rewritten using the identities ς̃ ci ·

[
∇v>

]
∇ci = (ς̃ ci ⊗∇ci) : ∇v> and

ς̃ ci · ∇
(

1

%
div i

)
= div

(
1

%
(div i) ς̃

c
i

)
− 1

%
(div i) div ς̃ ci .

Motivated by these manipulations we introduce the notation

µi
def
= µci −

1

%
div ς̃ ci , (3.34)

for the specific generalized chemical potential of the i-th component, and

TDI
def
=

N−1∑

i=1

ς̃ ci ⊗∇ci, (3.35)

for the complementary stress tensor which represents the contribution to stress
coming from the diffuse interface. Note that TDI is symmetric due to our par-
ticular choice of the constitutive assumption (3.23) with the symmetric matrix
Λ = [λij](N−1)×(N−1). In what follows, we use the decomposition TDI = mDII+TδDI
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with the spherical part given by mDI = 1
3

∑N−1
i=1 ς̃

c
i · ∇ci. With the above defini-

tions we can rewrite (3.33) as

%ϑ
dη

dt
= (T + TDI)

δ : Dδ + (m+mDI + pth) div v +
N−1∑

i=1

µi div i

− div

(
qe −

1

%

N−1∑

i=1

(div i) ς̃
c
i

)
. (3.36)

The straightforward use of the formula µi div i = div (µii)− i · ∇µi yields

%ϑ
dη

dt
= (T + TDI)

δ : Dδ+(m+mDI + pth) div v−
N−1∑

i=1

i ·∇µi−div (qe + qDI),

(3.37)

where we have introduced the complementary energy flux

qDI
def
= −

N−1∑

i=1

(
µii +

1

%
(div i) ς̃

c
i

)
. (3.38)

In the final step, we first divide equation (3.37) by ϑ and then we use the identity
1
ϑ

div (qe + qDI) = div
(

1
ϑ

(qe + qDI)
)

+ 1
ϑ2 (qe + qDI) · ∇ϑ to obtain the evolution

equation for the entropy in the form

%
dη

dt
=

1

ϑ

[
(T + TDI)

δ : Dδ + (m+mDI + pth) div v

−
N−1∑

i=1

i · ∇µi −
(
qe + qDI

ϑ

)
· ∇ϑ

]
− div

(
qe + qDI

ϑ

)
. (3.39)

Now, if we compare (2.93f) and (3.39), we immediately see that the entropy
flux corresponds to

qη =
qe + qDI

ϑ
, (3.40)

and the entropy production ξ = ζ
ϑ

is given by

ζ = (T + TDI)
δ : Dδ + (m+mDI + pth) div v −

N−1∑

i=1

i · ∇µi −
(
qe + qDI

ϑ

)
· ∇ϑ.

(3.41)

3.2.2 Constitutive relations

We assume that each term on the right hand side of (3.41) represents an indepen-
dent dissipation process described as a product of thermodynamic affinity and
corresponding thermodynamic flux. This is a legitimate assumption as we have
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eliminated one of the N diffusive fluxes at the very beginning of the derivation
of (3.41). (Recall that the mass diffusive fluxes are not independent due to the
first constraint in (2.20).)

Now we are ready to fix the constitutive relations. We simply postulate the en-
tropy production to be piecewise quadratic function of its thermodynamic affini-
ties in the form4

ξ =
1

ϑ

[
2ν
∣∣Dδ
∣∣2 + υ̃ (div v)2 +

N−1∑

i=1

Mi |∇µi|2 +
κ

ϑ
|∇ϑ|2

]
. (3.42)

Provided that the coefficients ν, υ̃,Mi and κ are non-negative functions of the
aspiring primitive quantities ϑ, %, c and possibly v (through its symmetric gradi-
ent), we obtain a material model which automatically satisfies the second law of
thermodynamics due to non-negativity of the entropy production. By compar-
ing (3.41) and (3.42) we obtain the constitutive relations

(T + TDI)
δ = 2νDδ, (3.43a)

m+mDI + pth = υ̃ div v, (3.43b)

i = −Mi∇µi, i = 1, . . . , N − 1, (3.43c)

qe + qDI = −κ∇ϑ. (3.43d)

If we use a more traditional notation υ = υ̃ − 2ν/3, we can rewrite the above
constitutive relations to take the form

T = (−pth + υ div v) I + 2νD−
N−1∑

i=1

ς̃ ci ⊗∇ci, (3.44a)

i = −Mi∇µi, i = 1, . . . , N − 1, (3.44b)

qe = −κ∇ϑ−
N∑

i=1

(
1

2
Mi∇µ2

i +
1

%
div (Mi∇µi)ς̃ ci

)
. (3.44c)

The remaining diffusive flux N can be obtained, if needed, as N = −∑N−1
i=1 i.

Remark 3.5. Heida et al. (2012b) in their work present the derivation of (3.44)
based on the assumption of the maximization of the entropy production rate and
on the alternative form of the entropy production ansatz

ξ =
1

ϑ

[
1

2ν

∣∣∣(T + TDI)
δ
∣∣∣
2

+
1

υ̃
(m+mDI + pth)2 +

1

κ
|qe + qDI|2 +

N−1∑

i=1

1

Mi

|i|2
]
,

(3.45)

where the coefficients ν, υ̃,Mi and κ are considered to be strictly positive.

4The norm of an arbitrary second order tensor A is defined by |A|2 = A : A.
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3.2.3 Evolution equation for the temperature

Having the expression for the entropy production in the form (3.42) we can return
back to the evolution equation for the entropy. The aim is to rewrite this equation
as an evolution equation for the temperature.

From the discussion in Section 2.4 we already know that the entropy can be
expressed as a function of the temperature and other state variables, namely
η = η (ϑ, %, c,∇c) . Using the chain rule we see that

dη

dt
=
∂η

∂ϑ

dϑ

dt
+
∂η

∂%

d%

dt
+

N−1∑

i=1

(
∂η

∂ci

dci
dt

+
∂η

∂∇ci
· d∇ci

dt

)
, (3.46)

which can be further rewritten solely in terms of the Helmholtz free energy and
its derivatives as

dη

dt
= −∂

2ψ

∂ϑ2

dϑ

dt
− ∂2ψ

∂%∂ϑ

d%

dt
−

N−1∑

i=1

(
∂2ψ

∂ci∂ϑ

dci
dt

+
∂2ψ

∂∇ci∂ϑ
· d∇ci

dt

)
. (3.47)

(Recall that η = −∂ψ
∂ϑ

, see (2.89).)

Using the interchangeability of the second derivatives it is possible to rewrite
the last formula as

dη

dt
=

cv

ϑ

dϑ

dt
− 1

%2

∂pth

∂ϑ

d%

dt
−

N−1∑

i=1

(
∂µci
∂ϑ

dci
dt

+
1

%

∂ς̃ ci
∂ϑ
· d∇ci

dt

)
. (3.48)

Next, we multiply (3.48) by %ϑ and we substitute there once again from the
system of governing equations (2.93). After some algebraic manipulations, we
obtain

%ϑ
dη

dt
= %cv

dϑ

dt
+ ϑ

∂pth

∂ϑ
div v + TDI,ϑ : ∇v>

+
N−1∑

i=1

µi,ϑ div i + div

(
ϑ

%

N−1∑

i=1

(div i)
∂ς̃ ci
∂ϑ

)
, (3.49)

where we have introduced the notation

µi,ϑ
def
= ϑ

∂µci
∂ϑ
− 1

%
div

(
ϑ
∂ς̃ ci
∂ϑ

)
, TDI,ϑ

def
=

N−1∑

i=1

ϑ
∂ς̃ ci
∂ϑ
⊗∇ci. (3.50)

Now we are ready to put all the pieces together. In Section 3.2.2 we have
derived the evolution equation for the entropy in the form

%
dη

dt
= div

(
κ∇ϑ
ϑ

)
+ ξ, (3.51)

58



3.2. FULLY-COMPRESSIBLE MODEL

where ξ is given by (3.42). Combining (3.49) with (3.43c) and (3.51), we arrive
to the evolution equation

%cv
dϑ

dt
= 2νDδ : Dδ + υ̃(div v)2 +

N−1∑

i=1

Mi |∇µi|2

− ϑ∂pth

∂ϑ
div v − TDI,ϑ : ∇v> +

N−1∑

i=1

µi,ϑ div (Mi∇µi)

+ div

(
κ∇ϑ+

ϑ

%

N−1∑

i=1

∂ς̃ ci
∂ϑ

div (Mi∇µi)
)
. (3.52)

Since the tensor TDI,ϑ is symmetric, see (3.23), we can manipulate the last equa-
tion into its final form

%cv
dϑ

dt
= (2νD− TDI,ϑ) : D +

N−1∑

i=1

Mi |∇µi|2

+

(
υ div v − ϑ∂pth

∂ϑ

)
div v +

N−1∑

i=1

µi,ϑ div (Mi∇µi)

+ div

(
κ∇ϑ+

ϑ

%

N−1∑

i=1

div (Mi∇µi)
∂ς̃ ci
∂ϑ

)
. (3.53)

3.2.4 Summary: FC-CHNSF model

Let us recapitulate the full system of governing equations for a compressible heat
conducting fluid-like mixture consisting of N components. The specific Helmholtz
free energy of such physical system is assumed to take the form

ψ (ϑ, %, c,∇c) =
ε̂

4

N−1∑

i,j=1

λij(ϑ)∇ci · ∇cj + ψth(ϑ, %, c), (3.54)

where c = [c1, . . . , cN−1]>, ε̂ is a constant parameter, ψth is a given function,
and λij are given mixing surface energy coefficients such that the matrix Λ =
[λij](N−1)×(N−1) is SPD. Let

ν = ν(ϑ, %, c,D), υ̃ = υ̃(ϑ, %, c,D), κ = κ(ϑ, %, c,D), Mi = Mi(ϑ, %, c,D)
(3.55)

are given non-negative functions that characterize the entropy production ξ = ζ
ϑ
,

ζ = 2ν
∣∣Dδ
∣∣2 + υ̃ (div v)2 +

N−1∑

i=1

Mi |∇µi|2 +
κ

ϑ
|∇ϑ|2 . (3.56)
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Summary 8: Governing equations for FC-CHNSF model

The system of governing equations for the primitive quantities ϑ, %, c and v reads

%
dci
dt

= div (Mi∇µi), i = 1, . . . , N − 1, (3.57a)

µi = µci −
1

%
div ς̃ ci , i = 1, . . . , N − 1, (3.57b)

d%

dt
= −%div v, (3.57c)

%
dv

dt
= divT + %g, (3.57d)

and

%cv
dϑ

dt
=

(
2νD−

N−1∑

i=1

ϑ
∂ς̃ ci
∂ϑ
⊗∇ci

)
: D +

N−1∑

i=1

Mi |∇µi|2

+

(
υ div v − ϑ∂pth

∂ϑ

)
div v +

N−1∑

i=1

µi,ϑ div (Mi∇µi)

+ div

(
κ∇ϑ+

ϑ

%

N−1∑

i=1

div (Mi∇µi)
∂ς̃ ci
∂ϑ

)
, (3.57e)

where

T = (−pth + υ div v) I + 2νD−
N−1∑

i=1

ς̃ ci ⊗∇ci, υ = υ̃ − 2ν

3
, (3.57f)

µi,ϑ = ϑ
∂µci
∂ϑ
− 1

%
div

(
ϑ
∂ς̃ ci
∂ϑ

)
, (3.57g)

and, finally,

µci =
∂ψth

∂ci
, (3.57h)

ς̃ ci =
1

2
%ε̂

N−1∑

j=1

λij(ϑ)∇cj , (3.57i)

cv = −ϑ∂
2ψth

∂ϑ2
− ϑ ε̂

4

N−1∑

i,j=1

λ′′ij(ϑ)∇ci · ∇cj , (3.57j)

pth = %2∂ψth

∂%
. (3.57k)

where λ′′ij denotes the second derivative of λij with respect to ϑ.
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3.3 Quasi-incompressible model

3.3.1 Identification of the entropy production

Identification of the entropy producing processes is merely the same as in Sec-
tion 3.2.1, hence we shall proceed a little bit faster. Applying the material time
derivative to ψ = ψ(ϑ, %,φ,∇φ), see (3.25), we get

dψ

dt
= −ηdϑ

dt
+
pth

%2

d%

dt
+

1

%

N−1∑

i=1

(
µ̃ φ
i

dφi
dt

+ ς̃ φi ·
d∇φi

dt

)
, (3.58)

Next, we apply the material time derivative also to (2.87) and we substitute
the result to the left hand side of (3.58). Upon multiplication of the resulting
equation by %, and after rearranging the terms, we arrive to the identity

%ϑ
dη

dt
= %

de

dt
− pth

%

d%

dt
−

N−1∑

i=1

(
µ̃ φ
i

dφi
dt

+ ς̃ φi ·
d∇φi

dt

)
. (3.59)

Now, we use the equations from (2.94) to substitute into the right hand side of
the previous formula. After some algebraic manipulation we obtain

%ϑ
dη

dt
= (T + TDI)

δ : Dδ +

(
m+mDI + pth +

N−1∑

i=1

φiµ̃i

)
div v

+
N−1∑

i=1

µ̃i div ̃i − div

(
qe −

N−1∑

i=1

(φi div v + div ̃i) ς̃
φ
i

)
, (3.60)

where we have defined, by analogy with the definitions in the preceding section,

µ̃i
def
= µ̃ φ

i − div ς̃ φi (3.61)

and

TDI
def
=

N−1∑

i=1

ς̃ φi ⊗∇φi. (3.62)

The complementary stress tensor TDI is symmetric due to our specific choice of
the constitutive assumption (3.26) with symmetric matrix Λ = [λij](N−1)×(N−1).
The decomposition TDI = mDII + TδDI gives us the spherical part in the form
mDI = 1

3

∑N−1
i=1 ς̃

φ
i · ∇φi.

We are almost ready to exploit the constraint (2.94b). Before doing so, let us
briefly discuss its role regarding the stress exerted in the material. Let us assume
that the mean normal stress can be decomposed following the relation

m = m0 +meff . (3.63)

The stress contribution associated with the first part, that is m0I, is supposed to
be responsible for maintaining the constraint (2.94b) without any contribution to
the entropy production. It means that m0 cannot be determined constitutively
and becomes an unknown field variable. The second term in (3.63) accounts for
“effective” stress contributions and will be determined from constitutive relations.
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Definition 3.6 (Augmented pressure). Let the mean normal stress consist of the
two separable contributions introduced in (3.63). The quantity

pa
def
= −m0 (3.64)

is called the augmented pressure.

In the next step, we modify (3.60) by exploiting the constraint (2.94b) in the
term pa div v, which appears if we use (3.63)–(3.64). The resulting equation reads

%ϑ
dη

dt
= (T + TDI)

δ : Dδ +

(
meff +mDI − ψ̃ +

N−1∑

i=1

φiµ̃i

)
div v

+
N−1∑

i=1

(µ̃i + r̂ipa) div ̃i − div

(
qe −

N−1∑

i=1

(φi div v + div ̃i) ς̃
φ
i

)
. (3.65)

(Recall that according to (3.29) we have pth = −ψ̃.) In order to abbreviate
subsequent manipulations, we introduce the auxiliary notation

µ̃pi
def
= µ̃i + r̂ipa, m̃eff

def
= meff +mDI − ψ̃ +

N−1∑

i=1

φiµ̃i. (3.66)

The identification of the entropy producing processes in equation (3.65) is now
quite straightforward. We manipulate the first sum on the second line to obtain

%ϑ
dη

dt
= (T + TDI)

δ : Dδ + m̃eff div v −
N−1∑

i=1

̃i · ∇µ̃pi

− div

[
qe −

N∑

i=1

(
µ̃pi ̃i + (φi div v + div ̃i) ς̃

φ
i

)]
, (3.67)

We see that another useful shorthand is

qDI
def
= −

N∑

i=1

(
µ̃pi ̃i + (φi div v + div ̃i) ς̃

φ
i

)
, (3.68)

which, when divided by ϑ, can be seen as the extra component of the entropy
flux. Indeed, by repeating the manipulation from Section 3.2.1, we end up with

%
dη

dt
=

1

ϑ

[
(T + TDI)

δ : Dδ + m̃eff div v −
N−1∑

i=1

̃i · ∇µ̃pi

−
(
qe + qDI

ϑ

)
· ∇ϑ

]
− div

(
qe + qDI

ϑ

)
. (3.69)

The entropy production ξ = ζ
ϑ

then reads

ζ = (T + TDI)
δ : Dδ + m̃eff div v −

N−1∑

i=1

̃i · ∇µ̃pi −
(
qe + qDI

ϑ

)
· ∇ϑ. (3.70)
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3.3.2 Constitutive relations

Following the discussion in Section 3.2.2 we shall directly deduce the appropriate
form of the constitutive relations for the quasi-incompressible model. From (3.70)
we see that if we put

(T + TDI)
δ = 2νDδ, (3.71a)

m̃eff = υ̃ div v, (3.71b)

̃i = −Mi∇µ̃pi , i = 1, . . . , N − 1, (3.71c)

qe + qDI = −κ∇ϑ, (3.71d)

where ν, υ̃, κ and Mi are given non-negative functions of ϑ,φ and possibly D, we
will again obtain a material model which automatically satisfies the second law
of thermodynamics due to non-negativity of the entropy production.

Note that the augmented pressure pa enters the equation for the diffusive
volume fluxes ̃i via µ̃pi , see (3.66). However, the diffusive fluxes are naturally
supposed to vanish in pure components away from mixed interfacial regions. But
since pa is an unknown variable, we cannot a priori ensure that its gradient will
vanish in pure components. Equally, the k-th diffusive flux ̃k is expected to
completely vanish if the k-th component is not present in the considered sys-
tem. Otherwise, we cannot assure that the system of governing equations for
the N -component model—with the k-th component being omitted—will prop-
erly reduce to the corresponding (N−1)-component model. We postpone further
discussion concerning these issues to Chapter 4. Nevertheless, we shall slightly
generalize the constitutive relations in (3.71c) for the purpose of that discussion.

Let the constitutive relations for the diffusive fluxes take the form

̃i = −
N−1∑

j=1

Mij∇µ̃pj , i = 1, . . . , N − 1, (3.72)

where Mij denote entries of a SPD matrix M ∈ R(N−1)×(N−1), which will be
called the matrix of mobility coefficients or, simply, the mobility matrix. The
required properties of M ensures non-negativity (even positivity) of the second
term in (3.70).

Using the above definitions and the more traditional notation υ = υ̃ − 2ν/3,
we can rewrite the constitutive relations to take the form

T = −
(
pa − ψ̃ +

N−1∑

i=1

φiµ̃i

)
I + υ(div v)I + 2νD−

N−1∑

i=1

ς̃ φi ⊗∇φi, (3.73a)

̃i = −
N−1∑

j=1

Mij∇µ̃pj , i = 1, . . . , N − 1, (3.73b)

qe = −κ∇ϑ+
N∑

i=1

(
µ̃pi ̃i + (φi div v + div ̃i) ς̃

φ
i

)
. (3.73c)
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If we substitute the derived constitutive relations into the formula for the
entropy production (3.70), we observe that

ξ =
1

ϑ

[
2ν
∣∣Dδ
∣∣2 + υ̃(div v)2 +

N−1∑

i,j=1

Mij∇µ̃pj · ∇µ̃pi +
κ

ϑ
|∇ϑ|2

]
. (3.74)

Remark 3.7. Combining (3.63), (3.66) and (3.71b) we obtain

m = −pa −mDI + ψ̃ −
N−1∑

i=1

φiµ̃i + υ̃ div v. (3.75)

3.3.3 Evolution equation for the temperature

In the current setting with (3.25) we assume that the entropy can be expressed
as a function of ϑ, %,φ and ∇φ, where we still consider % = %(φ), see (2.10a),
which is independent of the temperature. Repeating the procedure outlined in
Section 3.2.3, we first obtain

dη

dt
= −∂

2ψ

∂ϑ2

dϑ

dt
− ∂2ψ

∂%∂ϑ

d%

dt
−

N−1∑

i=1

(
∂2ψ

∂φi∂ϑ

dφi
dt

+
∂2ψ

∂∇φi∂ϑ
· d∇φi

dt

)
. (3.76)

(Recall that η = −∂ψ
∂ϑ

, see (2.89).)
Using the interchangeability of the second derivatives and the definition of

the specific heat at constant volume, see (2.90), it is possible to rewrite the last
formula as

dη

dt
=

cv

ϑ

dϑ

dt
− 1

%2

∂pth

∂ϑ

d%

dt
− 1

%

N−1∑

i=1

(
∂µ̃ φ

i

∂ϑ

dφi
dt

+
∂ς̃ φi
∂ϑ
· d∇φi

dt

)
. (3.77)

If we further multiply (3.77) by %ϑ and if we use evolution equations (2.94e)
and (2.94f), we obtain

%ϑ
dη

dt
= %cv

dϑ

dt
+ ϑ

∂pth

∂ϑ
div v −

N−1∑

i=1

(
ϑ
∂µ̃ φ

i

∂ϑ
− div

(
ϑ
∂ς̃ φi
∂ϑ

))
dφi
dt

− div

(
N−1∑

i=1

ϑ
∂ς̃ φi
∂ϑ

dφi
dt

)
+

N−1∑

i=1

(
ϑ
∂ς̃ φi
∂ϑ
⊗∇φi

)
: ∇v>. (3.78)

By analogy with (3.50) we introduce the notation

µ̃i,ϑ
def
= ϑ

∂µ̃ φ
i

∂ϑ
− div

(
ϑ
∂ς̃ φi
∂ϑ

)
, TDI,ϑ

def
=

N−1∑

i=1

ϑ
∂ς̃ φi
∂ϑ
⊗∇φi. (3.79)

Based on the argumentation below (3.62), we see that TDI,ϑ is a symmetric tensor.
We proceed by comparing (3.78) and (3.51), where into the former equation we
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substitute from (2.94a) and (3.72), and from (3.74) into the latter. The resulting
equation reads

%cv
dϑ

dt
= (2νD− TDI,ϑ) : D +

N−1∑

i,j=1

Mij∇µ̃pj · ∇µ̃pi

+

(
υ div v + ϑ

∂ψ̃

∂ϑ
−

N−1∑

i=1

φiµ̃i,ϑ

)
div v +

N−1∑

i,j=1

µ̃i,ϑ div
(
Mij∇µ̃pj

)

+ div

(
κ∇ϑ+ ϑ

N−1∑

i,j=1

[
div
(
Mij∇µ̃pj

)
− φi div v

] ∂ς̃ φi
∂ϑ

)
. (3.80)

(Recall that pth = −ψ̃.)

3.3.4 Summary: QI-CHNSF model

Let us recapitulate the system of governing equations for a quasi-incompressible
heat conducting fluid-like mixture consisting of N incommpressible components.
The specific Helmholtz free energy of such physical system is assumed to take the
form

ψ(ϑ, %,φ,∇φ) =
1

%

(
aε

4

N−1∑

i,j=1

λij(ϑ)∇φi · ∇φj + ψ̃0(ϑ,φ)

)
, (3.81a)

where φ = [φ1, . . . , φN−1]>, % =
∑N−1

i=1 (%̂i − %̂N)φi + %̂N , λij are given mixing
surface energy coefficients such that the matrix Λ = [λij](N−1)×(N−1) is SPD, and

a, ε are given constants. The function ψ̃0 is given by

ψ̃0(ϑ,φ) =
b

ε
F (φ) +

N−1∑

i=1

(ψ̃i(ϑ)− ψ̃N(ϑ))φi + ψ̃N(ϑ), (3.81b)

where F is a given multi-well potential, b is another constant, and

ψ̃i(ϑ) = −%̂iĉv,i

[
ln

(
ϑ

ϑ̂iso

)
− ϑ− ϑ̂iso

ϑ

]
ϑ, (3.81c)

for i ∈ {1, . . . , N}. Let

Mij = Mij(ϑ,φ,D) (3.82a)

are given functions such that the matrix M = [Mij](N−1)×(N−1) is SPD, and

ν = ν(ϑ,φ,D), υ̃ = υ̃(ϑ,φ,D), κ = κ(ϑ,φ,D) (3.82b)

are another given non-negative functions that all together characterize the entropy
production ξ = ζ

ϑ
,

ζ = 2ν
∣∣Dδ
∣∣2 + υ̃(div v)2 +

N−1∑

i,j=1

Mij∇µ̃pj · ∇µ̃pi +
κ

ϑ
|∇ϑ|2 . (3.83)
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Summary 9: Governing equations for QI-CHNSF model

The system of governing equations for the unknown quantities ϑ,φ,v and pa reads

dφi
dt

+ φi div v =
N−1∑

j=1

div (Mij ∇µ̃pj ), i = 1, . . . , N − 1, (3.84a)

µ̃pi = µ̃ φi − div ς̃ φi + r̂ipa, i = 1, . . . , N − 1, (3.84b)

div v =

N−1∑

i,j=1

r̂i div (Mij ∇µ̃pj ), (3.84c)

%
dv

dt
= divT + %g, (3.84d)

and

%cv
dϑ

dt
=

(
2νD−

N−1∑

i=1

ϑ
∂ς̃ φi
∂ϑ
⊗∇φi

)
: D +

N−1∑

i,j=1

Mij ∇µ̃pj · ∇µ̃
p
i

+

(
υ div v + ϑ

∂ψ̃

∂ϑ
−
N−1∑

i=1

φiµ̃i,ϑ

)
div v +

N−1∑

i,j=1

µ̃i,ϑ div (Mij ∇µ̃pj )

+ div


κ∇ϑ+ ϑ

N−1∑

i,j=1

[
div (Mij ∇µ̃pj )− φi div v

] ∂ς̃ φi
∂ϑ


, (3.84e)

where r̂i = 1− %̂i
%̂N

are given constants,

T = −
(
pa − ψ̃ +

N−1∑

i=1

φiµ̃i − υ div v

)
I + 2νD−

N−1∑

i=1

ς̃ φi ⊗∇φi, υ = υ̃ − 2ν

3
,

(3.84f)

µ̃i = µ̃ φi − div ς̃ φi , µ̃i,ϑ = ϑ
∂µ̃ φi
∂ϑ
− div

(
ϑ
∂ς̃ φi
∂ϑ

)
, (3.84g)

and, finally,

µ̃ φi =
∂ψ̃0

∂φi
, (3.84h)

ς̃ φi =
aε

2

N−1∑

j=1

λij(ϑ)∇φj , (3.84i)

cv = −ϑ
%


∂

2ψ̃0

∂ϑ2
+
aε

4

N−1∑

i,j=1

λ′′ij(ϑ)∇φi · ∇φj


 , (3.84j)

where λ′′ij denotes the second derivative of λij with respect to ϑ.
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3.4 Fully-incompressible model

Let us introduce an auxiliary notation that will be useful in the forthcoming
manipulation with the equations previously summarized in Section 2.5.3. In the

current description we have % =
∑N−1

i=1 (%̂i − %̂N)φi + %̂N = %̂N

(
1−∑N−1

i=1 r̂iφi

)

and J =
∑N−1

i=1 (%̂i − %̂N) ̃i = −%̂N
∑N−1

i=1 r̂i̃i. It follows that

%−1J = −
N−1∑

i=1

zi̃i, zi = zi(φ)
def
=

r̂i

1−∑N−1
j=1 r̂jφj

. (3.85)

3.4.1 Identification of the entropy production

We already know, see (3.59), that

%ϑ
dη

dt
= %

de

dt
− pth

%

d%

dt
−

N−1∑

i=1

(
µ̃ φ
i

dφi
dt

+ ς̃ φi ·
d∇φi

dt

)
, (3.86)

and we are ready to repeat the procedure outlined in Sections 3.2 and 3.3. We
substitute into (3.86) from the system of equations (2.95) to obtain

%ϑ
dη

dt
= Θ2e divJ + Tδ :

(
D + Θ1∇sym

(
%−1J

))δ − div qe

+ Θ1m div
(
%−1J

)
+ Θ1%

−1J ·
(

[∇v]J + Θ0
dJ

dt

)
+ Θ2%

−1pth divJ

+
N−1∑

i=1

µ̃i div ̃i + TDI : D + div

(
N−1∑

i=1

(div ̃i) ς̃
φ
i

)
, (3.87)

where we have used the notation for µ̃i and TDI introduced in (3.61) and (3.62)
respectively. We again decompose TDI into its spherical and deviatoric part. Since
v is divergence-free in the current setting, we have TDI : D = TδDI : Dδ. Next, we
reuse the formula (2.87) in the first term on the right hand side of (3.87). In doing
so, we obtain the term η divJ which appears in the general form of the entropy
balance (2.95g). Upon rearranging the terms, the previous equation reads

ϑ

(
%

dη

dt
−Θ2η divJ

)
= (T + TDI)

δ :
(
D + Θ1∇sym

(
%−1J

))δ

+ Θ2%
−1
(
ψ̃ + pth

)
divJ + Θ1 (m+mDI) div

(
%−1J

)
−Θ1TDI : ∇

(
%−1J

)

− div

(
qe −

N−1∑

i=1

(div ̃i) ς̃
φ
i

)
+

N−1∑

i=1

µ̃i div ̃i + Θ1%
−1J ·

(
[∇v]J + Θ0

dJ

dt

)
.

(3.88)

Note that the first term on the second line vanishes in virtue of (3.29). Using the
manipulations of the type TDI : ∇(%−1J) = div (%−1TDIJ) − %−1J · divTDI and
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m div (%−1J) = div (m%−1J)− %−1J · ∇m, we can restate the previous equation
in the form

ϑ

(
%

dη

dt
−Θ2η divJ

)
= (T + TDI)

δ :
(
D + Θ1∇sym

(
%−1J

))δ − div (qe + qDI)

−
N−1∑

i=1

̃i · ∇µ̃i + Θ1%
−1J ·

(
divTDI + [∇v]J −∇(m+mDI) + Θ0

dJ

dt

)
, (3.89)

with the complementary energy flux

qDI
def
= Θ1%

−1TDIJ −Θ1 (m+mDI) %
−1J −

N−1∑

i=1

(
µ̃i̃i + (div ̃i) ς̃

φ
i

)
. (3.90)

Finally, we put together the terms on the second line of (3.89) using the rela-
tion (3.85). Then it remains to divide the equation by the temperature and repeat
the manipulation with the divergence of the entropy flux, just as it was done in
the preceding sections. The resulting equation reads

%
dη

dt
−Θ2η divJ = − div

(
qe + qDI

ϑ

)
+ ξ, (3.91)

where we have identified the entropy production ξ = ζ
ϑ

which is given by

ζ = (T + TDI)
δ :
(
D + Θ1∇sym

(
%−1J

))δ −
(
qe + qDI

ϑ

)
· ∇ϑ

−
N−1∑

i=1

̃i ·
(
∇µ̃i + Θ1zi

(
[∇v]J + divTDI −∇(m+mDI) + Θ0

dJ

dt

))
. (3.92)

Recall that the equations that have been manipulated within this section
were obtained as a result of the model reduction in the sense of transition from
the detailed componentwise formulation of the balance equations towards their
averaged formulation for the mixture as a whole. As an integral part of the
model reduction, we have lost the detailed information about the structure of the
diffusive fluxes ̃i and it only remains to relate each of them to some other known
quantities (via a constitutive relation). In the current setting, we see that in order
to find such a relation, we would need to recover the information that had been
previously lost. Otherwise, we cannot say anything about the last term in (3.92)
describing the temporal changes of a weighted sum of the relevant diffusive fluxes,
see (2.24). This issue has been already commented in Section 2.5.3. In order to
proceed further we accept the zeroth level of approximation (2.96a).

3.4.2 Constitutive relations

In Section 2.5.3, we have introduced a set of “toggle coefficients” {Θ0,Θ1,Θ2}
which stand in front of the chosen terms in equations (2.95c)–(2.95e), and which
are supposed to attain the values of either one or zero. These coefficients allow
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us to reach three different levels of approximation in the derivation of the model
for multi-component systems in FI description.

As in the previous two cases, we deduce the appropriate form of the consti-
tutive relations directly from (3.92). On the zeroth level of approximation, with
Θ0 = 0, we choose the constitutive relations of the form

(T + TDI)
δ = 2ν

(
D + Θ1∇sym

(
%−1J

))δ
, (3.93a)

̃i = −
N−1∑

j=1

Mij (∇µ̃j + Θ1zj ([∇v]J + divTDI +∇p̃a)) ,

i = 1, . . . , N − 1, (3.93b)

qe + qDI = −κ∇ϑ, (3.93c)

with ν, κ and Mij that were introduced in Section 3.3.2. The modified augmented
pressure5 p̃a, the gradient of which appears in (3.93b), is defined by

p̃a
def
= −(m+mDI). (3.94)

As in the previous case of QI systems, we observe that the momentum balance
is strongly coupled with the rest of the system due to the presence of the aug-
mented pressure in the constitutive relations for diffusive fluxes. The situation on
the current level of approximation is even more complicated due to the presence
of the other terms in (3.93b). Note that D + ∇sym (%−1J) = ∇sym (v + %−1J)
corresponds to the symmetric gradient of the mass-averaged velocity by virtue of
the first relation in (2.21). The “correction” term %−1J gives rise to some extra
terms in the standard transcription of the Cauchy stress tensor,

T = −p̃aI + 2νD−
N−1∑

i=1

ς̃ φi ⊗∇φi + 2Θ1ν

(
∇sym

(
%−1J

)
− 1

3
div
(
%−1J

)
I
)
.

(3.95)

At this point, we proceed to the subsequent level of approximation and we
put Θ1 = 0 everywhere in the previous expressions. In this way we will arrive
to the class of models developed by Abels et al. (2012) for binary systems, and
Dong (2014a) who provided extensions to general multi-component systems.

3.4.3 Evolution equation for the temperature

In what follows, we stay on the first level of approximation, with Θ0 = Θ1 = 0, and
we shall derive the appropriate form of the evolution equation for the temperature.
Repeating the steps from the beginning of Section 3.3.3, we obtain

%ϑ
dη

dt
= %cv

dϑ

dt
+ Θ2ϑ

∂pth

∂ϑ
divJ +

N−1∑

i=1

(
ϑ
∂µ̃ φ

i

∂ϑ
− div

(
ϑ
∂ς̃ φi
∂ϑ

))
div ̃i

+ div

(
N−1∑

i=1

ϑ (div ̃i)
∂ς̃ φi
∂ϑ

)
+

N−1∑

i=1

(
ϑ
∂ς̃ φi
∂ϑ
⊗∇φi

)
: ∇v>. (3.96)

5The rationale of the chosen terminology will be clarified in Section 3.6.3.
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As a next step, we substitute pth = −%ψ, see (3.29), into the second term on
the right hand side of the previous equation. Since the density % = %(φ) is
independent of the temperature, we have ∂pth

∂ϑ
= %η by virtue of the fist formula

in (2.89). Last but not least, we can reuse the notation introduced in (3.79), with
TDI,ϑ being symmetric, to get

ϑ

(
%

dη

dt
−Θ2η divJ

)
= %cv

dϑ

dt
+

N−1∑

i=1

µ̃i,ϑ div ̃i

+ div

(
N−1∑

i=1

ϑ (div ̃i)
∂ς̃ φi
∂ϑ

)
+

N−1∑

i=1

(
ϑ
∂ς̃ φi
∂ϑ
⊗∇φi

)
: D. (3.97)

It remains to substitute into the previous equation from (3.89) and (3.93), where
we put Θ1 = 0. The resulting evolution equation for the temperature reads

%cv
dϑ

dt
= (2νD− TDI,ϑ) : D +

N−1∑

i,j=1

Mij∇µ̃j · ∇µ̃i

+
N−1∑

i,j=1

µ̃i,ϑ div (Mij∇µ̃j) + div

(
κ∇ϑ+ ϑ

N−1∑

i,j=1

div (Mij∇µ̃j)
∂ς̃ φi
∂ϑ

)
. (3.98)

3.4.4 Summary: FI-CHNSF model

Let us recapitulate the system of governing equations for a quasi-incompressible
heat conducting fluid-like mixture consisting of N incommpressible components.
The specific Helmholtz free energy of such physical system is assumed to take the
form

ψ(ϑ, %,φ,∇φ) =
1

%

(
aε

4

N−1∑

i,j=1

λij(ϑ)∇φi · ∇φj + ψ̃0(ϑ,φ)

)
, (3.99)

where φ = [φ1, . . . , φN−1]>, % =
∑N−1

i=1 (%̂i − %̂N)φi + %̂N , ψ̃0 is a given function
of the form (3.27), λij are given mixing surface energy coefficients such that the
matrix Λ = [λij](N−1)×(N−1) is SPD, and a, ε are given constants. Let

Mij = Mij(ϑ,φ,D) (3.100a)

are given functions such that the matrix M = [Mij](N−1)×(N−1) is SPD, and

ν = ν(ϑ,φ,D), κ = κ(ϑ,φ,D) (3.100b)

are another given non-negative functions that all together characterize the entropy
production ξ = ζ

ϑ
,

ζ = 2ν
∣∣Dδ
∣∣2 +

N−1∑

i,j=1

Mij∇µ̃j · ∇µ̃i +
κ

ϑ
|∇ϑ|2 . (3.101)
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Summary 10: Governing equations for FI-CHNSF model

The system of governing equations for the unknown quantities ϑ,φ,v and p̃a readsa

dφi
dt

=
N−1∑

j=1

div (Mij ∇µ̃j), i = 1, . . . , N − 1, (3.102a)

µ̃i = µ̃ φi − div ς̃ φi i = 1, . . . , N − 1, (3.102b)

div v = 0, (3.102c)

%
dv

dt
+ Θ2 [∇v]J = divT + %g, J = −

N−1∑

i,j=1

Mij (%̂i − %̂N )∇µ̃j , (3.102d)

and

%cv
dϑ

dt
=

(
2νD−

N−1∑

i=1

ϑ
∂ς̃ φi
∂ϑ
⊗∇φi

)
: D +

N−1∑

i,j=1

Mij ∇µ̃j · ∇µ̃i

+
N−1∑

i,j=1

µ̃i,ϑ div (Mij ∇µ̃j) + div


κ∇ϑ+ ϑ

N−1∑

i,j=1

div (Mij ∇µ̃j)
∂ς̃ φi
∂ϑ


, (3.102e)

where

T = −p̃aI + 2νD−
N−1∑

i=1

ς̃ φi ⊗∇φi, (3.102f)

µ̃i,ϑ = ϑ
∂µ̃ φi
∂ϑ
− div

(
ϑ
∂ς̃ φi
∂ϑ

)
, (3.102g)

and, finally,

µ̃ φi =
∂ψ̃0

∂φi
, (3.102h)

ς̃ φi =
aε

2

N−1∑

j=1

λij(ϑ)∇φj , (3.102i)

cv = −ϑ
%


∂

2ψ̃0

∂ϑ2
+
aε

4

N−1∑

i,j=1

λ′′ij(ϑ)∇φi · ∇φj


 , (3.102j)

where λ′′ij denotes the second derivative of λij with respect to ϑ.

aThe auxiliary coefficient Θ2 in (3.102d) is by default equal to 1. If we put Θ2 = 0, we
reach the final level of approximation in the FI description, see Summary 7. With this type
of approximation we rederive models that are based on coupling of CH with incompressible
NS equations through advective term and capillary force respectively. Models of this type,
for N = 3, were considered for example in Boyer and Lapuerta (2006), Boyer et al. (2010).
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3.5 Interpolation of material parameters

The coefficients introduced in the constitutive relations for the Cauchy stress ten-
sor and the energy flux are well-known from the context of the single-component
NSF model. Indeed, ν represents the shear viscosity, υ̃ is known as the bulk vis-
cosity and κ corresponds to the thermal conductivity. All these coefficients are
naturally defined in the mixing region by interpolating the relevant material pa-
rameters associated with individual components, that is νi, υ̃i and κi respectively.
In order to emphasize the role of the evolution equation for the temperature in our
non-isothermal models, we admit that the material parameters can significantly
depend on the temperature.

Following the simple expression of the total density in terms of volume frac-
tions, see (2.10a), we define

ν(ϑ,φ)
def
=

N−1∑

i=1

(νi(ϑ)− νN(ϑ))φi + νN(ϑ), (3.103)

υ̃(ϑ,φ)
def
=

N−1∑

i=1

(υ̃i(ϑ)− υ̃N(ϑ))φi + υ̃N(ϑ), (3.104)

κ(ϑ,φ)
def
=

N−1∑

i=1

(κi(ϑ)− κN(ϑ))φi + κN(ϑ). (3.105)

Let us emphasize that while the expression for the total density was obtained
as the consequence of Assumptions 1–3, the definitions in (3.103)–(3.105) are
purely artificial. In principle, any other type of interpolation can be considered,
bearing in mind that computed results can be significantly impacted by
a particular choice of the interpolation. This is demonstrated in Sections 6.1
and 6.3.

In our previous algebraic manipulations we have also used the so-called second
viscosity coefficient υ which in our current setting corresponds to6

υ(ϑ,φ) = υ̃(ϑ,φ)− 2

3
ν(ϑ,φ). (3.106)

3.6 Generalizations of existing binary models

In the remainder of this chapter, we shall formulate reduced versions of the pre-
viously derived models, which are applicable for systems involving only two com-
ponents. We shall point out what are the new features of these models when
compared to some existing and well-known models which are available in the
literature.

Let us make some remarks concerning the notation used in this section. Know-
ing that here we will always work with two components, we shall drop the super-
fluous subscripts, which have been used to associate the quantities with relevant

6Since the interpolation used in (3.103) and (3.104) is linear, we immediately see that υ is
given as the same linear combination of the coefficients υi = υ̃i − 2νi/3.
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components, whenever no confusion can arise. For example, we use the notation
c = c1, µc = µc1, φ = φ1, σ = σ12, r̂ = r̂1 and so forth, but we keep the indices to
differentiate between %̂1 and %̂2, or %1 and %2. Derivatives of functions with a sin-
gle argument, like σ(ϑ) or f(φ), will be denoted by prime. (That is, σ′ denotes
the derivative of σ with respect to ϑ, while f ′ denotes the derivative of f with
respect to φ.)

Sections 3.6.1–3.6.3 have the same structure. Each of them begins with the
formulation of the generalized binary model in the chosen description, then we
provide its reduction to the isothermal setting, and finally, we discuss its reduction
to the setting with only one single-component fluid.

3.6.1 Binary FC-CHNSF model

In this section, we formulate the full system of governing equations for a com-
pressible heat conducting fluid-like mixture consisting of two components
with temperature-dependent material parameters. The model presented
here generalizes its isothermal counterpart previously derived in Lowengrub and
Truskinovsky (1998).

Non-isothermal model

Let us consider a binary mixture with the specific Helmholtz free energy ψ given
by (3.13), that is

ψ(ϑ, %, c,∇c) =
1

2
εσ(ϑ) |∇c|2 + ψth(ϑ, %, c). (3.107)

Note that (Lowengrub and Truskinovsky, 1998, Eq. (3.31)) used the same ansatz
with the temperature-independent coefficient εLT ≡ εσ and ψth restricted to
the isothermal setting. In what follows, we explicitly write σ = σ(ϑ) in order
to emphasize the difference between the standard setting and the setting with
a temperature-dependent surface tension. The system of governing equations for
the primitive quantities ϑ, %, c and v reads

%
dc

dt
= div (M ∇µ), µ = µc − ε

%
div (%σ(ϑ)∇c) (3.108a)

d%

dt
= −% div v, (3.108b)

%
dv

dt
= −∇pNSF

th +∇(υ div v) + div (2νD− εσ(ϑ)%∇c⊗∇c) + %g, (3.108c)

and

%

(
cNSF

v − ϑε

2
σ′′(ϑ) |∇c|2

)
dϑ

dt
= (2νD− %ϑεσ′(ϑ)∇c⊗∇c) : D

+

(
υ div v − ϑ∂p

NSF
th

∂ϑ

)
div v + div (κ∇ϑ+ ϑεσ′(ϑ) div (M ∇µ)∇c)

+M |∇µ|2 +

(
ϑ
∂µc

∂ϑ
− ε

%
div (%ϑσ′(ϑ)∇c)

)
div (M ∇µ), (3.108d)
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where7

µc =
∂ψth

∂c
, cNSF

v = ϑ
∂2ψth

∂ϑ2
, pNSF

th = %2∂ψth

∂%
. (3.108e)

Recall that the material parameters ν, υ, κ and M are—in a general case—some
given functions of ϑ, %, c and possibly D.

If we can assume that σ is independent of the temperature, but we aim to work
in the non-isothermal setting with variable temperature field and one or more
temperature-dependent material parameters ν, υ, κ, or M , then the corresponding
evolution equation for ϑ reads

%cNSF
v

dϑ

dt
= 2νD : D +

(
υ div v − ϑ∂p

NSF
th

∂ϑ

)
div v + div (κ∇ϑ)

+M |∇µ|2 + ϑ
∂µc

∂ϑ
div (M ∇µ). (3.109)

Reduction to the isothermal model

In the isothermal setting we are typically not concerned with the evolution equa-
tion for ϑ. If we suppress the temperature effects in equations (3.108a)–(3.108c),
then the resulting model coincides with the one derived in (Lowengrub and Truski-
novsky, 1998, Eq. (3.34)). We do not repeat the equations here for the sake of
brevity.

Reduction to a single-component fluid

Finally, let us imagine that we want to apply the above model in the setting
with a single-component fluid. In such a case we have % ≡ %1 and thus we put
c ≡ 1 everywhere in (3.108a)–(3.108d). If we can additionally assume that the
diffusive flux j = −M ∇µ vanishes, then c does not evolve according to (3.108a).
Moreover, the rest of the system coincides with the standard compressible NSF
equations

d%

dt
= −% div v, (3.110a)

%
dv

dt
= −∇pNSF

th +∇(υ div v) + div (2νD) + %g, (3.110b)

%cNSF
v

dϑ

dt
= 2νD : D +

(
υ div v − ϑ∂p

NSF
th

∂ϑ

)
div v + div (κ∇ϑ). (3.110c)

The assumption of vanishing diffusive flux will be discussed in more detail later
when we are dealing with incompressible mixtures.

7We use the notation with NSF to emphasize that the relevant quantities coincide with their
counterparts traditionally introduced in the context of NSF equations, provided that only one
component is present in our considered physical system.
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3.6.2 Binary QI-CHNSF model

In this section, we formulate the full system of governing equations for a quasi-
incompressible heat conducting fluid-like mixture consisting of two compo-
nents with temperature-dependent material parameters. It generalizes the
isothermal binary model studied by Shen et al. (2013).

Non-isothermal model

Let us consider a binary mixture the components of which have constant material
densities %̂1 and %̂2. The total density % is given by (2.10a), that is

% = %(φ) = (%̂1 − %̂2)φ+ %̂2 = %̂2 (1− r̂φ) , (3.111)

where r̂ = 1 − %̂1/%̂2. We further assume that the coefficients ν, υ̃ and κ are
temperature-dependent, given by (3.103)–(3.105) for N = 2. On the other hand,
from now on we assume that the influence of the temperature on the surface
tension is negligible, so that σ ≡ σ̂ is a given constant. (This assumption is made
for the sake of brevity of the formulae that would otherwise involve extra terms
with derivatives of σ.) Last but not least, the mobility coefficient M is supposed
to degenerate in the pure components, meaning that

M |φ=0 = M |φ=1 = 0. (3.112)

We will see that this assumption is crucial for the correct reduction of the model
to the case with a single-component fluid in the current setting.

Let the specific Helmholtz free energy is given by (3.15) with

ψ̃(ϑ, φ,∇φ) =
a

2
εσ̂ |∇φ|2 + b

σ̂

ε
f(φ) + (ψ̃1(ϑ)− ψ̃2(ϑ))φ+ ψ̃2(ϑ), (3.113)

see (3.17) and (3.19) respectively. The function f(φ) = φ2(1− φ)2 represents the
double-well potential for which we have a = 3

2
and b = 12 as stated in (3.10b).

The individual Helmholtz free energy densities are again assumed to be given
by (3.22). Under these conditions we obtain the following identity for the specific
heat at constant volume, namely

%cv = (%̂1ĉv,1 − %̂2ĉv,2)φ+ %̂2ĉv,2, (3.114)

cf. (3.28). (Note that if ĉv,1 = ĉv,2 = ĉv, then we have cv ≡ ĉv.) The quantities
introduced in (3.30) correspond to

µ̃ φ = 12
σ̂

ε
f ′(φ) + ψ̃1(ϑ)− ψ̃2(ϑ), ς̃ φ =

3

2
εσ̂∇φ. (3.115)
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The system of governing equations for the unknown quantities ϑ, φ,v and pa reads

dφ

dt
= −φ div v + div (M ∇µ̃pa), (3.116a)

µ̃pa = µ̃+ r̂pa, µ̃ = −3

2
εσ̂∆φ+ 12

σ̂

ε
f ′(φ) + ψ̃1(ϑ)− ψ̃2(ϑ), (3.116b)

div v = r̂ div (M ∇µ̃pa), (3.116c)

%
dv

dt
= −∇

(
pa − ψ̃ + φµ̃− υ div v

)
+ div

(
2νD− 3

2
εσ̂∇φ⊗∇φ

)
+ %g,

(3.116d)

and

%cv
dϑ

dt
= 2νD : D +

(
υ div v + ϑ

∂ψ̃

∂ϑ

)
div v + div (κ∇ϑ)

+M |∇µ̃pa|2 + (1− r̂φ)ϑ
(
ψ̃ ′1(ϑ)− ψ̃ ′2(ϑ)

)
div (M ∇µ̃pa). (3.116e)

The tensor product under the divergence in (3.116d) can be manipulated using
the sequence of identities

div

(
3

2
εσ̂∇φ⊗∇φ

)
=

3

2
εσ̂

(
∆φ∇φ+

1

2
∇
(
|∇φ|2

))
=

3

4
εσ̂∇

(
|∇φ|2

)

+

(
12
σ̂

ε
f ′(φ) + ψ̃1(ϑ)− ψ̃2(ϑ)− µ̃

)
∇φ = ∇ψ̃ − ∂ψ̃

∂ϑ
∇ϑ− µ̃∇φ.

Equation (3.116d) then reduces to

%
dv

dt
= −∇pa + div (2νD + υ(div v)I)− φ∇µ̃+

∂ψ̃

∂ϑ
∇ϑ+ %g. (3.117)

Reduction to the isothermal model

Let us consider the standard isothermal setting with the temperature being fixed
at ϑ̂iso. In such a case we are not concerned with the evolution equation for ϑ
and equations (3.116a)–(3.116d) take the reduced form

dφ

dt
= −φ div v + div (M ∇µ̃pa), (3.118a)

µ̃pa = µ̃+ r̂pa, µ̃ = −3

2
εσ̂∆φ+ 12

σ̂

ε
f ′(φ), (3.118b)

div v = r̂ div (M ∇µ̃pa), (3.118c)

%
dv

dt
= −∇pa + div (2νD + υ(div v)I)− φ∇µ̃+ %g. (3.118d)

The above system of equations represents the isothermal model previously de-
rived by (Shen et al., 2013, Eq. (2.13)). Moreover, it can be shown that the
model (3.118) can be obtained as a special case (without phase transitions) of
the generalized model developed by Aki et al. (2014).
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Remark 3.8. A slightly different, isothermal formulation of the binary quasi-
incompressible model in terms of mass fractions can be found in (Lowengrub and
Truskinovsky, 1998, Sect. 4), where the authors gave a theoretical reasoning for
the derivation of the model based on the thermodynamic description in terms of
the Gibbs free energy. The approach applied within this thesis, however, leads to
the qualitatively same model.

Reduction to a single-component fluid

The couple of conditions in (3.112) ensures that ̃ = −M ∇µ̃pa vanishes (degener-
ates) in pure components. If we put φ ≡ 1 in (3.116), which corresponds to the
setting with a single incompressible fluid, then div v = 0 according to (3.116c)
and the right hand side of (3.116a) is also equal to zero. Consequently, φ does
not evolve in time and remains identically equal to 1. (The analogous observation
can be made with φ ≡ 0.)

Remark 3.9. If M was constant, it would not be ensured that φ does not evolve
due to the presence of pa and ψ̃1(ϑ)− ψ̃2(ϑ) in (3.116b). The latter term vanishes
in the isothermal setting as a consequence of (3.21). In Appendix B, we propose
an alternative non-isothermal extension of the double-well potential which ensures
that µ̃ ≡ 0 if either φ ≡ 1 or φ ≡ 0. The pressure term, however, remains “active”
even in the isothermal setting. Shen et al. (2013) numerically compared the full
model against its approximated version with µ̃pa ≈ µ̃. The predictions made by
the two models were consistent in their numerical examples.

Provided that we are dealing with a single incompressible fluid, taking into
account the degenerate mobility (3.112), we see that the model given by (3.116)
reduces to the standard system of incompressible NSF equations for the unknowns
ϑ,v and p, namely

div v = 0, (3.119a)

%
dv

dt
= −∇p+ div (2νD) + %g, (3.119b)

%cv
dϑ

dt
= 2νD : D + div (κ∇ϑ). (3.119c)

Here, the augmented pressure p corresponds to pa − ψ̃2, where the correction
comes from the free energy density appearing under the gradient in (3.116d).

3.6.3 Binary FI-CHNSF model

In this section, we formulate the full system of governing equations for a fully-
incompressible heat conducting fluid-like mixture consisting of two compo-
nents with temperature-dependent material parameters. Technically it is
the same material as in the previous case, but its behaviour is described dif-
ferently from the modelling point of view. It generalizes the isothermal binary
model originally developed by Abels et al. (2012).

77



CHAPTER 3. DIFFUSE INTERFACE MODELS

Non-isothermal model

In the current setting we use the same ansatz for the specific Helmholtz free
energy as in the previous section, see (3.113), hence we shall also use the notation
introduced therein. The system of governing equations for the unknown quantities
ϑ, φ,v and p̃a reads

dφ

dt
= div (M ∇µ̃), (3.120a)

µ̃ = −3

2
εσ̂∆φ+ 12

σ̂

ε
f ′(φ) + ψ̃1(ϑ)− ψ̃2(ϑ), (3.120b)

div v = 0, (3.120c)

%
dv

dt
+ Θ2 [∇v]J = −∇p̃a + div

(
2νD− 3

2
εσ̂∇φ⊗∇φ

)
+ %g, (3.120d)

and

%cv
dϑ

dt
= 2νD : D + div (κ∇ϑ) + M |∇µ̃|2 + ϑ

(
ψ̃ ′1(ϑ)− ψ̃ ′2(ϑ)

)
div (M ∇µ̃),

(3.120e)

with J = −M(%̂1− %̂2)∇µ̃. Recall that Θ2 is the constant toggle coefficient which
is by default equal to 1. Equation (3.120d) can be manipulated exactly as in the
previous case of (3.116d) to take the form

%
dv

dt
+ Θ2 [∇v]J = −∇pa + div (2νD)− φ∇µ̃+

∂ψ̃

∂ϑ
∇ϑ+ %g, (3.121)

where pa = p̃a + ψ̃ − φµ̃ formally coincides with the augmented pressure defined
in (3.64). Indeed, the same relation between the two quantities can be obtained
by comparing (3.75) and (3.94), provided that we take into account the constraint
div v = 0 in the former relation.

Reduction to the isothermal model

Let us consider the standard isothermal setting with the temperature being fixed
at ϑ̂iso. In such a case we are not concerned with the evolution equation for ϑ
and equations (3.120a)–(3.120d) take the reduced form

dφ

dt
= div (M ∇µ̃), (3.122a)

µ̃ = −3

2
εσ̂∆φ+ 12

σ̂

ε
f ′(φ), (3.122b)

div v = 0, (3.122c)

%
dv

dt
+ Θ2 [∇v]J = −∇pa + div (2νD)− φ∇µ̃+ %g. (3.122d)

If Θ2 = 1, then the above system of equations corresponds to the model originally
developed by Abels et al. (2012). The equations with Θ2 = 0 were previously
used for example by Ding et al. (2007) and Shen and Yang (2010); see also Aland
and Voigt (2012).
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Reduction to a single-component fluid

Provided that we are dealing with a single incompressible fluid, which can be
again achieved by considering φ ≡ 1 in the governing equations, we observe that
the model given by (3.120) reduces to the standard system of incompressible NSF
equations (3.119) for the primitive variables ϑ, v and p.

Let us emphasize that in the isothermal setting it is not necessary to consider
degenerate mobility (3.112) to enforce zero diffusive flux in pure components.
Indeed, we see that µ̃ in (3.122b) is identically zero if either φ ≡ 1 or φ ≡ 0. As
a consequence, the diffusive flux ̃ = −M ∇µ̃ also vanishes in pure components.

3.6.4 Proposal of a simple study case

Let us consider two incompressible fluids of equal density (%̂ = %̂1 = %̂2). We
can immediately observe that the two models (3.116) and (3.120) coincide in this
special case, as the assumption on matching densities yields r̂ = 1 − %̂1/%̂2 = 0
and J = −M(%̂1− %̂2)∇µ̃ = 0. The degenerate mobility M is considered to take
the simple form

M(φ) = M0(1− φ)2φ2, (3.123)

where M0 is a positive constant.
The two fluids are supposed to have the same constant viscosity (ν̂ = ν̂1 = ν̂2),

but the coefficients of specific heat at constant volume are assumed to be different
for each material (ĉv,1 6= ĉv,2). The last assumption applies also for the constant
coefficients of thermal conductivity (κ̂1 6= κ̂2). The corresponding system of
governing equations for the unknown variables ϑ, φ, v and pa reads

dφ

dt
= div (M ∇µ̃), (3.124a)

µ̃ = −3

2
εσ̂∆φ+ 12

σ̂

ε
f ′(φ) + ψ̃1(ϑ)− ψ̃2(ϑ), (3.124b)

div v = 0, (3.124c)

%̂
dv

dt
= −∇pa + ν̂∆v − φ∇µ̃+

∂ψ̃

∂ϑ
∇ϑ+ %̂g, (3.124d)

and

%̂cv
dϑ

dt
= 2ν̂D : D + div (κ∇ϑ) +M |∇µ̃|2 + ϑ

(
ψ̃ ′1(ϑ)− ψ̃ ′2(ϑ)

)
div (M ∇µ̃).

(3.124e)

The first dissipation term on the right hand side of the temperature equation is
often neglected in practical applications. On the other hand, the last two terms
in the same equation are non-standard and their influence on the dynamics of the
moving interfaces should be subject to a deeper numerical study in an appropriate
geometrical setting. Dimensionless analysis of the presented model will be carried
out as a part of our upcoming research.
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Chapter 4

Isothermal Flows of Immiscible
Incompressible Fluids

Despite the fact that our target application described in Section 1.1 is clearly
non-isothermal, and in fact the temperature effects play the essential role in
the float glass forming process, its initial stage is considered to be isothermal
in our first modelling approach1. Proper handling of numerical simulations in
such approximated setting is a prerequisite for further research regarding the
applicability of CHNSF models in a similar type of problems.

Recall that all fluids involved in our target application are modelled as be-
ing incompressible. Hence, in the remainder of the thesis we shall restrict our
attention to models developed for incompressible multi-component systems, see
Figure 1.7. Shen et al. (2013) in their numerical study compared binary CHNS
models that in our terminology correspond to QI and FI variants presented in
Sections 3.6.2 and 3.6.3 respectively. According to the observations made in that
study, the deviation between the predictions by both type of models depends
on the size of the mixing zone. In particular, when the size of the mixing zone
is small compared to the entire fluid domain, exactly like in our case of thin
interfacial layers separating the immiscible fluids, both model predictions agree
qualitatively2.

One of the characteristic features of the QI model is the non-solenoidal mass-
averaged velocity field. Different sophisticated solution strategies have been re-
cently developed for this type of model (or its approximations), see for example
Shen et al. (2013), Guo et al. (2014) or Roudbari et al. (2018), yet we prefer
to work with the FI model which incorporates the incompressible NS equations
with the divergence-free velocity. The latter variant thus offers the possibility to
directly exploit efficient preconditioning strategies that have been developed in
the context of incompressible fluid flows for recent decades; see the review paper
by Benzi et al. (2005). One of the strategies will be discussed later in Section 5.4.

In this chapter, in particular in Section 4.1, we first formulate a set of con-

1The temperature variations in the close proximity of the spout lip are expected to occur
only at moderate scales (compared to variations observed in the full manufacturing process).

2In the thesis we are not interested in simulations with large mixing zones, like in the phase
separation process described in Section 3.1.1, for which the numerical tests carried out by Shen
et al. (2013) showed different dynamics with respect to the chosen variant of the model.
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4.1. CONSEQUENCES OF CONSISTENCY CONDITIONS

sistency conditions that are expected to be satisfied by the N -component model
with N ≥ 3. Based on the consistency conditions, we obtain the appropriate
form of the mixing surface energy coefficients, the mobility matrix, and also the
appropriate form of the nonlinear potential function with the multi-well struc-
ture. The same approach was originally used by Boyer and Minjeaud (2014), and
it was applied also in the recent studies by Dong (2017) or Wu and Xu (2017).
The complete description of the final version of the model, including boundary
and initial conditions, is given in Section 4.2.

4.1 Consequences of consistency conditions

In this section, we formulate a set of four consistency conditions for incompressible
multi-component systems with more than two components. These conditions play
the crucial role regarding the choice of the mixing surface energy coefficients λij,
the mobility coefficients Mij and the multi-well potential F ; see (3.99), (3.100a),
and (3.27) respectively.

The conditions adopted in the thesis are based on the concept of algebraic
consistency as it was first formalized by Boyer and Lapuerta (2006), who used
it to derive a suitable form of the free energy functional for ternary CH models.
This concept was later generalized and discussed in the context of N -component
CH models in the distinguished work by Boyer and Minjeaud (2014). The idea
is based on the requirement of proper reduction of the N -component models to
the K-component ones (2 ≤ K ≤ N − 1) whenever L = N −K components are
absent in the system. Recently, Dong (2017) extended the basic set of consistency
conditions and used them in the context of CHNS models.

Let us formulate the consistency conditions for the general non-isothermal
models from Sections 3.3.4 and 3.4.4. We shall use the term “N -component
free energy density” as the equivalent of (3.26), and “N -component governing
equations” as the reference for either (3.84) or (3.102). Inspired by Dong (2017),
we consider the following set of consistency conditions:

(C1) The N -component free energy density is required to coincide with (3.17) if
N = 2.

(C2) The N -component free energy density is required to reduce to the K-
component free energy density if only K (2 ≤ K ≤ N − 1) components
are present in the physical system.

(C3) If L (1 ≤ L ≤ N − 2) components are absent from the initial data, they are
required to remain absent in the solution of the corresponding N -component
problem.

(C4) The N -component governing equations are required to reduce to the K-
component governing equations if only K (2 ≤ K ≤ N − 1) components
are present in the physical system.

The first two conditions determine the choice of the coefficients λij in (3.26).
Before we start to explore consequences of the other required properties, let us
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CHAPTER 4. ISOTHERMAL FLOWS OF IMMISCIBLE
INCOMPRESSIBLE FLUIDS

restate the equations (3.84a) and (3.102a) in their vector form using the full
vector of volume fractions φ? = [φ1, . . . , φN ]>. We begin with (3.84a), that is

dφi
dt

+ φi div v =
N−1∑

j=1

div (Mij∇(µ̃j + r̂jpa)), i = 1, . . . , N − 1. (4.1a)

The evolution equation for φN can be obtained as a consequence of (2.8), (3.84a)
and (3.84c). It reads

dφN
dt

+ φN div v = div

(
N−1∑

i,j=1

(r̂i − 1)Mij∇(µ̃j + r̂jpa)

)
. (4.1b)

Let us introduce the following auxiliary notation

Zr̂ =

[
IN−1

(r̂− 1N−1)>

]

N×(N−1)

, (4.2)

where IN−1 = [δij](N−1)×(N−1), r̂ = [r̂i](N−1)×1 and 1N−1 = [1](N−1)×1. Further, let
µ̃ = [µ̃i](N−1)×1 denote the vector of generalized chemical potentials with entries
given by (3.84b). The equations in (4.1) can be rewritten in the matrix form

dφ?
dt

+ φ? div v = div (Zr̂M∇(µ̃+ par̂)). (4.3)

In the same way we deduce that (3.102a) expressed in the matrix form reads

dφ?
dt

= div (Z0M∇µ̃). (4.4)

Note that this equation formally coincides with (4.3) provided that r̂ = 0, which
further implies that div v = 0 by virtue of (3.84c). According to (3.81b), (3.84h)
and (3.84i), we see that

µ̃ = −aε
2

div (Λ∇φ) +
b

ε
dF + ψ̃diff , (4.5a)

where

dF =

[
∂F

∂φi

]

(N−1)×1

, ψ̃diff =
[
ψ̃i(ϑ)− ψ̃N(ϑ)

]
(N−1)×1

. (4.5b)

Substitution of the above formula into (4.3) yields

dφ?
dt

+ φ? div v = div

[
Zr̂M∇

(
−aε

2
div (Λ∇φ) +

b

ε
dF + ψ̃diff + par̂

)]
. (4.6)

Obviously, to satisfy consistency conditions (C2)–(C4) it suffices to consider
the case with exactly one component that is absent in the physical system, mean-
ing that we need to ensure the correct reduction of the N -component model to the
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4.1. CONSEQUENCES OF CONSISTENCY CONDITIONS

(N − 1)-component model. Suppose that the fluid k is absent in our considered
physical system, that is

φk ≡ 0 for some k ∈ {1, . . . , N}. (4.7)

The consistency condition (C3) requires that the k-th component of the expres-
sion on the right hand side of (4.6) vanishes, so that φk is not generated in the
system. Similarly, the consistency condition (C4) requires that the remaining gov-
erning equations, (3.84d)–(3.84e) and (3.102d)–(3.102e) respectively, are reduced
accordingly.

For the purpose of further discussion, we restrict our our attention to the
isothermal FI model in which case the equation (4.6) takes the simple form

dφ?
dt

= div

[
Z0M∇

(
−aε

2
Λ∆φ+

b

ε
dF
)]
. (4.8)

Now the task is as follows. For the given constant SPD matrix Λ, we need to
construct M and F , such that the k-th component of the expression on the right
hand side of (4.8) vanishes if (4.7) holds. Up to our best knowledge, this problem
has not been entirely solved yet. In the following three sections, we shall briefly
analyze an acceptable choice of Λ, M and F which will be used in our numerical
simulations.

4.1.1 Specification of mixing surface energy coefficients

Let σij denote the pairwise surface tension coefficients between the individual
fluids. As such, they are assumed to be symmetric (σij = σji) and strictly positive.
In what follows, we use the convention

σii ≡ 0, i = 1, . . . , N, (4.9)

and we introduce the surface tension matrix Σ = [σij]N×N . Let the N -component

Helmholtz free energy density is given in the form ψ̃ = ψ̃?(φ?,∇φ?), where

ψ̃?(φ?,∇φ?) = −aε
4

N∑

i,j=1
i 6=j

σij∇φi · ∇φj +
b

ε
F?(φ?), (4.10)

cf. (3.26). The central assumption in the construction and the analysis of the CH
models proposed by Boyer and Minjeaud (2014) is the following statement3,

y>? Σy? ≤ −CΣ |y?|2 , ∀y? ∈ RN , s.t. y? · 1? = 0, with 1? = [1, . . . , 1]> ∈ RN ,
(4.11)

which is assumed to hold for some CΣ > 0, see (Boyer and Minjeaud, 2014,
Eq. (2.6)) and the discussion therein. One can easily verify that the first term

3The coercivity assumption (4.11) ensures that the contribution of the first term in (4.10)
is positive at the interfaces.
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on the right hand side of (4.10) obeys the consistency conditions (C1) and (C2).
Indeed, for N = 2 we have

−aε
4

2∑

i,j=1

σij∇φi · ∇φj = −aε
2
σ12∇φ1 · ∇(1− φ1) =

aε

2
σ12 |∇φ1|2 ,

which coincides with the first term on the right hand side of (3.17). Moreover,
if (4.7) holds, then ∇φk ≡ 0 and the second condition is also satisfied.

The mixing surface energy coefficients λij are obtained from (4.10) by elimi-
nating φN using the constraint (2.8). In this sense we introduce

ψ̃(φ,∇φ)
def
= ψ̃?(φ?,∇φ?)

∣∣∣
φN=1−

∑N−1
i=1 φi

, (4.12)

and

λij
def
= σiN + σjN − σij. (4.13)

We immediately see that Λ = [λij](N−1)×(N−1) is symmetric. According to the
following proposition, it is also positive definite.

Proposition 4.1. Σ satisfies the coercivity assumption (4.11) if and only if Λ
defined by (4.13) is positive definite.

Proof. We first show that y>? Σy? = −y>Λy for y? = [y1, . . . , yN ]> ∈ RN

such that y? · 1 = 0 and y = [y1, . . . , yN−1]> ∈ RN−1. Let Σ0 ∈ R(N−1)×(N−1)

corresponds to Σ in which we have removed the last row and the last column
that both correspond to σN = [σiN ]N−1

i=1 ∈ RN−1. Then

y>? Σy? = y>Σ0y + 2 (σN · y) yN = y>Σ0y −
N−1∑

j=1

(σN · y) yj

−
N−1∑

i=1

(σN · y) yi =
N−1∑

i,j=1

yi (σij − σiN − σjN) yj = −
N−1∑

i,j=1

yiλijyj = −y>Λy.

Let Σ satisfies (4.11). Let y ∈ RN−1 is an arbitrary non-zero vector and let
y? is chosen accordingly, that is with yN = −∑N−1

i=1 yi. There exists CΣ > 0 such
that y>Λy = −y>? Σy? ≥ CΣ |y?|2 ≥ CΣ |y|2 , which proofs that Λ is SPD.

To prove the reverse implication, let Λ is SPD. There exists CΣ > 0 such that
y>Λy ≥ NCΣ |y|2 . We observe that

NCΣ |y|2 = CΣ

(
|y|2 + (N − 1) |y|2

)
≥ CΣ |y|2 + CΣ

(
N−1∑

i=1

yi

)2

= CΣ

(
N−1∑

i=1

y2
i + (−yN)2

)
= CΣ |y?|2 ,

where we have used the Cauchy-Schwarz inequality. It immediately follows that
y>? Σy? = −y>Λy ≤ −CΣ |y?|2 .
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4.1.2 Specification of mobility matrix

Let us assume that the mobility matrix takes the form of a constant matrix
multiplied by a (not necessarily constant) mobility coefficient, namely M = M0M̄.
In light of (4.8), the consistency condition (C3) requires

div

[
M0∇

(
−aε

2

[
Z0M̄Λ∆φ

]
k

+
b

ε

[
Z0M̄ΛdF

]
k

)]
≡ 0 (4.14)

if φk ≡ 0 for some k ∈ {1, . . . , N}. Following the procedure outlined in (Dong,
2017, Sec. 2.3), we put

M̄ = Λ−1, (4.15)

which is SPD provided that the same holds true for Λ. In order to ensure that
M is also positive definite, we shall require M0 > 0.

Remark 4.2. In practice, it is of course possible to work with a degenerate
mobility coefficient M0 = M0(φ), provided that it is a non-negative function
which is necessary to ensure non-negativity of the corresponding term in the
entropy production (3.101). A commonly used degenerate mobility coefficient is
given by

M0(φ)
def
= M̂0

N∏

i=1

(1− φi)2, (4.16)

where M̂0 > 0 is a constant parameter.

Let us explore the consequences of the choice (4.15). First of all, for arbitrary
k ∈ {1, . . . , N} we have

[
Z0M̄Λ∆φ

]
k

= ∆φk. (4.17)

(The above identity follows from (4.2) where we have put r̂ = 0.) As a conse-
quence, the condition in (4.14) is reduced to

div
(
M0∇

[
Z0Λ−1dF

]
k

)
≡ 0 if φk ≡ 0 for some k ∈ {1, . . . , N}. (4.18)

In theory, this should be ensured by an appropriate choice of the potential F .

4.1.3 Specification of multi-well potential function

The construction of a potential function with the multi-well structure which would
satisfy all consistency conditions (C1)–(C4) is a highly non-trivial and challenging
problem. It has been completely answered only in the simple case of matching
pairwise surface tensions (σij = σ), see Boyer and Minjeaud (2014).

In the constitutive assumption (4.10), we have introduced F? as the notation
for a multi-well potential function in terms of the full vector of volume fractions.
In the remainder of the thesis, we consider the potential function of the form

F?(φ?) =
N∑

i,j=1

σij
4

[f(φi) + f(φj)− f(φi + φj)] . (4.19)
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where f is given by (3.9). The choice of the above formula is in accordance with
the consistency conditions (C1) and (C2). However, it does not comply with (C3)
and (C4) in the general case.

It can be shown that (4.19) meets the requirements of (C3) and (C4) if only
a pair of fluids is present in the physical system, that is, if L = N − 2 in (C3)
and K = 2 in (C4). We refer to (Dong, 2017, App. C) for the proof of this state-
ment, which basically says that the interfaces between exactly two components,
excluding multiple points, are properly captured. Boyer and Minjeaud (2014)
successfully constructed the multi-well potential which meets the condition (C3)
if L ≥ N − 3. However, the construction of the fully consistent potential for
N -component systems is still an open problem.

Remark 4.3. Boyer and Minjeaud (2014) also suggested to add a stabilization
term in the form of a higher order polynomial to (4.19), see also Boyer and
Lapuerta (2006). This kind of stabilization is of importance mainly in the context
of total spreading situations which are not covered in the thesis.

In light of (4.12) and (4.19), we introduce the multi-well potential F as the
function of the first (N − 1) volume fractions through

F (φ) =
N∑

i,j=1

σij
4

[f(φi) + f(φj)− f(φi + φj)]
∣∣∣
φN=1−

∑N−1
i=1 φi

. (4.20)

Finally, components of the previously introduced vector dF , see (4.5b), are ob-
tained in the form

∂F

∂φi
=
∂F?
∂φi
− ∂F?
∂φN

=
N∑

j=1

σij
2

[f ′(φi)− f ′(φi + φj)]
∣∣∣
φN=1−

∑N−1
k=1 φk

−
N∑

j=1

σjN
2

[f ′(φN)− f ′(φN + φj)]
∣∣∣
φN=1−

∑N−1
k=1 φk

, i = 1, . . . , N − 1. (4.21)

4.2 Consistent formulation of FI-CHNS model

Now we are ready to put together all the information needed to develop a model
suitable for the description of isothermal flows of immiscible incompressible fluids
in a fixed flow domain. Our final model is based on the isothermal version of
governing equations (3.102a)–(3.102d), which can be obtained by considering the
Helmholtz free energy density (3.26) in the special form

ψ̃(φ,∇φ) =
aε

4

N−1∑

i,j=1

λij∇φi · ∇φj +
b

ε
F (φ). (4.22)

The coefficients λij have been specified in (4.13) and F is given by (4.20). With

this particular choice of ψ̃ we have

µ̃i =
b

ε

∂F

∂φi
− aε

2

N−1∑

j=1

λij∆φj, (4.23)
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cf. (3.102b). Our specific choice of the mobility matrix M = M0Λ
−1 tempts us

to introduce the notation

χi
def
=

N−1∑

j=1

`ijµ̃j, (4.24)

where `ij denote entries of Λ−1. Using this notation we will transform the coupled
equations (3.102a) and (3.102b) in our final model. The newly introduced variable
χi will be referred to as the combined chemical potential associated with the i-th
component in the system. Clearly, the inverse transformation to (4.24) reads

µ̃i =
N−1∑

j=1

λijχj. (4.25)

Looking at the balance of linear momentum (3.102d), we see that the choice
of the approximation level through Θ2, see Summary 7 in Section 2.5.3, offers
the possibility to eliminate the effect of J in that equation. At this point, we
let the auxiliary parameter to be absorbed by the flux variable in the sense of
introducing a new notation, for instance JΘ ≡ Θ2J , but we shall continue to
write J for the redefined flux. Hence, in the current setting with the alternative
notation, we have

J = −Θ2

N−1∑

i=1

M0(%̂i − %̂N)∇χi, Θ2 =

{
1 FI-CHNS-L1,

0 FI-CHNS-L2,
(4.26)

and

%
∂v

∂t
+ [∇v](%v + J) = −∇p+ div (2νD) + fca + %g. (4.27)

Here, fca
def
= −aε

2

∑N−1
i,j=1 λij div (∇φj ⊗∇φi) represents the capillary force and p

is the universal notation for the pressure field, which at the moment coincides
with p̃a. The capillary force can be rewritten using the simple identity

div (∇φi ⊗∇φj) = (∆φj)∇φi +
1

2
∇(∇φi · ∇φj). (4.28)

The contribution associated with the second term on the right hand side can
be obviously added to the pressure gradient, while the first term can be further
modified by substituting from (4.23). This gives us several possibilities of how to
reformulate the equation (4.27). Table 4.1 summarizes the most commonly used
equivalent formulations.

Note that once the effect of J is eliminated, by letting Θ2 = 0 in (4.26), it is
correctly eliminated also in the balance of mass

∂%

∂t
+ div (%v) = − divJ , (4.29)

cf. (2.95e).
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Table 4.1: Equivalent formulations of the balance of linear momentum (4.27) suitable for implementation of various discretization
schemes for FI-CHNS model.

Variant Equation fca p (ref. symbol)

(BLM0) %
∂v

∂t
+ [∇v](%v + J) = −∇p+ div (2νD) + fca + %g −aε

2

N−1∑

i,j=1

λij div (∇φj ⊗∇φi) p̃a (P0)

(BLM1)* ∂v

∂t
+ [∇v]v +

1

%
[∇v]J = −1

%
∇p+

ν

%
∆v +

2

%
D∇ν +

1

%
fca + g −aε

2

N−1∑

i,j=1

λij (∆φj)∇φi P0 +
aε

4

N−1∑

i,j=1

λij ∇φi · ∇φj (P1)

(BLM2)† %
∂v

∂t
+ [∇v] (%v + J) = −∇p+ div (2νD) + fca + %g

N−1∑

i,j=1

λijχj ∇φi P1 +
b

ε
F (φ) (P2)

(BLM3)‡
√
%
∂

∂t
(
√
%v) + [∇v] (%v + J) +

1

2
v div (%v + J)

= −∇p+ div (2νD) + fca + %g −
N−1∑

i,j=1

λijφi∇χj P2 −
N−1∑

i,j=1

λijφiχj (P3)

* [Dong (2017)] Manipulation based on using (4.28).
† [Boyer and Lapuerta (2006)] Manipulation based on using (4.28), (4.23) and (4.25).
‡ [Minjeaud (2013)] Manipulation based on using (4.29) and ∇(φiχi) = φi∇χi + χi∇φi.
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4.2. CONSISTENT FORMULATION OF FI-CHNS MODEL

4.2.1 Final form of governing equations

The N -component FI-CHNS model, which we use to simulate mutual interaction
of immiscible incompressible fluids in a thermally isolated fixed flow domain Ω,
is composed of PDEs in the form

∂φi
∂t

+ div (φiv) = div (M0∇χi), i = 1, . . . , N − 1, (4.30a)

χi =
b

ε

N−1∑

j=1

`ij
∂F

∂φj
− aε

2
∆φi, i = 1, . . . , N − 1, (4.30b)

div v = 0, (4.30c)

%
∂v

∂t
+ [∇v](%v + J) = −∇p+ div (2νD)−

N−1∑

i,j=1

λijφi∇χj + %g. (4.30d)

Recall that J = −Θ2

∑N−1
i=1 M0(%̂i− %̂N)∇χi. The left hand side of the last equa-

tion can be further manipulated using (4.29) to fit (BLM3) presented in Table 4.1.
This final form of the model will be particularly suitable for the derivation of the
unconditionally energy-stable numerical scheme which is described in Chapter 5.

Model parameters and primitive variables are summarized in Table 4.2. Their
brief description together with physical units can be found in the overview at the
beginning of the thesis.

Table 4.2: Overview of field variables and parameters of different types used
in the FI-CHNS model (4.30).

Variables to be solved Input parameters Derived parameters (Eq.)

φi (1 ≤ i ≤ N − 1) M̂0 M0(φ) (4.16)

v ε a, b (3.10b)*

p σij (1 ≤ i < j ≤ N) λij , `ij (1 ≤ i, j ≤ N − 1) (4.13)†

%̂i (1 ≤ i ≤ N) %(φ) (2.10a)
νi (1 ≤ i ≤ N) ν(φ) (3.103)
Θ2 J (4.26)

g F (φ) (4.20)*

* Depends on the choice of f . Here we take f(φ) = φ2(1− φ)2, see (3.9).
† Λ = [λij ](N−1)×(N−1), Λ−1 = [`ij ](N−1)×(N−1).

4.2.2 Example of boundary conditions

We assume that Ω ⊂ R3 is a bounded domain with Lipschitz boundary ∂Ω. Let n
denote outer unit normal vector defined at (almost) all points of the boundary. We
supplement the above system of PDEs with different types of boundary conditions
depending on the particular problem we want to describe and simulate.

The typical flow domain inspired by our target application from Section 1.1
is schematically depicted in Figure 4.1. The domain boundary consists of several
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Figure 4.1: Sketch of the computational domain for the initial stage of the float
glass forming process with different types of boundaries.

distinct parts, namely ∂Ω = Γin ∪ Γw ∪ Γcut ∪ Γout. At the inlet part of the
boundary, Γin, we prescribe

v = vin on Γin, (4.31a)

φ = φin on Γin, (4.31b)

∇χi · n = 0, i = 1, . . . , N − 1, on Γin. (4.31c)

The first condition prescribes the inlet velocity profile. The second condition is
used to specify which fluid flows into the domain, typically4 φin = ej for some
j ∈ {1, . . . , N − 1} or φin = 0 if it is the N -th fluid which flows in. Finally,
the third group of conditions says that there is no diffusive flux in the normal
direction to Γin, so that the inflow is advective.

At solid walls of the domain, Γw, we prescribe

v = vw on Γw, (4.32a)

∇φi · n = 0, i = 1, . . . , N − 1, on Γw, (4.32b)

∇χi · n = 0, i = 1, . . . , N − 1, on Γw. (4.32c)

The first condition is typically chosen to be no-slip and no-penetration condition
vw = 0. The second group of conditions ensures that the interfaces in between the
individual fluids are perpendicular to the boundary. The contact angle between
any interface and the wall is thus always 90◦ in our case5. The group of conditions
on the third line prevents any diffusion through the solid wall.

The dashed line labeled by Γcut in Figure 4.1 is an artificial boundary that
can be interpreted as a cut across the domain through a pure fluid away from
interfaces. Such a cut is done in order to decrease the size of the problem. The
fluid in the vicinity of this artificial boundary must have the chance to freely

4The set of vectors {ei}N−1
i=1 forms the standard (natural) basis of RN−1.

5In practice, it is possible to prescribe general contact angles at the boundaries (different
from 90◦), but we do not consider this option at the moment; see for example Jacqmin (2000),
Ding and Spelt (2007), Khatavkar et al. (2007), Lee and Kim (2011) for two-component systems
or Dong (2017) for N -component systems.
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4.2. CONSISTENT FORMULATION OF FI-CHNS MODEL

outflow from the domain as it is being “pushed out” by another fluid which flows
into the domain through the inlet. We put

[−pI + 2νD]n = −Gn on Γcut, (4.33a)

where G is assumed to satisfy ∇G = %g on Γcut. This condition simply balances
the hydrostatic contribution to the pressure in the sense that p = G in the absence
of flow. Let us suppose that only the k-th fluid is present in the vicinity of Γcut.
Then we have G = −%̂kgax2 + const., where ga = |g|, see Figure 4.1. Optionally,
one can support the current assumption by enforcing redundant conditions

φ =

{
ek, if k ∈ {1, . . . , N − 1},
0, if k = N,

on Γcut, (4.33b)

and

∇χi · n = 0, i = 1, . . . , N − 1, on Γcut. (4.33c)

The outlet part of the boundary, Γout, is of a similar nature as in the previ-
ous case. Nevertheless, this time the we want to enable simultaneous outflow of
several fluids, meaning that the the interfaces in between them are expected to in-
tersect/penetrate the boundary. Proper handling of a relevant outflow boundary
condition is important from the point of view of our target application, however,
it is out of scope of the thesis6. For testing purposes we have replaced Γout by
a solid wall Γw.

4.2.3 Function spaces and initial conditions

We briefly introduce the function spaces needed in the text below. Let L2(Ω)
denote the standard Lebesgue space consisting of measurable functions u : Ω→ R

with finite norm

‖u‖L2

def
=

(∫

Ω

|u|2 dx

) 1
2

.

Apparently, L2(Ω)d denotes the space of d-dimensional vector-valued functions
whose all components are square integrable in the previous sense. The corre-
sponding norm for u ∈ L2(Ω)d is defined by

‖u‖L2

def
=

(∫

Ω

u · u dx

) 1
2

=

(∫

Ω

|u|2 dx

) 1
2

.

The standard Sobolev space H1(Ω)
def
= {u ∈ L2(Ω);∇u ∈ L2(Ω)3} is traditionally

equipped with the norm

‖u‖H1

def
=
(
‖u‖2

L2 + ‖∇u‖2
L2

) 1
2 .

6The implementation of the outflow boundary condition at Γout is planned to follow the
ideas presented in Dong (2014b).
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Another traditional spaces H1
0 (Ω) and H1

Γ(Ω) can be characterized as spaces
consisting of functions u ∈ H1(Ω) with zero trace on the boundary or on its part

Γ ⊂ ∂Ω respectively. In these spaces we work with the norm ‖u‖H1
0

def
= ‖∇u‖L2 .

The space H
1
2 (∂Ω) ⊂ L2(∂Ω) represents the image of the linear bounded trace

operator that is defined on H1(Ω). The corresponding spaces for d-dimensional
vector-valued functions (i.e. H1(Ω)d, H1

0 (Ω)d, etc.) are introduced similarly as in
the case of L2(Ω)d mentioned above.

We further introduce the following notation for the function spaces related to
the primitive variables, namely

Vφ def
= H1(Ω), VφΓCH

def
= {φ ∈ H1(Ω); φ|ΓCH

= 0}, (4.34a)

Vφ def
= H1(Ω)N−1, Vφ

ΓCH

def
= {φ ∈ H1(Ω)N−1; φ|ΓCH

= 0}, (4.34b)

Vχ def
= H1(Ω), Vχ def

= H1(Ω)N−1, (4.34c)

Vv def
= H1(Ω)3, Vv

ΓNS

def
= {v ∈ H1(Ω)3; v|ΓNS

= 0}, (4.34d)

Vp def
= L2(Ω), Vp0

def
= {p ∈ L2(Ω);

∫

Ω

p dx = 0}. (4.34e)

Here, ΓCH ⊆ ∂Ω and ΓNS ⊆ ∂Ω are introduced to cover those parts of the
boundary on which we specify Dirichlet boundary conditions φD,vD for volume
fractions and velocity respectively. For instance, the velocity boundary conditions
prescribed in Section 4.2.2 correspond to the setting with ΓNS = Γin ∪ Γw and

vD =

{
vin on Γin,

vw on Γw.

(If needed, the velocity function space Vv
ΓNS

can be adapted in a straightforward
way to incorporate slip boundary conditions.)

Since we are interested in time-dependent problems, we need to supplement
the system with appropriate initial conditions. We put

φ|t=0 = φ0, v|t=0 = v0, (4.35)

where φ0 ∈ Vφ and v0 ∈ Vv are given functions.

4.2.4 Dimensionless form of the model

Let us now briefly describe how to obtain dimensionless form of the model. Our
aim is to provide a normalization of the variables and parameters such that the
form of the governing equations and the boundary/initial conditions remains
unchanged upon non-dimensionalization.

Basic characteristic quantities are listed in Table 4.3. The normalization con-
stants for all variables and parameters that appear in the model are summarized
in Table 4.4. For example, the dimensionless viscosity is defined by ν/(%refVrefLref)
based on this table. As such, it corresponds to the reciprocal value of the Reynolds
number which varies in space according to ν. The other commonly introduced
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4.2. CONSISTENT FORMULATION OF FI-CHNS MODEL

dimensionless numbers are listed in Table 4.5. In what follows, all variables
and parameters are considered to be in their dimensionless form unless otherwise
stated7.

Table 4.3: Characteristic quantities.

Quantity Description SI unit
Default
value

Lref length scale m 1
Vref velocity scale m · s−1 1
%ref density scale kg ·m−3 1

Table 4.4: Normalization constants.

Variable/parameter Constant Variable/parameter Constant

x Lref ε Lref

v Vref D Vref/Lref

t Lref/Vref φi 1

µ̃i %refV
2

ref χi 1/Lref

σij , λij , F %refV
2

refLref `ij 1/(%refV
2
refLref)

M0 VrefL
2
ref a, b, f 1

%, %i, %̂i %ref ν, νi %refVrefLref

p %refV
2

ref fca %refV
2
ref/Lref

J %refVref Θ0,Θ1,Θ2 1

g, ga V 2
ref/Lref G %refV

2
ref

Table 4.5: Dimensionless numbers.

Name Notation Representation
Normalized

quantity

Cahn number Cn ε/Lref ε∗

Froude number Fr Vref/
√
gaLref

1/
√
g∗a

Péclet number Pe VrefL
2
ref/M0

1/M∗
0

Reynolds number Re %refVrefLref/ν 1/ν∗

7The original dimensional setting can be recovered if we put the characteristic quantities
equal to their default values, see Table 4.3.
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Chapter 5

Numerical Discretization

Let us assume, for the moment, that the external forces vanish identically and
∂Ω = Γw, so that boundary conditions (4.32) apply to the whole boundary.

Multiplying (4.30a)–(4.30d) by
∑N−1

j=1 λijχj,
∑N−1

j=1 λij
∂φj
∂t

, p and v respectively,
integrating over Ω and adding up the resulting equations, one formally recovers
the energy equality in the form1

d

dt

∫

Ω

(
1

2
% |v|2 +

b

ε
F (φ) +

aε

4

N−1∑

i,j=1

λij∇φi · ∇φj
)

= −
∫

Ω

2νD : D−
∫

Ω

M0

N−1∑

i,j=1

λijχiχj. (5.1)

The term on the left hand side represents the change of the total kinetic and
free energy associated with the fluid inside the domain Ω, that is, the change of
E(t) = Ekin(t) + Ψ(t), where

Ekin(t) =

∫

Ω

1

2
% |v|2 , Ψ(t) =

∫

Ω

(
b

ε
F (φ) +

aε

4

N−1∑

i,j=1

λij∇φi · ∇φj
)
. (5.2)

Since the contribution of both terms on the right hand side of (5.1) to the change
of the total energy is negative, the energy in the system is dissipated. (Recall
that Λ is assumed to be SPD.)

The numerical scheme described in this chapter is discretely consistent with
thermodynamics in the sense that the discrete counterpart of the total energy
is decreasing in time in the absence of external forces, see Proposition 5.4. Nu-
merical schemes with such a property are usually called energy-stable. The ideas
presented here have been previously applied in the works by Minjeaud (2013) and
Guillen-Gonzalez and Tierra (2014) for a ternary FI-CHNS model (with Θ2 = 0)
in the first case and for a binary model of the same type (with Θ2 = 1) in the
other case, cf. (3.122).

1For the sake of brevity, we shall henceforth drop the measures dx, ds from integrals.
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5.1. TIME DISCRETIZATION

5.1 Time discretization

Let us consider the time interval [0, tend] divided into Nt.s. subintervals [tn, tn+1],
n = 0, . . . , Nt.s − 1, of a uniform length ∆t = tend/Nt.s.. Note that for a function
f : [0, tend] → X , where X is a general Banach space, we abbreviate fn ≡ f(tn),
n = 0, . . . , Nt.s.. We assume that φn ∈ Vφ

ΓCH
and vn ∈ Vv

ΓNS
are given functions

at the time level tn = n∆t. The time level n = 0 thus corresponds to t0 = 0
with the initial conditions φ0,v0 from (4.35). The objective of the current and
the following section is to formulate the system of equations that must be solved
in order to compute an appropriate approximation of the unknown functions2

φn+1 ∈ Vφ
ΓCH

, χn+1 ∈ Vχ, vn+1 ∈ Vv
ΓNS

and pn+1 ∈ Vp at the subsequent time
level tn+1.

For the ease of presentation, we shall assume that M0 is constant. Following
the ideas presented in (Minjeaud, 2013, Sec. II.A), we propose the time discretiza-
tion of FI-CHNS model (4.30) in the form

φn+1
i − φni

∆t

+ div ((φni − αi)v∗)− div
(
M0∇χn+1

i

)
= 0, i = 1, . . . , N − 1,

(5.3a)

χn+1
i − b

ε

N−1∑

j=1

`ijd
F
j (φn+1,φn) +

aε

2
∆φn+θ

i = 0, i = 1, . . . , N − 1,

(5.3b)

div vn+1 = 0, (5.3c)

%n
vn+1 − vn

∆t

+
1

2

%n+1 − %n
∆t

vn+1

+ [∇vn+1]
(
%n+1vn + Jn+1

)
+

1

2
vn+1 div

(
%n+1vn + Jn+1

)

+∇pn+1 − div
(
2νn+1Dn+1

)
+

N−1∑

i,j=1

λij(φ
n
i − αi)∇χn+1

j = %n+1g, (5.3d)

where Jn+1 = −Θ2

∑N−1
i=1 M0(%̂i − %̂N)∇χn+1

i , νn+1 =
∑N−1

i=1 (νi − νN)φn+1
i + νN ,

%n+β =
∑N−1

i=1 (%̂i − %̂N)φn+β
i + %̂N (for β ∈ {0, 1}) and φn+θ

i = (1− θ)φni + θφn+1
i

for θ ∈ [1
2
, 1]. Let us briefly summarize the basic ideas that were applied in order

to derive the above time discretization scheme:

• The advective velocity in (4.30a) was discretized using the so-called inter-
mediate (projected) velocity3

v∗
def
= vn − ∆t

%n

N−1∑

j,k=1

λjk(φ
n
j − αj)∇χn+1

k . (5.4)

2Note that we do not require the explicit knowledge of χn and pn to update the unknown
variables in this particular case.

3The formula for the intermediate velocity comes from the time discretization of the reduced
balance of linear momentum %∂v∂t = −∑N−1

i,j=1 λijφi∇χj , cf. (4.30d).
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Note that v∗ ·n = 0 provided that vn ·n = 0 and ∇χn+1
i ·n = 0. However,

supposing that
∑N

i=1 φ
n
i = 1, we see that

N∑

i=1

div (φni v
∗) = div v∗ 6= 0. (5.5)

This is in contrast with the continuous case where
∑N

i=1 div (φiv) = 0 due
to (4.30c) and the sum of the volume fractions remains equal to one4. The
role of the additional terms −αi div v∗ in each of the equations in (5.3a)
is to “re-equilibriate” the values of discretized volume fractions to ensure
that their sum remains equal to one. The constant coefficients αi must be
chosen in such a way that

∑N
i=1 αi = 1, so that

∑N
i=1 div ((φni − αi)v∗) = 0.

Here we put

αi
def
=

1

|Ω|

∫

Ω

φ0
i dx, i = 1, . . . , N. (5.6)

Note that αj = 0 if φj is absent from the initial data and the above choice
is therefore in accordance with the consistency condition (C3).

• For the time discretization of the nonlinear terms ∂F
∂φj

in (4.30b) we use

the semi-implicit formula described in Wu and Xu (2017); see also Boyer
and Minjeaud (2011). Recall that in (4.21) we have noted the relation
∂F
∂φi

= ∂F?
∂φi
− ∂F?

∂φN
(for i = 1, . . . , N − 1). The semi-implicit formula for the

discretization of ∂F?
∂φi

(for i = 1, . . . , N) is given by5

dF?i (φn+1
? ,φn? )

def
=

N∑

j=1

σij
2

[
df (φn+1

i , φni )− df (φn+1
i + φn+1

j , φni + φnj )
]
,

(5.7a)

df (x, y)
def
=





f(x)− f(y)

x− y , x 6= y,

f ′(x), x = y.

(5.7b)

For f given by (3.9) we get df (x, y) = (x+y)(1 +x2 +y2)−2(x2 +xy+y2).
Finally, in accordance with (4.21) we put

dFj (φn+1,φn) =
(
dF?j (φn+1

? ,φn? )− dF?N (φn+1
? ,φn? )

)∣∣
φn+β
N =1−

∑N−1
k=1 φn+β

k
for β ∈ {0, 1}

, (5.8)

for j = 1, . . . , N − 1. It is straightforward to verify that

F (φn+1)− F (φn) = dF (φn+1,φn) · (φn+1 − φn), (5.9)

where dF (φn+1,φn) = [dF1 (φn+1,φn), . . . , dFN−1(φn+1,φn)]>. As we will see,
this property is crucial from the point of view of energy-stability of the
scheme.

4Recall that the evolution equation for φN reads ∂φN

∂t +div (φNv) = −div (M0

∑N−1
j=1 ∇χj),

cf. (4.1b). With this, we formally retrieve the fundamental property ∂
∂t

∑N
i=1 φi = 0.

5See (Wu and Xu, 2017, Eq. (3.11)).
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• The time discretization of (4.30d) is based on its equivalent form (BLM3)
from Table 4.1. The first term on the left hand side was discretized following
the identity

√
% ∂
∂t

(√
%v
)

= %∂v
∂t

+ 1
2
∂%
∂t
v and using the backward difference

formula for the time derivatives. In the remaining two terms on the left
hand side, the velocity from the previous time step was used as the advective
velocity. Last but not least, the term corresponding to capillary force was
adjusted to reflect the modification of the advection term in (5.3a). The
energy contributions coming from advection of the volume fractions and
from the capillary force thus remain counterbalanced on the discrete level,
exactly as in the continuous case.

5.2 Space discretization

We assume that the computational domain Ω is polygonal/polyhedral (depending
on its geometrical dimension). Let Th be an admissible and regular partition
of Ω using triangular or tetrahedral elements6, parametrized by the maximum
diameter of the elements h. The different parts of the boundary, which were
introduced in Section 4.2.2, are supposed to be resolved by the mesh.

We use the Galerkin FEM to discretize (5.3) in space. The corresponding
variational formulation will be given on finite dimensional spaces (denoted us-
ing the subscript h) consisting of piecewise polynomials7, which approximate the
original function spaces from (4.34). We further assume that the chosen approx-
imations are conforming, meaning that Vφ

h ⊂ Vφ, Vφ
h,ΓCH

⊂ Vφ
ΓCH

, Vχ
h ⊂ Vχ,

Vv
h ⊂ Vv, Vv

h,ΓNS
⊂ Vv

ΓNS
and Vph ⊂ Vp. Moreover, the finite element spaces used

for approximations of the velocity and the pressure are assumed to satisfy the
well-known Babuška-Brezzi stability condition (discrete inf-sup condition).

Let us make a default choice of finite element spaces that will be used in
numerical simulations covered by Chapter 6. Unless otherwise stated, we consider

Pk elements for spaces associated with φ and χ,

(Taylor-Hood) Pk+1/Pk elements for spaces associated with v and p,

}

(5.10)
with k = 1. Now we are ready to formulate the Galerkin system which will be
later used to derive a discrete counterpart of the energy equality (5.1).

Let φnh, φ̃
n+1
h ∈ Vφ

h and vnh , ṽ
n+1
h ∈ Vv

h are given functions which attain pre-
scribed values on the Dirichlet parts of the boundary ΓCH and ΓNS respectively8.

6We assume that Ω̄ = ∪T∈Th T̄ and any two elements are either disjoint or share one common
face/edge/vertex. Moreover, for each T ∈ Th there is an inscribed sphere in T such that the
ratio of the diameter of this sphere and the diameter of T is bounded from below, independently
of T and h.

7By Pk we denote the space of globally continuous scalar-valued piecewise polynomials of
order not exceeding k that are defined on Th, the boldface notation Pk is reserved for vector-
valued polynomials, and finally Pdisc

k ,Pdisc
k is used if the global continuity is not required.

8See the discussion below (4.34).
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The problem is to find (φn+1
h ,χn+1

h ,vn+1
h , pn+1

h ) such that

φn+1
h − φ̃n+1

h ∈ Vφ
h,ΓCH

, χn+1
h ∈ Vχ

h, vn+1
h − ṽn+1

h ∈ Vv
h,ΓNS

, pn+1
h ∈ Vph,

(5.11)

and ∀χte
h ∈ Vχ, ∀φte

h ∈ Vφh,ΓCH
, ∀pte

h ∈ Vph, ∀vte
h ∈ Vv

h,ΓNS
, we have

∫

Ω

φn+1
i,h − φni,h

∆t
χte
h +

∫

Γin∪Γcut

(v∗h · n)(φni,h − αi,h)χte
h −

∫

Ω

(φni,h − αi,h)v∗h · ∇χte
h

−
∫

Γcut

M0(∇χn+1
i,h · n)χte

h +

∫

Ω

M0∇χn+1
i,h · ∇χte

h = 0, i = 1, . . . , N − 1,

(5.12a)
∫

Ω

χn+1
i,h φte

h −
∫

Ω

b

ε

N−1∑

j=1

`ijd
F
j (φn+1

h ,φnh)φte
h

+

∫

Γcut

aε

2
(∇φn+θ

i,h · n)φte
h −

∫

Ω

aε

2
∇φn+θ

i,h · ∇φte
h = 0, i = 1, . . . , N − 1,

(5.12b)∫

Ω

pte
h div vn+1

h = 0, (5.12c)

∫

Ω

1

2

%n+1
h + %nh

∆t
vn+1
h · vte

h +

∫

Γcut

1

2

(
(%n+1
h vnh + Jn+1

h ) · n
)
vn+1
h · vte

h

+

∫

Ω

1

2
vte
h ·
(
[∇vn+1

h ](%n+1
h vnh + Jn+1

h )
)
−
∫

Ω

1

2
vn+1
h ·

(
[∇vte

h ](%n+1
h vnh + Jn+1

h )
)

+

∫

Ω

2νn+1
h Dn+1

h : ∇vte
h −

∫

Ω

pn+1
h div vte

h

=

∫

Ω

%nh
∆t
vnh · vte

h −
∫

Ω

N−1∑

i,j=1

λij(φ
n
i,h − αi,h)∇χn+1

j,h · vte
h +

∫

Ω

%n+1
h g · vte

h −
∫

Γcut

Gn · vte
h ,

(5.12d)

where

v∗h = vnh −
∆t

%nh

N−1∑

i,j=1

λij(φ
n
i,h − αi,h)∇χn+1

j,h , αi,h =
1

|Ω|

∫

Ω

φ0
i,h,

Jn+1
h = −Θ2

∑N−1
i=1 M0(%̂i − %̂N)∇χn+1

i,h , νn+1
h =

∑N−1
i=1 (νi − νN)φn+1

i,h + νN and

%n+β
h =

∑N−1
i=1 (%̂i − %̂N)φn+β

i,h + %̂N (for β ∈ {0, 1}). The nonlinear terms dFj
appearing in (5.12b) are given by (5.8).

Remark 5.1. To be more precise, we should have written φn+1
i,h = φ̃n+1

i,h +ϕn+1
i,h and

vn+1
h = ṽn+1

h + un+1
h everywhere in (5.12). The functions φ̃n+1

i,h , ṽn+1
h introduced

in (5.11) represent extensions of given Dirichlet boundary data, while ϕn+1
i,h , un+1

h

are functions sought in the constrained spaces Vφh,ΓCH
and Vv

h,ΓNS
respectively.

Remark 5.2. The discrete functions φ0
h ∈ Vφ

h and v0
h ∈ Vv

h can be obtained from
the initial conditions (4.35), typically by nodal interpolation or by appropriate
projection method.

Remark 5.3. If Γcut = ∅, then we change our definition of Vph in the sense of
inclusion Vph ⊂ Vp0 , see (4.34e), in order to fix the pressure.
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In order to show the energy-stability of the scheme, let us assume for the
moment that g = 0, Γin = Γcut = ∅ so that ∂Ω = Γw, and vw = 0. Proposition 5.4
formulated below generalizes Proposition 3.1 from (Minjeaud, 2013, p. 595) to
N -component model. The proof follows the arguments given therein.

Proposition 5.4 (Discrete energy equality). Let φnh ∈ Vφ
h,v

n
h ∈ Vv

h,∂Ω are given

functions. Assume that (φn+1
h ,χn+1

h ,vn+1
h , pn+1

h ) ∈ Vφ
h × Vχ

h × Vv
h,∂Ω × Vph solve

the problem given by (5.12) with g = 0. Then we have the equality

En+1 − En = −∆tM0

∥∥∥Λ 1
2χn+1

h

∥∥∥
2

H1
0

−∆t

∫

Ω

2νn+1
h Dn+1

h : Dn+1
h

− (2θ − 1)
aε

2

∥∥∥Λ 1
2 (φn+1

h − φn+1
h )

∥∥∥
2

H1
0

−
∫

Ω

1

2
%nh

(∣∣vn+1
h − v∗h

∣∣2 + |v∗h − vnh |2
)
.

(5.13)

Proof. Recall that Λ is a constant matrix here. If we take χte
h =

∑N−1
j=1 λijχ

n+1
j,h

and φte
h = 1

∆t

∑N−1
j=1 λij(φ

n+1
j,h − φnj,h) as test functions in (5.12a)–(5.12b) and if we

sum up the equations over i = 1, . . . , N − 1, we get

1

∆t

∫

Ω

N−1∑

i,j=1

(φn+1
i,h − φni,h)λijχ

n+1
j,h +

∫

Ω

N−1∑

i,j=1

M0λij ∇χn+1
i,h · ∇χn+1

j,h

−
∫

Ω

N−1∑

i,j=1

λij(φ
n
i,h − αi,h)v∗h · ∇χn+1

j,h = 0, (5.14a)

1

∆t

∫

Ω

N−1∑

i,j=1

χn+1
i,h λij(φ

n+1
j,h − φnj,h)− 1

∆t

∫

Ω

b

ε
dF (φn+1

h ,φnh) · (φn+1
h − φnh)

− 1

∆t

∫

Ω

aε

2

N−1∑

i,j=1

λij ∇φn+θ
i,h · ∇(φn+1

j,h − φnj,h) = 0, (5.14b)

As a next step, we modify integrands in (5.14b). We apply the symmetry of λij
to interchange i and j in the first term, we use (5.9) in the second one, and in
the third one we apply the simple formula

∇φn+θ
i,h · ∇(φn+1

j,h − φnj,h) =
1

2

(
∇φn+1

i,h · ∇φn+1
j,h −∇φni,h · ∇φnj,h

+ (2θ − 1)(∇φn+1
i,h −∇φni,h) · (∇φn+1

j,h −∇φnj,h)
)
. (5.15)

(Recall that φn+θ
i,h = (1− θ)φni,h+ θφn+1

i,h .) Upon subtracting the resulting equation
from (5.14a) and multiplying the result by ∆t, we obtain

Ψn+1 −Ψn + ∆tM0

∥∥∥Λ 1
2χn+1

h

∥∥∥
2

H1
0

+ (2θ − 1)
aε

2

∥∥∥Λ 1
2 (φn+1

h − φn+1
h )

∥∥∥
2

H1
0

= ∆t

∫

Ω

N−1∑

i,j=1

λij(φ
n
i,h − αi,h)v∗h · ∇χn+1

j,h . (5.16)
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The term on the right hand side can be rewritten using the identity9

∆t

N−1∑

i,j=1

λij(φ
n
i,h − αi,h)v∗h · ∇χn+1

j,h =
1

2
%nh |vnh |2 −

1

2
%nh |v∗h|2 −

1

2
%nh |vnh − v∗h|2 .

In light of this manipulation we obtain

Ψn+1 −Ψn +

∫

Ω

1

2
%nh |v∗h|2 −

∫

Ω

1

2
%nh |vnh |2 + ∆tM0

∥∥∥Λ 1
2χn+1

h

∥∥∥
2

H1
0

+ (2θ − 1)
aε

2

∥∥∥Λ 1
2 (φn+1

h − φn+1
h )

∥∥∥
2

H1
0

= −
∫

Ω

1

2
%nh |vnh − v∗h|2 . (5.17)

It remains to put pte
h = pn+1

h and vte
h = vn+1

h in (5.12c)–(5.12d). Upon some
algebraic manipulations, one arrives at

∫

Ω

1

2
%n+1
h

∣∣vn+1
h

∣∣2 −
∫

Ω

1

2
%nh |v∗h|2 + ∆t

∫

Ω

2νn+1
h Dn+1

h : Dn+1
h

= −
∫

Ω

1

2
%nh
∣∣vn+1
h − v∗h

∣∣2 , (5.18)

Finally, the discrete energy equality (5.13) is obtained by summing up equa-
tions (5.17) and (5.18).

The terms on the second line in (5.13) represent the numerical dissipation
introduced by the time discretization error. Provided that θ ∈ [1

2
, 1], we see that

the contribution of all terms on the right hand side of the discrete energy equality
are non-positive. This means that the discretized values of E(t) = Ekin(t) + Ψ(t)
are decreasing in time independently of the size of ∆t. We say that the numerical
scheme is unconditionally stable.

Remark 5.5. It is often the case that the computed values of the individual
components of φn+1 exceed marginal values of the interval [0, 1] due to finite
precision arithmetic used in practical computations. In order to prevent from
unrealistic values of the density and the viscosity, we follow (Dong, 2017, Eq.
(130)) and—in case of large density ratios—we further clamp the values of %n+β

h ,
for β ∈ {0, 1}, and νn+1

h in the sense of piecewise definitions

%n+β

h

def
=





%n+β
h , if %n+β

h ∈ [%̂min, %̂max],

%̂max, if %n+β
h > %̂max,

%̂min, if %n+β
h < %̂min,

νn+1
h

def
=





νn+1
h , if νn+1

h ∈ [νmin, νmax],

νmax, if νn+1
h > νmax,

νmin, if νn+1
h < νmin,

(5.19)

where %̂max = max (%̂1, . . . , %̂N), %̂min = min (%̂1, . . . , %̂N), νmax = max (ν1, . . . , νN)
and νmin = min (ν1, . . . , νN).

9Take the inner product of the definition v∗h = vnh − ∆t

%nh

∑N−1
i,j=1 λij(φ

n
i,h − αi,h)∇χn+1

j,h with

%nhv
∗
h, rearrange the terms and finally use 2vn · v∗ = |vn|2 + |v∗|2 − |vn − v∗|2 .
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5.3 Implementation

One of the most important advantages of the time discretization scheme proposed
in (5.3) is the fact that it allows for splitting of the original coupled problem.
Indeed, the sought solution of (5.12) can be obtained in a decoupled fashion
following the steps highlighted in Algorithm 1.

Algorithm 1 Semi-decoupled scheme based on (5.12)

Require:
Input parameters [Table 4.2]
Mesh and boundary data [(ΓCH,φD), (ΓNS,vD)]
Initial conditions [φ0

h,v
0
h]

Time domain specification [tend, Nt.s.,∆t]
Ensure:

. . . . initialization of variables and derived coefficients [Table 4.2]

for n = 0, 1, . . . , Nt.s. − 1 do
Step 1: solve (5.12a)–(5.12b) for φn+1

h ,χn+1
h . CH part, nonlinear solve

Step 2: solve (5.12c)–(5.12d) for vn+1
h , pn+1

h . NS part, linear solve
end for

The system of nonlinear algebraic equations arising in the CH part of the
problem is solved using the standard Newton-Raphson method. The NS part of
the problem leads to a linear system of algebraic equations due to the fact that
the velocity from the previous time step has been used as the advective velocity
in (5.3d), which corresponds to the so-called Oseen type linearization. It turns
out to be very important to have an efficient numerical solution strategy for this
linearized system in order to properly handle large three-dimensional simulations
based on the current model. Further discussion of the development of robust and
effective solvers for the subproblems arising in Algorithm 1 is postponed until
Section 5.4.

5.3.1 MUFLON software library

The above numerical scheme has been implemented as part of the MUFLON
software library developed alongside the thesis, see Řehoř (2017). The library is
built on top of the FEniCS Project which is a collection of free software with an
extensive list of features for automated, efficient solution of differential equations.
FEniCS incorporates C++/Python problem solving environment DOLFIN, see
Logg et al. (2012), and the form language UFL, see Alnæs et al. (2014). More
details about the FEniCS Project can be found, for example, in Logg et al. (2012)
or Alnæs et al. (2015).

The general purpose of the MUFLON library is twofold. In a broad scope,
it is designed with the perspective to enable straightforward implementation and
comparison of different diffuse interface models the development of which is cov-
ered in Chapters 2–4 of the present thesis. Note that such concept includes
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the possibility to test different designs of double-well/multi-well potentials and
other subtle details characterizing the individual models. In a narrow scope, the
MUFLON library provides an automated framework for testing of different FEM-
based schemes developed for numerical discretization of diffuse interface models.
In particular, it allows to alter the choice of finite element spaces, recall our de-
fault choice (5.10), as well as to implement different time-stepping algorithms,
see Section 5.3.2.

In Figure 5.1, we show a simplified code snippet introducing the Python inter-
face for a multi-phase flow simulation using FEniCS with the MUFLON library.
The ease with which it is possible implement variational forms (5.12a) and (5.12b)
using FEniCS is illustrated in Figure 5.2.

Python code
# Suppose that FEniCS is imported and we have the following at our disposal:

# - mesh ’mesh ’

# - boundary markers ’bndry_markers ’

# - linear and quadratic finite elements ’P1 ’, ’P2’

# - time step ’dt’ and final time ’t_end ’

import muflon

# --- Create discretization scheme ---

scheme = "SemiDecoupled" # alt. " FullyDecoupled "

DS = muflon.DiscretizationFactory.create(scheme , mesh , P1 , P1 , P2, P1)

DS.parameters["N"] = 3 # number of components (phases)

DS.parameters["PTL"] = 1 # number of Previous Time Levels for time stepping

DS.setup () # finishes the initialization process

# --- Access to solution functions ---

sol_ctl = DS.solution_ctl () # Current Time Level t^(n+1)

sol_ptl = DS.solution_ptl(level=0) # Previous Time Level t^(n-level)

# --- Create and load initial conditions ---

ic = muflon.SimpleCppIC () # collects init. conds. for primitive variables

ic.add("phi", "sin(a0*x[0])", a0=pi) # adds 1st component of vector phi

# ... etc.

DS.load_ic_from_simple_cpp(ic) # sol_ptl <-- ic

# --- Create Dirichlet boundary conditions ---

bcs = {"v": DirichletBC(DS.subspace("v", 0), Constant(0.0), bndry_markers , 0)}

# ... etc.

# --- Create model ---

mtype = "Incompressible" # alt. "Quasi - incompressible " (not yet implemented )

model = muflon.ModelFactory.create(mtype , dt, DS)

forms = model.create_forms ()

# ... space for updating forms , e.g. by adding boundary integrals

# (DS provides access to primitive variables + test and trial functions )

# --- Create solver ---

solver = mufon.SolverFactory.create(scheme , sol_ctl , forms , bcs)

# --- Run time -stepping algorithm ---

TS = muflon.TimeSteppingFactory.create(

"ConstantTimeStep", mesh.mpi_comm (), dt, t_end , solver , sol_ptl)

result = TS.run()

Figure 5.1: Illustration of MUFLON’s application programming interface.
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Python code
# Suppose that FEniCS is imported and we have the following at our disposal:

# - dictionaries ’pv ’, ’pv0 ’ containing primitive variables

# at new and old time levels as ’Function ’ objects from FEniCS

# (prepared by muflon. DiscretizationFactory )

# - dictionary ’test ’ containing ’TestFunction ’ objects from FEniCS

# (prepared by muflon. DiscretizationFactory )

# - dictionary ’cc’ containing constant coefficients including

# + matrix of surface tensions "S"

# + matrix of mixing energy coefficients "LA" and its inverse "iLA"

# + interface thickness "eps"

# + ...

# - mobility ’Mo ’, time step ’dt ’, density ’rho0 ’

from muflon.models.potentials import DoublewellFactory , multiwell

from muflon.models.varcoeffs import capillary_force

# --- Unwrap primitive variables ---

phi , chi , v, p = pv["phi"], pv["chi"], pv["v"], pv["p"]

phi0 , v0 = pv0["phi"], pv0["v"]

# --- Get double -well potential ---

dw = DoublewellFactory.create("Poly4")

cc["a"], cc["b"] = dw.free_energy_coefficents ()

# --- Compute derivative of multi -well potential ---

_phi = variable(phi)

F = multiwell(dw , _phi , cc["S"])

dF = diff(F, _phi)

# --- Get capillary force ---

domain_size = assemble(1.0*dx)

alpha = [assemble(phi0[i]*dx)/domain_size for i in range(len(phi0))]

ca = as_vector([phi0[i] - Constant(alpha[i]) for i in range(len(phi0))])

f_cap = capillary_force(phi0 , chi , cc["LA"])

# --- Define intermediate velocity ---

v_star = v0 + dt*f_cap/rho0

# --- Define nonlinear CH system (linear form in test functions) ---

eqn_phi = (

(1.0/dt)*inner(phi - phi0 , test["chi"])

- inner(ca, dot(grad(test["chi"]), v_star))

+ Mo*inner(grad(chi), grad(test["chi"]))

)*dx

phi_star = cc["theta"]*phi + (1.0 - cc["theta"])*fact_ptl*phi0

eqn_chi = (

inner(chi , test["phi"])

- 0.5*cc["a"]*cc["eps"]*inner(grad(phi_star), grad(test["phi"]))

- (cc["b"]/cc["eps"])*inner(dot(cc["iLA"], dF), test["phi"])

)*dx

system_ch = eqn_phi + eqn_chi

# NOTE:

# The above variational form contains only volume integrals.

# Application -dependent boundary integrals must be added elsewhere .

Figure 5.2: Implementation of (5.12a)–(5.12b) as part of the MUFLON library.
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5.3.2 A short note on alternative numerical schemes

Different numerical schemes for models of FI-CHNS type (4.30) are available in
the literature. The MUFLON library currently provides implementation of the
semi-decoupled scheme described in Algorithm 1 and another splitting scheme
developed by Dong (2017), who has used continuous high-order spectral elements
for the implementation; see also Dong (2014a, 2015). This scheme is briefly
described in Appendix C. One of its main advantages—at least with respect to
the computational efficiency—is the fact that the scheme is designed in a way
which further decouples the equations both in CH and NS parts of the original
problem (see Algorithm 1). Moreover, the linear algebraic systems resulting from
the proposed discretization involve only constant and time-independent coefficient
matrices.

To name a few more alternatives, let us mention promising numerical schemes
that were recently developed for binary FI-CHNS models by Grün and Kling-
beil (2014) or Bosch et al. (2018). These schemes could be integrated into the
MUFLON library at some point in the future.

5.4 Solution techniques

Algorithm 1 requires successive solution of the two subproblems at each time
step. As already mentioned, these subproblems lead to the nonlinear system
of algebraic CH equations and the linearized system of algebraic NS equations.
Such systems are typically very large as a sufficiently fine mesh is needed close
to interfacial regions in order to properly capture the interface dynamics. This
naturally leads to the need to use high performance computers, and to the need to
fully exploit the parallelization approach in the associated matrix computations.

For smaller (two-dimensional) problems, we use parallel direct solvers for all
intermediate linear systems in the CH part as well as for the linearized system in
the NS part of the problem. In particular, we use FEniCS compiled with PETSc
library, see Balay et al. (2014a,b, 1997), which provides us, among others, with
linear algebra data structures and bindings to the parallel10 sparse direct solver
MUMPS, see Amestoy et al. (2001, 2006).

For larger (three-dimensional) problems, the straightforward implementation
described in the previous paragraph needs to be improved using the iterative
Krylov subspace solvers with a good preconditioning strategy. Up to now, the
main effort has been invested in the implementation of the framework that would
be suitable for the development of efficient (fast and robust) solvers exclusively
for the NS part of the problem. The intermediate linear algebraic systems en-
countered in the CH part are solved using the GMRES algorithm, see Saad and
Schultz (1986), with point block Jacobi preconditioner from PETSc.

The preconditioning strategy for the NS part is built on the idea of modifying
the pressure convection–diffusion (PCD) preconditioner which was developed and
successfully used for solving incompressible NS equations, see Elman et al. (2014)

10For parallelelization, MPI framework is used by both FEniCS and PETSc.

104

https://github.com/mrehor/muflon
https://github.com/mrehor/muflon
https://fenicsproject.org
http://www.mcs.anl.gov/petsc/
http://mumps.enseeiht.fr/
http://www.mcs.anl.gov/petsc/
https://fenicsproject.org
http://www.mcs.anl.gov/petsc/


5.4. SOLUTION TECHNIQUES

and references therein. Our motivation for choosing this particular approach
originates in the work by Kay and Welford (2007), where it was applied directly
in the context of a particular CHNS model for two incompressible fluids with
matching viscosities. The main issue in the design of the preconditioner is the
need to handle NS system with very large density and viscosity variations.

Current state of the efforts for efficient implementation of the PCD precon-
ditioner in FEniCS is available in the FENaPack software package, see Blechta
and Řehoř (2017). The package mirrors our recent improvements achieved by re-
visiting the key ideas of the PCD strategy from the point of view of the operator
preconditioning theory, cf. Málek and Strakoš (2015). The new theoretical results
will appear in Blechta (2018).

In the remainder of this section we shall discuss a heuristic derivation of a vari-
ant of PCD preconditioner which has been tailored to the needs of the current
discretization scheme. The aim here is to demonstrate capabilities of the recently
implemented framework for the development of similar type of preconditioners,
rather than to provide a rigorous analysis for this specific numerical approach.
The performance of the suggested preconditioner will be illustrated in Section 6.3.

5.4.1 Preconditioning of incompressible Navier–Stokes
equations with variable coefficients

At each time step of Algorithm 1, we need to solve the problem
∫

Ω

1

2

%n+1
h + %nh

∆t
vn+1
h · vte

h +

∫

Γcut

1

2

(
(%n+1
h vnh + Jn+1

h ) · n
)
vn+1
h · vte

h

+

∫

Ω

1

2
vte
h ·
(
[∇vn+1

h ](%n+1
h vnh + Jn+1

h )
)
−
∫

Ω

1

2
vn+1
h ·

(
[∇vte

h ](%n+1
h vnh + Jn+1

h )
)

+

∫

Ω

2νn+1
h Dn+1

h : ∇vte
h −

∫

Ω

pn+1
h div vte

h =

∫

Ω

f̃ · vte
h −

∫

Γcut

Gn · vte
h , (5.20a)

−
∫

Ω

pte
h div vn+1

h = 0, (5.20b)

where we have used the shorthand notation

f̃
def
=

%nh
∆t
vnh −

N−1∑

i,j=1

λij(φ
n
i,h − αi,h)∇χn+1

j,h + %n+1
h g, (5.21)

cf. (5.12c)–(5.12d). To identify the corresponding linear algebra problem, we
introduce a set of vector-valued functions {ϕvι }ω

v

ι=1 which forms a basis of the
constrained space Vv

h,ΓNS
. Then we can express the sought velocity in the form

vn+1
h = ṽn+1

h +
ωv∑

ι=1

vιϕ
v
ι , (5.22)

cf. Remark 5.1. Similarly, let {ϕpι}ω
p

ι=1 denote a set of pressure basis functions
such that

pn+1
h =

ωp∑

ι=1

pιϕ
p
ι . (5.23)
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The discrete formulation (5.20) can be expressed as a system of linear equations
[
F B>

B 0

]

︸ ︷︷ ︸
Ā

[
v
p

]

︸︷︷︸
x̄

=

[
f
g

]

︸︷︷︸
b̄

. (5.24)

The matrix F = [Fικ]ωv×ωv can be understood as a convection-diffusion-reaction
operator given by Fικ = 1

∆t
Mικ + 1

2
MΓcut
ικ + 1

2
(Kικ −Kκι) + Aικ + Aoff

ικ , where

Mικ =

∫

Ω

%n+1
h + %nh

2
ϕvκ ·ϕvι , MΓcut

ικ =

∫

Γcut

(
(%n+1
h vnh + Jn+1

h ) · n
)
ϕvκ ·ϕvι , (5.25)

Kικ =

∫

Ω

ϕvι ·
(
[∇ϕvκ](%n+1

h vnh + Jn+1
h )

)
, (5.26)

Aικ =

∫

Ω

νn+1
h ∇ϕvκ : ∇ϕvι , (5.27)

Aoff
ικ =

∫

Ω

1

2
νn+1
h

(
(∇ϕvκ)> : ∇ϕvι +∇ϕvκ : (∇ϕvι )>

)
. (5.28)

The matrix B = [Bικ]ωp×ωv then corresponds to

Bικ = −
∫

Ω

ϕpι divϕvκ. (5.29)

Both F and B have a block structure determined by spatial directions. In prac-
tice, the velocity components are approximated using a single finite element space.
Using the natural componentwise splitting we make simple observations concern-
ing the individual matrices contributing to F, see Table 5.1. Finally, the entries
of the vectors f = [f]ωv×1 and g = [g]ωp×1 on the right hand side of (5.24) are

fι =

∫

Ω

f̃ ·ϕv
ι −

∫

Γcut

Gn ·ϕv
ι −

∫

Γcut

1

2

(
(%n+1
h vnh + Jn+1

h ) · n
)
ṽn+1
h ·ϕv

ι

−
∫

Ω

1

2

%n+1
h + %nh

∆t
ṽn+1
h ·ϕv

ι −
∫

Ω

1

2
ϕv
ι ·
(
[∇ṽn+1

h ](%n+1
h vnh + Jn+1

h )
)

+

∫

Ω

1

2
ṽn+1
h ·

(
[∇ϕv

ι ](%n+1
h vnh + Jn+1

h )
)
−
∫

Ω

νn+1
h

(
∇ṽn+1

h + (∇ṽn+1
h )>

)
: ∇ϕv

ι ,

(5.30)

gι =

∫

Ω

ϕpι div ṽn+1
h . (5.31)

Table 5.1: Properties of the matrices contributing to discrete
convection–diffusion–reaction operator F.

Matrix Symmetric
Diagonal

blocks
Off-diagonal

blocks
Entries

M,MΓcut 3 3 7 (5.25)
K 7 3 7 (5.26)
A 3 3 7 (5.27)
Aoff 3 3 3 (5.28)
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The function pair (vn+1
h , pn+1

h ), which is obtained upon substituting the solution
vectors v ∈ Rωv

and p ∈ Rωp into (5.22) and (5.23) respectively, is the mixed
finite element solution of the NS part of the original problem. The system (5.24)–
(5.31) is henceforth referred to as the discrete Oseen problem.

Ideal version of the preconditioner

The discrete Oseen problem is difficult to solve as it leads to a large non-symmetric
indefinite system. One possible approach, that is suitable for dealing with this
type of problems, is the application of the GMRES algorithm with right precon-
ditioning. The preconditioned version of the problem (5.24) reads

ĀP̄−1ȳ = b̄, P̄x̄ = ȳ, (5.32)

where P̄ represents a preconditioning operator. The optimal choice of P̄ in the
current setting is given by the upper triangular approximation of the Schur com-
plement factorization of Ā, namely

P̄ =

[
F B>

0 −S

]
, (5.33)

where S = BF−1B> denotes the Schur complement operator. The above choice
yields

ĀP̄−1 =

[
F B>

B 0

] [
F−1 F−1B>S−1

0 −S−1

]
=

[
I 0

BF−1 I

]
. (5.34)

We see that all eigenvalues of the preconditioned system matrix are equal to one
and GMRES converges in at most two iterations, cf. Murphy et al. (2000).

At each step of the algorithm we need to compute the action of P̄−1, that is,
for given w ∈ Rωv

and r ∈ Rωp we need to evaluate
[
u
q

]
=

[
F−1 F−1B>S−1

0 −S−1

] [
w
r

]
. (5.35)

This is a two stage process. First, q ∈ Rωp is obtained by solving Sq = −r.
Second, u ∈ Rωv

is obtained as a solution of Fu = w −B>q. However, there is
one important issue. The Schur complement S is non-local in the sense that the
matrix F−1 appearing in its definition is dense. As a consequence, the first stage
corresponding to the action of S−1 would be computationally costly, as well as
the computation of the action of F−1 itself. Therefore, in practice we replace S
and F in (5.33) with some suitable approximations S∗ and F∗.

Towards the choice of S∗

We begin with the observation that the Schur complement S formally corresponds
to the composition of the triplet of operators on the original (non-discretized)
function spaces, namely

S ≡ − div ◦ F−1 ◦ ∇, (5.36)
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where div : Vv
ΓNS
→ Vp is bounded, ∇ = − div# : (Vp)# → (Vv

ΓNS
)# (recall that

Vp = L2(Ω)) and F : Vv
ΓNS
→ (Vv

ΓNS
)# is given by the duality mapping

〈Fv,u〉 =

∫

Ω

1

2

%n+1
h + %nh

∆t
v · u+

∫

Γcut

1

2

(
(%n+1
h vnh + Jn+1

h ) · n
)
v · u

+

∫

Ω

1

2
u ·
(
[∇v](%n+1

h vnh + Jn+1
h )

)
−
∫

Ω

1

2
v ·
(
[∇u](%n+1

h vnh + Jn+1
h )

)

+

∫

Ω

νn+1
h ∇v : ∇u+

∫

Ω

νn+1
h (∇v)> : ∇u, ∀u ∈ Vv

ΓNS
, (5.37)

cf. (5.20a). To better understand the mutual correspondence between S and S,
we shall discuss discrete counterparts of the above operators and their matrix
representations.

The discrete divergence operator divh : Vv
h,ΓNS

→ Vph is defined with the help
of L2-projection

∫

Ω

qh divh uh =

∫

Ω

qh divuh, ∀qh ∈ Vph. (5.38)

For vh given and ph ≡ divh vh, let vh =
∑ωv

κ=1 vκϕ
v
κ and ph =

∑ωp

κ=1 pκϕ
p
κ be

representations in terms of basis {ϕvκ}ω
v

κ=1 and {ϕpκ}ω
p

κ=1 respectively. Further, let

Q̂ικ =

∫

Ω

ϕvκ ·ϕvι , Q̂p,ικ =

∫

Ω

ϕpκϕ
p
ι (5.39)

denote entries of the velocity mass matrix Q̂ = [Q̂ικ]ωv×ωv and the pressure mass

matrix Q̂p = [Q̂p,ικ]ωp×ωp . (Both matrices are constant as the partition Th is fixed.)
According to (5.29), we immediately see that (5.38) leads to

Q̂pp = −Bv. (5.40)

That is, the discrete negative divergence operator has the matrix representation
Q̂−1
p B. In an analogous fashion we reveal that Q̂−1B> and Q̂−1F are the matrix

representations of the discrete counterparts of ∇ and F respectively. Altogether,
we obtain

(Q̂−1
p B)(Q̂−1F)−1(Q̂−1B>) = Q̂−1

p BF−1B> = Q̂−1
p S (5.41)

as the matrix representation of S, cf. (5.36).
Roughly speaking, the basic idea used in the construction of a practical ap-

proximation S∗ is to formally swap the order of operators in (5.36) and simulta-
neously replace F by an appropriate operator Fp reduced to the pressure space,
see Silvester et al. (2001) and Kay et al. (2002). On the discrete level it means
to swap the order of the terms on the left hand side of (5.41) and simultaneously

replace Q̂−1F by Q̂−1
p Fp, that is, by a matrix representation of Fp that will be

determined later. The two possibilities are

Q̂−1
p S ≈ Q̂−1

p BQ̂−1B>F−1
p Q̂p or Q̂−1

p S ≈ F−1
p BQ̂−1B>.
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The matrix BQ̂−1B>, appearing as a factor in the swapped Schur complement,
is singular for enclosed flow boundary conditions (Γin = Γcut = Γout = ∅ in our
notation, see Section 4.2.2), but nonsingular otherwise. In general, this matrix
will be dense. For a way to address this, some kind of sparse discrete Laplacian
on the pressure space can be used instead of this matrix. For stable mixed finite
element approximations, it is plausible to use

Âp = [Âp,ικ]ωp×ωp , Âp,ικ =

∫

Ω

∇ϕpκ · ∇ϕpι , (5.42)

see (Elman et al., 2014, Sec. 3.5.1, Sec. 9.2.1). Note that the above matrix is
singular, regardless of whether the flow is enclosed or not, as the associated null
space contains the vector 1 ∈ Rωp . In case of nonenclosed flow problems, it will
be necessary to specify additional artificial boundary conditions for the operator
in (5.42); see the discussion on the next page.

A more direct way to get a sparse discrete Laplacian is to replace Q̂ by its

diagonal D̂Q
def
= diag(Q̂), so that BQ̂−1B> is replaced by the sparse matrix

Âp = BD̂−1
Q B>. (5.43)

For nonenclosed flow problems the matrices BQ̂−1B> and BD̂−1
Q B> are both

nonsingular, as is the coefficient matrix Ā in (5.24).
In any case, the above discussion brings us to the following pair of the ap-

proximate discrete Schur complement operator

S∗` = ÂpF
−1
p Q̂p or S∗r = Q̂pF

−1
p Âp, (5.44)

where Âp is given either by (5.42) or by (5.43). It remains to specify Fp. Before
doing so, let us emphasize that the action of the inverse of the approximated
Schur complement corresponds to

S−1
∗` = Q̂−1

p FpÂ
−1
p ∼ Fp ◦ (−∆)−1, (5.45)

S−1
∗r = Â−1

p FpQ̂
−1
p ∼ (−∆)−1 ◦ Fp. (5.46)

When we trace back the origin of the operator F defined by (5.37), we reveal
that Fv roughly corresponds to %∂tv + %(w · ∇)v − div(2νD), where w denotes
a fixed wind. Motivated by this, we choose Fp which roughly corresponds to
%∂tp+ %w · ∇p− div(ν∇p), namely

Fp =
1

∆t

Mp + Kp + Ap. (5.47)

The matrices on the right hand side are given by the relations (5.25)–(5.27)
with the velocity basis functions replaced by the pressure basis functions, so that
Ap = [Ap,ικ]ωp×ωp is given by11 Ap,ικ =

∫
Ω
νn+1
h ∇ϕpκ · ∇ϕpι and so forth.

11Note the difference between Ap and Âp given by (5.42).
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On the choice of artificial boundary conditions

Once again, we see that additional artificial boundary conditions for the Laplace
solve (−∆)−1 might be needed to perform the action of the preconditioner given
by (5.45) or (5.46). Let us consider a nonenclosed flow problem with naturally
defined inflow and outflow parts of the boundary, see Section 4.2.2. If the discrete
Laplacian is represented by Âp from (5.42), then for given r ∈ Rωp we need to

supplement the problem corresponding to Âpq = r with appropriate boundary
conditions that must be satisfied by the function associated with the coefficient
vector q ∈ Rωp . This issue has been discussed many times in the literature mostly
in the context of steady NS equations; see for example Howle et al. (2006), Elman
and Tuminaro (2009), Olshanskii and Vassilevski (2007) or (Elman et al., 2014,
Sec. 9.3.2).

At this point, we fix our choice of the approximate discrete Schur complement,

S∗ ≡ S∗`, (5.48)

for which the Laplace solve in (5.45) will be supplemented by the homogeneous
Dirichlet condition on Γin and the homogeneous Neumann condition otherwise.

Remark 5.6. A different choice of boundary conditions is required for the vari-
ant (5.46), see (Elman et al., 2014, Sec. 9.2.2) and Blechta (2018).

Remark 5.7. In case of an enclosed flow problem, where Γin = ∅, use of either
version of S−1

∗ requires the application of the inverse of singular, rank 1 deficient
matrices (5.42) and/or (5.43). As discussed in (Elman et al., 2014, Sec. 9.3.5),
this issue is handled by iterative solvers and a straightforward implementation of
the above preconditioning approach is applicable also in that case.

Scaling of PCD operators

First of all, let us assume that the density and the viscosity are constants, that is,
%nh = %n+1

h = %∗ and νn+1
h = ν∗. Then we have the simple relations Mp = %∗Q̂p for

the pressure mass matrix, Ap = ν∗Âp for the discrete Laplacian given by (5.42),
and finally

%−1
∗ Âp = BD−1

M B>, DM
def
= diag(M), (5.49)

for the discrete Laplacian given by (5.43). Using Fp given by (5.47) together with
the above relations for Mp and Ap in (5.45), one obtains

S−1
∗ = Q̂−1

p

(
1

∆t

%∗Q̂p + Kp + ν∗Âp

)
Â−1
p . (5.50)

For the purpose of practical implementation, we rewrite the above formula in the
expanded form

S−1
∗ =

1

∆t

%∗Â
−1
p + ν∗Q̂

−1
p

(
ν−1
∗ KpÂ

−1
p + I

)
, (5.51)
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where I denotes the identity matrix. It immediately follows that (5.49) can be
substituted into the first term on the right hand side of (5.51).

Based on the previous observations, we suggest to implement the action of
the approximated Schur complement with variable coefficients in the form

S−1
∗ =

1

∆t

Ã−1
p + Q̃−1

p

(
K̃pÂ

−1
p + I

)
, (5.52)

where

Q̃p = [Q̃p,ικ]ωp×ωp Q̃p,ικ =

∫

Ω

(
νn+1
h

)−1
ϕpκϕ

p
ι , (5.53)

K̃p = [K̃p,ικ]ωp×ωp , K̃p,ικ =

∫

Ω

(
νn+1
h

)−1
ϕpι (%

n+1
h vnh + Jn+1

h ) · ∇ϕpκ, (5.54)

and

Ãp = BD−1
M B>. (5.55)

Remark 5.8. The choice of Ãp can be justified in the case of ∆t → 0+, for

which S−1 = (BF−1B>)−1 ≈ 1
∆t

(BM−1B>)−1 and simultaneously S−1
∗ ≈ 1

∆t
Ã−1
p .

Thus, choosing Ãp as in (5.55) means that the Schur complement is consistently
approximated in the small time-step limit.

Remark 5.9. It is worth noting that the inverse of the approximate Schur com-
plement given by (5.52) reduces to Q̃−1

p in the absence of convection and reaction
terms. The pressure mass matrix scaled by the reciprocal of viscosity is known to
be a good approximation to the Schur complement in the context of stationary
Stokes problems.

Remark 5.10. Practical evidence shows that the presence of the identity matrix
in (5.51) and (5.52) can be critical for the performance of the preconditioner,
especially for stationary problems. In fact, one should avoid implementing the
action of S−1

∗ in the form (5.50) which is thought to collect the terms inside
parentheses into a single matrix Fp. Let us briefly explain why. First of all, recall

that the action of Â−1
p is implemented by solving the linear system Âpq = r for

a given r ∈ Rωp , with possible application of Dirichlet boundary conditions on
part of the boundary. Note that FpÂ

−1
p includes the multiplication ÂpÂ

−1
p . The

problem is that the identity

ÂpÂ
−1
p = I

might be lost due to inexact solve of Âpq = r and/or, more importantly, due
to application of the associated artificial boundary conditions. This problem
was formerly encountered in the literature, even though it has not been put into
the same context. For instance, Olshanskii and Vassilevski (2007) imposed the
same artificial boundary conditions using a fictitious external layer of cells/nodes
adjacent to the inlet part of the boundary. Their motivation was based on the
seemingly different argument, see (Olshanskii and Vassilevski, 2007, p. 2700):
“Dirichlet boundary conditions may not be imposed on the boundary nodes, since
these nodes contribute to the set of pressure degrees of freedom.”
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Towards the choice of F∗

Recall that in the practical use of the preconditioned GMRES algorithm we aim
to approximate the action of F−1. For moderate velocities, the system of algebraic
equations corresponding to the velocity convection–diffusion(–reaction) operator
can be treated with algebraic multigrid (AMG) methods. Typically, we use a fixed
number of AMG iterations to generate only approximate (inexact) solution of the
corresponding subsidiary problem. It means that the computed action of F−1 is
inexact and corresponds to the action of F−1

∗ for some theoretical F∗.
From this point of view, it is equally possible to apply the limited number of

AMG iterations not directly to F, but to its suitable approximation/modification
for which we will also use the notation F∗. In particular, we put

F∗ =
1

∆t

M + K + A, (5.56)

cf. (5.47). Inverting F∗ by AMG has shown to be more practical than inverting
F with the non-standard terms arising from the multi-component background of
the model and its energy-stable discretization12.

Concluding remarks

We have seen that there are plenty of possibilities concerning the final subtle de-
sign of PCD preconditioners for NS equations with variable coefficients. Remem-
ber that the variant suggested above was derived in a heuristic manner and further
analysis is necessary to provide some of the ideas with better theoretical support.
For instance, the scaling arguments used to reformulate the expression (5.45) into
its final form (5.52) need to be clarified. Better performance of the scaled version
is currently justified only by the experimental evidence. Also note that the cur-
rent version of the Schur complement approximation requires ceaseless updates
of the matrices (5.53)–(5.55) due to the presence of time-dependent coefficients.
A proper numerical analysis could give us the clue if there is a possibility to make
the preconditioners more efficient by avoiding unnecessary re-assembling.

We have experimentally tested several possible modifications of PCD precon-
ditioners following the heuristic ideas presented here. In the following section, we
summarize the so-called

“expanded pressure convection–diffusion–reaction (PCDR) preconditioner”

which is the above-described variant suitable for the application in Algorithm 1.

5.4.2 Summary: Expanded PCDR preconditioner

The discrete Oseen problem
[
F B>

B 0

] [
v
p

]
=

[
f
g

]
, (5.57)

12We have observed worsened mesh-dependent behaviour of the preconditioner with F in the
example from Section 6.3.2.
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where F = 1
∆t

M + 1
2
MΓcut + 1

2
(K − K>) + A + Aoff , B, f and g were defined

in (5.25)–(5.31), is solved using the right preconditioned GMRES algorithm with
the upper triangular block preconditioner P̄ of the form

P̄ =

[
F∗ B>

0 −S∗

]
. (5.58)

The action of F−1
∗ is determined by applying a single V-cycle of AMG13. Our

preferred choice of S∗ corresponds to

S−1
∗ =

1

∆t

(
BD−1

M B>
)−1

+ Q̃−1
p

(
K̃pÂ

−1
p + I

)
, (5.59)

where DM = diag(M), the discrete Laplacian Âp is assembled once using (5.42)

and the remaining scaled matrices Q̃p and K̃p, requiring an update per time
step, are given by (5.53) and (5.54) respectively. The subsidiary solves involving

BD−1
M B> and Âp in (5.59) are replaced by a fixed number of AMG iterations14,

similarly as in the case of F−1
∗ . We impose the homogeneous Dirichlet boundary

condition on Γin in each solve with Âp for nonenclosed flow problems, and we

apply the homogeneous Neumann condition otherwise. Finally, Q̃p is inverted by
five Chebyshev iterations, cf. Wathen and Rees (2008).

Summary 11: Key features of expanded PCDR preconditioner

The following list highlights the key features of the preconditioner (5.58):

• F∗ is based on (5.56) to mimic the standard structure of the velocity
convection–diffusion–reaction block.

• S−1
∗ is implemented in the expanded form (5.59) with separately treated

contributions from convection, diffusion and reaction terms of the leading
PCDR operator Fp given by (5.47).

• The reaction contribution is designed to ensure the consistency between S∗
and the full Schur complement in the small time-step limit, see Remark 5.8.

• Operators in the combined convection-diffusion contribution are scaled in
a way ensuring the proper reduction of S∗ in the Stokes limit, see Remark 5.9.

• The a priori enforcement of the identity ÂpÂ
−1
p = I in the diffusion con-

tribution prevents from losing it due to inconsistent imposition of Dirichlet
boundary conditions associated with Â−1

p , see Remark 5.10.

• Numerical results in Section 6.3.2 suggest that the preconditioner is not very
sensitive to material parameters and indicates only a mild deterioration of
convergence rates with respect to mesh refinement (at least for problems
with moderate velocities), see Figure 6.17.

13We use hypre’s BoomerAMG algebraic multigrid implementation, see Falgout et al. (2006).
14We again use a single V-cycle to determine

(
BD−1

M B>
)−1

∗ and Â−1
p∗ respectively.
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Chapter 6

Numerical Experiments

In this chapter we present a series of numerical experiments with the FI-CHNS
model formulated in Chapter 4. We begin with a simple shear flow modified for
two incompressible fluids of non-matching viscosities. The problem is described
in Section 6.1 where we discuss the influence of interpolation of material param-
eters across the interface. In Section 6.2, we first verify the implementation of
Algorithm 1 (Section 5.3) and Algorithm 2 (Appendix C) respectively by exam-
ining their convergence properties. Both algorithms are subsequently compared
head-to-head with the aid of the classical rising bubble benchmark in Section 6.3.
The same example is used to get an idea about the performance/robustness of
the preconditioning strategy developed in Section 5.4.2. In the last Section 6.4,
we clarify the presence of artificial numerical velocities which typically occur in
numerical simulations involving low viscosity materials with density contrasts.
We demonstrate this on a simple “no-flow” problem with a single interface and
a stationary solution that is expected to balance hydrostatic conditions. We shall
address particular methods with the capability to suppress numerical artifacts
of this type, although further exploration is required and the methods have not
been fully integrated into our simulation software yet.

Finite element triangular meshes in our numerical simulations were gener-
ated using either the built-in mesh generator of FEniCS, or using the finite ele-
ment mesh generator Gmsh, see Geuzaine and Remacle (2009). Matplotlib and
ParaView, see Hunter (2007) and Ahrens et al. (2005) respectively, were used as
the tools for visualization of numerical results.

Before we start with the presentation of the results, let us make a short note
on the choice of the parameter ε in our numerical simulations, cf. Table 4.2.

On the choice of interface thickness

The numerical parameter ε > 0, introduced in (3.10a) as being proportional
to the thickness of the interfacial regions, will be chosen based on the following
heuristics. Using the double-well potential (3.9), the interfacial equilibrium profile
in one space dimension is given by

φeq(x) =
1

2

(
1 + tanh

(
2x

ε

))
, (6.1)
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6.1. SIMPLE SHEAR FLOW
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(a) Profiles for varying parameter ε.
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(b) Illustration of the role of ε.

Figure 6.1: One-dimensional equilibrium interface profile (6.1) for the polynomial
double-well potential (3.9) and the role of the length scale ε.

see (Boyer and Lapuerta, 2006, Sec. 1). This profile is shown in Figure 6.1a
for different values of ε. As illustrated by Figure 6.1b, we see that ε does not
precisely match the real interface width. Therefore, let us describe the interface
thickness as the length of the interval [−xw, xw] with φeq(xw) = 0.975. Then, we
can express the equilibrium thickness via ε by

0.975 =
1

2

(
1 + tanh

(
2xw
ε

))
,

which is equivalent to xw = 0.5 arctanh(0.95)ε. Hence, the equilibrium thickness
corresponds to arctanh(0.95)ε. Following Bosch (2016), we want to ensure that at
least nine mesh points lie on the interface. This requirement leads to an indicative
upper bound for the mesh element size, namely

h ≤ arctanh(0.95)ε

8
k ≈ 0.229 εk, (6.2)

where k was introduced in (5.10).

6.1 Simple shear flow

According to our previous discussion in Section 3.5, let us recall that the for-
mula (2.10a) for the density is physically motivated, while the choice of the anal-
ogous formula (3.103) for the viscosity is rather artificial. A logical suggestion is
to obey the former in numerical simulations and experiment with the latter to
see whether it influences the computed results. To highlight the possible effects,
we will first reduce our complicated model to a simpler setting.

Let us consider the following thought experiment with two incompressible
fluids of equal densities (%̂? = %̂1 = %̂2) and different viscosities (ν̂1 6= ν̂2). We
assume that the fluids can be stratified to form two horizontal layers, separated
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by a flat and sharp interface, between two parallel plates in a unit square do-
main1, see Figure 6.2. The bottom plate is fixed, while the top plate is loaded by
a constant shear stress τ = [τ, 0]>. (Recall that all quantities are assumed to be
dimensionless, see Section 4.2.4.)
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Figure 6.2: Simple shear flow
of two stratified fluids between
a fixed plate and a moving plate
loaded by a constant force.

We further assume that each of the two flu-
ids sticks to the corresponding plate, and also
that the velocity and the shear stress are con-
tinuous at the interface. Supposing that the
pressure is uniform in the plane perpendicular
to ex2 , the velocity field v(x, t) = [v1(x2), 0]>,
given by

v1(x2) =

{
τ
ν̂1
x2, 0 ≤ x2 <

1
2
,

τ
ν̂2
x2 + τ

2

(
1
ν̂1
− 1

ν̂2

)
, 1

2
≤ x2 ≤ 1,

describes a fully developed (stationary) sim-
ple shear flow induced between the two plates.
More precisely, the above velocity field in com-
bination with p(x, t) = %̂?ga(1 − x2) solve the
stationary Stokes problem

div v = 0, (in Ω1 ∪ Ω2) (6.3a)

− div (2νD) +∇p = %̂?g, (in Ω1 ∪ Ω2) (6.3b)

supplemented by the following list of boundary conditions,

v2|x1=0 = v2|x1=1 = 0, (6.3c)

v1|x2=0 = v2|x2=0 = 0, (6.3d)

(2νD12)|x2=1 = τ, (6.3e)

p|x1=0 = p|x1=1 = %̂?ga(1− x2), (6.3f)

and the two conditions ensuring continuity of the velocity and the shear stress at
the interface. The viscosity ν(x, t) = ν(x2) in the above expressions should be
understood as a piecewise constant function satisfying

ν(x2) =

{
ν̂1, 0 < x2 <

1
2
,

ν̂2,
1
2
< x2 < 1.

(6.4)

As a next step we reformulate the above problem using the diffuse interface
approach explained in preceding chapters. We assume that the interface separat-
ing the fluids is captured by a fixed volume fraction

φ(x, t) =
1

2

(
1− tanh

(
2x2 − 1

ε

))
, (6.5)

1The remaining spatial dimension is suppressed simply by assuming that the domain occu-
pied by the two fluids is infinite in the direction of ex3 .
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which mimics the equilibrium profile (6.1) and ensures that χ = b
2ε
f ′(φ)− aε

2
∆φ,

with f given by (3.9), identically vanishes in the whole domain. Let ν be given by
an arbitrary expression from Table 6.1. Boundary value problem (6.3) can now be
identified as a simplified version of a general problem associated with governing
equations (4.30). As such, it will be solved numerically using the discretization
techniques described in Section 5.2.

Parameter values used in our numerical experiments are listed in Table 6.2.
The computational mesh is fixed with (6.2) fulfilled in the direction perpendicular
to the interface. Let us emphasize that our choice of the applied shear stress is
such that the top plate moves with a unit (reference) velocity. We shall briefly
discuss the interpolation effects for different viscosity contrasts, supposing that
ν̂1 > ν̂2. (Similar effects would be observed also in the opposite case.)

Table 6.1: Examples of interpolated viscosity for binary systems.

Type of
interpolation

Expression

linear ν = ν̂1φ+ ν̂2(1− φ)

harmonic ν =
(
ν̂−1

1 φ+ ν̂−1
2 (1− φ)

)−1

exponential ν = ν̂φ1 ν̂
(1−φ)
2

discontinuous ν =





ν̂1, φ > 0.975
1
2 (ν̂1 + ν̂2) , 0.025 ≤ φ ≤ 0.975

ν̂2, φ < 0.025

Table 6.2: Parameter values for a simple shear flow with two stratified fluids.

Parameter Value Parameter Value Parameter Value

%̂? 1.0 ν̂1 1.0 ν̂2 varied
ga 1.0 ε 0.05 τ 2ν̂1ν̂2/(ν̂1 + ν̂2)

In Figure 6.3, we observe that the exact (sharp interface) solution of (6.3) is
well approximated using the diffuse interface approach for small viscosity con-
trasts (we put ν̂2 = 0.5ν̂1). The influence of different types of interpolation for
similar viscosity values seems to be almost negligible. However, for larger viscos-
ity contrasts the situation is different. For illustration see Figure 6.4, where we
put ν̂2 = 10−3ν̂1.

From our tested variants, only the harmonic interpolation yields the expected
result, while the other interpolations end up with an undervalued velocity in the
upper fluid. It is related to the fact that the position of the interface—should
it be determined solely from the interpolated viscosity—seems to be different
for different types of interpolation, cf. Figure 6.4a. The velocity error grows
systematically as the order of viscosity ratio increases.

We can postpone the onset of these effects by considering a smaller value of
ε which results in less significant differences among individual interpolants and
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(a) Viscosity profiles from Table 6.1.
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Figure 6.3: Simple shear flow with ε = 0.05 and ν̂2 = 0.5ν̂1.
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Figure 6.4: Simple shear flow with ε = 0.05 and ν̂2 = 10−3ν̂1.

brings us closer to the situation depicted in Figure 6.3a. Nevertheless, keep in
mind that realistic values of ε, which would prevent to observe such effects at all,
remain unachievable from the point of view of affordable computational costs.

On this rather toy example we have demonstrated that interpolation of ma-
terial parameters across the interface can potentially influence numerical simula-
tions based on diffuse interface models. Another proof of evidence, supporting
this observation, will be given in Section 6.3.2.

6.2 Convergence tests

The goal of this section is to verify our implementation of the methods described
in Chapter 5 and Appendix C, and illustrate their convergence rates. To achieve
this we will use the well-known method of manufactured solutions, see Salari
and Knupp (2000), which in our case involves construction of contrived terms
appearing in governing equations (4.30a) and (4.30d).

We use the same test case as Dong (2015, 2017) with a four-component fluid
mixture in the flow domain Ω = {(x1, x2); 0 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 1}. We take
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the following ansatz ,

v1 = Â0 sin(â0x1) cos(b̂0x2) sin(ω̂0t), (6.6a)

v2 = −Â0â0

b̂0

cos(â0x1) sin(b̂0x2) sin(ω̂0t), (6.6b)

p = Â0 sin(â0x1) sin(b̂0x2) cos(ω̂0t), (6.6c)

φ1 =
1

6

[
1 + Â1 cos(â1x1) cos(b̂1x2) sin(ω̂1t)

]
, (6.6d)

φ2 =
1

6

[
1 + Â2 cos(â2x1) cos(b̂2x2) sin(ω̂2t)

]
, (6.6e)

φ3 =
1

6

[
1 + Â3 cos(â3x1) cos(b̂3x2) sin(ω̂3t)

]
, (6.6f)

where v1 and v2 denote the components of the velocity vector v and Âi, âi, b̂i, ω̂i
for i = 0, . . . , 3 are constant parameters specified in Table 6.3. (Recall that the
remaining volume fraction is given by φ4 = 1−∑3

i=1 φi.)
Let us explore some properties of the above ansatz . We immediately see that

div v = 0. We further assume that ∂Ω = Γw. The boundary velocity vw in (4.32a)
is chosen according to (6.6a) and (6.6b). It is straightforward to verify validity of
boundary conditions in (4.32b) and (4.32c)2. We use additional Dirichlet bound-
ary condition to fix the pressure in the lower left corner whenever we wish to solve
the problem with the aid of direct solvers based on LU factorization. Moreover,
the pressure is adjusted by subtracting the mean value within a postprocessing
step, hereafter called “pressure calibration”. The analytic expressions from (6.6)
are further used to contrive the source terms that must be taken into considera-
tion in (4.30a) and (4.30d). The derived term in the latter case is used in place
of g. Its precise form is based on (BLM1) or (BLM3) from Table 4.1 depending
on the chosen algorithm3. The initial conditions for the velocity and volume frac-
tions are obtained from (6.6) by setting t = 0. The velocity and pressure fields
at t = 0.1 are visualized in Figure 6.5a.

Table 6.3: Parameter values for convergence tests.

Parameter Value Parameter Value Parameter Value

ω̂0, ω̂1 1.0 ω̂2 1.2 ω̂3 0.8

Â0 2.0 Â1, Â2, Â3 1.0 â0, â1, â2, â3 π

M̂0 1.0E−05 Θ2 1.0 b̂0, b̂1, b̂2, b̂3 π
%̂1 1.0 ν1 0.01 σ12 6.236E−03
%̂2 3.0 ν2 0.02 σ13 7.265E−03
%̂3 2.0 ν3 0.03 σ14 3.727E−03
%̂4 4.0 ν4 0.04 σ23 8.165E−03

ε 0.2 ·
√

2 h varied σ24 5.270E−03
tend 0.1 or 1.0 ∆t varied σ34 6.455E−03

2It can be seen from the structure of φi given by (6.6d)–(6.6f), from (4.30b) and (4.21).
3Note that (4.29), used to derive (BLM3) from (4.30d), is not satisfied by (6.6).
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(a) Velocity vector field (6.6a)–(6.6b) and
pressure field (6.6c) visualized at t = 0.1.
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(b) The coarsest computational mesh used
in convergence tests (h = 2−1 ·

√
2).

Figure 6.5: Geometry Ω = {(x1, x2); 0 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 1} used in conver-
gence tests and visualization of the analytic solution.

To simulate the problem we partition the domain Ω using the triangular mesh
shown in Figure 6.5b. We employ Algorithms 1 and 2 respectively to solve the
system of equations (4.30) with the modifications and boundary conditions de-
scribed in the previous paragraph. The algorithms are stopped at t = tend where
we make comparisons of the numerical solution with the exact solution from (6.6)
by computing the L2–norm of their difference. Following Dong (2015, 2017), we
perform two groups of tests.

The first group is designed to illustrate spatial convergence of the developed
numerical schemes. To this aim, we fix the time step size at ∆t = 10−3 and we
systematically decrease h by performing global refinements of the mesh4. With
the fixed value of ε listed in Table 6.3, we start at h = 2−1 ·

√
2 and we gradually

decrease it down to h = 2−7 ·
√

2. The results are compared after 100 time steps,
that is, at tend = 0.1. Figure 6.6 shows the corresponding numerical errors for
different field variables, each of them plotted as a function of the mesh element
size. In both cases it can be observed that, as the mesh element size decreases,
the numerical errors decrease almost with optimal convergence rates. However,
once the element size reaches a certain threshold, the error curves level off with
further mesh refinements due to the saturation by the temporal truncation error.
This is fairly visible in Figure 6.6a, where the threshold roughly corresponds to
h = 2−5 ·

√
2. Note that the time discretization employed in the semi-decoupled

scheme is less accurate than in the case of fully-decoupled variant5, for which the
similar effect occurs much later, cf. Figure 6.6b.

4Unlike Dong (2015, 2017) who uses C0–continuous spectral elements for space discretiza-
tion and systematically varies the element order on the fixed mesh.

5In this particular test we put θ = 1 in (5.3b) and T = 2 in (C.3).
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(a) Semi-decoupled scheme (5.12) with
θ = 1, direct solvers and pressure calibra-
tion applied.
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(b) Fully-decoupled scheme (C.18) with
T = 2, direct solvers and pressure cali-
bration applied.

Figure 6.6: Numerical errors as functions of the mesh element size (fixed ∆t) with
polynomial approximation orders given by k = 1 in (5.10).

The second group of tests is designed to support our previous notice concern-
ing the temporal accuracy of the individual discretization schemes. In order to
get some information about time convergence rates of the proposed methods, we
systematically vary the time step size between ∆t = 0.1 · 2−5 and ∆t = 0.1. We
fix the mesh size at h = 2−5 ·

√
2 and we put k = 3 in (5.10) to effectively suppress

propagation of space discretization errors into the results. Figure 6.7 shows the
numerical errors at tend = 1.0 for different variables plotted against the time step
size. As expected, the obtained results indicate first-order temporal accuracy
of the semi-decoupled scheme and second-order temporal accuracy of the fully
decoupled scheme. Let us remark that the semi-decoupled scheme indicates the
first-order accuracy also for θ = 1

2
, which is to be expected as long as the time

discretization scheme for the NS subproblem remains unchanged.
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(a) Semi-decoupled scheme (5.12) with
θ = 1, direct solvers and pressure calibra-
tion applied.
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(b) Fully-decoupled scheme (C.18) with
T = 2, direct solvers and pressure cali-
bration applied.

Figure 6.7: Numerical errors as functions of the time step size (fixed mesh element
size h) with polynomial approximation orders given by k = 3 in (5.10).
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6.3 Rising bubble benchmark
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Figure 6.8: Initial configuration
for the rising bubble benchmark.

Our next validation step consists in performing
simulations following the numerical benchmark
configuration proposed by Hysing et al. (2009)
for two-dimensional bubble dynamics. While
the original study compares numerical results
obtained by various sharp interface techniques,
the same configuration was later used by Aland
and Voigt (2012) to compare several diffuse in-
terface models.

The initial configuration of the benchmark
is depicted in Figure 6.8. The domain Ω =
{(x1, x2); 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2} is occu-
pied by a fluid with an immersed bubble. The
bubble rises as its density is smaller than the
density of the surrounding fluid. The task is to
track its evolution for the two test cases speci-
fied in Table 6.4. The first test with small den-
sity and viscosity contrasts is characterized by
moderate shape deformations, while the larger
contrasts in the second test lead to larger de-
formations and topological changes.

Table 6.4: Test case setup for the rising bubble benchmark.

%̂1 %̂2 ν̂1 ν̂2 σ12 g

Test case 1 1000 100 10 1 24.5 [0,−0.98]>

Test case 2 1000 1 10 0.1 1.96 [0,−0.98]>

The bubble is initially at rest, described by a single volume fraction following
the heuristics based on the equilibrium profile (6.1). Our default choice of finite
element spaces from (5.10) does not apply in this particular example. We continue
to use the classicalP2/P1 element for the velocity/pressure pair, but this time we
combine it with P2 elements for φ and χ (instead of P1). The same combination
was considered also by Aland and Voigt (2012). The computational mesh is
similar to that one in Figure 6.5b, but here we use the cross-diagonal pattern.
The individual computations are carried out on a sequence of uniformly refined
meshes with numerical parameters listed in Table 6.5. Let us remark that the
bound in (6.2) is not satisfied by hmax (edges in vertical/horizontal directions),
but it is at least satisfied by hmin (edges in diagonal directions).

The evolution of the bubble is tracked for three time units during which
the defined benchmark quantities are measured. For the sake of brevity, we only
report the position of the center of mass and the rise velocity. Results are visually
compared with the reference solution corresponding to the data of group 3 from
Hysing et al. (2009).
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Table 6.5: Numerical parameters for the rising bubble benchmark.

hmax hmin ε ∆t γ†

1/16
√

2/32 0.08 ·
√

2 0.008 4.0E−07
1/32

√
2/64 0.04 ·

√
2 0.004 2.0E−07

1/64
√

2/128 0.02 ·
√

2 0.002 1.0E−07
1/128

√
2/256 0.01 ·

√
2 0.001 5.0E−08

† γ is used to compute the constant mobility co-
efficient M̂0 = 8σ12γ

6.3.1 Comparison of discretization schemes

First of all we shall qualitatively compare results of the benchmark computations
conducted with the two discretization schemes previously discussed in Section 6.2.
The model with constant mobility and linear type of viscosity interpolation was
used in the simulations, and only direct solvers were applied.

The first-order semi-decoupled scheme with the above parameters worked as
expected in both test cases, although we had to apply the truncation from (5.19)
in the computationally demanding test case 2. The same trick was used for the
second-order fully-decoupled scheme, for which it was furthermore necessary to
use the half time step size for successful simulation of test case 2.

Remark 6.1 (Degenerate mobility). Semi-decoupled scheme with degenerate
mobility M0(φ) = 102M̂0φ

2(1 − φ)2 was also tested. The non-linear dependence
on φ was treated explicitly using values from the previous time step. The results
were found indistinguishable from those for the constant mobility case.

Figure 6.9 shows the bubble shapes, captured via a single contour φ = 0.5, at
the final time (t = 3) on the finest computational mesh. The bubble shapes differ
for the two discretization schemes considered. The individual plots capturing the
rise velocity and the center of mass are presented in Figures 6.10–6.13 together
with the ‘ref’ line representing the reference sharp interface results. Our results
qualitatively agree with the observations made by Aland and Voigt (2012).

(a) Test case 1. (b) Test case 2.

Figure 6.9: Bubble shapes at t = 3 computed with semi-decoupled (dark blue)
scheme (5.12) and fully-decoupled (light blue) scheme (C.18).
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Figure 6.10: Rise velocity over time for test case 1 with semi-decoupled (left) and
fully-decoupled (right) schemes (5.12) and (C.18) respectively.
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Figure 6.11: Center of mass over time for test case 1 with semi-decoupled (left)
and fully-decoupled (right) schemes (5.12) and (C.18) respectively.
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Figure 6.12: Rise velocity over time for test case 2 with semi-decoupled (left) and
fully-decoupled (right) schemes (5.12) and (C.18) respectively.
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Figure 6.13: Center of mass over time for test case 2 with semi-decoupled (left)
and fully-decoupled (right) schemes (5.12) and (C.18) respectively.
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In test case 1 with semi-decoupled scheme, we observe that the computed
benchmark quantities converge to their reference values. On the other hand, the
results obtained in the same test case with the fully-decoupled scheme indicate
that the bubble rises a little bit faster. In test case 2, the bubble develops a more
non-convex shape together with thin filaments. The solutions given in Hysing
et al. (2009) are not identical and it is hard to tell which one, if any, is really
correct. In some cases, the thin filaments tend to break off, although it is un-
clear if such a phenomenon should be observed in the current two-dimensional
setting. The benchmark quantities seem to converge, but deviations from the cho-
sen reference solution remain visible even on the finest computational mesh with
ε = 0.01 ·

√
2. The filaments become thinner with decreasing ε, see Figure 6.14a,

but the splitting does not occur in the current setting. The last statement is
no longer valid if a different type of viscosity interpolation is considered, see the
following Section 6.3.2.

Remark 6.2 (Comparison of models). The reported results were obtained with
the model FI-CHNS-L1, see (4.26). Almost no visual differences were recognized,
especially on finer meshes, when the other variant FI-CHNS-L2 was used.

6.3.2 Interpolation effects and iterative solver performance

In this section, we again compute test case 2 on a sequence of refined meshes
with decreasing ε (see Table 6.5), but this time we restrict our attention to
semi-decoupled scheme (5.12) with degenerate mobility (see Remark 6.1) and
harmonic interpolation for the viscosity (see Table 6.1). Furthermore, the
linear systems arising in Algorithm 1 are solved using the iterative approach
described in Section 5.4.

Figure 6.14 shows that the bubble shapes qualitatively differ from the previ-
ously computed solutions. On coarser meshes, we observe formation of small trail-
ing bubbles as the thin filaments break off. The trailing bubbles get smaller with
decreasing ε and they are not formed on the finest mesh with ε = 0.01 ·

√
2, which

(a) Linear interpolation. (b) Harmonic interpolation.

Figure 6.14: Bubble shapes at t = 3 for ε = 0.04 ·
√

2 (light blue), ε = 0.02 ·
√

2
(blue) and ε = 0.01·

√
2 (dark blue), computed with semi-decoupled scheme (5.12)

using two different viscosity interpolations from Table 6.1.
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(a) t = 0.6 (b) t = 1.2 (c) t = 1.8 (d) t = 2.4

Figure 6.15: Time evolution of the interface for test case 2 with harmonic viscosity
interpolation, computed on the finest mesh with ε = 0.01 ·

√
2.
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Figure 6.16: Rise velocity and center of mass over time for test case 2 with semi-
decoupled schemes (5.12) and harmonic viscosity interpolation from Table 6.1.

is demonstrated in Figure 6.15. Looking at the computed benchmark quantities in
Figure 6.16 indicates that we are getting closer to the chosen reference solution. In
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Figure 6.17: Performance of it-
erative solver from Section 5.4.2.
The average number of GMRES
iterations needed to resolve NS
subproblem per time step is plot-
ted for the sequence of computa-
tional meshes from Table 6.2.

fact, our solution on the finest mesh appears
similar to the solution from group 1 in (Hysing
et al., 2009, cf. Figure 27).

Let us remark that the solutions obtained
using harmonic viscosity interpolation in test
case 1 are indistinguishable from those com-
puted with linear viscosity interpolation. One
of the most important features of an optimally
preconditioned iterative solver is its conver-
gence in a constant number of iterations inde-
pendently of the problem parameters. Having
a reliable solver for the NS part of the prob-
lem seems to be critical in our solution ap-
proach. The iterative solver described in Sec-
tion 5.4.2 performs reasonably well regarding
the expected iteration counts. Indeed, in Fig-
ure 6.17, we observe only a mild increase of the
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6.4. NO-FLOW PROBLEM WITH FLAT INTERFACE

average (per time step) number of outer GMRES iterations with increasing num-
ber of degrees of freedom (DOFs), due to successive mesh refinement, as well
as with the transition from the test case 1 to the computationally challenging
test case 2. In order to verify algorithmic and parallel scalability of our iterative
scheme, more extensive tests are required. A series of relevant tests will be carried
out as part of our future research.

6.4 No-flow problem with flat interface

In what follows, we show that the choice of finite elements made in (5.10) may not
be optimal from the point of view of many practical applications. Recently, John
et al. (2017) revisited the divergence constraint of the incompressible NS equations
in the mixed finite element framework, explaining that many standard (stable and
convergent) methods introduce a pressure-dependent consistency error which can
potentially pollute the computed velocity. The lack of the so-called “pressure-
robustness” is typical also for the Taylor-Hood elements, which have been used
in our numerical simulations so far.
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Figure 6.18: No-flow problem
with flat interface between two
fluids in a fixed domain.

To illustrate the effects related to the choice
of “non-robust” finite elements in numerical
simulation of flows of immiscible incompress-
ible fluids, we again reduce our complicated
model to the simplest possible setting. Fol-
lowing the configuration from Section 6.1, we
consider a unit square domain with two strat-
ified fluids as in Figure 6.18. Here we assume
that the walls are fixed, with no-slip and no-
penetration boundary conditions. The two flu-
ids have generally different densities (%̂1 ≥ %̂2)
and the same viscosity (ν̂1 = ν̂2 = ν̂?). The lat-
ter assumption is made in order to suppress the
effects already discussed in Section 6.1. The
only external source is the gravitational force which is balanced by the hydrostatic
pressure. No flow is thus effectively induced inside the domain. The problem can
be described by the stationary Stokes equations

div v = 0, (6.7a)

−ν̂?∆v +∇p = %g, (6.7b)

supplemented by the boundary condition v|∂Ω = 0. The density on the right
hand side of (6.7b) is understood in the diffuse interface sense, that is

%(φ) = %̂1φ+ %̂2(1− φ), (6.8)

where φ is again fixed, given by the equilibrium profile (6.5). One finds that

v(x, t) = 0, p(x, t) = ga

∫ 1

x2

%(φ(y))dy (6.9)
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is the solution of the above boundary value problem. More precisely, we have

p(x, t) =
1

4
(%̂1 − %̂2)

[
ε ln

(
cosh

(
2x2 − 1

ε

))
− 2x2

]
ga + (1− x2)%̂2ga +K, (6.10)

where K is a constant.
The problem can be normalized by considering Lref = 1, Vref = 1 and %ref = %̂1

(see Section 4.2.4). Recall that Re = %refVrefLref/ν̂?. Applying the discretization
introduced in Section 5.2, we perform a series of computations using the param-
eter values from Table 6.6. Here, we consider a mesh of the same type as in
Figure 6.5b, with the element size given by h = 2−l

√
2/11, l ∈ {1, . . . , 5}. The

two cases with distinct dimensionless density difference are studied. In each case
we change the Reynolds number from 1 to 106 by changing the viscosity of the
fluids.

Table 6.6: Parameter values for no-flow problem with flat interface.

Parameter Value Parameter Value

%̂1 1.0 %̂2 0.99 or 0.01
ga 1.0 ν̂? varied
ε 0.05 h varied

In Figure 6.19, we observe the well-known phenomenon that the velocity er-
ror grows with the increasing Reynolds number. In addition to that, it scales
with the density difference which influences the forcing term on the right hand
side of (6.7b). In particular, we see that the error can become large for low vis-
cosity fluids (ν̂? � 1) with a mild density contrast. As already mentioned, all
these effects are related to the choice of finite elements that lack a certain type
of robustness. We shall clarify this in the next paragraph by interpreting the
explanation given in (John et al., 2017, p. 505).

For the Taylor-Hood finite element pairs, as well as for some other inf-sup
stable combinations, we have the following classical a priori error estimate for the
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Figure 6.19: Velocity errors in the no-flow problem with flat interface between
two fluids of different densities (results for the Taylor-Hood pair P2/P1).
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6.4. NO-FLOW PROBLEM WITH FLAT INTERFACE

velocity error,

‖∇(v − vh)‖L2 ≤ C inf
uh∈Vv

h,∂Ω

‖∇(v − uh)‖L2 + ν̂−1
? inf

qh∈Vph
‖p− qh‖L2 , (6.11)

with a constant C > 0; see, for example, Girault and Raviart (1986). The above
error estimate shows that the bound for the velocity error depends on the best
approximation error of the pressure, which is scaled with the inverse of the vis-
cosity. This term becomes large if ν̂? is small or if the best approximation error
is large.

The pressure given by (6.10) is linear if %̂1 = %̂2. As it is approximated by
continuous piecewise linear polynomials, the best approximation error is small
enough not to significantly contribute to the error bound in (6.11). On the other
hand, the non-linear term in (6.10) is activated whenever the fluids have different
densities. This term apparently yields larger approximation errors of the pressure,
which inherently increase the error bound in (6.11). This behaviour is illustrated
in Figure 6.20a, where we plot the actual pressure errors.

The presence of the pressure in the a priori estimate for the velocity error
is closely related to the fact that—using the actual discretization method—the
divergence constraint is enforced only discretely6, see Figure 6.20b. More details
are discussed in John et al. (2017), together with state-of-the-art techniques that
improve, or even fix, standard mixed methods. The popular ones are grad-div
stabilization and appropriate modification of test functions. The former reduces
the lack of pressure-robustness, but does not remove it, while the latter leads to
pressure-robust discretizations. None of the suggested techniques has been fully
integrated into our simulation software so far. A straighforward extension of our
actual computing environment could make use of the pressure-robust discretiza-
tions developed by Lederer et al. (2017).
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Figure 6.20: Errors in the no-flow problem with flat interface between two fluids of
equal/different densities for Re = 104 (results for the Taylor-Hood pair P2/P1).

6This issue is sometimes called poor mass conservation in the literature.
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Chapter 7

Conclusion

The following objectives were accomplished in the thesis:

• We provided a comprehensive thermodynamic analysis of diffuse interface
models in a non-isothermal setting.

• We developed a numerical solver specifically suited to computer simulations
of simultaneous transient flow of several immiscible fluids in a fixed domain.

Research conducted within the thesis was motivated by the need to address some
practical issues concerning the applicability of diffuse interface models in simu-
lations of the float glass forming process. We addressed the associated numerical
challenges—previously discussed by Řehoř et al. (2017)—in the context of a gen-
eral class of CHNSF models which combine the multi-component Cahn–Hilliard
model and the generalized Navier–Stokes–Fourier model in the thermodynami-
cally consistent way. The former model ensures separation of fluids, while the
latter model describes flow of a heat conducting mixture.

The newly formulated models are promising candidates for the description of
interfacial dynamics of immiscible fluids in a general non-isothermal setting. In
particular, the models take into account both capillary and thermal effects.

The numerical solver developed in the thesis is applicable only in the isother-
mal setting, however, it handles general N-component systems and allows for
systematic use of scalable iterative solvers in the proposed numerical scheme.

7.1 Development of diffuse interface models

The derivation of diffuse interface models for the given physical system was based
on the concept of multi-component continuous medium. The system was treated
as a mixture of a given number of fluid-like components that are allowed to mix
within thin interfacial regions. This standard approach allowed us to describe
the system in terms of conventional order parameters such as mass or volume
fractions. Such a description is convenient from the numerical point of view since
there is no need to explicitly track the interfaces between the components.

Taking into account some basic properties of individual fluids, we introduced
three different levels of mathematical description of the kinematics of the given
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multi-component system, see Figure 1.7. Each level represents a reduced model
associated with the particular choice of order parameters and averaged velocity,
see Section 2.5. The mechanical response of the system was supplied into the
model by the identification of constitutive relations, see Chapter 3.

The derivation of constitutive relations was based on the specific forms of
the Helmholtz free energy and the entropy production. These have been chosen
in such a way that the resulting models describe simultaneous flows of either
compressible or incompressible Newtonian fluids. The choice of the Helmholtz
free energy enforces the components to mix only within thin interfacial layers.
This brought us to the non-trivial question of extending the standard Ginzburg–
Landau form of the Helmholtz free energy into the non-isothermal setting with the
emphasis to keep the observed multi-phase structure of the system, see Section 3.1
and Assumption 4 therein.

The generalized Helmholtz free energy was used to explicitly formulate the
evolution equation for the temperature, separately for fully-compressible, quasi-
incompressible and fully-incompressible CHNSF models. The main advantage
of the proposed thermodynamical analysis resides in the offered possibility to
consistently incorporate thermal effects into diffuse interface models, for instance,
through temperature-dependent coefficients of surface tension.

The wide class of CHNSF models includes the majority of standard isothermal
models as its own subclass. All models presented in the thesis were developed
in a unified way, which makes their mutual comparison on the theoretical level
quite straightforward. We have observed that fully-incompressible models with
solenoidal velocity field, for example those developed by Boyer et al. (2010) or
Abels et al. (2012), can be obtained only by accepting some additional levels of
approximation when compared to other models in the same class, see Summary 7
in Section 2.5.

While considering isothermal flows of immiscible fluids a special attention
was paid to quasi-incompressible and fully-incompressible models. Based on the
set of consistency/reduction conditions we elaborated a consistent formulation
of the fully-incompressible Cahn–Hilliard–Navier–Stokes (FI-CHNS) model, see
Chapter 4. A similar consistent formulation for the quasi-incompressible model
with three or more components, as well as for the non-isothermal extension of
both variants, remains an open problem.

7.2 Development of numerical solvers

In the remaining part of the thesis we addressed issues regarding the implementa-
tion of efficient and robust numerical solvers for the continuous FI-CHNS model
from Chapter 4. The efficiency has been achieved, in the first instance, with the
aid of appropriate splitting mechanism which either partially or fully decouples
the system of governing equations on the level of time discretization. To ensure
a reliable solution, we incorporated and tested two discretization schemes:

• semi-decoupled – inspired by Minjeaud (2013), see Chapter 5;

• fully-decoupled – inspired by Dong (2017), see Appendix C.
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Both schemes were based on the use of finite element method. The semi-decoupled
variant, which treats Cahn–Hilliard and Navier–Stokes subproblems in the model
separately, gained more attention since it has shown better results in the stan-
dard two-dimensional rising bubble benchmark, see Section 6.3. We proved that
the proposed scheme is unconditionally energy-stable. Moreover, we elaborated
numerical solution of the underlying subproblems in Section 5.4 with the aim to
improve the overall efficiency of the computational method.

The intermediate linear algebraic systems encountered in the Cahn–Hilliard
subproblem have been solved using GMRES with point block Jacobi precondition-
ing. The more challenging Navier–Stokes subproblem has been tackled by the
same outer algorithm, but this time with the sophisticated preconditioner based
on the so-called pressure convection–diffusion (PCD) strategy. This strategy is
known to work well in preconditioning of standard incompressible Navier–Stokes
equations, see Elman et al. (2014). Our modified version of the preconditioner
has been designed to handle variable coefficients in the model which can suffer
from high density and viscosity contrasts.

The numerical methods have been implemented in the newly developed li-
brary MUFLON, see Section 5.3, which is based on the FEniCS Project and on
our preconditioning package FENaPack. The code is capable of running parallel
computer simulations of three-dimensional flows out of the box. The implemen-
tation was tested in the last chapter in simple configurations which allowed us to
assess:

• influence of various choices of the interpolation for material parameters in
the interfacial regions,

• convergence rates of implemented discretization schemes,

• causes of the occurrence of spurious velocity oscillations in steady problem
with flat interface between two stratified fluids.

The earlier version of the code was applied in computer simulations of the float
glass forming process, see Section 1.1.

7.3 Final remarks and further research

The numerical solver developed herein provides an efficient tool for simulating
flows of multi-component systems consisting of an arbitrary (reasonable) number
of immiscible incompressible fluids in fixed domains. It is applicable in different
fields including microfluidics, materials science or even glass industry which was
explicitly discussed in this work.

However, there are some limitations which prevent the current version of the
numerical solver from being used to simulate challenging processes involving low
viscosity fluids with high density contrasts. For illustration, Table 1.1 shows pa-
rameter values for the glass/tin/nitrogen system encountered in the float glass
forming process. Although the adopted numerical scheme enabled us to success-
fully compute with much higher density/viscosity contrasts than in the case of
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naive straightforward numerical schemes, we have not yet reached the density and
viscosity values met in the applications. Simulations with real parameter values
for float glass forming still have produced solutions polluted by numerical errors,
see Figure 1.5a. Nevertheless, we have obtained satisfactory results for a wide
range of model parameters with a slightly increased viscosity of the problem-
atic components (tin, nitrogen). Moreover, thanks to the applied preconditioning
strategy, we have been able to perform three-dimensional simulations in the same
critical regimes efficiently.

Note that low viscosity fluids cause problems in numerical computations in
general, even without the presence of interfaces. However, in the last chapter
of the thesis, we have shown that the impact of small viscosity on the observed
velocity error is intensified by density contrasts, see Figure 6.19. We discussed
some particular methods with the capability to further improve our currently
used discretization scheme in that respect. The methods should be implemented
and tested in the follow-up research.

We have observed that numerical results depend on the chosen interpolation
of material parameters, see Sections 6.1 and 6.3. Thus, the following question
arises: Can we make a “correct” choice of the interpolation based on some appro-
priate theoretical analysis? Moreover, an analogous question could be formulated
regarding the specific choice of the PCD preconditioner.

The developed computational framework is ready to assist in answering these
and many other interesting questions. In particular, the interface provided by
the newly developed MUFLON library is ready to incorporate:

• temperature equation for the non-isothermal extension of the model, see
Section 3.6.4;

• boundary conditions including free outflow and general contact angles, see
Section 4.2.2;

• other types of double-well potentials, see Remark 3.3;

• alternative discretization schemes, see Section 5.3.2.

On top of that, there are some modelling challenges. For instance, one possible
direction for further research would be to develop models which take into account
the evolution equation for diffusive fluxes, see Souček et al. (2014). Another
possible direction is to apply the approach presented herein to develop diffuse
interface models for multi-component systems involving non-Newtonian fluids.
Such models would be capable to describe, for example, multi-phase flows of
viscoelastic fluids that are encountered in rubber industry.
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Appendix A

Balance of mass for mechanically
incompressible components

Let us recall that material densities have been so far considered—in virtue of
Assumption 2—to be positive constants. This corresponds to the fact that the
individual components are incompressible (both mechanically and thermally).

In what follows, we shall slightly relax this requirement and we shall assume
that the mixture we are dealing with is composed of components that are in-
compressible only mechanically. In such a case, there is a relation between the
material density and the temperature. A detailed discussion of this class of ma-
terials from the point of view of single continuum mechanics can be found, for
example, in Pr̊uša and Rajagopal (2013).

Assumption 2? (Mechanical incompressibility of components). We assume that
components of any incompressible mixture are mechanically incompressible but
thermally compressible/expansible in the sense that each material density is given
as a positive invertible function of the temperature, that is

%̂i = %̂i(ϑ), i = 1, . . . , N. (A.1)

Following (Pr̊uša and Rajagopal, 2013, Sec. 2.2) we introduce αi to be the co-
efficient of the thermal expansivity/compressibility for the i-th component which
is defined in such a way that1

∂%̂i
∂ϑ

= −αi%̂i. (A.2)

Note that the i-th component undergoes the thermal extension if αi is positive,
while in the case of negative αi it undergoes the thermal compression. Clearly, if
%̂i does not change with the temperature, then αi is zero.

Remark A.1. The differential equation (A.2) can be obtained as a consequence
of the balance of mass for the i-th component and the constitutive assumption
that the determinant of the deformation gradient Fi, see Remark 2.4, is a function
of the temperature ϑ.

1We stick to use the notation for partial derivatives even though %̂i is a function of a single
variable, so we should perhaps use the notation for ordinary derivatives. The reason is that we
want to avoid possible confusion with the notation used for the material time derivative.
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By differentiating (A.1) in the evolution equation (2.30) and using the formula
given by (A.2), we get

%̂i
dφi
dt

+ φi

(
−αi%̂i

dϑ

dt
+ %̂i div v

)
= − div i. (A.3)

This equation can be further divided by %̂i. Upon rearranging the terms we can
write

dφi
dt

+ φi div v = − 1

%̂i
div i + αiφi

dϑ

dt
. (A.4)

The first term on the right hand side of the last equation can be rewritten using
the identity

div

(
i
%̂i

)
=

1

%̂i
div i + αi

i
%̂i
· ∇ϑ. (A.5)

Recalling the relation (2.18), we finally write

dφi
dt

+ φi div v = − div ̃i + αi

(
φi

dϑ

dt
+ ̃i · ∇ϑ

)
. (A.6)

Note that the terms inside brackets on the right hand side correspond to material
time derivative associated with the i-th component, that is diϑ

dt
, multiplied by φi.

In order to obtain an analogy to constraint (2.29b) in the case of thermally
compressible/expansible components, we add up (A.6) over the index i from 1
to N . Provided that the multicomponent system we are dealing with is volume
additive, meaning that (2.8) holds, we conclude that

div v = − div J̃ +
N∑

i=1

αi

(
φi

dϑ

dt
+ ̃i · ∇ϑ

)
. (A.7)

The first term on the right hand side appears due to the mechanical incompress-
ibility of the components, while the rest is the consequence of their thermal com-
pressibility/expansivity. As one would expect, equation (A.7) reduces to (2.29b)
provided that each αi is equal to zero.

It follows that the balance of mass for the considered class of multicomponent
systems can be formulated in terms of volume fractions as

dφi
dt

+ φi div v = − div ̃i + αi

(
φi

dϑ

dt
+ ̃i · ∇ϑ

)
, i = 1, . . . , N − 1, (A.8a)

div v = − div J̃ +
N∑

i=1

αi

(
φi

dϑ

dt
+ ̃i · ∇ϑ

)
. (A.8b)

(Compare equations in (A.8a) with the fourth row in Table 2.2.) The explicit
expression for the total density as a function of volume fractions and material
densities (2.10a) is still valid, and it can be shown that %v satisfies the balance of
mass (2.28b) if the volume fractions satisfy the equations of (A.8).
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Appendix B

Alternative non-isothermal
extension of double-well potential

In Section 3.1.2, we suggested the nonlinear extension ψ̃0 of the double-well po-
tential f(φ1) = φ2

1(1 − φ1)2 in the form (3.19). That extension was constructed
with the aim to fulfill the consistency conditions given in (3.18). Here, we provide

an alternative form of ψ̃0 which will satisfy

∂ψ̃0

∂φ1

∣∣∣∣∣
φ1=0

=
∂ψ̃0

∂φ1

∣∣∣∣∣
φ1=1

= 0, (B.1)

in addition to the aforementioned consistency conditions. In other words, the
non-isothermal extension of f suggested here preserves the local minima at pure
components. As we have already remarked in Section 3.6.3, this particular prop-
erty might be helpful if we need to ensure that the diffusive flux will degenerate
in pure components. The alternative form of (3.19) is given by

ψ̃0(ϑ, φ1) =
b

ε
σ12(ϑ̂iso)f(φ1) + ψ̃pw(ϑ, φ1), (B.2a)

with the following piecewise-defined function

ψ̃pw(ϑ, φ1) =




ψ̃1(ϑ)(1− 16f(φ1)), φ1 ≥ 0.5,

ψ̃2(ϑ)(1− 16f(φ1)), φ1 < 0.5,
(B.2b)

and with partial free energy densities (3.22). This function is plotted in Fig-

ure B.1b for different values of ϑ. It can be easily verified that ψ̃0 in the above
form satisfies the required conditions (3.18) and (B.1). The chemical potential

µ̃ φ = ∂ψ̃0

∂φ1
is given by

µ̃ φ = bσ(ϑ̂iso)ε−1f ′(φ1) + µ̃ φ
pw(ϑ, φ1), µ̃ φ

pw(ϑ, φ1) =

{
−16ψ̃1(ϑ)f ′(φ1), φ1 ≥ 0.5,

−16ψ̃2(ϑ)f ′(φ1), φ1 < 0.5,

(B.3)
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ε = σ12 = b = 1. The full line corresponds
to the double-well potential (3.9) which is
often used in the isothermal setting.

Figure B.1: Alternative non-isothermal extension of the fourth-order polynomial
double-well potential for an incompressible system consisting of two components
with ĉv,1 = 1 and ĉv,2 = 4. The reference temperature is set to ϑ̂iso = 1.

which is zero at φ1 = 0 and φ1 = 1 irrespective of the actual value of ϑ. Note
that the last statement does not hold for µ̃ φ previously derived in (3.115).

Let us assume that the surface tension is independent of the temperature.
The specific heat at constant volume then corresponds to

cv(φ1) = − ϑ

%(φ1)

∂2ψ̃pw

∂ϑ2
=

{
%̂1ĉv,1(1− 16f(φ1))/%(φ1), φ1 ≥ 0.5,

%̂2ĉv,2(1− 16f(φ1))/%(φ1), φ1 < 0.5,
(B.4)

Note that the above function satisfies limφ→0.5+ cv(φ1) = limφ→0.5− cv(φ1) = 0,
thus it is effectively zero exactly in the middle of the interfacial layer indepen-
dently of the temperature. It should be numerically verified if it is acceptable in
the computer simulations. Finally, let us remark that we do not observe such be-
haviour with the originally suggested extension which leads to cv given by (3.114).
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Appendix C

Fully-decoupled numerical
scheme for FI-CHNS model

In Chapter 5 we have developed the numerical algorithm for solving the system
of equations (4.30). Although the equations are strongly coupled, the numerical
solution of the corresponding discretized system is sought in a semi-decoupled
fashion when one needs to succesively solve CH and NS subproblems to update the
solution in time, see Algorithm 1 in Section 5.3. However, note that the equations
in CH subproblem remain strongly coupled via the second term in (5.12b).

The MUFLON software library (see Section 5.3.1) implements alternative nu-
merical algorithm which converts the coupled system of (N − 1) fourth-order
PDEs (4.30a)–(4.30b) into (N−1) computationally decoupled fourth-order equa-
tions, each of which is further reduced into two decoupled Helmholtz-type equa-
tions. Moreover, the algorithm employs a velocity correction-type projection
scheme to computationally decouple the pressure and the velocity in the NS sub-
problem (4.30c)–(4.30d). This fully-decoupled numerical scheme was developed
by Dong (2014a, 2015, 2017), where it is possible to find all the details. Here, we
outline only the key steps that must be considered when restating the original
scheme1 in the current setting, using the notation from the thesis.

The derivation of the scheme is based on the formulation of FI-CHNS model
with the momentum equation in the form (BLM1), see Table 4.1, and equa-
tions (4.30a)–(4.30b) written in the form2

∂φi
∂t

+ div (φiv) = M̂0∆

(
−aε

2
∆φi +

b

ε

N−1∑

j=1

`ij
∂F

∂φj

)
, i = 1, . . . , N − 1. (C.1)

Each of the above equations is discretized in the following sense,

γ0φ
n+1
i − φ‡i
∆t

+ div (φ∗iv
∗) = M̂0∆


−aε

2
∆φn+1

i +
S

ε
(φn+1
i − φ∗i ) +

b

ε

N−1∑

j=1

`ijd
F
j (φ∗)


 ,

(C.2)

1The scheme was originally developed in a non-conservative form for a general set of order
parameters with a modified length scale for the interface thickness.

2Here we assume that the mobility coefficient is constant.

138

https://github.com/mrehor/muflon


where dFj are given by (4.21) and we have added the stabilization term with
a constant parameter S which will be determined below. The above notation
is used for the simultaneous treatment of time discretization schemes which are
either first or second-order accurate. Let T denote the order of temporal accuracy.
If Ξ is an arbitrary variable, then

Ξ∗ =

{
Ξn, T = 1,

2Ξn − Ξn−1, T = 2,
Ξ‡ =

{
Ξn, T = 1,

2Ξn − 1
2
Ξn−1, T = 2.

(C.3a)

and

γ0 =

{
1, T = 1,
3
2
, T = 2.

(C.3b)

When we rearrange the terms in (C.2), it can be written in the form

∆

(
∆φn+1

i − 2S

aε2
φn+1
i

)
+

2γ0

aεM̂0∆t

φn+1
i = Qn+1

i + div
(
∇Rn+1

i +Zn+1
i

)
, (C.4)

where

Qn+1
i =

2φ‡i

aεM̂0∆t

, Rn+1
i =

2

aε

(
b

ε

N−1∑

j=1

`ijd
F
j (φ∗)− S

ε
φ∗i

)
, Zn+1

i = −2φ∗iv
∗

aεM̂0

.

(C.5)

Let us further introduce ϕn+1
i

def
= ∆φn+1

i + 2α
aε2
φn+1
i to be an auxiliary variable with

another constant parameter α. Then, we have

∆ϕn+1
i − 2

aε2
(α+ S)ϕn+1

i = ∆

(
∆φn+1

i +
2α

aε2
φn+1
i

)

− 2

aε2
(α+ S)

(
∆φn+1

i +
2α

aε2
φn+1
i

)
= ∆

(
∆φn+1

i − 2S

aε2
φn+1
i

)
− 4α

a2ε4
(α+ S)φn+1

i

= Qn+1
i + div

(
∇Rn+1

i +Zn+1
i

)
− 2

aε

(
γ0

M̂0∆t

+
2α

aε3
(α+ S)

)
φn+1
i .

Supposing that γ0

M̂0∆t
+ 2α
aε3

(α+S) = 0, we obtain the system of decoupled equations

∆ϕn+1
i − 2(α+ S)

aε2
ϕn+1
i = Qn+1

i + div
(
∇Rn+1

i +Zn+1
i

)
, i = 1, . . . , N − 1, (C.6a)

∆φn+1
i +

2α

aε2
φn+1
i = ϕn+1

i , i = 1, . . . , N − 1, (C.6b)

where α is chosen as one of the two possible roots of the aforementioned quadratic
equation,

α =
S

2

(
−1±

√
1− 2aε3γ0

M̂0S2∆t

)
, (C.7)

the existence of which is ensured by the additional assumption

S ≥ ε

√
2aεγ0

M̂0∆t

. (C.8)
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APPENDIX C. FULLY-DECOUPLED NUMERICAL SCHEME FOR
FI-CHNS MODEL

Remark C.1. In the implementation, we take S = εŜ
√

2aεγ0

M̂0∆t
, with Ŝ ≥ 1, and

we express the coefficients on the left hand side of (C.6a), (C.6b) in the form

2α

aε2
=

(√
Ŝ2 − 1− Ŝ

)√
2γ0

aεM̂0∆t

,
2(α+ S)

aε2
=

(√
Ŝ2 − 1 + Ŝ

)√
2γ0

aεM̂0∆t

.

We choose Ŝ = 1 as the default value.

According to (C.2) and (4.30b), we see that the value of χi at t = tn+1 is
approximated by χn+1

i = −aε
2

∆φn+1
i + S

ε
(φn+1

i − φ∗i ) + b
ε

∑N−1
j=1 `ijd

F
j (φ∗), which

can be rewritten as

χn+1
i = −aε

2
ϕn+1
i +

α + S

ε
φn+1
i +

aε

2
Rn+1
i . (C.9)

The homogeneous Neumann boundary condition (4.32c) can be transformed into

∇ϕn+1
i · n = 2(α+S)

aε2
∇φn+1

i · n+∇Rn+1
i · n. In virtue of (4.32b) we obtain

∇ϕn+1
i · n = ∇Rn+1

i · n, i = 1, . . . , N − 1, on Γw. (C.10)

Let us assume that ∂Ω = Γw. This restrictive assumption prevents the scheme
from its straightforward application in nonenclosed flow problems like the one
described in Section 1.1. A special treatment of the inflow/outflow boundary
conditions is required to provide a compatible scheme for this type of problems.
We shall continue with the description of the fully-decoupled scheme for enclosed
flow problems.

The above reformulation of the CH subproblem gives us the idea of how to
get the updates φn+1 and χn+1, together with the derived quantities %n+1, νn+1

and Jn+1 respectively; see the relations below (5.3). It remains to compute the
velocity and the pressure in the NS subproblem. For the pressure we consider the
system of equations

div v̄n+1 = 0, (C.11a)

γ0v̄
n+1 − v‡
∆t

+ [∇v∗]
(
v∗ +

Jn+1

%n+1

)
+

1

%̂0
∇pn+1 =

(
1

%̂0
− 1

%n+1

)
∇p∗ (C.11b)

− νn+1

%n+1
rot (rotv∗) +

2

%n+1
D∗∇νn+1 +

1

%n+1

N−1∑

i,j=1

λij

(α
ε
φn+1
j − aε

2
ϕn+1
j

)
∇φn+1

i + g,

supplemented with the boundary condition v̄n+1 ·n = vn+1
w ·n on Γw. An auxil-

iary velocity v̄n+1 in the above equations approximates vn+1, and %̂0 is a chosen
constant that must satisfy the condition

0 < %̂0 ≤ min (%̂1, . . . , %̂N). (C.12)

The shorthand notation

qn+1 =
v‡

∆t
− [∇v∗]

(
v∗ +

Jn+1

%n+1

)
+

(
1

%̂0
− 1

%n+1

)
∇p∗ +∇

(
νn+1

%n+1

)
× rotv∗

+
2

%n+1
D∗∇νn+1 +

1

%n+1

N−1∑

i,j=1

λij

(α
ε
φn+1
j − aε

2
ϕn+1
j

)
∇φn+1

i + g (C.13)
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will come in handy in the forthcoming manipulations. The corrected velocity is
obtained by solving

γ0v
n+1 − γ0v̄

n+1

∆t

− νkin
0 ∆vn+1 = νkin

0 rot (rotv∗), (C.14)

where νkin
0 is a chosen positive constant satisfying

νkin
0 ≥ max

(
ν1

%̂1

, . . . ,
νN
%̂N

)
. (C.15)

Recall that vn+1 is required to satisfy the boundary condition (4.32a), that is,
vn+1 = vn+1

w on Γw. Adding together the equations (C.11b) and (C.14), we get

γ0

∆t
vn+1 − νkin

0 ∆vn+1 = qn+1 −∇
(
νn+1

%n+1

)
× rotv∗ − 1

%̂0
∇pn+1 −

(
νn+1

%n+1
− νkin

0

)
rot (rotv∗).

(C.16)

Now we are ready to formulate the corresponding Galerkin system using the
notation introduced in Section 5.2 together with the manipulations3 that were
considered by Dong (2017). Let φnh ∈ Vφ

h and vnh , ṽ
n+1
h ∈ Vv

h are given functions
which attain prescribed boundary values. Let Vph ⊂ H1(Ω), cf. (4.34e). The
problem is to find (ϕn+1

h ,φn+1
h ,vn+1

h , pn+1
h ) such that

ϕn+1
h ∈ Vχ

h, φn+1
h ∈ Vφ

h, vn+1
h − ṽn+1

h ∈ Vv
h,∂Ω, pn+1

h ∈ Vph, (C.17)

and ∀ϕte
h ∈ Vχ, ∀φte

h ∈ Vφh , ∀pte
h ∈ Vph, ∀vte

h ∈ Vv
h,∂Ω, we have

∫

Ω

∇ϕn+1
i,h · ∇ϕte

h +

∫

Ω

2(α+ S)

aε2
ϕn+1
i,h ϕte

h = −
∫

Ω

Qn+1
i,h ϕte

h

−
∫

∂Ω

(
Zn+1
i,h · n

)
ϕte
h +

∫

Ω

(
∇Rn+1

i,h +Zn+1
i,h

)
· ∇ϕte

h , i = 1, . . . , N − 1,

(C.18a)∫

Ω

∇φn+1
i,h · ∇φte

h −
∫

Ω

2α

aε2
φn+1
i,h φte

h = −
∫

Ω

ϕn+1
i,h φte

h , i = 1, . . . , N − 1,

(C.18b)∫

Ω

∇pn+1
h · ∇pte

h = %̂0

∫

Ω

qn+1
h · ∇pte

h −
%̂0γ0

∆t

∫

∂Ω

(vn+1
w,h · n)pte

h

− %̂0

∫

∂Ω

νn+1
h

%n+1
h

(n× rotv∗h) · ∇pte
h ,

(C.18c)
∫

Ω

∇vn+1
h : ∇vte

h +
γ0

νkin
0 ∆t

∫

Ω

vn+1
h · vte

h =
1

νkin
0

∫

Ω

(
qn+1
h − 1

%̂0
∇pn+1

h

)
· vte

h

− 1

νkin
0

∫

Ω

(
νn+1
h

%n+1
h

− νkin
0

)
rotv∗h · rotvte

h .

(C.18d)

3The equations (C.6a), (C.6b), (C.11a), (C.11b) and (C.16) formally coincide with (Dong,
2017, Eqs. (120a), (120b), (176a), (176b) and (182)).
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APPENDIX C. FULLY-DECOUPLED NUMERICAL SCHEME FOR
FI-CHNS MODEL

The constants α, S, %̂0 and νkin
0 in the above equations must be chosen according

to (C.7), (C.8), (C.12) and (C.15) respectively. The terms Qn+1
i,h , Rn+1

i,h ,Zn+1
i,h and

qn+1
h are given by the relations in (C.5) and (C.13). Finally, recall that

%n+1
h =

N−1∑

i=1

(%̂i − %̂N)φn+1
i,h + %̂N , νn+1

h =
N−1∑

i=1

(νi − νN)φn+1
i,h + νN , (C.19)

and

Jn+1
h = −Θ2

N−1∑

i=1

M0(%̂i − %̂N)∇χn+1
i,h , (C.20)

where χn+1
i,h is given by (C.9). The discrete functions φ0

h ∈ Vφ
h and v0

h ∈ Vv
h

at the initial time level are chosen to approximate the initial conditions (4.35),
see Remark 5.2. To initialize the variables required by the two-step second-order
scheme with T = 2, we perform the first iteration of Algorithm 2 with T = 1.

Remark C.2. Let us emphasize that the scheme proposed by Dong (2017) is
based on the equivalent form of (C.1) with the second term replaced by v · ∇φi.
The resulting scheme, however, does not conserve order parameters on the discrete
level (for enclosed flows) unlike the updated scheme presented here.

Algorithm 2 Fully-decoupled scheme based on (C.18)

Require:
Input parameters [Table 4.2]
Mesh and boundary data [(Γw = ∂Ω,vw)]
Initial conditions [φ0

h,v
0
h]

Time domain specification [tend, Nt.s.,∆t]
Specification of temporal accuracy [T, γ0]

Ensure:
Initialization of a, b, λij, `ij [Table 4.2]
Initialization of α, S, %̂0, ν

kin
0 [(C.8), (C.7), (C.12), (C.15)]

for n = 0, 1, . . . , Nt.s. − 1 do
Advance-Phase procedure: . CH part

1. compute Qn+1
i,h , Rn+1

i,h ,Zn+1
i,h based on (C.5)

2. solve (C.18a) for ϕn+1
h . linear solve

3. solve (C.18b) for φn+1
h . linear solve

Advance-Flow procedure: . NS part
4. compute Jn+1

h based on (C.20) and (C.9)
5. compute %n+1

h , νn+1
h based on (C.19)

6. compute qn+1
h based on (C.13)

7. solve (C.18c) for pn+1
h . linear solve

8. solve (C.18d) for vn+1
h . linear solve

end for
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