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Abstract

Diseases of the cardiovascular system count to the most common causes of death in the devel-
oped countries. There are many open research questions with respect to a better understand-
ing for example of the physiology of the heart and the main arteries or to the determination of
the factors for aneurysm or stenosis development of the aorta. Furthermore, on a daily basis,
a heart surgeon has to estimate the probability of success for different treatment scenarios as
opposed to no intervention.

In recent decades, methods of investigation with living probands (in vivo) and artificial
experiments (in vitro) have been complemented more and more by computational methods
and simulation (in silico). In particular, numerical simulations have the capability to enhance
medical imaging modalities with additional information. However, to date, the biomechan-
ical simulation of aortic blood flow given an uncertain data situation represents a major
challenge. So far, mostly deterministic models have been used, Yet, measurement data for
the configuration of a simulation is subject to measurement inaccuracies. For the choice of
model parameters, which are non-measurable in a living body, often imprecise information is
available only.

In this work, novel development steps for a numerical framework are presented aiming for
the simulation and evaluation of aortic biomechanics using methods of Uncertainty Quantifi-
cation (UQ). The work includes the modelling of the aortic biomechanics as a fluid-structure
interaction (FSI) problem with uncertain parameters. By means of a subject-specific work-
flow, the simulation of different probands, phantoms and, ultimately, patients is enabled. For
the solution of the complex partial differential system of equations, they are discretised with
the finite element method (FEM) and a novel, parallelly efficient and problem-specific solver
is developed. To verify the numerical framework implemented in the course of this work, a
novel analytically solvable benchmark for UQ-FSI problems is proposed. Furthermore, the
numerical framework is validated by means of a prototypical aortic phantom experiment.
Finally, the UQ-FSI simulation enables the evaluation of a stress overload probability. This
novel parameter is exemplarily evaluated by means of the simulation of a human aortic bow.

Therewith, this work represents a new contribution to aspects of the development of
simulation methods for the investigation of aortic biomechanics.






Zusammenfassung

Erkrankungen des Herz-Kreislauf-Systems zéhlen in den entwickelten Landern zu den héu-
figsten Todesursachen. Eine Reihe an offenen Forschungsfragen adressiert das bessere Ver-
standnis etwa der Physiologie des Herzens und der Hauptarterien oder die Bestimmung von
Faktoren fiir die Aneurysma- oder Stenoseentwicklung der Aorta. Dariiber hinaus zdhlt es zu
den alltdglichen Aufgaben eines Herzchirurgen, die Erfolgswahrscheinlichkeit fiir verschiedene
Operationsszenarien gegeniiber keiner Intervention abzuschétzen.

In den letzten Jahrzehnten wurden die Untersuchungsmoglichkeiten an lebenden Proban-
den (in vivo) und kiinstlichen Experimenten (in vitro) zunehmend um computergestiitzte
Methoden und Simulationen (in silico) erweitert. Insbesondere kénnen numerische Simula-
tionen ergénzend zu medizinischen Bildgebungsmodalitdten zuséitzliche Informationen liefern.
Bisher stellt die biomechanische Simulation des Aortenblutflusses bei unsicheren Datenlagen
aber eine grofle Herausforderung dar. Es wurden bislang meist deterministische Modelle
verwendet. Messdaten flir die Konfiguration einer Simulation unterliegen jedoch Messun-
genauigkeiten. Fiir die Wahl von Modellparametern, die in einem lebenden Ko&rper nicht
messbar sind, liegen oft nur unzureichende Informationen vor.

In dieser Arbeit werden neue Entwicklungen eines numerisches Framework vorgestellt,
welches auf die Simulation und Evaluierung der Aortenbiomechanik mit Methoden der Quan-
tifizierung von Unsicherheiten (Uncertainty Quantification, UQ) abzielt. Die Arbeit umfasst
die Modellierung der Aortenbiomechanik als ein Fluid-Struktur Interaktion (FSI) Problem
mit unsicheren Parametern. Durch einen patientenspezifischen Workflow wird die Simulation
verschiedener Probanden, Phantome und schliellich Patienten ermdéglicht. Zur Losung des
komplexen partiellen Differentialgleichungssystems werden diese mit der Finite-Elemente-
Methode (FEM) diskretisiert und ein neuartiger, parallel effizienter Loser wird entwickelt.
Um das im Rahmen dieser Arbeit implementierte numerische Framework zu verifizieren wird
ein neues, analytisch 16sbares Benchmark fiir UQ-FSI-Probleme entwickelt. Dariiber hinaus
wird das numerische Framework mittels eines prototypischen Aortenphantom-Experiments
validiert. Schlieflich ermdglicht die UQ-FSI-Simulation die Auswertung einer Uberlastungs-
wahrscheinlichkeit der Gefdiwand. Dieser neuartige Parameter wird exemplarisch anhand
der Simulation eines menschlichen Aortenbogens ausgewertet.

Damit leistet die Arbeit einen neuen Beitrag zur Entwicklung von Simulationsmethoden
zur Untersuchung der Aortenbiomechanik.
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1 Introduction

The worldwide percentage of cardiovascular diseases at causes of death has grown from 26.5 %
in the year of 1990 to 32.3 % in 2016. More specifically, the global share of aortic aneurysms
at causes of death has grown from 0.22% to 0.3% [44]. Despite a number of achievements
in the understanding and treatment, there are still many open questions in the physiology
and patophysiology of the cardiovascular system. What are the conditions for an optimal
supply of the body organs with oxygen and nutrients via the bloodstream? Which factors
have which share in the development of diseases? What is their influence on sudden failure
of the system such as infarction or vessel rupture?

The cardiovascular network is a complex multi-scale system. A multi-disciplinary ap-
proach in research is necessary to gain a deeper insight into these questions. Basically, exper-
iments on cardiovascular dynamics can be classified according to whether they are carried out
on living humans (in vivo) or on artificial replicas (in vitro). As a supplementary column of
investigation, computational methods (in silico) can also be utilised in the meanwhile. They
enable, for example, a large number of virtual experiment runs with various settings or the
calculation and simulation of inaccessible quantities.

For the examination of aneurysms, numerical simulations can provide additional infor-
mation on risk parameters other than the vessel diameter [I8]. Hereby, it is important to
consider not only the blood flow but also the very important elastic movement of the aortic
wall in the simulation. This leads to the mathematical formulation of complex fluid-structure
interaction (FSI) problems. For a clinical application, it still represents a big challenge to
carry out FSI simulations in an acceptable runtime.

In the development of simulation-based experiments, the verification and validation of
the numerical framework is an essential preliminary step. Due to the detailed knowledge of
their installation, in vitro experiments with vessel phantoms [I38] can be used to calibrate
and test numerical simulation frameworks.

As in non-medical areas, to date, numerical simulations are often based on deterministic
models of reality. However, model and numerical errors, measurement noise and patient-
specific parameters, that are not measurable non-invasively, all contribute to uncertainties.
Their consideration in simulations can give the likelihood of possible results and a measure
of reliability of the simulation outcomes, which is crucial, especially in medicine. Uncertain-
ties can be propagated in a simulation by regarding the underlying model equations as a
stochastical problem and by utilising the numerical methods of uncertainty quantification
(UQ) [131). As UQ typically increases the computational costs by a multiple of the the
deterministic simulation, it remains challenging to derive efficient UQ schemes.

In this work, novel development steps for a numerical framework are presented aiming for



1. INTRODUCTION

the simulation and evaluation of aortic biomechanics using methods of UQ. It is structured
as follows:

Chapter [2] gives an overview on aortic blood flow, imaging modalities as well as diagnosis
tools. The function of the aorta is depicted as a part of the cardiovascular system. Next,
an aortic phantom experiment is described which serves as a validation instrument for the
developed numerical framework.

Chapter [3| addresses the mathematical modelling of aortic blood flow under uncertain-
ties. Firstly, the biomechanics of blood flow and vessel wall soft tissue are modelled. On
a mathematical level a coupling method of the flow and tissue deformation dynamics by
fluid-structure interaction is described. Methods for quantifying the uncertainty propagation
in the developed framework are presented and potential parameters for risk assessment are
discussed.

Chapter [4] goes into detail on the developed numerical framework. By means of a subject-
specific workflow, the simulation of different probands, phantoms and, ultimately, patients
is enabled. For the solution of the complex partial differential system of equations, they
are discretised with the finite element method (FEM) and a novel, parallelly efficient and
problem-specific solver is developed.

To verify the numerical framework implemented in the course of this work, the results
for a well-established deterministic fluid-structure interaction benchmark are reproduced in
chapter Additionally, a novel analytically solvable benchmark for UQ-FSI problems is
proposed in the section [5.2] of that chapter.

Chapter [6] shows validation results for the developed framework by means of an aortic
phantom experiment. Finally, the UQ-FSI simulation enables the evaluation of a stress over-
load probability. This novel parameter is exemplarily evaluated by means of the simulation
of a human aortic bow.

The conclusion in chapter [7] gives a summary, discussion and outlook on the simulation
of aortic blood flow dynamics.



2 Aortic blood flow

This chapter gives an overview of the cardiovascular system. Details are given on the phys-
iology as well as the pathology of the thoracic aorta. Furthermore, a study of blood flow
by means of aortic phantom experiments is described. Then, medical imaging techniques for
measuring aortic blood flow are explained. Finally, ways for transforming imaging data into
discrete geometries for numerical simulations are depicted.

2.1 The cardiovascular system

The cardiovascular system is an organ system enabling the supply of the body cells with vital
substances. It is also a mediator for several regulatory systems. The given information in
the following sections is gathered from and more details can be found in [49, [45], [104].

Transporting breathing gases, the cardiovascular system brings oxygen from the lungs to
the body cells. Also, carbon dioxide is brought from the body back to the lungs. Nutrients are
transported via the cardiovascular system from the digestive tract to the organs. Amongst
them are vitamins and minerals. Glucose is turned into energy generation by the target cells
and lipids are used for the assembly of cell membranes. On the other hand, by-products are
carried from the organs to the kidneys and the liver. For example cholesterol first has to be
transformed in the liver before it can leave the body via the gall and the intestine.

The cardiovascular system also plays an important role in the immune regulation as it con-
veys leukocytes and hormones throughout the body. The various kinds of leukocytes protect
the organism against many foreign substances and pathogens. Hormones get carried from the
producing tissues to the respective organs. The cardiovascular system hence contributes to
the function and regulation of the hormone balance. When injured, messenger substances are
released, which activate coagulation. As a self-protection mechanism, coagulation counteracts
blood loss and triggers wound healing.

Besides immune and hormone regulation, the cardiovascular system also ensures the ho-
moeostasis of electrolytes and water providing a stable pH level. Furthermore, it regulates
the body temperature to an almost constant temperature level.

2.1.1 The structure of the cardiovascular system

The cardiovascular system is a circulatory system with the heart being its central drive. Two
vascular trees branch off of the heart: The low pressure pulmonary circulation through the
lung and the high pressure systemic circulation through the rest of the body. The vascular
trees begin with the arteries coming from the heart. The aorta, as the main artery of the

3



2. AORTIC BLOOD FLOW
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Figure 2.1: An overview on the human vascular tree [25]. Arteries are indicated by red. Blue
colour indicates veins.



2.1. THE CARDIOVASCULAR SYSTEM

systemic circulation, has a diameter of about 25 mm and a wall thickness of approximately
2mm. Both vascular trees branch mainly in bifurcations. As the arteries branch further to
arterioles and capillaries, also anastomoses are present. In the fine network of the micro-
circulation, capillaries have a diameter of about 5 pm to 10 pm and a wall thickness of about
1pm. With a diameter of roughly 7.5 um, red blood cells can be bigger than capillary vessels.
After exchanging breathing gases and nutrients with the respective body tissue, blood is
led back to the heart through merging venules and veins. Unlike arteries, veins have valves
preventing potential backflow of blood. The inferior vena cava approximatly has a diameter
of 30 mm and a wall thickness of 1.5 mm. The estimations on the diameter and wall thickness
are adopted from [16]. Figure gives an overview on the various vessels of the cardiovascular
circulatory.

2.1.2 Functioning of the heart

The heart is a muscular hollow organ that drives the blood through the vascular trees. It
mainly consists of the myocardium with its specialised heart muscle cells. Heart muscle cells
have a relatively low contractibility and a relatively high resistance to fatigue compared to
other muscles in the human body.

Superior
Vena Cava

Pulmonary
\ Artery

Right
Atr?um .............. Mitral
Valve

Valve

Tricuspid ="
Valve

Inferior Vena Cava

Figure 2.2: Illustration of the human heart with a denotion of the chambers, valves and the
adjacent vessels [21]. Also, the direction of the respective blood flow in indicated.

The human heart is partitioned into two sides separated by the cardiac septum. Both,
the right and the left side of the heart have two chambers, the atrium and the ventricle as it
is shown in Figure The atrium and the ventricle themselves are separated by the fibrous
skeleton of the heart. The atrioventricular valves in this part of the skeleton, namely the

5



2. AORTIC BLOOD FLOW

mitral valve on the left side and the tricuspid valve on the right side, ensure an unidirectional
blood flow from the atrium to the ventricle. The semilunar valves control the flow direction
from the ventricles to the subsequent arteries: The aortic valve on the left side and the
pulmonary valve on the right side of the heart.

120+ Aortic valvg
a opens
JE: 100+ R Aortic pressure
£ g T
o 60
2 | Mitral valv
ﬁ 40 closes
& 20
o~ /\
Ventricular pressure
2 130 s
o Ventricular volume
£ 901 /
2
S 5o
Phonocardiogram
Systole Diastole Systole

Figure 2.3: The Wiggers diagram [23], named after Dr. Carl J. Wiggers, plots the blood
pressure in the aorta, the left atrial and the ventricular pressure as well as the ventricular
volume over time. The electrocardiogram and the phonocardiogram (heart sounds) can also
be included [99]. Important cardiac cycle events of the left side of the heart are also de-
noted in the figure. The atrial pressure shows three waves: a) atrial contraction, c) closing
of the mitral valve bulging into the atrium, v) passive atrial filling. The waves in the elec-
trocardiogram correspond to: P) atrial depolarisation, QRS) ventricular depolarisation and
T) ventricular repolarisation. The 1st sound labelled in the phonocardiogram corresponds to
the reverberation of blood from the sudden closure of the mitral valve and the 2nd originates
from the reverberation of blood from the sudden closure of the aortic valve.

The heart works as a pressure pump by rhythmic contraction and relaxation. The contrac-
tion of the myocardium is triggered by pacemaker cells in the sinoatrial node by a progression
of depolarisation. The electrical activity can be measured on the chest skin and shown in
electrocardiograms as depicted in Figure At the beginning of the systole (contraction
phase), the pressure in the respective ventricle exceeds the pressure in the atrium such that
the atrioventricular valves close. When in addition the arterial pressure is exceeded, the
semilunar valves open and the blood is driven into the systemic and the pulmonary circu-

6



2.1. THE CARDIOVASCULAR SYSTEM

lation. In the diastole, the ventricles relax. Due to the reversed pressure differences, the
semilunar valves close and shortly after, the atrioventricular valves open. The ventricles get
filled again with blood from the atria until the beginning of the next systole. The periodical
course of the pressure in the atrium, the ventricle and the aorta are part of the Wiggers
diagram [99], see Figure

2.1.3 Pulmonary circulation

The low-pressure pulmonary circulation comprises the exchange of gas in the lungs. Deoxy-
genated blood is pumped by the right ventricle of the heart through the pulmonary valve to
the pulmonary artery. In the lung, the pulmonary arteries branch out into a fine network of
thin-walled capillary blood vessels. They encounter the lung alveoli which can be seen as the
end sections of the respiratory tree. Here, carbon dioxide gets released from the blood and
blood is enriched with oxygen. The oxygenated blood is led by the pulmonary veins to the
left atrium of the heart.

2.1.4 Systemic circulation

The systemic circulation supplies the body cells with oxigen and nutrients and carries off
carbon dioxid and catabolites. At an average pressure of about 12.5kPa blood is pumped
by the left ventricle of the heart through the aortic valve into the aorta. In the ascending
aorta, peak flow velocity can reach approximatly 1ms~! [104]. Especially the aorta, but
also the subsequent arterial system damps out the pulsatile pressure waveforms coming from
the heart. Blood flow volume is stored in the elastic, distensible vessels during systole and
passed on during diastole. This can be compared to the effect of a Windkessel and leads to a
more constant flow through the capillary network. In capillaries, blood flow reaches average
values of approximately 3kPa and 0.3mms™'. In contrast to large vessels capillary vessel
walls have active muscles enabling a control of blood flow through the vessel network. Under
lower pressure, the blood flows from the capillaries to the heart through a merging network
of veins. It reaches the right atrium of the heart through the lower and upper vena cava at
an average pressure of approximately 0.5 kPa.

2.1.5 Blood composition

Blood consists primarily of blood plasma (approximately 55 %) and blood cells (approxi-
mately 45 %). Approximately 92 % of the blood plasma volume is actually water. Further-
more it contains proteins such as fibrinogen and lipoproteins, small molecules like glucose and
hormones as well as ions (e.g. Na™, C17). Red blood cells (RBCs, erythrocytes), white blood
cells (leukocytes) and blood platelets (thrombocytes) belong to the cellular constituents of
blood. The hematocrit, the volume percentage of erythrocytes in blood is approximately
45 % for men and 40 % for women under normal conditions. Erythrocytes have the shape
of oval disks with concave sides. Their diameter is approximately 7.5 um. In capillaries of
smaller diameter the flexible cell membrane of erythrocytes can get highly deformed to pass
the vessel.
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2.2 The human aorta

Subsequent to the aortic root at the left ventricle of the heart, the human aorta leads upwards
in the superior direction. Approximately at the fourth thoracic vertebra the aorta turns to
the lateral left and posterior side. It continues in the inferior direction towards the pelvis
where it bifurcates into the left and right common iliac artery.

. Left common
Right common carotid artery
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Left common carotid artery Right
X subclavian
Left subclavian artery artery Left

subclavian

Arch of aorta artery
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Descending thoracic aorta

Descending abdominal aorta

Celiac artery

Superior mesenteric artery
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coronary
artery

Renal arteries

Gonadal arteries

Inferior mesenteric artery Left

coronary
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Common iliac arteries

(b) The ascending aorta, the aortic
bow and the beginning of the descend-

\ ing aorta [22].
(a) The thoracic aorta from the heart to the abdominal

aorta [20].

Figure 2.4: Schematic overview of the aorta.

The major segments of the aorta are described in the following. An overview is given in

Figure

2.2.1 Overview on the anatomy
Ascending Aorta:

The ascending aorta begins with the widening of the aortic sinuses behind each of the three
cusps of the aortic valve. The left and right aortic sinuses give rise to the left and right
coronary artery. The posterior aortic sinus is usually not connected to a vessel. The coronary
arteries provide the heart muscles with oxygenated blood. The sinotubular junction marks the
end of the aortic sinuses where the aortic shape becomes tubular. From there, the ascending
aorta leads a few centimetres in superior direction. Under healthy conditions, the diameter
of the ascending aorta can reach 40 mm.
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Aortic arch:

The aortic arch follows the ascending aorta and turns from the superior over the left posterior
to the inferior direction. For most individuals, the aortic arch has three branches: Firstly,
there is the brachiocephalic artery, which bifurcates into the right common carotid artery and
the right subclavian artery. Secondly and thirdly, the left common carotid artery and the
left subclavian artery branch off the aortic arch. There are also other branching variations
of the carotid and subclavian arteries. The carotid arteries supply the head and neck with
oxygenated blood and the subclavian arteries lead to the arms and parts of the upper body.
The aortic arch can have a diameter of approximately 30 mm.

Descending Aorta:

The diameter of the descending aorta usually decreases to values below 25 mm. It leads
in inferior direction to the pelvis and its branches supply the lower part of the body with
oxygenated blood. One can distinguish between the thoracic aorta above the diaphragm
and the abdominal aorta below the diaphragm. The abdominal aorta has several branches
supplying the abdominal organs such as the stomach, the spleen, the pancreases, the liver
and the intestine.

2.2.2 Vessel wall structure

Tunica media

Tunica externa Tunica intima

Smooth muscle Endothelium

External elastic

membrane Internal elastic

membrane

Figure 2.5: The main layers of an artery wall are given by the tunica intima, media and
externa [24]. The three layers are complex composites of elastic fibers, smooth muscle cells
and membranes. The innermost single-cell layer of the endothelium is in direct contact with
the blood flow.
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An early study on the mechanics of vessel wall soft tissue is given by [I17]. Numerous
investigations and experiments have led to a deeper understanding of the vessel wall structure.
Recent reviews on the aortic vessel wall structure are given by [74], 53, [69].

As shown in Figure 2.5 an artery wall is composed of three layers, namely from inside
to the outside: the intima (Tunica intima), the media (Tunica media) and the adventitia
(Tunica externa). The intima consists of the endothelium, an innermost layer of endothelial
cells, a subendothelial layer with connective tissue and a fenestrated membrane with an
elastic fibre network. In the case of the aorta, the media consists of several layers of smooth
muscle cells with elastic fibres. The layers of the media are separated by elastic laminae. The
adventitia mainly consists of helical structured collagen fibres. Large arteries are additionally
surrounded by an elastic lamina.

Overall, the aortic vessel wall can be seen as a complex system of layered elastic and
viscoelastic soft tissue with anisotropic fibre networks and a non-linear stress-strain relation.
The material is easily extensible at small dilatations and stiffens at higher pressure values [70].

Several methods have been used to examine the structure and mechanical behaviour of
vessel wall soft tissue. To identify main orientations of the fibrous network structure, specimen
of the different wall layers can be prepared. Histological microscopy images of the specimen
provide information on the anisotropic structure. Stress-strain relations can be examined
by uniaxial and biaxial extension tests. Hereby, the ends of a specimen are clamped in a
strain- and stress-measuring device. Periodic loading and unloading of the material yields a
respective stress-strain-curve [68]. Controlled peel testing can give further information on the
mechanical material behaviour for example in the case of dissecting vessel wall layers [106].

The structure and mechanical behaviour of vessel wall soft tissue alters with ageing and
disease. It could also be shown, that the mechanical properties of the wall have an influence
on the blood flow dynamics and vice versa [4].

2.2.3 Aortic blood flow

On a macroscopic level blood flows through the aorta in a pulsatile way. Hereby, the flow is
mostly laminar with the formation of helices in the ascending aorta and the aortic arch [I00].
The average stroke volume of one heart beat which enters the aorta through the aortic valve
has been measured in male and female to 95 £ 14 ml [91]. Typical values of the left ventricular
volume and the resulting aortic pressure are shown in Figure One can speak of a flow
and pressure wave generated with every heart beat that travels down the arterial tree and
gets reflected at bifurcations. Measured waveforms are exemplarily shown in Figure[2.6] The
distensibility of the aorta mainly influences the alteration of the waveforms along the vessel.
Known as the Windkessel effect, flow volume is stored in the elastic vessel during systole and
passed on during diastole. This way, the initial pressure gradient gets steeper along the aorta
and the flow velocity flattens along the vessel tree [I04]. The speed of the pressure and flow
wave propagating down the arterial tree, namely the pulse wave velocity (PWV), has become
an important biomarker to measure the vessel stiffness. PWV values higher than 10ms™*
can be seen as critical in the case of hypertension [93]. Arterial stiffness along with the PWV
increases with age [104].

On a microscopic level, blood is a suspension of cells in the blood plasma. Around 40 % to
45 % of the blood volume consists of RBCs. RBCs tend to aggregate to a three-dimensional
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2.2. THE HUMAN AORTA

microstructure, mainly rouleaux, at low shear rates, which is dispersed at higher shear rates.
Furthermore, RBCs tend to align with the flow field towards the centre of a vessel. Blood
plasma behaves approximately like a Newtonian fluid with a linear stress-strain relation. The
dynamics of aggregation and dispersion of blood cells leads to a shear thinning and thixotropic
rheology [45]. This means, that the apparent viscosity decreases with increasing shear strain
and with the duration of deformation. After a period of high shear strain, when the flow
reaches an equilibrium state, the apparent viscosity increases again.
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Figure 2.6: Waveforms of the pressure and the velocity in the main arteries of a human,
adapted from [I04]. The measurements were taken by diagnostic cardiac catheterisation.
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2.2.4 Common aortic diseases

In the following a brief overview of most occurring forms of aortic disease is given. For
detailed information the interested reader is referred to [104].

Atherosclerosis

A leading cause of cardiovascular disease is given by atherosclerosis. It typically emerges in
the systemic circulation with a chronicle inflammation of vessel wall tissue. Usually initiated
by a damage of endothelial cells, plaque gets deposited in the vessel wall. Besides the stiffening
of the vessel wall it can lead to various complications. The plaque can either grow into the
lumen of the vessel inducing a stenosis or it can weaken the connective vessel wall tissue with
a dilatation to an aneurysm. In the case that the endothelium breaks open, a thrombus can
be formed. If such a blood clot gets detached, it can lead to an embolisation of downstream
arteriols. Depending on the location of an embolisation this can cause a heart attack or a
stroke. Increased age, hypertension and cigarette smoking belong to the severest risk factors
for atherosclerosis.

Marfan syndrome

A congenital defect of connective tissue, the Marfan syndrome can lead to cardiovascular
abnormalities. With this condition, the aorta can degenerate due to a lack of aortic elastin.
Vessel dilatation, aortic dissection and increased risk of vessel wall rupture belong to the
effects.

Aortic aneurysms

60 % of thoracic aortic aneurysms appear in the ascending aorta. Normally, the aorta dilates
at a low rate with ageing. Aneurysmatic vessels usually have much higher dilatation rates.
Most often, it is caused by connective tissue weakness or high wall stress due to hypertension.
The estimation of rupture risk is mainly based on the diameter of the vessel. A diameter over
5.5 cm is seen as critical [66], but discussed controversially [108]. Complementary biomarkers
are needed to improve the risk stratification of aortic rupture. In most cases, a diseased vessel
segment has to be replaced.

Aortic dissection

Along with the formation of an aneurysm in the ascending aorta, a dissection of the vessel
wall can occur. The risk of aortic dissection is especially high for patients with Marfan
syndrome. Hereby, vessel wall layers separate leading to blood entering a false lumen between
the disrupted layers. This leads to a further weakening of the aorta and an increased risk of
rupture. Surgery often includes the replacement of the ascending aorta and the aortic valve.
Another method of treatment is endovascular repair with an expandable stent graft.

Aortic insufficiency

An insufficient function of the aortic valve is given if the valve leaflets don’t close properly dur-
ing diastole. This leads to a back-flow of blood from the ascending aorta to the left ventricle
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2.2. THE HUMAN AORTA

of the heart. The most frequent causes for insufficiency of the aortic valve include dilatation
of the aortic root and aortic dissection. In severe cases, symptomatic aortic insufficiency has
to be treated with aortic valve replacement.

Aortic stenosis

With ageing and the permanent load on the aortic valve, fibrosis and calcification can occur
in the aortic valve. A consequence is given in the hardening and the potential narrowing
of the valve opening during systole. Increased risk for this condition is given in the case
of rheumatic fever or if the valve is bicuspid. Usually, the aortic valve has three leaflets.
Bicuspid valves congenitally have two leaflets resulting in a higher mechanical demand over
time. For both, aortic insufficiency and aortic stenosis, the heart muscle tries to compensate
the blood pressure in the aorta with a higher stroke volume. This leads to a thickening of the
myocardium. Severe symptomatic valve stenosis can also be treated with the replacement of
the valve.

2.2.5 Medical imaging for cardiovascular diagnosis

An overview on the assessment of the aorta by medical imaging techniques is given in [38].
Medical imaging provides information on the conditions of cardiovascular patients in a usu-
ally non-invasive way. It is an essential part of medical diagnosis for most cardiovascular
diseases. Beyond that, numerical simulations can be calibrated patient-specifically by medi-
cal imaging data especially in terms of computational geometries and boundary conditions.
In the following, three imaging modalities are briefly described, which are commonly used
for the assessment of aortic disease.

Sonography / Ultrasound (US)

Ultrasound imaging devices utilise the reflection of sound waves at acoustic impedance tran-
sitions in the examined soft tissue. The strength of an echo response can be visualised in
grey-scale images. Mainly two types of sonography are used for diagnosis of cardiovascu-
lar disease: Transthoracic echocardiography (TTE) and transoesophageal echocardiography
(TOE). For TTE, the ultrasound transducer is applied to the chest. With TOE, the inner
part of the organs can be examined by a transducer inserted through the oesophagus. Both
of the techniques are suitable for displaying different parts of the heart and the aortic mor-
phology and to assess heart valve insufficiency. TOE is more invasive than TTE but provides
for some parts a better imaging view and resolution. Sonography is most frequently used for
the initial imaging-based examination due to its ease of use and high availability compared to
other imaging methods. After an initial assessment by sonography, the medical assessment
often has to be complemented by CT or MRI [3§].

Computed tomography (CT)

Computed tomography based on X-ray technology visualises the X-ray attenuation coefficient
of the examined soft tissue material. Hereby, cross-sections of the body are scanned by X-
rays from various encircling angles. Application of the inverse Radon transformation yields
a grey-scale image of the respective tomographic slice. For angiography, a contrast agent can
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2. AORTIC BLOOD FLOW

be injected to the blood circulation to highlight vessels and blood flow. The resulting three-
dimensional CT image enables the detection of most aortic diseases and related morphologic
abnormalities. Image acquisition is usually achieved in a short time and CT has a high
diagnostic accuracy for several aortic diseases [38]. Drawbacks are given with the applied
ionising radiation and contrast agents can cause allergic reactions. A recent review on CT
imaging is given by [5§].

Magnetic resonance imaging (MRI)

The spin orientation of the bodies hydrogen protons can be modulated by an external mag-
netic field. The agglomeration of proton spin orientations itself induces a magnetic field that
can be measured. Magnetic resonance imaging utilises these mechanisms by stimulating the
spins and measuring the magnetic response signal. Applying a spatial gradient in the mag-
netic field enables the localisation of the field response, providing a grey-scale image with well
distinguishable soft tissue structures. Additionally applying gradient pulses in the magnetic
excitation allows for the reconstruction of proton movement. This enables the measurement
of flow over time either unidirectionally in one cut plane (2D flow MRI) or fully resolved in
all three spatial dimensions (4D flow MRI). MRI scans enable the diagnosis of most aortic
diseases. In comparison to CT, MRI well visualises soft tissue structures and vessels usually
without the need of contrast agents. The unique feature of non-invasive flow measurement
enables the examination of blood flow patterns. Further biomarkers, such as the pulse wave
velocity, wall shear stress, pressure gradients and flow kinetic energy can also be computed
from 4D flow MRI measurements. As patients are not exposed to ionising radiation by MRI,
it is suitable for series of follow-up examinations after cardiovascular surgery. A drawback
of MRI is given by its relatively low availability and long measurement duration. Recent
reviews on 4D flow MRI are given with [95] 37].
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2.3 A prototypical aortic phantom

Aortic phantoms enable in vitro experiments for the investigation of blood flow under control-
lable conditions. With phantom experiments, new biomarkers for aortic blood flow based on
modern imaging techniques can be examined and validated. The flow velocity, the pressure
gradient, the pulse wave velocity and derived values can be studied for different cardiovascu-
lar disease conditions. Furthermore, the design of implants can be evaluated. Making use of
rapid prototyping, implants and surgical procedures can be tested with aortic phantoms.

A range of aortic phantoms have been described in the literature for various purposes,
see for example [I38, 35]. Usually, aortic phantoms form a closed flow circuit representing
the circulation. Artificial pumps can generate a physiologically realistic pulsatile flow and
pressure profile. Silicone tubes of idealised or patient-specific shape represent vessel segments.
Artificial valves can be used to either just control the direction of the flow or to themselves
be investigated on. Mechanisms can be included to control peripheral flow resistance. To
enable the usage in an MRI scanner, all of the components of a phantom experiment have
to be non-metallic. With CT or MRI the geometry can be scanned and with 2D or 4D flow
MRI, the velocity field can be observed, see section [2.2.5l The pressure profile at distinct
positions can be measured by inserted catheters.

Aortic phantom experiments can be used to validate numerical frameworks for the simu-
lation of aortic blood flow, as it is done for example in [36].

Outflow to pump f

Pressure valve

Pressure conductors

Elastic tube
Marker planes

Pressure conductors

Inflow from pump

Figure 2.7: Experimental setup of a prototypical aortic phantom adopted from Delles et
al. [31]. A pump drives a blood-like fluid through the elastic tube in a pulsatile way. After
the elastic tube, a pressure valve acts as a resistor before the fluid flows back to the pump.
The pressure conductors enable catheter-based pressure measurements in the elastic tube.
The marker planes set the locations of 2D flow MRI measurements.

The numerical framework presented in this thesis is validated by means of a prototypical
aortic phantom experiment described in [3I]. For providing the measurement data of the
in vitro experiment and the support in processing the data, the authors Michael Delles and
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2. AORTIC BLOOD FLOW

Fabian Rengier are to be acknowledged.

The setup of the phantom is shown in Figure The utilised fluid consists to 60 % of
water and 40 % glycerine resulting in a blood-like density of approximately 1101.45 kg m™3
and a dynamic viscosity of 4.545 x 1072 Nsm™2. To characterise the elasticity of the ar-
tificial vessel segment, the Young’s modulus of the elastic tube material was measured to
642 + 193 kPa. The pulsatile flow is driven by a pump and first passes a straight tube for
full flow development. There are entry ports connected to pressure conductors before and
after the elastic tube segment enabling catheter-based pressure measurements. A number of
markers is located along the elastic tube. The markers define the location of the 2D flow MRI
measurements and of the pressure measurements. The downstream resistance is controlled
by a pressure valve after the elastic tube. The measured data includes the morphology and
the time-resolved 2D flow MRI and the relative total pressure at the marker planes. The
imaging techniques are further described in section The measured data is compared to
the simulation results of this work in section [6.1.2]
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3 Mathematical modelling

This chapter introduces mathematical models of blood flow through the aorta and the mod-
elling of occurring uncertainties. Basic information on the biomechanics is taken from the
books [45), [49] [50), 104]. General flow problems in the vascular system are dealt with in [113].
An overview and review of rheology modelling in hemodynamical flow is given in [52]. [67] is
a basis for elasticity modelling. Elasticity models for vessel soft tissue in particular are de-
scribed in [71]. The cardiovascular system can be modelled on several scales and dimensions,
on which an overview is given in 75, 47, [I0I]. Details on the coupling of blood flow and
vessel wall elasticity with fluid-structure interaction are adopted from [51} 45]. Uncertainty
modelling and methods for Uncertainty Quantification are described in [87, [131].

3.1 Biomechanical basics

On a microscopic level, as described in section blood can be seen as a suspension of cells
in the blood plasma and vessel wall soft tissue exhibits a cellular structure. To investigate the
biomechanical dynamics on a macroscopic level, blood flow and soft tissue can be modelled
as a continuum. The continuum is defined on the respective domain D; of the considered
geometry at time ¢t € R;..

€2

€3

Figure 3.1: Displacement u and velocity v of a material point. The Cartesian coordinate
system is indicated by the unit vectors e;, 1 =1,...,d.

Continuum mechanics describe the behaviour of mass points in space and time with

respect to its coordinates @ = (x1,...,xq), where d is the dimension of the considered space.
The coordinates can be designated by a reference position & € D and a point in time ¢ € I:
x=x(&,t) € Dy. (3.1)

The displacement from the reference position can then be defined as

a(#,t) = (@, t) — 2. (3.2)
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3. MATHEMATICAL MODELLING

The velocity of the material point is given by the time derivative of its position:

b(2,1) = %m(:fz,t). (3.3)

Observing a velocity field at a fixed position «, it can be expressed via the inverse of the
position mapping at a time ¢ € I:

v(x,t) = d(x; (x),1). (3.4)

See Figure for an illustration of the position, displacement and velocity of a material
point.

3.1.1 Lagrangian and Eulerian specification

Quantities x : D; x I — R can be observed either from an associated material point x(Z,t)
(Lagrangian frame of reference) or from a fixed position x (Eulerian frame of reference). For
example, the definition of the velocity of a material point is given in the Lagrangian
specification. Hereby, % is also called total time derivative. The rate of change of a quantity
in the Eulerian frame of reference % can be derived with the multidimensional chain rule:

%X(m,t) _ %X(m,t) V- (@ vl ). (3.5)

3.1.2 Conservation laws

In a continuum, several assumptions can be made on the conservation and change of me-
chanical quantities in arbitrary subdomains V; C D;. Equations can be derived for the mass
of a material volume, the momentum and angular momentum as well as the energy. With
additional assumptions on the material laws the equations can be closed with respect to the
number of unknowns. The obtained system of equations describe the considered mechanical
behaviour of a material and can be formulated as an initial boundary value problem. For
this work, the conservation of mass, momentum and angular momentum is considered in the
following way.

Mass conservation

The mass of a material volume V; is calculated by integrating the density p over V;. The
volume mass of is typically assumed to be constant in classical mechanics, hence

c(lit/ pdx = 0. (3.6)

As equation ([3.6]) is stated for any volume V;, the integral can be omitted and it is in the
Lagrangian frame of reference

d

3P = 0, inD;xI. (3.7)
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Momentum conservation

The momentum of a material volume

d
T /V pvdx (3.8)

is typically assumed to change with a momentum flux given by a force on the surface of the
volume and a force f acting on the volume. The surface force can be expressed by the Cauchy
stress tensor o along the surface normal 7. The volume force can be defined, for example,
as gravity force. Hence, the equation for the balance of momentum reads

d
—/ pvdm:/ U-nds+/ pfdx. (3.9)
dt Jv, Vi Vi

Applying Gauf3’ theorem on the boundary integral and again omitting the integrals over
the arbitrary volume V;, one obtains in the Lagrangian specification

d
ap'v:V‘O'—k,of7 in Dy x I. (3.10)

With the conservation of mass (3.7)), equation (3.10) writes in non-conservative form

p%v:V-Uquf, in Dy x I. (3.11)

Angular momentum conservation

The balance of angular momentum of a material volume

d
dt/‘/tm®(pv)dw:/avt:c®(a-n)ds+ Vta:@(pf)dm. (3.12)

together with the conservation of mass (3.7)) and momentum (3.11]) implies the symmetry of
the stress tensor
o=o’. (3.13)

The basic conservation equations for modelling the blood flow and vessel wall motion in
this work can be summarised written in the Lagrangian frame of reference as follows

d
&p = 07 in Dt X I, (314)
d

p&vzv-a—i—pf, in Dy x I, (3.15)

with o = o

In a three-dimensional space, and represent a system of four partial differ-
ential equations involving ten unknowns, namely the density and three velocity as well as six
stress components. Hence, further material laws have to be taken into account in order to
close the system and state a well-posed boundary value problem.
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3.2 Fluid flow

For modelling fluid flow, the conservation equations (3.14)) and (3.15]) are typically considered
in the Eulerian frame of reference. Applying the equation of the total time derivative (3.5
yields

0
3}
pav+p('v-V)'v:V~a+pf, in Dy x 1. (3.17)

The stress tensor o can be specified by defining a constitutive material law, i.e. a relation
to the symmetric strain rate tensor

S:= 5 (Vo + (Vo)") (3.18)

N |

3.2.1 Blood flow models

The composition of blood is described in section [2.1.5] and it’s physiological behaviour is
delineated in section [2.2.3] For the flow through arterial vessels, the influence of volume
forces, gravity in particular, can be neglected

f=0. (3.19)

Furthermore, as blood mainly consists of water, it can be assumed to be incompressible.
With that, the density becomes a material constant and equation simplifies to the
continuity equation

V-v=0. (3.20)

To define a constitutive expression for the stress tensor o, assumptions can be made on
the rheology of blood. According to [49], viscometer experiments showed that the viscosity
of blood depends on the hematocrit value and temperature of blood and the shear rate of the
flow. Generally speaking, blood viscosity increases along with the hematocrit and decreases
at increasing temperature. Blood behaves shear-thinning in a range of small shear rates,
whereas one observes an approximately linear dependency of viscosity to shear rate at higher
shear rates. Standard rheology experiments where done in geometries much larger than the
diameter of blood cells, where blood can be considered as a homogeneous fluid. However,
capillaries have diameters in the scale of the blood cell size, wherein blood can be seen as a
two-phase fluid.

For larger arteries such as the aorta, Fung [49] describes different constitutive laws of
blood flow behaviour for resting blood, small shear rates and sufficiently high shear rates,
namely a Hooke’s law, Casson’s equation and the Newtonian relation, respectively. Beyond
that, dynamical experiments have shown, that blood also reveals viscoelastic and thixotropic
behaviour with a dependency on the shear level and strain history [124]. It has also been
observed that blood cells tend to migrate from a vessel wall towards its axis leaving a fluid
layer of low hematocrit next to the wall [49].
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Under the assumption of an incompressible fluid for which the stress tensor is spherically
symmetric at rest and it only depends on the strain rate tensor, the most general form of o
can be shown to be

o = —pl + $18 + $2S. (3.21)

In this representation, the pressure p occurs as Lagrangian multiplier. ¢, and ¢o are
functions of the second and third principal invariants of S, namely IIg = 3((trS)? — tr(S?))
and IIlg = det(S). For blood flow, ¢2 and the dependence of ¢; on IIlg can be assumed to
be negligible. One obtains the expression for generalised Newtonian fluids:

o=—pl+2u(y)S, (3.22)

where the viscosity u depends on the shear rate
v:=v2S:8S. (3.23)

More details and a discussion of various Generalised Newtonian models for blood can be
found in [124]. The choice of a blood rheology model typically depends on the respective
application scenario. Most models put an emphasis on specific physiological properties of
blood flow but neglect others. For the flow of blood through large arteries such as the aorta,
also a linear relation between stress and strain rate can be assumed. In this case, however,
virtual experiments have shown significant discrepancies in the evaluation of specific flow
parameters such as the wall shear stress [90].

Incompressible Navier-Stokes equations

This work considers the functional modelling of a prototypical aortic phantom as described
in section [6.1] The fluid used for the phantom is a mixture of water and glycerine which
behaves mainly Newtonian. Hence, a linear relation of stress and strain rate can be assumed
and the viscosity does not depend on the shear rate. Accordingly, equation simplifies
to:

o= —pl+2uS. (3.24)

Insertion in the equations for mass and momentum conservation, and yields
the incompressible Navier-Stokes equations (NSE) as stated in the following. Equation
is additionally divided by the density p and the kinematic viscosity v = u/p is used in the
notation. For the phantom, one can assume that external volume forces, especially the gravity
can be neglected f = 0.

V.v=0, inD;x I,
(3.25)

0 ™, 1o .
av—l—(v.V)v—VV-(Vv—i—(Vv) >+;Vp—0, in Dy x I.

The NSE are a system of partial differential equations, being non-linear in the velocity
field v. Due to the derivatives in space and time, the system is parabolic. An overview on
the theory on existence and uniqueness of solutions of the NSE is given in [133].
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3.2.2 Inflow and outflow boundary configuration

The measurement segment of the aortic phantom, which corresponds to the aorta, is modelled
as three-dimensional geometry to enable the examination of the flow dynamics in all spatial
dimensions. For the up- and downstream parts of the phantom, reduced models are used.
They are coupled to the model of the main segment by boundary conditions for the in- and
outflow. Standard fluid boundary conditions specify either velocity or pressure profiles at the
in- and outflow planes.

Inflow boundary condition

As described in section the velocity profile is measured over a periodic cycle at each
measurement plane. This allows for setting the inflow boundary at the position of the first
measurement plane and defining an inflow velocity boundary condition by means of the
measured flow through the plane. The 2D flow MRI measurement provides flow values @);,
i = 0,...,N for the first plane at N = 127 points in time t; € I. In general, the time
steps of the numerical simulation do not correspond to the measurement time stamps and
the intervals are usually shorter. Hence, the flow values have to be interpolated. A periodic
interpolation of the flow profile could be given by the trigonometric Fourier-Interpolation.
Using Fourier-interpolation can however generate unphysiological oscillations between time
stamps. For a smooth interpolation using only local information, it is suitable to use a cubic
periodic spline-interpolation as described in [48]. A cubic spline fulfils

g€ C*(I), with q(t;) =Q;, i=0,...,N
and is piecewise defined by cubic polynomials
q’[tz‘,ti+1](t> = qi(t) = a; + bt + Citz + dit3, 1=0,...,N. (3.26)
The following periodic smoothness conditions hold for the first and second derivative of
the spline.
i (titimodN+1) = Qi 1modN+1(fitimodN+1), i =0,..., N, (3.27)
qi (tit1modN+1) = @i+ 1modN+1 (it 1modN+1), @ =0,...,N. (3.28)

Based on these smoothness conditions, a linear system of equations can be derived from
which the polynomial coefficients a;, b;, ¢;, d; can be calculated. Details can be found in [48)].

f=2 =38

Figure 3.2: Illustration of two different parameter choices for § in the generalised Poisseuille

inflow profile (3.29)).

To obtain a smooth distribution of the flow velocity over the inflow boundary surface By,
the flow value ¢ is mapped to a generalised Poisseuille profile [45]:

. 2 B
,vln(7-7 t) = q(t) g;.—RQ (1 — ;ﬁ) n, t e I, on Binv (329)
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where r denotes the distance from the centre of the boundary surface and 7 is the normal
vector that points to the inside of the geometry. As the measured spatial distribution of the
velocity field shows a broader extension of the peak flow field in the centre of the vessel than
a standard Poisseuille profile with 8 = 2, higher values for the parameter 8 > 2 should be
chosen. The standard Poisseuille profile, 5 = 2, is compared to the case § = 8 in Figure (3.2

Outflow boundary condition

For the outflow boundary conditions in aortic blood flow simulations, reduced models of
the systemic circulation on different scales can be used [45]. A zero-dimensional approach
is given by using the analogy to electrical circuits, where the flow can be seen as current
and the pressure as voltage. In this scope, single vessel segments can be seen as resistors
and the peripheral vascular tree can be modelled as a network of zero-dimensional elements
of resistors, capacitors and inductors. A further model reduction leads to the so called
Windkessel models, which account for the resistance of the capillary system and the temporal
flow volume retention in distensible vessels. In the case of the aortic phantom, the downstream
resistance is controlled by a pressure valve, see Figure 2.7] Its function can be modelled by
a resistance boundary condition as described in [78]:

) = o,

The model relates the value for the pressure boundary condition p°"* to the outflow value
v°" by means of the surface area A, the vessel wall thickness h, and the elasticity material
parameters Young’s modulus Y and Poisson’s ratio ~.

JmhY
-

P (3.30)
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3.3 Vessel wall elasticity

In an analogues manner to fluid flow dynamics, elastic materials can be modelled on the
basis of the conservation of mass and momentum. The equations for elastic deformations
are typically considered in the Lagrangian frame of reference as they are stated in (3.14))
and (3.15). The formulation considers the dynamics in the deformed state with respect to
a reference configuration. In the following, variables defined with respect to the reference
configuration are written with the hat symbol, i.e. for the conservation of momentum:
d2 2 A A
The mechanical behaviour of a specific solid material can be constituted by defining an

expression for the stress tensor &. First, basic definitions for deformation tensors and stress
measures are given in the following.

Strain measures

Applying the gradient operator to the position of a material point @ with respect to the

reference configuration V= [%} _, 4 omne gets the deformation gradient tensor:
tli=1,...,

F:=Vz, with FF =Va+ 1. (3.32)

In general, Fis an unsymmetrical tensor that describes the strain and the rotation of a
solid material. We denote its determinant with

J := det(F). (3.33)

A symmetric and rotational invariant measure for strain is given by the Green-Lagrange
strain tensor:

B % (FF 1) (3.34)

1 S A A A
=3 ((Va)'Va+ (Va)” +va).

For small displacements values u, the second order term is negligibly small and FE can be
reduced to Cauchy’s infinitesimal strain tensor

é= % (V) + V). (3.35)

Stress measures

In structural mechanics, the stress tensor o as denoted in equation is also called
Cauchy stress tensor. The Cauchy stress tensor is a measure for the stresses in the deformed
configuration related to the material’s geometry in the deformed state. The reference system
for the stress measure can be changed: The first Piola-Kirchhoff stress tensor 6 describes the
stress in the deformed configuration related to the geometrical reference deformation.

6=Jok . (3.36)
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A1
The second Piola-Kirchhoff stress tensor F' & describes the stress in the reference con-
figuration related to the geometrical reference deformation:

'eb (3.37)

aA—1 A A—
F &6=JF
If known, a relation between stress and deformation can be derived from the energy
functional for elastic deformation. It then holds for the first and second Piola-Kirchhoff
stress tensor, respectively
oW -1, W
6" = F

=, &= . (3.38)
oF OE

3.3.1 Aortic wall soft tissue models

An overview on the structure of aortic wall soft tissue is given in section The aortic
vessel wall is composed of several soft tissue layers with different material behaviour. Through
load tests one can try to determine models for the mechanical stress-strain relation of either
the tissue composite or the different components. A comprehensive introduction to these
investigations is given in [49]. Further constitutive equations and findings for biological soft
tissue are described in [7I]. In general, one can say, that the soft tissue layers of the aortic
wall each show non-linear viscoelastic properties in the stress-strain relation. Oriented fibres
lead to anisotropy. Through cyclically repeated loading the material can be preconditioned.
At constant strain, stress relaxation can be observed as well as creep deformation at constant
stress. Furthermore aortic wall tissue is constantly under stress, as the zero-stress state
usually tends to be unfolded, if the wall is cut longitudinally. Alterations of mechanical
behaviour can be caused by ageing or disease. The ageing aorta commonly stiffens and
calcification can occur. Diseased vessel walls can also show weakened stiffness. Additionally,
they can contain further materials such as deposits of lipids with their own biomechanics
properties. An example for an anisotropic hyperelastic model of the aortic vessel wall is
given in [53].

Saint Venant-Kirchhoff material

The prototypical phantom as considered in this work and described in section is assumed
to consist of a homogeneous rubber-like material. For the small range of occurring strain,
the Saint Venant-Kirchhoff (STVK) model can be used for the definition of the stress-strain
relation [67]. The strain energy function of the STVK model reads

~ 1 A N
W= Sh(trB)? + ME’ (3.39)

Using equation (3.38)), one gets an expression for the second Piola-Kirchhoff stress tensor,
that is linear in E: .
F & =\(trE)I +2)F. (3.40)

Hereby, the Lamé coefficients A1 and Ao relate to Young’s modulus Y and Poisson’s ratio

~ as follows
Y~ Y
M-y T A (341
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The Young’s modulus is a measure of the stiffness of a given material. The Poisson’s ratio
gives information on the compressibility. It can be set to nearly incompressible v = 0.45 for
the considered phantom.

Inserting the STVK model in the equation for the balance of momentum
and omitting volume forces f , one gets the following hyperbolic system of partial differential
equations, which is non-linear in the displacement .

p i =T (B (MBI 20E)) . iDL (3.42)

The density is considered to be a constant p € R4 in the STVK model. On overview on
the theory for existence and uniqueness of solutions can be found in [140].

3.3.2 Elasticity boundary conditions

The geometry of the vessel and with that it’s boundaries are given by an MRI-Scan of the
phantom. Typically, displacement and force boundary conditions can be defined to close the
system of equations and to define a boundary value problem. By means of a zero-displacement
boundary condition the computational model is constantly fixed at the boundary of the inflow
Bin and the outflow Bgyt.

i|p, =0, g, =0. (3.43)

The vessel segment is assumed to be able to move freely without any forces other than

the fluid forces acting on it:
fls=0. (3.44)
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3.4 Fluid-structure interaction

The biomechanics of blood flow through large arteries is mainly determined by the flow
itself and by the elastic deformation of the vessel wall. As described in section fluid
flow dynamics and elastic material behaviour are based on the same conservation laws, but
lead to a different system of partial differential equations. At the interface between the two
phases, the model is supplemented with coupling conditions for the mathematical equations.
We denote the time-dependent domains for the fluid flow and the solid material deformation
with D{ and Df, respectively. On the common boundary of both domains Bl := Dg N Dy it
naturally holds, that the displacement of both domains is equal. This is given with respect
to the reference coordinates by

=1 on B!, fortel. (3.45)

qu—

pe

Additionally, the traction forces, which are defined by the respective stress tensor in
normal direction n, of both phases are equal at the interface:

U‘Dg “Mf=0|ps M, on Bi, fortel. (3.46)

In the following, methods for establishing the coupling equations (3.45)), (3.46|) are de-
scribed. Further details can be found in [51].

Partitioned vs. implicit coupling

In principle, the coupling conditions and can be established in a partitioned
way using two distinct solvers for the sub-problems of fluid flow and elasticity. Another
approach is that of using implicit coupling in a single, monolithic solver for the full problem.
Partitioned routines iteratively solve one sub-problem and set the result at the interface as
a boundary condition for the other sub-problem. A weak coupling is given, if each sub-
problem is only solved once per time step. A strongly coupled routine iterates several times
between the two sup-problems until a requested accuracy is reached in each time-step. In
monolithic approaches, the coupling conditions are often fulfilled implicitly. Usually the
stability of partitioned routines with strong coupling is superior to weakly coupled routines
and monolithic methods usually are more stable than partitioned methods. A numerical
comparison of different coupling approaches is given, e.g. in [72].

3.4.1 Frame of reference handling

As described in section fluid flow problems are typically formulated in the Eulerian
frame of reference and structure deformation problems in the Lagrangian frame of reference.
There are different approaches to combine the two perspectives. An overview is given in the
review [72].

As for the immersed boundary [I10] 12] and the fictitious domain methods [60}, 114], the
fluid and structure problems are kept in the Eulerian and Lagrangian frame of reference,
respectively. Hereby, the solid domain typically lies in the fluid domain and the numerical
mesh of the fluid domains overlays the solid domain. The boundary of the solid domain
is incorporated in the fluid problem via interface tracking, for example by means of a level
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set method or a Lagrangian multiplier. Immersed boundary and fictitious domain methods
follow the partitioned approach with separate solvers for the fluid and the structure problem.
The fictitious domain method has been used for FSI-simulations of the aortic valve in [62), 63].

By means of a deformation mapping between the perspectives, the Lagrangian and the
Eulerian frame can be combined for the use in monolithic solvers. In the fully Eulerian
approach [I43], the structural domain is mapped to the Eulerian frame of reference in order
to obtain a monolithically coupled FSI solver. In this case the solid boundary can be tracked
by a level set method.

Methods incorporating the immersion of the solid structure in the fluid domain are es-
pecially suited for surround-flow problems. In case of distinct solid structures, also contact
problems can be modelled.

Conforming mesh methods adapt the fluid domain to the Lagrangian perspective of the
structure deformation. The fluid mesh is either explicitly moved in alignment with the
structure or a deformation mapping from a reference domain to the current state is used. A
standard method for the latter is given by the Arbitrary Lagrangian Eulerian (ALE) approach
which is also utilised in this work. A description of the ALE method can be found for example
n [73]. The ALE method is especially suited for FSI problems where the structure forms an
outer boundary of the fluid domain as it is the case for elastic vessels. When contact of distinct
structures occurs however, the fluid mesh or the deformation mapping can degenerate.

3.4.2 Arbitrary Lagrangian Eulerian formulation

The deformation of the structural domain can be described by means of its displacement vec-
tor field. The deformation of the adjacent fluid domain can be described by the displacement
from a reference configuration, which is called ALE field. The ALE field is defined as

A: D' x I - D,

(#,1) — x(&,1). (3.47)

Analogously to the deformation of the solid domain, the ALE field defines a displacement
field

N

a(#,t) = A&, t)—&, forzeD! tel (3.48)

An illustration of a displacement defined by an ALE field is given in Figure [3.3

Ds D;

A
Df —

e 7

Figure 3.3: Deformation of a vessel geometry described by means of an ALE field A.

The velocity of the domain is given as the time derivative of the ALE field:

B(2,1) = = A(#,1) = < x(&,1). (3.49)
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In an analogous way to the total time derivative (3.5)), the ALE time-derivative of a
quantity %X can be defined and it holds

d o . 0 .
aX = ax(/l(a:,t),t) = X +w - Vy. (3.50)

Inserting equation (3.50)) into the Navier-Stokes equations (3.25]) yields the Navier-Stokes
equations in the ALE formulation:

A

b 1
Tv+(v—m).Vv—uv-(W+(W)T)+;vp:0, in Df x I,

ot (3.51)

V.-v=0, inD!xI.

The ALE displacement field (3.48)) can be utilised to map the variables and spatial
derivatives from a reference domain D to the deformed configuration D;. Hereby, the multi-
dimensional chain rule and the deformation gradient tensor (3.32) is used:

Analogously to equation [3.36] the fluid stress tensor specified in a reference configuration
is given by

A N L T - AT NN
. with & = pv (VvF +(WF ))—pI.

Furthermore, recapitulating the integral form [3.6] and [3.9] of the equations respec-
tively, we have

RCITE /V &) Jda. (3.52)

With that, one obtains the incompressible NSE in the ALE formulation with respect to
a reference domain D in the so called conservative form:

N, A .
Jlo 4+ JE (6 —w) Vo
ot
A aAf A A— .~ a_INT ~~— 1. N A N
Y J(%F L (VeRT) ) FT 4oV (pFT ) =0, mDix1,  (353)
)

Mesh model

At the fluid-structure interface B!, the ALE displacement field is specified by the displacement
field of the solid domain. Through a smooth continuation of the displacement field from the
interface to the fluid domain, the regularity of the finite element mesh movement is ensured
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and degeneration of the transformed fluid mesh cells is prevented. A smooth continuation
can be achieved for example by stating a Laplace problem for the ALE displacement field:

~v-(J7'va) =0,  wD'xI, (3.54)
@

In the above equation , the diffusion parameter is given by the inverse of the de-
terminant .J of the deformation gradient tensor. This ensures a relatively high stiffness of
mesh cells at large deformation with J < 1 and a relatively low stiffness for distant cells with
J~1.

Figure illustrates an example of a resulting mesh deformation by means of an FSI
benchmark problem. This example is taken from the benchmark simulation described in
section The mesh model described in equation is used in all of the considered
simulations in chapter [5] and [6]

< ‘\/ \‘,‘ N

Figure 3.4: Exemplary illustration of the deformation of a finite element mesh by means of
the utilised mesh model. The figure shows the displacement of an elastic bar in the FSI
benchmark described in section [5.1]

Further models for the smooth continuation of the ALE field into the fluid domain are
described in [I30]. At large deformations towards complete rotation or contact of distinct
structures, degeneration of the transformed fluid mesh can occur nevertheless. To simulate
these cases, for example remeshing methods can be utilised.

3.4.3 Deterministic boundary value problem

The different parts of the mathematical modelling described in the previous sections of this
chapter can be summarised to the following deterministic FSI boundary value problem. The
elasticity STVK and the incompressible Navier-Stokes equations are formulated with respect
to a reference domain. The interface coupling conditions are stated as well as the boundary
conditions for the the displacement, velocity and pressure field.
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e (p (e A\ A
@u—;v-( (Altr(E)I+2/\2E)>_O, in D x I,
N D
JA—tv—I—JF (0 —w) -V
A AfA . A— A—T A n— 14 A A— ~
WY J(V'ﬁFlJrF TVﬁT)FT+—V-(ﬁF T):o, in D' x 1,
P
JAtr(A'ﬁﬁ‘il): , in Df x I,
—V-(J7'Va) =0, in Df x I,
Q| pe = U|ps, on Bix I,
N fn A o T A . 1 a me
(uJ(VﬁF LBV BT - S T) A
p
1,4 R . N
—f( (Altr(E)I+2/\2E))ﬁS:O, on B x I,
p
'&:0, OHBiHUBoutXI,
b =o', on By, x I,

A oaA— 1 ~
—v (VoF 1) -+ i = U7, on Bow x 1.

In the following and for the rest of this work, the hat notation for indicating the referencing
of the variables is omitted for better readability. The domains, variables and operators refer
to the reference configuration if not specified different.

Variational formulation

The second time derivative of the solid displacement field can be replaced by the first time
derivative of the solid velocity field. An additional equation can then be introduced equating
the first displacement time derivative and the velocity of the solid domain:

2
%u = %v, %u =v, onD’xI. (3.55)

To obtain a variational formulation of the FSI boundary value problem, first, the following
Sobolev spaces are defined for the test functions.

V := H'(D,R),
VOi={ueV:u=0onByUBou}",
VU0 ={veV:v=0o0n Bm}d,

L := L*(D'R).

(3.56)
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The Sobolev spaces for the ansatz functions include the time dimension:

V.= HY(D x I,R),

Vo= {ueV:u=0onBiyUBoy x I}%,

W.={veV:v=0on By x I}, (3.57)
Vf::{UEV:v:vinoanxI}d,

L= L*D"'x I,R).

The equations of the boundary value problem are multiplied with the corresponding
test functions and integrated over the respective domain. Integration by parts transfers
the divergence operator from the solid and fluid stress tensor to the respective test functions
and enables the specification of force and pressure boundary conditions. For the STVK stress
tensor it holds

- V- (F (Mtr(E) 4+ 2)2F)) - ¢pdx

= | (F Oatx(E)I + 2)2B)) - s
Ds

- / (F Ote(B)T + 2),E)) : Vipdz W € V2.
In the case of the Navier-Stokes stress tensor one gets
1
/ V- <—VJ (wF*1 + (Vval)T) F T4 JpFT) bdx
D p

= (—I/J (VoF~ + (VoF ) 7 4 lJpFT) n - bds
oDf P
+ /. (VJ (VvF_l + (VoF HT ) FT_ ;JpF_T ) Vipde Vo € V.

The handling of the boundary terms of the integration by parts defines the fluid-structure
interface coupling condition, the pressure outflow condition and a force condition acting on
the outer solid boundary.

In not taking the solid and fluid boundary integral terms at the coupling interface into the
notation of the weak formulation, they are implicitly equated, such that the coupling condi-
tion holds. Not including a boundary integral term for the outer solid domain boundary
in the weak formulation implicitly sets potential external forces acting on the boundary to
zero. This can be seen as a do-nothing boundary condition for the solid displacement. With
regard to the boundary integral of the fluid domain, the following boundary integral at the
outflow has to be included in the weak formulation in order to satisfy the pressure boundary
condition:

1
/ (—VJ (F*TVUT) FTy ;JpoutF*T ) n-yds Vi € V. (3.58)
Bout

The transposed velocity gradient term in (3.58|) eliminates the corresponding boundary
integral term from the integration by parts, whereas the non-transposed velocity gradient
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term is left over together with the pressure term to match the formulation of the pressure
outflow boundary condition.
With that the FSI boundary value problem can be stated in weak form with the notation

(,)y = fDx dax:

Problem 1. Find (u,v,p) € V) x VP x L, such that for almost all time steps t € I and
v(¢uﬂ/}m¢p) S V1? X ‘/UO X L

(gt”’ %)S n (gt“ o, %)S + (;F (M tr(E) + 20,E) wv)s
+ <J§tv, wv)f + (JF—l(v —w) - Vo, ¢v)f
+ (v (VoF ™' + FTV0") F7,Vy,) = (;JpF‘T» V%Z)v)

f (3.59)
+ (Jtr(VvF_l), Py

+ (J*lvm Vi
1
— (uJF_TV'vTF_Tn — ZJpiFpTy, %) =0.
P out
An overview on the existence and uniqueness of solutions of the elasticity and the Navier-

Stokes problem can be found in [140] and in [133], respectively. For the theoretical analysis
of the coupled problem, the reader is referred to [27, 2§].
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3.5 Uncertainty quantification

Naturally, the mathematical modelling of physiological dynamics and the medical measure-
ments for their calibration are subject to uncertainties. Especially in clinical examinations,
it is to be questioned, whether physiological dynamics can be represented by deterministic
simulations, or if uncertainties should be taken into account to get an information on the
reliability of the simulation. In regarding parameters and variables of a simulation as ran-
dom processes, uncertainties can by measured by methods of uncertainty quantification. For
example, given uncertain input data, the probability can be computed, that threshold values
are exceeded. As a measure for the certainty of a simulation result, its standard deviation
can be evaluated.

Several factors of uncertainty can be taken into account in modelling cardiovascular dy-
namics. First, the configuration of a subject-specific simulation is partly attained by medical
imaging and measurement data. CT and MRI images, which typically yield the geometry of
the considered vessels, are limited by their resolution. Some parameters such as the blood
flow through specific vessel sections can be measured up to a certain accuracy. Other param-
eters such as the blood viscosity are not assessed in clinical routine or are not measurable at
an acceptable invasiveness. The Young’s modulus for example, which gives information on
the stiffness of vessel wall soft tissue, can be measured mechanically with extracted specimen
of soft tissue [68]. However, such a tissue extraction is usually not done for living patients.
As compared in [30] there are approaches for estimating aortic stiffness non-invasively by
means of MR Elastography or measurement of the pulse wave velocity. The measurement
accuracy nevertheless is limited for the specification of the Young’s modulus for biomechani-
cal simulations. A further factor of uncertainty is the model’s deviation from patient-specific
physiology. The vessel wall soft tissue exhibits a multi-layered anisotropic structure, which
differs from patient to patient. Alterations can also occur with medical conditions and with
ageing. Numerical discretisation errors and computational errors also add to the general
uncertainty of numerical simulations.

This section shows, how model equations from the previous sections can be regarded
as stochastical problem in order to enable the quantification of uncertainties. Firstly, the
propagation of uncertainties is modelled by means of random processes in section The
parameters assumed to be uncertain are given in section Section finally states
the stochastical version of the boundary value problem considered in this work.

3.5.1 Propagation of uncertainties

In stating the considered mathematical model as a set of random differential equations, the
propagation of uncertainties can be modelled and taken into account in a numerical sim-
ulation. The quantification of uncertainty in the respective simulation results can provide
information on the reliability of the simulation outcome. Furthermore, the stochastical dis-
tribution of unknown simulation input parameters can be closer specified by means of inverse
UQ. This can yield information on where input data should preferably be measured more
accurately for reliable simulation results [135].

A general introduction to UQ is given in [87, [129]. Various applications in fluid and
structure mechanics are described in [119]. A UQ approach for cardiovascular simulations
has been developed in [I18]. In the latter, blood flow through aneurysms and bifurcations
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were considered but with rigid vessel walls not including fluid-structure interaction.

A common basis for the quantification of uncertainties is the modelling of the uncertain
simulation input, boundary condition parameters and resulting parameters as random pro-
cesses x : D x I x 2 — R from a probability space (2,3, P). Hereby, Q denotes the sample
space. As the set of events, ¥ C P(Q2) is a o-algebra and a subset of the power set of Q.
P : ¥ — [0,1] defines a probability measure on X. Hence, for a given location @ € D and
time t € I, x(«,t,-) is a random variable and x(+,-,w) is a realisation of the random process.

In this work, we consider second-order random variables x € L?(©2,R). The probability
distribution of y under P is defined as

PX:P(x(9)) = [0, 1],

. (3.60)

B~ P(x " (B)).

A random variable can be characterised by its moments
E[™] = /Q (@) P(dw). (3.61)

The first moment is the expected value F and the second central moment is the variance
o2. The standard deviation ¢ is the square root of the variance.

E(x) / (w (3.62)

0*(x) = El(x — B)?] = /Q X() = EP(dw). (3.63)

3.5.2 Uncertain inflow velocity and elasticity modulus

The flowrate values for the inflow boundary condition was measured by 2D flow MRI as
described in the sections[2.3|and [2.2.5] The flowrate is interpolated as outlined in section [3.2.2
giving a single flowrate curve over a time period with unknown stochastical deviation. In
this case a uniform distribution as so called ignorance model can be assumed:

q(w) =qg+wiq, w ~U(-1,1). (3.64)

Hereby, ¢ and ¢ denote the mean value and the maximal deviation from the mean value,
respectively.

The stiffness of the vessel wall, indicated as Young’s modulus, is also modelled as uniformly
distributed random variable due to its limited measurability (see section

Y(W):=Y 4w, wy~U(-1,1). (3.65)

The two stochastic parameters of the Young’s modulus and the boundary velocity can be
assumed to be stochastically independent. The respectively utilised values for the mean and
the range of the uniform distribution are given in chapter [5 and [6]

Taking the two random variables into account, the sample space becomes Q = [—1, 1]
and the probability distribution P has the probability density function for a two-dimensional
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uniform distribution f¥(w) = 1/|Q| = 1/4. With that, the moment operator (3.61) gets the
explicit form

B[ = | X"(@)f7 (w)dw

Q
1 1 1
= / X (w)=dwidws. (3.66)
“1J-1 4

3.5.3 Stochastical boundary value problem

To enable the quantification of uncertainties in the simulation, the variables of problem
are regarded as random processes. The underlying dimensions of the problem, space and time,
are extended with the stochastic sample space ). The definitions of the function spaces
are extended with square integrable random processes on the sample space:

V= {u:Dx Q- R, with u(,w) € VY, u(,") € L2(Q,R)}d,
VO .= {v D x Q= R, with v(-,w) € V2, v(x, ) € LQ(Q,R)}d, (3.67)
L:=L*(D'x Q,R).
And for the time dependent variables, c.f. :

0 - 0 2 d
V, = {u:DxIxQ—HR, with u(-,-,w) € Vy, u(x,t,-) € L (Q,R)} ,

) d
VS = {v :DxIxQ—R, withv(-,-,w) € VS, v(zx,t,-) € LQ(Q’R)} ’ (3.68)

- d
VD .= {v :DxIxQ—R, withv(,-,w) € V2, v(z,t,) € LQ(Q,R)} ,
L:=L*D'x I xQR).
The attained problem of stochastic partial differential equations is defined on the function

spaces (3.67) and (3.68). It is given by equation (3.59) with the usage of the following
definition of the scalar product:

() = /DXXQ dzP(dw). (3.69)

Problem 2. Find (u,v,p) € ]78 X f)i) x L, such that for almost all time steps t € I and

YV (W, by, ) € VO x VO x L equation (3:59) holds with the scalar product (3.69).

Problem is applied in this work to a benchmark scenario in section and to aortic
blood flow scenarios in chapter [6 The specific scenarios are solved numerically, for which the
numerical discretisation is presented in the the following chapter [
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3.6 Risk parameters

In general, the respective severity of a patient’s condition can be assessed by the available
diagnostic methods. Medical treatment and therapy can be chosen on the basis of this di-
agnosis. Especially for decisions on surgical interventions, the risks of not intervening have
to be weighed against the risks of the possible surgical procedures. Up-to-date advice and
guidance for clinicians is given for example by the guidelines on the diagnosis and treatment
of aortic diseases from the European Society of Cardiology [38]. These guidelines give rec-
ommendations, which medical measurement and imaging methods (cf. section can be
used for the diagnosis and differential diagnosis of the various types of aortic disease. As an
example, the recommendation for surgical interventions for aortic aneurysms is mainly based
on the diameter of the dilated vessel. Vessel diameter thresholds are given, for which the
risk of rupture is usually too high for not operating if the diameter threshold is exceeded.
However, there are cases of vessel rupture at smaller diameters, which is discussed in [108].
The examination of bio markers for a most accurate assessment of the rupture risk is still
subject of ongoing research. Non-morphologic parameters such as flow- and simulation-based
parameters are also discussed. An overview of flow-based parameters obtained from flow MRI
images is given in [37]. Simulation-based parameters are reviewed in [I8]. Hereby, it is also
examined with respect to aortic disease in general, in which way the parameters can provide
insight into the development of aortic disease and how risk assessment for surgeries can be
improved.

In this work, two parameters are exemplarily evaluated for an healthy aortic bow: The
wall shear stress and the structural stress in the vessel wall as further explained in the
following sections [3.6.1] and [3.6.2] respectively. Further analysis capabilities are enabled
by flow visualisations in terms of vector maps, stream- and pathlines, maximum intensity
projections, isosurfaces and volume rendering [37].

The uncertainty of the considered parameters and simulation results in this work is quan-
tified by means of the expected value F, the standard deviation and the probability of the
overstepping of threshold values. By means of the standard deviation, it can be evaluated,
whether simulation results are conclusive at relatively small values of the standard deviation
or if they bear a high level of uncertainty in the case of relatively high standard deviation
compared to the mean value. Furthermore, this work proposes in section [3.6.3] to take the
probability into account, that stress thresholds are exceeded given the uncertainty in the
input parameters of the respective simulation.

3.6.1 Wall shear stress

The wall shear stress is the shear stress in the boundary layer of the fluid flow. It can
be seen as a tangential force due to friction at the vessel wall. As it has been shown in
several studies (cf. [I07] and the references therein), the wall shear stress has an effect on the
orientation of endothelial cells and causes an elongation of the same. The cells get shaped
in the direction of the flow. Furthermore a stiffening of the cytoskeletal structure can be
observed. According to [I07], however, the mechanoreceptors of the cellular response are still
not fully understood. In medical treatment, it is common to reduce the wall shear stress by
decreasing blood pressure and heart contractility [38].
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The magnitude of the wall shear stress for the fluid flow equations (3.25]) is given by
W = ‘pz/(Vv + Vol) -n’ on Bl x I. (3.70)

Hereby, Bl denotes the interface between the fluid domain and the vessel wall. The spatial
variables and the gradient operator refer to the deformed configuration (cf. section [3.4.2)).

3.6.2 Von Mises stress distribution

The stresses within the vessel wall can be evaluated by means of the von Mises stress. This
scalar-valued stress measure is calculated via the principal stress components and the shear
stress components of the Cauchy stress tensor o:

N|=

2 2 2 2 2 2
™ = (011 + 05 + 033 — 011022 — 011033 — 022033 + 3(07 + 013 + 023))

in D® x I.

(3.71)

The von Mises stress is a measure of the distortion energy. For many elastic material
structures it can be used to define a yield criterion at which the distortion energy reaches a
critical value. To analyse the biomechanics of blood flow vessels, the von Mises stress has
been examined in [I39) [76]. A comparison of diameter, wall shear stress and wall stress
parameters, especially involving von Mises stress, is given in [92]. As the von Mises stress
has not been used in a broad range of studies yet, comprehensive validation studies have to
investigate the significance of the parameter for aortic risk assessment in the future.

This work contributes to the discussion in using the von Mises stress to visualise the inner
wall stress load in an aortic phantom and in an aortic bow. Additionally, a measure for a
stress overload probability based on UQ is proposed as described in the following section.

3.6.3 Stress overload probability

As discussed in [18], too high or too low values of the wall shear stress can have an adverse
influence on the aortic physiology. As outlined in section the assessment of clinical values
based on simulations can be affected by uncertainties. Hence, given the uncertainties in the
considered models and parameters, it can evaluated, at which probability simulated values
are higher than specific threshold values. This evaluation can be achieved by UQ methods.
At this, the computed stress distribution 7 is understood as a random process. Let 7™ be a
maximal threshold value for the wall shear stress or the von Mises stress. Then, the highest
probability over a heart cycle, that 7™* is exceeded is given by

prmax _ P max
max (P (7™, oc)))

= max (P (7'_1 ([r™ax, oo))))

tel

_ P
= max ( / I (w)dw) . (3.72)

P7max is defined on B! for the wall shear stress or on D* for the von Mises stress.
For a proof of concept, the probability for reaching the threshold values is computed
exemplarily for the aortic bow of a healthy proband in section
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lation

In the previous chapter, the general modelling of aortic blood flow under uncertainties was
introduced. One of the objectives of this work is to show the feasibility of the evaluation of
the risk parameters presented in section in a patient-specific and computationally efficient
way.

The first section of this chapter describes a workflow to incorporate a range of speci-
ficities of a given proband or patient in the simulation and evaluation procedure. An in-
troduction to various methods for the setup of subject-specific cardiovascular simulations is
given for example in [2]. Quarteroni et al especially addresses the preprocessing of clinical
data for numerical simulations in [I13]. Methods for the generation of computational meshes
for patient-specific blood vessels and also the geometrically similar lung bronchi are described
n [94]. The workflow presented in this work focuses on the processing of 4D flow MRI im-
ages of the thoracic aorta. It calibrates the generic model introduced in chapter [3] with the
available clinical data.

Furthermore, the linearisation and discretisation of the mathematical problem [1|leads to
a complex linear system of equations. General linear solvers, which do not take the structure
of the system into account, are usually not able to approximate the solution of the problem
with acceptable computational costs. Therefore, in the second section a discretisation
approach of the problem and the derivation of a problem-specific solution algorithm is pre-
sented. In the literature, other numerical solver routines for FSI problems with an application
to hemodynamics have been presented in [7, [29]. Approaches focusing the utilisation of the
block structure of monolithic FSI systems are introduced in 79, [141]. FSI solvers based on
the algebraic or the geometric multigrid method are described in [I15, 55]. An approach to
solve stochastical problems of saddle point structure is presented in [112].

The numerical solver introduced in this work utilises the block saddle point structure of
the discretised system of linear equations and includes the propagation of uncertainties in
the simulation.

In chapter 5| the presented solver is then verified and evaluated in numerical experiments
with respect to its accuracy and parallel efficiency.

4.1 Subject-specific workflow

Medical imaging and measurement provides the basis for the subject-specific setup and cal-
ibration of numerical simulations. The raw measurement data is to be processed into a
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computational model. Hereby, the geometry and the relevant physiological quantities are
extracted and prepared for the consideration in a finite element simulation.

CT or MRI data

Segmentation

Surface rep@

Mesh generation

End face preparation

@ input data

Numerical simulation

Evaluation, visualisation

Figure 4.1: Medical data processing workflow for the patient-specific configuration of a nu-
merical aortic blood flow simulation.

Vessel segments of interest

Levelset methods

Surface smoothing

Boundary clipping

Diameter dependent meshing

Vessel wall layer

Denoting boundaries

Flowrate definition

Model dependent

Uncertainty quantification

The generic mathematical model described in chapter [3] can be adapted and configured to
subject-specific scenarios on various levels, namely on the level of the volumetric dynamics, on
the level of the boundary dynamics and on the geometrical level. As for the level of volumetric
dynamics, the constitutive material laws as stated in the equations and are
suitable for the simulation of fluid and solid materials used in the aortic phantom experiment
as introduced in section In possible further developments of this work, they can be
amended by more complex, but more realistic constitutive laws for blood flow and human
vessel walls. In each case, material parameters, such as viscosity and stiffness, have to be
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set. On the level of the boundary dynamics, the models for the in- and outflow of the
considered vessel have to be configured on the basis of the available 4D flow MRI data. The
geometry of the considered vessel can be virtually reconstructed from the MRI data, so it
yields the individual definition of the fluid and solid domains Df and D*. On all three levels
the measurement input data bears uncertainties. The quality of the data is limited by its
resolution and device-dependent measurement accuracy.

An overview on the processing steps is shown in Figure Further details on the
various data processing methods can be found in [2] and the references therein. A framework
for formalising the simulation setup workflow is given with the Medical Simulation Markup
Language (MSML E] [132], which is applied for example to patient specific mitral valve surgery
scenarios in [122]. In the following, a closer look is taken at the processing methods relevant
for this work.

4.1.1 Segmentation of the aorta

Segmentation is the virtual reconstruction of an organ’s surface geometry from medical imag-
ing data. The recognizability of a structure in a given image depends on its resolution and
the distinguishable contrast of the structure. In the case of the aorta, the resulting geometry
is typically tubular with a number of branches. Aneurysmatic dilatations can represent a
significant deviation from a tubular geometry. Both have to be taken into account by the
utilized segmentation method.

If an automatised segmentation is not applicable, surfaces can be delineated manu-
ally. Thresholding can be used, when the surface separates regions of interest at a well-
distinguishable grey-scale value. A semi-automatic method is given by region growing [2].
Region growing typically starts with manually selected seed points. The therewith initialised
region grows at a speed based on the intensity similarity to the neighbouring cells. At high
intensity gradients the growing speed is typically chosen to be very small or zero. A varia-
tion of region growing especially suitable for vascular structures is given by the method of
colliding fronts [2]. Hereby, the ends of a vascular network are used as seed points and the
travelling time of the regions which expand along the vessels towards each other can be used
as segmentation measure. Region growing segmentations can serve as an initialisation for
levelset segmentation methods. Levelset methods use a potential field defined on the image.
An isosurface of the potential field implicitly defines the segmented surface. For the aorta,
it is suitable to use deformable shape models to define the levelset potential field [125]. The
expansion of a deformable model can be controlled by the dependency of the inflation speed
on image features and gradients. Also, smoothness constraints can be added. As opposed to
the other methods mentioned in this section, deformable model levelset segmentation enables
an accuracy beyond the pixel size.

For this work the Siemens software Syngo. MR Cardiac FlouE] was used for the segmenta-
tion of vessel structures from MRI data.

'msml.readthedocs.io

2healthcare.siemens.com /magnetic-resonance-imaging /options-and-upgrades /clinical-applications /syngo-
mr-cardiac-flow
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4.1.2 Volumetric meshing

With the segmentation of a vessel segment a volumetric mesh can be generated for a finite
element discretisation. To this end, the segmentation should be given by a smooth surface
geometry without any irregular holes and a designation of the in- and outflow openings.

As an input for the finite element simulation, usually, the generation of a conforming
mesh is needed. In a conforming finite element mesh, the mesh cells disjointedly cover the
full domain of the geometry. Vertices, edges and faces that are shared by two cells fully
belong to both of the cells. In other words, the mesh does not contain any hanging nodes.
The quality of a finite element mesh can be characterised, amongst others, by the ratio of the
inscribed circle diameter to the circumcircle diameter of each cell. A basic quality property
is given by the Delaunay criterion which requires that the circumcircle of a tetrahedron
does not contain any other node. For vessels, the cell size can be chosen depending on the
diameter, such that each vessel segment approximately has the same number of cells in each
cross section. To resolve the elastic vessel wall as a volumetric domain, the three-dimensional
geometry can be extended with a layer of a specific thickness, e.g. 1mm in the case of the
aorta.

For this work, the open source Vascular Modeling Toolkit (vmtkﬂ [3] is used and inte-
grated into the workflow to generate subject-specific finite element geometries. The vascular
modeling toolkit itself uses the open source software Tetgerﬁ [126] for generating high-quality
finite element meshes.

4.1.3 Treatment of the vessel segment boundaries

The different parts of the cardiovascular system can be modelled on several scales of com-
plexity. Using a fully spatially and temporarily resolved model, the three-dimensional flow
dynamics in time can be studied together with the movement and elasticity of the vessel
wall. Depending on the given question, a fully resolved domain in three dimensions is usu-
ally only needed for a specific region of interest. The models of the subsequent parts of the
cardiovascular tree can be reduced in dimensional complexity. Using, for example, symmetry
assumptions on the tubular vessels yields a one-dimensional model of the segments. A further
reduced model is given by zero-dimensional lumped parameter networks of the vascular tree.

When modelling vessel segments of interest in three dimensions, the end faces of the
geometry have to be defined. For that, before meshing, the inlet and outlet cut planes of the
considered aortic segment are denoted. The information about the location and shape of the
cut planes and if available the respective flowrate is extracted from the medical measurement
data and stored for the configuration of the numerical simulation.

Details on the modelling and the configuration of the boundaries are given in section [3.2.2

and For further reading, the reader is referred to [45].
4.1.4 Numerical simulation and evaluation

With the specification of the components and parameters on the three levels of the model
and boundary dynamics as well as of the geometry, the respective numerical simulation can

3vmtk.org
4wias-berlin.de/software/tetgen
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be set up. The simulation in this work is based on the mathematical models defined in
chapter [3] and on their discretisation presented in the subsequent section. A summary of the
most important discretisation parameters and additional information on the implementation
and the utilized computing infrastructure is given in the appendix in section [8.2] As the
considered hemodynamics are typically of the periodic form of a heart beat, the simulation
results are evaluated over one period. Scalar valued results are plotted over one time period.
For the discrete time steps, the simulated three dimensional dynamics are written out in the
file format of the Visualization Toolkit (VIK E [123]. In this work, they are visualised with
Para Viewlﬂ [6].

Svtk.org
Sparaview.org
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4.2 Problem-specific numerics

In this section, the discretisation of the mathematical model defined in chapter [3]is presented,
as well as the numerical methods used to approximate solutions of problem . Literature
references on problem-specific solvers for FSI-problems including uncertainties are given in
the beginning of this chapter. A broad overview on the theory of partial differential equations
is given in [40]. An introduction to the discretisation of partial differential equations is given
e.g. in [80] and with a special focus on the finite element method in [9]. Numerical methods
for FSI problems are described in [51]. The numerical quantification of uncertainties in the
context of differential equations is introduced [87].

This section is structured as follows: Following the Rothe method, first, the discretisation
of time is introduced in After the description of the linearisation of the nonlinear
equations in section[4.2.2] the discretisation in space is presented in section[d.2.3] Section[d.2.4]
describes the numerical methods for UQ utilised in this work. Finally, section presents
a problem-specific linear solver.

The numerical framework, presented in this work, has been implemented by the author
in the finite element software package HiFlowSm [54]. The application is written in C+-+
and parallelised with the Message Passing Interface (MPI ﬂ to allow for high performance
computing.

4.2.1 Discretisation of time: One-step-f scheme

The discretisation of partial differential equations aims at establishing stable and consistent
numerical algorithms to approximate solutions of the equations. Together with the lineari-
sation of nonlinear problems, the discretisation typically leads to systems of linear equations
for a large number of discrete degrees of freedom which represent the solution variables. The
time dimension can be discretised either solely on its own or in one approach together with
the spatial dimensions, for example via a space-time finite element method [134]. Considering
the time dimension on its own, general discretisation schemes for ordinary differential equa-
tions are applicable as for example the Runge-Kutta methods or backward differentiation
formulae [34]. The methods can be categorised by their respective stability and convergence
properties.

In this work, the one-step-6 scheme [65] is used. It is a one-step scheme with a parameter
0 controlling the stability and consistency of the method. If a differential equation for the
variable y with a time-independent operator L can be expressed in the form

gtx +L(x) =0, (4.1)

the discrete values x! =~ x(#;), 1 = 0,..., L, approximate the solution of equation (4.I)) in the
time dimension with the following scheme:

SO XY 01O + (1 - 0L =0 (12)

"hiflow3.org
Swww.mcs.anl.gov/research/projects/mpi/index.htm
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Choosing 8 = 0, one obtains the explicit Euler scheme. Choosing # = 1 leads to the
implicit Euler scheme, which is strongly A-stable as opposed to the explicit version. Both
of the Euler schemes are first order consistent. The Crank-Nicolson method with § = 1/2
is second order consistent and A-stable but not strongly A-stable. Strong A-stability of
the Crank-Nicolson method can be obtained by shifting 8 with the time step length £k to
0=1/2+k.

In the following, the one-step-0 scheme is applied to the time derivatives of the dis-
placement v and the velocity v of the FSI equations . The pressure and the divergence
term of the velocity are handled fully implicitly. Also, the fluid mesh movement is treated
fully implicitly with

w(t) ~ —(u! —ul™ ). (4.3)

To obtain the time discrete version of equation (3.59), we first define

L, 0,9) = (;w) n (gtw)

+ (Jgtv,wv)f — (JF_lw . Vv,%,)f

| =

Lp(u,v,v) :=— (v,¢y), + (; (Mtr(E)I 4+ 2\ F) ,va>

+(JF v Vo, zpv) + (v (VoF = + FTv0T) F*T,vwv)f

s

(l/ _TVUTF_T"?> 77b'u) out )
L (U v p, : ; JpF V¢v)f + (Jtr(V’UF_l),wp)f
+ (71, un) (1Jp°‘”FTn,wv) :
P out

and then approximate Ly (u(t;),v(t;),v) ~ LE(u!, v!, 1) with

Dl o, 9) = (10! o))+ (Fd —u )
+ (Jl’ak(v —vl_l),%)f— (JF_lllc(ul —ull) . Vo, qu)f,

JH =0+ (1 —6)J L
The resulting time discrete equation can be written as follows:
0= LF) := Ly(u' v’ ¢)
+0Lp(u',v',¢) + (1= 0)Lp(u' ™", 0"~ 4) (4.4)
+ Ll(ula vlvpla ¢)

Equation (4.4) gives a procedure to consecutively compute a time-discrete solution of
problem at the time steps t;, [ = 1,..., L starting from the initial condition for the
variables given by {ug, vg,po}. An analysis of the stability of equation (4.4)) is given in [142].
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4.2.2 Analytical Jacobian for Newton iterations

The time stepping procedure has the form of a nonlinear equation in the variable values
of the next time step [. Almost all of the fluid flow terms are highly nonlinear due to the
ALE mapping. Also, the elasticity terms have nonlinear parts.

A standard procedure to approximate solutions of nonlinear equations is given by the
Newton method [43]. A similar approach to the one presented in the following is described
in [142).

Let L be a nonlinear operator in the variable y. A solution of the equation

L(x) =0 (4.5)
is iteratively approximated by the linear procedure for the Newton steps n = 0, ..., with
L'IX")(6x™) = L(xX"), (4.6)

Xn+1 — Xn _ A(an
until L) = LMl < e,

where " should be close to the desired solution. In this work, " is chosen to be the solution
of the previous time step. This way, the starting point is close enough to the solution of
the next time step to observe quadratic convergence of the Newton method in the numerical
experiments which are defined in chapter [f| and [6]

The first part involves the directional derivative L'[x"] of the operator L in the
direction of the preceding Newton approximation x™. It yields a new direction dx™, which
is used to update the Newton approximation in equation (4.7). With A € (0, 1], the residual
norm || L(x"*1) — L(x™)||2 can be minimized via line search.

The directional derivative can be defined as Gateaux derivative

LNI(60) = lim © (L + @) — L(0) = -L(x + eay) eco (1.9

To evaluate the directional derivative, automatic differentiation has been used in [36]. It
is also possible to derive the directional derivative for equation explicitly as shown in
the following.

The main methods for the calculation of the directional derivative are given by the product
and the chain rule. The directional derivatives for the strain tensors are

F'lu](6u) = Viu, (4.9)
(F~ Y [u](du) = —F~'VéuF !, (4.10)
J'[u)(u) = Jtr (F~'Vou), (4.11)
E'lu](0u) = % (V&uTF + FTV5U) : (4.12)

Applying the product rule and equations (4.9) - (4.12) to (4.4), one obtains for a time
step [:
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L%l[u, v] (6w, dv, 1) = ]1€ (0v,vy), + % (0w, Pu),
1 (TS o - 0,0
V),
- % (Jer(F~'Vou) P~} (u— ') - Vo, %)f
+ % (JF'VouF " (u—u'") - Vo, wv)f
— % (JF_15u : VU,%>f
B % (JFfl(u — Y. V(SU,%)fa

Lp[u, v](du, v, ) = — (dv, ),
+ ; (Vou(htr(B)I + 22 E), Vib,),
1

+ - (F()\;tr(V&uTF + FTV6u)I + Mo (Vou'' F + FTVsu)), vwv)
p

s

f

f

[
]

out

)
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Liu, v, p](du, dv,dp, ) = Jtr(F1Véu)pF~T Vzﬂ@)

(e
(JopFT, wv)
(

VDI IR

JpFTvsuT F-T wv)

Jtr(F1Véu)tr(VoF ! ),%;)f

+ o+ o+

Jtr(VévF ™), q/Jp)

— (Jtr(VoF'VéuF~ )wp)f

J L (F1Vou)Vu, wu)f

+

N 7N 7N N /T N

JVéu, W’u)f

-1 out ;p—T
—i—;(Jtr(F Vou)p®"'F n,wv)out

. /1) (JpoutF—Tv&uTF—T,n’ %)

out ’

4.2.3 Spatial discretisation: Finite element method

With the linearisation of the time stepping procedure as shown in the previous sec-
tion the linear equation has to be solved in each Newton step. There are several
methods for discretising a differential equation such as in the spatial dimensions. Usu-
ally, they lead to a large system of linear equations for discrete degrees of freedom of the
solution variables.

The integrals over the differential terms can be approximated by the finite volume method
(FVM) [102]. Another approach is to approximate the derivatives by the finite differences
method (FDM) [88]. Also, the Lattice Boltzmann method (LBM) [85] can be applied as a
discretisation approach on a mesoscopic level between continuum mechanics and fluid particle
movement. The FVM and LBM typically can be used for fluid flow problems not involving
the dynamics of elastic structures. With the FDM, discrete solutions are only represented
by nodal values. A discrete representation of the solution functions can be obtained by the
finite element method (FEM) [13, [9, 59]. The FEM can be used to discretise a broad range
of differential equations, especially for fluid flow and structural dynamics.

In this work, the FEM is utilised by means of a continuous Galerkin method based on
the variational formulation as it is introduced in section [3.4.3l

In general, a finite element is given by the triple

(K, ®k,ZK).
K € T, is a finite convex element of a triangulation 75 of the domain D.
b ={¢v: K — R} (4.13)

is a finite-dimensional space of shape functions on the cell K. Degrees of freedom are defined
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as a set of linear independent functionals on the shape function space by
Ex ={{: Px — R} (4.14)

In this work, triangulations are given by conforming meshes of triangles for two-dimensional
geometries and tetrahedra for three-dimensional geometries (cf. section [4.1.2]). Furthermore,
Lagrange elements with polynomial shape functions

O CPyK), d=1,2 (4.15)
are used, which are unisolvent, i.e.
dim(®x) = #Ek. (4.16)

The symbol # stands for the number of elements in a set. For Lagrange elements, the
degrees of freedom are given by the evaluation of a shape function at a number of points
Z; eK,j=1,...,#Zk:

The evaluation points x; for the degrees of freedom can be chosen in a way such that a
shape function can be uniquely described by the set of degrees of freedom. For triangular
cells, these points are indicated in Figure

o L4
T3
L2
Ty
) (b) Degrees of freedom for polyno-
(a) Degrees of freedom for linear mial shape functions of degree d = 2
shape functions with d =1 (f1). (P2).

Figure 4.2: Triangular Lagrange elements.

By means of the degrees of freedom, a basis of the shape function space can be defined:
7,/}]' € g, with w](wz) = (5@', for Ji=1,..., #Zk. (418)

Utilising the shape function basis (4.18)), the solution functions can be approximated by
a sum over a finite number of degrees of freedom X? € R of the function:

#EK
x(x) ~ Z Z X?@ij(m), x € D. (4.19)

KeT;, j=1

In this work, the displacement and the velocity function is discretised with quadratic
shape functions (P2) and the pressure with linear shape functions (P1). In the case of fluid
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flow problems without elasticity, this combination is known as Taylor-Hood finite element.
The P2-P2-P1 combination fulfils the inf-sup condition and is therefore stable [8]. The P1-
ansatz is consistent of first order with respect to the Hi-norm and the P2-ansatz has second
order consistency [13].

The finite element ansatz (4.19)) can be inserted in the time-discrete and linearised weak
formulation. For an exact integration over the polynomial shape functions, quadrature rules
of corresponding order with quadrature points ¢ € Q and weights (, can be used. For
example, we have

#EK

(vohi)gm Y > > Cuii(ail), i=1,..., #Ek. (4.20)

KeTp qeQk j=1

This way, the Newton step becomes a linear equation for each test shape function
Vi, i =1,...,#ZK, K € T,. The evaluation of the directional derivative can be written as
a matrix-vector multiplication with the so-called Jacobian matrix J representing the direc-
tional derivative L’ and the vector of degrees of freedom of the finite element ansatz function
(ul, v, p"). The discrete version of reads:

Juu  Juv - Jup 6uh Lh,k (wz)
Jue o gue gur || sol| = [ LR | (4.21)
Jpw  jpv PP 5ph Lk ( w}f;)

The superscripts at the Jacobian indicate the coupling of the ansatz and test functions.
The detailed definition is given in the appendix, section [8.1]

4.2.4 Stochastical discretisation: Polynomial chaos

The modelling of uncertainties and the stochastical distribution of parameters and variables
is described in section It ends up in stating the stochastical boundary value problem
for FSI. In the previous sections of this chapter, the discretisation approaches for the time
and spatial dimensions were presented. For the computation of the stochastical parameters
of interest (cf. section , the discretisation of the stochastical dimensions is described in
this section.

The stochastical space can be discretised in different ways. An overview of UQ-methods
in computational fluid dynamics (CFD) is given in [87]. The UQ discretisation methods can
be divided into two categories: intrusive and non-intrusive methods. Assuming the existence
of an implemented deterministic solver for a given problem, the implementation has to be
extended with the stochastical discretisation when following an intrusive UQ approach. In
using non-intrusive methods, the deterministic solver usually can be reused as a part of the
stochastical solution routine.

A family of non-intrusive techniques is given by Monte Carlo methods [77]. In Monte
Carlo based methods, the simulation has to be carried out for a number of randomly chosen
samples w; € 2,7 =1,..., N in order to approximate for example the stochastic moments
by means of the sum

B ~ Ex (] = 5 Do x™ (@), (122)
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The numerical convergence of standard Monte Carlo methods is independent of the dimen-
sion of the stochastic space. However, the number of necessary samples to achieve numerical
convergence usually has to be large, because for standard Monte Carlo methods it typically
holds .

2 2
Bltx - B~ Exlt— Bl =0 ().

Using modifications such as multilevel Monte Carlo methods, the numerical convergence
can be improved [19].

Another approach for discretising the stochastic dimensions as used in this work is given
by spectral methods. Hereby, a random variable x is represented by an expansion series of
functionals 1; : 2 — R with deterministic coefficients yx;:

[ee) M
X(w) =D xjviw) = Y xiviw), we. (4.23)
=0 =0

As opposed to point-wise sampling, the representation of the random variable as a sum of
functionals over the full sample space allows for the definition of UQ methods of higher order
convergence rates if the solution is smooth enough. In general, however, the convergence of
spectral methods decreases with the dimension of the random variables, which is known as
the curse of dimensions.

A specific spectral method is given by polynomial chaos (PC) [144] 145]. A review of
PC-based UQ-methods in computational fluid dynamics is given in [I03]. The ansatz of
polynomial chaos is to choose orthogonal polynomials for the functionals v; in the expan-
sion . This approach requires a bounded variance and mutual independence of the
random variables. The deterministic coefficients ; are also called modes of the respective
PC expansion.

A classical PC expansion for Gaussian distributed random variables is given by Hermite
polynomials. Other combinations of suitable stochastical distributions and types of polyno-
mials can be determined via the Askey scheme of polynomials [5, [145]. This is known as
generalised PC in the literature.

As motivated in section the uncertain parameters considered in this work are uni-
formly distributed. According to the Askey scheme, it is suitable to use Legendre polynomials
to construct the chaos polynomials for uniform parameter distributions:

13/2] ’
. k (25 — 2k)! =
£lo)= ;)(_ F e et v L (4.24)
with A
; :
. 5 ] even
/2] =133, ° : (4.25)
“5-, J uneven

The first six Legendre polynomials are illustrated in Figure
Integration over the interval [—1,1] gives

[ 11 Lo(x)de = [ 11 1dz = 2, (4.26)

1
/ Li(x)dx =0, for j >0, (4.27)
-1
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Figure 4.3: Legendre polynomials of degree j =0,...,5.

and Legendre polynomials have the following orthogonality property:

2

1
/ Li(z)Ly(z)dr =
-1
The chaos polynomials 1); in the expansion (4.23)) are defined on an N-dimensional sam-
ple space 2. They can be written as a tensor product of the one-dimensional Legendre
polynomials. This involves the notation of a multi-index

ol =(od,... ,ozgv) c NY. (4.29)
The tensor product reads
N
Vi (W) = Poi (W) = [[ £, (wi), we. (4.30)
i=1 '

Given the number of stochastically independent parameters N and fixing the maximal
degree of the Legendre polynomials P, the number of PC modes M can be calculated (cf. [57])

to: (N P)'
+ Pl
MA1 =55

A mapping from the PC mode index j = 0,..., M to the multi-index o/ can be defined
in the following way [87]:

(4.31)

1. Set ay =0,i=1,...,N.
2. For P > 1.
(a) Set ag =0, j,i=1,...,N.
3. For 4 > 2:
(a) Let p € NY*F be a matrix of indices.

(b) Set p;1=1,1=1,...,N.
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(c) Set n = N.
(d) For k=2,...,P:
i. Set p;r = Z%:ipmk,l, i1=1,...,N.
ii. Set [ =n.
iii. For j=1,...,N:
Form=1—-p;r+1,...,[
A Setn=n+1
B. Set o} =", i=1,...,N.
C. Set aff =af + 1.

Let (¢,¢) = [o¢(w)(w)dw be the scalar product over the stochastic sample space.
Then, the following orthogonality property holds for the chaos polynomials of two modes
J, k € Ny by the independence of the stochastical dimensions and with equation (4.28):

wj,ww—/Hc (i) fV[

o e

4.32
sk Hl 20 +1 (432
Furthermore, integrating a PC polynomial results with (4.26)) and (4.27) to
/ i(w)dw = 80,27, for j € No. (4.33)
Q

By the orthogonality (4.32), the chaos polynomials 1; give a basis for the function space
over €). The modes in equation (4.23]) can be expressed as orthogonal projection:

O 6Y)

As an example, the random input parameters of the uncertain inflow velocity (3.64) and
the Young’s modulus (3.65)) have the following PC expansion:

q(w) = g+ qu

qLo(w1)Lo(w2) + GL1(w1)Lo(w2)

qYo(w) + g1 (w), (4.35)
Y(w)=Y + Yuws

Y Lo(w1)Lo(wa) + Y Lo(w1)L1(w2)
= Yiho(w) + Yiba(w). (4.36)
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The PC expansion of a solution variable x (4.23]) can be inserted in the definition of the
stochastical moment operator (3.66:. Using the equations (4.32) and (4.33)), the expected
value (3.62) and variance operator :3.63) then become

Bl = |30 xus ()" (w)de
=0

:/QXOT;ZJO(W)idW
= X0, (4.37)
o= | (x(w) — BPP(d)

2
-/ (_z wxw)) £ ()

(4.38)

In the following, both an intrusive and a non-intrusive method for UQ in FSI-simulations
are presented based on the PC expansion method.

Intrusive Galerkin projection

Galerkin projection methods belong to the class of intrusive methods. Hereby, the random
solution variables are projected onto a basis of the stochastical function space.

In the following, a Galerkin projection approach is described, which is used to approximate
solutions of the benchmark problem presented in section[5.2] The benchmark problem is based
on the stationary version of problem with a linear elasticity equation. Furthermore, the
benchmark does not include an outflow boundary. This way, it is possible to derive an
analytical solution of the benchmark problem. The analytical solution is used to verify the
correctness of the implemented numerical methods.

Following the Galerkin projection approach, the PC expansions for the displace-
ment, velocity and pressure fields are inserted in the variational stochastic FSI equation of
problem 2] Hereby, the non-linearities induced by the ALE-mapping in the fluid domain lead
to the occurrence of high order stochastic Galerkin tensors. However, the definition of the
benchmark problem (cf. section allows for a reduction of complexity in assuming that
the ALE-displacement u;|pe is not a PC coefficient, but a continuous continuation of the
respective structural displacement PC mode u;|ps.

Insertion of the truncated PC expansions in the stationary version of the FSI equa-
tion (3.59) with the linear elasticity equations and applying the Galerkin projection on the
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PC basis, the equation reads as follows

(

M M
ZZ ()\1] (Vu)I 4 Ao j(Vay + Vul) c]lk,VwU

)

(Z Z JeF v - Ve, by

=01=0

D=

! (4.39)

+ (v (Vor ' + FL TVl ) FiT, Vo, ;

~

- (kaka];Ta V%)

)
) + (Tetr(VorFy ), )
), =

+ (Ve V)

for all modes k =0,..., M.

The indices j,I, k of the variables refer to the respective PC modes. As a result of the
projection, the notation includes the third order stochastic Galerkin tensor

(i, )

L k=0,... M. 4.40
<¢k7¢k> Y ( )

Cjlk ‘=

The dependency of the PC modes of the Lamé coefficients A; and A2 on the modes of the
Young’s modulus is given by .

Details on the considered benchmark are given in section The linear solver utilised
for the benchmark is described in the last section [4.2.5| of this chapter

Non-intrusive collocation

Collocation methods approximate solutions of random variables by means of point evaluations
in the stochastic space. Thus, each collocation point is given by a deterministically computed
value. In the case of a partial differential equation, each of these values is represented by a
single deterministic simulation run. In this manner, one can speak of a non-intrusive method,
as an already existing solver implementation can be used to calculate the collocation values.
Various methods do exist to calculate the moments and probability distributions of random
variable solutions based on a set of collocation points, such as the Monte Carlo method .

In this work, a PC-based collocation method is used to evaluate the three-dimensional
numerical experiments given by the aortic phantom (section and an aortic bow
with respect to the stochastical problem dimensions. For these scenarios, one cannot make
the simplifying assumption used for the intrusive Galerkin projection, that the PC modes of
ALE-displacement field do not couple with the different PC modes of the fluid velocity.

Instead, a collocation method based on chaos polynomials can be derived as illustrated
in the following (cf. [L05]).

By the orthogonal projection , the PC modes can be written as scalar products.
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The integral of the scalar product can be approximated by a quadrature rule:

1
= s [ )de
T (W) Jo ’

€

~ o > Cax(@)¥i(a), (4.41)
(v5,5) qezé R
with @ C Q denoting the set of quadrature points. The quadrature weights are given by

(g €10,1], for g € Q with > (g =1. (4.42)

qeQ

In this work, the Gauss-Legendre quadrature is used, which is optimal for integrating
arbitrary polynomials. It is exact for polynomials of maximal degree 2#Q — 1. As the
random variable x is approximated by a PC expansion of degree P, the maximal polynomial
degree of the integrand in equation can be approximated by 2P. By this means, setting
the quadrature order to #9 = P + 1 yields an exact integration rule. For the stochastical
domain considered in this work Q = [—1, 1]?, the quadrature points for a PC degree of P = 4
are illustrated in Figure 4.4

1o e e | e e e

-1 0 1

Figure 4.4: Gauss-Legendre quadrature points for a quadrature order of #Q = 5.

With the approximated PC modes, the mean value and the variance can be computed

via (4.37)), and (4.38]), respectively. The stress overload probability (3.72)), too, can be ap-
proximated with the help of the Gauss-Legendre quadrature rule:

~ || > CofF(a)
q€Q,7(g)>Tmax

S gqi. (4.43)

q€Q,7(g)>Tmax
In the implementation for this work, the solver presented in the next section is
used to compute numerical solutions to the deterministic problem. The collocation method

is executed via a Python script using the open source framework ChaosPYﬂ for the UQ
parts [42]. The essential functions of the script are listed in the appendix in section

9github.com /jonathf/chaospy
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4.2.5 Problem-specific linear solver

In the previous sections of this chapter, the discretisation methods utilised in this work have
been presented. In the deterministic case as well as with the stochastic intrusive and non-
intrusive approaches, the discretisation leads to liner systems of equations for the steps of

the Newton method (4.21)):
Mz = b. (4.44)

In all scenarios considered in this work, the corresponding system matrix is unsymmetrical
and of a sparse structure.

For the numerics on the solution of linear systems of equations in general, the reader
is referred to [6I]. In general, linear solvers can be classified in direct or iterative methods.
Direct methods invert the system matrix at machine precision and therefore compute solutions
accurately. The problem sizes considered in this work are too large for direct solvers in
terms of computing demand. Suitable iterative solvers can approximate solutions much more
efficiently to a required accuracy.

A family of standard iterative methods is given by Krylov subspace methods. A compre-
hensive introduction to Krylov subspace methods is given in [89]. Krylov subspace methods
reduce the complexity of the given problem in determining an approximation to the solution
in a subspace of a dimension significantly smaller than the dimension of the original problem.
For the unsymmetrical system matrix and unsymmetrical submatrices, the flexible or the
standard generalized minimal residual ((F)GMRES) method is used. The symmetric sub-
problems are solved with the conjugate gradients (CG) method. Assuming a rounding error
free computation, both methods are capable of computing the exact solution after spanning
the full Krylov subspace. Therefore, they can be seen as direct methods. However, a conver-
gence of the approximation towards the solution can already be achieved at a much smaller
number of iterations.

In general, the convergence of Krylov subspace methods depends on the condition number
k of the respective system matrix M € R%? With respect to the Euclidean norm we have

Umax(M)

ra(M) = [MI M e = 250,

(4.45)

Hereby, omax and o, denotes the maximal and minimal singular value, respectively.
Analogously, the maximal and minimal eigenvalues are denoted by Apax and Amin-
For the residual r, := Mz, — b of the n-th iteration we have the following convergence
estimation in the case of the GMRES method:
n/2
Noin (5M” + M)

< —
H"”n”Z < |1 )\maX(MTM)

lI7oll2,

and for the CG method: .
ka(M) —1
rolle < 2| Yr—t— ro0ll2.
7ol ( @M®+J|um

Fluid flow and elasticity problems, respectively, and all the more a monolithically cou-
pled FSI problem belong to the numerical class of stiff problems. Numerically stiff problems
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possess a relatively broad distribution of eigenvalues and consequently a high condition num-
ber k > 1. To nevertheless achieve convergence, equation can be extended by means
of a preconditioner P € R4*¢:

MP1Px =b. (4.46)

In the case of

1 < K(MPY) < (M),

the numerical convergence of a Krylov subspace method is usually considerably faster for
MP 1y =0 (4.47)

With the solution of
Px =y, (4.48)

the approximation to the solution of can be obtained. Accordingly, the basic idea of
preconditioning is to define an operator, which is similar to the system matrix in its principle
effects P ~ M reducing the spectrum with x(MP~!) ~ 1. The usage of a preconditioner is
beneficial as soon as the costs for a repeated inversion of P is computationally cheaper than
inverting M once without preconditioning.

There are problem-independent preconditioners, that can be used, if the system matrix
has the required properties. However, often, a more efficient approach is to use a problem-
specific preconditioner that exploits the given structure of the system matrix. Nevertheless,
the development of efficient preconditioners for FSI problems is still a challenging effort.

A problem-independent, so-called black-box preconditioner is given by the incomplete LU
decomposition [98], which has been applied to an FSI problem in [I4I]. Multigrid methods
for preconditioning can be equipped with problem-specific smoothers as done in [116] for a
geometric multigrid (GMG) and in [55] for an algebraic multigrid (AMG) approach. Ideas
on utilising the block structure of the system matrix for a problem-specific preconditioner
are given in [79]. A block-based preconditioner has been applied to hemodynamical problems
n [32]. However, to the knowledge of the author, problem-specific solvers for FSI combined
with UQ have not been published yet.

In the following, first, a solver for the intrusive approach (see equation ) is described.
Subsequently, a preconditioner based on the Schur complement (SC) method is presented,
which can be used for the computation of the collocation points x(¢) in .

An FSI solver for intrusive UQ

The system of equations states a variational equation for each PC mode k =0,..., M.
Each of the variational equations is similar to the deterministic counterpart. Linearisation
(cf. section and discretisation in the spatial dimensions by the FEM (cf. section
leads to a linear system of equations, which is M + 1 times larger than the deterministic
System .

To create the Jacobian system matrix and right hand side of the linear system of equa-
tions for every Newton iteration, the FEM software package HiFlow? is used. In particular,
HiFlow® has a UQ module providing the coefficients of the stochastic Galerkin tensor
as described in [54].
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The linear system of equations is solved in parallel with the GMRES method implemented
in HiFlow®. To precondition the system matrix, a multilevel incomplete LU decomposition
method in Crout’s formulation [98] is applied with inverse-based dropping. For this, the
software ILU++ [97] is used.

A Schur complement solver for FSI problems

To compute both, the deterministic benchmark problem (see section and the collocation
points for the blood flow simulations under uncertainties (see chapter @, this work includes
the development of a problem-specific preconditioner. This preconditioner utilises the block
structure of the Jacobian system matrix of equation . The block structure of the matrix
is given as follows:

1 \
=M 0 | 0
k
IM+L | bM 0! 0
‘ \ 0 L1 0 0 0
I U 7 N A S S
Juu : NEL : Jvp _ & ; 0 :EM 1 N 0 :O 0 (449)
" P e gep £+A ‘ M D
' ' 0 A1 0 N
o T T T T T L I A
0 o D0

Hereby, the lines and rows are ordered by the degrees of freedom firstly of the variables
and secondly of the domain, they belong to. The domain numbering respectively begins with
the solid domain, then counts the degrees of freedom at the fluid-solid interface and ends with
the fluid domain. Since the elasticity equation does not include the pressure as a variable on
the solid domain, the degrees of freedom for the pressure only account for the interface and
the fluid domain.

For the following definition of the submatrices, the scalar product notation is used, since
the quadrature rule is chosen to be exact for the polynomial ansatz and test functions of the
finite element discretisation. Here, j denotes the respective degree of freedom for the ansatz
shape function and ¢ denotes the respective degree of freedom for the test shape function.
The variables and the strain tensors at the respective Newton iteration n are discretised as
finite element functions, indicated by h. Variables of the previous time step are indicated
with [ — 1.

The mass matrix occurs several times in the Jacobian matrix:

Mij = (s, ¢3), -
The fluid mesh movement model results in the Laplace-like matrix

o -1 -1 . h,n . -1 . .
Lij == (J'a(F~' Vi) Vu ,wz)f + (771, sz)f.
The matrix for the solid stress tensor has the form

0
&ij = (Vio; (Mtr(E) + 200E), Vi)
0 1
+ p (F(A12tr(vwa + FTVY)I + o (V] F + FTVy;)), Wi)

S
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A large number of terms results from the linearised ALE-mapping of the fluid domain to
the time-dependent configuration:

. 0 1 hon hil—1

A = (Jtr(F V) (v"™" — v ),@Di)f
1 1 N1/, hn hyl—1 hn

—%(Jtr(F V%)F (u —u )'V’U 71/}z)f

1, . _ n
+%(JF Ly P (uhm — w1y . vl ,¢i>f

- % (7P w0t )

+0 (Jer(FI Ty, F~ 1ol vl wi)f — 0 (JF'Vy ot vt wi)f
+0v (Jtr(F~ V) (Vo Pt 4+ vk T Vd}i)f

— v (J(Vo" " FIVy, P+ F vyl Py ) FT, Vz/%)f

— v (J(Vo" F 4 FTTvoh ) FTVyl FT, vwi)f

1 B o 1 . B
-5 (Jte(F' ) p"" F T,v¢,-)f+ ; (Jp" "'yl F T,wz-)f
—Ov (Jtr(F‘lij)F_TVvh’”TF_T??, ¢z’)

out

'y (JF_TVzb;‘-FF_TVvh’”TF_Tn, q/;i)

out

+ 0v (JF_TV'uh’"TF_va;"FF_TU, T/Ji)out

+;(Juu’1vw»ﬁ“f’Tm¢ﬂmn—;(Jﬁ“f’vafFfmwo

out

The terms for the time derivative, convection and the fluid stress tensor of the Navier-
Stokes equations yields the matrix

Ny =5 (19,1)
2 (TR @ - ) V)
+0 (JF ;- Vo, @z)l-)f +0 (JF 1o vy, @z}i)f
+ 0v (J(w)jF—l + FTvyl)FT, v@bi)f

— v (JF—TWJTF—Tn, ¢i)

out

The pressure term of the Navier-Stokes equations results in
D= 1 (sz-F*T vw') :
¥ P i ) 7 f
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The linearised ALE-mapping of the divergence term gives another part of the matrix
A = (Jer (P (Voh P, @z)z-)f

~ (Jee(vo F g F Y, @z)l-)f .

Finally, the divergence matrix of the Navier-Stokes equations reads

T)ij = (Jtr(V¢jF_1), ¢Z>f .

A problem-specific preconditioner for the system matrix can be developed by the
SC method nested in two steps. The SC method is based on a block Gaussian elimination
step on a 2 x 2 block system. It has been frequently used for example for solving the saddle
point matrix resulting from incompressible Navier-Stokes problems [127, [33].

In general, a 2 x 2 block matrix can be decomposed in the product

M — A B| |A 0| |I A'B
/¢ Dp| |c I||lc S |’
with the SC matrix S := D — CA~'B. For the linear system of equations

¢ o)=L

the solution can then be obtained via successively solving

Sy=g—-CA'f,
Az = f — By.

Applied to (4.21]), the first part of the nested SC approach separates the computation of
the displacement and the velocity-pressure field. With the solution of the SC equation

u § h Lh,k LL Juu i

the velocity-pressure field is obtained. With
5uh — Juu—l Lh’k(wh) o [JU'UJUP} Svh
u 5ph

the displacement field is computed. The SC matrix S" is defined as follows

J o JeP Jo uu—1 UV TJU
St = [Jpv Jpp] - [qu] Juut e ger] . (4.51)

The SC equation (4.50) is a linear system of equations that can be seen as a discrete
Navier-Stokes problem on the fluid domain and a mass operator with further terms in the
system matrix on the solid domain. Since the method is meant to be used as a preconditioner,
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it is sufficient to compute an approximation to the SC equation. The SC system matrix (4.51))
can be approximated by exploiting the block structure of the matrix (4.49) and neglecting
the fluid domain terms for the degrees of freedom on the fluid-structure interface:

& 0 )
E4+ A L o] 0
o) vp k
St = pr jpp]_ 0 A M+ L Mo 0
0 0 L 0 0 0
_Ap
0
- £ 8 0 0
vV vp -1 _
~ jpv jpp]— 0 0 AY kM 0 oM 0 0
L 0 0 0 L£7']0o 0o 0
AP
0
rl
1M 0 00 0
k
IMAN . R 0 o
=10 N +10 0 0
8 D 0 0 0
With that, we set
) M+ OkE 0
Jov = TM +0kE + N : (4.52)
0 N

To solve the SC equation (4.50)), the flexible GMRES method is used. Again, the SC
method can be used for preconditioning in a second part of the nested method. This second
part splits the computation of the velocity and the pressure field. The corresponding SC

equation reads

SUoph =g — Jr I g, (4.53)

with the SC matrix .
SV = —JPv jJuv " JvP, (4.54)

and the right-hand side of equation (4.50)

h,k (,,h VU
{-[£3)- )e

The velocity field is then updated via
sl = Joot ( fo J”péph> .

Also the second SC equation (4.53) is solved with the flexible GMRES method. The
second SC matrix (4.54]) is preconditioned by the approximative inversion of the semi-implicit
method for pressure-linked equations (SIMPLE) approximation [33] to &Y

S~ 8 1= —JPdiag(J™) JP. (4.55)
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The matrix S? can explicitly be computed by a matrix-matrix multiplication.

For the approximative inversion of the predominantly symmetric matrix J** the CG
method is used and for the unsymmetric matrix J** the GMRES method is used as the
solver. All of the three matrices are preconditioned with the AMG method, available as
BoomerAMG [64] in the open source software package HYPRHY|[41], version 2.13.0. For the
SC method, the implementation of the method in HiFlow?, version 2.0, is used.

M—l

SC, part 1 Juu—l

(o

Figure 4.5: Linear solver routine with a nested Schur complement approach for precondition-
ing the linearised, discrete FSI problem. The blue rectangles indicate the respective linear
operator that is to be inverted. The utilised linear solvers are named in the green diamonds.
The orange ellipsis give the preconditioning methods of the linear subproblems.

A summary of the full linear solving algorithm is illustrated in Figure In each Newton
iteration (cf. section , the full linear system of equations is iteratively solved by the
FGMRES method. It is preconditioned with a first application of the SC method, splitting
the problem with respect to the displacement variables (system matrix J**) and the velocity
and pressure variables (system matrix S*). Preconditioning the iterative inversion of S" is
achieved by a second application of the SC method. This leads to the subproblems for the
velocity variables (system matrix Jv) and for the pressure variables (system matrix S).

Ocomputation.llnl.gov /projects/hypre-scalable-linear-solvers-multigrid-methods
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5 Numerical benchmarking

This chapter addresses the verification and benchmarking of the numerical solver presented
in section 4.2l For the benchmarking of the deterministic FSI solver, a widely recognised
benchmark, presented in [I36], is used. The benchmark was run with various numerical
solvers before, with a summary of the results in [I37]. In section a reproduction of
the benchmark quantities with the numerical solver developed in this work is presented.
Additionally, the implemented solver is examined with respect to its parallel scalability.

An overview on further benchmarks for different aspects of FSI problems is given in [10].
To the knowledge of the author, FSI benchmark problems with an analytical solution have
not been published before. Therefore, a new benchmark for FSI problems with uncertain
parameters is derived in section The benchmark problem has an analytical solution,
which enables the exact evaluation of the discretisation error.

5.1 Results for a deterministic FSI benchmark

For the verification and benchmarking of the FSI solver developed and implemented in the
course of this work, a widely recognised benchmark problem is used. The benchmark is
proposed in [136]. It can be seen as an extension of the laminar flow around a cylinder
benchmark [I2I], whereby an elastic bar is attached downstream at the cylinder. A com-
parison of various solver implementations by means of this FSI benchmark is given in [137].
The FSI benchmark is based on a two-dimensional geometry and comprises three cases with
different model parameters. In this work we focus on the FSI3 case, which has an instationary
solution.

In the following section a short description of the FSI benchmark is given. Sec-
tion presents the evaluation results for the benchmark quantities. Finally, results for
the parallel scalability computing the benchmark are shown in section

5.1.1 Flow around a cylinder with an elastic bar

The geometry of the benchmark is shown in Figure and the specification of the geomet-
rical parameters is given in Table The geometry is based on the CFD benchmark of a
laminar flow around a cylinder [121] with a rectangular channel and a circular obstacle at the
beginning of the channel. The FSI benchmark extends the CFD benchmark with an elastic
bar attached downstream to the obstacle.

In the FSI benchmark, the fluid flow is modelled as an incompressible Newtonian fluid and
mathematically described by the incompressible Navier-Stokes equations. The model for the

65



5. NUMERICAL BENCHMARKING

€9 H O:I

.

(0,0)

L

(a) Rectangular channel of the height H and the length L. Also, the orientation and the origin of the
coordinate system are depicted.

T™SE ) AT

l

(b) Circular rigid obstacle around the centre point C' with the radius r. The attached elastic bar has
a length [ and a width h. Additionally, the reference point A for measuring the displacement of the
centred end point of the bar is marked.

Figure 5.1: Geometry of the FSI benchmark adopted from [136].

Parameter Symbol | Value in [m]
Channel length L 2.5
Channel height H 0.41
Obstacle radius r 0.05
Obstacle center C (0.2,0.2)
Bar length l 0.35
Bar height h 0.02
Bar end point A (0.6,0.2)

Table 5.1: Geometrical parameters of the FSI benchmark.

Parameter Symbol Value
Density ) 1 x10°kgm™
Kinematic viscosity v 1x103m?s7!
Poisson’s ratio ¥ 0.4

2nd Lamé coefficient A2 2 x 105 kgm~1s72
Inflow speed ol 2ms~!

Table 5.2: Model parameters and their values.
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elastic material is given by the STVK constitutive law. This modelling approach results in
the two-dimensional version of the system of partial differential equations as stated in .
The values for the model parameters are given in Table

The obstacle as well as the upper and lower boundary of the channel are rigid and conform
to a no-slip boundary condition for the fluid flow. The left side of the channel at the origin
is the inflow with a prescribed inflow velocity profile. This profile corresponds to the two-
dimensional version of the Poisseuille inflow boundary condition as defined in equation
with 8 = 2:

00, y) = 1.5viny((g/;)7;’), vi0,y) =0, for 0<y<H. (5.1)

At the outflow boundary on the right side of the geometry, a pressure boundary condition
is prescribed with a zero mean pressure p°** = 0 in equation . This corresponds to the
do-nothing boundary condition for the incompressible Navier-Stokes equations.

The definition of the Reynolds number for this benchmark is given by the ratio of the
effective inflow speed times the diameter of the circular obstacle to the kinematic viscosity:

v 2r

1%

Re = = 200.

The Reynolds number can be seen as a parameter for the ratio of inertial forces to viscous
forces, and allows for the characterisation of a flow field with respect to its turbulence. At a
value of Re = 200, a flow field is usually laminar with light vortex formation.

Similar to [I36], the initial condition for the benchmark computation is chosen in a way
such that the simulation can smoothly start with zero values in the variables:

(5.2)

in vi(0,y)3(1 — cos(m+5)), 0<t<0.2,
o (O,y,t):{ 1( )2( ( 0.2))

v(0,y), t>0.2.

5.1.2 Benchmark results

The benchmark problem has been discretised and numerically solved as described in sec-
tion Hereby, gmslﬂ [56] has been used to create discrete FEM meshes of triangular cells
at different refinement levels. The simulations for this work were carried out on the BwFor-
Cluster MLSEWISO ProductiorE] located at Heidelberg University. The computational costs
ranged from 1 hour wall time on 2 CPU cores for the smallest mesh refinement R1 to 30 hours
wall time on 64 CPU cores on the highest mesh refinement R4. The number of FEM degrees
of freedom for the different mesh refinement levels is given in Table A visualisation of
the benchmark simulation is illustrated in Figure [5.2

For the verification of a newly implemented FSI solver, ten values for comparison are
defined for the FSI benchmark in [I37]. The first four values are given by the mean and max-
imal displacement of the reference point A in horizontal u;(A) and vertical direction us(A).
Additionally, the frequencies of these periodical displacement values, f1, fo, respectively, can
be compared. Furthermore, the mean values and amplitudes of the drag and lift forces on
the obstacle together with the elastic bar are used. The drag force Fp and lift force Ff are

1 .
gmsh.info
Zwww.bwhpc-c5.de/wiki/index.php/Category:BwForCluster  MLS%26WISO_Production
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u 1 [m]
4.83e-04

4.21e-05
+-3.99e-04
©.8.40e-04

(a) The displacement in horizontal direction.
u_2 [m]
1.55e-02

1.03e-02
- 5.16e-03

£ 0.00e+00
(b) The displacement in vertical direction. The elastic bar periodically flaps up and down.

|v| [m/s]
435

- 2.90
1.45
0.00

(c) The magnitude of the velocity field. The downstream flow shows vortices towards a Kdrmén vortex
street.

o0, 40 @EE |
S % *adan -

(d) The pressure field in the fluid domain with contour lines.

Figure 5.2: Visualisation of the FSI benchmark simulation at a time step of an instationary
and fully developped downstream flow.

‘ Mesh refinement ‘ R1 R2 R3 R4 ‘

# dofs 9048 32,507 126,574 502,962

k 0.002 0.001 0.0005 0.001
ui (A ) [10 m] —1.87+£1.75 —2.70 £2.54 —2.94+2.77 —2.94+2.77
uz (A ) [107° m] 2.58 + 26.36 1.24 4+ 33.70 1.45 4+ 35.32 1.44 4+ 35.33

f1 [s71] 10.73 10.83 10.94 10.96

f2 [s7Y 5.36 5.42 5.47 5.48

Fp [N] 387.10 £12.72  422.10 +22.54 455.20 +27.06 459.20 + 27.96

Fr, [N] —24.18 +139.30 5.45+155.60 2.67+159.30 2.69 £ 161.70

Table 5.3: Results for the computation of the benchmark values. The second row gives the
number of degrees of freedom (dofs) for the respective mesh refinement level. The third row
gives the respectively utilised discrete time step length k.
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calculated by the boundary integral of the fluid stress tensor over the fluid-structure interface
B! and the obstacle boundary B°:

1
(Fp,Fp) = / <VJ (VvF_l + F—Tva) FTy JpF—T) nds. (5.3)
Biuge P
— I —
g -2 N = 4 N
| x |
g =30 " N g 3 _ N
= 4 | = )
‘5 | | | | IS 2 . ’\‘ | | | |
R1 R2 R3 R4 R1 R2 R3 R4
(a) Mean horizontal displacement. (b) Horizontal displacement amplitude.
. 1 T T T . T T T T
m& 25 . m& 40| i
| |
=20 1 2. 351 _ .
T 150 | T 30) 1
'S \ X \ \ '3 o5 L% \ \ -
R1 R2 R3 R4 R1 R2 R3 R4

(c) Mean vertical displacement.

(d) Vertical displacement amplitude.

Figure 5.3: Benchmark results for the displacement of point A with respect to different mesh
refinements. The values computed in this work are marked with blue crosses. The various
reference values from [137] are delineated with black lines.

T T
11.5 8 x x
— 54 .
Im 11 % x| ‘v)
- . = 5o .
= 10.5} 8 =
10 . . [ 51 \ . . L
R1 R2 R3 R4 R1 R2 R3 R4

(b) Frequency of vertical displacement.

(a) Frequency of horizontal displacement.

Figure 5.4: Benchmark results for the displacement frequencies with respect to different mesh
refinements. The values computed in this work are marked with blue crosses. The various
reference values from [137] are delineated with black lines.

All benchmark values are computed as averages over 10 periods of vertical flapping of
the elastic bar. The resulting values are given in Table with respect to several mesh
refinement levels.

The figures and [5.5|compare the results in Table[5.3|with the reference values given
in [I37]. Each of the reference values is delineated by a black line. The specific values and the
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40 - A
Z 450 N Z 301 ] N
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(a) Mean drag force. (b) Drag force amplitude.
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(¢) Mean lift force. (d) Lift force amplitude.

Figure 5.5: Benchmark results for the drag and lift forces with respect to different mesh
refinements. The values computed in this work are marked with blue crosses. The various
reference values from [137] are delineated with black lines.

respectively applied numerical method are described in [137]. In the plot’s y-axis labels, a bar
denotes the mean values and the amplitudes are denoted by a tilde. For the refinement levels
R1 and R2, the discretisation error is relatively high, but a clear experimental convergence
is visible for the plotted values. The results for the mesh refinement levels R3 and R4 are in
very well accordance with most of the reference values.

5.1.3 Parallel scalability for the 2D problem

This section evaluates the parallel scalability of the problem-specific linear solver presented
in section by means of the FSI benchmark. In introduction to parallel computing with
the definitions of scalability used in this section is given in [96, [I]. This scalability study
was carried out on the standard nodes of the BwForCluster MLSEWISO Production. Each
standard node had two Intel Xeon E5-2630v8 processors on a Haswell architecture with 16
CPU cores at 2.4 GHz and 64 GB working memory. The network for MPI communication
between the nodes was an Infiniband interconnect of Quad Data Rate (QDR).

For this scalability study, the model parameters are chosen as described in the previous
section The configuration of the subroutines of the linear solver is summarised in
Table It also shows the values for the preconditioner BoomerAMG (cf. section ,
that differ from the default configuration provided by HYPRE. The tolerance of the Newton
method is chosen such that it takes approximately 3 to 4 Newton iterations to compute a time
step. Independently of the respective Newton iteration, the linear solver is set to decrease
the residual of the linear system of equations with 3 orders of magnitude. This allows for the
investigation of the scalability of the average number of iterations the linear solver requires
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to reach the relative tolerance. The number of iterations as well as the computational costs

are computed as averages over the physical time period from 0.1 to 0.2.

’ Operator ‘ Method ‘ Parameter Value
M1 FGMRES Relative tolerance 0.001
M1 FGMRES | Maximal iterations 100
Juu—l o guv=l-gv AMG Cycle type V-cycle
Juu—l  jquu—l Qv AMG Aggressive coarsening On all levels
Juu=l ool Qv AMG Interpolation type Multipass interpolation
Juu=l o=l Gu AMG Coarsening type HMIS-coarsening
Juu—l guu=l Gu | AMG Relax weight 1
Juu—l  jquu=l Qv AMG Strong threshold 0.7
Su—t FGMRES Relative tolerance 0.25
Su—t FGMRES Maximal iterations 50
Juu—t CG Relative tolerance 0.001
Juu—l CG Maximal iterations 10
Juu—l AMG Number of iterations 1
Juu—l AMG Relax type hybrid sym. Gauss-Seidel
Juu—l AMG Number of sweeps 2
Svt FGMRES Relative tolerance 0.05
Sv—t FGMRES Maximal iterations 50
Juv—l GMRES Relative tolerance 0.03
Jrv—t GMRES Maximal iterations 10
Jro—l AMG Number of iterations 1
Jvv—t AMG Relax type hybrid Gauss-Seidel, forward
Jrv—l AMG Number of sweeps 3
Sv AMG Maximal iterations 10
Sv AMG Relative tolerance 0.03
SY AMG Relax type hybrid sym. Gauss-Seidel
SY AMG Number of sweeps 3

Table 5.4: Configuration of the solver subroutines (cf. Figure i for the FSI benchmark.

The number of the degrees of freedom and the utilised time step length for this scalability
study is shown in Table [5.5] The edge length of a mesh cell is approximately halved from
one refinement level to the next. Accordingly, the time step length is halved from one level
to the next.

Strong scaling results

The number of iterations of the linear solver averaged over all Newton iterations in the
physical time period from 0.1 to 0.2 is shown in Figure [5.6

Firstly, the average number of iterations of the linear solver is below 5 iterations in all
cases. Hence, it can be said, that the problem-specific preconditioner presented in this work,
suitably addresses the complex structure of the FSI benchmark problem.
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Mesh refinement | # dofs k
R2 32,507 0.001
R3 126,574 0.0005
R4 502,962 | 0.00025
R5 1,992,429 | 0.000125

Table 5.5: The number of degrees of freedom (dofs) of the respective mesh refinement level
and the respectively utilised discrete time step length & for the scalability study.

Secondly, the number of iterations for each of the mesh refinement levels R2, R3 and R4
is almost independent from the degree of parallelisation. Though varying more compared to
the other refinement levels, the number of iterations for R5 also does not show an upward
trend. Thereby one can conclude, that the presented preconditioning method is well scalable
in the investigated range of mesh refinement levels and CPU cores with respect to the number
of iterations of the linear solver.

I I [ T
% R2 A A
R3 /’*/ \\ // \\
+ AV \
é} 4 5F R4 \+,‘ \ .
g -+-R5 .
=2 Y
<
3]
= 4] |
H
350 ¢ .
| | | |

| | | |
2 4 8 16 32 64 128 256
# CPU cores

Figure 5.6: Average number of iterations of the linear solver for a relative decrease of the
residual of 3 orders of magnitude. The results for the respective refinement levels are plotted
over the number of utilised CPU cores.

For the respective sub-solvers of the preconditioner (cf. Figure , the pre-defined
maximal number of iterations is given in Table[5.4] This limit is not reached in the benchmark
simulations, such that the sub-solvers always reduce the residual by the respectively defined
relative tolerance.

The computational costs of the presented linear solver are evaluated by means of the av-
erage wall time to compute one Newton step. The results for the considered mesh refinement
levels are shown in Figure For the highest resolution R5, the problem size was too big
to be computed on 2 or 4 CPU cores. For the mesh refinement R2 and a number of 16 CPU
cores and higher, the computations gave erroneous results on the utilised computing cluster,
which did not occur on other cluster systems.

The wall time for the computations with the smallest number of CPU cores ranges from
58.8s for the mesh refinemenet level R4 to 0.174s for R2. Initially, an approximatly log-log
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(a) Average wall time of the linear solver for a  (b) Strong scaling efficiency of the linear solver
relative decrease of the residual at 3 orders of  based on the average wall time.
magnitude.

Figure 5.7: Evaluation of the computational costs and scalability of the problem-specific
linear solver for FSI problems by means of the wall time. The results for the respective
refinement levels are plotted over the number of utilised CPU cores.

linear decrease of the wall time is observed when increasing the parallelity. The refinement
levels R3 and R4 show a minimum at 32 and 64 CPU cores, respectively. For R5, the wall
time monotonously decreases up to 256 CPU cores.
Figure [5.7D] shows the strong scaling efficiency with respect to the wall time. The strong
scaling efficiency is given by
nT,
NTyn

where n denotes the smallest utilised number of CPU cores and T, is the corresponding wall
time. N is the respectively considered number of CPU cores and Ty denotes the wall time
for the execution on N cores.

Relative to n = 2, the solver shows a parallel efficiency of over 50 % for up to 8 and 16
CPU cores for the mesh refinement levels R2 and R3, respectively. For the refinement levels
R4 (n = 2) and R5 (n = 8), the solver shows a significant parallel efficiency of over 100 %
with a peak at 32 cores for R4 and at 128 cores for R5.

A more detailed parallel performance evaluation for the refinement level R4 and R5 is
given in Figures [5.8| and respectively. The wall time is highest for the inversion of the
Schur complement matrices. The computational costs for the AMG-preconditioned inversion
of J"¥ and J'’ are approximately the same and one order of magnitude lower than for the
Schur complement matrices. The multiple inversion of J** and J'Y is part of the inversion
of the Schur complement matrices. Hence, the performance of the latter partly depends on
the AMG-preconditioned sub-solvers. The application of AMG on SV is fastest. One main
reason for this lies in the approximately four times smaller number of the pressure degrees
of freedom, S? acts on, compared to the displacement degrees of freedom of J“* and the
velocity degrees of freedom of J".

100%, (5.4)
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the residuals are given in Table

Figure 5.8: Refinement level R4: Detailed evaluation of the computational costs and scala-
bility of the sub-solvers of the problem-specific preconditioner (cf. Figure .The results for
the refinement level R4 are plotted over the number of utilised CPU cores.
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Figure 5.9: Refinement level R5: Detailed evaluation of the computational costs and scala-
bility of the sub-solvers of the problem-specific preconditioner (cf. Figure .The results for
the refinement level R5 are plotted over the number of utilised CPU cores.

With regard to the strong scaling efficiency in Figures and all sub-solvers
except for the sub-solver for S show almost the same behaviour as the overall efficiency
of the linear solver in Figure An explanation for the scaling efficiency peaks being
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significantly higher than 100 % could be given by the access to the different memory-layers
of the employed hardware resources. As the amount of data each processor has to compute
on gets smaller with increasing parallelisation, the ratio of data that can be kept in the
fast processor cache increases. Less data has be read from the relatively slow main memory
until the respective problem size is small enough to fully fit in the cache memory. After this
threshold, the parallel efficiency usually drops again.

Weak scaling results

The weak scaling efficiency is calculated by fixing the number of degrees of freedom per CPU
core (dpc) and dividing the wall time of a low reference refinement level T), by the wall time of
the respective execution on a higher refinement level Ty with a corresponding parallelisation:

Iy
Ty 100%.

The degrees of freedom for the respective next higher mesh refinement level are almost
four times more than for the lower level (cf. Table . Hence, to keep the problem size per
core approximately constant, the wall time for the lower refinement level can be compared

to the computation of the next higher level with a four times higher number of CPU cores.

I T I T
g 100 - = -x-- 16kdpc H
> 8kdpc
= 4kdpc
L2 80
]
&
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%D 60 | SUTOVETLE B
&
% |
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| | |
Ref. R2toR3 R3 to R4 R4 to R5

Figure 5.10: Weak scaling efficiency of the problem-specific linear solver based on the average
wall time. The efficiency for the respective per core problem size (dpc) is plotted over the
weak scaling steps.

For the weak scaling efficiency, as shown in Figure[5.10] the wall time data from Figure[5.7]
is used. For the second step from R3 to R4 the weak scaling efficiency ranges from 30.6 %
for the smallest problem size per core to 64.9 % for the largest problem size per core. For the
step from R4 to R5 all values are below 50 %. For the weak scalability, not only the problem
size can have a significant effect on the efficiency results, but also the condition number of
the matrix with its sub-matrices. In return, the condition number of the FSI system matrix
typically increases with the mesh refinement level and the time step size. This effect is sought
to be counteracted by halving the time step size from one mesh refinement level to the next
(cf. Table . However, the impact of the condition number on the weak scalability results
remains an open question of this work and should be content of future ongoing research
endeavour.
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5.2 An analytically solvable UQ-FSI benchmark

Benchmark problems with an analytical solution allow for the verification of numerical sim-
ulation methods by means of the discretisation error with respect to the exact solution of
the problem. A benchmark scenario for the three-dimensional incompressible Navier-Stokes
equations with an analytical solution is presented for example in [39]. The addition of a sec-
ond phase of a solid material substantially increases the complexity of the model equations.
Hence, on the one side, the setup of the benchmark problem for the FSI equations has to be
simple enough in order to enable the derivation of an analytical solution. On the other side,
the analytical solution should be of a non-trivial structure and ideally contain all features
which the model equations are able to describe.

This section is structured as follows: At first, a new FSI benchmark problem with uncer-
tain parameters is presented in[5.2.1] To the best of the authors knowledge, such a benchmark
has not been presented by others before. In section the analytical solution of the prob-
lem is derived. Finally, numerical results are given in section

A summary of the work on and the results for this benchmark problem has already been
published as a preprint by the author in [81].

5.2.1 Benchmark description

N[5
d

Df

B
B
B
e

<
=
e

(a) A three-dimensional Taylor-Couette flow (b) A two-dimensional cut-plane of the Taylor-
system. The fluid is contained in a double- Couette flow system with a solid domain layer
walled cylinder. The inner and the outer wall D® surrounding the fluid domain Df. The il-
with radius R* and R° rotate at two different lustration indicates the geometry and boundary
speeds v}, and v, respectively. conditions of the benchmark problem.

Figure 5.11: The geometry and boundary conditions for the considered Taylor-Couette flow.

The benchmark problem presented in this work for the FSI equations with uncertain
parameters (UFSI) is inspired by the Taylor-Couette flow. As shown in Figure a
Taylor-Coutte flow system consists of two concentrically arranged cylinders. The space in-
between this double-walled cylinder is filled with a fluid. With a rotation of the inner and
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the outer cylinder wall at different angular speeds, the development of a fluid flow field is
induced depending on these boundary velocities. At a moderate to a high difference of the
angular speed, the flow field develops a number of local circular revolutions. At a lower
speed, a laminar velocity field develops. On a cut plane in two dimensions, this laminar
velocity field can explicitly be described in polar coordinates. In other words, the emerging
velocity field and the corresponding pressure field can be written as an analytical solution of
the incompressible Navier-Stokes equations.

This scenario can be extended with a solid domain of an elastic material which is layered
around the fluid domain as shown in Figure In this two-dimensional circular geometry,
the inner and intermediate circle give the boundaries Bf and B¢, respectively, of the fluid
domain DFf. The surrounding solid domain D® is bounded by the interface to the fluid domain,
given by B, and the outer circle B°. The corresponding radii are denoted by Rf, R* and R*.

The figure also indicates the boundary conditions of the UFSI benchmark problem. As
in the standard Taylor-Couette flow scenario, the angular velocity at the inner boundary is
set to a certain speed 'ug = V7. The radial velocity v/ at the inner boundary is zero. The
displacement field at the inner w/ as well as at the outer boundary w® is set to be zero.
Accordingly, the velocity v® of the material displacement on the outer boundary is zero.

In accordance with the modelling of the uncertain parametric influence as described in sec-
tion @l, the Young’s modulus Y and the boundary velocity V; are considered as uncertain
parameters of the UFSI problem with a uniform distribution:

Vf(w) =V 4wV w ~ U(-1,1),
Y(w):=Y +wY, w~U(-1,1).

The fluid flow is modelled by the stationary version of the NSE (3.25)). In the Eulerian
frame of reference they are given by

p(v-V)v—prvAv+Vp=0, in D xQ,
V.-v=0, inD'xQ,
where 2 denotes the two-dimensional stochastical domain from the modelling of the two
uncertain parameters.
For modelling the stationary elastic deformation of the solid domain, we simplify the
STVK elasticity equation (3.42)) under the assumption of small deformations. In this case,

the deformation can be measured with the infinitesimal strain tensor (3.35)). The resulting
elasticity equation is linear in the displacement field:

—V-o0=0, inD°*xQ, (5.9)
with

o = Mtr(e)l +2X\2e (5.10)
= M (V-u)I + Xo(Vu + Vul).

The Lamé coefficients A1 and A2 depend on the Young’s modulus Y and on the Poisson’s
ratio v as defined in equation (3.41)).
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The boundary conditions of the UFSI benchmark problem are stated in the following.

(vg,v,) = (V/,0), on B/ x Q, (5.11)
u=v=0, on B% x Q, (5.12)
(pv(Vo + Vo) = pI ) ny — om, =0, on B’ x Q. (5.13)

The latter condition ([5.13) describes the balance of forces on the fluid-solid interface B'.
Through this condition, the shear stress of the flow field induces a displacement force on the
solid material in angular direction.

5.2.2 Derivation of an analytical solution

In a Cartesian system of coordinates, the boundary value problem given by the partial differ-
ential equations , and and the boundary conditions , and
is non-trivial to solve. However, the Cartesian coordinate system can be transformed to
polar coordinates, following [26], which yields an equivalent system of ordinary differential
equations (ODEs).

Denoting a unit vector in the respective coordinate system by e, the gradient operator
becomes

0
Vp——p el +

o 0w,
0 10
= gpber + o 5gPes (5.14)

The convection term in polar coordinates is hence given by

(v-V)v=wv-Vvie; +v-Vvsey

B 0 Vg 0 VyUy
= ('UT or Uy + — 8QUT 7“) €r (515)
+ <'v 0 o+ ig o+ er) e
"ol T e r o

For the Laplace operator we find

Av = Avie; + Avges

190, 0 1 02 v, 20
(7" 5150+ 3 aEtr — 5~ 55, ’Ue> er (5.16)

+ lg(g )_|_i672 _%_{_32
rort or? Ty Y r2 Ur | €0

The divergence operator of the velocity field transforms to

B, 0
VU= 0 oy

10 10

T ror g T o r 90" (5.17)
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The divergence of the stress tensor is written in polar coordinates as

V'O’(ao' —|—i0' )8 +(a _|_ia- )6
- 8:131 11 an 21 1 9 1 8:132 22 2

0 10 1
= (a,ro'rr + ;%0’97" + ;(Urr - 0'99)) €r (518)
+ (8 + 1o + 1( + )> e
ara'rﬁ r 89099 r Org T Ogr 0-
Inserting (5.10) yields
(0 220 0 2
V.o= (87‘()\1 (err + ‘596) + 2/\2€rr) + 7%507" + T(err - EG@)) €r (519)

0 29
60()\1(61"7' + €gg) + 2X\2€gg) + 7(@9 + €9r)> €p.

0 1
+ <2)\2 or €rg + —
As shown in [I128], the infinitesimal strain tensor (3.35) has the following form in polar
coordinates.

€= % ((VU)T + Vu)

_ ( ( %’U;r 1 (i?ur + Fug — w)) (5.20)

10 Ug o)
S + Frg — *) (69“0 + “T)

r

The geometry as well as the boundary conditions for the UFSI benchmark problem are
rotationally symmetric to the centre point of the geometry. Hence, if the flow develops
laminarly, it can be assumed, that it develops in a rotationally symmetric form. Then, the
radial displacement and velocity are zero, u, = v, = 0, on the full domain. Analogously
to the velocity boundary condition at the inner circle, it can be assumed that the angular
displacement and velocity are constant, %ue = %’l}g = 0. With these assumptions, the
coordinate transformation of , , and leads to the following system of
stochastic ODEs on the centre line which is given by the radial interval [R/, R*] and for all
w € Q.

Using ([5.14} and , equation ([5.7)) becomes in radial direction
0 .
- ng(r,w)Q + =p(r,w) =0, rel[R/ R (5.21)
T or
In angular direction, equation (|5.7)) takes the form

0? 10 1 F i
Wvg(r,w) + ;Evg(r,w) — ﬁvg(r,w) =0, rel[R, R (5.22)

The continuity equation in polar coordinates is trivially zero under the above
mentioned assumptions.

For the elasticity equation , the insertion of the strain tensor in simplifies
a lot under the point symmetry assumptions:

0? 10 1 P
Ao (w) wu@(r,w) + ;aug(r,w) - T—Qu@(r,w) =0, rel[R,R’. (5.23)
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Analogously and under the assumption, that the fluid pressure is zero at the fluid-solid
interface, the coupling conditions ([5.13) become

pvgve(R w) + Az (w )<§;ue(Ri,w) %UQ(Ri )) =0. (5.24)

Now, the equations (5.21)), (5.22), (5.23)) and (5.24]) form a system of stochastical ODEs
in the radius of the geometry. To decouple the geometric from the stochastic dimensions in
the state variables vy, p and ug, the generalised PC expansion, as introduced in section
can be used. For the variables vy, p and ug and r € [Rf, R*], w € Q, the PC expansion
is given by

[vg(r,w), p(r,w), up(r,w) [Z v (1) (w), Zpk(r)@bk(w), Z ug,k(r)@bk(w)] ,  (5.25)
k=0 k=0

where v, are multivariate Legendre polynomials. The PC expansion of the random input

parameters ([5.5) and (5.6) can be written as
{Vf( ] [Z Vi r(w) Z A2g k(W 1 (5.26)

In correspondence to (4.35) and (4.36)), the coefficients for the expansion of the input
parameters in (5.26]) are given by

vi =v/, vl =v/, vi=0, fork>1, (5.27)
)\20 = )\_2, )\22 = XQ, )\21 = )\Qk = 0, for k > 2. (528)

The PC expansions and can be inserted in the system of stochastical ODEs ,
(5.22), (5.23)) and (5.24). Performing a Galerkin projection, the equations are multiplied with
each of the chaos polynomials ¢, k € Ny, respectively and integrated over the stochastical
domain 2. This method is further described in [87]. As the chaos polynomials given by the
multivariate Legendre polynomials form an orthogonal basis with respect to the L?-norm on
), only the non-zero terms of the orthogonal projection remain to be noted in the following.

Equation ([5.21)) is projected to

9 A
- Z vg,;(r)ve ()i — Epk(r) =0, re[R R, keN, (5.29)
]l 0

where the stochastic Galerkin tensor of third order ¢, is defined in (4.40)).
Equation ([5.22) becomes
0? 19 1 :
— f
ﬁvak(r) + ;Evg,k(r) - r—2v97k(r) =0, re[R' R, keNy. (5.30)

The projection of equation ([5.23)) is written as

0* 10 1 P
jlz:(] )\23 <8 211,91( ) + ;EUQJ(T') — 71211,971(7“)> Cjlk = 0, re [R , R ], k € Np. (5.31)
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The interface coupling condition ([5.24]) becomes

0 1 .
pyaf’vg k RZ Z )\QJ ( r’u/gl R ) — T“G,l(RZ)> Cjlk = 0, ke No. (532)

The equations defining the velocity and the displacement fields, (5.30) and (5.31)), re-
spectively, are Euler second order ODEs, for which analytical solutions are given in [ITT].
Thereupon, the solution for the pressure distribution can be calculated from the first order
ODEs . The parameters of the general solutions of the system of ODEs can be fully
determined by the boundary conditions (5.11)) and (5.12]) and the equations for the coupling
conditions . Furthermore, it is to be taken into account, that the pressure and the
velocity of the stationary solution at the fluid-solid interface are zero.

The analytical solutions for the velocity and the pressure field for every PC mode k € Ny
then denote as

VIR (R?

Vo k() = 72 _pi? : R (T —T>’ (5.33)
pa(r) —”Rf2 ("”2 + 2R (In(RY) — In(r) RZA) i vivie (5.34)
() = — - TV e -

(R — RI?)? 2r? J1=0 ’

The calculation of the coefficients of the displacement field a; and b involves the evalu-
ation of an infinite number of linear equations:

b
wg k(1) = 7k — agr, (5.35)
. b
with ap = W7
RIR®V/!
Aoiciaby = 1/7 5.36
J;O 25Cj P RZ_ Ri% ( )

The PC modes of the angular velocity wvg in the fluid domain and the angular
displacement g of the solid domain have the same dependency on the radius r
apart from the coefficients. The coefficients of all three state variables depend on the radii
of the geometry and the uncertain input parameters. To calculate the coefficients by, the
sum in is truncated at a very high mode index of 190 to obtain a finite, but accurate
system of linear equations. It can be solved via Gaussian elimination. As the values for by
exponentially converge to zero, a truncation of the infinite system of linear equations even at
a much lower mode index would be sufficient.

5.2.3 Experimental convergence results

With the UFSI problem stated in section and its analytical solution derived in sec-
tion a benchmark scenario can be set up. By means of this scenario the intrusive UQ
solver presented in section is verified in this section. The intrusive UQ solver is based
on a Cartesian coordinate system in the geometric dimensions. Hence, the UFSI benchmark
problem is non-trivial for the solver.
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Parameter Symbol Value

Radii R, R', R® | 0.2, 0.35, 0.5
Density P 1x 103
Kinematic viscosity | v 1.5 x 1073
Boundary velocity | V/ +V/ 1.0+0.5
Reynolds number Re 100 £ 50
Young’s modulus Y+Y (5.6 +2.8) x 103
Poisson’s ratio ~y 0.4

Table 5.6: List of geometrical and model parameters for the utilised UFSI benchmark sce-
nario.

The geometrical and model parameters for the verification scenario are given in Table
The Reynolds number (cf. ) for this scenario can be defined by
7
Re = VI(B' = RT)
v

To numerically solve the stationary equations of the UFSI problem, the instationary
version of the solver is used. Therefore, a simulation run is started with an initial condition
of zero values for all variables. Then, the boundary velocity V7 is smoothly increased to the
final value by the scheme (5.2)). The time stepping is realised with the one-step-0 scheme as
described in section Using the numerical damping from the implicit Euler scheme with
0 = 1 leads to a faster convergence to a stationary state of the variables. The time step size is
set to k = 0.1. The boundary velocity V/ is smoothly increased in the time range 0 < t < 1.
The results are evaluated at ¢ = 50, where changes in the variable values are not apparent
any more.

In principle, the linearisation of the UFSI problem differs from the presented linearisation
in section [4.2.2 only in the elasticity equations on the solid domain. The elasticity equation
of the UFSI problem already has a linear dependency on the displacement variable uw. This
simplifies the directional derivatives for the elasticity equation, correspondingly.

As for the deterministic FSI benchmark, the software gmsh has been used to create
discrete FEM meshes of the geometry with different refinement levels (cf. section here,
too. The spatial discretisation with the FEM is described in section

Mesh refinement | # dofs P1 | # dofs P2 | # dofs P3 | # dofs P4
R1 5820 11,640 19,400 29,100
R2 19,596 39,192 65,320 97,980
R3 70,581 141,162 235,270 352,905
R4 289,008 578,016 963,360 1,445,040

Table 5.7: The number of degrees of freedom (dofs) of the respective mesh refinement level
and PC degree.

The stochastic dimensions of the UFSI problem are discretised using a PC expansion as
described in section in the version of the intrusive Galerkin projection. This approach
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leads to a discrete monolithic problem for the geometric and stochastic dimensions. Table[5.7]
gives the resulting numbers of degrees of freedom for a PC degree P =1, ..., 4 and the utilised
mesh refinement levels. From one mesh refinement level to the next, the edge length of a
mesh cell is approximately halved.

In section the FSI solver for the intrusive UQ approach is described. This solver
is used to compute numerical solutions for each of the discretisation combinations given in
Table 5.7l The simulations were carried out on the BwForCluster MLS&WISO Production
(see section [5.1.2] and [5.1.3| for details). The computational costs ranged from half an hour
wall time on 16 CPU cores for the smallest problem size R1-P1 and up to 48 hours wall time
on 64 CPU cores on the largest problem size R4-P4.

v.1 v_2
1.0 1.0
E 0.5 I 0.5
0.0 0.0
0.5 0.5
[1‘0 E—1.0

(a) Expected value of the velocity in horizontal (left image) and vertical (right image) direction.

dev(v_1) dev(v_2)
0.29 0.29
0.22 0.22
0.14 0.14
0.07 0.07

 0.00 1000

(b) Standard deviation of the velocity in horizontal (left image) and vertical (right image) direction.

Figure 5.12: Visualisation of the velocity field of the UFSI problem. The fluid-structure
interface is indicated by a black circle.

A visualisation of the computed velocity field of the UFSI problem is given in Figure[5.12}
In accordance with the analytical solution, the expected velocity (Figure[5.12a) declines from
the boundary velocity V; to zero at the fluid-structure interface. The solid domain is at rest
in the stationary solution. The standard deviation of the velocity field (Figure shows
that the solid domain is certainly at rest. The standard deviation is highest at the inner
boundary with the prescribed standard deviation of the boundary velocity V.

Figure [5.13] shows the resulting pressure field. Naturally, the centrifugal forces of the
circular fluid flow lead to a positive expected pressure gradient (Figure from the inner
boundary to the fluid-structure interface. On the solid domain, the pressure variable is
undefined and artificially set to zero. Together with the velocity field, the standard deviation
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of the pressure (Figure [5.13b)) is zero at the fluid-structure interface and highest at the inner

boundary.
%o delvéﬁ)
L
97
-146
[-194
a) Expected value of the pressure. (b) Standard deviation of the pressure.

Figure 5.13: Visualisation of the pressure field of the UFSI problem. The fluid-structure
interface is indicated by a black circle.
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a) Expected values of the displacement in horizontal (left 1mage) and Vertlcal (right image) direction.

dev(u_1) dev(u_2)

. g 1.57e-04 1.57e-04
1.18e-04 1.18e-04
7.86e-05 7.86e-05

- 3.93e-05 - 3.93e-05
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(b) Standard deviation of the displacement in horizontal (left image) and vertical (right image) direc-
tion.

Figure 5.14: Visualisation of the displacement field of the UFSI problem. The fluid-structure
interface is indicated by a black circle.

The displacement field is visualised in Figure Via the boundary conditions, the
displacement field is set to be certainly zero at the inner and the outer boundary of the
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geometry. On the solid domain, the displacement is governed by the elasticity equation and
on the fluid domain it is governed by the ALE mesh deformation model . The shear
forces of the fluid flow lead to a deformation of the solid domain in angular direction. The
highest value of the expected displacement (Figure is at the fluid-structure interface
with a decline to zero towards the outer and inner boundary. Again at the interface, the
standard deviation of the displacement field (Figure takes its highest value.

The difference of the computed solution of the UFSI benchmark problem to the analytical
solution can be evaluated by the relative error measure defined in the following. The error
measure uses the L?-norm over both, the geometric and stochastic dimensions.

errp(x) = Ixn = Xl z2(D,0)
HX”L2(D,Q)

Ixl3ema = [ [ I(@.w)PdaP(ds),

where x represents the respective variable.

This relative L?-error was computed for the geometrical and stochastical discretisation
combinations given in Table The results are shown in Figure for the velocity field
and in Figure for the pressure field on the fluid domain. The error in the displacement
field on the solid domain is shown in Figure [5.17

As can be seen in Figure[5.15a], the numerically computed velocity field converges quadrat-
ically with the mesh refinement. This is in accordance with the theoretically expected order of
convergence for the utilised FEM [59]. Figure shows that the error in the velocity field
has hardly any dependency on the PC degree. This can be explained with dependency of the
velocity solution on the PC expansion coefficients of the boundary velocity . The
coefficients are zero for P > 1. Hence, the highest accuracy with respect to the stochastical
dimensions is already reached for P = 1.

The pressure field (Figure shows a quadratic convergence with respect to the mesh
refinement for P > 1 in accordance with the theory [59]. Due to the dependency of the
pressure solution on the the boundary velocity , the PC expansion coeflicients
of the pressure are zero for P > 2. Accordingly, the highest accuracy with respect to the
stochastical dimensions is reached at P = 2 (cf. Figure .

From Figures [5.17a] and [5.170, it can be seen, that the error in the displacement field
widely depends on both, the mesh resolution and the PC degree. A quadratic order of
convergence with respect to the mesh refinement can only be observed for P = 4. For the
sufficiently high mesh resolution R4, the error in the displacement field shows an exponential
convergence with respect to the PC degree. As it is shown theoretically in [I45], exponential
convergence is expected for the utilised PC discretisation of the stochastic dimensions.

The local distribution of the relative L2-error is exemplarily shown in Figure for the
mesh refinement level R3 and a PC degree of P = 3. The error measure can as well
be computed for each cell of the FEM mesh K € T,. At this, the error is again computed
relative to the full domain D:

(5.37)

IR E )

errg p(x) = (5.38)

HX”L?(D,Q)

Figure illustrates that the relative L2-error in the velocity field increases from the
inner boundary to the fluid-structure interface. Similarly, the error in the displacement field
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Figure 5.15: Error analysis of the velocity field on the fluid domain of the UFSI benchmark.
The difference between the computed and the analytical solution is measured by the relative
L?-error . The results are plotted for the discretisation parameters given in Table
The ideal quadratic order convergence is indicated through the black line for comparison.
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Figure 5.16: Error analysis of the pressure field on the fluid domain of the UFSI benchmark.
The difference between the computed and the analytical solution is measured by the relative
L?-error . The results are plotted for the discretisation parameters given in Table
The ideal quadratic order convergence is indicated through the black line for comparison.
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(a) By mesh resolution. (b) By PC degree.

Figure 5.17: Error analysis of the displacement field on the solid domain of the UFSI bench-
mark. The difference between the computed and the analytical solution is measured by the
relative L?-error (5.37). The results are plotted for the discretisation parameters given in
Table The ideal quadratic order convergence is indicated through the black line for
comparison.
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(a) The local error of the velocity field err g pe(v)  (b) The local error of the pressure field err g pe(p)
in the fluid domain. in the fluid domain.

err(u)
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(¢c) The local error of the displacement field
errg p=(u) in the solid domain.

Figure 5.18: Visualisation of the local relative error (5.38) of the computed solution of the
UFSI problem for the mesh refinement level R3 and PC degree P = 3.

has its highest values at the fluid-structure interface as it is shown in Figure The error
of the computed pressure field (Figure shows peak values approximately in the area of
the steep gradient of the solution near to the inner boundary (cf. Figure . Overall, all
three local error visualisations show an approximately rotationally symmetric distribution.
This is in accordance with the rotationally symmetric formulation and solution of the UFSI
problem.
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6 Aortic biomechanics simulation as-
suming uncertainties

A review of numerical simulations for the evaluation and treatment planning of aneurysms
is given in [I8]. According to the authors, further developments are needed for incorporating
fluid-structure interaction simulations to better understand the factors of aneurysm growth.
Additionally, further validation studies should increase the reliability of numerical simulation
outcomes.

The stochastical dimensions of a hemodynamical problem are considered for arterial net-
works in [I7] using uncertainty quantification. Aortic phantom experiments have been used
to test and validate various flow imaging and pressure measuring techniques [31], 15]. In [I38]
a realistic phantom is presented and calibrated to emulate patient-specific aortic blood flow.
Phantom experiments can also be used to validate numerical blood flow simulations [86].
Another validation study for a numerical framework is given in [109] by means of the flow
through a medical device with rigid walls in the shape of a nozzle and by means of a fluid
flow in a compliant vessel.

This chapter goes beyond the state of the art by the validation of the aortic blood flow
simulation under uncertainties by means of an aortic phantom (section . Subsequently,
as a proof of concept, the numerical framework presented in this work is applied to a patient-
specific aortic bow of a healthy proband (section . Parts of the results described in this
chapter have been published before by the author in [83] 84, [82]. In [83] a computational
fluid dynamics simulation with rigid vessel walls has been compared to a fluid-structure
interaction simulation of a prototypic aortic phantom. A solver for collocation-based UQ
of an FSI-problem with an idealized phantom geometry is described in [84]. Aspects of the
application of the numerical framework to an aortic bow are presented in [82].

6.1 Validation by means of an aortic phantom experiment

In this section, the numerical framework presented in this thesis is applied to the prototypical
aortic phantom described in section The authors of [31] are acknowledged for sharing the
necessary data for realizing this numerical experiment. The data includes 2D and 4D MRI
flow measurements and a 3D image of the geometry of the elastic vessel segment. Further-
more, the data comprises catheter-based measurements of the pressure difference between
several measurement plane levels. The 2D flow data used for the numerical experiment in
this work covers 128 time points of a flow period at a spatial resolution of 1.25 mmx1.25 mm.
The voxel size of the 3D image for geometrical segmentation is 1.56 mmx2.1 mmx1.56 mm.
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The pressure values were measured at 31 points in time.
The details on the configuration of the model and the numerical workflow are given in

the following subsection Section then evaluates the results of the simulation and
gives a comparison to MRI measurements of the phantom.

6.1.1 Numerical experiment setup

In order to simulate the flow mechanics of the aortic phantom experiment, the subject-
specific workflow presented in section is used for the configuration and realisation of the
simulation.

QOutflow

Segmented wall

Cross section L6

L1

Figure 6.1: Segmentation of the prototypic aortic phantom. The illustration includes a
denotation of the plane levels, where the flow was measured based on 2D flow MRI and the
pressure was measured with a catheter. The levels L1 and L6 are taken as inflow and outflow
boundaries. Additionally a cross section is delineated at which the simulation is visualised in

section @

Firstly, a segmentation is generated from the 3D geometry image of the phantom’s elastic
tube (cf. section . The segmented surface together with the measurement plane levels
and evaluation cross-sections is shown in Figure [6.1] The inflow and outflow boundaries are
clipped in a way such that they coincide with the first and the last measurement planes,
respectively. The measurement planes L1 to L6 are located every 5cm. The total length
of the clipped segmentation is 25 cm. The diameter of the tube is about R = 1.5cm. The
resulting finite element mesh consists of 2.01 x 10° tetrahedral cells.

Bin ﬁf Bi Bout

L. >

€9

€3
€1
Figure 6.2: Ilustration of the fluid and structure domains, f)f, Ds by means of the cross section

delineated in Figure [6.1] Furthermore, the inflow boundary Bj,, the outflow boundary Byt
and the fluid-structure interface B' are assigned.

90



6.1. VALIDATION BY MEANS OF AN AORTIC PHANTOM EXPERIMENT

The longitudinal cross section indicated in Figure [6.1] is shown in detail in Figure [6.2] It
is also used for the visualisation in the evaluation section[6.1.2] Figure shows the location
of the fluid and the solid domain.

The corresponding mathematical modelling of the blood-like flow through the phantom
was presented section [3.2] The utilised model for the elastic deformation of the phantom’s
vessel wall was described in section Details on the coupling between the fluid and the
solid phase were given in section [3.4]

Additionally the location of the boundaries with specific boundary conditions is given in
Figure [6.2] For the velocity and pressure field the boundary conditions were described in
section The boundary conditions of the displacement field were given in section [3.3.2
The parameter values for the various parts of the mathematical model are listed in Table [6.1]
The values lead to a Reynolds number of about

in2
Re = * VR ~ 5000.

Due to the value of the Reynolds number, the fluid flow dynamics become convection
dominated and require stabilisation in the numerical solving routine. This is done by a
residual-based streamline diffusion scheme [14].

Parameter Symbol Value
Density P 1101.45kgm™3
Kinematic viscosity v 4.545 x 1075 m? g1
Poisson’s ratio 0% 0.45
Young’s modulus Y 642 £ 193 kPa
Uncertain inflow factor q 1.00+0.15
Poisseuille exponent 153 8

Period of a heart cycle T 1.024 s

Wall thickness h 1x1073m

Table 6.1: Model parameters of the aortic phantom.

The workflow results in a subject-specific configuration of the abstract mathematical
problem formulated in problem with an uncertain vessel wall stiffness (Young’s modulus)
and inflow velocity. The discretisation for the given problem is presented in section [£.2] The
discretisation parameters are listed in Table

Parameter Symbol Value
Degrees of freedom # dofs | 1,606,464
time step length k 0.0005s
theta 0 0.5005
smooth start duration Tstart 0.02s
PC degree P 4
Collocation points #9 36

Table 6.2: Discretisation parameters for the aortic phantom simulation.
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As with the deterministic FSI benchmark (cf. (5.2))), the simulation of the phantom is
initialised with zero values for the variables and smoothly run up to the first flowrate value
of velocity boundary conditions. As opposed to the deterministic benchmark, the spline
interpolation stated in equation is used to implement the smooth start within the
starting time Tiyart.

The maximal degree of the chaos polynomials P = 4 leads with equation to a
number of modes of M = 14. With that, a sufficient level of convergence is achieved with
respect to the stochastical dimensions of the problem.

’ Operator ‘ Method ‘ Parameter Value ‘
M1 FGMRES Relative tolerance 0.01
M1 FGMRES | Maximal iterations 100
Juu—l = qu=1"gv AMG Cycle type V-cycle
Juu—l AMG Aggressive coarsening On all levels
Juv—l v AMG Aggressive coarsening None
Juu—l v AMG Interpolation type Multipass interpolation
Jrv—t AMG Interpolation type Extended+i interpolation
Juu=l o=l Qv AMG Coarsening type HMIS-coarsening
Juu—l guu=l Suv | AMG Relax weight 1
Juu—l  quu=l Qv AMG Strong threshold 0.9
SuT FGMRES Maximal iterations 1
Jue—t CG Relative tolerance 0.00001
Juu—l CG Maximal iterations 100
Juu—l AMG Number of iterations 1
Juu—l AMG Relax type hybrid sym. Gauss-Seidel
Juu—l AMG Number of sweeps 1
Svt FGMRES Relative tolerance 0.1
Sv-t FGMRES Maximal iterations 20
Jvv—t GMRES Relative tolerance 0.001
Jrv—t GMRES Maximal iterations 100
Jrv—t AMG Number of iterations 1
Juv—l AMG Relax type hybrid Gauss-Seidel, forward
Jvv—t AMG Number of sweeps 1
Sv AMG Maximal iterations 100
SY AMG Relative tolerance 0.01
SY AMG Relax type hybrid sym. Gauss-Seidel
SY AMG Number of sweeps 1

Table 6.3: Configuration of the linear solver subroutines (cf. Figure 4.5) for the three-
dimensional aortic phantom and the aortic bow simulations.

The problem-specific solver for the collocation points, presented in section [£.2.5] is con-
figured for the three-dimensional problem as specified in Table For the preconditioner
BoomerAMG (cf. section [4.2.5)), only values that differ from the default configuration pro-
vided by HYPRE are given. The absolute tolerance of the Newton method, namely 1078, is
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chosen such that it takes approximately 1 to 3 Newton iterations to compute a time step.
The configuration differs from the values for the two-dimensional version of the deterministic
FSI problem given in Table as the third spatial dimension and the different geometrical
setup alters the structure and condition number of the discrete problem. The configuration
was determined by several test runs to find an acceptable numerical convergence behaviour
of the solver.

6.1.2 Simulation results

As for the benchmark problems, the BwForCluster MLS&WISO Production (see section
was used for the simulation of the aortic phantom. The computing time for one of the 36 col-
location points was about 42 hours on 256 CPUs, resulting in a total amount of computational
costs for the UQ-simulation of 2 time periods of 3.87 x 10° core hours. The first time period
is seen as start-up phase and for the second period, the evaluation and results are shown in
the following. Firstly, visualisations of the solution variables by means of the cross section
as indicated in Figure [6.1] are given. Then, the flowrate profiles in the marker plane levels of
the simulation are compared to the MRI measurements. Finally, the simulated flowrates and
pressure differences over the time are compared to the respective measurements.

Visualisation in the longitudinal cross section

To illustrate the results of the aortic phantom simulation, Figure[6.3]to[6.9]show visualisations
of the direct solution variables in the longitudinal cross section delineated in Figure [6.1] at
the point in time with the highest systolic inflow ¢ = 0.1s. The data of the inflow flowrates
contains a second and smaller peak at ¢ = 0.22s. To give an illustration of the time course of
the dynamics, all visualisations are also given for this second point in time in the appendix in
Figure to The velocity and pressure field visualisations are shown with respect to the
deformed domain D; at the respective point in time. The displacement field visualisations
are given with respect to the reference domain D.

The first three figures, Figures [6.3] [6.4] and [6.5] show the displacement variable in all
three spatial directions in the form of the expected value and the standard deviation. The
orientation of the spatial directions can be seen in Figure [6.1] and Figure [6.2] Accordingly,
Figure[6.3]shows the displacement values directed into the image plane. For this displacement
component, the standard deviation is highest in the middle of the length of the geometry. A
reason for this is that the displacement at the inflow and outflow boundary is fixed to zero
without uncertainties.

Figure [6.4] shows the expected value and standard deviation of the displacement in the
longitudinal direction of the tube from the inflow to the outflow. Whereas the inflow and
outflow boundary of the vessel is fixed with zero values in the displacement, the middle section
shows a deformation from the outflow to the inflow. Physically, this can be explained with
Figure [6.5] Here, an expansion in the transversal direction can be observed after the inflow
boundary in the first half of the geometry. The transversal expansion in the beginning of
the vessel leads to a backward pulling force in the rest of the solid structure. The standard
deviation of the longitudinal displacement o(us) is qualitatively similar to o(u1). However,
the standard deviation of the transversal displacement o(ug) in Figure is higher at the
vessel wall than in the inner lumen. The highest expected transversal expansion of the vessel
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(b) Standard deviation o(uq).

Figure 6.3: Visualisation of the displacement into the shown cross section u; (cf. Figure [6.1)
at mid-systole, t = 0.1s.
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(b) Standard deviation o(ug).

Figure 6.4: Visualisation of the displacement along the cross section ug (cf. Figure at
mid-systole, t = 0.1s.
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(b) Standard deviation o(us).

Figure 6.5: Visualisation of the vertical displacement in the cross section ug (cf. Figure [6.1)
at mid-systole, t = 0.1s.
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is 1.3mm (see Figure . In absolute values, the standard deviation of w; exceeds the
expected value. However, the standard deviation of all three spatial displacement directions
keeps below the expected value of the transversal component ug.

The three spatial directions of the velocity field are shown in Figures[6.6/to[6.8] Figure[6.6]
shows the expected value and standard deviation of the velocity component directed into the
image plane. For this flow direction, v, the boundary values at the inflow are set to be
certainly almost zero. At the outflow boundary, there are no direct conditions on the velocity
field and its uncertainty. Nevertheless, the standard deviation o(v;) is vanishingly small at
the outflow boundary. The highest standard deviation is apparent on halfway in the vessel.
v_1 [m/s]
.7.45e-02
. 4.30e-02
[ 1.14e-02

-2.01e-02

dev(v_1) [m/s]

- 1.54e-02

. 1.03e-02
5.14e-03

0.00e+00

(b) Standard deviation o(vy).

Figure 6.6: Visualisation of the velocity into the shown cross section v (cf. Figure [6.1) at
mid-systole, t = 0.1s.

v_2 [m/s]
-8.20e-01

5.46e-01
2.73e-01
-1.25e-03

dev(v_2) [m/s]

- 7.10e-02

. 4.73e-02
2.37e-02

0.00e+00

(b) Standard deviation o(vs).

Figure 6.7: Visualisation of the velocity along the cross section vy (cf. Figure at mid-
systole, t = 0.1s.

The expected value and standard deviation of the second velocity component along the
vessel direction is shown in Figure[6.7 At the time of the first inflow peak, the velocity at the
inflow is naturally highest. In the appendix, it can be seen, how the peak velocity progresses
in an attenuated way in Figure [8.6] Along with the high values for the expected value of v
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v_3 [m/s]
- 3.49e-02

1 9.83e-03
-1.53e-02
-4.03e-02

dev(v_3) [m/s]
5.48e-03

3.66€-03
1.83e-03
0.00e+00

(b) Standard deviation o(vs).

Figure 6.8: Visualisation of the vertical velocity in the cross section vs (cf. Figure [6.1]) at
mid-systole, ¢ = 0.1s.

goes an increased uncertainty visible in the standard deviation o(v3).

Also, the expected value of the velocity in transversal direction vg correlates with its
standard deviation, as can be seen in Figure [6.8] In the illustrated phase in time, the
expected value of v3 indicates a slight transversal flow, pushing the vessel wall outwards.

p [mmHg]
E 23.13

- 18.03
12.92

E 7.81

(a) Expected value E(p).

dev(p) [mmHg]
' 3.00

£ 2.79
- 2.58
E2.37

(b) Standard deviation o(p).

Figure 6.9: Visualisation of the pressure p in the cross-sectional plane (cf. Figure 6.1) at
mid-systole, t = 0.1s.

The dilatation of the vessel (Figure is driven by the fluid flow dynamics, which can be
seen in the transversal velocity (Figure , but also in the pressure field (Figure . The
expected value of the pressure is highest at the inflow boundary and correspondingly acts
highest on the vessel wall in the beginning of the vessel. However, relative to the pressure
reference value of zero, there is an overpressure in all of the vessel. The absolute pressure
value in the vessel follows the pressure value of the pressure boundary condition at the outflow
boundary. Considering the values of the standard deviation of the pressure, the uncertainty
is relatively evenly distributed over the whole cross section with a slight peak at two-thirds
of the vessel length.
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Visualisation of the plane levels

In Table the simulated flow values are visually compared to the measured 2D flow MRI
values. The velocity component in the main flow direction along the vessel vs is shown for the
marker plane levels L2, L3, L4 and L5, which are denoted in Figure The visualisations
show the fluid domain without the solid domain, in which the longitudinal velocity is almost
zero. The simulated velocity is given on the one hand by its expected value. On the other
hand, the addition and subtraction of the standard deviation to the expected value aims to
illustrate the range of values, the velocity can take by means of the UQ simulation. This
range of simulated velocity values is compared to the respective 2D flow MRI measurement.
Hereby, it is to be stressed, that only a single measurement point is available, which is also
subject to uncertainty.

t=0.1s L2 L3 L4

2D flow MRI: vy

L
"
-

_2 [m/s]
70.65

- 0.49
0.33
0.16

0.00
E(vy) + o(v2)

ot

Table 6.4: Visualisation of the velocity field vo in the cross-sectional plane levels L2, L3,
L4 and L5 (cf. Figure at mid-systole, ¢ = 0.1s. The first row shows the velocity
data measured by 2D flow MRI. The second to the last row shows the simulated velocity
field. Hereby, the expected value F(vs) is shown in the third row. The second row shows
the standard deviation o(vy) substracted from the expected value. The standard deviation
added to the expected value is shown in the fourth row.

The simulation well captures the decline of the flow strength from one marker plane level
to the next, respectively. This damping of the flow would not be obtained by the simulation, if
the vessel wall was modelled to be rigid, as a comparison to a sole CFD simulation clarified in
[83]. Regarding the respective marker plane levels, it can be seen, that the MRI measurement
does not exactly match the expected value but lies within the range of values spanned by the
addition and subtraction of the standard deviation.

The results in Table [6.4] are given for the point in time of the highest inflow flowrate
t = 0.1s in mid-systole. For a secondly considered point in time ¢ = 0.22s, the results are
given in the appendix in Table[8.2] The flowrate values integrated over the respective marker

97
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planes are considered over a full time period in the following section.

Simulated and measured flowrate and pressure difference values

The value of the flowrate is obtained by integrating the longitudinal velocity component over
the respective marker plane. Figures to [6.13] show the flowrate results plotted over one
time period for the inner marker plane levels L2 to L5 (cf. Figure . The simulated
flowrates are shown by means of their expected value and the range obtained by adding and
subtracting the standard deviation. The results of the simulation are directly compared to
the values of the corresponding 2D flow MRI measurement.
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Figure 6.10: The measured (MRI) and simulated (FSI) flowrate at the plane level L2 (see
Figure . The simulated flowrate is shown by its expected value and the expected value
plus/minus its standard deviation.

It can be seen in the first plot, Figure that the simulated values for the plane
level L2 well coincide with the MRI measurement. For the plane level L3 (Figure , the
MRI-measured values at the systolic peaks are at the lower border of the simulated standard
deviation range. In the first half of the diastole at t ~ 0.53s the measured data shows a
flow peak, which is not reflected in the simulation results. As can be seen in Figure [6.12] and
Figure the measured flowrate values in the marker planes L4 and L5 are overestimated
by the simulation in the systole and slightly underestimated in the diastole.

In the aortic phantom experiment the pressure difference dp between two marker planes
was measured over a time period by a catheter. Hereby, the plane level L2 was taken as the
reference and the pressure difference to the plane levels L3, L4 and L5 was measured, respec-
tively. For the computation of the pressure difference values from the simulation, the average
pressure value over the respective marker plane is used. As the pressure in the transversal
planes shows a very homogeneous distribution with almost no deviation from the average,
this average value can be used for comparison to the point-based pressure measurement at
the tip of the catheter, for which the exact position is not included in the data.

Analogously to the flowrate plots, the simulated pressure difference values are compared to
the catheter-measured values in Figures[6.14] [6.15]and [6.16] As can be seen in all of the three
plots, the simulation results coincide only partially with the catheter measurements. The
amplitude of the first maximum is well captured, whereas the first minimum is significantly
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Figure 6.11: The measured (MRI) and simulated (FSI) flowrate at the plane level L3 (see

Figure [6.1)). The simulated flowrate is shown by its expected value and the expected value
plus/minus its standard deviation.
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Figure 6.12: The measured (MRI) and simulated (FSI) flowrate at the plane level L4 (see
Figure . The simulated flowrate is shown by its expected value and the expected value
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Figure 6.13: The measured (MRI) and simulated (FSI) flowrate at the plane level L5 (see

Figure [6.1)). The simulated flowrate is shown by its expected value and the expected value
plus/minus its standard deviation.
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Figure 6.14: The measured (cath) and simulated (FSI) pressure difference from plane level
L2 to L3 (see Figure . The simulated pressure difference is shown by its expected value
and the expected value plus/minus its standard deviation.
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Figure 6.15: The measured (cath) and simulated (FSI) pressure difference from plane level
L2 to L4 (see Figure . The simulated pressure difference is shown by its expected value
and the expected value plus/minus its standard deviation.
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Figure 6.16: The measured (cath) and simulated (FSI) pressure difference from plane level
L2 to L5 (see Figure . The simulated pressure difference is shown by its expected value
and the expected value plus/minus its standard deviation.
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lower than the measurement. The second minimum of the simulated values is not reflected
in the measurements at all. The zero value in the beginning of the diastole again coincides
in the simulation and the measurement.

In the interpretation of the obtained results, it is to be remarked, that initially, the aor-
tic phantom experiment was carried out to evaluate the capabilities of the 2D and 4D flow
MRI technology for flow measurements and not to validate a numerical simulation frame-
work. For the modelling and the setup of the simulation only the retrospectively available
information and data could be used. This left high uncertainties in the details of the configu-
ration and setup of the experiment. For example, the geometrical information is only known
from the MRI measurement and not in full detail from the real construction of the experi-
ment. Furthermore, it would have been useful to configure the outflow boundary condition
of the simulation with the measurement of the absolute pressure values. Overall, the used
measurement data only contains singular measurement values without any information on a
possible variance of the measurement values. In this light, a reasonably good coincidence of
the simulation results to the measured data can be stated.
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6.2 Simulation of an aortic bow

In the previous section the subject-specific simulation framework presented in this thesis
is tested by means of a prototypic aortic phantom. This section addresses the application
of the simulation framework to a healthy human proband. As a showcase, the application is
meant to demonstrate the subject-specific workflow and to show the potential of including
uncertainty quantification in the simulation framework. Hereby, the model equations and
material properties for the phantom simulation are also used for the human proband. As
pointed out in the description of the physiology and the mathematical modelling in chapters
and |3} the details of the biomechanics for a human aorta are far more complex than for the
aortic phantom. Nevertheless, the results of the UQ-analysis can be exemplified.

UQ methods have already been used in other works, for example in [120], to obtain a data-
driven statistical model for the wall shear stress in intracranial aneurysms. Furthermore, the
UQ-study in [I1] investigated the von Mises stress in the vessel wall of abdominal aneurysms
under uncertainties.

This work considers illustration possibilities of the expected value and standard deviation
of simulation results to gain an information on the reliability of the simulation. Additionally,
the parameter for the probability of overstress proposed in this work is visualised by means
of the considered human aorta.

This section begins with the description of the numerical experiment for the human
proband in section Subsequently, in section the problem-specific linear solver
is investigated with respect to its parallel scalability for the three-dimensional problem. Fi-
nally, the UQ-simulation of the human aorta is analysed and evaluated in section

6.2.1 Numerical experiment setup

Like for the aortic phantom, the subject-specific workflow is used for the human proband to
set up and carry out the simulation of the biomechanics.

The author acknowledges Matthias Miiller-Eschner and Christian Weis from the Depart-
ment of Radiology at the Heidelberg University Hospital for providing the MRI data for
this work. The MRI data includes the morphology and 2D flow MRI data of a male human
proband aged between 20 and 30. The spatial resolution of the time-averaged morphology
image is 1.77mmx1.77 mmx 2.2 mm. The flow MRI values are measured at 24 points in time.

Figure[6.17]shows the segmented morphology with a smoothed surface and clipped bound-
aries for the inflow and outflow boundary conditions. The segmentation comprises the aortic
bow beginning with the ascending aorta, the bifurcation to the brachiocephalic artery, the
common bifurcation to the left common carotid artery and the left subclavian artery and the
beginning of the descending aorta (cf. Figure . The flowrate values for the boundaries
are extracted from the 2D flow MRI data. They are utilized for the velocity boundary condi-
tions as defined in section at the inflow and the outflow B and C. In the same section,
the outflow pressure boundary condition for outflow D is described. The parameters for the
model equations are set to the same as for the phantom and given in Table Only the
time period of one heart beat differs with 7' = 1.02s. Just like for the phantom, the Young’s
modulus and the flowrate for the velocity boundary conditions are modelled to be uncertain
with a uniform distribution. Hereby, the three velocity boundary conditions are scaled with
a single random variable and not independently from each other. The Reynolds number for
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Outflow B

Outflow C

(b) Denotation of a frontal cross sectional plane

(a) Denotation of the inflow and outflow bound- ~ for the visualisation. The plane is aligned with
aries as well as of cross sectional planes for the  the centre points of the inflow and outflow C2

visualisation. and D.

Figure 6.17: Segmentation of the aortic bow with an indication of several cross sectional
planes for the definition of boundary conditions and for the visualisation in section @

this scenario with a vessel radius at the inflow R ~ 1 cm is about

B v"2R

Re = ~ 4400.

The generated FEM mesh counts 2.30 x 10° tetrahedral cells, which leads to 1,830,975 #
dofs. The discretisation parameters other than the number of degrees of freedom coincide with
the values in Table[6.2] The problem-specific linear solver is configured with the parameters
in Table For the Newton method, the absolute tolerance is set to 10~ and the absolute
tolerance of the linear solver for M~ is set to the slightly lower value of 5 x 10~Y. This way,
it is ensured, that the absolute tolerance of the Newton method is undercut.

Figure [6.17] also shows the cross sectional planes, that are used for the visualisation.

6.2.2 Parallel scalability for the 3D problem

In section [5.1.3] the parallel scalability properties of the problem-specific solver proposed in
this work are investigated by means of the two-dimensional deterministic benchmark problem.
For the simulation of the three-dimensional problem considered in this chapter, the solver
and its sub-routines had to be slightly reconfigured. The parameters for the linear solver,
that lead to a satisfying numerical convergence in the case of the three-dimensional problem
are summarised in Table

To examine the parallel scalability properties also for the 3D case, the results of another
scalability test are shown in this section. The test was carried out by means of a single deter-
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ministic simulation run of the aortic bow simulation. The scalability test was carried out on
the same hardware as the scalability study for the 2D benchmark, namely the BwForCluster
MLS&WISO Production. See section [5.1.3] for details on the utilised hardware.

The values that are presented in the following are again average values over a range of
time steps from the simulation start to ¢t = 0.28 s, which is the longest time range, that could
be obtained using the smallest number of 16 CPU cores.
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# iterations
Cco
[
23
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Figure 6.18: Average number of iterations of the linear solver in the Newton method for the
aortic bow simulation. The result is plotted over the number of utilised CPU cores.

Figure [6.18]| shows the average number of the linear solver until the necessary accuracy
is gained for the respective step of the Newton method. As with the 2D case, there is only
a marginal dependency of the number of iterations on the number of utilised CPU cores.
With respect to the number of iterations of the linear solver a good parallel scalability can
be concluded.
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(a) Average wall time of the linear solver. (b) Strong scaling efficiency of the linear solver

based on the average wall time.

Figure 6.19: Evaluation of the computational costs and scalability of the problem-specific
linear solver for FSI problems by means of the wall time. The results are plotted over the
number of utilised CPU cores.

The computational costs in terms of wall time are shown for several numbers of utilised
CPU cores in Figure Up to a number of 256 CPU cores, the wall time decreases
with every duplication of the utilised CPUs. Figure shows the strong scaling efficiency
defined in equation . With respect to 16 cores, the efficiency using 256 cores is almost at
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50 %, still. Like for the 2D case, the efficiency curve shows an exaggerated increase, in this
case for 32 CPU cores. This can be explained likewise with the access time to the different
memory-layers. With a higher parallelisation, the data per process, that has to be kept in
the memory, gets less and it can be fully stored in the faster memory layers.
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(a) Average wall time of the linear sub-solvers of  (b) Strong scaling efficiency of the linear sub-
the problem-specific preconditioner. The respec- solvers based on the average wall time.

tive specified values for the relative decrease of

the residual are given in Table @

Figure 6.20: Detailed evaluation of the computational costs and scalability of the sub-solvers
of the problem-specific preconditioner (cf. Figure . The results are plotted over the
number of utilised CPU cores.

The parallel scalability of the sub-solvers of the linear solver routine are shown in Fig-
ure Up to 128 CPU cores, all of the sub-solvers except for S¥ show a strong efficiency of
over 75 %. The sub-solver for SV carries no weight due to its small absolute time consumption.
At a number of 256 cores, the first four sub-solvers have an efficiency of 50 % similarly to the
full linear solver routine (cf. Figure . The almost non-existent parallel scalability of
the sub-solver for S? is also comparable to the results of the 2D case.

6.2.3 Parameter evaluation

The computing time on the BwForCluster MLS&WISO Production for one of the 36 collo-
cation points was about 48 hours on 256 CPUs, resulting in a total amount of computational
costs for the UQ-simulation of two time periods of 4.42 x 10° core hours. The first time
period is seen as start-up phase and for the second period, the evaluation and results are
shown in the following. Firstly, the flowrate and pressure values are evaluated at the inflow
and outflow boundaries. Then visualisations of the solution variables by means of the cross
section as indicated in Figure [6.17] are given. Finally, the simulated stress parameters are
shown.
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(a) Expected value of the flowrates. (b) Standard deviation of the flowrates.

Figure 6.21: Evaluation of the flowrate at the inflow and outflow boundaries over one time
period.

Flowrates and pressure at the inflow and outflow boundaries

The flowrate values Q(¢) shown in Figure are computed by integration of the velocity
directed through the inflow and outflow boundaries. The resulting expected values are shown
in Figure and the standard deviation is given in Figure For the inflow boundary,
as well as the outflow boundaries B and C the mean value and the stochastical distribution are
prescribed by the velocity boundary conditions. Only for the outflow D the values result from
the dynamics of the simulation. In correspondence to the range of values for the uncertain
flowrate factor (see Table , the standard deviation follows the expected value up to a
constant scaling factor for the values fixed by the boundary condition. This is also roughly
the case for the flowrate through the outflow D.
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(a) Expected value of the pressure. (b) Standard deviation of the pressure.

Figure 6.22: Evaluation of the pressure at the inflow and outflow boundaries over one time
period.

Figure shows pressure values p(t) averaged over the inflow and outflow boundaries
by means of the expected value and the standard deviation. The pressure is prescribed only
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at the outflow D via the pressure boundary condition . For the other boundaries,
the values result from the simulated dynamics over the whole domain. In the considered
mathematical model, the pressure represents a relative value and has a reference level of
p = 0. As opposed to that, the blood pressure level in the human cardiovascular system is
about 80 mmHg higher on average. Much more important than the absolute pressure value
is the difference between minimal and maximal pressure. In the simulation, the difference
amounts to approximately 40 mmHg, which represents a physiologically very realistic value.
As with the flowrates (Figure , the standard deviation of the pressure also follows the
expected value up to an almost constant scaling factor.

Visualisation by means of the cross sections

For the visualisations of the solution variables, the displacement, the velocity and the pres-
sure fields, firstly, the mid-systolic point in time ¢ = 0.16s with the highest flow at the
inflow boundary is chosen. For another point in time ¢ = 0.66s in the mid-diastole, further
visualisations are given in the appendix in section [8:4]
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(a) Expected value of the displacement

E(|ul). (b) Standard deviation o (|ul).

Figure 6.23: Visualisation of the displacement magnitude by means of the frontal cross sec-
tional plane defined in Figure [6.I7D]in mid-systole at ¢ = 0.16s.

Figure [6.23] shows the magnitude of the displacement field by means of its expected value
and the standard deviation. At the inflow and outflow boundaries, it can be seen, that the
geometrical movement is fixed with a value of certainly zero for the displacement. This is one
of the points at which the simulation can be further developed in the future by transferring
the movement of the vessel visible in the MRI data to the displacement boundary conditions
of the simulation. At the considered point in time, the displacement of the outer vessel wall
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(a) Expected value of the velocity FE(|v]). (b) Standard deviation o(|v]).

Figure 6.24: Visualisation of the velocity magnitude by means of the frontal cross sectional
plane defined in Figure [6.17P] in mid-systole at ¢ = 0.16s.

dev(p) [mmHg]
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(a) Expected value of the pressure E(p). (b) Standard deviation o(p).

Figure 6.25: Visualisation of the pressure by means of the frontal cross sectional plane defined
in Figure @ in mid-systole at ¢t = 0.16s.
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is highest after the second bifurcation. In this region, also the standard deviation indicates
a relatively high uncertainty.

The magnitude of the velocity field is shown in Figure The expected value and the
standard deviation is prescribed at the inflow and outflow B and C by the velocity boundary
conditions. In the simulation, a mostly laminar flow develops from the inflow to the three
outflow boundaries. At the illustrated point in time, the flow is strongest along the bow down
to the descending aorta. The standard deviation is widely similar to the expected value up
to a constant scaling factor, except for an increasing value towards the outflow D.

t=0.16s L1 L2 L3
[u] [m]
1.65e-03
E(|ul) 8.27¢-04
0.00e+00
dev(|ul) [m]
- 2.17e-04
o(ful) 1.08¢-04
0.00e+00
|v| [m/s]
- 1.01e+00
E(|v|) 5.04¢-01
0.00e+00

dev(|v|) [m/s]
] 8.79e-02

4.40e-02

0.00e+00

p [mmHg]
I 40.98

- 35.61

: 30.24

dev(p) [mmHg]
E5.51

:5.15

[4.79

Table 6.5: Visualisation of the aortic bow simulation by means of the cross sectional levels
defined in Figure [6.17] in mid-systole at ¢t = 0.16s. The orientation is such, that the bottom
of the cross sections is oriented towards the arc center of the bow. The left side is in the back
of Figure @ and the right side of the cross sections is directed to the front.

Figure[6.25|shows the pressure field by means of its expected value and standard deviation.
At the considered point in time, a pressure drop is visible from the inflow to the outflow D. The
bifurcations develop pressure points at the backside of their entries. The standard deviation
of the pressure shows only little variation over the frontal cross section. Nevertheless, the
highest uncertainty by means of the standard deviation can be observed at the pressure points
of the bifurcations.
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Table [6.5] shows the development of the solution variables by means of the cross sectional
levels L1, L2, and L3 indicated in Figure

Visualisation of the stress measures

The wall shear stress as defined in equation represents a measure for the force that the
blood flow dynamics exert on the vessel wall. As described in section the wall shear
stress can have an effect on the structural development of the vessel wall. In Figure [6.26]
a visualisation of the wall shear stress magnitude 7w is given at the considered mid-systolic
point in time ¢t = 0.16s. As the considered subject is a healthy human being, the absence
of anomalies is expected. The figure shows a possibility to visualise the expected value and
the standard deviation. It can be seen, that the expected value of the wall shear stress in
the narrower branches is higher compared to the aorta. This comes from a steeper velocity
gradient towards the vessel wall in the narrow parts of the branches. The standard deviation
gives a measure of certainty of the expected value over the vessel’s geometry. In this case,
the standard deviation is widely similar to the expected value up to a constant scaling factor.

The second stress measure considered in this work is the von Mises stress 7y within the
vessel wall as it is defined in equation [3.71] The full volumetric FSI simulation considered
in this work allows for an evaluation not only of the fluid stresses but also of the stress
distribution within the vessel wall. Hereby, the von Mises stress for a non-complex solid
material model, as it is described in section [3.3] can not serve as an absolute measure for the
stress distribution in the complex human vessel wall structure. Nevertheless, it can serve as a
comparative value between various subjects, for example groups of healthy and pathological
cases. In Figure [6.27] the von Mises stress is shown over the fluid-structure interface from
the inside of the aortic bow. In the appendix, another visualisation showing the outer surface
is given in Figure 813 It can be seen, that the expected value of the von Mises stress has
peak values at the first bifurcation. In this area, also a point of high pressure is observed (cf.
Figure with a considerable displacement (cf. Figure . The standard deviation is
widely similar to the expected value up to a constant scaling factor.

For the considered stress measures of the wall shear stress and the von Mises stress,
overload thresholds can possibly be determined in future clinical studies. Given a range of
uncertainties in the input data for a simulation-based computation of the stress values, UQ
enables the evaluation of the probability that a threshold value is exceeded for a specific
subject. This overload probability, as it is introduced in this work in equation , is
considered in the following for artificially chosen threshold values.

Figure [6.28 shows the probability, that the wall shear stress magnitude exceeds a value
of 7Pa at any point in the full time period. This threshold is surely exceeded in the nar-
row branches of the geometry, which is only naturally as explained in the description for
Figure [6.26] In diseased cases, such as aortic stenosis or aortic aneurysms, a different result
would possibly be obtained. For aneurysms, also a probability measure can be defined giving
an information on whether all parts of the vessel wall undergo a minimal wall shear stress
level, because a too low wall shear stress can also have an adverse effect. Both aspects are
worthwhile to be considered in future work.

Figure shows the probability, that the von Mises stress exceeds a value of 1 x 10° Pa
at any point in the full time period. This threshold is surely exceeded at the entrance areas of
the bifurcating branches of the geometry. Comparing the visualisation to Figure these
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areas coincide with the areas of high expected von Mises stress only for the first bifurcation.
The benefit of the representation by the proposed probability definition lies in the
consideration of all time steps. With that, the overload probability over the full time period
can be shown in a single image. It would be worthwhile to investigate the possibilities
applying the overload probability evaluation to a range of diseased cases in a future work and
to compare the differences between groups of pathological cases.
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|WSS| [Pa] dev(|WSS|) [Pa]

0.00 5.00 10.00 0.00 0.60 1.20
(a) Expected value E(rw), front view. (b) Standard deviation o (7w ), front view.

|WSS| [Pa] dev(|WSS|) [Pa]

0.00 5.00 10.00 0.00 0.60 1.20
(¢) Expected value E(ryw), back view. (d) Standard deviation o(mw), back view.

Figure 6.26: Visualisation of the wall shear stress magnitude on the outside of the fluid-
structure interface in mid-systole at ¢ = 0.16s.
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vonMises [Pa]

0.0e+00 7.5e+04 1.5e+05

(a) Expected value E(my), front view.

vonMises [Pa]

0.0e+00 7.5e+04 1.5e+05

(c) Expected value E(my), back view.

0.0e+00

dev(vonMises) [Pa]

9.0e+03 1.8e+04

(b) Standard deviation o(m\), front view.

dev(vonMises) [Pa]

0.0e+00 9.0e+03 1.8e+04

(d) Standard deviation o(my), back view.

Figure 6.27: Visualisation of the von Mises stress on the inside of the fluid-structure interface

in mid-systole at ¢ = 0.16s.
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P(|WSS|>7 Pa) [%]
0 50 100

P(|WSS|>7 Pa) [%]

OHSO 100 ——
“““ 1Y
(a) Front view. (b) Back view.

Figure 6.28: Visualisation of the wall shear stress overload probability P™W-™2* on the outside
of the fluid-structure interface.

P(vonMises>1le+5 Pa) [%] P(vonMises>1e+5 Pa) [%]

0 50 100 0 50 100
— —
(a) Front view. (b) Back view.

Figure 6.29: Visualisation of the von Mises stress overload probability P™>™% on the inside
of the fluid-structure interface.
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7 Conclusion

The present work investigates and develops UQ methods for the further development of the
simulation of fluid-structure interaction problems. The biomechanics of aortic blood flow are
considered as a motivation and application field.

This work begins with an overview on the cardiovascular system in general and on the
physiology and pathology of the aorta in particular. There are a number of open questions
related to the understanding of the physiology and the development of diseases of the aorta.
Even though advanced technology is available for the investigation of the aortic physiology,
the possibilities of non-invasive examination methods of a living patient, in vivo, remain lim-
ited. In microscopic detail, soft tissue structures can usually be examined post mortem, only.
These samples then already have an altered, non-living state. For a better understanding
of the biomechanical dynamics, artificial (in vitro) experiments can emulate the physiology
up to a certain level of the reality. With the capabilities of mathematical modelling and nu-
merical simulation of the biomechanical dynamics, in silico, a third column of investigation
possibilities can be considered. For this, the foundations of the mathematical modelling of
blood flow and deformation of the aortic wall are described in this work. They lead to the
definition of the complex class of fluid-structure interaction problems.

To date, for numerical simulations of the physiologic and biomechanical dynamics in the
cardiovascular system mainly deterministic models have been used. However, the dynamics
are often subject to not to be underestimated uncertainties. As an example, the elastic struc-
ture of the aortic vessel wall is highly uncertain for each individual patient. This applies all
the more for diseased soft tissue. But also measurable quantities, such as the blood flow speed
in a considered vessel underlie measurement inaccuracies. This work illustrates how these
uncertainties can be incorporated and propagated in a numerical simulation with methods of
uncertainty quantification. The simulation results can then be stochastically evaluated. An
information on the stochastical distribution of the results is especially important if potential
risk parameters are considered, such as stress values at and within the vessel wall.

Furthermore, this work presents a workflow for the application of the simulation specifi-
cally to an individual patient. The workflow starts with MRI and flow MRI data. It generates
an individually adapted FEM mesh with specifically configured boundary conditions for the
simulation. This work continuous with the description of a problem-specific solver with
appropriate discretisation schemes for a numerical solvability of the complex mathematical
problem. In particular, two different UQ methods based on the polynomial chaos expansion
are described for the application to the FSI problem. On the one hand, for a simplified
formulation of the FSI equations, an intrusive UQ method can be used, which allows for the
usage of efficient monolithical solvers for the UQ problem. On the other hand, a collocation
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method is described, for which an existing solver for the deterministic FSI problem can be
used. Furthermore, a novel linear solver specifically for FSI problems is proposed based on
the Schur complement method.

For the testing and verification of the developed methods, a range of numerical bench-
marking experiments is carried out. At first, the results of a standard deterministic bench-
mark for fluid-structure interaction are reproduced by the simulation framework implemented
in this work. Also, by means of the 2D benchmark, the parallel scalability of the novel prob-
lem specific linear solver is examined. Additionally, this work presents a novel definition of an
analytically solvable benchmark problem for FSI problems with uncertain parameters. The
analytical solution is derived for the 2D problem and the numerical convergence behaviour
of the considered intrusive solver is evaluated.

Finally, the framework developed in this work for the subject-specific numerical simulation
of aortic biomechanics is applied to a prototypic aortic phantom experiment and a human
aortic bow. Hereby, the mathematical modelling is geared for the phantom experiment with a
configuration for the fluid and vessel wall material employed in the artificial phantom vessel.
The validation of the numerical simulation by means of the phantom experiment shows very
good results. By means of the application of the framework to the human aortic bow, the
linear solver is tested again in 3D with respect to its parallel scalability. Several visualisation
possibilities are presented for the results of the UQ simulation of the aortic bow. Last but not
least, the overstress probability parameters newly presented in this work for the assessment
of the aortic biomechanics are evaluated.

For possible future work in this highly interesting field of research, there are a range of
open research questions.

There is vivid ongoing research in refining the mathematical modelling towards a more
and more realistic imitation of the biomechanics of human soft tissue and the physiology of
blood flow. A particular challenge is given by the connection of cellular models on a micro-
scopic scale to the macroscopic continuum mechanics. The presented numerical simulation
framework is open for extensions towards more complex and realistic material models.

Along with the consideration of detailed material models, the modelling of the uncertainty
influence factors can also be refined. Particularly, an inhomogeneous geometrical distribution
of the uncertainty can be considered in many cases, which increases both the complexity and
the dimension of the UQ problem. Since the computational costs can rapidly increase in the
quantification of uncertainties, it is worthwhile to investigate the possibilities of model reduc-
tion for both the deterministic counterpart of a model as well as the stochastic formulation.

The possibilities of the configuration of the simulation by means of the low MRI mea-
surements have not yet been fully exhausted. The flow field measurements are used for the
respective boundary conditions. But future work can include the entanglement of the sim-
ulation and the velocity data from a 4D flow MRI on the full domain by means of data
assimilation. This way, the simulation can be seen as a direct enhancement of the MRI mea-
surement with additional information coming from the simulation model. Conversely, the
simulation results become more realistically aligned to the measurements.

In the application to a range of pathological cases, the potential of the presented frame-
work can be investigated. The proposed parameters of the overstress probabilities can be
evaluated with respect to their significance and eventually new risk parameters can be de-
fined in the assessment of diseased aortic geometries.
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8 Appendix

8.1 Definition of the Jacobian system matrix

In the following the definition is given for the Jacobian system matrix J and the right-hand
side L™* of the linear system of equations ([4.21)). The variables and the strain tensors are
used in their form as discrete finite element functions at the respective Newton iteration n.
Variables of the previous time step are indicated with [—1. Since the quadrature rule is chosen
to be exact for the polynomial ansatz and test functions of the finite element discretisation,
we keep the notation of the scalar product.

The Jacobian matrix has the following entries.

TP =,

T = (Je(F V(T Y, )
— (T(VoFIVY P, )
T = IV F ), )
TP~
1) )

f )
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8.1. DEFINITION OF THE JACOBIAN SYSTEM MATRIX

The right-hand side reads as follows.

1
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8. APPENDIX

8.2 Implementation and software issues

The workflow for preparing subject-specific simulations, described in section together
with the numerical discretisation, as described in section [£.2] leads to a complex numerical
simulation algorithm. The proposed scheme aims at solving a resulting large system of
linear equations in each time and Newton iteration. In all of the numerical experiments
considered in chapter [5|and [6] the solution variables for the displacement, velocity and pressure
are represented by high-dimensional finite element vectors. The complexity and size of the
discrete problems requires an efficient implementation of the numerical algorithms comprising
the usage of high performance computing (HPC).

In order to cope with these requirements, the open source software framework HiFlowsﬂ [54]
is choosen for the implementation of the simulations considered in this work. Hereby, the
programming language C++ and the parallelisation standard MPI[46] is used. C++ allows
for a hardware-aware realisation of the numerical algorithms and MPI enables an efficient
paralellisation on HPC clusters with distributed memory. HiFlow® natively works with a
domain decomposition, distributing equally sized subdomains of the geometry to the CPUs.
Figure [B:] illustrates the decomposition of a domain by means of the deterministic FSI
benchmark that is considered in section After the distribution, each of the CPUs holds
the discrete variable values defined on its subdomain in its corresponding memory. For the
decomposition of the domain, the open source graph partitioner metiéﬂ is used.

Subdomain
39

|

f 13
0

Figure 8.1: Illustration of the decomposition of a domain in a number of subdomains. The
figure exemplarily shows the decomposition of the domain of the deterministic F'ST benchmark
considered in section [5.1] when using 40 CPUs.

All simulations presented in this work were computed on the standard nodes of the Bw-
ForCluster MLSEWISO Productiorﬂ located at Heidelberg University. Each standard node
had two Intel Xeon E5-2630v3 processors on a Haswell architecture with 16 CPU cores at
2.4 GHz and 64 GB working memory. The network for MPI communication between the nodes
was an Infiniband interconnect of Quad Data Rate (QDR). As C++ and MPI compilers, the
Intel compilers icpc and impi, both version 17.0 were used. The discretisation parameters
and computational costs from the sections about the respective simulations are summarised

in table Rl

Thiflow3.org
Zglaros.dtc.umn.edu/gkhome/metis /metis /overview
Swww.bwhpc-c5.de/wiki/index.php/Category:BwForCluster  MLS%26WISO__Production
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8.2. IMPLEMENTATION AND SOFTWARE ISSUES

Parameter

‘ Det. benchmark ‘ UQ benchmark ‘ Phantom ‘ Aortic bow ‘

Degrees of freedom 5.0 x 10° 1.4 x 10° 1.6 x 10° 1.8 x 106
Timesteps 1.0 x 104 5.0 x 102 4.1 x 103 4.1 x 103
PC degree deterministic 4 4 4
Collocation points deterministic intrusive UQ 36 36
CPU cores 64 64 256 256
Wall time 30h 48h 42h 48 h
Total core hours 1.9 x 103h 31x103h | 39x10°h | 44 x10°h

Table 8.1: Discretisation parameters and computational costs for the four considered nu-
merical experiments: Deterministic FSI benchmark (section [5.1]), UQ-FSI benchmark (sec-
tion , aortic phantom experiment (section , aortic bow simulation (section . The
numbers are given for the highest simulated resolution, respectively.

Implementation of the collocation method

In the following, the Python script is given which implements the essential functions for the
UQ collocation method described in section [4.2.4]

import numpy as np

import scipy.special

# chaospy, wversion of Sept. 27, 2017, obtained wvia
# git clone git@github.com:jonathf/chaospy. git
import chaospy as cp

# construct basic collocation rule

# for wuniformly distributed random wvariables

# input:

# — dimension of the stochastic space

# — maximal polynomial degree of the chaos polynomials

# output:

collocation points

weights of the quadrature rule

def construct_collocation_rule ( N, poly_degree ):
# order of Gauss—Legendre quadrature for an exact integration
# of the scalar product of the chaos polynomials
quadrature_order = poly_degree + 1

# creating a multidimensional uniform distribution
uniform_ dists = [ c¢p.Uniform ( —1, 1 ) for n in range ( N ) |
joint_dist = ¢p.J ( xuniform_ dists )

# generate the quadrature,
nodes ,

rule="E" —> Gauss—Legendre
weights = cp.generate_ quadrature \

( quadrature_order, joint_ dist,
weights

rule="E" )

return nodes,

# generate collocation points in physical units
# for wuniformly distributed random wvariables
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# input:

# — maximal polynomial degree of the chaos polynomials

# — list of mean values of the input random wvariables

# — list of deviation wvalues from the means of the random wvariables
# output:

# — collocation points in physical units

# — weights of the quadrature rule

def generate_ collocation ( poly_ degree, means, deviations ):
# get dimension of stochastic space
N = len ( means )
assert N = len ( deviations )

# construct the quadrature
nodes, weights = construct_collocation_rule ( N, poly_degree )

num_quad_nodes = len ( weights )

# map the collocation points to the physical values
for n in range( N ):

assert num_quad_nodes = len ( nodes[n] )
for i in range( num_quad_nodes ):
nodes[n][i] = means[n] + deviations[n] * nodes[n][i]

return nodes, weights

# faculty of a number
def faculty ( num ):
fac =1
for n in range ( num ):
fac = fac « (n+ 1)
return fac

# multiindex for the chaos polynomial basis
def compute_multiindex ( num_modes, poly degree, N ):
multii = np.zeros ( shape = ( num_modes + 1, N ) )
if poly_degree > 0:
for i in range ( 1, N+ 1 ):
multii [i][i-1] =1
if poly_degree > 1:
R =N
mat = np.zeros ( shape = ( N, poly_degree ) )
for i in range ( N ):

mat[i][0] =1
for k in range ( 1, poly_degree ):
L=R
for i in range ( N ):
s =0

for 1 in range ( i, N ):
s =s + mat[1l][k—1]
mat[i][k] = s
for j in range (
for 1 in range
R=R+1

N ):
(L —int ( mat[j][k] )+ 1, L+ 1 ):
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for i in range ( N ):
multii [R][i] = multii[l
multii [R][j] = multii [R]]
return multii

[i

J[i]
j] + 1

# evaluation of a 1D Legendre polynomial
def legendre ( degree, x ):
return scipy.special.eval_ legendre ( degree, x )

# evaluation of a multivariate Legendre polynomial
def legendre_multi ( degree, multiindex, x_vec ):

degrees = multiindex [degree]
assert len ( degrees ) = len ( x_vec )
val = 1.
for i in range ( len ( degrees ) ):
val = val % legendre ( degrees[i], x_vec[i] )

return val

# calculate the squared norm of a 1D Legendre polynomial
def legendre_norm_sq ( degree ):
return 2. / ( 2. % degree + 1. )

# calculate the squared norm of a multivariate Legendre polynomial
def legendre_multi_norm_sq ( degree, multiindex ):

degrees = multiindex [degree]
val = 1.
for i in range ( len ( degrees ) ):
val = val x legendre norm sq ( degrees[i] )

return val

# compute quadrature factors
# for wuniformly distributed random wvariables
# input:
# — dimension of the stochastic space
# — maximal polynomial degree of the chaos polynomials
# output:
# — factors for the multiplication with the results computed
# for each collocation point
# summation then yields the respective stochastic mode
def compute_quadrature_factors ( N, poly_degree ):
# construct the quadrature

nodes, weights = construct_collocation_rule ( N, poly_degree )
nodes = nodes.T
num_ quad_nodes = len ( weights )

# calculate number of modes
num_modes = ( faculty ( poly degree + N ) \
/ ( faculty ( poly_ degree ) x faculty ( N ) ) ) —1

# calculate multiindices
alpha = compute_multiindex ( num_modes, poly_ degree, N )
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# calculate the size of the stochastical domain
stoch dom_size = 2%xN

# calculate quadrature factors for each mode and collocation point
factors = |[]

for mode in range( num_modes + 1 ):
leg_norm_sq_inv = stoch_dom_ size \

/ legendre_multi_norm_sq ( mode, alpha )

[ leg_norm_sq_inv x weights[i] \
* legendre_multi ( mode, alpha, nodes[i] ) \
for i in range ( num_quad_nodes ) ] )

factors .append (

return factors
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8.3 Additional visualisation of the aortic phantom simulation

u_ 1 [m]
. 9.16e-04

. 6.03e-04
2.91e-04
-2.17e-05

dev(u_1) [m]
. 5.35e-04

3.57e-04
1.78e-04
0.00e+00

(b) Standard deviation o(uq).

Figure 8.2: Visualisation of the displacement into the shown cross section u; (cf. Figure [6.1)
at the second systolic peak, t = 0.22s.

u_2 [m]
: 3.71e-05

-3.71e-05
-1.11e-04
-1.85e-04

dev(u_2) [m]
4.03e-05

. 2.68e-05
1.34e-05
0.00e+00

(b) Standard deviation o(ug).

Figure 8.3: Visualisation of the displacement along the cross section us (cf. Figure [6.1)) at
the second systolic peak, t = 0.22s.
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u 3 [m]
: 9.50e-04

 4.44e-04
-6.14-05
5.67e-04

dev(u_3) [m]
: 1.38e-04

. 9.19¢-05
4.59¢-05
0.00e+00

(b) Standard deviation o(us).

Figure 8.4: Visualisation of the vertical displacement in the cross section ug (cf. Figure [6.1)
at the second systolic peak, ¢t = 0.22s.

v_1 [m/s]
- 8.92e-02
E 4.85e-02
7.70e-03
-3.30e-02

dev(v_1) [m/s]

- 1.71e-02

1.14e-02
5.70e-03

0.00e+00

(b) Standard deviation o(vy).

Figure 8.5: Visualisation of the velocity into the shown cross section v (cf. Figure [6.1)) at
the second systolic peak, t = 0.22s.

v_2 [m/s]
- 4.34e-01
© 2.86e-01

1.39e-01

-8.50e-03

dev(v_2) [m/s]

- 4.93e-02

- 3.28e-02
1.64e-02

0.00e+00

(b) Standard deviation o(v3).

Figure 8.6: Visualisation of the velocity along the cross section vy (cf. Figure at the
second systolic peak, t = 0.22s.

138



8.3. ADDITIONAL VISUALISATION OF THE AORTIC PHANTOM SIMULATION

v_3 [m/s]
- 1.97e-02

. 7.34e-03
-5.06e-03
-1.74e-02

dev(v_3) [m/s]
4.42e-03

2.95¢-03
1.47e-03
0.00e+00

(b) Standard deviation o(vs).

Figure 8.7: Visualisation of the vertical velocity in the cross section w3 (cf. Figure [6.1)) at
the second systolic peak, t = 0.22s.

p [mmHg]
E 12.53

- 11.56
- 10.60
E 9.63

(a) Expected value E(p).

dev(p) [mmHg]
E 1.51

- 1.34
- 1.18
E1.02

(b) Standard deviation o(p).

Figure 8.8: Visualisation of the pressure p in the cross-sectional plane (cf. Figure at the
second systolic peak, t = 0.22s.
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t=0.22s

2D flow MRI:
V2

v_2 [m/s]

E(v2) = o(v2) 0.38

- 0.29

0.19
0.10

0.00
E(v2) + o(v2)

O00G:

Table 8.2: Visualisation of the velocity field v in the cross-sectional plane levels L2, L3,
L4 and L5 (cf. Figure at the second systolic peak, ¢ = 0.22s. The first row shows the
velocity data measured by 2D flow MRI. The second to the last row show the simulated
velocity field. Hereby, the expected value E(v3), shown in the third row is subtracted by the
standard deviation o(v2) in the second row. The standard deviation added to the expected
value is shown in the fourth row.
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8.4 Additional visualisation of the aortic bow simulation

[u] [m]

0.00e+00 2.58e-04 5.16e-04 W
' ‘ |

dev(|u|) [m] ‘
0.00e+00 8.12e-05 1.62e-04
P

(a) Expected value of the displacement

b) Standard deviation o(|ul).
Bl (v (ju)

Figure 8.9: Visualisation of the displacement magnitude by means of the frontal cross sec-
tional plane defined in Figure in mid-diastole at ¢t = 0.66s.
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|v| [m/s]

\ dev(|v]) [m/s]
0.00e+00 9.73e-02 1.95e-01 “‘
I “

0.00e+00 1.82e-02 3.65¢-02 §

(a) Expected value of the velocity E(|v]). (b) Standard deviation o(|v]).

Figure 8.10: Visualisation of the velocity magnitude by means of the frontal cross sectional
plane defined in Figure [6.17P] in mid-diastole at ¢ = 0.66s.

dev(p) [mmHg]

0.71 0.72 0.74
(a) Expected value of the pressure E(p). (b) Standard deviation o(p).

Figure 8.11: Visualisation of the pressure by means of the frontal cross sectional plane defined
in Figure @ in mid-diastole at ¢ = 0.66s.
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L2

~
I
e
D
(=}
w0
=
[
=
w

[u| [m]
-5.16e-04

[ 2.58e-04
0.00e+00

dev(|u]) [m]
- 1.62e-04

8.12e-05

0.00e+00

|v] [m/s]
1 1.95e-01

9.73e-02

0.00e+00

dev(|v|) [m/s]
. 3.65e-02

1.82e-02

0.00e+00

p [mmHg]
P84

525

k467

dev(p) [mmHg]

0.74
[

-0.72

2
=

t0.71

Table 8.3: Visualisation of the aortic bow simulation by means of the cross sectional levels
defined in Figure [6.17]in mid-diastole at ¢ = 0.66s. The orientation is such, that the bottom
of the cross sections is oriented towards the arc center of the bow. The left side is in the back
of Figure @ and the right side of the cross sections is directed to the front.
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dev(|WSS|) [Pa]

|wss| [Pa]
0.00 0.85 171 0.00 0.10 0.21
(a) Expected value E(rw), front view. (b) Standard deviation o (7w ), front view.

dev(|WSS|) [Pa]
0.00 0.10 0.20

e

|WSS| [Pal
0.00 0.85 1.71

(¢) Expected value E(ryw), back view. (d) Standard deviation o(mw), back view.

Figure 8.12: Visualisation of the wall shear stress magnitude on the outside of the fluid-
structure interface in mid-diastole at ¢t = 0.66s.
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dev(vonMises) [Pa]
0.0e+00 9.0e+03 1.8e+04
————

vonMises [Pa]
0.0e+00 7.5e+04 1.5e+05

(a) Expected value E(my), front view. (b) Standard deviation o(my), front view.

dev(vonMises) [Pa]
0.0e+00 9.0e+03 1.8e+04
T

vonMises [Pa]
0.0e+00 7.5e+04 1.5e+05
- i

(c) Expected value E(my), back view. (d) Standard deviation o(my), back view.

Figure 8.13: Visualisation of the von Mises stress on the outside of the geometry in mid-systole
at t = 0.16s.
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vonMises [Pa]
0.0e+00 1.2e+04 2.5e+04
e

dev(vonMises) [Pa]
0.0e+00 1.5e+03 3.0e+03
——

(a) Expected value E(1y), front view. (b) Standard deviation o(7y), front view.

vonMises [Pa]
0.0e+00 1.2e+04 2.5e+04
—— !

dev(vonMises) [Pa]
0.0e+00 1.5e+03 3.0e+03
e

(c) Expected value E(my), back view. (d) Standard deviation o(m\), back view.

Figure 8.14: Visualisation of the von Mises stress on the outside of the geometry in mid-
diastole at t = 0.66s.
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vonMises [Pa]
0.0e+00 1.2e+04 2.5e+04
; e

dev(vonMises) [Pa]
0.0e+00 1.5e+03 3.0e+03
————

(a) Expected value E(my), front view. (b) Standard deviation o(my), front view.

vonMises [Pa]
0.0e+00 1.2e+04 2.5e+04
—— “ul

dev(vonMises) [Pa]
0.0e+00 1.5e+03 3.0e+03
hahe

(c) Expected value E(my), back view. (d) Standard deviation o(my), back view.

Figure 8.15: Visualisation of the von Mises stress on the inside of the fluid-structure interface
in mid-diastole at ¢t = 0.66s.
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