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Summary 

 

The midbrain periaqueductal grey (PAG) is commonly recognised as the exit relay for the 

coordination and execution of a wide range of instinctive behaviours, such as defense, 

reproduction and predation. In line with its functional diversity, are the range of inputs it 

receives from higher cortical and subcortical areas as well as ascending spinal pathways, and 

the various neurotransmitter and neuromodulatory mechanisms active in its different 

subregions. However, the lack of a comprehensive cell-type classification of the PAG hinders 

systematic investigations into the intricacies of its many behavioural roles. Here, we applied 

high-throughput single neuronal nucleus RNA-sequencing to profile transcriptomes of adult 

mouse PAG neurons. Our data revealed at least 9 distinct PAG neuronal subpopulations, marked 

by differential expressions of neurotransmitter, neuromodulator and ion channel genes. In 

addition, using a combination of optogenetic manipulations and a carefully designed defense 

test battery, we identified separate functions of dPAG vGlut2+, PACAP+ and Tac2+ neurons in 

triggering and modulating defensive behaviour. We showed that dlPAG vGlut2+ neurons project 

to the Cuneiform nucleus, and this projection is an output pathway for PAG elicited escape 

behaviour. Our work supports the existence of molecularly distinct, functionally divergent 

pathways in the PAG underlying defensive behaviour, and demonstrates a framework towards a 

systematic dissection of cell-type specific functions of complex brain regions.  

 





 
 

 

 

Zusammenfassung 

 

Das periaquäduktale Grau (periaqueductal grey, PAG) ist als Integrationszentrum für die 

Koordinierung und Ausführung einer Reihe instinktiven Verhaltens, wie Verteidigung, 

Fortpflanzung und Jagd, bekannt. Entsprechend seiner funktionellen Varianz ist es das Ziel 

vieler Regionen des Cortex, Subcortex, sowie einiger aufsteigenden Bahnen des Rückenmarks. 

Seine Unterrregionen sind Ort verschiedenster neuromodulatorischer Mechanismen und einer 

entsprechenden Vielfalt an beteiligten Neurotransmittern. Bisher erschwerte jedoch der Mangel 

an detaillierter Klassifikation der Zelltypen innerhalb des PAG eine systematische Untersuchung 

der genauen Rolle, die es in Bezug auf Verhalten spielt. Wir verwendeten high-throughput RNA-

Sequenzierung, um Profile des Transkriptoms der PAG Neuronen der erwachsenen Maus zu 

erstellen. Anhand unterschiedlicher Expressionslevels von Neurotransmitter-, Neuromodulator- 

und Ionenkanalgenen konnten wir mindestens neun verschiedene Subpopulationen dieser 

Neuronen identifizieren. Darüber hinaus erlaubte uns die Kombination aus optogenetischer 

Manipulation und eines sorgfältig entworfenen Protokolls zur Untersuchung defensiven 

Verhaltens unterschiedliche Funktionen von vGlut2+, PACAP+ und Tac2+ dPAG Neuronen 

bezüglich seiner Steuerung und Regulierung auszumachen. Wir konnten zeigen, dass vGlut2+ 

Neuronen in den Nucleus cuneiformis (Cuneiform nucleus, CnF) projezieren und so 

Fluchtverhalten auslösen. Unsere Erkenntnisse stützen die These der Existenz molekular 

unterscheidbarer, divergenter Signalwege im PAG und zeigt eine Methode auf um die 

zellspezifischen Funktionen komplexer Hirnregionen zu entschlüsseln. 
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1 Introduction 

1.1 Probing neural circuits underlying behaviour 

“Further, it is pointed out that although behaviourism exerts an emotional appeal 

because it appears radical, modern and simple, we shall find it recondite, difficult, but 

we may hope, scientific.” 

- Purposive behaviour in Animals and Men, E. C. Tolman (1932) 

 

Rene Descartes, 17th century French Philosopher, was amongst the first people to challenge the 

divinity of the soul. Through his observation of fountains and statues in the royal gardens of St. 

Germaine, he suggested that human bodies were “mere machines”, lacking in soul and 

consciousness. Instead, he hypothesised (along with his “dualistic” contemporaries) that the 

soul existed separately, but could control the body through mediation of the pineal gland, which 

was filled with animal spirits (Weckowicz and Liebel-Weckowicz 1982).  

Fast-forward 400 years (and 2000 since Aristotle and Plato, whose ideas Cartesian dualism 

stemmed from), we have understood that our behaviour is not controlled entirely by our pineal 

glands but mostly by our brains. Descartes’s most important legacy, in my opinion, is the 

inspiration to apply rationalism and scientific methods in the study of behaviour. Behaviourists 

like Watson and Skinner, for example, proposed that “all behaviours are lawful and open to 

experimental analysis” (Skinner 1950). Tinbergen laid out a general framework of four 

categories of questions: function, evolution, mechanism and ontogeny, for understanding 

behaviour (Tinbergen 1951).  

In parallel, we have known since the 19th century that the brain is composed of networks of 

nerves; Ramon y Cajal and Golgi described neurons, their morphologies and their connections; 

Hodgkin and Huxley modelled action potentials, while Katz and Fatt discovered quantal releases 

of neurotransmitters at synapses. The brain we know is no longer a homogeneous grey mass, 

but is composed of circuits of connected neurons, receiving and sending electrical and chemical 

signals.  

While it is obvious, perhaps already from the time of Descartes, that the studies of behaviour 

and of the brain are linked, it is important to recognise that, historically, their immediate 

https://paperpile.com/c/GLBK7T/4jzh
https://paperpile.com/c/GLBK7T/wnXF
https://paperpile.com/c/GLBK7T/kUdP
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motivations, and hence their levels of understanding have been very different. This led to the 

use of different experimental approaches, and as we dissected and parcellated the neural 

substrates of behaviours, simulated and described larger neural networks, we have reached a 

point where bridging the gap between the two seems possible.  

In this section, I aim to provide a brief review of the efforts made to bridge the gap from 

neurons to behaviour, the experimental approaches and the techniques involved. I will highlight 

recent technological advances which together represent a sufficiently strong foundation to 

comprehensively study the neural substrates underlying specific behaviours.  

1.1.1 A historical perspective 

One of the first key insights into brain “components” underlying behaviour came from the 

studies of Phineas Gage, who famously suffered damage to his frontal lobe from a railroad 

accident; while he survived the accident, he became rude and impatient, completely opposite to 

his pre-accident polite, quiet self. It lent support to the then emerging theories of the 

localisation of brain functions, and implicated the frontal lobe in personality. Since then, 

different parts of the brain in animals have been lesioned and broad functions have been 

mapped to regions, e.g. the amygdala’s involvement in affective and social behaviour, the 

ventromedial hypothalamus’s role in ingestion (Wheatley 1944; Dicks, Myers, and Kling 1968). 

Another main technique used in the mid-20th century was electrical stimulation, which, as 

opposed to lesions studies, is a gain-of-function approach, which allows for investigations into 

the capability of the brain region. Stimulation of the mesencephalon, for example, causes 

freezing or running, depending on the intensity of the stimulation (Bandler, Carrive, and 

Depaulis 1991).  

Using these two techniques together, neuroscientists gleaned insights into the “hierarchy” of 

brain regions in regulating behaviours; that one structure sends information to another, and 

lesioning downstream areas would annul the effects of stimulating an upstream region. Tract 

tracing experiments using anterograde and retrograde tracers, such as Phaseolus vulgaris-

leucoagglutinin (PHA-L) and wheat germ agglutinin (WGA), became crucial in understanding 

how regions are connected with each other. This forms the foundations of the idea of 

behavioural circuits. 

The discovery of neurotransmitters and neuromodulatory systems prompted investigations 

into their behavioural through local injections of agonists and antagonists of receptor systems, 

https://paperpile.com/c/GLBK7T/pHil+RxMD
https://paperpile.com/c/GLBK7T/ZWV1
https://paperpile.com/c/GLBK7T/ZWV1
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neurotransmitter analogies, etc. In conjunction with electrophysiological recordings, these shed 

light on the finer aspects of controls of behaviours. 

The above techniques have a common limitation: they are invasive, hence causing certain 

damage that may affect the resulting behavioural or anatomical measurement. The 

identification of C-fos and other immediate early genes in response to neuronal activation 

presented a way to label neurons involved in the behaviour of interest post-mortem, facilitating 

non-invasive functional mapping essentially down to single neuron level (Bullitt 1990). Coupled 

with tract tracing, immunostaining and/or in situ hybridisation, neuroscientists can go beyond 

location and anatomy, and can understand the connectivity and identity of neurons involved in a 

certain behaviour. 

While these approaches provide insight into gross anatomical composition of behavioural 

neural circuits, they give little information on how behaviours are regulated or computed on a 

neuronal or synaptic level. This demands the use of simpler nervous systems with easily 

identifiable neurons and quantifiable behavioural outputs. Applying single neuron ablations, 

paired-recordings, patch clamp and connection mapping in invertebrate system such as aplysia, 

lobsters (somatogastric nervous system), and lamprey, neuroscientists gained precious 

knowledge on synaptic mechanisms, network motifs and pattern generators, and how these 

work together to compute simple behaviours (Selverston, Russell, and Miller 1976; Grillner and 

Matsushima 1991; Harris-Warrick and Marder 1991; Dale, Schacher, and Kandel 1988; Getting 

1989). These results laid the foundations for modelling larger neural circuits and understanding 

the regulation of more complex behaviours.  

1.1.2 Modern Techniques 

The recent technological advancements in neural circuit research have two main goals: better 

specificity and larger scales; these are crucial for furthering studies of complex behavioural 

systems.  

Specificity is pivotal especially for manipulation studies. The use of transgenic animals and 

engineered viruses made cell type specific targeting possible, thus facilitating the dissection of 

neural circuits beyond anatomical regions. This becomes particularly powerful in mouse and 

drosophila research, where efforts have been made to generate an entire transgenic toolbox, 

comprising knockouts/knock-ins, Cre-driver lines and Cre-dependent reporter lines and 

viruses. For example, the combination a Cre-driver line with a Cre-dependent retrograde virus 

allows the labelling and manipulation of inputs of a specific genetic identity to a specific region 

https://paperpile.com/c/GLBK7T/o8O4
https://paperpile.com/c/GLBK7T/SQTT+2q6c+5D7P+WcDY+NR2l
https://paperpile.com/c/GLBK7T/SQTT+2q6c+5D7P+WcDY+NR2l
https://paperpile.com/c/GLBK7T/SQTT+2q6c+5D7P+WcDY+NR2l
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of interest. Temporal specificity in manipulation studies has been greatly improved by the 

invention of optogenetics; neurons can be activated and deactivated instantaneously and 

reversibly, providing intra-subject control for behavioural experiments, which was almost 

impossible before (lesions are irreversible, and pharmacogenetic substrate effects last for 

several hours). 

To understand computation in a complex circuit, one has to be able to observe and record 

responses from multiple regions/neurons simultaneously. This is made possible by the 

development of large scale recording tools, such as multielectrode arrays, that allow long term 

recordings of neurons across a large area of the brain. Another breakthrough came with the 

development of genetically encoded calcium indicators (GCaMPs), which can be stably 

expressed in the region and/or cell type of interest. With two-photon microscopy, and recently 

also an implantable microendoscope, this allowed the recording of the activities of hundreds 

and even thousands of neurons at the same time in live, behaving animals. The advantages of 

GCaMP over large scale single unit electrophysiology recording are that one can selectively 

record from a certain genetically marked neuronal population, and the same neurons can be 

repeatedly identified and recorded from across behavioural sessions and days, something that 

was previously only achievable in simple model organisms with several hundreds of neurons in 

total.  

Finally, large scale connectivity mapping coupled with transcriptome information is made 

possible by the developments in next generation sequencing and viral tracing technologies. A 

well-described circuit (with each neuron’s firing properties and connections comprehensively 

described) was exclusive to primitive model organisms like molluscs and lampreys. As an 

example, the Allen Brain Atlas (Lein et al. 2007), which will be referred to countless times in the 

subsequent sections, comprises large databases of in situ hybridisation and viral tracing 

experiments; it represents a major effort towards generating a comprehensive description of 

the mouse, primate and human brains.  

1.1.3 Top-down vs bottom-up: what does “understanding a neural circuit” 

mean 

Animal behaviour is the result of sequential muscular contractions, which are in turn controlled 

by the sequential firing of neurons connected with each other. Neuron firing is triggered by the 

reception of appropriate signal from an input neuron, and controlled by ion channels. It hence 

follows that if one can exhaustively describe all responses of every neuron to all possible signals 

from all its inputs, then all of behaviour could be explained. A strong proponent of this school of 

https://paperpile.com/c/GLBK7T/svz8
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thinking is Allen Selverston, who in his seminal article titled “Are Central Pattern Generators 

Understandable?” outlined the minimal criteria for understanding a neural circuit: (1) a 

characterisation of its components (neurons and their synaptic connections, (2) identification of 

their functional properties and (3) delineation of how these properties influence the flow of 

activity through the circuit, thus the circuit output and associated behaviour (Selverston 1980; 

Parker 2006) As mentioned in the last section, high-throughput assaying of single neuron 

properties in complex nervous systems, such as that of the mouse, is now technologically 

possible. In particular, large scale neuronal transcriptome profiling provide a quantitative, 

functionally relevant characterisation of a large number of neurons by essentially describing the 

components of the neurons, meeting the first of Selverston’s criteria. Such description of the 

circuit components would also allow one to hypothesize their functional properties at a circuit 

level and how they influence the information flow through the circuit, or in other words, how 

they compute to produce the corresponding behaviour. 

At the same time, the highly specific modern day manipulation tools facilitates finer and finer 

dissections of behavioural neural circuits in complex nervous systems. Many of behavioural 

experiments carried out nowadays involves the activation or inhibition of a molecularly defined 

cell type (e.g. vGlut2+) in a small brain region with certain connectivity. With a robust 

behavioural paradigm, circuit level functions of specific molecularly defined groups of neurons 

can be identified. The key to success is to make use of a robust phenotype: one that is reliable, 

sensitive and measurable/quantifiable such that small behavioural changes can be observed. 

The mouse instinctive defensive response is an example of such behaviour. Instinctive 

behaviours are behaviours that do not require learning; they are often considered as hardwired 

and have a fixed pattern. Instinctive defense, for example, are responses against threats such as 

predators, and in mice includes flights and freezing (more in the following section). 

These are well described in the literature, and tests have been designed to measure 

specific aspects of the response. The brain regions, neuronal populations and their 

connections underlying these responses have also been extensively investigated 

and documented. Therefore, combining the bottom-up (building computational 

understanding from components characterisation) and top-down (breaking down 

behavioural circuits via gain and loss-of-function experiments) in the study of the 

mouse instinctive defense circuit has the potential of bridging the gap between 

molecules and behaviour, providing new insights towards an algorithmic and 

computational level understanding of the behavioural neural circuit.   

https://paperpile.com/c/GLBK7T/0Aj6+1cZ8
https://paperpile.com/c/GLBK7T/0Aj6+1cZ8
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1.2 Neural Circuits underlying Instinctive Defensive Behaviour 

Defense against threats is a fundamental requirement of life (LeDoux 2012). Defensive 

mechanisms and behaviour are observed in all living things, from single cell organisms 

responding to noxious environmental stimuli, to animals escaping from predators. It is also one 

of the three classes of behaviour that ethologists classically consider instinctive (Tinbergen 

1951).  

There is a wide variety of defensive mechanisms that one can observe in nature: lizards 

changing their skin colour to match their environment, the defensive spines of hedgehogs, 

molluscs squirting ink to cloud their predator’s vision. This diversity evolved because different 

predators, threats and living environments necessitated different defensive strategies. One can 

therefore imagine that while the objective of the defensive behaviour could be similar (e.g. 

fleeing from predator), some aspects of the actual response are species-specific. One also needs 

to acknowledge that domesticated, laboratory animals will behave differently to their wild 

counterparts in the fields. Hence, while we should use studies in rodents and other animals to 

understand general principles underlying defensive behaviour, in designing behavioural tests 

and paradigms to address our hypotheses, we need to consider specifically defensive responses 

in lab mice.  

1.2.1 Innate defensive behaviours 

Defensive behaviors are a group of responses or response patterns elicited by threat (D. 

Caroline Blanchard and Blanchard 2008). Threats are generally one of three categories: 

predators, aggressive conspecific, or from the environment (LeDoux 2012). Depending on the 

threat, animals obviously react differently, but the repertoire of their overt defensive behaviour 

is generally the same, consisting of namely flight, freezing, defensive attack and risk assessment 

(Blanchard et al. 1998; Blanchard and Blanchard 2008; Bolles 1970). 

Flight is observed in mice (and also other rodents) when the predator is extremely close, or 

about to make contact. It is regarded as the classical “circa-strike” defense response, a vigorous 

attempt to flee (Fanselow and Lester 1988; Fanselow 1989). When faced with a predator in an 

oval runway, mice invariably run around the wall, avoiding eye contact with the predator 

(Blanchard, Griebel, and Blanchard 2003). Flights occur only when escape is a viable option, are 

oriented away from threat and towards safety, and is influenced by proximity to predator and 

the approaching speed of the predator (Cooper 2006; Blanchard and Blanchard 1971; 

Blanchard et al. 1981). Flights are accompanied by tachycardia, and closely followed by the 

https://paperpile.com/c/GLBK7T/PxsZ
https://paperpile.com/c/GLBK7T/kUdP
https://paperpile.com/c/GLBK7T/kUdP
https://paperpile.com/c/GLBK7T/hegU
https://paperpile.com/c/GLBK7T/hegU
https://paperpile.com/c/GLBK7T/PxsZ
https://paperpile.com/c/GLBK7T/4HzF+hegU+gfoV
https://paperpile.com/c/GLBK7T/hXC5+HCDB
https://paperpile.com/c/GLBK7T/mp4O
https://paperpile.com/c/GLBK7T/meBw+BJUv+vrIX
https://paperpile.com/c/GLBK7T/meBw+BJUv+vrIX
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emission of 22 kHz ultrasonic vocalisation (USV), a widely acknowledged alarm call (Schenberg, 

Vasquez, and da Costa 1993; Blanchard et al. 1991). All these features of flight suggest that it is a 

goal-directed escape response. 

Freezing is characterised by a complete absence of movement, except for that associated with 

respiration, and a tense body posture (M. S. Fanselow 1984). In rats, while bradycardia has been 

shown to consistently occur with freezing, tachycardia has also been detected during freezing to 

conditioned fear stimulus (Stiedl and Spiess 1997; Vianna and Carrive 2005). Both increases 

and decreases in USV have been observed with freezing, and these seemingly contradictory 

findings suggest while freezing is a general fear response, the underlying motivations can be 

diverse (Hagenaars, Oitzl, and Roelofs 2014; Blanchard and Blanchard 2008). Freezing occurs in 

response to a wide variety of threats, including but not limited to predators, conspecifics, 

looming stimulus, open fields and fear-conditioned tones (Hagenaars, Oitzl, and Roelofs 2014; 

Yilmaz and Meister 2013; Blanchard et al. 1998). In rats, when escape or concealment is not 

possible, or when flights are punished, freezing is the dominant response (Blanchard et al. 

1981). Immobility is also frequently observed in mice and rats after flights ( Blanchard, Griebel, 

and Blanchard 2003; Deng, Xiao, and Wang 2016; Fanselow 1991). Ethologically, the 

evolutionary advantages of freezing include avoiding predator detection, optimising perceptual 

and attentional processes, and preparation for rapid escape or defensive fighting (Hagenaars, 

Oitzl, and Roelofs 2014). All in all, freezing appears to be a general fear response that an animal 

engages in depending on the nature of the threat, the context and its internal state. 

Defensive attack happens when the animal is in contact with the threat. When in forced contact 

with a hand-held rat, mice have been shown to attack by adopting an upright posture, biting, 

jump attacking and sonic vocalisation, presumably as a “last-resort” (Blanchard, Blanchard, and 

Griebel 2005). Whereas when faced with a conspecific threat, however, a mouse attacks its 

opponent by approaching (straight, laterally or via a circular path), biting (and sometimes 

maintaining this bite and chasing the opponent around), and standing over or on top of its 

opponent (Blanchard and O’Donnell 1979). Depending on the dynamics of the fight, attack is 

often mixed with defensive behaviour, such as boxing (standing on hind limbs and oriented 

towards the opponent) and freezing (Blanchard and O’Donnell 1979).  

Risk assessment is considered a “pre-encounter” strategy, where animals forage beyond the 

known safe area (Fanselow 1991). In predatory risk assessment, after a period of no futher 

evidence of danger, the animal ventures into the danger zone to explore it, followed by rapid 

retreats; this represents a balance between risk avoidance and risk assessment (Blanchard and 
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Blanchard 1988). When danger appears to be absent, the duration of risk assessment and 

foraying grows longer. In mice and rats, risk assessment is manifested mainly in two modes: 

stretch-attend, where the animal orients towards the threat with fore- and hind-limbs far apart 

and body elongated with a low back; and stretch-approach, where the animal moves towards 

the threat with an elongated body and low back  (Blanchard, Blanchard, and Griebel 2005; Pinel, 

Mana, and Ward 1989). Stretch-approach appears to be preferred when the threat is localised 

and discrete, possibly to allow for the animal to collect more visual, olfactory and tactile 

information regarding the threat, whereas when the threat is ambiguous and poorly localised, 

stretch-attend and freezing are dominant (Pinel, Mana, and Ward 1989). Lab mice have been 

shown to perform more risk assessment (and fewer flights) than wild mice ( Blanchard, Griebel, 

and Blanchard 2001).  

It is worth noting that in the presence of a threat to survival, all other survival behaviours, such 

as ingestion and reproduction, are suppressed (Fanselow 1994; Lima and Dill 1990; Blanchard 

et al. 1990; LeDoux 2012). All behaviours, including fleeing and risk assessment, require energy, 

and in the natural environment potential threats are always present; animals need to forage or 

hunt to gain energy. The prioritising of survival behaviours requires astute assessment of 

circumstances and internal states, which in turn necessitates interactions of the neural circuits 

underlying these behaviours, and the integration of sensory and other information into these 

circuits, to produce the most appropriate behavioural responses.  

1.2.2 Subcortical circuits for instinctive defense 

Through classical lesion, electrical/chemical stimulation and neural activity mapping studies, 

scientists have identified key subcortical structures involved in the regulation of innate 

defensive behaviours: the amygdala, the medial hypothalamus, and the periaqueductal grey 

(PAG). They receive input from sensory and cortical structures, connect with each other and 

output to downstream motor circuits. 

1.2.2.1 Amygdala 

The amygdala is the most studied brain structure in the context of emotions and fear. It is 

partitioned anatomically into a cortical division (comprised of the basolateral (BLA), 

basomedial (BMA) and lateral (LA) subdivisions) and a striatal division (comprised of the 

medial (MEA) and central (CeA) subnuclei) (Swanson and Petrovich 1998). Rats show a major 

increase in neural activity in the MEA (particularly to the posteroventral region, MEApv) 

specifically upon exposure to cat odour (but not control odour), whereas increased neural 

activity was found in MEA, BMA and LA on exposure to a living cat (Dielenberg, Hunt, and 
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McGregor 2001; Martinez et al. 2011). The LA has been shown to be essential for defensive 

responses to looming stimulus (Wei et al. 2015). Combined with the facts that the olfactory bulb 

projects to the MEA, and that the BMA and LA receive inputs from visual and auditory 

association areas, the MEA is likely to be involved mainly in processing olfactory cues from 

predators, while the BMA and LA in integrating visual and auditory cues (Gross and Canteras 

2012; Scalia and Winans 1975; McDonald 1998; Swanson and Petrovich, 1998). Exposure to a 

conspecific also activates the MEA, but in a slightly different subregion (posterodorsal, MEApd), 

indicating threat differentiation already at the level of the amygdala (Kollack-Walker et al. 

1999).  

1.2.2.2 Medial Hypothalamus 

The hypothalamus is composed of three distinct longitudinal zones (periventricular, medial, and 

lateral), divided into four rostro-caudal levels or regions (preoptic, anterior, tuberal, and 

mammillary). The medial hypothalamus comprises a number of nuclei arranged lateral to the 

paraventricular zone: medial preoptic nucleus (MPN), anterior hypothalamic nucleus (AHN), 

descending division of the paraventricular nucleus (PVN), ventromedial nucleus (VMH), 

dorsomedial nucleus (DMH) dorsal and ventral premammillary nuclei (PMD, PMV), and 

mammillary body (Swanson 2000).  

The MEApv sends major projections to the VMH, particularly the dorsomedial subdivision 

(VMHdm) (Canteras, Simerly, and Swanson 1995). The VMHdm is the centre of the “predator 

defense behaviour control column” proposed by Swanson, which consists of VMHdm, AHN and 

PMD (Swanson 2000). VMHdm receives most sensory inputs from the MEApv and BMA, but also 

somatosenory information from the parabrachial nucleus (Canteras, Simerly, and Swanson 

1995; Saper and Loewy 1980; Petrovich, Risold, and Swanson 1996). Optogenetic activation of 

VMHdm SF1+ neurons promotes immobility, running and jumping, while their pharmacogenetic 

inhibition reduces mice defensive behaviour against rats (Silva et al. 2013; Wang, Chen, and Lin 

2015). Single unit recordings in the mouse VMHdm show that there are distinct populations of 

neurons activated during flights from and risk assessment towards a predator (Masferrer et al. 

2018). There are extensive reciprocal connections between the VMH and AHN, and classical 

electrical stimulation of AHN triggers similar jumping and running responses to that of VMH 

Canteras, Simerly, and Swanson 1994; Lammers et al. 1988; Saper, Swanson, and Cowan 1978). 

Wang et al. found that VMH stimulation is highly effective in inducing C-fos expression in AHN 

(much weaker vice versa); they also optogenetically activated the VMHdm SF1+ projection to 

AHN, which elicited escape and avoidance, but not immobility, suggesting that the 

running/jumping signal is passed from VMHdm to AHN (Wang, Chen, and Lin 2015). Rat 
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exposure to a predator causes increase c-fos expression in especially the ventrolateral PMD 

(PMDvl), while lesion and pharmacogenetic inhibition of PMD reduce rodents’ fear responses to 

predators (Cezario et al. 2008; Canteras et al. 1997; Motta et al. 2009).  

Another well-studied medial hypothalamic behavioural control column regulates social fear and 

reproductive behaviour; this comprise the ventrolateral subregion of VMH (VMHvl), MPN and 

PMV (Swanson 2000; Canteras 2018; Gross and Canteras 2012). VMHvl has been shown to be 

important for social fear, aggression and reproduction in males and females (Lin et al. 2011; 

Falkner et al. 2014; Sakurai et al. 2016; Silva et al. 2013). Optogenetic activation of male VMHvl 

neurons can trigger attack towards conspecific males, females and inanimate objects (Lin et al. 

2011). Specifically in the context of defense, it has been shown that pharmacogenetic inhibition 

of VMHvl, but not VMHdm, reduces defensive behaviour against aggressive conspecifics (Silva et 

al. 2013). More recently, in vivo neural activity recording using microendoscopic calcium 

imaging shows the existence of distinct neuronal ensembles that encodes for the gender of the 

conspecific (males vs females) which only emerges after sexual experience, suggesting 

experience-dependent plasticity (Remedios et al., 2017). Neural activity increases in the medial 

preoptic area (MPoA), dorsomedial PMD (PMDdm) and PMV in rats in response to a conspecific 

intruder (Motta et al. 2009). The PMV has also been shown to be involved in maternal 

aggression in lactating rats, suggesting that the MPN-VMHvl-PMV network could be important 

for all forms of social interaction (Motta et al. 2013; Canteras 2018). 

The DMH is studied for its roles in regulating the circadian rhythm, and heart rate and blood 

pressure under stress (Chou et al. 2003; Stotz-Potter, Willis, and DiMicco 1996). It receives 

inputs from all hypothalamic nuclei and the PAG (Thompson and Swanson 1998). DMH neural 

activity is upregulated in response to both predator and intruder exposure (Motta et al. 2009).  

  
Figure 2. (Reproduced from Gross and Canteras, 2012) Separate pathways underlying different types of fear 
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1.3 The periaqueductal grey 

The periaqueductal grey (PAG), also known as the central grey, is regarded as the final exit relay 

for survival behaviours, in particular for defense responses (Bandler, Carrive, and Depaulis 

1991; LeDoux 2012; Vianna and Brandão 2003). It comprises neurons highly heterogeneous in 

their neurotransmitter profiles, connectivity and functions. In this section, I will review 

previous efforts to understand this complex structure that is the heart of this thesis, focusing in 

particular on its role in innate defensive behaviour. 

1.3.1 Anatomy 

Anatomically, the PAG refers specifically to the region of ventricular grey matter surrounding 

the midbrain aqueduct (Bandler, Carrive, and Depaulis 1991). Rostrally, as the third ventricle 

narrows and becomes the aqueduct, the PAG forms an oval cylindrical collection of neurons 

continuing from the paraventricular hypothalamus; caudally, the PAG ends as the aqueduct 

expands into the fourth ventricle (Keay and Bandler 2015). Other than these rostrocaudal 

boundaries, the boundaries of the PAG are formed by two fibre-streams: (1) the 

tectobulbospinal fibres originating from the intermediate and deep layers of the superior 

colliculus (SC), and (2) the mesencephalic trigeminal tract, which separates the PAG from the 

more dorsal deep layers of the SC, and the more lateral Cuneiform nucleus (CnF) (Holstege 

1991). Hence, it is entirely possible that the PAG, as defined here, is a central portion of a large 

accumulation of neurons that form the caudal pole of the limbic system, and these “artificial 

boundaries” do not correspond with functional ones, and this is supported by further functional 

and connectivity studies on the areas around the PAG (see sections below; also (Holstege 

1991)).  

Early seemingly contradictory results from electrical stimulation and lesion studies have led 

scientists to hypothesise that there are subdivisions within the PAG (Hamilton 1973). However, 

there was little consensus as to how the PAG should be subdivided; in the 1970s, the two main 

prevailing models were based on cytoarchitectural and functional studies respectively 

(reviewed in (Bandler and Carrive 1988)). Through careful studies of the cytoarchitecture and 

neuronal morphologies, it was proposed that the PAG is subdivided into (1) a medial division 

closely surrounding the aqueduct, (2) a ventrolateral division, (3) a dorsolateral division, and 

(4) a dorsal division (Beitz 1982; Mantyh 1982). Bandler and Carrive, in attempting to 

demarcate a “defence region” within the PAG with microinjections of excitatory amino acids, 

were first to suggest a columnar organisation, stating in the discussion: “A more likely 

explanation of the difficulty in precisely localizing a specific part of the PAG from which a 
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defence reaction can be best elicited, is our finding that the 'defence region' of the PAG takes the 

form of a longitudinal column, which shifts its position, from dorsal to ventral, along the 

rostrocaudal extent of the pretentorial PAG and is not delimited by the boundaries of any PAG 

subnucleus.” (Bandler and Carrive 1988). This is supported by the observation that afferents to 

and efferents from the PAG form longitudinal columns that extend at varying distances along its 

rostrocaudal axis (Meller and Dennis 1986; Marchand and Hagino 1983; Beitz 1982; Morrell, 

Greenberger, and Pfaff 1981).  

In the current model, formalised by Bandler et al., the PAG is organised in 4 longitudinal 

columns: dorsomedial (dm), dorsolateral (dl), lateral (l) and ventrolateral (vl) (Richard Bandler, 

Carrive, and Depaulis 1991). Biochemically, the wedge-shaped dlPAG can be clearly marked by 

NADPH and cytochrome oxidase staining; dmPAG and lPAG are then defined as the NADPH-

negative region medial to and below the dlPAG respectively (Conti, Barbaresi, and Fabri 1988; 

Carrive et al. 1997). The ventral border of the lPAG is rostrally defined by the Darkschewitsch 

nucleus, and caudally by the emergence of the NADPH-positive supraoculomotor cap (Carrive et 

al. 1997). The ventral border of vlPAG is demarcated by the NADPH-positive laterodorsal 

tegmental nucleus, which sits dorsolaterally to the dorsal raphe nucleus (Carrive et al. 1997).  

There is little agreement as to whether the PAG should be further subdivided along the 

rostrocaudal axis. Indeed, there have been studies on the functions of “rostrolateral PAG” and 

“caudal ventrolateral PAG” in instinctive behaviours, but these areas have not been carefully 

defined in mice. In rats, a 6-level scheme of rostrocaudal division has been proposed (Ruiz-

Torner et al. 2001). It is known that afferent terminal patterns differ within columns 

rostrocaudally (Beitz 1982).  

 

1.3.2 Evolution and Development 

The PAG is highly conserved evolutionarily across vertebrate species; its homologue is found in 

lamprey, zebrafish, reptiles, birds and mammals (Olson et al. 2017; Linnman et al. 2012; 

Watson, Paxinos, and Puelles 2012). The Griseum Centrale (GC), the PAG homologue in lamprey 

and zebrafish, receives input from the hypothalamus, pallium (cortex in mammals), pretectum, 

raphe and substantia nigra pars compacta (Olson et al. 2017). Reptiles GC have virtually no 

neurons (no ‘grey’ in this case), nonetheless the lizard GC seems to be a thick and complex 

neuropile full of varied peptidergic terminals (Wolters, ten Donkelaar, and Verhofstad 1986; 

Díaz et al. 2000).The rainbow trout GC is similarly rich in enkephalinergic fibres (Vecino et al. 
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1992). In birds, the corresponding periaqueductal midbrain stratum is poorly populated and 

thinner than in reptiles, but equally richly peptidergic (Puelles et al. 2007). The mammalian PAG 

is instead rich in both peptidergic terminals and neurons, suggesting that while the PAG’s 

behaviour modulatory roles can have ancient origins, the neuronal bodies inside the 

mammalian PAG can give rise to new PAG functions not seen in lower animals (Watson, Paxinos, 

and Puelles 2012). The cytoarchitecture of the PAG is similar in mouse, rat, cat, macaque, and 

squirrel monkey, in line with the similarities observed in the PAG functional studies in these 

animals (Mantyh 1982; R. Bandler and Shipley 1994).  

In mice, the midbrain is formed by two segments, known as mesomeres 1 and 2. Mesomere 1 

encompasses the tectal grey (TG), the two colliculi (superior (SC) and inferior (IC)), and most of 

the PAG. Both mesomeres develop distinct domains along their dorso-ventral (D-V) axis (a 

common feature in the neural tube), from dorsal to ventral: roof, alar, basal and floor plates. At 

early embryonic stages the roof and floor plates act as the D-V axis organisers, giving the alar 

and basal plates their respective characteristics. The m1 alar plate has a much longer 

proliferative and neurogenetic program than the m1 basal plate, which gives rise to the expanse 

of the TG, SC, IC and dorsal PAG. Histogenetic studies in the amniote, avian and reptilian optic 

tectum have revealed that while cell type composition differs between the periventricular area 

and more superficial strata, most cell types are not confined to a single strata, and cell types 

which are typically periventricular in one species may be recognised as a more superficial type 

of neuron in another (Báez et al. 2003; Puelles and Bendala 1978). We should therefore be 

cautious when regarding the PAG as an isolated brain region distinct from the more dorsal 

colliculi (Altman and Bayer 1981)  
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1.3.3 Types of PAG neurons 

1.3.3.1 Morphologies 

Morphological studies of PAG neurons in rats, cats and monkeys with classical dyes like Nissl 

and Golgi have shown that they vary widely in their sizes, somatic shapes and dendritic 

arborisations; the degree of variation is much higher than that observed in surrounding areas 

like the SC (Mantyh 1982). PAG neurons can be divided into 4 morphological classes: 

Class Features Somatic 
diameter 

Location 

Fusiform/ 
bipolar 

Long elliptical soma with one 
or several dendritic 
processes at each end 

small: 8-18μm;  
large 19-35μm  

Most prominent in the 
central region around the 
aqueduct, also at the 
rostral end of the PAG 

Multipolar/ 
Stellate 

Large nucleus; extensive 
dendritic arbors that spread 
in the coronal plane 

10-30μm All areas of the PAG 

Pyramidal/ 
triangular 

Large triangular neurons 
with round nuclei. These 
have the most extensive 
arborisations of any cells in 
the PAG, with dendrites 
spreading to every region of 
the PAG and far into the SC, 
deep and intermediate 
tegmentum 

15-35μm All areas of the PAG,  but 
more numerous and larger 
at the periphery than the 
center 

Ependymal elliptical cell body with the 
long axis lying at right angles 
to the aqueduct 

15μm Lining the aqueduct 

 

Table 1. Morphologies of PAG neurons, summarised from (Mantyh 1982; Beitz 1985) 

1.3.3.2 Electrophysiological profiles 

In vitro and in vivo single unit experiments, carried out mainly in rats, have shed light on the 

various firing properties of PAG neurons. PAG neurons generally have variable but low baseline 

firing rates; dorsal and caudal PAG neurons appear to have lower spike rates than ventral and 

rostral ones (Sandner, Schmitt, and Karli 1986; Sandner and Di Scala 1991), although some 

studies did not report these regional differences (Ogawa et al. 1991). Whole-cell patch-clamp 

recordings from dPAG excitatory neurons reveal that excitatory neurons in dPAG have high 

input resistance and can fire action potentials at high frequency (Evans et al. 2018). 
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PAG neurons respond differently to a variety of neurotransmitters and neuromodulators, and 

electrical stimulation from input regions; for example, a large proportion of PAG neurons are 

inhibited by GABA both in vitro and in vivo (Behbehani et al. 1990; Ogawa et al. 1991). This will 

be further discussed in the following sections.  

1.3.3.3 Neurochemical profiles 

PAG neurons are mainly glutamatergic, although there are also a substantial population of 

GABAergic neurons (Watson, Paxinos, and Puelles 2012). All major glutamate receptor types, 

including AMPA, NMDA, kainate and metabotropic receptors, are present in the PAG, while the 

majority of neurons are inhibited by GABA (Ogawa et al. 1991; Albin et al. 1990). One of the 

most striking features of the PAG is the vast number of active neurotransmitter and 

neuromodulatory mechanisms; many neurons are shown to express genes involved in the 

production of neurotransmitters and/or their receptors (Lein et al. 2007). Studies done on some 

of these are summarised below (Table 2): 

Family Members PAG Regional 
specificity 

Function in the PAG Selected 
references 

Serotonin (5-HT) 5-HT, 5-HT 
receptors, 
serotonin 
transporter 
(SERT) 

5-TH neurons 
mainly vlPAG, 
diffused in dmPAG 
and lPAG 

5-HT generally reduces 
aversion and flights 
(except that 5HT2C 
receptor activation seems 
to have opposite effects) 

(Graeff 2004; 
Yin et al. 
2014) 

Noradrenaline (NA) NA, NA 
receptors, 
Norepine- 
phrine 
Transporter 
(NET) 

No NA neurons, 
only NA receptor + 
neurons 

NA injected into dm/l PAG 
has no effect on dPAG 
triggered escape, but is 
anxiolytic; NA depolarises 
54% of lPAG neurons, 85% 
of vlPAG neurons 

(Estrada et al. 
2016) 

Enkephalins Met/Leu-
enkephalins
, δ/κ/μ 
opioid 
receptors 
(OR) 

lPAG has fewer 
μOR+ neurons; 
κOR+ neurons 
mostly in vlPAG; 
met-enkephalin 
highly enriched in 
dlPAG 

Morphine (an OR agonist) 
injection in PAG is anti-
nociceptive and triggers 
flights in dPAG and 
immobility in vlPAG; ORs 
interact with many other 
neurotransmitter systems 
and have potential roles in 
lordosis, micturition, etc. 

(Ogawa et al. 
1991; 
Morgan, 
Whitney, and 
Gold 1998; 
Matsumoto et 
al. 2004; 
Gutstein et al. 
1998) 

Oxytoxin Oxytoxin, 
oxytoxin 
receptor 
(Oxtr) 

Oxtr+ neurons 
concentrated in 
vlPAG 

Oxytocin excites some PAG 
neurons; anxiolytic effects 
in mother rats; increases 
pain threshold 

(Yang et al. 
2011; 
Nasanbuyan 
et al. 2018; 
Ogawa et al. 
1991) 
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Neurotensin (NT) NT, NT 
receptors 
(Ntsr) 

NT+ neurons in all 
regions, more 
dense in l/vlPAG 

NT excites PAG neurons; 
analgesic 

(Shipley, 
McLean, and 
Behbehani 
1987; Feng et 
al. 2015; Yin 
et al. 2014) 

Tachykinin NKA, NKB, 
Substance P 
(SP), 
Tachykinin 
receptors 
(Nk1R, 
Nk2R, 
Nk3R) 

NKB+ neurons are 
restricted to 
dmPAG, NK3 is 
enriched in 
dm/lPAG 

SP is anxiogenic and 
promotes aversion; 
Activation of NK1 
mechanisms is analgesic 
and anxiogenic and causes 
immobility, while that of 
NK3 is hyperalgesic and 
enhances exploratory 
behaviour 

(Mongeau et 
al. 1998; 
Bassi et al. 
2009; De 
Araújo et al. 
1999) 

Endocannabinoids AEA, 2-AG, 
cannabinoid 
receptors 
(CB1, CB2, 
TRPV1) 

TRPV1 enriched in 
lPAG 

TPRV1 activation causes 
decreased nociception at 
low dose, and opposite at 
high dose; CB1 and TRPV1 
interact with NO to 
modulate anxio 

(Corcoran, 
Roche, and 
Finn 2015; 
Lisboa and 
Guimarães 
2012) 

Cholecytokinin 
(CCK) 

CCK, CCK 
receptor 
(CCK2) 

CCK-
immunoreactive 
fibres are highly 
enriched in dlPAG 

CCK injection in dPAG is 
anxiogenic and pro-
nociceptive 

(Liu et al. 
1994; Netto 
and 
Guimarães 
2004; Lovick 
2008) 

Nitric Oxide (NO) NO 
synthase 
nNOS 

Nos1 mRNA is 
highly enriched in 
dlPAG 

NO scavenging in dlPAG is 
anxiolytic, while injecting 
NO donor causes flights; 
dlPAG NO also regulates 
arterial blood pressure 

(Hall and 
Behbehani 
1997; Lisboa 
and 
Guimarães 
2012) 

Corticotropin 
-releasing hormone 
(CRH) 

CRH, CRH 
receptors 
(CRF1, 2) 

/ Activation of CRF1 but not 
CRF2 in dmPAG, but not in 
dl/lPAG is anxiogenic and 
anti-nociceptive 

(Miguel and 
Nunes-de-
Souza 2011; 
Litvin et al. 
2007; Borelli 
and Brandão 
2008) 

Table 2. Main neurotransmitter and neuromodulation mechanisms active in the PAG 

1.3.4 Inputs to the PAG 

The PAG receives input from a large number of cortical and subcortical structures, as well as 

ascending inputs from the spinal cord, reflective of its role in integrating survival behaviours, 

autonomic and nociceptive responses (Bandler, Carrive, and Depaulis 1991).  
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1.3.4.1 Cortical inputs 

The major cortical input to the PAG comes from the medial prefrontal cortex (mPFC). In 

humans, it was shown that as the imminence of a threat increases, brain activity shifts from the 

mPFC to the PAG (Mobbs et al. 2007). It is postulated that while the threat is further away, the 

mPFC assesses alternative defensive strategies (“pre-encounter” defense), whereas the activity 

increase in PAG when the threat is proximal represents “circa-strike” defensive reactions 

(Mobbs et al. 2007; Mobbs 2018).  

The mPFC projection to the PAG has been shown to be topographically organised, and this 

feature is highly conserved from rodents to non-human primates, despite the fact that non-

human primates have a much larger PFC. In macaques, the mPFC (Brodmann areas 10, 25 and 

32) projects mainly to dlPAG, cingulate cortex mainly to dm/lPAG, and orbito-insular PFC to 

vlPAG (An et al. 1998; Keay and Bandler 2001). In rats, the mPFC rostral prelimbic cortex (PL) 

projects mainly to vlPAG, caudal PL to dlPAG, anterior cingulate cortex (Acc) to dlPAG, and 

infralimbic cortex (IL) mainly to l/vlPAG (Floyd et al. 2000; Vertes 2004). Similar projection 

patterns are observed in mice; moreover, dorsal Acc was shown to project preferentially to 

lPAG, and ventral Acc to dlPAG (Oh et al. 2014; Fillinger et al. 2018). Acc and PL are known to 

serve a direct role in limbic/cognitive functions, while IL modulates visceral/autonomic activity; 

these functional distinctions could shed light on the behaviours regulated by these connections 

and PAG columns (Vertes 2004).  

Other cortical areas that project to the PAG include primary motor areas projecting exclusively 

to l/vlPAG, and primary auditory and secondary visual areas preferentially projecting to dlPAG 

(Vianna and Brandão 2003).  

1.3.4.2. Subcortical inputs 

The CEA is the only amygdala subnucleus that substantially projects to the PAG (Franklin et al. 

2017; Vianna and Brandão 2003). This projection has been shown to be a disinhibitory pathway 

targeting glutamatergic neurons in vlPAG and drives immobility (Tovote et al. 2016).  

In the hypothalamus, all the aforementioned “medial hypothalamic defensive” nuclei project to 

the PAG, though the columnar specificity varies: the PMD projects almost exclusively to dlPAG, 

PMV to dl/lPAG, DMH and VMH to dm/lPAG and MPN and AHN to mostly lPAG (with sparse 

terminals in dmPAG) (Canteras, Simerly, and Swanson 1992; Canteras and Swanson 1992; 

Thompson and Swanson 1998; Risold, Canteras, and Swanson 1994; Canteras, Simerly, and 

Swanson 1994; Simerly and Swanson 1988). More laterally, the lateral hypothalamic area (LHA) 

https://paperpile.com/c/GLBK7T/CFNY
https://paperpile.com/c/GLBK7T/CFNY+UcPy
https://paperpile.com/c/GLBK7T/97oi+xkCm
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https://paperpile.com/c/GLBK7T/0h22+awAm
https://paperpile.com/c/GLBK7T/uSuW
https://paperpile.com/c/GLBK7T/2H8o
https://paperpile.com/c/GLBK7T/8bzm+2H8o
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https://paperpile.com/c/GLBK7T/mUyS
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sends a GABAergic projection to the l/vlPAG, and when optogenetically activated in mice, it 

drives predatory hunting towards crickets, supporting a strong role of PAG in predatory 

behaviour (Li et al. 2018). Dorsolateral to the LHA is the Zona Incerta (ZI), which also sends 

GABAergic projections to l/vlPAG (Chou et al. 2018). This projection inhibits excitatory neurons 

in the PAG and decreases freezing to conditioned fear stimulus (Chou et al. 2018).  

In the superior colliculus, excitatory neurons synapse onto vglut2+ neurons in dPAG at a high 

rate, but the connection is weak and unreliable; it is hypothesized that the dPAG integrates 

visual threat information from recurrent excitatory networks in the deep medial SC (Evans et al. 

2018). At the level of the oculomotor nucleus, the dorsal raphe projects to both the dlPAG and 

vlPAG; the dorsal raphe projection to dlPAG is inhibitory and serotonergic, and could potentially 

modulate dPAG-mediated defensive behaviours (Vianna and Brandão 2003; Lovick 1994).  

1.3.4.3 Inputs from the spinal cord and brainstem 

The spinal cord and laminar spinal trigeminal nucleus send topographically organised, 

predominantly crossed projections to the l/vlPAG in monkeys, cats and rats (Keay et al. 1997; 

Keay and Bandler 2001; Blomqvist and Craig 1991). PAG-projecting neurons are present in both 

superficial and deep dorsal horn, with ~50% coming from C1 to C3 segments (Keay et al. 1997). 

These afferents are somatotopically organised, with lumbar enlargement neurons afferenting to 

caudal PAG, and spinal trigeminal and cervical enlargement neurons afferenting progressively 

more rostrally (Keay and Bandler 2001). Interestingly, there is a substantial population of 

neurons in the intermediate and ventral grey matter of the sacral spinal cord that projects to 

l/vlPAG; this region is a major site of termination of both pelvic visceral (including nociceptive) 

afferents via pelvic nerves, and cutaneous perineal afferents via the pudendal nerve, and the 

function of this projection is yet to be addressed (Keay et al. 1997). 

In the hindbrain, PAG-projecting areas include the lateral paragigantoreticular nucleus (part of 

the ventromedial medulla), medullary reticular nucleus and nucleus ambiguus (Oh et al. 2014; 

Klop, Mouton, and Holstege 2002).  

1.3.5 Outputs of the PAG 

1.3.5.1 Descending efferents 

Retrograde tracing experiments showed that the cuneiform nucleus (CnF) receives inputs from 

the PAG, exclusively from the dorsolateral column (dlPAG), and the SC (Redgrave et al. 1988). 

The CnF is activated by predator odour and dPAG stimulation, and optogenetic excitation of the 

https://paperpile.com/c/GLBK7T/dbU6
https://paperpile.com/c/GLBK7T/RAku
https://paperpile.com/c/GLBK7T/RAku
https://paperpile.com/c/GLBK7T/uOvA
https://paperpile.com/c/GLBK7T/uOvA
https://paperpile.com/c/GLBK7T/2H8o+5DqO
https://paperpile.com/c/GLBK7T/7pws+xkCm+m68R
https://paperpile.com/c/GLBK7T/7pws+xkCm+m68R
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CnF excitatory neurons can elicit high speed, synchronous-gait movement (Dielenberg, Hunt, 

and McGregor 2001; Sandner et al. 1992; Caggiano et al. 2018). The CnF is part of the 

mesencephalic locomotor region (MLR) together with the pedunculopontine nucleus (PPN), 

which also receives input from the PAG, and the excitatory neurons in these two regions control 

gait and locomotion (Caggiano et al. 2018).  

PAG also project to the lateral parabrachial nucleus (LPB) with columnar specificity: dm/dlPAG 

projects to the superior region of LPB (LPBS), while l/vlPAG innervates the dorsal and central 

LPB as well as the surrounding crescent areas (Meller and Dennis 1991). The LPB has been 

shown to be important for cardiovascular responses and thermoregulation; inhibition of LPB 

neurons reduces dPAG evoked cardiovascular changes (Davern 2014; Hayward 2007). 

More caudally, all columns of the PAG except dlPAG send direct projections to the caudal raphe 

nucleus and the rostroventral lateral medulla (Meller and Dennis 1991; Holstege 1991). These 

areas are known for their roles in pain modulation and the regulation of autonomic behaviours, 

such as heart rate and baroreflex (Mason 2005). Only vlPAG sends direct projections to the 

spinal cord (Vianna and Brandão 2003). dPAG also projects to locus coeruleus, Barrington’s 

nucleus and nucleus retroambiguus (Luppi et al. 1995; Cameron et al. 1995; Holstege 1991). 

The locus coeruleus is a norepinephrinergic nucleus well-studied for its role in the sleep/wake 

cycle and stress response, the Barrington’s nucleus is involved in micturition, and the nucleus 

retroambiguus in vocalisation; these projections can be responsible for the autonomic aspects 

of defensive behaviour (Sasaki 2005; Berridge and Waterhouse 2003; Holstege 1991).  

1.3.5.2 Ascending projections.  

The dPAG sends strong ascending projections to the defensive hypothalamic network, especially 

to the DMH and AHN, while vlPAG projects substantially instead to the LHA and ZI (Meller and 

Dennis 1991; Cameron et al. 1995). The PAG also efferents to the thalamus, with the dPAG to the 

centromedial thalamus, and vlPAG to the centrolateral subdivision (Cameron et al. 1995).  

1.3.6 PAG and Defense 

The PAG has long been recognised as an essential coordinator of fear and defensive responses 

(Fanselow 1991). In delineating the subcortical defensive circuit in cats, De Molina and 

Husperger noted that while PAG lesion abolishes defensive responses triggered by 

electrostimulation of the amygdala and hypothalamus, large scale amygdalar and hypothalamic 

lesions did not alter defense from PAG stimulation, positing the PAG as the final output 

structure for defensive responses (Fernandez de Molina and Hunsperger 1962, 1959). Electrical 
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stimulation of the PAG in humans elicits strong fear and pain (Amano et al. 1978; Nashold, 

Wilson, and Slaughter 1969). In one case reported by Amano et al., the patient reported 

“somebody is now chasing me, I am trying to escape from him”, indicative of an imminent threat 

(Amano et al. 1978).  

Finer lesion and stimulation experiments revealed functional distinctions between different 

PAG areas. One of the earliest and most well-established ideas is a dorsal-ventral separation, 

with the dPAG being responsible for “active defense”, in contrast with the vPAG for “passive” 

defensive strategies (Keay and Bandler 2001). Electrical and neurochemical stimulation of dPAG 

(which comprise dm, dl and lPAG) elicits strong “activity bursts” and flight responses in rats and 

cats, while those of vlPAG cause immobility, hyporeactivity and freezing (Fanselow 1991; 

Bittencourt et al. 2004; Vargas, Marques, and Schenberg 2000; Behbehani 1995; Bandler and 

Carrive 1988). Lesioning experiments have produced very similar results (Fig. 3, Fanselow 

1991). The flight responses from electrical/chemical stimulation of the dPAG are accompanied 

by autonomic changes that indicate an increase in fear and readiness to escape: an increase in 

heart rate and arterial blood pressure, vasodilation in skeletal muscles, an increase in rate and 

depth of respiration, piloerection, and pupil dilation (Lovick 1993; Sudré et al. 1993). 

Stimulating the vlPAG, on the other hand, causes hypotension and bradycardia (Lovick 1993; K. 

A. Keay and Bandler 2001).  

More recent experiments have indicated that “active” vs “passive” defense may not be the most 

accurate description of this functional divide. Upon exposure to a cat or predator odour, rats 

showed a dramatic increase in C-fos expression in dPAG, in particular in dlPAG (Cezario et al. 

2008; Sukikara et al. 2010). In contrast, freezing to foot shock, or a tone conditioned to foot 

shock, increases C-fos expression in the vlPAG (Herry and Johansen 2014). The dPAG receives 

major inputs from the medial hypothalamic defense network, while the vlPAG is innervated 

heavily by the CEA, another structure shown to be important for conditioned fear responses and 

expression of freezing, suggesting the existence of parallel pathways for instinctive and learnt 

defensive responses in the PAG (Tovote et al. 2016; Gross and Canteras 2012). More recent 

pharmacogenetic, optogenetic and electrophysiological studies lent support for this hypothesis. 

Single unit recording in the mouse dPAG found cells firing or inhibited in response to flights 

from and risk assessment of a rat (Deng, Xiao, and Wang 2016; Masferrer et al. 2018). 

Pharmacogenetic inhibition of mouse dPAG reduces fear responses towards predators and 

increases investigation towards aggressive conspecifics, but no difference was recorded in 

freezing to foot shock (Silva et al. 2013; Franklin et al. 2017). Optogenetic activation of dPAG 

CamKII+ neurons promotes flight and post-flight freezing, while that of vlPAG vGlut2+ neurons 
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Figure 3. (Reproduced from Fanselow 1991). Lesions of different regions of the PAG produced diverse 

behavioural effects, illustrating distinct functional roles of PAG columns. 

causes immobility and analgesia; in contrast, optogenetic inhibition of vlPAG vglut2+ neurons 

abolishes freezing to tone in a conditioned cue fear paradigm (Tovote et al. 2016; Deng, Xiao, 

and Wang 2016). All together, the dPAG is clearly involved in instinctive, circa-strike fear 

responses against natural threats, and while there is a clear difference between the dPAG and 

vlPAG-triggered defensive responses, the role of the vlPAG in defense is more elusive. It has 

recently been proposed that the distinction lies in the proximity and discreteness of the threat: 

the most imminent threats (with very little “cognition time” allowed) are processed via the 

dPAG, while more distal and non-discrete threats (like a tone) activates the vPAG (Mobbs 2018). 

The PAG’s role in mediating defensive behaviours also comes in the context of coordinating 

defense with other survival behaviours, which as mentioned above, is crucial for maintaining 

energy balance and optimising survival strategies in response to changing external situations. 

The PAG has been shown to be important for maternal behaviour and predatory hunting in 

addition to defense (Sukikara et al. 2006; Li et al. 2018). In a series of studies, Sukikara et al., 

showed that activating lPAG neurons abolishes maternal behaviour in lactating female rats and 

induces predation, whereas in the presence of a predator, dlPAG is required to suppress 

maternal behaviours (Sukikara et al. 2006; Sukikara et al. 2010). Excitatory neurons in dlPAG 

have also been shown to synapse on GABAergic neurons in vlPAG, suggesting direct interaction 

between dPAG and vlPAG defensive pathways (Tovote et al. 2016). PAG local circuitry is likely 

to be responsible for this behavioural adaptation. 
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1.4 Aims of the study 

In the last section, I reviewed our existing knowledge of the components (neurons and their 

connections) of the PAG neural circuit, and the known roles of PAG in instinctive defensive 

behaviour. The main knowledge gap in fully understanding the PAG defense circuit lies at the 

circuit and algorithmic level: how the threat signals (from afferents) are assessed, computed 

and transformed into the appropriate behavioural output. 

The key obstacle towards understanding at this level, in line with Selverston’s idea, is the lack of 

systematic characterisation of the PAG circuit components. While there are detailed 

descriptions of neuronal morphologies and connectivity mapping experiments, considering the 

molecular complexity of the PAG, these shed little light on the computational function of 

neurons and synapses at a circuit level. Hence, this study first adopts a bottom-up approach. I 

aim to systematically characterise PAG neurons at the molecular level using high-throughput 

single neuron transcriptome profiling. 

At the same time, behavioural outputs of a circuit cannot be inferred by simply looking at 

molecular profiles or wiring diagrams: theories can be proposed, but they need to be tested. 

Here I propose, based on existing research, that molecularly distinct subpopulations of PAG 

neurons regulate different aspects of instinctive behaviour. We test this theory systematically 

using a top-down approach, by screening for behavioural changes evoked by cell type specific 

activation. We hope to demonstrate that a combination of these two approaches will lead to new 

insights towards a comprehensive understanding of the PAG neural circuit.  
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2 Methods 

2.1 Animals 

C57BL/6 and CD-1 mice were obtained from local EMBL or EMMA colonies, or from Charles 

River Laboratories. CD-1 intruders were selected as aggressors if they attacked during the first 

3 min after placement in the home cage of a novel C57BL/6 mouse across 3 consecutive days, 

and non-aggressors if they do not show aggressive behaviours for 10 mins in a novel C57BL/6 

mouse home cage.  

Male C57B6/J wild-type mice, 8-10 weeks old, were used for single neuronal nuclei RNA-seq 

experiments. Male C57B6/N BAC-Vglut2::Cre (Borgius et al. 2010), PACAP-IRES-Cre (Krashes et 

al. 2014), and Tac2-Cre (Mar, Yang, and Ma 2012) were used for optogenetic manipulations. All 

behavioural experiments were performed on mice of at least 8 weeks old.  

Mice were maintained in a temperature- and humidity-controlled facility on a 12-h light–dark 

cycle (lights on at 07:00) with food and water provided ad libitum. All behavioral testing 

occurred during the animals’ light cycle. All mice were handled according to protocols approved 

by the Italian Ministry of Health (#137/2011-B, #231/2011-B and #541/2015-PR) and 

commensurate with NIH guidelines for the ethical treatment of animals. 

  

https://paperpile.com/c/GLBK7T/MB2D
https://paperpile.com/c/GLBK7T/M04q
https://paperpile.com/c/GLBK7T/M04q
https://paperpile.com/c/GLBK7T/u1I4
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2.2 Single neuronal nuclei RNA-seq 

2.2.1 PAG cell/nuclei isolation and FACS sorting 

The single cell isolation protocol is adapted from (Zeisel et al. 2015)). Mice were sacrificed by 

cervical dislocation and the brains are immediately harvested and placed in ice-cold oxygenated 

slicing solution (87 mM NaCl, 2.5 mM KCl, 1.25mM NaH2PO4, 26 mM NaHCO3, 75 mM sucrose, 20 

mM glucose, 1 mM CaCl2, and 2 mM MgSO4) Cortical tissue is manually dissected and quickly 

minsed with a scalpel before immediately being dropped into cold HBSS solution (Sigma). The 

dissected tissue is dissociated using the Papain Dissociation System according to manufacturer’s 

instruction (Worthington Biochem). Cell density in the suspension is estimated with a 

haemocytometer and a brightfield microscope. 

The PAG nuclei dissociation protocol is similar to that described in (Lacar et al. 2016) with some 

modifications. After brain extraction (detailed above), a coronal mouse brain matrix (Harvard 

Apparatus) was used to cut 1mm sections that contain the PAG (3-4 sections), and the PAG was 

punched using a circular punch 1.25mm in diameter (WPI) from the sections. Punches are 

immediately placed into ice-cold nuclei isolation medium (sucrose 0.25 M, KCl 25 mM, MgCl2 5 

mM, Tris-Cl 10 mM, dithiothreitol, 0.1 % Triton, 0.4U/ul RNAse Inhibitor (NEB cat #M0314L)). 

Tissue was Dounce homogenized, 10 strokes with the loose pestle followed by 10-12 strokes 

with the tight. Samples were then 35um filtered, spun down (600rcf at 4°C) and resuspended in 

nuclei storage buffer (sucrose, MgCl2 10 mM, EDTA, Tris 10 mM and 0.2U/ul RNAse inhibitor) 

containing anti-NeuN-AF488 antibody (Merck #MAB377X, 1:2000). After 15 minutes of 

staining, the nuclei are spun down and resuspended in fresh nuclei storage buffer with DAPI 

(1ng/ml, Sigma).  

Single nuclei were sorted using a BD FACSAria III (BD Biosciences). DAPI positive nuclei were 

gated first, followed by exclusion of debris using forward and side scatter pulse area parameters 

(FSC-A and SSC-A), exclusion of aggregates using pulse width (FSC-W and SSC-W). Neuronal 

nuclei were gated based on NEUN fluorescence, and 3000 NeuN+ events were sorted directly 

into each of the 8 source wells on a 384-well plate (TakaraBio), each well already containing the 

dispense solution (DAPI 0.3ng/ml, ERCC 1:1mil, 0.4U/ul RNAse inhibitor, 1x secondary diluent 

in nuclei storage buffer). Nuclei were sorted with a 100-um nozzle at 22.5 PSI sheath pressure. 

The number of NeuN+ events sorted has been optimised to maximise the number of single 

nucleus wells on the chip (see below). 

https://paperpile.com/c/GLBK7T/4PKD
https://paperpile.com/c/GLBK7T/MkYR
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2.2.2 Nanogrid single nucleus system 

The single nuclei suspension in the 384-well plate is dispensed by a multisample nanodispenser 

(Takara Bio ICELL8™ system) that uses microsolenoid-control to precisely dispense 50nL 

volumes into the nanowells, onto a nanogrid chip. The nanogrid chip is has a 5184 wells (150nL 

each) in a square layout, each preprinted with barcoded primers (UMIs) with poly(dT) ends 

during manufacturing. The dispense takes approximately 15 minutes, with 3 pauses where the 

single nuclei suspension is manually mixed by gentle pipetting to ensure even nuclei density 

within the source wells. The chip is centrifuged at 300g for 3 min to collect cells in a single 

imaging plane before being transferred to the automated imaging system, which composed of an 

Olympus BX43 microscope fitted with a 4x objective, a robotic stage, and a CCD camera that is 

programmed to take images of all wells using a customized version of µManager open source 

software. The imaging process takes ~10 minutes, immediately after which the chip is sealed, 

put on dry ice and transferred to the -80°C freezer until reverse transcription (RT).  

After adjusting the contrast of images, wells containing single round DAPI stained objects were 

manually identified and selected using the CellSelect™ software. The software generates a map 

that instructs the nanodispenser to deposit RT reagents only into the selected wells.  

 

2.2.3 Library construction and RNA-seq 

Frozen chips were thawed on ice, and 50 nL of RT solution (88 μL 5 × RT buffer, 44 μL 10 mM RT 

dNTPs, 4.4 μL 100 μM RT-E5OLIGO, 57.2 μL D-RNase-free water, 0.2% Triton, and 26.4 μL 

200 U/μL RT enzyme) was deposited into each selected well using the nanodepositing system. 

After RT, cDNA products from selected wells were pooled together, purified (with DNA Clean & 

Concentrator, Zymo Research), and underwent exonuclease I treatment (2 μL 10× exonuclease 

buffer, 1 μL 20 U/μL exonuclease I, NEB) to remove unannealed primers. The pooled barcoded 

cDNA libraries then underwent PCR amplification (5 μL 10× amplification buffer, 1 μL 50× 

amplification dNTPs, 1 μL amplification primer, 1 μL amplification enzyme, 22 μL D-RNAse free 

water) for 18 cycles. The PCR products were purified with 0.6× AMPure XP beads and eluted in 

12 μL D-RNase free water. The concentration of the full-length cDNA library was quantified 

using the Qubit dsDNA HS fluorometric assay, and the library was diluted to 0.2ng/ul to 

construct Nextera XT (Illumina) DNA libraries with i7 index primers following the 

manufacturer’s instructions. The size distribution of the final library was QCed using Agilent’s 

High Sensitivity DNA chip on the Bioanalyzer system.  
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The sequencing of the library was carried out by GeneCore at EMBL Heidelberg on the 

NextSeq2500 system (Illumina). It was sequenced paired-end asymmetrically, 21/26 cycles 

from the barcoded end (read1) and 71/66 cycles (read2) from the other. Data were processed 

using the CASAVA 1.8.1 pipeline (Illumina Inc.), and sequence reads were converted to a master 

FASTQ files. 

2.2.4 Data processing 

Read qualities are first checked with FASTQC. The master FASTQ files containing total reads was 

demultiplexed into individual fastq files with each representing one single nucleus using a Perl 

script and the list of barcodes from selected wells. Maximum 2 mismatches to barcodes are 

tolerated. The reads are then trimmed from adapters, polyA and polyG using cutadapt (Martin 

2011); reads <15bp post-trimming are discarded. Reads are then mapped to the annotated 

genome and ERCCs using STAR (Dobin et al. 2013), and mapped features are counted with 

FeatureCounts (Liao, Smyth, and Shi 2014). Finally, UMI-tools are used for deduplicate reads 

that came from the same transcript based on UMI-gene assignment pairing (Smith, Heger, and 

Sudbery 2017); the tools was ran with “directional” error correction. This results in a table, with 

the number of transcripts for each gene in each nucleus (well barcode), for downstream 

analysis. 

2.2.5 Data analysis 

The data is first read into an annotated data frame with the R package Scater (McCarthy et al. 

2017). First, all nuclei with <700 transcripts, more than 2% counts assigned to mitochondrial 

genes and 5% attributed to ERCCs are discarded. Also, only genes that has are detected across 

all three chips, have mean expression >0.001 per chip and are expressed in at least 3 nuclei per 

chip are retained. This leaves 3581 nuclei and 18654 genes. Next, the filtered data is loaded into 

Seurat (Satija et al. 2015), which is used for log normalization (scale factor=10,000); the chip 

and number of UMI are regressed out. Qualitative parameter scanning was used to optimise the 

highly variable gene (HVG) expression (Supplementary figure 3). The final chosen parameters 

are: mean expression lower bound: 0.05, mean expression upper bound: 2, dispersion lower 

bound: 1; resulting in 2146 HVG chosen for principal component analysis (PCA). The principal 

components (PCs) were chosen based on results from Seurat’s Jackstraw implementation and 

manual screening and exclusion of PCs that are highly differentially expressed between the 

chips. These were used for clustering and t-distributed stochastic neighbour embedding (t-SNE) 

visualisation Clustering was performed using Seurat’s implementation of the SNN-CLiP 

algorithm, using the default distance calculation (Louvain) algorithm. Unsupervised clustering 

https://paperpile.com/c/GLBK7T/2tsL
https://paperpile.com/c/GLBK7T/55fq
https://paperpile.com/c/GLBK7T/5KaZ
https://paperpile.com/c/GLBK7T/5KaZ
https://paperpile.com/c/GLBK7T/YHGr
https://paperpile.com/c/GLBK7T/YHGr
https://paperpile.com/c/GLBK7T/n1EC
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was performed with default parameters k=30 and resolution=0.8. Cluster marker identification 

was performed using the Wilcoxon Rank Sum test for differential expression in Seurat, with the 

threshold of percentage expression set at 0.10, threshold for average log fold change at 0.25 and 

adjusted p-value <0.05. This revealed 2 subclusters that are highly enriched in ribosomal genes, 

so these are removed from downstream analyses (194 neurons removed). 

For supervised clustering using neuron function related candidate genes, PCA on the expression 

of these genes were first performed, followed by Jackstraw analysis of the significance of the 

PCs; 4 PCs were chosen for clustering. The clustering parameter space sampled was resolution 

=0.6, 0.8, 1.0, 1.2 (recommended range for ~3000 cells) and k=20, 25, 30, 35, 40 (the default 

was 30). This resulted in 6 to 16 clusters (Supplementary Figure 4). A dissimilarity score was 

calculated between each pair of nuclei based on how many times they were in the same cluster 

(using the R function Daisy for computing euclidean distances between nominal variables). 

Hierarchical clustering on the matrix of dissimilarity scores was performed, and the 

dendrogram was cut at a distance of 0.8, resulting in 28 clusters. Clusters of fewer than 30 (less 

than 1% of sample size) were eliminated, as these are unlikely to be real, leaving 17 clusters. 

Differential gene expression analysis was performed as described above. For the extended 

analyses into non-candidate differentially expressed genes, only positive markers are returned 

for the ease of interpretation. 
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2.3 Optogenetic manipulation of neural activity 

2.3.1 Surgeries for optogenetic activation 

Isoflurane (induction 3%, maintenance 1.5%; Provet) in oxygen-enriched air was used to 

anaesthetize mice fixed in a stereotactic frame (Kopf Instruments). The skull surface was 

exposed and cleaned with 0.3% hydrogen peroxide.  

For cell-type specific dPAG activation, vGlut2:cre, PACAP-IRES-Cre and Tac2:Cre animals were 

infused bilaterally with 60-120nl of AAV5-EF1a-DIO-hChR2(E123T/T159C)- EYFP or AAV5-

EF1a-DIO-EYFP control  (UNC Vector Core) using a glass capillary filled with 0.4ul of the virus. 

The capillary was first lowered into one side of the dPAG (AP: -4.40, L:+/-0.30, DV:-2.45 from 

Bregma) then the other, with a 5 min pause after each infusion before retraction of the capillary. 

Mice were then implanted with custom-built fibre connectors (fibre: 0.66 numerical aperture, 

200μm diameter; ceramic ferrule: 230μm internal diameter, 1.25mm outer diameter; 

Prizmatix). For unilateral optic fibre implantation, the tip of the fibre were unilaterally lowered 

to dPAG, just above the viral infection sites (AP: -4.40, L:0.90, DV:-2.15 from Bregma at an angle 

of 26°).  

For dPAG projection activation, male wild type C57B6/J mice were infused bilaterally with AAV-

hSyn-hChR2(H134R)-EYFP (UNC Vector Core) in the dPAG (120nl each side). For optic fibre 

implantation over the CnF, fibres were implanted at an anteroposterior angle of 20° to avoid 

damage of the PAG in the process (AP: -5.7, L: +/-1.20, DV: -2.9 from Bregma with an AP angle of 

20°). 

For retrograde efferent activation, male wild type C57B6/J were injected bilaterally at CnF (AP: 

-4.75, L: +/- 1.30, DV: -3.80 from Bregma) with 180nl of AAV-CMV-Hi.eGFP-Cre (Penn Vector 

Core) mixed with AAV-hSyn-iRFP670 (to mark the site of injection) at a ratio of 2:1. Animals 

were then injected with a mix of AAV5-EF1a-DIO-hChR2(E123T/T159C)- EYFP and AAV5-hSyn-

tdtTomato (ratio 5:1) bilaterally at the dPAG at 2 levels, 120nl at each, dorsoventrally to ensure 

maximum coverage of the structure (AP: -4.30, L: +/- 0.32, DV: -2.40, -2.60 from Bregma). Then 

custom-built fibres were implanted bilaterally over the dPAG (AP: -4.40, L:+/-1.35, DV: -2.15 

from Bregma at an angle of 26°). 

The implants were fixed to the skull with skull screws, superglue (Loctite Attak) and dental 

cement (Duralay). All fibre connectors were tested for effective light transduction before 
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Implantation. All animals are injected with 1 mL saline I.P. post-surgery, remained on a heat pad 

overnight and were given paracetamol (0.8mg/mL, Tachipirina) in their drinking water for 3 

days.  

For optical stimulation of ChR2, LED light (Plexon PlexBright) was applied. Light intensity was 

adjusted with an optical power meter (Thorlabs) to reach 5–10mW at the end of the implanted 

fibre stub, unless otherwise specified.  

2.3.2 Optogenetically-optimised defensive behaviour test battery 

All stimulation trains were generated with Radiant V2.2 (Plexon). The light is delivered from the 

LED lights attach to a rotary joint to the implanted fibre stub via high performance patch cables 

(Plexon Plexbright high performance, LC Ferrule tip). The power of the patch cables were 

checked at the beginning of every behavioural session. All behavioural videos were recorded 

with a top view camera and Biobserve Viewer, at ambient lighting.  

2.3.2.1 Overt behaviour test  

Animals were handled for at least 2 days before the start of any behavioural assay. For assaying 

overt behaviour in response to optogenetic stimulation, mice are attached to optical patch 

cables and placed in a novel transparent plexiglass chamber (24cm x 24cm x 24cm). They are 

free to explore and habituate for 5 minutes. Stimulation lasts 1 second at intended intensity and 

frequency, followed by 60s inter-stimulation interval (ISI). Each stimulation condition is 

repeated for 5 times.  

2.3.2.2 Real time place preference 

Animals are placed in two chambers (each 24cm x 24cm x 24cm) connected by a small door (10 

cm in width) and are free to access both chambers for 10 minutes. Then, the initial preferred 

chamber is selected as the stimulation chamber, and for the next 10 minutes, the animal is 

stimulated at 10mW, 20Hz whenever it is in the stimulation chamber. If it stays in the 

stimulation chamber for more than 90s, stimulation is turned off for 30s before proceeding with 

another 90s of stimulation should the animal remain in the stimulation chamber.  

2.3.2.3 Goal-directed escape assay 

Animals are placed in a transparent plexiglass chamber (24 x 24 x 24 cm) with a shelter (18 x 7 

x 13 cm) placed in a corner. The shelter’s floor is lined with the animal’s home cage bedding. 

Animals are free to explore and habituate for 5 minutes, or until it displays no aversion towards 
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the shelter, after which whenever the animal is outside of and faraway from the shelter, it is 

stimulated (10mW, 20Hz) until it returns to the shelter. This is repeated 3-5 times. 

2.3.2.4 Anaesthetised heart rate measurement 

Heart rate is measured with a pulse oximeter (Kent Scientific, kindly lent by H. Asari) with an 

accompanying paw clip. Animals are anaesthetised with isoflurane in a chamber before being 

moved to a mask supplying maintenance level isoflurane (1.5-2%). Optic fibre patch cable(s) 

and the paw clip are attached, then the animal is left untouched for at least 7 mins or until the 

heart rate is stabilised (<30 bpm fluctuation in the minute before the start of stimulation). The 

animal is then stimulated at a low power (5mW, 20Hz, 15ms pulse width) for 5s, followed by 

115s ISI, then 5s stimulation at high power (10mW), then another 115s ISI. This is then 

repeated. During the whole period of anaesthetisation, the animal’s body temperature is 

maintained with an electric heat pad (Kent Scientific) to avoid hypothermia, and any isoflurane-

induced tachycardia is closely observed. 

2.3.2.5 Stimulus-response paradigm 

A transparent chamber-corridor-chamber apparatus (similar to the one in Silva et al., 2013, also 

see Fig. 13) was used to assess animal’s defensive behaviour towards a predator or an 

aggressive conspecific in this 5/6-day paradigm). Animals are first allowed to explore the 3 

chambers freely for 2 days, 15 mins each day, to habituate to the novel environment and the 

patch cables. On day 3, after 5 minutes for free exploration, the animal is trapped in one of the 

chambers (the ‘stimulus’ chamber) for 5 minutes. After, the animal is released from the stimulus 

chamber, the optical patch cables are attached, and a behavioural baselining period with no 

stimulation takes place for 3 minutes, followed by 3 repeats of 2 mins stimulation (10mW, 20-

40 Hz), each preceded by 2 mins inter-stimulation interval. Day 4 is similar to day 3, except that 

when the animal is trapped in the stimulus chamber, an aggressive CD1 male (that has 

previously been screened for aggression) is placed in the same chamber. When the subject 

animal has been attacked 3 times, it is released, patch cables are attached and the behavioural 

baselining and stimulation follows. The CD1 remains trapped in the stimulus chamber, and the 

subject animal is allowed to investigate through a small mesh-covered hole (2 x 3 cm) at the 

bottom of the dividing barrier. On day 5, the subject animal is exposed to a rat instead of an 

aggressive CD1. To prevent the rat from killing the subject animal, the rat is held by the tail and 

perched on the edge of the box. To gather more data, a 6th day, which is a repeat of the predator 

test on day 5, is sometimes added.  
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2.4 Afferents Mapping with Cholera toxin subunit-B (CTB) 

Vglut2::Cre or Gad2-IRES-Cre adult animals are first injected bilaterally in the dPAG with AAV-

hSyn-DIO-mCherry (150nl each side). After one week, animals are injected with 0.5% CTB-Alexa 

Fluor 488 (Thermo Fisher #C34775) and 0.5% CTB-Alexa Fluor 647 (Thermo Fisher #C34778), 

60nl unilaterally at CnF (AP: -4.75, L: 1.30, DV: -3.80 from Bregma), PPN (AP: -4.60, L: 1.15, DV: -

5.00) or DMH (AP: -1.00, L: -0.80, DV: -5.00). The capillary is left in place for at least 10 mins to 

avoid CTB spread along the injection tract. Animals are perfused one week after the CTB 

injection.  

2.5 General histological procedures 

Animals are transcardially perfused, first with PBS, followed by 4% PFA in 0.1M PB. The brain is 

left to postfix overnight in 4% PFA at 4℃. Brains are either sectioned in PBS with the vibratome 

(Leica VT1000s) or cryosectioned. For cryosectioning, brains are first briefly rinsed in PBS after 

post-fixation, then left in 30% sucrose (in PBS) for 2 days, or until they sink the the bottom of 

the 15 ml Falcon tube, before flash freezing in pre-chilled isopentane. Frozen brains are stored 

at -80℃ before they are ready to be sectioned on the cryostat (Leica CM3050s). Sections of 

50/70um are taken from the area(s) of interest.  

Sections are stored in PBS (and in case of long-term storage, in PBS with 0.01% sodium azide 

(Sigma)) before manual mounting on Superfrost Plus slides (Thermo Scientific). Sections are left 

to dry briefly before the addition of the mounting medium (MOWIOL) and coverslip. In 

experiments with no other stainings, DAPI (5mg/ml) is added directly to the mounting medium. 

Slides are left to dry overnight before storage at 4℃.  

Widefield images are acquired with Leica LMD5, while confocal images with Leica SP5 with 

resonant scanning. For optogenetics experiments, placement of optic fibres and injection sites 

are checked and animals are eliminated from data analysis if either are out of position. 
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2.6. Data Analysis 

2.6.1 Behavioural data analysis 

Velocity and real time place preference data are obtained from automatic tracking information 

from the recording software. All other behaviours are manually scored using Solomon Coder 

(http://solomoncoder.com/) and Bonsai (http://bonsai-rx.org/), with the following criteria: 

flights as a sudden burst in velocity, immobility as total absence of visible movement for at least 

1 second, and stretch as an elongated body shape towards the stimulus.  

For heart rate changes, the baseline is taken as the average beat per minute (bpm) of the 30s 

before stimulation, and 60-90s after the start of stimulation; the response bpm is calculated as 

an average over the 30s after the beginning of the stimulation.  

2.6.2 Statistics 

All statistical analysis were carried out using Prism 7 (GraphPad) using recommended options. 

All p-values are adjusted and error bars are mean +/- s.e.m. unless otherwise noted. Group 

differences were determined using multiple t-test with Holm-Sidak post hoc tests, Mann-

Whitney unpaired t-test, or two-way ANOVA with Tukey’s post hoc tests.  
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3 High throughput profiling of PAG neuronal 

transcriptomes reveals diverse neuron types 

3.1 Establishment of a pipeline for single neuronal nuclei profiling 

In the 1990s, microarray hybridisation assays enabled the first comparative transcriptome 

analyses, despite being prone to technical biases, batch effects, etc. The advancement in next 

generation sequencing technologies made it possible to sequence complete mRNA libraries with 

increasing depth, faster turnover and lower cost. The only remaining hurdle towards obtaining 

single cell transcriptomes was to develop a method that can reliably construct a cDNA library 

from an extremely small amount of starting material (e.g. 0.1-10pg RNA from a small eukaryotic 

cell) (Ramsköld et al. 2012). Early single cell microarray techniques overcame this problem by 

making use of a combination of exponential and linear amplification (Kurimoto et al. 2006). 

Exponential amplification is needed for efficient amplification to generate enough cDNA, but is 

extremely susceptible to amplification biases. From these methods stemmed the first single cell 

RNA-seq library preparation protocols, and with the introduction of template-switching oligos 

and specialised reverse transcriptases, the sensitivity and coverage of single cell cDNA libraries 

improved significantly, and the cost was lowered (Tang et al. 2009; Ramsköld et al. 2012; Picelli 

et al. 2014). Single cell RNA-seq became routinely used to catalogue cell subpopulations, identify 

new genetic markers, trace developmental lineages, etc. (Deng et al. 2014; Treutlein et al. 2014; 

Jaitin et al. 2014) 

The brain is known to be a highly heterogeneous structure, hence the maturation of single cell 

RNA-seq techniques offers a great opportunity for neuroscientists to explore and characterise 

this heterogeneity. By knowing the expression profile of neurotransmitter, neuromodulator, ion 

channel and plasticity related genes in each neuron, one could make sound hypotheses 

regarding their function and computation in vivo (Kodama et al. 2012). Identifying key genetic 

markers for subpopulations of neurons in one’s area of interest in the mouse brain also then 

allows one to generate transgenic mouse lines to selectively target these subpopulations in 

one’s manipulation.  

The first large-scale high throughput single brain cell transcriptome project profiled >3000 cells 

in young mouse somatosensory cortex and hippocampus (Zeisel et al. 2015). Making use of the 

Fluidigm C1 platform and the Smart-seq2 library construction protocol, 47 molecularly distinct 

subclasses were identified. These include non-neuronal cells such as astrocytes, 

https://paperpile.com/c/GLBK7T/1M2a
https://paperpile.com/c/GLBK7T/881v
https://paperpile.com/c/GLBK7T/YXsB+1M2a+wA3y
https://paperpile.com/c/GLBK7T/YXsB+1M2a+wA3y
https://paperpile.com/c/GLBK7T/qDwa+7Iqu+8BzD
https://paperpile.com/c/GLBK7T/qDwa+7Iqu+8BzD
https://paperpile.com/c/GLBK7T/qFzj
https://paperpile.com/c/GLBK7T/4PKD
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oligodendrocytes and microglia, and neurons that correspond molecularly to known neuronal 

subtypes in cortex and hippocampus, such as CA1 glutamatergic neurons, pvalb+ and sst+ 

interneurons, thus validating the experimental workflow.  

I used the work of Zeisel et al. as a starting point for setting up the pipeline to profile PAG 

neuronal transcriptomes. The TakaraBio iCELL8TM system presents a few advantages over the 

Fluidigm C1 and Smart-seq2 approach: (1) It offers the capacity to process up to 1800 samples 

in parallel, as opposed to 384 (which was the biggest Fluidigm C1 chip at that time), (2) it allows 

pooling of samples after reverse transcription, whereas the Smart-seq2 requires each sample to 

be processed individually in a separate reaction vessel. The iCELL8 system thus lowers the cost 

per sample and reduces the technical noise introduced, while retaining the ability to image 

samples prior to library construction (which the Fluidigm C1 also has). 

I also opted to profile nuclear transcriptomes instead of whole-cell (cytoplasmic) 

transcriptomes. Lacar et al. showed that the long cell dissociation protocol with heating and 

protease digestion can induce aberrant transcription and expression of intermediate early 

genes (IEGs) (Lacar et al. 2016). The rapid nuclei dissociation protocol reduces spurious gene 

expression, as mature ribosomes are localised to the cytoplasm. The resulting single nucleus 

suspension is also much cleaner, with easily identifiable round, DAPI+ nuclei, in comparison to 

single cell suspension from primary brain tissue, which is often full of debris of various sizes, 

almost impossible to distinguish from neurons. Without cell membranes, nuclei suspensions 

could also be stained for various markers using antibodies (while membranes of living cells are 

impermeable to antibodies), which can be useful for enrichment of specific populations and for 

validation. 

In the first proof-of-concept experiment, I aimed to show that with the iCELL8 system, one can 

identify the same brain cell subpopulations as those found in (Zeisel et al. 2015) from single 

nucleus transcriptomes. Cells and nuclei were dissociated from the same brain (from a P21 male 

mouse, same as those used by Zeisel et al.) and processed with the iCELL8 system. 147 wells 

with single cells and 200 cells with single nuclei were selected after the dispense for library 

construction. When processing the NGS data, reads from nuclei showed a much lower mapping 

rate than reads from cells, due to nuclei transcriptomes containing many intronic reads (close to 

50%, (Habib et al. 2016) and the default mapping settings of mapping reads to exons. Upon 

mapping to the entire gene bodies, the mapping rate of nuclei reads rose to similar levels to 

those from cells (Table 3).  

 

https://paperpile.com/c/GLBK7T/MkYR
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https://paperpile.com/c/GLBK7T/7WHf
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Assigning to Cells  (% reads) Nuclei (% reads) 

Exons 79.7% 37.4% 

Genes 84.8% 81.3% 

 

Table 3. Assigning reads to genes instead of exons drastically increases mappability of nuclei reads 

With unbiased hierarchical clustering, two main clusters were immediately revealed: one 

composed mainly of cells and the other of nuclei (Fig. 4). However, further clustering within 

each of the clusters revealed no expected brain cells subpopulations, while looking at 

expression levels of known cell type markers across cells and nuclei suggested that these genes 

are mostly not well detected in this experiment, indicating a sensitivity issue. The genes that 

were driving the main clusters (beyond cells vs nuclei) were mostly highly expressed genes 

whose expression level in a cell varies linearly with the total number of reads for that cell, 

hinting that the normalisation strategy might be suboptimal.  

 

Figure 4. t-SNE shows clear separation between single cells (n=147) and single nuclei (n=200) wells. Colour 

bar shows total number of counts per well.   

I then sought to benchmark the performance of the iCELL8 platform and my data processing 

pipeline with existing single cell pipelines, in the hope to address and uncover the cause of some 

of the issues in the initial experiment. Adding External RNA Controls Consortium (ERCC) RNA 

spike-ins into the nuclei suspension prior to dispense to enable cross-platform comparisons 

(Svensson et al. 2016; Jiang et al. 2011). To increase sensitivity, the sequencing depth of the 

library was increased, and more nuclei were selected for downstream processing as higher 

sample sizes allow for more robust normalisation and clustering, but not too many nuclei such 

that the read depth per nucleus would be compromised.  

https://paperpile.com/c/GLBK7T/D8Sg+suhO
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Cortical brain cells were again isolated, and 428 wells with single nuclei were selected for 

reverse transcription. Hierarchical clustering revealed subpopulations of brain cells marked by 

known markers (Fig. 6A-F). Further clustering the samples within the putative neuronal cluster 

(n=144), excitatory and inhibitory neurons were separated (Fig. 6G, H). However, further 

neuronal subpopulations are difficult to discern due to the insufficient number of samples.  

To compare the sensitivity and accuracy of our set-up with other existing single cell RNA-Seq 

platforms, the ERCC data from this experiment was analysed using the methods employed by 

Svensson et al., which gives a sensitivity (lowest number of counts to be detected with a 50% 

probability) and an accuracy (Pearson coefficient between detected and expected number of 

counts) measurement for each sample ((Svensson et al. 2016)). The results show that our 

pipeline is as sensitive and as accurate as other existing pipelines (Fig. 5).  

Having validated the performance of our pipeline, I sought to enrich for neurons in the PAG 

single nuclei transcriptome experiment, as only around half of the PAG brain cells are neurons, 

which are my primary cell type of interest. To be able to dispense only neurons onto the 

nanochip will help maximise the number of neurons per experiment, thus reducing the number 

of experiments needed and cost. To achieve this, single nuclei are first immunostained with an 

anti-NeuN antibody, then fluorescence-activated cell sorting (FACS) is used to sort NeuN+ nuclei 

directly onto the source plate for dispense (Supplementary Figure 1).  

 

 

Figure 5 (adapted from Svensson et al., 2016). The iCELL8 system’s sensitivity and accuracy measurements in 

comparison with other platforms. The iCELL8’s performance, shown in the blue violin plots at the far right of each 

graph, is comparable with the other existing protocols. Each open circle represents an individual well/sample. 

https://paperpile.com/c/GLBK7T/D8Sg
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Figure 6. Hierarchical clustering reveals distinct subpopulations of brain cells. (A-F) t-SNE on all wells (n=428) 

shows clear separation between the different subpopulations of brain cells which express well known marker genes 

(marker gene name at top-right of each plot): (A) astrocytes, (B) oligodendrocyte precursors, (C) oligodendrocytes, 

(D) microglia, (E-F) neurons. (G-H) t-SNE on putative neurons (n=144) shows (G) excitatory neurons marked by 

Slc17a7 (vglut1), and (H) inhibitory neurons marked by Gat1. Colour bars indicate normalised expression level of 

each gene.  
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3.2 Transcriptome cataloguing of PAG neuron subtypes 

The final PAG neuron dataset was produced using 14 mice and 3 nanochips: 4 mice for the first 

nanochip (ID: 94610) and 10 mice across the second and third (ID: 100283, 100339; the library 

construction for these nanochips was done separately). This resulted in a final 3,012 PAG 

neuronal nuclei selected for sequencing. I also processed some cortical neurons and unsorted 

cortical neurons as a control (see supplementary table 1 for details). 

FACS seems to have slightly decreased the quality of the library produced, and the number of 

transcripts detected in PAG neurons is on average slightly lower than that in cortical neuronal 

nuclei (could be due to the fact that PAG neurons are on average smaller than cortical neurons), 

but it is still more than what was used in a recently published single nuclei RNA-Seq study for 

neuronal subtypes (supplementary figure 1). The two main challenges in the analysis pipeline 

come from normalising the batch effects across experiments, and choosing variable genes for 

clustering. Prior to normalisation, we can see that the batch effect produces most of the 

variability between nuclei; in particular, there is a larger separation between the nuclei from 

nanochip #94610 and the 2 other nanochips (Fig. 7); it shows that a different sample 

preparation (with the same protocol, but on a different day with different mice) produces extra 

technical variability. To this end, we applied careful gene and sample filtering, regression and 

selection of high variability genes to minimise the effects of batch on downstream analysis. 

                                                                    

Figure 7. Normalisation and regression strategy corrected experimental batch effects. PCA plots showing (A) 

clear batch effects before regression, and (B) neurons no longer separate by experiments after batch correction. 
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Unbiased clustering revealed 8 clusters of nuclei (Fig. 8). Each cluster contains nuclei from all 3 

chips, and the t-SNE visualisation showed cortical neurons separating away from PAG neurons, 

lending support to the validity of the normalisation and feature selection approaches (Fig. 8B-

C). Most cortical neurons are in one cluster (cluster ‘5’), and positively enriched genes of this 

cluster correspond to genes known to be enriched in the cortex in comparison to the PAG, and 

vice-versa for genes of negative differential expression (Fig. 8C-D). There are also 2 small 

clusters of neurons marked by high expression of ribosomal genes, indicating that these 

samples were not neurons (Fig. 8E). These were removed from subsequent analysis.  

However, there are very few statistically significant differentially expressed genes for the 

remaining clusters (Supplementary Table 2); furthermore, it is difficult to correlate the 

enrichment of these genes to neuronal functions. I therefore adopted a semi-supervised 

approach based on the method used by Wu et al., by compiling a list of 352 genes that were 

directly related to neuronal function and using these to cluster the neurons, of which 299 are 

detected in our dataset (Supplementary Table 3) (Wu et al. 2017).  

Clustering results vary hugely based on the parameters used for the cluster algorithm. For the 

graph-based community clustering method that is adopted here, the two main variables are (1) 

the number of neighbours chosen for nearest-neighbour calculations, and (2) the resolution, 

which controls the compactness of subgraphs (Xu and Su 2015). There is very little agreement 

in the field on how best to determine the optimal number of clusters. For this I employed the 

approach adopted by Kiselev et al., where the parameter space comprising the range of 

recommended values for each parameter is evaluated to obtain a set of clusterings, and a 

consensus is obtained by combining the results and looking at how often two nuclei are in the 

same cluster (Kiselev et al. 2017) (Supplementary Figure 4).  

17 clusters were found after this procedure and further quality filtering, of which 11 were 

marked by enriched expression of neuronal function-related genes (Fig 9A-C, Supplementary 

Table 4). Similar to results from the previous unsupervised clustering, here cortical neurons 

form a cluster, marked by enrichment of Slc17a7 (vGlut1) and Slc1a2 (EAAT2) (cluster ‘12’, Fig. 

9C,D); both genes are known to be highly expressed in cortical excitatory neurons. Another 

cluster, marked by Slc18a2 and Slc6a4 enrichment, corresponds to neurons from the dorsal 

raphe (DR, present due to tissue dissection imprecision) (Fig. 9E). The remaining 9 clusters are 

marked by expression of ion channels, as well as important neurotransmitter and 

neuromodulator genes 

https://paperpile.com/c/GLBK7T/RAs0
https://paperpile.com/c/GLBK7T/SB9c
https://paperpile.com/c/GLBK7T/PySo
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Figure 8. Unsupervised clustering reveals 8 distinct subpopulations (n=3581).  t-SNE Plots overlaid with 

colours indicating (A) cluster identity, (B) experiment of origin, and (C) sample type (cortical neurons in red). (D-E) t-

SNE plots overlaid with scaled gene expression levels of each indicated gene: yellow for low expression, red for high 

expression. (D) Cortically enriched genes Slc17a7 (vGlut1) and Camk2a are highly detected in neurons in cluster ‘4’, 

while subcortical Slc17a6 (vGlut2) and Htr2c are comparatively enriched in all clusters other than ‘4’; insets are in 

situ hybridisation images against each gene (snapshot at the PAG level), taken from the Allen Brain Atlas. (E) clusters 

‘6’ and ‘7’ show increased expression of ribosomal genes    
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known to be expressed in the PAG, e.g. Nos1, Tacr1 and Adcyap1r1. The remaining 6 clusters are 

marked by the relative absence of certain genes (negative markers), or without statistically 

significant neuronal markers; these are possibly positively marked by genes that are not on the 

current list of candidate genes used. This is confirmed by performing marker gene identification 

on the entire set of detected genes; additional markers for the clusters (not from the candidate 

list) are found (Supplementary Table 5)  

 
Figure 9. Supervised clustering reveals 17 distinct clusters of neurons (n=3279). (A) t-SNE plot depicting 

clusters. (B) Table detailing number of neurons in each cluster. (C) Heatmap showing the expression of the top 

markers for each positive-marked cluster; colour shows scaled expression level. (D-E) t-SNE plot showing enrichment 

of (D) cortical neuronal genes in cluster ‘12’, and (E) dorsal raphe markers enrichment in cluster ‘9’; insets in (E) 

show in situ hybridisation against the gene of interest in the dorsal raphe and PAG, taken from the Allen Brain Atlas.  
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4 Functional mapping of PAG cell types identifies 

innate defense circuit 

4.1 dPAG excitatory neurons trigger overt defensive behaviour 

Having described PAG neuron types, we sought to identify their functional roles within the 

instinctive defense circuit. Previous studies aiming at finding PAG circuit components regulating 

defense have mostly involved pharmacological manipulations, via microinjections of 

agonists/antagonists of neurotransmitter/neuromodulatory receptors into different PAG 

subregions (see introduction). While these experiments have been informative, results could 

vary widely depending on the specificity of the drug used, the concentrations and the extent of 

drug diffusion, often producing contradictory results. The combined use of 

optogenetic/pharmacogenetic tools and transgenic animals offer temporal and spatial 

specificity to the manipulation, and together with well-designed behavioural assays, have 

proven to be superior in robustness and reliability. This enables the mapping of finer aspects of 

behaviour to smaller groups of neurons, which is crucial to the understanding of circuit 

dynamics at an algorithmic level.  

Previous studies have shown that optogenetic activations of dPAG CAMKII+ and vGlut2+ 

neurons trigger flight and post-flight freezing, in line with results from similar electrical and 

chemical stimulation experiments; the speed of flight is proportional to the stimulation intensity 

(Deng, Xiao, and Wang 2016; Evans et al. 2018; Tovote et al. 2016). Optogenetic inhibition of 

dPAG vGlut2+ neurons, on the other hand, abolishes escape responses to a looming stimulus; 

instead, the animal freezes with fast reaction times (Evans et al. 2018). These results suggest 

that vGlut2+ neurons are sufficient and necessary for the locomotive aspect of the “circa-strike” 

behaviour. Single unit recordings in the mouse dPAG revealed that around 20% of the neurons 

fire during flight away from a rat (Deng, Xiao, and Wang 2016; Masferrer et al. 2018). Given that 

around 50% of dPAG neurons are excitatory, it is likely that only a subpopulation of dPAG are 

necessary for flights (Watson, Paxinos, and Puelles 2012). These neurons could be in a 

particular subregion of the dPAG (e.g. dlPAG), marked by a specific genetic marker in addition to 

vGlut2+, and/or connected to a specific structure. Also, defensive behaviours have been shown 

to be accompanied by autonomic responses, and whether these are triggered by the same 

subpopulation of vGlut2+ neurons eliciting escape locomotion, or whether vGlut2+ neurons 

mediate these autonomic changes at all, remains a mystery. Finally, it is not known whether 

dPAG vGlut2+ neurons encode any part of the motivational aspect of defence. Silva et al. showed 

https://paperpile.com/c/GLBK7T/LeX1+uOvA+mUyS
https://paperpile.com/c/GLBK7T/uOvA
https://paperpile.com/c/GLBK7T/LeX1+uHzM
https://paperpile.com/c/GLBK7T/rQfw
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that the dPAG is important for the expression of fear, but not fear memory (Silva et al., 2016); it 

is possible that dPAG neurons only output motor commands for escape-like lomotion. 

First, we confirmed that optogenetic stimulation of vGlut2+ neurons in dPAG induces flights, 

and the probability of flights increases with increasing stimulation frequency (Fig. 10C-D). We 

then carried out a real-time place preference test and found that, similar to that of CamKII+ 

neurons, optogenetic activation of vGlut2+ neurons is aversive; animals flee out of the 

stimulation chamber (Fig. 11 A-B). We sought to find out if vGlut2+ neurons control the 

autonomic aspects of the escape-like behaviour. Heart rate measurements were carried out with 

a pulse oximeter with the animal anesthetised, as a flight might indirectly cause an increase in 

heart rate. We found that vGlut2+ neuron stimulation repeatedly caused tachycardia; this was 

often accompanied slight movements of the animal (of the paw or head). This indicates that 

dPAG vGlut2+ neurons also coordinate heart rate in defensive responses. 

 

 

 

Figure 10. Optogenetic stimulation of dPAG vGlut2+ neurons triggers flights. (A) Widefield microscopic image of 

dPAG area showing site of injection, distribution of ChR2+ expressing cells, and placement of optic fibre (dashed line); 

Aq: aqueduct. (B) dPAG vGlut2+ neurons appear to project to the cuneiform nucleus (CnF), but not to the 

pedunculopotine nucleus (PPN): SC: superior colliculus, IC: inferior colliculus. (C) Velocity bursts from an exemplar 

animal for different frequencies of stimulation (power=5mW, pulse width=15ms). (D) Mean probability of flight for 

increases with increasing frequency (n=9). Statistical significance is analysed with 2-way ANOVA with Tukey post-

hoc; all p-values reported here are adjusted p-values. At 2mW: 5Hz vs 20Hz p=0.0059, 5Hz vs 40Hz p<0.0001, 10Hz 

vs 20Hz p=0.0059, 10Hz vs 40Hz p<0.0001, 20Hz vs 40Hz p=0.0155; at 5mW: 5Hz vs 20Hz p<0.0001, 5Hz vs 40Hz 

p<0.0001, 10Hz vs 20Hz p<0.0001, 10Hz vs 40Hz p<0.0001; at 10mW: 5Hz vs 20Hz p<0.0001, 5Hz vs 40Hz p<0.0001, 

10Hz vs 20Hz p<0.0001, 10Hz vs 40Hz p<0.0001. Error bars show mean +/- s.e.m.  
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Figure 11. Optogenetic stimulation of dPAG vGlut2+ neurons elicits escape. (A) Path of an exemplar ChR2 

animal during the (top) habituation epoch and (bottom) stimulation epoch in the real time place preference test; 

stimulation chamber is on the left. (B) ChR2 animals avoid the stimulation chamber in comparison to EYFP controls 

specifically during the stimulation epoch (ChR2 n=11; EYFP n=8); multiple t-test with Holm-Sidak post-hoc, t=6.435, 

adj. p<0.0001. (C) Example escape to shelter upon stimulation in a ChR2 animal, t=0 indicates beginning of 

stimulation. (D) ChR2 animals escape with shorter latency to home (ChR2 n=11, EYFP n=6); Mann Whitney unpaired 

t-test, p=0.0002. (E) Example tachycardiac response of a ChR2 animal to stimulation; blue shading indicates the light 

on period. (F) Tachycardia is observed in ChR2 animals but not EYFP controls at 10mW (ChR2 n=11, EYFP n=8), 

multiple t-test with Holm-Sidak post-hoc, t=2.585, p=0.038. All error bars are mean +/- s.e.m  
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To check whether these flights are actually escapes, instead of just fast running, we designed a 

test to see if these flights qwew aimed towards safety. As mice are known to prefer dark corners 

to open spaces, we placed a shelter in a corner of the apparatus, which is also filled with the 

animal’s home bedding. Optogenetic stimulation of dPAG vGlut2+ stimulation repeatedly 

triggers flight towards the shelter in the ChR2-expressing animals, but not in EYFP only controls 

(Fig. 11C-D). The ChR2-expressing animals also remained in the shelter for long periods of time 

after stimulation, whereas control animals exit and re-enter the shelter much more frequently. 

Next, we targeted pituitary adenylate cyclase-activating polypeptide (PACAP)-expressing 

neurons in the dPAG. PACAP (whose official name is ADCYAP1) is a 38-amino acid peptide 

encoded by the Adcyap1 gene; it is part of the family of neuropeptides that includes also 

vasoactive intestinal peptide (VIP), secretin and glucagon (Vaudry et al. 2009). It is expressed in 

various brain regions implicated in defensive behaviour, e.g. MeA, VMH, LC and LPB (Vaudry et 

al. 2009). In particular, PACAP mRNA has been shown to colocalise with that of SF1 in the VMH, 

and PACAP-expressing neurons in the VMH project to dPAG (Hawke et al. 2009; Maekawa et al. 

2006). PACAP has been implicated in the regulation of survival behaviour, such as eating, 

drinking and reproduction, and autonomic responses, such as blood pressure and 

thermoregulation (Krashes et al. 2014; Ross et al. 2018; Farnham et al. 2012; Morley et al. 1992; 

Banki et al. 2014; Tan et al. 2016). In humans, single nucleotide polymorphisms (SNPs) in the 

PACAP receptor gene Adcyap1r1 are associated with post-traumatic stress disorder (PTSD) in 

female subjects; PACAP has been associated with aberrant stress responses in mice that 

underwent chronic social defeat (Ressler et al. 2011; Lehmann et al. 2013). In the dPAG, PACAP 

mRNA is enriched in dm/lPAG, which receives inputs in particular from the VMH (Lein et al. 

2007). All these observations led us to hypothesise that PACAP+ neurons in the dPAG are 

important for instinctive defensive behaviour. 

Optogenetic stimulation of dPAG PACAP+ neurons triggers flight, in a very similar manner to 

that from dPAG vGlut2+ stimulation (Fig. 12C,D). The stimulation is aversive and escape-

oriented (Fig. 12E,F). Distinct from vGlut2+ activation, PACAP neurons do not seem to 

significantly regulate heart rate (Fig. 12G), although I cannot rule out that this is due to 

unreliability in the method of measurement, as one animal did show tachycardia upon 

stimulation. 

 

https://paperpile.com/c/GLBK7T/bjkb
https://paperpile.com/c/GLBK7T/bjkb
https://paperpile.com/c/GLBK7T/bjkb
https://paperpile.com/c/GLBK7T/6x9K+JH4B
https://paperpile.com/c/GLBK7T/6x9K+JH4B
https://paperpile.com/c/GLBK7T/M04q+O8t8+2IyT+BYBi+CjHE+LbKU
https://paperpile.com/c/GLBK7T/M04q+O8t8+2IyT+BYBi+CjHE+LbKU
https://paperpile.com/c/GLBK7T/zXE1+UlE0
https://paperpile.com/c/GLBK7T/svz8
https://paperpile.com/c/GLBK7T/svz8
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Figure 12. Optogenetic stimulation of dPAG PACAP+ neurons elicits escape.(A) Widefield microscopic image of 

dPAG area showing site of injection, distribution of ChR2+ expressing cells, and placement of optic fibre (dashed line); 

Aq: aqueduct. (B) PACAP+ neurons appear to project to the CnF, but not the PPN in the MLR. (C) Velocity bursts from 

an exemplar animal for different frequencies of stimulation (power=10mW, pulse width=15ms). (D) Mean probability 

of flight increases with increasing frequency at 5mW and 10mW (ChR2 n=10). Statistical significance is analysed with 

2-way ANOVA with Tukey post-hoc; all p-values reported here are adjusted p-values.At 5mW: 5Hz vs 20Hz p=0.0066, 

5Hz vs 40Hz p=0.0013; at 10mW: 5Hz vs 20Hz p=0.0278, 5Hz vs 40Hz p=0.0002, 10Hz vs 40Hz p=0.0138. (E) ChR2 

animals avoid the stimulation chamber in comparison to EYFP controls specifically during the stimulation epoch 

(ChR2 n=9; EYFP n=7); multiple t-test with Holm-Sidak post-hoc, t=3.518, adj. p=0.0068. (F) ChR2 animals escape 

with shorter latency to shelter (ChR2 n=8, EYFP n=5); Mann Whitney unpaired t-test, p=0.0016.(G) No significant 

heart rate response is observed in ChR2 or EYFP animals with stimulation (ChR2 n=6; EYFP n=3). All error bars show 

mean +/- s.e.m  
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4.2 dPAG Tac2+ neurons regulate defensive responses towards 

predator and conspecific threats 

Tac2 encodes the neuropeptide Neurokinin B (NKB), which is a member of the tachykinin family 

along with Neurokinin A (NKA) and substance P (SP) (Severini et al. 2002). Tac2 is expressed in 

very specific areas of the adult mouse brain: the antero-dorsal bed nucleus of the stria 

terminalis, medial habenula, CeA, DMH, arcuate nucleus, LHA, and dmPAG (Lein et al. 2007; 

Zelikowsky et al. 2018). Tachykinins have been implicated in pain, anxiety, stress and 

aggression in rodents (Severini et al. 2002). In the mouse amydala, Tac2 and its receptor NK3R 

affect the consolidation of fear memory (Andero, Dias, and Ressler 2014). Recently, Zelikowsky 

et al. found that chronic isolation stress causes a brain-wide upregulation of Tac2 expression, 

and this change is necessary and sufficient for the behavioural influence of chronic isolation 

stress (Zelikowsky et al. 2018). In the rat dPAG, injection of an NK3R (neurokinin receptor 

which preferentially binds NKB) agonist causes an increase in exploratory behaviour in an 

elevated-plus maze, hyperalgesia and an increase in 22kHz USV (Bassi et al. 2009). 

Optogenetic stimulation of the dmPAG Tac2+ neurons does not produce any overt behaviours 

(i.e. flight/freezing). Further testing with real time place preference showed neither preference 

nor aversion (Fig. 13E). Given that Tac2 was shown to play modulatory roles, we hypothesised 

that its activation would cause a change in defensive behaviour in the presence of a stimulus, i.e. 

a predator or a conspecific. To test this, we adopted a modified version of the classic three-

chamber test (adopted from Silva et al., 2013; see Fig. 13C,D and methods section 2.3.2.5). 

Animals first interact with the threat in the ‘stimulus’ chamber, and after are allowed to escape 

through the connected corridor and ‘far’ chamber. Its behaviour towards the threat is then 

recorded and quantified during repeated sessions of optogenetic activation. 

Using this paradigm, we showed that optogenetic stimulation of dmPAG Tac2+ increases 

immobility of mice in the presence of both an aggressive conspecific and a rat. There are no 

significant changes in other defense-related behaviours such as stretching (Fig. 13C,D). We also 

tested for heart rate changes, and no heart rate responses were observed during stimulation 

(Fig. 13F). This suggests that dmPAG Tac2+ neurons are responsible for modulating a very 

specific aspect of the mouse instinctive defensive behaviour.  

 

 

https://paperpile.com/c/GLBK7T/P3r1
https://paperpile.com/c/GLBK7T/svz8+opWo
https://paperpile.com/c/GLBK7T/svz8+opWo
https://paperpile.com/c/GLBK7T/P3r1
https://paperpile.com/c/GLBK7T/YiJS
https://paperpile.com/c/GLBK7T/opWo
https://paperpile.com/c/GLBK7T/GW1L


4 Functional mapping of PAG cell types identifies innate defense circuit 

 

48 
 

 

Figure 13. Optogenetic stimulation of dmPAG Tac2+ neurons induces immobility against predator and 

conspecific threats. (A) Widefield microscopic image of dPAG area showing site of injection, distribution of ChR2+ 

expressing cells, and placement of optic fibre (dashed line); Aq: Aqueduct. (B) Tac2+ neurons do not appear to project 

to the MLR. (C) Tac2+ activation enhances immobility towards predator. (left) Diagram showing experimental set-up 

and stimulation pattern: 3 stimulation periods of 2 mins are each interleaved by 2 mins inter-stimulus interval (ISI); 

(middle) immobility is increased in ChR2 animals but not EYFP controls during stimulation; (right) stretching is not 

affected (no. of stimulations: ChR2=14, EYFP=14; no. of animals: ChR2=6, EYFP=5); multiple t-test, Holm-Sidak post-

hoc, t=3.337, adj. P=0.00389; light blue and grey lines show individual trials. (D) Tac2+ activation enhances 

immobility towards an aggressive conspecific. (left) Diagram showing experimental set-up and stimulation pattern; 

(middle) immobility is increased in ChR2 animals but not EYFP controls during stimulation; (right) stretching is not 

affected (no. of stimulations: ChR2=12, EYFP=10; no. of animals: ChR2=6, EYFP=5); multiple t-test, Holm-Sidak post 

hoc, t=2.938, adj. P=0.0140; light blue and grey lines show individual trials. (E) Preference for stimulation chamber 

during stimulation epoch in RTPP does not differ between groups of animals (ChR2 n=3, EYFP n=5). (F) No 

observable heart rate responses are evoked by Tac2+ stimulation (ChR2 n=4, EYFP n=3). All error bars indicate mean 

+/- s.e.m; all data shown in this figure has been produced jointly with Isabelle Prankerd.  
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5 Identification of PAG output pathways mediating 

defensive responses 

5.1. dPAG-CnF projection regulates flight 

We hypothesise that functionally distinct dPAG neuron types project to different downstream 

areas, and hence are able to regulate different aspects of defensive behaviour. A major target of 

dPAG projections is the midbrain locomotor region (MLR), which in mice comprises the 

cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN) (Caggiano et al. 2018). The 

MLR controls gait selection and speed of movement; while excitatory neurons in both nuclei 

contribute to slower, alternating-gait locomotion, optogenetic activation experiments 

demonstrated that only CnF neurons are capable of triggering high speed, escape-like 

locomotion (Caggiano et al. 2018).  

We first targeted the dPAG neurons projecting to CnF using retrograde delivery of Cre-

recombinase. AAV serotype 5 (AAV5) had been shown to transduce retrogradely along the axon 

(Aschauer, Kreuz, and Rumpel 2013); injecting an AAV5 encoding Cre in the CnF, and an AAV 

expressing ChR2 Cre-dependently in the dPAG allows us to optogenetically manipulate 

specifically the CnF-projecting dPAG neurons (Fig. 14A). Optogenetic stimulation of these 

neurons triggers flight (Fig. 14B), and similar to the flights resulted from the optogenetic 

stimulation of dPAG excitatory neurons, these flights are escape-oriented (Fig. 14C). However, 

no changes in heart rate were observed with the optogenetic activation, indicating that this 

output pathway may control only the locomotive aspect of escape behaviour, although a larger 

number of animals are needed to confirm this.  

To show that escape is regulated specifically by this projection (and not by these neurons’ 

projections to other downstream areas), we also optogenetically activated the axonal terminals 

of the projection, by expressing ChR2 in dPAG neurons and delivering light to the CnF, which 

resulted similarly in flights (Fig. 14D-F).  

 

 

 

https://paperpile.com/c/GLBK7T/CwU2
https://paperpile.com/c/GLBK7T/CwU2
https://paperpile.com/c/GLBK7T/pKO8
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Figure 14. Optogenetic stimulations of both the soma and axonal terminal of CnF-projecting neurons in the 

dPAG elicit escape. (A) widefield micrograph showing (left) retrograde-cre dependent ChR2 expression in the dPAG; 

optic fibre placements are indicated by dashed lines; (right) expression of iRFP670 used to mark site of injection of 

retrograde-Cre virus at the CnF. (B) and (C) show results from somatic activation of CnF-projecting neurons (n=2). 

(B) Velocity bursts of an exemplar animal during optogenetic stimulation across varying frequencies (power= 2mW, 

pulse width=15ms). (C) An example of a light-evoked escape to home, t=0 is when stimulation began. (D) Widefield 

micrograph showing expression of ChR2 in dPAG neurons and its transport down to axonal terminals at the CnF; 

dashed line indicate placement of optic fibre over the CnF. (E) and (F) show results from axonal projection activation 

at the CnF of dPAG CnF-projecting neurons (n=2). (E) Velocity bursts of an exemplar animal during optogenetic 

stimulation across varying frequencies (power = 5mW, pulse width=15ms), (F) An example of a light-evoked escape 

to home, t=0 is when stimulation began. 
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5.2 Diverse dPAG output pathways to the MLR 

To investigate the nature of dPAG output neurons to the MLR, we made use of Cholera toxin 

subunit B (CTB) retrograde tracing. We labelled dPAG vGlut2+ neurons using vGlut2::Cre 

animals and an AAV expressing mCherry in a Cre-dependent manner, and delivered CTB 

conjugated to fluorescent proteins of two different colours to CnF and PPN. While CnF-

projecting PAG neurons are located specifically in the dorsolateral column as previously 

described (see Introduction section 1.3.5.1), PPN projecting neurons are sparse but evenly 

distributed across dPAG columns (Fig 15B). Most CnF-projecting neurons are vGlut2+, but PPN 

neurons appear to have less of an overlap with the vGlut2+ signal (Fig 15C). That being said, 

because this method of labelling vGlut2+ neurons is non-exhaustive, an alternative is needed to 

confirm this potential finding. 

 

Figure 15. CTB retrograde tracing from CnF and PPN (n=4) shows divergent output pathways from dPAG to 

MLR. (A) Widefield micrographs showing sites of injections of (left) CTB-647 at PPN and labelling of dPAG vGlut2+ 

neurons with injection of an AAV expressing cre-dependent tomato, and (right) CTB-488 at CnF. (B) Confocal image 

showing enrichment of CnF-projecting neurons in dlPAG (dl), while PPN-projecting neurons are found also in the 

lateral (l) and dorsomedial (dm) PAG columns. (C) Confocal image in the dPAG with vGlut2+ neurons labelled with 

tomato expression, showing that (bottom) CnF-projecting neurons are largely glutamatergic, but (top) not PPN 

projecting neurons.  
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6 Discussion 

The PAG has been regarded as the final controller of defensive behaviours, integrating sensory, 

cognitive and internal state information to produce the most appropriate response to threats. In 

this study, we first investigated the PAG neural circuit using a bottom-up approach, by 

cataloguing its components. We showed that a large array of neurotransmitter and 

neuromodulator genes are expressed in PAG neurons, and different combinations mark at least 

9 distinct types of neurons. Using optogenetics stimulation, We mapped selected classes of 

neurons to their roles in defense, demonstrating that there are transcriptomically diverse 

subclasses of PAG neurons responsible for different aspects of defensive behaviours.  

In this final section, I will discuss our findings and reflect on the approach in the context of 

instinctive behaviour neural circuit research.  

6.1 Transcriptomic dissection of PAG neurons reveals distinct 

subpopulations 

Previous research has demonstrated the involvement of a large number of neurotransmitter 

and neuromodulatory systems in the regulation of PAG neuronal activity and related behaviour 

(summarised in section 1.3.3.3). While efforts have been made to resolve the interaction 

between these systems (mainly by using various antagonists and agonists together), this has not 

been done systematically, leaving many potential interactions unexplored. We present the first 

attempt to transcriptomically catalogue PAG neurons, with the aim of generating a more 

comprehensive and quantitative description, and of advancing the understanding of the PAG 

instinctive behavioural circuit on a molecular level.  

Using supervised clustering, we first identified 9 clusters of PAG neurons marked by enriched 

expression of neuronal function related genes. Many of these encode for proteins with well 

documented roles in the PAG, e.g. Tacr1 (marking cluster ‘2’) encodes the neurokinin receptor 

NK1 that preferentially binds to Substance P and mediates pain and anxiety responses (see 

section 1.3.3.3). Cluster ‘2’ neurons also show enrichment of Nos1, encoding nitric oxide 

synthase (nNOS). A previous pharmacological study demonstrated that NOS inhibition removes 

the anxiogenic effect caused in intracerebroventricular injection of Substance P (Baretta, 

Assreuy, and De Lima 2001); building on that, our data suggests that there are PAG GABAergic 

neurons (Gad2 is also a marker of this cluster) that are activated by Substance P and synthesise 

nitric oxide (NO) in response, and these are potentially important for the modulation of anxiety. 

https://paperpile.com/c/GLBK7T/Kr3F
https://paperpile.com/c/GLBK7T/Kr3F
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Nitric oxide has been shown to have diverse roles in synaptic modulation in the PAG (Fogaca et 

al., 2011). Using slice electrophysiological recording, NO has been shown to suppress dlPAG 

neuronal activity through potentiating the synaptic release of GABA and presynaptically 

inhibiting glutamate release in a GABA(A) receptor-dependent manner (Xing et al., 2008).  

Taken together, GABA(A) receptor expressing excitatory neurons in the dlPAG could be the 

downstream target of the Tacr1+ Nos1+ inhibitory neurons in cluster ‘2’; these cluster ‘2’ 

neurons could have the capacity to modulate the array of defensive behaviours regulated by 

dlPAG vGlut2+ neurons (shown by the optogenetic experiments in Section 4.1); this represents 

a potential mechanism for integrating pain and anxiety information into the computation of a 

defensive strategy.   

Interestingly, in the dPAG, nNOS expression is highly localized to the dorsolateral column, and 

local injection of NO donors in the dPAG induces flight and a decrease in mean arterial pressure, 

implicating dlPAG nNOS+ neurons in “circa-strike” defense (Braga et al., 2009, Hall and 

Behbehani, 1998). Electrophysiological recordings from a dPAG slice revealed that NO could 

induce excitatory postsynaptic potentials (EPSPs), but these are dependent on ionotropic 

glutamatergic receptors (Hall and Behbehani, 1998). NO here seems to play an opposite role to 

the aforementioned inhibitory one, suggesting that there is more than one NO population within 

the PAG. Indeed, this is reflected in our single neuron trascriptome data, as Nos1 is also 

enriched in cluster ‘20’. In addition to Nos1+, this cluster also differentially expresses Slc1a3 

(encoding the excitatory amino acid transporter EAAT1), indicating that these are excitatory 

neurons. Cluster ‘20’ neurons also shows increased expression of Grm1, which encodes the 

Class I post-synaptic metabotropic glutamatergic receptor mGluR1. Slice recordings in the PAG 

found that mGluR1 agonists inhibit evoked inhibitory post-synaptic currents (iPSCs) (Drew and 

Vaughan, 2004). Assuming that these cluster ‘20’ Nos1+ Slc1a3+ neurons are the ‘flight’ neurons 

of the PAG (‘flight’ neurons are also found electrophysiologically by Deng et al., 2016 and 

Masferrer et al., 2018), excitatory inputs from other areas (e.g. SC, VMH) could inhibit the 

GABAergic inputs to these neurons via the activation of mGluR1. This post-synaptic inhibition 

mechanism could be part of the molecular substrate underlying the integration of threat signals 

and other circumstantial/internal variables in deciding whether or not to escape at the PAG 

level.  

Htr2c positive expression is detected in 3 of the 9 clusters. This gene encodes the serotonin 

receptor subtype 5HT-2C, which in the PAG has been shown to mediate both anxiety and 

antinociception (Baptista, Nunes-de-Souza, and Canto-de-Souza 2012; Yamashita, de Bortoli, 

and Zangrossi 2011). In particular, 5HT-2C receptor activation in the PAG, in contrast to that of 

https://paperpile.com/c/GLBK7T/FHNR+5E3L
https://paperpile.com/c/GLBK7T/FHNR+5E3L
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5HT-2A, has been shown to facilitate medial hypothalamus triggered defensive responses 

(‘hissing’) in a scalable manner in cats (Shaikh, De Lanerolle, and Siegel 1997). Serotoninergic 

projections to the PAG originate from the raphe nuclei in the medulla and midbrain (Lovick 

1994). Specifically, stimulation of the dorsal raphe (DR) serotoninergic projection to the PAG 

(but not the one from the median raphe nucleus) evokes both excitatory and inhibitory 

responses in the dPAG (Lovick 1994); this could potentially be explained by our discovery of 

multiple subtypes of 5HT-2C expressing neurons in the PAG (only around 25% of the dPAG 

neurons recorded showed both inhibitory and excitatory responses to DR stimulation). Deep 

brain stimulation of DR inhibits avoidance and escape (Wscieklica et al., 2017); this could 

potentially be explained by the release of serotonin activating 5HT-2C expressing Gad2+ 

neurons (cluster ’16’) in the PAG, which then inhibits the flight neurons. This is supported by 

the finding that activating the PAG-projecting neurons in the DR causes an increase in blood 

pressure, opposite to the decrease triggered by the activation of  dPAG flight neurons (Lovick 

1994, Hall and Behbehani, 1998). The potential interplay between 5HT-2C and other 

neurotransmitter mechanisms, such as with glycine receptor genes in cluster ‘3’ (see below), 

could be crucial to the modulation and integration of afferent signals in defensive behaviour.  

Glycine receptor (GlyR) genes (Glra1, Glra2, Glra3, and Glrb) are upregulated in 5 PAG neuron 

clusters. GlyR is an ionotropic receptor that is selectively permeable to chloride ions; its 

activation causes hyperpolarisation. Glycine has been shown to inhibit PAG neurons, and glycine 

level in PAG is implicated in nociception (Maione et al. 2000; Shin et al. 2003; Min et al. 1996). 

Glycinergic neurons are found in abundance in the ventromedial medulla and the spinal cord, 

and given that both structures project to the PAG and their functions in pain, these projections 

could be the source of intra-PAG glycine (Marchand and Hagino 1983). Furthermore, the 

inhibitory effects of these inputs could be modulated by 5HT-2C, as they are both enriched in 

cluster ‘3’, postulating a synaptic mechanism for serotonergic modulation of pain in the PAG.  

Transcriptome profiling of ion channel genes allows hypotheses to be made regarding the 

electrophysiological properties of the neurons, since ion channel composition of a neuron 

determines its firing pattern. Here we show that different ion channel subunit genes are 

expressed in distinct PAG neuron clusters. For example, cluster ‘2’ shows significantly increased 

expression of Kcnc2, which encodes Kv3.2, a potassium voltage-gated channel subfamily C 

member 2. Kv3.2 is prominently expressed in neurons that fire at high frequency; Kv3.1/3.2 

conductance is necessary and kinetically optimized for high-frequency action potential 

generation (Lien and Jonas 2003; Rudy and McBain 2001). This cluster (that is also Gad2+) thus 

https://paperpile.com/c/GLBK7T/8Llh
https://paperpile.com/c/GLBK7T/hChS+t4Gl+U43T
https://paperpile.com/c/GLBK7T/TdIg
https://paperpile.com/c/GLBK7T/eiuY+Csty


 6.1 Transcriptomic dissection of PAG neurons reveals distinct subpopulations 

55 
 

potentially contains the fast spiking GABAergic interneurons in the PAG that have been 

described (Park et al. 2010). 

Another ion channel gene, Cacna1d, is enriched in cluster ‘11’, which is also marked by 

Adcyap1r1 (PACAP receptor) expression. Cacna1d encodes Cav1.3, a voltage-dependent non-

inactivating calcium channel. Cav1.3 mediates persistent inward currents and serves to amplify 

neuronal input signals (Sukiasyan, Hultborn, and Zhang 2009). In comparison with other L-type 

voltage-gated Ca2+ channels, Cav1.3 has faster kinetics and lower activation thresholds; Cav1.3 

L-type channels will activate in response to physiological stimuli that do not open Cav1.2 L-type 

channels (Lipscombe, Helton, and Xu 2004). Cav1.3 immunoreactivity neurons are widely 

distributed in rat spinal cord, brainstem and midbrain, including the PAG (Sukiasyan, Hultborn, 

and Zhang 2009). Neurons expressing Cacna1d hence have the potential to be activated in 

response to fast, subthreshold depolarisations. Taking into account that PACAP facilitates and 

potentiates excitatory responses (see section 6.2), this cluster of PAG neurons potentially serves 

to amplify input signals. PACAP+ neurons from the VMH project to the PAG, and hence these 

cluster ‘11’ neurons could be the downstream target of this VMH PACAP+ projection (Maekawa 

et al., 2006).  The expression of PACAP in the VMH is regulated according to energy levels (low 

energy, e.g. during fasting, reduces PACAP mRNA levels) (Hawke et al., 2009); furthermore, 

these neurons are inhibited by subparaventricular zone neurons signaling circadian rhythm 

(Todd et al., 2018). PACAP largely co-expresses with SF-1 in the VMH, and the VMH SF1+ 

neurons have been shown to  encode contextual memory of fear (Hawke et al., 2009; Silva et la., 

2016). The VMH and PAG have both been well-implicated in defense, but interestingly, 

optogenetic stimulation of the projection (stimulating the axonal terminals in the PAG) had 

produced mixed behavioural results (Silva et al., 2013, Wang et al., 2015). This could possibly be 

explained by varying levels of PACAP (potentially indicative of the internal state of the animal) 

amplifying this excitatory signal to the dPAG to varying degrees. A defensive strategy has to be 

optimised in accordance with the internal state of the animal, and the PACAP signaling from the 

VMH to PAG, together with the enhanced machinery (Cav1.3) to receive this signal, could be 

behaviourally crucial for generating a fast, optimized defensive response to sudden incoming 

threat.  

In addition, our transcriptome profiling also implicated novel neuromodulatory mechanisms in 

the dPAG. Scg2, which marks cluster ‘13’, encodes Secretogranin II, a protein involved in the 

packaging and sorting of peptide hormones and neuropeptides into secretory vesicles (Huttner, 

Gerdes, and Rosa 1991; Ozawa et al. 2017). To my knowledge, its role in the PAG (or any other 

brain structure) has not been looked into.    

https://paperpile.com/c/GLBK7T/Mm0w
https://paperpile.com/c/GLBK7T/RpPp
https://paperpile.com/c/GLBK7T/mHMO
https://paperpile.com/c/GLBK7T/RpPp
https://paperpile.com/c/GLBK7T/RpPp
https://paperpile.com/c/GLBK7T/v5Kl+UtkU
https://paperpile.com/c/GLBK7T/v5Kl+UtkU
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Expanding the search from candidate genes to all genes revealed 6 more clusters of PAG 

neurons, and also additional non-neuronal function related markers for previously identified 

clusters. While the interpretation of the circuit functions of these new clusters of neurons is 

more challenging, a thorough inspection of the enriched genes could yield new hypotheses 

regarding properties and functions of PAG neurons. For example, Mrap, a positive marker for 

cluster ‘4’, encodes melanocortin-2 receptor accessory protein, which is responsible for 

transporting the melanocortin-2 receptor to the cell surface. Brain-wide Mrap2 (mammalian 

paralogue of Mrap) has been shown to lead to obesity in mice (Asai et al. 2013). Given its 

enriched expression in hypothalamus and brainstem, Mrap+ PAG neurons can be participating 

in the regulation of hyperphagia.  

On the whole, our findings from this high-throughput transcriptome profiling experiment have 

fulfilled the aim of systematically describing and cataloguing PAG neuron subpopulations. The 

data offers molecular and circuit level explanations of known interactions between types of 

neurotransmitter in the PAG, and brings into view potential modulatory mechanisms underlying 

the PAG’s regulation of behaviours that await further experimental exploration and verification.  

  

Figure 16. A model for a molecularly-defined PAG defense circuit. Black: excitatory neurons; red: 

inhibitory neurons; blue: PACAP+ neurons (which are also excitatory); purple: Tac2+ neurons; green: 

neurons of unknown identity 

https://paperpile.com/c/GLBK7T/CBPR
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 6.2 The dPAG escape pathway 

It is well-established that dPAG stimulation triggers flights, which are accompanied by fear-

related autonomic responses such as tachycardia and ultrasonic vocalisation (R. Bandler and 

Shipley 1994). However, it was not previously known whether the same dPAG neurons trigger 

both the locomotive and autonomic aspects of the fear behaviour. With optogenetic stimulation 

and a defensive behavioural test battery, we identified at least two classes of neurons 

responsible for escape behaviour in mice. Our data from optogenetic stimulation of dPAG 

vGlut2+ neurons agree with recently published results that described an increase in flight speed 

with increasing intensity and frequency of stimulation. We further showed that these flights are 

not simply locomotive, but are safety-oriented escapes accompanied by tachycardia.  

Our experiments on PACAP (officially named Adcyap1) expressing neurons are, to my 

knowledge, the first attempt to functionally map dPAG neuron types beyond excitatory versus 

inhibitory. We showed that the activation of PACAP+ neurons, like that of vGlut2+ neurons, are 

sufficient for triggering escape. It is likely the PACAP+ neurons are a subset of vGlut2+ neurons; 

PACAP+ neurons have been demonstrated to be glutamatergic in the PVN, PMV and 

suprachiasmatic nucleus (SCN), for example (Krashes et al. 2014; Ross et al. 2018; Michel et al. 

2006). Furthermore, in the SCN, it was found that PACAP release itself causes very little effect 

on postsynaptic Ca2+ transients, but potentiates AMPA-evoked currents and enhances AMPA 

and NMDA evoked Ca2+ transients, through PAC1 receptor binding and the adenylyl cyclase 

signalling cascade, suggesting a role as an amplifier at excitatory synapses (Michel et al. 2006). 

Whether or not PACAP the neuromodulator itself modulates escape is not clear from this 

experiment: it is not clear what causes its synaptic release. That being said, PACAP mRNA 

enrichment has been identified as a marker for specific behaviour. For example, using activity-

dependent ribosomal profiling, Tan et al. identified PACAP as a marker for warm-sensitive 

neurons in the ventral MPO (Tan et al. 2016). PACAP+ neurons have also been shown to be 

involved in local circuits: in the VMH, PACAP+ neurons are enriched in the central zone (VMHc) 

(T. C. Chou et al. 2003; Todd et al. 2018). VMHc PACAP+ neurons activate VMHvl neurons, and 

pharmacogenetic activation of VMHc PACAP+ neurons, like that of VMHvl Esr1+ neurons, drives 

aggression in mice (Todd et al. 2018; Lin et al. 2011). Given that PACAP+ neurons are enriched 

in dm/lPAG, while the dPAG output pathway for flights are from the dlPAG, it is possible that 

dm/lPAG PACAP+ neurons project to dlPAG vGlut2+ neurons in driving escape. The PACAP 

neurons in the dPAG could also project the distinct population of Adcyap1r1+ neurons revealed 

by our single neuron transcriptome study (see the last section for a discussion of their potential 

role), adding another layer of control on defensive behaviour at the PAG level. The 

https://paperpile.com/c/GLBK7T/OM7z
https://paperpile.com/c/GLBK7T/OM7z
https://paperpile.com/c/GLBK7T/M04q+O8t8+gyZ0
https://paperpile.com/c/GLBK7T/M04q+O8t8+gyZ0
https://paperpile.com/c/GLBK7T/gyZ0
https://paperpile.com/c/GLBK7T/LbKU
https://paperpile.com/c/GLBK7T/GU3w+BXzk
https://paperpile.com/c/GLBK7T/BXzk+v10W
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transciriptome profiling and optogenetic activation data together provided entirely novel 

insights into a PACAP-mediated subcortical defense circuit.  

We further identified the dlPAG-CnF pathway as an output pathway for escape. CnF vGlut2+ 

neurons have been shown to drive high-speed escape-like locomotion (Caggiano et al. 2018). 

The CnF is a central structure within the Midbrain Locomotor Region (MLR), an area that, when 

activated, initiates locomotor activity in all vertebrates (Robertson et al. 2014). The MLR 

represents a convenient locomotor control interface between the brain and the spinal cord: the 

higher its activation, the stronger the activity in the downstream spinal networks and the higher 

the resulting motor activity level. We showed that the optogenetic activation of both the soma 

and axonal terminal of the dPAG-CnF projection neurons drive safety-oriented escape, which is 

surprising considering the exclusively locomotor role of the CnF. This could be explained 

potentially by feedback from the spinal cord to the PAG and/or CnF.  

PPN is another structure within the MLR, and it has been implicated in regulating slow, 

exploratory locomotion; like the CnF, it receives projections from the PAG (Caggiano et al. 

2018). We showed that different PAG neuronal subpopulations project to the PPN and CnF using 

CTB retrograde tracing, in line with our observation that vGlut2+ and PACAP+ neurons send a 

dense projection to the CnF but not the PPN.  While it is well-established that the PAG sends a 

variety of ascending and descending projections to different areas, this bissection in projection 

neurons, which could be critical for the PAG’s role as the coordinator of different aspects of 

defensive behaviour, have not been previously explored. Previous single unit recording 

experiments in mice have identified a subpopulation of dPAG neurons that fires during risk 

assessment towards a predator (right before a flight from the predator), and is distinct from 

flight neurons (H. Deng, Xiao, and Wang 2016; Masferrer et al. 2018). These neurons could 

potentially project to the PPN to drive cautious exploration. They can be receiving separate 

inputs from output neurons to the CnF (given that they do not seem to be confined to a specific 

PAG column), and/or local interneurons could be mediating the level of activity between the 

two subpopulations to adjust defensive strategies in response to different threats.  

  

https://paperpile.com/c/GLBK7T/CwU2
https://paperpile.com/c/GLBK7T/M084
https://paperpile.com/c/GLBK7T/CwU2
https://paperpile.com/c/GLBK7T/CwU2
https://paperpile.com/c/GLBK7T/LeX1+uHzM
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6.3 Immobility is regulated by a separate pathway in dPAG 

We identified a separate subpopulation of dPAG neurons, marked by Tac2 enrichment, that 

modulates immobility in response to a threat. This represents the first optogenetic study on 

dmPAG neurons; the role of this column has been relatively elusive. The behavioural function of 

Tac2 in the PAG has only been studied in the context of Nk3R function: Nk3R preferentially 

binds Tac2 (instead of Tac1 or substance P), and pharmacological activation of of Nk3R causes 

hyperalgesia and increase in exploratory locomotion. The physiological source of Tac2 causing 

this effect does not necessarily come from PAG Tac2+ neurons; Tac2+ neurons in the CeA 

projects to the PAG (Raul Andero, personal communications). Recently, Tac2 has been 

implicated in social isolation stress. Zelikowsky et al. reported an upregulation of Tac2 

expression in the brains of mice that had been socially isolated for 2-4 weeks, in comparison 

with group-housed control (Zelikowsky et al. 2018). Using an Nk3R antagonist and 

pharmacogenetic activation of Tac2 neurons (with additional viral-delivered Tac2 mRNA), they 

showed that Tac2 is necessary and sufficient for the behavioural effects of social isolation stress.  

We showed that dmPAG Tac2+ neurons specifically modulate immobility, but not other aspects 

of defensive behaviours, such as stretch, nor heart rate changes. The modulation effect size is 

statistically significant but small; this could potentially be explained by the fact that due to 

experimental needs, animals are singly housed for at least 2 weeks prior to behavioural testing. 

This would presumably cause an increase in Tac2 and freezing already prior to the start of our 

behavioural test, limiting the range of possible responses. It would be interesting to check if 

other aspects of defensive behaviours would be modulated by Tac2+ activation if the animals 

were not subjected to social isolation before behavioural testing.  

We do not observe descending projections of dmPAG Tac2+ neurons to anywhere other than to 

the deep layers of the SC, unlike vGlut2+ or PACAP+ neurons. While this should be confirmed 

with another tract tracing approach (such as using an AAV expressing fluorescent- tagged 

synaptophysin in a Cre-dependent manner, as ChR2-eGFP might not strongly label all axonal 

terminals), it suggests that these are not output neurons, but interneurons modulating the 

activity of immobility neurons in the PAG. vlPAG vGlut2+ and Gad2+ neurons drive and inhibit 

freezing respectively, and vlPAG Gad2+ neurons receive projections from dlPAG vGlut2+ 

neurons (Tovote et al. 2016). It is possible that Tac2+ neurons interact with this pathway to 

modulate immobility towards conspecific and predator threats. Confirming the identity of the 

dmPAG Tac2+ neurons (we were unable to reliably detect Tac2 expression in the single neuron 

study) would aid in elucidating its role in the immobility circuit.   

https://paperpile.com/c/GLBK7T/opWo
https://paperpile.com/c/GLBK7T/mUyS
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6.4 Top-down vs Bottom-up: a concluding remark 

Neurons are complex machines. The same input to two neurons can result in completely 

different responses, depending on the ion channels in the neurons, the receptors on their 

dendritic terminals, the neurotransmitters they use, etc. Neurons can be described by their 

location, morphology, connectivity, electrophysiologically profiled firing properties, or c-fos 

mapped behavioural roles. A transcriptomic description is advantageous mainly for two 

reasons: the gene expression profile of a neuron correlates tightly with its molecular and hence 

functional capabilities, and it provides a genetic handle for their manipulation. 

Over the past few years, there has been a boom in large-scale single brain cell transcriptome 

profiling studies, cataloguing millions of neurons in different areas of the mouse, primate and 

human brains (Zeisel et al. 2015, 2018; Hochgerner et al. 2018; La Manno et al. 2016; Habib et 

al. 2016; Lacar et al. 2016; Zhong et al. 2018; Fan et al. 2018; Chen et al. 2017; Wu et al. 2017; 

Habib et al. 2017). These have identified genetically marked neuronal subpopulations, and the 

potential hierarchical relationships between them. Yet to integrate this molecular information 

into circuit level understanding has proven to be extremely challenging. Without prior 

knowledge the functions of most of these genes in the context of a neural circuit, it is difficult to 

make hypotheses regarding the functional consequences of distinct transcriptome profiles. As 

shown here, to interpret the results from our single neuron transcriptome dataset, we relied 

heavily on existing knowledge of neurotransmitter and neuropeptide genes.  

The obvious question that extends from this line of thought (and the elephant in the room for 

the field) is the relevant level of brain organisation in behaviour (Krakauer et al. 2017). While 

our optogenetic manipulation results showed neatly that different transcriptomically-defined 

subpopulations of neurons regulate distinct aspects of defense, we cannot conclude that the 

molecular difference is the reason for this divergence. Our optogenetic tools activate these 

neurons but do not specifically trigger the release of the molecule of question. Molecular 

definitions of neurons are convenient, but the functional and behavioural relevance of the 

molecule(s) in question is unfortunately left under-appreciated due to this technological 

limitation. At least within a molecularly complex circuit like the PAG, the development of tools 

to trigger specific neuromodulator release with high temporal and regional specificity will be 

key to the advancement of circuit level understanding of how behavioural output is computed 

and fine tuned.   

Ironically, I argue that perhaps a complete description of every single neuron, even if 

achievable, is meaningless in understanding behavioural circuits. The challenges faced in the 

https://paperpile.com/c/GLBK7T/4PKD+jNJh+MYQe+AFm9+7WHf+MkYR+8oY4+Z3Jf+a7Hh+RAs0+UVYj
https://paperpile.com/c/GLBK7T/4PKD+jNJh+MYQe+AFm9+7WHf+MkYR+8oY4+Z3Jf+a7Hh+RAs0+UVYj
https://paperpile.com/c/GLBK7T/4PKD+jNJh+MYQe+AFm9+7WHf+MkYR+8oY4+Z3Jf+a7Hh+RAs0+UVYj
https://paperpile.com/c/GLBK7T/FJj7
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data analysis process to disentangle true biological variation from technical noise illustrate why 

an unbiased profiling of single cell transcriptome is impossible. We investigated single neurons 

with the motivation to find populations; bigger clusters with highly expressed genes are much 

more robust than small clusters and genes with low expression. Expression of known genes in 

previously described populations gives power to the methods, and understanding potential 

functional roles of subpopulations relies on prior knowledge from hypothesis-driven 

experiments. It is possible that every difference in gene expression could mean a different 

behavioural role for a neuron, but this is at least currently beyond our capabilities to detect and 

interpret at a circuit level, let alone in mouse behaviour. Studies into the dynamics between 

ensembles of neurons, defined by connectivity and/or transcriptome, is likely to be the most 

productive in terms of understanding the neural substrate underlying behaviour.  
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6.5 Experimental outlook 

The results of this study created many new hypotheses and questions regarding the PAG neural 

circuit. In particular, the single neuron transcriptome data opens up opportunities to probe 

functional roles of specific elements of this circuit. In this final section, I will outline the most 

pressing questions that I feel need to be addressed.    

 The role of dPAG inhibitory neurons in defense 

Gad2 emerged as a marker for two dPAG neuronal subpopulations from the single neuron 

transcriptome profiling experiment. While vGlut2+ and Gad2+ neurons in the vlPAG have 

opposing roles in behaviour, this does not seem to be the case in dPAG (Tamara Franklin and 

Bianca Silva, unpublished data). Identifying the functions of dPAG Gad2+ neurons in defense 

using optogenetic and/or pharmacogenetic manipulations and their connections both within 

the PAG and beyond will be crucial for a comprehensive understanding of the role of the PAG in 

innate defensive behaviour. 

Identifying the PAG risk assessment pathway 

There exists a subpopulation of neurons that regulates risk assessment in the dPAG, separate 

from the flight and immobility neurons described in this study. Risk assessment is a key aspect 

of mouse defensive strategy, especially when the threat is not discrete and its imminence is 

unclear. One approach for their identification and manipulation will be to retrogradely label 

them from the PPN, then perform transcriptome analysis on labelled neurons in the PAG to map 

them molecularly, and use an optogenetic stimulation approach similar to the one used in 

Chapter 5 to confirm their role in risk assessment. This, of course, is all based on the assumption 

that the dPAG risk assessment neurons project to the PPN.  

In vivo Calcium imaging of PAG neurons during defense 

Another approach to functionally dissect the PAG neural circuit underlying defensive responses 

is to make use of in vivo calcium imaging, where single neuronal activity can be repeatedly 

recorded across multiple behavioural sessions spanning weeks. GCaMP expression could be 

restricted to one of the cell types identified in Chapter 3 using Cre driver lines. In vivo calcium 

imaging in the midbrain has delineated a SC-PAG synaptic mechanism involved in the 

computation of escape decision (Evans et al. 2018); to employ the same technique in our 

https://paperpile.com/c/GLBK7T/uOvA
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behavioural paradigms would bring an added level of understanding to our current molecular 

knowledge of the circuit. 

Understanding the integration of inputs in the PAG 

Central to the PAG’s regulation of defense is the array of inputs it receives, yet it remains 

unclear how the information is integrated in the PAG. Our results suggest both neuromodulation 

at the synaptic level and local interneurons could be involved. Inputs from the mPFC are of 

particular interest, as they represent a high level control over a primary behavioural structure. 

It has been demonstrated that the mPFC-dPAG projection is involved in social avoidance in 

mice, and this connection appears to encode the imminence of threat in humans. Knowledge of 

the molecular underpinnings of cortical regulation of PAG activity will provide an entry point 

for understanding how the PAG computes defensive and other instinctive behaviours. 
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Supplementary Figures 

Supplementary Figure 1. FACS gating strategy for sorting NeuN+ nuclei. (A) Side scatter 

against DAPI level of single nuclei suspension from cortex, stained with DAPI and anti-NeuN-

AF4988 (see methods); Gate P1 contains single nuclei. (B) Histogram of AF-488 levels shows 

two distinct peaks; Gate P5 contains NeuN+ nuclei. Both graphs are generated with BD 

FACSDiva 8.0.1  
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Supplementary Figure 2. Quality control for single nuclei RNA-seq experiments and a 

comparison with the literature. Violin Plots showing (A) number of counts (transcripts) and (B) 

number of genes detected sorted by experiment and sample types. cor: FACS sorted cortical 

neurons; Unsorted_cor: unsorted cortical neurons; Neg_Ctrl: empty wells upon imaging. The 

reference literature data is obtained from Habib et al. 2017. Dots at the extremes of the violins 

indicate outliers 
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Supplementary Figure 3. Parameter optimisation for identification of highly variable genes 

(HVG). With each combination of threshold for mean expression and threshold for variance, a 

number of HVGs were selected (indicated at the top right of each t-SNE plot). PCA was 

performed with these genes and top 13PCs were selected for t-SNE visualisation. The t-SNE 

plots shown here, overlaid with colours identifying (A) source experiment and (B) sample, were 

used to qualitatively assess batch effects.  
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Supplementary Figure 4. Obtaining clutsering consensus with parameter space sampling.  

(A) t-SNE plots coloured with clustering results generated using each combination of resolution 

and k (no. of nearest neighbour). Number of resulting clusters vary between 6-16.  (B) Heatmap 

showing dissimilarity score between each pair of nuclei; red: low dissimilarity (nuclei were 

always in the same cluster for all 20 of the clustering parameter sets sampled), yellow: high 

dissimilarity (nuclei were never in the same cluster). Dendrogram shows the result of 

hierarchical clustering based on dssimilarity matrix. 
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Supplementary Tables 

Supplementary table 1. Experimental details for single nucleus RNA-seq experiments 

 

Chip ID  80387 94610 100339 100283 

Sample 428 unsorted 
cortical nuclei 

148 FACS cortical 
neuronal nuclei 
818 FACS PAG 
neuronal nuclei 
10 -ve controls 
(empty) 

178 FACS cortical 
neuronal nuclei 
1431 FACS PAG 
neuronal nuclei 
7 unsorted cortical 
nuclei 
8 -ve controls 
(empty) 

266 FACS cortical 
neuronal nuclei 
763 FACS PAG 
neuronal nuclei 
19 unsorted cortical 
nuclei 
10 -ve controls 
(empty) 

Total # reads 590,448,762 390,702,678 453,718,283 616,964,111 

# assigned 
reads 
(% total reads) 

387,662,992 
(65.7%) 

152,191,937 (39.0%) 
 

238,859,771 (52.6%) 426,306,369 (69.1%) 

Total # counts 4,647,859 5,445,545 
 

3,171,520 
 

1,343,813 
 

# genes 
detected 
(detected in 2+ 
samples) 

10,853 27,155 
 

25,196 22,237 
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Supplementary table 2. Differentially expressed (positively and negatively) genes in clusters from 

unsupervised clustering, identified with the Wilcoxon rank sum test (see Methods). avg_logFC: average 

log fold change, p_val_adj: adjusted p-value; sorted by decreasing average log fold change for each cluster. 

Gene cluster avg_logFC p_val_adj 
 

Gene cluster avg_logFC p_val_adj 

Ttc27 1 -0.2502751 8.78E-08 
 

Nell2 4 0.4152294 3.66E-06 

Gm44560 1 -0.2511775 0.0001535 
 

Lrrk2 4 0.4133478 0.0004474 

BC018473 1 -0.2546092 3.67E-13 
 

Mapk10 4 0.4131412 4.88E-08 

Gm26917 1 -0.2555185 3.96E-11 
 

Nlk 4 0.4099983 1.21E-06 

Gnao1 1 -0.2589773 0.0030615 
 

Slc8a1 4 0.39938 2.12E-07 

Snrnp70 1 -0.261498 0.0316533 
 

Dlgap1 4 0.3989807 2.11E-16 

Fstl5 1 -0.2661952 1.48E-10 
 

Wdr17 4 0.3972731 0.0028895 

Klhl1 1 -0.2695991 7.12E-07 
 

Iqgap2 4 0.3970351 4.32E-06 

Rnf157 1 -0.2710031 0.0261414 
 

Mical2 4 0.3945663 0.0018401 

Rnpc3 1 -0.2712517 0.0077909 
 

Neto1 4 0.3945031 0.0001029 

Hs3st4 1 -0.2749809 2.62E-09 
 

Sv2b 4 0.3874784 6.21E-06 

AW554918 1 -0.2839934 0.0121008 
 

Chsy3 4 0.3873538 3.57E-05 

Ano4 1 -0.294864 4.32E-07 
 

Grm3 4 0.386166 0.0132527 

A330008L17Rik 1 -0.2962985 4.04E-05 
 

Dclk1 4 0.3857699 0.0004832 

Znhit1 1 -0.3002701 3.05E-14 
 

Nwd2 4 0.3832581 9.02E-08 

Yeats2 1 -0.3076794 0.047005 
 

Kcnb1 4 0.37156 0.00133 

Rbm6 1 -0.3173092 1.00E-06 
 

Arhgef37 4 0.3706433 1.26E-07 

Sema6d 1 -0.3312103 1.94E-10 
 

Kcnq3 4 0.3689806 0.0003576 

Nfx1 1 -0.3795803 0.0225933 
 

Slc24a2 4 0.3667126 7.80E-06 

Gm12153 1 -0.5104025 0.0497444 
 

Nfix 4 0.3654761 0.0005627 

Rgs7bp 3 -0.2700615 0.0414332 
 

Fam81a 4 0.3639759 6.27E-13 

Gm12153 3 -0.7762041 6.48E-05 
 

Gria2 4 0.3618739 5.40E-12 

Khdrbs3 4 1.1072378 7.82E-25 
 

Acap2 4 0.3616233 5.97E-07 

Celf2 4 1.0023953 1.96E-49 
 

Adcy2 4 0.3608753 2.17E-05 

Cnksr2 4 0.9860698 2.97E-44 
 

Prmt8 4 0.3595903 0.0062909 

Gm28928 4 0.9179439 6.36E-21 
 

Erc2 4 0.3595203 2.68E-09 

R3hdm1 4 0.8699126 1.49E-26 
 

Hivep2 4 0.3594313 0.0007398 

Camk2a 4 0.8096821 3.49E-33 
 

Lrrc7 4 0.3593581 2.23E-09 

Kctd16 4 0.7782876 7.23E-28 
 

Braf 4 0.3588746 0.0003232 

Phactr1 4 0.7730265 3.60E-26 
 

St3gal5 4 0.358101 0.0120866 

Arpp21 4 0.7631238 1.69E-21 
 

Gria3 4 0.3561679 4.16E-05 

Homer1 4 0.7537475 1.10E-12 
 

Trim9 4 0.3529497 2.10E-06 

Mef2c 4 0.7492071 5.97E-15 
 

Setbp1 4 0.347279 4.95E-09 

Slit3 4 0.7106649 3.29E-26 
 

Dlgap3 4 0.3455095 1.17E-05 

Atp2b1 4 0.6821892 7.40E-22 
 

Rnf165 4 0.3439329 0.0010772 

Kalrn 4 0.6819554 4.74E-28 
 

Itga8 4 0.3430395 0.0002858 

Pex5l 4 0.6626168 1.09E-09 
 

Opcml 4 0.339988 2.07E-06 

Grin2a 4 0.660825 1.05E-25 
 

Sept7 4 0.3361248 0.0002973 

Tcf4 4 0.6331361 8.93E-15 
 

Nin 4 0.3356889 0.0005025 

Mapk4 4 0.6313243 0.0116711 
 

Large1 4 0.3346977 1.51E-07 

Ptprd 4 0.6037924 6.54E-21 
 

Nrp1 4 0.3280298 3.83E-06 

Slc1a2 4 0.5964186 1.72E-19 
 

Nrgn 4 0.3271589 1.21E-09 

Pde1a 4 0.594408 2.59E-11 
 

Nfib 4 0.3265856 0.0067195 

Dlgap2 4 0.5817038 6.15E-20 
 

Nptn 4 0.3247719 0.0437189 

Gpm6b 4 0.5689473 2.66E-12 
 

Prkag2 4 0.3190671 3.78E-05 

Zeb2 4 0.5596588 7.97E-11 
 

Lmo4 4 0.3186224 1.13E-05 

Kcnq5 4 0.5515329 2.80E-11 
 

Cdh10 4 0.3175909 0.0133925 

Fam19a1 4 0.5385901 6.61E-05 
 

Hcn1 4 0.3160117 0.0024599 

Nav3 4 0.5354676 3.44E-18 
 

Rock2 4 0.3100529 0.0249368 

Kcnh7 4 0.5120035 6.72E-15 
 

Iqsec2 4 0.3088445 0.0010647 

Sipa1l1 4 0.5065104 6.70E-07 
 

Dlg2 4 0.3085584 7.89E-09 

Ankrd33b 4 0.4871822 1.53E-07 
 

Nckap1 4 0.3073091 0.0002163 

Syt1 4 0.4824627 1.40E-18 
 

Snap25 4 0.3070251 1.87E-05 

Grin2b 4 0.480558 1.03E-17 
 

Prickle1 4 0.3056761 0.0060619 

Pdzrn3 4 0.4772204 5.63E-07 
 

Plcl2 4 0.3031303 9.00E-10 
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Gene cluster avg_logFC p_val_adj  Gene cluster avg_logFC p_val_adj 

Sorbs2 4 0.4752616 2.66E-11 
 

Spsb4 5 2.1213391 3.23E-23 

Tspan5 4 0.4686743 1.01E-07 
 

Gm26641 5 2.0998845 9.70E-116 

Msra 4 0.4678344 2.12E-06 
 

Rspo1 5 1.7953555 2.93E-32 

Satb2 4 0.4668447 1.36E-09 
 

4921507P07Rik 5 1.4236715 5.89E-50 

Ppm1e 4 0.4640744 5.29E-09 
 

Dock1 5 1.2409093 1.80E-12 

Brinp1 4 0.4605164 4.83E-12 
 

Map4k1 5 1.2385917 6.63E-22 

Kcnip4 4 0.4567301 7.21E-14 
 

Mfsd4a 5 1.2330872 1.58E-09 

Slc17a7 4 0.445936 2.48E-22 
 

Lnx2 5 1.1145493 1.70E-08 

Cdh11 4 0.4198904 0.0019645 
 

Hipk3 5 1.0501361 1.05E-09 

3110035E14Rik 4 0.4189534 6.20E-22 
 

Stxbp3-ps 5 0.9924418 7.18E-24 

Plcb1 4 0.4183795 3.47E-11 
 

Ephx2 5 0.9312901 2.27E-28 

Lhfp 4 0.3023766 0.0004038  Slc25a26 5 0.9146774 6.32E-06 

Ltn1 4 0.3010706 0.006086 
 

Trim39 5 0.8614655 1.10E-11 

Baiap2 4 0.301005 0.0144225 
 

Tsc22d4 5 0.7387553 0.0332947 

Arap2 4 0.2981753 1.03E-05 
 

Adk 5 0.6977548 1.92E-08 

Gda 4 0.2964938 0.0092552 
 

Scn2b 5 0.659001 0.0202255 

Fam212b 4 0.2926101 4.81E-07 
 

Etohd2 5 0.5288426 1.55E-17 

Dgkg 4 0.2913764 0.0273832 
 

Dnaaf1 5 0.5187507 2.88E-05 

Lmo7 4 0.2896711 0.0005685 
 

Prkar2b 5 0.4711469 7.99E-06 

Itpr1 4 0.2895224 0.0124871 
 

Stxbp3 5 0.4510653 4.58E-09 

Cfap77 4 0.2866457 6.29E-05 
 

Abcg2 5 0.4122517 3.77E-11 

Kctd1 4 0.2851996 0.0196319 
 

Fgf6 5 0.3914275 1.32E-14 

Frmd6 4 0.2850412 0.0006923 
 

Cwc22 5 0.3502902 0.0005339 

Rasgrp1 4 0.2841451 0.0007894 
 

Clec2g 5 0.3389498 5.39E-09 

Phf24 4 0.2818949 0.0144908 
 

Lipc 5 0.337229 0.0010633 

Mir9-3hg 4 0.2814144 0.0050164 
 

Plekhh1 5 0.3172077 0.0291356 

Pcsk2 4 0.2806848 9.07E-08 
 

Fam222a 5 0.3150393 7.55E-09 

Csmd1 4 0.280132 4.15E-12 
 

Gm45470 5 0.3086277 0.0041593 

Nrxn3 4 0.279792 5.25E-08 
 

Tnp1 5 0.2972928 7.03E-22 

Nrcam 4 0.2781316 0.0130272 
 

Capn13 5 0.2670704 3.53E-05 

Cap2 4 0.2765362 0.0298945 
 

Gm20658 5 0.2584553 6.41E-06 

Etl4 4 0.2765228 0.0002149 
 

Mypopos 5 0.2542453 1.04E-12 

Arsb 4 0.2756174 0.0005714 
 

Rps14 6 2.220813 1.51E-201 

Adcy9 4 0.2737349 2.37E-06 
 

Gm6204 6 2.1370159 0 

Fbxw7 4 0.273628 0.0294576 
 

Gm5805 6 2.0832601 0 

Man1c1 4 0.2734209 0.0002527 
 

Gm12025 6 1.153802 1.70E-169 

Kcnt2 4 0.2697415 0.0056632 
 

Rpl35 7 2.0645903 0 

Tnrc6c 4 0.2681827 3.75E-06 
 

Gm10269 7 1.9649423 0 

Gabra4 4 0.2679248 0.0041164 
 

Gm2000 7 1.723789 0 

Kcnj3 4 0.2667561 0.0004222 
 

Gm8444 7 1.2463165 7.61E-185 

Xylt1 4 0.2653296 0.0041757 
 

Gm15607 7 1.0924615 5.95E-181 

Vwa1 4 0.2652377 0.0008857 
 

Pinx1 7 0.5497858 0.0060102 

Rap1gds1 4 0.2636445 0.0296404 
 

    

Olfm1 4 0.2620744 4.12E-06 
 

    

Senp2 4 0.2620588 0.04808 
 

    

Anks1b 4 0.2612828 9.59E-06 
 

    

Camk4 4 0.2591621 0.0005794 
 

    

Prickle2 4 0.2590068 0.0001166 
 

    

Pde10a 4 0.2588254 0.0022546 
 

    

Cdh12 4 0.2584627 0.0308964 
 

    

Dlg1 4 0.2561646 0.008198 
 

    

Kcnma1 4 0.2553957 0.0003215 
 

    

Calm2 4 0.2517096 0.0002398 
 

    

Meg3 4 -0.2575136 7.71E-12 
 

    

Cdh18 4 -0.4508105 1.59E-08 
 

    

Htr2c 4 -0.5774612 0.0072315 
 

    

C130073E24Rik 4 -0.8357395 0.0001975 
 

    

Gm12153 5 2.6821681 2.70E-84 
 

    

Gm38058 5 2.3399981 7.68E-63 
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Supplementary Table 3. List of neuronal function related candidate genes used for supervised clustering 

Ache Chga Gad1 Htr2c Kcnq5 Rxfp3 Slc41a2 Vipr2 
Adcyap1 Chgb Gad2 Htr3a Kcns1 Ryr1 Slc44a5 Wnt4 
Adcyap1r1 Chrm1 Gal Htr3b Kcns2 Ryr2 Slc45a1 

 Adra1a Chrm2 Galp Htr4 Kcns3 Ryr3 Slc4a10 
 Adra1d Chrm3 Galr1 Htr5a Kcnt2 Scg2 Slc4a3 
 Adra2a Chrm4 Galr2 Htr5b Kcnv1 Scn1a Slc5a5 
 Adra2b Chrm5 Gast Htr7 Kcnv2 Scn1b Slc5a7 
 Adra2c Chrna1 Gcg Itpr1 Kiss1r Scn2b Slc6a1 
 Adrb1 Chrna2 Gcgr Kcna1 Mc4r Scn3a Slc6a11 
 Adrbk2 Chrna3 Gjd2 Kcna4 Mchr1 Scn3b Slc6a15 
 Ano3 Chrna4 Glp1r Kcna6 Mmd Scn4b Slc6a17 
 Asic1 Chrna5 Glra1 Kcnab1 Mtch1 Scn5a Slc6a2 
 Asic2 Chrna6 Glra2 Kcnab2 Nalcn Scn8a Slc6a3 
 Avp Chrna7 Glra3 Kcnab3 Nenf Scn9a Slc6a4 
 Avpr1a Chrna8 Glra4 Kcnb1 Nos1 Scnn1a Slc6a7 
 Avpr1b Chrna9 Glrb Kcnb2 Npffr1 Slc12a5 Slc6a9 
 Cacna1a Chrnb1 Gls2 Kcnc1 Nppc Slc16a11 Slc7a14 
 Cacna1b Chrnb2 Got1 Kcnc2 Npy Slc16a14 Slc7a4 
 Cacna1c Chrnb3 Gria1 Kcnc3 Npy1r Slc17a6 Slc8a2 
 Cacna1d Chrnd Gria2 Kcnc4 Npy2r Slc17a7 Slc8a3 
 Cacna1e Chrng Gria3 Kcnd2 Npy5r Slc17a8 Slc9a5 
 Cacna1g Clcn1 Gria4 Kcnd3 Nts Slc18a1 Sst 
 Cacna1g Clic6 Grik1 Kcnf1 Ntsr1 Slc18a2 Sstr2 
 Cacna1h Cngb1 Grik2 Kcng1 Nxph2 Slc18a3 Sstr3 
 Cacna1i Cnr1 Grik3 Kcng2 Nxph3 Slc1a2 Sstr4 
 Cacna2d1 Cntn1 Grik4 Kcng3 Nxph4 Slc1a3 Sstr5 
 Cacna2d2 Cort Grik5 Kcng4 Oprd1 Slc1a6 Tac1 
 Cacna2d3 Crh Grin1 Kcnh1 Oprk1 Slc24a1 Tac2 
 Cacnb1 Crhr1 Grin2b Kcnh2 Oprl1 Slc24a3 Tacr1 
 Cacnb2 Crhr2 Grin2d Kcnh3 Oprm1 Slc25a16 Tacr3 
 Cacnb3 Cx3cl1 Grin3a Kcnh4 Oxt Slc25a18 Th 
 Cacnb4 Drd1a Grin3b Kcnh5 Oxtr Slc25a22 Trh 
 Cacng2 Drd2 Grm1 Kcnh7 P2ry12 Slc25a23 Trhr 
 Cacng3 Drd3 Grm2 Kcnh8 Paqr9 Slc25a25 Trpc1 
 Cacng4 Drd4 Grm4 Kcnj14 Pdyn Slc25a39 Trpc3 
 Cacng5 Fgf1 Grm5 Kcnj3 Penk Slc27a2 Trpc4 
 Cacng7 Fgf2 Grm7 Kcnj4 Pgrmc1 Slc29a4 Trpc5 
 Calm2 Fgf9 Grm8 Kcnj5 Pmch Slc2a13 Trpc6 
 Calm3 Gabbr1 Gucy2g Kcnj6 Pnoc Slc2a6 Trpc7 
 Cartpt Gabra1 Hcn1 Kcnj9 Pomc Slc30a3 Trpm2 
 Cbln1 Gabra2 Hcn2 Kcnk1 Prokr2 Slc30a9 Trpv1 
 Cbln2 Gabra3 Hcn3 Kcnk12 Ptger4 Slc32a1 Trpv2 
 Cbln4 Gabra4 Hcn4 Kcnk2 Pthlh Slc35d3 Trpv3 
 Cck Gabra5 Hcrtr1 Kcnk3 Qrfpr Slc35f3 Trpv4 
 Cckar Gabrb2 Hcrtr2 Kcnk4 Rac3 Slc35f4 Ubl5 
 Cckbr Gabrb3 Hrh1 Kcnma1 Retn Slc36a4 Ucn3 
 Ccl17 Gabrd Hrh2 Kcnmb4 Rimkla Slc37a1 Vdac1 
 Ccl25 Gabrg2 Hrh3 Kcnq2 Rln1 Slc38a1 Vgf 
 Ccl27a Gabrg3 Htr1a Kcnq3 Rspo1 Slc38a4 Vip 
 Cd274 Gabrq Htr1b Kcnq4 Rspo3 Slc3a1 Vipr1 
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Supplementary Table 4. Candidate genes differentially expressed (positively and negatively) in clusters from 

supervised clustering. avg_logFC: average log fold change, p_val_adj: adjusted p-value; sorted by 

decreasing average log fold change for each cluster. 

Gene Cluster avg_logFC p_val_adj 
 

Gene Cluster avg_logFC p_val_adj 
Grm4 1 -0.271133213 0.04611428 

 
Gria3 12 0.5109062 4.26E-15 

Chrm3 1 -0.275100471 3.95E-12 
 

Kcnh7 12 0.5027072 1.08E-14 
Cacna1b 1 -0.279665949 1.37E-09 

 
Grin2b 12 0.4557411 6.24E-17 

Trpc6 1 -0.284261141 0.03055465 
 

Kcnb1 12 0.4419423 1.17E-06 
Slc44a5 1 -0.286568763 7.06E-05 

 
Gabbr1 12 0.4205838 9.98E-06 

Cacna1c 1 -0.299650546 5.90E-25 
 

Kcnq3 12 0.4132489 4.01E-08 
Ryr2 1 -0.314709085 8.65E-24 

 
Gabra4 12 0.4075009 0.0012685 

Glra2 1 -0.323842451 0.02093158 
 

Gria2 12 0.3812466 1.56E-16 
Grm1 1 -0.328107133 2.02E-15 

 
Cacna1e 12 0.3530218 7.43E-09 

Nos1 1 -0.329854955 0.00012207 
 

Gria1 12 0.3513094 1.02E-05 
Oprm1 1 -0.36171249 5.90E-05 

 
Kcnj9 12 0.3500128 1.56E-05 

Grm8 1 -0.381472662 1.05E-21 
 

Ryr3 12 0.3495989 0.0002584 
Scg2 1 -0.398100042 0.00200604 

 
Itpr1 12 0.334162 0.016251 

Slc24a3 1 -0.406112951 1.36E-17 
 

Kcnma1 12 0.332967 9.46E-07 
Kcnc2 1 -0.436457396 1.27E-24 

 
Kcnt2 12 0.3180017 0.0044526 

Glra3 1 -0.498345076 2.02E-11 
 

Grm5 12 0.3120652 5.04E-08 
Grik2 1 -0.551382636 3.51E-48 

 
Ryr2 12 0.276443 3.38E-07 

Cacna1d 1 -0.552386341 4.03E-26 
 

Cacnb4 12 0.2688833 0.0137425 
Trpc4 1 -0.577324365 1.29E-13 

 
Scn2b 12 -0.5527984 0.0015373 

Tacr1 2 0.736377516 2.01E-11 
 

Htr2c 12 -0.6501452 0.0130931 
Kcnc2 2 0.551920491 9.49E-08 

 
Scg2 13 0.8042828 0.0029551 

Glra3 2 0.499073611 1.12E-05 
 

Itpr1 14 0.3467101 2.35E-06 
Gad2 2 0.482804013 9.56E-07 

 
Kcnmb4 14 0.3392197 1.36E-06 

Nos1 2 0.475320954 2.23E-06 
 

Kcnc2 14 -0.4872601 0.0108152 
Fgf9 2 0.389635633 9.42E-05 

 
Gad2 16 0.5463407 0.0005631 

Vipr2 2 0.36860857 1.29E-10 
 

Scn9a 16 0.5454588 0.0323833 
Grm1 2 0.355429273 0.00708389 

 
Htr2c 16 0.4576824 0.0307387 

Cbln1 2 0.318864652 2.84E-06 
 

Kcnh2 16 0.4363855 6.50E-09 
Cacna1d 2 0.314686748 0.00087273 

 
Glra3 17 0.5179974 0.0085421 

Ano3 2 0.290921916 0.00606097 
 

Kcng3 17 0.4981029 1.80E-06 
Cacna1i 2 0.289369206 0.00332353 

 
Htr2c 17 0.3850092 0.0099214 

Cacna1g 3 0.442406845 2.44E-05 
 

Kcnc2 17 0.3695433 0.0001511 
Trpm2 3 0.411192297 0.00041671 

 
Gabra3 17 0.3564226 0.0166226 

Glra1 3 0.333622204 0.01013062 
 

Chrm3 17 0.326552 0.0190615 
Glrb 3 0.316046776 0.01221213 

 
Grik2 17 0.2980376 0.0088926 

Scn5a 3 0.313030948 1.13E-06 
 

Grm5 17 0.2838142 0.0001796 
Htr2c 3 0.308779266 0.00060771 

 
Glrb 19 0.4542228 0.0002365 

Gabra2 3 0.292072702 6.52E-05 
 

Grm8 19 0.4083768 3.46E-05 
Grm7 3 0.261430662 5.63E-07 

 
Cacna1b 19 0.3982328 0.0017381 

Gria4 4 -0.449699713 0.00023484 
 

Kcnc2 19 0.356771 0.0114109 
Cacna1d 5 -0.402398067 0.00793805 

 
Scn1a 19 0.3548762 7.84E-06 

Kcnh7 5 -0.423778654 0.00134667 
 

Grm5 19 0.3415635 1.27E-05 
Ryr2 5 -0.455006493 5.60E-06 

 
Asic2 19 0.3211978 1.18E-05 

Kcnq5 5 -0.513525675 0.00656946 
 

Kcnh7 19 0.2872754 0.0036827 
Grin2b 5 -0.651676598 6.23E-06 

 
Ryr2 19 0.2724328 0.0023532 

Slc6a4 9 1.493905672 7.93E-53 
 

Kcnj3 19 0.2722744 0.0073418 
Slc18a2 9 1.021245425 9.42E-79 

 
Scn2b 20 0.8183231 9.67E-12 

Scn9a 9 0.53359565 2.64E-08 
 

Rspo1 20 0.7305368 3.76E-05 
Slc17a8 9 0.499445018 2.73E-11 

 
Cacna1d 20 0.6432573 5.41E-11 

Slc37a1 9 0.48475827 2.49E-09 
 

Glra3 20 0.6036954 8.51E-07 
Glra2 9 0.477814315 2.25E-05 

 
Glra2 20 0.5999233 0.0153815 

Scg2 9 0.416158141 0.00796005 
 

Trpc4 20 0.5457199 0.000118 
Kcns3 9 0.384102047 4.78E-05 

 
Grm1 20 0.4582889 1.36E-05 

Gria4 9 0.33110175 0.00553615 
 

Grm4 20 0.4477537 5.64E-08 
Cntn1 9 0.310246751 0.00042661 

 
Slc1a3 20 0.4011131 0.0039166 

Grik2 9 0.283659958 0.00027473 
 

Slc44a5 20 0.3987389 0.0158658 
Gria3 9 -0.49989525 0.00386102 

 
Nos1 20 0.3867655 0.000419 

Chrm3 9 -0.591598881 0.0012179 
 

Drd3 20 0.3830986 1.94E-07 
Adcyap1r1 11 0.458598271 0.00061502 

 
Hcn4 20 0.2947751 0.0135375 

Cacna1d 11 0.402884294 0.00672772 
 

Vipr2 20 0.2934019 0.000305 
Slc1a2 12 0.577964586 3.19E-20 

 
Adra1d 20 0.2900361 1.29E-06 

Slc17a7 12 0.569782688 9.80E-27 
 

Drd2 20 0.2660132 0.0238335 
Hcn1 12 0.555200475 7.06E-12 

 
Cacna2d3 20 0.2630336 0.0287692 

Kcnq5 12 0.532623088 1.28E-13 
 

Fgf9 20 0.2573767 0.0009836 
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Supplementary Table 5.  Non-candidate genes positively enriched in clusters from supervised clustering; due 

to large numbers this list only shows, for each cluster, top 10 genes of highest average log fold change.  

avg_logFC: average log fold change, p_val_adj: adjusted p-value; sorted by decreasing average log fold 

change for each cluster. 

Gene cluster avg_logFC p_val_adj  Gene cluster avg_logFC p_val_adj 

Cask 1 0.407046097 0.0313004  Kyat3 20 0.729662284 2.19E-07 

Tmem161b 1 0.395577829 0.00631211  Fyb2 20 0.708828278 9.84E-06 

2010111I01Rik 1 0.389765825 0.02181285  Lhx5 20 0.708626197 9.67E-06 

Zcchc18 1 0.385723285 0.02432402  2810471M01Rik 20 0.706676687 2.08E-06 

2410089E03Rik 1 0.372682852 0.0013903      

Xpo7 1 0.363387918 0.00088086      

Atp8a1 1 0.360404058 0.00697682      

Ssbp2 1 0.345611427 0.00019077      

Snap91 1 0.335349707 0.00026082      

Mapk10 1 0.325880517 1.56E-06      

Wdr49 3 0.301067492 0.00667717      

Mrap 4 0.40405961 0.00086753      

Gm31135 4 0.39911057 0.02970752      

Npdc1 4 0.334688398 0.04578635      

Gm11823 7 0.348327804 0.02115154      

Olfm3 8 0.394435506 0.02339812      

Fnip2 8 0.380859056 0.01451583      

Tph2 9 0.938693537 0.00015334      

Dach1 9 0.454538481 0.00578412      

Megf8 9 0.450999544 0.01121482      

Vwa5b1 9 0.334038565 0.00965336      

3300002A11Rik 9 0.331232165 4.40E-05      

Maob 9 0.317867714 0.00033205      

Celf2 12 0.812367444 1.12E-28      

Cnksr2 12 0.76733642 2.81E-15      

Gm28928 12 0.717599598 1.57E-11      

Phactr1 12 0.664378559 2.35E-16      

Grin2a 12 0.651078331 6.66E-19      

R3hdm1 12 0.640627011 2.71E-10      

Camk2a 12 0.636664106 1.85E-15      

Pex5l 12 0.626540619 1.73E-07      

Kalrn 12 0.559381378 2.39E-13      

Arpp21 12 0.558878114 3.39E-09      

Crb1 13 0.584097488 0.04941206      

Dyrk4 13 0.324857482 0.02351834      

Xpnpep1 14 0.268267496 0.00042455      

Ncald 14 0.260412389 0.0449692      

Fam186a 16 0.362625502 0.000677      

Tmem132c 17 0.39915642 0.03236239      

Gm8098 17 0.317681096 0.01913915      

Shisa7 19 0.429480438 0.04449747      

Erbb4 19 0.388195818 0.01401343      

Znhit1 19 0.335909136 3.84E-05      

Gdpd4 19 0.316389666 0.04786344      

Gm26871 19 0.312898382 0.00178823      

Gm42826 19 0.29218716 0.00203392      

Cntnap2 19 0.27656149 0.00027659      

Mgat4c 19 0.276042854 0.02111107      

Lingo2 19 0.26462373 5.29E-05      

Gbp7 19 0.263561174 0.00218357      

Ak7 20 0.966591747 0.02635967      

Gzmm 20 0.757485153 1.69E-09      

Ckm 20 0.75570413 5.24E-09      

Gm40123 20 0.747962898 1.08E-09      

Ypel5 20 0.746284935 1.21E-12      

D830032E09Rik 20 0.73243605 9.91E-08      

 


