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ABSTRACT 
 

In mammals, X-chromosome inactivation (XCI) re-establishes the dosage balance between male and 

female gene expression levels. However, up to a third of the X-linked genes escape this phenomenon 

with varying degrees of consistency across tissues, cell lines, or individuals. Here, I take advantage of 

a new extensive developmental dataset for several organs and species to explore the developmental 

dimension of sex chromosomes expression levels. I find that only a small fraction of genes escaping 

XCI show a consistent female overexpression across development, organs, and species. The 

consistently sex-biased genes are almost exclusively either directly involved in the establishment of 

XCI, or are protein-coding genes with a broadly expressed Y homolog. The conservation of the sex-

bias of these genes across species suggests that they might be responsible for the evolution of escape 

from XCI. I also present and test a model of allelic contribution to the total expression levels of X-

linked genes using marsupial bulk tissue RNA sequencing data. Finally, I describe my contribution to 

a study of sex-biased micro-RNAs in mammals. 

 

 

ZUSAMMENFASSUNG 
 

Die X-Chromosom-Inaktivierung (XCI) in Säugetieren führt zur Wiederherstellung des 

Gleichgewichts zwischen männlicher und weiblicher Genexpression. Ein Drittel aller Gene entzieht 

sich jedoch diesem Phänomen, mit dabei variierender Stärke und Abhängigkeit von Gewebe, Zelllinie 

oder Individuum. In dieser Studie benutze ich einen neuen und umfangreichen 

entwicklungsbiologischen Datensatz mehrerer Organe und Arten, um die entwicklungsbiologischen 

Expressionslevel von Sexchromosomen zu studieren. Ich kann zeigen, dass nur ein kleiner Anteil der 

Gene, die der XCI entkommen, dauerhaft und über Entwicklungsstatus, Organ und Art hinweg im 

weiblichen Geschlecht exprimiert ist. Der Großteil dieser dauerhaft geschlechtsabhängigen Gene hat 

entweder einen direkten Einfluss auf die Etablierung der XCI, oder gehört zu einer Gruppe 

proteinkodierender Gene mit einem großflächig exprimierten, männlichen Y-Homolog. Die 

Konservierung der Geschlechtsspezifität dieser Gene über Arten hinweg lässt vermuten, dass sie für 

die Evolution des XCI-Entkommens verantwortlich sein könnten.  

Im Weiteren stelle und teste ich ein Modell vor welches sich mit dem Einfluss von Allelen auf das 

Gesamtexpressionslevel X-gebundener Gene beschäftigt. Dieses Model beruht auf einem RNA-

Sequenzierungsdatensatz der aus Beuteltiergewebe gewonnen wurde. Abschließend beschreibe ich 

meine Mitwirkung an einer Studie, die sich mit der geschlechtsabhängigen Verteilung von 

mircoRNAs in Säugetieren befasst. 
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INTRODUCTION 
 

The emergence of sex chromosomes throughout evolution can profoundly impact the gene 

expression landscape of organisms. In mammals, where sex is determined by heteromorphic sex 

chromosomes, gene products from the female X chromosome (XX) could be twice as abundant as in 

males (XY). To counterbalance this, there is a mechanism of dosage compensation, which inactivates 

one of the female X chromosomes, effectively re-establishing a similar expression level between the 

sexes. But some genes are not subject to this dosage compensation. This project studies the genes that 

escape this compensation mechanism, and uses development to shed light on the evolutionary forces 

underlying these exceptions. 

 

The evolution of mammalian sex chromosomes 
 

To understand dosage compensation, it is important to look in detail into the evolution of sex 

chromosomes in mammals. Current mammalian sex chromosomes originated from a pair of autosomes 

in the ancestor of both marsupials and placental mammals [Cortez et al., 2014]. The formation of sex 

chromosomes started with a single event: the acquisition of a new promoter region upstream of the 

gene Sox3 via fusion with a portion of the first exon of the gene Dgcr8 (including the promoter region 

that contains a binding motif for the transcription factor CP2, TFCP2), which resulted in the creation 

of the male determining gene Sry [Sato et al. 2010]. This event occurred approximately 180 million 

years ago [Cortez et al., 2014]. Upon its creation, Sry gained the role of sex determining trigger by 

gaining a position at the top of the sex determination genetic cascade that already existed. As it 

emerged in the ancestor of all therians, Sry is therian-specific. Because of Sry’s position as a trigger of 

male sex determination, the chromosome carrying Sry became a proto-Y chromosome and 

consequently, its homologous partner became a proto-X chromosome. In some species including 

anurans (European common frog, green toad), ratites (ostrich, emu), and dipterans (Megaselia 

scalaris), the presence of the sex determination trigger gene seems to be the only main difference that 

the sex chromosomes harbour, and have harboured sometimes for tens of thousands of generations, 

suggesting that proto sex chromosomes can remain homomorphic for a very long time [Perrin 2009]. 

But in therian mammals, the emergence of Sry was followed by a chain of genomic modifications of 

the proto-sex chromosomes that ultimately lead to the heteromorphism between the X and Y that we 

observe today. 

 

The first event of this chain of genomic modifications was the spontaneous occurrence of sexually 

antagonistic mutations. These mutations can appear anywhere in the genome, and are detrimental for 

one sex while beneficial for the other. Usually these mutations are only fixed in a population if they 

are much more beneficial to one sex than they are detrimental to the other, because otherwise they 
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would be removed by purifying selection. On the proto-Y chromosome, the existence of a male 

determining gene offers a new genomic environment for these mutations:  if they are in close 

proximity to Sry, they will be transmitted more often to males than to females because of the short 

recombination distance, thus allowing for their transmission despite being potentially detrimental for 

females.  This physical linkage allows for the accumulation of male beneficial and female detrimental 

mutations around the Sry locus. This process is self-reinforcing: the accumulation of sexually 

antagonistic mutations around the sex determining region selects for tighter linkage, thus allowing for 

an even higher accumulation of sexually antagonist mutations. The complete linkage that we observe 

in genomes is usually the consequence of total recombination arrest. 

 

Evidence for such a chain of modifications can be observed in mammals. It was discovered by 

Lahn and Page in 1999 [Lahn & Page 1999] through the identification of evolutionary strata. They 

identified four different regions along the X chromosome that could be distinguished from one another 

based on their level of sequence divergence to their homologous regions on the Y chromosome. These 

strata are characterised by an almost absolute absence of recombination between the sex 

chromosomes, which explains the different degrees of divergence: if no recombination occurs, 

mutations can accumulate, and so, the older the recombination arrest, the more genetic differences 

have accumulated.  

 

An important paper from the Kaessmann group [Cortez et al., 2014] dated precisely the emergence 

of these strata and helped paint the history of the evolution of mammalian sex chromosomes, Stratum 

one emerged shortly after the emergence of therian sex chromosomes, 180 million years ago, via a 

segmental chromosomal inversion.  Shortly after the split between the marsupial and placental 

lineages, stratum two was created, and this same region was selected independently in the two 

lineages. On the placental lineage, the sex chromosomes fused to another pair of chromosomes (which 

remain autosomal in marsupials) [Graves 1995].  The newly formed placental neo-sex chromosomes 

were therefore composed of a new X/Y added region combined with the ancestral X/Y conserved 

region. Before the radiation of placentals, this new added region stopped recombining, thus forming 

the third stratum. The fourth stratum found in humans is ape specific, and a fifth stratum was 

identified by Ross and colleagues in 2005 [Ross et al. 2005]. On both ends of the human X and Y 

chromosomes there remain regions that still recombine between sex chromosomes.  Because they 

behave similarly to autosomes, they are called pseudo autosomal regions (PARs). Humans have two 

PARs, one at the end of each arm of the sex chromosomes, while only one PAR is present in 

chimpanzee and rhesus monkey, the one corresponding to the short-arm PAR in humans [Hughes et al. 

2012]. One recent small PAR was found in mouse [Ellis & Goodfellow 1989]. Marsupials do not have 

any PAR; their sex chromosomes are fully achiasmate (as are the ones of Drosophila) [De la Fuente et 

al. 2007, Karpen et al. 1996]. 
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It is well accepted that segmental inversions are likely responsible for the recombination arrest, as 

suggested by the observation that the order of strata is well preserved on the X chromosome across 

lineages. What is still subject to debate is whether recombination arrest via segmental inversions needs 

the selective pressure of sexually antagonistic mutations to evolve. There are alternative, neutral 

models for the ultimate causes for sex chromosomes recombination arrest. On autosomes, inversions 

are either fixed or eliminated, while on sex chromosomes, inversions involving sex-determining 

regions will be kept in the heterogametic sex in the descendants. It is still unclear which among 

antagonistic mutations and chromosomal inversions is the cause and which is the consequence. 

 

Consequences of recombination arrest 
 

Following recombination arrest, the newly formed sex chromosomes face a reduced population 

size. Instead of being present in four copies per mating pair, Y chromosomes are only found in one 

copy and X chromosomes are only found in three copies. This reduced population size increases the 

power of genetic drift, thus reducing the strength of purifying selection on new mutations. In addition, 

interference within the same non-recombining region can further lower the population size. Selection 

at one locus increases drift at the proximal non-recombining region, since without recombination, 

positive and negative mutations cannot be disentangled. As a consequence, the fixation probabilities of 

alleles at different loci are dependent, a phenomenon known as Hill-Robertson interference 

[Charlesworth & Charlesworth 2000]. 

 

Another kind of Hill-Robertson interferences is also known as genetic hitchhiking, where an allele 

changes frequency because it is linked to a selected site. This means that a slightly detrimental genetic 

background could be selected because of the presence of a single highly beneficial mutation, thus 

adding to the perceived smaller effective population size of this region of the genome. The 

combination of the effects of linkage, selection, and genetic drift accelerate the rate of fixation of 

deleterious mutations and retard that of beneficial ones. This is known as Muller’s ratchet: after a 

certain number of mutations in a non-recombining population, selection alone will not be able to 

reduce the total number of mutations in the population any further.  Unless back mutations occur, 

evolution can only go towards the accumulation of deleterious mutations [Muller 1918, Charlesworth 

& Charlesworth 2000]. 

 

Moreover, the Y chromosome is strictly sex linked, which makes sexually antagonistic mutations 

more likely to be kept. In the heterogametic sex, transcription from the sex chromosomes is repressed 

during meiosis, a phenomenon known as meiotic sex chromosome inactivation (MSCI). During MSCI 
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all unpaired chromatin is silenced, and MSCI has been hypothesised to be a defence mechanism 

against transposon invasion and meiotic drive [reviewed in Turner 2007]. A competing hypothesis 

proposes that since female beneficial sexually antagonistic alleles accumulate on the X, MSCI would 

allow for their silencing during male meiosis. As a consequence, any mutation that could negatively 

impact male meiosis would be hidden from selection and could be passed on, effectively contributing 

to the decay of sex chromosomes. In general, because of the permanent heterozygosity of the Y 

chromosome, deleterious recessive mutations are free to accumulate overtime [Muller 1918]. Even 

loss of function mutations can be transmitted without excessively impacting fitness. Finally, Y 

chromosomes are also expected to decay rapidly because males usually have higher mutation rates 

than females, due to differences in meiosis, and also because they can have lower effective population 

sizes due to the behavioural aspects of partner selection.  

 

It is important to note that the X chromosome escapes from most of these phenomena, thanks to the 

continued recombination along its entire length in females. However, it is still sensitive to specific 

evolutionary pressures, as it is always present in a single copy in males. For example, it is under 

stronger purifying selection against male-detrimental mutations because of the hemizygosity in males, 

and can undergo an accumulation of ampliconic genes in an arms race between the sex chromosomes 

[Soh et al. 2014]. 

 

The consequences of these effects on the Y chromosome are clear in mammals. Mammalian Y 

chromosomes have a lower diversity than that expected given their 4-fold drop in population size 

[Hellborg & Ellegren 2004]. They have accumulated non-coding DNA, mostly retrotransposons [Soh 

et al. 2014] and some of the genes present on modern Y chromosomes (e.g., TSPY and EIF1AY in 

humans, Ube1y and Zfy in mouse) show a “masculinisation” of their expression pattern compared to 

their X homologs and their orthologs in species in which these genes are still autosomal [Cortez et al. 

2014]. Finally, a major consequence (and the one most relevant to this project) is the decay of coding 

regions. It can be extremely severe, as there are only 17 remaining functional protein-coding genes on 

the human Y and 9 on the mouse Y [Cortez et al. 2014]. At later stages of decay, some broadly 

expressed genes have also moved from the sex chromosomes to the autosomes (e.g., Eif1a is now on 

chromosome 18 in mouse and rat [Skaletsky et al, 2003]). 

 

The genes that remained on the Y chromosomes have very specific characteristics: they are either 

broadly expressed dosage-sensitive regulators, or they are male-specific genes expressed exclusively 

in the adult testes [Cortez et al. 2014, Bellott et al. 2014]. The rate of gene loss on the Y, as inferred by 

species comparison and ancestral state reconstruction, suggests that this chromosome is not, however, 

about to disappear: most genes were lost rapidly after recombination arrest, and the remaining genes 

have been kept for extensive periods [Hughes et al. 2012, Cortez et al. 2014]. This strong 
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conservation, despite the dramatic decay of the Y chromosome, suggests that Y-linked genes are 

essential for male fitness, and that they are under strong purifying selection. 

  

Overall, these dramatic changes to the Y chromosome composition come with a fitness cost to the 

heterogametic sex. To counter the almost total monosomy of the X chromosome in males, species with 

extensive Y decay have resorted to different solutions. In some lineages (mostly in fishes [Ezaz et al. 

2006], but also in amphibians and reptiles [Marin et al. 2017]), there has been a turnover of the sex 

chromosomes, where a pair of autosomes has effectively replaced the old pair of sex chromosomes. In 

therians, and less extensively in monotremes and birds, the strategy has been to accommodate the Y 

decay via dosage compensation. 

 

Dosage compensation 
 

Because of the loss of function of Y-linked genes, there must have been a pressure in males to 

increase the activity of the X partners. The imbalance occurs at two levels: between males and 

females, and between sex chromosomes and autosomes [Marin et al. 2000, Heard & Carrel 2009].  

 

This increased activity is observed at various levels in either XY or ZW sex chromosome systems, 

but the molecular mechanisms vary greatly across lineages. In mammals, Marie Lyon demonstrated in 

1961 that sex imbalances are solved by randomly inactivating one of the X chromosomes [Lyon, 

1961]. It is important to note that the imbalances between the sexes are not directly under selection. It 

is the imbalance between the products of sex chromosomes and of the autosomes that must be 

regulated by the genome, independently in males and females, to maintain fitness in both sexes.  

 

Previous studies have compared expression levels of X-linked genes to those of orthologous genes 

in species with different sex chromosomes, i.e., where they are autosomal  [Julien et al. 2012]. They 

found that the messenger-RNA (mRNA) level output per active chromosome copy is, on average, the 

same, effectively reducing the total expression output to 0.6 times the ancestral level. It is still 

controversial how this global output reduction is accommodated.  The old hypothesis of a global up-

regulation of X-linked genes has been recently ruled out in favour of a local up-regulation of dosage 

sensitive genes [Pessia et al. 2012], an up-regulation of translational efficiency [Wang et al. in writing] 

and a downregulation of some autosomal gene partners [Julien et al. 2012].  
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Mechanism of X-silencing in mammals 
 

In eutherians, a transient phase of paternally imprinted X chromosome inactivation during the 4-8 

cells stage is replaced by random X inactivation at the blastocyst stage [Pinheiro & Heard 2017]. The 

inactivation status is then fixed for each cell, and transmitted through cell duplication resulting in adult 

females that are a mosaic of cells with either the paternal or the maternal X inactivated. 

 

The mechanism by which the inactivation is triggered varies between human and mouse: mice 

inactivate any X chromosome beyond the first one, while humans protect one X chromosome from 

inactivation, and turn on the inactivation machinery on the other. This distinction is of particular 

importance when one considers the case of XXX or XXY trisomic cells [Migeon 2017].  

 

In mouse, the X chromosome is inactivated when the balance between two antisense long non-

coding RNAs (lncRNAs) at the X inactivation centre (XIC) (see Figure 1), in Yang et al. 2011], Xist 

and Tsix, is resolved [Migeon 2017]. As they are mutual transcriptional repressors, Xist is expressed 

on the inactive X (Xi) while Tsix is expressed on the active X (Xa). In humans, Tsix is truncated and is 

inactive, so the repression of Xist on the Xa relies on another unknown mechanism. For the next steps, 

the mechanism is similar for both lineages. On the Xi, Xist spreads along the chromosome, coating it, 

and then recruits two polycomb complexes (PRC1 and PRC2), which hypoacetylate histones, stably 

condensing the chromatin into heterochromatin, and thus forming the Barr body [Barr & Bertram 

1949, Marin et al. 2000, Avner & Heard 2001]. The early imprinting of the paternal X is maintained in 

the extra-embryonic tissues in mice and cattle and in marsupials it is maintained in all cells throughout 

life [Wang et al. 2014, Huynh & Lee 2003, Heard & Disteche 2006].  

 

Figure 1: X inactivation center in mouse and human. Based on [Yang et al. 2011] 
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Genes escaping X chromosome inactivation (XCI) 
 

Despite being an efficient mechanism, the silencing of one X chromosome is not absolute. It has 

been estimated that at least 23% of the 683 human X-linked genes escape XCI in adults in at least one 

tissue, cell line, or developmental stage, as do at least 15% of mouse X-linked genes [Tukiainen et al. 

2017, Carrel et Willard 2005, Berletch et al. 2015]. The majority of the escapers are expressed from 

both female X chromosomes but inconsistently. These escapers are referred to as facultative escapers, 

as opposed to the constitutive escapers that are expressed from both Xa and Xi consistently [Peeters et 

al. 2014]. Giorgetti and colleagues attributed the difference between constitutive and facultative 

escapers to the structural organisation of the Xi [Giorgetti et al. 2016, more below]. 

 

Tukiainen and colleagues have generated the most recent catalogue of XCI escapers for human 

[Tukiainen et al. 2017]. In this study, the authors explored data from the GTEx project from 5500 

transcriptomes from 29 tissues and showed that the escape from XCI results in differences in gene 

expression between males and females (sex-biased gene expression). For genes escaping XCI, the 

output from the two copies in females is expected to exceed the output from the single copy in males. 

They compared expression levels between males and females of all genes along the X chromosome, 

and observed that the non-PAR of the chromosome is dominated by female-biased escapers. These 

escapers are also more numerous in the more recent strata, suggesting a more selective escape status 

with time [Marin et al. 2000]. The PAR, on the other hand, is dominated by male-biased genes (e.g., 

SHOX gene). The partial spreading of XCI beyond the PAR/non-PAR boundaries in females likely 

explains why the Xi PAR expression only reaches 80% of the Xa PAR expression.  

 

In mouse, the escape status also varies between tissues, as demonstrated by a single-cell study in 

brain, spleen and ovaries [Berletch et al. 2015]. The escapers can also be divided into two groups 

depending on how consistent the escape is across organs. However, in these studies, being an escaper 

does not mean that there is an important contribution from the Xi, as genes often show some 

expression from the Xi amounting to less than 10% of the total expression from both chromosomes. 

 

Present study 
 

Our understanding of dosage compensation is still shadowed by our lack of a clear reason for why 

it has evolved. If dosage compensation was selected for in order to circumvent the deleterious effect of 

hemizygosity in the heterogametic sex, then one would expect dosage compensation to lead to 

increased levels of expression of X-linked genes in males, thus matching the ancestral expression 

levels. In contrast, what is observed in mammals is a decrease in the total expression output from the 

X in females, leading to gene-product imbalances across the genome.  



	 12	

 

Even if we assume that the balance between gene products from the X and from their autosomal 

partners is re-established via a combination of autosomal gene-by-gene downregulation [Julien et al. 

2012], and by an increase of translational efficiency of X-linked genes [Wang et al., in writing], it is 

still not clear how an intermediate state including only one of either the global X-silencing or the 

aforementioned gene-by-gene regulations could have been maintained in the population without major 

deleterious effects on fitness. Because the decay of the Y chromosome is the cause for the dosage 

decrease, one would expect that the first response would be driven by males. Selection could act first 

in males and reduce the expression levels of autosomal gene partners of newly hemizygous X genes 

and/or increase their translational efficiency. Then, because these changes would affect females, XCI 

could evolve in response to changes in the stoichiometry of protein complexes and/or to translational 

changes. 

 

A second open question is why some genes escape XCI. If we assume that the global silencing of 

the X was strongly selected for (as seems to be necessary to overcome the implications for genes that 

are part of protein complexes), why is it then avoided by a fraction of the genes? The silencing of the 

X being a global mechanism [Graves 2015], its avoidance necessitates a specific and new counter-

mechanism, that thus is unlikely to arise neutrally. Because the escape from XCI is often facultative, it 

not only leads to differences in expression between males and females, but also between organs and 

between individuals (i.e., females). Since some of the escapers have been associated with human 

disease (e.g. Turner syndrome, reviewed in [Hughes and Page, 2015]), this could lead to differences in 

disease predispositions between males and females, between tissues and also between individual 

females.  

 

A hypothesis for the existence of escapers is based on the persistence of some genes on the Y 

chromosome. As genes from both the X and Y arise from the same ancestral gene, the two genes 

(hereafter “gametologs”) retain a certain degree of homology. Therefore, Y-linked genes could assist 

the function of X-linked genes in males, thus alleviating the effects of hemizygosity for the X, and 

erasing the need for dosage compensation altogether. However, this hypothesis only applies to a 

potential small number of escapers. Although X escapers are enriched in gametologs [Slavney et al. 

2015], not all X gametologs escape XCI. The presence of Y gametologs is not sufficient to explain 

some genes escaping XCI.  

 

Finally, the difference in the frequency of escape from XCI between human and mouse (23% vs. 

15%), as well as the variability in the degree of escape shown by genes, raises the question of to which 

extent escape from XCI is conserved across species. The lists of human and mouse escapers show very 
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few commonalities, which indicates a potential fast turnover of escapers. If this were the case, then we 

would gain novel insights by comparing more closely related species. 

 

During my doctoral work, a clearer image has emerged regarding the differences between 

constitutive and facultative escapers. In 2016, Giorgetti and colleagues published a study of the 

structural organisation of the X chromosome [Giorgetti et al. 2016]. They compared Xa and Xi using 

Hi-C, ATAC-seq and RNA sequencing. They showed that in Neural Progenitor Cells (NPCs), the Xi 

shows an absence of active/inactive compartments and topologically associated domains (TADs), 

except around genes that escape XCI. They found that some genes were facultative escapers and 

showed variability between different NPC clones, whereas other genes were constitutive escapers and 

remained constant. They suggested that the escape status is acquired via the formation of topologically 

associated domains, which are necessary for chromatin accessibility and escape. They also noted that 

the particular conformation of the Xi in two megadomains is evolutionarily conserved, and could be 

responsible for XCI. Facultative escapers are silenced and re-expressed during XCI and would be 

more sensitive to stochastic changes in the chromosome 3D conformation than constitutive escapers.  

 

Also recently, the link between escape status, presence of a Y gametolog and dosage sensitivity 

was studied by Naqvi and colleagues [Naqvi et al 2018]. They observed that ancestral dosage 

sensitivities (as measured by the conservation of miRNA target sites) were different for three groups 

of X-linked genes: highest for X gametologs that escape XCI, second highest for genes subject to XCI, 

and lowest for escapers that are not gametologs. These observations support the hypothesis that 

escapers that are gametologs and escapers without a Y partner have opposite reasons to escape XCI: 

either high dosage constraints that favour keeping the ancestral dosage, or low dosage constraints that 

allow for variability in escaping XCI. 

 

When taken together, the conservation of Xi topographic domains can be perceived as being in 

contradiction with the extreme variability in the number and identity of escapers between human and 

mouse. 

 

My aim is to use mammalian non-model species (rat, rabbit, opossum), in addition to human and 

mouse, to detect XCI escapers during development , understand to which degree the escape from XCI 

is conserved, and to identify the features that characterize developmental XCI escapers. 
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RESULTS 
 

Upon joining the group, my shared interest with Prof. Henrik Kaessmann in sex chromosome 

evolution led us to design a project in that field. As most studies on sex chromosomes focused so far 

uniquely on adults, the idea was to use a novel evo-devo dataset that was nearing completion in the 

group to explore the developmental dimension of sex chromosome evolution. 

 

The dataset consists of RNA sequencing (RNA-seq) data for 6 therians (human, rhesus macaque, 

mouse, rat, rabbit, opossum) and chicken, used as an evolutionary outgroup, and consists of 1,893 

libraries, covering the development of 7 organs, 9-23 developmental stages (depending on the species) 

and 2-4 replicates per stage (Table 1). 

 
Common name Species Clade Additional 

information 
Human Homo sapiens Eutheria Elective abortions with 

normal karyotypes 
Rhesus macaque Macaca mulatta Eutheria  

Mouse Mus musculus Eutheria Outbred strain CD-1 
(RjOrl:SWISS) 

Rat Rattus novegicus Eutheria Outbred strain 
Holtzman SD 

Rabbit Oryctolagus cuniculus Eutheria Outbred New Zealand 
breed 

Grey short-tailed opossum Monodelphis domestica Metatheria  

Red junglefowl (chicken) Gallus gallus Aves  

Table 1: List of species included in the dataset. More information in Cardoso-Moreira et al., in review. 
 
For each species, the time-series start when the organs can be identified and dissected separately 

from nearby tissues. That means, for example, embryonic (e) day 10.5 for the mouse and 4 weeks post 

conception (wpc) for human. The organs dissected were: brain (forebrain), cerebellum (hindbrain), 

heart, kidney, liver, and ovary or testis. Most timepoints were supported by 4 biological replicates (2 

males and 2 females), except for the gonads, for which there were 2 replicates per sex. Due to the 

difficulty in obtaining samples, there are on average only two replicates per timepoint in primates. Due 

to the nature of sampling of human organs, and to a lesser extent macaque, samples were grouped 

together as biological replicates over broader developmental periods than in non-primates. As a 

consequence, samples that have passed different developmental milestones may be grouped together, 

thus introducing more variability in the data, compared to the other species. 
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When I joined the group, the available data was a collection of ~2,000 RNA-seq libraries already 

aligned to the genomic sequence. Because the dataset was not yet complete, some analyses had to be 

repeated several times following the addition or removal of individual libraries. 

 

My doctoral projects: 
 

• For the first months of my doctoral work, I work on a project on the evolution of sex-

biased micro-RNAs (miRNAs) under the supervision of Dr. Maria Warnefors. My 

participation in this project, and its resulting publication in Genome Research, is discussed 

in its own chapter. 

 

• My next project concerned the chromosome undergoing most changes during sex 

chromosome evolution: the Y-chromosome. Dr. Diego Cortez, a previous postdoctoral 

researcher in the group, produced transcriptome assemblies of Y chromosome genes for 15 

mammals using RNA-seq data. This work was published in Nature in 2014, and was 

particularly novel in that it bypassed the need for assembled genomic sequence of the Y 

chromosome to discover Y-linked genes (which is a very resource-consuming endeavour). 

However, similarly to other studies on sex chromosomes, only adult samples were used. As 

gene annotation from RNA-seq data is dependent on genes being expressed in a given 

organ, the question was raised whether some potential Y-linked genes with expression 

restricted to development would escape annotation via this method.  

 

My project was, therefore, to apply the Y transcriptome assembly pipeline to the new evo-

devo dataset. Given that the objective was to find Y-linked genes not previously known, it 

was necessary for my analyses to be thorough. Therefore, I implemented several 

modifications to the original pipeline that included, for example, getting rid of extensive 

random read drops that were originally implemented to reduce the library size and speed up 

computation (see Supplementary material S1). Unfortunately, the computational demands 

required to find the potentially missing genes forced me to abort the project. Using a 

dataset that included 2 males for 9 to 23 stages increased the amount of data more than 20-

fold from the previous work, and it was deemed impossible to process at once through the 

exponential process that is transcript assembly. Adding a workaround similar to the 

original study in order to randomly select transcripts to create more manageable data sets, 

but at later stages of the pipeline, was contemplated, but finally deemed to cancel out the 

benefits of the developmental dimension. The possibility of finding unknown Y genes via 

transcriptome assembly from RNA-seq data remains, but will require further developments 
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in large datasets transcript assembly software. As a consequence, after a few months 

working on this project, my doctoral work was redirected towards other questions. 

 

• The new direction of my research, which would end up being the main project of my 

doctoral work, concerns the evolution of genes that escape X chromosome inactivation 

(XCI). As stated in the introduction, the main goal was to study the conservation of 

escapers across mammals. In adults, the escape status of genes was shown to be very 

inconsistent both between tissues and in the amplitude of the sex bias. 

 

Study of XCI escapers across mammals 
 

As I was starting this project, I learned about the study of Tukiainen and colleagues, who 

established that differences in gene expression between males and females (sex biased expression) 

could be used as a proxy for escape status in human. This study was limited to adults and a large 

number of replicates were used. My first step was therefore to investigate how consistent is sex-biased 

expression in adults in our dataset, and how it compares to the escape status of X-linked genes as 

described in the literature. 

 

Starting from the genome alignments, I created expression tables in both reads per kilobase of exon 

model per million mapped reads (RPKMs) and counts per million (CPMs) using the package EdgeR 

(version 3.16.5, [Robinson et al. 2010]), which also normalizes the data using the method TMM. The 

gene annotations used included both the known set of protein coding genes and an annotation of novel 

long non-coding RNAs created by Dr. Ray Marin in the group. The tables were created using only 

reads mapping to a unique locus. Because sex chromosomes are known to contain a large number of 

repetitive elements, and because the homology between the X and Y chromosomes could potentially 

lead to an underestimation of gene expression if reads mapping to both gametologs were discarded, 

most analyses were also performed on expression tables that also took into account reads mapping to 

multiple locations. However, the inclusion of multi-mapped reads did not change any of the 

conclusions described below.  

 

Due to an almost complete absence of data for females in rhesus macaque, this species was 

excluded from this work. 
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Sex-biased expression in adults 
 

 My first step was to study how consistent is sex bias in adults in our dataset, and how it compares 

to the escape status of X-linked genes in the literature.  

 

To do so, I compared male and female expression levels using a Student’s t-test on mouse data (I 

pooled together the last 2 developmental stages that correspond to sexual maturity) for 862 X-linked 

genes in all somatic organs.  

 

I found that 373 genes (43%) were biased in at least one organ. There were 67 genes known in the 

literature to escape XCI that were present in our annotation, and 45 of them (67%) were biased in 

adults. 30% of the biased genes were overexpressed in males, 49% were overexpressed in females, and 

20% were expressed at significantly higher level in both male and female samples, depending on the 

organ. Because only 45 of the 373 sex-biased genes in adults were known to be escapers in the 

literature, the sex-bias cannot be explained by XCI escape in the majority (88%) of cases for adult 

genes. 

 

Sex-biased expression during development 
 

My next step was to apply Tukiainen’s method for detecting XCI escapers via sex-bias in 

expression. In my case, instead of many adult biological replicates, the development dimension could 

provide the power needed to uncover XCI escape. I started by testing the difference in expression 

between male and female samples, grouped across development. I used a Mann-Whitney U-test (as it 

does not require normality) combining all stages for each gene, but it resulted in an excessive number 

of false positives, even after False-Discovery-Rate multiple test correction (which in turn, made some 

clearly interesting genes barely significant, if at all). At the same time in the group, Dr. Margarida 

Cardoso Moreira was studying genes with significant changes in temporal expression during organ 

development, termed Developmentally Dynamic Genes (DDGs). She found that the majority (79-

91%) of protein-coding genes are classified as DDGs, and thus I realized that my analyses needed to 

take into account the developmental trajectory of the genes, and that the average over development 

would not be sufficient.  

 

I therefore undertook an exploratory approach, where I visually classified genes as either sex-

biased or not. I produced 3336 plots representing the median expression level per sex of 861 mouse 

protein-coding genes in the 5 somatic organs (only genes expressed at more than 1RPKM in the organ 

were studied), as well as 4117 plots representing 1116 human genes. I divided development in 3 

periods: pre-natal, post-natal, and sexually mature, which were scored independently (Figure 2). To 
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avoid confirmation bias, I was unaware of the names of the genes I was scoring (i.e., used Ensembl 

identifiers). The scoring was: strongly female-biased, female-biased, same between sexes, male-

biased, and strongly male-biased.  

 

 
 
Figure 2: Example of the original plots used for sex-biased expression scoring in mouse. The x-axis 

shows stages from early (left) to late (right) development. The y-axis represents the median expression level 
across replicates. The vertical bars mark birth (left) and sexual maturity (right). Red: female samples, blue: male 
samples. Vertical dashed lines correspond to the neonate stage (left) and sexual maturity (right). 

 
I found that most genes (83% in mouse and 70% in human) do not show sexually dimorphic 

expression (e.g., Gpm6b, Fig. 2A); that among the 146 remaining genes showing dimorphism in 

mouse, 94 showed clear dimorphism at the adult stage with no trend in bias at any other stage (39% 

towards male over expression, 61% towards female overexpression) (e.g., Ebp in liver, Fig. 2B); and 

finally, that only a minority of genes (5 in mouse) show continuous dimorphism throughout 

development (e.g., Eif2s3x in cerebellum, Fig. 2C) [Berletch et al. 2015, Marks et al. 2015]. Most 

notably, all dimorphic protein-coding genes with female overexpression across the 3 developmental 

A	

B
	

C
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periods and organs in mouse were X gametologs (i.e., Ddx3x, Kdm5c, Eif2s3x, Kdm6a), except for 

Pbdc1.  

 

This exploratory approach yielded promising results, so I proceed to select a statistical method that 

would take advantage of the strength of the data, that is, that the developmental points are not 

independent but are instead a time series. Statistical analyses were therefore conducted via linear 

model with the Limma package in R [Ritchie et al. 2015, Law et al. 2014]. To keep consistency across 

projects within the group, I used the same expression tables as those used in Cardoso-Moreira et al., 

where expression levels were estimated in CPM. The model was fitted separately for each organ via a 

design matrix taking into account the development stage and sex of the samples. Scale normalization 

across libraries was done via the TMM normalization as implemented in Limma. An additional filter 

removed genes that had consistently less than 3 CPM (implemented by the filterByExpr function). 

Voom transformation, taking into account the design of the model, was applied to the normalized and 

filtered DGEList object, as it is recommended for samples with variable library sizes. Afterwards, the 

model was fitted vial lmFit, and empirical Bayes smoothing to the standard errors via eBayes. In an 

attempt to normalize the data, and to not be over sensitive to X linked genes, all statistics were 

performed genome-wide. The significant p-values for the sex parameter of the model were recovered 

via TopTable, using Benjamin–Hochberg multiple test correction over only the X chromosome. The 

complete list of p-values for each X-linked expressed gene, organ and species, will be provided upon 

request. 
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Mouse developmental female-biased gene expression 
 

Gene Significance Brain Cerebellum Heart Kidney Liver Median Rank 
Xist *** 14.58 16.89 16.79 18.08 16.22 16.79 1 
Kdm6a/Utx *** 7.00 1.33 5.56 10.47 7.14 7.00 2 
Kdm5c *** 8.85 2.41 5.56 8.09 6.63 6.63 3 
Eif2s3x *** 2.31 6.51 3.45 5.96 4.48 4.48 4 
Pbdc1/Cxorf26 ** 5.04 0.00 2.67 9.36 2.62 2.67 5 
5530601H04Rik ** 5.89 1.81 0.65 8.09 2.62 2.62 6 
Jpx ** 5.62 1.22 2.15 3.06 1.94 2.15 7 
Firre ** 2.36 1.22 1.78 5.54 2.02 2.02 8 
Ddx3x N.S. 0.37 0.00 1.56 3.01 0.11 0.37 42 
Tspyl2 N.S. 0.00 0.00 0.19 0.92 0.47 0.19 87 
Sox3 N.S. 0.55 0.00 0.17 0.01 0.20 0.17 92 
Rbmx N.S. 0.06 0.00 0.02 2.68 0.13 0.06 218 
Uba1 N.S. 0.00 0.00 0.03 0.08 0.11 0.03 313 
Usp9x N.S. 0.00 0.00 0.84 0.01 0.00 0.00 517 
Zfx N.S. 0.00 0.00 0.48 0.10 0.00 0.00 517 
Total 988 

Table 2: Top 8 most female-biased X-linked genes across development in mouse (top) and remaining X 
gametologs (bottom). Gene names in bold indicate X gametologs, underlined genes are lncRNAs involved in 
XCI. Significance: *** = p-value <0.001, ** = p-value <0.01, * = p-value <0.05, N.S. = p-value > 0.05. The 
columns brain, cerebellum, heart, kidney, liver show the –log10 of the p-value in the respective organ. The 
median is calculated across all 5 organs, and is used to rank expressed X-linked genes in decreasing order of 
significance. 
 

The most strongly continuously female-biased gene during development is the lncRNA Xist (p-

value = 1.6e-17). This is not surprising because Xist is a female-specific gene in all eutherians. It can 

therefore be used as a positive control for this approach when exploring datasets with more variability 

between biological replicates. The following three highest female-biased genes, Kdm6a, Kdm5d, 

Eif2s3x (p-values of 1e-7, 2.3e-7, and 3.3e-5, respectively) are all X gametologs. The next two genes, 

Pbdc1 and 5530601H04Rik, are a pair of head-to-head protein-coding and lncRNAs genes with 

unknown function, but already known to escape XCI by locally remodeling the chromatin [Lopes et al. 

2011]. Finally, the last 2 significant genes, Jpx and Firre, are two lncRNAs actively involved in XCI. 

Jpx controls the initiation of XCI by activating Xist on Xi [Tian et al. 2010] and Firre is in charge of 

preserving the long term H3K27me3 on the Xi [Yang et al. 2015]. 

 

Surprisingly, despite being involved in XCI, Tsix does not show sex-biased expression in mouse 

(rank: 246). The gene Ftx (which is also known to be involved in mouse XCI [Chureau et al. 2010, 

Furlan et al. 2018]) is not part of the gene annotations used in this work. 
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Rat developmental female-biased gene expression 
 

Gene Significance Brain Cerebellum Heart Kidney Liver Median Rank 
Xist *** 27.12 12.60 26.47 16.12 18.90 18.90 1 
Pbdc1/Cxorf26 *** 12.22 2.30 7.19 3.25 9.54 7.19 2 
Eif2s3x *** 11.21 0.59 3.87 1.73 10.22 3.87 3 
Jpx  *** 8.56 2.30 3.68 3.69 7.28 3.69 4 
5530601H04Rik 
(by homology 
with mouse) 

** 8.61 2.11 2.92 2.55 6.33 2.92 5 

Med14 ** 4.44 1.36 0.01 2.16 4.87 2.16 6 
5530601H04Rik 
(by homology 
with mouse) 

N.S. 2.98 1.22 0.45 0.55 1.61 1.22 7 

Dach2 N.S. 1.41 0.01 0.84 1.15 1.18 1.15 8 
Kdm6a/Utx N.S. 1.57 0.00 1.04 0.44 4.45 1.04 12 
Kdm5c N.S. 4.44 0.55 0.12 1.06 0.51 0.55 30 
Zfx N.S. 0.36 0.00 0.00 0.53 0.33 0.33 84 
Uba1 N.S. 0.22 0.00 0.00 0.12 1.57 0.12 307 
Usp9x N.S. 1.19 0.00 0.00 0.11 0.38 0.11 360 
Rbmx N.S. 0.46 0.00 0.00 0.07 0.35 0.07 473 
Ddx3x N.S. 1.75 0.00 0.06 0.06 2.02 0.06 475 
Total 884 

Table 3: Top 8 most female-biased X-linked genes across development in rat (top) and remaining X 
gametologs (bottom). Gene names in bold indicate X gametologs, underlined genes are lncRNAs involved in 
XCI. Significance: *** = p-value <0.001, ** = p-value <0.01, * = p-value <0.05, N.S. = p-value > 0.05. The 
columns Brain, cerebellum, heart, kidney, liver show the –log10 of the p-value in the respective organ. The 
median is calculated across all 5 organs, and is used to rank expressed X-linked genes in decreasing order of 
significance. Two newly annotated lncRNAs are homologous to mouse 5530601H04Rik, and are named as such.  
 

Similarly to mouse, Xist is the most female-biased genes (p-value= 1.2e-19). Pbdc1 and 

5530601H04Rik are also in the top 5 most female-biased genes in rat, which indicates that their sex-

biased expression is likely conserved among rodents. In rat, the gametologs Eif2s3x and Med14 are 

also significantly female-biased, as is Jpx.  

 

Ftx and Firre are not annotated in rat, and the expression of the gametolog Sox3 was below our 

cutoff of 1 RPKM. 
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Rabbit developmental female-biased gene expression 
 

Gene Significance Brain Cerebellum Heart Kidney Liver Median Rank 
Xist (5’ Part) *** 21.97 16.13 16.67 21.86 14.86 16.67 1 
Xist (3’ Part) *** 11.23 14.72 12.25 14.79 10.08 12.25 2 
Ddx3x N.S. 0.89 0.23 0.96 2.30 1.09 0.96 3 
Eif2s3x N.S. 0.89 1.51 1.49 0.53 0.91 0.91 4 
Kdm6a/Utx N.S. 0.40 0.14 0.51 0.70 4.40 0.51 5 
Mrpl32 N.S. 0.49 0.45 0.96 0.19 0.52 0.49 6 
Slc25a5 N.S. 0.24 0.45 0.33 0.00 1.90 0.33 7 
Novel lncRNA  
XLOC_042844 

N.S. 0.22 0.03 0.38 0.49 0.29 0.29 8 

Tspyl2 N.S. 0.01 0.00 0.35 0.70 0.04 0.04 72 
Usp9y N.S. 0.40 0.00 0.03 0.00 0.14 0.03 79 
Zfx N.S. 0.32 0.00 0.03 0.00 0.18 0.03 106 
Rps4x N.S. 0.00 0.00 0.09 0.00 0.03 0.00 355 
Kdm5c N.S. 0.00 0.00 0.11 0.00 0.08 0.00 355 
Rbmx N.S. 0.00 0.00 0.00 0.00 0.00 0.00 355 
Uba1 N.S. 0.00 0.00 0.03 0.00 0.05 0.00 355 
Pbdc1/Cxorf26 N.S. 0.00 0.00 0.14 0.00 0.28 0.00 355 
Total 621 

Table 4: Top 8 most female-biased X-linked genes across development in rabbit (top) and remaining X 
gametologs (bottom). Gene names in bold indicate X gametologs, underlined genes are lncRNAs involved in 
XCI. Significance: *** = p-value <0.001, ** = p-value <0.01, * = p-value <0.05, N.S. = p-value > 0.05. The 
columns Brain, cerebellum, heart, kidney, liver show the –log10 of the p-value in the respective organ. The 
median is calculated across all 5 organs, and is used to rank expressed X-linked genes in decreasing order of 
significance. The Xist coordinates are split between 2 transcript annotations. 
 

In rabbit only Xist shows significant female-biased expression during development (the Xist 

annotation is divided into 2 transcripts, and both are significant). Although none of the other genes 

passed the significance threshold, we can still observe a clear divide between Ddx3x, Eif2s3x, Kdm6a 

and the rest of the gametologs. Interestingly, Pbdc1 is not biased at all, which makes its sex bias a 

rodent-specific trait (5530601H04Rik doesn’t have a known homolog outside of rodents). The 

homologs of other lncRNAs involved in inactivation machinery (Jpx, Ftx) are not known in rabbit. As 

in rat, Sox3 shows too low expression in rabbit to be analysed. 
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Human developmental female-biased gene expression 
 

Gene Significance Brain Cerebellum Heart Kidney Liver Median Rank 
XIST *** 6.82 15.22 5.14 1.21 7.22 6.82 1 
TSIX * 1.43 1.88 2.69 0.62 2.51 1.88 2 
GABRA3 (exons 5 
and 6) 

N.S. 0.74 1.13 3.26 0.00 2.51 1.13 3 

KDM5C N.S. 1.43 1.67 1.10 0.20 0.70 1.10 4 
RPS4X N.S. 0.97 1.59 0.63 0.05 1.84 0.97 5 
FATE1 N.S. 1.43 1.21 0.97 0.04 0.15 0.97 6 
ARMCX5 N.S. 0.38 0.78 0.76 0.20 1.84 0.76 7 
ZFX N.S. 1.06 1.55 0.68 0.36 0.00 0.68 8 
DDX3X N.S. 0.93 0.76 0.53 0.00 0.31 0.53 14 
SOX3 N.S. 0.88 0.38 0.37 0.00 0.18 0.37 55 
KDM6A/UTX N.S. 0.33 0.83 0.85 0.34 0.07 0.34 60 
TBL1X N.S. 0.60 0.32 0.85 0.03 0.15 0.32 72 
PRKX N.S. 0.30 0.68 0.22 0.00 0.00 0.22 149 
TMSB4X N.S. 0.54 0.63 0.01 0.00 0.15 0.15 266 
NLGN4X N.S. 0.22 0.52 0.07 0.13 0.00 0.13 313 
TXLNG N.S. 0.48 0.10 0.85 0.00 0.00 0.10 426 
RBMX N.S. 0.09 0.33 0.42 0.07 0.00 0.09 498 
PCDH11X N.S. 0.09 0.07 0.30 0.04 0.00 0.07 563 
EIF1AX N.S. 0.22 0.10 0.06 0.00 0.00 0.06 587 
USP9X N.S. 0.04 0.04 0.07 0.00 0.00 0.04 703 
TSPYL2 N.S. 0.00 0.08 0.06 0.00 0.00 0.00 972 
PBDC1 N.S. 0.05 0.10 0.10 0.00 0.00 0.05 631 
Total 1002 

Table 5: Top 8 most female-biased X-linked genes across development in human (top) and remaining X 
gametologs (bottom). Gene names in bold indicate X gametologs, underlined genes are lncRNAs involved in 
XCI. Significance: *** = p-value <0.001, ** = p-value <0.01, * = p-value <0.05, N.S. = p-value > 0.05. The 
columns Brain, cerebellum, heart, kidney, liver show the –log10 of the p-value in the respective organ. The 
median is calculated across all 5 organs, and is used to rank expressed X-linked genes in decreasing order of 
significance. The genes coordinates used in this analysis for GABRA3 were retired since, and are now annotated 
as corresponding to exons 5 and 6 of GABRA3. FTX, JPX and Firre (involved in mouse XCI) are part of the 
gene annotations used. 
 

In human, only XIST (p-value = 1.5e-7), and surprisingly, TSIX (p-value = 0.013) show significant 

female-biased gene expression during development. The two genes are antisense to each other, but 

TSIX is not known to be involved in XCI in humans (and as described, Tsix not show sex-biased 

expression in mouse). 

 

The gametologs KDM5C, RPS4X and ZFX are in the top 10 most female-biased genes, despite not 

crossing the significance threshold. Three genes show more female-biased expression than the most 



	 24	

biased gametologs: GABRA3 (gamma-aminobutyric acid (GABA) A receptor subunit alpha 3), 

FATE1, and ARMCX5. Neither is known to escape XCI.  

 

Across all eutherians, the conservation of female-bias is strongest for Xist, which can be explained 

by the fact that it is the most fundamental contributor to XCI.  

The comparison between the eutherians (mouse, rat, rabbit and human) identifies 3 gametologs that 

show female-biased expression (though not always passing the significance threshold) in at least 2 of 

the 4 species: Kdm6a, Eif2s3x, Kdm5c. In addition, Ddx3x is third most female-biased gene in rabbit, 

and is close to significance in both human and mouse. 
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Opossum developmental female-biased gene expression 
 

Gene Significance Brain Cerebellum Heart Kidney Liver Median Rank 
Novel lncRNAs,  
XLOC_045717 

*** 8.97 9.16 23.58 5.75 11.04 9.16 1 

Frmd7 *** 5.87 9.16 9.31 2.06 9.58 9.16 1 
Novel lncRNAs,  
XLOC_045517 

*** 8.97 8.98 19.74 1.52 10.04 8.98 3 

Novel lncRNAs,  
XLOC_044938 

*** 8.97 9.05 13.03 1.58 8.53 8.97 4 

Rsx *** 8.83 7.41 21.12 5.67 10.16 8.83 5 
Hmgb3 *** 6.35 9.16 13.53 3.55 8.64 8.64 6 
Rragb N.S. 0.93 1.61 1.92 0.55 1.71 1.61 7 
Klf8 N.S. 2.02 2.02 1.06 0.09 0.22 1.06 8 
Thoc2 N.S. 0.00 0.22 0.03 0.21 0.32 0.21 30 
Rpl10 N.S. 0.00 0.17 0.34 0.09 2.36 0.17 42 
Phf6 N.S. 0.00 1.83 0.03 0.21 0.14 0.14 47 
Rps4 N.S. 0.00 0.22 0.03 0.04 0.46 0.04 150 
Mecp2 N.S. 0.00 0.01 0.25 0.03 0.09 0.03 205 
Hsfx N.S. 0.00 0.04 0.03 0.03 0.00 0.03 224 
Rbmx N.S. 0.00 0.44 0.03 0.11 0.02 0.03 234 
Atrx N.S. 0.00 0.02 0.02 0.02 0.11 0.02 314 
Rmb10 N.S. 0.00 0.74 0.02 0.03 0.00 0.02 341 
Hcfc1 N.S. 0.00 0.17 0.01 0.03 0.02 0.02 407 
Uba1 N.S. 0.00 0.83 0.02 0.02 0.00 0.02 416 
Tfe3 N.S. 0.00 0.72 0.02 0.03 0.00 0.02 429 
Kdm5d N.S. 0.00 0.58 0.01 0.03 0.00 0.01 452 
Sox3 N.S. 0.00 0.90 0.01 0.05 0.00 0.01 468 
Total 534 

Table 6: Top 8 most female-biased X-linked genes across development in opossum (top) and remaining X 
gametologs (bottom). Gene names in bold indicate X gametologs, underlined genes are lncRNAs involved in 
XCI. Significance: *** = p-value <0.001, ** = p-value <0.01, * = p-value <0.05, N.S. = p-value > 0.05. The 
columns Brain, cerebellum, heart, kidney, liver show the –log10 of the p-value in the respective organ. The 
median is calculated across all 5 organs, and is used to rank expressed X-linked genes in decreasing order of 
significance. 

 
In opossum, 6 genes show significant levels of female-biased gene expression (p-value between 

6.9e-10 and 2.3e-9). Rsx, the lncRNA analogous to the eutherian’s Xist, is unsurprisingly among them 

[Grant et al. 2012]. The protein-coding gene Frdm7 has already been described as sex-biased with 

60% of its expression coming from the Xi [Wang et al. 2014], but is not known to be associated with 

the XCI machinery. It is known to cause nystagmus (involuntary eye movement) in humans when 

mutated with a penetrance of 100% in males and 53% in females [Richards et al. 2015]. The 

gametolog Hmgb3 shows strong sex-bias, and is the only gametolog to show female-biased expression 

in this species. Remarkably, 3 newly annotated lncRNAs are strongly significant: XLOC_045517, 
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which is antisense to the only gametolog that is sex-biased (Hmgb3), XLOC_44398, which is lowly 

expressed, and XLOC_45717, which is expressed at moderately high levels throughout the dataset 

(between 10 and 20 RPKM on average, see Figure 3) 

 

 
 

Figure 3: Expression of the newly annotated lncRNA XLOC_45717 throughout opossum organ 
development. The x-axis represents developmental stages from early (e13.5, left) to late (194 days post birth, 
right) development for forebrain/brain (dark blue), hindbrain/cerebellum (light blue), heart (red), kidney 
(yellow), liver (green), ovary (pink) and testis (orange). The y-axis shows expression levels. The vertical bars 
show the range of expression between replicates. Expression in males is represented by thin lines (near 0, 
bottom) and in females by bold lines. All following plots were created with ggplot2 [Wickham 2016] 

 
The discovery of these 3 strongly female-biased lncRNAs raised the possibility that these genes 

could be involved in XCI in opossum. A new project has therefore been started in the group, which 

aims to characterize the spatial distribution of XLOC_45717’s RNA in the cell via Fluorescent In-Situ 

Hybridization (FISH), and test the hypothesis that its RNA coats the X chromosome. Dr. Mari Sepp is 

leading this project. 

 

Across all 5 species I found that only a small fraction of genes show significant female-biased gene 

expression during development. These mostly comprise Xist/Rsx, lncRNAs actively involved in XCI, 

and a subset of X gametologs. My next step consisted in understanding the reason why some 
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gametologs are consistent escapers (the ones on the top most strongly female-biased genes) and others 

are not.  

 

Escape	from	XCI	and	Y	gametologs	
 

Given that the current protein-coding Y-linked genes were most likely initially retained because of 

their dosage sensitivity as broadly expressed regulators [Bellott et al. 2014], their X homologs were 

probably haploinsufficient. Therefore, initially, all gametologs had to avoid XCI in females in order to 

have both alleles expressed in the two sexes. However, several Y-linked genes have evolved male-

specific functions [Cortez et al. 2014]. We therefore hypothesized that because Y genes with testis-

specific expression will not complement the function of their X gametologs in male somatic tissues, 

there is no need for these X gametologs to escape XCI and therefore to show a difference in 

expression between males and females during development. Only Y gametologs that are still 

ubiquitously expressed have the possibility of complementing their X gametologs in every organ and 

so only this set of gametologs should escape XCI. 

 

To test this hypothesis, I created expression tables for chicken genes that are orthologous to current 

Y genes. As the chicken orthologs are situated on a pair of chromosomes that have not been selected 

as sex chromosomes (chromosome pairs 1 and 4), they were not subject to the expression changes 

pressures that are typical of sex chromosomes, and are expected to have maintained, on average, the 

ancestral expression levels. 

 

I investigated expression levels for chicken and mouse, and for chicken and human at 

corresponding stages of development, as reported by Dr. Cardoso-Moreira (see Table 7). By 

comparing the ratio of ancestral (chicken) expression levels with the current expression levels, I could 

categorize Y genes as broadly expressed or male-specific. 

 
Species Corresponding developmental stages 
Mouse e16.5 e17.5 e18.5 P0 P3 P14 P28 P63 
Human 12wpc 13wpc 19wpc 19wpc 20wpc Toddler (2-

4 years) 
youngAdult 
(25-32 years) 

youngMidAge 
(39-41 years) 

Chicken e10 e12 e12 e12 e14 P0 P70 P155 
Table 7: Corresponding developmental stages across species as used in this study. The vertical line marks 
sexual maturity. 
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Figure 4: Loss of ancestral expression for Eif2s3y, classified as broadly expressed, and for Zfy1, classified 
as male-specific, in mouse. The x-axis shows stages from early (corresponding to an e16.5 mouse, left) to late 
(corresponding to a 63 days post birth mouse, right) for forebrain/brain (dark blue), hindbrain/cerebellum (light 
blue), heart (red), kidney (yellow), liver (green), ovary (pink) and testis (orange). The y-axis represents the log2 
ratio of expression difference between mouse and chicken, per chromosome copy. A log2 (ratio) of -2 
corresponds to a reduction of expression levels by a factor of 4 in the eutherian lineage. The width of the interval 
represents the minimum and maximum difference in expression ratio in our data (minimum mouse expression 
divided by maximum chicken expression, and vice-versa.) The vertical lines represent the data points. 
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When we combine these results with the previous analysis of constant gene expression differences 

between the sexes during mouse development we obtain the following table: 

   
Gene Brain Cerebellum Heart Kidney Liver Median Rank Y homolog 

expression 
Kdm6a 7.00 1.33 5.56 10.47 7.14 7.00 2 Ubiquitous 
Kdm5c 8.85 2.41 5.56 8.09 6.63 6.63 3 Ubiquitous 
Eif2s3x 2.31 6.51 3.45 5.96 4.48 4.48 4 Ubiquitous 
Ddx3x 0.37 0.00 1.56 3.01 0.11 0.37 42 Ubiquitous 
Tspyl2 0.00 0.00 0.19 0.92 0.47 0.19 87 N.a. 
Sox3 0.55 0.00 0.17 0.01 0.20 0.17 92 Testis-specific 
Rbmx 0.06 0.00 0.02 2.68 0.13 0.06 218 Testis-specific 
Uba1 0.00 0.00 0.03 0.08 0.11 0.03 313 Testis-specific 
Usp9x 0.00 0.00 0.84 0.01 0.00 0.00 517 Testis-specific 
Zfx 0.00 0.00 0.48 0.10 0.00 0.00 517 Testis-specific 
Table 8: Comparison of levels of female-biased developmental expression for X gametologs and 
the expression patterns of their Y homologs in mouse. The columns Brain, cerebellum, heart, kidney, 
liver show the –log10 of the p-value in the respective organ. The median is calculated across all 5 organs, and is 
used to rank expressed X-linked genes in decreasing order of significance. 
 

From this table it is clear that the X gametologs that most consistently show female biased 

expression have ubiquitously expressed Y homologs. Ddx3x appears to be the exception. However, the 

developmental expression of Ddx3x in males and females (Figure 5) suggests that this gene is also 

female biased and that it was our statistical approach that failed to identify it as such (i.e. false 

negative). Therefore, in mouse the pattern is clear: X gametologs of Y genes with ubiquitous 

expression escape XCI (i.e., show female biased expression), whereas X gametologs of Y genes with 

testis-specific expression do not. 

 
 



	 30	

 
Figure 5: Developmental expression of Ddx3x in mouse males and females. The x-axis represents stages from 
early (e10.5, left) to late (63 days post birth, right) development for brain/forebrain (dark blue), 
hindbrain/cerebellum (light blue), heart (red), kidney (yellow), liver (green), ovary (pink) and testis (orange). 
The last 2 time points in each organ correspond to sexual maturity. The y-axis shows expression levels. Plotted is 
the median expression in each stage with the bars showing the range of expression among replicates. Expression 
for males in bold lines (bottom) and for females in thin lines (top). 
 

The results for human are less clear (Table 9). As in mouse, the X gametologs that were among the 
top 10 genes with the most significant sex-biased expression all have ubiquitously expressed Y 
gametologs. However, 2 X gametologs that do not show female-biased expression also have 
ubiquitously expressed Y gametologs.  
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Gene Brain Cerebellum Heart Kidney Liver Median Rank Y homolog 

expression 
KDM5C 1.43 1.67 1.10 0.20 0.70 1.10 4 Ubiquitous 
RPS4X 0.97 1.59 0.63 0.05 1.84 0.97 5 Ubiquitous 
ZFX 1.06 1.55 0.68 0.36 0.00 0.68 8 Ubiquitous 
DDX3X 0.93 0.76 0.53 0.00 0.31 0.53 14 Ubiquitous 
SOX3 0.88 0.38 0.37 0.00 0.18 0.37 55 Variable 
KDM6A/Utx 0.33 0.83 0.85 0.34 0.07 0.34 60 Ubiquitous 
TBL1X 0.60 0.32 0.85 0.03 0.15 0.32 72 No expr. 
PRKX 0.30 0.68 0.22 0.00 0.00 0.22 149 No expr. 
TMSB4X 0.54 0.63 0.01 0.00 0.15 0.15 266 Very low & 

Ubiquitous 
NLGN4X 0.22 0.52 0.07 0.13 0.00 0.13 313 Variable 
TXLNG 0.48 0.10 0.85 0.00 0.00 0.10 426 No expr. 
RBMX 0.09 0.33 0.42 0.07 0.00 0.09 498 Low expr. &   

Testis-specific 
PCDH11X 0.09 0.07 0.30 0.04 0.00 0.07 563 Variable 
EIF1AX 0.22 0.10 0.06 0.00 0.00 0.06 587 Ubiquitous 
USP9X 0.04 0.04 0.07 0.00 0.00 0.04 703 Ubiquitous 
TSPYL2 0.00 0.08 0.06 0.00 0.00 0.00 972 N.a. 

Table 9: Comparison of the levels of female-biased developmental expression for X gametologs and the 
expression patterns of their Y homologs in human. The columns Brain, cerebellum, heart, kidney, liver show 
the –log10 of the p-value in the respective organ. The median is calculated across all 5 organs, and is used to rank 
expressed X-linked genes in decreasing order of significance. 

 
In the case of EIF1AX, it is possible that similarly to what happened with mouse Ddx3x, we simply 

failed to identify female-biased expression even though it exists (because of a combination of the 

statistical method used, the low number of replicates, and the small effect size of female-male 

differences). As show in the figure below, we can observe a trend of female overexpression in kidney, 

liver, and early heart. 
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Figure 6: Developmental expression of EIF1AX in human males and females. The x-axis represents stages 
from early (4wpc, left) to late (senior, right) development for brain/forebrain (dark blue), hindbrain/cerebellum 
(light blue), heart (red), kidney (yellow), liver (green), ovary (pink) and testis (orange). Plotted is the median 
expression in each stage with the bars showing the range of expression among replicates. Expression for males in 
thin lines (bottom) and for females in bold lines (top). 

 
However, USP9X does not show any evidence for female-biased expression. It is unclear why for 

this single X gametolog, its Y gametolog ubiquitous expression in somatic organs is not correlated 

with a consistent female-bias. 

 

 
Figure 7: Developmental expression of USP9X in human males and females. The x-axis represents stages 
from early (4wpc, left) to late (senior, right) development for brain/forebrain (dark blue), hindbrain/cerebellum 
(light blue), heart (red), kidney (yellow), liver (green), ovary (pink) and testis (orange). Plotted is the median 
expression in each stage with the bars showing the range of expression among replicates. Expression for males is 
depicted in thin lines and for females in bold lines. 
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In conclusion, our data suggest that there are only two reasons for a gene to be systematically 

differentially over-expressed during development in females: either it is a gametolog of a broadly 

expressed Y gene, or is a lncRNA directly involved in XCI. These are discussed in page 42. 

 

Allelic contributions from Xa and Xi 
 
Given that most X-linked genes do not show consistent differences in expression between the 

sexes, and that it was shown in 1949 with the discovery of the Barr body, that the Xi is mostly inactive 

and condensed, we expect the physiology and chromatin state of the female Xa to be similar to those 

of the single male X. Therefore, one can expect that the contribution of the Xa to the female 

expression would correspond to the total expression observed in males, and that the additional 

expression in females (when present) would be due to the contribution of the Xi (Figure 8). 

 

 

 
Figure 8: Model of the allelic contribution of Xa and Xi to the total female expression, using the mouse 
Kdm6a in brain as an example. The x-axis represent development from left to right, and the y-axis represents 
the expression level. Coloured lines represent the expectation for the mean and the range correspond to 90% 
confidence interval with loess smoothing. 

 

Xi 

Xa 
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So far, the relative contributions of the Xa and Xi in females and the sex-bias in expression levels 

have not been jointly analysed in the same study. So for my final project in this doctoral work I 

compared the allelic contribution of each X to the total expression output in females and to the 

expression output in males. 

 

To do so, one needs to be able to attribute reads to either the active or to the inactive X. However, 

in eutherians one X chromosome is randomly inactivated in each cell [Migeon 2017]. Any RNA-seq 

dataset from bulk tissue contains cells with the maternal X inactivated (mXi), as well as cells with the 

paternal X inactivated (pXi). Most genes will therefore show expression coming from 2 alleles in the 

same proportion as that of the cell populations of mXi and pXi. Previous studies have therefore used 

single-cell RNA-seq in mouse and human to attribute expression to either the maternal or paternal X in 

adults [Berletch et al. 2015]. 

 

As developmental single-cell RNA-seq data was not available at the time of my doctoral work, I 

used another approach. In marsupials, XCI operates differently from eutherians in that XCI is 

restricted to the paternal X in females. This means that in female opossums, only genes that escape 

XCI will show expression coming from 2 alleles in bulk tissue data.  

 

The majority of opossum samples in the dataset are from individuals for whom we do not know the 

genomic sequence, and obtaining genomic data is no longer possible for many of the samples given 

that they were fully used for the RNA extractions. Therefore, in order to attribute expression to either 

the paternal or maternal alleles, I had to find the alleles present in each sample directly from the RNA-

seq data. For that, I used the mpileup tool from samtools [Li et al. 2009] which counts how many 

times each of the 4 nucleotides are encountered at each position of aligned reads (the input are the 

alignment bam files and the output are vcf tables with allele counts).  

 

However, given the nature of RNA sequencing and alignment, sequencing errors, genomic 

variations from the reference, and the allowance of alignment mismatches during the attribution of a 

read to a locus, virtually all positions within genes show more than one nucleotide. Therefore, given 

that opossums are diploid, I first discarded the least common nucleotides at each locus, if more than 2 

were represented. I then differentiated false SNPs from real alleles by removing X-linked variable 

positions that were also present in male samples (suggestive of misalignment), and only allowed for 

those variable positions that were supported by at least 50 reads, with at least 10% of them coming 

from a second allele. 

 

The results of this approach are illustrated using the gene Dkc1 (Figure 9). Dkc1 is known to escape 

XCI in marsupials. It was shown to have 37.5% of its contribution coming from the pXi in opossum 
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brain at e13 [Wang et al. 2014]. Despite not being significantly female-biased in our analysis (p-value 

= 0.2, 10th most consistently biased gene during development), the trend of female overexpression is 

clearly visible in our data. Out of 128 female samples, 21 had alleles that passed all filters. On 

average, the contribution of the second allele was 31.6% over all informative organs, stages, and 

replicates. The sample in our dataset for which we detected 2 alleles that is closest in time to the e13 

brain examined by Wang and colleagues is that of a 2 days post-birth brain, and it shows 38.7% of 

contribution from the second allele, which shows a good agreement. 

 

	 

Figure 9: Expression in opossum of Dkc1 in males and females, with estimated contribution from each 
allele. X-axis shows stages from early (e13.5, left) to late (180 days post birth, right) development for 
forebrain/brain (dark blue), hindbrain/cerebellum (light blue), heart (red), kidney (yellow), liver (green), ovary 
(pink) and testis (orange). The second timepoint corresponds to a neonate. The y-axis represents the median 
expression level between replicates. Expression for males is depicted by the thin lines and in females by the bold 
lines. The vertical lines represent the maximum and minimum expression among replicates. The barplots 
represent the relative contribution of the major allele (empty) and the minor allele (grey) on average in 
heterozygous samples. 

 
Unfortunately, Dkc1 was the only known sex-biased gene for which we detected a high number of 

heterozygous samples. This method relies completely on the natural frequency of heterozygous 

individuals for a gene. Given that our samples come from relatively inbred individuals, the probability 

of finding heterozygous genes is low. Moreover, the absence of genomic sequence data for the 

individuals sampled requires the use of several filters to separate technical variants from real 
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heterozygosity, which in turn, prevent us from identifying any minor allele representing less than 10% 

of the expression output. 

 

Despite promising, the optimal application of this method requires opossums created by crosses 

from 2 parents from divergent lineages, in order to ensure the highest possible levels of 

heterozygosity, and for the existing alleles to be known via DNA sequencing of the sampled 

individuals. 

 

  



	 37	

SEX-BIASED MICRO-RNAS 
 

Upon my arrival in the group, a pilot project was proposed to me regarding sex-biased expression 

of micro-RNAs. The available data consisted of adult samples for mouse gonads (2 females, 3 males), 

and opossum gonads (2 females, 3 males) and liver (3 females, 2 males). 

 

I performed the first exploratory analyses for this project. I aligned fastq files containing the short 

reads against the genome using Bowtie 1.1.2 [Langmead et al. 2009]. In Opossum, chromosome 1 is 

longer than what the Bowtie script will accommodate, so I had to transform the coordinates to 

artificially create an additional shorter chromosome. I used bedtools 2.19.1 [Quinlan 2014] to create 

read count tables. I then used DESeq2 [Love et al. 2014] in R to find significantly sex-biased 

miRNAs. As expected, the somatic tissues showed a much higher correlation in expression levels 

between the sexes than the gonads. Interestingly, an in accordance with previous studies, numerous X-

linked miRNAs in mouse and opossum showed a higher expression in testes than ovaries (Figure 10) 

[Song et al. 2009; Meunier et al. 2013] 

 

As no miRNAs were yet annotated on the mouse Y chromosome, I searched for unknown Y-linked 

miRNAs using the same transcriptome subtraction approach as used by Cortez and colleagues in 2014, 

and that I later modified to detecting potentially missing Y genes (Supplementary material S1). I 

removed from male libraries all reads that were also present in females. However, when I mapped the 

remaining reads to the Y chromosome, most reads mapped to locations known to produce piRNAs, 

and no satisfying new miRNA was found. 

 

 

These analyses were repeated by Dr. Maria Warnefors, who was at the time a postdoctoral fellow 

in the group, and were included in our publication in Genome Research [Warnefors, M., Mössinger, 

K., Halbert, J., Studer, T., VandeBerg, J. L., Lindgren, I., ... & Kaessmann, H. (2017). Sex-biased 

microRNA expression in mammals and birds reveals underlying regulatory mechanisms and a role in 

dosage compensation. Genome research.] 
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Figure 10: Comparison of expression levels between the sexes in opossum gonads (top left) and liver (top 
right) and mouse gonads (bottom left). Each point represents a miRNA that is expressed in at least one sample 
in the organ. The x-axis represents the median log10 of read counts between female replicates, and the y-axis 
represents the median log10 of read counts in males. The total number of expressed miRNAs and X-linked 
miRNAs (red points) is indicated. 
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DISCUSSION 
 

Across all 5 therian species, we observe a strong correlation between consistent female biased 

expression across organs and development in X gametologs and the ubiquitous expression of their Y 

chromosome partners.  

 

Caveats in the model used to identify sex-biased expression 
 

As shown for a few individual genes (e.g., Ddx3x in mouse, EIF1AX in human), the statistical 

analysis used to identify consistent sex-biased expression during development (based on a linear 

model) may have sometimes failed to identify some genes as significantly biased (false negatives), 

which can explain some of the differences in the number of significant sex-biased genes between 

species.  

 

The false negatives can be due to several factors, some of which can have variable effects between 

species, including the amount of genetic diversity in the species, and the grouping of replicates of 

slightly different stages to increase the number of biological replicates per timepoint. These factors 

will increase the variance in gene expression among replicates and therefore decrease the power to call 

differential expression. Other factors have a similar impact across species, and are intrinsic to the 

statistical model. Indeed, Limma fits linear models to the data to reject or not the hypothesis that two 

groups are equal. However, as shown by the work of Dr. Margarida Cardoso-Moreira, most genes are 

developmentally dynamic in at least one organ, and the temporal profiles may not be linear. 

 

In order to overcome these technical problems, a collaboration was initiated between M.Sc. 

Svetlana Ovchinnikova, a PhD student in Dr. Simon Anders group, in order to find more relevant tests 

that can be applied to developmentally dynamically regulated genes in a non-linear manner. Her initial 

results were consistent with this work for the genes discussed here. 

 

Consistent sex-bias across development, organs, and species 
 

Across all eutherians species studied here, some genes are consistently strongly sex-biased.  
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X gametologs 
 

Although already known to be over-represented among XCI escapers in adult tissues and cell 

cultures [Park et al. 2010], X gametologs show additional specific characteristics when their 

expression levels are compared between the sexes across development for multiple organs. 

 

Their expression patterns fall into 2 categories: Kdm6a, Eif2s3x, Kdm5c and to a lesser extent 

Ddx3x are among the most strongly, consistently female-biased genes, across all 4 eutherian species, 

while the rest of the gametologs are not sex-biased during development. When the breadth of 

expression of their Y homologs is considered, the correlation between consistent sex-bias and broad 

expression of the Y homolog is strong. 

 

The likely explanation for this correlation is that broadly expressed Y gametologs can compensate 

the expression of their X gametologs in males, as they retain a certain level of redundancy in function. 

This functional redundancy was shown, for example, by Yamauchi and colleagues in 2016 when they 

effectively replaced the Y-linked Eif2s3y by overexpressing their gametolog Eif2s3x. The potential 

complementation of the expression levels of X gametologs by their Y partners has been described in 

previous studies, and I observed it as well (Supplementary Figure S2). It is notable that, the 

hemizygosity of X gametologs is blamed for the phenotypes observed in the Turner syndrome (XO 

females), suggesting that for some X-linked genes the presence of genes expressed from a second X 

chromosome in females or from a Y chromosome in males is required. The candidate genes for Turner 

syndrome symptoms (webbed neck, puffy hands and feet, sterility) are mostly XCI escapers. 

(Reviewed in Hughes & Page 2015)  

 

On the other hand, Y-linked protein-coding genes that developed a male-specific function through 

the evolution of male-specific tissue expression, are no longer expressed in somatic tissues. Therefore, 

their X gametologs are susceptible to the same evolutionary forces that act on any other X-linked 

genes which have lost their Y homolog, and which, in therians, lead to dosage compensation via X 

chromosome silencing. 

 

Correlation between consistent sex-bias and dosage sensitivity 
 

The observation that only X gametologs of broadly expressed Y-linked genes consistently escape 

XCI during development (unlike the rest of the genes escaping XCI) correlates well with our 

knowledge on the dosage sensitivity of these genes [Park et al, 2010]. The recent discovery by [Naqvi 

et al. 2018] that dosage sensitivity differs between general escapers of XCI, genes not escaping XCI, 

and escapers that are gametologs of Y genes, from low to high sensitivity, respectively, reinforces the 
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idea that there are two kinds of escape from XCI: high dosage sensitivity forces some genes to 

maintain expression on two chromosomes (either XX or XY, depending on the sex) and low dosage 

sensitivity allows expression levels to be dictated by either 1 or 2 chromosomes with little impact on 

fitness, resulting in strong variability in escape between tissues, cell lines, individuals, species, and 

developmental stages. 

 

Overall, the conserved ancestral expression from 2 X chromosomes in females and from X and Y 

chromosomes in males is likely the “default” mode of sex chromosome expression, which will 

necessarily result in a consistent bias between the sexes regarding the expression of the X-linked 

genes. Therefore, the global XCI in females is possibly the secondary consequence of dosage 

compensation in males, either by the increase in transcriptional efficiency of X-linked genes and/or by 

the downregulation of their autosomal partners. A recent study conducted on the European common 

frog Rana temporaria’s homomorphic sex chromosomes supports this global model [Ma et al. 2018]. 

This study compared expression levels between males and females at 5 different developmental stages 

and for 3 adult organs (brain, liver and gonads). Among the genes studied, no gene showed consistent 

sex bias across development, and only 2% of genes showed sex bias across all three adult stages. They 

also didn’t find any differences in the male/female expression ratio between the autosomes and the sex 

chromosomes. Very interestingly, two differences are observed between the results in anurans and 

therians: 1) because of the homomorphism of their sex chromosomes, the notion of “gametology” 

doesn’t apply to this frog, and 2) no sex-biased gene was consistently significantly sex biased across 

developmental stages, and no loss of expression was observed between sex chromosomes and 

autosomes. This suggests that in absence of Y chromosome degradation, no consistent gene expression 

bias evolves. Most likely, in anurans there is no imbalance between the autosomes and the sex 

chromosomes in either sex, and therefore there is no need for dosage compensation systems, which in 

turn does not create the need for consistent sex biased expression. 

 

Female-biased lncRNAs 
 

Unsurprisingly, Xist is the most female-biased gene due to its female-specificity. LncRNAs 

involved in XCI upstream of Xist, like Jpx and Firre, show strong sex-biased expression (when 

expressed above 1 RPKM). However, unlike Xist, they are not female-specific. 

 

Their sex-bias is directly linked to their female-specific function, as they are required to have an 

efficient level of activity in females, but not in males.  
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Other genes that are sex-biased 
 

A third and final category of genes that show consistent sex bias are protein-coding genes and 

lncRNAs, some already known to escape XCI, that are not gametologs and that do not have any 

known direct involvement in XCI. Prior to this work, their characteristics as escapers were not 

particularly remarkable when compared to other escapers, and went mostly unnoticed among the large 

number of genes escaping XCI. However, their expression pattern throughout development groups 

them together with genes associated with one unique process: XCI. 

 

Given that understanding the molecular mechanisms responsible for the establishment of XCI is a 

hot topic in the field of sex chromosome dosage compensation, these genes are prime candidates for 

having a function in XCI. The functional study of these genes is already underway, as Dr. Mari Sepp, 

a postdoctoral fellow in the group, is currently exploring the spatial localization in the cell via 

Fluorescent In Situ Hibridization (FISH) of one of these candidate genes in Opossum: XLOC_045717. 

 

Allelic contribution in genes escaping XCI 
 

Because of the very condensed state of the inactive X (Xi) in mammals, and because the vast 

majority of X-linked genes show equivalent expression level between both sexes, it is reasonable to 

think that the general physiology of the active X (Xa) in females is equivalent to the one of the only 

male X. Therefore, we assumed that the female overexpression observed in a handful of genes is the 

result of the Xi contribution to expression. 

 

Testing this hypothesis has, however, proven difficult.  

 

Opossum Dkc1 gene promisingly fits the model of allelic contribution of Xa and Xi. However, the 

properties of the data available made it impossible to draw any more conclusions. The crossing of two 

well-diverged parental lines is crucial to obtain samples with heterozygous genes. Having genomic 

sequence for the individuals would also help lower the threshold for calling informative SNPs (which 

in the present approach requires at least 10% of contribution from the minor allele). Finally, advances 

in single-cell sequencing technologies will allow to perform this analysis on eutherians, as well as on 

any lineage showing random XCI. 
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CONCLUSION 
	

In this work, I compared the expression levels of genes on the X chromosome between males and 

females during development, for multiple organs and for multiple species. I discovered that only 

lncRNAs directly involved in X chromosome silencing, X gametologs of broadly expressed Y-linked 

genes, and a few protein-coding genes and lncRNAs with unknown function were significantly 

consistently biased across development and organs. Although some genes did not always pass the 

significance threshold, these trends were strongly conserved across species, in particular for lncRNAs 

and X gametologs of broadly expressed Y-linked genes. Due to their similarities in expression patterns 

with genes directly involved in XCI, the remaining genes with unknown function are of particular 

interest as candidates for having a function in XCI. Refinement of the statistical method used to call 

sex-biased expression will allow the reduction of false negative results. 

 

I proposed a model stating that the contribution of the inactive X to the total gene expression in 

females is responsible for the difference in total expression level between the sexes. The only gene 

informative to test this hypothesis is in conformity with the model. Further testing of this model will 

require more suitable data. 

 

Finally, I presented my contribution to a peer-reviewed publication regarding sex-bias in micro-

RNAs expression levels in eutherians. I highlighted the presence of a group of X-linked micro-RNAs 

that are overexpressed in male gonads, and searched for new micro-RNAs located on the mouse Y 

chromosome but without success. 
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SUPPLEMENTARY MATERIAL 
 

 

  
Figure S1: Pipeline used for Y-chromosome transcriptome assembly and Y-linked miRNA detection. The 
male and female indexes were created using my own Python script. The alignment against the female genome 
was done with TopHat version 2.1.1 [Kim et al. 2013]. The assembly into contigs was performed via Bridger-
r2014-12-01 [Chang et al. 2015]. The pipeline used for Y-linked miRNA detection did not need contig assembly, 
so it stops before the last step. 
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Figure S2: Combined expression from both sex chromosomes for Ddx3x/Ddx3y in cerebellum (top), and 
Kdm6a/Uty in brain (bottom), in mouse. Plots on the left show the expression of the X gametolog in males 
(blue) and females (red), while plots on the right show the expression of the X gametolog combined with the 
expression of its Y homolog. The x-axis shows stages from early (e13 for Ddx3x/Ddx3y, e10 for Kdm6a/Uty) to 
late (63 days post birth) development. The y-axis represent the expression level in RPKM. 

 

 

If the function of X and Y gametologs is at least partially redundant, broadly expressed Y 

gametologs can effectively complement the under-expressed X gametolog in males and increase the 

correlation of expression levels between the sexes. In Figure S2, we observe that combination of 

expression from both X and Y gametologs in males slightly exceeds the expression of the X 

gametolog in females. This is could be the result of functional divergence between the gametologs, 

that could reduce the redundancy in function.  

 


