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15 Summary 

SUMMARY 

Current approaches in the cancer field mainly focus on the identification of genetic alterations driving 

tumors. However, in many tumor types, including chronic lymphocytic leukemia (CLL), no underlying 

genetic mechanism has been identified in about 30% of the affected patients. Consequently, the focus of 

research has shifted towards epigenetic modifications, including aberrant DNA methylation as a potential 

driver contributing to tumorigenesis. Unlike genetic modifications, epigenetic alterations are potentially 

reversible, making them attractive targets for therapeutic interventions.  

Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in adults and originates from rapidly 

differentiating B cells, which undergo extensive epigenetic reprogramming during normal B cell 

differentiation. Every differentiation stage of a normal B cell is represented by unique patterns present at 

the DNA methylation level (methylation footprint), which is maintained and stably propagated in CLL. 

Consequently, this stable epigenetic patterning can serve as an indicator for the identification of the cell-of-

origin for each individual CLL case. For the purpose of this thesis, I define the cancer cell-of-origin as the cell 

that acquires sufficient oncogenic hits (genetic and/or epigenetic) to initiate its tumorigenic growth defined 

as a measurable deviation from the normal B cell differentiation trajectory. This means that at least two 

factors contribute to the epigenetic patterns seen in CLL: first, epigenetic patterns which were present in 

the tumor-initiating B cell at the time of transformation, and second, CLL-specific epigenetic alterations that 

occur during leukemogenesis and, which may relate to genetic alterations or to aberrant signaling events 

that the leukemic cells acquire in response to extrinsic or intrinsic stimuli. 

Defining CLL-specific epigenetic events, which are distinct from normal epigenetic B cell programming, is of 

utmost importance to understand the molecular alterations contributing to CLL. Previous studies in CLL 

have already proposed aberrant methylation events and attempted to describe their impact on the 

expression of both, protein-coding genes (e.g. DAPK1, ZAP70, ID4) and microRNAs (e.g. miR-9, miR-181a/b, 

miR-34a, miR-708). However, all these studies defined aberrant methylation events based on the 

comparison of CLL methylomes with those of peripheral blood CD19+ B cells as a control. As a result, these 

studies completely neglected the massive epigenetic programming that occurs during normal B cell 

differentiation. Therefore, novel approaches aiming at identifying truly CLL-specific methylation changes 

considering the highly dynamic methylome during normal B cell differentiation were urgently needed.  

In this thesis, I used linear modeling to describe the continuum of epigenetic alterations occurring during 

normal B cell differentiation. DNA methylomes of CLL cells were subsequently precisely positioned into the 

normal B cell differentiation trajectory to define the DNA methylomes of the cell-of-origin for every CLL 

patient. Considering this cellular origin, I identified CLL-specific methylation events as well as epigenetic 

alterations reflecting on normal B cell differentiation. The relevance of this approach was demonstrated by 

contrasting the number of epigenetically deregulated miRNAs and protein-coding genes to those 

determined using bulk CD19+ cells from peripheral blood as controls. This analysis highlighted the extent of 
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overcalling of leukemia-specific methylation changes in previous studies and highlights the importance of 

the use of proper control cells for the identification of disease-specific DNA methylation events. The 

analytical approach described in this thesis provides a general framework for the identification of the 

cancer cell-of-origin that could be applied in the future to other cancer entities. 
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ZUSAMMENFASSUNG 

Die Suche nach den Ursachen von Krebserkrankungen beschränkt sich hauptsächlich auf die Identifizierung von 

genetischen Veränderungen. Für einige Tumorentitäten, hierunter auch 30% der Patienten mit chronischer 

lymphatischer Leukämie (CLL), konnten jedoch keine solche Veränderungen  beschrieben werden. Somit gelangten 

anormale epigenetische Modifikationen, wie DNA-Methylierung, als Ursache von Tumoren in den Fokus der 

Forschung. Im Gegensatz zu genetischen Veränderungen sind epigenetische Modifikationen reversibel und somit 

attraktive Ansatzpunkte für Therapien.  

Die Chronische Lymphatische Leukämie ist die am häufigsten auftretende Form der Leukämie in Erwachsenen. Als 

Ursprung gelten B-Zellen, welche schnelle differenzieren und eine extensive, epigenetische Reprogrammierung 

durchlaufen. Jeder Differenzierungszustand einer normalen B-Zelle ist durch ein einzigartiges DNA-Methylierungs-

Muster gekennzeichnet, das in der CLL erhalten und stabil propagiert wird. Das Methylom kann daher als Indikator 

für die Identifizierung der Ursprungszelle für individuelle CLL-Fälle verwendet werden. In der vorliegenden Arbeit 

wird die Ursprungszelle als jene Zelle definiert, welche ausreichend onkogene, genetische sowohl als auch 

epigenetische, Veränderungen aufweist, um ein tumoröses Wachstum einzuleiten. Als tumoröses Wachstum wird 

hierbei eine messbare Abweichung von der normalen B-Zell Differenzierung definiert.  

Neben dem epigenetischen Muster der Tumor-initiierenden Zelle zum Zeitpunkt der Transformation definieren 

CLL-spezifische epigenetische Veränderungen das CLL-Epigenom. Letztere entstehen während der Leukemogenese 

und resultieren aus genetischen Veränderungen oder Reaktionen auf extrinsische sowohl als auch intrinsische 

Stimuli. Um die molekularen Veränderungen zu verstehen, die zur Entstehung von CLL beitragen, ist es notwendig 

CLL-spezifische Veränderungen zu definieren, welche unabhängig von den epigenetischen  Veränderungen 

während einer normalen B-Zell Differenzierung auftreten. Frühere Studien beschrieben bereits anormale 

Methylierung als Ursache für Veränderungen in der Expression von Protein-Kodierenden Genen sowie microRNAs 

in CLL. Jedoch beruhen diese Studien auf Vergleichen von CLL-Methylomen mit denen von CD19+ Zellen des 

peripheren Blutes, wodurch die massiven epigenetischen Veränderungen während einer normalen B-Zell 

Differenzierung vollkommen vernachlässigt wurden. Neue Herangehensweisen streben nun nach der 

Identifizierung von wirklichen CLL-spezifischen Methylierungsänderungen unter Berücksichtigung des dynamischen 

Methyloms differenzierender B-Zellen. 

In der vorliegenden Arbeit wurden lineare Modelle angewandt um das Kontinuum epigenetischer Veränderungen 

während normaler B-Zell Differenzierung mathematisch zu beschreiben. Um das Methylom von dem CLL-

Ursprungszellen zu bestimmen, wurden CLL-Methylome anschließend präzise in das Kontinuum der normalen B-

Zell Differenzierung eingeordnet. Unter Berücksichtigung des Methyloms der Ursprungszelle wurden epigenetische 

Veränderungen, die die normale B-Zell Differenzierung widerspiegeln, und CLL-spezifische Veränderungen des 

Methylierungsmusters, identifiziert. Der Vergleich der epigenetisch deregulierten microRNAs und Protein-

Kodierenden Gene, welche in dieser Arbeit identifiziert wurden, mit früheren Studien, in denen CD19+ Zellen aus 

peripheren Blut als Kontrolle verwendet wurden, unterstreicht die Relevanz dieser Arbeit. Zudem stellt die 
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vorliegende Arbeit den hohen Anteil von überbewerteten Leukämie-spezifischen Methylirungsänderungen heraus 

und macht die Bedeutung korrekter Kontrollen für die Identifizierung von erkrankungsbedingten Veränderungen 

der DNA-Methylierung deutlich. Das analytische Vorgehen, welches in der vorliegenden Arbeit beschrieben wird, 

dient als Basis für die Identifizierung von Tumor-Ursprungszellen und könnte in Zukunft auch für weitere 

Tumorentitäten von Bedeutung werden.  
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21 Introduction 

1. INTRODUCTION 

1.1 Chronic lymphocytic leukemia 

Chronic lymphocytic leukemia (CLL) is the most common type of adult leukemia in the western world (30% of all 

leukemia cases), and it is characterized by a progressive accumulation of monoclonal CD19+/CD5+/CD23+ B cells in 

the peripheral blood, bone marrow and secondary lymphoid organs. CLL is a cancer of the elderly with a median 

age at diagnosis of seventy-one years and a clear gender bias, with a male to female ratio of 2:1 [1, 2].  

Diagnosis of CLL 

The diagnosis of CLL is based on peripheral blood counts, blood smears and immunophenotyping [3] and requires a 

sustained lymphocytosis (≥5000 B lymphocytes/µL) in the peripheral blood for at least 3 months. In blood smears, 

the leukemic B cells appear as small, mature lymphocytes with a scant cytoplasm and rounded nuclei that are 

characterized by a dense chromatin and lack of discernible nucleoli. Frequently, blood smears of CLL patients show 

the presence of smudge cells, which are abnormally looking, ruptured B lymphocytes [3]. 

Immunophenotypically, CLL cells show co-expression of the T-cell antigen CD5 together with the B-cell surface 

antigens CD19 and CD23, low expression of CD20 and CD79b and immunoglobulin light-chain restriction [3, 4]. 

Prognostic features of CLL 

The clinical outcome of CLL patients is highly variable. Some of the patients have an indolent disease course and 

may survive for decades without any need for therapy, whereas other patients present with aggressive disease and 

die within a few years despite treatment. Up to now, two staging systems, Rai and Binet, developed more than 30 

years ago, have been routinely used in clinical practice [2, 5, 6]. However, these systems fail to faithfully 

discriminate between aggressive and indolent CLL cases since the majority of patients is asymptomatic at the time 

of diagnosis and classified as a low-stage disease (80%) [2, 7]. 

Therefore, recent efforts focused on an improved risk stratification for CLL, implementing a variety of clinical 

(lymphocyte doubling time, bone marrow infiltration pattern, serum thymidine kinase and β2-microglobulin levels) 

and expression markers (ZAP70, CD38 and CD49d expression levels) [8]. Likewise, molecular prognostic markers 

are broadly used. Among them: mutational status of a handful of genes (IGHV, TP53, NOTCH1, SF3B1, BIRC3, and 

EGR2) [9-22] or the presence of genomic aberrations (del(11q), del(13q), del(17p) and trisomy12) [23]. Currently, 

the mutational status of immunoglobulin heavy variable (IGHV) gene is the most commonly used molecular 

prognostic marker. It has been shown that patients carrying somatic hypermutations in the IGHV genes (M-CLL) 

have a superior overall survival and longer time to first treatment (TTFT), compared to those with unmutated IGHV 

status (U-CLL) [19, 21].  
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Currently, fluorescence in situ hybridization (FISH) analysis to detect relevant genomic aberrations (i.e. del(11q), 

del(13q), del(17p) and trisomy12) and TP53 mutational screening are recommended before the initiation of 

therapy [2]. The presence of TP53 aberrations i.e. del(17p) and/or TP53 mutations has been linked to poor 

prognosis and resistance to chemoimmunotherapy [2, 24]. Del(13q), which occurs in more than half of all CLL 

cases, has been associated with a particularly favorable clinical outcome and good response to 

chemoimmunotherapy with prolonged progression-free and overall survival [2, 25]. Del(11q) and trisomy 12 have 

been associated with an intermediate disease course [2, 23, 26]. 

 Treatment of CLL 

For decades, the front-line therapy for CLL was based on alkylating agents (chlorambucil) [27] and on purine 

analogs (fludarabine, pentostatin and cladribine) [28-30]. This approach has been challenged recently due to the 

development of highly active agents, including next-generation inhibitors of B-cell receptor signaling (BCR), Bcl-2 

antagonists and anti-CD20 antibodies [4]. 

Current treatment guidelines, according to the European Society for Medical Oncology (ESMO), suggest a ‘watch-

and-wait’ strategy for early-stage, asymptomatic CLL patients [31], since early treatment with chemotherapeutic 

agents in asymptomatic patients does not translate into improved survival rates [32]. The presence of one of the 

following signs should prompt initiation of CLL treatment: significant disease-related symptoms (fever without 

infection, weight loss or severe fatigue), lymphadenopathy, splenic or hepatic enlargement, lymphocyte doubling 

count <6 months and progressive anemia and/or thrombocytopenia [31].  

In symptomatic patients, the choice of treatment is based on the clinical status of the patient, which includes a 

history of infections, comorbidities and the presence of del(17p) or TP53 mutations. Physically fit patients without 

TP53 aberrations should receive chemoimmunotherapy consisting of fludarabine, cyclophosphamide and 

rituximab (FCR). However, in older patients or in case of the presence of significant comorbidities, a combination 

of chlorambucil and anti-CD20 antibody (rituximab, ofatumumab or obinutuzumab) is recommended. On the 

contrary, patients carrying TP53 abnormalities have a poor prognosis with a disease resistant to standard 

therapeutic regimens. These patients should be treated with next-generation BCR inhibitors (ibrutinib, idelalisib) or 

with a combination of idelalisib and anti-CD20 antibody, rituximab. Additionally, CLL patients achieving remission 

should be considered for allogeneic hematopoietic stem cell transplantation (alloHSCT) [31].  

Interestingly, several epigenetic compounds including histone deacetylase inhibitors and demethylating agents 

have been tested in CLL [33-39]. However, lack of response has hindered their broader use in the clinical setting. 

The low efficacy of these agents is most likely due to the low proliferative rate of CLL cells or low expression levels 

of hENT1 transporters that are indispensable for the decitabine/azacitidine uptake by the cells [40]. Another 

aspect is the global hypomethylation pattern detected in CLL [41, 42], suggesting that demethylation therapies 

may not be optimal for CLL treatment. 
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1.2 The genome of CLL 

Compared to other tumor entities, CLL has been shown to have a rather stable genome [23, 43]. At the time of 

diagnosis, the vast majority of CLL patients (80%) carry no or very few chromosomal aberrations. The remaining 

20% of cases exhibit complex karyotypes, with three or more genomic abnormalities [44]. The most frequently 

observed chromosomal aberrations are partial losses of chromosomes, such as deletions of 13q14 (50-60%), 

11q22-q23 (~20%), 17p (~10%), 6q15-q21 (6%), or gain of chromosome 12 (16%) [23]. The deleted chromosomal 

segments contain functionally important genes. For instance, both del13q14 and del17p13 disrupt the function of 

crucial tumor suppressor genes in CLL, miR-15a/16a and TP53, respectively [45]. Likewise, del11q22-23 affects the 

ataxia telangiectasia mutated (ATM) gene, which is known as a safeguard of genomic integrity, and which leads to 

genomic instability in this subgroup of CLL [46-49].  

In contrast to other B-cell neoplasms, in CLL, recurrent chromosomal translocations are rare, which is most likely 

related to its cellular origin from post-germinal center B cells [23, 50-52]. For instance, in the case of another 

translocation-rich B cell cancer entity, non-Hodgkin lymphoma, translocations are the result of aberrant, erroneous 

germinal center processes, class switch recombination and somatic hypermutation, two mechanisms that are 

active in the germinal center B cells [53].  

Puente and colleagues have comprehensively evaluated the genomic landscape of CLL showing that the 

frequencies of acquired single nucleotide variants (SNVs) are low relative to other cancer entities, with an average 

mutation burden of 0.87 mutations per megabase (Mb) [54]. The number of somatic variants was higher in IGHV-

mutated than in IGVH-unmutated tumors. Integrated analysis of mutations in 452 CLL cases identified three main 

molecular signatures: 1) an age-associated signature with C-to-T transitions affecting CpG dinucleotides, 2) T:A > 

G:C transversions, and 3) an activation-induced cytidine deaminase (AID) signature. Eight pathways are frequently 

affected by mutations in CLL: BCR signaling, apoptosis, cell cycle regulation, DNA damage response, NOTCH1 

signaling, chromatin remodeling, NF-κB signaling, and RNA metabolism [54] (Figure 1-1). The most frequently 

mutated genes are NOTCH1 (12.6%), ATM (11%), SF3B1 (~9%), BIRC3 (~9%), CHD2 (6%), TP53 (~5-6%) and MYD88 

(4%). Novel recurrently mutated genes, previously not linked to the disease, have been reported, including EGR2, 

ZNF292, ARID1A, SETD2, ZMYM3, PTPN11, KRAS, NRAS, CDKN1B, CDKN2A and IKZF3. Together, these analyses 

have demonstrated that a number of epigenetic regulators, including CHD2, SETD2, ARID1A, ASXL1, SETD1A, MLL2, 

ZMYM3, and HISTH1B are frequently affected by mutations in CLL, highlighting the interplay of genetic and 

epigenetic mechanisms in CLL [54] (Figure 1-1).  
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Figure 1-1: Significantly mutated genes and pathways in CLL. Schematic representation of the major molecular 

pathways altered in CLL. The most recurrently mutated genes in CLL are grouped according to the biological 

pathways involved. Details are given in the text (modified from [54]).   
 

In the future, it will be important to further investigate the functional role of gene mutations affecting epigenetic 

regulators, but also to get a more comprehensive view on the mutations affecting non-coding regions in the CLL 

genome. There are several recent reports highlighting the contribution of mutations affecting enhancers and 

promoters to establish aberrant gene expression patterns in CLL [2]. For instance, mutations targeting an enhancer 

region regulating the B-cell specific transcription factor, PAX5, have been linked to decreased expression levels of 

PAX5 in CLL [54]. The same PAX5 enhancer is also frequently altered in other B-cell neoplasms, e.g. in follicular 

lymphoma (23%) and mantle-cell lymphoma (5%), suggesting that this may be a general driver event in B-cell 

malignancies [2, 54]. Likewise, Kandaswamy and colleagues linked the single nucleotide polymorphism rs539846 to 

a CLL risk locus on chromosome 15 (15q15.1), and to the RELA binding site within the B-cell super-enhancer region 

of B cell lymphoma 2-modifying factor (BMF). The authors demonstrated that an allelic variant in rs539846 alters 

the conserved RELA binding site which results in decreased enhancer activity, reduced RELA binding and decreased 

BMF expression and ultimately leads to elevated expression of BCL-2 [2, 55]. Most recently, non-coding mutations 

recurrently targeting regulatory regions of genes involved in B-cell development (BCL6, IKZF1, PAX5), NF-B 

signaling (VOPP1, TCL1A, BACH2, BIRC3), DNA damage response (BTG2, BCL2) and NOTCH signaling (HDAC9) have 

been reported [56].  

1.3 Epigenetics in CLL 

1.3.1 Definition of epigenetics 

The term “epigenetics” was introduced by Conrad Waddington in 1942 and defined as ‘the branch of biology which 

studies the causal interactions between genes and their products which bring the phenotype into being’ [57, 58]. 

Over time, this definition has gradually narrowed to ‘the study of changes in gene function that are mitotically 

and/or meiotically heritable and that do not entail a change in DNA sequence’ [59].  
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Epigenetic marks are established during development and differentiation and are stably maintained during cell 

divisions, enabling tissue-specific gene expression patterns despite identical genetic information present in each 

cell of an organism. To date, several epigenetic mechanisms involved in regulation of gene expression patterns 

have been identified. These include DNA modifications (cytosine methylation and hydroxymethylation) [60-62], 

non-coding RNAs (microRNAs, long non-coding RNAs) [63, 64], post-translational modifications of histone tails [65, 

66], nucleosome positioning [67], and 3D genome organization [68, 69]. The epigenetic regulation of gene 

expression has been extensively characterized by Chen et al. [70] and Jaenisch et al. [71]. In this thesis, I will focus 

on DNA methylation to characterize epigenetic patterns during normal B cell differentiation and in CLL. 

1.3.2 DNA methylation and transcriptional regulation 

DNA methylation is by far the most extensively studied epigenetic mark. Although, initially, it was hypothesized 

that DNA methylation may play a role in the regulation of gene expression, it was not until the 1980s when two 

groups, Holliday and Pough [72], and Compere and Palmiter [73] demonstrated that DNA methylation is 

dynamically regulating gene expression patterns and therefore is essential for cellular differentiation. Recent 

studies have presented a broad spectrum of functions for DNA methylation: programming of DNA methylation 

patterns play an important role in embryonic development [74, 75] and in genomic imprinting [76], as well as in X 

chromosome inactivation [77], RNA processing [78, 79], and in the maintenance of genomic integrity by repressing 

transcription from transposable elements [80-82].  

DNA methylation refers to a chemical modification of the pyrimidine ring of cytosine, which in mammalian cells is 

usually found in the context of CpG dinucleotides [83]. The chemical reaction is catalyzed by a family of enzymes 

called DNA methyltransferases (DNMTs). DNA methylation is established de novo by DNMT3A and DNMT3B 

enzymes, while DNMT1 plays a role in the maintenance of methylation patterns during cell division, using 

hemimethylated DNA generated during DNA replication as a template. DNMTs catalyze the addition of a methyl 

group (-CH3) to the fifth position of the cytosine ring, yielding 5-methylcytosine (5mC). The 5mC mark is faithfully 

maintained during cell divisions until it is removed by passive or active de-methylation processes. Ten-eleven 

translocation (TET) proteins are involved in active de-methylation, catalyzing the oxidation of 5mC to 5hmC (5-

hydroxymethylcytosine), and further to 5fC (5-formylcytosine) and/or 5caC (5-carboxylcytosine). The final step of 

such a demethylation would be base-excision facilitated by thymine-DNA glycosylase (TDG), which detects 5fC and 

5caC and subsequent repair of the abasic site. Passive DNA de-methylation occurs as a failure to actively maintain 

DNA methylation marks upon DNA replication [84, 85] (Figure 1-2). 
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Figure 1-2: DNA methylation and demethylation. DNA methyltransferases (DNMTs) catalyze the addition of a 

methyl group to the position C5 of the cytosine ring. The process of demethylation is catalyzed by Ten-eleven 

translocation (TETs) enzymes. At first, TETs catalyze the oxidation of 5-methylcytosine (5mC) to 5-

hydroxymethylcytosine (5hmC). Subsequent oxidative reactions lead to conversion of 5hmC into 5-formylcytosine 

(5fC) and 5-carboxylcytosine (5hmC). Further, 5fC and 5caC marks are actively reverted to unmodified cytosine 

through thymine-DNA glycosylase (TDG)-mediated base excision repair (BER) or passively during DNA replication. 

 

Cytosine methylation is abundant in mammals and is mainly established in the context of CpG dinucleotides, 

although the presence of non-CpG methylation was demonstrated in neuronal and embryonic stem cells [86-88]. 

DNA methylation also occurs in invertebrates, where it is described as ‘mosaic methylation’: highly methylated 

regions are interspersed with methylation-free domains [89, 90].  

In total, the human genome contains about 2.9 x 107 CpG dinucleotides. On a global level, this means that the 

human genome is depleted in CpGs, meaning that the frequency of CpG dinucleotides is lower than what would be 

expected by chance. CpG dense regions, known as CpG islands (CGI) form an exception from this. CGI are defined, 

according to Gardiner-Garden and Frommer [91] as DNA sequences longer than 200bp, with a GC content (%GC) 

greater than 50%, and an observed/expected ratio of CpG to GpC higher than 60% [91]. There are about 29,000 

CGI in the human genome, frequently coinciding with transcription start sites (TSS) of annotated genes [92]. More 

than 60% of protein-coding genes in the human genome associated with CGI. Typically, CGI mark promoters of 

house-keeping genes but can also drive the expression of tissue-specific and of developmental genes [93-95]. The 

remaining CGI are located within (intragenic) or between (intergenic) transcripts, and are known as ‘orphan CGI’. 

Interestingly, many of the ‘orphan CGI’ show characteristics of functional promoters [96]. However, frequently 

they become methylated during development, losing their transcriptional-initiation properties [96].  
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In general, the majority of CpG sites in the human genome are methylated. CpG dinucleotides located in CGI are an 

exception to this, as they are normally unmethylated. The most heavily methylated regions (~85%) are associated 

with repetitive elements such as short interspersed nuclear elements (SINEs), long interspersed nuclear elements 

(LINEs), and satellite DNA sequences in pericentromeric regions. Furthermore, DNA methylation levels are linked 

to replication timing [97-99]. In contrast to late-replicating genomic regions, early replicating regions are 

characterized by higher methylation levels which are faithfully maintained during cell divisions. Hence, repeated 

cell divisions lead to a gradual loss of methylation in the late replicating, heterochromatic regions [97-99]. 

The presence of DNA methylation in promoter regions correlates with lack of transcription [100]. The question 

remains whether this simply reflects the lack of transcription or whether promoter DNA methylation is able to 

actively repress transcription. According to the first model, promoters of active genes lack DNA methylation: the 

feature that has been linked to a binding of activating transcription factors (TFs). In this scenario, high DNA 

methylation levels in the promoters of inactive genes are the consequence of the absence of the binding of 

transcriptional activator [101-104]. According to the repression model, DNA methylation directly or indirectly 

interferes with binding or procession of the transcriptional machinery. The latter can occur through the 

recruitment of methyl-CpG-recognizing transcriptional repressors, either containing methyl-CpG-binding domain 

(MBD) such as MeCP2, MBD1, MBD2 and MBD4 or zinc-finger domains, e.g. KAISO, ZBTB4, ZBTB38, and ZFP57. 

These proteins can further recruit chromatin repressors, and therefore mediate transcriptional silencing ([105-

107], reviewed in [108]). 

Recent studies have shown that methylation levels are widely modulated not only in promoter regions but also in 

intragenic and intergenic regions. It became evident that DNA methylation within gene bodies is involved in the 

regulation of multiple processes, e.g. transcript elongation [109, 110], enhancer activation [41, 87, 111, 112], 

expression of intragenic coding and non-coding transcripts [113-117] as well as alternative splicing [78, 118-124]. 

Multiple genome-wide epigenetic studies have reported a positive correlation between intragenic DNA 

methylation and gene expression levels, both in the course of normal development and during cancer progression 

[41, 87, 110, 125-127].   

The importance of DNA methylation is emphasized by the growing number of reports showing deregulated DNA 

methylation patterns in human diseases, including cancer (reviewed in [128, 129]). In 1983, for the first time, 

aberrant DNA methylation has been linked to cancer. At that time, two seminal studies by Feinberg and 

Vogelstein, and Gama-Sosa et al. have shown that a substantial proportion of CpGs was hypomethylated in cancer 

cells as compared to their normal counterparts [130, 131]. These findings have been further complemented by 

recent genome-wide DNA methylation studies, in which global hypomethylation profiles were reported across 

different tumor entities, e.g. chronic lymphocytic leukemia, medulloblastoma and colon cancer [41, 132, 133].  

Hypomethylation of single genes, such as S100A4 in colon cancer or SNCG in breast and ovarian cancer, leads to 

their transcriptional activation [134, 135]. Global DNA hypomethylation, as it is often observed in cancer, occurs 

mainly in repetitive regions and gene bodies, and leads to genomic instability, loss of imprinting and reactivation of 
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transposable elements (Figure 1-3) (reviewed in [128, 129]). Together, DNA hypomethylation in cancer supports 

the acquisition of genomic aberrations and (re-)activates genes that are essential for tumor cell survival and 

metastasis [129].  

In contrast to aberrant DNA hypomethylation events, gene-specific hypermethylation in cancer occurs 

predominantly in and around CpG-rich regions including CGI, which are usually unmethylated in normal somatic 

cells (Figure 1-3) [136]. This results in transcriptional silencing of growth regulatory genes, including tumor 

suppressor genes (TSGs), e.g. BRCA1 in breast cancer, RB1 in hereditary retinoblastomas or APC in colorectal 

cancer (reviewed in [137]). Overall, tumor-specific hypermethylation targets genes involved in cell signaling, cell-

cycle regulation, chromatin remodeling, DNA repair, transcription and apoptosis [138]. It is very likely that 

aberrant gain of methylation contributes to transformation as hypermethylation events are already detectable in 

the earliest precursor lesions [139, 140]. 

 

Figure 1-3: DNA methylation in normal and cancer cells. In normal cells, promoter-associated CGIs are lowly 

methylated (white circles) allowing gene transcription, while CpGs located in gene bodies and repetitive regions 

are heavily methylated (red circles). In tumor cells, de novo methylation of promoter-associated CGI leads to 

transcriptional silencing of growth-regulatory genes, e.g. tumor suppressor genes, while gene bodies and repeat-

rich regions become hypomethylated. TSG, tumor suppressor gene; CGI, CpG island.   

 

1.3.3 CLL methylome 

Epigenetic research in CLL started from gene-specific studies. In 1988, Lipsanen et al. as first ones reported 

epigenetic deregulation in CLL. Hypomethylation of the ornithine decarboxylase (ODC) and the erb-A1 genes was 

detected in samples from CLL patients as compared to leukocytes from the healthy donors [2, 141].  Likewise, 

promoter hypomethylation of TCL1 was reported to induce higher expression levels of this gene in CLL [142]. Given 

that TCL1 overexpression resulted in CLL development in the Eμ-TCL1 mice models [143], this finding was a clear 

demonstration of the causative role of promoter hypomethylation in CLL development. 
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With the exception of few reports on promoter hypomethylation, studies on aberrant DNA methylation in CLL 

have been dominated by the primary focus of understanding promoter hypermethylation. As a result, a number of 

targets of clinical and biological importance have been identified. Among the genes affected by hypermethylation 

are tumor suppressors, TFs, genes regulating cell survival and proliferation, and microRNAs, for some of which 

prognostic relevance has been demonstrated (reviewed in [144]). 

In CLL, one of the first descriptions of an aberrantly methylated promoter was published for E-cadherin (CHD1) in 

2000 by Melki and colleagues. Hypermethylation correlated with reduced or absent expression of CHD1 in CLL as 

compared to control B cells [145]. Promoter hypermethylation of the catalytic subunit of telomerase, human 

telomerase reverse transcriptase (hTERT), was subsequently reported in 2002. The gain of methylation correlated 

with lower telomerase activity, shorter telomere length and superior overall survival [2, 146]. In 2005, Raval and 

colleagues demonstrated differential methylation between IGHV mutated (M-CLL) and unmutated CLL (U-CLL) 

patients in the promoter region of the transcription factor TWIST2, a regulator of p53. In that study aberrant 

promoter hypermethylation was mainly detected in M-CLL, correlated with mRNA expression levels. Thus, TWIST2 

hypermethylation was suggested as a potential alternative mechanism for p53 inactivation in CLL [147].  

Likewise, a gain of methylation in intron 1 of zeta-chain-associated protein kinase 70 (ZAP70) was found to be 

associated with loss of ZAP70 expression and a favorable clinical outcome [2, 148-150]. This was an important 

finding since ZAP70, a member of SYK protein tyrosine kinase family, was a known prognostic marker in CLL, used 

to discriminate between U- and M-CLL subtypes. U-CLLs have an about 6-fold higher ZAP70 expression as 

compared to M-CLLs and ZAP70 expression correctly predicts IGVH mutation status in 93% of patients [2, 151]. 

HOXA4, a member of the HOX family of transcription factors, which is crucial for the regulation of early 

development, has also been shown to be aberrantly methylated in CLL. Elevated methylation levels were linked to 

decreased protein levels, IGHV mutational status and to inferior clinical outcome [2, 152]. Finally, promoter 

hypermethylation of the apoptosis-mediating death-associated protein kinase 1 (DAPK1) gene, has been shown to 

mediate its transcriptional silencing. Interestingly, DAPK1 expression can be modulated both by somatic and 

germline events in CLL, suggesting epigenetic deregulation as an alternative mechanism of its inactivation in CLL [2, 

153]. 

In recent years these gene-specific studies were complemented by genome-wide profiling studies. Global 

methylation profiling in CLL has shown that IGHV mutation-defined CLL subgroups are characterized by unique 

methylation profiles and that CLL methylomes are relatively stable over time and highly similar between the 

resting (peripheral blood) and the proliferative (lymph node) compartment, implying aberrant methylation as an 

early leukemogenic event [2, 144]. Very recently, it was proposed that the traditional way of comparing CLL 

methylomes to normal CD19+ B cells should be replaced by an approach that considers DNA methylation dynamics 

in the context of normal B-cell differentiation. The main findings of the epigenome profiling studies in CLL are 

summarized in Table 1-1. 
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Table 1-1: Summary of genome-wide epigenome profiling in CLL 

Topic and Main findings Technology  Reference 

DNA methylation profiles of different CLL prognostic subgroups 

 U-CLL, M-CLL and IGHV3-21 expressing CLLs are carrying different 

methylation profiles.  

 In a poor prognostic group, U-CLL, tumor suppressors (e.g. VHL, ABI3, 

IGSF4) are hypermethylated while genes associated with cell 

proliferation and invasion (ADORA3, PRF1) are hypomethylated. 

Illumina 

HumanMethylation 

27K BeadChip 

Kanduri et al., 

Blood 2010 

[154] 

Global profiling of epigenetically deregulated microRNAs in CLL 

 128 microRNAs are carrying aberrant DNA methylation in their 

promoter regions. 

 Hypermethylated loci include miR-124-2, miR-9-2, miR-129-2, miR-

551b and miR-708 while among the hypomethylated ones are miR-

21, miR-29a/b-1, miR-34a, miR-155, miR-574 and miR-1204. 

Agilent custom-

design 244 array, 

MCIp-array, ChIP-

chip 

Baer et al., 

Cancer 

Research 2012 

[155] 

Whole-genome bisulfite sequencing in CLLs and normal B cells 

 Broad epigenetic reprogramming occurs during normal B-cell 

differentiation/maturation and CLL development. The epigenetic 

progression involves mainly global hypomethylation affecting 

enhancers and gene bodies.  

 An epigenetic signature of CLL is associated with a putative B cell-of-

origin. 

 CLL patients are classified into three epigenetic subgroups, i.e. poor-

prognosis naïve-like CLL (n-CLL), favorable-prognosis memory B cell-

like CLL (m-CLL) and intermediate CLL (i-CLL) with the intermediate 

clinical outcome. 

WGBS, Illumina 

HumanMethylation 

450K BeadChip  

Kulis et al., 

Nature Genetics 

2012 [41] 

DNA methylation profiles of paired diagnostic/follow-up samples 

from M-CLL/untreated, U-CLL/treated and patient-matched 

blood/lymph node samples 

 M-CLLs and U-CLLs display differential DNA methylation, affecting 

mainly regions outside annotated CpG islands. 

 CLL prognostic genes (e.g. CLLU1, LPL, ZAP70 and NOTCH1), 

epigenetic regulators (e.g. HDAC9, HDAC4 and DNMT3B) and several 

signaling pathways (TGFβand NF-κB/TNF) are differentially 
methylated. 

 DNA methylation is stable over time and in different hematopoietic 

compartments (blood, lymph nodes), implying aberrant methylation 

as an early leukemogenic event. 

Illumina 

HumanMethylation 

450K BeadChip, 

Bisulfite 

Pyrosequencing 

Cahill et al., 

Leukemia 2013 

[156] 

Evolution of DNA methylation in CLL 

 Intratumor methylome variation in CLL is associated with shorter 

time to treatment and disease aggressiveness. 

 Increased methylation heterogeneity co-evolves with genetic 

alterations such as mutations in TP53, SF3B1, BRAF and del(11q) and 

del(17p). 

 Independent evolution of epigenetic and genetic events are rare 

events and may be restricted to specific aberrations only e.g. 

del(13q). 

Illumina 

HumanMethylation 

450K BeadChip, 

454-sequencing 

Oakes et al., 

Cancer 

Discovery 2014 

[157] 

Epigenetic variability in primary CLL samples and its impact on the 

patient outcomes 

 High intratumor epigenetic variability in CLL results from locally 

WGBS, RRBS Landau et al., 

Cancer Cell 

2014 [158] 
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disordered methylation patterns (variability within DNA fragments) in 

the malignant B cells. 

 Disordered methylation serves as an additional mechanism of genetic 

diversification, resulting in increased survival of CLL cells. 

Genetic and epigenetic changes during progression from indolent to 

aggressive CLL 

 Disease progression is in majority of CLL cases not linked to genetic 

clonal evolution. 

 Significant DNA methylation changes during disease progression 

occur at CpGs near PRC2 targets. 

 The progression-associated CpGs undergo methylation changes in the 

same direction as those found during normal B-cell differentiation. 

Exome Sequencing, 

Illumina 

HumanMethylation 

450k BeadChip, 

Illumina Omni 2.5 

BeadChip arrays 

Smith et al., 

Blood Cancer 

Journal 2015 

[159]   

Whole-genome profiling of DNA methylome during B-cell 

differentiation and in lymphoid malignancies 

 Broad epigenetic reprogramming occurs during the B-cell 

commitment and differentiation.   

 Early differentiation changes involve the demethylation of enhancer 

regions whereas late B-cell commitment stages mainly affect 

heterochromatin (demethylation) and PRC2-repressed genes (gain of 

methylation). 

 B-cell neoplasms frequently acquire methylation changes in regions 

which already undergo dynamic methylation during normal B-cell 

differentiation. 

WGBS, Illumina 

HumanMethylation 

450k BeadChip  

Kulis et al., 

Nature Genetics 

2015 [160] 

Clinically applicable method to identify epigenetic subgroups in CLL 

 5 CpG-based classifier accurately assigns patients into three CLL 

subgroups i.e. n-CLL, i-CLL and m-CLL. 

 Epigenetic classification correlates with distinct clinico-biological 

features, e.g. outcome, Binet stage, CD38 expression levels and 

SF3B1 mutations.  

Bisulfite 

Pyrosequencing 

Queirós et al., 

Leukemia 2015 

[161]  

CLL methylation in the context of normal B-cell differentiation 

 CLLs derive from a continuum of the maturation stages reflected in 

the normal B-cell differentiation. 

 CLL is classified into three subgroups, namely LP-CLL, IP-CLL and HP-

CLL, based on the overall levels of methylation programming, relative 

to normal B-cell differentiation.                                                                        

 Higher CLL maturation stage (HP-CLL) correlates with a favorable 

clinical outcome and an indolent gene expression pattern.                        

 Large proportions of previously identified methylation events in CLL 

are observed during the normal B-cell differentiation process. 

 There is a potential role of aberrant transcription factor programming 

(EGR, NFAT, EBF, AP-1) in the pathogenesis of CLL. 

WGBS, Illumina 

HumanMethylation 

450k BeadChip 

Oakes et al., 

Nature Genetics 

2016 [42] 

CLL epigenome in the context of normal B-cell differentiation 

 The epigenetic configuration of CLLs can be divided into three 

different patterns.  

 Pattern 1: U-CLLs and M-CLLs show imprints of their cellular origin on 

the level of DNA methylation and chromatin accessibility, but not for 

active regulatory regions marked with H3K27ac. 

 Pattern2: The chromatin landscape in CLL can be linked to complex 

dynamics during B cell differentiation process that relates U-CLLs and 

M-CLLs to a variety of combinatorial patterns in B cells, e.g. U-CLLs 

acquire features of GCBCs that may be associated with higher 

WGBS, ATAC-seq, 

ChIP-seq 

Beekman et al., 

Nature 

Medicine 2018 

[162] 
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proliferation rate of U-CLLs as compared to M-CLLs. 

 Pattern3: CLLs reconfigure their chromatin landscape independent of 

normal B cell differentiation. This de novo chromatin reprogramming 

is mediated by NFAT, FOX and TCF/LEF transcription factors and is 

characterized by a transition from inactive regions in normal B cells to 

super-enhancers in CLLs. 

 Although most genetic aberrations are not associated with consistent 

epigenetic profiles, MYD88 and trisomy 12 have distinct chromatin 

features. 

U-CLL, IGHV-unmutated CLL; M-CLL, IGHV-mutated CLL; PRC2, polycomb repressive complex 2; LP-CLL, low-programmed CLL; IP-CLL, 

intermediate-programmed CLL; HP-CLL, high-programmed CLL; ChIP, chromatin immunoprecipitation; WGBS, whole-genome bisulfite 

sequencing; RRBS, reduced representation bisulfite sequencing. GCBC; germinal center B cell. Adapted from [2]. 

 

1.3.4 CLL displays genome-wide hypomethylation 

In 1992, Wahlfors and colleagues as first ones demonstrated global DNA hypomethylation in CLL as compared to 

healthy controls [163]. These findings were confirmed by Stach et al. and Fabris et al. using capillary 

electrophoresis and quantitative bisulfite-PCR pyrosequencing, respectively [164-166]. The latter study evaluated 

the methylation status of repetitive DNA elements, including satellite-α sequences (SAT-α), Alu and LINE-1, in the 

early-stage CLL cases and thus identified global hypomethylation in CLL. Low SAT-α methylation was an 

independent prognostic marker and correlated with shorter treatment-free survival [165]. Hypomethylation of 

repetitive sequences may lead to genomic instability and therefore might contribute to the clonal evolution of CLL 

by favoring the acquisition of genomic aberrations. 

Using whole-genome bisulfite sequencing (WGBS) and DNA methylation arrays, in 2012 Kulis et al. have 

extensively characterized DNA methylomes of 139 CLL (M-CLL and U-CLL) patients and normal B cell subsets, 

reporting a global loss of methylation in both instances [41]. DNA hypomethylation was shown to primarily target 

gene bodies and enhancer regions, indicating the functional relevance of methylation changes outside of promoter 

regions. Kulis et al. subclassified CLL samples into three epigenetic subtypes: each of them presenting DNA 

methylation foot-prints reminiscent of their putative B cell-of-origin [41]. In another seminal study, Oakes et al. 

replicated these findings, further showing that subtype-specific DNA hypomethylation events mainly target 

enhancers and TF binding sites while hypermethylation events occur primarily in actively transcribed genomic 

regions [42].  

1.3.5 Distinct methylation profiles in CLL subgroups relate to different cellular origins   

In the last 10-15 years, the focus of CLL methylome studies was to identify differential methylation patterns 

between distinct molecular subtypes of CLL patients. Here, the introduction of methylation arrays provided the 

opportunity to investigate the methylation status of thousands of CpG sites simultaneously. In one of the first 

studies, using 27K methylation arrays, Kanduri and colleagues have demonstrated global differences between 

methylation profiles of U-CLL and M-CLLs. Seven candidate tumor suppressor genes (e.g. ABI3, VHL and IGSF4) and 

eight genes involved in cell proliferation and tumor progression (e.g. PRF1, ADORA3) were identified as being 
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differentially methylated in these two major CLL subtypes [2, 154]. Likewise, the differences in global methylation 

profiles between U-CLL and M-CLL were further characterized with the use of second-generation methylation 

arrays (450K). As a result, alternative differential methylation patterns between CLL subgroups were found in 

genes involved in BCR-, TGF-β- and NF-κB/TNF-signaling pathways, in genes encoding epigenetic regulators (e.g. 

HDAC9, HDAC4 and DNMT3B), and in genes known to be of prognostic value in CLL, such as CLLU1, LPL, ZAP70 and 

NOTCH1 [2, 156].  

More recently, considering DNA-methylation dynamics during normal B-cell maturation, new clinico-biological CLL 

subgroups have been identified, demonstrating that methylation profiles of different CLL subgroups reflect on 

different cellular origins. In the initial study by Kulis et al. in 2012, the methylomes of 139 CLL patients, with and 

without IGHV mutations, and of three normal B cell subtypes, i.e. naïve B cells (NBCs), class-switched memory B 

cells (scMBCs) and non class-switched memory B cells (ncsMBCs) were characterized. In this study, it was shown 

that widespread epigenetic reprogramming occurred during normal B cell differentiation which is also reflected in 

CLL development. The epigenetic changes involved mainly loss of methylation in enhancer regions and gene 

bodies. Three prognostic CLL subgroups were identified, i.e. NBC-like CLL (n-CLL), largely overlapping with IGHV-

unmutated CLL, intermediate methylation cluster CLL (i-CLL) with an intermediate clinical outcome, and an MBC-

like CLL (m-CLL) subgroup mostly carrying mutated IGHV genes. The epigenetic signature of these subtypes is 

associated with their putative cell-of-origin, meaning that they most likely derive from distinct B-cell 

differentiation stages. It was proposed that n-CLL originate from more naïve-like B cells, m-CLLs from more mature 

B cells, whereas i-CLL may derive from a third B cell subtype, which is potentially an antigen-exposed B cell that has 

not yet completed germinal center maturation (Figure 1-4) [2, 41]. Following this study, Quieros and colleagues 

developed a 5 CpG-based methylation classifier that accurately assigns patients into one of the three subgroups, n-

CLL, i-CLL and m-CLL. This classifier is based on CpGs located in the promoter of SCARF1, and in the gene bodies of 

CTBP2, B3GNTL1, and TNF, and in an intergenic region on chromosome 14. This epigenetic classification correlated 

with distinct clinico-biological features, including patient outcome, Binet stage, CD38 expression and SF3B1 

mutations [2, 161].   

Figure 1-4: Methylation-based clinico-biological subgroups of CLL. The heatmap is based on consensus clustering 

on 1,649 CpGs identified using differential methylation analysis between U-CLL and M-CLL. U-CLL, IGHV-unmutated 
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CLL; M-CLL, IGHV-mutated CLL;  IgA, immunoglobulin-α; IgG, immunoglobulin-γ; IgD, immunoglobulin-δ; IgM, 
immunoglobulin-μ; NBCs, naïve B cells, MBCs, memory B cells; n-CLL, NBC-like CLL; i-CLL, intermediate CLL; m-CLL, 

MBC-like CLL. Modified from [41]. 

  

The presence of three CLL subgroups was confirmed in an independent study by Oakes et al. It was shown that CLL 

derives from a continuum of differentiation stages, rather than being restricted to one specific stage of B-cell 

differentiation. At the level of DNA methylation, all CLLs were most similar to memory B cells, reaching 70-100% of 

methylation programming normally observed in memory B cells. Based on the overall level of normal B cell 

programming achieved, CLL samples were classified into three groups, namely low-programmed (LP-CLL), 

intermediate-programmed (IP-CLL) and high-programmed CLLs (HP-CLL), with LP-CLL exhibiting the most immature 

methylation patterns and HP-CLL the most mature. HP-CLLs, in contrast to LP-CLLs, are characterized by a good 

clinical prognosis and exhibit an indolent gene expression pattern (Figure 1-5) [2, 42].  

Figure 1-5: CLL derives from a continuum of differentiation stages in normal B cells. DNA methylation-based 

phylogenetic tree of CLL samples and normal B cell subsets. The tree was generated using dynamic during normal 

B cell differentiation, high confidence TF binding sites (AP-1, EBF1 and RUNX3) together with CpG sites in 

hypermethylated transcriptional elongation domains. NBCs, naïve B cells; GCF, germinal center founder B cells; 

loMBC, early non class-switched memory B cells; intMBC, non class-switched memory B cells; sMGZ, splenic 

marginal zone B cells; hiMBC, class-switched memory B cells; LP-CLL, low-programmed CLLs; IP-CLL, intermediate-

programmed CLLs; HP-CLL, high-programmed CLLs. Modified from [42].  

 

1.3.6 Disease-specific methylation profiles in CLL and normal B-cell differentiation 

Previous efforts to define CLL-specific methylation patterns were based on comparisons between CLL samples and 

CD19+ normal B cells, which are a mixture mostly composed of naive and mature memory B cells [167]. As a 

consequence of the observation that CLL originates from a spectrum of distinct normal B cell subtypes, B-cell 

differentiation-related and disease-specific methylation changes should be distinguished.  

Along those lines, Kulis et al. were the first to investigate CLL methylomes in the context of normal B-cell 

differentiation. They profiled DNA methylomes from ten normal B-cell subpopulations across the entire B-cell 
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differentiation and compared the dynamic DNA methylation patterns to those of 139 CLL samples. They reported 

widespread DNA methylation changes during B-cell maturation and found high concordance with methylation 

patterns previously considered as being CLL-specific [160]. 

Figure 1-6: Normal B-cell specific methylation confounds CLL-specific findings. DNA methylation profiles in 

promoters of genes identified previously as being hypermethylated in CLL. Methylation profiles are shown for B 

cells (left) and CLL (right). TSS, Transcription start site; NBCs, naïve B cells; GCF, germinal center founder B cells; 

loMBC, early non class-switched memory B cells; intMBC, non class-switched memory B cells; sMGZ, splenic 

marginal zone B cells; hiMBC, class-switched memory B cells; LP-CLL, low-programmed CLL; IP-CLL, intermediate-

programmed CLL; HP-CLL, high-programmed CLL. Modified from [42].  

 

The issue of disease-specific methylation events has been addressed in more depth in a follow-up paper by Oakes 

et al. Investigating genes reported as being hypermethylated in CLL, e.g. DAPK1, ID4, FOXD3, they were able to 

demonstrate that methylation changes previously thought to be CLL-specific were also found in normal 

differentiating B cells (Figure 1-6). The authors then performed a systematic analysis of DNA methylation changes 

in CLL as compared to normal B cell differentiation and thus identified truly CLL-specific aberrant methylation 
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patterns. They further suggested a pathogenic role of aberrant TF programming, involving excessive methylation 

programming at EGR and NFAT motifs and reduced methylation programming at AP-1 and EBF binding sites [42].  

1.3.7 microRNAs – biogenesis and function 

MicroRNAs (miRNAs) are defined as small non-coding RNAs of 19-22 nt in length that control gene expression at 

the post-transcriptional level. Lee and colleagues were pioneering the miRNA field, discovering the first miRNA, lin-

4, in 1993 in the nematode Caenorhabditis elegans [168]. Seven years later the presence of another miRNA, let-7a, 

was reported in C.elegans paving the way towards future discoveries [169]. Since then, microRNAs have been 

identified in the majority of animal and plant species. Currently, the repository of miRNA annotations hosts over 

48,885 mature miRNA sequences from 271 species (miRBase version 22, [170]). The general function of miRNAs is 

to control the expression of protein-coding genes by binding to complementary sequences, mostly present in the 

3’ untranslated regions (3’UTRs) of their targets that eventually lead to transcript degradation or translational 

repression (reviewed in [171]). Translational repression is considered the primary mechanism of miRNA-mediated 

gene silencing [172]. Interestingly, more than 60% of protein-coding genes in the human genome are predicted to 

contain miRNA-binding sites in their 3’UTRs, suggesting that miRNAs constitute the most abundant class of 

regulatory molecules [173].  

The process of miRNA biogenesis starts in the nucleus where miRNA gene loci are transcribed by RNA Polymerase 

II (Pol II) or RNA Polymerase III (Pol III), together with their host gene (intragenic miRNAs) or independently of the 

host gene with the use of their own promoter (intergenic miRNAs). The transcribed sequences, so-called primary 

miRNA transcripts (pri-miRNAs), have variable lengths ranging from hundred nucleotides to several kilobases (kb) 

and contain a local hairpin structure. Many miRNAs are 3’ polyadenylated and 5’capped – a feature of Pol II-

mediated transcription. The pri-miRNA sequences are further trimmed into the 70-100 nt long hairpin 

intermediates (pre-miRNAs) by the microprocessor complex formed by the RNase III endonuclease Drosha and the 

DiGeorge syndrome critical region 8 protein (DGCR8). After nuclear processing, pre-miRNAs are exported to the 

cytoplasm by the nuclear transport receptor exportin-5 (XPO5)/RanGTP complex (reviewed in [174], [175], [176]) 

(Figure 1-7).  

In the cytoplasm, pre-miRNAs are subjected to a second processing step, namely the final cleavage by another 

RNase III enzyme, Dicer, operating in complex with transactivation-responsive RNA-binding protein (TRBP) to 

generate the final ~22 nt miRNA product. Following the generation of miRNA duplexes, one strand of the duplex is 

removed and degraded (passenger strand), while the other strand remains as a mature miRNA (guide strand). 

Multiple studies on miRNA duplexes have shown that strand selection is mainly determined by the thermodynamic 

stability of the ends of the duplex, with a preferential choice of the strand containing unstable base pairs at the 5’ 

end, e.g. G:U versus G:C pair. Mature miRNAs are incorporated into effector complexes, called miRNA-containing 

RNA-induced silencing complexes (miRISC) that guides them towards specific mRNA targets. The process of duplex 

unwinding together with miRISC activation is mediated by the Argonaute-2 (Ago-2) protein (reviewed in [174], 

[175], [176]) (Figure 1-7).  
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Many biological processes are critically regulated by miRNAs, such as development, differentiation, cell 

proliferation, apoptosis, immune responses and angiogenesis (reviewed in [177]). Aberrant miRNA expression 

profiles have been reported in many diseases, including various cancer types [178-186]. Yet, the knowledge about 

underlying causes of this deregulation is limited. Both, transcriptional and post-transcriptional mechanisms play a 

role in the regulation of miRNA expression. Among others, transcriptional regulation of miRNA expression can be 

achieved by differential TF binding, by regulating the expression of the host gene and by epigenetic changes in 

miRNA regulatory regions. For instance, TP53 and PTEN were shown to regulate the expression of nine miRNAs in 

renal cell carcinoma [185]. Likewise, it was shown that miR-155 expression is host gene-dependent [187]. DNA 

methylation was shown to regulate expression of miR-132 in colorectal cancer and miR-34b/c in CLL [188, 189].  

With respect to post-transcriptional regulation of miRNA expression, so far two mechanisms have been reported: 

1) changes in the miRNA processing and 2) changes in miRNA stability. Defects in the miRNA biogenesis machinery, 

mostly due to mutations in proteins/enzymes of the miRNA biogenesis pathway (Dicer, TRBP, Drosha or Xpo-5), 

have been reported in various tumors [190, 191]. Moreover, miRNA stability was shown to be dependent on the 

tissue-context and on the presence of modifications of the 3’ end of miRNAs such as adenylation and uridylation 

[192]. A lower rate of miRNA degradation and an increased half-life have been reported in overexpression 

experiments of Argonaute proteins [193]. 

Figure 1-7: Biogenesis of miRNAs. Pri-miRNAs are transcribed by Polymerase II or III in the nucleus and further 

cleaved by the Drosha/DGCR8 complex generating pre-miRNAs. Exportin-5 transports pre-miRNAs into the 

cytoplasm, in which Dicer and TRBP cleave the precursor sequences into ~22nt miRNA duplexes. One of the 

strands of the duplex is degraded and the remaining, functional one is incorporated together with Ago-2 protein 

into the silencing complex, miRISC that guides the mature miRNA towards target genes. Further details are 

explained in the text. Modified from [194]. 
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1.3.8 Epigenetic regulation of miRNA expression in CLL 

Aberrant epigenetic regulation plays a key role in dysregulated miRNA expression levels in CLL. So far, all published 

studies have identified aberrant methylation events in CLL by comparison of peripheral blood CD19+ normal B cells 

to CLL cells. In a first large-scale attempt published in 2009, Pallasch and colleagues used a bead-chip expression 

platform to delineate populations of aberrantly expressed miRNAs in CLL [195]. Search for a potential mechanism 

underlying the deregulated expression profiles has shown no obvious association with genetic alterations but 

pointed towards epigenetic transcriptional silencing of miRNA expression. Several epigenetically deregulated 

miRNAs have been identified, e.g. miR-181a, miR-181b, miR-126, miR-424 and miR-107 [195]. Similarly, using a 

custom-designed DNA methylation array (Agilent 244k), the methylation patterns of 939 miRNAs were studied by 

Baer et al. [155]. This study identified 128 miRNAs with aberrant methylation in their promoter regions, e.g. miR-9-

2, miR-708, miR-34a, miR-155 or miR-21, of which the majority were found to be hypomethylated [2, 155]. 

Apart from the genome-wide studies, CLL researchers focused mainly on individual miRNA promoters and the 

impact of DNA methylation on their aberrant expression levels. For instance, miR-129-2, a known tumor 

suppressor gene, was identified as being aberrantly hypermethylated and downregulated in CLL and miR-129-2 

hypermethylation was associated with poor survival of CLL patients [2, 196]. A member of the miR-9 family, miR-9-

3, was reported as being lowly methylated in normal CD19+ cells but hypermethylated in CLL and miR-9-3 

promoter hypermethylation was associated with advanced Rai stage [2, 197]. 5-Aza-2’-deoxycytidine treatment 

resulted in promoter demethylation and miR-9-3 upregulation that led to enhanced apoptosis combined with 

downregulation of NFκB1. Wang and Deneberg both have shown that the miR-34b/c promoter, located within a 

commonly deleted segment on chromosome 11 (11q23), is completely methylated in CLL. Inverse correlation 

between miR-34b/c promoter methylation and expression was demonstrated. The presence of 11q deletion and 

increased miR-34b/c methylation were reported as being mutually exclusive, indicating that these are two 

alternative silencing events for these miRNAs. Overexpression of miR-34b/c in a CLL cell line, HG3, significantly 

increased apoptosis, suggesting a tumor suppressive function of miR-34b/c [2, 189, 198]. In another study, Baer et 

al. reported aberrant methylation of an enhancer regulating miR-708 and showed that miR-708 targets IKKβ, a key 

kinase in the NF-κB signaling pathway [2, 199]. Wang and colleagues found promoter hypermethylation of miR-

3151 in CLL, but not in normal CD19+ controls. Promoter methylation of miR-3151 inversely correlated its 

expression levels. Restoration of miR-3151 expression in CLL resulted in enhanced apoptosis, presumably through 

downregulation of direct miR-3151 targets. These include MCL1, MADD and PIK3R2, which are the essential 

components of MEK/ERK and PI3K/AKT signaling networks [2, 200]. Likewise, Kopparapu and colleagues linked 

elevated methylation levels of miR-26A1 to U-CLL and poor survival of patients. Overexpression of miR-26A1 led to 

reduced transcript and protein levels of an enzymatic subunit of the polycomb repressive complex 2 (PRC2), EZH2 

[2, 201].  
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1.3.9 The cell-of-origin of CLL 

From recent epigenome profiling studies, it has become apparent that most of the aberrant DNA methylation 

events reported in CLL in the past are in reality changes that are related to normal B-cell differentiation rather than 

to CLL biology. This problem can be explained by the use of inadequate control samples, which usually consisted of 

CD19+ B cells, representing a mixture of different B cell subtypes spanning the entire B cell differentiation axis. 

Therefore, the current challenge in the CLL field is to determine the appropriate control B cell, which would be the 

CLL cell-of-origin.  

Although tracing the cellular origin of CLL is of conceptual importance to understand CLL pathogenesis, the 

knowledge of the precise stage of B cell differentiation at which the final transformation events occurs is still 

limited. Initial studies by Seifert et al. based on immunophenotyping and transcription profiling have shown that 

unmutated IGHV CLLs derive from unmutated CD5+ B cells while mutated IGHV CLLs originate from a distinct 

CD5+CD27+ post-germinal center B-cell subtype [202]. However, recent findings by Kikushige et al. have challenged 

the concept of CLL as a disease arising from mature B cells [203]. It has been demonstrated that hematopoietic 

stem and progenitor cells from patients with CLL engraft into immunodeficient mice and display cell-intrinsic 

propensity to generate mono- or oligo-clonal CLL-like B-cells [203]. The work by Damm et al. suggests that pre-

leukemic multipotent progenitors may carry somatic mutations in genes found to be mutated in CLL, like e.g. BRAF, 

NOTCH1, SF3B1, NFKBIE and EGR2 [16]. Despite the existence of preleukemic clones in the HSPC compartment of 

CLL patients, at least one additional driver event, either genetic or epigenetic, is required in order to develop overt 

CLL (Figure 1.8). This transforming event can be identified by using DNA methylation as a footprint of the B cell 

differentiation stage achieved in CLL founder cell (i.e. the „cell-of-origin“). The DNA methylome landscape of the 

CLL cell-of-origin is ‘frozen’ and thus will be stably propagated in the leukemic cells [42]. 

 

Figure 1-8: Cell-of-origin of CLL. The CLL cell-of-origin is defined as a cell that has acquired a first oncogenic hit 

(SF3B1, NOTCH1, BRAF, ERG2) and which will initiate tumorigenic growth if one or more additional hits have been 

acquired [202]. This transforming event ultimately blocks normal B cell differentiation and/or resistance to 

apoptotic cell death.  
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2. AIM OF THE THESIS 

Chronic lymphocytic leukemia (CLL) originates from differentiating B cells which undergo extensive epigenetic 

reprogramming during normal B cell differentiation [42, 160]. Depending on the differentiation stage of the B cell 

acquiring the leukemia-initiating event, a distinct epigenome is ‘frozen’ and stably propagated in the leukemic cells 

[42]. This stable epigenetic patterning can serve as an indicator for the identification of the cell-of-origin for each 

individual CLL case. The cancer cell-of-origin is defined as a cell that has acquired a first oncogenic hit and which 

will initiate tumorigenic growth if one or more additional hits have been acquired [202]. Consequently, this means 

that two factors contribute to the epigenetic profile of CLL cells: first, epigenetic profiles which were present in the 

founder B cell at the time of malignant transformation, and second, CLL-specific epigenetic alterations that occur 

during leukemogenesis and which relate to genetic alterations and/or to aberrant signaling events acquired in the 

leukemic cells via either extrinsic or intrinsic stimuli.  

Defining CLL-specific epigenetic events, which are distinct of B cell-specific epigenetic reprogramming events, is of 

utmost importance to understand molecular alterations contributing to CLL. Previous studies in CLL have focused 

on aberrant methylation events and their impact on aberrant gene expression of both, protein-coding genes (e.g. 

DAPK1, ZAP70, ID4) and microRNAs (e.g. miR-9, miR-181a/b, miR-34a, miR-708). However, all aberrant DNA 

methylation events have been identified using peripheral blood CD19+ B cells as controls, neglecting the massive 

epigenetic programming during normal B cell differentiation. Therefore, novel approaches aiming at identifying 

truly CLL-specific methylation changes in the context of normal B cell differentiation are urgently needed.  

Accordingly, the first aim of this thesis was to define the epigenome of the cell-of-origin, unique for every CLL 

patient and to identify CLL-specific methylation profiles. To do so, linear regression was used to model the 

epigenome dynamics occurring during normal B cell differentiation. DNA methylomes of CLL cells were 

subsequently precisely positioned onto the normal B cell differentiation trajectory to define the DNA methylomes 

of the cell-of-origin for every CLL patient. By considering the cellular origin, epigenetic alterations reflecting on 

normal B cell differentiation were substracted and CLL-specific methylation events were defined. Further, the 

molecular programs behind CLL-specific methylation profiles were investigated using chromatin states and 

transcriptional factor binding profiles from B cell immortalized cell lines. 

The second aim of this thesis was to determine epigenetically deregulated miRNAs in CLL. For this purpose, an 

unbiased strategy for the identification of miRNA regulatory regions was developed. The impact of CLL-specific 

aberrant DNA methylation on miRNA expression was assessed using a correlation of DNA methylation in the 

promoter regions with miRNA expression. CLL-specific candidates were further validated using MassARRAY assay 

and qRT-PCR for the quantification of methylation and expression profiles, respectively. Finally, miRNA target 

genes were determined using publicly available experimental datasets. 

The third aim of this thesis was to demonstrate the relevance of our approach by contrasting the number of 

epigenetically deregulated miRNAs and protein-coding genes to numbers determined using bulk CD19+ cells from 
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peripheral blood as controls and to validate selected candidate regions identified in our cell-of-origin model 

using targeted methylation analysis and qRT-PCR.  
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3. MATERIAL AND METHODS 

3.1 Materials 

The laboratory equipment, chemicals, kits, buffers, enzymes, plasmid vectors, computer software, and databases 

used for experiments or analyses in this thesis are summarized in Table 3-1 to Table 3-7.  

Table 3-1: Laboratory equipment 

Equipment Manufacturer 

Agilent 2100 Bioanalyzer  Agilent Technologies, Santa Clara, USA 

Benchtop centrifuge Eppendorf, Hamburg, Germany  

Centrifuge 5415 R Eppendorf, Hamburg, Germany 

Centrifuge 5810 R Eppendorf, Hamburg, Germany 

Electrophoresis power supply EPS 300 Amersham Pharmacia Biotech, Maryland, USA 

Gel documentation system EASY Doc plus Herolab, Wiesloch, Germany 

Gel chambers (horizontal and vertical)  Bio-Rad Laboratories, Munich, Germany 

LightCycler® 480 Real-Time PCR System Roche Diagnostics, Mannheim, Germany 

MassARRAY nanodispensor  Agena Bioscience, San Diego, USA 

Mastercycler® pro 384 Eppendorf, Hamburg, Germany 

Mastercycler® epgradient S Eppendorf, Hamburg, Germany 

Matrix pipettes (30 and 125 µl) Matrix Technologies, Feldkirchen, Germany 

Nanodrop ND-1000 spectrophotometer  PeqLab, Erlangen, Germany   

Pipettes (10, 20, 100, and 1000 µl) Eppendorf, Hamburg, Germany 

Plate centrifuge 5430 Eppendorf, Hamburg, Germany 

Qubit® 2.0 Fluorometer  Invitrogen, Life Technologies, Carlsbad, USA  

Rotating oven (OV2) Biometra, Göttingen, Germany 

Sequenom MALDI-TOF Mass Spectrometer  Agena Bioscience, San Diego, USA  

UV lamp   NeoLab GmbH, Heidelberg Germany 

Water bath Julabo TW-12 Eppendorf, Hamburg, Germany 

 

Table 3-2: General disposables 

Material Manufacturer 

Adhesive plate seals  Steinbrenner, Wiesenbach, Germany   

8- and 12-well strips with lids   Greiner Bio-One, Frickenhausen, Germany 

96- and 384-well PCR plates  Thermo Fischer Scientific, Waltham, USA    

Combitips (1, 5 and 10 ml) Eppendorf, Hamburg, Germany  

Falcon tubes (15 and 50 ml) BD Biosciences, San Jose, USA 

Filter and normal tips for pipettes (10, 20, 200 and 

1000 µl) 

Sarstedt, Nümbrecht, Germany / Steinbrenner, 

Wiesenbach, Germany    

Low Binding tubes (1.5 ml) Eppendorf, Hamburg, Germany 

Sterican® needles  B. Braun, Melsungen, Germany 

Syringes  Terumo, Leuven, Belgium 
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Table 3-3: General chemicals and reagents 

Chemical/reagent  Manufacturer 

100 bp DNA ladder  Invitrogen, Carlsbad, USA 

1 Kb plus DNA ladder  Invitrogen, Carlsbad, USA 

Chloroform VWR, Radnor, USA 

Dimethyl sulfoxide (DMSO) Merck, Darmstadt, Germany 

Dithiothreitol (DTT) GERBU, Wieblingen, Germany 

dNTP mix   Thermo Fischer Scientific, Waltham, USA    

Ethanol Sigma-Aldrich, Taufkrichen, Germany  

Ethidium Bromide Sigma-Aldrich, Taufkirchen, Germany 

Formaldehyde solution Sigma-Aldrich, Taufkirchen, Germany 

Isopropanol Sigma-Aldrich, Taufkirchen, Germany 

Gel Loading Dye, Purple (6X) New England Biolabs, Frankfurt am Main, Germany   

PeqGOLD universal agarose PeqLab, Erlangen, Germany  

Resin Agena Bioscience, San Diego, USA 

RNase-Free water (Ultrapure DNase/Rnase-Free 

Distilled Water) 

Invitrogen, Carlsbad, USA  

Tris-Borat-EDTA (TBE, 10X)  Carl Roth GmbH, Karlsruhe, Germany 

Triton-X-100 Sigma-Aldrich, Taufkirchen, Germany  

TRIzol®  Invitrogen, Carlsbad, USA 

β-mercaptoethanol AppliChem GmbH, Darmstadt, Germany 

 

Table 3-4: Commercial kits 

Kit Manufacturer 

AllPrep DNA/RNA Mini kit   Qiagen, Hilden, Germany  

Agilent high sensitivity DNA kit  Agilent Technologies, Santa Clara, USA 

Agilent RNA 6000 nano kit  Agilent Technologies, Santa Clara, USA 

Agilent RNA 6000 pico kit Agilent Technologies, Santa Clara, USA 

EZ DNA methylation kit Zymo Research, Orange, USA 

MassCLEAVE T7 kit (T Cleavage)  Agena Bioscience, San Diego, USA 

miScript II RT kit Qiagen, Hilden, Germany 

miScript SYBR Green PCR kit Qiagen, Hilden, Germany 

QuantiTect SYBR Green PCR kit  Qiagen, Hilden, Germany 

Qubit RNA BR Assay Kit Invitrogen, Carlsbad, USA 

Qubit dsDNA HS assay kit  Invitrogen, Carlsbad, USA 

RNase-free DNase set Qiagen, Hilden, Germany  

RNeasy mini kit Qiagen, Hilden, Germany 

 

Table 3-5: Enzymes and buffers 

Enzyme  Manufacturer 

Buffer RWT concentrate Qiagen, Hilden, Germany   

CpG methyltransferase (M. SssI)  New England Biolabs, Massachusetts, USA 

First stand reaction buffer (5X) New England Biolabs, Ipswich, USA 

PCR buffer (10X) Qiagen, Hilden, Germany 

Puregene Proteinase K Qiagen, Hilden, Germany 

Shrimp alkaline phosphatase (SAP) Agena Bioscience, San Diego, USA 

RNaseA Agena Bioscience, San Diego, USA 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiHuaeN4qjbAhVD46QKHUK_BVoQFggvMAE&url=http%3A%2F%2Fwww.thermofisher.com%2Forder%2Fcatalog%2Fen%2FUS%2Fadirect%2Flt%3Fcmd%3DIVGNprodListLink%26FeatureType%3D1201%26Feature%3D380208&usg=AOvVaw3j4RsKnXPpUf_chN74oa3-
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Table 3-6: Additional material 

Material Manufacturer 

Spectro CHIP arrays  Agena Bioscience, San Diego, USA 

 

Table 3-7: Computer software, web-based tools and databases 

Name Manufacturer/web link  

Software/Packages   

2100 Expert Software Agilent Technologies, Santa Clara, USA 

DESeq2 v.1.20.0 https://bioconductor.org/packages/release/bioc/html/DESeq2.html 

EpiTYPER-TM 1.0 Agena Bioscience, San Diego, USA 

FastQC v.0.11.6 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

FeatureCounts (Subread package 

v.1.5.1) 

http://bioinf.wehi.edu.au/featureCounts/ 

ggplot2 v.2.2.1 http://ggplot2.tidyverse.org/ 

GraphPad Prism 5 GraphPad Software Inc., La Jolla, USA 

HOMER v.4.5 http://biowhat.ucsd.edu/homer/ 

IGV 2.1 http://www.broadinstitute.org/igv/home 

LightCycler Software 4 Roche Applied Science, Penzberg, Germany 

LOLA v.1.10.0 https://bioconductor.org/packages/release/bioc/html/LOLA.html 

MS Office 2010  Microsoft, Redmond, USA  

Pheatmap v.1.0.10 https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf 

R statistical computing environment 

v.3.5.0 

http://www.r-project.org  

RNA-seQC v.1.1.8 http://archive.broadinstitute.org/cancer/cga/rna-seqc 

RnBeads v.1.12.1 https://rnbeads.org/ 

Sambamba v.0.6.5 https://github.com/biod/sambamba 

SAMTools v.1.6 http://samtools.sourceforge.net/ 

STAR v.2.5.2b https://github.com/alexdobin/STAR 

  

Web based tools  

EpiDesigner beta  http://www.epidesigner.com 

Primer3 v.0.4.0 http://frodo.wi.mit.edu/ 

  

Databases/Resources   

Bioconductor  http://bioconductor.org/ 

ENCODE https://www.encodeproject.org/ 

DIANA-TarBase v7.0 http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=tarbase/ 

Ubuntu 12.04 LTS   Canonical Ltd., Ubuntu community, London, UK 

Human genome (hg19, GRCh37) http://genome.ucsc.edu/downloads.html 

microRNA.org http://www.microrna.org 

miRBase v.18.0 http://www.mirbase.org 

miRTarBase release 7.0 http://mirtarbase.mbc.nctu.edu.tw/php/index.php 

NCBI database, NCBI blast search http://ncbi.nlm.nih.gov 

UCSC Genome Browser  http://genome.ucsc.edu 

 

http://www.epidesigner.com/
http://www.microrna.org/
http://www.mirbase.org/
http://ncbi.nlm.nih.gov/
http://genome.ucsc.edu/
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3.2 Methods 

3.2.1 CLL samples 

Peripheral blood (PB) samples from the patients with CLL were obtained from two clinical centers in Germany: the 

National Center for Tumor Diseases (NCT) in Heidelberg, and from the University Hospital in Ulm. The informed 

consent was obtained by the procedure approved by the Ethics Committee of the University Hospital of Heidelberg 

and of Ulm University. All samples were purified using magnetic cell sorting (MACS) with selection for CD19+ cells, 

and then cultured overnight in 10% autoserum. DNA and RNA were isolated according to the Method section ‘DNA 

& RNA isolation’ (Section 3.2.3). 

3.2.2 Normal B cell isolation 

Naive and class-switched B cells were isolated from full-blood donations from healthy donors (54, 56 and 60 years 

of age), recruited at the Medical School in Essen. The study protocol was approved by the Internal Review Board of 

the Medical School in Essen. Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Paque density 

centrifugation (Amersham, Freiburg, Germany) from 500 ml of PB. CD19+ B cells were enriched to >98% by 

magnetic cell separation using the MACS system (Miltenyi Biotech, Bergisch Gladbach, Germany). The B cell 

suspension of each donor was stained with anti-CD27-APC (MT271), anti-IgD-PECy7 (IA6-2), anti-CD23-PE (M-L233) 

and anti-IgG-FITC (G18-145) antibodies (Becton Dickinson Biosciences, Heidelberg, Germany) and sorted with a 

FACSAria cell sorter (Becton Dickinson) as naive (IgDhighCD27-CD23+) and class-switched memory (IgD-IgG+CD23-

CD27+) B cells. The purity was >99% for each B cell population as determined by reanalysis on a FACSCanto flow 

cytometer (Becton Dickinson Biosciences) with FACSDiva software. 

The normal B cell isolation was performed by Dr. Marc Seifert from Molecular Genetics Group, Essen University 

Hospital, Essen, Germany. 

3.2.3 RNA and DNA isolation 

DNA and RNA from B cells and CLLs were isolated using a combined protocol with Trizol and AllPrep DNA/RNA kit 

(Qiagen, Hilden, Germany). Cell pellets were lysed in 500 µl RLT-Plus lysis buffer containing β-Mercaptoethanol and 

homogenized for 5 min at room temperature (RT). The lysates were then transferred into AllPrep DNA spin column 

and centrifuged (1 min; 10,000 rpm). Genomic DNA was bound to a column, and further DNA isolation was 

performed according to the Qiagen AllPrep genomic DNA isolation protocol. The flow-through was used for RNA 

isolation, using a combined protocol with Trizol and RNeasy Mini columns (Qiagen). Briefly, 1 ml of Trizol was 

added to the flow-through. Samples were mixed, vortexed and incubated for 5 min at RT. 200 µl of chloroform was 

added to each of the samples. Samples were vortexed for 20 s, incubated for 15 min and centrifuged (4°C at 

13,000 x rpm; 15 min). 500 µL of isopropanol was added to the aqueous layer of each of the samples, followed by 

30 min-incubation at RT and Proteinase K treatment. 400 µL of RWT buffer was added to each of the samples 
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followed by mixing and spin down (1 min; 9,000 rpm at 21°C). The residual lysate was transferred to the column, 

followed by centrifugation (1 min; 9000 rpm at 21°C). 400 µL of RWT Buffer was added to each column and 

centrifugation was performed (30 s; 9,000 rpm at 21°C). 80 µL of DNAseI mix (RNase-free DNase set) was applied 

to the column, followed by 15 min-incubation at RT. 500 µL of Buffer RWT was added to the column, followed by 

spin down (30 s; 9,000 rpm at 21°C). The flow-through was re-applied to the same columns and spin down (30 s; 

9,000 rpm at 21°C). This time flow-through was discarded and 500 µL of Buffer RPE (Qiagen) was added the 

column, followed by a centrifugation for 30 s at 9,000 rpm at 21°C. The washing step with RPE buffer was repeated 

twice (3x washes in total). 500 µL of 75% EtOH was applied to the RNeasy Mini Spin column, incubated for 1 min, 

and centrifuged (30 s; 9,000 rpm at 21°C). Additional dry-centrifugation step was performed (2-3 min; 9.000 rpm at 

21°C). RNA was eluted in RNase-free water, incubated for 1 min and centrifuged (1 min; 10,000 rpm at 21°C). The 

re-eluate was re-applied to the column and centrifuged for 1 min at 10,000 rpm at 21°C. 

3.2.4 Quantitative DNA methylation analysis using MassARRAY 

The quantitative analysis of DNA methylation profiles was performed using MassARRAY system and EpiTYPER 

software (Agena Bioscience, San Diego, USA). The method starts with bisulfite treatment (BT) of genomic DNA and 

is followed by PCR amplification of the region of interest, in vitro transcription (IVT) generating single-stranded 

RNA, and RNase A cleavage. The endoribonuclease-digested products are then subjected to matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) (Figure 3-1). In the following sections, the 

MassARRAY procedure is described more in details. 

Figure 3-1: MassARRAY scheme. CpG dinucleotides with a methylated cytosine are represented in red and 

unmethylated one in green. The MassArray procedure starts with a sodium bisulfite treatment reaction (BT). Then 

the amplicon of interest is PCR-amplified with primers incorporating T7 polymerase tag necessary for the in vitro 

transcription (IVT). Subsequently, PCR products are in vitro transcribed into single-stranded RNA and U-specifically 
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cleaved. Afterwards, desalting step is performed and desalted sequences are analyzed by mass spectrometry. The 

mass shift of 16Da is observed between a G (originally methylated cytosine) and an A (originally unmethylated 

cytosine). Adapted from [203]. 

 

3.2.4.1 Primer design and PCR optimization 

Primers specific for the sequence of interest were designed with the EpiDesigner Software 

(http://www.epidesigner.com). Several aspects were taken into consideration: 1) the length of the primers (21 to 

25bp); 2) number of consecutive thymidines (not more than 6Ts); 3) size of genomic region to be amplified (200 to 

500bp); 4) annealing temperature for the primers (55 to 65°C). The temperature should be similar for the forward 

and reverse primer. In addition, T7 promoter tag (cagtaatacgactcactatagggagaaggct) was added to the 5’ end of 

the reverse primer which enables in vitro transcription by the T7 polymerase. Likewise, a 10-mer tag (aggaagagag) 

was added to the 5’end of the forward primer to balance the length of the PCR primers. The fragmentation 

patterns of the amplicons and the coverage of CpGs of interest were checked using in silico fragmentation tool in R 

(RSeqMeth package, version 1.0.2.) [204]. The primers used for MassARRAY are listed in the Appendix (Table 7-1). 

Primer optimization was performed using bisulfite-treated DNA (BT-DNA) as a template (see Methods 3.2.4.2.) 

Three different annealing temperatures (52, 56 and 58°C) were used to test the annealing efficiency of the 

primers. The amplification step was performed for 37 cycles. The PCR reaction was carried in a final volume of 5 

µL, following the procedure that is shown in Table 3-8 and Table 3-9. The PCR products were examined for the 

correctness of their length using agarose gel electrophoresis (2% agarose gels). 

Table 3-8: TD PCR reaction 

Reagent Amount (1X) 

BT  DNA 1 µL 

dNTPs (10 mM) 0.1 µL 

Primer mix  (10 µM) 1 µL 

PCR buffer (10X) 0.5 µL 

HotStar Taq (5 U/µl) 0.04 µL 

H2O (RNase/DNase free) 2.36 µL 

Total volume 5 µL 

 

Table 3-9: TD PCR cycling conditions 

Cycle step Temperature (°C) Time (min) Cycle number 

Initial denaturation 95 15 1 

Denaturation 94 0:30 

37 Annealing 52, 56, 58°C  0:30 

Extension 72 1 

Final elongation 72 5 1 

Hold 4 ∞ 
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3.2.4.2 Bisulfite conversion 

The methylation status of the locus of interest is determined using sodium bisulfite conversion (bisulfite 

treatment, BT). This method helps to differentiate and detect unmethylated and methylated CpGs. The principle of 

the method is the following: the sodium bisulfite treatment leads to deamination of the unmethylated cytosines to 

uracils while the methylated cytosines (5mC) remain unchanged (Figure 3-2). The uracils are then amplified in the 

subsequent PCR reactions as thymines, while the methylated cytosines remain the same. 

 

Figure 3-2: Bisulfite conversion in MassArray. After the thermal DNA denaturation, DNA sequence of interest is 

incubated with high sodium bisulfite concentrations at high temperature and low pH (5-6) generating cytosine 

sulphonate. Next, in the cytosine deamination step, cytosine sulphonate is converted into uracil sulphonate. In the 

final step of desulphonation, the sulfite moiety is removed from the ring, generating uracil. 5-methylcytosines (5-

mC) are not susceptible to bisulfite conversion and remain intact. 

 

In brief, genomic DNA (0.5 to 1µg) was sodium bisulfite treated using EZ DNA methylation kit (Zymo Research, 

Irvine, USA) according to the manufacturer’s instructions. The elution process of BT-DNA was performed twice, 

with 30 µL of M-elution buffer. Afterwards, BT-DNA was immediately stored at -20°C.  

3.2.4.3 MassARRAY 

MassARRAY was performed as described previously [203, 205]. Briefly, BT-DNA was PCR amplified and the free, 

unincorporated deoxynucleoside triphosphates (dNTPs) were removed by shrimp alkaline phosphatase (SAP) 

treatment. The SAP treatment was performed in a final volume of 5 µl (3 µl of PCR product, 0.3 µl of SAP and 1.7 µl 
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of H20) at 37°C for 20 min, followed by heat inactivation at 85°C for 5 min. Subsequently, 2 µl of the 

dephosphorylated PCR products were used for the in vitro transcription (IVT), in which PCR products are in vitro 

transcribed into single-stranded RNA (37°C for 3 h, according to the protocol shown in Table 3-10). During the IVT 

reaction, the T7 polymerase incorporates ribonucleotides (rUTP, rGTP and rATP) and the non-cleavable dCTP 

deoxynucleotide into the transcript. This is followed by RNase A-mediated uracil-specific cleavage at the 3´end of 

cytosine (rCTP) and uracil (rUTP) ribonucleotides. This allows the quantification of methylation patterns based on a 

mass difference of 16Da between a guanine (corresponds to originally methylated cytosine) and adenine 

(unmethylated cytosine).  

Table 3-10: In vitro transcription reagents 

Reagent Amount (1X) 

T7 polymerase buffer (5X)  0.89 µL 

T cleavage mix  0.22 µL 

DTT 0.22 µL 

T7 polymerase   0.4 µL 

RNase A 0.06 µL 

H2O (RNase/DNase free) 3.21 µL 

PCR template 2 µL 

Total volume  7 µL  

 

After the IVT reaction and RNaseA cleavage, desalting process takes place. During this step, 6 mg of clean resin 

(Agena Bioscience) and 20 µl of ddH2O are added to the samples, followed by 30 min-incubation in a rotator (at 

room temperature). 15 nL of each desalted sample is then spotted by the MassARRAY dispenser onto a 384-format 

SpectroCHIP (Agena Bioscience) and the fragments are analyzed by matrix-assisted light desorption/ionization 

time-of-flight mass spectrometry (MALDI-TOF). The mass spectra containing methylation profiles are generated 

with the EpiTYPER-TM v.1.0 software (Agena Bioscience). The EpiTYPER software identifies individual peaks by 

comparing the obtained mass spectra with the expected ones. The difference between methylated and 

unmethylated cytosine corresponds to a mass shift of 16Da per CpG in the fragment. The software automatically 

calculates the relative methylation values, which is the ratio between peaks of methylated and unmethylated 

fragments. The spectra containing low or high mass fragments were excluded from the analysis. 

3.2.4.4 MassARRAY standards 

To correct for a possible bias introduced during the PCR amplification, six BT-DNA standards carrying known 

methylation patterns (0%, 20%, 40%, 60%, 80%, and 100%) were PCR amplified together with each amplicon. 

MassARRAY standards were generated by whole genome amplification of buffy coat DNA (REPLI-g Mini Kit, 

Qiagen) according to the manufacturer’s instructions [206]. 50% of DNA was in vitro methylated using the M.SssI 

CpG methyltransferase. M.SssI CpG methyltransferase synthesizes methyl groups using SAM as a methyl donor. 

Subsequently, DNA was purified (QIAamp DNA Mini Kit, Qiagen) following the manufacturer’s recommendations 

[155]. The methylated and unmethylated DNAs were then mixed in different ratios to obtain six different 
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methylation standards (0%, 20%, 40%, 60%, 80%, and 100%). The standards were then bisulfite treated as 

described in the Methods 3.2.4.1. 

3.2.4.5 Statistical analysis of MassARRAY data 

For each amplicon of interest, CpG units having low spectra quality (bad intensity values) and two or more 

overlapping peaks were excluded from the final analysis. Statistical significance of the methylation changes 

between normal B cells and CLLs was determined using Wilcoxon signed-rank test in R. Mean methylation across 

samples (B cells or CLL) per CpG was used.  

3.2.5 Real-time quantitative PCR analysis of miRNA expression 

3.2.5.1 cDNA synthesis 

100 ng total RNA was reversely transcribed using miScript II Reverse Transcription kit (Qiagen) following the 

provider’s instructions [207]. In general, the miScript RT mix is a mixture composed of poly(A) polymerase and 

reverse transcriptase, which allows the reverse transcription by oligo(dT) priming. HiFlex buffer was used to meet 

the need of conversion of all RNA species (mature miRNAs, precursor miRNAs, noncoding RNAs, and mRNAs). 

Briefly, 4µL of the miScript HiFlex buffer, 2 µL of nucleic acids and miScript RT mix and the variable volume of 

RNase free water was added to RNA template (100 ng) to reach the final reaction volume of 20 µL. The cDNA 

synthesis was performed at 37°C for 1h. Subsequently, the reaction was heat inactivated at 95°C for 5 min. The 

reaction components are shown in Table 3-11.   

To check for potential contamination of genomic DNA in RNA isolates, a negative control (non-RT) was used. Here 

the same reagents were used with the exception of the reverse transcriptase, which was substituted by RNase free 

water.   

Table 3-11: Reverse transcription reaction components 

Reagent Amount (1X) 

miScript HiFlex buffer (5X) 4 µl 

Nucleic acids  (10X)  2 µl 

miScript RT mix  2 µl 

RNase free water   Variable 

RNA template (100 ng) Variable 

Total volume  20 µl 

 

3.2.5.2 Real-time quantitative PCR (qRT-PCR) 

The cDNA was further diluted 1:8 and used as a template for qPCR reaction with the use of miScript SYBR Green 

PCR kit (Qiagen) and the commercial forward primer (Qiagen). The miScript forward primers used for the 

quantification are listed in Table 7-2 (Appendix). Universal poly(A) primer, which serves as a reverse primer, binds 
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to all the cDNAs synthesized using oligo(dT) primers. The detailed protocol for the miScript qPCR reaction is shown 

in Table 3-12. The cycling conditions for real-time PCR were modified according to Qiagen’s instructions [207] 

(Table 3-13). The qPCR reaction was performed in Roche Light Cycler 480. 

Table 3-12: Reagents for qPCR 

Reagent Amount (1X) 

SYBR green  5 µl 

miScript primer assay (forward primer)  1 µl 

Universal poly-A (reverse primer)   1 µl 

cDNA (1:8)   1 µl 

RNase Free water 2 µl 

Total volume  10 µl  

 

Table 3-13: Cycling conditions for qPCR 

Cycle step Temperature (°C) Time (min) Cycle number 

Initial activation 

step 

95 15 1 

3-step cycling* 

Denaturation 94 0:15 

45 Annealing 55 0:30 

Extension 70 0:30 

*the ramp rate was adjusted to 1°C/s. 

 

The small nuclear and small nucleolar RNAs (SNORD72 and SNORD61) were used as control housekeeping RNAs to 

normalize the relative amount of expression of miRNAs of interest. The broad list of reference small RNAs is 

described in the miScript PCR System Handbook [204]. The normalized expression was determined using 2-ΔCt 

method [208]. In brief, the average of all Ct values for the housekeeping RNAs (HE) and the miRNA of interest (ME) 

was calculated. The difference between averaged ME and HE values was then determined (ΔCt) and 2-ΔCt were 

calculated. Wilcoxon signed-rank test in R was then used to determine the significance of expression changes 

between normal B cells and CLLs. All samples were measured in triplicates. The technical replicate was excluded 

from the analysis only if no expression signal was being detected by the LightCycler 480 Software, suggesting a 

pipetting error.  

3.2.6 Small RNA sequencing data 

Small RNA sequencing data was obtained from the published study by Ferreira et al. [209]. Normalized miRNA read 

counts (reads per million, RPM) were obtained and used in the downstream analysis to determine CLL-specific 

miRNAs. 

The data was processed by Dr. Thomas Hielscher from Division of Biostatistics, DKFZ, Heidelberg, Germany. 
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3.2.7 RNA sequencing data 

Raw expression data from CLLs was obtained from the published study by Dietrichs et al. [210], in which libraries 

were prepared with Illumina TruSeq RNA sample preparation v2 kit and 76bp-pair-end RNA sequencing (RNA-seq) 

was performed on Illumina HiSeq 2000 platform with 2-3 samples multiplexed per lane (sequencing chemistry v4; 

average number of uniquely aligned reads 86,490,476, range 45,057,886-114,248,236). The access to raw 

sequencing data from normal B cells, generated by Ferreira et al. [211], was granted by International Cancer 

Genome Consortium (ICGC). Each library was prepared with mRNA-seq Illumina TruSeq protocol and pair-end 

sequenced (76bp read length) on one lane (one sample per lane) of a HiSeq 2000 sequencer (average number of 

uniquely aligned reads 109,506,086, range 80,223,144-146,462,691.  

The two datasets were processed and analyzed using pipeline written by Dr. Naveed Ishaque from Division of 

Theoretical Bioinformatics at DKFZ, Heidelberg. RNAseq reads from CLLs were demultiplexed and the quality of the 

raw sequencing data for both datasets was assessed using FastQC version 0.11.5. Overall, all samples had good 

per-base quality scores (>Q30), therefore they were further processed. RNAseq reads were further aligned to the 

human reference genome (GRCh 37.1/hg19) using STAR version 2.5.2b [212] with default parameters. RNA-seQC 

(version 1.1.8) [213] was used to assess the quality of the alignment with the following metrics, i.e. number of 

alignable reads, duplication rates and rRNA contamination. The statistics of the alignment are presented for 

normal B cells in Table 7-3 (Appendix) and for CLLs in Table 7-4 (Appendix). Aligned reads were further sorted by 

coordinates using SAMTools [214] version 1.6. Duplicates were marked using Sambamba [215] version 0.6.5 and 

kept for further analysis. Read counts per transcript were obtained with featureCounts using Genecode19 as a 

gene model [216] and a strand specificity parameter, -s 2, meaning that reversely stranded read counting was 

performed.  

The obtained read counts were further loaded into DESeq2 [217], in which both datasets were processed together. 

Data was adjusted for differing library sizes using size factor estimation. The size factor was estimated by ‘median 

ratio method’ by Anders and Huber [217]. In brief, the virtual reference sample (pseudo sample) is calculated by 

taking for each gene the geometric mean of counts across all the samples. Each sample is then normalized to the 

pseudo sample, to obtain one scaling factor (‘size factor’) per sample [217].  

In the final step, the regularized log (rlog) transformation was applied. rlog function transforms count data to the 

log2 scale, minimizing differences between samples for transcripts with small counts and normalizing with respect 

to library size. Data quality was assessed using Principal Component Analysis (PCA), checking for the reproducibility 

among biological replicates and for possible batch effects. It was expected that biological replicates of the same 

condition (normal B cells or CLLs) will cluster together. Indeed, Principal Component (PC)1 and PC2 nicely 

separated CLLs from normal B cells and biological replicates were clustering together (Figure 3-3). No other PC was 

able to separate B cells or CLLs into subtypes (Figure 7-1, Figure 7-2 in the Appendix). 
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Figure 3-3: Principal Component Analysis 

(PCA) on rlog transformed expression counts 

from normal B cells and CLL. Normal B cell 

subtypes are depicted with crosses (NBC), 

squares (intMBC) and triangles (hiMBC). CLLs 

are depicted with dots.   

 

 

 

The rlog transformed counts were further used in my analysis as normalized counts and depicted graphically as 

‘log2 normalized counts’. 

3.2.8 450K methylome data analysis 

450K data from B cells was obtained from the study by Oakes et al. [42]. Similarly, 450K data from CLL patient 

samples was obtained from the study by Dietrich et al. [210]. The analysis of the methylation data was performed 

using RnBeads software [218]. Both datasets (normal B cells and CLLs) were processed simultaneously. Raw 450K 

data for both CLL and healthy B cell samples were normalized by the BMIQ method [219] without the background 

subtraction. The probes overlapping SNPs and the sex chromosomes (X and Y) were removed during the data 

processing. The remaining probes were considered for the downstream analysis, in which CLL-specific methylation 

events were identified. 

3.2.9 Promoters of miRNAs 

To identify promoters of miRNAs, the promoter segmentation data from CLLs, generated by DKFZ PRECiSe 

consortium (promoter segmentation data is deposited under GSE113336; raw ChIP-seq data can be found in the 

European Genome-phenome Archive under the accession number EGAS00001002518) and normal cell lines 

(Encyclopedia of DNA Elements – ENCODE; ENCODE Mar 2012 Freeze, UCSC accession numbers: 

wgEncodeEH000784, wgEncodeEH000785, wgEncodeEH000790, wgEncodeEH000789, wgEncodeEH000788, 

wgEncodeEH000786, wgEncodeEH000787, wgEncodeEH000791, wgEncodeEH000792) was used.   

3.2.10 TF enrichment analysis 

To determine transcription factor binding sites (class A, class C and class E) or recognition motifs of TFs (class D) 

present within disease-specific methylation events, LOLA package [220] or HOMER software v4.5 [221] were used, 

respectively. In the former case, TF ChIP-seq data from GM12878 cell line from ENCODE consortium was 
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downloaded [222] and loaded into LOLA as a database of regions (regionDB). The TF enrichment was subsequently 

calculated using runLOLA function providing all set of 450K CpG probes as a universe (userUniverse). LOLA 

statistical model is based on Fisher’s exact test with false discovery rate correction for each pairwise comparison. 

The output of the analysis is presented as a rank score for each region set and is based on three measures: P-value, 

log odds ratio and a number of overlapping regions. In the case of HOMER analysis, class D events were screened 

against a selected background of CpG sites (all CpGs from the 450k array) that were adjusted to have an equal GC 

content and the same number of CpGs. For the final conclusion, only ‘HOMER known motifs‘ search algorithm was 

considered.  

3.2.11 Data visualization 

All data visualization was performed using R. Consensus clustering and heatmaps were generated using pheatmap 

package. All the other graphs were generated either using the modified functions present in the graphics or in the 

ggplot2 package. Custom schematics of the data were prepared in Inkscape 0.91. 
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4. RESULTS 

4.1 Modelling the epigenome of the cell-of-origin 

The aim of this work was to identify biologically meaningful CLL-specific aberrant methylation events. In order to 

achieve this goal, I conceived an analytical framework that consists of the following steps: 

1) To establish an in silico model of DNA methylation dynamics during normal B cell differentiation 

published Illumina 450K datasets from six normal discrete B cell subpopulations were used [160]. Raw methylation 

data (.idat files) for both, normal B cells [160] and CLLs [209], was analyzed using the RnBeads R-package and 

processed simultaneously (see Methods 3.2.8) [217]. The normal B cell methylomes were used to define a set of 

CpG sites (B cell-specific CpGs) with >20% methylation difference between naïve and mature B cells. The 

hierarchical relationship was inferred between normal B cell subsets ranging from naïve to mature B cells across 

the entire differentiation spectrum based on their DNA methylation patterns on B cell-specific CpGs. Pairwise 

Manhattan distances on these methylation profiles were used to determine the mode of methylation progression 

during B cell differentiation and to infer differentiation stage for every B cell across the entire differentiation 

spectrum. Each node in the phylogenetic tree corresponds to a certain differentiation stage reached by the normal 

B cell. A linear, non-branched progression of methylation profiles was observed during B cell differentiation 

(minimum evolution method in the ape package and F-test). This allowed me to build a linear model of normal B 

cell differentiation based on DNA methylation patterns at B cell-specific CpGs using data from all B cell-specific CpG 

sites (see Results 4.1.1 for more details). 

2) To model the putative cell-of-origin for each CLL sample in the present patient cohort, published DNA 

methylome data sets from the normal B cells [160] and 34 CLL samples [209] were used. The differentiation stage 

of the closest cell-of-origin for every patient was determined using phylogenetic analysis with minimum evolution 

method implemented in the ape package. Linear regression modeling was further used to infer the DNA 

methylation levels for each CpG site in the putative cell-of-origin for every patient (see Results 4.1.1 for more 

details).  

The DNA methylome of the cell-of-origin had to be modeled for every CLL patient individually. This is a necessary 

step since CLL methylomes are composed of at least two major methylation signatures: the former signature 

stemming from the leukemia-initiating cell, and the latter reflects disease-specific methylation events which could 

be further subdivided in driver and passenger events shaped by epigenetic alterations occurring only during 

leukemogenesis (CLL-specific profiles).  

3) To identify disease (CLL-) specific methylation events, the epigenome of the cell-of-origin was used as a 

reference for aberrant DNA methylation calls across all CpG sites in a given sample. CLL-specific CpGs were defined 

as sites with >20% deviation from the computed DNA methylation levels in the corresponding cell-of-origin. Two 

categories of CLL-specific methylation events; those occurring at sites undergoing epigenetic programming during 
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B cell differentiation and those that normally do not change during B cell differentiation were identified (see 

Results 4.2 for more details). 

4.1.1 Modelling of normal B cell differentiation 

The first task was to identify a function, which precisely models the DNA methylation dynamics observed during 

normal B cell maturation (differentiation axis). 

To do so, DNA methylation programming during normal B cell differentiation was studied using six discrete B cell 

subpopulations, namely naïve B cells (NBCs, CD23+IgDhighCD27−), germinal center founder B cells (GCFs, 

CD20highCD38intIgM+IgD+CD80high), early non class-switched memory B cells (loMBCs, 

IgM+IgDlowCD27−CD23−Rhodamine123+), non class-switched memory B cells (intMBC, IgM+IgD+CD27+), splenic 

marginal zone B cells (sMGZs, IgM+CD21highCD27+), and class-switched memory B cells (hiMBCs, IgG+CD27+) using 

Illumina 450k array on 2-4 donors per each healthy B cell subpopulation [160]. The normal B cell methylomes were 

used to define a set of the CpG sites (B cell-specific CpGs) with a prominent gain (>20%) or loss of methylation 

(<20%) during the B cell differentiation process, between naïve and mature B cells. In total, 75,669 CpGs were 

found to be dynamically regulated during normal B cell differentiation.  

I assumed that similar to DNA nucleotide changes reflecting the evolutionary time, DNA methylation dynamics 

observed during cellular differentiation can be used to infer the differentiation stage achieved. Initially, I 

hypothesized that DNA methylation dynamics during the B cell differentiation can progress linearly or non-linearly. 

In the first approach, the methylation profiles of normal B cell subpopulations represent a continuum of 

differentiation stages, and this can be described using a simple linear function. In the second model, I would 

expect a non-linear mode of methylation progression during normal B cell differentiation, allowing a branched 

evolution of the various B cell subtypes. To determine the mode of methylation progression, the hierarchical 

(phylogenetic) relationship of normal B cell subsets, from NBCs to hiMBCs, was inferred based on their DNA 

methylation profiles. For this, DNA methylation profiles of B cell-specific CpGs were used to generate matrices of 

pairwise distances (Manhattan distance) which were subsequently used to draw phylogenetic trees. For the tree 

construction, the minimum evolution method by Desper and Gascuel [223], implemented in the ape package 

(fastme.bal function), was used. Briefly, this method computes the sum (S) of estimates of the length of tree 

branches for all possible topologies, and the topology having the smallest S value is chosen as the best tree [223]. 

Using this approach, a linear, non-branched progression of methylation profiles was observed during normal B cell 

differentiation (Figure 4-1A).  
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Figure 4-1: Linear progression of methylation profiles during normal B cell differentiation. A) DNA methylation-

based phylogenetic tree of normal B cell differentiation. The phylogenetic tree was generated using a set of CpG 

sites that show dynamic methylation changes during normal B cell differentiation (B cell-specific CpGs). Pairwise 

Manhattan distances between DNA methylation profiles of normal B cells at B cell-specific CpG sites were used to 

model methylation dynamics from naïve to mature B cells. NBCs - Naïve B cells; GCFs – Germinal center founder B 

cells; loMBCs – Early non class-switched memory B cells; intMBCs – Non class-switched memory B cells; sMGZs – 

Splenic marginal zone B cells; hiMBCs – Class-switched memory B cells (mature B cells). B) Linear relationship 

between the differentiation stage of B cell subtypes and the methylation profiles at B cell-specific CpGs. F-test 

statistics were used to test for a linear relationship between the assigned differentiation stage for every B cell and 

the methylation values at B cell-specific sites, at the single CpG level. The majority of B cell-specific CpGs (78.8%, 

59,660 CpGs) undergo a linear progression of DNA methylation (either gain or loss) during normal B cell 

differentiation. The y-axis represents the density of B cell-specific CpG sites. The x-axis represents p-values from 

the F-test. The red line indicates a p-value=0.05. 

 

Furthermore, the pairwise distances between the individual B cell methylation profiles at B cell-specific CpGs were 

used to define a differentiation stage for every B cell across the differentiation spectrum. Each node in the 

phylogenetic tree corresponds to a differentiation stage reached by a hypothetic B cell. The linear relationship 

between the differentiation stage achieved and the DNA methylation profiles at B cell-specific CpGs was tested at 

the single CpG level (F-test, Figure 4-1B). For the vast majority of B cell-specific CpGs (78.8%, 59,660 CpGs), a linear 

relationship between DNA methylation dynamics and differentiation stage achieved was observed across six 

distinct B cell differentiation stages. This allowed me to build a linear model of normal B cell differentiation based 

on DNA methylation profiles in B cell subtypes.  

4.1.2 Identification of the cell-of-origin and its epigenome 

My goal was to identify a unique cell-of-origin for every CLL patient. The cancer cell-of-origin is defined as the cell 

that acquires the first oncogenic hit and, once additional hits have been acquired, this cell initiates tumorigenic 

growth [202]. Although several mutations creating a preleukemic clone including SF3B1, NOTCH1 or TP53 have 

A) B) 
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been identified in the HSC pool of CLLs, the second driver event, either genetic or epigenetic, is required for the 

transformation [16]. This driver event blocks the B cell differentiation, providing the cells with a proliferative 

advantage.  

To identify cell-of-origin for every patient, I modeled all potential B cell subpopulations present in the B cell 

differentiation axis and assigned the closest virtual normal B cell methylome (cell-of-origin) to every CLL case in the 

patient cohort. Firstly, a phylogenetic analysis of all CLL samples in relation to normal B cell differentiation was 

performed using DNA methylation levels at B cell-specific CpG sites only (ape package, minimum evolution 

method) [223]. Briefly, DNA methylation patterns were used to calculate a pairwise distance matrix for normal B 

cells and CLLs (using Manhattan distance). Subsequently, phylogenetic trees were inferred with plot.phylo function 

incorporated into ape package. Unrooted and phylogram topologies were used. Each CLL case was precisely 

positioned onto the normal B cell differentiation trajectory defining the closest normal B cell on the normal 

differentiation axis that underwent transformation event. In other words, the differentiation stage of the cell-of-

origin was assigned as the position of the closest node in the phylogenetic tree for each CLL case (Figure 4-2). The 

position of each node was determined using edge.length function from the Ape package.  

 

Figure 4-2: Identification of the cell-of-origin in CLL samples. A phylogenetic tree was generated using a set of 

CpG sites that show dynamic methylation changes during normal B cell differentiation (B cell-specific CpGs). 

Pairwise Manhattan distances were calculated between DNA methylation profiles of normal B cells and CLL 

samples at B cell-specific CpGs and were subsequently used to assign the closest normal (virtual) B cell methylome 

(differentiation stage of the cell-of-origin) to each CLL case. NBCs - Naïve B cells; GCFs – Germinal center founder B 

cells; loMBCs – Early non class-switched memory B cells; intMBCs – Non class-switched memory B cells; sMGZs – 

Splenic marginal zone B cells; hiMBCs – Class-switched memory B cells (mature B cells); 1:34 – CLL patients. The 

gradient color code of CLL samples corresponds to different levels of maturity reached by the cell-of-origin during 

the transformation event. CLL samples with a relatively immature cell-of-origin that are reprogrammed early 

during the differentiation process are represented in bisque color. CLLs with a cell-of-origin reprogrammed at a 

late stage of differentiation and resembling more mature B cells are depicted in dark orange color. 
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In the next step, the virtual DNA methylome of the cell-of-origin was calculated. The linear regression model was 

applied to normal B cells and CLLs, and was used to determine the DNA methylation profiles for every CpG site of 

the cell-of-origin for each of the CLLs according to the following equation:  

M = α + β *d.s. 

, where 

M denotes the calculated beta methylation value for a CpG site of cell-of-origin, 

d.s. denotes the differentiation stage (obtained from the phylogenetic analysis), 

β denotes the slope of the regression line, 

α denotes the vertical (y-axis) intercept. 

4.2 Identification of disease-specific methylation events in CLL 

During the initial modeling step, the closest virtual normal B cell methylome was assigned to every CLL case, which 

allowed the calculation of the DNA methylation levels that should be present in the cell-of-origin. This virtual DNA 

methylome was used to infer disease-specific methylation events in each CLL sample (Figure 4-3).  

Substituting for CD19+ B cells that are used as controls in most studies, for each CLL sample, the DNA methylation 

levels present in the cell-of-origin were used as the individual control cell population to identify aberrant CLL-

specific methylation events across all CpG sites. Disease-specific CpGs were defined as sites with significant 

deviation from the expected methylation levels as compared to the corresponding cell-of-origin (Figure 4-3A). Two 

categories of CLL-specific methylation events were identified: 1) CpG sites with methylation programming during 

normal B cell differentiation (i.e. B cell-specific CpGs) at which CLL samples display inadequate methylation 

programming as compared to the predicted cell-of-origin (‘sites with epigenetic B-cell programming’); 2) CpG sites 

without methylation programming during normal B cell differentiation at which only CLL samples show aberrant 

methylation events (‘sites without epigenetic B-cell programming’; see Figure 4-3C for schematic representation).  

The majority of disease-specific methylation events within the category of ‘sites with epigenetic B-cell 

programming’ (class A & B) were required to either show a minimum of 20% methylation loss or gain relative to 

the calculated cell-of-origin methylation value (M value) in at least 95% of the CLL patients. Additionally, 

hierarchical clustering on B cell-specific CpGs identified a set of CpGs with divergent methylation states across CLL 

samples (class C; Figure 4-3C). 

For the identification of CpG sites belonging to the category of ‘sites without epigenetic B-cell programming’, all 

non-B cell-specific CpGs were used. The average methylation changes on these sites during normal B cell 

differentiation, from naive (NBCs) to mature B cells (hiMBCs), were determined. Likewise, the mean methylation 

profiles were calculated for the CLL cases. Next, the methylation difference between the averaged methylation 

values for the CLLs and the normal B cell differentiation axis was determined. Each disease-specific methylation 
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event at ‘sites without epigenetic B-cell programming’ in CLL was then categorized as either methylation loss (class 

D) or gain (class E) if there was at least 30% methylation change observed relative to the normal B cell 

differentiation axis (Figure 4-3C). 
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Figure 4-3: Identification of CLL-specific methylation events. A) Schematic outline of the analysis pipeline used 

for the identification of CLL-specific methylation events. Methylome data on six distinct B-cell subpopulations, 

representing different stages of terminal B cell differentiation were used for linear regression modeling. DNA 

methylomes of 34 primary CLL samples of different differentiation stage and prognosis (immature CLLs – bad 

prognosis and mature CLLs – good prognosis) were used for identification of cell-of-origin and disease-specific 

methylation events in the context of normal B cell differentiation. Linear regression modeling on DNA methylation 

patterns on B cell-specific CpG sites facilitated the prediction of the methylomes for the cell-of-origin for each CLL 

patient in the cohort. The cell-of-origin was defined based on the closest virtual normal B cell methylome present 

on the regression line of the model. CLL-specific methylation events were inferred based on the deviation from the 

expected DNA methylation patterning as compared to the assigned cell-of-origin (>20% for ‘sites with epigenetic B-

cell programming’; >30% for ‘sites without epigenetic B-cell programming’). NBC - Naïve B cells; GCF – Germinal 

center founder B cells; loMBC – Early non class-switched memory B cells; intMBC – Non class-switched memory B 

cells; sMGZ – Splenic marginal zone B cells; hiMBC – Class-switched memory B cells. B) Summary of CLL-specific 

methylation events. The pie chart displays the frequency of stable and dynamic CpGs, respectively, during the B-

cell differentiation (B cell-specific CpGs), the frequency of CLL-specific CpG methylation events (class A, B, C, D, and 

E), and the number of unaffected CpG sites. The number of CpGs affected by disease-specific methylation events is 

indicated on the cumulative bar chart. C) Categorization of CLL-specific methylation events. CLL-specific 

methylomes were categorized into two groups: ‘sites with epigenetic B cell programming’ defined as CpG sites 
with methylation programming during normal B cell differentiation at which CLLs display aberrant methylation 

patterns as compared to the predicted cell-of-origin; ‘sites without epigenetic B cell programming’ defined as CpG 

sites without methylation programming during normal B cell differentiation at which only CLL genomes display 

aberrant methylation events. Both categories were further subdivided according to the direction of methylation 

change as compared to the expected methylation patterns in the cell-of-origin. Class A and D are characterized by 

hypomethylation relative to normal B cell differentiation, while class B and E show hypermethylation. Class C 

comprises CpG sites with both hyper- and hypomethylation across CLL samples.  

 

Globally, looking at disease-specific methylation patterns, prominent loss-of-methylation was observed (Figure 4-

4). Interestingly, only 1.6% of the CpG-sites (7,248 CpGs) represented on the 450k array are affected by disease-

specific methylation programming, the majority of which were ‘sites without epigenetic B cell programming’ (5,389 

CpG sites).  The majority of CLL-specific methylation events were characterized by hypomethylation (1,490 CpGs in 

class A and 5,190 CpGs in class D), while only a small proportion of CpGs was hypermethylated compared to their 

cell-of-origin (9 CpGs in class B and 199 CpGs in class E) (Figure 4-3B; Figure 4-4). The CpG sites in class C (360 

CpGs) displayed either hypermethylation (class C hyper; 307 CpGs) or hypomethylation (class C hypo; 53 CpGs) in 

immature CLL samples but showed no or opposing methylation changes in mature CLL cases as compared to 

normal B-cell programming (Figure 4-3C). Surprisingly, this phenomenon was not observed at sites without 

epigenetic B-cell programming’. Overall, this data indicate that loss of DNA methylation is the most frequent CLL-

specific finding irrespective of the sites being involved in normal B cell programming or not. 
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Figure 4-4: Net methylation changes on B cell- and CLL-specific CpGs. A) Net methylation change on B cell-

specific CpGs for B cells (grey) and CLLs (orange). The x-axis represents different cell types: NBCs – Naïve B cells; 

hiMBCs - Class-switched memory B cells; CLL – chronic lymphocytic leukemia cells. The y-axis denotes absolute 

methylation (%). B) Net methylation change on CLL-specific CpGs for B cells (grey) and CLLs (orange). 

 

4.3 Immature CLLs fail to activate normal B cell programming 

To further characterize disease-specific methylation patterns in CLL, I quantified the methylation changes for each 

disease-specific CpG site in each sample as compared to the cell-of-origin and inspected the methylation profiles 

by unsupervised hierarchical clustering (Figure 4-5). For classes A and B, a consistent pattern of either loss or gain 

of methylation relative to the cell-of-origin was observed, which was uniformly distributed, irrespective of the 

differentiation state of the CLL cell-of-origin (Figure 4-5A, left panel). Hypomethylation at class A sites results from 

exaggerated loss of methylation at sites which show loss of methylation during normal B-cell differentiation 

(Figure 4-5B, ‘class A hypo’, 1490 CpGs). Aberrant hypermethylation observed at class B sites occurs mostly on top 

of hypermethylation normally present during B-cell differentiation or, alternatively, results from failed 

hypomethylation during normal B cell programming (Figure 4-5B, ‘class B hyper’, 9 CpGs).  

A)                                                                    B) 
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Figure 4-5: Programming of disease-specific methylation patterns in CLL. A) Heatmap showing relative 

methylation levels at CLL-specific CpGs. Unsupervised hierarchical clustering of CLL-specific methylation events of 

the subgroups, class A, B (left), class C (middle) and class D and E (right). ΔMethylation represents average 
methylation change (%) relative to the cell-of-origin. Hypomethylation is denoted as a blue bar, hypermethylation 

as a red bar on the left-hand side of the heatmaps. Differentiation stages are denoted with the gradient color 

(white-orange), where CLLs with immature cell-of-origin are depicted in white and the mature one in orange. B) 

Box plots displaying average methylation change for each class of CLL-specific alterations across normal B cells 

and CLL. Total numbers of the individual CpGs are given. Left (normal), average methylation change 

(ΔMethylation) of CLL-specific CpGs during normal B cell differentiation from naïve B cells (NBCs) to class-switched 

memory B cells (hiMBC) plotted for all subclasses (class A, B, C, D, and E). Right (CLL), methylation change 

(ΔMethylation) for CLL-specific CpGs in CLL. ΔMethylation is represented as methylation change relative to the 

expected methylation level of the cell-of-origin (dotted line). 
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For class C events (Figure 4-5A, Figure 4-5B, ‘class C hyper’, ‘class C hypo’; 360 CpGs), a pattern of divergent 

methylation changes was observed across all CLL samples and the majority of these sites result from failure to 

loose methylation during normal B cell programming and this was more pronounced in more immature CLL 

samples while the most mature CLL samples presented methylation levels comparable to those seen in normal B 

cells (Figure 4-5B, ‘class C hyper’). Of note, the average methylation change was the highest (40%) for class C sites 

in immature CLLs (Figure 4-5B). This indicated a failure to activate normal differentiation programming at these 

CpGs sites, specifically in the subset of the more aggressive, immature CLL cases. Loss or gain of methylation 

relative to the cell-of-origin was observed at class D (5,190 CpGs) and E sites (199 CpGs), respectively (Figure 4-5A 

and Figure 4-5B, ‘class D’, ‘class E’). Interestingly, sites from both of these classes of events did not undergo any 

significant methylation programming during normal B cell differentiation, indicating the potential importance of 

these sites for CLL pathogenesis.  

4.4 Annotation of sequences demonstrating CLL-specific methylation differences 

identifies aberrant transcription factor programming 

Next, I investigated the molecular programs affected by CLL-specific aberrant methylation. Therefore, CLL-specific 

CpG sites were annotated with chromatin states derived from immortalized B cells (GM12878) [224]. Aberrantly 

methylated CpGs from class A, C & D were enriched for enhancer elements (class A & C & D), while the CLL-specific 

gain of methylation in regions not related to B cell maturation (class E) was enriched for weak and poised 

promoters, repetitive elements and insulator regions (Figure 4-6A). Overall, these results indicate that disease-

specific methylation events target transcriptionally relevant sequences in CLL. 

As normal B cell differentiation is associated with coordinated expression of many B cell-specific transcription 

factors (TFs) [225], I further tested which transcription factor binding sites were enriched in CLL-specific 

differentially methylated regions (see Methods 3.2.10). Significant enrichment was observed for B cell-specific TFs, 

including IKZF1 and BATF (in class A), EBF1, IKZF1, BATF, ATF2 (in class C), and NFATC1 and EGR1 (in class D). 

Additionally, the enrichment of non-B cell related TFs was observed, NFIC and ATF2 in class C and for TFs related to 

genome architecture: CTCF, SMC3 and RAD21 in class E CpG sites (Figure 4-6B). The latter might explain the 

observed enrichment of class E CpGs in the insulator regions as CTCF and the cohesin complex composed of e.g. 

RAD21, SMC3, SMC1, and STAG1/STAG2 are working together to mediate long-range interactions [226].   
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Figure 4-6: A) Enrichment of chromatin states in sequences representing CLL-specific methylation. Chromatin 

states were annotated to CLL-specific methylation sites of the classes A, C, D and E using the 15-state ChromHMM 

model derived from immortalized B cells [224]. The enrichment in two chromatin states under the category 

‘Repetitive/CNV’ was represented as the averaged value. Log2 fold change (log2 FC) was calculated using all 450k 

probes as a background. B) Transcription factor binding to CLL-specific methylation sites. Bubble scatterplots 

represent either transcription factor ChIP-seq peaks from the GM12878 cell line that overlap CLL-specific events 

(class A and C and E) or transcription factor recognition motifs present at CLL-specific methylation sites (class D). 

The bubbles are colored according to the class assignment. The x-axis represents the percentage of CLL-specific 

CpGs overlapping transcription factor binding sites. The y-axis represents the outcome of the enrichment analysis, 

either as log2 odds ratio or log2 p-values (Fisher’s exact test).  

 

Next, I hypothesized that the aberrant methylation phenotype in CLL is associated with different TF expression 

levels, whose sites were enriched in differentially methylated regions. At first, I investigated TF expression levels in 

the context of normal B cell differentiation (Figure 4-7). The analysis revealed (two sample t-test p.value<0.05 & FC 

>2) that the degree of expression changes in CLL is equal to that observed in normal B cells for most of the TFs, 

with the exception of SMC3, POU2F2 and EBF1. No significant expression changes were detected for IKZF1, BATF, 

ATF2, NFIC, NFATC1, EGR1, CTCF and RAD21. Further, I related the expression levels of TFs to differentiation stages 

of CLLs. Homogenous patterns of overexpression of POU2F2 and downregulation of EBF1 and SMC3 were 

observed for all CLLs, irrespective of the differentiation stage of their cell-of-origin (Figure 4-8). Interestingly, 

almost complete loss of EBF1 expression was observed in CLLs as compared to normal B cells, suggesting its 

importance for CLL pathogenesis. This is in line with the previous reports showing that EBF1 is essential for normal 

B cell differentiation, and that genetic disruption of EBF1 contributes to leukemogenesis [227, 228]. 

 

A)                                                                  B) 
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Figure 4-7: Differential expression of TFs between normal B cells and CLLs. Differences in the expression levels of 

TFs from naive B cells (NBCs) to high-maturity memory B cells (hiMBCs) and to all CLLs using RNA-seq data. TF 

expression levels were averaged across replicates for each subtype (naïve B cells, n = 3; high-maturity memory B 

cells, n = 3; CLLs, n = 34). Differentially expressed TFs (abs FC>2 and two-sample t-test p.value <0.05) are either 

downregulated (dark blue) or upregulated (red) in CLLs as compared to normal B cells.  

Figure 4-8: Expression data of transcription factors enriched in CLL-specific methylation sites. Left, expression 

levels (rlog normalized) of transcription factors in healthy B cells (‘normal’), representing terminal stages of B-cell 

differentiation (NBC - Naïve B cell; hiMBC – Class-switched memory B cells). Right, expression levels of 

transcription factors in CLL. The y-axis represents normalized expression levels for TFs (rlog normalized values). 

Differentiation stage is denoted with the gradient color (white-orange), where immature CLLs are represented in 

white and more mature ones in orange. 
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Next, the potential impact of aberrant promoter methylation on TF expression was tested. Here only EBF1 

promoter hypermethylation correlated with transcriptional EBF1 downregulation in CLL (Figure 4-9). Other TFs did 

not show any significant changes in promoter methylation, which could, at least in part, be attributed to the 

limited CpG coverage of the 450K array (Figure 7-3 in the Appendix). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9: DNA methylation profiles of the EBF1 promoter. DNA methylation in the promoter region was shown 

for two normal B cell subsets, representing advanced stages of B-cell differentiation (left) and the CLLs (right). NBC 

- Naïve B cells; hiMBC – Class-switched memory B cells; avg CLL – average methylation change in CLLs. Y-axis 

represents methylation levels (%). The x-axis represents the distance to transcription start site (TSS) in kb. 

 

4.5 CLL-specific microRNAs 

Previous studies identified hundreds of epigenetic events deregulating the expression of miRNAs in CLL cells [155, 

189, 195-200]. However, all published studies used CD19+ B cells as controls. By doing so, they neglected the broad 

epigenetic reprogramming that occurs during normal B cell differentiation [155, 189, 195-200]. To demonstrate 

that the knowledge about CLL-specific aberrant methylation patterns is indispensable for the identification of 

important pathogenic events in CLL, the contribution of epigenetically deregulated miRNAs in CLL was re-analyzed.  

To do so, a strategy for an unbiased identification of miRNA regulatory regions was developed. Functional genome 

segmentation data derived from ChIP-seq experiments performed on CLL samples and on all available ENCODE cell 

lines (see Methods 3.2.9 for the data source) was used to identify genomic segments that show chromatin 

characteristics indicative of promoter activity. All available active and weak promoter segmentation tracks were 

used for this analysis. Briefly, promoter tracks from CLLs and normal cell lines were put together and the function 

reduce from GenomicRanges package was used to define constant promoter regions. The reduce method takes 

into consideration all promoter segments, and merges them together to produce a simplified, joined promoter 

region (Figure 4-10). Potential promoters of pri-miRNAs were then assigned based on the distance of promoters to 

the annotated transcription start sites (TSS) of the pri-miRNAs. The annotation of pri-miRNAs/miRNAs was 

downloaded from miRBase (version 20) [229]. Every promoter located within 100kb from TSS of the pri-miRNA was 

considered as a putative promoter of the pri-miRNA. The distance of 100kb was chosen based on similar distance 
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constraints used in the past by Corcoran et al., Fujita et al. and Fukao et al. [230-232]. The larger distance of 

putative promoters to the pri-miRNA TSS is especially important in case of intergenic miRNAs, which are 

originating from intronic sequences and are believed to be transcribed together with their host gene. 

 

Figure 4-10: Schematic representation of definition of the miRNA promoter region. The reduce function from 

GenomicRanges package was used to create a joint, simplified promoter region, present in all cell lines. 

 

To identify CLL-specific miRNAs, CLL-specific methylation events were overlapped with potential promoters of pri-

miRNAs and the correlation (Spearman correlation test, p-value > 0.05; abs(correlation coefficient ρ)>0.4) between 

disease-specific DNA methylation and the expression of pri-miRNA in CLLs was computed. Since many mature 

miRNAs are derived from the same pri-miRNAs, correlations were calculated using small RNA sequencing data for 

pri-miRNAs. Testing the impact of CLL-specific methylation in the promoter regions on miRNA expression identified 

seven candidate miRNAs that showed a correlation of DNA methylation with miRNA expression: miR-486 and miR-

3688-2 in class A; miR-29c in class C hyper; miR-141, miR-195, let-7b and miR-3605 in class D (Figure 4-11A). 

Hypomethylation accounted for the majority of events (6 microRNA candidates), and only one class C 

hypermethylation event correlated with miR-29c expression in CLL (Figure 4-11A). Although there were reports 

showing aberrant expression of miR-29c and miR-195 in CLL [233-235], none of the candidate regions identified by 

us had been described previously as being deregulated by aberrant DNA methylation in CLL.  
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Figure 4-11: Candidate miRNAs associated with CLL-specific aberrant DNA methylation. A) Left, CLL-specific 

differentially methylated CpGs identified in microRNA promoters grouped by subclasses (class A, C, D and E). 

Epigenetic programming during normal B cell differentiation is represented as a grey line. Average methylation 

values are represented as dots; normal B cell subpopulations (grey dots); CLL samples (white-orange dots). Y-axis 

represents methylation levels (%), while X-axis assigns differentiation stage either to normal B cell or CLLs. Right, 

expression levels of candidate microRNAs in CLL (log2 RPM). Y-axis represents log2 normalized expression values 

of microRNAs (log2 RPM), while X-axis assigns differentiation stage either to normal B cell or CLLs. B) Schematic 
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representation of CLL-specific microRNAs. Validated CLL-specific microRNAs are represented in red. Lowly 

expressed candidate CLL-specific microRNAs, which were excluded from the validation studies, are marked with 

asterisks. 

 

Aberrant CLL-specific methylation and expression patterns of candidate miRNAs were confirmed in independent 

CLL and normal B cell samples from two differentiation stages (naive and mature B cells). Two candidate miRNAs 

(miR-3688-2 & miR-3605) were excluded from the validation experiments since their expression levels were close 

to the detection limit. From the remaining 5 candidate miRNAs I was able to validate 4 as being specifically 

aberrantly expressed in CLL: miR-486 (miR-486-5p), miR-29c (miR-29c-3p), miR-141 (miR-141-3p) and miR-195 

(miR-195-5p) (Figure 4-11B, Figure 4-12, Table 7-5 in the Appendix). CLL-specific promoter hypomethylation of 

miR-486 is paralleled by increased expression. Normal B cells also show loss of methylation in the miR-486 

promoter, although to a much lesser extent as observed in CLL, and expression of miR-486 remains stable during B 

cell differentiation. The divergent miR-29c promoter methylation pattern seen in immature versus mature CLLs 

(class C sites), with strong hypermethylation in immature CLLs and slight hypomethylation in more mature CLLs, 

was confirmed in the validation experiments. Nevertheless, we observed higher expression levels of miR-29c in all 

CLLs as compared to normal B cells. For all miRNA candidates with promoter methylation patterns belonging to 

class D, I validated CLL-specific promoter hypomethylation that was paralleled by the increased miRNA expression 

in CLL, while we did not observe methylation programming in their promoters during normal B cell differentiation 

(Figure 4-12). 
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Figure 4-12: Validation experiments for CLL-specific miRNAs. Top, MassArray validation of CLL-specific 

methylation events in miRNA promoters. Average methylation values are represented as dots; normal B cell 

subpopulations (grey dots; left panel); CLL samples (white-orange dots; right panel). Bottom, Relative expression 

levels of CLL-specific microRNAs in B cells and CLLs. The relative expression levels are represented as dots; normal 

B cell subpopulations (grey dots; left panel); CLL samples (white-orange dots; right panel). Differentiation stage of 

CLLs is denoted with the gradient color (white-orange), where immature CLLs are represented with the white color 

and more mature ones with the orange color. 

 

To further link CLL-specific microRNAs with their pathogenetic effects, I searched two databases of experimentally 

validated microRNA-target gene interactions (TarBase v7.0, miRTarBase). Among the validated targets of the newly 

identified disease-specific miRNAs are well known recurrently mutated epigenetic regulators in CLL: miR-486 

interacts with ARID1A, miR-195 & miR-141 interact with CHD2 and with ASXL1 (Figure 4-13; Table 7-6: Table 7-13 

in the Appendix) [54]. Of note, many other epigenetic regulators are predicted targets of CLL-specific microRNAs, 

e.g. EZH2, DNMT3A, SIRT1, TET2, SETD1A and H3F3B (Figure 4-13; Table 7-6: Table 7-12 in the Appendix). These 

findings suggest epigenetic dysregulation of microRNAs as an alternative mechanism for the inactivation of these 

epigenetic regulators in CLL.  

 

Figure 4-13: Schematic outline of results for miRNA target gene prediction. Two databases of experimentally 

validated targets of microRNAs, TarBase v7.0 and miRTarBase, were used to define a set of CLL-specific microRNA 

targets. Recurrently mutated genes in CLL are presented in green. The full list of targets is presented in Table 7-6 

to Table 7-13 in the Appendix. 

 

4.6 CLL-specific protein-coding genes 

Previous studies identified many epigenetic events deregulating the expression of protein-coding genes in CLL cells 

(Section 1.3.3). However, as in the case of miRNAs, all of the published work used CD19+ B cells as controls to call 

aberrant DNA methylation [142-153]. To demonstrate that identifying CLL-specific DNA methylation events is 
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indispensable for the identification of pathogenic events in CLL, the contribution of epigenetically deregulated 

protein-coding genes in CLL was re-analyzed.  

I used a similar strategy as described above for miRNAs. First, the impact of CLL-specific DNA methylation in 

promoter regions (-1.5kb, +0.5kb to TSS) of protein-coding genes was assessed. This was achieved by correlating 

DNA methylation with gene expression (Spearman correlation test). Using this approach, I identified 20 CLL-

specific protein coding-genes (p-value<0.05; abs(correlation coefficient)>0.4)(Table 7-14 in the Appendix). The 

expression levels of these genes were compared to those observed in normal B cells and only those genes with a 

significant expression change (log2FC>1) between CLLs and normal B cells were considered as CLL-specific. Using 

this strategy, I was able to identify 11 CLL-specifically deregulated protein-coding genes (Figure 4-14, Figure 7-4 in 

the Appendix). 
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Figure 4-14: Candidate protein-coding genes associated with CLL-specific aberrant DNA methylation (exemplary 

data). A) Left panel, CLL-specific differentially methylated CpGs identified in gene promoters grouped by 

subclasses (class A, C, D and E). Epigenetic programming during normal B cell differentiation is represented as a 

grey line. Average methylation values are represented as dots; normal B cell subpopulations (grey dots); CLL 

samples (white-orange dots). Y-axis represents methylation levels (%), while X-axis differentiation stage assigned 

either to normal B cell or CLLs. Middle panel, expression levels of protein-coding genes in normal B cells (log2 

normalized expression values, NBC; naive B cells, hiMBC; high maturity memory B cells). Right panel, expression 

levels of protein-coding genes in CLL (log2 normalized expression values). The y-axis represents log2 normalized 

expression values of protein-coding genes, and the x-axis assigns differentiation stage either to normal B cells or to 

CLLs. The remaining plots can be found in Figure 7-4 in the Appendix. B) Schematic representation of CLL-specific 

protein-coding genes identified.  

 

Further exploration of the function of CLL-specific protein-coding genes by functional enrichment analysis 

(MSigDB, GO analysis) was not successful due to the small size of the gene set. Therefore, for functional 

annotation, I decided to search the existing literature using PubMed. Two genes among the identified CLL-specific 

protein-coding genes, DOK2 and CLLU1, were previously reported as differentially methylated in AML and CLL, 

respectively [144, 236] (Figure 4-15). Interestingly, they were also linked to prognostic features of patients with 

gastric adenocarcinoma, AML and CLL [237].  

Figure 4-15: Functional annotation of candidate genes. The annotations were assigned based on thorough 

literature screen (PubMed). Genes are presented in rows. Annotations are presented in columns. The source of 

annotation is presented in Table 4-1. 
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Table 4-1: CLL-specific annotation – literature 

Gene Function Publication 

AMICA1 Cell adhesion, Leukocyte 

migration 

Weber et al. [238], Verdino P et al. [239], Luissint AC et al. 

[240], Moog-Lutz C et al. [241] 

DOK2 Tumor suppressor gene Berger AH et al. [242], Niki M et al. [243], Yasuda T et al. 

[244], Ann CH et al. [245], Coppin E et al. [246] 

Differentially methylated Fang F et al. [247], Lum E et al. [248], He PF et al. [236] 

Prognostic marker Fang F et al. [247], He PF et al. [236], Huang J et al. [249], 

Miyagaki H et al. [237] 

Signal transduction Laroche-Lefebvre C  et al. [250], Downer EJ et al. [251], 

Mihrshahi R et al. [252, 253], Yasuda T et al.  [254], Van 

Slyke P et al. [255], Abramson J et al. [256], Suzu S et al. 

[257], Jones N et al. [258] 

Adaptive immunity Celis-Gutierrez J et al. [259] 

Cell Cycle Coppin E et al. [260] 

LILRB4 NF-κB signaling Vlad G et al. [261], Buckland M et al. [262], Chang CC et al. 

[263] 

Inflammation Fanning LB et al.  [264], Chang CC et al. [263] 

Adaptive immunity Cella M et al. [265], Bankey PE et al. [266], Fanning LB et 

al. [264], Innui M et al. [267], Chang CC et al. [263], Ju XS 

et al. [268] 

MIB2 Signal transduction Davis ME et al. [269], Hu H et al. [270], Shi JH and Sun SC 

[271], Kwon DY et al. [272], Ossipova O et al. [273] 

NF-κB signaling Hu H et al. [270], Jiang X and Chen ZJ [274], Shi JH and Sun 

SC et al. [271], Chen ZJ et al. [275] 

Ubiquitin ligase Davis ME et al. [269], Hu H et al. [270], Jiang X and Chen 

ZJ [274], Shi JH and Sun SC [271], Chen ZJ et al. [275] 

Antiviral immune 

response 

Davis ME et al. [269], Jiang X and Chen ZJ [274], Wang L et 

al. [276] 

Adaptive immunity Hu H et al. [270], Jiang X and Chen ZJ [274], Shi JH and Sun 

SC et al. [271] 

TNNC1 Cardiac muscle 

contraction 

Li MX and Hwang PM [277], Parvatiyar MS et al. [278] 

XIRP1 Cell adhesion Wang Q et al. [279] 

Muscle injury/damage Rebalka IA and Hawke TJ [280], Nilsson MI et al. [281] 

CLLU1 Differentially methylated Cahill N et al. [144] 

Prognostic marker Buhl AM et al. [282], Gonzalez D et al. [283], Rosenwald A 

[284], Abur U et al. [285], Kaderi MA et al. [286] 

FBXO40 Ubiquitin ligase Deshaies RJ [287] 

TMEM110-

MUSTN1 

Unknown function  

C22orf46 

EFCAB12 
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4.7 The importance of usage of proper control cell for aberrant DNA 

methylation calls 

To illustrate the importance of using a proper control B cell population when calling pathogenic disease-specific 

methylation events, I compared our results with those obtained when using CD19+ B cells as controls. I determined 

differentially methylated CpG sites between CD19+ B cells and CLLs using different thresholds (5%, 10% and 20%) 

for the DNA methylation. The use of different thresholds was necessary since previous publications used different 

cut-offs for calling differential methylation [155, 195, 199]. The differential methylation events identified were 

overlapped with microRNA promoters and inverse correlation analysis between methylation and expression was 

applied to identify potentially epigenetically deregulated microRNAs. In this analysis, I identified previously 

reported microRNAs (e.g. miR-708, miR-23a or miR-10b). An almost 10-fold higher number of CLL-specific miRNAs 

was detected when applying the „classic“ analytical approach (5% threshold: from 41 to 4 microRNAs, 10% 

threshold: from 35 to 4 microRNAs) (Figure 4-16), highlighting the importance of the usage of a proper control B 

cell in the epigenetic studies in CLL. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-16: Usage of CD19+ B cells overestimates the proportion of CLL-specific microRNAs. Differential 

methylation between control and tumor B cells was calculated using different methylation thresholds (5%, 10% or 

20%). The bar plot illustrates the proportion of microRNAs defined as CLL-specific using different control B cell 

sources (CD19+ B cells are represented in grey, individual cell-of-origin is represented in orange). The table depicts 

the number of candidate CLL-specific microRNAs defined using CD19+ B cells as a control B cell population. The 

column “previously reported” reflects the number of microRNAs previously reported in the literature as CLL-

specific. 
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Similarly, going beyond the miRNA example, I again applied this comparison using protein-coding genes. The same 

strategy as described for miRNAs was used and CD19+ B cells were used as controls. Differentially methylated CpG 

sites between CD19+ B cells and CLLs were calculated using different thresholds (5%, 10% and 20%) for the 

minimum DNA methylation required. The differential methylation events were overlapped with promoter regions 

of protein-coding genes (-1.5kb, +0.5kb to TSS) and a correlation analysis between methylation and expression was 

applied to identify epigenetically deregulated genes (Spearman correlation test, p-value<0.05; abs(correlation 

coefficient)>0.4)). An almost 30-fold difference in the numbers CLL-specific protein-coding genes were identified 

between the two different approaches (5% threshold: from 549 to 11 genes, 10% threshold: from 405 to 11 

genes), again highlighting the overcalling of differential methylation events in previous studies of CLL using CD19+ 

B cells as controls (Figure 4-17). Interestingly, previously identified differentially methylated promoters of ZAP70, 

DAPK1, TWIST2 or HOXA4 did not pass the stringent filtering criteria of my correlation analysis (p-value<0.05, 

abs(correlation coefficient)>0.4)(Table 7-15 in the Appendix). Similarly to miRNAs, these findings stress the 

importance of the use of appropriate controls for any epigenome study. 

 

 

 

 

 

 

 

 

Figure 4-17: Usage of CD19+ B cells overestimates the proportion of CLL-specific protein-coding genes. 

Differential methylation between control and tumor B cells was calculated using different methylation thresholds 

(5%, 10% or 20%). The bar plot illustrates the proportion of genes defined as CLL-specific using different control B 

cell sources (CD19+ B cells are represented in grey, individual cell-of-origin is represented in orange).  
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5. DISCUSSION 

In this thesis, I described a new analytical method to identify cancer-specific DNA methylation patterns using CLL 

as a model. I showed that knowledge of the epigenome of the cell-of-origin is indispensable to accurately resolve 

disease-specific methylation events. I determined and dissected two main factors, which together form the 

epigenetic patterns observed in CLL: 1) DNA methylation patterns derived from the tumor-initiating B cell and 2) 

epigenetic alterations that are acquired in CLL cells during disease pathogenesis. Using DNA methylomes of normal 

B cells along the differentiation trajectory, I was able to precisely identify the unique virtual epigenome of the cell-

of-origin for every CLL patient, which enabled the delineation of disease-specific methylation events. CLL-specific 

differentially methylated regions showed evidence for deregulated signaling pathways that are known to be 

important in normal B cell differentiation as well as for other mechanisms (e.g. CTCF) implicated in CLL 

pathogenesis. The identification of CLL-specific, epigenetically deregulated miRNAs and protein-coding genes 

demonstrated that previously used conventional analysis approaches overestimated the proportion of 

epigenetically deregulated transcripts in CLL. This suggests a need for a proper control B cell for the identification 

of truly disease-specific methylation events. Furthermore, I found that epigenetically deregulated miRNAs might 

play a role in epigenetic remodeling in CLL pathogenesis by altering the expression of epigenetic regulators. Finally, 

based on the assumption that observed DNA methylation occurs in a CLL-specific manner, I propose new candidate 

genes that might play a role in CLL pathogenesis. 

5.1 Modeling of normal B cell differentiation and of the epigenome of the cell-

of-origin – CLL as a model disease 

The aim of my thesis was to develop a method that allows for the identification of truly aberrant DNA methylation 

profiles in CLL on the background of the highly dynamic epigenetic landscape of normal B cell differentiation. 

Normal B cells exhibit distinct DNA methylation patterns reflecting their differentiation stage achieved along the B 

cell differentiation trajectory starting from naive B cells towards fully mature memory B cells. As a consequence, 

the DNA methylation landscape in any given CLL sample results from a combination of epigenetic changes acquired 

during normal B cell differentiation and those acquired during leukemogenesis. Previous efforts to uncover CLL-

specific epigenetic alterations were based on the comparison of CLL epigenomes to peripheral blood CD19+ B cells, 

which mostly reflect fully mature B cells. Such an approach completely neglects the massive epigenetic 

programming that occurs during normal B cell differentiation [8, 9]. Therefore, the dissection of cancer-specific 

epigenetic events requires the selection of a proper reference B cell epigenome: in this case the epigenome of the 

B cell differentiation stage that has acquired the transforming hit (cell-of-origin). Although several mutations 

creating a preleukemic clone including SF3B1, NOTCH1 or TP53 have been identified in the HSC pool of CLL 

patients, a second (and maybe third) driver event, which could be genetic or epigenetic, is required for the 

transformation [16]. This transforming event ultimately blocks normal B cell differentiation and/or resistance to 

apoptotic cell death.  
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When developing the cell-of-origin modeling method, I found that a simple linear regression model most precisely 

reflected the DNA methylation dynamics observed during normal B cell differentiation. Hence, I employed this 

linear model to describe the continuum of epigenetic alterations occurring during normal B cell development. For 

each CLL sample, the DNA methylome was subsequently precisely mapped on the normal B cell differentiation 

trajectory to define the closest virtual normal DNA methylome which was then defined its cell-of-origin. Using this 

cell-of-origin as an internal control, I then identified CLL-specific methylation events. 

Taking into consideration that the vast majority of cancer DNA methylome data, i.e. The Cancer Genome Atlas 

(TCGA), or International Cancer Genome Consortium (ICGC) data is currently derived from Illumina 450K Bead 

Arrays I decided to develop the analysis pipeline for this type of data. The limited CpG-coverage of 450K arrays is, 

of course, a limitation of this model and could be overcome by the use of whole-genome bisulfite sequencing 

(WGBS) data once cost issues and computational challenges associated with the substantial increase in the number 

of CpG sites that are necessary to build the model (~44-fold change in the CpG coverage, from ~4,5*10^5 to 

~20*10^6) have been addressed. 

DNA methylation is considered as a stable epigenetic mark which allows the precise mapping of tissue types and 

even differentiation stage assignments in differentiating tissues such as the hematopoietic system. Hence, DNA 

methylation can be used to identify the founder cell of virtually any cancer entity. As shown in this thesis, tracing 

the cell-of-origin is of conceptual importance beyond the CLL field and, in my opinion, will serve as a model for 

similar studies in other cancer entities. The identification of the cell-of-origin of any cancer type will be crucial to 

dissect the mechanisms leading to tumor initiation and progression. In most cancers, so far, the precise cell-of-

origin remains elusive. However, there are initial hints in the current literature indicating that the cell-of-origin 

influences tumor biology. For instance, studies in MLL-rearranged AML have shown that the cell-of-origin affects 

the phenotype and the clinical behavior of resulting leukemia [288]. Depending on the targeted cell type (cell-of-

origin), hematopoietic stem cells (HSCs) or granulocyte-macrophage progenitors (GMPs), different epigenetic and 

transcriptional programs were orchestrated. Leukemias derived from HSCs were characterized by higher resistance 

to chemotherapy, had a stem-cell-like expression signature and had elevated global 5’-mC levels as compared to 

GMP-derived leukemias [288]. Likewise, mouse models of glioblastoma pointed towards neural stem cells and glial 

progenitors as glioma founder cells [289]. It was shown that several glioma subtypes share molecular signatures 

with different normal neural lineages, and vary in terms of their response to therapy, which suggested different 

cellular origins [289-291]. Similarly, using genetic lineage-tracing experiments in mice, Blanpain and colleagues 

nicely demonstrated the presence of distinct cells-of-origin for two types of skin cancer, good prognosis basal cell 

carcinoma, and invasive squamous cell carcinoma [164]. Likewise, the potential cell-of-origin in colorectal cancer 

was studied intensively, pointing towards three potential cell types as founder cells: intestinal stem cells [292-296], 

transit amplifying cells [292, 297], and differentiated villus cells [297]. Also, DNA methylation-based classification 

of central nervous system tumors revealed differences in cellular origin of these tumors. Gibson P et al. reported 

distinct cellular origins for two medulloblastoma subtypes [298]. The activated Sonic Hedgehog type (SHH type) 

most likely originates from the cells inside cerebellum, while WNT subtype arises from the cells of the dorsal 

brainstem, located outside cerebellum [298]. In a more global approach, Capper and colleagues used DNA 
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methylation to show distinct epigenome profiles in each of the examined 82 central nervous tumors [299], 

reflecting on the distinct origin of these tumors.  

There might be caveats which have to be considered when implementing my approach to other tumor types. 

Unlike CLL, many solid tumors are very heterogeneous with respect to their methylation profiles [300]. Such 

intratumoral heterogeneity has been detected in spatially distinct regions of solid tumors, e.g. lung, prostate or 

hepatocellular carcinoma [201, 301, 302]. Additionally, mutations in epigenetic regulators can affect methylation 

profiles of tumors, creating genotype-specific methylation patterns. For instance, DNMT3A mutations in AML and 

other hematopoietic tumors induce characteristic patterns of hypomethylation [303, 304]. Likewise, the presence 

of IDH1 mutation (R132) was linked to CpG island methylator phenotype in gliomas [305]. Along the same lines, 

mutations in genes encoding histones can influence DNA methylation profiles of the tumors, e.g. cell lines and 

primary samples harboring K27M mutation of histone H3.3 displayed global DNA hypomethylation [306-308]. 

Therefore, the performance of my method would have to be tested thoroughly in other tumors.  

5.2 Hypomethylation is the most common CLL-specific event 

Using the epigenome of the cell-of-origin as a control for aberrant DNA methylation calls, two categories of 

disease-specific methylation events were identified: 1) CpGs sites undergoing epigenetic programming during 

normal B cell differentiation, at which CLLs display inadequate levels of DNA methylation programming (‘Sites with 

epigenetic B cell programming‘) , and 2) CpG sites at which B cells are normally not programmed but CLL samples 

display aberrant DNA methylation patterns (‘Sites without epigenetic B cell programming‘). Applying my method to 

CLL, I found that disease-specific methylation events are actually rare. Only 1.6% of the CpG-sites (7,248 CpGs) 

represented on the 450K array are affected by disease-specific methylation programming in CLL. Moreover, the 

majority of the identified CLL-specific methylation events were characterized by hypomethylation (6,680 CpGs) as 

compared to the virtual cell-of-origin. 

Remarkably, hypomethylation is a common feature for all of the B-cell malignancies [160, 309-313]. Also, it is 

commonly observed in EBV-transformed lymphoblastoid cell lines [314, 315] and in solid tumors [316, 317]. 

Interestingly, in B cell malignancies the degree of hypomethylation programming correlates with the 

differentiation stage achieved by the tumor-initiating B cell at the time of transformation. Acute lymphoblastic 

leukemias (ALLs) which are arrested somewhere at the pre-B cell stage show only minor hypomethylation. In 

contrast, Multiple Myelomas (MM) originating from plasma cells exhibit the most profound hypomethylation 

programming [160, 309-313]. Although global methylation loss occurs throughout the normal B cell differentiation 

process, this pattern is exaggerated in tumor cells.  

DNA hypomethylation in CLL has been associated with genome-wide disordered methylation states enriched in 

gene-poor regions [318]. Previous studies linked genome-wide hypomethylation to elevated mutation rates and 

increased genomic instability [319]. Since global hypomethylation is a feature of both normal B cells and CLL 

samples, loss of methylation in B cell malignancies, in general, does not seem to contribute to genomic instability. 
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Yet, the question of the impact of this process on the pathogenesis of B cell malignancies remains unclear and has 

to be addressed in future studies.  

Along the same lines, the mechanisms driving tumor-specific hypomethylation in B cell malignancies remain still 

elusive. While loss of DNA methylation at heterochromatic regions may occur through a passive, replication-

dependent process, targeted hypomethylation at regulatory regions most likely requires an active demethylation 

process. Caron et al. intensively studied terminal differentiation of B cells into plasma B cells. This study linked the 

plasma cell differentiation process with an extensive DNA demethylation and with the local acquisition of 5-

hydroxymethylcytosine at regulatory regions, pointing towards an active DNA demethylation [320]. Although still 

highly speculative, this event could require TF binding that results in the recruitment of TET family enzymes 

mediating active DNA demethylation. Additionally, one should also consider the possibility of active DNA 

demethylation guided by long noncoding RNAs (lncRNAs). It was shown that lncRNA, TARID, recruits DNA 

demethylation machinery to the promoter of TCF21, leading to increased TCF21 expression [321]. Another 

scenario would involve active deamination of 5mC by the AICDA/APOBEC family of cytosine deaminases. 

Dominguez and colleagues have elegantly shown that the transit of differentiating B cells through the germinal 

center (GC) is associated with prominent locus-specific DNA methylation loss and increased methylation diversity. 

Both of these patterns were lost in Aicda(-/-) mice [322]. Moreover, AIDCA binding sites were enriched in 

hypomethylated loci in GC B cells [323]. Interestingly, AID overexpression in the mouse resulted in aggressive 

lymphomas, a phenotype that was associated with increased DNA methylation heterogeneity [324]. Altogether, 

this suggests the need for further studies on the demethylation mechanism in B cell malignancies. 

5.3 Programming of CLL-specific methylation events 

In this thesis, using chromatin states derived from an immortalized B cell cell line, I showed that disease-specific 

methylation events are mostly enriched for enhancer sequences (class A & B & C), weak and poised promoters and 

insulator regions (class E), suggesting the impact of aberrant DNA methylation on deregulated CLL transcriptome.  

However, this profile is not unique to CLL per se. Recently, large-scale epigenomic studies on a broad range of 

tumor and tissue types have emphasized the role of DNA methylation in regulatory regions, particularly outside of 

promoters [325-327]. Enhancer activation, typically through DNA hypomethylation or H3K4me1/H3K27ac gain, 

was linked to specific gene expression profiles, and to other regulatory functions, e.g. response to intrinsic 

signaling or RNA splicing [328, 329]. Interestingly, aberrant DNA methylation programming at enhancer regions is a 

common feature for other B-cell malignancies, i.e. mantle cell lymphoma (MCL), acute lymphocytic leukemia (ALL), 

follicular lymphoma (FL), Burkitt lymphoma (BL), and multiple myeloma (MM) [309-312, 330]. In most instances, 

hypomethylation affects enhancer loci, with the exception of MM which is characterized by enhancer 

hypermethylation and decommissioning [310]. In MCL, de novo hypomethylation of the enhancer located ~650 kb 

downstream SOX11 was associated with overexpression of the SOX11 oncogene-mediated by de novo 3D 

chromatin interactions [312].  
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Normal B cell differentiation is associated with the coordinated expression of many B cell-specific transcription 

factors (TFs) [225]. It was shown that DNA hypomethylation is predominantly enriched at enhancer loci bound by 

these B cell-specific TFs in differentiating B cells [160, 331-333]. Tumor cells may employ aberrant TF programming 

to modify epigenetic states in order to establish a deregulated B cell differentiation program. ALL, for instance, is 

classified into different subtypes based on genetic fusions involving one or more TFs [334]. Remarkably, these 

genetically defined subtypes are characterized by distinct methylation profiles [335, 336]. Several TF fusions 

present in AML have also been linked to distinct DNA methylation patterns [337]. Together, these data 

demonstrate that the disruption of TF programs affects DNA methylation profiles. 

In this thesis, I have found that CLL-specific methylation events are enriched for B-cell specific TF binding sites, 

including IKZF1, BATF (in class A), EBF1, IKZF1, BATF, ATF2 (in class C), NFATC1 and EGR1 (in class D). This B-cell 

specific TF signature may suggest an underlying defect in the normal B-cell differentiation program. For instance, 

activation of NFAT and EGR is known to occur downstream of B cell receptor signaling (via calcium influx and MAPK 

induction, respectively), linking the aberrant DNA methylation profiles to hyperactive BCR activity [338]. In my 

thesis statistically significantly deregulated TF expression patterns in CLL were observed only for EBF1. 

Interestingly, there are reports showing the pioneering activity of EBF1. It has been shown to induce the 

expression of a component of the B-cell receptor complex, Cd79a, facilitating DNA demethylation and chromatin 

remodeling at the Cd79a promoter region [339]. This pioneering activity is dependent on its C-terminal domain, 

which is indispensable for EBF1 to mediate chromatin accessibility and DNA demethylation in previously inactive 

chromatin regions [340]. The ability of EBF1 to demethylate DNA is most likely associated with TET2 recruitment as 

both of these factors were shown to interact in many tumor types, e.g. AML, low-grade glioma, 

cholangiocarcinoma and chondrosarcoma [341]. Despite the lack of drastic effects on the transcript levels of other 

TFs identified in my analysis, one should consider the scenario, in which slight expression changes below the 

sensitivity of the RNAseq assay are sufficient to mediate differential binding at some sites. Potentially subtle 

changes in the expression of co-factors may play a role, too. For instance, IKZF1, a member of IKAROS family is 

known to form heterodimers with other IKAROS zinc-finger proteins that results in the enhanced DNA affinity and 

transcriptional activation [342]. Likewise, an AP-1 transcription factor, ATF2, is known to form stable dimers with c-

Jun [343, 344]. Another possibility would be that post-translational modifications of TFs might affect their protein 

expression levels and/or binding patterns. Phosphorylation of serine-43 in the DNA binding-domain of BATF, for 

instance, converts BATF from DNA binding inhibitor into a non-DNA binding form, which is able to form 

heterodimers but loses the ability to bind target DNA sequences [345]. ATF2, on the other hand, is phosphorylated 

at threonine-69 and threonine-71 and, following this event, it forms heterodimers with other AP-1 proteins that 

leads to transcriptional activation of target genes [346-348]. Similarly, phosphorylated form of EGR1 was shown to 

bind DNA more efficiently than the unphosphorylated protein [349].  

Interestingly, I found enrichment of CTCF, RAD21 and SMC3 binding sites among CLL-specific gain of methylation 

events (class E). This explains the observed enrichment of class E CpGs in the insulator regions as CTCF and the 

cohesin complex composed of e.g. RAD21, SMC3, SMC1, and STAG1/STAG2 are working together to mediate long-

range interactions [226]. Remarkably, during normal B cell differentiation insulators and CTCF binding sites are 
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protected from DNA hypermethylation, suggesting this as a strictly CLL-specific phenomenon. Insulator elements 

have two main functions [350, 351]. First, they are blocking the action of a distal enhancer on promoters of genes 

located within the insulator sequences. Second, they prevent the spread of nearby condensed chromatin that 

might otherwise silence the expression of genes within the insulator sequences. Some reports show that DNA 

hypermethylation abolishes CTCF binding and as a result deregulates locus insulation. Bell and Felsenfeld, for 

instance, have shown that CTCF binds to the imprinting control region (ICR) of Igf2 and H19 [352]. H19 is expressed 

only from the maternal allele, and Igf2 only from the paternal allele. Under normal circumstances, CTCF binds to 

the unmethylated maternal ICR, creating a locus insulation that prevents distant enhancers from the activation of 

Igf2 expression. However, methylation of CpGs within the CTCF-binding sites eliminates binding of CTCF in vitro, 

and results in loss of enhancer-blocking activity, thereby allowing Igf2 expression [352]. Likewise, Wang and 

colleagues have analyzed genome-wide occupancy of CTCF binding in 19 human cell types (normal primary cells 

and immortalized cell lines) showing that 41% of variable CTCF binding is linked to differential DNA methylation 

[353]. Disruption of CTCF binding was associated with increased methylation at CTCF binding sites [353]. 

Therefore, in CLL, DNA hypermethylation at class E sites most likely results in a block of CTCF binding and loss of 

locus insulation. This potentially leads to new enhancer-promoter interactions and therefore links loss of CTCF 

binding with aberrant transcriptional activity in CLL. With the current technologies, it would be tempting to 

perform either a deletion of CTCF binding sites within class E sites or to employ the CRISPR/dCas9 system for 

targeted DNA methylation (dCas9-DNMT3A) at class E loci [354]. The new, aberrant chromatin interactions could 

then be identified using chromosome conformation capture techniques [355], either from a global perspective 

with HiC-seq or from a CTCF viewpoint with CTCF ChIA-PET technology.  

5.4 CLL-specific microRNAs 

In the past, the majority of the identified candidate miRNAs were defined using the epigenome of CD19+ B cells as 

controls, resulting in long lists of potentially epigenetically deregulated miRNAs [155, 189, 195, 198]. The results 

presented in my thesis show that this was likely an overestimation and that only a small proportion of miRNAs 

(miR-141, miR-195, miR-486 and miR-29c) can be associated with disease-specific DNA methylation events in CLL. 

To illustrate the difference in the proportion of CLL-specific microRNAs identified using the different approaches, I 

additionally performed the aberrant miRNA analysis on bulk CD19+ B cells as controls. The results of this analysis 

show that virtually all previously reported ‘CLL-specific’ differences in miRNA promoter methylation are in fact 

related to methylation dynamics during normal B cell differentiation and thus may be used as CLL biomarkers but 

they do not contribute to our understanding of CLL leukemogenesis.  

Previous studies reported overexpression of miR-29c and miR-195 in CLL. miR-29c regulates the expression of two 

important proto-oncogenes in CLL, namely TCL1 and MCL1 [235, 356-358]. Interestingly, so far, there are no 

reports on miR-486 or miR-141 neither in CLL nor in B cell biology, making them interesting candidates for future 

studies. Of note, epigenetic dysregulation has not been described for any of the above-mentioned microRNAs. 
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A potential functional impact of these microRNAs in tumorigenesis is suggested from studies in other cancer 

entities. miR-29c, for instance, was reported to have a tumor suppressor role in a wide range of malignancies, e.g. 

hepatocellular carcinoma, lung cancer, AML, and bladder and pancreatic cancer [359-363]. In hepatocellular 

carcinoma, miR-29c suppresses the oncogenic histone deacetylase, SIRT1 [359]. Members of the miR-29 family 

(miR-29a, miR-29b, miR-29c) are directly targetting DNMT3a and DNMT3b in lung cancer and AML [360, 361]. In 

bladder cancer, miR-29c inhibits the proliferation and invasion of cancer cells via targeting CDK6 [362, 363]. A 

broad functional spectrum was also demonstrated for miR-141. It was reported as a biomarker in non-small cell 

lung carcinoma [364, 365]. In colorectal cancer, miR-141 acts as an oncogene by targeting the tumor suppressor 

gene DLC1 [366]. It was also shown that miR-141 is a major regulator of brain metastasis from breast cancer [367]. 

Its overexpression was linked to migratory and invasive properties in triple negative breast cancer through the 

activation of PI3K/AKT pathway [368]. Likewise, miR-486 overexpression in cervical cancer was associated with 

downregulation of PTEN that resulted in activation of PI3K/AKT pathway [369]. Similarly, upregulated miR-486 

drives tumorigenesis in prostate cancer by direct targeting of components of PTEN/PI3K/AKT, FOXO, and TGF-

b/Smad2 signaling pathways [370]. miR-195, on the other hand, targets CCND3 and BIRC5 (survivin) to inhibit the 

tumorigenesis of non-small cell lung cancer [371]. Similarly, it suppresses cyclin D1 and cyclin E1 in glioma cells 

[372].   

In this thesis, I also showed that recurrently mutated epigenetic regulators in CLL: ARID1A, CHD2 and ASXL1 are 

among the validated targets of the newly identified disease-specific miRNAs. Of note, many other epigenetic 

regulators were predicted targets of CLL-specific microRNAs, e.g. EZH2, DNMT3A, SIRT1, TET2, SETD1A and H3F3B. 

These findings suggest epigenetic dysregulation of microRNAs as an alternative mechanism for the inactivation of 

these genes in CLL. The question that remains to be addressed is whether these CLL-specific miRNAs are exerting 

their function through feedback and/or feedforward loops. Tsang et al. and Martinez et al. have shown that 

miRNAs are overrepresented in gene regulatory networks, linking them with their regulatory functions [373, 374]. 

miR-486, for instance, is able to simultaneously disrupt multiple NF-κB negative feedback loops resulting in 

sustained NF-κB activity [375]. Similarly, in MM, miR-29 family was shown to be a part of negative feedback loop, 

in which c-myc inhibits the expression of the miR-29 family. miR-29 then suppresses DNMT expression, which in 

turn is responsible for the inhibition of miR-34 expression through promoter DNA hypermethylation [376]. 

5.5 CLL-specific protein-coding genes 

Previous studies identified CLL-specific protein-coding genes using the epigenome of CD19+ B cells as a reference, 

resulting in a long list of potentially epigenetically deregulated transcripts [142-153]. In my thesis I showed that 

this was a drastic overestimation (~30-fold) of epigenetically dysregulated target-genes and that only a small 

proportion of protein-coding genes (11 genes: AMICA1, DOK2, LILRB4, MIB2, TNNC1, XIRP1, CLLU1, FBXO40, 

TMEM110-MUSTN1, C22orf46, EFCAB12) can undoubtedly be associated with disease-specific DNA methylation 

events in CLL. Almost all reported ‘CLL-specific’ differences in gene promoters are in fact related to developmental 

dynamics occurring during normal B cell differentiation and thus do not contribute to disease biology.  
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Previous studies reported overexpression of CLLU1 gene in CLLs [282]. Interestingly, this gene is neither expressed 

in other hematopoietic malignancies nor during normal hematopoiesis or in normal B cells during their terminal 

differentiation [282, 377]. This suggests a strictly CLL-specific mechanism of gene activation. CLLU1 was also 

reported as a prognostic marker in CLL, predicting time to first treatment and overall survival [282]. DNA 

methylation in the promoter region was shown to correlate with decreased expression levels in M-CLL [144, 156]. 

Higher promoter DNA methylation was present in M-CLL but not in U-CLLs [156]. However, with the exception of 

its prognostic impact, nothing is known about its molecular function.   

Another CLL-specific transcript, DOK2, was previously reported as being differentially methylated in AML and 

ovarian cancer [236, 248]. Lum and colleagues have shown that DOK2 promoter hypermethylation results in 

decreased protein levels and in an impaired response to carboplatin in ovarian cancer [248]. Interestingly, DOK2 

was also linked to prognostic features of patients with gastric adenocarcinoma, ovarian cancer and AML [237, 

247]. It has been also reported as a tumor suppressor gene in CMML and in ovarian carcinoma [248, 378]. Coppin 

et al. demonstrated that DOK2 controls cell cycle regulation in hematopoietic stem cells [260]. Dok2 gene 

inactivation induced myeloproliferative disorders in aging mice. The precise function of DOK2 in CLL has yet to be 

determined. 

Among the identified epigenetically deregulated genes I also found the E3 ubiquitin ligase, MIB2, a component of 

the NF-κB pathway which is frequently activated in CLL [379]. Moreover, MIB2 was reported as being 

indispensable for antiviral responses [276, 380].  

Using my method, I found CLL-specifically deregulated transcripts with yet unknown functions, e.g. FBXO40, 

TMEM110-MUSTN1, C22orf46, EFCAB12, as well as genes for which there is only a little knowledge about their 

physiological or pathophysiological roles, i.e. XIRP1, AMICA1 or FBXO40. Therefore, future studies are required to 

determine their function in the healthy organism and in the context of CLL.  

Conclusions and Outlook 

In this thesis, I described a new analytical approach to identify cancer-specific DNA methylation patterns using CLL 

as a model disease. This model illustrates that appropriate controls are crucial for any epigenome study. Using my 

newly developed method, I was able to identify truly CLL-specific methylation changes by considering DNA 

methylation dynamics present in the context of normal B cell differentiation. This involved the definition of a 

virtual cell-of-origin DNA methylome and using it as a reference methylome to call aberrant DNA methylation in 

CLL samples. I defined and dissected the two main factors that together form the epigenetic landscape of CLL: 1) 

DNA methylation patterns derived from the tumor-initiating B cell at a specific differentiation stage and 2) 

epigenetic alterations that are acquired in CLL cells during leukemogenesis. Applying this method, I showed that 

disease-specific methylation events are rare. Only 1.6% of the CpGs from the 450K array are affected by CLL-

specific methylation programming. Therefore, all previous comparisons of CLLs to bulk CD19+ B cells should be 

interpreted very cautiously as the vast majority of aberrant DNA methylation events identified in CLL using this 
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classical approach are actually occurring during normal B cell differentiation and, thus, are not related to disease 

biology. 

Although the mechanisms driving CLL-specific DNA methylation programming are still elusive, my study provides 

evidence for a role of deregulated B cell-related signaling pathways and, at the same time, implicates novel 

mechanisms (e.g. deregulated CTCF binding) in CLL pathogenesis. Further, I demonstrated the pathogenic impact 

of CLL-specific methylation events by linking them to transcriptional changes observed in CLL (miRNAs and protein-

coding genes). The identification of CLL-specific, epigenetically deregulated miRNAs and protein-coding genes 

demonstrated that previous conventional analysis approaches overestimated the proportion of epigenetically 

deregulated genes in CLL and suggested a need for using a proper control B cell for identification of truly disease-

specific methylation events. Only 4 miRNAs and 11 protein-coding genes were identified as CLL-specific. 

Furthermore, a potential alternative mechanism for silencing of epigenetic regulators through miRNAs in CLL 

pathogenesis was identified.  

One open question that remains to be addressed in future studies is that of the mechanism underlying the 

aberrant epigenome programming in CLL. First of all, the involvement of TFs into programming of CLL-specific 

methylation patterns (aberrant TF programming) has to be explored in more details. My TF binding sites 

enrichment analysis used a simplified approach using ChIP-seq data derived from an immortalized B cell line, 

GM12878. In an ideal setting, one would have to investigate TF programming during normal B cell differentiation 

and in primary CLL samples, and to perform a similar integrated analysis as presented in this thesis. By doing so, 

one could potentially infer the dynamics of TF binding during normal B cell differentiation and de novo TF binding 

present in CLL. To achieve this goal, it would be necessary to sort different B cell types spanning the entire 

differentiation axis and to perform ChIP-seq experiments on various TFs, e.g. BATF, EBF1, IKZF1, EGR1, EGR2, 

NFATC1, CTCF etc. The same experiment would have to be performed in a number of CLL samples from different 

maturation stages. These ChIP-seq data could then be integrated with the CLL-specific methylome data to define 

the gains/losses of TF binding that are crucial for disease pathogenesis.  

Another open question refers to the effects of DNA hypermethylation at class E CLL-specific sites. The hypothesis 

would be that DNA hypermethylation at class E sites results in a block of CTCF binding and in a subsequent loss of 

locus insulation. This would further lead to new enhancer-promoter interactions and, hence, it might link loss of 

CTCF binding with aberrant CLL transcriptomes. With the current technologies, it would be tempting to perform 

either a deletion of CTCF binding sites within class E sites or to employ the CRISPR/dCas9 system for targeted DNA 

methylation (dCas9-DNMT3A) at class E loci [354]. New, aberrant chromatin interactions could then be identified 

using chromosome conformation capture techniques [355], either from a global perspective using HiC-seq or from 

a CTCF viewpoint using the ChIA-PET assay. Next, to link aberrant CTCF binding to the CLL transcriptome, the 

intensity of these chromatin interactions should be correlated with the expression levels of genes within the 

interaction loops. 



 

 

88 Discussion 

Furthermore, my study should be performed in a truly genome-wide manner using WGBS data from normal B cells 

and CLL samples. Based on these data, a similar data analysis approach as demonstrated in this thesis could be 

used.  
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7. APPENDIX 

7.1 Primer sequences  

Table 7-1: Primers for MassARRAY 

Primer 

Name   

Forward Reverse AT (°C) Length 

(bp) 

miR-486 aggaagagagGTTTTGTTTAGAGATTT

GGAAGTGG 

cagtaatacgactcactatagggagaaggctCCAC

CACCTATACTAAACCCCTACT 

58 314  

miR-29c aggaagagagGGTTTGAGTAGTTGATA

TTAGGGAAAA 

cagtaatacgactcactatagggagaaggctAACA

CCAAATTCTACCAACTCACTT 

58 467 

miR-141 aggaagagagGGGAAGGGTGGGGGT

ATTTA 

cagtaatacgactcactatagggagaaggctTTACC

CCAAAACTAAAAATTCATCA 

58 432 

miR-195 aggaagagagTTTTTTAGGATGGTTTTT

TAGGGTT 

cagtaatacgactcactatagggagaaggctAACA

ATATATTAACCCCTCCAATCA 

58 425  

let-7b aggaagagagGATAGATGTGGTTTGTA

TTTGTGGTT 

cagtaatacgactcactatagggagaaggctCCTA

AATTAATCCTATCTATCCCAAAA 

58 449  

forward primers were 5’ tagged with ‘aggaagagag’ sequence and reverse primers with 

‘cagtaatacgactcactatagggagaaggct’ sequence; AT, annealing temperature for PCR. 

 

Table 7-2: miScript qPCR primers from Qiagen 

7.2 RNAseq data – alignment statistics 

 

Table 7-3: RNAseq alignment statistics – normal B cells 

Patient ID CLL-943-01-1R CLL-943-01-2R CLL-943-01-3R 

                          Number of input reads  120741342 117753748 142911872 

                                    UNIQUE READS:       

                   Uniquely mapped reads number  104646255 106031958 124919571 

                        Uniquely mapped reads %  86,67% 90,05% 87,41% 

                             MULTI-MAPPING READS:       

        Number of reads mapped to multiple loci 0 0 0 

Assay name  Catalog number miRNA  

Hs_let-7b*_1  MS00008281 let-7b-3p 

Hs_let-7b_1 MS00003122 let-7b-5p 

Hs_miR-141_1 MS00003507 miR-141-3p 

Hs_miR-141*_1 MS00008680 miR-141-5p 

Hs_miR-195*_1 MS00008953 miR-195-3p 

Hs_miR-195_1 MS00003703 miR-195-5p 

Hs_miR-29c*_1 MS00009303 miR-29c-5p 

Hs_miR-486-3p_2 MS00031892 miR-486-3p 

Hs_miR-486_1 MS00004284 miR-486-5p 

Hs_SNORD61_11 MS00033705 SNORD61 

Hs_SNORD72_11 MS00033719 SNORD72 

https://www.qiagen.com/us/shop/pcr/primer-sets/miscript-primer-assays/?catno=MS00008281
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             % of reads mapped to multiple loci  0,00% 0,00% 0,00% 

        Number of reads mapped to too many loci  5643396 7033178 6838432 

             % of reads mapped to too many loci  4,67% 5,97% 4,79% 

                                  UNMAPPED READS:       

       % of reads unmapped: too many mismatches  0,00% 0,00% 0,00% 

                 % of reads unmapped: too short  3,92% 3,31% 3,64% 

                     % of reads unmapped: other  4,74% 0,67% 4,17% 

                                  CHIMERIC READS:       

                       Number of chimeric reads  1567699 1839893 1560301 

                            % of chimeric reads  1,30% 1,56% 1,09% 

 

 

Table 7-3 continuation 

CLL-944-01-1R CLL-944-01-2R CLL-944-01-3R CLL-948-01-1R CLL-948-01-2R CLL-948-01-3R 

109819252 87814697 95372186 128504834 160122739 132315885 

            

99906169 80223144 86343174 117197150 146462691 119824662 

90,97% 91,36% 90,53% 91,20% 91,47% 90,56% 

            

0 0 0 0 0 0 

0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

5386257 4242232 4792750 5587890 7560174 6949709 

4,90% 4,83% 5,03% 4,35% 4,72% 5,25% 

            

0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

3,87% 3,70% 4,09% 4,11% 3,52% 3,89% 

0,25% 0,11% 0,36% 0,34% 0,29% 0,29% 

            

1481457 1390336 1619746 2043121 1932889 1782381 

1,35% 1,58% 1,70% 1,59% 1,21% 1,35% 

 

 

 

Table 7-4: RNAseq alignment statistics – CLLs 

  

H005-

001N 

H005-

0TRN 

H005-

19N0 

H005-

2LSW 

                          Number of input reads | 47688538 94162171 97157104 70597681 

                                    UNIQUE READS:         

                   Uniquely mapped reads number | 45057886 87278675 90826531 65981581 

                        Uniquely mapped reads % | 94,48% 92,69% 93,48% 93,46% 

                             MULTI-MAPPING READS:         

        Number of reads mapped to multiple loci | 0 0 0 0 

             % of reads mapped to multiple loci | 0,00% 0,00% 0,00% 0,00% 

        Number of reads mapped to too many loci | 1742963 4021853 4182122 2955553 

             % of reads mapped to too many loci | 3,65% 4,27% 4,30% 4,19% 
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                                  UNMAPPED READS:         

       % of reads unmapped: too many mismatches | 0,00% 0,00% 0,00% 0,00% 

                 % of reads unmapped: too short | 1,81% 2,88% 2,13% 2,29% 

                     % of reads unmapped: other | 0,05% 0,16% 0,08% 0,06% 

                                  CHIMERIC READS:         

                       Number of chimeric reads | 655461 1187866 1221986 1141074 

                            % of chimeric reads | 1,37% 1,26% 1,26% 1,62% 

 

 

 

Table 7-4 continuation 

H005-

33WM 

H005-

46LY H005-5S0Z 

H005-

9S37 

H005-

A72M 

H005-

CI7B H005-FBE8 

H005-

GN55 

92788445 82827984 121357432 86649223 84243687 81758497 101780776 76967496 

                

86596639 77340650 114248236 81395807 79152822 77292127 95847508 72435122 

93,33% 93,38% 94,14% 93,94% 93,96% 94,54% 94,17% 94,11% 

                

0 0 0 0 0 0 0 0 

0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

4311512 3375726 4744199 3309657 3399965 2813320 3599966 2925815 

4,65% 4,08% 3,91% 3,82% 4,04% 3,44% 3,54% 3,80% 

                

0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

2,00% 2,50% 1,90% 2,17% 1,95% 1,96% 2,22% 2,03% 

0,03% 0,05% 0,04% 0,07% 0,05% 0,06% 0,08% 0,06% 

                

1087054 1337615 1348440 1101659 1173904 1108709 1399302 1215882 

1,17% 1,61% 1,11% 1,27% 1,39% 1,36% 1,37% 1,58% 

 

 

Table 7-4 continuation 

H005-

LBKM 

H005-

M7OV 

H005-

MOWV 

H005-

PK0F 

H005-

PQR8 

H005-

Q145 

H005-

Q9ZM 

H005-

QOI5 

107368615 84192412 112750817 82942045 81981181 98034545 109543792 102492500 

                

100990320 78781811 106503668 78278867 77389165 91879580 102167727 96791680 

94,06% 93,57% 94,46% 94,38% 94,40% 93,72% 93,27% 94,44% 

                

0 0 0 0 0 0 0 0 

0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

4147152 3767555 3708273 2756010 2828102 3811234 4864130 3487247 

3,86% 4,47% 3,29% 3,32% 3,45% 3,89% 4,44% 3,40% 

                

0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

2,01% 1,90% 2,18% 2,24% 2,08% 2,34% 2,03% 2,10% 
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0,06% 0,05% 0,07% 0,06% 0,07% 0,05% 0,26% 0,06% 

                

1461762 933802 1467386 1324089 1089659 1219618 1466292 1315035 

1,36% 1,11% 1,30% 1,60% 1,33% 1,24% 1,34% 1,28% 

 

 

Table 7-4 continuation 

H005-

RXC4 

H005-

SCQR 

H005-

SS98 

H005-

U8HQ 

H005-

UCF9 

H005-

UJI6 

H005-

X5Z3 

H005-

XMEH 

96140721 97856660 98799773 105875840 105232496 77103110 90600158 81301114 

                

89826236 91536076 93491454 98362067 98806106 73013316 84917328 76127932 

93,43% 93,54% 94,63% 92,90% 93,89% 94,70% 93,73% 93,64% 

                

0 0 0 0 0 0 0 0 

0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

4241123 3836258 3656948 5070085 4235225 2740512 3450669 3727535 

4,41% 3,92% 3,70% 4,79% 4,02% 3,55% 3,81% 4,58% 

                

0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

2,00% 2,47% 1,61% 2,18% 2,03% 1,71% 2,40% 1,72% 

0,16% 0,07% 0,06% 0,13% 0,05% 0,04% 0,06% 0,06% 

                

982907 1465170 1024572 1491914 1314964 969985 944934 958614 

1,02% 1,50% 1,04% 1,41% 1,25% 1,26% 1,04% 1,18% 

 

 

Table 7-4 continuation 

H005-Y67L H005-YNIY 

H005-

YV7I 

H005-

Z0HX 

H005-

ZF32 

H005-

ZRWN 

107326927 106016882 87816774 111087895 65636358 86888936 

            

101605564 99038754 81855065 103409004 61105480 81345409 

94,67% 93,42% 93,21% 93,09% 93,10% 93,62% 

            

0 0 0 0 0 0 

0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

4058352 4991109 4047313 4946519 2605671 3712906 

3,78% 4,71% 4,61% 4,45% 3,97% 4,27% 

            

0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

1,48% 1,84% 2,13% 2,34% 2,86% 2,06% 

0,07% 0,03% 0,05% 0,11% 0,07% 0,05% 

            

785100 1057838 1217734 1598171 793737 962985 

0,73% 1,00% 1,39% 1,44% 1,21% 1,11% 
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7.3 RNAseq data – PCA analysis 

Figure 7-1: Principal Component Analysis (PCA) on rlog transformed expression counts from normal B cells and 

CLL. A) PC2 and PC3. B) PC3 and PC4. Normal B cell subtypes are depicted with crosses (NBC), squares (intMBC) 

and triangles (hiMBC). CLLs are depicted with dots.  

 

 

A)                                                                     B) 

 

A)                                                                     B) 
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Figure 7-2: Principal Component Analysis (PCA) on rlog transformed expression counts from normal B cells and 

CLL. A) PC4 and PC5. B) PC5 and PC6. Normal B cell subtypes are depicted with crosses (NBC), squares (intMBC) 

and triangles (hiMBC). CLLs are depicted with dots 

 

7.4 TF methylation profiles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-3: DNA methylation profiles of the promoter of POU2F2 and SMC3. Methylation in the promoter regions 

was shown for two normal B cell subsets, representing advanced stages of B-cell differentiation (left) and the CLLs 

(right). NBC: Naïve B cell; hiMBC – Class-switched memory B cell; avg CLL – average methylation change in CLLs. Y-

axis represents methylation levels (%). The x-axis represents the distance to transcription start site (TSS). 

 

7.5 CLL-specific miRNAs 

 

Table 7-5: List of microRNAs identified as CLL-specific using cell-of-origin as a control 

Methylation cut-off >20%; p-val < 0.05 (Wilcoxon rank sum test)   

 

 

 

 

 

Class microRNA Region CpGs 

Correlation 

coefficient (rho) 

classA mir-486 chr8:41520600-41524000 cg17753169 -0,41 

classC miR-29c chr1:207992977-207998000 cg10501210 -0,20 

classD mir-141 chr12:7022139-7025739 cg04604946 0,44 

classD mir-195 chr17:6921076-6923876 cg21040575 0,46 
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Table 7-6: List of experimentally validated targets of miR-29-3p from DIANA Tarbase 

Target Gene miRNA 

HBP1, FEM1B, DPYSL5, BRWD3, ZBTB34, ELOVL4, FBXW7, ANKRD52, CDK16, INSIG1, 

MCL1, CBX6, PTP4A1, SNIP1, BTG2, TAF5, USP37, RMND5A, ATP11B, CBX5, CTDSPL2, 

HMGCS1, TRA2B, GPCPD1, SP1, MAZ, C1orf52, TOP2A, C1orf131, ATP5C1, CA2, SPRTN, 

AKAP10, CCNE1, GATAD2B, NUDT16L1, CAPRIN1, HOXA10, GCN1L1, YTHDF1, ADO, 

RANBP1, NUP62, CSNK1E, FAT1, DDX6, TP53BP1, UHMK1, SBK3, HAUS8, FARP2, SUFU, 

HACL1, ZBTB37, RABL6, WHSC1, DICER1, CEP41, LENG8, ZFYVE27, WNK1, NME7, 

TNKS1BP1, PILRB, TMF1, MAP1B, SARS, MDM2, DEF8, ZBTB47, ERRFI1, TUB, WDR4, 

LAPTM4B, PARP1, LCLAT1, ZC3H14, TMPO, PRR12, DCUN1D5, SOS1, TAS2R14, 

KIAA2013, HIST1H2BG, SNAPC4, AHCYL1, RGMB, RPL36, MSH6, HNRNPU, NARS, PTPRF, 

IBTK, HIST1H4C, ADSS, GTF3C4, SOX11, UBE3B, SLC38A1, PDIK1L, ATXN1, CPSF7, LOXL2, 

MBTD1, MSL3, HDGF, SFPQ, ZSCAN25, CDC23, PLXNA1, RALA, CELF1, WWTR1, JARID2, 

CANX, ZNF614, SNX11, LASP1, SQLE, SYT7, TMEM181, IL10RB, CSDE1, SLC25A36, SGTB, 

NUCKS1, LAMP2, TNFRSF10B, KRT80, EVL, CHDH, ASTE1, RPS15A, ZFP36L1, KIF26B, 

UBC, FAM76B, RANGAP1, HDAC4, USO1, ZNF696, MYCBP2, WASF3, ERICH1, GNB2L1, 

AP2B1, RREB1, RBM33, TRAM1, SLC7A2, WASF2, ZNF200, FAM135A, RUFY3, MYBL2, 

KIAA1614, UBA1, REV3L, OBSL1, COX15, HEBP2, IQCH, SLC25A13, DHX33, MGAT4A, 

BTBD7, POLR3B, NTN4, CCDC88C, FUT11, MADD, KDM1A, C16orf72, NOVA2, GRINA, 

TNFRSF21, DDX5, PARG, RAD51C, COG8, SPAG9, GAL3ST3, NCAPD2, ANAPC4, ACVR2B, 

SLFN11, SNN, AMOT, SLC25A5, RABGAP1, ZNF346, DHCR24, POLDIP2, TMEM159, 

HNRNPA1, GGCT, RBCK1, PHLPP2, FASN, COL5A3, RNF19A, FOXJ2, BAK1, LRP6, SIKE1, 

CPS1, RORA, SCML1, WDFY1, DDX3Y, TAF11, FAM13B, EHD2, CCNT2, CEACAM6, NDST1, 

PDS5B, TRAM2, REST, LAMC2, ACER3, ZRANB1, SMARCE1, PIK3C3, SEPHS1, ANKRD13A, 

SLC2A3, GSK3B, SPEN, FNDC3B, RAB21, AFF4, ZCCHC6, POMGNT1, MAPK6, ISOC1, 

OXCT1, C12orf4, MTHFD2, LIMA1, ATXN3, VCAN, PIGV, PRDM1, MPHOSPH9, MARK3, 

ZC3H11A, SLC39A9, ELN, SPDL1, MAP4K4, ERC1, MFAP3, NOP58, NAV3, ARID1B, 

SMC1A, PRDM11, COL19A1, KIAA2022, TNFRSF1A, GNB1, ATG16L1, CNN2, CLEC2D, 

ABCB1, YBX3, USH2A, MEF2C, FAM214A, ATP2B4, PIAS2, CASP8, POU2F2, ARID4B, 

CDK13, CDC42, PAG1, ATP1B3, HADHA, IARS2, NLE1, CLPTM1L, C16orf80, SREBF1, 

ITGB5, QSER1, TIMP2, VCL, PSME4, BOD1L1, U2AF2, CA12, ZFYVE26, TM9SF3, FERMT2, 

FAM120A, CCNJ, STMN2, ADAMTS2, SH3PXD2A, MEST, KIAA1432, CAV2, COL1A1, 

TFAP2C, RGS1, DOT1L, SEC23A, CDK6, ZMIZ1, PPP1R13B, GABPB1, SMS, MIB1, GPI, 

USP31, DPYSL2, YY1, NUFIP2, JOSD1, GID8, PDRG1, YWHAE, BRAP, G2E3, MTMR9, 

MED13, HERC1, DNAJB11, CASP2, MMP2, HNRNPH3, MAVS, PIM2, EIF4H, MTPN, 

EMC2, CHIC2, DDX17, SPTLC2, ALG13, CEMIP, XPNPEP1, GLG1, TRIM37, HIF1A, CBLL1, 

BLMH, URGCP, SNX5, PCSK5, SLC25A17, CCNB1IP1, SH3GLB1, TSPAN14, XBP1, PMP22, 

PATZ1, BMF, LARP4B, CPEB3, RPLP0, ITGB1, TNRC6B, USP10, TUBD1, HNRNPUL1, 

TNRC6A, ARCN1, DLD, TGFB2, USP42, SMARCA1, MAPK8, CDV3, CD276, FAM208B, 

PIGS, HECTD1, ISYNA1, EZH2, ADNP2, TRPS1, DNMT3B, EFTUD2, BAX, PTPN4, RBM28, 

IMPDH1, RPL3, CRKL, TMED2, VCPKMT, SRPX, ATAD2B, COL7A1, RLF, SPARC, CRISPLD1, 

METAP2, KDM5B, ARRDC3, ARSB, KPNA1, KIAA1549, NMI, RNF141, GPX7, HINT3, 

BCL11A, KCTD20, DTX4, LEPRE1, ATP6V1A, SUB1, COMMD2, SUV420H1, COX7A2L, 

CCND2, ID3, MED28, C5orf15, MED13L, NR3C1, TRAK2, HMGCR, AIM1, STRN, 

CAMSAP2, ZNF639, KLF12, EDEM3, FAM126A, NRBP1, LMNB1, SC5D, BBX, CAND1, 

RNF11, SOX4, TSPAN1, PIKFYVE, PANK3, SLC41A3, SERPINB6, TCP1, CORO1C, MAGOHB, 

KLHDC3, ACO1, TNFAIP3, MORF4L2, VEGFA, GDA, SELPLG, THADA, H2AFY, SET, ELF2, 

FBXW2, PIK3R3, GCNT2, SGK1, SASH1, RASSF8, CDKN1A, ENPP5, TBX18, FOXO3, ABCB6, 

GNAI2, PEPD, STX12, DNMT3A, PRDX1, QKI, PPP6R3, STX16, RCAN3, COL21A1, ASH1L, 

PRRC2C, CHST10, NCOA3, MOB1A, NKTR, STK38, GAPDH, IREB2, PXDN, PAN2, KDM6B, 

PI15, TMOD3, COL5A1, LAMC1, RAB30, TDG, DBT, ULBP2, TMTC3, HRK, COL4A2, 

RNF138, KLF4, EIF2S2, NIPSNAP3A, CD93, EIF2S1, TSPAN8, ITGA11, NOTCH2, LATS1, 

ANKEF1, PSMF1, MTSS1L, CHSY1, EMP1, KLHDC10, LIF, AMPD3, BCL2L2, ANKRD17, 

PLAA, MCCC2, THBS1, RNF122, HIVEP3, ATP5G2, ATP13A3, SWAP70, SLC31A1, AHNAK, 

TFCP2, YWHAH, MRPL50, REV1, DCAF7, EPS15L1, FBN2, ABCB7, ZFP36, PRMT1, 

RALGPS1, APC, POSTN, TUBGCP3, CNOT1, CALU, SMPD4, TMEM127, BST2, MYCN, 

miR-29c-3p 
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DHX9, SUV420H2, MBD4, SCAF11, EIF4E2, LARS, THEMIS2, TMEM2, PDCL, PRKAA1, 

SEC31A, NOL11, GLO1, MKLN1, HOXD1, KIDINS220, LRIG3, NAV1, ISLR, PRCP, ETNK1, 

NREP, RAB1A, EEFSEC, PAPSS1, EIF5A, 42989, AGO3, HP1BP3, RNASEL, EPRS, RAB2B, 

MMP16, PXYLP1, ISG20L2, FAM167A, OTULIN, ZDHHC5, PIK3R1, RIT1, AMMECR1L, 

DYNLT1, ADAM12, SERBP1, CREB5, PTPRD, MRPL17, SLC16A1, OSBPL11, ARRDC4, 

ARNT, LAMTOR1, SBNO1, PALM2-AKAP2, CPT2, RBAK, SETD7, COL6A1, ABHD13, 

RPS27A, ZCCHC14, DUSP2, HIAT1, SKP2, SOGA1, LDLRAP1, AGPAT5, GGPS1, SH3GL1, 

CACUL1, ZNF827, G3BP1, ASXL2, CBX4, C5orf28, SKI, FEM1C, IGFBP3, NOVA1, 

FAM126B, GIT2, PFKM, CLTC, CCNA2, 42795, CNOT8, TBC1D7, SERPINH1, NFIB, DIAPH2, 

COL6A2, NTMT1, KCNJ6, FAM193B, RNF217, PGAP2, SYT16, ASAP2, BNIP2, SGSM2, 

AASDHPPT, MKI67, VPS26B, EMP3, TIAL1, EIF4A2, C21orf91, ELMSAN1, LRP8, RQCD1, 

SACS, PM20D2, ATM, CCSAP, NYAP2, TP53, SLC16A3, TMEM123, ASGR1, ZFHX3, NPC1, 

ATAD2, TSC22D3, TPM1, C1orf43, HMGCLL1, TACC1, PDCD4, SEC16A, NFIA, COL6A3, 

NSD1, COL3A1, LYSMD1, C7orf60, COL1A2, FSTL1, KCTD5, WBP1L, CLDN1, OTUD4, 

ZBTB5, UBTD2, CALM3, VPS37C, KIAA0355, PPP1R15B, AP1G1, WDR41, MPZL3, FZD5, 

NNMT, PTX3, CCDC117, SPTBN4, F11R, NKIRAS2, FAM208A, ARL5B, TAOK1, CHTOP, 

C11orf30, DVL3, IRGQ, LRRC58, ERAP1, NXF1, SON, BMPER, WDR26, SPINT1, ITGA5, 

KIAA1586, RUSC1, FRS2, RNF168, CTNNB1, MED8, MAPK1IP1L, CLMN, IFI16, C19orf55, 

SPRY1, FBXO41, DDX21, TKT, RNF123, PRMT2, ATP5G1, SLC43A2, ARPC2, CKB, TET2, 

PIGA, PDHB, KIAA0895, AGL, HIPK1, EIF5A2, TRIM44, RSPRY1, SUN1, RRM1, PEA15, 

GMPS, REL, TP53INP1, ACOT11, FBN1, CCDC127, ARHGAP35, RICTOR, ANXA5, PDP1, 

SETD5, WEE1, CCNF, SNRK, REEP3, KIAA1522, LZIC, CASP7, ANKRD11, E2F7, PTEN, LPL, 

PPIC, CALCB, GNG12, CUEDC1, PLAG1, SS18L1, C2orf68, SERPINB9, YPEL2, CCSER1, 

CYCS, SMARCC1, FRAT2, TNRC18, PDE7B, ZNF518B, SH3PXD2B, HNRNPF, SETD8, SOX12, 

BRD3, KIF5B, PTRF, CEP97, RNF152, DENND4A, CDCA4, PDE3A, MLXIP, ZNF507, GLUD2, 

HAS2, RELA, MACC1, ANO5, TMED9, CSNK1G1, CBX2, SRPR, KLHL28, NRIP1, ZNF318, 

FAM83H, MAATS1, MRFAP1, SLC26A11, JMJD1C, RNF150, ZNF160, THOP1, DENND5B, 

NFXL1, ZNF518A, SLC19A1, ZNF282, PPID, NBEA, PPM1D, HECTD4, IMP3, PRKRA, 

JAGN1, VCPIP1, TMEM70, ULK1, LUZP1, BCOR, SDC2, C5orf24, AKAP5, DTWD2, PITPNB, 

CCBE1, ZBTB21, THAP2, UBXN2A, KLHL15, JUN, TYMS, PRR14L, CD248, PURG, ZBTB41, 

CTXN1, NCKAP5, XPOT, PTPRM, BUB1, PTTG1IP, MED14, YOD1, C12orf76, SMAD2, 

GPHN, BRI3BP, SESTD1, DDX3X, IFI30, COL15A1, ANKRD13B, COL5A2, PURA, PCGF3, 

MAFB, MORF4L1, ZKSCAN4, GMFB, DDI2, ZFP91, PRPF40A, OSTC, RNF39, NRAS, 

VPS13A, LDOC1L, ZBTB10, HELZ, TET3, STK38L, PRMT6, ANKRD28, SOWAHC, MAFG, 

FITM2, BCL9L, DNM3, RAB12, KPNA4, TCF4, CTNND1, ZNF292, SPRY4, DHX16, CHM, 

SLC35B4, LPAR1, HTT, HN1, DCTN1, SRSF10, SCAMP5, ZNF682, ZNF155, LTN1, NOL4L, 

SIAH1, TPK1, CDPF1, ZNF512B, FNBP1, CCNI2, AFAP1, LAMA2, GIGYF2, PCDHA9, FAN1, 

COL4A1, GJB3, RUNDC1, C22orf29, ZNF652, CDC42SE1, HIST2H2BF, LAMP1, SLC39A10, 

R3HDM4, CHAMP1, ATG9A, BAG6, NFKBIL1, TOPORS, TTC30B, ITPRIPL2, TXNRD1, 

PPP1R10, SND1, S1PR3, WDHD1, RPS4X, ARID2, MICB, ZNF770, SPTAN1, NHLRC2, STYX, 

COL4A5, ZNF431, RFX6, BACE1, VDAC1, TMEM178B, C7orf73, ERCC6, MMP24, XK, 

RBM12, TMEM91, CCPG1, BFAR, ATXN7L3B, ISY1, RP11-407N17.3, Mmp24, U2SURP, 

FGG, HIST1H4A, NUMB, DCAF12, TXNDC16, ACACA, TRIL, DDOST, FGB, WNT4, PRKAB2, 

IGFBP1, PDHX, WSB2, FGA, ATP5J2, STK19, PSMA2, ZNF45, CEP68, MMP15, PPT1, 

TIMM44, NUDT3, OIP5, BCL2, MKL2, SOCS7, HUWE1, HIST1H4E, Col6a2, EIF6, AKT3, 

XKR7, Mmp15, GAN, Ctsk 

 

 

Table 7-7: List of experimentally validated targets of miR-141-3p from DIANA Tarbase 

Target Gene miRNA 

FOXC1, RB1CC1, MTF2, TNKS2, RAB5A, NR6A1, PREPL, CCNG1, CBX5, PDZD8, TNPO1, 

RC3H2, REST, TMTC3, SEC24A, BRWD1, UBE2K, SNAP23, ATG2B, SFXN1, B4GALT6, 

RNF149, CCDC117, SCD, IMPAD1, QKI, NUP155, KCTD12, GATAD2B, AGPAT5, ANKRD52, 

POU4F1, JOSD1, UBE2Q2, ZBTB10, SRSF11, LDHA, ZNF503, ZNF606, DHX15, MRGBP, 

ZNF281, NCOA7, U2SURP, KIAA1598, SCRN1, BSG, ABCA13, SRCAP, EEF1D, FDPS, 

miR-141-3p 
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ST3GAL6, KNSTRN, MAN1C1, RBM33, KCNIP2, NFIB, FUS, MAP7, NECAP1, HADHB, 

CTTN, FGFR1, FBXL17, DICER1, LENG8, PPFIA1, CCDC138, RP11-139J15.7, LMBR1, 

ZNF121, RBM15B, MAP7D1, BAZ2B, KNTC1, MTMR3, NUPL1, GRHL1, LATS1, GOPC, 

DDX1, RRM2, TNRC6A, AKAP12, RP11-159G9.5, DYNLL2, ARNTL2, UBE3C, LFNG, DDIT4, 

HIST1H2BD, UTP20, ZNF442, ATAD2, CMBL, DCTN5, MAST4, GARS, WDR87, HSPA1A, 

CDK13, DIP2B, EIF2AK2, FNIP2, SOX11, CYP26B1, CHD9, IPO5, ZBTB18, HIPK1, RAP2C, 

FAM114A2, RABGAP1, RNF11, AK2, DYRK2, OTUD3, C5orf24, MECP2, NCEH1, VAMP3, 

WDR37, RANBP9, APPBP2, KIF1C, C1GALT1, LY75, LYRM7, MBTD1, MTMR9, HNRNPA0, 

ADRB1, DSG2, KHNYN, EXPH5, PHTF2, DHX33, SKAP2, CCNE1, MLLT4, CEP57L1, ZHX3, 

ZNF697, GTPBP3, JKAMP, C6orf89, DNAH12, STRAP, METTL25, SLC39A9, EPN1, RNF4, 

LSM14B, AP2B1, HNRNPC, SLAIN1, MBTPS2, SLC7A2, ANLN, FGFR3, SLC25A3, RBBP6, 

KIAA0100, WNK1, TOX4, SFSWAP, TNRC6C, MGAT4A, DP2(hsa), MON2, SMO, SYNE2, 

MATR3, FUBP1, DENR, ITM2C, ASPM, ZNF805, ERGIC3, TRAF3IP2, SMC4, cyclinD1(hsa), 

API5, CALM2, VCL, NUP160, ELMO2, DEPDC1B, STK38, ETV3, ABCC1, ZMYND11, CCNL2, 

KIF1B, GCLC, FBXL5, PRPF4B, PHLPP2, POLR2B, SEMA6A, SAR1A, BRMS1L, TTC28, ULK2, 

CCNT2, FBXW11, CDC25B, MAPK6, ZNF416, RAB10, PDS5B, TFAP2C, SEC23A, PGR, 

PSEN1, SEH1L, TRNT1, SIX4, EIF5, ALG9, CRYBG3, ABL1, MEF2A, ZC3H14, SLMO2, ADNP, 

RBMS2, PTGS2, AGO1, PPP2R5C, CXCL2, SRBD1, GPR137B, CMTM6, VPS35, KLHL20, 

BTAF1, SESN1, FAT1, CRKL, TDRD1, CYLD, ATP8B1, EXOC5, MAP4K4, EXOC1, ECHDC1, 

FAP, TRAM1, HSP90AB1, FOSL2, CHD8, KLF6, PICALM, ATG16L1, SRRT, NEDD4, PCM1, 

ANKRD10, USP33, ITGA6, OSBPL8, STARD7, THUMPD1, CDC42, KDM5A, TCF20, NFKBIA, 

TMEM131, IKBKAP, TFRC, MSH2, MMP9, CSTF1, ATP1B3, RAE1, HMGXB4, MMP2, 

CNIH1, MAVS, HECTD1, ZXDC, UNG, RASSF2, HNRNPH3, MAP3K1, PABPC4, RCOR1, 

PAPOLA, ITCH, HSP90AA1, BAX, DIDO1, STK4, NDST1, DUSP3, E2F3, CXCL12, GLCCI1, 

GLS, NUP98, KLF5, C3orf14, HMGCS1, INO80D, NR3C1, FBXW7, PGK1, RHEB, PIKFYVE, 

LPIN2, GABPB1, STRN, TCERG1, SLC25A36, ZFAND5, PVRL1, LIFR, GATA3, HPS5, RNF7, 

RAB3D, KLF3, XRN1, H2AFV, MED13, GPR126, MET, PTP4A1, OSBP, VAPA, COPZ1, 

CPSF6, BIRC6, SERINC1, USP31, LUC7L3, TUSC3, SUB1, DHX40, RAB11A, MAPK14, 

ARRDC3, GGA2, CCSER2, GPI, UBL4A, CSNK2A1, CCND1, LAPTM4B, SPTBN1, DDX6, 

FNDC3A, TSPAN14, TAF1B, PLEKHA8, FOXP1, STK3, PTGES3, CPEB3, PRLR, CSF3, 

MRPS31, SETX, SGK3, VEGFA, ENPP5, PRKAR1A, SLC16A6, ASCC3, SLC11A2, GALNT3, 

TMC5, PLEKHB2, FAM208B, KIAA1432, FAF2, GTF3C2, SLC7A5, CAV2, SH3D19, TRPS1, 

MTPAP, VAC14, GAPDH, ORC2, GOSR1, CBL, ITGB8, ATP6V0E1, GALNT7, ERBB2IP, RTN4, 

MYH10, KMT2A, FOXA1, GNA13, HOXC13, CCND2, DEK, MNX1, ANKRD17, PANK3, SSR1, 

IRF6, LPGAT1, TMX4, S100PBP, ASH1L, CAMSAP2, MED13L, CCNT1, CANX, SUMO1, 

FAM199X, SFPQ, SNX6, RPL23, TARDBP, ILF3, TTPAL, PHF13, RFX1, DESI2, RAB22A, 

HOXB5, PRKAA1, NAA50, HNRNPH2, ACSL3, CENPF, FAM63B, FBXL16, H3F3B, AHNAK, 

EPAS1, SMUG1, JUND, KTN1, AKAP1, IVD, DKC1, ALG2, CRYZ, PPP6C, USP22, RNF170, 

PMEPA1, EIF2AK4, MORF4L2, DCAF4, RBM38, NUP153, ZNF557, FBXW2, CALU, NEK6, 

AJUBA, RAB14, PARD6B, YPEL5, KIF17, TRIM25, ERRFI1, RRBP1, TGIF2, USP9X, CDKN1A, 

FOXO3, RIN2, MPRIP, SYNE1, NOL11, PANK2, RAB32, ATL2, PAIP2, MXD4, SLC19A2, 

TOP2A, KLHDC10, PDHA1, NPC2, SH3BP4, AMD1, VPS13B, FYTTD1, NCOA3, 42985, 

SRM, CDK2, TMEM189-UBE2V1, ABL2, PTPRG, RANBP6, GATA6, EPHA2, 42801, EDEM1, 

NCOA2, SLC20A1, RPRD1A, TRA2B, IREB2, RAPGEF5, IER3IP1, G3BP2, COG3, HNRNPD, 

ZCCHC14, ABHD10, SPOPL, G3BP1, PPHLN1, MCL1, OGT, IFNAR1, NAA30, APH1B, 

RNF44, UBXN4, RAC1, KSR1, SBNO1, LMO4, TMOD3, IGF1R, RNF144B, EHF, SRSF1, 

RERE, ARRDC4, VAV3, AMIGO2, TPBG, THBS1, IQSEC1, SNX27, BRD4, SETD1B, GREB1L, 

LPP, DCAF7, SETDB1, CCNA2, WTAP, USP53, SERF2, DENND4C, FST, NONO, HMG20A, 

FNBP1L, RNF185, ANP32E, USP6NL, EPT1, CYP1B1, ZMYM4, KDELR2, SEC11A, CLOCK, 

TMEM60, NOB1, RHOB, PHIP, DUSP5, FGD4, IL6ST, TNS3, SCAF11, ACP2, GLCE, PIK3R1, 

DCTN3, TBC1D4, TMEM66, GIGYF1, LBR, ZEB1, ZFHX3, ATP1B1, DSTYK, ARNT, ACVR1B, 

SETD7, HNRNPA1, IRAK1BP1, RNF38, GNA12, EPRS, NFKBIZ, FAM168B, ZNF385D, 

FAM160B1, DLC1, OSGIN2, HSPA13, KIAA1430, OTUD4, NFIA, 42986, H2AFZ, ZNF148, 

ARPC5, UBXN7, CELF1, HEATR2, LMTK2, C16orf87, ARID5B, AGPAT6, UBE2Z, RMND5A, 

RHOBTB3, VMA21, IL6R, C3orf17, ANKRD50, RAD21, CMPK1, SMG1, TAOK1, GNAQ, 

LY6K, RASA2, DSCR3, RNF20, EOGT, FMN2, RPRD2, SLC30A6, RAPGEF6, SNIP1, NPY1R, 

LRRC58, C2CD2, WDR82, REL, ATP5G3, SMIM14, TMED4, SLC25A46, PFKM, UHMK1, 
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U2AF1, STPG2, HNRNPDL, PLCL2, SPATA2, PPP1R21, SCOC, WDFY3, UBN2, COA7, 

CDC25A, SORBS2, BAP1, FOXO1, AGL, MBNL1, TRAPPC10, SUN1, MKI67, JAZF1, EI24, 

PPP4R1, UBAP1, COG5, SON, CGGBP1, ADPGK, SOGA1, ASAP1, DCBLD1, RICTOR, 

DCAF13, NAA15, MTMR12, RNF111, PTPRD, TCF7L1, ADAR, EXTL2, SAMD8, SHC1, 

ENDOD1, LPCAT1, ZNF12, CLASP2, SLX4IP, PLAG1, BRD3, ZBTB34, REEP3, DCP2, 

YWHAG, CHD2, PRKCE, PPM1E, B3GNT2, BBS10, PTEN, KBTBD6, MSL2, RAB8B, YOD1, 

EPM2AIP1, AKIRIN1, TMEM192, HSPA4, SNRPD1, FAM220A, CTNNB1, GRB2, KLHL15, 

TBL1XR1, SPRYD3, RNF139, PDIK1L, ZNF318, TMEM70, ARL5B, GNG12, EIF3F, 

TMEM154, ZNF621, HOXC10, ZNF217, CDK12, VCPIP1, OR1L3, HECTD4, RAB3B, 

PAFAH1B2, FEM1B, KMT2D, RNF213, XPO6, NFRKB, MTMR10, ORMDL3, ZNF791, 

HNRNPF, KLHDC2, TRMT112, PCGF5, PWWP2A, ASXL1, ANO6, ATMIN, ZNF592, 

TMEM41B, ADAM9, ZNF518A, SLC19A1, BEND3, ZNF668, SMCR8, ZNF609, KIF5B, 

RPL36AL, FAM102A, CLK3, TAF7, RBPJ, DOLK, IRS1, CFL2, CCNE2, FBXO34, LEMD3, 

CTXN1, CDC40, DPAGT1, KLF11, SP3, CASC4, BCL2, OAZ2, FTH1, RPSA, CRK, KBTBD2, 

BTRC, ADRBK1, CDH2, ZEB2, LRRN1, TMEM170B, ZNF248, MACC1, BICD2, FAM46C, 

TCF24, PPT2, IBA57, ANKFY1, LHFP, ZSCAN30, SLC6A9, TMEM57, TMED9, ACADSB, 

PPP2R2A, PPP3R1, CD2AP, NAP1L4, CUX1, NHLRC2, ZDHHC17, ANAPC7, ERO1L, 

ENTPD4, TRIM33, BRI3BP, VKORC1L1, PURA, TTC30A, SMIM13, NCR3LG1, NME1, 

METTL9, EXT1, TOP1, DYNC1H1, TTC3, CDCA2, MVB12B, ATL3, TTC37, KIAA1147, OCLN, 

HNRNPAB, STK38L, HTT, LMLN, ZNF891, ESRRG, PTCH1, PHF2, ZNF793, TAF15, ZNF736, 

NAP1L1, SLC6A14, SIAH1, PSG5, LRCH3, ZNF512B, YTHDF3, ZNF397, DMWD, KPNA2, 

FMN1, NF2, PHB2, TDRKH, METTL7A, CACNA1H, ZCCHC3, ADH5, ABCF1, RBM14, HEXA, 

SPTSSB, SLC35F6, ZNF335, CDC42SE1, BCOR, NOP9, USP7, SMYD3, EMP2, C16orf72, 

TXNRD1, PPARA, SF3B3, PRR14L, SIPA1L1, SPIN4, ZKSCAN8, ASB13, TUBB, SRGAP1, 

GAN, LGR4, TET3, ZBTB44 

 

 

Table 7-8: List of experimentally validated targets of miR-195-5p from DIANA Tarbase 

Target Gene miRNA 

CCNE1, WEE1, FBXW7, IPO7, E2F3, SKI, AGO1, SON, CDC27, CDC42SE2, NUFIP2, 

SLC25A22, ZNF367, TMEM245, ANKRD52, NRBP1, PRKAB2, EIF3A, EIF5B, HSPA1B, SIK1, 

SUCLA2, FAM199X, PPRC1, TMEM8A, KPNB1, AKAP10, CAMSAP2, NEMF, OTUD3, ILF3, 

HIAT1, OGT, DYRK2, YWHAG, TBC1D13, B4GALNT3, ISG20L2, TAF7, PSMC2, TMEM127, 

SEC23A, CUX1, CDC14A, ATP2A2, C1orf85, KTN1, DCP1A, VIM, ALDOA, ANKS6, DHRS13, 

PHC3, DNAJC5, MARCKS, NFE2L1, SNRPB, VEGFA, RBM25, RBM4, CSDE1, RHBDD3, 

FASTK, LY6E, ATP2B1, FAM73A, MGA, MDM2, ZBTB47, PIAS1, RBM14, SUGT1, FAT1, 

ATG9A, TNRC6A, PRKAR1A, MAT2A, DYNLL2, CLNS1A, ASCC3, TMCC1, SFPQ, APLP2, 

ASPM, DUS1L, LRRC59, PRRC2C, NAB1, GIGYF1, APP, PDIA6, ZFHX3, FZD6, HSP90AA1, 

TAOK2, SMURF2, PLAGL2, TM7SF2, FAM189B, PDCD4, PRDM4, SLIT2, CACUL1, ARL2, 

CHAC1, CCND2, CBX4, RBMS1, YRDC, USP14, PAFAH1B1, DLL1, SESN1, BCL2L2, 

ATP13A3, PSAT1, MIB1, SPRTN, RIF1, ARHGDIA, SMIM13, NSD1, ENTPD4, MLK4, SESN3, 

TMEM189-UBE2V1, ZHX1, STK35, B4GALT1, TBL1XR1, CCNT1, RPS14, CCNG2, CCDC47, 

NUP160, GFPT1, C2orf69, CDC7, TMEM181, TM9SF2, PHF12, EDC3, CDS1, HBP1, 

CCDC59, SEC61A2, PLA2G12A, UST, SDC4, AGPAT2, UTP15, TCP1, SYMPK, CLTC, RPS25, 

TNPO2, RPL19, EPN1, BCL2L12, DDOST, UHMK1, PRRC2B, CHD4, PXYLP1, MICA, NAT8L, 

TMUB1, SLC29A2, SCARF2, FBXL19, KIAA0100, PILRB, SALL1, TNRC6B, EHMT1, 

AP000721.4, GATAD2A, DDX1, DLD, LY6G5B, TMEM121, MIDN, SRRM2, SACS, NPEPPS, 

XPO6, LBR, PTOV1, ZNF224, INPP5E, MCL1, PPP1CC, TMEM161A, HIST1H1C, SMAD2, 

SCAMP3, MSI2, ACTB, ARPP19, SPEN, CBX6, BTG2, TAOK1, FBXO3, TTPAL, IPO9, 42799, 

ZNF264, PPP1R14C, CALM1, WDR82, ANKRD28, CBX5, SP1, NUCKS1, NDST1, TLN1, 

LAMTOR1, PLXNA1, ZFR, MIA3, SOGA1, LARP1, PLEKHG4B, TRIM44, RPL27A, FITM1, 

DCBLD1, KIAA1328, SLC12A7, LRRC47, ANKH, KIAA1467, NKX3-1, NOTCH3, RAI1, 

SPIRE2, ENGASE, INPP4A, SURF4, SLC4A2, DYRK1B, TRAP1, TNK2, ISYNA1, NME4, 

PGLYRP2, LTB4R2, VGLL4, HSPBAP1, HNRNPDL, MBIP, ARFGAP3, PIGO, TPH2, PMPCA, 

ACTG1, DICER1, LENG8, STK11, PML, HINT1, POLR3H, FRMPD3, TNKS1BP1, TGIF1, 

miR-195-5p 



 

 

115 Appendix 

COPS7A, OTUB1, PCM1, SLC39A1, ROGDI, GALNT2, CKAP4, THTPA, TCF20, IRS4, 

CSNK1A1, SRGAP3, PFN2, AEBP2, RASA1, PIGS, PPP1R11, WBP1, POLR2L, TNKS2, SQLE, 

NUP98, GAN, GTF3C4, FTCD, ZNFX1, ELAVL2, FRRS1L, CLASP2, EPB41L2, SIPA1L3, 

SLC9A2, SLC20A2, RECK, KIAA1432, SOBP, KIF5B, EZH1, IGF1R, TBPL1, ACSL3, CCND1, 

SKIL, KBTBD2, CELF1, HDGF, GBF1, SEC22C, CANX, ALAD, ZBTB33, IPO8, GET4, PVRL3, 

ADIPOR1, ATXN1L, UBE3C, VMA21, PTPN12, STRIP1, RABL6, RBM12B, SLC6A8, MAFG, 

TIMM13, SLFN11, TTYH3, DDB1, ZNF580, PLXNB2, STK33, HNRNPU, EEF1D, BAI2, AGRN, 

CIRBP, RGL4, DHRS2, EMD, OGFR, CAMTA2, PTBP3, UCKL1, NLGN2, SLC25A3, KLC1, 

NME3, C19orf48, CALU, ABCF1, TMBIM6, CENPN, KMT2C, XPO1, LSM14B, TMEM134, 

CDKN1A, CALR, USP42, RARS, FAM118A, EIF4G1, TMED10, PPP2R1A, RBM19, ADAM23, 

REPIN1, HNRNPUL2, POLR2D, MLLT4, FAM46A, HECTD1, SORBS3, H2AFV, AZIN1, 

CERCAM, UNG, AMOT, ACBD5, RFK, U2AF2, CCT4, TECTA, HIST1H4C, ACLY, PTTG1IP, 

GUSB, POLR1C, FAM120A, ZBTB34, KDSR, ZBTB39, MTMR3, N4BP1, BTAF1, SPRED1, 

CHD6, PPAPDC2, HSDL2, ARL5B, PWWP2B, MYO5A, PHLDA3, TMEM199, TSN, DCTN5, 

TBC1D9, IRF2BP1, GATAD2B, BSDC1, SEC61A1, STAT3, GPR157, MRPS25, NUP210, 

DCP2, CPXM2, RP6-24A23.6, TCFL5, CYP51A1, BRWD1, FAM160B1, TNFAIP1, SCML1, 

AGPAT3, RRAGD, KPNA5, MLEC, CRAMP1L, PPP2CA, C3orf62, CAMTA1, GPC4, 

ARHGEF11, CYLD, CPEB2, LRRC41, GDPD5, ABCA13, CLCA1, MARK1, MBD3, SCAMP5, 

VDAC3, TNFRSF12A, POLR2A, C3orf67, CEP170, TMEM258, ANLN, ZC3HC1, KIF5C, 

NONO, PCDH9, DNAH14, UBAP1, OTUD7B, CNOT1, CKB, JOSD2, TUSC2, ADCY6, 

KCTD20, SRRM1, TOP1, MYL12A, PIDD1, ZIC5, UBR3, BAG6, NAE1, NPPC, PNPLA4, 

EIF4A2, MAPRE3, ACTR3, SYAP1, CCDC127, ZSWIM6, ATP6V1G1, TAB2, ANKRD23, 

NTN1, DOCK6, COL4A5, IFNGR2, KIAA1522, GPR137B, TENC1, WIPI2, SLC2A3, CDCA4, 

AKAP11, KIF1B, GNAI3, HIPK2, WAPAL, ASB1, ANKIB1, ABCF2, MAPK9, PI4K2B, MAP3K9, 

EIF2AK2, TBC1D20, ADSS, HGF, UHRF1BP1, HSPA5, RC3H2, CREBBP, QSER1, DHX33, 

MTMR1, KIF2A, RRM2B, TTC17, RAI14, FECH, ARF3, VMP1, ELOVL5, CUL1, ALDH18A1, 

LAMC2, VEZT, JKAMP, PIGV, KARS, ZC3H11A, SPPL2B, NATD1, PSD, DDX21, ALS2, 

AP2B1, RNH1, ELMO2, TRAM1, FUCA2, GLI2, NTMT1, REV3L, CFLAR, SPAST, MAP4, 

MDH1, CD44, TNPO3, RANBP9, TMEM206, FAM214A, LTBP1, MON2, EIF4G3, MATR3, 

NDC1, PUM2, LYPLA2, PHKA1, TNFRSF10B, CTPS2, TBC1D25, RAD51C, GDE1, NCAPD2, 

CDH1, UBA6, LAPTM4A, CHPF2, cyclinD1(hsa), HIVEP2, TFPI, DCBLD2, NSUN2, PKM, 

LSG1, PNPLA6, COASY, ZMYND11, HEATR6, TMEM59, VTA1, MAST4, TMEM159, YIPF2, 

ACSL4, PHLPP2, DESI1, PTPN4, CCNT2, PTPN3, RSBN1, BCAP29, MNT, RAB10, BZW1, 

PAG1, KHNYN, PPP2R5C, FNDC3B, VTI1B, PIAS2, RBFOX2, ARCN1, IL2RB, SLC44A1, 

TNPO1, ZNF532, PDS5B, PRKACA, CRKL, TCF3, ZFAND6, DNAJA1, BIK, ERMP1, SUPT16H, 

TRAF4, SPTLC2, OGFOD1, CAD, MAVS, CDV3, C12orf5, RBL1, LMAN1, ST6GALNAC2, 

GOLGA3, TM9SF3, SCFD1, COMT, TRAF5, BAZ2A, SRCAP, RAB18, ECHDC1, ACOX3, 

HSP90AB1, FOSL2, SMEK1, EPS15, DNM1L, PREP, KIFAP3, RPS6KA5, FRYL, TOX4, ZW10, 

IFT74, ABCB1, HUWE1, TNRC6C, NIN, NFATC3, MKNK2, LMF2, NSF, BAMBI, UBE2D1, 

EP300, PIGB, CLASP1, CDC42, ZMPSTE24, BLVRB, NLRP1, THOC5, TXLNA, RBM7, CNIH1, 

HADHA, ICAM1, RTCB, MTMR2, PABPC4, RCOR1, RBM22, BIRC5, GPATCH2, RDH11, 

TMED2, UBE2T, KAT6A, ATXN7L3, PSMD5, SMAD7, CDC37L1, PVRL1, WSB1, KCNN4, 

CAND1, BFAR, KATNAL1, CDK6, MMD, COL12A1, UBFD1, GALNT7, USP31, PLA2G15, 

TRIM35, CLCN3, MDN1, CPSF6, MON1B, CDS2, SMC3, TSC22D1, TWISTNB, MAPK14, 

ARMC1, RBL2, STK38, ABHD17B, ADNP2, CA2, COQ5, UBE2R2, CDIPT, NKAP, PDHX, 

PPP2CB, DMXL2, GATA3, KCTD10, GOSR1, SH3D19, KLF5, MMP9, SLC1A5, DNM1, 

TBC1D17, CDK2AP1, TRIM37, RNF43, DDX6, RAPGEF1, ERICH1, FNDC3A, ARHGEF18, 

CCNC, METTL4, KIAA1549L, IKBKB, FRK, LARP4B, ANKRD12, CPEB3, XIAP, EIF4G2, 

SLC39A14, SETX, FNBP4, AIP, MAN1A1, CA9, PLEKHA1, SEC23IP, PSMD7, PGRMC1, 

ABCC3, DHX15, DDX5, TLE4, SNX16, C11orf58, SLC11A2, RABAC1, DNAJA3, MAPK8, 

MGP, PNN, LFNG, CPT1A, KRT18, RHOV, SLC7A5, CHPT1, KIAA0391, DSE, TRPS1, PIM2, 

SLC38A1, ERLIN1, ASH1L, ACVR2A, LY9, ELL2, CCND3, STXBP3, PARD6B, PRKAR2A, 

CPEB4, SENP5, BVES, ODC1, RAD23B, HELLS, SLC35F5, KPNA1, KLF7, VAMP7, IRF2BPL, 

ARFGEF2, MRPS2, AIM1, QSOX1, PLEKHA3, PLEKHB2, HEATR1, ATP6V0B, RAB14, 

POF1B, CNOT6, CHPF, IRF1, ST3GAL5, FLVCR2, PDS5A, KIF14, CHMP3, TTK, PIK3CA, 

NUDCD1, HSPA9, FAM98A, MYB, ANXA11, TBP, MFAP2, UBE3A, DNAJC16, KLHDC3, 

ACO1, TFG, RREB1, QKI, ZBTB45, SF3B1, DIEXF, RBBP6, ABCC10, NUP153, SLC25A12, 
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OBSL1, FBXW2, CREB1, PCMT1, AUP1, RPA2, SGK1, PLAU, ITPR2, TMEM214, ABCC5, 

TGIF2, AKR1A1, SLC1A4, AKT3, PEPD, MOB4, DARS, GALNT3, CD46, NR3C1, STX16, 

TMTC4, RCAN3, RAB29, HES1, EPC1, PTCH2, PHF3, BYSL, MAPKAP1, GNA13, EFEMP1, 

PLEKHM2, ATF2, AREL1, SPARC, IGFBP5, RTN4, GOLGA1, UBE4B, RNF138, XPO7, 

POLR3F, ACTR2, CAPRIN1, PPP2R1B, NAPG, ANKRD17, SLC41A2, AGO4, ZFYVE20, 

ARL8B, SOX5, LATS1, PPT1, CAB39, UNC13A, ADAM10, CD164, LRRC1, ERN2, ARMCX1, 

ANAPC13, TNFSF9, DCTN4, HS3ST3B1, MOSPD2, RRAS2, SMYD5, KIAA1468, BTBD3, 

COG3, GRSF1, TTBK2, EPB41L4A, REEP5, IREB2, EIF2S3, TFCP2, COPB1, ANKEF1, STT3A, 

SERINC3, FADS2, VTCN1, MYO5C, EIF5A, NCLN, HSD17B4, REPS1, HMGA1, HEATR5A, 

SCRN1, YAP1, DCAF7, ANKRD36, MBOAT7, EMC4, ARHGAP32, MYO1G, CIDEB, UBAP2, 

NSRP1, MAP7, FHDC1, VPS36, ZCCHC11, ZBTB46, SMARCA4, ARPC1B, MACF1, PER2, 

ROMO1, KDELR2, UBR4, KIAA0368, IL6ST, STARD13, ACP2, CDC73, TMEM2, DMTF1, 

COL5A1, MYC, PUM1, NAV1, MED1, VPS13B, 42801, VHL, KIF23, PRDX5, LMO7, SBF2, 

TMED7, CDK4, PLAA, BECN1, FGF2, SREK1, MBNL2, CACNA2D1, ABL2, ZNF697, GNA12, 

NUPL1, PPIG, ABI2, ARRDC4, DOPEY2, DENR, LRPPRC, TMEM87B, GALNT1, CREG1, 

ASNSD1, FREM2, EPG5, ZNF827, GUCD1, PHIP, ARID5B, TSPAN3, AMMECR1L, TMTC3, 

ERLIN2, LRIG1, EML4, G3BP1, YTHDF1, HIATL1, BARD1, WNT9A, SNX30, SNRNP200, 

TMOD3, SECISBP2L, HNRNPLL, MUT, MFAP1, QTRTD1, IGFBP3, SETD1B, CNKSR3, USO1, 

CCNA2, WTAP, KANSL2, C11orf49, FBN2, PAM, NFIB, SHPRH, AIG1, SLC15A4, RNF217, 

LRRK1, KDM6A, TUT1, RMND5A, NACC2, BCL2L11, ASXL2, SCARB2, CENPU, EIF2B5, 

RHBDD1, CCDC102B, KIF21A, ATP8B2, FGD4, PDGFC, SLC20A1, NARF, GLCE, TEX261, 

TGOLN2, RBM26, DDX46, CBLC, PARP16, AHCTF1, ASAP1, HSPG2, ACP1, TMEM123, 

DST, ZCCHC2, MSN, MDH2, PTPRF, MIPOL1, TCF12, COPS7B, TACC1, SCAMP2, ZCRB1, 

WNT3A, IHH, BTRC, DNAJB4, TMEM183A, TMEM55B, OTUD4, ATP5G3, PSKH1, ENAH, 

AMOTL1, SLC30A8, PALM2-AKAP2, RRAGA, FRS2, C9orf91, ACOX1, RNF149, FOXK1, 

GNAQ, TP53INP1, FSTL1, FAM160A1, NPTN, TMEM55A, SLC30A7, XKR8, PAFAH2, ZER1, 

SGPP2, HGSNAT, SQSTM1, RNF168, KIAA1161, PRKCD, TAB3, DVL3, CXCL5, PRRC1, 

LARP4, UBLCP1, CLMN, RPRD2, RUSC1, HEATR2, HPS3, SLC18A2, U2SURP, FAM126B, 

ZDHHC12, SUCLG1, PEX19, MGAT4B, SHISA5, SHANK2, GART, BAG5, FYCO1, GYLTL1B, 

ZFYVE1, PPM1K, RACGAP1, SPATA2, PPP1R21, TPRG1L, UBN2, CDC25A, ARHGAP12, 

RAB11FIP1, CLDN12, DYRK1A, HK1, ZNF326, ZNF281, C2orf47, POLR3K, FAM208A, VCP, 

GPBP1L1, ELMSAN1, TATDN2, CGGBP1, CREBRF, POLR2H, PBXIP1, C1orf52, RICTOR, 

ANXA5, GRAMD3, CXXC1, CNST, VCAM1, SNRK, BACH1, UVSSA, DUSP2, SCAF4, PINK1, 

CDK5R1, SOCS6, BCL2, ZNF622, HECTD4, PAFAH1B2, ZMAT3, SPRYD3, RPS6KA3, 

TUBA1A, OSCAR, RNF213, CHD2, VPS37C, SNTB2, SNCG, KMT2D, ATG13, CTDSP2, 

GRAMD2, CHD9, KLHL26, CCNE2, TMC8, VCPIP1, CLPX, CEP83, ZBTB5, TMEM43, 

FAM111A, TADA2B, SERPINB9, TOMM20, CTNNB1, ATF7, KCMF1, RFWD3, PRR15L, 

HSPA4, IRF2, S1PR1, RBM4B, FEM1B, SH3BP5L, DHX36, TMX3, NR2C2, 42980, BDKRB2, 

ORMDL3, DNAJC24, CHD7, ASXL1, JMJD1C, PPFIBP2, IP6K1, SLC38A9, GNB2, BNC2, 

TMED3, SPSB4, ZNF146, WIBG, ENDOV, EFNA1, SMCR8, MRPL1, KIAA1551, NBEA, 

PDP2, HDHD2, FN3K, CNBP, YES1, GPR25, KIAA0232, GOLGB1, BRD3, APBB1, ZBTB21, 

TAPT1, SEMA4C, UQCRH, RNF34, PBX3, NAA20, RNF187, ALCAM, SETD5, YWHAB, SP3, 

IRF2BP2, NET1, CD300A, CRK, C12orf76, ADORA2B, CXCL8, SERTAD3, PLAG1, PAPPA, 

CD2AP, SRPR, FAM110C, MAFK, PURA, NHLRC2, ST8SIA3, CAPZA2, STYX, OOEP, 

SH3BGRL2, CMTM4, ZNRF3, C16orf72, VPS13A, ZDHHC23, ARMCX2, NDNL2, MME, HTT, 

XPNPEP3, CTNNBIP1, SESTD1, BRI3BP, GRB2, NCOR2, NPM1, PSAP, SMDT1, TBL3, 

BET1L, NRIP1, EDARADD, TTC3, ANXA4, LDOC1L, METTL9, DDI2, CCSER1, DYNC1H1, 

DDX28, GREB1, MFSD5, TTC30B, HEXIM1, SVIP, NOC2L, MYADM, ZNF43, ZNF181, 

MAGED1, CLDN4, LRBA, ZNF627, ZC3H6, NOL4L, ENTPD6, PPP1R2, HLA-DQA1, 

WDSUB1, SMTN, RAB40C, SERPINA1, BTBD9, MBP, PDE4DIP, SUMO3, RIC8A, AGPAT1, 

MKL2, PDGFA, SVIL, TACSTD2, PRKRA, TRRAP, ZBTB14, TLK1, NF1, TSC22D2, FAM179A, 

TRIM33, KANK2, COX20, CXorf40A, MSL1, ARID2, C14orf119, SPTY2D1, ATOX1, CD151, 

NDUFAF3, CRIPAK, PRPF40A, IST1, GPAA1, FITM2, C5orf30  
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Table 7-9: List of experimentally validated targets of miR-486-5p from DIANA Tarbase 

Target Gene miRNA 

ST6GALNAC6, ZNF367, GXYLT1, G3BP1, PITPNA, H3F3B, CPSF2, RELT, ARL6IP1, 

AGTPBP1, FAM13B, BRWD1, DDX3X, MET, MTF2, MDN1, PLCG1, DPP9, FGFR1OP, 

KLHL20, CLPTM1, BCMO1, CCDC57, VEZT, CLCC1, UROS, VIM, ZNF791, SLC7A6, CERS1, 

RER1, MSH6, UBE3B, DCUN1D2, ATP6AP1, SLC35A3, KIF5C, FYCO1, RALGPS1, NME3, 

GDF2, WDR6, TMEM130, GPSM1, MAP4, TMF1, MYO1B, CDC123, RPS21, AP1B1, XPO1, 

NOP9, LDLR, HIGD2A, MLXIP, SH2D6, ROBO1, ZNF326, HNRNPH1, MRE11A, CELSR3, 

PUM2, CDK17, DESI1, ZNF451, CASP9, GLCE, LDHA, SRRM2, ZFAND6, MYPOP, ARID1A, 

GPBP1L1, SPEN, SMAD4, ZNF711, STX16, C6orf99, KLHDC10, COPB2, CRAMP1L, 

C15orf39, SEPT7, MTMR2, ETF1, MSL2, PHF3, RAB21, TIAM1, NT5DC3, APH1A, HBP1, 

BCL2, GAN, LMBRD2, ZDHHC20, FEM1B, RCC1, ARGLU1, ACTB, SRSF3, BTAF1, PLAGL2, 

TANC1, CREBL2, EMP1, PYCR2, ITGB8, TFAM, G3BP2, BIRC6, COX16, KLHL42, SPRTN, 

NR3C1, SYPL1, CDC23, KMT2A, ZNF800, GLIPR1, FAF2, MAP1B, GID8, TERF2, VPS4B, 

LRRC16A, MTR, NCOA2, SLAIN2, EEA1, LRRFIP1, BTN3A3, DIS3, TNFRSF10B, ZC3H14, 

METTL20, C14orf105, MAPK14, SPHK2, BRD4, PCNXL4, SIRT1, CLIP1, USP40, C20orf24, 

SMC2, GDA, NR4A1, KCNAB2, ITPK1, FAM65A, FBXW2, SYT16, DSP, NCALD, RPS6KB1, 

ECE1, SLC39A14, KIAA0141, COLGALT1, SETD1A, MKNK2, BTBD7, NCBP1, BNIP3L, KIFC3, 

ABLIM1, ZNF644, CD4, ARID4B, MRPS27, SERPINB1, RPL28, C6orf62, CHAC1, RSRC2, 

TTK, SLIRP, PPT1, C2CD5, FAM208B, NAV1, SEC63, PRRC2C, SAMD1, PRCC, ADIPOR2, 

TAB2, ENSA, CDCA8, NPC1, ZNF275, PHGDH, NUCKS1, ATXN7L3, VASH2, SAR1A, TBCD, 

MLK4 

miR-486-5p 

 

Table 7-10: List of experimentally validated targets of miR-29c-3p from miRTarBase 

Target Gene miRNA 

COL3A1, COL1A1, TDG, SPARC, LAMC1, COL15A1, COL4A2, COL4A1, COL1A2, GAPDH, 

DNMT3B, DNMT3A, CDK6, MCL1, BCL2, FBN1, SRSF10, CD276, MMP15, MMP24, FGG, 

FGB, FGA, COL7A1, COL21A1, TFAP2C, WNT4, IGFBP1, PPP1R13B, CDC42, MKL2, 

C12orf76, NUMB, ZNF45, SH3GLB1, IRF2BP2, WSB2, PURG, CDV3, JUN, TIPRL, OIP5, 

SCAF11, GNB4, R3HDM4, ADO, FAM102B, KCTD15, U2SURP, KLHL28, BFAR, CDC42SE1, 

PPP1R14C, HMGCR, SOWAHC, TXNDC16, ELMSAN1, IRGQ, PDHX, CEP68, NKIRAS2, 

VEGFA, ZBTB10, AKT3, SPIN4, KIAA0895, CDC23, DDX21, BCL11A, CCNT2, DICER1, 

FREM2, TMTC3, AMER1, KIAA1549, DCAF12, ANKRD13C, HDGF, MORF4L1, PLAG1, 

RAB30, KMT5C, OTULIN, PRKAB2, KDM5B, BACH2, RNF19A, MYCN, BACE1, MMS19, 

C15orf52, MTHFD2, CTC1, XK, TIMM44, PSMA2, CHIC2, HUWE1, STK19, PPT1, BCKDHA, 

PPM1D, FAM126B, MMP2, SIRT1, RCC2, CCND2, PTEN, AKT2, CTNND1, PER1, 

TMEM132A, COL6A2, BTG2, RNF138, CALM3, INSIG1, TET3, VHL, TET2, ABCE1, REST, 

GOLGA7, MAZ, TGIF2, ZFP91, MXD1, ULBP2, CRYBG1, LAMC2, ITGA6, COL5A2, 

COL10A1, SERPINH1, LOX, PDGFRB, PHACTR2, TUBB2A, EMP1, SNX24, AMFR, RIOK3, 

WDR26, DSC2, CD274, TIAM1, NEDD9, MORF4L2, RPL22, TRAM2, SLC2A14, SLC29A2, 

SLC16A1, SGK1, REL, RAB40C, NAA40, P3H1, KLHDC3, FRK, FOS, DUSP2, CSRNP2, 

COMMD2, CCNA2, CCDC117, CAND1, BBC3, C1QTNF6, RAET1L, FSCN1, SLC7A5P2, PPY, 

TMEM237, GLDN, RTL6, GAS2L3, MDM2, DYNLT1, CASP8, HECW1, FJX1, ENPP2, DDX6, 

C21orf91, PTP4A1, ISG20L2, FEM1B, WWTR1, ZBTB5, LIMS1, SPRTN, CBX6, PIGS, 

COX7A2L, ENTPD1, RAB11FIP1, TESPA1, YY2, ZNF286A, YAE1D1, EPHX2, MRM3, 

ZNF850, SEC31A, TRIM72, ZFPM1, PRY2, PRY, FBRS, CTNNBIP1, CNBP, CBX2, ASXL2, 

OTUD4, FAM71F2, COLEC10, IFRD1, MAPKBP1, FAM193A, ITGB1, CREB5, SP1, ADAM12, 

KLF4, NASP, TARBP1, RFX7, PHLDB2, FRAT2, LRP6, FZD4, FZD5, CNOT6, AGAP1, C4orf26, 

DENND6A, DOT1L, EREG, FAM53C, FMNL3, GTDC1, ID3, KDM6B, RHBDD1, TNRC18, 

EDC3, GLRX3, SLC30A10, SURF2, UBE2Q1, METTL15, BMT2, ZBTB34  

miR-29c-3p 
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Table 7-11: List of experimentally validated targets of miR-141-3p from miRTarBase 

Target Gene miRNA 

ZEB2, ZEB1, DLX5, BAP1, KLF5, STK3, TGFB2, SFPQ, CLOCK, BRD3, UBAP1, PTEN, ZFPM2, 

TRAPPC2B, EIF4E, CTBP2, CDYL, ACVR2B, MAPK14, PPARA, NR0B2, YWHAG, ELAVL4, 

MAPK9, TFDP2, E2F3, SHC1, VAC14, TCF7L1, ELMO2, RASSF2, KLHL20, RIN2, SEPT7, 

HOXB5, ERBIN, KLF11, PTPRD, WDR37, STAT4, YAP1, CDC25C, HDGF, KEAP1, TAZ, 

TIAM1, TM4SF1, CDC25A, PHLPP1, PHLPP2, PPP1R15B, RAB8B, MED13, QKI, ADNP2, 

ARL5B, TNKS2, SPRYD4, TET3, OGT, PGK1, ZBTB34, HNRNPAB, IPO5, TET1, MAP4K4, 

HNRNPD, ZMPSTE24, STXBP2, SEPT8, DPY19L1, CHML, NDST4, TRAM1, YRDC, PSMD11, 

MCL1, CYP1B1, BICD2, PRELID2, USP53, HNRNPF, GNA13, FUT11, EPHA2, TMOD3, 

MARCH6, KIAA1147, ZNF805, ZMAT3, MALT1, KIAA1549, ELAVL2, ATXN7L1, PIGW, 

GATA6, EPHA7, C18orf25, SLC35D1, PGAM4, H2AFZ, TRMT112, XPOT, CDV3, 

KIAA1549L, LHX1, YME1L1, APOOL, ZNF621, ANGPTL7, PRKAA2, MACC1, CCDC18, 

DNAJC28, ZNF292, RPL12, A1BG, POLR3F, COX6B1, RBM28, LPP, CCDC71L, TROVE2, 

BICRAL, ERO1A, HSPA4, SCD5, CLDND1, PEX11A, CELF1, STAT5A, S100A6, RB1, KLF12, 

HIPK2, IGF1R, MALAT1, PAPPA, C16orf58, IRF2BPL, MDM4, PHB2, RAP2C, TNFRSF10B, 

UQCRFS1 

miR-141-3p 

 

Table 7-12: List of experimentally validated targets of miR-195-5p from miRTarBase 

Target Gene miRNA 

WEE1, E2F3, CDK6, CCND1, BCL2L11, MECP2, VEGFA, SKI, CCL4, KRT7, BCL2, RAF1, 

RUNX2, SLC2A3, TBCCD1, CCND3, CDK4, CDC42, CAB39, CHUK, TAB3, MBD1, CCNE1, 

BCL2L2, JAK2, CAMKV, AGER, LSM11, ABCB7, ZNF280C, SPTBN1, NOLC1, CAND1, 

COPB1, RPL10, TMC6, TPI1, SH3BGRL2, AGO1, DICER1, FASN, ARL2, BIRC5, WNT7A, 

MYB, ATG14, SHOC2, PLEKHA1, CEP55, ZDHHC16, STXBP3, C1orf21, AMOTL1, BTG2, 

ETNK1, CCND2, TARBP2, MTFR1L, USP15, AKAP11, FCF1, ARIH1, PAGR1, SNTB2, VPS4A, 

C16orf72, GOSR1, MINK1, RPS6KB1, NAPG, GALNT1, PNPLA6, ZCCHC3, SOWAHC, 

CCNT2, UBR3, ZNRF3, YWHAH, SEPT2, B3GNT2, ACTR2, CDV3, U2SURP, RARB, ITPR1, 

BHLHE40, PI4K2B, PURA, CANX, PCMT1, PPP1R11, HSPA1B, PIM1, CD2AP, CALU, UBN2, 

EN2, MAFK, FOXK1, USP42, DMTF1, ZFHX4, RAD23B, ZBTB34, RECK, SLC9A6, ZNF275, 

OGT, LUZP1, CHAC1, SCAMP4, PAK2, PDCD4, ENTPD1, UBE4A, ARCN1, PTPRJ, 

TMEM138, RASSF5, MAPKAPK2, BCL7A, RCOR1, SPRED1, SMAD3, SCAMP5, UBE2Q2, 

DCTN5, PSKH1, ANKRD13B, EZH1, PNPO, SNX11, RNF138, IER2, TNFSF9, ENTPD6, KIF3B, 

NOL4L, RASSF2, CDS2, ATP5G3, TNRC6B, SELENOI, PEX13, TET3, PRKCD, CPEB2, 

TADA2B, GRAMD2B, CREBRF, HMGA1, CDKN1A, IRF4, KLHDC10, UBE3C, SUN1, 

HMBOX1, RNF38, PSAT1, ZBTB33, PAFAH1B2, RPRD2, PNRC2, CDADC1, AGO4, GPR180, 

PPM1A, SLC39A9, FAM103A1, RBBP6, PAFAH1B1, TAOK1, SNRPB2, HSPE1-MOB4, 

MOB4, BZW1, NUP50, FGF2, HSPA4L, RBPJ, TBPL1, FZD6, BAG4, ZNF449, YIPF6, DDX3Y, 

MSL1, ENTPD7, PRRC2C, ELK4, GABARAPL1, PDIK1L, ATXN7L3B, ZNF691, DYNLL2, 

SRPRB, CDC42SE2, WIPI2, TBRG1, CHEK1, TMEM109, C1orf226, SIRT4, SETD1B, HOXC8, 

RAB3IP, PPP2R5C, SLCO3A1, MLLT6, CBX2, ZFP28, CHMP4B, GABPA, STRADB, MTMR3, 

CRIM1, SOCS5, CTDSPL, ITGA2, PIK3R1, PPIL1, CAPZA2, ZNRF2, IFT74, OCRL, CHIC1, 

CRKL, ALOX12, PHACTR2, CGNL1, KIF21A, RASGEF1B, TUFT1, PDIA6, SNX16, TRIP10, 

CDC25A, BTRC, INSR, ELN, RET, Bace1, SIDT2, ASCC1, DMRT2, TLL1, LUC7L3, ALDH3B1, 

EFTUD2, CSNK1E, TPM2, ZNF460, FGFR4, DOCK11, ACTR3B, ZNF367, UBE2V1, UBE2Q1, 

TSC22D2, TOB2, TMEM189-UBE2V1, TMEM189, TM4SF1, TFAP2A, STK38, SSRP1, SIK1, 

SH3BP4, SEC24A, RNF168, REL, PISD, PDE4D, NR6A1, NFIC, NAA25, LAMC1, RUBCN, 

IVNS1ABP, IPPK, HOXA3, HEYL, HDGF, GNB1, GNAL, FURIN, EIF1AX, DYRK3, CPSF7, 

CARD10, AVL9, AKT3, AGO2, ABL2, ABHD2, ABCC6, PRKAR2A, VSIR, PHYHIP, CASKIN1, 

ZNRF1, CD180, KIAA0895, ORC4, ODF2L, DNAJA1, L2HGDH, ZNF622, ZMAT3, USP53, 

SYPL1, SRPRA, SREK1, SMAD7, PRICKLE2, LRIG2, KIF5B, FAM122B, E2F7, DDX3X, CDCA4, 

CDC37L1, ATG9A, ASGR2, ZNF620, HAUS3, YTHDC1, TMEM245, TMEM100, SRSF1, 

SESTD1, RIMS3, RCAN3, PPIG, PLRG1, PLAG1, PHKA1, MYO5A, KIF23, HNRNPDL, CDK1, 

CCNE2, CBX6, AXIN2, CASK, DMPK, ATAD5, AKR1B10, GPATCH8, ARHGDIA, CPEB3, 

JARID2, CAMSAP1, TRIM35, FLCN, NNT, SBNO1, POM121C, NUFIP2, LAMP2, EFNB2, 

miR-195-5p 
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RPL14, GNAT1, HOXA10, CBX4, PHC3, PDCD1, BAZ2A, APP, ZNF585B, ANAPC13, PRSS21, 

RALGAPB, GSG1, POLDIP3, AP5Z1, CLSPN, UGT2B4, MAP4K2, CCDC83, DECR1, ZBTB10, 

YWHAQ, USP48, SALL1, RUNX1T1, RTN4, PNISR, PHLPP2, PAG1, NUCKS1, MKX, MBD4, 

LRRFIP2, KPNA3, KPNA1, HIGD1A, HCFC2, GRB2, FKBP1A, FBXL20, CRK, CLIP4, CDK17, 

CACUL1, C11orf24, ASH1L, AMOT, SLC29A1, OSCAR, MTHFR, FAM229B, EPM2AIP1, 

ZNF267, SSU72, DNAJC10, ZNF704, YRDC, TPM3, TMEM161B, TM7SF3, TAF13, SZRD1, 

RNF149, RACGAP1, RAB23, PTPRD, PRKAA1, PRDM4, PLPP3, LURAP1L, KANK1, 

HIST2H2BE, GPR27, EXT1, CYP26B1, CREBL2, CNKSR3, CA8, BTN3A3, ARHGAP12, 

OSBPL3, KRT33B, TUBB2A, MSANTD4, LANCL1, HNRNPA2B1, KIAA1456, SLC25A12, 

DLGAP3, THRAP3, SMDT1, RAPH1, CCNT1, ZNF391, CCDC80, ZBTB16, XKR7, WNK3, 

VAV2, TGFBR3, RASEF, NCKAP1, MAP3K7, KLHL15, GNG12, FZD9, CMTM4, CCDC88C, 

ARMC12, AHNAK2, ACVR2A, TLK1, UBE2H, TTLL5, RIF1, SERBP1, PHF19, PLPBP, CLEC2D, 

N4BP1, TRAK1, ADRA2B, ANKMY1, RNF41, GPRC5A, C3orf36, BSPRY, ANKRD36, KLHL40, 

NOTCH2, EIF2B2, CUL3, DCAF17, RS1, GLP2R, FLOT2, HNRNPA1L2, NEGR1, MCFD2, 

HNRNPA1, SLC35E2B, ARHGAP32, RAB15, ADORA3, PPIP5K2, SYNRG, ZNF91, ZBTB5, 

VPS33B, CHMP3, VCL, USP3, USP31, TUBB, TRAM1, TMEM69, PIP4P1, TMEM135, TLE4, 

TKTL1, TIMM13, TFB1M, TCF3, TBL1XR1, TBC1D20, TBC1D14, TASP1, SUPT16H, STX17, 

SRPK1, SPTLC1, SMURF1, SLC9A1, SLC7A5, SLC25A29, SLC25A22, RPS6KA3, RPS5, 

RPL36, RNPS1, RNMT, RNH1, RFWD2, REXO1, RELT, RAP2C, RAB40B, RAB11FIP2, 

PSMB5, PPP6C, POU2AF1, POLE4, PGD, PEX12, PANK1, TM9SF2, OTUB1, NR2C2, 

NCOR2, MTMR4, MRPL40, MLXIP, MIB1, MED11, MCM3AP-AS1, ETFRF1, LRRC57, 

LRPPRC, LITAF, KLC2, TECPR2, KATNAL1, IRAK1BP1, HYOU1, GSK3B, GGA3, GANAB, 

GABARAP, FRYL, MIGA1, AMER1, EDC3, DSCR3, DPP8, DNAJC9, CYLD, CYB561A3, CUL2, 

CSDE1, CREG1, CPNE1, RHOV, CDKN2AIPNL, CDC27, CBFA2T3, C6orf106, C2orf42, 

LRIF1, C15orf39, BSG, B4GALT1, ATP13A3, ASXL1, AP3M1, AFF4, ACOX1, NKD1, CDK8, 

YAP1, KIAA0100, KDR, AP2B1, AURKAIP1, BCL2L12, C16orf58, CLU, CLUH, DENND6A, 

DIAPH1, FBXL18, GATAD2A, HSPA8, KMT2D, MAP2K3, PLEKHB2, POLR2E, PPP6R3, 

RPRD1B, SEC61A1, SNCG, WDR13, C21orf62, CARM1, CD274, JPT2, RFK, TXNIP, VOPP1, 

ZNF284 

 

Table 7-13: List of experimentally validated targets of miR-486-5p from miRTarBase 

Target Gene miRNA 

CD40, TMED1, ARHGAP5, OLFM4, SERPINE1, ID4, PIM1, ZNRF2, IGF1R, DOCK3, CADM1, 

H3F3B, PCCA, ZDHHC20, UBASH3B, RCOR3, ZNF460, ZIC5, BTF3L4, CCDC14, CMSS1, 

TTC8, RBM12B, MBD4, FAM217B, IGSF3, YAE1D1, SEL1L3, FOXP1, TM4SF20, MARCH4, 

SP4, SEC23IP, BAG2, METTL27, DENND5B, MACROD2, UTP4, LTBP2, ARF6, RBM22, 

SAPCD2, BASP1, CENPN, CRIPT, DCTN4, SPRTN, EPGN, HPGD, FAM46A, ABCF2, FBN1, 

CDK4, CIT, SMAD2, SNAI1, NRP2, FOXO1, PTEN, CLDN10, HAT1, PIK3R1, G3BP2, 

HMGA1, UBE2S, FPR1, ZNF286B  

miR-486-5p 

 

7.6 CLL-specific protein-coding genes 

Table 7-14: List of correlation coefficients (rho) of CLL-specific protein-coding genes identified using 

cell-of-origin as a control for aberrant methylation calls 

Gene Promoter CpG p-value rho 

MIB2 chr1:1549294-1551294 cg19246761 0.009 -0,44 

MOV10 chr1:113215547-113217547 cg03417473 0.016 -0.40 

AMICA1 chr11:118095309-118097309 cg06957943 0.013 -0.42 

ARNTL2 chr12:27484286-27486286 cg26165146 0.002 -0.51 

CLLU1 chr12:92813806-92815806 cg04845867 0.016 0.40 

CLLU1 chr12:92813806-92815806 mean 0.008 0.44 
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C17orf99 chr17:76140933-76142933 cg27606002 0.016 -0.41 

C18orf32 chr18:47013144-47015144 cg23756872 0.002 -0.50 

PHLDB3 chr19:44008485-44010485 cg17121205 0.015 -0.41 

LILRB4 chr19:55172770-55174770 cg24140775 0.007 -0.45 

RAD21L1 chr20:1205263-1207263 cg22227354 0.015 0.41 

C22orf46 chr22:42085046-42087046 cg14856679 0.003 -0.49 

XIRP1 chr3:39233585-39235585 cg12413566 0.0002 -0.59 

TNNC1 chr3:52487557-52489557 cg26738080 0.014 -0.41 

TMEM110-MUSTN1 chr3:52931097-52933097 cg11613427 0.0001 -0.62 

FBXO40 chr3:121310669-121312669 cg12456825 0.007 0.45 

EFCAB12 chr3:129146994-129148994 cg03221715 0.013 -0.42 

EFCAB12 chr3:129146994-129148994 mean 0.005 -0.47 

ARL14 chr3:160393447-160395447 cg11896170 0.002 0.50 

C4orf32 chr4:113065052-113067052 cg04831870 0.018 0.40 

GABBR1 chr6:29600462-29602462 cg04324598 0.0009 -0.54 

GABBR1 chr6:29600462-29602462 mean 0.0005 -0.57 

DOK2 chr8:21770705-21772705 mean 0.01 -0.43 
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Figure 7-4: Candidate protein-coding genes associated with CLL-specific aberrant DNA methylation. A) Left 

panel, CLL-specific differentially methylated CpGs identified in gene promoters grouped by subclasses (class A, C, 

D and E). Epigenetic programming during normal B cell differentiation is represented as a grey line. Average 

methylation values are represented as dots; normal B cell subpopulations (grey dots); CLL samples (white-orange 

dots). Y-axis represents methylation levels (%), while X-axis differentiation stage assigned either to normal B cell or 

CLLs. Middle panel, expression levels of protein-coding genes in normal B cells (log2 normalized expression 

values, NBC; naive B cells, hiMBC; high maturity memory B cells). Right panel, expression levels of protein-coding 

genes in CLL (log2 normalized expression values). The y-axis represents log2 normalized expression values of 

protein-coding genes, and the x-axis assigns differentiation stage either to normal B cells or to CLLs 

 

Table 7-15: List of correlation coefficients (rho) of protein-coding genes identified previously as 

epigenetically deregulated in CLL 

Gene Promoter CpG p-value rho 

ZAP70 chr2:98328530-98330530 cg25095518 0.45 0.13 

ZAP70 chr2:98328530-98330530 cg08859278 0.58 0.1 

ZAP70 chr2:98328530-98330530 cg09006159 0.26 0.2 

ZAP70 chr2:98328530-98330530 cg15933451 0.94 0.01 

ZAP70 chr2:98328530-98330530 cg13853141 0.76 0.05 

ZAP70 chr2:98328530-98330530 cg12332902 0.07 0.32 

ZAP70 chr2:98328530-98330530 cg21773162 0.88 0.03 

ZAP70 chr2:98328530-98330530 mean 0.42 0.14 

TWIST2 chr2:239755172-239757172 cg04840356 0.23 -0.21 

TWIST2 chr2:239755172-239757172 cg06738242 0.65 0.08 

TWIST2 chr2:239755172-239757172 mean 0.73 -0.06 

HOXA4 chr7:27169899-27171899 cg23884241 0.39 -0.15 

HOXA4 chr7:27169899-27171899 cg16651126 0.5 0.12 

HOXA4 chr7:27169899-27171899 cg11015251 0.57 0.1 



 

 

122 Appendix 

HOXA4 chr7:27169899-27171899 cg06942814 0.77 -0.05 

HOXA4 chr7:27169899-27171899 cg15196806 0.19 0.23 

HOXA4 chr7:27169899-27171899 mean 0.84 0.04 

DAPK1 chr9:90111255-90113255 cg08719486 0.91 0.02 

DAPK1 chr9:90111255-90113255 cg13814950 0.17 0.24 

DAPK1 chr9:90111255-90113255 cg22571217 0.74 0.06 

DAPK1 chr9:90111255-90113255 cg13932603 0.54 0.11 

DAPK1 chr9:90111255-90113255 cg20401521 0.64 0.08 

DAPK1 chr9:90111255-90113255 cg08797471 0.82 0.04 

DAPK1 chr9:90111255-90113255 mean 0.93 0.02 
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