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Summary  

The molecular and ultrastructural characteristics of the epithelial cells in the seminiferous 

tubules as well as the peritubular wall cells of mammalian testes have been subject to 

controversial debates for several decades that have not been clarified yet. Using 

biochemical as well as light and electron microscopical methods, in particular 

immunolocalization techniques, I have studied sexually mature testes from several 

mammalian species (man, bull, boar, guinea pig, rat and mouse). The analyses included 

direct interspecies comparison of the tubular and peritubular structures with epithelial 

tissues of the adjacent excurrent duct system, including the epididymis, and in addition 

other comparative epithelial and muscular tissue controls. 

The present study of cytoplasmic filaments of Sertoli cells in seminiferous tubules 

confirmed the presence of vimentin intermediate-sized filaments (IFs) and the absence of 

cytokeratin IFs. Furthermore, my analyses of the corresponding cell-cell adhering 

junctions (AJs) of Sertoli cells and germ cells validated the absence of desmosomes or 

“desmosome-like” junctions. In addition, epithelial molecules such as E-cadherin or 

EpCAM were absent. In contrast, AJs present in the seminiferous tubules are based on 

N-cadherin clusters anchored in cytoplasmic plaques. These plaques contain α- and 

β-catenin, plakoglobin, proteins p120 and p0071 as well as a protein of the striatin family.  

My findings revealed that the intratubular Sertoli cells are interconnected with adjacent 

Sertoli cells as well as with germ cells by a novel type of AJs: Specific N-cadherin-based 

AJs, i.e., variously-sized, often very large cell-cell contacts (“areae adhaerentes”). In 

addition, in certain regions of bovine Sertoli cells, I have found small clusters of sieve-like 

cell-cell contacts perforated by cytoplasm-to-cytoplasm channels 5–7 nm in luminal 

diameter (“cribelliform junctions”). They are generally associated and laterally 

connected by tight junction-like membrane-membrane contacts.  

The cells of the seminiferous tubules are surrounded by a well-developed basal lamina. 

However, I could show that the basal lamina is not attached to the Sertoli cells by any 

hemidesmosomal structures and lacks hemidesmosomal marker molecules such as the 

integrin α6/β4 complex, protein HD230/233 (bullous pemphigoid antigen, BPA 230) and 

tetraspanin CD151. 

The basal lamina of the seminiferous tubules is enclosed by a lamellar encasement structure, 

the peritubular walls. These are composed of a bandage system of monolayers of peritubular 

smooth muscle cells (SMCs) interspersed with layers of extracellular matrix (ECM). The 

peritubular SMCs are for the most part polyhedral and very flat (down to ca. 30–100 nm 

cytoplasmic thickness). The number of these lamellar monolayers can vary from one to six 

per bandage system in different species, developmental stages and regions. They contain 
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smooth muscle α-actin, the corresponding myosin light and heavy chains, tropomyosin, 

α-actinin, smoothelin, desmin, vimentin, talin, filamin A, dystrophin, drebrin, caveolin, 

caldesmon, calponin and protein SM22α, i.e. a typical molecular complement of SMCs. In 

addition, the peritubular SMC cytoplasm is enriched with myofilament bundles and other 

typical SMC structures such as "dense bodies", plasma membrane-associated “focal 

adhesions” and caveolae. Hence, these peritubular cells represent a novel kind of smooth 

muscle cells and tissue. In this study, I refer to these cells as “lamellar smooth muscle 

cells” (LSMCs) and not as they have been described in the literature as “myoid cells”, 

“myofibroblasts” or “myoepithelial cells”. Furthermore, within a monolayer, the LSMCs are 

connected by end-to-end junctional contacts and laterally by numerous, vertical AJs located 

in variously-sized, closely overlapping cell processes (“processus alter supra alterum”). The 

major transmembrane glycoprotein present in the AJs of LSMCs is cadherin-11, often in 

addition with P-cadherin in some species. These AJ cadherins are anchored in 

cytoplasmic junction plaques formed by β-catenin, plakoglobin, occasionally protein p0071 

and also the 54 kDa plaque protein myozap as well as protein LUMA.  

Using endothelial cell type marker molecules such as VE-cadherin, claudin-5, protein 

PE-CAM (CD31), protein LYVE-1 and podoplanin, I could show that the peritubular wall 

structure of all species examined is not surrounded by a continuous lymphatic 

endothelium, as it has often been claimed in the literature for rodent testes.  

The novel types of AJ structures are compared with the AJs hitherto known. The special 

cell type characters of the seminiferous tubule cells and the LSMCs of the peritubular wall 

are discussed with respect to their architectonic and physiological functions as well as to 

structural changes during development, aging and in pathogeneses. Finally, my data 

contributes to the understanding of molecular characteristics of the male genital tract and 

can be used for the diagnostic pathology of genital tumors.  
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Zusammenfassung 

Der molekularbiologische und ultrastrukturelle Charakter der epithelialen Zellen in den 

Hodenkanälchen sowie der Zellen der peritubulären Wand („peritubular wall“) ist bisher 

kontrovers diskutiert und noch nicht ausreichend untersucht worden. Unter Verwendung 

von biochemischen sowie licht- und elektronenmikroskopischen Methoden, insbesondere 

der Immunlokalisation, wurden in der vorliegenden Arbeit Hodengewebe von 

geschlechtsreifen Säugetieren mehrerer Spezies untersucht (Mensch, Rind, Schwein, 

Meerschwein, Ratte und Maus). Die Untersuchungen wurden im direkten Vergleich mit 

epithelialen Geweben des anschließenden Nebenhodens sowie weiteren epithelialen 

Kontrollgeweben durchgeführt. 

Die im Rahmen dieser Arbeit durchgeführten Untersuchungen haben für die Sertoli-Zellen 

das Vorhandensein des Intermediärfilament-Proteins Vimentin sowie die Abwesenheit von 

Cytokeratinen bestätigt. Außerdem waren ebenfalls Desmosomen, desmosomen-ähnliche 

Zellverbindungen und desmosomen-spezifische Moleküle sowie bestimmte andere 

Zellverbindungsmoleküle wie E-cadherin und EpCAM in den Hodenkanälchen abwesend. 

Die Zellverbindungsstrukturen zwischen Sertoli-Zellen, wie auch die zwischen Sertoli-

Zellen und Keimzellen, umfassen das Transmembran-Glykoprotein N-cadherin sowie 

cytoplasmatische Plaque-Proteine wie α- and β-Catenin, Plakoglobin, Protein p120, sowie 

Protein p0071 und Striatin. In den Sertoli-Zellen wurden dabei zwei neue 

Zellverbindungstypen gefunden: 1. Die „areae adhaerentes”, welche sich über 

verschieden große Areale zwischen den Sertoli-Zellen und auch zwischen Sertoli-Zellen 

und Keimzellen erstrecken. 2. Die „areae cribelliformes“, welche siebartige Strukturen 

mit cytoplasmatischen Kanälchen mit einem Durchmesser von etwa 5–7 nm darstellen.  

Die Basallamina der Hodenkanälchen weist keine Hemidesmosomen oder Strukturen 

spezifisch für hemidesmosomale Marker wie beispielsweise den Integrin-α6/β4-Komplex, 

Protein HD230 oder Tetraspanin CD151 auf.  

Die Hodenkanälchen werden von einer peritubulären Wand umgeben, welche sich aus 

einem System von einzelnen Schichten extrazellulärer Matrix und lamellärer 

Glattmuskelzellen aufbaut. Diese Schichten stellen sehr flache und lange Zelllagen dar 

(teilweise 30–100 nm innerer Membran-Membran-Abstand). Die Anzahl der jeweiligen 

Zellschichten unterscheidet sich zwischen den Spezies von eins (z.B. Nagetiere) bis 

sechs (z.B. Mensch, Rind). Die peritubulären Glattmuskelzellen weisen typische 

Glattmuskelmarker auf wie Glattmuskel-α-Actin, Myosin (leichte und schwere Kette), 

α-Actinin, Tropomyosin, Smoothelin, Desmin, Vimentin, Filamin A, Talin, Dystrophin, 

Drebrin, Caveolin, Caldesmon, Calponin sowie Protein SM22α. Sie besitzen 

Myofilamentbündel, oft in parakristalliner Form, sowie glattmuskel-typische Strukturen wie 
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Verdichtungszonen („dense bodies“), „focal adhesions“ und Caveolen. Zusätzlich sind 

diese Zellen über Zellverbindungsstrukturen verbunden, die überwiegend das 

Glykoprotein Cadherin-11 enthalten sowie teilweise auch P-Cadherin. Die dazugehörigen 

Plaque-Strukturen umfassen β-Catenin, Plakoglobin sowie die Proteine Myozap und 

LUMA. Zusammengefasst kann die Aussage getroffen werden, dass diese Zellen alle 

typischen Merkmale von Glattmuskelzellen aufweisen. Sie werden deshalb hier als 

lamelläre Glattmuskelzellen (“lamellar smooth muscle cells”, LSMCs) bezeichnet, 

anstatt wie bisher in der Literatur überwiegend lediglich als „glattmuskel-ähnliche“ bzw. 

„myoide“ Zellen, „Myofibroblasten“ oder „myoepitheliale“ Zellen.  

Unter Verwendung von endothelialen Markern (VE-Cadherin, Claudin-5, Protein PE-CAM, 

Protein LYVE-1 und Podoplanin) konnte zusätzlich gezeigt werden, dass die peritubuläre 

Wand nicht von einem sogenannten „lymphatischen Endothel“ umgeben ist, wie es bisher 

in der Literatur vor allem für Nagetiere beschrieben worden ist.  

Der spezielle Zelltypcharakter der Hodenkanälchen und der LSMCs der peritubulären 

Wand werden hinsichtlich ihrer möglichen physiologischen Funktion und der molekularen 

sowie strukturellen Änderung bei der Entwicklung, Alterung und Pathogenese diskutiert. 

Es wird vor allem auch der Wert dieser Moleküle als Zelltyp-Identifizierungsmerkmale für 

die pathologische Diagnostik, u.a. von männlichen Genitaltumoren, hervorgehoben.  
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1 Introduction 

The understanding of regulatory and mechanistic processes involved in the development 

of mammalian epithelia is as important for cell and molecular biology as it is for medical 

research, in particular processes leading to epithelial diseases, including carcinomas. For 

the ultrastructural architecture and molecular composition of certain epithelial tissues the 

cytoskeletal and cell-cell junctional assemblies of specific proteins and glycoproteins are 

essential. The major cell-cell junctions of epithelial cells and tissues have been identified 

since more than half a century ago and still dominate current cell biology textbooks 

(summarized in Table 1). These are the tight junctions (zonulae occludentes), the gap 

junctions (nexus), and the two forms of cadherin-based junctions, the adherens junctions 

(zonulae adhaerentes, fasciae adhaerentes and puncta adhaerentia) and the 

desmosomes (maculae adhaerentes). In this context, it should be mentioned that a series 

of further cell-cell connecting structures have been described as cell-cell junctions (Franke 

et al. 2009; for a historical review see also Franke 2010; for a list of these additional types 

of cell-cell junctions see Table 2). However, the general awareness of these junctions 

seems to depend on their possible importance in functions and in diseases associated 

with genetic or epigenetic alterations. 

1.1 The male reproductive system  

Epithelia are denoted as primary body tissues covering cavities, lumina and surfaces of 

the whole vertebrate body, either as “simple” (i.e. one cell layer), “complex” or “stratified” 

epithelia. These cells are mostly orientated in a basal-apical polarity and are attached to a 

lamina layer at the basal surface. A unique epithelium-type tissue, in which somatic 

differentiation processes are directly correlated with meiotic divisions and 

spermatogenesis, is the seminiferous tubule of mammalian testes. Here the basal lamina-

grounded somatic cells, the "Sertoli cells" (named after the Italian cell biologist Enrico 

Sertoli 1842–1910; for origin see von Ebner 1888; for a review see França et al. 2016), 

are connected with multiple cell-cell attachment structures to each other and to germ cells 

(see, e.g., Dym and Fawcett 1970; Dym 1975; Franke et al. 1978a; Holstein 1985; Russell 

and Peterson 1985; Schulze and Holstein 1993; Pelletier 2001). Moreover, these 

elongated, non-proliferative sustentacular cells form a tight-fitting barrier, the “blood-testis 

barrier” (BTB), on the one hand to control paracellular movements and translocations of 

molecules and particles into the tubular lumen, and on the other hand to support germ cell 

differentiation in association with the Sertoli cells (e.g., Chiquoine 1964; see also Dym and 

Fawcett 1970; Fawcett et al. 1970; Fawcett 1975; Setchell and Waites 1975; Dym and 

Cavicchia 1977; Holstein and Roosen-Runge 1981; Russel and Peterson 1985; Cheng 
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and Mruk 2012). The Sertoli cells finally harbor the spermatid heads in a series of apical 

indentations ("pockets") before germ cells are released into the excurrent duct system for 

final maturation and autonomous motility (Fawcett 1994; for schematic overviews see 

Figs. 1 and 2). 

 

 

Table 1 Molecular components of “classic” cell-cell junctions (Farquhar and 
Palade 1963; Franke 2010; see also Nelson and Fuchs 2010; Schulzke et al. 2012) 

Cell-Cell Adhesion 
Type 

Occurrence 
(Examples) 

Associated 
Cytoskeletal 
Filaments 

Transmembrane 
Proteins or 
Glycoproteins 
(Examples) 

Cytoplasmic 
Plaque Proteins 
(Examples) 

Tight Junction     

Zonula occludens Epithelial cells 
Endothelial cells 

Microfilaments
(Actin) 

Occludin, 
Tricellulin, 
Claudins 1–24 

Proteins ZO-1, 
ZO-2, ZO-3, 
Cingulin, Symplekin 

Adherens Junction     

Zonula adhaerens 
Fascia adhaerens 
Punctum adhaerens 

Epithelial cells 
Endothelial cells
Many other cell 
types 

Microfilaments
(Actin) 

Cadherins 
(e.g. E-cadherin, 
N-cadherin, 
P-cadherin, 
VE-cadherin,  
M-cadherin,  
Cadherin-11) 

Armadillo-type 
proteins: 

Plakoglobin, 
β-catenin,  
Proteins p120, 
p0071, ARVCF, 
Neurojungin 

Myofilament-
associated proteins: 

α-catenin, Striatin, 
Myozap 

Desmosome     

Macula adhaerens Epithelial cells 
Cardiomyocytes
Meningeal cells 
Dendritic 
reticulum cells 

Intermediate-
sized filaments 

(e.g. Desmin, 
Cytokeratins, 
Vimentin) 

Desmogleins 1–4, 
Desmocollins 1–3 

Plakoglobin, 
Desmoplakin 1+2, 
Plakophilins 1–3 

Gap Junction   

Nexus Diverse kinds of 
tissue-forming 
cells 

 Connexins 1–21 Proteins ZO-1, 
ZO-2, ZO-3 
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Table 2 Further kinds of cell-cell adhering junctions (discoveries after 1990) 

Cell-Cell Adhesion Type Occurrence 
Transmembrane 
Proteins or Glyco-
proteins (Examples) 

Cytoplasmic Plaque 
Proteins (Examples) 

Complexus adhaerens    

Schmelz et al. 1990, 1994; 
Schmelz and Franke 1993; 
Hämmerling et al. 20061 

Endothelial and 
virgultar cells of 
lymph node sinus 
and other 
lymphatic vascular 
endothelia  

N-cadherin, 
VE-cadherin, 
Claudin-5, 
Protein JAM-A 

α-catenin, β-catenin, 
Protein p120, 
Plakoglobin, 
Desmoplakin, 
Protein ZO-1, Afadin 

Area composita    

Borrmann et al. 1999, 2000, 
2006; Borrmann 2000; 
Franke et al. 20062 

Cardiomyocytes 
of maturing and 
adult hearts, parts 
of Purkinje fibers 

N-cadherin, 
Cadherin-11, 
Desmoglein-2, 
Desmocollin-2, 
Protein PERP3 

α-catenin, β-catenin, 
Protein p120, 
Protein p0071, 
Protein ARVCF, 
Plakoglobin, 
Desmoplakin, 
Plakophilin-2, 
Proteins ZO-1–3, 
Vinculin, Striatin, 
Protein LUMA4, 
Ankyrin 

Contactus adhaerens    

Rose et al. 1995; Bahjaoui-
Bouhaddi et al. 1997; 
Hollnagel et al. 2002 

Granular cells of 
cerebellar 
glomeruli 

M-cadherin, 
N-cadherin 

α-catenin, β-catenin, 
Plakoglobin 

Zonula limitans externa     

Paffenholz et al. 1999 Heterotypic: 
Photoreceptor, 
Müller glia cells 

N-cadherin Neurojungin, 
α-catenin, β-catenin, 
Protein p120, 
Vinculin, Symplekin, 
Protein ZO-1, 
Plakophilin-2 

Cortex adhaerens    

Straub et al. 2003 Eye lens interior N-cadherin,  
Cadherin-11 

 

α-catenin, β-catenin, 
Protein p120, 
Plakoglobin, 
Vinculin, Ezrin, 
Periaxin, Periplakin 

Colligatio permixta    

Boda-Heggemann 2005; 
Boda-Heggemann et al. 
2009 

Glia and glioma 
cells 

N-cadherin,  
Cadherin-11 
(VE-cadherin) 

α-catenin, β-catenin, 
Protein p120, 
Protein ARVCF, 
Plakophilin-2, 
Proteins ZO-1–2, 
Cinculin, Afadin, 
Vinculin 
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Continuation of Table 2 

Cell-Cell Adhesion Type Occurrence 

Transmembrane 
Proteins or Glyco-
proteins (Examples) 

Cytoplasmic Plaque 
Proteins (Examples) 

Manubrium adhaerens    

Wuchter et al. 2007; 
Rickelt et al. 2009 

Mesenchymal 
culture cells  

N-cadherin,  
Cadherin-11 
 

 

α-catenin, β-catenin, 
Protein p120, 
Protein p0071, 
Protein ARVCF, 
α-Actinin, Afadin, 
Plakoglobin, Vinculin, 
Ezrin 

Cis-E-N-cadherin 
heterodimer junctions  

   

Straub et al. 2011 Endoderm-derived 
cells, in particular 
hepatocytes, 
hepatocyte-like 
and pancreatic 
duct cells 

Cis-E-N-cadherin 

 

α-catenin, β-catenin, 
Protein p120, Protein 
p0071, Protein ZO-1,  
Plakoglobin 

Tessellate junctions     

Franke et al. 2013 Almost all stratified 
epithelia  

Occludin,  
E-cadherin, 
Claudin-1, 
Claudin-4  

β-catenin, 
Protein PERP 

1 For further references see Supplement Literature Collection No. 1  
2 For further references see Supplement Literature Collection No. 2 
3 Ihrie et al. 2005; Franke et al. 2013 
4 The molecular arrangement of protein LUMA has been described by various authors as a 
transmembrane protein TMEM43 (Dreger et al. 2001; Bengtsson and Otto 2008; Merner et al. 
2008; Christensen et al. 2011b; Liang et al. 2011; Rajkumar et al. 2012; Baskin et al. 2013; 
Haywood et al. 2013; Hodgkinson et al. 2013). However, results obtained in the laboratory of 
Prof. Dr. Werner W. Franke have led to the conclusion that this protein is most likely membrane-
associated as a component of the cytoplasmic plaque (see also, e.g., Franke et al. 2014).  

 

1.2 Molecular organization of cytoskeletal and cell-cell adherens junction 
structures of the seminiferous tubules 

Although prima facie the cell layer in the seminiferous tubules containing mature Sertoli 

cells looks like a typical epithelium, it differs from the majority of other epithelial cells with 

respect to several morphological and molecular components. These differences include in 

the absence of intermediate-sized filaments (IFs) of the cytokeratin type, generally 

considered to be a hallmark of epithelial cells, and the presence of vimentin IFs (for 

cytokeratin IFs see, e.g., Franke et al. 1978c, e, 1979a–d, 1981a; Sun et al. 1979; 

Bannasch et al. 1980, 1981; Moll et al. 1982a; Moll 1993; for reviews see Chu and Weiss 

2002; Moll et al. 2008; Franke et al. 2010; for vimentin IFs see, e.g., Franke et al. 1978c, 
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1979c; see also Spruill et al. 1983; Miettinen et al. 1985; Ramaekers et al. 1985; Paranko 

and Virtanen 1986; Mali et al. 1987; Stosiek et al. 1990; Aumüller et al. 1992; Steger and 

Wrobel 1994; Steger et al. 1996; for a report of the additional presence of neurofilaments 

in Sertoli cells of some species see Davidoff et al. 1999).  

Sertoli cells with adjacent Sertoli cells as well as with germ cells are connected by 

gap and tight junctions as well as by various types of specific adhering junctions. 

Originally, the early generation of transmission electron microscopists described certain 

kinds of adherens junction (AJ)-type cell-cell contact structures in the seminiferous tubules 

as typical desmosomes, “desmosome-related” junctions or “desmosome-like” junctions 

(e.g. Nicander 1967; Altorfer et al. 1974; for further references see Table 3). In contrast, 

authors of the laboratory of Prof. Dr. Werner W. Franke have repeatedly reported for more 

than three decades a total absence of specific desmosomal structures and desmosomal 

marker molecules in Sertoli cells of mature mammals active in spermatogenesis (e.g., 

Franke et al. 1979c, 1982b, 1983, 1989; Mueller and Franke 1983; Moll et al. 1986; 

Schmelz et al. 1986a; Theis et al. 1993; Schäfer et al. 1994; Nuber et al. 1995; Mertens et 

al. 1996; Domke 2013; confirmed, e.g., by Pelletier and Byers 1992). However, other 

authors have continued to claim the presence of desmosomes or desmosome-like 

junctions and desmosome-specific molecules in Sertoli cells of mature mammalian testes 

(Table 3). Based on this long and still ongoing debate, I decided to devote a part of my 

doctoral thesis to the final clarification of this controversy and to the analysis of the AJs in 

the tubuli seminiferi of diverse mammalian species in detail.  

In addition, in some initial studies (Domke 2013) I noticed that the cytoskeletal and 

junctional protein composition and organization of the thin encasement structure 

surrounding the seminiferous tubules, the peritubular wall, had not yet been sufficiently 

analyzed. Moreover, the nomenclature indicated that the cell type classification of these 

cells forming the peritubular wall was not clear: In numerous publications, over the last 

60 years, these cells had been called “myoid cells”, “myofibroblasts”, “contractile-type 

cells” or just “lamina propria cells” (for definition of “myofibroblasts” as modified fibroblasts 

see, e.g., Supplement Literature Collection No. 3). To clarify this, I decided to determine in 

my doctoral thesis the complete cell type-specific molecular composition and 

ultrastructural architecture of the peritubular wall layer system surrounding the 

seminiferous tubules in diverse mammalian species, using immunocytochemical and 

immunoelectron microscopical as well as biochemical methods. In view of the potential 

diagnostic importance of cytoskeletal and junctional molecules as markers in histology 

and pathology and also with respect to the worldwide interest in the development and 

conceptualization of male contraceptives based on the interference with cell-cell 

interactions in the testis, I have performed this study in a highly controlled mode.  
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Table 3 List of some references claiming the presence of desmosomes and/or 
hemidesmosomes in Sertoli cells of mammalian seminiferous tubules 

 Desmosomes1 Hemidesmosomes 

Altorfer et al. 1974* + / 

Alves et al. 2013 + / 

Bergmann et al. 1984* + / 

Chen et al. 2017 + / 

Cheng and Mruk 2002, 2011, 2012 + + 

Cheng et al. 2011, 2013 + + 

Connell 1978* + + 

Dierichs and Wrobel 1973* + / 

França et al. 2016  + / 

Goossens and van Roy 2005 + + 

Holthöfer et al. 2007 + / 

Johnson and Boekelheide 2002a,b + / 

Kopera et al. 2010 + + 

Lee and Cheng 2004 + + 

Lee et al. 2009 + + 

Li MW et al. 2009, 2011 + +,/ 

Li N et al. 2015 + / 

Lie et al. 2009a,b, 2010, 2011, 2013 + +,/,/,+,+ 

Mahoney et al. 2002  + / 

Mok et al. 2013 + + 

Morrow et al. 2010 + / 

Mruk and Cheng 2004a, b2, 2011, 2015 + +,+,/,+ 

Mruk et al. 2014, 2017; Mruk 2016 + / 

Mulholland et al. 2001 + + 

Nagano and Suzuki 1978* + / 

Nicander 1967* + + 

Osman 1978* + / 

Osman and Ploen 1978* + / 

Qian et al. 2013 + / 

Russell 1977a, b*  + / 

Russell and Peterson 1985* + / 

Schulze 1984* + / 

Su et al. 2013 + + 

Vogl et al. 1993, 2000, 2008, 2013 + /,+,/ 

von Kopylow et al. 2010 + / 

Wen et al. 2018 + / 

Whittock 2003 + / 

Wine and Chapin 1999 + / 

Wong and Cheng 2005 + + 

Wong et al. 2005 + / 

Wrobel et al. 1979* / + 

Xia et al. 2005 + / 

Yan et al. 2007 + + 

Yan and Cheng 2005 + / 
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Continuation Table 3 

For a German textbook claim of the occurrence of desmosomes see, e.g., Lüllmann-Rauch (2015) 

* References marked with an asterisk (*) are primarily based on electron microscopy; + claiming 
the presence of desmosomes or hemidesmosomes; / not mentioned  
1 Desmosomes and desmosome-like junctions 
2 See here, however, the specific footnote in Table 1 of Mruk and Cheng (2004)  

___________________________________________________________________________________ 

 

Fig. 1 Schematic overview demonstrating the seminiferous tubules and the excurrent 
duct system, including the epididymis, of the human testis. (a, b) Seminiferous tubules are 
connected with the rete testis system from which sperm and testicular fluid can pass into 
the excurrent duct system. (c) Spermatogenesis takes place in the seminiferous tubule as 
shown in a cross-section (modified from Holstein et al. 2003). 
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Fig. 2 Schematic overview of the 
human epididymis. (a) Cross-section of 
a ductus epididymidis (top) with stereo-
cilia and “basal cells” and of a ductulus 
efferens (bottom; Bargmann 1977). 
(b) Drawing of the principal and basal 
cells in human epididymis with 
decreasing epithelial height as well as 
decreasing height of stereocilia and 
increasing infoldings of the nuclear 
envelope (Weiss 1988). (c) The black 
labelling on the outer side of the duct 
system illustrates the increasing 
thickness of the additional subepithelial 
smooth muscular layer (modified from 
Baumgarten et al. 1971).  
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2 Materials  

2.1 Tissues 

Rat and mouse tissue samples were obtained from the animal laboratory facilities of the 

German Cancer Research Center (DKFZ, Heidelberg, Germany). Bovine tissues of freshly 

slaughtered animals were obtained from a regional slaughterhouse (Mannheim, 

Germany). Porcine tissue samples of freshly slaughtered boars were provided by 

Prof. Dr. Heiner Niemann, head of the Friedrich-Loeffler-Institute, Federal Research 

Institute for Animal Health (Mariensee, Germany). Human tissues, including tumor 

samples taken and prepared in compliance with the regulations of the Ethics Committees 

of the Universities of Heidelberg and Marburg, were obtained from clinical cases 

(Germany; see, e.g., Franke et al. 2006; Langbein et al. 2003; Moll et al. 2009). In 

particular the following tissues were used: testis, testicular excurrent ducts, liver, intestine, 

tongue mucosa, esophagus, heart, bladder and bovine muzzle.  

2.2 Cell culture lines  

Most cell lines used in this study had been obtained from the American Type Culture 

Collection (ATCC, Manassas, VA, USA) or from the German Collection of Microorganisms 

and Cell Cultures (DSMZ, Braunschweig, Germany). The cell culture lines and media 

used are listed in Tables 4 and 5. 

2.3 Antibodies 

2.3.1 Primary antibodies 

The monoclonal and polyclonal antibodies used for immunoblot analyses of polypeptides 

separated by gel electrophoresis as well as for immunofluorescence and immunoelectron 

microscopy are listed in Table 6. 

2.3.2 Secondary antibodies  

For indirect immunofluorescence microscopy primary antibody complexes were visualized 

with secondary antibodies conjugated with fluorochromes. These Cy3- (Dianova, 

Hamburg, Germany) or Alexa 488- (Invitrogen, Karlsruhe, Germany) conjugated 

secondary antibodies directed against mouse, rabbit, guinea pig or rat immunoglobulins 

had generally been generated in goats (see Table 7). Antibodies used were diluted 

according to the manufacturer’s recommendations.  

Immunoblot analyses were performed with horseradish peroxidase 

(HRP)-conjugated secondary antibodies (Dianova) against mouse, rabbit or guinea pig 

immunoglobulins using an enhanced chemiluminescence (ECL)-System (“Western 

blotting” Luminol Reagent, Santa Cruz Biotechnology, CA, USA). 
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For immunoelectron microscopy nanogold-conjugated secondary antibodies 

(Nanoprobes, Yaphank, NY, USA) were used. Coupled antibody structures were 

subsequently enhanced and enlarged by a silver reaction with a “HG SilverTM 

Enhancement Kit“ (Nanoprobes). 

Table 4 Cell culture media and supplements 

Media and supplements  Source reference 

Claycomb Medium  Sigma-Aldrich (Taufkirchen, Germany) 

Dulbecco’s Modified Eagle’s Medium 
(DMEM) with glutamine 

Life Technologies GmbH (Darmstadt, Germany) 

Fetal calf serum (FCS) Biochrome GmbH (Berlin, Germany) 

Ham’s F-12 liquid medium Biochrome  

L-glutamine 200 mM (100x) GIBCO, Thermo Fisher Scientific (Bonn, Germany) 

Modified Eagle’s Medium (MEM) Biochrome 

Non-essential amino acids (aa, 100x) Biochrome 

Table 5 Cell culture lines 

Cell culture 
line 

Origin Reference Main growth medium used 

B1 Bovine dermal 
fibroblasts 

Cowin et al. 1986 80 % DMEM  
+ 20 % FCS 

HL-1 Murine 
cardiomyocytes 

Claycomb et al. 1998 87 % Claycomb medium,+ 10 % 
FCS  
+ 100 units/ml penicillin/streptomycin 
+ 100 μM norepinephrin,  
+ 4 mM L-glutamine 

Caco-2 Human colon 
adenocarcinoma 
(ATCC, HTB-37) 

Fogh et al. 1977 85 % MEM  
(+ non-essential aa)  
 + 15 % FCS 

HaCaT Human 
keratinocytes  

Boukamp et al. 1988 

 

90 % DMEM  
+ 10 % FCS 

PLC Primary human 
liver carcinoma 
(ATCC CRL-8024) 

Alexander et al. 1976 90 % DMEM  
+ 10 % FCS 

SV80 SV40-transformed 
human WI38 
fibroblasts (ATCC 
CCL-75.1) 

Girardi et al. 1966 90 % DMEM  
+ 10 % FCS 

3T3 Murine endothelial 
cell line (ATCC 
CCL-92) 

Todaro and Green 
1963 

90 % DMEM  
+ 10 % FCS 

  



Materials and Methods 

  

11 
 

Table 6 Primary antibodies 

Antigen* Species, 
Clonality 

Source References  

Cadherins 

E-cadherin  
(cadherin-1, CDH1) 

mcl1, m3  

(cl. 36) 
BD Transduction Laboratories 
(Lexington, KY, USA), 610182 

Vestweber and Kemler 
1984, 1985 

 mcl, rb4  
(cl. EP700Y) 

Abcam (Cambridge, UK), 
ab40772 

 

N-cadherin  
(cadherin-2, CDH2) 

mcl, m 
(cl. 32) 

BD Transduction Laboratories, 
610921 

Takeichi 1990  

 pcl2, rb QED Biosciences (San Diego, 
CA, USA), 42031 

Bhowmick et al. 2001; 
Nürnberger et al. 2002 

P-cadherin  
(cadherin-3, CDH3) 

mcl, rat  
(cl. PCD-1) 

Thermo Fisher Scientific 
(Waltham, MA, USA), 13-2000Z 

Nose and Takeichi 
1986 

VE-cadherin 
(cadherin-5, CDH5) 

pcl, rb Cayman Chemical Company  
(Ann Arbor, MI, USA), 160840 

Lampugnani et al. 1995; 
Dejana et al. 2000 

 mcl, m  
(cl. BV9/1B5) 

Kindly provided by Elisabetta 
Dejana (University of Milan, 
Milan, Italy)  

Hämmerling et al. 2006 

K-cadherin  
(cadherin-6, CDH6)  

mcl, m (cl. 
2B6) 

Progen Biotechnik 
(Heidelberg, Germany), 16111 

Shimazui et al. 1998 

OB-cadherin 
(cadherin-11, CDH11) 

mcl, m 
(cl. 5B2H5) 

Thermo Fisher Scientific, 32-
1700 

Okazaki et al. 1994 

 mcl, m  
(cl. 16A) 

Progen Biotechnik, 16113 Tomita et al. 2000 

 pcl, rb Thermo Fisher Scientific,  
71-7600 

 

M-cadherin  
(cadherin-15, CDH15) 

pcl, rb  Abcam, ab129078 Donalies et al. 1991; 
Hollnagel et al. 2002 

Desmoglein-1 (Dsg-1)6 mcl, m  
(cl. 27B2) 

Thermo Fisher Scientific,  
32-6000 

Kurzen et al. 1998 

 mcl, m  
(cl. P23) 

Progen Biotechnik, 651110 Kurzen et al. 1998 

Desmoglein-1+26 mcl, m  
(cl. DG3.10) 

Progen Biotechnik, 61002 Schmelz et al. 1986a, b 

Desmoglein-2 (Dsg-2)6 pcl, rb  
(cl. rb 5) 

Progen Biotechnik, 610121 Schäfer et al. 1996; 
Peitsch et al. 2014 

 mcl, m  
(cl. 6D8) 

Thermo Fisher Scientific,  
32-6100 

 

 pcl, rb Atlas Antibodies (Bromma, 
Sweden), A57749 

von Kopylow et al. 2010 

 pcl, goat R&D Systems (Minneapolis, 
MN, USA), AF947 

 

 mcl, m 
(cl. 10G11) 

Progen Biotechnik, 61059 Schäfer et al. 1994, 
1996 

 mcl, m 
(cl.141409) 

R&D Systems, MAB947  
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Continuation of Table 6 

Antigen Species, 
Clonality 

Source References  

Desmoglein-3 (Dsg-3)6 mcl, m 
(cl. 5G11) 

Thermo Fisher Scientific,  
32-6300 

Schäfer et al. 1996;  
Kurzen et al. 1998 

Desmocollin-1 (Dsc-1)6 mcl, m 
(cl. U100) 

Progen Biotechnik, 65192 Nuber et al. 1995, 1996
 

Desmocollin-2 (Dsc-2)6 pcl, rb  
(cl. rb 36) 

Progen Biotechnik, 610120 Nuber et al. 1995 

 pcl, gp5  

(cl. R1A/B) 
Laboratory of Prof. Dr. Werner 
W. Franke 

 

 pcl, gp Progen Biotechnik, GP542 Nuber et al. 1995 

Desmocollin-3 (Dsc-3)6 mcl, m  Progen Biotechnik, 65193 Nuber et al. 1996 

Transmembrane tight junction proteins 

Occludin mcl, m (cl. 
OC-3F10) 

Thermo Fisher Scientific,  
33-1500 

Furuse et al. 1993 

 mcl, rat  
(cl. MOC37) 

Kindly provided by Profs. Drs. 
Shoichiro and Sachiko Tsukita 
(Kyoto/Osaka, Japan ) 

Saitou et al. 1997, 2000 

 mcl, m, Alexa 
488 

Thermo Fisher Scientific, 
33-1500 

Moroi et al. 1998 

 pcl, rb Abcam, ab31721 

Tricellulin-α  pcl, rat Kindly provided by Profs. Drs. 
Shoichiro and Sachiko Tsukita 

Ikenouchi et al. 2005 

 

Claudin-1 mcl, m (cl. 
2H10D10) 

Thermo Fisher Scientific,  
37-4900 

Furuse et al. 1998 

 pcl, rb Thermo Fisher Scientific,  
51-9000 

Claudin-2 mcl, m 
(cl.12H12) 

Thermo Fisher Scientific,  
32-5600 

Furuse et al. 1998 

Claudin-3 pcl, rb 
(cl. Z23.JM) 

Thermo Fisher Scientific,  
34-1700 

Tsukita and Furuse 
1998 

 pcl, rb Abcam, ab15102 

Claudin-4 pcl, rb Thermo Fisher Scientific,  
36-4800 

 mcl, m  
(cl. 3E2C1) 

Thermo Fisher Scientific,  
32-9400 

Claudin-5 mcl, m  
(cl. 4C3C2) 

Thermo Fisher Scientific,  
35-2500 

Morita et al. 1999b 

 mcl, m  
(cl. 4C3C2 

Thermo Fisher Scientific,  
18-7364 

 

Claudin-6  pcl, rb Abcam, ab75055 

Claudin-11 pcl, rb Thermo Fisher Scientific,  
36-4500 

Bronstein et al. 1996  

 pcl, rb Abcam, ab53041 Fink et al. 2009 
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Continuation of Table 6 

Antigen Species, 
Clonality 

Source References  

Other transmembrane proteins and glycoproteins 

Protein PERP6 mcl, m (cl. 
26.3.30,26.2.
22,8.2.9) 

Laboratory of Prof. Dr. Werner 
W. Franke 

Ihrie et al. 2005;  
Franke et al. 2013 

 pcl, gp  
(cl. 4A) 

Laboratory of Prof. Dr. Werner 
W. Franke 

Franke et al. 2013 

 pcl, rb Abcam, ab5986   

HD 230/233 mcl, m  
(cl. HD233) 

Kindly provided by Prof. Dr. 
Katsushi Owaribe (University 
of Nagoya, Japan) 

Owaribe et al. 1990, 
1991 

Jam-A (JAM-1) pcl, rb 
(cl. CD321) 

Thermo Fisher Scientific,  
36-1700 

Xia et al. 2005 

 mcl, m  
(cl.43/JAM-1) 

BD Transduction Laboratories, 
612120 

 

Jam-B (Jam-2) mcl, m 
(cl. 1G4) 

Biomol (Hamburg, Germany), 
WA-AT2578a 

Ebnet et al. 2004 

Jam-C (JAM-3) pcl, rb  
 

Thermo Fisher Scientific,  
40-8900 

 

 pcl, rb Bethyl Laboratories 
(Montgomery, TX, USA),  
A303-761A 

 

EpCAM  mcl, m  
(cl. HEA 125) 

Progen Biotechnik, 61004 Momburg et al. 1987 

 mcl, m  
(cl. VU 1D9) 

Progen Biotechnik, 16114 Litvinov et al. 1994a, b, 
1997 

 pcl, rb GeneTex (Irvine, CA, USA), 
GTX54034 

 

Nectin-1 mcl, m 
(cl. CK8) 

Thermo Fisher Scientific,  
37-5900 

Takai et al. 2003 

Nectin-2 pcl, rb  
(cl. H-108) 

Santa Cruz Biotechnology,  
sc-28638 

Irie et al. 2004 

 pcl, rb  

EPR6717 

Abcam, ab135246  

α6-Integrin  pcl, rat  
(cl. GoH3) 

Progen Biotechnik, 10709 Sonnenberg et al. 1991; 
Bosman et al. 1993 

 pcl, rb Abcam, ab97760  

 mcl, rb (cl. 
EPR18124) 

Abcam, ab181551  

ß1-Integrin  mcl, rat  
(cl. CD29) 

BD Transduction Laboratories, 
550531 

Palombi et al. 1992b 

 mcl, m  
(cl. TS2/16) 

Thermo Fisher Scientific, 
MA2910 

 

 mcl, m  
(cl. 18/CD29) 

BD Transduction Laboratories, 
610468 
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Continuation of Table 6 

 

  

Antigen Species, 
Clonality 

Source References  

β4-Integrin  mcl, rat  
(cl. 346-11A) 

Abcam, ab25254 Sonnenberg et al. 1991 

 mcl, rb (cl. 
EPR8559) 

Abcam, ab133682  

 pcl, rb Proteintech (Rosemont, IL, 
USA), 21738-1-AP 

 

Tetraspanin CD151 mcl, m  
(cl. 11G5a) 

Acris Antibodies (Herford, 
Germany), SM1209P 

Sterk et al. 2000 

 pcl, rb Abcam, ab185684  

Connexin 43  pcl, rb Thermo Fisher Scientific,  
71-0700 

Goodenough et al. 1996 

Protein LUMA 

Protein LUMA 
(TMEM43)6 

pcl, gp  
(cl. 2A) 

Laboratory of Prof. Dr. Werner 
W. Franke 

Franke et al. 2014 

 pcl, gp  
(cl. 4B) 

Laboratory of Prof. Dr. Werner 
W. Franke 

Franke et al. 2014 

 mcl, m  
(cl. E1) 

Santa Cruz Biotechnology,  
sc-365298 

 

 pcl, rb  
(cl. N1C2) 

GeneTex (Irvine, CA, USA), 
GTX110229 

 

 mcl, m  
(cl. F3) 

Santa Cruz, sc-271887  

Armadillo repeat proteins 

β-catenin mcl, m  
(cl. 14) 

BD Transduction Laboratories, 
610154 

Ozawa et al. 1990 

 mcl, rb  
(cl. E247) 

Abcam, ab32572 

 pcl, rb Sigma-Aldrich, C2206 McCrea et al. 1991 

Protein p120 mcl, m (cl. 
98/pp120) 

BD Transduction Laboratories, 
610134 

Reynolds et al. 1994, 
1996a, b  

 pcl, rb Sigma-Aldrich, P1870  

Protein p00716 mcl, m  
(cl. SEPP 
7.7.9) 

Progen Biotechnik, 651165 Hofmann et al. 2008, 
2009  

 

 pcl, gp  
(cl. GP71) 

Progen Biotechnik, GP71  

ARVCF6 mcl, m 
(hARVCF) 

Prof. Dr. Ilse Hofmann (DKFZ, 
Heidelberg, Germany) 

Sirotkin et al. 1997; 
Borrmann et al. 2000 
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Continuation of Table 6 

 

 

 

Antigen Species, 
Clonality 

Source References  

Plakoglobin6  mcl, m (cl. 
PG 5.1.7.2) 

Progen Biotechnik, 65105 Cowin et al. 1986 

 mcl, m  
(cl. PG 11E4) 

Kindly provided by Prof. Dr. 
Margaret J. Wheelock 
(University of Nebraska, 
Omaha, NE, USA) 

 

 mcl, m  
(cl. 15) 

BD Transduction Laboratories, 
610253 

 

Plakophilin-16 mcl, m  
(cl. 5C2) 

Progen Biotechnik, 65160 Heid et al. 1994  

 mcl, m  
(cl. 2D6) 

Progen Biotechnik, 65161 Heid et al. 1994 

Plakophilin-26 mcl, m  
(cl. 2-518) 

Progen Biotechnik, 651167 Rickelt et al. 2010  

 mcl, m  
(cl. MIX-CM 
-62,-86,-150) 

Progen Biotechnik, 651101 Mertens et al.1996  

 pcl, rb Acris Antibodies, APO1493PU-N  

 pcl, gp  
(cl. SR2A) 

Laboratory of Prof. Dr. Werner 
W. Franke 

Rickelt et al. 2010 

 pcl, gp  
(cl. GP-PP2) 

Progen Biotechnik, GP-PP2 Rickelt et al. 2010  

Plakophilin-36 mcl, m  
(cl. Paul 
270.6.2) 

Progen Biotechnik, 651113 Schmidt et al. 1999  

 mcl, m (cl. 
Paul 310.9.1) 

Progen Biotechnik, 651114 Schmidt et al. 1999 

Other plaque proteins 

α-E-catenin (CTNNA1) pcl, rb Sigma-Aldrich, C8114 Herrenknecht et al.1991 

 mcl, m Thermo Fisher Scientific,  
13-9700 

Troyanovsky et al. 2011 

 pcl, rb Cell Signalling (Danvers, MA, 
USA), 3236 

Kobielak and Fuchs 
2004 

α-N-catenin (CTNNA2) pcl, rb Sigma-Aldrich, C8239 Hirano et al. 1992 

α-T-catenin (CTNNA3) mcl, rat  
(cl.1159_12A
4S4) 

Kindly provided by Prof. Dr. 
Frans van Roy (Flanders 
Interuniversity Institute of 
Biotechnology, University of 
Gent, Gent, Belgium) 

Janssens et al. 2001, 
2003; Goossens et al. 
2007a, b 

 pcl, rb  
(cl. 952) 

Kindly provided by Prof. Dr. 
Frans van Roy 

Goossens et al. 2007a 
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Continuation of Table 6 

 

Antigen Species, 
Clonality 

Source References  

α-T-catenin (CTNNA3) mcl, m (cl. 
892_24D2S) 

Kindly provided by Prof. Dr. 
Frans van Roy  

Janssens et al. 2001 

 pcl, rb (cl. 
Ag5008) 

Proteintech, 13974-1-AP  

 mcl, m (cl. 
892_24D2S) 

Abcam, ab2499 Janssens et al. 2001 

 mcl, m (cl. 
892_24D2S) 

Thermo Fisher Scientific,  
MA1-06311 

Janssens et al. 2001 

 mcl, m  
(cl. B-6) 

Santa Cruz Biotechnology,  
sc-398138 

 

 mcl, m (cl. 
892_24D2S) 

Santa Cruz Biotechnology,  
sc-59943 

Janssens et al. 2001 

 pcl, rb Abcam, ab131250  

 pcl, rb Novus Biologicals (Wiesbaden, 
Germany), NBP1-82728 

 

Desmoplakin 1+26 mcl, m  
(cl. Mix-2.15, 
-2.17, -2.20) 

Progen Biotechnik, 65146 Franke et al. 1982a; 
Cowin et al. 1985 

Desmoplakin 16 pcl, gp 
(cl. Gp495) 

Progen Biotechnik, DP-1 Köser 1999  

Vinculin/ Metavinculin mcl, m  
(cl. Vin-11-5) 

Sigma-Aldrich, V4505 Geiger 1979, 1980  

 pcl, rb Sigma-Aldrich, V4139  

l/s-Afadin pcl, rb Sigma-Aldrich, A0224 Mandai et al. 1997  

l-Afadin pcl, rb Sigma-Aldrich, A0349 Mandai et al. 1997 

ZO-1 mcl, m (cl. 
ZO1-1A12) 

Thermo Fisher Scientific,  
33-9100 

Stevenson et al. 1986; 
Anderson et al. 1989  

ZO-2  pcl, rb Thermo Fisher Scientific,  
38-9100 

Kirschner et al. 2011 

ZO-3 mcl, m Chemicon (Hofheim; 
Germany), MAB3260 

Haskins et al. 1998;  
Itoh et al. 1999 

Myozap6 mcl, m  
(cl. 517.67) 

Progen Biotechnik, 651169 Pieperhoff et al. 2012  

 pcl, gp  

(cl. 2A) 
Laboratory of Prof. Dr. Werner 
W. Franke 

Rickelt et al. 2011a 

Plectin mcl, m (cl.31) BD Transduction Lab, 611348 Wiche et al. 1983 

 mcl, m  
(cl. 7A8) 

Novus Biologicals, 
NB120-11220 

 

 pcl, gp  Progen Biotechnik, GP21 Liu et al. 1996  

 plc, gp  Progen Biotechnik, GP20 Liu et al. 1996 

 pcl, rb Abcam, ab83497  
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Continuation of Table 6 

Antigen Species, 
Clonality 

Source References  

Cingulin mcl, m Progen Biotechnik, 651122 Citi et al. 1989 

Striatin6 mcl, m BD Transduction Laboratories, 
610838 

Castets et al. 1996; 
Franke et al. 2015 

 pcl, gp 

(cl. 301 B) 

Laboratory of Prof. Dr. Werner 
W. Franke 

Franke et al. 2015 

 plc, gp  
(cl. hNT B) 

Laboratory of Prof. Dr. Werner 
W. Franke 

Franke et al. 2015 

 pcl, rb Millipore, AB5779 Castets et al. 1996 

 pcl, rb Sigma-Aldrich, S0696  

Microfilament and microfilament-associated proteins 

Actin  mcl, m  
(cl. 2G2) 

Progen Biotechnik, 651132 Gonsior et al. 1999  

Smooth muscle  
α-actin (α-SMA) 

mcl, m  
(cl. ASM-1) 

Progen Biotechnik, 61001 Skalli et al. 1986  

 Pcl, rb Abcam, ab5694  

Cardiac α-actin6 mcl, m (cl. 
Ac1-20.4.2) 

Progen Biotechnik, 61075 Franke et al. 1996  

Actin α-skeletal/ 
cardiac 

mcl, m  
(cl. 22D3) 

Novus Biologicals, NBP1-
97725 

Gunning et al. 1983 

α-Actinin mcl, m  
(cl. BM-75.2) 

Sigma-Aldrich, A5044 Abd-el-Basset et al. 1991 

 pcl, rb Sigma-Aldrich, A2543  

 mcl, m  
(cl. EA-53) 

Sigma-Aldrich, A7811 Lazarides and Burridge, 
1975  

Myosin cardiac  
(heavy chain) 

mcl, m  
(cl. BA-G5) 

Abcam, ab50967 Krenz et al. 2007 

Myosin 
(skeletal+smooth) 

pcl, rb Sigma-Aldrich, M7648  

Myosin (smooth 
muscle; heavy chain) 

mcl, m Sigma-Aldrich, M7786 Babij et al. 1991 

Myosin (smooth 
muscle; light chain 2) 

pcl, rb Cell Signalling, 3672 Kumar et al. 1989 

Myom 2 (Myomesin) pcl, rb Acris Antibodies,  
AP01485PU-N 

 

Smoothelin  mcl, m  
(cl. R4A) 

Millipore, MAB3242 van der Loop et al. 1996 

 pcl, rb Abcam, ab204305  

Tropomyosin  mcl, m  
(cl. TM311) 

Sigma-Aldrich, T2780 Gimona 1997;  
Boyd et al. 1995 

 pcl, rb Sigma-Aldrich, T3651  

Filamin A (c-term) mcl, rb  Abgent, AJ1299a Wang et al. 1975 
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Continuation of Table 6 

 

Antigen Species, 
Clonality 

Source References  

Intermediate-sized filament proteins 

Glia filament protein6 
(GFAP) 

mcl, m  
(cl. GF12.24) 

Progen Biotechnik, 61011 Gould et al. 1990  

 pcl, rb Millipore, ab5804 Uyeda et al. 1972 

Vimentin6 mcl, m  
(cl. 3B4) 

Progen Biotechnik, 65113 Franke et al. 1978c 

Heid et al. 1988  

 pcl, gp  
(cl. Gp53) 

Progen Biotechnik, GP53 Herrmann et al. 1996 

Desmin6 mcl, m  
(cl. D9) 

Progen Biotechnik, 10519 van Muijen et al. 1987  

 mcl, m  
(cl. DE-R-11) 

Dako, Aligent (Santa Clara, 
CS, USA), M0724 

 

 pcl, rb Progen Biotechnik, 10570 Garcia-Martinez et al. 
1986 

Cytokeratin 46 mcl, m  
(cl. 6B10) 

Progen Biotechnik, 10525 van Muijen et al. 1986 

Cytokeratin 76 mcl, m  
(cl. Ks7.18) 

Progen Biotechnik, 65025 Bartek et al. 1991 

Cytokeratin 86 mcl, m  
(cl. 17.2) 

Progen Biotechnik, 65130 Magin et al. 1990  

 mcl, m  
(cl. M20) 

Progen Biotechnik, 10526 Magin et al. 1990 

 mcl, m  
(cl. Ks8.1) 

Laboratory of Prof. Dr. Werner 
W. Franke 

 

 mcl, m  
(cl. Ks8.7) 

Progen Biotechnik, 65138 Moll et al. 1982a 

Cytokeratin 96 mcl, m,  
(cl.Ks9.70+ 
Ks9.216) 

Progen Biotechnik, 651104 Langbein et al. 1994 

 pcl, gp (cl. 
GPHK9-TY1) 

Progen Biotechnik, GP-CK9 Langbein et al. 1994 

Cytokeratin 156 pcl, gp  
(cl. 15.2) 

Progen Biotechnik, GP-K15 Leube et al. 1988 

 pcl, gp 
(cl. 15.1) 

Progen Biotechnik, GP-CK15 Jih et al. 1999 

Cytokeratin 186 mcl, m (cl. 
174.14.11) 

Laboratory of Prof. Dr. Werner 
W. Franke 

 

 mcl, m (cl. 
18.04/214) 

Progen Biotechnik, 61028 Bartek et al. 1991  

 mcl, m  
(cl. RGE 53) 

Progen Biotechnik, 10500 Ramaekers et al. 1983 

 mcl, rb  
(cl. E431-1) 

Abcam, ab32118  
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Continuation of Table 6 

Ankyrin G  mcl, m  
(cl. 4G3F8) 

Thermo Fisher Scientific,  
33-8800 

Bennett 1992 

Eplin (Lima-1)  pcl, rb Sigma-Aldrich, HPA023871  

Talin mcl, m  
(cl. TA205) 

Sigma-Aldrich, SAB4200041 Otey et al. 1990  

Troponin T  mcl, m  
(cl. JLT-12) 

Sigma-Aldrich, T6277 Katus et al. 1991 

Moesin mcl, m 
(cl. 38) 

BD Transduction Laboratories, 
610401 

Furthmayr et al. 1992 

Laminin pcl, rb Progen Biotechnik, 10765 Christensen et al. 1992 

Laminin α-5 mcl, m  
(cl. 4B12) 

Millipore, MABT39  

Caldesmon mcl, m  
(cl. E89) 

Abcam, ab32330 Frid et al. 1992 

Calponin mcl, m  
(cl. hCP) 

Sigma-Aldrich, C2687 Gimona et al. 1990 

 

 

Antigen Species, 
Clonality 

Source References  

Cytokeratin 8/186  pcl, gp Progen Biotechnik, GP11 Bader et al. 1988 

Cytokeratin 196 pcl, gp 
(cl. GP68) 

Progen Biotechnik, GP-CK19 Bader et al. 1988 

 mcl,m 
(cl. KS19.2) 

Progen Biotechnik, 65129 Karsten et al. 1985 

Cytokeratin 206  
(c-term) 

pcl, gp  
(cl. K20.2) 

Progen Biotechnik, GP-K20 Moll et al. 1992 

 mcl, m (cl. 
IT-Ks20.10) 

Progen Biotechnik, 65154 

 

Moll et al. 1982a, b 

Pan-Cytokeratin6 mcl, m (cl. 
C22, 5+8) 

Progen Biotechnik, 65131 Bartek et al. 1991  

 pcl, rb Progen Biotechnik, 10550 Ramaekers et al. 1985 

Extracellular matrix proteins 

Elastin  mcl, m  
(cl. BA-4) 

Sigma-Aldrich, E4013 Wrenn et al. 1986 

Collagen IV pcl, rb Progen Biotechnik, 10760 Khoshnoodi et al. 2008 

Collagen VI  pcl, rb  
(cl. COL6A1) 

Acris Antibodies, R1043  

Pro-Collagen I mcl, m (cl. 
PCID G10) 

Millipore, MAB1913 McDonald et al. 1986 

Fibronectin  mcl, m Dianova Singer et al. 1984 

 mcl, m Sigma-Aldrich   

Other proteins or glycoproteins 
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Continuation of Table 6 

Antigen Species, 
Clonality 

Source References  

Caveolin-1 mcl, rb  
(cl. D46G3)  

Cell Signaling, 3267 Okamoto et al. 1998 

Dystrophin pcl, rb Abcam, ab15277 Ellis et al. 1990 

SM22α pcl, rb Abcam, ab155272 Lees-Miller et al. 1987 

 pcl, rb Abcam, ab14106  

Drebrin6 pcl, gp  Progen Biotechnik, GP254 Peitsch et al. 2001, 
2003, 2005 

Synemin pcl, rb Sigma-Aldrich, S9075 Granger and Lazarides 
1980 

Paxillin pcl, rb Abcam, ab32084 Veith et al. 2012 

Sperm cell proteins  

Calicin6  mcl, m (Susi 
46.1.5/5.1.05)

Laboratory of Prof. Dr. Werner 
W. Franke 

Longo et al. 1987; 
Paranko et al. 1995;  
von Bülow et al. 1995 

Cylicin I6 mcl, m (cl. X 
144.3.2,5/09) 

Laboratory of Prof. Dr. Werner 
W. Franke 

Hess et al. 1993 

 pcl, gp Laboratory of Prof. Dr. Werner 
W. Franke 

 

Cylicin II6  pcl, gp Laboratory of Prof. Dr. Werner 
W. Franke 

Hess et al. 1995 

Arp-T16 pcl, gp Laboratory of Prof. Dr. Werner 
W. Franke 

Heid et al. 2002 

Arp-T26 pcl, gp Laboratory of Prof. Dr. Werner 
W. Franke 

Heid et al. 2002 

Actin-binding protein 
CP β36 

pcl, gp Laboratory of Prof. Dr. Werner 
W. Franke 

von Bülow et al. 1997 

Endothelial marker proteins 

LYVE-1 plc, rb Acris Antibodies, DP3500PS Banerji et al. 1999 

CD31 
(PE-CAM-1) 

mcl, m  
(cl. MEM-05) 

Thermo Fisher Scientific,  
37-0700 

Simmons et al. 1990 

Podoplanin mcl, m Dako, Aligent, M3619 Cîmpean et al. 2007 

 mcl, m  
(cl. 18H5) 

Acris Antibodies, DM3500P  

Factor VIII (von 
Willebrand factor) 

mcl, m Dako, Aligent Hämmerling et al. 2006; 
Moll et al. 2009 

VE-cadherin (see Cadherins)  

1 mcl  monoclonal antibodies, 2 pcl  polyclonal antibodies, 3 m  mouse, 4 rb  rabbit, 5 gp  guinea pig, 
6 Antibodies have been originally generated in the laboratory of Prof. Dr. Werner W. Franke 
* Antibody reactions not mentioned in the Results section are not of controlled positive significance 
to the themes of this thesis. In addition, antibodies of a human pathology diagnostic list have been 
used for special purposes (Moll 1993).  
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Table 7 Secondary antibodies  

Name of antibody Species Source 

Alexa 488 m Invitrogen, A11029 

Alexa 488 rb Invitrogen, A11008 

Alexa 488 gp Invitrogen, A11073 

Cy3 m Dianova, 115-165-068 

Cy3 rb Dianova, 111-165-045 

Cy3 gp Dianova, 111-165-003 

Cy3 rat Dianova, 112-165-044 

2.3.3 Other fluorescent markers 

For specific staining of F-actin, Alexa Fluor®488- or Alexa Fluor®594-coupled phalloidin 

(Thermo Fisher Scientific) was used. In addition, visualization of the nuclear chromatin was 

obtained using 4', 6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, München, Germany). 

2.4 Buffers, media and solutions 

All chemicals used in this study were purchased from Carl Roth (Karlsruhe, Germany), 

Merck (Darmstadt, Germany), Roche Diagnostics (Mannheim, Germany), SERVA 

(Heidelberg, Germany), Sigma-Aldrich or Thermo Fisher Scientific if not otherwise indicated.  

Table 8 Buffers or other solutions used for immunofluorescence microscopy 

Buffer or solution Composition and concentration 

Triton-X-100 solution 0.1 % (1 g)  Triton-X-100 
ad 1 L PBS, pH 7.4 

Formaldehyde solution (2 %) 2 % (20 g)  Paraformaldehyde 
ad 1 L PBS, pH 7.4 

Ammoniumchlorid buffer 50 mM (2.67 g)    NH4Cl 
ad 1 L PBS, pH 7.4 

Saponin solution 0.1 % (1 g)  Saponin 
ad 1 L PBS, pH 7.4 

Citrate buffer Solution A: 
21.01 g   Citric acid  
ad 1 L H2O 

Solution B: 
29.41 g   Sodium citrate 
ad 1 L H2Odest 
9 mL A + 41 mL B ad 500 mL H2Odest, pH 6 

Tris-HCl buffer Stock solution: 

20.18 g   Tris-HCl  
ad 1L H2Odest, pH 7,4  

Working solution: 

150 mL   Stock solution 
100 mL   H2Odest  
pH 10.2 (or dependent on antibody) 
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Table 9 Buffers or other solutions used for biochemical experiments 

Buffer or solution  Composition and concentration 

1x PBS 140 mM (80 g)  NaCl  
2.7 mM (2 g)   KCl  
1.7 mM (2 g)    KH2PO4 
8.1 mM (16 g)  Na2HPO4 xH2O 
ad 1 L H2Odest, pH 7.4  

PBS-T 140 mM (80 g)   NaCl  
2.7 mM (2 g)   KCl  
1.7 mM (2 g)    KH2PO4  
8.1 mM (16 g)  Na2HPO4 xH2O 
0.1 % (1 g)   Tween®20  
ad 1 L H2Odest, pH 7.4  

Electrophoresis running buffer 92 mM (2.8 g)  Tris-HCl  
760 mM (14.3 g)  Glycine 
0.2 % (2.0 g)    SDS  
ad 1 L H2Odest, pH 8.8  

2x SDS buffer (“Laemmli buffer”) 250 mM (30.29 g) Tris-HCl 
20 % (200 mL)  Glycerol 
10 % (100 g)  SDS 
0.2 % (2 g)  Bromphenol blue 
40 mM (6.17 g)   DTT  
ad 1 L H2Odest, pH 6.8  

Transfer buffer 1 300 mM (36.3 g) Tris-HCl  
20 % (200 mL)  Isopropanol 
ad 1 L H2Odest, pH 10.4  

Transfer buffer 2 25 mM (3.025 g)  Tris-HCl 
20 % (200 mL)   Isopropanol  
ad 1 L H2Odest, pH 10.4  

Transfer buffer 3 40 mM (5.24 g)  Norleucin 
25 mM (3.025 g) Tris-HCl  
ad 1 L H2Odest, pH 9.4  

20 % Borate transfer buffer 0.4 M (24.7 g)  Boracic acid 
20 mM (7.4 g)  EDTA 
ad 1 L H2Odest, pH 8.8 (with NaOH)  

Coomassie staining solution 40 % (400 mL)  Isopropanol 
7 % (70 mL)  Acetic acid 
0.2 % (2 g)   Coomassie brilliant blue R-250 
ad 1 L H2Odest 

PVDF membrane destaining 
solution 

40 % (400 mL)  Isopropanol 
7 % (70 mL)  Acetic acid 
ad 1 L H2Odest 

Membrane stripping buffer 6.25 mM (6.25 mL)  Tris-HCl (1 M) 
20 mM (3.05 g)    DTT  
2 % (20 g)  SDS  
ad 1 L H2Odest, pH 6.7  

Blocking buffer 5 % (50 g)  Milk powder  
ad 1 L PBS-T, pH 7.4 
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Table 10 Electron microscopy 

Buffer, solution or diverse mixtures Composition and concentration 

Sodium cacodylate buffer 50 mM (10.7 g)  Cacodylic acid 
ad 1 L H2Oaqua ad. inj., pH 7.2 

Glutardialdehyde (2.5 %) 2.5 mL   Glutardialdehyde (25 %) 
1.25 mL (50 mM)  KCl (1 M) 
62.5 µL (2.5 mM)  MgCl2 (1 M) 
2.5 mL   Sodium cacodylate buffer (0,5 M) 
ad 25 mL H2Oaqua ad. inj., pH 7.2  

Uranylacetate solution (0.5 %) 125 mg (0.5 %)  Uranylacetate  
25 mL H2Oaqua ad. inj. 

Osmium tetroxide (4 %) 1 g   OsO4  
ad 25 mL H2Oaqua ad. inj. 

HEPES buffer 50 mM (5.95 g)   HEPES 
ad 50 mL H2Oaqua ad. inj., pH 5.8 

Lead citrate solution 2.02 mM (0.67 g)  Lead(II) nitrate 
2.99 mM (0.88 g)  Sodium citrate 
5 mL    NaOH (1M) 
ad 25 mL H2Oaqua ad. inj., pH 12 

Sucrose solution 13.6g (200 mM)  Sucrose 
200 mL   HEPES (50 mM), pH 5.8  

Sodium thiosulfate pentahydrate 
solution 

250 mM (12.4 g)  Sodium thiosulfate pentahydrate 
200 mL   HEPES (50 mM), pH 5.8  

Epon mixture  
[Both components (A and B) were 
mixed 3:2 (w/v) before use. Epon mix 
(10 mL) was supplemented with 
2,4,6-Tris(dimethyl-aminomethyl)-
phenol (DMP30, 0.2 mL) as catalyst.] 

Solution A:    

100.2 g  2-Dodecenyl succinic anhydride (DDSA) 
74.4 g   Epon 812/Glycidether 

Solution B:  

54.25 g  Methyl nadic anhydride (MNA)  
60.0 g   Epon 812/Glycidether 

 

2.5 Technical equipment 

The equipment used in this study is listed in Table 11. 
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Table 11 Technical equipment 

Instruments  Name Manufacturer 

Blotting chamber  cti GmbH (Idstein, Germany) 

Centrifuge 5415R Eppendorf Vertrieb Deutschland GmbH 
(Wesseling-Berzdorf, Germany) 

Confocal laser scanning 
microscope 

LSM 510, 700, 800, 
880 

Carl Zeiss Microscopy GmbH 
(Oberkochen, Germany) 

Cryotome Leica CM 3050 S Leica Camera AG (Wetzlar, Germany) 

1K Slow scan CCD Camera  Typ 7888 TRS (Moorenweis, Germany) 

Developer Optimum Typ TR MS Laborgeräte (Heidelberg, Germany) 

Electron microscope EM 10, EM 900 Carl Zeiss Microscopy GmbH 

Electrophoresis power supply Phero-stab. 500 Biotec-Fischer (Reiskirchen, Germany) 

Fluorescence microscope Axiophot Carl Zeiss Microscopy GmbH 

Fluorescence microscope 
camera 

Axio Cam 
HRc/MRc 

Carl Zeiss Microscopy GmbH 

Gel electrophoresis chamber X Cell Sure Lock Novex (San Diego, CA, USA) 

Heating cabinet  Memmert (Schwabach, Germany) 

Heating block Thermomixer 5436 Eppendorf Vertrieb Deutschland GmbH 
(Wesseling-Berzdorf, Germany) 

Incubators Function Line Heraeus Holding GmbH (Hanau, Germany) 

Magnetic stirrer Ika Combimag 
RCO  

IKA®-Werke GmbH & CO. KG (Staufen, 
Germany) 

Microtome HM 355 S Microm International GmbH (Walldorf, 
Germany) 

Microtome blades Leica 819 Leica Camera AG 

Microwave instrument Medite RHS Rapid 
Microwave 
Histoprocessor 

Milestone S.r.l. (Sorisole, Italy) 

pH meter 765 Calimatic Knick Elektronische Meßgeräte GmbH & 
Co (Egelsbach, Germany) 

Scales PB 3002-S, PB 
153-S  

Mettler-Toledo (Giessen, Germany) 

Scanner Epson Perfection 
4870 

Epson America, Inc. (Long Beach, CA, 
USA) 

Shaker Silent Rocker cti GmbH 

Sterile laminar flow bench  SterilGardHood 
Class II Type A/B3  

The Baker Company. Inc. (Sanford, ME, 
USA) 

Ultramicrotome Reichert Ultracut Leica Camera AG 

Ultramicrotome diamond 
knives, 45° 

DiATOME ultra Diatome AG (Biel, Switzerland) 

Vortex REAX 2000 Heidolph Instruments GmbH & Co. 
KG (Schwabach, Germany) 

Water bath W6 Labortechnik Medingen (Arnsdorf, 
Germany) 
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3 Methods 

3.1 Preparations of tissue samples  

Tissues of organs were removed from the animals and processed immediately to obtain 

optimal preservation: Organs were cut into small pieces (ca. 0.5 cm) in PBS and 

subsequently processed by rapid freezing for cryostat analyses or fixed with formaldehyde 

and embedded in paraffin (see below). 

 

Fig. 3 Preparation of tissue samples from bull testis. For optimal preservation, the tissues 
of the required organs were removed from the animals and processed immediately. 

3.1.1 Snap-frozen tissue 

Tissue samples used were shock-frozen in isopentane (pre-cooled to the temperature of 

liquid nitrogen) for a few minutes. The duration was dependent on the specific size of the 

samples to allow instant and complete freezing. Specimens were subsequently stored in 

plastic vials with 5 mL isopentane at -80°C.  

3.1.2 Paraffin-embedded tissue 

Alternatively, tissue samples were fixed in 4 % (w/v) formaldehyde in PBS (pH 7.4), freshly 

prepared from paraformaldehyde powder, for 24 h at 4°C. After passage through an ethanol 

dehydration series of increasing concentrations, the dehydrated tissue samples were 

embedded in low-melting paraffin, kindly realized in the laboratory of Prof. Dr. Hermann-Josef 

Gröne (Division of cellular and molecular pathology, German Cancer Research Center). 

3.2 Cell cultures 

All cell cultures used were treated and passaged either as recommended by the 

manufacturer or the distributor (see Table 5). In general, monolayer cultures were 

passaged after the cells had grown to ~ 80–100 % confluency to ensure optimal cell-cell 

junction patterns. Cells were rinsed with 37°C warm 0.02 % (w/v) EDTA in PBS to remove 

residual culture medium and then incubated with trypsin (0.25 %) / EDTA (0.02 %) in PBS 

until the cells were dissociated. Then cells and medium were neutralized with culture 

medium, suspended in fresh culture medium and plated on coated or uncoated cell culture 

dishes supplied with fresh DMEM medium containing 10 % FCS and 1 % glutamine. Cells 
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were finally incubated at 37°C in 5 % CO2. For microscopic examination cells were plated 

on glass coverslips coated with poly-L-lysine as a non-specific substratum. 

3.3 Biochemical methods  

For the identification of specific proteins present in cultured cells or tissues, cell lysates 

were prepared. Molecules or stable molecule complexes were separated using sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and detected by 

immunoblot analyses using specific antibodies (Weber and Osborn 1969; Towbin et al. 

1979; for a methodological review see Hames 1998).  

3.3.1 Preparation of cell culture and tissue lysates  

Cultured cells grown to confluency in culture dishes (5 or 10 cm in diameter) were gently 

washed twice with PBS (cooled on ice) to remove cell debris, dead cells and residual 

medium. The cells were covered with 200–500 μL 2x “Laemmli buffer” (Laemmli 1970) in 

5 cm culture dishes (or 500–1000 µL for 10 cm culture dishes). The buffer contained 

dithiothreitol (DTT) as a reducing agent and SDS for cell lysis to dissociate protein 

complexes and proteins into polypeptides by reducing disulfide bridges and to charge the 

polypeptides negatively. The solution was supplemented with 1 μL benzonase and 

incubated for 5 min at room temperature (RT) to remove DNA and RNA and thus to 

reduce viscosity. The cells were then scraped off and collected using a cell scraper, 

transferred into an Eppendorf reaction tube and heated at 97°C for 5 min under agitation 

to denature and SDS-couple the polypeptides. The samples were centrifuged at 16,000 g 

for 5 min at RT and the resulting supernatants were either used directly or stored at -20°C.  

Frozen tissue samples were cut into ca. 10 μm thin sections at -20°C (for freezing 

procedures sections see chapter 3.1.1; Moll et al. 1982b), collected in pre-cooled (-20°C) 

Eppendorf reaction tubes and supplemented with 200 μL 2x Laemmli buffer containing 

1 μL benzonase. The suspensions from ca. 50 sections each were homogenized with a 

Dounce glass homogenizer, heated to 97°C for 5 min to resolve secondary and tertiary 

structures, and centrifuged at 16,000 g for 5 min. The resulting supernatant was used 

directly or was stored at -20°C. 

3.3.2 Fractionation of proteins  

For enrichment of proteins, frozen tissue samples were cut in ca. 10 µm thin sections 

at -20°C and homogenized on ice. After stepwise centrifugation (13,000 g, 2 min at 4°C) 

each resulting supernatant was separated and collected to extract proteins. In the first 

supernatant, soluble proteins of the cytoplasm were present and solubilized with 

“Complete Mini Protease Inhibitor” (Roche Diagnostics) in PBS. In the next step, samples 

were centrifuged in PBS with 1 % Triton-X-100 to dissolve proteins soluble in detergent, 
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especially IF and membrane proteins. In the third step, samples were homogenized in a 

solution of 1 % Triton-X-100 and 0.5 M NaCl in PBS. The remaining pellet contained 

enriched proteins and glycoproteins which were still insoluble after treatment with high 

ionic strength and detergent solution, notably junction proteins.  

The supernatants obtained and the remaining pellets were treated overnight with 

methanol (fourfold volume) at -20°C. The next day, separation by centrifugation, drying of 

the pellet and treatment with 1x Laemmli buffer with benzonase were accomplished.  

3.3.3 Protein gel electrophoresis  

A modified method according to Laemmli (1970) was applied to separate proteins and 

polypeptides of the prepared cell or tissue lysates using gel electrophoresis. Thereby, 

polypeptides coupled with SDS move dependent on their molecular weight and in unfolded 

conformation in an electric field through a gel matrix (4–20 %, gradient tris-glycine gels, 

Anamed Elektrophorese GmbH, Groß-Bieberau/Rodau, Germany). For this, samples (15 µL) 

were loaded next to a protein marker solution (New England BioLabs, Frankfurt, Germany) 

containing 13 polypeptides of known molecular weight (see Table 12) and separated for 2 h at 

20 mA.  

Table 12 Reference polypeptides as molecular weight markers  

Calculated MW1 in kDa Polypeptides  Source 

212  Myosin, heavy chain Rabbit muscle 

158  MBP22-β-galactosidase  E. coli  

116  β-galactosidase  E. coli  

97.2  Phosphorylase b Rabbit muscle  

66.4  Serum albumin3 Bovine  

56.6  Glutamic dehydrogenase  Bovine liver 

42.7  MBP2 E. coli  

34.6  Thioredoxin reductase  E. coli  

27  Triosephosphate isomerase3 E. coli  

20  Trypsin inhibitor  Soybean  

14.3 Lysozyme  Chicken egg white 

6.5  Aprotinin  Bovine lung 

3.4 Insulin A, β-chain Bovine pancreas 
1MW molecular weight, 2MBP maltose-binding-protein, 3Serum albumin and triosephosphate 
isomerase were added at double concentration to serve as reference points. 

3.3.4 Transfer of polypeptides onto a membrane 

3.3.4.1 Semi-dry transfer  

Polypeptides separated in SDS-PAGE (see chapter 3.3.1) were transferred from the gel 

onto a polyvinylidene fluoride (PVDF) membrane (Immobilon-P, Merck Millipore, Billerica, 

MA, USA) using a semi-dry transfer method (Kyhse-Anderson 1984). For this, the 

“transfer sandwich” (3 layers of filter paper – 1 gel – 1 membrane – 5 layers of filter paper) 
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was placed horizontally between two plates with electrodes. To this end, PVDF 

membranes were rehydrated in isopropanol and moistened in transfer buffer 2. The gel 

was equilibrated in transfer buffer 3. Whatman® 3MM-Paper sheets (Sigma-Aldrich) were 

soaked in transfer buffer 1, 2 and 3, respectively, and placed with the gel and the PVDF 

membrane in the following arrangement on the anode of the “graphite-transfer chamber” 

(see scheme below). The semi-dry blot was carried out at 250 mA for 1.5 h. For 

components of the buffers see Table 9. 

Cathode 

3 Whatman-Paper in transfer buffer 3 

SDS-gel in transfer buffer 3 

PVDF-membrane in transfer buffer 2 

2 Whatman-Paper in transfer buffer 2 

3 Whatman-Paper in transfer buffer 1 

Anode  

 

Subsequently, PVDF membranes were incubated in Coomassie brilliant blue staining 

solution for 1 min to visualize separated polypeptide-containing bands. Background 

staining was reduced by washing the PVDF membrane in a destaining solution (Table 9). 

After drying and documentation, membranes were used for immunoblot (Western blot) 

analyses. 

3.3.4.2 Wet transfer 

For a wet transfer, in particular of large polypeptides, onto a membrane, the gel was 

equilibrated in 1 x borate transfer buffer and placed into a transfer sandwich (1 filter paper 

– gel – ethanol rehydrated membrane – 1 filter paper), encompassed by sponge pads and 

pressed together in a case. The gel sandwich was placed vertically in a tank filled with 

transfer buffer between electrodes. The transfer was carried out under constant stirring of 

the buffer (50 mA for 5 min, 75 mA for 5 min, 10 mA for 10 min and 125 mA for 2 h). 

3.3.5 Immunoreaction analyses 

Detection of polypeptides bound on the PVDF membrane was ensued using an indirect 

enzyme-immunoassay. Unspecific binding reactions were minimized by moistening the PVDF 

membrane with ethanol and incubation in a blocking solution with 5 % milk powder in PBS-T 

(0.05 % Tween®20) for ca. 1–2 h at RT. After saturation of free binding capacity, membranes 

were incubated with specific primary antibodies on a shaker for at least 1 h at RT for 

immunodetection (Western blot) of bound proteins. The antibodies used were diluted in the 

blocking solution according to the manufacturer’s recommendation. In general, hybridoma cell 

culture supernatants were diluted 1:10 and purified antibodies 1:500–1:1000. For removal of 
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unbound primary antibodies, membranes were washed three times with PBS-T for 5 min 

each. Subsequently, membranes were incubated with secondary antibody solution on a 

shaker for 1 h at RT. The secondary antibodies used (mostly in a dilution of 1:5,000 in PBS-T) 

were species-specific antibodies coupled to HRP for immunoblot detection. After removal of 

unbound secondary antibodies and diminishing background reactions (three washes with 

PBS for 5 min each), antibody-HRP complexes were visualized using a chemiluminescent 

immunoblotting substrate containing luminol (ECL). This ECL-system enables emission of low 

intensity light at 428 nm which was detected on films (Konica Minolta, Langenhagen, 

Germany). Exposed films were then documented and processed using Adobe® Photoshop® 

CS6 (Adobe Systems Software Irelands Limited, Republic of Ireland).  

3.4 Fluorescence microscopy 

For confirmation of the presence of specific molecules detected by polypeptide analyses 

in tissues or cultured cells, immunofluorescence microscopic analyses were performed. 

Samples were incubated with specific primary and secondary antibodies before they were 

analyzed by immunofluorescence microscopy.  

3.4.1 Fixation of cultured cells  

For optimal adhesion and growth cultured cells were grown on glass coverslips coated 

with poly-L-lysine. Cells were gently washed twice with 37°C pre-warmed PBS to remove 

residual medium, floated cells and cell aggregates. Thereafter, cells were fixed either by 

incubation with -20°C cold methanol and acetone or in 2 % formaldehyde, freshly 

prepared from paraformaldehyde powder, in PBS, pH 7.4 (see Table 8).  

3.4.1.1 Methanol/acetone fixation  

Cells grown on coverslips and washed twice with PBS were fixed either with -20°C cold 

acetone for 10 min or with -20°C cold methanol for 5 min and subsequently in -20°C cold 

acetone for 30 sec or in a -20°C cold methanol/acetone mixture (1:1) for 10 min. After 

fixation, cells were air-dried and either used directly for immunofluorescence microscopic 

analyses or stored at -20°C.  

3.4.1.2 Formaldehyde fixation 

After two washing steps with PBS, cells grown on coverslips were incubated for 3–5 min 

in 2 % formaldehyde in PBS (w/v). Fixed cells were washed twice with PBS for 5 min and 

used immediately for immunofluorescence microscopy. For this, the cells were incubated 

twice in 50 mM NH4Cl in PBS to saturate free reactive aldehyde groups (for subsequent 

immunofluorescence microscopy, see chapter 3.4.4).  
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3.4.2 Preparation and fixation of snap-frozen tissue 

For localization of antigens in frozen tissue samples, frozen specimens were cut with a 

cryotome into ca. 4–7 µm thin sections at -20°C. Immediately thereafter the sections were 

placed on Menzel Super Frost glass object slides (Thermo Fisher Scientific) and air-dried at 

RT for about 1 h. For an initial histological investigation some sections were treated with 

0.5 % methylene blue (w/v), washed with H2Odest and controlled in a light microscope for 

quality of the chosen tissue sample. For immunofluorescence microcopy sections were fixed 

with either acetone or a methanol/acetone mixture (1:1; -20°C), air-dried at RT for 5 min and 

then used directly. Alternatively, samples were fixed with formaldehyde as described 

(chapter 3.4.1.2), depending on antigen and antibody accessibility.  

For tissue fixation, different methods were tested to find the specific optimal 

condition for immunofluorescence microscopy, considering antibody accessibility as well as 

quality of tissue sections and specimens. In most cases optimal condition for preservation of 

testicular tissue structures was obtained after treatment with a -20°C cold methanol/acetone 

mixture (1:1) for 10 min. 

3.4.3 Preparation of paraffin-embedded tissue samples 

In parallel to the preparation of cryostat sections, formaldehyde-fixed and paraffin-

embedded samples were used. For this, paraffin-embedded tissue samples were pre-

cooled at -20°C for 1–2 h and cut into ca. 5 µm thin sections using a microtome, placed on 

Menzel Super Frost glass object slides and dried overnight at 37°C in a heating chamber. 

Thereafter sections were either used directly or stored in a dark and dry place at RT. 

After formaldehyde fixation and paraffin-embedding of tissue samples, the tissue 

structures in general are relatively well preserved but the accessibility of their antigens may 

be reduced. To overcome this problem, different methods for antigen-demasking exist to 

reveal protein epitopes to the antibodies (for “antigen retrieval”; see, e.g., Shi et al. 1991; 

Giberson and Demaree 2001; Rickelt et al. 2010). To achieve this, tissue sections were 

deparaffinated twice with xylene and rehydrated in a decreasing ethanol series (2x 100 %, 

1x 95 %, 1x 80 %, 1x 70 % and 1x 50 % ethanol, each step for 5 min). Following a washing 

step with H2Odest, sections were transferred into PBS. Using a microwave-assisted method, 

sections were treated in a special microwave pressure cooking pot with appropriate buffer 

and temperature (e.g., Tris-HCl buffer at pH 10.2 for 20 min at 120°C). After treatment, the 

pot was cooled down for 12 min with cold water. Samples were transferred into PBS again 

for subsequent immunofluorescence labeling (see chapter 3.4.4).  

For documentation of paraffin-embedded tissue samples, hematoxylin-eosin (HE) 

staining (Mayer 1891) was performed and analyzed in a light microscope. This staining 

method enabled investigations of tissue preservation and morphology. To this end, tissue 
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sections were deparaffinated, rehydrated in a decreasing alcohol series and then incubated 

for 5 min in hematoxylin staining solution (Chroma, Köngen, Germany). After a washing 

step with H2Odest, samples were rinsed in 10 % acetic acid, washed again and incubated for 

3 min in eosin staining solution (Chroma). After additional washing, samples were 

dehydrated in an increasing ethanol series and treated with xylol before the samples were 

embedded in Eukitt. Documentation was realized with an Axiophot microscope.  

In cases of special difficulties with epitope masking methodological procedures as 

described for cell type identification pathology have been applied (for details see Moll 1993).  

3.4.4 Immunofluorescence microscopy and documentation  

Fixed sections from snap-frozen tissue samples and cultured cells were rinsed with PBS 

after air-drying. For optimal epitope accessibility sections were treated with 0.1 % 

Triton-X-100 in PBS (w/v) or 0.1 % saponin in PBS (w/v) for 4–5 min to permeabilize the 

cells. In contrast, dehydrated and antigen retrieval-treated sections were incubated in 2 % 

milk powder with 0.1 % Triton-X-100 in PBS (w/v) for 20 min, respectively.  

After further 2–3 washing steps with PBS (5 min each) at RT, specimens were 

incubated with the primary antibody solution for 1 h at RT in a humid chamber (purified 

antibodies were diluted according to the manufacturer’s recommendation, supernatants 

were used undiluted). Unspecifically bound antibodies were removed by three washings 

with PBS (5 min each). Subsequently, tissue samples were incubated with secondary 

antibodies conjugated with fluorochromes for 45 min (Cy3: 1:500, Alexa 488: 1:250) 

specific for the species of the primary antibodies used. In addition, nuclear chromatins 

were often counterstained using DAPI (1:10,000 dilution) along with the secondary 

antibodies. For double-immunofluorescence microscopy, the primary and the secondary 

antibodies were used in double concentration, respectively. Unbound antibodies were 

removed by three washes with PBS (5 min each). Specimens were rinsed in H2Odest to 

remove salt crystals which had remained from PBS. Then the tissue sections were 

dehydrated in 100 % ethanol, air-dried and finally mounted with Fluoromount G (Southern 

Biotech; obtained via Biozol Diagnostica, Eching, Germany) using cover glasses and air-

drying overnight under protection from light. 

 For documentation of immunofluorescence microscopy an Axiophot microscope as 

well as a confocal laser scanning microscope LSM880 with Argon-laser (488 nm) and a 

Helium-Neon-laser (534 nm) were used to localize specific antigens in defined optical 

sectional planes. Micrographs were visualized with an AxioCam MRc-camera. 

Comprehensive analysis and image processing were ensued using ZEN 2012 microscope 

software (Version 8.1, Carl Zeiss Microscopy GmbH) and Adobe® Photoshop® CS6 

software. Images were partially combined using the Tile scan tool.  
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3.5 Electron microscopy  

For ultrastructural analyses transmission electron microscopy (TEM) of ultrathin tissue 

sections was used (cf. Rickelt et al. 2011b; Pieperhoff et al. 2012). 

3.5.1 Conventional transmission electron microscopy 

Immediately after preparation, freshly obtained tissue samples (about 1 mm3) were fixed in 

2.5 % glutardialdehyde solution (in sodium cacodylate buffer, v/v, pH 7.2; Serva, 

Heidelberg, Germany; Table 10) for 30 min at 4°C. After three washings (5 min each) in 

sodium cacodylate buffer (50 mM, pH 7.2), an incubation in 2 % osmium tetroxide solution 

in sodium cacodylate buffer (v/v) was followed for 2 h at 4°C in order to fix lipids, in 

particular lipid membranes (for reviews see Hayat 1970; Glauert and Reid 1974). 

Specimens were washed three times with H2Oaqua ad. injectabila (H2Oaqua ad. inj.; B. Braun 

Melsungen AG, Melsungen, Germany) for 5 min and incubated in 0.5 % uranyl acetate in 

H2Oaqua ad. inj. (w/v) overnight at 4°C. After another washing specimens were dehydrated in an 

increasing ethanol concentration series (50 %, 70 %, 80 %, 90 %, 96 % ethanol, 30 min 

each at 4°C). Then samples were dehydrated twice with 100 % ethanol and propylene oxide 

at RT (30 min each). For embedding into the artificial resin Epon 812 (Serva) tissue pieces 

were infiltrated with a 1:1 (v/v) mixture of Epon and propylene oxide at RT overnight. Tissue 

samples were rotated to ensure complete and rapid penetration of the resin into the tissue, 

while the propylene oxide slowly evaporated enabled by an open lid. The following day, 

tissue pieces were incubated in fresh Epon solution for another 4–6 h. Embedded tissue 

samples were put in silicon rubber molds (Plano, Wetzlar, Germany) filled with fresh Epon 

solution and incubated for 24 h at 60°C and thereafter for additional 48 h at 60°C after 

release of the silicon rubber mold for polymerization and maximal hardening of the resin.  

 For the initial histological investigations semi-thin sections were stained before 

ultrathin sectioning in order to define quality and area of the chosen tissue sample. For this, 

semi-thin sections were treated with staining solution (1 % toluidine blue, 1 % sodium 

borate, 1 % azure II [w/v] in H2Oaqua ad. inj.), heated on a hot plate until a silver-green staining 

was visible around the sample and washed with H2Oaqua ad. inj. before the light microscopic 

observations started. 

Using an ultramicrotome, ultrathin sections of 50–70 nm of chosen samples were 

prepared, put onto small copper grids, gently dried with a cloth and finally air-dried. The 

grids were covered with a thin film of 1 % pioloform in chloroform (w/v) to ensure adhesion 

and stability of the tissue sections. For “contrasting”, a method according to 

Reynolds et al. (1963) was applied: Sections were incubated in 2 % uranyl acetate in 

methanol for 15 min. After several washing steps (1x in methanol, 1x in methanol with 

H2Oaqua ad. inj. [1:1], and 8 short washing steps in H2Oaqua ad. inj.) an incubation in lead citrate 
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solution followed for 5 min. Finally, the grids with the sections were washed again eight 

times with H2Oaqua ad. inj., gently dried with a cloth and air-dried.  

 Ultrathin sections were observed with an electron microscope EM10 or EM900 

(Zeiss) at 80 kV. For documentation Kodak-electron microscopy negative films (No. 4489; 

3.25 x 4 inch; Sigma-Aldrich) were developed (developer D19 Kodak and fixer Agefix 

Agfafoto 51) in a darkroom and processed using Adobe® Photoshop® CS6. Digital images 

were recorded by a Slow Scan CCD camera (Typ 7888, TRS). 

3.5.2 Immunoelectron microscopy 

For immunoelectron microscopy analysis, a “pre-embedding” method was performed. To this 

end, appropriate snap-frozen tissue sections (about 7 µm) were prepared, placed on 

coverslips and air-dried at RT for about 1 h. Specimens were fixed with freshly prepared 2 % 

formaldehyde in PBS (pH 7.4) for 5–10 min at RT and then washed with PBS. Free aldehyde 

groups were saturated by immediate incubation in 50 mM NH4Cl in PBS (w/v) twice for 5 min 

each. Thereafter, samples were permeabilized by detergent treatment with 0.1 % saponin in 

PBS for 5 min and washed three times with PBS for 5 min before incubation with the specific 

primary antibodies in a humid chamber for 3 h at RT took place using dilutions as in 

immunofluorescence microscopy. After removal of unbound antibodies with three PBS 

washing steps (5 min each), an incubation followed with a Nanogold-coupled secondary 

antibodies (Nanoprobes, Yaphank, NY, USA) specific for the species of the primary 

antibodies used (overnight at 4°C). Tissue sections were then fixed with 2.5 % 

glutardialdehyde solution (RT) for 30 min (cultured cells for only 15 min) at 4°C. Then the 

specimens were shortly washed with cacodylate buffer (50 mM) and incubated twice in a 

sucrose solution for 3 min each. A silver enhancement reaction with gold particles followed 

using a “HG SilverTM Enhancement Kit“, choosing three different time points (in most cases 

6 min, 7 min and/or 8 min). This enhancement step was stopped by two washing steps for 

5 min each with sodium thiosulfate pentahydrate solution (250 mM sodium thiosulfate 

pentahydrate in 50 mM HEPES) followed by washes with H2Oaqua ad. inj.. To enhance 

membrane contrast, incubation followed in 0.3–3.0 % osmium tetroxide in H2Oaqua ad. inj. for 

30 min at 4°C. After two additional gentle washing steps in H2Oaqua ad. inj. specimens were 

dehydrated in an increasing ethanol series (compare chapter 3.5.1) and then embedded into 

Epon, using gelatin capsules filled with Epon which were placed over the coverslip so that the 

tissue sections were covered with Epon. After incubation and polymerization overnight at 

60°C, coverslides were removed from the tissue sections by a temperature gradient after 

freezing in liquid nitrogen for a few minutes (cf. Franke et al. 1978b). Specimens were 

polymerized for two further days and then sectioned for TEM (compare chapter 3.5.1).  



Results 

  

34 
 

4 Results 

In my initial studies of the adherens junctions (AJs) in the seminiferous tubules of various 

mammalian species several results differed fundamentally from the published results in 

the majority of other research reports in this field (see also Introduction). Consequently, in 

respect to this controversy my doctoral thesis work comprised a profound and 

systematical analysis of the molecular composition and ultrastructural organization of the 

isotypic AJs connecting the cells in the seminiferous tubules as well as the cells that form 

the peritubular walls in different mammalian species (human, bovine, porcine, guinea pig, 

murine, i.e. rat and mouse). For direct comparison of the seminiferous tubule tissue with 

“true” epithelial tissues, the adjacent excurrent duct tissue, including the epididymis, was 

used. In addition, various other epithelial tissues (bladder, intestine, liver, tongue mucosa 

and bovine muzzle) and different types of smooth muscle tissues (e.g., those of the bladder, 

intestine, stomach, oesophagus and blood vessel walls) were used as control tissues.  

For an initial morphological overview of testicular tissues of the different 

mammalian species tested, hematoxylin-eosin (HE) staining of thin sections of frozen 

tissues was used as a basis for further analyses. Main methods included light and 

electron microscopical immunolocalization of diverse structural proteins using specific 

antibodies. The sensitivity and specificity of the antibodies used were analyzed by SDS-

PAGE and immunoblotting of protein lysates from dissected tissue samples or subcellular 

fractions. The molecular composition of testicular tissues of the species studied was in 

most points identical, unless mentioned otherwise.  

 

Fig. 4 Light microscopical overviews of cross-sections through seminiferous tubules of 
different species visualized by hematoxylin-eosin (HE) staining. Slightly different 
histological architecture is seen here in the tubules of (a) man, (b) bull, (c) boar and (d) rat 
testis. Bar 200 µm. 

4.1 Histological aspects of the testicular tissues 

Light microscopical analyses of testicular tissue samples of the mammalian species 

examined show an overview of seminiferous tubules containing Sertoli cells which 

protrude from the basal lamina into the lumen of the tubules and are associated with germ 

cells of different spermatogenic stages (see also Fig. 1). The basal lamina is tightly 
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associated with the monolayers of the cells of the peritubular wall which are interspersed 

with layers of extracellular matrix (ECM) material. The peritubular wall borders on the 

interstitial compartment with its various cell types (Fig. 4; for details see chapter 4.6).  

4.2 Biochemical identification of proteins and glycoproteins in testicular 
tissues 

For the identification and characterization of proteins and glycoproteins of cell-cell 

junctions as well as of cytoplasmic filaments and other cytoskeletal elements, whole tissue 

lysates were analyzed by SDS-PAGE and immunoblotting (Western blot). In a number of 

cases, specifically to exclude false positive or negative results because of limited 

availability or reactivity of epitopes or cross-reactive epitopes, tissue pieces were further 

fractionated and the specific enriched fractions were separately examined by SDS-PAGE.  

For biochemical and immunolocalization analyses different cell culture lines were 

used as positive controls in addition to the epithelial tissues listed above. These included 

epithelial cell culture lines such as human HaCaT keratinocytes, PLC hepatocellular 

carcinoma cells and Caco-2 intestinal cells as well as normal and SV40-transformed 

fibroblast cells (SV80).  

Major results obtained are presented in Fig. 5 (and summarized in Table 13 in 

chapter 4.4), confirming results of parts of my initial studies (Domke 2013). Reactions 

specific for the cadherin glycoprotein families of desmogleins and desmocollins, i.e. in 

particular for Dsg-2 and Dsc-2, as well as for the desmosomal plaque proteins 

desmoplakin and plakophilin Pkp-2 were negative in the tissue samples of the 

seminiferous tubules but positive in the excurrent duct tissues, including the epididymis. 

Vimentin, as the major intermediate-sized filament (IF) component of Sertoli cells but also 

present in interstitial and peritubular wall cells, was detected in all tissue samples of the 

seminiferous tubules analyzed. Likewise, antibody reactions against AJ plaque proteins, 

including α- and β-catenin, proteins p120 and/or p0071, or against the AJ transmembrane 

glycoproteins cadherin-11 and N-cadherin were intensely positive in whole tissue lysates 

of seminiferous tubules. Particularly, positive antibody reactions against the mesenchymal 

marker protein N-cadherin were seen in seminiferous tubules but were absent in excurrent 

duct epithelial tissues. In comparison, antibodies against E-cadherin, characteristic of 

homotypical adhesion between AJs of simple epithelial cells, showed no reaction in 

seminiferous tubule tissues but were positive in tissues of excurrent ducts. In general, 

smooth muscle marker proteins such as smooth muscle α-actin (α-SMA), smoothelin, 

desmin, light and heavy chains of smooth muscle myosin, vinculin and talin as well as 

proteins myozap and LUMA were markedly positive in all samples tested (see also 

chapter 4.3). 
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Fig. 5 Biochemical identification of proteins in mammalian testicular tissue samples 
(seminiferous tubules, including the peritubular wall structures) and the corresponding 
control tissues, using SDS-PAGE of total protein lysates, followed by immunoblot 
analyses with specific antibodies (for continuation see next page). 
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Continuation of Fig. 5 

Antibody reactions against the cytoskeletal control protein β-actin (MW ca. 43 kDa), as 
reference for equal loading of proteins, reveal a single polypeptide band in cultured 
human HaCaT keratinocytes (lane 1) and in the tissue samples of seminiferous tubules of 
man (lane 2), bull (lane 3), boar (lane 4) and rat (lane 5).  

The same is true for the smooth muscle markers smooth muscle α-actin (α-SMA) and 
smoothelin (MW ca. 99 kDa) in all samples of tissues containing seminiferous tubules 
(lanes 2–5, as afore) as well as for bovine bladder tissue examined for control (here in 
lane 1). Desmin is as well present in the tissue samples containing seminiferous tubules 
(lanes 2–5), even though in different quantities, and in cultured adult mouse 
cardiomyocyte-derived cells of line HL-1 (lane 1).  

The adherens junction (AJ) plaque protein β-catenin is found in all samples tested, 
including human HaCaT keratinocytes (lane1), tissues of bull testis (lane 2) and bull 
epididymis (lane 3), boar testis (lane 4) and boar epididymis (lane 5), rat testis (lane 6) 
and rat excurrent duct tissue (lane 7), although in different relative amounts (note here low 
reaction intensities in lanes 5 and 6). Similarly, the AJ plaque protein p120 is detected in 
all samples tested containing human HaCaT keratinocytes (lane1), bull testis (lane 2) and 
proteins of bull epididymis (lane 3) as well as of boar testis (lane 4), boar epididymis (lane 
5), rat testis (lane 6) and rat excurrent duct tissue (lane 7). 

In comparison to human HaCaT keratinocytes (lane 1), desmoplakin (DP) cannot be 
recognized in tissue samples containing molecules of seminiferous tubules of bull (lane 2), 
rat (lane 3), mouse (lane 4,) and man (lane 5). Likewise, desmoglein-2 (Dsg-2) is not 
found in bull (lane 2), rat (lane 3), mouse (lane 4) and human (lane 5) testicular tissues 
containing seminiferous tubules, in contrast to its abundance in human HaCaT 
keratinocytes (lane 1). Negative results have also been obtained with Dsg-1 and Dsg-3 
and for corresponding desmocollins (not shown). 

Antibodies against vimentin (MW ca. 54 kDa) show positive reactions in tissue materials 
of seminiferous tubules of human (lane 2), bovine (lane 3), rat (lane 4) and mouse (lane 5) 
testes as well as in proteins of cultured human SV80 cells of mesenchymal origin (lane 1) 
examined in parallel as control protein preparation. Antibodies against the AJ protein 
N-cadherin reveal single polypeptide bands in human HaCaT keratinocytes and in 
testicular tissue protein samples from seminiferous tubules of bull (lane 2), boar (lane 4) 
and rat (lane 6) but not in appreciable amounts of epididymis tissue lysates of bull (lane 
3), boar (lane 5) and rat (lane 7) origin. In comparison, E-cadherin is shown here to be 
exclusively detected in human epithelial HaCaT cells (lane 1) and excurrent duct tissues 
of bull (lane 3), boar (lane 5) and rat (lane 7) but not in the enriched testicular tissue 
samples of seminiferous tubules (lanes 2, 4 and 6 of bull, boar and rat). Cadherin-11 
(CDH-11) is identified in the SDS-PAGE results of proteins from seminiferous tubules of 
man (lane 2), bull (lane 3) and boar (lane 4) as well as in several samples of excurrent 
duct tissues (lane 1, boar).  

The microfilament-associated protein vinculin is present in the tissue samples from 
seminiferous tubules of man (lane 2), bull (lane 3), boar (lane 4) and rat (lane 5) as well as 
in human heart tissue (lane 1). Protein striatin is identified in the tissues of seminiferous 
tubules of man (lane 2), bull (lane 3), boar (lane 4) and rat (lane 5) origin as well as in 
fractions of bovine bladder tissue (lane 1). Protein myozap (MW ca. 52 kDa) is detected 
in the testicular tissue of excurrent ducts (lane 1, boar) as well as very weakly in tissue 
samples containing seminiferous tubules and interstitial tissue of several species (e.g., 
lane 2, human).  

The smooth muscle marker smooth muscle myosin heavy chain (myosin) is present in 
the bull excurrent duct system (lane 1) and in the corresponding samples of seminiferous 
tubules and peritubular as well as interstitial tissue of man (lane 2), bull (lane 3) and boar 
(lane 4). 
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4.3 Control tissues: Light and electron microscopical immunolocalization 
results  

For comparison of cells in true epithelia with cells of the seminiferous tubules, samples of 

adjacent excurrent duct tissues, including the epididymis, of the same species were 

analyzed. These tissue samples, known to contain simple or columnar epithelia, were 

examined in this study in addition to various other epithelial tissues such as bladder, 

intestine, liver, tongue mucosa or bovine muzzle. They were used for the determination of 

specificity and sensitivity of the antibodies as well as for general controls of methods 

applied. 

As expected, these epithelial control tissues showed a positive reaction for 

cytokeratin intermediate-sized filaments (IFs) and an absence of vimentin IFs as well as 

the presence of simple epithelium-type desmosomal proteins such as desmoplakin, 

plakoglobin, plakophilin-2, desmoglein-2 and desmocollin-2 which revealed complete or 

far-reaching co-immunolocalization (Figs. 6, 15 and 16). Different localization of 

E-cadherin and N-cadherin was seen in epithelial tissues in the form of a total absence of 

N-cadherin and the general presence of E-cadherin in AJs of excurrent duct cells (Fig. 7). 

Some of the cytoplasmic plaque proteins of epithelial cell-cell junctions were found to 

occur in all AJ structures of the zonula adhaerens and fascia adhaerens type as well as in 

puncta adhaerentia, including α- and β-catenin (e.g., Figs. 8 and 9), and protein p120. In 

contrast, certain other plaque proteins such as protein myozap (Figs. 8 and 9), protein 

PERP and certain members of the striatin family appeared to be present only in the 

plaques of the subapical zonula adhaerens but were absent in lateral punctate AJs. In 

some tissue samples of the excurrent ducts another cell junction type containing the 

glycoprotein EpCAM was detected (Fig. 10).  

The epithelial excurrent ducts are surrounded by a basal lamina and in addition in 

the anterior portion by a smooth muscle wall of increasing thickness in ductuli efferentes 

and ductus epididymidis (Fig. 2c; cf. Baumgarten et al. 1971). These muscle cells were 

positive for major smooth muscle markers, including smooth muscle α-actin (α-SMA) and 

the corresponding myosin light and heavy chains as well as α-actinin, tropomyosin, 

smoothelin, desmin, vinculin, filamin A, talin, calponin and SM22α (e.g., Figs. 11–14; for 

more details see chapter 4.6; for general references see chapter 5.5). In addition, protein 

LUMA showed positive reactions in smooth muscle wall cells of excurrent duct tissues 

(Figs. 15–16). 
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Fig. 6 Double-label immunofluorescence microscopy of an oblique cryotomy cross-
section through parts of the excurrent duct system in frozen bull testis, displaying positive 
immunostaining for desmoglein-2 (Dsg-2; a, a’’, a’’’; red; monoclonal mouse antibody) 
and desmoplakin (DP; a’–a’’’; green; rabbit antibodies) with colocalization of both 
desmosomal marker proteins (yellow merger colour; reactions are shown on a phase-
contrast background in a’’’ and b’). Note the spermatozoa in the lumen (L). The 
monoclonal mouse antibody against plakophilin-2 (Pkp-2; b, b’; red) shows also positive 
immunostaining of desmosomal structures in the excurrent duct epithelium. Nuclei have 
been stained blue with DAPI. Bars 50 µm. 
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Fig. 7 Double-label immunofluorescence microscopy of a cross-section through the 
excurrent duct system of bull testis after reactions with antibodies against the adherens 
junction (AJ) proteins N-cadherin (a, a’’, a’’’; red; monoclonal mouse antibody) and 
E-cadherin (a’–a’’’; green; rabbit antibodies). All tubular epithelial cells are intensely 
positive (green) for E-cadherin but totally negative for N-cadherin (red). Nuclei have been 
stained blue with DAPI. I, interstitial space; L, lumen. Bar 50 μm. 
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Fig. 8 Double-label immunofluorescence microcopy of a cryostat cross-section through 
frozen rat testis tissue, showing excurrent ducts after reactions with antibodies to protein 
myozap (red; monoclonal mouse antibody) and to the armadillo plaque protein ß-catenin 
(green; rabbit antibodies). Protein myozap reaction is seen in the subapical zonula 
adhaerens of the epithelial cells (seen here in yellow merge colour) and in some cells of 
the interstitial tissue (I) but is not reliable detectable in lateral membrane junctions of the 
epithelia. Note that the ductal lumen (L) is filled with masses of aggregated spermatozoa. 
The general structure is revealed on a phase-contrast background. Nuclei have been 
stained blue with DAPI. Bar 100 µm. 
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Fig. 9 Double-label immunofluorescence microscopy displaying the specific immuno-
staining of the adherens junctions (AJs) connecting the excurrent duct epithelial cells of 
rat testis. Immunoreactions with protein myozap (a, a’’, a’’’; red; monoclonal mouse 
antibody) and the armadillo plaque protein β-catenin (a’–a’’’; green; rabbit antibodies) 
indicate that ß-catenin is present in both the subapical zonula adhaerens and in the 
numerous AJs along the lateral membrane-membrane contacts. By contrast, protein 
myozap is seen only in the subapical zonula but is not detectable in the lateral membrane-
membrane junctions. Nuclei have been stained blue with DAPI. I, interstitial space; 
L, lumen. Bar 20 µm. 
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Fig. 10 Double-label immunofluorescence microscopy of cryostat cross-sections 
through a frozen bull testis tissue region containing excurrent duct epithelia, after reaction 
with antibodies to EpCAM (a, a’’; red; monoclonal mouse antibody) and two different 
antibodies to cytokeratins 8 and 18 (a’, green; guinea pig antibodies; b, red; monoclonal 
mouse antibody). Note the colocalization in all epithelial cells of the excurrent duct system 
(yellow merge colour). (a’’, b) Cell structures are seen on a phase-contrast background. 
Nuclei have been stained blue with DAPI. Note also the aggregates of spermatozoa in the 
lumen (L; a’’, b). I, interstitial space. Nuclei have been stained blue with DAPI. Bars (a–
a’’) 50 µm and (b) 100 µm. 
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Fig. 11 Double-label immunofluorescence microscopy of a cryostat cross-section 
through the epithelium of parts of the excurrent duct system of frozen rat testis visualized 
in a tile scan survey arrangement. Antibody reactions with the smooth muscle cell (SMC) 
marker smooth muscle α-actin (α-SMA; a, a’’, a’’’; red; monoclonal mouse antibody) and 
the general muscle cell marker tropomyosin (a’–a’’’; green; rabbit antibodies) are 
presented. Both markers show positive immunoreactions in the peritubular wall LSMCs 
encasing the tubules (“colocalization” is indicated by yellow merge colour). Note the 
accumulation of maturing spermatozoa in the tubule lumen (L). I, interstitial space. 
Bar 200 µm. 
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Fig. 12 Tile scan survey of double-label immunofluorescence microscopy of a cryostat 
cross-section through an anterior portion of the excurrent duct system of frozen bull testis. 
Immunoreactions with the smooth muscle cell (SMC) markers smoothelin (a, a’’, a’’’; red; 
monoclonal mouse antibody) and desmin (a’–a’’’, green; rabbit antibodies) show 
immunostaining of both SMC markers in the peritubular wall cells encasing the excurrent 
ducts (colocalization is indicated by yellow merge colour). Nuclei have been stained with 
DAPI (blue). I, interstitial space; L, lumen. Bar 100 µm. 
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Fig. 13 Double-label immunofluorescence microscopy of a cryostat cross-section 
through a subsequent part of the excurrent duct system of frozen (a) bull and (b) rat testis. 
Positive “colocalization” for smooth muscle myosin heavy chain (a–a’’; red; monoclonal 
mouse antibody), caldesmon (b–b’’; red; rabbit antibodies) and smooth muscle α-actin 
(α-SMA; a’–a’’, green; rabbit antibodies, b’–b’’; green; monoclonal mouse antibody) is 
seen in the rather thick peri-epithelial SMC walls (denoted by brackets) and the 
perivascular (V, vessel lumen) wall cells of the interstitial region (I). L, lumen. Bars 50 µm. 
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Fig. 14 Double-label immunofluorescence microscopy of a cryotomy cross-section 
through an anterior epididymal part of the excurrent duct system of frozen boar testis after 
immunolocalization reactions against smoothelin (a, a’; red; monoclonal mouse antibody) 
and protein myozap (a, a’; green; guinea pig antibodies). Note the intense and extended 
positive reaction of smoothelin in the thick smooth muscle (M) wall tissue separated from 
the epithelium (brackets) by a mesenchymal cell-rich lamina propria and an interstitial (I) 
region, here in comparison with the specific myozap immunostaining of the zonula 
adhaerens of the excurrent duct epithelium. Note also the aggregates of spermatozoa in 
the ductal lumen (L). Bars 100 µm. 
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Fig. 15 Double-label immunofluorescence microscopy of a cryostat cross-section 
through an anterior portion of the excurrent duct system of frozen bull testis. After 
immunoreactions to LUMA (a, a’’, a’’’; red; guinea pig antibodies) and to desmoplakin 
(a’–a’’’; green; monoclonal mouse antibody) all epithelial cells (L, lumen) show positive 
reaction for desmoplakin but are totally negative for LUMA. In contrast, peritubular wall 
cells encasing the excurrent ducts and the vascular (V) walls show positive reaction for 
LUMA. I, interstitial space. Bar 100 μm. 
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Fig. 16 Double-label immunofluorescence microscopy of a cryostat cross-section 
through a subsequent part of the excurrent duct system of frozen bull testis. After 
immunoreactions to LUMA (a, a’’, a’’’; red; guinea pig antibodies) and to desmoplakin 
(a’–a’’’; green; monoclonal mouse antibody) positive reaction for LUMA is seen in the 
rather thick peri-epithelial SMC walls (denoted by brackets) and the perivascular 
(V, vessel lumen) walls in the interstitial region (I). Desmoplakin-positive reaction is seen 
in luminal epithelial cells (L, lumen). Bar 50 µm. 
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4.4 The seminiferous tubules: Cytoskeletal and cell-cell junctional 
molecules of Sertoli cells 

4.4.1 Immunofluorescence analyses of adhering and adherens junctions  

The somatic cells of the mature and active seminiferous tubules, the Sertoli cells, reach 

from the basal lamina to the adluminal compartment. They enclose the germ cells and 

form a major part of the so-called “blood-testis barrier”. This thesis has focused on the 

elucidation of the molecular nature and cell structure architecture of the various cell-cell 

junctions of the AJ category in the seminiferous tubules, in direct comparison with the AJs 

of the epithelia of the excurrent duct system and several non-testicular tissues. 

In agreement with the biochemical results, cells lining the seminiferous tubules do 

not contain cytokeratin but only vimentin IFs (Franke et al. 1979c; for further references 

see Introduction) and no E-cadherin-based but exclusively N-cadherin-based AJs 

(Figs. 17 and 18). These results are in concordance with those of other reports (e.g., Cyr 

et al. 1992, 1993; Newton et al. 1993; Byers et al. 1994; Domke 2013). Reactions for all 

other cadherins examined were negative in seminiferous tubules of mature testes, 

including P-cadherin, VE-cadherin and cadherin-11 (see also Cyr et al. 1992).  

In all N-cadherin-based AJs of Sertoli cells the typical AJ plaque proteins have 

been seen in colocalization with N-cadherin, although often with different reaction 

intensities (see, e.g., Figs. 17 and 19; for β-catenin as well as protein p0071 and striatin 

see also Figs. 6, 7 and 8 of Domke et al. 2014). The plaque protein myozap has been 

absent in Sertoli cells of bovine, porcine and human testes, whereas some positive 

myozap reactions have been noted in rodent Sertoli cells. Reactions of nectin antibodies 

have also been negative in lateral AJs of Sertoli cells, in contrast to the presence of nectin 

in the apical indentations containing spermatid heads and – together with protein myozap 

– in the zonula adhaerens of the epithelial cells of the excurrent ducts. Negative reactions 

have been obtained in all species examined for proteins PERP and EpCAM. A complete 

list of the AJ plaque proteins detected in N-cadherin-based isotypical cell-cell AJ 

structures is presented in Table 13. 

In confirmation with my initial results (Domke 2013), the results of the present 

thesis using diverse antibodies for desmosome-specific marker molecules were negative 

in the seminiferous tubules examined and in the entire interstitial tissue region. Examples 

of such negative results have been shown for desmogleins and desmocollins, i.e. for 

Dsg-2 and Dsc-2, as well as for desmoplakin and plakophilin Pkp-2 (Fig. 20). In 

comparison, the desmosome-specific antibodies used showed positive reactions in 

excurrent duct epithelia (see, e.g., chapter 4.3). 

 Examinations of the presence of T-catenin in AJs of the seminiferous tubules have 

not yet given conclusive results (see also Janssens et al. 2001, 2003; Goossens et al. 

2007a; van Hengel et al. 2013, for a review see Chiarella et al. 2018).  
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Table 13 Reactions of adhering junction molecules in mature mammalian testes 

Antibodies specific for Sertoli and germ cells1 Peritubular wall cells  

Transmembrane Glycoproteins (cadherins) 

E-cadherin – (+)2 

VE-cadherin – – 

N-cadherin + sd3 

P-cadherin – (+)4 

Cadherin-6 – – 

Cadherin-11 – +  

Desmoglein-1 (Dsg-1) – – 

Desmoglein-2 (Dsg-2) – – 

Desmoglein-3 (Dsg-3) – – 

Desmocollin-1 (Dsc-1) – – 

Desmocollin-2 (Dsc-2) – – 

Desmocollin-3 (Dsc-3) – – 

Other Transmembrane Molecules 

EpCAM – – 

Protein PERP – – 

Cytoplasmic Plaque Proteins 

Desmoplakin 1+2 – –4 

Plakophilin-1 – – 

Plakophilin-2 – – 

Plakophilin-3 – – 

β-catenin + + 

Protein p120 + sd 

Protein p0071 + sd 

Plakoglobin + (+/–) 

α-catenin + + 

Protein ZO-1 + – 

Cingulin + – 

Myozap (+/–)6 (+/–) 

Plectin + – 

Striatin7 + sd 

Protein LUMA – + 
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Continuation Table 13 
1 Junctions connecting Sertoli cells with Sertoli cells and Sertoli with germ cells  
2 Only one specific monoclonal antibody solution against E-cadherin (BD Transduction 
Laboratories, 610182) showed positive reaction in LSMCs. Other antibodies used showed 
complete negative reaction in LSMCs. 
3 sd Significance was not decidable yet. 
4 A monoclonal antibody solution against P-cadherin (Thermo Fisher Scientific, 13-2000Z) was only 
positive in LSMCs of bovine testes. 
5 One of the desmoplakin guinea pig antisera (Progen, DP-1) has shown occasionally cross-
reactions in bovine LSMCs but the monoclonal antibody used (Progen, 65146) has not. This 
reaction difference needs to be further examined. 
6 Some antibodies against plaque protein myozap (Progen, 651169, and antibody clone cl. 2A) 
have shown immunolocalization in AJs of Sertoli cells of rodent testes but not in the other species 
examined. Protein myozap has been identified in bovine LSMCs but not in those of the other 
species tested.  
7 Whether it is striatin or a closely related member in the striatin family of proteins has not yet been 
determined. 
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Fig. 17 Double-label immunofluorescence microscopy of a cryostat cross-section 
through a seminiferous tubule in boar testis using antibodies against the armadillo protein 
β-catenin (a, a’’, a’’’; red; monoclonal mouse antibody) and the transmembrane 
glycoprotein N-cadherin (a’–a’’’; green; rabbit antibodies). Both AJ-marker molecules 
colocalize in the seminiferous tubule (yellow merger colour). In addition, some β-catenin-
positive cells are also seen in the interstitial space (I). L, lumen. Bar 50 μm. 
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Fig. 18 Double-label immunofluorescence microscopy of a cryostat cross-section 
through seminiferous tubules of frozen testis tissue of a sexually mature bull with 
antibodies against the AJ glycoproteins N-cadherin (a, a’’, a’’’; red; rabbit antibodies) and 
E-cadherin (a’–a’’’; green; monoclonal mouse antibody). N-cadherin-positive AJs are 
present (red) in all seminiferous tubules (L, lumen) but no E-cadherin-containing 
structures. Only a few cells in the peritubular wall show here a positive immunostaining 
reaction for E-cadherin (green). I, interstitial space. Bar 50 μm. 
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Fig. 19 Double-label immunofluorescence microscopy of a cryotomy cross-section 
through a seminiferous tubule of frozen bull testis, showing immunoreactions for protein 
myozap (a, a’’, a’’’; red; monoclonal mouse antibody) and the armadillo protein β-catenin 
(a’–a’’’; green; rabbit antibodies). Note that all Sertoli cells are positive for β-catenin-rich 
AJs but negative for protein myozap. Note also some positive myozap-staining in 
peritubular wall (brackets) and endothelial cells (I, interstitial space). (a’’’) Note spermatids 
in association with the apical indentations (L, lumen) and lateral plasma membranes of 
Sertoli cells. Bar 50 μm. 
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Fig. 20 Double-label immunofluorescence microscopy of cryostat cross-sections through 
frozen rat (a–a’’) and bull (b–b’’ and c–c’’) testes after reactions with monoclonal mouse 
antibodies against the desmosomal markers desmoplakin (DP; a, a’’; red), 
desmoglein-2 (Dsg-2; b, b’’; red) and plakophilin-2 (Pkp-2; c, c’’; red) as well as rabbit 
antibodies against the AJ marker β-catenin (a’–a’’, b’–b’’; green) and N-cadherin (c’–c’’; 
green). Note in the seminiferous tubules a positive staining of β-catenin (green) but totally 
negative immunostaining for DP, Dsg-2 and Pkp-2. I, interstitial space; L, lumen. 
Bars 20 µm (see also Domke et al. 2014). 
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4.4.2 Electron and immunoelectron microscopy of cytoskeletal structures and cell-
cell adherens junctions  

For ultrastructural analyses, tissue samples were electron microscopically examined using 

ultrathin sections of tissue samples fixed in glutaraldehyde. Fig. 21 presents a survey of a 

part of a typical Sertoli cell characterized by a large nucleus, the outer nuclear membrane 

of which is associated with vimentin IFs, including here a very large, almost 

paracrystalline bundle (bottom part), and a close plasma membrane connection of two 

Sertoli cells with variously-sized AJs of the punctum adhaerens type.  

Sertoli cell-cell contacts in the seminiferous tubules can vary in size, including 

small as well as very large and complex AJ structures, usually associated with a 

cytoplasmic plaque of locally variable area and thickness (Figs. 22 a–g). Often cell-cell 

junction-like plasma membrane structures can be seen over extended regions of 

diameters of more than 10 µm (e.g., Fig. 22 a; for higher magnifications of very large cell-

cell AJs see also Figs. 22 a’’’–g). These structures appear in close and parallel order with 

plasma membrane-to-membrane distances of 5–15 nm and diameters or lateral lengths 

up to several micrometers (Figs. 22–24), occupying very large cell-cell junction regions. 

Such gigantic and close AJ-type cell-cell contacts often begin near the basal plasma 

membrane and extend over almost the entire lateral cell-cell contact regions (see, e.g., 

Figs. 22 a–c). They have therefore been subsumed under the special junction category of 

areae adhaerentes. At higher resolution (Figs. 22 d–g) some of these junction intercepts 

are covered by cytoplasmic plaque material of various shapes and densities. Many of 

them reveal intermembrane (“mesoglea-like”) periodical punctate arrays (Figs. 22 f and g; 

see also Fig. 1 of Franke et al. 1982b). 

Sertoli cell-cell junctions of the adherens type frequently also show characteristic 

paracrystalline actin myofilament bundles close and parallel to the plasma membrane 

(“ectoplasmic specializations”; e.g. Figs. 23 a–f and 24 a and a’; see also Nicander 1967; 

Dym and Fawcett 1970; Franke et al. 1978a; Vogl et al. 2000; Mruk and Cheng 2004a, b; 

Wong et al. 2005). These paracrystalline myofilament bundle specializations often appear 

to be connected to the plasma membrane by very thin lateral cross-bridges (Figs. 23 b–g 

and 24 a’). In addition, in some regions very close contacts of the plasma membranes of 

two adjacent cells are visible, resembling “kissing points” of a tight junction-like type (see, 

e.g., arrowheads in Fig. 23 a’ and arrows in Fig. 24 a’’; see also Fawcett 1981, Franke et 

al. 1982b).  

Cribelliform junctions (areae cribelliformes) of bovine seminiferous tubules are 

characterized by membrane-bound cytoplasm-cytoplasm pore channels of an internal 

cytoplasmic luminal diameter of 5–7 nm and a total length of 6–9 nm, often closely 

associated with myofilament bundles (see, e.g., Figs. 23 d–h; for a schematic presentation 
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see Fig. 25). However, these structures mostly occur in clusters of two to six cribelliform 

junctions (see, e.g., Figs. 23 d–e).  

Immunoelectron microscopical analyses have confirmed the absence of 

desmosomal structures and desmosome-specific marker molecules such as 

desmoglein-2, desmocollin-2, desmoplakin and plakophilin-2. Vice versa, immunogold 

labelling showed variously-sized, often extended regions positive for N-cadherin as well 

as for the armadillo protein β-catenin and for a striatin along the cell-cell contacts between 

Sertoli cells as well as between Sertoli and germ cells (Figs. 26 a–f).  
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Fig. 21 Electron micrographs of ultrathin sections through a Sertoli cell in a 
seminiferous tubule of bull testis. (a) Sertoli cell (N, nucleus), showing close associations 
of the nuclear envelope with vimentin intermediate-sized filament (IF) bundles (see also 
the IFs indicated by a bracket in the upper left), mitochondria (M) and endoplasmic 
reticulum cisternae. An extended plasma membrane cell-cell junction region with plaque-
bearing adherens junction (AJ) structures is highlighted by arrowheads (three AJs of the 
punctum adhaerens type are denoted by brackets on the right hand side). (b) A cell-cell 
contact with a very small AJ punctate "midline" structure and a plaque structure of 
heterogeneous thickness is approached by a bundle of vimentin filaments which comes 
close to the plaque of the junction but is not directly attached to it (bracket in the upper 
left). Bars (a) 500 nm and (b) 200 nm (see also Domke et al. 2014). 
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Fig. 22 Electron micrographs of ultrathin sections through seminiferous tubules of boar 
(a–a’’’) and bull (b–d) testis. (a) Survey pictures show adjacent Sertoli cells with details of 
the very extended, narrow-spaced (5–15 nm) plasma membrane connections (area 
adhaerens junctions; denoted by arrowheads). (a’–a’’’) Details at higher magnification. 
(b–d) In such extended, narrow-spaced plasma membrane connections locally limited 
“minimal plaque material” (MPM) AJs are seen with thin and loosely arranged plaque-like 
structures. (c) Some junctions show narrow intermembrane distances (5–20 nm) 
associated with plaque material of different sizes and configurations. (e) Other small and 
rather narrow junctions (ca. 5–6 nm intermembrane distance) which here reveal 
asymmetrical cytoplasmic coating with irregularly shaped plaque material. (f and g) An AJ 
with a continuous planar order of 6–7 nm-thick membranes shows serially arranged 
“punctate midline” granules of 2–3 nm diameter but rather loose cytoplasmic plaque 
coverage (g partial magnification). BL, basal lamina; C, cytoplasm. Bars (a) 1 μm, (a’’’) 
500 nm, (a’, a’’, b, c) 200 nm, (d, e) 100 nm and (f, g) 50 nm (see also Domke et al. 2014). 
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Fig. 23 Electron micrographs of ultrathin sections through seminiferous tubules of bull 
testicular tissue. (for continuation see the next page). 
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Continuation of Fig. 23 Electron micrographs of ultrathin sections through 
seminiferous tubules of bull testicular tissue. (a) Overview of four adjacent Sertoli cells 
(SCs) with adherens junction (AJ) regions and adjacent myofilament paracrystals parallel 
to the plasma membrane (“ectoplasmic specializations”) as well as some regions with 
rather small cribelliform junctions. Sertoli cells of a specific subtype are characterized by a 
high packing density of endoplasmic reticulum. (a') Some regions show interspersed cells 
with small, tightly adpressed membrane junctions suggesting even direct molecular 
interaction (arrowheads). (b, c) Other cortical regions are dominated by typical junctions 
associated with parallel paracrystalline actin myofilament bundles very close to the 
plasma membrane (“ectoplasmic specializations”). (d–f) Sertoli cell contacts with distinct 
narrow channels (cribelliform junctions) appearing as sieve-plate junctions between the 
cytoplasms are denoted by arrows. (e, f) Higher magnification of cribelliform junctions 
(areae cribelliformes) with channel-like sections are seen with an inner “pore” diameter of 
5–7 nm and a total length of 6–9 nm. These junctions are often characterized on one side 
or on both sides of the channel by electron-dense, plaque-like structures (brackets in h). 
(c, g, i, j) Often plasma membrane contacts are associated with adjacent actin filament 
bundles, which are at some sides cross-bridged to the plasma membrane by short 
structures (see also arrowheads in g). (j–l) The parallel and narrow junction-like structures 
of adjacent cells are coated irregularly with loose cytoplasmic dense materials. 
Bars (a) 1 μm, (a') 500 nm, (b, d, i, j, k) 200 nm, (c, g, h, l) 100 nm and (e, f) 50 nm (see 
also Domke et al. 2014). 
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Fig. 24 Electron micrographs of ultrathin sections through seminiferous tubules of bull 
testes. Cell-cell junctions of Sertoli cells (SCs) represent specific subtypes of AJs. 
(a) Overview showing parts of five tight-associated Sertoli cells (numbered 1–5) with 
extended cell-cell contact regions (areae adhaerentes). Often lateral cross-bridges are 
present between the plasma membrane and bundles of cortical actin myofilament 
paracrystals (up to 4 nm thick; denoted by brackets in the insert a’). One can further 
recognize two distinct junction subtypes in rather regularly alternating arrangements: 
rather short and close contacts (partially shown at higher magnification and denoted by 
arrows in a’’ and a’’’) and usually wider (membrane-to-membrane distances between 
8 and 25 nm), often with distinct midline granules (cf. cells nos. 1 and 2 in a) as well as 
rather dense and thick cytoplasmic plaques (denoted by an arrowhead in a’’’). In a’’’ note 
also the adjacent occurrence of three different junction types side-by-side: a punctum 
adhaerens-type junction (arrowhead), a very tightly adpressed membrane junction 
(arrow), and a junction of the “minimal plaque material” (MPM) AJ type with ca. 8–18 nm 
intermembrane distance and very thin, often hardly recognizable cytoplasmic plaque 
(bracket). M, mitochondria. Bars (a, a’’, a’’’) 200 nm and (a’) 100 nm (see also 
Domke et al. 2014). 
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Fig. 26 Immunoelectron microscopy of seminiferous tubules of bull testicular tissue 
using antibodies against β-catenin (a–d), N-cadherin (e) and striatin (f). (a–d) After 
silver enhancement the immunogold grains show specific binding of β-catenin in extended 
regions of Sertoli cell contacts with neighboring cells, including very long (4–6 μm) and 
continuously labelled regions (areae adhaerentes). (e) All types of Sertoli-Sertoli cell 
junctions are also positive for N-cadherin. (f) In addition, other adherens plaque proteins 
such as striatin are seen. Bars (c) 1 μm, (d, f) 500 nm and (a, b, e) 200 nm (see also 
Domke et al. 2014). 

 

  

Fig. 25 Higher magnification of a 
cribelliform junction (area cribelliformis) 
in a seminiferous tubule of bull testes. 
This sieve-like junction is characterized 
by channel-like cytoplasm-cytoplasm 
continuities of an inner pore diameter of 
5–7 nm and a total length of 6–9 nm 
(arrows). Usually, these junctions occur 
in clusters of rather regularly and closely 
spaced cell-cell junctions in distinct 
regions. The lower picture shows a 
schematic drawing of a cribelliform 
junction. Bar 10 nm. 
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4.5 The basal plasma membrane and the basal lamina  

The cells of the seminiferous tubule are attached to a well-developed basal lamina (BL) 

which appears as a partly stratified structure separating the tubule from the surrounding 

peritubular wall tissue beginning with the first layer of extracellular matrix (ECM) material. 

As desmosomes have repeatedly been claimed to laterally connect cells of the 

seminiferous epithelium, Sertoli cell hemidesmosomes have been postulated to be 

involved in the basal connection with peritubular wall cells or ECM structures (for 

references see Table 3). However, my studies of the Sertoli cells and the BL have 

revealed a total absence of hemidesmosomal structures as well as of hemidesmosomal 

hallmark molecules (for general references of such structures and molecules see 

chapter 5.2). In particular, the analyses showed that the basal plasma membrane of the 

cells of the seminiferous tubules does not contain hemidesmosomal marker molecules 

such as protein HD230/233 (bullous pemphigoid antigen; BPA 230), the integrin α6β4 

complex, tetraspanin CD151 and plectin. The significance of these negative results has 

been controlled by positive immunostaining reactions of all these hemidesmosomal 

markers in the adjacent epithelia of the excurrent ducts and in diverse other epithelia. As a 

representative example, the reaction of glycoprotein HD 230/233 is shown in the cell type 

comparison of Fig. 27: While this molecule is totally missing in Sertoli cells it is present in 

the hemidesmosomes on the basal plasma membrane of the excurrent duct epithelial 

cells in all species examined. On the other hand, specific laminins have been seen in 

intimate association with the BL and with peritubular wall cells and ECM structures as well 

as in the walls of blood vessels located in the interstitial space (Figs. 28 and 29). 

The BL can reach thicknesses up to 1.5 µm in bull testis and shows in some 

regions up to 2.5 µm deep indentations into the Sertoli cells (Fig. 53). These occur often in 

an almost regular pattern with lateral distances of ca. 2–3 µm (see, e.g., also Wrobel et al. 

1979, for human testes see Chakraborty et al. 1976). In other species, notably boar, such 

indentations have also been noted although mostly at much lower frequencies (not 

shown). 
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Fig. 27 Double-label immunofluorescence microscopy of cryostat cross-sections 
through seminiferous tubules (a–a’’) and excurrent ducts (b–b’’) of frozen bull testis. 
Immunoreactions with the hemidesmosomal (HD) marker protein HD230/233 (a, a’’, b, 
b’’; red; monoclonal mouse antibody) and the extracellular matrix (ECM) marker protein 
collagen IV (a’–a’’, b’–b’’; green; rabbit antibodies) show in the Sertoli cells as well as in 
the perivascular walls (V, vessels) and in the peritubular walls (brackets) of the 
seminiferous tubule cells totally negative reactions for the HD marker protein but a 
positive immunoreaction of collagen IV (a–a’’). In contrast, an intensely positive reaction 
for HD marker molecules at distinct hemidesmosomal structures is seen at the basal 
plasma membrane of the excurrent duct epithelium. Reactions of collagen IV are also 
distributed in the ECM material of the peritubular walls and the walls of blood vessels (V) 
of the interstitium (I; b–b’’). Nuclei have been stained blue with DAPI (a’’, b’’). L, lumen. 
Bars 20 µm. 
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Fig. 28 Tile scan survey of double-label immunofluorescence microscopy of a cryostat 
cross-section through seminiferous tubules in frozen bull testis tissue. Immunostaining 
with antibodies against laminin (a, a’’, a’’’; red; rabbit antibodies) and smooth muscle 
α-actin (α-SMA; a’–a’’’; green; monoclonal mouse antibody) shows colocalization or 
partially overlapping reactions in peritubular smooth muscle cell (SMC) layers. Note 
however, that here most of the very small blood vessels in the interstitial region (I) are 
positive only for α-SMA. Nuclei have been stained blue with DAPI (a’’’). L, lumen. 
Bar 100 µm. 
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Fig. 29 Double-label immunofluorescence microscopy of a cryostat cross-section 
through seminiferous tubules of frozen bull testis. After immunoreactions of antibodies 
against the basal lamina component laminin (a, a’’, a’’’; red; rabbit antibodies) and the 
smooth muscle cell (SMC) marker smooth muscle α-actin (α-SMA; a’–a’’’; green; 
monoclonal mouse antibody) laminin-staining (red) is seen along the basal lamina line at 
the bottom of the Sertoli cells and α-SMA-staining (green) of SMC layers in the peritubular 
walls (denoted in a’’’ by brackets) as well as in blood vessel (V) walls. In most regions the 
basal lamina is followed by a SMC layer positive for both α-SMA and laminin structures 
(very close localization or even partial “colocalization” of both markers is indicated by 
yellow merge colour). The two inserts (i, ii) in the lower right of a’’’ present higher 
magnifications showing that laminin is not restricted to the basal lamina. Here it is also 
seen in parts of the ECM layers located between the SMC layers. In addition, laminin is 
present in perivascular walls of most of the very small blood vessels which here are 
negative for α-SMA (small arrows). Nuclei have been stained blue with DAPI. I, interstitial 
space. L, lumen. Bars (a–a’’’) 50 µm and (i, ii) 10 µm. 
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4.6 The peritubular walls: Cell type-characteristics and cell-cell junctions 
of the lamellar smooth muscle cells (LSMCs) 

The cells of the special tissue surrounding the BL of seminiferous tubules in mature testes 

have been examined using immunofluorescence light and immunoelectron microscopy, 

including tile scanning methods and lateral as well as vertical tomographies with respect 

to the corresponding tubule. 

The results show that the tubules are tightly surrounded by cell bandage sheets 

which represent monolayers of very thin (in some regions down to ~ 30 nm cytoplasmic 

membrane-membrane interspace) and broadly extended polyhedral cells. These cells 

have a fully developed smooth muscle character and mainly appear as flattened lamellae. 

Based on their molecular characteristics these cells can be classified as lamellar SMCs 

(LSMCs). They are organized as stacks of laterally tightly connected LSMC monolayers 

interspersed with ECM layers and are wrapped around the seminiferous tubules (cf., e.g., 

Leeson and Leeson 1963; De Kretser et al. 1975; Bustos-Obregon 1976; Wrobel et al. 

1979; Maekawa et al. 1996). Rodents display an exception as their peritubular wall usually 

consists only of one LSMC layer. 

4.6.1 Immunofluorescence microscopical analyses of cytoskeletal and adherens 
junction molecules  

In this study, immunocytochemical analyses have revealed that peritubular wall cells are 

fully developed SMCs rich in smooth muscle α-actin (α-SMA), corresponding myosin light 

and heavy chains, smoothelin, α-actinin, tropomyosin, desmin, vimentin, vinculin, talin, 

filamin A, drebrin, dystrophin, calponin, protein SM22α and caldesmon (Figs. 30–41, 

Table 14; for general references and reviews of these marker molecules see chapter 5.5).  

In most cases, the mentioned smooth muscle marker molecules have not only 

been detected in the LSMCs surrounding the tubules but also in the blood vessel walls of 

the interstitial space of all species examined which thus are internal positive SMC-type 

controls (Figs. 30, 32, 37–38). For these experiments again the excurrent ducts were used 

as another control cell and tissue type (see chapter 4.3; Figs. 11–16). Table 14 presents a 

comparative list of the SMC-typical molecules tested and identified in cryostat cross-

sections by immunofluorescence microscopy using specific antibodies. 

The LSMCs are connected by single – or clusters of – AJs containing cadherin-11, 

a type II cadherin (Figs. 42, 45), as well as the armadillo-type cytoplasmic plaque protein 

β-catenin, plakoglobin and occasionally protein p0071. In sexually mature bull testes, the 

LSMCs as well as the smooth muscle cells of blood vessel walls often also contain 

P-cadherin (Figs. 43–45). In addition, the plasma membrane glycoprotein E-cadherin has 

been selectively detected in some LSMCs (Figs. 18, 44, 46). Negative findings will have to 
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be carefully examined and controlled using antibodies binding to different epitopes or 

scaffold complexes of all species studied.  

While Sertoli cells are negative for the AJ plaque protein myozap, a number of cell-

cell contact sites of LSMCs, blood vessel walls and endothelia have shown positive 

reactions for this protein (Fig. 47). The same was seen for protein LUMA which showed 

positive reactions in LSMCs of bull and human testes (Fig. 48) as well as in cells of the 

outer smooth muscle walls of excurrent duct tissues (Figs. 15–16 in chapter 4.3).  

4.6.2 Intermediate-sized filament proteins in the LSMCs 

Desmin and vimentin were generally detected in LSMCs. However, the intensity and 

distribution patterns of these IF proteins differed in certain regions within one LSMC or 

between different LSMCs and often also in different species (for general references see 

chapter 5.5). In addition, the occurrence of IF proteins identified as cytokeratins 8 and 18 

was unexpectedly recognized in LSMC layers of bull and boar testes (Figs. 49–51; 

Table 15). In the peritubular LSMCs, desmin and cytokeratins 8 and 18 are in some parts 

in very close contact whereas other cell parts show separate localizations of cytokeratin 

and desmin (see, e.g., Fig. 51).   



Results 

  

71 
 

Table 14 Smooth muscle marker molecules identified and localized in peritubular 
and blood vessel wall SMCs of mammalian testes 

Antibodies specific for Peritubular wall cells (LSMCs) Blood vessel SMCs 

Smooth muscle α-actin (α-SMA) ++ ++ 

Myosin (smooth muscle; heavy chain) ++ ++ 

Myosin (smooth muscle; light chain 2) ++ ++ 

Myosin (skeletal and smooth muscle) + + 

Desmin ++ ++ 

Drebrin1 + + 

Vimentin ++ ++ 

Smoothelin ++2 +++ 

Protein SM22α (SM22α) ++3 ++ 

Calponin +4  ++ 

Caldesmon + + 

α-Actinin ++ ++ 

Tropomyosin + + 

Talin + ++ 

Filamin A + ++ 

Vinculin/Metavinculin + + 

Dystrophin + + 

Caveolin-1  + + 

1 With the antibodies used (Peitsch et al. 2001, 2003, 2005) drebrin has been seen in the LSMCs 
of peritubular walls as well as in SMCs of blood vessel walls whereas reactions on other testicular 
cells were negative or rather weak and diffuse. As the literature contains other results, in particular 
specific reactions with actin-rich regions of Sertoli cells (Li et al. 2011; Su et al. 2013; Chen et al. 
2017) and specific regions of neuronal cells (Shirao and Obata 1986) this discrepancy will be dealt 
with in a later publication of the laboratory of Prof. Dr. Werner W. Franke.  
2 Partly different smoothelin antibody reactions have been noted in peritubular walls: Polyclonal 
smoothelin antibodies used (Abcam, ab204305) have shown a positive reaction in peritubular walls 
of all species while the monoclonal smoothelin antibody (Millipore, MAB3242) has reacted 
positively only with LSMCs of bull and boar peritubular wall tissues but not in human and rodent 
peritubular walls. However, all antibodies have been generally positive in SMCs of blood vessel 
walls. Whether this is due to the presence of a different amino acid sequence or protein 
modifications or epitope “masking” by certain scaffold or other complex formations remains to be 
examined. 
3 Partly different SM22α antibody reactions have been noted in peritubular walls: Some polyclonal 
SM22α antibodies (Abcam, ab155272) have shown positive reactions on blood vessel walls of all 
species but no positive reaction in peritubular walls. Other polyclonal SM22α antibodies (Abcam, 
ab14106) react positively only in bovine peritubular wall LSMCs but not in peritubular walls of the 
other species examined, whereas positive reactions have been seen in blood vessel walls of all 
species tested. 
4 With the specific antibodies used calponin has only been detected in bull and human peritubular 
walls but not in peritubular walls of other species. Again, it needs to be examined in future 
experiments whether this is based on antibody specificities or specific epitope-containing 
scaffolding complexes, or on one specific absence of calponin in certain other species. 
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Table 15 Immunolocalization results with additional structural marker molecules 
in reactions with peritubular walls and blood vessel walls of diverse mammalian 
species 

Antibodies specific for Peritubular wall cells (LSMCs) Blood vessel wall SMCs 

Laminin 51 – + 

Laminin mix ++ ++ 

HD 230/233 – – 

Pro-Collagen + + 

Collagen-IV ++  + 

Elastin ++  + 

α-cardiac Actin – – 

α-skeletal/cardiac Actin – – 

Myosin Cardiac (heavy chain) – – 

Cytokeratin 8 (+)2 – 

Cytokeratin 18 (+)2 – 

α6-Integrin (+)3 + 

β4-Integrin (+) + 

Fibronectin (+) + 

1 The laminin 5 antibodies used (Progen, 10765) are human-specific. 
2 The antibodies against cytokeratins 8 and 18 used are positive only with LSMCs of bull and boar 
tissues (compare also with Table 16 in the Discussion).  
3 The α6- and β4-Integrin antibodies used react differently, maybe based on species specificity of 
the antibodies used or on epitope “masking”. However, colocalization as is typical for 
hemidesmosomes has not been seen.  
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Fig. 30 Tile-scan overview showing double-label immunofluorescence microscopy of 
frozen bull testis tissue presenting a cryostat cross-section through seminiferous tubules. 
Immunoreactions of smoothelin (a, a’’, a’’’; red; monoclonal mouse antibody) and 
desmin (a’–a’’’; green; rabbit antibodies) show colocalization of both smooth muscle 
marker proteins in the peritubular wall structures, the peritubular lamellar smooth muscle 
cells (LSMCs), around the seminiferous tubules (L, lumen) as well as in the perivascular 
smooth muscle cell layer of blood vessels (V) in the interstitial space (I). Nuclei have been 
stained blue with DAPI (a’’–a’’’). Bar 100 µm (see also Domke and Franke 2018, in 
revision). 
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Fig. 31 Double-label immunofluorescence microscopy of cryostat cross-sections 
through frozen bull testis tissue. Immunoreactions show in the peritubular LSMC layers 
(brackets) colocalization of smoothelin (a, a’’, a’’’, b, b’’, b’’’; red; monoclonal mouse 
antibody) and desmin (a’–a’’’, b’–b’’’; green; rabbit antibodies) in many regions (yellow 
merge colour, with phase contrast background in a’’’, b’’’) but clearly not in all. At higher 
magnification (b–b’’’) another region shows the local differences of both smooth muscle 
proteins. Many fibrils are seen in different orientations – some longitudinal, some in a 
cross-striated appearance. L, lumen; I, interstitial space. Bars 20 µm (see also Domke and 
Franke 2018, in revision). 
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Fig. 32 Tile-scan survey showing double-label immunofluorescence microscopy of a 
cryostat cross-section through seminiferous tubules in frozen bull testis tissue. 
Immunoreactions to smoothelin (a, a’’, a’’’; red; monoclonal mouse antibody) and 
smooth muscle α-actin (α-SMA; a’–a’’’; green; rabbit antibodies) show colocalization of 
both smooth muscle marker proteins in the peritubular LSMC structures around the 
seminiferous tubules (L, lumen) and in some perivascular smooth muscle cell layers of 
blood vessels (V) whereas a certain type of thin blood vessel walls is only positive for 
α-SMA (denoted by arrows in a’’’, on optical phase-contrast background). Nuclei have 
been stained blue with DAPI. I, interstitial space. Bar 100 µm. 
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Fig. 33 Double-label immunofluorescence microscopy of a cryostat cross-section 
through frozen human testis tissue. Immunoreactions of the smooth muscle markers 
smoothelin (a, a’’, a’’’; red; rabbit antibodies) and smooth muscle α-actin (α-SMA; a’–
a’’’; green; monoclonal mouse antibody) show that colocalization of both smooth muscle 
marker proteins (yellow merger colour) is seen only in some regions of the peritubular 
LSMC structure around the seminiferous tubules but not in all (L, lumen). I, interstitial 
space. Bar 50 µm. 
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Fig. 34 Double-label immunofluorescence microscopy of a cryostat cross-section through a 
part of a seminiferous tubule of frozen human testis, containing here rather thick SMC walls 
(denoted by bracket). These LSMCs are positively immunostained for smooth muscle myosin 
heavy chain (a, a’’, a’’’; red; monoclonal mouse antibody) and smooth muscle α-actin 
(α-SMA; a’–a’’’; green; rabbit antibodies). I, interstitial space; L, lumen. Bar 20 µm (see also 
Domke and Franke 2018, in revision). 

 

 

Fig. 35 Double-label immunofluorescence microscopy of a cryostat cross-section through 
seminiferous tubules (L, lumen) of a frozen bull testis. Immunoreactions of antibodies to 
smooth muscle α-actin (α-SMA; a, a’’; red; monoclonal mouse antibody) and to desmin (a’–
a’’; green; rabbit antibodies) show colocalization regions (yellow merger colour) in the 
peritubular LSMC layers (a’’; brackets) as well as in the perivascular (V, vessel) SMCs but also 
some regions which are positive for either α-SMA or desmin. (b’, c’) Note a small vessel (left V) 
which is positive only for α-SMA. The inserts (b–b’’, c–c’’) demonstrate orientation differences 
of protein immunostaining in different peritubular wall layers or intercepts. I, interstitial cells. 
Bars (a–a’’) 20 µm and (b–b’’, c–c’’) 10 µm (see also Domke and Franke 2018, in revision). 
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Fig. 36 Double-label immunofluorescence microscopy of a cryostat cross-section through 
seminiferous tubules of mature (a, b) bull and (c) rat testes. After immunoreactions to 
smooth muscle α-actin (α-SMA; a, a’’, a’’’, b, c, c’’; red; monoclonal mouse antibody) and 
to the intermediate-size filament protein vimentin (a’–a’’’, b, c’, c’’; green; guinea pig 
antibodies) all Sertoli cells (L, lumen) show positive reaction for vimentin filament bundles 
but are totally negative for α-SMA. In contrast, peritubular LSMCs (brackets) show regions 
of colocalization or optical overlapping of α-SMA and vimentin (a’’, a’’’, b and c; yellow 
merge colour). I, interstitial space. Bars 20 μm. 
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Fig. 37 Double-label immunofluorescence microscopy of cross-sections through 
seminiferous tubules of frozen bull testis tissue, showing that antibodies against 
smoothelin (a, b; red; monoclonal mouse antibody) and desmin (b’, b’’; green; rabbit 
antibodies) react positively in parts of LSMCs surrounding the tubules (L, lumen) and 
blood vessels (V) and that the vimentin filament bundles (a’, a’’; green; guinea pig 
antibodies) are structures which occur in both the Sertoli cells as well as in various cells of 
the interstitial space (I). Nuclei have been stained blue with DAPI. Bars 20 μm. 
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Fig. 38 Double-label immunofluorescence microscopy of cryotomy cross-sections 
through frozen bull testes after immunoreactions with antibodies against the protein talin 
(a, a’’; red; monoclonal mouse antibody), protein calponin (b, b’’; red; monoclonal mouse 
antibody), protein SM22α (c, c’’; red; rabbit antibodies) and against the SMC marker 
smooth muscle α-actin (α-SMA; a’–a’’, b’–b’’; green; rabbit antibodies) as well as 
desmin (c’–c’’; green; monoclonal mouse antibody). Note the positive staining in 
extended regions of the LSMCs (denoted by brackets). Immunoreactions show positive 
results, partly appearing optically as colocalization, in the peritubular LSMCs surrounding 
the seminiferous tubules (L, lumen). SMCs of a blood vessel (V) in the interstitial space (I) 
indicate that these are here only positive for SM22α, α-SMA and calponin. Bars 50 µm. 
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Fig. 39 Double-label immunofluorescence microscopy of cryostat cross-sections 
through seminiferous tubules of frozen (a) human, (b) bovine, (c) porcine, (d) rat and 
(e) guinea pig testes after reactions with rabbit antibodies against filamin A (a, a’’, b, b’’, 
c, c’’, d, d’’, e, e’’; red) and a monoclonal mouse antibody to smooth muscle α-actin 
(α-SMA; a’–a’’, b’–b’’, c’–c’’, d’–d’’, e’–e’’; green). Both filamin A and α-SMA are 
localized in the LSMCs of the peritubular and the vascular walls (V, blood vessels), often 
optically giving the impression of colocalization (yellow merge colour) in all species. 
I, interstitial space; L, lumen. Bars 50 µm. 
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Fig. 40 Double-label immunofluorescence microscopy of a cryostat cross-section 
through frozen boar testis tissue. Immunoreactions of dystrophin (a, a’’, a’’’; red; rabbit 
antibodies) and smoothelin (a’–a’’’; green; monoclonal mouse antibody) show extended 
colocalization of both marker proteins (yellow merger colour) in the LSMCs of the 
peritubular wall structure. I, interstitial space; L, lumen. Bar 50 µm (see also Domke and 
Franke 2018, in revision). 

 



Results 

  

83 
 

 

Fig. 41 Double-label immunofluorescence microscopy of a cryostat cross-section 
through frozen human testis tissue. Immunoreactions of dystrophin (a, a’’; red; rabbit 
antibodies) and desmin (a’–a’’; green; monoclonal mouse antibody) as well as 
caldesmon (b, b’’; red; rabbit antibodies) and smooth muscle α-actin (α-SMA; b’–b’’; 
green; monoclonal mouse antibody) show colocalization of both marker proteins (yellow 
merger colour) only in some regions of the peritubular wall but not in all (L, lumen). 
I, interstitial space. Bars 50 µm. 
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Fig. 42 Double-label immunofluorescence microscopy of a cryotomy cross-section 
through seminiferous tubules of frozen bull (a, b, d, e) and human (c) testes show 
immunoreactions of cadherin-11 (a, a’, b, c, d; red; monoclonal mouse antibody) and 
N-cadherin (c; green; rabbit antibodies). (a, b, d, e) Positive punctate reaction sites of 
cadherin-11 are seen in regions of the peritubular wall structures including LSMCs 
(brackets; higher magnification images are shown in d and e) and of blood vessel (V) 
walls as well as in some other cells of the interstitial space (I). (c) As in the bovine Sertoli 
cells (a–b) cadherin-11 is usually also not recognized in human Sertoli cells which, 
however, are rich in N-cadherin-positive AJs. Nuclei have been stained blue with DAPI. 
L, lumen. Bars (a, b, c) 20 µm and (d, e) 10 µm (see also Domke and Franke 2018, in 
revision). 
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Fig. 43 Double-label immunofluorescence microscopy of a cryotomy cross-section 
through seminiferous tubules of frozen bull testis show immunoreactions of P-cadherin 
(a, b, a’’, b’’; red; rat antibodies) and N-cadherin (a’, b’, a’’, b’’; green; monoclonal 
mouse antibody). (a, b) Positive reactions of P-cadherin are seen in regions of the 
peritubular wall structures (LSMCs; brackets in b’’). N-cadherin is seen in the tubules (L) 
and if any sparsely in the LSMCs. I, interstitial space. Bars (a, b) 50 µm. 
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Fig. 44 Double-label immunofluorescence microscopy of a cryotomy cross-section 
through seminiferous tubules of frozen bull testis show immunoreactions of P-cadherin 
(a, b, a’’, b’’; red; rat antibodies) and E-cadherin (a’, b’, a’’, b’’; green; monoclonal 
mouse antibody). (a, b) Colocalizations of P-cadherin and E-cadherin are seen in regions 
of the peritubular wall structures (LSMCs; brackets in b’’). L, lumen; I, interstitial space. 
Bars (a) 50 µm and (b) 20 µm. 
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Fig. 45 Double-label immunofluorescence microscopy of a cryotomy cross-section 
through seminiferous tubules of frozen bull testis show immunoreactions of cadherin-11 
(a, a’’; red; monoclonal mouse antibody) and P-cadherin (a’, a’’; green; rat antibodies). 
Reaction sites of cadherin-11 and P-cadherin are seen in regions of the peritubular 
LSMCs. In addition, some other cells of the interstitial space (I) are positive for 
cadherin-11. L, lumen. Bars 50 µm. 

 

 

 

Fig. 46 Double-label immunofluorescence microscopy of cryostat cross-sections 
through seminiferous tubules of frozen rat testes. After immunoreactions against 
E-cadherin (a, a’’, b; red; monoclonal mouse antibody) and N-cadherin (a’–a’’, b; green; 
rabbit antibodies) Sertoli cells are positive for N-cadherin (green) but negative for 
E-cadherin. A positive immunoreaction for E-cadherin (red) is only seen in some 
peritubular wall cells (b; brackets). Bars 20 μm. 
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Fig. 47 Double-label immunofluorescence microscopy of a cryotomy cross-section 
through seminiferous tubules (L, lumen) of bull testis. After immunoreactions of protein 
myozap (a, a’’, a’’’; red; monoclonal mouse antibody) and the armadillo protein β-catenin 
(a’–a’’’; green; rabbit antibodies) all Sertoli cells and blood vessel (V) endothelial cells are 
positive for β-catenin whereas Sertoli cells are negative for protein myozap. In contrast, 
both myozap-positive and β-catenin-positive AJs are recognized in cells of the peritubular 
walls and distinct colocalization of both, myozap and β-catenin, is characteristic for the 
AJs of vascular endothelial cells (note the yellow merger colour). I, interstitial space. 
Bars (a) 50 µm and (b) 20 µm (see also Domke and Franke 2018, in revision). 
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Fig. 48 Double-label immunofluorescence microscopy of a cryostat cross-section 
through frozen (a, c) bull and (b) human testicular tissue. Immunoreactions of LUMA (a–
c, c’’; red; guinea pig antibodies) and α-SMA (c’, c’’; green; monoclonal mouse antibody) 
show positive reactions in the LSMCs (brackets in c’’) of the peritubular wall structure. 
L, lumen; I, interstitial space; V, blood vessel. Bars 50 µm. 
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Fig. 49 Double-label immunofluorescence microscopy of cross-sections through a 
bovine testicular tissue containing seminiferous tubules and interstitial cells using 
antibodies against vimentin (a, a’’, b, b’’; red; monoclonal mouse antibody) and 
antibodies against cytokeratins 8 and 18 (a’–a’’, b’–b’’; green; guinea pig antibodies). All 
Sertoli cells are intensely positive (red) for vimentin filament bundles but totally negative 
for any of the cytokeratins (green). By contrast some cytokeratin-positive LSMCs 
(brackets in a’’ and b’’) occur in the peritubular wall (note the yellow merger colour, 
indicative of partial “colocalization” of both IF proteins in these LSMCs). Groups of 
spermatids in the lumen (L) are denoted by arrows. I, interstitial space. Bars 20 μm. 
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Fig. 50 Double-label immunofluorescence microscopy of cryostat cross-sections 
through bull testis, showing that peritubular walls surrounding the seminiferous tubules 
(L, lumen; walls are denoted by brackets in a’’) contain cell regions positive for smooth 
muscle α-actin (α-SMA; a, a’’, b–e; red; monoclonal mouse antibody) and others 
containing intermediate-sized filaments of cytokeratins 8 and 18 (a’–e; green; guinea pig 
antibodies). Some limited regions give the impression of small overlap reactions of both 
vimentin and cytokeratins (yellow merge colour). The perivascular walls (V, vessels) are 
exclusively positive for α-SMA. Various fibrillar patterns of cytokeratin positivity are seen, 
including regions with oblique and cross-striation structures (higher magnifications in b–e). 
I, interstitial space. Bars (a) 50 µm and (b, c, d, e) 20 µm (see also Domke and Franke 
2018, in revision). 
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Fig. 51 Double-label immunofluorescence microscopy of cryostat cross-sections 
through seminiferous tubules of bull testes. After immunoreaction to the intermediate 
filament (IF) protein desmin (a, a’’, b, b’’; red; monoclonal mouse antibody) and to 
cytokeratins 8 and 18 (a’, a’’, b’, b’’; green; guinea pig antibodies) all Sertoli cells are 
totally negative for both markers but the peritubular wall LSMCs (brackets in a’’) are 
positive, partly in substructures, suggesting “colocalization” or topological overlap (yellow 
merger colour). I, interstitial space; L, lumen. Bars 50 μm.  
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4.6.3 Ultrastructural and immunoelectron microscopical analyses of the LSMCs 

The peritubular wall is characterized by thin alternating monolayers of LSMCs and layers 

of ECM rich in collagen fibrils (Fig. 52 c). The Sertoli cells of the seminiferous tubule are 

attached to the BL which is followed by an ECM layer containing closely packed bundles 

of collagen fibrils, followed by a LSMC monolayer, which is again followed by another 

ECM layer and another LSMC layer. The number of such LSMC layers per tubule varies 

between species and regions (cf. Christl 1990). In certain species such as man, boar and 

bull there are regions with three pairs of LSMC-ECM layers (Fig. 52) and other regions 

with up to four, five or six LSMC-ECM layers. 

Thus the peritubular wall tissue represents a bandage system of monolayers of 

SMCs which in the most part have a lamellar form. These LSMC monolayers have sizes 

and shapes completely different from those of all other kinds of SMC tissues hitherto 

known. The cytoplasm of these LSMCs is enriched with myofilament bundles, often in 

high packing densities, locally even in paracrystalline fiber arrays, mostly in coaxial 

orientation with respect to the corresponding seminiferous tubule and with identical 

orientation in a given cell (Figs. 53–55). These cells are also rich in other typical SMC 

structures such as cytoplasmic "dense bodies" of varying sizes (mostly up to 1 µm long 

and up to 0.5 µm thick in centripetal direction), plasma membrane-associated “focal 

adhesions” and clusters of caveolae. Cytoplasmic plaque-bearing focal adhesions occur in 

some regions in high frequency, similar to those present in other kinds of SMCs (e.g., 

Fig. 53 d). Such frequencies and high packing densities of filament bundles, dense bodies 

and caveolae are also known from other SMC types.  

The thickness of the collagen fibril-dominated ECM layers can vary remarkably. 

Also the thickness of the LSMC monolayers varies in different cell regions (see, e.g., 

Figs. 53 c and d). In bull testis, for example, the LSMCs are very thin in some regions 

(down to ca. 30 nm cytoplasmic membrane-to-membrane thickness) whereas in other 

regions, in particular the perinuclear one, the cytoplasm can exceed 1.5 µm in thickness. 

Over extended areas the thin lamellar regions of the LSMCs do not contain any 

mitochondria, large vesicles or other large cell structures. 

While the LSMC monolayers are separated by ECM layers, LSMCs within the 

same monolayer are usually tightly connected at the cell ends or in overlapping cell 

processes by AJs (Figs. 55–57). The end-on-end form of the AJ-like junctions often 

contains only hardly detectable plaque structures (Fig. 56 f). Some of the overlapping cell 

protrusions of the processus adhaerens type (alter supra alterum) are filiform or serial 

interdigitating while others appear broader in variously-sized lamellar forms. The AJs often 

occur in clusters. 
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Typical AJ components in such overlapping thin cell protrusions have also been 

identified by immunoelectron microscopy, including cadherin-11 together with ß-catenin 

and protein myozap. Using immunoelectron microscopy, it often appears that such 

membranes rich in AJ molecules extend over areas larger than the specific, clearly visible 

cytoplasmic plaque structure (e.g. Fig. 58).  

 

 

Fig. 52 Electron micrograph of an ultrathin cross-section through a seminiferous tubule 
of glutaraldehyde-fixed bull testis. Here the basal region of a tubule with Sertoli cells (SCs) 
and germ cells is shown which is connected to structures of the interstitial space by the 
basal lamina (BL). In the peritubular wall the flat LSMC layers (nos. 1–3, numbered on the 
left margin) alternate with extracellular matrix (ECM) layers rich in collagen (C). The 
peritubular wall cells are rich in filament bundles, focal adhesions and dense bodies. 
N, nucleus. Bar 1 µm. 



Results 

  

95 
 

 

Fig. 53 Electron micrographs of ultrathin cross-sections through peritubular wall structures 
encasing seminiferous tubules of bull testis. (a) The basal lamina (BL) presents in many 
regions rather closely spaced indentations of up to 1.5 µm (arrows) into the cytoplasm of the 
Sertoli cells (SCs). However, the BL is for the most part on the other side nearly even-
surfaced and borders on a collagen (C) fiber-rich extracellular matrix (ECM) layer, which is 
followed by a first LSMC layer (numbered on the right hand margin: no. 1). In addition, 
another ECM layer and the second LSMC layer (no. 2) are seen. (b) In some other regions 
the SC shows small and short acute projections into the BL. (c) Fili- and/or lamelliform 
processes of LSMCs (numbered on the right hand margin) surrounding SCs (arrows denote 
BL indentations of the type described in a) are associated with layers of collagen (C) fiber-rich 
ECM. In such regions the smooth muscle cytoplasms are very thin (in some places down to 
ca. 30 nm; denoted by white arrowheads) and characterized by densely packed actin and 
actomyosin filaments. (d) Higher magnification of a part of the region shown in c, shows much 
closer packed filament bundles in the upper LSMC layer (no. 1) than in the lower LSMC layer 
(no. 2). In LSMC layer no. 1 a cell-cell junction (J) in an overlapping region is denoted. The 
numerous focal adhesions of LSMC layer no. 2 are highlighted by arrowheads and two 
narrow plasma membrane invaginations are denoted by arrows. Note also the numerous 
caveolae and vesicles at the plasma membrane of the lower LSMC (no. 2). N, nuclei. 
Bars (a) 2 µm, (b, c) 1 µm and (d) 500 nm (see also Domke and Franke 2018, in revision).



Results 

  

96 
 

 

Fig. 54 Electron micrographs of ultrathin sections through bull testicular tissue. 
(a) Further details of the LSMC layers of the peritubular wall encasing the seminiferous 
tubules, interspersed by collagen (C) fiber-rich ECM layers (note that almost all collagen 
fibers are cross-sectioned, i.e., coaxial with the seminiferous tubule). (b, insert) Higher 
magnification of a group of plasma membrane caveolae is seen at the right hand margin 
of a LSMC layer (no. 1). (c) A Sertoli cell (SC) borders on the basal lamina (BL) which is 
attached to the first collagen (C)-rich ECM layer. The following three layers of LSMCs 
shown here (nos. 1–3) are rich in myofilaments, intermediate-sized filaments, cytoplasmic 
“dense bodies” (arrowheads) and caveolae. Note that the filaments in LSMC layer no. 1 
extend in a direction different from that of the filaments seen in LSMC layer no. 2. 
Bars (a, c) 1 µm and (b) 200 nm (see also Domke and Franke 2018, in revision). 
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Fig. 55 Electron micrographs of ultrathin cross-sections through bull testis tissue 
revealing details of the LSMC monolayers. (a) LSMCs interspersed by collagen (C) fiber-
rich ECM layers (here almost all cross-sectioned) are rich in intermediate-sized filaments 
and myofilaments (running here in same direction as the specific seminiferous tubule). 
LSMC layer no. 2 contains in addition a dense packed peritubular fiber bundle (arrows). 
Layer no. 3 shows the connection of two overlapping LSMC protrusion ends connected 
here by three puncta adhaerentia resembling AJ structures (denoted by brackets). 
(b) Higher magnification of LSMC monolayers no. 1 is shown. Note mostly paracrystalline 
arrays of actin filaments in densely packed arrays (ca. 6 nm thick) and myosin filaments 
(ca. 12 nm thick). Such filaments occur here in close association with focal adhesions and 
cytoplasmic plaques of cell-cell junctions (denoted by brackets in LSMC layer no. 3). 
(c) Two LSMCs in very close association indicate extended cell-cell contact regions, partly 
with AJ structures. BL, basal lamina. Bars (a, c) 500 nm, (b) 200 nm (see also Domke and 
Franke 2018, in revision). 

 



Results 

  

98 
 

 

Fig. 56 Electron micrographs of ultrathin cross-sections of peritubular walls of 
seminiferous tubules of bovine testes, showing overlap regions of LSMC layers with 
various ultrastructural forms of cell-cell junctions of the adherens junction (AJ) type. (a–
c) The basal lamina (BL) associated with the Sertoli cell (SC) and the first ECM layer 
(C, collagen fibrils) is seen, followed by the first LSMC (nos. 1a and 1b) layer. Note the 
numerous AJs (arrowheads) connecting LSMCs (nos. 1a and 1b) which may also occur 
within cell-cell invaginations (e.g. at the thin arrow in the right). (d) Other forms of thin 
LSMC layers show clusters of vertical AJs (arrowheads) as well as of focal adhesions 
(arrows) and individual dense bodies (thin arrow). (e and f) Different subforms of AJs 
(denoted by arrowheads in the upper left region) as well as a more extended AJ (bracket 
in the right hand part of f) are seen as well as an extended focal adhesion-rich region 
(arrows). (g) Here, a cell-cell contact region with very little electron-dense cytoplasmic 
plaque material is seen. Bars (a) 1 µm, (b, c, d) 500 nm, (e, f) 200 nm and (g) 100 nm 
(see also Domke and Franke 2018, in revision). 
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Fig. 57 Electron micrographs of ultrathin sections through peritubular walls of 
seminiferous tubules of bovine testes: Various ultrastructural forms of vertical cell-cell 
junctions of the adherens junction (AJ) type are present in the peritubular wall LSMC 
layers in extended overlapping regions (processus alter supra alterum). Adjacent 
monolayer cells are connected by these membrane-membrane complexes contributing to 
closure of the peritubular wall structure against translocations of cells, particles and large 
molecular complexes. Bars 500 nm (see also Domke and Franke 2018, in revision). 
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Fig. 58 Immunoelectron micrographs of ultrathin sections through bull testicular tissue. 
Extended AJ-rich regions between LSMCs in peritubular walls are immunogold-labelled 
(with silver enhancement) on the plaque-bearing, i.e. cytoplasmic side with antibodies 
against β-catenin (a and b), protein myozap (c–e) and cadherin-11 (f–i). Note also the 
frequent dense associations of the thin cytoplasmic AJ plaques with myofilaments. 
Bars (a, c, d, e, i) 200 nm and (b, f, g, h) 500 nm (see also Domke and Franke 2018, in 
revision). 
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4.7 Immunocytochemical examination of the presence of a lymphatic 
endothelial cell layer covering the peritubular wall 

Over the past half century various authors have emphasized that, at least in rodent testes, 

the peritubular wall layers are intimately covered by a continuous, rather thin cell layer 

classified as a “lymphatic endothelium” (e.g., Fawcett et al. 1969; for further references see 

chapter 5.6). However, a direct cell type characterization of these cells with typical 

endothelial markers has not yet been published. 

Therefore, in this thesis work the peritubular wall structure and the adjacent region 

of the interstitial space have been systematically examined by immunocytochemistry 

using established endothelial cell type markers such as VE-cadherin, claudin-5, 

podoplanin, factor VIII (von Willebrand factor), platelet endothelial cell adhesion molecule 

(PE-CAM; CD31) and lymph vessel endothelium hyaluronan receptor 1 (LYVE-1; for 

references of endothelial cell type markers see chapter 5.6). In these experiments the 

excurrent ducts as well as the blood and lymph vessels in adjacent testicular regions were 

used as controls. 

My immunocytochemical studies have shown that in all species examined neither 

the excurrent duct epithelia nor the LSMC layer system of the peritubular wall are 

associated with an extended single cell layer with characteristics of a lymphatic 

endothelium (Figs. 59–61). Usually there are only very few and mostly very small 

lymphatic vessels in the interstitial space, some in close and many in greater distance 

from the peritubular wall. These results show that there is no direct coverage of the 

peritubular LSMC-ECM stacks by a lymphatic endothelium.  

4.8 Application of immunocytochemical antigen retrieval techniques  

Considering the possible value of antibodies to determine the specific cell types or cell 

type-derivations during development and certain pathological processes, but also for 

tumor diagnoses, aldehyde-fixed and paraffin-embedded tissue material have been 

routinely used after “antigen retrieval” treatment (for details see chapter 3.4.3). While 

some of the results obtained were very similar to those observed with snap-frozen tissue 

samples mentioned, a major part of the antigen retrieval immunostaining experiments 

were negative, apparently as artefacts resulting from epitope inactivation due to the 

specific treatment. Other immunostaining results (examples are shown in Figs. 62 and 63) 

demonstrate that here the specific treatments have resulted in accessibilities of the 

specific antigens in agreement with the results obtained with frozen tissue sections 

(compare, e.g., Figs. 38–39). Additional antibodies with different epitope binding 

properties need to be generated to find diagnostically useful reagents for 

immunocytochemical tests on aldehyde-fixed and paraffin-embedded tissues. 
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Fig. 59 Double-label immunofluorescence microscopy of cryostat cross-sections 
through seminiferous tubules of frozen bull (a, b), boar (c) and human (d, d’) testes. 
Immunostaining reactions of peritubular LSMCs as well as blood and lymph vessels (V) 
are shown with a monoclonal mouse antibody against smooth muscle α-actin (α-SMA, 
a–d’; green). For comparison, the vascular endothelial markers VE-cadherin (a–c; red; 
rabbit antibodies) and LYVE-1 (d, d’; red; rabbit antibodies) have been chosen for 
comparison to visualize specifically the vascular endothelium (red in vessels; lymph 
vessels are denoted by arrows and the peritubular walls by brackets). Note that even the 
endothelia of the smallest lymph and blood vessels are positive for both endothelial 
markers but negative for the SMC markers. Note in particular the complete absence of an 
endothelial marker reaction in the outermost cell layer of the peritubular LSMC wall. 
L, lumen; I, interstitial space. Bars (a, b, c) 20 µm and (d) 50 µm. 
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Fig. 60 Double-label immunofluorescence microscopy showing a cryotomy cross-
section through seminiferous tubules of bull testis after reactions with antibodies to 
claudin-5 (a, a’’, a’’’; red; monoclonal mouse antibody) and VE-cadherin (a’–a’’’; green; 
rabbit antibodies). Note the exclusive occurrence of both junction marker proteins in blood 
vessel endothelial cells (V, vessels) and their absence in seminiferous tubules (L, lumen) 
and peritubular wall LSMCs (I, interstitial space). Note the partially very close localization 
of both endothelial markers (yellow merger colour). Bar 50 µm. 
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Fig. 61 Double-label immunofluorescence microscopy of cryostat cross-sections 
through seminiferous tubules of frozen rat testes. (for continuation see the next page).  



Results 

  

105 
 

Continuation of Fig. 61 Immunostaining reactions of peritubular LSMCs as well as 
blood and lymph vessels (V) are shown with antibodies to claudin-5 (a, a’’, b, b’’, c, c’’; 
red; monoclonal mouse antibody), VE-cadherin (d, d’’; red; monoclonal mouse antibody) 
and smooth muscle α-actin (α-SMA; a’, a’’, d’, d’’; green; rabbit antibodies), β-catenin 
(b’, b’’; green; rabbit antibodies) as well as desmin (c’, c’’; green; rabbit antibodies). Note 
again that the smaller lymph and blood vessel (V) endothelia are positive for the 
endothelial marker but negative for SMC markers. Note also the complete absence of an 
endothelial marker reaction in the cell layer covering the peritubular LSMC wall. L, lumen; 
I, interstitial space. Bars 50 µm. 

 

 

Fig. 62 Double-label immunofluorescence microscopy of a formaldehyde-fixed paraffin 
embedded cross-section through bull testis after antigen retrieval treatment and 
immunoreactions with antibodies against the smooth muscle cell (SMC) marker proteins 
SM22α (a, a’’, a’’’; red; rabbit antibodies) and smooth muscle α-actin (α-SMA; b’–b’’; 
green; monoclonal antibody). Note the positive staining in extended regions of the 
peritubular wall LSMCs and in the SMCs of a blood vessel (V) in the interstitial space (I). 
L, lumen. Bar 50 µm. 
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Fig. 63 Double-label immunofluorescence microscopy of a formaldehyde-fixed paraffin 
embedded cross-section through human testis after antigen retrieval treatment and 
immunoreactions with antibodies against the smooth muscle cell (SMC) marker proteins 
SM22α (a, a’’; red; rabbit antibodies), caldesmon (b, b’’; red; rabbit antibodies), filamin 
A (c, c’’; red; rabbit antibodies) and smooth muscle α-actin (α-SMA; a’–a’’, b’–b’’, c’–
c’’; green; monoclonal antibody). Note the positive staining in extended regions of the 
peritubular wall LSMCs and in the SMCs of blood vessel walls (V) in the interstitial 
space (I). L, lumen. Bar 50 µm. 
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5 Discussion 

Since decades controversial reports have been published on the cytoskeletal and cell 

junctional components in the epithelium of the mature seminiferous tubules and the 

peritubular wall tissue of mammalian testes (for references see, e.g., Introduction and 

Table 3). Starting from some unexpected findings in my bachelor thesis work (Domke 

2013) I decided to further elucidate in my doctoral thesis the cell and molecular biological 

composition of these cells and thus to determine their specific cell type in a highly 

controlled form.  

5.1 Absence of desmosomes, desmosome-like junctions and 
desmosome-specific molecules in the seminiferous tubules 

The first group of results of this thesis work (chapter 4.4) confirmed and extended the 

concept that the epithelium of the mature and active tubuli seminiferi of mammalian testes 

is very different from all other mammalian epithelia examined so far. In particular, the 

absence of cytokeratins in contrast to the exclusive presence of vimentin intermediate-

sized filaments (IFs) in mature and healthy Sertoli cells was proven (cf. Franke et al. 

1979c, 1982b; Spruill et al. 1983; Paranko and Virtanen 1986; Bergmann and Kliesch 

1994; Romeo et al. 1995; for further references see Introduction). The present study could 

validate the statement (not only “proposal” as the conclusion was called by Vazquez-Levin 

et al. 2015) that the normal mature seminiferous tubule epithelium does not contain 

desmosomes (maculae adhaerentes) or desmosome-like junctions, and not even any 

desmosome-specific molecules (e.g., Franke et al. 1981b, 1982a; for further references 

see also Domke et al. 2014). In addition, this epithelium lacks E-cadherin-based adherens 

junctions (AJs) and EpCAM-containing cell-cell junctions (see also, e.g., Cyr et al. 1992, 

1993; Newton et al. 1993; Byers et al. 1994; Domke et al. 2014).  

 In this context, it should be emphasized that these cells do not contain any of the 

desmosomal components which have been detected in certain cells also outside of 

desmosomal structures. For example, plakophilin-2 (Pkp-2) occurs not only in 

desmosomes but also in specific AJs of certain mesenchyme-derived cells and cardiac 

tumors (e.g., Barth et al. 2009, 2012; Rickelt et al. 2010). The E- or N-cadherin-based 

“meningioma junctions” also have a plaque structure with α- and β-catenin, plakoglobin 

and protein p120 as well as plakophilin-2 (Pkp-2; Akat et al. 2008). Desmoplakin is 

present in addition to AJ molecules also in the complexus adhaerentes of some lymphatic 

endothelia (Schmelz et al. 1990, 1994; Schmelz and Franke 1993; see also Table 2 and 

Supplement Literature Collection No. 1), and dispersed desmoglein-2 (Dsg-2) glycoprotein 

has also been found in non-junction-containing regions of the surfaces of certain types of 

melanoma cells (e.g., Schmitt et al. 2007; Rickelt et al. 2008). Finally, the composite 
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junctions (areae compositae) of mammalian cardiomyocytes contain all simple epithelial 

desmosome molecules (desmoplakin, plakophilin-2, desmoglein-2 and desmocollin-2) in a 

large, cell type-specific complex together with AJ components and other specific 

molecules (e.g., Borrmann et al. 1999; Borrmann 2000; Franke et al. 2006, 2009; see also 

Table 2 and Supplement Literature Collection No. 2).  

 From the controlled experiments of this thesis, involving a wide range of antibodies 

and six different species, it is now clear that the seminiferous tubules of mature and 

healthy mammalian testes do not contain known desmosome-specific components and 

thus no desmosomes or desmosome-like junctions. This should finally lead to a general 

correction in cell biology textbooks and references (see also a comment of Pelletier and 

Byers 1992: “Therefore, the term desmosome-like is seemingly inappropriate to designate 

these junctions…”).  

5.2 Absence of hemidesmosomes and hemidesmosomal marker 
molecules in the seminiferous tubules 

Following the controversy concerning the presence or absence of desmosomes in mature 

seminiferous tubules, I have also examined the presence of hemidesmosomes in and at 

the basal plasma membrane of the Sertoli and germ cells. Here, the controlled analyses 

have also revealed a total absence of hemidesmosomes and specific hemidesmosomal 

marker molecules in contrast to published results of other authors (e.g., Wrobel et al. 

1979; Cheng and Mruk 2012). The list of missing hemidesmosomal marker components 

includes transmembrane components of hemidesmosomes such as the bullous 

pemphigoid antigen 230/233 (BP230; Stanley et al. 1981; Klatte et al. 1989; Owaribe 

et al. 1990, 1991; Sawamura et al. 1991; Hopkinson et al. 1995; Koster et al. 2003; for 

comparison with a positive control see Fig. 21), tetraspanin CD151 (Sterk et al. 2000), the 

transmembrane integrin α6β4 complex, assumed to be required for anchoring IFs 

(Sonnenberg et al. 1991; Sawamura et al. 1991; for reviews see, e.g., Schwarz et al. 

1990; Borradori and Sonnenberg 1999; Koster et al. 2004; Kligys et al. 2008; Walko et 

al. 2015) and the plaque protein plectin (Garrod 1999). This again emphasizes the special 

nature of the epithelium of the seminiferous tubules. Consequently, as hemidesmosomal 

anchorages of cytoskeletal filaments and hemidesmosomal attachments to the basal 

lamina do not exist in Sertoli cells, additional characterizations are required to determine if 

and how these cells form stable IF associations with the basal plasma membrane and cell 

attachments with basal lamina structures (see, e.g., Jones et al. 1998; Borradori and 

Sonnenberg 1999). Clearly, the basal lamina of these cells as well as other inter- and 

extracellular regions of the peritubular wall contain networks of polymers of type IV 
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collagen, certain laminins and several other components, similar to the corresponding 

structures in other epithelia.  

5.3 Tight and gap junctions in the seminiferous tubules  

Tight and gap junctions connecting Sertoli cells or Sertoli cells with germ cells have been 

studied by a series of researchers in various mammalian species. The structures and proteins 

of the tight junctions in the intratubular cell layers of mature, spermatid-producing mammalian 

testes have been subjects of many studies at the ultrastructural and the molecular level, in 

particular the forms associated with the so-called “blood-testis barrier” (see, e.g., Dym and 

Fawcett 1970; Gow et al. 1999; Morita et al. 1999a; Saitou et al. 1997; Pelletier 2001; 

Southwood and Gow 2001; Morrow et al. 2010; McCabe et al. 2016). Moreover, specific close 

(“tight”) and linear arrays of tight junction-related series of “dots” and/or “strands” have been 

described in such and other epithelia in a number of reports (e.g., Gilula et al. 1976; Furuse et 

al. 1993; Pelletier 2001; Schneeberger and Lynch 2004; Anderson and Van Itallie 2009; 

Furuse 2010; for review see, e.g., Tsukita et al. 2001). Special gene knockout experiments 

have already been performed that have given functional insights (see, e.g., results with 

Osp/claudin-11 null mice of Gow et al. 1999 and Southwood and Gow 2001). 

Correspondingly, the gap junctions of the seminiferous epithelium, including both the 

transmembrane connexin forms, i.e. connexin 43, as well as associated cortical proteins in a 

plaque-equivalent position, have also been repeatedly described in the literature (for relevant 

references on gap junctions of Sertoli and other cells see, e.g., Unwin 1987; Risley et al. 

1992; Goodenough et al. 1996; Steger et al. 1999; Koval 2008; Goodenough and Paul 2009; 

for generally relevant reviews see in particular Laird 2006, 2017; Nielsen et al. 2012; Zhou 

and Jiang 2014; Kidder and Cyr 2016). Additionally, next to already described structures new 

cell-cell contacts were noted in the present study. 

5.4 Two novel cell-cell junctions in the seminiferous tubules 

Junctions of the Sertoli cells and germ cells are dynamic structures that are regulated with 

respect to the testicular development and functions. In this study, two generally novel 

types of cell-cell junctions have been recognized in seminiferous tubules, namely the often 

very large “areae adhaerentes”, which are N-cadherin-based adhering junctions (AJs), 

and the special type of cribelliform (sieve-like) junctions (“areae cribelliformes”) which are 

prominent in bull testes and characterized by cytoplasmic cell-to-cell channels of 5–7 nm 

in luminal diameter (see also Domke et al. 2014). The novel cell-cell junctions are added 

to the list of novel types of adhering junctions in mammalian tissues (Table 17).  
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5.4.1 Areae adhaerentes 

A number of cell-to-cell AJs of Sertoli cells, with each other and with germ cells, occur in 

different long-known morphological forms, the fascia adhaerens and the punctum 

adhaerens (for general reviews see Farquhar and Palade 1963 and Franke 2010). The 

newly defined additional AJ structures, the areae adhaerentes, include variously-sized, 

often very extended forms and may appear with continuous lengths of more than 10 µm 

(see, e.g., Figs. 22 a–c and 24 a) and cell-cell contact areas larger than 30 µm2. This 

group of junctional structures (areae adhaerentes) includes some of the largest stable 

cell-cell junction contacts so far found not only in mammalian tissues but in the overall 

vertebrate cell biology. Moreover, the close and stable membrane-to-membrane distance 

over very large regions indicates a continuous molecular cell-cell interaction. This 

suggests continuous AJ-like structures, although in many parts neither distinct intercellular 

bridges nor specific cytoplasmic plaque structures are recognized.  

The list of proteins and glycoproteins localized in areae adhaerentes of Sertoli-

Sertoli cell and Sertoli-germ cell contacts includes N-cadherin clusters mostly anchored in 

cytoplasmic plaques containing α- and β-catenin, plakoglobin, protein p120, protein p0071 

and at least one protein of the striatin family (for this protein family see, e.g., Castets et al. 

1996, 2000; Gaillard et al. 2001; Blondeau et al. 2003; Franke et al. 2015; for reviews see 

Benoist et al. 2006; Bobik 2012; Hwang and Pallas 2014). It has, however, to be 

emphasized that this list cannot yet be considered to be complete. This may be 

attributable to local differences of the molecular composition or to molecules that are 

cytochemically undetectable because appropriate antibodies for reactions with specific 

epitopes are not yet available. Interestingly, although N-cadherin is known as the most 

predominant, perhaps even only cadherin of these AJs, N-cadherin gene knockout studies 

by Jiang et al. (2015) led to meiotic defects and failure in spermatogenesis but not to total 

cell dissociations and infertility. Thus, AJ-related structures and their possible functions 

need to be examined in further detailed genetic studies.  

5.4.2 Areae cribelliformes 

In bovine testes the newly described cribelliform junctions have been found as clusters of 

regularly and closely spaced cell-cell junctions in distinct regions of Sertoli cells, generally 

in association with some of the “ectoplasmic specializations”, i.e. paracrystalline-like 

arrays of actin microfilament bundles which appear to be linked with short lateral cross-

bridges to the plasma membrane (for ectoplasmic specializations see, e.g., Russell 

1977b; Franke et al. 1978a, 1982b; Vogl and Soucy 1985; Vogl et al. 1986, 1993, 2000; 

Grove and Vogl 1989; Mruk and Cheng 2004a; Li et al. 2015). Compared to gap junctions, 
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which contain pores of 1.5–2 nm in luminal diameter, the cell-to-cell channels of the 

cribelliform junctions are clearly much wider (5–7 nm, see, e.g., Figs. 24 and 25).  

In future studies further research analyses of the newly described cribelliform 

junctions should include studies of different species with the additional use of different 

tight and gap junction markers (for relevant references see, e.g., the collections of reviews 

edited by Cereijido and Anderson 2001; LaFlamme and Kowalczyk 2008; Nelson and 

Fuchs 2010; Fromm and Schulzke 2012).  

5.5 A novel and special kind of smooth muscle cells in peritubular walls 

The results of the biochemical, immunocytochemical and electron microscopical 

experiments have shown that the cells of the peritubular wall encasing the seminiferous 

tubules are a special form (“lamellar”) of fully developed smooth muscle cells (SMCs) with 

a laterally extended and for the most part very flattened, polyhedral cell shape. The 

peritubular SMCs are organized as bandage-like peritubular monolayers interspersed with 

ECM layers as described in chapter 4.6.3. 

5.5.1 Molecular, structural and functional aspects of the LSMCs 

The peritubular SMCs, referred to as “lamellar smooth muscle cells” (LSMCs), contain 

indeed a full complement of SMC-typical molecules and structures (Table 14 and 

Figs. 30–41). They represent a novel morphologically special category of SMCs, which 

fundamentally differ in their shape and tissue organization from all other kinds of reported 

SMCs (cf., e.g., Gabella 1994). In the literature these LSMCs of the peritubular wall are 

often classified as “myoid cells”, “myofibroblasts”, “myoepithelial cells”, “special 

fibroblasts” or “undifferentiated mesenchymal cells” (e.g., Fawcett et al. 1969; Böck et al. 

1972; Hadley and Dym 1987; Tung et al. 1984; Palombi et al. 1992a; Maekawa et al. 

1994, 1996; Losinno et al. 2012, 2016; for an early classification as SMCs based only on 

electron microscopy see Ross and Long 1966). However, these cells are not just “myoid” 

cells (meaning “a cell looking alike a muscle cell” but not a real muscle cell) or 

“myofibroblasts” (for the specific and correct definition of myofibroblasts as modified 

fibroblasts by Gabbiani and colleagues see Gabbiani et al. 1971; Majno et al. 1971; Ryan 

et al. 1974; Eddy et al. 1988; Hinz et al. 2012; see also Supplement Literature Collection 

No. 3).  

Previous authors have already called the peritubular wall cells “SMCs” on the basis 

of positive reactions of single – or very few selected – SMC marker molecules such as 

desmin or α-SMA (e.g., Virtanen et al. 1986; Palombi et al. 1992a; Romano et al. 2007). 

This, however, is insufficient for cell identification and classification since the synthesis of 

just one or a few individual major proteins alone does not allow to define a specific cell 

type. 



Discussion 

  

112 
 

This thesis work has shown that LSMCs are indeed SMCs sensu stricto: In 

addition to SMC-characteristic molecules they also contain all major SMC-typical 

structures such as myofilaments, often even organized in muscle-type paracrystalline 

bundle arrays, “dense bodies” (cf. Bond and Somlyo 1982), “focal adhesions” (for reviews 

see, e.g., Jockusch et al. 1995; Critchley 2004, Dubash et al. 2009) and caveolae (locally 

often in clusters; for references and reviews see, e.g., Supplement Literature Collection 

No. 6). In molecular terms the LSMCs contain all major SMC hallmark proteins, including 

smooth muscle specific α-actin (α-SMA; see, e.g., Skalli et al. 1986) and the 

corresponding myosin light and heavy chains (see, e.g., Babij et al. 1991; for review see 

also Krendel and Mooseker 2005), desmin (cf. Small and Sobieszek 1977; Hubbard and 

Lazarides 1979; Sparn et al. 1994) and smoothelin (cf. van der Loop 1996, 1997; 

Wehrens et al. 1997; Niessen et al. 2005; van Eys et al. 2007; Lepreux et al. 2013). As 

summarized in Table 14 almost all known SMC marker molecules are present in LSMCs 

(compare also references of the Supplement Literature Collection No. 4). In addition, 

throughout the present study strong immunoreactions for the smooth muscle markers 

found in LSMCs were also seen in SMCs of the adjacent blood vessel walls, which 

therefore provided optimal positive controls (see, e.g., Figs. 30 and 32).  

A high frequency of caveolae can also be found in the testicular LSMCs and the 

vascular SMCs. Caveolae are formed as a special type of lipid rafts and represent small 

invaginations (60–100 nm) of the plasma membrane (see, e.g., Ross and Long 1966, for 

references of caveolae and caveolin-1 see, e.g., Supplement Literature Collection No. 6; 

specifically for peritubular SMCs see Oliveira et al. 2016). In addition, Ca2+ binding and 

regulator proteins such as calponin, calponin-related protein SM22α and caldesmon are 

present in LSMCs of diverse species (for references see Supplement Literature 

Collection 5; for reviews see Winder and Walsh 1996; Wang 2001). However, it remains 

to be examined which specific isoforms of such proteins can be localized in the peritubular 

wall or whether some local or cell type-specific differences are based on special isoforms 

or different scaffolding forms and perhaps different epitope accessibilities. In some 

species, certain differences have been detected even between the peritubular wall and 

the SMCs of nearby located blood vessels (for a different immunostaining pattern of a 

calponin isoform in Sertoli cells of rat testes tissue see, e.g., Zhu et al. 2004). 

 In general, SMCs have a multifunctional potential, including contraction, 

proliferation, synthesis, and secretion of extracellular components, such as cytokines and 

growth factors. In adult animals, mature SMCs can show plasticity, phenotypical changes 

and responses to environmental signals unlike skeletal and cardiac muscle, which are 

terminally differentiated (e.g., Schwartz et al. 1990; Thyberg et al. 1990; Owens 1995, 

Owens et al. 2004). Vascular SMCs are also involved, e.g., in the control of blood 
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pressure and blood flow. The range of potential functions of the LSMCs of the peritubular 

walls of mammalian testes should be further studied on the basis of their molecular 

composition and structures, including the special forms of AJs (see chapter 5.5.4; Table 17). 

Smoothelin, for example, is known to be exclusively expressed in fully 

differentiated and contractile SMCs whereas cardiac and skeletal muscle cells do not 

contain this protein (van der Loop et al. 1996, 1997). In particular, smoothelin isoform B 

represents a potential marker for true smooth muscle cells (see, e.g., van Eys et al. 2007). 

In addition, Gan et al. (2007) have shown that the transcriptional regulatory element for 

another SMC gene, encoding α-SMA, in true SMCs is different from the transcription 

regulatory system for its expression in myofibroblasts, i.e. a special form of fibroblast cells 

(Tomasek et al. 2002).  

The frequency of myofilaments in LSMCs, with identical orientation in a given cell, 

is quite striking (for rodent peritubular walls, however, see also contrasting statements of 

Losinno et al. 2012, 2016). Furthermore, these myofilaments have a coaxial orientation 

corresponding to the respective seminiferous tubule, indicative of the specific direction of 

the contraction of the tubule. In testicular tissues this contractile nature was first shown by 

Roosen-Runge (1951) and Clermont (1958) and was also found for early non-mammalian 

vertebrates by Unsicker and colleagues (Unsicker 1974, 1975; Unsicker and Burnstock 

1975). The regulation and functional roles of these peritubular wall cell contractions have 

been studied for decades (see, e.g., Fawcett et al. 1969; Dym and Fawcett 1970; Fawcett 

et al. 1973). In many previous studies of the specific contractility it has also been a major 

question whether and how signaling molecules may be transported from the LSMCs into 

seminiferous tubules or vice versa. For technical reasons, a high proportion of these 

experimental studies have been performed with cultured cells or combinations of cultured 

peritubular wall cells and Sertoli cells (see, e.g., Tung and Fritz 1980, 1986a, 1986b; 

Tripiciano et al. 1996; 1997; Romano et al. 2005, 2007; Albrecht et al. 2006; for the 

influence of losses of contractility markers in infertility patients see, e.g., Welter et al. 

2013).  

5.5.2 Cytoskeletal heterogeneities of the LSMCs 

While some of the SMC tissues contain desmin as the by far predominant, often 

seemingly exclusive IF protein, many types of SMCs contain the IF-protein vimentin, alone 

or together with desmin. Indeed, vimentin is long-known as a constitutive cytoskeletal IF 

component of various SMC types, notably vascular wall SMCs and certain SMC-derived 

tumors and cell cultures, either alone or together with desmin (e.g., Small and Sobieszek 

1977; Hubbard and Lazarides 1979; for further references see also Supplement Literature 

Collection No. 4.1; for a review see Rensen et al. 2007; for testis, in particular for 
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developmental stages, see van Vorstenbosch et al. 1984; Virtanen et al. 1986; van Muijen 

et al. 1987; Tung and Fritz 1990).  

The presence of a further IF-protein in LSMCs of bulls and boars, namely 

cytokeratins of a simple epithelial character, i.e. cytokeratins 8 and 18, may seem 

disturbing in view of the predominant cell type specifications of IF-protein type syntheses. 

However, In the literature the occurrence of cytokeratin IFs in certain SMC tissues has 

been reported for various mammalian species, notably myometrial and perivascular 

SMCs, cell cultures as well as certain SMC tumors (leiomyomas and leiomyosarcomas) 

and other pathogenic forms (for a list of references see Table 16). Now this thesis adds 

certain bovine and porcine testicular LSMCs to this list. 

Additionally, the presence of E-cadherin together with cytokeratins 8 and 18 is 

detectable in testicular LSMCs of certain species such as bull and boar. Generally, 

E-cadherin is known to occur regularly and only in epithelial and certain epithelium-

derived cells as an epithelial hallmark protein (for references see, e.g., Vestweber and 

Kemler 1984; Takeichi 1988, 1990; Perez and Nelson 2004; Strumane et al. 2004; Meng 

and Takeichi 2009). The regulations of the synthesis and the functions of these marker 

molecules in LSMCs of these species are still not clear.  

5.5.3 Special morphological aspects of the LSMCs 

The extended flat flaps of the LSMCs, their stacked arrangements in monolayers alternating 

with ECM layers, and their bandage-like, tight encasement of the seminiferous tubules show 

their morphological difference from other smooth muscle tissues (see, e.g., Gabella 1994). 

The most striking difference from all other SMC tissues is their flattened cell shape in many 

areas. Large parts of the LSMCs appear as thin regions in which the cytoplasmic membrane-

to-membrane thickness is very low (30–100 nm), and consequently such regions are free of 

any large cell organelles, vesicles or sizeable aggregates. In particular, mitochondria are 

generally excluded from such cell portions which suggest special local metabolic conditions. 

Most likely, these very thin LSMC regions are among the thinnest lamellar cytoplasmic 

structures that have been found in vertebrate cells in situ, comparable for example, only to 

some endothelial areas and short transition regions of oligodendrocytes to the myelin sheaths. 

Morphologically, very thin but mostly filiform, interdigitating projections and lamellipodial 

processes have also been found in special fibroblastic cells of heart valves (e.g., Filip et al. 

1986; Wuchter et al. 2007; Barth et al. 2009, 2012; for review see Franke et al. 2009), and 

interstitial cells of Cajal cells (e.g., Faussone-Pellegrini and Thuneberg 1999). Only in certain 

cell cultures, still much thinner cytoplasmic regions have been found with membrane-to-

membrane cytoplasmic structures which in that case, however, are stabilized by columella-

like, short cytoplasmic bridges (11–16 nm; Franke et al. 1978d).   
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Table 16 Examples of reports of the presence of cytokeratins 8 and 18 in specific 
human smooth muscle cells (in addition to vimentin or desmin or both; 1987-1993) 

Reference* Smooth muscle tissues and/or cell 
cultures 

Developmental stage or 
pathological form  

Huitfeldt and Brandtzaeg 
1985 

Myometrium  Normal adult tissue 

Brown et al. 1987 Myometrium  Normal adult tissue, tumors 
(leiomyomas, leiomyosarcomas) 

Jahn et al. 1987 Blood vessels in synovial tissue and 
umbilical cord 

Normal adult tissue 

Norton et al. 1987 Smooth muscle in adult and fetal 
small intestine, esophagus, blood 
vessels, myometrium  

Normal adult and fetal tissue, 
tumors (leiomyomas, 
leiomyosarcomas) 

van Muijen et al. 1987 Stroma of umbilical cord and placental 
villi, small intestine, tongue, blood 
vessels 

Normal fetal tissue 

Bader et al. 1988 Vascular walls of umbilical cord, 
cultured cells derived therefrom  

Normal adult tissue 

Gown et al. 1988 Cell cultures of myometrium, fetal 
intestine and heart, some tumors 

Normal adult and fetal tissue, 
tumors (leiomyomas, 
leiomyosarcomas) 

Kasper et al. 1988 Vascular cells and stellate cells of 
umbilical cord 

Normal adult tissue 

Kuruc and Franke 1988 Vascular walls of some cardiac blood 
vessels 

Normal adult and fetal tissue 

Miettinen 1988 Some soft tissue tumors  Tumors (leiomyomas, 
leiomyosarcomas) 

Ramaekers et al. 1988  Myometrium, blood vessels Tumors (leiomyomas, 
leiomyosarcomas) 

Turley et al. 1988 Myometrium Normal adult tissue 

Bozhok et al. 1989 Fetal allantois, urogenital sinus, 
Wolffian and Müllerian ducts, 
mesentery, urinary bladder and 
certain regions of colon, rectum and 
atrium cordis walls, cell cultures 

Normal tissues in fetal stages 

Franke et al. 1989  Certain fetal organs, including blood 
vessels, adult myometrium 

Normal adult and fetal tissue, 
atherosclerotic tissues, tumors 
(leiomyomas, leiomyosarcomas) 

Knapp et al. 1989; 
Knapp and Franke 1989 

Diverse cell culture lines derived e.g. 
from smooth muscle tissue, fibroblasts 

Normal adult tissue 

Jahn and Franke 1989 Arteries  Normal adult tissue, 
atherosclerotic lesions  

Tauchi et al. 1990 Soft tissue tumors Tumors (leiomyomas, 
leiomyosarcomas) 

Glukhova et al. 1991 Aortic walls  Normal fetal tissue, 
atherosclerotic plaques 

Jahn et al. 1993 Coronary artery, peripheral vascular 
walls, myointimal cells 

Normal fetal and neonatal 
tissues, vein graft disease, tissue 
transplantation-associated 
atherosclerosis 

Miettinen et al. 1993 Myometrium Normal adult tissue 

* For an early review see Gusterson 1987. For specific later reports see Jahn 1997; Johansson et 
al. 1997, 1999; Slomp et al. 1997; Yu and Bernal 1998; Chu and Weiss 2002; for cytokeratins in 
non-epithelial cells of amphibia and fishes see Markl and Franke 1988; Ferretti et al. 1989. 
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5.5.4 The novel cell-cell junctions connecting the LSMCs 

In a healthy state, the peritubular wall with its bandage system of LSMC monolayers 

appears impermeable for translocations of large particles and molecule complexes. Thus, 

it may represent an additional “outer barrier” around the seminiferous tubule (e.g., Fawcett 

1994). Therefore, it is necessary to analyze the cell-cell connections and molecular 

compositions of these LSMCs.  

Within a given LSMC monolayer the cells are laterally connected in two ways: (i) 

Directly end-to-end (see, e.g., Fig 56 f) or (ii) by usually more frequent, closely-spaced 

vertical AJs located in overlapping LSMC processes (collations adhaerentes) of the type 

processus alter supra alterum, an apparently novel architectonic form (Figs. 55 a, d 

and 56 a–e; Table 17). Similar serial AJ structures have been shown in mesenchymal 

stem cells and the filopodia connecting cardiac valve fibrocytes (Wuchter et al. 2007; 

Barth et al. 2009, 2012). An indication of the occurrence of such two types of AJ-type 

junctions between LSMCs had already been noted by Dym and Fawcett (1970) in rat 

testis although mostly in much smaller forms (see Figs. 3-7 in Dym and Fawcett 1970). 

Such serial vertical AJ-type junction formations for lateral connections also appear related 

to the serial invagination and interdigitating connections of certain mammalian endothelial 

cells (see, e.g., Figs. 1-3 in Franke et al. 1988).  

The predominance of cadherin-11, a type II cadherin, in immunolabelling 

experiments at the light (Figs. 36 and 39) and electron (Fig. 57 f–i) microscopic level is in 

agreement with their SMC character (see chapters 4.6.1 and 4.6.3; for rat testes see also 

Johnson and Boekelheide 2002a,b), as this glycoprotein is well-known to be involved in 

the development and maintenance of diverse types of SMCs, osteogenic and tendon-

associated cells as well as other mesodermally-derived cells (e.g., Okazaki et al. 1994; 

Hoffman and Balling 1995; Kimura et al. 1995; Simmoneau et al. 1995; Alimperti et al. 

2014; Row et al. 2016; for further references and reviews see Supplement Literature 

Collection No. 7).  

In addition, P-cadherin, known as a major component present in some proliferative 

tissues (Hirai et al. 1989) and certain epithelia (e.g., the basal cell layers of certain 

stratified epithelia such as bovine tongue mucosa; Nose and Takeichi 1986; Johnson et 

al. 1993; Wu et al. 1993; Furukawa et al. 1997), has been identified in LSMCs of mature 

bull testes (see, e.g., Figs. 37–39) but not at all in Sertoli cells of mature animals. On the 

other hand, however, this glycoprotein has also been reported by other authors to occur in 

Sertoli cells of fetal, postnatal and very young bulls. Perhaps, this can be explained by a 

correlation with the transition from an early to a mature state in testis development. 

Previously, this glycoprotein has been reported to occur in Sertoli cells of rats during pre- 

and perinatal stages but then to gradually disappear postnatally, while in advanced states 
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of maturation it has then been detected in LSMCs (see, e.g., Wu et al. 1993; Lin and 

DePhilip 1996). Since P-cadherin-deficient mice are fertile (Radice et al. 1997), it needs to 

be analyzed which functional role P-cadherin plays in the stabilization, intercellular 

adhesion and maintenance of integrity of the peritubular LSMCs. 

The 54 kDa plaque protein myozap has been discovered in certain regions of 

LSMCs as well as in endothelial cells and some interstitial mesenchymal cells of bovine 

and human testes. It also appears to be present in the zonula adhaerens of the excurrent 

duct epithelia of all examined testicular tissues. Myozap is a cytoskeletal protein first 

found by Seeger et al. (2010) in intercalated disks of cardiomyocytes (composite 

junctions, areae compositae) as a special plaque component. In addition, it has also been 

identified in the endothelial AJs of blood and lymph vessels (Pieperhoff et al. 2012) and in 

the zonula adhaerens junctions of E-cadherin-based epithelia (Rickelt et al. 2011a). In this 

study, protein myozap has not been seen in AJs of Sertoli cells in seminiferous tubules of 

bovine, boar and man but has been noted in Sertoli cells of rodents. However, as protein 

myozap has been detected in this study as a major component of the cytoplasmic AJ 

plaques of bovine and human LSMCs in the peritubular wall as well as in blood vascular 

SMCs, it appears to offer another potential valuable cell type marker for diagnostic 

immunocytochemistry.  

Protein LUMA (TMEM43) known to occur in the composite junctions of heart tissue 

(e.g., Franke et al. 2014) has also been detected in LSMCs of testicular tissues and in 

certain blood vessel walls but not in Sertoli cells. In respect to the known involvement of 

certain LUMA-mutations in cardiomyopathies (see, e.g., Christensen et al. 2011a; Liang et 

al. 2011; Larsen et al. 2012; Baskin et al. 2013; Haywood et al. 2013; Hodgkinson et al. 

2013), the functional role of protein LUMA in testicular LSMCs needs to be further 

examined.  

5.6 Absence of a lymphatic endothelium 

The results of this thesis have shown that in rodents, as in all other mammalian species 

studied, the peritubular wall structure is not tightly covered by an extended lymphatic 

endothelium or a single endothelial cell layer as it has been claimed to the contrary in 

numerous publications and textbooks (e.g., Fawcett et al. 1969, 1970, 1973; Dym and 

Fawcett 1970; Dym 1975, 1994; Clark 1976; Söderström 1981; Maekawa et al. 1996; Yazama 

et al. 1997; Losinno et al. 2012, 2016). Only occasionally, rather small lymphatic vessels, 

located in the interstitium i.e. away from the peritubular wall, are positive for established 

endothelial cell type markers (see chapter 4.7; for references of endothelial cell type 

markers applied see, e.g., Newman et al. 1990; Lampugnani et al. 1992, 1995; Banerji et 

al. 1999; Morita et al. 1999b; Dejana et al. 2000; Prevo et al. 2001; Sleeman et al. 2001; 
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Karkkainen and Alitalo 2002; Miettinen 2003; Dejana 2004; Hämmerling et al. 2006; 

Cîmpean et al. 2007; Baluk et al. 2007; Lampugnani and Dejana 2007; Pfeiffer et al. 2008; 

Moll et al. 2009; Noda et al. 2010; Bravi et al. 2014; for specific human endothelial 

markers see Podgrabinska et al. 2002; Miettinen 2003). On the other hand, the very 

sensitive immunocytochemistry methods applied have also revealed the regular 

occurrence of small lymphatic capillaries in the interstitium between the seminiferous 

tubules, in contrast to the negative results of other authors who have stated that a 

testicular lymphatic system is restricted to the septula testis and absent in most of the – or 

even the entire – interstitium (e.g., Holstein et al. 1979; Hirai et al. 2012; Svingen et al. 

2012; DeFalco et al. 2015). 

Negative results with the prototype of the complexus adhaerens subtype of 

lymphatic endothelia, which contain the plaque protein desmoplakin (Schmelz et al. 1990, 

1994; Schmelz and Franke 1993), have led to the conclusion that the lymphatic vessels of 

the testicular system are generally of the complexus adhaerens-free category (for 

complexus adhaerens-positive lymphatic endothelia see, e.g., Valiron et al. 1996; 

Gallicano et al. 1998; Kowalczyk et al. 1998; Sawa et al. 1999; Ebata et al. 2001a, b; 

Zhou et al. 2004; Hämmerling et al. 2006; Baluk et al. 2007; Pfeiffer et al. 2008; Moll et al. 

2009). 

However, the cytochemical and ultrastructural results which have been obtained in 

the course of this doctoral thesis still do not allow the typological identification of the 

outermost lamellar cells specifically in rodent testes. They are to some extent compatible 

with the originally electron microscopically-derived interpretation of Ross and coworkers 

(e.g., Ross 1967; Bressler and Ross 1972) that this outermost cell layer of the peritubular 

wall consists of laterally connected fibroblasts or fibrocytes or may even present a yet still 

unknown cell type. The origin of these cells, however, needs to be examined with 

additional cell type-specific markers.  

5.7 Comparison with studies using cell cultures containing Sertoli and 
LSMC-derived cells 

In the last four decades a huge number of data obtained from cell cultures of Sertoli cells 

and/or peritubular wall-derived cells has been published, including enriched or “purified” 

cell types as well as “co-cultures”. In particular LSMC-containing cultures, grown in 

various cell culture media, have been used for biochemical and physiological studies 

(Mayerhofer 2013; for further examples of references see Supplement Literature 

Collection No. 8). Such studies have led for example to discoveries of the synthesis and 

effects of, e.g., endothelin-1, decorin, biglycan and fibronectin, procollagenase IV and 

collagenase IV, plasminogen activators and their inhibitors.  
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 However, the cell biological value of such cultures is still questionable. For 

example, the LSMCs growing in cell culture are very different to the typical LSMC 

morphology in situ. In all cell cultures used in previous reports, the cells have not a 

polyhedral shape and have not been shown to be connected by the kind of cell-cell 

junctions active in living tissues. In all these cultures the LSMCs do not grow in the form 

embedded in both sides with ECM structures and material which is characteristic for the 

monolayer cell bandage stack system of the peritubular LSMCs in situ. Obviously, cell 

culture systems need to be developed to allow Sertoli cells on the one hand and LSMCs 

on the other to grow in a mode close to their in situ organizations.  

5.8 Species differences, seasonal differences and evolution  

To date only limited cell biological and molecular information is available for non-

mammalian vertebrates and seasonal differences of different mammalian species. So far, 

only a few studies have dealt with the regulation of seasonal fertility changes, for example 

by changes of the outer temperature (see Supplement Literature Collection No. 9).  

However, in early cell biological studies similarities of smooth muscle-like cells were noted 

in peritubular walls of certain other vertebrates (for lower vertebrates, in particular birds, 

reptiles and amphibia, see, e.g., Rothwell and Tingari 1973; Rothwell 1975; Unsicker 

1975; Unsicker and Burnstock 1975; see also Supplement Literature Collection No. 9). So 

far, however, only a limited portion of the antibodies used in this thesis work appears to be 

cross-reactive and thus applicable for such studies. For future analyses, further species-

specific antibodies need to be developed.  
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Table 17 Novel types of adhering junctions in mammalian tissues (discoveries 
after 1990; see also Table 2) 

Type  Reference 

Complexus adhaerens  

(some specific endothelia, virgultar cells of lymph nodes, 
lymphatic retothelium) 

1990 Schmelz and Franke 1993; 
Schmelz et al. 1990, 1994; 
Hämmerling et al. 2006 

Contactus adhaerens (granular cells of cerebellar 
glomeruli) 

1995 Rose et al. 1995; 
Bahjaoui-Bouhaddi et al. 
1997; Hollnagel et al. 2002 

Zonula limitans externa (heterotypic: photoreceptor  
Müller glia cells) 

1999 Paffenholz and Franke 
1997, Paffenholz et al. 
1999 

Area composita (composite junctions; intercalated disks of 
cardiomyocytes)  

1999, 
2006 

Borrmann 2000; 
Borrmann et al. 2000, 
2006; Franke et al. 2006 

Iunctura structa (specific stratified epithelia) 2002 Langbein et al. 2002 

Cortex adhaerens (eye lens) 2003 Straub et al. 2003 

Colligatio permixta (astrocytes, astrocytoma) 

Incl. Meningeal junctions (meningioma) 

2004 

2008 

Boda-Heggemann 2005 

Akat et al. 2008 

Puncta adhaerentia minima (specific mesenchymal cells) 2007 Wuchter et al. 2007;  
Barth et al. 2009 

Processus adhaerens (specific mesenchymal cells) 2007 Wuchter et al. 2007 

Manubrium adhaerens (specific mesenchymal cells in 
culture)  

2007 Wuchter et al. 2007; 
Rickelt et al. 2009 

Coniunctio adhaerens (mesenchymal cells of high 
proliferative activity)  

2009 Barth et al. 2009;  
Rickelt et al. 2009 

cis-E:N-Cadherin heterodimer junctions (hepatocytes, 
hepatomas, certain pancreatic cells) 

2011 Straub et al. 2011 

Area tessellata (tessellate junctions) 2013 Franke et al. 2013 

Area adhaerens (seminiferous tubules of testes, 
N-cadherin-based) 

2014 Domke et al. 2014; present 
study 

Area cribelliformis (Sertoli cells in seminiferous tubules of 
bovine testes) 

2014 Domke et al. 2014; present 
study 

Collatio adhaerens (overlapping lamelliform processes of 
the type processus alter supra alterum, with vertical 
AJs for lateral cell-cell connections, in peritubular walls 
of testes, Cadherin-11-based) 

2018 Present study  
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6 Conclusions and Outlook 

The present systematic study of isotypic cell-cell adhering junctions (AJs) and cytoskeletal 

filaments of Sertoli and germ cells of the seminiferous tubules has confirmed the absence of 

desmosomes and “desmosome-like” junctions as well as the absence of several other 

epithelial AJ molecules. In addition, this thesis presents the finding of two novel types of cell-

cell junctions in seminiferous tubules: (i) The N-cadherin-based AJs of the category “areae 

adhaerentes”, including very large cell-cell junctions, and (ii) the “areae cribelliformes” 

(cribelliform junctions), clusters of sieve-plate-like junctions perforated by small cytoplasm-to-

cytoplasm channels (5–7 nm).  

The analyses of the basal lamina of the seminiferous tubules have revealed the lack of 

hemidesmosomes and hemidesmosomal markers. Furthermore, I have proven the absence 

of a continuous lymphatic endothelium surrounding the peritubular walls of rodent testes in 

contrast to a widespread claim in the literature. 

Detailed investigations of the peritubular wall cell monolayers enwrapping the 

seminiferous tubules have demonstrated a smooth muscle cell character and a novel kind of 

smooth muscle cell and tissue, the “lamellar smooth muscle cells” (LSMCs). In addition, a 

novel architectonic cell-cell connection system has been characterized: The LSMCs are 

laterally connected within their specific monolayer by sparse end-to-end AJs as well as by 

groups of vertical AJs located in closely overlapping cell processes (collationes  

adhaerentes) of the type “processus alter supra alterum”.  

In summary, the results of my thesis provide an ultrastructural and molecular basis of 

testicular cell structures and will support the finding of additional potential “markers” for the 

characterization of testes-derived cells and cell lines in basic research, studies of 

developmental stages and aging, as well as immunocytochemical diagnoses of male genital 

tumors and other diseases. In particular, the availability of a series of cell type specific 

markers will be important for tumor diagnostics (The World Health Organization Classification 

of Tumours of the Urinary System and Male Genital Organs; eds. Moch et al. 2016). 

The isotypic AJs presented in this thesis represent only one category of cell-cell 

connections. Additional analyses of heterotypic cell-cell junction molecules, notably those 

involved in the embedding of the spermatid heads in the specific apical indentations, are 

needed to complete the list of candidate molecules for cell type diagnoses as well as for the 

development of possible direct male contraceptives, starting with the results of the Heidelberg 

laboratory (Prof. Dr. Werner W. Franke; see, e.g., Franke et al. 1978a; Longo et al. 1987; 

Hess et al. 1993, 1995; von Bülow et al. 1995; Heid et al. 2002) and of the Osaka laboratory 

(Prof. Dr. Yoshimi Takai; see, e.g., Takai et al. 2003; Irie et al. 2004; for further references see 

Supplement Literature Collection No. 10). 
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