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SUMMARY 

In this study we aimed at studying the tumor aggressiveness and differentiation potential of 

Ramos Burkitt’s lymphoma cells upon mitogenic stimulation in light of a novel regulator of 

immune cell metabolism and activation, ADPGK. 

We have identified the role of ADPGK in regulation of aerobic glycolysis in Burkitt’s 

Lymphoma cells and shown that its knock-out leads to reduced tumor aggressiveness, as 

measured in-vitro via co-culture, migration experiments and metabolic profile, and in-vivo 

Zebrafish. We found significantly reduced MYC transcription in ADPGK knock-out Burkitt’s 

lymphoma cells and importantly, several folds reduction in accumulated random mutations 

in translocated MYC in these cells. We additionally observed a stalled pathway to 

differentiation of ADPGK knock out B-cells into plasma cells upon stimulation by mitogenic 

signals. Overall, the study provided the first insights into the role of a novel ER resident 

protein acting as a regulator of two complementary phenomenon, cell-differentiation and 

cancer aggressiveness, and thereby opens up new possibilities of therapeutic interventions 

for hematopoietic malignancies.  

 

 



ZUSAMMENFASSUNG 

 
Ziel dieser Studie war es, die Tumoraggressivität und das Differenzierungspotential von Ramos 

Burkitts Lymphomzellen bei der mitogenen Stimulation im Lichte eines neuartigen Regulators 

des Immunzellstoffwechsels und der Aktivierung, ADPGK, zu untersuchen. 

Wir haben die Rolle von ADPGK bei der Regulation der aeroben Glykolyse in Burkitt-Lymphom-

Zellen identifiziert und gezeigt, dass dessen Knock-out zu reduzierter Aggressivität des Tumors 

führt, gemessen in-vitro über Co-Kultur- und Migrationsexperimente, metabolische Profile 

sowie in-vivo in Zebrafischen . Wir fanden eine signifikant reduzierte MYC Transkription in 

ADPGK Knock-Out Burkitt Lymphomzellen und eine verminderte Akkumulation zufälliger 

Mutationen in translozierten MYC in diesen Zellen. Wir beobachteten zusätzlich eine blockierte 

Differenzierung von ADPGK Knockout B-Zellen in Plasmazellen bei Stimulierung durch mitogene 

Signale. Insgesamt lieferte die Studie erste Einblicke in die Rolle eines neuen ER-residenten 

Proteins, das als Regulator zweier komplementärer Phänomene, Zelldifferenzierung und 

Krebsaggressivität agiert, und eröffnet damit neue Möglichkeiten therapeutischer 

Interventionen für hämatopoetische Malignome. 

 



ABBREVIATIONS 

Ab Antibody 

ADP  Adenosine diphosphate  

ADPGK  ADP dependent glucokinase  

ASC Antibody secreting cell 

ATP  Adenosine triphosphate  

BL Burkitt’s lymphoma 

Cas9  CRISPR-associated nuclease 9  

CRISPR  Clustered Regularly Interspaced Short 

Palindromic Repeats  

CSR Class switch recombination 

ER  Endoplasmic reticulum  

FDG Fluorodeoxyglucose 

G6PD  Glucose-6-phsophate dehydrogenase  

Gata1  GATA Binding Protein 1  

GC Germinal centre 

GFAT  Glutamine:fructose-6-phosphate 

amidotransferase  

GFP  Green fluorescence  

HK  Hexokinase  

Hpf  Hour post fertilization  

Ig Immunoglobulin 

IP3R Inositol triphosphate receptor 

IRE Inositol requiring enzyme 

KO  Knockout  



LDH  Lactate dehydrogenase  

MYC  Myelocytomatosis oncogene  

NADH  Nicotinamide adenine dinucleotide  

NADPH  Nicotinamide adenine dinucleotide 

phosphate  

NBDG 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-

yl)Amino)-2-Deoxyglucose glucose 

OXPHOS  Oxidative phosphorylation  

PAM  Protospacer adjacent motif  

PMA  Phorbol 12-myristate 13-acetate  

PPP  Pentose phosphate pathway  

PYR  Pyruvate  

ROS  Reactive oxygen species  

SHM Somatic hypermutation 

TAM Tumor associated macrophage 

TCA cycle  Tricarboxylic acid cycle  

VDJ Variable diversity joining segment 

WT  Wild type  

XBP X-box binding protein 
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INTRODUCTION 

Warburg Effect or aerobic glycolysis 

Normal somatic cells have a strict control of cell cycle and metabolism and possess 

numerous checkpoints to regulate the growth and differentiation status of the cell during its 

life cycle. However, through rare events, cells can acquire traits which leads them to a fully 

transformed cancerous state which is marked by uncontrolled growth and proliferation 

(Fouad & Aanei, 2017). The most common of these traits found in cancer is a metabolic 

state enabling the cells to upregulate glucose uptake and utilization several folds even in the 

presence of oxygen. The process, termed as Warburg effect or aerobic glycolysis, provides 

an evolutionary growth advantage to cancer cells and has in recent years become 

increasingly important as a target for curbing aggressively growing malignancies (Cairns, 

Harris, & Mak, 2011; DeBerardinis, Lum, Hatzivassiliou, & Thompson, 2008; Gatenby & 

Gillies, 2004; Liberti & Locasale, 2016). Glycolysis, or lytic metabolism of glucose, involves 

the conversion of glucose to pyruvate with production of ATP. Pyruvate is further converted 

into lactic acid as a waste product. In the presence of oxygen, glycolysis is redirected at the 

step of pyruvate, which is oxidised into CO2 and H20 by mitochondrial oxidative 

phosphorylation. This process of reduced lactate production by inhibition of the cycle at 

pyruvate in presence of oxygen is termed as ‘Pasteur effect’. Under anaerobic conditions, 

such as in muscle cells during bursts of short intense exercise, enough oxygen is not present 

for oxidation of pyruvate and NADH produced in glycolysis. In such cases, NAD+ is 

reobtained from NADH by reduction of pyruvate to lactate, using the enzyme lactate 

dehydrogenase (Proia, Di Liegro, Schiera, Fricano, & Di Liegro, 2016). Thus, different fates of 

glucose over range of oxygen concentrations help the cells in adapting to the 

microenvironmental conditions prevalent at that time and continue the process of energy 

generation, although with varying efficiencies (Phan, Yeung, & Lee, 2014). In addition to 

these common occurrences, there arises a condition, mostly observed in fast proliferating 

cells or cancer, where glucose is converted to lactic acid even in the presence of sufficient 

amounts of oxygen. Known as aerobic glycolysis or Warburg effect, it is known to provide a 

growth advantage to tumors with respect to their microenvironment and additionally aides 

in selection of resistant and malignant cells in the developing tumor (Gatenby & Gillies, 

2004; Liberti & Locasale, 2016).  
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Figure 1.1 : Delivery of glucose and oxygen to tissues in the body, entering the cells via 

specific glucose transporters. The glucose taken up is primed into Glucose-6 phosphate by 

hexokinases to prevent its exit from the cell, and further through glycolysis converted to 

pyruvate with generation of 2 ATP molecules per glucose. In the presence of oxygen, 

mitochondrial oxidative phosphorylation oxidises pyruvate to HCO3, and generates 36 

additional ATP molecules per glucose. In anoxic conditions, pyruvate is reduced to lactic 

acid, which is then exported from the cell as a waste product. Hydrogen ions (H+) are 

produced by both the processes and causes acidification of the extracellular space. HbO2 

represents oxygenated haemoglobin. Image adapted from (Gatenby & Gillies, 2004). 

 

The importance of glucose metabolism for cancer cells was diminished shortly after the 

discovery of Warburg effect but has recently gained significance in the past decade, due to 

the widely known clinical imaging technique positron-emission tomography (PET) (Gatenby 

& Gillies, 2004). PET employs tracer molecule 18fluorodeoxyglucose (FdG) as a glucose 

analogue and has proven with majority of lesions the increased glucose uptake and 
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accumulation of the tracer compared to non-malignant tissues in the body (Cox, Mackie, & 

Eliceiri, 2015). Another piece of information conveyed by PET scans is the avid trapping of 

fluorescent-glucose by immune cells owing to their increased proliferative phenotype and 

thereby upregulated glycolysis under inflammatory conditions (Escuin-Ordinas et al., 2013). 

Nonetheless, there exists a major difference between immune cell metabolism and cancer, 

in that the aerobic glycolytic phenotype is only transiently expressed in the former whereas 

it is stably and epigenetically switched on in case of the latter. Owing to this phenotypic 

switching to aerobic glycolysis, immune cells serve as an effective tool for modelling cancer 

cell metabolism. 

Burkitt’s lymphoma 

Burkitt’s lymphoma (BL), a malignancy of germinal centre B-cells, is the fastest growing 

human cancer (Molyneux et al., 2012) and owing its growth to one of the most widely 

studied oncogenes and regulator of glycolysis, MYC, provides a perfect model for study of 

Warburg effect (Buttgereit, Burmester, & Brand, 2000; Schmitz, Ceribelli, Pittaluga, Wright, 

& Staudt, 2014). The cancer, a non-Hodgkin’s type Lymphoma, is one of the most commonly 

found paediatric cancer in regions of Africa and South America (Molyneux et al., 2012). The 

tumor is characterized by a very high proliferation rate with mostly monomorphic, medium-

sized cells. The cells express markers typical of germinal-centre B-cells such as CD20, IgM, 

CD19, PAX5, CD10 and BCL6, but do not express nuclear TdT, CD5 and BCL2 (Dozzo et al., 

2017). Under the microscope, upon H&E staining of tumor biopsies, a typical starry sky 

appearance is appreciated due to the presence of tangible-body macrophages (Andrade-

Filho, 2014). The dense involvement of macrophages in almost all cases of Burkitt’s 

lymphoma provides an additional advantage of studying tumor-microenvironment 

interrelationship (Scott & Gascoyne, 2014).  
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Figure 1.2: Dense involvement of tumor microenvironment in Burkitt’s lymphoma with upto 

10% of cells in the tumor occurring as immune cells (macrophages). Macrophages are 

depicted in red and in purple are the tumor cells with a large prominent nucleus and 

minimal cytoplasm.  

 

The translocation t(8;14)(q24;q32) is the characteristic genetic hallmark of Burkitt’s 

lymphoma, identified in most of the patient biopsies (Bemark & Neuberger, 2000; Cowling, 

Turner, & Cole, 2014; Eick & Bornkamm, 1989; Xu-Monette et al., 2016). This translocation 

brings MYC proto-oncogene into proximity with the immunoglobulin locus (H/L chain). 

Owing to the influence of heavy transcriptional activity of this locus, MYC expression is 

dysregulated and leads to a constitutive overexpression of MYC in Burkitt’s lymphoma 

(Bemark & Neuberger, 2000). The overexpression of this proto-oncogene affects its 

downstream target genes, i.e. almost 15 percent of all genes; involved in cell proliferation, 

growth, differentiation, apoptosis and stem-cell renewal (Cowling et al., 2014). However, 

along with MYC translocation and overexpression, there are several other factors 

responsible for driving lymphomagenesis. Targeting MYC expression, nonetheless, remains 

as an attractive strategy to curbing haematological malignancies and its expression used as a 

prognostic marker. 
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Figure 1.3: Diagrammatic representation of MYC translocation (t(8;14)(q24;q32)) in Burkitt’s 

lymphoma placing c-MYC under the locus of heavy chain immunoglobulin promoter. 

 

Somatic hypermutation and translocated MYC mutations 

The genetic information leading to production of the vast repertoire of structural and 

functional diversity in antibodies was a mystery for long time in immunology. The discovery 

of the basic four-chain structure of antibodies established a huge amount of heterogeneity 

in amino-terminal domains of polypeptide chains and was probably the first clue towards an 

inlying genetic mechanism responsible for introducing somatic diversification in antibodies 

(Li, Woo, Iglesias-Ussel, Ronai, & Scharff, 2004). A limited number of genetic elements are 

responsible for generation of antibody diversity through a process called Somatic 

hypermutation (SHM). Somatic hypermutation is the process of modification of a germline 

immunoglobulin genetic sequence by introduction of nucleotide editions, mainly in the form 

of point mutations, in the locality around the rearranged variable immunoglobulin (Ig V) 

domain (Clark, Ganesan, Papp, & van Vlijmen, 2006; Mao et al., 2004; Peled et al., 2008).  

Somatic hypermutation takes place in humans after V-D-J recombination and is found to 

occur during different phases of the immune response. Genetic rearrangement takes place 

during B-cell development and is required to generate a primary pool of antibodies for 
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targeting foreign antigens (Peled et al., 2008). This is usually provided via IgM antibodies 

exhibiting low binding affinity to the antigen, however the binding is often enough to trigger 

a physiological response against the antigen (Li et al., 2004). Upon binding of antigens to B-

cells and their recognition by specific receptors, B-cells undergo rapid proliferation and form 

discrete structures within immunological areas in the body; called Germinal centres (GC). It 

is within these GCs that somatic hypermutation takes place and an alternative repetition of 

SHM and antibody binding mediated selection leads to affinity maturation of antibodies 

(Wagner & Neuberger, 1996). Thereafter, in surplus to the introduction of point mutations 

in the IgV region via SHM, Class-switch-recombination (CSR) takes place in the IgH 

(immunoglobulin heavy) locus. CSR involves recombination based deletion of regions of IgH 

locus, removing the exons of IgM constant region and thereby brings the segments 

surrounding the deleted portions (such as VDJ and IgC (immunoglobulin constant) regions) 

together, to form a functional antibody gene but of a different isotype. Thus, whereas SHM 

serves to increase the heterogeneity and repertoire of antibody variable region, CSR serves 

to increase the interaction options of antibodies with same variable region to different 

effector molecules (Di Noia & Neuberger, 2007; Peled et al., 2008; Wagner & Neuberger, 

1996).  
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Figure 1.4: a: Schematic illustration of the process of Somatic hypermutation (SHM) and 

class-switch-recombination (CSR). SHM introduces point mutations in VDJ region (indicated 

by *), resulting in affinity maturation while CSR between switch (S) regions in the antibody 

leads to isotype switching. Different constant regions are denoted by C. b: Antibody 

assembly, showing the Heavy chains (HC), Light chains (LC), constant and variable regions 

and the VDJ domain located in the HC region (on both arms). 

 

The process of SHM and CSR is performed through targeted deamination of deoxycytidine 

residues, which converts them to deoxyuridine and subsequently the C:G nucleotide pairs 

are transformed into U:G mismatches. This deamination of deoxycytidine to deoxyuridine is 

catalysed by an enzyme called Activation induced cytidine deaminase (AID). The enzyme is 

expressed specifically in B-cells and acts only on single stranded DNA templates, 

(Bransteitter, Pham, Scharff, & Goodman, 2003; Duquette, Pham, Goodman, & Maizels, 

2005) thus highlighting its role upon increased transcriptional activity of the locus. Overall, 

a 

b 
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the enzyme is likely to introduce increasing number of mutations in a highly proliferating 

(transcriptionally active cell), such as B-cells activated by antigen. 

Post discovery of translocated MYC allele in Burkitt’s lymphoma, it was noted that the allele 

in most of the Burkitt’s lymphoma lines had acquired several mutations and most of the 

observed mutations were conserved across tumor biopsy samples (Bemark & Neuberger, 

2000; Mao et al., 2004; Vincent et al., 2009). Translocation of MYC into the immunoglobulin 

locus transforms the MYC into becoming a target for antibody hypermutation associated 

with the locus. The process has been observed in-vitro as well, such as for the Burkitt’s 

lymphoma cell line Ramos (Bemark & Neuberger, 2000). Ramos cells in culture under 

standard lab conditions have been found to accumulate mutations at a high rate in its 

translocated MYC allele (Bemark & Neuberger, 2000). The process is constitutive for the cell 

line and the accumulation of mutations increases with the length of culturing of these cells. 

Thus, the cell line provides a perfect model to assess mutability and expression status of 

translocated MYC under various external conditions such as metabolic state of the cell. The 

mutability and expression of MYC could consequently be analysed with respect to changes 

in tumor aggressiveness of this cell line in in-vitro conditions.  

B-cell differentiation 

B-cell differentiation can be split into two phase, early and terminal B-cell differentiation. 

Early phase of B-cell differentiation is a tightly scrutinized process which occurs in liver of 

the developing foetus or in the bone marrow (BM) of adults, from common lymphoid 

progenitor cells (Roth et al., 2014; Zhang, Garcia-Ibanez, & Toellner, 2016). Commitment to 

B-cell lineage is dependent on a multitude of transcription factors such as early B-cell factor 

(COE1, encoded by EBF1), PU.1 (encoded by SPI1), E2A (encoded by TCF3) and paired box 

protein 5(PAX5) (Pieper, Grimbacher, & Eibel, 2013). Positive selection post rearrangement 

of IgH and IgL genes leads to a population of pre (precursor)-B cells. These cells express 

transmembrane form of the heavy chain µ, known as µM, which is an important checkpoint 

in the pre-B-cell receptor for B-cell development. Entry through this checkpoint allows for 

IgL gene segment rearrangement and clonal expansion. Second checkpoint is the presence 

of surface IgM where through negative selection, tolerance mechanisms act on autoreactive 

clones by deleting, anergizing or editing them. Cells surviving the negative selection, the 

immature B-cells, leave the bone marrow and migrate to secondary lymphoid organs such 
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as spleen where they continue their development. In the spleen, cells pass through 

transitional stages T1 and T2, and undergo further negative selection to become mature B-

cells. Transitional B-cells can additionally be homed to splenic marginal zone (MZ) where 

they remain as non-circulating MZ B-cells, or like in case of most of the transitional cells, 

they could mature into naïve follicular B-cells, which circulate freely follicles, lymph nodes 

and BM until their death or undergo further differentiation upon antigen encounter (Pieper 

et al., 2013; Zhang et al., 2016).  

The next phase of B-cell differentiation typically involves encounter with antigen and the 

response type depends on the type of antigen. Fully differentiated plasma cell (short-lived 

or long-lived) can thus develop from MZ B-cells, follicular cells, Germinal centre (GC) B-cells 

and from memory cells. Germinal centre cells are derived from follicular B-cells when the 

latter encounter an antigen and at the same time receive help from T-cells (T-cell dependent 

activation (TD)). There exists another pathway of activation via T-cell independent activation 

(TDI), known to occur in response to certain lipopolysaccharides and phorbol esters. The TDI 

is preferentially followed by a subset of B-cells called the B1 cells and are responsible for 

providing first line of defence by producing natural IgM. B-cells undergo extensive 

proliferation along with affinity maturation and CSR in germinal centres, which are 

specialized follicular areas for differentiation of GC B-cells. GC based response peaks 

between day 10 and 14 after encounter of antigen and then diminishes. The response gives 

rise to Plasma cells and Memory cells. Plasma cells are terminally differentiated antibody 

secreting cells (ASCs) and memory cells have the capability to differentiate into PCs if 

provided appropriate signals. However, the differentiation from GC cells to plasma cells 

involves several intermediate stages. Activated GC B-cells (T-cell dependent/independent 

(TD/TDI) stimulation) undergo a high proliferative phase characterized by Warburg like 

upregulation of metabolism and growth, and subsequent differentiation to plasma/memory 

cells (Brand, Leibold, Luppa, Schoerner, & Schulz, 1986; DeFranco, Raveche, & Paul, 1985; 

Garcia-Manteiga et al., 2011; Semmel et al., 1988; Shapiro-Shelef & Calame, 2005). These 

stages of proliferation and differentiation also thereby furnish ideal scenarios to analyse the 

regulation of metabolic activity of a fast-growing cancer under activated and quiescent 

states.  
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Figure 1.5: B-cell differentiation from B1 cells: On encounter with foreign antigens, marginal 

zone, follicular zone cells can differentiate into short-lived plasma cells. Activated follicular 

cells can form a germinal centre from which Plasma cells can either form directly or through 

a memory B-cell stage. Plasma cells resulting from germinal centres can become long-lived if 

they detect suitable survival niches in the bone marrow. (CSR: class-switch recombination). 

Image adapted from (Shapiro-Shelef & Calame, 2005) 
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Several transcription factors are necessary to drive the irreversible process of differentiation 

of GC B-cells to plasma cells. BLIMP1, the most widely studied transcription factor, is 

sufficient under appropriate conditions and at appropriate developmental stage of B-cells to 

induce differentiation into plasma cells (Ding, Bi, Chen, Yu, & Ye, 2013). It is expressed 

mainly by bone marrow and splenic plasma cells and is required for terminal differentiation 

and immunoglobulin secretion. It leads to termination of cell cycle (by repression of 

proliferative genes such as MYC), repression of genes characteristic of mature and GC B-cells 

and the induction of immunoglobulin secretion. It also represses expression of two 

important GC transcription factors, BCL-6 and PAX5. PAX5 repression is an important event 

in differentiation, leading to derepression of XBP1 (X-box binding protein 1), which is one of 

the first transcription factors shown to be necessary for plasmacytic differentiation. XBP1 is 

a primary regulator of immunoglobulin secretion in plasma cells. Along with these, IRF4 is 

another transcription factor known to be involved in early plasma cell development, being 

required in the activated B-cells for the proliferative phase (Bertolotti et al., 2010; Garcia-

Manteiga et al., 2011; Jourdan et al., 2011; Reimold et al., 2001; Shaffer et al., 2002; Todd et 

al., 2009; Zhang et al., 2016). A list of important B-cell differentiation markers and 

transcription factors, and their expression status at different stages of differentiation is 

provided in Table 1. 
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 Pre-B Imm-B cell Trans-B cell MZ FL-B cell Act 
B cell 

GC-B cell Memory 
B cell 

PC 
long 
lived 

Immunoglobulin IgM
-
 IgM

+
, IgD

-
 IgM

high
, 

IgD
low

 

IgM
+
, 

IgD
low

 
IgM

low
, IgD

+
 IgM

+
, IgD

+
 IgM/G/A/E

+
, 

IgD
var

 
IgM/G/A/E

+
, 

IgD
-
 

Ig
-
 

Positive markers CD10, CD19, 
CD20, CD24, 
CD38, 
IL7/4/3R 

CD10, CD19, 
CD20, CD21, 
CD24

high
, 

CD38
high

, 
CD40, CD268, 
IL4R 

CD5, CD19, 
CD20, CD21, 
CD24

high
, 

CD38
high

, 
CD268, CCR7 

CD1c, 
CD19, 
CD20, 
CD21

high
, 

CD27
low

 

CD19, CD20, 
CD21, CD22, 
CD23, CD24, 
CD268, CCR7, 
CXCR5 

CD19, CD20, 
CD25, CD27, 
CD30, CD69, 
CD80, CD86, 
CD95, CD135, 
CD268, CXCR5 

CD10, CD19, 
CD20, CD23, 
CD27, 
CD38

high
, 

CD95, CD135, 
CD268, CXCR5 

CD19, CD20, 
CD27

var
, CD40, 

CD268, CCR7, 
CXCR4, 5, 7 

CD27, CD28, 
CD38

high
, 

CD138, 
CD268, 
CD269, 
CXCR4 

Enzymes RAG-1,2 

EZH2
low

 

     AID 

EZH2 

  

Transcription 

factors 

         

 

Table 1: Markers for B-cell development. Imm: Immature, Trans: Transitional, MZ: Marginal zone, FL: Follicular zone, Act: Activated, GC: Germinal centre, 

PC: Plasma cell.   

 

Ikaros, Aiolos 

Pax5 

EBF1, E2A 

IRF4 

BCL6 

Pax5 BLIMP1 

IRF4 

XBP-1S 
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ADP dependent glucokinase 

ADP-dependent glucokinase (UniProtKB-Q9BRR6) uses ADP to convert a molecule of glucose 

to glucose-6-phosphate. Human ADPGK is located at chromosome 15 (15q24.1) and is 

localized in the lumen of rough ER. Initially identified in Archaea, it was shown to be 

important in glucose breakdown with a modified Embeden-Meyerhof-Parnas pathway 

(EMP), typical for Archaea (Kengen et al., 1994).  Human ADPGK has been shown to be highly 

specific for utilization of ADP, unlike the Archael ADPGK, which can employ other nucleotide 

diphosphates too as the phophoryl donor (M. M. Kaminski et al., 2012; J. P. Richter, Goroncy, 

Ronimus, & Sutherland-Smith, 2016; S. Richter et al., 2012). ADPGK has a very high 

specificity for glucose as a substrate and does not show any activity with other 

carbohydrates or even with 2-deoxyglucose. Despite the similarity in function to hexokinases 

in priming of glucose, it shows significant differences in enzyme kinetics. Whereas 

hexokinases (I to IV) are inhibited by their product, glucose-6-phosphate, ADPGK is inhibited 

by high concentrations of glucose and AMP. Also, ADPGK has an optimal temperature for its 

enzyme activity at 42oC and a bimodal optimum pH at around 5.75 to 6.5 and 8.75 to 9 (M. 

M. Kaminski et al., 2012).  

ADPGK is known to be a master regulator of Warburg effect and has been shown to play a 

role in T-cell activation and induction of glycolytic phenotype by our lab in previous studies 

(M. M. Kaminski et al., 2012). Seated in the lumen of rough-ER (Endoplasmic Reticulum), 

serving as a glucose sensor and regulating protein glycosylation, the protein is also 

hypothesized to play an important role in activation-based differentiation of B-cells which 

are highly dependent on ER biogenesis and extensive protein shuttling upon activation by 

mitogenic signals. Use of ADP instead of ATP by ADPGK for priming glucose hints at its role in 

nutrient deprived and hypoxic conditions, such as those prevalent in tumor growth, where 

ATP is available in lean amounts (M. M. Kaminski et al., 2012; J. P. Richter et al., 2016; S. 

Richter et al., 2012). Thus, knowing the importance of this protein in immune cell 

metabolism and cancer, it will be interesting to find out the effect bestowed upon Burkitt’s 

lymphoma cells such as Ramos (ATCC CRL-1596) by ADPGK with respect to their oncogenic, 

differentiation potential.  
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Tumor microenvironment 

The term tumor microenvironment implies to the presence of non-malignant cells and 

tissues present in the tumor and its immediate vicinity. These cells could be immune cells, 

fibroblasts and cells/tissues comprising the vasculature. The context is also used to refer to 

the proteins secreted by the cells existing in the tumor, which support the growth of tumor 

cells (Scott & Gascoyne, 2014).  

For B-cell lymphomas, the microenvironment is highly infiltrated with variety of immune 

cells, stroma, ECM (extracellular matrix) and blood vessels. However, the degree of 

involvement of these components with the cancer cells depends on the genetic profile 

(aberrations) of the cancer cells, as it decides the extent to which these cancer cells depend 

on presence of external factors for survival and growth and not to forget, the inflammatory 

response by the host (Burger & Peled, 2009; Scott & Gascoyne, 2014). A cumulative effect of 

all these factors dictates the wide variations found in tumor microenvironments between 

different lymphoma subtypes. 

Burkitt’s lymphoma, characterized by a strong regulation from translocated, overexpressed 

MYC, has an autonomous survival instinct, which implies that actions are planned by the cell 

and depend much lesser on various microenvironmental constituents compared to other 

lymphomas. The only microenvironment observed in case of Burkitt’s lymphoma is the 

presence of large number of tangible-body macrophages (Scott & Gascoyne, 2014; M. L. Xu 

& Fedoriw, 2016). These macrophages are known to decide the fate of tumor aggressiveness 

by transforming into tumor-promoting (M2) or tumor-killing (M1) phenotypes (Galvan-Pena 

& O'Neill, 2014; Gensel, Kopper, Zhang, Orr, & Bailey, 2017), and thus become exceedingly 

important in research based on targeting Burkitt’s lymphoma. 
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Figure 1.6: Figure shows the microenvironmental differences between three lymphoma 

subtypes. Microenvironmental constituent content ranges from 99% in Hodgkin’s lymphoma 

to about 10% in Burkitt’s lymphoma. FOXP3, forkhead box protein P3; MCL, mantle cell 

lymphoma; DLBCL, diffuse large B cell lymphoma; TH, T helper; MALT, mucosa-associated 

lymphoid tissue; TFH, follicular T helper; TFR, follicular regulatory T;HRS, Hodgkin Reed–

Sternberg. Image adapted from (Scott & Gascoyne, 2014). 
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Macrophage polarization 

Macrophages form an indispensable part of the innate immune system owing to their 

antigen-presenting and phagocytic capabilities. They possess the capability to respond to 

various signals from foreign antigens in the body and perform phagocytosis and killing of 

bacteria and other harmful organisms. They are also known to present antigens to T-cells 

and initiate the process of inflammation by release of cytokines. Macrophages are basically 

the differentiated form of blood monocytes, and depending on the type of antigen 

encountered and the signals received, they present a great amount of heterogeneity in 

morphology, cytokines released and the effect induced (Szulzewsky et al., 2015). They 

likewise respond to signals produced by different tumors and can be polarized (activated) 

into pro-inflammatory (known as M1 or classical type) or anti-inflammatory (known as M2 or 

alternative type) macrophages. M1 polarized macrophages are responsible for Th1 cell 

response, killing of pathogens and type I inflammation, whereas M2 macrophages induce 

tissue growth and wound healing besides inducing cessation of inflammation (Colegio et al., 

2014; Galvan-Pena & O'Neill, 2014; Subei & Cohen, 2015; Szulzewsky et al., 2015).  

Aggressively growing tumors are known to employ myeloid-derived macrophages as tumor-

promoting agents in the microenvironment (Colegio et al., 2014). A massive accumulation of 

these drivers of tumor growth and immune suppressors is often found in the advanced 

growth stages of cancerous lesions. These macrophages are termed as tumor-associated 

macrophages (TAMs) and are shown to be of important prognostic value, with some cancers 

showing regressions by the presence of TAMs while most others linked to a poor prognosis 

(Szulzewsky et al., 2015). In regressing tumors, most of the TAMs are detected to be of M1-

subtype whereas malignant, aggressively growing tumors have an overwhelming presence of 

M2-TAMs (Allavena, Sica, Solinas, Porta, & Mantovani, 2008; Mantovani, Sozzani, Locati, 

Allavena, & Sica, 2002; Murdoch, Muthana, Coffelt, & Lewis, 2008).   

M2 macrophages have a reduced antigen-presenting capability, suppress immune response 

mediated by T-cells by limiting their proliferation, and promote angiogenesis, to name a few 

factors by which they promote the growth of the associated tumor (Mantovani et al., 2002). 

Observed phenotypic differences between M1 and M2 macrophages can also be linked to 

their underlying metabolic differences, where M1 macrophages are characterized by a high 

glycolytic profile, increased glutamine uptake and anaplerosis, and high NO (nitric oxide) and 
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ROS generation for clearance of foreign cells (Fig. 1.7) (Galvan-Pena & O'Neill, 2014; 

Ghesquiere, Wong, Kuchnio, & Carmeliet, 2014). M2 macrophages on the other hand rely on 

oxidative phosphorylation for energy generation, use glutamine for synthesis of polyamines 

and generate proline and citrulline which promote tissue growth. 

 

Figure 1.7: Metabolic profile of M1 and M2 macrophages. a M1 macrophages are 

characterized by: 1) High glycolytic rate (blue), 2) Increased pentose phosphate pathway 

(PPP) (purple) to generate NADPH for maintaining redox homeostasis and generating ROS 

(reactive oxygen species) via NADPH oxidase. ROS is additionally generated from 

mitochondria. 3) Basal rate of fatty acid oxidation (FAO) (red), 4) Glutamine uptake to fuel 

the TCA cycle anaplerotically (green), 5) Arginine is metabolized by iNOS (inducible nitric 

oxide synthase) to generate NO (nitric oxide) (tan) b M2 macrophages display: 1) Increased 

FAO to fuel energy demands (red), 2) Reduced glycolysis due to expression of PFKFB1 (grey), 

3) Reduced PPP by CARL (carbohydrate kinase-like protein), 4) Arginine metabolism by 

arginase-1 to generate proline and citrulline. Image adapted from (Ghesquiere et al., 2014). 

 

Zebrafish as xenograft model 

Zebrafish (Danio rerio) belongs to the family Cyprinidae and are native of Indian rivers with 

distribution across South-Asia. Zebrafish models are being extensively used in biomedical 

research for studying developmental biology, neuroscience, oncology and metabolism to 

name a few (Bradbury, 2004). They have a life span of 4-5 years and retain sexual activity 
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throughout their lifetime, with a single female capable of giving hundreds of eggs in a week, 

making the organism very useful for high-throughput studies (Kalueff, Stewart, & Gerlai, 

2014; Spence, Gerlach, Lawrence, & Smith, 2008). The zebrafish embryos undergo primary 

development within 48 hours and with lack of an adaptive immune system until 4 weeks 

post fertilization, the larvae serve as a perfect model to study growth of cancer xenografts 

(Barriuso, Nagaraju, & Hurlstone, 2015; van der Ent et al., 2014). 

The model serves as a much more sophisticated alternative for tumor growth compared to 

2D culture arrays or matrix systems and at the same time providing a natural dynamic 

environment to the xenografted cells. Cancer cells injected in zebrafish larvae provide rapid 

growth analysis with much wider and feasible imaging possibilities compared to other lab 

animals owing to the transparent nature of larvae in initial days of growth. The fishes can 

also be induced to be non-pigmented in later stages of growth using chemicals such as PTU 

(1-phenyl 2-thiourea) or employing casper pigmentation mutant strains (Antinucci & 

Hindges, 2016). Transgenic zebrafish lines such as kdrl:GFP or mpeg1:mcherry enable 

fluorescent labelling of vasculature and immune cells (macrophages) respectively and serve 

as excellent options for studying tumor microenvironment (Ellett, Pase, Hayman, 

Andrianopoulos, & Lieschke, 2011; Ibrahim & Richardson, 2017). 

Though the optimum growth temperature of zebrafish is 28oC, the fishes can be maintained 

at temperatures upto 34oC to provide an optimum growth temperature to xenografted 

mammalian cells, without apparent negative effects to zebrafish larvae.  

 

Aims 

Activation induced proliferation and differentiation of B-cells furnishes ideal scenarios to 

analyse the regulation of metabolic activity of a fast-growing cancer under activated and 

quiescent states. Employing Burkitt’s lymphoma derived Ramos BL (Burkitt’s lymphoma) cells 

for this study, we will try to decipher the metabolic phenotype of these cells and their 

potential to differentiate in the light of ADPGK (ADP dependent glucokinase), which is known 

to be highly expressed in immune cells and cancer and has been shown to play a role in 

activation of T-cells.  
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Correspondingly, we hypothesize in this study that knock-out of ADPGK from Ramos BL cells 

will induce a metabolic catastrophe upon these cells, which will affect the tumor 

aggressiveness of these cells in-vitro and in-vivo zebrafish. The knock-out is also proposed to 

stall the activation mediated differentiation of these cells and thereby providing a novel 

regulator of two mutually complementary pathways, malignancy and differentiation. 

We aim to achieve this by several investigations such as: 

1. To study the differentiation status of Ramos BL cells and their ADPGK knock-out 

counterparts upon activation.  

2. Overviews of metabolic changes such as glycolytic enzyme expression, kinetics, 

amino-acid and glucose uptake in ADPGK knock-out cells.  

3. Study of the expression and mutational status of translocated MYC (t(8;14)(q24;q32)) 

in ADPGK knock-out and wild type cells. 

4. Effect of ADPGK knock-out on tumor-microenvironment (tumor associated 

macrophages (TAMs)) in-vitro. 

5. Finally, for in-vivo characterization of tumor developing capability of ADPGK knock-

out cells, we will study the growth of Ramos BL xenografts in zebrafish. 
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MATERIALS 

Chemicals  

Name  

 

Company  

2-mercaptoethanol  Merck, Darmstadt, Germany  

2-propanol  Carl Roth, Karlsruhe, Germany  

6-aminocaproic acid  Sigma-Aldrich, St. Louis, U.S.A.  

Acetic acid  Carl Roth, Karlsruhe, Germany  

Acetone  Sigma-Aldrich, St. Louis, U.S.A.  

Agarose  Carl Roth, Karlsruhe, Germany  

Amino persulfate (APS)  Sigma-Aldrich, St. Louis, U.S.A.  

Ammonium bicarbonate  Sigma-Aldrich, St. Louis, U.S.A.  

Ampicilin  PanReac AppliChem, Darmstadt, Germany  

Bacteriological agar  Sigma-Aldrich, St. Louis, U.S.A.  

Bovine serum albumin (BSA)  Santa Cruz Biotechnology, Dallas, U.S.A.  

Bromophenoblue  Merck, Darmstadt, Germany  

Calcium chloride (CaCl)  Sigma-Aldrich, St. Louis, U.S.A.  

Citric acid monohydrate  Carl Roth, Karlsruhe, Germany  

Diethyl pyrocarbonate (DEPC)  Sigma-Aldrich, St. Louis, U.S.A.  

Dipotassium phosphate (K2HPO4)  Sigma-Aldrich, St. Louis, U.S.A.  

Dithiothreitol (DTT)  Merck, Darmstadt, Germany  

Ethanol  Carl Roth, Karlsruhe, Germany  

Ethylenediaminetetraacetic acid disodium salt 

dihydrate (EDTA)  

Carl Roth, Karlsruhe, Germany  
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Formaldehyde  Sigma-Aldrich, St. Louis, U.S.A.  

Formamide  Sigma-Aldrich, St. Louis, U.S.A.  

Fructose-1,6-bisphosphate (FBP)  Sigma-Aldrich, St. Louis, U.S.A.  

Glucose-6-phosphate (G6P)  Sigma-Aldrich, St. Louis, U.S.A.  

Glyceraldehyde-3-phosphate (GAP)  Sigma-Aldrich, St. Louis, U.S.A.  

Glycerol  Sigma-Aldrich, St. Louis, U.S.A.  

Glycine  Sigma-Aldrich, St. Louis, U.S.A.  

Perchloric acid (HClO4)  Sigma-Aldrich, St. Louis, U.S.A.  

Hydrogen chloride  Sigma-Aldrich, St. Louis, U.S.A.  

Lithium chloride (LiCl)  Applichem, Darmstadt , Germany  

Magnesium chloride 6-hydrate (MgCl)  PanReac AppliChem, Gatersleben, Germany  

Methanol  Carl Roth, Karlsruhe, Germany  

Milk powder  Carl Roth, Karlsruhe, Germany  

Monopotassium phosphate (KH2PO4)  Sigma-Aldrich, St. Louis, U.S.A.  

N,N,N′,N′-Tetramethylethylenediamine 

(TEMED)  

Sigma-Aldrich, St. Louis, U.S.A.  

Nicotinamide adenine dinucleotide (NADH)  Sigma-Aldrich, St. Louis, U.S.A.  

Paraformaldehyde (PFA)  Merck, Darmstadt, Germany  

Phosphoenolpyruvate (PEP)  Sigma-Aldrich, St. Louis, U.S.A.  

Potassium bicarbonate (KHCO3)  Sigma-Aldrich, St. Louis, U.S.A.  

Potassium chloride (KCl)  Carl Roth, Karlsruhe, Germany  

Potassium hydroxide (KOH)  Sigma-Aldrich, St. Louis, U.S.A.  

Potassium phosphate (K3PO4)  Sigma-Aldrich, St. Louis, U.S.A.  
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Proteinase inhibitor  Roche, Basel, Switzerland  

Proteinase K  Carl Roth, Karlsruhe, Germany  

Pyruvate (PYR)  Sigma-Aldrich, St. Louis, U.S.A.  

Sodium bicarbonate (NaHCO3)  PanReac AppliChem, Gatersleben, Germany  

Sodium carbonate anhydrous (Na2CO3)  Carl Roth, Karlsruhe, Germany  

Sodium chloride (NaCl)  Carl Roth, Karlsruhe, Germany  

Sodium deoxycholate  Sigma-Aldrich, St. Louis, U.S.A.  

Sodium dodecyl sulfate (SDS) pellet  SERVA, Heidelberg, Germany  

Sodium hydroxide  Carl Roth, Karlsruhe, Germany  

Sulfosalicylic acid  Sigma-Aldrich, St. Louis, U.S.A.  

Tributylamine  Sigma-Aldrich, St. Louis, U.S.A.  

Tris base  Carl Roth, Karlsruhe, Germany  

Triton X-100  Carl Roth, Karlsruhe, Germany  

Trypton  Carl Roth, Karlsruhe, Germany  

Tween 20  Carl Roth, Karlsruhe, Germany  

Urea  Sigma-Aldrich, St. Louis, U.S.A.  

Yeast extract  Sigma-Aldrich, St. Louis, U.S.A.  

 

Reagents  

Name  

 

Company  

40% acrylamide and  

bis-acrylamide solution  

Bio-Rad, Hercules, U.S.A.  

Braford Assay Bio-Rad, Hercules, U.S.A. 

DNase I, RNase free  Thermo Fisher Scientific, Waltham, U.S.A.  
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EcoRI restriction enzyme  Thermo Fisher Scientific, Waltham, U.S.A.  

GeneRuler 1 kb DNA Ladder  Thermo Fisher Scientific, Waltham, U.S.A  

GeneRuler 100 bp DNA Ladder  Thermo Fisher Scientific, Waltham, U.S.A  

Latate dehydrogenase (LDH)  Sigma-Aldrich, St. Louis, U.S.A.  

Lowry assay  Bio-Rad, Hercules, U.S.A.  

MyTaq HS red mix  Bioline, London, UK  

PageRuler prestained protein ladder  New England BioLabs, Ipswich, U.S.A.  

Phusion PCR  New England BioLabs, Ipswich, U.S.A.  

Q5® High-Fidelity DNA polymerase  New England BioLabs, Ipswich, U.S.A.  

RNase inhibitor  Roche, Basel, Switzerland  

S.O.C. medium  New England BioLabs, Ipswich, U.S.A.  

SensiFAST™ SYBR®  Bioline, London, UK  

SuperSignal™ West Pico  

chemiluminescent substrate  

Thermo Fisher Scientific, Waltham, U.S.A.  

T4 ligase  
New England BioLabs, Ipswich, U.S.A.  

Trizol reagent  Thermo Fisher Scientific, Waltham, U.S.A.  

 

Kits  

Name  

 

 

Company  

GeneJET plasmid miniprep kit  Thermo Fisher Scientific, Waltham, U.S.A.  

GenElute(TM) gel extraction kit  Sigma-Aldrich, St. Louis, U.S.A.  

Glucose colorimetric kit  Cayman, Ellsworth, U.S.A.  

HiSpeed plasmid midi kit  Qiagen, Hilden, Germany  
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Maxima first strand cDNA synthesis kit for  

RT-qPCR  

Thermo Fisher Scientific, Waltham, U.S.A.  

NEB 5-α competent E.coli  New England BioLabs, Ipswich, U.S.A.  

Topo-TA Zero blunt cloning kit dual promotor  Invitrogen/Thermo Fisher Scientific, 

Waltham, U.S.A.  

 

Machines and Devices  

Name  

 

 

 Company 

Autoclave  Systec, Linden, Germany  

Biochrom 30+ cation exchange 

chromatography  

 Biochrom, Cambridge, UK  

BD FACS Verse Flow cytometer BD Biosciences, USA 

Blotting semidry system  PeqLab, Erlangen, Germany  

C1000 Touch Thermo Cycler  Bio-Rad,Hercules, U.S.A.  

Centrifuge  Heraeus, Hanau, Germany  

CFX Connect Real Time System  Bio-Rad, Hercules, U.S.A.  

Electrophoresis chamber  Bio-Rad, Hercules, U.S.A.  

FemtoJet micro-injector  Eppendorf, Hamburg, Germany  

Fluorescence microscope  Leica microsystems, Germany 

Fusion-SL Advance 4.2 MP  Peqlab, Erlangen, Germany  

Herathermo incubator  Thermo Fisher Scientific, Waltham, 

U.S.A.  

Microloader 20 μL  Eppendorf, Hamburg, Germany  

Microscope  Leica microsystems, Germany  
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Microwave  Sharp, Osaka, Japan  

NanoDrop LiTe spectrophotometer  Thermo Fisher Scientific, Waltham, 

U.S.A.  

Beckman Coulter AU400  Beckman Coulter, Brea, U.S.A.  

pH-Meter  WTW, Weilheim , Germany  

SDS PAGE electrophoresis system  Bio-Rad, Hercules, U.S.A.  

Sonicator  Branson, Dietzenbach, Germany  

SpectraMax Plus 384  Molecular Devices, Sunnyvale, U.S.A.  

Ultracentrifuge Typ Optima TLX  Beckman Coulter, Brea, U.S.A.  

UV-Handlamp VL-4.LC  Vilber, Eberhardzell, Germany  

UV-Transilluminator CN-TFX  Vilber, Eberhardzell, Germany  

Weighing machine PH204L  Mettler Toledo, Greifensee, Switzerland  

Weighing machine XP56  Mettler Toledo, Greifensee, Switzerland  

  

Disposables  

Name  

 

 Company  

PVDF membrane  Neolab, Heidelberg, Germany  

10 cm dish  Sarstedt, Nümbrecht,Germany  

Hard-Shell® 96-well PCR Plates, thin wall  Bio-Rad, Hercules, U.S.A  

Microseal® 'B' PCR plate sealing film  Bio-Rad, Hercules, U.S.A  

PCR tube (0.2 ml)  Sarstedt, Nümbrecht,Germany  

Thin wall capillary, 1.0 mm  World Precision Instruments, Berlin, 

Germany  

Transwell inserts 0.4µm 6-well Sarstedt AG, Germany 
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Transwell inserts 5µm 24 well Corning Incorporated, U.S.A. 

Primer Sequences  

Name Sequence 

18s Forward GTAACCCGTTGAACCCCATT 

18s Reverse CCATCCAATCGGTAGTAGCG 
 

ADPGK exon-2 Forward GCTTCTTCCAGATCATTCCTTGA 

ADPGK exon-2 Reverse TTCAGGTTTCAGACCTACTTCCT 

ADPGK CRISPR/Cas9  guide RNA GTCAATGCATGTGTTGATGTGG 

Arginase-1 Forward ACTTAAAGAACAAGAGTGTGATGTG 

Arginase-1 Reverse GCATCCACCCAGATGACTCC 

Hexokinase-2 Forward CAAAGTGACAGTGGGTGTGG 

Hexokinase-2 Reverse GCCAGGTCCTTCACTGTCTC 

Il-8 Forward GAATGGGTTTGCTAGAATGTGATA 

Il-8 Reverse CAGACTAGGGTTGCCAGATTTAAC 

iNOS Forward GTCCCGAAGTTCTCAAGGCA 

iNOS Reverse CTGTGTCACTGGACTGGAGG 

c-Myc proto oncogene Forward AAAGGCCCCCAAGGTAGTTA 

c-Myc proto oncogene Reverse GCACAAGAGTTCCGTAGCTG 

Translocated MYC Forward CACTTTGCACTGGAACTTACAACA 

Translocated MYC Reverse TCACCATGTCTCCTCCCAGCA 

XBP-1 unspliced Forward CCTTGTAGTTGAGAACCAGGAG   

XBP-1 unspliced Reverse GGTCCAAGTTGTCCAGAATGC 

XBP-1 spliced Forward GGTCTGCTGAGTCCGCAGCAGG   
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XBP-1 spliced Reverse GGGCTTGGTATATATGTGG 

Antibodies  

Name Company 

CD20-PE BD Biosciences, U.S.A. 

CD138-PE BD Biosciences, U.S.A. 

β-Actin Santa Cruz, U.S.A. 

ADPGK Sigma Aldrich, U.S.A. 

AnnexinV-FITC BD Biosciences, U.S.A. 

Calreticulin Abcam, Cambridge, UK 

GFAT-2 Santa Cruz, U.S.A. 

IP3-receptor Abcam, Cambridge, UK 

IRE-1 Abcam, Cambridge, UK 

MYC proto-oncogene Abcam, Cambridge, UK 

PDI Cell Signalling Technologies, U.S.A. 

Secondary, chicken anti-rabbit Abcam, Cambridge, UK 

Secondary, chicken anti-mouse Abcam, Cambridge, UK 

SRPR-β Abcam, Cambridge, UK 
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Methods 

Cell culture 

Ramos (RA-1, ATCC CRL-1596) B-lymphocytes and THP-1 (ATCC TIB-202) monocytes were 

maintained as a suspension culture in RPMI-1640 media supplemented with GlutaMax 

(Thermo Fisher Scientific), 10% fetal bovine serum (FBS) and 1% Penicillin/Streptomycin. Cell 

cultures were incubated for optimum growth at 37o C and 5% CO2 in a humidified 

atmosphere and fresh media added every 2-3 days. For generation of ADPGK knockouts, 

CRISPR/Cas9 technique was used. Guide RNA was designed targeting exon 2 in the ADPGK. 

Ramos cells were transfected with the guide RNA containing GFP-linked CRISPR/Cas9 

plasmid via Electroporation (Bio-Rad). Transfected cells were selected with the help of FACS 

into 96 well plates. Single cell clones were grown further and sequenced to analyze the 

presence of mutations in exon-2 near the PAM site of CRISPR guide RNA. ADPGK knockout 

was further confirmed by western blots with the selected clones using anti-ADPGK antibody 

and analyzing the loss of ADPGK activity by enzyme assays. Stimulation of cells was induced 

by PMA (phorbol 12-myristate 13-acetate) at 10 ng/ml for THP-1 cells and at 50 ng/ml for B-

cells. 

ADPGK knock-out 

ADPGK knock-out Ramos cells were generated using the CRISPR/Cas9 technology. Exon-2 in 

ADPGK gene was targeted, which also codes for the glucose binding site of the translated 

protein and hence its catalytic function. CRISPR/Cas9 plasmid expressed guide-RNA 

designed against exon-2 under a U6 promoter and a GFP (green fluorescent protein) under 

the CMV (cytomegalovirus) promoter. We used un-transfected and GFP-plasmid transfected 

cells as positive control for ADPGK and as transfection control (TC) respectively for 

subsequent experiments. All transfections were performed using Bio-Rad Gene Pulsar 

Electroporation system at recommended conditions for lymphocytes. Transfected cells were 

sorted using FACS (Fluorescence-activated cell sorting) for GFP into 96 well plates. Sorted 

single cells were allowed to grow in standard cell culture conditions until the visible 

formation of colonies. Clones were selected by detection of 55 kDa ADPGK band in protein 

lysates obtained from the colonies by western blots using anti-ADPGK antibody (Sigma-

Aldrich, HPA045194) and additionally by DNA sequencing. For sequencing, DNA was 

obtained from clones using DNeasy Blood and Tissue Kit (Qiagen) following the 
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manufacturer’s protocol and PCR (polymerase chain reaction) amplified using the Q5 High-

Fidelity DNA polymerase (New England Biolabs). The PCR products were sent for sequencing 

to Microsynth SEQLAB (Göttingen, Germany). Sequencing results were analyzed via BLAST 

(Basic local alignment search tool, NCBI) against ADPGK wild-type sequence. 

ADPGK localization studies 

From the previously performed studies in our lab showing ER (endoplasmic reticulum) 

presence of ADPGK, we wanted to distinguish between the smooth and rough ER 

localization of this protein. We used Endoplasmic Reticulum isolation kit (ER0100, Sigma-

Aldrich) for this purpose and isolated microsomes as per manufacturer’s guidelines. Briefly, 

the post mitochondrial fraction (PMF) obtained post disruption and differential 

centrifugation (standard protocols), and containing the microsomes, was dissolved in 20% 

OptiPrep sucrose density gradient medium and laid over a layer of 30% OptiPrep gradient 

medium (without PMF) in an ultracentrifuge tube. The layers were topped with 15% 

OptiPrep solution and the tube spun down in an ultracentrifuge at 150,000 x g for 3 hours. A 

total of 14 fractions were isolated from the gradient with a needle going by layers and 

stored in separate Eppendorf tubes. The protein concentration in the samples (1-14) was 

measured and the samples were later analysed via western blot for different rough ER 

markers, Calreticulin (Abcam, ab22683) and ADPGK. The principle of the experiment is 

depicted in Figure 2.1 and follows from the procedure described in (Alberts, 2017). 
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Figure 2.1: ADPGK localization experiment for rough and smooth ER: Cultured lymphocytes 

were homogenized and subjected to differential centrifugation to obtain microsomes. The 

microsomes were dissolved in 20% sucrose solution and ultra-centrifuged in a gradient of 

sucrose solution, with density increasing downwards. Figure represents the principle behind 

the experiment with low density smooth microsomes accumulating at upper layers of the 

sucrose gradient and high density rough microsomes preferentially sedimenting to the 

lower layers. 

Immunoblot Analysis 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) was used for 

separating the proteins in cell lysates. The separated proteins were immunoblotted on PVDF 

(Polyvinylidene fluoride) membranes according to standard procedure and labelled with 

antibodies. Cell lysis was performed with RIPA (radioimmunoprecipitation) buffer using a 

pellet of 5 million cells suspended in the buffer and subjected to 10 x 5-second cycles of 

sonication. Supernatant containing the extracted proteins was resolved by SDS PAGE in 10% 

polyacrylamide gels. Prior to loading, protein concentration of all samples was determined 

by Lowry assay. Equal volume for all samples adjusted to 40 µg protein content was loaded 

in the gels.  Proteins were transferred to PVDF membranes, blocked in TBST (tris-buffered 

saline plus 0.1% tween-20) with 5% non-fat dry milk. Membranes were incubated overnight 

in primary antibody in blocking buffer and analyzed by HRP-conjugated secondary antibody 

next day using chemiluminescent substrate (ECL). Phusion GelDoc system was used for 
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visualization of results and quantification of band intensity was performed with ImageJ 

software (NIH, http://rsbweb.nih.gov/ij/).  

Quantitative RT PCR Analysis 

Total RNA was extracted from cells using TRIzol reagent (Thermo Fisher Scientific) using 

supplier’s protocol. Approximately 5 million cells were used per extraction. Isolated RNA 

was subjected to DNase treatment (DNase1-Recombinant, Sigma-Aldrich) to remove 

contaminating DNA. We then used 1 µg of resulting purified RNA to prepare cDNA with the 

help of Maxima cDNA synthesis kit (Thermo Scientific). For expression analysis by RT-QPCR, 

we used SensiMix SYBR Hi-ROX Kit (Bioline) with template cDNA and primer concentration 

according to the manufacturer’s protocol. All primers were previously verified for specificity 

by gel electrophoresis. PCRs were run on Bio-Rad CFX Connect RT-PCR Detection system at a 

preset melting cycle with annealing temperature specific for the primer set. For 

quantification, 18s ribosomal RNA expression was used as an endogenous reference. 

Expression data was quantified using 2−ΔΔCT method and stated as fold change in gene 

expression for each individual gene. 

Macrophage Migration Assay 

Migration assays were performed with 24-well Transwell inserts of 5 µm pore size 

purchased from Costar, Corning Incorporated, USA. THP-1 macrophages were seeded in 

Transwell inserts at 50,000 cells in 200 µl culture medium and stimulated by PMA for 24 

hours. Post stimulation, transwell inserts were placed in wells containing 5 x 105 wild-type 

and ADPGK KO Ramos cells which were stimulated for 48 hours in 500µl total culture media. 

The THP-1 macrophages were allowed to migrate for 6 hours. After the completion of 

migration, Transwell inserts were washed with PBS and the un-migrated cells present on the 

upper side of the inserts were removed with a cotton swab. The migrated cells on the lower 

side of the transwells were fixed overnight with 4% paraformaldehyde (PFA) at 4oC and then 

stained with DAPI (1:10000) (Figure 2.2). The DAPI-stained cells were imaged using 

Fluorescent microscopy (Leica) and later counted using the ImageJ software. Inserts 

incubated with media (no lymphocytes) were used as control. 

 

http://rsbweb.nih.gov/ij/
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Figure 2.2: Macrophage migration experiment: Diagram representing the setup and work 

flow of a macrophage migration experiment. 50,000 THP-1 monocytes were seeded in 5µm 

transwell inserts and stimulated with PMA (phorbol 12-myristate 13-acetate) for 24 hours. 

Transwell inserts were placed in wells containing 48-hour stimulated 5 x 105 wild-type and 

ADPGK KO Ramos cells. Migrated macrophages post 6 hours of incubation, collected after 

wiping off the non-migrated cells with a cotton swab, were labelled with DAPI and observed 

under a microscope. 

Macrophage-Ramos co-culture  

To reproduce the tumor-macrophage interaction at in-vitro scale, THP-1 monocytes were 

co-cultured with ADPGK KO or WT Ramos cells and their polarization into M1/M2 

macrophages was studied. In the setup, Ramos wild type or ADPGK KO cells were seeded on 

0.4 µm Transwell inserts at a density of 1 million cells/ml. The cells in inserts were 

stimulated with PMA and moved into wells of 6-well plate containing 24 hour PMA 

stimulated monocytes seeded at 2x105 cells/well in 2.5 ml of complete media. Cells were 

physically separated from each other, and migration was not possible due to small pore size 

of inserts, but the design of the setup permitted free sharing of media and soluble 

factors/nutrients between the cells (Figure 2.3). After 48 hours of co-culture, macrophages 

were collected and analyzed for M1/M2 markers of polarization (hexokinase, Il-8, iNOS1 and 

THP-1 macrophages 

in Transwell insert 

(5µm) 

ADPGK KO/WT cells 
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Figure 2.3: Ramos-macrophage co-culture: Diagram representing the setup and work flow of 

a Burkitt’s lymphoma-macrophage in-vitro co-culture experiment. THP-1 monocytes were 

seeded in 6-well plate and stimulated with PMA (phorbol 12-myristate 13-acetate) for 24 

hours. Transwell inserts containing stimulated lymphocytes were placed in the wells. 
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Macrophages were collected post 48 hours of incubation, and analyzed by RT-qPCR for 

expression of M1/M2 polarization markers. Well without insert served as control. 

 

Amino-acid analysis 

Ramos wild type and ADPGK KO cells were seeded at 1 million cells/ml in 6-well plates and 

stimulated with PMA for two days and seven days, at the end of which, cells were 

harvested, and media collected in separate 15-ml falcons. Media was further centrifuged at 

high speed and additionally passed through 0.35 µm filters to remove residual cells. 200µl of 

the sample was mixed with 50 µl Sulfosalicylic acid and centrifuged at maximum speed on a 

table-top centrifuge. Supernatant was collected, and amino acid analysis was performed by 

injecting the samples into a Biochrom 30+ Amino acid analyser (Biochrom ,UK) based on ion 

exchange chromatography, with resulting data expressed as µmol/litre.  

Lactate/Pyruvate measurements 

Media obtained from cells, as described in amino-acid analysis, was analyzed for lactate and 

pyruvate content. For pyruvate measurement the samples were mixed with pyruvate 

reagent 1 containing NADH, 1.5M Tris Base and 0.2 % HClO4 and added to reagent 2 

containing LDH (lactate dehydrogenase). For lactate measurement, the samples were mixed 

with NADH, 0.6M Glycine buffer and LDH. The completed samples were fed into and 

measured on a Beckman Coulter AU480 system (Beckman Coulter, USA), with final values 

obtained as mmol/litre. 

Flow cytometric analysis for differentiation markers 

Ramos wild type and ADPGK KO, stimulated (2 and 7 days) and unstimulated, cells were 

stained with CD20 and CD138 fluorochrome conjugated antibodies (BD Biosciences) 

according to the manufacturer’s protocol. Cells from each study sample were also stained 

with FITC-Annexin V and Propidium Iodide (BD Biosciences), for analysis of apoptosis. Flow 

cytometry measurements were performed on BD FACS Verse cytometer using BD FACS Suite 

application software. At least 100,000 cells were analyzed for each sample and appropriate 

gating was applied to the populations to exclude cell debris and doublets. Data generated 

from positive gating was analysed using FlowJo software (Tree Star, Ashland, OR, USA). 
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Bound antigens for each sample were expressed as Relative Fluorescence Intensity (RFI), 

which is the ratio of the Median fluorescence intensity (MFI) of cells labelled with a specific 

Ab to that of unlabelled cells.  

Glucose uptake assay 

Uptake of 2-NBDG (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose glucose) 

glucose analog was measured flow-cytometrically using “Glucose uptake cell based assay 

kit” (Cayman chemicals, Europe) according to the manufacturer’s protocol. Briefly, 5 million 

ADPGK KO and WT cells were seeded in 6 well plates and stimulated with PMA for up to 

seven days. Analysis was performed with unstimulated, 2-day and 7-day stimulated cells. 

Cells were incubated in glucose free media for 4 hours before analysis. At the end of glucose 

free incubation, 2-NBDG was provided at recommended concentration for 10 minutes and 

uptake measured via FITC measurement on flow cytometer. Cells incubated with Apigenin 

served as negative control for the experiment. 

Enzyme kinetics 

For analysis of glycolytic enzyme activities, Ramos wild type and KO cells (unstimulated, 2 

and 7 days PMA stimulated) were lysed in Respiratory Chain Buffer (RCB). Around 15 million 

cells per sample were washed once with cold PBS (4oC) post harvesting and dissolved in 700 

µl cold RCB buffer. Samples were passed through 1 ml syringes fitted with 27G needles at 

least thirty times. Lysate was centrifuged at 300 g for 10 minutes to remove the debris and 

then at 7.5k in a table top centrifuge to get rid of mitochondrial pellet. The supernatant was 

then spun at 13k for 20 minutes to separate the Endoplasmic Reticulum pellet from the 

cytoplasmic supernatant. Supernatant, containing the glycolytic enzymes was used for 

analysis of Hexokinase and Gluocse-6-phosphate dehydrogenase enzyme activities using a 

colorimetric assay on a SpectraMax Plus 384 microplate reader (Molecular Devices) using 

SoftMax Pro Data Acquisition software in a 96-well plate. The enzyme activities were 

recorded as difference in absorbance at 340 nm to the absorbance at 400 nm and 

normalized to total protein content of the particular sample. 
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Mutational analysis of translocated MYC 

cDNA obtained from unstimulated, 2-day and 7-day PMA stimulated ADPGK KO and WT cells 

was used to obtain MYC region coding for 3’ segment of exon-1 and 5’ plus middle segment 

of exon-2 via PCR using Q5 DNA polymerase. The product was purified using agarose gel 

electrophoresis and gel elution and cloned into TOPO-TA zero blunt vector (Thermo Fisher) 

as per kit guidelines. The plasmid was transformed into NEB-5alpha competent E.coli (New 

England Biolabs) and plated for colony formation in LB-plates. 65 colonies from WT and 

ADPGK KO plate colonies were picked and directly sent for sequencing using “Ecoli NightSeq 

service” (Microsynth Seqlab). The obtained sequences were aligned with wild-type MYC and 

analyzed for mutations using Geneious software (Biomatters Ltd., New Zealand). 

Zebrafish xenograft studies 

Zebrafish lines care and breeding were done under standardized and controlled conditions. 

Zebrafish kdrl:GFP line, used for xenografting, was raised at 28°C in a dedicated Zebrafish 

facility available at our institute. Embryos obtained via in-cross matings were maintained in 

E3 Embryo medium. Twenty-three hours post fertilization, media was supplemented with 

0.2 mM 1-phenyl-2- thiourea (PTU, Sigma-Aldrich), to prevent pigmentation of larvae. For 

xenotransplantation, Ramos wild type and ADPGK KO cells were counted with a 

haemocytometer and stimulated with PMA. For injection, cells were fluorescently labelled 

by incubation with Cell Tracker CM-diI dye (C7001, Thermo Fisher) for 5 min at 37°C and 

further 15 minutes at 4-degree celsius. After the incubation, cells were washed once with 

PBS, and resuspended to a final concentration of 1.0 × 108 cell/ml in RPMI. Zebrafish larvae, 

48 hpf, were anesthetized with tricaine (0.02%, 168 mg/L, Sigma) and aligned on agarose 

moulds (1% agarose) in a lateral position. Around 200-250 CM-diI labelled cells were 

injected into the yolk sac of each zebrafish larva using glass microinjection needles (World 

Precision instruments, USA) with a FemtoJet microinjector (Eppendorf, Hamburg, Germany). 

Maximum pressure applied in the microinjector was 180 psi. Larvae were incubated at 28o C 

for 1 hour and then transferred to 34°C incubator for observing the growth of tumor cells. 

Xenografts were analyzed by fluorescence microscopy (Leica DMI 4000B, Leica 

microsystems) on the day of injection and 48 hours post injection. Larvae were transferred 

to individual wells in 96-well plates in fresh E3 Embryo medium supplemented with PTU, for 
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observation of tumor growth. At the time of microscopy, the E3 media was removed and 

larvae were embedded in freshly prepared 0.1% Agarose in embryo medium. Tricaine was 

added at a final concentration of 168 mg/L to anaesthetize the larvae. The low agarose 

concentration prevented movement of larvae during microscopy and assisted in their 

proper alignment and at the same time kept the larvae alive by keeping the fluid circulation 

intact. At the end of microscopy, larvae were resuspended in fresh E3 media. The embryo 

medium was replaced daily. Growth of xenografted cells in the larvae was assessed with the 

help of ImageJ software. 

 

 

 

                                                            

 

 

 

Figure 2.4: Zebrafish xenograft studies: kdrl:GFP larvae were grown at 28oC for 48 hours 

post fertilization and injected with 200-250 CM-diI labelled ADPGK KO/WT cells in the yolk. 

Larvae were transferred in 96-well plates post injection and kept for 1 hour at 28oC and 

imaged under a microscope, and then at 34oC for two days, at the end of which xenograft 

growth was observed and quantified. 50 larvae were injected for KO and WT conditions 

each. 
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Statistical analysis 

Statistical analysis for all data presented in the study was performed using GraphPad Prism 

(7.04). Welch’s t-test (unpaired) was used for significance analysis. A p value less than 0.05 

were considered significant. If not stated otherwise in the text, analyzed data is presented 

as mean ± standard deviation of at least three independent experiments.  
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RESULTS 

Preliminary studies 

ADPGK knock-out and localization studies 

ADPGK knockouts were generated in Ramos BL cells (Burkitt’s lymphoma) using 

CRISPR/Cas9 technology and analyzed via Western blots. Two knockouts were finally 

selected for further experiments based on loss of 55 kDa ADPGK band in western blot and 

additionally confirmed by sequencing (Fig. 3.1a). Sequencing confirmed the presence of 

heterozygous deletion/insertion in one clone (KO1: 316_317del and 319_320insC) and 

homozygous four base deletion in the other (KO2: 314_317del). 

Intracellular localization of ADPGK was performed using sucrose gradient centrifugation 

(Alberts, 2017). A total of 14 ER fractions (1-14 numbered) were obtained post gradient 

ultracentrifugation with 1 representing the least and 14 as the highest median density for 

the sample. Rough ER is bound to be present in the higher numbered fraction due to its high 

density and was accordingly detected in fractions 8-10 using markers such as SRPR-β (signal 

recognition particle receptor) and GFAT-2 (glutamine:fructose-6-phosphate 

aminotransferase). ADPGK was found to be present only in the fractions positive for rough 

ER markers and hence confirmed its presence in rough Endoplasmic reticulum (Fig. 3.1b). 
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Figure 3.1: ADPGK knock-out and localization studies. ADPGK knock-outs were generated 

via CRISPR/Cas9 technology targeting exon-2 of ADPGK. For localization studies, ER 

(endoplasmic reticulum) fraction was ultra-centrifuged in a sucrose density gradient and 14 

fractions isolated from the gradient were analyzed for ADPGK and ER markers. a: ADPGK 

(ADP dependent glucokinase) knock-out selection via western blot using 55 kDa band as 

reference. β-actin is the loading control. (1-12) depict 12 analyzed clones b: Result of 

sucrose gradient centrifugation for 14 fractions isolated from ER (Endoplasmic reticulum) 

with calreticulin as control.  C is positive control and K negative control for ADPGK. Numbers 

1-14 show the 14 isolated fractions with increasing order of density. 
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ADPGK expression upon B-cell activation 

B-cells stimulated with PMA are known to follow an initial course of activation and 

proliferation followed by differentiation into plasmablasts leading to Memory B-cells or 

Plasma cells (Benjamin et al., 1984; Ghamlouch et al., 2014; Ho, Subhendu, & Hsu, 1987). A 

burst of aerobic glycolysis marks the proliferative phase providing necessary energy and 

metabolites for growth. We wanted to see the expression changes of ADPGK in Ramos BL 

cells upon activation with a known protein kinase-C (PKC) based inducer of B-cell activation, 

phorbol 12-myristate 13-acetate (PMA) (Benjamin et al., 1984; Ghamlouch et al., 2014; Ho 

et al., 1987; Krappmann, Patke, Heissmeyer, & Scheidereit, 2001; Rousset et al., 1989; 

Valentine, Cotner, Gaur, Torres, & Clark, 1987).  

Ramos cells were stimulated with PMA for up to seven days and we measured ADPGK 

expression/activity at D2 and D7 representing the proliferating and differentiated cells 

respectively (Fig. 3.2a, b). The expression of ADPGK increased several folds upon stimulation 

and peaked at D2 where after it was found to decrease until D7 and became even lower 

than basal levels. ADPGK enzyme activity was on the other hand undetectable in 

unstimulated cells but displayed significant increase in kinetics at D2 before again becoming 

undetectable at D7. 

This depicted the correlation of ADPGK with proliferating cells and at the same time 

displaying its near-redundant nature in quiescent cells.   
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Figure 3.2: ADPGK activity and expression upon activation. Ramos BL (Burkitt’s lymphoma) 

cells were stimulated with PMA (phorbol-12 myristate 13-acetate) for a period of seven days 

and analyzed at D2 (two days post stimulation) and D7 (seven days post stimulation). a: 

Enzyme kinetics of ADPGK at D2, D7 and unstim. (unstimulated) states. X-axis represents 

time in seconds and y-axis is difference in absorbance between 340 nm and 400 nm. b: 

Change in ADPGK expression upon stimulation at D2, D7 and unstimulated states using RT-

qPCR. Data is representative of three individual experiments. Error bars represent standard 

deviation. 
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PMA stimulation induced differentiation is hampered in ADPGK KO cells 

Flow cytometric profiling signalled stalled differentiation and increased apoptosis in 

ADPGK KO cells 

CD20 and CD138 (Syndecan-1) are important markers for following B-cell differentiation 

(Jourdan et al., 2011; Tedder, Boyd, Freedman, Nadler, & Schlossman, 1985). Mature 

unstimulated B-cells are CD20+/CD138-. When stimulated by antigens they undergo cell 

surface changes to activated CD20+/CD138+ B-cells, and finally differentiate into CD20-

/CD138+ plasma cells or recently classified CD20-/low pre-plasmablasts (Ghamlouch et al., 

2014; Jourdan et al., 2011; Kaminski, Wei, Qian, Rosenberg, & Sanz, 2012; Tedder & Engel, 

1994). Flow cytometric analysis of CD20 on D0, D2, and D7 post stimulation showed a 

normal differentiation related expression of this molecule on WT Ramos cells. With high 

quantity of CD20 detected in the unstimulated state, the levels of this molecule were 

upregulated until D2 post PMA stimulation, and exhibited a drastic decrease on D7 

reflecting differentiation of WT cells (Fig. 3.3a, b). CD138 (Syndecan-1), undetected at D2, 

increased in expression at D7, though remaining at low levels but signifying a population 

positive for this plasma cell marker. 

ADPGK KO cells exhibited nearly equal concentration of CD20 in the unstimulated state as 

the WT cells and were stable till D2. On D7, the KO cells exhibited low CD20 expression, but 

levels were still much higher than WT cells. CD138 was slightly upregulated at D7 but overall 

levels of CD138 remained almost at half the values for WT cells, signifying a reduced 

capacity of these cells to differentiate into plasma cells (Fig. 3.3a, b). 

Another piece of information conveyed by flow cytometric analysis of ADPGK KO and WT 

cells was the FSC (forward scatter) and SSC (side scatter) data representing cell size and 

granularity, respectively (Ghamlouch et al., 2014). We found a consistent increase in FSC 

and SSC values in both cell lines (WT and KO) post stimulation, showing a large increase in 

size and increased cytoplasm:nucleus content for both types of cells (Fig. 3.3c). Increase in 

SSC usually represents a higher cytoplasm to nucleus ratio and thus points towards 

differentiated cells, however higher values of side scatter may also represent membrane 

blebs common in an apoptotic cell. SSC values gradually increased both for KO and WT cells 

till day 7 reflecting increased granularity and morphological changes related to 

differentiation. However, on D7 there was a significant increase in side scatter for KOs 



RESULTS 

44 
 

compared to WT (Fig. 3.3c) most likely depicting higher number of apoptotic cells in the 

stimulated KOs which failed to differentiate. 

The morphological changes linked with apoptosis in KO cells were confirmed with Annexin V 

staining (Schutte, Nuydens, Geerts, & Ramaekers, 1998) where KO cells showed almost 70 

percent higher staining of the apoptotic marker compared to WT cells. The stained cells 

were additionally observed under a microscope and clearly depicted a much higher number 

of FITC stained cells in case of ADPGK KO cells (Fig. 3.3a, b, e). 

The increased apoptosis cell death in ADPGK KO cells seven days post stimulation was also 

confirmed by a novel marker of Ca2+ induced apoptosis, the IP3 receptor. Protein levels of 

IP3R increased dramatically for ADPGK KO cells seven days post stimulation (Fig. 3.4b, e). 

Though the levels were increased for wild type cells also, but the change was many folds 

lower than KO cells.  

Activation associated homotypic aggregation is lost in ADPGK KO cells 

B-cells are known to form homotypic aggregates due to crosslinking of CD-40 molecules or 

mediated by LFA-1 upon stimulation by appropriate antigen (L. H. Dang & Rock, 1991; 

Rousset et al., 1989) and the interaction supports the clonal expansion and activation of 

lymphocytes (Burger & Peled, 2009). We indeed found large aggregates of cells starting to 

form as early as 48 hours post stimulation with PMA in WT Ramos cells, which increased 

several folds in size up to D7. Very few individual free cells were present in the media. KO 

cells, on the other hand, were only able to form small collections of cells when compared to 

the aggregates observed in case of WTs, providing a visible evidence of hindered 

differentiation in these cells (Fig. 3.3f). The aggregates even seemed to dissociate around D7 

and only free individual cells were found in the culture after this point.   
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Figure 3.3: PMA stimulation induced differentiation is hampered in ADPGK KO cells. 

ADPGK (ADP dependent glucokinase) KO (knock out) and WT (wild type) cells were treated 

with 50 ng/ml PMA (phorbol-12 myristate 13-acetate) and cultured for seven days under 

standard conditions. Flow cytometric analysis was performed for cells collected at D0, D2 
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and D7 (unstimulated, 2 day stimulated, and 7 day stimulated) post stimulation. Panel a 

shows the change in Relative Fluorescence Intensity (RFI), which is the ratio of the Median 

fluorescence intensity (MFI) of cells labelled with a specific Ab to that of unlabelled cells 

over seven days, representing signal obtained from PE (CD20 and CD138) or FITC (AnnexinV) 

tagged fluorescent antibodies. b: The same data represented as histogram of D7 

(differentiation phase) fluorescence intensities for respective markers; pink line represents 

KO cells, blue WT and shaded area as unstimulated WT cells serving as control. c: Forward 

and side scatter values generated by the flow cytometry experiments on various days for 

WT and KO cells. Gating strategy for the experiments is represented in d for excluding cell 

debris and clumps from analysis with automated area selection for lymphocytes using 

FlowJo software. Percentage of gated cells used for further analysis is shown by the number 

in the box. e: Microscopic images of cells collected at D7 and displaying fluorescence for 

AnnexinV at 5x magnification. f: Homotypic aggregates observed at 5x magnification under a 

light microscope at D7 in PMA stimulated WT and KO cells. Error bars represent standard 

deviation of mean of RFI (for CD20, CD138 and AnnexinV) or FSC/SSC values obtained from 

three independent experiments. WT, KO: mean of values from two wild-type and two 

ADPGK knock-out cell lines.  y-axis for bar-graphs represents mean values of each sample 

normalized to unstimulated WT cells. x-axis in histograms shows fluorescence intensity. 

100,000 events were recorded for each flow cytometry experiment. (*=p < 0.05; 

**=p < 0.01, ***=p < 0.001, calculated using Welch’s t-test for significance) 
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ER stress-based differentiation markers are more expressed in ADPGK WT cells 

Independent of the well-known role of XBP1 (X-box binding protein 1) in ER stress, cell 

proceeding through the terminal stages of differentiation is bound to have increased 

content of the XBP1(s) transcript compared to the unspliced XBP1 mRNA (Reimold et al., 

2001; Todd et al., 2009) and thereby we wanted to analyse the levels of spliced/unspliced 

XBP1 in WT Ramos and ADPGK KO cells to decipher the activation induced differentiation 

status of these cells.  

We measured the transcript content of spliced and unspliced XBP1 in unstimulated, 2 day 

and 7-day PMA stimulated WT Ramos and ADPGK KO cells. We found the ratio of spliced to 

unspliced XBP1 to be higher in KO cells compared to WT in unstimulated state (almost two 

folds) (Fig. 3.4a), which is uncharacterized of Burkitt’s lymphoma. Previous studies have 

shown the very low or absent transcript levels of XBP-1 in Burkitt’s lymphoma patient 

biopsies, typical of an undifferentiated lymphoma (Maestre et al., 2009). This signalled 

stressed cellular machinery in ADPGK KO cells even in unstimulated state, as also observed 

with metabolic data for these cells. At day two post stimulation, we observed a decrease in 

XBP1 splicing in both WT and KO cells, which could be explained by increased proliferative, 

glycolytic phenotype in the activation phase post stimulation with PMA. Further, at seven 

days post stimulation with PMA, the trend reversed dramatically in favour of a 

differentiated state with almost six to eight-fold increase in XBP-1 spliced/unspliced level for 

ADPGK WT cells. The KO cells, though, exhibited a much lower comparative increase, with 

two folds higher spliced mRNA levels of XBP1, again signalling an incomplete differentiation 

owing to hampered metabolism in activation phase.  

The XBP1 splicing mechanism is completed by an ER resident protein IRE-1 and its levels in 

the cell could further shed light on the ER stress signalling operating in the cell (He, 2010; 

Tsuru, Imai, Saito, & Kohno, 2016). We thus measured phosphorylated IRE-1 protein levels 

in WT and ADPGK KO cells at the same stimulation points as for XBP1 mRNA levels. Western 

blot quantification seemed to strengthen our mRNA splicing data for XBP1 as the seven day 

stimulated cells had higher levels of IRE-1 than the two-day activated and unstimulated 

state for all cells (Fig. 3.4b, c). We were however not able to discriminate between the IRE-1 

levels for ADPGK WT and KO cells based on the protein blots.  
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Immunoglobulins, secreted by differentiated B-cells or antibody secreting cells (ASCs), are 

rich in disulphide bonds, whose formation in the endoplasmic reticulum (ER) is catalysed by 

protein disulphide isomerase (PDI) (Lilie, McLaughlin, Freedman, & Buchner, 1994). With 

several studies pointing to a correlation between the levels of PDI and the differentiated 

state of a cell (Bertolotti et al., 2010; Miyaishi et al., 1998; Paver, Freedman, & Parkhouse, 

1989), we quantified the protein content of PDI in WT and ADPGK KO unstimulated, D2 and 

D7 cells. The protein blots revealed a gradual increase in PDI levels in all cell lines upon 

activation, with levels increasing up to four-folds at D7 for WT cells (Fig. 3.4b, d). At all the 

measured time points, PDI protein levels in WT cells remained significantly higher than 

ADPGK KO cells. Overall, PDI known to act as an important mediator of protein folding for 

secreted proteins such as Ig’s and a regulator of ER stress via its chaperone activity, was 

thus found in accordance with the increased differentiation status of WT cells. 
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Figure 3.4: ER stress-based differentiation markers are more expressed in ADPGK WT cells. 

ADPGK KO and WT cells, treated with PMA and cultured for seven days under standard 

conditions were analyzed via western blot and RT-qPCR at D0, D2 and D7 post stimulation. 

a: results of RT-qPCR performed for detecting ratio of spliced:unspliced XBP1 transcript in 

KO and WT cells at different conditions. y-axis represents fold change in expression of all 

samples normalized to unstimulated WT cells. b: Western blots for WT and KO cells at D0, 2 
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and 7 with beta-Actin as loading control. c-f: quantification of band intensities using ImageJ 

software. All graphs are representative of three independent experiments. WT, KO: mean of 

values from two wild-type and two ADPGK knock-out cell lines. For western blots, TC is 

transfection control and the two knock-out lines as KO-1 and KO-2. y-axis in all graphs 

represents respective raw values normalized to unstimulated WT cells. Error bars represent 

standard deviation of mean for three individual experiments (*=p < 0.05; **=p < 0.01, ***=p 

< 0.001, calculated using Welch’s t-test for significance) 
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ADPGK KO B-cells are metabolically toxified  

ADPGK KO cells display reduced glycolysis in initial phases of stimulation driven 
differentiation 

We measured cytosolic enzyme activities of Hexokinase-2 (HK2) and Glucose 6-phosphate 

dehydrogenase (G6PDH) (Jiang, Du, & Wu, 2014) in WT and KO Ramos cells 48 hours and 

seven days post stimulation with PMA. WT cells stimulated with PMA showed significantly 

increased, 2.5-3 folds, glycolytic enzyme activities (Hexokinase-2 and G6PDH) whereas the 

ADPGK KO cells displayed a significantly reduced activation-based increase in glycolytic 

enzyme activities compared to WT cells post two days (Fig. 3.5a, d). At seven days, the 

activity values dropped to almost 20 percent of the unstimulated state activities in both cell 

type but with WT cells displaying a higher residual activity than KOs. Gene expression values 

measured via RT-QPCR for Hexokinase-2 followed the same pattern as enzymatic activities 

and suggested a stably reduced glycolytic phenotype of KO cells (Fig. 3.5b).  

ADPGK KO cells are less ‘glucoholic’ than the wild type Ramos cells 

Detection of fluorescently labelled glucose is a common non-invasive method of detecting 

aggressively growing tumors using PET-CT scan. The amount of glucose uptake by most 

cancers being much higher than the normal body cells, the glucose uptake rate correlates 

well with the aggressiveness of a growing tumor (Zou, Wang, & Shen, 2005). The same holds 

true also for rapidly proliferating cells such as activated lymphoblasts. We thus detected 

NBD-glucose in four hour-PMA stimulated WT and KO Ramos cells to adjudge their 

malignant potential and activation phenotype. Post stimulation for 48 hours and seven days, 

NBD glucose was provided to the cells and its accumulation in cells was measured via flow 

cytometry. Glucose was provided for 10 minutes duration to the cells to detect the small 

changes in rapid glucose uptake. As shown in Fig. 3.5c, in the 48 hour stimulated cells, we 

observed an increased uptake in all cells with respect to unstimulated cells but wild-type 

cells exhibiting significantly higher amounts of glucose compared to KO’s. At D7, we 

observed no significant difference in glucose uptake between wild type and KO, however 

there was a noteworthy reduction in uptake rate compared to unstimulated state in all cells. 

The results, further confirming the metabolic changes seen through enzymatic 

measurements, showed that the ADPGK KO cells were not progressing to a fully activated 
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state and were not able to upregulate glucose metabolism in the times of increased energy 

demands. 

 

 

 

Figure 3.5: ADPGK KO B-cells are metabolically toxified. ADPGK KO and WT cells were 

analyzed for aerobic glycolysis upon stimulation with PMA by measurement of enzyme 

activities a, d of Hexokinase and G6PDH (Glucose 6-phophate dehydrogenase) 

spectrophotometrically; RT-qPCR for hexokinase-2 b for gene expression, and accumulated 

FITC-NBD-glucose (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) Amino)-2-Deoxyglucose) c via 

flow cytometry for glucose uptake. All graphs are representative of three independent 

experiments. WT, KO: mean of values from two wild-type and two ADPGK knock-out cell 

lines. y-axis in all graphs represents respective raw values normalized to unstimulated WT 

cells. Error bars represent standard deviation of mean (*=p < 0.05; **=p < 0.01, ***=p < 

0.001, calculated using Welch’s t-test for significance) 
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Amino-acid uptake and metabolite secretion is remnant of activation driven metabolism 

in ADPGK KO cells 

Amino acids form the building blocks of proteins, lipids, nucleotides, and participate in 

almost all major energy generating reactions in the cell. Importance of several amino acids 

like glutamine and serine is further highlighted in times of stress and high proliferation 

(Mattaini, Sullivan, & Vander Heiden, 2016; Tsun & Possemato, 2015). After detection of low 

glycolytic profile of ADPGK KO cells, we thus next wanted to investigate the amino acid 

uptake rate of these cells as replenishment for hampered glucose processing.  

The results, as shown in Figures 3.6a, b depict significantly higher consumption of serine and 

glutamine by WT Ramos cells, compared to ADPGK KOs, at 2 days post PMA stimulation. 

Noteworthy was the higher increase in consumption of glutamine in stimulated state 

compared to unstimulated state (ratio, two days stimulated : unstimulated) in ADPGK KO 

cells. This could be explained by the compensatory use of glutamine in response to reduced 

glucose uptake and metabolism by these cells. However, taken as a quantitative uptake 

value, glutamine uptake levels for KO cells remained below the corresponding values for WT 

cells (1.48:1 for WT:KO). High dependence on glutamine as metabolite was further reflected 

by dramatic increase in free NH3 (ammonia) levels in media of ADPGK KO cells in 

unstimulated and stimulated states, which reflected clearly the consumption of glutamine 

(Fig. 3.6c). Ornithine, which is originally not present in media formulation used for these 

cells, and was probably a by-product of glutamine metabolism, was also detected at values 

correlating with NH3 levels and fortifies the theory of glutamine dependent energy 

generation and biosynthesis by ADPGK KO cells. 

Measurement of accumulated lactate and pyruvate levels in culture media of growing cells 

provides an estimate about the aerobic glycolysis where higher levels of lactate:pyruvate 

correspond to a more aerobic glycolytic phenotype and is a common occurrence in 

aggressively growing tumors (J. Xie et al., 2014; D. Q. Yang et al., 2016). To this end, we 

measured the lactate and pyruvate content in culture media obtained from 2 day and seven 

day stimulated cells. The levels of lactate:pyruvate rose in all cells at 2 days post stimulation 

by at least two folds, signifying actively proliferating cells (Fig. 3.6c). However, the 

comparative data again hinted towards a much-reduced aerobic glycolysis occurring in 

ADPGK KO cells with the levels of lactate:pyruvate in 2 day stimulated cells almost half of 
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that in WT Ramos cells (Fig. 3.6c). At seven days post stimulation, lactate:pyruvate values 

dropped for all cells signifying again the resting differentiated phase but as seen with other 

glycolytic data, WT Ramos cells still exhibited higher values of lactate secretion than their 

KO counterparts. 

 

Figure 3.6: ADPGK KO B-cells are metabolically toxified. ADPGK KO and WT cells were 

analyzed for aerobic glycolysis upon stimulation with PMA by measurement of amino-acids 

and metabolites in culture media at D2 and D7 post stimulation. a, b: Serine and Glutamine 

consumption in WT and KO cells at D2, D7 normalized to their respective unstimulated 

values. c: secreted metabolites in culture media at D2, D7; lactate:pyruvate levels for 

estimation of Warburg phenotype and Ornithine, NH3 values for glutamine metabolism, 

normalized to respective unstimulated conditions. All graphs are representative of three 

independent experiments. WT, KO: mean of values from two wild-type and two ADPGK 
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knock-out cell lines. y-axis in all graphs, represents respective raw values normalized to their 

unstimulated counterparts. Error bars represent standard deviation of mean (*=p < 0.05; 

**=p < 0.01, ***=p < 0.001, calculated using Welch’s t-test for significance) 

 

c-MYC expression and mutational status are dependent on glucose metabolism 

We wanted to assess the effect of PMA stimulation on expression of c-MYC transcript (both 

wild type and translocated). cDNA primers used in the study were designed to obtain 3’ 

region of exon 1 and 5’ plus middle section of exon 2, which is also the coding sequence of 

c-Myc protein. Analysis of this coding region would provide a direct cue to action of c-Myc 

as a transcriptional regulator.  

ADPGK KO cells exhibit a near complete loss of c-Myc post activation 

We performed c-MYC expression analysis of two days and seven days PMA stimulated cells, 

where the RT-qPCR results showed a significant increase in c-MYC transcript levels at two 

days post activation (Fig. 3.7a), signifying metabolically active proliferating cells and the 

change was similar in ADPGK KO and WT cells. However, at day seven post stimulation, we 

observed a strong reduction in c-MYC transcript levels, to almost 30 percent of base level 

values in WT cells but, to our astonishment, to nearly 10 percent of base level in ADPGK KO 

cells.  

The results were verified by protein blots for c-Myc protein as well (Fig. 3.7b, c); however, 

we failed to detect c-Myc in unstimulated state in all samples via western blot. The reason 

for missing c-Myc protein in unstimulated cells had yet to be determined at that point and 

has been discussed below. 
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Figure 3.7: c-MYC expression is dependent on glucose metabolism. c-MYC (translocated 

and wild-type) expression in ADPGK KO and WT cells at different time points post 

stimulation was measured via RT-qPCR and protein content via western blots. a: expression 

of MYC at D0, D2 and D7 post stimulation. y-axis represents fold change normalized to 

unstimulated WT cells. b: protein blot of c-MYC and beta-Actin loading control, with 

quantification of bands in c using ImageJ software. Expression analysis and protein blots are 

representative of three individual experiments. WT, KO: mean of values from two wild-type 

and two ADPGK knock-out cell lines. Error bars show standard deviation of mean. 

(*=p < 0.05; **=p < 0.01, ***=p < 0.001, calculated using Welch’s t-test for significance) 
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Translocated and wild-type c-Myc are expressed differentially in Ramos cells  

We also wanted to know the mutational status of the transcripts being produced at 

different time points post PMA based stimulation. We thus sequenced the MYC transcripts 

and aligned the resulting sequences with known sequences of translocated c-Myc in Ramos 

and to the wild type transcript. The results depicted as per expectations, a vast number of 

mutations accumulated in MYC transcript of Ramos cells (both WT and KO) (Fig. 3.8c, d). 

Several of the mutations were conserved throughout the sequences analysed and most of 

them matching with the known mutations in translocated MYC allele of Ramos cells and 

patient biopsy samples of Burkitt’s lymphoma (Bemark & Neuberger, 2000; Cowling et al., 

2014). However, some of the conserved mutations were novel and depicted additional 

effect of hypermutation during culture of these cells, as also known from previous studies 

(Bemark & Neuberger, 2000).  Insertions and deletions of several bases were observed 

along with point mutations. To our surprise though, upon sequencing of two day and seven 

day stimulated Ramos BL cells (both WT and KO), we obtained wild type c-Myc sequence in 

almost 50 percent of cases. This finding is in first sight, in contradiction to previous studies 

which reported that only the translocated c-Myc allele is expressed in Ramos BL cells 

(Bemark & Neuberger, 2000). However, the sequences used in previous studies were only 

obtained from unstimulated cells and true to that, we obtained only translocated c-Myc 

allele from non-PMA stimulated cells. 

This result however answered the question of failure to detect c-Myc protein in the 

unstimulated state. The translocated c-Myc being highly mutated compared to wild type c-

Myc and that being the only transcript produced in unstimulated cells, the commercial 

antibody used for detection of c-Myc will most likely not be able to bind to the desired 

peptide. Further, upon stimulation, as the expression of wild type c-Myc increases in all 

cells, we were able to detect the protein in western blots. 

Translocated c-Myc is highly mutated in WT cells compared to ADPGK KO 

Having discovered the variations in c-Myc expression levels, we were interested in random 

non-conserved point mutations which had likely accumulated due to culturing and PMA 

based activation of ADPGK wild type and KO cell lines in the lab. Analysis of 65 WT and KO 

sequences revealed astonishing results where we found 38 independent mutations in WT 
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cells and just 10 mutations in KO cells (Fig. 3.8a, b). Moreover, out of the 38 point mutations 

in WT cells, 30 were found in PMA stimulated conditions (two day + seven day). More than 

2/3rd of these (21 precisely) were found in seven day stimulated cells, clearly pointing to a 

role of activation induced hypermutation in the observation. On the other hand, ADPGK KO 

cells displayed half (5/10) mutations in the stimulated state, out of which just two were in 

seven day stimulated cells (Fig. 3.8). Knowing that ‘AGC triplets’ are a hotspot for AID 

targeted mutations in activated GC B-cells (Bemark & Neuberger, 2000; Betz, Rada, Pannell, 

Milstein, & Neuberger, 1993), we analysed the location of mutations with respect to AGC (or 

GCT, reverse complement) sites. Indeed, 20/38 or almost 52 percent mutations were at AGC 

triplets (Fig. 3.8c), out of which 18 were found in sequences from stimulated Ramos cells. A 

random mutational targeting with respect to the consensus translocated MYC sequence 

would have yielded maximum 13 percent hits on AGC triplets. Also, 36/38 targets, or almost 

95 percent mutations, were at G/C sites. There was also a preference for transitions overs 

transversions with 50 percent observed mutations occurring as transitions (randomly 

expected 33 percent). Such highly specific and preferential mutational targeting is a 

characteristic of immunoglobulin hypermutation (Bemark & Neuberger, 2000; Xu-Monette 

et al., 2016) and clearly reflected a much higher degree of organized mutations in ADPGK 

WT cells compared to the KOs. 
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Figure 3.8: c-MYC mutational status is dependent on glucose metabolism. Transcripts 

obtained at D0, D2 and D7 post stimulation with PMA for ADPGK WT and KO cells were 

sequenced and aligned with wild type MYC to analyse mutations in translocated allele. a, b:  

10 x 10 dot plot for representation of observed mutations in WT and KO cells at D0, D2 and 

D7 post stimulation. Each dot corresponds to one percent and thus the percentage of 

mutations for various time points can be calculated. Total number of observed mutations 
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for each cell line are given below the plots. c: Representative figure showing the distribution 

of random mutations and their preferential targeting to AGC sites with respect to wild type 

MYC (topmost highlighted sequence). d: figure shows the vast accumulation of conserved 

mutations in translocated MYC obtained from WT and KO cells. Mutational analysis was 

performed with over sixty individual MYC transcripts obtained from WT and KO cells at 

different time points. Sequences were aligned in Geneious software and figures exported 

are depicted. 

 

ADPGK KO leads to reduced migration of macrophages to tumor 

Immune cell, especially macrophage, migration to Burkitt’s lymphoma microenvironment is 

often considered as one of the most important factors contributing to aggressiveness of the 

disease (Coussens & Werb, 2002; Liu & Cao, 2015). The macrophages which are 

chemotactically or otherwise attracted towards the tumor niche, the Tumor Associated 

Macrophages (TAMs), are more often than not, are polarized to and serve as tumor growth 

promoting, anti-inflammatory, M2 macrophages (Genard, Lucas, & Michiels, 2017). To study 

the effect of ADPGK KO on regulation of immune cell chemotaxis, the migration of THP-1 

monocyte/macrophages was studied in presence of wild type Ramos or ADPGK KO cells. The 

quantification of migrated THP cells post 6 hours of incubation showed a marked difference 

between WT and ADPGK KOs, with the latter displaying a much-reduced number of THP 

cells which underwent migration, the number of migrated cells even approaching those 

observed with the negative control (only media, no cells) (Fig. 3.9e, f). Wild type Ramos 

exhibited migration rates more than double compared to its KO counterparts, indicating a 

significant loss in chemotactic attraction capabilities of Burkitt’s lymphoma cells upon 

removal of ADPGK. 

Macrophage M1 polarization increases with KO of ADPGK 

We aimed at replicating the tumor-immune cell interaction at an in-vitro level to understand 

the phenotype bestowed upon the macrophages by lymphoma cells. PMA activated THP-1 

monocytes were co-cultured with stimulated WT Ramos or ADPGK KO cells for a period of 

48 hours, which corresponds to the activation state of B-cells signifying high proliferation 

and high glycolytic activity found in aggressively growing lymphomas. Monocyte-
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macrophages collected post co-culture with Ramos WT or KO cells displayed a greater shift 

towards the M2 polarized state when incubated with WT Ramos cells compared to KOs as 

evident by the reduced expression of glycolytic enzymes (HK), M1 marker iNOS1 (Inducible 

nitric oxide synthase) and pro-inflammatory cytokine IL8, and increased expression of M2 

marker Arg1 (Arginase 1) (Fig. 3.9a-d) (Colegio et al., 2014; Galvan-Pena & O'Neill, 2014; 

Genard et al., 2017; Varney et al., 2002). Macrophages collected from ADPGK KO cells co-

culture on the other hand displayed enhanced expression of glycolytic enzymes (HK), which 

were significantly increased compared to the cells stimulated with PMA alone and not 

incubated in a co-culture setup, depicting a shift towards high glycolytic, M1 polarized state. 

Expression of IL8, and iNOS were also upregulated in cells collected from ADPGK KO co-

culture. On the other hand, a potent M2 marker, Arg1, was much reduced in expression in 

macrophages obtained from ADPGK KO co-culture. Overall, the expression data for M1/M2 

markers clearly showed that only macrophages co-cultured with WT Ramos cells were 

increasingly polarized to a tumor-assisting M2 phenotype, as also known in case of most 

aggressive tumors.  
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Figure 3.9: In-vitro analysis of tumor aggressiveness in ADPGK KO and WT cells. a-d: PMA 

activated THP-1 monocytes were co-cultured with stimulated WT Ramos or ADPGK KO cells 

for a period of 48 hours. Monocyte-macrophages collected post co-culture with Ramos WT 

or KO cells were analyzed via RT-qPCR for expression of M1, M2 markers in form of 

Hexokinase, IL-8, iNOS (inducible nitric oxide synthase) and Arginase 1. PMA activated THP-1 

cells without a co-culture setup served as control for the experiment. e: the migration of 

THP-1 monocyte/macrophages was studied in presence of WT or ADPGK KO cells. Media 

without WT/KO cells served as control. The quantification of migrated THP-1 cells post 6 

hours of incubation is represented as actual cell numbers on y-axis. f: Microscopic images 

representing migrated THP-1 cells upon co-culture with WT and KO cells at magnification 

2.5x. WT, KO: mean of values from two wild-type and two ADPGK knock-out cell lines in all 
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bar-graphs. Error bars show standard deviation of mean. (*=p < 0.05; **=p < 0.01, ***=p < 

0.001, calculated using Welch’s t-test for significance)  

ADPGK KO affects the growth of lymphoma xenografts in Zebrafish larvae 

To monitor the development of lymphoma xenografts in zebrafish larvae over a period of 

two days, we injected PMA activated WT Ramos and ADPGK KO cells in the yolk of kdrl:GFP 

zebrafish larvae 48 hpf (hours post fertilization). Images were taken over 48 hours (D0 and 

D2) and the growth of tumor was quantified. Images taken immediately after injection (D0), 

showed a near equal distribution of WT Ramos and KO xenografted cells in zebrafish yolk. 

Post 48 hours (D2), we observed a significant increase (up to 50 percent increase than D0) in 

the size of xenografted mass in 43/50 zebrafish larvae in case of WT Ramos cells (Fig. 3.10a, 

b). Larvae injected with ADPGK KO cells showed growth of the xenografted mass only in 

16/50 injections, plus the growth was significantly hampered compared to their WT 

counterparts. In remaining injected zebrafish, the xenografted mass surprisingly shrank in 

most of the larvae (21/34) while being consistent in size in others, likely reflecting the 

inability of KO cells to grow in an external environment owing to impeded regulators of 

aerobic glycolysis.  

This, being the first study ever with establishing of Burkitt’s Lymphoma xenografts in 

zebrafish, successfully replicated our in-vitro data and strengthened the hypothesis that 

ADPGK KO Ramos cells fail to adapt into the activation phase associated with differentiation 

and due to low Warburg phenotype, undergo apoptosis, which overall makes them less 

aggressive as a xenografted tumor when compared to WT Ramos cells.  
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Figure 3.10: In-vivo analysis of tumor aggressiveness in ADPGK KO and WT cells. 

Approximately 200-250 CM-diI labelled cells (WT or KO) were injected in yolk of 48 hpf 

(hours post fertilization) kdrl:GFP zebrafish larvae. Images in a show the progression of 

xenografted cells over two days post injection (D0 – D2) in wild type (WT, TC) and ADPGK 

knock-out (KO-1, KO-2) cells. Xenograft area quantified using ImageJ for 50 injected larvae 

with WT and KO cells each and a mean calculated over three individual experiments is 

shown in b. WT, KO: mean of values from two wild-type and two ADPGK knock-out cell lines 

in all bar-graphs. Error bars show standard deviation of mean. (*=p < 0.05; **=p < 0.01, 

***=p < 0.001, calculated using Welch’s t-test for significance)  
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DISCUSSION 

In this study we aimed at analysing the effect of ADPGK mediated glucose shuttling on 

regulation of aerobic glycolysis in Ramos BL cells, reflected by their malignant and 

differentiated status upon activation. We found invariably reduced tumor aggressiveness 

upon activation, both in-vitro and in-vivo zebrafish, and a hindered activation mediated 

differentiation of ADPGK KO cells. The data was cemented by strikingly large reduction in 

MYC transcript and protein levels in KO cells and plummeted accumulation of mutations in 

the translocated MYC allele. 

Perturbation of differentiation markers in ADPGK KO and WT cells 

Markers of differentiation in form of CD20, CD138, XBP1, increase in cell size and 

granularity, and homotypic aggregation provided a clear view of well-differentiated WT cells 

and a delayed entry to differentiation of KO cells which ultimately ended with apoptosis.  

B-lymphocyte antigen, CD20, is expressed on the surface of pre-B cells and as an important 

glycosylated phosphoprotein, is expressed throughout the development of B-cells except on 

terminally differentiated cells. The precise function of this protein still not elucidated, it is 

hypothesized to play a role in regulating calcium flux through the cell via its association with 

BCR (B-cell receptor) (Walshe et al., 2008). The expression of CD20 is variable upon 

activation and depends on the amount and type of antigen provided to the cell. It is often 

found to increase during the proliferative phase after stimulation but later becomes 

low/negative upon terminal differentiation into plasma cells (Jourdan et al., 2011; Tedder & 

Engel, 1994; Valentine et al., 1987). The low but non-negative values observed for CD20 in 

WT cells proceeding towards differentiation, signified a population not characteristic of 

plasma cells but probably a plasmablast transition state as also discussed in several other 

studies (Ghamlouch et al., 2014; Jourdan et al., 2011; D. A. Kaminski et al., 2012). However, 

the ADPGK KO cells displayed a much higher percentage of population positive for this 

marker and signalled towards a stalled differentiation pathway in these cells. The higher 

residual expression of CD20 in ADPGK KO cells is important in the light of using 

chemotherapeutics such as Rituximab which bind to surface CD20 on lymphomas and 

thereby enhances the efficacy of Natural Killer (NK) cells in destroying these malignant cells 

(Rudnicka et al., 2013). 



DISCUSSION 

66 
 

Likewise, CD138 (Syndecan-1), a marker highly specific for differentiated cells, was found 

upregulated several folds in WT cells compared to KOs. Though, the overall levels of CD138 

remained low and it needs to be investigated if longer PMA based stimulation in 

combination with other cytokines is needed to upregulate the expression even further. 

Again, this signified cells proceeding through a differentiation pathway but possibly till a 

plasmablast state, as seen for CD20. The protein CD138, is a transmembrane type I 

proteoglycan, glycosylated with a heparan sulphate (HS) moiety (Kharabi Masouleh et al., 

2009). The heparan sulphate domain forms the major functional part of CD138, by binding 

to several extracellular ligands responsible for cell adhesion, morphogenesis, survival, tumor 

growth, migration and even inflammation (Kharabi Masouleh et al., 2009; McCarron, Park, & 

Fooksman, 2017). Expression of CD138 has been related to several cancers such as multiple 

myeloma, where the binding of pro-survival factor APRIL promotes cancer cell survival and 

proliferation (McCarron et al., 2017). A much reduced expression of CD138 on ADPGK KO 

cells thus explains partially the greater number of apoptotic cells observed via AnnexinV 

staining and SSC (side scatter) studies, and the inability to form homotypic aggregates 

mediated by cell-cell adhesion. The marker has been recently shown to translocate to the 

nucleus, delivering growth signals and thereby promoting tumor-stromal cross talk (Stewart, 

Ramani, & Sanderson, 2015). This might explain the low levels of marker observed on cell 

surface of both wild type and KO cells at day 7, however proving its importance in 

promoting tumor aggressiveness, as observed by its increased levels in WT Ramos cells.  

XBP1, which is an important component of the unfolded protein response (UPR) and 

promotes a balance between the adaptive and apoptotic pathways in a differentiating cell 

(He, 2010), was found to be active in unstimulated KO cells, which is otherwise unknown of 

(Maestre et al., 2009), signifying an underlying stressed ER machinery in these cells. Analysis 

of differentiation state at day 7 depicted much reduced expression of XBP1(s) in KO cells 

compared to WT, signalling strongly the reduced differentiation capability of ADPGK KO 

cells. XBP-1(s) being one of the major factors upregulated upon differentiation in plasma 

cells, we were prompted to measure the levels of its regulatory enzyme, IRE-1. With IRE-1 

protein levels undoubtedly increasing at day 7 but with no obvious difference between WT 

and KO cells, the observed variations in XBP1(s) expression remain elusive. However, 

recently discovered relationship of XBP1 with MYC, acting as partners in a transcriptional 
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complex (H. Xie et al., 2018; N. Zhao et al., 2018), demands further research in the subject 

and would provide key to the prevailing query. PDI (protein disulphide isomerase), found in 

ER lumen, catalyses the switch between thiol-disulphide in proteins and helps in the 

formation of disulphide bonds during protein folding (Oka & Bulleid, 2013). Immunoglobulin 

(Ig) formation in plasma cells or antibody secreting cells (ASCs) involves a high load of 

proteins shuttling though the ER and requiring disulphide bond formation to constitute a 

function Ig molecule (Lilie et al., 1994; Miyaishi et al., 1998; Oka & Bulleid, 2013). Though 

the overall levels of PDI were found to increase several folds at D7, starting as early as D2, in 

all cells, the WT cells showed a significantly higher content of this protein at all stages of 

activation. This depicted a marked difference in response to increased unfolded protein 

content in the ER between WT and ADPGK KO cells, with the latter hampered in their ability 

to cope up with the highly increased flux of proteins (Ig’s) associated with B-cell activation 

and differentiation.  

The pathway to terminal differentiation was clearly stalled in ADPGK KO cells, as studied via 

various markers, and ultimately pushed these cells to apoptosis as observed from SSC, 

Annexin V and the novel IP3R study.  

Metabolic catastrophe was bestowed upon ADPGK KO cells  

A reduced Warburg phenotype upon activation for ADPGK KO cells was one of the effects 

reflected by study of glycolytic enzyme activities (HK2, G6PDH) and expression (HK2), and 

pointed to a direct link between ADPGK and BL cell metabolism. The study involved 

enzymatic and expression analysis of hexokinase-2, which is the sole isoform of hexokinase 

overexpressed in cancer (Katabi, Chan, Karp, & Batist, 1999; Mathupala, Ko, & Pedersen, 

2006; Patra et al., 2013). With HK2 expression/activity in WT cells significantly higher than 

KOs at all times but most evident at D2, depicted a low glycolytic profile of ADPGK KO cells 

post stimulation in the proliferative phase. We measured G6PDH enzyme activity, as the 

protein is involved in pentose-phosphate pathway for providing NADPH to proliferating 

cells, preventing them from oxidative damage, besides initiating the generation of 

nucleotides. The role of G6PDH activity in leukemia cell lines has been recently highlighted 

(S. N. Xu, Wang, Li, & Wang, 2016) and thus the observed differences in G6PDH activity 

between ADPGK KO and WT cells point to a reduced cancer metabolism upon removal of 

ADPGK. Detection of fluorescently labelled glucose, which is a common non-invasive 
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method of detecting aggressively growing tumors using PET-CT scan (Cox et al., 2015), 

displayed a reduced glucose uptake by ADPGK KO cells, further confirming and reflecting the 

metabolic changes seen through enzymatic measurements. Overall the glycolytic study 

showed that the ADPGK KO cells were not able to upregulate glucose metabolism in the 

times of increased energy demands during the proliferation phase. 

Amino acids form the building blocks of proteins, lipids, nucleotides, and participate in 

almost all major energy generating reactions in the cell. Importance of several amino acids 

like glutamine and serine is further highlighted in times of stress and high proliferation 

(Mattaini et al., 2016; Tsun & Possemato, 2015). Serine, a major source of one-carbon units, 

is employed for the replenishment of ATP, NAD(P)H and S-adenosyl-methionine (SAM) 

majorly by cancer cells (Newman & Maddocks, 2017) and true to that we observed 

significantly increased uptake of this non-essential amino acid in activated WT cells 

compared to KOs. Relative to unstimulated state, the increased Glutamine uptake in KO 

cells compared to WT cells could be explained by the compensatory use of glutamine in 

response to reduced glucose uptake and metabolism by these cells. High dependence on 

glutamine as metabolite was further reflected by dramatic increase in free NH3 (ammonia) 

levels in media of ADPGK KO cells in activated states, which reflected clearly the 

consumption of glutamine. Ornithine, which is originally not present in media formulation 

used for these cells, and was probably a by-product of glutamine metabolism, was also 

detected at values correlating with NH3 levels and fortified the theory of glutamine 

dependent energy generation and biosynthesis by ADPGK KO cells.  

Measurement of accumulated lactate and pyruvate levels in culture media of growing cells 

provides an estimate about the aerobic glycolysis (J. Xie et al., 2014; D. Q. Yang et al., 2016), 

with a higher lactate:pyruvate value correlating with increased aerobic glycolysis in 

increased cancer metabolism. The almost three-fold higher lactate:pyruvate levels observed 

upon stimulation at D2 (proliferative phase) in WT Ramos cells compared to KOs, further 

fortified the metabolic study, pointing to a highly diminished Warburg phenotype of ADPGK 

KO cells. 

Overall, the presented data suggests that hampered induction of Warburg effect is 

underlying the failure of ADPGK KO cells to fully proliferate and differentiate upon PMA 

activation. 
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c-MYC expression and mutational status are hampered by ADPGK KO 

We found wild type MYC expression increasing upon activation and going down upon 

differentiation to stop cellular proliferation, as also known from B-cell differentiation 

models (Cole, 1986; C. V. Dang, 1999; Habib et al., 2007; Lin, Lin, & Calame, 2000). The 

reduction of overall levels of c-Myc at day seven signified a differentiated status of these 

cells (Lin et al., 2000; Shaffer et al., 2002). The repression of c-Myc upon differentiation 

signals the cell to stop proliferating and assume an antibody secreting phenotype (Shaffer et 

al., 2002).  

Activation of B-cells triggers AID (Activation induced cytidine deaminase) mediated somatic 

hypermutation (Clark et al., 2006; Peled et al., 2008) in the IgH locus which is required for 

creating diversity in repertoire of antibodies after contact with an antigen. In case of 

Burkitt’s lymphoma, translocated MYC becomes a target of SHM and AID mediated 

mutational activity (Adams et al., 1985; Bemark & Neuberger, 2000). However, 

accumulation of mutations, besides depending on AID activity, more importantly depend on 

the transcriptional rate of the target locus with a highly transcribing locus accumulating 

proportionally higher number of mutations (Ramiro, Stavropoulos, Jankovic, & Nussenzweig, 

2003). With AID expression levels nearly the same in WT and KO cells, it is evident that a 

higher transcriptional activity of translocated MYC under the IgH promoter was responsible 

for the intriguingly large difference in accumulated mutations between WT and ADPGK KO 

cells, thereby showing the increased proliferative, activated phenotype of WT cells upon 

stimulation. With majority of the mutations observed at D2 and D7 post stimulation, it is 

obvious that activation induced hypermutation, acting though transcriptionally active WT 

cells, was responsible for the mutational status of these cells. Also, with several observed 

mutations in MYC, known to provide a growth advantage to cancer cells (P57, T58, S62, S67, 

R83, F138 etc.), by stabilizing the MYC protein (increased half-life) (Bhatia et al., 1993; 

Cowling et al., 2014; Hemann et al., 2005; Xu-Monette et al., 2016), future research could 

aim at introducing one or more of these mutations through transgenic MYC in Burkitt’s 

lymphoma cells and observing their effects on proliferation and/or differentiation status of 

cells in which the endogenous MYC has been silenced. 

 



DISCUSSION 

70 
 

ADPGK KO cells resemble a nutrient starved condition 

With a combined overview of metabolism, differentiation and mutational status of MYC, the 

situation observed in ADPGK KO cells is not very different from a nutrient starved cell, which 

fails to garner energy for upregulation of metabolic activity and synthesis of biomolecules. 

The desired upregulation in energy metabolism lacking in KO cells, they fail to transform 

into differentiated cells and are left with less available resources to spend for accumulating 

mutations in translocated MYC. The differentiation of B-cells into plasma cell phenotype 

requiring immense energy turnover and synthesis of thousands of proteins per minute 

(Bertolotti et al., 2010; Garcia-Manteiga et al., 2011), a healthy metabolic state becomes 

essential for cells proceeding through this pathway and the non-competent ones are pushed 

to apoptosis (Lam & Bhattacharya, 2018). A metabolically functional cell, represented in our 

study by ADPGK WT cells, will have enough energy stocks to upregulate proliferation and 

synthesis of proteins necessary for differentiating into an ASC (Antibody secreting cell) and 

also for providing evolutionary advantage to its progenies through accumulation of 

mutations. Overall, the nutrient state of the cell, acting in this case via the glucose sensor 

ADPGK, seems to be the interlinking factor between the threads of metabolism, 

differentiation and mutation accumulation. 

In-vitro  and in-vivo models of reduced tumor aggressiveness in ADPGK KO cells 

The co-culture and migration system provided added information about the oncogenic and 

transformation state of WT cells with KO cells showing reduced macrophage transforming 

capability in-vitro. Heterogenous populations of B and T lymphocytes have been shown to 

affect the polarization status of myeloid cells (de Visser, Eichten, & Coussens, 2006; 

DeNardo, Andreu, & Coussens, 2010) and hence the study provided another insight into the 

development of tumor-microenvironment with the activation status of B-cells regulating the 

immune response to tumor. We observed that activated germinal-centre B-cells can 

chemotactically attract macrophages, through migration, and transform these TAMs (tumor 

associated macrophages) to M2, tumor promoting phenotype, and that removal of a crucial 

regulator of aerobic glycolysis, ADPGK, abolishes this effect. We quantified this effect by 

measuring the expression of several important M1/M2 markers such as Hexokinase, IL8, 

iNOS and Arginase-1. Hexokinase expression which goes down upon PMA stimulation of 

THP-1 cells, went further down when the cells were incubated with WT Ramos cells, 
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signifying low glycolytic, pro-tumor M2 macrophages (Galvan-Pena & O'Neill, 2014). In 

ADPGK KO cells a contrary of this, upregulation of hexokinase levels, signified M1, anti-

tumor macrophages. Interleukin-8, responsible for chemotaxis of immune cells to tumor 

and often related with anti-tumor-phenotype (Colegio et al., 2014; Varney et al., 2002), was 

found to increase upon incubation with ADPGK KO cells, signifying their reduced tumor 

aggressiveness in-vitro. iNOS and Arg1 are a set of complementary macrophage polarization 

markers, with their role depending on differential utilization of arginine. With iNOS 

metabolizing the arginine to nitric oxide (NO), a potential anti-tumor free radical, Arginase-1 

leads to production of proline, involved in wound healing and tissue growth (Colegio et al., 

2014; Galvan-Pena & O'Neill, 2014; Z. Yang & Ming, 2014). True to their roles, we found 

increased iNOS levels in ADPGK KO cells and increased Arg1 levels in WT Ramos cells, 

displaying clearly their macrophage M1 and M2 polarization potential respectively. Overall, 

the study was a novel design to study Burkitt’s lymphoma-macrophage microenvironment 

in-vitro and thereby provided a quantitative measure of reduced macrophage polarizing 

capability and tumor aggressiveness of ADPGK KO cells. 

The study, extended to in-vivo model in zebrafish, proved further the diminished tumor 

aggressiveness of ADPGK KO cells failing to grow in an otherwise natural environment for 

tumor growth.  With an undeveloped adaptive immune system until at least 4 weeks post 

fertilization (Novoa & Figueras, 2012), the zebrafish larvae provided us a perfect model to 

study the growth of aggressive cancers in a much shorter period of time and with enhanced 

imaging possibilities than other experimental animals (Avci et al., 2018). Consistent to this, 

the use of kdrl:GFP zebrafish line (Abrial et al., 2017; Jin, Beis, Mitchell, Chen, & Stainier, 

2005) enabled us to accurately monitor the growth of CM-diI tagged xenografted cells over 

a period of two days, corresponding to the activated proliferative state of Ramos BL cells. 

The KO cells showing a striking reduction in growth of xenograft, correlating with the 

metabolic and in-vitro studies, made evident the role of ADPGK as an important regulator of 

tumor growth in-vivo zebrafish yolk. The model is superior to commercially available 2D/3D-

tumor culture models by providing an alternative natural environment with interacting 

stroma and vasculature along with the possibility of studying angiogenesis and immune cell 

involvement in the growth of tumor. This has been achieved by employing transgenic 

zebrafish lines for studying neovascularization, angiogenesis and metastasis of xenografts 
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implanted at different body locations in zebrafish larvae (Chiavacci et al., 2015; Nicoli & 

Presta, 2007; Tobia, Gariano, De Sena, & Presta, 2013; C. Zhao et al., 2011). These models of 

zebrafish xenograft provide real time imaging possibilities and monitoring dynamic changes 

in vasculature and/or tumor microenvironment (C. Zhao et al., 2011). Chemotherapeutic 

could be easily administered into larval water or directly to the tumor site by microinjection, 

providing rapid responses and precise quantification of tumor regression (Fior et al., 2017; 

Wu et al., 2017). Overall, the yolk microinjection and xenograft development model provide 

a basic but depending on components involved (neovascularization, micro-environment, 

metastasis, drug targeting etc.), a diverse system for future advances in rapid tumor 

profiling and targeting.  

Outlook 

In this study we found that Burkitt’s lymphoma cells are not permanently frozen in an 

undifferentiated state of malignancy but could be induced to follow an aerobic glycolysis-

driven activation pathway, which in the end leads to its own suppression. The study, though 

lacking the precise signalling pathway involved which leads to the observed metabolic 

catastrophe upon ADPGK knock-out, proved the importance of this protein in regulating 

glucose homeostasis and thereby acting as an important mediator in B-cell activation. 

Though indirectly, we managed to relate the suppression of an important proto-oncogene, 

MYC, with the loss of ADPGK activity. We observed the effects knowing that ER biosynthesis 

is highly upregulated in B-cells upon stimulation and a missing ER glucose sensor in form of 

ADPGK, could stall the metabolism and consequently the pathway to differentiation. 

Additionally, the reduction in glucose metabolism in knock-out cells being present even at 

unstimulated state, where ADPGK activity was undetectable, prompt us to investigate the 

possible interacting partners of ADPGK, irrespective of its catalytic function.  

The development of inhibitors against ADPGK has found success as demonstrated by a 

recent study utilizing 8-bromoadenosine phosphate (Grudnik et al., 2018), however with the 

physiological role of ADPGK still not fully deciphered, drug targets against ADPGK still await 

discovery and deployment.  
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Overall, knowing the role of ADPGK in cancer metabolism and immune cell activation, as 

demonstrated by our study, the discovery of antibodies/inhibitors against ADPGK can have 

far reaching consequences against autoimmune diseases and immunological cancers. 

 

Conclusion 

We successfully identified the role of ADPGK in regulation of aerobic glycolysis in Burkitt’s 

Lymphoma cells and showed that its knock-out leads to reduced tumor aggressiveness, as 

measured in-vitro and in-vivo Zebrafish. We found reduced MYC transcription in ADPGK 

knock-out Burkitt’s lymphoma cells and several folds reduction in accumulated random 

mutations in translocated MYC in these cells. We additionally observed a stalled pathway to 

differentiation of ADPGK knock out B-cells into plasma cells upon stimulation by mitogenic 

signals. Overall, ADPGK was found to act as a regulator of cell-differentiation and cancer 

aggressiveness in Burkitt’s lymphoma cells.  
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