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Zusammenfassung

Aktuelle Studien mit parametrisierten Anfangsbedingungen haben gezeigt, dass Stö-
rungen im Strömungsmuster des Vorgängersterns eine wesentliche Zutat sein könnten,
um zuverlässigere Explosionen in dreidimensionalen (3D) Simulationen von Kernkollaps-
Supernovae zu ermöglichen. Diese Störungen entstehen auf natürliche Weise während
den hydrostatischen Silizium und Sauerstoff Brennphasen in einem Stern. Der Einfluss
von Störungen im Vorgängerstern auf die Dynamik der Kernkollaps-Supernova hängt
ausschlaggebend von deren Stärke und dem räumlichen Ausmaß ab. Genaue Modellie-
rung des Vorgängersterns ist daher notwendig, um ein realistische Anfangsmodell zu
erhalten.
In dieser Arbeit präsentieren wir die ersten 3D Simulationen von Siliziumbrennen

im vollen 4π Raumwinkel. Im Gegensatz zu bisherigen Arbeiten, verwenden wir die
tatsächlichen Raten für Elektroneneinfänge auf 56Fe. Mit unseren 3D Simulationen haben
wir es geschafft, 154.41 s mit 3.9× 106 CPU Stunden zu simulieren, was immer noch recht
rechenaufwändig ist. Zukünftige Verbesserungen, wodurch die benötigten Computer-
Ressourcen reduziert werden können, werden in dieser Arbeit diskutiert. Für die 3D
Simulationen in dieser Arbeit haben wir einen standardmäßigen Poisson Gravitations-
Löser auf einem kartesischen Gitter verwendet, welcher während dieser Arbeit entwickelt
und implementiert wurde. Außerdem wurden unterschiedliche Methoden zur Lösung der
Poisson-Gleichung implementiert, die auch auf krummlinigen Gittern funktionieren und
auf eine große Anzahl Prozessoren skalieren.

Abstract

Recent studies with parametrized initial conditions have shown that perturbations in
the flow pattern of the progenitor might be a crucial ingredient to enable more robust
explosions in three-dimensional (3D) simulations of core-collapse supernovae. Those
perturbations naturally develop during the hydrostatic silicon and oxygen burning phases
in a star. However, the impact of perturbations in the progenitor on the dynamics of the
core-collapse supernova largely depends on their magnitude and spatial scale. Accurate
modeling of the progenitor is therefore necessary to obtain a realistic initial model.
In this work we present the first 3D simulations of silicon burning in full 4π solid

angle. In contrast to previous work, we use the native electron capture rates on 56Fe.
With our 3D simulation we managed to cover 154.41 s with 3.9× 106 core-hours, which
is still rather CPU-intensive. Future improvements, which would reduce the required
computational resources, are discussed in the thesis. For the 3D simulations in this
thesis, we use a standard Poisson gravity solver on a Cartesian grid, which was developed
and implemented during the course of the thesis. Additionally, we implemented different
methods for solving Poisson’s equation, which also work for curvilinear grids and scale
to a large number of processors.
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1 Introduction

Even though mankind was fascinated by the stars in the night sky since ancient times a
thorough understanding of the processes in stars has only developed during the 20th
century. In particular the work by S. Chandrasekhar, W. A. Fowler and M. Schwarzschild
provided crucial insights into the structure and evolution of stars, as we know it today.
However, even today there are many open questions regarding the details of nuclear
processes in stars and their implications for stellar evolution.

In recent times it is possible to follow the complete evolution of a star on a computer
from the formation of a star in molecular clouds through different nuclear burning
processes until the formation of a white dwarf, neutron star or black hole. However,
this is generally only possible under the assumption of spherical symmetry and requires
several other approximations, which are discussed in Sec. 1.1.1. Another obstacle to
overcome in the computational modeling of stars are the vastly different timescales on
which astrophysical processes take place. The following timescale estimates are all based
on Kippenhahn et al. (2012):
The free-fall timescale τff is defined as the timescale on which a star would collapse

due to its own gravity, if the pressure term in the hydrostatic equilibrium would suddenly
“disappear”. This timescale can be approximated via

τff ≈
√
R

g
=

√
R3

GM
, (1.1)

where R is the radius and M is the total mass of the star and g is the gravitational
acceleration given by Newton’s law of gravitation g = GM/R2 (see Sec. 2.3). In the
case of the Sun this yields a value of τff ≈ 27 min and even in the case of a red giant
it is only roughly τff ≈ 18 d. In a similar fashion we can approximate the timescale on
which a star would explode, if the gravity would suddenly disappear as

τexpl ≈ R
√
ρ

P
, (1.2)

where ρ and P are average values for the density and pressure over the entire star. If
the star is near hydrostatic equilibrium those two timescales are about equal. In this
case, we call this timescale the hydrostatic timescale

τhydr ≈ τff ≈ τexpl, (1.3)

since it represents the timescale on which a star reacts to slight perturbations in the
hydrostatic equilibrium.
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1 Introduction

The Kelvin-Helmholtz timescale

τKH =
|Egrav|
L

≈ GM2

2RL (1.4)

is defined as the timescale for which a star could radiate with luminosity L using only
its gravitational energy Egrav. In the case of the Sun the Kevin-Helmholtz timescale
is τKH = 1.6× 107 yr. However, the decay of radioactive isotopes found in meteorites
indicates that the solar system is at least 4.56× 109 yr old (e.g. Bouvier and Wadhwa,
2010). Clearly, this means that the Sun is not primarily powered by gravitational
contraction. However, there are evolutionary phases in a star where Egrav is indeed the
main energy source of a star.
Finally the nuclear timescale

τnuc =
Enuc
L

(1.5)

of a star can be estimated by the energy release Enuc through nuclear reactions. During
the main sequence phase the most important nuclear reaction is the conversion of four
1H into 4He (see Sec. 3.1.1). The energy release of this reaction is Q = 6.3× 1018 erg g−1.
Under the assumption that the Sun consists completely of hydrogen this yields a nuclear
timescale of τnuc = QM�

L�
= 1011 yr. Comparing those three timescales clearly shows

that
τnuc � τKH � τhydr. (1.6)

Unfortunately this means that with the current computational resources it is clearly not
possible to follow the whole lifetime of a star and resolving the hydrostatic timescale
at the same time. Therefore, phenomena that occur on the hydrostatic timescale are
typically neglected and treated very approximately in one-dimensional (1D) stellar
evolution codes, whereas multidimensional hydrodynamic codes only cover short phases
in the overall lifetime of a star.

However, during the very late burning stages of stellar evolution for massive stars the
nuclear timescale and the hydrodynamic timescale are much closer. In the following, we
give a rough estimate of the nuclear timescale during silicon burning. For this purpose
we assume that silicon burning only consists of the simple fusion of two 28Si nuclei into
56Ni:

28Si + 28Si −−→ 56Ni. (1.7)

This is obviously a crude oversimplification of the nuclear reactions that are involved in
silicon burning (see Sec. 3.1.4), but it should be sufficient for an order of magnitude
estimate of the released nuclear energy. In particular, the reaction above completely
neglects electron captures, which are extremely important for the neutronization during
silicon burning and the resulting contraction of core (see Sec. 2.2.2). Under these
assumptions the energy release for reaction (1.7) is QSi−burn = 1.88× 1017 erg g−1.
Furthermore, we assume that a total 28Si mass of MSi−burn = 1.4M� is burned to 56Ni,
since the iron core becomes unstable once it reaches the Chandrasekhar mass limit
Mch ≈ 1.4M� (see Sec. 3.2). Finally, we take the peak luminosity of the convective silicon
burning region during silicon burning from the 1D stellar evolution code MESA. This
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1.1 Stellar modeling

model from the stellar evolution code is also used as starting point for our simulations
of silicon burning in Sec. 5.3 and 5.4. This yields a peak luminosity of LSi−burn ≈
3.408× 1012L�. With those values we obtain a nuclear timescale of τnuc, Si−burn ≈
4× 104 s = 0.46 d during silicon burning. 1D stellar evolution calculations with a more
realistic nuclear network also confirm that silicon burning typically only lasts several
days. This value is much closer to the hydrostatic timescale τhydr, which means that we
can cover substantial parts of this burning phase with multidimensional hydrodynamic
simulations.

1.1 Stellar modeling

The following sections focus mainly on modeling techniques and recent results in stellar
modeling. A more rigorous discussion of the astrophysical processes in stars with a focus
on nuclear burning stages is given in Chapter 3.

1.1.1 1D stellar evolution

The basic equations of stellar structure and evolution under the assumption of a non-
rotating, spherically symmetric star in hydrostatic equilibrium are given in Sec. 3.1.
Consequently, processes that are inherently multidimensional can only be treated ap-
proximately in this framework. In particular convection and rotation are complicated
multidimensional phenomena that are subject of ongoing research (see Sec. 1.1.2). Since
a full treatment of those phenomena is not possible in a 1D framework, parametrized
prescriptions are used instead. In the case of convection the so-called mixing-length
theory by Böhm-Vitense (1958) is commonly used in 1D stellar evolution calculations.
The following summary of mixing-length theory is based on Kippenhahn et al. (2012).

The total energy flux l/4πr2 at a given point in a star is given by as the sum of the
radiative flux Frad and the convective flux Fcon:

l/4πr2 = Frad + Fcon =
4acG

3
T 4m

κPr2∇rad, (1.8)

where l is the luminosity as defined in Sec. 3.1, a = 7.57× 10−15 erg cm−3 K−4 is the
radiation density constant, c is the speed of light, G is the gravitational constant (see
Sec. 2.3.1), T is the temperature, κ is the Rosseland mean of the opacity, P is the
pressure, m is the enclosed mass within radius r and ∇rad is the gradient that would
be necessary to transport the whole flux by radiation. In a similar fashion the actual
radiative flux can be expressed as

Frad =
4acG

3
T 4m

κPr2∇, (1.9)

where ∇ = ∂ lnT/∂ lnP is now the actual temperature gradient of the stratification.
To obtain an expression for the convective flux we consider a convective element (a blob)
with an excess temperature DT over its surroundings. Furthermore, we assume that
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1 Introduction

this element moves radially with velocity v and remains in complete pressure balance,
i.e. DP = 0. Under these conditions the convective flux can be expressed as

Fcon = ρvcPDT , (1.10)

where cP is the specific heat and ρ is the mass density. One of the main assumptions
of mixing-length theory is that the convective element travels the mixing-length lm
before it is absorbed into the surroundings. This means that elements passing through
a sphere of constant radius r have on average traveled a distance of lm/2. Hence we can
approximate the excess temperature as

DT

T
=

1
T

∂(DT )

∂r

lm
2 = (∇−∇e)

lm
2

1
HP

, (1.11)

where HP = −dr/d lnP is the pressure scale height and the subscript e indicates that
the respective quantity is computed for the convective element (details of this notation
are introduced in Sec. 3.3). With similar considerations the velocity of the element due
to buoyancy forces kr = −gDρρ can be estimated as

v2 = gδ (∇−∇e)
l2m

8HP
, (1.12)

where δ = − (∂ ln ρ/∂ lnT ) is a partial derivative of the equation of state as defined
later in Sec. 3.3. Plugging Eqs. (1.11) and (1.12) into Eq. (1.10) then leads to the
following expression for the convective flux

Fcon = ρcPT
√
gδ

l2m
4
√

2
H−3/2
P (∇−∇e)

3/2 . (1.13)

Finally we also need to consider temperature changes of the convective element due to
adiabatic expansion or compression and due to radiative change with the surroundings.
With certain assumptions about the geometry the following expression can be derived

∇e −∇ad
∇−∇e

=
6acT 3

κρ2cP lmv
. (1.14)

This means that with (1.8), (1.9), (1.12), (1.13), (1.14) we have now five equations
for the five quantities Frad, Fcon, v, ∇e and ∇ as a function of the mixing-length lm.
With further substitutions this system of equations can now be further reduced to a
single cubic equation that gives a unique real solution for the temperature gradient ∇
in presence of convection (Kippenhahn et al., 2012, sec. 7.2).
The mixing-length theory as described above is based on several assumptions. The

most obvious one is the mixing-length lm itself as a free parameter of the model. The
mixing-length is often expressed in units of the pressure scale height HP as the mixing-
length parameter αMLT. This parameter generally is assumed to be constant within a star
and in addition to that it does not vary with stellar mass, composition or evolutionary
stage. Through comparison of stellar models with observed stars this parameter is
inferred to be of order 1.
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1.1 Stellar modeling

Another crucial assumption of this model is that all convective elements have the same
size and shape. However, the theory of turbulence, numerical simulations, laboratory
experiments and astrophysical observations clearly show that this is not the case.
Therefore, convective energy is actually not transported in laminar flows of blobs of
identical size and energy content, but rather by turbulent elements (“eddies”) of all sizes.
This turbulent energy spectrum is taken into account by the full spectrum turbulence
theory by Canuto and Mazzitelli (1991), which is an extension of the mixing-length
theory. This model gives significantly better results than the original mixing-length
theory, however, it is still dependent on a mixing-length parameter.

1.1.2 Stellar evolution modeling in 2D and 3D

Clearly the 1D description from the previous section has many deficits. More accurate
results can be obtained from hydrodynamic simulations of the star in 2D and 3D. The
governing equations for this approach are discussed in Sec. 2.1. In the following, we give
a general overview of recent results from stellar modeling in 2D and 3D. More specific
details about hydrodynamic simulations of silicon burning are given in Sec. 1.2. The
following is a short overview of those hydrodynamic codes that are most relevant for
this work. A more detailed overview of hydrodynamic codes used for stellar modeling
can be found in the review article by Kupka and Muthsam (2017).

Many astrophysical hydrodynamic codes are based on the piecewise-parabolic method
(PPM) by Colella and Woodward (1984), which uses piecewise quadratic instead of
piecewise linear functions in the reconstruction of the approximate Riemann solver
(see Sec. 4.1.1). For instance this method is used in the PROMPI code (Meakin and
Arnett, 2007b), which is a parallelized version of PROMETHEUS (Fryxell et al., 1989).
Since this code was mainly used for simulations of oxygen burning and to some degree
silicon burning, we discuss the applications of this code in Sec. 1.2.1. In Meakin and
Arnett (2007b) they also adopt a simple model of turbulent entrainment for convective
boundary mixing in stars, which was originally used in a geophysical context. This is
further investigated in Cristini et al. (2017) in the case of convective boundary mixing
during carbon burning.
Another astrophysical hydrodynamics code that uses the PPM scheme from Colella

and Woodward (1984) is the low Mach number code MAESTRO (Almgren et al., 2007;
Nonaka et al., 2010), which is built on the adaptive mesh refinement (AMR) framework
AMReX. In contrast to other astrophysical codes it does not solve the compressible
Euler equations. The hydrodynamic equations are instead reformulated to filter out
sound waves but preserve the correct large-scale fluid motions and hydrostatic balance.
This limits the code to strictly low Mach number applications such as core convection in
massive stars (Gilet et al., 2013) or convection in helium shells on sub-Chandrasekhar
white dwarfs (Zingale et al., 2013; Jacobs et al., 2016). Another code using the AMReX
framework is the radiation-hydrodynamics code CASTRO (Almgren et al., 2010). Both
MAESTRO and CASTRO are open source.

Piecewise-parabolic Boltzmann (PPB) is another method based on the PPM scheme. It
is primarily used in the hydrodynamics code PPMstar, which is described in Woodward
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1 Introduction

et al. (2015). This description of the code includes a detailed discussion of the PPB
scheme. PPMstar was mainly used for 3D simulations of He-shell flash convection
(Woodward et al., 2015) and oxygen-burning shell convection (Jones et al., 2017) in
4π geometry. In both cases they are mainly interested in the properties of mass
entrainment at convective boundaries. For this purpose, they use a simplified description
of microphysics. Based on those results, they developed a mixing description for 1D
stellar evolution codes.
A different approach of solving the Euler equations is used in the ANTARES code

by Muthsam et al. (2010). It employs high-order WENO schemes (see e.g. Liu et al.,
1994) and uses the low Mach number method by Kwatra et al. (2009). In Grimm-Strele
et al. (2014) they extended their WENO treatment to curvilinear grids. So far this code
was mainly used for multidimensional modeling of Cepheid variables (Mundprecht et al.,
2013, 2015) and surface convection in white dwarfs (Kupka et al., 2018).

The development of the implicit hydrodynamics code MUSIC was described in
Viallet et al. (2011, 2013a, 2016). Similar to our code SLH the spatial discretization
is performed independently of the time discretization (method of lines). The resulting
system of ordinary differential equations for the spatial discretization is then solved
using a combination of the Newton-Raphson method with Jacobian-free Krylov-subspace
methods. Benchmarking results and comparisons with other hydrodynamic codes are
shown in Goffrey et al. (2017). Recent applications of this code include the simulation
of envelopes in red giants (Viallet et al., 2013b), lithium depletion in solar-like stars
(Baraffe et al., 2017) and convective penetration in pre-main sequence stars (Pratt et al.,
2017).

1.1.3 The hydrodynamics code SLH

In this section, we give a short overview of the most important features of the Seven-
League-Hydro (henceforth SLH ) code that is used as basis for this work. This code was
originally developed during the PhD thesis of Miczek (2013) under the name Low Mach
number Hydro Code (LHC ). Due to the fact that there is a particle collider with the
same name it was later renamed to SLH.

It solves the compressible Euler equations in one, two or three spatial dimensions with
a finite-volume discretization, which is described in more detail in Sec. 4.1.1. In addition
to that, it features both explicit and implicit time integration. The main advantage
of implicit time stepping is that the time step can be extended beyond the CFL time
step, which is required for explicit time stepping (see Sec. 4.1.2). This is particularly
useful in the case of Low Mach number flows (. 10−3), since the explicit CFL criterion
scales with the sound speed cs, which is much larger than the actual fluid velocity u.
For the purpose of modeling low Mach number flows a preconditioned Roe solver that
greatly reduces the dissipation in the low Mach number regime has been developed
by Miczek et al. (2015). A more detailed analysis of the properties of this method is
given in Barsukow et al. (2017). Alternative low Mach number schemes that are also
implemented in SLH are presented in Miczek (2013) and Edelmann (2014). However,
for the present work on silicon burning those low Mach number methods have not been

6



1.2 Simulations of silicon and oxygen burning in 2D and 3D

used. Nuclear reaction networks have been incorporated into SLH during the PhD
thesis of Edelmann (2014) along with the Helmholtz equation of state from Timmes and
Swesty (2000). Aside from that, the code is implemented in a modular approach, which
allows flexible combinations of reconstruction schemes, flux functions, nuclear networks
and other components.

The non-linear system of equations resulting from the implicit time stepping is solved
using the Newton-Raphson method, which reduces the solution of the non-linear system
to an iterative solution of linear systems. Those linear systems of equations are then
solved using preconditioning and iterative solvers for sparse linear systems of equations
(e.g. BiCGSTAB, GMRES), which are described in more detail in Sec. 4.3.5.

One particular feature of the code is the transformation of the hydrodynamic equations
to general coordinates. This means that different grid geometries can be defined through
appropriate coordinate transformations as described in Sec. 4.1.3. With this approach the
geometry of the grid can be easily adjusted to different problem geometries. However, as
we shall see in Sec. 5.1.2 this approach is slightly problematic in the case of discontinuous
coordinate transformations.

The code is parallelized using a hybrid approach with MPI and OpenMP. It has been
shown in Edelmann and Röpke (2016) that this parallelization scales efficiently up to
more than 300 000 cores on JUQUEEN. In addition to that, SLH is part of the High-Q
Club of the Jülich Supercomputing Centre (JSC), which proves that it is capable of
using the entire 28-rack BlueGene/Q system at JSC, i.e. 458 752 cores.
Until this thesis one of the major shortcomings of the code was the simplified, time

independent treatment of gravity due to the fact that a gravity solver was not yet
implemented. As such, the implementation of a gravity solver that also works on general
curvilinear grids and scales to a large number of cores was one of the main objectives
of this thesis. Since we already have iterative solvers for sparse linear systems in the
code we decided to implement the mixed method Poisson solver, which is described in
Sec. 4.3.4. In addition to that, a standard Poisson solver on Cartesian grids (Sec. 4.3.2)
and a monopole gravity solver (Sec. 4.3.1) have also been implemented during this thesis.
Benchmarking results for those gravity solvers are shown in Sec. 5.1.
The code has previously been used for simulations of convective mixing in massive

Population III stars as part of Edelmann (2014). In addition to that, it has been
used for simulations of Classical Novae by Bolaños Rosales (2016) and Lach (2016).
Simulations of shear instabilities in two and three dimensions have been carried out by
Edelmann et al. (2017) and Horst (2016), respectively. The latter is still an ongoing
project. Another recent application of the code is the simulation of convective boundary
mixing by Botto Poala (2017) using the box in a star approach.

1.2 Simulations of silicon and oxygen burning in 2D and 3D

As we discuss in Sec. 3.2.2 perturbations arising during convective silicon and oxygen
burning are a possible candidate to enable shock revival in three-dimensional models
of core-collapse supernovae. However, due to a lack of sophisticated three-dimensional
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models of the silicon burning phase the impact of such perturbations on shock revival
remains inconclusive. In the following section, we give an overview on previous attempts
to model silicon burning. In addition to that, we discuss the deficiencies of each of those
modeling attempts.

1.2.1 Previous work

First attempts of modeling oxygen burning in massive stars prior to core-collapse have
been carried out by Arnett (1994) and Bazán and Arnett (1994) with the hydrodynamics
code PROMETHEUS in two spatial dimensions. They found that significant mixing
beyond convective boundaries determined by mixing-length theory leads to entrainment
of 12C into the convective region. This additional fuel enhances nuclear burning and
causes hot spots and inhomogeneities in the electron fraction Ye, which may influence the
core-collapse and the explosive nucleosynthesis. Follow-up studies by Bazán and Arnett
(1998) confirm that convection is more dynamic than predicted by one-dimensional
diffusion-like approximations. Similar results were found in two-dimensional simulations
of silicon burning with a 123 isotope nuclear network (Bazán and Arnett, 1997). Asida
and Arnett (2000) covered a longer period of oxygen burning than Bazán and Arnett
(1994, 1998) with the two-dimensional hydrodynamics code VULCAN and confirmed
the earlier results.
With PROMPI, a parallelized version of PROMETHEUS, first 3D simulations of

oxygen shell burning with more realistic physics (i.e. compressibility, nuclear network, re-
alistic EoS, appropriate boundaries, etc.) were performed (Meakin and Arnett, 2007a,b).
Their main conclusions are that 2D simulations are significantly different from 3D
simulations, in terms of both flow morphology and velocity amplitude. Moreover, they
find that convective regions are better predicted with a dynamic boundary condition
based on the bulk Richardson number than purely local criteria like the Schwarzschild
or Ledoux criterion (see Sec. 3.3). Arnett and Meakin (2011) performed 2D simula-
tions with multiple, simultaneously active burning shells of carbon, oxygen, neon and
silicon. This approach allows additional interactions between different burning shells.
Substantial deviations from spherical symmetry are clearly visible in this simulation.
This development of large scale asymmetries during silicon burning and oxygen burning
is particularly relevant for shock revival in the modeling of Type II supernovae (see
Sec. 3.2.2).

Arnett and Meakin (2011) also list a number of requirements that need to be fulfilled
in future 3D simulations of silicon burning to study these phenomena in more detail:

1. Simulation of the full core in 4π steradians to get the lowest order fluid modes
(l = 1), rotation and low-order MHD modes

2. Multiple shells (C, Ne, O, and Si) to get shell interactions

3. A realistic equation of state that captures the effect of electron-positron pairs and
relativistic partial degeneracy

8
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4. A nuclear network that incorporates realistic burning of C, Ne, O and Si with
electron captures in a dynamic environment

5. Resolve turbulent motions

6. Compressible fluid dynamics

In addition to that, accurate modeling of these phenomena also requires a gravity solver
that takes deviations of the density distribution from spherical symmetry into account.
Consequently, a simple monopole gravity solver, which assumes a spherically symmetric
density distribution, is not suitable for the modeling of the perturbations in Type II
supernova progenitors.
A more recent attempt of modeling silicon burning in 3D until the onset of core-

collapse was made by Couch et al. (2015) for a 15M� star. For this purpose, they
followed the evolution of a pre-main sequence star until the onset of core-collapse in
the open source 1D stellar evolution code MESA (Paxton et al., 2011, 2013, 2015).
Afterwards, they followed the last 160 s in a 3D hydrodynamics code. However, as
discussed by Müller et al. (2016) they use several approximations that might influence
the structure and magnitude of the perturbations. For instance, they use a monopole
gravity solver, simulate only one octant of the whole star and artificially enhance the
electron capture rate on 56Fe by a factor of 50. The implications of these approximations
for the modeling of core-collapse supernovae in 3D are further discussed in Sec. 3.2.2.

1.2.2 Goals of this work

With the simulations presented in this thesis we want to alleviate some of the above
artificial constraints that were imposed in previous simulations of silicon burning. For
this purpose we simulate the whole core in three spatial dimensions up to a radius of
3.2× 108 cm. This covers the full silicon burning shell and also large parts of the oxygen
burning shell, however, we were still unable to include neon and carbon burning shells
in our 3D modeling. We employ the Helmholtz equation of state from Timmes and
Swesty (2000), which was also used in the simulations of Arnett and Meakin (2011)
and Couch et al. (2015). In addition to that, we adopted the effective rate α-chain
nuclear reaction network (see Sec. 4.2.2) that is used in the stellar evolution code MESA
into SLH during the course of this thesis. We decided to use this nuclear network to
maintain consistency between the composition in the stellar evolution model and our
hydrodynamic model, since the conversion of the composition between different nuclear
networks is not necessarily straightforward. As shown in Sec. 5.4.1 the resolution in
our 2D and 3D simulations is sufficient to obtain a k−5/3 turbulent energy spectrum
according to Kolmogorov (1941). Since we are using a compressible hydrodynamic
scheme we fulfill most of the points listed by Arnett and Meakin (2011). In addition
to that, we apply our newly implemented standard Poisson solver for a more accurate
treatment of self-gravity. At the same time, it serves as a first test of the performance
of the gravity solver in a realistic physical application.

However, there is still room for improvements with regard to the nuclear network and
the simulated domain. A QSE-reduced nuclear network based on Hix et al. (2007) might
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be more suited for simulations of silicon burning, since it would give more accurate
yields than the effective rate nuclear network that we are currently using. However,
it would require substantial effort to implement such a network into SLH. In addition
to that, we would also have to construct new stellar evolution models with the same
nuclear network. Consequently, this a more long-term project, which requires major
changes in the implementation of the nuclear network.
Extending the simulated domain to cover also neon and carbon burning is mainly

an issue of performance and computational resources. However, since this is our first
attempt to model silicon burning in 3D, we expect that there is still a lot of room for
improvements in this regard.

1.3 Outline

Chapter 2 introduces the physical ingredients that are necessary to describe the phe-
nomena that are discussed in this thesis. In particular Sec. 2.1 covers the theoretical
foundations of our hydrodynamic simulations. The physics of nuclear reactions are
discussed in Sec. 2.2, whereas the relevant aspects of Newtonian gravity are introduced in
Sec. 2.3. Chapter 3 gives a quick overview of astrophysical concepts during the evolution
of stars with a particular focus on massive stars. The hydrostatic nuclear burning
stages in massive stars are discussed in Sec. 3.1, whereas Sec. 3.2 covers core-collapse
supernovae towards the end of stellar evolution in massive stars. Sec. 3.3 introduces the
concept of dynamical instabilities in stars. In Chapter 4 we formulate numerical methods
based on the physical concepts that were introduced in Chapter 2. The discretization
of the hydrodynamic equations on curvilinear grids is discussed in Sec. 4.1, whereas
nuclear reaction networks are covered in Sec. 4.2. Our implementation of the gravity
solvers is described in Sec. 4.3, in particular the newly developed mixed method Poisson
solver is discussed in Sec. 4.3.4. The results of this thesis are presented in Chapter 5.
Sec. 5.1 covers the benchmarking for the different gravity solvers that were implemented
during the course of this thesis. The initial setup for the simulations of silicon burning
is introduced in Sec. 5.2. The results for the 2D and 3D simulations of silicon burning
are presented in Sec. 5.3 and Sec. 5.4, respectively. In Chapter 6 we summarize the most
important results of this thesis and give an outlook for future work.
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2.1 Hydrodynamics

For the simulations in this work we describe the star as a continuous fluid. This
assumption holds if the following requirements are fulfilled (see e.g. Müller, 1998;
Thompson, 2006). The macroscopic length scale L of interest has to be much larger
than the collisional mean free path l of the particles. This allows us to introduce the
concept of a fluid element that is large in comparison to l, but small in comparison to L.
In addition to that, mean physical quantities e.g. the fluid density ρ or the fluid velocity
u can be defined due to the large number of particles in the fluid element. Furthermore,
only “short range” forces are allowed between particles, since otherwise collective effects
have to be considered. This is for example the case for gravity, which is treated as a
macroscopic external force in the hydrodynamic equations.
These conditions are usually fulfilled in astrophysical environments due to the large

length scales of astrophysical objects. Consequently, we can describe the star with a set
of hydrodynamic balance equations for mass, momentum and energy. In astrophysical
environments the viscosity ν is similar to liquids and gases on earth. Thus, comparing
the vast length and velocity scales of astrophysical objects to their viscosity leads to
very large Reynolds numbers.

Re =
Lu

ν
. (2.1)

According to Thompson (2006) the Reynolds number in the Sun can be as large as
1018. Therefore, we will only consider the inviscid Euler equations instead of the viscous
Navier-Stokes equations in the following. Here it is important to note that the Euler
equations form a hyperbolic set of differential equations, whereas the Navier-Stokes
equations also have a parabolic part due to the viscous terms. However, truncation errors
of the numerical scheme and the finite grid resolution lead to an intrinsic numerical
viscosity, which depends on the numerical method and the grid resolution.

2.1.1 Euler equations

The Euler equations consist of hydrodynamical balance equations for mass, momentum
and energy. In general a hydrodynamical balance equation for an extensive quantity
A in a fluid volume V can be expressed in the form (see hydrodynamics textbooks e.g.
Landau and Lifschitz, 1991; Batchelor, 2000)

dA

dt
=
dsA

dt
+
dfA

dt
, (2.2)
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where dsA is the change of A due to creation or destruction inside the volume V and dfA

represents the flux of A over the boundary ∂V of the volume. Eq. (2.2) is the integral
form of a balance equation. The differential form of the balance equation can be derived
using the divergence theorem. This leads to

∂

∂t
a(x, t) + ∇ · ja(x, t) = sa(x, t), (2.3)

where a(x, t) is the density of A, ja(x, t) is the flux density of A over the boundary ∂V
and sa(x, t) is the source density of A inside V .

Using this framework we can formulate the Euler equations for mass, momentum and
energy conservation in the following way:

∂tρ+ ∇(ρu) = 0,
∂t(ρu) + ∇(ρu⊗u) = −∇P + ρf ,
∂t(ρetot) + ∇(ρetotu) = −∇(Pu) + ρuf ,

(2.4)

where ρ is again the mass density of the fluid, u = (u, v,w) is the fluid velocity, P is
the pressure, f an external force (e.g. gravity g, Sec. 2.3) and etot = 0.5 u2 + ei is the
specific total energy (ei is the specific internal energy). Eq. (2.4) constitutes a system
of five partial differential equations for the six quantities ρ, u (three components), p
and etot. Therefore, an additional equation is required to close the system. The missing
equation is provided by the equation of state (EoS) that relates ρ, P and etot as a
function of the chemical composition (see Sec. 2.2).

2.1.2 Source terms for nuclear reactions

Since we want to model nuclear burning processes in stellar environments, we have to
extend Eq. (2.4) to account for energy release or consumption due to nuclear reactions.
Therefore, we have to consider additional source terms in the energy conservation, which
leads to (see e.g. Müller, 1998):

∂t(ρetot) + ∇(ρetotu) = −∇(Pu) + ρuf + ρQ, (2.5)

where Q depends on the reaction rates ri of the chemical species (i = 1, . . . ,N). In
addition to that, we have to introduce balance equations for the N chemical species

∂t(ρXi) + ∇(ρuXi) = ri i = 1, · · · ,N , (2.6)

where Xi is the mass fraction of the chemical species i. The mass fractions Xi are
defined in the following way:

Xi =
niAi∑
j njAj

, (2.7)

where ni is the number density and Ai the nucleon number of species i. Note that the
sum of all equations in (2.6) yields the mass conservation of Eq. (2.4). This leads to the
following constraint on the reaction rates:
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N∑
i=1

ri = 0. (2.8)

The reaction rates ri are determined by a network of nuclear reactions (cf. Sec. 2.2).
As such, we have now extended the Euler equations (2.4) with one additional equation
for each of the species, resulting in a set of 5+N partial differential equations. Even for
a low number of species a full coupling of the nuclear reactions to the hydrodynamics
is usually not possible. The dense blocks in the sparse Jacobian become larger and
therefore it becomes more inefficient to invert this matrix. Consequently, this approach
of using active scalars is limited to very small nuclear networks. For only five nuclear
species, the block size of the sparse matrix already doubles in comparison to a purely
hydrodynamic Jacobian, which makes it significantly more expensive in terms of both
storage and computation time. Therefore, in practical applications the nuclear species
are often treated as passive scalars. This means that the Euler equations are first solved
under the assumption that the composition does not change. Afterwards, the chemical
species are updated according to the obtained mass flux and the composition changes
due to nuclear reactions. This alternating sequence of evaluating the Euler equations,
the species advection and the nuclear reactions separately is a typical operator splitting
approach as described in Press et al. (2007). This splitting introduces a numerical
error that scales with the time-step. It has been shown in Edelmann (2014) that the
splitting error is usually negligible. More details of the operator splitting are discussed
in Sec. 4.2.1.

2.2 Nuclear reactions

Nuclear reactions are crucial for understanding the burning processes in the interior
of stars. The role of thermonuclear burning in stars will be discussed in more detail
in Sec. 3.1. In this section, we are going to focus on the equations that describe the
nuclear burning processes and their implications. The following discussion is based on
Müller (1998); Iliadis (2015).
Nuclear reactions are classified according to the number of input nuclei. The most

common reactions in astrophysical environments either involve one or two species.
One-body reactions include photo-disintegrations and weak reactions such as β-decays
or electron captures. The latter ones will be discussed in more detail in Sec. 2.2.2.
Two-body reactions include processes involving protons, neutrons or α-particles. In
some cases heavier nuclei such as 12C or 16O may also collide with each other, however
these processes are more unlikely due to the higher Coulomb barrier. As shown in Iliadis
(2015) the Gamow factor for a two-body reaction yields:

T̂ ≈ exp
(
−2π
h̄

√
m

2EZ1Z2e
2
)

, (2.9)

where T̂ is the transmission coefficient through the Coulomb barrier, m is the reduced
mass of the participating nuclei, E is the center-of-mass energy, Z1 and Z2 are the
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proton numbers of the participating nuclei and e is the elementary charge. We can see
that the transmission coefficient rapidly decreases with increasing proton numbers due
to the product of Z1 and Z2 in the exponential function.
The cross sections for reactions that involve three input species are much lower,

however, the triple α reaction is particular important during helium burning, as we will
see in Sec. 3.1.2. Reactions that involve four or more input species are negligible in
astrophysical environments due to their low cross sections.

In order to formulate differential equations for the nuclear reactions we introduce the
specific abundance Yi (see e.g. Müller, 1998):

Yi =
Xi

Ai
=

ni∑
j njAj

. (2.10)

This is the number of nuclei of species i in relation to the total number of nucleons in
the system. The change in Yi is then given as

Ẏi =
∑
j

ci(j)λjYj +
∑
j,k

ci(j, k)ρNA < j, k > YjYk

+
∑
j,k,l

ci(j, k, l)(ρNA)
2 < j, k, l > YjYkYl.

(2.11)

λj is the decay rate of species j into species i and NA is the Avogadro constant. In
a similar fashion < j, k > and < j, k, l > denote the thermally averaged products of
cross sections and relative velocity in the center of mass system for the two-body and
three-body reactions, respectively. The coefficients ci are introduced to prevent double
counting of reactions with identical particles:

ci(j) = ±Ni, ci(j, k) = ±
Ni

Nj !Nk!
, ci(j, k, l) = ± Ni

Nj !Nk!Nl!
, (2.12)

where the Ni denote absolute numbers for the corresponding species i. The sign
of the coefficients depends on whether the species i is produced (+) or destroyed (-).
Eq. (2.11) is a stiff set of differential equations due to the difference in reaction timescales.
Therefore, specific numerical methods are required to solve this system efficiently. Some
of them are discussed in Sec. 4.2.1.

2.2.1 Equilibria of nuclear reactions

At sufficiently high densities and temperatures (T & 3× 109 K) the strong and electro-
magnetic interactions are in equilibrium with their reverse reactions (Hix and Meyer,
2006). However, the reactions that involve weak nuclear processes are usually not in
equilibrium. This equilibrium of the strong and electromagnetic reactions is known as
nuclear statistical equilibrium (NSE). Under these conditions the composition can be
expressed as function of the thermodynamic variables temperature T , density ρ and the
electron fraction Ye, which is given by the weak reactions (Sec. 2.2.2).
The chemical potential of a nucleus AZ with Z protons and N = A− Z neutrons

can be expressed as a function of the chemical potential for the free protons (µp) and
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neutrons (µn).
µZ,A = Zµp +Nµn (2.13)

With the Maxwell Boltzmann distribution for the chemical potential this can be used to
derive an expression for the abundance Y (AZ) of every nuclear species in terms of the
abundances of free protons (Yp) and neutrons (Yn) (Hix and Meyer, 2006):

Y (AZ) =
G
(
AZ
)

2A
(
ρNA
θ

)A−1
A

3
2 exp

(
B(AZ)
kBT

)
Y N

n Y Z
p ≡ C(AZ)Y N

n Y Z
p , (2.14)

where G
(
AZ
)
and B(AZ) are the partition function and the binding energy of nucleus

AZ, respectively, kB is Boltzmann’s constant and θ = (mukBT/2π h̄2)3/2.
The nuclear composition can then be computed using Eq. (2.14) under the assumption

of nucleon number conservation (
∑
AiYi = 1) for a given temperature T , density ρ

and electron fraction Ye. The latter one is determined by the weak interaction history
(Sec. 2.2.2). The computational cost of computing the nuclear abundances for all species
can be reduced significantly with this method.

At low NSE temperatures the NSE composition heavily favors the most bound nuclei
for which Z/A ∼ Ye. With increasing temperature the equilibrium shifts towards
4He at intermediate temperatures and towards free neutrons and protons at high
temperatures. The transition temperatures between those three regions shift towards
higher temperatures with increasing density.

The strict requirements for the above NSE treatment are often only partially fulfilled
in astrophysical environments and therefore not all the reactions are in equilibrium.
During hydrostatic silicon burning the temperatures are typically high enough for NSE
treatment, however, the equilibrium composition is often not fully established. Under
these conditions one can often identify sub-groups of nuclei that are in local equilibrium
with each other.

The quasi-statistical equilibria (QSE) between those sub-groups can be used to obtain
the abundances for all nuclear species within the group from the abundance of a single
group member. Let us consider a QSE-reduced α-network as an example. We introduce
the silicon QSE group (28Si, 32S, 36Ar, 40Ca, 44Ti) and the iron peak QSE group
(48Cr, 52Fe, 56Ni, 60Zn). The abundances for individual species in those groups can be
calculated via (Hix and Meyer, 2006):

YQSE,Si
(
AZ
)
=
C
(
AZ
)

C (28Si)
Y
(

28Si
)
Y

A−28
4

α

YQSE,Ni
(
AZ
)
=

C
(
AZ
)

C (56Ni)
Y
(

56Ni
)
Y

A−56
4

α ,

(2.15)

where C
(
AZ
)
is obtained from the NSE relation (2.14). As such, we have reduced the

original 14-isotope α-network consisting of 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar,
40Ca, 44Ti, 48Cr, 52Fe, 56Ni and 60Zn to a 7-isotope reduced QSE network containing
the species 4He, 12C, 16O, 20Ne, 24Mg, 28Si and 56Ni. This network only considers nuclei
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with N = Z. A more general QSE-reduced network for silicon burning that also includes
weak reactions is discussed in Hix et al. (2007).

2.2.2 Weak interactions and neutrino losses

Weak interactions are important in late stages of stellar evolution (e.g. silicon burning)
as they lead to changes in the neutron excess parameter η (see e.g. Iliadis, 2015)

η ≡
∑
i

(Ni −Zi) Yi =
∑
i

Ni −Zi
Ai

Xi, (2.16)

where Ni, Zi, Ai, Yi and Xi denote the number of neutrons, protons, nucleons, specific
abundance and mass fraction of species i, respectively. We can see that η goes to 1, if
the plasma is composed entirely of neutrons (Z = 0) and to −1, if it is composed entirely
of protons (N = 0). Moreover, η goes to 0, if only symmetric nuclei with N = Z are
present such as 4He, 12C or 16O. A related quantity is the electron fraction Ye, defined
as

Ye =
∑
i

Zi
Ai
Xi. (2.17)

It is related to η via
η = 1− 2Ye. (2.18)

The following weak interaction processes are important in astrophysical environments:

A
ZX −−→ A

Z+1Y + e− + ν̄ β−- decay (2.19)
A
ZX −−→ A

Z−1Y + e+ + ν β+- decay (2.20)
A
ZX + e− −−→ A

Z−1Y + ν electron capture (2.21)

Electron capture reactions are particularly important in Type II supernova progenitors
(Sec. 3.2) as it reduces the number of electrons and thus the electron degeneracy pressure,
which stabilizes the core against collapse. This decrease in pressure is very important
for the dynamics of core collapse.

Neutrinos emitted in weak interactions typically do not interact with nuclei or electrons,
as the cross sections for neutrino scattering are very small at the prevailing densities.
Therefore, neutrinos can escape from the reaction site and transport away a portion of
the thermonuclear energy release. This decrease in energy due to neutrino losses further
accelerates the collapse of the core in Type II supernovae.
Weak reactions also influence the nucleosynthesis in late stages of stellar evolution

and during explosive burning (e.g. in thermonuclear supernovae). The NSE composition
shifts towards species that are favored by Ye. For example 56Ni is favored over 54Fe+ 21H,
if Ye = 0.5, even though 54Fe is more tightly bound than 56Ni. However, for lower Ye
the NSE composition would shift towards 54Fe.
The released energy in Eq. (2.19) to Eq. (2.21) is almost entirely transferred to the

emitted leptons (i.e. e−, e+,ν, ν̄). In β-decays two leptons are emitted. Therefore, the
total energy release of the reaction is continuously distributed between those two leptons
(i.e. the neutrino energy can range from zero to the total reaction energy). However, in

16



2.3 Gravity

the case of electron captures only one lepton is produced. Consequently, the resulting
neutrino carries the whole reaction energy.

Detailed evaluations of weak reaction rates for more than 100 nuclei in the mass range
A = 45− 65 for densities ρYe = 107− 1010 mol cm−3 and temperatures T = 109− 1010 K
have been carried out by Langanke and Martinez-Pinedo (2000), using shell model
calculations. They consider several hundred states in both the parent and daughter
nucleus.

2.3 Gravity

Gravity is another crucial ingredient for a consistent modeling of the physics in stars.
In hydrostatic equilibrium it balances out the radiation pressure due to nuclear fusion
in the center of the star and holds it together. During the late stages of silicon burning
and core collapse it is responsible for the contraction of the core. Therefore, accurate
modeling of gravity is particularly important during these phases of stellar evolution.
For our purpose of modeling silicon burning Newtonian gravity is accurate enough.
However, under more extreme conditions a fully relativistic treatment of gravity may be
necessary. As such, we only cover some aspects of Newtonian gravity in the following
sections and neglect contributions of general relativity.

2.3.1 Poisson’s equation

The gravitational field g for a mass distribution ρ(r) is given by:

g(r) = −
ˆ
Gρ(r′)

r− r′

|r− r′|3
d3r′, (2.22)

where G = (6.674 08± 0.000 31)× 10−11 m3 kg−1 s−2 is the gravitational constant ac-
cording to CODATA 2014 and ρ is the mass density. As we can see the gravitational
field at location r depends on the contributions of all the infinitesimal mass points
located at r′ inside the integration volume (superposition principle). This implies that
a change of the density at location r′ immediately influences the gravitational field g at
location r.

Since gravity is a conservative force, the gravitational field can be expressed as gradient
of a potential g = −∇Φ with

Φ(r) = −
ˆ
G

ρ(r′)

|r− r′|
d3r′. (2.23)

The relation
∇2

( 1
|r|

)
= −4πδD(r) (2.24)

then leads to Poisson’s equation of gravity (δD is the Dirac delta function):

∇2Φ = 4πGρ. (2.25)
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This is an elliptic partial differential equation of second order. It can be transformed
into a set of four partial differential equations of first order:

−∇Φ = g,
∇g = −4πGρ.

(2.26)

This alternative formulation of Poisson’s equation will be used in Sec. 4.3.4 for the mixed
method Poisson solver. The last equation in (2.26) is analogous to Gauss’s law for the
electrical field in electrostatics, which is part of Maxwell’s equations.

2.3.2 Monopole gravity

A simple solution for the gravitational potential Φ(r) can be obtained by assuming
spherical symmetry. Eq. (2.23) can be expanded into spherical harmonics similar to the
electrostatic potential (see e.g. Jackson, 1999) using

1
|r− r′|

= 4π
∞∑
l=0

l∑
m=−l

1
2l+ 1

rl<
rl+1
>

Y ∗lm(θ
′,φ′)Ylm(θ,φ), (2.27)

where r< = min(|r| , |r′|), r> = max(|r| , |r′|) and Ylm(θ,φ) are the spherical harmonics.
This leads to the following expression for the gravitational potential in terms of multipole
moments:

Φ (r) = −G
∞∑
l=0

l∑
m=−l

4π
2l+ 1Ylm(θ,φ)

ˆ
ρ(r′)rl<
rl+1
>

Y ∗lm(θ
′,φ′)d3r′. (2.28)

For the gravitational monopole moment (l = m = 0) this reduces to

Φ (r) = −4πG
∞̂

0

ρ (r′)

r>
r′

2
dr′, (2.29)

since Y00 = Y ∗00 = 1/
√

4π and the integration over the angular part becomes trivial
leading to another factor 4π. With the definition of r> we can now divide the integral
in Eq. (2.29) into inner and outer parts:

Φ (r) = −
4πG
r

rˆ

0

ρ (r′) r′
2
dr′ − 4πG

∞̂

r

ρ (r′) r′dr′. (2.30)

The angular dependencies of the gravitational potential have been eliminated in this
expression. Therefore, this equation can be integrated numerically by using radial bins
(see Sec. 4.3.1). This treatment only gives good results if the deviations of the density
distribution from spherical symmetry are not too large, which is not necessarily fulfilled
in all astrophysical applications. The above treatment could be improved by considering
also higher-order multipole moments in Eq. (2.28).
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2.3.3 Hydrostatic equilibrium

As we will see in Chapter 3 stars spend most of their lifetime in hydrostatic burning
phases. Dynamic phases (e.g. stellar explosions, core contraction due to gravity) during
stellar evolution are often very short lived. In hydrostatic equilibrium the forces due to
gravity and the pressure gradient exactly compensate each other. In a formal way this
can be achieved by setting the velocities u in the Euler equations (2.4) to zero, which
yields:

∂tρ = 0,
∇P = ρg,

∂t(ρetot) = 0,
(2.31)

where g is the external force due to gravity. Under the assumption of spherical symmetry
∇P = ρg reduces to

∂P

∂r
= −Gm

r2 ρ, (2.32)

where m is the enclosed mass at radius r. This is one of the basic equations of stellar
evolution (see Sec. 3.1). Therefore, one-dimensional initial models from stellar evolution
codes typically fulfill this condition. However, maintaining hydrostatic equilibrium during
the mapping from the one-dimensional stellar evolution code to the multidimensional
hydrodynamics code is not trivial (see Sec. 5.2.1). If the hydrostatic equilibrium is not
fulfilled in the initial hydrodynamic model this might result in rapid contraction or
expansion of the model.
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3 Stellar Evolution

In this chapter, we give a quick overview over the most relevant aspects of stellar
evolution for massive stars M & 10M�. Sec. 3.1 covers hydrostatic nuclear burning
processes in stars with a particular focus on silicon burning, whereas Sec. 3.2 focuses on
core contraction and shock revival during core-collapse supernovae (Type II, Ib, Ic) and
highlights some recent developments and challenges in the computational modeling of
these phenomena. The growth of dynamical instabilities in stars is discussed in Sec. 3.3.

3.1 Hydrostatic nuclear burning in massive stars

In hydrostatic equilibrium the evolution of a spherically symmetric star is governed by
the following set of differential equations (see e.g. Kippenhahn et al., 2012):
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Eq. (3.2) describes the hydrostatic equilibrium in mass coordinates. With Eq. (3.1)
this is equivalent to Eq. (2.32) derived in Sec. 2.3.3. εn in Eq. (3.3) accounts for energy
production due to nuclear reactions, whereas εν accounts for energy losses due to
neutrinos. δ = −(∂ ln ρ/∂ lnT ) is a partial derivative of the equation of state, which
is more rigorously defined in Sec. 3.3, and ∇ = d lnT/d lnP is the actual temperature
gradient in the star. If the energy in the star is mainly transported by radiation (and
conduction), the temperature gradient

∇ = ∇rad =
3

16πacG
κlP

mT 4 (3.6)

is given by Eq. (1.8). In the case of energy transport by convection ∇ has to be replaced
with a value obtained from a proper theory of convection, e.g. mixing-length theory (see
Sec. 1.1.1). The luminosity l is defined as the net energy per second passing outward
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through a sphere at radius r and cP is the specific heat. The Eqs.(3.2) to (3.4) describe
the structure for a star at a given time and for a given composition Xi(m). Changes of
the composition with time due to nuclear reactions are taken into account by Eq. (3.5),
where rji is the reaction rate for the reaction that transforms species j into species i.
For realistic material functions (equation of state, opacities, nuclear reaction rates) it is
not possible to solve this system of equations analytically, however, there are different
ways to solve this problem numerically (Kippenhahn et al., 2012).

The following overview on nuclear burning in stars is mainly based on Iliadis (2015).
A more detailed and general description can be found in Kippenhahn et al. (2012).

The evolution of stars is mainly determined by their initial mass at the zero age main
sequence (ZAMS). This is due to the fact that the temperature and pressure in the core
increase with the total mass of the star. Since nuclear reaction rates are very sensitive to
temperature, this also means that the nuclear energy generation rate and the luminosity
of the star increase with the stellar mass. However, the main sequence (i.e. hydrogen
burning; see Sec. 3.1.1) lifetime of a massive star is much shorter, because the nuclear
fuel is consumed at a faster rate. For instance, a 1M� star spends around 10 Gyr on the
main sequence, whereas a 15M� star only spends 12 Myr on the main sequence. The
initial mass of the star also determines which nuclear burning stages can be ignited in
the core of the star. This leads to a wide range of evolutionary tracks with different
outcomes depending on the initial mass of the star. For the purpose of this work we
only distinguish between low mass stars (M < 10M�) and massive stars (M & 10M�).

Due to the Gamow factor (2.9) thermonuclear fusion in stars always starts with light
nuclei such as hydrogen and helium. Therefore, hydrogen burning (see Sec. 3.1.1) is
always the first nuclear burning stage in a star. After the hydrogen fuel in the core has
been exhausted, nuclear burning in the core is no longer possible and the core starts
to contract under its own gravity. At the same time the envelope of the star expands
due to the virial theorem and the star becomes a red giant. However, hydrogen fusion
may still continue in a shell around the core where hydrogen is still present. This shell
burning further increases the mass of the core and accelerates the contraction. This
contraction leads to an increase in the core temperature and may ignite further burning
stages, if the required temperature threshold for the next burning stage is reached.
Low mass stars (M < 10M�) are unable to ignite all the nuclear burning stages

that are available in a star. They usually either fail to ignite non-degenerate helium or
carbon burning, because their core temperatures are not high enough. Consequently,
those stars contract further and the electron gas in their core becomes degenerate at
sufficiently high densities. Degeneracy is a consequence of the Pauli exclusion principle,
which only allows up to two electrons in the same quantum state. This implies that
further compression of the core is no longer possible, because all the lower energy levels
are already occupied. In addition to that the pressure of a degenerate electron gas is not
dependent on the temperature. Consequently, nuclear burning in a degenerate star does
not lead to an expansion of the star. Eventually, the temperature in the degenerate
core may become high enough to ignite the next burning stage. In a non-degenerate
gas, the energy release from the nuclear reactions would lead to an expansion, which
would decrease the temperature and thus the nuclear energy generation rate. However,
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3.1 Hydrostatic nuclear burning in massive stars

this expansion does not occur in a degenerate gas and therefore the energy generation
rate does not decrease. This results in a thermonuclear runaway and only stops after
sufficient energy is released to lift the degeneracy. Eventually, the outer envelope of a
low mass star is removed by stellar winds and the nuclear burning in the degenerate core
stops. The degenerate core cools slowly and settles down into a helium, carbon-oxygen
or oxygen-neon white dwarf. Since those stars do not reach silicon burning, they are
not relevant for this thesis. Further details on the evolution of such stars are given in
Kippenhahn et al. (2012).
Massive stars with M & 10M� can ignite all nuclear burning stages up to silicon

burning (see Sec. 3.1.3 and 3.1.4) and develop an onion shell structure with iron group
elements in the center and successively lighter elements in the outer regions, where the
conditions for the later burning stages are not fulfilled anymore. It should be noted that
the evolution of the star rapidly accelerates during the advanced burning stages (i.e.
neon, oxygen and silicon burning) due to neutrino losses. For instance, silicon burning
only lasts for a couple days, whereas hydrogen burning typically lasts several Myr in a
massive star. Since isotopes in the iron region are the isotopes with the highest binding
energy per nucleon, exothermic nuclear reactions are no longer possible after silicon
burning and the iron core starts to contract and becomes degenerate. When the mass of
the core exceeds the Chandrasekhar mass limit (≈ 1.4M�), the degenerate electron gas
can no longer support itself against gravitational collapse, which eventually leads to a
core-collapse supernova (Sec. 3.2). The remnants of such explosions are either neutron
stars or black holes, depending on the initial mass of the star and the mass loss during
the stellar evolution.
In the following subsections, we discuss the nuclear burning processes for each of

the burning stages in a massive star based on Kippenhahn et al. (2012). A detailed
discussion of the nuclear processes and network calculations for each burning stage can
be found in Iliadis (2015).

3.1.1 Hydrogen burning

For the purpose of motivating our study and providing the necessary context, we here
give a short overview of hydrogen burning and helium burning based on Kippenhahn
et al. (2012). This discussion mainly serves as an example to introduce the concepts of
nuclear burning in stars and as a comparison for the more advanced burning stages.

During hydrogen burning four hydrogen atoms (1H) are fused into 4He. For this fusion
two protons need to be transformed into neutrons via β+-decays, which leads to the
emission of two neutrinos (see Sec. 2.2.2). The cross section for a direct interaction of
four protons is far too low to explain the luminosity of stars during hydrogen burning.
Therefore, this fusion can only be achieved by a sequence of several two-body interactions.
During hydrogen burning there are two main channels by which this reaction is mediated,
the proton-proton chain (pp chain) and the CNO cycle.
The pp chain starts with the fusion of two hydrogen atoms into deuterium (2He).

In this reaction, one of the hydrogen atoms has to experience a β+-decay during the
closest encounter. Therefore, this reaction has a very small cross section. Afterwards,
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the deuterium from this reaction can interact with another proton to form 3He:
1H + 1H −−→ 2H + e+ + ν,
2H + 1H −−→ 3He + γ.

(3.7)

From this point onwards there are three possible channels to produce 4He. The first one
(pp1) involves two 3He nuclei, so the reactions in Eq. (3.7) have to be completed twice:

pp1: 3He + 3He −−→ 4He + 2 1H. (3.8)

The other two channels require that 4He is already present, which may either be produced
as part of this burning process or during the nucleosynthesis in the early Universe. The
reaction of 3He with 4He produces 7Be, which can either react with an electron (pp2) or
a proton (pp3).

3He + 4He −−→ 7Be + γ

pp2:

7Be + e− −−→ 7Li + ν
7Li + 1H −−→ 4He + 4He

,

pp3:


7Be + 1H −−→ 8B + γ
8B −−→ 8Be + e+ + ν
8Be −−→ 4He + 4He

.

(3.9)

Assuming a composition of X(1H) = X(4He) = 0.5 the pp1 channel is favored at
low temperatures (T < 1.8× 107 K) (Iliadis, 2015). With increasing temperature
the dominant channel shifts first towards the pp2 channel (between 1.8× 107 K and
2.5× 107 K) and later to the pp3 channel (T>2.5× 107 K), if 4He is already present.

The CNO cycle is a catalytic cycle of reactions that involves some isotopes of C, N and
O to fuse four hydrogen atoms into one 4He atom. A detailed discussion of the nuclear
reactions during this cycle is given in Kippenhahn et al. (2012) and Iliadis (2015). The
bottleneck of this reaction cycle is the proton capture on 15N and therefore the energy
generation rate of the overall CNO cycle depends mainly on the reaction rate of this
particular reaction. The temperature sensitivity of the CNO cycle is much higher than
for the pp chain. Therefore, the pp chain dominates at temperatures below 1.5× 107 K,
whereas the CNO cycle dominates at higher temperatures.

3.1.2 Helium burning

In this subsection, we give a short overview of helium burning based on the description
in Kippenhahn et al. (2012). The required temperatures (T & 1× 108 K) for helium
burning are already much higher than for hydrogen burning due to the higher Coulomb
barrier in the Gamow factor. The key reaction during helium burning is the formation
of 12C from three 4He nuclei through the so-called triple α reaction. Since 3-body
encounters are rather unlikely this reaction is performed in two sub steps:

4He + 4He −−⇀↽−− 8Be,
8Be + 4He −−→ 12C + γ.

(3.10)
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3.1 Hydrostatic nuclear burning in massive stars

In the first reaction two α particles temporarily form a 8Be nucleus, which is unstable
and decays back into two α particles after roughly 10−16 s (Kippenhahn et al., 2012). A
small concentration of 8Be builds up until a reaction rate equilibrium (compare Sec. 2.2.1)
between 4He and 8Be is established. A second α capture on 8Be then leads to 12C.
During helium burning further α captures on 12C and the resulting heavier isotopes can
occur. However, substantial amounts of 12C are still left after helium burning. This leads
to the conclusion that α captures on 12C and heavier isotopes during helium burning
are rather slow. Unfortunately the reaction rate for α captures on 12C is still rather
uncertain (Kunz et al., 2002; An et al., 2016) and the relative abundances of 12C and
16O at the end of helium burning are very sensitive to this rate (Iliadis, 2015). This ratio
between 12C and 16O at the end of helium burning also influences the nucleosynthesis in
later burning stages and the evolution of massive stars.

3.1.3 Advanced burning stages

The following overview of the advanced burning stages from carbon burning to oxygen
burning is mainly based on Iliadis (2015). Carbon burning takes place at temperatures
T = 0.5− 1.0 GK. This burning stage is initiated by the fusion of two 12C nuclei into a
compound 24Mg nucleus, since this is the reaction with the lowest Coulomb barrier in
an environment of 12C and 16O nuclei. The resulting 24Mg nucleus is highly excited and
decays mainly by the emission of light particles leading to reactions such as:

12C + 12C −−→ 23Na + p,
12C + 12C −−→ 20Ne + α,
12C + 12C −−→ 23Mg + n.

(3.11)

The light particles resulting from these reactions are immediately consumed in secondary
reactions with 12C or 16O. Since so many different reactions are involved, the situation
during carbon burning is already very complicated. For a detailed analysis of the
nucleosynthesis during carbon burning it is necessary to apply an appropriate nuclear
network. According to network calculations in Iliadis (2015) the most abundant species
at the end of carbon burning are 16O, 20Ne, 24Mg and 23Na.
One would assume that the next nuclear burning stage is oxygen burning with the

fusion of two 16O nuclei. However, at temperatures above T = 1 GK photodisintegration
reactions become important. 20Ne has a relatively small α particle separation energy
of 4.73 MeV and is therefore the first nucleus that is subject to photodisintegration.
The photodisintegration of 20Ne is endothermic, but the α particles enable secondary
reactions with 20Ne, 23Na or 24Mg. Some of these α-particle-induced reactions release
protons and neutrons, which can also contribute in further reactions. This network of
reactions resulting from the photodisintegration of 20Ne is called neon burning. Neon
core burning takes place at temperatures T = 1.2 − 1.8 GK. The most important
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reactions during neon burning are
20Ne + γ −−→ 16O + α,
20Ne + α −−→ 24Mg + γ,

24Mg + α −−→ 28Si + γ.
(3.12)

The most abundant nuclei at the end of neon burning are 16O, 24Mg, and 28Si.
Oxygen burning is similar to carbon burning, since it also involves the fusion of two

heavy nuclei (16O + 16O). However, the resulting 32S compound nucleus is even more
excited than the 24Mg compound nucleus. Consequently, there are more exit channels
than during carbon burning. The most common primary reactions are the following:

16O + 16O −−→ 31P + p,
16O + 16O −−→ 30Si + 2 p,
16O + 16O −−→ 28Si + α,
16O + 16O −−→ 24Mg + 2α,
16O + 16O −−→ 30P + 2H,
16O + 16O −−→ 31S + n.

(3.13)

Afterwards, the liberated light particles are once again consumed in secondary reactions,
which results in a big network of nuclear reactions. The temperatures during oxygen
burning are T = 1.5− 2.7 GK. Iliadis (2015) showed that photodisintegrations of 16O,
24Mg and 28Si are not relevant at these temperatures. During this burning stage the neu-
tron excess increases significantly due to β+-decays (e.g. 31S(e+ν)31P and 30P(e+ν)30Si)
and electron captures (e.g. 33S(e−,ν)33P, 35Cl(e−,ν)35S and 37Ar(e−,ν)37Cl). It is
noteworthy that the first quasi-equilibrium cluster (see Sec. 2.2.1) centered around 28Si
starts to form towards the end of oxygen burning. The network calculations in Iliadis
(2015) show that the most abundant species at the end of oxygen burning are 28Si, 32S,
38Ar, 34S, 36Ar and 40Ca.

3.1.4 Silicon burning

The discussion of silicon burning in this subsection is based on Iliadis (2015). Silicon
burning is once again a photodisintegration rearrangement process comparable to neon
burning, but on a much larger scale. Fusion reactions of two 28Si nuclei are not possible
due to the Coulomb barrier. Since 32S is more susceptible to photodisintegrations this
nucleus is destroyed first providing α particles and protons for secondary reactions.
With increasing temperature the photodisintegration of 28Si also becomes relevant. The
resulting nucleosynthesis is very complex and it requires a large nuclear network to
capture all the relevant processes. The composition of the resulting iron peak nuclei is
very sensitive to the initial neutron excess. After the iron peak nuclei have formed, the
neutron excess increases further due to electron captures on e.g. 53Mn, 54Fe, 55Fe, 55Co
and 56Co. Typical temperatures for silicon core burning are T = 2.8− 4.1 GK.

During silicon burning two quasi-equilibrium clusters form in the regions A = 25− 44
(silicon QSE group) and A = 46− 64 (iron peak QSE group). At the start of silicon
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burning (after 0.01 s in the network calculations of Iliadis (2015)) only the first QSE
group centered around silicon is present. As time goes on (at around 1.0 s) a second
QSE cluster forms in the region A = 50− 67 and later on (at around 100 s) those two
clusters are connected. Towards the end of silicon burning full NSE of all strong and
electromagnetic interactions is obtained (see Sec. 2.2.1).

A close look at the decay constants λα and λγ (in units of s−1) of the nuclei in the α-
chain centered around 28Si reveals further details on the driving mechanism behind silicon
burning. The decay constant for the α separation of 28Si (λγ = 0.14 s−1) is considerably
smaller than the decay constants for other α separations in the chain. Meanwhile the
α capture on 24Mg back to 28Si is much more likely than another photodisintegration
into 20Ne. Therefore, the equilibrium between 28Si and 24Mg is quickly established.
Similarly, the photodisintegration of 32S into 28Si is more likely than α captures to 36Ar.
Hence the equilibrium between 28Si and 32S is also quickly established. However, nuclides
lighter than 24Mg are not in equilibrium with 28Si, since photodisintegrations of those
isotopes are more likely than α captures. Due to the slow rate of 28Si decomposition
it is reasonable to assume that the abundances of those light α nuclides are small in
comparison to the 28Si abundance. This leads to the conclusion that those isotopes are
in steady state, i.e. the flow into those nuclei is balanced by the flow out. Under these
assumptions it is possible to obtain an analytical expression for the effective rate of
28Si consumption, which is comparable to the rate of 28Si consumption obtained from
nuclear network calculations (Iliadis, 2015). While the above considerations are helpful
to get a fundamental understanding of the physics behind silicon burning, one should be
aware that these simplifications do not capture the full picture of this complex burning
process.
In stellar evolution calculations and hydrodynamic simulations of silicon burning

it is not feasible to include a full nuclear network, which describes all aspects of the
nucleosynthesis accurately. However, a rough estimate of the nuclear energy release
and the neutronization during silicon can be obtained with a smaller nuclear reaction
network. In this thesis, we use a 21-isotope α-chain reaction network, which uses an
effective rate treatment. This reaction network is described in Sec. 4.2.2.

3.2 Core-collapse supernovae

In this section, we give a short overview of the relevant processes during core-collapse
supernovae based on Iliadis (2015). More details on the theory and state-of-the-art
modeling of core-collapse supernovae can be found in Janka et al. (2007, 2016) and
Müller (2016).
Core-collapse supernovae are explosions towards the end of a massive star’s lifetime.

They are powered by the release of gravitational energy during the collapse of the
core into a proto-neutron star. After silicon burning in the core has subsided the
core still grows due to silicon shell burning until it reaches the Chandrasekhar mass
(Mch ≈ 1.4M�). At this point the degeneracy pressure of the electrons is no longer
enough to support the core against gravitational collapse. Since thermonuclear burning

27



3 Stellar Evolution

is no longer possible, the core collapses under its own gravity. Typical temperatures
and densities at the onset of core collapse are T ≈ 10 GK and ρ ≈ 1010 g cm−3.

3.2.1 Core collapse and neutrino-driven shock revival

The following discussion of the core collapse and neutrino-driven shock revival is based
on Iliadis (2015) and Müller (2016).

The collapse of the core accelerates due to electron captures at high densities, which
further decreases the electron fraction Ye and thus the stabilizing degeneracy pressure
of the electrons. At the same time the electron captures also lead to a massive burst of
electron neutrinos. In addition to that, the high temperatures in the collapsing core
lead to thermal disintegrations of iron peak nuclei into lighter less stable nuclei. Due
to those two effects the core quickly collapses from several thousand kilometers to a
proto-neutron star with around 10 km radius.
After t ≈ 0.1 s the densities in the core are so high (ρ ≈ 1012 g cm−3) that neutrinos

are trapped inside the neutrino sphere Rν, since their diffusion time becomes longer
than the collapse time scale (Bethe, 1990). Meanwhile, neutrinos outside the neutrino
sphere escape almost freely with an average energy that depends on Rν. The collapse
of the core proceeds further until it reaches nuclear densities (ρ ≈ 1014 g cm−3) after
t ≈ 0.11 s. Since it cannot be compressed further, the core bounces and drives a shock
wave into the surrounding matter. The shock propagates outwards and dissociates iron
peak nuclei into free nucleons, which leads to substantial energy losses (≈ 9 MeV per
nucleon). As the shock approaches the neutrino sphere, electron captures on free protons
also contribute to the energy loss of the shock while giving rise to another burst of
electron neutrinos. Consequently, the shock stalls after t ≈ 0.2 s at a radius around
100 km to 200 km.

In the delayed neutrino-driven mechanism (e.g. Bethe and Wilson, 1985; Wilson, 1985)
this stalled accretion shock is revived by neutrinos that emerge from the neutrino sphere
of the proto-neutron star. The region between the neutrino sphere and the stalled shock
is divided into two parts by the gain radius. The first region between the neutrino
sphere and the gain radius is dominated by neutrino cooling through neutrino emission
due to p ( e− ,νe) n and n ( e+ , ν̄e) p. In the second region between the gain radius and
the shock there is mainly neutrino heating due to neutrino absorption by the reverse
processes n (νe, e− ) p and p ( ν̄e, e+ ) n. This energy deposition in the gain region may
revive the shock, which then leads to a supernova explosion. However, this mechanism
depends crucially on the product of the neutrino luminosity and the neutrino interaction
cross section, which both depend on the average neutrino energy.
The following overview of recent advances in the multidimensional modeling of core-

collapse supernovae is based on Müller (2016). It has been shown in 1D simulations of
the post-bounce phase that neutrino-driven explosions cannot be achieved in spherical
symmetry (see e.g. Rampp and Janka, 2000, 2002; Liebendörfer et al., 2001, 2004, 2005).
Successful neutrino-driven explosions have been obtained in sophisticated 2D models
that also take hydrodynamic instabilities into account. Particular important for shock
revival in 2D are convective instabilities in the gain region (e.g. Herant et al., 1994;
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Burrows et al., 1995; Janka and Müller, 1996) and the so-called standing accretion shock
instability (SASI; e.g. Blondin et al., 2003; Foglizzo et al., 2007; Laming, 2007; Guilet
and Foglizzo, 2012). This instability is characterized by sloshing motions, which saturate
and later develop into large-scale spiral motions. The development of these instabilities
relies crucially on multidimensional phenomena, which may already be seeded during the
silicon burning phase in the progenitor. The main problem with the recent generation
of 2D models (Janka et al., 2012; Nakamura et al., 2015; O’Connor and Couch, 2015) is
that the explosion energy grows slowly after shock revival. As such, they are unable to
reproduce typical explosion energies of observed supernovae.

It is possible that this energy problem can be resolved by fully consistent 3D simulations
of the core collapse. After initial problems with shock revival in 3D, it is now possible to
produce successful explosions in 3D (Melson et al., 2015; Lentz et al., 2015). However,
the fact remains that 3D simulations are clearly less likely to explode than their 2D
counterparts; they either barely fail to explode or explode later than in 2D. It was
suggested by Hanke et al. (2012) that this might be due to the inverted turbulent
energy cascade1 in 2D, which leads to larger structures in 2D and might enhance shock
revival. This suggests that there are still missing physics that could lead to more robust
explosions in 3D. Some of these recent developments will be discussed in the next
subsection.

3.2.2 Possible solutions for more robust explosions in 3D

Different approaches to obtain more robust explosions in 3D simulations of core-collapse
supernovae are discussed in Müller (2016).
Nakamura et al. (2014) and Janka et al. (2016) suggested that rapid rotation might

significantly reduce the critical luminosity that is required for shock revival. Janka et al.
(2016) show that the pre-shock infall velocities may be reduced due to centrifugal forces.
This also implies that the radius of the stalled shock increases and the required critical
luminosity decreases in the presence of rapid rotation. However, stellar evolution calcu-
lations indicate that such a large amount of rotation is rather untypical for progenitors
of Type II supernovae. For slowly rotating progenitors the reduction of the critical
luminosity due to rotation is most likely negligible.
A different approach to achieve more robust explosions in 3D consists in increasing

the neutrino luminosities and the mean energy for electron neutrinos. The neutrino
luminosity mainly depends on the neutrino opacities, but other properties of the model,
e.g. general relativity or the equation of state may also have an impact. Any changes in
the neutrino luminosities often come with counterbalancing side effects (Mazurek’s law).
However, it has been shown that this can be circumvented under certain conditions
(Melson et al., 2015). A thorough re-investigation of the neutrino rates may thus be
worthwhile.

In recent studies the role of initial asymmetries in supernova progenitors has been
investigated. These perturbations naturally arise during convective silicon and oxygen

1In our own simulations of silicon burning in 2D and 3D we also see clear signs of an inverted turbulent
energy cascade in 2D (see Fig. 5.21).
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shell burning (Arnett and Meakin, 2011; Müller et al., 2016). The role of asymmetries
in the progenitor has previously been analyzed with parametrized initial conditions
(Couch and Ott, 2013, 2015; Müller and Janka, 2015; Burrows et al., 2016), however,
the results of these studies remained inconclusive. It was found that the impact of
such perturbations on shock revival largely depends on the Mach numbers that develop
during convective shell burning and the spatial scale of the perturbations. Therefore,
3D modeling of the progenitor during the last minutes before the onset of core collapse
is imperative to obtain a realistic 3D structure of the progenitor, which can be used as
starting point for simulations of the core collapse in 3D.

First attempts to model the 3D structure of the progenitor have been carried out by
Couch et al. (2015). To this end, they evolved a 15M� star from the pre-main sequence
to the onset of core collapse in the 1D stellar evolution code MESA (Paxton et al.,
2011, 2013, 2015). Afterwards, the model from the stellar evolution code was mapped
to a 3D hydrodynamics code to follow the last 160 s of silicon burning. However, as
discussed in Müller et al. (2016), they used several approximations that might affect
the structure and magnitude of the perturbations. They simulated only one octant of
the whole star and more importantly they artificially enhanced the electron capture
rates to speed up the evolution towards collapse. The spatial scale of the perturbations
might be affected by the restriction of the physical domain to one octant, which would
have further implications on the dynamics of the core collapse. In addition to that,
intermediate mass-elements in the silicon shell are burned to iron group elements within
only 160 s in the 3D model of Couch et al. (2015) due to the modified reaction rates.
This process takes roughly 1000 s in the corresponding stellar evolution model, which
suggests that the convective velocities in the 3D model are artificially increased by
more than 80 % (Müller et al., 2016). Moreover, convective activity might be artificially
prolonged in shells that are almost fully burned. Couch et al. (2015) found that the
shock expands slightly faster for the model with full 3D initial conditions than for the
reference model with spherically averaged initial conditions. However, both models
lead to an explosion and the dynamics of the core collapse might be modified due to
the leakage scheme that was used for the neutrino transport. As such, it is still not
conclusive, whether seed perturbations in the progenitor can enable shock revival.
The impact of seed perturbations on shock revival has been further investigated

by Müller et al. (2017). They previously simulated the last five minutes of oxygen
shell burning in 3D (Müller et al., 2016) for a 18M� star in the mass region between
1.68M� and 4.07M�. In their recent work they use these results as input for the
simulation of the core collapse. For comparison they also simulated the core-collapse
for a spherically symmetric model and another 3D progenitor model with reduced
convective velocities, where they assumed a fixed temperature during the last five
minutes of oxygen burning. They obtained shock revival for both models with 3D initial
conditions, but the model with spherically symmetric initial conditions did not explode
until the end of their simulation and the critical timescale ratio τadv/τheat was well below
the runaway threshold. This suggests that large scale perturbations in the progenitor
may be beneficial for shock revival in some cases. Müller et al. (2017) inferred a reduction
of the critical luminosity by about 22 % for the full 3D initial conditions compared to

30



3.3 Convection in stars

the model with 1D initial conditions. For the model with reduced convective velocities
they still obtained a reduction of the critical luminosity by 16 %.
They continued the simulation of the explosion for the model with full 3D initial

conditions until 2.35 s after bounce. However, the cycle of accretion and mass ejection
was still ongoing, so they were unable to obtain final values for the explosion energy,
nickel mass and the properties of the proto-neutron star. At the end of their simulation
the diagnostic explosion energy reaches a value of 7.7× 1050 erg. They conclude that
5× 1050 erg is a relatively safe lower limit for the final explosion energy, which would be
within the range of observed explosion energies, but slightly below average. As such,
their simulation still does not represent a typical Type II supernova, but it is a step
in the right direction. They emphasize that their 18M� progenitor has particularly
suitable conditions for shock revival through seed perturbations. Such conditions are
not necessarily fulfilled in all supernova progenitors and there is still a large parameter
space to explore.

Since the oxygen shell burning simulations of Müller et al. (2016) only cover the mass
region between 1.68M� and 4.07M�, data from the 1D stellar evolution model is used
outside of this domain. Müller et al. (2017) mention that patching together the 3D
simulation of the oxygen shell burning with the core of the 1D stellar evolution model
leads to hydrostatic readjustments, which slightly reduce the mass accretion rate and the
electron flavor luminosity. This might lead to an reduction of the explosion energy, which
could be avoided by consistent modeling of the whole core of the supernova progenitor
including both the silicon burning region and the oxygen burning region.

In a recent publication of Collins et al. (2018) the properties of convective oxygen and
silicon burning shells in supernova progenitors are studied for a large set of non-rotating
progenitors with zero-age main sequence masses ranging from 9.45M� to 35M�. They
find that thick convective shells (angular wave number l ≤ 5) with large convective Mach
numbers are generally more common for convective oxygen shells than for convective
silicon burning shells. Favorable conditions for perturbation-aided explosions, i.e. high
convective Mach numbers ∼ 0.15 and medium-scale convective modes with l < 10, are
rarely found in convective silicon burning shells. However, most of these results are
based on spherically symmetric stellar evolution models and the convective properties
are inferred from mixing-length theory. Full 3D simulations of the most promising
regimes for perturbation-aided explosions may thus be still worthwhile.
Changes in the progenitor structure due to convective boundary mixing during

advanced burning stages may also influence the details of the core collapse (Müller,
2016). Thin, unburnt shells with a small density contrast might be swallowed up by
neighboring convective zones due to entrainment. However, details on long term effects
of entrainment and their impact on supernova progenitors are still rather uncertain.

3.3 Convection in stars

Small perturbations in a star may grow and give rise to macroscopic local motions under
certain circumstances. We have discussed in the previous section that the growth of
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such perturbations might be crucial for shock revival in 3D simulations of core collapse
supernovae. In this section, we are going to derive criteria for the stability of hydrostatic
atmospheres in stars (based on Kippenhahn et al., 2012, Sec. 6.1). For this purpose we
define a fluctuation DA of a quantity A as

DA := Ae −As, (3.14)

where the subscript e denotes a small “element” that has constant, but somewhat
different values than in the “surroundings” (subscript s). We impose that DP = 0, since
elements with DP 6= 0 would either expand or contract immediately to restore pressure
balance with the surroundings.
Now we consider an element that has been lifted from its original position at r to

r + ∆r with ∆r > 0. The density difference of that element in comparison to the
surroundings then yields

Dρ =

[(
dρ

dr

)
e
−
(
dρ

dr

)
s

]
∆r, (3.15)

where (dρ/dr)e describes the change of the element’s density while it rises by dr and
(dρ/dr)s is the spatial density gradient in the surroundings. A non-vanishing Dρ leads
to a buoyancy force Fb = −gDρer. As we can see the buoyancy force points upwards,
if Dρ < 0, i.e. the element is lighter than its surroundings, which means this layer is
unstable. Therefore, we have to impose Dρ > 0 to obtain a buoyancy force that points
downwards and achieve stability. This leads to the following stability criterion:(

dρ

dr

)
e
−
(
dρ

dr

)
s
> 0. (3.16)

To obtain a more practical stability criterion we assume that the element rises
adiabatically, i.e. there is no exchange of energy with the surroundings. This is a good
approximation deep in the interior of stars. We use the equation of state ρ = ρ(P ,T ,µ)
in differential form

dρ

ρ
= α

dP

P
− δ dT

T
+ ϕ

dµ

µ
(3.17)

to express the gradients in terms of T instead of ρ with the following partial derivatives

α =

(
∂ ln ρ
∂ lnP

)
, δ = −

(
∂ ln ρ
∂ lnT

)
, ϕ =

(
∂ ln ρ
∂ lnµ

)
. (3.18)

These coefficients are defined in such a way that the partial derivatives are α = δ = ϕ = 1
in the case of an ideal gas with ρ ∼ Pµ/T .
Eq. (3.17) can be used to rewrite Eq. (3.16) in the following way:(

α

P

dP

dr

)
e
−
(
δ

T

dT

dr

)
e
−
(
α

P

dP

dr

)
s
+

(
δ

T

dT

dr

)
s
−
(
ϕ

µ

dµ

dr

)
s
> 0. (3.19)

The change of the chemical composition for the element has been omitted, since the
moving element carries its composition along. The two terms involving pressure gradients
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are identical due to pressure equilibrium and cancel each other. The remaining terms
are multiplied with the pressure scale height

HP = − dr

d lnP = −P dr

dP
, (3.20)

which yields the following condition for stability:(
d lnT
d lnP

)
s
<

(
d lnT
d lnP

)
e
+
ϕ

δ

(
d lnµ
d lnP

)
s
. (3.21)

At this point we introduce the following derivatives:

∇ =

(
d lnT
d lnP

)
s
, ∇e =

(
d lnT
d lnP

)
e

, ∇µ =

(
d lnµ
d lnP

)
s
. (3.22)

In the case of an adiabatic process ∇e can be replaced by ∇ad, which leads to the Ledoux
criterion of stability:

∇ < ∇ad +
ϕ

δ
∇µ. (3.23)

In the case of homogeneous chemical composition ∇µ = 0, so that Eq. (3.23) reduces to
the Schwarzschild criterion

∇ < ∇ad. (3.24)

If the left-hand side is larger than the right-hand side in Eq. (3.23) and (3.24), the layer
is dynamically unstable. In this case, small perturbations will increase and the region
becomes convective.
The stability criteria in Eq. (3.23) and (3.24) can also be expressed in terms of the

Brunt-Väisälä frequency N , which describes the adiabatic oscillation of an element in a
dynamically stable layer:

N2 =
gδ

HP

(
∇ad −∇+

ϕ

δ
∇µ
)
> 0. (3.25)

If the stability criterion is not fulfilled the Brunt-Väisälä frequency is imaginary, which
means that the element moves away exponentially instead of oscillating. Consequently,
the layer is dynamically unstable.
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4 Numerical methods

4.1 Computational fluid dynamics on curvilinear grids

In this section, we discuss the discretization of the hydrodynamic equations in SLH (see
Sec. 1.1.3). The finite-volume discretization is introduced in Sec. 4.1.1, while the time-
stepping methods in SLH are discussed in Sec. 4.1.2. A particular noteworthy feature
in SLH is the transformation of the hydrodynamic equations to a general curvilinear
grid, which allows us to adapt the physical grid to the geometry of the problem while
keeping the computational grid uniform and Cartesian. An overview of this method is
given in Sec. 4.1.3.

4.1.1 Finite-volume methods

For simplicity the following derivation of the finite-volume discretization is discussed in
1D. The extension of this approach to more spatial dimensions is straightforward. In
SLH the hydrodynamic equations are discretized with a finite-volume approach (see e.g.
LeVeque, 1998). This means that Qni is not an approximation to a single value q(xi, tn),
but rather an average of q over an interval Ci = [xi−1/2,xi+1/2] of length h = ∆x:

Qni ≈
1
h

xi+1/2ˆ
xi−1/2

q(x, tn)dx ≡ 1
h

ˆ
Ci

q(x, tn)dx (4.1)

In this notation, integer-values refer to cell centers, whereas half-integer indices represent
cell interfaces. The formulation of the finite-volume scheme is now obtained by using
the integral form of the balance equation (2.2):

ˆ
Ci

q(x, tn+1)dx =

ˆ
Ci

q(x, tn)dx−
tn+1ˆ

tn

f [q (xi+1/2, t)]− f [q (xi−1/2, t)] dt. (4.2)

Dividing by h and applying the definition of the cell averages from Eq. (4.1) leads to
the flux differencing form:

Qn+1
i = Qni −

k

h

(
Fni+1/2 − Fni−1/2

)
, k = ∆t, (4.3)

where Fni±1/2 is an approximation of the flux over the interface at i± 1/2 during the
time interval between tn and tn+1. This numerical flux function is computed via:

Fni±1/2 ≈
1
k

tn+1ˆ

tn

f [q (xi±1/2, t)] dt, (4.4)
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which requires an estimate of the flux over the interfaces, since q(xi±1/2, t) is not known
exactly in the interval from tn to tn+1. This finite-volume discretization guarantees that
the quantities on the numerical grid are conserved in the same way as the true solution,
except for fluxes over the grid boundary and source terms.

Estimates of the flux functions Fni±1/2 at t > tn are often based on solving the Riemann
problem at the cell interfaces. The Riemann problem is an initial-value problem for a
conservation law with piecewise constant left and right states ql and qr (cf. LeVeque,
1998):

q(x, 0) =

ql for x < 0
qr for x > 0

. (4.5)

For example in Godunov’s method (Godunov, 1959) a piecewise constant function is
reconstructed using the cell averages. In numerical applications the resulting Riemann
problem is typically solved using approximate Riemann solvers instead of the full solution
to the Riemann problem. A popular method that is also used in SLH is the so called Roe
solver (Roe, 1981), which assumes a linear system of conservation laws with constant
coefficients instead of the full nonlinear problem. With suitable preconditioning this
scheme can be extended to treat low Mach number flows (Miczek, 2013; Miczek et al.,
2015). The accuracy of the scheme can be improved by replacing the piecewise constant
reconstruction with higher-order reconstructions (e.g. linear or parabolic). However,
those higher-order methods often lead to oscillations and overshooting at discontinuities
(Press et al., 2007).

In the presence of gravity source terms, it is not trivial to preserve the hydrostatic
equilibrium exactly, because the gravity source term ρg is discretized independently of
the pressure gradient ∇P in the Euler equations (2.4). Consequently, the condition
for hydrostatic equilibrium ∇P = g (cf. Eq. 2.31) is not fulfilled on a discrete level,
which means that unstabilities may still develop even if the initial setup was in perfect
hydrostatic equilibrium. For instance in Miczek (2013) and Edelmann (2014), it was
shown that a checkerboard-like instability develops, if low Mach preconditioning (see
Sec. 1.1.3) is switched on. Those problems with the gravity source term can be avoided
by using a well-balanced scheme, which guarantees precise balance of the pressure
gradient and the gravitational forces in case of the hydrostatic solution. Examples of
well-balanced schemes are given in Cargo and Le Roux (1994), Edelmann (2014) and
Chandrashekar and Klingenberg (2015).

4.1.2 Time-Stepping

In SLH the time discretization is performed separately from the spatial discretization,1
which was described in the previous section. This approach allows flexible combinations
of spatial discretization techniques with different time-stepping methods. In particular
it is possible to choose either an explicit or an implicit time-discretization depending on
the expected Mach numbers. To illustrate some concepts of time discretization schemes

1This separation of the spatial and temporal discretization is also known as method of lines.
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we are going to consider the following differential equation:

∂u

∂t
= h(u,x, t), (4.6)

where h(u,x, t) represents the spatial discretization.

Explicit time-stepping

Explicit numerical schemes only use information from previous time-steps, i.e. t ≤ tn, to
obtain the solution u(x, tn+1) for the next time-step. A straightforward time integration
of Eq. (4.6) leads to the explicit forward Euler method, which is first-order accurate in
time:

un+1
j = unj + hn∆t. (4.7)

Higher-order explicit methods can be constructed by evaluating the spatial derivatives
at additional trial points within ∆t (Runge-Kutta methods). With a proper choice
of these trial points the lower order error terms can be eliminated successively and
higher-order methods are obtained (see e.g. Press et al., 2007). The explicit Runge-Kutta
method that is implemented in SLH is third order accurate (RK3) and is described in
Shu and Osher (1988).

The major drawback of explicit numerical schemes is that their time-step is restricted
by the Courant-Friedrichs-Lewy (CFL) criterion for stability (Courant et al., 1928). This
criterion requires that the physical domain of dependence at the new time-step must
be included in the numerical domain of dependence. In the case of the hydrodynamic
Euler equations the CFL criterion is given by:

∆tCFL = CFLuc
∆x
|u|+ cs

, (4.8)

where u is the local fluid velocity, cs is the speed of sound, ∆x is the grid spacing and
CFLuc is a constant of order one that depends on the specific spatial and temporal
discretization. In the case of low Mach numbers (|u| � cs) the CFL criterion is dominated
by the sound speed, however, the physical processes of interest occur at the timescale of
the fluid velocity. As such, explicit methods are impractical in the low-Mach regime.

Implicit time-stepping

The restrictions of the CFL criterion can be avoided by using implicit time-integration.
In this case, the spatial residual h(u,x, t) of Eq. (4.6) is evaluated at the new time-step
tn+1, for which the solution u(x, tn+1) is not yet known. The simplest implicit scheme
is the backward Euler method:

un+1
j = unj + hn+1∆t. (4.9)

However, since hn+1 depends on the solution at the new time-step tn+1 a straightforward
computation of un+1

j is not possible for time-implicit schemes. Therefore, implicit
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time-stepping for the Euler equations involves the solution of a non-linear system of
equations. In SLH a Newton-Raphson method is applied to obtain the solution at tn+1.
This reduces the solution of the original non-linear system of equations to an iterative
solution of linear systems of equations. The resulting linear systems of equations are
then solved with iterative sparse-matrix solvers such as BiCGSTAB(l) or GMRES(r)
(see Sec. 4.3.5).

Consequently, implicit methods are considerably more demanding than explicit meth-
ods in terms of computation time and memory usage per time-step. However, in the
case of low Mach numbers this is compensated due to the fact that the time-step is not
restricted by the CFL criterion (4.8). Since the spatial residual hn+1 is computed from
the neighboring cells at time-step tn+1, which in turn depend on their neighboring cells,
the whole domain is now connected. Therefore, the numerical domain of dependence is
the whole computational domain.
The backward Euler method (4.9) is again only first-order accurate in time, but

higher-order Runge-Kutta methods can also be constructed for implicit time-integration.
However, in this case several non-linear systems of equations need to be solved for
each implicit stage in the Runge-Kutta scheme, which would be prohibitively expensive.
Fortunately, the coefficients of the implicit Runge-Kutta scheme can be chosen in a way
that the computational effort can be reduced significantly. More detailed descriptions of
those Explicit first stage Singly Diagonally Implicit Runge-Kutta (ESDIRK) methods
and the time-stepping in SLH can be found in Miczek (2013) and Edelmann (2014).
The following implicit Runge-Kutta schemes are implemented in SLH : ESDIRK23,
ESDIRK34, ESDIRK46, ESDIRK58, where the first digit is the formal order of the
method and the second digit is the number of stages in the Runge-Kutta scheme.

Even though the CFL criterion (4.8) does not need to be fulfilled for implicit methods,
there are still constraints on the time-step. A common choice is the advective CFL
criterion, which imposes that the fluid moves roughly one cell per time-step:

∆tCFL = CFLu
∆x
|u|

, (4.10)

This criterion ensures that the properties of the flow are well resolved, but especially
for low Mach number flows it is not as restrictive as the CFLuc criterion, since it only
depends on the local fluid flow and not on the sound speed. This implies that sound
waves are damped, but in the case of low Mach number flows it is usually not necessary
to resolve them due to the decoupling of sound waves and advective flow.
In the presence of gravity an alternative CFL-like criterion can be formulated using

the free-fall time scale (Miczek, 2013). Considering that in hydrostatic equilibrium
gravity is almost completely balanced by pressure, this CFLug criterion is a bit too
restrictive. However, this criterion also gives reasonable time-steps for initial conditions
with zero velocity, where the CFLu criterion would be singular.

4.1.3 Transformation to general coordinates

So far we have only considered a uniform Cartesian grid for the formulation of the
hydrodynamic equations. However, in SLH it is possible to construct arbitrary curvilinear
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grids with a coordinate transformation to general coordinates. With this feature the
physical grid can be adapted to the geometry of the problem, e.g. polar or spherical
coordinates, while all the numerical computations are computed on a uniform Cartesian
grid by taking the metric terms from the coordinate transformation into account.
This concept of transforming the hydrodynamic Euler equations to general curvilinear
coordinates was first used in an astrophysical context by Kifonidis and Müller (2012)
and adopted into SLH by Miczek (2013).
For this purpose the curvilinear coordinates ξ(x, y, z), η(x, y, z) and ζ(x, y, z) are

defined via a coordinate transformation between the global Cartesian coordinate system
(x, y, z) and the general curvilinear grid (ξ, η, ζ). Without loss of generality the coordi-
nate transformation may always be chosen so that the cell widths on the computational
grid are uniform, i.e ∆ξ = ∆η = ∆ζ = 1. The functions that define this transformation
can be chosen arbitrarily. The only constraints are that the transformation needs to
be invertible and the second derivatives of the transformation have to commute. In
principle the new coordinate system does not even need to be orthogonal. The existence
of second derivatives implies that the transformation needs to be continuously differ-
entiable. However, this requirement is not necessarily fulfilled for all grid geometries,
which may lead to numerical artifacts (cf. Sec. 5.1.2).

The Jacobian determinants for this coordinate transformation and the corresponding
inverse transformation are then defined as:

J =

∣∣∣∣∣∣∣
ξ,x ξ,y ξ,z
η,x η,y η,z
ζ,x ζ,y ζ,z

∣∣∣∣∣∣∣ , J−1 =

∣∣∣∣∣∣∣
x,ξ x,η x,ζ
y,ξ y,η y,ζ
z,ξ z,η z,ζ

∣∣∣∣∣∣∣ . (4.11)

In the following, we illustrate the transformation of the Euler equations to general
coordinates. For this purpose we reformulate Eq. (2.4) as (cf. Kifonidis and Müller,
2012; Miczek, 2013):

∂Q

∂t
+
∂F x(Q)

∂x
+
∂F y(Q)

∂y
+
∂F z(Q)

∂z
= S(Q), (4.12)

where Q is the vector of the conserved variables, F x, F y and F z are the flux functions
in the corresponding coordinate direction and S is a vector of source terms that are
assumed to be non-stiff. In the case of the homogeneous Euler equations these vectors
are given by:

Q =


ρ

ρu

ρv

ρw

ρetot

 , F x(Q) =


ρu

ρu2 + P

ρuv

ρuw

ρuetot + uP

 , F y(Q) =


ρv

ρvu

ρv2 + P

ρvw

ρvetot + vP

 , (4.13)

with S(Q) = 0 and F z(Q) is analogous to the other two flux functions F x(Q) and
F y(Q). With the chain rule of differentiation we obtain expressions for the derivatives
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of the transformed fluxes, e.g.:

J−1∂F x

∂x
=J−1∂F x

∂ξ
ξ,x + J−1∂F x

∂η
η,x + J−1∂F x

∂ζ
ζ,x

=
∂

∂ξ

(
J−1ξ,xF x

)
+

∂

∂η

(
J−1η,xF x

)
+

∂

∂ζ

(
J−1ζ,xF x

)
−F x ·

(
∂

∂ξ

(
J−1ξ,x

)
+

∂

∂η

(
J−1η,x

)
+

∂

∂ζ

(
J−1ζ,x

))
=
∂

∂ξ

(
J−1ξ,xF x

)
+

∂

∂η

(
J−1η,xF x

)
+

∂

∂ζ

(
J−1ζ,xF x

)
,

(4.14)

and analogous terms for F y and F z. Inserting these terms into Eq. (4.12) and rearranging
leads to:

J−1∂Q

∂t
+
∂F ξ(Q)

∂ξ
+
∂F η(Q)

∂η
+
∂F ζ(Q)

∂ζ
= J−1S(Q), (4.15)

with
F ξ = J−1 (ξ,xF x + ξ,yF y + ξ,zF z) ,
F η = J−1 (η,xF x + η,yF y + η,zF z) ,
F ζ = J−1 (ζ,xF x + ζ,yF y + ζ,zF z) .

(4.16)

This allows us to formulate the transformed flux functions in a direction-independent
way:

F χ =


ρQχ

ρuQχ + J−1χ,xP

ρvQχ + J−1χ,yP

ρwQχ + J−1χ,zP

ρ(etot + P/ρ)Qχ

 , χ ∈ {ξ, η, ζ} , (4.17)

where Qχ = J−1χ,xu+ J−1χ,yv + J−1χ,zw. The metric terms χ,x, χ,y and χ,z can be
computed analytically for certain geometries. However, in SLH all metric terms are
usually computed with finite differences to ensure that the second derivatives of the
transformation functions commute. If this is not exactly fulfilled, spurious geometric
source terms may arise as shown by Thompson et al. (1982, pp. 84-88) and Thompson
et al. (1985, pp. 158-166). In the case of a two-dimensional transformation (Kifonidis
and Müller, 2012) this leads to the following constraints:

(y,η)i+1/2,j − (y,η)i−1/2,j = (y,ξ)i,j+1/2 − (y,ξ)i,j−1/2,
(x,η)i+1/2,j − (x,η)i−1/2,j = (x,ξ)i,j+1/2 − (x,ξ)i,j−1/2,

(4.18)

where half-valued indices once again denote values at the cell interfaces. Since analytical
expressions typically do not fulfill the above consistency relation, it is recommended
that those derivatives are always computed with appropriate finite differences. It is also
noteworthy that J−1 corresponds to the cell volume V . However, due to discretization
errors in the finite differences the sum of the resulting cell volumes does not necessarily
add up to the total volume of the domain. To avoid this problem the cell volume in
SLH is instead computed by connecting the cell’s corners with straight lines (Vinokur
and Kordulla, 1983).
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Aside from Cartesian geometry in 1D, 2D and 3D several other grid geometries
are implemented in SLH. The 2D polar and 3D spherical geometries are suitable for
simulations of stars that do not include the center of the star, since coordinate singularities
are encountered at the poles and at the origin of the coordinate system in this case.
Logically rectangular grids for circular and spherical domains can be constructed in a
way that they are almost Cartesian in the center. Different types of such cubed sphere
grids are presented in Calhoun et al. (2008). The interpolated grids described in Section
3.3 of Calhoun et al. (2008) and the smoother circle mapping from Section 3.2 are both
implemented in SLH. However, these grids often lead to discontinuities in the derivatives
of the coordinate transformation. Therefore, they are not suitable for finite difference
methods. In addition to that, a uniform Cartesian grid with sinusoidal perturbations
was implemented during this thesis for numerical testing purposes. In comparison to
other curvilinear grids this particular grid has the advantage that the derivatives of the
transformation are varying continuously. The mapping for this grid is generated by

xd = ξd + αd

D∏
p=1

sin (2πξp) , d = 1, · · · ,D, (4.19)

following the description in Colella et al. (2011). To prevent grid tangling, αd should
fulfill the requirement 0 ≤ 2παd ≤ 1 in all dimensions. The default choice in SLH
is αd = 0.1 in all three dimensions. An illustration of this grid with 64 cells in each
direction is shown in Fig. 4.1.

4.2 Nuclear reaction networks

In the following subsections, we first give a quick overview on how to solve stiff sets
of ODEs, which often occur during the solution of nuclear networks (see Sec. 2.2). In
addition to that, we discuss operator splitting techniques for the coupling of the nuclear
reactions to the hydrodynamics. Finally, we introduce an α chain reaction network with
effective reaction rates. Since this specific reaction network was used for the stellar
evolution calculations, we are also going to use it for the hydrodynamic simulations in
Sec. 5.3 and 5.4. This ensures that the chemical composition is consistent between the
stellar evolution code and SLH.

4.2.1 Numerical integration of stiff ODEs

As mentioned in Sec. 2.2 the equations for the nuclear network form a stiff set of
differential equations due to the differences in the reaction timescales. This makes
it particularly challenging to solve this problem numerically. Since explicit methods
typically require a time step on the order of the fastest reaction of the network, implicit
methods are in general more suitable in this case. A more detailed discussion of the
issues with integrating stiff sets of equations is given in Press et al. (2007).

Bader and Deuflhard (1983) developed a semi-implicit extrapolation method for stiff
sets of differential equations, which is based on the explicit midpoint rule by Bulirsch and
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Figure 4.1 | A sinusoidal grid for numerical testing purposes ranging from −1.0 to 1.0 with
N = 64 cells in each direction. This grid was implemented into SLH according to the
description in Colella et al. (2011). In this thesis, it is used for the benchmarking of the
gravity solvers in Sec. 5.1.

Stoer (1966). The general idea behind those methods is the polynomial extrapolation of
the step size towards zero by using a sequence of non-zero step sizes h. The number of
intermediate steps is increased successively until the desired convergence for the step
size h = 0 is achieved.
For large nuclear nuclear reaction networks the Jacobian matrix is typically very

sparse, since most species in the network are only connected via reactions that involve
captures of light particles such as neutrons, protons, α particles and photodisintegrations,
as we have already seen in the subsections of Sec. 3.1. Nuclear reactions of two colliding
heavy ions, such as 12C or 16O are very rare. Consequently, the matrix for a network
with 300 species has 90 000 matrix elements, but only less than 5000 are non-zero (Hix
and Meyer, 2006). Timmes (1999) did a detailed study on the efficiency of matrix solvers
depending on the size of the nuclear network. He found that for small nuclear networks
(fewer than 60 isotopes) it is usually more efficient to use direct LU decomposition
methods (e.g. LAPACK, GIFT), however, sparse matrix solvers such as UMFPACK or
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BiCG should be used for larger nuclear networks. More details on sparse matrix solvers
for linear systems of equations are given in Sec. 4.3.5.
In SLH the nuclear network is coupled to the hydrodynamics via Godunov splitting,

i.e. the new hydrodynamic state and the nuclear reaction network are evaluated in an
alternating sequence. The energy release and the changes in the composition due to
nuclear reactions define the new state that is used for the next hydrodynamic time step.
In principle a higher-order operator splitting method can be obtained by using Strang
splitting. This is achieved by first evaluating one of the operators A over a half time
step ∆t/2, then the other operator B over a full time step ∆t and finally again the first
operator A over a half time step ∆t/2. However, in practice the difference between
those two methods is often negligible and is only relevant in the limit ∆t→ 0 (LeVeque,
2002). A full coupling of the hydrodynamics to the reaction network is also possible with
an unsplit method, however, this is only feasible for very small nuclear networks, since
the Jacobian grows very rapidly with the number of species as discussed in Sec. 2.1.2.
Since the Godunov splitting error is barely noticeable in comparison to unsplit methods
(Edelmann, 2014), Strang operator splitting is currently not implemented in SLH.

4.2.2 Alpha chain reaction networks with effective rates

Most of the simulations in this thesis were carried out with a 21-isotope α-chain reaction
network. The 21-isotope network is based on a 13-isotope α-chain network ranging
from 4He to 56Ni, which is described in Timmes et al. (2000). Aside from (α,γ) and
the corresponding reverse reaction the 13-isotope network also includes effective rates
for the (α, p)(p,γ) links and the reverse reactions by assuming that the intermediate
isotopes are in steady-state with their neighbors. This is necessary to obtain reasonably
accurate energy generation rates for temperatures T & 2.5× 109 K. This 13-isotope
network is further extended with 1H, 3He, 14N, 54Fe, protons (from photodisintegration)
and neutrons to account for pp-chains and steady-state CNO cycles during hydrogen
burning and photodisintegration into 54Fe. The resulting 19-isotope nuclear network is
described in Weaver et al. (1978).

In the 21-isotope network 56Fe and 56Cr are added to account for the neutronization
during silicon burning. This neutronization leads to a decrease in the electron fraction
Ye and is crucial for the contraction of the iron core. The reaction rate for the electron
captures from 56Fe to 56Cr is obtained from the electron capture rate on 56Ni. It should
be noted that the isotope 56Cr in this network does not correspond to the physical
isotope 56Cr. It is merely a proxy for the neutron enriched material in the network. As
such, a conversion between the composition for this effective rate nuclear network and
other nuclear networks is not straightforward.
This 21-isotope nuclear network is the default network for the 1D stellar evolution

code MESA (Paxton et al., 2011, 2013, 2015), which was used as initial model and as
reference model for the 2D and 3D hydrodynamic simulations presented in this thesis
(Sec. 5.3 and 5.4). For consistency of the chemical composition we use the same 21-
isotope nuclear network as in the stellar evolution code, unless otherwise mentioned. This
so-called approx21 network was reimplemented into SLH from the Microphysics module
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of the open source hydrodynamic codes CASTRO and MAESTRO (see Sec. 1.1.2).
During the reimplementation a substantial bug in this version of the approx21 network

was discovered, which prevented the appropriate neutronization during silicon burning2.
The reaction rates in this implementation of the network are also not fully consistent
with the rates used in MESA. For instance the implementation of the network in the
Microphysics module originally used the electron capture rate from Mazurek (1973)
and Mazurek et al. (1974)3. During the course of this thesis the more recent electron
capture rate from Langanke and Martinez-Pinedo (2000) was implemented into the SLH
version of the network (see Sec. 5.2.2). However, even with the updated electron capture
rate there are still other discrepancies in the reaction rates, which modify the energy
generation of the network.

4.3 Gravity solvers

The gravity solvers described in this section have been implemented into SLH during the
course of this PhD thesis. In the following subsections, we discuss the implementation
details for each of them. The benchmarking process for these gravity solvers is described
in Sec. 5.1. Note that most of the gravity solvers are only implemented for the 3D case,
since additional assumptions about the geometry have to be made in a 2D setup.

4.3.1 Monopole solver

The physical motivation behind the monopole solver was already discussed in Sec. 2.3.2.
Eq. (2.30) can be integrated by dividing the computational domain into radial bins.
The implementation of the monopole solver in SLH was adopted from the LEAFS
code (Reinecke, 2001) with some tweaks to improve the accuracy of the method. For
instance the monopole gravity solver in SLH first computes the center of mass, whereas
in LEAFS it is assumed that the center of mass is at the origin of the coordinate system.
The radial binning is then carried out with respect to the computed center of mass
in an iterative binning procedure to ensure that all radial bins are filled. Afterwards,
the gravitational potential is computed according to Eq. (2.30) by integrating the first
part from the center outwards and the second part from the outer boundary inwards.
The gravitational potential of the neighboring bins is then used to interpolate towards
the cells on the grid, which is another improvement in comparison to the method in
LEAFS . In addition to that, it is possible to add an external potential, which accounts
for mass that is not part of the grid. For example in polar or spherical coordinates
this can be used to include the center of the star, which is not on the grid. Aside from
that, it could also be used to account for the gravitational potential of another star in
a binary system. This solver works reasonably well for all grid geometries, as long as
the deviations from spherical symmetry in the mass distribution are not too large (see
Sec. 5.1.4). It can also be used to obtain boundary conditions and an initial guess for

2This bug-fix has been pushed to the Microphysics repository in the meantime.
3Meanwhile the more recent electron capture rate from Langanke and Martinez-Pinedo (2000) was also
implemented in the Microphysics module of CASTRO and MAESTRO.
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more advanced solvers, e.g. the mixed method Poisson solver described in Sec. 4.3.4.
As we shall see in Sec. 5.1.5 a good initial guess can drastically reduce the required
computing time.

4.3.2 Poisson solver in Cartesian coordinates

The Poisson solver in Cartesian coordinates is an established numerical method that
is well understood and often described in the literature (e.g. Press et al., 2007). The
goal of this method is to solve Poisson’s equation (2.25), which is a prototypical elliptic
equation, i.e. a boundary value problem. In the following, we illustrate the discretization
of Poisson’s equation on a Cartesian grid in two dimensions with uniform grid spacing
∆ and compute the second derivatives with finite differences. The extension to three
spatial dimensions is straightforward.

Φj+1,k − 2Φj,k + Φj−1,k
∆2 +

Φj,k+1 − 2Φj,k + Φj,k−1
∆2 = 4πGρj,k

⇔ Φj+1,k + Φj−1,k + Φj,k+1 + Φj,k−1 − 4Φj,k = ∆24πGρj,k.
(4.20)

This can be written in matrix form by defining an index m := j(K + 1) + k with a
one-dimensional sequence.

Φm+K+1 + Φm−K−1 + Φm+1 + Φm−1 − 4Φm = ∆24πGρm, (4.21)

which leads to a matrix equation of the form

AmnΦn = ∆24πGρm. (4.22)
In the case of Poisson’s equation the shape of this matrix is “tridiagonal with fringes”

(see Press et al. 2007 for an illustration). For a grid with 100× 100 cells this matrix
already has 108 entries, but only very few entries are different from zero. Therefore, it is
strongly recommended that the algorithm to solve this matrix equation takes advantage
of the sparseness. For instance it can be solved with iterative methods for sparse linear
systems (see Sec. 4.3.5). Other alternatives to deal with this linear system of equations
are relaxation methods and so-called rapid methods (e.g. Fourier methods). Those
methods are described in more detail in Press et al. (2007). In this thesis, the iterative
matrix solver BiCGSTAB(5) is used for the benchmarking of the Poisson solver in
Sec. 5.1.1. Other iterative solvers that have been implemented into SLH for solving the
hydrodynamic equations, are also available for the Poisson solver. However, only the
BiCGSTAB(5) solver has been thoroughly tested in this thesis.

The structure of this matrix and the methods are well known for the Cartesian case.
However, a formulation of Poisson’s equation in general coordinates would involve second
order derivatives of the metric terms for the transformation between the physical grid
and the computational grid. Not only is it challenging to formulate the discretized
version of Poisson’s equation in this case, but the discontinuities in the metric terms in
certain grid geometries might render it completely useless. Therefore, this method is
currently only implemented for Cartesian grids and does not work on curvilinear grids.
In the case of curvilinear grids the mixed method Poisson solver in Sec. 4.3.4 should be
used instead.
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4.3.3 Evaluating gradients in curvilinear coordinates

Before we move on to the discussion of the mixed method Poisson solver on curvilinear
coordinates, we will first take a look at the computation of the gravitational force from
a given gravitational potential in curvilinear coordinates, i.e. computing the gradient of
the gravitational potential. This constitutes already the first part of the discretization
of the mixed method Poisson solver discussed in Sec. 4.3.4.

The derivation of the gradient of the gravitational potential is in principle analogous
to the evaluation of the flux terms for the Euler equations in Sec. 4.1.3. For the following
derivation we only consider two spatial dimensions. Extending the treatment to three
spatial dimensions is straightforward:

J−1gx =− J−1∂Φ
∂x

= −
[
J−1∂Φ

∂ξ

∂ξ

∂x
+ J−1∂Φ

∂η

∂η

∂x

]
=−

[
∂

∂ξ

(
J−1 ∂ξ

∂x
Φ
)
+

∂

∂η

(
J−1 ∂η

∂x
Φ
)

−Φ
(
∂

∂ξ

(
J−1 ∂ξ

∂x

)
+

∂

∂η

(
J−1 ∂η

∂x

))]
=−

[
∂

∂ξ

(
J−1 ∂ξ

∂x
Φ
)
+

∂

∂η

(
J−1 ∂η

∂x
Φ
)]

.

(4.23)

Once again the chain rule of differentiation was used to obtain this expression. The
terms in the third row cancel due to J−1 ∂ξ

∂x = ∂y
∂η and J−1 ∂η

∂x = −∂y
∂ξ (Kifonidis and

Müller, 2012). For a more compact formulation we now introduce the transformed
gravitational potential

Φ̃n = J−1
(
∂ξ
∂n
∂η
∂n

)
Φ, n ∈ {x, y} , (4.24)

which allows us to write the gradient of the gravitational potential in the following way:

J−1gn = −∇ξ,ηΦ̃n, n ∈ {x, y} , (4.25)

where ∇ξ,η is the gradient on the uniform Cartesian grid. The expression for the gravity
component gn can now be discretized using finite differences:

(gn)ij = −
1

2Vij

[(
Φ̃ξ
n

)
i+1,j

−
(

Φ̃ξ
n

)
i−1,j

+
(

Φ̃η
n

)
i,j+1

−
(

Φ̃η
n

)
i,j−1

]
, (4.26)

where Φ̃ξ
n = J−1 ∂ξ

∂nΦ denotes the ξ-component of the Φ̃n vector and Vij is the cell
volume. This computation of the gradient requires that the coordinate transformation
from the physical grid to the computational grid is continuously differentiable. However,
in practical applications the above requirement is not necessarily fulfilled in all grid
geometries. As such, numerical artifacts might develop during the computation of the
gradients, if this condition is not fulfilled (see Sec. 5.1.2).
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4.3.4 Mixed method Poisson solver in curvilinear coordinates

In curvilinear coordinates a straightforward solution of Poisson’s equation is not feasible,
since second-order derivatives of the coordinate transformation are required. This
makes it very difficult to obtain a consistent discretization of Poisson’s equation and
it is not clear, whether a direct discretization of Poisson’s equation with second-order
derivatives would work as expected in the case of strong discontinuities in the coordinate
transformation.

This problem can be partially avoided by using a mixed method Poisson solver, which
only requires first-order derivatives of the coordinate transformation. The general
idea behind this approach is presented for instance in Duncan and Jones (1993). In
the framework of the mixed method Poisson solver, second-order derivatives of the
coordinate transformation are avoided by splitting Poisson’s equation into a set of four
first-order differential equations, as shown in Eq. (2.26). The formulation with this set of
first-order differential equations has the advantage that the gravitational potential and
the gravitational force are computed self-consistently. As such, a separate computation
of the gravitational field with finite differences is not necessary. The method discussed
in Duncan and Jones (1993) is only applicable to Cartesian grid geometries and uses a
finite element discretization. In the following, we are going to extend this treatment to
curvilinear coordinates with a finite difference method.
The discretization of the gradient in curvilinear coordinates was already discussed

in Sec. 4.3.3. The divergence of the gravitational force can be discretized in a similar
fashion. For this purpose we first consider the derivative of the x-component of the
gravitational force gx in x-direction in a two-dimensional setup. Analogous to Eq. (4.23)
this leads to:

J−1∂gx
∂x

=

[
J−1∂gx

∂ξ

∂ξ

∂x
+ J−1∂gx

∂η

∂η

∂x

]
=

[
∂

∂ξ

(
J−1 ∂ξ

∂x
gx
)
+

∂

∂η

(
J−1 ∂η

∂x
gx

)]
.

(4.27)

Together with the corresponding term for gy this can be used to derive the divergence
of the gravitational force in the transformed coordinates:

∇x · g =
∂gx
∂x

+
∂gy
∂y
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1
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(4.28)

This is once again discretized by using central finite differences. Together with Eq. (4.26)
we obtain the following system of equations for the mixed method Poisson solver in two
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(4.29)

In principle this matrix equation can be solved with similar methods as Poisson’s
equation. However, the properties of this matrix are drastically different, which makes
it much harder to solve this system efficiently. For a given grid size in 3D this matrix
has 16 times more entries than the matrix for Poisson’s equation, since we have four
equations (gravitational potential + three components of the gravitational force) for each
grid cell instead of one. The sparsity pattern of the matrix for an 83 grid is illustrated
in Fig. 4.2. In this case, the matrix already has around 4× 106 entries, however, only
57 344 of them are non-zero (i.e. 1.4 %). Unfortunately the condition number

cond(A) = ‖A‖2‖A−1‖2 = |λn|/ |λ1| (4.30)

of this matrix is very high. In this equation, λn and λ1 are the eigenvalues of the
matrix A with the highest and lowest absolute value, respectively. For example in the
case of a sinusoidal grid with 83 cells the condition number is already 1.10× 1014 with
similar values in other grid geometries. This is in part due to vastly different orders of
magnitude of the matrix entries. For comparison the condition number for the Poisson
equation in Cartesian coordinates on a 83 grid is 32 and the corresponding matrix is
also considerably smaller with only 262 144 entries. Therefore, solving the linear system
for the mixed method Poisson solver is a lot more challenging than solving the linear
system for the standard Poisson solver in the Cartesian case, which means that suitable
preconditioning is definitely necessary for the mixed method Poisson solver. Details of
the iterative solvers and the preconditioning are discussed in the next section.

4.3.5 Iterative solvers for sparse linear systems and preconditioning

In this section, we give a short introduction to iterative solvers and preconditioning
for sparse linear systems. As such, we only explain the general concepts behind those
methods, details of specific iterative methods are discussed in Meister (2011).

In the following, we are concerned with solving a linear system of equations with the
shape

Ax = b, (4.31)

where A is a matrix that is defined by the discretization of the gravity solver, b is the
right hand side vector and x is the vector of the unknown variables (cf. Eq. 4.22 for
the Poisson solver in Cartesian coordinates). In our case, b contains the density ρ and
information about the boundary conditions of the grid, whereas x always contains the
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Figure 4.2 | Sparsity pattern of the matrix for the mixed method Poisson solver for a grid
with 83 cells. The left plot shows a zoomed in region of the matrix with eight grid cells in
x-direction that are each separated by dashed lines. The right plot shows a larger part of the
matrix with 64 cells, corresponding to eight cells in x-direction and y-direction. The pattern
from the left plot is repeated on the diagonal blocks of the matrix. This pattern is repeated
in a similar fashion for the cells in z-direction for a total of 2048 matrix entries.

gravitational potential Φ and in the case of the mixed method Poisson solver also the
three components of the gravitational acceleration g.

Iterative methods are defined by a prescription that successively updates the current
guess for the solution vector xm with a new guess xm+1 until sufficient convergence of
the method is achieved. In general, there are two types of iterative linear solvers. In the
first one, the matrix A is split into A = B+ (A−B), where B should ideally be a good
approximation of the matrix A, but also easily invertible (matrix splitting). A suitable
choice of the matrix B then leads to the Jacobi method or the Gauss-Seidel method.
Unfortunately those methods are not practical for solving the linear system obtained
from the mixed method Poisson solver due to the constraint that all matrix entries on
the diagonal need to be non-zero, which is clearly not the case for the matrix shown in
Fig. 4.2.
The second type of iterative solvers are the so-called projection methods or Krylov-

subspace methods. Those methods typically involve the minimization of the residual
r = Ax− b over a subspace, which is formed by the search directions pm. The search
directions are defined by the specific method and they determine the convergence
properties of the method. The most promising approaches for solving the linear system
from the mixed method Poisson solver are the BiCGSTAB(l) method (Van der Vorst,
1992; Sleijpen and Fokkema, 1993) and the GMRES(r) method (Saad and Schultz, 1986).
In contrast to most methods for non-symmetric matrices those two directly minimize the
residual, which leads to a smoother convergence history. Furthermore, those methods
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are already implemented into SLH, as they are used as iterative solvers for the implicit
time stepping of the hydrodynamics (Miczek, 2013). Therefore, with some modifications
they can also be used for solving the sparse linear systems that are defined by the gravity
solvers.
In particular the high condition numbers (cf. Eq. 4.30) of the matrix for the mixed

method Poisson solver make it somewhat challenging to solve this system of equations
with iterative linear solvers. In such cases the convergence of the scheme is usually either
very slow or it does not converge at all. Therefore, suitable preconditioning of these
matrices is necessary.
In general a preconditioned system for Eq. (4.31) has the following form:

PLAPRy = PLb

x = PRy,
(4.32)

where PL is the matrix for left preconditioning and PR is the matrix for right pre-
conditioning. In an ideal case the preconditioned matrix PLAPR should be close to
the identity matrix I, because the condition number of the identity matrix is 1. This
requires that the matrices PL and PR are close to the inverse of A. However, at the
same time the preconditioning matrices PL and PR should be easy to compute and
sparse. Since those two goals cannot be achieved achieved at the same time a trade-off
is often necessary.
A simple type of preconditioning is the scaling of the matrix A with a diagonal

matrix D = diag{d11, . . . , dnn}. However, diagonal matrices are usually not a good
approximation for the inverse of matrix A and therefore the scaling preconditioning
often provides only a small speed-up of the convergence. Commonly used variants of
scaling preconditioning are the scaling with the diagonal element and the row-wise and
column-wise scaling with respect to a vector norm. The first variant does not work for
the mixed method Poisson solver, since some of the diagonal entries are zero. However,
the row-wise scaling from the left and column-wise scaling from the right with the
1-norm (i.e. the sum of the absolute values) provides a suitable preconditioning for
the matrix defined by the mixed method Poisson solver. For instance in the case of a
sinusoidal grid with 83 cells the condition number is reduced from 1.10× 1014 to 120
for the preconditioned system, which means the system of equations can now be solved
with reasonable computational effort. In this thesis, we solve the preconditioned system
of the mixed method Poisson solver with BiCGSTAB(5) (see Sec. 5.1.3). Other iterative
solvers in SLH may also work, but so far only BiCGSTAB(5) has been thoroughly
tested.
Splitting associated preconditioning methods (see e.g. Meister, 2011) once again do

not work in the case of the mixed method Poisson solver, since some of the diagonal
entries are zero. Preconditioning of the matrix with an incomplete LU factorization has
been attempted within the PETSc framework, however, this did not lead to noteworthy
improvements of the convergence.

In context with iterative solvers for sparse linear systems it should also be mentioned
that the number of iterations until convergence depends heavily on the quality of the
initial guess. Since the density distribution usually does not change very rapidly from
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one time step to the other, we can reuse the gravitational potential and the gravitational
acceleration from the previous time step as initial guess for the solution at the next time
step. This significantly reduces the required number of iterations, as we shall see in
Sec. 5.1.5. In addition to that, we can use the monopole solution as initial guess for the
mixed method Poisson solver in the first time step.
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5.1 Benchmarking of the gravity solvers

In the following, we are going to assess the accuracy and performance of the newly
implemented gravity solvers. For this purpose we define an analytical test setup with
an exponentially decreasing density distribution

ρ(r) = ρce−kr, (5.1)

where ρc is the central density and r is the distance from the center. The parameter
k = 1

1.5× 107 cm ln(1/0.7) is chosen such that the density decreases to 70 % of the central
density at a distance of r = 1.5× 107 cm. Analytical expressions for the gravitational
potential Φ(r) and the gravitational acceleration g(r) can be derived in this case by
using Eq. (2.30) and evaluating the gradient of the potential afterwards

Φ(r) =
4πGρc
k3

(
ke−kr + 2

r
e−kr − 2

r

)
+C,

g(r) =
4πGρc
k3r2 e−kr

(
k2r2 + 2kr+ 2− 2ekr

)
er.

(5.2)

For convenience the integration constant C of the gravitational potential is chosen so
that the gravitational potential is zero at the origin of the coordinate system, unless
otherwise noted. In the following, we consider a three-dimensional test setup with the
density distribution given by Eq. (5.1) on a grid with 1283 cells with MPI parallelization
on 8 cores. For each of our numerical methods, we compute the gravitational acceleration
g and the gravitational potential Φ and compare it with the analytical results given
by Eq. (5.2). We ran the code in parallel to verify that the parallelized version is also
working correctly. The scaling behavior of the implementation is discussed in Sec. 5.1.5.

For the purpose of analyzing the deviations between the numerical methods developed
in this thesis and the analytical solution, we define the local relative error of the
gravitational acceleration as

erel(x) =
‖gnum(x)− gana(x)‖2

‖gana(x)‖2
, (5.3)

where gnum(x) is the gravitational acceleration as computed by the specified numerical
method and gana(x) is the corresponding analytical solution as derived from Eq. (5.2).
The local relative error for the gravitational potential Φ is computed in a similar fashion,
but the Euclidean norm in the above expression is replaced with absolute values since
the gravitational potential is a scalar quantity. This local relative error is a measure
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for the accuracy at a given grid coordinate. For the following analysis, we define the
maximum value of the corresponding local relative error as

emax = max
cells

[erel(x)] . (5.4)

This maximum includes all values on the entire grid. In the following illustrations, we
only show a cut through the central plane with z = 0 (cf. Fig. 5.1). Therefore, the
global maximum value emax is not necessarily shown in our illustration of the grid. In
addition to that, we define a globally averaged relative error as

ε =
1

NGC

∑
cells

erel(x). (5.5)

This sum of the local relative errors goes over all grid cells and therefore gives a global
measure for the quality of the solution. For comparison of different resolutions it is
normalized with the number of grid cells NGC. For the following test setups the number
of grid cells is usually 1283 ≈ 2× 106. This globally averaged relative error also allows
us to compare the quality of the numerical solution for different geometries and different
numerical methods.
Obviously the accuracy of the Poisson solver and the mixed method Poisson solver

also depends on the iterative solver that is used for solving the resulting linear system
of equations and on the convergence threshold of the iterative solver. Unless otherwise
noted we are using BiCGSTAB(5) with a convergence threshold of 10−8 with respect to
the norm of the right hand side (cf. Eq. 4.31). This should give a sufficiently accurate
solution in most cases, but the convergence threshold can be further decreased to improve
the accuracy of the solvers. Obviously this requires more iterations until convergence is
achieved, but this is usually not a major concern since the gravity solver only occupies a
small fraction of the overall computing time, especially if the solution from the previous
time step is used as initial guess for the gravity solver. In the case of the Poisson solver
in Cartesian coordinates preconditioning is not necessary. For the mixed method Poisson
solver on curvilinear grids we use the row-wise and column-wise scaling preconditioning
described in Sec. 4.3.5.
In the following sections, our goal is to compare to the accuracy of the numerical

methods for different grid geometries. For this purpose we consider the grid geometries
illustrated in Fig. 5.1. In all of these cases we show a cut through the central plane,
where the z-coordinate is zero. The Cartesian geometry in the top left panel and the
sinusoidal geometry in the top right panel look the same, since the sinusoidal contribution
vanishes for z = 0, however, the derivatives of the metric terms are still different from
the Cartesian case (the difference between the Cartesian geometry and the sinusoidal
geometry will be more obvious in the following figures). Another illustration of the
sinusoidal grid, where the sinusoidal contributions are clearly visible, is shown in Fig. 4.1.
The bottom left panel in Fig. 5.1 shows the cubed sphere geometry from Calhoun et al.
(2008) and the bottom right panel shows a grid with spherical geometry. In the latter
case the center of the object is not on the computational grid to avoid the coordinate
singularity at the origin of the coordinate system. However, we do account for the
missing mass in the center in all of our numerical schemes.
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Figure 5.1 | Illustration of the grid geometries that are used for the benchmarking of the gravity
solvers in the following sections. For the purpose of this illustration the resolution of the grid
has been reduced to 32 cells in each coordinate direction. In all four cases we show a cut
through the central plane with z = 0.

5.1.1 Poisson solver in Cartesian coordinates

As mentioned in Sec. 4.3.2 the Poisson solver in Cartesian coordinates is already a well
established numerical method. Therefore, in this section we are only going to verify that
our implementation of the Poisson solver meets those high expectations. Additionally,
we are going to use the results for the Poisson solver in Cartesian coordinates as reference
for the other numerical methods that are discussed in the following sections. It should
be noted that the Poisson solver only gives a solution for the gravitational potential
Φ(x). This means that the components of the gravitational acceleration g(x) have to be
obtained in a separate step by computing the gradient of the gravitational potential with
finite differences, which may lead to additional deviations from the analytic solution.
However, in comparison to other grid geometries the evaluation of the gradient in
Cartesian coordinates is very accurate (cf. Sec. 5.1.2). The distribution of the local
relative error for the gravitational potential obtained from the Poisson solver in Cartesian
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coordinates is shown in the left panel of Fig. 5.2, the right panel shows the local relative
error for the gravitational acceleration computed from the resulting potential via central,
first-order finite differences.
It is clearly visible that the local relative error increases substantially towards the

center. This is mainly due to the fact that both the gravitational potential and the
gravitational acceleration have a root at the origin of the coordinate system, as can be
seen from Eq. (5.2). For analyzing purposes the gravitational potential has been shifted
so that the minimum value of the numerical solution coincides with the analytical solution.
Consequently, the relative error for the innermost cells is almost zero (. 1× 10−14),
which is indicated by the black colors in the center. Overall the local relative error in
the gravitational potential never exceeds a value of emax = 3.06× 10−4. However, it
should be noted that the relative error in the gravitational potential is heavily influenced
by the choice of the constant C in Eq. (5.2).
Therefore, it is more conclusive to look at the gravitational acceleration that is

obtained by evaluating the gradient from this gravitational potential. We can see
that the local relative error in the gravitational acceleration never exceeds a value of
emax = 8.02× 10−4, even in the center of the grid, where the absolute value of the
gravitational acceleration is close to zero. In addition to that, the global average of
the relative error over all cells on the grid is ε = 1.21× 10−5. We conclude that the
Poisson solver in Cartesian coordinates is very accurate as expected. It should further
be noted that the accuracy of the Poisson solver depends on the convergence threshold
of the iterative solver for the linear system of equations. However, the precise correlation
between the convergence threshold and the relative error on the grid is not obvious. As
mentioned in the previous section we are using a convergence threshold of 10−8 with
a BiCGSTAB(5) method for these tests, which should be accurate enough for most
practical applications.

5.1.2 Evaluating gradients in curvilinear coordinates

During the derivation of the gradients in curvilinear coordinates we already discussed
that this treatment breaks down if the coordinate transformation is not continuously
differentiable. Unfortunately this requirement is not necessarily fulfilled in general
curvilinear coordinates. Since this would most likely also impact the accuracy of the
mixed method Poisson solver in curvilinear coordinates, we are obviously concerned with
the numerical artifacts that arise if the coordinate transformation is not continuously
differentiable. To analyze these artifacts we compute the gravitational acceleration g(x)

from the analytic gravitational potential Φ(x) given by Eq. (5.2) and compare it with
the analytical expression for the gravitational acceleration. The local relative error for
the different geometries is shown in Fig. 5.3.
In the Cartesian case (top left panel) we show the relative errors resulting from

central, first-order finite differences on a Cartesian grid. This result is very similar to
the relative error of the gravitational acceleration for the standard Poisson solver in
Cartesian coordinates, which suggests that the deviations from the analytical solution
in Fig. 5.2 are mainly due to discretization errors in the finite differences. In fact, the
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Figure 5.2 | Distribution of the local relative error erel(x) of the gravitational potential Φ(x)
(left panel) for the standard Poisson solver in Cartesian coordinates and for the gravitational
acceleration g(x) computed from this potential via standard finite differences (right panel).
The globally averaged relative error ε is a measure for the quality of the solution in comparison
to other numerical methods and grid geometries and emax denotes the maximum value of the
corresponding local relative error.

relative error of the gravitational acceleration is smaller, if the gradient is computed from
the gravitational potential of the Poisson solver and not from the analytical potential
given by Eq. (5.2). This may seem counter-intuitive at first, however, the Poisson solver
by construction computes a gravitational potential that fulfills the discretized version of
Poisson’s equation. Due to that the potential resulting from the Poisson solver might
be more suited for computing the gravitational acceleration via finite differences.
However, we are more interested in the numerical artifacts that are caused by co-

ordinate transformations with discontinuous metric terms. These numerical artifacts
are particularly pronounced for the cubed sphere geometry in the bottom left panel.
In the strongly deformed cells along the diagonals with x = y the relative error in the
evaluation of the gradient regularly exceeds values of 0.2. This effect is even stronger
along diagonals with x = y = z (not shown in the plot), where the relative error
can be as large as emax = 0.4. The relative errors for evaluating the gradients on
the sinusoidal grid or the spherical grid are much smaller and only reach values of
emax = 3.52× 10−3 and emax = 1.85× 10−3, which is not that much larger than for
the standard finite differences in the Cartesian case. On the spherical grid the largest
deviations in the gravitational acceleration are encountered at the inner boundary of the
grid, whereas in sinusoidal geometry the largest deviations from the analytical solution
are close to the central plane shown in Fig. 5.3 (top right panel) at the coordinates
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Figure 5.3 | Distribution of the local relative error erel(x) for the evaluation of the gravitational
acceleration g(x) from the analytic gravitational potential Φ(x) via finite differences on
different grid geometries. The different grid geometries that are used for this test setup are
illustrated in Fig. 5.1. The definition of ε and emax is the same as in Fig. 5.2. The red line in
the bottom left panel is used for further analysis in Fig. 5.4.

x = y = ±5.38× 107 cm, where the sinusoidal contributions reach a maximum. In all
three cases the largest errors in the finite differences manifest themselves in locations
where the grid is strongly deformed.

In the case of the cubed sphere grid we want to take a closer look at the metric terms
and their correlation with the errors in the finite differences. For this purpose we plot
the relative error and the relevant metric terms along the red line shown in the bottom
left panel of Fig. 5.3. The results are shown in Fig. 5.4.
We can clearly see that the largest errors in the evaluation of the gradients coincide

with pronounced jumps in the metric terms J−1ξx and J−1ξy. However, it is also
noteworthy that there is almost no change in J−1ξz. This is due to the fact that we
are very close to the central plane with z = 0 cm. Consequently, we would expect that
the largest deviations of the numeric result to the analytical solution are in the x- and
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Figure 5.4 | This plot illustrates the correlation between discontinuities in the metric terms
and errors in the evaluation of gradients on curvilinear grids. It shows the local relative error
of the gravitational acceleration g(x) with the relevant metric terms along the red line in the
bottom left panel of Fig. 5.3.

y-components of the gravitational acceleration, which is indeed the case. In the case
of the sinusoidal grid and the spherical grid the coordinate transformation is much
smoother. This is also the reason why the evaluation of the gradient is less problematic
in those two cases.

Obviously the numerical artifacts in the computation of finite differences on curvilinear
grids with strong discontinuities in the metric terms are a major problem and we expect
that similar artifacts will appear in the mixed method Poisson solver. Unfortunately
there is not much we can do about these discontinuities in the derivatives of the
coordinate transformation. We could either try to construct coordinate transformations
with smoother metric terms, however, this is not always possible. Alternatively we could
use numerical methods that do not make explicit use of the metric terms, for example
the monopole solver in Sec. 5.1.4.

5.1.3 Mixed method Poisson solver

It was discussed in the previous section that numerical artifacts in the evaluation of
the gradients due to discontinuities in the metric terms would probably lead to similar
errors for the mixed method Poisson solver. Nevertheless it is worthwhile to investigate
whether this is indeed the case. For this purpose we compute the local relative error
for the gravitational acceleration that was obtained from the mixed method Poisson
solver. It is noteworthy that the mixed method Poisson solver computes a self-consistent
solution for the gravitational potential and the gravitational acceleration at the same
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time. Therefore, a separate computation of the gravitational acceleration with the finite
differences from the previous section is not necessary. The distribution of the local
relative errors for the gravitational acceleration g(x) is shown in Fig. 5.5. The top
left panel shows the result for the standard Poisson solver in Cartesian coordinates
for comparison. We are once again using BiCGSTAB(5) with a convergence threshold
of 10−8 for the iterative solution of the matrix. In addition to that, row-wise and
column-wise scaling preconditioning is used to speed up the convergence.
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Figure 5.5 | Distribution of the local relative error erel(x) for the gravitational acceleration
g(x) resulting from the mixed method Poisson solver on different grid geometries. The
different grid geometries that are used for this test setup are illustrated in Fig. 5.1. The
definition of ε and emax is the same as in Fig. 5.2.

We can see in all four cases that the relative error of the gravitational acceleration
increases substantially towards the center. One reason for this is of course the decreasing
absolute value of the gravitational acceleration towards the center. But in addition to
that the errors in the iterative solution also accumulate towards the center, since we
give the values at the boundaries of the grid and then iterate towards the center. In the
cubed sphere geometry the artifacts along the diagonals are once again clearly visible
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and the local relative error peaks at emax = 0.278 in the center. Obviously this is again
due to the discontinuities in the metric terms, which we showed in Fig. 5.4. However, in
comparison to Fig. 5.3 the globally averaged error in the gravitational acceleration is
almost one order of magnitude smaller than for the computation of the gradients from a
given gravitational potential. This is better than we originally expected after analyzing
the errors in the evaluation of the gradients, but obviously still not good enough for
practical applications.

It looks much better in the case of smoothly varying metric terms. For the sinusoidal
geometry the relative error in the gravitational acceleration peaks at emax = 5.17× 10−3

near the center of the grid, which is slightly higher than the maximum error for the
evaluation of the gradients from the analytic solution of the gravitational potential
(emax = 3.52× 10−3) in the previous section. However, the globally averaged error for
the gravitational acceleration from the mixed method Poisson solver (ε = 5.80× 10−4)
is actually slightly lower than the globally averaged error for the evaluation of the
gradients (ε = 6.16× 10−4). Obviously this sinusoidal geometry is only a numerical test
setup and does not have any relevance for practical applications, but it shows that the
implementation of the mixed method Poisson solver works in principle, if there are no
abrupt changes in the metric terms.

The setup with spherical geometry is a test case with smoothly varying metric terms
that is more relevant for practical applications. In this case, the error in the gravitational
acceleration peaks at the inner boundary in the radial coordinate for maximum and
minimum values of θ (i.e. furthest from the central xy-plane, which is shown in Fig. 5.5)
and close to the periodic boundary in ϕ-direction at emax = 5.14× 10−2. The globally
averaged error ε = 3.36× 10−4 is lower than for the sinusoidal geometry and slightly lower
than for the evaluation of the gradients from the analytic solution of the gravitational
potential (ε = 4.69× 10−4). However, there is clearly a periodic pattern in the ϕ-
direction that originates near the periodic boundary. This is most likely due to the
fact that periodic boundaries are not yet implemented in the matrix of the mixed
method Poisson solver. We expect that the errors should decrease further with a proper
implementation of the periodic boundaries. Practical applications of the mixed method
Poisson solver in spherical geometry might be possible afterwards.

5.1.4 Monopole solver

In Sec. 5.1.2 we have shown that evaluating gradients on a curvilinear grid is a challenging
task, if the metric terms are not continuously differentiable. In those cases it might be
better to use a gravity solver that does not make explicit use of the metric terms. The
simplest way to achieve this is using a monopole gravity solver, since it allows a direct
computation of the gravitational acceleration without the use of finite differences. For
this computation only the enclosed mass in the first integral of Eq. (2.30) is needed.
However, this treatment breaks down if part of the mass is not on the numerical grid.
In this case, we add an external potential, which accounts for mass that is not part of
the grid. In the presence of such an external gravitational potential the gravitational
acceleration has to be computed with the finite differences from the previous section.
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Among the four test cases that we use for benchmarking this treatment with the external
potential is only necessary for the spherical geometry, since the central region with
the origin of the coordinate system is not part of this grid. Therefore, we need to
evaluate the gravitational acceleration with finite differences in this case. The resulting
distribution of the local relative error in the gravitational acceleration g(x) is shown in
Fig. 5.6.
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Figure 5.6 | Distribution of the local relative error erel(x) for the gravitational acceleration
g(x) resulting from the monopole gravity solver on different grid geometries. The different
grid geometries that are used for this test setup are illustrated in Fig. 5.1. The definition of ε
and emax is the same as in Fig. 5.2.

It is noteworthy that the results for the Cartesian geometry and the sinusoidal
geometry are very similar in this case. The maximum value of the relative error at the
origin of the coordinate system is the same in both cases and the globally averaged
error ε is only marginally different. In addition to that, the monopole solver also
works reasonably well in the case of the cubed sphere geometry, since derivatives of
the coordinate transformation are not involved in this calculation. The result for the
gravitational acceleration is only slightly worse than for the Cartesian and the sinusoidal
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geometry. As expected the result for the spherical geometry is the worst out of those
four test cases, since finite differences are required to compute the gradient of the
gravitational potential in this case. However, even in this case the relative error of the
gravitational acceleration does not exceed emax = 7.27× 10−3, which should be good
enough for most practical applications. It is also noteworthy that the globally averaged
error for spherical geometry is larger than for the mixed method Poisson solver, even
though there is this problem with the periodic boundary in the latter case.
The main caveat with the monopole solver is that this only works reasonably well,

if the deviations from a spherically symmetric density distribution are not too large.
The exponentially decreasing density distribution from Eq. (5.1) is obviously spherically
symmetric. Hence the monopole solver works very well for this test setup. However,
during late burning stages in stars large asymmetries may develop (Arnett and Meakin,
2011; Müller et al., 2016). In those cases the monopole solver might not be accurate
enough and more advanced methods should be used.

An analytical test setup that is not spherically symmetric can easily be constructed by
overlapping two exponentially decreasing density distributions that are shifted against
each other. The analytical solution for this setup can be computed by using the
superposition principle. In this case the quality of the monopole solution should depend
on the distance between the peaks and the overlap of the two exponentially decreasing
density distributions. Note that simply shifting the density distribution from the origin
of the coordinate system, which has been done in Schrauth (2015) for the monopole
gravity solver in LEAFS, produces almost the same results as shown in Fig. 5.6, since
our implementation of the monopole solver does not assume that the center of mass is
at the origin of the coordinate system (see Sec. 4.3.1).

5.1.5 Performance and scaling

Up until now we were mainly concerned with the accuracy of the newly implemented
gravity solvers. In this section, we are going to analyze the performance and scaling
for some of those gravity solvers. For this purpose we use once again the analytical
test setup defined in Sec. 5.1 with a resolution of 1283 cells. To ensure a homogeneous
environment all of these tests were performed on a single Ivy Bridge node (i.e. 16 cores)
on the local cluster at the Heidelberg Institute for Theoretical Studies (HITS). Same
as before, we are using BiCGSTAB(5) with a convergence threshold of 10−8 for the
iterative solution of the linear system of equations.
In the following, we compare the convergence behavior for the Poisson solver in

Cartesian geometry and for the mixed method Poisson solver in sinusoidal geometry.
In Fig. 5.7 we show the convergence history for the Poisson solver (blue lines) and the
mixed method Poisson solver (red lines). Solid lines start from value zero for both the
gravitational acceleration and the gravitational force, whereas dotted lines start from
the solution of the monopole solver, which is a much better approximation of the actual
solution. As we can see the iteration with zero-valued initial guess starts with a residual
of 1 for both the mixed method Poisson solver and the standard Poisson solver, whereas
the iteration with the monopole solver as initial guess starts at 2.74× 10−5 in the case
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of the mixed method Poisson solver and 2.19× 10−7 in the case of the standard Poisson
solver.
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Figure 5.7 | Convergence history of the Poisson solver in Cartesian geometry and for the mixed
method Poisson solver in sinusoidal geometry. Using the monopole solver as initial guess for
the iterative solver significantly reduces the number of iterations in both cases.

In the case of the mixed method Poisson solver in sinusoidal geometry it requires 233
iterations starting from a zero-valued initial guess to reach the convergence threshold of
10−8. This takes roughly 350 s on a single Ivy Bridge node. With the monopole solver
as initial guess convergence is reached after only 35 iterations, which corresponds to 17 s
with the above configuration. It should be noted that there is almost no difference in
the quality of solution, both solutions are practically identical with the solution shown
in the upper right panel of Fig. 5.5.

For the standard Poisson solver in Cartesian coordinates we can see a similar reduction
from 46 iterations with zero-valued initial guess to only seven iterations, if the monopole
solution is used as initial guess. The computing time is reduced from roughly 7 s to 1 s.
However, in this case the quality of the solution with the monopole solver is slightly
worse due to the low number of iterations. This could be prevented by decreasing
the threshold for convergence. We want to emphasize that there is no unique relation
between the residual and the relative errors on the grid. Therefore, it can be very
misleading to compare different grid geometries based on the residual. This is especially
the case for the comparison of the residual between the standard Poisson solver in
Cartesian coordinates and the mixed method Poisson solver in a different geometry,
since the definition of those two residuals is inherently different. Obviously the residual
also scales with the number of grid cells. Therefore, it might be necessary to readjust
the convergence threshold after changing the grid resolution.
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We conclude that the quality of the initial guess has a big impact on the convergence
behavior. A good initial guess (e.g. the monopole solution for a spherically symmetric
density distribution) significantly reduces the number of iterations and thus the required
computing time. In a similar fashion we can also use the solution from the previous
time step as initial guess for the next time step. Usually the density distribution does
not change very much between two time steps, so this should be an even better initial
guess than the monopole solution in most cases. This also has the advantage that the
gravity solver consumes almost no computing time, if the density distribution does
not change between two time steps, since the initial guess should already be below the
convergence threshold. With this approach, the computing time of the gravity solver is
almost negligible in comparison to the hydrodynamics and the nuclear network. During
the 3D simulation of silicon burning in Sec. 5.4 the Poisson gravity solver consumed
only around 0.2 % of the total computing time.

In the following, we want to analyze the scaling of the monopole solver and the mixed
method Poisson solver in sinusoidal geometry. For this purpose the same analytic setup
was run by Philipp Edelmann during the JUQUEEN Extreme Scaling Workshop 2016
at Forschungszentrum Jülich on up to 24 racks (i.e. 393 216 cores) with a resolution of
19203 cells. The monopole solver was used as described in Sec. 5.1.4, whereas the mixed
method Poisson solver was used with the monopole solution as initial guess. The solution
of the resulting linear system of equations was then obtained using BiCGSTAB(5) with
a convergence threshold of 10−8, which is a rather large value for this resolution. In fact
this threshold is already reached after two iterations. However, the scaling behavior
should not be much different even for such a low number of iterations.

100000 150000 200000 250000 300000 350000 400000 450000

Number of cores

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

d
up

Ideal scaling
Mixed method Poisson solver
Monopole solver

Figure 5.8 | Strong scaling of the mixed method Poisson solver and the monopole solver on a
19203 grid. The lowest number of cores (i.e. 131 072) is used as reference point for the scaling.
The data for this plot were provided by Philipp Edelmann.
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The results of the scaling tests are shown in Fig. 5.8. We can see that both the
monopole solver and the mixed method Poisson solver scale reasonably well up to 24
racks with an efficiency of 82.4 % in the case of the mixed method Poisson solver and
83.8 % in the case of the monopole solver. This confirms that the parallelization of the
gravity solvers is working even in extreme scenarios. In fact this speed up is very close to
the scaling for the linear solver and the fluxes reported in Edelmann and Röpke (2016).
Given the fact that the gravity solvers constitute only a small fraction of the total
computing time in most cases, this should be sufficient for most practical applications.

5.2 Setup of the initial model for Si burning

In the following sections, we are going to describe the initial setup that is used for the
simulations of silicon burning in 2D (Sec. 5.3) and 3D (Sec. 5.4). The initial model
was obtained from the stellar evolution code MESA version 7623 (Paxton et al., 2011,
2013, 2015) by evolving a non-magnetic, non-rotating 15M� star from the pre-main
sequence phase to the onset of core collapse, when the velocity of the in-falling core
reaches 1000 km s−1. The MESA parameters inlist for this model was provided by Couch
et al. (2015).
The stellar evolution model initially uses a basic 8-isotope network. This network

is successively extended during the course of the simulation. Towards the end of the
simulation it uses a 21 isotope network with effective rates (approx21 ). This network
was briefly described in Sec. 4.2.2. The network uses a very simplified composition
for the treatment of core neutronization. Therefore, it is not trivial to translate the
composition of this nuclear network to a larger network, which does not use the same
approximate treatment. For simplicity we use the same 21-isotope nuclear network in
our simulations, as it allows us to directly compare our results with the stellar evolution
model. As we show in Sec. 5.2.2 the reaction rates in our version of the network are not
fully consistent with the ones used in MESA, which leads to slight discrepancies in the
energy generation rate.

During the late stages of silicon burning, roughly 1000 s before core collapse the model
is mapped to the hydrodynamics code SLH (Sec. 1.1.3). At this point the mass of
the iron core in the stellar evolution model is already 1.3M�. The abundance profiles
for the stellar evolution model at this time are shown in Fig. 5.9. The whole central
region consists mainly of iron-group isotopes, such as 54Fe, 56Fe and 56Cr. Due to
the approximate treatment of the network, those species do not represent the actual
physical isotopes. They are mainly used to represent the increasing neutronization of
the iron core towards the center. The bottom of the silicon burning layer is located
at around 1.7× 108 cm, where the 28Si mass fraction decreases below 10−2. Regions of
oxygen burning and neon burning are also visible further outside in the model. The
inner border of those burning regions can roughly be identified by a sharp decline of the
corresponding burning fuel. A more detailed analysis of the burning zones is given in
Sec. 5.3.2. The carbon burning shell is even further outside and not visible in this plot.

Ideally one would start with a stellar model at the beginning of silicon burning, when
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Figure 5.9 | Abundance profiles of the MESA model for all isotopes that exceed a mass fraction
of 0.05 between the center and an outer radius of 109 cm.

the iron core is not yet present. However, this is not feasible with the currently available
computational resources. In fact it is already quite challenging to reach the onset of core
collapse starting with the initial model above. Couch et al. (2015) were only able to
simulate the evolution until core collapse, because they artificially enhanced the electron
capture rate, which was not done for the simulations presented here. In addition to that,
they only simulated one octant of the whole star, whereas we cover the whole core in
full 4π steradians.
During the stellar evolution modeling in MESA the Helmholtz equation of state

from Timmes and Swesty (2000) with Coulomb corrections was used. As mentioned in
Sec. 1.1.3, this equation of state is also implemented in SLH. In addition to that, we have
verified the accuracy of the equation of state by recomputing the temperature profile
with the density and pressure profiles from MESA as input values. In the relevant parts
of the model the relative difference between this recomputed temperature profile and
the original temperature profile from MESA stays below 10−8. Therefore, we conclude
that differences in the implementation of the equation of state are negligible.

5.2.1 Maintaining hydrostatic equilibrium

It is particularly important to maintain hydrostatic equilibrium during the mapping of
the 1D stellar evolution model from MESA to the hydrodynamic grid. This is achieved
by using the hydrostatic integration method described in Zingale et al. (2002). For this
integration, one thermodynamic quantity from the original stellar evolution model is
used along with the nuclear composition. Since reaction rates are very sensitive to the
temperature we take the temperature profile T (r) and the gravitational acceleration g(r)
from the initial model and obtain initial profiles for the density ρ(r) and pressure P (r)
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through the hydrostatic integration. This is achieved by reformulating the equation for
the hydrostatic equilibrium (2.32) as a differential equation for the pressure

P ′(r) = ρ[P (r),T (r)] · g(r). (5.6)

The resulting profiles for temperature, density and pressure after the hydrostatic inte-
gration and the mapping to the hydrodynamic grid in SLH are shown in Fig. 5.10. The
original profile from the stellar evolution code is also shown for comparison.
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Figure 5.10 | Initial profiles of temperature T (r), density ρ(r) and pressure P (r) after mapping
from the 1D stellar evolution code MESA to the hydrodynamics code SLH. The red line
indicates the starting point of the hydrostatic integration. The dashed line shows the
corresponding model from the stellar evolution code.

In principle the starting point of the integration can be chosen arbitrarily. However, for
our initial model there is a sharp jump in the temperature profile at r = 1.45× 108 cm,
where silicon core burning takes place. This is an important feature of the initial model
and should be reproduced as accurately as possible. Therefore, we start the integration
of the hydrostatic profile at this temperature jump indicated by the red line in Fig. 5.10
and integrate the profile towards the inner and outer boundaries of the model. The
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resulting initial model accurately represents the original profiles from the corresponding
stellar evolution model.
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Figure 5.11 | Quality of the hydrostatic equilibrium after the hydrostatic integration and the
mapping to the hydrodynamics code SLH. The upper panel shows the absolute error and the
individual contributions of the pressure gradient ∂P/∂r and the gravitational force ρg. The
lower panel shows the relative difference with respect to the pressure gradient.

Fig. 5.11 shows the quality of the hydrostatic equilibrium that is obtained by this
integration process. The upper panel shows the contributions from the gravitational
force ρg and the pressure gradient ∂P/∂r to the hydrostatic equilibrium. In addition
to that, it also shows the absolute difference between those two contributions. The
relative error is shown in the lower panel. Across the whole model the relative error
rarely exceeds 10−3. The largest deviations from hydrostatic equilibrium are found in
the center of the model, which is mainly due to the sharply decreasing value of the
gravitational acceleration towards the center. Starting a hydrodynamic simulation from
this initial model leads to slowly increasing Mach numbers in the convective regions
while the Mach numbers in radiative regions typically stay below 10−3 during the whole
simulation. A detailed analysis of the convective pattern and a comparison with the
Brunt-Väisälä frequency of the original stellar evolution model is given in Sec. 5.3.1.
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5.2.2 Reaction rates

Another important ingredient of the model are the reaction rates that are used in the
nuclear network. Unfortunately many reaction rates are somewhat uncertain and the
reaction rates used in our version of the network are not fully consistent with the ones
used in the stellar evolution code MESA. In this section, we are going to analyze the
impact of those discrepancies in the reaction rates on the neutronization rate and the
energy generation rate of the nuclear network.
As mentioned in Sec. 4.2.2 the original implementation of the nuclear network in

CASTRO and MAESTRO still uses the 56Ni electron capture rate from Mazurek (1973);
Mazurek et al. (1974)1, whereas the nuclear network in MESA uses the more recent
electron capture rate from Langanke and Martinez-Pinedo (2000, henceforth LMP
(2000)). During this project the electron capture rate from LMP (2000) was also
implemented in our version of the nuclear network2. A comparison of those two electron
capture rates for our initial SLH model is shown in Fig. 5.12. The dashed red line once
again indicates the abrupt jump in our temperature profile near the base of the silicon
core burning region. The abrupt drop of the Mazurek rate near 3.1× 108 cm is due to
the cutoff at low densities.
The more recent electron capture rate from LMP (2000) is higher than the electron

capture rate from Mazurek (1973); Mazurek et al. (1974) almost across the whole model.
Especially in the central region, where electron captures are most important, the rate
from LMP (2000) is roughly a factor of 7 higher. This should have a large impact
on the neutronization rate and hence lead to a significant speed up of the evolution
towards core collapse. In addition to that, we can also see that the abrupt change in the
temperature profile near the base of the silicon burning region has a significant impact
on the electron capture rate from LMP (2000). However, this feature is not visible for
the reaction rate from Mazurek (1973); Mazurek et al. (1974).
To assess the impact of the reaction rates on the neutronization rate and energy

generation rate of the network, we did a network only test run of the nuclear network
in SLH for both cases (LMP rate and Mazurek rate) starting from the initial profiles
shown in Fig. 5.10. For this purpose we used a network time step of 0.01 s, which
roughly corresponds to the time step that is used for the simulations of silicon burning
in Sec. 5.3 and 5.4. Since our version of the nuclear network is not fully consistent with
the initial composition from the stellar evolution model, there is an initial transient
where the chemical composition adjusts to the reaction rates in our version of the
network. Therefore, we run the network for 50 time steps each before we analyze the
neutronization rate and the energy generation rate. At this point the neutronization
rate and the energy generation rate of the network have stabilized. Fig. 5.13 shows
the resulting rate of change in the electron fraction dYe/dt in the upper panel and the

1Meanwhile the reaction rate from Langanke and Martinez-Pinedo (2000) was also implemented in
CASTRO and MAESTRO.

2Our implementation of the nuclear network is based on the nuclear network in the Microphysics
module of CASTRO and MAESTRO. During the reimplementation of the network into SLH a
substantial bug was discovered that prevented the proper neutronization during silicon burning. The
bug-fix for the proper neutronization has been pushed to the CASTRO and MAESTRO repository.
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Figure 5.12 | Comparison of the 56Ni electron capture rate λec between Langanke and Martinez-
Pinedo (2000) and Mazurek (1973); Mazurek et al. (1974) for the initial profiles shown in
Fig. 5.10. The dashed red line indicates the sharp jump in the temperature profile near the
base of the silicon core burning region.

energy release rate dE/dt in the lower panel. For comparison we also show the energy
release rate from the network in the stellar evolution code MESA.

As expected the electron fraction Ye decreases much faster in the case of the LMP (2000)
rate than for the Mazurek rate, especially in the central region inside of r = 1.4× 108 cm.
In addition to that, the energy loss rate in the center is almost one order of magnitude
higher for the rate from LMP (2000). Further outside than 2.0× 108 cm there is almost
no difference in the energy generation rate, since the difference between the reaction rates
is much smaller in this region. However, there are still large discrepancies in the energy
generation rate between our version of the nuclear network and the nuclear network in
MESA. These differences are mainly due to the fact that we are using the rates that
were provided by F. Timmes as part of the approx21 network, whereas the network in
MESA mainly uses reaction rates from the JINA Reaclib Database (Cyburt et al., 2010).
We attempted to also implement the JINA Reaclib rates into our version of the network,
however, the network did not converge with the JINA Reaclib rates. Unfortunately we
were unable to resolve these issues with the JINA Reaclib rates. Therefore, we still use
the reaction rates provided by F. Timmes for our production runs in Sec. 5.3 and 5.4,
even though they are not fully consistent with the reaction rates in MESA. Another
reason for those discrepancies could be the different treatment of neutrino losses between
the network in SLH and the network in MESA. This is further explained in Sec. 5.3.4.

71



5 Results

−5

−4

−3

−2

−1

0

1

dY
e/

dt
[1

/
s]

×10−6

Mazurek (1973)
LMP (2000)

0 1 2 3 4 5

r [cm] ×108

−1016

−1014

−1012

−1010
0

1010

1012

1014

1016

dE
/

dt
[e

rg
/g

/s
]

Mazurek (1973)
LMP (2000)
MESA

Figure 5.13 | Comparison of the Mazurek rate and the LMP (2000) rate for a network only
run (see text for a more detailed description). The upper panel shows the rate of change in
the electron fraction dYe/dt, while the lower panel shows the energy release rate dE/dt.

5.3 Modeling of Si burning in 2D

After a detailed discussion of the initial setup in the previous section, we are now going
to present the results of the 2D simulations of silicon burning. The main goal of those
2D simulations was to verify that our modeling approach is working as intended. In
comparison to the 3D simulation in Sec. 5.4 those 2D simulations are much cheaper,
which means we were able to run a number of different test setups with the computing
resources that are available locally at the Heidelberg Institute for Theoretical Studies
(HITS). Since most of the gravity solvers from Sec. 5.1 are not fully implemented in
2D, we do not use any gravity solvers for the following 2D simulations and assume
that the gravitational potential is constant in time. In addition to that, we used the
CFLug time-step criterion (see Sec. 4.1.2) for all these simulations, because we start our
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simulations with zero initial velocity and let convection develop. This means we can not
use the less restrictive CFLu, at least not at the start of the simulation.

5.3.1 Development of convection zones

In the first 2D test setup the nuclear reaction network was disabled. The main goal
of this test run was to verify that the SLH model develops convection as predicted by
the Brunt-Väisälä frequency of the initial model from the stellar evolution code MESA.
This 2D setup was also used to test different grid geometries, boundary conditions,
hydrodynamic fluxes, hydrodynamic reconstruction schemes and well-balancing (cf.
Sec. 4.1.1).
In the following, we will only show the results for the most promising model setup.

This model was run on a Cartesian grid geometry with 10242 cells and constant ghost cell
boundary conditions, i.e. the ghost cells at the outer boundary of the grid are initialized
with values from the initial profile and never changed during the whole simulation. These
boundaries have the advantage that they accurately fulfill the hydrostatic equilibrium at
the beginning. However, this also means that they do not adjust to changes in the stellar
structure, which could lead to problems if the structure of the star changes drastically
during the simulation. The model uses a standard Roe solver (Roe, 1981) without the
low-Mach preconditioning that is also available in SLH. Parabolic reconstruction was
used, since this resulted in a slower growth of the Mach numbers and also conserved the
initial hydrostatic equilibrium more accurately than the linear MUSCL reconstruction
scheme. Cargo-Leroux well-balancing (Cargo and Le Roux, 1994; Edelmann, 2014)
was also tried with this setup, however, this destabilized our model and was therefore
disregarded. The recently implemented Chandrashekar-αβ well-balancing based on
Chandrashekar and Klingenberg (2015) was not yet suitable for realistic stellar profiles,
however, this might be something to look into in the future. Therefore, we do not use
any well-balancing for the simulations presented here. The computational domain for
this simulation was 1.0× 109 cm. This is much larger than most of the other simulations
presented in this thesis. The resulting spatial distribution of the Mach number after
t = 203.90 s, which corresponds to 22 203 hydrodynamic time steps, is shown in Fig. 5.14.
It is remarkable that the distribution of the Mach number is still almost completely

symmetric to the coordinate axes after more than 20 000 hydrodynamic time steps. This
artificial symmetry of the model could be broken by using initial perturbations in either
the velocity (Zingale et al., 2009) or the temperature (Gilet et al., 2013), which would
also speed up the development of convection. However, this symmetry also indicates that
the initial hydrostatic equilibrium is preserved very well. At this point of the simulation
several convective zones have developed, while the core region inside of 2.0× 108 cm does
not show any signs of convection. To verify that those convective features are consistent
with the stellar evolution model we compare with the Brunt-Väisälä frequency of the
MESA profile that was used for the initial setup in SLH. The Brunt-Väisälä frequency
for this MESA profile, as well as the Brunt-Väisälä frequency of the initial SLH model3

3The oscillations in the Brunt-Väisälä frequency of the SLH model are due to inaccurate evaluation of
the temperature gradients.
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Figure 5.14 | Distribution of the Mach number for an SLH run without chemical species
and nuclear network at t = 203.90 s. Convection develops in the regions predicted by the
Brunt-Väisälä frequency (see Fig. 5.15). The red circles, which indicate the borders between
convective and non-convective zones, correspond to the blue lines in Fig. 5.15.

are shown in Fig. 5.15. Regions that are expected to be convective are shaded in blue,
whereas white regions are expected to be stable. The blue lines that mark the borders
of the convective zones correspond to the red circles in Fig. 5.14.

Overall the Brunt-Väisälä frequency of the initial SLH matches reasonably well with
the Brunt-Väisälä frequency of the stellar evolution model. The convective features of
the MESA profile as predicted by the Brunt-Väisälä frequency are accurately reproduced
in our hydrodynamic setup (cf. red lines in Fig. 5.14). Therefore, we conclude that in
terms of the convective properties our SLH model is a good representation of the stellar
evolution model that was used for the mapping. In the following sections, we can now
start to put more realistic physics into our model.

5.3.2 Identification of the hydrostatic burning zones

In this section, we present the first 2D test run that also includes the approx21 nuclear
network, which was reimplemented into SLH from the CASTRO and MAESTRO
hydrodynamics codes (see Sec. 1.1.2). It should be noted that this simulation was run
with the original version of the reimplemented network, which means that it does not
yet contain the bug fix that enables the neutronization in the central region of the model.
In addition to that, it still uses the electron capture rate from Mazurek (1973); Mazurek
et al. (1974) and not the more recent one from Langanke and Martinez-Pinedo (2000).
However, this is not a major issue for the purpose of identifying the hydrostatic burning
zones. Follow-up simulations with the updated nuclear network are shown in later parts
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of the thesis.
This simulation was performed on a 5122 Cartesian grid with a computational domain

of 5.0× 108 cm. As established in the previous section we are using constant ghost cell
boundary conditions and a standard Roe hydro flux with a parabolic reconstruction
scheme and no well-balancing. The main purpose of this simulation was to identify the
convective silicon burning region, so that we can restrict the computational domain
appropriately. Fig. 5.16 shows the initial temperature profile at t = 0 s in the first panel4
and the distribution of selected chemical isotopes at t = 347.45 s in the following three
panels. From this point onward, 28Si + 32S refers to the compound abundance of 28Si
and 32S.
The convective oxygen burning shell can clearly be identified in the region from

3.1× 108 cm to 4.5× 108 cm, which typically takes place at temperatures between 1.5 GK
and 2.7 GK (see Sec. 3.1.3). In this region, the isotope 16O is consumed and intermediate
mass elements such as 28Si and 32S are produced. There are also some small traces
of even heavier isotopes such as 36Ar in this burning region. In the region outside of
4.5× 108 cm neon shell burning takes place at temperatures between 1.2 GK and 1.8 GK.
The carbon burning region would be even further outside and is not visible in this plot.
The convective silicon burning shell can be identified in the region between 1.7× 108 cm

4In all our simulations, t = 0 s refers to the initial SLH model after mapping to the hydrodynamic grid.
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Figure 5.16 | The first panel shows the temperature profile at the start of the simulation in
SLH. The following panels show the abundance distributions for selected chemical isotopes at
t = 347.34 s. The restricted physical domain at r = 3.2× 108 cm, which is used for follow-up
simulations is indicated by white/blue lines.

and 2.5× 108 cm, where the abundances of 28Si, 32S and 36Ar abundances get almost
completely depleted in favor of iron group elements such as 54Fe and 56Fe. This also
coincides very well with the expected temperature range of silicon burning between
2.8 GK and 4.1 GK. Even further inside at temperatures above 5.0 GK full NSE of the
strong and electromagnetic interactions is established (see Sec. 2.2.1). This regime is
only very roughly approximated in our nuclear reaction network with few representative
species with varying neutron excess.

Now that we have identified the major burning regimes, we are going to further restrict
the computational domain as indicated by the white and blue lines at 3.2× 108 cm in
Fig. 5.16. This restricted computational domain covers the entire convective silicon
burning region and also large parts of the oxygen burning shell. Decreasing the compu-
tational domain to the relevant parts of the simulation has the advantage of improving
the resolution in the silicon burning, while keeping the number of grid cells constant.
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Figure 5.17 | Abundance distributions of 28Si + 32S and 54Fe for the restricted physical domain
as indicated by the white/blue lines in Fig. 5.16.

This is illustrated in Fig. 5.17, which shows abundance distributions of 28Si + 32S
and 54Fe for a simulation using the restricted computational domain of 3.2× 108 cm
with 5122 grid cells. In addition to that, this simulation already uses the updated
nuclear reaction network with the bug fix that enables proper neutronization in the
central region of the model and the more recent electron capture rates from Langanke
and Martinez-Pinedo (2000). This setup once again uses constant ghost cell boundary
conditions and the standard Roe hydro flux with a parabolic reconstruction scheme. As
before, low Mach number preconditioning and well-balancing are disabled. In addition
to that, a constant opacity of κ = 0.05 cm2 g−1 was assumed for this simulation. This
value is an upper limit for the opacity as inferred from the MESA profile that was used
for the mapping to the hydrodynamic grid.

As we can see in Fig. 5.17 the convective silicon burning region is well resolved in this
simulation. The combined abundances of 28Si and 32S decrease towards the base of the
convective silicon burning region at 1.7× 108 cm, whereas 54Fe and other iron group
elements are produced. We have now established a 2D setup that accurately captures
the nuclear processes and the hydrodynamic evolution. The properties of this model are
discussed in more detail in the following sections.

5.3.3 Frequency of network evaluations

In this section, we continue the analysis of the model from the previous section with the
computational domain of 3.2× 108 cm. In addition to that, we also present a model that
only evaluates the nuclear reaction network every 50 hydrodynamical time steps, which
corresponds to an evaluation of the network roughly every ∆tnet = 0.37 s in physical
time. Between two network evaluations the energy generation rate and the rate of
change in the network species is stored. These stored values are used for updates of the
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composition and the energy until the next full evaluation of the network.
This method significantly reduces the amount of computational resources that are

spent on the reaction network, while still being reasonably accurate. Evaluating the
network in every hydrodynamical time step consumes roughly 50 % to 60 % of the
computational resources, depending on the other details of the setup. With a very low
frequency of network evaluations this fraction could be reduced to being completely
negligible, however, this could lead to a significant reduction in the accuracy of the
network. For a moderate frequency of network evaluations (e.g. every 50 hydrodynamical
time steps, as above) the results are usually still reasonably accurate and the contribution
of the network to the overall computing time can be reduced below 10 %. Obviously
the values given here are specific to the setup presented here and it might already be
different, if another stellar evolution model is used for the mapping to the hydrodynamic
grid. Therefore, it is advised that the frequency of network evaluations is readjusted
when the initial setup is changed.

Fig. 5.18 shows changes with respect to the initial SLH model (subscript 0) for radially
averaged profiles of density ρ, temperature T , electron fraction Ye and energy E after
t ≈ 481 s for the two models mentioned above. In addition to that, changes for the
corresponding MESA model are also shown for comparison. We can see that there is
almost no difference between the two SLH models, which means that evaluating the
nuclear network every 0.37 s should be good enough for this particular initial model.
However, in both SLH models there are no signs of core contraction as it would be
expected from the stellar evolution model. This is most obvious in the first panel, where
we can see that the central density in the MESA model has increased by more than
30 %, whereas there is almost no change in the central density of the SLH models.
There are also obvious differences between the SLH models and the MESA model in
the temperature, energy and Ye profiles, however, this is in part also due to the missing
contraction of the SLH models.
This missing contraction in the 2D models is due to problems with the geometry of

the setup in 2D. In Sec. 5.4.2 we will see that the 3D model, which contains the correct
geometric information, shows contraction similar to the stellar evolution model from
MESA. Consequently, the profiles for this 3D simulation are overall much more similar
to the stellar evolution model (see Fig. 5.22). A detailed discussion of the problems with
the chosen 2D setup and a possible solution for this problem are presented in Sec. 5.4.3
after analyzing the properties of the 3D model.

5.3.4 Network properties

In this section, we take a look at the spatial distribution of the energy generation rate
dE/dt and the rate of change in the electron fraction dYe/dt for the 2D model with
the reduced frequency of network evaluations from the previous section after 480.99 s
of simulation time (see Fig. 5.19). The results are comparable to the radially averaged
profiles shown in Fig. 5.13, however, this time we show the spatial distribution on the
grid, which gives us further insights.

The base of the oxygen burning shell at r = 3.1× 108 cm is once again clearly visible
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Figure 5.18 | Changes in the density, temperature, electron fraction and energy profiles with
respect to the corresponding initial model (subscript 0). The green line shows a 2D SLH
model where the network is evaluated in every hydrodynamical time step. The red line shows
a 2D SLH model with a reduced frequency of network evaluations. For comparison the profile
for the corresponding model from the stellar evolution code MESA is also shown.

with large positive contributions to the energy generation rate. Similarly, a thin region
with positive energy generation can be identified around r = 1.8× 108 cm near the base
of the convective silicon burning region. Between those two regions is the convective
silicon shell, where the energy generation is predominantly negative due to energy
losses from neutrino cooling. However, some spots with positive energy generation are
sprinkled in, where nuclear burning still takes place. In the NSE region at the center of
the model the energy generation rate is again negative due to neutrino losses. At this
point it should be noted that only thermal neutrino losses according to Itoh et al. (1996)
are implemented in the current version of the nuclear network. Neutrino losses due to
weak nuclear reactions are not considered in our version of the network. This could be
one of the reasons for the discrepancy in the energy generation rate in the lower panel
of Fig. 5.13.

In addition to that, it is somewhat interesting that outside of a radius of 1.9× 108 cm
there is no decrease in the electron fraction. This is due to the fact that the network
only contains symmetric α-chain species up to 52Fe. Therefore, a decrease in Ye in
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Figure 5.19 | Spatial distribution of the energy generation rate dE/dt and the rate of change
in the electron fraction dYe/dt for the 2D model with the reduced frequency of network
evaluations from Sec. 5.3.3 after t = 480.99 s.

this network is only possible after iron group elements have been formed during silicon
burning. As discussed in Sec. 3.1.3 there should already be a substantial neutron excess
during oxygen burning due to β+-decays and electron captures. However, those reactions
are not included in this nuclear network. This leads to a rapid decrease in the electron
fraction at the base of the silicon burning region, where substantial amounts of iron
group elements are produced.

Another rapid decrease in the electron fraction takes place near the center of the NSE
region. This is the region, where the electron captures on 56Ni from Sec. 5.2.2 become
important. Note that the neutronization in the core is only roughly approximated in this
network by successively converting iron group elements into more neutron rich isotopes
with 56Cr being the most neutron rich species (see Sec. 4.2.2).

5.4 Modeling of Si burning in 3D

In the previous sections, we have defined and thoroughly tested our modeling approach
in 2D with somewhat satisfying results. The main problem with our 2D simulations
was that the models do not contract as it would be expected from the stellar evolution
model. Unfortunately we were unable to resolve this issue with our modeling approach
in 2D. Nevertheless we decided to perform a simulation of silicon burning in 3D with the
computing time that was allocated for this project on JUQUEEN at Forschungszentrum
Jülich. Since 3D simulations are much more expensive than the 2D runs from the
previous section we were only able to run a single model in 3D after doing some initial
tests with the setup. Perhaps the most interesting result of this 3D run was the fact
that the 3D model contracts in a similar fashion as the stellar evolution model (see
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Sec. 5.4.2), even though we never managed to obtain contraction in 2D. As it turns
out, we only noticed a deficiency of our 2D setup after we successfully simulated the
contraction of the core in 3D. The problems with our 2D modeling setup and possible
solutions are discussed in Sec. 5.4.3.
The setup for our 3D run is based on the 2D model that was described towards the

end of Sec. 5.3.2. This means we are using constant ghost cell boundary conditions
and the standard Roe hydro flux with a parabolic reconstruction scheme once again. In
addition to that, we use the restricted computational domain of 3.2× 108 cm, which was
established in Sec. 5.3.2. A full evaluation of the nuclear network was performed every 35
hydrodynamical time steps. With a CFLug time step of roughly 0.01 s this corresponds
to a network evaluation every 0.35 s, which is comparable to the 2D setup with the
reduced frequency of network evaluations shown in Fig. 5.18. Therefore, the treatment
of nuclear reactions should be reasonably accurate. In contrast to the 2D setup, we
are using the standard Poisson solver on a Cartesian grid for this 3D simulation. The
solution of the monopole solver is used as initial guess for the Poisson solver in the first
time step. This also serves as a first test case for the performance of the gravity solver
in a realistic physical application.
Originally we wanted to use a grid with 5123 grid cells, so that we have the same

resolution as in 2D. However, it turned out that we could not afford this resolution with
the given computational resources. Therefore, we had to reduce the number of grid
cells to 2563 and even then we only managed to simulate 154.41 s of silicon burning in
3D with 3.9× 106 core-hours. With this setup a full simulation of the roughly 1000 s
until core-collapse would require around 25.4× 106 core-hours in total, which is rather
expensive and not possible within the current computing time proposal. Therefore, this
3D setup presented here only serves as a proof of concept. Substantial improvements of
our 3D modeling approach are clearly necessary to reduce the required computational
resources. Suggestions for future improvements of the 3D modeling, which hopefully
reduce the computing time, are given in Sec. 5.4.4.

5.4.1 Development of convection

To get a first impression on the quality of the 3D model, we once again look at the
convective features of the model and compare it to the 2D model with the reduced
frequency of network evaluations from Sec. 5.3.3. This comparison is particularly
interesting, because the turbulent energy cascade is inherently inverted in 2D. Same as
in Fig. 5.17 we use the isotope 54Fe as tracer for the convective silicon burning region.
The resulting Fig. 5.20 shows that the convective pattern is indeed quite different from
the convective pattern of the 2D simulation at the same time. Convection in 2D develops
much faster and the mixing is a lot more violent than in the 3D case. However, this
could partially also be due to the higher resolution of the 2D run.
For a more detailed analysis of the differences between the 2D simulation and the

3D simulation we show the power spectrum for both cases in Fig. 5.21. In both cases
the expected k−5/3 Kolmogorov spectrum (Kolmogorov, 1941) develops, where k is the
wavenumber obtained via Fourier transformation of the length scales. However, in 2D
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the peak of the spectrum is shifted towards smaller k values as a consequence of the
inverted turbulent energy cascade. At around 2.0× 10−7 cm−1 the power-law in 2D is
broken and changes from k−5/3 to k−3. This is due to the fact that only enstrophy (i.e.
the squared vorticity of the velocity field) is transported in a forward cascade in this
case. Similarly, the power-law in 3D is broken for k < 1.0× 10−7 cm−1, which suggests
that kinetic energy is transferred to small scales in a forward energy cascade. This
crucial difference in the turbulent energy transport is further discussed in Hanke et al.
(2012) for a power-spectrum in spherical harmonics. As discussed in Sec. 3.2.1 this
inverted turbulent energy cascade is particularly important for follow-up simulations
of the core-collapse supernova, since it leads to larger turbulent structures in 2D and
artificially enhances shock revival.

5.4.2 Contraction and neutronization of the 3D model

In the previous section we discussed the differences in the convective properties between
the 3D model and the 2D model from Sec. 5.3.3. Now we are concerned with the
contraction and neutronization of our 3D model. In Fig. 5.18 we have shown that the
2D model did not contract as it would be expected from the stellar evolution model.
We show similar plots for the 3D model in Fig. 5.22. For comparison we also added a
2D model that uses a monopole gravity solver, but is otherwise identical to the models
discussed in Sec. 5.3.3. This treatment of using a monopole solver with our 2D setup is
not very consistent with the geometry imposed by the 2D simulation (see Sec. 5.4.3).
Nevertheless, we used the monopole gravity solver in this case to demonstrate that the
missing gravity solver in the 2D simulations from Sec. 5.3.3 is not the reason for the
missing contraction in 2D.

Even though the 2D simulations from Sec. 5.3 have progressed much further in time,
we can see that this 3D simulation behaves significantly different from all 2D simulations
in terms of core contraction and neutronization. This is most obvious in the first panel
of Fig. 5.22, which once again shows the relative difference in the density with respect to
the density of the initial SLH model. Clearly in contrast to the 2D models there is now
a substantial increase of the density in the central region, which is almost on par with
the corresponding model from the stellar evolution code MESA. This suggests that our
3D model is in fact contracting on a similar time scale as the MESA model. In contrast,
the 2D model with the monopole gravity solver barely shows any signs of contraction
at this stage of the simulation. The contraction in the innermost center of the MESA
model is still slightly faster than for our 3D model, which could be due to the remaining
discrepancies in the reaction rates and neutrino losses. Since temperature and density
are related via the equation of state, it comes as no surprise that the higher densities
in MESA lead to lower core temperatures than for our 3D model. The temperature
profile for the 2D simulation with the monopole solver is completely different due to the
missing contraction of the model.

Up to a radius of 1.7× 108 cm the changes of the electron fraction Ye in our 3D model
are in good agreement with the stellar evolution data. This confirms that at least some
of the differences observed in Fig. 5.18 can be attributed to the missing contraction in
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Figure 5.22 | Changes in the density, temperature, electron fraction and energy profiles with
respect to the corresponding initial model (subscript 0; cf. Fig. 5.18 for the same plot in the
2D case). For comparison, the profiles for a 2D model with monopole gravity solver and for
the model from the stellar evolution code MESA are also shown.

the 2D models. In the region from 1.7× 108 cm to 2.5× 108 cm the differences between
our 3D model and the MESA model are more pronounced. This is the region where
convective silicon burning takes place (see Sec. 5.3.2). However, our full 3D treatment
of convection is clearly much more sophisticated than the parametrized mixing-length
theory (see Sec. 1.1.1), which is used as a rough approximation for convection in the
1D stellar evolution code since a full treatment of multidimensional phenomena is not
possible. It is very likely that the different treatment of convection leads to changes
in the composition, which are then reflected in the Ye profile. Due to the missing
contraction the 2D model with the monopole solver once again has a completely different
profile.
A very similar behavior is found for the changes in the internal energy. The MESA

model and our 3D model are overall in good agreement. Some differences are present
in the convective silicon burning region from 1.7× 108 cm to 2.5× 108 cm and in the
convective oxygen burning region from 3.1× 108 cm to 4.5× 108 cm. The increase of
the internal energy towards the center is almost completely missing in the 2D model
with the monopole solver.
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We conclude that our 3D model is a much better representation of the stellar evolution
model from MESA than the 2D models discussed in Sec. 5.3.3. It would be interesting
to follow the 3D model until the onset of core collapse and compare it with the profiles
from the stellar evolution model. Unfortunately this is not feasible with our current 3D
setup due to limited computational resources. With some of the improvements discussed
in Sec. 5.4.4 it might be possible to follow the model until core collapse with significantly
reduced computational resources.

5.4.3 Problems with the 2D modeling approach and possible solutions

In Sec. 5.3.3 we identified a common issue of all 2D simulations in this thesis. None of our
2D models show the contraction of the core, which is predicted by the stellar evolution
code MESA. For a long time we suspected that this might be due to a mismatch in the
reaction rates, which is why we tried to include the same reaction rates in our nuclear
network as in the nuclear network from MESA. Eventually we decided to run a 3D
simulation, even though there were still some discrepancies in the reaction networks and
we realized that this 3D model did in fact contract on a similar time scale as predicted by
the MESA model (see Sec. 5.4.2). Obviously this raises the question, what was actually
missing in the 2D simulations that we did so far. Apparently the discrepancies in the
reaction rates are not the main reason for the missing contraction in the 2D models,
since the 3D model shows clear signs of contraction with the same reaction rates.
Another difference between this 3D model and the previous 2D modeling attempts

was the treatment of gravity. Since most of our gravity solvers do not work in 2D
without further assumptions about the geometry, all of the simulations in Sec. 5.3 were
performed under the assumption that the gravitational potential is constant in time. In
contrast to that, the 3D simulation in Sec. 5.4 uses the standard Poisson solver on a
Cartesian grid (see Sec. 4.3.2 and 5.1.1). Unfortunately with the current implementation
of the Poisson solver it is impossible to use it for our 2D setup. Therefore, we tried
using the monopole gravity solver with our 2D setup from Sec. 5.3.3 and compared it
with the data from our 3D model and the predictions from the stellar evolution code
(see Sec. 5.4.2). However, even with the monopole gravity solver the 2D model clearly
failed to reproduce the expected contraction.
This lead us to the conclusion that there is a deficiency in the geometrical setup of

our 2D simulations. For the 2D simulations in this thesis we assumed that the simulated
domain corresponds to a cut through the equatorial plane of a sphere. However, this
geometrical setup actually corresponds to an infinite cylinder in z-direction, which is
obviously not a very realistic model for a star. This also explains why imposing monopole
gravity on our 2D model did not work as intended, since the gravity solver was not
consistent with the geometry of our setup. We did not expect that this mismatch in the
geometry would have such a large impact on the contraction of the model.
This issue with our 2D setup could be resolved by using a similar setup as in the

LEAFS hydrodynamics code (Reinecke, 2001, section 5.3), which is mainly used for
simulations of Type Ia supernovae. 2D simulations in LEAFS are typically performed
under the assumption that the simulated domain corresponds to a slice in the rz-plane
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in cylindrical coordinates. This setup imposes axial symmetry around the z-axis, i.e. the
model is rotationally symmetric around the z-axis. With this setup we can construct a
2D model that does in fact correspond to a sphere in 3D. However, this setup requires
additional corrections in the flux terms to account for the different size of the cells.
Unfortunately these corrections for the flux terms are not implemented in SLH, which
means that we can not test this hypothesis right now.
Implementing those corrections into SLH would hopefully allow us to perform 2D

simulations that are more comparable to our 3D model in Sec. 5.4.2. At the moment
our 2D simulations are obviously not suited to make predictions for the behavior in
3D. Therefore, in the current state we always rely on 3D simulations, if we want to
make statements about the contraction of the model. However, with the current 3D
setup we clearly cannot afford to do a large number of 3D simulations. Therefore, it
would be useful to have a 2D model that makes accurate predictions for the contraction
of the model in 3D. This would make it a lot easier to identify suitable setups for 3D
simulations.

5.4.4 Future improvements of our 3D modeling

In Sec. 5.4 we briefly discussed that our 3D simulation is very computationally expensive
and that it would require roughly 21.5× 106 core-hours to continue the simulation until
the onset of core-collapse. This is rather expensive and substantial improvements of
our 3D setup would be very useful, if we want to cover a longer period of time with
our simulations. For this purpose we are first going to analyze, which parts of the code
consumed the most computing time in this 3D run.
With the current 3D setup around 80 % of the total computing time is spent on

solving the system of hydrodynamic equations, which consists mainly of the solution
of the linear system of equations for the implicit solver. Since this is by far the largest
fraction of the computing time, we are going to take a closer look at the details of the
hydrodynamics after analyzing the contributions of the remaining components of the
code.

In Sec. 5.3.3 we mentioned that the nuclear network consumes roughly 50 % to 60 %, if
we evaluate the network in every hydrodynamical time step. This means that evaluating
the network in every time step would severely limit the time frame that we could cover
with our simulation. However, as we showed in Sec. 5.3.3, it is not necessary to evaluate
the network in every hydrodynamical time step. In this 3D run, we evaluated the nuclear
network only every 35 hydrodynamical time steps, which reduces the required computing
time for the network significantly.

In the 3D setup from Sec. 5.4 the network with the reduced frequency of evaluations
consumes only around 2 % of the total computing time. In principle this means that
further optimization of the nuclear network is not necessary at the moment. However,
improving the performance of the network would allow us to evaluate the network more
frequently. Therefore, improving the network performance is not our main focus for now,
but it might be worthwhile after the issues with the hydrodynamics have been addressed.
A particular problem of the nuclear network is the load imbalance in parallelized code,

86



5.4 Modeling of Si burning in 3D

since more steps in the iterative solver are required in regions where the network is
more active. However, those regions are typically on the same radius, which means a
traditional domain decomposition on a Cartesian grid is not very effective in this case.
This decreases the overall performance of the network, because other domains have to
wait until the network evaluations in the most expensive domain are finished.

The standard Poisson gravity solver, which was used for this 3D run, consumed around
0.2 % of the total computing time. Therefore, we conclude that the computing time for
the gravity solver is almost completely negligible for this setup and further performance
optimization of the Poisson solver is not necessary.

We do not know, where the remaining 18 % of the computing time is consumed, since
we only tracked the contributions of the components listed above. Other noteworthy
contributions could be from the preconditioner of the iterative solver or data input and
output (e.g. writing output and restart files). However, since all of this together only
contributes less than 18 % to the overall computing time, it is not relevant for us right
now.

It should be noted that the timings for the components listed above are not completely
accurate, because the timing was only done for the processor with rank 0. Due to
load imbalance it is possible that the corresponding routine is still carried out on other
processors after the execution of the routine has concluded on the processor with rank
0. Therefore, the contributions of the above components to the overall computing time
might actually be slightly larger than what we have measured here.
After analyzing the contributions of each component to the overall computing time,

we have now established that most of the computing time in our 3D run is consumed
by the iterative solution of the hydrodynamic equations. In the following, we will give
several suggestions on how to reduce the contribution of the hydrodynamics to the
overall computing time.
Since we start our 3D simulation with zero velocity we are using the CFLug time

step. This is a good choice at the start of the simulation, because the CFLu criterion is
not suitable for simulations with zero velocities (see Sec. 4.1.2). However, in principle
it would be possible to switch to the less restrictive CFLu criterion after convection
has fully developed. For our current 3D setup the CFLu criterion would result in a
hydrodynamic time step of ∆tu = 0.026 s. Under the assumption that the contribution
of each component to the overall computing time does not change, we could reach the
onset of core-collapse with only 9.79× 106 core-hours. Obviously this is only a rough
estimate, since the contributions of each component to the overall time would change, if
we reduce the time step.

Another reason why the solution of the hydrodynamics equation is currently so
expensive in our 3D simulation is the large number of passive scalars. For each of those
passive scalars another system of equations has to be solved in a subsequent step. For a
small number of passive scalars this is almost negligible, however, in our 3D setup we
have 21 passive scalars for the species that are used in the nuclear network. Some of
those species such as 1H, 3He or 14N are at around 10−10 during the whole course of the
simulation. We could simply omit those species from our passive scalars and set them
to a low value during the calls to the nuclear network.
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In addition to that, it could be worthwhile to look into the settings of the iterative
solver and the time integration. For our 3D setup we have used ESDIRK23 with a
BiCGSTAB(5) iterative solver during the Newton-Raphson method. This configuration
was optimized for the 2D simulations, but a different setting might be more appropriate
for the 3D simulation due to the larger number of grid cells. In particular it might be
worthwhile to look into multigrid solvers available in SLH, since they perform a lot
better for a large number of grid cells.

Recently a faster reconstruction for EoS variables has been implemented into the SLH
code, which has been shown to improve the performance by a factor of four in an explicit
2D pure hydro test setup. Unfortunately this functionality was not yet fully working
for our 3D setup due to some bugs, which have been fixed in the meantime. Therefore,
this feature could be used in future 3D runs to further increase the performance of the
hydrodynamic part in our simulations.

With the suggestions above it should be possible to substantially improve the perfor-
mance of our 3D simulations. This would allow us to cover a longer period of silicon
burning with our simulations and possibly we could even reach the onset of core-collapse
starting from our initial model, which is around 1000 s away from the collapse. It
might also be possible to increase the resolution once again to 5123 so that we have the
same resolution as in 2D. We conclude that with some modifications to increase the
performance our 3D setup looks very promising. Ideally we would want to run a large
number of 3D simulations for stellar evolution models with different mass, however, this
requires major improvements in the performance of our modeling approach.
In addition to those improvements for the hydrodynamic part of the simulation, it

might also be worthwhile to look into improvements for the nuclear network part. A
QSE-reduced nuclear network based on Hix et al. (2007) might be a better choice for
the simulations presented here than the effective rate α-chain network, which was used
in our simulations. However, implementing such a QSE-reduced network into SLH
would require considerable effort. Moreover, this would require that the stellar evolution
calculations are rerun with this network to ensure that the composition of the stellar
evolution model is consistent with our network. Therefore, we conclude that this is a
more long-term project after the issues with the hydrodynamic part of the simulation
have been addressed.
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The two main goals of this thesis were the implementation of a gravity solver on
curvilinear grids into the hydrodynamics code SLH and the simulation of silicon burning
in 2D and 3D with SLH. In the following, we give a short recap to which degree those
two goals have been achieved and suggestions for future improvements and applications.

6.1 Implementation of the gravity solvers

During the course of this thesis several gravity solvers have been implemented into SLH
and thoroughly tested. The most important results of the gravity solver benchmarking
in Sec. 5.1 are summarized here.
The implementation of the standard Poisson solver in Cartesian coordinates works

very well (see Sec. 5.1.1). This comes as no surprise, since the standard Poisson solver
is a well established numerical method. As such, the method itself is well understood
and thoroughly tested. In this thesis, we merely verified that our implementation of the
Poisson solver in Cartesian coordinates fulfills those high expectations. In addition to
that, it also served as a reference for the quality and performance of the other numerical
methods in this thesis. This gravity solver was also successfully used in a realistic 3D
setup during our simulations of silicon burning (see Sec. 5.4). We conclude that our
implementation is robust and suitable for physical applications on Cartesian grids in 3D.

However, implementing a gravity solver that also works on arbitrary curvilinear grids
is very challenging. In Sec. 5.1.2 we have shown that this is mainly due to numerical
artifacts that manifest itself in the case of discontinuous coordinate transformations
during the evaluation of the gradient of the gravitational potential with finite differences.
This problem is especially pronounced in the case of cubed sphere grids due to abrupt
changes in the derivatives of the metric terms. We already identified this potential
problem in our derivation of the finite differences on curvilinear grids in Sec. 4.3.3,
however, we did not expect that it would be such a huge issue.
This problem with the metric terms also persists for our newly developed mixed

method Poisson solver on curvilinear grids (Sec. 5.1.3), since it is based on the same
discretization of the finite differences. Our mixed method Poisson solver still works
reasonably well in the case of smoothly varying metric terms, e.g. on sinusoidal grids or
spherical grids. This proves that our implementation works in principle, as long as the
changes in the metric terms are not too abrupt. However, it is not suitable for grids
with strong discontinuities in the coordinate transformation, such as the cubed sphere
grid. It should also be noted that the periodic boundary conditions for the spherical
grid are not yet implemented, which leads to a periodic pattern in the relative error
of the gravitational acceleration originating from the periodic boundary. If this issue

89



6 Conclusions and Outlook

is resolved it might be possible to use the mixed method Poisson solver for physical
applications on spherical grids. However, this requires more testing of the gravity solver
with a realistic physical setup.

To avoid these problems with discontinuous metric terms it might be better to use a
gravity solver that does not make explicit use of the finite differences. A cheap gravity
solver that works reasonably well regardless of metric terms is a monopole gravity
solver (see Sec. 5.1.4), however, it assumes that the gravitational potential is spherically
symmetric. This should be fulfilled to a reasonable approximation for most stellar
astrophysics applications and more sophisticated gravity solvers are only necessary in
the case of large deviations from spherical symmetry. Therefore, this implementation
of the monopole solver is in principle suitable for physical applications on arbitrary
curvilinear grids as long as the deviations from spherical symmetry are not too large.
However, previous simulations of silicon burning (Arnett and Meakin, 2011) and oxygen
burning (Müller et al., 2016) suggest that substantial asymmetries develop during late
nuclear burning stages. Consequently, the monopole gravity solver might not be accurate
enough in this particular case.

Other alternatives that do not explicitly use the discretization of the finite differences
are for example higher-order multipole gravity solvers or FFT gravity solvers. The
former also considers gravitational quadrupole moments during the expansion of the
gravitational potential into spherical harmonics in Eq. (2.28). The latter could be
implemented by first mapping to a Cartesian grid and then using a standard FFT
gravity solver in Cartesian coordinates. This approach was already used successfully by
Schrauth (2015) for the implementation of a gravity solver into the hydrodynamics code
LEAFS. One of those two alternatives could be implemented into SLH during a future
project if necessary.
Scaling and performance tests for some of the newly implemented gravity solvers

were performed in Sec. 5.1.5. One important result is that a good initial guess for
the gravitational acceleration and the gravitational potential substantially reduces the
number of iterations for both the mixed method Poisson solver on curvilinear grids and
for the standard Poisson solver on Cartesian grids. Usually it is enough to simply use
the solution from the previous time step as initial guess for the next time step. At the
start of the simulation the solution from the monopole solver can be used as initial
guess. Another noteworthy result of the scaling tests is that our implementations of the
mixed method Poisson solver and the monopole solver scale very well up to 24 racks (i.e.
393 216 cores) on JUQUEEN, which means that they are also suitable for large scale
simulations on massively parallel systems.

6.2 Simulations of silicon burning in 2D and 3D

The second part of the thesis focused on the hydrodynamic simulation of silicon burning
in 2D and 3D. For this purpose a model of the 1D stellar evolution code MESA was
used as initial model for our hydrodynamic simulations with SLH. The stellar evolution
model that we use is roughly 1000 s away from the onset of core collapse and the inlist
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for this MESA model was provided by Couch et al. (2015).
During the mapping between the 1D stellar evolution model and the 2D and 3D SLH

models it is particularly important that the models are still in hydrostatic equilibrium
after the mapping process. Otherwise unphysical readjustments of the initial profiles
may occur right after the mapping. For the hydrostatic integration of our profiles we
adopted the integration procedure described in Zingale et al. (2002). The quality of
the resulting hydrostatic equilibrium after the mapping to the SLH grid is discussed in
Sec. 5.2.1 and was found to be satisfying.
Another crucial ingredient for our modeling is the effective rate α-chain reaction

network that was also used for the stellar evolution calculations. This reaction network
was reimplemented into SLH from the open source hydrodynamics codes CASTRO and
MAESTRO, which uses a slightly different implementation of the reaction network than
the stellar evolution code MESA. This leads to slight, but still acceptable discrepancies
in the energy generation and neutronization rates of the network due to differences in
the reaction rates. A detailed analysis and discussion of the discrepancies in the reaction
network is given in Sec. 5.2.2.
After successful mapping from the stellar evolution code to our hydrodynamic code,

we first performed 2D simulations to confirm that our setup is working correctly. For
this purpose, we verified that the convective properties of our 2D model are in good
agreement with predictions of the Brunt-Väisälä frequency based on mixing-length theory
(see Sec. 5.3.1). Afterwards, we identified the hydrostatic burning regions in our 2D
model based on temperatures and characteristic isotope abundances in Sec. 5.3.2. This
allowed us to further restrict the simulated domain in order to improve the resolution
in the silicon burning region. In addition to that, we studied the impact of reducing
the frequency of nuclear network evaluations with this setup to improve the overall
performance of the simulation. We found that the model with a reduced frequency
of network evaluations behaves very similar to the model that evaluates the network
in every hydrodynamic time step (see Sec. 5.3.3). Reducing the frequency of network
evaluations is especially useful for our 3D simulation, since the nuclear network would
otherwise consume a large fraction of the overall computing time. The properties of the
nuclear network in our 2D simulations are further analyzed in Sec. 5.3.4.
However, the main deficit of our 2D modeling approach is that none of our 2D

models contract as it would be expected from the stellar evolution calculations. This
is mainly due to inconsistent treatment of the geometry in 2D. Those issues with our
2D modeling approach could be addressed by introducing a 2.5D. For this purpose it is
assumed that the simulated domain represents a slice in the rz plane and the model is
rotationally symmetric around the z-axis, which leads to a consistent spherical geometry
in 2D. Further details of this geometrical setup are also discussed in Sec. 5.4.3. The
implementation of this feature into SLH would require corrections for the flux functions,
which are not yet included in SLH. With this modeling approach it might be possible to
accurately predict the contraction of our models in 2D, which could be useful to identify
suitable setups for 3D simulations.
In addition to that, we also performed one 3D simulation of silicon burning on

JUQUEEN, which, to our knowledge, is the first model simulated in full 4π volume. A
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first comparison of the convective features between our 2D models and this 3D model is
shown in Sec. 5.4.1. As expected the turbulent energy cascade is artificially inverted in the
2D case. This inverted energy cascade in 2D transfers energy to larger scales and makes
the 2D models more prone to explosions in the subsequent modeling of core-collapse
supernovae (see Sec. 3.2.1). As mentioned before our 3D model successfully contracts
on a similar time scale as predicted by the stellar evolution model (see Sec. 5.4.2). This
confirms that there is something wrong with our modeling approach in 2D.

However, as discussed in Sec. 5.4 our 3D model consumes a large amount of computing
time, which currently makes it unfeasible to run many different 3D models. Our
current 3D model consumed 3.9× 106 core-hours and only covers 154.41 s of silicon
burning, i.e. only a fraction of the 1000 s from the initial model to the onset of core
collapse. Suggestions for future improvements to speed up our modeling in 3D are
given in Sec. 5.4.4. With those improvements a considerable reduction of the required
computational resources is expected. This would enable us to cover a longer period of
silicon burning and possibly even reach the onset of core collapse with our hydrodynamic
simulations within a reasonable amount of computing time. Ideally it would be possible
to do several 3D simulations with different initial models, but this is a more long-term
goal and requires substantial improvements in our modeling. The recent publication of
Collins et al. (2018) could be used as a guideline to identify promising silicon burning
models.
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