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Abstract

Background: Chromatin-immunoprecipitation followed by sequencing (ChIP-seq) is the method of choice for
mapping genome-wide binding of chromatin-associated factors. However, broadly applicable methods for
between-sample comparisons are lacking.

Results: Here, we introduce SNP-ChIP, a method that leverages small-scale intra-species polymorphisms, mainly SNPs,
for quantitative spike-in normalization of ChiP-seq results. Sourcing spike-in material from the same species ensures
antibody cross-reactivity and physiological coherence, thereby eliminating two central limitations of traditional spike-in
approaches. We show that SNP-ChIP is robust to changes in sequencing depth and spike-in proportions, and reliably
identifies changes in overall protein levels, irrespective of changes in binding distribution. Application of SNP-ChIP to

modification, Meiosis, S. cerevisiae

test cases from budding yeast meiosis allowed discovery of novel regulators of the chromosomal protein Red1 and
quantitative analysis of the DNA-damage associated histone modification y-H2AX.

Conclusion: SNP-ChIP is fully compatible with the intra-species diversity of humans and most model organisms and
thus offers a general method for normalizing ChIP-seq results.
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Background

Chromatin immunoprecipitation followed by DNA sequen-
cing (ChIP-seq) has emerged as the method of choice for
mapping the genome-wide distribution of proteins and
protein modifications and has led to important discov-
eries in both basic chromatin biology and disease states
[1, 2]. A core result of ChIP-seq experiments is the gen-
eration of genome-wide target signal tracks, which are
obtained from read pileups, typically normalized against
a mock, non-immunoprecipitated control sample (input
sample). Signal tracks are used for identification of
regions with elevated numbers of mapped reads (peaks)
as well as other downstream analyses [3]. However, be-
cause of the necessary internal normalization procedures,
signal tracks can only be used for comparisons between
samples if a method for inter-sample normalization is
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available [3]. This is a crucial, often overlooked, caveat of
ChIP-seq, as well as other genome-wide biochemical ana-
lysis methods relying on next-generation sequencing [4].
For sparsely bound proteins, such as transcription factors,
inter-sample normalization can often be achieved using
statistical methods [2] or ChIP followed by real-time
quantitative PCR (ChIP-qPCR) [5]. These methods, how-
ever, either assume constant global signal or a constant sig-
nal at selected genes as basis for normalization, which is
difficult to verify, in particular for more broadly distributed
factors. The solution to overcome this limitation is the
addition of a “spike-in” reference sample [2, 6]. The spike-
in procedure consists of adding a constant amount of
exogenous material to all tested samples, ideally prior to
any critical steps in the experimental protocol. Provided
that the spike-in material contains a target that is bound by
the antibody as efficiently as the study target and that the
resulting sequencing reads can be distinguished from the
test sample, the number of spike-in reads should be the
same across all tested samples. The spike-in thus functions
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as an internal control against which to normalize the ChIP-
seq results [6]. Spike-ins are well established for RNA-seq
analyses where use of RNA from a different species allows
simple sequence-based distinction between test sample and
spike-in [7]. The additional requirement for cross-reactivity
of the antibody in ChIP-seq experiments, however, effect-
ively restricts the applicability of inter-species spike-ins to a
limited set of highly conserved proteins. For example, one
previous work targeted subunits of RNA polymerases II
and III in mouse chromatin and spiked with human chro-
matin [8]. To ensure cross-reactivity, both antibodies were
raised against peptides that are 100% conserved between
mouse and human. Another study successfully measured
global changes in post-translational demethylation of lysine
79 of histone H3 in human cells, using a Drosophila mela-
nogaster cell spike-in [9].

Ways to broaden the applicability of ChIP spike-ins
include either tagging proteins in the test and spike-in
samples with a common epitope [10], or using a second,
spike-in specific antibody against a natural [11] or a syn-
thetic target [12]. These strategies, however, come with
their own specific drawbacks. The use of protein tagging
adds the potential for prohibitive disruption of protein
function and is incompatible with the analysis of protein
modifications. The use of a second, spike-in specific anti-
body, on the other hand, requires labor-intensive technical
validation of the compatibility of the second antibody and
no longer controls for biases in the immunoprecipitation
step between samples.

Here, we show that these issues can largely be overcome
by using spike-in material from the same species. This ap-
proach, which we name SNP-ChIP, enables reproducible
semi-quantitative measurement of global protein levels
and also works for protein modifications and fast evolv-
ing proteins.

Results

Experimental rationale of SNP-ChIP

The basic premise of SNP-ChIP is that cells from the
same species can serve as spike-in material provided
they harbor sufficient genetic diversity, primarily in the
form of single-nucleotide polymorphisms (SNPs). The
signal at each polymorphism provides an independent
measure of test-sample/spike-in ratio that together allows
calculation of a normalization factor and appropriate scal-
ing of ChIP-seq results (Fig. 1a). If there is sufficient gen-
etic diversity to allow a large fraction of sequencing reads
to be assigned to the genomes of origin, SNP-ChIP add-
itionally allows the generation of genome-wide target dis-
tribution profiles. Importantly, because SNP-ChIP uses
the same species as the source of the spike-in material, it
will work with virtually any target in the organism’s prote-
ome, including post-translational modifications, provided
a ChIP-grade antibody is available.
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SNP-ChIP of a rapidly evolving chromosomal protein

To test the utility of intra-species spike-ins, we turned
to chromatin analyses in yeast. We specifically focused
on chromosomes in meiosis because this process involves
many broadly distributed chromosomal proteins and post-
translational modifications. One typical example is the
axial-element protein Redl, which plays important roles
in meiotic recombination. Redl is broadly bound along
chromosomes [13—-15] but, like other meiotic factors, its
sequence has diverged even in closely related species [16].
Furthermore, like many proteins, Redl cannot easily be
tagged without disrupting protein function [15, 17]. These
attributes mean Red1 is not amenable to standard spike-in
approaches, making it a particularly suitable target for
SNP-ChIP. Moreover, mutations that change the overall
levels and chromosomal distribution of Red1 are available
[15, 18, 19], providing benchmarks for evaluating the effi-
cacy of SNP-ChIP.

SNP-ChIP of Red1 was performed using the SK1 genetic
background [20] as test strain and a meiosis-optimized vari-
ant of the widely used S288c reference strain as spike-in
[21, 22]. For both genetic backgrounds, high-quality end-to
-end genome assemblies are available [23]. These assem-
blies differ by about 76,000 SNPs, spaced at an overall
median distance of 70 bp (Additional file 1: Figure Sla)
consistently across all chromosomes (Additional file 1:
Figure S1b), which constitutes enough variation to allow
unambiguous assignment of a large proportion of sequen-
cing reads. To perform SNP-ChID, test cells (SK1) were
mixed with a constant fraction of meiotic spike-in cells
(S288c) before subjecting the mixtures to a standard ChIP-
seq protocol. The generated reads were aligned to a hybrid
genome built by concatenating genome assemblies of the
test and spike-in genomes. Reads were aligned with perfect
match conditions, excluding any reads aligning to more
than one location. Consequently, any reads overlapping at
least one SNP were assigned to a specific genome and gen-
omic location, while reads not overlapping a polymorphism
mapped to both genomes and were thus discarded.

We initially investigated the ability of SNP-ChIP to de-
tect changes in chromatin association resulting from re-
duced protein production. The red1,.s allele is caused by
a mutation in the promoter of REDI that leads to a reduc-
tion of Red1 levels to about 20-25% of wild type and a
near complete loss of cytologically observable axial ele-
ments [19]. Importantly, traditional ChIP-seq analysis was
unable to detect this change in protein abundance and
produced indistinguishable Redl profiles between wild
type and redl,.4s mutants [19]. By contrast, when we ap-
plied SNP-ChIP to compare these two strains, the reduced
Red1 binding levels were readily apparent (Fig. 1b). Calcu-
lation of a spike-in normalization factor based on the rela-
tive abundance of total sample and spike-in reads yielded
a Red1 level in the redl,.,s mutant of 28.8 +5.1% (S.D.)
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Fig. 1 SNP-ChIP adds the ability to measure semi-quantitative amounts of target protein to traditional ChIP-seq. a Main steps of SNP-ChIP
exemplified for two hypothetical conditions. b Target protein Red1 levels produced by SNP-ChIP (equivalent to the wild type-normalized spike-in
normalization factor), compared to previously published levels measured by western blot (mean +/— S.EM) [19]. Points represent individual SNP-
ChiP-derived replicate values and bars represent average value. ¢ Fragment pileup produced using MACS2 with SPMR (fragment pileup per
million reads) sequencing depth normalization of an example chromosome and chromosomal region before (top panel) and after (bottom panel)
spike-in normalization. d Target protein Red1 levels for Red1 dosage strain series compared to previously published levels measured by western
blot (mean +/— SEM) [19], as in (b)

of the wild type, closely matching the reported change in
Red1l levels obtained from western analysis [19]. This
normalization factor allowed appropriate signal scaling of
ChIP-seq profiles for the two conditions (Fig. 1c).
SNP-ChIP was further validated by applying it to a Red1
dosage series, which consists of different combinations of
REDI alleles (REDI, redl,..s, red1A) yielding a stepwise
decrease in Red1 levels (Fig. 1d) [19]. SNP-ChIP measure-
ments of Redl chromatin association in this series again
closely matched previously published protein levels
(Fig. 1d). In fact, SNP-ChIP measurements appeared
more accurate than quantitative western analysis, which

failed to resolve the expected reduction in protein levels
between RED1/redl,.4s and RED1/redIA cells [19]. Taken
together, these data show that SNP-ChIP accurately mea-
sures reductions in global Red1 binding over a wide range
of target protein levels.

SNP-ChIP is robust to variation in sequencing depth and
fraction of spike-in cells

We used several approaches to probe the technical ro-
bustness of SNP-ChIP. High-throughput sequencing
technologies produce variable numbers of reads per sam-
ple, depending on factors like sequencing instrument and
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sample mutiplexing. To model the effect of lower sequen-
cing depth on the reproducibility of SNP-ChIP analysis, we
subsampled the reads of the immunoprecipitated and input
samples from wild type and red1,..s test conditions to dif-
ferent depths (ranging from 1 to 10 million reads). Plotting
subsample size against number of aligned reads showed a
perfectly linear correlation for all samples (Fig. 2a), indicat-
ing that a wide range of sequencing depths will yield robust
quantitative information by SNP-ChIP. For these particular
test conditions, the fraction of reads mapping to a specific
genome, and thus kept in the analysis, was around 20% for
the wild type and 30% for the redi,.s. We computed the
spike-in normalization factor using all 10,000 possible
combinations of read subsamples (10 read subsamples
ranging from 1 to 10 million reads for each of four
sequenced samples: wild type ChIP and input samples
plus redl,.4s ChIP and input samples) and found a
very tight distribution of results (0.2848 + 0.0015, S.D,;
Fig. 2b). This establishes that sequencing depth does
not need to be balanced between immunoprecipitated
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and input samples, or between different conditions, to
produce accurate proportions of reads mapping to the
test and the spike-in genomes.

Another condition that may affect the results of SNP-
ChIP is the amount of spike-in material added to the sam-
ples. Spike-in normalization methods assume a linear rela-
tionship between the amount of spike-in material and the
resulting proportion of spike-in reads in the immunopreci-
pitated sample. This condition is essential for the results to
be independent of the amount of spike-in material. To
verify this assumption, we prepared samples with spike-in
cell proportions ranging from 5 to 30%. As test samples we
used wild type and a strain with a single red1-pG162A
promoter mutation that phenocopies the redl, s allele.
While redl,..s contains an introgressed genomic region
with dozens of SNPs surrounding the REDI locus, the
red1-pG162A mutant was engineered to carry only the spe-
cific mutation responsible for the reduction in Red1 levels
[19]. As shown in Fig. 2c, the proportion of spike-in reads
in the input samples (reflecting the amount of spike-in
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material added to the test sample) correlates linearly with
the resulting proportion of spike-in reads in the immuno-
precipitated sample, for both the wild type and the redi1--
pG162A sample. Moreover, the redl-pGI62A sample
yielded a very similar Redl amount to the redl,..s allele
(28.8% versus 28.1% of wild type, respectively, when using
20% of spike-in cells), further supporting the robustness of
the method. Low spike-in cell percentages (5 and 10%) re-
sulted in somewhat increased estimates of the Redl
amount (Fig. 2d), likely due to increased noise. These re-
sults suggest that spike-in material proportions of 15% and
higher are appropriate for SNP-ChIP. All other experiments
shown here used a spike-in proportion of 20%.

Finally, we investigated the impact of the calculation
method to compute the spike-in normalization factor.
The SNP-ChIP normalization factor calculated in the
examples shown so far relies on total read counts aligned
to the test and the spike-in genomes. An alternative
method is to compute the scalar mean value of the aligned
read pileup score. We tested the utility of this alternative
by calculating the pileup score at (1) all genomic positions,
(2) at SNP positions only, or (3) at SNP positions falling
within called signal peaks (see Methods section). The last
approach will effectively exclude regions expected to hold
only background signal, along with any false negative
regions. We found very similar values and high concord-
ance between all four methods in all cases (Additional
file 2: Figure S2a), although read pileups consistently
produce slightly lower values than the read count method
(Additional file 2: Figure S2b). Overall, however, the differ-
ence is relatively small and we believe the read count-based
method, which is computationally much simpler, represents
an appropriate approximation, at least for broadly distrib-
uted proteins.

Binding profiles obtained directly from SNP-ChIP
experiments

The primary utility of SNP-ChIP is the generation of a
normalization factor that allows scaling of profiles ob-
tained by traditional ChIP-seq experiments run under
the same conditions (Fig. 1c). Given the broad distribu-
tion of SNPs across the two analyzed genomes, we ex-
plored the possibility that SNP-ChIP could also directly
yield informative binding profiles, even though this ap-
plication is clearly limited by the available SNP density.
Comparing a sample sequenced with spike-in to data ob-
tained using a replicate, non-spiked sample [15] shows
that signal tracks of spiked samples closely mirror those
of the non-spiked control, although some signal gaps
can be seen in the spiked sample (Additional file 3:
Figure S3a; examples indicated by the red arrows). Thus,
as expected, the use of same-species spike-in causes
some loss of information. This issue appears negligible
for broad peaks, as called peaks show a very close
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agreement (Additional file 3: Figure S3b). Narrow peaks
show more disagreement, with only about one third of
the called peaks overlapping between the two samples.
These data indicate that SNP-ChIP can also provide dir-
ect information about protein distribution, in particular
for larger-scale binding patterns.

Global Red1 levels are reduced in cohesin and hop71A
mutants

We sought to apply SNP-ChIP to investigate mutant
situations that cause a broad protein redistribution.
Redistribution is a challenge for traditional quantifica-
tion methods, such as ChIP-qPCR, because identifying
regions that remain unbound is non-trivial. In the absence
of conserved cohesin subunit Rec8, Red1 distribution along
the genome changes dramatically, displaying large regions
of depletion alternating with dense clusters of binding
[15, 18]. Whether overall binding levels of Red1 change
in rec8A mutants, however, remains unclear. We employed
SNP-ChIP to address this question and found a pro-
nounced decrease of overall Redl binding levels (Fig. 3a).
Direct comparison of Redl occupancy along two example
chromosomes illustrates both the dramatic redistribution
and the overall decrease in Red1 binding compared to wild
type (Fig. 3b). Thus, Rec8-cohesin is essential for the full
chromosomal enrichment of Red1.

Hopl is another important protein of the yeast axial
element [24] that physically interacts with Red1 [17]. Axial-
element proteins are recruited in higher amounts to small
chromosomes, but in the absence of Hopl, Redl binding
becomes less dependent on chromosome size [15]. Previous
work using in silico scaling [25], suggested that this
reduction resulted from a selective increase in Redl
recruitment to large chromosomes [15]. That scaling
approach, however, requires the definition of genomic
regions that are unbound, which is difficult to ascertain
with broadly distributed chromosomal proteins like Redl.
Therefore, we reinvestigated this question by performing
SNP-ChIP of Redl in a hopIA mutant. SNP-ChIP repro-
duced the previously found weakening of chromosome-size
bias. However, the spike-in normalization factor showed an
overall decrease of Redl recruitment to 71.9 + 4.2% of the
wild type Redl amount (Fig. 3¢, d). This decrease is stron-
ger on small chromosomes (Fig. 3e). We note that mild loss
of Redl binding does not generally result in a loss of
chromosome-size bias, because deletion of the histone
methyltransferases Setl and Dotl causes similar ~20% re-
ductions of overall Redl recruitment levels but does not
affect the distribution of Redl binding among chromo-
somes (Additional file 4: Figure S4). These data suggest that
loss of Hopl leads to a general reduction of Redl signal
across all chromosomes that particularly affects the three
smallest chromosomes.
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y-H2AX levels do not change in Red1 dosage strain series
To test if SNP-ChIP also allows quantitative analyses of
protein modifications, we targeted phosphorylation of his-
tone H2A on serine 129 (y-H2AX). This modification is
rapidly induced following the formation of DNA double-
strand breaks (DSBs) [26]. In mitotic yeast, the y-H2AX
modification spreads about 50 kb on either side of a DSB
[27, 28]. In addition, constitutive y-H2AX is found near
telomeres throughout the cell cycle [29]. To analyze the
distribution and DSB dependence of y-H2AX in meiosis,
we performed SNP-ChIP in a wild type strain, as well as
the Redl dosage series, which shows a mild (up to 30%)
reduction in DSB levels [19], and a spolI-Y135F mutant,
encoding a catalytically dead Spoll protein, which does
not form meiotic DSBs [30, 31].

Measuring y-H2AX levels in meiosis revealed no dif-
ference between wild type and any of the strains with
reduced Red1 levels, irrespective of calculation method
(Fig. 4a, b, c). The uniform signal along chromosomes
is consistent with the spreading of the y-H2AX mark
from all yeast DSB hotspots, which are distributed
throughout the whole genome, and likely explains why a
mild reduction in DSB levels does not lead to a noticeable
drop in global y-H2AX signal. The spo11-Y135F control, on
the other hand, displayed only about 25% of the wild type
y-H2AX levels. Signal was markedly enriched next to

telomeres, with the interstitial regions only showing weak
signals likely associated with gene expression [32]. These
data show that the constitutive telomere-associated
y-H2AX signal is also maintained in meiotic prophase.
Moreover, scaling of signal tracks indicates that
telomere-adjacent y-H2AX signal remains largely un-
changed in the spoll-Y135F mutant, consistent with the
fact that meiotic DSB formation is nearly undetectable in
these regions [33]. Together, these data show that
SNP-ChIP allows quantitative comparisons between
ChIP-seq experiments regardless of the antigen and thus
provides a versatile method for measuring global chromatin
associations without the need for epitope tags.

Discussion

Our data show that small-scale intra-species genetic poly-
morphisms can be leveraged for quantitative spike-in
normalization of ChIP-seq results. Sourcing spike-in
material from the same species largely preserves anti-
body cross-reactivity and thus will work with virtually
any target in an organism’s proteome without the need
for epitope tagging. It also ensures complete physio-
logical coherence between the test and the spike-in
cells, thereby avoiding biases at experimental steps such
as chromatin fixation or cell lysis.
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The primary output of SNP-ChIP is a normalization
factor that can be used to appropriately scale ChIP-seq
profiles. Because the normalization factor relies on
combined measurements of thousands of SNPs it is
highly robust to variations in sequencing depth or changes
in protein distribution between samples. In multiplexed
libraries, SNP-ChIP can therefore be performed with
relatively low sequencing coverage alongside traditional
ChIP-seq experiments to yield the necessary scaling
information.

SNP-ChIP can also provide substantial positional in-
formation, although this application is necessarily lim-
ited by the availability of high-confidence SNPs. Our
experiments using yeast strains with ~ 0.7% sequence di-
vergence and 100-nt long reads showed that the method
generated sufficient resolution to recover genomic re-
gions of Redl enrichment. Moreover, preliminary experi-
ments indicate that using longer reads further minimizes
gaps (data not shown). Thus, SNP-ChIP can provide
high-quality pilot information for subsequent ChIP-seq
analyses at higher read depth.

The reliance on thousands of SNPs also means that
SNP-ChIP will be particularly powerful for the quantitative
analysis of broadly distributed proteins and chromatin
marks. Applying SNP-ChIP to proteins that interact with
chromatin in more specific, highly localized positions (e.g.
transcription factors), will likely result in a disproportionate
number of SNPs exhibiting background signal that will
affect the calculation of the normalization factor. Indeed,
preliminary experiments testing the budding yeast tran-
scription factor Gal4 suggested that SNP-ChIP is not ready
to handle such targets. While SNP-ChIP generated reliable
signal track data, the normalization factor computation
method does not work as-is and failed to detect differences
in overall Gal4 binding (data not shown). SNP-ChIP

would thus require further development to be usable
with sparsely binding proteins. We note, however, that
these are inherently more tractable targets for ChIP-qPCR,
thus reducing the need for a spike-in method.

Conclusion

We conclude that SNP-ChIP provides a versatile method
for normalizing the ChIP-seq results of broadly distributed
chromosomal proteins and post-translational modifications.
SNP-ChIP is fully compatible with the intra-species genetic
diversity of humans and most model organisms [34] and
should be applicable to any experimental system for which
a reliable collection of high-quality SNPs is available. In
preliminary in silico experiments testing decreasing num-
bers of SNPs, the method generated stable normalization
factors with as low as 0.01% sequence divergence (equiva-
lent to about 1200 SNPs in the yeast genome; data not
shown). Thus, we expect that SNP-ChIP will allow semi-
quantitative mapping of a wide range of chromatin binding
factors and modifications that have so far stood beyond the
reach of quantitative ChIP-seq methods.

Best practice for SNP-ChIP

The chief prerequisite for successful SNP-ChIP normalization
is the availability of high-quality genome assemblies for
two different strains or cell lines of the same species, as
well as a ChIP-grade antibody against the ChIP target.
For optimal results, we recommend using a minimum
of 15% of spike-in material and at least 100-bp sequen-
cing read length. Using longer reads will increase the
proportion of assigned reads and minimize signal gaps.
In general, SNP-ChIP should be used alongside trad-
itional ChIP-seq experiments. This setup retains the
maximal spatial resolution provided by ChIP-seq while
providing the necessary scaling factor for quantitative
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comparisons between samples. Relatively shallow se-
quencing coverage of the SNP-ChIP sample is sufficient
for this purpose. In addition, SNP-ChIP also serves as a
stand-alone method for exploratory purposes that do
not require < 100 bp resolution.

Methods

Strains and meiotic time courses

All strains used are listed in Additional file 5: Table S1.
The test-sample strains were of the SK1 background.
The spike-in material used a meiosis-optimized S288c
strain that carries three SK1-derived SNPs, which improve
sporulation efficiency and meiotic synchrony of S288c
[22]. To further improve synchrony of the spike-in strain,
auxotrophic markers were restored using plasmid inser-
tions or PCR-based allele transfer. To induce meiosis, cells
were pregrown in YPD for 24h at room temperature,
followed by inoculation in BYTA media at O.D.g90 = 0.3
and growth for 16.5h at 30°C [35]. Cells were washed
twice with water and inoculated at O.D.¢p0=1.9 in 0.3%
potassium acetate (pH 7.0) to induce meiotic entry. Syn-
chronous entry was confirmed by taking hourly samples
for flow cytometry analysis of DNA content.

SNP-ChIP sample preparation

Samples were collected at 3h for SK1 strains or at 6 h
for the slower sporulating S288c spike-in sample. Cells
were fixed in 1% formaldehyde for 30 min at room
temperature and quenched by addition of glycine to a
final concentration of 125 mM. For the experiments
shown here, we fixed the spike-in cells in advance as a
batch and kept frozen aliquots at —80°C. However,
spike-in cells can also be prepared simultaneously with
the sample cells. The number of cells in each sample
was determined by counting on a hemocytometer. Un-
less indicated otherwise, cells from the test sample
(SK1) were mixed with cells from the spike-in sample
(5288c) at a ratio of 80%:20% before cell lysis and
ChIP.

Chromatin immunoprecipitation (ChIP) and Illlumina
sequencing

ChIP was performed as described previously [12]. Sam-
ples were immunoprecipitated with 2 ul anti-Red1 serum
(Lot#16440, kind gift of N. Hollingsworth) or 2 pl anti-
phospho-H2A-S129 antibody (Abcam #ab15083) per
sample. Library preparation was performed as described
[15]. Library quality was confirmed by Qubit HS assay
and 2200 Tape Station. 100-bp single-end sequencing
was performed on an Illumina NextSeq 500 instrument.

Read alignment
The generated reads were aligned to a hybrid genome
built by concatenating recently published high-quality
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genome assemblies of the test and spike-in reference
genomes (SK1 and S288c) [23]. Reads were aligned with
perfect match conditions and excluding any reads align-
ing to more than one location. Normalization of read
density was completed as described [12]. Where indicated,
peaks of enrichment were called using MACS-2.1.0. Plots
show an average of two replicates. To evaluate coverage
relative to standard ChIP-seq profiles, we compared SNP-
ChIP results to published datasets GSE69232 [15] and
GSE87060 [19].

Calculation of the spike-in normalization factor

SNP-ChIP is based on counts of all reads aligned to each
of the endogenous and the spike-in genomes in each
sample, computed from the alignment map files in BAM
format using SAMtools idxstats (version 1.3.1). Alterna-
tively, the method can use pileup scores, corresponding
to read coverage at each genomic position computed
from the alignment map files using BEDTools genome-
cov (version 2.25.0). In this approach, the total count of
reads aligned to a sample is replaced by the mean of the
genome-wide pileup scores. Three different versions of
the mean pileup score were used: computing the mean
of (1) the raw pileup scores; (2) the pileup scores at SNP
positions only; or (3) the pileup scores at SNP positions
falling within identified protein binding regions (signal
peaks called using MACS-2.1.0) only. Irrespective of the
approach, we define C,4 and Cg. as the calculated
values for the endogenous and the spike-in genomes, re-
spectively, in a given sequenced sample. Quotient Q is
defined as the ratio between the values:

Q = Cspike / Cendo

The non-immunoprecipitated, input sample’s Q value
(Quupur) provides a measure of the percentage of the
sample that is comprised of spike-in cells in the re-
spective test condition. This consists of the experimen-
tal percentage of spike-in material actually added to the
sample, corrected for any technical variation or impre-
cision. The ChIP sample’s Q value (Qcy;p) depends on
the amount of target protein present in that experimen-
tal condition. A normalization factor Nf can thus be ob-
tained for each condition as the ratio between the two
Q values:

Nf = Quypur / Qcmip

To obtain spike-in-normalized conditions, each condi-
tion is multiplied by the respective normalization factor
value Nf. The extent to which Qg differs from Qy,pu:
in each experimental condition is determined by the
amount of target protein and how much that differs
from the amount of target protein in the spike-in. Since
the latter is constant across all tested conditions, the
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result of the normalization is a semi-quantitative meas-
ure of the target protein amounts, yielding normalized
conditions that can be compared directly to each other.

Additional files
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using different input data types. (PDF 136 kb)
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(PDF 440 kb)
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