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Summary 

Tay-Sachs disease (TSD) is an autosomal-recessive genetic disorder which results in the 

dysfunction of the metabolic enzyme hexosaminidase A (HexA). It leads to severe lysosomal 

storage of acidic glycosphingolipid, namely ganglioside GM2, and early fatalities for humans 

with the infantile on-set form. Despite fifty years of research, to date there is no effective 

treatment beyond palliative care. It was found that mouse models of HexA deficiency display 

only moderate GM2 accumulation, which was connected with a late onset neuronal phenotype. 

Therefore neuraminidases were investigated as possible bypass enzymes for the degradation 

of GM2 and offer a new opportunity for therapeutic approaches in humans. However, to assess 

the extent of side effects for such a therapeutic bypass, the substrate specificity and 

ganglioside (GG) turnover has to be defined in detail. This work presents the development of 

an HILIC-based LC-MS2 method as well as mass spectrometry imaging (MSI) using 

DESI-(QqQ)MS2 and MALDI-TOF to monitor GG pattern changes in mouse brains. The 

HILIC-MS2 analysis of mouse brain tissue with neuraminidase 3 or 4 deficiency in the 

background of TSD as well as combined knockouts of GG synthesis enzymes revealed an 

overlapping but distinct substrate processing for the neuraminidases Neu3 and Neu4. MSI of 

the same tissue samples displayed similar patterns in spatial neural GM2 accumulation that 

suggest rather a broad distribution of these sialidases in mouse brain. Proposed 

neuroinflammation and demyelination in mouse brains of TSD led to a modulated HILIC-MS2 

method with which hexosylceramide isomer separation of GG precursor β-glucosylceramide   

(β-GlcCer) and prominent myelin sheath component β-galactosylceramide (β-GalCer) was 

achieved. Decreased levels of β-GalCer as a marker for demyelination in brains of TSD 

combined with neuraminidase deficiency could not be observed at the age of 6 month. 

Furthermore, proof-of-concept study and screening of various WT mouse tissues revealed the 

adaptability of this method. Even α-anomeric HexCers could be separated from mammalian 

β-anomers. In contrast to the mentioned β-HexCers, invariant natural killer T cells are activated 

most effectively when recognizing galactosylceramide with an α-glycosidic linkage appearing 

on the cell surface receptor CD1d of antigen presenting cells. One natural bacterial source of 

this compound in contact with our body is Bacteroides fragilis, a bacterial member of the human 

gut microbiome. This work highlights the detection and separation of α-GalCer(d17:0;h17:0) in 

B.fragilis and three other bacteria of the human gut microbiome β-HexCers. Very recent 

preliminary studies indicate the identification of an α-glycosidic GalCer in the mouse 

microbiome with the proposed structure of BdS-α-GalCer(d18:0;h16:0). 
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Zusammenfassung 

Die Tay-Sachs Krankheit (TSK) ist eine autosomal-recessive genetische Funktionsstörung, die 

in einer Dysfunktion des metabolischen Enzymes Hexosaminidase A (HexA) resultiert. TSK 

führt zu einer schweren lysosomalen Akkumulation des sauren Gykosphingolipids GM2 und 

zu einem Tod im Alter von 2-3 Jahren bei der Kindesform der Krankheit. Trotz fünfzig Jahren 

an Forschung gibt es bis heute keine erfolgreiche Behandlung neben palliativer Pflege. Jedoch 

wurde entdeckt, dass Maus Modelle mit HexA Insuffizienz nur eine moderate Akkumulation 

von GM2 aufweisen, zusammen mit einem spät auftretenden neuronalen Phänotyp. In der 

Folge wurden Neuraminidasen als mögliche Bypass-Enzyme des GM2 Abbaus untersucht und 

somit eine neue Chance für therapeutische Anwendung im Menschen   gefunden. Trotzdem 

besteht die Notwendigkeit mögliche Nebeneffekte für solch einen therapeutischen Bypass zu 

ergründen, indem man Substratspezifität und Gangliosid-Umsatz im Detail bestimmt. Diese 

Arbeit präsentiert die Entwicklung einer HILIC basierten LC-MS2 Methode wie auch 

massenspektrometrische Bildgebung (MSI) mit Hilfe von DESI-(QqQ)MS2 und MALDI-TOF 

um Veränderungen im GG Muster des Maus-Gehirn zu verfolgen. Die Analyse von Maushirn-

Gewebe mit einem Mangel an Neuraminidase 3 oder 4 im Hintergrund von TSK kombiniert mit 

knockouts von GG Synthese-Enzymen mittels HILIC-MS2 ließen eine überlappende aber 

leicht unterschiedliche Substrat-Verarbeitung für Neu3 und Neu4 erkennen. MSI desselben 

Mausgewebes zeigte ähnliche Verteilungsmuster von neuraler GM2 Akkumulation, die zudem 

eine breite Verteilung dieser Sialidasen im Maushirn zeigt. Suggerierte Neuroinflammation und 

Demyelinisierung in Gehirnen von TSK-Mäusen führte zu einer modifizierten HILIC-MS2 

Methode mit der Hesosylceramid-Isomere des GG Vorläufers β-Glukosylceramid und 

β-Galaktosylceramid (β-GalCer), welches als Myelinscheiden Bestandteil bekannt ist, getrennt 

werden können. Verringerte Mengen an β-GalCer als Marker für Demyelinisierung in Gehirnen 

von TSK-Mäusen im Alter von 6 Monaten kombiniert mit Neuraminidase Defekt konnten nicht 

bestätigt werden. Weiterhin wurde eine proof-of-concept Studie durchgeführt, wobei 

verschiedenste Wildtyp-Mausgewebe analysiert wurden um die Anwendbarkeit dieser 

Methode, auch für α-anomerische HexCer, zu demonstrieren. Im Gegensatz zu den bereits 

erwähnten β-HexCers, werden invariante natürliche Killer T Zellen am effektivsten aktiviert, 

wenn sie Galaktosylceramid mit eine α-glykosidischen Bindung am Zelloberflächen-Rezeptor 

CD1d von Antigen präsentierenden Zellen erkennen. Eine natürliche Quelle für dieses 

α-GalCer in Verbindung mit dem menschlichen Körper stellt das Bakterium Bacteroides fragilis 

dar, ein Mitglied des menschlichen Darm Mikrobioms. Diese Arbeit zeigt ebenso die Detektion 
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und Trennung der β-HexCers von α-GalCer(d17:0;h17:0) im B.fragilis und drei weiteren 

Bakterien des menschlichen Darm-Mikrobioms. Des Weiteren werden einleitende Studien zur 

Identifikation eines α-glykosidischen GalCer gezeigt, welches im Maus Mikrobiome detektiert 

wurde, und die berechnete Struktur von BdS-α-GalCer(d18:0;h16:0) aufweist.  
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1 Introduction 

The first aim of this work was to develop a LC-MS/MS method for the robust and reproducible 

analysis of gangliosides, acidic glycolipids, in mouse tissue. The method developed was used 

to screen mouse brain samples for pattern changes in the ganglioside metabolism when 

neuraminidase and/or ganglioside-synthesis enzymes are deleted in mouse strains with 

Tay-Sachs disease or GM2 gangliosidosis background.  The results were expected to 

conclude the degree to which ganglioside substrates were processed by neuraminidase 3 and 

4. Additionally, an imaging mass spectrometry (MSI) method based on desorption electrospray 

ionization (DESI), was set up for the tissue analysis of gangliosides. The results were 

compared with the commonly used MSI ionization technique Matrix-associated laser 

desorption/ionization (MALDI) to assess the benefit of DESI-MS/MS. Tissue sections of the 

above mentioned brain samples were screened for GM2 accumulation with a MALDI 

time-of-flight (TOF) instrument. Differences in local ganglioside distribution were monitored to 

combine these results with other detection techniques such as immunohistochemistry and in 

situ hybridization for neuraminidase. All of this to gain insight into the correlation between loss 

of neuraminidase activities and GM2 accumulation. 

The second aim of this work originated from the first. An LC-MS/MS method for the separation 

of hexosylceramide isoforms in the brain was needed to distinguish the precursor of neuronal 

gangliosides (glucosylceramide) and the abundant myelin-component galactosylceramide 

(cerebroside). Galactosylceramide and Glucosylceramide differ only in the stereochemistry of 

the hydroxyl group in 4-position of the sugar ring. Thus they cannot be separately detected by 

mass spectrometry (neither MS1 nor MS2) alone. Therefore a HILIC-MS2 based method for the 

separation of these diastereomers, including their corresponding α-anomers, was developed.  

As proof-of-concept, a wide range of different WT mouse tissues and various genetically 

modified mouse tissues were screened for the verification of the different hexosylceramide 

species as well as bacteria strains related to the human gut microbiome. Bacteroides fragilis, 

a member of the human gut microbiome, expresses an α-glycosidically linked 

galactosylceramide in contrast to the mammalian β-linked anomers. The α-anomeric 

galactosylceramide is of special interest for the field of immunology. It is so far the most 

competent ligand to stimulate invariant natural killer T cells (iNKT cells), when presented on 

CD1d of antigen presenting cells (APCs). Here, α-GalCer was proofed to differentiate from 

β-HexCers with the developed HILIC-MS2 method. Therefore, as in human gut microbiota, a 
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search for a corresponding component in the intestinal tract and gut microbiome of the model 

organism mouse was performed.  

1.1 Glycosphingolipids 

Glycosphingolipids (GSL) are glycosylated derivatives of sphingolipids with a core formed by 

ceramide. Ceramide is an amino alcohol composed of a fatty acid linked by an amide bond to 

a long chain base (sphingoid base), most commonly sphingosine (Figure 1 A). Thus, GSLs are 

amphipathic molecules consisting of a hydrophilic carbohydrate head group and a hydrophobic 

anchor 1. They are widely found on the outer leaflet of plasma membranes in eukaryotic cells, 

as well as in some prokaryotic organisms and viruses. Their specific functions in cellular 

processes are dictated by their structural diversity 2–9. In their simplest forms sphingosine, 

phytosphingosine (4-hydroxysphinganine) and dihydrosphingosine (sphinganine) serve as the 

backbone of ceramide combined with the fatty acid moiety. They differ in chain length, degree 

of saturation, hydroxylation and esterification, which leads to a huge molecular variation of 

ceramide anchors. This complexity is further enhanced by the combination of different 

carbohydrates such as glycan residues and neuraminic/sialic acid in their head group (Figure 

1 B and C). GSLs are divided broadly into two categories depending on their glucosylceramide 

(GlcCer; glucocerebroside) or galactosylceramide (GalCer; cerebroside) base for further 

synthesis. GlcCer based GSLs are further defined into different series depending on the 

structure, including (neo)lacto-, (iso)globo-, ganglio- and muco-series (Figure 2). 

1.1.1 Hexosylceramides 

Hexosylceramides (HexCer) consist of a ceramide backbone with a monosaccharide residue 

added as head group (Figure 1 B). In mammalians the most common forms of HexCer are 

glucosylceramides (GlcCer) and galactosylceramides (GalCer). Whereas GlcCer appears to 

be omnipresent in almost all cell types of the mammalian body, GalCer has mainly been 

restricted to the brain, especially myelin structures, and to the kidneys 10,11. The glycosidic 

linkage to ceramide is of the β configuration in mammalian lipids. Enzymes catalyzing the 

production of corresponding α-anomers in mammals have not been observed so far. However, 

recently it has been proposed that, at very low levels, α-GalCer is endogenously present 12. 

Nevertheless, other species such as the marine sponge, Agelas mauritianus, and bacteria 

such as Bacteroides fragilis, have been shown to produce α-GalCer 13,14. 
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Figure 1: Structure of ceramide, simple and complex glycosphingolipids (GSL). A) Ceramide displaying the typical 

composition of a long chain base, in this case sphingosine (blue; d18:1), and a fatty acyl chain (red; 18:0). B) β-

Glucosylceramide as the simplest GSL reflecting a ceramide with a glucose attached as head group (dark green). 

C) Ganglioside GM1a as one of the most prominent gangliosides present in the brain with a neutral tetrasaccharide 

added to a ceramide backbone and an additional sialic acid group (light green). 

1.1.2 Gangliosides 

In 1942 Ernst Klenk first discovered gangliosides (GG) in brain extracts from patients with 

amaurotic familial idiocy and Niemann-Pick disease. He labelled them after their predominant 

location in ganglion cells 15. The first correct chemical structure was described for the complex 

ganglioside GM1 (Figure 1 C), which is part of the a-series of neuronal GGs 16. The basic 

composition of GGs, ceramide-Glc-Gal-NeuNAc (GM3), expands with one or more varying 

hydrophilic oligosaccharides that are linked in 1-O-position to a hydrophobic ceramide anchor. 

Most of them contain at least one N-acetyl neuraminic acid in the head group. There are more 

than 60 different ganglioside structures present in almost all tissues and organs of vertebrates 

with cell type specific expression. Nevertheless GGs are highly enriched in neuronal 

membranes 1,17,18. In most tissues GG expression changes during development, for example 

as the brain develops, the expression of simple gangliosides (GM3, GD3) is down-regulated 

with parallel up-regulation of complex gangliosides such as GM1a, GD1a, GD1b and GT1b, 

representing the GG composition of mature neurons (Figure 2)19. Adjacent to the influence of 

the glycan properties on molecular interactions, structural properties play an important role as 

the long chain base of the ceramide anchor for brain GGs shifts from palmitic acid (d18:1) to 
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stearic acid (d20:1) during aging 20. Gangliosides, as part of the outer leaflet of the plasma 

membrane can participate in microdomains, serve as ligands of lectins and attune the activity 

of transmembrane proteins such as insulin receptor, leptin receptor or EGF receptor 21–24.  

 

 

Figure 2: Glycosphingolipid biosynthesis 4 with the focus on glucosylceramide (GlcCer) based synthesis of 

gangliosides (light yellow). 

 

1.2 Metabolism of Hexosylceramides and Gangliosides 

1.2.1 Biosynthesis of Hexosylceramide and Gangliosides 

De novo biosynthesis of glycosphingolipids is described according to the reviews of 

Jennemann and Gröne, and Sandhoff et al 4,5.  The first steps of biosynthesis are initiated in 

the cytosolic side of the endoplasmatic reticulum (ER), where the basis for all sphingolipids, 
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ceramide, is formed (Figure 3). There, serine palmitoyltransferase (SPT) condensates the 

amino acid L-serine and an activated fatty acid into 3-Ketosphinganine, which is then reduced 

into sphinganine by 3-ketosphinganine reductase (KDSR). One of six different ceramide 

synthases (CerS1-6) proceed sphinganine by N-acylation with an activated fatty acid to gain 

dihydroceramide Likewise, sphingosine from the salvage pathway can be directly acylated to 

produce ceramide. Dihydroceramide is converted by dihydroceramide desaturase into 

ceramide with sphingosine (DES1) or phytosphingosine (DES2). In the luminal side of the ER 

galactosylceramide (GalCer) is synthesized by modulating ceramide with UDP-GalCer via 

β-galactosylceramide synthase (UGT8A). Additionally, ceramide is transported to the Golgi by 

vesicles or ceramide transfer protein (CERT), where glucosylceramide synthase (UGCG) 

transfers Glc to ceramide from UDP-Glc, and GlcCer is released in the cytosolic leaflet of the 

early Golgi membranes. Complex gangliosides (GG) are synthesized by stepwise addition of 

monosaccharides to GlcCer on the luminal side of the Golgi membrane. This means GlcCer 

has to flip to the other side of the bilayer. The primary addition of UDP-Gal by 

galactosyltransferase (B4Galt5/6) reveals lactosylceramide (LacCer), which is a branching 

point of complex GSL synthesis. The first and basic ganglioside GM3 is synthesized via 

transfer of sialic acid from CMP-sialic acid to LacCer in α-2,3-linkage by 

GM3/GM4-sialyltransferase ST3GalT5. GM4, which results from GalCer after vesicular 

transport to the Golgi, is a minor component of the brain and little is known about its biological 

function. More abundant in the brain are sulfatides which are synthesized by the cerebroside 

sulfotransferase (CST), converting GalCer or LacCer to form SM4s or SM3. Furthermore, 

LacCer is used as substrate to the globotriaosylceramide synthase (Gb3S) starting the neutral 

glycosphingolipid pathway of the globo-series. The first step in this pathway is the addition of 

galactose in α-glycosidic linkage to LacCer forming Gb3. GM3 in the ganglio-series can be 

further sialylated into GD3 via GD3-synthase (St8sia1), with a second sialic acid in 

α-2,8-linkage to the first sialic acid, and additional sialylation by sialyltransferase (St8sia3/5) 

forms GT3. Downstream, glycosyltransferases for the synthesis of complex GGs are mediated 

in enzyme multisystem. These are often arranged in a modular organization in homo- or 

hetero-multienzyme complexes in the membranes of the Golgi and trans-golgi network (TGN). 

LacCer, GM3, GD3 and GT3 are substrates for N-acetylgalactosaminyl transferase (B4galnt1), 

which transfers N-acetyl galactosamine (GalNAc) in β-1,4-linkage to form GA2, GM2, GD2 and 

GT2. This is the prior step dividing the gangliosides into four groups, the 0-, a-, b- and c-series. 

Depending on their basic horizontal GG they are synthesized from (Figure 2). Likewise, the 
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next steps are processed by a galactosyltransferase (B3galt4) resulting in GA1, GM1a, GD1b 

and GT1c, and then by sialyltransferase (St3gal2/1) gaining GM1a, GD1a, GD1b and GT1b, 

the major brain GG’s (Figure 3).  

 

 

Figure 3: Subcellular compartmentalization and intracellular trafficking of hexosylceramide and ganglioside 

biosynthesis and catabolism 4. 

1.2.1.1 GalCer-Synthase (UGT8A) mouse model 

Galactosylceramide synthase, encoded by the Ugt8a gene, catalyzes the formation of 

galactosylceramide (GalCer) by adding galactose from UDP-galactose to ceramide. GalCer 

mainly occurs in neural cells such as oligodendrocytes (CNS) and schwann cells (PNS) and is 

highly enriched in myelin sheaths that covers axons (together with its sulfated form SM4s; 

Figure 2). Initially, two independent groups had generated Ugt8a-deficient mouse lines through 

convential targeting of the Ugt8a gene 25,26. Homozygous Ugt8a-/- mice were viable and 

expressed higher levels of glucosylceramide (GlcCer) which nonetheless do not compensate 

the GalCer depletion. Additionally, the sulfated derivative of GlcCer were synthesized, as well 

as a higher amount of α-hydroxy fatty acids in their ceramide moiety. These mice were smaller 
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in size with a shortened life span and displayed tremors, loss of locomotor activity and 

disruption of nerve conduction. With the GlcCer produced to balance the lacking GalCer, 

oligodendrocytes and schwann cells were able to form only slightly thinner myelin sheaths. 

These however, became unstable and degenerated in older mice. Thus, GalCer synthesis is 

needed for long-term maintenance of the myelin structure and function. 

1.2.1.2 GlcCer-Synthase (UGCG) mouse model  

Glucosylceramide synthase encoded by the Ugcg gene catalyzes the formation of 

glucosylceramide (GlcCer) by adding glucose from UDP-glucose to ceramide. GlcCer is the 

main basis for glycosphingolipid (GSL) biosynthesis and when modified gives rise to hundreds 

of complex GSLs (Figure 2). Systemic disruption of Ugcg caused embryonic lethality starting 

at stage E7.5 27. To study the influence of GlcCer and especially the gangliosides in the brain 

a floxed Ugcg-/- mouse line combined with strains expressing Cre recombinase transgene 

under the control of different promotors was established. The first Cre/loxP system was 

developed by two different groups with Ugcg under the nestin promotor. This is expressed 

early in neuronal cells during development from day E9.5 28,29. These mice appeared normal 

at birth but showed severe neurological dysfunctions, defects in axonal branching, 

hypertrophic neurons and broadened myelin sheath. Additionally, in one of the two generated 

mouse lines all animals died within 3 weeks after birth. This was due to the lower level of 

residual Ugcg expression. Together, these reports show that GlcCer-based GSL synthesis is 

required for neuron differentiation, brain maturation and stability after birth. Another mouse line 

deleted functional Ugcg under the L7 promotor, which is only expressed in Purkinje cells 30. 

Mice showed Purkinje cell degeneration and abnormal myelination, implicating a role for GSLs 

in axonal-glial interactions. In a separate study of neuronal-specific deletion of Ugcg, the 

neuronal calcium/calmodulin-dependent kinase II α (CamK) promotor was used for an 

inducible Cre recombinase (Cre-ERT2) 23. Lacking GSLs in the forebrain leads to progressive 

body weight gain, hypometabolism and hypothermia. Furthermore leptin and insulin31 

signalling was impaired which could be connected to the absence of gangliosides and their 

interaction with the corresponding insulin and leptin receptors on the plasma membrane. 

Oligodendrocyte specific deletion of Ugcg was achieved by using myelin-associated enzyme 

2’, 3’ cyclic nucleotide 3’ phosphodiesterase (Cnp) promotor, where mice showed no myelin 

abnormalities. Therefore these GSLs are not essential for myelin structure and stabilization 32. 

Besides research for the role of GlcCer and specifically gangliosides in the nervous system, 

there were a lot of other cell type-specific Ugcg KO mouse lines developed to show the 
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importance of GSLs in varying tissue types such as  in hepatocytes of the liver (AlbCre) 33, 

enterocytes of the intestine (VilCre) 34, tubular epithelial cells of the kidney (Pax8Cre) 35 and 

keratinocytes of the skin (K14Cre) 36.  

1.2.1.3 Cerebroside sulfotransferase (GAL3ST1) mouse model 

Cerebroside sulfotransferase (CST) catalyzes the 3-O-sulfation of terminal galactosyl moieties 

on GSLs such as galactosylceramide. Thereby forming the sulfatide SM4s, which is most 

prominent in oligodendrocytes (CNS) and schwann cells (PNS) 37–40 (Figure 2). Additionally, 

high amounts of SM4s can be found in kidney, gastric mucosa, lung and endometrium. CST-/- 

mice were normal at birth but developed severe neurological defects due to myelin 

vacuolization, degeneration and deformation, as well as impaired ion channel cluster formation 

41–43. Primary cultures of CST-/- mice showed increased oligodendrocyte maturation and 

therefore the role SM4s play as a negative regulator of oligodendrocyte maturation 44. Mice 

with a deletion of CST under the Pax8 promotor displayed a normal kidney morphology but 

lower pH and less ammonium excretion in the urine indicating the critical role of sulfatide for 

physiologic acid-base homeostasis 35. 

1.2.1.4 Gb3-Synthase (A4GALT) mouse model 

Gb3 synthase (Gb3S) forms Gb3 by addition of a α-1, 4-linked galactose to lactosylceramide 

(LacCer) and this initiates the globo-series of glycosphingolipids (Figure 2). The first developed 

mouse line with a Gb3S deficiency appeared normal and lacking in any phenotype. Therefore 

these mice were protected from the bacterial endotoxin shigatoxin 45. Gb3S-/- mice generated 

by another group showed an increased amount of LacCer and an involvement of Gb3 in 

invariant NKT cell number 46. Latest investigations revealed albuminuria in these mice, 

apparently due to reduced endocytic uptake in renal proximal tubular epithelia cells 47. 

1.2.1.5 GM3-Synthase (ST3GAL5) mouse model 

GM3 synthase (GM3S) transfers a sialic acid to lactosylceramide in α-2, 3-linkage to form 

GM3, the simplest of the gangliosides. In mice deficient in GM3S all a-, b- and c-series 

gangliosides are absent in the brain and substituted by 0-series gangliosides GM1b, GD1c and 

GD1α 48,49 (Figure 2). These mice showed neither major neurological phenotype nor 

histological abnormalities in brain, but are protected from high-fat diet-induced insulin 

resistance. The diabetic wound healing defect in diet-induced obese mice is prevented50, and 

neuropathic pain and small fiber neuropathy is reversed in diet-induced diabetic mice51. 

Additionally, a gender-specific impairment of neuropsychological behaviors in juvenile GM3-/- 

mice was observed 52.  
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1.2.1.6 GD3-Synthase (ST8SIA1) mouse model 

GD3 synthase (GD3S) adds another sialic acid to ganglioside GM3 in α-2, 8-linkage to form 

GD3 and thereby catalyses the synthesis of b-series gangliosides (GD3, GD2, GD1b, GT1b 

and GQ1b) (Figure 2). GD3S-/- mice show no apparent abnormalities in brain development and 

exhibit a normal life span, concluding that b-(and c-)series gangliosides are not necessary for 

neuronal differentiation 53–55. The loss of b-series gangliosides was compensated by a 

corresponding increase of a-series GGs, mainly GM1a and GD1a as well as increased GT1aα. 

Initially, the disruption of hypoglossal nerves in GD3S deficient mice showed a reduced 

regeneration and decreased number of surviving neurons 53, and another study showed 

morphological abnormalities in the sciatic nerve and decreased peripheral nerve regeneration 

56. Additionally, reduced expression of EGFR was observed together with a diminished self-

renewal of neuronal stem cells, indicating an interaction of GD3 or b-series GGs with the EGF 

receptor 57.  Similar GD3 deficiency was linked to impaired neurogenesis due to progressive 

loss of hippocampal neural stem cells, associated with depression-like behavior 58. In mouse 

models of Alzheimer and Parkinson the lack of b-series gangliosides revealed protective traits, 

evident by less accumulation of aβ-plagues and reduced neurodegeneration 59–61.  

1.2.1.7 N-acetyl-galactosaminyl transferase (B4GALNT1) mouse model 

β-1, 4-GalNAc transferase (Galgt1; GM2/GD2 synthase) catalyses the transfer of 

UDP-activated N-acetyl-galactosamine to lactosylceramide, GM3 and GD3, and thereby 

synthesizing all neuronal complex gangliosides (Figure 2). Galgt1-/- mice show only minor 

neurological abnormalities, but a decreased myelination of central axons led to motoric 

symptoms with age 62–66. Additionally, gangliosides, which are ligands of MAG displayed by 

oligodendrocytes to promote axon-glia interactions and decreased levels of MAG expression 

were observed in these mice only expressing GM3 and GD3 63,67. Mice depleted of complex 

gangliosides revealed impaired capacity for calcium regulation and degeneration in the 

presence of depolarizing levels of potassium and glutamate 68,69. 
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1.2.2 Catabolism of Hexosylceramide and Gangliosides 

The constitutive catabolic pathway of glycosphingolipids (GSL) and gangliosides (GG) finalizes 

via numerous vesicle trafficking pathways including endocytosis, phagocytosis and autophagy 

in lysosomes (Figure 3). Lysosomes are small organelles with an acidic interior (pH4-5), in 

which soluble hydrolases degrade a variety of macromolecules and complex lipids to release 

corresponding breakdown components into the cytosol for recycling, nutrient sensing and 

membrane repair (salvage pathway). Their limiting membrane is spanned by the glycocalix 

containing numerous transmembrane proteins which are highly glycosylated at the luminal 

side. This protects proteins and lipids at the lysosomal perimeter membrane from hydrolytic 

digestion. GSLs and GGs catabolism starts in late endosomes where a protein machinery 

known as ESCRT mediates the inward budding of the endosomal perimeter membrane with 

continued budding off into luminal space and sorts this into intralysosomal luminal vesicle (LV). 

The degradation of GSLs and GGs occurs at the surface of LV’s in a stepwise fashion, 

releasing monosaccharide units from the non-reducing end of the oligosaccharide chain 

(Figure 4). As the lipid substrates for the degrading soluble hydrolases are embedded into 

vesicles, five small non-enzymatic glycoproteins mediate the interaction. These are saposins 

(SAP A-D) and GM2 activator protein (GM2AP). Additionally, removal of the terminal sialic acid 

unit via sialidases (neuraminidases) is an important step in GG degradation that could have 

already taken place at the plasma membrane or later in the early and late endosomes. The 

mono-sialylated GGs are further degraded by surface-bound lysosomal enzymes. GM1 is 

processed into GM2 by the removal of terminal galactose with GM1-β-galactosidase in the 

presence of GM2AP or Sap B. GM2 is then degraded via the cleavage of terminal 

N-acetylgalactosamine by β-hexosaminidase A (HexA) and assisted by GM2AP to form GM3. 

α-Sialidase and Sap B finally modulate GM3 into LacCer by removing the sialic acid 2,4,70.  
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Figure 4: Lysosomal ganglioside catabolism 4. 

1.2.2.1 Neuraminidases (Sialidases) 

Complete degradation of Gangliosides (GG) occurs in lysosomes, whereas initial steps by 

some neuraminidases/sialidases can take place at the plasma membrane. Sialidases cleave 

off the non-reducing sialic acid that is glycosidically linked to the glycan head group of GG 

(Figure 4). There are four isoforms of neuraminidases based on their initial subcellular 

localization. These are Neu1 in lysosomes, Neu2 in the cytosol, Neu3 at the plasma 

membrane, endosomes and lysosomes, and Neu4 in lysosomes, mitochondria and/or 

intracellular membranes 71. In the brain only Neu1, Neu3 and Neu4 hydrolyze sialic acid 

residues from GGs, whereby Neu1 acts only as part of a multienzyme complex with 

β-galactosidase and cathepsin A in the lysosomes 72–76. Neu3 is not only located at the plasma 
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membrane, but also facing inward on membranes of endosomes and lysosomes, consistent 

with its two pH optimum at pH 4.6 and pH6-6.5 77–80. Its main substrates have been described 

in vitro to be GM3 and disialo-gangliosides such as GD1a and GD3, and a minor activity toward 

GM2, GM1 and GT1b 81–85. Neu4 is more widely distributed in cellular membranes such as ER, 

mitochondria and lysosomes 86–88 and the main substrate in the brain is presumably GD1a 89. 

1.2.2.2 β-glucosylceramidase (GBA2) mouse model 

The non-lysosomal β-glucosylceramidase GBA2 degrades glucosylceramide (GlcCer) to 

glucose and ceramide. It is ubiquitously distributed in tissues, but mainly expressed in brain, 

heart, skeletal muscle, testis and kidney, and to minor levels in small intestine, spleen, liver 

and lung 90,91. Gba2-/- mice showed increased homeostatic levels of GlcCer in brain, liver and 

testis. While not any impairment was observed in the central nervous system, these mice 

displayed decreased fertility, and dysfunction of the liver 92.  

1.3 GM2-gangliosidosis: Tay-Sachs disease 

Tay-Sachs disease (TSD) is a lysosomal storage disease and one of three GM2-gangliosidosis 

forms that result from defects in degradation of GM2 and related glycolipids by 

hexosaminidases and GM2 activator protein (GM2AP) 93,94 (Figure 4). GM2AP is a non-

enzymatic protein that mediates interaction between the water-soluble enzyme 

hexosaminidase A (HexA) and its membrane-embedded substrate GM2 at the lipid water 

interface. Depending on the types of hexosaminidases or if there is a defect in GM2AP, three 

clinical phenotypes are known. Whereas the hexosaminidase type depends on the 

combination of the two subunits α and β, defects in the α-subunit are associated with TSD and 

affect mainly the catalytic activity of HexA (αβ). HexA cleaves terminally linked 

N-acetylhexosamine from acidic glycosphingolipids. Hexosaminidase B (ββ) cleaves 

N-acetylhexosamines only from uncharged GSLs such as GA2 or Gb4Cer. Defects in the beta 

subunit are known as Sandhoff disease and affect HexA (αβ) and HexB (β/β) activities, but not 

those of the minor component HexS (α/α). The minor isoform HexS degrades sulfated 

glycolipid SM2a as well as GM2 and GA2 95. Tay-Sachs disease is an autosomal-recessive 

disorder mainly detected in patients with a Jewish background, especially in populations of 

Ashkenazi Jews with ancestry in Middle and Eastern Europe. There are three on-set forms of 

this disease, depending on residual HexA enzyme activity. An infantile form leading to death 

within 3-5 years, a juvenile form showing severe phenotypes between 5-15 years and an adult 

form diagnosed in the patients late teens. The infantile form is clinically characterized by 
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blindness, paralysis and dementia due to massive neurodegeneration and occurs in 1 out of 

4000-6000 Jewish births and 1 out of 300.000-500.000 non-Jewish births, respectively. To 

date there is no effective treatment beyond palliative care despite the research for several 

treatment approaches such as gene therapy, inhibitors, cord blood transplant, chaperone 

therapy, stem cell therapy and enzyme replacement therapy 70,96–100. Nevertheless, the detailed 

molecular and cellular events remain to be delineated, e.g. with adequate mouse models. 

Mutations in the β subunit of β-hexosaminidase, leading to Sandhoff disease, and therefore 

the elimination of both HexA and HexB showed a severe neurological phenotype. In contrast, 

mice lacking HexA and HexS via a mutation in the α subunit show no significant neurological 

phenotype in comparison to TSD patients with high neurodegeneration and an infantile onset 

variant. The reason is mouse sialidases do to some extent bypass in vivo GM2 storage by 

degrading GM2 slowly to GA2 which is substrate for the remaining intact isoenzyme HexB 101. 

The latter is not observed in humans, either because GM2 is not substrate for human sialidases 

or because corresponding human sialidases are not expressed in corresponding tissues in 

sufficient amounts. The involvement particularly of sialidases Neu3 and to a lesser extent Neu4 

in this bypass were recently demonstrated in mice 85,89,102.  

1.4 Glycosphingolipids in T cell immune response 

Glycosphingolipids can be recognized by a T cell lymphocyte subpopulation known as invariant 

natural killer T cells (iNKT) that only recognizes lipids presented by the MHC class I-like protein 

CD1d 103,104. The T cell receptor (TCR) of iNKT cells is limited to a single α chain combined 

with a restricted selection of TCR β chains, while CD1d is mainly expressed on B-cells, 

dendritic cells, macrophages and epithelial cells. Presented antigenic lipids require lysosomal 

trafficking of CD1d as well as lipids, and the assistance of lipid transfer proteins (Saposins, 

GM2AP) for sufficient CD1d-lipid loading 105–107.  The interaction of presented lipids by dendritic 

cells with the TCR of iNKT cells activates these iNKT cells and triggers the release of a variety 

of cytokines and chemokines modulating and/or stimulating the immune system 108. Hence, 

the interest in iNKT cells stems from their respons to endogenous and exogenous (e.g. 

microbial) lipid antigens, as well as their potential to activate adaptive (T and B cells) as well 

as innate (dendritic and NK cells) immune response 109–112. The lingering research for possible 

self-lipid antigens for iNKT cells is based on the involvement of these cells in many 

autoimmune diseases. These are, for example, type 1 diabetes, multiple sclerosis, rheumatic 

arthritis and asthma, as well as cancer and host defense to bacteria, fungi and viruses 113,114. 

Nevertheless, the first identified CD1d antigen was a foreign lipid found in a marine sponge 
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(agelas mauritianus) and identified as galactosylceramide  with an α-glycosidic linkage and a 

phytosphingosine in the ceramide backbone 13. Over the last years a variety of endogenous 

lipids were reported, starting with the neutral glycosphingolipid iGb3, which was found because 

of decreased iNKT cell number in HexB deficient mice. However, the relevance of iGb3 was 

complicated by the lack of iGb3 synthase in humans and the lack of impact on iNKT cells in 

iGb3 synthase deficient mice 115–117. Others tried and partially succeeded to identify lipid 

antigens via co-precipitation of lipids within the CD1d complex such as lysophosphatidylcholine 

(LPC), phosphatidylinositol (PI) and peroxisome-derived ether-bonded phosphoethanolamine 

(eLPA and pLPE) 118–121. Additionally, there are GSLs identified by direct testing of synthesized 

or purified cellular lipids such as β-hexosylceramides 122–125, β-LacCer 126, GD3 127,128 and 

sulfatide 129. Until now, however, α-GalCer remains the most potent activator of iNKT cells 

when presented vial CD1d. Currently under investigation is the potential of endogenous 

(mammalian) α-GalCer and the natural stimulation of iNKT cells via CD1-presented α-GalCer 

from members of the gut microbiome 14,130,131. 

1.4.1 Microbiota and Inflammation 

Humans share most of the same gut bacterial species, a core microbiota which is dominated 

by two anaerobic bacteria the Firmicutes and Bacteroidetes 132. The composition of the gut 

microbiome is affected by host phenotype, genotype, immune function and diet. The colonic 

mucosa is constantly exposed to gut microbiota and therefore the bacterial stimulation of the 

immune system. Inflammation in the intestinal tract has been shown to cause reduced barrier 

function that enables bacteria to interact with the epithelium and lead to lesions in the 

epithelium with bacterial translocation 133,134. Additionally, inflammation can result in the 

enrichment of certain bacterial groups that have pro-carcinogenic traits such as Bacteroides 

fragilis 135. Vice versa, B.fragilis were reported to cause diarrhea and colitis, which results in a 

higher risk for cancer 136,137. More detailed, B. fragilis has been shown to negatively regulate 

iNKT cells in mice colons by acting as a competitive inhibitor, instead of a true antagonist, 

when not exposed in early life 138. Nevertheless, the glycosphingolipid α-GalCer produced and 

isolated from B.fragilis was shown to stimulate mice and human iNKT cells 14. Applying high 

fat diet to mice for obese mouse models and analyzing the gut microbiome resulted in a 

reduction of Bacteroidetes and an increased risk of developing colitis 139,140. Currently, there 

are a lot of questions left regarding the understanding of host-microbiome interaction and how 

specific molecules/lipids and immune mechanisms of microbes effect health issues. 
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1.5 Analysis of Glycosphingolipids 

The analysis of glycosphingolipids (GSL) and its complexity is dependent on the degree or 

type of information required. A robust and stable way to perform GSL analysis is thin layer 

chromatography (TLC). It is adequate to show an overview pattern of the GSLs in the selected 

tissues or cells. However, it is dependent on the standards available and difficult for the 

identification of unknown structures as well as improper for detailed structure analysis of, for 

example, the ceramide anchor. The use of mass spectrometry (MS) exposes a lot of different 

techniques and information depth. There are ‘untargeted’ approaches where high-resolution 

mass spectrometry is used to compare sets of samples (healthy/diseased; control/treated) to 

show changes in tissues/cells (fingerprint analysis), but lacking in the structural information of 

the lipids analyzed. Whereas ‘targeted’ approaches are highly lipid specific and provide 

structural information, they lack additional information besides the selected set of lipids for 

detection. Isomers basically complicate the analysis of GSLs as for example glucose and 

galactose share the same mass and can’t be separated by MS alone. Additionally, the higher 

gangliosides can share the same number and type of sugar building blocks, but differ in order 

or type of linkage, which again is not detected by MS. A common method to analyze GSL for 

their glycan structure is to cleave the ceramide backbone and detect the sugar head group via 

normal phase-liquid chromatography (LC), missing the structural information about the lipid 

moiety 141. The combination of LC or TLC and MS is the most sufficient and flexible for the 

analysis of GSLs, whereby reversed phase (RP) analysis can be used for the separation and 

determination of the lipid moiety by LC with specific fragmentations for detailed identification 

via MS. In contrast, normal phase or hydrophilic interaction chromatography (HILIC) is realized 

for the separation of the glycan structures, again in combination with specific fragmentations 

or multiple fragmentation (MSn) via MS. Recently, the combination of LC-MS and ion mobility 

offered some interesting aspects for the analysis of GSLs, which is also a technique practical 

for mass spectrometry imaging (MSI). There exists MSI techniques using MALDI and DESI, 

which allow the scanning of a tissue sections with mass spectrometry to gain an image 

containing the information of one mass spectra per spatially resolved area (pixel), and 

therefore the distribution of a distinct GSL within the tissue 142–152.  
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1.5.1 Electrospray ionization-Tandem Mass Spectrometry (ESI-MS2) of Glycosphingolipids 

Electrospray ionization (ESI) is a technique for liquid samples, ionizing the sample on a 

nebulizer needle with a strong electric field. A nitrogen flow coaxial to the liquid flow from the 

needle generates a focused fine aerosol of charged particles. The particles dry in the nitrogen 

counter stream from the instrument and ions are transported via electric field to the analyzers 

and detector. ESI is a soft ionization technique and often used in combination with liquid 

chromatography (LC) techniques such as UPLC for the analysis of non-volatile compounds in 

complex biological samples 153. Tandem mass spectrometry describes in general the selection 

of primary ions by mass analyzers for fragmentation and the subsequent mass spectrometric 

analysis/selection of these product ions, either in space or in time. In a typical “triple 

quadrupole” instrument (QqQ, MS2 in time) two quadrupoles working as mass analyzers are 

separated by a third quadrupole (or multipole/ion guide) working as a collision chamber. To 

this end the latter is flooded with inert gas, typically Ar, at low pressure (some 10-3 mbar) to 

trigger collision induced dissociation (CID). A QqQ can be operated in different measurement 

modes. Full scan mode detects all primary ions (precursor ions) within a defined mass range 

in a distinct period of time, generating an overview of (unknown) lipids/compounds in samples. 

Precursor ion scan is using the last quadrupole after the collision chamber for a fixed m/z 

(fragment) to search for the corresponding precursor ions with the first quadrupole scanning a 

mass range. In contrast, product ion scan selects with the first quadrupole a distinct m/z 

(precursor ion) and the last quadrupole scans for all generated product ions. Neutral loss scan 

detects precursor ions that all undergo a constant neutral loss. For this purpose the last 

quadrupole scans synchronal to the first quadrupole the same width in mass range but starting 

with a lower m/z corresponding to the neutral loss. The most sensitive and specific mode of 

detection is the use of single ion monitoring (SRM), where the first as well as the second 

quadrupole are set to a specific m/z, measuring this transition of a precursor ion to one of its 

product ions (reaction) over a distinct period of time. Multiple ion monitoring (MRM) is the use 

of many SRMs in line measuring in a distinct time window 153,154 (Figure 5). Tandem mass 

spectrometry especially in MRM mode is referred to as targeted analysis, whereas a biological 

sample is screened for a set of known substances. Consequently, a majority of other 

substances are excluded from detection and changes outside the selected set of substances 

remain unrecognized.  



  1 Introduction 

 17 

 

Figure 5: Scan modes in tandem mass spectrometry. A) Product ion scan is used to fragment a specific precursor 

ion and detect the specific fragments. B) Precursor ion scan identifies a class of lipids (precursor ions) which share 

a specific fragment. C) Neutral loss scan identifies a class of lipids (precursor ions) which share a specific neutral 

loss. D) Multi reaction monitoring is used to scan samples for defined compounds/lipids using corresponding specific 

transitions. 

1.5.2 Imaging Mass Spectrometry of Glycosphingolipids 

Tissue-based research is important for the understanding of a very broad spectrum of 

diseases. Where LC-MS/MS is a stable and reproducible method for lipid quantification using 

soluble tissue extracts, the morphology of the tissue is lost. Highly specialized tissue 

preparations can help that matter, e.g. by dissecting the brain in single areas such as 

hippocampus, cortex or cerebellum. But to separate the cerebellum in grey and white matter 

would extend sample preparation. Imaging mass spectrometry (MSI) emerged as a significant 

tool for unlabeled spatial tissue analysis.  

1.5.2.1 MALDI-TOF/TOF 

One of the most common techniques used for imaging mass spectrometry is matrix assisted 

laser/desorption ionisation (MALDI) coupled with a time-of-flight (TOF) mass spectrometer. 

The basic principle involves tissue sections of fresh frozen or paraffin embedded tissue that 

are covered by a matrix which locally extracts molecules from the tissue specimen and aids 

desorption/ionization for the mass analysis. The tissue is shot by a laser into an area of some 

few micrometers in diameter, while the matrix absorbs the energy ionizing the analytes and 
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transferring them into gas phase. The accelerated ions enter the TOF analyzer and are 

separated by their mass-to-charge (m/z) ratio, which defines the time they need to fly through 

the field free drift zone of the ToF analyzer. Every laser spot generates a mass spectrum and 

by plotting the intensity of a distinct lipid mass (m/z) for every spot in color-code, a distribution 

image of this lipid for the corresponding tissue area is generated. MALDI-TOF is a type of mass 

spectrometry assigned to untargeted analysis as every ion in the selected mass range is 

detected and the molecules behind the m/z are not necessarily identified. It is often used for 

fingerprint analysis where healthy/untreated and disease/treated tissues are compared for 

changes in the mass spectra combined with complex statistical analysis (reviewed in 155–158) 

(Figure 6).  

1.5.2.2 DESI – desorption electrospray ionization 

A relatively new ionization technique for mass spectrometry imaging, not as common as 

MALDI, is desorption electrospray ionization (DESI). DESI is an ambient ionization method 

based on principles similar to electrospray ionization (ESI). A charged spray is generated by a 

capillary, but in contrast to ESI, this spray is used to desorb analyte ions from a surface. The 

charged micro-droplets of the spray build a thin liquid layer on the surface for analysis and 

bombardment with further charged droplets forces dissolved analytes into micron-droplets. A 

transfer capillary draws the micron-droplets and supports the drying process of gas-phase ions 

into the mass spectrometer. The tissue is screened with a defined velocity row by row, 

generating mass spectra in a defined time frame. Data is remodeled into images displaying 

the local distribution for a distinct lipid mass (m/z). By combining DESI with tandem-mass 

spectrometry, it should be possible to get specific, targeted information about defined lipid 

(ganglioside) locations within tissues. The advantage of DESI in comparison to common 

imaging techniques such as MALDI is the reduction of sample preparation and the relative high 

velocity of the measurements 159–161 (Figure 6). 
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Figure 6: Mass spectrometry Imaging (MSI) techniques and their principle. A) MALDI-TOF/TOF using a laser in 

combination with tissue matrix to generate mass spectra for each spot. B) DESI – MS/MS screens tissue in a distinct 

velocity using a charged solvent spray to generate ions and dislocate them from tissue, whereby mass spectra for 

a defined time frame were gained. In both techniques mass spectra were remodeled to images representing the 

local distribution for a specific compound/lipid mass (m/z). 
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2 Material and Methods 

2.1 Instruments 

2.1.1 Sample Preparation 

Table 1: Instruments for sample preparation 

Instrument name  Manufacturer 

ABT 120-4M scale  

(min 10 mg, d=0.1 mg) 

Kern & Sohn GmbH (Balingen-Frommern, Germany) 

Tissue Lyser II Quiagen GmbH (Hilden, Germany) 

DNA Speed Vac (DNA 110, Savant) Thermo Life Sciences 

Evaporator  Gebr. Liebisch GmbH & Co. KG (Bielefeld, Germany) 

Vortex mixer 7-2020 neoLab Migge GmbH (Heidelberg, Germany) 

Centrifuge 5415 C Eppendorf AG (Hamburg, Germany) 

Ultrasonic water bath Sonorex Super Bandelin electronic GmbH & Co. KG (Berlin, Germany) 

SpectraFluor Plus Tecan Group AG (Männedorf, Switzerland) 

20 port Vaccum Extraction Manifold 

(16x100 mm) 

Agilent Technologies Inc. (California, USA) 

2.1.2 Thin Layer Chromatography 

Table 2: Instruments for TLC analysis. 

Linomat IV Camag Chemie-Erzeugnisse & Adsorptionstechnik 

AG & Co. GmbH (Muttenz, Switzerland) TLC Scanner 3 

2.1.3 LC-MS/MS 

LC-MS/MS analysis was performed on a Xevo TQ-S tandem mass spectrometer with an ESI 

source coupled to an automated Acquity I class UPLC system (Binary solvent manager and 

sample manager with flow-through needle) from Waters GmbH (Eschborn, Germany). Mass 

spectra were recorded at an ion source temperature of 90°C, cone voltage of 50 V, source 

offset of 50 V, desolvation temperature of 250°C and collision gas flow of 0.15 mL/min. Helium 

was used as inert gas, and nitrogen supply was ensured by a nitrogen generator from cmc 

instruments (Eschborn, Germany). MassLynx 4.1 software was used for data analysis and 

generation of chromatograms, and mass spectra were processed with TargetLynx as 

evaluation tool for the quantification of MRM data, both from Waters GmbH (Eschborn, 

Germany). 
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2.1.3.1 Columns 

Table 3: LC analytical columns from Waters GmbH (Eschborn, Germany). 

Particle type Phase material Dimensions 

BEH RP18 50 x 2.1 mm; 1.7 µm 

CSH RP18 100 x 2.1 mm; 1.7 µm 

HSS PFP 100 x 2.1 mm; 1.8 µm 

BEH HILIC 100 x 2.1 mm; 1.7 µm 

BEH  Amide 100 x 1 mm; 1.7 µm 

Cortecs HILIC 100 x 2.1 mm; 1.7 µm 

Cortecs HILIC 150 x 2.1 mm; 1.7 µm 

2.1.4 Imaging Mass Spectrometry 

Table 4: Instruments for Imaging Mass spectrometry. 

Instrument name Manufacturer 

Cryotom CM 3050 S Leica Camera AG (Wetzkar, Germany) 

DESI 2D source Prosolia Inc. (Indianapolis, USA) 

Omnislide (26x76; 66 well, HTC printed) Prosolia Inc. (Indianapolis, USA) 

Syringe pump Harvard Apparatus (Massachusetts, USA) 

MALDI Spotter SunCollect SunChrom Wissenschaftliche Geräte GmbH 

(Friedrichsdorf, Germany) 

Autoflex Speed MALDI-TOF/TOF Bruker Corporation (Massachusetts, USA) 

Rapiflex MALDI-TOF/TOF Bruker Corporation (Massachusetts, USA) 

CanoScan 9000F Canon (Tokio, Japan) 
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2.2 Chemicals, Solvents and Consumables 

2.2.1 Mouse Tissue samples and Bacteria strains 

Mouse brain samples for the quantification of gangliosides in Tay-Sachs disease and the 

involvement of neuraminidases analysed with LC-M/MS and MALDI-TOF/TOF were provided 

by the Turkish collaboration partner Volkan Seyrantepe including the strains in Table 5. 

Table 5: Mouse strains for the analysis of Tay-Sachs disease and the involvement of neuraminidases. 

Bl6 wt Neu3-/- Neu4-/- 

HexA-/- HexA-/- Neu3-/- HexA-/- Neu4-/- 

GM2AP-/- GM2AP-/- HexA -/- GM2AP-/- HexA -/- Neu4-/- 

Galgt1-/- Galgt1-/- HexA -/- Galgt1-/- HexA -/- Neu4-/- 

GD3S-/- GD3S-/- HexA -/- GD3S-/- HexA -/- Neu4-/- 

GM3S-/- GM3S-/- HexA -/- GM3S-/- HexA -/- Neu4-/- 

 

Mouse tissue analysis for the composition of hexosylceramide was performed with recently 

published mouse strains: Gba2-/- (91), Gb3S-/- (46), Ugcgf/fAlbCre (33), Ugcgf/fPax8Cre, 

CSTf/fPax8Cre and (Ugcgf/f+CSTf/f)Pax8Cre (162), and fatty acid 2-hydroxylase (Fa2h) -/- (163). 

Tissue samples were provided by the publication related laboratories. Additionally, WT Bl6 

tissue from the strains housed by our own group were prepared. Animals were kept under 

specific pathogen-free conditions in barrier facilities, where a temperature of 22°C and a 12h 

light/ 12h dark cycle was maintained. Mice were housed in groups up to five animals and kept 

on a chow diet with ad libitum access to food and water. Cervical dislocation was used for 

euthanizing mice for tissue sampling conducted in accordance with guidelines from the 

European Communities Council Directive and approved by the Regierungspräsidium 

Karlsruhe (Germany). Caeca of mice were cut out and after 2 cm of either jejunum or colon 

(from the direction of caecum) tissue samples with the length of 1 cm were cut and immediately 

stored on dry ice (Figure 7). 
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Figure 7: Tissue sampling scheme of mouse WT Bl6 jejunum, caecum and colon for the analysis of 

hexosylceramides. 

Bacteria strains were obtained from Leibniz Institute DSMZ-German Collection of 

Microorganisms and Cell Cultures (Table 6). The bacteria were cultured at the University of 

Applied Sciences Mannheim in the laboratory of Dr. Matthias Mack. According to a previous 

publication 164, Bacteroides were grown anaerobically on Columbia agar plates with 5% sheep 

blood and Bifidobacterium on MRS medium plates containing L-cysteine-HCl (0.5 g/l) for 48 h. 

Lactobacillus was grown on MRS medium plates in an aerobic overnight culture. One culture 

plate was harvested and transferred in a tube containing 200 µL methanol. 

Table 6: Bacteria strains used for HILIC-MS2 analysis. 

Genus Species DSM No. 

Bacteroides fragilis 2151 

 vulgatus 1447 

 ovatus 1896 

 thetaiotaomicron 2079 

 intestinalis 17393 

 caccae 19024 

 uniformis 6597 

Prevotella copri 18205 

Bifidobacterium longum subsp. infantis 20088 

Lactobacillus reuteri 20016 
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2.2.2 Solvents and LC-MS/MS additives 

Table 7: Solvents and additives for Lipid analysis. 

Solvent Grade Manufacturer 

Water LC-MS chromasolv Honeywell Fluka (Fisher Scientific GmbH; Schwerte, 

Germany) 

Acetone ≥99.5% Honeywell (Fisher Scientific GmbH; Schwerte, 

Germany) 

Acetic acid Eluent additive for LC-MS Honeywell Fluka (Fisher Scientific GmbH; Schwerte, 

Germany) 

Formic acid 99-100% VWR International (Pennsylvania, USA)  

Acetonitrile Chromasolv for HPLC 

≥99.9% 

Sigma-Aldich (Missouri, USA) 

Propionitrile For synthesis Merck KGaA (Darmstadt, Germany) 

Methanol LC-MS chromasolv 

≥99.9% 

Honeywell (Fisher Scientific GmbH; Schwerte, 

Germany) 

Chloroform Chromasolv for HPLC 

≥99.8% 

Honeywell (Fisher Scientific GmbH; Schwerte, 

Germany) 

2-Propanol LC-MS chromasolv 

≥99.9% 

Honeywell (Fisher Scientific GmbH; Schwerte, 

Germany) 

2-Butanol For GC ≥99.5% Honeywell (Fisher Scientific GmbH; Schwerte, 

Germany) 

Ammonium formate For mass spectrometry 

≥99.0% 

Sigma-Aldrich (Missouri, USA) 

Ammonium acetate chromanorm VWR International (Pennsylvania, USA)  

Citric acid 

monohydrate 

TraceSelect ≥99.9998% Honeywell Fluka (Fisher Scientific GmbH; Schwerte, 

Germany) 

Potassium acetate ≥99.0% Honeywell Fluka (Fisher Scientific GmbH; Schwerte, 

Germany) 

Lithium acetate 99.95% Sigma-Aldrich (Missouri, USA) 

2.2.3 Sample preparation 

Table 8: Sample preparation consumables. 

Consumable Manufacturer 

Pasteur Capillary Pipettes 150 mm Corning Inc. (New York, USA) 

2 mL safe-lock PP tubes Eppendorf AG (Hamburg, Germany) 

SKRG tubes (16x100 mm; Pyrex) Corning Inc. (New York, USA) 
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Stainless steel beads 5 mm Quiagen GmbH (Hilden, Germany) 

Reservoir with 1 frit 6 mL Agilent Technologies Inc. (California, USA) 

Frits 6 mL 1/2in 20 µm Agilent Technologies Inc. (California, USA) 

Reservoir 3 mL  Varian Inc (California, USA) 

Frits 3 mL 3/8in 20 µm Agilent Technologies Inc. (California, USA) 

Pierce BCA protein assay kit Thermo Fisher Scientific Inc. (Massachusetts, USA) 

Preparative C18 125Å 55-105 µm  Waters GmbH (Eschborn, Germany) 

DEAE Sephadex A-25 Pharmacia Biotech AB (Uppsala, Sweden) 

NaOH Riedel-de-Haen (Fisher Scientific GmbH; Schwerte, Germany) 

KOH (emsure) Merck KGaA (Darmstadt, Germany) 

CaCl2 Merck KGaA (Darmstadt, Germany) 

KAc Fluka (Fisher Scientific GmbH; Schwerte Germany) 

KCl Carl Roth GmbH + Co. KG (Karlsruhe, Germany) 

2.2.4 TLC 

Table 9: TLC consumables and syringes. 

Consumable Manufacturer 

HPTLC silica gel 60 F254 Merck KGaA (Darmstadt, Germany) 

Orcinol monohydrate Sigma-Aldrich (Missouri, USA) 

Hamilton Syringe 25/50/100/250/500/1000 mL  Sigma-Aldrich (Missouri, USA) 

2.2.5 LC-MS/MS and Imaging Mass spectrometry 

Table 10: Consumables LC-MS/MS and MSI. 

Consumable Manufacturer 

2 mL screw cap vial 12*32 mm (short) Wicom GnbH (Heppenheim, Germany) 

Screw cap (short) blue with pre-slit silicon/PTFE 

septum 

Wicom GnbH (Heppenheim, Germany) 

Micro insert 200 µL 5.5 mm Wicom GnbH (Heppenheim, Germany) 

Microscope slide Superfrost plus Thermo Fisher Scientific Inc. (Massachusetts, USA) 

ITO slide Sigma-Aldrich (Missouri, USA) 

Tissue-Tek O.C.T Sakura Finetek GmbH (Staufen, Germany) 

4-Phenyl-α-cyanocinnamic acid amide Sirius Fine Chemicals GmbH (Bremen, Germany) 

2,5-dihydroxybenzoic acid Sigma-Aldrich (Missouri, USA) 
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2.2.6 Lipid standards 

Table 11: Natural lipid standards. 

Lipid Manufacturer 

Total ganglioside porcine brain Avanti Polar Lipids Inc. (Alabama, USA) 

Human gangliosides Donation from the Herbert Wiegandt lab, Marburg 

GM1 Fidia Farmaceutici s.p.a. (Abano Terme, Italy) 

GM2 (Tay-Sachs) Donation from the Herbert Wiegandt lab, Marburg 

GM3 (bovine milk) Avanti Polar Lipids Inc. (Alabama, USA) 

GD1a Donation from the Herbert Wiegandt lab, Marburg 

GT1b Fidia Farmaceutici s.p.a. (Abano Terme, Italy) 

GD3 (bovine buttermilk) Calbiochem (Merck KGaA; Darmstadt, Germany) 

Kerasin Avanti Polar Lipids Inc. (Alabama, USA) 

Phrenosin Avanti Polar Lipids Inc. (Alabama, USA) 

LacCer Matreya 

GA1 Calbiochem (Merck KGaA; Darmstadt, Germany) 

GA2 (Tay-Sachs) Donation from the Herbert Wiegandt lab, Marburg 

n-GSL mix 9 µL/band Donation from the Herbert Wiegandt lab, Marburg 

Sphingomyelin Sigma-Aldrich (Missouri, USA) 

Red marker Sharpie (Illinois, USA) 

Table 12: Synthetic Lipid standards. 

Lipid Manufacturer 

C19-GM3  * 

C14-GM2 * 

C19-GM1 * 

β-GalCer (d18:1;24:1) / (d18:1;16:0) Avanti Polar Lipids Inc. (Alabama, USA) 

α-GalCer (d18:1;24:1) / (d18:1;16:0) Avanti Polar Lipids Inc. (Alabama, USA) 

β-GlcCer (d18:1;24:1) / (d18:1;16:0) Avanti Polar Lipids Inc. (Alabama, USA) 

α-GlcCer (d18:1;24:1) / (d18:1;16:0) Avanti Polar Lipids Inc. (Alabama, USA) 

β-GalCer (d18:0;16:0)  Avanti Polar Lipids Inc. (Alabama, USA) 

α-GalCer (d18:0;16:0)  Avanti Polar Lipids Inc. (Alabama, USA) 

α/β-GalCer mix (85/15) Avanti Polar Lipids Inc. (Alabama, USA) 

α/β-GlcCer mix (85/15) Avanti Polar Lipids Inc. (Alabama, USA) 

R-/S-OH β-GalCer Avanti Polar Lipids Inc. (Alabama, USA) 
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HexCer ISD mix 14, 19, 25, 31 * 

Sphingomyelin ISD mix 14, 25, 31 * 

LacCer ISD mix 14, 19, 25, 31 * 

C19-GA1 * 

* standards were self-synthesized in the Roger Sandhoff lab and self-mixed by Dr. Mariona 

Rabionet.  

2.3 Methods 

2.3.1 Sample preparation for glycosphingolipids 

Tissue samples were transferred in pre-weighed 2 mL tubes and wet weight was determined 

before the samples were dried in the Speed Vac and again balanced to evaluate dry weight. 

Next, one stainless steel bead (5 mm) and 500 µL pre-cooled methanol (-20°C) were added 

and samples were homogenized by shaking two times 2 minutes at 25 Hz with pre-cooled 

(-20°C) adapters in the TissueLyser.  

2.3.1.1 Lipid extraction by modified Bligh and Byer method 

Lipids were extracted in 1 mL 10/10/1 (v/v/v) chloroform/methanol/water by incubation at 37°C 

in the ultrasonic water bath for 15 minutes and using sonication every 3 minutes for 2 minutes. 

Supernatant was transferred in a SKRG tube after centrifugation for 10 minutes at 2.000xg 

(RT). This extraction step was repeated with 1 mL 10/10/1 chloroform/methanol/water and 

1 mL 30/60/8 chloroform/methanol/water. Supernatants were pooled and dried under nitrogen 

flow at 37°C in an evaporator. Lipid extracts were stored at 4°C for further analysis. 

2.3.1.2 Protein determination 

The dried pellet from lipid extraction was incubated for 4-6 hours with 1 M NaOH at 37°C in 

the ultrasonic water bath and sonication for up to 5 minutes was constantly turned on. Aliquots 

with 1:10 dilution in water were used for protein determination with Pierce BCA assay kit 

according to the manufacturer’s protocol. 

2.3.1.3 Desalination by reverse-phase (RP18) solid phase extraction 

Reservoir columns were packed with C18 material and preconditioned with 3 times methanol 

and 2 times 0.1 M KCl. Lipid extracts were dissolved in 1 mL water and sonicated for 2 minutes 

before loaded onto the column. SKRG tubes were in addition washed twice with 1 mL 0.1 M 

KCl, sonicated and also loaded onto the column. The column with bound lipids was then 

washed 3 times with water and finally, lipids were eluted with 1 mL methanol into a clean SKRG 

tube, dried under nitrogen flow at 37°C and stored at 4°C for further analysis. 
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2.3.1.4 Anion exchange separation by DEAE solid phase extraction 

Reservoir columns were packed with DEAE sephadex material and preconditioned with 

3  times methanol and 2 times 30/60/8 chloroform/methanol/water (v/v/v). Lipid extracts were 

dissolved in 1 mL 30/60/8 chloroform/methanol/water (v/v/v) and sonicated for 2 minutes 

before loaded onto the column. SKRG tubes were washed twice with 1 mL 30/60/8 

chloroform/methanol/water (v/v/v), sonicated and loaded onto the column. The column with 

bound lipids was then washed 2 times with methanol containing the neutral lipid fraction 

(fraction 1) and finally, acidic lipids (fraction 2) were eluted with 1 mL 0.5 M KAc each into a 

clean SKRG tube. Lipids were dried under nitrogen flow at 37°C and stored at 4°C for further 

analysis. 

2.3.1.5 Saponification 

Saponification or mild alkaline treatment was performed to remove phospholipids and reduce 

suppression effects during ionization. Lipid aliquots were dissolved in 1 mL 0.1 M KOH in 

methanol and incubated for 2 h at 37°C. Saponified lipid extracts were neutralized with 6 µL 

glacial AcOH and solvent was removed under nitrogen flow at 37°C. Lipid extracts were stored 

at 4°C for further analysis. 

2.3.2 Thin layer chromatography of glycosphingolipids 

2.3.2.1 TLC processing for neutral and acidic GSL 

Lipid extracts were dissolved in 10/10/1 chloroform/methanol/water with a final concentration 

based on protein determination of 10 mg protein/mL and 20 µL (200 mg protein) were spotted 

to a TLC plate with Linomat IV from Camag. Total ganglioside porcine brain or human 

ganglioside standard with additional GM2 and GM3 were applied with a total concentration of 

2.5 µg and 1 µg, respectively, for the analysis of the acidic fraction. The neutral fraction was 

outlined with 10 µL or 100 mg protein and n-GSL mix 9 µL/band was used as standard 

containing GlcCer, LacCer, Gb3 and Gb4. GA2 standard was added with a total concentration 

of 1 µg. Plate parameters are described in Table 13. 

Table 13: TLC plate application parameter. 

Start position  15 mm 

Band 5 mm 

Space 5 mm 

Velocity 8 sec/µL 
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TLC plates were pre-run in 1:1 aceton/chloroform up to the top and dried under air exposure 

for approximately 10 minutes. Fraction 1 was processed for lipid separation in 60/35/8 

chloroform/methanol/0.2% CaCl2 (v/v/v) and fraction 2 in 45/45/10 chloroform/methanol/0.2% 

CaCl2 (v/v/v) until 0.5 cm under the top in a TLC development chamber and dried under air 

exposure again for around 10 minutes. For both fractions orcinol reagent was used for staining 

glycan structures developing the plates for 10 minutes at 120°C.  

2.3.2.2 Separation of diastereomeric hexosylceramides on borate-impregnated normal-

phase TLC 

Diastereomeric Hexosylceramide standards were separated on borate-impregnated normal 

phase HPTLC-plates according to previous work (165,166), with slight modifications. In brief, 

standards were applied with a Linomat IV (CAMAG) onto a HPTLC Silica gel 60 F254-plate 

(Merck, Darmstadt). This plate was then developed with chloroform/acetone (1/1) up to the top 

(no migration of HexCers, but of potential non-polar lipids). After drying the plate under vacuum 

(about 2.5 mbar) for 10 min, the plate was impregnated by spraying borate solution (1.5% 

sodium tetraborate-decahydrate) evenly all over followed by drying for 30 min under vacuum. 

Subsequently, the HPTLC-plate was developed with the running solvent 

chloroform/methanol/water/25% ammonia solution (65/25/4/0.5) and stained with orcinol 

reagent at 120 °C for 8-9 min detecting the glycoconjugates. 

2.3.3 LC-MS/MS analysis of glycosphingolipids 

Neutral glycosphingolipids were analysed as 2 mg wet weight or 0.1 mg protein/mL aliquots of 

lipid extracts in methanol containing synthetic internal standards for HexCer (5 pmol/mL), 

LacCer (5 pmol/mL) and C19-GA1 (8 pmol/mL).  Quantification of lipids was performed in 

positive ion mode on a CSH C18 column (100x2.1 mm; 1.7 µm) using solvent A 50:50 

methanol/water (v/v) versus solvent B 99:1 2-propanol/methanol (v/v) with 10 mM ammonium 

formate, 0.1% formic acid and 5 µm citrate. The gradient is described in Table 14 and 

published in von Gerichten et al., 2017. Lipids were detected in multiple reaction monitoring 

(MRM) mode scanning for both the protonated and water loss molecular ions ([M+H]+ / 

[M-H2O+H]+ → [Sph(d18:1+H-2H2O]+). The intensities of both transitions were added up for 

quantification. 
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Table 14: Gradient system for the analysis of neutral glycosphingolipids. 

Time (min) Flow rate (mL/min) %A %B Curve 

Initial 0.35 57 43 Initial 

0.2 0.35 57 43 6 

0.4 0.35 50 50 6 

4.0 0.35 30 70 6 

10.0 0.35 5 95 6 

11.0 0.35 5 99 6 

11.5 0.35 1 99 6 

12.0 0.35 57 43 6 

13.0 0.35 57 43 6 

 

Gangliosides, were analysed as 4 mg wet weight or 0.2 mg protein/mL aliquots of lipid extracts 

in 90:10 2-butanol/water (v/v) containing synthetic internal standards for C19-GM3, C14-GM2 

and C19-GM1 (50 pmol/mL).  Quantification of lipids was performed in negative ion mode on 

a Cortecs HILIC column (100x2.1 mm; 1.7 µm) using solvent A 90:10 acetonitrile/water (v/v) 

versus solvent B 50:50 acetonitrile/water (v/v) with 10 mM ammonium acetate. The gradient is 

described in Table 15. Lipids were detected in multiple reaction monitoring (MRM) mode 

scanning for the single or double deprotonated molecular ions ([M-H]- / [M-2H]2- → [NeuAc-H]-). 

Table 15: Gradient system for the analysis of gangliosides. 

Time (min) Flow rate (mL/min) %A %B Curve 

Initial 0.35 100 0 Initial 

1.0 0.35 100 0 6 

9.0 0.35 50 50 6 

11.0 0.35 10 90 6 

12.0 0.35 100 0 6 

25.0 0.35 100 09 6 

 

Hexosylceramides (HexCer) were analysed as 2 mg wet weight or 0.1 mg protein/mL aliquots 

of lipid extracts in 40/57/3 chloroform/propionitrile/2-butanol (v/v/v) containing synthetic internal 

standard for HexCer (5 pmol/mL). Quantification of lipids was performed in positive ion mode 

on a Cortecs HILIC column (150x2.1 mm; 1.7 µm) using solvent A 97:2:1 

propionitrile/2-butanol/water (v/v/v) versus solvent B 97:2:1 methanol/2-butanol/water (v/v/v) 
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with 0.1% formic acid in solvent A and B, and 10 mM ammonium formate in solvent B. The 

gradient is described in Table 16 and published in von Gerichten et al., 2017.  

Table 16: Gradient system for the analysis of hexosylceramides. 

Time (min) Flow rate (mL/min) %A %B Curve 

Initial 0.3 100 0 Initial 

0.75 0.3 100 0 6 

4.5 0.3 56 44 7 

5.5 0.3 0 100 6 

6.5 0.3 0 100 6 

8.0 0.3 100 0 6 

25.0 0.3 100 0 6 

     

Lipids were detected in multiple reaction monitoring (MRM) mode scanning for HexCers with 

C18 long chain base (sphingosine d18:1; dihydrosphingosine d18:0; phytosphingosine t18:0) 

and fatty acyl (FA) chain between 16-26 C atom lengths. The set included non-hydroxylated 

fatty acyl chains combined with sphingosines (NS), dihydrosphingosines (NdS) and 

phytosphingosines (NP) as well as α-hydroxylated (AS/AdS/AP). Structures published for the 

bacteria were accommodated with d17:0, d18:0 and d19:0 dihydrosphingosine base and 

β-hydroxylated C16 and C17 FA (BdS) 14,138. Transitions and optimized collision energies are 

listed in Table 17. 

Table 17: HILIC-MS2 transitions and collision energies for hexosylceramide analysis in MRM mode. 

HexCer  Precursor ion Product ion Collision energy [eV] 

NS [M+H]+ 

[M+H-H2O]+ 

[So+H-2H2O]+ 44 

AS [M+H]+ 

[M+H-H2O]+ 

[So+H-2H2O]+ 44 

NP [M+H]+ [So+H-2H2O]+ 36 

AP [M+H]+ [So+H-2H2O]+ 35 

AdS [M+H]+ [So+H-2H2O]+ 44 

BdS [M+H]+ [So+H-2H2O]+ 44 
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2.3.4 MALDI-TOF/TOF Mass Spectrometry Imaging 

MALDI-TOF/TOF mass spectrometric Imaging (MSI) was performed at the University of 

Applied Sciences Mannheim in the laboratory of Dr. Carsten Hopf. The frozen brains of 

transgenic and control mice were mounted onto a metal chuck with frozen section compound 

and cut into 12 μm cryosections using a Leica cryostat, according to a literature procedure 168. 

The cryosections were thaw-mounted onto precooled conductive indium tin oxide (ITO) slides. 

Before application of the matrix, the ITO slides were desiccated overnight under vacuum at 

room temperature. For the analysis of Neu3 related brain samples a 5 mg/mL solution of 

phenyl-cyano-cinnamamide in acetonitrile/water (90:10 v/v) was applied to the tissue sections 

by spray coating using the following parameters of the SunCollect device. First, three initial 

matrix layers were applied using flow rates of 10 μL/min, 15 μL/min, and 20 μL/min followed 

by six layers at 25 μL/min with a velocity of 1000 mm/min to ensure a homogeneous matrix 

layer on the tissue slides. MALDI imaging mass spectrometry (MALDI-MSI) was performed in 

negative linear mode in the m/z range of 900–2600 using an Autoflex Speed TOF/TOF with a 

2000 Hz modulated Nd:YAG laser (355 nm) and the FlexImaging 4.0 software (Bruker 

Daltonics). Prior to analysis, the acquisition method was calibrated using the total ganglioside 

porcine brain extract. A total of 200 laser shots were accumulated per raster spot with a laser 

width of 100 μm. In addition, baseline subtraction was performed and the images were 

visualized after total ion current (TIC)-normalization.  

For the analysis of Neu4 related brain samples a solution of 2,5-dihydrobenzoic acid (DHB) 

[60 mg/ml in acetonitrile/water (50:50 (v/v)), 0.5% TFA] was deposited onto the tissue sections. 

For matrix deposition, a SunCollect MALDI Spotter (SunChrom, Friedrichsdorf, Germany) was 

used at an air pressure of 2.2 bars. DHB was deposited in 5 layers, flow rate for the 1st layer 

set to 10 μl/min, 15 μl/min (2nd layer) and 20 μl/min for the last three layers. The distance 

between sprayer and tissue was 25.3 mm. A distance of 2 mm between spray lines and speed 

of 300 mm/min was used to ensure a homogeneous matrix layer on the tissue slides. Mass 

spectra were acquired on a rapifleX MALDI tissuetyper instrument (Bruker Daltonics) with a 

SmartbeamTM laser (modulated Nd:YAG laser, 355 nm) and 5 kHz repletion rate. Samples 

were analyzed in reflector negative ion mode with extraction at a source voltage of 20 kV and 

reflector voltage of 20.95 kV in the m/z range from 940 to 2600 Da (deflection < 900 Da) at a 

spatial resolution of 50 μm with 500 laser shots per position. Optimized laser energies were 

determined before measurement and kept constant during the measurement. The MS was 

calibrated internally using a list of theoretical masses of detected lipids. Spectra were 
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determined with flexImaging 5.0 software (Bruker Daltonics). Mass filters were chosen with a 

width of 0.2 Da. In addition, baseline subtraction was performed and the images were 

visualized after total ion current (TIC)-normalization. 

2.3.4.1 Hematoxylin and eosin staining of brain section samples measured by MALDI-

TOF/TOF 

Tissue sections on ITO slides were put for two minutes on a 65°C heating plate after measuring 

with MALDI-TOF/TOF. First, the matrix had to be removed by incubating the slides in 50 mL 

falcons filled with 50% methanol in water, 70% methanol in water, and two times 100% 

methanol each for three minutes. Additionally, a five minutes incubation in 100% acetone was 

implemented to fix the tissue on the glass slide. Afterwards, the tissue was rehydrated rinsing 

the slides shortly with tap water and immersing those five minutes in distilled water. The nuclei 

were stained blue using Mayer’s hematoxylin for two minutes followed by washing in water for 

three minutes and 30 seconds of 0.3% acid alcohol (350 mL EtOH + 150 mL H2O + 1.5 mL 

conc. HCl). After another wash step in water for one minute the slide was immersed into 

blueing solution (10 g NaHCO3 + 100 g MgSO4 in 5L H2O) for two minutes followed by an 

additional washing for two minutes in water. The red staining of eosinophilic structures was 

achieved by incubating the slides in Eosin for two minutes with a following was step for one 

minute in water. Finally, the tissue was dehydrated by three incubation steps each two minutes 

in 80% ethanol in water, 96% ethanol in water and 100% ethanol. The slide was dried for 

approximately 15 minutes at air exposure and was mounted with a glass cover using Eukitt 

mounting medium for microscopic evaluation. 
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3 Results 

3.1 LC-MS/MS method development for the analysis of Gangliosides 

In current literature a set of LC-ESI-MS/MS methods for the analysis of gangliosides are 

already published, using mostly normal phase or hydrophobic interaction liquid 

chromatography in combination with negative ion mode mass spectrometry for the separation 

of gangliosides (GG) 169–172. Positive ion mode detection and/or the use of reversed phase (RP) 

liquid chromatography are less common despite higher sensitivity for positive ions and shorter 

re-equilibrium time, this is due to a higher complexity in possible fragmentation and adduct 

ions as well as weak separation of the different gangliosides 173,174. In this work parameters for 

both the positive and negative ion mode in addition to the advantages and disadvantages of 

RP- and HILIC-MS/MS were determined in order to obtain a stable method for the quantitative 

analysis of gangliosides. In optimal case this should be a RP-MS/MS method in positive ion 

mode with baseline separation for the most abundant GGs.  

3.1.1 In-source decay of gangliosides in ESI-MS/MS 

A drawback of electrospray ionisation (ESI) - mass spectrometry, despite the soft ionization, is 

the possibility of in-source decay (ISD), the fragmentation of e.g. glycosphingolipids (GSL) in 

the ionization-source prior to analysis by the mass spectrometer. As intact building blocks like 

sialic acid or monosaccharides are lost, ISD complicates a correct identification and 

quantification of the analyzed lipids. The ganglioside GM1 for example can shed the terminal 

galactosyl and/or the N-acetyl-galactosaminyl moiety to mimic GM2 and/or GM3 respectively 

in mass spectrometric analysis (Figure 8). To evaluate the degree of ISD synthetic and natural 

ganglioside standards for GM3, GM2 and GM1 (10 ng/µL) were injected and analyzed with a 

BEH C18 column (1.7 µm, 50x2.1) and 60:40 methanol/water (v/v) versus 20:79:1 (v/v/v) 

isopropanol/methanol/water gradient containing 10 mM ammonium formate with and without 

0.2% formic acid on the basis of previous work 85 (Table 18). In negative ion mode the 

precursor (M) to product ion transition of single negatively charged ganglioside (GG) to the 

fragment corresponding to the deprotonated and dehydrated sialic acid was used: [M-H]- → 

[NeuAc-H3O]- (m/z 290). The ISD in negative mode was below the limit of detection (not 

shown). In contrast substantial and increasing ISD with more complex the ganglioside 

structures occurred in positive mode, in which the transition of positively charged GG to a 

sphingoid base fragment ([M+H]+ → [So+H-2H2O]+, m/z 264), was used for detection in MRM. 

Whereas simple GM3 was only detected as intact ion, ISD of GM2 induced detection of GM3 
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at the retention time of GM2 and GM1 was more than fifty percent damaged to yield the ISD 

ions of GM2 and GM3 respectively (Figure 8). These results revealed the importance of strict 

chromatographic separation for the different gangliosides to prevent false positive detection. 

Table 18: RP18-MS2 gradient for the analysis of gangliosides adopted from previous work to test in-source decay  

85. 

Time [min] Flow [mL/min] Solvent A [%] Solvent B [%] Curve 

Initial 0.45 100 0 Linear 

0.25 0.45 100 0 Linear 

1.00 0.45 50 50 Linear 

5.50 0.45 0 100 Convex 

6.50 0.45 0 100 Linear 

7.00 0.45 100 0 Linear 

7.50 0.45 100 0 Linear 

 

3.1.2 Ammonium adducts and ISD-water loss of ganglioside with LC-MS/MS 

Using distinct solvent systems for liquid chromatography has impact on the ions detectable 

with mass spectrometry as described now. The addition of ammonium formate and/or formic 

acid to the gradient solvents can lead to ammonium [M+NH4]+ or formate [M+HCO2]- adduct 

ions besides the protonated [M+/-H]+/- molecular ions. Another ISD that can occur is the water 

loss to yield [M-H2O+H]+ . Synthetic and natural ganglioside standards for GM3, GM2 and GM1 

(10 ng/µL) were injected and analyzed with a BEH C18 column (1.7 µm, 50x2.1) and 60:40 

methanol/water versus 20:79:1 isopropanol/methanol/water gradient containing 10 mM 

ammonium formate with and without 0.2% formic acid to determine the degree of adduct 

formation and ISD-water loss in positive as well as negative ion mode (Table 18). In negative 

ion mode no significant adducts were detected (not shown). The positive ion mode revealed 

only minor ISD-water loss ions (6%) and ammonium adduct ion formation (11%) for GM3. GM2 

and GM1 display the same minor water loss ions (6%/10%), in contrast the percent of 

ammonium adduct ions seemed to increase with increased complexity of the GGs (55% and 

56%, respectively) (Figure 8). 
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3.1.3 Mass Spectrometry Parameter Optimization 

The sensitivity for detecting ions with mass spectrometry depends on various parameters used 

for the electron ionization and collision induced dissociation (CID), which influence the degree 

of fragmentation, adduct ion formation and overall ionization capacity. Intact positive ions 

[M+H]+ of ganglioside GM3, GM2 and GM1 were monitored while using distinct parameters of 

source temperature and capillary voltage for the electron spray. Ganglioside standards 

(10 ng/µL) with a BEH C18 column (1.7 µm, 50x2.1) and 60:40 methanol/water versus 20:97:1 

isopropanol/methanol/water gradient containing 10 mM ammonium formate and 0.2% formic 

acid (Table 18) were injected. Three temperature points for source temperature were 

evaluated, namely 90°C, 120°C and 150°C. At 120°C the highest signal intensities for all 

measured GGs was observed (Figure 8). The capillary voltage was tested with six different 

high voltage value settings in the range of 2.6-3.6 kV for [M+H]+, [M-H2O+H]+, and [M+NH4]+ of 

GM3 and GM1. For all voltages the M+H]+ of both, GM3 and GM1 was the most intense ion 

with an optimimum at 3.0 kV (Figure 8).  
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Figure 8: In-source decay (ISD) with loss of monosaccharides, ammonium adduct ion formation, ISD with water 

loss, and influence of source temperature and capillary voltage for the ganglioside standards GM3, GM2 and GM1. 

A: GM1 structure with indicated ISD for GM2 and GM1. B and C: Synthetic (N=1) and natural (N=3) standards were 

injected with 10 ng/µL each and measured via RP-MS/MS with MRM transitions for [M+H]+→[So+H-2H2O]+ for 

GM1, GM2 and GM3 ISD. ISD increase with complexity of ganglioside (GG). D: Ammonium adduct formation and 

water loss compared to protonated ions of GM1, GM2 and GM3 natural standards (N=3). Ammonium adduct ion 

formation is prominent for complex GG. E: Source Temperature parameter optimization for 90°C, 120°C and 150°C 

revealing 120°C as improved temperature for intact [M+H]+ ion of GM1, GM2 and GM3 synthesized standards. 

(N=1). F and G: Capillary voltage optimization of GM3 and GM1 natural standard with 3.0kV as improved value for 

detection. Capillary voltage displayed no influence on ammonium adduct formation and water loss. (N=3) 
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Optimal collision induced dissociation (CID) was tested with synthetic and natural standards 

for each ganglioside GM3, GM2, GM1, GD3, GD1a and GT1b (10 ng/µL) in positive and 

negative ion mode for different product ion fragments. Fragmentation energy via electron 

voltage (eV) was stepwise changed during direct injection of the standards with product ion 

scans for each ganglioside (predominantly (d18:1;18:0)). Optimum values were evaluated 

(Table 19) by gaining mass spectra for 5 minutes with a scan time of 2 seconds in the selected 

mass range of each ganglioside. 

 

Table 19: Optimal CID parameters for gangliosides. 

Ganglioside MRM [eV] Ganglioside MRM [eV] 

GM3 [M-H]- > 290.1 50 GD3 [M-2H]2- > 290.1 30 

 [M-H]- > 87 65  [M-2H]2- > 581 35 

 [M+H]+ > 264.2 50  [M+H]+ > 264.2 38 

GM2 [M-H]- > 290.1 60 GD1 [M-2H]2- > 290.1 35 

 [M-H]- > 87 75  [M+2H]2+ > 264.2 38 

 [M+H]+ > 264.2 60  [M+2H]2+ > 204.1 38 

 [M+H]+ > 204.1 60  [M+2H]2+ > 366 25 

GM1 [M-H]- > 290.1 65 GT1 [M-2H]2- > 290.1 32 

 [M-H]- > 87 85  [M+2H]2+ > 264.2 32 

 [M+H]+ > 264.2 60  [M+2H]2+ > 204.1 32 

 [M+H]+ > 204.1 60  [M+2H]2+ > 366 25 

 [M+H]+ > 366 25    

 

3.1.4 Adduct ion formation in the presence of diethylenetriamine 

Total ganglioside porcine brain standard (16 µg/mL) was spiked with 10 mM diethylenetriamine 

(DETA) and ion adduct formation tested by direct injection mass spectrometry in positive ion 

mode. Mass spectra were generated by acquisition for 5 minutes and scan times of 2 seconds 

with 20 eV collision energy in the full scan mode and 65 eV in precursor ion scan mode for m/z 

264/292/204. All mass spectra showed the shift of m/z 103 due to DETA adduct ion formation, 

exemplary visualized for GM1 and GD1 (Figure 9). Importantly, the DETA-GG adducts yielded 

the base peaks in precursor ion scans using the sphingoid base fragments m/z 264 or m/z 292 

and the HexNAc fragment m/z 204, which demonstrates the potential of DETA addition for a 

more sensitive MRM detection of GGs in positive mode. However, further investigations with 
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DETA were stopped as a fine yellow mist had been forming in the spray chamber during 

acquisition to avoid further contamination of the mass spectrometer. 
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Figure 9: Adduct ion formation in the presence of 10 mM diethylenetriamine in total ganglioside porcine brain 

standard (16 µg/mL) measured by direct injection in the positive ion mode. From top down: full scan overview, 

precursor ion scan (PS) of m/z 264 for sphingosine base d18:1, PS of m/z 292 for sphingosine base d20:1, and PS 

of m/z 204 for the loss of HexNAc fragment. 
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3.1.5 Liquid Chromatography Parameter Optimization 

Liquid chromatography offers many types of adsorption chemistry that can be used for 

separating substances. Reversed phase (RP) chromatography contains of a hydrophobic 

stationary phase in contrast to normal phase. Another possibility is the use of hydrophilic 

interaction chromatography (HILIC), which uses a hydrophilic stationary phase. With respect 

to gangliosides separation is mainly based on either structural differences of the hydrophobic 

ceramide backbone (RP) or the hydrophilic glycan moiety (HILIC) (Figure 10). The solvents 

used for each chromatographic type are different attending to the different chemistry, e.g. in 

HILIC chromatography acetonitrile is used as methanol tends to broaden the peak width. 

Although in positive mode methanol would be the preferred solvent for better ionization 

efficacy. The attempt of this work was to find either a RP based chromatography with enough 

resolving power to separate gangliosides in positive ion mode to benefit of higher sensitivity 

and/or develop a HILIC based chromatography method for analyzing gangliosides in negative 

and positive ion mode. 

 

 

Figure 10: Separation of gangliosides on RP18 based chromatography (left) and HILIC based chromatography 

(right) of natural standards GM3, GM2 and GM1 10 ng/µL detected with LC-MS/MS in negative ion mode. 

Separation power of RP18 versus HILIC for glycan head group (top) and ceramide moiety (bottom) of gangliosides.   
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3.1.5.1 Gradients for reversed phase chromatography 

Routine analysis of neutral sphingolipids with LC-MS/MS was based on reversed phase (RP) 

chromatography in our lab. Starting from the established gradient with a 60:40 methanol/H2O 

(v/v) versus 20:97:1 isopropanol/methanol solvent system (v/v/v) containing 10 mM ammonium 

formate and 0.2% formic acid in combination with a BEH C18 column (1.7 µm; 50x2.1) (Table 

18), the gradient was systematically tested for different solvent compositions and gradient 

course to gain a baseline separation of gangliosides (chromatographic resolution R ≥ 1.5). 

Additionally, a CSH C18 column (1.7 µm; 100x2.1) with a smaller pore size of 130 A° compared 

to 150 A° of BEH C18 and a higher efficacy due to longer column length was tested. As an 

alternative to classical C18 columns the HSS PFP column (1.8 µm; 100x2.1) was examined, 

which has a pentafluorophenyl phase with optimized performance at low pH values and an 

even smaller pore size of 100 A° compared to the above mentioned columns. The different 

solvent systems tested on the BEH C18 column are mentioned in Appendix I, the result with 

the highest chromatographic resolution (gradient #5 R=1) is shown in Table 20. Nevertheless, 

all seven tested gradients failed to gain a baseline separation for gangliosides with R≥1.5 

(Figure 11).  

 

Figure 11: Calculated chromatographic resolution of GGs GM1/GM3 for different solvent systems and gradients 

used for BEH C18 column (1.7 µm; 50x2.1). Gradient #5 showed the highest resolution with R=1, but failed to 

separate gangliosides with baseline separation (R≥1.5). 

 

Natural standard mixture of gangliosides GM3, GM2 and GM1 (10 ng/µL) were injected and 

measured in positive ion mode to gain chromatograms of each ganglioside with the ceramide 

backbone d18:1;20:0, where retention time (tR) and peak width at half peak heights (FWHM) 

were extracted to calculate chromatographic resolution 𝑅 = 1.18 ∗ (
(𝑡𝑅2−𝑡𝑅1)

(𝐹𝑊𝐻𝑀2+𝐹𝑊𝐻𝑀1)
). The same 

natural standards mixture as mentioned above was used for the CSH C18 column with a similar 



  3 Results 

 43 

solvent system shown in Table 21 and for the HSS PFP column with a solvent system modified 

from Basit et al., 2015 175 shown in Table 22. The results of chromatographic resolution for 

each column and gradient are outlined in Table 23 revealing that the tested RP columns fail to 

resolve all three gangliosides with baseline separation. The CSH C18 and HSS PFP columns 

are sufficient to differ between GM3 and GM1 as well as GM3 and GM2. That, diminished the 

false-positive detection for GM1 in-source decay, but both fail to separate GM1 from GM2 

completely. The overlay of extracted ion chromatograms for natural ganglioside standards in 

a mixture of LacCer, GA2, GA1, GM1, GM2, GM3 and GD1a (10 ng/µL) run on the HSS PFP 

column revealed that LacCer, GA2 and GA1 are only separated by about 50% of the peak 

heights similar to GM2 and GM1. GD1a detection resulted in a small double peak with a high 

peak width, which was not base line separated from GM1 (Figure 12). 
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Table 20: LC gradient used for BEH C18 column 

(1.7 µm; 50x2.1) ; A: 60% acetonitrile/40% H2O, B: 

99% isopropanol/1% methanol, 10 mM ammonium 

formate, 0.1% formic acid. 

Time 

(min) 

Flow rate 

(mL/min) 

%A %B Curve 

Initial 0.45 50 50 Initial 

0.1 0.45 50 50 8 

5.5 0.45 15 85 8 

7.0 0.45 10 90 6 

7.25 0.45 50 50 6 

8.0 0.45 50 50 6 
 

Table 21: LC gradient used for CSH C18 column (1.7 

µm; 100x2.1) ; A: 50% methanol/50% H2O, B: 99% 

isopropanol/1% methanol, 10 mM ammonium formate, 

0.1% formic acid. 

Time (min) Flow rate (mL/min) %A %B Curve 

Initial 0.35 50 50 Initial 

0.2 0.35 50 50 6 

7.0 0.35 10 90 6 

7.5 0.35 10 90 6 

8.0 0.35 50 50 6 

9.0 0.35 50 50 6 
 

Table 22: LC gradient used for HSS PFP column 

(1.8 µm; 100x2.1) ; A: 40% acetonitril/60% H2O, B: 

20% acetonitril/80% isopropanol, 0.1% formic acid 

Time 

(min) 

Flow rate 

(mL/min) 

%A %B Curve 

Initial 0.45 100 0 Initial 

0.5 0.45 100 0 7 

2.5 0.45 60 40 7 

4.5 0.45 40 60 7 

6.5 0.45 21 79 6 

7.5 0.45 0 100 6 

8.0 0.45 100 0 6 

10.0 0.45 100 0 6 
 

Table 23: Chromatographic resolution of different 

reversed phase columns. 

LC 

column 

R 

(GM3/GM1) 

R 

(GM3/GM2) 

R 

(GM2/GM1) 

BEH 

C18 

1.16 0.54 0.51 

CSH 

C18 

1.54 1.26 0.44 

HSS 

PFP 

3.95 5.77 0.57 

 

 

Figure 12: Overlay of extracted ion chromatograms generated by HSS PFP column for GSL standard mix. 
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3.1.5.2 Gradients for normal phase and hydrophobic interaction chromatography 

As the detection of gangliosides with a RP18 based chromatography is still limited despite the 

optimization attempt in chapter 3.1.5.1 the gangliosides were tested to separate by HILIC 

based chromatography.  For the development of a HILIC phase based LC-MS/MS analysis a 

BEH HILIC column (1.7 µm; 100x2.1) was tested with a solvent system consistent of 90:10 

acetonitrile/H2O (v/v) versus 50:50 acetonitrile/H2O (v/v) with 10 mM ammonium formate. 

Natural standards mixture of GM3, GM2 and GM1 (10 ng/µL) were injected and measured in 

positive as well as negative ion mode. To achieve a better ionization efficacy as well as better 

solubility of the gangliosides the methanol tolerance in the solvent system was tested. 

Gangliosides were measured with transitions for M+H]+/[M+H-H2O]+/[M+NH4]+ → [Sph-2H2O]+ 

in positive ion mode and [M-H]- → [NeuAc-H]- in negative ion mode. Ionization efficacy in positive 

mode was higher than in negative mode, to test if the ionization could be enhanced in negative 

ion mode a solvent system with A 45:45:10 (v/v/v) acetonitrile/methanol/water was used. The 

addition of methanol leads to a drastic peak widening on the BEH HILIC column together with 

the appearance of ghost peaks. Furthermore, a BEH amide column (1.7 mm; 100x2.1) and a 

CORTECS HILIC column (1.7 µm; 100x2.1) were evaluated for their chromatographic 

performance with the same acetonitrile based gradient (Figure 13). The Cortecs HILIC column 

showed the most similar adsorption power for all three gangliosides as well as the smallest 

peak width, additionally the number of theoretical plates could be enhanced about a factor of 

three (BEH N=1700, Cortecs N=5800). 
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Figure 13: HILIC-MS2 method development testing positive (A) and negative (B) ion mode with a BEH HILIC column 

as well as methanol (C) tolerance for a standard mixture of GG GM1, GM2 and GM3. Additionally, a BEH Amide 

(D) and Cortecs HILIC (E) column were tested with the same acetonitrile solvent system in negative ion mode. 

3.1.5.3 Additives for negative ion mode detection 

To accomplish better sensitivity for gangliosides in the negative ion mode different salt 

additives were tested. Their ionization efficacy was measured by direct injection of a human 

ganglioside standard (5 µg/mL; 10 minutes acquisition). The most abundant ganglioside in this 

standard is GD1a, which was detected as double negatively charged ion with the ceramide 

backbone composition of d36:1 (m/z 917.4) and d38:1 (m/z 931.8). Ion signals of these species 

were used as a quality parameter for signal intensity, as well as their calculated adduct ions. 

The human ganglioside standard was dissolved in methanol with no additive, 0.1% lithium 

acetate, 0.1% potassium acetate, 10 mM ammonium acetate and 10 mM ammonium formate. 

Mass spectra were generated by precursor ion scanning with the product ion for sialic acid 

loss of gangliosides (m/z 290). Methanol without any additives showed a weak signal for GD1a 

slightly above background noise, while the addition of either 0.1% lithium acetate or potassium 

acetate decreased the GD1a signal into background noise. Ammonium formate (10 mM) 

doesn’t seem to change the GD1a signal intensity overall, although ions at 42 mass units 

higher than the corresponding GD1a peaks appeared. The most promising result was achieved 

with an additive containing 10 mM ammonium acetate showing the highest signal intensity for 

GD1a together with detectable signals for GM1 (m/z 1544/1573) and doubly charged GT1b 

(m/z 1062/1074) (Figure 14). 
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Figure 14: Additives test for ganglioside detection in negative ion mode. Human ganglioside standard (5 µg/mL) 

was measured with direct injection and precursor ion scan spectra were acquired within 10 minutes. Standard was 

solved in 100% MeOH (A) with 10 mM ammonium formate (B), 0.1% potassium (C) or lithium (D) acetate, and 10 

mM ammonim acetate (E). GD1 (m/z 917 and 932) and GM1 (m/z 1544 and 1573) are the most abundant 

gangliosides in all spectra. Note that arbitrary intensity of the ammonium acetate spectrum (E) is approximately 

10times higher than spectra with other additives. 

3.1.6 Sample preparation 

Sample preparation for gangliosides is complex and time consuming. To test the influence of 

different sample preparation steps, a WT Bl6 mouse brain was homogenized, then divided into 

five equal aliquots and further processed with five different methods of preparation. 

Gangliosides were detected with LC-MS/MS in negative ion mode with the transition 

[M-H/2H]-/2- → [NeuAc-H3O]- using a 90:10 acetonitrile/H2O (v/v) versus 50:50 acetonitrile/H2O 

(v/v) gradient with 10 mM ammonium formate. The most sufficient protocol with a 5fold 
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increase in sensitivity compared to only desalination for the gangliosides GM3, GM2, GM1 and 

GD3 was to first separate the lipid extract with anion exchange chromatography in neutral and 

acidic fractions, next delete phospholipids via saponification and finally desalinate fractions 

with RP18 chromatography (Figure 15). 

 

Figure 15: Sample preparation test for the analysis of gangliosides with HILIC-MS2 analysis. Whole WT mouse 

brain was homogenized and separated into five equal aliquots. Desalination (RP18), saponification to eliminate 

phospholipids (Sapon), and anion exchange chromatography to use only acidic GSL (DEAE) was performed in 

different combinations. First anion exchange chromatography, followed by saponification and desalination (blue) 

revealed highest sensitivity for ganglioside detection.  

3.2 Ganglioside processing by Neuraminidases in models of Tay-Sachs 

disease (GM2 gangliosidoses) 

3.2.1 Neuraminidase 4 

Tay-Sachs disease is a lysosomal storage disorder where ganglioside GM2 accumulates in 

the brain, which leads to severe neurodegeneration and death after 2-4 years in the infantile 

form. Complete genetic disruption of the Hexosaminidase A activity, which rather resembles 

the severe infantile forms of TSD, results in mice only in a mild GM2 accumulation and 

therefore mild neurologic phenotype. Neuraminidases in the mouse brain were found to bypass 

the defective GM2 degradation to GM3 by cleaving the terminal sialic acid and converting GM2 

into GA2, which can then further be degraded by the remaining HexB to LacCer which is the 

normal degradation product from GM3. The cooperation partner of this work, Volkan 

Seyrantepe, reported neuraminidase 4 as a candidate involved in the GM2 bypass process 

and consequently a target for possible treatment 102. In the consecutive chapter the impact of 

neuraminidase 4 on brain gangliosides was analyzed by HILIC-MS/MS in mouse models of 
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Tay-Sachs disease. This was combined with depletions of selected enzymes partaking in the 

ganglioside biosynthesis, to gain an overview of potential effects for neuraminidase 4 

treatment. Lipid brain extracts were proceeded with anion exchange chromatography, 

saponification and desalination. Additionally, wet weights and protein content were determined 

(Table 24). 

Table 24: Mouse brain samples for the LC-MS/MS analysis of gangliosides in Tay-Sachs disease with combined 

neuraminidase 4 deficiency and ganglioside synthesis enzymes depletion. 

Name Age 

(month) 

Colony Genotype acidic 

GSL 

MS 

neutral 

GSL MS 

HexCer 

MS 

MALDI wet 

weight 

[mg] 

protein 

[mg] 

70 3 GD3S WT ● ●  ● 190.4 15.0 

34 6 GD3S WT ● ● ●  223.3 16.0 

H7 3 GD3S HexA ● ●   192.3 14.5 

H17 6 GD3S HexA ● ●   211.1 14.0 

N12 3 GD3S Neu4 ● ●   213.0 13.9 

N9 6 GD3S Neu4 ● ● ●  205.1 15.0 

46 3 GD3S GD3S ● ●   209.3 16.4 

31 6 GD3S GD3S ● ●   195.9 15.4 

75 3 GD3S Neu4GD3S ● ●   192.2 16.2 

73 6 GD3S Neu4GD3S ● ●   199.6 14.2 

66 3 GD3S HexAGD3S ● ●   237.1 17.8 

44 6 GD3S HexAGD3S ● ●   203.2 14.7 

74 3 GD3S Neu4HexAGD3S ● ●   215.3 15.9 

64 12 GD3S Neu4HexAGD3S ● ●   201.6 17.2 

83 6 GD3S Neu4HexAGD3S ● ●  ● 129.0 10.3 

84 6 GD3S HexA ● ● ● ● 232.9 17.2 

85 6 GD3S Neu4GD3S ● ●  ● 232.7 19.3 

86 3 GD3S Neu4GD3S ● ●   204.5 14.0 

90 6 GD3S HexAGD3S ● ●  ● 267.9 20.1 

27 3 GD3S GD3S ● ●   186.5  

28 6 GD3S GD3S ● ●   192.9  

32 6 GD3S GD3S ● ●   224.5  

36 3 GD3S GD3S ● ●   178.3  

87 3 GD3S Neu4GD3S ● ●   197.0  

88 3 GD3S Neu4GD3S ● ●   196.2  

109 6 GD3S Neu4GD3S ● ●   392.2  
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110 6 GD3S Neu4GD3S ● ●     397.3   

707 3 GM2AP GM2AP ● ●   220.6  

705 6 GM2AP GM2AP ● ● ●  195.1  

704 6 GM2AP HexAGM2AP ● ●   213.9  

703 6 GM2AP Neu4HexAGM2AP ● ●   240.8  

708 3 GM2AP HexAGM2AP ● ●  ● 181.5 10.3 

709 3 GM2AP Neu4HexA ● ●  ● 134.8 10.9 

713 3 GM2AP Neu4GM2AP ● ● ● ● 119.4 8.9 

714 3 GM2AP Neu4HexAGM2AP ● ●  ● 130.9 7.5 

717 6 GM2AP Neu4HexA ● ● ● ● 174.6 10.7 

724 6 GM2AP Neu4HexA ● ●   182.7 13.2 

722 3 GM2AP GM2AP ● ●   181.5  

723 3 GM2AP GM2AP ● ●   177.9  

732 3 GM2AP Neu4GM2AP ● ●   156.6  

733 3 GM2AP Neu4GM2AP ● ●   224.5  

745 6 GM2AP Neu4GM2AP ● ● ●  180.8  

746 6 GM2AP GM2AP ● ● ●  164.0  

747 6 GM2AP GM2AP ● ● ●  153.4  

751 6 GM2AP Neu4GM2AP ● ● ●   198.8   

21 3 GM3S wt ● ●   196.1 13.7 

34 3 GM3S HexAGM3S ● ●   203.9 15.0 

11 6 GM3S wt ● ●  ● 210.8 17.8 

33 3 GM3S HexA ● ●  ● 202.1 11.5 

42 3 GM3S Neu4GM3S ● ●   198.9 14.4 

43 3 GM3S Neu4 ● ●  ● 188.7 10.4 

44 3 GM3S GM3S ● ●   207.5 12.7 

46 3 GM3S HexAGM3S ● ●   235.9 14.1 

54 3 GM3S Neu4HexAGM3S ● ●   184.5 12.3 

24 3 GM3S GM3S ● ●   189.0  

25 3 GM3S GM3S ● ●   184.3  

36 6 GM3S GM3S ● ●     191.2   

31 3 Galgt Galgt1 ● ●   164.8 13.1 

36 6 Galgt Galgt1 ● ●   209.2 14.3 

41 6 Galgt HexAGalgt1 ● ●   162.2 11.2 

35 3 Galgt Neu4Galgt1 ● ●   192.6 14.9 

47 6 Galgt Neu4Galgt1 ● ●   205.6 14.5 

39 3 Galgt Neu4HexA ● ●   161.9 12.5 
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40 6 Galgt Neu4HexA ● ●   183.4 13.6 

37 3 Galgt Neu4HexAGalgt1 ● ●   206.1 16.5 

23 6 Galgt Neu4HexAGalgt1 ● ●   190.6 13.8 

VS67 3 Galgt Neu4HexAGalgt1 ● ●   162.1 14.1 

VS68 3 Galgt Neu4Galgt1 ● ●   190.2 14.3 

VS69 6 Galgt Neu4Galgt1 ● ●   206.3 14.1 

VS70 6 Galgt Neu4HexAGalgt1 ● ●   198.1 12.4 

VS71 6 Galgt Neu4HexA ● ●   220.4 14.1 

19 3 Galgt Neu4Galgt1 ● ●   197.4  

20 3 Galgt Neu4HexA ● ●   221.9  

24 3 Galgt Neu4HexA ● ●   173.1  

25 3 Galgt Neu4HexA ● ●   120.8  

49 6 Galgt Neu4HexA ● ● ●  215.8  

61 6 Galgt Neu4Galgt1 ● ●   216.7  

62 6 Galgt Neu4HexA ● ● ●   212.8   

54 3 Neu4 wt ● ●   186.3  

83 3 Neu4 wt ● ●   209.8  

C6  6 Neu4 wt ● ● ●  403.4  

C7 6 Neu4 wt ● ● ●  405.1  

N11 3 Neu4 Neu4 ● ●   238.7  

N13 3 Neu4 Neu4 ● ●   219.6  

N29 6 Neu4 Neu4 ● ● ●  220.5  

N30 6 Neu4 Neu4 ● ● ●  204.3  

H11 6 Neu4 HexA ● ● ●  224.0  

H15 6 Neu4 HexA ● ● ●  210.0  

H25 3 Neu4 HexA ● ●   394.3  

H26 3 Neu4 HexA ● ●   374.6  
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Preliminary TLC analysis of mouse brain tissue with HexA-/-, Neu4-/-, GM2AP-/- and Neu4-/-

HexA-/- showed a deletion of Neu4 reduced GM1 levels compared to WT or HexA-/-.  

Accumulation of GM2 in the range of HexA-/- or more pronounced GM2AP-/- was not detected 

in mice with Neu4 deficiency (Figure 16). Nevertheless, the additional deletion of Neu4 to 

HexA-/- led to a more intense GM2 accumulation as in only HexA deletion mouse brains. 

 

 

Figure 16: TLC of GM2 gangliosidosis mouse brain tissue and neuraminidase 4 deficiency mouse brain tissue from 

the age of 6 month. WT and Neu4-/- showed no GM2 band, whereby HexA-/-, GM2AP-/- and Neu4-/-/HexA-/- displayed 

a clear GM2 accumulation.   

3.2.1.1 Neuraminidase 4 in GM2 gangliosidosis mouse model 

Gangliosides from brain lipid extracts were measured in negative ion mode as [M-H]- → 

[NeuAc-H]- transitions on a Cortecs HILIC column with an 90:10 acetonitrile/water (v/v) versus 

50:50 acetonitrile/water (v/v) gradient containing 10 mM ammonium acetate. Neutral 

glycosphingolipids that were metabolic products from the gangliosides of interest were 

measured in positive ion mode as [M+H]+ → [So+H-2H2O]+ transitions on a CSH C18 column 

with a gradient of 50:50 methanol/water (v/v) versus 99:1 isopropanol/methanol (v/v) 

containing 10 mM ammonium formate, 0.1% formic acid and 5 µM citrate. Mouse brain 

samples from mice of 3 and 6 month age with a genetic background of Bl6 WT, Neu4-/-, HexA-/-

, GM2AP-/-, Neu4-/-/ HexA-/- and Neu4-/-/ GM2AP-/- were analysed in triplicates (n = 3) and 

ganglioside values were displayed as ratio of single ganglioside per direct metabolite, e.g. 

GD1a/GM1 ratio. Furthermore, the impact of Neu4 on ganglioside metabolism was highlighted 

by presenting the data as fold change ratio of Neu4-/-/WT or double-knockout containing Neu4 

per single knockout (e.g. (Neu4-/-/ HexA-/-)/ HexA-/-), respectively. Figure 17 shows the fold 
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change values against the p value for ganglioside data of the different mouse models, whereby 

both age time points are included in the figure. The results reveal that Neu4 deletion led to 

increased ratios of GM3/LacCer (orange rhomb) and GD3/GM3 (grey dot), whereas GM1/GA1 

(grey triangle) and GD1a/GM1 (red cross) ratios decreased (Figure 17, red encircled region). 

3.2.1.2 Neuraminidase 4 in a GM3/GD3 only mouse model 

Gangliosides were analyzed as described above (3.2.1.1.1) and presented as fold change 

values. The influence of Neu4 on GM3 and GD3 was determined by using mice deficient in 

N-acetyl-galactosaminyl transferase (Galgt1-/-) with an age of either 3 or 6 month. Mice with a 

combined knockout in Neu4-/- and Galgt1-/- were compared to only Galgt1-/- deficient mice in a 

Bl6 WT background as well as in a Tay-Sachs disease model (HexA-/-) (Figure 17). The 

influence of Neu4 on GD3 levels were not detectable due to low sensitivity of GD3 (not shown). 

Although, the increase of GM3/LacCer levels in mice deficient of Neu4 as shown in the 

previous chapter could be confirmed (Figure 17).  

3.2.1.3 Neuraminidase 4 in a 0-series gangliosides only mouse model 

Gangliosides were analyzed as described above (3.2.1.1.1) and presented in fold change 

values. The influence of Neu4 on 0-series gangliosides was resolved by using mice deficient 

in GM3 synthase (GM3S-/-) with an age of 3 month. Mice with a combined knockout in Neu4-/- 

and GM3S-/- were compared to only GM3S-/- deficient mice in a Bl6 WT background as well as 

in a Tay-Sachs disease model (HexA-/-) (Figure 17). The results show that Neu4 may have an 

influence on GD1c or GD1α per GM1b ratios. 

3.2.1.4 Neuraminidase 4 impact on gangliosides in a GD3 synthase deficient mouse model 

Gangliosides were analysed as described above (3.2.1.1.1) and presented in fold change 

values. The influence of Neu4 on mainly a-series gangliosides was determined by using mice 

deficient in GD3 synthase (GD3S-/-) with an age of 6 month. Mice with a combined knockout in 

Neu4-/- and GD3S-/- were compared to only GD3S-/- deficient mice in a Bl6 WT background 

(Figure 17). As described above the increase in GM3/LacCer levels upon deletion of Neu4 was 

detected, as well as the decrease of GM1/GA1 levels similar to the results of the GM2 

gangliosidosis model combined with Neu4 deficiency (Figure 17). The results show that the 

main activity of neuraminidase 4 is on GM1/GA1 and GM3/LacCer levels with minor activity 

extended to GM2/GA2 and GD1/GM1 levels.  
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Figure 17: Ganglioside pattern in mouse models of Tay-Sachs disease (TSD) and neuraminidase 4. A: Scatter-plot 

reflecting the foldchange of Neu4/WT, Neu4_HexA/HexA, Neu4_GM2AP/GM2AP of mouse brains with the age of 

3 and 6 month. Red circle highlights significant changes for GM3/LacCer, GM1/GA1, GD1/GM1 and GD3/GM3 

levles (N=3). B: GM3/LacCer levels increase in knockouts where Neu4 is incorporated in the background of Galgt1 

(N=3, except Galgt1 N=1). C: GD1α or c/GM1b decrease in mice with combined GM3S and Neu4 deficiency (N=3, 

except GM3S_Neu4 and GM3S_HexA_Neu4 N=1). D: GM3/LacCer increase and GM1/GA1 decrease detected in 

GD3S KO mice combined with Neu4 deficiency (N=3-4).  

3.2.2 Neuraminidase 3 

In parallel to the evaluation of neuraminidase 4 (Neu4) role in the bypass of GM2 degradation, 

neuraminidase 3 was investigated as a likely candidate for Tay-Sachs disease medical 

investments 85. On the basis of the HILIC-MS/MS analytic of Neu4 mouse models described 

earlier in this work, Neu3-/- deficient mouse brain samples with the age of 2.5 and 4.5 month 

combined with the mouse model of Tay-Sachs disease (HexA-/-) were investigated. Prior to 

HILIC-MS/MS analysis thin layer chromatography (TLC) was performed according to the 

method described in material and methods. Already the TLC showed the massive 

accumulation of GM2 in the double knockout of Neu3-/-/HexA-/- mice brains compared to the 

detected GM2 accumulation on only HexA-/- mice (Figure 18). The mass spectrometric data 

confirmed the severe GM2 accumulation with additional increased values of GA2, GM3 and 

LacCer, but not GA1 or GM1 (Figure 18).  
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Figure 18: Ganglioside GM2 accumulation in a mouse model of Tay-Sachs disease combined with Neuraminidase 

3 deficiency. A: TLC of acidic GSL fraction from mouse brain lipid extracts. GM2 accumulation is displayed in 

Hex-/- and more prominent in HexA-/-/Neu3-/- brains of 2.5 and 4.5 month old mice. Light GM2 band of Neu3-/- brain 

only detectable for age of 4.5 month. B-G: LC-MS/MS analysis of gangliosides in mouse brain extracts. GM2 and 

GA2 accumulation is higher in double knockout mouse brains of mice with the age of 4.5 month. Additional GM3 

and LacCer enhancement is detected and no changes in GA1 and GM1 levels. N = 3, mean ± SEM. 

3.3 Mass spectrometric imaging - method development for comparison of 

DESI-MS/MS and MALDI-TOF 

LC-MS/MS analytic has limits when it comes to the localization of distinct substances into 

special tissue compartments of organs. While it is possible to dissect a mouse brain in different 

areas such as cortex, cerebellum, hippocampus or hypothalamus prior to lipid extraction and 

LC-MS/MS analysis, it is time-consuming and experts are necessary. Mass spectrometric 

imaging is a technique to circumvent these drawbacks. It is able to screen tissue sections and 

generate mass spectra for each pixel to finally show reconstructed images for distinct masses 

with intensities as local distribution. Matrix-assisted laser desorption ionization (MALDI) has 

become the current standard for mass spectrometry imaging, however there are other methods 

that seems content for future analysis. DESI is an ambient ionization method based on 

principles similar to electrospray ionization (ESI). Combining DESI with tandem-mass 

spectrometry using SRMs would add specificity to conventional imaging MS, and specific 
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information about defined lipid (ganglioside) locations can be gained. The advantage of DESI 

in comparison to other imaging techniques is the reduction of sample preparation and the 

relative high velocity of the measurements. In the following chapter the development of 

DESI-MS/MS methods for measuring lipids (gangliosides) in mouse brain sections and its 

direct comparison to MALDI-TOF is described. 

3.3.1 DESI-MS/MS 

The signal intensity of desorption electrospray ionization (DESI) is highly dependent on the 

geometric parameter of the DESI-source, especially capillary tip to MS inlet distance, capillary 

tip to surface distance, MS inlet to surface distance and MS inlet to surface angle (Figure 19). 

These parameters were roughly set by using a Sharpie marker and detecting the rhodamine 

(m/z 443). Additionally, optimal nitrogen pressure, spray solvent, spray solvent flow rate and 

capillary voltage were determined (Figure 19). 

 

Figure 19: DESI geometry and DESI parameter for optimization and rhodamine signal. 

Sphingomyelin was used as a standard to improve the parameters for the analysis of 

sphingolipids. Further, the precursor ion scan (and finally SRM) as a new tool for mass 

spectrometry imaging was tested. Spots with a volume of 1 µL containing 0.1 mg/mL 

sphingomyelin in methanol were placed on special DESI slides prepared with a roughened 

surface for better ionization and let dry. DESI acquisition was performed using a constant 

velocity with 300 µm/sec over a defined number of standard spots to compare signal changes. 

Precursor ion scan of m/z 184, representing the head group loss of phosphatidylcholine in 

positive ion mode, showed reproducible signals for each standard spot. Five structurally 

different sphingomyelin compartments in the standard were identified (Figure 20).  
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Figure 20: DESI parameter optimization by sphingomyelin standard (0.1 mg/mL; 1 µL droplet) acquisition with 

constant velocity (300 µm/sec) point-by-point setting (A and C) in precursor ion scan mode for m/z 184 (B and D).  

For investigating sphingomyelin on brain tissue cryo-sections of fresh frozen brains with 12 µm 

thickness were generated and measured by DESI-MS/MS in full scan mode as well as 

precursor ion mode for m/z 184 without further sample preparation. Two spray solvent systems 

(pure methanol without additives and 95% methanol in water (v/v) with 1% formic acid) that 

showed moderate signal sensitivities for standard detection were tested on the brain tissue 

slices. Pure methanol extractions led to a mass spectrum in full scan mode with the typical 

phospholipid pattern of mouse brain. Water and formic acid addition caused a reduction in 

signal intensity of these phospholipids as well as additional peaks in the range of m/z 600-700. 

Nevertheless, the precursor ion scan for m/z 184 showed clear signals for sphingomyelin and 

phosphatidylcholine (PC) revealing a more specific and more sensitive approach for mass 

spectrometric imaging (Figure 21). 

 

Figure 21: DESI chromatogram and spectrum for brain tissue acquisition in full scan positive mode and precursor 

ion scan of m/z 184. 

To enhance sensitivity for fresh frozen tissues measured with DESI-MS/MS different types of 

wash steps as sample preparation were evaluated. Brain slices from WT mice were washed 

by applying 200 µL of either 10% acetic acid, 40% methanol, 10 mM ammonium acetate or 1:1 

CHCl3/acetone (v/v). Incubation was performed for 20 seconds and solutions removed by 

vacuum. Sphingomyelin (SM) and phosphatidylcholine (PC) were measured by scanning the 
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cerebellum in precursor ion scan for m/z 184. Sphingomyelin signal was enhanced with 10% 

acetic acid and 40% methanol treatment, but PC signals were not affected (Figure 22). 

Additionally, signal stability of detected SM and PC decreased with all tested wash steps, 

indicating a drop in robustness. Gangliosides and SM show similar sensitivity in the brain and 

appear only in small amounts compared to phospholipids, especially phosphatidylcholine. 

Further the ionization efficacy is not as efficient as the ionization of PC. To increase detection 

of ganglioside and sphingomyelin a sample preparation similar to LC-MS/MS was tested. By 

using an on-tissue saponification the phospholipid signals of brain tissue should be decreased. 

Therefore a solution of 0.1 M KOH in 40% or 10% methanol in water (v/v) were sprayed on 

fresh frozen brain slices either untreated or washed with 10% acetic acid by SunChrome 

spotter (35 µL/min, five repeats, total of 10 µL) and incubated for 2 hours at 37°C in a humidity 

chamber. Hydrolysis was performed on-slide and in-solution as positive controls and an 

untreated brain lipid standard was applied prior to incubation as negative control. Brains were 

measured by DESI-MS/MS in precursor ion scan mode for m/z 184 as well as 

MALDI-TOF/TOF on the same slide (Figure 23). The DESI images yielded no clear results for 

enhanced signal sensitivities when washed with 10% acetic acid and treated with 0.1 M KOH 

solution. Possible negative effects of spraying the KOH solution were excluded by comparing 

the signals of sprayed tissue with signals detected when a 30 µL droplet of 0.1 M KOH was 

applied. Again, fresh frozen brain slices were used and either no treatment, washing with 10% 

acetic acid, KOH droplet and washing, and KOH sprayed and washing tested after incubation 

at 37°C for 2 hours. Slides were measured with DESI-MS/MS in precursor ion mode for 

m/z 184 and MALDI-TOF/TOF. The DESI-MS/MS result images showed a highly unstable 

signal generation over the scanned tissue. Nevertheless, the signals of tissue treated with a 

droplet of KOH did not differ from the control tissues, the spray-method seemed to show a 

degrading effect besides the unchanged sphingomyelin signal (Figure 23). As the signals 

generated with DESI turned out to be highly unstable, all described sample preparation testing 

was in addition performed with MALDI-TOF/TOF on the same slides as the DESI-MS/MS 

detection to confirm the results (Appendix II).  



  3 Results 

 59 

 

Figure 22: Sample preparation test for DESI-MS/MS scanning mouse WT cerebellum with precursor ion scan for 

m/z 184 and detecting sphingomyelin and phosphatidylcholine. A and D: Comparison of sphingomyelin (SM) and 

phosphatidylcholine (PC) signal for untreated, 10% acetic acid, 40% MeOH, ammonium acetate and 1:1 

CHCl3/acetone (v/v) cerebellum images. B and C: Mean gray value and variation within one cerebellum evaluated 

with ImageJ. SM and PC signals show no changes after wash treatment and the signal variation over the tissues 

decreased, which may be due to dislocation effects of the solvent droplets.  
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Figure 23: Sample preparation test for the on-tissue saponification of phospholipids with 0.1 M KOH. A and C: WT 

brain slices were measured, untreated or washed with 10% acetic acid, after saponification with 0.1M KOH in 40% 

or 10% methanol sprayed with SunChrome spotter. B and D: WT brain slices were measured untreated, washed 

with 10% acetic acid and after saponification with 0.1 M KOH sprayed and applied as 30 µL droplet. Sphingomyelin 

(SM) and phosphatidylcholine (PC) were measured with DESI-MS/MS by precursor ion scan of m/z 184.  
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Finally, the negative ion mode with DESI-MS/MS were investigated, and as in positive ion 

mode, no gangliosides could be detected (not shown). Brain slices of fresh frozen WT mice 

were measured in full scan and precursor ion scan for m/z 241 in negative ion mode, using a 

spray solvent of 90:10 methanol/water (v/v) according to Skraskova et al 151. Expected signals 

for phosphatidylserine (PS) and phosphatidylinositol (PI) as well as signals for sulfatides could 

not be detected or confirmed with precursor ion scan (Figure 24). 

 

Figure 24: DESI-MS/MS analysis of wt mouse brain lipids in negative ion mode with full scan (bottom) and precursor 

ion scan of m/z 241 for phosphatidylinositol (PI) and phosphatidylserine (PS) (top). Full scan displayed two main 

peaks, whereby m/z 885 would correspond to PI(38:4) and m/z  834 to PS(40:6). Both peaks were not detectable 

in precursor ion scan and therefore do not reflect PI or PS lipid species. 

 

3.3.2 DESI-MS/MS in direct analogy to MALDI-TOF 

Certainty about the advantages DESI-MS/MS could bring will only be achieved by comparing 

the results with MALDI-TOF, the current standard for mass spectrometry imaging. Serial cryo-

sections of sagittal brain halves from Bl6 WT mice were made and H&E staining as well as 

either MALDI-TOF or DESI-MS/MS analysis of the cerebellum performed. Images of certain 

sphingolipids were generated and mean mass spectra over the whole cerebellum were 

extracted and compared after data processing such as baseline correction, peak picking and 

alignment (Figure 25). Additionally, a set of different wash steps for fresh frozen tissue sections 

and its influence on mass spectrometric imaging were investigated. 



  3 Results 

 62 

 

Figure 25: Workflow DESI-MS/MS and MALDI-TOF comparison. In brief, subsequent fresh frozen brain sections 

(sagittal) of mouse cerebellum were measured in parallel with DESI-MS/MS and MALDI-TOF, as well as stained 

with H&E protocol. Images were generated with each manufacturer software (Biomap/FlexImaging) and spectrum 

data were exported and further processed with self-written MATLAB manuscript and SCiLS software.  

 

The ionization pattern of DESI and MALDI was comparable for brain phospholipids in full scan 

positive ion mode showing mainly phosphatidylcholine (PC) in the mass spectra and revealing 

potassium as well as sodium adducts with even higher signal intensities as corresponding 

protonated peaks. DESI-MS/MS showed enhanced sensitivity and specificity in precursor ion 

scan of m/z 184 by significantly reducing background noise and adduct ions. To enhance signal 

sensitivity and ionization efficacy different wash steps were tested (3.3.1), whereby 10% acetic 

acid applied in a 100 µL layer on the brain tissue for 20 seconds displayed the most 

improvement on phospholipid detection. The increased signal intensities by a simple wash 

step were also fact for MALDI imaging as the washing removes most of the salt-adduct ions. 

Therefore phospholipid pattern of MALDI mass spectra were detected similar to patterns of 

DESI product ion scan mass spectra. The wash step improved the reproducibility of MALDI 

tissue-to-tissue detection, too. Overall sensitivity and ionization efficacy of MALDI was shown 

to be higher compared to DESI (Figure 26). Nevertheless, the spatial resolution of DESI did 

not reveal the typical tissue structure of the cerebellum (grey and white matter), which roughly 

means less than 200 µm resolution power was achieved.  



  3 Results 

 63 

 

Figure 26: DESI and MALDI comparison in positive ion mode using fresh frozen brain sections in combination with 

precursor ion mode of m/z 184 for sphingomyelin (SM) and phosphatidylcholine (PC) in combination with wash 

steps. A: Overview full scan (FS) spectra of DESI (blue) and MALDI (green) showing a similar peak pattern. B: 

Zoom FS spectra m/z 700-900 displaying typical PC brain pattern with similar ionization of protonated PC, sodium 

adduct and potassium adduct for DESI and MALDI. C: DESI FS and DESI precursor ion scan (PS) of m/z 184 

(yellow) spectra of mouse brain cerebellum showing enhanced S/N ratios for peaks. D: DESI Images of SM (right) 

and PC (left) in full scan (upper) and PS of m/z 184 (lower) reflecting the drop in background signals (black). Images 

of cerebellum gained with MALDI (upper) and improved DESI by Waters anticipating the low spatial resolution of 

the DESI source used in the Sandhoff lab. E: DESI PS of m/z 184 (blue) and MALDI after 10% acetic acid wash 

(green) spectra of mouse cerebellum displaying the similar ionization patterns. F: Inter-tissue reproducibility 

reflecting the importance of a wash step for MALDI acquisition. G: Absolute intensities of PC and SM peaks 

generated by the different methods – DESI FS, DESI PS, DESI wash, MALDI FS, MALDI wash – revealing MALDI 

in combination with a 10% acetic acid wash step as the most sensitive and stable MS imaging method for lipids in 

the positive mode. (N=3)   
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3.4 Local GM2 distribution in mouse brains of Tay-Sachs disease and 

Neuraminidase deficiency  

The main GM2 accumulation in mouse brain was previously reported to regions of 

hippocampus and cortex using a GM2 antibody 102. The local distribution of GM2 and the 

associated expression of neuraminidases is of high interest as there is not much known about 

the human sialidases and their chance for being therapeutic targets. Imaging mass 

spectrometry is a label-free, semi-quantitative method to measure not only GM2 but many 

other gangliosides and lipids simultaneously, which can be combined with 

immunohistochemistry or in situ hybridization. As DESI-MSI appeared not suitable, MSI was 

performed with a MAlDI-TOF instrument. This chapter reveals and compares the GM2 

accumulation and general ganglioside pattern in Neu4 and Neu3 deficient mouse brains 

combined with mouse models of Tay-Sachs disease. 

3.4.1 Neuraminidase 4 

MALDI-TOF/TOF analysis of sagittal mouse brain cryo-sections were performed as described 

in material and methods (2.3.4). Images for each ganglioside of interest were generated from 

the average mass spectra The signals represent masses corresponding to gangliosides with 

d36:1 ceramide backbone which is mainly d18:1;18:0 as revealed by (+)ESI-MS/MS. In three 

month old brain samples of HexA-/-, Neu4-/-HexA-/-, GM2AP-/-, Neu4-/-GM2AP-/-, HexA-/-

GM2AP-/- and Neu4-/-HexA-/-GM2AP-/- a GM2 accumulation was detected, but not in Neu4-/- 

brain (Figure 27). A higher accumulation of GM2 in brains of Neu4-/-HexA-/- compared to HexA-/- 

were confirmed. GM2 accumulation seems to start in regions of hippocampus, cortex and 

olfactory bulb in HexA-/- and Neu4-/-HexA-/- mice, and an additional accumulation in the 

cerebellum was detected when GM2AP-/- deficiency is present. Especially in genotypes with 

highest GM2 accumulation such as HexA-/-GM2AP-/- and Neu4-/-HexA-/-GM2AP-/- a very 

specific GM2 signal in structures of cerebellum, hippocampus, cortex, olfactory bulb and 

hypothalamus were presented. More detailed analysis by visualizing the data as GM2/GM1 

ratio for each single brain region showed that ganglioside changes are specific to Neu4 in 

hippocampus and olfactory bulb (Figure 27). Other gangliosides such as GM1 and GD1 were 

more widely distributed and did not display such a specific accumulation compared to GM2. 

Similar but less pronounced results were obtained with gangliosides containing a longer 

ceramide anchor (d38:1) (Appendix III). 
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Figure 27: MALDI-TOF MSI of GM1, GM2 and GD1 in sagittal mouse brain slices of 3 month old GM2 gangliosidosis 

and Neu4 models. Fresh frozen brain slices were measured with DHB matrix in reflector negative mode with spatial 

resolution of 50 µm (A). Images were analyzed more detailed with SCiLs, whereby ROI of distinct tissue regions 

were selected by hand and mean signal intensity per ROI exported and shown in (B).  

Brain samples of six month old mice were analyzed in the same manner to the above 

mentioned three month old samples (Figure 28). The results are comparable, showing GM2 

accumulation in a very specific manner for regions of cerebellum, hippocampus, cortex, 

hypothalamus and olfactory bulb. The GM2AP-/- brain sample seemed to show no GM2 signal 
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at all, which has to be discussed. Samples with GD3S-/- background displayed no additional 

GM2 accumulation when combined with Neu4 deficiency. Similar but less pronounced results 

were obtained with gangliosides containing a longer ceramide anchor (d38:1) (Appendix IV). 

 

 

Figure 28: MALDI-TOF MSI of GM1, GM2 and GD1 in sagittal mouse brain slices of 6 month old GM2 

gangliosidosis, GD3S-/- and Neu4-/- models. Fresh frozen brain slices were measured with DHB matrix in reflector 

negative mode with spatial resolution of 50 µm. 

3.4.2 Neuraminidase 3 

MALDI-TOF/TOF analysis for ganglioside pattern in mouse brains of Tay-Sachs disease 

combined with neuraminidase 3 (Neu3) deficiency were operated in tissue of 4.5 month old 

mice as described in material and methods (2.3.4). The GM2 accumulation was more severe 

compared to the neuraminidase 4 (Neu4) deficient samples, which was also shown with 

LC-MS/MS. Additionally, minor amounts of GA2, the direct metabolite of GM2, were detected. 

The storage pattern of GM2 was similar in the Neu3 deficient brains compared to the Neu4 

deficient imaging results with the prominent areas of cerebellum, cortex, hippocampus, 

hypothalamus and olfactory bulb, but the overall signal was more diffuse and not as specific. 

Especially the fine linearly structure of GM2 signal in brains of Neu4 deficiency, which could 

be correlated to the corpus callosum, was not obvious in brains with Neu3 deficiency (Figure 

29). 
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Figure 29: MALDI-TOF MSI of GM1, GM2 and GA2 in sagittal mouse brain slices of 4.5 month old GM2 

gangliosidosis and Neu4 models. Fresh frozen brain slices were measured with phenyl-cyano-cinnamamide matrix 

in reflector negative mode with spatial resolution of 100 µm. 
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3.5 LC-MS/MS method development for the separation of hexosylceramides 

In mammalian tissue the two main isoforms of hexosylceramide (HexCer) are 

β-glucosylceramide (β-GlcCer) and β-galactosylceramide (β-GalCer) 176. Alpha-anomeric 

HexCers are described for marine sponge and bacteria 13,14. With conventional mass 

spectrometry and fragmentation these isoforms can’t be separated as they display the same 

mass. Most LC applications such as RP18 separation cannot differ between them as β-GlcCer 

and β-GalCer contain the same structure only differing in the stereochemistry of the hydroxyl 

group at position 4 (Figure 30).  

 

 

Figure 30: A: Stereochemical structures of β-GlcCer, β-GalCer, and α-GalCer containing a C18-sphingosine and 

an N-linked palmitic acid [HexCer(d18:1/16:0)]. B: Product ion spectra of corresponding HexCers obtained at 25 eV 

collision energy by ultra- performance LC-ESI-triple quadrupole MS2. Note, abundant product ions are detected in 

all three compounds. C: Extracted ion chromatograms from reversed phase chromatography (CSH C18) for the 

detection of HexCer(d18:1/16:0) from the three diastereomers, β-GlcCer, β-GalCer, and α-GalCer. Note the 

identical retention time of all three compounds 167. 
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3.5.1 Liquid chromatography (HILIC) parameter optimization and separation of HexCer 

isoforms β-GlcCer, β-GalCer and α-GalCer 

With normal phase-high performance thin layer chromatography (HPTLC), all 4 stereoisomeric 

hexosylceramide standards can be separated, if the HPTLC plate had been impregnated with 

borate 165,166 and, if they contain identical ceramide anchors (Figure 31).  

 

 

Figure 31: Various hexosylceramide standards were separated on a borate pre-impregnated normal phase HPTLC-

plate and visualized with orcinol reagent. Note, all GalCers are retarded much stronger than any GlcCer due to 

complexation with borate. Furthermore, alpha-GlcCer and alpha-GalCer separate from their corresponding beta-

anomers and migrate faster. However, retention times also depend on the type of attached ceramide anchor. 

β-GlcCer(d18:1;16:0), Rf = 0.34; β-GlcCer(d18:1;24:1), Rf = 0.39; Kerasin containing mainly β-GalCer(d18:1;24:1), 

Rf = 0.20; α/β-GalCer(d18:1;24:1), Rf = 0.22 and Rf = 0.2; and α/β-GlcCer(d18:1;24:1) Rf = 0.45 and Rf = 0.39. The 

α/β-HexCer mixtures contain about 15% α-anomer 167. 

 

To quantitatively differentiate all four isomers in biological samples, chromatography has to be 

combined with information about the ceramide anchor. Therefore, a method for hydrophilic 

interaction chromatography coupled to tandem-mass spectrometry was developed. Initially, 

solvent gradient systems starting with 95-97% acetonitrile were used, but no separation of the 

stereoisomeric HexCer-mixtures on HILIC-columns used in the laboratory was observed (data 
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not shown). Consequently, the hydrophobicity of the starting solvent (solvent A) was increased: 

acetonitrile was exchanged by propionitrile and water (3%) exchanged by 2% of 2-butanol 

(since methanol in solvent A widened the peaks). In a gradient of increasing polarity solvent A 

was replaced by increasing proportions of solvent B (97% methanol, 2% 2-butanol, 1% water) 

in a nonlinear fashion using increasing steepness. As a result, β-GlcCer eluted first followed 

by β-GalCer, α-GlcCer and finally by α-GalCer, all of them containing the identical ceramide 

anchor Cer(d18:1/24:1) (Figure 32 A). Importantly, β-GlcCer and β-GalCer (R = 1.7) as well as 

β-GalCer and α-GalCer (R = 2.3) separated (R ≥ 1.5, Fig. 2A). Keeping β-GalCer constant at 

a concentration of 0.1 μg/mL, a dilution series of β-GlcCer followed a linear decreasing peak 

area and β-GlcCer was detected with an LOD of 2 ng/mL (25 fmol injected), corresponding to 

1% of the abundant β-GalCer (Figure 32 B). Vice versa, keeping β-GlcCer constant 

(0.1 μg/mL), β-GalCer was detected in a dilution series down to an LOD of 7 ng/mL (86 fmol 

injected), corresponding to 5% of the abundant β-GlcCer (Figure 32 C). Furthermore, α-GalCer 

(75 ng/mL) could be quantified in the presence of 110fold concentration of the β-anomer 

(8 μg/mL) (Figure 32 D). Next, the retention times of endogenous hexosylceramides from 

mouse organs were investigated, with the initial and some further HexCer-standards: 

β-GlcCer(d18:1/(14 or 16 or 19 or 25:0), Kerasin (A mixture of NS type β-GalCers with non-

hydroxy fatty acids (N) and sphingosine (S)), and Phrenosin (A mixture of AS type β-GalCers 

with α(R)-hydroxy fatty acids (A) and sphingosine (S)). Liver contains mainly NS-type 

β-GlcCers 177, stomach in addition substantial amounts of AS- and NP-type β-GlcCers 178, and 

intestine predominantly the AP-type besides AS-, and NP-type β-GlcCers 34,179,180. Kidney is 

also enriched in β-GalCer 181,182 of the NS- and AS-type 177,183. Combining data of retention 

times and associated MS2-information (revealing the type of ceramide anchor) for standards 

and biological samples, decrease in retention times with longer acyl chain length were 

observed (roughly -0.016 ±0.005 min/CH2-unit). Compared to NS-β-HexCer, corresponding 

AS-β-HexCer was delayed by +0.242 ±0.009 min, NP-HexCer by +0.084 ±0.004 min, and 

AP-HexCer by +0.282 ±0.008 min (Figure 32 E). 
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Figure 32: A: HILIC separation of a synthetic α/β-anomeric mixture of GlcCer(d18:1/24:1) (dark cyan) and a 

synthetic α/β-anomeric mixture of GalCer(d18:1/24:1) (red), each with approximately 15% α-content. B: Dilution of 

β-GlcCer(d18:1/24:1) in the presence of constant amounts of β-GalCer(d18:1/24:1). C: Dilution of β-

GalCer(d18:1/24:1) in the presence of constant amounts of β-GlcCer(d18:1/24:1). D: Constant amounts of α-

GalCer(d18:1/24:1) in the presence of increasing amounts of β-GalCer(d18:1/24:1). E: Retention times of standard 

HexCers marked with an asterisk and endogenous β-HexCers, which have been described in literature and were 

identified based on the behavior of standard compounds and on the molecular ion size. Note the relatively strong 

shift from nonhydroxy (NS) to α-hydroxy fatty acid containing compounds (AS), while introduction of 

phytosphingosine (NP) instead of sphingosine (NS) as well as decreasing acyl chain length contributed in a minor 

way to later elution. Additional double bonds as in HexCer[d18:1/24:1(15Z)] did not contribute to a significant 

retention time shift 167. 

3.5.2 HILIC-MS/MS method proof-of-concept by comparison of HexCers with different 

ceramide composition in various mouse tissues 

Applying the HILIC-MS2-based separation of β-GlcCer and β-GalCer, the distribution of both 

compounds in various mouse tissues were determined. The enrichment of β-GalCer mainly in 

brain (97%) and kidney (42%) was confirmed, and revealed in addition its abundance in lymph 

nodes (85%) and auricles (59%) (Figure 33). Results furthermore confirmed enrichment of 

nervonic acid within brain cerebrosides, whereas corresponding glucocerebrosides are 

enriched in stearic acid. The latter is the main acyl chain of neuronal gangliosides. Although 
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not always as clear cut, the acyl chain length distribution of cerebrosides and 

glucocerebrosides was not identical in any tissue investigated. 

 

Figure 33: Relative distribution of β-GlcCer and β-GalCer in various mouse organs. NS-, AS-, NP-, and AP-HexCers 

were determined, which contained a C18-sphingoid base and N-bound fatty acids with the chain length C16 up to 

C26 (as annotated). Special structures with ultra-long acyl chains as they occur in epidermis (ultra-long omega 

hydroxyl fatty acids) or in male germ cells (ultra-long polyunsaturated fatty acids) as well as with different sphingoid 

bases (e.g., C20-sphingosine in brain or kidney papillae or C17-sphingosine in epidermis) were not considered in 

this study. Note, nervonic acid is mainly incorporated into brain cerebrosides, whereas corresponding 

glucocerebrosides are enriched in stearic acid, which is the typical acyl chain of neuronal gangliosides 167. 

Glucosylceramidase beta 2 (Gba2) catalyzes the hydrolysis of β-GlcCer to glucose and 

ceramide at the cytosolic side of intracellular membranes 184. Mice lacking Gba2-activity were 

reported with 2-3fold increased levels of β-GlcCer in liver 92,185. Analysis of Hexosylceramides 

from liver, kidney and intestine of WT and Gba2-deficient mice revealed specifically β-GlcCers 

to increase in Gba2-deficient mice, but not corresponding β-GalCers (Figure 34). Interestingly, 

the increase of intestinal β-GlcCers was restricted to the rather minor NS-type, whereas AS-, 

NP-, and the dominant AP-type of β-GlcCers was not affected. Furthermore, HILIC-MS2 signals 

corresponding to β-GlcCer, but not to β-GalCers, were significantly reduced in liver and kidney 

samples of mice with a hepatocyte-specific and renal proximal tubulus-specific deficiency of 

the glucosylceramide synthase (Ugcgf/fAlbCre and Ugcgf/fPax8Cre), respectively (Figure 34 
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A and D). However, mainly NS-type β-GlcCer were decreased and AS-type β-GlcCer even 

increased value in hepatocyte-Ugcg-deficient liver samples. Vice versa, β-GalCer accumulated 

more than 10fold in kidneys of CST-deficient mice due to a block in further conversion to 

sulfatides (Figure 34 D). Here, β-GlcCer concentrations did not change. Likewise, analysis of 

male kidney cortex samples from globotriaosylceramide synthase (Gb3S, A4galt)-deficient 

mice revealed a more than twofold increase of β-GalCers, which was almost exclusively due 

to an increase of NS-type cerebrosides (Figure 34 E). Levels of β-GlcCers were not affected 

by this model, too. All together, these data supported the correct association of 

chromatographic peaks to cerebrosides (β-GalCers) and glucocerebrosides (β-GlcCers), 

respectively. 

 

Figure 34: HILIC-MS2-based quantification of β-GlcCers and β- GalCers in liver of WT, Gba2-/-, and Ugcgf/fAlbCre 

mice (A); kidney of WT and Gba2-/- mice (B); small intestine of WT, and Gba2-/- mice (C); kidney of WT, 

Ugcgf/fPax8Cre, CSTf/fPax8Cre, (Ugcg and CST)f/fPax8Cre mice (D); and in kidney cortex of WT and Gb3s-/- mice. 

Note the specific increase of NS-β-GlcCer in liver, kidney and small intestine of Gba2-/- mice, the selective decrease 

of NS-GlcCer in liver and of NS- and AS-GlcCer in kidney of Ugcgf/fAlbCre and Ugcgf/fPax8Cre [and (Ugcg and 

CST)f/fPax8Cre] mice, respectively (E). Vice versa, NS- and AS-β-GalCer accumulates in kidneys with CST-

deficiency [CSTf/fPax8Cre and (Ugcg and CST)f/fPax8Cre] as well as NS-β-GalCer in cortex of Gb3s-/- mice. n = 

3, except for (D) WT = 1 167. 
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3.5.3 Separation of HexCers with different types of hydroxylation 

Cerebrosides from brain are enriched in cerebrosides of the AS-type 186. They contain 

2R-hydroxy fatty acids187 and depend on fatty acid 2-hydoxylase (Fa2h)163,188, which 

specifically incorporates acyl chains with an α-hydroxy group in R-configuration 189. Here the 

retention times of AS-type cerebrosides with corresponding synthetic standards containing a 

2-hydroxyacyl chain with either R- or S-OH stereochemistry were compared. The β-GalCer 

standard with a 2R-hydroxy-stearoyl chain separated from the corresponding compound with 

2S-hydroxy configuration and eluted together with corresponding AS-type cerebrosides from 

murine brain about 0.38±0.02 min later than the 2S-isomer (Figure 35). By that cerebrosides 

with 2S-hydroxy fatty acids elute significantly earlier (-0.27±0.02 min) than AS-type 

glucocerebrosides (β-GlcCer) with 2R-configuration at the α-hydroxy group and thus can be 

distinguished by this HILIC-method. In contrast to brain, stomach contains AS-type β-GlcCer. 

Normal levels depend on synthesis by Fa2h and loss of corresponding enzyme reduces the 

signal to about one tenth (Figure 35). Due to the specificity of the enzyme 189, this dependence 

implies the α-hydroxy acyl group of AS-β-GlcCers from stomach to be of 2R-configuration. 

 

 

Figure 35: HILIC-MS2-based separation of AS-type β-GalCers with 2R- and 2S-hydroxy stearic acid. Extracted ion 

chromatogram (EIC) for AS-HexCer(d18:1/h18:0) and (d18:1/h24:0) from a purified mixture of brain AS-type β-

GalCers [phrenosin (A, E)], the synthetic standards β-GalCer[d18:1/(2S)h18:0] and β-GalCer[d18:1/(2R)h18:0] (D), 

a mouse brain lipid extract enriched in neutral GSLs (B, F), and a stomach lipid extract from WT (C, G) and Fa2h-/- 
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(H) mice. The intensity in (H) is normalized to that of the corresponding WT signal in (G). In compliance with a report 

that AS-type β-GalCer from brain contain 2R-hydroxy fatty acids, the AS-HexCer(d18:1/h18:0) from phrenosin and 

from mouse brain migrate together with the β-GalCer[d18:1/(2R)h18:0] standard. Note, the decrease of 

β-GalCer(d18:1/h24:0) with 2R-hydroxy configuration in Fa2h-/- stomach 167. 

 

3.6 Hexosylceramide composition in mouse models of GM2 gangliosidosis and 

neuraminidase deficiency 

The neurological phenotype in mice containing gene defects of HexA, Neu3 and Neu4 included  

reports of neurodegeneration, neuroinflammation and demyelination 85,89,102. Cerebrosides or 

GalCer are found in high amounts in myelin sheath and oligodendrocytes of mouse brains and 

should be changed in case of demyelination and neuroinflammation. The role of 

glucocerebroside or GlcCer is mostly restricted as the base for ganglioside biosynthesis in the 

brain. Therefore it exists only in small amounts due to a high turn-over rate. Mouse brain lipid 

extracts enriched in neutral glycosphingolipids of WT mice as well as HexA-/-, GM2AP-/-, Neu3-/- 

and Neu4-/- mice were analyzed for their β-hexosylceramide composition using the newly 

developed HILIC-MS/MS approach described in the previous chapter. β-GalCer of NS-, AS- 

and NdS-type were found, whereby only NS-type β-GlcCer could be detected (Figure 36). 

Amounts of detected β-GlcCer corresponded to approximately 1% of total β-HexCer signal 

intensity in WT mice sent from the Turkish collaboration partner, which is in correlation with 

previous results of WT brain analysis (Figure 33). The results revealed significantly increased 

β-GlcCer levels in Neu3-/-HexA-/- mice (Figure 36 A), whereby increased β-GlcCer in HexA-/-, 

Neu4-/-HexA-/-, and GM2AP-/- mice was statistically not significant (Figure 36 B). Decreasing 

amounts of β-GalCer compared to WT mouse tissue could not be detected in any group 

analyzed as expected due to demyelination. However, significantly diminished β-GalCer levels 

for Neu4-/-HexA-/- and GM2AP-/- mice in relation to HexA-/- were displayed (Figure 36 B). 
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Figure 36: HILIC-MS2 based separation of NS- and AS-type β-GlcCer and β-GalCer in mouse brain lipid extracts 

enriched in neutral GSLs of WT, GM2 gangliosidosis and neuraminidase deficiency. The intensities are normalized 

to the corresponding WT intensity (fold change). Black and roughly crossed bars corresponding to Neu4 and 

GM2AP represent sample sets with n=4 and fine crossed bars to Neu3 sample set with n=2. Two-Way Anova 

3.7 Hexosylceramides in the context of T cell immune response  

The analysis of hexosylceramides in various mouse tissue (Figure 33) revealed higher 

amounts of galactosylceramide (GalCer) in tissues of the immune system such as thymus, 

lung and lymph nodes that were quite unexpected. More detailed analysis of recent 

literature119,124,190 showed that especially α-GalCer is a potent stimulator of invariant natural 

killer T (iNKT) cells, which develop and mature in thymus. Mammals produce β-GlcCer and 

β-GalCer, in contrast bacteroides fragilis, a member of the human gut microbiome, and the 

marine sponge agelas mauritianus produce α-GalCer 13. Enzymes catalyzing the production 

of corresponding α-anomers in mammals have not been described so far. It only has been 

proposed that at very low levels α-GalCer is endogenously present and necessary for invariant 

natural killer T cell (iNKT cell) homeostasis 165. 
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3.7.1 α-GalCer in members of the human gut microbiome 

B. fragilis has been reported to produce ceramides and α-GalCer containing an iso- or anteiso-

branched C17, C18, and C19-sphinganin and a β(R)-hydroxylated and isobranched C17-fatty 

acid 14,191. Here, α-GalCers from B. fragilis eluted 0.03 min before our calculated retention times 

(tR = 4.00 - 4.03 min) for corresponding AS-type α-GalCers, but definitely beyond AS-type 

β-GalCers (tR = 3.92 – 3.95 min, Δ = 0.05-0.06 min). This slight forward shift may be due to the 

hydroxy group of the acyl chain, which is for B. fragilis in 3(β)- but not in 2(α)-position of the 

fatty acid as well as the saturated sphingoid base (dS). This shift was consistent for all three 

compounds reported by B. fragilis (Figure 37 A and B). In addition to B. fragilis, lipid extracts 

of nine further bacteria of the human gut microbiome were analyzed. In Prevotella copri and 

Bacteroides vulgatus the identical HexCer peaks as for the BdS-type α-GalCers of B. fragilis 

(Figure 37 C) were detected. Overall levels of these compounds were at least 100fold lower 

than in B. fragilis. The other 7 species investigated did not contain quantifiable amounts of 

α-GalCer. Nevertheless, B. ovatus, B. thetaiotaomicron, and B. caccae, contained signals for 

α-GalCers, which were above the LOD in both, the HILIC and the RPLC method (Appendix V). 

 

 

Figure 37: HILIC-MS2-based detection of α-GalCers from Bacteroides fragilis and identification of equivalent 

compounds in Bacteroides vulgatus and Prevotella copri. A) Comparison of the determined retention times of α-

GalCers from B. fragilis with those of synthetic α-GalCer and β-GalCer standards and predicted values for AS-type 

α-GalCers. B) Extracted ion chromatograms for individual HexCer from B.fragilis. C) Quantification of the three α-

GalCers in B. fragilis, B. vulgatus and P. copri. Note the 100fold amount of α-GalCers in B. fragilis. n = 3 167. 
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3.7.2 Hexosylceramide detection in the mouse digestive tract by HILIC-MS/MS 

Bacteroides fragilis is a member of the human gut microbiome, which is associated with 

colorectal cancer, metabolic syndrome and diarrhoea. Bacteroides strains were found to be 

the prominent genus (20-40%) in the mouse intestinal tract 133,137,192. The developed HILIC-MS2 

method was used to analyze hexosylceramide composition in compartments of the mouse 

digestive tract from duodenum across jejunum, caecum and colon to the feces of WT Bl6 and 

axenic NMRI mice. β-GlcCer was the most abundant hexosylceramide and found to decrease 

from duodenum to feces in both Bl6 and NMRI mice. In contrast β-GalCer amounts increased 

from duodenum to feces, but displayed only 1-10% of the found hexosylceramides. 

Interestingly, small amounts of a predicted BdS-α-GalCer with a d18:0;h16:0 ceramide anchor 

were found, which eluted at the same retention time as the previously described 

α-GalCer(d17:0;h17:0) from B. fragilis. These predicted BdS-α-GalCer showed the same 

increasing signal pattern as β-GalCer and was not detected in bacteria-free (axenic) NMRI 

mouse caecum in contrast to the WT Bl6 caecum (Figure 38). 

 

Figure 38: HILIC-MS2 based analysis of WT Bl6 and axenic NMRI mouse intestinal tract. A) Total β-GlcCer amounts 

in digestive tract compartments of duodenum, jejunum, caecum, colon and feces. B) Total β-GalCer amounts in 

mouse intestinal tract. C) Predicted AdS-α-GalCer found in mouse digestive tract and D) extracted ion 

chromatogram for α-GalCer from B. fragilis compared to predicted α-GalCer from mouse caecum and missing peek 

from axenic mouse caecum sample. n=3 
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Next, fresh prepared tissue samples were either not treated at all or washed with PBS, and the 

washed-out content collected to investigate whether the detected BdS-α-GalCer may be 

connected to the epithelial cells of the intestinal tissue (washed) or the gut microbiome 

(content). Results showed that β-GlcCer and β-GalCer were both enhanced in PBS washed 

tissues compared to non-treated tissue and that the predicted BdS-α-GalCer is unchanged in 

the PBS washed tissue of jejunum, caecum and colon (Figure 39). The analyzed content 

displayed increased levels of BdS-α-GalCer for jejunum, caecum and colon, which could 

indicate bacterial origin. Nevertheless, β-GlcCer and β-GalCer amounts were as well increased 

in the content jejunum, caecum and colon and therefore the question of mammalian or bacterial 

HexCer origin remains open (Figure 39). 

 

Figure 39: HILIC-MS2 based analysis of WT Bl6 mouse intestinal tract compartments jejunum, caecum and colon 

of β-GlcCer (A), β-GalCer (B) and predicted BdS-α-GalCer (C). Not treated tissue samples, PBS washed tissue 

samples and washed-out content were compared to investigate mammalian or bacterial origin of HexCers. Two-way 

Anova, n=3 
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3.7.3 Hexosylceramide quantification in caecum and feces from WT mice under high fat diet 

conditions 

Bacteroides in the mouse gut microbiome were reported to decrease under high fat diet 

conditions and obesity models 139. B.fragilis as a member of the human gut microbiome 

produces α-GalCer. The detected and predicted BdS-α-GalCer could be produced by a type 

of Bacteroides in the mouse gut microbiome and should therefore decrease under high fat diet 

conditions. Mouse tissue samples were collected from an experimental set up of Dr. Silke 

Herzer from our department and prepared as described in material and methods (2.2.1). 

Hexosylceramides were analyzed by HILIC-MS/MS and detected types of HexCer were added 

up to total amounts of β-GlcCer, β-GalCer and BdS-α-GalCer. Mice were fed twice a day 

(morning /evening) with either 200 µL PBS, olive oil, milk fat Ghee or high fat diet (HFD) for 

five days. The different composition and type of fatty acids within the mentioned oil, fat and 

diet should lead to different effects on mice tissue 193. HexCer-analysis revealed BdS-α-GalCer 

indeed to decrease in samples of mice fed with HFD, but other detected hexosylceramides 

decreased as well. Milk fat (Ghee) and olive oil diets did not induce significant changes of any 

HexCer group monitored. However significant values for all groups were detected under HFD 

(Figure 40). 

 

 

Figure 40: HILIC-MS2 based analysis of hexosylceramides in lipid extracts from caecum of mice fed for 5 days twice 

a day with either 100 µL PBS, Olive oil, or milk fat (Ghee) in addition to chow diet or high fat diet. PBS n=2, olive 

oil, Ghee and HFD n≥3. Note the tendency of all detected hexosylceramide species to diminished amounts under 

high fat diet. Two-Way Anova. 



  4 Discussion 

 81 

4 Discussion 

4.1 Brain ganglioside analysis is based on a HILIC-MS2 method 

Ganglioside (GG) analysis with LC-MS/MS can be based either on reversed phase (RP18) or 

HILIC chromatography, separating amphiphilic GG regarding their lipid moiety or glycan head 

group respectively. Additionally, GG ions can be detected in either positive or negative ion 

mode, whereby due to their sialic acid group in the glycan structure GGs naturally are 

deprotonated at physiological pH. The standard sphingolipid analysis in our laboratory 

previously was performed with RP18-MS/MS mainly in the positive mode as the ion sensitivity 

in positive mode has been shown to be better as in the negative mode, and RP18 based 

chromatography allowed time saving gradients with short re-equilibrium phases. The first 

attempt of this work was to test the feasibility of positive ion mode detection and RP18 

chromatography by comparing it with negative ion mode and HILIC chromatography. 

Parameter decreasing ion sensitivity such as in-source decay (ISD) and adduct ion formation 

were tested with single-injected GG standards. Both ISD and ammonium adduct formation 

showed a tendency to increase with complexity of the GG, illustrating on the one hand the 

need for chromatographic baseline separation. On the other hand, monitoring the additional 

adduct ion formation increased the transitions necessary for GG detection and therefore 

reduces the number of different GGs that could be measured per one gradient run. Additionally, 

the existence of a protonated ion, a water-loss ion and an ammonium adduct ion decreased 

the total sensitivity per GG. In the negative ion mode the overall sensitivity was not as high as 

in the positive mode, however neither ISD nor adduct ion formation could be detected. The 

evaluation of the optimized source temperature and capillary voltage for ion generation in the 

ESI spray revealed no improvement for the positive ion mode such as adduct ion reduction. 

Adduct ion formation driven by salt additives such as lithium, sodium and ammonium were 

shown to enhance detection in ESI-MS/MS 194,195, and in analogy it was hypothesized that 

diethylenetriamine (DETA) with its three C2-spaced amine groups could complex the 

carboxylate group of sialic acid by that both shifting (+)ESI ion formation towards the DETA-

adduct and simultaneously  enhancing the overall sensitivity for positive ion formation. Indeed, 

mass spectra generated by direct injection in the presence of DETA showed positive ions with 

more than 90% DETA adduct formation compared to less than 10% of protonated ions and no 

detectable sodium or potassium adducts. Unfortunately, the concentration of 10 mM DETA 

was so high that the surplus of DETA formed a yellow mist in the spray chamber. Derivatization 

of the GG glycan structure to transform the carboxylate group into a neutral or basic group 



  4 Discussion 

 82 

instead of adduct formation might rather be a necessary step to enhance sensitivity in (+)ESI 

as shown for per-O-benzoyl, permethyl and peracetyl derivatives of glycosphingolipids in 

combination with liquid chromatography 196–201. 

RP18-based chromatography was tested for its limits to separate GGs with identical ceramide 

anchors as the use of methanol in the gradient system could be beneficial for ionization efficacy 

and gradient run times are short. The most promising combination of UPLC column and solvent 

system was the HSS PFP column, which is not a classical RP18 phase but based on a 

pentafluorophenyl phase, and an acetonitrile/water versus acetonitrile/2-propanol solvent 

system without methanol. Nevertheless, this system failed to separate the mono-sialic 

gangliosides GM2 and GM1 completely (50%) and showed even less separation efficacy for 

the more complex GGs. Consequently, a HILIC-based chromatography was developed and 

different solvent additives tested, whereby ammonium acetate showed the highest ionization 

efficacy in negative ion mode. The use of methanol in the HILIC gradient resulted in 

unidentified “ghost peaks” and peak widening, therefore an acetonitrile versus water solvent 

system was established. The final method for the analysis of GGs thus resulted in a HILIC-MS2 

method with negative ion detection similar to the already published gradients as no tested 

improvement of positive ion mode and RP18-based chromatography could overthrow their 

drawbacks regarding GG analysis. Finally, sample preparation was advanced revealing that 

for mouse brain samples initial anion exchange chromatography (DEAE) of the raw extract 

followed by saponification and desalination showed the highest overall response for GGs. 

Saponification as well as anion exchange chromatography by DEAE increased subsequent 

GG detection by reducing quenching effects due to other lipids like phospholipids, free fatty 

acids or cholesterol. Phospholipids are destroyed by saponification, however release free fatty 

acids, which would elute together with GG in the anionic lipid fraction upon anion exchange 

chromatography. Therefore, initial DEAE-fractionation reduced the load of phospholipids giving 

later rise to free fatty acids and improved final response for GG. Since the order of methods 

was significant, as starting with saponification and processing with DEAE afterwards 

decreased sensitivity, it demonstrated that fatty acids released from phospholipid 

saponification would be found in the acidic fraction of the gangliosides and quenched detection 

of GGs.  
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4.2 Neuraminidase 3 and 4 show overlapping but also distinct substrate 

processing 

Tay-Sachs disease describes an autosomal-recessive genetic dysfunction of 

hexosaminidase A (HexA) which results in the severe lysosomal storage of ganglioside GM2 

and early lethality for humans with the infantile on-set form. To date there is no effective 

treatment beyond palliative care despite fifty years of research including treatment approaches 

such as gene therapy, inhibitors, cord blood transplant, chaperone therapy, stem cell therapy 

and enzyme replacement therapy 70,96–100. In mouse models of HexA deficiency only moderate 

GM2 accumulation was found, as well as no significant neuronal phenotype. Neuraminidases 

were investigated as possible bypass enzymes for the degradation of GM2 and a new 

opportunity for therapeutically approaches in humans 85,88,202. Determining the specific 

substrates of neuraminidase 3 and 4 for mouse brain gangliosides (GG) in vivo is an essential 

step investigating the significance on the GM2 degradation bypass for each neuraminidase 

and for the significance to further drug developments. In this study, GG processing by 

neuraminidase 4 (Neu4) was examined by analyzing mouse brains with deficiency in Neu4 

combined with the GG-synthesis enzymes Galgt1-/-, GM3S-/- and GD3S-/- as well as the GM2 

activator protein GM2AP-/- in the background of WT Bl6 or Tay-Sachs disease (HexA-/-) mice. 

Analysis was performed with HILIC-MS2 for the GGs and RP18-MS2 for the neutral 

glycosphingolipid metabolites of the brain GGs. The results revealed that Neu4 depletion led 

to decreased ratios of GM1/GA1, which had been published previously 89,102. However, Neu4 

deficiency resulted in addition in higher ratios of GD1a/GM1, GM3/LacCer and GD3/GM3, and 

maybe GD1c or GD1α/GM1b, but not GM2/GA2. Whereby the impact of Neu4 loss was highest 

for the ratio of GM1/GA1 followed by that of GM3/LacCer. A convenient explanation for these 

results would be the involvement of Neu4 in GD1a and GM3 degradation, which would be in 

line with the decreased GM1 and increased GD1 levels as well as the increased GM3 and 

decreased LacCer levels. Similar analysis were performed in Neuraminidase 3 (Neu3) 

depleted mice which are crossbred with HexA-/- mice of Tay-Sachs disease mouse model. 

Neu4 and Neu3 enzymes were hypothesized to have similar substrate specificity due to in situ 

experiments 75. Nevertheless, Neu3 showed increased GM2, GM3, GA2 and LacCer levels, 

but no impact on GM1 and GA1 levels. These results were published in Seyrantepe,..., 

von Gerichten et al. (2018) 85. The results indicated Neu3 as the main actor in GM2 bypass 

reaction for Tay-Sachs disease in mice. Targeting Neu3 (or Neu4) as a therapeutically 

indication could lead to an overall changed GG pattern in the brain, but not only to a decreased 
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GM2 accumulation. GM3 was shown to inhibit EGF-induced autophosphorylation and reduced 

GM3 levels due to enhanced NEU3 expression could vice versa induce EGF phosphorylation 

which is correlated with human cancers 24,203,204. Furthermore, the increase of GM3 levels could 

also originate in astrogliosis, or other immune cells activation in the detected 

neuroinflammation such as phagocytes, found in brains with Neu3 (Neu4) deficiency 85,89. A 

future perspective for the research of Neu3/Neu4 involvement in the brain would be a gene 

rescue performed in mouse neurons or mouse brain with the human NEU3/NEU4 genes. This 

would answer the question, whether the human Neu3/Neu4 could bypass principally the 

TSD-block in vivo, a prerequisite to be targets of TSD treatment. 

The decrease of GM1 due to Neu4 depletion was hypothesized to be caused as secondary 

effect by the demyelination in Neu4-/- mouse brains 89, which lead to the hypothesis that 

galactosylceramide (GalCer) as another glycosphingolipid involved in the myelin sheaths 

should be decreased,  too. This topic is further elaborated in chapter 4.5. 

4.3 MALDI remains the common technique for Mass Spectrometry Imaging 

A basic aim of this work was to establish DESI-MS/MS as a technique for mass spectrometry 

imaging (MSI) to analyze the spatial distribution of (storage) gangliosides (GG) on brain 

sections. The results revealed that, with the ion source in hands, DESI was not an adaptable 

tool for MSI as it failed to detect GGs in mouse brain tissue despite several attempts to enhance 

GG sensitivity such as washing steps and on-tissue saponification of the abundant 

phospholipids. Furthermore, it occurred that the reproducibility and stability of this technique 

was a main issue as well as the low spatial resolution. Meanwhile the investigations of this 

work Waters Corporation purchased the license from Prosolia for the DESI sprayer and 

developed the spray device for more stability and better resolution, which made GG detection 

also possible. The combination of DESI with ion mobility spectrometry seems to have a positive 

impact for GG analysis in the mouse brain 151. The comparison of DESI-MS/MS with the 

commonly used MALDI-TOF MSI discovered that MALDI showed better stability and 

sensitivity, if the brain tissue had been washed prior to analysis. Furthermore, MALDI-MSI 

provided a higher spatial resolution. The potential advantage of faster screening by DESI in 

connection with a triple-quadrupole instrument was bested by the development of the Bruker 

Rapiflex MALDI Tissuetyper TOF MS instrument, which demonstrates high-speed acquisition 

of tissue samples 205.  
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4.4 MSI reveals local neural GM2 accumulations similar for Neuraminidase 3 

and 4 deficiencies on a Tay-Sachs disease background 

Brain slices of mouse tissues with knockouts for neuraminidase 3 (Neu3) and 4 (Neu4) in 

combination with Tay-Sachs disease (HexA-/-) were analyzed with MALDI-TOF mass 

spectrometry imaging and displayed a similar GM2 accumulation in hippocampus, 

hypothalamus, cortex, cerebellum and olfactory bulb. Whereby Neu4 revealed a sharply 

framed GM2 pattern in the GM2 gangliosidosis brains compared to the more diffuse GM2 

signal in Neu3 deficient mouse brains. Additionally, fine structures that may be correlated to 

the area of corpus calosum were GM2-positive in Neu4 depleted brain slices, but not in Neu3 

depleted. The results are in common with already published data localizing Neu3 expression 

abundantly in the cerebellum 206 and detecting GM2 as well as GM3 accumulation with 

antibodies against Neu3, GM2 and GM3 in the hippocampus and cortex 85,89,102. A more 

detailed analysis of GM2 and GM1 signals in the images revealed that GM2 accumulation in 

the hippocampus and cortex is specifically increased due to Neu4 deficiency. The similar 

patterns in spatial neural GM2 accumulation for Neu3 and Neu4 deficiency in TSD models 

suggest a rather broad distribution of both sialidases, but dependency of GM2 accumulation 

on local GG turnover. A severe impact for the data generated would be the combination of 

MALDI MSI and other imaging techniques such as immunohistochemistry and in situ 

hybridization to proof the localization of Neu3 and Neu4 in neurons to directly correlate with 

GM2 turnover. Additionally, cell specific expression of Neu3/Neu4 and GM2 accumulation in 

the mouse brain (or human) could be further reviewed. Antibodies against distinct neural cell 

types such as mature neurons, astrocytes and microglia combined with in situ hybridization of 

Neu3/Neu4 could locate neuraminidase expression in vivo. Immune cell expression of 

neuraminidase may have an impact on disease therapy.  Similar questions would be answered 

by using cell-specific knockouts for Neu3 (Neu4) for example by generating GFAP-Cre, 

CX3CR1-Cre or CamKII-Cre mice to target astrocytes, microglia or forebrain neurons in the 

background of Tay-Sachs disease. 
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4.5 Selective Analysis of diastereomeric hexosylceramides based on 

HILIC-MS2 and proof of principle 

Lipidomics is a fast growing field of interest impacting more and more medical research. Often 

all-in-one analysis is demanded and high throughput methods like direct infusion into high 

resolution mass spectrometers with MSall-scans and subsequent data processing software try 

to fulfil these requests 207–209. These MS-only techniques, however have their limitations and 

for example do not distinguish stereoisomeric compounds with qualitatively identical 

fragmentation behaviors. Separation and quantification of such stereoisomers therefore 

requires combination of MS with orthogonal methods, such as chromatography or ion mobility. 

LC, especially, is a wide-spread technique, often coupled to MS to increase specificity and 

sensitivity of detection. Here, a HILIC-based method is presented, which enables the 

separation of α- and β-anomers of GlcCer and GalCer comprising identical Cer anchors, which 

was not achieved with reversed phase LC. Diasteromeric HexCers are amphipathic molecules 

with their structural differences buried in the polar head group, but not the hydrophobic 

ceramide anchor, the latter interacting with the stationary phase in reversed phase LC and the 

former in HILIC. Coupling to MS2 allows to identify differences in Cer anchor composition to 

unambiguously ascribe NS-, AS-, NP-, and AP-type HexCer-derived HILIC-peaks of biological 

samples according to their retention times to either GlcCer or GalCer with either α- or 

β-glycosidic linkage. The method can be used to analyze complex biological lipid extracts, as 

demonstrated by the application to various mouse organs and bacteria 167. The correct 

assignment of peaks was supported by measuring a selective increase or decrease of 

β-GlcCer over β-GalCer in various tissues with GBA2 or UGCG deficiencies, respectively. Loss 

of GBA2 activity leads to the accumulation of the substrate β-GlcCer. In contrast, the lack of 

UGCG activity either in hepatocytes or in renal tubular cells omitted corresponding production 

of β-GlcCer, thereby reducing the overall β-GlcCer concentration of liver or kidney, as expected 

33,35,92,210,211. Further confirmation was obtained by detecting a selective increase of β-GalCer 

over β-GlcCer in organs lacking activity of either CST or Gb3S, for both of which β-GalCer is 

the substrate to produce either sulfatide SM4s or galabiaosylceramide, respectively 35,46,212. 

Interestingly, however, the levels of not all β-GlcCer species went up with Gba2-deficiency and 

the levels of AS-type β-GlcCers remained unchanged. There are two possible explanations, 

which are: i) GBA2 may not be expressed in cells that express the AS-type; or ii) the AS-type 

β-GlcCer resides in lipid layers with no access to the cytosolic activity of GBA2. Whereas loss 

of UGCG activity in renal tubular epithelial cells caused a decrease of NS- and AS-type 

β-GlcCers in kidney, the hepatocyte-specific loss of UGCG activity, causing NS-types to go 
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down, even led to an increase of minor AS-type β-GlcCers. Because tissues are multi cell-type 

structures, the loss of enzyme activity in one specific cell type will always lead only to a loss of 

product in this but not the other cell types of the organ and thus not to a complete 

disappearance in organ extracts, if this product is synthesized by several cell types of the 

respective organ. An increase of a subspecies may imply either an increased relative 

abundance of the corresponding synthesizing cell type in mutant tissue or a reactive increased 

production or decreased catabolism of these compounds within the corresponding cells. The 

here established HILIC-MS2 method on top separates AS-type cerebrosides containing the 

α-hydroxy group of the acyl chain either in 2R- or 2S-configuration, which has to be taken into 

account when analyzing biological samples. Both configurations may appear in biological 

samples and AS-type cerebrosides of the brain were reported to contain basically the 

2R-configuration 187, which was confirmed here with this HILIC-MS2 method. Screening 

different mouse tissues with this method, we further confirmed high abundance of cerebrosides 

in brain and kidney, whereas most other tissues, including liver and spleen, are dominated by 

the presence of glucocerebrosides. Two exceptions were identified: auricles and especially 

lymph nodes are relatively abundant in cerebrosides, as compared to glucocerebrosides, and 

further investigations need to address from which cell types they origin. As this method delivers 

data for individual species, it allows to detect differences in ceramide anchor compositions 

between cerebrosides and glucocerebrosides or to follow changes in these compositions upon 

aging, activation, or disease progression. Here we plotted the relative acyl chain length 

distributions of cerebrosides against those of glucocerebrosides found in wild type mouse 

tissues. As expected, brain cerebrosides are rich in nervonic acid, a major component of myelin 

sheaths 186,213. In contrast, the small amount of brain glucocerebrosides is synthesized by 

majority with stearic acid. This points to neuronal cell origin as these cells convert this 

compound to complex gangliosides such as GM1a, GD1a, GD1b, or GT1b, all of which are 

known to basically contain stearic acid in their lipid anchor 186,214. Likewise, nervonic acid was 

the major fatty acid incorporated into cerebrosides of colon, small intestine, thymus and lymph 

nodes, whereas glucocerebrosides of these organs were enriched with the shorter palmitic 

acid. In conclusion this points to different cell types or differentiation stages of cells forming 

either cerebrosides or glucocerebrosides and expressing different pattern of ceramide 

synthases, which remains to be investigated.  
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4.6 Levels of β-GlcCer and β-GalCer in brain of TSD models 

The decrease of GM1 due to Neu4 depletion (4.4) was hypothesized to be caused as 

secondary effect by the demyelination in Neu4-/- mouse brains  89, which lead to the hypothesis 

that β-GalCer, the major lipid in myelin sheaths (30% of myelin lipids), should be decreased,  

too. Analysis of neutral brain extracts from mice with either Neu3 or Neu4 deficiency in the 

background of Tay-Sachs disease revealed, however, no changes in β-GalCer levels until the 

age of 6 month. A trend for reduced β-GalCer levels was detected only in mouse brains with 

GM2AP-/- and Neu4-/-GM2AP-/- genotype. On the other hand, defective GG-catabolism could 

affect the homestatic levels of β-GlcCer, which is an intermediate in GG-synthesis and 

degradation. Interestingly, β-GlcCer levels increased in HexA-/- mouse brains, an effect even 

more pronounced in the Neu3-/-HexA-/- genotype. One explanation may be that the severe 

amount of GM2 lysosomal storage can lead to co-precipitation/trapping of other 

glycosphingolipids such as β-GlcCer in the lamellar lipid sheets accumulating in neuronal 

lysosomes 4. 

4.7 α-Galactosylceramide, most potent stimulator of invariant natural killer T 

cells (iNKT cells) was detected in bacteria of the human gut microbiome 

In contrast to the afford discussed cerebrosides and glucocerebrosides (chapter 4.6), invariant 

natural killer T cells are activated most effectively when recognizing galactosylceramide with 

an α-glycosidic linkage presented on the cell surface receptor CD1d of antigen presenting cells 

215,216. One natural bacterial source of this compound in contact with our body is Bacteroides 

fragilis, a bacterial member of the human gut microbiome 14. Here the detection of α-GalCers 

from B.fragilis by HILIC-MS2 with unique retention time was shown to separate from the 

β-glycosidic mammalian counterparts. To address if other bacteria of the human gut 

microbiome may also express these immune stimulatory compounds, an initial set of 

10 bacteria of the human gut microbiome was analyzed. Subsequently potential changes of its 

levels upon intestinal inflammation were addressed in a model of colitis. In colitis, the intestinal 

barrier gets leaky for bacteria, which finally may lead to sepsis 133. Here, at least 2 other 

bacteria of the human gut microbiome revealed quantifiable amounts of α-GalCer and further 

3 strains delivered signals corresponding to α-GalCer, which were above the lower detection 

limit. Although concentration of α-GalCer in all these five strains was at least 100fold lower 

than in B.fragilis, the results demonstrate that there might be a remarkable high number of 

bacteria present in our gut, which is capable to synthesize the immunogenic α-anomeric variant 

of GalCer. On the other hand it should be of interest, whether the relatively high concentrations 
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of α-GalCer in B. fragilis contribute to its potential to cause diarrhea and colitis, which results 

in a higher risk for cancer 136,137.  The results obtained in this study underline at least the power 

of the method to screen for such immunogenic compounds and further support the idea that 

α-GalCer is a common natural CD1d-ligand for iNKT cell activation in immune host defense. 

Very low amounts of endogenously produced α-GalCer (and eventually α-GlcCer) have also 

been discussed to contribute to successive iNKT cell maturation 12. In this context and due to 

lack of knowledge of mammalian α-GalCer synthases, endolysosomal catabolism of α-GalCer 

has been discussed to regulate levels of α-GalCer on antigen presenting cells. Cerebrosidase 

and glucosylceramidase are specific for β-glycosylceramides and seem not to turn over 

α-GalCer. Catabolism rather appears to be initiated by acidic ceramidase releasing the 

lyso-compound α-GalSph, which, in contrast to α-GalCer, is a substrate for α-Galactosidase 

(GLA). Pharmacological inhibition of either these enzymes or defective activity in Fabry 

disease thereby induce a pro-inflammatory phenotype of iNKT cells 12,130,217,218.  

To further investigate the idea of bacterial α-GalCer originated from the gut microbiome as an 

alternative to endogenously synthesized, tissue samples from different parts of the mouse 

intestinal tract were screened for hexosylceramides. Interestingly, β-GlcCer and β-GalCer 

levels changed controversy from early intestine area duodenum over jejunum, caecum and 

colon, and finally feces in WT Bl6 and NMRI mice. β-GlcCer continuously decreased in parallel 

to a continuous increase of β-GalCer, changing the β-GalCer percentage from 1% of the total 

HexCer to 10-30% β-GalCer. These changes can contribute to a shift in cell types, the 

increasing amount of bacterial content or the metabolic digests of the intestine. More 

importantly, a potential α-GalCer was detected especially in colon and caecum of WT Bl6 mice, 

but not in bacteria-free (axenic) NMRI mice. The retention time is the same as the B.fragilis 

associated α-GalCer(d17:0;β-h17:0) but the transition suggests a ceramide backbone 

corresponding to d18:0;h16:0. As there is not much known about specific glycosphingolipid 

expression of mouse bacteria, further experiments were conducted to proof bacterial origin of 

this predicted BdS-α-GalCer. Comparison of unwashed and PBS-washed tissue as well as the 

washed-out content showed BdS-α-GalCer amounts are higher in unwashed tissues and 

content compared to the washed tissue, which supports the idea of bacterial origin. Metabolic 

digestion products as source of these particular BdS-α-GalCer could not be excluded. Another 

attempt to narrow down the source of the BdS-α-GalCer was based on reports that Bacteroides 

populations were decreased in the gut microbiome under high-fat diet (HFD) conditions 139,140. 

The BdS-α-GalCer levels, if produced by a bacterium similar to B.fragilis, should therefore 
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decrease in the gut microbiome of mice fed with HFD. Analysis of caecum and feces from mice 

fed five days with a high-fat diet showed indeed decreased levels of the predicted 

BdS-α-GalCer. The amounts of β-GlcCer and β-GalCer, however, were also significantly 

reduced in mice under HFD, not allowing a conclusion of BdS-α-GalCer being of bacterial 

(Bacteroides) origin. The purification and concentration of the BdS-α-GalCer from caecum and 

feces of WT mice combined with structural elucidations/verifications such as high resolution 

mass spectrometry and specific MS fragmentation of the sodium adduct should give proof of 

a possible α-glycosidic linkage (ratio of MS2 fragment [M+Na-Hexose]+ over [M+Na+H20-Hex]+) 

as well as the possible β-hydroxylation of the amid bound fatty acid (McLafferty fragmentation 

products) 219–221.  
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6 List of abbreviations 

AcOH acetic acid 

AdS α-hydroxy and dihydrosphingosine 

a-GSL acidic glycosphingolipids 

Alb albumin 

AP α-hydroxy and phytosphingosine 

APC antigen presenting cells 

Ar argon 

AS α-hydroxy and sphingosine 

B4Galnt1 N-acetylgalactosaminyl transferase 

BdS β-hydroxy and dihydrosphingosine 

Bl6 black 6 mouse strain 

CamK calcium/calmodulin-dependent kinase II α  

CD1d cluster of differentiation 1d 

Cer ceramide 

CerS ceramide synthase 

CERT ceramide transfer protein 

CID collision induced dissociation 

Cnp 2’, 3’ cyclic nucleotide 3’ phosphodiesterase  

CNS central nervous system 

Cre cyclization recombinase 

CST cerebroside sulfotransferase 

DEAE Diethylaminoethylcellulose 

DES dihydroceramide desaturase 

DESI Desorption electrospry ionization 

DETA diethylentriamine 

DHB 2,5-dihydrobenzoic acid  

dS dihydrosphingosine 

dw dry weight 

EGFR epidermal growth factor receptor 

eLPA ether-bonded lyso phosphatidic acid 

ER endoplasmativ reticulum 

ESCRT endosomal sorting complexes required for transport 

ESI electrospray ionization 

EtOH ethanol 

eV electron voltage/energy 
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f/f floxed/floxed 

FA fatty acid 

Fa2h fatty acid 2 hydroxylase 

FS full scan 

GalCer Galactosylceramide 

Galgt1 N-acetylgalactosaminyl transferase 

GalNAc N-acetyl galactosamine 

Gb3S Gb3 synthase 

Gba2 non-lysosomal β-glucosylceramidase 

GC gas chromatography 

GD3S GD3 synthase 

GG Ganglioside 

GlcCer Glucosylceramide 

GM2AP GM2 activator protein 

GM3S GM3 synthase 

GSL glycosphingolipid 

H hydrogen 

H&E hematoxiln and eosin 

HexA Hexosaminidase A 

HexCer Hexosylceramide 

HexNac N-acetyl hexosamine 

HFD high fat diet 

HILIC hydrophilic interaction chromatography 

HPTLC high performance rhin layer chromatography 

iNKT invariant natural killer T cells 

ISD internal standard 

ISD in-source decay 

ITO indium tin oxide 

K14 keratinocyte 14 

KDSR 3-ketosphinganine reductase 

LacCer lactosylceramide 

LC Liquid chromatography 

loxP locus of crossing x over P 

LPC lyso phospahtidylcholine 

LV luminal vesicle 

M mass ion 



  6 List of abbreviations 

 110 

m/z mass over charge 

MALDI Matrix assisted laser desorption/ionization 

MRM multi reaction monitoring 

MS/MS Tandem mass spectrometry 

MS2 Tandem mass spectrometry 

MSI Mass spectrometry imaging 

Nd:YAG neodymium-doped yttrium aluminum garnet 

NdS non-hydroxy and dihydrosphingosine 

Neu neuraminidase 

NeuAc neuraminic acid 

n-GSL neutral glycosphingolipids 

NP non-hydroxy and phytosphingosine 

NS non-hydroxy and sphingosine 

Pax8 paired box protein 8 

PBS phosphate buffered saline 

PC phosphatidylcholine 

PI phosphatidylinositol 

pLPE ether-bonded lyso phosphoethanolamine 

PNS peripheral nervous system 

PS phosphatidylserine 

PS precursor scan 

QqQ Triple quadrupole 

R resolution 

Rf retenrion factor 

RP reversed phase 

RT retenrion time 

Rt retenrion time 

SAP saposin 

SM sphingomyelin 

So sphingosine 

SPT  serine palmitoyl transferase 

SRM single reaction monitoring 

St3galt5 GM3/GM4 - sialyltransferase 

St8sia1 GD3 synthase 

TCR T cell receptor 

TFA triflour acetic acid 
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TGN trans-golgi network 

TIC total ion current 

TLC thin layer chromatography 

TOF time-of-flight 

TSD Tay-Sachs disease 

Ugcg GlcCer synthase 

Ugt8a GalCer synthase 

UPLC ultra performace liquid chromatography 

Vil villi 

WT wildtype 

wt wildtype 

ww wet weight 
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8 Appendix 

 

Appendix I: Solvent systems tested as gradients for the analysis of gangliosides with BEH C18 (50x2.1) column. 
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Appendix II: MALDI-TOF test of on-tissue saponification with 0.1M KOH. Fresh frozen WT mouse brain slices were 

either untreated, washed with 10% acetic acid or treated with 0.1M KOH as spray or droplet and washed. DHB 

matrix was applied and phosphocholine (PC) and sphingomyelin (SM) measured in positive reflector mode with a 

spatial resolution of 100 µm. 
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Appendix III: Mass spectrometry imaging with MALDI-TOF of gangliosides. Fresh frozen slices of mouse brain from 

3 month old GM2 gangliosidosis mice with Neu4 deficiency were sprayed with DHB matrix and measured in reflector 

negative mode with a spatial resolution of 50 µm. 
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Appendix IV: Mass spectrometry imaging with MALDI-TOF of gangliosides. Fresh frozen slices of mouse brain from 

6 month old GM2 gangliosidosis mice with Neu4 deficiency were sprayed with DHB matrix and measured in reflector 

negative mode with a spatial resolution of 50 µm. 
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Appendix V: LC-MS2 detection of sphingolipids in different bacteria of the human gut microbiome. 

  


