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‘Es wird ja fleißig gearbeitet und viel mikroskopiert, aber es müsste mal wieder einer einen 

gescheiten Gedanken haben.’ 

Rudolf Virchow (1821 ˗ 1902) 
German physiologist, founder of cellular pathology 
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Secretion of insulin in response to extracellular stimuli, such as elevated glucose levels and small 

molecules that act on G-protein coupled receptors (GPCRs), is the hallmark of β-cell physiology. 

Sufficiently high blood insulin levels are ensured by the coupling of the secretory activity within 

pancreatic islets. Intercellular and inter-islet coordination are partly mediated by small diffusible 

ligands of GPCRs within the extracellular space of pancreatic islets. Therefore, insulin release is 

considered a synchronized multi-cellular process. We show herein that β-cell activity and insulin 

secretion essentially rely on the presence of extracellular endogenous (autocrine) signaling factors, 

exemplified by two classes of small cellular metabolites.  

Trace amines (TAs) are small aromatic metabolites that were identified as low-abundant ligands of 

the trace amine-associated receptor 1 (TAAR1) in the central nervous system (CNS). In the 

presented work, we identify TAs as essential autocrine signaling factors that maintain and regulate 

oscillations of the intracellular Ca2+ concentration ([Ca2+]i oscillations) along with insulin secretion 

from β-cells via TAAR1. We found that the modulation of endogenous TA levels by the selective 

inhibition of TA biosynthetic pathways directly translated into changes of [Ca2+]i oscillations and 

insulin secretion. Application of aromatic amine-withdrawing β-cyclodextrin temporarily reduced 

[Ca2+]i oscillations. This demonstrates the essential role of TAs for β-cell activity as well as their 

high metabolic turnover rates. Notably, herein applied inhibitors and synthetic TAAR1                         

(ant-)agonists are partly approved for the therapeutic modulation of biogenic amine levels within 

the CNS, and hence for the treatment of common neurological disorders. According to our findings, 

these drugs even affect β-cell activity and insulin secretion through pancreatic TAAR1.  

With the discovery of the free fatty acid (FA) receptor GPR40 in β-cells, FAs have come into focus 

as exogenous insulin secretagogues. However, the role of FAs as endogenous (local) signaling 

factors of β-cells has not been considered so far. We show herein that lowering endogenous FA-

levels in the presence of FA-free bovine serum albumin (FAF-BSA) immediately reduced [Ca2+]i 

oscillations and insulin secretion. [Ca2+]i oscillations resumed upon exchange of FAF-BSA by 

buffer or upon restoration of extracellular FA pools. The latter was accomplished by the photolysis 

of caged FAs on plasma membranes, by the addition of a recombinant lipase or of FA-loaded BSA.  

Our approach to subordinate β-cell activity and insulin secretion to the presence of autocrine 

signaling factors of the yet underestimated receptors TAAR1 and GPR40 in the pancreas 

contributes to a more detailed and complete understanding of the fundamental regulation of β-cell 

activity and insulin secretion. 
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Ein Merkmal der Physiologie von β-Zellen besteht in der Sekretion von Insulin als Antwort auf 

extrazelluläre Stimuli, wie erhöhte Blutzuckerspiegel und niedermolekulare Liganden von G-

Protein gekoppelten Rezeptoren (GPCRs). Angepasste Blutinsulinspiegel werden durch die 

gekoppelte sekretorische Aktivität zwischen pankreatischen Inseln ermöglicht. Die Koordination 

unter pankreatischen Zellen und Inseln wird teilweise durch niedermolekulare, diffusible Liganden 

von GPCRs im extrazellulären Bereich von pankreatischen Inseln vermittelt. Insulinausschüttung 

wird daher als ein synchronisierter multi-zellulärer Prozess angesehen. In dieser Arbeit zeigen wir, 

am Beispiel zweier Klassen niedermolekularer zellulärer Metabolite, dass β-Zellaktivität und 

Insulinsekretion vom Vorhandensein extrazellulärer, endogener (autokriner) Signalfaktoren 

abhängen.  

‚Trace amines (TAs)‘ sind kleine, aromatische Metabolite, die als niederabundante Liganden des 

‚trace amine-associated receptor 1 (TAAR1)‘ im zentralen Nervensystem (ZNS) entdeckt wurden. 

In dieser Arbeit identizifieren wir TAs als essentielle autokrine Signalfaktoren, die Oszillationen 

der intrazellulären Ca2+ Konzentration ([Ca2+]i Oszillationen), sowie Insulinsekretion von β-Zellen 

durch Stimulation des TAAR1 aufrecht erhalten und modulieren. Wir stellten fest, dass sich die 

Modulation endogener TA Konzentrationen durch selektive Inhibition von TA Biosynthesewegen 

sofort in veränderten [Ca2+]i Oszillationen und Insulinsekretion niederschlug. [Ca2+]i Oszillationen 

wurden durch Verabreichung von β-Cyclodextrin zeitweise reduziert, das aromatische Amine von 

Zellen bindet und diese entzieht. Dies zeigt die essentielle Rolle von TAs für die β-Zellaktivität, 

sowie ihren hohen metabolischen Umsatz. Bemerkenswerterweise sind die hier verwendeteten 

Inhibitoren und synthetischen TAAR1 (Ant-)Agonisten teilweise für die therapeutische 

Modulation der Konzentrationen biogener Amine im ZNS und daher auch für die Behandlung von 

verbreiteten neurologischen Erkrankungen zugelassen. Unsere Beobachtungen zeigen, dass diese 

Therapeutika auch β-Zellaktivität und Insulinsekretion durch TAAR1 im Pankreas beeinflussen.  

Durch die Entdeckung des freien Fettsäure- (FA-)rezeptors GPR40 in β-Zellen rückten FAs als 

exogene Stimuli für Insulinsekretion in den Fokus. Jedoch wurden FAs bisher nicht in der Rolle 

endogener (lokaler) Signalfaktoren von β-Zellen betrachtet. In dieser Arbeit zeigen wir, dass eine 

Verringerung endogener FA Konzentrationen in Gegenwart von FA-freiem bovinem 

Serumalbumin (FAF-BSA) mit einer unverzüglichen Reduktion von [Ca2+]i Oszillationen und 

Insulinsekretion einhergeht. Der Austausch von FAF-BSA durch Puffer oder die 

Wiederherstellung von extrazellulären FA-Pools bewirkte die Wiederaufnahme von [Ca2+]i 

Oszillationen. Letzteres wurde ermöglicht durch Photolyse von photogeschützten FAs an 



Zusammenfassung 

ix 

Plasmamembranen, durch Zugabe von rekombinanter Lipase oder FA-geladenem BSA. Der hier 

präsentierte Ansatz, β-Zellaktivität und Insulinsekretion dem Vorhandensein autokriner 

Signalfaktoren der bislang unterschätzten pankreatischen Rezeptoren TAAR1 und GPR40 

unterzuordnen, trägt zu einem detailierterem und vollständigerem Verständnis fundamentaler 

Regulation von β-Zellaktivität und Insulinsekretion bei.  
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1. Introduction 

1.1. Pancreatic modulation of glucose homeostasis 

1.1.1. Physiology of glucose homeostasis 

The precise regulation of physiological blood glucose levels is essential for overall metabolism and 

energy homeostasis. For this, liver, intestine, adipose and muscle tissue as well as the brain are 

tightly intertwined by a sensitive network of various hormones and neuropeptides in mammals [1]. 

Encapsulated within the islets of Langerhans, pancreatic endocrine cells produce the hormones 

insulin, glucagon and ghrelin, which are secreted into the bloodstream [2,3] (Fig. 1 A). For adjusted 

secretory responses, pancreatic islets need to sense multiple physiological parameters in the body, 

e.g. blood glucose and nutrient levels after food intake or hormones from endocrine glands. The 

adult human pancreas comprises 0.5 - 1 x106 islets of Langerhans. Being 100 - 150 µm in diameter, 

pancreatic islets account for 2 - 3 % of the total pancreatic volume [4,5]. Pancreatic islets are 

considered as fully functional secretory units, as they contain all elements that are necessary for 

adequate responses to fluctuating nutrient levels. Human islets comprise different secretory cell 

types: β-cells (~75 - 80 %, insulin), α-cells (~18 %, glucagon), δ-cells (~6 %, somatostatin), ε-cells 

(~1 %, ghrelin) and γ-cells (~1 %, pancreatic peptide (PP)) (Fig. 1 B) [6,7]. The anabolic hormone 

insulin is secreted in response to elevated blood glucose levels to promote glucose uptake into 

adipose and muscle tissue [8–10], lipogenesis [11], glycogenesis [12–14] and protein biosynthesis 

[15]. The catabolic hormone glucagon increases blood glucose levels, promoting glycogenolysis 

and gluconeogenesis in liver and kidneys in between meals and during sleep [16]. The interplay 

between glucagon and insulin action keeps human blood glucose levels in a physiological range of 

4 - 6 mM [17] and is generally referred to as ‘glucose homeostasis’. Both glucagon and insulin 

release are inhibited by somatostatin [18]. The overall secretory activity of the pancreas is regulated 

by the PP [19]. Pancreatic islets are also composed of various other cell types, such as resident 

immune cells, neural and glial cells [3]. Relative proportions of islet cell types, and even more 

important, the cytoarchitecture within islets may vary significantly amongst islets, individuals and 

species. In rodent islets, α- and δ-cells are segregated to the periphery with a homogenous center 

formed by β-cells. Human islets are, however, more heterogeneous (Fig. 1 B and C) [3,6,20,21]. 

Apart from pancreatic endocrine cells, acinar (exocrine) cells secrete a cocktail of digestive 

enzymes, such as pancreatic lipase, trypsinogen and amylase via the pancreatic duct into the 

duodenum (Fig. 1 A) [1]. 
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Figure 1. Anatomy of insulin secretion. (A) Hormone secreting islets of Langerhans constitute the 
endocrine part of the pancreas. A composite of different digestive enzymes is secreted from acinar cells 
together with bile into the upper small intestine via the pancreatic duct (i.e. the exocrine section of the 
pancreas). (B) Human (left) and mouse (right) islet sections, immuno-stained for insulin (red, β-cells), 
glucagon (green, α-cells) and somatostatin (blue, ε-cells). Scale bar, 50 µm. (C) Different types of pancreatic 
cells surround blood vessels inside human islets. Adapted and modified from [1,3,22].  
 

 

1.1.2. β-Cell physiology in glucose-stimulated insulin secretion 

Insulin is released from pancreatic β-cells in response to changes in blood glucose levels, which 

presents the main physiological stimulus. Glucose is shuffled into β-cells by glucose transporters 

(GLUTs), where a high-Km isoform of glucokinase acts as a rate-limiting glucose sensor. 

Glucokinase determines the sigmoidal dose-response-relation of glucose-stimulated insulin 

secretion (GSIS). Glucose at 3 - 7 mM presents a (species-specific) stimulatory threshold for GSIS, 

followed by a steep increase to reach maximal levels of secretion at 15 - 30 mM [23,24].  

GSIS involves glucose metabolism, along with increased cytosolic ATP / ADP ratios. Elevated 

ATP levels block ATP-sensitive K+ (KATP)-channels within the plasma membrane (PM), which 

leads to membrane depolarization (Fig. 2 A). Open KATP-channels under non-stimulatory 

conditions allow K+-outflow, which presents the main originator of the PM resting potential [25]. 

PM depolarization mediates the opening of voltage-gated Ca2+-channels (VGCC). Ca2+ influx, 
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sensed by synaptotagmins, SNARE and Sec1/Munc18-like proteins, triggers the fusion of insulin-

filled secretory granules with the PM (Fig. 2 A) [26–28].  

Notably, the mitochondrial membrane potential, along with cellular ATP levels and KATP-channel 

gating were found to oscillate in β-cells [29,30]. Rhythmic depolarization of the PM ensures regular 

transients of the cytosolic Ca2+ concentration ([Ca2+]i oscillations) along with pulsatile insulin 

secretion [31–33]. In isolated β-cells, [Ca2+]i oscillations occur with frequencies of 0.1 - 0.5 min-1. 

Even faster or mixed [Ca2+]i events are described with frequencies of 2 - 6 min-1 [34–36]. Also, 

other metabolic factors have been described to oscillate in β-cells, such as glucose-6-phosphate, 

NADH and ATP [37–40], phospholipase C (PLC) activity [41], diacylglycerol (DAG)-, 

phosphoinositide (PIPn) levels within the PM [42,43] and the intracellular cyclic AMP (cAMP) 

concentration [44–46]. Therefore, β-cells are considered as biological oscillators [47].  

Insulin secretion from β-cell populations or islets can be followed by traditional immunoassays, 

e.g. enzyme-linked immunosorbent assay (ELISA). However, these bulk techniques are mostly 

limited by insufficient sensitivity to monitor insulin secretion events from single cells or to resolve 

the fast kinetics of insulin secretion, especially when it comes to transient stimulation [48]. 

Cytosolic Ca2+ is a key second messenger of insulin exocytotic events. As [Ca2+]i oscillations are 

directly coupled with pulsatile insulin secretion from β-cells and islets (Fig. 2 B, Fig. A1 (appendix) 

and [31,32,49–51]), monitoring [Ca2+]i provides a sensitive readout of β-cell responses and insulin 

secretion. Cell-permeant, bright and photostable Ca2+ sensitive fluorescent indicators such as Fluo-

4 allow for monitoring [Ca2+]i oscillations in real time [52].  

In the presence of glucose, insulin secretion can be potentiated or inhibited via G-protein coupled 

receptor (GPCR)-stimulation by neurotransmitters, hormones or small molecule metabolites [26]. 

Here, Gαs-coupled receptors trigger cyclic AMP (cAMP) formation via adenylyl cyclase to amplify 

insulin secretion (Fig. 2 C). Next to Ca2+, cAMP ranks amongst the most critical messengers for 

the regulation of insulin secretion [53–55]. Glucagon-like peptide 1 (GLP-1), glucagon or the 

gastric inhibitory polypeptide (GIP) are described to increase cellular cAMP levels in β-cells 

[56,57]. cAMP activates protein kinase A (PKA), which phosphorylates proteins of the insulin 

exocytosis machinery, thereby sensitizing insulin secretion to Ca2+ [58,59]. Further, PKA-mediated 

phosphorylation of KATP channels [60,61] and VGCC [62,63] directly modulates cellular [Ca2+]i. 

Also, gated intracellular Ca2+ mobilization from endoplasmatic reticulum (ER) stores might occur 

due to PKA-mediated phosphorylation and sensitization of 1,4,5-trisphosphate receptors (IP3Rs) 

[64,65]. Insulin release is additionally regulated by muscarinic GPCRs. Acetylcholine (ACh)- or 
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fatty acid (FA)-mediated stimulation of Gαq-coupled receptors activates PLC at the inner leaflet of 

the PM, hydrolyzing phosphatidylinositol-4,5-bisphosphate (PIP2) to DAG and IP3. DAG activates 

protein kinase C (PKC), while IP3 mobilizes Ca2+ from intracellular ER stores, which, in turn, 

triggers Ca2+-influx from PM channels and exocytosis of insulin granules [66–68] (Fig. 2 A). 

 

 

 

Figure 2. Mechanisms for the regulation of insulin secretion. (A) Glucose-stimulated insulin secretion 
(GSIS). Glucose is taken up into the β-cell by glucose transporters (GLUT) and metabolized. Increased 
cellular ATP levels block KATP-channels, followed by membrane depolarization. Voltage-gated Ca2+-
channels (VGCC) open to allow Ca2+-influx, mediating the exocytosis of insulin-filled granules.                              
(B) Temporal correlation of [Ca2+]i oscillations (solid line) and insulin secretion (dashed line) was shown 
by simultaneous recordings in isolated mouse pancreatic islets at different glucose concentrations. Adapted 
from [51]. (C) GSIS is modulated by Gαs- and Gαq-coupled receptor signaling. Stimulation of Gαs-coupled 
receptors by GLP-1 or trace amines (β-phenylethylamine, β-PEA) triggers cAMP formation by adenylyl 
cyclase (AC) action. cAMP activates protein kinase A (PKA) with direct effects on the insulin exocytotic 
machinery or ion channels. Stimulation of Gαq-coupled receptors by fatty acids (FA) or acetylcholine (ACh) 
induces IP3 and DAG formation via PLC-mediated hydrolysis of PIP2, along with Ca2+ efflux from the ER, 
PKC and PKD1 activation. Adapted and modified from [69].  
 

 

 



1. Introduction 

5 

1.1.3. Cellular model systems for the investigation of the regulation of insulin secretion 

Pancreatic cell lines or primary β-cells are well-established model systems that allow for the 

investigation of the cellular mechanisms that regulate insulin secretion. Mouse primary β-cells can 

be isolated from pancreatic tissue by mechanical or enzymatic fragmentation. The latter is achieved 

by injection of a collagenase solution into the pancreatic duct of the sacrificed animal, followed by 

the removal of the pre-digested pancreas, dispersion as well as separation of the islets from 

connective and fat tissue by density gradient centrifugation [70].  

Compared to primary β-cells, pancreatic cell lines have the advantage of reproducibility and 

consistency, which is important for large-scale toxin or drug testing experiments [71]. Also, firmly 

attached to the cover slip, cultured cell lines easily stand buffer exchange and washing procedures. 

However, being of tumor origin, β-cell lines come with genetic (chromosomal) variability, along 

with abnormal metabolism and protein expression. This might lead to occasional differences in 

insulin secretory characteristics and glucose responsiveness between β-cell lines and primary β-

cells. In addition, β-cell lines require β-mercaptoethanol as a culture medium supplement, which is 

likely to change the natural functionality of proteins [71]. Several pancreatic cell lines have been 

established as models that allow for the investigation of β-cell regulation and insulin secretion [71]. 

Insulin producing INS-1 (derived from rat insulinoma by X-ray treatment [72]) and MIN6 cells 

(generated from a transgenic mouse pancreatic tumor [73]) are amongst the pancreatic cell lines 

that are most commonly applied in the field. MIN6 cells grow as pseudo-islets and exhibit key 

characteristics of normal pancreatic islets [74]. Due to expression of glucokinase and GLUT-2, 

MIN6 and INS-1 cells show good responsiveness to glucose in the physiological range (Fig. A1 

(appendix)) and high levels of insulin secretion in ranges similar to pancreatic islets [71,73,74]). 

Apart from insulin, secretion of glucagon, ghrelin and somatostatin from MIN6 cells was reported. 

This identifies MIN6 cells as a mixed cell line consisting of different pancreatic endocrine cells 

[75] and makes it ideally suited for the investigation of intercellular communication.  

 

 

1.2. Intercellular signaling and β-cell synchronization inside the pancreas 

Blood insulin levels are not maintained at constant levels, but rather oscillate at periodicities of ~5-

15 min/oscillation in vertebrates, with variabilities due to species diversity, different sampling sites 

and methods of analysis (Fig. 3 A) [76–79]. However, hyperglycemic, hyperinsulinemic ob/ob 
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mice [80], diabetic rats [81] and type-2-diabetes mellitus (T2D) patients [82] as well as their close 

relatives [83,84] were diagnosed with disturbances in oscillatory insulin secretion. Loss of pulsatile 

insulin secretion was suggested to promote insulin resistance, which needs to be adjusted by insulin 

hypersecretion. This, in turn, might lead to the exhaustion of β-cells and to T2D [48].  

In comparison to a constant insulin supply, clinical studies on diabetic patients indicate that 

oscillatory infusion of insulin lowers the insulin doses that are necessary to sustain normoglycemia 

[85–90]. The oscillatory nature of [Ca2+]i, along with pulsatile insulin secretion prevents β-cell 

overstimulation and cell death [91]. Oscillatory insulin levels in vivo are essential for avoiding the 

downregulation of systemic insulin receptor levels (i.e. obviating insulin resistance) and therefore 

enhance the physiological effects of secreted insulin [92]. Periodic secretory bursts of insulin 

secretion are ensured by both the integration of the β-cell population into a functional syncytium 

within pancreatic islets (intra-islet synchronization, Fig. 3 C) and the concerted secretory action of 

pancreatic islets (inter-islet synchronization, Fig. 3 B). In particular, pulsatile insulin secretion has 

been detected from isolated canine pancreata [93] and from individual rodent pancreatic islets 

[94,95] (Fig. 3 A). Even though patterns of [Ca2+]i oscillations amongst individual β-cells can be 

quite variable, β-cells within pancreatic islets are well integrated into a common rhythm [32,76,96] 

(Fig. 3 C). Direct gap-junctional coupling of β-cells by intercellular channel proteins of the 

connexin family has been described as the pivotal mechanism for the synchronization of [Ca2+]i 

oscillations within β-cells and thereby for pulsatile insulin release [48,97–99]. However, loss of 

functional gap junctions in mice was shown to compromise, but not to abolish the synchronization 

of [Ca2+]i oscillations and pulsatile insulin secretion [100]. Notably, synchronized insulin release 

has also been observed within groups of dissociated islets, lacking physical contact [101]. 

Therefore, intra- and inter-islet synchronization have been suggested to also underlie para- and 

autocrine regulation, in addition to direct electrical coupling [3,48]. Autocrine signaling is based 

on the microcirculation of small diffusive extracellular messengers, mediating effects on either 

cells from which they were originally released or on neighboring cells of the same type [3]. 

Paracrine signaling is based on secreted messengers that affect different types of cells. Auto- and 

paracrine signaling present a means for information exchange about the functional state of 

neighboring cells as well as for the integration of β-cells and pancreatic islets into functional 

networks (Fig. 3 B). Prerequisite for efficient auto- and paracrine signaling are short distances 

between communicating cells, ensuring spatial restriction of the signaling. Therefore, the cellular 

arrangement and the confined extracellular space within human islets of Langerhans are perfectly 
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suited for auto- and paracrine signaling (Fig. 1 B and C) [3,5]. High local concentrations are 

reached by comparably small numbers of molecules that are also rapidly turned over by 

metabolizing enzymes [3]. More than two decades ago, coordinated [Ca2+]i oscillations amongst 

dispersed isolated β-cells have been first described, assuming the presence of small diffusible 

factors, such as ATP and NO that mediate synchronization [102,103]. ATP was found co-released 

with insulin from secretory granules in a pulsatile fashion [65,104], stimulating P2 purinergic 

receptors of neighboring β-cells [105]. Thereby, ATP promotes intra- and inter-islet propagation 

of [Ca2+]i oscillations, entrains pancreatic islets into a common rhythm, makes islets sensitive to 

fluctuating glucose levels [106] and ensures rapid adapted insulin responsiveness in a positive 

autocrine feedback mechanism [107–110]. Release of ATP from intra-pancreatic neurons was 

suggested as an ignition switch for the stimulation and coordination of pulses of insulin secretion 

[110,111].  

 

Figure 3. Intercellular and inter-islet synchronization within the pancreas constitute the basis for 

pulsatile insulin secretion. (A) Pulsatile insulin secretion, as recorded in the portal vein of a perfused rat 
pancreas (top, adapted from [112]), from an isolated pancreatic islet (middle, adapted from [32]) and from 
a single β-cell, recorded with a fluorescent sensor for the autocrine activation of insulin receptors [48,113]. 
(B) Hierarchy of pulsatile insulin secretion. β-Cells are synchronized via direct electrical coupling (gap 
junctions) and diffusible auto- and paracrine signaling factors. Thereby, pancreatic islets form synchronized 
syncytia that communicate via diffusible factors and nervous innervation within the pancreas. (C) Cultured 
MIN6 cells grow as pseudo-islets (top). Ca2+ traces, recorded from three adjacent MIN6 cells in the presence 
of glucose (bottom). The Ca2+ indicator Fluo-4 (5 µM) was applied for visualization of Ca2+ oscillations. 
Scale bar, 15 µm. 
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Other examples of pancreatic para- and autocrine signaling factors include small gaseous 

molecules, ions, hormones and neurotransmitters, such as NO [103,114], CO [115], Zn2+ [116,117], 

neuropeptide Y [118] or cellular metabolites, e.g. glutamate [119] and γ-aminobutyric acid 

(GABA) [120,121], but also insulin [122]. Taking into consideration ATP, GABA and Zn2+ 

concentrations in insulin secretory granules, the average volume and the amount of released insulin 

granules, as well as the volume of a β-cell and of the extracellular space, Braun et al. estimated 

extracellular concentrations of secreted autocrine signaling factors in the micromolar range. For 

this, however, degradation processes were neglected [123]. Considering the multitude of GPCRs 

that have been identified in β-cells [69], it is very likely that even more autocrine signaling factors 

participate in the regulation of β-cell activity, such as small aromatic amines and fatty acids.  

 

 

1.3. Trace amines are small aromatic amines with implications for central 

nervous system function and glucose homeostasis 

1.3.1. Trace amines act as neuromodulators via the trace amine-associated receptor 1 

‘Biogenic amines’ is a generic term for a set of amines that show important biological effects as 

chemical messengers, i.e. neurotransmitters, neuromodulators and (local) hormones [124]. 

Catecholamines, including adrenaline, noradrenaline, dopamine and serotonin (Fig. 4 (6-9)) are 

amongst the first biogenic amines discovered [125]. In turn, the term ‘trace amines’ (TAs) describes 

a family of small endogenous aromatic amines that were detected at low concentrations (0.1 – 

10 nM) in the central nervous system (CNS) [126,127]. Even though constituting only 0.1 % of the 

total amount of biogenic amines, TAs have been implicated in several neurological effects, 

including the fine-tuning of aminergic neurotransmission [127–129]. Common TAs are generated 

by the decarboxylation of amino acids. β-Phenylethylamine (β-PEA), p-tyramine, tryptamine, p-

octopamine and synephrine are the most important representatives of TAs (Fig. 4 (1-5)) [124]. 

Unlike for neurotransmitters, no vesicular storage has been reported for TAs so far [127,130,131]. 

The discovery of the ‘trace amine-associated receptor 1’ (TAAR1) by two independent groups in 

2001 provided the missing link for a molecular understanding of TA-mediated effects [132,133]. 

Whereas serotonin, dopamine and epinephrine show EC50s in the micromolar range at TAAR1, 

EC50s of TAs were reported at nanomolar levels [132,133]. TAAR1 was described to play a 

functional role for the fine-tuning of neuron excitability and neurotransmitter release [127]. 
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Coupled to a Gαs protein, stimulation of TAAR1 triggers adenylyl cyclase-mediated generation of 

cAMP, along with modulation of PKA- and PKC-mediated signaling [132,133]. Further, TAAR1 

enhances the opening of inwardly rectifying K+ channels [134].  

Monitoring intracellular cAMP levels in heterologous cell lines (e.g. HEK-293 or COS-7 cells) that 

overexpressed TAAR1 allowed for the pharmacological characterization of this receptor and for 

screening for endogenous and exogenous (artificial) agonists [132,133,135–138]. Thyronamines 

are endogenous amines with structural similarities to thyroid hormones that act as physiological 

TAAR1 agonists in addition to TAs [139]. Deiodination and decarboxylation of the thyroid 

hormone yield 3-iodothyronamine (T1AM) (Fig. 4 (10)), detected in human and rodent tissue as 

well as in blood [140,141]. T1AM is described as the most potent endogenous TAAR1 agonist 

[141]. Notably, addictive drugs, such as (meth-)amphetamine and 3,4-

methylenedioxymethamphetamine (MDMA), sharing the same scaffold with β-PEA, were found 

to act as potent TAAR1 agonists (Fig. 4 (11-12)) [133].  

Up until now, the subcellular localization of TAAR1 has been under debate. TAAR1 was reported 

to not only reside at internal membranes [128,142,143], but to translocate to the PM after 

heterodimerization [144,145]. Forming heterodimers with the D2 dopamine receptor (DR2) and 

dopamine transporter (DAT), TAAR1 activation was described to modulate dopaminergic 

signaling [134,146,147]. Interaction of TAAR1 with DAT was suggested to provide a mechanism 

for the regulated entry of TAs into the cytoplasm for TAAR1 binding. Variations of TA levels have 

been linked to common psychiatric disorders, such as major depression [148,149], schizophrenia 

[150], Parkinson’s disease and anxiety states [151,152]. Therefore, selective agonists for the 

modulation of TAAR1 activity are high in demand. 

Hoffmann-La Roche developed a series of potent synthetic full (e.g. RO5166017, RO5256390) 

and partial TAAR1 agonists (e.g. RO5073012, RO5203648 and RO5263397) (Fig. 4 (14-16)), 

showing high selectivity for TAAR1 and against the adrenergic α2 receptor [151,153–155]. The 

‘RO compounds’ have been widely applied to study neural effects of selective TAAR1 activation, 

as reviewed by [156]. Alternative approaches for the identification of novel potent TAAR1 (ant-

)agonists used molecular docking screening against a homology model of TAAR1 [157,158]. For 

the identification of selective TAAR1 antagonists, a Roche library of more than 7 x105 compounds 

was screened. Compounds were selected based on their capacity to reduce cAMP levels, following 

β-PEA-mediated stimulation of cells that expressed a chimeric human/rat variant of the TAAR1 

receptor [134,159]. Based on its high affinity for rodent TAAR1 and selectivity, RO5212773 
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(EPPTB, Fig. 4 (13)) was selected [134,159], which is currently the only commercially available 

TAAR1 antagonist [156]. However, TAAR1 antagonists are high in demand, as cellular responses 

to EPPTB should be verified by various antagonists of different molecular structures [156]. Also, 

in vivo application of EPPTB is limited by its high clearance [159,160]. Based on homology 

modelling, Tan et al. predicted lead antagonist properties for rat TAAR1 to develop the potent  

antagonist ET-92 (IC50 of ~3 µM (rat) [161].  

 

Figure 4. Overview of biogenic amines, TAs and TAAR1 (ant-)agonists. TAs (1-5): (1) β-PEA, (2) p-
tyramine, (3) p-octopamine, (4) synephrine, (5) tryptamine. Biogenic amines (6-9): (6) dopamine, (7) 

noradrenaline, (8) adrenaline, (9) serotonin. (Synthetic) TAAR1 (ant-)agonists (10-16): (10) T1AM, (11) 

amphetamine, (12) methamphetamine, (14) RO5073012, (15) RO5166017, (16) RO5256390.  
 

 

1.3.2. Biochemistry of TAs 

TAs are generated from respective precursor aromatic amino acids in a single decarboxylation step, 

catalyzed by aromatic L-amino acid decarboxylase (AADC). That way, β-PEA is directly generated 

from L-phenylalanine, tryptamine from L-tryptophan and p-tyramine from L-tyrosine (Fig. 5) 

[127,162]. p-Tyramine is converted by dopamine β-hydroxylase (DBH) to generate p-octopamine 

(Fig. 5). β-PEA, p-tyramine and p-octopamine are substrates of phenylethanolamine N-
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methyltransferase (PNMT) [163] and nonspecific N-methyltransferase (NMT) [164] for the 

biosynthesis of corresponding secondary amines, i.e. synephrine [133], N-methyltyramine [165] 

and N-methylphenylethylamine (Fig. 5) [166]. TAs are rapidly inactivated in a single enzymatic 

oxidation step by monoamine oxidases (MAO), described to reside at outer mitochondrial 

membranes [167]. MAO-A and MAO-B are the two isoforms of MAO for TA oxidation and 

inactivation (Fig. 5). While all TAs are metabolized by both MAO isoforms, β-PEA is primarily 

converted by MAO-B [168–171]. MAOs show high turnover rates, leaving TAs with half-life 

periods in the range of ~30 s [170]. As MAO-B also metabolizes dopamine, inhibitors of MAOs 

are applied for the treatment of depression and Parkinson’s disease in the clinics [172]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic overview of the main biosynthetic routes for TA generation and degradation in 

vertebrates. Decarboxylation of the amino acids L-phenylalanine, L-tyrosine and L-tryptophan by aromatic 
L-amino acid decarboxylase (AADC) yields β-PEA, p-tyramine and tryptamine. p-Tyramine is metabolized 
to synephrine via p-octopamine (dopamine β-hydroxylase (DBH), phenylethanolamine N-methyltransferase 
(PNMT)) or directly to N-methyltyramine by PNMT. β-PEA is converted to N-methylpenylethylamine by 
NMT. N-methyltryptamine is generated from tryptamine by PNMT action. TAs are rapidly inactivated by 
monoamine oxidase (MAO-A/-B) action and have relatively short half-lives in the range of 30 s. TAs are 
highlighted in blue, amino acids in red [166].  
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1.3.3. The role of TAAR1 in glucose homeostasis and energy metabolism 

So far, research has mainly focused on the neuromodulatory functions of TAAR1 in the CNS, while 

its role in peripheral tissue has been far less studied. Notably, TAAR1 was found expressed in 

organs involved in gastric function and nutrient absorption. In rats, TAAR1 mRNA was detected 

at low to moderate levels in stomach [173,174], duodenum [174,175] and in trace amounts in 

human as well as mouse islets of Langerhans [132,133]. Here, TAAR1 expression was detected in 

β-cells but not in α-cells [154,174].  

The involvement of TAAR1 in the regulation of energy metabolism was first shown in 2013. Pre-

clinical testing of the TAAR1 partial agonist RO5263397 as a treatment for schizophrenia 

prevented rats from drug-induced weight gain and fat accumulation [154]. Also, TAAR1 mRNA 

was detected in the murine β-cell line MIN6, rat INS-1, mouse pancreatic β-cells and in human 

islets [174,176]. Selective TAAR1 agonism by RO5166017 significantly potentiated GSIS from 

INS-1 cells, from isolated human islets (in vitro) and C57BL/6 mice (in vivo), along with 

significantly lowered blood glucose levels [174]. Also, overnight fasted C57BL/6 mice showed 

reduced appetite, after treatment with TAAR1 agonists [174]. A recent preliminary study in 

overweight/obese patients with impaired insulin secretion connected single-nucleotide variants in 

TAAR1 with disturbed glucose homeostasis [177]. All this makes TAAR1 an attractive therapeutic 

target for the pharmacological modulation of β-cell activity and insulin secretion. Despite of data 

supporting TAAR1 expression in pancreatic islets, the effect of selective TAAR1 (ant-)agonism on 

single β-cell activity as well as the role of the presence or selective reduction of endogenous TA 

levels for [Ca2+]i oscillations and insulin secretion has not been unraveled yet. 

 

 

1.4. Fatty acids modulate insulin secretion via GPR40  

It has long been described that elevated levels of FAs augment GSIS in isolated rodent islets and 

pancreata [178–181], in dogs [182], patients [183] and random subjects [184]. Pre-exposure of islet 

β-cells to FAs renders them hypersensitive to glucose [185]. The insulinotropic potency of FA was 

described to depend on the degree of saturation and the chain length [186–188]. Long-chain 

unsaturated FAs are most potent for the stimulation of [Ca2+]i and insulin release [189,190], such 

as arachidonic [191–194], oleic [195], linoleic [196] and palmitic acid [197–200]. Interestingly, 

reductions of blood FA levels correlated with decreased levels of insulin [201,202]. This indicates 
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that certain FA levels are necessary for efficient GSIS and further that FAs play a role for glucose 

homeostasis that lies beyond basic modulatory actions.  

In 2003, GPR40, an orphan GPCR that was found abundantly expressed in brain and pancreatic 

tissue, was identified as a receptor for medium and long-chain FAs [203–205]. Overexpression of 

GPR40 in pancreatic β-cells was reported to augment GSIS [206]. Opposite effects emerged after 

deletion of GPR40 in β-cells [207,208]. Notably, genetic polymorphisms of GPR40 were 

connected to alterations in the insulin secretion capacity of healthy subjects [209]. Therefore, 

GPR40 was suggested as a major player of the potentiating effects that FAs cause on [Ca2+]i 

signaling and GSIS [210–213]. It has recently been shown that the photolysis of caged arachidonic 

acid at the PM of MIN6 cells modulates [Ca2+]i signaling via GPR40 [214]. FA-mediated 

stimulation of GPR40 ˗ mainly coupled to Gαq ˗ activates PLC, which induces PIP2 hydrolysis to 

IP3 and DAG. IP3 leads to Ca2+ liberation from ER stores and thereby to the elevation of [Ca2+]i. 

DAG also activates PKD1, along with de-polymerization of F-actin and potentiation of insulin 

release (Fig. 2 A, C) [195,211,212,215]. Alternative pathways for the FA-mediated modulation of 

GSIS include the intracellular conversion of FAs to lipid signaling species via long-chain acyl-

CoA that potentiate cellular metabolism and GSIS [196,216]. GPR40 stimulation and intracellular 

metabolism were suspected to each account for 50 % of the effect of FAs on insulin release [217].  

The overall pancreatic lipolytic activity enhances extracellular levels of FAs [218,219], indicating 

their possible role as autocrine signaling factors for insulin secretion. Phospholipase A2 (PLA2) 

liberates FAs from membrane lipids by the hydrolysis of zwitterionic glycerophospholipids [220]. 

Interestingly, selective inhibition, reduced expression or knock-down of PLA2 in β-cells correlated 

with reduced [Ca2+]i oscillations and decreased GSIS. These effects were reversed by the addition 

of arachidonic acid [221–224]. Also, lipoprotein lipase, localized within islet capillaries, provides 

FAs from triglycerides that are transported by lipoproteins to pancreatic islets [225,226]. Notably, 

inhibition of lipolysis in rat pancreatic islets by a broad lipase inhibitor was connected to reduced 

insulin secretion in a dose-dependent manner [227]. As previous studies showed that exogenous 

FAs stimulate insulin secretion, FAs were suspected to play a pivotal role for the coalescence of 

nutrient segretagogue signals and the modulation of β-cell activity for the secretion of adequate 

amounts of insulin [228–230]. Even though FAs have been discussed as insulin secretagogues for 

decades, the role of endogenous FAs levels for single β-cell activity, intercellular and inter-islet 

signaling has not been investigated so far.  
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2. Aims of this work 

Within the last decade, small molecule insulin secretagogues, such as NO, CO, ATP and glutamate, 

as well as ions and peptides have gained increasing attention as autocrine signaling factors for intra- 

or inter-islet communication and β-cell synchronization. Despite of data demonstrating GPR40 and 

TAAR1 expression in the pancreas, the role of receptor stimulation by endogenous signaling 

factors for individual β-cell activity and insulin secretion is yet to be determined. This would make 

autocrine signaling, mediated by TAAR1 and GPR40, as well as respective pathways for the 

biosynthesis of receptor agonists, attractive therapeutic targets for the pharmacological modulation 

of β-cell activity and insulin secretion. However, rational drug development, targeting pancreatic 

autocrine signaling has strongly been limited by our lack of knowledge of 1) the general role of 

autocrine signaling factors for β-cell activity and insulin secretion, 2) the identity and origin of 

endogenous pancreatic TAAR1 and GPR40 agonists, 3) the role of endogenous GRP40 and 

TAAR1 agonists for the maintenance of β-cell activity and insulin secretion 4) relative and absolute 

abundances of TA- and FA-species in β-cells, 5) the potency of (synthetic) TAAR1 and GPR40 

(ant-)agonists for the modulation of β-cell activity and insulin secretion, 6) TAAR1-coupled 

downstream signaling network(s) relevant to insulin secretion and 7) the location of TAAR1 

activation and signaling in β-cells.  

In this study, we therefore aimed at 1) investigating the general role of autocrine signaling factors 

for β-cell activity and insulin secretion and 2) examining whether β-cell activity can be modulated 

by the selective reduction or replenishment of TA- and FA levels. Also, we were interested in 3) 

whether [Ca2+]i oscillations and insulin secretion can be modulated by (synthetic) TAAR1 or 

GPR40 (ant-)agonists. In addition, we wanted to 4) monitor absolute abundances as well as changes 

of cellular TA and FA levels in the presence of selective inhibitors for biosynthetic pathways via 

mass spectrometry. 5) Alterations of TA and FA levels should then be correlated with changes in 

[Ca2+]i oscillations, cAMP levels and insulin secretion. TAAR1 has been described as a major 

player in neural diseases. Therefore, various drugs have been brought to the market for the 

modulation of brain biogenic amine levels via inhibition of key biosynthetic enzymes or for the 

direct activation of TAAR1, with yet unknown consequences for overall glucose homeostasis. 

Therefore, we were also interested in 6) understanding whether β-cell activity and insulin secretion 

can be modulated by the drug-mediated lowering or increase of endogenous TA levels or direct 

pharmacological modulation of TAAR1 in the pancreas.  
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3. Results 

3.1. Extracellular signaling factors are essential for β-cell activity and insulin 

secretion 

In this work, we exploited the well documented correlation between [Ca2+]i oscillations and insulin 

secretion (Figs. 2 B and A1 (appendix), [49,50,231]). Spatiotemporal changes in [Ca2+]i were 

followed in real time using the Ca2+ sensitive cell-permeant fluorescent indicator Fluo-4 [52]. To 

quantitatively describe cellular [Ca2+]i events, traces of representative cells were averaged. Also, 

numbers of detected ‘high-intensity [Ca2+]i events’ per 60 s interval are presented. For this, the 

height of each [Ca2+]i event was determined relative to the highest detected peak per trace as a 

criterion to identify [Ca2+]i transients as high-intensity events (≥ 60 % of highest peak intensity). 

Static incubation of MIN6 cells in the presence of 11 mM glucose is characterized by periodic 

transients of the cytosolic Ca2+ concentration ([Ca2+]i oscillations, Fig. 6 A+B i). According to 

literature reports on MIN6 cells and isolated pancreatic islets [74], we observed that MIN6 cells 

respond to increasing concentrations of external glucose with enhanced GSIS, along with 

differential levels of [Ca2+]i oscillations (Fig. A1 (appendix)). Extensive perfusion of glucose-

stimulated MIN6 cells with buffer in a perfusion system transiently stopped [Ca2+]i oscillations 

(1.5 mL/min for 1 min, 11 mM glucose. The perfusion system is shown in Fig. A2 (appendix)). 

Oscillations gradually recovered only after stopping the perfusion (Figs. 6 A+B i, D), as reported 

by Hauke et al. [232]. Comparable effects were observed upon washing of MIN6 and mouse 

primary β-cells in the microscopy dish in advance of imaging (Figs. 6 A+B ii, iii, v). Static 

incubation of MIN6 cells yielded significantly higher insulin levels, compared to constant 

perfusion (0.15 mL/min, Fig. 6 C), as reported by Hauke et al. [232]. This suggested that stringent 

washing of MIN6 cells removed components from the extracellular space of β-cells that are 

essential for [Ca2+]i oscillations and GSIS and that can be replenished by β-cells after perfusion. 

In order to investigate whether [Ca2+]i oscillations and GSIS can be modulated by endogenous 

signaling factors, which are secreted by MIN6 cells, a population of 2 x106 MIN6 cells was 

incubated for 30 min with buffer (i.e. supernatant, SN). This SN was transferred to an imaging dish 

containing freshly washed MIN6 cells. Buffer transfer fully recovered [Ca2+]i oscillations in the 

entire population of MIN6 cells (Fig. 6 A+B ii, E) and stimulated insulin secretion (Fig. 6 I, 

MIN6+SN MIN6) [232]. This effect was observed for SNs at different glucose concentrations (Fig. 

A3 (appendix)). Here, the frequency of the recovered [Ca2+]i oscillations, as well as counts of high-

intensity [Ca2+]i spikes correlated well with applied buffer glucose levels.  
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Figure 6. Endogenous (autocrine) signaling factors are essential for MIN6 and primary β-cell activity 

and insulin secretion. (A+B) Representative single (A) and averaged (B) Ca2+ traces from MIN6 and mouse 
primary β-cells, stained with the Ca2+ indicator Fluo-4. (D-H) Number of high-intensity [Ca2+]i events per 
60 s interval. (A+B i, D) Stringent washing in a perfusion system (1.5 mL/min, indicated by ▼) reduced 
[Ca2+]i oscillations in MIN6 cells, which gradually recovered during subsequent static incubation. (C) Static 
incubation of MIN6 cells yielded ~60 % more insulin, compared to constant perfusion. (A+B ii, E) [Ca2+]i 
oscillations of washed MIN6 cells immediately recovered upon addition of buffer that was pre-loaded on 
2 x106 MIN6 cells. (A+B iii, F) Addition of ATP (25 µM) to pre-washed MIN6 cells immediately started 
intermittent [Ca2+]i oscillations. (A+B iv, G) Addition of apyrase (0.5 U) reduced [Ca2+]i oscillations in 
MIN6 cells. (A+B v, H) [Ca2+]i oscillations in pre-washed MIN6 cells started upon addition of ARL 67156 
(50 µM), a selective inhibitor of ecto-ATPases. Shown are averages of n = 30 MIN6 cells. (I) Transfer of 
pre-loaded buffer (SN) from a population of MIN6 cells to pre-washed MIN6 cells significantly enhanced 
insulin secretion (MIN6+SN MIN6). SN from HeLa cells served as a control (MIN6+SN HeLa). Data was 
corrected for the transferred amount of insulin (as determined from HeLa+SN MIN6: 23.5 ± 12 µg/L). Error 
bars present SD. Insulin experiments were performed in the presence of 11 mM glucose in quadruplicate 
(**P<0.01, ANOVA, ns = not significant = P>0.05, with repeated measures as necessary). Washes are 
indicated by ▼. The figure was adapted, extended and partly modified from Hauke et al. [232]. 
 

 

Transfer of pre-loaded SN to washed MIN6 cells presumably recovered the extracellular 

‘secretome’ that was removed from MIN6 cells in the washing step. SN that was harvested from 

HeLa cells under identical conditions served as a control. Addition of this HeLa SN on top of 

freshly washed MIN6 cells restarted [Ca2+]i oscillations only in 3 % of the MIN6 cell population 

and had no significant effect on insulin secretion (Fig. 6 I, MIN6+SN HeLa). This indicated that 

extracellular signaling is far less pronounced in the cancer cell line HeLa, compared to β-cells.  

ATP-mediated synchronization of the β-cell secretory machinery is a prime example for the effects 

that autocrine signaling factors have on insulin secretion [108,109,112]. Previous work described 

ATP to be amongst para- and autocrine signaling factors within rodent and human pancreatic islets, 

acting on P2 purinergic receptors in an autocrine feedback loop [106,233]. In line with that, we 

found that addition of ATP (25 µM) to pre-washed MIN6 cells instantaneously induced intermittent 

[Ca2+]i oscillations (Fig. 6 A+B iii and F). Notably, responses in [Ca2+]i oscillations that were 

induced by the addition of ATP to pre-washed MIN6 cells were less pronounced compared to 

effects from pre-loaded buffer transfer (Fig. 6 A+B ii and iii). Therefore, we suspect that the full 

activity of pre-washed MIN6 cells can only be reconstituted in the presence of the entire spectrum 

of extracellular factors ˗ herein called the ‘cellular secretome’. Endogenous extracellular ATP is 

degraded to AMP via ADP by membrane-localized ecto-ATPases (e.g. adenosine 5´-

triphosphatase) [234]. Ecto-ATPases were reported to act as essential determinants for the duration 
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and extent of purinergic signaling [235]. In line with this, addition of a recombinant ATP-

diphosphohydrolase (apyrase (0.5 U)) to oscillating MIN6 cells gradually reduced [Ca2+]i 

oscillations (Fig. 6 A+B iv and G). As recombinant apyrase does not penetrate cellular PMs, we 

suspected that only extracellular ATP levels were selectively reduced. Instead, application of the 

specific ecto-ATPase inhibitor ARL 67156 (50 µM, [236–238]) to pre-washed MIN6 cells 

immediately started [Ca2+]i oscillations (Fig. 6 A+B v, H). All this already identified ATP as an 

extracellular endogenous (autocrine) signaling factor that is essential for β-cell activity. 

 

 

3.2. TAs are essential signaling factors for the autocrine regulation of β-cell 

activity and insulin secretion 

3.2.1. TAs, (synthetic) TAAR1 agonists and antagonists modulate [Ca2+]i oscillations and 

insulin secretion 

Identified in the CNS as a target for TAs and psychoactive stimulants, TAAR1 has been implicated 

to play a significant role in the regulation of the limbic network, mood states, in rewarding circuits 

of addictive drugs as well as cognitive processes [127] and thereby also in the development of 

psychiatric diseases [152,239]. Much effort has been invested in elucidating the role of TAAR1 

activation on dopaminergic signaling in schizophrenia, depression and Parkinson’s disease, as 

reviewed by Berry et al. [160]. The detection of TAAR1 mRNA in peripheral tissue, in particular 

in mouse and human pancreatic β-cells as well as in the cell lines INS-1 and MIN6 [174,176] 

marked a turning point. Recently, TAAR1-mediated signaling was connected to the regulation of 

peripheral processes, such as insulin secretion [174,176]. Raab et al. showed the potentiating effect 

of the selective TAAR1 agonist RO5166017 on GSIS in pancreatic human islets, INS-1E cells and 

in live C57BL/6J mice [174]. These studies were the first to describe TAAR1 as an integrator of 

metabolic control over insulin secretion.  

Based on these preliminary findings, we tested selective TAAR1 agonists for their stimulating 

potencies on pre-washed MIN6 cells that were stained with the Ca2+ indicator Fluo-4. Addition of 

full (RO5166017 and RO5256390 [151,154]), partial (RO5073012 [153]) or endogenous (β-PEA, 

T1AM [161]) TAAR1 agonists (all 25 µM) to pre-washed MIN6 potently induced [Ca2+]i 

oscillations, peaking at the time point of addition to gradually decrease over observation time                 

(Fig 7 A+B). According to our hypothesis, these results already showed that the activity of glucose-

stimulated MIN6 cells can be modulated in the presence of selective TAAR1 agonists.  
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Figure 7. TAAR1 (ant-)agonists modulate [Ca2+]i oscillations and insulin secretion of MIN6 cells. 

Representative (Ai) single and (Aii) averaged Ca2+ traces from MIN6 cells. (Bi–Bix) Counts of detected 
high-intensity [Ca2+]i events per 60 s interval. (A+B i-iv) Addition of TAAR1 agonists β-PEA, RO5166017, 
RO5256390 and T1AM to pre-washed MIN6 cells stimulated [Ca2+]i oscillations. (A+B v-ix) The selective 
TAAR1 antagonists EPPTB and ET-92 decreased [Ca2+]i oscillations of glucose- or TAAR1-stimulated 
MIN6 cells. (C) Photolysis of caged β-PEA by a short UV pulse (λ = 375 nm) instantaneously started [Ca2+]i 
oscillations in pre-washed MIN6 cells. (D) Levels of insulin, as determined by insulin ELISA. β-PEA, 
RO5166017, RO5256390 (all 25 µM) and the endogenous agonist T1AM (10 µM) stimulated GSIS ~1.8-, 
~2.9-, ~4- and ~2.6-fold. EPPTB reduced GSIS and TAAR1 agonists-mediated effects in MIN6 cells. (E) 
β-PEA (25 µM) stimulated insulin secretion from MIN6 cells in the presence of different glucose 
concentrations, as indicated. (F+G) Concentration dependent stimulation of GSIS from MIN6 cells by β-
PEA or RO5256390. Insulin experiments were performed in the presence of 11 mM glucose in 
quadruplicate (*P<0.05 and **P<0.01. All unmarked events in D, F and G were not statistically significant 
= P>0.05. ANOVA, with repeated measures as necessary). Ca2+ traces were recorded from cells that were 
stained with the Ca2+ indicator Fluo-4. Shown are averages of 100 MIN6 cells. Washes are indicated by ▼. 
If not indicated otherwise, experiments were performed in the presence of 11 mM glucose. Caged β-PEA 
was provided by A. Laguerre.  
 

 

Counts of high-intensity [Ca2+]i spikes were in comparable ranges for β-PEA, T1AM and the 

synthetic TAAR1 agonist RO5166017 (400 - 500 counts/min from 100 MIN6 cells, Fig. 7 Bi, ii, 

iv). Slightly lower stimulation was observed for the full agonist RO5256390 (300 - 400 counts/min 

from 100 MIN6 cells, Fig 7 Biii) and for the partial agonist RO5073012 (300 - 400 counts/min 

from 100 MIN6 cells, Fig A4 (appendix)). However, based on cAMP measurements, Revel et al. 

reported TAAR1 activation potencies of RO5256390 and RO5166017 that were in comparable 

ranges to those of β-PEA [151,154]. Stimulation of [Ca2+]i oscillations translated well into 

increased insulin levels, as determined by insulin ELISA. β-PEA stimulation of MIN6 cells 

potentiated GSIS ~1.8-fold, RO5166017, RO5256390 and RO5073012 ~2.6-, ~4-, and ~2.9-fold 

(agonist concentration: 25 µM, Fig 7 D). Notably, RO5256390 most potently stimulated insulin 

secretion. The endogenous TAAR1 agonist T1AM potentiated GSIS ~2.4-fold already at 10 µM 

(Fig 7 D).  

To trigger TAAR1 activation with high spatio-temporal control, we synthesized a photo-caged                

β-PEA (Fig 7 C). For this, the photoactivatable group (‘cage’) 7-diethylamino-4-methylene-

coumarin was attached to the primary amino group of β-PEA via carbamate formation. The photo-

labile coumarin cage masks β-PEA and prevents oxidation by MAO. MIN6 cells were loaded with 

caged β-PEA and washed. Caged β-PEA started [Ca2+]i oscillations in pre-washed MIN6 cells only 

upon application of a short UV-pulse (Fig 7 C). Thereby, β-PEA was presumably liberated inside 
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MIN6 cells. The immediate recovery of [Ca2+]i oscillations upon light-mediated liberation of                    

β-PEA indicates the presence of an intracellular TAAR1 pool that was available for activation.  

β-PEA (25 µM) potentiated GSIS from MIN6 cells in the presence of different glucose levels, but 

not in the absence of glucose (Fig. 7 E). Stimulation of MIN6 cells by β-PEA yielded significantly 

higher levels of insulin at stimulatory glucose concentrations (11 mM and 22 mM: ~119 µg/L and 

~128 µg/L), as compared to sub-stimulatory glucose levels (3 mM and 5 mM: ~64 µg/L and 

~70 µg/L) (Fig. 7 E). To check whether TAAR1-mediated potentiation of GSIS was dose-

dependent, MIN6 cells were stimulated with increasing concentrations of β-PEA and RO5256390 

in the presence of 11 mM glucose. Insulin secretion increased from 1 µM (agonist) to reach the 

maximum levels at 25 µM (agonist), approximately 2.2-fold (β-PEA) or 4-fold (RO5256390), 

compared to buffer levels. At higher concentrations, insulin secretion dropped (Fig. 7 F+G).  

To examine the general role of TAAR1 stimulation for the maintenance of [Ca2+]i oscillations and 

for GSIS, we applied the specific TAAR1 antagonists EPPTB (RO5212773 [134]) and ET-92 [161] 

to glucose-stimulated MIN6 cells. Notably, EPPTB and ET-92 significantly reduced [Ca2+]i 

oscillations and GSIS of MIN6 cells (Fig 7 A+B v, vi, D). This suggested that TAAR1 is either 

constitutively active or activated by endogenous agonists and that both EPPTB and ET-92 may 

antagonize this effect. Therefore, EPPTB was previously suggested to act as an inverse agonist 

[156]. EPPTB and ET-92 decreased [Ca2+]i oscillations in MIN6 cells, even after preceding 

stimulation by TAs or TAAR1 agonists (Fig. 7 A+B vii-ix). In fact, reversal of agonist-mediated 

effects by the selective antagonist EPPTB has been defined as a criterion to identify effects that are 

mediated by TAAR1 stimulation [134]. Even β-PEA and RO5256390-mediated effects on insulin 

secretion were overruled down to buffer levels by EPPTB (Fig. 7 D). Notably, this showed that 

selectively targeting TAAR1 was sufficient to modulate [Ca2+]i oscillations and insulin secretion. 

Apart from MIN6 cells, we found that TAAR1 (ant-)agonists also modulated [Ca2+]i oscillations 

and insulin secretion of INS-1 and mouse primary β-cells. Effects on [Ca2+]i oscillations were 

concentration dependent, as shown for the endogenous TAAR1 agonist T1AM (Fig. 8 A). INS-1 

cells showed clear [Ca2+]i responses to the potent TAAR1 agonists T1AM (Fig. 8 A) and 

RO5256390 at 50 µM (Fig. 8 B). Addition of β-PEA, tyramine and RO5166017 to pre-washed 

INS-1 cells only induced transient [Ca2+]i oscillations at higher concentrations (100 µM, Fig. 8 B). 

This might be explained by overall low TAAR1 expression levels within this rat cell line [174] or 

species-specific differences in TAAR1 activation profiles [241]. Insulin levels that were obtained 

from INS-1 cells were significantly lower, compared to those of MIN6 cells (Fig. 8 C).  
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Also, mouse primary β-cells responded well to the TAAR1 agonists β-PEA, tyramine, T1AM and 

RO5256390 by increased [Ca2+]i oscillations (25 µM, Fig. 8 D). In line with findings from MIN6 

cells, the antagonists EPPTB and ET-92 potently reduced [Ca2+]i oscillations in mouse primary β-

cells (25 µM, Fig. 8 D). 

Figure 8. TAAR1 (ant-)agonists modulate [Ca2+]i oscillations and insulin secretion of INS-1 and mouse 

primary β-cells. Representative Ca2+ traces from (A+B) INS-1 and (D) mouse primary β-cells. (A) Effects 
of T1AM on [Ca2+]i oscillations in pre-washed INS-1 cells were concentration dependent. (B) β-PEA, 
tyramine and RO5166017 evoked intermittent [Ca2+]i oscillations at 100 µM, whereas RO5256390 potently 
stimulated [Ca2+]i oscillations in pre-washed INS-1 cells already at 50 µM. The antagonist ET-92 (25 µM) 
reduced [Ca2+]i oscillations. (C) β-PEA, T1AM, RO5256390 and RO5166017 (all 100 µM) potentiated 
insulin secretion from INS-1 cells. The TAAR1 antagonist ET-92 (100 µM) significantly reduced GSIS 
from INS-1 cells. Imaging and insulin experiments in INS-1 cells were performed in the presence of 11 mM 
glucose in quadruplicate (*P<0.05 and **P<0.01, ANOVA, with repeated measures as necessary). Error 
bars present SD. (D) The TAAR1 agonists β-PEA, tyramine, T1AM, RO5166017 and RO5256390 (all 
25 µM) showed potent effects on [Ca2+]i oscillations of mouse primary β-cells in the presence of 5 mM 
glucose. [Ca2+]i oscillations were reduced by ET-92 and EPPTB (25 µM). Ca2+ traces were recorded from 
cells, stained with Fluo-4. Imaging experiments and data analysis were performed together with J. Rada. 
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In line with our hypothesis of TAAR1 as a modulator of β-cell activity and insulin secretion, we 

found that pre-washed MIN6 cells immediately responded to the stimulation by different TAs with 

increased [Ca2+]i oscillations. Addition of TAs to pre-washed MIN6 cells evoked pronounced 

[Ca2+]i transients, followed by continuous [Ca2+]i oscillations of differential intensity. Here, the 

primary amines β-PEA (~400 - 500 counts/min in 100 MIN6 cells) and p-tyramine 

(~200 - 300 counts/min in 100 MIN6 cells) were identified as the most potent stimuli                             

(Fig. 9 A+B i+ii), followed by tryptamine (~100 - 200 counts/min in 100 MIN6 cells, Fig. 

9 A+B iii). Effects were weakened with increasing modification of the aliphatic side chain or amino 

group, as observed for p-octopamine and the secondary amine p-synephrine (~100 counts/min in 

100 MIN6 cells, Fig. 9 A+B iv+v). Based on [Ca2+]i responses, a rank order of potency was 

determined for tested TAs: β-PEA > p-tyramine > tryptamine >> p-synephrine ≈ p-octopamine. 

This is in line with literature reports on the activation potencies of TAs [138,241]. Corresponding 

amino acids did not stimulate [Ca2+]i oscillations in pre-washed MIN6 cells (Fig. 9 A+B vi-viii).  

Broad ligand tuning of TAAR1 suggested further investigations for the structure-activity-relation 

of TAAR1 agonists in MIN6 cells. Therefore, we profiled a selection of β-PEA-derived compounds 

for their potencies to stimulate [Ca2+]i oscillations with regard to specific modifications of the 

aromatic moiety and ethylene chain (Fig. 10). Secondary amines (N-methyl-PEA, 

~200 - 300 counts/min in 100 MIN6 cells, Fig. 10 A+B ii) and tertiary aromatic amines                         

(N,N-dimethyl-PEA, ~200 counts/min in 100 MIN6 cells, Fig. 10 A+B iii) were less potent in 

stimulating [Ca2+]i oscillations, compared to the corresponding primary amine (β-PEA, 

~400 - 500 counts/min in 100 MIN6 cells, Fig. 10 A+B i), based on counts of high-intensity [Ca2+]i 

spikes. Notably, the TAAR1 activation potency decreased with increasing modifications on the 

amino group of β-PEA, as also reported previously [136]. Still, N-methyl-PEA was significantly 

more potent than p-synephrine (~100 counts/min in 100 MIN6 cells, Fig. 9 A+B v). Therefore, we 

suspected that the potency for the stimulation of [Ca2+]i oscillations also decreased with increasing 

modifications of the aliphatic side chain or the aromatic moiety, which was confirmed herein                 

(β-methyl-1-PEA, 2-amino-1-phenylethanol, Fig. 10 A+B iv+v and 3- or 4-methoxy-PEA, Fig. 

10 A+B vi+vii). These compounds evoked a prominent [Ca2+]i transient upon addition that was not 

followed by enhanced continuous [Ca2+]i oscillations. In line with literature reports, (bulky) 

residues on the phenyl ring or amino group reduced the TAAR1 activation potency of β-PEA-

derived compounds [136,242]. Amines with shortened aliphatic chains or non-aromatic amines did 

not evoke [Ca2+]i oscillations (1-methyl-1-PEA, benzylamine, cadaverine, Fig. 10 A+B viii-x). 
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Figure 9. TAs stimulate [Ca2+]i oscillations in pre-washed MIN6 cells. Representative single (A1) and 
averaged (A2) Ca2+ traces from MIN6 cells, recorded with the Ca2+ indicator Fluo-4. (B) Number of high-
intensity [Ca2+]i events per 60 s interval. Effects of amines on [Ca2+]i oscillations decreased with increasing 
modifications of the aliphatic side chain or amino group. Based on [Ca2+]i-responses, a rank order of potency 
was determined for TAs: β-PEA > p-tyramine > tryptamine >> p-synephrine ≈ p-octopamine (A+B i-v). 
(A+B vi-viii) Corresponding amino acids served as controls. Compounds were applied at 25 µM final 
concentration in the presence of 11 mM glucose. Shown are averaged traces from 100 MIN6 cells.  
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Figure 10. Differential stimulation of [Ca2+]i oscillations in MIN6 cells by small amines. Representative 
single (A1) and averaged (A2) Ca2+ traces from MIN6 cells, recorded with the Ca2+ indicator Fluo-4. (B) 
Number of high-intensity [Ca2+]i events per 60 s interval. A selection of (partly β-PEA-related) amines was 
profiled for their potency to stimulate [Ca2+]i oscillations. Compounds were applied at 25 µM final 
concentration in the presence of 11 mM glucose. Shown are averaged traces from 100 MIN6 cells. 



3. Results 

26 

3.2.2. Psychotropic drugs stimulate [Ca2+]i oscillations and insulin secretion via TAAR1 

TAAR1 has been described to act as a major player in the development of psychiatric disorders, 

such as schizophrenia, Parkinson’s disease, depression and drug addiction [146,152,160,239]. 

Therefore, the ‘RO-compounds’, EPPTB and ET-92 were developed as selective synthetic TAAR1 

(ant-)agonists for the treatment of psychiatric diseases [134,151,153–155]. 

In the present work, we demonstrate the potential of these compounds to modulate [Ca2+]i 

oscillations and insulin secretion of pancreatic cell lines and primary β-cells (Figs. 7 and 8). 

Notably, several other psychoactive drugs, such as antidepressants or antiparkinsonian agents have 

been described as agonists of TAAR1 in the CNS, as reviewed in [156]. Given the structural 

similarity of several commonly prescribed psychoactive drugs to β-PEA, we expected the 

stimulation of β-cells via TAAR1 also by these compounds. Therefore, we tested several 

psychotropic drugs, partly described to act as TAAR1 agonists, for their effects on [Ca2+]i 

oscillations and insulin secretion. Tested drugs included dibenzepin, idazoxan and nomifensine 

(antidepressants), flurazepam (benzodiazepine), diphenylhydramine (antiparkinsonian/insomnia 

agent), as well as ergoline derivatives lisuride (antiparkinsonian agent) and methysergide (for 

migraine treatment) [156,243], partly structurally resembling β-PEA. Addition of these compounds 

to pre-washed MIN6 cells instantaneously evoked [Ca2+]i oscillations, peaking at the time point of 

addition to slowly decrease over observation time (Fig. 11 A+B). Based on counts of high intensity 

[Ca2+]i oscillations, dibenzepin, idazoxan, nomifensine and flurazepam evoked the strongest 

responses in pre-washed MIN6 cells. Here, ~400 counts/min in 100 MIN6 cells were determined 

(Fig. 11 B i, iii, v, vii), comparable to β-PEA stimulation of MIN6 cells. Weaker effects were 

evoked by lisuride, methysergide and diphenylhydramine, increasing [Ca2+]i oscillations just above 

buffer levels (~200 counts/min in 100 MIN6, Fig. 11 B ix, xi, xiii). In line with our observations 

on [Ca2+]i oscillations, we found that psychoactive drugs potentiated insulin secretion from 

glucose-stimulated MIN6 cells ~1.1 – 1.4-fold (Fig. 12 A).  

In turn, addition of EPPTB to pre-stimulated MIN6 cells reversed effects of psychoactive drugs on 

[Ca2+]i oscillations and insulin secretion down to or even below buffer levels (Fig. 11 and Fig. 

12 B). Therefore, the modulation of [Ca2+]i oscillations and insulin secretion by the tested 

psychoactive drugs was attributed to TAAR1 stimulation. Equally, the TAAR1 antagonist ET-92 

significantly reduced [Ca2+]i oscillations that were evoked by the addition of dibenzepin to pre-

washed MIN6 cells (Fig. A5 (appendix)), thereby also confirming herein observed effects of 

EPPTB.  
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Figure 11. Psychotropic drugs modulate [Ca2+]i oscillations in MIN6 cells via TAAR1. Representative 
single (Ai) and averaged (Aii) Ca2+ traces from MIN6 cells, recorded with the Ca2+ indicator Fluo-4. (Bi – 

Bxvi) Counts of detected high-intensity [Ca2+]i events per 60 s interval. Differential stimulation of [Ca2+]i 
oscillations in pre-washed MIN6 cells was observed upon addition of the antidepressants (Ai+ii (1), Bi) 

dibenzepin, (Biii) idazoxan and (Bv) nomifensine, the benzodiazepine (Ai+ii (2), Bvii) flurazepam, the 
antiparkinsonian agents (Ai+ii (3), Bix) lisuride and (Bxiii) diphenylhydramine, (Bxi) methysergide for 
migraine treatment as well as (Ai+ii (4), Bxv) amphetamine. Compounds were applied at 25 µM in the 
presence of 11 mM glucose. Drug-induced stimulation of [Ca2+]i oscillations was reduced by the addition 
of the TAAR1 antagonist EPPTB (50 µM). Shown are averages of 100 MIN6 cells. 
 

 

Based on our observations on [Ca2+]i oscillations and insulin secretion of MIN6 cells, we suspect 

implications of tested psychotropic compounds even on systemic glucose homeostasis, apart from 

described CNS effects.  

Expecting even more psychoactive drugs to act as modulators of [Ca2+]i oscillations via TAAR1, 

we expanded the spectrum of compounds to be screened on MIN6 cells. We tested the livestock 

feed additive ractopamine that was previously described to act as a TAAR1 agonist [244] and to 

reduce feed consumption, while promoting muscle mass development [245], indicating effects on 

both CNS and glucose homeostasis. In fact, addition of ractopamine (25 µM) to pre-washed MIN6 

cells potently induced [Ca2+]i oscillations (~300 - 400 counts/min in 100 MIN6, Fig. A6 

(appendix)) that were reduced by the addition of ET-92 (25 µM, Fig. A6 (appendix)).  

Also, ergoline (lysergic acid) derivatives are described to act as agonists of TAAR1 [156,241], 

which was already confirmed herein for lisuride and methysergide on MIN6 cells (Fig. 11 Ai+ii(3), 

B ix+xi). Based on this, we were also interested in monitoring other ergoline (lysergic acid) 

derivatives, such as methyergometrine, lysergic acid methylpropylamide (LAMPA) and lysergic 

acid diethylamide (LSD) for their potencies to stimulate [Ca2+]i oscillations in MIN6 cells. Even 

though showing only minor structural differences, tested derivatives were significantly distinct in 

their potencies to stimulate [Ca2+]i oscillations (Fig. A7 (appendix)). Whereas LSD and 

methyergometrine did not show effects on [Ca2+]i oscillations in the majority of MIN6 cells, 

addition of LAMPA to pre-washed MIN6 cells induced a prominent [Ca2+]i transient that was 

followed by continuous [Ca2+]i oscillations (Fig. A7 (appendix)). In fact, a low receptor activation 

potency of LSD on TAAR1 was described (EC50(LSD): 9.7 µM (physiologically relevant TAAR1 

activation: EC50 < 5 µM), [241]). In line with previous observations, these findings also show that 

minor structural differences amongst psychoactive drugs might significantly impact the activation 

potencies of compounds on TAAR1. 
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Already Bunzow et al. connected the structural similarities between β-PEA and                                         

(meth-)amphetamine with their stimulatory potential on TAAR1 [133]. We found that addition of 

amphetamine to pre-washed MIN6 cells immediately evoked pronounced [Ca2+]i oscillations (Fig. 

11 Ai+ii(4), Bxv). The potency of amphetamine to stimulate high-intensity [Ca2+]i oscillations was 

comparable to that of β-PEA and of the antidepressants dibenzepin and idazoxan (~400 counts/min 

in 100 MIN6 cells) (Fig. 11 Bi, iii and Fig. 10 Bi). This is in line with literature reports on the 

TAAR1 activation potencies of amphetamine and β-PEA [241]. Amphetamine increased insulin 

levels ~1.4-fold from MIN6 cells (Fig. 12 A). Notably, it was reported that administration of 

amphetamine results in a rapid increase of immunoassayable plasma insulin in mice and rats, even 

though the mechanisms have been unclear, so far [246]. Interestingly, early studies on rodents 

hypothesized that methamphetamine stimulates insulin release by a neural mechanism within the 

pancreas [246]. Based on our data on [Ca2+]i oscillations and insulin secretion, we propose 

amphetamine-mediated stimulation of TAAR1 within β-cells as a mechanism for reported effects 

on blood insulin levels [133].  

 

Figure 12. Psychotropic drugs stimulate insulin secretion from MIN6 cells via TAAR1.                                
(A) Psychotropic drugs, applied in 25 µM final concentrations, increased insulin secretion from MIN6 cells 
~1.1 to 1.4-fold, compared to buffer levels. (B) The selective TAAR1 antagonists EPPTB and ET-92 
suppressed insulin secretion from glucose-stimulated MIN6 cells below buffer levels. Also, insulin secretion 
from MIN6 cells that were pre-stimulated by psychotropic drugs was reduced by the addition of TAAR1 
antagonists partly even below buffer levels. Insulin experiments were performed in the presence of 11 mM 
glucose in quadruplicate (*P<0.05 and **P<0.01, all unmarked events were not statistically significant = 
P>0.05. ANOVA, with repeated measures as necessary). Error bars present SD. 
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Based on structural similarities with tryptamine, we even expected the psychoactive alkaloid 

psilocin to stimulate [Ca2+]i oscillations in pre-washed MIN6 cells via TAAR1. In fact, psilocin 

has been described to show agonistic activity on TAAR1 [156,241]. Addition of psilocin (25 µM) 

to pre-washed MIN6 cells instantaneously evoked [Ca2+]i oscillations that were reduced by the 

addition of EPPTB (Fig. A8 (appendix)). However, addition of the structural isomer bufotenin 

(25 µM) to pre-washed MIN6 cells induced a single prominent [Ca2+]i transient that was not 

followed by continuous [Ca2+]i oscillations (Fig. A8, D i+ii (appendix)). 

Upon addition to pre-washed mouse primary β-cells, dibenzepin, flurazepam and nomifensine 

(10 µM) evoked strong [Ca2+]i oscillations in the presence of 5 mM glucose (Fig. 13 A). Also, 

addition of dibenzepin increased insulin secretion from mouse primary β-cells (Fig. 13 B, 25 µM 

dibenzepin, 5 mM glucose) or INS-1 cells (Fig. 13 C, 100 µM dibenzepin, 11 mM glucose). 

Addition of ET-92, following stimulation by dibenzepin (25 µM, each) suppressed insulin 

secretion from mouse primary β-cells below buffer levels (Fig. 13 B), thereby confirming our 

findings from MIN6 cells experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Psychotropic drugs stimulate [Ca2+]i oscillations and insulin secretion of mouse primary β-

cells and INS-1 cells. (A) Representative Ca2+ traces from single mouse primary β-cells, recorded with the 
Ca2+ indicator Fluo-4. Addition of psychotropic drugs (10 µM) to pre-washed mouse primary β-cells 
induced [Ca2+]i oscillations in the presence of 5 mM glucose. (B) Dibenzepin (25 µM) non-significantly 
increased insulin secretion from mouse primary β-cells. ET-92 (25 µM), suppressed dibenzepin-stimulated 
insulin secretion even below buffer levels. (C) Dibenzepin (100 µM) stimulated insulin secretion from INS-
1 cells. Experiments on mouse primary β-cells (INS-1 cells) were performed at 5 mM (11 mM) glucose in 
triplicate (quadruplicate) (ns = not significant = P>0.05. *P<0.05, ANOVA, with repeated measures as 
necessary). Error bars present SD. Experiments were performed together with J. Rada.  
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3.2.3. Manipulation of TA biochemical pathways modulates endogenous TA levels, [Ca2+]i 

oscillations and insulin secretion 

TA biosynthetic pathways have been described in neuronal tissue, where β-PEA, tyramine and 

tryptamine are generated by AADC from precursor amino acids in a rate-limiting decarboxylation 

step [247]. Whereas all TAs are metabolized by both isoforms of MAO(-A/-B), β-PEA is primarily 

converted by MAO-B [126,168,169].  

We turned to mass spectrometry (MS) to identify and (absolutely) quantify TA levels in MIN6 

cells. For this, the SN of MIN6 cells was harvested, dried and combined with scraped MIN6 cells 

for MeOH / HCl-based extraction in the presence of stable heavy isotope-labeled internal standards 

(hISDs, Fig. A9 (appendix), for details on the extraction protocol see chapter 6.6. Extraction and 

MS analysis of TAs). This would reveal TAs as endogenous (autocrine) agonists of TAAR1 in 

MIN6 cells.  

MS analysis of SNs identified a variety of primary amines, including the main TAs β-PEA, 

tyramine, tryptamine and synephrine (Fig. 14 A). TAs were detected in nanogram amounts, based 

on hISDs that were spiked to SNs in defined amounts before extraction (Fig. 14 A and A9 

(appendix)). Tyramine and β-PEA were detected in highest amounts, followed by tryptamine and 

synephrine (Fig. 14 A). Thereby, MS revealed that TAAR1 within MIN6 cells is stimulated by a 

cocktail of endogenous TAs rather than by a single amine. Notably, tyramine and β-PEA ̠  the most 

abundant TAs identified in our MS screen – most potently evoked [Ca2+]i oscillations, when added 

to pre-washed MIN6 cells (Fig. 9 B i+ii). Octopamine was not detected in this screen.  

In order to retrace TA biosynthetic pathways via MS, MIN6 cells were subcultured in the presence 

of stable isotope-labeled canonical amino acids 15N-phenylalanine, -tyrosine and -tryptophan 

(Fig. A10 (appendix)). Remarkably, we detected heavy isotope-labeled TAs from cells (scraped 

MIN6 cells and SN combined), which were likely generated in an AADC-mediated 

decarboxylation step from heavy labeled amino acids (Fig. 14 Bi+ii). Thereby, we identified TAs 

as endogenous (autocrine) ligands of TAAR1 that are produced within MIN6 cells.  

In order to understand the biosynthetic pathways of TAs in MIN6 cells, as well as the role of 

endogenous TAs for the regulation of MIN6 cell activity, we inhibited key metabolic enzymes of 

cellular TA biosynthesis and degradation pathways to manipulate endogenous TA levels. For this, 

we applied selective inhibitors of endogenous MAO-A/-B and AADC to MIN6 cells that were 

cultured in the presence of 15N-phenylalanine, while monitoring the levels of 15N-β-PEA via MS. 



3. Results 

32 

Figure 14. MS-based quantification of TA levels in MIN6 cells. (A) Absolute amounts of TAs, as 
determined by MS. (Bi) Detection of heavy-labeled TAs from MIN6 cells, cultured in medium that was 
supplemented with 15N-phenylalanine, 15N-tyrosine or 15N-tryptophan (Bii). (C) Mean absolute amounts of 
15N-β-PEA in MIN6 cells (scraped cells + SN) significantly increased in the presence of MAO inhibitors 
(selegiline, pargyline, clorgyline). Inhibition of AADC reduced levels of 15N-β-PEA below the detection 
limit. Experiments were performed in quadruplicate. Error bars represent SD. *p<0.05 and **p<0.01, 
ANOVA all unmarked events were not statistically significant. LC-MS analysis was performed on a 
ThermoFisher Q-exactive MS, Waters UPLC (EVO C18 (100x2.1 mm; 2.6 µm) column). For experimental 
details see chapter 6.6. Extraction and MS analysis of TAs. Amines were detected in separate ion scans. 
TYR: tyramine, TRYP: tryptamine, SYN: synephrine, OCT: octopamine, DBH: Dopamine β-hydroxylase, 
PNMT: Phenylethanolamine N-methyltransferase. Extractions, MS experiments and data analysis were 
planned and performed together with K. Keutler. 
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We applied selective inhibitors of MAO-B (selegiline, pargyline, rasagiline, Ro 16-6491) and 

MAO-A (clorgyline) or non-selective inhibitors for both MAO isoforms (tranylcypromine, 

phenelzine) [248]. AACD was inhibited by S-(-)-carbidopa and benserazide [249]. Herein tested 

inhibitors are partly commonly prescribed drugs for the modulation of brain biogenic amine levels 

of patients suffering from neurological disorders. MS showed that levels of 15N-β-PEA 

significantly increased in the presence of the MAO-inhibitors. Notably, selective inhibitors of 

MAO-B yielded significantly higher levels of 15N-β-PEA (selegiline (~55-fold), pargyline (~59-

fold)), compared to either MAO-A inhibition (clorgyline (~22-fold)) or to non-treated MIN6 cells 

(Fig. 14 C). This is in line with literature, reporting that β-PEA is primarily converted by the               

MAO-B isoform [126,168,169]. Inhibition of AADC by S-(-)-carbidopa reduced 15N-β-PEA levels 

below the detection limit of MS (Fig. 14 C).  

To investigate the role of endogenous TAs as potential autocrine signaling factors for [Ca2+]i 

oscillations and insulin secretion, recombinant MAO-B was added to glucose-stimulated MIN6 

cells. Not penetrating the PM of live cells, recombinant MAO-B was supposed to inactivate TAs 

in the extracellular space of MIN6 cells. In the presence of MAO-B, [Ca2+]i oscillations gradually 

decreased (Fig. 15 A+B i), indicating that enzymatic inactivation of extracellular TA-pools directly 

affected cellular activity. From this we inferred that endogenous TAs are essential (autocrine) 

signaling factors for the maintenance of [Ca2+]i oscillations within MIN6 cells, which is also in line 

with our initial hypothesis.  

In a next step, it should be investigated whether the pharmacological modulation of endogenous 

TA levels translated into [Ca2+]i oscillations and insulin secretion. Addition of MAO inhibitors to 

pre-washed MIN6 cells started [Ca2+]i oscillations and significantly increased insulin secretion, 

compared to buffer levels, regardless of their mechanism of action or specificity towards MAO-A 

or -B. Evoking high-intensity [Ca2+]i oscillations, the MAO inhibitors selegiline, tranylcypromine, 

Ro 16-6491, phenelzine and clorgyline (~400 - 600 counts/min in 100 MIN6, Fig. 15 B ii, iii, v, 

viii) were even more potent than β-PEA or the selective synthetic TAAR1 agonists RO5256390 

and RO5166017 (Fig. 7). Pargyline and rasagiline (~200 - 300 counts/min in 100 MIN6, Fig. 

15 B vi, vii) were less potent than tested TAAR1 agonists. Compared to buffer levels, insulin 

secretion increased ~3 to 4-fold in the presence of selegiline, tranylcypromine, phenelzine and 

clorgyline. Pargyline and rasagiline potentiated insulin secretion ~1.5-fold (25 µM, Fig. 15 C). The 

potentiation of [Ca2+]i oscillations and insulin secretion following inhibition of key metabolic 

enzymes is in line with increased levels of TAs that were detected in MS screens.  
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Figure 15. Inhibition of TA biochemical pathways modulates [Ca2+]i oscillations and insulin secretion 

of MIN6 cells. (A) Representative single (Ai) and averaged (Aii) Ca2+ traces from MIN6 cells, recorded 
with the Ca2+ indicator Fluo-4. (B) Counts of high-intensity [Ca2+]i events per 60 s interval. (A, Bi) [Ca2+]i 
oscillations in glucose stimulated MIN6 cells gradually decreased in the presence of recombinant MAO-B 
(0.3 U). (A, Bii-viii, C) Inhibition of MAO by selective MAO-A/B inhibitors potentiated [Ca2+]i oscillations 
and insulin secretion of pre-washed MIN6 cells. (A, Bix+x, C) AADC inhibitors reduced [Ca2+]i oscillations 
and insulin secretion of glucose-stimulated MIN6 cells. MAO-inhibitors were applied at 25 µM, AADC 
inhibitors at 50 µM in the presence of 11 mM glucose. Shown are averages of 100 MIN6 cells. Insulin 
experiments were performed in quadruplicate (*P<0.05 and **P<0.01. All unmarked events were not 
statistically significant = P>0.05. ANOVA, with repeated measures as necessary). Error bars present SD. 
Washes are indicated by ▼. Imaging and insulin experiments were performed in the presence of 11 mM 
glucose.  
 

 

Inhibition of AADC activity by the decarboxylase inhibitor S-(-)-carbidopa has been shown to 

reduce cellular TA levels (Fig. 14 C and [127]). In line with that, [Ca2+]i oscillations of glucose-

stimulated MIN6 cells decreased after addition of S-(-)-carbidopa or benserazide (50 µM,                      

Fig. 15 A, B ix, x). Benserazide (50 µM) reduced insulin levels ~1.5-fold (Fig. 15 C).  

As the modulation of biochemical pathways for the synthesis and degradation of TAs immediately 

translated into changes of [Ca2+]i oscillations and insulin secretion, we inferred high metabolic 

turnover rates of TAs and autocrine feedback. In fact, MAOs have been reported to have high 

turnover rates, leaving β-PEA and tyramine with half-lives of approximately 30 s [126,250–252]. 

Due to the rapid turnover rate of TAs, extracellular levels of TAs in the nanogram-range were 

reported [127,166], which is in line with our findings from MS. 

Even pre-washed mouse primary β-cells responded well to the inhibition of MAO by clorgyline 

and selegiline (25 µM, 5 mM glucose) with increased [Ca2+]i oscillations (Fig. 16), confirming our 

findings from MIN6 cells. Instead, the AADC inhibitor benserazide (10 µM) decreased [Ca2+]i 

oscillations in glucose-stimulated mouse primary β-cells (Fig. 16). Based on MS and imaging data, 

we inferred that TAs function as essential autocrine signaling factors of β-cells.  

 

 

In a next step, we aimed at selectively withdrawing TAs from MIN6 cells, while monitoring [Ca2+]i 

oscillations. For this, cyclodextrins (CDs) were applied to glucose-stimulated MIN6 cells. CDs are 

cyclic oligosaccharides with a hydrophilic outside and a hydrophobic interior. They are commonly 

used to increase the solubility of hydrophobic small molecules, trapping them within their non-

polar cavity [253].  
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Figure 16. Manipulation of TA biochemical pathways modulates [Ca2+]i oscillations in mouse primary 

β-cells. Representative Ca2+ traces from isolated mouse primary β-cells, recorded with the Ca2+ indicator 

Fluo-4. Addition of the MAO-inhibitors clorgyline and selegiline (25 µM) induced [Ca2+]i oscillations in 
pre-washed isolated mouse primary β-cells. The AADC inhibitor benserazide (10 µM) reduced [Ca2+]i 
oscillations in glucose-stimulated isolated mouse primary β-cells. Experiments were performed in the 
presence of 5 mM glucose together with J. Rada. 
 

 

A β-CD-based approach for the removal of aromatic amines from aqueous solutions was previously 

described [254], suggesting β-CD ideal for capturing TAs from MIN6 cells. Derivatization of CDs 

(e.g. with hydroxyl groups) improves the overall water solubility of β-CD [253]. Therefore, we 

applied hydroxypropyl β-CD (hpβ-CD) to MIN6 cells and observed transient reduction of [Ca2+]i 

oscillations. 

[Ca2+]i oscillations spontaneously recovered (Fig. 17), presumably after saturation of hpβ-CD with 

TAs that were replenished by cellular biosynthesis. Based on the time point of recovery following 

the addition of hpβ-CD, MIN6 cells were grouped into three populations: Late (~20 min), 

intermediate (~10 min) and early (~5 min) restarters (Fig. 17 Ai+ii(1-3)). Hydroxylpropyl α-CD 

(hpα-CD), bearing a hydrophobic cavity too small to bind aromatic amines [253], did not show 

effects on [Ca2+]i oscillations and served as a control (Fig. 17 Ai+ii(4), C).  

In line with our observations of recombinant MAO action on MIN6 cells, this indicated that the 

presence of aromatic amines is essential for the maintenance of [Ca2+]i oscillations. However, as 
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CDs significantly interfered with insulin ELISA measurements, their effects on insulin secretion 

could not be determined.  

β-CDs and derivatives thereof are described to remove cholesterol from plasma membranes at 

concentrations of 5 - 20 mM, which is ~2 - 3 orders of magnitude higher compared to the herein 

applied concentrations [255,256]. Therefore, we assume that the cholesterol content of PMs was 

not affected. 

 

 

Figure 17. Addition of hpβ-CD to MIN6 cells transiently reduces [Ca2+]i oscillations. Representative 
single (Ai) and averaged (Aii) Ca2+ traces from MIN6 cells, recorded with the Ca2+ indicator Fluo-4. (B+C) 

Counts of detected high-intensity [Ca2+]i events per 60 s interval. (A(1-3)) Addition of hpβ-CD (200 µM) to 
MIN6 cells transiently reduced [Ca2+]i oscillations. MIN6 cells were grouped into three populations, 
depending on the time of recovery after addition of hpβ-CD: late (A(1), B), intermediate (A(2)) and early 
(A(3)) restarters. (A(4), C) hpα-CD, 200 µM served as a control. Shown are averages of 100 MIN6 cells. 
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3.2.4. TAAR1 (ant-)agonists modulate intracellular cAMP levels 

TAAR1 couples to a Gαs protein that modulates adenylate cyclase activity [132,133]. Therefore, 

(ant-)agonism of TAAR1 directly translates into changes of intracellular cAMP levels, which has 

been exploited as a sensitive read-out in drug screens [136,159,161]. For the determination of 

cellular cAMP levels after TAAR1 stimulation, several techniques, such as a modified β-lactamase 

reporter assay [138] or a bioluminescence resonance energy transfer cAMP biosensor [135] have 

been reported. To monitor downstream signaling of TAAR1 in MIN6 cells, we applied a 

genetically encoded cytoplasmic cAMP sensor of the ‘Epac series’, sensing changes of [cAMP] in 

physiological ranges. Activated by cAMP, the endogenous cellular protein Epac1 acts as a guanine 

nucleotide exchange factor for Rap1 [257]. The herein applied sensor consists of a truncated 

version of Epac1, equipped with two Venus fluorescent proteins at the N-terminus (acceptor) and 

one mTurquoise fluorescent protein at the C-terminus (donor) (Epac, 3rd generation, [258]). 

Binding of cAMP induces a conformational change that increases the distance between the donor 

and acceptor fluorophore, leading to a robust decrease of the FRET ratio (Fig. 18 N). FRET values 

are presented as ratios between acceptor and donor intensities. Presented FRET ratios were set to 

1 at the time point immediately before addition of the stimulus. At the end of each experiment, a 

mix of the adenylate cyclase activator forskolin [259] and the phosphodiesterase inhibitor 3-

isobutyl-1-methylxanthine (IBMX) [260] (50 µM, each) was added to MIN6 cells to generate 

maximum cAMP responses and to confirm that measurements were performed within the dynamic 

range of the sensor. 

For testing cAMP responses, (synthetic) TAAR1 agonists, psychoactive drugs and MAO inhibitors 

(antiparkinsonian drugs) were applied at 25 µM, as this concentration was found to induce stable 

[Ca2+]i responses in MIN6 cells. Addition of β-PEA to Epac3rd-transfected MIN6 cells significantly 

potentiated cAMP production, as indicated by a significant shift of the normalized FRET ratio 

(acceptor/donor intensity, Fig. 18 A). Remarkably, this shift could be reversed by the addition of 

the TAAR1 antagonist EPPTB (Fig. 18 B), which confirms our observations from [Ca2+]i imaging. 

Effects of β-PEA on cAMP levels were approximately 1.5 - 2x stronger than those of tyramine 

(Fig. 18 C), which is in line with literature reports, comparing the receptor activation potencies 

(EC50s) of TAs. [241]. Even selective synthetic TAAR1 agonists stimulated cAMP production to 

different extents. However, the partial agonist RO5073012 only transiently stimulated cAMP 

production that spontaneously declined again (Fig. 18 D).  
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Figure 18. TAAR1 agonists modulate intracellular cAMP levels in MIN6 cells. Shown are normalized 
FRET ratios (acceptor/donor intensity) of the Epac sensor [258]. Tested compounds included (A-C) TAs, 
(D-F) synthetic TAAR1 agonists, (G-J) psychotropic drugs and (K-M) MAO inhibitors (antiparkinsonian 
drugs). β-PEA (A) and RO5256390 (F) evoked the strongest effects. (N) Epac3rd-based sensor for the 
determination of cAMP levels. A truncated version of Epac1 was equipped with two Venus fluorescent 
proteins at the N-terminus (acceptor, A) and one mTurquoise at the C-terminus (donor, D). Binding of 
cAMP induces a conformational change that increases the distance between donor and acceptor, leading to 
a robust decrease of the FRET ratio. Adapted and modified from [261]. All compounds were applied at 
25 µM in the presence of 11 mM glucose. A mix of forskolin and IBMX (50 µM, each) was added to cells 
at the end of each experiment to induce maximum cAMP responses (dashed grey line). Shown are averages 
of 20 - 30 MIN6 cells. Experiments and data analysis were planned and performed with J. Rada and M. 
Andreu. 
 

 

RO5073012 was found significantly less potent, compared to the full agonists RO5166017 and 

RO5256390 that permanently increased cAMP levels even to greater extents (Fig. 18 E, F). Effects 

of RO5256390 were ~2 - 3 times stronger than those of RO5166017 or tyramine. From all TAAR1 

agonists tested, RO5256390 showed the strongest effects on cAMP production (Fig. 18 F), directly 

followed by β-PEA (Fig. 18 A). This rank order of potency of artificial (synthetic) TAAR1 agonists 

is in line with our findings from [Ca2+]i measurements and literature reports, as compiled in a 

review by Berry et al. [160]. In line with reports by Revel et al., effects of RO5256390 and 

RO5166017 on cellular cAMP levels were comparable to that evoked by β-PEA [151,154]. 

Amphetamine and psilocin showed potencies for the stimulation of cAMP production that were 

comparable to those of p-tyramine or RO5166017 (Fig. 18 G, H). 

Only weak or no effects on cAMP levels were evoked by dibenzepin and LSD (Fig. 18 I, J). In 

fact, LSD did not show significant effects on [Ca2+]i oscillations (Fig. A7 (appendix)), in line with 

literature reports, describing its comparatively low receptor activation potency (EC50 (LSD): 

9.7 µM) [241].  

We hypothesized that inhibition of endogenous MAO would induce cAMP production via TAAR1 

stimulation by increased levels of endogenous TAs. In fact, addition of the selective MAO-B 

inhibitors (and antiparkinsonian agents) selegiline and phenelzine to MIN6 cells potently increased 

cAMP levels in ranges that were comparable to β-PEA stimulation (Fig. 18 K, L). Notably, β-PEA 

is primarily inactivated by MAO-B [126,168,169]. Effects of the selective MAO-A inhibitor 

clorgyline were significantly weaker (Fig. 18 M). Interestingly, addition of some TAAR1 agonists 

even induced oscillations of cAMP levels (Fig. 18 C, E, F, G).  
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Remarkably, application of the phosphodiesterase inhibitor IBMX to glucose-stimulated MIN6 

cells in lower doses (25 µM) was found to increase intracellular cAMP levels (Fig. A11 

(appendix)). From this we infer that cAMP is produced even under basal stimulatory conditions 

within MIN6 cells by endogenous agonists. This is in line with our findings from MS, 

demonstrating the presence of endogenous TAs even under basal stimulatory conditions. 

 

Apart from ATP and TAs, we suspected even other small diffusible cellular metabolites to function 

as extracellular endogenous (metabolite) signaling factors that are essential for the maintenance of 

β-cell activity and insulin secretion.  

 

 

 

3.3. Endogenous FAs are essential signaling factors of pancreatic β-cells and 

insulin secretion 

3.3.1. Albumin-mediated buffering of FA levels modulates [Ca2+]i oscillations and insulin 

secretion  

Preliminary work described the effects of UV-mediated liberation of photo-caged arachidonic acid 

at different subcellular compartments within MIN6 cells on [Ca2+]i oscillations and insulin 

secretion [214]. In a complementary approach, we investigated the role of endogenous FAs for 

[Ca2+]i oscillations and insulin secretion of MIN6 and mouse primary β-cells. For the selective 

withdrawal of FAs from β-cells, delipidated fatty acid-free bovine serum albumin (FAF-BSA) was 

applied due to its strong capacity to bind FAs. Albumin has been described to bind long-chain FAs 

(C16 - C24) at about 2 - 6 sites, depending on the FA chain length [262].  

We found that addition of FAF-BSA in 1 % and 0.1 % final concentrations to glucose-stimulated 

MIN6 and mouse primary β-cells immediately terminated [Ca2+]i oscillations (Fig. 19 A+B i+ii, 

C+D; for FAF-BSA (1 %) see Fig. A12, (appendix) and movie sections in Fig. A13). Insulin 

secretion decreased more than 80 % in the presence of 0.1 % FAF-BSA (Fig. 20 H). The impact of 

FAF-BSA (0.01 %) on [Ca2+]i oscillations in MIN6 cells was comparatively weak (Fig. A14 

(appendix)), indicating a concentration dependent effect of FAF-BSA on [Ca2+]i oscillations, as 

described by Hauke et al. [232]. Based on these observations, we suspected FAs to be amongst 

those endogenous signaling factors that are essential for [Ca2+]i oscillations and insulin secretion. 
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As the reduction of [Ca2+]i oscillations was readily reproduced by the addition of fatty acid-free 

human serum albumin (1 %, FAF-HSA, Fig. A15 (appendix)) or at different glucose concentrations 

(Fig. A16 (appendix)), we inferred that observed effects neither depended on the source of albumin 

nor on the applied glucose concentration [232].  

Transfer of FAF-BSA (0.1 %), incubated on a population of 2 x106 MIN6 cells to pre-washed 

MIN6 cells, transiently recovered [Ca2+]i oscillations (Fig. 19 A+B iii, E), as described by Hauke 

et al. [232]. This indicated that the cargo, presumably FAs, that was taken up by FAF-BSA during 

pre-loading was readily off-loaded again. Accordingly, the intensity of recovered [Ca2+]i 

oscillations correlated with the pre-loading time of FAF-BSA on a separate population of MIN6 

cells, as well as with applied concentrations of albumin and therefore with the total amount of 

transferred FAs (Fig. A17 (appendix)) [232].  

Replacement of FAF-BSA (0.1 % and 0.01 %) by albumin-free buffer in the perfusion system 

readily recovered [Ca2+]i oscillations (Fig. 20 A+B i, C and Fig. A14 (appendix)), whereas slow 

recovery of [Ca2+]i oscillations (~20 - 30 min) was observed following the exchange of FAF-BSA 

(1 %) by buffer (Fig. A12 (appendix)), as described by Hauke et al. [232]. Conventional BSA 

(conv. BSA, i.e. BSA saturated by natural FA cargo, see mass spectrometric screen Fig. 22 C), 

applied to MIN6 and mouse primary β-cells showed significantly milder effects on [Ca2+]i 

oscillations, when applied at 1 % and 0.1 % final concentrations (Fig. 20 A+B ii+iii, D+E and 

Fig. A12 (appendix)) [232]. 

Pre-saturation of FAF-BSA (0.1 % and 1 %) with the albumin-binders ibuprofen (Ibu) [263] or L-

tryptophan (L-Trp) [264] moderated its effects on [Ca2+]i oscillations of MIN6 and mouse primary 

β-cells (Fig. 20 A+B iv-vi, F+G and Fig. A12). All this indicated that pre-saturation of BSA 

lowered its binding capacity for endogenous FAs and thereby weakened its effects on [Ca2+]i 

oscillations. Addition of Ibu or L-Trp (400 µM) to MIN6 cells in the presence of FAF-BSA that 

was pre-loaded on MIN6 cells induced transient [Ca2+]i spikes (Fig. A18 (appendix)), as shown by 

Hauke et al. [232]. This transient stimulation was interpreted as out-competition of BSA-loaded 

FAs by albumin binders. 
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Figure 19. BSA reduces or starts [Ca2+]i oscillations in MIN6 and mouse primary β-cells depending 

on its FA loading state. (A+B) Representative single (A) and averaged (B) Ca2+ traces from MIN6 and 
mouse primary β-cells, stained with the Ca2+ indicator Fluo-4. (C-E) Number of high-intensity [Ca2+]i events 
per 60 s interval. Addition of FAF-BSA (0.1 %) to MIN6 (A+B i, C) or mouse primary β-cells (A+B ii, D) 
immediately reduced [Ca2+]i oscillations. Transfer of BSA (0.1 %) that was pre-loaded on 2 x106 MIN6 cells 
(pre-loading time: 30 min) to pre-washed MIN6 cells transiently started [Ca2+]i oscillations (A+B iii, E). 
Shown are averages of n = 60 mouse primary β-cells and n = 30 MIN6 cells. Experiments were performed 
in the presence of 11 mM glucose. The figure was adapted and modified from Hauke et al. [232]. 
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Figure 20. BSA modulates [Ca2+]i oscillations in MIN6 and mouse primary β-cells. (A+B) 

Representative single (A) and averaged (B) Ca2+ traces from MIN6 and mouse primary β-cells, stained with 
the Ca2+ indicator Fluo-4. (C-G) Number of high-intensity [Ca2+]i events per 60 s interval. (A+B i, C) MIN6 
[Ca2+]i oscillations immediately stopped upon addition of FAF-BSA (0.1 %) to recover upon exchange of 
FAF-BSA by buffer. Conv. BSA (0.1 %) or FAF-BSA (0.1 %), pre-saturated with L-Trp or Ibu, reduced, 
but did not terminate [Ca2+]i oscillations in (A+B ii + iv + vi, F) MIN6 and (A+B iii + v, G) mouse primary 
β-cells. (H) FAF-BSA (0.1 %, 20 min incubation time) reduced insulin secretion from glucose-stimulated 
MIN6 cells by more than 80 %, compared to incubation in BSA-free buffer. Shown are averages of n = 60 
mouse primary β-cells and n = 30 MIN6 cells. Insulin experiments were performed in the presence of 11 mM 
glucose in quadruplicate (**P<0.01, *P<0.05, ANOVA, ns = not significant = P>0.05, with repeated 
measures as necessary). Error bars present SD. The set-up of the perfusion system is shown in Fig. A2 
(appendix). The figure was adapted from Hauke et al. [232]. 
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In order to investigate whether FAs are the major cargo in BSA transfer experiments, the GPR40 

antagonist GW1100 (10 µM, [265]) was spiked to FAF-BSA (1 %, pre-loaded on MIN6 cells) and 

added to pre-washed MIN6 cells. This induces a prominent [Ca2+]i spike, which was, however, not 

followed by [Ca2+]i oscillations (Fig. 21 A+B i, C), as described by Hauke et al. [232]. Treating 

MIN6 cells with GW1100 significantly reduced (10 µM) or terminated (25 µM) [Ca2+]i 

oscillations, presumably out-competing endogenous FAs at GPR40 (Fig. 21 A+B iii, E+F and Fig. 

A19 (appendix)) [232]. All this is in line with reports from Schnell et al., according to which 

GPR40 activation is essential for the induction and maintenance of [Ca2+]i oscillations in the 

presence of glucose [208]. 

 

 

Figure 21. [Ca2+]i oscillations are stimulated via GPR40 in transfer experiments. Representative single 
(A) and averaged (B) Ca2+ traces from MIN6 cells, stained with the Ca2+ indicator Fluo-4. (C - F) Number 
of high-intensity [Ca2+]i events per 60 s interval. (A+B i, C) FAF-BSA (1 %, pre-loaded on 2 x106 MIN6 
cells for 30 min) was supplemented with the GPR40 antagonist GW1100 (10 µM). Addition to pre-washed 
MIN6 cells induced individual prominent [Ca2+]i transients. (A+B ii, D) [Ca2+]i oscillations immediately 
stopped after addition of FAF-BSA, spiked with GW1100 (1 %, no pre-loading, GW1100 (10 µM)). 
(A+B iii, E) Addition of GW1100 (10 µM) gradually reduced [Ca2+]i oscillations. (F) Higher concentrations 
of GW1100 (25 µM) enhanced this effect. Shown are averages of n = 30 MIN6 and n = 60 primary β-cells. 
See Fig. A19 (appendix) for GW1100 (25 µM) data and for exemplary single Ca2+ traces. Experiments were 
performed in the presence of glucose (11 mM). The figure was adapted from Hauke et al. [232]. 



3. Results 

46 

3.3.2. Monitoring BSA-mediated buffering of FAs from MIN6 cells by mass spectrometry 

Following reports on the FA-binding capacity of albumins [266], we traced back FAF-BSA-

mediated reduction of [Ca2+]i oscillations to the withdrawal of FAs from MIN6 cells by BSA. 

Therefore, mass spectrometry (MS) was applied to monitor the enrichment of FAs by FAF-BSA, 

following incubation on MIN6 cells. Here, FAF-BSA was applied in 0.1 % final concentration, 

which was shown to potently reduce [Ca2+]i oscillations of MIN6 and primary mouse β-cells (Fig. 

19). To avoid contamination with palmitic acid, which had previously been reported to cause 

competing background signal in MS-based detection of FAs, all applied materials were pre-treated 

with methanol in several steps, according to [267]. FAF-BSA (0.1 %)-supplemented as well as 

albumin-free SNs were collected after 20 min of incubation on MIN6 cells. The SNs were 

concentrated more than 10-fold for subsequent chloroform/methanol extraction in advance of MS 

analysis (see 6. Research design and methods). Palmitic and stearic acid were detected as the most 

prominent FAs in aqueous SNs (Fig. 22 A) [232].  

This is in line with the initial hypothesis of FAs as autocrine signaling factors that β-cells secrete 

into the extracellular space. FAF-BSA (0.1 %)-containing SNs enriched levels of stearic-,     

palmitic-, oleic- and elaidic acid 2.7-, 1.2-, 27.3- and 30.6-fold (Fig. 22 A), as described by Hauke 

et al. [232]. Interestingly, the spectrum and relative abundances of FAs, as obtained from FAF-

BSA-mediated enrichment, were similar to those of MIN6 cell extracts, where stearic, palmitic, 

arachidonic, oleic and elaidic acid were most abundant (Fig. 22 B). This confirms the hypothesis 

that FAF-BSA effectively withdraws FA from MIN6 cells. MS analysis revealed that commercial 

conv. BSA carried considerable amounts of FAs (Fig. 22 C). The pre-saturation of conv. BSA with 

FAs explains the weak effects of conv. BSA on [Ca2+]i oscillations, as observed in imaging 

experiments (Fig. 20 A+B ii+iii, D, E). 
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Figure 22. Monitoring FAF-BSA-mediated withdrawal of FAs from MIN6 cells by mass 

spectromentry. (A) FA levels, detected in the SN of MIN6 cells (supernatant), in FAF-BSA (0.1 %), after 
incubation on MIN6 cells (FAF-BSA, cells) or in FAF-BSA (0.1 %) without cell contact (FAF-BSA, no 

cells). Stearic and palmitic acid were identified as the most abundant FAs in the SN of MIN6 cells 
(supernatant). Oleic, elaidic, stearic and palmitic acid were the most prominent FAs that were enriched by 
FAF-BSA (0.1 %) from MIN6 cells (FAF-BSA, cells). (B) Levels of FAs, as obtained from MIN6 cell 
extracts. Oleic, elaidic, arachidonic, palmitic, stearic and myristic acid were detected as the most prominent 
FAs. (C) Conv. BSA contained considerable amounts of FAs, independent of incubation on cells. 
Experiments were performed on 2 x106 MIN6 cells, with 20 min of incubation on cells in the presence of 
11 mM glucose. Measurements were done in quadruplicate. Error bars present SD. The figure was adapted 
from Hauke et al. [232]. 
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3.3.3. Fluorescence displacement assay for the detection of secreted FAs 

A fluorescence displacement assay was performed for the relative quantification of FA-secretion 

into aqueous SN of MIN6 cells over incubation time. The assay was based on the environmentally 

sensitive probe Nile red 2-O-butyric acid (NRBA, Fig. 23 A), which preferentially binds 

hydrophobic protein domains, along with a turn on of fluorescence emission [268]. NRBA 

fluorescence was detected in the presence of BSA and EtOH, but was quenched in aqueous buffer 

(Fig. 23 A), as reported by Hauke et al. [232]. The emission maximum of NRBA was described to 

shift to shorter wavelengths with increasing hydrophobicity of its environment [269,270]. 

Accordingly, the emission maximum, as determined in a solution of EtOH (Fig. 23 A, grey curve), 

shifted to shorter wavelengths in the presence of BSA (Fig. 23 A) [232]. Various FAF-BSA-to-

NRBA ratios were tested – from 1:1 to 4:1 in aqueous buffer. The detected fluorescence intensity 

decreased with increasing FAF-BSA-to-NRBA ratios (Fig. 23 A) [232]. 

Figure 23. NRBA-based fluorescent displacement assay for the relative quantification of secreted FAs 

within the SN of MIN6 cells. (A) The NRBA emission maximum as obtained in EtOH (grey trace) shifted 
to shorter wavelengths in the presence of FAF-BSA (red trace). NRBA fluorescence emission decreased 
with increasing FAF-BSA-to-NRBA ratios. NRBA fluorescence was quenched in aqueous buffer (black 
trace). (B) FA-containing SN, harvested from MIN6 cells, was added to NRBA-pre-loaded FAF-BSA 
(10 µM FAF-BSA, NRBA, each) for the competition of NRBA from the BSA binding pocket in a FA-
concentration dependent manner. The SN was loaded on 2 x106 MIN6 cells for the indicated periods. Buffer 
(i.e. no incubation on cells) served as a reference for normalization (black trace). Assays were performed 
on a quantamaster QM4/2000SE Photon Technology International spectrofluorometer in a 150 µl quartz 
cuvette. NRBA was excited at λ = 540 nm. Full emission scans were recorded from λ = 550 – 750 nm with 
2 nm step intervals and 0.2 s integration time. Averaged curves of three measurements are shown. The figure 
was adapted and modified from Hauke et al. [232]. 
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The fluorescence emission of BSA-bound NRBA dropped following addition of SN from MIN6 

cells. Emission of BSA-bound NRBA further decreased with increasing incubation times of SN on 

MIN6 cells (Fig. 23 B). Notably, already 2 s of incubation (i.e. washing cells) significantly 

decreased the detected signal (Fig. 23 B, red trace) to further drop within the course of 1 h of 

incubation, as described by Hauke et al. [232]. The buffer value (i.e. buffer, no incubation on MIN6 

cells) served as a reference for the relative quantification of the detected fluorescence intensity 

(Fig. 23 B, black trace) [232]. 

 

 

 

3.3.4. Monitoring FAF-BSA-mediated removal of FAs from cellular plasma membranes 

using sulfo-caged FAs 

Our preliminary MS screen revealed stearic acid (SA) and oleic acid (OA) amongst the most 

abundant FAs that were enriched by FAF-BSA from MIN6 cells (Fig. 22). Based on these findings 

and on previous results [214], we employed sulfo-caged (Scg-) SA and OA (Fig. 24 A), bearing 

negatively charged sulfo-coumarin cages to quantitatively deliver Scg-FAs to PMs of live MIN6 

cells. The negative charges of the head group prevent cell entry [214], which was confirmed herein 

on MIN6 cells (Fig. 24 D). 

Even though structurally not identical with FAs, the negatively charged head group and the 

hydrophobic tail presented essential requirements for the binding of Scg-FAs by BSA [262,271]. 

The fluorescent properties of the coumarin cage allowed for monitoring of the cellular localization 

of Scg-FAs and for a quantitative estimation of FAF-BSA-mediated extraction of FAs from MIN6 

cells by fluorescence microscopy (Fig. 24 B+C). The fluorescence at the PM rapidly decreased 

upon addition of FAF-BSA to MIN6 cells that were pre-loaded with Scg-SA (200 µM). Efficiency 

and dynamics of fluorescence decrease correlated with the applied FAF-BSA concentrations (Fig. 

24 B+D) [232]. Accordingly, applied FAF-BSA concentrations inversely correlated with the 

residual fluorescence intensity on PMs after 500 s of incubation on MIN6 cells (Fig. 24 C), as 

reported by Hauke et al. [232]. This indicated that FAF-BSA efficiently extracted Scg-SA (and 

therefore also FAs) from PMs of MIN6 cells. 
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Figure 24. Visualization and quantification of FAF-BSA-mediated extraction of Scg-SA from MIN6 

cells. (A) Structures of sulfo-caged stearic (Scg-SA) and oleic acid (Scg-OA). (B+C) Quantification of the 
extraction of Scg-SA (200 µM, pre-incubation) by FAF-BSA from MIN6 cells, based on coumarin 
fluorescence. (B) Time course of coumarin fluorescence of Scg-SA in the presence of FAF-BSA at different 
concentrations and (C) detected fluorescence intensities after 500 s of incubation with FAF-BSA. The 
fluorescence intensity was normalized to the detected signal prior to addition of FAF-BSA (buffer control).                      
(D) Shown MIN6 cells were pre-incubated with Scg-SA (200 µM). FAF-BSA (1 %) was added to Scg-SA-
loaded MIN6 cells and incubated for the indicated periods. Experiments were performed at 11 mM glucose. 
Shown are averages of 100-150 MIN6 cells. **P<0.01, ANOVA. Error bars present SD. Scale bars, 20 µm. 
Scg-SA was provided by R. Müller. The figure was adapted and modified from Hauke et al. [232]. 
 

 

3.3.5. Photolysis of sulfo-caged FAs restarts [Ca2+]i oscillations following FAF-BSA treatment 

Our preliminary findings indicate that FAF-BSA-mediated withdrawal of endogenous FAs reduces 

[Ca2+]i oscillations and insulin secretion of MIN6 and mouse primary β-cells (Fig. 19). 

Accordingly, we suspected that replenishing FA pools at the PM of MIN6 and mouse primary β-

cells might reverse FAF-BSA-mediated effects and recover [Ca2+]i oscillations. 
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Treatment of glucose-stimulated MIN6 cells with FAF-BSA (0.1 %) reduced [Ca2+]i oscillations. 

Scg-SA and Scg-OA were added in 200 µM final concentrations, followed by UV-irradiation. 

Photolysis of Scg-FAs at MIN6 plasma membranes was supposed to release FAs with good 

spatiotemporal control, according to preliminary work [214]. Silenced [Ca2+]i oscillations within 

FAF-BSA (0.1 %)-treated MIN6 and mouse primary β-cells immediately resumed by the 

photolysis of Scg-SA (200 µM, Fig. 25 A+B i+ii, C+D). Photolysis of Scg-OA and Scg-SA yielded 

comparable results (Fig A20 and A21 (appendix)), as reported by Hauke et al. [232].  

 

 

Figure 25. Photolysis of Scg-SA restarts [Ca2+]i oscillations within MIN6 cells following the addition 

of FAF-BSA. Representative single (A) and averaged (B) Ca2+ traces from MIN6 and mouse primary β-
cells, stained with the Ca2+ indicator Fluo-4. Following FAF-BSA (0.1 %)-mediated termination, [Ca2+]i 
oscillations immediately resumed by the UV-mediated liberation (λ = 375 nm) of Scg-SA (200 µM) or by 
the addition of OA (200 µM) in (i+iii) MIN6 and (ii+iv) primary β-cells. (v) In absence of Scg-SA or (vi) 
without the UV-pulse, FAF-BSA-silenced [Ca2+]i oscillations did not restart. (C-F) Number of high-
intensity [Ca2+]i events per 60 s interval. Restart of [Ca2+]i oscillations following the photolysis of Scg-SA 
or by the addition of OA (200 µM, each) in (C+E) MIN6 and (D+F) mouse primary β-cells. Presented are 
averages of n = 14 MIN6 cells for Bi, C and n = 30 MIN6, 60 primary β-cells for the other experiments. 
Error bars present SD. Exemplary single Ca2+ traces for Scg-SA and Scg-OA are shown in Figs. A20 and 
A21 (appendix). Experiments were performed in the presence of 11 mM glucose. The figure was adapted 
from Hauke et al. [232]. 
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Also, replenishing FA levels after FAF-BSA (0.1 %) treatment by the addition of OA (200 µM) 

instantaneously recovered [Ca2+]i oscillations in MIN6 and mouse primary β-cells (Fig. 

25 A+B iii+iv, E+F). From this we concluded that the presence of endogenous FA levels is not 

only essential, but sufficient for the induction and maintenance of [Ca2+]i oscillations in glucose-

stimulated β-cells [232].  

 

 

3.3.6. Modulation of [Ca2+]i oscillations by lipase-mediated FA liberation and FAF-BSA-

mediated FA-depletion 

Also, it was investigated whether [Ca2+]i oscillations in MIN6 and mouse primary β-cells can be 

modulated by lipase-mediated artificial elevation of FA levels, followed by FAF-BSA-mediated 

depletion. For this, recombinant phospholipase A2 (PLA2) was applied, which reportedly liberates 

FAs by the hydrolysis of membrane zwitterionic glycerophospholipids [220].  

Addition of recombinant PLA2 (10 U) to (pre-washed) MIN6 or mouse primary β-cells started or 

enhanced [Ca2+]i oscillations. Addition of FAF-BSA (1 %) terminated induced [Ca2+]i oscillations 

(Fig. 26 A+B i-iii, D+E), thereby reversing PLA2 action. [Ca2+]i oscillations that were induced by 

PLA2 action decreased after washing of MIN6 cells in a buffer exchange step (Fig. 26 A ii), as 

reported by Hauke et al. [232]. As even recombinant lipoprotein lipase (500 U), described to 

liberate FAs by the hydrolysis of triglycerides [272], induced [Ca2+]i oscillations in pre-washed 

MIN6 cells (Fig. 26 A+B iv, F) [232], we concluded that observed effects were independent of the 

applied lipase. Insulin secretion increased more than seven-fold in the presence of recombinant 

PLA2 (Fig. 26 C) ), as reported by Hauke et al. [232]. The inhibitors of endogenous PLA2 

bromoenol lactone (BEL, 10 µM) or methyl arachidonyl fluorophosphate (MAF, 10 µM) reduced 

and eventually stopped [Ca2+]i oscillations in MIN6 and mouse primary β-cells (Fig. 26 A+B v-vii, 

G+H and Fig. A22 (appendix)). Also, insulin secretion was significantly reduced upon inhibition 

of endogenous PLA2 (Fig. 26 C) [232]. Presented results show that [Ca2+]i oscillations and insulin 

secretion can be stimulated by elevated FA levels, independent of their origin. The buffering 

capacity of FAF-BSA was able to reverse these effects. 
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Figure 26. Liberation and depletion of FAs by PLA2 and FAF-BSA modulate [Ca2+]i oscillations in 

MIN6 and mouse primary β-cells. Representative single (A) and averaged (B) Ca2+ traces from MIN6 and 
mouse primary β-cells, stained with the Ca2+ indicator Fluo-4. (D-H) Counts of high-intensity [Ca2+]i events 
per 60 s interval. Addition of PLA2 (10 U) to (A+B i) oscillating or (A+B i, D) pre-washed MIN6 cells or 
(A+B iii, E) mouse primary β-cells stimulated [Ca2+]i oscillations (wash indicated by ▼). Addition of FAF-
BSA (1 %) to (A+B i, D) MIN6 and (A+B iii, E) mouse primary β-cells in the presence of PLA2 terminated 
[Ca2+]i oscillations. (A+B ii) Exchange of PLA2 by buffer reduced the stimulation (1.5 mL/min, MIN6 
cells). (A+B iv, F) Addition of lipoprotein lipase (500 U) to pre-washed MIN6 cells induced [Ca2+]i 
oscillations. [Ca2+]i oscillations in glucose-stimulated (A+B v+vii, G) MIN6 and (A+B vi, H) primary 
mouse β-cells were reduced and eventually stopped by the addition of PLA2 inhibitors methylarachidonyl 
fluorophosphate (MAF) and bromoenol lactone (BEL) (10 µM). (C) Insulin secretion from MIN6 cells 
increased more than 7-fold over baseline in the presence of recombinant PLA2 (10 U). The PLA2-inhibitor 
BEL (10 µM) reduced insulin secretion. Averages of n = 30 MIN6 and n = 60 primary mouse β-cells are 
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presented. Insulin experiments were performed in quadruplicate (ns = not significant = P>0.05. **P<0.01, 
ANOVA, with repeated measures as necessary). Error bars present SD. Exemplary single Ca2+ traces are 
presented in Fig. A22 (appendix). All experiments were conducted in the presence of 11 mM glucose. The 
figure was adapted and modified from Hauke et al. [232]. 
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4. Discussion 

4.1. Extracellular endogenous (autocrine) signaling factors are essential for                

β-cell activity and insulin secretion 

Within the last decade, soluble autocrine signaling factors have come more and more into focus as 

mediators of β-cell synchronization and pulsatile insulin secretion, in addition to direct electrical 

coupling via gap junctions. Expressing several receptors for neurotransmitters that were initially 

described in the CNS, the secretory activity of pancreatic endocrine cells was manipulated by               

(ant-)agonists of these receptors [273,274]. In fact, molecules that have long been implicated as 

neuronal signals within the pancreas are currently coming into focus as auto- or paracrine signals, 

produced in local endocrine cells of the pancreas [3]. So far, research has mainly focused on small 

diffusive molecules or neurotransmitters, such as CO, NO, ATP and γ-butyric acid as autocrine 

signaling factors within the pancreas [48,123]. 

The objectives of the presented work were to investigate the role of endogenous (autocrine) 

signaling factors for basal β-cell activity and insulin secretion. Here, we aimed at manipulating the 

levels of extracellular signaling factors, in particular ATP, TAs and FAs, while monitoring [Ca2+]i 

oscillations, cAMP levels and insulin secretion as read-outs for cellular activity. Changes in TA 

and FA levels correlated with alterations in [Ca2+]i oscillations, cAMP levels and insulin secretion. 

For this, we selected the murine insulinoma cell line MIN6 as a generally accepted, widespread 

and appropriate model system of pancreatic β-cells. According to previous reports, important 

signaling pathways for the regulation of insulin secretion in mouse primary β-cells were also found 

in MIN6 cells [74,275]. Herein applied MIN6 cells responded well to various glucose 

concentrations by differential levels of [Ca2+]i oscillations and insulin secretion, comparable to the 

behavior of pancreatic islets [71,73,74]. Stimulation experiments on MIN6 cells were performed 

in the presence of 11 mM glucose, which lies within the steepest part of the sigmoidal dose-

response curve of GSIS and therefore in the dynamic range of MIN6 cells [74]. Therefore, we 

considered MIN6 cells as being particularly sensitive to external stimuli in the presence of 11 mM 

glucose. Experiments on primary mouse β-cells were performed at 5 mM glucose, which reflects 

physiological blood glucose concentrations in mice [276]. Apart from insulin, even glucagon, 

ghrelin and somatostatin secretion was reported in MIN6 cells [75]. This identifies MIN6 cells as 

a mixed cell line consisting of different pancreatic endocrine cell types, which makes it ideally 

suited for studies on para- and autocrine signaling [75]. Observed differential oscillatory [Ca2+]i 
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patterns amongst individual MIN6 cells might be explained by heterogeneous environments of               

β-cells within clusters of α-, δ- and ε-cells or by variable access to stimuli or nutrients.  

Studies on pancreatic islet function and regulation have mainly been conducted using animal 

models. Even in the present work, key findings from experiments on MIN6 cells were validated on 

mouse primary β-cells. However, recent studies have shown significant interspecies variances of 

overall islet anatomy, structure and paracrine interconnections, making it difficult to generalize 

findings, as reviewed in [3]. Even significant differences in binding affinities and receptor 

activation potencies were described not only amongst rodent and human, but also within mouse 

and rat pancreatic receptors, as shown for TAAR1 by Simmler et al. [241]. Whereas most β-cells 

within murine islets directly appose other β-cells, human islets show complex paracrine 

interactions within intermixed α-, δ- and ε-cells [6,21]. In particular, β-cells are so tightly 

intertwined with α-cells in human pancreatic islet that clusters of β-/ α-cells might remain even 

after dispersion of islets [277]. Paracrine input from α-cells was described to foster insulin secretion 

from neighboring β-cells [278]. As MIN6 cells present a mix of different endocrine cell types [75], 

they might even resemble the heterogeneous conditions that were described for human islets. 

However, key findings from MIN6 and mouse primary β-cells should still be confirmed in 

experiments on human primary β-cells.  

Monitoring [Ca2+]i oscillations provided a direct, sensitive read-out of rapid, transient individual 

β-cell responses that would have been difficult to detect using insulin ELISA bulk assays. For this, 

the sensitive and photo-stable Ca2+ indicator Fluo-4 was applied [279]. However, synthetic 

fluorescent Ca2+ indicators, such as Fluo-4, Rhod-2 and Fura-2 were recently described to also 

show side effects, such as suppression of Na,K-ATPase activity, reduction of cell viability and 

alteration of cell metabolism [280]. Therefore, key experiments of this study should be validated 

on MIN6 cells that (stably) express genetically encoded Ca2+ indicators, such as GCaMP3, 

described to cause minimal adverse effects on cells [280]. Imaging was performed on a confocal 

fluorescence microscope that could be set up with a perfusion system. Settings from imaging were 

transferred to dish experiments for the monitoring of bulk changes in insulin secretion via ELISA. 

Insulin measurements allowed for the quantitative estimation of cell responses in scales of ~2 x106 

MIN6 or INS-1 cells.  

In this work, we showed that the presence of autocrine signaling factors is essential for β-cell 

activity and insulin secretion. Non-selective removal of extracellular (autocrine) factors by 

stringent washing of β-cells in a perfusion system reduced [Ca2+]i oscillations and insulin secretion. 
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After stopping the perfusion, [Ca2+]i oscillations slowly recovered during static incubation, 

presumably due to replenishment of extracellular (para- or autocrine) signaling factor levels. In a 

complementary approach, SN that was pre-loaded on a population of MIN6 cells was transferred 

to another dish, containing pre-washed, non-oscillating MIN6 cells. Upon transfer of pre-loaded 

buffer amongst different cell populations, [Ca2+]i oscillations in pre-washed cells immediately fully 

recovered. As glucose and salt concentrations remained unchanged in transfer experiments, we 

suspected secreted factors within the SNs ˗ the cellular ‘secretome’ ˗ to be responsible for the 

potentiation of [Ca2+]i oscillations and insulin secretion. Compared to buffer transfer experiments, 

addition of individual factors to pre-washed cells did not stimulate [Ca2+]i oscillations to 

comparable extents. This was shown by the stimulation of pre-washed MIN6 cells with ATP or 

BSA that was pre-loaded with FAs from another cell population. From this we infer that the 

presence of the entire spectrum of endogenous signaling factors is necessary to recover the full 

oscillatory potential of pre-washed β-cells. In contrast, selective depletion of individual 

extracellular factors was sufficient to significantly reduce [Ca2+]i oscillations and insulin secretion 

of MIN6 and mouse primary β-cells. This was herein demonstrated by the reduction of FA levels 

in the presence of FAF-BSA, of TA levels by β-CD / MAO action or of ATP levels in the presence 

of apyrase.  

Notably, electron micrographs show very narrow extracellular clefts between β-cells that are just a 

few nanometers wide [5]. In line with that, Braun et al. calculated the volume of the extracellular 

space of β-cells within pancreatic islets to ~5 pL per β-cell, considering the average volume of an 

individual β-cell and of an entire pancreatic islet [123]. Secretion or enzymatic turnover of 

relatively small amounts of endogenous (autocrine) signaling factors within the extracellular space 

probably results in significant concentration changes in micromolar ranges [123]. Therefore, the 

confined extracellular space within pancreatic islets might guarantee effective endogenous 

signaling and makes the autocrine signaling network highly dynamic so that it can rapidly react 

and adapt to changes of external stimuli. However, the size of clusters of synchronized β-cells 

within the pancreas is a subject under debate. Estimates vary from individual clusters of β-cells up 

to syncytia, involving the entire β-cell population [281].  
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4.2. TAAR1 integrates effects of aromatic amines into β-cell activity and insulin 

secretion 

Buffer exchange by stringent washing significantly reduced β-cell activity, presumably by the 

removal of small diffusive extracellular autocrine signaling factors. Following reports of TAAR1 

expression in the pancreas, we suspected even TAs to be amongst extracellular factors that 

contribute to the maintenance of β-cell [Ca2+]i oscillations and insulin secretion.  

In the present work, we show that selective agonists (or antagonists) of TAAR1 have profound and 

immediate effects on [Ca2+]i oscillations in β-cells, suggesting implications of TAAR1-mediated 

signaling on glucose homeostasis. We found that addition of TAs, the endogenous TAAR1 agonist 

T1AM or synthetic TAAR1 agonists potentiated [Ca2+]i oscillations in pre-washed MIN6, INS-1 

and mouse primary β-cells in the presence of glucose. In line with literature reports, we found that 

β-PEA and tyramine are ˗ from all TAs ˗ amongst the most potent agonists of TAAR1. However, 

significant interspecies differences have been reported for the activation potencies of agonists on 

TAAR1 [241]. β-PEA is more potent than tyramine on mouse and human TAAR1, whereas the 

opposite applies for rat TAAR1 [133,136]. Rodent, but not human TAAR1 is activated by 

tryptamine [132,165,282]. Interspecies differences in the activation potencies of some TAAR1 

agonists lie within more than one order of magnitude [241], which needs to be taken into 

consideration when transferring our findings from one to another model system. Therefore, herein 

presented experiments on TAAR1 stimulation need to be confirmed on a human cell line or human 

primary β-cells. Effects on [Ca2+]i oscillations translated well into increased insulin levels. Even 

though RO5256390 did not show the strongest effects on high-intensity [Ca2+]i oscillations, it most 

potently stimulated insulin secretion. This indicated that insulin secretion probably depends less on 

high-intensity, rather than on continuously enhanced [Ca2+]i oscillations. β-PEA potentiated insulin 

secretion in the presence of different glucose concentrations, but not in the absence of glucose. 

Screening β-PEA and RO5256390 at different concentrations, we found that insulin secretion 

increased progressively from 1 µM β-PEA (or RO5256390) to maximum levels at 25 µM β-PEA 

(or RO5256390) final concentrations. Exposure with higher concentrations of TAAR1 agonists (50 

and 100 µM) yielded significantly lower insulin levels, possibly indicating receptor desensitization 

at these concentrations. 

Compared to herein applied micromolar concentrations of TAs, we assume that under endogenous 

conditions within the enclosed islets of Langerhans of the pancreas, β-cell activity might be 

modulated even by significantly lower levels of TAs in the nano-molar range, as previously 
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reported [126,127]. Herein performed stimulation experiments were conducted on MIN6 cells, 

following removal of the entire spectrum of extracellular autocrine signaling factors in preliminary 

stringent washing steps. Therefore, we assume that higher levels of TAs in micromolar ranges were 

necessary to overcompensate the missing extracellular stimulatory input from other endogenous 

(autocrine) signaling factors.  

A coumarin-based photo-caging strategy allowed us to liberate β-PEA within MIN6 cells with high 

spatio-temporal control. Stringent washing of MIN6 cells following loading with caged β-PEA 

removed residual external compound, so that the utmost fraction of β-PEA was presumably 

liberated inside MIN6 cells upon UV irradiation. Remarkably, [Ca2+]i oscillations instantaneously 

started upon light-mediated release of β-PEA in pre-defined spots within MIN6 cells. This suggests 

the presence of an intracellular TAAR1-pool that was readily accessed by the released β-PEA.  

In the presence of the selective TAAR1-antagonists EPPTB and ET-92, [Ca2+]i oscillations and 

insulin secretion of β-cells, pre-stimulated by TAAR1 agonists, were significantly reduced. From 

this we inferred that observed effects mainly originated from TAAR1 stimulation. Notably, 

application of the antagonists EPPTB or ET-92 to glucose-stimulated MIN6, INS-1 and mouse 

primary β-cells decreased [Ca2+]i oscillations and insulin secretion. This indicated that β-cells 

constantly receive stimulatory input from TAAR1 that is either constitutively active or activated 

by endogenous agonists, presumably endogenous TAs that were identified via MS. Cellular 

responses to EPPTB ˗ currently the only commercially available selective TAAR1 antagonist ˗ 

were confirmed by the application of the selective TAAR1 antagonist ET-92, as requested by 

Rutigliano et al. [156]. Our findings are in line with earlier reports on the effects of EPPTB on the 

firing activity of dopaminergic neurons [283].  

In contrast to MIN6 and mouse primary β-cells, INS-1 cells show comparatively low endogenous 

expression levels of TAAR1 [174]. Therefore, stimuli were applied in 4- to 10-fold higher 

concentrations on INS-1 cells, compared to experiments with MIN6 and mouse primary β-cells, to 

evoke comparable effects on [Ca2+]i oscillations and insulin secretion. In general, low TAAR1 

expression levels ˗ at least under basal conditions ˗ reportedly present one of the major challenges 

in the TAAR1 field [160]. 

Based on counts of high-intensity [Ca2+]i spikes in MIN6 cells, we were able to set up a rank order 

of potency for TAs: β-PEA > p-tyramine > tryptamine >> p-synephrine ≈ p-octopamine, which is 

in line with literature reports on the activation potencies of TAs [138,160,241]. Based on these 

results, we suspected that structural modifications of the β-PEA skeleton directly determined the 
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activation potencies of amines on TAAR1. Therefore, we profiled a selection of β-PEA-related 

compounds for their potencies to evoke [Ca2+]i oscillations in MIN6 cells, with regard to specific 

modifications of the amino group, the aromatic moiety and the ethylene chain. We found primary 

amines more potent over secondary and tertiary amines. Also, modifications of the aliphatic side 

chain (-CH3, -OH) or aromatic moiety (-OH, -OCH2) significantly reduced the activation potency. 

Amines with shorter side chains, as well as non-aromatic amines did not stimulate [Ca2+]i 

oscillations in MIN6 cells. This is in line with reports from Lewin et al. [242] and Wainscott et al. 

[136], reporting that TAAR1 activation potencies, as described by EC50 values, decreased amongst 

β-PEA derivatives with increasing complexity of modifications at the primary amine or aromatic 

moiety. Similar effects were observed, comparing the potencies of ergoline (lisuride) derivatives 

on [Ca2+]i oscillations in pre-washed glucose-stimulated MIN6 cells. Whereas LAMPA and 

lisuride induced potent effects on [Ca2+]i, no stimulation was induced by LSD or 

methyergometrine, which is in line with reports from Simmler et al. [241].  

In addition to [Ca2+]i imaging and insulin ELISA, the potency of compounds for TAAR1 

stimulation was also tested in measurements of the intracellular cAMP concentration, using the 

FRET-based sensor Epac. As expected from our observations from [Ca2+]i imaging, we found that 

β-PEA was more potent than p-tyramine and that EPPTB reversed β-PEA-induced effects. Our 

findings are in accordance with earlier reports on the effects of EPPTB on basal cAMP levels [134]. 

We found that β-PEA and RO5256390 most potently induced cAMP formation. Here, cAMP levels 

perfectly reflect determined levels of insulin secretion. In line with findings from [Ca2+]i imaging 

and with literature reports, the full TAAR1 agonists RO5256390 and RO5166017 induced 

significantly stronger cAMP responses, compared to the partial TAAR1 agonists RO5073012 that 

showed only transient effects on cAMP levels [151,154,155]. Despite of that, RO5073012 

significantly stimulated insulin secretion to the same extents as β-PEA and RO5166017. This 

indicates that for a full characterization of compound activity on β-cells, [Ca2+]i oscillations, cAMP 

levels and insulin secretion need to be determined and compared. 

In line with literature reports, cAMP levels evoked by β-PEA stimulation were in comparable 

ranges to that generated by RO5166017 or RO5256390 stimulation [151,154]. Stimulation of 

cAMP production was not observed for LSD, according to our findings from [Ca2+]i oscillations. 

However, the effects of dibenzepin on cAMP levels were significantly lower compared to observed 

dibenzepin-mediated stimulation of [Ca2+]i oscillations. Notably, addition of low doses of the 

phosphodiesterase inhibitor IBMX to glucose-stimulated MIN6 cells increased intracellular cAMP 
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levels. This indicated that cAMP is produced even under basal stimulatory conditions within MIN6 

cells, presumably due to Gαs stimulation by endogenous agonists. 

There are several problems associated with a direct comparison of the activation potencies of 

TAAR1 agonists from literature reports with our experimental data. First, different biological test 

systems were applied as read-outs for receptor activation. Whereas heterologous cell lines (e.g. 

COS-7 or HEK293 cells) that stably express TAAR1 were mostly applied in literature screens 

[132,151,154,155,282], we herein used β-cell lines with endogenous TAAR1 expression. 

Therefore, overall receptor expression levels vary amongst different biological test systems. To 

improve the overall PM localization of TAAR1 in model cell systems for pharmacological 

characterizations, fusion constructs of TAAR1 were applied in literature screens. Here, the                       

N-terminus of TAAR1 was fused to the first 9 amino acids of the β-adrenergic receptor, which 

presents an asparagine-linked glycosylation site to increase the glycosylation state and therefore 

stabilization of TAAR1 at PMs [135]. However, our preliminary data indicate predominant 

intracellular localization of TAAR1 in MIN6 cells. Therefore, even the intracellular availability of 

herein tested ligands might also significantly determine their TAAR1 activation potential. In fact, 

some psychoactive drugs, such as amphetamines, are cargo of monoaminergic transporters and are 

actively and rapidly shuffled into cells [284]. Therefore, these compounds are better available to 

intracellular TAAR1 than others, passively overcoming PMs.  

However, using racemic mixtures in our presented screens, the stereoselectivity of TAAR1 was 

not considered. Due to the presence of a stereoselective binding site in TAAR1 [242], screening 

racemates instead of isolated stereoisomers could have underestimated the activity of more active 

pure isomers. This presents a limitation of the present study. Also, some TAAR1 agonists are 

described to act on adrenoreceptors, thereby modulating cAMP production via β- (or α2-) 

adrenoreceptors which are positively (or negatively) coupled to adenylyl cyclase. To exclude 

multiple pharmacologies, TAAR1 agonists should be screened in the presence of selective 

antagonists of β- / α- adrenoreceptors in future studies, as presented by [136].  

Our MS screen detected 15N-labelled TAs in MIN6 cells that were grown in the presence of heavy 

isotope labelled amino acids 15N-L-phenylalanine, 15N-L-tyrosine and 15N-L-tryptophan. This 

confirmed the role of TAs as endogenous signaling molecules that are produced within MIN6 cells 

by the decarboxylation of precursor amino acids. Thereby, TAs meet the definition as autocrine 

signaling factors, stimulating TAAR1 on the same cell from which they have been released, or 

neighboring cells of the same type. We interpreted this as evidence that TAAR1 in the pancreas is 
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activated in an autocrine fashion. In the intact pancreas, TAs might easily reach TAAR1 at the 

surface of β-cells within the confined extracellular space of the enclosed islet of Langerhans. 

MS confirmed the accumulation of 15N-β-PEA upon inhibition of MAO in MIN6 cells that were 

cultured in the presence of stable isotope-labeled amino acids. As expected, addition of MAO 

inhibitors to MIN6 cells in the presence of glucose also increased intracellular cAMP 

concentrations, along with [Ca2+]i oscillations and insulin secretion due to TAAR1 stimulation by 

increased levels of endogenous TAs. β-PEA is primarily inactivated by MAO-B [126,168,169]. 

Notably, selective inhibitors of MAO-B yielded significantly higher 15N-β-PEA levels, compared 

to MAO-A inhibition within MIN6 cells that were grown in the presence of 15N-labeled                                

L-phenylalanine. Selective MAO-B inhibitors showed stronger effects on cellular cAMP levels 

than inhibitors of MAO-A, which was, however, not reproduced on [Ca2+]i oscillations and insulin 

secretion. The MAO-A inhibitor clorgyline showed effects on [Ca2+]i oscillations that were 

comparable to that of MAO-B inhibitors selegiline and tranylcypromine. Counts of high-intensity 

[Ca2+]i oscillations correlated well with determined levels of insulin secretion. Inhibition of AADC 

decreased levels of endogenous TAs below the detection limit in MS screens. Lowering of TA 

levels directly translated into reduced [Ca2+]i oscillations and insulin secretion [166]. Equally, 

addition of recombinant MAO-B to glucose-stimulated MIN6 cells gradually reduced and finally 

stopped [Ca2+]i oscillations. Unable to penetrate the PMs of living cells, MAO-B was supposed to 

degrade only the extracellular fraction of TAs. Reduced levels of external TAs presumably lead to 

decreased TAAR1 (auto-)stimulation, along with diminished [Ca2+]i oscillations.  

By MS we detected significantly increased levels of TAs, following inhibition of endogenous MAO 

in MIN6 cells. The significant accumulation of TAs amongst MIN6 cells following selective 

inhibition of MAO indicated rapid turnover rates of TAs. The fast metabolism of TAs under 

endogenous conditions reportedly results in extracellular levels of TAs in the nanogram-range, 

several hundred-fold below those of the classical biogenic amines [127,166], which is in line with 

our findings from MS. Comparable concentration ranges of TAs have been determined in 

peripheral tissue [164,170,285–287]. In line with our findings, the inhibition of MAO is described 

to increase systemic levels of TAs and is therefore an effective means for the treatment of 

depression [288]. In fact, increased β-PEA levels were determined in MAO-B knockout mice [289]. 

Addition of aromatic-amine withdrawing β-CD transiently reduced [Ca2+]i oscillations in glucose-

stimulated MIN6 cells. Oscillations spontaneously recovered, presumably after saturation of β-CD 

with extracellular amines that were constantly supplied from MIN6 cells. The unequal recovery 
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times of [Ca2+]i oscillations might be explained by the differential localization of individual MIN6 

cells within islets and relating thereto the accessibility of β-CD to β-cells. From this and from our 

imaging data on the effects of recombinant MAO, as well as of selective MAO or AADC inhibitors, 

we infer that basal β-cell activity and insulin secretion rely on the presence of endogenous TAs for 

TAAR1 stimulation and that TAs are essential extracellular autocrine signaling factors in β-cells. 

Generating distinct transients of [Ca2+]i without sustained elevation of overall [Ca2+]i levels, we 

suspect that TAs might function as extracellular coordinators or sensitizers of the cellular secretory 

activity, and are possibly even involved within a positive autocrine feedback loop, as it was 

reported for ATP [108]. In rodent islets, ATP was found co-released during exocytosis of insulin 

from secretory granules, reaching extracellular concentrations of more than 25 µM. Also, 

exocytotic kiss-and-run mechanisms for the release of smaller amounts of ATP have been proposed 

[104,290,291]. Thereby, small diffusive factors, such as TAs and ATP might modulate or even 

increase the responsiveness of β-cells glucose. This would explain how β-cells efficiently respond 

to relatively modest changes in extracellular glucose levels under physiological conditions. 

Thereby, intercellular and inter-islet diffusion of TAs might even support the propagation of [Ca2+]i 

oscillations amongst cells without direct physical contact. As previously reported for ATP [292], 

even TAs might participate in the adjustment of second messenger systems for the activation of 

signaling pathways, thereby helping to define the dynamic range of cellular responses.  

Imbalances of TAs levels within the brain have long been implicated to contribute to the 

development of psychiatric disorders, such as schizophrenia, Parkinson’s disease, depression and 

drug addiction [146,152,160,239]. The discovery of TAAR1 in 2001 yielded a molecular 

‘drugable’ target for the treatment of these diseases. Therefore, the ‘RO-compounds’, EPPTB and 

ET-92 were developed as selective synthetic (ant-)agonists for the treatment of psychiatric diseases 

[134,151,153–155]. Interestingly, mental illnesses are often accompanied by metabolic disorders, 

along with weight gain, but the mechanisms are mostly unclear [293–295]. Even in early reports 

on the discovery of TAAR1, substantial expression levels of this receptor were identified within 

organs that are involved in the regulation of glucose homeostasis and nutrient resorption from food 

[132,156,282,296]. Therefore, it is even more surprising that side effects of MAO inhibitors, 

antidepressants or psychoactive drugs on pancreatic β-cell activity and insulin secretion have been 

overlooked so far. From our findings, we suspect A) either direct effects of drug-TAAR1 

interactions on β-cell activity or B) indirect modulation of TA levels by specific inhibitors of TA-

biochemical pathways and thereby TAAR1 stimulation within pancreatic islets. 
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Early reports on thyronamines already determined the ‘β-PEA skeleton’ as an essential requirement 

for TAAR1 agonistic properties [297]. Therefore, all psychotropic drugs applied herein are based 

on this structure. Prime examples are dibenzepin or diphenylhydramine, resembling the aliphatic 

part of β-PEA or nomifensine, which entirely comprises the structure of N,N-dimethyl-

phenylethylamine. Even though these compounds are commonly prescribed to selectively address 

established molecular targets within the CNS, possible interactions with TAAR1 on β-cells might 

provide an explanation for described side effects such as obesity. Remarkably, regular 

antidepressant use was found to double the risk for the development of T2D in patients with or 

without indications for severe depression [298]. Also, gain of overall body weight is described as 

a common side effect of tricyclic antidepressants, which are herein represented by dibenzepin 

[299]. In fact, herein tested psychoactive drugs, including dibenzepin, stimulated [Ca2+]i 

oscillations and insulin secretion to different extents. In particular, administration of MAO-

inhibitors was connected to weight gain, with phenelzine as a prime example [300]. In fact, 

phenelzine was herein shown to significantly potentiate [Ca2+]i oscillations, cAMP levels and 

insulin secretion. In contrast, administration of tranylcypromine is not described to cause weight 

gain [301], even though positively tested herein for the potentiation of [Ca2+]i oscillations and 

insulin secretion. Other drug side effects such as reduced appetite might be prevailing here. This 

indicates the overall complexity, when drug effects that were determined in cellulo are transferred 

to the physiology of an entire organism. Therefore, our findings from cell experiments still need to 

be confirmed in the living animal in a next step.  

Also, the livestock feed additive ractopamine was found to significantly increase [Ca2+]i 

oscillations in MIN6 cells. Even though mostly banned due to severe side effects on animal 

behavior, ractopamine is still approved in some countries such as the U.S., to promote livestock 

weight gain, also via muscle mass development [245]. Our finding that psychostimulant and 

hallucinogenic drugs, such as flurazepame, methysergide, the LSD analogue lisuride, but also 

(meth-)amphetamine stimulate β-cells via TAAR1 opens new perspectives about the potential 

influence of these commonly applied drugs on overall glucose homeostasis.  

Interestingly, β-PEA and p-tyramine were identified as exogenous amines in processed food, such 

as cheese, fermented meat, wine and chocolate [302]. After consuming aged cheese, patients 

treated with MAO-inhibitors tend to show hypertensive crises, so called “cheese reactions” [303]. 

TAs are also generated by the decarboxylation of dietary amino acids in gut microbiota. Examples 

are Clostridium sporogenes or Ruminococcus gnavus that are described to convert Trp to 
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tryptamine via Trp decarboxylase [304–306]. Considering the herein presented role of TAAR1 for 

the regulation of β-cell activity and insulin secretion, we propose exogenous amines from food or 

amines that are generated within the gut to also exert effects as modulators of glucose homeostasis. 

Recently, Mühlhaus et al. reported natural genetic variants of TAAR1 in diabetic patients with 

disturbances in overall body weight regulation and glucose homeostasis [177]. Even though not 

fully conclusive about the general role of these mutations in TAAR1 on overall pathogenesis, this 

study marks a starting point for therapeutic implications of TAAR1 in T2D and obesity as well as 

the growing interest of the scientific community into the topic. 

 

 

4.3. β-Cell activity and insulin secretion essentially rely on the presence of FAs 

as local endogenous signaling factors 

Within the last decade, FAs have gained increasing attention as exogenous agonists for the nutrient-

mediated release of sufficient amounts of insulin [228,229]. However, up until now, a possible role 

of FAs as endogenous (local) signaling factors of β-cells has hardly been considered.  

In the present study, we applied FA-depleted albumin, well described to bind FAs [307], to MIN6 

and mouse primary β-cells. As initially observed in washing experiments, even the addition of 

FAF-BSA to β-cells significantly reduced [Ca2+]i oscillations and insulin secretion [232]. This 

effect depended on the applied FAF-BSA concentration. Our observations indicated that FAs might 

be amongst those extracellular endogenous signaling factors that were herein shown to be essential 

for β-cell activity and insulin secretion. Detected effects of FAF-BSA on MIN6 [Ca2+]i oscillations 

were independent of applied external glucose concentrations or the origin of albumin. However, 

our observations of FAF-BSA-mediated reduction of [Ca2+]i oscillations and insulin secretion 

contradict earlier reports from Straub and Sharp [308], describing significantly increased insulin 

secretion from rat islets, following 4 - 6 h incubation in the presence FAF-BSA. As we herein 

monitored immediate effects of FAF-BSA on [Ca2+]i oscillations and insulin secretion [232], the 

different time frames within both studies might explain this discrepancy. More likely, Straub and 

Sharp measured insulin levels in the presence of BSA in the stimulating buffer, receiving artifacts 

that were herein also observed and had to be corrected for.  

Based on our MS screen, we found that FAF-BSA was significantly depleted of FAs, compared to 

conventional BSA. This also explains the differences in the FA-buffering capacity of FAF-BSA, 

compared to conventional BSA along with differential effects on [Ca2+]i oscillations. Even though 
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structurally distinct from FAs, sulfo-caged FAs served as a good model system to monitor FAF-

BSA-mediated depletion of FAs from PMs of MIN6 cells [232]. Adequate enrichment of FAs, 

especially of (monoun-) saturated long-chain FAs (C16 – C20/22), such as stearic, palmitic, oleic 

and elaidic acid from MIN6 cells by FAF-BSA was herein detected by MS [232], in line with 

literature reports [307,309]. In a recent study, Tunaru et al. described that 20-

hydroxyeicosatetraenoic acid, a metabolite of arachidonic acid, is released by glucose-stimulated 

mouse as well as human β-cells and stimulates insulin secretion via GPR40 in an autocrine fashion 

[310]. This supports our hypothesis of a general autocrine role of FAs within pancreatic β-cell 

signaling.  

However, the exact amounts of FAs within pancreatic islets that are available for GPR40 

stimulation are unclear and difficult to estimate. The concentration of circulating FAs within human 

serum lies in the range of ~1 mM. In fact, these concentrations far exceed the level of solubility of 

FAs, which is estimated to less than 0.1 nM at pH 7.4 and 37 °C (palmitate) [311]. Due to their low 

solubility, the utmost portion of FAs in the plasma is associated with albumin [312], with only 

fractional amounts (< 0.01 %) available unbound in the aqueous phase [313,314]. Stimulation of 

GPR40 is mediated by the bioactive, non-BSA-associated fraction of FAs [188,315]. Additional 

sources of FAs, such as the lipoprotein lipase-mediated hydrolysis of chylomicrons within islet 

capillaries [226], further complicate a realistic estimation of the levels of FAs that are available for 

GPR40 stimulation.  

Effects of BSA on β-cell activity were reversible, as MIN6 cells were found to spontaneously 

recover [Ca2+]i oscillations, following exchange of albumin by buffer. Notably, [Ca2+]i oscillations 

also recovered upon UV-mediated release of photocaged stearic (oleic) acid at the PMs of MIN6 

and mouse primary β-cells, or by the direct addition of oleic acid to FAF-BSA-treated β-cells [232]. 

This is in line with our MS data, showing that FAF-BSA enriched SA by a factor of ~3 and OA 

~27-fold. From this we inferred that [Ca2+]i oscillations can be induced by various types of long-

chain FAs and do not depend on a particular FA species [232]. FAs are loaded as well as off-loaded 

to and from albumin with amazing dynamics and are rapidly turned over, showing physiological 

half-lives in the range of ~1 - 2 min [313]. In line with this, we found that [Ca2+]i oscillations within 

washed MIN6 cells could be stimulated by BSA that was pre-loaded on a separate population of 

MIN6 cells [232]. This underlines the physiological relevance of albumin-mediated buffering of 

FAs for β-cell activity under different nutritional conditions.  
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FAs reportedly bind albumin sites I – III, whereas site II exhibits affinity to L-Trp and certain drugs 

[264,266,316]. Therefore, pre-saturation of FAF-BSA with albumin-binders L-Trp and Ibu was 

supposed to decrease the binding capacity of albumin. Whereas addition of FAF-BSA to glucose-

stimulated MIN6 cells showed clear reductions of [Ca2+]i oscillations, this effect was weakened for 

BSA that was pre-loaded with L-Trp or Ibu. Here, we suspected competing effects amongst site II-

ligands and FAs for albumin binding. Also, pre-saturation of BSA by FAs, as determined for 

conventional BSA by MS, was shown to reduce albumin-mediated effects on [Ca2+]i oscillations. 

In competition experiments, L-Trp and Ibu were added on top of FAF-BSA that was pre-loaded on 

a separate population of MIN6 cells. [Ca2+]i oscillations were stimulated, presumably due to 

cooperative effects or out-competition of FAs by albumin-binders [232]. Out-competition of FAs 

from binding sites by albumin-binding drugs or vice versa might also have implications on overall 

plasma concentrations and pharmacokinetics, especially when it comes to drugs with overall low 

free plasma fractions. Also, diet-related or drug-induced changes of FA plasma concentrations 

might directly translate into altered insulin secretion.  

Lipases within β-cells are described to release significant amounts of FAs into the extracellular 

space, also suggesting a role of FAs as autocrine signaling factors [218,219,317,318]. Even in the 

present work, FA levels were artificially elevated by recombinant PLA2 or lipoprotein lipase action. 

The presence of recombinant lipases, along with liberation of FAs, immediately translated into 

increased [Ca2+]i oscillations. Notably, addition of PLA2-inhibitors MAF and BEL to MIN6 as well 

as mouse primary β-cells decreased [Ca2+]i oscillations as well as insulin secretion [232]. This 

indicated that endogenous lipase activity along with constant FA-supply is essential for the 

maintenance of β-cell activity and GSIS.  

For the determination of the molecular target of FAs in β-cells, we applied the selective GPR40 

antagonist GW1100. We observed gradual reduction of [Ca2+]i oscillations upon application of 

GW1100 to glucose-stimulated MIN6 cells, indicating that GPR40 stimulation is essential for the 

maintenance of β-cell activity [232]. More importantly, FAF-BSA that was pre-loaded on a 

population of MIN6 cells did not evoke continuous Ca2+ spiking when applied together with 

GW1100 to pre-washed MIN6 cells [232].  

GPR40 stimulation by FAs was also described to directly modulate voltage-gated K+ currents in β-

cells and PKA-activation, leading to increased [Ca2+]i and insulin secretion [319]. We suspect that 

the withdrawal of FAs by FAF-BSA prevents lowering of K+ currents by GPR40, along with 

diminished overall [Ca2+]i levels in β-cells, which is in line with findings of Schnell et al. [208]. 
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Effects of FAs on ion channels have been determined and are reviewed in [319,320]. Recently, 

photoswitchable FAs have been shown to directly modulate ATP-sensitive and voltage-gated K+ 

channels, along with effects on glucose-stimulated [Ca2+]i oscillations [321]. The herein observed 

rapid termination of [Ca2+]i oscillations in the presence of FAF-BSA as well as the fast recovery 

upon replacement by buffer indicate the involvement of ion channels as additional immediate 

targets of FAs. 
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5. Conclusion and outlook 

Impaired insulin secretion is a hallmark in the development of T2D. Within the last decade, the 

role of intercellular and inter-islet synchronization has gained increasing attention as a prerequisite 

for the secretion of sufficient amounts of insulin. In light of the steadily growing number of diabetes 

incidences worldwide, a better understanding of the multiple parameters that regulate insulin 

secretion on both cellular and molecular levels is strongly required.  

In the present study, we extend the traditional roles of ATP, TAs and FAs from exogenous 

metabolites to essential endogenous (autocrine) signaling factors and potential drivers of [Ca2+]i 

oscillations and insulin secretion. Also, we identify TAAR1 and GPR40 as novel integrators of 

metabolic control that translate stimulation by local pancreatic signaling factors into glucose 

homeostasis. Based on our findings and on literature reports, we suggest that disturbed insulin 

secretion in T2D might not necessarily indicate a reduction of the overall pancreatic β-cell mass, 

but potentially originates from imbalanced or reduced levels of endogenous (autocrine) signaling 

factors. This, in turn, might lead to impaired or dysfunctional intercellular or inter-islet 

synchronization and insufficient insulin secretion. Therefore, we hypothesize that the restoration 

of functional autocrine signaling within the pancreas might also bring back synchronized pulsatile 

insulin secretion from islets of Langerhans and prevent β-cell exhaustion by insulin hypersecretion, 

insulin resistance and the progression of T2D. For this, however, the local concentrations and the 

interplay of signaling factors within pancreatic islets need to be determined. Also, it is of high 

interest whether individual factors are able to mutually compensate the loss of others.  

Herein presented data suggest pancreatic TAAR1 as a direct molecular target of small aromatic 

amines for the modulation of glucose homeostasis. In future steps, we will test commonly 

prescribed aminergic psychoactive drugs for their effects on body weight and blood insulin levels 

in rodents. Furthermore, it will be investigated whether observed (side-)effects on insulin secretion 

and body weight can be reversed by a combination therapy of psychoactive drugs with selective 

TAAR1-antagonists that act in the pancreas, but cannot overcome the blood-brain barrier. This 

would have general implications for antidepressant-based therapies.  

With the present work, we are the first to subordinate insulin secretion to the presence of local, 

endogenous (autocrine) signaling factors. Thereby, the presented work contributes to a more 

accurate and comprehensive understanding of fundamental regulatory processes of β-cell activity 

and insulin secretion. 
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6. Research design and methods 

6.1. Reagents 

BSA (fatty acid free: cat# A7030. lot# SLBK9735V; conventional: cat#A7906, lot# SLBR0420V), 
13C-oleic, 13C-palmitic and 13C-decanoic acid were provided by Sigma-Aldrich (St. Louis, MO, 

US). Gradient-grade fetal bovine serum (FBS) (cat# 16000-044) and Dulbecco´s Modified Eagle 

Medium (DMEM) were obtained from Gibco (Carlsbad, Ca). β-Mercaptoethanol (50 mM in PBS) 

was ordered from PAN Biotech (Aidenbach, Germany). Minimal medium for culturing cells in the 

presence of isotope-labeled amino acids was delivered by Cell Culture Technologies (Gravesano 

Ticino, Switzerland). Collagenase (from Clostridium histolyticum) was obtained from Nordmark 

Biochemicals (Uetersen, Germany). Histopague 1083 (density: 1.083 g/mL) and Histopague 1119 

(density: 1.119 g/mL) were purchased from Sigma-Aldrich. Stable isotope-labelled amino acids 

and trace amines were purchased from Sigma Aldrich, CDN Isotopes (Quebec, Canada) and Santa 

Cruz Biotechnology (Huissen, The Netherlands). Solvents of the highest analytical grade were 

provided by Biosolve (Valkenswaard, The Netherlands), Honeywell (Morristown, US) and Sigma-

Aldrich. All other commercially available chemicals and enzymes were ordered from Sigma-

Aldrich. All anesthetics used were purchased and stored in compliance with the German Narcotics 

Act (BtMG). 

 

6.2. Unit definitions of applied recombinant enzymes  

according to the supplier, Sigma Aldrich: 

Apyrase (from potato, enzyme commission (EC) number: 3.6.1.5, expressed in Pichia pastoris): 

One unit liberates 1.0 µmole of inorganic phosphate from ATP or ADP per minute at pH 6.5 and 

30 °C. Phospholipase A2 (from bee venom, EC number: 3.1.1.4): 1 U hydrolyzes 1.0 µmole of 

soybean L-α-phosphatidylcholine to L-α-lysophosphatidylcholine and a fatty acid per minute at pH 

8.9 and 25 °C. Monoamine oxidase B (from baculovirus infected insect cells, EC number: 1.4.3.4): 

One unit deaminates 1.0 nmole of Kynuramine per minute at pH 7.4 and 37 °C. Lipoprotein lipase 

(from Burkholderia sp., EC number: 3.1.1.3): 1 U releases 1 nmole of p-nitrophenole per minute 

at pH 7.2 and 37 °C, using p-nitrophenol-butyrate as a substrate.  
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6.3. Tissue culture and insulin measurements 

6.3.1. Culturing MIN6 cells 

MIN6 cells [73] were cultured in a humidified atmosphere at 37 °C and 8 % CO2. The culture 

medium DMEM contained 4.5 g/L glucose and was supplemented with FBS (15 %) and β-

mercaptoethanol (70 µM). The medium was sterile-filtered (Millex GV, 0.22 µm) and used within 

one week after preparation. For imaging, MIN6 cells were seeded into 8-well LabTek microscope 

dishes (155411 Thermo Scientific) or 40 mm coverslips (Menzel Gläser, Braunschweig, 

Germany). For in vitro assays, MIN6 cells were seeded into ∅ 60 mm or ∅ 35 mm dishes (Nunc 

delta surface, cat# 150288 / cat# 153066; Roskilde, Denmark) to form pseudoislets within 5 days 

after seeding. MIN6 cells were used from passages 26 - 36.  

A population of MIN6 cells was cultured in the presence of stable isotope-labeled amino acids. 

Minimal medium, depleted of L-tyrosine, L-tryptophan and L-phenylalanine (Cell Culture 

Technologies (Switzerland)) was supplemented with stable isotope-labeled (15N) amino acids L-

tyrosine, L-tryptophan and L-phenylalanine (0.4 mM, 0.08 mM and 0.4 mM final concentrations, 

Fig. A10 (appendix)). The pH was adjusted to 7.0 and the medium was sterile-filtered. Prior to use, 

the medium was supplemented with FBS (15 %) and β-mercaptoethanol (70 µM).  

 

6.3.2. Isolation of mouse primary β-cells 

Female Ctrl : CD1 (ICR, outbred) mice (supplied by Carles River Laboratories, cat# 

CD1S1FE07W) served as donors for primary β-cells that were isolated as previously described 

[70]. In short, mice were sacrificed by cervical dislocation. A collagenase solution (1 mg/mL) was 

injected into the pancreatic duct, followed by extraction of the pancreas from the animal and 

digestion at 37 °C for 10 min. A Histopague gradient (1.083 and 1.119 g/mL) allowed for the 

isolation of pancreatic islets via density gradient centrifugation. Islets were incubated in RPMI 

medium (supplemented with 10 % FCS, 100 U/mL penicillin and 100 mg/mL streptomycin) for 

24 h. Trypsin digestion (5 min, 37 °C) dissociated islets into single β-cells that were seeded into 

LabTeks, pre-coated with poly-L-lysine. Animals were housed in the EMBL animal facilities under 

veterinarian supervision and the guidelines of the European Commission, revised directive 

2010/63/EU and AVMA guidelines 2007.  
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6.3.3. Mouse insulin ELISA 

The quantification of insulin secretion was based on an enzyme-linked immunosorbent assay 

(ELISA) in 96-well format. For the quantification of insulin release from MIN6 or mouse primary 

β-cells, a mouse insulin ELISA kit (serial number: 10-1247, Mercodia AB, Uppsala, Sweden) was 

applied. Insulin release from INS-1 cells was measured using a rat insulin ELISA kit (serial 

number: 10-1250, Mercodia AB, Uppsala, Sweden). Experiments for the determination of insulin 

secretion were performed in quadruplicate per condition, following the instructions of the supplier. 

Insulin levels were normalized to the protein content of MIN6 cells, as determined by a BCA assay 

(PierceTM BCA Protein assay kit, Thermo Scientific, Rockford, IL, USA). Artifacts of BSA on 

insulin measurements were corrected according to Fig. A23 (appendix).  

 

 

6.4. Fluorescence microscopy and spectrophotometry 

6.4.1. Confocal laser scanning microscopy 

Live cell imaging was performed on a FluoView1200 (Olympus IX83) confocal laser scanning 

microscope, equipped up with an environment box (made by EMBL) to allow imaging at 37 °C 

and 5 % CO2. Olympus 60x Plan-APON (NA 1.4, oil) or 20x UPLS APO (NA 0.75, air) objectives 

and FluoView software (version 4.2) were applied. Images were acquired using a Hamamatsu 

C9100-50 EM CCD camera. A 488 nm laser line (120 mW/cm2, 2.5 %) in combination with a 

525/50 emission mirror was applied to image the green channel. A 559 nm laser line (120 mW/cm2, 

2.0 %) and a 643/50 emission filter were used for red channel recordings. A pulsed UV laser line 

(375 nm, 10 MHz) was applied for uncaging experiments on live cells. Uncaging was performed 

in the entire field of view for 8 frames (frame time of uncaging: 3.2 s/fame). A dual-scanner set-up 

allowed for image acquisition of cellular responses during UV stimulation. For monitoring changes 

of [Ca2+]i in response to external stimuli, cells were incubated with the acetoxymethyl ester of the 

Ca2+ indicator Fluo-4 (Life Technologies, Eugene, OR), 5 µM in DMEM (1 g/L glucose) for 

25 min at 37 °C and 5 % CO2. The frame time was set to 3.9 s, with images acquired in 4 s intervals. 

For imaging, MIN6 cells were grown as pseudoislets of ~70 % confluence. Imaging experiments 

were performed in HEPES buffer (in mM: 115 NaCl, 1.2 CaCl2, 1.2 MgCl2, 1.2 K2HPO4 and 

20 HEPES, pH 7.4).  
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6.4.2. Imaging of intracellular cAMP levels using the EPAC sensor 

For monitoring changes of intracellular cAMP levels upon TAAR1 stimulation, MIN6 cells were 

transiently transfected with Epac3rd [mTurquoise-Epac(CD,delDEP)-cp173Venus-Venus] [258]. For 

this, we used Lipofectamine 3000, following the guidelines of the supplier. Stimuli were applied 

to cells in 25 µM final concentrations in the presence of 11 mM glucose. Imaging was performed 

on an Olympus FV1200 microscope, using an Olympus 60x Plan-APON (NA 1.4, oil) objective in 

a sealed chamber (EMBL incubation box) at 37 ºC and 5 % CO2. Settings: Frame time: 5 s with 

10.0 µs/pixel (640x640 pixels), laser power 1.5 %, pinhole: 600 µm. Epac3rd was excited at 

λ = 405 nm. Optical filters were applied for mTurquoise (λ = 450 - 490 nm) and for Venus 

(λ = 510 - 560 nm) emission. FRET values are presented as the ratio between donor and acceptor 

signals. The FRET ratio was set to 1 at the time point immediately before addition of the stimulus. 

At the end of each experiment, a mix of the adenylate cyclase activator forskolin and the 

phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) (50 µM, each) was added to 

MIN6 cells to evoke maximum cAMP responses. 

 

6.4.3. Buffer transfer experiments amongst cell populations 

For buffer-transfer experiments amongst different cell populations, HEPES buffer (1.5 mL, 

variable glucose concentrations) was pre-loaded for 30 min on 2 x106 MIN6 cells that were grown 

to pseudo-islets of ~80 % confluence in ∅ 60 mm dishes (Nunc, Roskilde, Denmark). 150 µl of 

this SN was transferred to LabTeks containing pre-washed MIN6 cells, stained with Fluo-4 in the 

presence of 150 µl buffer of the same glucose concentration (1:1 dilution).  

For the determination of changes in insulin secretion in buffer transfer experiments, cells were 

grown in ∅ 60 mm dishes (Nunc, Roskilde, Denmark). Here, 1.5 mL of SN was transferred from 

a population of 2 x106 MIN6 cells to pre-washed target cells that resided in 1.5 mL buffer. Glucose 

and salt concentrations were kept constant during all transfer experiments.  

 

6.4.4. Perfusion and static incubation of cells 

MIN6 cells were seeded on 40 mm glass coverslips to form pseudo-islets within 5 days after 

seeding. The cover slips were mounted onto a Bioptechs FCS2 perfusion chamber (chamber 

volume: 0.53 cm3, ∅ 30 mm). The perfusion system was connected to a calibrated FCS2 micro-

perfusion pump, using Teflon-coated tubing. The flow rate was set to 0.15 mL/min and MIN6 cells 

were perfused for 30 min in the presence of 11 mM glucose.  
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Static incubation of MIN6 cells served as control. For this, MIN6 cells were seeded in same 

densities in ∅ 30 mm dishes to form pseudo-islets 5 days after seeding. MIN6 cells were incubated 

in buffer for 30 min. The insulin content of the collected samples was tested using insulin ELISA, 

following dilution of samples to balance differences of volumes.  

 

6.4.5. Analysis of imaging data 

The open access software tool Fiji [322] was applied for the extraction of fluorescence intensities 

from individual cells. Following background subtraction, intensities were calculated relative to the 

maximum detected fluorescence intensity (F/F0). Representative traces of cells within a field of 

view were averaged or numbers of detected high-intensity [Ca2+]i events per 60 s interval were 

determined. The height of each [Ca2+]i event was determined relative to the highest detected peak 

per trace. This served as a criterion to group [Ca2+]i oscillations into low-intensity (< 60 % of 

highest peak) and high-intensity (≥ 60 % of highest peak) events. Per condition or tested stimulus, 

4 - 6 independent experiments were performed under identical settings. 30 - 100 individual 

representative MIN6 or 60 primary β-cells were picked per condition and their responses were 

averaged. OriginLab, version 8.5 was applied for statistical analysis and plotting.  

 

6.4.6. NRBA-based fluorescence displacement assay 

FAF-BSA (10 µM) and Nile red 2-O-butyric acid (NRBA) were pre-incubated in 1:1 ratio at 37 °C 

for 20 min. NRBA has a high affinity for hydrophobic protein domains. Protein binding of NRBA 

induces a turn-on of fluorescence emission, along with a shift to shorter wavelengths [270]. 2 x106 

MIN6 cells were incubated in buffer (11 mM glucose) to allow for the accumulation of FAs. The 

FA-containing buffer was concentrated to 10 % of its original volume (Labconco concentrator, 

cat# 7310032, Fort Scott, USA) and added on top of FAF-BSA that was pre-loaded with NBRA. 

Measurements were performed on a quantamaster QM4/2000SE Photon Technology International 

spectrofluorometer in combination with 150 µL quartz cuvettes. The excitation wavelength was set 

to λ = 540 nm. Full emission scans were recorded (λ = 550 – 750 nm) with 2 nm step intervals and 

0.2 s integration time.  
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6.5. Extraction and MS analysis of FAs 

6.5.1. Preparation of biological samples for FA extraction 

1 x106 MIN6 cells were seeded in ∅ 60 mm dishes to form pseudoislets within 5 days of incubation 

at 37 °C, 5 % CO2. MIN6 cells were pre-stimulated with buffer in the presence of 11 mM glucose 

for 30 min at 37 °C. Buffer (1.6 mL, supplemented with BSA, 11 mM glucose) was incubated on 

MIN6 cells for 20 min at 37 °C. 1.5 mL of this SN were concentrated to 120 µL (4 °C, Labconco 

concentrator, cat# 7310032, Fort Scott, US). MIN6 cells were then scraped in 120 µL buffer.  

 

6.5.2. MeOH / CHCl3-based FA extraction 

A MeOH / CHCl3-based procedure was applied for the extraction of FAs from SNs of MIN6 cells, 

according to [323]. The entire procedure was performed at 4 °C. 750 µL of ice-cold mix A 

(4.48 mL MeOH, 2.42 mL CHCl3 and 0.236 mL HCl (1 N)) were added to biological samples, 

followed by vortexing (30 s per sample). Stable isotope-labeled internal standards 13C-palmitic acid 

(100 ng/sample), 13C-oleic acid (50 ng/sample) and 13C-decanoic acid (25 ng/sample) were added 

in 30 µL MeOH per sample as references for the absolute quantification of FAs. 2 M HCl (170 µL) 

and CHCl3 (725 µL, ice-cold) were added, followed by vortexing (30 s per sample). A two-phase 

system was generated upon centrifugation (8,000 x g (10 min, 4 °C)), with an upper aqueous layer 

and a protein band at the interface. The lower (organic) phase was collected in a fresh tube. 708 µL 

of ice-cold mix B (7.2 mL CHCl3, 3.6 mL MeOH and 2.7 mL 0.01 M HCl) were added to the lower 

phase. Following centrifugation, (8,000 x g, 10 min, 4 °C), the upper phase was removed and the 

samples were dried at 4 °C (Labconco concentrator, cat# 7310032, Fort Scott, US). To avoid 

contamination with palmitate from applied plastics, all applied materials were pre-rinsed with 

MeOH, according to [267]. Only solvents of the highest analytical grade were applied for 

extractions and MS analyses. 

 

6.5.3. Liquid chromatography-mass spectrometry (FAs) 

Liquid chromatography-mass spectrometry (LC-MS) analysis was performed on a Q-Exactive plus 

HRMS in ESI negative mode (Thermo Scientific, MA, USA), coupled to a Vanquish UHPLC 

system (Thermo Fisher Scientific, MA, USA). For the separation of FAs, an Agilent Poroshell 

column (3x50 mm; 2.7 µm) was applied with the flow rate set to 0.26 mL/min at 40 °C. The mobile 

phases consisted of acetonitrile:water (6:4) (mobile phase A) and isopropyl alcohol:acetonitrile 

(9:1) (mobile phase B), supplemented with 10 mM ammonium acetate as a buffer. The UHPLC 
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system was run in gradient-mode (Table 1). HRMS full scan detected FAs at the mass resolving 

power R = 70000 in a mass range of 100 - 1200 m/z. Data-dependent tandem (MS/MS) mass scans 

were obtained along with full scans using higher energy collisional dissociation (HCD) with 

normalized collision energies of 10, 20 and 30 units at the mass resolving power R = 17500.  

 

6.5.4. MS parameters (FAs) 

The MS parameters in the Tune software (Thermo Scientific) were set to: spray voltage 4 kV, 

sheath gas 30 units and auxiliary gas 5 units, S-Lens 65 eV, capillary temperature 320 °C and 

vaporization temperature of auxiliary gas 300 °C. Data-dependent tandem mass spectra (MS/MS) 

were obtained for all precursors from an inclusion list. Only background-corrected data is 

presented. 

 

6.5.5. MS quality controls and analysis sequence (FAs) 

All samples were randomized for the LC-MS analysis sequence. Pooled quality controls were 

included, which contained combined equal volumes of samples that were processed together with 

others. At the beginning of each sample analysis sequence and after each 6 samples, multiple QC 

and blank samples were injected in order to stabilize the LC-MS system and to ensure the stability 

of instrument and analytical method (%CV < 20) throughout the analysis sequence.  

 

6.5.6. MS data analysis (FAs) 

Data analysis, including the generation of extracted ion chromatograms (XIC), peak integration 

and raw data visualization, was performed using the Xcalibur Quan software (Thermo Scientific). 

The detected exact mass (+ 5 ppm) and the retention time were matched with respective internal 

standards to confirm the identity of each FA peak in deprotonated form [M - H+]. All data were 

evaluated for the consistency of peak integration. Manual integration was performed whenever 

necessary. The peak area of the detected analyte to the peak area of the stable isotope-labeled 

internal standard was used for absolute quantifications. The collected LC-MS data were evaluated 

using the Xcalibur software tool (Thermo Fisher).  
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Table 1. Applied gradient for LC-MS analysis of FA extracts. The mobile phase consisted of 
acetonitrile:H2O (6:4) (mobile phase A) and isopropyl alcohol:acetonitrile (9:1) (mobile phase B), buffered 
with 10 mM ammonium acetate. 

Time [min] % mobile phase B 

0 20 

1.5 20 

4 45 

5 52 

7 66 

8 70 

9 75 

9.5 97 

12 97 

13 20 

15 20 

 

 

6.6. Extraction and MS analysis of TAs 

6.6.1. Cleaning of plastics in advance of extraction 

For the reduction of background signal in MS screens, herein applied 2 mL PCR-grade Eppendorf 

tubes were cleaned in a MeOH/EtOAc-based procedure. Centrifuge tubes were sonicated in 10 % 

formic acid (H2O) for 20 min, followed by washing with double-distilled H2O and with MeOH. 

The entire procedure was repeated twice, followed by incubation of tubes in MeOH, o/n. On the 

next day, the same procedure was repeated with EtOAc, instead of MeOH and with incubation of 

tubes in EtOAc, o/n. After drying, the tubes were applied for sample collections and extractions. 

Only solvents of the highest analytical grade were applied for extractions and MS analyses. 

 

6.6.2. Preparation of biological samples for TA extraction 

MIN6 cells were grown in ∅ 60 mm dishes (Nuclon Delta Surface, Thermo Scientific) to form 

pseudo-islets of 70 - 80 % confluence within 5 days after seeding. The growth medium was 

removed and cells were washed twice with DPBS (1 mL) at RT. MIN6 cells were pre-stimulated 

with buffer (1.5 mL) for 60 min at 37 °C, 5 % CO2. For priming of MIN6 cells in advance of 

application of respective stimuli, identical buffer glucose concentrations were selected in pre-
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stimulation and stimulation steps. MIN6 cells were incubated in 1.5 mL buffer (+/- stimulus) for 

60 min at 37 °C, 5 % CO2.  

Following stimulation, MIN6 cells were scraped in 150 µl HEPES buffer, using disposable cell 

lifters (Thermo Fisher). 50 µl of this were collected for BCA-based protein quantification (PierceTM 

BCA Protein assay kit, Thermo Scientific, Rockford, IL, USA). The residual 100 µl were 

transferred to 2 mL tubes. 80 % MeOH (in H2O), supplemented with 2 % formic acid was added 

and samples were incubated for 30 min at -80 °C. Samples were concentrated to complete dryness 

under vacuum at 4 °C, o/n. Isotope-labeled TAs were prepared as stock solutions: β-PEA (2-

phenyl-d5-ethylamine, 0.965 mg/mL, EtOH), tryptamine (tryptamine-α,α,β,β-d4, 6.7 mg/mL, 

EtOH), synephrine (synephrine-13C2, 15N, 100 µg/mL, DMSO), octopamine (octopamine-d3, 

1 mg/mL, EtOH) and tyramine (tyramine-d4, 1 mg/mL, EtOH), (see Fig. A9 (appendix)). Stocks 

were combined to generate a heavy internal standard master mix (1 µg/mL in EtOH, in the 

following: hISDs mix). Heavy-isotope labelled TAs within this master mix were spiked into 

samples. Stocks of non-labeled TAs were prepared (2 µg/mL in EtOH) which served as references 

and quality controls in LC-MS measurements.  

 

6.6.3. MeOH-based TA extraction  

80 % MeOH in H2O (375 µL), acidified with HCl (1 % final) and 2 - 4 µL of the hISDs mix 

(1 µg/mL in EtOH) were added to dried samples (SNs and cell pellets, each). Following vortexing, 

samples were sonicated for 30 min at 4 °C, followed by centrifugation at 4000 x g for 5 min at 

4 °C. SN and scraped cell samples were combined in pre-cleaned 2 mL tubes. To check for 

background signal, 2 - 4 µl of the hISDs mix (1 µg/mL in EtOH) were extracted from cleaned 2 mL 

centrifuge tubes. Also, cleaned tubes without hISDs were included for extractions. Combined 

organic phases were dried under vacuum at 4 °C, o/n. Dry samples were stored under argon at -

80 °C. 

 

6.6.4. Liquid chromatography-mass spectrometry (TAs) 

Separation of metabolites by liquid chromatography was performed on a Vanquish UHPLC system 

(Thermo Fisher), equipped with a Luna Omega Polar C18 column (1.6 µm, 100x2.1 mm) at a flow 

of 0.26 mL/min and at 40 °C. Mobile phase A consisted of 7.5 mM ammonium acetate, 

supplemented with 0.02 % formic acid (pH 4). Mobile phase B consisted of 7.5 mM ammonium 
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acetate in acetonitrile : H2O (95:5). The applied gradient for MeOH/HCl extracted samples is listed 

in table 2.  

Extracted samples were re-suspended in 100 µL mobile phase A. Samples were vortexed (10 s) 

and centrifuged at maximum speed for 2 min at RT. 100 µL of the clear SN were injected. MS was 

performed on a Q-Exactive Plus (Thermo Fisher) high resolution mass spectrometer (HRMS), 

equipped with an advanced hybrid quadrupole-Orbitrap. Ionization was achieved by electronspray 

ionization (ESI-MS) in positive mode (spray-voltage: 4 kV). Spectra were acquired as a full scan 

(60 - 900 m/z) with a resolution of 35000 (detailed parameters are listed in table 3). The collected 

LC-MS data were evaluated using the Xcalibur software tool (Thermo Fisher).  

 

Table 2. Applied gradient for LC-MS analysis of TA extracts. Mobile phase A consisted of 7.5 mM 
ammonium acetate, supplemented with 0.02 % formic acid (pH 4), mobile phase B of 7.5 mM ammonium 
acetate in acetonitrile : H2O (95:5). 

Time (min) % of mobile phase B 

0 5 

1 5 

7 54 

8 90 

11 90 

11.5 5 

14 5 

 

Table 3. MS parameters for TA detection. 

ESI mode positive 

Scan range full scan (60 - 900 m/z) 

Resolution 35,000 

Spray voltage 4 kV 

S-lens RF level 65/75 

Sheath gas 30 

Auxiliary gas 5 

Probe heater temperature 300 °C 

Capillary temperature 320 °C 

Injection volume 20 µL 
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6.6.5. MS quality controls and analysis sequence 

To ensure reproducibility within measurements, three quality controls were implemented:  

1) Combination of samples to ‘quality control samples’ that were included into the LC-MS analysis 

sequence 

2) Measurement of the hISDs mix within the LC-MS analysis sequence 

3) Extraction out of centrifuge tubes in the presence / absence of the hISDs mix.  
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8.2. Supplementary data 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1. [Ca2+]i oscillations and insulin secretion correlate with different levels of external glucose. 

(A) MIN6 cells were incubated in the presence of different levels of external glucose to monitor the 
dynamics of [Ca2+]i oscillations and insulin secretion. Strong (25 mM glucose), intermediate (11 mM 
glucose) or no (3 mM glucose) [Ca2+]i oscillations were detected. [Ca2+]i was monitored following transient 
overexpression of the Ca2+ sensor R-GECO in MIN6 cells. (B) Dynamics of [Ca2+]i correlated well with 
insulin secretion at different glucose levels. Stimulatory glucose concentrations (11 and 22 mM) yielded 
significantly higher insulin levels from MIN6 cells compared to sub-stimulatory glucose concentrations 
(3 mM and 5 mM). Insulin experiments were performed in quadruplicate. The figure was adapted from 
Hauke et al. [232]. 
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Figure A2. Set-up of the perfusion system. A calibrated pump (B) transfers buffer from reservoir (C) 
through the perfusion chamber (A) at a pre-defined constant flow rate. The flow through is collected in a 
reservoir (D). The perfusion chamber can be assembled with gaskets of different sizes and shapes (E), 
allowing for the adjustment of different chamber volumes and thereby the simulation of different flow 
conditions. The perfusion system was assembled on the stage of the herein applied Olympus confocal laser 
scanning microscope within the environment box. This allowed for on-line image acquisition during 
perfusion or buffer exchange at 37 °C. The figure was adapted from Hauke et al. [232]. 
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Figure A3. Addition of pre-loaded buffer to washed MIN6 cells recoveres [Ca2+]i oscillations at 

different glucose concentrations. (A) Averaged and (B – D) representative individual Ca2+ traces from 
MIN6 cells. (E – G) Counts of detected high-intensity [Ca2+]i spikes from MIN6 cells per 60 s interval. 
Addition of buffer (pre-loaded on a separate population of 2 x106 MIN6 cells for 30 min) to pre-washed 
MIN6 cells instantaneously recovered [Ca2+]i oscillations. Transfer experiments were performed at different 
buffer glucose levels (as indicated). Depending on the respective applied glucose concentration, [Ca2+]i 
oscillations recovered with different frequencies. Buffer that was pre-loaded on MIN6 cells at 3 mM glucose 
evoked occasional [Ca2+]i transients in pre-washed MIN6 cells (Ai, B and E). Buffer, pre-loaded at 11 mM 
(Aii, C and F) and 22 mM (Aiii, D and G) glucose induced high-frequency oscillations in pre-washed MIN6 
cells. Averages of n = 22 MIN6 cells per trace are presented. Ca2+ traces were recorded from cells that were 
stained with the Ca2+ indicator Fluo-4. Washes are indicated by ▼. The figure was adapted from Hauke et 

al. [232]. 
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Figure A4. RO5073012 stimulates [Ca2+]i oscillations in MIN6 cells. (A) Representative single Ca2+ 
traces from MIN6 cells that were stained with the Ca2+ indicator Fluo-4. (B) Counts of detected high-
intensity [Ca2+]i events per 60 s interval. Addition of the partial TAAR1 agonist RO5073012 (25 µM) to 
pre-washed MIN6 cells immediately started [Ca2+]i oscillations. Imaging was performed in the presence of 
11 mM glucose. Washes are indicated by ▼. The presented data was obtained from 100 MIN6 cells. 
 

 
Figure A5. Modulation of [Ca2+]i oscillations in MIN6 cells by dibenzepin and ET-92.                                          

(A) Representative single Ca2+ traces from MIN6 cells that were stained with the Ca2+ indicator Fluo-4.                    
(B) Counts of detected high-intensity [Ca2+]i events per 60 s interval. Addition of the tricyclic antidepressant 
dibenzepin (25 µM) to pre-washed MIN6 cells started [Ca2+]i oscillations. The selective TAAR1 antagonist 
ET-92 (25 µM) immediately stopped [Ca2+]i oscillations. Imaging was performed in the presence of 11 mM 
glucose. Washes are indicated by ▼. The presented data was obtained from 100 MIN6 cells. 
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Figure A6. Addition of the feed additive and TAAR1 agonist ractopamine to pre-washed MIN6 cells 

stimulates [Ca2+]i oscillations in pre-washed MIN6 cells. (A) Averaged and (Bi, Ci) representative single 
Ca2+ traces from MIN6 cells that were stained with the Ca2+ indicator Fluo-4. (Bii, Cii) Counts of detected 
high-intensity [Ca2+]i events per 60 s interval. Addition of the TAAR1 agonist ractopamine (25 µM) to pre-
washed MIN6 cells immediately evoked [Ca2+]i oscillations, which were reduced upon addition of the 
TAAR1 antagonist ET-92 (25 µM). Imaging was performed in the presence of 11 mM glucose. Washes are 
indicated by ▼. The presented data was obtained from 100 MIN6 cells. 
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Figure A7. Ergoline (lysergic acid) derivatives show differential stimulatory effects on pre-washed 

MIN6 cells. (A) Averaged and (Bi, Ci, Di, Ei, Fi, Hi) representative single Ca2+ traces from MIN6 cells, 
recorded with the Ca2+ indicator Fluo-4. (Bii, Cii, Dii, Eii, Fii, Hii) Counts of detected high-intensity [Ca2+]i 
events per 60 s interval. (B) Addition of the antiparkinson agent and TAAR1 agonist lisuride (25 µM) to 
pre-washed MIN6 cells instantaneously stimulated [Ca2+]i oscillations, which were reduced upon additon of 
EPPTB (50 µM) (C). This confirmed the role of lisuride as a TAAR1 agonist. (D) Addition of methysergide 
(25 µM, migraine treatment) to pre-washed MIN6 cells started [Ca2+]i oscillations. (E) Addition of EPPTB 
(50 µM) to methysergide-treated cells reduced [Ca2+]i oscillations. (F) The lysergic acid derivative 
methyergometrine (25 µM, migraine treatment) did not show stimulating effects on [Ca2+]i oscillations in 
pre-washed MIN6 cells. (G) Addition of lysergic acid methylpropylamide (LAMPA, 25 µM) to pre-washed 
MIN6 cells induced a pronounced [Ca2+]i-transient that was partly followed by continuous [Ca2+]i 
oscillations. (H) The lysergic acid derivative LSD induced [Ca2+]i oscillations only in a minority of MIN6 
cells. Imaging was performed at 11 mM glucose. The presented data was obtained from 100 MIN6 cells. 
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Figure A8. Differential modulation of [Ca2+]i oscillations in MIN6 cells by the alkaloids psilocin and 

bufotenin. (A) Averaged and (Bi, Ci, Di) representative single Ca2+ traces from MIN6 cells, recorded with 
the Ca2+ indicator Fluo-4. (Bii, Cii, Dii) Counts of detected high-intensity [Ca2+]i events per 60 s interval. 
(B) The psychoactive tryptamine analogue psilocin (25 µM) was added to pre-washed MIN6 cells. (C) 
Psilocin-induced stimulation of [Ca2+]i oscillations was reversed by the addition of the selective TAAR1 
antagonist EPPTB (50 µM), attributing psilocin-mediated effects to TAAR1 stimulation. (D) Addition of 
bufotenin (25 µM) to pre-washed MIN6 cells induced a prominent [Ca2+]i transient that was not followed 
by continuous [Ca2+]i oscillations. Washes are indicated by ▼. Imaging was performed in the presence of 
11 mM glucose. The presented data was obtained from 100 MIN6 cells. 
 
 
 
 

 

Figure A9. Overview of stable heavy isotope-labelled TAs that were applied as internal standards for 

the quantification of TA levels in MS screens.  

 

 

 

 

 



8. Appendix 

92 

HO

OH

O

15NH2

L-Tyrosine-15N

Chemical Formula: C9H11
15NO3

Exact Mass: 182,0709

OH

O

15NH2

L-Phenylalanine-15N

Chemical Formula: C9H11
15NO2

Exact Mass: 166,0760

H15N

L-Tryptophan-15N2

Chemical Formula: C11H12
15N2O2

Exact Mass: 206,0839

H 2
15 N

OH

O

 
 

Figure A10. Overview of stable heavy isotope-labelled AAs as metabolic precursors for TAs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A11. Changes of cAMP levels in MIN6 cells, monitored by the cyctosolic cAMP sensor Epac. 
Addition of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX, 25 µM) to glucose-
stimulated MIN6 cells increased intracellular cAMP levels, indicated by a drop of the normalized FRET 
ratio (acceptor/donor intensity) of the EPAC sensor [258]. This indicates that cAMP is produced even under 
basal activity of MIN6 cells, presumably due to Gαs stimulation by endogenous agonists. Experiments and 
data analysis were planned and performed with J. Rada. 

 

 

 



8. Appendix 

93 

 

 



8. Appendix 

94 

 
 

Figure A12. Fatty acid-free (FAF-)BSA (1 %) significantly reduced [Ca2+]i oscillations in MIN6 and 

mouse primary β-cells. Representative individual (Ai) and averaged (Aii) Ca2+ traces from MIN6 and 
mouse primary β-cells. (Bi-vi) Counts of detected high-intensity [Ca2+]i events per 60 s interval. (Ci–v) 
Individual representative Ca2+ traces from MIN6 cells. (Ai+Aii 1, Bi, Ci) [Ca2+]i oscillations in MIN6 cells 
immediately stopped upon addition of FAF-BSA (1 %). FAF-BSA was suspected to withdraw endogenous 
FAs from MIN6 cells. Upon exchange of FAF-BSA by buffer, MIN6 cells slowly resumed [Ca2+]i 
oscillations within 20-30 min. (Ai+Aii 2&3, Bii+iii, Cii) Addition of FAF-BSA (1 %) permanently reduced 
[Ca2+]i oscillations within MIN6 and primary mouse β-cells. (Ai+Aii 4, Biv, Ciii) Conventional BSA (conv. 
BSA, 1 %) and (Ai+Aii 5, Bv, Civ) FAF-BSA (1 %), pre-saturated with tryptophan (Trp, 400 µM) showed 
moderate effects on [Ca2+]i oscillations in MIN6 cells. (Ai+Aii 6, Bvi, Cv) Addition of only Trp (400 µM) 
to MIN6 cells did not affect [Ca2+]i oscillations. Shown are averages of n = 13 cells for Ai+Aii 1, Bi and Ci 
as well as averages of n = 30 MIN6 and n = 60 primary β-cells for the rest. Experiments were performed in 
the presence of 11 mM glucose. Ca2+ traces were recorded from cells that were stained with the Ca2+ 
indicator Fluo-4. The figure was adapted from Hauke et al. [232].  
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Figure A13. Immediate termination of [Ca2+]i oscillations in MIN6 cells after addition of fatty acid-

free (FAF-) BSA (1 %). Addition of FAF-BSA (1 %) at 300 s immediately terminated [Ca2+]i oscillations 
in MIN6 cells that were stained with the Ca2+ indicator Fluo-4. Experiments were performed in the presence 
of 11 mM glucose. Scale bars, 20 µm. 
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Figure A14. Application of (FAF-)BSA at 0.01 % to glucose-stimulated MIN6 cells showed moderate 

effects on [Ca2+]i oscillations. Representative individual (Ai) and averaged (Aii) Ca2+ traces from MIN6 
and mouse primary β-cells. (Bi-v) Counts of detected high-intensity [Ca2+]i events per 60 s interval. (Ci – 

v) Individual representative Ca2+ traces from MIN6 and mouse primary β-cells. (Ai+Aii 1, Bi, Ci) Addition 
of FAF-BSA (0.01 %) to glucose-stimulated MIN6 cells showed only minor effects on [Ca2+]i oscillations. 
Exchange of FAF-BSA (0.01 %) by buffer immediately resumed [Ca2+]i oscillations in MIN6 cells. 
Moderate or missing reduction of [Ca2+]i oscillations upon addition of FAF-BSA to (Ai+Aii 2, Bii, Cii) 
MIN6 and (Ai+Aii 3, Biii, Ciii) primary β-cells. (Ai+Aii 4, Biv, Civ) Conventional BSA (conv. BSA, 
0.01 %) or (Ai+Aii 5, Bv, Cv) FAF-BSA (0.01 %) that was pre-saturated with tryptophan (Trp, 400 µM) 
caused moderate effects on [Ca2+]i oscillations. Averages of n = 30 MIN6 and n = 60 primary β-cells are 
presented. Experiments were performed in the presence of 11 mM glucose. Ca2+ traces were recorded from 
cells that were stained with the Ca2+ indicator Fluo-4. The figure was adapted from Hauke et al. [232]. 
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Figure A15. Human serum albumin (HSA) reduced [Ca2+]i oscillations in glucose-stimulated MIN6 

cells. (A) Averaged Ca2+ traces, recorded from MIN6 cells. (Bi + ii) Counts of detected high-intensity [Ca2+]i 
events per 60 s interval. (Ci+ii) Representative individual Ca2+ traces from MIN6 cells, recorded with the 
Ca2+ indicator Fluo-4. (Ai, Bi and Ci) Fatty acid-free human serum albumin (FAF-HSA, 1 %) potently 
reduced [Ca2+]i oscillations in glucose-stimulated MIN6 cells. (Aii, Bii and Cii) [Ca2+]i oscillations were 
reduced but not terminated by the addition of conventional human serum albumin (conv. HSA, 1 %). These 
observations are in line with findings from BSA. Shown are averages of n = 30 MIN6 cells. Experiments 
were performed in the presence of 11 mM glucose. Ca2+ traces were recorded from cells that were stained 
with the Ca2+ indicator Fluo-4. The figure was adapted from Hauke et al. [232]. 
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Figure A16. FAF-BSA-mediated effects on [Ca2+]i oscillations are independent of the applied buffer 

glucose concentration. (Ai+ii) Representative individual (Ai) and averaged (Aii) Ca2+ traces from MIN6 
cells. (Bi-iii) Counts of detected high-intensity [Ca2+]i events per 60 s interval. (Ci-iii) Representative, 
individual Ca2+ traces from MIN6 cells, stained with the Ca2+ indicator Fluo-4. FAF-BSA, applied in 1 % 
final concentrations, immediately stopped [Ca2+]i oscillations of glucose-stimulated MIN6 cells (11 mM 
(Ai+ii 2, Bii and Cii) and 22 mM (Ai+ii 3, Biii and Ciii)). (Ai+ii 1, Bi and Ci) Non-oscillating MIN6 cells 
in the presence of 3 mM glucose were not affected by FAF-BSA (1 %). Shown are averages of n = 30 MIN6 
cells. Experiments were performed in the presence of 11 mM glucose. Ca2+ traces were recorded from cells 
that were stained with the Ca2+ indicator Fluo-4. The figure was adapted from Hauke et al. [232].  
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Figure A17. The stimulating effect of pre-loaded FAF-BSA on [Ca2+]i oscillations upon transfer to 

pre-washed MIN6 cells is determined by pre-incubation times on another population of MIN6 cells. 

Representative (Ai) individual and (Aii) averaged Ca2+ traces from MIN6 cells. (Bi-v) Counts of detected 
high-intensity [Ca2+]i events per 60 s interval. (Ci-v) Representative individual Ca2+ traces from MIN6 cells, 
recorded with the Ca2+ indicator Fluo-4. (Ai + Aii) The stimulating effect of FAF-BSA (pre-loaded on 2 x106 
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MIN6 cells) correlates with the pre-loading period and thereby also with the amount of loaded and 
transferred FAs (from t = 2 s to 30 min (Bi-iv, Ci-iv)). Pre-incubation times are indicated on the right. In 
line with that, induced effects were enhanced with increasing concentrations of transferred FAF-BSA (5 %, 
Ai + Aii, Bv and Cv). Stringent washing is indicated by ▼. Averages of n = 30 MIN6 cells are shown. 
Experiments were performed in the presence of 11 mM glucose. Ca2+ traces were recorded from cells that 
were stained with the Ca2+ indicator Fluo-4. The figure was adapted from Hauke et al. [232].  
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Figure A18. Stimulation of [Ca2+]i oscillations by the out-competition of FAs from pre-loaded FAF-

BSA. (Ai) Representative individual and (Aii) averaged Ca2+ traces from MIN6 cells. (Bi-iv) Counts of 
detected high-intensity [Ca2+]i events per 60 s interval. (Ci-iii) Representative, individual Ca2+ traces from 
MIN6 cells. Transferred FAF-BSA (1 %) was pre-loaded on a population of on 2 x106 MIN6 cells (30 min 
at 37 °C). (Ai+Aii 1+2, Bi+ii and Ci) Treatment of washed MIN6 cells with pre-loaded FAF-BSA induced 
prominent [Ca2+]i transients. Addition of albumin-binders tryptophan (Trp) and ibuprofen (Ibu) (400 µM, 
each) to MIN6 cells in the presence of pre-loaded FAF-BSA immediately re-enforced [Ca2+]i oscillations. 
This indicated that MIN6 cells were stimulated by the out-competed cargo from pre-loaded FAF-BSA. 
Addition of Trp (Ai+Aii 3, Biii and Cii) or Ibu (Ai+Aii 4, Biv and Ciii) in the presence of FAF-BSA (1 %) 
did not show comparable effects on [Ca2+]i oscillations. Shown are averages of n = 30 MIN6 cells. 
Experiments were performed in the presence of 11 mM glucose. Ca2+ traces were recorded from cells that 
were stained with the Ca2+ indicator Fluo-4. The figure was adapted from Hauke et al. [232].  
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Figure A19. Stimulation of MIN6 cells by pre-loaded FAF-BSA is mediated by GPR40. (Ai-iii) 
Averaged and (Bi - iv) representative individual Ca2+ traces from MIN6 cells, recorded with the Ca2+ 
indicator Fluo-4. (Ai+Bi) FAF-BSA (1 %), pre-loaded on 2 x106 MIN6 cells was supplemented with the 
GPR40 inhibitor GW1100 (10 µM) before transfer to washed MIN6 cells. Even though MIN6 cells showed 
a prominent [Ca2+]i transient, continuous [Ca2+]i oscillations were suppressed. The GPR40 inhibitor 
GW1100 presumably prevented FA-mediated long-term stimulation of MIN6 cells. (Aii+Bii) Addition of 
FAF-BSA (1 %, no preloading), spiked with GW1100 (10 µM) to glucose-stimulated MIN6 cells shut down 
[Ca2+]i-oscillations, comparable to the effects that are mediated by FAF-BSA (1 %) alone. (Aiii+Biii) 
GW1100 (10 µM) decreased [Ca2+]i-oscillations. Observed effects were concentration-dependent (25 µM, 
(Biv)). Shown are averages of n = 30 MIN6 cells. Experiments were performed in the presence of 11 mM 
glucose. Ca2+ traces were recorded from MIN6 cells that were stained with the Ca2+ indicator Fluo-4. The 
figure was adapted from Hauke et al. [232].  
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Figure A20. Restart of [Ca2+]i oscillations in FAF-BSA-treated MIN6 and mouse primary β-cells 

following photolysis of sulfo-coumarin caged stearic acid (Scg-SA) or addition of oleic acid (OA). (A) 

Averaged and (B-G) representative individual Ca2+ traces from (Ai+B, Aiii+D, Av+F, Avi+G) MIN6 and 
(Aii+C, Aiv+E) primary mouse β-cells. (H+I) Counts of detected high-intensity [Ca2+]i events per 60 s 
interval from MIN6 cells. (Aii+B, Aiii+C) Photolysis of Scg-SA (200 µM, λ = 375 nm) or (Aiii+D, Aiv+E) 
addition of OA (200 µM) reconstituted [Ca2+]i oscillations in FAF-BSA (0.1 %)-treated (Ai+B, Aiii+D) 
MIN6 and (Aii+C, Aiv+E) mouse primary β-cells. Replenishment of cellular FA levels following FAF-
BSA (0.1 %)-treatment by the photolysis of Scg-SA or addition of OA was suspected to reconstitute [Ca2+]i 
oscillations. [Ca2+]i oscillations did not restart in the absence of (Av+F, H) Scg-SA or (Avi+G, I) without 
the UV pulse. Averages of n = 30 MIN6 and n = 60 primary mouse β-cells are shown. Experiments were 
performed in the presence of 11 mM glucose. Ca2+ traces were recorded from MIN6 and primary mouse β-
cells, stained with the Ca2+ indicator Fluo-4. The figure was adapted from Hauke et al. [232].  
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Figure A21. Restart of [Ca2+]i oscillations in MIN6 cells by the photolysis of sulfo-coumarin caged 

oleic acid (Scg-OA). Shown are representative individual Ca2+ traces from MIN6 cells. Photolysis of Scg-
OA (200 µM, λ = 375 nm) in FAF-BSA (0.1 %)-treated MIN6 cells reconstituted [Ca2+]i oscillations. 
Experiments were performed in the presence of 11 mM glucose. Ca2+ traces were recorded from MIN6 cells, 
stained with the Ca2+ indicator Fluo-4. The figure was adapted from Hauke et al. [232].  
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Figure A22. FA-liberation by PLA2 and FAF-BSA-mediated FA-depletion modulate [Ca2+]i 

oscillations in MIN6 and mouse primary β-cells. (A) Averaged and (B–H) representative individual Ca2+ 
traces from MIN6 cells. (I-K) Counts of detected high-intensity [Ca2+]i events per 60 s interval. [Ca2+]i 
oscillations in (Aii+B, Ai+D, I) MIN6 and (Aiii+C) mouse primary β-cells were stimulated by PLA2 (10 U) 
and reduced or terminated by the addition of FAF-BSA (1 %). (Aiv+E) Lipoprotein lipase action (500 U) 
induced [Ca2+]i oscillations in MIN6 cells. [Ca2+]i oscillations of (Avi+F, G, J) MIN6 and (Av+H, K) mouse 
primary β-cells were diminished and finally stopped in the presence of the PLA2 inhibitors bromoenol 
lactone (BEL, 10 µM) and methylarachidonyl fluorophosphate (MAF, 10 µM). Averages of n = 30 MIN6 
and n = 60 mouse primary β-cells are shown. Experiments were performed in the presence of 11 mM. Ca2+ 
traces were recorded from MIN6 and mouse primary β-cells, stained with the Ca2+ indicator Fluo-4. The 
figure was adapted from Hauke et al. [232].  
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Figure A23. Interference of albumin with the ELISA-based quantification of insulin secretion. (A) 
Quantification of insulin levels in aqueous supernatant (SN), conv. BSA and FAF-BSA in the presence of 
11 mM glucose, following incubation on 2 x106 MIN6 cells. Insulin levels were determined in different 
orders of magnitude, depending on applied BSA concentrations. (B) BSA-mediated interference with 
ELISA measurements was determined by supplementing the supernatant of buffer-stimulated MIN6 cells 
with BSA (11 mM glucose). Determined insulin levels significantly increased following the addition of 
0.1 % (conv. or FAF-) BSA to SNs that were harvested from 2 x106 MIN6 cells. We attributed these effects 
to the unspecific interaction of anti-insulin antibodies with BSA in the presence of insulin. (C) 0.1 % FAF-
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BSA was supplemented with recombinant human insulin in various concentrations. The determined signal 
of FAF-BSA in buffer correlated with the spiked amounts of human insulin. (D + E) FAF-BSA was spiked 
into the SNs of MIN6 cells to correct for the interference of albumin in insulin measurements. Division of 
insulin levels, spiked with BSA [FAF-BSA spike+SN] by insulin levels within MIN6 SN [SN] generated a 
correction factor (cf) ((cf) = [0.1 % FAF-BSA spike + SN] / [SN]). Insulin levels in albumin-containing 
SNs [0.1 % FAF-BSA (SN)] were corrected for the albumin effect, using the (cf): corrected value = [0.1 % 
FAF-BSA (SN)] / (cf). For the determination of insulin levels, a mouse insulin ELISA kit was applied 
(Mercodia, Mercodia AB, Uppsala, Sweden). Conditions were measured in quadruplicate in the presence of 
11 mM glucose. 
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