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I 

Abstract 

The photo-induced isomerization of retinal protonated Schiff base (RPSB) inside the protein 

pocket is one of the fastest (<ps) and most stereo-selective photochemical reactions in nature. The 

ground state structure of the RPSB and its surrounding protein constructions are thought to be the 

two most crucial factors to drive this reaction. The investigation of each factor individually was 

the main goal of this thesis. Anabaena Sensory Rhodopsin (ASR), a recently discovered microbial 

retinal protein, serves as an ideal system for this study as it binds two structural isomers (all-trans: 

AT and 13-cis: 13C) of the RPSB within the same protein constructions in its photocycle. In the 

present work, the photo-induced dynamics of the RPSB in ASR has been explored with the help 

of time resolved coherent vibrational spectroscopic methods, which monitor the photo-induced 

sub-ps structural changes of the RPSB. These studies have helped to shed light on the intricate 

relationship between electronic and vibrational dynamics of the RPSB. 

In the first half of this thesis, a comparative study showed both electronic and vibrational dynamics 

are widely distinct for the AT and 13C isomers of the RPSB in ASR. In particular, the 13C isomer 

exhibited more than five folds faster dynamics than the AT isomer. One possible molecular origin 

behind this dynamical difference was found by comparing the ground state Raman spectra of the 

two isomers. It depicted an increase in the amplitude of hydrogen-out-of-plane (HOOP) modes for 

the 13C isomer, which is usually considered to be an evidence of distortion in the ground state 

structure for the retinal system. The ground state pre-distortion has been reported as a potential 

element for the acceleration of the isomerization reaction for the 13C isomer, in analogy with the 

cis isomers of visual rhodopsin and bacteriorhodopsin. 

The second half of this work explored the role of the part of protein helix inside the retinal pocket 

as well as that far away from the pocket. In particular, the replacement of the amino acid residues 

in vicinity of the RPSB by point mutation caused an acceleration of the reaction rate for the AT 

isomer, but it had only a minor effect for the 13C isomer of the RPSB. Furthermore, the truncation 

of the part of the protein, embedded into the cytoplasmic region, affected the formation of the 

primary photoproduct. All these experimental results lead to two major conclusions of this thesis: 

(i) the protein constructions govern the retinal isomerization dynamics and (ii) the same protein 

cage exerts differential interactions on two structural isomers of the RPSB. 

  



  
 

II 

Kurzzusammenfassung 

Die photoinduzierte Isomerisierung von retinaler protonierter Schiff-Base (RPSB) in der 

Proteintasche ist eine der schnellsten (<ps) und stereoselektivsten photochemischen Reaktionen in 

der Natur. Die Grundzustandstruktur des RPSB und die umgebenden Proteinkonstruktionen gelten 

als die beiden wichtigsten Faktoren, die diese Reaktion antreiben. Die Untersuchung jedes 

einzelnen Faktors war das Hauptziel dieser Arbeit. Anabaena Sensory Rhodopsin (ASR), ein 

kürzlich entdecktes mikrobielles Retinalprotein, dient als ideales System für diese Studie, da es 

zwei Strukturisomere (all-trans: AT und 13-cis: 13C) des RPSB innerhalb derselben 

Proteinkonstruktionen in seinem Photozyklus bindet . In der vorliegenden Arbeit wurde die 

photoinduzierte Dynamik des RPSB in ASR mit Hilfe zeitaufgelöster kohärenter 

schwingungsspektroskopischer Methoden untersucht, die die photoinduzierten sub ps-

Strukturänderungen des RPSB nachverfolgen. Diese Studien halfen, die komplizierte Beziehung 

zwischen elektronischer und Schwingungsdynamik des RPSB aufzuklären. 

In der ersten Hälfte dieser Arbeit zeigte eine vergleichende Studie, dass sowohl die elektronische 

als auch die Schwingungsdynamik für die AT- und 13C-Isomere des RPSB in ASR sehr 

verschieden sind. Insbesondere das 13C-Isomer zeigte eine mehr als fünffach schnellere Dynamik 

als das AT-Isomer. Ein möglicher molekularer Ursprung dieses dynamischen Unterschieds wurde 

durch Vergleich der Ramanspektren beider Isomere im Grundzustand gefunden. Für das 13C-

Isomer stellte dies eine Zunahme der Schwingungsamplitude von Wasserstoffatomen aus der 

Molekülebene heraus dar, was normalerweise als Hinweis auf eine Verdrillung der 

Grundzustandsstruktur des Retinalsystems gesehen wird. Die Vorverzerrung im Grundzustand 

wurde als potentielles Element für die Beschleunigung der Isomerisierungsreaktion für das 13C-

Isomer beschrieben, analog zu den cis-Isomeren von Sehpigment Rhodopsin und 

Bakteriorhodopsin. 

Die zweite Hälfte dieser Arbeit untersuchte die Rolle des Teils der Proteinhelix in der 

Retinaltasche sowie des weit vom RPSB entfernten Teils. Insbesondere der Austausch der 

Aminosäurereste nahe des RPSB durch Punktmutation führte zu einer Beschleunigung der 

Reaktionsgeschwindigkeit beim AT-Isomer, hatte jedoch nur einen geringen Einfluss auf das 13C-

Isomer des RPSB. Darüber hinaus beeinflusst die Verkürzung des in die cytoplasmatische Region 

eingebetteten Teils des Proteins die Bildung des primären Photoprodukts. All diese 

experimentellen Befunde führen zu zwei wichtigen Schlussfolgerungen dieser Arbeit: (i) die 
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Proteinkonstruktionen bestimmen die Dynamik der retinalen Isomerisierung und (ii) derselbe 

Proteinkäfig übt auf zwei Strukturisomere des RPSB unterschiedliche Wechselwirkungen aus.  
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Introduction 

Since the advent of femtosecond laser pulses, one of the main objectives of ultrafast spectroscopy 

has been the recording of atomic motion during a chemical reaction.1-5 For that purpose, many 

spectroscopic techniques6-21 have been developed to follow such changes in polyatomic molecules 

in gas phase,22-24 solutions8, 25-27 or proteins.28-31 One possible way to explore the molecular 

dynamics is to map the transient spectral changes during a chemical reaction by time resolved 

techniques. In this regard, advancement of ultrafast optics in the last decades has played a central 

role and, nowadays, pulses as short as 10 fs can be routinely generated in labs around the world.32-

37 This has allowed tracking several kinds of photo-induced molecular dynamics in singlet 

fission,38-39 molecular photo-switching,40-43 retinal isomerization29-30, 44-46 etc. Interest about these 

ultra-fast photo-induced chemical reactions has been expanding because of their great potential to 

serve as optoelectronic materials.47 Natural photo switches like retinal has been intensively 

researched because of their prospective applications in biogenetic engineering as well as for 

inspiring technological advances of bio mimetic photo switches for harnessing solar energy.42-43, 

48 In this thesis, full focus has been devoted to study the light induced isomerization reaction of 

retinal protonated schiff base (RPSB) inside a protein membrane (Figure 1.1). The photo-induced 

isomerization of retinal is one of the fastest (<ps) photo-chemical reactions in nature, and is based 

on the interconversion between two structurally distinct isomeric configurations of the RPSB 

(Figure 1.1(a)). The RPSB is found to be covalently bound to a Lysine residue of the seventh helix 

of the protein membrane in all retinal pigments of organisms ranging from micro-bacteria to 
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mammals (Figure 1.1(b, c)).49-51 This particular reaction is found to be the central element behind 

many fundamental biological activities like photosynthesis, vertebrate vision, bacterial gene 

expressions, ion-pumping etc.52-54 These are accomplished by initiating a photo-cycle, which 

converts the solar energy into chemical potential. Because of these profound chemical and 

biological significance, retinal photochemistry has drawn the attention of experimentalists and 

theoreticians alike. In the last thirty years, intensive investigations has been performed to inspect 

the photo-induced molecular dynamics of RPSB in different retinal proteins.55-60 Results of these 

studies have successfully identified the key components that tune this ultrafast reaction, but failed 

to provide a detail mechanism of this process. Following sections present a general description of 

the retinal photochemistry according to present understanding and, subsequently, points out the 

strategies that have been taken in this thesis to draw a picture of retinal isomerization with 

mechanistic details. 

 

Figure 1.1: (a) Photo-induced reversible interconversion between two isomeric forms of retinal 
protonated schiff base (RPSB): all-trans, 15-anti (AT) and 13-cis, 15-syn (13C) configurations. 
The bonds in red show the position of isomerization. (b) Topology of the retinal protein membrane 
containing seven α-helices (A to G) spanning the lipid bilayer. The N-terminus faces the outside of 
the cell and the C-terminus the inside. (c) Retinal is covalently attached to a lysine side chain on 
helix G. Cartoon representation of the helical arrangement of a microbial rhodopsin with attached 
retinal chromophore. Figure (b) and (c) are adapted with the permission from reference 54 
(Copyright 2014 American Chemical Society). 

(a)

(b) (c)
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1.1 Retinal photochemistry 

Retinal proteins are well known to incorporate different structural isomeric forms of RPSB in the 

ground state for different organisms e.g. 11-cis in visual rhodopsin, 9-cis in iso-rhodopsin, 

all-trans in micro-bacterial retinal proteins (MRP’s) like bacteriorhodopsin, halo-rhodopsin etc. 

Comparative time resolved studies have shown a wide diversity in reaction rates and efficiencies 

(Table 1.1) among these retinal pigments in spite of having their very similar architectures inside 

the protein pocket.29-31, 44, 60-67 For instance, the retinal isomerization in visual pigments takes place 

within 100 fs29-30, 68-70 with a quantum yield about 67%,71 whereas it takes more than 0.5 ps to 

complete the isomerization with much lower yield for the MRP´s.72-74 On the other hand, the photo-

isomerization of RPSB (all-trans) in solution takes place with a much slower rate (>1 ps)26, 75-76 

and leads to the formation of a mixture of different stereo-isomers with a quantum yield of a few 

percent for each sub-product (16% 11-cis, 5% 9-cis).25 All these observations have been 

interpreted as the electrostatic interaction between the bound RPSB and the amino acid residues 

of the protein surrounding steers the isomerization reaction. 

Bovine (RH) and bacteriorhodopsin (BR), which belong to two different classes (visual pigments 

vs MRPs), have been most frequently compared in this context. Generally, the retinal 

isomerization is believed to be initiated by a rapid reorganization of C-C bond lengths within a 

Table 1.1: Isomerization reaction rates and quantum yields of RPSB in different retinal proteins 
and solutions. 

Retinal 
Configuration of 

ground state RPSB  

Isomerization 

rate 

Quantum 

yield 

Bovine rhodopsin (RH) 11-cis <0.1 ps ~67% 

Bacterio-rhodopsin (BR) all-trans ~0.6 ps ~64% 

Iso-rhodopsin 9-cis ~1 ps ~22% 

Halo-rhodopsin (HR) all-trans ~1 ps ~30% 

Channello-rhodopsin1 13-cis ~0.11 ps ~60% 

RPSB in solution all-trans >1 ps <20% 
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few tens of femtosecond after the excitation,77 to form the sub-picosecond reactive excited state 

coined as I intermediate.78 For BR, this state decays non-exponentially to form the ‘J’ 

intermediate28, 78 during the course of internal conversion, which is associated with a weak spectral 

evolution.44, 79 Moreover, the cross section of the emission state has been found to be constant 

throughout the fluorescence lifetime.79 Therefore, both observations have been taken as a 

non-ballistic internal conversion in BR. The retinal isomerization in RH, however, differs from 

that: The dramatic spectral evolution during the internal conversion has been interpreted as a 

coherent isomerization reaction, where a nuclear wave packet generated by impulsive stimulated 

Raman scattering (ISRS) evolves in a ballistic fashion towards the ground state potential surface.29-

30, 46, 66  

This contrast between the nature and speed of the isomerization reactions for two different classes 

of retinal proteins has been often rationalized by the difference in planarity of the ground state 

structures of RPSB bound inside the cavity of retinal pocket.80 Structural strains on RPSB inside 

different protein pockets can originate either due to distinct structural conformations of each 

isomer or due to changes in the electrostatic interaction between RPSB and the opsin moiety. 

Structural investigations49, 80-81 have shown that the 11-cis ground state isomer in visual rhodopsin 

is present as a non-planar, pre-twisted structure, which facilitates the reaction to proceed rapidly.82 

However, for BR, neither NMR studies80, 83 nor resonance Raman spectra84 has shown any 

evidence of such a pre-twisting for the ground state all-trans isomer. Furthermore, a quantum 

chemical computational study82 of twisted retinal in gas phase showed sub-100 fs dynamics, which 

further indicates the pre-straining alone can lead to a rapid isomerization process even in absence 

of any specific electrostatic interaction of RPSB with the surrounding. 

Although the geometric orientation of RPSB inside the protein pocket has been proven to be a 

crucial element, a few comparative time-resolved studies of mutated proteins with wild-type 

analogs have shown the role of the surrounding protein in catalyzing the isomerization dynamics. 

For example, the replacement of a charged amino acid residue with a neutral one in 

bacteriorhodopsin results in a significant deceleration of the reaction rate.85-86 A similar 

comparative study by replacing one non-polar residue with a polar one showed an acceleration of 

the rate.87 On the other hand, the molecular dynamics of RPSB in solution was found to be almost 

independent of the dielectric constants and viscosity of the solvent, which suggests that the bond 
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selective isomerization inside the protein pocket is mainly governed by steric effects.64 All these 

observations together motivate the investigation of the individual role of the ground state 

conformation and the opsin moiety on the retinal isomerization mechanism. 

1.2 Anabaena Sensory Rhodopsin 

One systematic way to address these open questions is to investigate RPSB of two different 

conformations under the same protein environment. The recently discovered88 Anabaena Sensory 

Rhodopsin (ASR) has been assisting to shed new light on this issue.45, 49, 53, 89-90 Like other MRP’s, 

it comprises of 13-cis, 15-syn (13C) and all-trans, 15-anti (AT) in ground state (Figure 1.1). Being 

a photochromic sensor, the isomeric ratio depends on the wavelength of external illumination 

light.89 When it is illuminated with an orange light (~590 nm) it forms a mixture (~40:60) of AT 

and 13C isomers in a light adapted photo-stationary equilibrium.90 On the other hand, it adopts a 

thermally relaxed AT form under a dark adapted condition. Within the photocycle (Figure 1.2), 

each isomer undergoes isomerization around C13=C14 in a sub-ps time scale that results in a hot 

photo-intermediate J (13-cis, 15-anti and all-trans, 15-syn, respectively). Later, it forms the 

K-photo product (KAT and K13C) within 100 ps via vibrational relaxation, which undergo further 

isomerization around C15=N on a longer time scale (<ns) to generate 13C and AT GS, respectively 

(Figure 1.2). Therefore, ASR is a distinct member among the rhodopsin family, which provides a 

unique opportunity to track and compare the isomerization reaction in both directions (AT to 13C 

 

Figure 1.2: Schematic representation of the photocycle of AT and 13C isomer of ASR. After 
excitation, each isomer undergoes isomerization around C13=C14 bond in sub-ps timescale to form 
the corresponding hot photo-product, JAT and J13C, which generate KAT and K13C by further 
isomerization around C15=N on sub-ns time scale to complete the photo-cycle. 
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and 13C to AT) of the photo-cycle within the same protein environment. This is extremely 

advantageous in order to disentangle the effect of the ground state conformation of RPSB on its 

isomerization dynamics.  

Recently, a couple of comparative pump-probe studies of AT and 13C isomers of ASR showed a 

stark contrast in the reaction kinetics.45, 90 It has been observed that the 13C isomer shows a ballistic 

kinetics and the isomerization completes within 100 fs, which is very similar to RH.45, 90 The AT 

isomer shows, however, about seven fold (~770 fs)45, 90 slower kinetics, which is reminiscent to 

BR. This large disparity in the reaction dynamics has been qualitatively explained by the quantum 

chemical excited trajectory calculations, which suggest the existence of a small barrier or plateau 

in the excited potential energy surface of AT-isomer but not for the 13C isomer.91 The quantum 

yield of the isomerization for each direction is also very different: it is about 2.7 times higher for 

AT than for the 13C isomer.92 Lower quantum yield with shorter lifetimes has also been observed 

in other MRP’s. It goes against the Landau-Zener rule of tunneling probability.93 

1.3 Model of the retinal isomerization reaction 

In order to explain the variation of the reaction rates and efficiencies, one needs to have a precise 

knowledge about the molecular potential energy surfaces. In this regard, a few combined 

experimental and theoretical research efforts have unleashed a fundamental understanding of 

molecular energy levels of the retinal. In earlier reports, a two-state barrierless model was proposed 

for the visual rhodopsin.29, 68, 72, 94 Later, it was found to be inadequate to explain a number of 

experimental observations for MRP’s, such as temperature dependence of florescence,95 excitation 

wavelength dependence of the reaction quantum yield,71 spectral stagnation of the excited state 

during internal conversion79, 96 or multi-exponential excited state dynamics.44, 97-98 In order to 

explain these discrepancies, an alternative model (three-state model) was proposed, where an 

additional electronic state was invoked (Figure 1.3 (a)).44, 99-102 This model allows for the buildup 

of a small potential energy barrier due to the avoided curve crossing between closely spaced 

excited states, 1Bu and 2Ag (Figure 1.3 (a)). Appearance of this small energy barrier in the first 

excited electronic state can explain the abovementioned experimental observations.  
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In both two-state and three-state models, the reaction was described only along a single reaction 

coordinate that is usually the dihedral angle along the isomerizing double bond of RPSB. However, 

poly-atomic molecules like RPSB have a number the vibrational modes (C-C, C=C, C=N stretches, 

CH3 rocking, skeletal torsions) other than the torsion around C=C and C-C bonds, which 

participate in the reaction. Thus, a multi-mode view of the potential energy surface is necessary to 

get the complete picture of the retinal isomerization reaction. This has been accounted recently by 

several theoretical simulations, which have proposed a two-state-two-mode model.103-104 Herein, 

the vibrational modes of RPSB are classified into two groups: One is named ‘tuning modes’, which 

are required to reach the conical intersection by reducing the energy gap between the ground and 

excited electronic states; the other is named ‘coupling modes’, which are active in the formation 

of the conical intersection.93 This model, which has been supported by a number of experimental 

evidences,27, 105-106 provides generalized atomistic insights of the sequential events happening after 

the photoexcitation of RPSB. Immediately after excitation, a rapid reorganization of bond lengths, 

which is called bond length alternation (BLA), takes place along the coordinates of the tuning 

 

Figure 1.3: (a) Three state model: a non-adiabatic coupling between the closely spaced 1Bu and 
2Ag states generates a barrier. (b) Two-state-two-mode model: a multi-mode view of retinal 
isomerization reaction. It gives an atomistic insight about the retinal isomerization reaction which 
is accomplished by three sequential events: (1) bond length alternation (BLA), (2) inter-molecular 
vibrational energy re-distribution (IVR) and (3) crossing the conical intersection between the 
ground and excited states to accomplish the isomerization reaction. In each graph, the conical 
intersections are shown by thin grey dotted lines. The green arrows denote the excitation of the 
ground state population and the blue Gaussian envelope represents the wave packet, formed by 
coherent excitation. The blue dotted arrow shows the reactive trajectory. 
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modes within 20-30 fs. This is often defined as ‘initial excited state relaxation’. It causes the 

system to reach a stationary point in the potential energy surface and at this point, the energy, 

initially deposited on reactive chemical bonds of retinal like C=C or C-C stretches, is transferred 

to torsional modes. This process is known as intermolecular vibrational energy redistribution 

(IVR), which is followed by a space saving isomerization, popularly known as ‘bicycle pedal 

motion’ of RPSB,107-108 via a major torsion around a specific C=C bond. 

1.4 Coherent vibrational spectroscopy 

Despite the general knowledge about the decay time constants associated with inter-electronic state 

population decays, only little is known about the real time structural changes of RPSB during the 

isomerization process and more specifically, the roles of each individual vibrational mode to 

channelize the reaction into the reactive pathway. Time resolved coherent vibrational spectroscopy 

comes to aid here. In the case of Raman based time-resolved spectroscopy techniques, “vibrational 

wave packets” are impulsively generated by excitation laser pulses shorter than the vibrational 

period of the correspond modes. These “vibrational wave packets” evolve along a defined 

trajectory, determined by the topology of the potential energy surface. The oscillation of the 

vibrational wave packet leaves its signature as a periodic modulation on top of the exponential 

electronic population kinetics. Hence, knowledge about the coherently excited wave packet motion 

along with the population kinetics promises to provide a clearer insight into the excited state 

trajectory. 

Time resolved coherent vibrational spectroscopy can be experimentally implemented in several 

ways. In two-pulse pump-probe spectroscopy, a spectrally broad ultrashort pump pulse induces 

such vibrational wave packets (Figure 1.4), which are probed by a delayed probe pulse. In spite of 

the successfully application of this pump-probe spectroscopy to different systems ranging from 

low (samples in gas phase or in solution8, 109) to very high (light harvesting complexes,110 

carotenoids,111-112 semiconductors113) complexity, extraction of the pure excited state signal is not 

always straightforward. Vibrational wave packets generated in the excited state potential show 

usually a much faster dephasing times than in the ground state manifold, leaving a very small 
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contribution in the optical signal. Moreover, the pump spectrum being resonant to S0 to S1 

transition (Figure 1.4 (c)), can also induce vibrational coherence in the ground-state, which may 

overlap with the signal of excited state, and make the separation of both contributions very 

challenging. 

A convenient approach to overcome these limitations is to extent the dimensionality of the 

technique by introducing a second pump interaction (Figure 1.4 (b)). Here, an actinic pulse, which 

is analogous to the pump pulse in two-pulse pump-probe spectroscopy, initiates the reaction by 

exciting a part of the ground state population in the excited state. Later, a second pump pulse 

(re)induces a vibrational coherence at a certain delay (T) after the reaction starts. This solves the 

abovementioned issues of traditional two-pulse pump-probe techniques as follows: (i) The second 

excitation can (re)induce the vibrational coherence at any time during the chemical reaction 

depending on the time delay between actinic and secondary pump pulse (T) and hence, is not 

anymore limited by the dephasing time of the initial coherence. Thus, the transient structural 

change can be followed from the beginning until the completion of the reaction. (ii) By tuning the 

actinic spectrum to the S0→S1 transition and the second pump spectrum to the S1→Sn transition, 

 

Figure 1.4: (a) Traditional dual pulse pump probe spectroscopy: An ultrashort pump pulse excites 
a part of the ground state (S0) population and induces coherences, which are tracked by probe pulse 
at a certain delay (T). (b) Three pulse pump probe spectroscopy: An actinic pulse initiates reaction 
by exciting a part of ground state (S0) population. Subsequently, an ultrashort second pump pulse 
(re)induces vibrational coherence at a certain delay (T), which is tracked by the probe pulse (τ). (c) 
Ground vs excited coherence: An ultrashort actinic pump pulse, resonant to S0→S1 transition, can 
induce coherence in the ground as well as in the excited state. However, the excited state coherences 
undergo much faster dephasing than ground state coherences. 
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a selective induction of the excited wave packet is possible (Figure 1.4 (b)). This provides a huge 

advantage to characterize and follow the vibrational modes associated to specific electronic states. 

Thus, the time resolved coherent vibrational spectroscopy, having this immense potential to 

capture the structural dynamics during ultrafast reaction, promises to address the following 

long-standing questions in the context of retinal photo-chemistry: (i) the importance of ground 

state retinal conformation in tuning the reaction dynamics; (ii) the characterization and activation 

mechanisms of each individual vibrational mode; (iii) the key modes driving the reaction along 

the reactive trajectories; (iv) the influence of the surrounding retinal protein in catalyzing the 

isomerization process; (v) the discrepancy in the relation between reaction rates and efficiencies. 

All these together help to shed more light on the topology of the molecular potential energy 

surfaces with finer mechanistic details and provide a deeper insight into the molecular origin of 

such diverse isomerization reaction dynamics of the retinal proteins. 

1.5 Outline of thesis 

Following these points of motivation, chapter 2 of this thesis introduces a theoretical basis for the 

time-resolved non-linear spectroscopic techniques. A brief description of third- and fifth-order 

nonlinear techniques has been presented within the framework of a response function formalism. 

This theoretical basis has been used to interpret the experimental data presented later. 

The first half of chapter 3 describes the implementation of different time resolved spectroscopic 

techniques, discussed in chapter 2. In the second half, the analysis algorithms, which have been 

used for the data processing to retrieve the molecular information, are presented. 

Chapters 4 to 7 cover the experimental results, analysis and their interpretations to explore the 

impact of ground state retinal structure (Chapter 4-5) and the role of opsin moiety (Chapter 6-7) 

on the retinal isomerization reaction.  

Chapter 4 introduces a comparison of the population dynamics between the AT and 13C isomers 

of RPSB in ASR. In order to evaluate the population dynamics, the time resolved electronic spectra 

of the RPSB has been evaluated by measuring the transient absorption signals under the dark and 
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light adapted conditions. This highlights the importance of the ground state configuration of RPSB 

on its isomerization dynamics.  

Chapter 5 is dedicated for a comparative study of the vibrational coherence dynamics between the 

AT and 13C isomers of the RPSB in ASR. The evolution of transient Raman spectra of the RPSB 

has been mapped by exploiting impulsive vibrational spectroscopic techniques. This depicts a 

common picture of the sequential events happening during the isomerization reaction of both 

isomers. However, the ground state vibrational spectra as well as the time scale of the vibrational 

spectral evolution after the photoexcitation exhibits a stark difference between the AT and 13C 

isomers. Based on these observations, the molecular origin behind the large disparity in the 

reaction kinetics of the AT and 13C isomers was rationalized. 

Chapter 6 illustrates the role of the protein constructions surrounding the RPSB in its 

photo-isomerization dynamics. For that purpose, two different point mutations were carried out in 

ASR. A set of comparative transient absorption and (pump-) DFWM studies between the wild type 

and its mutants has showed a large impact of mutation on the electronic as well as vibrational 

dynamics of the RPSB. Moreover, the mutation has been found to show an asymmetric effect on 

the photo-induced dynamics of the AT and 13C isomers of the RPSB. 

Chapter 7 presents the role of cytoplasmic domain of the opsin moiety on the ultrafast photocycle 

of the ASR. For that goal, a comparative study of the photo-induced molecular dynamics between 

wild type and C-domain truncated ASR has been done by transient absorption spectroscopy.   

Chapter 8 summarizes the major findings and conclusions derived from the presented 

investigations. In addition, a few possible outlooks have been presented, which can address the 

questions remained unanswered in this work                                                                                            





 

 

  

 

Introduction to Time Resolved 

Nonlinear Spectroscopy 

2.1 Nonlinear polarization 

When an oscillating external electric field interacts with a medium, it creates a macroscopic 

oscillating polarization. The fundamental concept of coherent nonlinear spectroscopy lies behind 

the description of this macroscopic polarization. In general, the induced polarization is directly 

proportional to the incident electric field strengths. Depending on the strengths of the incident 

electric fields different terms can contribute to the polarization, each of which is generated by a 

specific number (𝑛) of light-matter interactions: 

𝑃(𝜔𝑠) = ∑ 𝑃(𝑛)(𝜔𝑠)∞
𝑛=1 = ∑ 𝜀0 𝜒(𝑛)(𝜔𝑠; 𝜔1, 𝜔2, … , 𝜔𝑛)𝐸1(𝜔1)𝐸2(𝜔2)…𝐸𝑛(𝜔𝑛)∞

𝑛=1  (2.1) 

Here, 𝜀0 is the electric permittivity in vacuum and 𝜒 is the susceptibility, which is dependent on 

the refractive index of the medium. 𝜔1, 𝜔2,… , 𝜔𝑛 are the frequencies of the interacting electric 

fields and 𝜔𝑠 is frequency of the emitted electric field. In equation (2.1), 𝑃 and 𝐸 are vector 

quantities, whereas 𝜒 and 𝜔 are tensor and scalar variables, respectively. For the sake of simplicity, 

all the variables in the equations used in this chapter, are written without any distinct representation 

for scalar, tensor or vector variables. 
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For an isotropic medium, the even order macroscopic polarization terms in equation (2.1) are 

cancelled out due to the symmetry and only the odd terms remain114-115: 

𝑃(𝜔𝑠) = 𝜀0 (𝜒1(𝜔𝑠; 𝜔1)𝐸1(𝜔1) + 𝜒3(𝜔𝑠; 𝜔1, 𝜔2, 𝜔3)𝐸1(𝜔1)𝐸2(𝜔2)𝐸3(𝜔3)…+ 𝜒2𝑁−1(𝜔𝑠; 𝜔1, 𝜔2, … , 𝜔2𝑁−1)𝐸1(𝜔1)𝐸2(𝜔2)…𝐸𝑛(𝜔2𝑁−1)) (2.2) 

Equation (2.2) describes the light induced macroscopic polarization in frequency domain. To 

describe evolution of the system during and after each light-matter interaction, it is more 

convenient to express the polarization as a function of time. It can be done by using the time 

dependent Schrödinger equation and treating the light-matter interaction in a semi-classical 

perturbative approach assuming all the interactions happening in a weak field regime 

(<1015 W/cm2).116 The full derivation of the time dependent light induced macroscopic polarization 

by a semi classical treatment has been introduced in the references114, 116-117. Only a brief 

description will be presented here. 

The Hamiltonian of the system (equation (2.3)) can be expressed as sum of a time independent 

term, 𝐻0 and a time dependent term, 𝑉(𝑡), where the latter one represents a perturbative potential, 

generated due to the light-matter interactions: 

𝐻 = 𝐻0 + 𝑉(𝑡) (2.3) 

𝑉(𝑟, 𝑡) = −∫𝑑𝑟 𝐸(𝑟, 𝑡) 𝑃(𝑟, 𝑡) (2.4) 

In quantum mechanics, the system is usually described in terms of wave function, (|𝜓⟩). However, 

an alternative approach is the density matrix formulation (𝜌 = |𝜓⟩⟨𝜓|). This is suitable to deal with 

systems in condensed phase, which represent mixed states consisting of a statistical ensemble of 

several quantum states (|𝜓𝑖⟩). Thus, substitution of the wave function (|𝜓⟩) by the density matrix 

(𝜌) in the Schrödinger equation leads to equation (2.5) (see reference114, 117 for the detail 

derivation), which is often named as Liouville-Von Neumann equation: 

𝛿𝜌𝛿𝑡 = − 𝑖ħ [𝐻, 𝜌] (2.5) 
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It describes the time evolution of the density matrix. By solving114 the equation (2.5), an expression 

for the density matrix can be obtained using perturbation theory as,  

𝜌 = 𝜌𝑒𝑞 + ∑ 𝜌(𝑛)∞
𝑛=1  (2.6) 

where, 

𝜌(𝑛) = (− 𝑖ℎ)𝑛 ∫ 𝑑τ𝑛t
−∞ ∫ 𝑑τ𝑛−1τ𝑛−∞ …∫ 𝑑τ1τ2−∞ [𝑉𝑛(τ𝑛), [𝑉𝑛−1(τ𝑛−1)… , [𝑉1(τ1), 𝜌𝑒𝑞]]] (2.7) 

Here, 𝜌𝑒𝑞 represents the density matrix of the system in equilibrium i.e. the system prior to any 

light-matter interactions. 𝑉𝑛 represents the perturbative potential, generated after 𝑛th light-matter 

interaction at time τ𝑛 (Figure 2.1(a)) and 𝜌(𝑛) is 𝑛th order density matrix, describing the state of the 

system after 𝑛 number of interactions. Knowing 𝜌(𝑛), the induced macroscopic polarization can 

be expressed as the expectation value of µ𝜌(𝑛), where µ denotes the dipole operator (see 

references114, 117): 

𝑃(𝑛)(𝑡) = 𝑇𝑟[µ(𝑡)𝜌(𝑛)(𝐸, 𝑡)] (2.8) 

‘𝑇𝑟’ represents the trace. Substituting 𝜌(𝑛) in the equation (2.7) into (2.8) yields equation (2.9), 

which describes 𝑛th order polarization in time domain. 

𝑃(𝑛)(𝑡) = ∫ 𝑑𝑡𝑛∞
0 …∫ 𝑑𝑡1∞

0 𝑅(𝑛)(𝑡) 𝐸(𝑡 − 𝑡𝑛) 𝐸(𝑡 − 𝑡𝑛 − 𝑡𝑛−1)…𝐸(𝑡 − 𝑡𝑛 …− 𝑡1) (2.9) 

where, 

𝑅(𝑛)(𝑡) = (𝑖ħ)𝑛 𝜃(𝑡1) 𝜃(𝑡2)…  𝜃(𝑡𝑛)𝑇𝑟 [[[µ(𝑡𝑛 + 𝑡𝑛−1+. . +𝑡1), 𝜇̂(𝑡𝑛−1+. . +𝑡1)],… µ(0)] 𝜌𝑒𝑞] (2.10) 

Here, 𝑡1, 𝑡2,…, 𝑡𝑛 represent the time intervals between two successive interactions (see Figure 2.1). 𝜃(𝑡𝑛) is a heavy-side step function. 𝑅(𝑛)(𝑡) is known as the total response function, which describes 

the evolution of the system during and after each light-matter interaction. Moreover, a comparison 

between the equation (2.1) and (2.9) shows that the total response function is basically the time 
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domain counter part of the susceptibility (𝜒(𝑛)) in frequency domain. Hence, like 𝜒(𝑛), the total 

response function, 𝑅(𝑛)(𝑡) contains all the information about the molecular properties like energy 

gaps between the states (electronic, rotational or vibrational transition frequency), interaction with 

the bath (dephasing) etc. Thus, it is the key term to describe 𝑛th order nonlinear interactions. 

Since the total response function represents a physical quantity, the commutator in equation (2.10) 

can be expressed as the sum of two complex conjugate pairs, 𝑅𝑖 and 𝑅𝑖∗. Each 𝑅𝑖 term is called a 

response function, sum of which constitutes the total response function, 𝑅(𝑛): 
𝑅(𝑛)(𝑡) = (𝑖ħ)𝑛 𝜃(𝑡1) 𝜃(𝑡2)…  𝜃(𝑡𝑛)∑𝑅𝑖(𝑛) (𝑡1, 𝑡2, … , 𝑡𝑛) − 𝑅𝑖(𝑛)∗ (𝑡1, 𝑡2, … , 𝑡𝑛)𝑖  (2.11) 

For 𝑛 number of light matter interactions in a system consisting of given number of energy levels, 

the expansion of the commutator in 𝑅(𝑛)(𝑡)  (equation (2.10)) results in a certain number of 

response functions, 𝑅𝑖(𝑛). Each of the terms can be interpreted diagrammatically in two possible 

ways: the energy ladder representation or the double-sided Feynman diagram (Figure 2.1). 

According to the general convention, ket and bra side interaction of the incident field with the 

density matrix (𝜌 = |𝜓⟩⟨𝜓|), shown in the double-sided Feynman diagrams, are represented by 

solid and dashed arrows, respectively in the ladder diagram. The wavy arrow at the end of 𝑛th 

interaction represents the emitted signal. 

 

Figure 2.1: (a) General scheme of the pulse sequence for 𝒏th order nonlinear interaction. Here, E1, 
E2,.., En represent the envelopes of electric fields of the interacting pulses and corresponding 
momentums are denoted by k1, k2,…, kn, respectively. Es and ks represent the electric fields and 
momentum of the emitted electromagnetic signal. Energy ladder and double-sided Feynman diagram 
representations of this 𝒏th order nonlinear interaction are shown in (b) and (c). 
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Knowing the form of light induced macroscopic polarization, 𝑃(𝑛)(𝑡)  (equation (2.10)), the electric 

field of the emitted signals, 𝐸𝑒𝑚𝑖𝑡 can be derived by solving the wave equation114 that results in: 

𝐸𝑒𝑚𝑖𝑡(𝑡1, 𝑡2, … , 𝑡𝑛, 𝑡) ∝ 𝑖𝜔𝑠𝑙𝜂(𝜔𝑠)𝑐 𝑃(𝑛)(𝑡1, 𝑡2, … , 𝑡𝑛, 𝑡) (2.12) 

where, 𝑐 is the velocity of light, 𝑙 is the sample path length and 𝜂(𝜔𝑠) is the refractive index of the 

sample at 𝜔𝑠, frequency of the emitted signal. Due to the energy and momentum conservation, the 

frequency (𝜔𝑠) and direction (that defines the momentum: 𝑘𝑠⃗⃗  ⃗) of the emitted electromagnetic signal 

are determined by that of the interacting fields (𝜔𝑛, 𝑘𝑛⃗⃗ ⃗⃗ ), which is named as the phase matching 

condition: 

𝜔𝑠 = ∑ ±𝜔𝑛∞
𝑛=1  ,         𝑘𝑠⃗⃗⃗⃗ = ∑ ±𝑘𝑛⃗⃗ ⃗⃗ ∞

𝑛=1  (2.13) 

2.2 First-order response function 

For a single light-matter interaction, the total response function (see equation (2.10)) can be 

expressed as follows: 

𝑅(1)(𝑡) = (𝑖ħ)𝜃(𝑡) 𝑇𝑟 [[µ(𝑡), µ(0)] 𝜌𝑒𝑞] (2.14) 

In analogy of equation (2.11), it can be written as: 

𝑅(1)(𝑡) = (𝑖ħ)𝜃(𝑡) [𝑅1(1) (𝑡) − 𝑅1(1)∗ (𝑡)] (2.15) 

where, 

𝑅1(1)(𝑡) = (𝑖ħ)𝑛 𝜃(𝑡) 𝑇𝑟[µ(𝑡) µ(0) 𝜌𝑒𝑞] (2.16) 
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Equation (2.16) is interpreted as a single light-matter interaction at time zero and subsequently, 

emission of the signal, which is recorded at time, t ((Figure 2.2)). Now, this single interaction can 

cause either excitation or de-excitation to climb up or down the energy ladder (Figure 2.2). Hence, 

the dipole operator, µ in the response function, 𝑅1(1)(𝑡) is presented as 𝜇+and 𝜇− for the interaction 

causing the excitation and de-excitation, respectively. 

2.3 Third-order nonlinear spectroscopy 

Third-order spectroscopy is the lowest order nonlinear spectroscopy (see equation (2.2)) for any 

isotropic medium and the most commonly used spectroscopic technique. Third-order response 

function for a three level system yields a number response functions within the rotating wave 

approximation,114 where rapidly oscillating terms are neglected (only valid if the incident electric 

field is near resonance with the atomic transition and intensity is low). Three of the response 

function terms are shown in equation (2.17) to (2.19): 

𝑅1(3)(𝑡) = 𝑇𝑟[𝜇−(𝑡4)𝜇+(𝑡3)𝜇−(𝑡2)𝜇+(𝑡1)𝜌𝑒𝑞] (2.17) 

 𝑅2(3)(𝑡) = 𝑇𝑟[𝜇−(𝑡4)𝜇+(𝑡1)𝜌𝑒𝑞𝜇−(𝑡2)𝜇+(𝑡3)] (2.18) 

𝑅3(3)(𝑡) = 𝑇𝑟[𝜇−(𝑡4)𝜇+(𝑡3)𝜇+(𝑡1)𝜌𝑒𝑞𝜇−(𝑡2)] (2.19) 

 

Figure 2.2: Representation of first order response function where, the excitation and de-excitation 

are represented as 𝝁+and 𝝁−, respectively. 

k1 kS k1 kS

(a) Excitation (b) De-excitation

0 t time 0 t time
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A diagrammatic representation of each term has been shown in Figure 2.3. In all three cases, the 

first interaction on the ket side of the density matrix when the system is in equilibrium, (𝜌𝑒𝑞 =|0⟩⟨0|) creates an electronic coherence between ground (|𝑔⟩) and excited (|𝑒⟩) electronic states 

which evolves within time duration, 𝑡1. Then a second interaction takes place, which can cause 

population either in ground state (𝑅1(3)) or in excited state (𝑅2(3) and 𝑅3(3)). Third interaction again 

induces an electronic coherence between |𝑔⟩ and |𝑒⟩ for 𝑅1(3)and 𝑅2(3) by excitation on ket and 

de-excitation on bra side, respectively. In the terminology of transient absorption spectroscopy, 

these two non-linear responsive pathways are known as ground state bleach (GSB) and excited 

stimulated emission (ESE), respectively. On the other hand, third interaction in 𝑅3 causes an 

excitation on the ket side and an electronic coherence between two excited electronic states |𝑒⟩ and |𝑓⟩. This pathway is named as excited state absorption (ESA) in the context of transient 

absorption. Three terms (𝑅1(3), 𝑅2(3), 𝑅3(3)) mentioned here, represent the light-matter interaction 

under the phase matching condition, kS=k1-k2+k3 (usually called non-rephasing pathway114, 117), 

 

Figure 2.3: Representation of third order response functions for a three level system in the energy 
ladder (top) and the double sided Feynman diagrams (bottom). Solid and dotted arrows in the energy 
ladder diagram represents ket and bra interactions, respectively. 𝑹𝟏, 𝑹𝟐 and 𝑹𝟑 represent three 
different responsive pathways which are named ground state bleach (GSB), excited stimulated 
emission (ESE) and excited state absorption (ESA), respectively in the context of transient 
absorption spectroscopy. Here, the diagrams representing the third order interaction under the phase 
matching condition, ks=k1-k2+k3, are shown.  
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which has been maintained for all the transient grating measurements, carried out in this thesis. In 

general, three more terms appear for third-order nonlinear spectroscopic signals under different 

phase matching conditions: –k1+k2+k3 (rephasing pathway) and and k1+k2-k3 (quantum coherence 

pathway) (see references114, 117 for further details). 

In the case of transient absorption spectroscopy, the first two pulses create a hole in the ground 

state by exciting a part of the ground state population in the excited state. As the system evolves 

in between the second and the third interactions, this population either returns back to the ground 

state or it passes to another stationary state (forming new photo-product) causing partial refilling 

of initially created holes. Usually the population relaxation from one state to another is described 

by an exponential function (see equation (2.20)). The time constants of these exponential decays 

can be acquired by varying the time delay between the second and third interactions. This gives 

the essential information about the molecular dynamics. 

Although the system has been described by a simple energy diagram consisting of three electronic 

levels, for any molecule, each electronic level contains several vibrational levels. Therefore, the 

first two interactions can lead the system either in an electronic population state (diagonal element 

 

Figure 2.4: Representation of a few possible vibrational coherence pathways for the third order 
light matter interaction by energy ladder (top) and double sided Feynman diagrams (bottom) under 
the phase matching condition, ks=k1-k2+k3. Solid and dotted arrows in energy ladder diagram 
represents ket and bra interactions, respectively. Subscripts gg' and ee' denote the vibrational 
coherence created in the ground and excited state, respectively after first pair of interactions. 
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of the density matrix) or in a vibrational coherence state (off-diagonal element of the density 

matrix). Thus, in addition to the population pathways shown in Figure 2.3, the third order 

non-linear response function also contains vibrational coherence pathways depicted in Figure 2.4. 

In order to prepare the vibrational coherence pathways, there is one essential condition for the first 

pair of pulses to fulfill: The pulse width should be shorter than the period of molecular vibration. 

Hence, if the excitation pulse is short enough, the third order signal not only contains the 

information about the population decay but also contains the information about the vibrational 

coherence, which appears as a damped oscillatory feature on top of the population decay signals. 

Note in Figure 2.4 that both the ground (𝑔𝑔′) and excited state (𝑒𝑒′) vibrational coherences 

contribute to the third order signal when the excitation spectrum is resonant to |𝑔⟩ → |𝑒⟩ transition 

frequency. 

Soon after the optical excitation, the excited population (diagonal element of the density matrix) 

and coherence (off-diagonal elements of the density matrix) decay with time constants, 𝑇1  and 𝑇2, 

which are known as the population relaxation time and the dephasing rate of coherence, 

respectively. 𝑇1 denotes the life time of corresponding electronic level, whereas 𝑇2 depends on the 

interaction of the system with the bath. Hence, the propagation of the elements in time dependent 

density matrix is usually described by following equations: 

Diagonal element:                   𝜌𝑎𝑎(𝑡) = exp [−𝑔𝑎𝑎(𝑡,  𝑇1)]𝜌𝑒𝑞𝑎𝑎 (2.20) 

Off diagonal element:             𝜌𝑎𝑏(𝑡) = exp [−𝑖𝜔𝑎𝑏𝑡 − 𝑔𝑎𝑏(𝑡,  𝑇2 )]𝜌𝑒𝑞𝑎𝑏 (2.21) 

Here, 𝜔𝑎𝑏 is the transition frequency between the eigenstates, a and b. The functions, 𝑔𝑎𝑎 and 𝑔𝑎𝑏 

are called the line shape functions, which determine the electronic and vibrational spectral shapes, 

respectively. Using these equations, each response pathway (equations (2.17) to (2.19)) can be 

fully expressed (see references114, 116-117 for more details). 

Implementation: Third-order nonlinear spectroscopy has been implemented in this thesis by two 

different ways: (i) Transient absorption (TA) and (ii) Four wave mixing (FWM) transient grating 

(Figure 2.5). Although both of these techniques provides the same molecular information they 

differ in respect to the first pair of light matter interactions, which changes the phase matching 

condition of the generated signals. In TA, the first pair of interaction comes from the same laser 



22 Chapter 2 

 

 

pulse known as pump, whereas in FWM, the first two interactions come from two different beams 

named as pump and Stokes.  

In TA, the pump and probe pulses usually have different spectral contents. The changes, induced 

by the pump pulse, are interrogated by the subsequent probe pulse by varying the time delay (T). 

Since the same pulse provide the first pair of interactions (k1 = k2 = k𝑃𝑢), the signal is radiated 

in the same direction of the probe (k𝑠 = k𝑃𝑢 − k𝑃𝑢 + k𝑃𝑟 = k𝑃𝑟). This way of detection is known 

as self-heterodyne detection, where the probe pulse acts as a local oscillator. Here, the signal along, 

which is incorporated in the probe beam after the sample, is spectrally resolved in a spectrometer.  

For FWM, same laser output is split into three to provide three degenerate pulses: pump, Stokes 

and probe. Therefore, this is named as degenerate four wave mixing (DFWM) technique. Similar 

to TA, the delayed probe interrogates the changes, induced by the pump/Stokes pair, at different 

delays (τ23). In addition, the delay (τ12) between the pump and Stokes pulses can also be scanned, 

 

Figure 2.5: Schematic representation of the pulse sequence used in (a) Transient absorption (TA) 
and (b) Degenerate four wave mixing (DFWM) experiments. The pump and probe pulses are 
represented by green and red colors as they usually have different spectra. The delay between pump 
and probe pulse is denoted by T. Generated signal is detected in self-heterodyne fashion, where the 
probe pulse acts as a local oscillator. In DFWM, all three pulses, pump, stokes and probe, are 
degenerate and all of them are presented in red colors. In case of DFWM, the three incident beams 
are arranged in a folded BOXCARS geometry and the non-rephasing homodyne signal is generated 
at the phase matching direction: 𝐤𝐬 = 𝐤𝐏𝐮 − 𝐤𝐒𝐭 + 𝐤𝐏𝐫.  
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which is sometime useful to characterize the vibrational mode as quantum coherence or population 

beating.118 The pump, Stokes and probe beams are often arranged in a folded BOXCARS 

geometry. The corresponding non-rephasing signal is generated in the phase matching direction 

(k𝑠 = k𝑃𝑢 − k𝑆𝑡 + k𝑃𝑟), which is different from the direction of any of three incident pulses and 

hence, the signal is background free. This way of detection is known as homodyne detection. On 

the one hand, the FWM signal, being background free, has higher signal to noise ratio than TA. 

On the other hand, the vibrational coherence survives shorter in homodyne FWM signal than that 

obtained by heterodyne technique like TA. This is due to an intrinsic interference between 

population grating and vibrational coherence.118 This is disadvantageous especially to probe the 

excited state coherence, which has extremely short population decay times and results in a broad 

spectral width in the Fourier transformed spectra. 

2.4 Fifth-order nonlinear spectroscopy 

Fifth-order nonlinear spectroscopy involves a primary (first pair of pulses: actinic pulses (AP)) 

and secondary (second pair of pulses: pump/Stokes) interaction. The primary interaction populates 

the excited electronic states (may induce vibrational coherence also), while the secondary 

interaction (re)induces the vibrational coherences. These vibrational coherence is followed by a 

probe pulse. It provides two major advantages over the third-order nonlinear techniques. Firstly, 

the higher lying electronic states, which are not accessible by primary excitation either because of 

the large energy gaps or due to the symmetry forbidden transition, can be accessed by the 

secondary impulsive excitation. Secondly, the excited state coherence dynamics, which is very 

difficult to investigate by third-order techniques because of extremely short lifetimes of the excited 

state, can be thoroughly interrogated by (re)inducing the coherence at a different delay after the 

primary excitation. 

Similar to the third-order nonlinear interactions (equation (2.17)-(3.19)), the fifth-order 

interactions can also be evaluated under the framework of response function formalism. Some 

examples of fifth-order response functions are shown below: 

𝑅1(5)(𝑡) = 𝑇𝑟[𝜇−(𝑡6)𝜇+(𝑡3)𝜇−(𝑡2)𝜇+(𝑡1)𝜌𝑒𝑞𝜇−(𝑡4)𝜇+(𝑡5)] (2.22) 
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𝑅2(5)(𝑡) = 𝑇𝑟[𝜇−(𝑡6)𝜇+(𝑡1)𝜌𝑒𝑞𝜇−(𝑡2)𝜇+(𝑡3)𝜇−(𝑡4)𝜇+(𝑡5)] (2.23) 

𝑅3(5)(𝑡) = 𝑇𝑟[𝜇−(𝑡6)𝜇+(𝑡5)𝜇−(𝑡4)𝜇+(𝑡3)𝜇+(𝑡1)𝜌𝑒𝑞𝜇−(𝑡2)] (2.24) 

𝑅4(5)(𝑡) = 𝑇𝑟[𝜇−(𝑡6)𝜇+(𝑡5)𝜇−(𝑡4)𝜇+(𝑡3)𝜇−(𝑡2)𝜇+(𝑡1)𝜌𝑒𝑞] (2.25) 

𝑅5(5)(𝑡) = 𝑇𝑟[𝜇−(𝑡6)𝜇+(𝑡5)𝜇−(𝑡4)𝜇+(𝑡1)𝜌𝑒𝑞𝜇−(𝑡2)𝜇+(𝑡3)] (2.26) 

𝑅5(5)(𝑡) = 𝑇𝑟[𝜇−(𝑡6)𝜇+(𝑡3)𝜇+(𝑡1)𝜌𝑒𝑞𝜇−(𝑡2)𝜇−(𝑡4)𝜇+(𝑡5)] (2.27) 

The corresponding diagrammatic representation for each of these response pathways is shown in 

Figure 2.6. Since the main goal behind the implementation of the fifth-order technique in this thesis 

 

Figure 2.6: Representation of a few possible response pathways for the fifth order light matter 
interaction by energy ladder diagrams. The solid and dotted arrows in energy ladder diagram 
represent ket and bra interactions, respectively. Subscripts 𝒈𝒈′, 𝒆𝒆′ and 𝒇𝒇′denote the vibrational 
coherence created in the ground (𝒈), excited (𝒆) and upper excited (𝒇), respectively by secondary 
interactions. Here, the diagrams representing the vibrational coherence pathways for the fifth 
order light-matter interaction under the phase matching condition, ks=k1-k2+k3, are shown. 
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is to track the vibrational dynamics, only the diagrams leading to the coherence pathways, are 

depicted in Figure 2.6. Here, the first pair of interactions i.e. the primary excitation by AP, shown 

by green arrows in Figure 2.6, creates a population (or coherence) in the ground or excited state, 

which evolves before the third interaction takes place. Rest of the interactions by the subsequent 

three pulses (named as FWM pulses) take place in similar manner as presented earlier for the 

third-order technique (Figure 2.3). However, unlike a third-order technique, a part of the ground 

population has already been transferred in the excited state before the FWM pulse sequence 

arrives. Thus, the secondary excitation (second pair of pulses, shown by the red arrows in 

Figure 2.6) can induce vibrational coherence not only in the excited state (𝑒) and ground (𝑔) states, 

but also in the higher lying excited (𝑓) state. The relative contribution of the excited and ground 

state coherences can be controlled by a careful choice of the primary and secondary excitation 

spectra though. Since the goal of the fifth-order spectroscopy is to track the excited state wave 

packet (see section 1.4), the spectra resonant to  |𝑔⟩ → |𝑒⟩ and  |𝑒⟩ → |𝑓⟩ transition are usually 

 

Figure 2.7: Schematic representation of the pulse sequence used in (a) pump impulsive vibrational 
spectroscopy (pump-IVS) and (b) pump degenerate four wave mixing (pump-DFWM). The actinic 
and FWM pulses are represented by green and red colors, respectively. The delay between actinic 
and push (a) or pump/Stokes (b) pulse is denoted by T. The pump-IVS signal is detected in self-
hetero-dyne fashion, where the probe acts as local oscillator. In case of pump-DFWM, three 
incident beams are arranged in an extended folded BOXCARS geometry and homodyne signal is 
generated at the phase matching direction, 𝐤𝒔 = 𝐤𝑨𝑷 − 𝐤𝑨𝑷 + 𝐤𝑷𝒖 − 𝐤𝑺𝒕 + 𝐤𝑷𝒓. 
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selected for the primary and secondary excitation; thus the contributions of the excited state 

vibrational dynamics (𝑅3(5), 𝑅6(5)) predominates over the ground state vibrational dynamics 

(𝑅1(5), 𝑅4(5)) in the fifth-order signals. However, an overlap of the secondary excitation spectrum 

with the stimulated emission band can also lead to a substantial contribution of the excited state 

dynamics due to the stimulated emission pumping (SEP) response pathway (𝑅2(5)). 
Implementation: Similar to the third-order technique fifth-order technique can also be 

implemented in two different ways: (i) pump-impulsive vibrational spectroscopy (pump-IVS) and 

(ii) pump-degenerate four wave mixing (pump-DFWM), which differ in terms of signal detection 

methods. In both cases, a pulse having a spectrum resonant to the steady state absorption of the 

sample (i.e. S0→S1 transition) is used as the AP. 

In the case of pump-IVS, the second pair of excitations is provided by the same pulse, named as 

push (k1 = k2 = k𝑃𝑠). Therefore, the signal is generated in the same direction of the probe (k𝑠 =k𝐴𝑃 −k𝐴𝑃 +k𝑃𝑠 −k𝑃𝑠 +k𝑃𝑟 = k𝑃𝑟) and detected in heterodyne fashion, where the probe acts as a 

local oscillator.  

In the case of pump-DFWM, the secondary interactions are provided by two different pulses 

(pump/Stokes). Thus, the signal is generated in the corresponding phase matching direction of the 

extended folded BOXCARS geometry (k𝑠 = k𝐴𝑃 − k𝐴𝑃 +k𝑃𝑢 −k𝑆𝑡 +k𝑃𝑟) and detected in a 

background free homodyne fashion. 

2.5 Detection frequency dependence of vibrational coherence 

The vibrational coherence in the four wave mixing signals, obtained by using a broad excitation 

spectrum, show an intrinsic detection wavelength dependence.118 This is because of the following 

reason. In order to induce a vibrational coherence of certain frequency, a pair of spectral 

components in the excitation spectrum is required, which have corresponding frequency difference 

between them. Hence, for a high frequency vibrational coherence, a large difference in frequency 

between the selected pair of frequency components is required (Figure 2.8 (a)). A spectral pair 

selected from two edges of the excitation spectrum have a large difference in frequencies and 

hence, is most probable to induce high frequency coherence by coherent excitation of the 
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vibrational states widely separated in energy (Figure 2.8 (b)). On the other hand, the frequency 

pairs selected from middle of the spectrum have small differences in frequency and hence, they 

are more probable to induce low frequency coherences. Thus, the relative amplitude of high 

frequency coherence decreases from edge to center detection wavelength. The probability of 

induction of the coherence, with frequencies ranging from 0 to 2000 cm-1 was calculated as a 

function of detection frequency (Figure 2.8(c)). It has been done using Kramer-Kronig 

relationship,115 which determines the frequency dependence of the emitted electromagnetic fields 

as a function of frequencies of the incident electric fields. Here, the spectrum shown in 

Figure 2.8 (a) was taken as both excitation and probing spectra for this simulation. Figure 2.8 (c) 

shows that indeed the relative induction probability of high frequency (e.g. 1800 cm-1) coherences 

compared to the low frequency (e.g. 200 cm-1) coherences decreases from the edge to the center 

detection frequencies of the corresponding employed spectrum. 

 

 

Figure 2.8: Detection frequency dependence of the four wave mixing signals. (a) A broad 
degenerate spectrum for the FWM pulses were simulated. The red and blue pair of vertical lines 
represent different pair of frequency components selected from the edge and middle of the  
excitation spectrum, respectively which are capable to induce the high and low frequency 
vibrational coherence, as depicted in (b). (c) Probability of induction of vibrational coherences of 
different frequency as a function of detection frequency. This data was simulated by taking 
spectrum as an excitation spectrum. The probability of induction of a vibrational coherence with 
frequencies 200 and 1800 cm-1 at different detection frequencies. 





 

 

  

 

Experimental Details and Data 

Analysis 

This chapter focuses on the experimental methods used for the investigations of isomerization 

dynamics of ASR throughout this thesis. First, the preparation of ASR sample and the HPLC 

analysis, used to determine the isomeric composition, have been briefly described. Later, the 

experimental setups required to realize the time resolved nonlinear techniques, presented in the 

previous chapter, have been discussed. Finally, the methodology of data analysis to retrieve the 

molecular information regarding the ultrafast dynamics of ASR have been elaborately presented.  

3.1 Sample preparation and HPLC analysis 

All the ASR samples were prepared by Dr. Kato and Yoshizumi from the group of Prof. Kandori 

in Nagoya Institute of Technology, Japan. The preparation of the samples was carried out 

according to a standard reported protocol as described thoroughly in references.88-89, 92 In brief, a 

purified ASR sample was concentrated and dialyzed against a buffer solution containing 200 mM 

NaCl, 25 mM Tris HCl to maintain pH at 7.0. DDM (n-Dodecyl-β-D-Maltopyranoside, Anagrade, 

Anatrace) was added to help the protein to get stabilized by forming micelle. The concentration of 

DDM was kept at 0.01%, which is lower than that used in the previous report45, 90 (0.02%). 

However, it was still above the critical micelle concentrations of DDM (0.007%). The purpose 

behind the reduction of DDM concentration was to minimize the formation of bubbles while 
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circulating the sample through the flow cell during the femto-second measurement. High 

performance liquid chromatography (HPLC) and dark adaptation kinetics measurement were also 

done with the same concentration of DDM. 

Being a photochromic light sensor, the ratio of the retinal isomers in ASR (all-trans and 13-cis) 

depends on the light adaptation condition. Under the dark adapted (DA) condition, it consists 

almost exclusively all-trans isomers, whereas it contains a photo-stationary mixture of all-trans 

and 13-cis isomers after continuous irradiation with an external light source.89 For a quantitative 

determination of the isomeric ratio under two different adaptation condition, a HPLC analysis was 

done. The dark adaptation was realized by keeping overnight the sample in dark, whereas the light 

adaptation was done by continuously irradiating the sample with an external light source e.g. LED 

for 30 minutes. After a complete adaptation, oxime forms of the retinal isomers were extracted by 

adding a 1000 fold molar excess of hexane and subsequently, denaturizing with ethanol. The 

solvent used for the chromatography consists of 12% ethyl acetate and 0.12% ethanol in hexane. 

The flow rate was set at 1.0 ml/min. Since the two isomers have distinct retention times (all-trans: 

6.1 and 12.8 min; 13-cis: 6.9 and 8 min), they showed distinguishable peaks in HPLC graph 

(Figure 7.1). The isomeric composition (Table 3.1) was determined by taking the ratio of the 

values obtained by integrating the area under the corresponding characteristic HPLC peak of each 

isomer. The values of isomeric ratio under different adaptation conditions (Table 3.1) were 

obtained by averaging five independent measurements. 

Condition % of all-trans isomer % of 13-cis isomer 

Dark adapted (DA) 96±2% 4±2% 

Light adapted (LA) 36±3% 64±3% 

 

3.2 Optical experimental setups 

This section describes the optical experimental setups used for the femtosecond measurements. In 

general, a chirped pulse amplifier (CPA) system (Coherent Libra) was used as a fundamental laser 

Table 3.1: The isomeric ratio obtained from the HPLC analysis under dark and light adapted conditions. 
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source which delivers an output spectrum centered at 795 nm wavelength at a repetition rate of 

1kHz. Pulse duration was 110 fs. The energy used was about 700 µJ per pulse. This output was 

split into two halves to drive two home built non-collinear optical parametric amplifiers 

(nc-OPAs). Each nc-OPA was tunable in the visible region from about 450 to 750 nm and capable 

of generating ultrashort pulses with a typical time width of 13-20 fs after compression with a prism 

pair (Figure 3.1). The pulse durations were determined by an auto-correlator based on second 

harmonic signal generated by a 40 µm thick BBO crystal. The short pulse durations and spectral 

tunability of the nc-OPAs allowed to investigate the sub-ps dynamics of retinal proteins by probing 

different spectral features appearing in the spectral region from 450 to 800 nm (Figure 3.3). For 

this goal, four different techniques, transient absorption (TA), degenerate four wave mixing 

(DFWM), pump- degenerate four wave mixing (pump-DFWM) and pump-impulsive vibrational 

spectroscopy (pump-IVS), were exploited as discussed in Chapter 2. In the following section, the 

experimental setups, used for each of these experiments, are presented. 

3.2.1 Transient absorption (TA) 

TA requires two pulses (see Figure 2.5): one is used as a pump and other as a probe. The output 

from one of the two nc-OPAs was used as a pump pulse (Figure 3.2). Centre wavelength of the 

 

Figure 3.1: Typical auto-correlation traces of nc-OPAs after the compressors. Corresponding 
spectra were centered at 650 and 540 nm for (a) and (b), respectively shown in Figure 5.1. Red curves 
represent a Gaussian fit. 
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excitation spectrum was tuned to the ground state absorption of the sample under investigation. 

For probing, a broadband white-light continuum (Figure 3.3), covering the wavelength range from 

400 to 800 nm, was generated by tight focusing of ~2 nJ of the CPA output into a 2 mm thick CaF2 

crystal. CaF2 was chosen as it shows a higher transmission in the UV-range i.e. below 450 nm 

compared to other materials used for the white light generation e.g. Sapphire (Figure 3.3). Probing 

this UV-region (400-450 nm) is crucial to track the excited state dynamics of ASR as the excited 

state absorption appears strongly only in this particular spectral range in within the available 

probing window in our setup. However, CaF2 has a low damage threshold. In order to avoid any 

damage, it was placed on a mechanically rotating holder, which was rotated continuously so that 

the laser beam does not hit the same spot repeatedly. As an alternative to the white light, the 

compressed output from the other nc-OPA can also be used as probe pulse. However, for the 

broadband TA measurements, white light was preferred. In order to get rid of the residual of CPA 

output remaining in the white light continuum, a CalflexTM filter (Figure 3.3) was placed after the 

white light generation stage. Usually, the white light is highly chirped as it has to travel through 

optically dense materials causing group velocity dispersion (GVD).119 This was taken into account 

during the data analysis as discussed later. The time resolution of the TA experiments was 

 

Figure 3.2: Schematic description of the experimental setup used for the transient absorption 
measurement. Output of nc-OPA, compressed by a prism pair, was used as pump pulse (green line) 
and a white light continuum was used as probe pulse. The pump was chopped with synchronized 
mechanical chopper. Hyper-spectral detection of the signal was done by dispersing the probe after 
the sample by a prism into a PDA. 
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determined by fitting the coherent artifact (see section 3.3.1). This was 50±10 fs in case probing 

with the chirped white light and was improved to 30±5 fs, when the compressed output of nc-OPA 

was used as the probe pulse. 

The delay between the pump and probe pulses was controlled by a piezo motor in order to realize 

a rapid scan.120 Both pump and probe beams were focused and overlapped inside the sample by 

two different concave mirrors of a focal length 30 and 25 cm, respectively. The spot diameters of 

respective beams inside the sample were about 100 and 60 µm. The energy of the pump pulse was 

attenuated to 50 nJ which corresponds to 1.8 x1013 photons/cm2. The polarization of the pump 

beam was parallel with respect to white light probe. A synchronized mechanical chopper was used 

to block each second pump pulse so that the difference absorption (𝛥𝐴) can be calculated by taking 

a logarithmic difference between the intensity of probe with and without the interaction of the 

pump119: 

 𝛥𝐴 = − log(𝐼𝑝𝑟𝑜𝑏𝑒𝑝𝑢𝑚𝑝 𝑜𝑛 𝐼𝑝𝑟𝑜𝑏𝑒𝑝𝑢𝑚𝑝 𝑜𝑓𝑓⁄ ) (3.1) 

The pump beam was spatially filtered by an iris after the sample, whereas the probe beam was 

spectrally dispersed by a prism and subsequently collimated by a lens into a multi-channel detector 

photo-diode array (PDA) (Figure 3.2). By tuning the distance between the prism and the 

collimating lens, the extent of dispersion can be controlled, which in turn determines the number 

 

Figure 3.3: The comparison of the normalized spectra of white light continuum generated by 
focusing a part of the CPA output (795 nm) in a sapphire plate (red) and CaF2 crystal (blue), collected 
after passing through a CalflexTM filter. The latter show a significant intensity in the UV region (grey 
shaded), while the intensity of the former decays to zero below 450 nm. The normalized 
transmittance of the CalflexTM filter is shown by the black line. 
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of pixels of the PDA illuminated by the incoming probe. In order to acquire a high S/N ratio, half 

of the detector array was illuminated instead of using total 256 pixels in the detector. The average 

spectral resolution was 2.5 nm per pixel in that case. Furthermore, a 2 mm thick BG14 filter was 

used to avoid oversaturation of the PDA above 500 nm without affecting the intensity at the 

UV-region (< 450 nm). 

3.2.2 (pump-) Degenerate four wave mixing (DFWM) 

A separate experimental setup compared to TA measurement was used for the (pump-) degenerate 

four wave mixing (DFWM) measurement. DFWM requires three pulses: pump, Stokes and probe, 

 

Figure 3.4: Schematic description of the experimental setup used for pump-DFWM experiment. 
Delay (T) between actinic pulse (green line) and DFWM pulses (pump, Stokes and probe) (red lines) 
was controlled by a mechanical delay stage. The delay between pump/Stokes and probe (τ23) pulses 
was controlled by a piezo motor. The delay between the pump and Stokes pulses (τ12) was kept fixed 
to zero for all measurements. The DFWM beams were arranged in a folded box-car geometry. 
Generated homodyne signal (orange line) was spectrally resolved. The signal was divided by a 
dichroic beam-splitter (DBS) and detected in a photo-multiplier tube (PMT) after passing through a 
narrow band interference filter (NBF) of 10 nm bandwidth. 
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with degenerate spectrum. Three pulses together are often named as DFWM pulses, which were 

derived by splitting the output from one of the nc-OPAs into three parts (Figure 3.4). The delays 

between pump and Stokes (τ12) and that between Stokes and probe (τ23) were finely tuned by pizzo 

driven computer controlled stage. While the delay τ23 was scanned, τ12 was kept fixed to zero for 

all DFWM measurements. In the case of pump-DFWM measurements, an additional pulse named 

actinic pulse (AP) is required, which is analogous to the pump pulse in the TA measurement, is 

preceded by the DFWM pulses. The delay (T) between AP and DFWM pulses was controlled by 

a mechanical delay stage. Polarizations and energies of all pulses were adjusted by placing two 

polarizer plates on the optical pathway of each beam before reaching the sample. The polarization 

of AP, pump and Stokes pulses was set parallel to the probe pulse’s polarization. AP and DFWM 

pulses were focused and overlapped inside the sample by concave mirrors with focal length 30 and 

25 cm, respectively. The spot diameters were 90 and 50 µm, respectively. The energies per pulse 

were set to 100 nJ for AP, 50 nJ for pump/Stokes pair and 20 nJ for the probe pulse. 

The DFWM beams were arranged in a folded BOXCARS geometry.11, 18 In this configuration, the 

signal was generated from the sample in a specific phase matching position and was spatially 

separated from the incident beams by an iris (homodyne detection). The signal was collimated by 

a fused silica lens and subsequently, split into two parts by a dichroic beam splitter (DBS), which 

allowed to record it simultaneously in two different photo-multiplier tube (PMT). A narrow band 

pass filter with a bandwidth of 10 nm was used in front of each PMT, which allowed a spectrally 

resolved detection of (pump-) DFWM signals. 

3.2.3 (pump-) Impulsive vibrational spectroscopy (IVS) 

The experimental setup of pump-Impulsive vibrational spectroscopy (pump-IVS) is shown in 

Figure 3.5. Pump-IVS, being a higher order (5th order) spectroscopic technique than TA (3rd order), 

requires one additional pulse (push) other than AP (analogous to pump pulse in TA) and probe as 

used in TA. The AP was derived from one of the nc-OPAs. The degenerate push and probe pulses, 

often named as IVS pulses together, were obtained by splitting the output of the other nc-OPA. 

Note that, the compressed output from the nc-OPA was used as probe pulse instead of the chirped 

white light. This is because the former provides a higher time resolution (<30 fs) than the latter 

(~50 fs). High time resolution is actually an essential criteria for capturing rapid molecular 
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oscillations, particularly those molecular modes of RPSB, which vibrate with extremely short 

period (~20-40 fs). 

The energies for the AP, push and probe pulses were attenuated to 100, 50 and 20 nJ, respectively. 

The diameters of the AP, push and probe beams inside the sample were set to 100, 80 and 60 µm, 

respectively. The delay between the AP and push/probe pulses were controlled by mechanical 

delay stage. A chopper was placed in the optical pathway of the push beam so that the IVS signal 

can be calculated by taking a logarithmic difference between the intensity of the probe with and 

without the interaction of the push pulse: 

 𝛥𝐴 = − log(𝐼𝑝𝑟𝑜𝑏𝑒𝑝𝑢𝑠ℎ 𝑜𝑛 𝐼𝑝𝑟𝑜𝑏𝑒𝑝𝑢𝑠ℎ 𝑜𝑓𝑓⁄ ) (3.2) 

The probe beam, transmitted after the sample, was spatially filtered by an iris and was attenuated 

by a neutral density filter to avoid the oversaturation of the detector. Subsequently, it was dispersed 

by a grating based spectrometer and detected in a multi-channel PDA. 

 

Figure 3.5: Schematic description of experimental setup used for pump-IVS experiment. Delay 
(T) between actinic (green line) and push (red line) pulses was controlled by a mechanical delay 
stage. The delay between push and probe (τ23) was controlled by a piezo. A synchronized 
mechanical chopper was used to chop each second push pulse. The generated self-heterodyne signal 
was detected in a grating based PDA. 
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3.2.4 Implementation of a flow cell setup 

A flow cell setup (Figure 3.6) was implemented to circulate the sample continuously during the 

measurements under the above mentioned optical setup. The use of the flow cell addressed two 

issues: (i) Continuous exposure to the pulsed laser beam may result in formation of an undesired 

light induced photo-product, which may contaminate the molecular signal of ASR; (ii) the heat 

generated by the continuous hitting by the laser beam with the sample can cause a thermal 

denaturation of the protein.  

Thickness of the flow cell (from Starna Gmbh) was 0.5 mm and the outer diameter of associated 

tubing (masterflex Chendurance Bio L/S 13) was 3.1 mm, which consumes total amount sample 

as low as 1.5 ml. With this setup, the main goal was to replenish the sample inside the cell between 

two consecutive laser pulses. With 1 kHz repetition rate of the laser source (Libra CPA), it needs 

a minimum flow rate of 4 ml/min to achieve this desired goal. This condition was met a suitable 

motor (Easy load II R/A 13-18), which can drive the flow cell with a minimum rate 6 ml (at 

100 rpm) to maximum rate of 36 ml (at 600 rpm) per min. However, the flow rate was optimized 

to 6 ml per min to avoid the formation of bubbles inside the sample, which leads to a scattering of 

the incident light and therefore, gives rise to noise in the measured optical signals.  

 

 

 

 

 

Figure 3.6: Flow cell setup: flow cell connected with the tubes (left) and the motor driving the 
sample inside the cell (right). 
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3.3 Data analysis 

3.3.1 Time correction 

Coherent artifact: Coherent artifacts121 are generated by a non-linear mixing of two incident 

pulses, when both overlap in time domain. This artifacts are intrinsic to any multi-pulse 

experiments like TA, DFWM and IVS. Three different phenomena, responsible for the generation 

of these artifacts, are two photon absorption (TPA),122 stimulated Raman scatterings (SRS)123 and 

cross phase modulation (CPM).124 TPA describes the simultaneous absorption of two photons from 

two consecutive pulses. It is usually pronounced in the UV-region (below 400 nm) as the electronic 

energy gaps of almost all organic solvents are resonant to the frequencies of the two photon 

transitions with interacting visible pump and probe pulses.121 Since the probing window (400 to 

800 nm) in all our TA measurements is well beyond the UV-region, TPA is less likely to appear 

in the TA data set. Furthermore, TPA increases with the intensity of the lasers and contributes 

significantly only under high photon fluence. As the experiments were carried out under 

sufficiently low photon density (<1014 photons/cm2), only a minor contribution of the TPA is 

expected. A second contribution of coherent artifact comes from the SRS, which originates due to 

the frequency difference between two incident pulses. The CPM is the third and major component 

of the coherent artifacts appearing in all our time resolved data set, which is generated due to the 

phase modulation of the probe pulse by the preceding excitation laser pulse(s). This can be 

expressed by the following equations (see references121 for the detailed derivation). 

𝑆𝐶𝑃𝑀 (𝑡) = 𝐴1(𝑡𝑒−2𝑡2 𝜏2⁄ − (𝑡 − 𝜏𝐺𝑉𝐷)𝑒−2(𝑡−𝜏𝐺𝑉𝐷)2 𝜏2⁄ )+ 𝐴2 ((1 − 4 𝑡2 𝜏2⁄ )𝑒−2𝑡2 𝜏2⁄ − (1 − 4(𝑡 − 𝜏𝐺𝑉𝐷)2 𝜏2⁄ )𝑒−2(𝑡−𝜏𝐺𝑉𝐷)2 𝜏2⁄ )+ 𝐴3 ((3 − 4 𝑡2 𝜏2⁄ )(−4 𝑡2 𝜏2⁄ )𝑒−2𝑡2 𝜏2⁄− (3 − 4(𝑡 − 𝜏𝐺𝑉𝐷)2 𝜏2⁄ )(−4 (𝑡 − 𝜏𝐺𝑉𝐷)2 𝜏2⁄ )𝑒−2(𝑡−𝜏𝐺𝑉𝐷)2 𝜏2⁄ ) (3.3) 

Here, 𝜏 is determined by the width of the cross correlation trace between the two interacting pulses, 

whereas 𝜏𝐺𝑉𝐷 depends on the group velocity mismatch originating because of their difference in 

refractive indexes. 𝐴1, 𝐴2 and 𝐴3 are the scaling factors where, 𝐴2 and 𝐴3 get significant amplitude 
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only when there is significant extent of non-linear temporal chirp in any of the two interacting 

pulses. 

Dispersion correction of TA data: Different frequency component of the probe pulse overlaps with 

the pump pulse at different time due to the group velocity mismatch and leads to a relative time 

shift of the raw transients detected at different wavelengths (Figure 3.7 (a)). The coherent artifact 

helps to carry out the time correction of the raw data set. In order to do this time correction, the 

coherent artifact between the pump and probe was measured by performing a TA on the solvent, 

that is devoid of any molecular signal of the sample. The coherent artifact at each detection 

wavelength, was fitted by the equation (3.3) (Figure 3.7 (c)-(e)), which evaluates the time zero 

values. The evaluated time zero values were plotted as a function of the detection wavelengths and 

fitted by a low order polynomial (usually third order), shown as a black dotted line in Figure 3.7 

(a). Afterwards the transient was shifted in time accordingly (Figure 3.7 (b)). 

Determination of time delay in multi-pulse experiments: In order to study the transient spectral 

change during the ultrafast reaction (sub ps) like the retinal isomerization by multi-pulse 

 

Figure 3.7: Dispersion correction of broad band TA data set. Graph (a) shows the TA data on solvent 
(buffer solution in this case) and (b) represents that after dispersion correction. (c) Fitting (red lines) 
of the coherent artifacts (black dots) at different probing wavelengths by the equation (4.3) to 
evaluate the time zero values. The evaluated time zero values were fitted by a 3rd order polynomial 
shown by a black dotted line in graph (a). 
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experiments like (pump-) DFWM or (pump-) IVS, it is very crucial to precisely determine the time 

delay between the employed pulses. Therefore, a pure coherent artifact between each pair of the 

employed pulses was measured by performing a set of TA measurement on the solvent. Each 

coherent artifact was fitted with equation (4.3) to evaluate the time zero value. The difference 

between the time zero values of the coherent artifact was taken a time delay between the 

corresponding pulses. For example, if the coherent artifact obtained for pump/probe and 

Stokes/probe pair at t1 and t2, respectively the difference (t1-t2) was taken as time delay between 

pump and Stoke pulses. Following this method, an error in determination of the inter pulse delay 

was obtained as small as ±5 fs.   

3.3.2 Transient Raman spectra 

The (pump-) DFWM or (pump-) IVS transients, obtained by scanning the probe delay (τ23), consist 

of an exponentially decaying non-oscillatory component as well as an oscillatory component 

representing the vibrational coherences (see section 2.3 and 2.4). Therefore, in order to obtain the 

vibrational information, the non-oscillatory contributions in the DFWM and IVS transients, were 

subtracted by a bi-exponential fit (Figure 3.8 (a, b)). In each case, 1 ps of the transients was fitted, 

Figure 3.8: Non-resonant (a) DFWM and (b) IVS transients. The non-oscillatory signal was 
subtracted in each case by a bi-exponential fitting (red line) before FFT. The corresponding 
oscillatory signal, obtained after fitting DFWM and IVS transients, are shown in (c) and (d) 
respectively. Here, a Butterworth filter has been applied on the residuals to cut-off the low frequency 
component below 100 cm-1 in order to suppress noise. The corresponding FFT spectra obtained in 
DFWM and IVS experiments are shown in (e) and (f) respectively. 
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leaving out the initial ~80 fs to avoid the coherent artifact. A typical algorithm11, 18 was followed 

to convert the remaining oscillatory signals (Figure 3.8 (c, d)) from time domain to the spectral 

domain (Figure 3.8 (d-e)). The residuals were multiplied by a Gaussian window with a FWHM of 

800 fs followed by zero padding before performing a fast Fourier transformation (FFT). 

DFWM vs IVS: The signal to noise ratio in the (pump-) DFWM measurements was almost one 

order of magnitude better than that in the (pump-) IVS measurements. For the (pump-) DFWM 

measurements, each transient was averaged 60 times, whereas it was averaged 600 times for the 

(pump-) IVS measurement to achieve a comparable S/N ratio. This difference in the S/N ratio is 

due to the self-heterodyne detection of the IVS signal, which suffers from the fluctuation of the 

intensity of local oscillator probe. In contrast, the DFWM signal, being a homodyne technique, is 

background free and thus, less noisy. 

The widths of the Raman line, obtained from the DFWM measurements, were broader compared 

to that obtained from the IVS study (Figure 3.8 (e) vs (f)). This is a well-known effect of the 

homodyne detection in (pump)-DFWM on the decay of the oscillatory signal118: Oscillatory 

contributions in the residual decay faster in the DFWM signal compared to IVS signal (Figure 3.8 

(c) vs (d)). The intrinsic interference between population grating and vibrational coherence results 

in a faster decay of the oscillation and consequently makes the FFT spectra broader. This also 

causes the small deviations in the spectral peak positions between DFWM and IVS FFT spectra 

(see e.g. Figure 5.2), especially for those vibrational modes (e.g. 1100-1400 cm-1) which are very 

closely spaced. 

3.3.3 Decomposition of isomeric contributions 

All femtosecond studies on ASR were done under dark adapted (DA) and light adapted (LA) 

conditions, under which it contains distinct compositions of two ground state conformers: AT and 

13C (see Table 3.1). Thus, the optical signals (e.g. absorption) under DA and LA conditions can 

be expressed as the linear combination of individual signals from AT and 13C isomers 

(Figure 4.2): 
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 [DA] = a ∗ [AT] + (1 − a) ∗ [13C] (3.4) 

 [LA] = b ∗ [AT] + (1 − b) ∗ [13C] (3.5) 

where, a and b are the fractions of AT-isomer presents in DA and LA sample, respectively. Here, 

the values of a and b are taken as 0.96 and 0.36, respectively, according to the HPLC analysis for 

wild type ASR reported by Cheminal et al.90. For known values of a and b, pure contributions of 

AT and 13C isomer can be retrieved as follows, 

 [AT] = (1 − b) ∗ [DA] − (1 − a) ∗ [LA](a − b)  (4.6) 

  [13C] = a ∗ [LA] − b ∗ [DA](a − b)  (4.7) 

Retrieval of the ground state absorption spectra of the 13C isomer (see Figure 4.1) was done by 

following this procedure.  

The TA data were also treated in the same way to separate the isomer specific contribution (see 

Figure 4.3). Here, the LA data set was multiplied by a factor, f, calculated from the ratio of molar 

extinction coefficient of AT (εAT) and 13C (ε13C) form. 

 TAAT = (1 − b) ∗ TADA − (1 − a) ∗ f ∗ TALA(a − b)  (4.8) 

  TA13C = a ∗ f ∗ TALA − b ∗ TADA(a − b)  (4.9) 

  f = εATb ∗ εAT + (1 − b) ∗  ε13C (4.10) 

f is calculated to be 1.07 assuming εAT: ε13C = 1.2 reported earlier.45, 90 In order to get the correct 

transient spectra for each isomer, multiplication with this factor is necessary because the molar 

extinction coefficients are different for these two isomers (see Figure 4.1) and hence, it gives rise 

to different amplitudes in the TA signal at same intensity of pump pulse. 
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A similar concept with a slightly different approach was implemented to retrieve the pure Raman 

spectrum (Figure 3.8 (c)-(d)) of each individual species appearing in the photo-cycle (see 

Figure 1.2). For example, the ground state Raman spectrum obtained under LA condition is 

basically a sum of the spectra of AT and 13C ground state isomers. To retrieve the pure spectrum 

of 13C, it is necessary to know the spectrum of AT, which can be obtained under DA condition 

(~96% AT). Therefore, the Raman spectrum measured under DA condition was fitted (Figure 3.9 

(a)) with equation (4.11), which is the sum over a series of Gaussians (𝐺𝑖): 
𝐹𝐹𝑇𝐴𝑇 𝐺𝑆 = ∑𝑎𝑖 ∗ 𝐺𝑖𝑛

𝑖  (𝜈𝑖, 𝜔𝑖) (4.11) 

Here, each Gaussian (𝐺𝑖) represents an individual mode with the amplitude 𝑎𝑖, central frequency 𝜈𝑖 and width 𝜔𝑖. Thus, all the Raman modes appearing for the AT isomer were obtained. After 

evaluation of pure ground Raman spectrum of AT (𝐹𝐹𝑇𝐴𝑇 𝐺𝑆), this information can be used to 

disentangle the pure spectrum of 13C GS by a constrained fit: 

 

Figure 3.9: Multi-Gaussian fit of (a) DA and (b) LA non-resonant DFWM FFT spectra probed at 
590 nm. The series of Gaussians represented by green curves in each graph. Black line in (b) 
represent the spectra of AT isomer which is kept constant during this constrained fit.  



44 Chapter 3 

 

 

 𝐹𝐹𝑇𝐿𝐴 𝐺𝑆 = ∑𝑎𝑗 ∗ 𝐺𝑗𝑛
𝑗  (𝜈𝑗, 𝜔𝑗) + 𝑓 ∗ 𝐹𝐹𝑇 𝐴𝑇 𝐺𝑆 (4.12) 

Here, the fitted spectrum (𝐹𝐹𝑇 𝐴𝑇 𝐺𝑆) obtained from the previous multi-Gaussian fit was kept 

constant and the parameters (𝑎𝑗, 𝜈𝑗, 𝜔𝑗) of a new set of Gaussians, which represent the modes of 

the 13C isomer, were varied to fit the LA non-resonant DFWM FFT spectrum (Figure 3.9 (b)). 

The factor, f in equation (4.11) depends on the percentage (36%) of AT present under the LA 

condition. Since the DFWM signal is directly proportional to the square of the molecular 

concentration, f should be equal to the square of the fraction of AT isomer present in LA ASR: 

(0.36)2=0.13. The fitted value obtained for the factor (f=0.14 ±0.02) matches this value very well. 

The same approach was taken to obtain the spectra of the K-photoproducts of each isomer (K13C 

and KAT, see Figure 5.3). 

 



 

  

 

Population dynamics of Anabaena 

Sensory Rhodopsin 

There are two main objectives of this chapter. The first motive is to compare the photo-induced 

ultrafast dynamics of ASR with that reported for other retinal proteins. The second as well as the 

major motive is to illustrate the influence of the ground state retinal configuration on the 

isomerization dynamics. For that purpose, the photo-induced isomerization dynamics of all-trans 

(AT) and 13-cis (13C) isomers of retinal protonated schiff base (RPSB), bound inside the retinal 

pocket of Anabaena Sensory Rhodopsin (ASR), were compared. In particular, we exploit a set of 

broadband femtosecond transient absorption (TA) measurements with sub-50 fs time resolution to 

follow the transient electronic population decay until 6 ps after the photoexcitation. First, the 

photo-induced dynamics of ASR have been described in analogy with that reported for other retinal 

proteins. Subsequently, we disentangled TA signal associated with each isomer from the raw TA 

data set measured under dark and light adapted conditions that comprises different ratios of ground 

state isomers. Finally, a global target analysis of the broadband TA data sets of AT and retrieved 

13C isomers has been done with a kinetic model well known for the retinal proteins. The 

comparison of photo-induced dynamics of AT and 13C isomer shows that the 13C isomer has 

almost five fold faster kinetics compared to the AT isomer. The implications as well as the 

plausible reasons behind this asymmetric behavior between the photo-chemical dynamics of the 

AT and 13C isomers of ASR have been discussed thoroughly. 
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4.1 Ground state absorption spectrum 

Ground state absorption spectrum of ASR under dark adapted (DA) condition is centered at 548 

nm (Figure 4.1 (a)) and contains almost exclusively AT isomer (Figure 4.1 (b)). A continuous 

irradiation for 30 minutes with a light source (LED) with a center wavelength of 590 nm 

(illumination spectrum shown by orange line in Figure 4.1 (a)) causes ASR to reach a light adapted 

(LA) steady state photo-stationary equilibrium between the isomers. In this state, it contains a 

mixture (64% 13C and 36% AT) of the isomers (Figure 4.1 (b)). It results in a hypsochromic shift 

and reduction in intensity of the ground state absorption spectrum. This is due to the major 

contribution of the 13C isomer (64%) (Figure 4.1 (b)), which has smaller molar extinction 

coefficient and ~10 nm blue shifted λmax compared to the AT isomer.45, 90 

 

Figure 4.1: (a) Absorption spectra of wild type ASR under dark (black) and light (red) adapted 
conditions. The pure ground state spectrum of the 13C-isomer (blue dashed) has been calculated 
by taking a linear combination (exploiting equation (4.6) and (4.7)) of the dark and light adapted 
spectra using the known isomeric ratio, obtained from the HPLC analysis. Filled grey and solid 
orange curves in (a) represent excitation and illumination spectrum, respectively. (b) Percentage of 
all-trans (black bar) and 13-cis (red bars) isomers of ASR under the DA and LA conditions. 
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4.2 Pump-probe measurements 

Since ASR contains widely different isomeric ratios (Figure 4.1 (b)) in the two different adaptation 

(DA vs LA) conditions, it is possible to compare the isomerization dynamics of AT and 13C 

isomers by measuring the transient optical signals (e.g. absorption, fluorescence)45, 90. For that 

purpose, a set of transient absorption measurements was carried out under the DA and LA 

conditions. The experimental setup used for this study has been explained schematically in 

Figure 3.2 of the previous chapter. Here, the excitation spectrum was centered at the maxima of 

the ground state absorption spectra (Figure 4.1(a)) and a white light continuum covering the 

wavelength range from 400 to 720 nm (Figure 3.3) was used as the probe spectrum. The time 

resolved UV-Visible broadband difference absorption spectra of wild type ASR, measured under 

the DA and LA conditions, are shown in Figure 4.2. In both data sets, a fast decaying positive 

 

Figure 4.2: Time resolved difference absorption spectra of wild type ASR measured under (a) dark 
and (b) light adapted conditions. (c) Initial 1 ps of this spectro-temporal evolution of the difference 
absorption spectra under light adapted condition. Different characteristic peaks: Excited state 
absorption (ESA), Ground State Bleach (GSB), Stimulated Emission (SE), Photo-product 
absorption (PA) appear along the probe delays are marked. (d) Spectral cuts at selected probe 
delays. The transient spectral shifts are shown by the arrows in both (c) and (d). 
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(~490nm) and negative (~560nm) bands can be observed. These bands are assigned to the excited 

state absorption (ESA) and ground state bleach (GSB) of the ASR, respectively.45, 90 In addition, 

a red shifted positive signal (~620nm) with a delayed rise and slow decaying kinetics can also be 

detected in both cases. This is assigned to a photo-induced absorption (PIA) band.  

A closer look at the initial 1 ps dynamics of these three bands (Figure 4.2 (c)) show that soon after 

the excitation, an ESA appears around 490 nm. This undergoes a blue shift and decays rapidly in 

sub-ps time scale. Along this, a red shift of the stimulated emission (SE) band from 620 nm to 700 

nm can also be clearly observed in earlier time (<200 fs). Both of this spectral shifts represents an 

initial excited state relaxation.45, 90 In addition, a PIA band around 630 nm, which is assigned to a 

red shifted ESA band, remains covered by the SE band in earlier probe delays and starts to appear 

only around 200 fs. Afterwards, this photo-induced absorption band rises to reaches the maximum 

of the TA signal around 600 fs. The rise of this band indicates the formation of a hot photoproduct, 

which is usually named as ‘J’-intermediate in the photochemistry of rhodopsin.28, 85 Subsequent 

decay (<100 ps) along with a continuous red shift of this photoproduct absorption (PA) band hints 

a vibrational relaxation of the hot intermediate to a nanosecond lived ‘K’-intermediate: all-trans, 

15-syn for 13C and 13-cis, 15-trans for AT (see the photocycle of ASR in Figure 1.2).45, 89 

4.3 Comparison of isomerization dynamics of AT and 13C isomer 

The photo-induced isomerization dynamics associated with each isomer were retrieved by taking 

a linear combination on the and TA signal measured under the DA and LA conditions (Figure 4.3). 

Despite the similar appearance of all three characteristic spectral bands and their shifts in the TA 

data, as discussed in previous section, the 13C-isomer shows faster kinetics compared to the AT 

isomer at all probing wavelengths. This dynamical difference is depicted clearly in 

Figure 4.3 (c)-(e). It illustrates that the decay of the ESA (λProbe=450 nm), the recovery of the GSB 

(λProbe=550 nm) as well as the formation of first photoproduct ‘J’ (λProbe=620 nm) are accelerated 

for the 13C isomer compared to the AT isomer. This drastic difference in kinetics between these 

two isomers has been quantified by a bi-exponential fit (Table 4.1) of each transients leaving initial 

120 fs to avoid the coherent artefact. It reveals that the initial dynamics of the 13C isomer is more 

than 2-fold faster than the AT-isomer. For example, the initial ESA signal at 450 nm decays with 
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a time constant (τdec1) of 510 ±5  fs for the AT isomer, whereas, it decays with a time constant of 

220 ±7 fs for 13C isomer. Similarly, a stark contrast in the kinetics has also been observed for the 

 

Figure 4.3: Pure contributions of (a) AT and (b) 13C-isomer of wild type ASR on Pump-probe 
signal, retrieved from that TA data sets measured under dark and light adapted conditions 
(Figure 4.1) using equations (5)-(7). The transient at three different probing wavelengths:  (c) 450 
nm, (d) 570 nm and (e) 620 nm for AT (grey) and 13C (orange) isomers are shown on right. Each 
of the transients are fitted with a bi-exponential model: double decay model for (c) and (d) whereas, 
a model including a rise and decay component for (e). 

Table 4.1: Time constants obtained by bi-exponential fitting of the transients. The transient were 
taken at different probing wavelengths under DA (~AT), LA conditions and also for retrieved 
13C-isomer. The transients at 450 and 550 nm were fitted with bi-exponential decay model (τdec1 
and τdec2) whereas the transients at 620 nm were fitted with bi-exponential one rise-one decay 
model (τrise and τdec) as depicted in Figure 4.3(c)-(e). 

Sample 
λ

Probe
=450 nm λ

Probe
=550 nm λ

Probe
=620 nm 

τdec1 τdec2 τdec1 τdec2 τrise τdec 

DA/ AT 510 ±5 fs 2.0 ±0.1 ps 540 ±8fs 2.6 ±0.1 ps 260 ±7fs 5.0 ±0.2 ps 

LA 260 ±10 fs 1.3 ±0.1 ps 280 ±5 fs 2.2 ±0.1 ps 130 ±10 fs 3.2 ±0.1 ps 

13C 220 ±7 fs 1.2 ±0.1 ps 270 ±8 fs 2.1 ±0.1 ps 100 ±8 fs 2.2 ±0.1 ps 
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rise (τgrow) of the photo-induced absorption band (mixed with ESA and PA): it rises with a time 

constant (τgrow) of 260 fs for the AT, whereas it is about 100 fs for the 13C. 

4.4 Global target analysis 

In order to obtain more physical insight into the differences of the dynamics of the AT and 13C 

isomers of ASR, a global target analysis of the TA data set was carried out. For that, a physically 

relevant five-component sequential model, which has been well-accepted44-45, 72, 79, 96, 125-130 for 

other microbial retinal proteins (MRP’s) (such as bacteriorhodopsin, halo-rhodopsin, chanello-

rhodopsin, proteo-rhodopsin), was chosen: 

𝐴 𝑡1→ 𝐴1 𝑡2→ 𝐼 𝑡3→ 𝐽 𝑡4→ 𝐾 𝑡5→ 

In the context of retinal photochemistry, 𝐴 represent the Frank-Condon excited species, formed 

just after the excitation, whereas 𝐴1 represents the species generated by the relaxation of the 

initially excited species via bond length alternation. The decay of the species, 𝐴1 leads to the 

 

Figure 4.4: Species associated difference absorption spectra (SADS) of (a) AT and (b) 13C isomer 
obtained from the global fitting with 5 components sequential model. Black dotted curve in each 
graph represents the instrumental response functions (IRF). Red, green, brown, blue and magenta 
curves represent the first, second, third, fourth and fifth species, respectively. Associated time 
constants for each SADS are shown in each graph. 
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formation of a fluorescent intermediate, 𝐼.  The species 𝐾 is known to be the long lived (~µs) 

photo-product formed after the internal conversion. In fact for bacteriorhodopsin, species 𝐼 and 𝐾 

are a well-defined intermediate (𝐼460 and 𝐾610), which show their absorption maxima at 460 nm 

and 610 nm, respectively.28, 44, 72, 79, 131 

The species associated difference absorption spectra (SADS) (Figure 4.4) for both AT and 13C 

isomers were calculated by an iterative global fitting algorithm with the aforementioned sequential 

model. The fitting was able to reproduce more than 99% of the experimental data. The SADS 

obtained by this analysis matches well with that reported by Wand et al.45 The time constants 

associated with each SADS are summarized in Table 4.2, which also agrees with the reported 

values.45 However, the error bars for the determination of the time constants has been improved at 

least by a factor of three in our study compared to that reported earlier45 because of the higher S/N 

ratio in the pump-probe signals (see section 3.2.1). 

In line with the previous analysis of bi-exponential fitting (Figure 4.3), the global target analysis 

with aforementioned model reveals a faster deactivation kinetics for the 13C isomer compared to 

the AT isomer (Figure 4.4). A comparison of SADS of the first transient species (red line in Figure 

4.4) appearing for AT and 13C isomers shows a stronger amplitude at the red wing (> 600 nm) for 

the latter compared to the former. However, the value of this time constant (t1) appears to be the 

same (~30-40 fs) for both AT and 13C isomers within the precision of our measurement. The main 

difference in kinetics between AT and 13C isomers appears for t2 and t3 (Table 4.2), which 

correspond to the formation of 𝐼 and J species, respectively. The formation of J-species is almost 

2-times faster for the 13C isomer compared to the AT isomer. In contrast, t4, which indicates the 

relaxation of the hot-photo intermediate ‘J’, appears to be the same for both isomers. 

Table 4.2: The parameters obtained by global fitting of pump-probe data sets for AT and 13C 
isomers of wild type ASR by a five component sequential model: A→A1→I→J→K→ 

Sample t
1
 t

2
 t

3
 t

4
 t

5
 

AT 40 fs (±10) 280 fs (±30) 800 fs (±20) 3.1 ps (±0.3) Inf 
13C 30 fs (±10) 180 fs (±30) 470 fs (±30) 3.1 ps (±0.2) Inf 
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4.5 Discussion 

The broadband TA measurements on ASR illustrates the evolution of the transient electronic 

spectra as the reaction proceeds. All the general appearance of the spectral bands for ASR (under 

both dark and light adapted conditions), are reminiscent to that reported for other microbial retinal 

proteins like bacteriorhodopsin,44, 72, 79, 125, 130 halo-rhodopsin,96, 126-127, 132 chanello-rhodopsin,133 

proteo-rhodopsin128-129. A stimulated emission band in the near infrared region as well as a blue 

shifted excited state and a red shifted photo-product absorption spectra compared to the ground 

state absorption spectra, as observed in the TA data of ASR (Figure 4.2), are quite common 

characteristics for all these microbial retinal proteins (see Figure 4.5). In addition, the transient 

spectral shifts of these bands during the reaction (blue shift of ESA and red shift of SE band) are 

also qualitatively similar (Figure 4.5).  

The photo-induced dynamics of ASR has been further analyzed by the global target analysis 

(Section 4.4) using a kinetic model, which has been proposed earlier to describe the retinal 

isomerization dynamics. It estimates the first time constant (t1) as 30-40 fs, which is believed to 

be associated with a rapid excited state relaxation (A→A1) via a structural reorganization of the 

retinal moiety. This timescale is also in good agreement with that reported for bacteriorhodopsin134 

 

Figure 4.5: Photo-induced isomerization dynamics of (a) bateriorhodopsin, (b) 
chanello-rhodopsin and (c) halo-rhodopsin measured by transient absorption spectroscopy. 
Different characteristic bands: ground state bleach (GSB), excited state absorption (ESA), 
stimulated emission (SE) and photo-product absorption (PA) are shown. Shifts of the spectral 
bands are highlighted by the white dotted arrows. The graph (a), (b) and (c) are adapted with 
permissions from the following references: Wand et al.130 (copyright 2012 American Chemical 
Society), Verhoefen et al.132 (copyright 2010 Wiley-VCH Verlag GmbH & Co) and Kobayashi et 

al.132 (copyright 1998 American Chemical Society), respectively. 
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as well as with that predicted by a quantum chemical calculation on visual rhodopsin.77 

Furthermore, the SADS of species ‘I’ and ‘K’ match well with the spectrum of the fluorescent 

state, I460 and the long lived sub-µs intermediate, ‘K610’ of bacteriorhodopsin, respectively.131, 135-

137 Moreover, we observed a non-exponential decay during the internal conversion in analogy with 

the previous report.45 In general, the multi-exponential nature of the internal conversion kinetics 

are quite common features among all the retinal proteins.44, 72, 79, 96, 125-129, 138 It is interpreted as the 

channelization of the excited state population to different routes, which lead to either reactive or 

non-reactive pathways.44, 126, 139-140 This bifurcation may arise due to an inhomogeneous charge 

distribution surrounding the retinal chromophore inside the retinal pocket or because of the nature 

of the excited state topology.44, 139-140 Whatever it is, this multi-exponential kinetics can be 

reasonably described as bi-exponential (I→J→K) for both isomers of ASR. Nevertheless, it must 

be kept in mind that this bi-exponential kinetics is only a crude approximation of a continuous 

distribution lifetimes44 representing different reaction channels. 

In spite all these qualitative similarities in the appearances of transient species of all microbial 

retinal proteins including ASR, the reaction rates are found to be widely different as shown in 

Table 1.1. This infers that the extent of change in electrostatic interaction between the RPSB and 

surrounding amino acid residues from one to other protein are not large enough to affect the overall 

electronic spectral features of the transient species, but significant enough to influence the 

isomerization dynamics. 

The influence of the ground state retinal configuration was evaluated by comparing two opposite 

coordinates of the retinal isomerization reaction i.e. AT to 13C and 13C to AT, within the same 

protein environment. While the former reaction can be directly accessed from the TA signals 

measured under the DA condition, the latter needs the retrieval of the associated dynamics from 

the data set measured under the LA condition. Eventually, the TA signals measured under both 

DA and LA conditions show very similar gross spectral evolution. However, retrieval of the pure 

TA signal associated with 13C isomer was possible by subtracting the counterpart of AT signals 

from LA data set (Section 3.3.3). A comparison of AT and retrieved 13C isomer kinetics reveals 

a striking dynamical difference. The global target analysis further points out that the AT and 13C 

isomers differ only in the sub-ps kinetics, whereas the relaxation of the photo-product appears to 

be the same for both (Section 4.4). In spite of the observation of this difference in kinetics, it is 

difficult to quantitatively estimate and compare the excited state lifetimes of the AT and 13C ASR. 
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This is because none of the spectral region within the probing window (400-720 nm), available in 

this experiments, show any pure excited state dynamics; rather it is always partially overlapped 

with the GSB signals. However, a quantitative estimation of the excited state lifetimes has been 

done by Cheminal et al.90 comparing the transients in the near infrared region (>800 nm), where a 

pure excited state emission band appears i.e. devoid of any ground state dynamics. In addition, it 

reports an excited state lifetime of 770 ±20 fs and 170 ±40 fs for AT and 13C isomer, respectively. 

This study also reports a higher relative quantum yield for the AT isomer compared to the 13C 

isomer, which is in agreement with the absolute quantum yield values estimated by Kawanabe et 

al.: AT (0.24) and 13C (0.38).89 

The striking contrasts between the reaction rates and quantum yields for the retinal of two different 

ground state configurations has a profound significance in the context of retinal photochemistry. 

In this regard, a similar comparison of the reaction rates of 11-cis and 13-cis with all-trans retinal 

protonated schiff bases (RPSB) in organic solvents showed that cis-conformers are only 

marginally accelerated compared to trans-isomers.26 In contrast, 13C isomer of BR shows almost 

three times shorter excited state lifetime compared to AT isomer.130 It is almost 5 times in case of 

ASR. This has been qualitatively rationalized by a quantum chemical trajectory calculation,91 

which predicts an asymmetric nature in the excited potential energy surface. More specifically, it 

shows presence of a barrier in the pathway of AT isomer, whereas the same feature is absent for 

13C isomer. This causes a dynamical trapping of the excited state population and therefore, it 

causes a deceleration in the internal conversion rate. These results infer that the same opsin moiety 

can interact with the two bound retinal isomers different and lead to an asymmetry in two optically 

active reversed reactions. This disparity in the electrostatic interaction hints at the difference 

between the bindings of the AT and 13C isomers inside the retinal pocket, which may arise due to 

difference in geometrical strains generated to fit the specific isomer inside the retinal cavity. In 

past, protein catalyzed pre-distortion of the ground state structure49, 80-81, 84, 141-144 has been proven 

to accelerate the isomerization kinetics for the visual rhodopsin, which exhibits the fastest 

isomerization rate29-30, 68 among the family of retinal proteins. However, X-ray crystallography 

study indicated no significant difference in torsion around active C13=C14 bond of the AT and 13C 

isomers in ASR.50 Till the date only indirect evidence, which might explain the observed 

asymmetric photo-chemical dynamics, comes from a FTIR study.145 This study captures the 

movement of the amino acid residues connected to the retinal chromophore by tracking FTIR 
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spectral signatures before and after (>100 ps) the completion of isomerization. This comparison 

showed a larger rotation of the schiff base moiety and consequently a stronger disruption of H-

bond attached to the schiff base N-atom for the AT isomer compared to the 13C isomer. This might 

explain why the AT isomer takes longer time to accomplish the isomerization compared to the 

13C isomer. However, this picture is hard correlate with the observation of the energy barrier along 

the excited trajectory.91 This is because FTIR study145 shows the structural difference only before 

and after (>100 ps) the completion of the isomerization reaction, but tells nothing about the 

structural change during the excited state evolution of the system from the Franck-Condon excited 

state to the ground states via the conical intersection. Therefore, it is necessary to track the sub-ps 

structural changes of the retinal in order to rationalize the molecular reason behind this asymmetric 

toggling of retinal chromophore in ASR, which will be the presented in the next chapter. 

4.6 Conclusion 

We present a femtosecond transient absorption study of retinal isomerization of ASR, which 

accommodates both AT and 13C isomers inside the retinal pocket. The comparison shows a large 

disparity in the photo-induced reaction dynamics of AT and 13C isomer. The 13C isomer shows a 

ballistic kinetics and the isomerization completes within 200 fs, which is very similar to visual 

rhodopsin. The AT isomer shows, about five fold slower kinetics, which is reminiscent to 

bacteriorhodopsin. In the view of very similar accelerated dynamics for the cis-isomers of ASR 

(13-cis), visual rhodopsin (11-cis)29-30 as well as bacteriorhodopsin (13-cis),130 it reiterates the 

question, whether the ground state retinal configuration is the sole factor to govern the 

isomerization dynamics. However, a large difference in dynamics between rhodopsin (11-cis) and 

iso-rhodopsin (9-cis), both incorporating a cis-conformation in the ground state, speaks against 

this generalization.140 Nevertheless, both cis-conformers are relatively faster than all-trans isomer. 

This stark contrast of photo-induced dynamics inside the same protein architecture raises the 

fundamental question about the factor differentiating the protein catalyzed isomerization reaction 

of the trans and cis isomers of RPSB. This, in turn, raises the demand to track and compare the 

structural changes of each isomer as the reaction proceeds, which will possibly reveal the 

molecular reason behind the asymmetric toggling.



 



 

  

 

Vibrational dynamics of Anabaena 

Sensory Rhodopsin1 

A large difference in the isomerization dynamics and quantum yields of the all-trans (AT) and 

13-cis (13C) isomers of bound retinal protonated Schiff base (RPSB) inside the protein cavity of 

Anabaena Sensory Rhodopsin (ASR) has been reported in the previous chapter. This raises the 

question about the mechanistic origin behind this difference. One way to unveil the reason would 

be to track and compare the structural change of the AT and 13C RPSB during the time span (<ps) 

of the isomerization reaction. In this chapter, we apply coherent Raman spectroscopic techniques 

like pump-degenerate four wave mixing (pump-DFWM), pump impulsive vibrational spectroscopy 

(pump-IVS) to capture the excited state structural change. Our findings point to distinct features in 

the ground state structural conformations as well as to drastically different evolutions in the excited 

state manifold of the AT and 13C isomers. The ground state vibrational spectra show stronger 

Raman activity of the C14-H out-of-plane wag (at about 805 cm-1) for the 13C isomer than for that 

of the AT isomer, which hints at a larger pre-distortion for the former in the ground state. Evolution 

of the Raman frequency after interaction with actinic pulse shows a blue shift for the C=C 

stretching and CH3 rocking mode for both isomers. For the AT, however, the blue shift is not 

instantaneous as observed for the 13C isomer, rather it takes more than 200 fs to reach the 

maximum frequency shift. This frequency blue shift has been rationalized by a decrease of the 

effective conjugation length during the isomerization reaction, which further confirms a slower 

                                                 
1 This chapter includes a part of the contents (e.g. data, figures, text) used in the manuscript: “Mapping the ultrafast 

vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin”, P. P. Roy, Y. 
Kato, R. Abe-Yoshizumi, E. Pieri, N. Ferré, H. Kandori and T. Buckup, submitted to Phys. Chem. Chem. Phys., August 
29, 2018. 
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formation of the twisted state for the AT isomer and corroborates the presence of a barrier in the 

excited state trajectory previously predicted by quantum chemical calculation. 

5.1 Results of non-resonant DFWM experiments 

DFWM and IVS experiments, with a DFWM/IVS excitation spectrum, almost non-resonant to 

ASR ground state absorption (Figure 5.1), were carried out to capture the ground state (GS) 

vibrational spectra. The FFT spectra obtained after the subtraction of non-oscillatory contributions 

from the transients (see section 3.3.2), show the activity majorly in the high frequency region 

(>1000 cm-1) in both DFWM (Figure 5.2 (a)-(d)) and IVS (Figure 5.2 (e)-(h)) experiments. A weak 

activity in the low frequency region (< 400 cm-1) was also observed, especially at the detection 

wavelength at 630 nm, where the relative amplitudes of the high frequency (>1000 cm-1) modes 

are lowered. This variation of relative intensity of low and high frequency modes from the edge 

(590 nm) to the center (630 nm) detection wavelength of DFWM/IVS spectrum are in agreement 

with the natural spectral dependence of non-linear signal in CARS-based schemes118 (see also 

section 2.5). 

 

Figure 5.1: Ground state absorption spectra of ASR in dark (AT) and light adapted (mixture of 
AT and 13C) conditions are shown by black and orange lines, respectively. The spectrum of pure 
13C isomer (blue dotted line) was derived by taking linear combination of the dark and light 
adapted absorption spectra using known isomeric ratio. Normalized difference absorption (ΔA) 
spectra at pump-probe delay of 100 ps is shown by the magenta curve. Different characteristic 
bands: GSB (ground state bleach) and PIA (photo-induced absorption) are shown. Green and red 
(solid in (a) and line in (b)) curve represent the spectrum of the Actinic Pulse (AP) and degenerate 
pump/stokes/probe (DFWM) or push/probe (IVS) spectrum, respectively. 
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The comparison between the FFT spectra under dark adapted (DA) and light adapted (LA) 

conditions shows mainly three characteristic features. Firstly, the modes which appear at 1003 and 

1530 cm-1 in the DA DFWM FFT spectrum (Figure 5.2 (a) and (c)) shift to 1007 and 1539 cm-1 

(Figure 5.2 (b) and (d)), respectively, for the LA ASR. Secondly, the DFWM FFT spectrum of DA 

 

Figure 5.2: The FFT spectra obtained after subtraction of the non-oscillatory components from the 
transients of DFWM (a-d) and IVS (e-h) experiment probed at 590 nm (a, b, e, f) and 630 nm (c, 
d, g, h). The left and right column represent the FFT spectra of DA and LA ASR respectively. The 
spontaneous Raman spectra of DA and LA ASR have been shown on the bottom graphs i and j 
respectively. The grey shaded area (~750-950 cm-1) represents the characteristic frequency region 
of the HOOP modes of RPSB. 
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ASR shows two peaks around 1165 and 1230 cm-1, while for the LA ASR they appear at 1180 and 

1300 cm-1. All these changes are also observed in IVS measurements (compare Figure 5.2 (e) and 

(g) to (f) and (h)). For instance, the modes around 1100-1400 cm-1 also show in IVS qualitatively 

similar contrasts between the DA and LA ASR as observed in DFWM measurement. Three peaks 

at 1161, 1215 and 1270 cm-1 for the DA ASR (Figure 5.2(e) and (g)) change to 1175, 1220, 1270 

and 1340 cm-1 under the LA condition (Figure 5.2 (f) and (h)). Finally, the modes appearing in the 

region of 750-950 cm-1 (grey shaded area in Figure 5.2), in particular the mode at about 806 

(DFWM)/ 803 cm-1 (IVS), shows relatively stronger amplitude for the LA ASR than the DA ASR. 

This is a very important result which will be discussed later. 

The observed GS fingerprint vibrational modes of RPSB have been already well assigned in 

previous reports.53, 84, 141, 143, 145-148 We hereby follow the same assignments of the main spectral 

peaks to specific vibrational motions (Table 5.1). For example, the mode around 1000-1010 cm-1 

is assigned to CH3 rock and that around 1530/1540 cm-1 is assigned to C=C stretching mode. The 

Table 5.1: Comparison of the central frequencies (in cm-1) of the spectral peaks obtained from non-
resonant DFWM, IVS and spontaneous Raman measurements (shown in Figure 5.2). Assignment of 
the modes are done based on value reported on the literatures.53, 84, 141, 143, 145-148 

Dark adapted (98% AT) Light adapted (64% 13C; 36% AT) 

Assignment of the 

modes 
DFWM IVS 

Spon. 

Raman 
DFWM IVS 

Spon. 

Raman 

200, 300, 
520 

190, 280 - 
210, 350, 

520 
190, 280 - 

Delocalized 
torsion143, 147 

900 803, 890 802, 890 810, 900 803, 890 802, 890 
Hydrogen out of 
plane wag53, 84, 145 

1003 1003 1002 1007 1007 1008 
CH3 rock53, 141, 145-

146 

1165, 
1230 

1161, 1215, 
1270 

1177, 1196, 
1209, 1271 

1180, 
1300 

1185, 1202, 
1305, 1338 

1175, 1220, 
1275, 1340 

C-C stretch + C-C-
H in plane rock53, 

141, 145-146 

1530 1530 1530 1530 1539 1539 
C=C stretch53, 141, 

145-146 
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multiple peaks in the region from 1100 to 1400 cm-1 are mostly known as the signature of the 

stretching vibration of different C-C bonds present in RPSB, often coupled with C-C-H in-plane-

rock modes. In addition, the low frequency modes (190, 300 cm-1) are usually assigned to the 

delocalized torsional modes, whereas the Raman activity in the region 750-950 cm-1 (grey shaded 

area in Figure 5.2) is well known for the hydrogen out-of-plane (HOOP) wags (Table 5.1). In 

addition, a non-resonant (λexc=785 nm) spontaneous Raman measurement (Figure 5.2 (i)-(j)) was 

performed to further corroborate the vibrational spectra obtained from the time resolved 

experiments (DFWM and IVS). While the non-resonant Raman results match very well most of 

the frequencies and respective shifts observed with DFWM/IVS (Figure 5.2(a)-(h)), there are three 

major contrasts: (i) Different frequencies for modes in the spectral region between 1100 and 

1400 cm-1, (ii) Complete absence of low frequency modes (<750 cm-1) in the non-resonant Raman 

measurements (which were active in the DFWM/IVS measurements) and (iii) Different amplitude 

of the 803/805 cm-1 mode. (see section 3.3.2) 

5.2 Separation of species specific contribution 

 While the spectral features observed for DA and LA ASR (Figure 5.2) already mirror the different 

isomer concentrations, in the following a quantitative extraction of the pure AT and 13C spectra 

will be performed. In section 3.3.3, it is shown how individual contribution of each species from a 

spectrum can be seprated, where more than one species contribute e.g. the FFT spectrum of LA 

ASR which contains the mixture of AT and 13C isomers. Following this approach, the pure 

spectrum of the ground state of the 13C isomer is obtained (Figure 5.3).  

The same approach can also be applied to obtain the spectrum of the K-photoproduct of each isomer 

(K13C and KAT). In order to obtain the DFWM signals of these photoproducts, each isomer was 

directly excited by an actinic pulse spectrally resonant with the respective GS absorption (Figure 

5.1). The DFWM spectrum was still spectrally resonant with the photo-induced absorption (PIA) 

band (see Figure 5.1) but delayed at T=100 ps after the AP. This particular delay was chosen as the 

formation of the vibrationally cold K-photoproduct is known to complete within 100 ps (see 

Figure 1.2).45, 90 The pump-DFWM signal in this condition contains several contributions. The 

signal of DA ASR after 100 ps, for example, contains contributions of the AT GS and of KAT, 
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which are reasonably easy to separate in case of pump-DFWM and less in pump-IVS due to noise 

(see section 3.3.2). The pump-DFWM signal of the LA ASR, however, is much more challenging: 

At 100 ps delay, it contains the signal of the GS of both isomers, as well as from both 

photoproducts. In order to extract the K13C, the spectra of AT, KAT and 13C must be used, which is 

inherently more susceptible to noise. With this information in mind, the pure spectra of four 

different stereo-isomers (GSAT, GS13C, KAT and K13C) appearing in the photo-cycle are depicted in 

Figure 5.3.  

Several differences in spectral signatures of these four species can be observed. For example, the 

C=C stretching mode of 13C GS (1541 cm-1) gets blue shifted compared to that of AT GS 

 

Figure 5.3: The separated pure spectra of AT GS, 13C GS, KAT and K13 are represented by black, 
red, blue and orange line, respectively. The black dotted lines represent the central frequencies 
obtained for AT GS. 
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(1530 cm-1). Also, isomerization at C13=C14 position causes the C=C stretching mode to shift in the 

higher frequency from AT GS (1530 cm-1) to KAT (1538 cm-1), whereas it shifts to the lower 

frequency from 13C GS (1541 cm-1) to its corresponding sub-ns photo-product K13C (1524 cm-1). 

Similar trend is also observed for the CH3 rock mode of KAT while for K13C, it gets blue shifted 

compared to 13C GS. The frequencies and amplitudes of modes in the spectral region between 

1100 and 1300 cm-1 are very different for each isomer. Finally, it is important to note that the 

spectral peaks appearing in the region 1300-1450 cm-1, which have been assigned to C-C-H 

in-plane rock mode (Table 5.1), do not change from 13C GS (1305, 1427 cm-1) to K13C (1307, 

1427 cm-1), whereas a significant change is observed from AT GS to KAT. A single weak peak at 

1408 cm-1 appears for AT GS, while at least two strong peaks appear for KAT (1364, 1446 cm-1) in 

this region. 

5.3 Pump-DFWM experiments in sub-ps time scale 

In order to follow the isomerization reaction of both 13C and AT in the excited state, pump-DFWM 

measurements were performed by varying the actinic pulse delay (T) up to about 1 ps (Figure 5.4). 

Fourier-transformed spectra for the DA and LA are displayed in Figure 5.4 (a) and (b), 

respectively. In both samples, two common changes can be observed after the arrival of the actinic 

pulse (T>0): (i) amplification of the high frequency modes (>1000 cm-1) and (ii) appearance of the 

strong low frequency modes (100-400 cm-1), in particular for LA ASR (Figure 5.4 (a)), which were 

very weak in the GS (Figure 5.2). Moreover, a closer look on the high frequency (>1000 cm-1) 

modes (Figure 5.4(c)) shows a significant spectral shift with the actinic pulse delay. The major 

spectral shifts of DA and LA ASR happen within 800 and 200 fs, respectively, which matches the 
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excited state lifetime of the AT (770 fs)  and 13C (170 fs) isomers.45, 90 The frequency evolution 

for each of the characteristic vibrational modes are described in the following. 

5.3.1 C=C stretching and CH3 rock modes 

 Figure 5.4(c) depicts the evolution of C=C stretch and CH3 rock modes for DA ASR. Here, a 

negative time delay means the actinic pulse comes after DFWM interaction, which should basically 

give the GS vibrational spectra. Hence, the central frequencies of C=C stretch and CH3 rock modes 

at T=-100 fs, which appear at 1530 and 1002 cm-1, match the GS frequencies obtained by 

non-resonant DFWM experiments (Figure 5.2). At initial positive T-delays (until 200 fs), each of 

these modes shows a rapid blue shift and subsequently a slower red shift (see e.g. DA in 

Figure 5.4(c)). Although the FFT spectra at T>0 contains the major contribution of the transient 

species being resonantly probed at the corresponding time, a minor contribution of GS coherence, 

due to the non-resonant Raman interaction, still contaminates the signal. As a consequence, pump-

 

Figure 5.4: The evolution of pump-DFWM FFT spectra probed at 590 nm for (a) DA and (b) LA 
ASR with the actinic pulse delay. (c) The frequency shift of C=C stretch (left) and CH3 rocking 
(right) mode for DA ASR with different actinic pulse delays. The black dotted lines represent the 
central frequencies obtained for AT GS (Figure 5.3). 
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DFWM FFT spectra at any positive actinic pulse delay (T) is not the pure spectra of the transient 

species formed within the corresponding time (T) after the initiation of the reaction by AP. Since 

the pure GS spectra of AT isomer is already known (Figure 5.3), it is possible to extract the pure 

spectra of the transient species present at different actinic pulse delays by the aforementioned 

(section 3.3.3) constrained multi-Gaussian fitting. 

By applying this method, the frequencies of C=C stretch and CH3 rock modes for AT are obtained 

as shown in Figure 5.5(a) and (c), respectively. AT shows a clear strong blue shift of 21 and 18 cm-1 

for the C=C stretch and CH3 rock modes, respectively, at T=200 fs compared to that of GS species 

(T<0). At longer delays (T>200 fs), it undergoes a red shift to 1538 and 1005 cm-1. These latter 

two frequencies are the central frequencies of the C=C stretch and CH3 rocking modes, 

respectively, of previously extracted pure KAT (Figure 5.3). The separation of all contributions to 

the transient LA ASR signal is more challenging than for DA ASR. Here, two ground state species 

are excited (AT and 13C), followed by two excited states and two photoproducts, which leads to 

much larger frequency uncertainties and ambiguous results. Therefore, the frequency shifts of the 

C=C stretch and CH3 rock modes for the LA ASR are shown without extraction (Figure 5.5(b) and 

 

Figure 5.5: The sub-ps evolution of C=C stretching (a, b) and CH3 rock modes (c, d) obtained for 
the pure excited state of AT isomer (a, c) and LA (b, d) form ASR. The central frequencies of pure 
GS (AT and 13C) and K-photo intermediates (KAT and K13C) are shown by black, red, blue and 
orange dotted lines respectively in each graph. Probe detection wavelength was 590 nm in each 
case. 
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(d), respectively). Nevertheless, a similar trend is observed as for AT, i.e. an initial blue shift takes 

place followed by a red shift. However, the blue shift is much smaller and the whole dynamics is 

much faster in the LA than for AT (compare e.g. Figure 5.5(a) to (b)). The maximum of the blue 

shift appears at much earlier actinic pulse delay (about T=40 fs) compared to AT form (about 

T=200 fs). 

5.3.2 Fingerprint (1100-1400 cm-1) region 

 As observed for the GS spectra (Figure 5.2), the fingerprint region around 1100-1400 cm-1 

(Figure 5.6) shows a congested spectrum after the actinic excitation, particularly for AT ASR. The 

double peak feature (1165 and 1230 cm-1) before time zero merges to single major peak (1193 cm-1) 

along with a minor peak (1330 cm-1) at T=100 fs for AT ASR. Afterwards, the major peak shows 

 

Figure 5.6: The evolution of finger print (1100-1400 cm-1) modes in the pump-DFWM FFT 
spectra for (a) AT and (b) LA ASR at different actinic pulse delay (T) probed at 590 nm. The 
vertical lines in (a) and (b) represent the corresponding central frequencies of AT and 13C GS, 
respectively. 
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a red shift till 200 fs which is followed by, a slow monotonous blue shift until the formation (200 

to 800 fs) of the hot-intermediate, commonly known as J-species in literature. Subsequently, it 

undergoes a small red shift during vibrational relaxation on a much longer time scale (1 to 100 ps) 

to form the cold photo-product (KAT). This contrasts to the signal of LA ASR where the major peak 

at ~1181 cm-1 undergoes a blue shift initially (T=40 fs) to 1187 cm-1 and does not shift afterwards 

within the excited state lifetime (<120 fs) of the 13C isomer. It only shows a small (1187 to 

1183 cm-1) red shift during the photo-product vibrational relaxation (~1 ps to 100 ps), similar to 

the AT-isomer. 

5.3.3 Low frequency (<400 cm-1) torsion and HOOP modes  

An activation of the low frequency modes below 400 cm-1 (Figure 5.7(a) and (b)) is observed in 

dependence of the actinic pulse delay, which was absent or very weak in GS (Figure 5.2). This 

contrasting activity of low frequency (<400 cm-1) modes is further evidenced in Figure 5.7 at 

several actinic pulse T-delays. A significant relative amplification of the low frequency modes 

(~190, ~300 cm-1), compared to the high frequency (>1000 cm-1) modes, is observed at T>0 for 

 

Figure 5.7: The relative amplification of low frequency modes probed at 590 nm (a, b) before 
(black, T<0) and (c, d) after (red, T>0) the arrival of actinic pulse for DA (a, c) and LA (b, d) ASR. 
(e) Comparison of the evolution of the normalized FFT amplitude for C=C stretching (black) and 
low frequency (~190 cm-1) (blue) modes for LA ASR. The former trace was fitted with a mono-
exponential decay model while the latter was fitted with bi-exponential model including a decay 
and rise components. Each of them was convoluted with a Gaussian instrumental response function 
(IRF). Initial 200 fs of the time axis has been expanded. 
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DA and LA ASR. Here it is important to note that the low frequency activity of LA ASR is much 

stronger than that of DA ASR. 

The evolution of the amplitude of the low frequency modes is different from other modes shown 

for LA ASR in Figure 5.7(e). The high frequency mode e.g. C=C stretch has non-zero amplitude 

before time zero; increases almost instantaneously after the arrival of actinic pulse (T<20 fs). It 

decays afterwards and shows a constant amplitude even after 600 fs which well beyond the excited 

state lifetime. In contrast, the low frequency (e.g. 190 cm-1) mode shows almost no amplitude at 

T<0 as well T> 600 fs. Afterwards, a delayed (~100 fs) rise can be clearly detected. The FFT 

amplitude of the low frequency (190 cm-1) modes takes about 100 fs to reach the maxima whereas 

that of C=C stretching mode reaches the maxima within the experimental time resolution after the 

actinic excitation (T=20 fs). More interestingly, the exponential rise time (70 ±20 fs) of low 

frequency (190 cm-1) modes matches the exponential decay time (60 ±40 fs) of C=C stretch mode 

(Figure 5.7(e)). In contrast to this significant evolution in the low frequency (<400 cm-1) region, 

no significant evolution of HOOP modes (800-1000 cm-1) is observed in our measurements. This 

will be further discussed and investigated in section 5.4.3. 

5.4 Discussion 

5.4.1 Ground state Raman activity 

Mode Assignment: A strong Raman activity of the vibrational modes mainly in the high frequency 

(>1000 cm-1) region of the spectra has been observed in non-resonant experiments (Figure 5.2). 

The convolution of DFWM/IVS spectrum with the GS absorption spectrum (Figure 5.1), gives a 

FWHM of about 500 cm-1 and, therefore, there is a negligible induction probability of a vibrational 

coherence above 500 cm-1 in the ES potential surface. Hence, all modes with frequencies well over 

500 cm-1 in these non-resonant measurements, including HOOP, CH3-rock, C-C and C=C modes, 

are assigned to GS manifold. This is further supported by the spontaneous Raman spectra 

(Figure 5.2(i) and (j)), which show a good correlation with the FFT spectra obtained from time 

resolved experiments for frequencies well over 500 cm-1. However, the weak but detectable Raman 

activity observed in the low frequency region (200 and 300 cm-1) in both DFWM and IVS signal,  
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does not appear in any spontaneous Raman spectra. If this low frequency activity originates from 

GS, it should definitely be visible in the spontaneous Raman measurements. Therefore, we assign 

all low frequency (<400 cm-1) activity detected with DFWM/IVS to the excited state manifold. A 

detailed discussion about the origin and activation mechanism of these mode will be done in section 

5.4.3. 

AT vs Cis RPSB: The extraction of the pure GS spectra of AT and 13C isomer (Figure 5.3) enables 

us to do a quantitative comparison. The central frequencies of C=C stretch and CH3 rock modes 

are shifted AT to 13C ASR. This is in good agreement with reported values for ASR.45 A similar 

increase of high frequency modes from all-trans to cis isomer has also been reported recently for 

chanello-rhodopsin149 and visual Rhodopsin70(see Table 5.2), which further corroborates the 

separation of the pure spectra of ASR. Furthermore, the C-C stretch region shows multiple 

distinguishable peaks between AT and 13C ASR (Table 5.1). Two peaks around 1165 and 

1230 cm-1, observed for AT ASR (Figure 5.3), are quite common for retinal chromophores in AT 

conformation in other proteins (Table 5.2). On the other hand, the appearance of a distinguishable 

mode above 1300 cm-1 for 13C ASR is a general marker of cis form (Table 5.2). In addition, the 

Table 5.2: Comparison of the selected fingerprint vibrational modes for all-trans and cis isomers found 
for ASR in this report and those reported for Retinal protonated schiff base (RPSB) in solution and 
different proteins: bacteriorhodopsin, visual rhodopsin and chanello-rhodopsin. 

Sample 
CH3 rock 

[cm-1] 
C-C stretch + C-C-H in-plane 

rock [cm-1] 
C=C stretch 

[cm-1] 

AT-RPSB in methanol106 1010 1160, 1205 1565 

Bacteriorhodopsin (AT)105 1008 1165, 1210 1530 

Visual-rhodopsin (AT)70 - 1167, 1322 1541 

Visual-Rhodopsin (11-Cis)70 - 1173, 1275, 1313, 1363 1550 

Chanello Rhodopsin (AT)149 1011 1161, 1208, 1281 1531 

Chanello Rhodopsin (13-Cis)149 1017 1157, 1196, 1301, 1369 1545 

ASR (AT) This thesis 1002 1164, 1229 1530 

ASR (13C) This theis 1006 1094, 1180, 1305 1541 
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C-C stretch mode which appears at 1180 cm-1 in case of 13C ASR, has been attributed as an 

indicator for the formation of 13C-isomer of bacteriorhodopsin (BR).150 

Dephasing of C=C stretch mode: A comparison of pure AT and 13C spectra shows a striking 

difference in width of the spectra, particularly for the C=C stretching mode (Figure 5.8(a)).87 The 

full width at half maximum (FWHM) of this mode for 13C obtained as 52 ±4 cm-1 whereas that for 

AT is 68 ±5 cm-1. This hints at the difference in the dephasing rate of GS vibrational wave packet. 

A sliding window FFT (Fig. 12) with a Gaussian window of 600 fs for each of DA (~AT), LA and 

13C (retrieved from LA) DFWM transients shows indeed the dephasing is faster (750 ±90 fs) for 

AT compared to 13C (1030 ±60 fs) (Figure 5.8(b)). Hence, the faster dephasing rate hints at 

stronger coupling of the AT GS with the surrounding bath compared to 13C GS. 

HOOP mode activity: The activity of HOOP modes (800-1000 cm-1) in GS (grey shaded region in 

Figure 5.2) has been interpreted as an indirect indicator of a distorted non-planar structure of 

RPSB.142-143 The relative amplitude of the HOOP modes, particularly at 805 cm-1, is higher in LA 

(major component is 13C) ASR compared to DA (98% AT) ASR. This observation is consistent 

in each (DA vs LA) of the spectra measured by three different spectroscopic techniques (DFWM, 

IVS and spontaneous Raman). All these together, hints at the presence of a non-planar structure for 

the 13C isomer, although it is much less distorted than the 11-cis isomer in visual Rhodopsin.84, 141-

143 A detailed assignment of H-wag modes is, however, necessary in order to specify the region of 

 

Figure 5.8: (a) Normalized C=C stretching modes of AT (black) and 13C (red) isomer. Where the 
former has FWHM of 68±5 cm-1 the latter has FWHM of 52±5 cm-1. (b) The dephasing time of 
C=C stretching modes of AT (black) and 13C (red) ground state isomers, obtained by a employing 
a sliding window FFT algorithm with a Gaussian window with a width of 600 fs and subsequent 
exponential fit (black and red solid lines). 
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distortion in the long Retinal chain. The complete assignment of H-wag modes for ASR has not 

been reported yet but it is well known for BR from the resonant Raman study by Smith et al.146 In 

that report, a mode at 800 cm-1 was assigned to C14-H out-of-plane wag and showed strong 

amplitude for 13C isomer whereas it almost disappears for AT isomer, similar to ASR in our study. 

Later, solid state NMR data151-152 indicated a difference in the structural rigidity along the 

C13=C14-C15 moiety between AT and 13C isomers inside the Retinal pocket of BR. Following the 

same line, our observation can be interpreted as both isomers are pre-twisted around or close to 

C13=C14 bond of Retinal chromophore but 13C isomer is well more distorted than AT. 

The exact position of this distortion and the differences between the two isomers can be further 

numerically investigated by applying a classical (harmonic) atomistic force field and performing 

molecular dynamics simulations of ASR embedded in a membrane model (Table 5.3). The 

geometry of AT and 13C GS inside the Retinal pocket shows that both isomers are equally distorted 

around the C13=C14 bond, i.e. the dihedral angle of C12-C13-C14-C15 is found to be +191.6° and 

11.7° (Table 5.3) for AT and 13C isomer, respectively. This is in well agreement with the value 

(~13°) previously reported by QM/MM geometry optimization calculations.91 These new 

calculations, however, shows that the isomers significantly differ around the neighboring C14-C15 

Table 5.3: Parameters obtained by performing a constant-pH molecular dynamics simulations 
(CpHMD)153 of ASR, with either AT or 13C retinal for 30 ns. This theoretical calculation was done 
by Dr. Elisa Pieri and Prof. Nicolas Ferré in Aix-Marseille University. Briefly, the ASR models have 
been built using the 1XIO structure available in the Protein Data Bank. Only the protein structure, the 
retinal chromophore and the crystallographic water molecules have been kept. The 58-66 missing 
loop, as well as missing hydrogen atoms, have been added before to embed the protein inside a 
membrane bilayer model, essentially made of 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphoethanolamine molecules, water molecules and Na+ + Cl- counter ions, using the CHARMM-
GUI web server.154 After the release of bad contacts (energy minimization, heating at 300K, 
equilibration), the full system has been studied at different pH values with CpHMD using the ff14sb 
Amber force field for the protein,155 TIP3P for the water molecules,156 lipid17157 for the membrane 
and parameters for retinal derived by Hayashi et al.158 Only the pH=7 results are reported below. 

 AT isomer 13C isomer 

Parameters Mean value 
Standard 
deviation Mean value 

Standard 
deviation 

C13=C14 1.413 Å 0.030 Å 1.413 Å 0.029 Å 

C12-C13-C14-C15 191.6° 7.3° 11.7° 7.2° 

C11-C12-C13-C14 176.3° 6.9° 176.3° 6.6° 

C13-C14-C15-N 177.1° 6.9° 189.5° 6.5° 
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bond (dihedral C13-C14-C15-N): While AT is nearly planar (177.1°) around the C14-C15 bond, the 

13C is almost 10° twisted (189.5°). This relatively larger pre-twist around C14-C15 bond for 13C 

isomer corroborates very well the experimental observation of higher amplitude of C14-H wag as 

discussed above in the previous paragraph. 

Photoproduct ground state: Finally, a brief comparison of vibrational signatures of GS isomer with 

its corresponding K-photoproducts (Figure 5.3) helps to further rationalize the frequency shifts in 

terms of conformational differences. The conformational changes alter the delocalization of δ and 

π-electron density for the macro-molecule like RPSB, which explains the frequency shift of CH3 

rock, C-C and C=C stretch and C-C-H in-plane rock modes. The changes in the frequency and 

amplitude of C-C-H in-plane rock (1300-1400 cm-1) modes (Figure 5.3) are important as these are 

reported to be affected by the torsion around the active C=C bond.61 Although the frequency of this 

mode changes from AT GS (1408 cm-1) to KAT (1364, 1446 cm-1), it remains almost the same for 

13C GS (1305, 1427 cm-1) and for K13C (1307, 1427 cm-1), indicating a very similar strain around 

the C13=C14 bond for the latter two isomers. These results also corroborate FTIR studies which 

illustrated that isomerization causes larger rotation of Schiff base moiety for AT isomer compared 

to 13C isomer.145 

5.4.2 Excited state evolution of high frequency modes (>1000 cm-1) 

The pump-DFWM measurements captured the sub-ps frequency shifts of high frequency modes. 

In general, the C=C stretch and CH3 rock modes showed a blue shift and subsequent red shift for 

both AT and LA (major 13C) ASR. Since the DFWM spectra, used for this measurement, covers 

the region (580-720 nm) where both excited state absorption and stimulated emission of ASR 

overlaps,45, 90 there are two possible origins for the observed frequency shifts: (i) the excited state 

evolution of the nuclear wave packet or (ii) the vibrational relaxation of the GS wave packet, 

generated by stimulated emission pumping (SEP) process,18, 63, 79 in an anharmonic potential energy 

surface. For the latter, one would expect a red shift just after the excitation.63 This is because the 

GS wave packet, generated via SEP, in a higher lying vibrational states is lower in frequency than 

a relaxed GS wave packet generated via non-resonant ISRS in the lower lying vibrational states. 

On the contrary, we observed a blue shift compared to the GS. This excludes this possibility and 

hence, the frequency shift is interpreted as coming mostly due to the excited state wave packet 

motion. In addition, the time scale of the frequency shifts is significantly different for AT and 13C 
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isomers. It matches very well the excited state lifetime of each isomer, which further indicates that 

the observed frequency shifts originate due to the transient evolution of the ES species from the 

Franck-Condon region to the GS through the conical intersection. 

Sub-ps transient frequency shifts in the fingerprint region have been frequently interpreted as the 

conformational changes associated with the isomerization process.61, 159 Here, the blue shift of C=C 

stretch (Figure 5.5) is interpreted as the reduction in conjugation length due to the rotation around 

the C13=C14 bond during the isomerization. After the excitation by the actinic pulse, the RPSB is 

promoted to the Franck-Condon point of the excited state where it is still in the same geometry as 

it is in ground state (Figure 5.9(a)). In this geometry, an extended π-conjugation is present along 

the Retinal chain by the pz orbitals from C5 up to protonated Schiff base N-atom. As the 

isomerization reaction progresses, the RPSB starts to adopt a more non-planar twisted structure 

(Figure 5.9(b)) towards the photoproduct geometry. During this evolution, the C14-C15-N 

π-conjugated moiety becomes almost perpendicular to the remaining π-conjugated system (C5 to 

C13) at the 90° twisted form (AT*) and the conjugation between two moieties, mentioned before, 

gets completely disrupted. Hence, the effective conjugation length gets reduced during evolution 

from the Franck-Condon state towards the 90° twisted form. It is well known for linear conjugated 

polyenes that the reduction of effective conjugation length causes a frequency blue shift of the C=C 

stretch mode.160-161 Thus, decrease in the effective conjugation length explains the blue shift of 

C=C stretching mode observed here for Retinal in ASR. The blue shift of CH3 rock mode can also 

be interpreted in a similar way. The disruption of the C13=C14 bond during isomerization reduces 

 

Figure 5.9: The reduction of the effective π-conjugation length from (a) Franck-Condon excited 
state to (b) twisted transition state (far Franck-Condon region). In (a), there is an extended π-
conjugation from C5-atom to N-atom of the Schiff base which is reduced in (b). 
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the partial positive charge over the C13 atom induced by the positively charged Schiff base N-atom. 

The partial positive charge over C13 tends to pull the electron density from the CH3 moiety (bonded 

to C13) towards it but the lack of inductive effect in the twisted state pushes the electron density 

towards the CH3 moiety. This possibly causes the blue shift of the rock mode of CH3. This also 

corroborates the picture of change in electron density during the isomerization of bR, recently 

captured by the transient femtosecond X-ray spectroscopy.31 Thus, following our argument, the 

slower frequency shift observed for AT isomer compared to 13C isomer (~LA) (Figure 5.5) can be 

interpreted as follows: It takes longer time for the AT isomer to rotate around the C13=C14 bond to 

form the 90° twisted state compared to 13C. This corroborates as well QM/MM calculations91 

which predicted a barrier in the excited trajectory of AT and, therefore, a slower formation of the 

corresponding twisted state. 

The frequency shift of the fingerprint modes in the region from 1100-1400 cm-1 are relatively more 

complicated than the one observed for the C=C stretching mode. This is because different C-C 

stretching modes (C8-C9, C10-C11, C12-C13 etc.) of Retinal exhibit distinct closely spaced peaks 

which overlap in that region. In addition, C-C-H in-plane-rock modes are also sometimes coupled 

with the C-C stretch which makes the spectral evolution of this finger print modes even more 

challenging to rationalize. However, the most intense peak below 1200 cm-1, which is known to be 

mostly uncoupled from C-C-H rock modes, follows a trend which can also be accounted for the 

change in the effective π-conjugation length. It has been also observed for linear conjugated 

polyenes160 that the small reduction in effective conjugation length causes a blue shift of the mode 

below 1200 cm-1 but further reduction of effective conjugation length eventually results in red shift. 

This matches very well the frequency shift of AT ASR (Figure 5.6), where it undergoes an initial 

blue shift until 100 fs and subsequently red shifts until 200 fs. This is the delay which has been 

interpreted above as the time to reach the 90° twisted state for AT ASR. Afterwards, the effective 

conjugation length is expected to increase again due to the slow formation of relatively planar KAT. 

Thus, it causes a blue shift of the finger print mode. This effect is much weaker for 13C (~LA) 

isomer, which results in no observable shift. This once again hints at a smaller rotation around 

C13=C14 in 13C isomer compared to AT isomer in ASR. 
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5.4.3 Excited state evolution of low frequency (<400 cm-1) and HOOP modes 

A central result of pump-DFWM measurements was the observation regarding strong activity of 

the low frequency modes around 190 and 300 cm-1 at positive actinic pulse delay which are absent 

in the GS (T<0). Very similar low frequency peaks (160, 210 and 300 cm-1) have also been 

observed previously for ASR in the transient absorption experiments98 by probing in the near 

infrared region (950-1450 nm) which is far away from the ground state absorption and only covered 

by the stimulated emission. Furthermore, a few strong Raman modes below 400 cm-1 have been 

observed in the excited state of RPSB in solution by Kraack et al.106 and also observed more 

recently for Rhodopsin67 and chanello-Rhodopsin149 by Schnedermann et al. Moreover, most 

important, the low frequency modes (e.g. ~190 cm-1) in the pump-DFWM transients show faster 

dephasing than high frequency modes (e.g. C=C stretch) (Figure 5.10). All these observations 

together clearly suggest that the low frequency activities are originated from the ES manifold. 

Another central result is the lack of HOOP activity in the excited state in our pump-DFWM (and 

pump-IVS) measurements which is surprising. There are two plausible explanations for this 

observation. The surrounding protein environment in ASR, which is different compared to 

Rhodopsin and bR, where the HOOP activity is stronger,62, 67 can significantly reduce the Raman 

transition probability of a specific mode by modifying the Retinal pocket. Secondly, the activity of 

 

Figure 5.10: The dephasing of C=C stretch (black) and low frequency (190 cm-1) mode (red) for 
(a) DA and (b) LA ASR, obtained by applying sliding window FFT on the pump-DFWM transient 
at T=100 fs. An FFT window of 600 fs was used in both cases avoiding initial 100 fs. In both cases 
low frequency modes dephase 4-5 folds faster than the high frequency C=C stretching mode. 
However, initial rise of low frequency amplitude in DA ASR showed delayed activation of this 
mode as illustrated in Figure 5.7 for LA ASR. However, it does not appear in (b) as the sliding 
window is applied after it finishes the rise (<80 fs). 
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the HOOP mode of bR has been observed to be strongly dependent on the center wavelength of 

DFWM spectra, used to create the vibrational coherence.105 The Raman activity of this mode was 

found to be mainly enhanced for blue detuned excitation. In contrast, DFWM spectra in our study, 

were red detuned compared to the ground state absorption (Figure 5.1). 

To clarify the lack of HOOP activity as well as to find out the activation mechanism of the low 

frequency (<400 cm-1) excited state modes, we carried out two additional set of DFWM 

measurements with two different excitation spectra (Figure 5.11). Spectrum 1 is the same as used 

before (Figure 5.1) which is almost non-resonant to GS absorption and hence, only capable of 

exciting GS modes and also possibly the ES modes below 500 cm-1 due to small overlap with GS. 

Spectrum 2, however, being completely resonant to the GS absorption, can directly excite all GS 

as well as ES vibrational modes. Two major changes (Figure 5.11) were observed for both DA and 

LA ASR by tuning the DFWM spectrum, namely (i) amplification of low-frequency and HOOP 

modes and the (ii) frequency-shift of high-frequency modes. 

Relative amplification of low frequency (<400 cm-1) and HOOP modes: The FFT spectra for 

non-resonant spectrum (Figure 5.11(a)), detected at 590 and 630 nm, show the activity mostly 

above 1000 cm-1 along with a few weak low frequency modes (~190, 300 and 510 cm-1), as 

observed before (Figure 5.2). In contrast, a strong relative amplification of the FFT amplitude of 

low frequency modes (<400 cm-1) with respect to high frequency modes (>1000 cm-1), was 

observed for the FFT spectra in the resonant DFWM experiment (Figure 5.11(b)) compared to the 

non-resonant DFWM measurement (Figure 5.11(a)). On the one hand, these low frequency 

(<400 cm-1) modes have been observed to be completely absent in the non-resonant steady state 

Raman spectrum (Figure 5.2(i)-(j)) and attributed to ES. The weak activity of these modes in the 

non-resonant DFWM FFT spectrum would mean these are directly activated in the Franck-Condon 

region of ES surface since there is small spectral overlap of DFWM spectra with the GS absorption. 

On the other hand, the same set of low frequency (<400 cm-1) modes is strongly enhanced in 

resonant DFWM measurements, when compared to any other vibrational mode, what suggest that 

these modes cannot be Franck-Condon active otherwise it should also appear strongly already in 

the non-resonant DFWM FFT spectra, as other high-frequency modes. These observations can be 
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combined and explained by an indirect activation mechanism by the high frequency (>1000 cm-1) 

modes via internal vibrational energy redistribution (IVR) proposed earlier for bR.105 This is further 

supported by the observation of the delayed rise of low frequency amplitude compared to the high 

frequency modes in transient pump-DFWM spectra (Figure 5.7 (e)). Thus, it can be concluded that 

there are two different activation mechanisms of low frequency (<400 cm-1) modes in the ES 

manifold: One is weak and directly activated in the Franck-Condon region (detected in the 

non-resonant DFWM experiments); other is strong and only activated indirectly by the high 

frequency (>1000 cm-1) modes. 

The second question remains about the reason behind the passiveness of the HOOP mode Raman 

activity in our pump-DFWM experiments. DFWM experiments with two different spectra 

(Figure 5.11) show that the mode at 805 cm-1, previously assigned as HOOP mode, shows a 

significantly strong amplitude in resonant DFWM experiment (Figure 5.11(a)) which was very 

weak in the GS (Figure 5.11(b)). This shows that the HOOP modes are induced only when it is 

 

Figure 5.11: DFWM FFT spectra obtained by using near-resonant (1) and resonant (2) excitation 
spectra for DA (black) and LA (grey) ASR detected at different probing wavelengths shown by 
vertical grey line in (a) and (b). 
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probed with blue-detuned DFWM spectra not with red-detuned DFWM spectrum, used in our 

pump-DFWM experiment. This observation is very similar to bR105 and thus, it seems to be an 

intrinsic molecular property of Retinal. 

Frequency shift of the high frequency (>1000 cm-1) modes: The high frequency mode e.g. C=C 

stretch (1530 cm-1 for DA and 1540 cm-1 for LA) in non-resonant DFWM FFT spectrum 

(Figure 5.11(a)) gets blue shifted in resonant DFWM FFT spectrum (Figure 5.11(b)) (1538 cm-1 

for DA and 1543 cm-1 for LA). A similar trend is also observed for CH3 rocking modes: 1002 cm-1 

shifts to 1008 cm-1 for DA while 1007 shifts to 1010 cm-1 for LA. This is expected since non-

resonant DFWM FFT spectra contain only GS modes whereas resonant DFWM FFT spectra 

contain the mixture of GS and ES modes in the high frequency region. As we have shown above, 

both C=C stretch and CH3 rock modes show a frequency blue shift in the ES compared to the GS 

(Figure 5.5). 

5.4.4 Pre-twisting and isomerization dynamics 

In the context of retinal photochemistry, pre-twisting has been claimed to be one of the potential 

elements that can accelerate the isomerization process. In particular, the pre-straining inside the 

protein pocket has been repeatedly shown for visual rhodopsin by both X-Ray crystallography,49 

NMR,80 resonant Raman studies84, 141-143 and theoretical simulations82, 144 which accounts for its 

fast ballistic IC dynamics. Although non-resonant Raman spectra (Figure 5.2), as reported in this 

study, speak for a relatively more pre-twisted geometry of 13C isomer in ASR, no significant 

difference in distortion around the C13=C14 between AT and 13C isomers has been pointed out by 

the X-ray crystallographic study of ASR with 2.0 Å resolution.50 Very similar observations were 

made for BR, where the 13C isomer shows 3 times faster kinetics130 compared to the AT isomer 

but the structural data report both the isomers to be nearly planar without any indication of 

protein-catalyzed strain like visual rhodopsin. However, an indirect evidence of weak pre-straining 

for the 13C isomer was found in the NMR151 and resonance Raman146 studies of BR although it 

seems to be negligible compared to 11-cis isomer of visual Rhodopsin. More recently, a closer 

inspection on the X-ray data depicted a twist around C14-C15 bond in 13C isomer but not in AT 

isomer of bR.51 Similarly, our classical GS dynamics simulation (Table 5.3) shows no difference 

in the distortion around C13=C14 bond for the AT and 13C isomers; rather it indicates the presence 

of a twist (~10°) around C14-C15 bond for 13C isomer, whereas for AT isomer appears to be almost 
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planar. Thus, this twist around the C14-C15 bond, which is adjacent to active C13=C14, plays a center 

role to accomplish the isomerization faster as claimed for visual Rhodopsin and a small model 

compound.162 

This difference in distortions must originate from differences in the packing of the RPSB inside 

the Retinal pocket. It fits the observation of faster dephasing (Figure 5.8(b)) of GS coherence of 

the AT than 13C isomers, which can be interpreted as stronger coupling of the AT isomer to the 

surrounding than the 13C isomer. A recent femtosecond X-ray study31 of BR has depicted the 

importance of the specific electrostatic interactions between protein and RPSB to guide the 

isomerization in certain direction. Hence, this difference in electrostatic interaction between the 

AT and 13C isomers with the protein surrounding may lead to different trajectories during the 

reaction. It corroborates a FTIR study148 which showed that the sub-ps isomerization causes a 

stronger disruption of the H-bond between the surrounding water molecule and the protonated 

N-atom of the Schiff base in case of the AT isomer compared to 13C. This H-bond has been 

previously45 suspected to be responsible for hindering the rotation of the protonated Schiff base 

and thus slowing down the isomerization around C13=C14 bond. This also matches our observations 

for the AT ASR of a slower frequency shift of fingerprint modes (C=C and C-C stretches, CH3 

rock), which are sensitive to localized structural changes and have been interpreted as the delayed 

formation of the twisted transition state for the AT isomer compared to the 13C isomer. 

5.5 Conclusion 

In this chapter, we have investigated the mechanistic origin of the huge dynamical differences 

observed in the isomerization of the AT and 13C isomers in Anabaena Sensory Rhodopsin, which 

address the question raised in the previous chapter. In this regard, the evolution of the GS as well 

as of the ES structural changes of each isomer has been followed by applying DFWM, IVS, 

pump-DFWM and pump-IVS spectroscopy techniques. The present experiments were able to 

unveil three major structural and dynamical differences in the isomerization of each isomer: (i) 

HOOP activity in the GS is stronger for the 13C ASR than for AT ASR (Figure 5.2), (ii) large (up 

to 20 cm-1) and delayed transient frequency blue shifts observed for the C=C stretching and CH3 

rock modes in the excited state of AT ASR (Figure 5.5) and (iii) delayed Raman activity increase 
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of low frequency modes (< 400 cm-1) for both AT and 13C isomer where the amplitude appears to 

relatively stronger for 13C isomer (Figure 5.7). 

These experimental findings depict very different isomerization scenarios for each isomer. The 

stronger HOOP activity at about 805 cm-1 in the GS spectra of LA ASR indicates that the 13C 

isomer is already more pre-twisted in the GS than the AT ASR isomer inside the Retinal pocket. 

Bearing analogy to BR and support of theoretical calculations, we have assigned this mode to C14-H 

wag. Our results point to a distortion located around the C14-C15 bond of the 13C isomer, which is 

neighboring to the isomerizing C13=C14 bond. The evolution of frequency shifts of high frequency 

modes, in particular of the C=C stretching and CH3 rock modes, depicts a much slower formation 

of the twisted configuration for the AT ASR compared to the 13C ASR. 

Finally, a major contrast in the vibrational dynamics of AT and 13C isomer was found in the 

activation of these low frequency modes which is assigned to the torsional modes delocalized over 

the Retinal chain. It appears to be much stronger under LA condition compared to DA condition. 

First, these low frequency modes were assigned to the excited state which are mostly activated by 

the C=C bond via IVR mechanism in the view of two facts: (i) the delayed rise of its amplitude in 

the transient nonlinear Raman spectra and (ii) the stronger relative amplification of these modes 

from non-resonant to resonant DFWM experiments. It is in agreement with the previous results,27, 

104-105 which showed that the delocalized torsional modes of Retinal gets activated by the energy, 

funneled from the C=C bond via IVR mechanism. Therefore, the stronger activity of these modes 

would mean more efficient energy funneling. Since it takes more energy for the AT isomer to break 

the π-delocalization than the 13C isomer (where the π-delocalization is weaker due to the 

pre-distorted geometry), a large amount of energy is left after initial excited state relaxation process 

for the 13C isomer, which can be transferred to the torsional modes. Thus, this can account for very 

strong low frequency delocalized motion of retinal backbone in LA ASR. This observation is also 

supported by the FTIR study,145 where it was concluded that the isomerization causes a widely 

distributed structural change for the 13C isomer but it only causes a localized change near the schiff 

base region in case of AT isomer. 

These discoveries have profound implications in understanding the mechanism of the primary 

events in retinal proteins. 13C ASR and AT ASR show several dynamic and spectral features 

known for other respective isomers in other retinal proteins, in particular bR. The indirect activation 
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of low frequency modes via IVR, for example, observed in ASR and bR further stresses the 

similarities and implies that this mechanism is more general than thought before. Perhaps more 

important than this is the very distinct evolution of high frequency modes in the excited states of 

13C and AT ASR. While e.g. C=C stretching and CH3 modes are not reactive coordinates per se, 

they certainly reflect the structural changes taking place at localized positions along the retinal 

during the isomerization. The delayed decrease of the conjugated double bond length observed for 

AT ASR in the excited state compared to 13C ASR surely follows the previous proposal about the 

presence of barrier in the excited state manifold of AT ASR. Nevertheless, our findings suggest 

that the slower dynamics observed for AT ASR may originate due to more than one factor, namely 

a barrier in the excited state or the lack of a pre-distortion (compared to 13C) in the ground state. 

Although the HOOP activity in 13C ASR is much lower than for 11-cis in visual rhodopsin, the 

excited state lifetimes are not very different. This further reinforces that not a single effect is 

playing a role in determining the excited state lifetime, as has been advocated in the past. 

 





 

 

  

 

Effect of Point Mutation on 

Isomerization Dynamics of 

Anabaena Sensory Rhodopsin2 

In the last two chapters, the influence of the ground state retinal configurations on its isomerization 

dynamics has been thoroughly investigated. Another central element in the retinal isomerization 

reaction dynamics is the opsin moiety surrounding the bound retinal protonated schiff base (RPSB) 

inside the retinal pocket. It has been observed that the photo-induced retinal isomerization inside 

the protein pocket completes in sub-ps timescale with formation of a single stereo-specific 

product,29-30, 68-70, 72-74 whereas the same reaction in organic solvents takes much longer time (>1 ps) 

to complete and generates more than one stereo-isomeric product. 25-26, 75-76, 163 To shed more light 

on this issue, a few comparative pump-probe studies between of wild-type (WT) and mutants of 

bacteriorhodopsin (BR) have been performed,85, 164-166 in which a single charged amino acid residue 

was replaced by a neutral one. It showed more than four folds deceleration of the reaction rate for 

the mutants compared to the WT BR. All these observations depict the importance of the protein 

constructions surrounding the RPSB to drive such a fast highly stereo-selective isomerization 

reaction. However, none of those studies have confirmed which molecular modes are tuned by the 

protein-chromophore interaction in order to drive the reaction into the desired reactive trajectory. 

                                                 
2 This chapter includes a part of the contents (e.g. data, figures, text) used in the manuscript: “Pre-distortion of retinal 

chromophore due to point mutation of Anabaena Sensory Rhodopsin leads to shorter excited state lifetime”, P. P. Roy, 
R. Abe-Yoshizumi, H. Kandori and T. Buckup, in preparation. 
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In addition, it is still not clear whether the electrostatic interaction85, 167-169 or the steric effect64, 170-

171 or both are responsible for that. One possible way to answer this open question is to compare 

the isomerization dynamics in the WT and mutated proteins and correlate to the structural changes 

of the bound RPSB. In this chapter, a comparative study of the population kinetics of WT Anabaena 

Sensory Rhodopsin (ASR) and its mutants have been done by performing a set of transient 

absorption (TA) experiments. Later, these have been correlated with the corresponding changes in 

molecular vibrational modes (both in ground and excited states), which are tracked by recording 

corresponding Raman spectra with the help of the coherent vibrational spectroscopy. Furthermore, 

ASR being a unique retinal protein to incorporate all-trans (AT) and 13-cis (13C) isomers inside 

the same protein cavity, provides an additional advantage to observe the differential effects of the 

mutations on the two isomers. 

For that purpose, two mutants (L83Q and V112N), each with a single mutation at distinct location 

of the protein pocket, have been studied in order to rationalize the influences of different part of 

the opsin moiety in guiding the isomerization reaction. In each mutant, one non-polar amino acid 

residue, which is in less than 5Å distance from the RPSB, was replaced by a polar one of 

comparable size (Figure 6.1). In the case of L83Q, the mutation was done in close proximity of 

Schiff base moiety by replacing a leucine (L) with glutamine (Q), whereas for the V112N, the 

 

Figure 6.1: Mutation in Anabaena Sensory Rhodopsin was performed by replacing a non-polar 
amino acid residue by a polar one. In V112N mutant, valine112 (V112) was replaced by 
asparagine (N), whereas in L83Q, leucine83 (L83) was replaced by glutamine (Q). In the former 
the mutation was done in close proximity of the β-inone ring and in the latter it was done close to 
the schiff base moiety of the bound RPSB, respectively. The arrows provide a qualitative view of 
the dipole moment direction associated with the corresponding wild-type or mutant side-chain. 
This figure is reproduced from reference 172 with permission from the PCCP Owner Societies 
(Copyright 2012 Royal Chemical Society)  
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mutation was done close to β-inone ring of the RPSB by replacing valine (V) with asparagine (N) 

(Figure 6.1). 

6.1 Ground state absorption 

The primary effect of the mutation was observed in UV-Visible steady state absorption spectra 

(Figure 6.2(a)-(c)). The mutation caused a blue shift of ~20 nm for V112N and ~30 nm for L83Q 

ASR. This indicates an increase in S0-S1 energy gap for the mutants compared to the WT ASR, 

which is in agreement with previous reports.87, 172 A secondary shift of the absorption λmax was 

observed by changing the adaptation conditions from dark to light. It results in a blue shift of 6 and 

2 nm for WT and V112N, respectively and a red shift of 3 nm for L83Q (Figure 6.2 (a)-(c)). 

In order to estimate the isomeric composition in the ground state under dark and light adaptation 

conditions for each sample, a set of HPLC analysis was carried out (Figure 6.2 (c)). It was found 

out that both V112N and L83Q ASR contain AT isomers almost exclusively under the dark adapted 

condition like the WT ASR (Figure 6.2 (c)). Under the light adaptation condition, both mutants 

 

Figure 6.2: Ground state absorption spectra of (a) WT ASR and its mutants (b) V112N and (c) 
L83Q under dark (black lines) and light (blue lines) adapted conditions. Green solid curves 
represent excitation or actinic spectrum used for the transient absorption and pump-DFWM 
measurements, whereas the red solid curves represent degenerate four wave mixing spectrum. 
Vertical grey line each graph denotes the wavelength of detection of (pump-) DFWM signals. (d) 
The isomeric ratio of all-trans and 13-cis isomers under dark and light adapted conditions, obtained 
from HPLC analysis. 
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contain an isomeric mixture, where the major component is the 13C isomer (~60%). Thus, the 

secondary shifts of the steady state absorption spectra upon light adaptation are caused by the 

change in compositions of the AT and 13C isomers. This is again similar to the WT ASR. Here, it 

is important to note that, an LED with an illumination spectrum centered at 590 nm (as shown in 

Figure 4.1) was used for the light adaptation of the WT ASR, whereas an LED with an illumination 

spectrum centered at 490 nm was used for the light adaptation of the mutants. The illumination by 

such a light source with a spectrum centered at this particular wavelength helps to achieve the 

maximum difference in the composition between the 13C and AT isomers of each sample in the 

light adapted photo-stationary equilibrium state. Since each sample under dark and light adapted 

conditions contain predominantly AT and 13C isomers, respectively (Figure 6.2 (c)), the 

differences in the optical signals under two adaptation conditions would reflect the distinct features 

exhibited by the two isomers. 

6.2 Broadband transient absorption 

A set of broadband TA measurements was carried out to compare population kinetics of the WT 

ASR with its mutants under both dark and light adapted conditions. For each sample, a spectrum 

centered at the maxima of the respective steady state absorption spectrum was used for the 

excitation (Figure 6.2 (a)-(c)). A comparison between TA spectra of the WT ASR and V112N, 

L83Q mutants at different pump-probe delays under the dark adapted condition has been illustrated 

in Figure 6.3. It shows a very similar general appearance of the spectral bands (Figure 6.3) for the 

mutants as observed for WT ASR (see section 4.2 for more details). For instance, a fast decaying 

excited state absorption (ESA) and a long lived photo-induced absorption (PIA) band was observed 

in blue (<500 nm) and red (>600 nm) detuned wavelength of a ground state bleach band (GSB) 

band in each sample. Nevertheless, the maxima of the GSB bands in the mutants were blue shifted 

compared to the WT, which is expected keeping the blue shifts of corresponding ground state 

absorption λmax in mind (Figure 6.2). In the far red detuned spectral region (>700 nm) of the GSB 

bands, a red shifted rapidly decaying negative band was detected for each sample. This is assigned 

as a signature of stimulated emission (SE) in analogy with the WT ASR. Furthermore, transient 

shifts of these spectral bands during the initial excited state relaxation (e.g. blue shift of the ESA 

or red shift of the SE bands) for the mutants are analogous to the WT ASR. Similar features of the 
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TA spectra for all three samples were also observed under the light adapted condition (not shown 

here). 

In spite of these resemblances, two main contrasts appear in the TA spectra for both isomers of the 

mutants compared to that of the WT ASR. Firstly, the relative amplitude of the PIA band with 

respect to GSB band appear to be much stronger for the L83Q compared to the WT as well as 

V112N (Figure 6.3). The reason behind the stronger PIA band could be the shift of the negative 

GSB signals to blue detuned wavelength for the L83Q, which usually cancels out the positive ESA 

signal in the WT ASR. The second contrast appears in the decay rates of the spectral bands. They 

were significantly different in the mutants compared to the WT ASR, which immediately suggest 

a difference in the isomerization reaction times. A comprehensive analysis of analogous broadband 

TA data of the WT ASR and its mutants has been presented by Agathangelou et al.87 According to 

this report the isomerization reaction times can be arranged in a descending order: WT (770 fs) > 

V112N (230 fs) > L83Q (120 fs) for AT isomers and V112N (290 fs) > L83Q (200 fs) > WT (170 

fs) for 13C isomers. Our results are in good agreement with this reported values (fitting of the 

broadband TA data set has not been presented in this thesis. Readers are referred to the  reference87 

for further details.). Hence, it is concluded hereby that the mutations cause a profound acceleration 

of the isomerization dynamics of the AT isomers, whereas the dynamics of the 13C isomers remain 

much less affected. 

 

Figure 6.3: The TA spectra of (a) WT ASR and its mutants (b) V112N and (c) L83Q at different 
pump-probe delays (0.1, 0.2, 0.5, 1 and 100 ps) under dark adapted condition. Different characteristic 
peaks: Excited state absorption (ESA), Ground State Bleach (GSB), Stimulated Emission (SE), 
Photo-induced absorption (PA) appear along the probe delays are marked in each graphs. Very 
similar features in TA spectra are observed under light adapted conditions (not shown here), only the 
decay constants differ. 
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6.3 Coherent vibrational dynamics 

After comparing the electronic population dynamics, our aim is to compare the associated coherent 

vibrational dynamics. As discussed in section 1.4, coherent excitation of vibrational wave packet 

is possible by using an ultrashort pulse for excitation in the TA measurements. However, in order 

to track the excited vibrational oscillation, a high time resolution (<30 fs) is required. It was not 

possible to achieve in the broadband TA measurements shown in last section because a chirped 

white-light was used as probe. A compressed pulse derived from a nc-OPA, however, can fulfill 

this criteria of high time resolution (<30 fs) (see Figure 3.1). The corresponding probe spectrum is 

shown in Figure 6.2 by the solid red curves. With this probe spectrum, the initial 1.5 ps of the 

spectro-temporal evolution of difference absorption spectra ranging from 570 to 670 nm was 

captured by varying the pump-probe delay under both dark and light adapted conditions 

(Figure 6.4 (a)-(f)). This particular spectral range was chosen as the PIA band appears in this region 

for each sample, where the initial ESA and subsequent photoproduct absorption bands overlap (see 

 

Figure 6.4: The spectro-temporal evolution of difference absorption spectra for wild type (a, b) 
ASR and its mutants (c, d) V112N and (e, f) L83Q. The graphs on the left (a, c, e) and right column 
(b, d, f) represent the difference absorption spectra measured under the dark and light adapted 
conditions, respectively. The retrieved transients for AT and 13C isomers of three different 
samples (WT, V112N and L83Q) detected at the probing wavelengths: 610, 600 and 585 nm, 
respectively (shown by black dotted lines in 2D graph), are compared in graph (g) and (h). 
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Figure 6.3). Thus, it enables one to evaluate the vibrational dynamics predominantly associated 

with the excited or photoproduct potential surface of each ASR sample and compare them. 

Before evaluating the coherent vibrational dynamics, a comparison of the electronic population 

kinetics has been done to show the agreement of two different sets of TA measurements. For that, 

the TA signal associated with the individual isomer (AT and 13C) of each ASR sample was 

extracted by taking a linear combination (see section 3.3.3) of TA data sets measured under the 

dark and light adapted conditions. In Figure 6.4 (g) and (h), the transients detected at the 

wavelength around the maxima of the PIA bands for each sample (620 nm for WT, 600 nm for 

V112N and 585 nm for L83Q ASR) are plotted after normalizing each one to its maximum beyond 

the coherent artefact (>100 fs). In each transient, the signal rises initially (<1 ps) representing the 

formation of the photo-product and decays afterwards indicating subsequent relaxation of the 

vibrationally hot photo-product. A comparison of normalized transients for each isomer of the WT, 

 

Figure 6.5: The transients of (a) AT and (b) 13C-isomers obtained from transient absorption 
experiments, where an ultrashort probe pulse was used. The black, red and blue circles represent 
the transient for WT, V112N and L83Q ASR, respectively and the respective transients were 
detected at 620, 600 and 585 nm. Each transient was normalized to the maximum signal beyond 
100 fs. The oscillatory residuals obtained after subtraction of the population kinetics by a 
bi-exponential fit (solid lines) of the transients are shown in the inset. (c-h) The respective spectra 
obtained by a fast Fourier transformation of the residuals. 
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V112N and L83Q ASR (Figure 6.4 (g)) corroborates the results of previous TA measurement with 

white-light probe. 

The coherent vibrational dynamics appear as an oscillatory feature on top of the exponential decay 

of the electronic signal (Figure 6.5). It is more evident on the residuals (see inset of 

Figure 6.5(a) and (b)) obtained after subtraction of the bi-exponential electronic population 

kinetics from the transient. The residuals exhibit damped periodic modulations (~2 mOD), which 

are well beyond the noise level (<0.1 mOD). A fast Fourier transformation (FFT) 

(Figure 6.5(c)-(h)) of the residuals allows to quantify the vibrational modes contributing to the 

oscillatory residuals. Multiple number of low frequency modes are present below 400 cm-1 with a 

dominant mode appearing around 60-90 cm-1 for both AT and 13C isomers of each sample 

(Figure 6.5(c)-(h)). In addition, a few minor modes appear around 100-350 cm-1. It is difficult to 

rationalize the minor frequency shifts observed from the WT to the mutants for those closely spaced 

modes below 200 cm-1 as these are strongly overlapping. Nevertheless, the mode at 300 cm-1, 

which is devoid of any spectral overlap, shows relatively stronger amplitude for the L83Q 

compared to the WT and V112N ASR. Although all these low frequency (<400 cm-1) modes are 

detected over the spectral region where the PIA band (see Figure 6.3) predominates, a substantial 

contribution of the GSB also overlaps. Therefore, the assignment of these modes to a particular 

electronic state is not trivial and require further inspection. 

6.4 Ground state vibrational spectra 

In order to extract the pure ground state vibrational modes, a set of DFWM experiments were 

carried out with a degenerate spectrum (red solid curved in Figure 6.2), which is almost non-

resonant to the ground state absorption spectra of the respective samples.. The DFWM transients, 

shown in Figure 6.6, were detected at 20 nm blue detuned wavelength from the center of the 

respective the DFWM excitation spectra used for each sample (shown by vertical lines in 

Figure 6.2). The subtraction of non-oscillatory component from the transient by an exponential fit 

gives a residual (see insets of Figure 6.6), where the high frequency oscillation with period <40 fs 

dominates. A Fourier transformation of these residuals yield the Raman spectra shown in 

Figure 6.7. In contrast to the observations of low frequency (<400 cm-1) modes observed in the TA 

measurements (Figure 6.5), DFWM FFT spectra (Figure 6.7) show major contributions of 
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vibrational modes appearing in the spectral region above 800 cm-1 for all samples; only a very weak 

activity below 600 cm-1 is observed only for WT ASR. 

A comparison between the DFWM FFT spectra of the AT isomers (~dark adapted) of the WT and 

the mutants (Figure 6.7 (a)-(c)) shows two major differences: (i) a considerable Raman activity 

around 750-950 cm-1 (grey shaded spectral region in Figure 6.7) was detected for both the mutants: 

V112N (805, 900 cm-1) and L83Q (820, 900 cm-1), which are almost absent in case of the WT 

ASR; (ii) frequency shift of the modes above 1000 cm-1 was observed from the WT to the mutants. 

In particular, the modes at 1003 and 1530 cm-1 for the WT ((Figure 6.7 (a)) shift to 1007 and 1535 

cm-1 for the V112N ((Figure 6.7 (b)) and to 1007 and 1543 cm-1 for the L83Q ASR 

((Figure 6.7 (c)), respectively. In addition, the double peaks at 1160 and 1230 cm-1 for WT merges 

to a single peak (1186/1180 cm-1) for both the mutants. In contrary to the AT isomers, the mutation 

does not bring any significant change in the spectra of 13C isomers (~light adapted) 

(Figure 6.7 (d)-(f)). Neither any significant shift of the modes above 1000 cm-1 nor any substantial 

 

Figure 6.6: Transients obtained for the DFWM experiments of (a) WT, (b) V112N and (c) L83Q 
mutants of ASR detected at 630, 610 and 590 nm (shown in Figure 6.2) under the dark adapted 
conditions. The insets show the oscillatory residuals obtained after subtracting the non-oscillatory 
component by an exponential fit (red lines) of each transient. 
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change in the amplitude of the modes in the region 750-950 cm-1 is observed when the Raman 

spectra of the WT was compared with that of the mutants. 

6.5 Pump-degenerate four wave mixing 

In order to evaluate the impact of mutation on the excited state evolution of the vibrational modes, 

a set of pump-DFWM measurements were performed. In these measurements, actinic spectra used 

for each sample were same as those used for the excitation in the TA measurements of the 

 

Figure 6.7: The power FFT spectra obtained by fast Fourier transformation of the residuals 
obtained after the exponential fitting of the DFWM transients (see Figure 6.6) for (a, e) WT (b, d) 
V112N and (c, f) L83Q under the dark (a, b, c) and light (d, e, f) adapted conditions. Assignment 
of the vibrational modes are shown on top. The grey shaded area represents the characteristic 
spectral regions (750-950 cm 1) for hydrogen-out-of-plane (HOOP) modes of retinals. 
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respective samples (see green solid curves in Figure 6.2). The DFWM spectrum (see red solid 

curves in Figure 6.2) was same that used for the non-resonant DFWM measurements in the last 

section. This particular spectrum was chosen as it is resonant to initial ESA band (Figure 6.3) of 

each ASR sample under investigation. This facilitates to track the evolution of the excited state 

vibrational modes predominantly, by varying the actinic pump delays as illustrated for WT ASR 

in section 5.3 in the last chapter. The measurements were carried out under the dark (~AT) and 

light adapted (majorly 13C) conditions to access the differential effect of the mutation on the 

excited state evolution of AT and 13C isomers of ASR. In general, the evolution of the 

pump-DFWM FFT spectra shows a transient frequency shift of the high frequency (>1000 cm-1) 

modes and a relative increase in amplitude of low frequency modes for both mutants as it is 

depicted for the WT ASR in Figure 5.5and Figure 5.7 in the last chapter. Here, the frequency shift 

of the mode around 1530-1550 cm-1, which are assigned to C=C stretching mode (see section 5.1), 

is found to be major contrast between the excited evolution of the vibrational spectra of the WT 

 

Figure 6.8: Comparison of the frequency shifts of the C=C stretching modes, obtained from a 
pump-DFWM measurements on (a, d) WT ASR and its mutants (b, e) V112N and (c, f) L83Q dark 
(a, b, c) and light (d, e, f) adapted conditions. The pump-DFWM signals for the WT, V112N and 
L83Q ASR were detected at 620, 600 and 585 nm, respectively. 
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ASR and its mutants. All other features are very similar (not shown) to the dynamics observed for 

the WT. 

Figure 6.8 illustrates that both mutants exhibit initially a rapid blue shift and subsequent slow red 

shift of C=C stretching modes as the reaction proceeds (Figure 6.8). This trend is qualitatively same 

to that of the WT ASR. However, the timescale, in which it undergoes the blue shift, differs from 

the WT ASR, particularly for the AT isomers (~dark adapted). It takes ~200 fs for the WT to reach 

the maximum frequency shift, while it takes only ~80 fs for the V112N and almost instantaneous 

for the L83Q (Figure 6.8(a)-(c)). In contrast, the 13C isomers (~light adapted) of both WT and the 

mutants exhibit the blue shift almost instantaneously (Figure 6.8(d)-(f)). 

6.6 Discussion 

6.6.1 Ground state spectra 

All experimental results presented in this chapter illustrate the effect of the point mutations on the 

isomerization dynamics of ASR. The primary effect of the mutation appear in the steady state 

absorption, which indicates an increase in the S0-S1 energy gap from the WT ASR to its mutants. 

This change in energetics has been explained by calculating the energy of the electronic states via 

QM/MM methods.172 It showed that the relative stabilization (destabilization) of the S0 (S1) state 

with respect to S1 (S0) state as a consequence of the substitution of a non-polar (V/L) amino acid 

with a polar (N/Q) one. In particular, it is well known for the RPSB that S0→S1 excitation causes 

 

Figure 6.9: (a) Distribution of electronic density in S0 and S1 states, obtained by performing a 
QM/MM. This figure is reproduced from reference with permission from the PCCP Owner Societies 
(Copyright 2012 Royal Chemical Society) (e) Schematic representation of the change in S0 and S1 
energy levels upon mutation. 
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the positive charge over the Schiff base N-atom to spread towards the β-inone ring (Figure 6.9 (a)). 

Consequently, in the S0 state, the positive charge resides predominantly over the Schiff base region, 

whereas this positive charge is distributed along the chain in the S1 state. In the case of L83Q 

mutants, negative dipole of the glutamine (Q) residue, which is close to the Schiff base N-atom 

(Figure 6.1), stabilizes S0 state more compared to S1 state. This causes a blue shift. For V112N, 

positive pole of the asparagine (N) residue is oriented towards the β-inone ring and therefore, it 

destabilizes the S1 state with respect to S0 state. As a result, both the point mutations cause a blue 

shift in their ground state absorption spectra with respect to the WT ASR. 

6.6.2 Isomerization dynamics and ground state vibrational spectra 

Other than the change in energetics, the major effect of the mutation was observed in the 

isomerization dynamics (Figure 6.4) and the ground state vibrational spectra (Figure 6.8), 

especially for the AT isomers of ASR. Comparison of the isomerization dynamics with ground 

state Raman spectra of respective sample indicates a strong correlation between the acceleration of 

isomerization dynamics and the FFT amplitude of the ground state modes appearing in the region 

of 750-950 cm-1 (Figure 6.8), which are assigned to the hydrogen-out-of-plane (HOOP) wag 

motions.84, 142 In particular, the mutation causes dramatic shortening of the excited state lifetime of 

the AT isomers, whereas it has a minor effect on the isomerization rate of the 13C isomers. It 

correlates with the gain in the HOOP activity, which increases significantly for the AT isomers of 

the mutants compared to the WT, but remains almost equally active for the 13C isomers of both 

the WT and mutants. In general, the HOOP activity is considered as an indication of structural non-

planarity.62, 84, 142, 146 In our study, the main activity of these modes was observed around 

800-820 cm-1, which is assigned to C14-H wag mode for bacteriorhodopsin.146 Hence, it indicates 

a distortion either around active C13=C14 bond or neighboring C14-C15 bond of ground state AT 

isomers in the mutants which is almost absent for WT ASR. The scenario is quite different for 13C 

isomers, which show a noticeable HOOP activity already for WT and mutation bring only a minor 

change in its HOOP activity. It hints at similar extent of distortion for 13C isomers of both WT and 

mutants.  

The second major aspect of the mutation was the frequency shift of the ground state modes above 

1000 cm-1 (Figure 6.8), which are assigned as follows: 1500-1550 cm-1 (C=C stretch), 

1100-1400 cm-1 (C-C stretch often coupled to C-C-H in-plane-rock), 1000-1010 cm-1 
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(CH3-rock).84, 141, 146 The frequency shifts of these localized modes are rationalized as the difference 

in σ and π-electronic distributions. In particular, the blue shift of C=C stretch modes of AT isomers 

of WT to the mutants hints at a reduction in π conjugation (see section 5.4.2). In contrast, the 

mutation does not shift these high frequency modes for the 13C isomers. It is in line with our 

previous observation of HOOP activity, hinting at a distortion because a non-planarity immediately 

leads to reduction in π-conjugation in any bio polyene.160 Moreover, the contrasts between the 

ground state spectra of the AT isomers of the WT and the mutants are resembling the difference 

between AT and 13C isomers of WT ASR, which have been accounted as a signature of pre-twist 

in section 5.4.3. 

6.6.3 Low frequency vibrational modes 

In contrast to the DFWM FFT spectra (Figure 6.8), a profound activity of the low frequency 

(<400 cm-1) modes are observed in the TA measurements (Figure 6.5(c)-(h)). The major mode 

appearing around 60-90 cm-1 for all the samples, is reminiscent to a low frequency mode observed 

over the PIA band for visual rhodopsin (~60 cm-1).29 A similar low frequency mode was also 

reported for WT ASR (~55-65 cm-1).90 In addition, multiple minor peaks around 100-350 cm-1 are 

observed for both WT and mutants. A mode at 170 cm-1 was reported for bacteriorhodopsin in both 

transient absorption138 and fluorescence171 measurements. A recent study by Wand et al.98  has 

 

Figure 6.10: (a) The residual obtained after the bi-exponential fit (shown in Figure 6.5) of the 
transient of the L83Q ASR measured under the dark adapted condition. The red curve represents 
the resultant after passing though low frequency filter with a cut-off 200 cm-1. (b) Spectrogram 
obtained by a sliding window Fourier analysis of the residual by applying a Gaussian window, 
shown by blue dotted line in graph (a), which has FWHM temporal width of 400 fs. 



Effect of Point Mutation on Isomerization 
Dynamics of Anabaena Sensory Rhodopsin 

97 

  

 

reported multiple modes at 160, 210 and 300 cm-1 for the WT ASR as well as for bacteriorhodopsin 

in the near IR region (950-1200 nm), where only the stimulated emission appears devoid of any 

ground state dynamics. Hence, these modes were assigned exclusively to the excited state. 

However, no mode was observed to appear below 100 cm-1 in this report. In our study, the dominant 

mode, appearing below 100 cm-1 for all sample, is found to survive longer than 1 ps (Figure 6.10). 

Hence, it is less likely to be originated from the excited state considering its short lifetime (<0.3 ps 

except AT isomer of WT). The 300 cm-1 mode, however, shows a much faster dephasing rate 

(<100 fs) compared to the mode below 100 cm-1 (~500 fs) revealed by a sliding window FFT 

analysis (Figure 6.10). It agrees with the previous assignment of 300 cm-1 mode as the excited state 

mode.98 

It has been well established that these low frequency (<400 cm-1) modes, which represent the 

skeletal torsion of the retinal backbone, are mainly activated impulsively by the high frequency 

modes via intermolecular vibrational energy redistribution (IVR) (see section 5.4.3).27, 104-106 This 

speaks for its absence in ground state spectra and strong activity in the TA signals. Earlier report 

for retinal in solution showed the low frequency mode (~120 cm-1) to be independent of the solvent 

properties.171 The same mode gets blue shifted (~170 cm-1) inside the retinal pocket of 

bacteriorhodopsin but locking the active C13=C14 bond does not affect this torsional mode.138 It 

indicates that these modes are not sensitive to the localized change rather depends on the overall 

spatial charge distribution surrounding the chromophore. It fits to our observation of unaltered 

nature of these modes after point mutations, which usually bring only localized changes in the 

charge distribution. Furthermore, several experiments indicated that these low frequency skeletal 

torsions may guide the reaction by twisting the chromophore towards conical intersection (see 

reference173 and the references therein). In view on the insensitivity of the low frequency modes to 

the mutation, even when the isomerization dynamics is drastically altered, it is very less likely for 

these modes to represent the reactive coordinate of the reaction. 

In contrast to the modes below 200 cm-1, a relative increase of the FFT amplitude of 300 cm-1 

modes was observed for the L83Q ASR compared to the WT and V112N (Figure 6.5). This is 

explained here due to relatively stronger ESA amplitude with respect to the GSB for L83Q in 

comparison to WT and V112N ASR (Figure 6.3). This increases the amplitude of the modes 

belonging to the excited state (300 cm-1) compared to those belonging to the ground state 

(60-90 cm-1). 
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6.6.4 Excited state evolution 

In contrast to the coherently excited low frequency modes, the high frequency modes, especially 

the C=C stretching modes show a transient frequency shift for both WT and mutants (Figure 6.8) 

as the reaction proceeds. Each one undergoes a rapid blue shift, which is followed by a slower red 

shift. On the one hand, a comparison of the reference time, at which maximum blue shift occurs 

for the AT isomers of all three ASR samples, shows that it becomes substantially shorter for the 

mutants in comparison to WT ASR (Table 6.1). On the other hand, for the 13C isomers the blue 

shift is found to be almost instantaneous for both WT and mutants. This correlates to the 

isomerization reaction times of respective ASR sample. Furthermore, a similar correlation between 

the isomerization reaction time and the amplitude of the frequency shift exits can also be observed. 

In last chapter, the observed blue frequency shift of the C=C stretching modes, in general, has been 

interpreted as a change in effective conjugation length of the pi-conjugated retinal system due to 

the rotation around the active C=C bond during the isomerizing reaction (see section 5.4.2). 

Therefore, the time-scale, at which the maximum frequency shift occurs, has been considered as a 

qualitative reference time for the retinal system to reach a twisted state. Faster the RPSB reaches 

that twisted state faster the isomerization completes and shorter the excited lifetime. This explains 

the linear correlation between this reference time and the isomerization reaction time. It also 

indicates that the frequency of the C=C stretching mode of the RPSB provides an alternative 

Table 6.1: Correlation between the center frequency shift of the C=C stretching mode and 
isomerization reaction times of different ASR samples under the dark and light adapted conditions. 

Sample 
Time to reach 

maximum 
frequency shift 

Maximum 
amplitude of 
the blue shift 

Isomerization 
reaction time 

AT isomers 

(~dark 
adapted) 

WT 200 ±10 fs ~21 cm-1 770 ±20 fs 

V112N 80 ±10 fs ~4 cm-1 230 ±20 fs 

L83Q 30 ±10 fs ~3 cm-1 120 ±30 fs 

13C isomers 

(~light 
adapted) 

WT 40 ±10 fs ~3 cm-1 170 ±40 fs 

V112N 40 ±10 fs ~6 cm-1 290 ±50 fs 

L83Q 60 ±10 fs ~5 cm-1 200 ±40 fs 
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parameter to monitor the isomerization reaction other than following its transient electronic spectra. 

In order to explain the second correlation between isomerization reaction times and the amplitude 

of blue frequency shifts of the C=C stretching mode in pump-DFWM spectra, one need to 

remember the pump-DFWM transients contains a mixture of ground state and excited vibrational 

coherences. Now, longer the excited state life time, larger the contribution of the excited state 

coherence in the pump-DFWM transient and consequently, larger the frequency shift in the 

pump-DFWM FFT spectra. 

6.7 Conclusion 

In summary, we investigated the effect of mutation on high (>1000 cm-1) and low (<400 cm-1) 

frequency ground as well as excited state modes of the AT and 13C isomers of ASR. On the one 

hand, the results illustrate a strong correlation between the shortening of the excited state lifetime 

and increase in ground state HOOP activity, which is interpreted as the evidence of pre-distortion. 

A number of experimental and theoretical evidences indicated that pre-distortion inside the retinal 

pocket to be a potential reason behind the accelerated kinetics, which fits to our findings. On the 

other hand, low frequency torsional mode remain practically unaffected after the point mutation. 

Therefore, we conclude that localized change in electrostatic interaction by a point mutation can 

cause subtle distortion of retinal geometry which may lead to an accelerated isomerization kinetics 

but does not affect the delocalized torsional modes. 

 





 

  

 

Effect of Truncation of Cytoplasmic 

Domain on the Ultrafast Photocycle 

of Anabaena Sensory Rhodopsin3 

In the last chapter, the importance of the amino acid residues (inside the retinal protein pocket) in 

the context of the retinal photochemical dynamics has been elucidated. This chapter focuses to 

study the role of C-terminal extended part (final 32 amino acid residues of the helix) of the protein 

chain, which is far away (~19 Å) from the retinal pocket and embedded into cytoplasmic region of 

the bacterial cell.50, 174 The truncation of the cytoplasmic domain has been experimentally observed 

to improve the expression level and also to favor the crystallization.175 Therefore, it would be 

helpful for the biological researchers to use the truncated retinal protein instead of the full-length 

wildtype form if its biological function remains intact after the truncation. In this regard, early 

studies showed that the truncation or modification of the C-terminal extension does not affect the 

functions in haloarchaeal proton pumping bacteriorhodopsin or sensory rhodopsin I and II.176-177 In 

contrast, recent experiments illustrated that this cytoplasmic ‘tail’ plays a significant role in 

controlling its biological activities happened in longer (~ms) timescale.174, 178 In particular, for 

Anabaena Sensory Rhodopsin (ASR), the vectoriality of proton movement during Schiff base 

deprotonation had been found to be controlled by the cytoplasmic tail.174, 178 For all retinal proteins 

the deprotonation of retinal protonated Schiff base (RPSB) is triggered by its sub-ps photochemical 

dynamics, which converts the RPSB to a blue shifted M intermediate and the ejected proton is 

transferred from inside of the cell towards the cytoplasmic region.54 The truncation of this tail 

                                                 
3 This chapter includes a part of the contents (e.g. data, figures, text) used in the manuscript: “Influence of cytoplasmic 
domain on the ultrafast photocycle of Anabaena Sensory Rhodopsin.” P. P. Roy, Y. Kato, D. Agathangelou, H. 
Kandori, J. Léonard, S. Haacke and T. Buckup, in preparation. 
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dramatically reverses the normal outward movement of the proton making ASR as an inward 

proton transporter.174, 178-179 This raises the issue, whether the absence of this cytoplasmic tail of 

the protein chain also affects the ultrafast photocycle of the RPSB by altering the arrangements of 

the surrounded amino acid residues. 

In this chapter, we compare the photochemical dynamics of ASR with (full-length wildtype) and 

without (truncated) the cytoplasmic tail of its opsin moiety by exploiting UV-Visible femtosecond 

transient absorption (TA) spectroscopy. Although this truncation does not affect the energetics of 

the electronic states like the mutation in Chapter 6, the formation of the primary photoproduct gets 

affected. Our results depict three major differences between the full-length wildtype and truncated 

forms of ASR: (i) The rise of the photo-product, particularly for all-trans isomer, is slightly faster 

(τ=710 fs) in the truncated form than that in the full length form (τ=800 fs); (ii) The K-photo-

product spectra of the full length and truncated ASR are distinguishable; (iii) Dark adaptation 

kinetics is found to be slower (T= 152 vs 83 min) for the truncated ASR. All these differences has 

been speculated by a change in potential energy surface of the RPSB as consequence of an 

alteration of H-bonding network linked to Lys210, which is covalently bonded to the amino group 

of the RPSB. 

7.1 Ground state isomeric ratio and absorption spectra 

Isomeric ratio: As described in section 3.1, ASR binds two structurally distinguishable isomers 

(all-trans: AT and 13-cis: 13C) in its retinal cavity and the ratio of these two isomers can be tuned 

by changing the external light adaptation conditions. Under dark adapted (DA) condition, the ASR 

contain almost exclusively AT isomer, whereas a continuous irradiation with a light source of 

wavelength above 560 nm causes it to reach a light adapted (LA) photo-stationary equilibrium 

mixture between the two isomers (Figure 7.1). The isomeric content obtained by the HPLC analysis 

shows the same isomeric contents for the full-length and the truncated ASR under the DA as well 

as LA conditions (Figure 7.1). 

Ground state spectra: The ground state spectrum of the 13C isomer is blue shifted compared to the 

AT isomer in the full-length ASR as depicted in section 4.1. Since the light adaptation causes an 

increase in the content of 13C isomers (Figure 7.1), the UV-Visible absorption spectrum under the 

LA condition gets shifted compared to that under the DA condition. The ground state absorption 
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spectra for the full-length and the truncated ASR, however, are found to be the same under the DA 

(Figure 7.2 (b)) as well as the LA (Figure 7.3 (c)) condition. The same isomeric content as well as 

 

Figure 7.2: (a) Absorption spectra of full-length wildtype ASR under the DA (black line) and LA 
(red line) conditions. Spectrum of 13C-isomer (blue dotted line) calculated by taking linear 
combination of DA and LA spectrum using the known isomeric ratio. The orange curve represents 
the illumination spectrum used for light adaptation and filled green curve represents the excitation 
spectrum used for TA measurements. (b) Comparison of ground state absorption spectra of the 
full-length and truncated ASR under the DA condition. 

 

Figure 7.1: Retinal configuration of full-length and truncated ASR constructs. (a) HPLC pattern of 
retinal oxime extracted from ASR. (b) Percentage of all-trans and 13-cis retinal oxime. The 
composition of light adaptation sample were examined at 2 min after light illumination (>560 nm, 
4 min). 
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similar ground state spectra of the full-length and truncated ASR under each condition infers that 

the truncation does not affect the S0→S1 energy gap in any of the isomer of the RPSB. 

7.2 Comparison of dark adaptation kinetics 

Keeping the LA ASR in dark allows the 13C isomer to return back to the AT conformation by a 

thermal relaxation. As a consequence, the ground state spectrum starts to get red shifted and 

increases in intensity, which is named as dark adaptation process. The difference absorption 

spectrum was measured up to 4 hours after the complete light adaptation to follow the dark 

adaptation kinetics. In spite of having similar changes in the spectral profile (Figure 7.3 (a) and 

(b)), the dark adaptation kinetics (Figure 7.3 (d)) are clearly different for the full-length and the 

truncated ASR. The full-length form (τ = 83 min) shows a 2-fold faster recovery than the truncated 

one (τ = 152 min). This means that the thermal relaxation from the 13C to the AT isomer gets 

slowed down in absence of the cytoplasmic domain. 

 

Figure 7.3: Dark adaptation at 25°C: Light minus dark difference absorption spectra of 
(a) full-length and (b) truncated ASR. The spectra were monitored continuously after light 
illumination (λexc>560 nm, 4 min). (c) Comparison of difference absorption spectrum of the 
full-length and the truncated ASR. (d) Dark adaptation kinetics: The difference absorption at 
560 nm were plotted against time after the light illumination. The traces were fitted by a single 
exponential curve. 
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7.3 Transient absorption measurement 

A set of TA measurements with an excitation spectrum centered at the maximum of the ground 

state absorption spectrum of ASR (Figure 7.2 (a)) was carried out to compare sub-10 ps dynamics 

of the full-length and truncated ASR under both DA and LA conditions (Figure 7.4). For each 

sample, three characteristic spectral bands of ASR such as, a ground state bleach (GSB) around 

550 nm, a fast decaying blue shifted excited state absorption (ESA) around 450 nm and a long lived 

photo-induced absorption (PIA) around 620 nm, were observed (see section 4.2 for details). The 

truncation does not affect the overall spectral appearance (Figure 7.4), but makes the decay of each 

band slightly faster compared to the full-length form under both DA and LA conditions. In order 

to compare the isomer specific transients, a linear combination of the TA signal under the DA and 

LA conditions is taken (see section 3.3.3). Figure 7.5 shows a comparison of the transients for the 

full-length and truncated ASR at selected probing wavelengths 450 nm (ESA), 550 nm (GSB) and 

620 nm (PIA): At each of these detection wavelengths, the pump-probe signal of the truncated 

 

Figure 7.4: Transient absorption difference spectra of the full-length (a and c) and the truncated ASR 
(b and d) measured under the DA (a and b) and LA (c and d) conditions. The 2D map shows the 
spectro-temporal evolution of difference optical density (ΔOD). 
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form, especially for the AT isomer, shows relatively faster decay compared to the full-length ASR. 

This is clearly illustrated by a careful fitting of the transient with a bi-exponential model and the 

results these fitting for the transients at different probing wavelengths for each sample are 

summarized and compared in Table 7.1. For example, at a probing wavelength of 550 nm, the 

signal for the AT isomer of the full-length ASR decays with a time constant (1) of 540 ±8 fs, 

whereas for the truncated form it decays with 440 ±5 fs (Figure 7.5 (d)). The decay for the 13C 

isomer is also affected by the truncation but in a smaller extent: While the FL 13C decays at e.g. 

550 nm with 270 ±8 fs, the truncated one decays faster with a time constant of 240 ±10 fs. The 

observed effect of the truncation on the kinetics is, however, much smaller compared to the effect 

of the mutation shown in the last chapter. Nevertheless, this small difference in the isomerization 

kinetics between the full-length and truncated ASR was consistent for all independent TA 

measurement performed on different days. In addition, a constrained bi-exponential fitting of the 

 

Figure 7.5: Comparison of transients of the AT (black and grey) and the 13C-isomer (red and 
orange) of the full-length (black and red) and truncated (grey and orange) ASR at different probing 
wavelengths (a) 450 nm, (b) 550 nm and (c) 620 nm averaged over 10 nm spectral window. Each 
set of the transients were normalized with respect to transient of full-length ASR under DA 
condition at the delay specified by vertical arrow in each graph. (d) Exemplary fitting of transients 
of the full-length and truncated forms of the AT ASR at 550 nm in logarithm scale. The open 
circles represent experimental data and red solid curves represent fitting with a bi-exponential 
double decay kinetic model along with the coherent artefact. Corresponding residuals obtained by 
fitting are shown in (e). 
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transients were carried out for the truncated ASR (not shown here): the time constants, obtained by 

fitting the transient of the full-length ASR at corresponding probing wavelengths, were kept 

constant; only the amplitude were varied. It exhibits that the relative amplitude of faster decaying 

component compared to slower decaying component increases from the full-length to truncated 

ASR. This further confirms the difference in isomerization rate between the full-length and 

truncated ASR, especially for the AT isomer. 

7.4 Coherent vibrational dynamics 

In addition to the population kinetics, it was possible to extract vibrational features contributing on 

top of the population kinetics in the TA signal. The residuals obtained after the bi-exponential 

fitting of initial dynamics at blue (530 nm) and red detuned probing wavelength (640 nm) of the 

GSB band are depicted in Figure 7.6. It shows strongly damped oscillatory features (~1 mOD) with 

a period of 550 ±50 fs (~60±5 cm-1) for both isomers, which is beyond the noise level (<0.1 mOD). 

Furthermore, there occurs a π phase shift of this periodic modulation from blue (530 nm) to red 

Table 7.1: Time constants obtained by bi-exponential fitting of the transients. The transient were 
taken at different probing wavelengths for the DA, LA and extracted pure-13C isomer of the 
full-length (FL) and truncated (Tru) ASR. The transients at 450 and 550 nm were fitted with a 
bi-exponential decay model (τdec1 and τdec2), whereas the transients at 620 nm were fitted with a 
bi-exponential one rise-one decay model (τrise and τdec). 

Sample 

λ
Pr

=450 nm λ
Pr

=550 nm λ
Pr

=620 nm 

τdec1 τdec2 τdec1 τdec2 τrise τdec 

DA/ AT 

FL 510 ±5 fs 2.0 ±0.1 ps 540 ±8fs 2.6 ±0.1 ps 260 ±7fs 5.0 ±0.2 ps 

Tru 430 ±8 fs 1.7 ±0.1 ps 440 ±5 fs 2.5 ±0.1 ps 200 ±5fs 3.8 ±0.1 ps 

LA 

FL 260 ±10 fs 1.3 ±0.1 ps 280 ±5 fs 2.2 ±0.1 ps 130 ±10 fs 3.2 ±0.1 ps 

Tru 240 ±7 fs 1.3±0.1 ps 270 ±8 fs 2.0 ±0.1 ps 110 ±5 fs 3.0 ±0.1 ps 

13C 

FL 220 ±7 fs 1.2 ±0.1 ps 270 ±8 fs 2.1 ±0.1 ps 100 ±8 fs 2.2 ±0.1 ps 

Tru 200 ±10 fs 1.1 ±0.1 ps 240 ±10 fs 1.9 ±0.1 ps 80 ±15 fs 2.0 ±0.1 ps 
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(640 nm) detuned probing wavelength. Similar period of oscillation was observed for each isomer 

of both full-length and truncated ASR, at least within our experimental error bar. Thus, the 

truncation of the cytoplasmic domain does not affect the low frequency (<100 cm-1) oscillation. 

7.5 Discussion 

7.5.1 Electronic dynamics 

The similar isomeric ratio and ground state absorption spectra for the full-length and truncated 

ASR shows that the truncation of the ‘cytoplasmic tail’ does not affect the relative energy 

separation between the S0 and S1  electronic states either of the AT or 13C isomers of the RPSB. 

The effect of the truncation appears on the ultrafast dynamics, especially for the AT isomer. 

The first truncation effect appears in the sub-picosecond time scale (Figure 7.4) and has been 

clearly resolved by bi-exponential fitting (Table 7.1). This shows that overall kinetics gets 

 

Figure 7.6: The residuals obtained after bi-exponential fitting of initial (1.5 ps) dynamics. The 
residuals are shown for the AT (a and b) and 13C (c and d) isomers of the full-length (a and c) and 
truncated (b and d) at two different probing wavelengths: 530 nm (black dot) and 640 nm (red 
dots). The solid lines are average of 10 points, drawn as the guide of eyes. 
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accelerated due to the truncation, majorly for the AT isomer. Further, a constrained bi-exponential 

fitting reveals that the truncation affects the relative amplitudes of fast and slow decaying 

components. In addition, a global target analysis (Table 7.2) with the same kinetic model, as used 

for the full-length wildtype ASR in section 4.4, shows especially the decay of the third species (t3) 

is significantly accelerated in the truncated form for both the isomers. Since the decay of the third 

species (i.e. rise of the fourth species) has been associated with the kinetics of the primary 

photoproduct (J-intermediate) formation, the changes observed for t3 hints at a modification of the 

dynamics close to the conical intersection because of the truncation. 

The second effect of the truncation takes place in a much longer time (>100 ps) scale. The time 

constant for appearance of ‘K’-and ‘L’-product in the retinal cycle is <5 ps and ~µS, respectively. 

So, at 100 ps delay, the population has already relaxed into the ‘K’-product and the transient 

absorption signal should contain only the difference spectrum of the pure ground state and the 

‘K’-product. Since the ground state absorption of the full-length and truncated ASR has been 

shown to be the same previously (Figure 7.2 (b) and Figure 7.3 (c)), the difference spectrum at 

100 ps for the full length and truncated form of ASR is expected to spectrally overlap only if the 

absorption of the ‘K’-product appears to be the same for both forms. Figure 7.7 reveals that the 

spectra of the full-length and truncated ASR overlap well at blue detuned wavelengths (<520nm), 

but a striking difference appears at detection wavelength above 550 nm, particularly around 600 

nm. In DA condition (Figure 7.7 (a)), the spectrum for Tru ASR is blue shifted by about 10 nm 

compared to FL ASR. In LA condition (Figure 7.7 (b)), the truncation does not cause spectral shift 

Table 7.2: The parameters obtained by global fitting of the TA data sets for the AT and 13C isomers 
of the full-length (FL) and truncated (Tru) ASR by a five component sequential model, as described 
in section 4.4:  

Sample t
1
 t

2
 t

3
 t

4
 t

5
 

AT 
 FL 40 fs (±10) 280 fs (±30) 800 fs (±20) 3.1 ps (±0.3) Inf 

Tru 35 fs (±10) 240 fs (±20) 710 fs (±30) 3.1 ps (±0.2) Inf 

13C 
FL 30 fs (±10) 180 fs (±30) 470 fs (±30) 3.1 ps (±0.2) Inf 

Tru 25 fs (±10) 160 fs (±20) 410 fs (±20) 3.0 ps (±0.3) Inf 
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but increases the amplitude of TA signal by ~1.3 times. This provides a clear experimental evidence 

that distinct ‘K’-photoproducts are present in the truncated form compared to the wild type 

full-length ASR pigment. 

The third effect of truncation appears in the dark adaptation kinetics. In particular, the dark 

adaptation gets almost two folds faster for the truncated ASR compared to the full-length form. 

Generally the thermal relaxation of one structural isomer of the RPSB to another during the dark 

adaptation of the proteins are quite well known phenomena. A few photo-calorimetry studies 

showed that the 13C isomer of the RPSB poses 40-50 kJ/mol higher enthalpy compared to the AT 

isomer.86, 180 The thermal isomerization has been reported for the 13C isomer in bacteriorhodopsin 

to return back to the AT form at a rate 100 S-1 at 20°C.181 In contrast, thermal relaxation of the 13C 

isomer in solution is extremely slow. This, indicates protein constructions plays a significant role 

in destabilizing the 13C isomer and catalyzing the rate limiting return to the AT isomeric form. 

Therefore, our experimental observation of acceleration in the thermal relaxation kinetics of the 

13C isomer of the RPSB in the truncated ASR strongly suggests a change in the protein 

arrangements as a consequence the C-domain truncation. 

7.5.2 Vibrational dynamics 

In contrast to the observed differences in the electronic dynamics, a damped periodic oscillation 

with a frequency of 50-70 cm-1 were observed for both full-length and truncated ASR. Similar kind 

of oscillatory features with a frequency of 50-70 cm-1 were reported for visual Rhodopsin 

 

Figure 7.7: Comparison of the transient difference absorption spectra at about pump-probe delay 
100 ps (averaged over ±5 ps) under (a) DA and (b) LA conditions for the full-length (black and red) 
and truncated (grey and orange) ASR. 
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(11-cis).29 Also for ASR, an oscillation with a period of 500 fs (~65 cm-1) was observed by 

Cheminal et al.90   Furthermore, this oscillation reverses its phase from the blue to red edge of the 

probing window. It gives a strong indication that the observed oscillation are the signatures for 

motion of a coherently excited wave packet. This is because the phase of the excited wave packet 

gets reversed, when it moves from one end of the potential energy surface to other end. As a 

consequence, the oscillatory signatures, which appear over the electronic signal, shows a π phase 

shift around the maximum (corresponds to potential minima) of electronic signal of that particular 

state. Therefore, it is also possible to assign the oscillatory mode to the particular electronic state 

manifold knowing the of phase change over the probing wavelength and matching it with the 

maxima of the electronic signal of a particular state. In case of ASR, it not trivial to assign this low 

frequency (~60 cm-1) oscillation to a particular electronic state as the electronic signal of the ground 

and excited states overlap in this wavelength range (430 to 640 nm) where phase reversal has been 

detected. However, the oscillation seems to survive about 1 ps (Figure 7.6), which is longer than 

the reported excited lifetime of both AT (700 fs) and 13C (170 fs) isomer. Hence, it is less likely 

to be originated from the excited state; rather could be assigned as the ground state signature. This 

means it survives even after passing the passing the conical intersection for both AT and 13C 

isomer. Most importantly, it appears consistently in both full-length and truncated ASR for each 

isomer (Figure 7.6). This indicates that truncation does not bring any significant change in ground 

state vibrational dynamics (period of 550 fs). 

In summary, truncation affects the thermal relaxation kinetics from 13C to AT as well as 

J-photoproduct formation dynamics without altering the ground state signature. This effect of 

truncation of the cytoplasmic part on ultrafast photo-cycle can be rationalized by the change in 

protein environment close to retinal pocket. Cytoplasmic opsin part of ASR are known to remain 

in markedly hydrophilic environment compared to other MRP’s like bacteriorhodopsin and other 

sensory rhodopsin.50 It has been found in the past that there is an almost continuous hydrogen bond 

network including two carboxylic acids, two serine residues, one threonine residue, one glutamine 

residue and four water molecules, which connects cytoplasmic domain to Lys210 residue, covalently 

bonded to amino group of retinal chromophore.50, 179, 182 Truncation of cytoplasmic domain disrupts 

aforementioned hydrogen bond network. This brings a slight change in potential energy surface 

which possibly influences the retinal isomerization, leading to the formation of distinct 
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‘K’-photoproduct on longer time scale and also changes the pathway of thermal relaxation of 

13C-isomer to AT-conformation during dark adaptation. 

7.6 Conclusion 

In this chapter, we studied the role of cytoplasmic ‘tail’ on the primary process of retinal photo-

chemistry. Our results show truncation does not affect the ground state but alters the product 

formation. In summary, the full-length and truncated ASR differ in three aspects: the dark 

adaptation kinetics, the rate of ‘J’-intermediate formation and the K-photoproduct spectrum. All 

these facts point towards the conclusion that the long-lived species i.e. ‘K’-product, which is 

formed after the completion of the isomerization of active C13=C14 bond of retinal chromophore in 

the truncated ASR, is different from that formed in the wild type full-length ASR. This has been 

speculated by change in minimum potential energy pathway due to alteration of hydrogen bond 

network linked to Lys210 residue, which is directly bonded to the chromophore. In conclusion, it 

reveals not only the protein environment close to chromophore but also the amino acid residues far 

from retinal pocket can play a significant role on primary process of retinal photo-chemistry.





 



 

 

  

 

Conclusion and Outlook 

8.1 Conclusion  

In this thesis, the photo-induced isomerization dynamics of retinal has been successfully 

investigated with the help of femtosecond time-resolved spectroscopic techniques. A special 

attention was given to monitor the transient structural changes of retinal protonated Schiff base 

(RPSB) inside the retinal protein. For that purpose, multidimensional coherent vibrational 

spectroscopic methods like pump-degenerate four wave mixing (pump-DFWM) and 

pump-impulsive vibrational spectroscopy (pump-IVS) were employed. Experimental results 

obtained by these techniques revealed the vibrational dynamics of the protein bound RPSB in the 

sub-ps timescale. This information on the vibrational dynamics complemented that on electronic 

dynamics revealed by the transient absorption (TA) methods. The following paragraphs summarize 

the main findings of this thesis. 

In general, the ground state structure of the RPSB and the surrounding protein constructions are 

known to be the most crucial elements in the context of retinal photochemistry. One of the main 

goals of this thesis was to survey both of these factors individually. For that purpose, Anabaena 

Sensory Rhodopsin (ASR) was chosen as a working system as it comprises both all-trans (AT) and 

13-cis (13C) isomers in its photocycle and therefore, providing a unique test ground to single out 

the individual effect of the ground state configuration of the RPSB on its reaction dynamics. Our 

experimental results showed that both electronic and vibrational dynamics are widely distinct for 

the AT and 13C isomers of the RPSB. In particular, a comparative TA study exhibited more than 
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five folds acceleration of the reaction rate from the AT to the 13C isomer (Chapter 4). Furthermore, 

the evolution of the vibrational modes were mapped by (pump-) DFWM and (pump-) IVS 

techniques (Chapter 5). It depicted transient frequency shifts for the localized modes (e.g. C=C, 

C-C stretching, CH3 rocking) within the excited state lifetime of each isomers. One of the major 

findings was a large difference in the timescales of these frequency shifts for the AT and 13C 

isomers. While it takes more than 200 fs after the photoexcitation for the former, it occurs 

instantaneously (<30 fs) for the 13C isomer. These frequency shifts were interpreted as an evidence 

of reduction in effective π-conjugation length as a consequence of torsion around the isomerizing 

C=C bond of the RPSB during the isomerization reaction. This implicated that AT isomer takes 

longer time to isomerize than the 13C isomer. These interpretations were in line with a quantum 

computational trajectory calculation reported earlier,91 which predicted a barrier along the excited 

state trajectory of the AT isomer. This energy barrier between the Franck-Condon region and the 

conical intersection (CI) leads to deceleration of the isomerization reaction for the AT isomer. In 

contrast, the excited trajectory of the 13C isomer was barrierless, which explains its faster 

dynamics. 

Another major finding of this thesis comes from the comparison of ground state Raman spectra of 

the AT and 13C isomers, which showed a stronger hydrogen-out-of-plane (HOOP) activity for the 

latter compared to the former (Chapter 5). For the retinal systems, the HOOP activity in the Raman 

spectra of any RPSB has been considered as an indication of its structural distortion.84, 141, 146 

Therefore, our results indicated a strong distortion of the ground state structure for the 13C isomer 

compared to the AT isomer of the RPSB inside the retinal pocket of ASR. The pre-distortion of the 

ground state retinal structure was reported to have a major influence in the acceleration of the 

reaction dynamics for the retinal proteins like visual-Rhodopsin.49, 82, 84, 141-144 This is because the 

photo-excitation of a pre-distorted isomer causes the excited wave packet to appear relatively closer 

to the isomerized photoproduct potential surface along the reactive reaction coordinate than an 

isomer, which is completely planar in the ground state. The experimental observation of this 

pre-distortion in the ground state does not contradict, however, the theoretical prediction of a 

barrier in the excited state. Both may be connected and be the cause for the different excited state 

lifetimes in AT and 13C isomer. For example, if there is an energy barrier along the reactive 

coordinate, a pre-distortion may help to avoid that barrier, since the photoexcitation of the 
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pre-distorted RPSB isomer might cause the wave packet to be excited after such a barrier in the 

excited potential and, hence, leading to shorter lifetimes. 

Another important aspect of this thesis was the investigation of the influence of the protein cage 

surrounding the RPSB chromophore in guiding the isomerization reaction (Chapter 6-7). In that 

purpose, two different point mutations in the protein chain of the ASR was performed (V112N and 

L83Q) (Chapter 6). In each case, a single non-polar amino acid residues in vicinity of the RPSB 

inside the retinal pocket, was replaced by a polar one. The mutations have a strong effect on the 

photo-isomerization dynamics of the RPSB. In particular, they cause more than three folds 

acceleration of the isomerization reaction time for the AT isomer, whereas mutations have only a 

minor effect on the dynamics of the 13C isomer. Same trend was observed for the frequency shifts 

of the C=C stretching modes during the photo-isomerization reaction. This asymmetric effect of 

mutation on the dynamics of the AT and 13C isomers of the RPSB strongly suggests that the 

electrostatic interaction exerted by the same protein cage on two different isomers must be widely 

different. 

The molecular origin of the observed difference in isomerization dynamics between the WT and 

the mutants were found by comparing the ground state spectra of the WT ASR and its mutants 

(Chapter 6). It showed a strong correlation between the amplitude of the HOOP activity and the 

isomerization reaction time of corresponding sample. This indicated that the observed acceleration 

of the reaction rate for the AT isomer in the mutants could be caused by a pre-distortion of the 

ground state retinal structure, similar to 13C isomer of the WT. Hence, the major conclusion drawn 

from all these studies is that the electrostatic interaction between the RPSB and the surrounding 

amino acid residues inside the retinal pocket governs the structural changes of the RPSB during its 

isomerization reaction. This interaction can be modified either by changing the ground state retinal 

structure or by perturbing the opsin constructions. In both cases, it influences the reaction 

dynamics. 

The role of the protein chain embedded in the cytoplasmic region, which are far from the retinal 

pocket, were also investigated (Chapter 7). Truncation of the cytoplasmic tail showed a small 

acceleration for the formation of primary photoproduct, especially for the AT isomer. Major 

changes were observed in the longer (>100 ps) time scale. In particular, the photo-product spectra 

and dark adaptation kinetics were found to be widely distinct for the truncated ASR in comparison 
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to the full length WT ASR. Observed changes were interpreted as a consequence of alternation in 

a long H-bond network starting from the amino group of the retinal chromophore and extended up 

to the cytoplasmic tail of the protein chain in ASR. These studies depicted that not only the amino 

acid residues in vicinity of the RPSB but also those far apart (~20A) from the RPSB can play a 

significant role in isomerization reaction, especially for the long time (>100 ps) relaxation kinetics 

of the photo-product. This is line with the recent time resolved x-ray crystallography study of 

bacterio-Rhodopsin, which depicted synchronized movement of the amino acid residue far apart 

from the retinal pocket.31 

Another cornerstone of the present work was to explore the activation mechanism of individual 

vibrational mode of the RPSB. First, a complete characterization each vibrational mode to specific 

electronic state was done on the basis of its dephasing rate and excitation wavelength dependence. 

The ground state Raman spectrum was found to cover mostly the high frequency (>1000 cm-1) 

modes, whereas the excited Raman spectra contained both high (>1000 cm-1) and low frequency 

(<400 cm-1) modes. In order to explore the activation mechanism of these excited state modes, the 

evolution of the transient Raman spectra was mapped by impulsive vibrational spectroscopic 

methods. It exhibited a distinct activation mechanism for the high frequency (>1000 cm-1) localized 

and the low frequency (<400 cm-1) torsional modes. The former modes were found to be Franck 

Condon active, while the latter modes were mostly activated indirectly by an energy flow from the 

localized modes via an internal vibrational energy re-distribution (IVR). It was evident from the 

time dependent Raman transition amplitude of the low frequency modes. 

The observation of activation of one class of mode with other supports “two-states-two-modes” 

model27, 104 (see Figure 1.3 (b)). In particular, this model states that there are two classes of coupled 

vibrational motions, named as tuning and coupling modes, which controls the isomerization 

reaction. Among these two classes, only the latter represents the reactive coordinate of the 

isomerization reaction. In all our experimental results, the high frequency (>1000 cm-1) modes 

were found to be the tuning modes, which change their frequencies from the ground to excited state 

but don’t actively participate in the reaction (Chapter 5). In contrast, all low frequency (<400 cm-1) 

torsional modes were found to be activated indirectly, which characterizes them as the coupling 

modes. However, it remain unaffected, even when a significant acceleration of the isomerization 

kinetics is reported (Chapter 6). This may initially puzzle since as a reactive coordinate, one would 

expect changes in its frequency and/or amplitude due to mutation keeping in mind the drastic effect 
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of the mutation on the excited state lifetime of the RPSB. However, these low frequency modes 

are very delocalized modes, which may not be so strongly influenced by the point mutation as the 

localized HOOP and other high frequency modes. 

Overall, the reported experimental results in this thesis shed new light on the retinal 

photochemistry. It revealed that the protein construction plays the predominant role for the retinal 

photo-isomerization mechanism. Specifically, the residues in vicinity of the bound RPSB controls 

the initial (<ps) events of the retinal isomerization, while those residue far apart from the RPSB 

play a predominant role in the long time (>100 ps) relaxation kinetics of the photo-product. 

Moreover, the present work elucidates the intricate relationship between the electronic and 

vibrational dynamics of the RPSB. In particular, it illustrates that small perturbations of the 

electrostatic environment lead to strong changes in the vibrational dynamics as well as in the 

reaction dynamics. This finding will inspire technological advancement to develop bio-mimic light 

harvesting compounds with faster responsive properties.42, 48, 172, 183 

8.2 Outlook 

The presented results raised several new challenges in the photochemistry of retinal. Firstly, in all 

coherent vibrational spectroscopic measurements presented in this thesis, the dynamics of the 

RPSB has been probed in the visible spectral region, where both the excited spectra overlap with 

the ground state spectral. It was shown that in some conditions this may lead to an optical signal 

contain a mixing of substantial fraction of non-resonant ground state contribution along with a 

major contribution from the excited state. This restricts the quantitative evaluation of the excited 

state vibrational spectra. The only spectral range devoid of any ground state dynamics is the near 

infrared (NIR) region (950-1400 nm), where a pure stimulated emission band appears without any 

overlap with the ground state bleach band for most of the retinal proteins.98, 184 Thus, a 

pump-DFWM measurement with a visible actinic pulse and NIR DFWM pulses, would help to 

evaluate the pure excited state vibrational spectra as well as to track its evolution. In this regard, a 

non-collinear optical parametric amplifier (nc-OPA), which can derive an ultrashort pulse in the 

NIR region, has been recently developed in our lab. This opens up a possibility in the future to 

evaluate the pure excited vibration spectra of ASR as well as other retinal proteins. 
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Secondly, the comparative studies of the WT and two different point mutants, presented in this 

thesis, has depicted the role of two individual amino acid residues on the isomerization reaction. It 

lacks, however, the broader picture about the role of whole protein environment. In order to address 

this open question, one needs to follow the dynamics of the protein residues and the bound RPSB 

inside the WT protein all together. One possibility is the tracking of this sub-ps movement of the 

moieties by femtosecond transient IR spectroscopy.137, 185 Infrared spectroscopies allow to follow 

the transient changes in the IR spectra of the structure changes of all molecules present in the 

protein. Alternatively, a direct recording of the atomic motion is also possible by emerging transient 

x-ray crystallography methods. A recent time-resolved x-ray crystallographic study on 

bacteriorhodopsin captured the movement of the RPSB as well as the surrounding amino acid 

residues from 100 fs to 2 ms after the photo-excitation.31, 186 Similar studies on ASR can depict the 

role played by each surrounding amino acid residue and water molecule to channelize the reaction 

for both the AT and 13C isomers of the RPSB. It would point out the amino acid residue responsible 

for the differential interaction with two isomers.  

Thirdly, although our studies showed an evidence for the internal energy flow from the high to low 

frequency modes, it could not quantitatively estimate the time scale at which this transfer of energy 

take place. In addition, it was not clear what are the factors determining this coupling strength. One 

possibility to address this question is to employ 2D Raman spectroscopic measurements.187-189 This 

follows the same experimental setup as presented for the pump-DFWM technique, which widens 

the prospect to study the 2D Raman with the same experimental setup in our lab. In resultant 2D 

Raman spectrum, the appearance of cross peaks would be considered an evidence of coupling and 

the asymmetry of these cross peaks would provide an estimation of the time required for the IVR 

process.
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