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1. ZUSAMMENFASSUNG 

Natürliche Killer (NK)-Zellen bilden als Teil des angeborenen Immunsystems die erste 

Abwehr gegen Virusinfektionen und maligne Transformationen und stellen daher einen 

vielversprechenden Anwendungsbereich für die Immuntherapie gegen Krebs dar. Die 

vollständige Aktivierung der NK-Zellen wird jedoch durch inhibitorische Signale 

eingeschränkt, die durch die Interaktion von inhibitorischen Killer-Immunglobulin-

ähnlichen Rezeptoren (KIRs) auf den NK-Zellen mit körpereigenem HLA-I auf autologen 

Tumor Zellen vermittelt werden. Es ist daher überaus wichtig für die Immuntherapie gegen 

Krebs, die KIR-vermittelte Hemmung der NK-Zellen zu umgehen, um das volle Potenzial 

von autologen NK-Zellen ausschöpfen zu können. Obwohl die molekularen Mechanismen 

der de novo Genexpression von KIR-Rezeptoren während der Entwicklungsphase von NK-

Zellen ausreichend ergründet sind, ist wenig über eine mögliche Regulation auf reifen NK-

Zellen bekannt.  

In dieser Studie präsentieren wir eine neue Strategie, wie NK-Zellen vorübergehend von 

KIR-vermittelter Hemmung befreit werden können, um den autologen NK-Zell–Transfer in 

der Therapie von HLA-I positiven Tumoren zu verbessern. Stimulation von reifen NK-

Zellen, isoliert aus dem menschlichen Blut, mit einer Kombination der Zytokine Interleukin 

(IL)-12, IL-15 und IL-18 führte zu einer verminderten Oberflächenexpression der 

bedeutenden inhibitorischen KIR2DL2/L3, KIR2DL1 und KIR3DL1 Moleküle. Im Gegensatz 

dazu zeigten andere Rezeptoren keine Veränderung oder erfuhren sogar eine 

Hochregulierung wie z.B. die alpha-Kette des IL-2 Rezeptors (CD25). Die ausgeprägteste 

Herabregulation der KIR-Rezeptoren war zwei Tage nach Zytokinstimulation sichtbar und 

konnte auf erniedrigte KIR-mRNA-Spiegel zurückgeführt werden. Die Verringerung der 

KIR Expression war transient und sowohl die mRNA als auch die Oberflächenexpression 

der KIR-Rezeptoren konnte durch Kultivierung in IL-2 oder IL-15 erneut induziert und 

wiederhergestellt werden. 

Die verringerte Expression der KIR2DL2/L3 Rezeptoren auf IL-12/15/18–aktivierten NK-

Zellen war mit einer geringeren KIR-vermittelten Hemmung und mit einer erhöhten CD16-

abhängigen Zytotoxizität verbunden. Vor allem aber ermöglichte die erniedrigte 
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Expression der KIR2DL2/L3 Rezeptoren eine deutlich verbesserte Zytotoxizität der 

IL-12/15/18–aktivierten NK-Zellen gegenüber Tumorzellen, die den passenden HLA-I 

Liganden trugen. Zusätzlich konnten wir eine Herabregulierung von inhibitorischen KIR-

Molekülen auf NK-Zellen in einem Infektionsmodell des humanen Zytomegalie Virus 

(HCMV) beobachten, welches ein physiologisches System mit hohen Konzentrationen an 

pro-inflammatorischen Zytokinen (wie z.B. IL-12) darstellt.  

Zusammenfassend beschreibt unsere Studie einen neuen Mechanismus der 

Herunterregulation von inhibitorischen KIR-Rezeptoren durch pro-inflammatorische 

Zytokine auf reifen NK-Zellen. Die herabgesenkte Expression der KIR-Rezeptoren auf 

IL-12/15/18–aktivierten NK-Zellen führte zu einer verminderten Hemmung durch 

entsprechende HLA-I Liganden, wodurch potente Effektorzellen für die Behandlung HLA-I 

positiver Tumore generiert werden konnten. Diese Ergebnisse implizieren, dass die hier 

aufgezeigte vorübergehende Resistenz gegen KIR-vermittelte Inhibition die 

Behandlungsmöglichkeiten der Immuntherapie deutlich verbessern könnte, insbesondere 

bezüglich der Infusion von autologen NK-Zellen.  
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2. SUMMARY 

Natural killer (NK) cells form the first line of defense against viral infections and malignant 

transformation and therefore represent promising targets for cancer immunotherapy. 

However, NK cell anti-tumor efficacy in the patient is often impaired through inhibitory 

signals mediated by the interaction of inhibitory killer immunoglobulin-like receptors 

(KIRs) with self–HLA-I expressed on autologous tumor cells. Therefore, it is crucial to 

circumvent KIR-mediated self-inhibition in immunotherapy to unleash autologous NK cell 

potency. Although the molecular mechanisms of de novo KIR expression during NK 

development are well established, little is known about regulation of their expression on 

mature NK cells.  

We here present a new strategy of transiently and safely releasing NK cells from KIR-

mediated inhibition to improve autologous NK cells transfer against HLA-I–expressing 

tumors. Stimulation of mature peripheral blood NK cells with a combination of the 

cytokines interleukin (IL)-12, IL-15 and IL-18 resulted in decreased surface expression of 

the major inhibitory KIR2DL2/L3, KIR2DL1 and KIR3DL1 molecules. In contrast, other NK 

receptors remained unchanged or even got upregulated such as the IL-2 receptor alpha-

chain (CD25). Most pronounced KIR downregulation was observed two days after cytokine 

exposure and was attributed to decreased KIR mRNA levels. Downregulation of KIR 

expression was transient and KIR mRNA and surface expression could be re-induced upon 

culture in IL-2 or IL-15. Reduced KIR2DL2/L3 expression on IL-12/15/18–activated NK 

cells was associated with less KIR-mediated inhibition and increased CD16-dependent 

cytotoxicity in redirected lysis assays. Importantly, downregulation of KIR2DL2/L3 

expression enabled improved cytotoxicity of IL-12/15/18–stimulated NK cells against 

cognate HLA-I–expressing tumor targets. Additionally, we observed downregulation of 

inhibitory KIR molecules on NK cells after 3 days in a human cytomegalovirus (HCMV) 

infection model, representing a physiological setting with high concentrations of pro-

inflammatory cytokines such as IL-12.  

Taken together, our study reports a novel mechanism of KIR downregulation on mature 

peripheral blood NK cells by pro-inflammatory cytokines. Decreased KIR expression of 
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IL-12/15/18–activated NK cells translated into reduced inhibition by self–HLA-I, 

generating potent effectors cells for the treatment of HLA-I–expressing tumors. These 

results imply that the transient resistance to self-inhibition might greatly improve 

immunotherapy protocols especially for autologous NK cell infusions. 

 

 

 

 

IL-12/15/18–induced downregulation of inhibitory killer immunoglobulin-like receptors (KIRs) on 

NK cells translated into reduced KIR-mediated inhibition and enhanced cytotoxicity against cognate 

HLA-I–expressing tumor cells, indicating high potency in autologous infusions. Adapted from the 

graphical abstract from Ewen et al. 2018 Eur. J. Immunol. 710. 
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3. INTRODUCTION 

3.1. The immune system 

Every species is constantly exposed to diverse pathogens such as bacteria, viruses, 

parasites or fungi and has developed strategies to protect the organism from pathogenic 

threat. Vertebrates have developed a complex system consisting of specialized organs, 

tissues, effector cells and soluble molecules to fight foreign pathogen and to protect against 

malignant transformation of the own body. Therefore, the immune system can detect and 

discriminate healthy from non-self or altered-self cells but is also carefully regulated to not 

attack healthy tissue. The importance of a functional immune system is illustrated through 

the link of immune dysfunctions or immunodeficiencies to severe disorders such as 

autoimmune diseases and an increased risk of lethal infections and of developing cancer 1. 

Two major branches of the immune system are distinguished in vertebrates according to 

their mechanism and specificity of antigen recognition, kinetics of the immune response 

and the capability of memory formation: The evolutionary conserved innate immunity and 

the adaptive immunity, which has evolved in vertebrates including rodents and humans 2.  

 

3.1.1. The innate immune system 

The innate immune system is characterized by its rapid immune response and based on a 

germline encoded receptor repertoire recognizing a variety of different pathogens. It is 

conserved among plants, invertebrates and vertebrates and virtually every species has 

developed basic defense mechanisms against pathogens. The first defenses of the body are 

anatomical as well as chemical barriers such as the skin or the acidic milieu in the stomach. 

An intact epithelial barrier can prevent pathogens to enter the body and mucosal surfaces 

additionally produce antimicrobial peptides such as β-defensins. Innate immunity is 

further mediated by humoral (e.g. the complement system) as well as cellular components 

which include phagocytic cells (macrophages, monocytes, dendritic cells and neutrophils), 

granulocytes (eosinophils and basophils), mast cells and innate lymphoid cells (ILCs and 

NK cells) 2. 
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Cells of the innate immune system express germline-encoded receptors that recognize 

molecules expressed on stressed and malignantly transformed cells, or molecular 

microbial structures such as pathogen-associated molecular patterns (PAMPs). These 

PAMPs are evolutionary conserved structures common to many pathogens and include 

complex carbohydrates found on bacterial cell walls (peptidoglycans, lipopolysaccharides) 

and nucleic acids typical for viruses or bacteria (unmethylated CpG DNA, double-stranded 

RNA). Similar to PAMPs, innate receptors can also detect endogenous ligands associated 

with cellular stress, so called damage-associated molecular patterns (DAMPs), such as the 

chromatin-associated protein high-mobility group box 1 (HMGB1), heat shock proteins or 

chromatin DNA 3.The best characterized pathogen recognition receptors (PRRs) are the 

Toll-like receptors (TLRs) expressed on phagocytic cells like monocytes, macrophages, 

dendritic cells or neutrophils 3. These sensory cells can directly induce effector functions 

via phagocytosis and degradation of the pathogen, but also orchestrate both innate and 

adaptive immunity through recruiting and activation of other immune cells. The 

production of cytokines helps to shape and amplify a specific immune response while 

chemokines act as chemo-attractants attracting cells from the blood circulation into 

lymphoid organs or tissues. Phagocytic uptake of pathogens by dendritic cells (DCs), also 

named professional antigen-presenting cells (APCs), leads to their maturation and 

migration to the lymph node where they present antigens to adaptive immune cells. 

Presentation of processed antigens by APCs on their major histocompatibility complexes 

(MHC) class II is a major mechanism to activate antigen-specific immune cells. In general, 

many mechanisms of the innate immune system not only eliminate pathogens, but also 

function to prime and enhance the adaptive immune response 2,4–6.  

Another important part of the cellular innate immunity comprises the family of innate 

lymphoid cells (ILCs), including natural killer (NK) cells, which will be described in detail 

in section 3.2.  

 

3.1.2. The adaptive immune system 

The hallmarks of the adaptive immune system are the delayed, but yet strong and antigen-

specific immune response and the capability to generate immunological memory, 

providing long-lasting immunity. Adaptive lymphocytes develop in the bone marrow from 

a common lymphoid progenitor (CLP) and comprise B cells, that mature in the bone 
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marrow, and T cells that further differentiate in the thymus. Each B and T lymphocytes 

express a unique surface receptor with a single antigen-specificity. The high diversity of the 

antigen-specific receptors is formed by somatic recombination of various gene segments 

encoding the B cell (BCR) and T cell receptor (TCR). The random rearrangement of V(D)J 

gene segments requires the recombinases RAG-1/2 and can result in 1014 - 1018 receptors 

with different specificities enabling the adaptive immune system to respond against a vast 

variety of antigens 7,8. To ensure tolerance, T cell clones with self-reactive or non-functional 

TCRs are subsequently deleted or inactivated in the thymus through positive and negative 

selection 2. 

Upon encounter of their cognate antigen, activation of antigen-specific naïve T and B cells 

leads to clonal expansion in secondary lymphoid organs and differentiation into effector 

lymphocytes highly efficient against the specific pathogen. The clearance of the infection is 

followed by a contraction phase and formation of a small pool of long-lived memory cells, 

which are capable of mounting a faster and stronger recall response after secondary 

challenge with the same antigen. Long-lasting immunity through the formation of 

immunological memory marks the basis of successful vaccination. Immunological memory 

has mostly been accounted to be a feature of adaptive immune cells. However, a growing 

body of experimental evidence suggests that also innate immune cells can possess adaptive 

features such as longevity and superior recall responses, blurring the lines of innate and 

adaptive immunity 9–11. This aspect will be discussed in more detail in section 3.6.  

The B cell receptor (BCR) is a membrane-bound immunoglobulin (Ig) and directly binds 

native antigens without the need of presentation and can therefore detect extracellular 

pathogens. In addition, B cells can also function as APCs and present processed antigens on 

MHC class II. Upon activation and maturation into plasma cells, B cells secrete a soluble 

form of the BCR, termed antibodies, which constitute the humoral arm of the adaptive 

immunity and possess the same antigen specificity as the BCR. Antibodies are Y-shaped 

molecules composed of two identical heavy and two light chains. Depending on the heavy 

chain, five different antibody or Ig isoforms exist (IgA, IgD, IgE, IgG and IgM) with different 

functions and localizations in the body. Antibodies further consist of a constant Fc region 

and two highly variable regions created through somatic recombination, enabling 

recognition of a vast variety of antigens. Antibodies can either directly neutralize antigens 

or exert different functional outcome via their Fc part such as opsonization of pathogens 
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for phagocytes, antibody-dependent cytotoxicity (ADCC) or activation of the complement 

system 2,12. 

The T cell receptor (TCR, CD3) is composed of two chains, the α- and β-chain, that undergo 

somatic rearrangement and determine the highly variable antigen specificity. The TCR can 

only recognize antigens that are processed and presented on MHC molecules. CD4+ T helper 

cells recognize peptides in the context of MHC class II molecules on APCs, while CD8+ T cells 

interact with MHC class I that is expressed on any nucleated cell. Upon activation, naïve 

CD8+ T cells differentiate into cytotoxic lymphocyte effector cells (CTLs), which are potent 

producers of interferon-gamma (IFN-γ) and mediate their cytotoxicity via secretion of 

perforin and granzymes 2.  

In addition to the antigen-specific TCR engagement, T cells require co-stimulatory signals 

provided by APCs in order to become fully activated. This includes interaction of the B7 

family ligands with co-stimulatory CD28 on T cells or with inhibitory CTLA-4, which 

functions as checkpoint to inhibit excessive T cell activation. In addition, cytokines 

produced by adjacent immune cells can polarize T cell differentiation into effector cells 

with different properties and functions. After activation, CD4+ T cells can differentiate into 

different subtypes of cytokine producing helper cells, depending on the co-stimulatory 

cytokine milieu. The main lineages comprise regulatory T cells (Tregs) and TH1, TH2 and TH17 

helper cells, which are defined by their characteristic cytokine expression profile and 

function 13. TH1 cells characteristically produce IFN-γ to activate macrophages, DCs and B 

cells and to fight intracellular pathogens. TH1 subsets are differentiated in the presence of 

interleukin (IL-) 12 and IL-18, whereas IL-4 triggers the polarization of TH2 cells. Key 

cytokines of TH2 cells are IL-4, IL-5 and IL-13 to assist B cells, mast cell and basophils in the 

control of extracellular parasite infections such as helminths. TH17 cells produce IL-17 and 

IL-22 and play a major role in clearance of extracellular bacteria and fungi at mucosal 

surfaces. Transforming growth factor beta (TGF-β) can induce regulatory T cells (Tregs) 

expressing the transcription factor FoxP3 (forkhead box protein P3) and the IL-2 receptor 

α-chain (CD25). Regulatory T cells can inhibit other effector cells through secretion of 

immunosuppressive cytokines e.g. TGF-β and IL-10, limiting an ongoing immune response 

but also preventing autoimmunity 2. 

In addition to T cells with a TCR composed of α- and β-chains, also γδ-T cells exist, which 

have a limited TCR diversity but can recognize antigens in a non-MHC restricted manner 14. 
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γδ-T cells exhibit features of both innate and adaptive immunity and are enriched at 

epithelial surfaces. Another cell type bridging innate and adaptive immunity are natural 

killer T (NKT) cells, which co-express an αβ-TCR (CD3) and surface markers typically 

associated with natural killer cells e.g. NK1.1. NKT cells recognize lipids or glycolipids 

presented by CD1d, are activated by DC-derived IL-12 and subsequently stimulate activate 

TH1 cells and CTL mediated immunity 15.  

 

3.2. Natural killer cells 

Natural killer (NK) cells are large granular immune cells that constitute about 5 – 10 % of 

lymphocytes in the peripheral blood. They have been first described in 1975 as a subset of 

lymphocytes distinct to T or B cells and have been named according to their function of 

spontaneous or ‘natural’ cytotoxicity without the need of prior sensitization 16–18. 

Observations that these natural killers are specifically cytotoxic against malignant cells 

lacking expression of self-MHC class I proposed the ‘missing self’ hypothesis (see section 

3.3) of NK specificity 19. NK cells have traditionally been classified as classical innate 

immune cells because, unlike B and T cells of the adaptive immune system, they express 

germline encoded receptors that do not require RAG recombinase-mediated 

rearrangement 20,21. However, a recent study has reported a role for the RAG recombinase 

in NK cell development and cellular fitness 22 and accumulating evidence suggests adaptive 

features of NK cells, blurring the borders between innate and adaptive immunity 10,23–25. 

Natural killer cells act as first line of defense against various pathogens, viral infections and 

malignant cells 26,27. Besides their ability to directly eliminate and kill infected and 

transformed cells, NK cells function through production of cytokines and chemokines that 

shape the innate and adaptive immune response 28,29. They provide protection against viral 

infection and metastatic dissemination and play a central role in pregnancy and graft 

rejection 30–34.  

 

3.2.1. Definition 

NK cells represent a unique subset of lymphocytes, distinct from T and B cells, which 

recognize their targets in an inherent and MHC–unrestricted manner based on a germline-
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encoded receptor repertoire 20. NK cells belong to a larger family of innate lymphoid cells 

(ILCs), which are involved for instance in tissue homeostasis and immunity in mucosal 

tissues 35,36. Three subsets of ILCs have been described to date based on their functionality 

and transcription factors, with NK cells classified as part of the subgroup of ILC1 37–39.  

In flow cytometry, human NK cells are usually phenotypically defined as CD3–CD56+ 

lymphocytes. The T cell marker CD3 needs to be excluded, since CD56 is also expressed on 

CD3+ NKT cells 15,40. In addition to CD56, NKp46 has been proposed as general NK marker 

due to its expression on mouse NK cells 41–43. Both markers have their disadvantages since 

CD56 negative NK cells have been detected in certain diseases 44. At the same time, 

expression of NKp46 is not restricted exclusively to NK cells and might be a subject of 

regulation in certain conditions such as infections or in NK cells with adaptive 

features 38,43,45. In order to discriminate NK cells from other ILC1, the transcription factor 

Eomes, the presence of cytolytic granules and expression of NKp80 are currently suggested 

as NK cell specific markers 39,46,47. 

 

3.2.2. NK cell development: 

Compared to murine NK cell development, most conclusions about NK precursors in 

humans are derived from in vitro differentiation data or from monitoring NK cell 

reconstitution after hematopoietic stem cell transplantation (HSCT). However, it is wildly 

accepted in the field that NK cell and ILC development takes place in the bone marrow from 

CD34+ hematopoietic stem cells (HSC) into a common lymphoid progenitor (CLP) that can 

also give rise to other lymphocytes as B and T cells 28,48,49. But the bone marrow might not 

be the only site of NK cell development, as precursors have been found in several other 

tissues as the thymus, lymph nodes, liver, gut and uterus 50–54. Extramedullary 

compartments might represent important sites of NK development and terminal 

differentiation, shaping NK diversification and functional heterogeneity by the unique 

milieus of different tissues. De novo acquisition of CD122, the IL-15Rβ chain, marks the 

commitment to the NK cell precursor (NKP) 48–50,55 and IL-15 has been shown to be 

essential for further differentiation, maturation and the survival of NK cells in the 

periphery 56–58. In addition, a complex interplay of multiple transcription factors drives 

commitment to the NK cell lineage such as ID2, PU.1, Ets-1, TOX, NFIL3 as well as Tbet and 

Eomes at later stages of NK cell development 59–63. Immature NK cells (iNK) differentiate 
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further into mature NK cells (mNK) in the periphery where they gain their effector 

functions, i.e. the capability of IFN-γ production and cytotoxicity, and sequentially acquire 

functional receptors such as CD56, CD94, NKG2A, NKp46, NKG2D and eventually CD16 and 

killer immunoglobulin-like receptors (KIRs) 52,53,64–67.  

 

3.2.3. NK cell subsets 

In humans, CD56+CD3– NK cells can be further divided into two subsets on the basis of their 

CD56 expression levels, into CD56bright and CD56dim NK cells 26,68–70. The CD56bright subset 

comprises approximately 10 % of NK cells in peripheral blood but is enriched in secondary 

lymphoid organs 54,66,70,71. They are attributed to have a predominantly immunomodulatory 

role due to their high potential of cytokine production upon monokine (IL-12 or IL-18) 

activation but contain rather low levels of perforin and granzyme 71–74. CD56dim NK cells 

constitute the prevalent subset of human peripheral (pb)NK cells and display a high 

capacity of target cell-induced cytotoxicity and cytokine production 68,70,73–75. In addition, 

CD56dim NK cells express the FcγRIII (CD16), allowing them to exert antibody-dependent 

cytotoxicity (ADCC) 12. CD56dim NK cells are less efficient effectors upon cytokine activation 

in comparison to the CD56bright subset, but are potently stimulated upon activating receptor 

engagement 71–74. Increasing evidence suggests that CD56bright cells are precursors of 

CD56dim NK cells, as the latter possesses lower proliferative capacity associated with 

shorter telomers 64,66,76. CD56bright NK cells predominate neonatal tissues and umbilical cord 

blood and are the first population to be detected after engraftment following HSCT in 

humanized mouse models and patients 64,77–80. Several reports suggest linear maturation 

from CD56bright to terminally differentiated CD56dim NK cells characterized by coordinated 

changes of surface receptors associated with maturation, activation and homing 64,65,77. In 

contrast to CD56dim NK cells, the CD56bright subset is uniformly high for CD94/NKG2A but 

lacks the expression of CD16 and KIRs 68. The continuous differentiation from CD56bright 

(CD94/NKG2AhiCD16–KIR–CD57–) to CD56dim (CD94/NKG2A–CD16+KIR+CD57+) NK cells is 

marked by a progressive decrease in NKG2A expression and an inverse correlation of 

sequential KIR and CD57 acquisition via phenotypical and functional intermediates 

(CD56dimCD94/NKG2A+CD16+KIR+/–CD57–) 64,65,77,81,82.  
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3.2.4. NK cell effector functions 

Natural killer cells serve as the first line of defense in the elimination of transformed or 

virally infected cells. Their effector function is mainly characterized by granzyme/perforin-

mediated cytotoxicity and by the production of cytokines, but can also involve immune-

modulatory functions 27. The integration of all signals delivered by activating and inhibitory 

receptors decides whether or not the NK cell becomes effectively activated and determines 

the kind of effector function 83–85. The final response is further influenced by cytokines, 

chemokines and additional immune cells in the local microenvironment of the NK cell. 

Cytotoxicity  

NK cells have several modes of inducing death of a target cells, either via the secretion of 

perforins and granzymes or via membrane-bound death receptor-related pathways. 

Death receptors include the ligand-receptor pairs FasL-Fas (CD95L-CD95), TNF-TNFR and 

TRAIL-TRAILR of the TNF superfamily 86–88. The interaction between NK cells expressing 

death ligands and death receptors on target cells induces the recruitment of various 

intracellular adaptors leading to the formation of the death-inducing signaling complex 

(DISC) 89. The DISC recruits and proteolytically activates the pro-caspases 8 and 10 and 

thereby initiates the enzymatic caspase cascade, resulting in apoptosis of the target 

cell 86,90. 

The second mechanism of NK cell-mediated target cell killing involves the release of lytic 

granules containing pre-formed perforin and granzyme 91. Upon recognition of a target cell, 

an immunological synapse is formed between both cells, inducing the exocytosis of 

cytotoxic granules in close proximity to the target cells 92,93. Perforin molecules form pore-

like structures in the membrane of the target cell, thereby disrupting the membrane 

integrity and allowing the entry of granzyme molecules in the cytoplasm 94. The serine 

proteases granzyme A and B induce apoptosis through initiation of the caspase cascade or 

via mitochondrial depolarization and DNA fragmentation mediated by proteolytic 

cleavage 95.  

Antibody-dependent cellular cytotoxicity (ADCC) also functions via the perforin/granzyme 

pathway 96,97. Antibody-coated target cells can be cross-linked by FcγRIII (CD16), the low-

affinity receptor for IgG, triggering a strong NK cell cytotoxic response that does not require 

additional co-activation 12,98,99. The capacity of strong NK cell effector and anti-cancer 
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functionality upon ADCC is currently exploited in the clinical application of therapeutic 

antibodies 100,101. 

Cytokine production 

NK cells present an important source of various cytokines and chemokines such as IFN-γ, 

TNF-α, GM-CSF and IL-6 75. IFN-γ is considered to be the signature cytokine of NK cells and 

has been demonstrated to have anti-proliferative and pro-apoptotic effects on cancer cells 

via upregulation of caspases, FasL and TRAIL 102. The combined secretion of TNF-α and 

IFN-γ has been shown to induce senescence in cancer cells 103. In addition, IFN-γ stimulates 

antigen presentation on MHC class I and II molecules and promotes macrophage 

functionality 27,104. Cytokine secretion and the release of cytotoxic granules are regulated 

differentially, enabling specific NK cell responses through combinatory mechanisms or by 

either mechanism independently 105,106. Furthermore, cytokine production by NK cells not 

only contributes to target cell death but also influences and shapes the adaptive immune 

response of T and B cells 5,6,107,108. In addition, activation of NK cells by cytokines such as 

IL-15, IL-12 or IL-18 can further augment NK cell effector functions 109.  

 

3.3. NK cell receptors and their ligands 

NK cells express a variety of adhesion molecules and receptors for cellular ligands as well 

as for cytokines and chemokines. The following chapter will outline a small selection of the 

most important receptors relevant for the context of this thesis. Activation of NK cells is 

tightly regulated by a delicate balance of signals delivered via activating and inhibitory 

receptors 75,83,106,110. Activating receptors primarily recognize stress-induced ligands on 

virally infected or transformed cells thereby enabling NK cells to detect and eliminate 

potentially harmful cells. Inhibitory receptors mostly bind conventional or non-

conventional self–MHC class I molecules and can thereby distinguish between self and non-

self thus protecting healthy cells and sensing cells that lack self-MHC-I 32,111–114. The 

integration of all signals delivered by activating and inhibitory receptors decides whether 

or not the NK cell becomes effectively activated and determines the kind of effector 

function 83–85,115. The final response is further influenced by cytokines, chemokines and 

additional immune cells in the local microenvironment of the NK cell. In steady state 

conditions, inhibitory signals dominate through the interaction of inhibitory receptors 
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recognizing self–MHC class I on healthy cells. A seminal study by Klas Kärre and colleagues 

revealed that NK cell cytotoxicity is triggered by tumor cells that have lost self–MHC-I 

expression on their surface 19. MHC class I molecules are expressed on all healthy nucleated 

cells thereby preventing NK cells from being activated during normal conditions. In 

contrast, MHC-I is often downregulated on virus-infected or transformed cells to evade 

detection by CD8+ T cells 116, thus becoming susceptible to NK cell mediated killing 

(‘missing-self’ recognition) 19,117–119. Deficiency of MHC-I is not sufficient to trigger full NK 

cell activation but in addition requires co-expression of ligands for activating 

receptors 84,112,120,121. These ligands can be pathogen-derived or induced by cellular stress 

upon viral infection or malignant transformation 32,113,122–124. This ‘induced-self’ model 

explains how NK cells can overcome the inhibitory signals if MHC-I expression is preserved, 

as well as their inability to attack healthy cells with no or low MHC-I levels (e.g. 

 

Figure 3.1: NK cell activation by 

missing self or induced self. NK cell 

tolerance (a) to healthy cells 

expressing cognate self–MHC class I 

molecules is mediated by dominant 

inhibitory receptors counteracting 

activating signals. (b) Down-

regulation of MHC-I molecules on 

tumor cells results in loss of NK cell 

self-inhibition (‘missing self’) 

shifting the balance towards NK cell 

activation. (c) Stress-induced 

upregulation of activating ligands on 

tumor cells can overcome inhibitory 

signals of self–MHC-I leading to 

‘stress-induced self’ triggered 

activation of NK cells. Adapted from 

Vivier et al. Nat Rev Immunol 

2012 610.  
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erythrocytes or neurons). Downregulation of activating NK ligands or expression of decoy 

MHC-I molecules hence display one strategy of immune escape of viruses and cancer 125–

127. 

 

3.3.1. Activating NK receptors 

In contrast to B or T cells, NK cells express a wide array of germline encoded activating 

receptors, which can act in synergy to potently stimulate NK cell effector functions 84,98,111. 

Most activating receptors signal via immunoreceptor tyrosine-based activation motifs 

(ITAMs) leading to recruitment and activation of the tyrosine kinases Syk and Zap70 106,115. 

ITAM signaling leads to NK activation by inducing signaling pathways of phosphatidyl-

inositol-3-OH kinase (PI3K), phospholipase C and Vav 83,128. Activating NK receptors can be 

classified according to their function and structure or their association with adapter 

molecules such as DAP10 or DAP12.  

Natural Cytotoxicity Receptors 

One major family of activating NK receptors is composed of the natural cytotoxicity 

receptors (NCRs) which include NKp30, NKp44, NKp46 and NKp80 41,47,129–131. They belong 

to the immunoglobulin superfamily and associate with different intracellular adaptor 

molecules bearing ITAMs such as CD3ζ, FcεRIγ or DAP12 132–135. NKp30, NK46 and NKp80 

are constitutively expressed on mature human NK cells and NKp46 is also a marker for 

mouse NK cells 41,47,130,132. Expression of NKp44 is not detected on resting NK cells but is 

induced by IL-2 or IL-15 activation 129,133.  

A variety of pathogen-encoded ligands have been characterized for the NCRs, such as viral 

hemagglutinins or PfEMP1 of Plasmodium falciparum for binding and activation of NKp46 

and NKp30 131,136,137. Human cytomegalovirus (HCMV) protein pp65 has been described as 

a viral ligand of NKp30 138 and binding of heparan sulfate proteoglycans to NKp30, NKp44 

and NKp46 has been reported 139–141. Recently, interaction of NKp30 with the fungal cell 

wall component β-1,3-glucan has been demonstrated 142 and complement factor P has been 

identified as a new ligand for NKp46 143. Although cellular or tumor-derived ligands for 

some NCRs remain elusive, they have been shown to play a major role in NK-mediated 

tumor immunosurveillance 131,144–146. For instance, a recent publication could reveal a new 

function of NKp46-mediated IFN-γ release in controlling tumor architecture and metastatic 



3  INTRODUCTION  

16 

dissemination 147. For NKp30 two bona fide cellular ligands have been identified: B7-H6 148, 

expressed on the surface of tumor cells ,and BAT-3 (BAG-6) 149, which is released in 

exosomes. Shedding or down-regulation of B7-H6 has been elucidated as an immune-

escape mechanism of tumor cells 150,151. A recent publication has described the platelet-

derived growth factor DD (PDGF-DD) as a ligand for NKp44, involved in cell cycle arrest 

and tumor control in vivo 152. Furthermore, NKp44 has been shown to bind the mixed-

lineage leukemia-5 protein (MLL-5) 153 and the proliferating cell nuclear antigen (PCNA), 

an inhibitory cellular ligand assisting in tumor immune-evasion via blocking the 

receptor 154. NKp80 is expressed on all NK cells in human peripheral blood and has been 

recently suggested as a marker for discrimination of conventional NK cells and other 

members of the ILC family 46,47. NKp80 has been shown to recognize the activation-induced 

C-type lectin (AICL) 155, which is upregulated on myeloid cells after TLR stimulation and 

also on NK cells after activation with IL-12/15/18 156. 

Natural Killer Group 2 Receptors  

The class of natural killer group 2 (NKG2) receptors belong to the C-type lectin-like family 

and comprises activating as well as inhibitory receptors 157–159. NKG2C and NKG2D are 

activating members, whereas NKG2A represents an inhibitory receptor and will be 

discussed in more detail in section 3.3.3. 

Figure 3.2: NK cell 

receptors and their ligands 

determine the balance of 

activation and inhibition. A 

selection of important 

activating and inhibitory 

receptors and their cognate 

ligands are depicted. Adapted 

from Chan et al. Cell Death 

Differ 2014 751 
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The NKG2C receptor is expressed as a disulfide-linked heterodimer with CD94 on human 

and mouse NK cells and on subsets of human memory T cells 134,160. NKG2C/CD94 couples 

to the ITAM-bearing adaptor molecule DAP12, thereby transmitting activating signals 161. 

CD94/NKG2C recognizes the non-classical MHC class I molecule HLA-E as a ligand in 

humans and Qa-1b in mice 162,163. Furthermore, the expansion of a NKG2C expressing subset 

upon HCMV infection has been linked to the generation of memory-like NK cells with 

adaptive features (see section 3.6.2) 164–166. 

NKG2D is a homodimeric receptor and does not associate with CD94. It is expressed on the 

surface of all human and mouse NK cells and a fraction of CD8+ and γδ-T cells 167,168. Upon 

receptor ligation, NKG2D signals via the adaptor molecule DAP10 in humans and DAP10 

and DAP12 in mice resulting in Vav-1 phosphorylation and activation of 

phosphatidylinositol-3 kinase (PI3K) 169–172. NKG2D detects stress-induced MHC class I 

homologue ligands, which are upregulated upon viral or malignant transformation and 

genotoxic stress 113,173,174. They include MHC class I chain-related gene (MIC)-A, MIC-B and 

the UL16 binding proteins (ULBP) 1 - 6 167,175,176. In mice, the respective NKG2D ligands are 

the retinoic acid early transcript-1 molecules (Rae-1), murine UL16-binding-like 

transcript-1 (MULT-1) and histocompatibility antigen 60 (H-60) 122,123,177,178. These ligands 

are expressed below threshold on healthy tissues but have been shown to be induced upon 

viral or malignant transformation and genotoxic stress e.g. due to DNA damage and heat 

shock response pathways 173,174,179–182. NKG2D is often targeted in immune evasion 

strategies for instance via shedding of ligands from tumor cells or TGF-β mediated receptor 

downregulation 183–186. A recent publication emphasizes the impact of NKG2D-mediated 

anti-cancer immunity by blocking the shedding of NKG2D ligands from the surface of tumor 

cells 187. The importance of NKG2D in tumor immunosurveillance has been demonstrated 

for several cancer entities in vivo 173,188–190. 

CD16 (FcγRIIIA) 

Complete activation of resting human NK cells requires combined signals of stimulation via 

two or more receptors 98. A potent exception is CD16, the low affinity FcγRIIIA, which is 

expressed on most mouse NK cells and on the human CD56dim subset. It associates with the 

ITAM-containing FcεRIγ chain and CD3ζ 191,192. CD16 binds the Fc part of IgG class 

antibodies and therefore enables NK cells to exert antibody-dependent cell-mediated 

cytotoxicity (ADCC) against antibody coated targets 12,193,194. Recently, our group has 
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demonstrated the importance of CD16-mediated ADCC in anti-cancer immunity and innate 

memory formation 99. 

 

3.3.2. Co-stimulatory receptors 

DNAX accessory molecule-1 (DNAM-I, CD226) 

The co-stimulatory receptor DNAX accessory molecule-1 (DNAM-I, CD226) is a member of 

the immunoglobulin superfamily and signals via ITAM motifs and PKC recruitment 195,196. 

It is constitutively expressed on most human NK cells, on approximately 50% of murine NK 

cells and on subsets of T cells and myeloid cells 197–199. CD112 (Nectin-2) and CD155 (polio 

virus receptor, PVR), two members of the nectin family, have been identified as ligands for 

DNAM-I and are broadly distributed on hematopoietic, endothelial and epithelial cells 200–

203. These ligands are upregulated on cancer cells upon genotoxic stress, indicating a role 

for DNAM-I in NK cell-mediated anti-tumor immunity in vivo 144,204,205. Of note, the DNAM-I 

ligands CD112 and CD155 can also interact with the two inhibitory NK receptors CD96 

(TACTILE) and TIGIT, which can oppose DNAM-I activation 199,203. DNAM-I has been further 

implicated in adhesion and migration of monocytes and shown to interact with the 

β-2-integrin LFA-1 195,206. 

Tumor necrosis factor receptor superfamily (TNFRSF) 

The members of the tumor necrosis factor receptor superfamily (TNFRSF) are widely 

expressed among lymphoid and non-lymphoid tissues in mice and humans, and are critical 

for modulating the immune response against pathogens by regulating cell death and 

survival 207,208. The TNFR superfamily is subdivided into two groups, the death domain 

(DD)-containing receptors and TRAF (TNF receptor-associated factor) binding receptors. 

The DD-containing ‘death receptors’, such as Fas (CD95), TRAIL-R1, TRAIL-R2, and TNFR1, 

associate with the adapters Fas-associated DD protein (FADD) and TNFR-associated DD 

protein (TRADD) leading to caspase activation and apoptosis 207,209,210. 

The second subgroup of TRAF binding receptors include OX40 (CD134), 4-1BB (CD137), 

HVEM, CD27, CD30, CD40, and GITR (CD357). Most receptors of the TNFRS family are not 

constitutively expressed on NK cells but can be induced upon activation 211–215. They 

generally operate as co-stimulatory receptors and their function in T cell activation is well 
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defined. On T cells, TNFRSF members are upregulated after sequential TCR and CD28 or 

CD40 stimulation. They signal via recruitment of TRAF adaptor proteins resulting in 

activation of the NF-κB pathway and enhanced proliferation and cell survival 213,216,217. 

Ligands for TNFRSF members (TNFSF) are primarily expressed on APCs but also by non-

immune cells as smooth muscle and endothelial cells. Additional immune cells such as NK 

cells, conventional activated T cells, lymphoid tissue inducer (LTi) and other ILCs can 

express ligands depending on the stimulatory environment 212,213,217–219. Thus, under 

defined conditions, NK cells can express either the receptors and/or the ligands of the 

TNFRSF, which enables an extensive cross-talk with other immune cells during an ongoing 

immune response. 

4-1BB (CD137) and Ox40 (CD134), the two TNFRSF members examined in this study, are 

absent on resting NK cells but can be induced upon cytokine activation and are binding to 

4-1BBL and Ox40L, respectively 214,216,217,220,221. A co-stimulatory role has been described 

for T cells, but their function in NK cells might be ambiguous and depending on the cytokine 

milieu, the environment and nature of the ligand 214. Agonistic antibodies for both receptors 

are currently tested in clinical trials to enhance T cell anti-cancer immunity 222–226. 

 

 

3.3.3. Inhibitory receptors  

The best characterized inhibitory receptors are the MHC-I binding Ly49 receptors in mice 

and the killer cell immunoglobulin-like (KIR) family in humans (see section 3.4), and the 

lectin-like heterodimer CD94/NKG2A in both species 110,111,227,228. The downregulation of 

HLA-I expression on virally-infected or transformed cells impairs inhibitory signals and 

therefore confers enhanced NK cell activation (‘missing self’ recognition, see section  

3.3) 19,118. Both families of KIR and CD94/NKG2 have inhibitory as well as activating 

members. Under steady state conditions, the ligand binding affinity of the inhibitory 

receptors is higher compared to their activating receptor counterparts, allowing the 

inhibitory signal to dominate 229–232. Although they are quite divers in their extracellular 

domains, all inhibitory NK receptors transmit signals via cytoplasmic immunoreceptor 

tyrosine-based inhibitory motifs (ITIMs) 83,128,233. The inhibition is based on the 

recruitment of phosphatases such as SHIP, SHP-1 and SHP-2, which dephosphorylate and 
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inactivate the signaling molecules downstream of activating receptors. Thereby ITIM 

signaling interferes with ITAM signaling and blocks effective NK cell activation 234–238. 

CD94/NKG2A 

The inhibitory C-type lectin like receptor NKG2A is expressed as a disulfide-linked 

heterodimer with CD94 on human and mouse NK cells and on subsets of memory CD8+ and 

γδ-T cells 157,160,239,240. NKG2A contains two ITIMs and thus can transmit inhibitory signals 

by recruiting the phosphatases SHP-1 and SHP-2 241–243. Like its family member NKG2C, 

NKG2A/CD94 binds to the non-classical MHC-I ligand HLA-E in humans and to the 

homologous mouse Qa-1b, albeit with a significantly higher affinity than 

NKG2C/CD94 162,163,229,244. HLA-E and Qa-1b present peptides derived from the leader 

segments of other MHC class I proteins, directly reflecting the overall MHC-I expression of 

the cell 239,244–246. Since the surface expression of HLA-E and Qa-1b is dependent on the 

availability of classical MHC-I molecules, this provides a mechanism to monitor the total 

expression of MHC-I on tissues which is often impaired upon viral infection or malignant 

transformation. 

TIGIT  

In addition to inhibitory receptors recognizing self-MHC class I, other inhibitory receptors 

can negatively regulate NK responsiveness such as the T cell immunoreceptor with Ig and 

ITIM domains (TIGIT). It is a co-inhibitory immunoglobulin superfamily receptor of the 

CD28 family and was discovered by bioinformatic approaches of different 

laboratories 200,247–249. TIGIT is present on effector and memory T cells, regulatory T cells 

(Tregs), follicular helper T cells and NKT cells 200,247,248,250–252. It is constitutively expressed 

on human naïve NK cells, but not on mouse NK cells where it is inducible upon 

activation 249,253. TIGIT proteins form homodimers on the cell surface and contain an ITIM 

motif and an additional immunoglobulin tail tyrosine (ITT)-like motif in their cytoplasmic 

tail 247–249,253. The importance or redundancy of both motifs for the inhibitory function of 

TIGIT is not well understood and might differ between species and cell types 249,253–255. The 

ITT-like motif recruits SHIP-1 through the cytoplasmic adaptor Grb-2 (growth factor 

receptor-bound protein 2) leading to dephosphorylation and abrogation of PI3K and MAPK 

signaling pathways 254,255. Additionally, the ITT-like motif can impair NF-κB signaling and 

combined effects result in strong inhibition of NK cell cytotoxicity and cytokine 

production 254. TIGIT binds to the nectin family members CD112 (Nectin-2) and CD155 
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(polio virus receptor, PVR) which are broadly distributed on T cells, APCs and a variety of 

non-hematopoietic tissues 200–203,247–249. Their expression is upregulated upon DC 

maturation and can be induced on cancer cells upon genotoxic stress 203,204,256–258. TIGIT 

shares its cellular ligands with another inhibitory receptor, CD96 (TACTILE), and with the 

co-activating receptor DNAM-I (CD226), but TIGIT was shown to possess a higher affinity 

and to compete with DNAM-I in a dose dependent manner 203,247–249,253. The interactions of 

TIGIT/CD96 and DNAM-I closely resemble the CD28/CTLA-4 pathway, where the co-

stimulatory receptor DNAM-I shares ligands with the high-affinity co-inhibitory receptors 

TIGIT and CD96 199,247,259. TIGIT can not only counterbalance DNAM-I–mediated activation 

of NK cells through competition for its ligand, but also by directly interacting with DNAM-I 

in cis, thereby disrupting its homodimerization and functionality 249,251,260,261. In addition, 

TIGIT can also indirectly suppress the immune response through interaction with CD155-

expressing DCs. CD155 itself contains an ITIM motif which induces a transformation to a 

tolerogenic DC phenotype 248. In the tumor microenvironment, TIGIT is expressed on 

murine and human tumor-infiltrating lymphocytes (TILs) which exhibit a dysfunctional 

phenotype and co-express other inhibitory checkpoint molecules such as PD-1, Tim-3, and 

Lag-3 257,260,262. Although its inhibitory role in anti-tumor functionality of CD8+ T cells and 

Tregs is well defined, the influence of TIGIT on NK cell-mediated tumor control is less 

clear 258,263,264. However, the importance of DNAM-I, its competing co-stimulatory receptor, 

in NK cell-mediated immunity has been demonstrated in vivo 199,205,265,266. Moreover, 

suppression of NK cell functionality by MDSCs (myeloid-derived suppressor cells) was 

shown to depend on TIGIT-CD155 interactions, supporting the development of therapeutic 

strategies targeting TIGIT for cancer immunotherapy 267. 

 

3.3.4. Cytokines and their receptors  

Cytokines and chemokines are soluble mediators of the immune system and are involved 

in the activation, regulation and communication between different cell types of innate and 

adaptive immunity. The cytokine milieu determines the nature of the NK cell effector 

function and also modulates the extent of the general immune response. Cytokine signaling 

is essential for efficient NK cells activation in inflammation but also in their development, 

differentiation, homeostasis and migration or homing at steady state 268. Especially pro-

inflammatory cytokines such as interleukin-2 (IL-2), IL-15, IL-12, IL-18, IL-21 and type-I 
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interferons (IFNs) have been demonstrated to play pivotal roles in NK cell biology 109,269 

The combination of different cytokines together with cellular ligands can have synergistic 

effects on NK cell reactivity as e.g. when cytokine concentrations are limited in vivo 270,271. 

Due to the importance of IL-2, IL-15, IL-12 and IL-18 in this thesis, these cytokines, their 

receptors and their impact on NK cell function are described in more detail below.  

Common gamma-chain cytokines 

Cytokines sharing the common cytokine receptor gamma-chain (γc or CD132) are crucial 

for development and homeostasis of lymphoid cells as γc-deficient mice have defective B, 

T and NK cell compartments 272–275. The γc family consists of several members with a 

similar protein structure and comprises IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. The high 

affinity heterodimeric receptors are formed by a cytokine specific α-chain and the 

γc-chain 276,277. The only exceptions are IL-2 and IL-15 binding to a heterotrimeric receptor 

complex. The γc is the essential signaling component for these cytokines. It associates with 

Janus tyrosine-kinase (JAK)-3 which phosphorylates and activates different STAT 

molecules (signal transducer and activator of transcription) 278. Phosphorylated STAT 

dimers translocate to the nucleus where they serve as transcription factors. IL-4 

preferentially activates STAT-6, whereas IL-2, IL-7, IL-9 and IL-15 mostly act through 

STAT-5, and IL-21 signals via STAT-1 and STAT-3 272,273,279.  

The impact of IL-2 and IL-15 on NK cell function and survival is well studied. Both cytokines 

share the same IL-2/15Rβ (CD122) and the and γc (CD132) and thus have overlapping 

signaling pathways and functions 56,280,281. Both cytokines only interact with intermediate 

affinity to the heterodimeric βγ-receptor complex, requiring nanomolar concentrations. 

IL-2 and IL-15 have distinct high affinity α-chains, which accounts for the different 

biological functions of IL-2 and IL-15 282,283. The high affinity IL-2Rα chain (CD25) is 

incorporated into a heterotrimeric IL-2Rαβγ receptor complex, highly increasing the 

affinity to picomolar concentration of IL-2 284,285. CD25 is constitutively expressed on CD4+ 

Tregs and on CD56bright NK cells, which is associated with their high proliferative capacity in 

response to picomolar IL-2 concentrations 286,287. CD25 can be induced on NK and T cells 

upon various stimulations and is therefore often used as activation marker 288–291. Soluble 

IL-15 can directly bind with low affinity to the IL-15Rβγ, but high affinity binding requires 

its trans-presentation via the IL-15Rα. The high affinity IL-15Rα is primarily expressed on 
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macrophages and dendritic cells and trans-presents membrane-bound IL-15 to the 

IL-15Rβγ complex on the surface of NK or T cells 292–295. 

Signal transduction downstream of the shared IL-2/15Rβγ involves activation of different 

signaling cascades such as the MAPK/ERK pathway or STAT-3/5 phosphorylation by 

JAK1/3 296. Furthermore, signaling via the PI3K-AKT-mTOR pathway leads to the induction 

of anti-apoptotic Bcl-2 promoting cell survival 297–300.  

Both cytokines enhance NK cell proliferation and effector functions such as cytokine 

production and cytotoxicity and can improve NK-mediated anti-tumor 

responses 74,272,283,298,301. However, in vivo administration of IL-2 has been shown to 

simultaneously expand CD25+ regulatory T cells competing for the availability of IL-2 302–

305. Although both cytokines enhance NK cell effector functions and proliferation, the 

different phenotypes of IL-2 or IL-15 knockout mice have suggested unique roles for both 

cytokines in immune cell homeostasis 56,306–309. This is also reflected in the different sources 

of both cytokines as IL-2 is mainly produced by activated T cells, illustrating its importance 

for crosstalk during an activated immune response 71. In contrast, IL-15 is provided at 

steady state by a variety of APCs and non-immune cells 295,310. IL-15 signaling is 

indispensable for NK cell development, as mice deficient for STAT-5, IL-15 or IL-15R have 

impaired NK cell compartments 294,307,311. IL-15 has been shown to promote NK cell 

development from hematopoietic precursors in vivo and was capable of differentiating 

CD34+ hematopoietic progenitor cells into NK cells in vitro 55,77,268,297,312. Furthermore, IL-15 

is essential for NK cell homeostasis and survival in the periphery 58,275,294. 

 

IL-12 and its receptor 

IL-12 is a heterodimeric molecule with two subunits (p35 and p40) and belongs to the 

monokine family 313–315. It is produced by activated DCs and phagocytotic cells in response 

to pathogen encounter 316–319. The cognate receptor is composed of IL-12Rβ1 and IL-12Rβ2 

chains and is primarily expressed on activated NK and T cells as well as on resting NK cells, 

facilitating rapid immune responses without prior activation 320–324. Ligand binding and 

dimerization of the IL-12R results in JAK2 and TYK2 activation and phosphorylation of 

downstream STAT-3, STAT-4 and STAT-5 324–326. IL-12 was shown to be a strong inducer of 

IFN-γ and TNF-α and to improve NK cell cytotoxicity by upregulating granzyme and 
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perforin levels 313. The effects of IL-12 on NK cell mediated IFN-γ production and enhanced 

cytotoxicity have been mainly attributed to STAT-4 signaling 321,325,327.  

IL-12 synergizes with other activating stimuli such as cytokines or activating receptors, 

resulting in robust NK cell effector responses 328–332. IL-2 and IL-15 can augment IL-12 

signaling by regulation of the IL-12R and STAT-4 329,332 and combinatorial stimulation of 

IL-2/IL-15, IL-12 or IL-18 leads to a dose-dependent and synergistic effect on IFN-γ 

secretion 74,271,288,333,334. An essential mechanism of the synergy between IL-12 and IL-18 is 

based on the STAT-4 dependent upregulation of the IL-18 receptors and vice versa 335–338. 

In T cells, IL-12 acts synergistically with IL-2 signaling and TCR or CD28 stimulation for 

induction of IFN-γ production 328,331. In this way, NK and T cells can tune their 

responsiveness to the extent of inflammation. Furthermore, IL-12 has been shown to favor 

a TH1 response and to be instrumental in resistance against bacterial infections and 

intracellular parasites 316,317,339–342.  

IL-18 and its receptor 

IL-18 belongs to the IL-1 family and is synthesized as a biological inactive precursor protein 

(Pro-IL-18) which has to be processed and activated by caspase-1 or proteinase-3 343–346. 

As a monokine, IL-18 is produced by activated monocytes, macrophages and dendritic cells 

upon TLR stimulation but also by non-immune cells such as keratinocytes or osteoblastic 

stromal cells 347–350. The IL-18R is composed of a ligand binding chain (IL-18Rα) and an 

accessory signaling protein (IL-18Rβ) 351,352. The IL-18R complex primarily signals via 

recruitment of MyD88 (Myeloid differentiation primary response gene 88) and IRAK 

(interleukin-1 receptor-associated kinase) / TRAF6 (TNF receptor associated factors) 

leading to NF-κB activation 353. In addition, induction of STAT-3 and MAPK transduction 

pathways has been reported in NK cells and neutrophils 354–356. IL-18Rα is constitutively 

expressed on resting NK cells, naïve T and mature TH1 cells as well as on other immune 

cells 338,357–360. Free IL-18 can also be bound by the IL-18–binding protein (IL-18BP) in the 

circulation, preventing its receptor binding and its biological function 361. IL-18 stimulation 

alone only induces minor effects due to the low constitutive expression levels of the IL-18R. 

However, IL-18 can function synergistically with type-I IFNs, IL-12 and IL-15, particularly 

because IL-12 signaling upregulates the expression of the IL-18R 337,338. In synergy, IL-18 

can stimulate potent proliferation and IFN-γ production in NK cells and upregulation of 

perforin and FasL dependent cytotoxicity in NK cell and CD8+ T cells 74,270,271,288,333,362–365. 
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IL-18 has further been implicated in the priming of NK cells during their maturation in the 

periphery since NK cells deficient for IL-18 have impaired IFN-γ production and 

cytotoxicity 365,366. For T cells, IL-18 together with IL-12 plays an important role in TH1 

differentiation, providing another link between innate and adaptive immune 

responses 343,365,367. In contrast, IL-18 alone or in combination with IL-2 rather stimulates a 

TH2 response 368–370, whereas synergy with IL-23 induces TH17 differentiation 371. 

 

3.4. The killer immunoglobulin-like receptor system 

Activation of NK cells is counterbalanced by inhibitory receptors like the KIR family and 

the lectin-like NKG2A receptors, both binding to MHC class I molecules expressed on all 

nucleated cells 110,227. Therefore, both receptor families largely contribute to NK self-

tolerance towards autologous healthy cells preventing uncontrolled activation and 

immunopathology. Upon perturbation of MHC-I expression during viral infection or 

malignant transformation, inhibition through these receptors is attenuated, rendering the 

target cell susceptible to NK cell mediated killing (‘missing-self’) 19,118. In the human system, 

the killer cell immunoglobulin-like receptor (KIR) family comprise the biggest and best 

studied group of inhibitory receptors and recognizes HLA-A, -B, and -C alleles. KIR 

receptors were first described and cloned in the 1990s by several groups and were 

subsequently shown to function as inhibitory receptors for different HLA class I 

molecules 372–383. 

KIRs are not detectable in mice, where the structurally different Ly49 receptors recognize 

MHC class I and perform analogous functions 384,385. Ly49 and KIR molecules have evolved 

independently and KIR genes have diversified rapidly in primates and humans 386,387. 

Similar as their polymorphic MHC-I ligands, the human KIR and mouse Ly49 loci are both 

highly polymorphic in gene content and allelic polymorphism 388,389. The complexes for 

KIR/Ly49 and MHC genes are located on different chromosomes and independent 

segregation results in variable receptor-ligand combinations. Interaction between KIR 

receptors and HLA-I variants have been shown to influence the potency of an immune 

response and certain KIR-HLA combinations have been associated with autoimmunity, 

reproductive complications as well as resistance or susceptibility to viral infections and 

cancer 390,391. 
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In addition to NK cells, KIRs are expressed on divers T cell subsets including NKT cells, γδ-T 

cells and on memory/effector αβ-T cells 392–397. KIR expression on T cells occurs after TCR 

rearrangement and is considered to protect from activation-induced cell death as the KIR+ 

subset increases with age 393,398–400. 

 

3.4.1. Structure and nomenclature of KIR molecules 

KIR proteins are type-I transmembrane glycoproteins belonging to the immunoglobulin-

like superfamily and are composed of a different number of extracellular Ig-like domains 

(“D”), indicated in their nomenclature as KIR2D or KIR3D 111,401,402. They express either a 

long or a short cytoplasmic tail involved in signal transduction 83,128. Inhibitory KIRs with a 

long cytoplasmic tail (“L”) contain ITIM motifs (immunoreceptor tyrosine-based inhibitory 

motifs) thus transferring inhibitory signals 83,128. Binding of inhibitory KIRs to their cognate 

ligands results in inhibitory signaling and in suppression of NK effector functions. ITIM 

signaling involves recruitment of SHP-1/2, leading to dephosphorylation and inhibition of 

Vav-1 234–237. ITIM-mediated inhibition dominates over activating signals by blocking 

signaling at a proximal step and thus preventing downstream stimulatory signals 83,236. In 

contrast, activating KIRs harbor a short cytoplasmic tail (“S”) that signals via recruitment 

of the ITAM-bearing adapter DAP12, leading to activation of NK cells 83,134,135.  

The last digit of KIR nomenclature indicates the number of the gene encoding the molecule 

in the leukocyte receptor complex (LRC). The denotation “P” refers to non-expressed 

pseudogenes 111,401,402. Exemplarily, KIR2DL1 encodes an inhibitory receptor containing a 

long cytoplasmic tail and two Ig domains, whereas KIR3DS1 represents an activating KIR 

with three Ig domains and a short cytoplasmic tail.  

KIR2DL4 represents an interesting exception, harboring a long cytoplasmic tail with only a 

single ITIM and weak inhibitory potential 403. In contrast, KIR2DL4 contains a charged 

arginine residue allowing the receptor to couple with FcεRIγ resulting in high IFN-γ 

production but low cytotoxicity 404,405. In addition, KIR2DL4 transcripts are ubiquitously 

detected in all NK cells but do not always correlate with protein surface expression 406.  

 

3.4.2. Ligand binding specificity of KIR receptors 
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KIR bind HLA-A, -B and -C alleles and the ligand-receptor interactions for most inhibitory 

KIRs have been clearly defined (Figure 3.3) 407,408. Most KIR receptors recognize specific 

motifs located at the α1 and α2 helices of HLA-I molecules and certain amino acids within 

the HLA binding groove define KIR binding specificity 228,407,409,410. KIR2DL1 recognizes 

HLA-C C2 epitopes defined by expression of lysine at position 80 of the HLA-C heavy chain 

(HLA-C Lys80) 374,376,411,412. KIR2DL2 and KIR2DL3 bind to HLA-C C1 epitopes carrying an 

Asparagine at position 80 (HLA-C Asn80) 376,411,413. In addition, KR2DL2 can also detect 

some C2 allotypes 414. Of note, the interaction of KIR2DL1 with its C2 ligands results in 

relatively stronger inhibitory signals compared to KIR2DL2/L3 and C1 interactions 414,415. 

Some HLA-A and approximately 40% of all HLA-B alleles possess the HLA-Bw4 serological 

motif (located at amino acids 77-83), which functions as ligand for KIR3DL1 375,413,416,417. 

Recent studies indicate a peptide dependency of peptides loaded on HLA-I on the KIR 

binding affinity, which is much broader compared to TCR specificity and is rather mediated 

by motifs than sequences 418,419. In particular, the strength of the binding of KIR3DL2 to 

HLA-A3 and A11 allotypes 420,421 and of KIR3DL1 to the Bw4 motif is highly sensitive to the 

bound peptide 422–424. Chrystal structures of KIR–HLA-I interactions could define these 

binding parameters in molecular detail, demonstrating importance of amino acids at 

position 7 and 8 in the peptide 228,407,409,410. The strength of inhibitory and activating signals 

induced upon KIR–HLA-I interaction is dependent on the presented peptide and thus can 

be manipulated by viral infection or malignant transformation 418,422,425.  

The ligands for activating KIRs have been harder to identify, probably due to high peptide 

selectivity and lower binding affinity as their inhibitory counterparts 418,425. Exemplarily, 

KIR2DS1 binds to the same C2 epitope as the structurally similar inhibitory KIR2DL1 

receptor, although with reduced affinity and higher peptide selectivity 415,426,427. Peptide 

specific binding to HLA-A*11:01 and only weak binding to HLA-C1 was detected for the 

activating KIR2DS2 receptor in contrast to the structurally related KIR2DL2 

molecule 230,428. Additionally, KIR2DS2 was shown to directly recognize conserved flaviviral 

peptides in context of HLA-C1 and to bind cancer cell lines in a β2-microglobulin (β2m)-

independent manner 429,430. The most prevalent KIR2DS4 receptor exhibits a unique 

binding specificity for HLA-A11 and selective HLA-C1 and C2 alleles 431. Interaction of 

KIR3DS1 with HLA-Bw4 alleles has been implicated by epidemiological studies to 

contribute to HIV resistance and slow AIDS progression 432,433. Recently, KIR3DS1 has been 

described to additionally recognize HLA-F open conformers (a non-classical HLA-Ib 
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without association of β2m), which might be expressed on HIV-infected lymphocytes 434,435. 

Therefore, activating KIRs might also recognize viral-induced or altered ligands and non-

classical HLA-I molecules. Furthermore, the interaction of KIRs to their HLA-I ligands is 

constantly subjected to viral escape strategies. Up- and downregulation of HLA-I 

expression could both influence binding to inhibitory and activating KIRs and viral 

manipulation of selected peptide presentation can further impact KIR binding specificity 

and affinity 418,422,425,436.  

The rather activating KIR2DL4 (see section 3.4.1) binds to HLA-G molecules expressed on 

trophoblasts mediating tolerance of the fetus and indirectly promoting vascularization of 

the maternal decidua via IFN-γ production 30,437–439. Ligands for KIR2DL5, 3DL3, 2DS3 and 

2DS5 remain elusive and are currently under intensive investigation. 

 

3.4.3. KIR expression on NK cells 

KIRs are encoded within the leukocyte receptor complex (LRC) on chromosome 19q13.4. 

containing 15 genes and 2 pseudogenes 440,441. The variable gene content of the LRC locus 

and allelic nucleotide sequence polymorphism of each KIR gene contribute to the 

substantial KIR diversity in the human population 388,442–444. In an individual, KIRs are 

expressed in a stochastic and variegated manner and therefore each NK cell clone 

Figure 3.3: HLA class I ligands for activating and inhibitory KIRs. Inhibitory killer 

immunoglobulin-like receptors (KIRs) harbor a long cytoplasmic tail (‘L’) with ITIM domains 

transmitting inhibitory signals. Activating KIRs with short cytoplasmic tails (‘S’) couple to ITAM 

containing adapters such as DAP12 for activating signaling. KIRs bind specifically to HLA-A, -B, -C, -F 

or -G allotypes. The binding motifs for HLA-C are referred to as HLA-C1/C2 and HLA-Bw4 for HLA-

A and -B, which comprise specific epitopes characterized by defined amino acid sequences. The 

interaction between certain KIRs and their ligands are peptide dependent and some ligands still 

remain elusive. (Adapted from Béziat et al. Immunology 2017) 408 
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expresses a different combination of the encoded KIRs, leading to a diverse KIR receptor 

repertoire on individual NK cell clones 373,406,442,444,445. The frequency of an NK cell 

expressing a certain KIR as well as the levels of its surface expression can vary between 

individuals depending on e.g. the copy number of the KIR gene (‘gene-dose’ effect) or the 

allelic variation at the locus (KIR alleles with high or low protein surface densities) 446–449. 

These factors contribute to the broad range of functionally distinct NK populations enabled 

to detect expression changes of highly polymorphic MHC class I molecules on target cells. 

Co-expression of different KIR genes within one NK cell clone is mainly predicted by the 

product rule, meaning that the probability of co-expression is predicted by the product of 

the individual expression frequencies of each KIR, which are independent events 442,445,450. 

Reports in mice indicate a negative correlation of the expression frequency of MHC-I 

ligands and their inhibitory receptors Ly49 and CD94/NKG2A, suggesting a role for MHC-I 

in shaping individual KIR repertoires 451–453. The interaction of MHC-I with its cognate 

inhibitory receptor would suppress the co-expression of a second cognate receptor, 

limiting the number of self-specific inhibitory receptors. Thus, the expression of KIR/Ly49 

during development would be dependent on a MHC-I–based selection 454–457. In humans, 

however, this influence is still under debate and might be reflected as an imprint from 

previous infectious challenges 443,445,458,459. 

Two KIR haplotypes can be distinguished by the composition of their KIR genes. Group A 

haplotypes mostly comprise inhibitory KIRs, whereas group B haplotypes harbor 

additional genes encoding activating KIRs 443,444,460. Combination of these haplotypes 

 Figure 3.4: Human haplotypes A and B at the KIR locus. Two examples for each haplotype are 

shown. The gene content of each haplotype can vary giving rise to a high diversity of KIR haplotypes 

that are either AA, AB or BB. Activating KIR genes are indicated as green and inhibitory KIR genes as 

red boxes. Conserved genes present in both haplotypes are depicted in purple and pseudogenes in 

grey. (Thielens et al. Curr Opin Immunol 2012) 693 
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results in KIR genotypes with ‚AA‘, ‚AB‘ or ‘BB’ content. Studies indicate a correlation 

between group A haplotypes and improved immunity against pathogens whereas group B 

haplotypes are associated with productive fitness 388,390,391. 

NK cells acquire KIR expression late during maturation and terminal differentiation. KIR 

expression is weak or absent in CD56brightNKG2A+CD94hiCD16– cells and increases 

gradually during maturation with highest expression in terminally differentiated 

CD56dimNKG2A–CD94loCD16+ NK cells 64–66,81.  

 

3.4.4. Regulation of KIR gene expression 

KIRs are expressed in a stochastic manner on individual NK cell clones during development, 

but the molecular mechanism defining which KIR gene is expressed and which is silenced 

remain poorly defined. Although the regulatory regions of most KIR genes are highly 

conserved, the individual KIR alleles are regulated independently resulting in variegated 

and clonally restricted expression patterns 440. The regulatory regions of KIR2DL4 and 

KIR3DL3 mark exceptions consistent with their distinct expression characteristics 

(ubiquitously and non-expressed, respectively) and are driven by a different type of 

promoter 461,462. Acquisition of KIR expression during development has been shown to be a 

complex process involving epigenetic DNA modifications, multiple promoter elements, 

intergenic fragments, bidirectional transcription and anti-sense RNA 463,464. 

Epigenetic mechanisms controlling KIR expression 

In hematopoietic stem cells, the KIR locus is epigenetically silenced by DNA methylation 

and histone condensation accompanied with a closed chromatin state. In order for KIR gene 

transcription to take place, transcription factors need to gain access to the promoter 

regions. As hematopoietic progenitor cells commit to the NK cell linage, initiation of KIR 

gene transcription thus first requires chromatin opening via histone acetylation. In a two-

step model, euchromatic histones represent a prerequisite for subsequent DNA 

demethylation and gene transcription, since active as well as untranscribed KIR genes 

exhibit a high degree of histone acetylation associated with an open chromatin 

signature 465,466. 
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It has been shown by several groups that the clonally restricted expression of highly 

homologous KIR genes is stably maintained by epigenetic mechanisms 465,467,468 and 

expression frequency and intensity are passed on during cell division 442,455,458. De novo KIR 

expression and generation of the clonal KIR repertoire are established by DNA 

demethylation during development 465,467,468. The methylation status of CpG island 

clustered in an upstream region of the KIR transcriptional start site was found to correlate 

with transcriptional activity of the KIR gene. Highly methylated CpG islands corresponded 

to non-expressed and silenced KIR genes and vice versa 467. Chan and colleagues 

demonstrated that DNA methylation ensured a predominant mono-allelic expression of 

highly homologous KIR genes indicating an individual control of the regulatory 

regions 465,468. Exposure of mature NK cells to 5-aza-2'-deoxycytidine (5Aza-dC, a DNA 

methyltransferase inhibitor causing demethylation) was shown to induce de novo 

expression of previously silenced KIR genes and conversely, in vitro methylation of CpG 

islands resulted in repression of reporter gene transcription 465,467. 

KIR promoter elements 

To date, several promoter elements are described that are shared by most KIR genes, such 

as a distal promoter Pro-D), a bidirectional proximal promoter switch (Pro-S), an intron 2 

promoter and an intermediate promoter element (Pro-1) 463,464. A model illustrates how 

these different promoters orchestrate KIR expression during development (see Figure 

3.5) 464,469. 

Anti-sense transcripts originating from an intron 2 promoter are restricted to early 

progenitor and hematopoietic stem cells but have not been detected in mature NK cells as 

the intron 2 promoter activity declines during NK cell linage commitment 466,470. These 

lncRNAs (long non-coding RNAs) may play a role in establishing epigenetic marks such as 

DNA methylation or histone modifications. 

The distal promoter element (Pro-D) exerts a low transcriptional activity early during NK 

cell development due to non-methylated transcription factor binding sites. During lineage 

specific transition from the pro- to the immature NK cell stage, basal Pro-D activity 

contributes to the ‘priming’ of KIR gene expression through recruitment of chromatin 

modifying enzymes that increase DNA accessibility 471,472. As developing NK cells acquire 

IL-15 responsiveness via CD122 (IL-15Rβ) expression at the CD56bright stage 28,48, IL-15 

drives full transcriptional activity of the KIR distal promoter element 464,472. Transcripts 
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from the distal promoter span the downstream proximal promoter region, which leads to 

initial opening of the chromatin structure allowing access of transcription factors that 

promote demethylation such as Runx/AML 464,473. 

The proximal promoter has a probabilistic, bidirectional activity and is active in both the 

forward and reverse direction and is therefore often referred to as probabilistic promoter 

switch (Pro-S) 473,474. Probabilistic transcription from the bidirectional proximal promoter 

in CD56dim NK cells defines whether a certain KIR gene is expressed and accounts for the 

stochastic and clonal KIR distribution 449,473. It harbors a multitude of transcription factor 

binding sites and their relative affinity of inducing sense vs antisense promoter activity 

determines the probability of sense vs antisense transcription 449,461,473. The anti-sense 

Figure 3.5: Model of successive regulation of KIR acquisition during development by different 

promoter elements. The scheme depicts the 5′ control region and the first three exons encoding 

KIR genes with ‘ATG’ labeling the initiation of protein translation. Promoter elements are indicated 

by filled rectangles. Three main promoter elements mark the three phases of KIR gene transcription 

with green rectangles highlighting the promoters that define the proposed phase of expression. 

Black arrows represent sense transcripts and red arrows show antisense transcription with dsRNA 

displayed as red box. (Adapted from Anderson, Mol Ther Nucleic Acids 2014) 474. 
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transcripts spread the upstream distal promoter generating a double-stranded (ds)RNA, 

which is processed into a 28bp piwiRNA involved in epigenetic re-silencing of the locus 475. 

A higher ratio of sense to anti-sense transcripts thus allows a higher chance of stable gene 

transcription and expression of the particular KIR allele. Polymorphisms in KIR promotor 

sequences that alter transcription factor binding sites can impact KIR expression and can 

account for expression differences in different alleles as shown for KIR3DL1 449,473. A mouse 

study investigating the highly homologous Ly49 bidirectional promoter further suggests a 

role of activating receptor signaling during NK cell development in induction of proximal 

promoter sense-activity, thus increasing the probability of KIR expression 476. 

Once the clonal KIR gene expression is established, the regulation of the surface expression 

frequency or intensity of an expressed KIR are poorly defined. A recently identified 

intermediate promoter element (Pro-1) upstream of the proximal promoter has been 

reported to be involved in regulating the expression of actively transcribed KIR genes in 

mature CD56dimKIR+ NK cells 477,478. Sense transcription from the proximal promoter was 

shown to be not sufficient but additional activity of the intermediate promoter was 

required to drive KIR protein expression in mature NK cells. 

Figure 3.5 illustrates a successive model of KIR expression during different developmental 

stages 474,477: KIR gene expression is epigenetically silenced in early progenitor cells by DNA 

methylation and condensed histone signatures but is transformed into euchromatin as NK 

cells progress during development. Upon transition to the CD56bright stage, transcription 

from the distal promoter (Pro-D) opens the downstream proximal promoter region (Pro-S). 

The sense to anti-sense ratio of transcripts from the bidirectional switch (Pro-S) 

determines the stochastic clonal expression patterns of KIR alleles, while the intermediate 

promoter (Pro-1) controls expression in mature KIR+ NK cells. 

 

3.5. NK cell education 

The complexes for KIR/Ly49 and MHC genes are located on different chromosomes and 

independent segregation results in variable receptor-ligand combinations. KIR expression 

of NK cells is a stochastic event and genetically unlinked to the HLA haplotype of the 

individuum, resulting in NK cells expressing multiple or no KIRs on the surface 442,443. In 
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line with this, some NK cells lack expression of a receptor for binding of self MHC-I 

molecules. 

Ligand specificity of KIR/Ly49 receptors for self-MHC class I is essential for NK cells in 

order to recognize and eliminate ‘missing-self’ target cells with downregulated or altered 

self–MHC-I expression 19,117–119. To prevent autoimmunity, self-tolerance of NK cells lacking 

any inhibitory receptors for self-HLA-I is generated in a process termed ‘education’ or 

‘licensing’ 479,480. NK cells are educated by the interaction of self–MHC-I and their cognate 

inhibitory receptors resulting in acquisition of full responsiveness 481–483. Thereby, 

educated NK cells are functional competent but remain tolerant towards self–MHC-I 

positive cells because they express at least one inhibitory receptor. Conversely, NK cells 

that fail to bind self–MHC-I are hyporesponsive to ligation of activating receptors and thus 

preserve tolerance towards self. NK cells developing in the absence of interactions with 

self-MHC class I molecules, as shown in MHC deficient mice, are hyporesponsive and 

defective in killing of MHC-I negative target cells 481–485. In addition to KIRs, also other 

inhibitory receptors are involved in licensing of NK cells. Among others, these include the 

CD94/NKG2A heterodimer, which recognizes the non-classical MHC-I molecule HLA-E, and 

the signaling leukocyte activating molecule (SLAM) family receptors 2B4 and SLAMF6 486–

489. Furthermore, not only interactions of inhibitory self-receptors with their ligands on 

adjacent cells (in trans) contribute to NK cell tolerance but several studies have 

demonstrated a role for cis interactions (on the same cell) in the education process 490–494. 

Currently, several models exist that describe the molecular mechanism leading to NK 

education upon engagement of a self–MHC-I specific receptor with its cognate ligand 480,495–

497. In the arming model, NK cells only acquire functional competence after encountering 

self–HLA-I and are actively endowed with effector potential 481,495. The disarming model 

postulates that initially functional NK cells are disarmed through constant activation-

induced anergy to preserve tolerance if the activation is not balanced by inhibitory 

signals 483,497. In general, both licensing mechanisms seem to require functional ITIM 

signaling upon inhibitory receptor engagement, which might act through an additional 

signaling pathway than dephosphorylation of Vav-1 235,481. The rheostat model proposes 

that NK effector potential is calibrated by the quantitative and qualitative interactions 

between inhibitory receptor and their ligands 487,498–502. The density of inhibitory self-

receptors correlates with the strength of responsiveness of individual NK cells tuning the 

magnitude of education to environmental MHC. The different models could be rather 
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complementary than mutually exclusive and experimental evidence supports the concept 

that NK cell education could be adaptable to changes in the MHC-I environment of the 

host 503. Chronic exposure of mature or developing cells to activating ligands could tolerize 

NK cells, rendering them hyporesponsive even towards unrelated stimuli. The reversibility 

of the anergic state indicates an ongoing calibration of NK cell education to maintain 

tolerance to constantly changing environments 504–507. Adoptive studies in mice have 

further demonstrated plasticity in the education status of mature NK cells. Uneducated and 

hyporesponsive NK cells regain their functional competence when transferred into a MHC-I 

sufficient host and vice versa 508,509. However, studies in humanized mice and HSCT in 

patients have indicated that transferred NK cells remain educated in the different HLA-I 

environment of the recipient 492.  

However, uneducated NK cells are not completely dysfunctional but rather exhibit a higher 

threshold for excitability by activating receptors and inefficient target cell recognition. 

They are still capable of robust effector function when stimulated with pro-inflammatory 

cytokines or with pharmacological stimuli such as PMA/Ionomycin 481,510. Furthermore, in 

vitro studies using human NK cell and in vivo tumor models in mice revealed that anergy of 

unlicensed NK cells was reversible and responsiveness could be restored in the presence 

of inflammatory cytokines such as IL-2, IL-12 or IL-18 510–512. Marçais et al. recently 

demonstrated that the level of education and responsiveness correlated with mTOR 

activity which was restored in hyporesponsive NK cells upon cytokine treatment resulting 

in re-educated NK cells 513. Thus, mTOR operates as a molecular rheostat of NK cell 

responsiveness and education. Unlicensed NK cells may thus be functional during 

inflammatory conditions, suggesting that the cytokine milieu may overcome strict MHC-

dependent licensing requirements which primarily affects contact-dependent NK cell 

activation. Moreover, it was shown that infection with Listeria monocytogenes as well as 

virus-induced inflammation was capable of breaking self-tolerance in mice 483,514. Recent 

studies suggested distinct roles for licensed and unlicensed NK cells in viral infection, anti-

tumor immunity and engraftment of allogeneic transplantations 515–517. Unlicensed cells 

dominate the protection against MCMV infection and are superior effectors compared to 

licensed NK cells, probably because they become functional in the pro-inflammatory milieu 

and are enabled to expand preferentially in absence of restraining inhibitory self-

receptors 518. Furthermore, hyporesponsiveness of uneducated NK cells could be overcome 

by robust CD16 signaling resulting in a beneficial role of these uneducated NK cells in 
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mediating ADCC in therapeutic settings of MHC-I–expressing neuroblastoma or 

lymphoma 519–521. Taken together, NK cell licensing provides an individual activation 

threshold that is adjusted to perturbations in the peripheral environment such as 

transplantation or inflammation with specialized functions of educated NK cells in 

providing immunity against MHC-deficient tumors and uneducated NK cells protecting 

against viral infections or MHC-I sufficient tumors. 

 

3.6. Memory in NK cells 

Immunological memory is defined as the generation of a faster and more potent recall 

response upon subsequent challenge with the same antigen as during the initial encounter. 

The formation of immunological memory was classically attributed to the adaptive immune 

system. T and B cells encountering their cognate antigen undergo clonal expansion and 

differentiation into potent effector cells, expanding the pool of cells specific for a particular 

antigen. After clearance of the infection, cell numbers decrease in the contraction phase, 

leaving some cells to differentiate into long-lived memory cells that are capable of fast and 

enhanced effector responses upon re-challenge with the same antigen 522. Antigen 

specificity is one of the main characteristics of adaptive immunity and a crucial hallmark of 

immunological memory.  

Since NK cell activation is facilitated by germline encoded receptors without somatic gene 

re-arrangement, NK cells were considered to lack antigen specificity and immunological 

memory. However, a growing body of experimental evidence suggests that NK cells as well 

as other innate immune cells can possess adaptive features such as clonal expansion, long-

term persistence and superior recall responses 10,11,24,25.  

Several ways have been described that can induce the formation of NK cell memory 523. 

Memory-like NK populations with robust recall responses have been reported during viral 

infection 23,524 and contact hypersensitivity reactions 525, indicating an antigen-specific 

immunologic memory of NK cells (Figure 3.6). Stimulated NK cells can undergo a robust 

clonally expansion followed by a contraction phase and creation of a long-lived memory 

pool persisting for several month. Upon re-challenge cells are capable of a more robust 

recall response, mediating greater effector functions than conventional NK cells. Besides 

antigen-specific memory, short pre-activation with the pro-inflammatory cytokines 
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IL-12/15/18 has been shown to induce an antigen-unspecific memory-like phenotype with 

sustained effector function persisting for several weeks in vitro and even for up to 3 month 

in vivo 288,289,333,334,526. 

 

3.6.1. Liver-restricted memory NK cells 

The first observations of NK cells exerting antigen-specific recall responses have been 

described in a model of hapten-specific contact hypersensitivity (CHS). In 2006 O'Leary et 

al. reported NK cell dependent specific memory in response to haptens in T and B cell 

deficient RAG-/- mice 525. The mice exhibited pronounced recall responses to a secondary 

challenge with the same hapten, but not to a related molecule with similar chemical 

Figure 3.6: Memory and memory like cells in mice and human. A variety of factors contribute to 

the generation of memory or memory-like cells. Antigen-specific memory is created in mice against 

haptens and the MCMV m157 protein. The human NK subset expressing the activating CD94/NKG2C 

receptor expands in HCMV, Hantavirus, Chikungunya Virus, HIV, and HBV infection. Memory-like NK 

cells in both mice and human can be generated by short pre-activation with IL-12/15/18. (Adapted 

from Rölle et al. PLOS pathogens 2013) 524. 
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structure. Hapten-specific contact hypersensitivity responses persisted for 4 weeks and 

could be transferred from hapten-sensitized mice into naïve mice. Antigen-specific 

responses were shown to be mediated by CXCR6+CD90+ liver NK cells and to be induced 

additionally by various viral components 527.  

 

3.6.2. NK memory in viral infections 

MCMV-induced memory 

NK cells with adaptive features have also been detected in murine and human 

cytomegalovirus (MCMV and HCMV) infections 524,528. MCMV infection in mice were 

reported to drive the expansion of NK cells expressing the Ly49H receptor recognizing the 

viral glycoprotein m157. Expansion of Ly49H+ NK cells was followed by a contraction phase 

and generation of a pool of long-lived memory cells 529,530. Upon re-challenge with MCMV, 

the persisting Ly49H+ NK cells were capable of conferring protection against the infection 

and exhibit robust recall response such as secondary expansion and superior effector 

functions 529,530. In addition to m157 antigen-specificity and Ly49H-DAP10 signaling, 

signaling via the pro-inflammatory type-I IFNs, IL-18R–myD88, IL-12R and STAT-4 was 

indispensable for the NK cell anti-viral response 531–533. Moreover, critical roles for 

microRNA-155, DNAM-I and the transcription factor Hopx have been reported 534–536. The 

contraction phase was shown to be driven by Bim-mediated apoptosis after Ly49H+ subset 

expansion 537 and to involve mitophagy to generate MCMV-specific memory 538. Moreover, 

the transcription factors IRF8 and Zbtb32 were demonstrated to be induced upon IL-12 

and STAT-4 signaling and to maintain a high proliferative potential of MCMV-specific NK 

cells in part by antagonizing pro-apoptotic Blimp-1 539,540.  

HCMV-induced memory 

In line with observations in the murine CMV infection model, memory-like properties of NK 

cells were detected in human CMV infections. Increased frequencies of NK cells expressing 

the activating receptor CD94/NKG2C correlated with a positive serostatus for HCMV of 

healthy individuals 541. Preferentially expansion of the NKG2C+ NK cell subset was detected 

during acute HCMV re-infection and in an in vitro co-culture system of peripheral blood 

leukocytes (PBLs) with HCMV-infected fibroblasts 164,542. A study of HCMV re-activation 

after hematopoietic stem cell transplantation (HSCT) reported enhanced recall responses 
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NKG2C+ NK cells in HCMV-seropositive recipients in contrast to HCMV-seronegative 

patients 543,544. High numbers of NKG2C+ NK cells were still detectable one year after 

transplantation, presenting evidence for adaptive features of an antigen-specific NK cell 

subset resembling the observations in murine CMV infection. Moreover, clinical studies 

suggest a beneficial role for HCMV re-activation after HSCT in protection against leukemia 

relapse indicating anti-leukemia properties of adaptive NKG2C+ NK cells 545–548. Recently, 

ex vivo expansion of adaptive NKG2C+ NK cells using HLA-E–expressing feeder cells has 

been reported, resulting in effector cells with high anti-tumor potential against ALL (acute 

lymphoblastic leukemia) blasts 549. 

In addition to HCMV infection, expansion of NKG2C+ NK cells has been observed in other 

viral infections such as Hantavirus and Chikungunya virus infection and also in chronic 

HIV-1 and HBV infections 550–554. Of note, NKG2C+ subset expansion has only been detected 

in HCMV co-infection or in HCMV seropositive patients, supporting the hypothesis that 

HCMV primes NK cells for memory formation. Interestingly, antigen-specific NK cell 

memory responses were detected in simian immunodeficiency virus (SIV) infected rhesus 

macaques, depending onNKG2C and NKG2A and persisting for up to five years 555. 

Rölle and colleagues from our laboratory recently demonstrated that HLA-E expression on 

infected fibroblasts is responsible for driving the expansion of the NKG2C+ subset in HCMV 

infection 556. Using an in vitro co-culture system of PBMCs and HCMV-infected fibroblasts, 

our laboratory further reported a crucial role for IL-12 produced by inflammatory 

monocytes in expansion of NKG2C+ NK cells and for the CD2-CD58 axis in functionality of 

adaptive NKG2C+ cells 556,557. Expanded NKG2C+ NK subsets have been described to co-

express self-specific KIRs and the maturation marker CD57 552,558,559. A recent study 

indicated a role for activating KIRs, for instance KIR2DS2 and KIR2DS4, in HCMV specific 

memory formation in the absence of NKG2C expression in NKG2C deficient patients 560,561.  

reported HCMV-specific NK cell expansion in the absence of NKG2C expression in patients 

carrying a homozygous deletion in the NKG2C gene 561. Importantly, these NK cells were 

shown to express activating KIRs, including KIR2DS2 and KIR2DS4 involved in 

activation 560.  

The elevated functionality of adapted NKG2C+ NK cells has been attributed to epigenetic 

imprinting driven by HCMV infection such as high demethylation of the IFN-γ locus 562. 

Furthermore, adaptive NKG2C+ NK cells in HCMV-seropositive individuals were found to 
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be negative for the CD16 adaptor molecule FcεRIγ 563,564. FcεRIγ-deficient NK cells 

possessed enhanced antibody-dependent responses compared to conventional NK cells 

against HCMV-infected antibody-coated target cells 564. Furthermore, FcεRIγ-deficient NK 

cells were shown to harbor several deficiencies of proteins classically attributed to innate 

immunity, including signaling molecules and transcription factors such as SYK or EAT-2, 

leading to altered cytokine responsiveness 565,566. FcεRIγ-deficient NK cells in HCMV-

seropositive individuals were associated with distinct genome-wide DNA methylation 

patterns, resembling rather adaptive than innate immune cells 566.  

 

3.6.3. Cytokine-induced memory-like NK cells 

The importance of pro-inflammatory cytokines, especially of IL-12, for driving NK cell 

memory has been demonstrated in viral MCMV and HCMV infection 531,556, suggesting a 

mechanistic link between pro-inflammatory cytokines and adaptive NK cells. Indeed, short 

overnight pre-activation of mouse and human NK cells with a combination of the pro-

inflammatory cytokines IL-12, IL-15 and IL-18 were demonstrated to generate NK cells 

with sustained effector functions termed cytokine-induced memory-like NK cells 333,567. 

IL-12/15/18–pre-activated NK cells showed high longevity and persistence for up to 

3 month after adoptive transfer and were able to reject established tumors in mice 288,333. 

Moreover, cytokine-induced memory-like NK cells exhibited high proliferative capacity and 

pronounced anti-tumor responsiveness after an in vitro resting phase in IL-2 or IL-15 as 

well as after adoptive transfer into tumor-bearing mice 288,289,334,526,568,569. The strong 

proliferative capacity of IL-12/15/18–stimulated NK cells has been assigned to enhanced 

expression the high affinity IL-2R α-chain (CD25), facilitating strong expansion and 

persistence in response to low-dose IL-2 288,289. Furthermore, pre-activation with 

IL-12/15/18 has been shown to induce epigenetic remodeling of the IFN-γ locus upon 

adoptive transfer in mice, contributing to their superior IFN-γ production upon re-

activation 569.  

Recently, the safety and feasibility of adoptive transfer of IL-12/15/18–pre-activated NK 

cells has recently been reported in a phase-I clinical trial against AML 526. In this first-in-

human trial, the adoptively transferred cytokine–pre-activated NK cells exhibited 

substantial proliferation and long persistence in the recipient. Importantly, upon ex vivo re-

stimulation 7 days post-infusion, IL-12/15/18–pre-activated NK cells showed potent anti-
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leukemia responses correlating with improved patient survival. Of note, cytokine-induced 

memory-like NK cells lack antigen specificity and respond to a variety of stimuli. Until now, 

no specific marker could be identified to discriminate these cells from activated or 

conventional NK cells. 

 

3.7. Tumor immunology 

Cancer is a life-threatening disease with high mortality and growing incidence worldwide. 

Cancer development is a complex process involving multiple steps of malignant 

transformation and de-regulation of previously healthy cells. Malignant transformation can 

be induced through irradiation, chemicals, viruses or chronic inflammation. Through 

accumulation of genetic mutations, normal body cells lose regulatory circuits controlling 

proliferation, DNA repair, apoptosis and cellular motility. During cancer progression, 

uncontrolled proliferation of de-regulated cells results in formation of a solid tumor mass. 

Dissemination of single cancer cells can lead to metastasis at distant sites in the body, which 

are often fatal for the cancer patient. Although cancer is a complex, heterogeneous and 

multi-factorial disease, most cancer types share several common properties that can be 

summarized as the hallmarks of cancer (Figure 3.7) 570,571. 

 

3.7.1. Hallmarks of cancer 

In 2000 Hanahan and Weinberg proposed the six hallmarks of cancer, describing shared 

capabilities enabling cancer formation, which were extended by 4 additional features in 

2011 570,571. 

Sustained proliferative signaling. During cancer progression, tumor cells receive 

sustained proliferative signaling, enabling uncontrolled proliferation and growth. In 

healthy tissue, proliferation is carefully controlled through growth-promoting signals and 

several checkpoints in the cell division cycle. Tumor cells acquire the competence of 

producing their own growth factors or induce growth-factor production in the tumor 

microenvironment and the tumor-associated stroma. In addition, mutations in growth 

factor receptors or downstream signaling pathway components can render tumor cells 
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independent of growth signals. Tumor growth promoting oncogenes include for instance 

MYC, RAS, BRAF and components of the MAPK pathway 570,572. 

Evading growth suppressors. Tumor cells avoid negative regulatory mechanisms 

controlling cell division and growth. This often involves mutations in tumor suppressor 

genes such as retinoblastoma protein (Rb) and tumor protein 53 (p53), which act as central 

checkpoints of the cell cycle regulating the induction of proliferation, senescence or 

apoptosis. In addition, the ‘contact-inhibition’ through neighboring cells, usually 

controlling aberrant growth in tissues, is de-regulated in tumorigenesis 570.  

Resisting cell death. Cancer cells acquire resistance to apoptosis-mediated cell death, 

which usually controls the removal of malignantly transformed cells and is induced in 

response to DNA damage or cellular stress. Resistance to apoptosis is often accompanied 

with loss of function of the DNA damage-sensing protein p53, by downregulation of pro-

Figure 3.7: The hallmarks of cancer and their therapeutic targeting. The hallmarks of cancer 

describe ten common characteristics inherent to all tumors. For each hallmark, potential 

strategies for tumor therapy are indicated. (Hanahan and Weinberg, Cell 2011) 570. 
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apoptotic factors such as Bim or Bax and overexpression of anti-apoptotic proteins such as 

Bcl2 570.  

Enabling replicative immortality. During tumorigenesis, cancer cells gain an unlimited 

replication potential through overexpression of telomerase and by preventing the 

induction of senescence 570. 

Induction of angiogenesis. Tumor cells are able to induce an ‘angiogenic switch’ through 

the formation of new vessels and a tumor-associated vasculature. Thereby, an increased 

supply of nutrients and oxygen reaches the neoplasia via the blood stream to cover the 

increased demand of the constantly growing tumor mass. In this process, cancer cells or 

cells in the tumor microenvironment induce angiogenesis through production of pro-

angiogenic factors like vascular endothelial growth factor-A (VEGF-A) 570. 

Invasion and metastasis. Malignant cells can disseminate and invade into distant tissues, 

forming often fatal metastasis in vital organs. Invasion into tissues involves alternations in 

matrix proteases and adhesion molecules. Furthermore, cytokines and chemokines, which 

are expressed by the tumor or the tumor microenvironment, can influence metastatic 

dissemination, 570,571. 

Genome instability and mutation. Additional hallmarks of cancer include characteristics 

enabling the acquisition of the previous hallmarks. Mutations are considered to be the main 

driver of tumorigenesis and accumulation of mutations results in destabilization of the 

gene copy numbers 573,574. Commonly, inactivation of tumor suppressor genes promotes 

tumorigenesis, especially of proteins involved in DNA damage recognition and repair 575. 

Tumor-promoting inflammation. Tumor-infiltrating immune cells can cause chronic 

inflammation resulting in the induction of angiogenesis and invasion. In addition, chemicals 

like reactive oxygen species (ROS) secreted by inflammatory cells can further promote 

mutagenesis 570,576.  

Reprogrammed energy metabolism. Modification and reprogramming of the glucose 

metabolism from aerobic oxidative phosphorylation towards the faster anaerobic 

glycolysis, indicated as ‘glycolytic switch’ and ‘aerobic glycolysis’, facilitates unrestricted 

expansion of cancer cells 570. Due to their uncontrolled growth, tumors often contain 

hypoxic areas with high levels of the hypoxia-inducible (HIF)-1/2α transcription factors, 
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which can induce the expression of glucose transporters and glycolytic enzymes and 

thereby upregulate glycolysis 570,577.  

Evasion from immune destruction. The immune system is constantly monitoring tissues, 

recognizing and killing virus-infected, stressed and transformed cells, a process called 

tumor immunosurveillance 578. Therefore, tumor cells evade immune-mediated 

destruction for instance by reducing the expression of immune recognition structures on 

their surface and by creating an immunosuppressive tumor microenvironment 570,578. 

 

3.7.2. The immune system and cancer 

The immune system has a two-sided role in tumorigenesis and possesses both tumor-

suppressive and tumor-promoting functions. In a process called immunosurveillance, the 

immune system identifies and eliminates malignantly transformed and stressed cells 

before a tumor mass can establish and become clinically apparent. On the other hand, under 

certain conditions immune cells can promote tumor progression through chronic 

inflammation or the creation of an immunosuppressive milieu. Thus, the immune system 

can shape the tumor during cancer progression by influencing its growth and 

immunogenicity characterized in three distinct stages of immunoediting: elimination, 

equilibrium and escape 578–580.  

In the elimination phase, immune cells recognize and eliminate emerging tumor cells via 

the release of perforins/granzymes, type-I IFNs, pro-inflammatory cytokines or damage-

associated molecules (DAMPs). Tumor cells express tumor-specific antigens detected by T 

and NKT cells and stress-induced ligands for activating NK cells receptors such as 

NKG2D 15,581. If complete elimination by the immune system fails, the system reaches a 

balance of tumor cell destruction and tumor growth, the equilibrium phase. Killing of 

immunogenic tumor cells can facilitate the outgrowth of tumor cell clones with low 

immunogenicity, defined by low or no expression of tumor-specific antigens, 

downregulation of MHC-I and of activating NK cell ligands. These clones are hardly detected 

by the immune system and are thus able to escape the immunosurveillance. In this escape 

phase, the immune system is no longer capable of controlling the tumor. Moreover, tumor 

cells that leave their functional state of dormancy become clinically apparent as primary 

tumor or as metastasis 582.  
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In addition, the anti-tumor potential of immune cells is hampered by the 

immunosuppressive microenvironment containing high levels of immunosuppressive 

mediators, such as TGF-β, IL-10, arginase-1, PGE-2 (prostaglandin-2) or IDO (indolamin-

2,3-dioxygenase involved in tryptophan metabolism) 125. The inhibitory character of the 

tumor microenvironment is shaped through the recruitment of suppressive immune 

compartments such as regulatory T cells (Tregs), myeloid derived suppressor cells (MDSCs) 

and tumor-associated M2 macrophages (TAMs). Tregs are the main source of the 

immunosuppressive cytokines TGF-β and IL-10 and additionally express inhibitory 

molecules such as CTLA-4 or PD-1 583,584. Additionally, they compete with T and NK cells for 

the availability of IL-2 due to their constant expression of the high affinity IL-2Rα-chain 

(CD25) 302,303. Their accumulation in the tumor site is often correlated with poor prognosis 

in the clinics 585. MDSCs are a heterogeneous population of immature myeloid cells with 

immunosuppressive activity via the depletion of arginine and the secretion of IL-10, TGF-β 

and ROS 586,587. Moreover, suppression of NK cell functionality by MDSCs has been shown 

to depend on TIGIT-CD155 interactions, supporting the development of strategies that 

target TIGIT for cancer immunotherapy 267. Furthermore, they have been shown to directly 

support tumor growth and to be associated with resistance to immunotherapy 588–590. To 

boost anti-tumor immunity in cancer patients, many of these escape strategies are targeted 

in tumor immunotherapy 578,580,590. 

 

3.8. NK cell-based immunotherapy 

Multiple components of the immune system have been implicated to play important roles 

in cancer immunosurveillance and immunotherapy of cancer has been recently honored as 

the breakthrough of the year 591. Based on the ‘missing-self’ hypothesis of target 

recognition, NK cells are especially promising options for therapy of HLA-I negative 

tumors 592. Partial or complete loss of MHC-I expression, to avoid T cell–mediated 

recognition, occurs in a wide spectrum of tumor types. In these clinical settings, T cell 

therapy is compromised through lack of recognition, but NK cells are potently activated.  

NK cells deficiencies and defective functionality have been associated with higher 

incidences of cancer and recurring viral infections in patients and in mouse models 1,593–597. 

Conversely, high NK cell infiltration into tumor tissue has been correlated with better 
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disease outcome in different solid tumor entities 598–601. In vivo, NK cells have been shown 

to control tumor growth and metastasis of many transplanted, induced or spontaneous 

tumors in various mouse models 122,123,578,602–605. Evidence for NK cell cancer 

immunosurveillance in patients has been derived from several clinical studies supporting 

their therapeutic potential in the clinic to participate in tumor eradication 34,100,606–608.  

Their capacity to distinguish healthy cells from stressed, altered and malignant cells 

(missing self/induced self, see section 3.3) can be exploited as a promising tool in cancer 

therapy 592,609,610. Furthermore, cytokines and chemokines secreted by NK cells were shown 

to contribute to the anti-tumor immune response of tumor infiltrating T cells and myeloid 

cells 5,6,104,611,612. 

NK cells are particularly effective against metastasis, minimal residual disease and 

hematological cancers such as acute myeloid leukemia (AML) or multiple myeloma 

(MM) 605,613–615. However, the effectiveness of NK cell therapies depends on the type of 

malignancy as solid tumors (e.g. colorectal cancer or breast cancer) are poorly infiltrated 

by NK cells 598,599,616. Several strategies have been designed for the therapeutic use of NK 

cells in the clinics  100,609,617.  

 

3.8.1. Adoptive transfer of NK cells 

Clinical data from adoptive transfer of NK cells and from hematopoietic stem cell transfer 

(HSCT) have indicated safety and clinical effectiveness of NK cell-based 

immunotherapy 618,619. Various approaches can be applied for adaptive cellular transfer of 

NK cells, differing in the source, degree of maturity, number and activation status of the 

transferred NK cells 620. Cells can be obtained from a healthy donor (allogeneic) or directly 

from the patient (autologous). NK cells for adoptive transfer can be derived from different 

sources such as peripheral blood (PB), umbilical cord blood (UCB), bone marrow (BM), 

human embryonic stem cells (hESC) or induced pluripotent stem cells (iPSC) 585,621–623. 

Other sources include NK cell lines (e.g. NK-92), which exhibit high cellular cytotoxicity, 

lack inhibitory KIRs and can be easily genetically modified under GMP conditions 624–627.  

NK cells can be infused as part of HSCT, transferred alone as purified and expanded mature 

NK cells or as additional treatment shortly after HSCT. For a successful therapeutic 

approach, high numbers of transferred NK cells but also high purity and functionality are 



 3  INTRODUCTION  

47 

required. Standard GMP protocols include enrichment of NK ells and CD3+ T cell depletion, 

which is important to prevent the induction of GvHD 628,629. Numerous methods have been 

developed for long-term ex vivo expansion of NK cells using different kinds of cytokines 

such as IL-15 or IL-21 or feeder cells expressing membrane bound cytokines and co-

stimulatory molecules (e.g. 4-1BB) 630–633. Automated long-term expansion protocols can 

generate high numbers of clinical grade NK cells under standardized conditions 634–636. 

Major approaches for adoptive NK cell therapy include infusion of autologous or allogeneic 

NK cells or as part of HSCT treatment. 

Adoptive transfer of autologous NK cells 

The first clinical application of NK cells involved infusion of autologous PBMCs that were 

ex vivo activated with IL-2 (lymphokine activated killer cells, LAK cells) and mainly 

contained NK cells and CD8+ T cells 637–639. Although the IL-2 stimulated cells were highly 

activated and functional at the time of transfer, only limited clinical efficacy of LAK cells 

was observed. Transferred cells persisted in the recipient, but anti-tumor activity could 

only observed upon re-stimulation with IL-2 640. To sustain expansion and activity of the 

transferred cells, daily administration of IL-2 was applied but clinical efficacy was limited 

by the toxicity of high dose IL-2 641. In addition, administration of low-dose IL-2 has been 

shown to induce expansion of IL-2Rα–expressing (CD25) Treg cells that hamper NK cell 

activity 642–646.  

To maintain NK cell expansion in vivo and to prevent Treg cell induction, application of IL-15 

is currently explored in clinical trials, which preferentially stimulates NK cells and CD8+ T 

cells in the absence of Treg activation 647–649. For high biological activity, IL-15 has to be 

trans-presented by IL-15Rα in the body 292. Therefore, superagonists combining IL-15 and 

IL-15Rα in heterodimeric fusion proteins such as hetIL-15 (IL-15/sIL-15Rα) or the IL-15–

IL-15Rα–Sushi-Fc fusion complex (ALT-803) hold promise as potent activator of NK cell 

proliferation in vivo 650–652. 

However, the functionality of transferred NK cells is limited in autologous settings by the 

inhibitory signals transmitted through KIR receptors interacting with self–HLA-I on cancer 

cells. Hence, novel approaches are needed to preserve NK cells activation and to improve 

their anti-cancer efficacy.  

Adoptive transfer of allogeneic NK cells 
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A well-established example of allogenic NK cell transfer is hematopoietic stem cell 

transplantation (HSCT) in patients with hematological malignancies such as leukemia, 

resulting in disease free survival and reduced relapse rates 607,653. In allogeneic settings, 

hematopoietic stem cells or bone marrow grafts can be obtained from unrelated 

(mismatched) or related, haploidentical (partially matched) donors. T cells should be 

carefully removed to prevent graft-vs-host disease (GvHD), because donor-derived T cells 

can recognize the healthy tissue of the recipient as foreign cells and induce tissue damage 

of life threatening extent 654. To avoid rejection and to allow engraftment of the 

transplanted donor cells, pre-conditioning of the recipient’s immune system is required by 

preparative regiments such as total body irradiation or chemotherapy 607. Blood NK cells 

have been shown to recover early after transplantation and to exert a strong graft-vs-

leukemia (GvL) effect without induction of GvHD 655–657. A seminal study by Velardi and 

colleagues provided evidence for the importance of haploidentical donor-derived NK cells 

in successful HSCT, observing significant lower relapse rates of AML patients that received 

allogeneic bone marrow transplants 606. A prerequisite for the successful treatment was the 

KIR/ligand mismatch of donor and host cells. In these settings, the recipient’s tumor cells 

should lack one or more cognate HLA-I ligands for donor inhibitory KIRs. Tus, the 

alloreactivity of donor NK cells is based on KIR/ligand-mismatched graft NK cells not 

inhibited by host HLA-I, resulting in high cytotoxicity against leukemic blasts in spite of 

HLA-I expression 658,659. Genetic studies further showed that the presence of KIR B 

haplotypes in HSCT grafts, possessing high gene content of activating KIRs, correlated with 

lower relapse rates and improved survival 660–663. 

Moreover, purified and expanded allogeneic NK cells with high GvL potential can be 

adoptively transferred in addition to HSCT or as individual therapy 664–666. This approach, 

also called donor lymphocyte infusion (DLI), represents an effective treatment option upon 

relapse after HSCT or in combination for high-risk leukemias 667,668. In several studies, 

infusion of expanded and IL-2–activated NK cells resulted in favorable responses in 

patients with various hematological malignancies 646,669–671. It is based on the infusion of T 

cell depleted and highly purified haploidentical NK cells, which can be pre-activated ex vivo 

with IL-2 and are potent effector cells.  

To potentiate their anti-tumor activity, NK cells can be stimulated with various cytokines 

ex vivo before adoptive transfer 288,511,526,669. Ex vivo manipulations presents the possibility 

to use cytokines or drugs that might be otherwise harmful for in vivo application 109,672. The 



 3  INTRODUCTION  

49 

combination of IL-12, IL-15 and IL-18 for ex vivo activation is of particular interest as it is 

involved in the generation of long-lived memory-like NK cells with high proliferative 

capacity and sustained effector functions (see section 3.6.3) 673. Short pre-activation of NK 

cells with IL-12/15/18 has been shown to induce expression of the high affinity IL-2R α-

chain (CD25) 288,289, facilitating strong expansion and persistence in response to low-dose 

IL-2 after adoptive transfer in mice 288. Furthermore, cytokine-induced memory-like NK 

cells exhibit pronounced anti-cancer responsiveness in vivo and in vitro 288,334,526,568. Safety 

and feasibility of adoptive transfer of cytokine-induced memory-like NK cells has recently 

been demonstrated in a clinical trial with AML patients 526. 

However, the adoptive transfer of allogenic NK cells alone or as HSCT requires the 

availability of a matching donor and might be hampered by short persistence of the 

transferred NK cells in the patient 645. Moreover, it might bear the risk of promoting GvHD, 

as recent studies reported severe GvHD upon adoptive allogeneic NK cell transfer in 

combination with HSCT, which was probably exerted by contaminating alloreactive T 

cells 666,674–678.  

 

3.8.2. Strategies to improve NK cell anti-tumor potential  

NK cell anti-tumor efficacy in clinical trials has been limited by various mechanisms such 

as inhibitory KIRs, low persistence of transferred cells, weak tumor infiltration and 

attenuation of their activation status through the immunosuppressive tumor 

microenvironment 34,582,679. Current approaches aim to improve effectiveness of NK cell-

based therapies through increasing NK cell numbers by novel expansion protocols, 

improving their activation state and trafficking to the tumor site and by transfer of selected 

subpopulations with desired functional capacities 680–682 

The application of therapeutic antibodies or antibody-related constructs to bolster anti-

tumor efficacy of NK cells experiences currently intensive investigations in cancer 

immunotherapy 101. Therapeutic antibodies can specifically redirect immune cells to 

tumor-restricted antigens expressed on cancer cells and have been shown to greatly 

improve the outcome of cancer patients 100,101. Antibodies with different specificities for 

various cancer entities are widely used in the clinics targeting for instance CD19, CD20 

(rituximab), Her2/neu (trastuzumab), GD2 or EGFR (cetuximab). Their clinical efficacy has 
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been mainly contributed to the exertion of ADCC mediated via engagement of CD16 

(FcγRIIIA) through the Fc part of the antibody. CD16 triggering can elicit strong activation 

of NK cells without the need of additional co-activation, resulting in potent effector 

cells 12,98. 

Bispecific antibodies and bispecific killer engagers (BiKEs) are bivalent molecules 

containing two antigen binding specificities, designed to bind a tumor-specific antigen with 

one arm while engaging an activating NK receptor (e.g. CD16) with its second specificity 683. 

Simultaneous binding of both antigens cross-links NK cells with the tumor target cell and 

can elicit potent NK cell activation and effector function. TriKEs (trispecific killer engagers) 

can simultaneously bind either two antigens, two receptors or can incorporate e.g. IL-15 to 

additionally stimulate NK cells 684. The anti-tumor efficacy of therapeutic antibodies or 

bispecific constructs can be enhanced by combination with cytokines that stimulate and 

expand NK cells in vivo 109,673,684. 

Activating chimeric antigen receptors (CARs) contain an antibody-related receptor for a 

tumor-specific antigen on the surface, coupled to potent intracellular signaling modules 

such as CD3ζ, CD28 or 4-1BB. Antigen-specific binding thus results in strong activation of 

the effector cell 685. CAR-expressing T cells yielded promising results in the clinics but also 

raised severe safety issues 686. The generation of CAR-expressing lymphocytes has been 

previously focused on T cells, but also protocols for genetically engineering NK cell lines 

and primary NK cells are currently exploited 687–690.  

Similar to checkpoint blockade of exhausted T cells, blocking antibodies against inhibitory 

checkpoint molecules are currently explored for NK cell immunotherapy 691,692. The anti-

tumor effector function of autologous NK cells is substantially diminished by inhibitory 

signals delivered through the interaction of inhibitory KIR molecules with cognate HLA-I 

ligands on tumor cells. Checkpoint blockade of inhibitory receptors such as KIR or NKG2A 

therefore represents a promising strategy to reduce the threshold for NK cell activation and 

to increase their responsiveness towards self–HLA-I positive tumors 693,694. Blocking of 

pan-KIR2D receptors with the blocking anti-KIR2D antibody Lirilumab 

(1-7F9/IPH2101/IPH2102) has been shown to enhance NK cell activity in vitro and in 

transgenic mouse models against HLA-I–expressing tumor cells 695–698. In addition, an anti-

KIR3DL2 blocking antibody is currently under clinical development 699. The safety and 

efficacy of KIR blockade has been reported for the treatment of patients with AML or 
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multiple myeloma 700–705. Recently, clinical investigations of KIR checkpoint blockade have 

been additionally extended for various other hematological malignancies and for solid 

tumors 706. However, a recent study indicated contraction and functional detuning of KIR2D 

positive NK cells upon single therapy with Lirilumab in smoldering multiple myeloma 

patients 707. Therefore, combination of anti-KIR therapy with other approaches are 

currently considered, for instance together with anti–CTLA-4 or anti–PD-1 blockade 682,708 

or with ADCC inducing therapeutic antibodies 697,698,709.
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4. AIM OF THE STUDY 

Cancer immunotherapy based on NK cells is a promising field in the treatment of 

hematological malignancies. However, one major obstacle represents the attenuated 

activation of NK cells in the patient by the interaction of inhibitory killer immunoglobulin-

like receptors (KIRs) with self–HLA-I on autologous tumor cells. Several approaches are 

currently applied for circumventing KIR-mediated inhibition to fully unleash NK cell anti-

tumor efficacy in immunotherapy. For instance, adoptive transfer of haploidentical 

KIR/ligand-mismatched NK cells has been shown to greatly improve the clinical outcome 

of leukemia patients compared to matched NK cells that are inhibited by KIR/self–HLA-I 

interaction. Moreover, Lirilumab, a therapeutic antibody blocking inhibitory KIR2D 

molecules on NK cells, is currently tested in clinical trials. However, in contrast to 

autologous infusions, adoptive transfer of allogeneic cells is limited by the selection of a 

matching donor, low persistence of transferred NK cells in the adoptive host and the risk of 

graft-vs-host disease (GvHD). Therefore, it is of great importance in the field to develop 

new strategies to further improve the anti-cancer potency of NK cells against HLA-I–

expressing tumors in autologous transfer.  

Short pre-activation of NK cells with the pro-inflammatory cytokines IL-12/15/18 has been 

implicated in the generation of NK cells with sustained effector functions, high longevity 

and memory-like features. Recently, a clinical trial in AML patients employed adoptive 

transfer of IL-12/15/18 pre-activated allogeneic NK cells, which showed superior memory-

like anti-tumor activity one week after transfer and mediated remission in a subset of 

patients. However, no characterization of the cytokine-stimulated NK cells was performed 

at the time of infusion into the patient, evaluating their immediate anti-cancer potential. 

In the present study, we wanted to uncover the mechanisms underlying the potent effector 

functions of IL-12/15/18–activated NK cells to further improve treatment options for 

autologous cell transfer. We therefore performed a comprehensive phenotypical and 

functional analysis of NK cells at different time points after IL-12/15/18 stimulation, 

focusing on the balance of activating and inhibitory NK cell receptors. We aimed to gain 

mechanistic insights into the superior competence of IL-12/15/18–activated NK cells 

against transformed cells that express self–HLA-I. To study the implication of the 
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modulated KIR/HLA-I axis on NK cell functionality, we performed redirected lysis assays 

with specific antibody-mediated stimulation of single activating and inhibitory receptors. 

Furthermore, we assessed the impact of IL-12/15/18 stimulation on NK cell cytotoxicity 

against tumor targets bearing cognate HLA-I molecules. Finally, we employed an in vitro 

HCMV infection model to evaluate our phenotypical observations in a physiological setting 

of pro-inflammatory cytokines.  
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5. MATERIALS AND METHODS 

5.1. Materials 

5.1.1. Cells and cell lines 

Table 5.1: Cells and cell lines 

Cells or cell line Cell type Medium 

Primary PBMCs 
Human peripheral blood 

mononuclear cells 
RPMI, 10% FCS, 1% P/S 

Primary NK cells Human natural killer cells 
SCGM, 10-20% human 

serum, 1% P/S 

K562 
Human myelogenous 

leukemia cell line 
RPMI, 10% FCS, 1% P/S 

P815 
Mouse mastocytoma cell 

line 
RPMI, 10% FCS, 1% P/S 

MRC-5 
Human fetal lung 

fibroblasts 
DMEM, 10% FCS, 1% P/S 

721.221 
Human EBV transfected B 

lymphoblastoid cell line 

RPMI, 10% FCS, 1% P/S, 

Gln 2mM 

721.221_HLA-Cw03 
Human EBV transfected B 

lymphoblastoid cell line 

RPMI, 10% FCS, 1% P/S, 

Gln 2mM 

 

5.1.2. Cell culture products 

Table 5.2: Cell culture products 

Product Company 

Biocoll separating solution Biochrom 

Dimethylsulfoxide (DMSO) Hybri-Max Sigma Aldrich 

Dulbecco’s modified Eagle’s Medium (DMEM) Sigma-Aldrich 

Dulbecco’s phosphate buffered saline (PBS) Sigma-Aldrich 

Fetal Calf Serum Gibco 

Geneticin (G418) Gibco 

GolgiPlug BD Biosciences 

GolgiSTOP BD Biosciences 

Human serum, type AB, converted PAA 

Ionomycin Sigma Aldrich 
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Product Company 

L-Glutamin 200mM (100x) Gibco 

Penicillin/Streptomycin Sigma-Aldrich 

Phorbol-12-myristate-13-acetate Sigma Aldrich 

RPMI 1640 Sigma Aldrich 

Stem cell growth medium (SCGM) CellGenix 

Trypan Blue Sigma Aldrich 

Trypsin-EDTA Sigma-Aldrich 

 

5.1.3. Chemicals 

Table 5.3: Chemicals 

Chemicals Company 

51Chromium Perkin Elmer 

Batimastat Merck Millipore 

Cytofix™ Fixation Buffer BD Biosciences 

EDTA Ambion 

Ethanol Sigma-Aldrich 

Nuclease-free water Ambion 

Phosflow™ Perm Buffer III BD Biosciences 

Triton X-100 Sigma-Aldrich 

β-mercaptoethanol Sigma-Aldrich 

 

5.1.4. Solutions 

Table 5.4: Solutions 

Solution Ingredients 

FACS buffer PBS, 3% FCS, 0.05% (v/v) NaN3 

Freezing medium FCS, 10% DMSO 

MACS buffer PBS, 3% FCS, 0.5 mM EDTA 

 

5.1.5. Cytokines 

Table 5.5: Cytokines 

Cytokine Company 

IL-12 Peprotech 

IL-15 Peprotech 
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Cytokine Company 

IL-18 MBL 

IL-2 NIH 

 

5.1.6. Kits 

Table 5.6: Kits 

Product Company 

EasySep™ Human NK cell isolation kit Stemcell Technologies 

Foxp3 / Transcription Factor Staining Buffer Set eBioscience / Invitrogen 

Human IFN-γ ELISA BioLegend 

Human IL-18 ELISA R&D 

Human NK cell isolation kit Miltenyi Biotech 

LightCycler 480 SYBR Green I Master Roche 

LS Columns Miltenyi Biotech 

MACSplex human Cytokine 12 Miltenyi Biotech 

MojoSort™ Human NK cell isolation kit BioLegend 

ProtoScript M-MuLV First Strand Synthesis Kit NEB 

QIAshredder Qiagen 

RNeasy Mini Kit Qiagen 

TURBO DNA-free Kit Invitrogen 

 

5.1.7. Antibodies 

Table 5.7: Primary antibodies for flow cytometry 

Antigen Clone Company Dilution 

CD107a H4A3 Biolegend 1:100 

CD134 (OX40) 
Ber-ACT35 

(ACT35) 
Biolegend 1:40 

CD137 (4-1BB) 4B4-1 Biolegend 1:40 

CD14 HCD14 Biolegend 1:80 

CD16 3G8 Biolegend 1:50 

CD19 HIB19 Biolegend 1:80 

CD25 BC96 Biolegend 1:50 

CD3 HIT3a Biolegend 1:50 

CD56 HCD56 Biolegend 1:50 

CD57 HCD57 Biolegend 1:60 

CD69 FN50 Biolegend 1:50 
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Antigen Clone Company Dilution 

DNAM-I DX11 Biolegend 1:40 

HLA-ABC W6/32 Biolegend 1:100 

IFN-γ 4S.B3 Biolegend 1:40 - 1:50 

KIR2DL1 143211 R&D Systems 1:10 

KIR2DL1/S1/S3/S5 HP-MA4 Biolegend 1:40 - 1:50 

KIR2DL2/L3/S2 DX27 Biolegend 1:40 - 1:50 

KIR2DL2/L3/S2 GL183 Beckman Coulter 1:25 

KIR2DL3 180701 R&D Systems 1:10 

KIR3DL1 DX9 Biolegend 1:40 

NKG2A REA110 Miltenyi Biotec  1:20 

NKG2C 134591 R&D Systems 1:10 

NKG2D 1D11 Biolegend 1:40 

NKp30 P30-15 Biolegend 1:15 

NKp44 P44-8 Biolegend 1:20 

NKp46 9E2/NKp46 Biolegend 1:40 

NKp80 5D12 Biolegend 1:10 

phospho-STAT-5 47/Stat5(pY694) BD Biosciences 1:5 

TIGIT MBSA43 eBioscience 1:20 

 

Table 5.8: Isotype controls 

Antigen Clone Company 

mIgG1 MOPC-21 Biolegend 

mIgG2a MOPC-173 Biolegend 

mIgG2b MPC11 Biolegend 

 

Table 5.9: Assay antibodies 

Antigen Clone Company Concentration 

CD16 3G8 Biolegend 1 µg/ml 

IFN-α/β-R MMHAR-2 
PBL Interferon 

Source 
5 µg/ml 

IL-12 Polyclonal Goat IgG R&D Systems 5 µg/ml 

KIR2DL2/L3/S2 GL183 Beckman Coulter 25 µg/mL 
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5.1.8. Cell dyes 

Table 5.10: Cell dyes for flow cytometry 

Dye Company Dilution 

Fixable Viability Dye Zombie Aqua Biolegend 1:200 

7AAD Biolegend 1:50 

Annexin V Biolegend 1:50 

Carboxyfluorescein succinimidyl ester 

(CFSE)  
Sigma-Aldrich 1 µM 

 

5.1.9. Oligonucleotide qRT-PCR Primers 

Table 5.11: RT-qPCR Primers 

Primer Sequence 5’ - 3’ 

KIR2DL1 fwd TTGGGACCTCAGTGGTCATC 

KIR2DL1 rev GGTCCATTACCGCAGCATT 

KIR2DL3 fwd CTTCGGCTCTTTCCGTGACT 

KIR2DL3 rev AGAACATGCAGGTGTCTGGG 

β-2microglobulin fwd TCAGATCTGTCCTTCAGCAA 

β-2microglobulin rev CATGTCTCGGTCCCAGGTGA 

β-actin fwd AAACTGGAACGGTGAAGGTG 

β-actin rev AGAGAAGTGGGGTGGCTTTT 

 

5.2. Methods 

Part of this section has been published in Ewen et al. EJI 2018 710. 

5.2.1. Cell culture methods 

The 721.221 cell line and its transfectants were kindly provided by C. Watzl (Technical 

University Dortmund, Germany) and were cultured in RPMI medium supplemented with 

10 % FCS and 2 mM Glutamin. The K562 and P815 cell lines were cultured in RPMI medium 

supplemented with 10 % FCS. MRC-5 fibroblasts were cultured in DMEM medium 

supplemented with 10 % FCS. All media contained 100 U/mL penicillin and 100 mg/mL 

streptomycin and cell lines were routinely tested for mycoplasma infection by RT-PCR. All 

sera were heat-inactivated at 56°C for 30 minutes prior to usage. The transfected 
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721.221_HLA-Cw03 cell line was selected by adding in 0.5 mg/ml G418 (Geneticin) to the 

cell culture medium. 

 

5.2.2. Human NK cell isolation and culture 

PBMC isolation  

Buffy coats were provided by DRK-Blutspendedienst Mannheim, collected according to the 

principles of the Declaration of Helsinki. Written informed consent was obtained from all 

human subjects prior to blood donation and ethical approval 87/04 was granted by the 

Ethik Kommission II of the Medical Faculty Mannheim, Germany. Isolation of peripheral 

blood mononuclear cells (PBMCs) was performed by Biocoll density-gradient 

centrifugation. Peripheral blood was diluted 1:4 with pre-warmed PBS and 35 ml of diluted 

blood was carefully layered on top of 15 ml Biocoll separation solution. The tubes were 

centrifuged without brake for 30 min at 1800 rpm. The lymphocyte ring was collected, and 

cells were washed 3 times with warm PBS. PBMCs were cultured as 2x106/ml in RPMI 

supplemented with 10% FCS. 

Magnetic-activated cell sorting (MACS)  

NK cell isolation from PBMCs was performed by negative selection (human NK cell isolation 

kits) according to the manufacturer’s protocol, although only 75 % of the recommended 

reagents were used. Purity of isolated CD3- CD56+ NK cells was > 90 % as determined by 

flow cytometry. Freshly isolated NK cells are indicated as naïve throughout the manuscript 

and analyzed immediately. NK cells were cultured in SCGM medium containing 10 % 

human serum (heat-inactivated) or 20 % human serum for stimulation. NK cells were 

activated with a combination of IL-12 (10 ng/mL), IL-15 (20 ng/mL) and IL-18 

(100 ng/mL) or IL-15 alone (20 ng/mL) for 48 h or as indicated. After stimulation, NK cells 

were washed and re-cultured in the presence of 100 U/mL recombinant IL-2 and medium 

supplemented with IL-2 was exchanged every two days.  

CFSE labeling 

Freshly isolated NK cells or PBMCs were washed with PBS and adjusted to 1x107 cells/ml. 

3.3 µl/ml of 300 µM CFSE solution was added while shaking the cells to achieve a final CFSE 

concentration of 1 µM. After 10 min incubation at 37°C in the incubator, the reaction was 
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stopped by adding 5 ml of pure FCS and 5 ml of medium. Cells were washed twice with 

medium containing 10 % FCS and used in further experiments.  

HCMV Co-cultures 

One day before starting the co-cultures, 1x105/well MRC-5 fibroblasts were seeded in a 24-

well plate. The next day, fibroblasts were infected for 8 h with human cytomegalovirus 

(HCMV, subtype AD169, kindly provided by Anne Halenius, University of Freiburg) at a 

multiplicity of infection (MOI) of 10 or were left uninfected. Virus was washed away and 

fibroblasts were co-cultured together with 2x106 PMBCs per well in complete DMEM 

supplemented with 20 IU/ml IL-2. Fresh medium containing IL-2 and if applicable blocking 

antibodies was added after 5 days. After 3, 5 and 7 days, PBMCs were harvested and 

analyzed for their receptor expression by flow cytometry. For neutralization of IL-12 and 

blocking of type-I IFN receptor, PBMCs were resuspended in the appropriate amount of 

antibody (both 5 µg/ml) or isotype control and pre-incubated for 30 min. Cells were filled 

up with complete DMEM to reach the final cell and antibody concentration per well. 

Neutralizing agents were added again at day 5. 

 

5.2.3. Flow cytometry methods (FACS) 

Extracellular FACS staining  

For flow cytometry staining, cells were harvested and washed with PBS. Up to 1x106 cells 

were stained in a 96-well plate with 15 µl FACS buffer containing appropriate dilutions of 

all primary antibodies. After 30 min incubation on ice in the dark, cells were washed twice 

with FACS buffer, resuspended in FACS buffer and analyzed immediately. For co-staining 

of KIR2DL2/L3 and KIR2DL3 or KIR2DL1/S1/S3/S5 and KIR2DL1, respectively, cells were 

first incubated for 20 min with the single KIR antibody and the multiple KIR antibody was 

directly added afterwards for another 20 min. For discrimination of dead cells, 7-AAD was 

added 5 min prior to analysis. Staining of apoptotic cells was conducted by adding Annexin 

V diluted in Annexin V-binding buffer 15 min at RT before analysis according to the 

manufacturer’s protocol. 

 

 



5  MATERIALS AND METHODS  

62 

Intracellular FACS staining  

If cells were fixed for intracellular staining, the fixable viability dye ZombieAqua was used 

as dead cell marker instead of 7-AAD. The ZombiAqua dye was diluted 1:200 in PBS and 

25 µl were added to the washed cells prior to antibody staining. After 10 min on RT in the 

dark, 25 µl of 2x concentrated antibody mastermix was directly added and incubated for 

30 min on ice in the dark. For intracellular staining, cells were fixed and permeabilized after 

extracellular staining using the Foxp3/Transcription Factor Staining Buffer kit from 

eBioscience according to the manufacturer’s protocol. 100 µl of fixation/permeabilization 

concentrate (diluted 1:4) was added to the stained and washed cells and incubated for 

30 min on ice. Cells were washed twice with diluted permeabilization buffer and primary 

antibodies ware added in titrated concentration in 25 µl permeabilization buffer for 30 min 

on ice. Cells were washed once with diluted permeabilization buffer and once with FACS 

buffer before analysis.  

Phospho-STAT-5 staining 

NK cells were either left untreated or stimulated with IL-15 or IL-12/15/18 or for 

15 - 60 min as indicated. Cells were washed once with FACS buffer, fixed with BD Cytofix 

Fixation Buffer for 15 min at RT in the dark and washed. After permeabilization for 30 min 

on ice with BD Phosflow™ Perm Buffer III, cells were stained for phosphorylated STAT-5 

with an anti-Stat-5 (pY694) antibody for 30 min on ice. Cells were washed once with FACS 

buffer and analyzed immediately by flow cytometry.  

FACS sorting 

To keep the sorted cells in culture for several days, cells were prepared and sorted under 

sterile conditions. Freshly isolated NK cells were washed with sterile PBS and stained for 

appropriate surface markers for 30 min on ice in the dark. Cells were washed twice with 

sterile PBS, resuspended as 5x107/ml in sterile PBS supplemented with 0.1 % FCS and 

filtered through a 40 µm cell strainer. NK cells were sorted under sterile conditions through 

a 100 µm nozzle into complete medium. The 15 ml collection tubes were coated with FCS 

prior to usage and filled with 1 ml complete medium. NK cells were sorted with a FACSAria 

Fusion cell sorter (BD Bioscience) and purity of all sorted subsets was >98%. Sorted NK 

cells were analyzed immediately (naïve) or stimulated with IL-15 or IL-12/15/18 as 

described in 5.2.2. 
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FACS analysis 

Flow cytometry analyses were performed with a FACSCanto II or FACSCalibur (BD 

Bioscience) and data was analyzed using FlowJo software (Tree Star). Laser settings and 

compensation were adjusted using appropriate single stainings of each fluorophore. For 

staining of surface molecules, cell doublets and dead cells (7-AAD positive) were excluded 

and NK cells were gated on CD3–CD56+ cells. To assess fluorescence intensity staining of a 

phenotypic marker expressed on a subpopulation, the median fluorescence intensity (MFI) 

was determined only for that subpopulation. If the marker was expressed on the entire 

population, the Δ MFI was calculated by subtracting the MFI of the isotype staining from 

the MFI of the population.   

 

5.2.4. Functional in vitro assays  

CD107a degranulation assay 

Pre-activated NK cells and 721.221 target cells were harvested, washed and adjusted to 

1x106/ml in RPMI supplemented with 10 % FCS and 1 % P/S. Effector NK cells were co-

cultured with indicated target cells at an effector:target ratio of 1:1 in a 96-well plate. As a 

negative control of spontaneous degranulation, effector cells were cultured alone. PMA 

(50 ng/ml) and Ionomycin (750 ng/ml) were added to the effector cells in one condition as 

positive control. Cells were co-cultured in the presence of anti-CD107a antibody or 

respective isotype control and after 30 min 0.5 µl/well GolgiStop (monensin) was added. 

After 4 h cells were harvested and stained for CD3, CD56, KIR2DL2/L3 and 7-AAD as 

described in section 5.2.3. Degranulation was assessed by flow cytometry analysis of 

CD107a co-gated on KIR2DL2/L3 positive or negative NK cells.  

51Chromium release assay 

Cytotoxic activity of NK cells against 721.221 target cells was measured in a standard 4 h 

51Cr release assay. NK effector cells were sorted for KIR2DL2/L3 expression and activated 

with IL-15 or IL-12/15/18 for 48h. When indicated, interaction of 221_Cw03 and 

KIR2DL2/L3 was blocked by pre-incubation of NK cells with 25 µg/mL anti-KIR2DL2/L3 

mAb (GL183) or respective mIgG1 isotype control. Target cells were resuspended in 500 µl 

complete RPMI and labeled for 1 h with 100 μCi 51Cr. Target cells were washed three times 
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and 3×103 target cells were added to effector cells ± antibody at the indicated 

effector / target (E:T) ratios in triplicate in a 96-well plate. Target cells were cultured alone 

(minimum or spontaneous release) or with 10 % Triton X-100 (maximum). After 4 h 

incubation at 37°C, supernatants were collected and the release of 51Cr was measured. 

Specific lysis was calculated as [mean cpm - mean cpm (min)] / [mean cpm (max) - mean 

cpm (min)]. 

Redirected lysis assay  

Cytotoxic activity of NK cells against antibody coated P815 target cells was measured in a 

standard 4 h 51Cr release assay as described above. NK cells were sorted according to their 

KIR2DL2/L3 expression and activated for 48 h with IL-15 or IL-12/15/18 in the presence 

of 10 µM of the matrix-metalloproteinase inhibitor Batimastat or equivalent amounts of 

dimethylsulfoxide (DMSO) solvent control. For redirected lysis, FcR-bearing P815 target 

cells were pre-incubated for 30 min with 1 µg/mL anti-CD16 antibody (clone 3G8) in 

combination with either 1 µg/mL anti-KIR2DL2/L3 antibody (clone GL183) or respective 

mIgG1 isotype control. 

 

5.2.5. Cytokine measurement 

Re-stimulation 

NK cells were pre-activated with IL-15 or IL-12/15/18 for 16 h or 48 h, washed and 

subsequently re-cultured in IL-2 (100 IU/ml) or IL-15 (1 ng/ml) for additional 5 days. Cells 

were harvested, washed intensely and setup for re-stimulation in a 96-well plate in 200 µl 

fresh, cytokine-free medium. NK cells were either re-stimulated with IL-12 (10 ng/ml) and 

IL-15 (50 ng/ml) or with K562 target cells at an E:T ratio of 1:1. As positive control,  

PMA (50 ng/ml) and Ionomycin (750 ng/ml) were added in one condition. NK cells were 

cultured alone in medium as negative control. For IFN-γ detection via ELISA, supernatants 

were harvested after 24 h and the negative ‘medium’ control was subtracted from the raw 

data. For intracellular staining of IFN-γ, cells were re-stimulated for 6 h in the presence of 

1 µl/well Brefeldin A (GolgiPlug) and intracellular IFN-γ was detected by flow cytometry 

as described in 5.2.3. 
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Enzyme-linked immunosorbent assay (ELISA)  

NK cells were re-stimulated as described above. Cell-free supernatants were harvested 

after 24 h and either frozen at -20°C ore processed directly. IFN-γ and IL-18 were measured 

by ELISA according to the manufacturer’s instructions. 

MACSplex 

Cell-free supernatants of HCMV co-cultures were harvested 3 days p.i. and analyzed for 

secreted cytokines using the MACSplex Cytokine 12 Kit. The protocol was performed by 

Markus Granzin (Cerwenka lab and Miltenyi Biotech) according to the manufacturer’s 

instructions. 

 

5.2.6. Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) 

RNA isolation & cDNA synthesis 

RNA was isolated from NK cells using the RNeasy Mini Kit and QIAshredder with minor 

changes in the manufacturer’s recommended protocol. For cell lysis, min 2x105 NK cells 

were washed with PBS, lysed in RLT buffer containing 0.1 % (v/v) β-mercaptoethanol and 

stored at -80°C until further usage. Thawed cell lysates were homogenized using 

QIAshredder and RNA isolation was continued with the RNeasy Mini Kit according to the 

manufacturer’s recommendations. RNA was eluted in 30 µl nuclease-free water and was 

treated with DNase using TURBO DNA-free kit to remove possible genomic DNA 

contamination. RNA concentration (A260) and purity (A260/A280 ratio) were determined 

with a NanoPhotometer and stored at -80°C. Isolated RNA was reverse transcribed into 

cDNA using the ProtoScript First Strand cDNA Synthesis Kit and the provided random 

primer mix according to the manufacturer’s instructions. The same amount of RNA was 

employed to ensure the same cDNA concentration within all samples used for later 

comparison. Samples without reverse transcriptase (-RT control) were included to exclude 

possible genomic DNA contamination. Synthesized cDNA was stored at -20°C.  

SYBR Green qRT-PCR 

Due to low cell numbers and RNA/cDNA concentrations, cDNA was only diluted 1:2 or 1:3 

with nuclease-free water. 6 µl of diluted cDNA was added per well to LightCycler480 
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Mulitwell plates and mixed with 3 µl LightCycler 480 SYBR Green I Master Mix and 0.5 µl of 

forward and reverse primer, respectively, in a final concentration of 0.5 µM. Each reaction 

was performed in technical duplicates or triplicates. Nuclease-free water and -RT samples 

were included as negative controls. The plate was sealed with a foil, shortly centrifuged and 

the qRT-PCR reaction was performed on a Roche LightCycler 480 instrument with the 

following program: 

Preincubation:     95°C  5 min 

Amplification: Denaturation 95°C 10 s 

   Annealing  60°C 15 s 

   Extension 72°C  20 s  

   45 cycles 

Melting curves:   95°C  5 s 

     65°C 60 s 

     97°C   - 

Cooling:    40°C  10 s 

The relative expression of the gene of interest compared to a housekeeping gene (β2m or 

β-actin) was calculated as 2-ΔCp with ΔCp = Cp(target gene) - Cp(housekeeping gene). The 

efficiency of each primer pair was determined in advance using a standard curve of serial 

diluted cDNA. 

 

5.2.7. Statistical analysis 

Statistical significance was calculated by paired two-tailed student’s t-test or one- or two-

way ANOVA followed by Bonferroni’s post test using the GraphPad Prism 6 software: ns, 

not significant; *p < 0.05; **p < 0.01 and ***p < 0.001, if not assigned differently.  
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6. RESULTS 

The results reported in this study have been previously published in their original or 

modified form in Ewen et al. 2018 Eur. J. Immunol. 710 and in Rölle, Pollmann et al. 2014 J. 

Clin. Invest. 556. Text and Figures have been originally designed and written by myself. 

 

6.1. Downregulation of KIR expression on NK cells upon 

IL-12/15/18 stimulation 

6.1.1. Phenotype of IL-12/15/18–stimulated NK cells 

To dissect the improved functionality of IL-12/15/18–activated NK cells, we performed an 

in-depth phenotypical analysis of human cytokine–stimulated NK cells. Therefore, mature 

NK cells were isolated from PBMCs of healthy donors, stimulated for 60 h with IL-12/15/18 

or with IL-15 alone and analyzed for their surface receptor repertoire by flow cytometry. 

Cytokine stimulation induced changes in the expression of most NK receptors (Figure 6.1), 

either reflected by the percentage of receptor expressing cells or by receptor surface 

expression density per cell as indicated by the median fluorescence intensity (MFI). 

Expression densities of most activating NK receptors were enhanced upon cytokine 

stimulation (Figure 6.1 A), whereas expression of NKp46 was only marginally changed 

(Figure 6.1 A). NKp30, NKp44 and NKG2D expression was more potently induced by IL-15, 

whereas the intensity of DNAM-I expression was increased by IL-12/15/18 alone 

(Figure 6.1 A). Expression of NKp80 and CD16 on NK cells was substantially reduced upon 

IL-12/15/18 stimulation, which is in line with previous publications 156,711. CD25, the IL-2 

high affinity receptor α-chain, was highly upregulated on IL-12/15/18 stimulated cells 

(Figure 6.1 B) as shown previously by our group and others 271,288,289. Expression of CD69, 

which is considered to be an activation marker on NK cells, was highly induced by both 

IL-15 and IL-12/15/18, while NKG2A expression is slightly increased by both cytokine 

stimulations (Figure 6.1 B). Furthermore, the co-stimulatory TNFRSF members Ox40 and 

4-1BB were highly upregulated upon cytokine stimulation with regards to the percentage 

of positive cells as well as the expression density levels (Figure 6.1 C). Expression densities  
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Figure 6.1: Regulation of NK cell receptor 

expression upon IL-12/15/18 activation. 

Human NK cells isolated from PBMCs were 

analyzed at day 0 (naïve) and after 60 h 

stimulation with IL-15 or IL-12/15/18 for 

surface receptor expression by flow cytometry. 

(A) Expression of natural cytotoxicity receptors, 

(B) activation and maturation marker and 

(C) co-stimulatory and inhibitory receptors on 

NK cells is shown. (A - C) Bar graphs depict the 

percentage positive population gated on 7-AAD-

CD3-CD56+ NK cells (upper panels). Lower 

panels present the median fluorescence intensity 

(MFI) of the positive subpopulation or the 

isotype-corrected median fluorescence intensity 

(Δ MFI = MFI - MFI(isotype)) of the indicated 

receptors (n = 3 - 27, mean + SD). Statistical 

analysis was performed with one-way ANOVA 

followed by Bonferroni’s post test. 
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of TIGIT (Figure 6.1 C) and of the maturation marker CD57 (Figure 6.1 B) were enhanced 

by IL-15, but not by IL-12/15/18.  

 

6.1.2. Reduced expression of KIR2DL2/L3, KIR2DL1 and KIR3DL1 on 

IL-12/15/18–stimulated NK cells 

Most strikingly, activation of NK cells for 60 h with IL-12/15/18, but not with IL-15 alone, 

led to a significantly decreased surface expression of the self-HLA–binding killer cell 

immunoglobin-like receptors (KIRs) (Figure 6.2 A). The percentage of KIR positive NK cells 

(Figure 6.2  B) as well as the density of surface expression per cell (MFI; Figure 6.2  C) was 

significantly decreased upon IL-12/15/18 activation compared to IL-15 treated controls. 

Due to the high similarity in protein structure of KIR molecules, most anti-KIR antibodies 

cannot discriminate between KIRs with similar extracellular domains. Many antibodies 

hence cross-react with KIRs sharing the same extracellular Ig-like domain (2D or 3D), 

which differ only in their intracellular part. The monoclonal antibody clones DX27 and 

GL183 for example recognize the structurally similar KIR2DL2, KIR2DL3 and KIR2DS2 

molecules. In contrast, antibodies specific for either long or short cytoplasmic tails (L & S 

forms) exist only for few KIR family members, which could facilitate discrimination 

between activating (S) and inhibitory (L) receptors by flow cytometry. However, similar 

results were obtained with two different monoclonal antibody clones cross-reacting to 

KIR2DL2/L3/S2 (clones DX27, GL183) and with an antibody specific for inhibitory 

KIR2DL3 (clone 180701), indicating regulation of inhibitory KIRs with a long cytoplasmic 

tail (Figure 6.2  A - C). The antibody clone HP-MA4 cross-reacts with KIR2DL1 and the 

structurally similar activating family members 2DS1, 2DS3 and 2DS5. Reduced expression 

of KIR2DL1 was not only observed using the antibody clone HP-MA4 recognizing 

KIR2DL1/S1/S3/S5 but also by staining with an antibody specific for inhibitory KIR2DL1 

(clone 143211), implicating downregulation of inhibitory KIR receptors (Figure 6.2  A - C). 

Downregulation of KIR3DL1 could be detected with an antibody (clone DX9) specific for 

the inhibitory molecule with a long cytoplasmic tail (Figure 6.2  A - C). Expression of 

KIR2DL4, KIR2DL5 and KIR3DL2 was not detected within several healthy donors (data not 

shown) and was therefore not further investigated.  
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Figure 6.2: IL-12/15/18 stimulated NK cells display reduced levels of KIR2DL2/L3, KIR2DL1 

and KIR3DL1 expression. NK cells isolated from PBMCs were analyzed at day 0 (naïve) and after 

60 h of stimulation with IL-15 or IL-12/15/18 for the expression of killer cell immunoglobulin-like 

receptors (KIRs) by flow cytometry. (A) Histograms gated on single 7-AAD-CD3-CD56+ NK cells of 

one representative donor. (B) Summary of NK receptor expression and (C) median fluorescence 

intensity (MFI) of the KIR positive subpopulation are depicted. Results from individual donors are 

connected with a line (n = 13 - 26). Statistical analysis was performed with a paired two-tailed 

student’s t-test.  
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Kinetic studies revealed that significant changes in KIR2DL2/L3, KIR2DL1 and KIR3DL1 

expression were first detectable after 36 h of IL-12/15/18 stimulation and were most 

pronounced after 48 h and 60 h (Figure 6.3 A & B). This pattern was reflected in the 

percentage of KIR positive cells (left panel) as well as in surface expression density levels 

(MFI, right panel). Downregulation of KIR3DL1 was most evident at surface expression 

levels (Figure 6.3  C). KIR surface expression was not further decreased upon prolonged 

stimulation with IL-12/15/18 for up to 6 days (Figure 6.4 A). In contrast, differences 

Figure 6.3: KIR downregulation starts after 36 h and is most pronounced after 48 - 60 h of 

IL-12/15/18 expression. (A) KIR2DL2/L3, (B) KIR2DL1 and (C) KIR3DL1 expression levels on NK 

cells were determined by flow cytometry at the indicated time points. Bar graphs depict the 

percentage positive population (left panel) and median fluorescence intensity (MFI) (right panel) of 

KIR expressing CD3- CD56+ NK cells (n = 6 - 8, mean + SD). Statistical analysis was performed with 

a two-way ANOVA followed by Bonferroni’s multiple comparison test.  
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between IL-15 and IL-12/15/18 stimulation were most distinct after 48 h to 60 h and KIR 

expression levels converged again at later time points. Of note, prolonged stimulation 

resulted in enhanced apoptosis and reduced cell recovery (Figure 6.4 C & D). 

 

6.1.3. KIR downregulation by IL-12/15/18 is transient and NK cell 

population intrinsic  

Peripheral blood NK cells acquire KIR expression during maturation and differentiation 

from CD56bright KIR–/dim to CD56dim KIR+ subsets. Reduced KIR expression after IL-12/15/18 

stimulation could be attributed to regulation of KIR expression on CD56dim KIR+ cells or 

mediated by outgrowth of the CD56bright KIR–/dim NK subset within the whole NK cell 

population analyzed. Freshly isolated NK cells were FACS-sorted into CD56bright and  

Figure 6.4: Prolonged IL-12/15/18 stimulation results in higher apoptosis and lower cell 

numbers of NK cells. Human NK cells isolated from PBMCs were stimulated with IL-15 or 

IL-12/15/18. (A) KIR expression levels were determined by flow cytometry at the indicated time 

points after stimulation. (B) Annexin V staining for apoptotic cells and (C) absolute cell numbers at 

the indicated time points after cytokine exposure. 2x105 NK cells were seeded and absolute cell 

numbers were determined per well. Fresh medium was added to the cultures after 84 h. Statistical 

analysis was performed with a two-way ANOVA followed by Bonferroni’s multiple comparison test 

(n = 4, mean + SD). 
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CD56dim subsets (Figure 6.5 A & B) and stimulated with IL-15 or IL-12/15/18. Indeed, 

expression of inhibitory KIR2DL2/L3, KIR2DL3 and KIR2DL1 was downregulated on the 

sorted CD56dim subset after 48 h activation with IL-12/15/18, whereas naïve CD56bright NK 

cells exhibited only very low KIR expression that remained unaltered during stimulation 

(Figure 6.5  C). To determine whether KIR regulation was induced on a distinct NK cell 

subpopulation or whether it was a result of increased proliferation of the KIR negative 

Figure 6.5: KIRs are downregulated on the CD56dim NK cell subset. (A) Gating strategy of NK 

cells for FACS-sorting and for subsequent flow cytometry analyses. NK cells were distinguished by 

gating on single, living (7-AAD-), CD3- CD56+ lymphocytes. (B) NK cells isolated from PBMCs were 

further sorted into CD3- CD56dim and CD56bright subsets. Representative flow cytometry dot plots of 

naïve NK cells after sorting showing the purity of the sorted populations. Plots were gated on 7-AAD-

 lymphocytes. (C) Sorted CD56dim and CD56bright subsets were stimulated with IL-15 or IL-12/15/18 

for 48 h and analyzed by flow cytometry. Results from individual donors are connected with a line 

(n = 4 donors). Statistical analysis was performed with a paired two-tailed student’s t-test.  
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subset, freshly isolated NK cells were sorted according to their KIR expression. Since 

KIR2DL2/L3 is most frequently expressed in individuals and exhibited pronounced 

downregulation (Figure 6.5 ), NK cells were sorted into KIR2DL2/L3 positive and negative 

subsets and stimulated with IL-15 or IL-12/15/18. Figure 6.5  A and Figure 6.6 A depict the 

gating strategy for sorting of CD3– CD56+ KIR2DL2/L3+/– subsets ensuring high purity of 

sorted KIR2DL2/L3 positive and negative populations (Figure 6.6 B). KIR2DL2/L3 positive 

cells could not be isolated by negative depletion but needed to be FACS-sorted after anti-

KIR2DL2/L3 antibody staining. Due to the stochastic expression of KIR molecules on NK 

cells, the KIR2DL2/L3 positive as well as the negative subsets co-expressed other 

inhibitory self–HLA-I receptors such as NKG2A or various other inhibitory KIRs such as 

KIR2DL1 (Figure 6.6 C).  

Sorted KIR2DL2/L3 positive and negative NK cells were stimulated with IL-15 or 

IL-12/15/18 for 48 h and analyzed for their KIR expression by flow cytometry. On the 

Figure 6.6: FACS-sorting of KIR2DL2/L3 positive & KIR2DL2/L3 negative NK cells. NK cells 

isolated from PBMCs were further sorted according to their KIR2DL2/L3 expression into 

KIR2DL2/L3 positive or negative populations using the anti-KIR2DL2/L3 antibody clone DX27. 

(A - B) Representative flow cytometry dot plots of naïve NK cells (A) before and (B) after sorting 

showing the gating strategy of KIR2DL2/L3-sorting and the purity of the sorted populations as 

detected with a different anti-KIR2DL2/L3 antibody clone GL183. Dot plots were gated on 7-AAD–

CD3– CD56+ NK cells. (C) Expression of other KIRs and NKG2A on KIR2DL2/L3 positive and negative 

sorted populations shown as representative histogram overlays. 
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sorted KIR2DL2/L3 positive subset, KIR2DL2/L3 expression was significantly decreased 

after IL-12/15/18 activation compared to naïve cells and IL-15–treated controls  

(Figure 6.7 A & B). Of note, IL-15 stimulation even increased expression density of 

Figure 6.7: IL-12/15/18 drives KIR2DL2/L3 downregulation on sorted KIR2DL2/L3 positive 

NK cells. NK cells isolated from PBMCs were FACS-sorted into KIR2DL2/L3 positive and negative 

populations. Cells were analyzed before (day 0, naïve) and after 48 h of stimulation with IL-15 or 

IL-12/15/18 by flow cytometry. (A) Representative histograms showing KIR2DL2/L3 expression on 

the KIR2DL2/L3 positive sorted population. (B - D) Summary showing isotype-corrected median 

fluorescence intensity (Δ MFI) of KIR expression on the KIR2DL2/L3 positive sorted population 

(mean ± SD). KIR2DL2/L3 expression was assessed by flow cytometry using anti-KIR2DL2/L3 mAb 

clones (B) DX27 or (C) GL183 and (D) KIR2DL3 expression was detected by anti-KIR2DL3 mAb 

clone 180701 (n = 37 (B); n = 14 (C) and n = 10 (D)). Statistical analysis was determined by one-way 

ANOVA followed by Bonferroni’s post test. (E) Co-expression and regulation of KIR2DL1 on 

KIR2DL2/L3 positive and negative sorted NK cells as determined by flow cytometry. The graph 

depicts the median fluorescence intensity (MFI) of the positive subpopulation. Results from 

individual donors are connected with a line (n = 7). Statistical analysis was performed with a paired 

two-tailed student’s t-test.  
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KIR2DL2/L3 compared to expression levels on naïve NK cells. Downregulation of 

KIR2DL2/L3 was observed with different antibody clones (Figure 6.7 B - D) detecting 

KIR2DL2/L3 (DX27 & GL183) or KIR2DL3 (clone 180701), indicating regulation of 

inhibitory receptors with a long cytoplasmic tail. In addition, other inhibitory KIR 

molecules such as KIR2DL1 were downregulated on both KIR2DL2/L3 positive and 

negative subsets upon IL-12/15/18 stimulation compared to IL-15 treated controls 

(Figure 6.7 E). Of note, the sorted KIR2DL2/L3 negative population remained negative 

(data not shown). 

To address the question, whether reduced KIR expression was the result of an outgrowth 

of the KIR negative subset, proliferation of NK cells was assessed via the fluorescent cell 

division tracker dye CFSE (carboxyfluorescein succinimidyl ester). The amount of CFSE in 

the labeled cells is diluted evenly in every cell division, allowing us to track the number of 

cell divisions of each cell. After 60 h of cytokine stimulation no CFSE dilution and thus no 

proliferation of KIR2DL2/L3 positive or negative NK cells was detectable (Figure 6.8 A). 

Moreover, no significant changes in absolute cell numbers or Annexin V positive apoptotic 

cells were detectable between KIR2DL/L3 positive or negative sorted populations 

Figure 6.8: Regulation of KIR2DL2/L3 does not involve selective proliferation or apoptosis. 

(A) Freshly isolated NK cells were stained with the fluorescent cell division tracker dye CFSE and 

activated for 60 h with IL-15 or IL-12/15/18. Flow cytometry histogram overlays depict one 

representative donor out of 6 experiments gated on KIR2DL2/L3 positive or negative subsets. 

(B) Absolute cell numbers determined per well (mean ± SD; n = 26) and (C) Annexin V staining for 

apoptotic cells (mean ± SD; n = 8) of KIR2DL2/L3 positive and negative sorted subsets stimulated 

with IL-15 or IL-12/15/18 for 48 h. Statistical analysis was performed using two-way ANOVA 

followed by Bonferroni’s post test. 
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(Figure 6.8 B & C), demonstrating that decreased KIR expression did not originate from 

preferential cell death of the KIR2DL2/L3 positive population. In general, stimulation of NK 

cells with IL-12/15/18 led to elevated apoptosis levels and lower cell numbers compared 

to IL-15 activation, but both subsets were similarly affected and no differences between the 

KIR2DL2/L3 positive and negative subpopulation were observed. 

To evaluate whether KIR regulation was persistent or transient, KIR2DL2/L3-sorted NK 

cells were pre-activated for 48 h with IL-12/15/18 or IL-15 and subsequently washed and 

re-cultured in IL-2 for additional 3 to 5 days (Figure 6.9 A). As observed before, stimulation 

Figure 6.9: KIR downregulation by IL-12/15/18 on KIR2DL2/L3 sorted NK cells is transient. 

Sorted KIR2DL2/L3 positive and negative NK cells were stimulated with IL-15 or IL-12/15/18 for 

48 h, washed and re-cultured in 100 IU/ml IL-2 for additional 3 or 5 days. (A) Schematic overview 

of the experimental procedure. (B) Representative histograms of KIR2DL2/L3 positive sorted NK 

cells after 48 h stimulation and after re-culture in IL-2 for 3 or 5 days. (C) Summary of the isotype-

corrected median fluorescence intensity (Δ MFI) of KIR2DL2/L3 positive sorted NK cells. Data is 

shown as mean + SD of 9 - 14 donors. Statistical analysis was performed using one-way ANOVA 

followed by Bonferroni’s post test. Part of this figure is a reprint from Ewen et al. 2018 Eur. J. 

Immunol. 710. 
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with IL-12/15/18 decreased KIR2DL2/L3 levels after 48 h (Figure 6.9 B & C). However, 

upon re-culture in IL-2, KIR expression was restored, increasing already after 3 days on 

sorted KIR2DL2/3 positive cells, indicating that the KIR downregulation was transient 

(Figure 6.9 B & C). Moreover, expression levels of KIR2DL2/L3 as well as KIR2DL1 were 

restored when the entire NK cell culture was pre-activated with IL-12/15/18 and re-

cultured in IL-2 (Figure 6.10 A & B). Additionally, re-culture of NK cells in IL-15 

(Figure 6.10 A & C) was capable of re-inducing KIR expression.  

 

Figure 6.10: IL-12/15/18–induced downregulation of KIR2DL2/L3 and KIR2DL1 is reversible 

by re-culture in IL-2 or IL-15. Freshly isolated NK cells were stimulated with IL-15 or IL-12/15/18 

for 48 h, washed and re-cultured in 100 IU/ml IL-2 or in 1 ng/ml IL-15 for additional 5 days. 

(A) Schematic overview of the experimental procedure. (B) Summary of all NK cells re-cultured in 

100 IU/ml IL-2 for 5 days. Bar graphs depict the median fluorescence intensity (MFI) of KIR2DL2/L3 

(left) and KIR2DL1 (right) expressing NK cells (n = 11; mean + SD). (C) Summary of all NK cells after 

5 day re-culture in 1 ng/ml IL-15. Bar graphs depict the median fluorescence intensity (MFI) of 

KIR2DL2/L3 (left) and KIR2DL1 (right) expressing NK cells (n = 4; mean + SD). Statistical analysis 

was performed using two-way ANOVA followed by Bonferroni’s post test. 
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6.2. Mechanism of IL-12/15/18–induced KIR downregulation 

To investigate whether the reduction of KIR protein expression was regulated at the 

transcriptional level, we analyzed KIR mRNA levels by qRT-PCR. Indeed, IL-12/15/18 

stimulation of sorted KIR2DL2/L3 positive NK cells resulted in significantly reduced 

KIR2DL3 mRNA levels after 24 h and 48 h of cytokine exposure (Figure 6.11 B). IL-15–

activated NK cells showed enhanced KIR2DL3 mRNA levels compared to naïve cells, 

resembling the pattern of protein surface expression. After cytokine pre-activation, sorted 

KIR2DL2/L3 positive NK cells were washed and re-cultured in for 3 days in IL-2 

(Figure 6.11 A). Upon re-culture in IL-2, KIR2DL3 mRNA levels were restored after 3 days, 

demonstrating transient transcriptional KIR regulation by IL-12/15/18, mimicking our 

protein data (Figure 6.9). qRT-PCR analysis of the whole NK cell culture showed similar 

tendencies of reduced KIR2DL1 mRNA levels of IL-12/15/18–stimulated NK cells 

compared to IL-15–treated controls (Figure 6.11 C). In accordance with our results, we 

observed decreased mRNA levels of multiple inhibitory KIRs such as KIR2DL1, KIR2DL2, 

KIR2DL3, KIR3DL1, KIR3DL3, KIR2DL4 and KIR2DL5A (Figure 6.11 D) upon analysis of 

publicly available microarray data 712 comparing IL-2/12/18–stimulated with naïve NK 

cells. Taken together, we could show that IL-12/15/18–stimulation induced transient 

downregulation of KIR mRNA levels in peripheral blood NK cells.  

To dissect the essential cytokines involved in KIR regulation, we stimulated KIR2DL2/L3-

sorted NK cells with single or dual cytokine combinations of IL-12, IL-15 and IL-18 

(Figure 6.12). KIR2DL2/L3 expression levels were significantly downregulated by IL-12 

alone or in combination with IL-18 (Figure 6.12). But the combination of all three cytokines 

induced the most profound KIR regulation while ensuring survival of the cells (data not 

shown). Since we observed upregulation of KIR expression by IL-15 in contrast to 

IL-12/15/18–induced downregulation (Figure 6.7 and Figure 6.11), we tested whether the 

combination of IL-12/15/18 would diminish IL-15–mediated signaling. Therefore, we 

assessed differences in phosphorylation of the signaling adapter STAT-5, which gets 
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activated upon IL-15 signal transduction 296. KIR2DL2/L3-sorted NK cells were stimulated 

Figure 6.11: KIR mRNA levels are transiently downregulated on NK cells upon IL-12/15/18 

stimulation. Sorted KIR2DL2/L3 positive and negative NK cells were stimulated with IL-15 or 

IL-12/15/18 for 48 h, washed and re-cultured in 100 IU/ml IL-2 for additional 3 days. (A) Schematic 

overview of the experimental procedure. (B) Relative KIR2DL3 mRNA expression of KIR2DL2/L3 

positive sorted NK cells before (naïve), after 24 h and 48 h of cytokine exposure and after 3 days re-

culture in IL-2 as described in (A). KIR2DL3 surface expression on NK cells was confirmed by flow 

cytometry using the anti-KIR2DL3 antibody clone 180701. KIR2DL3 expression was determined by 

qRT-PCR and calculated relative to beta-2-microglobulin (B2M) as 2-ΔCp with ΔCp = Cp(KIR2DL3) -

 Cp(B2M). Statistical analysis was performed using two-way ANOVA followed by Bonferroni’s post 

test (n = 3 - 9, mean + SD). (C) NK cells isolated from PBMCs were treated as entire NK culture for 

24 h with IL-15 or IL-12/15/18 and analyzed for KIR2DL1 mRNA by qRT-PCR (n = 2; mean + SD). 

KIR2DL1 expression relative to beta-actin was calculated as 2-ΔCp with ΔCp = Cp(KIR2DL1) - Cp(beta 

actin). KIR2DL1 surface expression on NK cells was confirmed by flow cytometry using the anti-

KIR2DL1 antibody clone 143211. (D) Relative KIR mRNA expression levels of human NK cells in 

naïve state or treated for 24 h with IL-2/12/18 (n = 2; mean + SD). Data was extracted from the 

gene-array data set GEO GSE22919 712.  
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for 15 to 60 min with IL-15 or IL-12/15/18 and phosphorylation of intracellular STAT-5 

was detected by flow cytometry. Cytokine stimulation was sufficient to induce 

phosphorylation of STAT-5 after 15 min (Figure 6.13 A) on both KIR2DL2/L3 positive and 

negative subsets. However, no differential phosphorylation was observed between IL-15 

and IL-12/15/18 activated NK cells (Figure 6.13 B). Thus, stimulation with IL-12/15/18 

did not mediate KIR downregulation by influencing IL-15–mediated STAT-5 signaling. 

 

Figure 6.12: KIR expression on NK cells 

is regulated by different cytokine 

combinations. NK cells were sorted 

according to their KIR2DL2/L3 expression 

and stimulated for 48 h with the indicated 

cytokine combinations. KIR2DL2/L3 

expression on KIR2DL2/L3 positive sorted 

NK cells was assessed by flow cytometry 

using the antibody clone GL183. The graph 

presents the isotype-corrected median 

fluorescence intensity (Δ MFI) on the 

KIR2DL2/L3 positive sorted population 

(n = 4, mean ± SD). Each donor is 

represented by a distinct symbol. Statistical 

analysis was performed using one-way 

ANOVA followed by Bonferroni’s post test.  

 

Figure 6.13: No differential 

STAT-5 phosphorylation is 

detected after IL-15 or 

IL-12/15/18 stimulation. 

KIR2DL2/L3-sorted NK cells were 

stimulated for the indicated time 

points with IL-15 or IL-12/15/18 

and phosphorylation of 

intracellular STAT-5 was detected 

by flow cytometry. (A) Histogram 

overlays of KIR2DL2/L3 positive 

and negative sorted NK cells after 

15 min of cytokine exposure. 

(B) Median fluorescence intensity 

(MFI) of intracellular phospho–

STAT-5 after indicated time points 

of cytokine stimulation (n = 2; 

mean + SD). 



6  RESULTS 

82 

6.3. Improved functionality of IL-12/15/18–activated NK cells 

6.3.1. IL-12/15/18–activated NK cells are less sensitive to KIR2DL2/L3-

mediated inhibition 

Down-regulation of KIR surface expression suggested that NK cells might be less sensitive 

to KIR2DL2/L3-based inhibitory signals. Hence, we assessed NK functionality in a 

redirected lysis assay with murine FcR+ P815 cells, employing NK cell activation via CD16 

crosslinking as a defined activating signal. As depicted in the scheme in Figure 6.15 A (left), 

CD16 was engaged by an anti-CD16 antibody that was cross-linked by the Fc receptor on 

P815 cells. Antibody-mediated cross-linking of activating receptors such as CD16 is capable 

of inducing activating signals within the NK cell 713–715. NK cells were sorted into 

KIR2DL2/L3 positive and negative subsets, stimulated for 48 h with IL-15 or IL-12/15/18 

and used in the redirected lysis assay. Both, IL-15 and IL-12/15/18–activated NK cells were 

capable of CD16-mediated redirected lysis (Figure 6.14 A, middle), although the latter at a 

lower extent. This correlated with lower CD16 expression on IL-12/15/18–stimulated cells 

(Figure 6.1 and Figure 6.14 B, left), which was previously shown to involve matrix-

metalloproteinase (MMP) mediated shedding 711,716. Treatment of both NK cell cultures 

with the MMP inhibitor (MMPi) Batimastat partially restored CD16 cell surface expression 

(Figure 6.14 B, right), which resulted in comparable levels of CD16-dependent killing 

between IL-12/15/18 and IL-15–cultured NK cells (Figure 6.14 A, right panel). 

Importantly, KIR2DL2/L3 expression was not influenced by the MMPi treatment 

(Figure 6.14 C). Of note, KIR2DL2/L3 positive and negative NK cells exhibited comparable 

killing capabilities upon CD16 triggering (Figure 6.14 A). Since KIR2DL2/L3 positive and 

negative sorted subsets co-expressed other inhibitory self–HLA-I receptors such as NKG2A, 

KIR2DL1 or KIR3DL1 (Figure 6.6 C), these cells were most likely educated and fully 

functional.  

To investigate whether IL-12/15/18 activation alters KIR-mediated inhibition, 

KIR2DL2/L3 was engaged with a monoclonal antibody in combination with an anti-CD16 

antibody in a redirected lysis assay (Figure 6.15 A, right). Cross-linking of inhibitory KIR 

molecules by antibody-coated P815 cells has been shown to induce inhibitory signals 

within NK cells mimicking receptor-ligand interactions 713–715. as observed before, 

engagement of CD16 alone induced comparable levels of redirected lysis by IL-15 and 

IL-12/15/18–activated NK cells (Figure 6.15 B, left). Upon inhibitory KIR co-triggering, 
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cytotoxicity of KIR2DL2/L3 positive NK cells stimulated with IL-15 was greatly reduced 

(Figure 6.15 B & C, right), indicating KIR dependent inhibition. Remarkably, the CD16-

mediated cytotoxicity of IL-12/15/18–activated NK cells was not affected by KIR2DL2/L3 

co-engagement (Figure 6.15 B & C, right). IL-12/15/18–activated NK cells possessed high 

cytotoxic potential even after co-engagement of inhibitory KIR, which was similar to lysis 

observed upon CD16 engagement by itself. Redirected lysis by KIR2DL2/L3 negative NK 

cells was not influenced by KIR cross-linking and comparable between IL-15 and  

Figure 6.14: NK cell activation with IL-12/15/18 induces MMP-mediated shedding of CD16. 

NK cells were sorted according to their KIR2DL2/L3 expression and activated for 48 h with IL-15 or 

IL-12/15/18 in the presence of solvent control (ctrl; DMSO) or treated with the matrix-

metalloproteinase inhibitor (MMPi) Batimastat. The CD16-dependent cytotoxicity of NK effector 

cells was assessed in a redirected lysis assay against antibody-coated P815 target cells, which were 

pre-incubated with mIgG1 or anti(α)-CD16 antibody (clone 3G8). (A) Representative donor showing 

different E:T ratios of CD16-mediated redirected lysis of NK cells after control (ctrl; DMSO) or 

Batimastat (MMPi) treatment. Data is presented as mean ± SD of technical replicates of one 

representative donor. (B - C) Histogram overlays depict (B) CD16 and (C) KIR2DL2/L3 surface 

expression of control (ctrl) or MMPi-treated NK cells gated on 7-AAD– CD3– CD56+ NK cells.  
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Figure 6.15: IL-12/15/18-induced KIR downregulation leads to reduced inhibition of CD16-

mediated cytotoxicity. NK cells were sorted according to their KIR2DL2/L3 expression and 

activated for 48 h with IL-15 or IL-12/15/18 in the presence of the matrix-metalloproteinase 

inhibitor (MMPi) Batimastat. Redirected lysis assays were performed against antibody-coated P815 

target cells, pre-incubated with anti(α)-CD16 mAb (clone 3G8) together with either anti-

KIR2DL2/L3 mAb (clone GL183) or with the respective mIgG1 isotype control. (A) Schematic 

overview illustrating the redirected lysis assay of CD16 triggering alone (left) and of parallel 

engagement of CD16 and KIR2DL2/L3 (right). (B) Representative data of redirected lysis against 

P815 cells pre-incubated with anti(α)-CD16 mAb together with either mIgG1 (left) or anti-

KIR2DL2/L3 mAb (right panel). Data is shown at different E:T ratios as mean ± SD of technical 

replicates. (C) Statistical summary of redirected lysis shown in (B) at E:T ratio 10:1 for 5 donors. 

Bars are drawn to mean + SD and each symbol represents one donor. (D) Percent inhibition induced 

by anti-CD16 and anti-KIR2DL2/L3 co-triggering of redirected lysis shown in (C) compared to anti-

CD16 alone. Percent inhibition by anti-KIR was calculated as [1 - [specific lysis (anti-CD16 + anti-

KIR2DL2/L3) / specific lysis (anti-CD16 + mIgG1)] x 100]. Bars are drawn to mean + SD and each 

symbol represents one donor (n = 5). Statistical analysis was determined by two-way ANOVA / 

Bonferroni’s multiple comparison test. Part of this figure is a reprint from Ewen et al. 2018 Eur. J. 

Immunol. 710. 
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IL-12/15/18 activation (Figure 6.15 B & C), indicating that in absence of KIR engagement 

both cytokine stimulations elicited the same degree of CD16-dependent cytotoxicity. Lysis 

of IL-15–treated KIR2DL2/L3 positive NK cells was reduced by approximately 50% if 

inhibitory KIR2DL2/L3 was engaged, implicating approximately 50% of inhibition by anti-

KIR. To further visualize KIR-mediated inhibition, the relative percentage of inhibition 

induced by KIR2DL2/L3 triggering was calculated for CD16-dependent lysis 

(Figure 6.15 D), demonstrating that IL-12/15/18–activated NK cells were less sensitive to 

inhibitory signals compared to IL-15 stimulated cells. Thus, our results indicate that 

reduced surface expression of KIR2DL2/L3 on IL-12/15/18–stimulated NK cells translated 

into reduced inhibition upon KIR co-engagement. 

 

6.3.2. IL-12/15/18–activated NK cells show high cytotoxicity against HLA-I–

expressing targets  

Next, we wanted to investigate whether the downregulation of KIR2DL2/L3 has an 

influence on the functionality of NK cells during their encounter of targets that express 

HLA-I. To decipher the effect of the cognate HLA-I ligand, we employed the 721.221 

lymphoma cell line, which expresses low levels of HLA-ABC as demonstrated by flow 

cytometry analysis (Figure 6.16 A). Although they showed weak but positive staining with 

a pan–HLA-ABC antibody, the 721.221 cells are described to be negative for HLA-C 717, 

bearing no ligand for KIR2D receptors. In contrast, the daughter cell line 221_Cw03 is 

transduced with the HLA-Cw03 allele, harboring the C1 epitope specifically recognized by 

KIR2DL2/L3 (Figure 6.16 A). The interaction of cytokine-stimulated NK cells with 

HLA_Cw03 positive and negative 221 cells is depicted schematically in Figure 6.16 B. The 

221 cell line is negative for cognate ligands for KIR2D receptors and thus NK activation by 

this cell line should be independent of the KIR/HLA axis. In contrast, the HLA-Cw03 cell line 

expresses the cognate ligand for KIR2DL2/L3 on NK cells, which inhibits NK activation. 

Since no ligands for other KIRs are present on both cell lines, this system allows to 

specifically study the interaction between a certain KIR and its ligand. 

Using this system, we first analyzed whether low levels of inhibitory KIR2DL2/L3 on 

IL-12/15/18–activated cells would affect NK cell degranulation against targets carrying 

cognate HLA-I molecules. Cytokine-stimulated NK cells were co-cultured for 4 h with 

HLA_Cw03 positive or negative 221 cell lines and degranulation of NK cells was assessed 
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in a CD107a mobilization assay. Co-staining of KIR2DL2/L3 and CD107a allowed to 

determine specific degranulation of KIR2DL2/L3 positive and negative subsets by flow 

cytometry (Figure 6.17 A). No differences in degranulation of KIR2DL2/L3 positive and 

negative populations were detectable against 221 target cells in absence of the cognate 

ligand (Figure 6.17 B, left). Gating on KIR2DL2/L3 positive NK cells stimulated with IL-15 

revealed low levels of degranulation against 221_Cw03 targets (Figure 6.17 B, right), 

implicating inhibition of KIR2DL2/L3 positive NK cells by HLA-Cw03. In contrast, 

degranulation of IL-12/15/18–activated NK cells against 221_Cw03 cells was improved 

compared to their IL-15–treated counterparts. In parallel, both KIR2DL2/L3 negative NK 

populations exhibited comparable degranulation against 221_Cw03 cells, showing NK 

functionality independent of the KIR/HLA-I axis. Calculation of the percentage of inhibition 

Figure 6.16: HLA-I expression on 221 and 221_Cw03 lymphoma cells. (A) Parental 721.221 

lymphoma cells (221) or 721.221 cells transduced with HLA-Cw03, carrying the cognate C1 epitope 

for KIR2DL2/L3 (221_Cw03), were stained with anti-HLA-ABC mAb (clone W6/32) and analyzed by 

flow cytometry. Dead cells were excluded by gating on 7-AAD- cells. (B) Schematic overview of the 

721.221 cell lines as target cells with matched HLA-I expression. The 221 cell line is negative for 

cognate ligands for KIR2DL2/L3, which is regulated on IL-15 and IL-12/15/18–stimulated NK cells. 

The HLA-Cw03–transduced 221_Cw03 cell line expresses the cognate ligand for KIR2DL2/L3 on NK 

cells. No other ligands for other KIRs are present on both cell lines. 
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by HLA-Cw03 compared to targets expressing no HLA-C demonstrated significant less 

inhibition of IL-12/15/18–stimulated NK cells by HLA-Cw03 compared to IL-15–activated 

controls (Figure 6.17 C). Thus, our results indicate that NK cells with lower KIR expression 

levels displayed enhanced degranulation against cognate HLA-I positive targets.  

Figure 6.17: IL-12/15/18–activated NK cells exhibit enhanced degranulation towards 

cognate HLA-I positive target cells. Freshly isolated NK cells were activated for 48 h with IL-15 or 

IL-12/15/18 and co-cultured for 4 h at E:T ratio 1:1 with 221 or 221_Cw03 target cells, expressing 

the cognate HLA-I ligand for KIR2DL2/L3. Degranulation was assessed by flow cytometry analysis 

of CD107a co-gated on KIR2DL2/L3 positive or negative NK cells. (A) Gating strategy for detecting 

CD107a on KIR2DL2/L3 positive and negative NK subsets. (B) Statistical summary showing the 

percentage of CD107a positive NK cells. Bars are drawn to mean + SD and each symbol represents 

one donor (n = 4). Statistical analysis was performed using two-way ANOVA followed by 

Bonferroni’s multiple comparisons test. (C) Percent inhibition of degranulation of KIR2DL2/L3 

positive NK cells by the presence of a cognate ligand on target cells (221_Cw03) compared to no HLA 

(221 cells). Percent inhibition by HLA-Cw03 was calculated as [1 - [%CD107+ (221_Cw03) / 

%CD107+ (221)] x 100]. Statistical analysis was performed with a paired two-tailed student’s t-test 

(n = 4; mean ± SD). 
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Next, we investigated how IL-12/15/18–mediated KIR downregulation affected NK cell 

cytotoxicity towards 221 cells carrying cognate HLA-I molecules. The cytotoxicity of 

KIR2DL2/L3-sorted NK cells was determined in a standard 4 h chromium release assay 

against HLA-I low (221) and HLA-Cw03–transduced 721.221 cells (221_Cw03), bearing 

high levels of the HLA-C1 epitope specific for KIR2DL2/L3 (see Figure 6.16). No differences 

in cytotoxicity of KIR2DL2/L3 positive or negative NK cells was observed towards HLA-I 

low 221 cells regardless of IL-15 or IL-12/15/18 pre-activation (Figure 6.18 A & B, left 

panels). In absence of cognate HLA-I on target cells, NK cells stimulated with IL-15 or 

Figure 6.18: IL-12/15/18 stimulation increases NK cell cytotoxicity against cognate HLA-

Cw03–expressing lymphoma cells. Cytotoxicity assay using KIR2DL2/L3 positive and negative 

sorted NK cells activated with IL-15 or IL-12/15/18 for 48 h is shown. Sorted NK cells were 

incubated with parental 721.221 target cells (221) or with 721.221 cells transduced with HLA-Cw03 

(221_Cw3). When indicated, interaction of HLA-Cw03 and KIR2DL2/L3 was blocked by pre-

incubation of NK cells with anti-KIR2DL2/L3 mAb (GL183) or respective mouse IgG1 isotype 

control. (A) Cytotoxicity assay of one representative donor showing specific lysis of 221 or 

221_Cw03 cells at several E:T ratios (mean ± SD of technical replicates). (B) Summary of cytotoxicity 

against 221 and 221_Cw03 cells at E:T ratio 12:1. Bars are drawn to mean + SD and each symbol 

represents one donor (n = 19). (C) KIR2DL2/L3 positive NK cells were pre-incubated with anti-

KIR2DL2/L3 mAb (GL183) or respective mIgG1 isotype control. Cumulative data of specific lysis of 

221_Cw03 cells including KIR2DL2/L3 blockade at E:T ratio 12:1. Bars are drawn to mean + SD and 

each symbol represents one donor (n = 6). Statistical analysis was performed using two-way ANOVA 

followed by Bonferroni’s multiple comparisons test. Part of this figure is a reprint from Ewen et al. 

2018 Eur. J. Immunol. 710. 
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IL-12/15/18 exerted equally potent cytotoxicity at different E:T ratios. Lysis of 221_Cw03 

target cells by IL-15–stimulated KIR2DL2/L3 positive NK cells was significantly inhibited 

by the interaction of KIR2DL2/L3 with its cognate ligand (Figure 6.18 A & B, right panels). 

Importantly, KIR2DL2/L3 positive NK cells activated with IL-12/15/18 showed superior 

cytotoxicity towards cognate HLA-I–expressing 221_Cw03 targets compared to IL-15–

treated controls (Figure 6.18 A & B, right panels). In parallel, KIR2DL2/L3 negative NK cells 

exhibited comparable killing capabilities independent of KIR/HLA-I interactions. To study 

the contribution of the KIR/HLA-I axis, interaction of KIR2DL2/L3 and its ligand HLA-Cw03 

was blocked by an anti-KIR antibody (Figure 6.18 C). Indeed, KIR2DL2/L3 blockade 

increased cytotoxicity of IL-15–treated KIR2DL2/L3 positive NK cells towards 221_Cw03 

targets (Figure 6.18 C), demonstrating that cytotoxicity of IL-15–activated NK cells was 

inhibited by the interaction of KIR2DL2/L3 with its cognate ligand. The high cytotoxicity of 

IL-12/15/18–stimulated KIR2DL2/3 positive NK cells was preserved in the presence of the 

blocking anti-KIR antibody. Together, these observations indicate that IL-12/15/18 

activation led to downregulation of inhibitory KIR2DL2/L3 receptors, rendering NK cells 

proficient in killing cognate HLA-I–expressing tumor cells. 

 

6.3.3. IL-12/15/18–pre-activated cells exhibit memory-like functionality  

Previous studies reported that human and mouse NK cells can acquire potent memory-like 

functionality after 16 h pre-activation with IL-12/15/18 288,289,333,334,526. Upon re-

stimulation, these cells maintained the capacity of high anti-tumor activity and IFN-γ 

production, both after adoptive transfer in vivo and after an in vitro resting phase in the 

presence of IL-2 or IL-15, indicative of memory-like functionality. To address whether 

prolonged pre-activation for 48 h, as used in this thesis, instead of 16 h would influence the 

memory-like properties of cytokine-stimulated NK cells, we pre-activated NK cells for 48 h 

with IL-15 or IL-12/15/18 and compared them to 16 h pre-activation. Directly after 

cytokine exposure, pre-activated NK cells were re-cultured in IL-2 or IL-15 for 5 days 

(Figure 6.19 A). To assess NK functionality, cells were re-stimulated with K562 and IFN-γ 

levels were determined in the supernatant by ELISA. Of note, KIR2DL2/L3 expression was 

re-induced by IL-2 and IL-15 re-culture as observed before (Figure 6.10) and KIR 

expression levels were comparable between IL-15 and IL-12/15/18–pre-activated NK cells 

at day 5. In accordance with previous studies 288,289,334, NK cells pre-activated with 
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IL-12/15/18 produced more IFN-γ compared to IL-15–treated counterparts 

(Figure 6.19 B). IL-12/15/18 pre-activated NK cells exhibited improved IFN-γ secretion 

both after re-culture in IL-2 (Figure 6.19 B, left) as well as after re-culture in IL-15 

(Figure 6.19 B, right). Importantly, as compared to 16 h stimulation of NK cells, pre-

activation for 48 h resulted in similarly enhanced IFN-γ production of IL-12/15/18–

stimulated NK cells upon re-stimulation with K562. Thus, also longer IL-12/15/18 

stimulation could prime for generation of NK cells with memory-like properties.  

Additionally, we determined the percentage of IFN-γ producing cells upon 6 h re-

stimulation with K562 via intracellular flow cytometry staining (Figure 6.20 A). Flow 

Figure 6.19: Enhanced IFN-γ secretion by IL-12/15/18–pre-activated NK cells upon re-

stimulation with K562. Freshly isolated bulk NK cells were stimulated with IL-15 or IL-12/15/18 

for either 16 h or for 48 h, washed and re-cultured in 100 IU/ml IL-2 or in 1 ng/ml IL-15 for 

additional 5 days. For re-stimulation, NK cells were co-cultured at E:T ratio 1:1 with K562 for 24 h, 

supernatants were harvested and analyzed by ELISA. (A) Schematic overview of the experimental 

procedure. (B) IFN-γ concentration of IL-2 (left) and IL-15 (right) re-cultured NK cells upon re-

stimulation with K562. Both 16 h and 48 h pre-activated NK cells are shown (n = 4; mean + SD). 

Statistical analysis was performed using two-way ANOVA followed by Bonferroni’s multiple 

comparisons test. 
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cytometry-based quantification showed a clear tendency of enhanced IFN-γ expression 

Figure 6.20: IL-12/15/18–preactivated cells exhibit improved IFN-γ expression upon re-

stimulation with K562. Freshly isolated bulk NK cells were stimulated with IL-15 or IL-12/15/18 

for either 16 h or for 48 h, washed and re-cultured in 100 IU/ml IL-2 or in 1 ng/ml IL-15 for 

additional 5 days. For re-stimulation, NK cells were co-cultured at E:T ratio 1:1 with K562 for 6 h in 

the presence of Brefeldin A and intracellular IFN-γ was detected by flow cytometry. (A) Schematic 

overview of the experimental procedure. (B) Representative dot plots of intracellular IFN-γ staining 

detected by flow cytometry. NK cells pre-activated for 16 h (upper panel) and 48 h (lower panel) are 

shown. (C) Percentage of IFN-γ producing NK cells after re-culture in IL-2 (left) or IL-15 (right) NK 

cells. (n = 2-3; mean + SD). Statistical analysis was performed using two-way ANOVA followed by 

Bonferroni’s multiple comparisons test. 
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after IL-12/15/18 pre-activation (Figure 6.20 B & C). IFN-γ production of IL-12/15/18–

stimulated NK cells was similarly enhanced both after 16 h and 48 h pre-activation. Of note, 

since IL-12/15/18 pre-activated NK cells produced more IFN-γ at steady state without re-

stimulation, all values were corrected to baseline production. In general, re-culture of pre-

activated NK cells in IL-2 resulted in increased IFN-γ secretion upon re-culture 

(Figure 6.19 B) and in higher percentages of IFN-γ expressing cells (Figure 6.20 B & C) 

compared to NK cells re-cultured in IL-15, but also in increased background IFN-γ 

production without re-stimulation. Thus, pre-activation for 48 h with IL-12/15/18 was 

equally capable of generating memory-like NK cells with high capacity of sustained IFN-γ 

production.  

Taken together, we could show that stimulation of NK cells with IL-12/15/18 induced 

downregulation of KIR surface expression and mRNA levels, which was reversible by re-

culture in IL-2 or IL-15. Reduced expression of inhibitory KIR receptors translated into 

reduced inhibition and improved NK functionality against cognate HLA-I–expressing tumor 

cells. Furthermore, IL-12/15/18 pre-activated NK cells exhibited sustained IFN-γ 

production compared to IL-15–treated cells upon re-stimulation with K562, indicative of 

memory-like functionality.  

 

6.4. Downregulation of KIR expression on NK cells in an HCMV 

infection model 

6.4.1. KIR2DL2/L3, KIR2DL1 and KIR3DL1 are downregulated upon HCMV 

infection 

Mouse and human cytomegalovirus (MCMV and HCMV) infection have been implicated in 

the formation of memory-like NK cells with expansion of specific NK subsets 24,718. A strong 

pro-inflammatory cytokine milieu is created during these viral infections and in particular 

IL-12 has been shown to be involved in expansion of the NKG2C+ NK subset 556. Therefore, 

we wanted to investigate the impact of HCMV infection and of the cytokines produced 

during infection on KIR expression. To model HCMV infection, we employed a co-culture 

system of PBMCs together with infected fibroblasts, which was established in our 

laboratory 556. As schematically illustrated in Figure 6.21 A, MRC-5 fibroblasts were left 
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uninfected or were infected with the HCMV strain AD169 for 8 h. Virus was washed away 

and fibroblasts were cultured together with freshly isolated PMBCs for 7 days. Co-culture 

of PBMCs with HCMV-infected fibroblasts resulted in significant downregulation of 

KIR2DL2/L3, KIR2DL1 and KIR3DL1 molecules on NK cells (Figure 6.21 B) compared to 

uninfected cultures at day 3 p.i. (post infection). The percentage of NK cells expressing a 

certain KIR (Figure 6.21 B, upper panel) as well as the surface density of KIR expression  

(lower panel) was significantly decreased in HCMV-infected co-cultures, resembling the 

Figure 6.21: Downregulation of KIRs on NK cells in an HCMV infection model system. NK cells 

were analyzed in a co-culture system of PBMCs together with infected fibroblasts modelling an 

HCMV infection. (A) Schematic description of experimental procedure of HCMV co-culture system. 

MRC-5 fibroblasts were infected with human cytomegalovirus (HCMV, subtype AD169) at MOI of 10 

for 8 h or were left uninfected. Virus was washed away and fibroblasts were cultured together with 

PMBCs for 7 days. PBMCs were analyzed for their receptor expression after 3, 5 and 7 days by flow 

cytometry. NK cells were defined by gating on 7-AAD– CD3– CD19– CD14– CD56+ lymphocytes. 

(B) Expression of indicated receptors (upper panel) and median fluorescence intensity (MFI, lower 

panel) on CD56+CD3– NK cells in the HCMV co-culture system at day 3p.i. (post infection). 

(C) NKG2C expressing NK cells are shown after 7 days p.i. (B – C) Results from individual donors are 

connected with a line (n = 10 - 16). Statistical analysis was performed with a paired two-tailed 

student’s t-test.  
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IL-12/15/18–induced KIR downregulation (Figure 6.2). Of note, KIR expression was 

detected using antibody clones cross-reacting with long and short intracellular domains 

(e.g. anti-KIR2DL1/S1/S3/S5 clone HP-MA4). Thus, no clear conclusion about regulation of 

inhibitory or activating KIRs could be drawn. In addition, CD25 was highly upregulated in 

HCMV-infected co-cultures (Figure 6.21 B), similar to our observations upon IL-12/15/18 

stimulation of NK cells (Figure 6.1 B). HCMV infection was described to drive expansion of 

a NKG2C+ NK subset compared to uninfected co-cultures 556,719. However, our individual co-

cultures displayed a remarkable donor-to-donor variability after 7 days p.i. and resulted in 

heterogenous expansion or even in reduction of the NKG2C+ subsets (Figure 6.21 C). 

Kinetic studies revealed, that KIR2DL2/L3 expression is reduced 3 days after HCMV 

infection compared to uninfected cultures (Figure 6.22). However, KIR expression was 

restored and even further increased in both uninfected and infected co-cultures after 

7 days. In contrast, CD25 expression was constantly increasing upon HCMV infection and 

highly upregulated 7 days p.i. (Figure 6.22). 

Figure 6.22: Kinetics of KIR and CD25 expression in HCMV infection. PBMCs were co-cultured 

with HCMV-infected or uninfected MRC-5 fibroblasts and analyzed by flow cytometry at the 

indicated time points. (A) Percentage positive population and (B) median fluorescence intensity 

(MFI) of indicated receptor expression at day 3, 5 and 7 p.i. Statistical analysis was performed with 

a two-way ANOVA followed by Bonferroni’s multiple comparison test (n = 7 - 9, mean + SD). NK cells 

were defined by gating on 7-AAD– CD3– CD19– CD14– CD56+ lymphocytes. 
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Since stimulation of NK cells with IL-12/15/18 induced regulation of various NK receptors  

(Figure 6.1), we analyzed NK receptor expression in the HCMV co-culture system. In line 

with our observations upon IL-12/15/18 stimulation (Figure 6.1), CD16 and NKp80 

expression was significantly downregulated upon HCMV infection (Figure 6.23 A & B), 

whereas expression density of DNAM-I was increased (Figure 6.23 B). Furthermore, the co-

stimulatory TNFRSF members Ox40 and 4-1BB were highly upregulated as reflected by the 

Figure 6.23: Regulation of NK cell receptor expression in an HCMV infection system. PBMCs 

were co-cultured with HCMV-infected or uninfected MRC-5 fibroblasts and analyzed by flow 

cytometry at the indicated time points. (A) Percentage receptor positive NK cells and (B) median 

fluorescence intensity (MFI) of the positive subpopulation or the isotype-corrected median 

fluorescence intensity (Δ MFI) of the indicated receptors. Statistical analysis was performed with a 

two-way ANOVA followed by Bonferroni’s multiple comparison test (n = 2; mean + SD). NK cells 

were defined by gating on 7-AAD– CD3– CD19– CD14– CD56+ lymphocytes. 
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percentage of receptor positive cells (Figure 6.23 A), as well as by their expression density 

levels (Figure 6.23 B). 

 

6.4.2. IL-12–induced CD25 expression drives NK proliferation in HCMV 

infection 

It was previously shown by our laboratory that IL-12 is produced by monocytes in HCMV-

infected co-cultures and drives expansion of NKG2C+ NK subsets upon infection 556. IL-12 

was detected in infected co-cultures starting after 48 h and IL-12 levels were increasing up 

to 72 h 556. Indeed, MACSplex analysis of co-culture supernatants 3 days p.i. indicated 

enhanced concentrations of IL-12, IFN-α, IFN-γ and IL-10 in infected compared to 

uninfected co-cultures (Figure 6.24). Although not differentially produced, multiple 

cytokines such as IL-2, IL-6, IL-9, TNF-α and GMCSF were present in the co-culture system. 

IL-18 could not be detected in the co-culture supernatants by ELISA 3 days p.i. 

(Figure 6.24). Since we observed that IL-12 alone induced a partial KIR downregulation on 

purified NK cells (Figure 6.12), we investigated the role of IL-12 in KIR regulation upon 

HCMV infection. We neutralized IL-12 in the co-cultures by adding a blocking antibody and 

analyzed KIR expression 3 days p.i. . IL-12 neutralization had no effect on KIR2DL2/L3 or 

KIR2DL1 downregulation in HCMV-infected co-cultures, neither on KIR expression 

Figure 6.24: Cytokine profile of HCMV co-culture system. PBMCs were co-cultured with AD169-

infected or uninfected MRC-5 fibroblasts for 3 days and supernatants were analyzed for secreted 

cytokines. MACSplex analysis of co-culture supernatants harvested 3 days p.i. MACSplex analysis 

was performed by M. Granzin. IL-18 was detected by ELISA (n = 2; mean + SD; n.d. not detectable).  
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Figure 6.25: IL-12 neutralization and IFN-αR blockade in HCMV co-cultures. PBMCs were co-

cultured with AD169-infected or uninfected MRC-5 fibroblasts in the presence of indicated 

neutralizing antibodies or isotype control. (A) Percentage receptor positive NK cells and (B) median 

fluorescence intensity (MFI) of the positive subpopulation of co-cultures with IL-12 neutralizing 

antibody at day 3 p.i. (n = 6 - 7; mean ± SD). Each symbol represents one donor. (C) Representative 

histogram and (D) summary of co-cultures in the presence of IFN-α receptor blocking antibody 

(n = 2; mean ± SD). Each symbol represents one donor. Statistical analysis was performed with a 

two-way ANOVA followed by Bonferroni’s multiple comparison test. NK cells were defined by gating 

on 7-AAD– CD3– CD19– CD14– CD56+ lymphocytes. 
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Figure 6.26: Upregulation of CD25 on NK cells in HCMV-infected co-cultures is partially IL-12 

dependent. PBMCs were co-cultured with AD169-infected or uninfected MRC-5 fibroblasts in the 

presence of neutralizing antibody against IL-12 or isotype control. (A) Representative dot plots of 

CD25 expression on NK cells at day 7 p.i. Numbers indicate the percentage of CD25 positive cells 

among all CD3– CD56+ NK cells. (B) Statistical summary of percentage and (C) median fluorescence 

intensity (MFI) of CD25 positive NK cells at day 3, 5 and 7 p.i. (n = 7; mean ± SD). Each symbol 

represents one donor. Statistical analysis was performed with a two-way ANOVA followed by 

Bonferroni’s multiple comparison test. NK cells were defined by gating on 

7-AAD– CD3– CD19– CD14– CD56+ lymphocytes.  
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intensities (Figure 6.25 B) nor with regards to percentage of KIR expressing cells 

(Figure 6.25 A). Moreover, CD16 downregulation was not prevented by neutralization of 

IL-12 although it was described to involve IL-12–induced shedding of CD16 by matrix-

metalloproteinases (MMPs) shedding 711,716. This could indicate insufficient neutralization 

of IL-12 during the co-culture period or contribution of multiple cytokines. Since IFN-α was 

Figure 6.27: HCMV-induced proliferation of CD25+ NK cells is n not IL-12 dependent. PBMCs 

were labeled with the proliferation dye CFSE and co-cultured with AD169-infected or uninfected 

MRC-5 fibroblasts in the presence of IL-12 neutralizing antibody or isotype control. 

(A) Representative dot plots co-gating CFSE dilution and CD25 expression on NK cells at day 7 p.i. 

(B) Histogram overlays of CFSE dilution gated on CD3– CD56+ NK cells. (C) Summary of percentage 

and (D) median fluorescence intensity (MFI) of NK cells that showed CFSE dilution at day 7 p.i. (n = 7; 

mean ± SD). Each symbol represents one donor. Statistical analysis was performed with a two-way 

ANOVA followed by Bonferroni’s multiple comparison test. NK cells were defined by gating on 

7-AAD– CD3– CD19– CD14– CD56+ lymphocytes. 
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almost exclusively present in HCMV-infected supernatants, we blocked the IFN-α receptor 

on PBMCs in the co-culture system with a blocking antibody. Blockade of IFN-αR showed 

no effect on HCMV-induced downregulation of KIR2DL2/L3 at day 3 p.i. 

(Figure 6.25 C & D). Thus, neither IL-12 nor IFN-α alone were sufficient to drive KIR 

downregulation in the HCMV model system. In contrast, induction of CD25 on NK cells in 

HCMV-infected co-cultures was most pronounced at day 7 p.i. (Figure 6.26 A) and was 

partially dependent on IL-12 (Figure 6.26 A - C). Both, percentage of CD25 positive NK cells 

(Figure 6.26 B) as well as surface expression density (Figure 6.26 C) were reduced in 

HCMV-infected cultures when IL-12 was neutralized, whereas uninfected cultures 

remained unaffected.  

CD25 represents the IL-2 high affinity receptor α-chain and therefore contributes to IL-2–

dependent proliferation of NK cells. Since IL-2 is present in both infected and uninfected 

co-cultures (Figure 6.24 B), we investigated the impact of CD25 and IL-12 neutralization 

on NK proliferation. PBMCs were labeled with the fluorescent cell division tracker dye CFSE 

and analyzed 7 days p.i. by flow cytometry. CFSE dilution correlated with high CD25 

expression (Figure 6.27 A) at day 7 p.i. and significantly more NK cells had proliferated in 

HCMV-infected cultures compared to uninfected (Figure 6.27 A - C). Furthermore, NK cells 

in infected co-cultures exhibited stronger CFSE dilution demonstrated by lower CFSE 

intensities (MFI) (Figure 6.27 D), indicating that more cells had undergone a higher 

number of cell divisions. Neutralization of IL-12 correlated with reduced CD25 expression 

(Figure 6.27 A) but showed only a modest reduction of CFSE dilution and proliferation 

(Figure 6.27 A - D). Although IL-12 neutralization significantly reduced CD25 expression 

(Figure 6.26), the high affinity IL-2Rα was still highly present on NK cells upon infection, 

which might be sufficient to react to low IL-2 concentrations and to induce strong 

proliferation. 

Taken together, we could show downregulation of KIR expression upon HCMV infection 

3 days p.i., which was restored during longer co-culture periods and not solely dependent 

on IL-12 or IFN-α alone. CD25 upregulation was dependent on IL-12 and high CD25 

expression levels were associated with NK proliferation in HCMV infected co-cultures. 
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7. DISCUSSION 

Parts of this section have been previously published in their original or modified form in 

Ewen et al. 2018 Eur. J. Immunol. 710 and in Rölle, Pollmann et al. 2014 J. Clin. Invest. 556. 

The text has been originally written by myself. 

 

Cancer immunotherapy based on NK cells is a promising field in the treatment of 

hematological malignancies 608,614,659. In cancer patients, NK cell anti-tumor efficacy is often 

attenuated through inhibitory signals mediated by the interaction of inhibitory KIRs on NK 

cells with HLA-I molecules on autologous tumor cells. Therefore, several approaches are 

currently applied in NK cell-based immunotherapy to circumvent KIR-mediated inhibition 

and to unleash NK cell anti-tumor activity.  

For instance, adoptive transfer of haploidentical KIR/ligand-mismatched NK cells has been 

shown to greatly improve the clinical outcome of leukemia patients, since they are not 

inhibited by KIR/self–HLA-I interactions 606,658,659. However, adoptive transfer of allogeneic 

cells is limited by the selection of a matching donor, low persistence of transferred NK cells 

in the adoptive host and the risk of graft-vs-host disease (GvHD) 645,674,675,720. Therefore, it 

is of overall importance to develop new strategies to improve the anti-cancer potency of 

NK cells against HLA-I–expressing tumors in autologous transfusions.  

Here, we reveal a novel mechanism how NK cells can be transiently released from KIR-

mediated self-inhibition. Stimulation of mature peripheral blood NK cells with the 

cytokines IL-12/15/18 resulted in transient, yet robust downregulation of mRNA and 

surface expression of inhibitory KIR2DL2/L3, KIR2DL1 and KIR3DL1 molecules. 

Additionally, we observed KIR downregulation on NK cells in an HCMV infection model, 

representing a physiological setting with high concentrations of pro-inflammatory 

cytokines. IL-12/15/18–stimulated NK cells experienced less inhibition upon KIR2DL2/L3 

engagement and gained high responsiveness against HLA-I–bearing lymphomas, which 

may be translated into HLA-I matched settings of immunotherapy. Taken together, our 

study reports a novel mechanism of KIR downregulation on mature peripheral blood NK 
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cells by pro-inflammatory cytokines, generating potent effector cells for autologous NK cell 

infusions as treatment of HLA-I–expressing tumors. 

 

7.1. Phenotype of cytokine-stimulated NK cells  

Short overnight pre-activation with IL-12/15/18 has been demonstrated to induce NK cells 

with high proliferative capacity and potent effector functions 288,289,333,334,526. These cells 

exhibit sustained functionality both after adoptive transfer in vivo and after a subsequent 

re-culture period in IL-2 or IL-15, implicating the generation memory-like features. So far, 

no comprehensive phenotypical and functional characterization of IL-12/15/18–

stimulated NK cells have been performed after the initial cytokine exposure. To dissect the 

improved functionality of IL-12/15/18–activated NK cells, we conducted a systematic 

analysis of activating, co-stimulatory and inhibitory receptors on pbNK cells at different 

time points after IL-15 or IL-12/15/18 stimulation. Cytokine stimulation induced changes 

in the expression of many NK receptors (Figure 6.1), either reflected by the percentage of 

receptor expressing cells or by receptor surface expression density per cell (indicated by 

MFI).  

Expression densities of most activating NK receptors were enhanced upon IL-15 or 

IL-12/15/18 stimulation (Figure 6.1 A), whereas expression of some other receptors, such 

as NKp46, was only marginally changed. In general, exposure of NK cells to single or 

multiple combinations of IL-12, IL-15 and IL-18 has been described to enhance expression 

of activating NK receptors 271,721,722. In contrast, the activating receptors NKp80 and CD16 

(FcγRIIIA) exhibit profound downregulation upon IL-12/15/18 stimulation. Reduction of 

CD16 expression on NK cells by cytokines has been shown to involve matrix-

metalloproteinase (MMP)–mediated shedding of the receptor from the cell surface 711,716. 

NKp80 downregulation and simultaneous upregulation of the NKp80L AICL has been 

implicated in controlling overreaction of highly activated NK cells by fratricide 156. 

Expression levels of CD25 were substantially increased upon IL-12/15/18 stimulation 

compared to IL-15 (Figure 6.1). CD25 is expressed at low levels on CD56bright cells and not 

present on CD56dim NK cells 286,287, but various stimuli have been described to induce CD25 

expression on NK cells e.g. by activating receptor stimulation or by cytokine 

treatments 99,271,556,723,724. IL-12 and IL-18 have been demonstrated to increase CD25 levels 
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and the combination of IL-12/15/18 is particularly potent in promoting CD25 

expression 271,288–290. 

CD25 represents the high affinity IL-2Rα-chain that constitutes the IL-2Rαβγ, facilitating 

high responsiveness to picomolar concentrations of IL-2 284,285. Our laboratory and others 

have demonstrated that elevated CD25 expression levels on IL-12/15/18–stimulated NK 

cells were associated with high proliferative capacity and higher cell recoveries after in 

vitro culture in low dose IL-2 and in an in vivo xenograft mouse model 288,569. This is 

especially interesting in therapeutic setting of adoptive NK cell transfer, since 

administration of high concentrations of IL-2 is involved in toxic side effects and expansion 

of CD25+ regulatory T cells 302,303,643,725. 

The TNFRSF members 4-1BB (CD137) and Ox40 (CD134) are absent on naïve NK cells but 

are induced by both IL-15 and IL-12/15/18, whereas the latter even further elevates their 

surface density levels (Figure 6.1 C). Although Ox40 is intensely studied as a co-stimulatory 

receptor in T cells 216,217,221, little is known about the functionality of Ox40 in NK cells. Our 

laboratory recently described an important role for Ox40-Ox40L interaction between 

CD14+ monocyte-derived cells and NK cells, leading to NK cell activation and proliferation 

in hepatitis C virus (HCV) infection 291. There, Pollmann et al. discovered induction of Ox40 

expression on NK cells in HCV-infected co-cultures with PBMCs, which correlated with 

CD25 upregulation and enhanced proliferation of NK cells. 4-1BB expression has been 

reported to be induced on NK cells by IL-2, IL-15 and by triggering of CD16, and functions 

as a potent co-stimulatory receptor in CD16-mediated lysis 99,214,726. Thus, CD25, 4-1BB and 

Ox40 could be considered as activation markers on NK cells. 

 

7.2. IL-12/15/18–induced downregulation of inhibitory KIRs  

In addition to increased activating receptors, we observed downregulation of inhibitory 

KIR2DL2/L3, KIR2DL1 and KIR3DL1 molecules upon IL-12/15/18 activation (Figure 6.2), 

which constitute the three most important inhibitory KIRs in tumor immunity. Stimulation 

with IL-12/15/18, but not with IL-15 alone, resulted in a significant decrease in the 

percentage of KIR positive NK cells and in an even more profound reduction of surface 

expression densities (MFI). KIR downregulation was detected on the entire population of 
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mature peripheral blood (pb)NK cells (Figure 6.2) as well as on sorted CD56dim NK cells 

(Figure 6.5) and sorted KIR2DL2/L3 positive subsets (Figure 6.7).  

Previous studies that analyzed NK cells pre-activated for 16 h with IL-12/15/18, focused 

on the memory-like properties of these cells after a subsequent re-culture period in IL-2 or 

IL-15 for 4 - 7 days 288,289,334,526.  However, no differential KIR expression was detected in 

these reports after 16 h of cytokine stimulation or upon IL-2 or IL-15 re-culture. Our 

kinetics studies revealed that KIR downregulation was first observed starting 36 h after 

exposure to IL-12/15/18 with most pronounced reduction after 48 h and 60 h (Figure 6.3). 

In contrast, KIR expression on IL-12/15/18 and IL-15–activated NK cells was comparable 

after 16 h, the time point investigated in previous studies 288,289,334,526. Moreover, KIR 

downregulation was transient and could be restored upon re-culture in IL-2 and IL-15 after 

5 days (Figure 6.9 and Figure 6.10) explaining why other reports did not detect differential 

KIR expression upon 7 days of re-culture.  

 

7.3. Possible mechanism of cytokine-regulated KIR expression 

While the acquisition of KIRs during development is well understood 463,464, little is known 

about the regulation of already expressed KIR molecules on mature CD56dimKIR+ NK cells.  

In our study, downregulation of KIR2DL2/3 expression was not accompanied by reduced 

proliferation or increased apoptosis of the KIR positive subset and a concomitant 

outgrowth of CD56brightKIR– cells or the sorted KIR2DL2/L3 negative population 

(Figure 6.8 ). Rather, we demonstrated that KIR regulation occurred in the CD56dimKIR+ 

subset by sorting and separate stimulation of CD56dim and CD56bright NK cells (Figure 6.5). 

In general, surface protein expression can be modulated by multiple processes such as 

post-translational and post-transcriptional mechanisms. Post-translational mechanisms 

could involve receptor shedding, internalization or retention. However, cytokine-induced 

KIR downregulation did not involve matrix-metalloproteinase (MMP)–mediated shedding 

from the surface, as treatment with the MMP inhibitor Batimastat during cytokine exposure 

did not influence KIR expression (Figure 6.14 C). Additionally, unaltered expression of 

NKp46 and upregulation of other receptors such as CD25, DNAM-I, Ox40 and 4-1BB 

(Figure 6.1) indicated that IL-12/15/18 activation did not result in a general abrogation of 

protein expression as observed in apoptotic cells.  
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Importantly, we could demonstrate that decreased KIR expression was transiently 

regulated at mRNA level upon IL-12/15/18 stimulation (Figure 6.11), mimicking the 

modulation observed in KIR protein expression. The reduction of KIR mRNA as well as the 

protein expression was reversible upon IL-2 or IL-15 re-culture, suggesting the 

contribution of transient mechanisms. In accordance with our results, we additionally 

observed decreased mRNA levels of KIR2DL1, KIR3DL1, KIR3DL3, KIR2DL4 and KIR2DL5A 

(Figure 6.11 B) upon analysis of publicly available microarray data 712 comparing naïve 

with IL-2/12/18–stimulated NK cells. Moreover, regulation of KIR expression at a post-

transcriptional level could involve an influence of IL-12 and IL-18 on KIR mRNA stability or 

alternative splicing thus reducing the detectable mRNA concentrations.  

Overall, we could demonstrate that KIR molecules are regulated at a transcriptional or 

post-transcriptional level rather than at post-translational levels upon cytokine stimulation 

in our setting.  

 

7.3.1. KIR regulation by cytokines 

While IL-12/15/18 decreased KIR expression, we found that stimulation with IL-15 alone 

increased KIR levels compared to naïve NK cells (Figure 6.7). We observed enhanced KIR 

surface expression density, as detected by enhanced MFI values, as well as increased 

frequencies of KIR expressing cells. Additionally, re-culture in IL-2 or low-dose IL-15 after 

cytokine stimulation restored and even further increased KIR levels (Figure 6.9 and 

Figure 6.10), indicating that IL-2 and IL-15 are capable of regulating KIR expression on 

mature NK cells. IL-15 is crucial for NK cell development and homeostasis and has been 

described to drive maturation of hematopoietic progenitor cells into mature CD56+KIR+ NK 

cells in vitro 55,727. Although IL-2 and IL-15 execute similar functions in NK cell biology due 

to the shared β- and γ-chain of their receptor, IL-15 signaling is non-redundant and 

indispensable for NK cell development 294,307,311. Several studies have investigated the 

potential implication of IL-15 and IL-2 in driving KIR expression in NK cells. For mouse 

Ly49 receptors (the mouse inhibitory MHC-I binding receptor equivalent of the human KIR 

family) regulation by cytokines has been confirmed in mature NK cells 728. In vitro 

stimulation of human CD56brightKIR– pbNK cells with IL-15 or IL-2 has been shown to drive 

their maturation into CD56dim NK cells and to induce de novo KIR expression 66,729. 

Furthermore, Romagnani and colleagues demonstrated that stimulation of mature 
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CD56dimKIR– NK cells with IL-2 or IL-15 without accessory cells was sufficient to induce de 

novo KIR expression 66,510. Moreover, IL-2 and IL-15 were shown to be capable of increasing 

KIR frequencies and surface expression intensities on KIR-expressing NK cells including 

KIR2DL2/L3 and KIR2DL1 molecules 729–732. Together, these reports substantiate the role 

of cytokines, especially of IL-2 and IL-15, in driving de novo KIR acquisition and in 

increasing KIR expression in mature pbNK cells. To our knowledge, cytokine-induced 

downregulation of KIR expression has not been reported to date. Therefore, the here 

described transient downregulation of KIR expression on mature CD56dimKIR+ NK cells by 

IL-12/15/18 might represent a novel mechanism of KIR regulation.  

 

7.3.2. KIR regulation by epigenetic mechanisms 

How de novo KIR expression is initiated during development is well studied and has been 

shown to involve multiple promoters and epigenetic mechanisms. The clonally restricted 

KIR expression patterns are fixed by DNA methylation and stably maintained during cell 

division 465,467,468. As hematopoietic progenitor cells commit to the NK cell linage, histone 

acetylation and opening of chromatin is a prerequisite for promoter accessibility at the KIR 

locus 466.  

Once a KIR allele is demethylated and the promoters are active, its expression is fixed and 

passed on during multiple cell divisions. How expression levels of an already expressed KIR 

genes are regulated remains poorly defined. However, the epigenetic mechanisms 

determining KIR expression during development are not fixed events but are reversible 

and can be influenced in mature NK cells. Treatment of mature NK cells with the 

demethylation reagent 5-aza-2'-deoxycytidine (5Aza-dC, a DNA methyltransferase 

inhibitor) was capable of inducing de novo expression of previously untranscribed KIR 

alleles and in vitro methylation of a KIR promoter construct was shown to repress its 

transcriptional activity vice versa 465,467. 

To our knowledge, only upregulation of KIR expression by IL-15 and IL-2 has been 

reported 66,510,729–732. Here, we describe for the first time the transient downregulation of 

KIR mRNA and protein expression on mature CD56dimKIR+ pbNK cells by IL-12/15/18 

stimulation. Intriguingly, we observed that IL-12/15/18 stimulation not only abrogated 

IL-15–mediated upregulation but further reduced KIR frequencies and surface expression 

intensities on KIR positive NK cells. Treatment of CD56dim or complete pbNK cells with IL-2 
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or IL-15 increased the frequencies of KIR2DL2/L3 and KIR2DL1 expressing cells 

(Figure 6.9 and Figure 6.10), implicating de novo KIR gene transcription in NK cell clones 

that previously exhibited silencing of this particular KIR allele. Vice versa, activation with 

IL-12/15/18 resulted in decreased frequencies of KIR expressing cells indicating silencing 

of KIR2DL2/L3 and KIR2DL1 loci in individual NK cell clones. Additionally, the intensity of 

KIR surface expression levels (as measured by elevated MFI levels) on sorted KIR2DL2/L3 

positive NK cells was enhanced by IL-15 and reduced by IL-12/15/18, respectively 

(Figure 6.7), suggesting that the transcriptional activity of KIR promoters might have been 

altered.  

Activation with IL-12/15/18 might modulate KIR gene regulation via direct or indirect 

mechanisms by interfering with the effects mediated by IL-15 or IL-2. IL-15 responsiveness 

in CD56bright cells is associated with transcription from the distal promoter and initiation of 

proximal promoter activity leading to DNA demethylation and chromatin opening 464,471,472. 

Moreover, epigenetic remodeling and DNA demethylation of the KIR3DL1 promoter has 

been described upon IL-2 stimulation of CD56dim NK cells, resulting in de novo acquisition 

of KIR3DL1 surface expression 510. IL-12/18 signaling might impede the recruitment of 

DNA demethylating enzymes, modulate their functional activity or might interfere with 

interaction partners necessary for complex formation. Moreover, IL-12 and IL-18 might be 

directly involved in in epigenetic remodeling of the KIR locus through recruitment of DNA 

methyltransferases or other repressors such as histone modifying enzymes leading to re-

silencing of the KIR promoter region.  

Epigenetic remodeling by pro-inflammatory cytokines has been reported for other genes 

in different models. Pre-activation of NK cell with IL-12/15/18 and subsequent transfer 

into mice has been demonstrated to induce demethylation of the IFN-γ locus 569. 

Furthermore, a recent publication indicated a general role of IL-12 and STAT-4 signaling in 

epigenetic remodeling of the IRF8 locus during MCMV infection 540. These data provide 

proof of principle that pro-inflammatory cytokines can induce epigenetic modifications 

that drive NK cell adaptation.  

However, whether alterations of histone modifications would be involved in KIR 

downregulation in mature NK cells is open to question, because active as well as repressed 

KIR alleles exhibit the same high degree of histone acetylation and deacetylase inhibitors 

were unable to induce expression of silenced KIR genes 465,466. Preliminary data from our 

laboratory indicated that IL-12/15/18 stimulation of NK cells in combination with 
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methyltransferase inhibitor treatment (e.g. 5Aza-dC) did not affect KIR downregulation. 

Analysis of a publicly available microarray data set 712, which compared naïve with 

IL-2/12/18–stimulated NK cells, did not reveal targets involved in epigenetic regulation. 

However, IL-12 and IL-18 might indirectly affect epigenetic enzymes and a complex 

interplay of individual epigenetic mechanisms might contribute to cytokine-mediated KIR 

downregulation. 

 

7.3.3. Transcription factors and promoter elements involved in KIR 

regulation 

Three kinds of general KIR promoter types have been described corresponding to their KIR 

expression characteristics: One unique for KIR3DL3 which is undetectable in pbNK cells, 

one for KIR2DL4 which is transcribed early in all NK cells and one promoter type common 

for all clonally distributed KIR genes such as KIR2DL2/L3, KIR2DL1 and KIR3DL1 462,733. 

These three types all contain a distal promoter (Pro-D), a bidirectional proximal promoter 

switch (Pro-S), intergenic elements and an intermediate promoter element (Pro-1), but 

their characteristics of regulation and transcription factor binding might be different for 

KIR2DL4, KIR3DL3 and the other clonally restricted KIRs according to their expression 

patterns 462,464,469,733. In this study, we observed cytokine-induced changes of inhibitory 

KIR2DL2/L3, KIR2DL1 and KIR3DL1 expression, which belong to the third group of 

clonally distributed KIR genes and share the same promoter type. A gradual model 

describes how these different promoters orchestrate KIR expression during different 

developmental stages (see Figure 3.5) 464,469.  

The probabilistic and bidirectional activity of the proximal promoter switch (Pro-S) 

accounts for the stochastic KIR expression during the transition of CD56bright to CD56dim NK 

cells. It is active in both the forward and reverse direction and only high ratios of sense vs. 

antisense transcripts result in functional KIR gene and protein expression 473–475. The Pro-S 

element harbors multiple transcription factor binding sites and polymorphisms and the 

balance of transcription factor affinities determine whether either the forward or reverse 

activity is predominantly active 449,473. Several transcription factor binding sites have been 

described to be present in the proximal promoter region such as CREB, AML/Runx, YY-1, 

STAT-5, AP-1/4, Sp-1 and Ets-1 462,473,733–735. A high functional redundancy exists between 
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these transcription factor binding sites and mutation of several sites was necessary to 

inactivate the KIR promoter 734.  

The described STAT-5 binding site within the proximal promoter might account for the 

IL-15–mediated increase in KIR expression observed in our study. However, a direct 

correlation between STAT-5 binding and enhanced KIR expression has yet to be 

experimentally verified. A recent publication reported that another STAT family member, 

STAT-4 involved in IL-12 signaling, was capable of inducing epigenetic remodeling of the 

IRF8 gene in MCMV infection 540. They further suggested a cooperative function of IL-12 

and STAT-4 together with IL-2 or IL-15 signaling in inducing epigenetic modifications. 

However, a STAT-4 binding site has not been detected in one of the KIR promoter elements. 

AML/Runx binding sites have been described for all promoter types but controversial 

reports indicate activating as well as inhibitory regulatory functions of AML/Runx proteins 

in KIR transcription 462,734,736–738. AML/Runx was shown to be involved in demethylation 

and establishment of an open chromatin confirmation of the proximal promoter (Pro-S) 

and to additionally possess either activating or repressive functionality depending on the 

association with different cofactors 462,736,739. AML/Runx proteins might represent possible 

candidates for mediating KIR downregulation observed in our study. Future investigations 

could explore whether expression or functions of AML/Runx proteins are influenced by 

IL-12/15/18 stimulation.  

A recently described intermediate promoter element (Pro-1) adds further complexity to 

KIR gene regulation and Pro-1 regions have been detected in all KIR loci 477,478. It has been 

proposed that Pro-1 represents the main regulatory element controlling KIR transcription 

in mature CD56dimKIR+ NK cells while the bidirectional switch (Pro-S) primary functions in 

establishing the stochastic and clonal KIR expression during development. Li et al. 

identified several transcription factor binding sites located in the Pro-1 element, such as 

YY-1, Oct-1, Ets-1, AP-1 and C/EBP, which might be involved in controlling and maintaining 

KIR gene expression in mature NK cells 478. Binding of the transcription factors YY-1, ETs-1 

and AP-1 has also been described for the proximal promoter 462,473,733–735. It would be highly 

relevant to analyze the Pro-1 element for binding sites of potentially repressive 

transcription factors downstream of IL-12 or IL-18 signaling. Future investigations of the 

Pro-1 element in cytokine-stimulated NK cells could help to uncover the molecular 

mechanisms involved in IL-12/15/18–mediated KIR downregulation.  
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Until now, only upregulation of KIR expression by IL-15 and IL-2 has been 

reported 66,510,729–732. In our study, we observed that IL-12/15/18 stimulation not only 

abrogated IL-15–mediated upregulation but further decreased KIR frequencies and surface 

expression intensity on mature CD56dimKIR+ NK cells. However, to our knowledge no 

negative influence of IL-12 or IL-18 signaling on binding of the above-mentioned 

transcription factors has been described that would indicate for the observed KIR 

downregulation. Due to the high functional redundancy of the transcription factor binding 

sites in the KIR Pro-S and Pro1 region, candidates may be hard to identify and IL-12/18 

signaling would need to interfere with several transcription factors simultaneously to 

reduce KIR expression. The mechanism of KIR downregulation upon IL-12/15/18 

stimulation might be complex and involve multiple layers and interaction partners. 

IL-12/18 might interfere with IL-15 signaling, impeding the recruitment of activating 

transcription factors to the KIR promoter region. IL-12/18 signaling components might 

modulate the functional activity of transcription factors by inducing posttranslational 

changes within the protein structure or through inhibition of protein complex formation 

by segregating necessary interaction partners. Additionally, IL-12/18 might directly act on 

the KIR promoter through recruitment of inhibitory transcription factors, repressors or 

epigenetic complexes leading to silencing of KIR gene expression. Moreover, increasing the 

antisense-to-sense ratio of proximal transcripts through preferential reverse promoter 

activity might represent a potential mechanism how IL-12/18 stimulation reduces KIR 

expression. It would be intriguing to analyze whether IL-12/18 stimulation selectively 

promotes the reverse transcriptional activity of the bidirectional proximal promoter 

(Pro-S), since increased antisense transcripts have been shown to result in reduction of KIR 

expression 449,475. 

In addition to the Pro-S and Pro-1 element, also other promoter elements, such as the distal 

promoter, may be affected by cytokine stimulation. Manipulation of the Pro-D might 

negatively influence the accessibility of the Pro-S or Pro-1 region or result in re-

methylation of the entire KIR loci. The different layers of complexity of KIR gene regulation 

and the high redundancy of transcription factor binding sites might also account for our 

observation of only partial downregulation and not complete abrogation of KIR expression. 

Additional hypotheses of cytokine-mediated KIR regulation involve more indirect 

mechanisms and crosstalk to other pathways as for instance the Notch signaling pathway. 

A recent publication by Felices and colleagues reported a contribution of the Notch 
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pathway not only for early stages of NK cell development but also for functional maturation 

and terminal differentiation of pbNK cells 740. Notch signaling partially contributed to de 

novo acquisition of KIR expression in KIR negative CD56dim and CD56bright NK cells and was 

enhanced upon IL-15 stimulation. IL-15–induced KIR expression is facilitated through 

functional Notch signaling by releasing Notch from its inhibitor cis-DLL1, which was also 

shown to restrict KIR expression in CD56bright NK cells. In addition, IL-15 and Notch potently 

enhanced expression of the transcription factor c-Myc, which was demonstrated in a 

previous publication to be involved in the initiation of de novo KIR transcription in 

CD56+KIR– pbNK cells 472. Direct binding of c-Myc to the KIR distal promoter was able to 

drive full transcriptional activity resulting in opening of the proximal promoter element, 

which subsequently allowed KIR gene expression 464,472. Together these studies present a 

mechanism of IL-15–induced KIR expression in CD56+ NK cells through releasing Notch 

from DLL1-mediated inhibition leading to downstream c-Myc activation, which in turn 

binds to the distal KIR promoter resulting in initiation of KIR transcription.  

IL-15 mediated activation of the distal promoter is in line with our observations that IL-15 

stimulation enhanced the frequency of KIR expressing cells, indicating de novo KIR 

expression on formerly KIR negative clones. Stimulation with a combination of IL-15 

together with IL-12 and IL-18 abrogated IL-15–mediated KIR expression and resulted in 

decreased frequencies of KIR expressing cells. Our data indicate that pro-inflammatory 

cytokines, such as IL-12 and IL-18, might impede the functions of IL-15 involved in KIR 

expression. The mechanism of IL-12/18–mediated KIR downregulation might involve 

interference with Notch signaling or c-Myc binding. C-Myc is a helix-loop-helix leucine 

zipper transcription factor that needs to form a dimer with Max proteins to be able to bind 

to regulatory DNA elements 741. IL-12 and IL-18 might diminish c-Myc activity by 

interfering with c-Myc interaction partners or with IL-15–mediated induction of c-Myc 

expression, resulting in reduced distal promoter activity and lower KIR expression. 

Moreover, IL-12/18 signaling might interfere with the Notch pathway by inhibiting Notch 

inducers such as miRNA-181, or by promoting negative Notch regulators such as cis-DLL1 

or another notch inhibitor NLK (nemo-like kinase) 740,742,743. Stimulation with IL-12/15/18 

might also directly target Notch pathway components or impair the formation of the 

ternary protein complex necessary for Notch-mediated gene expression 743. Future studies 

could investigate possible interaction partners of IL-12 and IL-18 signaling with the Notch 
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and c-Myc pathway to unravel the complex mechanism of KIR downregulation by 

IL-12/15/18. 

 

7.4. Improved functionality of IL-12/15/18–activated NK cells 

Reduced KIR2DL2/L3 expression on IL-12/15/18–activated NK cells suggested that the 

sensitivity of NK cells to KIR2DL2/L3-based inhibitory signals might be affected. Indeed, 

IL-12/15/18–stimulated NK cells experienced less KIR-mediated inhibition upon 

KIR2DL2/L3 engagement in redirected lysis assays resulting in increased cytotoxicity 

(Figure 6.15). Moreover, downregulation of KIR2DL2/L3 expression on IL-12/15/18-

activated NK cells translated into enhanced killing of lymphoma cells bearing the cognate 

HLA-Cw03 ligand (Figure 6.18). Blocking the interaction of KIR2DL2/L3 and HLA-Cw03 

with an anti-KIR2DL2/L3 antibody confirmed the contribution of the KIR/HLA-I axis on the 

superior functionality of IL-12/15/18–stimulated NK cells against 221_Cw03 cells.  

Importantly, in absence of KIR engagement both cytokine stimulations elicited the same 

degree of CD16-dependent cytotoxicity as illustrated in comparable levels of specific lysis 

for KIR negative subsets (Figure 6.15 B - C) and when only CD16 alone was triggered 

(Figure 6.14 A). Furthermore, in absence of cognate HLA-I on target cells, NK cells 

stimulated with IL-15 or IL-12/15/18 possessed the same cytotoxic potential against 221 

cells (Figure 6.18 A – B, left). In parallel, KIR2DL2/L3 negative subsets exhibited 

comparable killing capabilities independent of KIR–HLA-I interactions against 221 and 

221Cw03 cells (Figure 6.18). These observations indicate that regulation of KIR expression 

and its interaction with the cognate HLA-Cw03 ligand account for the superior functionality 

of IL-12/15/18 stimulated cells, which is not mediated via upregulation of activating 

pathways. Of note, KIR2DL2/L3 negative subsets exerted equally potent cytotoxicity and 

showed full functional capacity. Both KIR2DL2/L3 positive and negative sorted 

populations co-expressed additional self–HLA-I receptors such as NKG2A, KIR2DL1 or 

KIR3DL1 (Figure 6.6 C) and were most likely educated and functional. Together, these 

observations indicate that IL-12/15/18–mediated downregulation of inhibitory KIR 

receptors endowed NK cells with high responsiveness against HLA-I–expressing tumor 

cells, which may be translated into autologous settings of immunotherapy.  
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Autologous NK cell infusions against HLA-I positive malignancies are limited through 

impaired anti-tumor efficacy of autologous NK cells receiving inhibitory signals via KIR 

receptors recognizing self–HLA-I on cancer cells. To restore and improve NK cell activity, 

several studies attempted daily IL-2 administration, albeit with limited success due to toxic 

adverse effects and recruitment of CD25+ regulatory T cells 641,643–645. Moreover, autologous 

infusion of ex vivo IL-2–expanded NK cells showed only limited clinical efficacy 640. Hence, 

novel approaches are needed to preserve NK cells activation and to improve their anti-

cancer efficacy for treatments using autologous cell transfer.  

KIR-mediated inhibition can be bypassed by selection of a haploidentical donor with KIR-

ligand mismatch, lacking one or more cognate HLA-I ligands for donor inhibitory KIRs. This 

KIR ligand incompatibility model results in potent donor NK cells not inhibited by HLA-I on 

tumor cells 658,659. This principle of NK cell alloreactivity in the GvH direction according to 

the ‘missing self’ hypothesis has been identified as the basis of successful allogeneic 

hematopoietic stem cell transplantations (HSCT) in leukemia therapy 606. However, the 

adoptive transfer of allogenic NK cells alone or as HSCT requires the availability of a 

matching donor and might be hampered by short persistence of the transferred NK cells in 

the patient 645. Moreover, it might bear the risk of promoting severe GvHD, probably 

exerted by contaminating alloreactive T cells as reported in recent studies 666,674–678. 

Here, we present an alternative strategy of transiently and safely releasing autologous NK 

cells from KIR-mediated inhibition to harness their full anti-tumor potential of future 

immunotherapy protocols. Our data describes robust KIR downregulation on mature NK 

effector cells upon pre-activation with IL-12/15/18, resulting in less KIR-mediated 

inhibition and increased lysis of cognate HLA-I–expressing targets (Figure 6.18). 

Accordingly, reduced KIR expression may render autologous NK cells less sensitive to 

inhibition by self–HLA-I on tumor cells, exploiting the concept of ‘missing-self’ recognition 

in HLA-I matched settings. Short ex vivo stimulation of NK cells with IL-12/15/18 and 

subsequent infusion into the patient might translate into superior effector functions 

against HLA-I–expressing tumors and substantially improve autologous NK cells transfer. 

Our results imply that the transient resistance to self-inhibition might contribute to 

superior anti-cancer efficacy of NK cells even in autologous settings.  

Furthermore, ex vivo activation with the combination of IL-12, IL-15 and IL-18 before 

adoptive transfer might be of particular interest as it has been demonstrated to prime for 

the generation of NK cells with memory-like properties 673. IL-12/15/18 pre-activated NK 
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cells exhibited high proliferative capacity and pronounced anti-cancer responsiveness in 

vivo and in vitro 288,334,526,568,569. The safety and feasibility of adoptive transfer of 

IL-12/15/18–activated NK cells has been recently reported in a phase-I clinical trial with 

AML patients 526. In this trial, allogeneic NK cells were stimulated for 16 h with IL-12/15/18 

and infused into the patient. Haploidentical donor NK cells exhibited substantial 

proliferation and long persistence in the recipient. Importantly, upon ex vivo re-stimulation 

7 days post-infusion, IL-12/15/18–pre-activated NK cells showed potent anti-leukemia 

responses, correlating with improved survival. Mouse models employing allo-HCT of 

IL-12/15/18–pre-activated NK cells even suggested a protective role against GvHD while 

their GvL effect was preserved 744,745. Accordingly, adoptive transfer of IL-12/15/18–

activated cells has been demonstrated to be safe, feasible and to improve survival in AML 

patients.  

The long persistence and sustained effector functions of IL-12/15/18–stimulated NK cells 

have been assigned to their memory-like features 288,289,334,526. We and others have shown, 

that activation of NK cells with IL-12/15/18 induced profound expression of the high 

affinity IL-2R α-chain (CD25) (Figure 6.1)and  288,289, facilitating strong expansion and 

persistence in response to low-dose IL-2 after adoptive transfer in mice 288,569. For adoptive 

transfer of memory-like NK cells, picomolar concentrations of IL-2 might be sufficient or 

exogeneous cytokine support might no longer be necessary at all to preserve NK cell 

activity and persistence in vivo. Our group could show that sustained proliferation of NK 

cells was assisted by IL-2 produced by autologous CD4+ T cells upon adoptive transfer of 

IL-12/15/18 pre-activated NK cells in mice 288,569. In contrast to allogeneic infusions, 

adoptive transfer of autologous memory-like NK cells might further increase their 

persistence in the host through intensive homeostatic proliferation assisted by autologous 

CD4+ T cells in an MHC-I compatible setting. 

The design of the clinical study employing adoptive transfer of cytokine-induced NK cell 

comprised overnight activation of allogeneic NK cells for 16 h and direct infusion into the 

patient. To address the question whether prolonged pre-activation for 48 h, as used here, 

instead of 16 h would influence memory-like NK cell differentiation, we pre-activated NK 

cells for 16 h or 48 h and re-cultured them subsequently in IL-2 or IL-15 for 5 days. As 

compared to 16 h stimulation of NK cells, pre-activation for 48 h resulted in similarly 

enhanced IFN-γ production of IL-12/15/18–stimulated NK cells upon re-stimulation with 
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K562 (Figure 6.19 and Figure 6.20). Thus, also longer IL-12/15/18 stimulation of NK cells 

was capable of inducing memory formation.  

In addition to the generation of NK cells with sustained functionality and memory-like 

properties, we observed pronounced downregulation of inhibitory KIRs 48 h after 

stimulation with IL-12/15/18. Reduced KIR levels correlated with enhanced cytotoxicity 

against tumor cells expressing cognate HLA-I ligands. Therefore, we hypothesize that 

prolonged pre-activation of NK cells for two days could additionally enhance their early 

effector functions towards self–HLA-I–expressing tumors and could be exploited in 

autologous settings of NK cell immunotherapy. The transient release of KIR-mediated 

inhibition could combine high cytotoxicity against autologous tumor cells at early time 

points directly after adoptive transfer into the patient with high IFN-γ secretion, long 

persistence and sustained anti-tumor activity late after infusion. Thereby, besides the 

memory-like functionality of cytokine-induced NK cells, the here uncovered transient 

resistance to self-inhibition due to KIR downregulation could improve the benefits of 

autologous NK cell transfer.  

 

7.5. KIR downregulation on NK cells in HCMV infection  

Mouse and human cytomegalovirus (MCMV and HCMV) infection have been implicated in 

the formation of adaptive NK cells with memory-like properties 24,718. A strong pro-

inflammatory cytokine milieu is created during these viral infections and in particular IL-12 

has been shown to be involved in NK cell subset expansion 556. Therefore, we employed an 

in vitro model of HCMV-infected fibroblasts co-cultured with PBMCs to investigate the 

impact of the produced cytokines on KIR expression.  

In addition to IL-12/15/18 stimulation of purified NK cells, we observed downregulation 

of KIR expression on NK cells in HCMV infection (Figure 6.21). In accordance with our 

observations of KIR downregulation after 48 h to 60 h of cytokine treatment, the 

percentage of KIR expressing cells and the surface densities were reduced 3 days p.i. 

compared to uninfected co-cultures. Decreased KIR expression did not originate from 

increased proliferation and preferential outgrowth of the KIR negative population as no 

proliferation of NK cells was detectable 3 days p.i. (data not shown). Furthermore, KIR 

downregulation was transient and KIR expression levels were restored and even further 
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increased in both uninfected and infected co-cultures after 7 days (Figure 6.22). Increased 

KIR expression at later times in HCMV infection might be attributed to IL-2 produced by T 

cells in the co-cultures 556, since IL-2 was reported to induce KIR expression 66,510,729–732.  

A strong pro-inflammatory cytokine milieu (e.g. IL-12, IFN-α, IFN-γ) is created in HCMV 

infected co-cultures mimicking viral infections in vivo (Figure 6.24). However, IL-18 was 

not detected in infected or uninfected co-cultures 3 days p.i. . Individual blocking of IL-12 

and the IFN-αR was not sufficient to prevent KIR downregulation (Figure 6.25), revealing 

that neither IL-12 nor IFN-α alone were responsible for driving KIR downregulation in 

HCMV infection. Possibly, the combination of several pro-inflammatory cytokines is needed 

to reduce KIR expression as observed in our in vitro stimulation with IL-12/15/18 

(Figure 6.12). Potential mechanisms could also involve additional cellular factors and 

interaction with other activated immune cells present in the PBMC co-cultures. Taken 

together, downregulation of inhibitory KIR receptors in HCMV infection suggests a general 

and physiological mechanism of reducing inhibition of NK cells and improving their 

functionality in pro-inflammatory settings as viral infections or cancer.  

In addition to KIR regulation, we observed substantial upregulation of CD25 on NK cells in 

HCMV-infected co-cultures (Figure 6.21 B) resembling CD25 induction by IL-12/15/18 

(Figure 6.1 B). Indeed, increased expression of CD25 was partially IL-12 dependent with 

highest expression detectable 7 days p.i. (Figure 6.26). CD25 represents the high affinity 

IL-2Rα-chain that constitutes the IL-2Rαβγ, facilitating high responsiveness to picomolar 

concentrations of IL-2 and therefore contributes to IL-2–dependent proliferation of NK 

cells. Although IL-12 neutralization significantly decreased CD25 expression, proliferation 

was only moderately affected (Figure 6.27), since also reduced CD25 surface expression 

might be sufficient for increased sensitivity to IL-2 and induction of strong proliferation. 

Rölle and colleagues from our group recently demonstrated that the NKG2C/HLA-E axis 

and IL-12 produced by inflammatory monocytes are critical for the expansion of NKG2C+ 

NK cells in response to HCMV infection 556. We therefore envision a scenario in which IL-12 

induces high CD25 expression on NK cells, thereby permitting strong proliferation and 

contributing to expansion of the NKG2C+ subset. Moreover, upregulation of CD25 on NK 

cells has been recently reported by our group to play an important role in in hepatitis C 

virus (HCV) infection 291. CD25 expression and enhanced proliferation correlated with 

Ox40 induction and enhanced IFN-γ production, marking a NK cell subset with superior 

functionality. Interestingly, we could also detect high levels of Ox40 and 4-1BB (another 
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TNFRSF member) in HCMV infected co-cultures (Figure 6.23). Thus, high CD25 expression 

induced upon viral infection might serve as a marker of activated and highly functional NK 

cells.  

 

7.6. Therapeutic implications 

NK cell-based immunotherapy is a promising treatment approach for different types of 

hematological malignancies. However, one major obstacle in effective autologous NK cell 

therapy represents the impaired NK cell activation through interaction of self–HLA-I on 

tumor cells with inhibitory KIR receptors. The success of haploidentical NK cell transfer 

provided evidence that KIR/ligand-mismatched donor NK cells can elicit potent anti-

leukemia effector functions if they are not inhibited by self–HLA-I 606,658,659. However, not 

all patients are eligible for HSCT and adoptive allogeneic NK cell transfer still bears the risk 

of GvHD 645,674,675. Therefore, new treatment strategies are needed to unleash NK cell anti-

tumor efficacy in HLA-I matched settings.  

An alternative approach could involve transfer of autologous NK cells in combination with 

modulation of inhibitory KIR molecules to reduce the threshold of NK cell activation. 

Indeed, checkpoint blockade of inhibitory pan-KIR2D receptors with the antagonistic 

antibody Lirilumab (1-7F9/IPH2101/IPH2102) is currently explored in clinical trials to 

increase NK cell responsiveness across self–HLA-I barriers 693,694.The safety and efficacy of 

KIR blockade has been reported for the treatment of patients with AML or multiple 

myeloma 700–705. Additionally, clinical investigations of KIR checkpoint blockade have been 

recently extended for various other hematological malignancies and for solid tumors 706. 

However, a recent study indicated contraction and functional detuning of KIR2D positive 

NK cells upon single therapy with Lirilumab in smoldering multiple myeloma patients 707. 

In addition, constant KIR engagement bears the risk of inducing hyporesponsiveness and 

anergy in NK cells, similar to processes observed in NK cell education 479,480. Therefore, 

combination of anti-KIR therapy with other approaches are currently considered, for 

instance together with anti–CTLA-4 or anti–PD-1 blockade 682,708 or with ADCC inducing 

therapeutic antibodies 697,698,709. 

We here present a novel strategy of transiently and safely releasing NK cells from KIR-

mediated self-inhibition to improve autologous NK cells transfer. Transient modulation of 
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inhibitory KIR receptors may be well suited to improve the anti-tumor efficacy of 

autologous NK cells in adoptive transfer. Our data describes robust KIR downregulation by 

IL-12/15/18 on mature NK effector cells, resulting in less KIR-mediated inhibition and 

increased lysis of cognate HLA-I–expressing targets (Figure 6.15 and Figure 6.18). 

Accordingly, reduced KIR expression may render autologous NK cells less sensitive to 

inhibition by self–HLA-I on tumor cells, exploiting the concept of ‘missing-self’ recognition 

in HLA-I matched settings. Moreover, the transient nature of KIR regulation on NK cells 

might provide safe application regarding autoimmunity against healthy tissue, since 

inhibitory KIR expression is most likely restored after the initial NK cell effector phase in 

patients. Transient KIR modulation and the recovery of KIR expression might also be 

beneficial in preventing functional detuning and anergic hyporesponsiveness of 

transferred NK cells. We envisage that the transient release from KIR-mediated inhibition 

could combine advantages of safety and alloreactivity in autologous NK cell transfer 

together with the sustained anti-leukemia effectiveness and memory-like properties that 

have been recently demonstrated for IL-12/15/18–activated NK cells in a clinical trial 526. 

Our study implies that transient modulation of the KIR/HLA-I axis by pro-inflammatory 

cytokines could be of high functional importance for immunotherapy protocols especially 

for autologous NK cell infusions.  

In general, harnessing the adaptive features of memory-like NK cells is currently 

considered for application in immunotherapy 23,673,746,747. Adoptive transfer of allogeneic 

NK cells pre-activated with IL-12/15/18 has been recently employed in a clinical trial of 

AML patients and could induce remission in a subset of patients 526. Moreover, clinical 

studies have suggested anti-leukemia properties for HCMV-induced adaptive NKG2C+ NK 

cells 545–547. Compared to conventional NK cells, FcεRIγ-deficient adaptive NK cells elicited 

superior ADCC in response to antibody-coated target cells 564. Furthermore, adaptive NK 

cells have been shown to exhibit lower TIGIT expression and to be therefore less 

susceptible to MDSC-mediated inhibition in the tumor bed 748. Recently, a protocol for 

successful ex vivo expansion of these adaptive NKG2C+ NK cells has been reported, resulting 

in effector cells with high anti-tumor potential for the application in cancer 

immunotherapy 549.  

We hypothesize that the advantages of their memory-like properties together with the here 

uncovered reduced self-inhibition of IL-12/15/18–activated NK cells make them suitable 

targets for adaptive autologous cell transfer. In addition, IL-12/15/18–stimulated NK cells 
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could be employed in combinatorial strategies of cancer immunotherapy. Thereby, 

autologous NK cells with memory-like properties and high effector functions against 

HLA-I–expressing tumors could be harnessed to improve other therapies currently tested 

in the clinics. Adoptive transfer allows the combination of ex vivo activation of NK cells with 

other treatment options that have been shown to enhance NK cell ani-tumor efficacy, for 

instance with therapeutic antibodies or immunomodulatory drugs. The concept of 

combining NK cells released from self-inhibition together with the immunomodulatory 

drug lenalidomide is currently explored in clinical trials with the pan-KIR2D blocking 

antibody Lirilumab 698,701,704. 

Therapeutic antibodies and antibody-derived constructs can specifically redirect immune 

cells to tumor-restricted antigens expressed on cancer cells and can elicit potent NK cells 

effector function through the induction of ADCC 100,101. The anti-tumor efficacy of 

therapeutic antibodies or BiKEs (bispecific killer engagers) can be enhanced by 

administration of cytokines that stimulate and expand NK cells in vivo 109,673,684. However, 

in vivo administration of cytokines might involve toxic adverse effects and expansion of 

regulatory T cells 641,643–645. Ex vivo cytokine-induced memory-like NK cells have been 

shown to potently exert ADCC in response to therapeutic antibodies such as rituximab 512. 

line with this, we observed high capacity of CD16-mediated cytotoxicity of NK cells 

stimulated with IL-12/15/18 in redirected lysis assays (Figure 6.15). Of note, cytokine 

stimulation resulted in shedding of CD16 by matrix metalloproteinases (MMP) 711 but 

MMPi treatment restored CD16 surface expression (Figure 6.14). Sustaining the expression 

of CD16 and preventing MMP-mediated shedding is currently explored for ADCC protocols 

in the clinics by administration of broad MMPi or more selective ADAM17 inhibitors 749,750. 

Additionally, the reduced KIR expression on IL-12/15/18–activated NK cells observed in 

our study translated in reduced KIR-mediated inhibition upon KIR co-triggering and upon 

engagement with cognate HLA-I ligands (Figure 6.15 and Figure 6.18). We therefore 

envisage that KIR downregulation by IL-12/15/18 might greatly improve ADCC against 

HLA-I–expressing tumor targets by unleashing NK cells from self-inhibition. Indeed, the 

combination of therapeutic antibodies together with the anti-KIR blocking antibody 

Lirilumab have been reported to enhance NK cell-mediated ADCC in vitro against multiple 

myeloma and lymphoma cells 697,698,709. Autologous transfer of NK cells that are transiently 

and safely released from KIR-mediated self-inhibition might therefore improve the clinical 

efficacy of therapeutic or bispecific antibodies in the treatment of HLA-I positive cancers.  
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Furthermore, adoptive transfer of memory-like NK cells together with antibody therapy 

could exploit the sustained functionality of long lived effector cells with potent CD16-

dependent activation and specific redirection towards tumor cells. Recently, our group has 

described the implication of CD16 engagement with therapeutic antibodies in priming NK 

cells with sustained effector functions, resembling memory-like NK cells with adaptive 

features 99. Upon a re-culture period in IL-2, CD16-primed NK cells showed extensive 

proliferation due to high CD25 expression and exhibited enhanced IFN-γ production and 

cytotoxicity against various tumor targets. CD16-priming might further sustain the anti-

tumor functionality of IL-12/15/18–stimulated NK cells, which might result in superior 

anti-cancer efficacy against HLA-I–expressing tumors. Therefore, adoptive transfer of 

cytokine-induced NK cells together with the application of therapeutic antibodies or 

bispecific constructs targeting CD16 might represent a promising strategy for HLA-I 

matched settings in tumor therapy. 
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9. ABBREVIATIONS 

221  721.221 EBV transformed lymphoblastoid cell line 

7-AAD  7-aminoactinomycin D 

ADCC 
Antibody-dependent cellular cytotoxicity 

or antibody-dependent cell-mediated cytotoxicity 

AICL  Activation-induced C-type lectin 

AML Acute myeloid leukemia 

APC Antigen presenting cell 

Bat-3 Human leukocyte antigen-b-associated transcript 3 

Bcl-2 B-cell lymphoma 2 

BCR B cell receptor 

BCR  B cell receptor 

BiKEs bispecific killer engagers 

BM Bone marrow 

BSA  Bovine serum albumin 

CD Cluster of differentiation 

CFSE Carboxyfluorescein succinimidyl ester 

CLP Common lymphoid progenitor 

CTLA-4 Cytotoxic t-lymphocyte-associated protein 4 

DAMPs Damage-associated molecular patterns 

DC Dendritic cell 

DD Death domain 

DISC Death-inducing signaling complex  

DKFZ 
Deutsches Krebsforschungszentrum / German Cancer Research 

Center 

DLL1 Delta-like protein 1 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNAM-I Dnax accessory molecule-1 

dsRNA Double-stranded RNA 

E:T  Effector-to-target 

ELISA  Enzyme-linked immunosorbent assay 

FACS  Fluorescence-activated cell sorting 
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FcR  Fragment, crystalizable-receptor 

FCS  Fetal calf serum 

FcγR  Fragment, crystallizable γ-receptor 

FoxP3 Forkhead box protein P3 

GM-CSF  Granulocyte macrophage colony-stimulating factor 

Grb-2 Growth factor receptor-bound protein 2 

GvHD Graft-vs-host disease 

GvL Graft-vs-leukemia 

H-60 Histocompatibility antigen 60 

HCMV Human cytomegalovirus 

hESC Human embryonic stem cell 

HLA Human leukocyte antigen 

HMGB1 Chromatin-associated protein high-mobility group box 1 

HSC Hematopoietic stem cells 

HSCT Hematopoietic stem cell transplantation 

IFN-α/γ Interferon-alpha/gamma 

Ig Immunoglobulin 

IL Interleukin 

IL-2R Interleukin-2 receptor 

ILC Innate lymphoid cell 

iNK Immature NK cells 

iPSC Induced pluripotent stem cell 

IRAK Interleukin-1 receptor-associated kinase 

ITAM Immune tyrosine-based activating motif 

ITIM Immunoreceptor tyrosine-based inhibitory motif 

ITT Immunoglobulin tail tyrosine-like motif 

JAK Janus tyrosine-kinase  

KIR Killer immunoglobulin-like receptor 

KIR Killer cell immunoglobulin-like  

LAK  Lymphokine-activated killer  

LFA1  Leukocyte functional antigen 1 

lncRNA Long non-coding RNA 

LPS Lipopolysaccharides 

LRC Leukocyte receptor complex 

LTi Lymphoid tissue inducer cell 

mAb Monoclonal antibody 

MACS  Magnetic activated cell sorting 

MAPK Mitogen-activated protein kinase  
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MCMV  murine cytomegalovirus 

MDSC Myeloid-derived suppressor cell 

MFI  Median fluorescence intensity 

MHC Major histocompatibility complex 

MIC-A/B MHC class I chain-related gene A/B 

mIgG Mouse immunoglobulin G 

min Minute 

miRNA  Micro RNA 

MM Multiple myeloma 

MMP Matrix-metalloproteinase 

MMPi Matrix-metalloproteinase inhibitor 

mNK Mature NK cell 

MULT-1 Murine UL16-binding-like transcript-1 

MyD88 Myeloid differentiation primary response gene 88 

n.d.  Not detectable 

NCAM Neural cell adhesion molecule 

NCR Natural cytotoxicity receptor 

NF-κB Nuclear factor-κB 

NK cell Natural killer cell 

NKG2A/C/D Natural killer group 2 A/C/D 

NKP NK cell precursor 

NLK Nemo-like kinase 

p.i. Post infection 

PAMPs Pathogen-associated molecular patterns 

PB Peripheral blood 

pbNK Peripheral blood NK cells 

PCR  Polymerase chain reaction 

PD-1 Programmed cell death protein 1 

PD-L1 Programmed cell death 1 ligand 1 

PI3K Phosphatidylinositol-3 kinase 

PKC Protein kinase C 

PRR Pattern recognition receptor 

Rae-1 Retinoic acid early transcript-1 molecules 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

Rpm Revolutions per minute 

RT Room temperature 

SHIP SH2 domain-containing inositol-5-phosphatase  
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SHP  Src homology region 2 domain-containing phosphatases 

STAT Signal transducer and activator of transcription 

TAM Tumor-associated macrophage 

TCR T cell receptor 

TGF-β Transforming growth factor β 

TIGIT T cell immunoreceptor with Ig and ITIM domains 

TILs Tumor-infiltrating lymphocytes 

TLR Toll-like receptor 

TNFRSF Tumor necrosis factor receptor superfamily 

TNF-α Tumor necrosis factor alpha 

TRAF TNF receptor associated factor 

TRAIL  Tumor necrosis factor related apoptosis inducing ligand 

Tregs Regulatory T cell 

TYK2 Tyrosine kinase 2 

UCB Umbilical cord blood 

ULBP UL16 binding protein 

VEGF-A Vascular endothelial growth factor-A 

w/o  Without 

α-a Anti- 
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