
Open Geospatial Data,
Software and Standards

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3
https://doi.org/10.1186/s40965-019-0061-3

SOFTWARE Open Access

OSHDB: a framework for
spatio-temporal analysis of OpenStreetMap
history data
Martin Raifer* , Rafael Troilo, Fabian Kowatsch, Michael Auer , Lukas Loos ,
Sabrina Marx, Katharina Przybill, Sascha Fendrich, Franz-Benjamin Mocnik and Alexander Zipf

Abstract

OpenStreetMap (OSM) is a collaborative project collecting geographical data of the entire world. The level of detail of
OSM data and its data quality vary much across different regions and domains. In order to analyse such variations it is
often necessary to research the history and evolution of the OSM data.
The OpenStreetMap History Database (OSHDB) is a new data analysis tool for spatio-temporal geographical vector
data. It is specifically optimized for working with OSM history data on a global scale and allows one to investigate the
data evolution and user contributions in a flexible way. Benefits of the OSHDB are for example: to facilitate accessing
OSM history data as a research subject and to assess the quality of OSM data by using intrinsic measures.
This article describes the requirements of such a system and the resulting technical implementation of the OSHDB:
the OSHDB data model and its application programming interface.

Keywords: OpenStreetMap (OSM), OpenStreetMap history data, Data analysis, Data quality assessment, Volunteered
Geographic Information (VGI)

Introduction
OpenStreetMap (OSM) is a global, free and openly acces-
sible database of geographical features [1]. It is a popular
example of projects that create Volunteered Geographic
Information (VGI) [2, 3], where anyone can contribute to
the data and the underlying data scheme through collab-
orative participation [4–6]. The size of the OSM project
in terms of the amount of data, the number of contribu-
tors, users and applications building on the data has grown
considerably since the beginning of the project in 2004.
The dataset has undergone constant changes and its geo-
metrical and attributional details are continually evolving.
This process of data refinement is spatially heterogeneous,
resulting in regions of varying data quality.
OSM data is used in many public, private and com-

mercial areas, e.g., traffic management and logistics,
civil protection and disaster management, environmen-
tal research and education. In order to evaluate whether

*Correspondence: martin.raifer@uni-heidelberg.de
GIScience Research Group, Institute of Geography, Heidelberg University, Im
Neuenheimer Feld 348, 69120 Heidelberg, Germany

the data satisfies the requirements of such applications,
researchers have developed methods for data quality
assessment. These methods support decision makers in
the public, economical and political sectors. Besides data
quality, other research fields related to OSM and VGI data
in general are addressed as well: How can one gain a better
understanding of social and geographical processes that
have left patterns in the VGI data? How does a community
of such a VGI project work? Who contributes what kind
of data when and why?
The aforementioned research questions share a com-

mon characteristic: they can be approached by examining
the evolution of the data. One advantage of the OSM
project is that it provides almost the entire editing history
of its global data evolution. This dataset is large and, thus,
generally hard to handle. Consequently, it is not utilizable
for many potential users. Although many software tools
[7–25] address this problem partially, none of them is able
to provide the following range of functionality in one sin-
gle integrated tool: fast and easy reconstruction of historic
geometric and semantic states of the data as well as fast
spatial, temporal and tag queries. Therefore, we developed

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40965-019-0061-3&domain=pdf
http://orcid.org/0000-0002-2106-8560
http://orcid.org/0000-0002-6303-596X
http://orcid.org/0000-0002-1691-4064
http://orcid.org/0000-0002-1759-6336
http://orcid.org/0000-0003-4916-9838
mailto: martin.raifer@uni-heidelberg.de
http://creativecommons.org/licenses/by/4.0/

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3 Page 2 of 12

a framework called OpenStreetMap History Database
(OSHDB). It is capable of handling this large dataset and
provides the necessary tools to perform Online Analyti-
cal Processing (OLAP) tasks related to the history of OSM
data in a user-friendly and scalable way.
The OSHDB provides fast data access as well as flex-

ible analysis methods. This is achieved by transforming
the original OSM history file into a custom data structure
that is tailored towards efficient storage and retrieval of
any spatio-temporal extent of the data. This data struc-
ture is independent of the storage backend, such that the
OSHDB can be adapted to any 3rd-party key-value store.
Therefore, the framework can be deployed on a single
computer, as well as in a distributed computing clus-
ter. Thus, it can easily be deployed for different usage
scenarios.
The remainder of this article is structured as follows:

The “Related work” section discusses, in particular, lit-
erature about intrinsic data quality, user behavior and
related topics, as well as software tools that provide
access to the full history data of OSM. The “Implementa
tion” section describes the design goals, components, data
model of the OSHDB and how to get access to the data
via the OSHDB-API. The “Discussion” section reviews
the presented framework and its related technologies.
“Conclusions” section presents a summary and outlook
towards future research and developments.

Related work
In recent years, several studies utilized the history of
the OSM dataset, e.g., for conducting intrinsic quality
assessments in cases where comparison datasets do not
exist [26, 27]. Intrinsic quality indicators have been devel-
oped to evaluate the fitness for purpose of OSM data
[13, 17, 18, 24]. Further studies assess the behavior of OSM
contributors and contribution patterns [5, 28–31].
Reviewing the literature reveals a need for tools that

allow flexible access to the OSM history on a global scale.
In the following, an overview of existing software tools
and web applications tackling this challenge is provided.
We thereby distinguish between tools that allow user-
defined queries on the historical data and platforms that
allow to generate predefined statistics.
OpenStreetMap Stats [7], OSM stats [8] and OSM Tag

History [9] are web applications that present aggregated
statistics on a global and/or country level. Other web
applications focus on visualizing the influence of con-
tributors. Crowd Lense [10] enables its user to explore
OSM changesets and additional contributor information
like the preferred language for selected cities. Further,
OSMvis [32] facilitates making sense of the evolution of
geometries and the folksonomy, as well as analysing OSM
changesets and contribution statistics. Another web tool,
which can be used to analyse user behavior is “Who did

it?” [11]. It creates predefined statistics about changesets,
or users on a city level.
The web interface of the tool osm-deep-history [12]

provides a view on all versions of any selected node or
way. Minghini et al. [13] developed a web interface for
visual exploration of the up-to-dateness of OSM nodes
or ways in a small area. It makes use of the timestamps
in the data, which are referring to the latest edit of the
respective element, but does not incorporate the full-
history information. For exploring spatial characteristics
of the historical OSM data, the web application OSMatrix
[14, 15] visualizes statistics like the evolution of num-
bers of buildings or lengths of roads over time, aggre-
gated on hexagonal grids. OSM analytics [16] allows the
user to define a bounding box and shows a graph of
the mapping activity in the defined region. Furthermore,
the historical state of OSM data at different points in time
can be compared within one map view. The presented
web applications are designed to visualize characteris-
tics of the OSM history based on predefined parameters,
but do not allow comprehensive evaluations regarding
data quality. Further limitations are that the OSMatrix
is not available globally and OSM analytics does not
support complex OSM data types such as multipolygon
relations.
Besides web applications, some software tools offer

a predefined set of quality indicators. Barron et al.’s
iOSMAnalyzer [17] utilizes OSM’s full history data to
create statistics, charts and maps that evaluate the data
quality concerning different categories, such as “general
information on the study area” or “routing and navigation”.
Any extract of the full history dump can be imported and
utilized within this tool using the import functionalities of
the osm-history-renderer [33]. However, the analyses are
limited to smaller regions due to performance limitations.
Another set of intrinsic quality indicators is made avail-
able by Sehra et al. [18] who implemented an extension of
a QGIS processing toolbox to assess the completeness and
road navigability of OSM data. Nevertheless, this study is
limited to analysing line type features and compares only
two points in time. [18]
Moving on to flexible analysis-tools, Osmium [19] is

a framework that enables the user to work with OSM
data, e.g., by providing conversion functions between sev-
eral file formats. It also allows the extraction of parts
of the data through specified attribute filters or spatial
extents. Besides working with regular OSM data, Osmium
also offers support for history files and contains func-
tions to extract historical data at any specific point in
time. Another tool for querying historical OSM data is the
Overpass API [20]. It is designed for returning small sub-
sets of the OSM data in a short amount of time, but only
partially supports analysing the full history of an OSM
object. It is, for example, able to export single snapshots

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3 Page 3 of 12

of the history. Osm2orc [21] is a tool, which transforms
data from the original osm-pbf format into the Apache
ORC data structure in order to import it into the Ama-
zon Athena database system. Although being very flexible
in querying historical and non-historical data, getting the
count of buildings in a specific region with a certain
tag requires the user to perform an SQL join operation
between OSM node and way entities [34].
In contrast to the presented multi-purpose frameworks

using normal, as well as historical OSM files, osm-
data-classification [22] was designed to analyse the data
through time in order to classify contributors into cate-
gories such as beginners, intermediate users, or experts.
Data quality is assessed by assuming that the quality of an
OSM object is good, if its last contributor is experienced.
Limitations of this project are, e.g., long processing times
and highmemory requirements.With the software frame-
work Epic-OSM [23] by Anderson et al. edits within OSM
can be analysed to understand who was mapping where
and at what time.
Rehrl and Gröchenig analysed user behavior by looking

at different forms of activity [24]. Their framework applies
a theoretical model of activities onto OSM data, e.g., for
identifying different types of activity levels. OSMesa [25]
is another multi-purpose framework for processing OSM
data. It is, for instance, used by the Missing Maps leader-
board [35] to generate user statistics. OSMesa utilizes the
Apache Spark big data processing framework to compute,
e.g., the number of added buildings or roads, or to create
vector tiles.
The presented studies and frameworks show that ana-

lyzing the OSM history is, in general, of high interest to
different fields of academia, community and humanitar-
ian organizations alike. The heterogeneity and the large
amount of the data form obstacles whenmaking use of the
available tools. In fact, the tools suffer from the flexibility
and performance necessary for exploring and investigat-
ing the data in detail. The OSHDB fills this gap by mak-
ing it possible to efficiently conduct flexible analyses on
OSM’s full history dataset.

Implementation
The OSHDB framework has been designed to be appro-
priate for a large spectrum of potential use cases. This
section summarizes the design goals of the OSHDB and
explains their impact on the architecture, the design, the
data model and the application programming interface
(API) of the framework.

Design goals
Our main goal is to provide easy access to the history of
OSM data in order to conduct a wide range of spatio-
temporal analyses. In particular, we aim at performing
dynamic aggregations by varying thematic, spatial and

temporal characteristics of the data. As an example of
such an aggregation, it shall be possible to query different
spatial and temporal scales in order to compare regions
in various temporal granularity. These use cases com-
bined with the characteristics of the dataset motivate the
following design goals:

Performance: The dataset is large and, thus, requires
efficiency in terms of storage size, data access
and processing performance. These benefit from a
custom-built, compact data representation and from
parallelizing computations.

Lossless information: Analysing all aspects of data evo-
lution and editing activities requires the data schema
to provide lossless information on historical OSM
data bymaintaining all properties of the original data
including its errors.

Simple, generic API: A general purpose programming
language shall be available to the user in order to per-
mit arbitrary analyses. An API that encapsulates the
internal data representation supports usability and
maintainability.

Local and distributed deployment: The requirements
of performing a small regional analysis of commu-
nity dynamics can be substantially different from
those of a global study on data quality. Hence, our
framework shall run equally on a single computer as
well as on a large cluster. This goal is related to the
above-mentioned parallelization.

The above design goals and the resulting requirements
have implications on the design and the implementation
of our framework. In the following sections, we discuss
these implications in more detail.

Overview
In order to achieve the design goals presented in the
“Design goals” section, we decided on a layered architec-
ture. Figure 1 shows the role of the OSHDB as a mediat-
ing framework between the raw OSM data and arbitrary
analysis applications.
The bottom layer is concerned with the data storage.

By relying on third party key-value stores, we are able
to deploy the OSHDB both locally and in a distributed
cluster environment. Currently, two different backends
have been implemented: A generic JDBC (Java Database
Connectivity) backend, which can be used with any JDBC-
compliant database management system, and a back-
end for the distributed database and processing platform
Apache Ignite [36], which supports massive paralleliza-
tion. However, by implementing further backends, the
OSHDB can be adapted to any key-value store.
The middle layer handles the representation of the

OSHDB data. We designed a custom data schema that
represents OSM history data compactly and permits fast

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3 Page 4 of 12

Fig. 1 Overview of the data flow in the OSHDB framework

data access and parallel processing of the data at the same
time (see the “Data model” section). This core layer pro-
vides means to access the information contained in the
binary data returned by the backend databases.
The top layer is formed by a simple, generic API (see the

“Application programming interface” section). This API
exposes the MapReduce programming model into Java as
a general purpose programming language and abstracts
from internal data representations and processing strate-
gies. It offers flexible analysis functionalities and allows
one to query arbitrary spatio-temporal statistics about the
OSM full history data.

Data model
The OSHDB data model is designed for efficient storage
of and access to OSM history data. It is compact in size to
optimally utilize the available memory. In order to ensure
the scalability of the system, the data model also includes a
partitioning schema which allows distributed data storage
and the parallel execution of computations.

The OSM datamodel
The data model defined by the OSM project primarily
consists of three types of elements: nodes, ways and rela-
tions [37]. A node defines a point in space. Nodes are
the only elements that carry coordinates. A way describes
a linear or polygonal geometry by a list of references to
nodes. Ways are used to model geographical features such
as streets and buildings. A relation is an ordered collec-
tion of elements that groups nodes, ways and relations to
a larger unit. Relations can represent polygons or more
abstract information like turn restrictions.

Each element consists of a common set of attributes
such as an ID, a modification timestamp, a version num-
ber, the ID of the modifying user and a list of attribute tags
in form of key-value pairs. In addition, ways and relations
contain the IDs of their members as references. In order
to construct the geometry of a way or a relation these ref-
erences have to be resolved because only nodes actually
contain coordinates.

OSH entities
When taking the modification history into account, sev-
eral OSM elements may have the same ID. These elements
can be distinguished by their version number, which is
incremented at each modification. We group all elements
belonging to the same ID into a so-called OSH entity. The
elements of such an entity are identified through their ver-
sion number. For each OSM element type (node, way and
relation) a corresponding OSH type exists.
As shown in Table 1, the current OSM history database

consists of approximately 8.4 billion versions for 6.1 bil-
lion entities. The average number of versions increases
from nodes over ways to relations. The modifications of
the members of a way or relation are not directly reflected
in the reference-lists containing these members, i.e., in
order to resolve a reference, all versions of the referenced
elements need to be considered. Thus, ways and relations
may have many more implicit versions than their version
number indicates. Therefore it is reasonable to store all
versions of an entity together in one location.
This grouping of versions with the same ID renders it

possible to efficiently apply a delta encoding between con-
secutive versions. An example is shown in Table 2. Since
small numbers can be stored with fewer bits than large
ones, it is beneficial to store the difference between the
timestamps of two consecutive versions instead of the
actual timestamps. Similarly, we only store which refer-
ences and tags change between versions instead of repeat-
ing the complete information in each version. This delta
encoding leads to a compact representation of the data,
in particular for potentially large entities like ways and
relations, which tend to have a high number of versions
per ID. As a downside of this encoding, it is impossible
to extract a specific version from an OSH entity without

Table 1 Number of versions and unique IDs in a typical
OpenStreetMap full history planet file

OSM element Versions Unique IDs ∅

Nodes 7 326 018 355 5 540 766 395 1.32

Ways 1 002 978 129 596 015 042 1.68

Relations 25 767 100 7 796 460 3.30

Column∅ contains the average number of versions per unique ID for each of the
OSM element types. These numbers have been calculated for the OSM full history
planet file history-181112.osm.pbf, downloaded from https://planet.
openstreetmap.org, accessed 2018-11-19

https://planet.openstreetmap.org
https://planet.openstreetmap.org

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3 Page 5 of 12

reading all previous versions. By sorting the versions from
the latest to the earliest, we optimize for queries that only
need the latest version or multiple versions at once. In
contrast, if eachOSH entity was stored as an array of OSM
elements, one could directly access each version of the
entity for the cost of increased storage size.

Partitioning
We partition the dataset into independent subsets and
store them in a key-value database as an underlying data
storage system. This makes it possible to distribute the
data and to process data partitions in parallel.
For efficiency, each subset is completed by referenced

entities. For example, in order to analyse an OSH way that
references many OSH nodes, the way itself as well as all
its referenced nodes need to be considered and, thus, are
stored in the same data partition. This principle is also
applied to OSH relations referencingmultiple OSH nodes,
ways, and relations. As a result, parts of the data are stored
in several partitions, which results in duplicates. We keep
track of these duplicates to avoid negative side effects such
as counting entities multiple times.
The OSHDB does not enforce a particular partitioning

schema, but as a majority of queries are expected to use
a spatial extent, we provide a spatial partitioning schema:
Spatial extents of OSM data elements vary a lot from
small features like single trees or postboxes, to geometries
of large extent, such as country borders or international
road routes. To handle both of these extremes the OSHDB
implements a partition schema that makes use of a spatial

Table 2 Example of the delta encoding in OSH entities

OSM OSH

osm-way { osh-way {
id: 1234, id: 1234,
version: 3, versions: [{
uid: 10, version: 3,
timestamp: 1000, uid: 10,
tags: [k1:v1,k2:v2;k3:v3], time-delta: 1000,
refs: [1,2,3,4] tags-added:

} [k1:v1,k2:v2,k3:v3]
osm-way { refs: [1,2,3,4]

id: 1234, }, {
version: 2, time-delta: 100,
uid: 10, tags-removed:

timestamp: 900, [k2:v2,k3:v3]
tags: [k1:v1], }, {
refs: [1,2,3,4] uid: 5,

} time-delta: 500,
osm-way { refs-removed: [4]

id: 1234, }]
version: 1, }
uid: 5,
timestamp: 400,
tags: [k1:v1],
refs: [1,2,3]

}

grid with a number of zoom levels. Each OSH entity is,
according to the schema, stored in that grid cell of a spe-
cific zoom level that fits best to the bounding box of the
entity. This typically results in the storage of small enti-
ties in higher zoom levels, while large entities are stored in
lower zoom levels.
In order to further reduce computation times of queries

with a spatial filter, each of the resulting partitions addi-
tionally includes a local spatial index of the contained
OSH entities. Figure 2 summarizes the different parts of
the data model used by the OSHDB.

Application programming interface
The application programming interface (API) of the
OSHDB framework makes it possible to build custom
applications for analysing OSM history data. Its design
and implementation are described in this section.

Requirements
In the context of general purpose OSM data retrieval and
analysis, different needs arise. Questions are often com-
plex and involve more than a predefined simple query.
The optimal way of retrieving the desired data strongly
depends on the type of the query: Do we count or sum
specific features? Is a logical or statistical argumentation
necessary?Which thematic aspects do we focus on? etc. In
addition, OSM data is too extensive to be easily processed
on a single-core machine. Such needs create, in particular,
the following requirements:

Abstraction from the data model: The concepts used
internally to store and access the data shall remain
hidden in order to liberate the user from having to
deal with this additional complexity.

Filtering and aggregation: The current data model of
OSM represents the environment by a large number
of elements and their respective changes. For further
processing, the data shall bemade available in an effi-
cient way by providing the functionality to filter and
aggregate the data.

Affording parallelization: OSM data is increasingly
growing, creating the need to process the data effi-
ciently on multi-core systems.

Distributed and local execution: Queries involve a vari-
ety of scales. The API should afford performing
global queries on a server cluster, while it should also
afford performing local queries on a single machine
only.

In the following, we discuss the design of the API used
to access the OSHDB.

API design
The needs and requirements of the API can only be
met in their generality by the use of a general purpose

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3 Page 6 of 12

Fig. 2 A schematic overview of the parts of the data model used by the OSHDB. The global OSM full history data is partitioned into cells of varying
size. Each of these partitions contains information about OSH objects, which are collections of all versions of an individual OSM element

programming language. A multiplicity of approaches to
APIs exist, among them visual interfaces of varying
nature, web APIs offered via the HTTP protocol with typi-
cally limited functionality, domain specific languages, and
methods offered as part of an existing general purpose
programming language. The latter provides a high flexibil-
ity when treating general questions without restriction to
some few domains. Other ways of accessing the data can
be implemented on top of such a flexible API because they
offer less functionality.
The OSHDB is optimized for efficiently retrieving OSM

history data, which requires the use of indices, optimized
data types, and internal methods. While such internally
used concepts are important for the efficiency and stabil-
ity of the database, they are, by and large, not of interest
for the user. The API is thus solely built on the concepts of
the OSM data model rather than exposing the internally
used concepts to the user. Such use of only well-known
concepts renders it possible to employ the API without the
need to learn many new concepts – the learning curve is
shallow.
The parallelization of algorithms is hard to achieve in

general, in particular when the user is not familiar with
corresponding concepts. Side effects can, e.g., only be par-
allelized with good knowledge about when side effects
occur and if the processes running in parallel are syn-
chronized in some way. The functional programming
paradigm prohibits side effects when followed strictly.
In addition, it can be traced in which order computa-
tions need to be executed, and which computations can
be performed in parallel – such tracing is often per-
formed using abstract syntax trees in case of functional
programming languages. The OSHDB-API follows the

functional paradigm, which is why it allows a straight
forward implementation of the MapReduce principle
[38–40] in the backend.
Monads [41] offer a great possibility to build processing

pipelines. Starting with an initial state, which incorpo-
rates the entire OSHDB, several commands can be exe-
cuted. Each such command performs an operation on the
internal state, e.g., by filtering the OSM history data, by
mapping the internal state, or by summarizing the results.
Many such commands can be chained, which allows to
efficiently divide the required computation into small
pieces. At the end of such a chain, the internal state, i.e.,
the processed data, is returned. Such statements returning
the internal state can, e.g., provide a list or a sum. Fur-
ther, the operations discussed here – the views for starting
the processing pipeline, the commands for transforming
the data, and the methods that return the result – com-
ply to the formal concept of a monad. The API is based
on the concept of a monad, because it allows for a flexible
handling of the data in the backend.

Implementation of the API
Starting from the low level data structures described in
the “Data model” section, the API – called OSHDB-API
– builds a few layers of abstraction. First the actual data
storage system is specified in a database backend, then
(depending on the respective underlying database system)
one of several different algorithms for workload distribu-
tion are executed. For example, on a local system with
random access to the OSHDB data cells, a different algo-
rithm is applied than on a cluster environment, in which
the data is distributed across different machines. On top
of this, the API provides different views on the data. These

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3 Page 7 of 12

views provide a more accessible and concrete interpre-
tation of the base data: Instead of the raw OSM data
entities, the user is able to access the data via refined data
structures that contain concrete geometries following the
simple features standard [42] and contextual metadata.
Finally, a layer of map-reduce methods provides access
to these views, which can finally be used to implement
custom analysis code.

Database backends An OSHDB database backend spec-
ifies where the data is stored and how it can be retrieved.
Currently, the OSHDB-API implementation supports two
different database backends: a) A generic JDBC backend,
which can access OSHDB data stored in any JDBC-
compatible database, for example the lightweight local
file-based database system H2 and b) a backend that han-
dles access to OSHDB data stored in a distributed com-
putation cluster running the Apache Ignite [36] software.
The OSHDB can be adapted to work with any key-value
store by implementing additional backends.

Workload distribution Depending on the underlying
data storage system, the methods for executing analyses
are implemented in different ways. On a local system,
already existing process threads can be used to process the
data fetched from a local database. In contrast, the code
has to be transferred to the remote nodes of the com-
puting cluster, where they can be run collocated with the
underlying data. Maximizing the collocation of the data
and their computations reduces the amount of data that
has to be transferred over network connections, which
would otherwise reduce the performance benefits of a
parallel processing environment [43].
In general, for a given database backend, such a work-

load distribution can be implemented in different ways.
While one algorithm might be preferred in some use
cases (e.g., a query over a relatively small area), there
might exist alternative implementations that work better
in other scenarios (e.g., a global analysis query). To sat-
isfy several of these use cases, the OSHDB-API allows a
database backend to have multiple workload distribution
implementations, which can be activated according to the
different needs of a user.

Abstraction from data model to API views One of the
premises of the OSHDB-API is that an end user typi-
cally does not want to work directly on the raw OSM
history data, but rather wants to ask questions about the
geographical features that are represented by the data.
Also some of the filtering and data-aggregation options
listed in Table 3 are only meaningful when applied on
actual geographical features that have a geometric extent
and shape and which exist at certain points in time.
For this reason, the API provides refined data objects

that contain concrete geometric representations of OSM
entities and contextual metadata (e.g., about the point
in time for which the respective geometric represen-
tation is valid) alongside the underlying OSM history
data itself.
Internally, this step consists of two different parts: One

part is responsible for generating the spatial represen-
tation (following the simple features specification [42])
of a given OSM entity at a given point in time. While,
by default, this module tries to closely follow the rules
defined in the OSM wiki [1] about how to generate these
geometries, it still remains configurable to allow differ-
ent geometric interpretations of the OSM data for special
use cases, e.g., to be able to also work with uncommon
or undocumented tags. The other part deals with the
interpretation of the temporal aspect of the data: using
the OSHDB-API it is possible to look at the historical
development of the data in two fundamentally different
ways, called views:

Snapshots: This view returns how the underlying OSM
data looked like at specified point(s) in time.

Contributions: This view returns all modifications of the
underlying OSM data in the specified time inter-
val(s).

Depending on the used view, a different stream of
data is provided. This stream can be used in consequent
map-reduce steps for processing the data and finally com-
puting the desired result. The snapshot view returns at
most n snapshots (where n is the number of requested
time slices) of each matching OSM entity. Each of these
snapshots contains information about the timestamp for
which this snapshot has been obtained, the geometry
of the underlying OSM entity and the entity’s raw data.
The contribution view returns a number of contribu-
tion objects. This includes direct modifications of the
corresponding OSM entities (e.g., when a new tag is
added to an existing feature) as well as indirect modifica-
tions originating from changes to the entity’s referenced
members (e.g., when the coordinates of a way’s nodes
are altered). Thereby, access is provided to the follow-
ing properties: point in time when the change happened,
contribution-type, geometry and state of the respective
entity before and after the modification, changeset ID and
user ID associated with the change, and the raw data of
the underlying OSM entity. Here, the contribution-type
can be either a creation of an entity, a deletion of an
entity or one of several different types of modifications of
an entity.
These views can be used for computing answers to dif-

ferent types of questions about the OSM data. For exam-
ple, to calculate the historical development of the length
of certain types of roads in OSM the snapshot view can

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3 Page 8 of 12

Table 3 Methods offered by the application programming interface of the OSHDB framework

Method Description

Data Filters

areaOf-
Interest

Sets the geographical area of interest of the query, i.e. a bounding box or a bounding (multi)polygon.

timestamps Sets the temporal limits of the query. Depending on the analysis view, this can either represent a list of independent
timestamps (snapshots) or represent a list of time intervals.

osmType Filters data by their OSM entity type, i.e. a node, way or relation.

osmTag Filters data by their OSM tags. Can either filter for key=* presence of a tag with a given key, key=value presence of a spe-
cific tag (key-value combination), key=[values] presence of a tag whose value is in the given list of values, key regex
presence of a tag whose value matches the given regular expression, [key=value] presence of at least one tag from the
given collection of key-value pairs.

Aggregation Methods

aggregateBy Defines a custom aggregation method. When applied on a MapReducer, it transforms it into a new MapAggregator with the
same settings as the original MapReducer, but which processes the input data in chuncks defined by the indices returned
by the given aggregate-by function. When applied on a MapAggregator, the already existing aggregation indices are refined
further by the new aggregate-by function (where the resulting index set is defined as the cross product of the existing and
the new set of indices).

aggregateBy-
Timestamp

Aggregates results by a temporal index. This knows about the overall query timestamps parameter and if necessary associates
timestamps to the respective time intervals defined for the whole query.

aggregateBy-
Geometry

Aggregates results by their geometries (spatial position and extent). Accepts a set of arbitrary (multi)polygonswhich define the
aggregation index. If necessary, this method splits and clips the geometries of OSM entities, when they extend over multiple
polygons.

MapReduce Methods

map Performs a data transformation step that calculates one output object for each input object of the processing stream.

flatMap Performs a data transformation step that calculates arbitrarily many output objects for each input object of the data stream
and flattens the resulting output object in the processing stream.

filter Filters the processing stream by the given predicate.

reduce Performs a generic reduce operation of the processing stream, which ultimately generates a single result object for the entire
processing stream.

Specialized Reducers

sum Calculates the sum of all values.

count Returns the number of entries in the processing stream.

uniq Returns the set of unique values in the processing stream.

countUniq Returns the number of unique entries in the processing stream.

average Calculates the average of all values.

weighted-
Average

Calculates a weighted average over all values.

estimated-
Median

Returns an estimation of the median of all values in the processing stream, using the T-Digest method [50].

estimated-
Quanitle(s)

Returns an estimation of the quantile(s) of the distribution of all values in the processing stream, using the T-Digest method
[50].

collect Returns a list of all objects in the processing stream. See the stream method below, for a less memory intensive variant of
this.

Other

stream Returns all values as a (JAVA) stream. Equivalent to the collect reducer, but doesn’t need to buffer the whole dataset in
memory before returning.

groupByEntity Special map function that groups consecutive entries of the processing stream together which belong to the same original
OSM entity.

be used. The contribution view can, in contrast, be used
to determine the total number of contributors who have
been working on mapping these roads.

Aggregator classes On top of this foundation of data
storage, workload distribution and data interpretation,
there exists a framework layer, which provides the actual

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3 Page 9 of 12

interface to a user writing queries using the OSHDB-
API. The overall design of this layer is inspired by the
typical MapReduce implementations found in many pro-
gramming languages, specifically the Stream class that
was introduced in Java 8. It provides means to transform,
filter, partition, and aggregate the stream of data pro-
duced by the underlying layers of the API. The methods
that are offered by OSHDB’s API are listed in Table 3.
Generally, these methods can be divided into different
categories:

Settings and data filters are used to select a subset
of OSM data and the points (or intervals) in time for
which the analysis query should be performed.
Aggregation methods can be used to define how
the data is partitioned when calculating results.
For example, aggregateByTimestamp can be
used to get individual results for each requested
timestamp.
MapReduce methods are used to transform, to filter
and, to compute the final result(s).
Specialized reducers exist to make frequently used
reduce operations more convenient: they include,
among others, shorthand methods to count, sum, or
average the stream of data values.
Other methods include advanced query customiza-
tion options.

After partitioning, the data type of the result of any
reduce operation, such as the generic reduce or its
shorthands like count and sum, changes from being a
single value to an associative array of values. For instance,
instead of a simple integer count, one receives an indepen-
dent count for each requested timestamp after applying
aggregateByTimestamp. In order to keep the API
consistent across non-partitioned and partitioned modes
of operation, we decided to collect the non-aggregating
and aggregating reduce methods into separate classes
called MapReducer and MapAggregator, respectively.

Examples
In the following, two basic examples of analysis queries
implemented in JAVA using the OSHDB-API are pre-
sented.
The first query returns the number of distinct OSM

contributors who modified OSM entities that are tagged
as highway (e.g., motorways, roads, tracks, or paths)
and lie in the polygon defined in the variable region.
The variable oshdb is a connection object that con-
tains information about where the OSHDB data is stored
and which database backend the query should use. This
query uses the OSMContributionView, which allows
for iteration over all modifications of the underlying data.
After mapping each contribution object to the respective

contributor’s user ID, the final reduce step countUniq
provides the desired result.

Integer numberOfUsersEditingHighways =

OSMContributionView.on(oshdb)

.areaOfInterest(region)

.timestamps("2007-10-07", "2018-11-14")

.osmTag("highway")

.map(getContributorUserId)

.countUniq();

The second example shows how to access data
about the evolution of the length of the network of
highway objects in OSM over time. Here, a monthly
time interval is defined in timestamps and the
aggregateByTimestamp functionality is used. Then,
the result of this query contains for each requested time-
stamp the sums of highway lenghts at each particular
point in time.

SortedMap<OSHDBTimestamp, Number>

highwayLengthOverTime =

OSMEntitySnapshotView.on(oshdb)

.areaOfInterest(region)

.timestamps("2007-10-07", "2018-11-14",

Interval.MONTHLY)

.osmTag("highway")

.aggregateByTimestamp()

.map(getLengthInMeters)

.sum();

Requirements revisited
The requirements outlined in the “Requirements” section
and used for motivating the OSHDB-API in the
“API design” section are met. The abstraction from the
data model is fulfilled by the base abstractions that han-
dle the raw database access. Additionally, the OSHDB-API
provides an abstraction layer that refines the raw historical
OSM data into views, which are useful for concrete analy-
sis applications. Parallelization as well as distributed and
local execution are governed by the different workload dis-
tribution algorithms implemented in the API. These cover
the entire spectrum from the execution of a query using
a local OSHDB database, to the massively parallelized
and distributed execution on a cluster of computers. The
resulting user-facing layer of the API itself is designed to
afford intuitive and flexible filtering and aggregation of
the data and is based on principles from the functional
programming paradigm such as the MapReduce model of
transforming, partitioning, and reducing data.

Discussion
One could argue that the OSHDB is a member of a
new class of spatio-temporal data analysis frameworks: it

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3 Page 10 of 12

spans multiple scales, is able to process the full variety of
feature types in OSM and addresses OSM’s heterogene-
ity in spatial and temporal resolution. Analysing historical
OSM data in its entirety requires such a system. Multi-
ple approaches have been conducted by several groups.
These are, however, mostly found to be restricted in at
least one of the following points: a) the maximum amount
of data that can reasonably be processed and b) the range
of different analysis questions that can be answered.
Since the scope of the OSHDB is not to directly analyse

raw OSM data elements, other OSM data analysis frame-
works potentially perform better in certain situations.
This is, for example, the case when querying statistics
about the raw OSM data itself. However, the OSHDB cov-
ers a broader range of applications, which benefit from
the refined data structures that aremade available through
its API.
Similarly for some other use cases, specifically designed

solutions exist that are better suited for their respective
application area than the OSHDB, but do not generalize
well to other analyses. On the other side of the spectrum
are systems that try to be more generic but sometimes
limit performance or have restrictions in the (spatial or
temporal) scale of queries that can be executed.
The OSHDB framework focuses on combining high

performance with flexible data querying capability and
generic data analysing functionality. Its compact data for-
mat allows fast access to the information provided by the
OSM full history data. Its API allows to program anal-
yses in an intuitive and generic way. These queries can
be executed both on local systems or on large distributed
compute clusters.
The versatility of the OSHDB is shown by the fact that

it is already used in a variety of applications: in ongo-
ing research projects about intrinsic data quality assess-
ment [44, 45], for scientific studies related to disaster
management [46] and data quality [47], or to run a pub-
lic web API [48, 49] that provides statistics about the
evolution of the OSM data.

Conclusions
OSM data plays an important role as a provider of free
and open geographical data about the world. It is of con-
tinuing interest to analyse the evolution and the quality of
the data. The “Related work” section reviews existing soft-
ware for analysing OSM data in which we identified a gap
in available software tools in regards to flexibility and per-
formance/scalability, which is filled by the here presented
OSM data analysis framework OSHDB.
Its design goals, and an overview of the technical imple-

mentation is given in the “Implementation” section: The
OSHDB follows a modular approach: on top of a specially
designed data model, a map-reduce based API allows
users to implement their own data analysis applications.

The OSHDB also allows parallelized computation on a
distributed compute cluster. As has been discussed in the
“Application programming interface” section, the API is
flexible and thus not tailored to a specific application. The
API can rather be used for a broad range of applications.
Examples for such applications are intrinsic data quality
assessment, or creating large scale data visualizations.
There exist still many areas in which the OSHDB can be

improved in the future. For example, performance can be
further increased through refinements of the data model,
e.g., by implementing more optimized data partitioning
schemes for different use cases. Our future plans include
improving the API by broadening its application domains,
for example through adding the possibility to perform
spatial joins in analysis queries.

Availability and requirements
Project name: OSHDB
Project home page: https://github.com/giscience/oshdb
Operating systems: Platform independent
Programming language: Java
Other requirements: Java 8 or higher
License: GNU Lesser General Public License

Abbreviations
API: Application programming interface; JDBC: Java database connectivity;
OLAP: Online analytical processing; OSM: OpenStreetMap; VGI: Volunteered
geographic information

Acknowledgements
The authors would like to thank the OpenStreetMap community for providing
the open and free OSM data.
Further, we would like to thank the GIScience Research Group, Heidelberg
University, for providing helpful comments on the OSHDB development,
beta-testing of the software and their contributions to the OSHDB source code.

Funding
The work presented in this paper has been funded by the Klaus Tschira
Foundation. Additionally, Franz-Benjamin Mocnik has been funded by
Deutsche Forschungsgemeinschaft as part of the project A framework for
measuring the fitness for purpose of OpenStreetMap data based on intrinsic quality
indicators (FA 1189/3-1).
We acknowledge financial support by Deutsche Forschungsgemeinschaft
within the funding program Open Access Publishing, by the
Baden-Württemberg Ministry of Science, Research and the Arts and by
Ruprecht-Karls-Universität Heidelberg.

Availability of data andmaterials
OSHDB’s source code is accessible on GitHub: https://github.com/giscience/
oshdb. Compiled versions of OSHDB releases are available as maven packages
on https://repo.heigit.org. OSHDB data is available for download on https://
downloads.ohsome.org. Further documentation is available on https://docs.
ohsome.org.

Authors’ contributions
The authors worked collectively on the development of the OSHDB software
and this article. AZ initiated the project and contributed to the design goals of
the OSHDB. RT, LL and MA developed the OSHDB data model. MR and F-BM
designed and implemented the application programming interface. KP, SM
and FK performed the review of related work. The “Introduction” section was
written by MA, LL and SF. The “Related work” section is based on a literature and
software review by KP andwas written by FK and SM. The “Design goals” section
was written by SF, LL and MA. The “Overview” section was written by SM and

https://github.com/giscience/oshdb
https://github.com/giscience/oshdb
https://github.com/giscience/oshdb
https://repo.heigit.org
https://downloads.ohsome.org
https://downloads.ohsome.org
https://docs.ohsome.org
https://docs.ohsome.org

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3 Page 11 of 12

MR. The “Data model” section was written by RT and SF. The “Application
programming interface” section was written by F-BM (“Requirements” and “API
design” sections) and MR (“Implementation of the API” and “Requirements
revisited” sections). The “Discussion” section was written by MR. The
“Conclusions” section was written by MR. FBM and SF provided helpful
comments regarding all sections of this article. All authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 26 November 2018 Accepted: 6 March 2019

References
1. OpenStreetMap Wiki. https://wiki.openstreetmap.org. Accessed 13 Nov

2018.
2. Haklay M. How good is volunteered geographical information? A

comparative study of OpenStreetMap and Ordnance Survey datasets.
Environ Plann B. 2010;37(4):682–703. https://doi.org/10.1068/b35097.

3. Goodchild MF. Citizens as sensors: the world of volunteered geography.
GeoJournal. 2007;69:211–21. https://doi.org/10.1007/s10708-007-9111-y.

4. Mocnik F-B, Zipf A, Raifer M. The OpenStreetMap folksonomy and its
evolution. Geo-Spatial Inf Sci. 2017;20(3):219–30. https://doi.org/10.1080/
10095020.2017.1368193.

5. Arsanjani JJ, Barron C, Bakillah M, Helbich M. Assessing the quality of
OpenStreetMap contributors together with their contributions. In:
Proceedings of the AGILE. Leuven; 2013.

6. Mooney P, Corcoran P. The annotation process in OpenStreetMap. Trans
GIS. 2012;16(4):561–79. https://doi.org/10.1111/j.1467-9671.2012.01306.x.

7. OpenStreetMap Stats. https://osmstats.stevecoast.com/dashboard/ht/
total. Accessed 13 Nov 2018.

8. Neis P. OSMstats. https://osmstats.neis-one.org. Accessed 13 Nov 2018.
9. OSM tag history. http://taghistory.raifer.tech/. Accessed 13 Nov 2018.
10. Crowd Lense. http://sterlingquinn.net/apps/crowdlens. Accessed 13 Nov

2018.
11. Zverev, I. Who did it? http://zverik.openstreetmap.ru/whodidit/. Accessed

13 Nov 2018.
12. osm-deep-history. www.github.com/osmlab/osm-deep-history.

Accessed 13 Nov 2018.
13. Minghini M, Brovelli MA, Frassinelli F. An open source approach for the

intrinsic assessment of the temporal accuracy, up-to-dateness and
lineage of OpenStreetMap. ISPRS - Int Arch Photogramm Remote Sens
Spat Inf Sci. 2018;XLII-4/W8:147–54. https://doi.org/10.5194/isprs-
archives-XLII-4-W8-147-2018.

14. Roick O, Hagenauer J, Zipf A. OSMatrix — grid-based analysis and
visualization of OpenStreetMap. In: State of the Map Europe 2011. Vienna;
2011. p. 44–54.

15. Roick O, Loos L, Zipf A. A Technical Framework for Visualizing
Spatio-temporal Quality Metrics of Volunteered Geographic Information.
In: Geoinformatik 2012: Mobilität und Umwelt. Braunschweig; 2012.
p. 263–270.

16. OSM analytics. https://osm-analytics.org/. Accessed 13 Nov 2018.
17. Barron C, Neis P, Zipf A. A comprehensive framework for intrinsic

OpenStreetMap quality analysis. Trans GIS. 2014;18(6):877–95. https://doi.
org/10.1111/tgis.12073.

18. Sehra SS, Singh J, Rai HS. Assessing OpenStreetMap data using intrinsic
quality indicators: An extension to the QGIS processing toolbox. Future
Internet. 2017;9(2). https://doi.org/10.3390/fi9020015.

19. osmium. https://osmcode.org/docs.html. Accessed 13 Nov 2018.
20. Overpass API. https://github.com/drolbr/Overpass-API. Accessed 13 Nov

2018.
21. osm2orc. https://github.com/mojodna/osm2orc. Accessed 13 Nov 2018.
22. Oslandia. https://oslandia.com/en/?s=osm+data+classification. Accessed

13 Nov 2018.

23. Anderson J, Soden R, Anderson KM, Kogan M, Palen L. EPIC-OSM: A
software framework for OpenStreetMap data analytics. In: 49th Hawaii
International Conference on System Sciences (HICSS). Koloa: IEEE; 2016.
p. 5468–77. https://doi.org/10.1109/HICSS.2016.675.

24. Rehrl K, Gröchenig S. A framework for data-centric analysis of mapping
activity in the context of volunteered geographic information. ISPRS Int J
Geo-Inf. 2016;5(3):37. https://doi.org/10.3390/ijgi5030037.

25. OSMesa. https://github.com/azavea/osmesa. Accessed 13 Nov 2018.
26. Barrington-Leigh C, Millard-Ball A. The world’s user-generated road map

is more than 80% complete. PLoS ONE. 2017;12(8):0180698. https://doi.
org/10.1371/journal.pone.0180698.

27. Nasiri A., Ali Abbaspour R, Chehreghan A, Jokar Arsanjani J. Improving
the quality of citizen contributed geodata through their historical
contributions: The case of the road network in OpenStreetMap. ISPRS Int J
Geo-Inf. 2018;7(7):253. https://doi.org/10.3390/ijgi7070253.

28. Neis P, Zipf A. Analyzing the contributor activity of a volunteered
geographic information project ? the case of OpenStreetMap. ISPRS Int J
Geo-Inf. 2012;1(2):146–65. https://doi.org/10.3390/ijgi1020146.

29. Mooney P, Corcoran P. Analysis of interaction and co-editing patterns
amongst openstreetmap contributors. Trans GIS. 2014;18(5):633–59.
https://doi.org/10.1111/tgis.12051.

30. Yang A, Fan H, Jing N, Sun Y, Zipf A. Temporal analysis on contribution
inequality in openstreetmap: A comparative study for four countries.
ISPRS Int J Geo-Inf. 2016;5(1):5. https://doi.org/10.3390/ijgi5010005.

31. Gröchenig S, Brunauer R, Rehrl K. Digging into the history of vgi
data-sets: Results from a worldwide study on openstreetmap mapping
activity. J Locat Based Serv. 2014;8(3):198–210. https://doi.org/10.1080/
17489725.2014.978403.

32. Mocnik F-B, Mobasheri A, Zipf A. Open source data mining infrastructure
for exploring and analysing OpenStreetMap. Open Geospatial Data Softw
Stand. 2018;3(7). https://doi.org/10.1186/s40965-018-0047-6.

33. osm-history-renderer. https://github.com/MaZderMind/osm-history-
renderer. Accessed 8 Jan 2019.

34. osm2orc-blog. https://aws.amazon.com/blogs/big-data/querying-
openstreetmap-with-amazon-athena/. Accessed 13 Nov 2018.

35. Missing Maps Leaderboards. http://www.missingmaps.org/
leaderboards/. Accessed 13 Nov 2018.

36. Apache Software Foundation. Apache Ignite, a distributed database,
caching, and processing platform. 2018. https://ignite.apache.org/.
Accessed 13 Nov 2018.

37. OpenStreetMap Wiki, Elements page. https://wiki.openstreetmap.org/
wiki/Elements. Accessed 13 Nov 2018.

38. Dean J, Ghemawat S. MapReduce: Simplified data processing on large
clusters. In: Proc 6th Symp Oper Syst Des Implemen (OSDI). San Francisco;
2004. p. 137–50.

39. Chen R, Chen H, Zang B. Tiled-MapReduce: Optimizing resource usages
of data-parallel applications on multicore with tiling. In: Proc 19th Int Conf
Parallel Architectures Compilation Tech (PACT). Vienna: ACM; 2010.
p. 523–34.

40. Cary A, Sun Z, Hristidis V, Rishe N. Experiences on processing spatial data
with MapReduce. In: Winslett M, editor. Scientific and Statistical Database
Management (SSDBM). Lecture Notes in Computer Science, vol 5566.
Berlin: Springer; 2009. p. 302–19. https://doi.org/10.1007/978-3-642-
02279-1_24.

41. Wadler P. The essence of functional programming. In: Proc 19th ACM
SIGPLAN-SIGACT Symp Princ Program Lang. Albuquerque: ACM; 1992.
p. 1–14. https://doi.org/10.1145/143165.143169.

42. Open Geospatial Consortium, et al. OpenGIS implementation standard
for geographic information - simple feature access - part 1: Common
architecture. OpenGIS implementation standard. Document OGC.
2010;13–40.

43. Amdahl GM. Validity of the single processor approach to achieving large-
scale computing capabilities. In: AFIPS Conference Proceedings. Atlanic
City: ACM; 1967. p. 483–5. https://doi.org/10.1145/1465482.1465560.

44. Mocnik F-B. Linked open data vocabularies for semantically annotated
repositories of data quality measures. In: Proc 10th Int Conf Geogr Inf Sci
(GIScience). Melbourne: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik; 2018. p. 50:1–7. https://doi.org/10.4230/LIPIcs.GISCIENCE.
2018.50.

45. Mocnik F-B. OSM Measure Repository. 2018. https://osm-measure.geog.
uni-heidelberg.de/. Accessed 14 Nov 2018.

https://wiki.openstreetmap.org
https://doi.org/10.1068/b35097
https://doi.org/10.1007/s10708-007-9111-y
https://doi.org/10.1080/10095020.2017.1368193
https://doi.org/10.1080/10095020.2017.1368193
https://doi.org/10.1111/j.1467-9671.2012.01306.x
https://osmstats.stevecoast.com/dashboard/ht/total
https://osmstats.stevecoast.com/dashboard/ht/total
https://osmstats.neis-one.org
http://taghistory.raifer.tech/
http://sterlingquinn.net/apps/crowdlens
http://zverik.openstreetmap.ru/whodidit/
www.github.com/osmlab/osm-deep-history
https://doi.org/10.5194/isprs-archives-XLII-4-W8-147-2018
https://doi.org/10.5194/isprs-archives-XLII-4-W8-147-2018
https://osm-analytics.org/
https://doi.org/10.1111/tgis.12073
https://doi.org/10.1111/tgis.12073
https://doi.org/10.3390/fi9020015
https://osmcode.org/docs.html
https://github.com/drolbr/Overpass-API
https://github.com/mojodna/osm2orc
https://oslandia.com/en/?s=osm+data+classification
https://doi.org/10.1109/HICSS.2016.675
https://doi.org/10.3390/ijgi5030037
https://github.com/azavea/osmesa
https://doi.org/10.1371/journal.pone.0180698
https://doi.org/10.1371/journal.pone.0180698
https://doi.org/10.3390/ijgi7070253
https://doi.org/10.3390/ijgi1020146
https://doi.org/10.1111/tgis.12051
https://doi.org/10.3390/ijgi5010005
https://doi.org/10.1080/17489725.2014.978403
https://doi.org/10.1080/17489725.2014.978403
https://doi.org/10.1186/s40965-018-0047-6
https://github.com/MaZderMind/osm-history-renderer
https://github.com/MaZderMind/osm-history-renderer
https://aws.amazon.com/blogs/big-data/querying-openstreetmap-with-amazon-athena/
https://aws.amazon.com/blogs/big-data/querying-openstreetmap-with-amazon-athena/
http://www.missingmaps.org/leaderboards/
http://www.missingmaps.org/leaderboards/
https://ignite.apache.org/
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
https://doi.org/10.1007/978-3-642-02279-1_24
https://doi.org/10.1007/978-3-642-02279-1_24
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.50
https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.50
https://osm-measure.geog.uni-heidelberg.de/
https://osm-measure.geog.uni-heidelberg.de/

Raifer et al. Open Geospatial Data, Software and Standards (2019) 4:3 Page 12 of 12

46. Auer M, Eckle M, Fendrich S, Griesbaum L, Kowatsch F, Marx S, Raifer M,
Schott M, Troilo R, Zipf A. Towards using the potential of OpenStreetMap
history for disaster activation monitoring. In: Boersma K, Tomaszewski B,
editors. Proceedings of ISCRAM 2018 - 15th International Conference on
Information Systems for Crisis Response and Management. Rochester;
2018. p. 317–25.

47. Mocnik F-B, Raifer M. The effect of tectonic plate motion on
OpenStreetMap data. In: Proc 21st AGILE Conf Geogr Inf Sci. Lund; 2018.

48. Auer M, Eckle M, Fendrich S, Kowatsch F, Loos L, Marx S, Raifer M,
Schott M, Troilo R, Zipf A. Ohsome - eine Plattform zur Analyse
raumzeitlicher Entwicklungen von OpenStreetMap-Daten für intrinsische
Qualitätsbewertungen. AGIT J. 2018;4:162–7. https://doi.org/10.14627/
537647020.

49. ohsome API. https://api.ohsome.org/. Accessed 13 Nov 2018.
50. Dunning T, Ertl O. Computing Extremely Accurate Quantiles Using

t-Digests. 2017. https://github.com/tdunning/t-digest/. Accessed 13 Nov
2018.

https://doi.org/10.14627/537647020
https://doi.org/10.14627/537647020
https://api.ohsome.org/
https://github.com/tdunning/t-digest/

	Abstract
	Keywords

	Introduction
	Related work
	Implementation
	Design goals
	Overview
	Data model
	The OSM data model
	OSH entities
	Partitioning

	Application programming interface
	Requirements
	API design
	Implementation of the API
	Database backends
	Workload distribution
	Abstraction from data model to API views
	Aggregator classes

	Examples
	Requirements revisited

	Discussion
	Conclusions
	Availability and requirements
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	References

