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Abstract 

 

Glioblastoma multiforme (GBM) are the most common highly malignant and most devastating 

brain tumors, with a 5-year survival rate below 10%. Based on molecular-genetic factors, GBM 

are sub-grouped into four distinct genetic subclasses, namely Proneural, Neural, Classical and 

Mesenchymal based on subtype metagene score and aberrations in genes including 

PDGFRA/IDH1, EGFR, and NF1. Within a GBM tumor, microglia/macrophages make up the 

largest population of tumor-infiltrating cells, contributing to at least one-third of the total tumor 

mass. Glioma cells recruit and exploit microglia for their proliferation and invasion ability, and 

transform microglia into an anti-inflammatory, i.e. tumor-supportive, phenotype. 

Substantial evidence suggests that Sphingosine-1-phosphate (S1P), a pleotropic bioactive 

sphingolipid metabolite, is involved in glioma cell migration and invasion and functions as an 

important mitogen for glioma cells. S1P is formed inside the cell by two sphingosine kinases, 

SPHK1 and SPHK2. TCGA Analysis of the expression of Sphingosine Kinase 1 (SPHK1) in 

different subgroups of GBM revealed that SPHK1 expression correlated to poor survival 

outcome in GBM, among which the mesenchymal subtype showed the highest expression of 

SPHK1. Previous literature also suggested that the mesenchymal subtype showed a selective 

enrichment of microglia/macrophage- related genes. Thus, it was hypothesized that glioma-

derived S1P, the secretory metabolite of SPHK1, could play an important role in regulating the 

microglia/macrophage – glioma crosstalk.  

Using an iBidi Culture-Insert 3-well co-culture system, primary murine microglia co-cultured 

with glioma cells overexpressing human SPHK1, displayed an enhanced expression of pro-

tumorigenic related microglial genes, as shown by an increased mRNA expression of Arginase 1 

(Arg1) and Macrophage scavenger receptor 1 (Msr1). The selective inhibition of SPHK1 by the 

small-molecule inhibitor SKI-II, or knockdown of SPHK1 in glioma cells, inhibited the pro-

tumorigenic phenotype of microglia, as shown by a decreased mRNA expression of Arg1 and 

Msr1, decreased production of IL-10 and significant increased production of pro-inflammatory 

cytokines such as TNFα and IL-6. Furthermore, inhibition of SPHK1 in gliomas also resulted in 

decreased activation of key signaling events that regulate anti-inflammatory phenotype, with 
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subsequent activation of pro-inflammatory pathways in microglia/ macrophages. Inhibition of 

the sphingosine 1-phosphate receptors by FTY720 also shifted the activation state of microglia 

towards a pro-inflammatory phenotype. 

In addition, S1P regulated the microglial phenotype by altering NF-κB signaling, a key pro-

inflammatory pathway. S1P was able to reduce LPS induced pro-inflammatory polarization of 

microglia, by inhibiting the NF-κB pathway. S1P abrogated the LPS induced M1 phenotype via 

signaling through S1PR1 and activation of the non-canonical TLR4 pathway, possibly via 

activation of the TBK1/ IRF3 signaling. In summary, these results support the role of glioma-

secreted S1P in maintaining the anti-inflammatory phenotype of microglia that promotes tumor 

progression and invasion. 

  



ix 
 

Zusammenfassung 

 

Glioblastoma multiforme (GBM) sind die häufigsten hochmalignen und verheerendsten 

Hirntumoren mit einer 5-Jahres-Überlebensrate unter 10%. Basierend auf molekulargenetischen 

Faktoren werden GBM in vier verschiedene genetische Subklassen eingeteilt, nämlich Proneural, 

Neural, Classical und Mesenchymal, basierend auf Subtyp-Metagene-Score und Aberrationen in 

Genen, einschließlich PDGFRA / IDH1, EGFR und NF1. Innerhalb eines GBM-Tumors bilden 

Mikroglia / Makrophagen die größte Population von Tumor-infiltrierenden Zellen, dieses beträgt 

mindestens ein Drittel der gesamten Tumormasse. Gliomzellen rekrutieren und nutzen Mikroglia 

für ihre Proliferations- und Invasionsfähigkeit und transformieren Mikroglia in einen 

entzündungshemmenden, d. h. tumorunterstützenden Phänotyp.Wesentliche Hinweise legen 

nahe, dass Sphingosin-1-phosphat (S1P), ein pleiotroper, bioaktiver Sphingolipid-Metabolit, an 

der Migration und Invasion von Gliomzellen beteiligt ist und als wichtiges Mitogen für 

Gliomzellen fungiert. S1P wird in der Zelle von zwei Sphingosinkinasen, SPHK1 und SPHK2, 

gebildet. Die TCGA-Analyse der Expression der Sphingosinkinase 1 (SPHK1) in verschiedenen 

Untergruppen von GBM zeigte, dass die SPHK1-Expression mit einem schlechten Überlebens-

Ergebnis in GBM korrelierte, wobei der mesenchymale Subtyp die höchste Expression von 

SPHK1 zeigte. Frühere Literatur deutete auch darauf hin, dass der mesenchymale Subtyp eine 

selektive Anreicherung von Mikroglia / Makrophagen-verwandten Genen zeigte. Daher wurde 

die Hypothese aufgestellt, dass Gliom-abgeleiteter S1P, der sekretorische Metabolit von SPHK1, 

eine wichtige Rolle bei der Regulierung des Mikroglia / Makrophagen-Gliom-Übersprechens 

spielen könnte. 

Unter Verwendung eines iBidiKultur-Insert-3-Well-Co-Kultursystems zeigten primäre 

murineMikroglia, die mit Gliomzellen, die humanes SPHK1 überexprimieren, co-kultiviert 

wurden, eine verstärkte Expression von pro-tumorigenen verwandten Mikroglia-Genen, wie 

durch eine erhöhte mRNA-Expression von Arginase 1 ( Arg1) und Makrophagen-Scavenger-

Rezeptor 1 (Msr1) gezeigt wurde. Die selektive Hemmung von SPHK1 durch den 

niedermolekularen Inhibitor SKI-II oder die Depletion von SPHK1 in Gliomzellen hemmte den 

pro-kanzerogenen Phänotyp von Mikroglia, wie durch eine verminderte mRNA-Expression von 

Arg1 und Msr1 gezeigt wurde, verringerte die Produktion von IL-10 und erhöhte signifikant die 
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Produktion von proinflammatorischenCytokinen wie TNFα und IL-6. Darüber hinaus führte die 

Hemmung von SPHK1 in Gliomen auch zu einer verminderten Aktivierung von 

Schlüsselsignalereignissen, die den entzündungshemmenden Phänotyp regulieren, mit 

anschließender Aktivierung proinflammatorischer Signalwege in Mikroglia / Makrophagen. Die 

Hemmung der Sphingosin-1-Phosphat-Rezeptoren durch FTY720 verschob auch den 

Aktivierungszustand von Mikroglia in Richtung eines proinflammatorischen Phänotyps.Darüber 

hinaus regulierte S1P den mikroglialen Phänotyp durch Veränderung der NF-κB-Signalgebung, 

einem wichtigen entzündungsfördernden Signalweg. S1P war in der Lage, die LPS-induzierte 

proinflammatorische Polarisation von Mikroglia durch Hemmung des NF-κB-Signalwegs zu 

reduzieren. S1P verhinderte den LPS-induzierten M1-Phänotyp durch Signalgebung durch 

S1PR1 und Aktivierung des nicht-kanonischen TLR4-Wegs, möglicherweise über die 

Aktivierung der TBK1 / IRF3-Signalisierung. Zusammenfassend unterstützen diese Ergebnisse 

die Rolle von Gliom-sekretiertem S1P bei der Aufrechterhaltung des anti-inflammatorischen 

Phänotyps von Mikroglia, der die Tumorprogression und -invasion fördert. 
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1. Introduction 

1.1 Glioblastoma multiforme 

Malignant glioblastoma are highly aggressive types of brain tumors in the central nervous system 

and account for almost 80% of all malignant brain neoplasms
1
. These include tumors generally 

associated with cytologically malignant, mitotically active, necrotic-prone neoplasms typically 

associated with rapid pre- and postoperative disease evolution and a fatal outcome
2
. As of today 

no successful treatment exists, offering GBM patients an average survival time of about 12-15 

months after diagnosis, despite surgical tumor resection, radio-, and chemotherapy
3
.  

The rationales for failure of GBM treatment are diverse. One feature of GBM is the highly 

invasive growth pattern into the brain parenchyma which prevents complete surgical resection of 

the tumor. Even though GBM can be visualized using a high contrast MRI to identify tumor 

lesions, tumor cells migrate deep into the brain parenchyma and far beyond, making it difficult to 

detect by MRI. Recurring GBM after surgical resection often re-emerge close to the region of the 

resected primary tumor, but also at locations distant from the original tumor location and can 

cross over to the contra-lateral hemisphere
4
. Another cause for the failure of treatment is the 

genetic and cellular inter- and intra-tumor heterogeneity of GBMs
5–7

.  

The 2016 World Health Organization (WHO) classification of tumors of the central nervous 

system classified CNS tumors based on molecular parameters, in addition to previously 

incorporated histological features of the tumor
8
. The new classification restructured the 

identification of malignant glioblastoma (GBM), which currently includes both the genotype 

(Isocitrate dehydrogenase 1, IDH1 mutation status) and phenotype in diagnosing these tumors. 

GBM are classified based on genotype either as IDH wildtype (about 90% of cases), IDH 

mutant, or NOS (for which IDH evaluation has to be performed) 
8,9

. Additionally epitheloid 

glioblastoma has been introduced as a new variant, while the adenoid, granular cell, metaplastic, 

heavily lipidized glioblastoma, and glioblastoma with a primitive neuronal component has been 

included as new patterns
8,9

. 

Despite being morphologically similar, different GBM tumors result in different outcomes that 

are partially defined by various tumor molecular fingerprints
10

. Based on global DNA 

methylation patterns of glioblastoma, adult GBM could be subdivided into three distinct 
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epigenetic subgroups, one among these that correlated to mutations in IDH1 gene
10

. The IDH1 

mutation is a gain of function modification that results in production of a novel onco-metabolite, 

2-hydroxyglutarate (2HG) that hampers the normal cellular methylation machinery that 

consequently leads to an increased global methylation called CpG island methylator phenotype 

(CIMP). Likewise, gene expression profiling of GBM identified four distinct subgroups of GBM, 

named Proneural, Neural, Classical and Mesenchymal
5,10

. Tumors with IDH1 mutation and 

CIMP
+
 tumors can be segregated into the proneural expression profile, while other proneural 

subtypes are characterized by abnormalities in platelet derived growth factor receptor alpha 

(PDGFRA)
7,10

. The classical subgroup is characterized by mutation of epidermal growth factor 

receptor (EGFR), and the mesenchymal tumors characterized by neurofibromin (NF1) 

mutations
7
.  

Recent studies have shown that the mesenchymal subtype of GBMs display a high degree of 

necrosis, and a higher microglia/ macrophage infiltration, emphasizing the role of tumor 

microenvironment in strongly influencing both transcriptional regulators and gene expression 

class
7,11,12

.  

1.2 Brain tumor microenvironment 

The tumor microenvironment (TME) consists of many different non-tumorigenic cells in 

addition to tumor cells that include endothelial cells, pericytes, fibroblasts, and immune cells. 

While normal brain is considered to be an ―immune-privilege‖ organ in the body, the 

microenvironment in the brain has distinctive features that distinguish them from other organs of 

the brain 
13

. These important features include a unique composition of the extra-cellular matrix 

(ECM), characteristic tissue-specific resident cell types including microglia, astrocytes, neurons, 

and a blood brain barrier (BBB) that protects the brain from invading pathogens, circulating 

immune cells and factors within the blood
13,14

. However, in certain brain tumors, the BBB is 

often compromised leading to infiltration of several immune cell types from the peripheral blood. 

Moreover, recent studies have challenged the understanding of immune privilege, where it has 

been illustrated that CNS possess a functional lymphatic system within the meninges, and CNS-

derived antigens can stimulate an immune response in the cervical lymph nodes
13,14

. 
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1.2.1 Endothelial cells 

The tumor vasculature, formed by the interaction of endothelial cells, astrocytes, and pericytes, 

has distinctive functions in the tumor (Figure 1). The vasculature connects the tumor to the 

blood systems supplying it with nutrients and oxygen
3
. GBM tumors often exhibit high 

microvascular proliferation and abnormal angiogenesis frequently found in surrounding areas of 

pseudopalisading necrosis, and is often characterized by a response to hypoxia in the neoplastic 

microenvironment
15

. Multiple angiogenic pathways are upregulated in tumor cells, mediated in 

part by hypoxia, but also in stromal cells
3
. Several studies demonstrate multiple interactions/ 

crosstalk between glioma and endothelium, which involves important pathways such as VEGF 

signaling and Ang1/Tie2 signaling axis
15

. Secondly, the vasculature also constitutes a specialized 

niche for the glioma initiating stem-like cells, the so-called perivascular niche, suggesting that 

perivascular stem cell niches play a significant role in brain tumor pathology
16

. 

1.2.2 Astrocytes 

Astrocytes, the most abundant member of the glial family are found within and around tumors 

and have been shown to play important role in the CNS response to tumor growth
17

. In the 

healthy brain astrocytes play an integral role in providing structural support to neurons, 

participating in synaptic activity and neurotransmitter uptake, supplying nutrition, as well as a 

role in the formation and maintining the structural integrity of the BBB
17,18

. Astrocytic end-feet 

processes form a network of fine lamellae ensheathing endothelial cells, thus maintaining a 

contact with pericytes through the basal lamina and forming the neurovascular unit with 

neurons
18,19

. Using gap junctions, multiple astrocytes can connect to larger networks and 

transport molecules, such as nutrients from blood vessels to neurons
20

. 

Upon brain damage or disease (such as GBM), astrocytes actively respond by altering their 

morphology and transcriptional profile, a process termed reactive astrogliosis that lead to the 

breakdown of the BBB and increased vascular permeability
17

. Reactive astrocytes can proliferate 

and secrete different factors that promote glioma growth and brain metastases
17,20

. The tumor 

cells establish functional gap junctions with astrocytes and reprogram them by providing 

cGAMP to induce a pro-inflammatory phenotype, characterized by production of various 

cytokines (for e.g. IFN-α and TNFα). Consecutively, these cytokines promote metastases by 

stimulating STAT1 and NF-κB signaling in tumor cells (Figure 1)
13

. Reactive astrocytes in 
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glioma also secrete stromal-derived factor 1 (SDF1), which can cause increased glioma cell 

proliferation and have been found to mediate glioma cell invasion by the activation of matrix 

metalloproteinase (MMP) 9
21,22

. A gene expression profiling of glioma-associated astrocytes 

revealed that these cells express potential pro-tumorigenic genes such as Spp1, Ctgf, and Vgf
23

. 

1.2.3 Dendritic cells 

Dendritic cells, the myeloid- derived antigen presenting cells (APCs) put forward tumor antigens 

to T cells stimulating an anti-tumor immune response. These responses can be further enhanced 

by factors that are secreted by tumor cells into the microenvironment, such as reactive oxygen 

species (ROS) or danger-associated molecular patterns (DAMPs)
13,24

. These anti-tumor immune 

responses orchestrate antigen-specific responses by activating CD4
+
 helper T cells and CD8

+
 

effector T cells
24

. Increased invasion of CD8
+
 effector T cells into the tumor tissue has been 

correlated with prolonged survival in patients
25

. However, several studies have shown that 

numbers of CD4
+
 and CD8

+
 T cells are decreased in high-grade glioma, and that these cells show 

abnormal and decreased functionality
26

. In turn, studies have shown that glioma grade positively 

correlates with the numbers of infiltrating regulatory T cells (Tregs) and that depletion of CD8
-

/CD4
+
/FoxP3

+
Tregs from experimental gliomas resulted in increased survival of mice

27
. These 

cells have been implicated in participating in the establishment of an immunosuppressive milieu 

and preventing correct activation of immune cells, such as macrophages/monocytes and CD4
+
 or 

CD8
+ 

T cells
27

. 

The majority of invading immune cells within brain tumors are microglia/ macrophages, which 

will be described more in detail later
28,29

. As opposed to initial thoughts that brain tumors were 

considered protected from immune surveillance by BBB, recent studies showed that activated 

immune cells cross the leaky BBB that is disrupted by the tumor
30

. Among other immune cells 

that invade the tumor, neutrophils also play an important role in gliomagenesis. Neutrophils have 

been shown to promote glioblastoma progression and chemoresistance by causing increased 

expansion of the glioma stem cell niche via upregulation of S1004A in tumor cells
31

.   
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Figure 1: The brain tumor microenvironment encompasses various cell types harboring diverse 

phenotypes and functions.  

Brain tumors are made up of diverse cell types. They can be grouped into peripherally-derived immune 

cells (lymphocytes, macrophages, neutrophils and dendritic cells) and specialized organ-resident cell 

types (microglia, astrocyes). Depending on the affected tissue, local positioning within tumors and disease 

stage, the cells in the TME can feature different activation states that are able to exert pro-tumoral or anti-

tumoral activities. (Image is adopted and modified from Quail and Joyce, 2017)
13. 

 

1.3 Microglia in the CNS 

Like resident macrophages that function as the first responders to injury or infection in various 

tissues of the body, microglia and perivascular macrophages (PVM) represent the resident tissue 

macrophages of the CNS
32

. Microglia are glial origin, yolk-sac derived, monocyte-lineage cells 

that function as key immune regulators in the central nervous system (CNS), and play a crucial 

role in normal functioning and maintenance of the CNS
33

. They constitute about 10% of the CNS 

cells in the brain and spinal cord where they form a unique three-dimensional lattice, in which 
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individual microglial cells occupies it own defined territory
34

. Microglia are highly ramified cells 

that are under constant surveillance by extending its fine motile extensively branched processes, 

to detect and respond to extracellular signals by altering their morphology and phenotype, 

thereby maintaining brain homeostasis
32,34

. 

Microglia were originally identified by Franz Nissl in 1899, but later and characterized by Pio 

del Rio-Hortega in 1919
35

. Rio-Hortega conceptualized the definition of microglia, which were 

published in ―Cytology and Cellular Pathology of the Nervous System‖, edited by Wilder 

Penfield in 1932
36,37

. He identified several key functions of microglia, formulated through a 

series of studies published in the early 1920s where he identified micrgoglial cells using a 

modified silver carbonate impregnation (Figure 2)
37

. His findings stated the following: 1) 

microglia enter the brain during early development. 2) microglial cells are of mesodermal origin 

(known today to originate from primitive yolk-sac derived macrophages
38

) and present an 

amoeboid morphology. 3) They utilize the blood vessels and the shit matter tracts as migrating 

tracts to enter different regions of the brain. 4) In mature brains, they transform into a branched, 

ramified morphology (known today as resting or M0 microglia
38

), and respond to external 

stimuli and pathological events by undergoing morphological and phenotypical transformation 5) 

They occupy their own unique defined territory in the brain, and are dispersed throughout the 

entire brain. 6) These cells have the ability to migrate, proliferate and phagocytose (Figure 

2)
36,37

.       
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Figure 2: Identification and characterization of microglia 

(A) An image of ramified microglial cells as illustrated by Rio-Hortego. (B) Evolution of microglia 

during its phagocytic activity. A, cell with thick wall, rough prolongations; B, cells with short 

prolongation and enlarged cell body; C, hypertrophic cell with pseudopodia; D and E, amoeboid and 

psuedopodic forms; F,  cell with phagocytosed leukocyte; G, cell with numerous phagoctosed 

erythrocytes; H, fat-granule cell; G, cell in mitotic division. (Image is adopted and modified from 

Kettenmann et al, 2011
37

). 

 

1.3.1 Activation/ polarization states of microglia 

As previously observed by Rio-Hortega, microglia exists in a resting and a complex activation 

state
37

. Although microglia are described ‗resting‘, they are constantly in active surveillance 

randomly scanning their neighboring domains even in its native state, by forming finger-like 

protrusions which can grow and shrink by 2-3 μm/min
35,39,40

. The resting state (also called M0 
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phenotype) is differentiated by low expression of macrophage-related surface markers, such as 

major histocompatibility markers (MHCII) and CD45
41

. 

Microglia transform into an ‗activation‘ state following a neuronal insult, such as ischemia, 

infection and trauma, or in the presence of inflammatory mediators, by which they lose their 

ramified morphology and assume an amoeboid form
35,41

. Depending on the type of external 

stimuli it encounters, this activated state can be broadly classified into two individual states of 

microglia, namely the classical activation (M1 phenotype) and alternative activation (M2 

phenotype).  

1.3.1.1 Classical activation of microglia 

Classical activation represents a pro-inflammatory reaction that mediate inflammatory tissue 

damage, which is triggered by pro-inflammatory agents such as lipopolysaccharide (LPS) and 

interferon gamma (IFN-γ) (Figure 3)
42,43

. M1 activated microglia produce reactive oxygen 

species as a result of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 

activation (respiratory burst), and increased production of proinflammatory cytokines such as 

tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6) and interleukin 1 beta (IL-1β)
44,45

.  

M1 cells also elicit the activation of the pathogenic Th1 subset and Th17 subset polarizations that 

promote cellular immune function and cause inflammation and autoimmune diseases, such as 

inflammatory bowel disease and collage-induced arthritis
46,47

. The production of 

proinflammatory IL-12 promotes Th1 effector cell differentiation, IL-23 is important for constant 

IL-17 expression, an important cytokine associated with increased levels of polymorphonuclear 

leukocyte (PMN) recruitment, which is ultimately results in the differentiation of pathogenic 

Th17 cells
47,48

. Toll like receptors (TLR) and C-type lectin receptors (CLR) on microglia respond 

to secreted inflammatory signals, triggering the expression of target genes through activation of 

signaling cascades including NF-κB, JNK, ERK1/2 and p38
47

.  

1.3.1.2 Alternative activation of microglia 

On the contrary, alternative activation of microglia represents the anti-inflammatory phenotype 

(also called M2 phenotype) that mediates allergic, cellular and humoral responses to parasitic 

and extracellular pathogens. Initially alternatively activated microglia/ macrophages were 

classified based on expression of the mannose receptor (CD206); but since then a number of 
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studies have identified an assortment of different markers representing an M2 specific 

phenotype
35,42

. Among the most characterized and described markers is the enzyme arginase 1 

(Arg1) that converts arginine to polyamines, proline, and ornithines that consequently leads to 

wound healing and matrix deposition
48

. Strikingly, Arg1 competes with iNOS that also utilizes 

arginine as its substrate to produce nitric oxide
48

. Thus upon alternative activation by IL10 or IL-

4/IL-13, Arg1 can effectively inhibit the activity of iNOS consequently leading to the decreased 

production of nitric oxide and thereby resulting in a suppression of M1 phenotype. Thus, the 

expression of iNOS vs Arg1 determines the fate of microglia/ macrophages, thereby providing a 

relatively simpler technique to distinguish M1 and M2 phenotypes. Other markers used for 

describing M2 cells include Ym1, a heparin-binding lectin, FIZZ1, which promotes deposition of 

extracellular matrix, and CD206. Although alternative microglia/ macrophages are represented 

with these specific subset of markers, it provides only an over-simplification of the overall 

diversity of M2 phenotypes
42,49

. 

An alternative approach to categorize the function and phenotype of M2 cells is on the basis of 

the cytokines that induce them. The prototypical cytokine IL-4 was initially described as the 

mediator of alternative activation. Microglia/ macrophages that respond to both IL-4 and the 

closely related cytokine IL-13 has been classified as ‗M2a‘, that mainly function to suppress 

inflammation and show increased phagocytic activity and production of growth factors such as 

insulin growth factor-1 (IGF-1) and IL-10 (Figure 3). IL-4 and IL-13 signal through IL-4Rα 

potentially leading to anti-inflammatory functions, such as Arg1 upregulation, inhibition of NF-

κB isoforms, and production of scavenger receptors for phagocytosis
38,42,49

. 

M2b, the type II alternative activation is induced following exposure to immunoglobulin Fc 

gamma receptors (FcγRs) (CD16, CD32 or CD64) and immune complexes on LPS or IL-1β 

primed microglia/ macrophages (Figure 3). Although they do not express the classical markers 

of the alternative activation, such as Arg1, FIZZ1 and Ym1, they display an IL-10
High

, IL-12
Low

 

M2 cytokine profile, along with increased HLA-DR expression, elevated levels of MHCII, CD32 

and CD86. These attributes has been associated with increased phagocytic activity and their 

ability to stimulate T cells towards a Th2 response, suggesting that M2b might be a potential 

regulator or initiator of the M2 response in general
38,42,49

.  
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The third state of alternative activation classified as ‗M2c‘ (acquired deactivation) is based on 

exposure of IL-10, glucocorticoids, or transforming growth factor beta (TGF-β) to 

microglia/macrophages (Figure 3). This results in increased expression of TGF-β, sphingosine 

kinase 1 (SPHK1) and CD163. Although described as a ‗deactivated‘ state, they seem to be 

involved in tissue remodeling and matrix deposition after inflammation has been 

suppressed
38,42,49

. One additional type of M2 activated type, the so-called tumor-associated 

microglia/ macrophage, will be described in detail below. 

 

 

Figure 3: Distinct activation states of microglia/ macrophages.  

Microglia/ macrophages can be transformed into proinflammatory (M1), or into immunosuppressive (M2) 

phenotype. Stimuli are received from the microenvironment, either by surrounding lymphocytes and other 

immune cells, or by microbial products when the tissue encounters a damage or infection. In turn, 

microglia/ macrophages respond by transcriptional activation of specific set of genes and secretion of 

cytokines and chemokines. IC, immune complexes; APC, apoptotic cells; Gluc, glucocorticoids. (Image is 

adopted and modified from Duque et al., 2014)
48

. 
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1.3.2 Microglia/ macrophages in malignant gliomas 

Within a glioma, brain-resident microglia and peripheral macrophages constitute the largest 

population of tumor-infiltrating cells, contributing at least up to 30% of the cells in the tumor 

tissue
16,50–52

. These glioma-associated microglia/ macrophages (GAMs) accumulate both around 

intact glioma tissue and necrotic areas, and their abundance establishes a microenvironment that 

influences glioma proliferation and invasiveness
50,53

. One study stated that depletion of microglia 

using clodronate-loaded liposomes resulted in glioma growth and invasion, in an ex-vivo 

organotypic brain slice culture model
54

. Consequently, these results were further validated in-

vivo using a transgenic mice model that expresses the herpes simplex virus thymidine kinase 

gene specifically expressed on Cd11b
+
 microglial cells (CD11b-HSVTK mice), that when treated 

with ganciclovir results in microglia depletion
55

. Tumor-bearing mice depleted of microglia and 

reconstituted with wildtype bone marrow (that resulted in reduction in microglial population by 

30%) collectively diminished glioma growth, suggesting that microglia possess pro-tumorigenic 

functions and actively support tumor growth
55

.    

GAMs also play an important role in promoting glioma cell invasion by the degradation of the 

extracellular matrix (ECM), support tumor angiogenesis, and mediate an immunosuppressive 

milieu
51,53,55

. Microglia exploit the membrane type 1 matrix metalloproteases (MT1-MMP), a 

potent membrane-inserted proteinase that is involved in focal degradation of the ECM (Figure 

4)
55,56

. MT1-MMP expression is upregulated in microglial cells in presence of glioma cells, 

while MT1-MMP deficient tumor-bearing mice impaired glioma growth resulting in 

substantially smaller tumors 
55

. GAMs also affect tumor angiogenesis and indirectly influence 

tumor growth. Signaling through the receptor for advanced glycation end product (RAGE), a 

membrane protein that binds glycosylated macromolecules is important for the process
57

. RAGE 

ablation reduces angiogenesis, by downregulating the expression of VEGF, an important pro-

angiogenic factor that prevented normal vessel formation. These effects were rescued when 

reconstituted with wild-type microglia or macrophages in RAGE deficient mice that resulted in 

normalized tumor angiogenesis
57

. 

GAMs synthesize and release various factors that promote glioma proliferation and/or migration 

(Figure 4). Microglia secretes stress-inducible protein 1 (STI1, a cell surface ligand for cellular 

prion (PrP(C)) that promoted the proliferation and migration of glioma through the activation of 
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MMP-9 in a (PrP(C)) dependent manner
58

. Likewise, microglia also secretes TGF-β that 

enhances glioma growth, invasion, angiogenesis and immunosuppression
59

. Additionally, 

glioblastoma and microglial interactions mediated through epidermal growth factor receptor 

(EGFR) and colony stimulating factor 1 receptor (CSF-1R) enhanced glioblastoma invasion
60

. 

Interestingly, two independent studies showed that blockade of CSF1R by PLX3397 or BLZ945, 

both blood penetrable drugs blocked glioma progression, and suppressed the pro-tumorigenic 

phenotype of microglia
60,61

. CSF-1, the ligand secreted by glioma cells, and responsible for 

activation of the CSF-1R signaling in microglia, function as an important chemoattractant for 

GAMs. Similarly, CCL2 is another chemoattractant released by glioma cells, which activates the 

CCL2 Receptor signaling in microglia, resulting in secretion of IL-6 and thereby promoting 

glioma invasiveness (Figure 4)
60

.  

GAMs determine its effects on glioma proliferation based on its molecular profile and 

phenotypic status. As previously described states of microglia being predominantly M1 (classical 

activation) or M2 (alternative activation), several studies show that microglia/macrophages 

induce an M2 phenotype when it encounters glioma cell
53–55,62

. GAMs acquires the M2 

phenotype by upregulating several pro-tumorigenic or immunosuppressive markers such as 

increased production of anti-inflammatory molecules (e.g. TGF-β1, ARG1, and IL-10), and 

molecules supporting tissue remodeling and angiogenesis (e.g. VEGF, MMP2, MMP9, and 

MMP14)
63

. Peripheral blood mononuclear cells (PBMCs) harvested from either normal or 

glioma patients acquired an immuno-suppressive phenotype (M2)
64

. These included reduced 

expression of CD14, increased expression of anti-inflammatory cytokine IL-10 and TGF-β, and 

increased phagocytic activity
64

. Similarly, glioma cancer stem cells (gCSCs) conditioned media 

polarized microglia toward an M2 phenotype, as exhibited by reduced phagocytic activity, 

increased secretion of IL-10 and TGF- β, and decreased ability to stimulate T-cell proliferation
65

. 

Conversely, GAMs also display M1 characteristics that produce pro-inflammatory molecules, 

such as TNFα, IL1β, and CXCL10
63,66

. Interestingly, a study showed that IL-6 deficient mice 

displayed reduced glioma growth, and microglial IL-6 is upregulated by glioma stem cells and 

not from the bulk tumor
67

. The exact mechanisms of glioma-microglia/macrophage interaction 

still remain unresolved.     
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Current glioma therapies, such as surgery, chemo-, and radiotherapy, that directly target the 

tumor cells, have failed due to several reasons, such as the highly invasive growth, radio- and 

chemo-resistance of glioma-initiating cells, and the cellular and genetic inter- and intra-tumor 

heterogeneity
5,68,69

. In this light, GAMs might serve as a potential target for future anti-glioma 

therapies. A recent study showed that inhibition of microglia activity by minocycline extended 

the survival of glioma bearing miceby suppressing TLR2 mediating signaling and subsequent 

MMP9 expression
70

. In conclusion, these studies highlight the possibility of targeting the 

immune fraction within the tumor and could provide novel therapeutic approaches for glioma 

therapy. 

 

 

Figure 4: The role of tumor associated microglia/macrophages (TAMs) under the influence of glioma. 

(a) TAMs synthesize and release various factors that promote glioma proliferation and/or invasion. (b) 

Microglia secretes TGF-β, which promotes the glioma cells to secrete Pro-MMP2, which is then cleaved 

into active MMP2 by microglia-expressed MT1-MMP. Microglia induces the expression of MT1-MMP 

by secretion of versican from glioma cells. Versican activates TLR2 and p38- MAPK signaling in 

microglial cells, which leads to expression of MT1-MMP on microglial cells. TLR2 signaling in 

microglia also initiates MMP9 secretion. (Image adapted and modified from Hambardzumyan et al., 

2016)
71

. 
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1.4 TLR4 activation upon LPS stimulation 

Among several pathways that regulate the pro-inflammatory phenotype of microglia/ 

macrophages, TLR4 signaling plays an important role in response of these immune cells to 

pathogens. Briefly, upon ligand binding at the cell surface, TLR4 receptors homodimerize and 

undergo conformational changes. This results in the recruitment of TIR-domain-containing 

adapter molecules to the cytoplasmic face of TLR4 through homophilic interactions between the 

TIR-domains
72

. There exists four TIR-domain-containing adapter molecules associated to two 

divergent signaling cascades known to mediate TLR4 signaling: Myeloid differentiation factor 

88 (MyD88); MyD88-adapter-like (Mal) protein, also known as TIR-domain-containing adapter 

protein (TIRAP); TIR-domain-containing adapter inducing interferon-β (TRIF); TRIF-related 

adapter molecule (TRAM). TLR4 necessitates all four of these adapters to elicit an immune 

response
72,73

. 

TLR4 activation engages two distinct intracellular signaling pathways: (i) the TIRAP–MyD88 

dependent pathway, which triggers early NF-κB activation and induction of proinflammatory 

cytokines, such as IL-12; and (ii) the TRIF–TRAM pathway, which induces the activation of the 

interferon regulatory factor-3 (IRF3) transcription factor that consequently leads to the 

subsequent expression of type I interferons (IFNs) and the anti-inflammatory cytokine (IL-

10)
72,74

. The majority of the LPS induced activation of TLR4 signaling is mediated via the 

MyD88-dependent pathway, resulting in a coordinated transcriptional activation of 

proinflammatory cytokines and chemokines, such as production of TNF, which in cooperation 

with IFNγ in an autocrine manner triggers the microglial proinflammatory population
75

. 

Conversely, the MyD88-independent pathway requires the inactivation of p110δ of the 

phosphatidylinositol-3-OH kinase (PI(3)K) resulting in the induction of dendritic cell (DC) 

maturation resulting in the expression of IFNs and IL-10
74,76

. The TRIF-dependent pathway also 

stimulates TNF-α production and secretion, subsequently leading to late phase NF-κB activation 

through IRF3 and TNF-α secretion
72

. 

The LPS mediated stimulation of TLR4 signaling results in the activation of several 

transcriptional factors that can be broadly classified into three subgroups
77

. The first category 

consists of transcriptional factors that are constitutively expressed and stimulated by signal-

dependent post-transcriptional modifications. In basal conditions, these transcription factors exist 
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in the cytoplasm, and signal-dependent activation results in their translocation to the nucleus. 

This class (class I) includes proteins that play an important role in inflammation, such as NF-kB, 

IFN-regulatory factors (IRFs), and cAMP-responsive-element-binding protein 1 (CREB1)
77,78

.  

The second category of transcription factors (class II) are induced during the initial response to 

LPS. These transcription factors, such as CCAAT/enhancer-binding protein δ (C/EBPδ) control 

the gene expression of other important cytokines during the secondary response to LPS that lasts 

over an extended period of time
77,78

. The third category of transcription factors (class III) 

involves the expression of lineage-specific transcriptional regulators that are stimulated during 

microglia differentiation. These include PU.1 and C/EBPβ, runt-related transcription factor 1 

(RUNX1) and IRF8 that arbitrate cell type-specific responses to inflammatory signals by 

inducing a chromatin state on microglia-specific inducible genes
77,78

.  

LPS dependent transcriptional activation of genes also depends on coregulators, including 

coactivators and corepressors, which are transcriptional regulators that are specifically to their 

target genes. Several of these coregulators possess histone-modifying features that result in 

chromatin remodeling at site-specific target gene promoters, that  include phosphorylation of 

histone 3 at serine 10, which facilitate in recruitment of NF-kB to specific inflammatory genes, 

deubiquitination of histone 2A at lysine 119, which inhibit a specific subset of LPS- inducible 

genes
79

, and demethylation of trimethylated histone 3 at lysine 27, a requirement for the 

stimulation of specific inflammatory genes
80

. 

1.5 Sphingosine 1-phopshate signaling 

Sphingolipids are ubiquitous components of the lipid bilayer of eukaryotic cells whose 

metabolism is regulated by numerous signaling molecules, including ceramide (N-acyl 

sphingosine), sphingosine, and sphingosine 1-phosphate (S1P)
81

. Sphingosine 1-phosphate 

(S1P), a pleiotropic bioactive lipid is derived from Sphingosine, an eighteen carbon amino-

alcohol with an unsaturated hydrocarbon chain that forms the backbone of most 

sphingolipids
82,83

. Sphingosine was named in 1884 by J.L.Thudichum after the Greek 

mythological creature, the Sphinx owing to their enigmatic nature
84

. Initially, S1P was thought to 

be produced by cells solely as an intermediate aiding in the exit of sphingosine from cells, by the 

phosphorylation and subsequent degradation of sphingosine to S1P, but since its discovery 

several studies have indicated that S1P plays an important role in regulating cell growth
85

, 
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intracellular calcium motility
86

, suppressing programmed cell death
87

, and controlling a plethora 

of significant physiological and pathophysiological processes
82

. S1P and its homologous 

phosphorylated long-chain sphingoid bases (LCBP) have also been detected in plants 

(Arabidopsis)
88

, worms (C. elegans), flies (Drosophila melanogaser)
89

, slime mould 

(Dictyostelium discoideum
90

) and yeast (Saccharomyces cerevisiae)
91

, where LCBPsthat are 

thought to be a rate-limiting step in regulating the cellular content and production of bioactive 

sphingolipid metabolites, which further indicated the significance of S1P as a signaling molecule 

in both lower and higher organisms
89

. 

S1P levels in cells are tightly regulated in a spatial-temporal manner by the balance of its 

synthesis and degradation. Sphingosine kinase (SPHK) that catalyzes the phosphorylation of 

sphingosine in the presence of ATP, regulates the synthesis and balance of S1P within the cell
82

. 

While, the degradation of S1P is mediated by two different enzymes: S1P phosphatases that 

catalyze the reversible de-phosphorylation of S1P back to sphingosine, and pyridoxal phosphate-

dependent S1P lyase that irreversibly degrades S1P to hexadecenal and phospho-ethanolamine. 

Identification of specific cell-surface S1P receptors have further illustrated the complex nature of 

this simple molecule that exhibit both paracrine and autocrine functions
82

.  

1.5.1 Sphingosine Kinases 

SphKs are an evolutionarily conserved, distinct class of diacylglycerol kinases that contain five 

conserved domains and are expressed in humans, mice, yeast and plants, with homologues in 

worms and flies. Two eukaryotic isozymes have been identified, which are known as SphK1 and 

SphK2
82

. These enzymes predominantly exhibit its activity localized to cytosolic fractions, 

although small amounts are associated with membranes and the nucleus. Although both the 

isoforms catalyze the same biochemical reactions, they originate from different genes and 

display different substrate specificities, tissue distributions, and subceullar localization, which 

indicate that they carry out distinct cellular functions and might be regulated differently
92

. Sphk1 

and Sphk2 share 80% similarity and 45% overall sequence identity. It is unclear whether these 

enzymes are located within organelles or if they are loosely bound to cellular membranes, 

although Lcb4, the main enzyme that catalyzes the formation of long-chain base phosphates has 

been shown to be localized in the Golgi, late endosomes and endoplasmic reticulum (ER) was 

identified in yeast
93,94

. Despite belonging to the family of diacylglycerol kinases, SphKs contain 
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a unique catalytic domain, consisting of a consensus ATP-binding site (SGDGXK(R)) that show 

close resemblance to the highly conserved glycine-rich loop involved in binding the nucleotide 

in the catalytic site of many protein kinases
82

. 

Sphk1 activity can be regulated by various signals, including growth factors, cytokines, 

hormones, ligation of the IgE and IgG receptors, and many GPCR ligands that results in the 

extracellular signal regulated kinase (ERK)-mediated phosphorylation of Sphk1 at position 

serine 225. Phosphorylation and activation of Sphk1, which is also regulated by its interactions 

with several other proteins, promotes its translocation from the cytosol to the plasma membrane, 

where its coverts sphingosine, present in the lipid bilayer to S1P
95

. For example, a study showed 

that the calcium and integrin-binding protein 1 (CIB1) mediates the translocation of SphK1 to 

the plasma membrane in response to calcium fluxes through a calcium-myristoyl switch
96

. 

Several other proteins have been implicated to interact with SphK1, resulting in its increased 

activity and thereby mediating S1P generation and Sphk1 associated anti-apoptosis
95

. 

Contrary to the localization of Sphk1 in the cytosol, SphK2 subcellular localization varies 

according to cell type and cell density
97

. Sphk2 possess nuclear localization (NLS), and export 

signals (NES) that regulates DNA synthesis, epigenetic modifications via interaction with and 

modulation of HDAC1/2
98,99

. Sphk2 under stress conditions localizes to the endoplasmic 

reticulum (ER) that propels the sphingosine salvage pathway driven by ER-localized S1P 

phosphatases and ceramide synthase, ultimately leading to ceramide-induced apoptosis
100

. 

Although lacking an identifiable mitochondrial targeting signal, SphK2 when localized in the 

mitochondria has been shown to promote apoptosis via S1P and BAK-dependent membrane 

permeabilization and cytochrome c release
101

. 

1.5.2 Sphingosine 1-Phosphate Receptors 

S1P signals primarily through five cognate highly specific orphan G protein coupled receptors 

(GPCR), S1PR1, S1PR2, S1PR3, S1PR4, and S1PR5, previously referred to as endothelial 

differentiation gene (EDG)-1, -5, -3, -6, and -8
82

. These receptors are ubiquitously expressed and 

couple to various G proteins that regulates important downstream cellular processes such as 

proliferation, migration, cytoskeletal organization, adherens junction assembly, and 

morphogenesis. This bestows S1P with the ability to enhance their repertoire in regulating 

diverse physiological processes, including angiogenesis and vascular maturation, heart 
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development and immunity in a highly specific manner, depending on the relative expression of 

S1P receptors and G proteins
82

. The receptor subtypes S1PR1, S1PR2 and S1PR3 are widely 

expressed and constitute the dominant receptors expressed in the cardiovascular system. S1PR1 

is also expressed on lymphocytes where they regulate their egress from secondary lymphatic 

organs. S1PR4 are expressed at low levels in the lymphoid system, and S1PR5 is expressed in 

the white matter tracts of the CNS
102

.  

S1P receptors differentially activate the small GTPases of the Rho family, particularly Rho and 

Rac, which are downstream of the heterotrimeric G proteins and are important for cytoskeletal 

rearrangements and directed cell movement
82

. S1PR1 primarily couples through Gi/o that has 

been associated with activation of Ras and the ERK signaling that promotes proliferation; 

activation of PI3K and protein kinase B (PKB/Akt) to prevent apoptosis and promote survival; 

induction of PI3K and Rac to promote migration, enhance endothelial barrier function and 

induce vasodilation; activation of protein kinase C (PKC) and phospholipase C (PLC) to increase 

intracellular free calcium required for many cellular processes. Furthermore, signaling through 

Gi/o suppresses adenylyl cyclase activity to reduce cyclic adenosine monophosphate (cAMP). 

S1PR2 primarily couples to Gq that further activates the small GTPase Rho and Rho-associated 

kinase (ROCK) to inhibit migration, reduce endothelial barrier function and induce 

vasorestriction
102

.  

Several well characterized agonists and antagonists of S1PRs have been described in literature. 

Among these, S1PR agonist FTY720 (fingolimod/ Gilenya; Novartis), an immunomodulatory 

drug was approved by the U.S. Food and Drug Administration as a first line oral therapy for 

relapsing remitting multiple sclerosis (MS)
103

. Although FTY720 acts as an agonist at picomolar 

to nanomolar concentrations on S1PR1 and S1PR3-5, it also acts as a functional antagonist for 

S1P1 by inducing receptor endocytosis and degradation of this receptor. This indiscrimination 

may be responsible for the adverse effects, such as acute bradycardia (decreased heart rate) and 

hypertension, seen in fingolimod-treated patients
103

. Fingolimod also blocks lymphocyte egress 

from secondary lymphoid organs to the peripheral blood circulation by antagonizing S1PR. In 

conclusion, S1P and its five GPCRs play a crucial role in the development and function of the 

immune, cardiovascular and nervous systems
104

. 
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1.5.3 Role of S1P in cancer 

S1P has been implicated in various stages of cancer pathogenesis, including anti-apoptotic 

phenotype, metastasis, escape from senescence and resistance to chemotherapy and radiation 

therapy. In contrast to S1P, which is associated with cell growth and survival, its precursors 

sphingosine and ceramide, are associated with cell growth arrest and apoptosis
105

. There exists a 

ceramide – sphingosine 1-phosphate rheostat that maintains this balance in response to cellular 

and environmental stimuli. Sphk1 is a critical regulator of this rheostat, as it produces pro-growth 

and anti-apoptotic S1P, and also reduces levels of pro-apoptotic ceramide and sphingosine, 

thereby aiding cancer progression and survival (Figure 5). Further, sphingolipid metabolism is 

often dysregulated in cancer, and Sphk1 is significantly overexpressed in multiple types of 

cancer including stomach, lung, kidney, colon breast and glioblastoma
105

. 

 

 

Figure 5: The relationship of ceramide – sphingosine 1-phosphate rheostat in cancer.  

The balance of pro-apoptotic ceramide and pro-survival S1P is regulated by the activity of Sphk1, an 

‗inside-out‘ signaling by S1P and an S1PR-dependent mechanism. S1PP, S1P Phosphatases; S1PR, S1P 

receptor; SM, sphingomyelin; SGPL1, S1P lyase. (Image adopted and modified from Pyne and Pyne, 

2012). 
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SphK1 overexpression resulted in acquisition of transformed phenotype in NIH 3T3 fibroblasts, 

and ability to form tumors in nude mice, suggesting a potential oncogenic effect of Sphk1
106

. 

Overexpression of SphK1 in MCF-7 breast cancer cells resulted in increased proliferation, 

decreased apoptosis, and ability to form larger tumors with higher microvessel density in nude 

mice in an estrogen-dependent manner. Moreover, a dominant-negative mutant of SphK1 

inhibited estrogen-mediated mitogenic signaling and decreased neoplastic growth in MCF-7 cells 

and decreased tumor formation in nude mice
107

. SphK has also been shown to stimulate VEGF- 

mediated Ras activation in bladder cancer cells by favoring inactivation of Ras-GAP
108

. 

Sphk1 knockdown in human glioblastoma cells prevented cells from exiting G1 phase of cell 

cycle and increased apoptosis
109

. High Sphk1 levels and high S1P levels have also been 

correlated with increasing glioma grade, where S1P has been reported to be a common mitogen 

for glioma cells
109,110

. S1PR1 and S1PR3 enhance glioma cell migration and invasion via 

activation of Rac, while S1PR2 inhibited migration through Rho activation
111

. Strikingly, 

neutralization of extracellular S1P with a specific monoclonal antibody (known as sphingomab) 

suppressed lung metastasis
112

, tumor growth suppression in renal cell carcinoma
113

 and induced 

vascular remodeling in prostate cancer
114

, which suggests a new therapeutic strategy to prevent 

cancer metastasis. Sonepcizumab, the humanized version of sphingomab, has recently completed 

Phase I clinical trials in cancer and advanced into Phase II safety and efficacy trials. Thus, 

targeting the S1P axis in the tumor would help reduce both growth and metastasis, 

respectively
115

. 

 

 

 

  



Page | 22  
 

2. Materials and Methods 

2.1 Materials 

General Chemicals 

Chemicals Company 

2-prapanol Carl Roth GmbH, Germany 

Acrylamide Mix (Rotiphorese Gel 30) Carl Roth GmbH, Germany 

Agarose Carl Roth GmbH, Germany 

Ammouniumpersulphate (APS) Carl Roth GmbH, Germany 

Beta-Mercaptoethanol VWR International, USA 

Bovine Serum Albumin Applichem GmbH, Germany 

Chloroform Sigma-Aldrich, USA 

Deoxyribo nucleotide triphosphate (dNTPs) New England Biolabs, USA 

Dimethylsulfoxide (DMSO) Carl Roth GmbH, Germany 

DEPC free water Carl Roth GmbH, Germany 

Ethanol Sigma-Aldrich, USA 

Ethidium bromide (EtBr) Sigma-Aldrich, USA 

Ethylene diamine tetra acetic acid (EDTA) Sigma-Aldrich, USA 

Hydrochloric acid (HCl) Sigma-Aldrich, USA 

Glacial Acetic Acid Merck Millipore, USA  

Laemmli Sample Buffer (6X) New England Biolabs, USA 

Luria Broth – medium Carl Roth GmbH, Germany 

Luria Broth – agar Carl Roth GmbH, Germany 

Methanol Sigma-Aldrich, USA 

Milk Applichem GmbH, Germany 

N,N,N',N'-Tetramethyl ethylene diamine 

(TEMED) 

Sigma-Aldrich, USA 

Oligonucleotide (Primer) New England Biolabs, USA 

Paraformaldehyde (PFA) Carl Roth GmbH, Germany 



Page | 23  
 

Phosphate buffered saline tablets (PBS) Applichem GmbH, Germany 

Sodium Chloride (NaCl) Carl Roth GmbH, Germany 

Sodium deoxycholate Carl Roth GmbH, Germany 

Sodium dodecyl sulfate (SDS) Carl Roth GmbH, Germany 

Tris-HCl Carl Roth GmbH, Germany 

Triton X-100 G-Biosciences, USA 

Tween 20 Sigma-Aldrich, USA 

 

Equipment 

Equipment Company 

Autoradiography chamber GE Healthcare Life sciences, USA 

Bacterial incubator Memmert GmbH, Germany 

Bacterial shaker Edmund Bueler GmbH, Germany 

Cell counter Celeromics, France 

Cell culture microscope Carl Zeiss, Germany 

Centrifuge 5430R Eppendorf, Germany 

FACS machine BD Biosciences, Germany 

Fluorescent microscope EVOS FL Thermo Fischer Scientific, USA 

Heat block IKA Works, USA 

iMark Spectrophotometer plate reader BioRad Laboratories, USA 

Incubator Nuaire, UK 

Laminar air flow Thermo Fischer Scientific, USA 

Luminescence reader BMG Labtech, Germany 

PCR machine BioRad Laboratories, USA 

Pipette boy Integra Biosciences, Switzerland 

Pipette Set research Eppendorf, Germany 

Power supply BioRad Laboratories, USA 

Real time PCR machine BioRad Laboratories, USA 
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SDS-PAGE Electrophoresis Mini-PROTEAN BioRad Laboratories, USA 

Thermo mixer compact Eppendorf, Germany 

Transfer blotting machine BioRad Laboratories, USA 

Ultracentrifuge Beckaman Coulter, USA 

Western blot scanner LI-COR Biotechnology GmbH, Germany 

 

Media, solutions and accessories for Cell Culture 

25X Tryspin 

Accumax Cell aggregate dissociation medium 

DMEM 

DNase  

Fetal Bovine Serum (FBS) 

HEPES (with Phenol red) 

HEPES (without Calcium and Magnesium) 

IMDM 

L-Glutamine  

Penicillin/Streptomycin (Pen/Strep)  

Phosphate-Buffered Saline (PBS)   

Trypsin/EDTA (0.1x and 2.5x) 

Consumables 

0.45uM filters 

1,5 ml Microcentrifuge tube  

100 μl PCR Reaction tubes  
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2 ml Microcentrifuge tubes  

384-Well PCR Plates    

96-Well Plates    

Cell Culture dishes and plates   

Cell scraper 

Cryotubes    

Falcon tubes 15 ml und 50ml   

Pipette tips    

Pipette tips (filtered)   

PVDF Transfer membrane   

Sterile Injection needles  

Syringe, 5ml     

Whatman 3MM Paper   

Kits and other materials 

DC Protein assay kit, BioRad Laboratories, USA 

First strand cDNA isolation kit, Thermo-Scientific, USA 

Gel extraction / PCR purification kit, Macherey-Nagel, Germany 

Greiss reagent assay, Sigma-Aldrich, USA 

Lumi-Light Western Blotting Substrate, Roche Holding AG, Switzerland 

Micro RNA isolation kit, Qiagen, Germany 

NuceloBondXtra Plasmid Maxi isolation kit, Macherey-Nagel, Germany 
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NuceloSpin RNA isolation kit, Macherey-Nagel, Germany 

NucleoSpin Plasmid Mini isolation kit, Macherey-Nagel, Germany 

Super Signal West Femto Chemiluminescent Substrate kit, Thermo Scientific, Rockford, USA 

Super Signal West Pico Chemiluminescent Substrate kit, Thermo Scientific, Rockford, USA 

SyBr Green Master mix, BioRad Laboratories, USA 

Drugs and Chemicals 

Fatty acid free BSA, Sigma-Aldrich, USA 

FTY720, Cayman Chemical Company, USA 

FTY720-P, Cayman Chemical Company, USA 

IC87114, Sigma-Aldrich, USA 

JTE103, Cayman Chemical Company, USA 

Lipopolysaccharide from Escherichia coli 0111:B4, Sigma-Aldrich, USA 

Poly-L-lysine hydrobromide, Sigma-Aldrich, USA 

SEW2871, Cayman Chemical Company, USA 

SKI-II, Sigma-Aldrich, USA 

Sphingosine 1-Phsophate, Cayman Chemical Company, USA 

U73122 hydrate, Sigma-Aldrich, USA 

W146, Sigma-Aldrich, USA 

FACS antibodies 

CD11b eBiosciences, Germany  

CD45, eBiosciences, Germany 
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FxCycle Violet stain, eBiosciences, Germany 

Primary Antibodies 

Akt, Cell Signaling Technology 

Alpha-Tubulin, Sigma-Aldrich, USA 

EF2 (C-14) , Santa Cruz Biotechnology 

IRF3, Cell Signaling Technology 

IκBα, Cell Signaling Technology 

NFκB-p65, Cell Signaling Technology 

Phospho-Akt (Ser473), Cell Signaling Technology 

Phospho-IRF3 (Ser396), Cell Signaling Technology 

Phospho-NFκB-p65, Cell Signaling Technology 

Phospho-STAT3 (Tyr705), Cell Signaling Technology 

Phospho-TBK/NAK1 (Ser172), Cell Signaling Technology 

STAT3 (sc-482), Santa Cruz Biotechnology 

TBK1/NAK1, Cell Signaling Technology 

Secondary Antibodies 

Anti-rabbit, Dako (Agilent Technologies), USA 

Anti-mouse, Dako (Agilent Technologies), USA 

Anti-goat, Dako (Agilent Technologies), USA 
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Primers 

Gene name Primer name Primer Sequence (5`-3`) 

Human qPCR primers   

SPHK1 Sphk1_Human_F GAG CAC CGG TGT CAT TCC 

Sphk1_Human_R CAG ACG TGG GCT GAG CTT 

GAPDH GAPDH_Human_F AGA AGG CTG GGG CTC ATT TG 

GAPDH_Human_R AGG GGC CAT CCA CAG TCT TC 

PPIA PPIA_Human_F TTC TGC TGT CTT TGG GAC CT 

PPIA_Human_R CAC CGT GTT CTT CGA CAT TG 

   

Mouse qPCR primers   

B2m B2m_M FP TTC AGT ATG TTC GGC TTC CC 

B2m_M RP TGG TGC TTG TCT CAC TGA CC 

Gapdh GAPDH_M FP TTG ATG GCA ACA ATC TCC AC 

GAPDH_M RP CGT CCC GTA GAC AAA ATG GT 

ActB ActB_M FP ATG GAG GGG AAT ACA GCC C 

ActB_M RP TTC TTT GCA GCT CCT TCG TT 

Hprt HPRT1_M FP CAT AAC CTG GTT CAT CAT CGC 

HPRT1_M RP TCC TCC TCA GAC CGC TTT T 

Arg1 Arg1_M for GTG AAG AAC CCA CGG TCT GT 

Arg1_M rev GCC AGA GAT GCT TCC AAC TG 

Msr1 Msr1_M for TTT CCC AAT TCA AAA GCT GA  

Msr1_M rev CCT CCG TTC AGG AGA AGT TG  

Il6 IL6_M FP TGG TAC TCC AGA AGA CCA GAG G 

IL6_M RP AAC GAT GAT GCA CTT GCA GA 

Nos2 NOS2-FP TTC TGT GCT GTC CCA GTG AG 

NOS2-RP TGA AGA AAA CCC CTT GTG CT 

Il1b IL1b-FP GGT CAA AGG TTT GGA AGC AG 

IL1b-RP TGT GAA ATG CCA CCT TTT GA 
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Tnfalpha TNFalpha-FP AGG GTC TGG GCC ATA GAA CT 

TNFalpha-RP CCA CCA CGC TCT TCT GTC TAC 

Mip1aplha MIP1alpha-FP GTG GAA TCT TCC GGC TGT AG 

MIP1alpha-FP ACC ATG ACA CTC TGC AAC CA 

   

Cloning Primers   

Human SPHK1 

Overexpression 

Sphk1shRNAHum-F CCG GAC CTA GAG AGT GAG AAG 

TAT CCT CGA GGA TAC TTC TCA CTC 

TCT AGG TTT TTT TG 

Sphk1shRNAHum-R CTA GCA AAA AAA CCT AGA GAG 

TGA GAA GTA TCC TCG AGG ATA 

CTT CTC ACT CTC TAG GT 

Human SPHK1 

Knockdown 

hSPHK1-A-shRNA-F CCG GCC TGA CCA ACT GCA CGC 

TAT TCT CGA GAA TAG CGT GCA GTT 

GGT CAG GTT TTT G 

hSPHK1-A-shRNA-R AAT TCA AAA ACC TGA CCA ACT 

GCA CGC TAT TCT CGA GAA TAG 

CGT GCA GTT GGT CAG G 
 

 

Buffers 

10x SDS Running buffer:  

250mM Tris-HCl 

1.92 M Glycine  

1 % SDS  

up to 1000 ml distilled water  

10x Transfer buffer:  

250mM Tris-HCl 
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1.92 M Glycine  

up to 1000 ml distilled water  

Separating gel buffer  

45.4 g Tris Base  

13.39 ml 10 % SDS  

pH 8.8  

up to 500 ml distilled water  

Stacking gel buffer  

18,9 g Tris Base  

13,39 ml 10% SDS  

pH 6.8  

up to 500 ml distilled water  

Stacking gel 

      5% Acrylamide  

      130mM Tris (pH 6,8)  

      0,1% SDS  

      0,1% APS  

      0,01% TEMED  

      in H2O 

Separating gel 

      8% Acrylamide  
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      375 mMTris (pH 8,8)  

      0,1% SDS  

      0,1% APS  

      0,06% TEMED  

      in H2O 

10X Tris buffered saline (TBS) buffer  

87 g NaCl  

60.57 Tris-Cl, pH 7.4 - 7.6 

up to 1000 ml distilled water 

1X TBS-Tween 

100 ml 1X TBS 

1 ml Tween-20 

up to 1000ml distilled water 

RIPA buffer:    

50 mM Tris-HCl, pH 8.0 

150 mM NaCl 

0.1% SDS 

0.5% Sodium deoxycholate 

1 tablet Protease inhibitor 

1% Triton X-100 

TAE (50X) 
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242 g Tris 

18.6 g EDTA 

57.1 ml Glacial acetic acid 

up to 1000 ml distilled water 

Genomic DNA isolation: Tail DNA buffer:  

NaCl (5 M) 

Tris-HCl (1 M), pH 8.0 

EDTA (0.5 M), pH 8.0 

SDS (10%) 

In H2O  

2.2 Methods 

2.2.1 Animal cell culture 

2.2.1.1 Cell lines and reagents 

Glioma cell lines LN229 and LN308 were cultivated in DMEM medium supplemented with 10% 

FCS, 1% penicillin-streptavidin at 37˚C in a 5% CO2 humidified incubator. HEK293 cells were 

cultivated in IMDM medium supplemented with 10% FCS, 1% penicillin-streptavidin at 37˚C in 

a 5% CO2 humidified incubator. The cells were grown generally in T-75. All cell culturing 

experiments were performed under a laminar flow hood. When the cells reached a confluency of 

70-90%, the cells were sub cultured in a ratio of 1:3 to 1:5, depending on the requirement of the 

experiments. The medium was removed and changed 2 to 3 times per week. In brief, the media 

was aspirated by means of a suction pump. The flask were washed with PBS, to remove dead 

cells, debris and remaining traces of media. PBS was aspirated out and 1 ml of Typsin-EDTA 

solution was added. The cells were returned back to the CO2 incubator for 5 minutes until the 

cells were detached. Fresh culture media was added, aspirated and dispensed into new culture 

flasks, depending on the subculturing ratio. RAW264.7 macrophages were cultivated in DMEM 
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medium supplemented with 10% FCS, 1% penicillin-streptavidin at 37˚C in a 5% 

CO2humidified incubator. Subculturing of RAW264.7 was performed using a cell scraper, and 

split 1:5 to 1:10, depending on the requirement of the experiments.  

Separate bottles of media for each cell line were maintained, to avoid risk of contamination and 

mixing up of cell lines. The culture medium and Trypsin-EDTA was stored at 4˚C and before 

working with the cells, the solutions were thawed in an water bath at 37˚C. 

2.2.1.2 Freezing of cells 

Before freezing, it was ensured that the cells were frozen at a low passage number, and at least 

90% of the cells were viable. Approximately 1.5 - 2 X 10
6
 cells were harvested from the culture 

flask, centrifuged and resuspended in 950 µL of fresh culture media and 50 µL of DMSO was 

added. The cells were transferred to a cryovial, and freezed initially at -80˚C for 24 hours and 

then transferred to the liquid nitrogen tank at -196˚C, where the cells were stored in the gas phase 

above the liquid nitrogen. 

2.2.1.3 Thawing of cells 

The frozen cryovial was removed from the liquid nitrogen tank and placed immediately in the 

water bath at 37˚C. The cells were thawed quickly (<1 minute) by gently swirling the cryovial in 

the water bath, and immediately transferring it into the laminar flow hood. Before opening the 

vial, the vial was cleaned from the outside with 70% ethanol. 1 ml of fresh culture medium was 

added dropwise into the vial containing the thawed cells, and contents transferred to a tube 

containing 8ml of media. The cell suspension was centrifuged at 1500 x g for 5 minutes, the 

supernatant was carefully removed without disturbing the cell pellet. The cells were resuspended 

in complete growth medium, and transferred into the appropriate culture vessel and incubated at 

37˚C in the CO2 incubator. 

2.2.1.4 Cell counting 

The cells were harvested from the culture flasks, and centrifuged at 1500 x g for 5 minutes. The 

supernatant was carefully removed without disturbing the cell pellet, and the cells were 

resuspended in 5 ml of complete growth medium. For counting of the cells, the Neubauer 

chamber was used. The chamber and a coverslip were cleaned with alcohol, dried and the 

coverslip was fixed in position on the chamber. 10 µl of resuspended cells were mixed with 10 µl 
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of Trypan Blue solution (dilution of 1:10), and 10 µl of the mixture was placed in the 

hematocytometerNeubauer chamber, without overfilling. The cells were placed in the inverted 

microscope under a 10X objective. The cells were counted on the four corners of the gridded 

square, and the average was calculated, and fitted into the following equation 1 to estimate the 

number of cells per ml.  

# of cells ml = 10,000 × N 4 × d 

   where,  

N = # of cells counted on all 4 squares of a hematocytometer. 

d = dilution factor 

2.2.1.5 Microglia isolation 

Murine microglia were isolated by mild trypsinization protocol as previously described (Saura et 

al, 2003
116

). Briefly, brains were removed from postnatal P0-P2 C57bl/6 pups, and rinsed in 

Hanks Balanced Salt solution (HBSS). After removal of the meninges, the brains were 

mechanically dissociated and digested in 0.25% Trypsin for 20 minutes. The cells were seeded in 

DMEM with 10% FCS (One T-75 flask per 2 brains), and cultured at 37°C in a humidified 5% 

CO2/95% air. Medium was replaced every 4-5 days. Once they attained confluency after 6-8 

days, the mixed glial cultures were split 1:3 and expanded for an additional week in 10cm cell 

culture dishes, until they attained confluency. Microglia were isolated from the mixed glial 

cultures by removal of astrocytes by incubation with 0.25% Trypsin-EDTA diluted 1:3 in serum-

free DMEM for 45 minutes at 37°C. After removal of the floating astrocyte layer, the adherent 

microglia were replaced with mixed glial culture-conditioned media for 24 hours. The following 

day, 0.25% Trypsin-EDTA was added to adherent microglia for 10 minutes, and detached from 

the dishes using a Cell Lifter (Corning Inc), and replated in iBidi culture-insert 3-well at a 

density of 60,000 cells per well. 

2.2.1.6 Co-culture model to study microglia-glioma interactions 
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To investigate the effects of the interactions between glioma and microglia, I established an in-

vitro co-culture model using the Culture-insert 3-well in μ-dish 35mm, high (iBidi GmbH, 

Germany). These chambers consisted of a 35mm dish, in which a 3-well biocompatible silicone 

insert was placed inside, allowing two cell types to be seeded separately and grown on the 

designated areas. The treatment schedule started by seeding the glioma cells in the 35mm dish in 

the area surrounding the 3-well inserts, and the primary microglia cells seeded in the 3-well 

inserts. After allowing the cells to attach for 24 hours, the cells were exchanged with fresh media 

that now covered the entire co-culture dish, allowing for exchange of soluble factors and 

interaction between the two cell types. The co-culture experiment was performed for 48 hours, 

after which RNA was isolated from primary microglial cells, and analyzed for expression of M1 

and M2 markers by real-time qPCR. 

2.2.1.7 Lentivirus production and infection of cells 

From a healthy 90% confluent T75 flask of HEK293 cells, cells was split 1:6 in 10cm cell 

culture dishes and allowed to settle for 48 hours. When cells reached a 70% confluency, they are 

ready for transfection. A solution containing 4μg of 2
nd

 generation packaging plasmid psPAX2, 

4μg of envelope plasmid pMDG.2 and 8μg of lentiviral plasmid of interest was prepared in 250μl 

of OptiMEM, and briefly vortexed. Likewise, 48μl of polyethylenimine (PEI) was prepared from 

a 1mg/ml PEI stock in 250μl of OptiMEM, and briefly vortexed. These two solutions were 

mixed, vortexed thoroughly and incubated at room temperature for 20 minutes. Meanwhile, 

HEK293 cells were exchanged with fresh IMDM complete media. After the incubation, the 

solution was added dropwise to the plate, while gently swirling it. The cells were returned to the 
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incubator at 37˚C for 48 hours. Condition media containing the lentiviral particles was harvested 

after 48 hours. Glioma cells were incubated with the lentiviral supernatant for 48 hours, replaced 

with fresh complete media for 24hours and selected with fresh complete media containing 1 

µg/µl puromycin for 48hours. The cells were replaced with fresh complete medium containing 

puromycin every two days. One week post selection, the overexpression or knockdown levels 

were analyzed by qRT-PCR or by Western blot. 

2.2.2 Western blot analysis 

2.2.2.1 Preparation of lysate from cell culture 

The cell culture dish was placed on ice and the culture medium was aspirated out using the 

suction pump. The cells were washed with PBS, and quickly scraped of the plate using a cell 

scraper, and transferred in a micro-centrifuge tube at 800g for 5 min at 4˚C. The supernatant was 

carefully removed without disturbing the cell pellet, and 50 µl of ice-cold RIPA lysis buffer 

(50mM, TRIS-HCl pH 8, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS + 1 tablet of 

protease inhibitor cocktail (Roche, Mannheim, Germany) was added. The cell suspension was 

incubated on ice for 20 minutes. The cell suspension was centrifuged at 16000 g for 20 min in a 

4˚C pre-cooled centrifuge. The supernatant was carefully transferred to a fresh pre-cooled 

microcentrifuge tube and placed on ice, and the pellet was discarded. The lysates were either 

proceeded with western blot analysis or stored at -80˚C for later use. 

2.2.2.2 Protein concentration determination 

The protein concentration was determined using the BioRad DC Protein Assay Kit. The Albumin 

standards were prepared as mentioned in the kit. The unknown protein samples were diluted 1:10 

in RIPA lysis buffer. 5 µl of albumin standards or unknown sample were pipetted in a 96 well 

microplate. 25 µl of the Reagent A‘ (prepared by mixing 20 µl of the Reagent S with 1 ml of 

Reagent A) was added to each well and the microplate was mixed thoroughly on a plate shaker 

for 30 s. Following, 200 µl of reagent B was added to each well, and the microplate was covered 

and placed at RT for 15 min. The absorbance was measured at a wavelength of 750 nm on the 

spectrophotometer plate reader. The absorbance was plotted against the known concentrations of 

the albumin standards to obtain a straight-line graph using linear regression, and the unknown 

protein concentrations were calculated from the graph. The volume containing 30 µg of protein 

was calculated from the determined protein concentrations. 
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2.2.2.3 Sample preparation and loading of SDS-PAGE gels 

To the required volume of cell lysate containing 30 µg of protein, 5X Laemmli loading buffer 

was added. It was ensured that the total volume did not exceed 30 µl, otherwise it was difficult to 

load them on the gel. The cell lysates in loading buffer was boiled at 95˚C for 5 minutes. Equal 

amount of protein was loaded onto the wells of the SDS-PAGE gel, along with the 5 µl of the 

PageRuler Prestained Protein Ladder 10-170K (Thermo Scientific). A 10% SDS-PAGE gel was 

prepared. The gel was run at 90V through the stacking part of the gel, and the voltage was turned 

up to 120V after the proteins have gone through the stack and are migrating through the 

resolving gel. The migration was continued until the blue dye front from the loading buffer is at 

the end of the glass plates but does not migrate off the gel. 

2.2.2.4 Transfer onto PVDF membrane 

The Trans-Blot turbo transfer system from BioRad was used for the transfer of proteins onto 

Polyvinylidene difluoride (PVDF) membranes. For each gel, one piece of PVDF membrane and 

three pieces of Whatman 3MM Chr filter paper was cut to the dimensions of the gel. The PVDF 

membranes were activated by soaking them briefly in 100% ethanol for 2 minutes, and rinsing 

them in water and 1X transfer buffer. All the membranes were thoroughly wetted in transfer 

buffer prior to assembly of the gel and membrane sandwich. The Whatman filter paper was 

placed on top of the fiber pad. The pre-equilibrated PVDF membrane on top of the filter paper, 

and the SDS-PAGE gel was gently placed on top of the PVDF membrane. The roller was used to 

remove any air bubbles and to ensure proper contact between the gel and the membrane. The 

second filter paper was placed on top of the membrane. The cassette was closed and locked and 

placed in the tank with the latch side up, ensuring the black cassette faces the black electrode 

plate. The tank was filled with transfer buffer till the fill line. The transfer was run at 25V for 30 

min. After the run, the membranes were briefly washed with water to remove traces of the gel, 

and were proceeded with blocking. 

2.2.2.5 Antibody staining and detection of signals 

The membranes were blocked in 5% milk powder 1X TBS containing 0.1% Tween-20 for 

30minutes at RT or overnight at 4˚C. The membranes were then incubated at RT for 3 hours or 

overnight at 4˚C in the appropriate primary antibody in 5% milk powder in TBS/Tween, with 

constant shaking. The membranes were washed thrice with TBS/Tween for 10 minutes. The 
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membranes were then incubated with secondary antibody (goat anti-rabbit/mouse conjugated to 

horseradish peroxidase, DaKo, Hamburg) in 5% milk powder TBS/Tween for 1 hour. For all 

phospho-antibodies, membranes were blocking in 5% BSA in 1X TBS containing 0.1% Tween-

20, and all further antibody dilution were prepared in the same blocking solution. The 

membranes were washed thrice with TBST for 10 minutes. The SuperSignal West Pico 

Chemiluminescent kit (Thermo Scientific) and X-ray film cassette or developing machine were 

used for detection. 

2.2.3 Trizol based RNA isolation 

This protocol was used for isolation of small quantities of RNA from samples. Briefly, the cell 

culture dish was removed from the incubator and the culture medium was aspirated out using the 

suction pump. The cells were washed with PBS, and 800 μl of PeqGoldTriFast reagent was 

added to the plate, and incubated at RT for 5 minutes to permit complete dissociation of the 

nucleoprotein complexes. The reagent was flushed across the plate and transferred into an 

Eppendorf tube. Subsequently, 160 μl of chloroform was added, vortexed thoroughly, incubated 

at RT for 2-3 minutes, and centrifuged at 13000 x g for 15 minutes at 4°C. The mixture separates 

into a lower red-phenol – chloroform, an interphase, and a colorless upper aqueous phase. The 

upper aqueous phase containing RNA was transferred into a new Eppendorf tube without 

disturbing the intermediate organic layer. Following, 500 μl of isopropanol and 1 μl of RNA free 

glycogen per 200 μl of aqueous layer was added, voretexed briefly and incubated at -20°C 

overnight. The following day, the solution was centrifuged at 13000 x g for 2 hours at 4°C. The 

supernatant was discarded, the pellet washed with 1ml cold 70% ethanol. The pellet was air-

dried and dissolved in DEPC free water. RNA quality and concentration was measured by 

NanoDrop spectrophotometer (Peqlab, Erlangen, Germany).      

2.2.4 RNA isolation using kit 

Total RNA was isolated from the cell lines using the NuceloSpin RNA (Machery-Nagel, 

Germany) as mentioned in the kit. In brief, cells harvested were centrifuged and resuspended in 

350 μl RA1 buffer + 1% β-mercapthoethanol. The lysate was filtered through the NuceloSpin 

Filter (violet ring) to reduce viscosity and centrifuged for 1 min at 11,000 x g. Subsequently, the 

NuceloSpin Filter was discarded and to the flow through an equal volume of 70% ethanol was 

added, mixed well by pipetting, transferred to an NucleoSpin RNA columns spin column, and 
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centrifuged at 11,000 x g for 30 seconds. The flow-through was discarded and the column was 

washed with MDB buffer, and incubated with DNase reaction mixture (diluted in DNase buffer) 

for 15 minutes. Subsequently, the column was washed with 200 μl of RAW2 buffer, washed 

twice with RA3 buffer, and eluted in RNase-free water. RNA quality and concentration was 

measured by NanoDrop spectrophotometer (Peqlab, Erlangen, Germany). RNA quality was 

assessed by photometric measurement at ratios of 260/280 and 260/230 nm.  

2.2.5 First strand cDNA synthesis 

First strand cDNA synthesis was performed using First strand cDNA synthesis Kit (Thermo 

Scientific, USA) according to the instructions in the kit. Briefly, about 1 μg of RNA was mixed 

with 1 μl of 1:1 mix of oligodT primer and random hexamer primer to a final volume of 11 μl. 

The mixture was incubated at 65°C for 5 minutes to remove secondary structures and for GC-

rich RNA templates. Following, reaction buffer, RiboLock RNase Inhibitor (20 U/μl), 10 mM 

dNTP mix and M-MULV Reverse Transcriptase (20 U/μl) was added to the previous mixture, 

and incubated for 5 min at 25°C followed by 60 minutes at 37°C in a PCR machine.  

2.2.6 Quantitative Real time Reverse transcriptase Polymerase Chain Reaction (qRT-PCR) 

The cDNA was diluted 1:15, and mixed with a master mix containing SybrGreen and respective 

primers. Quantitative RT-PCR (qRT-PCR) was performed in three technical triplicates. qRT-

PCR was performed using LightCycler 480 Instrument II (Roche Holding AG, Switzerland) 

using the following PCR program.  

95˚C for 1 min  

95˚C for 30 s  

56˚C for 1 min  X 40 cycles 

72˚C for 30 s 

Melting Curve (Change to resolution 0.5°C) 

4 ˚C ∞ 

Quantitative values were obtained from the Ct values. Ground state expression (∆Ct values) of 

target gene mRNA was quantified relative to mean of two housekeeping gene [mRNA value = 

2
(mean Ct mean HKG - Ct mRNA target

]. In addition ∆∆Ct values were calculated for treated cells versus 

solvent control; and for transfected cells versus control cells. 
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2.2.7 ELISA 

IL-10, TNFα and IL-6 were quantified using BioLegend Mouse ELISA MAX Standard kit 

(BioLegend, San Diego, USA) according to the manufacturer‘s protocol. The cellular 

supernatant of microglia cultures treated with glioma conditioned media was harvested, and 

briefly centrifuged to remove floating cells. Briefly, a day prior to performing the ELISA, 100 μl 

of Capture antibody was added to half area 96-well ELISA plates, and incubated overnight at 

4°C. The following day, the plate was washed four times with wash buffer by firmly tapping 

plate upside down on absorbent paper. The plate was further blocked with 200 μl of assay 

diluent, plate was sealed and incubated on a plate shaker at 500 rpm for 1 hour at RT. Plates 

were again washed four times with wash buffer, and 100 μl/well of standard dilutions and 100 μl 

/well of appropriate sample dilutions was added and incubated on a plate shaker at 500 rpm for 2 

hours at RT. The plate was washed four times with wash buffer and incubated with 100 μl of 

Detection antibody and incubated on a plate shaker at 500 rpm for 1 hour at RT. The plate was 

washed four times with wash buffer and incubated with 100 μl of Avidin-HRP solution and 

incubated on a plate shaker at 500 rpm for 30 minutes at RT. Finally, the plate was washed four 

times with wash buffer and incubated with 100 μl of TMB substrate solution and incubated in the 

dark for 15 – 30 minutes at RT. The reaction was stopped by adding 100 μl of Stop solution and 

absorbance was read at 450 nm within 15 minutes. The absolute values of cytokines levels were 

calculated from a standard curve by plotting the standard cytokine concentration and the 

absorbance.  

2.2.8 Flow Cytometry 

For functional characterization of microglia, unspecific binding of antibodies was blocked by 

pre-incubating them for 15 minutes with 2% rat serum. Afterwards, samples were incubated in 

PBS with 2% FCS and 0.02% sodium azide (FACS buffer) containing FxCycle Violet stain 

(eBiosciences, Germany) to gate for dead cells for 15 minutes at 4°C, followed by washing twice 

with FACS buffer. Staining of the cell surface proteins CD11b and CD45 was performed with 

FACS buffer) for 30 minutes at 4°C, followed by washing twice with FACS buffer. Flow 

cytometry data was acquired on BD LSRII flow cytometer (BD Biosciences, Heidelberg). All 

flow cytometry data analysis was performed using FlowJo X 10.0.7 software FlowJo, Ashland, 

OR, USA).  
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2.2.9 Plasmid DNA isolation 

Plasmid DNA was isolated using the NucleoSpin Plasmid isolation mini (Macherey-Nagel, 

Germany) according to manufacturer‘s instructions. Briefly, bacterial cultures grown overnight 

at 37°C was harvested by centrifuged the cultures at 11,000 x g for 30 seconds, resuspended in 

250 μl of Buffer A1, lysed with 250 μl of Buffer A2, and neutralized with 250 μl of Buffer A3. 

The lysate was clarified by centrifugation at 11,000 x g for 5 minutes., and the upper clear 

supernatant was added to NuceloSpin Plasmid Columns in a collection tube and centrifuged at 

11,000 x g for 1 minute. The column was washed with 600 μl of Buffer A4, the silica membrane 

dried and DNA was eluted in 50 μl of Buffer AE. RNA quality and concentration was measured 

by NanoDrop spectrophotometer (Peqlab, Erlangen, Germany). RNA quality was assessed by 

photometric measurement at ratios of 260/280 and 260/230 nm.  

2.2.10 Transformation in E.coli competent cells 

For transformation, the E. coli DH5α or XL10 chemical competent cells (prepared by Fabio 

Dietrich, AG Tews) were gently thawed on ice for 10 min. 5 µl of the ligation product was added 

to 50 µl of the competent cells. A heat-shock (42 °C) was given for 90 seconds and then the cells 

were incubated on ice again for 2 minutes. 400 μl of 1X Luria-Bertain (LB) medium was added 

and the samples were incubated at 37 °C for 1 hour on a shaker (500 x g). The transformed cells 

were then plated on Luria-Bertain (LB) plates with ampicillin. The plates were then incubated at 

37 °C overnight. The transformants were then screened for the presence of the insert by picking 

ten colonies per plate and growing in amp-LB media for an additional cycle; isolating the 

plasmid DNA and appropriate restriction analysis performed. 

2.2.11 Statistical analysis 

Data were analyzed using Prism 8 GraphPad software. Comparisons of two different sample 

groups were performed using paired t-test to compare the same cell populations before and after 

treatment, or when comparing two cell populations within the same sample. Values of p < 0.05 

were considered to be statistically significant. The statistical significance calculated for each data 

set is indicated in the figure legends. All groups show means ± SEM, unless otherwise indicated. 
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3. Results 

3.1 High SPHK1 expression correlates with poor-survival outcome in GBM and an 

increased expression in mesenchymal subgroup of GBM 

Lysosphospholipid signaling has emerged as important players in various fundamental biological 

processes. Among them, the bioactive sphingolipid metabolite S1P determines cell fate by 

promoting cell growth and proliferation, in contrast to ceramide and sphingolipid, which induces 

cell growth arrest and apoptosis
110

. Sphingosine Kinase 1 (SPHK1), the enzyme that catalyzes 

the phosphorylation of sphingosine to S1P plays a crucial role in maintaining this balance. 

SPHK1 has been shown to be frequently upregulated in multiple types of cancer and the elevated 

levels of SPHK1 have been associated with tumor invasion, angiogenesis and resistance to 

radiation and chemotherapy
117

. Increased SPHK1 has been shown to be associated with 

increased glioma grade, and correlates to a poor survival outcome in GBM
109,118

. I validated 

these observations by analyzing the survival outcomes of SPHK1 in GBM utilizing the TCGA 

GBM data set (Affymetrix 540 MASS 5.0-u133 array) available in the online R2: Genomics 

Analysis and Visualization Platform (http://r2.amc.nl). Overall free survival and Progression-free 

survival, assessed by Kaplan-Meier curves, showed that patients with low SPHK1 expression 

had higher overall survival (p=0.026) and recurrence-free survival rates (p=4.9e-0.3) compared 

with patients with high SPHK1 expression (Figure 6A-B). These results suggested that SPHK1 

expression correlates to poor survival and were one of the independent prognostic factors for 

GBM patients. 

As GBM comprises an intertumor heterogeneity characterized by distinct genetic alterations, 

gene expression based molecular classification of GBM identified four distinct subtypes of 

GBM, named Proneural, Neural, Classical and Mesenchymal
5,10

. I further analyzed the 

distribution of SPHK1 expression between different subtypes of GBM that showed that the 

mesenchymal subgroup displayed the highest expression of SPHK1 (Figure 6C). These results 

highlight the importance of SPHK1/S1P signaling in GBM physiology, as mesenchymal subtype 

is marked by highly aggressive tumors and associated with worst outcome usually characterized 

by abnormal EGFR amplification/ PTEN loss/ NF1 mutations/ Akt signaling
119

. Mesenchymal 

subtype of GBM has also been shown to be associated with a selective enrichment of microglia/ 

macrophage-related genes in adult and pediatric GBM tumors
120

. Therefore, these results also 

http://r2.amc.nl/
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suggested a possible role of SPHK1/S1P signaling in mediating the interactions between 

microglia and GBM tumors. 

 

 

Figure 6: High SPHK1 expression correlates with poor-survival outcome in GBM and an increased 

expression in mesenchymal subgroup of GBM 

Kaplan-Meier estimates of overall survival (A) and progression-free survival (B) in patients with 

glioblastoma divided into high SPHK1 and low SPHK1 expression. Data analyzed using the Affymetrix 

540 MASS 5.0-u133 array available in the online R2: Genomics Analysis and Visualization Platform 

(http://r2.amc.nl). 

http://r2.amc.nl/
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(C) Boxplot of SPHK1 expression measured in CL (classical), ME (mesenchymal), NE (neural) and PN 

(proneural) subtypes of GBM selected from the full cohort of GBM tumors within the Affymetrix 540 

MASS 5.0-u133 array. 

 

3.2 SPHK1 expression is positively correlated to microglial gene signature 

Among various factors that control the GBM physiology, tumor-microenvironment strongly 

influences tumor invasion and treatment resistance. The microenvironment consists of neurons, 

which are sustained by the glial cells: astrocytes, oligodendrocytes and microglia
121

. I therefore 

further analyzed the influence of SPHK1 expression in GBM on various cell types of the 

microenvironment. A Gene set enrichment analysis (GSEA) was performed against SPHK1 

expression for differentially enriched genes of the different cell types of the microenvironment. 

GSEA showed that SPHK1 expression was positively associated with the microglial gene set 

(p<0.0001), with high SPHK1 correlated to expression microglial genes such as Slco2b1, Csf1r, 

Gpr34 and Tmem119 that are specifically expressed by microglial cells. Similarly, SPHK1 

expression was less significantly associated with astrocyte gene set (p=0.0086) and 

oligodendrocyte gene set (p=0.0029) and negatively correlated with neuronal gene set (p=0.99) 

(Figure 7). These results suggested that SPHK1 strongly influences the microglial population 

over other cell types of the microenvironment, and S1P could play an important role in 

regulating the microglia-glioma crosstalk. 
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Figure 7: SPHK1 expression is positively correlated to microglial gene signature. 

(A) Gene set enrichment analysis (GSEA) and corresponding heat map(B) using Affymetrix gene 

expression data of GBM (Affymetrix 540 MASS 5.0-u133 array) and gene sets as reported in Butovsky et 

al., 2013
122

against SPHK1 expression for differentially enriched genes of microglia. Gene set enrichment 

analysis (GSEA) against SPHK1 expression for differentially enriched genes astrocytes (C), 
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oligodendrocytes (D) and neurons (E). The analysis was performed in collaboration with Thomas 

Hielscher, Department of statistics, DKFZ.    

 

3.3 Validation of microglia isolation by flow cytometry 

As it has been shown that glioma cells produced an increased amount of the bioactive 

sphingolipid metabolite S1P
118

, I hypothesized that S1P secreted by glioma cells contributed to 

the polarization of microglia/ macrophages towards an anti-inflammatory phenotype. Microglia 

was isolated using the mild trypsinization protocol, as mentioned before in methods. A 

combination of CD11b and CD45 labeling can be used to identify microglia, where ramified 

parenchymal microglia have been demonstrated to possess the phenotype CD11b
+
CD45

low
, while 

macrophages show CD11b
+
CD45

high
 phenotype

123
. The isolated microglia was validated by 

fluorescent activated cell sorting (FACS), where microglia was sorted for CD11b and CD45 

expression. FACS analysis of microglia isolated one day after the mild trypsinization showed a 

94.1% purity representing a pure population of CD11b
+
CD45

low
 microglial cells, with almost 

negligible astrocyte contamination represented by CD11b
-
CD45

-
 cells (Figure 8A). Also, 

microglia analyzed four days after the mild trypsinization demonstrated a 89.9% purity, 

indicating that even after four days of isolation there wasn‘t much contamination by astrocyte re-

growth (Figure 8B). Further, FACS analysis of the mixed culture population before undergoing 

the mild trypsinization showed 37.6% of microglia represented by CD11b
+
CD45

low
 and a 

significant CD11b
-
CD45

-
 population of astrocytes (Figure 8C).  
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Figure 8: Validation of microglia population by flow cytometry. 

(A) FACS analysis of microglia isolated one day after mild trypsinization protocol. (B) FACS analysis of 

microglia isolated four days after mild trypsinization protocol. (C) FACS analysis of mixed culture 

isolated before mild trypsinization protocol. Single cell suspensions were analyzed by flow cytometry. 

The cells were gated for side scatter (SSC) and forward scatter (FSC) to identify viable, single cell events; 

and FxCycle Violet stain to gate for dead cells. The gating strategy used to define microglia 

(CD11b
+
CD45

low
) is depicted. (E) Schematic representation of the in-vitro glioma – microglia co-culture 

model. The FACS analysis was performed in collaboration with MahakSinghal, Department of Vascular 

Oncology and Metastasis, DKFZ.    

 

3.4 Silencing of SPHK1 in gliomas induces a pro-inflammatory phenotype in microglia/ 

macrophages. 

In order to evaluate the effect of sphingosine kinase 1 (SPHK1), the enzyme that mainly 

produced S1P, I firstly generated stable SPHK1 knockdown clones in two human glioma cell 
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lines, LN229 and LN308 cells, using shRNA-mediated silencing technology. As shown in 

Figure 9A, the puromycin resistant clones (shSPHK1) exhibited a markedly reduced mRNA 

expression in both cell lines. To verify the efficiency of SPHK1 knockdown on the protein level, 

LN229 cells were co-transfected with over-expression of SPHK1 gene (containing a c-myc tag at 

its N-terminus end (SPHK1-myc), and the shRNA against SPHK1. Three days after infection 

and selection with puromycin, proteins were isolated and blotted for c-myc. As shown in Figure 

9B, LN229 cells co-transfected with both SPHK1-myc and shSPHK1 showed a remarkably 

decreased expression of c-myc protein, as compared to cells transfected with only the virus 

carrying the overexpression of SPHK1 gene, thereby verifying the knockdown efficiency of the 

shSPHK1. 

As illustrated in Figure 10, silencing of SPHK1 expression in gliomas resulted in a remarkably 

decreased expression of M2 markers, Arginase 1 (Arg1) and Macrophage scavenger receptor 1 

(Msr1), in primary microglial cells co-cultured with human glioma cells, LN229 and LN308 

transfected with shSPHK1, as compared to glioma cells transfected with SCR control (Figure 

10A-B). Analysis of M1 markers although did not result in significant changes in expression of 

Tumor necrosis factor α (Tnfα) in primary microglial cells, Interleukin 6 (IL6) expression was 

significantly upregulated in primary microglial cells co-cultured with human glioma cells 

carrying the knockdown (shSPHK1) as compared to the SCR control (Figure 10C-D). These 

results were confirmed in another model, where RAW264.7 macrophages were co-cultured with 

human glioma cells, LN229 and LN308, in which silencing of SPHK1 in glioma cells resulted in 

a significant decrease in Arg1 expression in RAW264.7 macrophages (Figure 10E). These 

results indicated that silencing of SPHK1 in gliomas diminished the anti-inflammatory 

phenotype (M2) in microglia/ macrophages promoted by glioma cells, and induced a pro-

inflammatory phenotype (M1).  
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Figure 9: Validation of knockdown of SPHK1 in glioma cells. 

(A) Quantitative RT-PCR analysis of SPHK1 in human glioma cells, LN229 and LN308 stably 

transfected with a control (SCR) or SPHK1-targeted shRNA (shSPHK1). The mRNA expression of the 

target genes was normalized to the mean of two housekeeping genes (PPIA, GAPDH). Data are expressed 

as fold-change over SCR and are means ± sem of 3 independent experiments. Statistical analysis was 

performed using paired t-test. **** p<0.0001, *** p<0.001; ** p<0.01, * p<0.05, n.s.: not significant. (B) 

Western blot analysis of c-myc expression in LN229 human glioma cells transfected with either EGFP 

(that served as control); SPHK1-myc; or co-transfected with SPHK1-myc and SPHK1-targeted shRNA. 

Tubulin served as loading control. 
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Figure 10: Silencing of SPHK1 in gliomas induces a pro-inflammatory phenotype in microglia/ 

macrophages. 
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Quantitative RT-PCR analysis of M2 markers Arg1 (A) and Msr1 (B); M1 markers Tnfα(C) and IL6(D) in 

murine primary microglia (μglia) co-cultured with human glioma cells, LN229 and LN308 stably 

transfected with control (SCR) or SPHK1-targeted shRNA (shSPHK1).  (E) Quantitative RT-PCR 

analysis of M2 marker Arg1 expression in RAW264.7 macrophages co-cultured with human glioma cells, 

LN229 and LN308 stably transfected with control (SCR) or SPHK1-targeted shRNA (shSPHK1).The 

mRNA expression of the target genes was normalized to the mean of two housekeeping genes (B2m, 

Hprt). Data are expressed as fold-change over control cells (Ctrl) cultured without glioma cells and are 

means ± sem of 3 independent experiments. Statistical analysis was performed using paired t-test. **** 

p<0.0001, *** p<0.001; ** p<0.01, * p<0.05, n.s.: not significant. 

 

3.5 Over-expression of SPHK1 in glioma enhances the M2 phenotype of microglia/ 

macrophages. 

Conversely, SPHK1 expression was modulated in human glioma cells, where cells were stably 

overexpressed with sphingosine kinase 1 gene carrying a myc tag at its N-terminus end (SPHK1-

myc). Human glioma cells stably overexpressing EGFP served as control cells. The 

overexpression of SPHK1 was verified by mRNA expression of SPHK1 by real-time qPCR, that 

showed a remarkable increase in SPHK1 expression (Figure 11A). These results were further 

validated by western blot analysis of c-myc expression, that showed an increased expression of 

c-myc (Figure 11B); and by S1P quantification using LC-MS/MS, that showed that 

overexpression of SPHK1 in glioma cells resulted in considerable increase in S1P levels in 

LN229 glioma cells, although not statistically significant, yet tending towards an increase in 

LN308 cells (Figure 11C).  
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Figure 11: Verification of overexpression of SPHK1 in glioma cells. 

(A) Quantitative RT-PCR analysis of SPHK1 in human glioma cells, LN229 and LN308 stably 

transfected with EGFP or SPHK1-myc. The mRNA expression of the target genes was normalized to the 

mean of two housekeeping genes (PPIA, GAPDH). Data are expressed as fold-change over EGFP and are 

means ± sem of 3 independent experiments. (B) Western blot analysis of c-myc expression in human 

glioma cells, LN229 and LN308, stably transfected with either EGFP (that served as control) or SPHK1-

myc. Tubulin served as loading control. (C) Quantification of S1P by LC-MS/MS in human glioma cells, 

LN229 and LN308 stably transfected with EGFP or SPHK1-myc. Data are expressed as S1P [d18:1] 

pmol per 10^5 cells and are means ± sem of 3 independent experiments. Statistical analysis was 

performed using paired t-test. **** p<0.0001, *** p<0.001; ** p<0.01, * p<0.05, n.s.: not significant. 

The LC-MS/MS analysis was performed in collaboration with Robert Pilz, Department of Cellular and 

Molecular Pathology, DKFZ.    

 



Page | 53  
 

As illustrated in Figure 12, over-expression of SPHK1 in gliomas promoted the anti-

inflammatory phenotype of microglial cells, as confirmed by a further increase in mRNA 

expression of M2 markers, Arg1 (Figure 12A) and Msr1 expression (Figure 12B) in primary 

microglial cells co-cultured with overexpression cells as compared to EGFP control. Analysis of 

M1 markers did not show significant changes in mRNA expression of Tnfα (Figure 12C) and 

IL6 (Figure 12D) in primary microglial cells co-cultured with overexpression cells as compared 

to control, suggesting that overexpression of SPHK1 did not alter the pro-inflammatory 

phenotype of primary microglia. Similarly, these results were confirmed in co-culture of 

RAW264.7 macrophages and human glioma cells, as observed by an increased mRNA 

expression of M2 marker Arg1 (Figure 12E) in RAW264.7 macrophages co-cultured with 

SPHK1 overexpression cells as compared to EGFP control. Collectively, these results indicated 

that glioma derived sphingosine kinase 1 contributed to the microglial tumor-supportive 

activation state.  
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Figure 12: Over-expression of SPHK1 in glioma enhances the M2 phenotype of microglia/ macrophages. 

Quantitative RT-PCR analysis of M2 markers Arg1 (A) and Msr1 (B); M1 markers Tnfα(C) and IL6(D) in 

murine primary microglia (μglia) co-cultured with human glioma cells, LN229 and LN308 stably 

transfected with EGFP or SPHK1-myc.  (E) Quantitative RT-PCR analysis of M2 marker Arg1 

expression in RAW264.7 macrophages co-cultured with human glioma cells, LN229 and LN308 stably 

transfected with EGFP or SPHK1-myc.The mRNA expression of the target genes was normalized to the 
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mean of two housekeeping genes (B2m, Hprt). Data are expressed as fold-change over control cells (Ctrl) 

cultured without glioma cells and are means ± sem of 3 independent experiments. Statistical analysis was 

performed using paired t-test. **** p<0.0001, *** p<0.001; ** p<0.01, * p<0.05, n.s.: not significant. 

 

3.6 Inhibition of SPHK1 in a co-culture system shifts microglia/ macrophages to an M1 

phenotype. 

The SPHK1 small molecule inhibitor, SKI-II, has been widely used as a SPHK1 inhibitor that 

blocks the binding of sphingosine and ATP to SPHK1
124

. The use of SKI-II in the context of 

cancer therapy has been recently reviewed
125

. Correspondingly, in a co-culture setting of murine 

primary microglial cells and human glioma cells treated with SPHK1 small molecule inhibitor, 

SKI-II, resulted in a significant decrease in expression of M2 markers, Arg1 (Figure 13A) and 

Msr1 (Figure 13B) in microglial cells. An analysis of M1 marker expression revealed a striking 

increase in mRNA expression of TNFα (Figure 13C) and IL6 (Figure 13D). Similarly, analysis 

of IL10 secretion, a prominent M2 marker
126

 by ELISA from cell-free supernatant of microglial 

cells co-cultured with human glioma cells and treated with SKI-II, displayed a marked decrease 

in IL10 levels in microglial cells (Figure 14A). These results were further substantiated by 

analysis of TNFα and IL6 secretion from cell-free supernatants of microglial cells that showed a 

remarkable decrease in secretion of these cytokines (Figure 14A, B). These results indicated that 

inhibition of SPHK1 in gliomas shifted the response of microglial cells from an anti-

inflammatory phenotype (M2) within a tumor to pro-inflammatory phenotype (M1).   

These results were further extended in co-culture of RAW264.7 macrophages and human glioma 

cells treated with SKI-II, that resulted in a decreased mRNA expression of M2 marker Arg1 

(Figure 15A) and an increased mRNA expression of TNFα (Figure 15B) and IL6 (Figure 15C). 

Taken together, these data support the fact that S1P from glioma cells regulates the tumor-

supportive phenotype of microglia/ macrophages, and modulation of SPHK1 expression or 

activity can modify the phenotype of microglial cells, and thus a potential candidate for targeted 

therapy. 
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Figure 13: Inhibition of SPHK1 in gliomas modulates gene expression profile of microglia from anti-

inflammatory phenotype to a pro-inflammatory phenotype 

Quantitative RT-PCR analysis of M2 markers Arg1 and Msr1(A, B), and M1 markers Tnfα and IL6(C, D) 

in murine primary microglia (μglia) co-cultured with human glioma cells, LN229 and LN308 upon 

treatment with sphingosine kinase 1 small molecule inhibitor, SKI-II for 24 hrs. The mRNA expression of 

the target genes was normalized to the mean of two housekeeping genes (B2m, Hprt). Data are expressed 

as fold-change over primary microglial cells treated with solvent control (Ctrl) and are means ± sem of 3 

independent experiments. Statistical analysis was performed using paired t-test. **** p<0.0001, *** 

p<0.001; ** p<0.01, * p<0.05, n.s.: not significant. 
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Figure 14: SKI-II treatment in gliomas induces significant changes in the secretion of inflammatory 

factors 

Enzyme-linked immunosorbent assay (ELISA) of M2 cytokine IL10 (A) and M1 cytokine TNFα (B) and 

IL-6 (C) in cell-free supernatant of murine primary microglia (μglia) co-cultured with human glioma 

cells, LN229 and LN308 upon treatment with sphingosine kinase 1 small molecule inhibitor, SKI-II for 

24 hrs. Data are expressed as pg/ml as plotted against a standard curve for each cytokine and are means ± 

sem of 3 independent experiments. Statistical analysis was performed using paired t-test. **** p<0.0001, 

*** p<0.001; ** p<0.01, * p<0.05, n.s.: not significant. 
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Figure 15: Inhibition of SPHK1 in gliomas shifts macrophage response to an M1 phenotype. 

Quantitative RT-PCR analysis of M2 markers Arg1 and Msr1(A, B), and M1 markers Tnfα and IL6(C, D) 

in RAW264.7 macrophages co-cultured with human glioma cells, LN229 and LN308 upon treatment with 

sphingosine kinase 1 small molecule inhibitor, SKI-II for 24 hrs. The mRNA expression of the target 

genes was normalized to the mean of two housekeeping genes (B2m, Hprt). Data are expressed as fold-

change over RAW264.7 macrophages treated with solvent control (Ctrl) and are means ± sem of 3 

independent experiments. Statistical analysis was performed using paired t-test. **** p<0.0001, *** 

p<0.001; ** p<0.01, * p<0.05, n.s.: not significant. 
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3.7 Inhibition of SPHK1 in gliomas modulates important signaling pathways that regulate 

M1-M2 polarization of microglia/ macrophages 

Among major pathways that regulate microglia/ macrophage polarization, M1 stimulus such as 

LPS, IFN-γ signal through activation of TLR4, IFNα, or IFN-β receptors (IFNAR), leading to the 

activation of transcription factors NF-κB, AP-1, IRF3 and STAT1, which in turn leads to the 

active transcription of pro-inflammatory genes
127

. In contrast, M2 stimuli such as IL-4 and/ or 

IL-13 signals via IL-4Rα, thus activating STAT6, that regulates the expression of important 

alternatively activated anti-inflammatory genes. IL-10 signals through its receptor IL-10R 

activating STAT3 triggering an M2-like macrophage polarization
127

. To elucidate the molecular 

pathways that mediate the shift to a pro-inflammatory phenotype in microglia/ macrophages 

upon SKI-II treatment in gliomas, primary microglia and RAW264.7 macrophages were treated 

with conditioned media harvested from human glioma cell lines, LN229 and LN308 treated with 

SKI-II. Total cell extracts were isolated to analyze various key signaling pathways that mediated 

the M1 and M2 phenotype of microglia/ macrophages.  

Immunoblot analysis of primary microglia treated with conditioned media from glioma cells 

treated with SKI-II, showed a remarkably decreased activation of phospho-Stat3 and phospho-

Akt as compared to control cells, indicating that S1P from glioma cells activates the Stat3 

pathway and Akt pathway, and thereby promoting the anti-inflammatory phenotype of microglia 

(Figure 16). SKI-II treatment also showed a decreased activation of phospho-TBK1 and 

phospho-IRF3, demonstrating that inhibition of SPHK1 in glioma resulted in deactivation of the 

TBK1/ IRF3 pathway that plays an important role in regulating the anti-inflammatory 

polarization (Figure 16). On the contrary SKI-II treatment displayed an activation of the NF-κB 

pathway as indicated by the activation of phospho- NF-κB p65 and degradation of IκBα, 

suggesting that inhibition of SPHK1 in gliomas induces a pro-inflammatory polarization of 

microglia via activation of the NF-κB pathway (Figure 16). These observations were further 

validated in RAW264.7 macrophages that similarly illustrated that inhibition of SPHK1 in 

gliomas, led to decreased activation of Stat3 pathway, Akt pathway, and TBK1 / IRF3 pathway, 

while accompanied by an activation of the NF-κB pathway (Figure 17). These results taken 

together illustrated that S1P modulates key signaling pathways that regulate M1-M2 phenotype, 

thereby inducing the anti-inflammatory polarization of microglia/ macrophages.  
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Figure 16: SKI-II treatment in glioma modulates important signaling pathways that regulate M1-M2 

polarization of primary microglia 

Western blot analysis of primary microglia treated for 24 hours with conditioned media harvested from 

human glioma cell lines, LN229 and LN308, and treated with SPHK1 small molecule inhibitor, SKI-II, 

assessed with anti-phospho-STAT3 (Tyr705), anti-STAT3, anti-phospho-Akt (Ser473), anti-Akt, anti-

phospho-TBK1/NAK1 (Ser172), anti-TBK1/NAK1, anti-phospho-IRF3 (Ser396), anti-IRF3, anti-

phospho-NFκB-p65, anti-NFκB-p65 or anti-IκBα. Alpha-tubulin served as loading control. 
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Figure 17: SKI-II treatment in glioma regulates key signaling pathways that defined the M1-M2 

polarization of macrophages 

Western blot analysis of RAW264.7 macrophages treated for 24 hours with conditioned media harvested 

from human glioma cell lines, LN229 and LN308, and treated with SPHK1 small molecule inhibitor, 

SKI-II, assessed with anti-phospho-STAT3 (Tyr705), anti-STAT3, anti-phospho-Akt (Ser473), anti-Akt, 

anti-phospho-TBK1/NAK1 (Ser172), anti-TBK1/NAK1, anti-phospho-IRF3 (Ser396), anti-IRF3, anti-

phospho-NFκB-p65, anti-NFκB-p65 or anti-IκBα. Alpha-tubulin served as loading control. 
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3.8 Antagonism of Sphingosine 1-Phosphate receptors by FTY720 induces a pro-

inflammatory phenotype of microglia/ macrophages 

As previous results showed that S1P induces tumor-supportive phenotype of microglia/ 

macrophages in gliomas, the next experiments were aimed at targeting the receptor on microglia 

that mediated the anti-inflammatory responses. S1P conveys signals as an intracellular 

messenger and/or through a family of G-coupled receptors (S1PR1-5) expressed both on cancer 

cells and their surrounding microenvironment
82,128

. FTY720, an immunomodulatory drug acts as 

a potent antagonist of four S1P receptors (S1PR1, S1PR3, S1PR4 and S1PR5)
105,129

. FTY720 

renders cells unresponsive to S1P activation by sequestering S1PR1 intracellularly
130

. For that 

reason, microglial cells co-cultured with glioma cells were treated with FTY720 to understand if 

blocking the G-coupled receptors S1PR1-5 rendered the microglial cells unresponsive to S1P, 

and thereby promoting a pro-inflammatory phenotype of microglia/ macrophages.   

To investigate the effects of FTY720 alone on microglial cells and excluding its inhibitory 

effects on glioma cells, human glioma cells were initially cultured for 48 hours and the 

conditioned media was harvested. Primary microglia were pre-blocked with FTY720 for 24 

hours, and treated with glioma-derived conditioned media for 24 hours, after which RNA was 

isolated. Quantitative qPCR analysis although did not result in significant changes in mRNA 

expression of M2 markers, Arg1 (Figure 18A) and Msr1 (Figure 18B) in microglial cells; 

analysis of M1 markers revealed a striking increase in mRNA expression of TNFα (Figure 18C) 

and IL6 (Figure 18D). These results were further confirmed by analysis of secreted 

inflammatory cytokines by ELISA that showed a surprising decrease in IL10 secretion (Figure 

19A), and a significant increase in secretion of TNFα (Figure 19B) and IL6 (Figure 19C). These 

results inferred that although FTY720 treatment led to a partial decrease in the anti-inflammatory 

phenotype, as shown by insignificant changes in expression of Arg1 and Msr1, while a reduction 

in IL10 secretion; the drug was able to induce a pro-inflammatory state of microglia as indicated 

by elevated levels of TNFα and IL6 both on mRNA level and protein level.  
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Figure 18: Inhibition of Sphingosine 1-phosphate receptors by FTY720 modulates gene expression 

profile of microglia by inducing a pro-inflammatory phenotype.  

Quantitative RT-PCR analysis of M2 markers Arg1 and Msr1(A, B), and M1 markers Tnfα and IL6(C, D) 

in murine primary microglia (μglia) treated with conditioned media harvested from human glioma cells, 

LN229 and LN308; and treatment with FTY720 for 24 hrs. The mRNA expression of the target genes 

was normalized to the mean of two housekeeping genes (B2m, Hprt). Data are expressed as fold-change 

over primary microglial cells treated with solvent control (Ctrl) and are means ± sem of 3 independent 

experiments. Statistical analysis was performed using paired t-test. **** p<0.0001, *** p<0.001; ** 

p<0.01, * p<0.05, n.s.: not significant. 
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Figure 19: FTY720 treatment induces significant changes in the secretion of inflammatory factors in 

microglia 

Enzyme-linked immunosorbent assay (ELISA) of M2 cytokine IL10 (A) and M1 cytokine TNFα (B) and 

IL-6 (C)in cell-free supernatant of murine primary microglia (μglia) treated with conditioned media 

harvested from human glioma cells, LN229 and LN308; and treatment with FTY720 for 24 hrs. Data are 

expressed as pg/ml as plotted against a standard curve for each cytokine and are means ± sem of 3 

independent experiments. Statistical analysis was performed using paired t-test. **** p<0.0001, *** 

p<0.001; ** p<0.01, * p<0.05, n.s.: not significant. 

 

To decipher the molecular pathways that mediate the induction of a pro-inflammatory phenotype 

in microglia/ macrophages upon FTY720 treatment, primary microglia were pre-treated with 
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FTY720 and treated with conditioned media harvested from LN229 human glioma cell line. 

Total cell extracts were isolated to analyze various key signaling pathways that mediated the M1 

and M2 phenotype of microglia/ macrophages.  

Immunoblot analysis of primary microglia treated with FTY720 and conditioned media from 

glioma cells, showed a remarkably decreased activation of phospho-Stat3 and phospho-Akt, 

indicating that blockade of the sphingosine 1-phosphate receptors by FTY720 deregulates the 

Stat3 pathway and Akt pathway, and play an important role in mitigation of the anti-

inflammatory phenotype of microglia (Figure 20). FTY720 treatment also showed a decreased 

activation of phospho-TBK1 and phospho-IRF3, demonstrating that activation of the S1PR 

signaling resulted in downstream activation of the IRF3 pathway that plays an important role in 

regulating the anti-inflammatory polarization (Figure 20). On the contrary SKI-II treatment 

displayed an activation of the NF-κB pathway as indicated by degradation of IκBα, suggesting 

that inhibition of S1PR in microglia induces a pro-inflammatory polarization of microglia via 

activation of the NF-κB pathway (Figure 20). These results taken together illustrated that 

blockade of sphingosine 1-phosphate receptors by FTY720 modulates major signaling pathways 

that regulate M1-M2 phenotype, thereby inducing a pro-inflammatory phenotype of microglia/ 

macrophages. 



Page | 66  
 

 

Figure 20: Antagonism of Sphingosine 1-Phosphate receptors by FTY720 in microglia modulates 

important signaling pathways that regulate M1-M2 polarization 

Western blot analysis of primary microglia pre-treated with FTY720 for 24 hours and treated for 24 hours 

with conditioned media harvested from LN229 human glioma cell line, assessed with anti-phospho-

STAT3 (Tyr705), anti-STAT3, anti-phospho-Akt (Ser473), anti-Akt, anti-phospho-TBK1/NAK1 

(Ser172), anti-TBK1/NAK1, anti-phospho-IRF3 (Ser396), anti-IRF3, anti-phospho-NFκB-p65, anti-

NFκB-p65 or anti-IκBα. Alpha-tubulin served as loading control. 
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3.9 S1P inhibits LPS mediated M1 phenotype of microglia/ macrophages 

Following up on the previous findings that glioma derived S1P plays a key role in regulating the 

anti-inflammatory phenotype of microglia/ macrophages, it was plausible to investigate the 

potential mechanisms by which S1P maintains an anti-inflammatory phenotype in microglia/ 

macrophages. The canonical NF-κB pathway has primarily been considered a archetypical pro-

inflammatory pathway signaling, majorly based on the role of NF-κB in the expression of 

important pro-inflammatory genes including cytokines, chemokines, and adhesion molecules, 

such as IL-6, IL-1 and TNFα
131

. NF-kappa B inhibitor alpha (IκBα), a key intermediate of the 

canonical NF-κB pathway activation gets phosphorylated, a pre-requisite for its proteosomal 

degradation
132

. This in turn releases the homo and hetero dimers of nuclear factor NF-κB that 

translocate into the nucleus, resulting in active target gene expression of M1 genes
132

. 

Direct treatment of RAW264.7 macrophages with S1P for 15 minutes – 1 hour, did not result in 

any significant changes in M1 phenotype as assessed by western blot analysis of IκBα (Figure 

21A). Lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria, 

is a potent activator of NF-κB pathway 
133

. RAW264.7 macrophages co-treated with LPS and 

S1P for 15 minutes – 1 hour, demonstrated that S1P prevented the LPS induced IκBɑ 

degradation, mainly between 45 minutes and 1 hour (Figure 21B), indicating that S1P was able 

to abrogate the LPS induced NF-κB signaling. S1P mediated decrease of NF-κB signaling was 

further verified by gene-expression changes of pro-inflammatory cytokines, where S1P treatment 

resulted in a considerable decreased mRNA expression of LPS induced M1 markers iNOS 

(Figure 21C), and TNFɑ (Figure 21D), when RAW264.7 macrophages were co-treated with 

LPS and S1P for 5 hours. Analysis of the production of nitric oxide, a pro-inflammatory 

metabolite, as measured by a modified Griess reagent assay also confirmed that co-treatment of 

RAW264.7 macrophages with LPS and S1P resulted in a decreased production of LPS induced 

nitric oxide levels (Figure 21E). These results were confirmed in primary microglia that showed 

that S1P was able to block LPS induced IκBɑ degradation in a concentration dependent manner, 

when co-treated with LPS and increasing concentrations of S1P for 1 hour (Figure 21F); and 

decreased mRNA expression of LPS induced M1 genes, TNFɑ (Figure 21G) and IL6 (Figure 

21H) when co-treated with LPS and increasing concentrations of S1P for 5 hours. Collectively, 

these results indicated that S1P inhibited LPS mediated M1 phenotype of microglia/ 

macrophages. 
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To further elucidate the mechanism by which S1P inhibited LPS mediated NF-κB activation, 

primary microglia cells were co-treated with LPS and increasing concentrations of SEW2871, a 

potent and selective S1PR1 agonist for 1 hour
129

. This resulted in likewise blockade of LPS 

induced IκBɑ degradation in a concentration dependent manner (Figure 22A). Similarly, 

RAW264.7 macrophages co-treated with LPS and SEW2871 for 15 minutes – 1 hour, 

demonstrated that S1P prevented the LPS induced IκBɑ degradation, mainly between 45 minutes 

and 1 hour, illustrating that S1P potentially inhibited LPS induced NF-κB signaling via S1PR1 in 

microglia/ macrophages (Figure 22B) Inhibition of S1PR1 by selective antagonist W146 
129

, 

counteracted the effect of S1P in blocking the LPS induced IκBɑ degradation, suggesting that 

S1P acted via S1PR1 in inhibiting the pro-inflammatory phenotype of microglia/ macrophages 

(Figure 22C). On the contrary, S1PR2 antagonist, JTE013 or S1PR1/ S1PR3 antagonist, 

VPC23019 
129

, did not alter the effects of S1P modulation of NF-κB activation, suggesting that 

S1PR2 or S1PR3 did not play a role in mediating the inhibition of NF-κB activity upon S1P 

stimulation (Figure 22C). Furthermore, primary microglia treated with FTY720, acts as a potent 

antagonist of four S1P receptors (S1PR1, S1PR3, S1PR4 and S1PR5) resulted in a degradation 

of IκBɑ, indicating that FTY720 was able to induce NF-κB signaling in microglial cells (Figure 

22D).  
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Figure 21: S1P inhibits LPS mediated M1 phenotype of microglia/ macrophage 

(A) Western blot analysis of IκBα amounts in RAW264.7 macrophages treated with S1P (5 μM) for 15 

min – 1 hour. EF2 served as loading control. (B) Western blot analysis of IκBα amounts in RAW264.7 

macrophages co-treated with LPS (100 ng/µl) and S1P (5 μM) for 15 minutes – 1 hour. EF2 served as 

loading control. Quantitative RT-PCR analysis of M1 markers Tnfα(C) and iNos(D) in RAW264.7 

macrophages co-treated with LPS (1 ng/µl) and increasing concentration of S1P (0 – 2 μM) for 5 hours. 

(E) Measurement of nitrite levels (NO2
-
) assessed by Griess reagent assay in RAW264.7 macrophages co-

treated with LPS (1 ng/µl) and increasing concentration of S1P (0 – 2 μM) for 24 hrs. (F) Western blot 

analysis of IκBα amounts in murine primary microglia treated with LPS and increasing concentration of 

S1P (0 – 2 μM) for 1 hour. EF2 served as loading control. Quantitative RT-PCR analysis of M1 markers 

Tnfα(F) and iNos(G) in primary microglia co-treated with LPS(1 ng/µl) and increasing concentration of 

S1P (0 – 2 μM) for 5 hours. qRT-PCR data are expressed as fold standard over cells treated with solvent 

control and are means ± sem of 3 independent experiments. Statistical analysis was performed using 

paired t-test. **** p<0.0001, *** p<0.001; ** p<0.01, * p<0.05, n.s.: not significant. 

 

Recent studies have indicated that TLR4 signaling balances the pro-inflammatory and anti-

inflammatory signaling via activity of p110δ isoform of the kinase PI(3)K
74,76

. These 

observations suggested that p110δ limits the TLR4 mediated induction of pro-inflammatory 

cytokines by eliminating the plasma membrane TIRAP-anchoring lipid phosphotidylinositol-

(4,5)-biphosphate (PtdIns(4,5)P2), leading to the dissociation and degradation of TIRAP, and 

thereby mediating the endocytosis of CD14-TLR4 eventually leading to production of IFN-β and 

anti-inflammatory cytokine, IL-10
74,76

. Thereby, activation of p110δ shifts the balance towards a 

pro-inflammatory signaling. These effects are probably also mediated in unison with 

phospholipase C- γ (PLC-γ)
74,76

. To investigate if p110δ or PLCγ played a role in mediating the 

S1P modulation of TLR4 activity, RAW264.7 macrophages were pre-treated with p110δ 

blocker, IC87114 or PLCγ blocker, U73122 and co-treated with LPS (10 ng/ul) and S1P (5µM) 

for 15min – 1hr, and analyzed for expression of IκBɑ. Although S1P prevented the LPS induced 

IκBɑ degradation, as seen in pre-treatment with solvent control, inhibition of both p110δ and 

PLCγ did not abrogate these effects of S1P inhibition of NF-κB activity (Figure 22E-F). This 

indicated that S1P inhibition of the TLR4 pathway did not act via p110δ or PLCγ in microglia/ 

macrophages. One possible mechanism of S1P inhibition of NFκB activity could be mediated via 

activation of the TBK1/ IRF3 signaling, although the detailed mechanism needs further 

investigation.  
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Figure 22: S1P modulates NF-κB activity in microglia/ macrophages via S1PR1 

(A) Western blot analysis of IκBα in murine primary microglia co-treated with LPS (10 ng/µl) and 

increasing concentration of S1PR1 selective agonist SEW2871 for 1hr. EF2 served as loading control. (B) 

Western blot analysis of in IκBα in RAW264.7 macrophages co-treated with LPS (10 ng/µl) and 

SEW2871 (2 μM) for 15 min to 1 hr. EF2 served as loading control. (C) Western blot analysis of IκBα in 
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RAW264.7 macrophages co-treated with LPS (10 ng/µl) and S1P (5 μM) for 1 hr, where cells were pre-

treated with S1PR1 antagonist, W146 (0.5 μM), S1PR2 antagonist, JTE013 (1 μM), S1PR1 and S1PR3 

antagonist, VPC23019 (1 μM) or solvent control (DMSO) for 1hr. EF2 served as loading control. (D) 

Western blot analysis of IκBα in RAW264.7 macrophages treated with S1PR1,3,4,5 antagonist, FTY720 

for 24 hrs. EF2 served as loading control. (E) Western blot analysis of IκBα amounts in RAW264.7 

macrophages co-treated with LPS (10 ng/µl) and S1P (5 μM) for 1 hr, where cells were pre-incubated 

with p110δ blocker, IC87114 for 1 hr. EF2 served as loading control. (F) Western blot analysis of IκBα in 

RAW264.7 macrophages co-treated with LPS (10 ng/µl) and S1P (5 μM) for 1 hr, where cells were pre-

incubated with PLCγ blocker, U73122 for 1 hr. EF2 served as loading control. 
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4. Discussion 

4.1 High SPHK1 expression influences gene expression class in GBM and correlates to 

increased microglial gene signature 

Glioblastoma multiforme (GBM) is the most common aggressive form of brain tumors occurring 

in adults, with a 1-year survival less than 29% and a 5-year survival less than 3%. Among 

several genes that are overexpressed or mutated, sphingosine kinase 1 (SPHK1) expression is 

upregulated in variety of cancers, including GBM, and has been associated with a poor survival 

for patients with GBM
109,110,118

. SPHK1 regulates the production of sphingosine 1-phosphate 

(S1P) by catalyzing the phoshorylation of sphingosine to S1P. S1P is a bioactive sphingolipid 

metabolite that has been associated with tumor pathogenesis and cancer cell fate, where S1P 

influences pro-survival, anti-apoptotic, and pro-angiogenic functions in tumors
82,85,115

. As shown, 

a higher SPHK1 expression in GBM patients resulted in an increased progression-free survival 

and an overall-free survival, as represented by Kaplan Meier curves in patients with GBM 

divided into high SPHK1 and low SPHK1. Although the progression-free survival of SPHK1 

contributed to better survival outcome (p=4.9e-0.3) as compared to overall free survival 

(p=0.026), this could be attributed to subsequent therapies upon disease progression, tumor 

pathways affected by new drugs and the nature of drug and tumor interactions
134,135

.  

Abuhusain et al. showed that among other sphingolipid-related genes, S1P phosphatase (SGPP2) 

that reverse catalyzes the dephosphorylation of S1P to sphingosine was significantly 

downregulated in GBM contributing to decreased ceramide production and shifting the balance 

towards a higher S1P production in GBM; unchanged levels of CERS1 that catalyses the 

synthesis of ceramide C18; and a significant upregulation of Acid ceramidase (ASAH1) that 

converts ceramide to sphingosine. These results were further supported by quantitative 

sphingolipid profiling displayed by increased S1P levels and decreased total ceramide levels with 

increased glioma grade, and a decline of hexosylceramide (HexCer) and sulfatide levels
118

. 

Reduced supply of dihydroceramide and hexosylceramide, facilitated by galactosylceramidases 

synthetase, an ER resident protein, suppresses endoplasmic reticulum stress by interfering with 

the structure and function of ER
136,137

. Taken together, human gliomas displayed a metabolic 

shift towards S1P with increasing malignancy in expense of ceramide, indicating that the S1P-

ceramide rheostat play an important role in determining cell fate
118

. 
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Gene expression profiling of GBM identified four distinct genetic subtypes, namely Proneural, 

Neural, Classical and Mesenchymal based on defined subtype metagene score and characterized 

by aberrations in genes including PDGFRA/IDH1, EGFR, and NF1
5,138

. Analysis of data in 

subtypes of GBM revealed that SPHK1 was significantly higher in mesenchymal group, 

followed by proneural and almost an equal distribution in classical and neural subgroup. The 

mesenchymal subgroup is associated with highly aggressive and invasive tumors that show 

activation of gene expression profiles representative of cell proliferation and angiogenesis
5,138

, 

implicating the importance of SPHK1 in this subtype. Another study showed the link between 

epithelial-mesenchymal transition (EMT) process and mesenchymal subtype as displayed by a 

negative correlation between CD133 signatures that is mostly presented by the mesenchymal 

subtype and EMT signatures
139

. SPHK1 has been implicated in role of induction of EMT and 

metastasis in non-small-cell lung cancer cells by promoting the invasive and metastatic 

capabilities of these cells and in hepatoma cells by stimulating autophagy via lysosomal 

degradation of the epithelial marker and suppressor of EMT, CDH1 in HepG2 cells
140,141

. 

Several studies over the past decade have witnessed the importance of brain tumor micro-

environment as an important modulator of tumor progression that influences the course of tumor 

pathology and the outcome of malignancy. Among the different types of non-tumorgenic cells 

that infiltrate the tumor, mainly constituted by neurons and glial cells (like microglia, 

oligodendrocytes, and astrocytes), tumor associated microglia/ macrophages (TAMs) represent 

an important mediator of tumor growth and invasion
13,16

. A gene set enrichment analysis (GSEA) 

using Affymetrix gene expression data of GBM (Affymetrix 540 MASS 5.0-u133 array) and 

gene sets as reported in Butovsky et al., 2013
122

 showed a preferentially positive association of 

SPHK1 to microglial gene signature (p<0.0001); while showing a lesser significant association 

to astrocyte gene set (p=0.0086) and oligodendrocyte gene set (p=0.0029) and negative 

correlation to neuronal gene set (p=0.99). High SPHK1 is positively correlated to expression of 

specific microglial genes such as solute carrier organic anion transporter family member 2B1 

(Slco2b1), Colony stimulating factor 1 receptor (Csf1r), Gi/o protein-coupled receptor 34 of the 

nucleotide receptor P2Y12 -like group (Gpr34) and Transmembrane protein 119 (Tmem119). 

Conversely, as shown before, SPHK1 was strongly upregulated in the mesenchymal subtype of 

GBM, where mesenchymal subtype has been implicated with high necrosis and higher microglia/ 

macrophage infiltration
11,12

. These observations taken together collectively suggest the 
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significance of SPHK1/S1P signaling in regulating the microglia-glioma crosstalk and 

influencing both transcriptional regulators and gene expression class in GBM.  

4.2 Modulation of SPHK1 activity in gliomas influences the polarization of microglia 

Glioma associated microglia/ macrophages (GAMs) represent the major tumor infiltrating cells 

that are attracted towards tumor core and necrotic areas, which in response to interaction with 

tumor cells secrete microglia release factors and matrix secreting enzymes in the tumor 

microenvironment leading to accelerated glioma proliferation and invasion
71

. Several studies 

reported that GAMs express an ―M2-like polarization‖ phenotype, characterized by increased 

production of anti-inflammatory factors (such as TGFβ1, ARG1, and IL-10), and factors 

influencing tissue remodeling and angiogenesis (such as VEGF, MMP2, MMP9 and MT1-

MMP)
63

. As previous data suggested that SPHK1/S1P signaling in GBM could play a positive 

role in modulating the microglial signature, the role of SPHK1 by modulating the expression and 

activity of SPHK1 in gliomas was further investigated. Indeed, knockdown of SPHK1 in glioma 

significantly decreased mRNA expression of prominent M2 markers Arg1 and Msr1, and 

subsequently leading to significantly increased mRNA expression of M1 marker, IL-6 in 

microglia cells co-cultured with glioma cells. Although IL-6 plays a controversial role in 

influencing the balance between M1 and M2 macrophages, where reports also show IL-6 

promoting alternative macrophage activation
142

, SPHK1 knockdown led to NF-κB mediated 

activation as shown by activation of phospho- NF-κB p65 and degradation of IκBα , resulting in 

the production of pro-inflammatory genes, such as IL-6, TNFα, thereby inducing the M1 

phenotype of microglia/ macrophages
143,144

. M1 microglia/macrophages are potent tumor-

suppressive cells that are able to overcome the M2-associated tumor promoting functions 

through the expression and secretion of pro-inflammatory cytokines and chemokines such as IL-

6, IL-12, CXCL9 and CXCL10, and subsequent recruitment of Th1 cells. Consequently, Th1 

cells produce IFNγ, thereby promoting the classical M1 polarization of 

microglia/macrophages
46,47

.  

Conversely, overexpression of SPHK1 in glioma also significantly increased M2 marker 

expression of Arg1 and Msr1 in microglial cells co-cultured with glioma cells. However, 

overexpression of SPHK1 did not lead to much significant change in M1 marker expression of 

TNF and IL6, these results could be attributed to the saturation of M2-associated tumor 
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promoting functions that further did not influence the M1-associated tumor fighting signature in 

microglia. Similarly, inhibition of SPHK1 enzymatic activity by SKI-II in glioma cells correlates 

with a substantial reduction of M2 markers such as Arg1, Msr1 and IL-10, and conversely, a 

considerable increase of M1 markers such as TNFα and IL-6. These results are in line with 

previous report that demonstrated that the downregulation of SPHK1 in melanoma cells reduced 

tumor growth and modified the tumor infiltration and phenotype of macrophages
145

. Suppression 

of SPHK1 activity resulted in decreased populations of M2-associated MHC-II
low

CD206
high

 

TAMs, and an increased iNOS
+
F4/80

+
 M1 macrophages, in addition to increased expression of 

Th1 cytokines (IL-12, TNFα, IFNγ) and chemokines (CCL5, CXCL9, CXCL10). These 

consequently resulted in a significant increase in NK cells and CD4
+
 and CD8

+
 tumor infiltrating 

T-lymphocytes (Thy1
+
). Interestingly, macrophage depletion by clodronate-loaded liposomes 

abrogated the reduced tumor growth suggesting that macrophages influenced the SPHK1 

mediated tumor progression. Conversely, Sphk2 mediated S1P production in apoptotic MCF-7 

breast cancer cells contributed to alternative activation of macrophages and suppressed NF-κB 

activity
146

. Sphingosine kinase 2 deficient MCF-7 tumors in nude mice impaired M2 type 

macrophage polarization as evidently displayed by decreased CD206 and increased MHCII 

expression in macrophages, and increased nitric oxide production, indicative of M1-like 

activation
147

.  

Furthermore, the sphingosine kinase inhibitor SKI-II significantly suppressed the viability and 

migration of glioma cell line LN18
148

. These results are in line with other studies showing that 

targeting SPHK1 resulted in impairment of GBM growth and induction of apoptosis in-vivo via 

reduction of intracellular S1P levels and suppression of Akt signaling. These effects were 

mediated primarily as a result of reduced ―inside-out signaling‖ of S1P, and not as a direct effect 

of suppression of SPHK1 enzymatic activity, resulting in decreased phosphorylation of Akt, and 

reduced tumor growth
149

. Neutralization of extracellular S1P using a monoclonal antibody 

against S1P (Sphingomab) in an in-vivo allograft tumor model using the B16-F10 cells markedly 

suppressed tumor growth, metastasis, and angiogenesis concurrently with reduced vessel 

formation and function. The anti-S1P antibody also suppressed the production of pro-angiogenic 

cytokines by inhibiting the function of VEGF and bFGFin vivo
150

. Similarly, therapeutic 

targeting extracellular S1P in prostate cancer blocked HIF-1α accumulation resulting in 

decreased intratumoral hypoxia and vascular normalization. The extracellular effects of S1P in 
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regulating HIF-1α levels were mediated by Spinster 2 (Spsn2) that is thought to be the principal 

transporter of S1P
114

. These results suggested that modulating SPHK1 expression in gliomas 

controls the balance between intracellular S1P and export of S1P, that signal through S1P 

receptors in paracrine and/or autocrine manner, thereby influencing and contributing to the tumor 

microenvironment
105

. In addition to pro-survival, anti-apoptotic and pro-angiogenic functions of 

S1P, S1P potentially can modulate the phenotype of tumor associated microglia/ macrophages. 

The diverse functional states of microglia/macrophages are governed by a complex interplay 

between microenvironment signals and a differential activation of key molecular pathways that 

determines their identity and M1/M2 polarization. Inhibition of SPHK1 in gliomas resulted in 

decreased phosphorylation of anti-inflammatory signaling pathways such as STAT3, AKT, and 

TBK1/IRF3, with subsequent activation of pro-inflammatory NF-κB pathway through the 

increased phosphorylation of phosphor-p65 and degradation of IκBα in microglia/ macrophages. 

Decreased activity of the transcription factor STAT3 can be attributed to reduced IL-10 levels as 

quantified by ELISA, where binding of IL-10 to IL-10 receptor results in autophosphorylation of 

the receptor, consequently leading to the activation of STAT3 and inhibition of pro-

inflammatory cytokine expression
151

. The IL-10/STAT3 mediated anti-inflammatory responses 

are cell type specific, where in macrophages IL-10/STAT3 signaling contributes to the 

immunosuppressive phenotype by indirect and selective inhibition of NF-κB target genes, with 

no significant effects in CpG frequency and expression levels of IRF members
152,153

. Conversely, 

in dendritic cells and mast cells, IL-10/STAT3 stimulates chromatin remodeling, with 

transcriptional inhibition of Irf3 and Irf7 and unaffected NF-κB transcripts
153

. IL-10 knockout 

represents the archetypical model for Crohn‘s disease displaying extensive mucosal hyperplasia, 

inflammatory responses, and aberrant expression of MHCII on epithelia, where most animals are 

growth retarded and anemic
154

. Similarly, macrophage and neutrophil specific knockdown of 

STAT3 developed chronic enterocolitis that are highly susceptible to LPS-induced endotoxin 

shock, impaired Th1 cell development and imbalanced IL-10 functions
155

. Paradoxically, both 

the IL-6 and IL-10 activate STAT3, although the temporal pattern and duration of STAT3 

activation defines the specific cytokine response and thereby determining the end fate of 

macrophages towards M1or M2 phenotype
156

.  
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AKT signaling is also associated to M2 macrophage polarization, where IL-4 signaling activates 

Jak1 and Jak3 through ligation to the IL-4R resulting in phosphorylation of STAT6 and 

recruitment of the adaptor protein IRS2. IRS2 recruits PI3K resulting in phosphorylation of PIP2 

at the plasma membrane to PIP3, consequently leading to the recruitment of Akt and mTORC2 

where in-turn mTORC2 phosphorylates and activate Akt
157

. Macrophage specific ablation of 

Akt1 resulted in hyper-sensitization to LPS exhibiting a shift towards a pro-inflammatory 

phenotype. Akt1 depletion also exacerbated the dextran sulfate sodium (DSS)-induced 

inflammatory bowel disease in mice
158

. Similarly, adenovirus mediated transfer of IRF3 in 

microglia suppressed expression of pro-inflammatory genes such as IL-1α, IL-1β, TNFα, IL-6, 

IL-8 and CXCL1 and enhanced anti-inflammatory genes (IL-1 receptor antagonist, IL-10 and 

IFNβ), leading to activation of PI3K/Akt pathway, suggesting that IRF3 enables M2-like 

macrophages
159

. Likewise, GM-CSF stimulated M1 polarization of macrophages displayed a 

decreased activation of the IRF3 pathway and increased activation of MyD88 dependent NF-κB 

pathway, while M-CSF primed macrophages that display an M2 like phenotype demonstrated a 

deactivated NF-κB pathway and an enhanced TRIF-mediated IRF3 induction
160,161

. Inhibition of 

p110δ activity, an important regulator of the balance between pro- and anti-inflammatory TLR4 

signaling, diminished IRF3 activation, that are optimalfor IFN-β production and late activation of 

NF-κB and p38
76

. Taken together, molecular pathways such as STAT3, AKT and IRF3 play a 

crucial role in regulating the immunosuppressive phenotype of microglia/ macrophages.  

Collectively, these results emphasize the importance of interactions between S1P-producing 

tumor cells with the host microenvironment that play a critical role in polarization of 

microglia/macrophages, and thereby driving tumor progression, and thus targeting the 

S1P/SPHK1 axis in tumors could be a excellent therapeutic target for treatment of GBM, 

presumptively in combination with other targeted therapies such as chemotherapy and 

radiotherapy. 

4.3 FTY720 treatment stimulates a pro-inflammatory signature of microglia/ macrophages 

FTY-720 (Fingolimod, Gilenya™) was developed as a first-line orally bioavailable drug for 

treating relapsing multiple sclerosis (MS), highlighting the significance of sphingosine-1-

phosphate (S1P) signaling as a therapeutically targetable pathway in autoimmune 

neuroinflammation
162

. S1P signals primarily through ubiquitously expressed five cognate G 
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protein coupled receptors that regulates important downstream cellular processes such as 

proliferation, migration
82

. S1PR1 and S1PR2 have been shown to be expressed by different 

populations or genetic origins of macrophages and monocytes
163

. Inhibition of the sphingosine 1-

phosphate receptors by FTY720 triggered a pro-inflammatory phenotype of tumor associated 

microglia/ macrophages, as displayed by increased production of TNFα and IL-6 and an 

increased production of IL-10, while also modulates important signaling pathways that regulate 

M1-M2 phenotype, such as deactivation of STAT3, AKT, and TBK1/IRF3 and induction of NF-

κB pathway. S1P –S1PR1 axis plays an important role in lymphocyte egress from secondary 

lymphoid organ into the systemic circulation and chemotaxis
164

. FTY720 is phosphorylated by 

Sphk2, which subsequently binds to S1PR1 on T cells to induce its internalization, 

polyubiquitination and proteosomal degradation and, thereby preventing egress of T cells from 

lymph nodes. Another report showed that FTY720 also induces the proteosomal degradation of 

Sphk1
165,166

. STAT3 activity enhanced S1pr1 expression, where S1pr1 is a direct transcriptional 

activator of Stat3 and induction of S1pr1 expression reciprocally activates Stat3, while elevated 

S1PR1 expression in tumor cells promoted S1pr1 expression and Stat3 activation in tumor-

infiltrating myeloid cells
167

.  

Targeted depletion of S1PR1 in tumor-associated macrophage population, defined by 

Cd11b
+
Cd206

+
 cells resulted in decreased pulmonary metastasis and tumor lymphangiogenesis 

in nonrelated methylcholanthrene-induced fibrasarcoma model. Genetic ablation of S1PR1 also 

reduced the expression of the inflammasome component Nlrp3 and IL-1β production
168

. 

Apparently, S1PR2 deficient mice showed reduced response to LPS and S1P
163

, while 

pharmacological blockade of S1PR2 led to inhibition of macrophage pro-inflammatory cytokines 

in ApoE-deficient mice model of atherosclerosis
169

, indicating that S1PR2 could also play an 

important role in modulating the anti-inflammatory phenotype of microglia/ macrophages. Liang 

et al
168

 showed that S1PR1 and Sphk1 formed a missing link between chronic intestinal 

inflammation and development of colitis-associated cancer. They showed that mice deficient of 

Sphk2 enhanced colitis-associated tumorigensis and intestinal inflammation. These effects were 

attributed to Sphk2 mediated HDAC1/2 inhibition, increased expression of c-Jun, that led to a 

marked increase in Sphk1 expression. Inside out signaling of S1P and subsequent activation of 

S1PR1 and Sphk1 led to constitutive STAT3 activation
168

. FTY720 suppressed colitis and 

colorectal tumorigenesis associated with chronic colitis in Sphk2 deficient mice where the 
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Sphk1/S1P/S1PR1 feed-forward-loop is inhibited leading to abrogated STAT3 activation. 

Interestingly, macrophages and dendritic cells contributed to the production of tumor promoting 

cytokines, and inhibition of the Sphk1/S1P/S1PR1 axis by FTY720 failed to recruit macrophages 

in Sphk2 deficient mice contributing to suppressed colitis
168

. FTY720 synergistically reduced 

viability, induced apoptotic signaling in brain tumor stem cells (BTSCs), while also suppressed 

the growth of tumors in-vivo and enhanced the effects of temozolomide (TMZ) leading to 

enhanced survival
168

. These results first time showed that FTY720 shifts the balance of microglia 

towards a pro-inflammatory activation, and could represent a potential therapy approach for 

GBM, presumably in combination with other targeted therapies. 

4.4 Sphingosine 1-phosphate induces an anti-inflammatory phenotype in microglia/ 

macrophages via S1PR1 

Microglia/ macrophages respond to external stimuli and undergo important phenotypic and 

molecular changes that determine its activation state. Similarly, as previously shown in the 

present thesis, modulation of the SPHK1/S1P/S1PR1 axis are reciprocated by tumor associated 

microglia/ macrophages by undergoing significant phenotypic changes. Therefore, understanding 

the molecular mechanisms that govern the S1P mediated polarization is essential. Direct 

treatment of S1P on microglia/ macrophages did not induce any polarization of microglia/ 

macrophages. Thereafter, I questioned if S1P affected pre-polarized cells. Among myriad of 

inflammatory pathways that regulate the phenotype of microglia/ macrophages, LPS-induced 

TLR4 signaling are key mediators of the pro-inflammatory phenotype. The canonical NF-κB 

pathway has primarily been considered central players in pro-inflammatory pathway signaling 

and response to pathogens, predominantly as a consequence of expression of prominent pro-

inflammatory genes including cytokines, chemokines, and adhesion molecules, such as IL-6, IL-

1 and TNFα
131

. As contemplated, S1P inhibited LPS mediated M1 phenotype of microglia/ 

macrophage as evident from reduced IκBɑ degradation, decreased mRNA expression of LPS 

induced M1 genes, TNFɑ and IL6, and reduced nitric oxide production. Although these results 

are shown for the first time in microglia, these results confirmed previous findings that S1P 

significantly reduced LPS-mediated expression of pro-inflammatory cytokines, indicating that 

S1P promoted the anti-inflammatory phenotype of macrophages. Treatment of B6 peritoneal 

macrophages with S1P suppressed LPS-induced TNFα, MCP-1, IL-12, cyclooxygenase-2, and 

macrophage inflammatory protein-2 mRNA expression
170

. These effects of S1P on LPS 
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mediated polarization was mediated via S1PR1 as evident from SEW2871 (S1PR1 agonist) 

induced pro-inflammatory signaling and pharmacological inhibition of S1PR1 by W146 that 

abrogated the S1P mediated suppression of M1 polarization. 

Similarly, another study showed that apart from inhibition of M1 polarization, S1P also induced 

the M2 phenotype in primary murine macrophages, shown by mRNA expression of prominent 

M2 markers, such as Arg1, Ym-1, IL-10 and TGF-β
171

. The induction of M2 phenotype was 

mediated via the IL-4 dependent phosphorylation of STAT6, increased expression of suppressor 

of cytokine signaling 1 (SOCS1) and suppression of SOCS3
171

. Knockdown of SOCS3 in 

macrophages enhanced markers associated with M2 macrophages, such as mannose receptor, 

TGM2, and SOCS1, while diminishing the expression of pro-inflammatory genes, such as TNFα, 

IL-6 and HLA-DR
172

. Monocyte/ macrophage specific SOCS3 deficient mice exhibited severe 

and persistent contact hypersensitivity, as displayed by enhanced ear thickness and severe 

inflammation in the skin. IFN-γ pretreatment attenuated M2 macrophage mediated contact 

hypersensitivity in a SOCS3 dependent manner, while IFN-γ-SOCS3 pathway suppressed IL-4 

induced MMP-12 expression by inhibiting STAT6 activity
173

.    

TLR4 signaling maintains a critical balance of pro- and anti-inflammatory signaling through 

activation and regulation of the p110δ subunit of the kinase PI(3)K and PLCγ. A shift towards 

the MyD88 independent NF-κB activation results in TLR4 internalization, leading to IRF3 

activation and subsequent IFN-γ and anti-inflammatory IL-10 production
174

. Human gingival 

epithelial cells treated with LPS and S1P resulted in increased IFN-β levels, induction of CXCL-

10 and activation of IRF3
175

. Although previously shown in the present thesis that modulation of 

the SPHK1/S1P/S1PR1 axis affected IRF3 signaling, inhibition of p110δ and PLCγ using small 

molecule inhibitors did not abrogate these effects of S1P inhibition of NF-κB activity in 

macrophages. The detailed mechanism of suppression of LPS-induced M1 phenotype by S1P 

requires further investigation.  

4.5 Future Outlooks 

The previous few years witnessed various reports targeting tumor microenvironment, as more 

studies unravel the detailed mechanisms underlying the glioma-microglia interactions. While in 

vitro co-culture studies provided an insight into the role of SPHK1/S1P/S1PR1 axis in regulating 

microglia-glioma crosstalk, these results need further validation in-vivo. Furthermore, microglial 
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polarization state represents a complex genetic signature, therefore performing gene expression 

and proteome profiling can further decipher the complex molecular mechanisms governing the 

different activation states of microglia. A detailed understanding of the mechanisms by which 

S1P regulates the M1-M2 polarization would be of important interest. Thus, this study provides a 

strong rationale for targeting the S1P/SPHK1 axis in tumors that could be an effective targeted 

therapy for treatment of GBM, potentially in combination with other targeted therapies such as 

chemotherapy and radiotherapy. 
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5. Abbreviations 

 

Arg1     Arginase 1 

ATP     Adenosine triphosphate 

B2M     Beta-2 microglobulin 

BBB    Blood brain barrier 

BSA     Bovine serum albumin 

CCL     chemokines C-C motif ligand 

CCR     chemokines C-C motif receptor 

CD     cluster of differentiation 

CNS     Central nervous system 

CSF1R    Colony-stimulating factor 1 receptor 

Ctrl     Control 

CX3CR1    Chemokine C-X3-C motif ligand 1 

DKFZ     German Cancer Research Center 

DMSO    Dimethylsulfoxid 

DNA     Deoxyribonucleic acid 

ECM     Extracelullar matrix 

EDTA     Ethylenediaminetetraacetic acid 

EGFR     Epithelial growth factor receptor 

ELISA    Enzyme linked immunosorbent assay 
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FACS     Florescent activated cell sorting 

FCS     Fetal calf serum 

FSC     Forward scatter 

GAPDH    Glyceraldehyde-3-phoshpate dehydrogenase  

GBM     Glioblastoma multiforme 

GPCR     G-protein coupled receptor 

GPR34 -    G-protein coupled receptor 34 

GSEA     Gene set enrichment analysis 

HPRT     Hypoxanthine guanine phosphoribosyl transferase 

IDH1     Isocitrate dehydrogenase 1 

IFNγ     Interferon gamma 

IL-10     Interleukin 10 

IL-6     Interleukin 6 

IRF3     Interferon regulating factor 3 

IκBα     NF-kappa-B inhibitor alpha 

LPS     Lipopolysaccharide 

MAPK    Mitogen-activated protein kinase 

MMP     Matrix metalloproteinase 

Msr1     Macrophage scavenger receptor 1 

NF1     Neurofibromatosis type 1 

NF-κB    Nuclear factor kappa-light chain enchancer of activated B-cells 



Page | 86  
 

PBS     Phosphate buffered saline 

PDGFRA    Platelet derived growth factor 

PFA     Paraformaldehyde 

PI3K     Phosphatidylinositol 3-kinase  

PPIA     Peptidylprolyl isomerase A 

PTEN     Phosphate and tensin homolog 

qRT-PCR    Quantitative reverse transcriptase polymerase chain reaction 

RNA     Ribonucleic acid 

S1P     Sphingosine 1-phosphate 

SLCO2B1    Solute-carrier organic anion transporter family member 2B1 

SPHK1    Sphingosine kinase 1 

SSC     Side scatter 

STAT     Signal transducer and activator of transcription 

TAMs     Tumor associated microglia / macrophages 

TANK    TRAF family member associated NFκB activator 

TBK1     TANK-binding kinase 1 

TGF-β     Transforming growth factor beta 

TLR     Toll like receptor 

TME     Tumor microenvironment 

TMEM119    Transmembrane protein 119 

TNFα     Tumor necrosis factor alpha 
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TRAF     TNF receptor associated factor 

WT     Wildtype 
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