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Zusammenfassung

Wir interessieren uns für das Verhalten von vernetzten Akteuren in Abhängigkeit
von Kovariaten, welche Informationen über jedes Paar von Akteuren enthalten. Hierbei
können zwei Akteure durch Interaktionen miteinander in Kontakt treten. Wir modellie-
ren diese Interaktionen durch Methoden der Survival Analysis: Für jedes Paar von Ak-
teuren beobachten wir einen Sprungprozess, der die Anzahl der Interaktionen zwischen
diesen beiden Akteuren sowie deren Zeitpunkte kodiert. Die Intensitätsfunktionen dieser
Zählprozesse modellieren wir in parametrischer Art und Weise abhängig von den Konva-
riaten. Wir erlauben dabei, dass der Parameter eine zeitlich veränderliche Funktion ist,
dadurch wird das Modell nicht-parametrisch. Wir untersuchen das asymptotische Verhal-
ten eines lokalen maximum Likelihood Schätzers. Dies beinhaltet punktweise Asymptotik
der geschätzten Parameterfunktion sowie einer L2 Teststatistik. Um die mathematische
Analyse durchzuführen, stellen wir drei Ideen vor, mit denen die Abhängigkeiten in
einem Netzwerk beschrieben werden können. Diese liefern Möglichkeiten um Kovari-
anzen abzuschätzen und Konzentrationsungleichungen zu beweisen. Dies könnte auch
unabhängig von unserem konkreten Kontext interessant sein. Die theoretische Betrach-
tung wird durch eine Anwendung auf einen realen Datensatz über Leihfahrräder ver-
vollständigt.





Abstract

In the present thesis we are interested in modelling the behaviour of actors in a network
in dependence of explanatory variables which give information about every pair of actors.
The behaviour is here expressed in interactions which the actors may cast amongst each
other. Our model is based on a survival analysis idea: We assume that the interaction
times between any two actors are encoded in a counting process such that we observe
a counting process for any pair of actors. The intensity functions of these counting
processes are then assumed to depend on the covariates in a certain parametric way.
We allow that the parameters are time dependent functions, thereby the model becomes
non-parametric. We present a rigorous analysis of the asymptotics of a non-parametric
estimator based on a local likelihood approach. This includes point-wise asymptotics of
the estimated parameter curves as well as asymptotics for an L2-type test statistic.

In order to carry out the mathematical analysis of these terms we introduce three ideas
to handle the complex dependence structure on the network. These provide different
tools for handling covariances and proving concentration inequalities which might be of
independent interest.

The theoretical analysis is complemented with an application to real-world data: We
investigate the impact of different network quantities on a bike sharing network.
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1 Introduction

The statistical analysis of network data has recently become very popular and it is a
fast growing field. In particular since the emergence of big computing power and social
media, a huge volume of network data has become available (see e.g. the Stanford Large
Network Dataset Collection (SNAP) or the Koblenz Network Collection (Konect)). It is
of interest to draw conclusions from this type of data about, e.g. social (Jackson (2008);
Newman (2010)) or economical behaviour (Brownlees et al. (2018); Diebold and Yilmaz
(2014)). Introductions to the field of network data analysis, both from an applied and
mathematical standpoint, are for example the books Jackson (2008); Newman (2010);
Kolaczyk (2009, 2017).

The type of data is typically comprised of a network which in turn is a set of vertices
and edges. We understand the vertices as actors and the edges as channels along which
the actors can interact. In a specific example, e.g. a social media setting, the vertices
could be users and we place an edge between users if they befriend each other. However,
edges might also have a more abstract meaning. Consider the following example of
a a rental bike network. In there, the rental bike stations form the vertices and we
will place an edge between two bike stations, on a certain day, if at least one person
took a bike tour between these two stations at one of the previous two days, i.e., we
place an edge between them if there is regular traffic. We elaborate on this in the data
analysis section. As both examples suggest, the network structure may change over time,
i.e., edges between actors can emerge and dissolve during the observation period. We
assume that we observe the network structure and the interactions between the actors.
Moreover, we observe a set of covariates for each pair of actors. In the social media
example, we could observe for each pair of users the number of common friends, the
number of interactions in the past or an indicator which indicates if both users are in
the same age class. We give more examples for covariates in the rental bike network:
The number of bike rides between two bike stations in the days before, the number of
bike stations where people go to from either or both of these two bike stations. These
are just examples, and the exact choice of covariates depends on the available data and
the exact setting to which the model is applied. The question we are interested in, is
to model the influence of the covariates on the interactions. In other words, we want to
regress the events on the covariates.

The modelling approach is via counting processes: We assume that for every pair of
actors, we observe a counting process which counts the interactions between these two
actors. The intensity functions of these counting processes are specified in the model
as depending on the covariates and a parameter function. The interpretation of the
parameter function is that it quantifies the impact of the covariates on the intensity
function over time. Our aim is to apply methods from survival analysis in order to

1



1 Introduction

make inference about the covariates. We particularly focussed on two points: Firstly,
the influence the covariates have may change over time. Secondly, neighbouring actors
and hence the interactions among them are highly correlated. To accommodate for the
first requirement our precise modelling idea is to formulate an interpretable parametric
model where we replace the constant parameter by a time dependent function. This
generalisation is in the same spirit as for example in some non-stationary time series
models (cf. Dahlhaus (1997)). Hence, we need non-parametric estimation techniques.
In this thesis we choose local-likelihoods (cf. Tibshirani and Hastie (1987) or specifically
for survival analysis Hjort (1993)). As part of the asymptotic analysis we also study an
L2-type test statistic (analogue to e.g. Härdle and Mammen (1993)) for testing for a
constant parameter function. In order to take care of the second requirement, we need to
specify interpretable dependence assumptions on the data. Finding these assumptions
is, next to executing the rigorous analysis of the estimator, a big part of the thesis.

1.1 Literature Review

The idea of studying a network of actors by means of bivariate relations (i.e., by the
behaviour of pairs) dates back at least to Katz and Proctor (1959). More recently,
in social sciences a related class of models are the so called stochastic actor oriented
models (cf. Snijders et al. (2010); Snijders (2001)) in which the formation of ties is
driven by actor and pair specific effects (also called covariates). Here the idea is that
the formation of ties is driven by actor specific decisions. The actors can base their
decisions on whether to form a tie or not on: A) Their direct environment they are
able to perceive, B) Personal interests and C) External factors. Thus, the covariates
can be based on network quantities (e.g., the number of friends an actor has, how
many common friends two actors have,...), on personal properties (e.g., gender, age,
employment status,...) or on exogenous quantities (e.g., the weather, the current value
of currency exchange rates,...). One can also carry these ideas over to relational event
data as introduced in Butts (2008). In contrast to before we consider no longer the
formation of ties (like friendships, trust relationships,...) but instead the occurrence of
single events (like phone calls, liking a post, email sending,...). In this context we also
mention Stadtfeld and Block (2017) who consider similar modelling ideas.

Another approach for modelling dynamic networks is by using exponential random
graph models, so called ERGMS (see e.g. Frank and Strauss (1986)), which were initially
suggested for static networks. Extensions by Hanneke et al. (2010) and Krivitsky and
Handcock (2014) allow for modelling of dynamic networks. Further possibilities are
dynamic stochastic block models (cf. Ho et al. (2001); Yang et al. (2011)), continuous-
times Markov Models (cf. Wasserman (1980)), Bayes modelling using latent factors
(cf. Durante and Dunson (2014)), dynamic infinite relation models (cf. Ishiguro et al.
(2010)), dynamic Markov random fields (cf. Kolar and Xing (2009)). See also the
overview article Goldeberg et al. (2010).

Mathematically, Perry and Wolfe (2013) are very close to this thesis, however in their
modelling they do not use time dependent parameter functions. Moreover, they study a

2



1 Introduction

different asymptotic: They let the time tend to infinity while we study networks growing
in size on a fixed observation period.

1.2 Contribution

In terms of modelling the biggest innovation of this work is to add time dependence of the
parameter function into the model as it is studied in Perry and Wolfe (2013). Including
this time dependence seems to be a reasonable increase in modelling flexibility because
the parameters of interest occur as weights of the covariates in the intensity function
and we believe that they may change for two reasons: Firstly, it is plausible that, e.g., in
winter or summer, the actors in the network react differently to certain changes in their
environment. Secondly, it could also happen that the scale of the covariates changes as
the network evolves which requires an adjustment of the weights.

We provide a rigorous mathematical analysis of the large sample properties (i.e., when
the number of actors tends to infinity) of the local maximum likelihood estimator and an
L2-type test statistic. To this end we need to formulate weak dependence assumptions
on the behaviour of the actors in the network to ensure sufficiently different observations.
Making these assumptions mathematically precise was one of the biggest challenges when
writing this thesis.

1.3 Structure of Thesis

The structure of this thesis is as follows. In Chapter 2, we will collect basic results
and notation about stochastic processes in general, counting processes in particular and
briefly about networks. In this section most results were already established and we refer
to standard literature for proofs (we give references specific for each result in the next
section). Afterwards in Chapter 3, we will introduce the three concepts for quantifying
time varying dependence on a network which we will use in the proofs of the main results
of this thesis which are stated in Section 4.1 followed by the assumptions we impose in
Section 4.4. The theoretical presentation is illustrated by a real world data example
using bike sharing networks in Chapter 4.5. The Proofs of the main results are given in
Chapter 5. We will finish with some concluding remarks in Section 6. The model and
Theorem 4.2 together with the bike example have been published in Kreiß et al. (2017).
The remaining theory is being prepared for publication.
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2 Preliminaries and Notation

In this chapter, we introduce the basics of counting processes, stochastic integration and
networks which we will apply later in the thesis. The main aim of this section is to
provide all necessary notation and probability theoretic results which we use later in
the statistical network analysis. Particularly, it will be of interest how Stieltjes and Itô
Integration relate. This will be important because the Stieltjes Integral is defined path-
wise, and thus it allows simple calculations, while the Itô Integral is a more abstract
object but has martingale properties. As all results here are standard, we will mostly
just provide references for proofs. The counting process Section is mainly based on
Andersen et al. (1993) and for the stochastic integration, we refer to Cohen and Elliott
(2015) and Protter (2005).

2.1 Stochastic Processes and Integration

We start by talking about stochastic processes and their properties. Let T ⊆ [0,∞) be
an interval which has zero as smallest element and let (Ω,F , (Ft)t∈T ,P) be a filtered
probability space, i.e., for s ≤ t ∈ T we have σ-fields Fs ⊆ Ft ⊆ F . And let X : T → R
be a stochastic process, i.e., Xt : Ω→ R is a random variable for every t ∈ T . In order
to emphasize the randomness of X, we will sometimes write Xt(ω), where ω ∈ Ω is a
random element. If E(ω) is a logical statement whose result (true or false) depends on
ω, we will denote in slight abuse of notation the event that E is true by {E} := {ω ∈
Ω : E(ω) is true}. Continuing with this slight but usual sloppiness, we write P(E) for
P({E}). If P(E) = 1 we say that E holds almost surely or for short a.s.

We call X adapted if Xt is measurable with respect to Ft for all t ∈ T . An adapted
process with E(|Xt|) finite for all t and with E(Xt|Fs) = Xs a.s. for s < t is called a
martingale. As usual Xt is a sub-martingale if E(Xt|Fs) ≥ Xs. We say that another
process Y is a modification of X if for every t, we have Xt = Yt a.s. If the stronger
statement

Xt(ω) = Yt(ω) for all t

holds almost surely. Then we call X and Y indistinguishable.
We will later deal with counting processes which are explicitly given in a form which

already exhibits useful continuity properties. Nevertheless, for completeness, we give
conditions under which martingales have a nice modification. We say that the filtration
fulfils the usual conditions (les conditions habituelles, cf. Andersen et al. (1993)) if

Ft =
⋂
r>t

Fr for all t (Right Continuiuty) (2.1)

5



2 Preliminaries and Notation

For all A ⊆ B ∈ F : P(B) = 0 ⇒ A ∈ F0 (Completeness)

We say that X is cadlag (a.s.) if the function t 7→ Xt(ω) is cadlag (a.s.). A function is
cadlag if it is continuous from the right and has limits from the left. The main result is
then Corollary 5.1.9 in Cohen and Elliott (2015):

Theorem 2.1. If (Ft)t is right continuous (c.f. (2.1)), then every martingale admits a
cadlag modification.

We mention already at this point the concept of localizing. A stochastic process X is
called a local martingale if there is a sequence of stopping times Tn, i.e., Tn are random
variables such that {Tn ≤ t} ∈ Ft for all t, with Tn → ∞ a.s. as n → ∞ and Xt∧Tn is
a martingale. Here, x ∧ y := min(x, y) denotes the minimum of two numbers x, y ∈ R.
Analogously, we say that Xt exhibits a certain property locally if the process Xt∧Tn
exhibits this property.

Next, we introduce the concept of predictability which is going to play an important
role later on.

Definition 2.2. Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space. We call a process
X predictable with respect to Ft if the function (ω, s) 7→ Xs(ω) as a function on Ω×T is
measurable with respect to the σ-field Σp generated by all left-continuous and with respect
to Ft adapted processes. If the filtration Ft is clear from the context, we just say that X
is predictable.

In order to understand a bit better what this definition means, we define the σ-field
of events strictly before a stopping time. Let therefore S be a stopping time and define

FS− = σ (F0 ∪ {A ∩ {t < S} : A ∈ Ft, t ∈ T }) ,

where for a collection of sets X we denote by σ(X ) the σ-field generated by X . We note
that for any given time point s ∈ T the deterministic and constant stopping time S ≡ s
is indeed a stopping time and

Fs− = σ

(⋃
t<s

Ft

)
.

In this sense the value of XS can be determined by using knowledge available only before
S. It can be shown (according to Andersen et al. (1993)) that a process X is predictable
if and only if XS is measurable with respect to FS− for all stopping times S.

We continue this review by talking about stochastic integration. It is therefore neces-
sary that we restrict to processes with paths for which an integral can be defined almost
surely (i.e., we require measurability of the paths). More precisely we call a process X
measurable with respect to a σ-field Σ on Ω× T if the function (ω, s) 7→ Xs(ω) is mea-
surable with respect to Σ. If Σ = F ×B where B denotes the Borel σ-field, then we just
call X measurable. Such processes have exactly the desired property: Every measurable
process X has almost surely measurable paths, i.e., t 7→ Xt(ω) is Borel measurable for
almost all ω (cf. Cohen and Elliott (2015) Exercise 3.4.7).
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2 Preliminaries and Notation

The ultimate aim of this chapter is to define a notion of stochastic integration which
is so simple that we can easily work with it but which is also sophisticated enough such
that useful results are available. Later we will only be concerned with processes which
arise in the context of counting processes (see the next section), therefore it is practical
to make use of a property that all these processes share: They are of bounded variation
which we will introduce next.

Definition 2.3. We say that a measurable process X is of bounded variation if it is
cadlag and for any t ∈ T there exists an almost surely finite random variable C(t), i.e.,
C(t) <∞ a.s., such that for any increasing, deterministic sequence (ti)i∈N ⊆ T

∞∑
i=1

|Xti+1 −Xti | < C(t) a.s.

Combining the results in Elstrodt (2011), we find that every right-continuous mo-
notonically increasing function f : [0,∞) → [0,∞) induces a measure µf on B with
µ((a, b]) = f(b) − f(a). Technically it is possible to extend the measure µf to a σ-field
which contains all subsets of µf null sets but the Borel σ-field is sufficient for our pur-
poses. For a Borel measurable function g : [a, b] → R we define the Stieltjes-Integral∫ b
a g(x)df(x) :=

∫ b
a g(x)dµf (x) where the integral on the right is a regular Lebesgue in-

tegral. Finally, if f is a function of bounded variation (we use here Definition 2.3 for
the deterministic stochastic process f), we can write it as sum f = f1 − f2, where f1, f2

are both monotonically increasing and cadlag. Thus, they define measures µf1 , µf2 as
described above. The signed measure µf := µf1 − µf2 is then uniquely defined (even
though f1 and f2 are not unique, c.f. Cohen and Elliott (2015) Theorem 1.7.22). In
order to get a unique decomposition of the signed measure µf into two unsigned me-
asures, we apply the Jordan-Hahn decomposition of µf (cf. Cohen and Elliott (2015),
Lemma 1.7.6). The Jordan-Hahn decomposition comprises two unique mutually singu-
lar measures µ+

f , µ
−
f (i.e. there is a set P ⊆ R such that µ+

f (P ) = µ−f (R \ P ) = 0)

with µf = µ+
f − µ−f . We define

∫ b
a g(x)df(x) :=

∫ b
a g(x)dµ+

f (x) −
∫ b
a g(x)dµ−f (x). Fi-

nally, we denote by |µf | := µ+
f + µ−f , the variation measure and define for the integral∫ b

a g(x)d|f |(x) :=
∫ b
a g(x)d|µ|(x).

By collecting all previous considerations we see that the following definition is a rea-
sonable definition of a stochastic integral.

Definition 2.4. Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space and let A be measu-
rable stochastic processes and let X have bounded variation as defined in Definition 2.3.
For a, b ∈ T and a < b, we call the random variable

ω 7→
∫ b

a
As(ω)dXs(ω) =

∫ b

a
AsdXs

the Lebesgue-Stieltjes Integral or just integral of A with respect to X.

Note that the integral in the above definition is allowed to be ±∞. As we define
the integral as a Lebesgue integral, the Lebesgue-Stieltjes Integral may be computed by
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2 Preliminaries and Notation

Lebesgue-type approximations, i.e., by the limit of finite sums. We collect some useful
properties of the Lebesgue-Stieltjes Integral in the following Lemma which also ensures
that we have defined a proper random process (this is Cohen and Elliott (2015) Lemma
8.1.3, Remark 8.1.4 and Lemma 8.16).

Lemma 2.5. Let A be measurable process, let X,Y have bounded variation and let λ be
a random variable.

1. The stochastic process t 7→
∫ t

0 AsdXs is measurable itself if it exists for all t.

2. If A,X are both adapted to the filtration and cadlag, then t 7→
∫ t

0 AsdXs is adapted
and cadlag as well.

3. The integral is linear in the integrator, i.e.,∫ T

0
Asd(Xs + λYs) =

∫ t

0
AsdXs + λ

∫ t

0
AsdYs.

Furthermore, we mention at this point that the notation of the stochastic Lebesgue-
Stieltjes Integral is different from the famous Itô Integral. For example, for the Lebesgue-
Stieltjes notation we do not require that X has martingale properties. On the one hand,
the Lebesgue-Stieltjes Integral is very easy to work with because the definition is almost
surely path-wise. On the other hand, we do not know that the integral is a martingale in
the integration limits. Happily, we can make use of the best of both worlds in our specific
setting. Before we can formulate a result about this, we need a bit more notation.

In an analogue fashion to the Lebesgue-Stieltjes integral in Definition 2.4, we under-
stand the random variable

∫ b
a Asd|X|s. We say that an adapted process X of bounded

variation has integrable variation if E
(

supt∈T
∫ t

0 d|X|s
)
< +∞. We say that an adapted

and monotonically increasing process A is integrable if E(supt∈T At) < +∞. With these
definition we can formulate the Doob-Meyer decomposition (Cohen and Elliott (2015)
Theorem 9.2.7):

Theorem 2.6. Let X be a right continuous local sub-martingale. Then there is a unique
locally integrable, predictable, monotonically increasing, right-continuous process A with
A0 = 0 such that

M := X −A

is a local martingale. I.e, there is a sequence of stopping times Tn such that Mt∧Tn is a
martingale and At∧Tn is an integrable, monotonically increasing process. The process A
is also called compensator of X.

In order to formulate a result about the relation of Lebesgue-Stieltjes and Itô Integra-
tion (and for other purposes), we need the concept of quadratic variation. Let M be a
right-continuous martingale and assume additionally that E(supt∈T |Mt|2) < +∞, then
we call M square integrable. For those martingales, M2 is a sub-martingale and by the
Doob-Meyer Decomposition (Theorem 2.6), there is a unique locally integrable, mono-
tonically increasing, right-continuous process 〈M〉 with 〈M〉0 = 0 such that M2−〈M〉 is
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2 Preliminaries and Notation

a local martingale. We call 〈M〉 the predictable quadratic variation of M . For two mar-
tingales M and N , we define the covariation as 〈M,N〉 := 1

2 (〈M +N〉 − 〈M〉 − 〈N〉).
Note that

MN − 〈M,N〉 =
1

2

(
(M +N)2 −M2 −N2

)
− 〈M,N〉

is a local martingale.
For any square integrable martingale M , the process 〈M〉 is by definition monotoni-

cally increasing and right-continuous. As a consequence we may integrate with respect
to it in the Lebesgue-Stieltjes sense (because all increasing stochastic processes are of
bounded variation). We say that a predictable process H is integrable with respect to
M if

E
(

(H0M0)2 +

∫
T
H2
sd〈M〉s

)
< +∞.

We have now all notation available which we need to formulate a result about equality
of the Stieltjes and Itô Integral (other than the Itô Integral itself, but as we will only
work with the Stieltjes Definition later, we do not introduce it here, for an introduction
see Chapter 12 in Cohen and Elliott (2015)). The following result is Theorem 12.2.8 in
Cohen and Elliott (2015).

Theorem 2.7. Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space and let H,M : T →
R be stochastic processes such that M is a square integrable martingale of integrable
variation and H is predictable and integrable with respect to M . Moreover, we assume
that E

[∫
T |Hs|d|M |s

]
<∞. Then the stochastic integral in Stieltjes sense (cf. Definition

2.4) and Itô sense are indistinguishable as processes.

The two main reasons, why this result will be so useful are firstly, that the Itô Inte-
grals understood as processes in the integration limits are square integrable martingales
and secondly, because of that we may apply Itô’s Formula which we formulate next. Be-
cause the integrals are martingales, we can compute their quadratic predictable variation
(Corollary 12.2.4 in Cohen and Elliott (2015)). If M is a square integrable martingale
and H is integrable with respect to M , then〈∫ t

0
HsdMs

〉
=

∫ t

0
H2
sd〈M〉s.

In contrast to the predictable quadratic variation, we also define the optional quadratic
variation for a cadlag square integrable local martingaleM as [M ]t := M2

t −2
∫ t

0 Ms−dMs,
where Ms− := limr→s,r<sMr. Here the integral is to be understood in an Itô sense
because we do not impose any assumption on the variation of M . It is then also clear
that M2 − [M ] is a martingale. Denote moreover by ∆Mt := Mt − Mt− the jump
size of M at t, then ∆[M ]t = (∆Mt)

2. The optional quadratic covariation of two
square integrable martingales M and N is defined via the polarization formula [M,N ] :=
1
2([M + N ] − [M ] − [N ]). From this definition it is not obvious that [M ] is a cadlag,
increasing process, but one can prove that it is (cf. Theorem 22 in Chapter II.6 in Protter
(2005)). Hence, we can integrate with respect to [M ] in the Stieltjes sense. Finally, we

9



2 Preliminaries and Notation

can compute the optional quadratic variation of a stochastic integral (in Itô sense) by
(cf. Theorem 29, Chapter II.6 in Protter (2005))[∫ t

0
HsdXs

]
t

=

∫ t

0
H2
sd[X]s.

We remark at this point that we have an explicit formula for the optional quadratic va-
riation, while the predictable quadratic variation is implicitly given by the Doob-Meyer-
Decomposition (Theorem 2.6). The following lemma relates both types of quadratic
variations and provides a helpful tool for finding the predictable quadratic variation in
our case.

Lemma 2.8. Let X be a cadlag square integrable local martingale. Then 〈X〉 is the
compensator of [X] in the Doob-Meyer-Decomposition of [X].

Proof. Note that [X]t is an increasing process and hence a local sub-martingale. By
Theorem 2.6 there is a unique right-continuous, predictable and increasing process At
such that [X]t −At is a local martingale. Thus,

X2
t −At = X2

t − [X]t + [X]t −At

is a martingale as a sum of two martingales. But as the compensator in Theorem 2.6 is
unique, we conclude 〈X〉 = A.

With this notation we will now formulate Itô’s Formula for martingales with jumps
(Theorem 14.2.4 in Cohen and Elliott (2015)). Here X is to be understood as the cadlag
modification of X.

Theorem 2.9. Let X be a n-dimensional vector of square integrable martingales X =
(X1, ..., Xn) and let f : Rn → R be a twice continuously differentiable function. Then,

f(Xt) = f(X0) +
n∑
i=1

∫
(0,t]

∂if(Xs−)dXi
s +

1

2

n∑
i,j=1

∫
(0,t]

∂ijf(Xs−)d[Xi, Xj ]s

+
∑

0<s≤t

f(Xs)− f(Xs−)−
n∑
i=1

∂if(Xs−)∆Xi
s −

1

2

n∑
i,j=1

∂ijf(Xs−)∆Xi
s∆X

j
s

 .

The above equality means that the processes to the left and to the right are indistinguis-
hable.

We remark here that by continuity of f the difference f(Xs)−f(Xs−) is only different
from zero, if ∆Xs 6= 0, i.e., if X has a jump at time s. So the sum in the formula above
is really a sum over all jumps of X. Since X is cadlag, it has only countably many jumps
and the sum is well defined.

Next, we introduce Lenglart’s Inequality which shows us how a martingale may be
controlled by using the quadratic variation. We state in the following a slight adaptation
of the original version as it is provided in Lenglart (1977).

10
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Lemma 2.10. Let X be a non-negative, right-continuous local sub-martingale and de-
note by A its compensator from Theorem 2.6. Then it holds for all finite stopping times
S > 0 and all c, d > 0 that

P

(
sup
t∈[0,S]

Mt ≥ c

)
≤ 1

c
E (AS ∧ d) + P (AS ≥ d) .

In the following parts of the thesis, we will apply Lenglart’s Inequality mostly in the
following form which is close to Andersen et al. (1993). The following is an easy corollary
to the previous lemma.

Corollary 2.11. Let M be a locally square integrable, right-continuous martingale and
denote by 〈M〉 it’s compensator.

1. For all T, c, d > 0 we have

P

(
sup
t∈[0,T ]

|Mt| ≥ c

)
≤ d

c2
+ P (〈M〉T ≥ d) .

2. For all T > 0 it is true that

〈M〉T
P→ 0 =⇒ sup

t∈[0,T ]
|Mt|

P→ 0.

Lastly, we will present in this Section our main tool for finding the asymptotic dis-
tributions later: Rebolledo’s Martingale Central Limit Theorem. It is known that a
Brownian Motion is the only continuous Gaussian process with a certain covariance
structure. This is used to formulate a martingale central limit theorem in the following.
We state here the version of the theorem as Theorem II.5.1 in Andersen et al. (1993),
the original work is Rebolledo (1980).

Let Mn = (Mn
1 , ...,M

n
k ) be a vector of sequences of locally square integrable martinga-

les on an interval T . For ε > 0 we denote by Mn
ε a vector of locally square integrable

martingales that contain all jumps of components of Mn which are larger in absolute
value than ε, i.e., Mn

i −Mn
ε,i is a local square integrable martingale for all i = 1, ..., k

and |∆Mn
i −∆Mn

ε,i| ≤ ε. Furthermore, we denote by 〈Mn〉 :=
(
〈Mn

i ,M
n
j 〉
)
i,j=1,...,k

the

k × k matrix of quadratic covariations.
Moreover, we denote by M a multivariate, continuous Gaussian martingale with
〈M〉t = Vt, where V : T → Rk×k is a continuous deterministic k × k positive semi-
definite matrix valued function on T such that its increments Vt − Vs are also positive
semi-definite for s ≤ t, then Mt−Ms ∼ N (0, Vt−Vs) is independent of (Mr : r ≤ s). Gi-
ven such a function V , such a Gaussian process M always exists. We can now formulate
the central limit theorem for martingales.

Theorem 2.12. Let T0 ⊆ T . Assume that for all t ∈ T0 as n→∞

〈Mn〉t
P→ Vt

11
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〈Mn
ε 〉

P→ 0.

Then
Mn
t

d→Mt

as n→∞ for all t ∈ T0. Moreover, [Mn]t
P→ Vt as n→∞.

We remark that the instances of 〈Mn〉 and [Mn] may be exchanged in the above
theorem. We will use the theorem only in the simple situation T0 = {T}.

2.2 Counting Processes

In this section we introduce the main tool which we will apply in order to model the
network data: Counting Processes. Most of the theoretic background has been presented
in Section 2.1, so most of this section will consist of introducing the quantities from before
in the counting process setting.

Definition 2.13. Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space, where T ⊆ R is
an interval with smallest element 0 ∈ T . Assume that (Ft) is right continuous (cf. 2.1).
We call a multivariate process N = (N1, ..., Nk), k ∈ N, on T a counting process if it
is adapted to (Ft)t∈T , Ni(0) = 0 for all i = 1, ..., k, it has paths which are piecewise
constant and cadlag, it has jumps of size +1 only, no two components jump at the same
time and Ni(t) is almost surely finite for all t ∈ T and i = 1, ..., k.

If not indicated differently, we will from now on always assume T = [0, T ] for some
T > 0. Note that N(t) :=

∑k
i=1Ni(t) is also a counting process in the above sense

because no two processes jump at the same time. With the convention inf ∅ := ∞, we
define the stopping time

Tn := inf{t ∈ T : N(t) ≥ n}.

These times Tn are precisely the jump locations of N(t). We illustrate the concept with
a small example.

Example 2.14. Assume n people who can call each other and denote by ti,jm the time
point of the m-th call from person i to person j. The process N = (Ni,j : i, j ∈ {1, ..., n})
with Ni,j(t) :=

∑∞
m=1 1(ti,jm ≤ t) is a counting process in the above sense. The set

{Tm : m ∈ N} is identical with
{
ti,jm : i, j ∈ {1, ..., n}, m ∈ N

}
.

So counting processes may be understood as a way of recording event times and the
time points Tn are exactly the times of these events because the events happen exactly
at the jumps of the counting process. Complementary to Tn, one sometimes introduces
markers Jn which tell which process jumps at time Tn. But we do not need this concept
here.

Additionally to the interpretation, the stopping times Tn have also a mathematical
use: Since t 7→ Ni(t ∧ Tn) (where x ∧ y := min(x, y)) are increasing processes, they
are sub-martingales and hence Ni is a right-continuous local sub-martingale for i =

12
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1, ..., k with localizing sequence Tn (note that Ni(t ∧ Tn) ≤ n is bounded). So we may
apply Theorem 2.6 (the Doob-Meyer-Decomposition) and obtain non-decreasing, right-
continuous, predictable processes Λi with Λi(0) = 0 such that the processes Mi := Ni−Λi
are local martingales. It can be shown that the localizing sequence for Mi can be chosen
to be Tn (cf. Andersen et al. (1993)). But we will later discuss only the case in which
we do not need a localizing sequence because the processes are martingales. Since Λi
is increasing, it is of bounded variation and it is almost everywhere differentiable but it
may have jumps. If it has no jumps, we call its derivative the intensity function. We
summarize this in the next definition.

Definition 2.15. Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space and let N be a
counting process. The unique predictable, non-decreasing, right-continuous processes
Λi with Λi(0) = 0 and Mi := Ni − Λi is a local martingale (they exist because of
the Doob-Meyer-Decomposition, Theorem 2.6), are called cumulated intensity proces-
ses of the counting processes Ni with respect to Ft. We write Λ = (Λ1, ...,Λk). If Λi
is absolutely continuous, i.e., if there are predictable stochastic processes λi such that
Λi(t) =

∫ t
0 λi(s)ds, we call λi the intensity function of Ni with respect to Ft. We write

λ = (λ1, ..., λk). If the filtration (Ft)t∈T is clear from the context, we omit the with
respect to part in the name.

Note that Λ (and thus also λ if it exists) depends on the filtration Ft. If a counting
process Ni has finite expectations and an intensity function which is left continuous and
has limits from the right, we have the relation (cf. Andersen et al. (1993) Chapter II.4)

lim
h→0

1

h
E(Ni(t+ h)−Ni(t)|Ft) = λi(t+),

where λi(t+) := lims→t,s>t λi(s) denotes the right limit of λi at t. Under stronger
assumptions it holds even

lim
h→0

P(Ni(t+ h)−Ni(t) = 1|Ft) = λi(t+).

In this sense λi(t) determines the probability of a jump a time t given the past. In
particular, a larger intensity at time t means that a jump is more likely at time t then
for a lower intensity (conditional on the past).

Next, we are interested in properties of stochastic integrals with respect to counting
processes and their martingales. To this end, let N be a univariate counting process with
cumulated intensity function Λ. We firstly note that by definition N is right-continuous
and increasing as well as Λ, they are both cadlag. Thus, both are of bounded variation.
Hence, M = N −Λ is of bounded variation too. As a consequence the Lebesgue-Stieltjes
Integral (cf. Section 2.1) is defined with respect to all three of them. Next, we note
that the stochastic integral with respect to N is actually a sum. We can compute the
Lebesgue-Stieltjes Integral of any function f : T → R over any measurable set A ⊆ T
to be ∫

A
f(t)dN(t) =

∞∑
n=1

f(Tn)1(Tn ∈ A).

13
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We study the properties of stochastic integrals with respect to a counting process mar-
tingale M a bit further in the case if N has intensity function λ. Most importantly we
note that for an adapted stochastic process A, we have by Lemma 2.5 that t 7→

∫ t
0 AsdMs

is again an adapted process. Moreover, by using the linearity in the integrator (cf.
Lemma 2.5) the mapping

F : t 7→
∫ t−

0
AsdMs := lim

r→t,r<t

∫ r

0
AsdMs = lim

r→t,r<t

(∫ r

0
AsdNs −

∫ r

0
Asλ(s)ds

)
is well defined because the integral with respect to N is a piecewise constant function
with countably many jumps and the second integral is continuous in the integration
limits. It is then clear that F is an adapted and left-continuous process. Thus, F is
predictable in the sense of Definition 2.2. In order to formulate a result for functions
defined on two variables, we need a new definition of predictability.

Definition 2.16. Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space and P be a col-
lection of real-valued stochastic processes defined on a set D. Denote by σ(P) the smal-
lest σ-field on Ω×D such that all processes in P are measurable as functions of Ω×D.
Let now Ppp denote the set of all processes X : Ω × T 2 with: X can be written as
Xt,s(ω) = gt(ω)hs(ω)f(t, s), where g, h : Ω × [0, T ] → R are two stochastic processes
and g is predictable and h is adapted both with respect to Ft, while f : T 2 → R is a
Lebesgue-Borel measurable, deterministic function. We call the σ-field

Σpp := σ (Ppp)

the partially-predictable σ-field with respect to Ft. A real-valued stochastic process ϕ
defined on T 2 is called partially-predictable with respect to Ft, if it is measurable with
respect to Σpp. If the filtration is clear from the context, we won’t specifically mention it
in the notation.

Partially-predictable processes exhibit the following useful property. The proof works
analogously to the proof of Lemma 2.5 (see references there), however it is not identical
and so we give the proof here for completeness.

Lemma 2.17. Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space and N be a counting
process with intensity function λ with respect to Ft. Let ϕ be a real-valued stochastic
process defined on T 2. If ϕ is partially-predictable with respect to Ft (cf. Definition
2.16), then the process

t 7→
∫ t−

0
ϕ(t, r)dMr

is predictable with respect to Ft.

Proof. We apply a monotone class argument. Let H be the set of all bounded real-valued
stochastic processes ϕ defined on T 2 such that

FN,ϕ(t) :=

∫ t−

0
ϕ(t, r)dNr and Fλ,ϕ(t) :=

∫ t−

0
ϕ(t, r)λ(r)dr

14
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are predictable. Note that for these processes, also the integral with respect to M is
predictable by linearity of the integral. It is clear that H contains all constant functions
ϕ ≡ ϕ0 ∈ R because FN,ϕ0(t) = ϕ0N(t−) and Fλ,ϕ0(t) = ϕ0

∫ t−
0 λ(r)dr both of which

are left continuous and adapted. Thus, they are predictable. Let now (ϕn)n∈N ⊆ H be
a uniformly bounded, monotonically increasing sequence, i.e., ϕn ≤ ϕn+1 with ϕn → ϕ
point-wise as n→∞. Our aim is to prove that ϕ ∈ H. Hence, we have to prove that for
every stopping time S, it holds that FN,ϕ(S) and Fλ,ϕ(S) are measurable with respect
to FS− (cf. Discussion after Definition 2.2). We note firstly that by definition FN,ϕn
and Fλ,ϕn are predictable. Moreover, since intensities are non-negative, the random
variables FN,ϕn(S) and Fλ,ϕn(S) converge monotonically increasingly towards FN,ϕ and
Fλ,ϕ respectively. Hence, both FN,ϕ(S) and Fλ,ϕ(S) are measurable with respect to FS−
and hence ϕ ∈ H (it is clear that ϕ is bounded). Very similar arguments may be applied
for a general sequence (ϕn)n∈N ⊆ H with ϕn → ϕ uniformly.

Note finally that for every process ϕ ∈ Ppp (cf. Definition 2.16) with ϕ(t, r) = gt · hr ·
f(t, r) where g is predictable, h is adapted and f is deterministic, we have that

FN,ϕ(t) = gt ·
∫ t−

0
hrf(t, r)dNr and Fλ,ϕ(t) = gt ·

∫ t−

0
hrf(t, r)λ(r)dr

are both products of two predictable functions (the integrals are predictable because
we may approximate the deterministic function by a continuous function), thus they
are predictable. Hence, Ppp ⊆ H. Furthermore, Ppp is closed under multiplication.
Hence, we may apply the monotone class theorem (see e.g. Cohen and Elliott (2015),
Theorem 7.4.1) to conclude that H contains all bounded function which are measurable
with respect to Σpp = σ (Ppp) .

In order to carry the result over to arbitrary processes ϕ which are measurable with
respect to Σpp, we apply again a convergence result: Let ϕ be measurable with respect
to Σpp and non-negative, then ϕM := ϕ · 1(ϕ ≤ M) is bounded and measurable with
respect to Σpp. Thus it is contained in H. Moreover, ϕM → ϕ as M → ∞ increasingly
and hence by the same arguments as before FN,ϕ and Fλ,ϕ are predictable. Lastly, for an
arbitrary ϕ, write ϕ = ϕ+−ϕ− with ϕ+ = ϕ1(ϕ ≥ 0) and ϕ− = −ϕ1(ϕ < 0) and apply
the above arguments again separately to the non-negative functions ϕ+ and ϕ−.

Before continuing with our study of the stochastic integrals, we note the following
result on the jump size of the compensator.

Lemma 2.18. Let N be a counting process with cumulated intensity process Λ. Then
∆Λ ∈ [0, 1]

Proof. We give the proof as outlined in Andersen et al. (1993). Note that Λ is by
definition increasing and hence ∆Λ ≥ 0. Moreover, we see that∫ t

0
1(∆Λr > 1)dMr =

∑
r≤t

1(∆Λr > 1)(∆Nr −∆Λr) ≤ 0,

because ∆Nr ∈ {0, 1}. On the other hand 1(∆Λt > 1) is a predictable process and hence
the above integral has expectation zero. We conclude that 1(∆Λt > 1) = 0.
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Next, we study the properties of M a bit further. Note that for multivariate counting
processes N = (N1, ..., Nn) each component is locally bounded because Ni(t ∧ Tn) are
bounded by n. Moreover, the cumulated intensities Λi(t) for i = 1, ..., n are increasing
and hence also locally bounded. This means that the processes Mi(t) are locally bounded
as well and hence, the Mi are local square-integrable martingales.

In order to show what the predictable and optional quadratic variation are, we follow
the same route as in Andersen et al. (1993), Chapter II.4. Note that by the inte-
gration by parts formula for the Lebesgue-Stieltjes integral, we have 2

∫ t
0 Xs−dXs =

X2
t −

∑
s≤t(∆Xs)

2. Using this, we can compute the optional variation process of the
counting process martingale M = N −Λ, for which we have an explicit formula because

[M ]t = M2
t − 2

∫ t

0
Ms−dMs =

∑
s≤t

(∆Ns −∆Λs)
2

= Nt − 2
∑
s≤t

∆Λs ·∆Ns +
∑
s≤t

(∆Λs)
2

= Nt − 2

∫ t

0
∆ΛsdNs +

∫ t

0
∆ΛsdΛs

= Nt −
∫ t

0
∆ΛsdNs −

∫ t

0
∆ΛsdMs,

where we used that ∆Ns ∈ {0, 1} and hence (∆Ns)
2 = ∆Ns, moreover Λ is increasing

and hence ∆Λs 6= 0 only for countably many s. We have defined Λ as the compensator
of N and hence for At := Λt −

∫ t
0 ∆ΛsdΛs we get that [M ]t − At is a local martingale.

Moreover, At =
∫ t

0 (1−∆Λs)dΛs is increasing (cf. Lemma 2.18) and predictable. Thus,

by Lemma 2.8, we get for two counting processes N and Ñ with respective compensators
Λ and Λ̃ and martingales M and M̃

〈M〉t = Λt −
∫ t

0
∆ΛsdΛs

〈M, M̃〉t = −
∫ t

0
∆ΛsdΛ̃s.

Note for the predictable quadratic covariation that N + Ñ is a counting process with
compensator Λ+Λ̃. In particular, for the case where Λ and Λ̃ are absolutely continuous,
i.e., they admit intensity functions, we obtain

〈M〉t =

∫ t

0
λ(s)ds [M ]t = Nt

〈M,M̃〉 = 0 [M, M̃ ]t = 0. (2.2)

Finally, we want to discuss under which circumstances the counting process martingale
is an actual martingale and we do not have to worry about any localizing sequences.
Moreover, we may apply then Theorem 2.7 to all counting process martingale integrals
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and treat them as Stieltjes or Itô integrals depending on the situation. In general it is
not so easy to determine whether a local martingale is a martingale. But here we can
make use of the very specific form of the stochastic processes M , N and Λ.

Lemma 2.19. Let T = [0, T ] and let N be a uni-variate counting process as in Definition
2.13 with cumulated intensity function Λ. Assume that E(N(T )) < +∞ as well as
E(Λ(T )) < +∞). Then M := N − Λ is a martingale on [0, T ].

Proof. Both processes N and Λ are increasing and hence E(M(t)) < +∞ for all t ∈
[0, T ]. So we just need to show the integral property of the martingale: Let s < t then
by applying monotone convergence, the fact that Tn → ∞ a.s. and the assumption of
bounded expectations we get

E(M(t)|Fs) = E( lim
n→∞

N(t ∧ Tn)− Λ(t ∧ Tn)|Fs)

= lim
n→∞

E(N(t ∧ Tn|Fs)− lim
n→∞

E(Λ(t)|Fs)

= lim
n→∞

E(M(t ∧ Tn|Fs)

= lim
n→∞

M(s ∧ Tn) = M(s).

The last theoretic prerequisite we need is the likelihood function for counting processes.
We assume that N = (N1, ..., Nk) is a (multivariate) counting process and (Pθ)θ∈Θ is a
collection of probability measures where Θ is an index set. Assume that the process N
has intensity function λ(θ, t) with respect to Pθ. The likelihood for observations in the
interval [0, T ] is then proportional to (cf. Andersen et al. (1993), Chapter II.7)

k∑
i=1

∫ T

0
log λi(θ, t)dNi(t)−

∫ T

0
λi(θ, t)dt. (2.3)

2.3 Networks

In order to give a precise mathematical formulation of our statistical results about net-
works we use the notation from graph theory. However, in this thesis we will use the
words graph and network equivalently. Moreover, we will not distinguish simple graphs
from regular graphs and consider only simple graphs instead (without saying it explicitly
in the notation every time).

Definition 2.20. A network or a graph is a pair G = (V,E) where V is a finite set and
E ⊆ V ×V with (v, v) /∈ E for all v ∈ V . The elements of V are called vertices or actors
and the elements of E are called edges or connections. Elements of V will be typically
denoted by v, v1, v2, ... and elements of E will be typically denoted by i, j, i1, j1, i2, j2, ....
We will often identify G and E, i.e., we write i ∈ G and mean i ∈ E. Moreover, we will
understand i ∈ G as index of an edge and also write ei for the set of the two incident
vertices of i. G is called complete if E = V × V \ {(v, v) : v ∈ V }.
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If we have given a network G = (V,E), we would visualize it by drawing a dot for
each actor in V and draw an arrow from actor v1 ∈ V to actor v2 ∈ V if (v1, v2) ∈ G.
If an arrow has two heads we usually omit both of them. We distinguish now networks
where all connections have both arrows.

Definition 2.21. A network G = (V,E) is called undirected if (v1, v2) ∈ E ⇔ (v2, v1) ∈
E) for all v1, v2 ∈ V . Otherwise it is called directed.

For the asymptotic statistical analysis of networks we will always consider sequences
of networks.

Definition 2.22. A sequence of directed (undirected) networks (Gn = (Vn, En))n∈N is a
sequence of directed (undirected) networks Gn = (Vn, En) with Vn = {1, ..., n}. Denote
by rn the number of connections in Gn, i.e., for directed networks rn := |Gn| = |En| and

for undirected networks rn := |Gn|
2 = |En|

2 .

Our interpretation of a network will be that every vertex represents an actor who can
interact with other actors along the connections. As we usually assume that a priori
all actors can interact with all other actors, it is natural to have complete networks.
But by choosing Gn differently it is possible to exclude certain interactions. However,
we will introduce the possibility that pairs of actors can become active or inactive at
different times. So we consider actually two networks: One which deterministically and
un-dynamically states which actor can interact with each other (this is Gn), and another
random and dynamic network which states which pairs actors are at the moment percep-
tive for interactions (we will introduce this process later). For simplicity of presentation,
we will usually think about sequences of complete networks for Gn in the remainder
of the thesis, i.e., for directed networks we will have rn = n(n − 1) and for undirected

networks rn = n(n−1)
2 . Moreover, we observe the interactions over a time period [0, T ]

for some T > 0. Interactions comprise for us two quantities (i = (v1, v2), t): The edge
i with sender v1 and receiver v2 and a time point t ∈ [0, T ], t is called the interaction
time. In particular, we do not allow interactions with several recipients. Note that for
undirected networks, the notions of receiver and sender are somewhat arbitrary. Un-
directed interactions should therefore be more understood as interactions between two
actors where none of the actors can be identified as sender or receiver. Denote by Ei
the random set of all interaction times for the edge i. The event times are collected in
counting processes

N∗n,i(t) :=
∑
ti∈Ei

1(ti ≤ t).

Although we allow a priori that interactions are possible between any two actors, it is
realistic to assume that interactions between certain actors are so rare that they are
not of interest, e.g. because of too far geographical distance. Therefore, we allow for a
process Cn,i : [0, T ]→ {0, 1} for all i ∈ Gn which indicates if the edge i is active at time
t (if Cn,i(t) = 1) or not. This is the second network process mentioned in the previous
paragraph. We need this distinction because we need a notion of objects we observe but
at the same time we want to allow that certain objects do not contribute (but we do not
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know this in advance, it is part of the observation). We also introduce counting processes
Nn,i which count only those interactions which happened along active interactions:

Nn,i(t) :=

∫ t

0
Cn,i(s)dN

∗
n,i(s).

Along with these data, we also collect further information for each pair of actors i =
(v1, v2). We call this additional information covariates and denote it by Xn,i(t) ∈ Rq.
These covariate vectors may vary over time but they keep their dimension. Our ultimate
aim is to understand how the covariates and the interactions on active connections are
related and how this relation develops over time. We summarize everything in the
definition of an interaction network.

Definition 2.23. An interaction network is a sequence of directed or undirected net-
works (Gn)n∈N together with the following three types of processes (all defined on the
time interval [0, T ]):

1. Counting processes
(
N∗n,i

)
i∈Gn,n∈N

,

2. {0, 1} valued processes (Cn,i)i∈Gn,n∈N,

3. Rq valued processes (Xn,i)i∈Gn,n∈N.

Moreover, for every n ∈ N there is a filtration (Fnt )t∈[0,T ] such that for all n ∈ N all
Nn,i, i ∈ Gn, are adapted and all Cn,i and Xn,i, i ∈ Gn, are predictable with respect to
(Fnt )t∈[0,T ].

We denote by rn the number of connections in Gn and characterize an interaction
network usually by its observable quantities (Cn,i, Xn,i, Nn,i)i∈Gn, where

Nn,i(t) :=

∫ t

0
Cn,i(s)dN

∗
n,i(s).

We are not too much concerned about the existence of a filtration as required in the
definition above. One possibility would be to assume that Cn,i and Xn,i are continuous
from the left and let Fnt := σ(N∗n,i(s), Xn,i(s), Cn,i(s) : i ∈ Gn, s ≤ t) be the filtration
generated by the processes (N∗n,i, Xn,i, Cn,i) for all i ∈ Gn.

In the rental-bike network example from the beginning we would consider a bike ride
from station v1 to station v2 an interaction on the edge i = (v1, v2). Thus, N∗n,i would
encode the number of bike rides. We said that we’re only interested in the bike rides
on regularly used bike stations, so we set Cn,i(t) only during those times to one where
the destination i has shown regular activity in the past days. Thus Nn,i is encoding
the number of bike rides between v1 and v2 only during active times. Lastly, the vector
Xn,i(t) would contain the extra information about i which we listed in the introduction.
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3 Describing Dependence on Dynamic
Networks

In this chapter we will discuss three concepts for quantifying dependence in networks,
namely Asymptotic Uncorrelation, Momentary-m-Dependence and β-Mixing. In order
to define a realistic notion of weak dependence we want to allow that information is
transported through observed and unobserved random mechanisms. Thus, the way the
actors influence each other is random and time dependent itself. We illustrate this idea
by informally discussing the three concepts.

Asymptotic Uncorrelation is mainly based on the idea that in undirected, interchange-
able networks, i.e., where relabelling the vertices does not change the joint distribution
of the whole network, the joint distribution of two edges depends only on the number of
common vertices. We then make statements about the average covariance behaviour of
pairs of edges. We will see that assumptions of this type will provide an easy method to
bound variances of sums of random variables including network variables. Assumptions
of this type will be sufficient to prove an asymptotic normality result for a non-parametric
estimator at a fixed time point t0 (cf. Thereom 4.2). In order to prove results about the
global behaviour of the estimator (cf. Theorem 4.3 we require more involved indepen-
dence statements (like exponential inequalities). These in turn need stronger concepts
of dependence on a network. We present here Momentary-m-Dependence and β-Mixing
as such concepts. We will begin here with an informal introduction.

On the one hand we believe that at a time point t0, the near future of two actors given
the entire history up to time t0 is independent of the near future of two other actors,
provided that both pairs of actors are separated at time t0 (by separated we mean that
their distance, which has to be defined, is large). This means, the only information flow
between two at time t0 separated pairs of actors is through the past (where they were
possibly not separated). We will formalize this idea later under the name Momentary-m-
Dependence. We will also quantify how strong this information flow is without knowledge
of the past. This will be done by using β-Mixing coefficients. We emphasize here that
both concepts are not nested in the sense that one would imply the other, they concern
different scenarios: Momentary-m-Dependence concerns the question which additional
knowledge about the future given the past does or does not affect the future of a given
pair of actors. β-Mixing quantifies the effect the behaviour of a certain pair of actors
has on the behaviour of another pair of actors in a certain time period without any extra
knowledge.

To make these concepts precise we need to introduce some structure on the net-
work which we do in the following. Recall that Gn = (Vn, En) is a graph with ver-
tices V = {1, ..., n} and edges En. Now, we consider a sequence of random variables
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3 Describing Dependence on Dynamic Networks

(Cn,i, Xn,i, Nn,i)i∈Gn which form an interaction network in the sense of Definition 2.23.
We extend Definition 2.23 by adding a distance function.

Definition 3.1. An interaction network (Cn,i, Xn,i, Nn,i)i∈Gn on [0, T ] is called struc-
tured interaction network if there is a distance function dnt such that:

1. The processes Nn,i have intensity functions Cn,i(t)λn,i(t) with respect to Fnt (cf.
Section 2.2).

2. The triples (Cn,i(t), Xn,i(t), Nn,i(t))i∈Gn are identically distributed.

3. For all t ∈ [0, T ] and all n ∈ N, the function dnt : Gn × Gn → [0,∞] is a metric
and dnt (i, j) is predictable with respect to Fnt for all i, j ∈ Gn.

Remark 3.2. We already introduce the counting processes here because this is the setting
in which we will apply the results. However, we could make an analogue definition for
general random variables. In the following we will stick to the specific setting or be more
general according to our needs.

Remark 3.3. For two edges i, j ∈ Gn, the distance dnt (i, j) shall reflect how strongly
dependent the edges i and j are: A short distance implies dependence while a large
distance implies only weak dependence. From a modelling perspective, we emphasize
that the distance function dnt is a very abstract object but it does not need to be known.
Therefore it is a powerful instrument for describing relations between the actors.

Example 3.4. Suppose we are interested in modelling a messenger system with the
following specifications in our model:

• The actors are the users of the system.

• We impose no a priori restrictions, i.e., we consider a directed, complete network.

• A directed interaction on i = (v1, v2) is user v1 sending a message to user v2.

Edges i = (v1, v2) are always considered directed because v2 has no physical possibility to
make v1 not send a message to v2. Therefore, it makes sense to assume that only the
sender is ultimately responsible for an interaction.

The covariates Xn,i comprise different markers describing the relation between v1 and
v2, for example:

• Age or gender proximity of the users

• Proximity in geographic location

• Number of real life interactions

• Interactions between them and other people in the past
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3 Describing Dependence on Dynamic Networks

For a realistic model we need to allow that interactions on i = (v1, v2) and j = (v3, v4)
are not independent because users might tell each other to contact other users or share
information outside of the messaging system. But at the same time it is realistic to
assume that the dependence is strong if and only if the actors (v1, v2) and (v3, v4) are
close. We model this structure by assuming that at each time point we can quantify the
strength of the connection between any two actors v1 and v2 in a way which is predictable
with respect to the filtration (Fnt )t∈[0,T ] (e.g. when it is determined by the covariates):

• If v1 and v2 are strongly dependent, the edge i = (v1, v2) gets a low weight.

• If v1 and v2 are weakly dependent, i gets a large weight (if they are independent,
we give it infinite weight).

We define now dnt (i, j), the distance between two edges i and j, as the weight of the
path with the lowest weight connecting the senders of i and j (note that we consider a
complete network and hence there is always a path, it might have infinite weight though).
The distance function can be interpreted as follows:

• dnt (i, j) = ”large” means that short paths have very high (maybe even infinite)
weights, indicating that there is almost no direct influence. On the other hand it
might happen that there is a very long path with low weights per edge (i.e., through
very closely related actors), but then it is believable that the information is dispersed
quickly and again i and j are only very weakly dependent.

• dnt (i, j) = ”small” means that our model must allow that i and j are strongly
dependent.

We will keep this example in mind when we make this idea mathematically precise.

3.1 Asymptotic Uncorrelation

LetGn = (Vn, En) be an undirected network and let (Zi)i∈Gn be a set of random variables
indexed by the edges. We assume that (Zi)i∈Gn is jointly exchangeable in the vertices,
i.e.: Let σ : Vn → Vn be a permutation of the vertex set. For an edge i = (v1, v2) ∈ Gn, we
denote by σ(i) := (σ(v1), σ(v2)) the permuted edge. The network is called exchangeable
if (Zi)i∈Gn and (Zσ(i))i∈Gn have the same joint distribution for all permutations of the
vertex set σ. In particular, this means that Zi and Zj are identically distributed if there
is a permutation σ such that i = σ(j). Note that this is always the case because we have
defined networks as having no loops, i.e., for i = (v, v′) we always assume v 6= v′. Next,
we want to describe under which circumstances two pairs (Zi1 , Zj1) and (Zi2 , Zj2), for
i1, j1, i2, j2 ∈ Gn have the same distribution. Let therefore κ(i, j) := |ei ∩ ej | ∈ {0, 1, 2}
be the number of common vertices of i and j (recall that for i = (v, v′), we defined
ei = {v, v′} as the set containing the incident vertices). The following lemma is easy to
prove.

Lemma 3.5. Let i1, j1, i2, j2 ∈ Gn. There is a permutation of the vertices σ such that
(i1, j1) = (σ(i2), σ(j2)) if and only if κ(i1, j1) = κ(i2, j2).
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3 Describing Dependence on Dynamic Networks

Proof. Let i = (vi1 , v
′
i1

) and analogously for i2, j1 and j2. Let σ be a permutation such
that (i1, j1) = (σ(i2), σ(j2)). Then,

κ(i1, j1) = κ(σ(i2), σ(j2)) = |{σ(vi2), σ(v′i2)} ∩ {σ(vj2), σ(v′j2)}| = |ei2 ∩ ej2 | = κ(i2, j2).

If κ(i1, j1) = κ(i2, j2) we can easily construct σ with (i1, j1) = (σ(i2), σ(j2)) just by
mapping the corresponding vertices onto each other and letting the other vertices un-
changed.

We obtain the following corollary which characterizes when two pairs of random vari-
ables are identically distributed.

Corollary 3.6. Let (Zi)i∈Gn be a sequence of exchangeable random variables indexed by
the edges of a network Gn. For any vertices i1, j1, i2, j2 ∈ Gn, we have that (Zi1 , Zj1)
and (Zi2 , Zj2) are identically distributed if κ(i1, j1) = κ(i2, j2).

As an application we can find simplified expression for the variances in undirected,
complete networks.

Corollary 3.7. For all n ∈ N, let Gn = (Vn, En) be undirected and complete networks
and assume that (Zn,i)i∈Gn are interchangeable and square integrable. Recall that rn =

|Gn| = n(n−1)
2 is the number of edges. Then, for pairwise different vertices v1, v2, v3, v4 ∈

Vn,

Var

(
1

rn

∑
i∈Gn

Zn,i

)

=
1

r2
n

∑
i∈Gn

Var(Zn,i) +
1

r2
n

∑
i,j∈Gn
κ(i,j)=1

Cov(Zn,i, Zn,j) +
1

r2
n

∑
i,j∈Gn
κ(i,j)=0

Cov(Zn,i, Zn,j)

=r−1
n ·Var(Zn,v1v2) +O

(
r
− 1

2
n

)
Cov(Zn,v1v2 , Zn,v2v3) +O (1) Cov(Zn,v1v2 , Zn,v3v4).

For the proof of this corollary we just need to think about the number of terms in
each sum. It is an easy combinatorial exercise to find that their sizes are of the order

rn, r
3
2
n and r2

n respectively.
If we were to assume that Zn,i and Zn,j are uncorrelated when i 6= j, the covariances

vanish and we see that Var
(

1
rn

∑
i∈Gn Zn,i

)
→ 0 as n → ∞ if r−1

n Var(Zn,v1v2) → 0

as n → ∞. The latter is not a very strong assumption while the former assumption
(uncorrelation) shall be avoided as motivated in the beginning of this chapter. However,
as motivated by the last corollary we do not need the asymptotic uncorrelation for all
edges, we need it only for edges i and j with κ(i, j) = 0. For edges i and j with
κ(i, j) ≥ 1 we merely need that the covariances do not grow too fast. Thus, we make
an assumption on the average behaviour of disjoint edges. For κ(i, j) = 0, we argue
that Cov(Zn,v1v2 , Zn,v3v4)→ 0 is a reasonable assumption, because we believe that most
edges are separated and do not strongly influence each other.
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3 Describing Dependence on Dynamic Networks

When we replace 1
rn

by 1√
rn

in the above corollary, we need to impose stronger condi-

tions in order to achieve

Var

(
1
√
rn

∑
i∈Gn

Zn,i

)
= O(1).

However, we may split the sum again and impose different assumptions on the covari-
ances depending on the value of κ(i, j). And again for edges i and j with a higher value
of κ(i, j), we may impose less strict assumptions. This is a realistic behaviour because
κ(i, j) reflects our intuitive understanding of how dependent two edges are.

As the formulation of this property depends on the exact application, we do not go
into detail here. But we keep this intuition in mind when discussing specific assumptions
of this type later.

3.2 Momentarily m-Dependent Networks

Later in our application to non-parametric kernel estimates, we will use kernels with
bandwidth h to localize a likelihood. This will result in squares of sums of stochastic
integrals of these kernels with respect to martingales. Expanding this square yields a
double sum of double integrals with non-predictable integrands. More formally, we will
encounter terms of the form

1

rn

∑
j1,j2∈Gn

∫ T

0

∫ t−

t−2h
ϕn,j1j2(t, r)dMn,j2(r)dMn,j1(t), (3.1)

where h → 0 and ϕn,j1j2 averages the covariate functions Xn,i around the time points
t and r over an interval of length h. More precisely, ϕn,j1j2 is a random (but bounded)
function which depends on the processes Xn,j1(t), Xn,j2(r) and (Xn,i(s), s ∈ [t, t+ 2h])

as well as (Cn,i(s), s ∈ [t, t + 2h]) for all i 6= j1, j2, and Mn,i(t) = Nn,i(t) −
∫ t

0 λn,i(s)ds
is the martingale associated with the counting process Nn,i. The main issue here is that
the processes ϕn,j1j2(t, r) with r < t are not predictable with respect to Fnt and so we
cannot apply martingale results. If we could apply such results, we would use that the
martingales are uncorrelated and the inner integration is of order h in order to show
that the above term is negligible. But, conveniently, the processes ϕn,j1j2 have a later
described leave-something-out structure that allows us to apply a very similar technique
as in Mammen and Nielsen (2007) in order to still obtain results about the convergence
of the previously mentioned average.

Remark 3.8. Throughout the remainder of this section we will use the notion of Stieltjes
and Itô Integration interchangeably when possible (cf. Section 2.1). In particular, when

ϕ is not predictable, we will understand
∫ T

0 ϕ(t)dMn,i(t) as a Stieltjes integral which is
defined path-wise. Thus, no predictability of ϕ is required. If ϕ is predictable we can
understand the same integral as Itô Integral and use its properties.

We begin by defining what we mean by Momentary-m-Dependence. For a set J ⊆ Gn
of edges, let dns (i, J) := min{dns (i, j) : j ∈ J} be the distance of i to J at time s.
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3 Describing Dependence on Dynamic Networks

Definition 3.9. A structured interaction network (Cn,i, Xn,i, Nn,i)i∈Gn with filtration
(Fnt )t∈[0,T ] and distance dn is said to be momentarily-m-dependent for m ∈ [0,∞), if

∀n ∈ N, ∀t0 ∈ [0, T − h], ∀J ⊆ Gn :

(Cn,j(t), Xn,j(t), Nn,j(t))j∈J, t∈[t0,t0+h] is cond. independent of

σ
(

(Cn,i(r), Xn,i(r), Nn,i(r)) · 1(dns (i, J) ≥ m) :

s ≤ t0, r ≤ s+ 6h, i ∈ Gn
)

given Fnt0 .

Remark 3.10. The choice of 6h in Definition 3.9 is so that we can use it directly in
the kernel estimator setting. h is here the bandwidth of the kernel.

Let us interpret this definition in view of the example given in Remark 3.4. Assume
the network is momentarily m-dependent. Let J = {j0} in the above definition, then
information about an edge i in the time interval [t0, t0 + 6h] is not informative for the
behaviour of edge j0 on the time interval [t0, t0 + h] provided that we know already the
past up to time t0 and that i and j0 have distance at least m at time t0. We illustrate this
in Figure 3.1: The horizontal axis is time and the vertical axis is distance. The two lines
correspond to two edges i and j and the distance between these two lines represents the
distance between the edges i and j. Dots on the lines indicate events on the respective
edge.

The two gray areas in the future (next to the line at t0) stand for the information of
the processes of i on the interval [t0, t0 + h] and the processes of j on the interval [t0 +
t0 + h]. Under the assumption of momentary-m-dependence these two are conditionally
independent given the information up to time t0. So there is no direct information flow
between these two areas. However, they are not unconditionally independent because
we can infer from the gray area in the future of j on its past when i and j where close,
such that we can infer on the past of i which is informative about its future. But if we
already know the past, then additional knowledge of the future of j is independent of
the future of i.

In order to work with momentary-m-dependent networks, we will introduce two aug-
mentations of the filtration Fnt . Generally, when extending filtrations, we have more
predictable processes and fewer martingales. More precisely, let (Ft)t∈T be a filtration
and let A be a predictable process and let M be a martingale, both with respect to Ft.
Let furthermore (Gt)t∈T be a filtration which extends (Ft)t∈T (that is, Ft ⊆ Gnt for all
t ∈ T ). Then, A is still predictable with respect to Gt but M might not be a martingale
with respect to Gt. On the other hand, for processes A′ and M ′ which are predictable
and a martingale with respect to Gt, respectively, it holds that M ′ is a martingale with
respect to Ft but A′ might not be predictable with respect to Ft. Hence, predictability
and martingale properties react in opposite ways to a change of information. In the fol-
lowing definition we introduce two extensions of Fnt and one of which is the exact right
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3 Describing Dependence on Dynamic Networks

Figure 3.1: Graphical illustration of the information flow in an m-dependent network.
In the figure time is progressing from left to right. The two lines represent
the two edges i and j, the dots on the lines indicate events on the respective
edge. The distance of the two lines is representative for the distance of i and
j. The arrows show which areas my influence each other directly or not.
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3 Describing Dependence on Dynamic Networks

trade-off: Certain processes become predictable with respect to the extension while cer-
tain other processes remain martingales (this will be the content of the following Lemma
3.12).

For two σ-fields A and B we denote by A ∨ B the σ-field which is generated by the
union of A and B.

Definition 3.11. Let (Cn,i, Xn,i, Nn,i)i∈Gn be a structured interaction network with fil-
tration (Fnt )t∈[0,T ] and distance dn. For a subset J ⊆ Gn define

Fn,J,mt := Fnt ∨ σ
(

[Cn,i(r), Xn,i(r), Nn,i(r)]1(dns (i, J) ≥ m) :

s ≤ t, r ≤ s+ 6h, i ∈ Gn
)
.

We call Fn,J,mt the long-sighted leave-J-out filtration. In contrast to the long-sighted

leave-J-out filtration, we also define a short-sighted leave-J-out filtration F̃n,J,mI,t for
I ⊆ J by

F̃n,J,mI,t := σ(Xn,i(τ) : i ∈ I, τ ≤ t)
∨ σ([Cn,i(r), Xn,i(r), Nn,i(r)]1(∀j ∈ J : dns (i, j) ≥ m) :

s ≤ max(0, t− 4h), r ≤ s+ 6h, i ∈ Gn).

Denote further for any edge j ∈ Gn and m ∈ [0,∞)

j(m, t) := {i ∈ Gn : dnt (i, j) ≥ m}.

Functions which are measurable with respect to F̃n,J,mI,t will be called of leave-m-out type.

Note that the difference between the long and short sighted leave-J-out filtration is
given by which future knowledge is considered. Again, the choices of multiples of h
are made such that we can apply the results directly to our situation without having
notation clutter. Also, it holds that Fn,J,mt ⊇ F̃n,J,mt . We can now make the earlier
mentioned property of the long-sighted leave-J-out filtration precise. Namely, that the
counting processes stay counting processes and in particular their martingales are still
martingales:

Lemma 3.12. We consider a structured momentarily-m-dependent interaction network.
For J ⊆ Gn, the processes (Nn,j(t))j∈J form a multivariate counting process with re-

spective intensity functions (Cn,j(t)λn,j(t))j∈J with respect to Fn,J,mt . This means in
particular that (Mn,j(t))j∈J (the counting process martingales) are martingales with re-

spect to Fn,J,mt .

Proof. Let t > 0 and t′ ∈ [t, t+ h], then by definition and assumption

E(Mn,j(t
′)|Fn,J,mt ) = E(Mn,j(t

′)|Fnt ) = Mn,j(t).

This implies the assertion.
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We are now able to prove the two main results of this section. When dealing with the
double sum in (3.1), we split the double sum in the diagonal sum (where j1 = j2) which
is a single sum and the double sum over j1 6= j2. The first main result (Proposition 3.13)
is a simple statement about sums over one index, we will apply this to the diagonal sum
as described above. For the second sum (the double sum) we need a more difficult result
(Proposition 3.15) which is more complicated to prove.

Proposition 3.13. Let ϕn,i : [0, T ] → R for n ∈ N, i ∈ Gn be random functions (not
necessarily predictable). Let furthermore ϕ̃Ij : [0, T ] → R for j ∈ I ⊆ Gn and |I| ≤ 2

be of leave-m-out type, i.e., predictable with respect to F̃n,I,mj,t for all j ∈ I ⊆ Gn and
|I| ≤ 2. Then we have

E

(∑
i∈Gn

∫ T

0
ϕn,i(t)dMn,i(t)

)2


≤
∑
i∈Gn

∫ T

0
E
(
ϕ̃in,i(t)

2Cn,i(t)λn,i(θ0, t)
)
dt

+ 2
∑
i,j∈Gn

E
(∫ T

0
ϕ̃ijn,i(t)dMn,i(t)

∫ T

0

(
ϕn,j(r)− ϕ̃ijn,j(r)

)
dMn,j(r)

)

+
∑
i,j∈Gn

E
(∫ T

0

(
ϕn,i(t)− ϕ̃ijn,i(t)

)
dMn,i(t)

∫ T

0

(
ϕn,j(r)− ϕ̃ijn,j(r)

)
dMn,j(r)

)
.

Proof. The proof is almost exactly along the lines of Mammen and Nielsen (2007) but
it is not identical and we give it here for completeness. We see at first that

E

(∑
i∈Gn

∫ T

0
ϕn,i(t)dMn,i(t)

)2


=
∑
i,j∈Gn

E
(∫ T

0

∫ T

0
ϕ̃ijn,i(t)ϕ̃

ij
n,j(r)dMn,i(t)dMn,j(r)

)
(3.2)

+ 2
∑
i,j∈Gn

E
(∫ T

0

∫ T

0
ϕ̃ijn,i(t)

(
ϕn,j(r)− ϕ̃ijn,j(r)

)
dMn,i(t)dMn,j(r)

)

+
∑
i,j∈Gn

E
(∫ T

0

∫ T

0

(
ϕn,i(t)− ϕ̃ijn,i(t)

)
·
(
ϕn,j(r)− ϕ̃ijn,j(r)

)
dMn,i(t)dMn,j(r)

)
.

We use now that ϕ̃ijn,i and ϕ̃ijn,j are both predictable with respect to Fn,ij,mt and that Mn,i

and Mn,j are both martingales with respect to the same filtration. Hence, we obtain

(3.2) =
∑
i∈Gn

∫ T

0
E
(
ϕ̃in,i(t)

2Cn,i(t)λn,i(θ0, t)
)
dt

and the statement follows.
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The following result allows a similar statement about double sums. We assume that the
functions ϕn,j1j2 may be approximated by functions ϕ̃In,j1j2 where j1, j2 ∈ Gn and I ⊆ Gn
with |I| ≤ 4. Later, the functions ϕn,j1j2 will be averages of a certain stochastically
bounded quantity over all edges (thus there is hope that the average is stochastically
bounded too), and the functions ϕ̃In,j1j2 will be the same average but excluding edges in

I from the sum. The the approximation error is roughly of order |I|rn which converges to
zero fast because |I| ≤ 4. The assumptions of the following proposition should be seen
under this light.

Remark 3.14. We will denote the negation operator for events by ¬. So if A is an
event then ¬A denotes its negation. For a random variable X and a number x0 we have
for example

1(X ≥ x0) = 1− 1(¬X ≥ x0) = 1− 1(X < x0).

Proposition 3.15. Let m ∈ [0,∞) and let (Cn,i, Xn,i, Nn,i)i∈Gn be a momentarily m-
dependent structured interaction network with filtration (Fnt )t∈[0,T ] and distance dn. As-
sume that we have random functions ϕn,j1j2 : [0, T ]×[0, T ]→ R which are not necessarily
predictable with respect to Fnt . Let further ϕ̃In,j1j2(t, r) be random functions which are of

leave-m-out type in the following sense: The functions ϕ̃In,j1j2 are partially-predictable

with respect to F̃n,I,mj1j2,t
for all {j1, j2} ⊆ I ⊆ Gn, |I| ≤ 4.

Assume that ϕ̃In,j1j2 approximates ϕn,j1j2 in the following sense:

1

rn

∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t−

t−2h

(
ϕn,j1j2(t, r)− ϕ̃j1j2n,j1j2

(t, r)
)
dMn,j2(r)dMn,j1(t) = oP (1) (3.3)

E

(
1

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

∫ T

0

∫ t−

t−2h

(
ϕ̃j1j2n,j1j2

(t, r)− ϕ̃j1j2j
′
1j
′
2

n,j1j2

)
(t, r)dMn,j2(r)

×
∫ T

0

∫ t−

t−2h

(
ϕ̃
j′1j
′
2

n,j′1j
′
2
(t, r)− ϕ̃j1j2j

′
1j
′
2

n,j1j2
(t, r)

)
dMn,j′2

(r)dMn,j′1
(t)

)
= o(1) (3.4)

2

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h

(
ϕ̃j1j2n,j1j2

(t, r)− ϕ̃j1j2j
′
1j
′
2

n,j1j2
(t, r)

)
dMn,j2(r)

×
∫ t+2h

t

∫ ξ−

ξ−2h
ϕ̃
j1j2j′1j

′
2

n,j′1j
′
2

(ξ, ρ)dMn,j′2
(ρ)dMn,j′1

(ξ)1(¬j′1, j′2 ∈ j1(m, t))dMn,j1(t)

]
= o(1)

(3.5)

1

r2
n

∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t−

t−2h
E

[
ϕ̃j1j2n,j1j2

(t, r)2Cn,j1(t)λn,j1(t)Cn,j2(r)λn,j2(r)
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× 1(j2 ∈ j1(m, t− 2h))

]
drdt = o(1) (3.6)

1

r2
n

∑
j1,j2∈Gn
j1 6=j2

∑
j′2∈Gn
j′2 6=j2

∫ T

0
E

[∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j2

(t, r)dMn,j2(r)

∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j′2

(t, r′)dMn,j′2
(r′)

× Cn,j1(t)λn,j1(t)1(¬j2, j′2 ∈ j1(m, t− 2h))

]
dt = o(1) (3.7)

Then
1

rn

∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t−

t−2h
ϕn,j1j2(t, r)dMn,j2(r)dMn,j1(t)

P→ 0. (3.8)

Proof. The idea of the proof is to translate the convergence statement about ϕn,j1j2 to
statements about ϕ̃In,j1j2 . This will be useful because the latter are partially predictable
with respect to the short sighted filtration. Since we have certain processes which are
martingales with respect to the short sighted filtration (cf. Lemma 3.12) we can make use
of martingale properties of the Itô Integral. For the first step, we see that the asymptotic
behaviour of (3.8) is the same as the sum over the leave-m-out approximations, i.e.,

(3.8)

=
1

rn

∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t−

t−2h
ϕn,j1j2(t, r)− ϕ̃j1j2n,j1j2

(t, r)dMn,j2(r)dMn,j1(t) (3.9)

+
1

rn

∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t−

t−2h
ϕ̃j1j2n,j1j2

(t, r)dMn,j2(r)dMn,j1(t) (3.10)

and (3.9) converges to zero by assumption (3.3). Hence, we only have to study (3.10).
ϕ̃j1j2n,j1j2

(t, r) is partially-predictable with respect to the filtration Fn,j1j2,mt and, by the
assumption of Momentary m-Dependence (c.f. Definition 3.9 and Lemma 3.12), Mn,j

is a martingale with respect to Fn,J,mt for all J ⊆ Gn with j ∈ J . We will use this
observation in order to prove that (3.10) converges to zero in probability by applying
Markov’s Inequality:

E((3.10)2)

=
1

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h
ϕ̃j1j2n,j1j2

(t, r)dMn,j2(r)dMn,j1(t)

×
∫ T

0

∫ t−

t−2h
ϕ̃
j′1j
′
2

n,j′1j
′
2
(t, r)dMn,j′2

(r)dMn,j′1
(t)

]
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=
1

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h
ϕ̃j1j2n,j1j2

(t, r)− ϕ̃j1j2j
′
1j
′
2

n,j1j2
(t, r)dMn,j2(r)dMn,j1(t)

×
∫ T

0

∫ t−

t−2h
ϕ̃
j′1j
′
2

n,j′1j
′
2
(t, r)− ϕ̃j1j2j

′
1j
′
2

n,j′1j
′
2

(t, r)dMn,j′2
(r)dMn,j′1

(t)

]
(3.11)

+
2

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h
ϕ̃j1j2n,j1j2

(t, r)− ϕ̃j1j2j
′
1j
′
2

n,j1j2
(t, r)dMn,j2(r)dMn,j1(t)

×
∫ T

0

∫ t−

t−2h
ϕ̃
j1j2j′1j

′
2

n,j′1j
′
2

(t, r)dMn,j′2
(r)dMn,j′1

(t)

]
(3.12)

+
1

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h
ϕ̃
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r)dMn,j1(t)

×
∫ T

0

∫ t−

t−2h
ϕ̃
j1j2j′1j

′
2

n,j′1j
′
2

(t, r)dMn,j′2
(r)dMn,j′1

(t)

]
(3.13)

We will treat the terms (3.11)-(3.13) separately. Note, that in contrast to (3.8), all of
the above expressions contain only the approximations with their predictability property.
We will show in the following how this is useful.

(3.11) converges to zero by assumption (3.4).
In order to see that (3.12) converges to zero, we note firstly that the two stochastic

integrals in (3.12) (with respect to Mn,j1(t) and Mn,j′1
(t)) are martingales with respect to

the correct leave-m-out filtrations (namely Fn,j1,mt and Fn,j
′
1,m

t , respectively). Although
these two filtrations are in general not the same, we can make use of the fact that the
leave-m-out filtrations allow future knowledge. Define furthermore for Lebesgue sets
A ⊆ R

Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r) := ϕ̃j1j2n,j1j2

(t, r)− ϕ̃j1j2j
′
1j
′
2

n,j1j2
(t, r)

IA(j1, j2, j
′
1, j
′
2) :=

∫
A∩[0,T ]

∫ t−

t−2h
Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r)dMn,j1(t),

JA(j1, j2, j
′
1, j
′
2) :=

∫
A∩[0,T ]

∫ t−

t−2h
ϕ̃
j1j2j′1j

′
2

n,j′1j
′
2

(t, r)dMn,j′2
(r)dMn,j′1

(t).

Note that Mn,j′1
and Mn,j′2

are adapted with respect to all leave-m-out filtrations.

Since ϕ̃
j1j2j′1j

′
2

n,j′1j
′
2

(t, r) is partially-predictable with respect to Fn,j1j2j
′
1j
′
2,m

t , we get that

t 7→
∫ t−
t−2j ϕ̃

j1j2j′1j
′
2

n,j′1j
′
2

(t, r)dMn,j′2
(r) is predictable (cf. Lemma 2.17) and as a consequence,

t 7→ J[0,t)(j1, j2, j
′
1, j
′
2) is predictable as well with respect to Fn,j1j2j

′
1j
′
2,m

t .
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With these definitions we have (if α > β we define (α, β] := ∅)

(3.12)

=
2

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h
Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r) · J[0,T ](j1, j2, j

′
1, j
′
2)dMn,j1(t)

]

=
2

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h
Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r) · J[t,t+2h](j1, j2, j

′
1, j
′
2)dMn,j1(t)

]

(3.14)

+
2

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h
Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r) · J[0,t)(j1, j2, j

′
1, j
′
2)dMn,j1(t)

]

(3.15)

+
2

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h
Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r) · J(t+2h,T ](j1, j2, j

′
1, j
′
2)dMn,j1(t)

]

(3.16)

We show that this is o(1) by considering the tree lines separately. Recall therefore that
j1(m, t) = {i ∈ Gn : dnt (i, j1) ≥ m} is the set of edges which are further away than m
from j1 at time t.

For (3.14), we see by definition of the leave-m-out approximations that

J[t,t+2h](j1, j2, j
′
1, j
′
2)1(j′1, j

′
2 ∈ j1(m, t))

is predictable with respect to Fn,j1,mt because: The integrators Mn,j′1
and Mn,j′2

in

J[t,t+2h](j1, j2, j
′
1, j
′
2) are only considered up to time at most t + 2h and Fn,j1,mt con-

tains information up to and including time t + 6h for processes which are at time t at
least of distance m to j1. Now, the integrand in J[t,t+2h](j1, j2, j

′
1, j
′
2) needs Xj′1

(τ) and

Xj′2
(τ) for τ ≤ t + 2h which is well included in Fn,j1,mt by the same arguments. By

assumption ϕ̃
j1j2j′1j

′
2

n,j′1j
′
2

(t, r) is partially-predictable with respect to F̃n,j1j2j
′
1j
′
2,m

j′1j
′
2,t

. Hence,

J[t,t+2h](j1, j2, j
′
1, j
′
2)1(j′1, j

′
2 ∈ j1(m, t)) is predictable with respect to Fn,j1,mt by Lemma

2.17 because F̃n,j1j2j
′
1j
′
2,m

j′1j
′
2,t+2h

⊆ Fn,j1,mq for a q < t. Let therefore s ≤ t− 2h and r ≤ s+ 6h,

then [Cn,i(r), Xn,i(r), Nn,i(r)] · 1(dns (i, {j1, j2, j′1, j′2}) ≥ m) is measurable with respect

to Fn,j1,mq for q = t − 2h because s ≤ q. Hence, J[t,t+2h](j1, j2, j
′
1, j
′
2)1(j′1, j

′
2 ∈ j1(m, t))

is predictable with respect to Fn,j1,mt . Moreover, Mn,j1 is a martingale with respect to

Fn,j1,mt by momentary m-dependence. Hence,

(3.14)
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=
2

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h
Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r)J[t,t+2h](j1, j2, j

′
1, j
′
2)

× 1(j′1, j
′
2 ∈ j1(m, t))dMn,j1(t)

]

+
2

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h
Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r)J[t,t+2h](j1, j2, j

′
1, j
′
2)

× (1− 1(j′1, j
′
2 ∈ j1(m, t)))dMn,j1(t)

]

=
2

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

[∫ T

0

∫ t−

t−2h
Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r)J[t,t+2h](j1, j2, j

′
1, j
′
2)

× 1(¬j′1, j′2 ∈ j1(m, t))dMn,j1(t)

]
.

The last part is o(1) by assumption (3.5).
In (3.15), we see that J[0,t)(j1, j2, j

′
1j
′
2) is predictable with respect to

Fn,j1,mt ⊇ Fn,j1j2j
′
1j
′
2,m

t . Thus, we conclude by using that Mn,j1 is a martingale with

respect to Fn,j1,mt (with analogue arguments as in the first case):

(3.15) = 0.

For (3.16), we note firstly that∫ T

0

∫ t−

t−2h
Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r) · J(t+2h,T ](j1, j2, j

′
1, j
′
2)dMn,j1(t)

=

∫ T

0

∫ t−

t−2h
Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r)

×
∫ T

0

∫ ξ−

ξ−2h
ϕ̃
j1j2j′1j

′
2

n,j′1j
′
2

(ξ, ρ)dMn,j′2
(ρ)1(ξ > t+ 2h)dMn,j′1

(ξ)dMn,j1(t)

=

∫ T

0

∫ ξ−

ξ−2h
ϕ̃
j1j2j′1j

′
2

n,j′1j
′
2

(ξ, ρ)dMn,j′2
(ρ)

×
∫ T

0

∫ t−

t−2h
Φ̄
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r)1(t < ξ − 2h)dMn,j1(t)dMn,j′1

(ξ)

=

∫ T

0

∫ ξ−

ξ−2h
ϕ̃
j1j2j′1j

′
2

n,j′1j
′
2

(ξ, ρ)dMn,j′2
(ρ) · I[0,ξ−2h)(j1, j2, j

′
1, j
′
2)dMn,j′1

(ξ).
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Now, we can play a similar game: This time, Mn,j′1
is a martingale with respect to

Fn,j
′
1,m

ξ . Furthermore, I[0,ξ−2h)(j1, j2, j
′
1, j
′
2) requires knowledge of Mn,j1(τ), Mn,j2(τ),

Xn,j1(τ) and Xn,j2(τ) for τ < ξ−2h which is included in Fn,j
′
1,m

ξ as well as knowledge of
[Nn,i(r), Xn,i(r), Cn,i(r)] ·1(dns (i, {j1, j2}) ≥ m) for s ≤ ξ− 6h and r ≤ s+ 6h, i.e., r ≤ ξ
which is again included in Fn,j

′
1,m

ξ . Hence, ξ 7→ I[0,ξ−2h)(j1, j2, j
′
1, j
′
2) is predictable with

respect to Fn,j
′
1,m

ξ . Hence, the integrand of (3.16) is a martingale and we obtain

(3.16) = 0.

Thus, we have shown that (3.12) = o(1).

Finally, we consider (3.13). Therefore note firstly that ϕ̃
j1j2j′1j

′
2

n,j1j2
(t, r) and ϕ̃

j1j2j′1j
′
2

n,j′1j
′
2

(t, r)

are both partially-predictable with respect to Fn,j1j2j
′
1j
′
2,m

t . Moreover, Mn,j1 , Mn,j2 ,

Mn,j′1
and Mn,j′2

are all martingales with respect to Fn,j1j2j
′
1j
′
2,m

t . Hence,∫ t−

t−2h
ϕ̃
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r)

is also a predictable function in t and∫ T

0

∫ t−

t−2h
ϕ̃
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r)dMn,j1(t)

is a martingale. The same holds when Mn,j1 and Mn,j2 are replaced by Mn,j′1
and Mn,j′2

.
Hence, for j1 6= j′1

E

[∫ T

0

∫ t−

t−2h
ϕ̃
j1j2j′1j

′
2

n,j1j2
(t, r)dMn,j2(r)dMn,j1(t)

×
∫ T

0

∫ t−

t−2h
ϕ̃
j1j2j′1j

′
2

n,j′1j
′
2

(t, r)dMn,j′2
(r)dMn,j′1

(t)

]
= 0.

For j1 = j′1 we will apply firstly a martingale result to compute the covariance of the
two stochastic integrals (first equality below), in the third equality below we employ a
similar technique as in the computations for (3.12): Note that Cn,j1(t)λn,j1(t)1(j2, j

′
2 ∈

j1(m, t− 2h)) is measurable with respect to Fn,j2j
′
2,m

t−2h , additionally Mn,j2 and Mn,j′2
are

martingales with respect to Fn,j2j
′
2,m

t . Hence,

E

[∫ T

0

∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j2

(t, r)dMn,j2(r)dMn,j1(t)

×
∫ T

0

∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j′2

(t, r)dMn,j′2
(r)dMn,j1(t)

]
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=

∫ T

0
E

[∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j2

(t, r)dMn,j2(r)

×
∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j′2

(t, r′)dMn,j′2
(r′)Cn,j1(t)λn,j1(t)

]
dt

=

∫ T

0
E

[∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j2

(t, r)dMn,j2(r)

×
∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j′2

(t, r′)Cn,j1(t)λn,j1(t)1(j2, j
′
2 ∈ j1(m, t− 2h))dMn,j′2

(r′)

]
dt

+

∫ T

0
E

[∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j2

(t, r)dMn,j2(r)

×
∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j′2

(t, r′)dMn,j′2
(r′)Cn,j1(t)λn,j1(t)1(¬j2, j′2 ∈ j1(m, t− 2h))

]
dt

=1(j2 = j′2)

∫ T

0

∫ t−

t−2h
E

[
ϕ̃j1j2n,j1j2

(t, r)2Cn,j1(t)λn,j1(t)Cn,j2(r)λn,j2(r)

× 1(j2 ∈ j1(m, t− 2h))]

]
drdt

+

∫ T

0
E

[∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j2

(t, r)dMn,j2(r)

×
∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j′2

(t, r′)dMn,j′2
(r′)Cn,j1(t)λn,j1(t)1(¬j2, j′2 ∈ j1(m, t− 2h))

]
dt

So we may rewrite

(3.13)

=
1

r2
n

∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t−

t−2h
E

[
ϕ̃j1j2n,j1j2

(t, r)2Cn,j1(t)λn,j1(t)Cn,j2(r)λn,j2(r)

× 1(j2 ∈ j1(m, t− 2h))

]
drdt

+
1

r2
n

∑
j1,j2∈Gn
j1 6=j2

∑
j′2∈Gn
j′2 6=j2

∫ T

0
E

[∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j2

(t, r)dMn,j2(r)

×
∫ t−

t−2h
ϕ̃
j1j2j′2
n,j1j′2

(t, r′)dMn,j′2
(r′)Cn,j1(t)λn,j1(t)1(¬j2, j′2 ∈ j1(m, t− 2h))

]
dt
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By the assumptions (3.6) and (3.7) we conclude

(3.13) = o(1).

Thus we have finally shown that (3.10)
P→ 0 and hence the proof is complete.

3.3 Mixing Networks

So far we have discussed conditional independence. But it is also useful to talk about
unconditional independence. We argued in the previous section (see e.g. the discussion of
Figure 3.1) that, from a modelling point of view, we might feel uncomfortable to assume
unconditional independence. But, we probably feel comfortable to assume that far apart
actors influence each other very weakly. We include this aspect in the model by imposing
mixing assumptions. The setting is as in the previous subsection: Consider a structured
interaction network (Cn,i, Xn,i, Nn,i)i∈Gn with filtration (Fnt )t∈[0,T ] and distance function
dn. Let (Zi)i∈GN be a set of random variables indexed by the edges with values in a
space X . Ultimately, we are interested in proving inequalities of Bernstein type (cf. the
following Proposition 3.18), i.e.,

P

(∑
i∈Gn

f(Zi)− E(f(Zi)) ≥ t

)
≤ exp

(
− t2

C · t+D

)
, (3.17)

where f : X → R is a function (the constants C and D depend on f). We intend to prove
this type of inequality by applying the grouping technique for mixing random variables
(cf. Rio (2017) and Doukhan (1994)). Such exponential inequalities will become useful
when we study the global behaviour of the non-parametric estimator (cf. Theorem 4.3).
In contrast to classical β-mixing arguments our treatment is based on a time-varying
and random distance function dnt . In the network context we consider, it is very natural
to assume that actors change their dependencies. Therefore, we consider the distance dnt
as time dependent. However, we start with a review of important results and definitions
about β-Mixing which we need later. Like in Rio (2017), we define the general β-Mixing
coefficient as follows.

Definition 3.16. Let A and B be two σ-fields in the probability space (Ω,F ,P). Denote
by PA⊗B the unique measure on (Ω × Ω,A ⊗ B) with the property that for any A ∈ A
and B ∈ B: PA⊗B(A × B) = P(A ∩ B). Denote by PA and PB the restrictions of P to
A and B respectively. Denote finally by PA ⊗ PB the unique measure on (Ω×Ω,A⊗B)
with (PA⊗PB)(A×B) = P(A)P(B) for all A ∈ A and B ∈ B. The β-Mixing coefficient
between A and B is then defined by

β(A,B) := sup
C∈A⊗B

|PA⊗B(C)− (PA ⊗ PB) (C)| .

For two random variables X and Y defined on the same probability space we define

β(X,Y ) := β(σ(X), σ(Y )).
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3 Describing Dependence on Dynamic Networks

Figure 3.2: Partition of the two-dimensional plane: Blocks of the same type have the
same number.

The β-Mixing coefficient will be interesting for us through the following lemma which
is also taken from Rio (2017) (Lemma 5.1 therein).

Lemma 3.17. Let A be a σ-field in (Ω,F ,P) and let X be a random variable with values
in a Polish space X . Let δ be a random variable with uniform distribution over [0, 1]
which is independent of the σ-field generated by A and X. Then, there exists a random
variable X∗ which has the same law as X and which is independent of A, such that
P(X 6= X∗) = β(A, σ(X)). Furthermore, X∗ is measurable with respect to the σ-field
generated by A and (X, δ).

We also require, as a general result, the Bernstein inequality which is taken from Giné
and Nickl (2016).

Proposition 3.18. Let Xi, i = 1, ..., n be a sequence of independent, centred random
variables such that there are numbers c and σi such that for all k

E(|Xi|k|) ≤
k!

2
σ2
i c
k−2.

Set σ2 :=
∑n

i=1 σ
2
i , Sn :=

∑n
i=1Xi. Then, for all t ≥ 0

P(Sn ≥ t) ≤ exp

(
− t2

2(σ2 + ct)

)
.

The idea is now to group the random variables Zi in blocks which have a large distance
amongst each other, then we can apply Lemma 3.17 to these blocks to obtain independent
copies of the blocks. Thus, we split the edges into blocks and assign each block one of
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K types. Two vertices from different blocks of the same type shall be far apart. More
formally:

Definition 3.19. Let ∆ > 0, t ∈ [0, T ], K, n,m ∈ N and k ∈ {1, ...,K}. We call the sets
Gt(k,m,∆) ⊆ Gn a ∆-partitioning of the network at time t (note that we omit n in the
notation) if

1. (k,m) 6= (k′,m′) ⇒ Gt(k,m,∆) ∩Gt(k′,m′,∆) = ∅,

2.
⋃K
k=1

⋃
mG

t(k,m,∆) = Gn,

3. For k ∈ {1, ...,K} and m 6= m′: i ∈ Gt(k,m,∆), j ∈ Gt(k,m′,∆) ⇒ dnt (i, j) ≥ ∆.

Remark 3.20. The distance function dnt is only a theoretical construct (cf. Remark
3.3). In the same way the partitioning is also only assumed to exist but we do not
require knowledge of it.

In order to illustrate that such a partitioning may exist, we give two examples on how
to find it. For both examples, consider the two-dimensional plane in Figure 3.2 which we
split in blocks (squares) of side length ∆ and each block is assigned one of four types. In
Figure 3.2 all blocks of the same type k ∈ {1, ..., 4} have been assigned the same number.
It is clear that the distance between two points taken from two different blocks of the
same type k is at least ∆. We assign numbers {1, 2, 3, ...} to all blocks of the same type
in Figure 3.2 such that we can speak of the m-th block of type k.

The idea is now to assign to each edge random, two-dimensional coordinates. Then,
the edges can be plotted in the two-dimensional plane and can be partitioned accordingly.
We make this precise in the next example.

Example 3.21. Let e, e′ ∈ Gn be two arbitrary edges. For any n ∈ N, t ∈ [0, T ] and
i ∈ Gn we call (dnt (i, e), dnt (i, e′)) the coordinates of i at time t. Let Gt(k,m,∆) for
k = 1, 2, 3, 4 and m ∈ N comprise all edges i with coordinates lying in the m-th block of
type k in Figure 3.2.

Note that above we construct the partitioning for each time point t individually.
Hence, the choice of the reference edges e and e′ may depend on time as well. At
every time point we may choose new reference edges e and e′ which are most suitable.
It is not clear what a good choice of reference edges is. It would be desirable if the
assigned coordinates of the other edges are spread out through the plane. Two reference
edges e and e′ which are very close would probably not be a good choice because then
we would expect that for any other edge i ∈ Gn we have dnt (i, e) ≈ dnt (i, e′). Hence,
all coordinates (dnt (i, e), dnt (i, e′)) would basically only lie on the diagonal of the plane.
Therefore we would try to choose edges which are far apart as reference edges. Such a
random choice of reference edges is not contradicting the definition of a ∆-partitioning
because ∆-partitionings are allowed to be random.

That we produce indeed a ∆-partitioning in the above example (for every choice of
reference edges) is ensured by the following Lemma.
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Lemma 3.22. Let ∆ > 0 be given. The sets Gt(k,m,∆) defined in Example 3.21 form
a ∆-partitioning of the network in the sense of Definition 3.19.

Proof. That Gt(k,m,∆) and Gt(k′,m′,∆) are disjoint for (k,m) 6= (k′,m′) is obvious
because the distance between two edges and hence their coordinates are unique. That
the sets Gt(k,m,∆) are exhaustive is also clear.

Let i, j ∈ Gn and denote by (q, r) := (dnt (i, e), dnt (i, e′)) and (q′, r′) := (dnt (j, e), dnt (j, e′))
their respective coordinates. Then we obtain by the triangle inequality

q′ = dnt (e, j) ≤ dnt (e, i) + dnt (i, j) = q + dnt (i, j)

q = dnt (e, i) ≤ dnt (e, j) + dnt (j, i) = q′ + dnt (i, j),

which yields dnt (i, j) ≥ |q − q′|. Analogously, we obtain dnt (i, j) ≥ |r − r′|. The third
condition in Definition 3.19 follows then immediately if we notice that by definition for
m 6= m′, i ∈ Gt(k,m,∆) and j ∈ Gt(k,m′,∆) implies that |q − q′|, |r − r′| ≥ ∆.

Additionally to Example 3.21, we provide another method of how to equip edges with
two-dimensional coordinates. Once we have these coordinates, we can proceed in the
same way as in Example 3.21. In this second example we intend to obtain the two
dimensional coordinates via multidimensional scaling.

Example 3.23. Every pair of edges (i, j) is at time t equipped with a distance dnt (i, j).
Our aim is to plot for every edge i ∈ Gn a point p(i) in the two-dimensional plane
such that for any two edges i, j ∈ Gn the Euclidean distance between p(i) and p(j)
equals dnt (i, j), i.e., the distance of i and j in the graph. This is exactly the task of
Multidimensional Scaling (MDS) (cf. Cox and Cox (1994)). So the result of an MDS
algorithm could be used to plot the edges in the two-dimensional plane and group them
together as in Example 3.21.

Remark 3.24. Suppose that the projection is indeed possible, i.e., that the Euclidean
distance between p(i) and p(j) equals dnt (i, j). Then, it is clear that we really produced a
∆-partitioning (this is by Definition of the partitioning of the plane, see the discussion
before Example 3.21 and Figure 3.2). However, multidimensional scaling techniques
usually only produce an approximate projection, i.e., the Euclidean distance between
p(i) and p(j) is only approximately equal to dnt (i, j). So we possible do not obtain a
∆-partitioning. However, due to the discrete structure of the partitioning, there are
probably only a few edges which violate the third ∆-partitioning condition in Definition
3.19 and we can possibly correct for them. We will not pursue this issue any further.
Instead we will assume that we have an exact ∆-partitioning.

We define now the mixing coefficients on the network based on general ∆-partitions.
In particular for the following discussion it does not matter how the ∆-partitioning was
created.

Definition 3.25. Let (Zi)i∈Gn be a sequence of random variables indexed by the edges,
let ∆ > 0 be given and let Gt(k,m,∆) be a ∆-partition of the network as in Definition
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3.19. For every time point t and edges i ∈ Gn, we define

Ik,m,tn,i (∆) := 1(i ∈ Gt(k,m,∆)),

the indicator function which checks if i belongs to the m-th block of type k at time t.
Group the Zi based on the partition Gt(k,m,∆), i.e.,

Un,tk,m(∆) :=
∑
i∈Gn

Zi · Ik,m,tn,i (∆)− E(Zi · Ik,m,tn,i (∆)).

Then we define the β-Mixing coefficient which depends on the graph partitioning Gt(k,m,∆)
(which we do not indicate in the notation) via:

βt(∆) := max
M,M ′⊆N,M∩M ′=∅

k∈{1,...,K}

β
([
Un,tk,m(∆)

]
m∈M

,
[
Un,tk,m′(∆)

]
m′∈M ′

)
.

Remark 3.26. In applications, the random variables Zi will depend on a time point
t0 ∈ [0, T ]. So it will be the case that for t close to t0 the β-Mixing coefficients at time
t will be small while they might be large for t far away from t0 (in fact, for t far away
from t0 we will sometimes have Zi = 0 and hence the β-Mixing coefficients will equal 1).

The following result is the main result of this section (inspired by Doukhan (1994)).

Proposition 3.27. Let (Cn,i, Xn,i, Nn,i)i∈Gn be a structured interaction network with
filtration (Fnt )t∈[0,T ] and distance dn. Consider furthermore a set of random variables
(Zi)i∈Gn indexed by the edges. With the same notation as in Definition 3.25 assume that
there is a time point t such that there is a ∆-partitioning such that for all ρ ∈ N with
ρ ≥ 2 and all k ∈ {1, ...,K} and m ∈ {1, ..., rn}

E(|Un,tk,m(∆)|ρ) ≤ ρ!

2
Ek,mσ

2 · (EkC)ρ−2,

for some numbers σ2, Ek,m, Ek and C with |E|n :=
∑K

k=1

∑rn
m=1Ek,m < +∞ (note that

all these numbers may depend on ∆). Then,

P

(∑
i∈Gn

(Zi − E(Zi)) ≥ x

)
≤
K∑
k=1

exp

(
−
|E|−1

n

∑rn
m=1Ek,mx

2

2(|E|nσ2 + EkCx)

)
+ βt(∆) · Krn.

Proof. With the definitions as in Definition 3.25 we obtain (because
∑

k

∑
m I

k,m,t
n,i (∆) =

1) ∑
i∈Gn

(Zi − EZi) =
∑
k

∑
m

∑
i∈Gn

ZiI
k,m,t
n,i (∆)− E(ZiI

k,m,t
n,i (∆))

=

K∑
k=1

rn∑
m=1

Un,tk,m(∆). (3.18)
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In order to reduce notation, we omit (∆) when talking about Un,tk,m(∆). By Lemma 3.17
we can construct sequences U∗k,m as follows: We assume that the σ-field Fnt is rich enough
to allow for independent extra random variables δk,m which are uniformly distributed
on [0, 1] and which are independent amongst each other and of everything else. The
construction is the same for every k, so we only construct the sequence U∗1,m, all other
sequences U∗k,m for k ≥ 2 are constructed analogously. Define U∗1,1 := U1,1. For m ≥ 2
there is by Lemma 3.17 a function fm such that U∗1,m := fm(U1,1, ..., U1,m−1, δ1,m, U1,m)
has the same distribution as U1,m, is independent of U1,1, ..., U1,m−1 and

P(U1,m 6= U∗1,m) = β ((U1,1, ..., U1,m−1) , U1,m) ≤ βt(∆).

To sum it up, we have sequences U∗k,m with

1. For any k and any fixed R ∈ N,
(
U∗k,m

)
r=1,...,R

is a sequence of independent random

variables.

2. U∗k,m and Uk,m have the same distribution.

3. For all k = 1, ...,K: P
(
∃m ∈ {1, ..., rn} : Uk,m 6= U∗k,m

)
≤ rn · βt(∆).

Denote by Rk the random number of blocks Uk,m of type k which exist, i.e., such that
for m > Rk we have Uk,m = 0. So we obtain by (3.18) for any x ≥ 0 and any sequence

(αk)k=1,...,K with
∑K

k=1 αk = 1 and αk ≥ 0:

P

(∑
i∈Gn

Zi − E(Zi) ≥ x

)

= P

( K∑
k=1

Rk∑
m=1

Uk,m ≥ x

)

≤ P

( K∑
k=1

Rk∑
m=1

U∗k,m ≥ x

)
+ P

(
∃k ∈ {1, ...,K},m ∈ {1, ..., rn} : Uk,m 6= U∗k,m

)
≤ P

( K∑
k=1

Rk∑
m=1

U∗k,m ≥ x

)
+

K∑
k=1

P(∃m ∈ {1, ..., rn} : Uk,m 6= U∗k,m)

≤
K∑
k=1

P

(
Rk∑
m=1

U∗k,m ≥ αk · x

)
+ βt(∆, v, v

′) · Krn (3.19)

Note that Rk ≤ rn and that Uk,m = 0 for m > Rk. Furthermore, for every k the
sequence U∗k,m is a sequence of independent random variables. Moreover, by definition

E(Uk,m) = 0. So, the assumptions of Proposition 3.18 are fulfilled with σ2
m := Ek,mσ

2

and c := EkC. So we can estimate the first part of (3.19) by

P

(
Rk∑
m=1

U∗k,m ≥ αk · x

)
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≤ exp

(
−

α2
kx

2

2 (
∑rn

m=1Ek,mσ
2 + EkC · αkx)

)
. (3.20)

When we chose αk = |E|−1
n

∑rn
m=1Ek,m, we obtain by combining the equalities (3.19)

and (3.20),

P

(∑
i∈Gn

(Zi − E(Zi)) ≥ x

)

≤
K∑
k=1

exp

(
−

α2
kx

2

2 (
∑rn

m=1Ek,mσ
2 + EkCαkx)

)
+ βt(∆) · Krn

≤
K∑
k=1

exp

(
−
|E|−1

n

∑rn
m=1Ek,mx

2

2 (|E|nσ2 + EkCx)

)
+ βt(∆) · Krn

This proposition can be utilized for processes on structured interaction networks with
the following property.

Definition 3.28. A structured interaction network (Cn,i, Xn,i, Nn,i)i∈Gn with filtration
(Fnt )t∈[0,T ] and distance dn together with a sequence of stochastic process on [0, T ],
(Zn,i)i∈Gn, indexed by the edges (i.e., for every i ∈ Gn, Zn,i is a stochastic process on
[0, T ]) is called β-mixing at time t if the following conditions on the quantities defined
in Definition 3.25 hold:

For a ∈ R and ∆n := a · log n, there is a ∆n-partitioning and positive numbers
σ2, c1, c2, c3 ∈ R>0 and En,tk,m, E

n,t
k ∈ R for k = 1, ..,K and m = 1, ..., rn, such that

1. ∀k ∈ {1, ...,K},m ∈ {1, ..., rn} : E(|Un,tk,m(∆n)|ρ) ≤ ρ!
2 E

n,t
k,mσ

2 ·
(
En,tk c1

)ρ−2

2. For |E|n,t :=
∑K

k=1

∑rn
m=1E

n,t
k,m, it holds that

∀k = 1, ...,K :
1

|E|n,t

rn∑
m=1

En,tk,m ≥ c2 and

∀k = 1, ...,K :

√√√√(En,tk )2
log |E|n,t

|E|n,t
≤ c3.

Combining the definitions and results of this section, we can prove the following lemma
which provides an exponential inequality.

Lemma 3.29. Let (Cn,i, Xn,i, Nn,i)i∈Gn be a structured interaction network with filtra-
tion (Fnt )t∈[0,T ] and distance dn which is β-mixing at time t with respect to random
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variables (Zn,i)i∈Gn indexed by the edges in the sense of Definition 3.28. Then, for any
x > 0,

P

(
1

|E|n,t

∑
i∈Gn

(Zn,i − E(Zn,i)) ≥ x ·

√
log |E|n,t
|E|n,t

)

≤ K|E|
− c2·x

2

2(σ2+c1c3x)

n,t + βt(∆n) · Krn. (3.21)

Proof. The proof of (3.21) is an immediate consequence of Proposition 3.27 together
with the assumptions:

P

(
1

|E|n,t

∑
i∈Gn

(Zn,i − E(Zn,i)) ≥ x ·

√
log |E|n,t
|E|n,t

)

≤ P

(∑
i∈Gn

(Zn,i − E(Zn,i)) ≥ x ·
√

log |E|n,t · |E|n,t

)

≤
K∑
k=1

exp

− c2x log |E|n,t · |E|n,t
2
(
|E|n,tσ2 + En,tk c1x2 ·

√
log |E|n,t · |E|n,t

)
+ βt(∆n) · Krn

≤ K exp

(
− c2x

2 log |E|n,t
2 (σ2 + c1c3x)

)
+ βt(∆n) · Krn.
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4 Model Formulation and Theoretic Results

In this chapter we present which type of data we model, how we intend to model it and
what we can prove about the model. The model we introduce is very closely related to
stochastic actor models (cf. Snijders (2001); Butts (2008)) and has been studied, e.g.,
in Perry and Wolfe (2013). A similar model was applied in Butts (2008). At first, in
Section 4.1, we will introduce the statistical model and its interpretation followed by the
main results of this thesis in Sections 4.2 and 4.3. The assumptions which are necessary
to prove the main results are presented and discussed in Section 4.4. The proofs of the
results are deferred to Chapter 5. We will also illustrate how the model may be applied
and how the results may be used for inference by investing a real world data set from
bike sharing data in Washington D.C. in Section 4.5.

4.1 Modelling of Interaction Networks

We express the relation between the covariates Xn,i and the interactions on active edges
in an interaction network (cf. Definition 2.23) by assuming that the counting processes
Nn,i have intensity functions

Cn,i(t) · λ(t, θ0(t), Xn,i(t))

with respect to Fnt as defined in Section 2.2. They depend on the covariates and a
parameter function θ0 : [0, T ] → Θ, where Θ is some state space (later we will have
Θ ⊂ Rq), through a known, deterministic link function λ : [0, T ]×Θ×Rq → [0,∞). For
ease of notation we will sometimes omit the covariates in the notation and just write

λn,i(θ0(t), t) = λ(t, θ0(t), Xn,i(t)).

Note firstly that by definition Cn,i and Xn,i are both predictable with respect to Fnt and
thus Cn,iλn,i is indeed a proper intensity function. The parameter function θ0 describes
the relation between the intensity and the covariates at different times. So θ0 is the
object we would like to estimate and perform inference about. We illustrate this in an
example.

Example 4.1. Assume a company’s management is interested in how well the commu-
nication among their employees is working. The company is very international and has
employees around the world so that their primary means of communication are phone
calls. Several employees work together in a group on the same project. It is hereby pos-
sible that one employee works in several groups and that employees are assigned to new
projects and leave old projects. Moreover, each project has group leaders and employees
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can have different roles in different groups. Although it happens that employees who
work in different groups call each other, the management is primarily interested in the
communication within a project. Their particular interest is finding out if the commu-
nication among group leaders and group members is one-sided or mutual and if this has
changed since all employees have been equipped with new phones.

This question fits in the above described framework: The actors are the employees
and the connection between two actors is active as long as they work in the same group.
The status of an edge changes then with time as the employees change their group as-
signments. The phone calls are considered as interactions (more precisely, the begin of
a phone call). As covariates Xn,i(t) we put the group hierarchy, i.e., the covariate for
i = (v1, v2) is coding the four possibilities: both are group members, both are group le-
aders, v1 is leader and v2 is member or v2 is leader and v1 is member. Note that the
covariates may change here also over time as the employees can change their roles. We
consider now

λ(t, θ0(t), Xn,i(t)) = exp(θ0(t)TXn,i(t)).

Thus, θ0(t) quantifies the importance of the different covariates. It is hence of interest
to compare the estimates of θ0(t) for time points t before and after the introduction of
new phones.

It was already shortly mentioned in the example above, but we would like to emphasize
again that the fact that an edge between two actors is inactive does not exclude the
possibility of interactions between them. It rather means that interactions between
them are not of interest for the particular application and hence they are not captured
in the modelling.

An estimator of the parameter function θ0 at a given point t0 ∈ [0, T ] can be obtained
by maximizing the following local log-likelihood function over µ ∈ Θ which is obtained by
localizing the log-likelihood for counting processes for a constant parameter (cf. Section
2.2 and line (2.3)) at time t0 by means of a kernel K (i.e. K is non-negative and integrates
to one)

`n(µ, t0) :=
∑
i∈Gn

∫ T

0

1

h
K

(
t− t0
h

)
log λ(t, µ,Xn,i(t))dNn,i(t)

−
∫ T

0

∑
i∈Gn

1

h
K

(
t− t0
h

)
Cn,i(t)λ(t, µ,Xn,i(t))dt, (4.1)

where h = hn is the bandwidth. Note that in (4.1) interactions which happened close to
time t0 get a large weight while those which happened earlier or later get a low weight
(hence the term local log-likelihood). We point out that Cn,i(t) = 0 =⇒ ∆Nn,i(t) = 0
(there are no interactions if the intensity equals zero). So we do not have to worry about
taking the logarithm of zero. By localizing, we hope that the maximizer of the local
log-likelihood is a good estimator of θ0(t0) for any fixed t0 ∈ [0, T ]. Thus, we define the
corresponding local maximum likelihood estimator as

θ̂n(t0) = arg max
θ∈Θ

`n(θ, t0).
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In order to understand the form of the local log-likelihood in (4.1) better, we rewrite it
by using the Stieltjes integral notation from Section 2.1 and the notion of the cumulated
intensity Λn,i(t) :=

∫ t
0 λn,i(s)ds as well as the counting process martingale Mn,i(t) :=

Nn,i(t)− Λn,i(t),

`n(µ, t0)

=
∑
i∈Gn

(∫ T

0

1

h
K

(
t− t0
h

)
log λ(t, µ,Xn,i(t))dNn,i(t)

−
∫ T

0

1

h
K

(
s− t0
h

)
Cn,i(t)λ(t, µ,Xn,i(t))dt

)

=
∑
i∈Gn

(∫ T

0

1

h
K

(
t− t0
h

)
log λ(t, µ,Xn,i(t))dMn,i(t)

+

∫ T

0

1

h
K

(
s− t0
h

)
Cn,i(t)

× [log λ(t, µ,Xn,i(t)) · λ(t, θ0(t), Xn,i(t))− λ(t, µ,Xn,i(t))] dt

)
.

Now we see that the local log-likelihood splits in a martingale and in a non-martingale
part (strictly speaking the first part is a local martingale but we ignore this difference for
the following heuristic). So in this sense, we can understand the situation we are facing
as a regular regression situation: In a standard kernel regression situation we observe
signal plus Gaussian noise and build up the log-likelihood (which is then a sum), localize
it around the time of interest t0 and maximize the likelihood, which yields then the
standard Nadaraya-Watson kernel estimator. The above expression corresponds exactly
to this likelihood. In the counting process world we observe N = Λ + M , where Λ
(the cumulated intensity function) corresponds to the signal, while the martingale M
corresponds to the noise. As in the kernel regression setting, we hope that the noise
is averaged out and `n(µ, t0) is basically only the second part in the equality above
which in turn we hope to average to its expectation (assume that all Xn,i are identically
distributed, the expectations below exist and Fubini may be applied and recall that
rn = |Gn|)

1

rn
E (`n(µ, t0))

=E

(∫ T

0

1

h
K

(
s− t0
h

)
Cn,1(t)

× [log λ(t, µ,Xn,1(t)) · λ(t, θ0(t), Xn,1(t))− λ(t, µ,Xn,1(t))] dt

)

=

∫ T

0

1

h
K

(
s− t0
h

)
pn(t)
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× E
(

log λ(t, µ,Xn,1(t)) · λ(t, θ0(t), Xn,1(t))− λ(t, µ,Xn,1(t))
∣∣∣Cn,1(t) = 1

)
dt

=

∫ T

0

1

h
K

(
s− t0
h

)
pn(t)g(µ, t)dt,

where pn(t) := P(Cn,1(t) = 1) and

gn(µ, t)

:=E
(

log λ(t, µ,Xn,1(t)) · λ(t, θ0(t), Xn,1(t))− λ(t, µ,Xn,1(t))
∣∣∣Cn,1(t) = 1

)
. (4.2)

It is easy to see that for any fixed t the function µ 7→ gn(µ, t)pn(t) is maximized by
the choice µ = θ0(t). So we hope that the estimator θ̂n(t0) which maximizes the local
log-likelihood is a good estimator of θ0(t0) for any fixed t0 ∈ [0, T ]. The first main result
of this thesis gives an affirmative answer to this question.

4.2 Asymptotic Normality of local log-likelihood estimator

For the first main theorem, we become more specific in terms of the intensity function.
We will assume Θ ⊆ Rq (recall that q is the dimension of the covariate vector Xn,i) and
λ(t, µ,X) := exp(µTX), i.e., we have for the intensities the following Cox-type form

Cn,i(t)λn,i(θ0(t), t) = Cn,i(t)λ(t, θ0(t), Xn,i(t)) = Cn,i(t) exp
(
θ0(t)TXn,i(t)

)
. (4.3)

This form of the intensity function is particularly nice to interpret because in the ex-
ponential we find a weighted sum of the covariates and the parameters which we will
estimate are exactly the weights. Hence, the parameters may be interpreted as the
impact a covariate has on the overall intensity.

The model description so far was pretty general and it can be adapted to all types
of networks. For simplicity of notation and exposition we restrict here to the case
of undirected, complete networks, i.e., rn = n(n−1)

2 where n is the number of actors.
The methodology can be generalized in a straight forward way to directed, complete
networks where rn = n(n − 1). However, in this case the asymptotic uncorrelation
type assumptions need to be reformulated. Also a generalisation to arbitrary networks
with arbitrary rn is possible but requires more careful reformulation of the asymptotic
uncorrelation assumptions. So let Gn be a complete, undirected network from now on.

Theorem 4.2. Suppose that Assumptions (A1)-(A7) from Section 4.4 hold for a point
t0 ∈ (0, T ). Then, with probability tending to one, the derivative of the local log-likelihood
function θ 7→ `n(θ, t0) has a root θ̂n(t0), satisfying√

lnh

(
θ̂n(t0)− θ0(t0) + h2

[
1

2
Σ−1v −Bn

])
→ N

(
0,

∫ 1

−1
K(u)2du Σ−1

)
for n→∞ with

ln := rnP(Cn,1(t0) = 1), where rn = |Gn|

48



4 Model Formulation and Theoretic Results

v :=

∫ 1

−1
K(u)u2du · ∂θ∂t2g(θ0(t0), t0),

Σ := −∂θ2g(θ0(t0), t0),

γn,i(s) := (1− Cn,i(t0))Cn,i(s),

τn,i(θ, s) := Xn,i(s)Xn,i(s)
T exp(θTXn,i(s)),

Bn :=
1

ln

n∑
i,j=1

∫ T

0

1

h
K

(
s− t0
h

)
γn,i(s)

h
τn,i(θ0(s), s)θ′0(t0)

t0 − s
h

ds

and gn was defined in (4.2). If, in addition,
|Et0 |
ln

P→ 1, then ln can be replaced by |Et0 |,
where |Et0 | denotes the size of the set Et0.

The proof of this result is presented in Section 5.1. As motivated before the statement
of the theorem, we are in a very similar situation to regular kernel regression. This
is reflected by the fact that, up to the bias term, Theorem 4.2 looks very similar to a
standard asymptotic normality result in kernel regression. The rate of the convergence
is ln · h where h is the bandwidth and ln = rnP(Cn,1(t0) = 1) is the expected number of
observations: Recall that n is the number of actors and rn is the number of possible pairs
which contribute to the observations with probability P(Cn,12(t0) = 1). The variance
of the normal distribution has the standard form of a kernel integral times the inverse
of the Fisher information matrix. The bias is (as usual) of order h2 but comprises two
terms: The first one has again a standard form involving the second derivative of the
objective function. The second part Bn, however, is a result of the dynamic network
setting. We discuss Bn in the next paragraph.

Note firstly that the factor γn,i(s) is equal to zero if the connection i does not change
its status Cn,i (present or not-present) in the time interval [s, t0]. In particular in a
network which is not changing over time, γn,i(s) = 0 for all (i, j) and all s ∈ [0, T ]
and hence Bn = 0. So the bias is induced by the dynamics of the network. Bn is also
vanishing if θ′0(t0) = 0, i.e., if we estimate a local extremal point of θ this part of the
bias vanishes (but the first part of the bias remains). Let us show that Bn = OP (1) such
that the bias as a whole is indeed of order h2. It holds that

E(|Bn|)

≤ 1

ln

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
E
(
γn,i(s)

h
‖τn,i(θ0(s), s)‖

)
‖θ′0(t0)‖|t0 − s|

h
ds

=

∫ T

0

1

h
K

(
s− t0
h

)
P(Cn,1(t0) = 0, Cn,1(s) = 1)

hP(Cn,1(t0) = 1)

|t0 − s|
h

ds · ‖θ′0(t0)‖

× sup
s∈Uh

E
[
‖τn,1(θ0(s), s)‖

∣∣∣Cn,1(s) = 1, Cn,1(t0) = 1
]
.

This is O(1) by Assumptions (A6) (boundedness of the fraction of probabilities), (A4)
(boundedness of the expectation) and (A2) (kernel is supported on [−1, 1]). Hence, we
get that Bn = OP (1). In Section 4.4 we discuss the assumptions with examples. In
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order to see that Bn is asymptotically not vanishing, note that the only quantity in
the expression above which can converge to zero is the fraction of probabilities. We
discuss this in more detail after Assumption (A6) so we give here just a heuristic: Let
s ∈ [t0 − h, t0] be given, then

P(Cn,1(t0) = 1, Cn,1(s) = 1) = P(Cn,1(t0) = 0|Cn,1(s) = 1) · P(Cn,1(s) = 1).

If the conditional distribution of the time at which an edge changes its status given that
it is active at time s has a density, then, it is clear that P(Cn,1(t0) = 0, Cn,1(s) = 1)

behaves like h · P(Cn,1(s) = 1) because t0 − s ≤ h. As
P(Cn,1(s)=1)
P(Cn,1(t0)=1) ≈ 1 we can only

have convergence to zero if h−1P(Cn,1(t0) = 0, Cn,1(s) = 1) → 0, i.e., if the density of
the random time point of status change is 0 at s. This is not possible if we assume a
decreasing density, i.e., later status changes are less likely (which would e.g. be the case
for an exponential distribution).

4.3 Asymptotics of Test for Constant Parameter

Now we are interested in testing whether the parameter function θ0 is indeed time
varying, i.e., we want to study the test problem

H0 : θ0 ≡ const. vs. H1 : θ0 is time varying.

We suggest therefore the following test statistic similar to Härdle and Mammen (1993)

Tn :=

∫ T

0
‖θ̂n(t0)− θ̄n‖2p̄n(t0)w(t0)dt0,

where w is a non-negative weight function with suppw ⊆ [δ, T − δ] for δ > 0 and θ̄n
is a suitable estimator in a model that assumes a constant parameter function (e.g.
the maximum likelihood estimator). Furthermore, pn(t0) := P(Cn,i(t0) = 1) is just an

abbreviation and p̄n(t0) :=
∫ T

0
1
hK

(
s−t0
h

)
pn(s)ds is the smoothed version of pn (we will

impose assumptions later which imply that i in these definitions is arbitrary, cf. (B1)).
On H0, the parameter function θ0 is constant and we denote its value by θ0 as well.
Before continuing with the main result about Tn, we note that in contrast to Härdle and
Mammen (1993), we know in advance that we estimate a constant function (because we
operate on H0). Therefore we can directly compare with the estimate and we do not
require additional smoothing in the test statistic. For the statement of the following
theorem we define

Σ(t, θ) := E
(
∂2
θ log λn,1(t, θ) · λn,1(θ0, t)− ∂2

θλn,1(θ, t)|Cn,1(t0) = 1
)

and set on H0 the abbreviation Σ(t) := Σ(t, θ0). We can formulate the following general
result about the asymptotics of the test statistic. Note that for the main body of the
proof of the following theorem, the Cox-type model (4.3) is not necessary. Thus, we
formulate the result more general than Theorem 4.2. However, when we want to prove
the detailed assumptions of this main body (cf. Section 4.4), we will have to assume the
Cox-Model.
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Theorem 4.3. Under the Assumptions (B1)-(B7), stated in Section 4.4, on H0

rnh
1
2Tn − h−

1
2An

d→ N(0, B), n→∞,

where in the general case An is defined in Statement 4.5 and B is defined in Statement
4.6. In the case of the Cox-type model (cf. (4.3)), we have

An :=
1

rn

∑
i∈Gn

∫ T

0
Xn,i(s)

T

∫ T−δ

δ

1

h
K

(
s− t0
h

)2

Σ−T (t0)Σ−1(t0)
w(t0)

p̄n(t0)
dt0Xn,i(s)dNn,i(s)

B := 4K(4)

∫ T

0
trace

((
P (t)Σ−T (t)Σ−1(t)

)2)
w2(t)dt

and

K(4) :=

∫ 2

0

(∫ 1

−1
K(v)K(u+ v)dv

)2

du,

P r1,r2(t) := E
(
Xr1
n,j(t)X

r2
n,j(t)λn,j(t)

∣∣∣Cn,j(t) = 1
)
.

Note that An can be approximated by using a plug in estimator for Σ and B can be
approximated by Statement 4.6.

The proof of this theorem is presented in Section 5.2.

Remark 4.4. Analogously as in Theorem 4.2 the rate of convergence should intuitively
be influenced by the probability of observing an edge pn(t0). However, on first sight it
is not appearing the the result. In contrast to Theorem 4.2, in Theorem 4.3 we make a
statement about all estimators θ̂n(t0) for all time points t0 ∈ suppw. So the probabilities
pn(t0) appear in the test statistic in the integral, thus each time point receives a different
weight. This is why the pn(t0) is not appearing directly in the rate of convergence of Tn.

From an applied point of view, we can use Theorem 4.2 in order interpret results
from the estimation procedure. Theorem 4.3 can be used in order to show that a time
dependent parameter function θ0(t0) is important in order to represent the data.

4.4 Assumptions

In this section we present and discuss assumptions sufficient for proving Theorems 4.2
and 4.3. The Assumptions (A1)-(A7) will be used for Theorem 4.2 and the (B) and
(C) assumptions for Theorem 4.3. We emphasize that Theorem 4.3 requires on the one
hand stronger assumptions because we have to handle the estimator at all time points
simultaneously, on the other hand it is easier because we assume a constant parameter
function. Therefore none of the sets of assumptions is contained in the other. We present
the assumptions therefore separately and present connections between the two sets when
talking about the (B) assumptions.
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Our assumptions do not specify the dynamics of the covariates Xn,i(t) and of the
censoring variable Cn,i(t). Instead of this, we assume that the stochastic behaviour of
these variables stabilizes for n → ∞. Assumption (A1) is specific to our setting and
it states our general understanding of the dynamics, while assumptions (A2), (A3) and
(A5) are standard. Assumption (A4) guarantees that the covariates are well behaved
and can be found similarly in Perry and Wolfe (2013). Finally, (A6) and (A7) specifically
describe the dependence situation in our context. They quantify how we make the idea
mathematically precise that while the network grows the actors get further and further
apart and hence influence each other less and less. In the following we firstly state an
assumption and then discuss its meaning and the intuition behind it.

(A1) Exchangeability
For every n and for any t ∈ [t0 − h, t0 + h], the joint distribution of (Cn,i(t), Xn,i(t))
is identical for all edges i ∈ Gn. Furthermore, for any s, t ∈ [t0 − h, t0 + h], the condi-
tional distribution of the covariate Xn,i(t) given that Cn,i(s) = 1, has a density fs,t(y)
with respect to a measure µ on Rq, and this conditional distribution does not depend on
i and n. We use the shorthand notation fs for fs,s. Finally, it holds that: n → ∞,
h→ 0, lnh→∞, and lnh

5 = O(1).

Recall that, ln is the effective sample size at time t0 (see discussion after Theorem 4.2).
With this in mind, the assumptions on the bandwidth are standard. The most restrictive
assumption in (A1) is that the conditional distribution of Xn,i(t), given Cn,i(s) = 1, does
not depend on i ∈ Gn. Observe that this holds if the array of (Cn,i, Xn,i)i is jointly ex-
changeable in i = (v1, v2) for any fixed n, i.e., if relabelling the vertices does not change
the joint distribution of all Xn,i. The additional assumption that the conditional distri-
bution of Xn,i(t), given Cn,i(s), does not change with n is not very restrictive, because
it is natural to assume that the distribution depends only on the local structure of the
network. For instance, if we assume that a fixed vertex v has only a bounded number of
close interaction partners v′ while the network grows, then it is natural to assume that
the local structure given by the interacting partners does not undergo major changes
for n → ∞ (we discuss after assumption (A6) in more detail how this scenario gets
incorporated in the Cn,i). We make this additional assumption mainly to avoid stating
lengthy technical assumptions allowing to interchange the order of differentiation and
integration at several places in the proof.

We add some standard assumptions on the kernel.
(A2) Kernel Order

The kernel K is positive and supported on [−1, 1], and it satisfies
∫ 1
−1K(u)du = 1,∫ 1

−1K(u)udu = 0 and max−1≤u≤1K(u) <∞.

The next condition makes smoothness assumptions for the parameter curve θ0 and
the density fs(y).

(A3) Smoothness of Parameter
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The parameter space Θ is compact and convex. Let τ := supθ∈Θ ‖θ‖ <∞. The parame-
ter function θ0(t) takes values in Θ, and, in a neighbourhood of t0, it is twice continuously
differentiable. The value θ0(t0) lies in the interior of Θ.

We continue with some tail conditions on fs(y) and its derivatives. They are fulfilled
if, e.g., the covariates are bounded.

(A4) Moment Conditions
For µ-almost all y (see (A1) for a definition of µ), the density fs(y) is twice continuously
differentiable in s. For an open neighbourhood U of t0 and Uh := [t0 − h, t0 + h] it holds
for all edges i, j ∈ Gn∫

sup
s∈U

{(
1 + ‖y‖+ ‖y‖2 + ‖y‖3

)
|fs(y)|+

(
1 + ‖y‖+ ‖y‖2

) ∣∣∣∣ d

ds
fs(y)

∣∣∣∣
+ (1 + ‖y‖)

∣∣∣∣ d2

ds2
fs(y)

∣∣∣∣+ ‖y‖2 · fs,t0(y)

}
· exp(τ · ‖y‖)dµ(y) <∞, (4.4)

sup
s,t∈Uh

E
(
‖Xn,i(s)‖2 · ‖Xn,j(t)‖2

· eτ(‖Xn,i(s)‖+‖Xn,j(t)‖)
∣∣∣Cn,i(t0) = 1, Cn,j(t0) = 1

)
= O(1), (4.5)

For k ∈ {2, 3} :

sup
s∈Uh

E
(
‖Xn,1(s)‖keτ‖Xn,1(s)‖

∣∣∣∣Cn,1(s) = 1, Cn,1(t0) = 0

)
= O(1), (4.6)

E
(

sup
s∈Uh

[
‖Xn,1(s)‖+ ‖Xn,1(s)‖2 + ‖Xn,1(s)‖3 + ‖Xn,1(s)‖4

]
·eτ‖Xn,1(s)‖

∣∣∣∣Cn,1(s) = 1

)
< +∞. (4.7)

The next assumption guarantees identifiability.
(A5) Identifiability

For any n ∈ N, θTXn,1(t0) = 0 a.s. (w.r.t. ft0) implies that θ = 0.

The following assumption addresses the asymptotic behaviour of the distributions of
the processes Cn,i(t). In particular, for t in a neighbourhood of t0, the assumptions
address asymptotic stability of the marginal distributions of these processes, and also a
certain kind of asymptotic independence of Cn,i and Cn,j for |ei ∩ ej | = 0 (recall that for
an edge i, we denote by ei the set of the two incident vertices).

(A6) Asymptotic Uncorrelation I
For w(u) = K(u) and w(u) = K2(u)/

∫
K2(v)dv it holds that∫ 1

−1
w(u)

P(Cn,1(t0 + uh) = 1)

P(Cn,1(t0) = 1)
du→ 1 (4.8)
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for n→∞. For

An,i,j

:=

∫ 1

−1

∫ 1

−1
w(u)w(v)

P(Cn,i(t0 + uh) = 1, Cn,j(t0 + vh) = 1)

P(Cn,1(t0) = 1)2
dudv,

we assume that

An,i,j =


o(n2) for |ei ∩ ej | = 2,
o(n) for |ei ∩ ej | = 1,

1 + o(1) for |ei ∩ ej | = 0.
(4.9)

Furthermore, it holds that∫ T

0

1

h
K

(
s− t0
h

)
P(Cn,1(t0) = 0, Cn,1(s) = 1)

P(Cn,1(t0) = 1)
ds = O(h), (4.10)

and for edges with |ei ∩ ej | ≤ 1

P(Cn,i(t0) = 1, Cn,j(t0) = 1)

P(Cn,1(t0) = 1)2
= O(1). (4.11)

Note firstly that, due to the localization of our likelihood function, all time dependence
happens only locally around the target time t0. Condition (4.8) appears reasonable in
the regime of asymptotics in the size of the network: Consider, for instance a dynamic
social media network, and assume, for example, that we consider data from a certain
geographic region. One might assume that during the night the number of active pairs,
i.e. the pairs with Cn,i = 1, is lower than during the day, and we expect that there
will be a gradual decrease between, e.g., 8pm and 11pm. This time window does not
get narrower when n increases and hence a slow change of the distribution seems to
be a reasonable assumption. Assumption (4.10) holds for example in the following
model: Assume that in the previous example communications between pairs are ended
at δ0 := 8pm plus a certain random time δn,i, i.e., Cn,i(t) = 1(t ≤ δ0 +δn,i). In this case,
the ratio of probabilities in (4.10) becomes

P(Cn,i(t0) = 0, Cn,j(s) = 1)

P(Cn,1(t0) = 1)
=

P(δn,i ∈ [s− δ0, t0 − δ0))

P(δn,i ≥ t0 − δ0)
.

Since we are using a localizing kernel, the length of the interval [s− δ0, t0 − δ0) is of the
order h, and if δn,i has a density, then (4.10) holds.

If we assume that relabelling the vertices does not change the joint distribution of the
whole process (i.e., if we assume exchangeability). Then, the joint distribution of two
edges i and j depends only on |ei ∩ ej |. Hence, it is very natural to distinguish the three
regimes |ei∩ej | ∈ {0, 1, 2}. This pattern will appear again in the next Assumption (A7).
Let us for the moment consider Cn,i that are constant over time. Then, in (4.9), in the
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case |ei ∩ ej | = 2, the assumption is satisfied because
P(Cn,i=1,Cn,j=1)

P(Cn,i=1)2
= P(Cn,1 = 1)−1 =

o(n2) according to Assumption (A1).
We discuss the remaining cases for the uniform configuration model. In the uniform

configuration model all vertices have (approximately) the same pre-defined degree κ,
and we assume that the Cn,i are created as follows: Equip each vertex v = 1, ..., n
with κ edge stubs, and create edges by randomly pairing the stubs. After that, discard
redundant edges and self-loops. If two vertices v and v′ are connected after this process,
set Cn,i = 1 for i = (v, v′). We use the same heuristics as e.g. in Newman (2010),
Chapter 13.2, to compute the probability of edges. Fix v and v′, then for any fixed edge
stub of v there are κn − 1 stubs left to pair with, κ of which belonging to vertex v′.
Hence, the probability of connecting to v′ is given by κ2

κn−1 as there are κ edge stubs
from v as well. Approximating κn − 1 by κn, as n gets large, we obtain the following
probabilities: Let i1, j1, j2 ∈ Gn be edges with |ei1 ∩ ej1 | = 1 and |ei1 ∩ ej2 | = 0, then

P(Cn,i1 = 1) ≈ κ

n

P(Cn,i1 = 1, Cn,j1 = 1) = P(Cn,i1 = 1|Cn,j1 = 1) · P(Cn,j1 = 1) ≈ κ(κ− 1)

n2

P(Cn,i1 = 1, Cn,j2 = 1) = P(Cn,i1 = 1|Cn,j2 = 1) · P(Cn,j2 = 1) ≈ κ2

n2
.

We see now that also in the cases |ei ∩ ej | ≤ 1, the assumptions (4.9) and (4.11) hold.

The next assumption involves θ0,n, defined as the maximizer of

θ 7→
∫ T

0

1

h
K

(
s− t0
h

)
g(θ, s)ds, (4.12)

where g is defined in (4.15) (note that this is the same as gn in (4.2) but where we used
the specific form of the intensity in (4.3) as well as assumption (A1) which says that the
conditional distribution is independent of n and hence we write g instead of gn). We
show later that θ0,n is uniquely defined, and that θ0,n is close to θ0(t0) (see Lemma 5.3
and Proposition 5.5, respectively). Define furthermore

τn,i(θ, s) := Xn,i(s)Xn,i(s)
T exp(θTXn,i(s)), (4.13)

g(θ, t) := E
[
θTXn,i(t) exp(θ0(t)TXn,i(t)) (4.14)

− exp(θTXn,i(t))|Cn,i(t) = 1
]

=

∫
Rq

(
θT yeθ0(t)T y − eθT y

)
ft(y)dµ(y), (4.15)

fn,1(θ, s, t|i, j) := E(τn,i(θ, s)τn,j(θ, t)|Cn,i(s) = 1, Cn,j(t) = 1),

f2(θ, t) := E(τn,i(θ, t)|Cn,i(t) = 1) = −∂θ2g(θ, t),

rn,i(s) := Cn,i(s)Xn,i(s)
(
eθ0(s)TXn,i(s) − eθ

T
0,nXn,i(s)

)
−∂θg(θ0,n, s).
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Note that, by Assumption (A1), f2 and g do not depend on i and n.
(A7) Asymptotic Uncorrelation II

We assume that fn,1 depends on i and j only through |ei ∩ ej |. Moreover, we assume
that, for all sequences θn → θ0(t0) and u, v ∈ [−1, 1], it holds that fn,1(θn, t0 + uh, t0 +
vh, i, j) converges to a value that depends only on |ei ∩ ej |. We denote this limit by
f1(θ0(t0), |ei ∩ ej |), and assume that

f1(θ0(t0), 0) = f2(θ0(t0), t0)2. (4.16)

For rn,i(s), we assume that, with ρn,ij(u, v) := rn,i(t0 +uh)rn,j(t0 +vh) and for |ei∩ej | =
0, ∫∫

[−1,1]2

K(u)K(v)E(ρn,ij(u, v)|Cn,i(t0) = 1,Cn,j(t0) = 1)dudv = o
((
lnh
)−1)

. (4.17)

Assumption (A7) specifies in which sense the covariates are asymptotically uncorrela-
ted. For motivating (A7) build a graph G with vertices 1, ..., n and for v1, v2 ∈ {1, ..., n},
i = (v1, v2) is an edge if Cn,i(t0) = 1. Denote by dG the distance function between
edges on G (adjacent edges have distance 0). In the same heuristic as explained after
Assumption (A6), this graph is very large (asymptotics over the number of vertices)
and sparse (n vertices and of order n edges, regardless of possible directedness), because
every vertex is incident to at most κ edges. In this scenario, the number of pairs of
edges i and j for which dG(i, j) = d is of order (κ − 1)d · n, and there are of order n2

many pairs of edges in total. Let now Ai be arbitrary, centred random variables indexed
by the edges of G. We make the assumption that Ai is influenced equally by all Aj
with j being adjacent to i. In mathematical terms, we formulate this assumption as
E(AiAj |dG(i, j) = d) ≈ C · κ−d. Then, we obtain for non-adjacent edges i and j

E(AiAj) =
∞∑
d=1

P(dG(i, j) = d) · E(AiAj |dG(i, j) = d)

≈
∞∑
d=1

n(κ− 1)d

n2
C · κ−d

=
C

n
(κ− 1),

which converges to zero after being multiplied with lnh ≈ nh (in this case because
P(Cn,1(t) = 1) ≈ 1

n). Because, in (4.16) and (4.17), we consider only expectations
conditional on Cn,i(t) = 1, we can think of An,i being the random variables τn,i (a
centred version of it) or rn,i and the expectations in the above heuristic are conditional
expectations conditionally the respective conditions in (4.16) and (4.17). This serves as
motivation for these two assumptions. Moreover, unconditionally, τn,i and τn,j (and rn,i
and rn,j) do not need to be uncorrelated.
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We present now the assumptions for Theorem 4.3. In order to keep an independent
treatment of Theorems 4.2 and Theorem 4.3, some of the following assumptions are
similar to the Assumptions (A1)-(A7).

(B1) Modelling Assumptions

1. The conditional distribution of (Xn,i(s), Nn,i(s)) given Cn,i(s) = 1 is independent of
n and i. Also (Cn,i, Xn,i, Nn,i) are identically distributed. In particular, pn(t0) :=
P(Cn,i(t0) = 1) is well defined.

2. λn,i(θ, s) have either the Cox-form as in (4.3) or if not they are almost surely twice
continuously differentiable in θ for any time s.

3. Let p̄n :=
∫ T

0 p̄n(s)ds. Then the estimator θ̄n fulfils

∥∥θ̄n − θ0

∥∥ = OP

(
1√
rnp̄n

)
.

4. The function

t 7→ E
(
Xn,i(t)

2λn,i(θ0, t)
∣∣∣Cn,i(t) = 1

)
is uniformly bounded.

Part 1 of this assumption is very similar to (A1). For part 2 we remark that we do
not assume here the specific Cox form of the intensity as in (4.3). But we require that
λn,i(θ, s) depends differentiably on the parameter θ (for the Cox Model this holds). Part
3 holds for example for the maximum likelihood estimator as introduced in Chapter
VI.1.2. in Andersen et al. (1993). Finally, part 4 holds for example if the covariates are
bounded. We will argue after Assumption (C1), 2 that this is a reasonable assumption.

(B2) Weak-Dependence
Statements 4.1 to 4.12 hold.

This assumption is discussed in more detail later when we impose dependence assump-
tions on the network.

(B3) Boundary Cut-Off
The weight function w is bounded and supported on T ⊆ [δ, T − δ] for some δ > 0.

The main role of the weight function is to cut-off boundary problems with the kernel.
Therefore it is reasonable to bound its support and to assume that it is bounded.

(B4) Kernel and Bandwidth

1. The bandwidth h relates to the effective number of observations rnpn, where pn :=
inft0∈T pn(t) as follows

√
rnpn · h

(log rn)
3
2

→∞ and h(log rn)2 → 0.
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2. The kernel K : [−1, 1] → R is supported on [−1, 1] and Hoelder continuous with
exponent αK and constant HK , i.e., |K(x) − K(y)| ≤ HK · |x − y|αK . As a
consequence it is bounded by a constant which we also denote by K.

The conditions on the bandwidth in the first part of (B4) are for example true when

h ≈ (pnrn)−
1
5 is the asymptotically optimal bandwidth choice in most one-dimensional

regression contexts (cf. Tsybakov (2009)), so they are standard for this type of pro-
blem. The Hoelder continuity of the kernel is a mild assumption which avoids technical
problems later. For most simple kernels like Epanechnikov or a triangular kernel it is
true.

(B5) Exhaustiveness of Θ

1. The true parameter lies in a bounded open set Θ. We denote the bound by τ .

2. With probability tending to one, we have for all t0 ∈ T that θ̂(t0) ∈ Θ.

The first part of (B5) is not restrictive because we study the behaviour on the null
hypothesis which is θ0 ≡ constant. Hence, the assumption holds when Θ is large enough.
For the second part, note that the maximum likelihood-estimator θ̂n(t0) is constructed
by applying the Newton-Kantorovich Theorem (Theorem 5.9) which guarantees that the
estimator lies in the interior of Θ (under the assumptions (A1)-(A7)).

(B6) Smoothness of p̄n(t0)
The function t0 7→ 1

p̄n(t0) is Hoelder continuous with exponent αp and on n depending

constant Hn,p ≥ 1, i.e.,
∣∣∣ 1
p̄n(t0) −

1
p̄n(t′0)

∣∣∣ ≤ Hn,p·|t0−t′0|αp for all t0, t
′
0 ∈ T and all n ∈ N.

In the assumption (B6) we make a statement about the speed of the smoothed change
in the sparsity of the network. Note that p̄n(t) ≥ pn := infs∈T pn(s) and thus we may
directly conclude from Assumption (B4), 2 that∣∣∣∣ 1

p̄n(t0)
− 1

p̄n(t1)

∣∣∣∣ ≤ 1

p2
n

|p̄n(t1)− p̄n(t0)| ≤ HK

p2
nh

1+αK
|t1 − t0|αK .

Note that we allow that the Hoelder constant depends on n, only the exponent needs to
be fixed. As an alternative we may assume smoothness of pn(t) directly as we illustrate
in the following by using the same example as explained after assumption (A6). We
assume that during the day n people are each interacting with a fixed number k of
people, i.e., pn(t) ≈ k

n for t ∈ [8am, 8pm]. Furthermore, we imagine that during the
night, the activity decreases and pn(t) ≈ 1

n
3
2

for t ∈ [10pm, 6am]. So there is a two

hour transit between the two levels of sparsity 1
n and 1

n
3
2

. Outside of the transit area

we assume that the sparsity level is constant. Hence, in terms of continuity, the only
critical region is the transit area. We assume that the transit is smooth in the sense that
it is formed by a third order polynomial. In order to get easier numbers, we simplify the
situation further and assume that f is a function with f(t) = 1

n for t ≤ 0, f(t) = 1

n
3
2

for

t ≥ 1 and

f(t) = 2

(
1

n
− 1

n
3
2

)
t3 − 3

(
1

n
− 1

n
3
2

)
t2 +

1

n
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for t ∈ (0, 1). Such an f has the same transit (up to constants) as a pn(t) as described
before. We can check that f is differentiable with bounded derivative, hence it is Lip-
schitz continuous and we may compute the Lipschitz constant Lipn (the bound of the
derivative) to be of order 1

n , i.e., |f(s) − f(t)| ≤ Lipn|s − t|. From this we may finally
conclude ∣∣∣∣ 1

f(s)
− 1

f(t)

∣∣∣∣ ≤ |f(s)− f(t)|
f(s)f(t)

≤ n3Lipn ≈ n2|s− t|.

Hence, here we have Hn,p ≈ n2. In Statement 4.10 we make statements about the size
of Hn,p. But generally it will not be a problem if Hn,p ≈ nα for some α ∈ R. This, we
have just motivated.

Recall for the next assumption that

Σ(t, θ) := E
(
∂2
θ log λn,1(t, θ) · λn,1(θ0, t)− ∂2

θλn,1(θ, t)|Cn,1(t) = 1
)
.

(B7) Invertibility of Fisher-Information
It holds that, Σ(t0, θ0) is invertible and there are M,ρ > 0 such that for every t0 ∈ T,
every matrix X with ‖X − Σ(t0, θ0)‖ < ρ is invertible and ‖X−1‖ ≤M .

Moreover, Σ(θ0, t) is continuously differentiable in t with bounded derivative, i.e., there
is a constant D > 0 such that

sup
t0∈T
‖∂tΣ(t0, θ0)‖ ≤ D.

In (B7) we assume that the Fisher Information is invertible. This is a classical as-
sumption. If we assume furthermore, as in Assumption (A4), a smooth change in the
distributions of the covariates, then t0 7→ Σ(t0, θ0) is a continuous function. Moreover,
taking the inverse of a matrix is a continuous operation and the set of invertible matri-
ces is open. Thus, t0 7→ Σ(t0, θ0)−1 is a continuous function on the compact set T and
hence the set {Σ(t0, θ0)−1 : t0 ∈ T} is a compact subset of the open set of all invertible
matrices. This implies the first requirement of Assumption (B7).

The second assumption in (B7) concerning the derivatives of Σ(t0, θ0) is not restrictive
because Σ(s, θ0) does not depend on n.

We present now the Lemmas which we referred to in (B2). We formulate them without
assumptions because Theorem 4.3 holds whenever the assumptions (B1) - (B7) and the
following lemmas are true. The assumptions (B1), (B3) - (B7) seem to be very basic
and unavoidable while the following lemmas may be provable also in different scenarios.
After the lemmas we will present a situation in which they can be proven.

Statement 4.1. `n and Pn are twice continuously differentiable in θ and differential
and integral can be interchanged.

Statement 4.2. The function

Σ(s, θ) := E
[
∂2
θ log λn,i(θ, s) · λn,i(θ0, s)− ∂2

θλn,i(θ, s)
∣∣∣Cn,i(s) = 1

]
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is Lipschitz continuous in θ for every fixed s, i.e., there is γΣ(s) such that for all s ∈ T
and θ1, θ2 ∈ Θ

|Σ(s, θ1)− Σ(s, θ2)| ≤ γΣ(s)‖θ1 − θ2‖.

Additionally, for γΣ(s) it holds

sup
t0∈T

1

h

∫ T

0
K

(
s− t0
h

)
pn(s)

p̄n(t0)
γΣ(s)ds = OP (1).

Statement 4.3. Fubini can be applied to

1

h
1
2 rn

∑
i,j∈Gn

∫ T

0

∫ T

0

∫ T−δ

δ

1

h
K

(
s− t0
h

)
K

(
t− t0
h

)

×∂θλn,i(θ0, s)
T

λn,i(θ0, s)
Σ(t0)−TΣ(t0)−1∂θλn,j(θ0, t)

λn,j(θ0, t)

w(t0)

p̄n(t0)
dt0dMn,i(s)dMn,j(t)

and
1

h
1
2 rn

∑
i,j∈Gn

∫ T

0

∫ T

0
fn,ij(s, t)1t≤sdMn,i(s)dMn,j(t).

Statement 4.4. For gn,i(s) = h−
1
2

∫ s−
0 fn,ii(s, t)dMn,i(t), where fn,ii is defined in (5.40),

we have
1

r2
n

∑
i∈Gn

E
(∫ T

0
gn,i(s)

2Cn,i(s)λn,i(θ0, s)ds

)
→ 0

as n→∞.

Statement 4.5. There is a sequence An such that for n→∞

1

h
1
2 rn

∑
i∈Gn

∫ T

0
fn,ii(s, s)dNn,i(s)− h−

1
2An

P→ 0.

Statement 4.6. It holds

4

hr2
n

∑
i∈Gn

∫ T

0

∑
j∈Gn
j 6=i

τn,ij(s)
2Cn,i(s)λn,i(θ0, s)ds

P→ B

and
4

hr2
n

∑
i∈Gn

∫ T

0

∑
j1,j2∈Gn
j1,j2 6=i
j1 6=j2

τn,ij1(s)τn,ij2(s)Cn,i(s)λn,i(θ0, s)ds
P→ 0,

where τn,ij is defined in (5.44). In the case of a Cox-type model (cf. (4.3)), we have

B := 4K(4)

∫ T

0
trace

((
P (t)Σ−T (θ0, t)Σ

−1(θ0, t)
)2)

w2(t)dt,
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where

K(4) :=

∫ 2

0

(∫ 1

−1
K(v)K(u+ v)dv

)2

du,

P r1,r2(t) := E
(
Xr1
n,j(t)X

r2
n,j(t)λn,j(t)

∣∣∣Cn,j(t) = 1
)
.

Statement 4.7. For any ε > 0

2

h
1
2 rn

∑
i∈Gn

∫ T

0
1


∣∣∣∣∣∣∣∣

2

h
1
2 rn

∑
j∈Gn
j 6=i

τn,ij(s)

∣∣∣∣∣∣∣∣ > ε

 ∑
j∈Gn
j 6=i

τn,ij(s)dMn,i(s)
P→ 0

Statement 4.8. There is a sequence Bn with Bn = OP (1), such that for all t0 ∈ T∥∥∥∥∥
[

1

rnp̄n(t0)
`′′n(θ0, t0)

]−1
∥∥∥∥∥ ≤ Bn.

Statement 4.9. There is a sequence Kn with Kn = OP (1) such that for all θ1, θ2 and
t ∈ T

1

rnp̄n(t0)

∥∥`′′n(θ1, t)− `′′n(θ2, t)
∥∥ ≤ Kn · ‖θ1 − θ2‖.

Statement 4.10. The functions H̃n,i(s, θ) (defined in the beginning of the proof of Pro-
position 5.13) are Hoelder continuous for every s in θ with exponent p and (random)
constant γn,i(s), i.e., for all θ1, θ2 ∈ Θ : |H̃n,i(s, θ1) − H̃n,i(s, θ2)| ≤ γn,i(s) · |θ1 − θ2|p.
Moreover, there exists k0 ∈ N such that for δn :=

√
log rnpn
rnpn·h

1

rn

∑
i∈Gn

∫ T

0
‖∂θ log λn,i(θ0, t)‖ · Cn,i(t)λn,i(θ0, t)dt = OP

(
nk0·min(αK ,αp/2)

√
hpn log n(

HK +K
√
Hn,ppn

)
rn

)

sup
θ∈Θ

1

rn

∑
i∈Gn

∫ T

0
‖H̃n,i(s, θ)‖ds = OP

(
pnhn

k0αKδn

)
sup

θ∈Θ,t0∈T

1

rn

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
‖H̃n,i(s, θ)‖ds = OP

(
nk0αpδn
Hn,phαp

)

sup
t0∈T

1

rn

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
γn,i(s)ds = OP

(
nk0ppnδn

)
Statement 4.11. Let k0 be as in Statement 4.10, then there is C > 0 such that

sup
t0∈Tn,k0

P

(∥∥∥∥∥ `′n(θ0, t0)

rn
√
p̄n(t0)

∥∥∥∥∥ ≥ C
√

log rn
rnh

)
= o

(
h−1n−k0

)
.
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Statement 4.12. Let k0 be as in Statement 4.10, then there is C > 0 such that

P

(
sup

(t0,θ)∈Tn,k0

∣∣∣∣∣ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
H̃n,i(s, θ)ds

∣∣∣∣∣ > C ·

√
log rnpn
rnpn · h

)
→ 0.

In Section 5.3 we prove propositions which exactly show under which of the following
assumptions ((C1)-(C8)) the above statements hold. The assumptions are crucially
based on the three dependence concepts introduced in Chapter 3. We begin by a set of
very basic assumptions.

(C1) Smooth Structure

1. λn,i(θ, t) = exp(θTXn,i(t)).

2. Assume that all covariates are continuous up to jumps and bounded, i.e., there is
K̂ > 0 such that ‖Xn,i(s)‖ ≤ K̂ for all i ∈ Gn and s ∈ [0, T ]. Let Λ > 0 be such
that exp

(
θTXn,i(s)

)
≤ Λ for all θ ∈ Θ, i ∈ Gn and s ∈ [0, T ].

3. We assume that the function t 7→ 1
pn(t) is Hoelder continuous with exponent αp and

constant Hn,p.

4. Assume that rnpn ≥ nψ for some ψ > 0. Moreover, the quantities Hn,p, pn and h
behave like a power of n.

Assumption (C1) imposes a lot of structure by assuming the Cox-type model in part
1. As we will see, we often consider derivatives of the log of the intensity function
which becomes then particularly easy. Other than this very practical mathematical
use, the Cox-type intensities have the easy interpretation as discussed after (4.3). The
boundedness assumption in part 2 seems very strong but a bounded intensity function
just means that the expected number of events in a shrinking interval converges to zero.
This is a very realistic assumption if we consider events which cost the caster of the event
some time, e.g., sending messages to another person. Even the most famous person will
physically not be able to send more than a fixed number of messages in a fixed time
interval, and so we may assume that the number of sent messages is proportional to the
considered time interval. The continuity assumption ensures that Riemann integrals exist
and measurability properties remain valid. This assumption seems not very restrictive.
Part 3 is a stronger version of (B6). But as we discussed after (B6), it is still a reasonable
assumption. Finally, part 4 ensures that the sparsity pn is not decaying too fast. If we
were to assume that pn = o(n−2), we would see that rnpn → 0 and hence we had
effectively no edges to observe events. Clearly, asymptotic estimation is impossible in
such a situation. So the assumption of polynomial decay in pn is reasonable. The
polynomial behaviour of h is standard in the kernel smoothing literature (cf. Tsybakov
(2009)). Keeping this in my mind, together with the discussion after Assumption (B6),
we see that Hn,p behaves like p−2

n h−(1+αK) justifying the polynomial behaviour of Hn,p.
In the next set of assumptions we refine the continuity statements from (A4).
(C2) Time-Continuity of Fisher-Information
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1. The function t 7→ E(Xn,j(t)Xn,j(t)
Tλn,j(t)|Cn,j(t) = 1) is uniformly continuous.

2. The functions t 7→ Σ(θ0, t), t 7→ Σ−1(t, θ0) and t 7→ w(t) are uniformly continuous.

Like in (A4) (but without using the density) we require smooth behaviour of the
distribution of the covariates over time. Because of Assumption (B1), 1 we have all
both functions above are independent of n and hence the uniform continuity is actually
a consequence of the continuity.

The next assumption is also a continuity assumption. We need two definitions, firstly,

ξn,j(t) := Xn,j(t)Xn,j(t)
TCn,j(t)λn,j(θ0, t).

Moreover, define p∗n(t) such that

1

p∗n(t)
:=

∫ 1

−1

1

p̄n(t− hv)
dv.

We want to motivate the next assumption before stating it. We assume that the random
function ξn,i(t) is continuous up to jumps. By the boundedness assumption in (C1),
2 we have that the height of the jumps is bounded by a constant ι > 0. We assume
furthermore that the continuous part of ξn,j is for each j uniformly continuous with
random modulus of continuity Cξ. Note that we do not indicate in the notation that Cξ
depends on n. This motivates the following assumptions.

(C3) Model Continuity
By Assumption (C1), 4, we may choose kX > 0 so large such that

1

p2
n

(
H
− 1
αp

n,p n−kX
)αK

,
1

pn
n−kXαp = o(1).

Assume additionally that kX > 0 is so large such that the following holds.

1. Denote by CE the modulus of continuity of

t 7→ E
(
Xn,j(t)

TXn,j(t)λn,j(t)
∣∣∣Cn,j(t) = 1

)
which exists by Assumption (C2), 1. Assume that 1

pn
CE
(
H
− 1
αp

n,p · n−kX
)

= o(1).

2. Assume that there is a random function Cξ : R→ R and a constant ι > 0 such that

|ξn,j(s)− ξn,j(t)| ≤ Cξ(|s− t|) + (Number of jumps of ξn,j on [s, t]) · ι

and
Cξ
(
n−kX

)
p2
n

= oP (1).

Assume additionally that the number of jumps is small when the interval is suffi-
ciently short, i.e.,

sup
s,t:|s−t|≤n−kX

1

rnpnpn(t+ v)

∑
j∈Gn

(Number of jumps of ξn,j on [s, t]) = oP (1).
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3. By the Assumptions (C2), 2 and (B6) the functions t 7→ Σ(t, θ0)−1, w and 1
p̄n(t)

are uniformly continuous. Assume additionally that pn is uniformly continuous
as well. Then, t 7→ 1

p∗n(t) and Ξ : (t, s) 7→
(
Σ−TΣ−1

)
(t, θ0)w(t)pn(s)

p̄n(t) are uniformly

continuous too. We denote the modulus of continuity of Ξ by C (note that both

depend on n) and assume that 1
pn
C
(

2H
− 1
αp

n,p n−kX
)
→ 0.

We have motivated that the estimation in part 2 is reasonable before the statement of
the assumption. The assumption on the moduli of continuity are also realistic because
Hn,p behaves like a power of n, cf. Assumption (C1), 4 and we may choose kX as large
as we want. It is furthermore realistic to assume that the number of jumps of ξn,j is
linked to jumps in the counting processes. These have bounded intensity functions and
therefore the expected number of jumps in an interval is proportional to the interval
length. Therefore it is to be expected that the average in part 2 converges to zero as
required.

The next set of assumptions concerns the dependence between the interactions and
covariates of different pairs of actors. We begin by formulating the mixing property. Let
therefore a > 0 and define ∆n := a log n. Consider for all t0 ∈ [0, T ] a ∆n-partition
Gt0(k,m,∆n) and define for c3 > 0

p̄n(t0) :=

∫ t0+h

t0−h

1

h
K

(
s− t0
h

)
pn(s)ds

p̄k,mn (t0) :=

∫ t0+h

t0−h

1

h
K

(
s− t0
h

)
E
[
Ik,mn,1 Cn,1(s)

]
ds

En,t0k,m := rn · p̄k,mn (t0)

En,t0k :=

√
np̄n(t0)

log np̄n(t0)
· c3

Sk := max
m=1,...,rn

∑
i∈Gn

Ik,mn,i

Γt0n := 1

(
S2
k · log rnp̄n(t0)

rnp̄n(t0)
≤ c2

3, Sk
√
h ≥ 1

)
.

Note that En,t0k,m is by definition the expected size of the m-th block of type k. En,t0m is
defined in the largest possible way that the second requirement in the second part in
Definition 3.28 holds true. The intuition behind En,t0k is that it is the expected size of
the largest block of type k. In this light Γt0n is the indicator function that the actual
partitioning behaves properly.

(C4) β-Mixing I
Let a > q(k0 + 1) + 2 and such that

n−a ·
((

h−1 + nkX
)
·H

1
αp
n,p + h−2p

− 1
αK

n

)
rn → 0.
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Assume that βt0(∆n) ≤ α ·exp(−∆n), where βt0 is the β-Mixing coefficient as introduced
in Definition 3.25 for the following choices of Zn,i (for all t0 ∈ [0, T ]) and α does not
depend on Zn,i

1

h

∫ T

0
K

(
s− t0
h

)
Hn,i(s, θ)Γ

t0
n ds,

1

h

∫ T

0
K

(
t− t0
h

)
Xn,i(t)dMn,i(t) · Γt0n ,

1

h

∫ T

0
K

(
s− t0
h

)
Γt0n Cn,i(s)ds.

Assume furthermore that there is c2 > 0 such that for all k ∈ {1, ...,K}

1

rn · p̄n(t0)

rn∑
m=1

En,t0k,m ≥ c2. (4.18)

Assume also that Γt0n is so likely such that

sup
t∈[0,T ]

E
(∣∣Γtn − 1

∣∣ ∣∣∣Cn,j(t) = 1
)
→ 0

and

sup
t0∈[0,T ]

P(Γt0n = 0)

= min

{
O

(
log rnpn
rn

)
, o

(
1

hnk0(q+1)

)
, o

(((
h−1 + nkX

)
·H

1
αp
n,p + h−2p

− 1
αK

n

)−1
)}

.

We motivated the idea behind the mixing assumptions in Section 3.3. The random
variables we apply it here to depend only on one edge and the function Γt0n . That means
that the mixing property is only required if the partitioning of the network is reasonable.
However, we assume too that the probability that the partitioning is reasonable is over-
whelmingly large. The inequality in (4.18) means that we assume that the percentage
of the edges which are on average contained in the blocks of type k is never negligible,
i.e., that no block type is obsolete, a plausible assumption. We also tacitly assume that
the number of block types K is the same for all time points and does not change with
n. This assumption might be disputable. It reflects the idea that the network geometry
is staying the same while the network size is increasing.

Before going to a substantially different set of assumptions, we unfortunately have to
assume that it is possible to define a partitioning of the network also with respect to
another normalisation. Define to this end:

p∗n(t) :=

(∫ 1

−1

1

p̄n(t+ uh)
du

)−1
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p∗,k,mn (t) := p∗n(t)E(Ik,mn,i ).

The quantities E∗,n,tk,m , E∗,n,tk , S∗k and Γ∗,tn are defined analogously to before but where

p̄n and p̄k,mn are replaced with p∗n and p∗,k,mn respectively. Using these quantities we
formulate analogue assumptions to (C4).

(C4*) β-Mixing II
Assume that Γ∗,tn is so likely such that

H
1
αp
n,pn

kX · sup
t∈[0,T ]

P(Γ∗,tn = 0)→ 0,

sup
t∈[0,T ]

E
(∣∣Γ∗,tn − 1

∣∣ ∣∣∣Cn,j(t) = 1
) pn(t)

p∗n(t)
→ 0.

Assume furthermore that there is c2 > 0 such that for all k ∈ {1, ...,K}

1

rn · p∗n(t0)

rn∑
m=1

E∗,n,t0k,m ≥ c2.

Let ∆n = a log n with a > 0 such that narn → 0. Finally, assume that βt0(∆n) ≤
α · exp(−∆n), where βt0 is the β-Mixing coefficient as introduced in Definition 3.25 for
Zi = ξn,i(t0 + vh)Γt0n . α does not depend on t ∈ [0, T ] and v ∈ [0, 2]).

The next assumption asserts momentary m-dependence as in Section 3.2.
(C5) Momentary-m-Dependence

The network is momentary-m-dependent in the sense of Definition 3.9.

The next set of assumptions is concerned with the existence and size of hubs. We
define therefore what we mean by a hub. Let m be the constant from the m-dependence
Assumption (C5) and let A ⊆ Gn and F > 0 be arbitrary. We define then for all
t ∈ [0, T ]

KA
m(t) := sup

k∈A

∑
i∈Gn

sup
u∈[0,2]

Cn,i(t+ uh)1(dnt−4h(i, k) ≤ m)

HA
UB ≥ sup

k∈A
sup
t∈[0,T ]

1(Kk
m(t) > F )

NUB =
∑
i∈Gn

H i
UB

An(t) :=
∑
i∈Gn

sup
u∈[0,2]

Cn,i(t+ uh).

Intuitively speaking, An(t) is the number of active edges at time t and for k0 ∈ Gn we
have that Kk0

m (t) is the number of active edges which are closer to k0 than m around time
t. Then KA

m(t) is the largest of these numbers for all edges in A. We then call an edge
k0 ∈ Gn a hub of size F at time t if Kk0

m (t) > F . Then, HA
UB is the number of edges in
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A which at any time point during the observation point become a hub of size F . Lastly,
NUB is the number of all edges that become a hub of size F at some point. We think
about this in the following way: Think of the example of a social media setting where
every edge represents the connection between two people. In the works Golder et al.
(2007); Huberman et al. (2008) it is argued that in social media most of the friendships
between users are actually inactive in the sense that they do not interchange messages.
This underpins the very much believable idea that every actor has only close contact
to a bounded number of people. Having close contact means in our formulae that their
distance is less than m. That means that most people interact with not more than, say
F people, regardless of the size of the network. Thus, if one edge exceeds the threshold
of F , we call it a hub. In the following assumptions we assume that the number of hubs
is small. Note that KGn

m (t) denotes the size of the largest hub at time t. We impose now
the following assumptions on these quantities which look clumsy on first sight but we
will discuss them afterwards.

(C6) Hub Behaviour
Assume that there is F > 0 such that HA

UB is measurable with respect to Fn0 for all
A ⊆ Gn. Moreover, for any ε > 0 there is F0 > 0 such that for all n ∈ N

P
(
∀t ∈ [0, T ] : KGn

m (t) > F0K
Gn
m (t− 4h)

)
< ε. (4.19)

Moreover, we assume that

sup
j1,j2∈Gn

sup
t∈[0,T ]

E

(
KGn
m (t− 4h)Hj1j2

UB

∣∣∣ sup
r∈[t−2h,t]

Cn,j2(r) · Cn,j1(t) = 1

)
= O(1) (4.20)

E

HGn
UB

(
sup
t∈[0,T ]

KGn
m (t)

)4
 = O(1) (4.21)

We assume also the following convergences:

sup
t∈[0,T ]

1

p∗n(t)
E
(∫ t

t−2h
d|Mn,j2 |(r) ·Kj2

m (t+ 2h)

)
= O(1) (4.22)

sup
t∈[0,T ]

1

rnp∗n(t)2
E
(∫ t

t−2h
d|Mn,j2 |(r) ·KGn

m (t+ 2h)(NUB + rnH
j2
UB)

)
= o(1) (4.23)

1

r2
n

∑
j1,j2∈Gn
j1 6=j2

E

(∫ T

0

∫ t−

t−2h

1

p∗n(t)
d|Mn,j2 |(r) ·

An(t)

rnp∗n(t)
Kj1
m (t)× sup

ξ∈[t,t+2h]

An(ξ)

rnpn(ξ)

× sup
j′1,j
′
2∈Gn

j′1 6=j′2

∫ t+2h

t

∫ ξ−

ξ−2h

1

pn(ξ)
d|Mn,j′2

|(ρ)d|Mn,j1 |(ξ)d|Mn,j1 |(t)

)
= o(1) (4.24)

1

r2
n

∑
j1,j2,j′1∈Gn

j1 6=j2

E

(∫ T

0

∫ t−

t−2h

1

rnp∗n(t)2
KGn
m (t)(NUB + rnH

j′1
UB)d|Mn,j2 |(r)
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× sup
ξ∈[t,t+2h]

An(ξ)

rnp∗n(ξ)
× sup
j′1,j
′
2∈Gn

j′1 6=j′2

∫ t+2h

t

∫ ξ−

ξ−2h

1

pn(ξ)
d|Mn,j′2

|(ρ)d|Mn,j1 |(ξ)d|Mn,j1 |(t)

)

= o(1) (4.25)

1

r2
n

∑
j2,j′2∈Gn
j2 6=j′2

∫ T

0
E

[∫ t−

t−2h

1

p∗n(t)
d|Mn,j2 |(r)

∫ t−

t−2h

1

p∗n(t)
d|Mn,j′2

|(r′)

×
(
An(t)

rnp∗n(t)

)2 (
Kj2
m (t+ 2h) +K

j′2
m (t+ 2h)

)]
dt = o(1) (4.26)

∫ T

0

pn(t)

rnp∗n(t)2
E

(∫ t−

t−2h
KGn
m (t− 4h)Hj

UBd|Mn,j |(r)λn,j(t)

∣∣∣∣∣Cn,j(t) = 1

)
dt = o(1)

(4.27)

1

r2
n

∑
i,j∈Gn

E

(∫ T

0

1

rnp∗n(t)2

(
F +KGn

m (t)H ij
UB

)
d|Mn,i|(t)

×
∫ T

0

1

rnp∗n(t)2

(
F +KGn

m (t)H ij
UB

)
d|Mn,j |(t)

)
= O(1) (4.28)

1

r2
n

∑
i,j∈Gn

E
(∫ T

0

An(t)

rnp∗n(t)2
d|Mn,i|(t) ·

∫ T

0

1

rnp∗n(t)2

(
F +KGn

m (t)H ij
UB

)
d|Mn,j |(t)

)
= o(1)

(4.29)

The main problem in posing these assumptions is that several terms appear together
in an expectation and we cannot handle them together. However, it is always clear that
the expectations of the terms separately behave as required. We observe to this end
firstly that An(t) is the number of active edges and behaves thus like rn · pn(t). If we

assume asymptotic uncorrelation as in Section 3.1 then also E
((

An(t)
rnpn(t)

)2
)

behaves like

a constant. If we additionally assume that p∗n(t) and pn(t) do not differ too much all
expressions in (C6) involving An(t) are bounded. Moreover, we always have

E
(∫ t

t−2h
dMn,j(r)

)
=

∫ t

t−2h
pn(r)E (λn,j(θ0, r)|Cn,j(r) = 1) dr.

Thus we see that
∫ t
t−2h dMn,j(r) can always compensate for one 1

pn(t) or 1
p∗n(t) .

More discussion is required for the terms which involve KA
m, HA

UB and NUB. As
motivated before the statement of (C6), we assume that everybody is interacting only
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with a bounded number of actors actively and thus Kj
m(t) is bounded by F for most

j ∈ Gn. There are only very very few edges j for which Kj
m(t) exceeds the threshold F .

Thus, we assume that the expectation of Kj
m(t) is bounded. We assume also that the

ability of an edge to exceed this threshold is determined before the observation period,
thus justifying the assumption that HA

UB is measurable with respect to Fn0 . So the
fact whether an edge can become a hub or not is pre-determined and does not change
during the observation period. However, the size of a hub KGn

m (t) may change during
the observation period. We just assume in (4.19) that this change is sufficiently slowly.
Note moreover that we allow the hub size KGn

m (t) to be very large, so it might even
be reasonable to assume that it’s constant. But we assume that existence of hubs is
so rare that the number of edges which are contained in a hub, i.e., KGn

m (t) ·NUB, can
be controlled by the effective number of active edges rnpn(t). This is reasonable if we
assume that there is only a bounded number of hubs (maybe even only one or two) whose
size is proportional to the number of active edges. Recall that a hub in our definition is
an edge that is strongly and significantly connected to many other edges (up to the order
of the number of all active edges). It is intuitive to assume that there are not so many
edges with this property. Lastly, rnH

j
UB is assumed to behave like NUB, in expectation

this is easy to see and we assume that it holds here in more complicated senses too.
When we sum in (C6) over j1, j2 ∈ Gn, we also want to use asymptotic uncorrelation

properties which we exemplify in the following assumption.
(C7) Asymptotic Uncorrelation

Let i0, j0 ∈ Gn be two edges with ν := |ei0 ∩ ej0 | ≤ 1 and assume that

sup
t0∈[0,T ]

∫∫
[0,t]2

1

h2
K

(
s− t0
h

)
K

(
r − t0
h

) ∣∣∣Cov
(
Cn,j0(r)Ik,mn,j0 , Cn,i0(s)Ik,mn,i0

)∣∣∣
p̄k,mn (t0)

dsdr

=

{
O
(

1
n2

)
, |ei0 ∩ ej0 | = 0

O
(

1
n

)
, |ei0 ∩ ej0 | = 1

(4.30)

Assume furthermore that

sup
t0∈[0,T ],θ∈Θ

n2−ν
∫∫

[0,T ]2

1

h2
K

(
s− t0
h

)
K

(
r − t0
h

) P(Cn,i0(s)Ik,mn,i0Cn,j0(r)Ik,mn,j0 = 1)

p̄k,mn (t0)

× E

([
λ̃n,i0(θ, s)Γt0n − E(λ̃n,i0(θ, s)Γt0n |Cn,i0(s)Ik,mn,i0 = 1)

]
×
[
λ̃n,i0(θ, s)Γt0n − E(λ̃n,j0(θ, r)Γt0n |Cn,j0(r)Ik,mn,j0 = 1)

] ∣∣∣Cn,i0(s)Ik,mn,i0Cn,j0(r)Ik,mn,j0 = 1

)
=O(1) (4.31)

sup
t0∈[0,T ]

n2−ν 1

h2

∫∫
[0,T ]2

K

(
s− t0
h

)
K

(
t− t0
h

)

×
Cov(Cn,i0(s)Ik,mn,i0 Γt0n , Cn,j0(t)Ik,mn,j0Γt0n )

p̄k,mn (t0)
dsdt = O(1) (4.32)
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∑
j1,j2∈Gn
j1 6=j2

∫ T

0

1

r2
np
∗
n(t)2

P

(
sup

r∈[t−2h,t]
Cn,j2(r) · Cn,j1(t) = 1

)
dt = O(1) (4.33)

1

rnp
∗,k,m
n (t)

∑
i,j∈Gn

Cov
(
ξn,i(t+ vh)Γ∗,tn I

k,m,t
n,i (∆n), ξn,j(t+ vh)Γ∗,tn I

k,m,t
n,j (∆n)

)
= O(1)

(4.34)

These assumptions in (C7) are really asymptotic uncorrelation assumptions as earlier
imposed and described in Section 3.1.

The last set of assumptions is concerned again with An(t) but this time without invol-
vement of the hubs. So the same heuristic as explained in connection with assumption
(C6) can be applied here. The only new statement will be (4.39) which uses

Nn := sup
j∈Gn,t∈[0,T ]

Nn,j([t− 2h, t)) + 2hΛ,

the largest number of interactions an edge can have in an interval of length h.
(C8) Edge Stability

We assume that for all j ∈ Gn:∫ T

0
E

(
An(t)

rnp∗n(t)
·
∫ t−

t−2h
d|Mn,j |(r)

∣∣∣∣∣Cn,j(t) = 1

)
dt = o(1) (4.35)

∫ T

0

pn(t)

rnp∗n(t)2
E

((
An(t)

rnp∗n(t)

)2
∣∣∣∣∣Cn,j(t) = 1

)
dt = O(1) (4.36)

1

r2
n

∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t

t−2h
E

[(
An(t)

rnp∗n(t)

)2

· Cn,j1(t)Cn,j2(r)

p∗n(t)2

]
drdt = o(1) (4.37)

∫ T

0

pn(t)

rnp∗n(t)2
E

(∫ t−

t−2h
d|Mn,j |(r)λn,j(t)

∣∣∣∣∣Cn,j(t) = 1

)
dt = o(1) (4.38)

E

sup
n∈N

Nn
rn

rn∑
j=1

∫ T

0

An(t− 2h)

rnp∗n(t)
· Cn,j(t)
p∗n(t)

d|Mn,j |(t)

4 < +∞ (4.39)

As already mentioned, for assumptions (4.35)-(4.38) we can apply the same heuristic
as before. For assumption (4.39), we note firstly that it is reasonable to think of Nn as
a random variable which has finite moments because most of the edges will not carry
many interactions in a short time interval. For the remaining part of (4.39), the same
intuition applies as before as this is just a variation on An.
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4.5 Application to Bike Data

We intend to illustrate the finite sample performance of our estimation procedure descri-
bed above, by considering the Capital Bikeshare (CB) Performance Data, publicly avai-
lable at http://www.capitalbikeshare.com/system-data. This data describes the usage of
the CB-system at Washington D.C. from Jan. 2012 to March 2016. Using this data, we
construct a network as follows. Each bike station v will become a node in our network,
and edges between two stations v, v′ will be active depending on whether a bike was
rented at station v and returned to station v′ (or vice versa) at the same day. So, in our
analysis, rentals over several days have been ignored. We ignore the direction of travel
as well because we aggregate over days and assume that directed effects cancel out (most
riders go one way in the morning and the other way in the evening).

It should be noted that, while we believe that this example serves as a serious and
interesting illustration of our proposed method, it is not meant to be a full-fledged ana-
lysis of bike sharing performance. In particular, for computational and coding simplicity,
we ignored that bike stations might be full or empty and thus prohibiting certain bike
rides. Also, the authors’ personal bike sharing experience is that entirely empty or full
bike stations are not encountered too often, and so the hope is that the bias induced by
ignoring this effect is negligible.
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Figure 4.1: Simple descriptive statistics of the bike data

Figure 4.1 shows some summary statistics of the data. In Figure 4.1a, we see the
number of available bike stations, which is strongly increasing. Figure 4.1b shows the
number of bike tours on Fridays. An obvious periodicity is visible: The cycling activity
is much lower in winter than during summer.
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4.5.1 Modelling Approach

We aim at modelling the bike sharing activities on Fridays, seen on the right panel of
Figure 4.1. We choose Fridays because we believe that there is a difference between
different days, so we wanted to concentrate on one day, Friday. We use the event
modelling approach as introduced in Section 4.1, where event here means that a bike
is rented at station v and returned at station v′, or vice versa. We will also refer to
this event as a tour between v and v′. In order to reduce computational complexity to a
minimum (fitting the model takes several minutes on a standard laptop), we assume that
the covariates change only at midnight and stay constant over the day. Furthermore, we
estimate the time-varying parameter function θ only for one time point per day, namely
12pm noon. The next paragraph contains more details.

Since we do not consider any asymptotics here, we omit the index n. Time t is
measured in hours of consecutive Fridays. So, if k is the current week, and r is the time
on Friday (in 24h), then t := (k− 1) · 24 + r. Thus, with rt := (t mod 24), the quantity
kt := t−rt

24 + 1 gives the week the time point t falls into. The processes Ni(t), counting
the number of tours on i = (v, v′) on Fridays, are modelled as counting processes with
intensities λi(θ0(t), t) := α(t) exp(θ0(t)TXi(kt)) ·Ci(kt). The covariate vector Xi(kt) and
the censoring indicator Ci(kt) will be defined later. Note that both of them depend
on kt only, i.e., on the current week, and not on the actual time on the Friday under
consideration. The function α is 24-periodic and integrates to one over a period, i.e.,
α(t) = α(t + 24) and

∫ t+24
t α(s)ds = 1. The function α is introduced to model the

reasonable assumption that the activity varies during the day. Suppose now, that our
target is the estimation of the parameter vector θ0(t0) with t0 = (kt0 − 1)24 + r0 and
r0 = 12, say. We choose a piecewise constant kernel K with K((24k+x)/h) = K(24k/h),
for all k ∈ N and 0 ≤ x < 24. Substituting in these choices of the intensity and the kernel
to the log-likelihood (4.1), we see that our maximum likelihood estimator maximizes the
function

θ 7→
kT∑
k=0

Kκ(k − kt0)θTXi(k)

∫ (k+1)·24

k·24
dNi(t)

−
kT∑
k=0

Kκ(k − kt0) exp(θTXi(k))Ci(k),

where
∫ (k+1)·24
k·24 dNi(t) gives the number of tours on i on the Friday in week k, and where

Kκ(k) = K(k/κ) with κ = h/24. In our empirical analysis, we chose Kκ(k) as triangle
weights with support {−κ, ..., κ} and considered only integer choices of the bandwidth
κ. We will choose κ = 12 as the result of a bandwidth selection procedure based on
one-sided cross-validation which is discussed in Section 4.5.4.

We explain now the choice of our covariate vector Xi. Denote by ∆i(k, d) the number
of tours on i on day d in week k, where d = 4 means Monday and d = 7 refers to
Thursday (for us the week starts on Fridays, i.e. Friday is d = 1). For r ∈ (0, 1), we
encode the activity on i in week k as Ai,k = (1− r)

∑7
d=4 r

7−d∆i(k, d) (mind the limits
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of the summation - Fridays are not included). In our simulations, we chose r = 0.8 (this
choice is somewhat arbitrary, and a full study of the data would include investigating the
sensitivity of the parameter estimate on the choice of r as well as a data driven choice.
We do not attempt to do this here). For further covariates, we construct a network G(k),
for every week k, by connecting v and v′ if and only if there was at least one tour on the
Friday in that week (note that these networks are auxiliary networks for constructing
the covariates and that they are different from Gn). For i = (v1, v2), we denote by Ii,k
the number of common neighbours of v1i and v2 in the graph G(k). We let dv,k be the
degree of node v in G(k), Ti,k the number of tours on i on the Friday in the k-th week,
and Ti,k,k−1 = (Ti,k +Ti,k−1)/2 the average number of tours on the two Fridays in weeks
k and k − 1. Finally we collect everything in the covariate vector: Let i = (v1, v2)

Xi(k) :=

(
1, Ai,k−1, Ii,k−1,max(dv1,k−1, dv2,k−1),

Ti,k−1,k−2,1(Ti,k−1,k−2 = 0)

)T
.

The censoring indicator function Ci is defined to be equal to zero, if there was no tour
on i in the last four weeks. In summary, we estimate a total of six parameter curves,
corresponding to the effects of six covariates in our model (the term neighbour refers to
adjacent vertices in the network G(k)):

• θ1(t) , baseline

• θ2(t) , activity between stations on previous week-days

• θ3(t) , common neighbours of stations

• θ4(t) , popularity of station, measured by degrees

• θ5(t) , activity between stations on two previous Fridays

• θ6(t) , inactivity between stations on two previous Fridays

4.5.2 Estimation Results

The resulting estimated parameter curves are shown in Figures 4.2 and 4.3. In all six
parameter curves in Figures 4.2 and 4.3, we observe a clearly visible seasonality. Looking
at Figure 4.2b, we see that importance of the activity in the week (Monday to Thursday)
is higher during the winter months than in the summer. A plausible interpretation for
this might be that the weather in winter is more persistent, e.g., when there is snow it is
likely to remain for a while. Hence, the behaviour of the opportunist cyclists is probably
more predictable in winter. Probably, only few people keep using a bike, regardless of
the weather. This makes the activity in the week a better predictor.
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Figure 4.2: Estimates of θ1(t), θ2(t) and θ3(t). The dotted lines indicate (point-wise)
99% confidence regions (plus minus 2.58 times the asymptotic standard de-
viation).
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Figure 4.3: Estimates of θ4(t), θ5(t) and θ6(t). The dotted lines indicate (point-wise)
99% confidence regions (plus minus 2.58 times the asymptotic standard de-
viation).
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Figure 4.2c shows that the number of common neighbours always has a significant
positive effect on the hazard. This reflects the empirical finding that observed networks
cluster more than totally random networks (e.g. Jackson (2008)).

The influence of the popularity of the involved bike stations is investigated in Figure
4.3a (measured by the degree of the bike station). Interestingly, it always has a significant
negative impact. The size of the impact is higher in the summer months, which again
supports the hypothesis that in summer the behaviour of the network as a whole appears
more random than in winter. But still, the negative impact is a bit unforeseen. This
finding can be interpreted as the observed network having no hubs. Another reason for
this effect might be, that stations can only host a fixed number of bikes: If a station
v is empty, no new neighbours can be formed. A similar saturation effect happens if
a lot of bikes arrive at station v. Moreover, it is plausible that effects caused by the
degrees are already included in 4.2b, as well as in Figure 4.3b. They show the effect of
the bike rides on the days immediately preceding the current Friday, and the effect of
the average number of bike tours on the last two Fridays, respectively. In Figure 4.3b,
we observe a similar behaviour as in Figure 4.2b (even more pronounced): In summer
the predictive power of the tours on the last two Fridays is significantly lower than in
winter, underpinning the theory that the destinations in summer tend to be based on
more spontaneous decisions. Finally, in Figure 4.3c, we observe that no bike tours on
the last two Fridays between a given pair of stations always has a significant negative
impact on the hazard. Again a very plausible finding.

Feeding the estimation results in the test statistic Tn and applying Theorem 4.3 yields
for the centred and standardized test statistic (i.e., the following value should be asymp-
totically standard normal distributed on the hypothesis that the parameter function is
a constant) a value of roughly 26. This is highly unlikely and therefore providing strong
evidence that a time varying parameter function is an appropriate choice. As an esti-
mate for the constant parameter we have chosen here the average over the estimated
time-varying parameter function.

4.5.3 Goodness of Fit Considerations

The computations in this section involve simulations which are computationally more
demanding than the model fitting. All calculations have been executed on the BwFor-
Cluster (cf. Acknowledgement). In stochastic network analysis, a central strand of rese-
arch is concerned with the question of whether characteristics observed in real networks
can be adequately mimicked by stochastic network models. Important characteristics
are degree distribution, clustering coefficient and diameter (these and other characteris-
tics can be found in Jackson (2010) Chapter 2.2). The degree distribution of a network
states how many vertices with a certain degree (i.e., the number of neighbours) are pre-
sent in the network for all degrees. The diameter of a network is the longest among
the shortest path between two vertices in the network. Typically, in observed networks
the diameter is much smaller than the number of vertices (cf. Jackson (2010)). The
clustering coefficient is the number of complete triangles (triples of vertices which are
completely connected) divided by the number of incomplete triangles (triples of vertices
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with at least two edges). Note that every complete triangle is also incomplete, hence the
clustering coefficient is between zero and one. The clustering coefficient can be under-
stood as the empirical probability that vertices are connected given that there is a third
vertex to which both are connected. It has been reported (cf. Jackson (2010)), that
in observed networks this number is usually significantly higher than in an Erdös-Rényi
network, where the presence of edges are i.i.d. random variables.

As in Zafarani et al. (2014), Chapter 4, we visually compare these three characteristics
with a typical network produced by our model to see if the model produces networks
similar to the real-world network. In order to see how much our fitted model is able to
capture these characteristics, we have simulated 38401 networks corresponding to three
randomly chosen days (7th December 2012, 18th April 2014 and 10th July 2015), by
using the network model with the fitted parameters of the corresponding day. We then
compared the simulated three characteristics on these three days to the ones observed in
the real-world networks (this way of assessing the goodness of fit is also used in Hunter
et al. (2008)). The heuristic justification underlying this approach is, that, if considered
jointly, these three characteristics are able to discriminate between a range of different
types of networks (see also Jackson (2010); Zafarani et al. (2014))

In our analysis, we consider sub-networks defined by the popularity of their edges: For
given values 0 ≤ l1 < l2 ≤ ∞, the network is constructed by placing an edge between
a pair of nodes i = (v1, v2), if the number of tours between v1 and v2 falls between l1
and l2. Different ranges of l1 and l2 are considered. The idea is to consider the network
of low frequented tours (for l1 = 1 and l2 = 3) up to the network of highly frequented
tours (for l1 = 10 and l2 =∞).

We begin with presenting the results for the degree distribution on 7th December
2012. Figure 4.4 shows the simulated degree distributions for six different choices of
l1 and l2. The dotted lines indicate 10% and 90% quantiles of the simulated graphs,
and the solid line shows the true degree distribution. We see that, in all six cases, the
approximation behaves reasonably accurate, in particular if one takes into account that
we did not specifically aim at reproducing the degree distributions. The plots show that
the largest degree of the simulated networks and the observed network lie not too far
from each other, and the overall shape of the degree distribution is captured well. It
should also be noted that we used only six covariates, whereas in other related empirical
work much higher dimensional models have been used, see e.g. the discussions in Perry
and Wolfe (2013).

We present next the results for diameter and clustering coefficient on 7th of December
2012. Figure 4.5 shows the histograms of the simulated diameter in the different regimes.
We see that, in 4.5e (as before in Figure 4.4e), the simulation and the reality appear to
coincide nicely. In other words, for a moderate number of tours our model seems to fit
well. It is interesting to note that our model performs differently in the different regimes
suggesting that edges with different activity have to be modelled differently. Finally, in
Figure 4.6, we see the histograms of the simulated clustering coefficients. The true value

1We chose to simulate 3840 networks, because we had 32 cores available, and on each of the cores we
ran 120 predictions, which could be done in reasonable time.
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Figure 4.4: Simulated degree distributions of sub-networks with different tour frequencies
(see individual caption) for 7th December 2012. Dotted lines show 10% and
90% quantiles of simulations and solid line shows true distributions.
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in the corresponding regime is shown in the titles of the plots. Overall, the performance
appears reasonable. In particular, in Figure 4.6d the histogram is nicely centred around
the true value. Interestingly, the performance in the fifth regime (l1 = 5 and l2 = 12),
shown in Figure 4.6e, is not as good as the others. One explanation for this might be
that different covariates are needed here.

In Figure 4.13a we see one simulated network compared to the true graph. The color
of the edges determine how many tours happened relative the the other edges: The
lowest 25% of the edges are coloured green, the next 25% yellow, then orange and the
highest 25% of edges are coloured red. Due to the integral value of the activity it is not
the case that exactly 25% of the edges are green and so on. The size of the vertices is
relative to their degree. We see that the model is able to find the important (i.e. high
degree) vertices. For the edges we see that some red edges are at wrong places. But
generally the vertices with high profile edges are recognized. The remaining graphs in
Figure 4.13 show the same comparison for the two other dates (18th April 2014 and 10th
July 2015) under consideration. And we see that the results are similar.

Figures 4.7 till 4.12 show the results of the corresponding simulations for the other two
dates (18th April 2014 and 10th July 2015). Overall the results are similar. It should be
pointed out that even though the model is not able to reproduce every feature perfectly
accurate, the simulated network features are still visually appearing close to the true
observation. This becomes more obvious if we remind ourselves that only six covariates
were used.

4.5.4 Bandwidth Choice

We give firstly a quick overview of our method for bandwidth selection before we back it
up with a more detailed, however heuristic explanation. Under our assumptions that the
covariates stay constant over the day, it makes sense to consider only integral bandwidths
(here one day has length one). In order to choose the bandwidth, we apply a one-sided
cross validation (OSCV) (cf. Hart and Yi (1998); Mammen et al. (2011)) approach: To
choose the bandwidth, we calculate a local linear estimate of the parameter function with
a one-sided kernel K+,κ(k) = Kκ(k)1(k < 0). For all values of κ, we use this estimate
to predict the number of bike tours on all edges. Note that we may really talk about
a prediction because by using a one-sided kernel, we only take past observations into
account to compute the estimate. Finally this estimate is compared with the observation
by computing the empirical mean squared error. This is done for all non-censored edges.
The results for different bandwidths are shown in Figure 4.14. The prediction error of
the model decreases, until we reach the bandwidth κ = 23. In OSCV one now makes use
of the fact that the ratio of asymptotically optimal bandwidths of two kernel estimators
with different kernels, K and L is equal to

ρ :=

[∫
K2(u)du

(∫
u2L(u)du

)2∫
L2(u)du

(∫
u2K(u)du

)2
]1/5

.

For a triangular kernel, and its one-sided version, we get ρ ≈ 1.82. The OSCV bandwidth
is given by dividing 23 by ρ which yields bandwidth roughly twelve (here we also consider
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Figure 4.5: Histograms of diameters of the graphs which arise by taking different edges
into account (see individual caption) from simulations for 7th December 2012.
In the title of the plot the observed value is shown.
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Figure 4.6: Histograms of clustering coefficients of the graphs which arise by taking dif-
ferent edges into account (see individual caption) from simulations for 7th
December 2012. In the title of the plot the observed value is shown.
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Figure 4.7: Degree distributions of the graphs which arise by taking different edges into
account (see individual caption) from simulations for 18th April 2014. Dotted
lines show 10% and 90% quantiles of simulations and solid line shows true
distributions.
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Figure 4.8: Histograms of diameters of the graphs which arise by taking different edges
into account (see individual caption) from simulations for 18th April 2014.
In the title of the plot the observed value is shown.
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Figure 4.9: Histograms of clustering coefficients of the graphs which arise by taking dif-
ferent edges into account (see individual caption) from simulations for 18th
April 2014. In the title of the plot the observed value is shown.

84



4 Model Formulation and Theoretic Results

0 5 10 15 20 25

0
10

20
30

40
50

Degree Distribution 1 3

Degrees

F
re

qu
en

cy

(a) Only edges with tour fre-
quency between one to three

0 5 10 15

0
20

40
60

80

Degree Distribution 2 4

Degrees

F
re

qu
en

cy

(b) Only edges with tour fre-
quency between two to four

0 2 4 6 8 10 12

0
20

40
60

80
10

0

Degree Distribution 3 5

Degrees

F
re

qu
en

cy

(c) Only edges with tour fre-
quency between three to five

0 2 4 6 8 10

0
50

10
0

15
0

Degree Distribution 4 6

Degrees

F
re

qu
en

cy

(d) Only edges with tour fre-
quency between four to six

0 2 4 6 8 10

0
20

40
60

80
10

0
12

0

Degree Distribution 5 12

Degrees

F
re

qu
en

cy

(e) Only edges with tour fre-
quency between five to twelve

0 2 4 6 8

0
50

10
0

15
0

Degree Distribution 10 10000

Degrees

F
re

qu
en

cy

(f) Only edges with tour fre-
quency more than ten

Figure 4.10: Degree distributions of the graphs, which arise by taking different tour
frequencies into account (see individual caption) from simulations for 10th
July 2015. Dotted lines show 10% and 90% quantiles of simulations and
solid line shows true distributions.
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Figure 4.11: Histograms of diameters of the graphs which arise by taking different edges
into account (see individual caption) from simulations for 10th July 2015.
In the title of the plot the observed value is shown.

86



4 Model Formulation and Theoretic Results

Clustering Coefficient=0.094813 in 1 3

Clustering Coefficients

F
re

qu
en

cy

0.14 0.16 0.18 0.20

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

(a) Only edges with tour fre-
quency between one to three

Clustering Coefficient=0.082759 in 2 4

Clustering Coefficients

F
re

qu
en

cy

0.10 0.15 0.20 0.25

0
20

0
40

0
60

0
80

0

(b) Only edges with tour fre-
quency between two to four

Clustering Coefficient=0.066946 in 3 5

Clustering Coefficients

F
re

qu
en

cy

0.10 0.15 0.20 0.25

0
20

0
40

0
60

0
80

0
10

00
12

00

(c) Only edges with tour fre-
quency between three to five

Clustering Coefficient=0.078534 in 4 6

Clustering Coefficients

F
re

qu
en

cy

0.05 0.10 0.15 0.20 0.25 0.30

0
20

0
40

0
60

0
80

0

(d) Only edges with tour fre-
quency between four to six

Clustering Coefficient=0.137990 in 5 12

Clustering Coefficients

F
re

qu
en

cy

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

(e) Only edges with tour fre-
quency between five to twelve

Clustering Coefficient=0.262887 in 10 10000

Clustering Coefficients

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
20

0
40

0
60

0
80

0
10

00

(f) Only edges with tour fre-
quency more than ten

Figure 4.12: Histograms of clustering coefficients of the graphs which arise by taking
different edges into account (see individual caption) from simulations for
10th July 2015. In the title of the plot the observed value is shown.
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Figure 4.13: Compares one simulated graph with the true observation.
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integral bandwidths only).
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Figure 4.14: Mean Squared Prediction Error for different bandwidths.

We describe the approach described in the first paragraph now in more detail. Let
K and L be two kernels fulfilling the assumptions in Section 4.4 and denote by θ̂K(t0)
and θ̂L(t0) the maximum likelihood estimators using K and L respectively. Then, by
Theorem 4.2, we get that asymptotically the bias and the variance of the estimators can
be written as

bias(θ̂K) = h2

∫ 1

−1
K(u)u2du · C1

var(θ̂L) =
1

lnh

∫ 1

−1
K(u)2du · C2

where the constants C1 and C2 depend on the true parameter curve θ0 and the time t0 but
not on the kernel. Hence, the corresponding expressions for θ̂L(t0) can be found, just by
replacing every K with an L. The decomposition of the asymptotic mean squared error
in squared bias plus variance yields the following asymptotically optimal bandwidths hK
and hL , minimizing the asymptotic mean squared error:

hK :=

(
1

ln
·

∫ 1
−1K(u)2du[∫ 1
−1K(u)u2du

]2 ·
C1

4C2

) 1
5

.

Again, the corresponding expression for hL can be found by replacing every K by L. So
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the following formula, known from kernel estimation, holds also true in our setting

hK =

( ∫ 1
−1K(u)2du[∫ 1
−1K(u)u2du

]2 ·

[∫ 1
−1 L(u)u2du

]2

∫ 1
−1 L(u)2du

) 1
5

hL = ρ · hL. (4.40)

This means that knowledge of the bandwidth which minimizes the mean squared error for
kernel L, implies knowledge of the bandwidth which minimizes the mean squared error
using kernel K. Ultimately, we want to use a triangular kernel K(u) = (1+u)1[−1,0)(u)+
(1 − u)1[0,1](u). In order to find the bandwidth hK for this kernel, we want to apply
cross-validation. As proposed in Hart and Yi (1998) one-sided cross validation is an
attractive method for the case of time series data. Here, one-sided means that we apply
cross validation to a kernel L which is only supported on the past [−1, 0]. In order to
avoid a bias, we use the one-sided kernel together with local linear approximation. The
following heuristic derivation motivates this choice.

Firstly, in our regular maximum likelihood setting, we maximize, over µ ∈ Θ, the
expression (we use a finite (and thus approximate) Taylor Series expansion)∑

0<t≤T

1

h
K

(
t− t0
h

) ∑
i∈Gn

∆Nn,i(t)µ
TXn,i(t)

−
∫ T

0

∑
i∈Gn

1

h
K

(
t− t0
h

)
Cn,i(t)e

µTXn,i(t)dt

≈
∑

0<t≤T

1

h
K

(
t− t0
h

) ∑
i∈Gn

∆Nn,i(t)µ
TXn,i(t)

−
∫ T

0

∑
i∈Gn

1

h
K

(
t− t0
h

)
Cn,i(t)e

θ0(t0)TXn,i(t)

×
(

1 + (µ− θ0(t0))TXn,i(t) +
1

2

[
(µ− θ0(t0))TXn,i(t)

]2)
dt.

Deriving this expression with respect to µ, setting the derivative equal to zero, and
rearranging terms, yields (to save space we use here a fraction, although the denominator
is a matrix)

θ̂K(t0)− θ0(t0)

≈
∑
i∈Gn

1
h
K
(
t−t0
h

)
∆Nn,i(t)Xn,i(t)−

∫ T
0

1
h
K
(
t−t0
h

)
Cn,i(t)Xn,ie

θ0(t0)
TXn,i(t)dt∑

i∈Gn
∫ T
0

1
h
K
(
t−t0
h

)
Xn,i(t)Xn,i(t)T e

θ0(t0)
TXn,i(t)dt

.

Using the notation y1 := E(Xn,i(t0)eθ0(t0)TXn,i(t0)|Cn,i(t0) = 1) · P(Cn,i(t0) = 1) and

y2 := E(Xn,i(t0)Xn,i(t0)T eθ0(t0)TXn,i(t0)|Cn,i(t0) = 1) · P(Cn,i(t0) = 1), we obtain the
approximation

θ̂K(t0)− θ0(t0) ≈
∑

i∈Gn
∑

0<t≤T
1
hK

(
t−t0
h

)
∆Nn,i(t)Xn,i(t)− y1

y2
. (4.41)
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Now define the local linear estimator θ̂LC,K(t0), with respect to a kernel K, as the value
of µ0 maximizing the following expression over (µ0, µ1) ∈ Θ2 :

∑
0<t≤T

1

h
K

(
t− t0
h

) ∑
i∈Gn

∆Nn,i(t)[µ0 + µ1(t− t0)]TXn,i(t)

−
∫ T

0

∑
i∈Gn

1

h
K

(
t− t0
h

)
e[µ0+µ1(t−t0)]TXn,i(t)dt.

Using the same approximations as in the usual kernel estimation setting, and deriving
the resulting approximate likelihood, we obtain

θ̂LC,K − θ0(t0)

≈

∑
i∈Gn

∑
0<t≤T

1
hK

(
t−t0
h

) M2− t−t0h M1

M2−M2
1

∆Nn,i(t)Xn,i(t)− y1

y2
,

where Mk :=
∫ 1
−1 u

kK(u)du. The previous computations were just a heuristic. But
nevertheless, the similarity between the previous display and (4.41) suggests that the
local linear estimator θ̂LC,K using the kernel K is actually just a regular kernel estimator

θ̂L with kernel function

L(u) = K(u)
M2 − uM1

M2 −M2
1

. (4.42)

This aligns with results about kernel estimation, as, for example, stated in Mammen
et al. (2011). It can be easily computed that this new kernel is of order one, i.e.,∫
uL(u)du = 0, even though the original kernel was not. Hence, knowledge of the

optimal bandwidth for the local linear estimator using the kernel K implies knowledge
of the optimal bandwidth for any other order one kernel by means of (4.40). Taking
the same route as in Hart and Yi (1998), the selector for the bandwidth ĥK for the
triangular kernel K is the following: Let K∗(u) := 2K(u)1[−1,0](u) denote the one sided
version of K.

1. Find a bandwidth ĥL for the local linear estimator θ̂LC,K∗ based on the kernel
K∗ via cross validation (since we use a one-sided kernel, this step is also called
one-sided cross-validation. We will make it more precise later).

2. Compute ĥ by using (4.40) with L defined as in (4.42) but with K replaced by K∗.

For the one-sided cross-validation in step 1, we minimize, in our bike share data
analysis, the following function in h

1

kT

kT∑
k=0

1

|L(k)|
∑
i∈L(k)

∣∣∣∣eθ̂(−k)LC,K∗ (k)TXi(k) − Zi(k)

∣∣∣∣2
e
θ̂
(−k)
LC,K∗ (k)TXi(k)

, (4.43)
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where kT was the number of weeks (recall that we assume the covariates to remain
constant over a day, and that we only consider Fridays), i.e., k refers to the k-th Friday
in the dataset. L(k) refers to the set of edges i on which there was a bike tour on Friday

k, Zi(k) is the true number of bike tours observed on i on Friday k. Finally, θ̂
(−k)
LC,K∗(k) is

the local linear estimator with respect to the kernel K∗ based on all but the k-th Friday.
Since K∗ is left-sided, this really means the estimator is based on Fridays 0, ..., k − 1,
and hence the term one-sided cross-validation. The intensities are the theoretical values
of the expectation of the number of bike tours if the model is correct. So we compute
the squared difference with the true number of bike rides and divide by the estimated
intensity, where we only take the non-censored edges into account.

In Figure 4.14, we had displayed results for different bandwidths h of (4.43). The
prediction error of the fit decreases, until the bandwidth is equal to 23. Afterwards
the prediction error stays roughly the same and starts to increase when the bandwidth
reaches a full year (52 weeks). This may be explained by a periodicity with a period of
approximately one year. If one uses 23 as minimal value we get as asymptotic optimal
bandwidth 23 divided by ρ which is approximately 12. Here, following Step 2 of the
above described procedure, we use that ρ is approximately equal to 1.82 for triangular
kernels.
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Recall the following notation from the previous chapters. ln = rnP(Cn,1(t0) = 1), where
rn = |Gn| is the number of possible edges. Here we always assume either a directed

or an undirected complete graph, i.e., rn = n(n − 1) (directed case) or rn = n(n−1)
2

(undirected case). The processes Nn,i are counting processes with intensity given by
Cn,i(t) · λn,i(θ0(t), t). We can decompose these counting processes as (cf. Chapter 2.2)

Nn,i(t) = Mn,i(t) +

∫ t

0
Cn,i(s) · λn,i(θ0(s), s)ds, (5.1)

where Mn,i is a local, square integrable martingale. We use this decomposition of the
counting processes in order to decompose the likelihood and its derivatives. Let Pn(θ)
be defined as

Pn(θ) :=
1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)
Cn,i(s) [log λn,i(θ, s) · λn,i(θ0(s), s)− λn,i(θ, s)] ds

(5.2)

=
1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)
Cn,i(s)

[
θTXn,i(s) exp(θ0(s)TXn,i(s))

− exp(θTXn,i(s))
]
ds. (5.3)

Note that we do not make the dependence of Pn(θ) on t0 explicit in the notation. Using
Pn(θ), we can write

1

ln
`(θ, t0) =

1

lnh

∑
i∈Gn

∫ T

0
K

(
t− t0
h

)
θTXn,i(t)dMn,i(t) + Pn(θ), (5.4)

1

ln
· ∂
∂θ
`(θ, t0) =

1

lnh

∑
i∈Gn

∫ T

0
K

(
t− t0
h

)
Xn,i(t)dMn,i(t) + P ′n(θ), (5.5)

1

ln
· ∂

2

∂θ2
`(θ, t0) = P ′′n (θ). (5.6)

5.1 Proof of Theorem 4.2

Recall that θ0,n is defined as the maximizer of θ 7→
∫ T

0
1
hK

(
s−t0
h

)
g(θ, s)ds, where g is

defined in (A7). Note that the function g does not depend on n, see Assumption (A1).
Lemma 5.3 shows that θ0,n is uniquely defined. The value θ0,n is the deterministic coun-

terpart of the random quantity θ̃n(t0) that is defined as the solution of P ′n(θ̃n(t0)) = 0.
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The existence of the latter is considered in Proposition 5.8.

Lemma 5.1. We have

θT y exp(θ0(s)T y)− exp(θT y)

≤ θ0(s)T y exp(θ0(s)T y)− exp(θ0(s)T y).

Equality holds, if and only if, θ0(s)T y = θT y. In particular, θ0(s) is the unique maximizer
of θ 7→ g(θ, s).

Proof. Note that, for arbitrary y ∈ R,

d

dx
(xey − ex) = ey − ex

implies that the differentiable function x 7→ xey − ex has the unique maximizer x = y.
This also implies the second statement of the lemma.

In all lemmas and propositions of this section, we assume that Assumptions (A1)–(A7)
hold.

Fact 5.2. For j ∈ {0, 1, 2}, k ∈ {0, 1, 2, 3}, with j + k ≤ 3, the partial derivatives of
order j of the function g(θ, s) with respect to s, and of order k with respect to θ, exist,
for t in a neighbourhood of t0, and θ ∈ Θ. The partial derivatives can be calculated by
interchanging the order of integration and differentiation in (4.15). For θ ∈ Θ and s
in a neighbourhood of t0, all these partial derivatives of g(θ, s) are absolutely bounded.
For the calculation of the first two derivatives of g with respect to θ, differentiation and
application of the expectation operator can be interchanged in (4.14). The matrix Σ is
invertible.

Proof. The statement of this fact follows immediately from (4.4) of Condition (A4). Note
that the functions θ0, θ′0 and θ′′0 are absolutely bounded in a neighbourhood of t0. This
holds because these functions are continuous in a neighbourhood of t0, see (A3).

Lemma 5.3. For n large enough, θ0,n is uniquely defined, and it holds that θ0,n → θ0(t0)
as n→∞.

Proof of Lemma 5.3. From Fact 5.2, we know that ∂tg(θ, t) is absolutely bounded for t
in a neighbourhood of t0 and θ ∈ Θ. This implies that

θ 7→
∫ T

0

1

h
K

(
s− t0
h

)
g(θ, s)ds

converges to g(θ, t0), uniformly for θ ∈ Θ. Because ∂θ2g(θ, t) is negative definite, this
implies the statement of the lemma.
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Lemma 5.4. With Σn = −
∫ 1
−1K(u)

∫ 1
0 ∂θ2g(θ0(t0) +α(θ0,n− θ0(t0)), t0 + uh)dαdu, we

have
Σn → Σ as n→∞.

Moreover, the sequence

vn = 2

∫ 1

−1
K(u)

∫ 1

0
(1− α)

d2

dt2
∂θg(θ0(t0), t0 + (1− α)uh)u2dαdu

is bounded, and it holds that vn → v, as n→∞.

Proof. Using Lemmas 5.3 and Fact 5.2, we conclude that the integrand

∂θ2g(θ0(t0) + α(θ0,n − θ0(t0)), t0 + uh)→ ∂θ2g(θ0(t0), t0)

(note that u ∈ [−1, 1] and α ∈ [0, 1]). The first statement of the lemma follows by an
application of Lebesgue’s Dominated Convergence Theorem, and the fact that ∂θ2g is
bounded as a continuous function on a compact set. The second statement of the lemma
follows similarly.

Proposition 5.5. We have, for t0 ∈ (0, T ),

θ0,n = θ0(t0) + h2Σ−1v + o(h2).

Proof of Proposition 5.5. Since θ0(s) maximizes θ 7→ g(θ, s) (cf. Lemma 5.1), we have
∂θg(θ0(s), s) = 0. Furthermore, by definition of θ0,n, we have∫ T

0
K

(
s− t0
h

)
∂θg(θ0,n, s)ds = 0.

Having observed that, we compute, for h small enough,

0 =
1

h

∫ T

0
K

(
s− t0
h

)
∂θg(θ0,n, s)ds

=

∫ 1

−1
K(u)∂θg(θ0,n, t0 + uh)du

=

∫ 1

−1
K(u)

[
∂θg(θ0(t0), t0 + uh)

+

∫ 1

0
∂θ2g(θ0(t0) + α(θ0,n − θ0(t0)), t0 + uh)dα(θ0,n − θ0(t0))

]
du

=

∫ 1

−1
K(u)∂θg(θ0(t0), t0 + uh)du+ Σn(θ0,n − θ0(t0)). (5.7)

Σn converges to the invertible matrix Σ by Lemma 5.4. The first integral is of order h2.
This follows by a Taylor expansion in the time parameter:∫ 1

−1
K(u)∂θg(θ0(t0), t0 + uh)du
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=

∫ 1

−1
K(u)

[
∂θg(θ0(t0), t0) +

d

dt
gθ(θ0(t0), t0)uh+∫ 1

0
(1− α)

d2

dt2
∂θg(θ0(t0), t0 + (1− α)uh)dαu2h2

]
du

=
1

2
h2vn.

By Lemma 5.4, vn is bounded. Thus, together with (5.7), we have established

θ0,n = θ0(t0)− (Σ−1
n − Σ−1 + Σ−1)1

2h
2vn = θ0(t0)− 1

2h
2Σ−1vn − 1

2h
2(Σ−1

n − Σ−1)vn.

The statement of the proposition now follows from vn → v.

Lemma 5.6. We have
P ′n(θ0,n)

P→ 0. (5.8)

For any k, l ∈ {1, ..., q}, it holds that

P ′′n (θ0,n)
P→ −Σ. (5.9)

Moreover,

sup
k,l,r,θ

∣∣∣∣ ∂2

∂θk∂θl
P
′(r)
n (θ)

∣∣∣∣ = OP (1), (5.10)

where P
′(r)
n denotes the r-th component of P ′n, the supremum runs over k, l, r ∈ {1, ..., q},

and θ ∈ Θ.

Proof. We start by showing that P ′n(θ0,n) = oP (1). This holds, if E(‖P ′n(θ0,n)‖) = o(1).
Define ρn,i(θ, s) := ‖Xn,i(s)‖ ·

∣∣exp(θ0(s)TXn,i(s))− exp(θTXn,i(s))
∣∣. By positivity of

ρn,i(θ, s), we may apply Fubini’s Theorem, and thus we compute

E(‖P ′n(θ0,n)‖)

≤ 1

ln

∑
i∈Gn

∫ 1

−1
K(u)E (Cn,i(t0 + uh)ρn,i(θ0,n, t0 + uh)) du

=
1

ln

∑
i∈Gn

∫ 1

−1
K(u)P(Cn,i(t0 + uh) = 1)

× E (ρn,i(θ0,n, t0 + uh)|Cn,i(t0 + uh) = 1) du.

The expectation in the integral expression can be bounded by applying a Taylor expan-
sion:

E (ρn,i(θ0,n, su)|Cn,i(su) = 1)

≤ E

(∫ 1

0
exp

(
[θ0(su)− α · (θ0(su)− θ0,n)]T Xn,i(su)

)
dα
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× ‖Xn,i(su)‖2
∣∣∣∣∣Cn,i(su) = 1

)
· ‖θ0(su)− θ0,n‖,

where su = t0 +uh. Now, by (4.7) in Assumption (A4), the expectation in the last upper
bound is bounded by a constant C, uniformly in u ∈ [−1, 1]. Using supu∈[−1,1] ‖θ0(t0 +
uh)− θn,0‖ = o(1), we obtain

E(‖P ′n(θ0,n)‖)

≤ 1

ln

∑
i∈Gn

∫ 1

−1
K(u)P(Cn,i(t0 + uh) = 1)du · C · sup

v∈[−1,1]
‖θ0(t0 + vh)− θ0,n‖

= C · P(Cn,i(t0) = 1)−1 ·
∫ 1

0
K(u)P(Cn,i(t0 + uh) = 1)du · o(1)

= o(1),

where the last equality is a consequence of (4.8). This shows (5.8).
We now show (5.9). With ∂θ2g(θ0,n, s) = −E(τn,i(θ0,n, s)|Cn,i(s) = 1), Fact 5.2 gives

E(P ′′n (θ0,n)) = − 1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)
P(Cn,i(s) = 1)E(τn,i(θ0,n, s)|Cn,i(s) = 1)ds.

For (5.9), it suffices to show:

P ′′n (θ0,n)− E(P ′′n (θ0,n)) = oP (1), (5.11)

E(P ′′n (θ0,n)) + Σ = o(1). (5.12)

For the proof of (5.12), we note that with an(u) =
P(Cn,1(t0+uh)=1)

P(Cn,1(t0)=1) ,

E(P ′′n (θ0,n)) + Σ

=

∫ 1

−1
K(u) [an(u)∂θ2g(θ0,n, t0 + uh)− ∂θ2g(θ0(t0), t0)] du

=

∫ 1

1
K(u)an(u) [∂θ2g(θ0,n, t0 + uh)− ∂θ2(θ0(t0), t0)] du

+∂θ2g(θ0(t0), t0)

∫ 1

−1
K(u)(an(u)− 1)du

= o(1).

Here we use (4.8), and θ0,n − θ0(t0) = o(1) (see Proposition 5.5).
For the proof of (5.11), we write Kh,t0(s) := K

(
s−t0
h

)
and

P ′′n (θ0,n)− E(P ′′n (θ0,n))

= 1
lnh

∑
i∈Gn

∫ T

0
Kh,t0(s) [−Cn,i(s)τn,i(θ0,n, s) + P(Cn,i(s) = 1)∂θ2g(θ0,n, s)] ds.
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We will apply Markov’s inequality to show that this term converges to zero. When
squaring the above sum, we can split the resulting double sum over i, j ∈ Gn into three
parts, depending on whether |ei∩ej | = 0, 1 or 2. Thus we have to show that the following
three sequences converge to zero:

E

(
1

l2nh
2

∑
i∈Gn

κ̄n,i(θ0,n)2

)
= o(1), (5.13)

E

(
1

l2nh
2

∑
i,j∈Gn

sharing one vertex

κ̄n,i(θ0,n)κ̄n,j(θ0,n)

)
= o(1), (5.14)

E

(
1

l2nh
2

∑
i,j∈Gn

sharing no vertex

κ̄n,i(θ0,n)κ̄n,j(θ0,n)

)
= o(1), (5.15)

where κn,i(θ0,n, s) := −Cn,i(s)τn,i(θ0,n, s) + P(Cn,i(s) = 1)∂θ2g(θ0,n, s), and κ̄n,i(θ0,n) :=∫ T
0 K

(
s−t0
h

)
κn,i(θ0,n, s)ds. Now note that

E
(
κ̄n,i(θ0,n)κ̄n,j(θ0,n)

)
=

∫ 1

−1

∫ 1

−1
K(u)K(v)E

(
κn,i(θ0,n, t0 + uh)κn,j(θ0,n, t0 + vh)

)
dudv,

and that the sum in (5.13) has rn = O(n2) terms, (5.14) comprises O(r
3
2
n ) = O(n3) terms,

and finally (5.15) has O(r2
n) = O(n4) terms (these orders are true for both: directed and

undirected networks). Thus, it is sufficient to show that∫ 1

−1

∫ 1

−1
K(u)K(v)

E
(
κn,i(θ0,n, t0 + uh)κn,j(θ0,n, t0 + vh)

)
P(Cn,1(t0) = 1)2

dudv

=


o(n2) for |ei ∩ ej | = 2
o(n) for |ei ∩ ej | = 1
o(1) for |ei ∩ ej | = 0.

(5.16)

For the proof of (5.16), we note that

E
(
κn,i(θ0,n, t0 + uh)κn,j(θ0,n, t0 + vh)

)
= Tn,1(u, v)− Tn,2(u, v),

where

Tn,1(u, v) = P(Cn,i(t0 + uh) = 1, Cn,j(t0 + vh) = 1)

×fn,1(θ0,n, t0 + uh, t0 + vh|i, j),
Tn,2(u, v) = P(Cn,i(t0 + uh) = 1)P(Cn,j(t0 + vh) = 1)

×f2(θ0,n, t0 + uh)f2(θ0,n, t0 + vh).
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We get

P(Cn,1(t0) = 1)−2

∫ 1

−1

∫ 1

−1
K(u)K(v)Tn,2(u, v)dudv

=

[∫ 1

−1
K(u)an(u)f2(θ0,n, t0 + uh)du

]2

→ f2(θ0(t0), t0)2, (5.17)

where, again, (4.8) and continuity of f2(θ, t) = −∂θ2g(θ, t) has been used. Furthermore,
we have that

P(Cn,1(t0) = 1)−2

∫ 1

−1

∫ 1

−1
K(u)K(v)Tn,1(u, v)dudv

=

∫ 1

−1

∫ 1

−1
K(u)K(v)

P(Cn,i(t0 + uh) = 1, Cn,j(t0 + vh) = 1)

P(Cn,1(t0) = 1)2

× (fn,1(θ0,n, t0 + uh, t0 + vh|i, j)− f1(θ0(t0), |ei ∩ ej |)) dudv

+

∫ 1

−1

∫ 1

−1
K(u)K(v)

P(Cn,i(t0 + uh) = 1, Cn,j(t0 + vh) = 1)

P(Cn,1(t0) = 1)2

× f1(θ0(t0), |ei ∩ ej |)dudv
= o(n2) for |ei ∩ ej | = 2
= o(n) for |ei ∩ ej | = 1
→ f1(θ0(t0), 0) = f2(θ0(t0), t0)2 for |ei ∩ ej | = 0

(5.18)

by Assumptions (4.9) and (4.16). From (5.17) and (5.18), we obtain (5.16). This
shows(5.9).

For the proof of (5.10), we calculate a bound for the expectation of the absolute value
of the third derivative of Pn. With s = t0 + uh, it holds

E

(
sup
k,l,r,θ

∣∣∣∣ ∂2

∂θk∂θl
P
′(r)
n (θ)

∣∣∣∣
)

≤ 1

P(Cn,1(t0) = 1)

∫ 1

−1
K(u)P(Cn,1(s) = 1)

×E
(
‖Xn,1(s)‖3eτ Xn,1(s)‖

∣∣∣Cn,1(s) = 1
)

du,

where (4.4) has been used to get that the order of differentiation and integration can
be interchanged and where Fubini could be used because all involved terms are non-
negative. The upper bound for the expectation in the integral expression is bounded by
Assumptions (4.4) and (4.8). This shows (5.10).

Lemma 5.7. It holds that

1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)
Cn,i(t0)
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×
[
Cn,i(s)Xn,i(s)

(
eθ0(s)TXn,i(s) − eθ

T
0,nXn,i(s)

)
− ∂θg(θ0,n, s)

]
ds

= oP

(
1√
lnh

)
. (5.19)

With Bn from Theorem 4.2, we have

1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)
(1− Cn,i(t0)

×Cn,i(s)Xn,i(s)
(
eθ0(s)TXn,i(s) − eθ

T
0,nXn,i(s)

)
ds)

= h2 ·Bn + oP (h2). (5.20)

Proof. In this proof, we use the shorthand notation Kh,t0(s) = 1
hK
(
z−t0
h

)
. We begin

with proving (5.20). Denote for vectors a, b ∈ Rq by [a, b] the connecting line between
a and b. Note firstly that by a Taylor series application for a random (depending on
Xn,i(s)) intermediate value θ∗(s) ∈ [θ0(s), θ0,n]

eθ0(s)TXn,i(s) − eθ
T
0,nXn,i(s)

= Xn,i(s)
T eθ

∗(s)TXn,i(s) · (θ0(s)− θ0,n). (5.21)

Hence, we obtain

1

ln

∑
i∈Gn

∫ T

0
Kh,t0(s)(1− Cn,i(t0))Cn,i(s)

×Xn,i(s)
(
eθ0(s)TXn,i(s) − eθ

T
0,nXni(s)

)
ds

=
1

ln

∑
i∈Gn

∫ T

0
Kh,t0(s)(1− Cn,i(t0))Cn,i(s)Xn,i(s)Xn,i(s)

T

× eθ
∗(s)TXn,i(s) · (θ0(s)− θ0(t0) + θ0(t0)− θ0,n)ds (5.22)

We decompose (5.22) into two terms by splitting θ0(s)− θ0(t0) + θ0(t0)− θ0,n = (θ0(s)−
θ0(t0)) + (θ0(t0) − θ0,n). For the second part we obtain, by using that the parameter
space is bounded by τ and convex (A3), use also Fubini in the second line and rewrite
as a conditional expectation in the last line

E

(∥∥∥∥∥ 1

ln

∑
i∈Gn

∫ T

0
Kh,t0(s)(1− Cn,i(t0))Cn,i(s)Xn,i(s)Xn,i(s)

T

× eθ
∗(s)TXn,i(s) · (θ0(t0)− θ0,n)ds

∥∥∥∥∥
)

≤
∫ T

0
Kh,t0(s)E

(
(1−Cn,1(t0))Cn,1(s)

P(Cn,1(t0)=1) ‖Xn,1(s)‖2 eτ‖Xn,1(s)‖
)
ds (5.23)
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× ‖θ0(t0)− θ0,n‖

=

∫ T

0
Kh,t0(s)

P(Cn,1(t0)=0, Cn,1(s)=1)
P(Cn,1(t0)=1)

× E
(
‖Xn,1(s)‖2eτ‖Xn,1(s)‖

∣∣∣Cn,1(s) = 1, Cn,1(t0) = 0
)
ds (5.24)

× ‖θ0(t0)− θ0,n‖,
= O(h3) (5.25)

where the last equality holds, because by assumption (4.10) the first factor is O(h), the
second factor is uniformly bounded by (4.6) and ‖θ0,n− θ0(t0)‖ = O(h2) by Proposition
5.5. We now discuss the second term of the split of (5.22). Recall therefore the definitions
of γn,i(s) and τn,i(θ, s) from Theorem 4.2 and (4.13), respectively. Applying the above
and using that θ0(s) − θ0(t0) = θ′0(t∗)(s − t0) for an appropriate point t∗ ∈ [t0, s], we
obtain

(5.22) = h2
(

1
ln

∑
i∈Gn

∫ T

0
Kh,t0(s)

γn,i(s)
h Xn,i(s)Xn,i(s)

T

× eθ
∗(s)TXn,i(s) θ

′
0(t∗)(t0−s)

h ds
)

+ oP (h2)

= h2
(

1
ln

∑
i∈Gn

∫ T

0
Kh,t0(s)

γn,i(s)
h τn,i(θ0(s), s)

θ′0(t0)(t0−s)
h ds

+ 1
ln

∑
i∈Gn

∫ T

0
Kh,t0(s)

γn,i(s)
h τn,i(θ0(s), s)

(θ′0(t∗)−θ′0(t0))(t0−s)
h ds (5.26)

+ 1
ln

∑
i∈Gn

∫ T

0
Kh,t0(s)

γn,i(s)
h Xn,i(s)Xn,i(s)

T

×
(
eθ
∗(s)TXn,i(s) − eθ0(s)TXn,i(s)

)
θ′0(t∗)(t0−s)

h ds
)

(5.27)

+ oP (h2).

Hence, we need to prove that (5.26) and (5.27) are oP (1) (these lines individually wit-
hout the leading h2 from the first line) and we are done with the proof. K is supported
on [−1, 1] and hence s ∈ Uh := [t0 − h, t0 + h]. Moreover, continuity of θ′0 yields

sups∈Uh
(θ0(t∗)−θ′0(t0)(t0−s)

h → 0. Hence, we can show (5.26) = oP (1) by similar argu-
ments which lead to (5.25). For (5.27) we apply apply Taylor again to get for another
intermediate point θ∗∗(s) ∈ [θ0(s), θ∗(s)]

eθ
∗(s)TXn,i(s) − eθ0(s)TXn,i(s) = Xn,i(s)

T eθ
∗∗(s)TXn,i(s)(θ∗(s)− θ0(s)).

Now arguments are again similar to the ones leading to (5.25), we just have to use the
power three part in (4.6) and the fact that sups∈Uh ‖θ

∗(s)−θ0(s)‖ ≤ sups∈Uh ‖θ0(s)−θ0,n‖
which converges to zero by continuity of θ and Proposition 5.5. This concludes the proof
of (5.20).
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To prove (5.19), we have to show that

1√
lnh

∑
i,j

∫ T

0
K

(
s− t0
h

)
Cn,i(t0)rn,i(s)ds = oP (1),

where rn,i(s) was defined in Assumption (A7). By an application of Markov’s inequality,
this holds if

h

ln

∑
i,j∈Gn

∫ 1

−1

∫ 1

−1
K(u)K(v)P(Cn,i(t0) = 1, Cn,j(t0) = 1)

× E(rn,i(t0 + uh)rn,j(t0 + vh)|Cn,i(t0) = 1, Cn,j(t0) = 1)dudv = o(1).

We show this similarly as in the proof of Lemma 5.6 by splitting the sum in three
sums corresponding to |ei ∩ ej | = 2, 1, or 0. The corresponding sums have O(n2), O(n3)
and O(n4) terms, respectively. Before going through these three cases, we note that
equations (5.21) and (4.5) imply that supu,v∈[−1,1] E(rn,i(t0 + uh)rn,j(t0 + vh)|Cn,i(t0) =

1, Cn,j(t0) = 1) = O(h2). This rate holds for all i and j. Now we get for the sum over
edges i, j with |ei ∩ ej | = 2 the bound

h
P(Cn,1(t0) = 1)

P(Cn,1(t0) = 1)

∫ 1

−1

∫ 1

−1
K(u)K(v)O(h2)dudv = o(1).

For the sum over edges with |ei ∩ ej | = 1, we get the following bound from (4.11)

nhP(Cn,i(t0) = 1)
P(Cn,i(t0) = 1, Cn,j(t0) = 1)

P(Cn,i(t0) = 1)2
O(h2) = O(1) · ln

n
O(h3).

Observing that lnh3

n = l
3/5
n (h5)3/5l

2/5
n

n = O( l
2/5
n
n ) = O(n−1/5P(Cn,1(t0) = 1)2/5) = o(1), the

bound is of order o(1).
By using (4.11) and (4.17), we get the following bound for the sum over edges with
|ei ∩ ej | = 0:

lnh
P(Cn,i(t0) = 1, Cn,j(t0) = 1)

P(Cn,i(t0) = 1)2∫∫
[−1,1]2

K(u)K(v)E(rn,i(t0 + uh)rn,j(t0 + vh)|Cn,i(t0) = 1, Cn,j(t0) = 1)dudv

= o(1).

This concludes the proof of (5.19).

Proposition 5.8. With probability tending to one, the equation P ′n(θ) = 0 (cf. equation
(5.3)) has a solution θ̃n(t0), which has the property

θ̃n(t0) = θ0,n + h2 ·Bn + oP

(
1√
lnh

)
+ oP (h2).
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To prove this proposition, we will make use of the following theorem, see Deimling
(1985):

Theorem 5.9. (Newton-Kantorovich Theorem) Let R(x) = 0 be a system of equations
where R : D0 ⊆ Rq → R is a function defined on D0. Let R be differentiable and denote
by R′ its first derivative. Assume that there is an x0 such that all expressions in the
following statements exist and such that the following statements are true

1. ||R′(x0)−1|| ≤ B,

2. ||R′(x0)−1R(x0)|| ≤ η,

3. ||R′(x)−R′(y)|| ≤ K||x− y|| for all x, y ∈ D0,

4. r := BKη ≤ 1
2 and Ω∗ := {x : ||x− x0|| < 2η} ⊆ D0.

Then there is x∗ ∈ Ω∗ with R(x∗) = 0 and

||x∗ − x0|| ≤ 2η and ||x∗ − (x0 −R′(x0)−1R(x0))|| ≤ 2rη.

Proof of Proposition 5.8. We show that P ′n(θ) has a root by using Theorem 5.9. Lemma

5.6 gives that P ′n(θ0,n)
P→ 0 and P ′′n (θ0,n)

P→ −Σ. Since Σ is invertible we also have that
the sequence of random variables Bn := ||P ′′n (θ0,n)−1|| is well-defined (for large n) and
that it is of order OP (1). Thus we also have ηn := ||P ′′n (θ0,n)−1P ′n(θ0,n)|| = oP (1). For the
Lipschitz continuity of P ′′n we bound the partial derivatives of P ′′n by Lemma 5.6. Hence
we conclude that every realization of P ′′n is Lipschitz continuous with (random) Lipschitz
constant Kn = OP (1). Combining everything, we get that rn := BnKnηn = oP (1). Thus
with probability tending to one we have rn ≤ 1

2 , and hence the Newton-Kantorovich
Theorem tells us that with probability tending to one the equation P ′n(θ) = 0 has a
solution θ̃n(t0) with the property that

‖θ̃n(t0)− θ0,n‖ ≤ 2ηn = oP (1).

To prove the asserted rate, we have to investigate ηn further. We note first that since
P ′′n (θ0,n)−1 is stochastically bounded, the rate of ηn is determined by the rate with which
P ′n(θ0,n) converges to zero. To find this rate we observe that every summand of P ′n(θ0,n)
has expectation zero conditionally on Cn,i(s) = 1:∫ T

0
K
(
s−t0
h

)
E
[
Cn,i(s)Xn,i(s)

(
eθ0(s)TXn,i(s) − eθ

T
0,nXn,i(s)

)∣∣Cn,i(s) = 1
]
ds

=

∫ T

0
K
(
s−t0
h

)
∂θg(θ0,n, s)ds = 0

by the assumption that θ0,n maximizes θ 7→
∫ T

0 K
(
s−t0
h

)
g(θ, s)ds. So, in P ′n(θ0,n), we

can subtract Cn,i(t0)
∫ T

0 K
(
s−t0
h

)
∂θg(θ0,n, s)ds from every summand without changing

anything, i.e.,

P ′n(θ0,n)
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=
1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)[
Cn,i(s)Xn,i(s)

(
eθ0(s)TXn,i(s) − eθ

T
0,nXn,i(s)

)
− Cn,i(t0)∂θg(θ0,n, s)

]
ds

=
1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)
Cn,i(t0)

[
Cn,i(s)Xn,i(s)

(
eθ0(s)TXn,i(s)

−eθ
T
0,nXn,i(s)

)
− ∂θg(θ0,n, s)

]
ds

+
1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)
(1− Cn,i(t0))Cn,i(s)Xn,i(s)

×
(
eθ0(s)TXn,i(s) − eθ

T
0,nXn,i(s)

)
ds.

By Lemma 5.7, this term is equal to h2 ·Bn + oP

(
1√
lnh

)
+ oP (h2), which concludes the

proof of Proposition 5.8.

Lemma 5.10. For k, l ∈ {1, ..., q}, we have that

1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)2

X
(l)
n,i(s)X

(k)
n,i (s)Cn,i(s) exp(θ0(s)TXn,i(s))ds

P→
∫ 1

−1
K(u)2du Σk,l (5.28)

and

1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)2

‖Xn,i(s)‖21
(

1√
lnh

∥∥∥∥K (s− t0h

)
Xn,i(s)

∥∥∥∥ > ε

)
× Cn,i(s) exp(θ0(s)TXn,i(s))ds

P→ 0. (5.29)

Moreover, it holds that

1

ln
∂2
θ `(θ̃n(t0), t0) = P ′′n (θ̃n(t0))

P→ −Σ. (5.30)

Proof. The proof of (5.28) follows by using similar arguments as in the proof of Lemma
5.6, with θ0,n replaced by θ0(s), and with K replaced by K2.

For the proof of claim (5.29), we calculate the expectation of the left hand side of
(5.29). Because the integrand is positive, we can apply Fubini, and we get that the
expectation is equal to∫ T

0
E
[
1

(
1√
lnh

∥∥∥∥K (s− t0h

)
Xn,1(s)

∥∥∥∥ > ε

)
‖Xn,1(s)‖2

× exp
(
θ0(s)TXn,1(s)

)∣∣∣Cn,1(s) = 1

]
1

h
K

(
s− t0
h

)2 P(Cn,1(s) = 1)

P(Cn,1(t0) = 1)
ds
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≤ 1

ε
· 1√

lnh

∫ 1

−1
K3(u)

P(Cn,1(t0 + uh) = 1)

P(Cn,1(t0) = 1)

E
(
‖Xn,1(t0 + uh)‖3eτ‖Xn,1(t0+uh)‖

∣∣∣Cn,1(t0 + uh) = 1
)

du

= O

(
1√
lnh

)
= o(1).

Here we use (4.8), max−1≤u≤1K(u) <∞ and (4.7). This shows (5.29).
To see (5.30), we show that

P ′′n (θ0,n)− P ′′n (θ̃n(t0)) = oP (1). (5.31)

This then implies (5.30) because of (5.9).
By using exactly the same arguments as in the proof of Lemma 5.7, we obtain

eθ
T
0,nXn,i(s) − eθ̃n(t0)TnXn,i(s) ≤ ‖Xn,i(s)‖eτ‖Xn,i(s)‖ · ‖θ0,n − θ̃n(t0)‖.

This gives

P ′′n (θ0,n)− P ′′n (θ̃n(t0))

=
1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)
Cn,i(s)Xn,i(s)Xn,i(s)

T

×
(
eθ̃n(t0)TXn,i(s) − eθ

T
0,nXn,i(s)

)
ds

≤ 1

lnh

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)
Cn,i(s)‖Xn,i(s)‖3eτ‖Xn,i(s)‖ds × ‖θ0,n − θ̃n(t0)‖.

The expectation of the first factor is bounded because of assumptions (4.8) and (4.7).
Furthermore, the second term is of order oP (1) by Proposition 5.8. Thus, the product
is of order oP (1). This shows (5.31) and concludes the proof of (5.30).

Proposition 5.11. With probability tending to one, ∂θ`n(θ, t0) = 0 has a solution θ̂n(t0),
and √

lnh · (θ̂n(t0)− θ̃n(t0))
d→ N

(
0,

∫ 1

−1
K2(u)du Σ−1

)
.

Proof of Proposition 5.11. The proof is based on modifications of arguments used in the
asymptotic analysis of parametric counting process models, see e.g. the proof of Theorem
VI.1.1 on p. 422 in Andersen et al.(1993). Define

U l(θ) := h∂θl`n(θ, t0), l = 1, . . . , q,

and let U lt(θ) be defined as U l(θ), but with t being the upper limit of the integral in
(4.1), (i.e., U l(θ) = U lT (θ)). Furthermore, we write U(θ) = (U1(θ), ..., U q(θ)), and the
vector Ut(θ) is defined analogously. In the first step of the proof, we will show that

1√
lnh

UT (θ̃n(t0))
d→ N

(
0,

∫ 1

−1
K2(u)du Σ

)
. (5.32)
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For the local, square integrable martingale Mn,i defined in (5.1), it holds that Mn,i and
Mn,j are orthogonal, meaning that < Mn,i,Mn,j >t= 0 if i 6= j, i.e. the predictable cova-
riation process is equal to zero (cf. Section 2.2, in particular (2.2)). For the predictable
variation process of Mn,i, we have

< Mn,i >t=

∫ t

0
Cn,i(s) exp(θ0(s)TXn,i(s))ds. (5.33)

By definition of θ̃n(t0), see the statement of Proposition 5.8, we have that (writeKh,t0(s) :=
K
(
s−t0
h

)
)

U lt(θ̃n(t0))

=
∑
i∈Gn

∫ t

0
Kh,t0(s)X

(l)
n,i(s)dNn,i(s) (5.34)

−
∫ t

0
Kh,t0(s)Cn,i(s)X

(l)
n,i(s) exp(θ̃n(t0)TXn,i(s))ds

=
∑
i∈Gn

∫ t

0
Kh,t0(s)X

(l)
n,i(s)dMn,i(s)

+

∫ t

0
Kh,t0(s)Cn,i(s)X

(l)
n,i(s)

(
exp(θ0(s)TXn,i(s))− exp(θ̃n(t0)TXn,i(s))

)
ds

=
∑
i∈Gn

∫ t

0
Kh,t0(s)X

(l)
n,i(s)dMn,i(s).

So θ̃n(t0) was chosen such that the non-martingale part of ∂θ`(θ̃n(t0), t0) vanishes. Now,
we want to apply Rebolledo’s Martingale Convergence Theorem, see e.g. Theorem II.5.1
in Andersen et al.(1993). This theorem implies (5.32), provided a Lindeberg condition
(5.29) holds, and〈 1√

lnh
Ukt (θ̃n(t0)),

1√
lnh

U lt(θ̃n(t0))
〉
T

P→
∫ 1

−1
K2(u)du Σkl(t0). (5.35)

To verify (5.35), first note that (5.33) and (5.28) imply finiteness of

1

lnh

∑
i∈Gn

∫ t

0
Kh,t0(s)2

(
X

(l)
n,i(s)

)2
d〈Mn,i〉s,

with probability tending to one. Note that Lemma 5.10 is formulated with t = T , but
the integral is finite also for t < T simply because the integrand is non-negative. From
now on we assume the above integral is finite. The process

1√
lnh

∑
i∈Gn

∫ t

0
Kh,t0(s)X

(l)
n,i(s)dMn,i(s)
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is a local square integrable martingale, cf. Theorem 2.7 and the discussion afterwards.
Since the martingales Mn,i are orthogonal, and by using Lemma 5.10, the predictable
covariation satisfies〈 1√

lnh
Ukt (θ̃n(t0)),

1√
lnh

U lt(θ̃n(t0))
〉
T

=
1

lnh

∑
i∈Gn

∫ T

0
Kh,t0(s)2X

(k)
n,i (s)X

(l)
n,i(s)Cn,i(s) exp(θ0(s)TXn,i(s))ds

P→
∫ 1

−1
K2(u)du Σkl(t0).

This shows (5.35), and concludes the proof of (5.32).
We now show that

||
√
lnh · (θ̃n(t0)− θ̂n(t0))−

√
lnhZn||

P→ 0, (5.36)

where

Zn = P ′′n (θ̃n(t0))−1 1

lnh
U(θ̃n(t0)).

We want to apply the Newton-Kantorovich Theorem 5.9 with R(θ) := Rn(θ) := 1
lnh
U(θ)

and x0 := θ̃n(t0). To this end, define

Bn := ‖R′n(θ̃n(t0))−1‖ =

∥∥∥∥P ′′n (θ̃n(t0)
)−1

∥∥∥∥ .
From Lemma 5.10, we know that P ′′n (θ̃n(t0)) converges and is invertible for n large
enough, and thus Bn = OP (1). Now let

ηn := ‖R′n(θ̃n(t0))−1Rn(θ̃n(t0))‖ = ‖Zn‖ .

Results (5.30) and (5.32) imply that ηn = oP (1). Next, notice that P ′′n has a Lipschitz
constant Kn that is bounded by the maximum of the third derivative of Pn. According to
(5.10), this maximum is bounded, and we obtain Kn = OP (1). Hence, rn = BnKnηn =
oP (1). Now, Theorem 5.9 implies that, with probability converging to one, there is θ̂n(t0)
such that U(θ̂n(t0)) = 0 and

||θ̂n(t0)− θ̃n(t0)|| ≤ 2ηn
P→ 0.

To obtain the asymptotic distribution of θ̂n(t0), we note that, by (5.32) and (5.30),√
lnh · Zn

d→ N(0,

∫ 1

−1
K2(u)du Σ−1). (5.37)

Thus it holds that
√
lnh · Zn = OP (1), and as a consequence we get

√
lnh · ηn = OP (1).

Using the second statement of the Newton-Kantorovich Theorem 5.9, we obtain

||
√
lnh · (θ̃n(t0)− θ̂n(t0))−

√
lnhZn|| ≤

√
lnh · 2rnηn = oP (1).

Thus
√
lnh · (θ̃n(t0)− θ̂n(t0)) and

√
lnh ·Zn have the same limit distribution. Because of

(5.37) this implies the statement of the proposition.
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Proof of Theorem 4.2 Combining Propositions 5.8 and 5.11, and applying Slutzky’s
Lemma, we obtain by the assumptions on the bandwidth h in (A1)

√
lnh
(
θ̂n(t0)− θ0,n(t0)− h2 ·Bn

)
→ N

(
0,

∫ 1

−1
K2(u)duΣ−1AΣ−1

)
.

With Proposition 5.5 this proves Theorem (4.2).

5.2 Proof of Theorem 4.3

For the proof we need the following auxiliary propositions.

Proposition 5.12. With the same assumptions and definitions as in Theorem 4.3 we
have

sup
t0∈T

∥∥∥∥∥ 1

rn
√
p̄n(t0)

`′n(θ0, t0)

∥∥∥∥∥ = OP

(√
log rn
rnh

)
Proposition 5.13. Assume the same assumptions as in Theorem 4.3. For any choice
of θ∗1(t0), ..., θ∗q(t0) ∈ [θ0, θ̂(t0)] (where for a, b ∈ Rq we denote by [a, b] the connecting
line between a and b), define the matrix

`∗n(t0) :=

`
′′
n,1·(θ

∗
1(t0), t0)
...

`′′n,q·(θ
∗
q(t0), t0)

 ,

where `′′n,r· denotes for r ∈ {1, ..., q} the r-th line of the second derivative of `n with
respect to θ. The matrix `∗n(t0) concentrates around Σ(θ0, t0) (cf. Statement 4.2), i.e.,

sup
t0∈T

∥∥∥∥ 1

rnp̄n(t0)
`∗n(t0)− Σ(t0, θ0)

∥∥∥∥ = OP

(√
log rn
rnpn · h

+ h

)
,

with pn := inft0∈T pn(t0). Furthermore, `∗n(t0) is invertible and

sup
t0∈T

∥∥∥∥∥
[

1

rnp̄n(t0)
`∗n(t0)

]−1

− Σ(t0, θ0)−1

∥∥∥∥∥ = OP

(√
log rn
rnpn · h

+ h

)
.

Proposition 5.14. Let p̄n :=
∫ T

0 p̄n(s)ds. We assume that we are on H0 and denote
the true parameter by θ0. Then

√
rnh

∫ T

0

(
θ̂n(t0)− θ0

) p̄n(t0)√
p̄n

w(t0)dt0 = oP (1).

The proofs of these propositions are deferred to the end.
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Proof of Theorem 4.3. We note firstly that we may replace the estimator θ̄n in the test
statistic with θ0 because for

T0,n :=

∫ T

0

∥∥∥θ̂n(t0)− θ0

∥∥∥2
p̄n(t0)w(t0)dt0

it holds that

rnh
1
2Tn =rnh

1
2T0,n

rnh
1
2

∫ T

0

∥∥θ̄n − θ0

∥∥2
p̄n(t0)w(t0)dt0

+ 2rnh
1
2

∫ T

0

(
θ̂n(t0)− θ0

)T (
θ̄n − θ0

)
p̄n(t0)w(t0)dt0.

By the Assumption (B1), 3 and Proposition 5.14, we see that the last two lines may be

asymptotically neglected and hence the limiting distributions of rnh
1
2Tn and rnh

1
2T0,n

are identical and we study the behaviour of rnh
1
2T0,n in the following.

By assumption (B5), 2, θ̂(t0) ∈ Θ with high probability and hence `′n(θ̂(t0), t0) = 0 on
this event (the derivative exists by Statement 4.1). As we are concerned with convergence
of the distribution of θ̂(t0), we can restrict to this event. By a Taylor expansion there
are θ∗r(t0) which lie on the connecting line between θ̂(t0) and θ0 such that

0 = `′n,r(θ̂, t0) = `′n,r(θ0(t0), t0) + `′′n,r·(θ
∗
r(t0), t0)(θ̂(t0)− θ0),

where `′n,r is the r-th component of the gradient (with respect to θ) of `n and `′′n,r· denotes
the r-th row of the Hessian Matrix of `n with respect to θ. Define

`∗n(t0) :=

`
′′
n,1·(θ

∗
1(t0), t0)
...

`′′n,q·(θ
∗
q(t0), t0)

 .

In this notation we have (use also Proposition 5.13 and Assumption (B7))

0 = `′n(θ̂(t0), t0) = `′n(θ0, t0) + `∗n(t0)(θ̂(t0)− θ0)

⇔ θ̂(t0)− θ0 = − [`∗n(t0)]−1 · `′n(θ0, t0). (5.38)

Using this expansion and by applying Propositions 5.12 and 5.13, we obtain (note also
that by Assumption (B3), w is supported on [δ, T − δ] and bounded)

T0,n =

∫ T−δ

δ

∥∥∥θ̂(t0)− θ0

∥∥∥2
w(t0)p̄n(t0)dt0

=

∫ T−δ

δ

∥∥∥∥∥
[

1

rnp̄n(t0)
`∗n(t0)

]−1

· 1

rnp̄n(t0)
`′n(θ0, t0)

∥∥∥∥∥
2

w(t0)p̄n(t0)dt0

=

∫ T−δ

δ

∥∥∥∥∥Σ(t0, θ0)−1 · 1

rnp̄n(t0)
`′n(θ0, t0)
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+

([
1

rnp̄n(t0)
`∗n(t0)

]−1

− Σ(t0, θ0)−1

)
· 1

rnp̄n(t0)
`′n(θ0, t0)

∥∥∥∥∥
2

×w(t0)p̄n(t0)dt0

=

∫ T−δ

δ

∥∥∥∥Σ(t0, θ0)−1 · 1

rnp̄n(t0)
`′n(θ0, t0)

∥∥∥∥2

w(t0)p̄n(t0)dt0

+OP

 log rn
rnh

√ log rn
rnpnh

+ h+

(√
log rn
rnpnh

+ h

)2


=

∫ T−δ

δ

∥∥∥∥Σ(t0, θ0)−1 · 1

rnp̄n(t0)
`′n(θ0, t0)

∥∥∥∥2

w(t0)p̄n(t0)dt0

+OP

(
log rn
rnh

(√
log rn
rnpnh

+ h

))
.

Hence,

rnh
1
2T0,n

= rnh
1
2

∫ T−δ

δ

∥∥∥∥Σ(t0, θ0)−1 · 1

rnp̄n(t0)
`′n(θ0, t0)

∥∥∥∥2

w(t0)p̄n(t0)dt0

+OP

(
(log rn)

3
2

√
rnpn · h

+
(
h(log rn)2

) 1
2

)
,

where the Op part is oP (1) by Assumption (B4), 1 on the bandwidth. Thus, for the
asymptotic considerations, we have to only investigate the first part. On the hypothesis
that the true parameter function is constant, we can compute that θ̃ = θ0 by noting
that log x · y − x ≤ log y · y − y for all x, y > 0. Hence, by definitions of θ̃(t0) and Pn
(cf. Proposition 5.8 and (5.2), respectively), we have P ′n(θ0, t0) = 0 (Pn is differentiable
by Statement 4.1). By Assumption (B1), 2, λn,i is differentiable and we denote by λθn,i
the derivative of λn,i with respect to θ. Denote furthermore Σ := Σ(t0, θ0) for ease of
notation. We compute, by Fubini (Statement 4.3)

rnh
1
2

∫ T−δ

δ

∥∥∥∥Σ−1 · 1

rnp̄n(t0)
`′n(θ0, t0)

∥∥∥∥2

w(t0)p̄n(t0)dt0

= rnh
1
2

∫ T−δ

δ

∥∥∥∥∥Σ−1 · 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
t− t0
h

)
λθn,i(θ0, t)

λn,i(θ0, t)
dMn,i(t)

∥∥∥∥∥
2

×w(t0)p̄n(t0)dt0

=
1

h
1
2 rn

∑
i,j∈Gn

∫ T

0

∫ T

0

∫ T−δ

δ

1

h
K

(
s− t0
h

)
K

(
t− t0
h

)

×
λθn,i(θ0, s)

T

λn,i(θ0, s)
Σ−TΣ−1

λθn,j(θ0, t)

λn,j(θ0, t)

w(t0)

p̄n(t0)
dt0dMn,i(s)dMn,j(t). (5.39)
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Let now

fn,ij(s, t)

:=
λθn,i(θ0, s)

T

λn,i(θ0, s)
×
∫ T−δ

δ

1

h
K

(
s− t0
h

)
K

(
t− t0
h

)
×Σ−TΣ−1 w(t0)

p̄n(t0)
dt0 ×

λθn,j(θ0, t)

λn,j(θ0, t)
. (5.40)

Note that fn,ij(s, t) = fn,ji(t, s). Then (in the second line we used Fubini again, by
Statement 4.3, and the third equality is not term-wise the same but for the whole sum)

(5.39)

=
1

h
1
2 rn

∑
i,j∈Gn

∫ T

0

∫ T

0
fn,ij(s, t) (1t<s + 1t>s + 1t=s) dMn,i(s)dMn,j(t)

=
1

h
1
2 rn

∑
i,j∈Gn

[∫ T

0

∫ s−

0
fn,ij(s, t)dMn,j(t)dMn,i(s)

+

∫ T

0

∫ t−

0
fn,ij(s, t)dMn,i(s)dMn,j(t)

+

∫ T

0

∫
{s}

fn,ij(s, t)dMn,j(t)dMn,i(s)

]

=
1

h
1
2 rn

∑
i∈Gn

[
2

∫ T

0

∫ s−

0
fn,ii(s, t)dMn,i(t)dMn,i(s) +

∫ T

0

∫
{s}

fn,ii(s, t)dMn,i(t)dMn,i(s)

]
(5.41)

+
1

h
1
2 rn

∑
i,j∈Gn
i 6=j

[
2

∫ T

0

∫ s−

0
fn,ij(s, t)dMn,j(t)dMn,i(s)

+

∫ T

0

∫
{s}

fn,ij(s, t)dMn,j(t)dMn,i(s)

]
(5.42)

We will consider lines (5.41) and (5.42) separately. We start with line (5.41) and in
there, we start with the second integral: Note that the martingales Mn,i have jumps of
height exactly one at those positions where the counting processes Nn,i jump (this is
because we assume a continuous integrated intensity process). Hence we have∫

{s}
fn,ii(s, t)dMn,i(t) = 1∆Nn,i(s)=1fn,ii(s, s), (5.43)

and furthermore∫ T

0

∫
{s}

fn,ii(s, t)dMn,i(t)dMn,i(s)
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=

∫ T

0
1∆Nn,i(s)=1fn,ii(s, s)dMn,i(s) =

∫ T

0
fn,ii(s, s)dNn,i(s).

Using the above equality, we obtain

(5.41)

=
1

h
1
2 rn

∑
i∈Gn

[
2

∫ T

0

∫ s−

0
fn,ii(s, t)dMn,i(t)dMn,i(s) +

∫ T

0
fn,ii(s, s)dNn,i(s)

]
The first sum is a sum of uncorrelated martingales and so it will converge to zero in
probability by an application of Markov’s inequality: Denote by gn,i(s) a predictable

function, then in general E
(∫ T

0 gn,i(s)dMn,i(s)
)

= 0 and for i 6= j

E
(∫ T

0
gn,i(s)dMn,i(s) ·

∫ T

0
gn,j(s)dMn,j(s)

)
= 0.

So we get for any ε > 0

P

(∣∣∣∣∣ 1

rn

∑
i∈Gn

∫ T

0
gn,i(s)dMn,i(s)

∣∣∣∣∣ > ε

)

≤ 1

ε2

1

r2
n

∑
i∈Gn

E
(∫ T

0
gn,i(s)

2Cn,i(s)λn,i(θ0, s)ds

)
.

When letting gn,i(s) = h−
1
2

∫ s−
0 fn,ii(s, t)dMn,i(t), we have by Statement 4.4, that the

above converges to zero. Moreover, we know that

1

h
1
2 rn

∑
i∈Gn

∫ T

0
fn,ii(s, s)dNn,i(s)− h−

1
2An

P→ 0,

as n tends to infinity by Statement 4.5. Combining these considerations yields

(5.41) = op(1) + h−
1
2An.

Next we consider (5.42). Firstly, we note, using an analogue of (5.43), that the second
integral in (5.42) equals zero because the two martingales Mn,i and Mn,j never jump
simultaneously because i 6= j. To investigate the first integral we simplify notation by
defining

τn,ij(s) :=

∫ s−

0
fn,ij(s, t)dMn,j(t). (5.44)

Then τn,ij are predictable functions and so we find that

(5.42) =
1

h
1
2 rn

∑
i∈Gn

∫ T

0
2

∑
j∈Gn
j 6=i

τn,ij(s)

 dMn,i(s)
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is a martingale in T . Our aim is to show convergence to a normal distribution by
using Rebolledo’s martingale central limit theorem. To this end, we need to prove the
convergence of the variation towards a deterministic quantity and the jump parts of the
process converge to zero. We start with the quadratic variation (note that Mn,i and
Mn,j are uncorrelated whenever i 6= j):〈

1

h
1
2 rn

∑
i∈Gn

∫ T

0
2

∑
j∈Gn
j 6=i

τn,ij(s)

 dMn,i(s)

〉

=
4

hr2
n

∑
i∈Gn

∫ T

0

∑
j∈Gn
j 6=i

τn,ij(s)


2

Cn,i(s)λn,i(θ0, s)ds

=
4

hr2
n

∑
i∈Gn

∫ T

0

∑
j1,j2∈Gn
j1,j2 6=i

τn,ij1(s)τn,ij2(s)Cn,i(s)λn,i(θ0, s)ds

=
4

hr2
n

∑
i∈Gn

∫ T

0

∑
j∈Gn
j 6=i

τn,ij(s)
2Cn,i(s)λn,i(θ0, s)ds

+
4

hr2
n

∑
i∈Gn

∫ T

0

∑
j1,j2∈Gn
j1,j2 6=i
j1 6=j2

τn,ij1(s)τn,ij2(s)Cn,i(s)λn,i(θ0, s)ds

P→ B,

by Statement 4.6. Now the jump process (the process which contains all jumps of size
greater than or equal to ε > 0) is given by (note that no two martingales jump at the
same time)

2

h
1
2 rn

∑
i∈Gn

∫ T

0
1


∣∣∣∣∣∣∣∣

2

h
1
2 rn

∑
j∈Gn
j 6=i

τn,ij(s)

∣∣∣∣∣∣∣∣ > ε

 ∑
j∈Gn
j 6=i

τn,ij(s)dMn,i(s),

which converges to zero by Statement 4.7. Hence, by Rebolledo’s martingale central
limit theorem (cf. Theorem 2.12)

(5.42)
d→ N(0, B)

and the statement of the theorem is shown.

Proof of Proposition 5.12. Let δn :=
√

log rn
rnh

, denote by Tn,k the grid

Tn,k :=

{
j

hnk
: j ∈ N,

j

hnk
∈ [0, T ]

}
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and let πn,k(t) be the projection of t ∈ [0, T ] on Tn,k. Then #Tn,k ≤ (T + 1) · hnk and
|t− πn,k(t)| ≤ 1

hnk
. Using this projection we can estimate

P

(∣∣∣∣∣ sup
t0∈T

1

rn
√
p̄n(t0)

`′n(θ0, t0)

∣∣∣∣∣ ≥ Cδn
)

≤ P

(
sup
t0∈T

∣∣∣∣∣ `′n(θ0, t0)

rn
√
p̄n(t0)

−
`′n(θ0, πn,k(t0))

rn
√
p̄n(πn,k(t0))

∣∣∣∣∣
+ sup
t0∈T

∣∣∣∣∣ `′n(θ0, πn,k(t0))

rn
√
p̄n(πn,k(t0))

∣∣∣∣∣ ≥ Cδn
)

≤ P

 sup
t0,s0∈T

|s0−t0|≤hn−k

∣∣∣∣∣ `′n(θ0, t0)

rn
√
p̄n(t0)

− `′n(θ0, s0)

rn
√
p̄n(s0)

∣∣∣∣∣ ≥ C

2
δn

 (5.45)

+P

(
sup

t0∈Tn,k

∣∣∣∣∣ `′n(θ0, t0)

rn
√
p̄n(t0)

∣∣∣∣∣ ≥ C

2
δn

)
. (5.46)

We have to prove that both (5.45) and (5.46) converge to zero. We start with (5.45).
Denote therefore gn,i(t, t0) = K

(
t−t0
h

)
∂θ log λn,i(θ0, t), then

`′n(θ0, t0) =
∑
i∈Gn

∫ T

0

1

h
gn,i(t, t0)dMn,i(t)

because P ′n(θ0, t0) = 0 and Statement 4.1. Then we get

P

 sup
t0,s0∈T

|s0−t0|≤hn−k

∣∣∣∣∣ `′n(θ0, t0)

rn
√
p̄n(t0)

− `′n(θ0, s0)

rn
√
p̄n(s0)

∣∣∣∣∣ ≥ C

2
δn



≤P

 sup
t0,s0∈T

|s0−t0|≤hn−k

1

rnh

∑
i∈Gn

∣∣∣∣∣
∫ T

0

gn,i(t, t0)√
p̄n(t0)

dMn,i(t)−
∫ T

0

gn,i(t, s0)√
p̄n(s0)

dMn,i(t)

∣∣∣∣∣ ≥ C

2
δn



≤P

 1

rnh

∑
i∈Gn

∫ T

0
sup

t0,s0∈T
|s0−t0|≤hn−k

∣∣∣∣∣gn,i(t, t0)√
p̄n(t0)

− gn,i(t, s0)√
p̄n(s0)

∣∣∣∣∣ dNn,i(t) ≥
C

4
δn

 (5.47)

+P

 1

rnh

∑
i∈Gn

∫ T

0
sup

t0,s0∈T
|s0−t0|≤hn−k

∣∣∣∣∣gn,i(t, t0)√
p̄n(t0)

− gn,i(t, s0)√
p̄n(s0)

∣∣∣∣∣Cn,i(t)λn,i(θ0, t)dt ≥
C

4
δn

 .

(5.48)
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For (5.47) we apply Lenglart’s inequality (cf. Corollary 2.11) to obtain for any choice of
c∗ > 0

P

 1

rnh

∑
i∈Gn

∫ T

0
sup

t0,s0∈T
|s0−t0|≤hn−k

∣∣∣∣∣gn,i(t, t0)√
p̄n(t0)

− gn,i(t, s0)√
p̄n(s0)

∣∣∣∣∣ dNn,i(t) ≥
C

4
δn



≤c
∗

C
+ P

 1

rnh

∑
i∈Gn

∫ T

0
sup

t0,s0∈T
|s0−t0|≤hn−k

∣∣∣∣∣gn,i(t, t0)√
p̄n(t0)

− gn,i(t, s0)√
p̄n(s0)

∣∣∣∣∣Cn,i(t)λn,i(θ0, t)dt ≥
c∗

4
δn

 .

If we restrict to c∗ < C we obtain furthermore

(5.47) + (5.48)

≤c
∗

C
+ 2P

 1

rnh

∑
i∈Gn

∫ T

0
sup

t0,s0∈T
|s0−t0|≤hn−k

∣∣∣∣∣gn,i(t, t0)√
p̄n(t0)

− gn,i(t, s0)√
p̄n(s0)

∣∣∣∣∣Cn,i(t)λn,i(θ0, t)dt ≥
c∗

4
δn

 .

(5.49)

Using the Assumptions (B4), 2 and (B6) (note that for any x, y ≥ 0, |
√
x − √y| ≤√

|x− y| implies that
√

1
p̄n(t0) is Hoelder continuous with exponent

αp
2 and constant√

Hn,p), we get by using supt0∈T
1√
p̄n(t0)

≤ 1√
pn∥∥∥∥∥gn,i(t, t0)√

p̄n(t0)
− gn,i(t, s0)√

p̄n(s0)

∥∥∥∥∥
= ‖∂θ log λn,i(θ0, t)‖ ·

∣∣∣∣∣ 1√
p̄n(t0)

K

(
t− t0
h

)
− 1√

p̄n(s0)
K

(
t− s0

h

)∣∣∣∣∣
≤ ‖∂θ log λn,i(θ0, t)‖ ·

[
1√
p̄n(t0)

∣∣∣∣K ( t− t0h

)
−K

(
t− s0

h

)∣∣∣∣
+K

(
s− s0

h

) ∣∣∣∣∣ 1√
p̄n(t0)

− 1√
p̄n(s0)

∣∣∣∣∣
]

≤ ‖∂θ log λn,i(θ0, t)‖
[

1
√
pn
·HKn

−kαK +K ·
√
Hn,pn

−k·αp
2

]
≤ ‖∂θ log λn,i(θ0, t)‖ ·

1
√
pn

[
HK +K

√
Hn,ppn

]
n−k·min(αK ,αp/2),

where K is the bound on the kernel from Assumption (B4), 2. So we get

1

rnh

∑
i∈Gn

∫ T

0
sup

t0,s0∈T
|s0−t0|≤hn−k

∥∥∥∥∥gn,i(t, t0)√
p̄n(t0)

− gn,i(t, s0)√
p̄n(s0)

∥∥∥∥∥Cn,i(t)λn,i(θ0, t)dt
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≤ 1

rnh

∑
i∈Gn

∫ T

0
‖∂θ log λn,i(θ0, t)‖Cn,i(t)λn,i(θ0, t)dt

× 1
√
pn

[
HK +K

√
Hn,ppn

]
n−k·min(αK ,αp/2).

Hence, we get that (5.49) is small, because by Statement 4.10 we can choose k = k0 such
that for large enough c∗ the probability is small for all n ∈ N and then we can choose
C large enough such that the whole expression is small. Then, also (5.45) is small, for
this good choice k = k0 which we keep fixed from now on.

Let us now turn to (5.46). Here we take the supremum over a finite set and so we can
estimate by applying union bound and Statement 4.11 for C > 0 large enough

(5.46)

≤ #Tn,k0 · sup
t0∈Tn,k0

P

(∣∣∣∣∣ `′n(θ0, t0)

rn
√
p̄n(t0)

∣∣∣∣∣ ≥ C

2
δn

)
→ 0.

For the proof of Proposition 5.13 we require an auxiliary lemma.

Lemma 5.15. Under the same assumptions as in Theorem 4.3 we have

sup
t0∈T

∥∥∥θ0 − θ̂t0
∥∥∥ = Op

(√
log rn
rnpnh

)
.

Proof. This result is Proposition 5.8 but uniformly. The proof is therefore entirely
analogue, we just have to to make sure that Kantorovich’s Theorem can be applied
uniformly. By Statements 4.8 and 4.9 we have that for any choice of t0 ∈ [δ, T − δ]∥∥∥∥∥

[
1

rnp̄n(t0)
`′′n(θ0, t0)

]−1
∥∥∥∥∥ ≤ Bn

1

rnp̄n(t0)

∥∥`′′n(θ1, t0)− `′′n(θ2, t0)
∥∥ ≤ Kn · ‖θ1 − θ2‖,

where Bn,Kn = OP (1). And therefore, use also Proposition 5.12, there is ηn such that

(recall also that
√
pn√

p̄n(t0)
≤ 1 for all t0 ∈ T)

ηn := sup
t0∈T

∥∥∥∥∥
[

1

rnp̄n(t0)
`′′n(θ0, t0)

]−1 1

rnp̄n(t0)
`′n(θ0, t0)

∥∥∥∥∥ = OP

(√
log rn
pnrnh

)
.

Hence, we can apply Kantorovich’s Theorem (cf. Theorem 5.9) for all t0 ∈ T with the
same choice of Bn,Kn and ηn as above. Thus, there is θ̂(t0) such that for all t0∥∥∥θ0 − θ̂(t0)

∥∥∥ ≤ 2ηn = OP

(√
log rn
rnpnh

)
.

This yields the statement.
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Proof of Proposition 5.13. Define and recall

Hn,i(s, θ) :=
[
∂2
θ log λn,i(θ, s) · λn,i(θ0, s)− ∂2

θλn,i(θ, s)
]
Cn,i(s),

Σ(s, θ) = E [Hn,1(s, θ)|Cn,1(s) = 1]

H̃n,i(s, θ) := Hn,i(s, θ)− Σ(s, θ)pn(s).

Note that the choice of index 1 in the definition of Σ is arbitrary by assumption (B1),
1. Note firstly that∥∥∥∥ 1

rnp̄n(t0)
`∗n(t0)− Σ(t0)

∥∥∥∥2

≤
q∑
r=1

∥∥∥∥ 1

rnp̄n(t0)
`′′n(θ∗r(t0), t0)− Σ(t0)

∥∥∥∥2

. (5.50)

Since q doesn’t vary in n, it is enough to consider each term in the sum on the right hand
side above separately. In order to reduce notation, we do not indicate which intermediate
value θ∗r(t0) we consider and write θ∗(t0) instead. Now, we can separate the problem as
follows: ∥∥∥∥ 1

rnp̄n(t0)
`′′n(θ∗(t0), t0)− Σ(t0)

∥∥∥∥
≤

∥∥∥∥∥ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
[Hn,i(s, θ

∗(t0))− Σ(s, θ∗(t0))pn(s)] ds

∥∥∥∥∥
+

∥∥∥∥∥ 1

rn

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)[
Σ(s, θ∗(t0))

pn(s)

p̄n(t0)
− Σ(t0)

]
ds

∥∥∥∥∥
≤ sup

θ∈Θ

∥∥∥∥∥ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
[Hn,i(s, θ)− Σ(s, θ)pn(s))] ds

∥∥∥∥∥ (5.51)

+

∥∥∥∥1

h

∫ T

0
K

(
s− t0
h

)
(Σ(s, θ∗(t0))− Σ(s, θ0))

pn(s)

p̄n(t0)
ds

∥∥∥∥ (5.52)

+

∥∥∥∥1

h

∫ T

0
K

(
s− t0
h

)
(Σ(s, θ0)− Σ(t0, θ0))

pn(s)

p̄n(t0)
ds

∥∥∥∥ (5.53)

+

∥∥∥∥1

h

∫ T

0
K

(
s− t0
h

)
Σ(t0, θ0)

(
pn(s)

p̄n(t0)
− 1

)
ds

∥∥∥∥ . (5.54)

We note firstly that (5.54) = 0. Moreover, after taking the sup over all t0, the con-

vergence rate of line (5.52) equals OP

(√
log rn
rnpnh

)
, because of the Lipschitz continuity of

Σ in Statement 4.2 and Lemma 5.15 (recall that θ∗(t0) is the intermediate value bet-
ween θ̂(t0) and θ0 in Taylor’s Formula). The expression in (5.53) can be handled by
the differentiability assumption in (B7) together with a Taylor expansion in the time
parameter.:

sup
t0∈[0,T ]

∥∥∥∥∫ T

0

1

h
K

(
s− t0
h

)
(Σ(s, θ0)− Σ(t0, θ0))

pn(s)

p̄n(t0)
ds

∥∥∥∥
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≤ sup
t0∈[0,T ]

∫ T

0

1

h
K

(
s− t0
h

)
‖∂tΣ‖∞ · |s− t0|

pn(s)

p̄n(t0)
ds

≤h · ‖∂tΣ‖∞,

where we used in the last step that the kernel is supported on [−1, 1] and hence |s−t0| ≤
h. So (5.53) is of order h.

To deal with the first expression, line (5.51), we let δn :=
√

log rnpn
rnpn·h and C > 0 and

denote by (here k0 is the constant from Statement 4.10)

Tn,k0 :=

{(
j

hnk0
,
j1
nk0

, ...,
jq
nk0

)
∈ T×Θ : j, j1, ..., jq ∈ Z

}
a discrete grid covering T × Θ and denote by πn,k0 : T × Θ → Tn,k0 the corresponding
projection. Then, we have

P

 sup
t0∈T
θ∈Θ

∥∥∥∥∥ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
H̃n,i(s, θ)ds

∥∥∥∥∥ > Cδn



≤ P

 sup
t0∈T,θ∈Θ

|t0−t′0|≤hn−k0 ,
‖θ1−θ2‖≤n−k0

∥∥∥∥∥ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
H̃n,i(s, θ1)ds

− 1

rnp̄n(t′0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t′0
h

)
H̃n,i(s, θ2)ds

∥∥∥∥∥ > C

2
δn

)
(5.55)

+P

(
sup

(t0,θ)∈Tn,k0

∣∣∣∣∣ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
H̃n,i(s, θ)ds

∣∣∣∣∣ > C

2
δn

)
.(5.56)

In order to show that (5.55) converges to zero, we note that for |t0−t′0| ≤ hn−k0 , |θ1−θ2| ≤
n−k0 , we get by assumptions (B4), 2 and (B6)

1

rn

∑
i∈Gn

∫ T

0

∥∥∥∥ 1

p̄n(t0)
· 1

h
K

(
s− t0
h

)
H̃n,i(s, θ1)− 1

p̄n(t′0)
· 1

h
K

(
s− t′0
h

)
H̃n,i(s, θ2)

∥∥∥∥ ds
≤ 1

rn

∑
i∈Gn

∫ T

0

1

p̄n(t0)
· 1

h

∣∣∣∣K (s− t0h

)
−K

(
s− t′0
h

)∣∣∣∣ · ‖H̃n,i(s, θ1)‖

+

∣∣∣∣ 1

p̄n(t0)
− 1

p̄n(t′0)

∣∣∣∣ · 1

h
K

(
s− t′0
h

)
· ‖H̃n,i(s, θ1)‖

+
1

p̄n(t′0)
· 1

h
K

(
s− t′0
h

)∥∥∥H̃n,i(s, θ1)− H̃n,i(s, θ2)
∥∥∥ ds
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≤HK

pn
· 1

h
n−k0αK

1

rn

∑
i∈Gn

∫ T

0
‖H̃n,i(s, θ1)‖ds

+Hn,ph
−αpn−k0αp · 1

rn

∑
i∈Gn

∫ T

0

1

h
K

(
s− t′0
h

)
‖H̃n,i(s, θ1)‖ds

+
1

pn
· 1

rn

∑
i∈Gn

∫ T

0

1

h
K

(
s− t′0
h

)
γn,i(s)n

−k0pds,

which has the correct order by Statement 4.10.
(5.56) converges to zero by Statement 4.12.
To prove that inversion preserves the rate, we denote

Xn(t0) :=
1

rnp̄n(t0)
`∗n(t0).

Then
Xn(t0)−1 − Σ(t0, θ0)−1 = Xn(t0)−1 (Σ(t0, θ0)−Xn(t0)) Σ(t0, θ0)−1.

Since we assume in (B7) that the two inverses above are uniformly bounded, we find
that the difference of the inverses has the same rate as the difference of the matrices
(without inverse). The inverse of Xn(t0) exists with large probability because we have
convergence towards Σ(t0, θ0) which lies well within the set of invertible matrices (cf.
Assumption (B7)).

Proof of Proposition 5.14. To begin with, we note that we may work element-wise be-
cause the dimension remains fixed during the asymptotics. Therefore in the following

`′n(θ0, t0),
[

1
rnp̄n(t0)`

∗
n(t0)

]−1
and Σ−1(t0) should be understood as one entry from the

corresponding matrix or vector. For ease of notation we do not indicate which entry we

consider, however we consider always the same entry of
[

1
rnp̄n(t0)`

∗
n(t0)

]−1
and Σ−1(t0).

We use firstly the Taylor expansion from (5.38) and the Cauchy-Schwarz Inequality to
get ∣∣∣∣√rnh∫ T

0

(
θ̂n(t0)− θ0

) p̄n(t0)√
p̄n

w(t0)dt0

∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

(
Σ−1(t0)−

[
1

rnp̄n(t0)
`∗n(t0)

]−1
)
·

√
h

rnp̄n
`′n(θ0, t0)w(t0)dt0

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0
Σ−1(t0) ·

√
h

rnp̄n
`′n(θ0, t0)w(t0)dt0

∣∣∣∣∣
≤

∫ T

0

(
Σ−1(t0)−

[
1

rnp̄n(t0)
`∗n(t0)

]−1
)2

w(t0)dt0 ·
∫ T

0

h

rnp̄n
`′n(θ0, t0)2w(t0)dt0

 1
2

(5.57)
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+

∣∣∣∣∣
∫ T

0
Σ−1(t0) ·

√
h

rnp̄n
`′n(θ0, t0)w(t0)dt0

∣∣∣∣∣ . (5.58)

We show now that (5.57) and (5.58) are both oP (1). We begin with (5.57). Let ε, η > 0
be arbitrary, then for any C > 0

P ((5.57) > ε)

≤P
(∫ T

0

h

rnp̄n
`′n(θ0, t0)2w(t0)dt0 >

ε2

C2

)

+ P

∫ T

0

(
Σ−1(t0)−

[
1

rnp̄n(t0)
`∗n(t0)

]−1
)2

w(t0)dt0 > C2

 . (5.59)

By Markov’s Inequality and the fact that the counting process martingales are uncor-
related we obtain for h ≤ δ

2 (recall that suppw ⊆ [δ, T − δ] by Assumption (B3))

E
(∫ T

0

h

rnp̄n
`′n(θ0, t0)2w(t0)dt0

)
=

h

rnp̄n

∑
i∈Gn

∫ T

0

∫ T

0

1

h2
K

(
t− t0
h

)2

E
(
Xn,i(t)

2Cn,i(t)λn,i(θ0, t)
)
dtw(t0)dt0

≤
∫ T−h

h

∫ T−δ

δ

1

h
K

(
t− t0
h

)2

w(t0)dt0E
(
Xn,i(t)

2λn,i(θ0, t)
∣∣∣Cn,i(t) = 1

) pn(t)

p̄n
dt

≤C∗

by Assumption (B1), 4 and the fact that
∫ T−h
h pn(t)dt · p̄−1

n ≤ 1. By Proposition 5.13 we

find that for all C > 0 and thus in particular C =
ε
√
η√

2C∗
it holds for n large enough that

P

∫ T

0

(
Σ−1(t0)−

[
1

rnp̄n(t0)
`∗n(t0)

]−1
)2

w(t0)dt0 > C2

 ≤ η

2
.

Now, by using all previous considerations we may estimate by using (5.59) for n large
enough

P((5.57) > ε) ≤ C2

ε2
E
(∫ T

0

h

rnp̄n
`′n(θ0, t0)2w(t0)dt0

)
+
η

2
≤ η.

Since ε, η > 0 were chosen arbitrarily, we have shown that (5.57) = oP (1).
We continue with (5.58). This is easier to handle because Σ−1(t0) is deterministic and

thus in particular predictable: Let ε > 0 be arbitrary

P ((5.58) > ε)

≤ h

ε2rnp̄n
E

(∑
i∈Gn

∫ T

0

∫ T

0
Σ−1(t0)

1

h
K

(
t− t0
h

)
w(t0)dt0Xn,i(t)dMn,i(t)

)2

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=
h

ε2rnp̄n

∑
i∈Gn

∫ T

0
E

((∫ T

0

1

h
K

(
t− t0
h

)
Σ−1(t0)w(t0)dt0

)2

Xn,i(t)
2Cn,i(t)λn,i(θ0, t)

)
dt

≤hM
2

ε2p̄n

∫ T

0
E
(
Xn,i(t)

2λn,i(θ0, t)
∣∣∣Cn,i(t) = 1

)
pn(t)dt.

Since h→ 0, this converges to zero by Assumption (B1), 4 and thus also (5.58) = oP (1).
And this is what we wanted to prove.

5.3 Proofs of Statements 4.1 - 4.12

In this Section we will use Fubini, i.e., interchange the order of integration and/or
expectation because we assume in Assumption (C1), 2 that the covariates and thus all
functions which appear in our context are bounded. Thus all joint integrals exist and we
may compute them iteratively in any order. We will not explicitly refer to Assumption
(C1), 2 every time we do this.

Proposition 5.16. Suppose that Assumptions (C1), 1 and 2 hold. Then, Statement 4.1
holds true.

Proof. By the form of the Cox intensity function in Assumption (C1), 1 the integrands
in `n and Pn are are twice continuously differentiable with respect to θ. Integral and
differential in Pn may be interchanged by boundedness of the integrand, c.f. Assumption
(C1), 2. Note for `n that the stochastic integral is comprised of a regular integral and
an integral with respect to the counting process which is actually a sum. For the sum
integral and differential may obviously be interchanged and for the regular integral, the
boundedness guarantees it.

Proposition 5.17. Suppose that Assumptions (C1), 1 and 2 and (B5), 1 hold. Then,
Statement 4.2 holds true.

Proof. We have by Assumption (C1), 1

Σ(θ, s) = E
[
Xn,i(s)Xn,i(s)

T eθ
TXn,i(s)

∣∣∣Cn,i(s) = 1
]

and hence a Taylor approximation in the argument of the exponential function yields

the desired Lipschitz continuity with constant γΣ(s) ≡ K̂3eτK̂ , where K̂ is the bound
on X and τ is the bound on θ from Assumptions (C1), 2 and (B5), 1 respectively. The
second assertion is then an easy consequence.

Proposition 5.18. Suppose that Assumptions (C1), 2, (B5), 1 and (B7) hold. Then,
Statement 4.3 holds true.

Proof. We note that the stochastic integrals can be understood as an integral with
respect to the counting process (which is really a sum) minus a regular integral. The sums
may be interchanged without trouble. For the regular integrals we may apply Fubini
because the intensities are bounded by Assumptions (C1), 2 and (B5), 1. Furthermore,
Σ(t0)−1 exists and is bounded by Assumption (B7).
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Proposition 5.19. Suppose that Assumptions (C1), 2, (B1), 1, (B3) (B4), 2 and (B7)
hold. Then, Statement 4.4 holds true.

Proof. Since everything is identically distributed by Assumption (B1), 1, we can estimate
by the Assumptions (C1), 2 and (B4), 2 and (B7). Moreover, the kernel integrates to
one and hence we may also apply Jensen’s Inequality as follows

1

r2
n

∑
i∈Gn

E
(∫ T

0
gn,i(s)

2Cn,i(s)λn,i(θ0, s)ds

)

≤ Λ

rn

∫ T

0

1

h
E

((∫ s−

0
fn,ii(s, t)dMn,i(t)

)2
)
ds

=
Λ

rn

∫ T

0

1

h

∫ s

0
E
(
fn,ii(s, t)

2Cn,i(t)λn,i(t)
)
dtds

≤K̂
4Λ2

rn
sup
t0
‖Σ−T (t0)Σ−1(t0)‖2

×
∫ T

0

1

h

∫ s

0

(∫ T−δ

δ

1

h
K

(
s− t0
h

)
K

(
t− t0
h

)
w(t0)

p̄n(t0)
dt0

)2

pn(t)dtds

≤K̂
4Λ2M2

rn

∫ T

0

1

h

∫ T

0

∫ T−δ

δ

1

h
K

(
s− t0
h

)
K

(
t− t0
h

)2 w(t0)2pn(t)

p̄n(t0)2
dt0dtds

≤K̂
4Λ2M2

rnpn
· 1

h

∫ T

0

∫ T−δ

δ
K

(
t− t0
h

)2 w(t0)2pn(t)

p̄n(t0)
dt0dt

≤K̂
4Λ2M2T

rnpn
sup
t0∈T

∫ T

0

1

h
K

(
t− t0
h

)
pn(t)

p̄n(t0)
dt · w(t0)

But this converges to zero by boundedness of w, cf. (B3).

Proposition 5.20. Suppose that Assumption (C1), 1 holds. Then, Statement 4.5 holds
true.

Proof. Since λn,i(θ, s) = exp(θTXn,i(s)) we find that
∂θλn,i(θ0,s)
λn,i(θ0,s)

= Xn,i(s) is independent

of θ0 and thus computable. Hence, we can compute

1

rn

∑
i∈Gn

∫ T

0
fn,ii(s, s)dNn,i(s) (5.60)

and thus we may choose An = (5.60) and Statement 4.5 holds trivially.

Proposition 5.21. Suppose that Assumptions (B4), 2 and (B7) as well as (C1), (C2),
(C3), (C4*), (C5), (C6) (measurability and (4.19)-(4.27)), in (C7) equations 4.33 and
(4.34)) and (C8) hold. Then, Statement 4.6 holds true.
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Proof. We begin by recalling that τn,ij(s) =
∫ s−

0 fn,ij(s, t)dMn,j(t) with

fn,ij(s, t) = Xn,i(s)
T

∫ T−δ

δ

1

h
K

(
s− t0
h

)
K

(
t− t0
h

)
Σ(t0)−TΣ(t0)−1 w(t0)

p̄n(t0)
dt0Xn,j(t).

By substituting u = s−t0
h we obtain

fn,ij(s, t)

=Xn,i(s)
T

∫ s−δ
h

s−T+δ
h

K(u)K

(
t− s
h

+ u

)
Σ−T (s− uh)Σ(s− uh)−1 w(s− uh)

p̄n(s− uh)
duXn,j(t).

Denote finally

f̃n(s, t) :=

∫ s−δ
h

s−T+δ
h

K(v)K

(
t− s
h

+ v

)
Σ−T (s− vh)Σ(s− vh)−1 w(s− vh)

p̄n(s− vh)
dv.

Note firstly that f̃n is not random and secondly that for t < s− 2h the above expression
equals zero because we assume that the kernel is supported on [−1, 1] (cf. Assumption
(B4), 2). So we obtain for τn,ij :

τn,ij(s) = Xn,i(s)
T

∫ s−

s−2h
f̃n(s, t)Xn,j(t)dMn,j(t) (5.61)

Now, let us consider the second asserted convergence. For ease of notation we define
λn,i(s) := λn,i(θ0, s). By using the representation of τn,ij in (5.61) we obtain

4

hr2
n

∑
i∈Gn

∑
j1,j2∈Gn
j1,j2 6=i
j1 6=j2

∫ T

0
τn,ij1(s)τn,ij2(s)Cn,i(s)λn,i(s)ds

=
4

hr2
n

∑
i∈Gn

∑
j1,j2∈Gn
j1,j2 6=i
j1 6=j2

∫ T

0
Xn,i(s)

T

∫ s−

s−2h
f̃n(s, t)Xn,j1(t)dMn,j1(t)

×
(∫ s−

s−2h
f̃n(s, t)Xn,j2(t)dMn,j2(t)

)T
Xn,i(s)Cn,i(s)λn,i(s)ds

The integrals in the previous display are over vector-valued integrands and are to be
understood element-wise. In order to study the behaviour of these integrals, we write
the product of the two integrals as a sum. The equation from before continues

=
4

hr2
n

∑
i∈Gn

∑
j1,j2∈Gn
j1,j2 6=i
j1 6=j2

∫ T

0
Xn,i(s)

T

∫ s−

s−2h
f̃n(s, t)Xn,j1(t)dMn,j1(t)
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×
∫ s−

s−2h
XT
n,j2(t)f̃n(s, t)T (t)dMn,j2(t)Xn,i(s)Cn,i(s)λn,i(s)ds

=
4

hr2
n

∑
i∈Gn

∑
j1,j2∈Gn
j1,j2 6=i
j1 6=j2

∫ T

0

∫ T

0

∫ T

0
1t<s1t≥s−2h1r<s1r≥s−2hXn,i(s)

T f̃n(s, t)Xn,j1(t)

×Xn,j2(r)T f̃n(s, r)TXn,i(s)Cn,i(s)λn,i(s)dsdMn,j2(r)dMn,j1(t)

=
4

hr2
n

∑
i∈Gn

∑
j1,j2∈Gn
j1,j2 6=i
j1 6=j2

∫ T

0

∫ T

0

∫ min(t,r)+2h

max(t,r)
Xn,i(s)

T f̃n(s, t)Xn,j1(t)

×Xn,j2(r)T f̃n(s, r)TXn,i(s)Cn,i(s)λn,i(s)dsdMn,j2(r)dMn,j1(t)

=
4

hr2
n

∑
i∈Gn

∑
j1,j2∈Gn
j1,j2 6=i
j1 6=j2

∫ T

0

∫ T

0
(1r<t + 1r>t)

∫ min(t,r)+2h

max(t,r)
Xn,i(s)

T f̃n(s, t)Xn,j1(t)

×Xn,j2(r)T f̃n(s, r)TXn,i(s)Cn,i(s)λn,i(s)dsdMn,j2(r)dMn,j1(t)

Note that we do not need the indicator 1t=r because j1 6= j2 and hence martingales
Mn,j1 and Mn,j2 will not jump simultaneously almost surely. We continue (for the
second equality interchange the roles of j1 and j2 as well as the roles of t and r

=
4

hr2
n

∑
i∈Gn

∑
j1,j2∈Gn
j1,j2 6=i
j1 6=j2

∫ T

0

∫ t−

0

∫ min(t,r)+2h

max(t,r)
Xn,i(s)

T f̃n(s, t)Xn,j1(t)

×Xn,j2(r)T f̃n(s, r)TXn,i(s)Cn,i(s)λn,i(s)dsdMn,j2(r)dMn,j1(t)

+
4

hr2
n

∑
i∈Gn

∑
j1,j2∈Gn
j1,j2 6=i
j1 6=j2

∫ T

0

∫ r−

0

∫ min(t,r)+2h

max(t,r)
Xn,i(s)

T f̃n(s, t)Xn,j1(t)

×Xn,j2(r)T f̃n(s, r)TXn,i(s)Cn,i(s)λn,i(s)dsdMn,j1(t)dMn,j2(r)

=
8

hr2
n

∑
i∈Gn

∑
j1,j2∈Gn
j1,j2 6=i
j1 6=j2

∫ T

0

∫ t−

t−2h

∫ r+2h

t
Xn,i(s)

T f̃n(s, t)Xn,j1(t)

×Xn,j2(r)T f̃n(s, r)TXn,i(s)Cn,i(s)λn,i(s)dsdMn,j2(r)dMn,j1(t)

=
8

rn

∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t−

t−2h

∫ r−t
h

+2

0

1

rn

∑
i∈Gn
i 6=j1,j2

Xn,i(t+ uh)T f̃n(t+ uh, t)Xn,j1(t)Xn,j2(r)T
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× f̃n(t+ uh, r)TXn,i(t+ uh)Cn,i(t+ uh)λn,i(t+ uh)dudMn,j2(r)dMn,j1(t)

=
8

rn

∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t−

t−2h
ϕn,j1j2(t, r)dMn,j2(r)dMn,j1(t). (5.62)

Where we have introduced for ease of notation for any set of indices I ⊆ {1, ..., rn} the
distance to a set dnt (i, I) := min{dnt (i, j) : j ∈ I} and

ϕ̃In,j1j2(t, r)

:=
1

rn

∫ r−t
h

+2

0

∑
i 6=j1,j2

Xn,i(t+ uh)T f̃n(t+ uh, t)Xn,j1(t)Xn,j2(r)T f̃n(t+ uh, r)T

×Xn,i(t+ uh)Cn,i(t+ uh)λn,i(t+ uh)1(dnt−4h(i, I) ≥ m)du.

Note that ϕn,j1j2(t, r) := ϕ̃∅n,j1j2(t, r) equals exactly the inner integral in (5.62) (because
dnt−4h(i, ∅) = ∞). Furthermore the integrand is partially-predictable with respect to

F̃n,I,mj1j2,t
for all u because it has the product structure from Definition 2.16. Summing

and integrating do not harm the measurability (note that the variable integration limits
may interpreted as multiplication with a deterministic function). Thus, the functions
ϕ̃In,j1j2(t, r) are partially-predictable with respect to F̃n,I,mj1j2,t

. So in order to prove that
(5.62) converges to zero, it is enough to check the conditions (3.3)-(3.7) in Proposition
3.15. We do this in the following.

Define p∗n(t) such that
1

p∗n(t)
:=

∫ 1

−1

1

p̄n(t− hv)
dv.

Then, there is a constant C > 0 such that for all r ∈ [t − 2h, t] and t ∈ [δ, T − δ] (note
that then r−t

h ≤ 0)

|f̃n(t+ uh, r)|

≤M2

∫ 1

−1
K(v)K

(
r − t
h

+ v − u
)
w(t+ h(u− v))

p̄n(t+ h(u− v))
dv

≤M2K‖w‖∞
∫ 1

−1

1

p̄n(t− hν))
dν

≤C 1

p∗n(t)
. (5.63)

By the assumption of bounded covariates (Assumption (C1), 2), we get for any index
sets I, J ⊆ Gn and edges j1, j2 ∈ Gn and r ∈ [t − 2h, t] (i.e. r−t

h ∈ [−2, 0]), that for

C∗ := K̂4ΛC2 (which does not depend on r, t, j1, j2, I and J)

sup
j1,j2

∣∣ϕ̃In,j1j2(t, r)− ϕ̃Jn,j1j2(t, r)
∣∣

≤ C∗

rnp∗n(t)2

∫ r−t
h

+2

0

∑
i∈Gn

Cn,i(t+ uh)
∣∣1(dnt−4h(i, I) ≥ m)− 1(dnt−4h(i, J) ≥ m)

∣∣ du
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≤ C∗

rnp∗n(t)2

∫ r−t
h

+2

0

∑
i∈Gn

Cn,i(t+ uh)
∑

k∈I∆J
1(dnt−4h(i, k) ≤ m)du

≤ 2C∗

rnp∗n(t)2

∑
k∈I∆J

( ∑
i∈Gn

sup
u∈[0,2]

Cn,i(t+ uh)1(dnt−4h(i, k) ≤ m)1(Kk
m(t) ≤ F )

+
∑
i∈Gn

sup
u∈[0,2]

Cn,i(t+ uh)1(dnt−4h(i, k) ≤ m)1(Kk
m(t) > F )

)

≤2C∗|I∆J |
rnp∗n(t)2

(
·F +KGn

m (t)H
|I∆J |
UB

)
(5.64)

where for A,B ⊆ Gn, we denote by A∆B := A \B ∪B \ A the symmetric difference of
A and B and recall

KA
m(t) := sup

k∈A

∑
i

sup
u∈[−6,2]

Cn,i(t+ uh)1(dnt−4h(i, k) ≤ m)

HA
UB ≥ sup

k∈A
sup
t∈[0,T ]

1(Kk
m(t) > F )

be the (random) number of friends at distance m an edge k ∈ A can have and the indi-
cator function whether and edge k ∈ A has the potential to be a hub, respectively. Note
that by Assumption (C6), HA

UB is measurable with respect to Fn0 . We will frequently
use that λn,i(t) is bounded by Cn,i(t)Λ, where Λ is the constant from Assumption (C1),
2. We denote |Mn,i|(t) := λn,i(t) +Nn,i(t). Now, we show the conditions of Proposition
3.15. For condition (3.3) we get by applying the estimate (5.64) for any ε > 0 and any
F0 > 0 and F as in Assumption (C6)

P


∣∣∣∣∣∣∣∣

1

rn

rn∑
j1,j2=1

j1 6=j2

∫ T

0

∫ t−

t−2h
ϕn,j1j2(t, r)− ϕ̃j1j2n,j1j2

(t, r)dMn,j2(r)dMn,j1(t)

∣∣∣∣∣∣∣∣ > ε



≤P

 ∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t−

t−2h

4C∗

r2
np
∗
n(t)2

(
F +KGn

m (t)Hj1j2
UB

)
d|Mn,j2 |(r)d|Mn,j1 |(t) > ε


(5.65)

≤P

 n∑
j1,j2=1

j1 6=j2

∫ T

0

∫ t−

t−2h

4C∗

r2
np
∗
n(t)2

(
F + F0K

Gn
m (t− 4h)Hj1j2

UB

)
d|Mn,j2 |(r)d|Mn,j1 |(t) > ε


+ P

(
∀t ∈ [0, T ] : KGn

m (t) > F0K
Gn
m (t− 4h)

)
By Assumption (C6) in (4.19), the last probability is small for all n ∈ N, when F0 is
large enough. Keep this F0 fixed and continue with the term in the first probability.
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This term converges to zero by an application of Markov’s Inequality:

∑
j1,j2∈Gn
j1 6=j2

E
(∫ T

0

∫ t−

t−2h

4C∗

r2
np
∗
n(t)2

(
F + F0K

Gn
m (t− 4h)Hj1j2

UB

)
d|Mn,j2 |(r)d|Mn,j1 |(t)

)

≤
∑

j1,j2∈Gn
j1 6=j2

∫ T

0

12C∗Λ

r2
np
∗
n(t)2

E
(∫ t

t−2h
d|Mn,j2 |(r) · Cn,j1(t) ·

(
F + F0K

Gn
m (t− 4h)Hj1j2

UB

))
dt

=
∑

j1,j2∈Gn
j1 6=j2

∫ T

0

12C∗Λ

r2
np
∗
n(t)2

E

(
E
(∫ t

t−2h
d|Mn,j2 |(r)

∣∣∣Fn,j2,mt−2h

)

× Cn,j1(t)1(dnt−2h(j1, j2) ≥ m) ·
(
F + F0K

Gn
m (t− 4h)Hj1j2

UB

))
dt

+
∑

j1,j2∈Gn
j1 6=j2

∫ T

0

12C∗Λ

r2
np
∗
n(t)2

E

(∫ t

t−2h
d|Mn,j2 |(r) · Cn,j1(t)

× 1(dnt−2h(j1, j2) < m) ·
(
F + F0K

Gn
m (t− 4h)Hj1j2

UB

))
dt

≤
∑

j1,j2∈Gn
j1 6=j2

∫ T

0
h

24C∗Λ2

r2
np
∗
n(t)2

E

(
sup

r∈[t−2h,t]
Cn,j2(r) · Cn,j1(t) ·

(
F + F0K

Gn
m (t− 4h)Hj1j2

UB

))
dt

+
∑
j2∈Gn

∫ T

0

12C∗Λ

r2
np
∗
n(t)2

E

(∫ t

t−2h
d|Mn,j2 |(r)

×
(
FKj2

m (t+ 2h) + F0K
Gn
m (t− 4h)(NUB + rnH

j2
UB)

))
dt,

where NUB :=
∑

i∈Gn H
i
UB is the number of hubs. These two terms converge to zero

by Assumption (C6) in (4.20), (4.22) and (4.23), together with the Assumption (C7) in
(4.33). Thus we have shown that (5.65) converges to zero and (3.3) follows.

We continue with (3.4): We use (5.64) in order to obtain∣∣∣∣∣ 1

r2
n

rn∑
j1,j2,j′1j

′
2=1

j1 6=j′1,j2 6=j′2

∫ T

0

∫ t−

t−2h
ϕ̃j1j2n,j1j2

− ϕ̃j1j2j
′
1j
′
2

n,j1j2
dMn,j2(r)dMn,j1(t)

×
∫ T

0

∫ t−

t−2h
ϕ̃
j′1j
′
2

n,j′1j
′
2
(t, r)− ϕ̃j1j2j

′
2j
′
2

n,j′1j
′
2

(t, r)dMn,j′2
(r)dMn,j′1

(t)

∣∣∣∣∣
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≤ 1

r2
n

rn∑
j1,j2,j′1j

′
2=1

j1 6=j′1,j2 6=j′2

∫ T

0

4C∗

p∗n(t)2

(
F +KGn

m (t)H
j′1j
′
2

UB

)∫ t−

t−2h
d|Mn,j2 |(r)d|Mn,j1 |(t)

× 1

r2
n

∫ T

0

4C∗

p∗n(t)2

(
F +KGn

m (t)Hj1j2
UB

)∫ t−

t−2h
d|Mn,j′2

|(r)d|Mn,j′1
|(t)

≤ 1

r2
n

rn∑
j1,j2=1

j1 6=j2

∫ T

0

4C∗

p∗n(t)2
F

∫ t−

t−2h
d|Mn,j2 |(r)d|Mn,j1 |(t)

× 1

r2
n

rn∑
j′1,j
′
2

j′1 6=j′2

∫ T

0

4C∗

p∗n(t)2
F

∫ t−

t−2h
d|Mn,j′2

|(r)d|Mn,j′1
|(t)

+
1

r2
n

rn∑
j1,j2=1

j1 6=j2

∫ T

0

4C∗

p∗n(t)2

∫ t−

t−2h
d|Mn,j2 |(r)d|Mn,j1 |(t)×H

Gn
UB sup

t∈[0,T ]
KGn
m (t)

× 1

r2
n

rn∑
j′1,j
′
2

j′1 6=j′2

∫ T

0

4C∗

p∗n(t)2

∫ t−

t−2h
d|Mn,j′2

|(r)d|Mn,j′1
|(t)×HGn

UB sup
t∈[0,T ]

KGn
m (t)

+
2

r2
n

rn∑
j1,j2=1

j1 6=j2

∫ T

0

4C∗

p∗n(t)2
F

∫ t−

t−2h
d|Mn,j2 |(r)d|Mn,j1 |(t)

× 1

r2
n

rn∑
j′1,j
′
2

j′1 6=j′2

∫ T

0

4C∗

p∗n(t)2

∫ t−

t−2h
d|Mn,j′2

|(r)d|Mn,j′1
|(t)×HGn

UB sup
t∈[0,T ]

KGn
m (t)

Other than HGn
UB · supt∈[0,T ]K

Gn
m (t), all expression above may be bounded by the ex-

pression in the probability in (5.65), which we have just established to be oP (1). By
applying the Cauchy-Schwarz Inequality, we conclude also the L1 convergence under

additional use of Assumption (C8) in (4.39) and E
(
HGn
UB

(
supt∈[0,T ]K

Gn
m (t)

)4
)

= O(1)

(cf. Assumption (C6) in (4.21)).
For showing condition (3.5) we define the random number of active edges as

An(t) :=
∑
i∈Gn

sup
u∈[0,2]

Cn,i(t+ uh)

and use this to estimate for all j1, j2 ∈ Gn, all I ⊆ Gn and all r, t ∈ [0, T ]∣∣ϕ̃In,j1j2(t, r)
∣∣ ≤ 2C∗

rnp∗n(t)2
An(t). (5.66)

Using this estimate together with the estimate in (5.64), we obtain

|(3.5)|
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≤ 2

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

(∫ T

0

∫ t

t−2h

4C∗

rnp∗n(t)2

(
F +KGn

m (t)Hj1j2
UB

)
d|Mn,j2 |(r)

×
∫ t+2h

t

∫ ξ−

ξ−2h

4C∗

rnp∗n(ξ)2
An(ξ)d|Mn,j′2

|(ρ)d|Mn,j′1
|(ξ)1(¬j′1, j′2 ∈ j1(m, t))d|Mn,j1 |(t)

)

≤ 2

r2
n

∑
j1,j2,j′1,j

′
2∈Gn

j1 6=j2,j′1 6=j′2

E

(∫ T

0

∫ t

t−2h

4C∗

rnp∗n(t)2

(
F +KGn

m (t)Hj1j2
UB

)
d|Mn,j2 |(r)

× sup
ξ∈[t,t+2h]

4C∗An(ξ)

rnp∗n(ξ)
· sup
j′1,j
′
2∈Gn

j′1 6=j′2

∫ t+2h

t

∫ ξ−

ξ−2h

1

p∗n(ξ)
(ρ)d|Mn,j′2

|(ρ)d|Mn,j′1
|(ξ)

× sup
ρ∈[t−2h,t+2h]

Cn,j′2(ρ) sup
ξ∈[t,t+2h]

Cn,j′1(ξ)1(¬j′1, j′2 ∈ j1(m, t))d|Mn,j1 |(t)

)
. (5.67)

At this point we split the the sum in the first line and consider one expression with F
and one with KGn

m (t)Hj1j2
UB . In the first case with F , we will use

sup
ρ∈[t−2h,t+2h]

Cn,j′2(ρ) sup
ξ∈[t,t+2h]

Cn,j′1(ξ)
∑

j′1,j
′
2∈Gn

1(¬j′1, j′2 ∈ j1(m, t))

=
∑
j′1∈Gn

sup
ξ∈[t,t+2h]

Cn,j′1(ξ)1(j′1 ∈ j1(m, t))×
∑
j′2∈Gn

sup
ρ∈[t−2h,t+2h]

Cn,j′2(ρ)1(j′2 /∈ j1(m, t))

+
∑
j′1∈Gn

sup
ξ∈[t,t+2h]

Cn,j′1(ξ)1(j′1 /∈ j1(m, t))×
∑
j′2∈Gn

sup
ρ∈[t−2h,t+2h]

Cn,j′2(ρ)1(j′2 ∈ j1(m, t))

+
∑
j′1∈Gn

sup
ξ∈[t,t+2h]

Cn,j′1(ξ)1(j′1 /∈ j1(m, t))×
∑
j′2∈Gn

sup
ρ∈[t−2h,t+2h]

Cn,j′2(ρ)1(j′2 /∈ j1(m, t))

=3An(t)Kj1
m (t).

Now we continue with our main equality chain:

(5.67)

≤ 2

r2
n

∑
j1,j2∈Gn
j1 6=j2

E

(∫ T

0

∫ t−

t−2h

4C∗F

rnp∗n(t)2
d|Mn,j2 |(r)

× sup
ξ∈[t,t+2h]

4C∗An(ξ)

rnp∗n(ξ)
× sup
j′1,j
′
2∈Gn

j′1 6=j′2

∫ t+2h

t

∫ ξ−

ξ−2h

1

p∗n(ξ)
d|Mn,j′2

|(ρ)d|Mn,j1 |(ξ)

× 3An(t)Kj1
m (t)d|Mn,j1 |(t)

)
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+
2

r2
n

∑
j1,j2,j′1∈Gn

j1 6=j2

E

(∫ T

0

∫ t−

t−2h

4C∗

rnp∗n(t)2
KGn
m (t)(NUB + rnH

j′1
UB)d|Mn,j2 |(r)

× sup
ξ∈[t,t+2h]

4C∗An(ξ)

rnp∗n(ξ)
× sup
j′1,j
′
2∈Gn

j′1 6=j′2

∫ t+2h

t

∫ ξ−

ξ−2h

1

p∗n(ξ)
d|Mn,j′2

|(ρ)d|Mn,j1 |(ξ)d|Mn,j1 |(t)

)
.

Both expressions converge to zero by assumption (C6) in (4.24) and (4.25).
The indicator function in (3.6) is not significantly shortening the sum and hence we

just ignore it. Moreover, we use the bound from (5.66) to obtain

(3.6)

≤Λ2

r2
n

∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t

t−2h
E
[

4(C∗)2

r2
np
∗
n(t)4

An(t)2Cn,j1(t)Cn,j2(r)

]
drdt

≤Λ2

r2
n

∑
j1,j2∈Gn
j1 6=j2

∫ T

0

∫ t

t−2h
E

[(
2C∗An(t)

rnp∗n(t)

)2

· Cn,j1(t)Cn,j2(r)

p∗n(t)2

]
drdt

This converges to zero by Assumption (C8) in (4.37).
For (3.7) we finally use again that for every fixed choice of j2, j

′
2 we get

n∑
j1=1

Cn,j1(t)1(¬j2, j′2 ∈ j1(m, t− 2h)) ≤ Kj2
m (t+ 2h) +K

j′2
m (t+ 2h).

Thus, we obtain together with (5.66)

|(3.7)|

≤ Λ

r2
n

∑
j2,j′2∈Gn
j2 6=j′2

∫ T

0
E

[∫ t−

t−2h

2C∗

rnp∗n(t)2
An(t)d|Mn,j2 |(r)

×
∫ t−

t−2h

2C∗

rnp∗n(t)2
An(t)d|Mn,j′2

|(r′)
∑
j1∈Gn

Cn,j1(t)1(¬j2, j′2 ∈ j1(m, t))

]
dt

=
Λ

r2
n

∑
j2,j′2∈Gn
j2 6=j′2

∫ T

0
E

[∫ t−

t−2h

1

p∗n(t)
d|Mn,j2 |(r)

∫ t−

t−2h

1

p∗n(t)
d|Mn,j′2

|(r′)

×
(

2C∗An(t)

rnp∗n(t)

)2 (
Kj2
m (t+ 2h) +K

j′2
m (t+ 2h)

)]
dt.

Assumption (C6) in (4.26) ensures convergence of this expression to zero.
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To prove the second assumption in Statement 4.6 we will apply very similar techniques
as before. In fact, we can use almost exactly the same steps with j2 = j1 we have taken
in order to arrive at (5.62) with one exception: At some point we said that we can ignore
the indicator function 1t=r because j1 6= j2, this is not true now and we need to take
care of this. We obtain

4

hr2
n

∑
i∈Gn

∫ T

0

∑
j∈Gn
j 6=i

τn,ij(s)
2Cn,i(s)λn,i(s)ds

=
8

rn

∑
j∈Gn

∫ T

0

∫ t−

t−2h
ϕn,j(t, r)dMn,j(r)dMn,j(t) (5.68)

+
4

rn

∑
j∈Gn

∫ T

0
ϕn,j(t, t) ·∆Mn,j(t)dMn,j(t), (5.69)

where we used the abbreviation ϕn,j(r, t) := ϕn,jj(r, t). We prove that (5.68) converges to
zero in probability by applying similar techniques as before. We start by approximating
ϕn,j by its measurable approximation ϕ̃jn,j :

(5.68)

=
8

rn

∑
j∈Gn

∫ T

0

∫ t−

t−2h
ϕn,j(t, r)− ϕ̃jn,j(t, r)dMn,j(r)dMn,j(t) (5.70)

+
8

rn

∑
j∈Gn

∫ T

0

∫ t−

t−2h
ϕ̃jn,j(t, r)dMn,j(r)dMn,j(t). (5.71)

We now use again the approximation (5.64) and obtain by using martingale properties
and Markov’s Inequality in exactly the same way as in (5.65)

P(|(5.70)| > ε)

≤1

ε
E

(
8

rn

∑
j∈Gn

∫ T

0

∫ t−

t−2h

2FC∗

rnp∗n(t)2
d|Mn,j |(r)d|Mn,j |(t)

+
8

rn

∑
j∈Gn

∫ T

0

∫ t−

t−2h

2C∗F0

rnp∗n(t)2
KGn
m (t− 4h)Hj

UBd|Mn,j |(r)d|Mn,j |(t)

)
+ P

(
∀t ∈ [0, T ] : KGn

m (t) > F0 ·KGn
m (t− 4h)

)
=

8

ε

∫ T

0

2FC∗pn(t)

rnp∗n(t)2
E

(∫ t−

t−2h
d|Mn,j |(r)λn,j(t)

∣∣∣∣∣Cn,j(t) = 1

)
dt

+
8

ε

∫ T

0

2C∗F0pn(t)

rnp∗n(t)2
E

(∫ t−

t−2h
KGn
m (t− 4h)Hj

UBd|Mn,j |(r)λn,j(t)

∣∣∣∣∣Cn,j(t) = 1

)
dt

+ P
(
∀t ∈ [0, T ] : KGn

m (t) > F0 ·KGn
m (t− 4h)

)
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These expressions are small by a good choice of F and then for n large enough by
Assumptions (C8) in (4.38) and (C6) in (4.27).

For (5.71), we note that ϕ̃jn,j is predictable with respect to Fn,j,mt . Moreover, by

(5.66), |ϕjn,j(t, r)| ≤
2C∗

rnp∗n(t)2
An(t). And thus we get again by Lemma 3.12 that

P(|(5.71)| > ε)

≤16Λ

εrn

∑
j∈Gn

∫ T

0
E
(∫ t−

t−2h
|ϕjn,j(t, r)|d|Mn,j |(r)Cn,j(t)

)
dt

≤32C∗Λ

εr2
n

∑
j∈Gn

∫ T

0
E
(

1

p∗n(t)2

∫ t−

t−2h
d|Mn,j |(r) ·An(t) · Cn,j(t)

)
dt

≤32C∗Λ

ε

∫ T

0
E

(
An(t)

rnp∗n(t)
·
∫ t−

t−2h
d|Mn,j |(r)

∣∣∣∣∣Cn,j(t) = 1

)
dt.

This converges to zero by Assumption (C8) in (4.35).
We study now the convergence behaviour of (5.69). Note firstly that

(5.69)

=
4

rn

∑
j∈Gn

∫ T

0
ϕn,j(t, t)dMn,j(t) (5.72)

+
4

rn

∑
j∈Gn

∫ T

0
ϕn,j(t, t)Cn,j(t)λn,j(t)dt (5.73)

The first part, (5.72), converges to zero by an application of Proposition 3.13. We get
by said Proposition

E
(

(5.72)2
)

=
16Λ

r2
n

∑
i∈Gn

∫ T

0
E
(
ϕ̃in,i(t, t)

2Cn,i(t)
)
dt (5.74)

+
32

r2
n

∑
i,j∈Gn

E
(∫ T

0
ϕ̃ijn,i(t, t)dMn,i(t) ·

∫ T

0

(
ϕn,j(t, t)− ϕ̃ijn,j(t, t)

)
dMn,j(t)

)
(5.75)

+
16

r2
n

∑
i,j∈Gn

E
(∫ T

0

(
ϕn,i(t, t)− ϕ̃ijn,i(t, t)

)
dMn,i(t) ·

∫ T

0

(
ϕn,j(t, t)− ϕ̃ijn,j

)
dMn,j(t)

)
.

(5.76)

We apply estimates (5.64) and (5.66) to show that the three lines above converge to
zero. We have

(5.74)
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=
16Λ

r2
n

∑
i∈Gn

∫ T

0
E

((
2C∗An(t)

rnp∗n(t)2

)2
∣∣∣∣∣Cn,i(t) = 1

)
pn(t)dt

=16Λ

∫ T

0

pn(t)

rnp∗n(t)2
E

((
2C∗An(t)

rnp∗n(t)

)2
∣∣∣∣∣Cn,i(t) = 1

)
dt

which converges to zero by Assumption (C8) in (4.36). We continue with (5.75) and
(5.76) to get

(5.75)

≤32

r2
n

∑
i,j∈Gn

E
(∫ T

0

2C∗An(t)

rnp∗n(t)2
d|Mn,i|(t) ·

∫ T

0

4C∗

rnp∗n(t)2

(
F +KGn

m (t)H ij
UB

)
d|Mn,j |(t)

)
and

(5.76)

≤32

r2
n

∑
i,j∈Gn

E

(∫ T

0

4C∗

rnp∗n(t)2

(
F +KGn

m (t)H ij
UB

)
d|Mn,i|(t)

×
∫ T

0

4C∗

rnp∗n(t)2

(
F +KGn

m (t)H ij
UB

)
d|Mn,j |(t)

)
.

Both converge to zero by Assumption (C8). And we conclude that (5.72) converges to
zero.

So we have left to prove convergence of (5.73) which we do as follows: Denote by
superscripts entries of the vectors or matrices, i.e., Xr1

n,i(t)
2 refers to the square of the

r1-th entry of Xn,i(t) and f̃ r1,r2n (t+ uh, t) refers to the entry in row r1 and column r2 of

the matrix f̃n(t+ uh, t). Then

4

rn

∑
j∈Gn

∫ T

0
ϕn,j(t, t)Cn,j(t)λn,j(t)dt

=
4

rn

∑
j∈Gn

∫ T

0

1

rn

∫ 2

0

∑
i∈Gn
i 6=j

Xn,i(t+ uh)T f̃n(t+ uh, t)Xn,j(t)Xn,j(t)
T

× f̃n(t+ uh, t)Xn,i(t+ uh)Cn,i(t+ uh)λn,i(t+ uh)duCn,j(t)λn,j(t)dt

=
4

rn

∑
j∈Gn

∫ T

0

1

rn

∫ 2

0

∑
i∈Gn
i 6=j

[
Xn,i(t+ uh)T f̃n(t+ uh, t)Xn,j(t)

]2

× Cn,i(t+ uh)λn,i(t+ uh)duCn,j(t)λn,j(t)dt

=4

q∑
r1,r2,r′1,r

′
2=1

∫ T

0

∫ 2

0

1

rn

∑
i∈Gn

Xr1
n,i(t+ uh)X

r′1
n,i(t+ uh)f̃ r1,r2n (t+ uh, t)
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× 1

rn

∑
j∈Gn

Xr2
n,j(t)X

r′2
n,j(t)f̃

r′1,r
′
2

n (t+ uh, t)Cn,j(t)λn,j(t)Cn,i(t+ uh)λn,i(t+ uh)dudt

− 4

rn

q∑
r1,r2,r′1,r

′
2=1

∫ T

0

∫ 2

0

1

rn

∑
i∈Gn

Xr1
n,i(t+ uh)X

r′1
n,i(t+ uh)f̃ r1,r2n (t+ uh, t)f̃

r′1,r
′
2

n (t+ uh, t)

×Xr2
n,i(t)X

r′2
n,i(t)Cn,i(t)λn,i(t)Cn,i(t+ uh)λn,i(t+ uh)dudt

=4

q∑
r1,r2=1

r′1,r
′
2=1

∫ T

0

∫ 2

0

1

rn

∑
i∈Gn

∆
r1r′1,r1r2
n,i (t+ uh, t, t+ uh) · 1

rn

∑
j∈Gn

∆
r2r′2,r

′
1r
′
2

n,j (t, t, t+ uh)dudt

− 4

rn

q∑
r1,r2,r′1,r

′
2=1

∫ T

0

∫ 2

0

1

rn

∑
i∈Gn

∆
r1r′1,r1r2
n,i (t+ uh, t, t+ uh)∆

r2r′2,r
′
1r
′
2

n,i (t, t, t+ uh)dudt,

(5.77)

where for all a, b, c, d ∈ {1, ..., q}

∆ab,cd
n,j (τ, t, s) := Xa

n,j(τ)Xb
n,j(τ)f̃ c,dn (s, t)Cn,j(τ)λn,j(τ)

∆̃ab,cd
n,j (τ, t, s) := ∆ab,cd

n,j (τ, t, s)− E
(

∆ab,cd
n,j (τ, t, s)

)
= f̃ c,dn (s, t)

[
Xa
n,j(τ)Xb

n,j(τ)Cn,j(τ)λn,j(τ)

− E
(
Xa
n,j(τ)Xb

n,j(τ)Cn,j(τ)λn,j(τ)
) ]
.

We keep this in mind and prove now for all r1, r
′
1, r2, r

′
2 ∈ {1, ..., q}

sup
t∈[0,T ],u,v∈[0,2]

∣∣∣∣∣ 1

rn

∑
i∈Gn

∆̃
r1r′1,r1r2
n,i (t+ vh, t, t+ uh)

∣∣∣∣∣ = oP (1) (5.78)

via exponential inequality techniques. Since the argument is the same for all indices,
we omit r1, r

′
1, r2, r

′
2 in the notation. Let therefore Tn denote a grid of [0, T ] × [0, 2]2

with mesh H
− 1
αp

n,p n−kX (where kX is as in Assumption (C3)) and let (t∗, u∗, v∗) be the

projection of (t, u, v) ∈ [0, T ]× [0, 2]2 onto Tn, i.e., ‖(t, u, v)− (t∗, u∗, v∗)‖ ≤ H
− 1
αp

n,p n−kX .
We obtain

sup
t∈[0,T ],u,v∈[0,2]

∣∣∣∣∣ 1

rn

∑
i∈Gn

∆̃n,i(t+ vh, t, t+ uh)

∣∣∣∣∣
≤ sup
t∈[0,T ],u,v∈[0,2]

∣∣∣∣∣ 1

rn

∑
i∈Gn

(
∆̃n,i(t+ vh, t, t+ uh)− ∆̃n,i(t

∗ + v∗h, t∗, t∗ + u∗h)
) ∣∣∣∣∣ (5.79)

+ sup
t∈[0,T ],u,v∈[0,2]

∣∣∣∣∣ 1

rn

∑
i∈Gn

∆̃n,i(t
∗ + v∗h, t∗, t∗ + u∗h)

∣∣∣∣∣. (5.80)
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For (5.79) we note that by Assumption (C3), 3, we have that∣∣∣∣∣ (Σ−TΣ−1
)

(t+ h(u− ν))
w(t+ h(u− ν))

p∗n(t+ h(u− ν))
pn(t+ vh)

−
(
Σ−TΣ−1

)
(t∗ + h(u∗ − ν))

w(t∗ + h(u∗ − ν))

p∗n(t∗ + h(u∗ − ν))
pn(t∗ + v∗h)

∣∣∣∣∣
≤C (|(t+ h(u− ν), t+ vh)− (t∗ + h(u∗ − ν), t∗ + v∗h)|)
=C (|(t− t∗ + h(u− u∗), t− t∗ + h(v − v∗))|)

≤C
(

2H
− 1
αp

n,p n−kX
)
.

This estimation holds as well if we had just considered one entry of the matrix Σ−TΣ−1.
Thus, we can estimate by boundedness of w and Σ−1 and by choice of kX∣∣∣pn(t+ vh)f̃ r1r2n (t+ uh, t)− pn(t∗ + v∗h)f̃ r1r2n (t∗ + u∗h, t∗)

∣∣∣
≤
∫ 1

−1
K(ν)K(u+ ν)dν · C

(
2H
− 1
αp

n,p n−kX
)
dν

+

∫ 1

−1
K(ν)w(t∗ + h(u∗ − ν))pn(t∗ + v∗h)dν

HK

pn
|u− u∗|αKM2dν

≤KC
(

2H
− 1
αp

n,p n−kX
)

+O(1) · 1

pn

(
H
− 1
αp

n,p n−kX
)αK

= o(pn).

Recall ξn,i(t) = Xn,i(t)Xn,i(t)Cn,i(t)λn,i(t). We find now for (5.79) by boundedness of
the covariates (note that we omit also indices on Xn,j and take them as univariate here)∣∣∣∣∣ 1

rn

∑
i∈Gn

(
∆̃n(t+ vh, t, t+ uh)− ∆̃n,i(t

∗ + v∗h, t∗, t∗ + u∗h)
)∣∣∣∣∣

=

∣∣∣∣∣ (pn(t+ uh)f̃n(t+ uh, t)− pn(t∗ + u∗h)f̃n(t∗ + u∗h, t∗)
)

×
(
ξn,i(t+ vh)

pn(t+ vh)
− E

(
ξn,i(t+ vh)

pn(t+ vh)

))
+ pn(t∗ + u∗h)f̃n(t∗ + u∗h, t∗)

×
(
ξn,i(t+ vh)

pn(t+ uh)
− ξn,i(t

∗ + v∗h)

pn(t∗ + u∗h)
− E

(
ξn,i(t+ vh)

pn(t+ uh)
− ξn,i(t

∗ + v∗h)

pn(t∗ + u∗h)

)) ∣∣∣∣∣
≤
(
KC

(
2H
− 1
αp

n,p n−kX
)

+O(1) · 1

pn

(
H
− 1
αp

n,p n−kX
)αK)

· K̂
2Λ

pn

+K2M2‖w‖∞
1

pn
·
(
ξn,i(t+ vh)

pn(t+ vh)
− ξn,i(t

∗ + v∗h)

pn(t∗ + v∗h)
− E

(
ξn,i(t+ vh)

pn(t+ vh)
− ξn,i(t

∗ + v∗h)

pn(t∗ + v∗h)

))
.
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The first line converges to zero as just discussed and for the second line, we make the
following considerations. It holds that

1

rnpn

∑
j∈Gn

[
1

pn(t+ vh)
Xn,j(t+ vh)Xn,j(t+ vh)Cn,j(t+ vh)λn,j(t+ vh)

− 1

pn(t∗ + v∗h)
Xn,j(t

∗ + v∗h)Xn,j(t
∗ + v∗h)Cn,j(t

∗ + v∗h)λn,j(t
∗ + v∗h)

]
(5.81)

+
1

pn
E

(
Xn,j(t+ vh)Xn,j(t+ vh)

Cn,j(t+ vh)

pn(t+ vh)
λn,j(t+ vh)

−Xn,j(t
∗ + v∗h)Xn,j(t

∗ + v∗h)
Cn,j(t

∗ + v∗h)

pn(t∗ + v∗h)
λn,j(t

∗ + v∗h)

)
.

The expectation behaves well because we assume uniform continuity of it in Assumption
(C2), 1 and the choice of kX in Assumption (C3), 1. For (5.81) we have (use the
continuity Assumptions (C3), 2 and (C1), 3)

sup
t∈[0,T ],v∈[0,2]

|(5.81)|

≤ sup
t∈[0,T ],v∈[0,2]

1

pnrn

∑
j∈Gn

[ ∣∣∣∣ 1

pn(t+ vh)
− 1

pn(t∗ + v∗h)

∣∣∣∣ K̂2Λ

+
1

pn(t+ vh)

(
Cξ(|t− t∗|+ h|v − v∗|)

+ (Number of jumps of ξn,j on [t+ vh, t∗ + v∗h]) · ι
)]

≤Hn,p

pn

∣∣∣∣H− 1
αp

n,p n−kX
∣∣∣∣αp K̂2Λ +

1

p2
n

Cξ(n−kX )

+ sup
t∈[0,T ],v∈[0,2]

sup
s:|t−s|≤n−kX

1

rnpnpn(t+ v)

∑
j∈Gn

(Number of jumps of ξn,j on [s, t]) · ι.

By choice of the mesh H
− 1
αp

n,p n−kX and the choice of kX in Assumption (C3), 2 everything
converges to zero. Hence, (5.79) = oP (1).

Lastly we need to discuss (5.80). To this end, we apply a standard union bound
technique together with Lemma 3.29. We can estimate when noting the sup in (5.80) is
actually only taken overTn that for every ε > 0 by (5.63) (recall ξn,j = Xn,jXn,jCn,jλn,j)

P ((5.80) > ε)

=P

(
sup

(t,u,v)∈Tn

∣∣∣f̃n(t+ uh, t)
∣∣∣ · 1

rn

∣∣∣∣∣ ∑
j∈Gn

[
ξn,j(t+ vh)− E (ξn,j(t+ vh))

]∣∣∣∣∣ > ε

)
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≤P

(
sup

(t,u,v)∈Tn

1

rnp∗n(t)

∣∣∣∣∣ ∑
j∈Gn

[
ξn,j(t+ vh)− E (ξn,j(t+ vh))

]∣∣∣∣∣ > ε

C

)

≤#Tn · sup
(t,u,v)∈Tn

P

 1

rnp∗n(t)

∑
j∈Gn

[
ξn,j(t+ vh)− E (ξn,j(t+ vh))

]
>

ε

C


+ #Tn · sup

(t,u,v)∈Tn
P

 1

rnp∗n(t)

∑
j∈Gn

[
ξn,j(t+ vh)− E (ξn,j(t+ vh))

]
< − ε

C

 .

We will see that the two lines above work completely analogously and hence, we continue
only with the first line. The prove for second line is then identical, we just have to replace
ξn,j by −ξn,j . We will also replace now ε

C by ε for notational convenience. We have

#Tn · sup
(t,u,v)∈Tn

P

 1

rnp∗n(t)

∑
j∈Gn

[
ξn,j(t+ vh)− E (ξn,j(t+ vh))

]
> ε


≤#Tn · sup

(t,u,v)∈Tn

[
P(Γ∗,tn = 0) (5.82)

+ P

 1

rnp∗n(t)

∑
j∈Gn

[
ξn,j(t+ vh)Γ∗,tn − E

(
ξn,j(t+ vh)Γ∗,tn

) ]
> ε

 (5.83)

+ P
(

1

p∗n(t)
E
(
ξn,j(t+ vh)

(
Γ∗,tn − 1

))
> ε

)]
. (5.84)

We have that line (5.82) converges to zero by Assumption (C4*). Note next that the
expression in the probability in (5.84) is actually deterministic and hence the probability
equals either zero or one. We have by assumption (C1), 2 that

sup
t∈[0,T ],v∈[0,2]

E
(

1

p∗n(t)
ξn,j(t+ vh)

(
Γ∗,tn − 1

))
≤ sup
t∈[0,T ]

K̂2ΛE
(∣∣Γ∗,tn − 1

∣∣ ∣∣∣Cn,j(t) = 1
) pn(t)

p∗n(t)
→ 0

as n → ∞ by Assumption (C4*). Thus for n large enough, we have that (5.84) equals
zero. Finally, for line (5.83), we apply Lemma 3.29 to

Zi = ξn,i(t+ vh)Γtn.

The second part of Definition 3.28 is fulfilled by the Assumptions in (C4*). We need to
check the moment bound in the first part of Definition 3.28. We get for ρ ≥ 2 (note the
definition of Γ∗,tn )

E
(∣∣∣Un,tk,m(∆n)

∣∣∣ρ)
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=E

∣∣∣∣∣∣
∑
j∈Gn

ξn,j(t+ vh)Γ∗,tn I
k,m,t
n,j (∆n)− E

(
ξn,j(t+ vh)Γ∗,tn I

k,m,t
n,j (∆n)

)∣∣∣∣∣∣
ρ

≤E

∣∣∣∣∣∣
∑
j∈Gn

ξn,j(t+ vh)Γ∗,tn I
k,m,t
n,j (∆n)− E

(
ξn,j(t+ vh)Γ∗,tn I

k,m,t
n,j (∆n)

)∣∣∣∣∣∣
2

×
(

2K̂2Λ · E∗,n,tk

)ρ−2

≤σ2E∗,n,tk,m ·
(

2K̂2Λ · E∗,n,tk

)ρ−2

by Assumption (C7) in (4.34) because

1

E∗,n,tk,m

Var

∑
j∈Gn

ξn,j(t+ vh)Γ∗,tn I
k,m,t
n,j (∆n)


=

1

rnp
∗,k,m
n (t)

∑
i,j∈Gn

Cov
(
ξn,i(t+ vh)Γ∗,tn I

k,m,t
n,i (∆n), ξn,j(t+ vh)Γ∗,tn I

k,m,t
n,j (∆n)

)
Thus, we may apply Lemma 3.29 with c1 := 2K̂2Λ. Choose x so large such that

H
1
α
n,pn

kX · sup
(t,u,v)∈Tn

(rnp
∗
n(t))

− c2x
2

2(σ2+c1c3x) → 0

for n→∞ (this is possible by Assumption (C1), 4). We obtain therefore by Assumption

(C4*) because here |E|n,t =
∑

k,mE
∗,n,t
k,m = p∗n(t) for n so large such that x·

√
log |E|n,t
|E|n,t ≤ ε

(5.83)

≤#Tn · sup
(t,u,v)∈Tn

P

(
1

|E|n,t

∑
j∈Gn

[
ξn,j(t+ vh)Γ∗,tn − E

(
ξn,j(t+ vh)Γ∗,tn

)]
> x ·

√
log |E|n,t
|E|n,t

)

≤#Tn · sup
(t,u,v)∈Tn

(
K · |rnp∗n(t)|−

c2x
2

2(σ2+c1c3x) + βt(∆n)Krn

)
→ 0

because #Tn ≈ H
1
αp
n,pnkX . This was the last piece for establishing (5.78). Because of

that we can continue to compute (5.73). We note firstly that by Assumption (C1), 2
and (5.63)

1

rn
∆
r2r′2,r1r

′
2

n,i ≤ 1

rnp∗n(t)
CK̂2Λ→ 0
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as n → ∞. Thus, the second line in (5.77) converges to zero and the limit of (5.77) is
the same as

4

q∑
r1,r2,r′1,r

′
2=1

∫ T

0

∫ 2

0
E
(

∆
r1r′1,r1r2
n,j (t+ uh, t, t+ uh)

)
· E
(

∆
r2r′2,r

′
1r
′
2

n,j (t, t, t+ uh)
)
dudt

→4

q∑
r1,r2,r′1,r

′
2=1

K(4)

∫ T

0
P r1,r

′
1(t)P r2,r

′
2(t)[Σ−TΣ−1]r1,r2(t)[Σ−TΣ−1]r

′
1,r
′
2(t)w(t)2dt

=4K(4)

∫ T

0
trace

((
P (t)Σ−T (t)Σ−1(t)

)2)
w2(t)dt,

by the continuity assumptions in (B7), (C2), 2 and (C2), 1 and where

K(4) :=

∫ 2

0

(∫ 1

−1
K(v)K(u+ v)dv

)2

du

P r1,r2 := E
(
Xr1
n,j(t)X

r2
n,j(t)λn,j(t)

∣∣∣Cn,j(t) = 1
)
.

This proves the statement.

Proposition 5.22. Suppose that Statement 4.6 holds (cf. Proposition 5.21). Then,
Statement 4.7 holds true.

Proof. For any given ε > 0 we obtain, by applying Lenglart’s Inequality as in Corollary
2.11 and simply taking the sup

4

hr2
n

∑
i∈Gn

∫ T

0
1

∥∥∥∥∥∥ 2

h
1
2 rn

∑
j 6=i

τn,ij(s)

∥∥∥∥∥∥ > ε

∑
j 6=i

τn,ij(s)

2

λn,i(s)ds

≤1

 sup
s∈[0,T ],i∈Gn

∥∥∥∥∥∥ 2

h
1
2 rn

∑
j 6=i

τn,ij(s)

∥∥∥∥∥∥ > ε

 4

hr2
n

∑
i∈Gn

∫ T

0

∑
j 6=i

τn,ij(s)

2

λn,i(s)ds.

Statement 4.6 is stating that the second part is converging and hence it is sufficient to
prove that the indicator function is converging to zero in probability which is equivalent
of proving uniform convergence in probability (uniform in i and s) of

1

h
1
2 rn

∑
j 6=i

τn,ij(s)

to zero. We are going to employ Lemma 5.28. To this end note firstly that τn,ij(s) has
the following structure

τn,ij(s) = Xn,i(s)
T

∫ s−

0
f̃n(s, t)Xn,j(t)dMn,j(t),
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where

f̃n(s, t) :=

∫ T−δ

δ

1

h
K

(
s− t0
h

)
K

(
t− t0
h

)
Σ(t0)−TΣ(t0)−1 w(t0)

p̄n(t0)
dt0.

We can simplify the expression by interchanging the integrals, taking the norm inside
and using all boundedness properties from Assumptions (C1), 2 and (B7):

sup
s∈[0,T ],i∈Gn

1

h
1
2 rn

∥∥∥∥∥∥
∑
j 6=i

τn,ij(s)

∥∥∥∥∥∥
= sup
s∈[0,T ],i∈Gn

h
1
2

∫ T−δ

δ
‖Xn,i(s)‖

1

h
K

(
s− t0
h

)∥∥Σ(t0)−TΣ(t0)−1
∥∥w(t0)

× 1

rnp̄n(t0)

∑
j 6=i

∫ s−

0

1

h
K

(
t− t0
h

)
‖Xn,j(t)‖d|Mn,j |(t)dt0.

≤h
1
2 K̂M2 sup

s∈[0,T ]

∫ T−δ

δ

1

h
K

(
s− t0
h

)
w(t0)

× 1

rnp̄n(t0)

∑
j∈Gn

∫ T

0

1

h
K

(
t− t0
h

)
‖Xn,j(t)‖d|Mn,j |(t)dt0

≤h
1
2 K̂M2‖w‖∞

× sup
t0∈T

1

rnp̄n(t0)

∑
j∈Gn

∫ T

0

1

h
K

(
t− t0
h

)
‖Xn,j(t)‖dMn,j(t) (5.85)

+ h
1
2 2K̂2M2Λ‖w‖∞

× sup
t0∈T

1

rnp̄n(t0)

∑
j∈Gn

∫ T

0

1

h
K

(
t− t0
h

)
Cn,i(t)dt. (5.86)

Now, (5.85) = oP (1) because the expression in (5.85) is the same as in `′n(θ0, t0) but with
Xn,j(t) replaced by ‖Xn,j(t)‖. Moreover, all mixing properties valid for Xn,j(t) hold for
‖Xn,j(t)‖ as well and, of course, ‖Xn,j(t)‖ is also bounded. Thus, we may repeat the
proof of Proposition 5.12 and all subsidiary results word by word and (5.85) converges

to zero in probability. We also have that (5.86) is OP

(
h

1
2

)
= oP (1) by (5.94). Hence,

we have shown that

sup
s∈[0,T ],i∈Gn

1

h
1
2 rn

∥∥∥∥∥∥
∑
j 6=i

τn,ij(s)

∥∥∥∥∥∥ = oP (1)

and this finalizes the proof of the statement.

Proposition 5.23. Suppose that Assumptions (B4), 2, (B6) and (B7) as well as (C1),
1, 2 and 4, (C2), 2, (C4) and (4.30) and (4.31) in (C7) hold. Then, Statement 4.8 holds
true.
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Proof. We will prove shortly that 1
rnp̄n(t0)`

′′
n(t0, θ0) converges uniformly (in t0) to Σ(t0, θ0).

So let us assume this for the moment. And define the event An by

An :=

{
∀t0 ∈ [δ, T − δ] :

∥∥∥∥ 1

rnp̄n(t0)
`′′n(θ0, t0)− Σ(t0, θ0)

∥∥∥∥ ≤ ρ} ,
where ρ is the same as in Assumption (B7). So we have that P(An) → 1. On An, we
find ∥∥∥∥∥

[
1

rnp̄n(t0)
`′′n(θ0, t0)

]−1

− Σ(t0, θ0)−1

∥∥∥∥∥
≤

∥∥∥∥∥
[

1

rnp̄n(t0)
`′′n(θ0, t0)

]−1
∥∥∥∥∥ ·
∥∥∥∥Σ(t0, θ0)− 1

rnp̄n(t0)
`′′n(θ0, t0)

∥∥∥∥ · ∥∥Σ(t0, θ0)−1
∥∥ .

By Assumption (B7), we know that

∥∥∥∥[ 1
rnp̄n(t0)`

′′
n(θ0, t0)

]−1
∥∥∥∥ and

∥∥Σ(t0, θ0)−1
∥∥ are both

bounded by M and hence we may conclude

sup
t0∈[δ,T−δ]

∥∥∥∥∥
[

1

rnp̄n(t0)
`′′n(θ0, t0)

]−1
∥∥∥∥∥ = OP (1)

as required. So let us prove the uniform convergence of 1
rnp̄n(t0)`

′′
n(θ0, t0) to Σ(θ0, t0).

Denote therefore by Tn a grid of T with mesh h ·min

(
H
− 1
αp

n,p , h · p
1
αK
n

)
and let for t0 ∈ T

be t∗0 be the projection of t0 on Tn, i.e., we have |t0 − t∗0| ≤ h · min

(
H
− 1
αp

n,p , h · p
1
αK
n

)
.

Then we obtain

sup
t0∈T

∥∥∥∥ 1

rnp̄n(t0)
`′′n(θ0, t0)− Σ(θ0, t0)

∥∥∥∥
≤ sup
t0∈T

∥∥∥∥ 1

rnp̄n(t0)
`′′n(θ0, t0)− 1

rnp̄n(t∗0)
`′′n(θ0, t

∗
0)

∥∥∥∥+ sup
t0∈T
‖Σ(θ0, t0)− Σ(θ0, t

∗
0)‖ (5.87)

+ sup
t0∈T

∥∥∥∥ 1

rnp̄n(t∗0)
`′′n(θ0, t

∗
0)− Σ(θ0, t

∗
0)

∥∥∥∥ . (5.88)

The second sup in (5.87) is converging to zero because supt0∈T |t0− t
∗
0| → as n→∞ and

by uniform continuity of t 7→ Σ(θ0, t) (cf. Assumption (C2), 2) we conclude that also
supt0∈T ‖Σ(θ0, t0)− Σ(θ0, t

∗
0)‖ → 0 as n → ∞. To prove that the first part of (5.87) is

oP (1), we see that for |t0−t∗0| ≤ h·min

(
H
− 1
αp

n,p , h · p
1
αK
n

)
≤ h we can employ the Hoelder

continuity from Assumptions (B4), 2 and (B6) (use all bounds from Assumption (C1),
2 and recall that kernels are supported on [−1, 1] by Assumption (B4), 2)∥∥∥∥ 1

rnp̄n(t0)
`′′n(θ0, t0)− 1

rnp̄n(t∗0)
`′′n(θ0, t

∗
0)

∥∥∥∥
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≤K̂
2eτ ·K̂

rn

∑
i∈Gn

∫ T

0

∣∣∣∣ 1

h · p̄n(t0)
K

(
s− t0
h

)
− 1

h · p̄n(t∗0)
K

(
s− t∗0
h

)∣∣∣∣ ds
≤K̂2eτ ·K̂

(∫ t0+2h

t0−2h

1

hp̄n(t0)

∣∣∣∣K (s− t0h

)
−K

(
s− t∗0
h

)∣∣∣∣ ds+

∣∣∣∣ 1

p̄n(t0)
− 1

p̄n(t∗0)

∣∣∣∣)
≤K̂2eτK̂

(
4HK

hαKpn
· |t0 − t∗0|αK +Hn,p · |t0 − t∗0|αp

)
≤K̂2eτK̂ (4HKh

αK + hαp)→ 0

as n → ∞. Finally, we have to prove that (5.88) is also oP (1). To this end, we firstly
note that the sup is actually only taken over Tn because we only consider t∗0. So we apply
a standard union bound technique to get the sup out of the probability and we include
Γt0n : Let x > 0 and recall the Definition of Hn,i(s, θ) = −Cn,i(s)Xn,i(s)Xn,i(s)

T eθ
TXn,i(s)

from the proof of Proposition 5.13. Then,

P
(

sup
t0∈T

∥∥∥∥ 1

rnp̄n(t∗0)
`′′n(θ0, t

∗
0)− Σ(θ0, t

∗
0)

∥∥∥∥ > x

)
=P

(
sup
t0∈Th

∥∥∥∥ 1

rnp̄n(t0)
`′′n(θ0, t0)− Σ(θ0, t0)

∥∥∥∥ > x

)

=#Tn · sup
t0∈T

P
(∥∥∥∥ 1

rnp̄n(t0)
`′′n(θ0, t0)− Σ(θ0, t0)

∥∥∥∥ > x

)
≤#Tn · sup

t0∈T

[
P
(
Γt0n = 1

)
(5.89)

P

(∥∥∥∥∥ 1

rnp̄n(t0)

∑
i∈Gn

1

h

∫ T

0
K

(
s− t0
h

)

×
(
Hn,i(s, θ0)Γt0n − E

(
Hn,i(s, θ0)Γt0n

))
ds

∥∥∥∥∥ > x

4

)
(5.90)

+ P
(∥∥∥∥ 1

p̄n(t0)
· 1

h

∫ T

0
K

(
s− t0
h

)
E
(
Hn,i(s, θ0)

(
Γt0n − 1

))
ds

∥∥∥∥ ≥ x

4

)
(5.91)

+ P

(∥∥∥∥1

h

∫ T

0
K

(
s− t0
h

)
Σ(s, θ0)

pn(s)

p̄n(t0)
ds− Σ(θ0, t0)

∥∥∥∥ ≥ x

2

)]
. (5.92)

Now, line (5.89) converges to zero by Assumption (C4) because

#Tn ≤ T ·
(
h−1 ·H

1
αp
n,p + h−2p

− 1
αK

n

)
,

the probability in line (5.91) is either zero or one because the term inside is deterministic.
But by Lemma 5.29 it converges to zero and hence the probability equals zero for n large
enough (regardless of the size of Tn). Similarly, the probability in line (5.92) equals zero
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for n large enough because

1

h

∫ T

0
K

(
s− t0
h

)
Σ(s, θ0)

pn(s)

p̄n(t0)
− Σ(θ0, t0)

=
1

h

∫ T

0
K

(
s− t0
h

)
(Σ(s, θ0)− Σ(t0, θ0))

pn(s)

p̄n(t0)
ds = (5.53) = o(1).

Finally, line (5.90) will be treated by applying Lemma 3.29 to

Zn,i := −1

h

∫ T

0
K

(
s− t0
h

)
Hn,i(s, θ0)Γθ0n ds.

Note therefore firstly that we may work element-wise because we can estimate the norm
from above by the 1-norm and consider each term separately (note that the dimension of
the covariates is not increasing). Thus, we may pretend for the following that Hn,i(s, θ0)
is a number rather than a matrix. Moreover, we can repeat the following proof word by
word for −Hn,i(s, θ0) and thus we may consider Hn,i(s, θ0) instead of |Hn,i(s, θ)|. In order
to apply Lemma 3.29, we need to fulfil the assumptions from Definition 3.28. The first
part is most importantly Statement 5.30 together with the following inequality: Let ρ ≥ 2
and recall that |Zn,i| ≤ K̂2ΛΓt0n . Moreover, on Γt0n we have

∑
i∈Gn I

k,m
n,i ≤ Sk ≤ En,t0k .

Thus,

E
(∣∣∣Un,t0k,m

∣∣∣ρ)
≤E

∣∣∣Un,t0k,m

∣∣∣2 · ∣∣∣∣∣∑
i∈Gn

(Zn,iI
k,m
n,i − E(Zn,iI

k,m
n,i ))

∣∣∣∣∣
ρ−2


≤E
(∣∣∣Un,t0k,m

∣∣∣2) · ∣∣∣2K̂2Λ · En,t0k

∣∣∣ρ−2
.

Now, Statement 5.30 yields that there is a σ2 > 0 such that the first part of Definition
3.28 holds true with c1 = 2K̂2Λ. The second part holds by Assumption (C4). Note that
|E|n,t0 = rnp̄n(t0) → ∞, then for any x, c > 0 there is N ∈ N such that for n ≥ N ,
x
4 ≥ c

√
log |E|n,t0
|E|n,t0

. So we get by Lemma 3.29

P

(
1

rnp̄n(t0)

∑
i∈Gn

(Zn,i − E(Zn,i)) ≥
x

4

)

≤P

(
1

rnp̄n(t0)

∑
i∈Gn

(Zn,i − E (Zn,i)) ≥ c ·

√
log |E|n,t0
|E|n,t0

)

≤K exp

− log rnp̄n(t0) · c2 · c2

2
(
σ2 + 2K̂Λc3 · c

)
+ βt0(∆n) · Krn.
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By Assumption (C4), we find that βt0(∆n) · Krn · #Tn converges to zero. Also we see
that for c chosen large enough, the exponential above converges faster to zero than #Tn
(cf. Assumption (C1), 4). In total we have thus shown that (5.90) converges to zero.
Thus, we have finally shown

sup
t0∈T

∥∥∥∥ 1

rnpn(t0)
`′′n(θ0, t0)− Σ(θ0, t0)

∥∥∥∥→ 0

in probability as n→∞. This finalizes the proof of the Statement.

Proposition 5.24. Suppose that Assumptions (B6), (C1), 1 and 2, (C4) and (C7),
(4.32) hold. Then, Statement 4.9 holds true.

Proof. We note firstly that by Assumption (C1), 2 for all t0 ∈ T and all θ1, θ2 ∈ Θ we
can estimate by a Taylor approximation∥∥∥Xn,i(s)Xn,i(s)

TCn,i(s)
(
eθ
T
1 Xn,1(s) − eθT2 Xn,i(s)

)∥∥∥
≤K̂3eτK̂‖θ1 − θ2‖. (5.93)

Hence, we obtain for all t0 ∈ T and all θ1, θ2 ∈ Θ

1

rnp̄n(t0)

∥∥`′′n(θ1, t0)− `′′n(θ2, t0)
∥∥

≤ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Cn,i(s)

∥∥Xn,i(s)Xn,i(s)
T
∥∥ · ∣∣∣eθT1 Xn,i(s) − eθT2 Xn,i(s)∣∣∣ ds

≤ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Cn,i(s)ds · K̂3eτK̂ · ‖θ1 − θ2‖.

Hence, we can choose Kn := supt0∈T K̂
3eτK̂ · 1

rnp̄n(t0)

∑
i∈Gn

∫ T
0

1
hK

(
s−t0
h

)
Cn,i(s)ds

which is OP (1) if

sup
t0∈T

1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Cn,i(s)ds = OP (1). (5.94)

So let us prove this. Denote therefore by Tn a grid with mesh h ·min

{
H
− 1
αp

n,p , h · p
1
αK
n

}
which covers T. For a given time t0 ∈ T we denote by t∗0 ∈ Th the closest element of Tn

to t0, i.e., |t0− t∗0| ≤ h ·min

{
H
− 1
αp

n,p , h · p
1
αK
n

}
. Now we split the sup over an uncountable

set as usual in a sup over close elements and a sup over a finite set:

sup
t0∈T

1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Cn,i(s)ds
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≤ sup
t0∈T

∫ T

0

1

rnh

[
1

p̄n(t0)
K

(
s− t0
h

)
− 1

p̄n(t∗0)
K

(
s− t∗0
h

)] ∑
i∈Gn

Cn,i(s)ds

+ sup
t0∈T

∫ T

0

1

rnp̄n(t∗0)h
K

(
s− t∗0
h

) ∑
i∈Gn

Cn,i(s)ds

≤ sup
t0∈T

∫ T

0

1

rnh

∣∣∣∣ 1

p̄n(t0)
− 1

p̄n(t∗0)

∣∣∣∣K (s− t0h

) ∑
i∈Gn

Cn,i(s)ds (5.95)

+ sup
t0∈T

∫ T

0

1

rnp̄n(t∗0)h

∣∣∣∣K (s− t0h

)
−K

(
s− t∗0
h

)∣∣∣∣ ∑
i∈Gn

Cn,i(s)ds (5.96)

+ sup
t0∈T

∫ T

0

1

rnp̄n(t∗0)h
K

(
s− t∗0
h

) ∑
i∈Gn

Cn,i(s)ds. (5.97)

We apply the Hoelder continuity of 1
p̄n(t)(cf. Assumption (B6)) together with |t0− t∗0| ≤

hH
− 1
αp

n,p in order to see that

(5.95) ≤ sup
t0∈T

∫ T

0

1

h
K

(
s− t0
h

)
ds ·Hn,p|t0 − t∗0|αp ≤ hαp .

And hence (5.95) = O(1). Since the kernel is supported on [−1, 1], we see that∣∣∣∣K (s− t0h

)
−K

(
s− t∗0
h

)∣∣∣∣ ≤ 2K1(s ∈ [t0 − h, t0 + h] ∪ [t∗0 − h, t∗0 + h]).

As |t0 − t∗0| ≤ h2 · p
1
αK
n ≤ h, we find that

(5.96) ≤ sup
t0∈T

∫ t0+2h

t0−2h

HK

p̄n(t∗0)h

|t0 − t∗0|αK
hαK

ds

≤4HK

pn
pnh

αK

≤4HKh
αK → 0

as n→∞. Finally, we show now the proof for (5.97). We begin with extracting the sup
outside the probability and inserting Γt0n :

P((5.97) > x)

=P

(
sup
t0∈T

1

rnp̄n(t∗0)h

∫ T

0
K

(
s− t∗0
h

) ∑
i∈Gn

Cn,i(s)ds > x

)

≤#Tn · sup
t0∈Tn

P

(
1

rnp̄n(t0)h

∫ T

0
K

(
s− t0
h

) ∑
i∈Gn

Cn,i(s)ds > x

)

≤#Tn · sup
t0∈Tn

[
P(Γt0n = 0)
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+ P

(
1

rnp̄n(t0)h

∫ T

0
K

(
s− t0
h

) ∑
i∈Gn

Cn,i(s)Γ
t0
n ds > x

)]

≤#Tn · sup
t0∈Tn

[
P(Γt0n = 0) (5.98)

+ P

(
1

rnp̄n(t0)h

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)

×
(
Cn,i(s)Γ

t0
n − E(Cn,i(s)Γ

t0
n )
)
ds >

x

2

)
(5.99)

+ P
(

1

p̄n(t0)h

∫ T

0
K

(
s− t0
h

)
E(Cn,1(s)Γt0n )ds >

x

2

)]
. (5.100)

For line (5.100), we note that the expression in the probability is deterministic and that

it can be bounded from above by 1
h

∫ T
0 K

(
s−t0
h

) pn(s)
p̄n(t0)ds = 1 and hence the probability

equals zero for x large enough. Line (5.98) converges to zero by Assumption (C4) because

#Tn = O

(
h−1 ·H

1
αp
n,p + h−2p

− 1
αK

n

)
. For line (5.99), we will apply Lemma 3.29 to

Zn,i =
1

h

∫ T

0
K

(
s− t0
h

)
Γt0n Cn,i(s)ds.

We need to fulfil the requirements in Definition 3.28. The second part is true by As-
sumption (C4) but we have to prove the moment bound in the first part of Definition
3.28. By definition of Γt0n , we obtain for natural numbers ρ ≥ 2

E
(∣∣∣Un,t0k,m

∣∣∣ρ)
≤E

(∑
i∈Gn

1

h

∫ T

0
K

(
s− t
h

)
(Γt0n Cn,i(s)I

k,m
n,i − E(Γt0n Cn,i(s)I

k,m
n,i ))ds

)2


×
(

2En,tk

)ρ−2

≤

 ∑
i,j∈Gn
|ei∩ej |=0

+
∑
i,j∈Gn
|ei∩ej |=1

+
∑
i,j∈Gn
|ei∩ej |=2

 1

h2

∫∫
[0,T ]2

K

(
s− t0
h

)
K

(
t− t0
h

)

× Cov(Cn,i(s)I
k,m
n,i Γt0n , Cn,j(t)I

k,m
n,j Γt0n )dsdt

×
(

2En,tk

)ρ−2
.

In the case |ei ∩ ej | = 2, i.e., if i = j, we see that∑
i∈Gn

1

h2

∫∫
[0,T ]2

K

(
s− t0
h

)
K

(
t− t0
h

)
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× Cov(Cn,i(s)I
k,m
n,i Γt0n , Cn,j(t)I

k,m
n,j Γt0n )dsdt

≤rn
h

∫ T

0
K

(
s− t0
h

)
E
(
Ik,mn,1 Cn,1(s)

)
ds

=En,t0k,m

In the other two cases, we quote Assumption (C7): Let ν ∈ {0, 1} and let i0, j0 ∈ Gn
with |ei0 ∩ ej0 | = ν. Note that the number of terms in the sum

∑
i,j∈Gn

|ei∩ej |=ν
is smaller than

n4−ν . Then,

1

En,t0k,m

∑
i,j∈Gn
|ei∩ej |=ν

1

h2

∫∫
[0,T ]2

K

(
s− t0
h

)
K

(
t− t0
h

)

× Cov
(
Cn,i(s)I

k,m
n,i Γt0n , Cn,j(t)I

k,m
n,j Γt0n

)
dsdt

≤n
4−ν

rn

1

h2

∫∫
[0,T ]2

K

(
s− t0
h

)
K

(
t− t0
h

) Cov
(
Cn,i0(s)Ik,mn,i0 Γt0n , Cn,j0(t)Ik,mn,j0Γt0n

)
p̄k,mn (t0)

dsdt

which is bounded by Assumption (C7) in (4.32). Hence, the first part of Definition
3.28 is fulfilled with c1 = 2 and for some σ > 0. So we may apply Lemma 3.29 to the
probability in (5.99) (note that here |E|n,t0 = rnp̄n(t0)).

(5.99)

=P

(
1

rnp̄n(t0)

∑
i∈Gn

Zn,i > x

)

≤K · exp

− log rnp̄n(t0) ·
c2x

2 rnp̄n(t0)
log rnp̄n(t0)

2
(
σ2 + 2c3x ·

√
rnp̄n(t0)

log rnp̄n(t0)

)
+ βt0(∆n) · Krn

≤K · exp

(
−
c2x

2
√
rnp̄n(t0)

2 (σ2 + 2c3x)

)
+ βt0(∆n) · Krn.

By Assumption (C4), we see that the above expression converges to zero because #Th =

O

(
h−1 ·H

1
αp
n,p + h−2p

− 1
αK

n

)
and this completes the proof.

Proposition 5.25. Suppose that Assumption (C1) 4 holds. Then, Statement 4.10 holds
true.

Proof. We begin by proving the Hoelder continuity of H̃n,i(s, θ) in θ. In fact, H̃n,i(s, θ)
is even Lipschitz continuous because we can apply (5.93) to obtain for s ∈ [0, T ] and
θ1, θ2 ∈ Θ ∥∥∥H̃n,i(s, θ1)− H̃n,i(s, θ2)

∥∥∥
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≤
∥∥∥Xn,i(s)Xn,i(s)

TCn,i(s)
(
eθ
T
1 Xn,1(s) − eθT2 Xn,i(s)

)∥∥∥
+ E

(∥∥∥Xn,i(s)Xn,i(s)
TCn,i(s)

(
eθ
T
1 Xn,1(s) − eθT2 Xn,i(s)

)∥∥∥)
≤2K̂3eτK̂ · ‖θ1 − θ2‖.

And hence we may choose γn,i(s) := 2K̂3eτK̂ . For the rates which we want to prove,
we note firstly that all terms on the left are bounded and so we just have to choose k0

so large such that the terms on the right tend to infinity which is always possible by
Assumption (C1), 4.

Proposition 5.26. Suppose that Assumptions (C1), 1 and 2 and (C4) hold. Then,
Statement 4.11 holds true.

Proof. By employing Lemma 5.28 the proof of this result is fairly straight forward. Let
c∗∗ be the constant such that ‖y‖ ≤ c∗∗ · ‖y‖1 for all y ∈ Rq where ‖.‖ and ‖.‖1 denote
the Euclidean- and the 1-Norm, respectively. We have

P

(∥∥∥∥∥ `′n(θ0, t0)

rn
√
p̄n(t0)

∥∥∥∥∥ ≥ C ·
√

log rn
rnh

)

≤P

(∥∥∥∥`′n(θ0, t0)

rnp̄n(t0)

∥∥∥∥ ≥ C

qc∗∗
√
h
· qc∗∗

√
log rnp̄n(t0)

rnp̄n(t0)

)
. (5.101)

Since

`′n(θ0, t0) =
∑
i∈Gn

∫ T

0

1

h
K

(
t− t0
h

)
Xn,i(t)dMn,i(t),

we can directly apply Lemma 5.28 and obtain

(5.101)

≤2q

(
K exp

− c2
C2

q2(c∗∗)2

2KK̂A

(
ΛA+

√
Λ
2 c3 · C

qc∗∗

) · log npn(t0 − h)


+ βt0(∆n) · Krn + P(Γt0n = 0)

)
.

We see that for a sufficiently largely chosen C the first term decreases faster as hnk0 .
Moreover, by Assumption (C4), β(∆n) decrease fast enough too. Finally, P(Γt0n = 0)
decreases fast enough as well by the same assumption.

Proposition 5.27. Suppose that Assumptions (C1), 1, 2 and 4, (C4) and (C7), (4.30)
and (4.31) hold. Then, Statement 4.12 holds true.
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Proof. Let δn :=
√

log rnpn
rnpn·h . We begin with extracting the sup from the probability by a

standard union bound argument during which we include Γt0n

P

(
sup

(t0,θ)∈Tn,k0

∣∣∣∣∣ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)

× (Hn,i(s, θ)− E(Hn,i(θ, s))) ds

∣∣∣∣∣ > Cδn

)
≤#Tn,k0 · sup

(t0,θ)∈Tn,k0

P

(∣∣∣∣∣ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)

× (Hn,i(s, θ)− E(Hn,i(θ, s)))ds

∣∣∣∣∣ > Cδn

)

≤#Tn,k0 · sup
(t0,θ)∈Tn,k0

[
P(Γt0n = 0)

+ P

(∣∣∣∣∣ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)

× (Hn,i(s, θ)Γ
t0
n − E(Hn,i(θ, s)))ds

∣∣∣∣∣ > Cδn

)]

≤#Tn,k0 · sup
(t0,θ)∈Tn,k0

[
P(Γt0n = 0) (5.102)

+ P

(∣∣∣∣∣ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)

× (Hn,i(s, θ)Γ
t0
n − E(Hn,i(θ, s)Γ

t0
n ))ds

∣∣∣∣∣ > C

2
δn

)
(5.103)

+ P

(∣∣∣∣∣ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)

× E(Hn,i(θ, s)(Γ
t0
n − 1))ds

∣∣∣∣∣ > C

2
δn

)]
. (5.104)

By Statement 5.29, (5.104) has the correct rate even after taking the sup (note that
(5.104) is zero or one because the expression inside is deterministic, so we require here
that it holds for all time points). The probability (5.102) converges to zero by Assump-
tion (C4) because #Tn,k0 = O

(
hnk0(q+1)

)
. For (5.103), we intent to use Lemma 3.29
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with

Zn,i :=

∫ T

0

1

h
K

(
s− t0
h

)
Hn,i(s, θ)Γ

t0
n ds.

Define to this end

Σk,m
n,i (s, θ) := E(Hn,i(s, θ)I

k,m
n,i Γt0n ).

The conditions on En,t0k,m and En,t0k in part 2 of Definition 3.28 hold by Definition and
Assumption (C4). We need to prove the moment bound, which holds by the boundedness
Assumption (C1), 2 and definition of Γt0n : Let k,m be given and let ρ ≥ 2 be a natural
number. Then

E
(∣∣∣Un,t0−hk,m (∆n)

∣∣∣ρ)
=E

(∣∣∣∣∣∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Hn,i(s, θ)I

k,m
n,i Γt0n − Σk,m

n,i (s, θ)ds

∣∣∣∣∣
ρ]

≤E

∣∣∣∣∣∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Hn,i(s, θ)I

k,m
n,i Γt0n − Σk,m

n,i (s, θ)ds

∣∣∣∣∣
2

×
(∫ T

0

1

h
K

(
s− t0
h

)
K̂2Λ

(
SkΓ

t0
n + E(SkΓ

t0
n )
)
ds

)ρ−2
)

≤E

∣∣∣∣∣∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Hn,i(s, θ)I

k,m
n,i Γt0n − Σk,m

n,i (s, θ)ds

∣∣∣∣∣
2
 · (2K̂2ΛEn,t0k

)ρ−2

≤σ2En,t0k,m ·
(

2K̂2ΛEn,t0k

)ρ−2
,

by Statement 5.30. So condition 1 in Definition 3.28 is fulfilled as well. Moreover,
|E|n,t0−h = rnp̄n(t0) ≥ rn ≥ nψ by Assumption (C1), 4. Hence, by Lemma 3.29, there
is a C large enough such that the probability in (5.103) decays faster than #Tn,k0 =
O
(
hnk0(q+1)

)
grows. Moreover, by choice of ∆n = a log n, we find by Assumption (C4)

that β(∆n) converges also quicker to zero than #Tn,k0 grows to infinity and this proves
the claim.

5.3.1 Further Supporting Lemmas

The following Lemma provides the inequality necessary for proving Statements 4.11 and
4.12.

Lemma 5.28. Suppose that (C1), 1 and 2 and (C4) hold. Recall the following defini-
tions: Λ is the bound on the intensity function, K the bound on the kernel and K̂ the
bound on the covariates. Let furthermore c3 > 0 such that:

En,t0k,m := rn

∫ t0+h

t0−h

1

h
K

(
s− t0
h

)
E
[
Ik,mn,1 Cn,1(s)

]
ds
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p̄n(t0) :=

∫ t0+h

t0−h

1

h
K

(
s− t0
h

)
pn(s)ds

En,t0k :=

√
rnp̄n(t0)

log rnp̄n(t0)
· c3

σ2 :=
1

h
ΛA2KK̂

c1 :=

√
Λ

2h
KK̂A

Ik,mn,i := 1

(
i ∈ Gt0−h(k,m,∆n)

)
Sk,m :=

∑
i∈Gn

∫ t0+h

t0−h

1

h
K

(
s− t0
h

)
E
(
Ik,mn,i Cn,i(s)

∣∣∣Fnt0−h) ds
Sk := max

m=1,...,rn

∑
i∈Gn

Ik,mn,i

Γt0n := 1

(
S2
k · log rnp̄n(t0)

rnp̄n(t0)
≤ c2

3, Sk
√
h ≥ 1

)

Assume for all k ∈ {1, ...,K}

1

rnp̄n(t0)

rn∑
m=1

En,t0k,m ≥ c2.

Let furthermore A > 0 be so large such that

A ≥ max

√K̂, K̂, 1

K
,

√
2

3
2

√
Λ
K̂

K

 ,
1

A
· exp

( √
2

A
√

Λ

)
≤ 1. (5.105)

Then it holds

P

(
1

rnp̄n(t0)

∥∥∥∥∥∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Xn,i(s)dMn,i(s)

∥∥∥∥∥ ≥ xqc∗∗
√

log rnp̄n(t0)

rnp̄n(t0)

)

≤ 2qK [rnpn(t0)]
− c2x

2

2(σ2+c1c3x) + 2qβt0(∆n) · Krn + 2qP(Γt0n = 0),

where q is the dimension of the covariate and c∗∗ is the constant for which ‖y‖ ≤ c∗∗‖y‖1
for all y ∈ Rq and ‖.‖ and ‖.‖1 are the Euclidean and 1-Norm respectively.

Proof. We remark firstly that it is sufficient to consider univariate covariates, because
(denote by Xr

n,i the r-th entry of Xn,i for r = 1, ..., q)

P

(
1

rnp̄n(t0)

∥∥∥∥∥∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Xn,i(s)dMn,i(s)

∥∥∥∥∥ ≥ xqc∗∗
√

log rnp̄n(t0)

rnp̄n(t0)

)
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≤
q∑
r=1

P

(
1

rnp̄n(t0)

∣∣∣∣∣∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Xr
n,i(s)dMn,i(s)

∣∣∣∣∣ ≥ x
√

log rnp̄n(t0)

rnp̄n(t0)

)

≤
q∑
r=1

P

(
1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Xr
n,i(s)dMn,i(s) ≥ x

√
log rnp̄n(t0)

rnp̄n(t0)

)

+ P

(
1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
(−Xr

n,i(s))dMn,i(s) ≥ x

√
log rnp̄n(t0)

rnp̄n(t0)

)
.

Since −Xr
n,i is a covariate with the exact same properties as Xn,i (in particular predicta-

bility with respect to Fnt and boundedness by K̂, cf. Assumption (C1), 2), it is sufficient
to assume (for simplicity of notation) that Xn,i is univariate and to prove that

P

(
1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Xn,i(s)dMn,i(s) ≥ x

√
log rnp̄n(t0)

rnp̄n(t0)

)

≤K [rnpn(t0)]
− c2x

2

2(σ2+c1c3x) + βt0(∆n) · Krn + P(Γt0n = 0). (5.106)

The main idea of the proof is to apply Lemma 3.29 to the correct structured interaction
network (in the sense of Definition 3.1). Define to this end

F̃n,i(s) :=
1

h
K

(
s− t0
h

)
Xn,i(s) · Γt0n

F k,mn,i (s) := F̃n,i(s) · Ik,mn,i

and

Zn,i(t) :=

∫ t

0
F̃n,i(s)dMn,i(s).

Note that both, F̃n,i(s) and F k,mn,i (s), are predictable processes because they are deter-

ministically equal to zero for s ≤ t0 − h and the sets t 7→ Gt(k,m,∆n) are predic-
table with respect to Fnt . Hence, Zn,i(t) is a martingale. We are going to prove that
(Zn,i(T ))i=1,...,rn is a mixing network process as defined in Definition 3.28. By martingale
properties

E

(
E

(∫ T

0
Fn,i(s)dMn,i(s)

∣∣∣∣∣Ft0−h
))

= 0

and we may apply Lemma 3.29 if the conditions in Definition 3.28 are satisfied. Note
furthermore that for each edge i there is exactly one block (k,m) to which i belongs,
i.e., such that i ∈ Gt0−h(k,m,∆n). Thus, we have

|E|n,t0−h =

K∑
k=1

rn∑
m=1

En,t0k,m

= rn

∫ t0+h

t0−h
E(Cn,i(s))ds = rnp̄n(t0).

152



5 Proofs

Condition 2 in Definition 3.28 is now clear by definition of En,t0k and Assumption (C4).
The main part of this proof is now to prove condition 1. Note therefore firstly that

E
(∫ T

0
F̃n,i(s)dMn,i(s)I

k,m
n,i

)
= E

E

(∫ T

0
F̃n,i(s)dMn,i(s)

∣∣∣∣∣Fnt0−h
)

︸ ︷︷ ︸
=0

Ik,mn,i

 = 0.

Hence, we need to show

E
(∣∣∣Un,t0−hk,m (v, v′,∆n)

∣∣∣ρ)
=E

(∣∣∣∣∣∑
i∈Gn

∫ t

0
F k,mn,i (s)dMn,i(s)

∣∣∣∣∣
ρ)

≤ρ!

2
· En,t0k,mσ

2 ·
(
Ent0−hk c1

)ρ−2
. (5.107)

The idea of the proof is to prove a recursion inequality for the moments of stochastic
integrals by applying Itô’s Formula and then using induction. Note that F k,mn,i (s) = 0
for s /∈ [t0 − h, t0 + h]. Therefore, (5.107) holds trivially for t ≤ t0 − h and it holds for
t ≥ t0+h when it holds for t = t0+h. Hence, we can restrict to the case t ∈ [t0−h, t0+h].
We will use the forms of the optional variation processes of the martingale Mn,i and the
stochastic integrals with respect to it given in Section 2.1.

For ρ ≥ 2 we have that the function fρ(x) := |x|ρ is twice continuously differentiable

and hence also f̃ρ(x1, ..., xm) := fρ(x1 + ...+ xm) is twice continuously differentiable. So
by the multivariate Itô Formula for semi martingales with jumps given in Theorem 2.9
and the fact that with probability one no two counting processes jump at the same time,
we obtain for ρ ≥ 2:∣∣∣∣∣∑

i∈Gn

∫ t

0
F k,mn,i (τ)dMn,i(τ)

∣∣∣∣∣
ρ

= f̃ρ

(∫ t

0
F k,mn,1 (τ)dMn,1(τ), ...,

∫ t

0
F k,mn,n (τ)dMn,n(τ)

)
=

∑
i∈Gn

∫ t

0
∂if̃ρ

(∫ s−

0
F k,mn,1 (τ)dMn,1(τ), ...,

∫ s−

0
F k,mn,n (τ)dMn,n(τ)

)
F k,mn,i (s)dMn,i(s)

+
1

2

∑
i,j∈Gn

∫ t

0
∂ij f̃ρ

(∫ s−

0
F k,mn,1 (τ)dMn,1(τ), ...,

∫ s−

0
F k,mn,n (τ)dMn,n(τ)

)
F k,mn,i (s)F k,mn,j (s)d[Mn,i,Mn,j(s)](s)

+

∫ t

0
f̃ρ

(∫ s

0
F k,mn,1 (τ)dMn,1(τ), ...,

∫ s

0
F k,mn,n (τ)dMn,n(τ)

)
−f̃ρ

(∫ s−

0
F k,mn,1 (τ)dMn,1(τ), ...,

∫ s−

0
F k,mn,n (τ)dMn,n(τ)

)
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−
∑
i∈Gn

∂if̃ρ

(∫ s−

0
F k,mn,1 (τ)dMn,1(τ), ...,

∫ s−

0
F k,mn,n (τ)dMn,n(τ)

)
F k,mn,i (s)∆Nn,i(s)

−1

2

n∑
i,j

∂ij f̃ρ

(∫ s−

0
F k,mn,1 (τ)dMn,1(τ), ...,

∫ s−

0
F k,mn,n (τ)dMn,nn(τ)

)

×F k,mn,i (s)F k,mn,j (s)∆Nn,i(s)∆Nn,j(s)d

(∑
r∈Gn

Nn,r

)
(s)

=
∑
i∈Gn

∫ t

0
f ′ρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

)
F k,mn,i (s)dMn,i(s)

+
1

2

∑
i∈Gn

∫ t

0
f ′′ρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

)
F k,mn,i (s)2dNn,i(s)

+

∫ t

0
fρ

(∑
r∈Gn

∫ s

0
F k,mn,r (τ)dMn,r(τ)

)
− fρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

)

−
∑
i∈Gn

f ′ρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

)
F k,mn,i (s)∆Nn,i(s)

−1

2

∑
i∈Gn

f ′′ρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

)
F k,mn,i (s)2∆Nn,i(s) d

(∑
r∈Gn

Nn,r

)
(s)

=
∑
i∈Gn

∫ t

0
f ′ρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

)
F k,mn,i (s)dMn,i(s)

+

∫ t

0
fρ

(∑
r∈Gn

∫ s

0
F k,mn,r (τ)dMn,r(τ)

)
− fρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

)

−f ′ρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

) ∑
i∈Gn

F k,mn,i (s)∆Nn,i(s)d

(∑
r∈Gn

Nn,r

)
(s)

=: (∗)

Note now that ∑
r∈Gn

∫ s

0
F k,mn,r (τ)dMn,r(τ)−

∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

=
∑
r∈Gn

F k,mn,r (s)∆Nn,r(s).

Hence, (*) contains a Taylor series expansion of fρ around the point

∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)
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and we continue:

(∗)

=
∑
i∈Gn

∫ t

0
f ′ρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

)
F k,mn,i (s)dMn,i(s)

+

∫ t

0

1

2
f ′′ρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ) + ∆(s)

)

×

(∑
r∈Gn

F k,mn,r (s)∆Nn,r(s)

)2

d

(∑
r∈Gn

Nn,r

)
(s)

=: (∗∗),

where ∆(s) ∈
[
0,
∑

r∈Gn F
k,m
n,r (s)∆Nn,r(s)

]
. Since only one of the counting processes

jumps at a time, we obtain |∆(s)| ≤ Kh with Kh := 1
hKK̂ and continue by using again

that no two processes jump at the same time:

(∗∗)

=
∑
i∈Gn

∫ t

0
f ′ρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

)
F k,mn,i (s)dMn,i(s)

+
∑
i∈Gn

∫ t

0

1

2
f ′′p

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ) + ∆(s)

)
F k,mn,i (s)2dNn,i(s)

≤
∑
i∈Gn

∫ t

0
f ′ρ

(∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

)
F k,mn,i (s)dMn,i(s)

+
∑
i∈Gn

∫ t

t0−h

1

2
f ′′ρ

(∣∣∣∣∣∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

∣∣∣∣∣+Kh

)

×1

h
K

(
s− t0
h

)
KhK̂I

k,m
n,i Γt0n dNn,i(s),

where we used in the last line that Fn,i(s) = 0 when t ≤ t0 − h. Now, the integrand
is predictable and we can apply the expectation on both sides, to obtain a recursion
formula: Use that for x ≥ 0 we have f ′′ρ (x) = ρ(ρ− 1)fρ−2(x) to get

E

(∣∣∣∣∣∑
i∈Gn

∫ t

0
F k,mn,i (τ)dMn,i(τ)

∣∣∣∣∣
ρ ∣∣∣∣∣Fnt0−h

)

≤
∑
i∈Gn

∫ t

t0−h

1

2
ρ(ρ− 1)E

((∣∣∣∣∣∑
r∈Gn

∫ s−

0
F k,mn,r (τ)dMn,r(τ)

∣∣∣∣∣+Kh

)ρ−2

× 1

h
K

(
s− t0
h

)
KhK̂I

k,m
n,i Γt0n λn,i(s)

∣∣∣∣∣Fnt0−h
)
ds
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≤
∫ t

t0−h

1

2
ρ(ρ− 1)KhK̂ΛE

((∣∣∣∣∣∑
r∈Gn

∫ s−

0
F k,mn,r (s)dMn,r(s)

∣∣∣∣∣+Kh

)ρ−2

×
∑
i∈Gn

1

h
K

(
s− t0
h

)
Cn,i(s)I

k,m
n,i Γt0n

∣∣∣∣∣Fnt0−h
)
ds.

Define Zk,m(t) =
∑

i∈Gn
∫ t

0 F
k,m
n,i (τ)dMn,i(τ) to summarize the previous inequality chain

in the following recursion formula: For ρ ≥ 2 it holds almost surely

E
(∣∣∣Zk,m(t)

∣∣∣ρ ∣∣∣Fnt0−h)
≤1

2

∫ t

t0−h
ρ(ρ− 1)KhK̂Λ

1

h
K

(
s− t0
h

)
× E

((
|Zk,m(s−)|+Kh

)ρ−2 ∑
i∈Gn

Ik,mn,i Cn,i(s)
∣∣∣Fnt0−h

)
Γt0n ds. (5.108)

By uniting the (countably many) exception sets of measure zero, these inequalities hold
for all ρ ≥ 2 and all t ∈ [0, T ] ∩Q on the same set of measure one. Since both sides are
continuous from the right by Theorem 2.1, we also have it for all t ∈ [0, T ] on the same
set of measure one. Taking now limits from the left and repeating the same argument
with continuity from the left, we obtain the same result for Zk,m(t−) on the left hand
side also on the same set of measure one.

We are going to prove now via induction that almost surely (on the same set of measure
one)

E
(
|Zk,m(t)|ρ

∣∣∣Fnt0−h) ≤ ρ!

2
Sk,mΛKhA

ρ

(
Sk

√
hΛ

2
Kh

)ρ−2

Γt0n . (5.109)

We begin with the induction start: For ρ = 2, (5.108) gives for all t ∈ [t0 − h, t0 + h]

E
(
|Zk,m(t)|2

∣∣∣Fnt0−h) ≤ KhK̂ΛSk,m · Γt0n ≤ Sk,mΛKhA
2 · Γt0n ,

where the last inequality holds by choice of A in (5.105) and because t ∈ [t0− h, t0 + h].
Hence, the induction start is complete and we continue with the induction step. Assume
that (5.109) holds for all powers 2 ≤ p ≤ ρ and all t ∈ [t0 − h, t0 + h] and show that it
holds for ρ+ 1 and all t ∈ [t0− h, t0 + h] as well. We use first (5.108), then the binomial
theorem and finally the induction hypothesis (5.109) for powers greater than one:

E
(
|Zk,m(t)|ρ+1

∣∣∣Fnt0−h)
≤1

2

∫ t

t0−h
(ρ+ 1)ρKhK̂Λ

1

h
K

(
s− t0
h

)
× E

(
(|Zk,m(s−)|+Kh)ρ−1

∑
i∈Gn

Ik,mn,i Cn,i(s)
∣∣∣Fnt0−h

)
ds · Γt0n
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≤1

2

∫ t

t0−h
(ρ+ 1)ρKhK̂Λ

ρ−1∑
p=0

(
ρ− 1
p

)
1

h
K

(
s− t0
h

)

× E

(
|Zk,m(s−)|ρ−1−p

∑
i∈Gn

Ik,mn,i Cn,i(s)
∣∣∣Fnt0−h

)
Kp
hds · Γ

t0
n

≤KhK̂Λ

2
(ρ+ 1)ρ

[
ρ−3∑
p=0

(ρ− 1)!

2p!
Sk,mΛKh

(
Sk

√
hΛ

2
Kh

)ρ−3−p

Aρ−1−pKp
hSk

+ (ρ− 1)

∫ t0+h

t0−h

1

h
K

(
s− t0
h

)
E

(
|Zk,m(s−)|

∑
i∈Gn

Ik,mn,i Cn,i(s)
∣∣∣Fnt0−h

)
Kρ−2
h ds

+Kρ−1
h Sk,m

]
· Γt0n (5.110)

Recall that Sk = maxm=1,...,rn

∑
i∈Gn I

k,m
n,i ≥

∑
i=1 I

k,m
n,i Cn,i(s) for all k and m as well as

for all s, moreover Sk is measurable with respect to Fnt0−h. Hence, we may estimate

∫ t0+h

t0−h

1

h
K

(
s− t0
h

)
E

(∣∣∣Zk,m(s−)
∣∣∣ ∑
i∈Gn

Ik,mn,i Cn,i(s)
∣∣∣Fnt0−h

)
ds

≤
∫ t0+h

t0−h

1

h
K

(
s− t0
h

) ∑
i∈Gn

E
(∫ t0+h

t0−h

1

h
K

(
τ − t0
h

)
Ik,mn,i K̂d|Mn,i|(τ)

∣∣∣Fnt0−h)Skds
=

∫ t0+h

t0−h

1

h
K

(
s− t0
h

) ∑
i∈Gn

∫ t0+h

t0−h

1

h
K

(
τ − t0
h

)
2ΛK̂E

(
Ik,mn,i Cn,i(τ)

∣∣∣Fnt0−h)Skds
=2ΛK̂Sk,mSk.

Using this estimation we continue with the main inequality chain

(5.110)

≤KhK̂Λ

2
(ρ+ 1)ρ

[
ρ−3∑
p=0

(ρ− 1)!

2p!
Sk,mΛKh

(
Sk

√
hΛ

2
Kh

)ρ−3−p

Aρ−1−pKp
hSk

+ (ρ− 1)Kρ−2
h 2ΛK̂Sk,mSk

+Kρ−1
h Sk,m

]
· Γt0n

=
(ρ+ 1)!

2
Sk,mΛKhA

ρ+1

(
Sk

√
hΛ

2
Kh

)ρ−1

Γt0n

× 1

A
·

[
ρ−3∑
p=0

1

2p!
· ΛKhK̂

(
Sk

√
hΛ

2
Kh

)−2−p

A−1−pKp
hSk
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+
1

(ρ− 2)!
Kρ−2
h 2ΛK̂2SkA

−ρ

(
Sk

√
hΛ

2
Kh

)−ρ+1

+
1

(ρ− 1)!
Kρ−1
h K̂A−ρ

(
Sk

√
hΛ

2
Kh

)−ρ+1 ]
At this point, we see that we’re obviously done with the induction step if Γt0n = 0.
Hence, we only need to show that the above is lesser than or equal to (5.109) on the
event Γt0n = 1. This, in turn, we may conclude if the second part above is smaller than
or equal to one (on the event Γt0n = 1). This is the case because we have chosen A
appropriately and because h ≤ 1 and Sk

√
h ≥ 1 (and thus also Sk ≥ 1) on Γt0n :

1

A
·

[
ρ−3∑
p=0

1

2p!
· ΛKhK̂

(
Sk

√
hΛ

2
Kh

)−2−p

A−1−pKp
hSk

+
1

(ρ− 2)!
Kρ−2
h 2ΛK̂2SkA

−ρ

(
Sk

√
hΛ

2
Kh

)−ρ+1

+
1

(ρ− 1)!
Kρ−1
h K̂A−ρ

(
Sk

√
hΛ

2
Kh

)−ρ+1 ]
1

A
·

[
ρ−3∑
p=0

1

p!

(
Sk

√
hΛ

2
A

)−p
· 1

SkKA

+
1

(ρ− 2)!

(
Sk

√
hΛ

2
A

)−ρ+2
2

3
2

KA2

√
hΛK̂

+
1

(ρ− 1)!

(
Sk

√
hΛ

2
A

)−ρ+1

K̂A−1

]

≤ 1

A

∞∑
p=0

1

p!

(
Sk

√
hΛ

2
A

)−p

=
1

A
exp

( √
2

ASk
√
hΛ

)
≤ 1

A
exp

( √
2

A
√

Λ

)
≤ 1

and the induction is complete. To finalize the proof, we compute the expectation of

Sk,mS
ρ−2
k . Note that on Γt0n = 1, Sk ≤ c3 ·

√
rnp̄n(t0)

log rnp̄n(t0) = En,t0k

E
(
Sk,mS

ρ−2
k Γt0n

)
≤ E(Sk,m) ·

(
En,t0k

)ρ−2
≤ En,t0k,m ·

(
En,t0k

)ρ−2
.

Taking expectations on both sides of (5.109) and together with the previous line, we
obtain

E
(
|Zk,m(T )|ρ

)
≤ ρ!

2
En,t0k,mK̃KhA

ρ

(
En,t0k

√
hΛ

2
Kh

)ρ−2

.
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Hence, we have a mixing interaction network and we can apply Lemma 3.29 to get

P

(
1

rnp̄n(t0)

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)
Xn,i(s)dMn,i(s) ≥ x ·

√
log rnp̄n(t0)

rnp̄n(t0)

)

≤ P

(
1

rnp̄n(t0)

∑
i∈Gn

∫ T

0
K

(
s− t0
h

)
Xn,i(s)dMn,i(s) ≥ x ·

√
log rnp̄n(t0)

rnp̄n(t0)
,Γt0n = 1

)
+P(Γt0n = 0)

≤ P

(
1

rnp̄n(t0)

∑
i∈Gn

Zn,i(T ) ≥ x ·

√
log rnp̄n(t0)

rnp̄n(t0)

)
+ P(Γt0n = 0)

≤ K(rnp̄n(t0))
− c2·x

2

2(σ2+c1c3x) + βt(∆n) · Krn + P(Γt0n = 0).

Lemma 5.29. Suppose (C1), 2 and (C4) hold. In the context of Statement 4.12, we
have

sup
t0∈T
θ∈Θ

1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
E(Hn,i(s, θ)(Γ

t0
n − 1))ds = O

(√
log rnpn
rnpn · h

)
.

Proof. We can estimate by boundedness of the covariates in Assumption (C1), 2 that
|Hn,i(s, θ)| ≤ ΛK̂2Cn,i(s) for all θ. Hence, we get by applying the Cauchy-Schwartz
Inequality as well as Jensen’s inequality∣∣∣∣∣ 1n ∑

i∈Gn

E(Hn,i(s, θ)(Γ
t0
n − 1))

∣∣∣∣∣
≤ΛK̂2 · E

(
|Γt0n − 1| · 1

rn

∑
i∈Gn

Cn,i(s)

)

≤ΛK̂2
√
P(Γt0n = 0) ·

√√√√√E

( 1

rn

∑
i∈Gn

Cn,i(s)

)2


≤ΛK̂2
√

P(Γt0n = 0) ·
√
pn(s).

Applying this estimate to the expression we are interested in yields (apply again Jensen’s
Inequality):√

rnpn · h
log rnpn

∣∣∣∣∣ 1

rnp̄n(t0)

∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
E(Hn,i(s, θ)(Γ

t0
n − 1))ds

∣∣∣∣∣
≤

√
rnpn · h
log rnpn

ΛK̂2

p̄n(t0)

∫ T

0

1

h
K

(
s− t0
h

)√
P(Γt0n = 0)pn(s)ds
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≤ΛK̂2

√
rnh · P(Γt0n = 0)

log rnpn
·
√

pn
p̄n(t0)

·

√∫ T

0

1

h
K

(
s− t0
h

)
pn(s)

p̄n(t0)
ds.

By construction pn
p̄n(t0) ≤ 1 and the remaining expressions are O(1) even after taking

supt0,θ by Assumption (C4). This proves the claim.

Lemma 5.30. Suppose (C1), 1 and 2 and (4.30) and (4.31) in (C7) are true. In the
context of Statement 4.12, there is σ2 > 0 such that

E

∣∣∣∣∣∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Hn,i(s, θ)I

k,m
n,i Γt0n − Σk,m

n,i (s, θ)ds

∣∣∣∣∣
2
 ≤ σ2En,t0k,m .

Proof. Let λ̃n,i(s, θ) = Xn,i(s)Xn,i(s)
T exp(θTXn,i(s)), thenHn,i(θ, s) = λ̃n,i(θ, s)Cn,i(s).

Note furthermore that Σk,m
n,i (s, θ) = E(λ̃n,i(θ, s)Cn,i(s)I

k,m
n,i Γt0n ). Then we obtain∣∣∣∣∣∑

i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)[
λ̃n,i(θ, s)Cn,i(s)I

k,m
n,i Γt0n − E(λ̃n,i(θ, s)Cn,i(s)I

k,m
n,i Γt0n )

]
ds

∣∣∣∣∣
2

=

( ∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
× Cn,i(s)Ik,mn,i

[
λ̃n,i(θ, s)Γ

t0
n − E(λ̃n,i(θ, s)Γ

t0
n |Cn,i(s)I

k,m
n,i = 1)

]
ds

+
∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
E(λ̃n,i(θ, s)Γ

t0
n |Cn,i(s)I

k,m
n,i = 1)

×
[
Cn,i(s)I

k,m
n,i − P(Cn,i(s)I

k,m
n,i = 1)

]
ds

)2

≤2

( ∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
Cn,i(s)I

k,m
n,i

×
[
λ̃n,i(θ, s)Γ

t0
n − E(λ̃n,i(θ, s)Γ

t0
n |Cn,i(s)I

k,m
n,i = 1)

]
ds

)2

(5.111)

+ 2

( ∑
i∈Gn

∫ T

0

1

h
K

(
s− t0
h

)
E(λ̃n,i(θ, s)Γ

t0
n |Cn,i(s)I

k,m
n,i = 1)

×
[
Cn,i(s)I

k,m
n,i − P(Cn,i(s)I

k,m
n,i = 1)

]
ds

)2

(5.112)

We consider now both parts above separately and show that their expectations behave
as required. We start with (5.112):

E((5.112))
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=
∑
i,j∈Gn

∫∫
[0,T ]2

1

h2
K

(
s− t0
h

)
K

(
r − t0
h

)
× E(λ̃n,i(θ, s)Γ

t0
n |Cn,i(s)I

k,m
n,i = 1)E(λ̃n,i(θ, r)Γ

t0
n |Cn,j(r)I

k,m
n,j = 1)

× E
(

(Cn,i(s)I
k,m
n,i − P(Cn,i(s)I

k,m
n,i = 1)) · (Cn,j(r)Ik,mn,j − P(Cn,j(r)I

k,m
n,j = 1))

)
dsdr

=

 ∑
i,j∈Gn
|ei∩ej |=2

+
∑
i,j∈Gn
|ei∩ej |=1

+
∑
i,j∈Gn
|ei∩ej |=0

Sn,ij ,

where Sn,ij is just the summand corresponding to the indices i, j. The number of sum-
mands in each sum is given by rn = O(n2), rn ·2(n−2) = O(n3) and rn ·(rn−1) = O(n4),
respectively. In the situation |ei ∩ ej | = 2, i.e., i = j, the sum comprises rn many terms

and is clearly bounded after dividing by En,t0k,m ) because |λ̃n,i(θ, s)| ≤ K̂2Λ (cf. Assump-
tion (C1), 2) and

1

En,t0k,m

∑
i,j∈Gn
|ei∩ej |=2

Sn,ij

≤rn · K̂
4Λ2

En,t0k,m

n

∫∫
[0,T ]2

1

h2
K

(
s− t0
h

)
K

(
r − t0
h

)
E
(
Cn,1(s)Ik,mn,1 Cn,1(r)

)
dsdr

≤K̂
4Λ2 · rn
En,t0k,m

∫ T

0

1

h
K

(
s− t0
h

)
E
(
Ik,mn,1 Cn,1(s)

)
ds = K̂4Λ.

In the other two situations, we write

Sn,ij

En,t0k,m

≤
∫∫

[0,T ]2

K̂4Λ2

h2
K

(
s− t0
h

)
K

(
r − t0
h

)

×

∣∣∣Cov
(
Cn,j(r)I

k,m
n,j , Cn,i(s)I

k,m
n,i

)∣∣∣
rnp̄

k,m
n (t0)

dsdr

which is bounded by Assumption (C7) in (4.30). Thus, part (5.112) is behaving correctly.
Part (5.111) is handled in a very similar fashion:

E((5.111))

=
∑
i,j∈Gn

∫∫
[0,T ]2

1

h2
K

(
s− t0
h

)
K

(
r − t0
h

)
P(Cn,i(s)I

k,m
n,i Cn,j(r)I

k,m
n,j = 1)

× E

([
λ̃n,i(θ, s)Γ

t0
n − E(λ̃n,i(θ, s)Γ

t0
n |Cn,i(s)I

k,m
n,i = 1)

]
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×
[
λ̃n,i(θ, s)Γ

t0
n − E(λ̃n,j(θ, r)Γ

t0
n |Cn,j(r)I

k,m
n,j = 1)

] ∣∣∣Cn,i(s)Ik,mn,i Cn,j(r)Ik,mn,j = 1

)
.

Exactly analogue to before, we split the double sum into the three regimes and argue
separately. In the case |ei ∩ ej | = 2, i.e., i = j, we argue exactly as before, namely
applying boundedness of the covariates in Assumption (C1), 2. In the other two cases
we apply Assumption (C7) in the following way: Let ν ∈ {0, 1} and let i0, j0 be two
edges with |ei0 ∩ej0 | = ν, denote also by S′n,ij the summand corresponding to the indices
i, j in the above sum. Then

1

En,t0k,m

∣∣∣∣∣∣∣∣∣
∑
i,j∈Gn
|ei∩ej |=ν

S′n,ij

∣∣∣∣∣∣∣∣∣
≤n

4−ν

rn

∫∫
[0,T ]2

1

h2
K

(
s− t0
h

)
K

(
r − t0
h

) P(Cn,i0(s)Ik,mn,i0Cn,j0(r)Ik,mn,j0 = 1)

p̄k,mn (t0)

× E

([
λ̃n,i0(θ, s)Γt0n − E(λ̃n,i0(θ, s)Γt0n |Cn,i0(s)Ik,mn,i0 = 1)

]
×
[
λ̃n,j0(θ, s)Γt0n − E(λ̃n,j0(θ, r)Γt0n |Cn,j0(r)Ik,mn,j0 = 1)

] ∣∣∣Cn,i0(s)Ik,mn,i0Cn,j0(r)Ik,mn,j0 = 1

)
.

By Assumption (C7) in (4.31) these terms are bounded.
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Although the specific results of Theorems 4.2 and 4.3 are in line with kernel regression
results (cf. Hjort (1993) and Härdle and Mammen (1993), respectively), it has been
shown in this thesis that it is possible to adapt these results to the more complex
dependence situation of network indexed data. In Theorem 4.2 we saw that a change in
the sparsity of the network induces a new bias which is not present in the regular kernel
regression setting. However, this innovation might be based on the fact that we allow,
by introducing the indicator Cn,i, that individuals become part of the estimation or
drop out. It might be interesting to study such scenarios also in other kernel regression
situations.

For proving Theorem 4.2 we introduced asymptotic uncorrelation as dependence me-
asure. It is intuitively based on the assumption of joint exchangeability, i.e., relabelling
the vertices does not change the distribution: The joint distribution of two edges i and
j depends only on |ei ∩ ej |. It is then intuitive that in the case |ei ∩ ej | = 0 the pro-
cesses on the two edges i and j are on average almost uncorrelated. This is because we
assume that such edges i and j are, conditional on the exact structure of the network,
actually far apart in most cases. This idea is then made more precise in the mixing and
m-dependence notations. These are directly based on a distance measure. We formulate
dependence then based on this distance. These measures are appealing because they
directly reflect our intuition about the relations in a network and hence, imposing such
assumptions seems very reasonable in real-world applications. This is particularly useful
for the β-Mixing assumption because it quickly provides us with a useful exponential
inequality (cf. Lemma 3.29).

It could be interesting to see if these dependence measures can be applied also to other
estimation strategies or other models where the data is indexed by edges or vertices in
a network. As one example, we mention here projection estimators. Here we would,
instead of the localized log-likelihood in (4.1), consider the complete likelihood and a
penalty term. Let therefore Θp be a set of functions, e.g., let b1, b2, ... be a basis of the
set of all functions θ : [0, T ] → Rq which shall be considered as parameter functions

and define Θp =
{∑k

i=1 µibi : k ∈ N, µ1, ..., µk ∈ R
}

. The estimator θ̂p would then for a

penalty function pen : Θp → [0,∞) be defined as

θ̂p := argmin
θ∈Θp

−

( ∑
i∈Gn

∫ T

0
log λ(t, θ(t), Xn,i(t)dNn,i(t)

−
∫ T

0

∑
i∈Gn

Cn,i(t)λ(t, θ(t), Xn,i(t))dt

)
+ pen(θ).
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Such a model could also be extended to considering different bases and parameters for
different entries of the parameter function. In particular it could be possible to estimate
some parameter curves as constant and others as time dependent.
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