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Abstract

Background: Visualization is an important tool for generating meaning from scientific data, but the visualization of
structures in high-dimensional data (such as from high-throughput assays) presents unique challenges. Dimension
reduction methods are key in solving this challenge, but these methods can be misleading- especially when apparent
clustering in the dimension-reducing representation is used as the basis for reasoning about relationships within the
data.

Results: We present two interactive visualization tools, distnet and focusedMDS, that help in assessing the validity of
a dimension-reducing plot and in interactively exploring relationships between objects in the data. The distnet tool is
used to examine discrepancies between the placement of points in a two dimensional visualization and the points’
actual similarities in feature space. The focusedMDS tool is an intuitive, interactive multidimensional scaling tool that is
useful for exploring the relationships of one particular data point to the others, that might be useful in a personalized
medicine framework.

Conclusions: We introduce here two freely available tools for visually exploring and verifying the validity of
dimension-reducing visualizations and biological information gained from these. The use of such tools can confirm
that conclusions drawn from dimension-reducing visualizations are not simply artifacts of the visualization method,
but are real biological insights.
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Background
Visualization is key for understanding patterns and gen-
erating meaning from scientific data. High-dimensional
data, however, presents unique challenges in that patterns
or structures may exist only in greater than three dimen-
sions, and these relationships often cannot be visualized
exactly in two- or three-dimensional space. One example
is the analysis of data from comparative high-throughput
sequencing experiments, where a key quality-assessment
step is to explore the similarity between samples in order
to see whether the replicate samples are similar and to
spot outliers. Samples are plotted as points on a two-
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dimensional (2D) plane, such that the relative position of
points to each other represent the relationships between
the samples. Popular ways to create this kind of visu-
alization include principal components analysis (PCA),
which plots the components of the data that explain
the most variability, or multidimensional scaling (MDS),
which attempts to capture the relationship between the
points across all measures and represent it in 2D space.
Similarly, in single-cell RNA sequencing (RNA-seq)

one often wishes to reduce high-dimensional expression
data to a 2D plot, such that cells with similar tran-
scriptomes appear close together. Here, besides PCA and
MDS, t-distributed stochastic neighbor embedding (t-
SNE) [1] and uniformmanifold approximation and projec-
tion (UMAP) [2] have become methods of choice. t-SNE
is an optimization algorithm that uses probability distri-
butions in high and low dimensional space to generate

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2780-y&domain=pdf
mailto: s.anders@zmbh.uni-heidelberg.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Urpa and Anders BMC Bioinformatics          (2019) 20:221 Page 2 of 8

2D or 3D representations, while UMAP is a manifold
learning technique based in Riemannian geometry and
algebraic topology. A third illustrative example that we
will use in this paper are experiments which investigate
the effect of a panel of drugs on a collection of cancer
patient biopsies, with one objective being the identifica-
tion of groups of patient samples with similar sensitivities
to drugs, e.g. Heckman et al. [3]. We can easily pick
any two patient samples and compare, say, the correla-
tion coefficient between their respective sensitivities to
the panel of drugs, but providing a visual overview of the
similarities between all the patient samples requires some
means of dimension-reducing visualization.
In each of these examples the aim of the dimension

reduction is the same: to arrange the points representing
individuals (samples, cells, or drugs) on a two-dimensional
plot such that the closeness between points on the plot
represents as well as possible the objects’ similarities.
While PCA is commonly the first method that comes to
mind to create such a plot, MDS is arguably closer to
the goal of representing the objects’ overall similarity to
one another. MDS takes as an input a symmetric matrix
with distances, or “dissimilarity scores”, for all pairs of
samples. From these distances, the algorithm numerically
searches for a placement of points on the plot that mini-
mizes “stress” (Fig. 1c), the discrepancy between the actual
or “feature space” distances and the distances of the points
embedded in the 2D plane, summed over all pairs of
points (see Fig. 1). No arrangement can exactly represent
the distances between all points in all dimensions, unless
the data was already in a two-dimensional sub-space to
start with, and hence any MDS (or other dimension-
reducing representation) must make some trade-offs in
accurately depicting the relationships between objects. All
dimension-reducing visualizations are therefore bound to
be misleading with respect to at least some of the objects

depicted, and might even be misleading for a substantial
part of them. This issue of misleading depiction is partic-
ularly important when dimension-reducing visualizations
are suggestive of clusters or other structures in the data.
As is often emphasized in the field of single-cell RNA
sequencing, formally inferring clusters or other struc-
tures should be done on the full feature space data rather
than on the dimension-reduced embedding. Nevertheless,
dimensional reduction is meant to give the viewer an intu-
itive grasp of the data, and therefore it is important to be
able to determine the validity of any structure that one
might see in such a visualization. Such validation is possi-
ble via statistical means [4–9], but the tools for exploring
the validity of dimension-reduction visualizations visually
are limited.
We illustrate this using data from Majumder et al. [10],

who tested a panel of 308 drugs ex vivo on 58 samples
from hematological cancer patients and identified four
stratified patient groups. Each patient sample is described
by a vector comprised of the sensitivity score measured
for each of the 308 drugs (see Methods for details on
how these scores are calculated). One may expect that
the response profiles are similar for patients whose can-
cers have similar molecular characteristics, and hence
expect to see them clustering together in a dimension-
reducing visualization. We therefore calculated Manhat-
tan distances between the vectors of drug sensitivity
scores for each sample and visualized them in the MDS
plot in Fig. 2a, using the isoMDS function from R’s MASS
package [11], a commonly used MDS function in R. Col-
ors indicate the stratified patient groups as defined by
Majumder et al. [10] via hierarchical clustering on Man-
hattan distances. Figure 2b plots the distance between all
pairs of samples in the MDS plot against their actual fea-
ture space distance. This so-called Shepard plot shows
that the agreement between the feature space distance and

Fig. 1 Schematic representation of the strategy for multidimensional scaling. a An example positive, symmetric matrix of distance values between
four objects. b A dimension-reducing MDS representation of the distances in the matrix. c The stress equation for calculating the overall difference
between the distances in the feature space (panel A, di,j) and the distances on the 2D plane (panel B, Di,j)
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Fig. 2 Dimension reduction and distnet representation of differences in ex vivo drug sensitivities between hematological cancer patient samples
from Majumder et al. [10]. a A standard multidimensional scaling representation of the differences in drug sensitivity between patient samples. b
The distances between points in panel A compared to their actual distances in the feature space (a Shepard plot). c A static version of the distnet
plot of this dataset, where the lines between points represent point pairs with a distance of 500 or less in the feature space. Circled points show
inconsistencies between the feature space distances and distances on the 2D plot. For an interactive version of panel C, visit the supplemental
interactive file online [15]

the distance on the 2D plane is quite unsatisfactory: many
points with small distances on the 2D plot have quite
large actual feature space distances, suggesting that the
plot might not be suitable for assessing the validity of the
patient groupings.
Here we present two interactive visualization tools,

called distnet and focusedMDS, which offer ways to
explore multidimensional data in a manner that safe-
guards against misleading depiction. The distnet tool uses
a distance net visualization to explore the validity of exist-
ing dimension reduction plots, while focusedMDS pro-
vides an alternative method of multidimensional scaling
that gives a true picture of one “focal” point in rela-
tion to all others. These tools are designed to visually
explore multidimensional data, complementing existing
exploratory data visualizationmethods such as correlation
heatmaps and dendrograms.

Implementation
Both tools are provided as R packages, and can be
installed with the R commands install.packages
(“focusedMDS”) anddevtools::install_github
(“simon-anders/distnet”). As documentation, an
interactive introduction for both packages is available
online [12]. The most recent unreleased development
versions are available on GitHub [13, 14].

Results and discussion
distnet
The distnet tool takes a data frame of 2D coordinates from
a dimensional reduction method and a corresponding
distance matrix (as produced by R’s dist function, for

example). The dimension reduction visualization is then
reproduced (Fig. 2c) with the addition of a scale bar and
color bar at the bottom of the plot. This scale bar shows
the minimum and maximum pairwise distances between
the pairs of points in the original feature space, with all
pairwise distances in the data in between. The slider may
be moved back and forth along the color bar, and move-
ment of the slider will connect on the plot any pair of
points with pairwise distances less than or equal to the
slider’s location on the scale. This threshold is represented
by a gradient of colors, where dark blue is used for dis-
tances well below the threshold and distances near the
threshold gradually fade to white. The threshold can also
be “softened” or “hardened” by dragging the wings of the
slider, widening or narrowing the range of the gradient.
If no 2D coordinates are provided, the points are placed
according to a Kruskal MDS dimensional reduction, cal-
culated using isoMDS [11]. Text labels and colors for the
points may also be provided.
Figure 2c shows the data from Majumder et al. [10] as

depicted in distnet. The coordinates from the MDS plot
shown in Fig. 2a were input to distnet, which displays the
dimension reduction visualization and the additional scale
bar and color bar. This allows us to spot some explicit dis-
crepancies in theMDS plot of the data. For example, judg-
ing only from the distances of the points on the plot, the
ex vivo sample from patient MM_2525 (outlined in red)
looks more similar to the sample from patient MM_2756
(outlined in blue), while in fact the sample’s drug profile
is actually much closer to MM_1091 (outlined in black). A
line connects sample MM_2525 to MM_1091, indicating
that the pairwise distance between the two is at least 500,
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and the lack of a line between MM_2525 and MM_2756
indicates their pairwise distance must be greater than 500.
Therefore, despite the closeness of samples MM_2525
and MM_2756 on the plot, the drug profile for sample
MM_2525 is actually closer to sample MM_1091. This is
one example– this paper’s HTML supplement (available
as Additional file 1 and online [15]) provides an interac-
tive version of this figure, where the user can vary the
threshold to interactively explore the similarity relation-
ships of the samples and search for more inconsistencies.
The interactive version of Fig. 2c in the supplement can be
viewed in any web browser with Javascript enabled.
This kind of interactive plot is a useful way to explore

the validity of a dimension-reducing visualization of dis-
tance data, be it from MDS, PCA, t-SNE, UMAP, or any
other similar method. This is important, as it has become
quite common to reason about relationships between
entities based only on a dimension-reducing visualization.
In single-cell RNAseq profiling, for example, t-SNE plots
are often used directly to infer biological insights such as
the existence of cellular subtypes. Again, formally infer-
ring clusters or other structures in the data should be done
using the full feature space data, not the lower-dimension
embedding. Yet the prevalence of using such dimension-
reducing visualizations to reason about the relationships
between objects shows that visualization is a powerful
tool in understanding data, even if it can be misleading.
Previously, only indirect ways to explore the validity of
such visualizations has been possible: through validating
the identified clusters via statistical methods [4–9]. While
these methods are important and useful, they do not
help in identifying and understanding why the reasoning
about relationships in the data based on a dimension-
reducing visualization are incorrect. The distnet tool is a
complementary method that provides a visual means to
directly explore the validity of clusters or other apparent
structures in a dimension-reducing visualization.

focusedMDS
Figure 2c shows that for the data from Majumder et al.,
MDS might not be the best dimension reduction tool to
visualize the similarities and differences in drug response
between patient samples, and that it would be mislead-
ing to directly infer drug response groups from such a
visualization. In fact, the authors stratified the patient
samples into response groups based on unsupervised hier-
archical clustering of the drug sensitivity data, not based
on such a dimension-reducing visualization.We have then
answered the question of whether the MDS plot from
Fig. 2 was a good representation of the relationships in
the data, but we have not actually explored whether the
patient response groups as classified by Majumder et al.
via hierarchical clustering are meaningful. A dimension-
reducing visualization would be a useful tool in exploring

these groups classifications, but it seems that standard
MDS is not a good choice here.When considering another
dimension reduction algorithm, we must bear in mind
that all dimension-reducing plots must make some trade-
offs, as no algorithm can exactly represent the relation-
ships between all objects in all dimensions. In the context
of personalized medicine, we want to focus on a single
patient that may need to be treated differently than others,
even within its stratified group. We can then decide that it
is useful to very accurately depict the relationship of one
sample in particular to all others, even if it is at the expense
of accurately depicting the relationships between the sam-
ples we are not focusing on. To this end, we have created
a visualization tool that shows the distances of one “focal
point” to all others exactly, while depicting the distances
between the rest of the points as accurately as possible.
The focusedMDS tool takes a distance matrix contain-

ing pairwise dissimilarity measures between points (either
produced by R’s dist function, or simply any symmetric,
positive matrix with zero diagonal that fulfills the trian-
gle inequality). The function creates an interactive plot
(Fig. 3), where one “focal point” is plotted at the center
of the figure, and all other points are plotted around this
point. We can imagine that a non-focal point is placed on
a circle around the focal point, where the radius of that
circle is the exact distance of the point i to the focal point.
The angle φi at which the point is placed on its circle of
radius ri is determined by the relationship of the point
to the rest of the non-focal points. We choose a φi for
the point that minimizes stress, the difference between the
distance of point i to the rest of the non-focal points on
the 2D plot and the distances in the feature space (see the
Methods for a mathematical description of this method).
Therefore the distances between the focal point and all
other points are shown exactly, via the fixed ri of the polar
coordinate, while the relationships between the non-focal
points are depicted as accurately as possible, by minimiz-
ing stress when choosing the φi coordinate for each point.
Double clicking on any point will move that point to the
center of the plot, and all other points will be arranged
around this new focal point such that the distances to the
new point are now represented exactly.
Circular lines are added in the background of the plot

to help judge distances between the focal point and other
points. Hovering over any point will reveal the text label
of the point; if no text labels are given, a number will be
assigned. If group assignments for the points are given, a
legend appears with names of the groups and colors. Hov-
ering over the group color in the legend will highlight only
that group, and clicking on one or more legend colors will
highlight multiple groups. The size of the points in the
plot can also be adjusted with a slider. The focusedMDS
app works well with up to 1000 points; beyond this, limita-
tions of browser capabilities may restrict the functionality
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Fig. 3 focusedMDS representation of drug sensitivity score distance data. The drug sensitivity score data from [10] in Fig. 2, visualized with
focusedMDS. The three samples flagged in Fig. 2 are again identified. This is a static picture of the focusedMDS app– for an interactive version, visit
the online manuscript supplement [15]

of the plot or make rendering too slow. Figures 3 and 4
show static examples of the focusedMDS tool, but the
HTML supplement [15] provides live, interactive versions
of these figures.
Figure 3 shows a static version of the focusedMDS plot

created from the same Majumder et al. [10] data as from
Fig. 2. The data was classified into patient response groups
based on unsupervised hierarchical clustering of the dis-
tances between patient drug sensitivity scores, which uses
a variable threshold to determine the number of clus-
ters and cluster identity. While we do not dispute the
validity of the clusters identified in the paper, with this
method all samples are classified into groups, even if
some may not be typical representatives of any group
(and some groups may be more meaningful than others).
In a personalized medicine context, it may be worth-
while to ask whether a particular patient sample is a
typical representative of a group, or a marginal case.
In Fig. 3, we can see that the focal point (MM_2525)
assigned to group three (GrIII) is as close to the other
green points of GrIII as it is to the yellow and grey
points of the group two (GrII) and Healthy groups. In
this case, sample MM_2525 appears to be a marginal
case, rather than a typical representative of the group.
Because the patient sample strata may be used for treat-
ment recommendations, it may be the case that marginal
patient samples such as MM_2525 should be treated dif-
ferently than typical representatives of the group when
giving such advice. This closeness of this sample to the
two different groups is not immediately apparent in the
dendrogram visualization of the original manuscript. This
does not mean that the patient stratification described

by the authors is incorrect or not useful- stratification
of patients with refractory multiple myeloma into treat-
ment groups via ex vivo drug testing is a significant
advancement in personalized medicine for patients whose
options are otherwise limited. But by visualizing individ-
ual patients in the stratified group in this focused manner,
researchers and clinicians can understand whether a par-
ticular case is a good representative of the patient strata,
or if further investigation into the drug sensitivity data is
warranted.
The focusedMDS tool is also useful in contexts other

than personalized medicine, particularly when exploring
group classifications within data. As an example from a
different field, Fig. 4 plots individual mouse brain cells
from Zeisel et al. [16], where distances between cells are
calculated based on single-cell RNA expression (correla-
tion distances in panel A, and Euclidan distances in panel
B; see Methods for details). This visualization shows clus-
ters of neurons (interneurons, pyramidal somatosensory
cortex and pyramidal hippocampus CA1 neurons) as dis-
tinct from clusters of oligodendrocytes and support cell
populations (microglia, endothilial-mural, and astrocyte-
ependymal cells). The plot reiterates the finding from
Zeisel and colleagues that single-cell RNA-seq can effec-
tively distinguish between neuronal and other cell types,
but when exploring this data with focusedMDS the user
can see that there are a substantial number of cells whose
identity is somewhere between the identified clusters.
Again, an interactive version of this figure is available in
the HTML supplement [15]. One can hence see the useful-
ness of focusedMDS for exploring or verifying how robust
cluster assignments are.
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Fig. 4 focusedMDS representation of single cell mouse brain transcript data. Individual mouse brain cells forming cell type-specific clusters based on
single-cell gene expression information, data from Zeisel et al. [16], with focusedMDS generated from correlation distances (panel a) and Euclidean
distances (panel b). A cluster of neuronal cells (interneurons as red, pyramidal somatosensory cortex (SS) as yellow and hippocampal pyramidal CA1
neurons as green) can be seen to form a separate cluster from oligodendrocytes (lime) and support cells (microglia as blue, endothelial-mural cells
navy, and astrocyte-ependymal cells as purple), though some cells appear to be between the defined clusters. To interactively explore this dataset,
visit the online manuscript supplement [15]

Conclusions
The distnet and focusedMDS packages are useful tools
for exploring multidimensional data, both by investigat-
ing the relationship between a dimension-reducing visu-
alization and its underlying multidimensional data, and
by visualizing such data in a novel way. While no two-
dimensional representation of high dimensional data can
completely represent the relationships in the data, the
distnet tool is particularly useful for investigating exist-
ing dimension reduction visualizations and the biological
insights gained directly from these, while focusedMDS is
most useful when exploring the relationship of one par-
ticular individual to the rest of the samples. The use
of these tools can increase confidence that conclusions
drawn from dimension-reducing visualizations are not
simply artifacts of the visualization method, but are real
biological insights.

Methods
Computational methods
The distnet and focusedMDS tools are implemented
in Javascript using M. Bostock’s D3 library [17], a
framework for developing interactive data visualiza-
tion with Javascript. For univariate minimization, we
manually translated the Fortran code of fmin in the
NetLib FMM library [18] to JavaScript. The htmlwid-
gets package [19] was used to construct R wrappers
around the Javascript code, making the tools available as
R packages.

focusedMDSmathematical method
The focusedMDS tool visualizes distance matrix informa-
tion, given a matrix of values dij indicating feature space
distances between all pairs of points i and j (where dij =
dji and dii = 0). Points are added iteratively in polar
coordinates from the focus point outward. For each new
point, the radius ri is given by the distance to the focus
point ( d1,i). The angular coordinate φi of the new point is
chosen to minimize the stress,

∑
j Sij, between previously

placed points j and the new point i, where Sij is given by
(Dij − dij)2, i.e. the squared difference between the points’
given feature space distance dij and the distance of their
representatives (ri,φi) and (rj,φj) on the 2D plot, called
Dij (see Fig. 1). The minimizing φi is found using the uni-
variate numerical optimization algorithm of Brent [20]. By
using iterative univariate optimization, we avoid the com-
putationally costly multivariate optimization strategy of
minimizing stress between all points at once. This allows
for fast, interactive visualization of the high-dimensional
data in an intuitive way.

Example data methods
For Figs. 2 and 3, data from Majumder et al. [10] were
obtained from the authors. We calculated Manhattan dis-
tances between the 58 multiple myeloma patient samples
based on their ex vivo drug sensitivity scores (DSS) for
308 clinical and emerging oncology drugs. Drug sen-
sitivity score, as described in Majumder et al. [10], is
an area-under-the-curve-like sensitivity score calculated
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from dose-response cell viability measurements at five
drug concentrations for each drug. SimpleManhattan dis-
tances between the vectors of DSS values were calculated
using the dist function from the R base statistical methods
[21], and the assignment of patients to groups are those
published in Majumder et al. [10].
For Fig. 4, we obtained gene expression data for indi-

vidual mouse brain cells from Zeisel et al. [16], Fig. 1, by
communication with the authors. We performed quality
control on the gene counts as described in the supplemen-
tary methods of Zeisel et al.. Briefly, we removed any cells
with less than 2500 total RNAmolecules detected and any
genes with less than 25 molecules detected over all cells.
We then calculated a correlation matrix over all genes,
defined a threshold as the 90th percentile of this matrix
(0.2064), and removed any genes which had less than 5
other genes that correlated more than this threshold.
For the subsequent processing, we followed a standard

workflow that is also used by the Seurat package [22] for
single-cell transcriptomics data analysis: we normalized
the unique molecular identifier (UMI) counts given in the
expression matrix by dividing, for each cell, the count
for each gene by the total count for that cell. We then
multiplied each normalized count by 103, added a pseu-
docount of 1, and performed a log2 transformation. For
Fig. 4a, we then chose the top 200 most variable genes
and calculated 1 minus the Spearman correlation between
those genes. For Fig. 4b, again following the Seurat pack-
age’s [22] standard workflow, we calculated the first 50
principal components of the normalized, log-transformed
counts and used these components to calculate Euclidean
distances with R’s dist function [21].

Availability and Requirements
Project name: focusedMDS, distnet
Project home page: https://github.com/anders-biostat/
focusedMDS and https://github.com/simon-anders/
distnet/
Operating system(s): Platform independent
Programming language: R, Javascript
Other requirements:R version greater than 3.3.1, R pack-
ages htmlwidgets (0.6 or higher), MASS, grDevices
License: GNU General Public License
Any restrictions to use by non-academics: none

Additional file

Additional file 1: HTML file corresponding to https://lea-urpa.github.io/
PaperSupplement.html. To view the file, download the zip file, unzip, and
double click the HTML file to open in any browser with Javascript enabled.
(ZIP 2891 kb)

Abbreviations
2D, 3D: Two dimensional, three dimensional; DSS: Drug sensitivity scores;
focusedMDS: Focused multidimensional scaling; GrII, GrIII: Group two, group
three; MDS: Multidimensional scaling; PCA: Principal components analysis;

RNA-seq: RNA sequencing; t-SNE: T-distributed stochastic neighbor
embedding; UMAP: Uniform manifold approximation and projection; UMI:
Unique molecular identifier
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