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On the SimultaneousQuantification of FlowVelocities and Relaxation Constants

Through Magnetic Resonance Fingerprinting

In this thesis, the development of a novel magnetic resonance imaging (MRI) pulse sequence

based on magnetic resonance fingerprinting (MRF) is presented. The proposed technique,

termed “Flow-MRF”, allows time-resolved velocities and relaxation constants to be quanti-

fied simultaneously, in shorter acquisition times than conventional MR-based velocimetry.

The simultaneous quantification of both sets of parameters was achieved by formulating the

combined problem in the MRF framework. An MRF pattern was designed to create minimal

coupling between the relaxometric and velocimetric parameter encoding.

Flow-MRF was validated and tested in simulations, phantom experiments, and an in vivo

study targeting the popliteal artery and the gastrocnemius muscle. In each investigation,

Flow-MRF quantified relaxation constants and flow velocities in strong agreement with litera-

ture and reference measurements. Furthermore, the use of high velocity encoding moments

(∆m1 = 60mT/m ·ms2) was demonstrated while maintaining a range of correctly quanti-

fiable velocities beyond 800 cm/s. In the volunteer study, Flow-MRF determined an average

longitudinal relaxation time of (1384± 75)ms and a transverse relaxation time of (26± 4)ms

in the gastrocnemius muscle. The average velocity deviation over all three volunteers between

Flow-MRF and the reference was (−2.6± 5.2) cm/s. Lastly, the potential to quantify the com-

plete Reynolds stress tensor with Flow-MRF was investigated and shown in a stenotic flow

phantom experiment.

Flow‐MRF presents a novel method of quantifying velocities in up to fourfold shorter measu-

rement times than conventional velocity mapping techniques, while simultaneously providing

relaxometric maps of static tissue. These improvements can potentially be helpful in the

assessment of pathologies such as arteriosclerosis.





Über die simultaneQuantifizierung von Strömungsgeschwindigkeiten und

Relaxationszeiten mit Hilfe von Magnetic Resonance Fingerprinting

In dieser Arbeit wird die Entwicklung einer neuen magnetresonanztomographischen Bild-

gebungssequenz basierend auf Magnetic Resonance Fingerprinting (MRF) vorgestellt. Die

entwickelte Technik namens „Flow-MRF“ erlaubt die simultane Quantifizierung von zeit-

aufgelösten Strömungsgeschwindigkeiten und Relaxationszeiten in verkürzter Messdauer

verglichen zu konventioneller, MR-basierter Geschwindigkeitsquantifizierung. Durch die For-

mulierung des kombiniertenQuantifizierungsproblems im Rahmen des MRF-Konzepts wurde

die gleichzeitige Bestimmung beider Parameter ermöglicht. Dafür wurde ein MRF-Muster

entworfen, welches eine minimale Kopplung zwischen der Kodierung der Geschwindigkeiten

und den relaxometrischen Parametern verursacht.

Flow-MRF wurde in Simulationen, Phantom-Experimenten und in einer In Vivo Studie, zur

Untersuchung der Kniekehlarterie und des zweibäuchigen Wadenmuskels, getestet. Alle Unter-

suchungen zeigen eine hohe Übereinstimmung der mit Flow-MRF quantifizierten Geschwin-

digkeiten und Relaxationszeiten mit Literaturwerten und Referenzmessungen. Des Weiteren

wurde die Kodierung der Geschwindigkeit mit hohen Momenten (∆m1 = 60mT/m ·ms2) de-

monstriert und der Bereich der korrekt quantifizierbaren Geschwindigkeiten auf über 800 cm/s
bestimmt. In der Probandenstudie wurde im Wadenmuskel eine longitudinale Relaxationszeit

von (1384± 75)ms und eine transversale Relaxationszeit von (26± 4)ms bestimmt. Die mitt-

lere Abweichung der bestimmten Geschwindigkeiten über alle Probanden zwischen Flow-MRF

und der Referenz beträgt (−2.6± 5.2) cm/s. Schließlich wurde die Möglichkeit, mit Flow-MRF

den vollständigen Reynoldsschen Spannungstensors zu quantifizieren, in einer Messung mit

stenotischen Fließbedingungen untersucht und gezeigt.

Flow-MRF stellt eine neue Methode zur simultanenQuantifizierung von Strömungsgeschwin-

digkeiten dar und ermöglicht dabei eine bis vierfach verkürzte Messdauer als konventionelle

Methoden. Zusätzlich werden bei Flow-MRF die Relaxationszeiten von statischem Gewebe

bestimmt. Diese Neuerungen sind potenziell hilfreich bei der Untersuchung von Pathologien

wie Arteriosklerose.
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1 Introduction
Medical imaging has become a cornerstone of medical diagnostics in the last decades.

Among all medical imaging modalities, MRI holds a unique list of benefits: an ex-

cellent soft tissue contrast, insight into physiological processes, and highly resolved

spatiotemporal morphology, to name a few, while avoiding any exposure to ionizing

radiation. These characteristics qualify MRI based diagnostics as the medical imaging

modality of choice in many clinical questions. The majority of the clinical MR images,

however, are qualitative in their contrast, unlike many other imaging modalities.

No quantitative value can be assigned to each voxel in the final image, despite the

inherently quantitative amplitude of the MR signal, due to multitude of scaling factors

during the acquisition, digitization, and reconstruction.

The qualitative or weighted images do not represent a prohibitive drawback in current

radiology because the diagnosis is based on the expertise and knowledge of highly

trained physicians capable of coping with varying contrast and signal levels. The

steadily increasing number of MRI examinations over the last decade in Germany

(185 %-fold increase) [1], however, might indicate that in the future, the radiologists

might need to be assisted by automated diagnostic tools based on machine learn-

ing techniques. These techniques thrive on consistent and quantitative input data.

Furthermore, ever-larger multi-center studies can strongly benefit from consistent

imaging parameters and identical imaging hardware. This, however, is often not

feasible due to different coil availability, varying gradient hardware or even different

MRI-vendors. Truly quantitative imaging would immediately alleviate all problems

of inter-site variability as the fundamental properties of the biological sample are

measured. Large databases of normal and abnormal relaxation times, for example,

could provide the basis for radiological reporting systems, allowing comprehensible,

standardized and objective evaluations of the MRI data. The potential advantages of

these reporting systems have been successfully demonstrated by the Prostate Imaging

Reporting and Data System (PI-RADS), for example [2].

The quantification of relaxometric constants can provide an optimal image contrast

compared to weighted images, and allow synthetic images with pure contrast to be

generated. Many fast imaging sequences generate mixed contrasts based on both T1

and T2. Disfavorable combinations of these parameters can result in low contrast

as can be seen in fluid-attenuated inversion recovery (FLAIR) sequences at 7 T [3].
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Introduction

The native T2-FLAIR contrast is up to twofold lower at 7 T than at 1.5 T [3], largely

negating the advantage of the higher signal. The inhomogeneity of the transmit

field poses one of the major challenges at main magnetic fields of 7 T and above [4].

Relaxometric mapping inherently eliminates the variability in the image signal caused

by the inhomogeneous transmit field, because the underlying physical properties of

the tissue are displayed. This does not mean that transmit variability has no influence

on quantitative methods, but its variation can be estimated alongside the relaxometric

parameters [5, 6] or be included in the mapping process as prior knowledge.

The increasing need and performance of automated medical image processing, along-

side the increasing availability of ultra high-field MRI systems, creates a higher

necessity for quantitative imaging than ever.

Magnetic Resonance Fingerprinting (MRF) [7] is a promising technique capable of

achieving rapid quantification of tissue parameters, mainly relaxation constants, in

clinically feasible timescales. This can be realized by a highly undersampled acqui-

sition of the temporal signal behavior in non-steady state conditions. It was shown

that this transient signal evolution can provide quantitative information on T1, T2,

B0, B1, and others [7, 6, 8, 9]. The set of quantifiable parameters is dependent on the

choice of MRF pattern, i.e., the excitation, gradients, and timing pattern.

The temporal evolution of the signal inherently encodes the information of multiple

parameters simultaneously. Conventionally, the quantification of MR measurable

parameters is performed sequentially, as in DESPOT 1& 2 [10], for example. The

acquisition time, however, is limited by the time needed to encode each parameter.

This encoding process includes the spatial encoding but also time needed to prepare

the signal, such as the inversion time in inversion recovery experiments. In MRF,

the problem of sequential encoding is transferred to a problem of separability or

informational decoding. Every parameter needs to have a unique temporal influence

on the measured signal for it to be quantifiable with MRF. The separability problem

has tremendous benefits in multi-parameter quantification as, in theory, increasing

the number of quantified parameters does not necessarily reduce the fidelity with

which every other parameter is determined. In a sequential encoding scheme time

dedicated to the quantification of every other parameter needs to be reduced, to

make time of the additionally measured quantities. A reduction in the time invested

for each parameter must result in a decrease of their fidelity, assuming no idle time

is wasted in the respective sequences. Augmenting the number of simultaneously

quantified parameters, inevitability increases the efficiency of MRF compared to se-

quential encoding schemes, as long as a good separability between parameters is given.

These assessments motivate the observations presented within this work, where the

additional quantification of flow velocities alongside the established relaxometric

parameters has nearly no negative influence for the determination of other parameter
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within the same measurement time. This effect can be ascribed to the conscious

design of an MRF sequence where the influences of the velocity quantification on the

relaxometry, and vice versa, are minimized.

The time-resolved quantification of flow velocities is used in clinical routines in in-

vestigating a multitude of cardiovascular diseases [11]. These sequences, however,

are inherently limited by long acquisition times, constraining their application to

single slices or low spatial or temporal resolutions. The phase-based quantification

sets an upper bound on the quantifiable velocities due to the 2π dynamic range. An

estimate of the expected maximum velocity has to be made before the measurement

to determine the amplitude of the velocity encoding moments. A smaller velocity

encoding moment increases the quantifiable range of velocities but at the cost of an

increased velocity noise. The encountered velocities in patients can exceed those of

healthy volunteers many-fold [12]. This usually enforces a large overestimation of

the maximum velocity, in turn reducing the efficiency of the measurement. The MRF

based quantification aims to tackle the long acquisitions times and the limited range

of quantifiable velocities while using velocity encoding moments largely exceeding

those of conventional velocimetry.

The simultaneous measurement of flow velocities and relaxometric parameters is

especially interesting for the diagnosis and treatment of diseases such as arterioscle-

rosis, where plaque builds up inside of an artery. It is known that severe cases of

atherosclerosis can result in coronary artery disease, stroke, and other cardiovascular

problems [13]. Likewise, the diagnostic value of T1 and T2 weighted contrasts in

the characterization of plaque was established [14]. The flow information is helpful

in determining the severity of the stenosis [15] and allows the determination of the

forces acting on the plaque [16]. Simultaneously acquiring quantitative information

on all of these parameters, in a competitive measurement time with conventional

sequences, could provide high diagnostic value. This prospect, at heart, is driving the

development of the presented techniques in this work.
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2 Theory

2.1 Nuclear Magnetic Resonance

2.1.1 Nuclear Spin and Macroscopic Magnetization
Every nucleon, the building blocks of all atoms, inherently posse a quantized angular

momentum, called nuclear spin. The existence of quantized angular momentum

was first observed by Stern and Gerlach in 1922 [17]. The fundamental nucleonic

property of spin can persist in atoms, given the vector sum of all spins in the nucleus

does not cancel out. A finite total angular momentum ~J gives rise to a magnetic

moment ~µ, linked by the following equation:

~̂µ = γ ~̂J, (2.1)

with γ the gyromagnetic ratio, a nucleus-specific constant and which can be expressed

in the following manner:

γ = g
µK
~

with µK =
q

2mr

~. (2.2)

Here, g is the Landé g-factor, µk the nuclear magneton and ~ the reduced Plank

constant. For the 1
1H hydrogen nucleus, γ is determined as 267.522 · 106 rad/sT.

For the angular momentum operator ~̂J the following eigenvalue equations and com-

mutator relations are valid:

~̂J2 |j,m〉 = ~2j(j + 1) |j,m〉 (2.3)

Ĵz = m~ |j,m〉 . (2.4)

[
Ĵa, Ĵb

]
= iεabc~Ĵc (2.5)[

Ĵa, ~̂J
2
]
= 0 (2.6)

Here, |j,m〉 is the angular momentum state vector with j and m the primary and

secondary spin quantum numbers. The vanishing commutator between ~̂J2 and any
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component of ~̂J means that both the absolute value and one direction of the angular

momentum (usually chosen to be Ĵz) can be simultaneously measured. In general,

j can take integer or half-integer values, while m may be any of the 2j + 1 values
between −j, j + 1, ..., j − 1, j. For the 1

1H hydrogen nucleus, consisting of a single

proton, j = 1
2
andm may take on two possible values.

The application of an external magnetic field ~B leads to an energy interaction, called

Zeeman effect, which can be described by the following Hamilton operator:

Ĥ = −~̂µ · ~B. (2.7)

Assuming, without loss of generality, the ~B field along the z-direction yields:

Ĥ = −γ~B0Ĵz (2.8)

This equation shows that Ĥ is equal to Ĵz save the scalar factor γB0. The eigenstates

of the Hamiltonian are thus the eigenstates of Ĵz scaled by the previous factor.

The allowed energies, according to the time-independent Schrödinger equation,

therefore are:

Em = −γ~B0m m = −j, j + 1, ..., j − 1, j. (2.9)

In the following, only the case of the 1
1H hydrogen nucleus is considered. In this case,

only two energy states are possible, and their energy difference is:

∆E = −γ~B0 (2.10)

Transitions from one energy state to the other can be induced through interaction

with oscillating magnetic fields perpendicular to the main field B0. The energy of the

interacting photon has to equal the energy difference. The frequency of the oscillating

field is thus determined by the gyromagnetic ratio of and the main magnetic field:

~ω = ∆E = γ~B0 (2.11)

ω = γB0. (2.12)

This frequency is further referred to as the Larmor frequency (ωL).
In MRI, the usual spatial resolutions are in the order of cubic-millimeter, the spin

signal is thus averaged over a large number of spins. The occupation of the two

possible energy states can be described statistically for this large number of spins. The
1
1H hydrogen nuclei are Fermions as they possess a half-integer spin, their occupation

numbers thus following Fermi-Dirac statistics. The energy differences between states

are small in MRI compared to the thermal energy at room temperature. For a main

magnetic field of 7 T for example:

∆E7T = 1.22 · 10−6 eV (2.13)

EThermal = kBT ≈ 25 · 10−3 eV at T = 300 K, (2.14)
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2.1 Nuclear Magnetic Resonance

with kB the Boltzmann constant and T the temperature of the probe. In this high-

temperature regime, the Fermi-Dirac statistic can be approximated by a Boltzmann

distribution:

P (Em) =
e−Em/kBT

Z
(2.15)

Z =
∑
m

e−Em/kBT . (2.16)

The energy of each state Em was defined in eq. (2.9). The ratio of the occupation

numbers between the energetically favorable and disfavorable state is termed η and
be expressed as:

η = tanh
γ~B0

2kBT
(2.17)

≈ γ~B0

2kBT
(2.18)

For typical in vivo temperatures and clinical MRI system with a main magnetic field

strength of 1.5-7 T, this ratio is in the order of 1 · 10−6 to 1 · 10−5. This observation on

the small polarization indicates in part why measured signals in NMR are inherently

small and why great care has to taken detect and digitize these signal efficiently.

The detected NMR signal is the superposition of all of all magnetic moments of the

probe and within this process of averaging the quantum mechanical properties of the

system vanish, allowing a semi-classical description of the system. This behavior is

termed the correspondence principle. The emerging macroscopic magnetization can

thus be written as:

~M =
n∑
i

〈 ~̂µi〉 (2.19)

=
n∑
i

γ〈 ~̂Ji〉 (2.20)

Only the Jz component has on average a finite expectation value, thus:

Mz =
Nγ2~2B0

4kBT
(2.21)

This macroscopic z-magnetization in thermal equilibrium will in the following be

referred to asM0.
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2.1.2 Equation of Motion
The previous section motivated that averaging over all magnetic moments within a

volume yields a macroscopic magnetization vector. The equation of motion for the

macroscopic magnetization vector can be written and understood in a semi-classical

manner. The equation of motion of a non-interactingmagnetization vector is described

by:

∂ ~M

∂t
= ~M × γ ~B. (2.22)

This description is congruent with the quantum mechanical von Neumann equation:

∂〈~̂µ〉
∂t

= 〈− i

~
[~̂µ, Ĥ]〉. (2.23)

This equation can be rewritten, using eqs. (2.5) and (2.8), as:

∂~µ

∂t
= ~µ× γ ~B. (2.24)

This result immediately translates to the macroscopic magnetization:

∂ ~M

∂t
= ~M × γ ~B. (2.25)

It can be stated that the temporal deviation of ~M vanished when ~M = |M |êz , this
is expected from eq. (2.21). A finite transverse magnetization precesses around the

magnetic field with a frequency of γB.
For ease of mathematical description, a transformation into a rotating frame of refer-

ence is made, this can be done without loss of generality. In the following, the primed

reference frame rotates with an angular velocity ~Ω relative to the unprimed laboratory

frame. Equation (2.25) can be rewritten as:

∂ ~M

∂t
=

(
∂ ~M

∂t

)′

+ ~Ω× ~M (2.26)(
∂ ~M

∂t

)′

= γ ~M × ~Beff , (2.27)

with

~Beff = ~B +
~Ω

γ
. (2.28)
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2.1 Nuclear Magnetic Resonance

2.1.3 Relaxation
The existence of an energy differences between orientation states of the magnetic

moment was established in section 2.1.1. Further, the emergence of a finite difference

in the occupation probability was motivated, but it was omitted by which the inter-

action state transitions are realized. This section will give a short overview on the

fundamental interactions of the magnetization.

The characteristic time constant which describes that rate of change in the occupation

number between the two energy states towards the thermal equilibrium, is termed

T1. The thermal equilibrium is defined by eq. (2.16). This process occurs when the

probe is first introduced into the magnetic field or after the action of RF-pulses, which

can change the occupation number. During the change in occupation numbers, the

energy is dissipated into molecular motion. The misleading name of T1 is spin-lattice

relaxation time, which originates from solid state NMR experiments. For NMR in

liquid, the is evidently no lattice, nevertheless, T1 occurs.

A second relaxation time can be observed with NMR, representing spin-spin inter-

actions. The spin-spin relaxation time T2 describes a loss of phase coherence in the

transverse plane between magnetic moments.

Based on empirical observation of both processes, Bloch formulated the well-known

Bloch-equations [18]:

dMx(t)

dt
= γ( ~M × ~B)x −

Mx(t)

T2
(2.29)

dMy(t)

dt
= γ( ~M × ~B)y −

My(t)

T2
(2.30)

dMz(t)

dt
= γ( ~M × ~B)z −

Mz(t)−M0

T1
. (2.31)

Here,M0 is the z-component of magnetization in thermal equilibrium. This equation

is a generalization of eq. (2.22), to include interactions in form of relaxation. In the

rotating frame of reference of the magnetization and in absence of a an RF-pulse, a

solution can be written as:

M⊥(t) =M⊥(0)e
−t/T2 (2.32)

M‖(t) =M0 − (M0 −M‖(0))e
−t/T1, (2.33)

withM⊥ =Mx + iMy andM‖ =Mz .

A more fundamental description of the relaxation process was proposed by Bloember-

gen et al. [19]. Here, interactions between magnetic moments are assumed stochastic,
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these could for example based on dipolar coupling. This leads us to the definition of a

correlation function linking the correlation between the perturbation at a time t0 + τ
to the perturbation a the time point t0. The transition probability between a statem
and k can be written as a function of the correlation function Gmk:

Wkm =
1

~2

∞∫
−∞

Gmk(τ)e
i(

Em−Ek
~ )τdτ, (2.34)

with Em − Ek the energy difference between the states and the temporal correlation

of the perturbations is expressed byGmk. The molecular motion inevitable causes this

correlation to decay to zero. The molecular tumbling rate due to Brownian motion

defines a correlation time τc after which a strong decay of Gmk is observed.

The similarity of eq. (2.34) to a Fourier-transformmotivates the definition of a spectral

density Jmk:

Jmk(ω) =

∞∫
−∞

Gmk(τ)e
−iωτdτ. (2.35)

The transition probability is now given by:

Wkm =
Jmk(

Em−Ek

~ )

~2
(2.36)

Jmk indicates the probability of a transition at a given frequency to occur. This

frequency evidently translates into an energy difference between states. In the simple

case of an exponentially decaying correlation function, Jmk can be calculated by:

Jmk(ω) =
τc

1 + ω2τ 2c
. (2.37)

For the constructed scenario of an isolated spin pair with isotropic rotations and

constant distance r, T1 and T2 can be expressed as:

1

T1
= K[J(ωL) + 4J(2ωL)] (2.38)

1

T2
= K[3J(0) + 5J(ωL) + 2J(2ωL)]. (2.39)

Here, K is a coupling constant dependent on the distance r of the dipolar interaction.
For more realistic cases, T1 and T2 cannot be derived as easily from a given spectral

density distribution.
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2.2 Magnetic Resonance Imaging

2.2 Magnetic Resonance Imaging
Since the discovery of Magnetic Resonance Imaging (MRI) in 1971 by Paul C. Lauter-

bur this technique has gained significant importance in medical diagnostics. Although

waste improvements have been made in the image quality and speed of the acqui-

sitions, the fundamental principle of imaging has remained the same. The spatial

encoding of the magnetization is achieved by the application of linearly varying

magnetic field. To fully encode the spatial information, three of these magnetic fields

are required. Their orientation is along the direction of the main magnetic field but

their respective gradients span an orthogonal basis of the three-dimensional space.

These spatial gradient fields induce a local shift of Larmor-frequency which allows

the localization of the magnetization, as will be described in greater detail in the

following sections.

2.2.1 Spatial Encoding
The following description of the spatial encoding is given in the rotating frame of

the magnetization, further the magnetization will be assumed non-interacting and

located in the transversal plane relative to the main magnetic field. This means that

transversal magnetization precessing with ωL = γB0 in the laboratory frame, appears

as static in the x-y-plane of the rotating frame of reference.

In a first step we consider a one dimensional object in x-direction, defined by its

effective spin density ρ(x). ρ may later include relaxation effects and other processes

which are independent of the spatial encoding. Applying a temporally constant linear

gradient along x for a time period t yields the following change in frequency and an

accumulation of a phase relative to the static magnetization:

ωG(x) = γxG (2.40)

φG(x, t) = −
t∫

0

ωG(x, t
′)dt (2.41)

The acquired signal of the object as a function of the duration during which the

gradient is applied can be written as:

s(t) =

∫
ρ(x)eiφG(x,t)dx (2.42)

Here the spatial frequency k can be introduced:

k(t) =
γ

2π

t∫
0

G(t′)dt′, (2.43)
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Substituting k(t) in eq. (2.42) makes the relation between the Fourier-transform and

the measured signal apparent:

s(k) =

∫
ρ(x)e−i2πkxdx (2.44)

The measured signal is hence the Fourier-transform of the effective spin density.

If s(k) is known of all k then the effective spin density can be computed by the

well-defined inverse of the Fourier-transform:

ρ(x) =

∫
s(k)ei2πkxdk (2.45)

In a realistic experiment s(k) will never be know for all k. The consequences of mea-

suring s(k) in a finite range and at a finite number of sample points will be discusses

in the following section. Note that at the beginning of this section t was introduced
as the time period during which the gradient was applied prior to the data acquisition.

This means that any delay can be inserted between the action of the gradient and the

measurement of the signal. These two can be temporally uncorrelated, this is usually

termed phase-encoding. If the data is acquired while the gradient G is switched on,

then this process is called frequency-encoding. Despite the different terminology, these

encoding techniques are equivalent in their action as they measure the space of spatial

frequencies of the object (k-space).

Properties of Fourier Transform

The previous section alluded that measured data in MRI can be viewed as the sampling

of the space of spatial frequencies, termed k-space. A detailed discussion of this

unitary linear operator called Fourier operator F , transforming between the two

Hilbert spaces, the k-space and the Euclidean space (image space), is beyond the

scope of this work. Nevertheless, some fundamental properties of this transformation

are of utmost importance to the understanding of the presented techniques and

methods. The first and potentially the most important property is the linearly of the

transformation. Formally, this means:

F(af(x) + bg(x)) = af ′(ξ) + bg′(ξ) (2.46)

here, f ′ and g′ are the respective Fourier transforms of the functions f and g which
are assumed integrable.

Further, the Fourier-shift theorem is of great importance in MRI, stating that a

shift/translation in one of the Hilbert spaces results in a linear phase in the other

and vice versa:

F(f(x− x0)) = f ′(ξ)e−i2πx0ξ (2.47)

12



2.2 Magnetic Resonance Imaging

Lastly, the convolution theorem states that a multiplication of two functions in the

Fourier-domain is equal to a convolution with the respectiv Fourier-transforms of

in spatial domain:

f · g = F−1 {F{f} ∗ F{g}} (2.48)

Discrete and Finite Sampling of k-Space

In theory, k-space can be sampled at arbitrary positions and correct images be can

reconstructed, as long as a dense sampling is ensured. The definition of dense k-space
sampling will be given in the following section. Nevertheless, in order to make use of

the reduction in computational burden of the fast Fourier transform (FFT) compared

to the direct definition of the discrete Fourier transform (DFT) a regular sampling on a

Cartesian grid is required. This can either be achieved by directly measuring the

data on such an Cartesian grid or by interpolating the data onto this grid using

for example a Kaiser-Bessel window function [20]. The FFT algorithm reduces

the computational burden from O(N2) to O(N log(N)), where N is the number of

data points. In a practical example of a volumetric high resolution head scan N can

be in the order of: N = 2563 ≈ 16.7 · 106. Here, the use of the FFT reduces the

computational burden by a factor of 2.3 million, while producing the same result as

the DFT. Compuation times would be unreasonably large if a DFT would be used,

thus the following section assumes an equidistant distribution of sampling points.

This section again assumes a one-dimensional encoding problem but this can be

applied to 3D as each orthogonal encoding direction is independent of all others.

The discrete and finite sampling of the k-space can be understood in terms of a

multiplication of the continuous signal with a Dirac-comb and a windowing function.

The Dirac-comb, sometimes refereed to as sampling function, represents the action

of acquiring a single data point while the duration of acquisition is assumed to be

infinity short. Even though this represents an ideal sampling process, it is a good

approximation of the actual sampling behavior. The Dirac-comb can be written as an

infinite sum of Dirac-delta functions:

u(k) = ∆k
∞∑

p=−∞

δ(k − p∆k). (2.49)
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Here,∆k is the step size between sampling points. The measured signal sm(k) , which
can be acquired by the discrete sampling process can be written as:

sm(k) = s(k) · u(k) (2.50)

sm(k) = ∆k
∞∑

p=−∞

s(p∆k)δ(k − p∆k) (2.51)

Figure 2.1: Schematic representation of the influence of the sampling density on the

spread of the Dirac-comb in image space. A sampling rate higher then

2-fold the maximal frequency, as stated by the Nyqist sampling theorem,

causes the delta function to be far apart in image space. In the first column

they were cropped from the image. In the second image the sampling

frequency is just above the Nyqist limit, here the images can still be

separated without overlap. In the third image the sampling frequency is

to low and the well know fold-in artifacts occurs.

An important side note, the Fourier-transform of the Dirac-comb is again a Dirac-

comb but the spacing between delta function is the inverse of the previous spacing
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∆k. Figuratively speaking, this means that a Dirac-comb with delta function close

to one another will yield a Dirac-comb with delta function far apart when Fourier-

transformed.

The consequences of the discrete sampling, described in eq. (2.51) together with the

convolution theorem in eq. (2.48), are shown in fig. 2.1. Here, a densely sampled

measurement, in the first column, is retrospective subsampled. This brings the addi-

tional delta functions in image space of the Dirac-comb closer to the central central

image. The second column shows the minimal sampling frequency where no overlap

occurs, this is usually the optimum for imaging as no excess of information has to be

gathered. This minimal sampling frequency is also defined by the Nyqist sampling

theorem. Sampling with frequencies lower than the Nyqist-limit is refereed to

as undersampling, this is the case for the third column in fig. 2.1, for example. The

discrete sampling of s(k) is thus the reason why period images are reconstructed

even though the measured object is non-periodic.

Figure 2.2: Images reconstructed from different parts of k-space are compared to the

image of the complete k-space. The cropping of the outer parts of k-space
as shown in (b) is equivalent to the application of a narrow windowing

function. As discussed, this causes a broadening of the PSF and a low

resolution image (e). The outer parts of k-space hold the edge information

as can be seen in (f).
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In any measurement k-space can only be sampled up to a maximum spatial frequency

kmax. This effectively means that the continuous and infinite signal s(k) is multiplied

by a windowing function, usually a rect function with widthW = 2kmax and center
around k = 0. Making use of the convolution theorem, as stated in eq. (2.48), indicates

that this truncation of the infinite signal leads to a convolution of the true effective

spin density with a sinc-function. Let ρ̂(x) be the estimated image:

ρ̂(x) = ρ(x) ∗W sinc(πWx) (2.52)

This eq. (2.52) imitatively shows that the point spread function (PSF) in MRI can be

approximated, to a first order, as a simple sinc-function. An we can deduce that

kmax determines the resolution of the image as it defines the width of the PSF. Fig-

ure 2.2(a,b,d,e) illustrate this observation. Figure 2.2a,d show a large kmax and as a
results a high resolution image, while fig. 2.2b,e show a small kmax resulting in a

larger PSF and a blurred image. A direct influence of the sinc-shaped PSF can be

seen in fig. 2.2e as ripples in the brain, often refereed to as Gibbs-ringing. Applying

additional weighting function to the data, such as a Hamming-window function, can

reduce these ripples but a the cost of a broadening of the PSF. Figure 2.2c,f illustrate

that the outer parts of k-space hold the edge information of the image.

Non-Cartesian k-space sampling

Theprevious sectionmotivated why sampling k-space on a Cartesian grid is desirable

because of the reduction in computational burden of the FFT compared to a general

DFT. Cartesian k-space sampling, on the other hand, was not explained. In the

simplest case of Cartesian imaging, one of the three spatial dimensions is encoded

via the frequency-encoding as described in section 2.2.1, the other two are encoded

via phase-encoding steps. This means that after each excitation of the magnetization

a parallel line in k-space is acquired. This process is repeated for each phase-encoding

step until the k-space is filled such that the desired spatial resolution is achieved and

the Nyqist sampling theorem fulfilled. This sampling scheme has many advantages,

especially in regards to its robustness against system imperfections, but a detailed

description of those is beyond the scope of this work. Here,the focus lies on the differ-

ences in undersampling behavior between Cartesian and non-Cartesian imaging.

The most commonly used non-Cartesian k-space trajectories are spiral and radial
trajectories. Both are illustrated in fig. 2.3. In radial imaging a straight line in k-space
is acquired, either from the center of k-space outward or a complete spoke from

−kmax to −kmax going through k = 0.
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Figure 2.3: Two common non-Cartesian k-space trajectories are shown. The first

image shows a host of radial trajectories, while only a single variable

density spiral-trajectory is shown in the second image.

The angle of the spoke in the kx-ky plane is then incremented until the k-space is
fully sampled. The same process can be used for spiral imaging the only difference

is that a single acquisition samples a spiral trajectory (see fig. 2.3) in k-space. Here,
variable density spiral as in fig. 2.3 or Archimedean spiral can be used.

Inspecting either trajectory in fig. 2.3 shows that the density of sample points is no

longer homogeneous throughout k-space. Interpolating the data simply onto the

Cartesian grid, as described in section 2.2.1, will lead to a higher weighing of the

spatial frequencies with a larger sampling density. This is equivalent to multiplying a

homogeneously sample k-space with a weighting function, just like the windowing

function in previous section. A greater weighting of low spatial frequencies, as found

in radial imaging, leads to a strong broadening of the PSF, thus a blurring of the

reconstructed image as can be seen in fig. 2.4. This effect can be eliminate by applying

an additional weighting of the data with the inverse of the sampling density, called

density compensation (DC). The trajectories used in this work all have a by design a

rotational symmetry around k = 0. The sampling density is thus a pure function of

|k|. For 2D imaging the density compensation as a function of the discrete samples n
can be written as:

d(n) = π
d|k|2

dn
(2.53)

sdc(n) = sm(n)d(n). (2.54)
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Here, n is indexing the sampled points along the trajectory and sdc is the density
compensated signal that can be interpolated yielding an image with a PSF as described

in eq. (2.52).

Figure 2.4: The influence of a sampling density compensation is illustrated in this

figure. The first image shows the reconstructed image with density com-

pensation and the second one is reconstructed without DC. The circular

dropout in the second image is cause by spatial phase variations. Although

the magnitude is shown here, these images are inherently complex valued.

k-space undersampling

Undersampling (US) of k-space, as previously stated, is defined when the Nyqist

sampling theorem is not fulfilled and it some part of the magnetization is mislocalized

as in the third image in fig. 2.1. An equivalent definition would be that ∆k between
any nearest neighbors anywhere in k-space is smaller then 1/L where L is the largest

dimension of the object:

∆k =
1

L
. (2.55)

For radial imaging the spacing between sample points in polar direction is always the

largest at kmax. For this reason, radial images can be undersampled while preserving

the image quality as most of the k-space still fulfills the Nyqist criterion. This is

illustrated in fig. 2.5.
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Visual inspection shows only very light streak-like radial US artifacts when under-

sampling by a factor of 2-4. These become more prominent for US factors of 8-16 to a

point where a real degradation of image quality can be noted. The last image, with an

US factor of 140, was reconstructed from 5 radial projections. This is the same amount

of spatial data per timeframe that is used in most MRF applications in this work. For

this imaging protocol with a spatial resolution of 0.8mm in-plane and a square FOV

of 190mm approximately 700 radial projections are needed to fully sample the image.

The visual appearance the US artifacts in regularly sampled Cartesian imaging, as in

the third image in fig. 2.1, and in radial image is highly dissimilar. In Cartesian imag-

ing the fold-in artifact is highly structured and spaciously localized, this is because

∆k is constant throughout k-space. In radial or variable density spiral imaging ∆k is
changing locally, thus spreading out the US artifacts within the whole spatial domain.

This is also possible in Cartesian imaging when variable ∆k are used but the US
artifacts still show a higher correlation to actual image then in radial or spiral imaging.

Figure 2.5: This figure illustrates the effects of radial undersampling with different un-

dersampling factors. The visual impression of the image is well preserved,

even for 16-fold undersampling.
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2.2.2 Gradient moments

The quantification of velocities is of a central importance to this work. This section

will define the prerequisite notions needed for the explanations of the presented

velocity encoding techniques.

The special case of static and a one-dimensional object has been discussed in sec-

tion 2.2.1. The phase of the signal took a simple form as shown in eq. (2.41). In a more

general case:

ϕ(~r(t), t) = ϕ(~r(t0), t0) + γ

t∫
t0

~G(t′)~r(t′)dt′, (2.56)

here t0 is the start point of integration. This point reefers to the point instantaneous

creation of the magnetization (isodelay point) [21]. For the symmetric excitation

pulses in the small tip angle regime, this point can be defined as the center of the RF

pulse.

Assuming vanishing acceleration and higher order motion terms, the truncated Taylor

expansion yields:

~r(t) = ~r0 + ~v0(t− texp). (2.57)

The choice of expansion time point has a direct influence on the calculation of the

flow encoding gradients as was shown in [22, 23]. In this work the expansion time

point was always set to the echo time.

Further, we define the nth gradient moment as:

~mn(t) =

t∫
t0

~G(t′)(t′ − texp)
ndt′. (2.58)

Substituting eqs. (2.57) and (2.58) in the previous equation of signal phase yields:

ϕ(~r0 + ~v0t, t) = ϕ(~r0, t0) + γ~r0

t∫
t0

~G(t′)dt′ + γ~v0

t∫
t0

~G(t′)(t′ − texp)dt
′ (2.59)

ϕ(~r0 + ~v0t, t) = ϕ0 + γ~r0 ~m0(t) + γ~v0 ~m1(t). (2.60)

Equation (2.60) immediately shows that the zeroth gradient moment is related to the

spatial encoding, the first to velocity encoding and following moments are linked to

higher orders of motion such as acceleration, jerk, and so on.
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Reconsidering eqs. (2.43) and (2.60), the relations between the spatial frequencies and

the zeros gradient moments become apparent:

~k(t) =
γ

2π

t∫
0

~G(t′)dt′ (2.61)

=
γ

2π
~m0(t) (2.62)

2.2.3 Action of Radio Frequency Pulses
The formation a finite macroscopic z-magnetization in thermal equilibrium has been

shown in section 2.1. In the following section 2.2, the assumption of a finite transverse

magnetization was made, such that the spatial encoding of said magnetization could

be discussed. Until now the process by which transverse magnetization can be created

from longitudinal magnetization has not been explained. This section will give a

general overview of how the magnetization can be manipulated by radio frequency

(RF) pulses.

The RF pulses are creating linearly or circularly polarized magnetic field in an or-

thogonal direction relative to the main magnetic filed. This magnetic field is further

referred to as B1-field:

~B1 = B1(êx cos(ωt) + êy sin(ωt)) (2.63)

If the angular frequency of the rotating frame of reference is: ~Ω = −ωêz then ~B1 can

be written in this frame as:
~B1 = B1ê

′
x. (2.64)

The phase of the B1 field is neglected for now.

Reconsidering the equation of motion in the rotating frame of reference, stated in

eqs. (2.27) and (2.28), in the presence of a finite RF field:(
∂ ~M

∂t

)′

= ~M × [ê′z(ω0 − ω) + ê′xω1] (2.65)

= γ ~M × ~Beff (2.66)

with

ω1 ≡ γB1 (2.67)
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Assuming that the resonance condition is met, meaning that ω = ω0, then ~B0 has a

vanishing influence on the dynamic of the magnetization in the rotating frame:(
∂ ~M

∂t

)′

= ω1
~M × ê′x (2.68)

Equation (2.68) also assumes that the RF-phase φ is zero, in practice however, the ~B1

field takes the more general form:

~B1 = B1 cos(φ)ê
′
x +B1 sin(φ)ê

′
y. (2.69)

This simply changes the axis of rotation on in eq. (2.68) from ê′x to cos(φ)ê
′
x+sin(φ)ê′y .

The solution of eq. (2.66), or in the special case of on-resonance eq. (2.68), is a rotation

around the effective B field and the rate of rotation is proportional to its magnitude.

The angle of polar rotation θ is defined as the flip angle (FA) and can be written in the

on-resonant case as:

α =

∫
γB1(t)dt (2.70)

2.2.4 Slice Selection & Small Tip Angle Solution
A spatial modulation of the FA can be achieved in MRI by combining RF pulses with

linear gradient fields, which were introduced at the beginning of section 2.2. In the

case of small excitation flip angle a closed form solution for the excitation profile in

the presence of gradients can be derived. In this case the following approximations

can be made: cos(θ) ≈ 1 and thusMz ≈M0. Hereby, the longitudinal and transverse

equation decouple.

Defining:

M+ =Mx + iMy (2.71)

and

B1+ = B1x + iB1y. (2.72)

Equation (2.66) can now be reduced to:

dM+

dt
= −iγ(~G~r)M+ + iγB1+M0 (2.73)

Assuming an RF pulse of length τRF centered around the temporal origin with initial

conditions of Mx(~r,−τRF/2) = My(~r,−τRF/2) = 0 and Mz(~r,−τRF/2) = M0.
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Equation (2.73) is a first order linear ordinary differential equation and can thus be

solved by:

M+(~r, τRF/2) = iγM0

τRF /2∫
−τRF /2

B1+(t)e
−i2π~k(t)~rdt. (2.74)

Here, k has a time reversed definition compared to eq. (2.43):

~k(t) =
γ

2π

τRF /2∫
t

~G(t′)dt′ (2.75)

From eq. (2.74) it becomes evident that in the case of a constant gradient during the

excitation, that the excited profile is the the Fourier transform of the excitation pulse.

To achieve a slice selective excitation, as a consequence, a sinc-shaped excitation pulse

can be used. As for the spatial encoding during the readout, described in section 2.2.1,

the finite sampling of the k-space has to be considered. To differentiate between

readout and excitation, the just introduced k-space is usually referred to as excitation
k-space [21].

Figure 2.6: RF-pulse envelope and corresponding slice profile for a filtered and unfil-

tered sinc-pulse.

Figure 2.6 illustrates the effect of a simple truncation (boxcar windowing function) in

excitation k-space. Equation (2.52) already showed that this results in a sinc-shape
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PSF in the image domain, labeled as unfiltered in fig. 2.6. Applying an additional

weighting in the excitation k-space can smooth the spectral response function. On

the excitation side the broadening of the PSF is less important then on the readout

side, where image filters are less common. For the excitation the high oscillations and

on the profile and high side-lobes make unfiltered pulses virtually unusable. Thus for

all slice selective excitations the following Hanning-windowed pulse envelope was

used:

B1(t) =


At0

[
(1− α) + α cos

(
πt

Nt0

)]
︸ ︷︷ ︸

filter−function

sin
(

πt
t0

)
πt

,−Nt0 ≤ t ≤ Nt0

0 , elsewhere

(2.76)

With A a scaling factor, t0 halved width of the central lobe, N half of the number

of zero crossings and α a constant of value 0.46. The width of the excitation PSF is

determined by N or the so called bandwidth-time-product (BWT), which simply is

equal to 2N .

2.2.5 Extended Phase Graph Formalism

The Extended Phase Graph (EPG) formalism allows a description of the signal behavior

in spoiled sequences [24]. In the EPG formalism, the action of RF-pulses is described

by the partitioning effect [25]. Further, the state of the magnetization is expressed

by integer Fourier-coefficients of the spatial dephasing state. The combination of

these descriptions allows the formation of stimulated echos and partial spin echos to

be predicted more intuitively than in Bloch-simulations.

For convenience, the magnetization is not expressed in terms of the spatial coordinates

components Mx,My, andMz but in states denoted M+,M−, andMz . The relation

between the two representations is:M+

M−
Mz

 = U

Mx

My

Mz

 . (2.77)

Here, the transformation matrix U can be written as:

U =
1√
2

1 +i 0
1 −i 0

0 0
√
2

 . (2.78)
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i denotes the imaginary unit. The rotating action after an RF pulse on the mag-

netization can also be transformed into the new representation. The state of the

magnetization of an RF pulse, denotedM+, as a function of the state before the RF

pulse (M−) can be calculated from the following equation:M+

M−
Mz

+

=

 cos2
(
α
2

)
e2iΦ sin2

(
α
2

)
ieiΦ sin (α)

e−2iΦ sin2
(
α
2

)
cos2

(
α
2

)
−ieiΦ sin (α)

− i
2
e−iΦ sin (α) i

2
e−iΦ sin (α) cos (α)

M+

M−
Mz

−

(2.79)

In these equations, α is the FA and Φ the RF-phase.

The previously mentioned Fourier decomposition is defined in the following manner:

F̃+(~k) =

∫
V

M+(r)e
−ikrd3r (2.80)

F̃−(~k) =

∫
V

M−(r)e
−ikrd3r (2.81)

Z̃(~k) =

∫
V

Mz(r)e
−ikrd3r (2.82)

The matrix describes the action of RF-pulses as in eq. (2.79) is identical for the Fourier-

coefficients, due to the linearity of the Fourier-transform: F̃+(~k)

F̃−(−~k)
Z̃(~k)


+

=

 cos2
(
α
2

)
e2iΦ sin2

(
α
2

)
ieiΦ sin (α)

e−2iΦ sin2
(
α
2

)
cos2

(
α
2

)
−ieiΦ sin (α)

− i
2
e−iΦ sin (α) i

2
e−iΦ sin (α) cos (α)


 F̃+(~k)

F̃−(−~k)
Z̃(~k)


−

(2.83)

Like before, the superscript +/- describe the states before and after the RF-pulse.

Equation (2.83) shows that any RF-pulse causes mixing between states. The action of

gradients can be described as a shift operator on the Fourier-states:

F̃+(~k) → F̃+(~k +∆~k) (2.84)

F̃−(~k) → F̃−(~k +∆~k) (2.85)

Z̃(~k) → Z̃(~k) (2.86)

(2.87)

Here, ∆~k is the total moment of the gradient.
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Based on the EPG formalism, the origin of echos can be characterized. In the following,

the FID signal path is defined the as F (0)+ state excite by the RF-pulse just before the

acquisition from the Z̃(0) state. Stimulated echos are defined as F (0)+ states, which

were excited from a Z̃(n∆~k) by n RF-pulses before the acquisition. It is assumed

that during each TR a spoiling moment of ∆~k is applied. Partial spin echos can be

identified by the fact that they occupy the F̃−(−∆~k) state before being shifted to the
F̃−(0) by the action of a gradient.

2.2.6 Fast Gradient Echo Sequences
Fast gradient echos (GRE) sequences are extensively used in clinical MRI examinations.

These sequences can be generally categorized as spoiled or balanced GRE sequences.

The attribute balanced refers to the rewinding of all zeroth gradient moments during

a TR, this sequence is often refereed to as bSSFP. The original MRF sequence was

bSSFP-based because the image contrast is influence strongly by both T1 and T2.

Unfortunately, ∆B0 also influences the signal, reducing its applicability at ultra high

fields. Here, spoiled sequences are preferred, which are characterized by an unbalanced

zeroth gradient moment at the end of a TR, dephasing the magnetization by multi-

ples of 2π over a voxel. This so called spoiling creates a∆B0 insensitive image contrast.

An important parameter for spoiled GRE sequences is the RF-phase evolution. Typ-

ically a quadratic phase evolution is chosen such hat the influence of all non-FID

signal paths vanish, this is often called a FLASH sequence.

ϕj =
1

2
ϕ0(j

2 + j + 2) (2.88)

ϕ0 phase/spoiling increment and j indicates the jth TR of the sequence. Different

phase increments have been proposed to minimize the effect of non-FID signal paths

such as 117 ° by Zur et al. [26]. Choosing a spoiling increment of 0 ° results in a

maximally constructive interference, this sequence is often termed a FISP sequence.

Even in the signal steady state a significant influence of T2 on FISP image contrast

can be seen.

Figure 2.7 illustrates the sequence diagram for a spoiled GRE sequence alongside

the evolution of the zeroth gradient moment during a single TR. For this exemplary

diagram gradient spoiling is performed in both read and slice direction. The gradient

moment in phase encoding direction is changing from one k-space line to the next,
thus moment nulling is preferred on this axis for ease of gradient calculation. A

variable spoiling moment on any axis can cause artifacts.
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Figure 2.7: Schematic sequence diagram of a spoiled GRE sequence. The corresponding

zeroth gradient moments are displayed on the right of each gradient axis.

This sequence is called spoiled because the zeroth gradient moment at the

end of a TR is non-zero.

Figure 2.8 shows exemplary transient states of a FLASH, FISP and bSSFP sequence at

different FAs. The spoiling increment for the FLASH sequence was set to 117 ° and a

cycling increment of 180 ° was chosen for the bSSFP sequence. The importance of the

transient states for MRF are detailed in the following section.
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Figure 2.8: Transient behavior for different GRE sequences as a function of the excita-

tion FA.
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2.3 MR Fingerprinting
Magnetic Resonance Fingerprinting [7] is a technique aiming to achieve rapid quan-

titative imaging by acquiring a spatially highly undersampled time series of the

sequence-driven transient signal. In theory, any parameter quantifiable with MRI can

likewise be quantified by MRF but most prominently the aim is to quantify T1 and T2.

At its core, MRF can be split into three mostly independent parts: The sequence-driven

transient signal behavior, the undersampled image acquisitions, and the simulation-

based model reconstruction. Rarely, some applications of MRF neglect one or two of

the aforementioned parts, nevertheless these parts are the defining features of MRF.

Rieger et al., for example, used a fully sampled EPI readout [27] to achieve high SNR

in all time frames. The following sections are dedicated to a more detailed description

of each of the three parts.

2.3.1 Transient Signal Evolution
Subjecting the magnetization to the action of the same RF pulse at regular intervals

drives the magnetization into a steady state, which is usually wanted in fast imaging

sequences. A multitude of parameters, such as FA, TE, TR and the RF-phase, influence

the exact state into which the magnetization is driven and consequently the precise

steady state signal. A change in any of the aforementioned parameters thus entails

a transition period from one steady state to the next. A sequence-driven transient

state can be achieved by changing key sequence parameters before a steady state is

reached. The FA and the TR have the most significant impact on the steady state for

the T1 and T2 quantification, motivating the extensive use of these in MRF.

Both relaxation parameters are well suited to be quantified based on transient signals

as they inherently describe the temporal behavior of the magnetization and they

have a temporally extended effect on the transient signal. This effect can be seen in

figs. 2.8 and 2.9 where the simplest case of transient behaviors are shown, namely the

beginning of a periodic sequence where the magnetization is in thermal equilibrium

at the temporal origin. Figure 2.9 shows example transient signal curves for different

T1 and T2 values obtained with a FISP sequence. In this specific example, T1 mainly

dominates the rate of decay to the steady state signal level while longer T2 introduces

an oscillatory behavior at the beginning of the sequence. Strong coupling between

the effect of T1 and T2 exists, but these unique signal features allow the separation of

both parameters in the MRF reconstruction.

The steady state signal is again strongly dependent on both T1 and T2, but the absolute

signal level does not directly provide information of either parameter. This is because

other parameters in MRI introduce scalar factors into the measured signal level, most

prominently the proton density ρ0 and the receive sensitivity B
−
1 . This is the reason
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why any MRF-quantifiable parameter has to have an explicit time dependance in its

impact on the MR signal. The dependence of the steady state signal level on sequence

parameters may be small as can be seen in fig. 2.8, where the flip angle is varied

for different sequence types. A higher signal variation as a function of sequence

parameters can be achieved during the transient state compared to the steady state.

This statement is difficult, to prove formally, but it constitutes one of the main reasons

why MRF can reach higher efficiency than conventional relaxometric steady state

methods, such as DESPOT 1& 2 [10]. The efficiency in this context is defined as a

modified Crawley-Henkelmann metric similar to the one proposed by Deoni et al.

[10]:

Λ =
∑
i

1

σiV
√
TA

. (2.89)

Here, Λ is the efficiency, i an index summing over all quantified parameters, σi the
noise level of each quantified parameter, V the voxel volume, and TA the acquisition

time.

Figure 2.9: Transient signal evolution at the beginning of a FISP sequence with a

constant FA of 25 ° and a constant TR of 9ms displayed for varying T1 and

T2 constants.

2.3.2 Undersampled Image Acquisition
The spatial undersampling in each time frame is the feature of MRF, which allows

short acquisition times, in the order of seconds, to be reached. Examples of these

undersampled time frames can be seen in fig. 2.10. Spatial undersampling of often

used to accelerate measurements and the missing data can then be completed using
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compressed sensing. The spatial undersampling in MRF, however, is different from the

undersampled acquistions used in conjunction with compressed sensing. In MRF, each

time frame is undersampled but over the whole stack of time frames, the complete

spatial information is acquired. Here, the linearity of the Fourier-transform (eq. (2.46))

is exploited by spreading the acquisition of spatial information over the whole MRF

sequence.

In a conventional imaging experiment the acquired spatial data is combined in the

k-space and a finally Fourier-transform is applied on the fully sampled k-space.
Assuming, without loss of generality, a Cartesian k-space readout and let d(ki)
represent the data of the ith k-space line, with i enumerating over all measure k-space
line. The reconstruction of the image I can then be written as:

I = F

[∑
i

d(ki)

]
. (2.90)

Here, F is a Fourier-operator transforming between frequency and image space.

Equivalently to eq. (2.90), each k-space line could be transformed into the image space

and then summed up. This would result in an identical image:

I =
∑
i

F [d(ki)]. (2.91)

As alluded to at the beginning of the section and restated by eqs. (2.90) and (2.91), the

linearity of the Fourier-transform allows the summation to be performed in the com-

plex image space, yielding an identical images. This is a central observation needed

for the understanding of MRF, as here, each individual time frame is undersampled

but the entirety of the time series samples the k-space densely enough to fulfill the

Nyqist-theorem. As a side note, the spatial information in MRF usually oversamples

the k-space multifold, although a sub-Nyqist-theorem amount of spatial information

is feasible if iterative compressed sensing (CS) reconstructions are used. The previous

statements are illustrated in fig. 2.10 where individual time frames and the sum over

a complete radial MRF measurement are shown.

Even though it is often expressed that the undersampled MRF signal of a single

voxel is simply a noisier version of the fully sampled time course, a caveat has to be

added to this statement as the nature of undersampling noise and thermal noise are

fundamentally different. The term undersampling noise, misleading as it might be,

refers to all signal contributions to a voxel cause by spatial undersampling. It thus

is by nomeans of stochastic nature but rather fully deterministic and object-dependent.
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Figure 2.10: Exemplary summation over all MRF frames in a volunteer measurement of

the upper leg. This example shows that the complete spatial information

is contained within the MRF time series and that each fame contains a

small portion of the complete information.

The thermal noise in MRI can be assumed uniform, Gaussian with zero mean in the

complex image domain, and constant in amplitude throughout the measurement [28].

The amplitude of the undersampling noise is dependent on the overall signal level

and the mean can in a general case not be assumed as zero when the signal levels

change as in MRF. Although the mean signal contribution is usually zero with the

conventional MRF patterns and the spatial oversampling, as demonstrated by fig. 2.10.

This is because the changing signal levels introduce variable weightings of the k-space
data, the effect of which is already discussed in section 2.2.1. A detailed discussion

on the characterization of undersampling noise in MRF is beyond the scope of this

work. But it has been verified that in all MRF applications shown in this work, the

zero mean assumption is well fulfilled.
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2.3.3 Simulation-Based Model Reconstruction
The advantages of sampling the transient signal evolution to quantify relaxation times

have been explained in section 2.3.1. A seeming disadvantage is that generally no

analytic solution for the signal behavior can be formulated, thus a simulation-based

model is derived for the MRF reconstruction. Alleviating some of the challenges,

mainly the high computational burden and high memory demand, that come from

the simulation-based model is subject of current research and beyond the scope of

this section [29, 30].

All timings, gradients and RF pulses played out during an MRI sequence are well-

known either beforehand or after the sequence was measured, if physiological feed-

back is used for example. This means that the signal evolution can be computed as a

function of macroscopic parameters approximating the behavior of the magnetiza-

tion. The emphasis that these parameters are approximations has to be made clear.

Even the quantum mechanically motivated properties of transverse and longitudi-

nal relaxation times are approximations to describe biological tissue. No biological

tissue is homogeneous in its composition and the assignment of a single parameter

can only describe the average behavior at best. The choice of approximations has a

significant influence on the results of the MRF experiment and the degree of detail

needed for a robust and accurate quantification are still under investigation in the

scientific community. Significant points of discussion, for example, is whether the

effect of diffusion and chemical exchange have to be taken into account for the correct

quantification of T1 and T2. Assuming an appropriate set of parameters xi is selected,
then a signal parameter-space (dictionary) can be spanned covering all feasible com-

bination for a given application. Here, i is an enumerator counter over the complete

set of parameters. An appropriate simulation framework has to be selected based on

the xi parameters and the signal evolution has to be computed for every parameter

combination. A detailed description of the simulation framework used in this work is

given in section (section 3.4.1).

The simulated dictionary D can be represented as a matrix of dimensions N ×M
where N is the number of signal observations andM the number of unique combi-

nation of the all parameters. The MRF reconstruction then consists of finding the

entry (atom) of the dictionary which best represents the measured signal. Of course,

a linear combination of atoms could be reconstructed, but this is rarely done due to

the instability of the problem. A simple reconstruction can be formulated as:

~xest = LUT ( argmax
m∈[1,...,M ]

|~s †D|) (2.92)

Here, LUT is a lookup table linking the index of every atom to its corresponding

parameters, ~s is the measured temporal signal vector of a single voxel in image space,

† indicates the transposed complex conjugate of a vector, and ~xest the estimate for
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the predefined parameters. This reconstruction is effectively finding the best repre-

sentation of the measured signal within the dictionary via the Pearson correlation.

The representation is sparse by design and thus the proposed MRF reconstruction is

seamlessly integratable into a compressed sensing framework. A visualization of a

simplified reconstruction process is shown in fig. 2.11.

Figure 2.11: Illustration of a simplified MRF reconstruction process. The signal evo-

lution of an actual undersampled measurement is correlated with a few

dictionary atoms. The complete correlation space corresponding to this

matching process in shown on fig. 2.12

Figure 2.11 displays the absolute signal time course of an undersampled MRF mea-

surement. Further, the correlation to example atoms of the dictionary are shown and

the best match is highlighted in green. The relatively small change in the correlation,

relative to the change in T2, can be seen when comparing the correlation the first

and second atom. Here, T2 changes by 12ms, but the correlation only changes in the

third decimal place. The complete correlation space corresponding to the time course

shown in fig. 2.11 to a T1 and T2 dictionary is shown in fig. 2.12.
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Figure 2.12: A 2D correlation space spanning a large range of T1 and T2 values is

shown. The measured signal time course which was used to calculate the

correlation to dictionary entries is shown in fig. 2.11.

Figure 2.12 shows that the correlation space is smoothly varying over the range of

relaxation constants. It is thus unlikely that a completely wrong set of relaxation

constants is quantified, even in conditions of high noise.

The main drawbacks of this dictionary based method are the sometimes lengthy com-

putation times of the dictionary, the finite sampling steps of the parameter space, and

the high memory demand of the dictionary, which can easily reach tens of gigabytes.

All of these challenges have been investigated in many ways in the current research,

to a point where the challenges are rarely prohibitive but rather an inconvenience

for the given MRF application. The finite resolution of the dictionary and the high

memory demand, for example, were tackled by hierarchical searches [31] and through

dictionary fitting [32], both are exploiting the smoothness of the correlation space.

The long computation times have been addressed by highly optimized GPU simulation

frameworks [6] and neural networks [33], keeping in mind that the computation of the

dictionary has usually to be performed only once. Nevertheless, constructing an MRF

sequence such that the dimensionality of the parameter space needed to describe the

signal evolution is small, has many benefits beyond the lower computational burden.

It is expected that an increased number of parameters is accompanied by a reduction

in the fidelity of the quantification due cross-correlation between parameters.
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2.4 Flow and Turbulence
In theory, NMR not only allows the measurement of the spatial distribution of the

magnetization but also the distribution of motion states such as velocity, acceleration,

jerk and so on. A phase proportional to each of these can be applied by multi-polar

gradient schemes, as described for the zeroth and first gradient moment in section 2.2.2.

Applying a phase linearly proportional to velocity or higher order terms allows these

distributions to be probed by conventional phase encoding techniques as described in

section 2.2.1 [34]. Although interesting, the measurement of acceleration and higher

orders of motion becomes increasingly more difficult as the needed gradient schemes

become longer and more sophisticated. This section will thus only discuss the velocity

distributions but a more general application is possible.

The distribution s(vi) of a velocity component vi, with i enumerating of the spatial

dimensions, can be sampled by probing the velocities with different velocity encodings

kv = γm1. The complex measurement signal is then given by:

S(kv) = Ceiϕ0

∫
Vi

s(vi)e
−ikv·vidvi (2.93)

Here, C is a real scaling constant and ϕ0 a phase offset. As in standard imaging, a

Fourier transform allows the velocity distribution to be retrieved. This method is

called Fourier velocity encoding (FVE) [34] but requires prohibitively long acquisi-

tions time and large bipolar gradients.

The velocity distribution is especially interesting in regimes of turbulent flow. A

velocity vector field of turbulent flow ~v(~x, t) can be split into a mean and fluctuating

part:

vi = vi + v′i (2.94)

Again, i indicates a spatial direction, vi, is the averaged velocity and v
′
i is the fluctu-

ating part with zero mean. This splitting is often termed Reynolds decomposition.

Conventional phase contrast (PC) MRI measures vi, the averaged velocity component.

Finite fluctuating velocity components are a characteristic feature of turbulent flow.

The fluctuating velocity components cannot be measured directly by MRI because the

measurement process inherently averages over a finite spatial and temporal domain.

We thus consider the Reynolds averaged Navier-Stokes equation for incompressible

fluids [35]:

ρ

[
∂vi
∂t

+ vj
∂vi
∂xj

]
= − ∂p

∂xi
+

∂

∂xj

(
µ
∂vi
∂xj

− ρv′iv
′
j

)
(2.95)

Here, i and j represent different spatial directions, p the pressure, ∂
∂xi

a spatial deriva-

tive, ρ the density and µ the dynamic viscosity. The last term in eq. (2.95), ρv′iv
′
j , shows
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proportionality to the fluctuating velocity components, which describe the turbulence.

The term ρv′iv
′
j , however, is Reynolds averaged, which makes this quantity measur-

able through MRI. This term effectively represents a covariance matrix of the velocity

fluctuations, which is called the Reynolds stress tensor [35] in the following:

τij = ρv′iv
′
j, (2.96)

Why this tensor represents stress, is not immediately clear, however, it appears in

conjunction with the viscous normal and shear stress term µ ∂vi
∂xj

.

To reduce the acquisition time needed to estimate ρv′iv
′
j , assumptions on the shape

of the velocity fluctuation have to be made. Experimental evidence with FVE, [36],

indicates that the assumption of a Gaussian velocity distribution is a good approxi-

mation. This assumption is confirmed by the use of a Gaussian-model by numerous

publication [37, 38, 39, 40]. Nevertheless, the effects of finite skewness and kurtosis

in some flow conditions have been shown [41]. The Gaussian-model is assumed

in the following as it highly simplifies the description of the signal intensity of the

velocity-encoded images. The potential effects of higher central moments of velocity

distribution are discussed in a later sections.

For convenience and incompressible fluids, another definition of the Reynolds stress

tensor is often used:

τij = v′iv
′
j. (2.97)

This definition is also used in the later sections of this work. The assumption of a

Gaussian velocity distribution means that τ effectively represents the covariance

matrix of a multivariate normal distribution, which can be probed by finite velocity en-

codings. A more detailed description of the used methods can be found in section 3.2.3.

A schematic illustrating the distribution and the signal dephasing in the presence

of velocity encodings is shown in fig. 2.13. The voxel indicated by the blue square

in fig. 2.13a is located in the boundary between a velocity jet and almost stationary

fluid, which promotes the formation of turbulent flow in this region. This voxel will

display a small mean velocity and the broad velocity distribution within the voxel. The

latter attribute is not captured by conventional PC-MRI. The voxel indicated by the

red square has a high mean velocity but the turbulent components are much smaller.

Measuring the signal loss as a function of the velocity encoding moments allows the

Gaussian-shaped signal dephasing to be sampled and thus Reynolds stress to be

resolved within each voxel, as indicated by fig. 2.13d.
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Figure 2.13: Schematic representation of intravoxel velocity distribution in laminar

and turbulent flow conditions. The broad velocity distribution in the

jet/slow flow boundary pixels can be guessed in the velocity encoded

image in (a) by the reduction in signal. The velocity jet does not present

a strong reduction in signal, indicating a small velocity distribution. The

relative signal loss induced by the schematic distributions in (b) is shown

in (d). The velocity map for the x-component is shown in (c).
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3 Material and Methods

3.1 Hardware and Phantoms

All experiments shown in this work were performed on a whole body 7T MAGNE-

TOM (Siemens, Erlangen, Germany). Different commercial RF coils were used to

accommodate the specific phantom or regions of interest in volunteer measurement.

A complete overview of the used hardware is presented in the following sections.

3.1.1 RF Coils

Both RF coils utilized in this work show a similar design as they consist of nested pairs

of transmit and multi-receive coils. In both cases the outer transmit coil has a birdcage

design and the inner part is composed ofmultiple receive-channels. The dedicated head

coil from Nova Medical (Wilmington, MA, USA) has 24 receive channels. The knee coil

fromQuality Electrodynamics (Mayfield Village, OH, USA) has 28 dedicated receive

elements. This coil has the advantage of allowing phantoms to be inserting completely

as both sides of are open. This open design is especially useful in flow experiments

where lengthy phantoms are preferred to allow consistent flow to established.

Figure 3.1: Picture of both coils used in this work.
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3.1.2 Flow Pump
The flow pump used in all flow experiments is the CardioFlow 5000 (Shelly Medical

Imaging, London, Ontario, Canada). This programmable gear pump can be used to

generate constant and pulsatile flow. It can further be used to simulate an ECG signal

allowing the synchronization between pulsatile flow waveforms and the MR system.

A picture of the pump unit alongside the connective tubing is shown in fig. 3.2. This

long tubing is needed because the pump is operated outside the RF cabin for safety

reasons.

Figure 3.2: Picture of the CardioFlow 5000 pump unit with the operating PC and the

connective tubing used to link the pump to the flow phantoms.

Even though exact temporal flow profiles can be prescribed, the elasticity of the

connective tubing distorts the flow profile such that no quantitative comparison

between input and measure output can be made. The behavior is nevertheless, repeat-

able and temporally stable allowing intrinsic comparisons between different velocity

quantification sequences.

3.1.3 Phantoms
Three different phantoms were used in the experiments presented in this work, a

picture and MR image for each of them is shown in fig. 3.3. All of these phantoms

are in-house built and are based on agarose gel of a 0.9 % saline solution. The agarose

and the physiological saline solution help to modify the electrical properties and to

reduce the inhomogeneity of the B1-field. The agarose gel is additionally doped with
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a gadolinium-based contrast agent (Magnevist, Bayer Vital GmbH, Leverkusen, Ger-

many). Both T1 and T2 can be influenced through the concentrations of the contrast

agent (CA) and agarose gel.

Figure 3.3: Picture and MR images of the used phantoms.

Flow Phantoms

The first flow phantom displayed in fig. 3.3 (top) consist of 4 straight pipes with

different diameters (4, 8, 12 and 16mm), embedded in an agarose gel-based phantom

body with 130mm diameter and a total length of 450mm. Only the two largest pipes

were used in experiments as they are sufficient to cover the range of physiological

velocities with the pump shown in section 3.1.2. At the end of the phantom, the two

larger and the two smaller pipes are connected.
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The stenosis phantom is built from a long Plexiglas pipe leading into an agarose filled

phantom body embedded with a 3D printed stenosis. The stenosis constricts the

diameter from 15mm to 5mm. This phantom was used to generate turbulent flow

conditions to evaluate the Reynolds-stress tensor quantification.

Relaxation Phantom

The relaxation phantom is build up of 13 individually interchangeable tubes in a

phantom body which can be filled. Throughout this work, however, the phantom body

remained empty to achieve a greater homogeneity in the B1 field. The tubes were

filled with varying agarose concentration and contrast agent doping to modulate both

relaxation constants. The concentration for each tube is listed in table 3.1 alongside

the resulting relaxation constant measured at 7 T and 3 T. These relaxation constants

were measured with single echo spin echo sequences as detailed in the following

section.

Tube Agarose(%) CA(mmol
L

) T1(ms)-7 T T2(ms)-7 T T1(ms)-3 T T2(ms)-3 T

1 2.0 0.0 2740±42 55±2 2463±26 61±1

2 1.5 0.25 646±4 52±2 619±3 51±1

3 1.0 0.25 662±3 102±2 631±3 105±2

4 0.75 0.25 664±5 126±3 648±3 129±3

5 1.5 0.1 1225±6 104±2 1175±3 112±2

6 1.0 0.1 1208±4 80±4 1144±3 74±1

7 0.75 0.1 1231±8 125±2 1195±4 140±3

8 1.5 0.075 1447±9 106±3 1377±3 110±2

9 1.0 0.075 1398±8 74±2 1333±5 79±2

10 0.75 0.075 1455±12 126±1 1392±4 139±3

11 1.5 0.05 1687±14 70±2 1597±8 79±2

12 1.0 0.05 1736±13 108±7 1640±8 110±2

12 0.75 0.05 1767±11 140±3 1709±9 148±8

Table 3.1: List of relaxation constant of the relaxometric phantom measured by the

methods described in section 3.2.1 for both field strength 3 T and 7 T. The

schematic in fig. 3.4 links the tube number to the spatial position which in

the phantom.

The relaxation times are shown in table 3.1 were measured shortly after the filling of

the phantom tubes. This phantomwas then used over multiple years, during which the

moisture content within the agarose gel change as the tubes are not hermetically sealed.

The largest change in relaxation constants was during the first year after the building

of the phantom (November 2016 to October 2017). The largest observed change in
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T1 was 112ms or 5 %. The maximum change in T2 was 13ms or 10 %. Subsequent

measurements only revealed further changes in the order of 1 %. These were caused

by varying water content, effectively leading to increases in the concentration of both

agarose and CA. The quantitative compassions were always done relative to the most

recent reference measurement, to ensure the highest accuracy.

Figure 3.4: Spatial ordering of the individual tubes of the relaxation phantom as listed

in table 3.1
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3.2 Pulse Sequences
This section lists the sequences, and their respective signal models, used as reference

measurements for the quantified parameters. These sequences were chosen foremost

for their accuracy in the quantification and the required measurement time was

secondary.

3.2.1 Relaxometric Mapping
The quantification of references values for the relaxation constants was performed

though pixelwise least square fitting to inversion recovery spin echo data for T1 and

to spin echo data with variable TE for T2. Only a single k-space line is acquired
after each excitation to ensure a true contrast and to minimize effects of the transmit-

inhomogeneity.

The inversion preparation consists of an adiabatic hyperbolic secant pulse and is

assumed to achieve a perfect inversion, the spin echo readout only provides high

signal and a closed form solution for incomplete relaxation at the end of the TR, even

though a long TR of 5000ms was chosen. The signal model equation can hence be

written as:

S(t) =
∣∣S0

(
1− 2e−t/T1 + e−TR/T1

)∣∣ . (3.1)

Here, S0 is a factor incorporating all scalar influences such as the proton density and

receive sensitivity, for example. This signal sampled at 9 different inversion times (TI):

TI = (22, 59, 95, 160, 200, 400, 800, 1600, 3000)ms.

T2 is measured by the same sequence but without the inversion preparation and TE

is increased stepwise from one measurement to the next. The fitted model takes the

form of:

S(t) =
∣∣S0e

−t/T2∣∣ . (3.2)

The signal evolution as a function of the echo time was sampled for the following

TE = (12, 20, 30, 45, 65, 90, 130, 180, 250, 350)ms.

3.2.2 B1 Mapping
The transmit field, even though not directly quantified in this work, is required as prior

knowledge to map the relaxation constants with MRF at 7 T correctly. The importance

here, is the accurate quantification of the mean B1 amplitude throughout the whole

imaging slice. 2D-selective B1 mapping sequences often use volumetric preparation

pulses but inherently weight the quantified B1 field with the excitation profile of the

readout pulse.

The actual flip-angle (AFI) imaging sequence [42] does not suffer from this limitation

as it is used in a slap-selective acquisition and only the center partition is evaluated
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quantitatively. Further, the AFI is know to provide highly accurate B1 maps [43].

The AFI technique consists in the encoding the B1 information in the signal ratio of

an oscillating steady state caused by an alternating TR length. Assuming a perfect

spoiling, realized through high spoiling moments, then the signal can be written as:

S1,2 =Mz1,2e
−TE/T ∗

2 sin(α) (3.3)

Mz1,2 =M0
1− E1 + (1− E2)E1 cos(α)

1− E1E2 cos2(α)
, (3.4)

with E1,2 = e−TR1,2/T1 , M0 the equilibrium magnetization and α the excitation FA. r
is defined by the ratio of S1 and S2 and a first-order approximation of the exponential

terms yields:

r =
1 + n cos(α)

n+ cos(α)
, (3.5)

with n = TR2

TR1
. In the first-order approximation, the influence of T1 vanishes and the

FA can be estimated by:

α = arccos

(
rn− 1

n− r

)
. (3.6)

3.2.3 Velocity and Reynolds Stress Mapping

The mechanism to encode velocities in the signal phase has been explained in sec-

tion 2.2.2. To encode all three components of the velocity vector at least 4 independent

encoding moments ~m1 must measured. The velocity can then be reconstructed directly

via a phase difference or by solving a linear set of equations. Let P be a directional

encoding matrix, than P may, for example, take the form of a so-called single-sided

encoding:

P =


0 0 0
1 0 0
0 1 0
0 0 1

 . (3.7)

Here, P be defined in the conventional gradient coordinate system. The 4 mea-

surements are then composed of firstly a velocity compensated measurement with

m1,x = m1,y = m1,z = 0. The next measurement then applies a finite m1 in x-

direction, while nullingm1,y andm1,z and so forth.

The phase encoding matrix E can then be derived by:

E = P · π

~venc
, (3.8)
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with:

~venc =
π

γ∆~m1

. (3.9)

The vector division in eqs. (3.8) and (3.9) signifies an elementwise division. The phase

for a given pixel with a velocity ~v is then given by:

φ = E~v + φ0, (3.10)

where φ0 is a constant offset phase. Also commonly used is the two-sided encoding,

which has the following P matrix [44]:

P =
1

2


−1 −1 −1
+1 −1 −1
−1 +1 −1
−1 −1 +1

 . (3.11)

In both cases, the velocity can be directly obtained by subtracting the first encoding

from all three others. In case of more complex encoding matrices, this linear problem

can be solved by a Moore-Penrose pseudoinverse for example.

The PC cine utilized in this work uses a single-sided encoding scheme. Here, the

velocities are encoded sequentially, meaning that consecutive TRs encode different

velocity components and only after the 4 velocity encodings is the next time frame

acquired.

The quantification of the 6 components of the Reynolds stress tensor requires at least

7 measurements. For the quantification of the complete Reynolds-stress tensor, the

following directional encoding matrix was used as proposed by Haraldsson et al. [37]:

P =



0 0 0

− 1√
1+ψ2

0 + ψ√
1+ψ2

+ 1√
1+ψ2

0 + ψ√
1+ψ2

− ψ√
1+ψ2

+ 1√
1+ψ2

0

− ψ√
1+ψ2

− 1√
1+ψ2

0

0 + ψ√
1+ψ2

+ 1√
1+ψ2

0 − ψ√
1+ψ2

+ 1√
1+ψ2


, (3.12)

with the ψ = (1 +
√
5)/2 the golden ratio. The Gaussian signal decay model can be

formulated as a linear system by the following definition:

~kv = γ

m1,x

m1,y

m1,z

 . (3.13)
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The Reynolds stress tensor links ~kv to the signal loss in the following manner:

~kvτ~k
ᵀ
v = −2ln

(∣∣∣∣∣S(~kv)S(0)

∣∣∣∣∣
)
. (3.14)

Here, ~kᵀv is the transpose of the encoding vector defined in eq. (3.13), τ the Reynolds

stress tensor defined in section 2.4, S(~kv) is the velocity encoded signal, and S(0) the
signal of a velocity compensated measurement. Equation (3.14) can be rewritten as:


k2x,1 k2y,1 k2z,1 kx,1ky,1 kx,1kz,1 ky,1kz,1
k2x,2 k2y,2 k2z,2 kx,2ky,2 kx,2kz,2 ky,2kz,2
...

...
...

...
...

...

k2x,N k2y,N k2z,N kx,Nky,N kx,Nkz,N ky,Nkz,N



τxx
τyy
τzz
τxy
τxz
τyz



=


−2ln

(∣∣∣S(~k1)S(0)

∣∣∣)
−2ln

(∣∣∣S(~k2)S(0)

∣∣∣)
...

−2ln
(∣∣∣S(~kN)

S(0)

∣∣∣)



(3.15)

Each row in eq. (3.15) represents the data of one of the N velocity encoded measure-

ments. This set of linear equations can easily be solved numerically.
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3.3 MRF Sequence
The original MRF sequence published by Ma et al. [7] was based on a bSSFP sequence

because of the long transient response and its dependence on both T1 and T2, as was

shown in fig. 2.8. The dependence of the bSSFP signal evolution on local off-resonance

was a drawback, which motivated the use of a FISP-based MRF sequence. Successful

quantification of both T1 and T2 with a fully spoiled sequence was first shown by

Jiang et al. [8]. The robustness of this sequence against variation in ∆B0 made this

sequence preferable for uses at ultra high main magnetic fields. The MRF sequence

developed in this work is directly based on the FISP-MRF sequence published by Jiang

et al. and a same FA and TR pattern were used as a staring point. The FA and TR

pattern introduced by Jiang at al. are shown in fig. 3.5

Figure 3.5: FA and TR pattern as proposed by Jiang et al. [8]. The TE is constant and

minimal in their experiments.

Both type of MRF sequences used spiral readout, sampling k-space sufficiently dense

to allow a time frame to be reconstructed from a single spiral acquisition. This is

called a single-shot sequence. Already the original MRF publication used a multi-shot

approach to acquire a fully sampled data set. The different shots are then separated

by a sufficiently long waiting period, such that the magnetization is approximately

in the thermal equilibrium before the beginning of the next shot. The first change

made in this work to the sequence proposed by Jiang et al. was the replacement of the

spiral readout trajectory with a radial trajectory. This reduced the k-space coverage
per short but allowed higher resolutions to be reached, while maintaining a short
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readout duration. This change required the use of a multi-shot sequence to acquire

sufficient spatial information. It was found that for the consistently used nominal

resolution of 0.83× 0.83× 5mm, 5 radial projections per time frame allowed a robust

mapping of both T1 and T2. The pause for relaxation was set to 8 s between shots.

Further, a constant TR was used instead of a variable TR. This change is investigated

in detail in chapter 4. This change resulted in a constant TE/TR of 5.91ms and 8.94ms

respectively. The used RF-pulses are 1.92ms long Hanning-filtered and sinc-shaped

with a bandwidth-time-product of 4. The choice of RF-pulse is not essential for MRF,

as long as its action is accurately modeled. The inversion preparation was achieved

by an adiabatic 10.24ms-long vendor provided slice-selective hyperbolic secant pulse.
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3.4 Numerical Simulations
Numerical simulations are a central part to this work as they were used to validate

performance and robustness of the proposed method and form the basis of reconstruct-

ing for the MRF data. The simulation of the relaxometric dictionary is based on the

simulation of the Bloch-equations [18]. The simulation of the MRF processes involves

the simulation of a realistic phantom as the noise level in MRF are object-dependent.

For these simulations, knowledge of the forward imaging model is used.

3.4.1 Bloch-Simulation
The simulation of the behavior of the magnetization is achieved by discretizing time

into small steps during the RF pulse. During each step, a constant RF-amplitude is

assumed. Further, the simultaneous action of RF-induced rotation and relaxation is

performed sequentially. The error made by the approximation of sequential action

becomes negligible if the time steps are chosen on an appropriate time scale relative

to the relaxation rates. In this work, for the relaxation of proton MRI at 7 T, a time

step of 20µs was found sufficient. This time step also needs to accurately sample the

change in amplitude and orientation of the effective B1 field. The simulated pulses

are sinc-shaped with a BWT of 4 and a duration of 1.92ms, making a 20µs pulse
dwell-time appropriate.

The action of the RF pulse for a single time step can be expressed as a rotation matrix

R around the effective B1 field. The resulting magnetization after rotation ~Mi+1 can

be express as a function of the previous state ~Mi:

~Mi+1 = R · ~Mi (3.16)

The index i represents a point in time after i rotations around the effective B1 field.

Likewise, the relaxation effect when no RF pulse is present can be expressed as matrix

operations:

~Mi+1 = A · ~Mi +B, (3.17)

with

A =

e−∆t/T2 0 0
0 e−∆t/T2 0
0 0 e−∆t/T1

 (3.18)

B =

 0
0

1− e−∆t/T1

 . (3.19)
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∆t is the time interval of one time-step (20µs). The state after n time-steps can thus

be written as:

~Mn = An

(
Rn

(
. . .
(
A2

(
R2

(
A1

(
R1 · ~M0

)
+B1

))
+B2

)
. . .
))

+Bn (3.20)

For given properties of a magnetization vector the state of the magnetization at

any given point in time can be computed based on eq. (3.20). This formulation

in matrix form allows the efficient computation and a GPU implementation was

developed within this work to permit the efficient computation 105 time-steps for

3·109 independent magnetization vectors.

3.4.2 MRF Imaging Simulations
The simulation of the MRF imaging processes are based on a numerical phantom,

constructed following the design of the flow phantom described in section 3.1.3 and

a schematic representation of the phantom can be seen in fig. 4.8. This phantom

is exclusively build up of circles and thus an analytical formula of the resulting

signal intensity in k-space can be written for each compartment. This means that the

phantom can be sampled by any k-space trajectory without the need to interpolate the
k-space data. Each compartment is assigned a positive or negative proton density, here

the negative proton density is needed to create the signal voids where the Plexiglas is

located in the real phantom. The negative proton density generates a signal with a

phase offset of π relative to a positive proton density. Further, each compartment is

assigned all physical properties relevant for the computation of the signal evolution,

such as T1, T2, and velocity. The signal evolutions are computed beforehand according

to the known sequence scheme and only a complex scaling of the k-space signal is
applied to each compartment. This simulation allows the testing of Flow-MRF under

optimal conditions while allowing a realistic estimate of the noise in the time series.
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4 Results
This chapter details the developments made to allow the quantification of periodic

flow in laminar and turbulent conditions with MRF.The decoupling of the relaxometry

and velocity quantification is explained, an indispensable prerequisite to cope with the

physiological variability. Further, the advantages of an MRF-based velocity quantifica-

tion approach are shown, and the flexibility in the newly introduced velocity encoding

pattern is explored. Later, the potential in the quantification of the Reynolds-tensor,

characterizing turbulent flow, is presented.

4.1 Signal Phase in FISP-MRF Sequences
The signal phase is commonly used to encode velocities in MRI. Here, the independent

modulation of the zeroth and first gradient moment with bipolar gradients is exploited

to create a signal phase proportional to space and velocity respectively, as described

by section 2.2.2. Although the velocity of the magnetization is potentially encoded

in the signal magnitude of an MRF experiment, in the form of the in- and out-flow

behavior, this mapping is highly ambiguous and less precise than a phase based

velocity quantification. For this reason, the signal phase in conventional FISP-based

MRF sequences has to be investigated.

4.1.1 Signal Phase in Conventional FISP-MRF
Conventional FISP-MRF refers to the use of the same FA and TR pattern as the original

FISP-MRF publication by Jiang et al. [8]. This pattern is widely used within the

community and has found acceptance as a reliable choice of MRF pattern for T1 and

T2 mapping. Both FA and TR pattern are shown in fig. 3.5.

A continuously variable TR is rarely found in standard fast GRE sequences. The impact

of the variable TR on the signal phase is not immediately apparent, as the signal phase

of each voxel in image space for fully spoiled sequence is usually determined by:

ϕ = ϕRF +∆B0 · TE. (4.1)

Here, ϕ is the phase of each voxel, ϕRF the local RF phase,∆B0 the local off-resonance

and TE the echo time of the sequence. Equation (4.1) assumes the tissue to be static

otherwise velocity dependent phases are accrued, as explained in section 2.2.2. The
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phase term ∆B0 · TE has been subtracted for visual clarity from the signal phases

displayed in fig. 4.1. This term is constant throughout the entire MRF sequence as TE
is kept constant. The rapid incidence of RF pulses excites stimulated echos and partial

spin echos, as described by section 2.2.5. These echos are often termed non-FID signal

paths in the EPG framework. The magnetization constituting these non-FID signal

paths spends variable time in the transverse plane due to changing TR. Their signal

contribution then creates the variable phase observed in fig. 4.1.

As a consequence, the signal phase is dependent on the off-resonance even though a

fully spoiled sequence is used. The size of the phase variation is difficult to quantify

as it is strongly dependent on relaxation times and the FA pattern. Exemplarily, the

signal phase is shown as a function of the TR index for different off-resonances in

fig. 4.1. For this simulation a T1 of 1800ms and a T2 of 120ms was assumed. For these

parameters peak phase variation in the order of of 0.5 rad can be observed. The phase

variation is not a linear function of ∆B0. This is the result of the large number and

complex interferences between non-FID signal paths.

Figure 4.1: Signal phase evolution in FISP-MRF experiments with variable TR for

different off-resonances is shown. A T1 of 1800ms and a T2 of 120ms were

assumed in this simulation.

The sharp phase transition of π at around TR index 80 is caused by the inversion of

the magnetization at the beginning of the MRF sequence. Before this point a negative

z-magnetization is present, which leads to a phase offset of π in the signal. This phase

transition is important for Flow-MRF and will be investigated in greater detail in

section 4.2.3.
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The phase discontinuities at TR index 200-210 and every 210 indices afterward are

caused by a FA of 0 ° and can thus be ignored as the magnitude is approximately also

zero.

∆B0 is usually not quantified with FISP-MRF sequences. The phase changes caused by

the variable TR reduce the correlation between the measurement and the dictionary

but do not change the quantified relaxation times, unless large intravoxel off-resonance

distributions are present. The particular case of Lorentzian-shaped off-resonance

distributions was investigated in this work [45], as these distributions represent the

T∗
2 dephasing. The influence on the signal magnitude as a function of different T∗

2

times is shown in fig. 4.2. It is evident that these changes in the signal evolution

impact the matching process beyond a simple reduction in overall correlation. Their

precise effect is again dependent on many parameters, such as FA pattern, TR pattern,

T1, T2, T
′
2 and dictionary coverage to name a few.

Figure 4.2: Exemplary influence of a variable TR on the signal magnitude for voxels

with Lorentzian-shape intravoxel off-resonance distributions.

Besides the explained disadvantages of a variable TR, the finite phase modulation

throughout the signal pattern interferes with phase-based velocimetry. In an ideal

case, the phase modulation caused by the variable TR could be modeled and correct

velocity quantification would be assured despite their presence. In regions of flow,

the modeling of the phase modulation is further complicated by the in- and out-flow

behavior, making the simulation of the signal phase unfeasible. Not only because T1

and T2 are unknown for flowing regions but also because the exact path of the liquid

through the slice influences the resulting signal phase.
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All these facts make the variable TR induced phase modulation unacceptable for

phase-based velocity quantification with MRF, and a constant TR was chosen as a

consequence.

4.1.2 Signal Phase in Constant TR FISP-MRF
The previous section linked the variable TR to the phase modulation present for finite

off-resonances. Using a constant TR alleviates the phase modulations, which can

be shown through the EPG formalism and is exemplarily shown by a simulation

displayed in fig. 4.3. In this figure the real part of the signal and the corresponding

phase for magnetization vectors with off-resonances between ±100Hz are shown.

Besides the section where the FA is zero and the part of inverted magnetization, no

phase modulation is present.

It remains to be shown that the relaxometric encoding capability of the MRF pattern

is not reduced by fixing the TR to a constant value.

Figure 4.3: Real part of the signal and signal phase for a magnetization vectors with

±100Hz off-resonance during a FISP-MRF sequence with constant TR.

In general, a quantitative assessment of the encoding capability in MRF is complicated

and ambiguous because the noise level in MRF experiments is dependent on the signal

level. The design of appropriate metrics is still being investigated by current research

[46, 47, 48, 49]. In the investigated case, however, the problem simplifies as the overall

signal level remains approximately unchanged between the variable and constant TR.
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The change in TR is gradual and spanning about 3ms, which results in a change in the

overall signal below 5%. An autocorrelation matrix A can thus be used to evaluate

the encoding capability [50]. Here, the mean over all elements of A, with a pure T1

and a pure T2 dictionary, is used as a metric as proposed by Cohen et al. [50]. The A
matrices of this experiment can be seen in fig. 4.4.

A = |D ·D†| (4.2)

Here,D is the given dictionary andD† is the transposed complex conjugate ofD. The

mean of the correlation matrix for the given T1 dictionary in fig. 4.4a with variable

TR is 0.961, which reduces to 0.954 when the TR is fixed. For T2 a change from

0.986 to 0.985 can be observed by the fixing of the TR. Both the metric as well as the

autocorrelation plots indicate a slightly better encoding capability for the fixed TR. In

conjugation with the small signal reduction due to the fixed TR, an almost identical

performance in the relaxometric mapping is expected from both patterns. This result

signifies that the TR can be fixed to allow a phase base velocity encoding without

hindering the mapping of T1 and T2.

The inverted magnetization, which can clearly be seen in fig. 4.3, does present a

challenge for Flow-MRF and sets a lower bound on the quantifiable velocities. This

effect is investigated in detail in section 4.2.3. A change to the orignally proposed

FISP-MRF sequence can be made to reduce the impact of the inversion on the velocity

quantification. The non-selective inversion pulse was replaced with a slice-selective

adiabatic inversion. The slice thickness of the inversion was chosen as 10mm, twice

the thickness of the excitation slice to avoid slice profile effects. The inverted magneti-

zation in the flowing regions was assumed to wash out of the slice after approximately

50ms and be replenished by non-inverted magnetization. Therefore, time frames

covering the first 50ms after inversion are discarded for the velocity quantification.

The relaxometric mapping still used the complete information. The inversion is an

indispensable part of the MRF pattern, significantly improving the quality of the

relaxometric quantification. Hence, the inversion can not be removed, even though

an improved velocity quantification could be achieved.
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Figure 4.4: Autocorrelation plots for MRF with a variable (a,c) and constant TR (b,d)

for both relaxation constants.
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4.2 Phase Based VelocityQuantification Using MRF
The previous section established the observation that except for a short period at

the beginning of the MRF pattern where an inverted magnetization is measured, the

signal phase in flowing regions is constant. This constant phase allows velocities to

be encoded by imparting additional phases to flowing magnetization. As detailed in

section 2.2.2 this can be achieved by the modulation of the first gradient moment.

4.2.1 Velocity Encoding
The beginning of a Flow-MRF sequence is shown in in the sequence diagram in

fig. 4.5a. The colored gradient lobes indicate the velocity encoding gradients applying

well definedm0 andm1 values, prewinding for the radial readout and encoding the

velocity. Figure 4.5b displays an ~m1-pattern often used in this work, the precise shape

and amplitude of which is investigated and discussed in a later section.

The signal phase in image space of each voxel for a velocity-encoded Flow-MRF

measurement can be expressed as:

ϕ(j) = ϕ0 + γ ~m1(j)~v(j) (4.3)

Here, j is the current index of the MRF pattern, ϕ0 a phase offset including the phase

terms of eq. (4.1), ~m1 the encoding moment and ~v(j) the velocity during the jth TR.
Only phases between −π and π are observable; thus, the modulus has to be applied

to the phase equation. A more convenient expression can be written in the form of a

complex signal:

a(j) = ei[γ ~m1(j)~v(j)+ϕ0] (4.4)

a has a constant magnitude of 1 and only the phase is variable. This formulation is

helpful for the computationally efficient reconstruction of Flow-MRF data. Assuming

the velocity to be constant, ~v(j) = ~v0, then eq. (4.4) resembles the signal of a standard

velocity encoded image. Here, it is well known that ~m1 has to at least assume 4

non-collinear combinations to reconstruct the 3-dimensional velocity vector uniquely.

In MRF, n = 4 time frames are not sufficient due to the high undersampling noise.

However, n has to be chosen large enough that correct velocities can be mapped,

while being as small as possible to achieve the high temporal resolution. An empirical

study determined that n ≈ 50 ensures robust and good performance of the velocity

quantification with MRF.

Note, in Flow-MRF all three spatial velocity directions are simultaneously encoded,

and the measured phase is the sum of all three phase contributions. The individual

components can be separated during reconstruction if the ~m1 pattern is chosen

appropriately.

59



Results

Time-resolved velocity quantification requires the velocity to be assumed piecewise

constant and a mean velocity determined for each section. In Flow-MRF taking

n consecutive time frames yields a temporal velocity resolution of approximately

500ms, inappropriate for covering the velocity dynamics in in-vivo measurements.

In cardiovascular applications the knowledge of periodic flow allows this temporal

resolution to be reduced. Here, the duration of a heartbeat can be segmented in any

number of parts (referred to as cardiac phases) and with each heartbeat, the time

frames are assigned to their respective cardiac phase. This process can be repeated until

the predefined number of frames in each cardiac phase is reached. The assignment of

time frames to specific cardiac phases is based on the simultaneous recording of an

electrocardiograph (ECG) or achieved via real-time feedback based on the ECG signal.

Figure 4.5: The sequence diagram in (a) shows the beginning of the Flow-MRF se-

quence. The colored gradient lobes indicate the velocity encoding gradients

applying a well definedm0 andm1 on each axis. An often used ~m1-pattern

is displayed in (b).
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4.2.2 Velocity Reconstruction
It has to be restated that a precise knowledge of the signal magnitude in flowing

regions is unknown, thus unlike conventional MRF, a complete signal model cannot

be derived. This prohibits the use of most model-based reconstitution, commonly

used in MRF. Nevertheless, the reconstruction problem can be formulated similarly to

conventional velocity encoding.

Based on the nmeasured time frames, equations can be formulated linking the velocity

to the signal as shown in eq. (4.3). The velocity could be derived very computationally

efficient via a Moore-Penrose pseudoinverse for example, as can be done in standard

phase based velocimetry. In Flow-MRF however, some or even all of the signal phases

may be wrapped due to the accumulation of phases greater than π. Let E be the phase

encoding matrix:

E = γ


m1,x(1) m1,y(1) m1,z(1)
m1,x(2) m1,y(2) m1,z(2)

...

m1,x(n) m1,y(n) m1,z(n)

 . (4.5)

Here, m1,x(j), m1,y(j) and m1,z(j) are the first gradient moments at the jth TR on

the corresponding gradient axis. Then a synthetic complex signal for a given velocity

~v can be calculated as:

~a(~v) = eiE~v. (4.6)

Likewise, a signal vector containing only the measured phase can be constructed from

the general signal vector:

~sp = eiArg(~sm). (4.7)

~sm is the general signal vector, Arg calculates the argument of every entry of the

complex-valued vector, meaning the angle to the positive real axis in the com-

plex plane. Equivalently ~sp can be obtained by an elementwise division of ~sm by√
Re(~sm)

2 + Im(~sm)
2
. An estimate vest of the velocity in a pixel can then be recon-

structed by solving the following maximization problem:

~vest = argmax
~v

||~a(~v)~sp|| (4.8)

In other words, the magnitude of the complex-valued signal vector ~sm of length n
is discarded by dividing the vector by the absolute value of itself. We obtain a new

signal vector ~sp of length n in the form ~sp = eiϕ(j); j ∈ {1...n}. The maximum

correlation between the signal vector ~sp, which was derived from the measured data,

and a synthetically generated vector ~a based on the velocity encoding matrix E is

determined. This process identifies the most likely velocity in each pixel.
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To demonstrate that in a general case this maximization problem in eq. (4.8) is not

convex an exemplary correlation space is shown in fig. 4.6. The correlation between

the signal vector for ~v = [0 75 0] cm/s and a grid of combinations for different x-

and y-velocities was calculated. Due to a large number of local maxima gradient

ascent algorithms often converge without determining the correct velocity. Thus a

two-stage reconstruction was proposed within this work, firstly the correlation of

a given signal vector to a coarse 3D grid (dictionary) of velocities was calculated,

similar to fig. 4.6. Here, separate local maxima were identified by a maximum filtering

step, and a ranking of highly correlating maxima was established. The change in

correlation within a local maximum is usually smooth and convex; thus the 5 highest

correlating maxima were used as starting points for a gradient ascent algorithms.

Using exclusively a dictionary was computationally inefficient and very slow because

the velocity covers a large dynamic range in the human body, subsequently leading

to a high memory demand. In each direction, the dictionary would have to at least

cover the velocities from −150 cm/s to 150 cm/s with a step size preferably smaller

than 0.1 cm/s. The minimal size of the dictionary would then have 30013 ≈ 27 · 109
unique entries. Such a dictionary would need 20 terabytes of memory if stored in

complex double floating point precision. The coarse dictionary used to find the local

maxima, on the other hand, is significantly small as the velocity resolution can be

set to 5 cm/s or more. This resolution results in a dictionary size of 613 ≈ 220 · 103
atoms or, equivalently, 180 megabytes of memory.

Figure 4.6: Exemplary plane from 3D velocity correlation-space. The the signal evo-

lution of a spin ensemble with velocity of [0 75 0] cm/s is correlated to a
dictionary spanning velocities from −150 cm/s to 150 cm/s in vx and vy,
while vz is fixed to zero.
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Reconsidering the ~m1 pattern shown in fig. 4.5b, the large encoding moments relative

to conventional phase-based velocimetry might be noticed. The 2π periodicity in

the signal phase limits, in convention phase based measurement, the maximally

quantifiable velocity venc:

venc =
π

γ∆m1

. (4.9)

In an overdetermined system of equations as in Flow-MRF where n� 4, the velocity
constraint of eq. (4.9) does not apply. This effect allows the use of a much larger

spread of velocity encoding moments ∆m1 then in convectional measurements. To

quantify velocities between −100 cm/s and 100 cm/s, ∆m1 can usually only be set

to 11mT/m ·ms2. In the proposed pattern of fig. 4.5b, ∆m1 spans 60mT/m ·ms2,

which equals a venc of 20 cm/s. Nevertheless, the range of quantifiable velocities
in Flow-MRF greatly exceeds ±20 cm/s because the observed phase pattern is not

periodic over this velocity range.

Figure 4.7: Illustration of the signal phase pattern uniqueness with respect to changes

in absolute velocity and direction. The subplot (a) displays the phase

pattern for a single direction as a function of increasing velocity. No phase

wraps are present for the first three velocities. Higher velocities also create

unique phase patterns. Changing the velocity direction while maintaining

the absolute velocity likewise results in a unique phase pattern, because

different noise-likem1 pattern are used for each axis. This effect is shown

in (b).
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This effect is illustrated in fig. 4.7a, where the phase pattern is shown for different

velocities. It can be noticed that for the first three velocities of 5, 20 and 40 cm/s, the
phase pattern looks identical except for a scaling factor. For even larger velocities,

some data points wrap but the overall shape is still unique. Similarly, changing

the orientation of the velocity results in a unique phase pattern because different

m1 pattern are used for each gradient axis, this is shown in fig. 4.7b, allowing a

discrimination of the absolute velocity as well as the spatial orientation of the velocity

vector.

4.2.3 Quantifiable Velocity Range

The previous section stated the range of occurring velocities in the healthy human

body to be from −150 cm/s to 150 cm/s, thus Flow-MRF should at least be able to

quantify this range of velocities correctly. Further, it was motivated that Flow-MRF

should be able to quantify velocities much larger than ±20 cm/s, even with high en-

coding moments of ∆m1 = 60mT/m ·ms2. It remains to be tested if this assumption

holds true in realistic conditions with thermal noise, undersampling, and changing

signal amplitude due to the FA pattern. Likewise, the quantification at small velocities

is interesting as the assumption of non-inverted magnetization becomes less valid

because the magnetization is only slowly replenished by in-flowing magnetization.

The range of quantifiable parameters is thus investigated in a simulation study based

on an analytically defined phantom. The inflow and outflow of magnetization was

modeled as well as the whole MRF imaging process. A schematic overview of this

numerical phantom is shown in the upper left of fig. 4.8. The upper right plot of fig. 4.8

shows a single time frame of the simulated Flow-MRF measurement. Further, the

m1-pattern shown in fig. 4.5b and 5 projections per time frame were used.

In the presented simulation, the velocity vmax is purely oriented in the z-direction and
varied from 0.1 cm/s to 20m/s spanning over 4 orders of magnitude. The mean and

standard deviation (SD) of the reconstructed velocity are taken as measures of quality

to evaluate the performance of Flow-MRF over this range of velocities. The simulation

revealed that velocities up to 840 cm/s where precisely quantifiable with a SD of

1.1 cm/s and a mean deviation below 1 cm/s. The velocity quantification beyond

840 cm/s became unstable and correct velocity values could not be determined for

all pixels of the numerical phantom. Velocities below 3 cm/s were no longer distin-
guishable from zero due to noise. A sharp increase in the velocity noise from 3.5 cm/s
to almost 100 cm/s is observed once velocities subceed 2.1 cm/s. This behavior is

displayed in both lower subplots of fig. 4.8. In the double logarithmic plot, the data

points where the SD exceeds the mean velocity are indicated by a black circle.
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Figure 4.8: Overview of simulation results exploring the range of quantifiable veloci-

ties with Flow-MRF. A schematic of the numerical phantom alongside a

single time frame of the simulated Flow-MRF sequence is shown in (a-b).

The quantified velocities as a function of the ground truth are shown in

a double logarithmic plot in (c). Here, the SD is indicated by the vertical

lines, except for the data points where the SD exceeds the mean velocity,

these are indicated by black circles. The deviation of the mean velocity to

the ground truth is plotted in (d) on a semi-logarithmic scale.
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4.2.4 Flow Phantom Studies

The theoretical basis of Flow-MRF was described, and its performance verified over a

large velocity range in a simulation study. Nevertheless, the quantification in a real

experiment has not been shown yet, which is the subject of this section. To this end,

the flow phantom and pulsatile pump described in section 3.1 were used to simulate

the femoral flow profile.

Figure 4.9: The velocity maps during peak flow for both Flow-MRF and PC cine se-

quence displayed (a-b). The plastic tube walls separating the flowing and

static regions were masked. The mean velocities in a small central ROI in

the smaller tube as a function of time is shown in (c) for both the Flow-

MRF and PC cine sequence. The Bland-Altman plot corresponding to the

temporal data shown in (c) between the two methods is displayed in (d).
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The elasticity of the tubing connecting the flow phantom with the pump, however,

distorts the flow profile to a point where no back-flow is generated. The comparison

between a PC cine and the Flow-MRF sequence still allows a quantitative evaluation

of the proposed method. These results are shown in fig. 4.9.

Figure 4.9a-b show the velocity maps during peak flow for both methods. The quanti-

fied velocities in the flowing regions appear similar, which is confirmed by the line

plot in fig. 4.9c where the mean velocity difference between these cardiac phases

is determined to below 2 cm/s. The measurement time for the Flow-MRF sequence

was 84 s, which include 40 s of pauses between shots. These pauses could be used to

acquire different slices, the effective measurement time per slice was thus 44 s, which

is 4-fold shorter then the reference PC cine.

The velocity quantification in the static phantom body deviates more strongly, both

in shape and amplitude. The background velocities of the PC cine display a linear

spatial behavior and a peak velocity of 4 cm/s is measured in the static regions. This

error in the quantification is likely due to the well-known effects of eddy currents and

concomitant fields. A linear fit to static tissue is commonly used to correct both effects.

For Flow-MRF the background velocities are not described by a linear gradient, and

peak deviation of 12 cm/s is observed. The origin of these deviations are likely also

eddy currents and concomitant fields, but the larger velocity encoding gradients cause

them to have a higher impact. Furthermore, the radial readout complicates the spatial

shape of the additional phase contributions. The lack of a simple method to correct

eddy currents and concomitant fields in Flow-MRF is a drawback, but good agreement

between Flow-MRF and the conventional technique could still be achieved as indicated

by the Bland-Altman plot in fig. 4.9d. Here, a mean deviation between both methods

was quantified as (−1.7± 2.3) cm/s. It can also be noted that the Flow-MRF velocity

quantification fails for some pixels in the static tissue. These are located in proximity

to the flowing regions, and the quantification fails here because of the elevated un-

dersampling noise level. The flowing regions have a higher signal level because of

in-flowing fully relaxed magnetization, in turn elevating the undersampling noise for

the surrounding static tissue. The instability of the quantification at small velocities

was discussed in the previous section.

A similar experiment to the one presented by fig. 4.9 was performed but with double

oblique slice positioning relative to the z-axis, such that all three velocity components

are non-zero. The velocity maps are shown in fig. 4.10 and the line plots of a central

3×3 ROI, alongside a Bland-Altman plot of the cumulative data is shown in fig. 4.11.

Similar to the experiment with a flow in the z-direction, good agreement between

Flow-MRF and the PC cine sequence can be seen for the flowing regions. Likewise, the

same observations about the background velocities can be made. Between all three

velocity components, a mean deviation of (0.17± 1.16) cm/s can be determined, as

shown in fig. 4.11.
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Figure 4.10: Direct comparison of velocity maps between the Flow-MRF and a the PC

cine data for a double oblique measurement.
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Figure 4.11: Velocity-time course of all three velocity components is displayed in (a).

The corresponding Bland-Altman plot to the temporal data shown in (a)

is plotted in (b).

4.2.5 Stability of VelocityQuantification
It is well known in MRI that the signal phase is much less stable than the signal

magnitude. Thus in conventional PC MRI, the temporal difference between the two

velocity encoded measurements is explicitly kept small, in the order of 10 to 50ms.

Temporal drifts in the signal phase then have only a minor impact on the measured ve-

locity. In Flow-MRF on the other hand, the data used for velocity quantification spans

approximately 10 s. Here, even small drifts in the signal phase, potentially caused

by an unstable RF-phase or temperature drifts, have the potential to significantly

influence the velocity quantification.

To investigate the influence of phase drifts in Flow-MRF, the previously shown nu-

merical phantom was used and parasitic phase contributions added to the simulated

signal. As a first order approximation, the phase drifts were assumed to be linear,

which is a reasonable assumption over the considered span of 10 s. The signal phase

in each TR can thus be written as:

ϕ(j) = γ ~m1(j)~v +
j

n
θmax, (4.10)

j is again the current TR index, n the overall number of time frames and θmax the
amplitude of the phase drift during the Flow-MRF acquisition. Figure 4.12 displays

the resulting velocity from the simulated Flow-MRF experiment as a function of the

maximal phase increase θmax. Two separate regimes can be observed in the quantified
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velocities, if the phase increase is below a critical value (approximately 4 rad), then a

small error of −0.34 cm/s/rad is observed, linearly proportional to θmax. Beyond this
critical value, the velocity quantification fails, and no meaningful information can

be drawn from the Flow-MRF data. These results are favorable for Flow-MRF as the

critical regime transition value is very large. Phase increases in this order would also

lead to significant image artifacts in conventional sequences. Further, the systematic

error is small and below normal velocity noise levels.

Figure 4.12: The quantified velocity as a function of the parasitic linear phase is shown

in (a). Here, the mean velocity over each tube and the respective SD is

displayed, illustrating the failure to quantify velocities beyond a phase

increase of more then 4 rad. A zoom of the first regime is shown in (b).

The robustness of Flow-MRF against linear phase drifts might be surprising as conven-

tional PC MRI would be strongly influenced by additional phases between velocity-

encoded images. In Flow-MRF, however, the model-based reconstruction is only

searching for phase patterns correlating with the ideal phase model. This ideal phase

model (eqs. (4.5) and (4.6)) is solely based on the velocity encoding matrix E. As long
as the parasitic phase contribution is uncorrelated with the ~m1 pattern, then the influ-

ence on the velocity quantification is minimal. The linear phase pattern, for example,

is strongly uncorrelated with the white noise based ~m1 pattern shown in fig. 4.5b.

Nevertheless, the linear phase reduces the overall correlation of the measurement

with the ideal model until the true correlation can no longer be distinguished from

noise, this point marks the transition between the two regimes observed in fig. 4.12.
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4.2.6 Relaxometric Mapping
The performance of Flow-MRF in quantifying relaxation constants needs to be evalu-

ated. Foremost, the influence of the bipolar gradient compared to the conventional

gradient scheme needs to be investigated. To this end, two phantom experiments were

performed, one comparing the relaxation constants quantified with the Flow-MRF

gradient scheme to conventional MRF and secondly, an absolute comparison of Flow-

MRF to spin echo based reference measurements. The quantification of relaxation

constants is dependent on the knowledge of the local transmit field. In theory, this

parameter can be quantified directly from the MRF data, but the reconstruction of

T1, T2, and B1 is not unique with the current FA pattern, resulting in an unstable

quantification. To resolve this problem, either the FA pattern can be adapted [6, 51, 52]

or the prior knowledge of B1 can be included in the reconstruction. The latter option

was chosen in this work.

Figure 4.13: This plot illustrates the measured relaxation constants of the 13 tubes from

the relaxation phantom determined by the Flow-MRF sequence and an

MRF sequence with identical timings but no velocity encoding gradients.

Figure 4.13 shows the results from the MRF experiments with and without velocity

encoding gradient. The differences from both T1 and T2 are small between the two

sequences. The linear fit to the correlation plot determined a systematic deviation

by −0.7 % with an offset of 8.1ms for T1. The offset for T2 is smaller with 0.6ms, but

a systematic deviation of 1.5 % could be quantified. However, these deviations are

below the noise level of in-vivo measurements and thus do not introduce significant

errors to the relaxometric quantification.
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Figure 4.14: Maps of both relaxometric constants measured by Flow-MRF are shown

in (a-b). The correlation plots in (c-d) compare the quantified relaxation

constants of Flow-MRF with the reference measurements described in

section 3.2.1.

The quantitative maps of the relaxation phantom determined by the Flow-MRF se-

quence are shown in fig. 4.14a-b, alongside a comparison of the determined relaxation

constants relative to the reference. The maps display homogeneous relaxation con-

stants throughout each tube, and a residual bias of B1 is not observed. The correlation

of the relaxation constants, quantified with MRF to the reference, deviates further

from unity then the relative comparison between MRF with and without velocity

encoding. The mean deviation between both measurements was (−89± 25)ms for
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T1 with a peak underestimation of 133ms from MRF. T2 values of MRF deviate by

(0.8± 2.5)ms relative to the spin echo sequence with a peak deviation of −9.2ms.

The possible nature of these deviations is discussed in a later section.

Figure 4.15: Relaxation times of the relaxometric phantom measured by the reference

methods. The relaxation times were determined by least square fitting as

described in section 3.2.1.

Figure 4.15 displays the relaxometric maps determined by the reference methods at

7 T. A tabular overview of relaxation times quantified in each tube is listed by table 3.1

in section 3.1.3.
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4.3 Influence of Physiological Variability
One of the major challenges in the design and implementation of Flow-MRF was the

stochastic variability of the heartbeat duration. Even for healthy volunteers in resting

positions, the heart rate (HR) varies significantly from one beat to the next. This

effect is illustrated in fig. 4.16, where the duration between R-waves (RR-interval) was

recorded in two healthy volunteers while being in the MRI bore. The recorded period

spans approximately 5min, and even though the mean RR-interval is very similar

between the two volunteers with 1033-1037ms respectively, the variability is higher

for the second volunteer. Here, the maximum and minimum registered RR-duration

were 716ms and 1281ms. In Flow-MRF, where a priori knowledge of the temporal

signal evolution is the basis of quantification, this variability has a significant impact.

In the following section, the proposed methods to cope with physiological variability

is detailed.

Figure 4.16: The duration of every heartbeat was recorded during an approximately

5min long period. This time series was plotted from two different volun-

teers in (a). A histogram of this time series is displayed in (b).

4.3.1 Multi-Shot Flow-MRF
MRF is often used in conjunction with single-shot readout techniques. These single-

shot measurements are made possible by the fairly low spatial resolution (1.2-1.5mm

inplane), the high undersampling and spiral readout covering large parts of k-space at
once. The vessels in the human body, on the other hand, are mostly small structures,

requiring high resolutions to estimate the blood flow accurately. This observation
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motivates the choice of a high resolution (0.8mm inplane) radial readout for Flow-

MRF. As a consequence, acquiring only a single radial spoke per time frame results

in an insufficient amount of spatial data to reconstruct any parameter. Thus a multi-

shot approach was developed, allowing the combination of k-space data acquired
sequentially into a single time frame. This multi-short implementation also enables

seamless extension of Flow-MRF to volumetric coverage. To ensure that the tempo-

ral relaxometric data is identical in all shots, pauses were inserted between every

acquisition-train allowing the magnetization to approximate the thermal equilibrium.

The challenge with multi-shot Flow-MRF is that unlike the behavior of the magneti-

zation, the sequence of heartbeats and thus the velocity pattern during a Flow-MRF

measurement can never be reproduced due to the physiological variability.

Two assumptions have to be made to cope with the above-stated challenge of physio-

logical variability in Flow-MRF. Firstly, the signal phase has to be independent of the

FA-pattern, the validity of this assumption was shown in section 4.1.2. Secondly, the

velocity profile is independent of the RR-interval. This assumption implies that the

difference between a short and long heartbeat is the length of the diastole, the period

where no flow is produced. The length of the heart contraction (systole) and its stroke

volume must remain constant and independent of the current RR-interval. This as-

sumption is presumed valid, and its validity discussed in chapter 5. The validity of the

second assumption means that the velocity pattern is periodic, but its periodicity does

not match the periodicity of the FA-pattern. The complete decoupling of the signal

phase from the FA-pattern now allows reordering of the radial readouts independent

of their position in the FA-pattern without affecting the encoded velocity information.

This reordering or binning process is the key to cope with the physiological variability.

Thus between shots, it has to be made sure that the recurring velocity profile is en-

coded with the same encoding moment ~m1, which can be achieved through real-time

feedback from the physiological monitoring unit (PMU).

The beginning of each shot, and thus of each readout train, is triggered by the R-wave

measured by the ECG. Hence, the FA-pattern starts alongside the first systole and both

the velocity profile and the FA-pattern are synchronized for all shots. The variable

length in the RR-interval means that this synchrony is lost after the second R-wave.

This effect is illustrated by figs. 4.17 and 4.18. Figure 4.17 shows a schematic diagram

of this process, while the measured heart rate pattern of a volunteer is shown in

fig. 4.18. For the second figure, all TRs corresponding to the same cardiac cycle are

colored identically after the shown color scheme. Here, the increasing dispersion

with higher cardiac cycle number can be seen. The velocity encoding moments for

each gradient axis is effectively stored in a 2D lookup table. The ECG-trigger at the

start of the shot, sets the current index to the first column and first row. The current

index is then switched in real time by 1 column from TR to TR and only the detection

of an R-wave forces the index to return to the beginning of the next row. Identical
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lookup tables are used for all shots ensuring that the signal phase in flowing regions

is the same between all shots. Every radial spoke measured with the same index in

both column and row holds the same velocity and velocity encoding information and

can thus be combined into a single time frame. In general, spokes combined into

a single image are not measured with the same flip angle. This results in a mixing

of the magnitude information, contained in each spoke, but the phase of flowing

regions remains identical between all spokes, due to the independence of phase and

FA-pattern. This is again illustrated in figs. 4.17 and 4.18.

Figure 4.17: The reconstruction scheme for the velocity quantification is shown. The

beginning of 3 shots is illustrated, and each colored rectangle represents

a set a 5 consecutive TRs as illustrated in the zoomed section. The color

of each block represents the corresponding cardiac cycle number, and the

same color scheme as in fig. 4.18 was used.

Figure 4.18 shows the HR variation of a volunteer. To reconstruct a time frame

within the 5th cardiac cycle, useful for the velocity quantification, a host of projections

acquired at different TR-indices need to be combined as illustrated by the dark blue

line in Figure 4.18. The black line at the bottom of the plot indicates qualitatively the

change in FA associated with the different TR-indices but should not be interpreted

as a function of the y-axis. To derive meaning relaxometric information, the time

frames need to be reconstructed from projections acquired with identical FA and

magnetization history. Thus the TR-index must be the same as shown by the red line.
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Figure 4.18: The variability of the HR of a healthy volunteer during a Flow-MRF

measurement is displayed. Each TR is colored according to the current

cardiac cycle number, which is reset at the beginning of each readout

train. The blue and red lines shows the indices of the projections which

make up the simulated time frames in fig. 4.19. The black FA-pattern in

the lower part of the figure serves to give a visual impression of the rate

of change in the FA relative to this mixing of projections.

4.3.2 Flip Angle Mixing

Even though the mixing of projections acquired with different FA does not directly

influence the velocity quantification, the different weighting of each radial spoke

causes a suboptimal interference of undersampling artifacts. Further, the radial

projection angle is chosen such that a uniform and optimal k-space coverage is

achieved for each time frame. The radial projection angle can be written as:

ϑp(i, j) =
π

Ni

i+ ϕ · j, (4.11)

77



Results

with ϑp the projection angle relative to the kx axis, i the index of the current shot, j
the index of the current TR,Ni the total number of shots and ϕ the golden angle (ϕ ≈
2.34 rad). After the reordering of projections needed for the velocity quantification,
this optimal k-space coverage is lost, resulting in higher k-space sampling densities

in some regions and lower densities in others.

To evaluate the influence of the FA mixing, numerical simulations were performed

based on an ideal heart rate (perfectly steady) and measured heart rate patterns.

Figure 4.19: Individual time frame used for the velocity quantification based simulated

HR patterns. The time frame in (a) is simulated with a perfectly steady

HR of 60 beats per minute. The projections constituting this time frame

are indicated by the red line in fig. 4.18. The time frame shown in (b) is

based on the HR pattern of a volunteer, which is shown in fig. 4.18. The

blue line in fig. 4.18 indicates the projection reordered to create the frame

in (b).

Figure 4.19 shows, exemplarily, two time frames of the 5th heartbeat, simulated with a

constant HR of 60 beats per minute and the other based on the HR variation shown in

fig. 4.18. Additionally, the simulation with variable HR was repeated with three other

measured heart rates due to their volunteer dependence as shown in fig. 4.16. Themean

and SD of the HR was (1136± 93)ms, (1105± 63)ms and (985± 44)ms. Their re-

spective longest/shortest RR-interval was 1402/784ms, 1245/985ms, and 1129/887ms.

The suboptimal k-space coverage can be seen in comparing the two frames in fig. 4.19.

The time frame in fig. 4.19b incidentally shows the largest absolute spread of FA

between combined projections, one projection was acquired with α = 58.7 ° and
another with α = 5 °.
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Figure 4.20: The simulation results based on the a variable and constant HR are dis-

played in this figure. The time frames shown in fig. 4.19 are taken from the

data sets which are the basis of the velocity mapping results in this figure.

The schematic in (c) of the simulated phantom was already presented in

fig. 4.8, here the orientation of the line plot in (d) is indicated. This line

plots displayed the mean velocity along the indicated path.

Figure 4.20 presents some of the quantified velocities resulting from the simulated

MRF experiments. All simulations were performed without the addition of thermal

noise and 15 projections per time frame to emphasize the effect suboptimal projection

angles. The mean velocity deviation in all 5 simulations was smaller than 0.1 % from

the ground truth (GT) of 100 cm/s and 70 cm/s. The constant HR produced velocities,

quantified overall cardiac phase, of (70.0± 0.4) cm/s and (100.0± 0.5) cm/s with a

single pixel peak deviation of 3.3 cm/s. The worst case of the variable HR simulations
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produced velocities of (70.0± 0.9) cm/s and (100.0± 1.0) cm/s with a peak deviation
of 5.7 cm/s. These findings, alongside the line plot shown in fig. 4.20d, confirm that

the velocity quantification is not biased by variable heart rates, but an increase in

velocity noise is observable.

Figure 4.21: These figures illustrate the increase in velocity noise caused by HR vari-

ability. The velocity noise is calculated by the standard deviation over

all cardiac phases. In the flowing regions the mean increase was 2.1-fold.

The velocity noise increase in static regions is inessential as a correct

velocity quantification cannot be assured here.

Figure 4.21 displays the pixelwise velocity noise distribution for constant and variable

HR. Here an increase in the velocity noise can be noted in both static and flow regions

due to the variability of the HR.The velocity noise in the static tissue is inconsequential

as velocities cannot reliably be quantified here as shown in section 4.2.3. Within the

flowing region, an increase of the velocity SD from 0.48 cm/s to 1.03 cm/s can be

determined. This 2.1-fold increase in the velocity noise indicates an upper limit as

no thermal noise was added. Nevertheless, the unbiased velocity quantification in

the case of a variable heart rate is a positive result as no influence can be had on a

volunteer’s heart rate.

4.3.3 In-Vivo Studies
In this section, a final validation of the proposed method is shown in a small in-vivo

study. Both, velocity, in the popliteal artery, and the relaxation parameters of the

gastrocnemius muscle are measured in three healthy volunteers (2 female, 1 male). In

figs. 4.22 and 4.23 the maps of only a single volunteer are shown, but the quantified

means are stated for all volunteers.
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Figure 4.22: Quantitative comparison of velocity quantification results between Flow-

MRF and a conventional PC cine in the popliteal artery. The line plot

displays the velocity in a central voxel of the vessel. The Bland-Altman

plot was generated on the basis of all three volunteer measurements.

Velocity maps during peak systole within the vessel are displayed on top

of a magnitude overlay in (c-d) for both Flow-MRF and the PC cine.

The temporal evolution of the velocity for a central pixel in the artery is shown

in fig. 4.22a and a good agreement between the MRF and PC cine can be observed.

The mean deviation between both velocities is −1.4 cm/s with a peak deviation of

18.4 cm/s during steep velocity changes in early systole. The other two scans show

mean deviations of -1.2/−5.1 cm/s with peak deviations of 7/12 cm/s. The Bland-

Altman plot in fig. 4.22b visualizes the aggregated velocity information of all three

measurements. Here, the difference between Flow-MRF and the PC cine is plotted as
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a function of their averaged velocity. The velocity maps in the vessel lumen during

peak flow are displayed as an overlay in Figure fig. 4.22c-d. The blurring of fatty tissue

due to the radial readout is clearly visible in Figure fig. 4.22c for the MRF sequence, as

no correction for off-resonances was performed.

The relaxometric maps derived from the MRF data are exemplarily displayed in

fig. 4.23. Relaxation constants of (1380± 80)ms and (28± 4)ms for T1 and T2,

respectively, were evaluated within the gastrocnemius muscle. The area where a

vessel runs through the medial head of the gastrocnemius (left side) was excluded

from the quantification. The other two volunteer scans yielded mean relaxation

constants of (1394±68)/(1377± 78)ms for T1 and (26±4)/(24± 5)ms for T2. All re-

laxation constants are in agreement with the spectroscopically determined values of

(1440± 150)ms and (25.5± 3.1)ms for T1 and T2 as reported by Ren et al. (20).

Figure 4.23: Relaxometric maps corresponding to the velocity maps displayed in

fig. 4.22. The region of the joint was masked to improve the clarity

of the maps.
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4.4 Optimization of Velocity Encoding Pattern
Flow-MRF introduces a new degree of freedom in the design of the MRF-pattern in the

form of the ~m1 applied before each readout. Similar to the encoding of relaxometric

parameters, two main features of the encoding pattern have to be considered. Firstly,

how noise in the input data propagates to the determined quantity and secondly

the stability of quantification. The former can be described with the Cramér–Rao

bound and the Fischer information, which was successfully done for the design of

the FA-Pattern [46, 47]. A measure of stability of is more difficult to be formulated.

Monte Carlo simulations were used to estimate both the precision and stability [48].

This approach was also utilized to evaluate the different ~m1 patterns.

In Flow-MRF, all three velocity components have to be quantified simultaneously, this

can only be achieved if them1 pattern of each gradient axis do not correlate highly

with each other. A simple method to reduce correlation is to randomly drawm1 values

from a predefined distribution. The design of the ~m1 pattern is thus reduced to the

design of random-distributions from which them1 values are drawn. The exception

to this random-draw design is a pattern based on Multi-Directional High Moment

(MDHM) encoding [53]. Here, the encoding in the space of ~m1 are distributed on

a sphere with radiusm1,max and a golden angle method is used to cover the sphere

homogeneously.

In the design of the different m1 patterns, precision and stability have competing

demands on the shape of the random-distributions. Good stability in the quantification

is achieved if a broad distribution with many uniquem1 values is used. The highest

precision is obtained if the used encoding moments are as high as possible.

These considerations lead to the design of the patterns shown in fig. 4.24. Here, the

random distributions are shown as a function free scaling parameter m1,max. The

difference inm1 between the two closer peaks, in fig. 4.24e for example, corresponds

to the encoding to a venc of 150 cm/s. These secondary peaks are required to ensure a

velocity range of at least ±150 cm/s is resolvable. The first two patterns (fig. 4.24a-b)

are designed for high stability and the pattern in fig. 4.24e for maximal precision.

The patterns fig. 4.24d,f are trade-offs between stability and precision. Lastly MDHM

encoding pattern is included, as this was previously published for use in high moment

applications.
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Figure 4.24: Schematic overview of the proposed m1-pattern evaluated in this simula-

tion study.
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4.4 Optimization of Velocity Encoding Pattern

Figure 4.25: Correlation plots for the different m1 patterns displayed in fig. 4.24. The

correlation to a simulated signal vector with velocity [0 75 0] cm/s was

computed. Herem1,max = 30mT/m ·ms2.

85



Results

Figure 4.25 displays the correlation of a simulated signal vectorwith velocity [0 75 0] cm/s

with a 2D-dictionary covering the range of −150 cm/s to 150 cm/s in both x- and

y-velocity. Figure 4.25 already shows differences in the design choice between stability

and accuracy. The correlation plots in fig. 4.25a,b,c show a single highly correlated

maximum around the correct velocity, entailing a good stability of quantification. The

global maximum for fig. 4.25d,e,f is narrower than for the other patterns indicating a

more precise velocity quantification if the global maximum can be distinguished from

the side maxima.

A more quantitative evaluation of the proposed m1 pattern can be seen in fig. 4.26.

Here, the velocity noise in an ROI of the numerical phantom is shown as a function of

the maximal encoding momentm1,max for the different patterns. This was tested for

delta peak velocity distribution and for a Gaussian velocity distribution with 15 cm/s
full width half maximum.

Figure 4.26: Velocity noise in an ROI of the numerical phantom is shown as a func-

tion of the maximal encoding momentm1,max for the different patterns.

Tested for delta peak velocity distribution and for a Gaussian velocity

distribution with 15 cm/s full width half maximum.
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4.4 Optimization of Velocity Encoding Pattern

Considering first the plot in fig. 4.26a: As indicated by the width of the correlation

in fig. 4.25a, the Single Sided pattern has the highest velocity noise, approximately

2.3-fold higher then the noise for the Two Sided pattern.

All three patterns optimized for accuracy display a similar trend. They have the

lowest velocity noise for maximal encoding moments below 30mT/m ·ms2, except

for the Gaussian Min Max pattern for which the velocity quantification already fails at

30mT/m ·ms2. The other two patterns fail at encoding moments of 40mT/m ·ms2,

seen by the steep increase in their velocity noise. The Min Max pattern for exam-

ple, has a 20-30 % smaller velocity noise than the Two Sided pattern in the range of

10mT/m ·ms2 ≤ m1,max ≤ 40mT/m ·ms2.

The performance of the Two Sided pattern and the MDHM pattern is similar, as sug-

gested by the correlation plots in fig. 4.25. Both patterns display a good to moderate

performance in the velocity noise while allowing a robust velocity quantification

up to 100mT/m ·ms2, which corresponds to an encoding velocity of 6 cm/s. The

expected inverse scaling of the velocity noise with m1,max can be seen for the first

three patterns.

The results with a finite width of the simulated velocity distribution revealed a similar

noise behavior as for the delta peak distribution. The key difference here is that

a constant or increasing velocity noise can be observed once the m1,max exceeds

50mT/m ·ms2. due to intravoxel signal dephasing.

Given these results, the Two Sided pattern or the MDHM pattern are preferable to

the other investigated patterns. They provide low velocity noise while allowing a

stable velocity quantification. Further, increasing the maximal encoding moment

beyond 30mT/m ·ms2 has significantly diminishing returns in the velocity noise,

while increasing the TE. This investigation lead the use of the Two Sided pattern with

a maximal encoding moment of 30mT/m ·ms2 throughout this work, which was

already introduced in section 4.2.1.
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4.5 Reynolds Stress TensorQuantification
Up to this point, the potential for Flow-MRF to simultaneously quantify velocities

and relaxation constants has been thoroughly investigated. Inherently, this process

quantifies the mean velocity over a voxel and a finite period, which is useful in laminar

flow conditions. In a turbulent flow regime, however, the spatiotemporal mean of

the velocity is insufficient to describe the flow accurately. The method by which the

Reynolds stress tensor can be quantified is described in section 3.2.3. The velocity

encoding of Flow-MRF inherently encodes more than the minimum of 6 non-coplanar

velocity encodings. The Reynolds-stress information is thus inherently encoded

within the Flow-MRF data. Further the large velocity encoding moments achievable

in Flow-MRF sample the signal dephasing curve (see fig. 2.13d) more accurately than

conventional Reynolds-stress tensor encoding schemes. The possibility to quantify

the relaxation constants, the mean velocity, and the Reynolds-stress would increase

the relative efficiency of Flow-MRF and might provide higher clinical value.

Figure 4.27: A magnitude overview of the stenosis experiment is shown in (a). The

corresponding velocity maps determined by Flow-MRF are shown in (b-d).

The velocity quantification fails in some pixels at the distal part of the

velocity jet in this cardiac phase.

The challenge with the Reynolds stress quantification in Flow-MRF is that the broad-

ening of the velocity distribution solely affects the signal magnitude and the signal

magnitude evolution of flowing regions is a priori unknown in Flow-MRF. Sophisti-

cated modeling of flow path while assuming knowledge of the relaxation constants of

the fluid and the proton density might allow an estimate of the signal magnitude dur-

ing the Flow-MRF experiment. Robust modeling, however, has not yet been achieved.
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4.5 Reynolds Stress TensorQuantification

The FA pattern was set to a constant value for all TRs, to demonstrate the potential of

Flow-MRF to quantify both velocity and Reynolds stress. This change prohibits the

quantification of relaxation constants, but the signal magnitude of flowing regions

becomes a pure function of the in-flow, which is periodic with the heartbeat. This pe-

riodicity allows the influence of in-flow to be eliminated by quantifying the Reynolds

stress tensor in a time-resolved manner.

The reconstruction of the RST for Flow-MRF with constant FA is similar to the con-

vectional reconstruction presented in section 3.2.3. The following linear system of

equations is solved numerically:


k2x,1 k2y,1 k2z,1 kx,1ky,1 kx,1kz,1 ky,1kz,1
k2x,2 k2y,2 k2z,2 kx,2ky,2 kx,2kz,2 ky,2kz,2
...

...
...

...
...

...

k2x,N k2y,N k2z,N kx,Nky,N kx,Nkz,N ky,Nkz,N



τxx
τyy
τzz
τxy
τxz
τyz



=


−2ln(|S(~k1)|) + 2ln(|S0|)
−2ln(|S(~k2)|) + 2ln(|S0|)

...

−2ln(|S(~kN)|) + 2ln(|S0|)


. (4.12)

Here, kx,N represent the N velocity encodings for a given direction, with N being

the number of time frames used for the quantification. S(~kN) is the signal in a voxel

during the N th time frame and S0 is the signal for a velocity compensated measure-

ment, meaning no dephasing due to velocity. The only difference between eq. (4.12)

and eq. (3.15), which describes the conventional RST problem, is that S0 is unknow in

the reconstruction and is estimated alongside τ . This set of equations is also solved

by a Moore-Penrose pseudoinverse.

Figure 4.27 shows the velocity maps and a magnitude overview of the Flow-MRF

experiment. The velocity maps show the expected 9-fold velocity increase from the

mean x-velocity of 11.9 cm/s upstream of the stenosis to 103.9 cm/s. This increase

is caused by the reduction of the diameter of the tube from 15mm to 5mm in the

stenosis. In all three velocity components, some pixels display erroneous velocities at

the end of the jet, potentially caused by a high signal dephasing. The magnitude image

in fig. 4.27a shows changes in signal intensity in the stenosis and beyond, despite

being velocity compensated (~m1 = 0). Here, influences of higher moments cannot be

excluded due to the rapid change in velocity and the large encoding gradients used.
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Figure 4.28: The individual components of the Reynolds stress tensor are displayed.

These were quantified by the proposed Flow-MRF method.

Figure 4.29: This figure displays the reference values of all Reynolds stress tensor com-

ponents acquired by a conventional 3D PC-cine with 7 velocity encoding

as described in section 3.2.3.

All Reynolds stress components maps quantified with Flow-MRF in the stenosis

phantom are shown in fig. 4.28. Here the temporal average is shown to increase the

SNR and to allow a better comparison with the reference measurement. Further, the

temporal information of all 4 neighboring pixels are combined for the quantification

also to reduce the noise level but at the cost of spatial resolution. The difficulty to

quantify the Reynolds stress components is shown in fig. 4.29 where the results of a
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4.5 Reynolds Stress TensorQuantification

conventional experiment are shown. A good agreement in both shape and amplitude

between Flow-MRF and the reference can be observed, even though the peak stress is

quantified to be 14 % lower for Flow-MRF.
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5 Discussion
This work demonstrated the potential of MRF to quantify relaxation constants and

time-resolved velocities at ultra-high fields simultaneously. The quantification of the

three-dimensional velocity vector with MRF in humans hinges on the decoupling

between relaxometry and velocimetry. This decoupling allows a temporal reordering

of acquired projections for the velocity quantification, which is required due to the

inter-beat variability of the heart-rate. Lastly, the capability to quantify all compo-

nents of the Reynolds stress tensor with Flow-MRF was investigated.

The influence of a variable TR in a FISP-MRF sequences on the signal phase was stud-

ied in the beginning of this work. It was shown that the non-FID signal paths create

a variable signal phase throughout the MRF-pattern, despite the use of a constant TE

and gradient spoiling. This observation seems to contradict the claim made by the

authors of the FISP-MRF paper [8], as they clearly state independence of FISP-MRF on

local changes in resonance frequency. The independence of FISP-MRF with respect to

off-resonance is not because of a constant influence on the signal but rather because

every atom in the dictionary displays a temporally constant phase. The identical signal

phase behavior of every atom means that the measured variable signal phase only

reduces the overall correlation, but the atomwith the highest correlation is unchanged.

This creates seeming robustness against∆B0 variations as only the highest correlating

atom determines the relaxation times.

The phase modulation due to the variable TR, generally appear to be below 1 rad and

thus the influence on the mapping of relaxation constants is negligible, unless large

distributions of off-resonances are present within a single voxel. This, theoretically, is

a disadvantage of the variable TR, but a large spread of∆B0, in the order of 10-100Hz,

is needed to create a severe effect. The effect might only be noticeable at ultra high

field and in tissues with a large difference between T2 and T∗
2, such as in the liver.

The iron content of the liver is known to result in short T∗
2 constants [54]. Setting

the TR to a constant value results in a constant phase throughout the MRF sequence,

without reducing the encoding capability of the MRF-pattern. No claim is made that

in a general case a variable TR is not beneficial to the encoding capability of MRF. For

fully balanced MRF sequences, for example, the variability of the TR is certainly of

central importance [55]. The MRF pattern used in this work does not benefit from

this variability, and the non-constant phase would hinder a phase based velocity
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quantification. These observations motivate the use of a constant TR in the Flow-MRF

sequence.

The velocity sensitivity of Flow-MRF was achieved by adding bipolar gradients on

all three gradient axes between the excitation and the readout, modulating the first

gradient moment from one TR to the next. This additionally imparted phase, pro-

portional to velocity, allows the reconstruction of the three-dimensional velocity

vector. The gradients are updated in real time based on the feedback of an ECG. This

allows synchronous velocity encoding with the cardiac cycle, needed to cope with

the variability of the HR. Periodic flow is assumed in the reconstruction to reduce the

temporal velocity resolution from approximately 500ms to 45ms. This reduction is

achieved by combining data from multiple cardiac cycles into the reconstruction of a

single cardiac phase. Here, as in conventional PC MRI, the periodicity of the velocities

with the ECG-signal is assumed. Even though changes in the RR-interval of a vol-

unteer between 716ms and 1281ms were observed during a measurement, identical

velocities are assumed during the first 700ms of each heartbeat. The flow velocities in

a vessel can change as a function of the heart rate, but the observed variability in the

RR-interval is not caused by an increase of the mean HR, such as under exercise, but

due to stochastic variations. Significant artifacts would be observed in conventional

PC cine and Flow-MRF sequences if the assumption of periodic flow is violated.

A defining features of Flow-MRF is the use of high velocity encoding moments while

maintaining a large range of correctly quantifiable velocities. The spread of velocity

encoding moments for all phantom and in-vivo experiments was 60mT/m ·ms2. This

exceeds the encoding moments of the reference measurement more then five-fold.

The velocity noise is inversely proportional to the spread of encoding moments. Sim-

ulations determined the range of reliably quantifiable velocities to be between 3 cm/s
and 840 cm/s. The upper limit exceeds even the peak velocities found in patients

with severe aortic stenosis [12], which present some of the highest flow velocities

in the human body. The maximum velocity observed in a healthy person is around

150 cm/s. Flow in severe aortic stenosis is highly turbulent, reducing the signal in

flowing regions as a function of the velocity encoding moment. Thus, the turbulence

might require the use of smaller encoding moments.

Both of the above-mentioned features of Flow-MRF are possible because a recon-

struction was developed, which allows any number of phase warps in the measured

data. A dictionary based reconstruction was chosen, but a dictionary covering the

range of velocities in healthy humans with a velocity resolution of 0.1 cm/s would
require 20 terabytes of computational memory. The reconstruction of velocities is thus

performed in two separate steps, firstly an exhaustive search is evaluated on a coarse

dictionary with a velocity resolution of 5 cm/s. Then secondly, a local gradient ascent
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optimization of the correlation between the synthetic signal evolution and the mea-

sured signal is performed. The starting points of the optimization were determined by

the previous reconstruction step. The highest correlating synthetic signal evolution

determines the best estimate of the velocity for each pixel. This reconstruction is slow,

taking in the order of 2-10min per cardiac phase but determines the global maximum

in the search-range reliably. The reconstruction time could be reduced by efficient

parallel computing, through dictionary fitting [32], or deep learning.

The phantom experiments determined a good agreement between Flow-MRF and

a vendor provided PC cine sequence. The average deviation throughout a pulsed

velocity profile was determined as (−1.7± 2.3) cm/s for an experiment with flow

in z-direction. Double oblique slice positioning allowed the measurement of finite

velocities in all three spatial components, here a mean deviation was quantified as

(0.17± 1.16) cm/s. Themeasurement time in both experiments was 84 s for Flow-MRF.

This, however, includes 40 s of pauses between shots, to allow the magnetization to

approximate the thermal equilibrium. These pauses can be shortened [56] or be used to

acquire different slices. The effectivemeasurement time per slice is thus 44 s. Therefore,

Flow-MRF has fourfold shorter acquisition time than the vendor provided clinical

standard for velocity quantification with closely matched spatiotemporal resolutions,

while additionally providing quantitative T1 and T2 maps. The measurement time

reduction of PC cine sequences has been extensively investigated [57, 58, 59, 60].

These methods often allow acquisition time reductions greater then the factor of 4

between Flow-MRF and the PC-cine but often result in spatial or temporal blurring

of velocities. In Flow-MRF the reconstruction between temporal bins is completely

independent. In theory, Flow-MRF could also be accelerated by compressed sensing

techniques or temporal data sharing.

The in-vivo measurements showed good agreement in the velocity quantification, but

a peak deviation of 18.4 cm/s was measured during the systole of the first volunteer.

This is potentially caused by the inherently different velocity encoding schemes

between Flow-MRF and the reference. Flow-MRF determines the temporal mean of

all three velocity components throughout the cardiac phase (45ms). The reference,

on the other hand, measures a velocity component at a single time point and then

proceeds to measure the two other velocity components. As a result, the same velocity

component is also measured with a temporal resolution of 45ms, but the measured

velocity corresponds to a discrete point in time within these 45ms. This difference in

the velocity encoding can lead to different results in rapidly changing flow conditions,

such as the systole.

Post-processing of conventional phase-based cine sequences includes a linear or

quadratic correction of background velocities to remove effects of eddy currents and

concomitant fields [11]. In Flow-MRF, however, the background velocities cannot be

95



Discussion

approximated as linear as can be seen in fig. 4.9, due to the non-Cartesian readouts.

The effect of concomitant fields is assumed to be small due to the central position of

the investigated targets and the high main magnetic field. Eddy currents might have

a measurable influence on the quantified velocities, especially since larger bipolar

encoding gradients are used than in conventional PC sequences. In theory, given a

model of eddy current behavior, their influence can be included in the reconstruction

eliminating the eddy current induced velocity-bias. Such an eddy current model could

be constructed based on the measurement of cross terms and higher orders of the

gradient impulse response function [61].

The challenge of variable RR-intervals in humans was tackled by eliminating the

influence of the MRF pattern on the signal phase. This change allows the reordering

of projections combined into a single time frame used for the velocity quantification.

Only the velocity encoding gradients are updated based on the ECG signal, the FA

remains unchanged. The choice not to update the FA pattern was made to avoid the

calculation of a relaxometric dictionary for each volunteer. The calculation of such

a dictionary for 7 T takes approximately 118 hours or almost 5 days. Further, the

encoding capability for T1 and T2 would depend on the specific HR of the volunteer,

making the mapping potentially unreliable. The reordering for the velocity combi-

nation requires projections acquired with different FA to be combined into a single

time frame, as a consequence of not updating the FA-pattern. This reordering causes

a suboptimal interference of undersampling artifacts and a subsequent increase in the

velocity noise. The presented simulation, investigating this effect, used 15 projections

instead of 5 to emphasize the increase in undersampling noise. For the same reason,

thermal noise was omitted. The two-fold velocity noise increase due to the variability

of the HR, indicates an upper limit for healthy subjects. The influence for patients

with cardiac arrhythmias remains to be investigated.

The phase information of time frames separated up to 9 s within the MRF readout train

are combined for the velocity quantification. Phase drifts during measurements are not

uncommon in MRI [62]. These drifts, even though rare in modern MRI systems, can

be induced by an unstable RF-phase, gradient coil heating or other effects. Whether

Flow-MRF is susceptible to phase drifts was investigated by simulating the effect of an

additional linear phase contribution. The additional phase was assumed zero after the

8 s pause for relaxation, followed by a linear increase to amaximum phase of θmax. This

parasitic phase only caused a systematic velocity error of−0.34 cm/s/rad. However, if
the phase increase exceeded 4 rad then a complete failure of the velocity quantification

was observed. A phase increase of this magnitude would create significant artifacts

in almost all MRI sequences. The small influence of the phase drift on the velocity

quantification can be explained by reconsidering the velocity reconstruction for
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Flow-MRF. The reconstruction is effectively searching for the highest correlation in a

predefined set of phase evolution, termed a dictionary. None of the dictionary atoms

present a phase evolution similar to the additional parasitic phase. The parasitic phase

contributions and the phase created by flow are highly uncorrelated, thus only a small

shift in the quantified velocities is observed.

Besides the velocimetry, the quantification of correct relaxation constants with Flow-

MRF is of central importance. The aim was to maintain the quality of the relaxometric

mapping relative to the original FISP-MRF pattern. As a consequence, a simulation

study investigating the influence of the constant TR on the encoding capability of

MRF was performed. Further, the effects of the bipolar velocity encoding gradients

on the relaxation time quantification were measured in a phantom study and lastly,

the relaxation constants determined with Flow-MRF were correlated to reference

measurements in a phantom.

Eliminating the variability of the TR throughout the acquisition train resulted in a

signal level reduction of 5 % or less. The constancy of the signal level allowed a relative

comparison of the encoding capability via the mean of autocorrelation matrices. These

displayed minor improvements in the encoding capability of 0.961 to 0.954 for T1

and 0.986 to 0.985 for T2. Overall an identical performance in the mapping of T1 and

T2 is expected, whether the TR is constant or variable. The constant TR results in

a shorter measurement time, a constant signal phase over the whole MRF pattern

and robustness against intravoxel dephasing. The constant TR is therefore used in

Flow-MRF.

The use of bipolar gradients resulted in small changes in the quantified relaxation

constants in the relaxometric phantom. Here, a mean bias of 0.4ms for T1 and−2.2ms

for T2 was determined. These deviations are below the in-vivo noise levels of 75ms

and 4ms for T1 and T2 respectively. Nevertheless, a finite underestimation of T2 by

the MRF sequence with bipolar gradients can be observed. This is potentially caused

by an increased diffusion influence due to the added gradient lobes. In general, diffu-

sion might bias the quantification of relaxation constants in MRF. The simultaneous

quantification of diffusion, as demonstrated by Jiang et al. [9], could eliminate the

diffusion bias in MRF.

A strong influence of diffusion, however, is unlikely as the T2 values determined by

Flow-MRF correlate highly with the spin echo based values. The mean difference be-

tween both methods is (0.8± 2.5)ms. The reference measurement can also be biased

by diffusion, as was previously shown [63]. Multi-spin echo sequences, designed to

reduce the effect of diffusion, perform poorly at 7 T due to the B1-field inhomogeneity.

For T1, the mean deviations between Flow-MRF and the reference are larger than for

T2. This deviation is quantified as (−89± 25)ms, with a peak underestimation by

Flow-MRF of−133ms. These deviations can potentially be explained by the modeling

of the adiabatic inversion pulse. The inversion preparation has a strong influence on
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the quantified T1. This pulse was modeled as a 175 ° pulse for all isochromates, as more

realistic modeling requires knowledge of B1 and ∆B0. ∆B0 was not mapped during

the measurement, causing the simple modeling of the adiabatic inversion. Likely, a

more accurate simulation of this pulse would improve the mapping accuracy of T1.

Despite the simplistic modeling of the inversion pulse, a good agreement with the lit-

erature values of the relaxation constants in muscle at 7 T was reached. The literature

values were determined by single voxel spectroscopy, making them potentially more

susceptible to partial volume effects with vessels or other tissues.

The new degree of freedom in the design of the MRF pattern was explored in a simu-

lation study where the performance of multiplem1 patterns was investigated. Both a

study of the correlation matrix and the velocity noise in the numerical phantom were

used to evaluate the accuracy and stability of the velocity quantification.

The investigation concluded that the Two Sided pattern or the MDHM pattern with

maximum encoding moments of 30mT/m ·ms2 provide good stability in the quantifi-

cation and a low velocity noise. TheMDHM pattern requires the encoding moments to

be spread equally over a spherical surface, while the Two Sided pattern can be realized

by random draw. The latter was thus preferred for its ease of implementation on the

MR system. Nevertheless, the simulation also indicated that a 30 % reduction in the

velocity noise could be possible by choosing the Min Max pattern with a maximum

encoding moment of 30mT/m ·ms2. This reduction in velocity noise is substantial

and might solicit further investigation for specific applications. For the applications

shown, however, the stability of the Two Sided pattern was favored. Potentially, a pat-

tern can be found, which better trades off the advantages and disadvantages between

the stable and accurate patterns design.

Measuring the signal loss due to intravoxel dephasing for different velocity encoding

directions can allow the estimations of the Reynolds stress tensor, which describes

the stochastic distribution of velocities. In this work, the velocity distribution was

assumed Gaussian. This assumption allows the quantification of the RST to be for-

mulated as a linear problem, solvable through a Moore-Penrose pseudoinverse.

Through the use of high encoding moments, Flow-MRF is uniquely suited for the

simultaneous quantification of both velocity and the RST. The large number of obser-

vation points of the signal dephasing can, in theory, allow a more accurate estimate

of the Fourier-transform of the velocity distribution. On the other hand, the effective

SNR in each time frame is low for Flow-MRF compared to conventional methods. The

large number of data points could allow an estimate of higher central moments of the

velocity distribution, such as the skewness or kurtosis. Although, the determination

of only the second central moment under the assumption of a multivariate normal

distribution is already a difficult problem. The dephasing solely affects the image

magnitude, which is less robust than the signal phase with high spatial undersampling.
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Nevertheless, the quantified shape and magnitude of the RST component maps match

those determined by the reference method of Haraldsson et. al [37]. The characteristic

changes in both τxz and τyz seen in the reference method, are not seen in the maps of

Flow-MRF. This effect might be linked to the coarser z-resolution of the Flow-MRF

experiment. Especially for RST mapping, isotropic voxel size is important for the

quantification. The use of high encoding moments in the RST quantification needs to

be evaluated thoroughly in many flow conditions. Dyverfeldt et al. could show that

large encoding moments can create a stronger bias in the determination of the second

central moments if higher moments are present but neglected in the reconstruction

[41].

The dependence of the RST quantification on the signal magnitude complicates the

use of variable FA in Flow-MRF because the formulation of a general model for the

magnitude signal evolution has not yet been achieved. In principle, the signal evo-

lution could be calculated if both the relaxation constants and the path of the fluid

through the slice were known. The relaxation constants for blood could be measured

ex-vivo and potentially a linear approximation of the path could be deduced from

the velocity information. If these assumptions suffice to describe the signal evolution

has not been tested yet. The lack of a complete signal model enforced the use of a

constant FA, such that changes in the magnitude can be linked to inflow or changes in

the turbulence. The constant FAs prohibited the quantification of T1 and T2, but the

simultaneous quantification of the RST and velocities was successfully demonstrated.
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Summary
Flow-MRF is the first method allowing the simultaneous time-resolved velocity quan-

tification, while also mapping relaxation times in static tissues. This was achieved

by formulating the combined problem in the MR Fingerprinting framework. Both

mapping problems were designed, through the choice of the MRF pattern, such that

the encoding of either set of parameters creates minimal coupling between them. To

this end, the phase modulations for finite off-resonances were eliminated through

the use of a constant TR. Further, the phase based velocity encoding is realized by

modulatingm1 pseudo-randomly from TR to TR, which does not influence the signal

evolution of static tissue.

It was shown in simulations, phantom and in-vivo experiments that the proposed

encoding strategy of Flow-MRF allows highly accurate and robust quantification of

relaxation constants and velocities in a measurement time 4-fold shorter than con-

ventional MRI based velocimetry. Velocity quantification is part of routine clinical

MRI examinations for certain diseases, despite the usually long acquisition times.

Flow-MRF could provide a novel approach to shorten the acquisition times, while

maintaining high quality in the velocity quantification, and additionally determining

relaxometric information of the surrounding static tissue. This joint information could

be especially helpful in the assessment of arteriosclerosis.
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