Chan et al. BMC Medical Genomics (2019) 12:64
https://doi.org/10.1186/512920-019-0525-4

BMC Medical Genomics

RESEARCH ARTICLE Open Access

Impact of cancer mutational signatures
on transcription factor motifs in the human

genome

Calvin Wing Yiu Chan'?, Zuguang Gu', Matthias Bieg', Roland Eils'** and Carl Herrmann

Check for
updates

14%

Abstract

transcription factor motifs to deamination processes.
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Background: Somatic mutations in cancer genomes occur through a variety of molecular mechanisms, which
contribute to different mutational patterns. To summarize these, mutational signatures have been defined using a
large number of cancer genomes, and related to distinct mutagenic processes. Each cancer genome can be
compared to this reference dataset and its exposure to one or the other signature be determined. Given the very
different mutational patterns of these signatures, we anticipate that they will have distinct impact on genomic
elements, in particular motifs for transcription factor binding sites (TFBS).

Methods: We used the 30 mutational signatures from the COSMIC database, and derived a theoretical framework to
infer the impact of these signatures on the alteration of transcription factor (TF) binding motifs from the JASPAR
database. Hence, we translated the trinucleotide mutation frequencies of the signatures into alteration frequencies of
specific TF binding motifs, leading either to creation or disruption of these motifs.

Results: Motif families show different susceptibility to alterations induced by the mutational signatures. For certain
motifs, a high correlation is observed between the TFBS motif creation and disruption events related to the

information content of the motif. Moreover, we observe striking patterns regarding for example the Ets-motif family,
for which a high impact of UV induced signatures is observed. Our model also confirms the susceptibility of specific

Conclusion: Our results show that the mutational signatures have different impact on the binding motifs of
transcription factors and that for certain high complexity motifs there is a strong correlation between creation and
disruption, related to the information content of the motif. This study represents a background estimation of the
alterations due purely to mutational signatures in the absence of additional contributions, e.g. from evolutionary

Background

With the availability of thousands of fully sequenced can-
cer genomes, genome-wide patterns of somatic mutations
can be analyzed to search for potential driver mutations.
Such an effort has been exemplified by the recent Pan-
Cancer Analysis of Whole Genomes (PCAWG) initiative
by the International Cancer Genome Consortium (ICGC)
consortium. However, besides coding driver mutations
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that have been described earlier, non-coding mutations
have been under increased scrutiny, in search for addi-
tional non-coding drivers, given the extensive number of
these mutations in non-coding genomic regions. Several
modes of actions can be identified for these mutations, the
most likely ones being mutations affecting regulatory ele-
ments such as transcription factor binding sites (TFBS),
altering in one way or the other (creation or disruption)
the binding motif. A spectacular example was identified
in several cancer entities involving the promoter of the
TERT gene, in which two recurrent mutations have been
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shown to create new binding sites for Ets-family transcrip-
tion factors, leading to a strong over-expression of the
TERT oncogene [1, 2]. Another example was found in T-
ALL, in which a mutation creating a new binding site for
MYB leads to the appearance of a super-enhancer driving
over-expression of the TAL1 oncogene [3]. Besides these
few non-coding drivers, cancer genomes are loaded with
thousands of mutations which are termed passenger, as
they cannot be individually related to molecular pheno-
types, as in the previous cases. However, several studies
have shown that these putative passengers contribute to
an overall mutational load in the cancer genome, and can,
collectively, have an impact [4, 5]. Hence, it is of impor-
tance to understand the overall patterns of non-coding
mutations, besides the few driving examples.

Patterns of somatic mutations have been analyzed by
defining so-called mutational signatures, based on a
dimensional reduction approach focusing on the patterns
of trinucleotide alterations. The 96 possible types of trin-
ucleotide mutations were summarized into a reduced
number of signatures, which each describe a different
mutational bias [6]. Some of these mutational signa-
tures can be related to specific mutational processes such
as APOBEC mutations, nucleotide mismatch repair or
various carcinogens. Recently, nucleotide excision repair
(NER), which is related to one mutational signature, has
been related to specific patterns of mutations within TFBS
in cancer genomes [7]. Once these overall signatures are
available, the exposure of cancer types or of individual
cancer genomes can be determined. Hence, for example,
there is a clear association between the signature related
to ultra-violet light and melanoma [8].

In this study, we assess the impact of mutational sig-
natures on motifs of transcription factor binding sites.
In particular, we search to understand how a particular
mutational signature impacts the large collection of tran-
scription factor binding site motifs. Our objective is to
establish, for each signature, a catalogue of binding motif
creation and disruption frequencies, which would corre-
spond to an expected background effect of the mutational
patterns, in the absence of any additional effect such as
selective processes. Our goal is thus to translate the muta-
tional signatures based on trinucleotide alterations into
signatures of motif alteration. The result provides a the-
oretical framework as a baseline model for transcription
binding site alteration analysis in cancer genomes.

Method

The following regulatory impact analysis is based on
the 30 trinucleotide mutational signatures described
by Alexandrov et al. [6]. These mutational signa-
tures were downloaded from the COSMIC database
(https://cancer.sanger.ac.uk/cosmic/signatures). Each of
the 30 mutational signature contains the normalized
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mutational probability across the 96 types of point muta-
tion in a trinucleotide context. In the remaining of this
paper the mutational signature is represented by the
30 x 96 mutational signature matrix Sp; and mutational
signature vector 5,(s;) as follows:

< Trinucleotide signature 1 — $y(s1)
< Trinucleotide signature 2 — $y(s2)
Sm= : = : (1)
<« Trinucleotide signature 30 — $v(830)
Pr(mls1) Pr(mzls1) ... Pr(mog|s1)
Pr(milsy) Pr(malsy) ... Pr(moslsz)
Sm = : : . : 2)

Pr(my|s30) Pr(mz|s3o) ... Pr(mog|s3o)

where m; corresponds to the 96 possible trinucleotide
mutations (eg. A[C>A]JA, A[C>G]A, ... etc.). This muta-
tional signature matrix is denoted as the trinucleotide
mutational signature in the remaining part of this article.

Transcription Factor Motif Alteration Signature
The procedure of computing the motif binding alteration
probability is illustrated in Fig. 1.

We define Pr(altf;, m;) as the probability for a motif tf; to
undergo an alteration « (i.e. creation or disruption) given
a trinucleotide mutation ;. A disruption event is defined
as a mutation that turns a binding site into a non-binding
site, and a creation event corresponds to the reverse effect.
The probability of a transcription factor motif alteration
event is computed by assessing the p-value of a given
sequence being a binding site before and after the muta-
tion. The 512 JASPAR 2016 vertebrate position weight
matrices (PWM) of length 6 to 19 are used to compare the
impact in binding affinity due to a point mutation [9]. The
p-value of a sequence is evaluated using matrix-scan of the
Regulatory Sequence Analysis Toolbox (RSAT) to com-
pute the p-value [10]. In this study, a p-value of p=0.001
is set as the binding threshold. For a given transcrip-
tion factor binding PWM of width &, all possible k-mer
sequences are scanned to compute the mutational statis-
tics. For a PWM of k = 19, it requires scanning a total of
419 = 274,877,906, 944 sequences for all the 19mers. The
search space of binding sequences can be reduced in half
by combining all the reverse complementary sequences.

For each PWM tf; of width k, we enumerate all possible
k-mers (considering a k-mer and its reverse complement
as the same motif) and, using matrix-scan with the param-
eters described above, we separate the set of k-mers into
binding and non-binding k-mers. Then, the alteration
probability is computed by mutating each of the trinu-
cleotide in the matching k-mer according to the muta-
tion type m; and search for the corresponding mutated
sequence. A disruption event is identified if the mutated
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Fig. 1 Worflow of the method: a Frequency counting procedure; b Transcription factor binding motif alteration signature analysis workflow

sequence is not found in the list of binding k-mers. Con-
versely, a creation event is identified if a non-binding k-
mer is turned into a binding k-mer. The current matched
binding sequence is considered as the reference sequence
for a motif disruption event and alternative sequence in
the motif creation event and vice versa.

In order to count these events in the human genome,
all possible k-mers are extracted from the human genome
(version hgl9) and their occurrences are counted for k =
6 to k = 19. The count of each reference sequence in
the human genome is recorded according to the type of
trinucleotide mutation and the type of alteration event
(see pseudo-code in Additional File 4: Figure S4). The
probability Pr(altf;, m;) can be obtained by normalizing
the counts by the total number of reference trinucleotide
Cng19(m;, 1o ) for the reference trinucleotide m1; ,r of a given
mutation type 7 of a tf; PWM width of length w(%f). The
count normalization factor for alteration probability com-
putation is illustrated in Fig. 1b. For each trinucleotide in
the genome, it is compared w(¢f;) — 2 times. Therefore, the
total count detected should be divided by the number of
trinucleotides in the genome multiplied by w(tf;) — 2 to
obtain the alteration probability.

c(altfi, my)

Priad, my) = Cng19 (M rer) - (W(tfi) — 2)

3)

Importantly, we also need to determine the binding
affinity of k-mers which do not occur in the human
genome for the motif creation event, as a mutation could
turn a k-mer into one which does not occur in the ref-
erence genome. However, for the disruption probability
computation, the k-mers search space for genomic k-mers

count can be drastically reduced by considering only k-
mers occurring in the human genome, which dramatically
reduces the search space for k > 13. The motif alter-
ation probability of a given transcription factor PWM and
trinucleotide is stored in the motif alteration probability
matrix,

Pr(altfi, m1) Pr(altfi,m3) ... Pr(altfi, mog)
Pr(altfy,m1) Pr(altfa,m3) ... Pr(altfa, mye)

QurEM = : . , : 4)
Pr(altf;, m1) Pr(altfi,ma) ... Pr(altfi, mos)

From this, we compute the alteration probability for a

mutational signature s; using Bayesian inference:

96

Pr(altfy,si) = Y _ Pr(altf;, my) - Pr(my|s;) ©)

k=1

or, in matrix notation:

STF = SM ¢£|TF,M (6)
where,
Pr(alsi, t)) Prials,th) ... Pr(alsy,tf)
Pr(alsy, tfi) Pr(alsa, tf) ... Pr(alss, tf)
Str= ) . . . (7)

Pr(als3o, tfi) Pr(alsso,tf) ... Pr(alsso, tf;)

The full algorithm for computing the alteration probabil-
ity is given in the Additional file 4: Figure S4.

Analysis on Transcription Factor Motif Alteration
Probability

The motif alteration probability matrix ®rrja encapsu-
lates changes in binding affinity of a given PWM under
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the perturbation of a single nucleotide point mutation. In
order to investigate similarities in the alteration probabil-
ities of different motifs, a hierarchical clustering of motif
creation and motif disruption is performed. A Partitioning
Around Medoids (PAM) clustering approach is applied
to partition the 512 transcription factors using the sil-
houette coefficient to determine the optimal number of
groups. The clustering is then compared to the TF fam-
ily annotation downloaded from the JASPAR database. To
further investigate the alteration probability of relevant
TFs in cancer, all transcription factors present in the COS-
MIC cancer gene census are extracted and evaluated. The
global alteration offset of these COSMIC cancer TFs are
computed by subtracting the disruption probability from
the creation probability.

To evaluate the similarity of motif alteration probabil-
ity of multiple transcription factors, a self-organizing map
(SOM) analysis is performed using the alteration probabil-
ity matrix ® 7|y to validate the result and to gain insight
into the alteration similarity among the TF motifs. For
this, a 22 x 22 grid was used and resulted in a stack of 96
variable maps corresponding to the trinucleotide muta-
tion type my. The map dimension of the SOM is selected
to maximally retain the resolution of the transcription
factor space based on the following criterion:

argmax{wfom} < N7r (8)
Wmm

where wy,,;, is the width of the SOM, and Nrpf is the
total number of TFs. There is a total of 512 TFs in the
JASPAR vertebrate 2016 database, therefore the optimal
SOM dimension is wy,,;, = 22. This allows the TFs to
be distributed evenly on the map in the worst case sce-
nario when they are equally dissimilar with respect to each
other.

Comparison with the PCAWG Dataset

We compared our motif alteration prediction based on
the mutational signatures with real datasets of SNVs in
cancer. For this, we used a previously published dataset
from the PCAWG study, containing 2708 whole-genome
sequencing (WGS) samples. We restrained ourselves to
the WGS and discarded whole-exome sequencing (WES)
samples as we wanted to make genome-wide predictions
of alterations of TFBS motif, which lie outside of coding-
regions [11]. We have listed the abbreviations of the tumor
subtypes in Additional file 5: Figure S5.

In order to predict motif alterations in the PCAWG
dataset, we developed a motif alteration pipeline. The
pipeline is based on the matrix-scan-quick tool from the
RSAT toolbox [10]. The neighborhood reference sequence
of each SNV is extracted to build a second order back-
ground Markov model for PWM matching. Both the ref-
erence and alternative sequence are matched against the
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given PWM. For alteration detection, it is required to
fulfill both of the following conditions: (1) the mutation
results in a change from binding site to non-binding site
(or vice-versa for creation) where a threshold of p < le—4
is required to consider a sequence as a TF binding site; (2)
a 10-fold p-value change before and after the mutation.

The PCAWG SNV calls are first matched against the
same set of JASPAR PWMs to identify possible tran-
scription factor binding alteration sites. To produce com-
parable results across all cancer entities, the detection
probability of each of the transcription factor alteration
is computed by normalizing the detection counts with
respect to the total number of SNV detected in the corre-
sponding cancer entity.

To match our predicted frequencies of alteration based
on the mutational signature to the cancer dataset, we
need, for each of the cancer entities, to combine the influ-
ence of those mutational signatures that contribute to the
particular cancer entity. Here, we used, for each cancer
sample, the exposure matrices described in [11], based
on 2708 PCAWG samples. Since the PCAWG dataset
is based on a new set of 48 PCAWG mutational sig-
natures, we mapped each of these 48 signatures to the
most similar out of the 30 COSMIC signatures. Similarity
was assessed using Pearson correlation across the 96 trin-
ucleotide mutations. When several PCAWG signatures
mapped to the same COSMIC signature, we summed up
the exposure values corresponding to these signatures. To
infer the transcription factor binding site alteration prob-
ability for one cancer entity, the transcription factor motif
alteration matrix S7r is multiplied with the normalized
exposure matrix Epyp to produce the per patient exposure
prediction matrix Wpp,

Wpip = STy Epp )

e(s1lpid1) e(s1lpida) ... e(si|pidsgo)

e(s2|pid1) 6(52|pid2) 6(52|pid482) 10)

Eppp =

e(s3o|pidy) e(s3olpida) ... e(s3olpidasy)

where e(s;|pid,,) is the normalized exposure (or exposure
probability) of signature / and patient m. Combining the
above we have,

Pr(a|pidy, tf1) Pr(alpida,tfi) ... Pr(alpidags,tf1)

Pr(alpidy, tf>) Pr(alpida,tfy) ... Pr(alpidags,tf>)

Wpip= (11)

Pr(alpidy, tfy) Pr(alpidy,tf;) ... Pr(alpidag,tf7)

After obtaining the per patient exposure prediction
matrix Wpyp, the median TF alteration probability within
each entity is compared against the alteration probability
from the alteration detection pipeline.
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Clustering of tumor samples

Given the heterogeneity of the samples within a tumor
cohort, we clustered the PCAWG samples based on their
exposure values. We first used the UMAP dimensional-
ity reduction method [12] on the table of exposure values
of the 2708 samples, and then defined clusters using the
hdbscan method [13], as implemented in the largeVis
R-package. This defined 21 clusters containing 2360 sam-
ples, while 348 samples could not be assigned to one
of these clusters. Results are shown in Additional file 3:
Figure S3.

Results

Impact of mutational signatures on transcription factor
binding motifs

We computed the motif alteration signature using the
conditional probability between the transcription factor
alteration probability and the trinucleotide mutational sig-
nature as described in Eq. 5 and Eq. 6. The predicted
alteration probabilities for all TF motifs and all 30 COS-
MIC signatures are given in Additional file 6: Figure S6.
The motif alteration results across all 512 JASPAR motifs
are shown in Fig. 2a for motif creation (top) and motif
disruption (bottom, see Additional file 1: Figure S1 for a
more detailed representation including signature names
and information on TF families.). To capture similar pat-
terns between transcription factor motifs, we applied a
PAM clustering to the set of 512 motifs. The silhouette
coefficient shows a local maximum at k,;; = 4 indicating
that the optimal number of clusters is 4.

The four clusters show a completely different behavior
under the mutation signatures; whereas cluster 3 shows a
low sensitivity to any of the mutational signatures (with
some exceptions), cluster 4 on the other hand seems to
be strongly impacted both by motif creation and disrup-
tion. Interestingly, comparing the disruption and creation
heatmaps, we observe that the creation sensitivity for clus-
ter 4 is high over all signatures, whereas we observe two
groups of signatures for the disruption, with different
impacts. We then studied the composition of TF motifs
of each cluster. As expected, none of the clusters is dom-
inated by a single TF family (Fig. 2b). However, Fig. 2b
shows that some motif families are preferentially associ-
ated to one of the clusters. Forkhead motifs are in their
vast majority associated with cluster 4 and show a high
sensitivity to all mutational signatures. We also observe
obvious mutual exclusivity between the cluster 1 and 2
versus cluster 3 and 4 for most of the TF families. SOX-
related factors and C/EBP-related family, on the other
hand, seem to be distributed across several clusters. For
SOX-related motifs, we observe that these motifs form 2
major subgroups as shown in Fig. 2c. SOX-related fac-
tors associated with PAM cluster 1 contain an extended
binding sequence AACAATKGCAKCAKTGTT whereas
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those associated with PAM cluster 2 and 4 contain a
shorter version AACAATG binding motif.

After this global analysis of the alteration patterns across
all 512 motifs, we next focused on specific motifs related
to transcription factors which play a role in cancer. We
extracted from COSMIC cancer gene census the list of
transcription factors to investigate how the binding motifs
of transcription factors mutated in the cancer genome are
affected by somatic mutations. We computed the differen-
tial motif alteration probabilities of 30 signatures for 40 TF
motifs with the strongest differential impact (Additional
file 2: Figure S2). This map displays two broad groups of
transcription factors with opposite behavior. Some inter-
esting patterns can be observed. For example, HNF1A, a
liver-specific transcription factor, appears to have a strong
excess of creation upon signature 12, which is specifically
found in liver cancer. Given the high expression of HNF1A
in liver tissue, this excess of new binding sites could result
in some novel, functional binding sites in liver cancer.

In order to capture the complexity of the relation
between the mutational signatures and the binding motifs,
we applied SOM clustering to group motifs showing sim-
ilar behaviors. We performed SOM clustering over the
192 possible mutational transitions (taking both creation
and disruption into account). We also combined these
mutational probabilities into the 30 mutational signatures.

The SOM clustering provides a clear picture on the sim-
ilarity of the alteration behavior of transcription factors
across all trinucleotide mutational probability and the 30
mutational signatures. Transcription factors of the same
transcription factor families often share similar binding
sequence and their motif alteration behavior should also
be similar. We observe that overall, transcription fac-
tors of the same family are well clustered together and
globally share similar motif alteration probability patterns
(Fig. 3a,b). For example, the SOX transcription factor
family with SOX2, SOX4, SOX8, SOX9, SOX11, SOX10,
SOX11, SOX17, and SOX21 are clustered together. How-
ever, for specific signatures, differences between related
transcription factors do exist. In Fig. 3a, SOX10 appears
to have a very similar creation probability to its neighbor
SOX2 for signature 10, but shows a much lower creation
probability in signature 23 (Fig. 3b).

Overall, by coloring the cells according to the family of
the TF, we observe a global clustering of motifs from the
same structural class (Fig. 3c,d). However, this does not
hold true for all families; we highlighted some members of
the GATA-family in Fig. 3c which appear to be dispersed
across the SOM map.

Correlation Between Motif Creation and Disruption
Signature

The previous results indicate that for many transcrip-
tion factors, there is a compensating effect of creation
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and disruption. Further investigating this relationship we
found indeed that the alteration probability between cre-
ation and disruption event in all signatures have globally
a strong correlation between the creation and disrup-
tion (Fig. 4a). We found this correlation to be strongly
related to the trinucleotide diversity of the motif match-
ing sequences. To quantify this diversity, the trinucleotide
content of each of the matching sequences is determined
and the entropy is computed for each TF motif. The simi-
larity between creation and disruption probability of each
motif is evaluated using the absolute relative difference:

2 |Pr(s, tf, create) — Pr(s, tf, disrupt)|
Pr(s, tf, create) + Pr(s, tf, disrupt)

[RD(s, 1f)| = (12)

where s represents a signature and ¢f a binding motif. The
scatter plot in Fig. 4b shows an inverse relation between
the complexity of the binding sequences (as measured
by the entropy of these sequences) and the difference
between creation and disruption. Hence, the more com-
plex the motif content, the stronger the creation and the
disruption signature probability are correlated.
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Fig. 3 Transcription factor motifs of width 6 to 19:a SOM of Signature 10 creation probability; b SOM of Signature 23 motif creation probability;
¢ SOM using 30 motif alteration signatures with TF family colour coded; d SOM using 96 motif alteration probabilities with TF family colour coded

This effect is illustrated using Hoxd8 and PAX9 as
an example. To ensure that the motif width does not
bias the results, both selected motifs have a width of 17
nucleotides. As illustrated in Fig. 4d and Fig. 4e, Hoxd8
and PAX9 have very different trinucleotide content. This
is obvious looking at the motif logo. The motif alteration
probability with respect to the 96 trinucleotide muta-
tion is shown below the logos. For Hoxd8, the motif
alteration probability concentrates on trinucleotide muta-
tions related to TAA, AAT, TTA, and ATT where the
overlap of these trinucleotide mutation creation and dis-
ruption only occurs on A[T>A]A, A[T>A]T, T[T>A]A,
and T[T>A]T.

On the other hand, the alteration probability of PAX9
is distributed along all the 96 trinucleotide mutations,
resulting in the creation and disruption probability to be
strongly correlated along the 96 trinucleotide mutations.
This translates into a high similarity across the 30 muta-
tional signatures. This is shown in Fig. 4c for Hoxd8 and
PAXO9 across the 30 mutational signatures.

Association of Deamination Signature and TFBS Creation
We next sought to validate our predictions using indepen-
dent data. In [14], Zemoijtel et al. described a set of tran-
scription factors whose binding sites are frequently cre-
ated as a result of CpG deamination process during evo-
lution. These transcription factors include: c-Myc(Myc),
Nfya, Nfyb, Oct4(POU5F1B), PAX5, Rxra, Usfl, and YY1.
Given that some of the mutational signatures in cancer
are related to CpG deamination, we sought to verify if
the same transcription factors are impacted by this pro-
cess due to somatic mutations. The creation probability of
these transcription factor motifs are plotted in Fig. 5a over
all 30 mutational signatures.

Signature 1 was described as being related to deami-
nation of 5-methylcytosine [15] and ranks as the second
highest signature in terms of creation frequency of these
motifs in Fig. 5a. Signature 14 shows a very similar muta-
tional profile with strong C—T bias. In addition, it is
interesting to note that the POU5F1B motif has a high
creation probability compared to other TFs across all
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signatures. This phenomenon is due to the high genomic
frequency of motifs which differ from POU5F1B binding
motifs by one mutation, which gives rise to a large number
of k-mers which closely resemble the POU5F1B binding
domain and serve as a substrate for TF motif creation
events.

If we extend this single TFs to the family they belong
to, we also observe a much higher creation probability for
the other members of the POU-family, compared to the
families of the other impacted TFs (Fig. 5b).

Mutation associated Mechanisms

There are three main molecular mechanisms leading to
single nucleotide mutations in cancer: i) defective DNA
mismatch repair (MMR); ii) APOBEC activity; and iii)
transcription-coupled nucleotide excision repair (NER).
In the catalogue of mutational signatures, several signa-
tures can be related to each of these processes. We wanted
to investigate which transcription factor motifs are most
impacted by these three different molecular mechanisms.

For each of these mechanisms, we summarized the alter-
ation results for all signatures annotated to the same
mechanism; APOBEC is related to signatures 2 and 13,
MMR to signature 6,15,20 and 26, and NER to signa-
tures 4,7,11 and 22. We displayed the differential alter-
ation probabilities (creation - disruption) in Fig. 6a. Inter-
estingly, a number of transcription factor motifs show
reverse behaviors with respect to these three mechanisms.
For example, Foxd3 shows a much higher creation prob-
ability for APOBEC and NER related signatures, whereas
the opposite holds for MMR signatures.

As an example, it was shown that a mutation associated
with the APOBEC signature leads to the creation of a MYB
binding site [16]. To understand if this single event lead-
ing to a driver mutation might result from a more general
impact of the APOBEC signature on the binding sites of
MYB, we indeed observed that the two APOBEC signa-
tures (signature 2 and 13) show the highest bias towards
MYB motif creation compared to all other signatures (P-
value = 0.02, Fig. 6b). Hence, this single driver event might
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result from an elevated creation rate of potential MYB
binding sites under these APOBEC signatures.

Comparison with the PCAWG Dataset
We then sought to validate our predictions using a dataset
of observed SNV in cancer genomes. We used a dataset

of 2708 whole-genome sequencing covering 40 cancer
subtypes. The idea of the validation is to compare the pre-
dicted frequencies of motifs alteration that are explained
purely by the mutational signature and its biases towards
certain trinucleotides, with the frequencies of motif alter-
ation observed when considering a SNV dataset in cancer
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genomes. If the predicted and the observed frequencies
are comparable, then most of the signal of motif creation
or disruption can be explained by the impact of mutational
signatures. If on the other hand we observe a difference,
this discrepancy could be attributed to additional effects
in the real dataset, such as positive or negative evolution-
ary pressure in the cancer dataset leading to an increased
frequency of motif creation or disruption. Hence, our
goal is to highlight such potential effects and to use our
signature based prediction as a baseline.

In order to compute a predicted alteration probabil-
ity per patient, we used the signature exposure of each
patient, and performed a linear combination based on the
exposure values. In order to take into account the fact
that there is heterogeneity between tumors even within
a subtype, we used a clustering of samples based on
their exposure to mutational signatures to split each sub-
type. While some subtypes are rather homogeneous i.e. lie
mostly within one cluster, some others are spread across
many clusters (see Additional file 3: Figure S3). The dif-
ferential alteration probability is computed for each motif
and each cluster within the subtypes by first subtract-
ing the motif disruption and creation probability for each
TF and then taking the median of the alteration dif-
ference by cancer entity and TF family. In Fig. 7a, we
display the results for all TF families containing at least
10 motifs and each tumor subtype containing at least 50
samples.
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For the 10 TF families, we observed that some appear
to have a global excess of predicted disruption events
over all cancer subtypes (bHLH, Ets-related), while other
show the opositive effect (NK-related, SOX-related,...).
Beyond these general trends, we have also observed that
some cancer subtypes show a different trend. For exam-
ple, Esophageal Adenocarcinoma (ESAD) shows an excess
of bHLH-type motif creations, while melanoma (MELA)
is predicted to contain an excess of Tal-related disrup-
tions as opposed to all other cancer types. Looking even
more in detail, differences within the tumor subtypes were
obvious, between the samples belonging to the different
clusters defined previously through the UMAP analysis. A
prominent example was the alteration probabilities of Ets-
related motifs in Melanoma. Melanoma shows by far the
highest bias toward disruptions of Ets-motifs. However,
this only holds true for the melanoma samples belonging
to cluster 3 (brown in the figure). The other melanoma
samples (cluster 1 and 21) show a balance between cre-
ation and disruption. These 3 melanoma clusters differ in
their exposure profile (Fig. 7b). Indeed, cluster 3, which
displays the high Ets disruption bias, is highly exposed
to Signature 7, which is related to UV-induced muta-
tions, and displays indeed the second highest disruption
probability for Ets-motifs (Fig. 7c). The relation between
UV-induced signatures and Ets binding sites has been
described previously [17]. In this study, an increase of
mutations in binding sites for TFs was described, in
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particular for Ets binding sites and UV induced mutations.
Hence, it appears that our model is capable of captur-
ing this effect, despite the fact that we focus on motifs
occurrences and not actual binding sites.

Finally, we compared the predictions with the observed
alterations across the PCAWG dataset. To perform this
comparison, we first determined the observed motif cre-
ation and disruption probabilities of all TFs across all
samples within a given cohort using the motif alteration
calling pipeline described in the method section. This
pipeline predicts, for each SNV, whether it disrupts or cre-
ates potential binding motifs, and yields for each patient
and each motif a creation and disruption count for each
TF motif. We computed the log-ratio of the number
of observed creation/disruption events as determined by
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the pipeline, by summarizing all samples belonging to a
tumor subtype and UMAP cluster. The comparison of
this observed alteration bias with the alteration bias pre-
dicted by our model is displayed in Fig. 8. Overall, we
found a very good correlation between the model predic-
tion and the observation. The correlation between both
was significant for all TF families, with some differences.
For example, the correlation is very high for Ets-related
factors, for which in most cases, the direction of the bias
was concordant between model prediction and observed
alteration counts. In other cases however, despite a good
correlation, the direction of the alteration did not coincide
well. For example, for RXR-related factors, we observe a
global excess of motif disruptions, even for samples for
which our model predicts an excess of creations. The

bHLH - ZIP 11 Ets - related Forkhead box (FOX)
5] R=059, p=1.2e-06 ESAD R=0.52, p=3.2e-05 D 24 |R=054,p=9.8e-06 {
. 01 ESAD MELA
14
01 nl
B 2] 01 % e,
X PBCA ] .
. . . - . - 3 . . : . . . . . Cluster size
-6e-04 4e-04 2e-04 0e+00 2e-04 4e-04 -4e-04 2e-04 0e+00 2e-04 0.000 0.001 0.002 0.003 e 20
20 HOX related NK related Paired related HD e 40
- R=0.71, p=3e-10 BRCA & R=0.6,p=7.7e-07 BRCA, 104 |F=052,p=24e-05 BRCA o : gg
& 157
= 057 UMAP
2 109 cluster
5 0.01 1
= 05
2
2 05 ‘
© 0.01 . 3
o 4
5 . . 4.0 1 PBCA o
‘g’ 0.0000 0.0005 0.0010 0.0015 0.0020 0.0000 0.0005 0.0010 0.0015 0.0000 0.0005 0.0010 0.0015 ® 5
:o, POU domain RXR - related receptors (NR2) SOX related ® 8
@ R=057, p=2.8¢-06 grea® 951 R=026,p=0.047 R=0.35, p=0.0063 BRCA © ® 9
g 1.01 PBCA ; ® 10
g . .0 ESAD ® 11
2 0.51 [
© 0.51 N ° g
o . ot .
£ 00 0.0- o
8 L 7]
2 05 05 | 4 18
@ 4.0 1 . : . 17
2 r r r r - r r r v r - r r 18
o) 0.0000 0.0005 0.0010 0.0015 0.0020 8e05 -4e05 0e+00 4e05 0.0000 0.0005 0.0010  0.0015 19
TAL related 20
1.04R=0.44,p=0.00051 o ESAD 21
0.51
0.01
0.5 1
1.0 1
.5 1 r r r
2e-04 0e+00 2e-04 4e-04
Predicted alteration bias (create - disrupt)
Fig. 8 Comparison of the predicted differential alteration (creation minus disruption) (x-axis) with the observed log-ratio of motif creation counts
versus the disruption counts, obtained from the SNV in each tumor subtype. Correlation coefficient and p-values for the regression are indicated in
the maps. Color dots represent samples belonging to a tumor subtype and a UMAP cluster. Some interesting sample groups are indicated explicitely




Chan et al. BMC Medical Genomics (2019) 12:64

prediction made for melanoma samples in cluster 3 of a
strong excess of disruptions over creations is confirmed in
the observed alterations.

Discussion
The purpose of this work is to translate the patterns of
mutational signatures observed in cancer genomes into
patterns of alterations of motifs corresponding to tran-
scription factor binding sites. For this purpose, we have
established a theoretical framework to compute the prob-
abilities of alterations (creation or disruption) over a large
set of known motifs from the JASPAR database, by using
a k-mer based approach. We observed distinct patterns
of creation/disruption event, which are generally shared
by the motifs belonging to the same TF family. However,
despite this general agreement within a family, differences
can be observed as can be seen for example for the GATA-
family motifs highlighted in Fig. 3. This could possibly lead
to a shift in the number of occurring binding sites from
one transcription to a different one from the same family,
and lead to a partial rewiring of the regulatory network.
This model only takes into account the effect of the
mutational signatures and therefore determines an overall
expected background of motifs alterations, in the absence
of any further evolutionary mechanism like positive or
negative selection. Departures from these expected pat-
terns could be interpreted as the effect of additional
specific mechanisms impacting the landscape of binding
motifs. In this respect, the example of Ets motifs is inter-
esting. We find an overall tendency towards an excess of
disruption of motifs over creation of novel motifs across
many tumor types, especially in melanoma. This is also
confirmed by the overall observed patterns of motif breaks
due to single-nucleotide somatic variants. In melanoma,
this fits the described excess of mutations within Ets bind-
ing sites due to UV radiation [17]. In accordance with
this, we only observe this strong disruption bias for tumor
samples within a specific cluster strongly impacted by the
UV-light signature, but not in the other melanoma sam-
ples. This seems to indicate that, despite being restricted
to actual Ets-binding sites, which are way less abundant
that Ets motifs, the overall signature seems to capture
this effect. However, the most prominent non-coding reg-
ulatory mutation described so far, affecting Ets-binding
is actually a creation of novel binding sites within the
TERT promoter region [1, 2]. Hence, we have an overall
genome-wide excess of Ets-motif disruption, but a focal
appearance of novel Ets-binding sites. We have previ-
ously shown that this tendency towards creation of novel
Ets binding motifs is found in other gene promoters, like
BCL2 in lymphoma or NEAT1 in liver cancer [4]. These
are also driving changes in the expression of the corre-
sponding gene (especially TERT and BCL2), highlighting
the potential functional significance of these focal events.
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Very few non-coding driver mutations have been found
in the extensive PCAWG study [18]. Beyond the TERT
promoter mutation, a number of recurring promoter
mutations have been found, however it is unclear whether
they might have a functional impact given the lack of asso-
ciation with gene expression change (e.g. PAX5). We also
expect that the vast majority of the alteration patterns
that we describe here will have a low if any functional
impact individually. These would be classically defined as
passenger mutations, which are usually discarded in can-
cer studies. However, our recent study has highlighted
that the mutational load of so-called passenger mutations
might contribute globally to a functional impact and con-
tribute to the cancer phenotype [4]. Hence, describing the
global pattern of motif alterations induced by mutational
signatures sheds a new light onto the potential impact of
mutational signature in shaping the global mutational load
of somatic mutations in cancer genomes.

Conclusion

In this study, we investigated the theoretical impact of
cancer mutational signatures on regulatory elements of
the non-coding genome and provided an outline of a
Bayesian framework for motif alteration analysis using
mutational signatures. One of the key finding in this study
is the correlation effect between motif creation and motif
disruption. The correlation between the motif alteration
probability was found to be strongly positively associated
to the motif entropy. Further, previously described effects
such as the impact of specific signatures on families of
transcription factors can be reproduced by our theoretical
model. An intriguing finding was that the described non-
coding driver leading to MYB creation in T-ALL could
be related to a global increased creation probability in
APOBEC driven cancer types. Finally, the motif alter-
ation signatures were used to infer the alteration events
of each PCAWG cohort using the corresponding signa-
ture exposure. We confirmed that Ets-motifs in melanoma
display a strong excess of motif disruptions over novel
motif creations, especially for the samples exposed to the
UV-induced signature. This is predicted by our model and val-
idated from the actual SNV disruption counts. Therefore,
this motif alteration signature can serve as a background
model for point mutation analysis for large datasets.
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