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Abstract
Adult postembryonic stem cells reside in tissues throughout the body of most
vertebrates. Little is known, however, about the growth mode and regulation of
single stem and progenitor cells in vivo. The continuous life-long growth and the
accompanying presence of stem cells in all adult organs renders medaka a perfect
model organism to address these unknowns. In particular, medaka’s retinal stem
cells are an ideal model for stem cell biology. Their position in surface proximity,
their exclusive contribution to one of both retinal layers (neural retina or retinal
pigmented epithelium) and their multipotency render retinal stem cells a great
experimental system. Furthermore, medaka retinal stem cells can be investigated
by in vivo assays in the context of the whole organism. In combination with the
Cre/loxP system it is possible to mark and/or alter the signaling state of single cells.
Subsequently, these cells and their progeny can be followed and clonally examined.
Taken together, single cell spatial resolution and long-term observation of medaka
retinal stem cells is possible.

This thesis focused on the in vivo behavior and Wnt signaling regulation of
retinal stem and progenitor cells by in vivo imaging and clonal analysis.

To address this aim, three experimental lines were followed. First, in vivo
imaging of medaka was enhanced to perform in vivo investigation of retinal stem
cells. I optimized the choice of fluorescent proteins, anesthesia and presence of
interfering pigmentation. Second, long-term in vivo microscopy of retinal stem and
progenitor cells was performed, followed by tracking and track analysis. Finally, the
Wnt signaling state of single retinal stem and progenitor cells was altered and the
change in proliferative capacity and differentiation potential was investigated.

In conclusion, using the established in vivo imaging toolset, I unraveled fun-
damental mechanisms of the regulation of in vivo stem cells by Wnt, while being
embedded in their organismal context. I showed that high Wnt stimulation in all
cell types of the retina led to a high incidence of apoptosis. In contrast, low Wnt
stimulation in retinal stem and progenitor cells restricts their proliferative capacity
without altering their differentiation potential.
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Zusammenfassung

Die meisten Vertebraten tragen adulte, postembryonale Stammzellen in sich.
Allerdings ist über den Wachstumsmodus und die Regulation einzelner Stamm-
und Vorläuferzellen in vivo wenig bekannt. Medaka ist ein ausgezeichneter Modell-
organismus, um diese Unbekannten zu adressieren. Durch sein ununterbrochenes
und lebenslanges Wachstum befinden sich Stammzellen in allen adulten Organen.
Dies macht Medaka zum perfekten Modellorganismus, um den Wachstumsmodus
und die Regulation zu adressieren. Insbesondere sind die retinalen Stammzellen zu
diesem Forschungszweck ein ideales Modell. Ihre Position in Oberflächennähe, ihr
exklusiver Beitrag zu einer der beiden retinalen Schichten (neuronale Retina oder
retinales pigmentiertes Epithel) und ihre Multipotenz machen retinale Stammzellen
zu einem ausgezeichneten System. Weiterhin können retinale Stammzellen in Medaka
in vivo im ganzorganismischen Kontext untersucht werden. In Kombination mit
dem Cre/loxP-System ist es möglich einzelne Zellen und ihre Nachkommen zu
markieren und/oder ihren Signalstatus zu ändern. Anschließend können diese Zellen
und ihre Nachkommen verfolgt und klonal untersucht werden. Zusammengefasst ist
hiermit die räumliche Einzelzellauflösung und Langzeitbeobachtung von retinalen
Stammzellen in Medaka möglich.

Schwerpunkt dieser Arbeit ist das in vivo Verhalten und die Wnt Signalweg-
regulation der retinalen Stamm- und Vorläuferzellen. Dies wird untersucht mithilfe
von in vivo Mikroskopie und klonaler Analyse.

Um dieses Ziel zu erreichen wurden drei experimentelle Linien verfolgt. Er-
stens verbesserte ich die in vivo Mikroskopie von Medaka, um eine in vivo
Untersuchung von retinalen Stammzellen durchführen zu können. Hierfür optimierte
ich die Wahl des Fluoreszenzproteins, die Anästhesie und die vorhandene interferie-
rende Pigmentierung. Zweitens führte ich in vivo Langzeitmikroskopie von retinalen
Stamm- und Vorläuferzellen durch, gefolgt von Zellverfolgung und Verfolgungsanalyse.
Schlussendlich veränderte ich den Wnt Signalstatus einzelner retinaler Stamm- und
Vorläuferzellen. Darrauffolgend untersuchte ich die resultierenden Änderungen der
Proliferationskapazität und des Differenzierungspotenzials.

Abschließend erforschte ich fundamentale Mechanismen der Regulation von
in vivo Stammzellen durch den Wnt Signalweg. Durch die Analyse wurde gezeigt,
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dass niedrige Wnt Stimulation in retinalen Stamm- und Vorläuferzellen ihre
Proliferationskapazität einschränkt. Weiterhin konnte gezeigt werden, dass hohe Wnt
Stimulation in allen Zelltypen der Retina zu einer hohen Inzidenz von Apoptose
führt.
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"A man provided with
paper, pencil, and rubber,
and subject to strict discipline
is in effect a universal machine."

Alan Turing

1
Introduction

Medaka as a vertebrate model organism for

developmental stem cell biology

The Japanese ricefish medaka (Oryzias latipes) is a teleost fish and an established
model organism for developmental genetics and stem cell (SC) biology. Medaka
was the first vertebrate in which mendelian segregation of alleles has been
demonstrated [Toyama, 1916] and the first vertebrate to reproduce in space [Ijiri,
2003]. More importantly, its high tolerance to inbreeding offers the possibility
to perform experiments in a characterized genetic background [Wittbrodt et al.,
2002]. Furthermore, medaka offers a large experimental toolset, including the
Cre/LoxP-system [Centanin et al., 2014], PhiC-system [Kirchmaier et al., 2013a],
meganuclease transgenesis [Grabher et al., 2003], the CRISPR/Cas9-system
[Ansai and Kinoshita, 2014,Stemmer et al., 2015] and the newly established
inbred lines as a genomics resource [Spivakov et al., 2014]. Additionally, its
life-long continuous growth is mediated by SCs contained in all adult tissues,
rendering it an excellent model to investigate adult, homeostatic SCs in vivo
[Seleit et al., 2017,Aghaallaei et al., 2016].
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In vivo imaging of medaka

Medaka is easily accessible for in vivo imaging during early development.
This is due to the transparent chorion and embryo. In the later stages of
development, however, the embryo gets heavily pigmented. Previous studies
circumvented these challenges by focusing on superficial features such as the
lateral line [Seleit et al., 2017] or the optic vesicles [Rembold et al., 2006b].
In order to investigate deeper, more complex tissues harboring SCs the posed
limitations for in vivo imaging were non-optimal fluorescent proteins and
anesthesia. Furthermore, the pigmentation was impeding with light microscopy
due to the dense mesh of reflective, absorptive and autofluorescent pigment
cells across the body. These cells are especially prevalent at the head and even
more so surrounding the eyes. In order to perform more extended imaging of
deeper and more dense tissues under continuous anesthesia the in vivo approach
needed to be enhanced. Challenges to overcome encompassed (1) choosing the
right fluorescent protein, (2) efficacy of anesthesia and (3) pigmentation, in
particular the heavy pigmentation of the eyes.

So far, the choice of fluorescent proteins (FPs) has not been systemati-
cally reviewed in any vertebrate. Rather, decisions have been based on the
design of previous constructs or coding sequences (CDSs) present in the stock
of the laboratory. To improve this situation, I performed a systematic assay,
aimed at the identification of FPs with the optimal properties for in vivo
imaging in medaka.

The standard anesthetic for teleost fish is tricaine (or: MS-222), which
is approved in aquaculture for food production and research. Although prior
studies have shown insufficient long-term anesthesia by tricaine in teleosts and
adverse cardiac developmental effects [Culver and Dickinson, 2010], it is still
widely used. Insufficient long-term anesthesia includes reactions to touch and
light, which is especially problematic in light microscopy. In order to overcome
the aforementioned disadvantages, I tested two alternative anesthetics in
comparison to tricaine: etomidate and α-Bungarotoxin, the latter having been
shown to be superior to tricaine in Danio rerio (zebrafish) [Swinburne et al.,
2015].

While pigmentation was an issue for fluorescene microscopy in general,
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Introduction

pigmentation was especially an issue for light-sheet fluorescence mi-
croscopy (LSFM). This was due to the perpendicular arrangement of the
illumination axis to the detection axis [Huisken et al., 2004,Keller et al., 2010]
which increases the probability of light being influenced by pigments. The light
absorbing, light reflecting and autofluorescent pigments [Fujii, 2000] are very
likely to interfere with LSFM. A previously established method to abolish
pigmentation was to grow teleost embryos in the toxic and teratogenic drug
phenylthiourea (PTU) [Karlsson et al., 2001]. Moreover, PTU is also only
effective in preventing the formation of melanin, the light absorbing pigment.
The formation of autofluorescent and reflective pigment in the leucophores
and iridophores, respectively, is not affected by PTU treatment. Also the
carotenoid deposition in xanthophores is not affected by PTU treatment.
Furthermore, already generated melanin is not removed by PTU, thus raising
the need for an early developmental treatment, whenever the experiment relies
on non-pigmented fish.

Overcoming the issue of pigmentation in medaka has so far been ad-
dressed either by mapping mutants with loss of a single type of pigment
cell [Fukamachi et al., 2004,Kimura et al., 2014,Kimura et al., 2017] or by
random mutation lines. These mutant lines are very delicate to maintain and
also rely on mutations in unkown loci with a large need for rescreening each
generation [Ohshima et al., 2013,Wakamatsu et al., 2001]. To resolve these
pigmentation issues, our current understanding of the genetics of pigmentation
was used in union with the CRISPR/Cas-system.

Light-sheet fluorescence microscopy

Fluorescence microscopy with point-scanning microscopes has long been the
gold standard for microscopy due to its high spatial resolution. However, its
acquisition speed and phototoxicity limited extended in vivo imaging in animals.
In vivo imaging was dramatically improved with the advent of LSFM, which only
illuminates each given point of a sample once during a single acquisition [Huisken
et al., 2004,Keller et al., 2008].

3



The concept has been continuously improved with the addition of multiple
illumination and detection paths and confocal detection [Krzic et al., 2012,
de Medeiros et al., 2015,Chhetri et al., 2015]. The combination of several of
these innovations resulted in the multi-view single plane illumination microscope
(MuVi-SPIM). This microscope was utilized to perform in vivo imaging with
confocal detection, relatively high spatial resolution (here: 0.263 to 0.406 µm/px,
EMBL prototype as described in [Caroti et al., 2018]) and high temporal
resolution (here: ≈ 15 to 20min over 3 to 4 d). Furthermore, LSFM allows
to adapt the geometry of the microscope to the properties of the sample, if
needed [Höckendorf et al., 2012,Kromm et al., 2016]. One disadvantage of
LSFM, however, is that the areal fluorescence detection is only adapted by
filters. This renders the detection of the LSFM less flexible than the detection
of a point-scanning microscope.

Data visualization and single cell tracking

Due to the high spatiotemporal resolution, resulting in a large amount of data,
the visualization and screening of LSFM data is challenging. Data set sizes
range from a few hundred giga bytes (GBs) to tens of tera bytes (TBs). The
current state of Random-Access Memory (RAM) size is insufficient to load the
data completely in order to interact with it in real-time. As a consequence, the
BigDataViewer plugin for Fiji has been developed, which is able to visualize
LSFM data on-the-fly by accessing only the presently required data, instead of
loading the complete data set into the RAM [Schindelin et al., 2012,Pietzsch
et al., 2015]. With this tool, the data is initially screened and data quality for
subsequent analysis is checked.

This data was used for various analyses, one of them being single cell
tracking. Single cell tracking is performed either automatically through
automatic tracking algorithms [Amat et al., 2014], or manually by the aid of
MaMuT, a plugin for manual and semi-automated cell tracking, based on the
BigDataViewer visualization [Wolff et al., 2018]. The latter has been employed
within this thesis.
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Introduction

The retina of medaka is an excellent stem cell model

Development of the retina

Retinal development in medaka begins with the establishment of the eye field,
determined by patterning of the neural plate in the presumptive anterior
neuroectoderm [Chow and Lang, 2001]. In the eye anlage Wnt is suppressed
and subsequently the anlage is split by expression of transforming growth factor
β (TGF-β), fibroblast growth factor (FGF) and sonic hedgehog (Shh) [Sinn
and Wittbrodt, 2013]. The optic vesicles evaginate [Rembold et al., 2006b]
and form the optic cups in a gastrulation-like movement [Heermann et al., 2015].

The retinal cells then differentiate and create the stereotypical struc-
ture of the vertebrate retina consisting of neural retina (NR) and retinal
pigmented epithelium (RPE) (Fig. 1.1A). The NR is comprised of seven
cell types: rods, cones (the two types of photoreceptors (PRs)), amacrine
cells (ACs), horizontal cells (HCs), bipolar cells (BCs), retinal ganglion
cells (RGCs) and Müller glia (MG) [Livesey and Cepko, 2001] (Fig. 1.1B). The
NR is responsible for light detection, intermediate computation and relay of
stimuli to the optic tectum in the brain. The RPE surrounds the NR and is in
close contact with the PRs, providing stability and nutrients [Martinez-Morales
et al., 2004]. Furthermore, the RPE is heavily pigmented in order to
prevent light incidence from any other angle than the lens, establishing
the directionality of visual stimuli. The described cell type composition,
layering and spatiotemporal organization of the retina is conserved among
vertebrates [Fischer et al., 2014,Livesey and Cepko, 2001,Perron and Harris,
2000].
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Figure 1.1: The retina of medaka is an ideal model to study stem cells in vivo
using the GaudíRSG system.
A The retina of medaka consists of neural retina (NR) and retinal pigment epithelium (RPE).
Expression domains of ccl25b (retinal stem cells), rx2 (retinal stem cells) and tlx (retinal
stem and progenitor cells) are located within the ciliary marginal zone (CMZ). Dashed box
labeled B indicates a possible position for the scheme in panel B. B The NR of all vertebrates
consists of seven cell types, that are arranged stereotypically. The retinal stem cells of
medaka are multipotent and each stem cell gives rise to all seven cell types of the retina.
Modified from [Centanin et al., 2014], reprinted with permission. C The GaudíRSG line is
an established Cre/loxP-based tool to investigate stem cells and their progeny. It consists
of a ubiquitously expressed mCherry, which is flanked by loxP sites. Upon Cre-mediated
recombination of the loxP sites the mCherry is excised and H2B-eGFP is expressed. This is
an irreversible genetically stable switch and positively marks the recombined cell and all its
progeny. This mark allows the investigation of clones during development or in post hoc
analyses. Modified from [Möller, 2017]. ONL: outer nuclear layer, INL: inner nuclear layers,
GCL: ganglion cell layer.

6



Introduction

Retinal stem and progenitor cells reside within the ciliary marginal
zone in the postembryonic retina

Even though the structure of the vertebrate eye is conserved through evolution,
there is a striking difference when comparing the retina of either amphibians
or teleosts to the mammalian retina. While the mammalian retina does
not grow in size in the adult animal, the amphibian and teleost retinae
grow life-long along with the entire organism. This growth is mediated
by retinal stem cells (RSCs), which are residing in a ring-shaped domain
surrounding the lens, the ciliary marginal zone (CMZ). These RSCs are
defined by the expression of chemokine (C-C motif) ligand 25b (ccl25b) [Lust,
Becker and Wittbrodt, unpublished], retinal homeobox transcription factor
2 (rx2 ) [Sinn and Wittbrodt, 2013], tailless (tlx) and sex determining region
Y-box 2 (sox2 ) [Reinhardt et al., 2015] (Fig. 1.1A).

RSCs contribute to the growth of NR and RPE by the addition of
new cells from the periphery of the retina, located at the lateral side of the
fish [Centanin et al., 2011,Centanin et al., 2014]. These RSCs are multipotent
and exclusively contribute to NR or RPE. This suggests that each RSC either
ultimately forms all seven cell types of the NR or contributes to the single cell
type of the RPE [Centanin et al., 2011].

Furthermore, the RSCs are mainly dividing in an asymmetric growth
mode, meaning RSCs self-renew and give rise to a retinal progenitor
cell (RPC) [Centanin et al., 2014]. The NR-specific RSCs in the periphery
of the retina (lateral side of the fish) give rise to early retinal progenitor
cells (eRPCs) positive for tlx , which in turn give rise to late retinal progenitor
cells (lRPCs), a subset of which is positive for atonal BHLH transcription
factor 7 (atoh7 ) [Lust et al., 2016], and finally give rise to the differentiated
cells in the center of the retina (medial) [Amato et al., 2004,Johns, 1977,Reh
and Levine, 1998, Centanin et al., 2014]. RSCs in Xenopus laevis have
been shown to be influenced by β-catenin dependent Wnt signaling [Borday
et al., 2012]. Additionally, RPE cells directly adjacent to the RSCs express
Wnt ligands in medaka and several components of the β-catenin dependent
Wnt pathway are also active in RSCs and eRPCs [Möller, 2017]. This is in line
with the observation that in mammals Wnt signaling plays a large role in SC
maintenance of tissues containing adult SCs [Logan and Nusse, 2004], such as
the intestine, hairs, blood and the brain [Voog and Jones, 2010].
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GaudíRSG is a Cre/loxP-based system to investigate cell lineages

To date, our obtained understanding on RSCs originated from experiments
using a Cre/loxP-based approach named Gaudí red-switch-green (GaudíRSG).
The GaudíRSG construct consists of a ubiquitous promoter, followed by
an monomeric cherry fluorescent protein (mCherry), flanked by loxP sites,
which in turn is followed by an enhanced green fluorescent protein coupled
to histone2b (H2B-eGFP) (Fig. 1.1C). This construct has been used to
establish a transgenic line by random mutagenesis, which is ubiquitously
expressing mCherry prior to recombination. Upon spatiotemporally controlled
Cre-recombinase expression, the loxP sites are detected and recombined by
the Cre-recombinase. This recombination eliminates the mCherry and leads
to a stable genetic switch within this cell, which will be propagated to all its
descendants [Centanin et al., 2014] (Fig. 1.1C). The recombined cell and all its
progeny will thereafter only express H2B-eGFP. Together with a Cre driver
line, this toolset allows to investigate SCs and their progeny in vivo, either
post hoc by fixation and staining or by directly observing the recombined cells
in vivo. So far, the investigation of SC properties has been limited to post hoc
analysis.

Wnt regulation of retinal stem and progenitor

cells in medaka

β-catenin dependent Wnt pathway

The β-catenin dependent Wnt pathway is intensively studied due to its involve-
ment in development and homeostasis of organisms across evolution. A general
summary is explained in the following and depicted in Fig. 1.2A. In general, the
absence of Wnt triggers Axin1 and glycogen synthase kinase 3 (GSK3) among
other proteins to form a complex that is sequestering β-catenin. Within this
so-called destruction complex GSK3 is phosphorylating β-catenin, marking
it for degradation through the proteasome and therefore depleting the cell of
β-catenin. Dickkopf (Dkk) is an extracellular, competitive repressor of the
Wnt ligand and therefore repressor of β-catenin dependent Wnt signaling. In
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particular it inhibits the complex formation of the Wnt coreceptors Frizzled (Fz)
and LDL Receptor Related Protein 6 (LRP6) [MacDonald et al., 2009],
interfering with the interaction of Wnt and its receptors.

If Wnt is present, it binds to its receptors Fz and LRP6 and the de-
struction complex is destabilized via GSK3 and LRP6 interaction. This
leads to free β-catenin, which translocates to the nucleus and together with
transcription factor 3 (TCF3) and Lymphoid Enhancer Binding Factor (LEF)
acts as a transcriptional regulator on its target genes. A subset of these target
genes includes β-catenin dependent Wnt signaling components themselves,
such as Axin2 and TCF3. These components are also acting autoinhibitory,
since Axin2 is part of the destruction complex and TCF3 is mainly involved
in β-catenin dependent negative transcriptional regulation [MacDonald et al.,
2009] (Fig. 1.2A).

Due to the variable function of components, there are multiple angles
to alter β-catenin dependent Wnt signaling by exterior stimuli. A commonly
altered component is GSK3, whereof altered versions such as dominant-negative
GSK3 (DN-GSK3) are available as tools. Due to the role of GSK3 in the
stability of the destruction complex, the overexpression of DN-GSK3, which is
competing for binding with wild-type (wt) GSK3 but catalytically inactive,
leads to β-catenin dependent Wnt pathway stimulation [Yost et al., 1996].

Dominant-negative GSK3 was utilized to stimulate the Wnt
pathway

To take advantage of DN-GSK3 as an established tool for Wnt stimulation, it
has been introduced into the Cre/loxP-based GaudíRSG system. Therefore, the
following Cre lines have been used with both the GaudíRSG and the established
red-switch-eGFP-DN-GSK3 (RSDNGSK3) lines [Möller, 2017]: 70 kilodalton
heat shock protein (hsp70 ):Cre (Fig. 1.2C), ccl25b:Cre recombinase coupled to
estrogen receptor 2 (CreERT2 ) [Lust, Becker and Wittbrodt, unpublished] and
tlx :CreERT2 [Reinhardt and Tavhelidse et al., unpublished] (Fig. 1.2B-D).
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Figure 1.2: Stimulation of the β-catenin dependent Wnt pathway
A An overview of the β-catenin dependent Wnt pathway. Wnt binds to its receptors
Frizzled and LRP6, which leads to the dissolution of the destruction complex formed by
Axin1, GSK3 and β-catenin. β-catenin then translocates to the nucleus, where it exerts its
function of transcriptional regulation in complex with TCF and LEF on its target genes,
e.g. TCF and Axin2. Axin2 serves as a negative regulator of the β-catenin dependent
Wnt pathway and increases the formation of the destruction complex. Extracellular Dkk
inhibits Wnt binding and leads to inhibition of β-catenin dependent Wnt signaling. B-B′

The CreERT2 -recombinase is utilized to perform a spatiotemporally controlled irreversible
genetically stable switch. Spatial expression of CreERT2 is achieved by coupling to a
promoter, whereas temporal control is achieved by the addition of tamoxifen, which leads to
translocation to the nucleus, where it recombines same lox-site couples. C Wnt is stimulated
by DN-GSK3 inserted into the GaudíRSG-construct. With this, Wnt is stimulated in the
recombined cell and all its progeny, allowing to investigate the effect of β-catenin dependent
Wnt signaling on single retinal stem and/or progenitor cells. Modified from [Möller, 2017].
D The expression domains of the promoters used for the Cre-recombinase. Recombination
with hsp70 :Cre will recombine cells stochastically and non-localized, whereas recombination
with ccl25b:CreERT2 and rx2 :CreERT2 will only recombine stem cells. Recombination
with tlx:CreERT2 will recombine stem and early progenitor cells. Recombination with
atoh7 :CreERT2 will recombine a subset of late progenitor cells. Anatomical rosettes indicate
the orientation of the schemes in D. A: anterior, P: posterior, D: dorsal, V: ventral, M:
medial (central in respect to the retina), L: lateral (peripheral in respect to the retina).
Modified from [Möller, 2017].
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Recombination with the Cre-recombinase constructs was spatiotemporally
confined depending on the used construct. While induction of hsp70:Cre
leads to a temporally but not spatial confined recombination, the CreERT2
constructs are confined spatiotemporally. The spatial control is achieved
through coupling the CDS of CreERT2 to a tissue-specific promoter, while
the temporal control is achieved by tamoxifen (TMX) dependent activation of
translocation (Fig. 1.2B-B′). Therefore, ccl25b:CreERT2 recombines only the
most peripheral RSCs [Lust, Becker and Wittbrodt, unpublished] (Fig. 1.2D),
whereas tlx:CreERT2 recombines more central RSCs and eRPCs, based on
the expression domains of the promoters [Reinhardt and Tavhelidse et al.,
unpublished] (Fig. 1.2D). Both rely on stochastic activation of Cre in order to
label only a subset of cells positive for the chosen markers. This allows for
marker expression domain-specific biological deconvolution enabling to follow
single cells of a defined origin and their progeny. In contrast, a global label will
not allow stem or progenitor cell-specific lineage reconstruction.

The RSDNGSK3 construct was established by substituting H2B-eGFP in the
GaudíRSG construct with eGFP coupled to DN-GSK3 (eGFP-DN-GSK3)
(Fig. 1.2C) [Möller, 2017]. Using this construct, lines have been established
and characterized for successful recombination and following Wnt stimula-
tion [Möller, 2017]. With this construct, recombined cells are distinguished
from negative cells by enhanced green fluorescent protein (eGFP) fluorescence
in contrast to mCherry expression of non-recombined cells. Furthermore,
recombination does not only alter the signaling state of a single cell, but also
the state of its entire progeny.

Taken together, this construct allows to investigate the effect of Wnt
stimulation on single cells and their possible progeny in their organismic
context. This circumvents systemic effects, as a result of drug treatment or
the ubiquitous overexpression of Wnt effectors. A similar construct has also
been used recently using the notch intracellular domain (NICD) and has been
shown to be functional and to induce a change in differentiation potential of
RPCs [Perez-Saturnino et al., 2018].
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The spatiotemporal properties of the retina enable
investigation of differentiation potential and proliferative
capacity

The retina of medaka grows stereotypically and the position of a cell is coupled
to the time of its creation. These properties render it an excellent model to
investigate the differentiation potential and proliferative capacity of RSCs and
RPCs. Due to continuous growth, cells are continuously added from the CMZ
to the retina. Once the cells are differentiated, the spatial arrangement of these
cells is fixed. This establishes a direct correlation between the spatial coordinate
of a cell and its temporal coordinate of differentiation. This simplifies post hoc
analysis of clones. Cells are thereby linked to a specific clone and its relative
time of birth is determined. Finally, the cell type also becomes apparent
depending on the position in the retina. With this in mind, the GaudíRSG
system was used to follow RSCs and RPCs over time, to analyze clones post
hoc and to determine relative parameters of these cells by clone morphology.
One property of clone morphology is the connection to the CMZ indicating a
clone maintained by a RSC or RPC. If the clone is disconnected from the CMZ
the founding cell has terminally differentiated and the clone is therefore not
maintained. Additional parameters extractable from clones are e.g. the cell type
composition of the clones, the width and length. These properties allow to draw
conclusions about the differentiation potential (cell type composition) and the
proliferative capacity (CMZ connection, width, length) of the clone founding cell.

Ultimately, changes introduced through the RSDNGSK3 system were
monitored using the aforementioned parameters in comparison with the
GaudíRSG system. Hence, the stereotypical growth mode of the retina was
used as a direct readout in comparison studies.

Maintained clones of single cells stimulated by Wnt are
restricted in differentiation potential

Stochastic recombination of single cells in GaudíRSG and RSDNGSK3_high
by hsp70:Cre resulted in a variety of clones [Möller, 2017] (Fig. 1.3A-A′).
These clones include maintained, terminated and late starting clones. The
maintained clones in GaudíRSG were completely multipotent (Fig. 1.3B). The
maintained clones of RSDNGSK3_high, however, were fate-restricted with
a high probability and therefore in general had a decreased differentiation
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potential. While 11% of clones contributed to cells in all layers, 51% of clones
contributed only to the outer nuclear layer (ONL) and inner nuclear layer (INL).
38% of clones even only contributed to the ONL [Möller, 2017] (Fig. 1.3B′-B′′′).
This decreased differentiation potential indicated, that a majority of maintained
clones did not stem from RSCs or eRPCs, which both have been shown to be
multipotent and give rise to all cell types of the retina [Möller, 2017]. The
clone maintaining cells were most likely already committed RPCs, which were
immortalized by Wnt stimulation.
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Figure 1.3: Stochastic recombination of single cells results in maintained clones.
A-A′ GaudíLxBBW and RSDNGSK3_ were recombined by hsp70:Cre and chased for 1.5 - 2.5
months. Both were stained for GFP, therefore the readout of GaudíLxBBW is very similar
to the one of GaudíRSG. Shown is the central retina, with the CMZ facing away from
the reader. Strikingly, clones are maintained long-term in both retinae. Examples for
maintained clones (filled arrowhead), terminated clones (hollow arrowhead) and late starting
clones (asterisk) are indicated. Scale bar 200µm. B-B′′′ Maintained GaudíLxBBW clones
(n = 7) are multipotent, where as maintained RSDNGSK3 clones (n = 37) have a limited
differentiation potential. Only 11% of clones consist of cells in all layers, whereas 51% of
clones consist of cells in the ONL and INL. 38% of clones even only consist of cells in the
ONL. Scale bar 20µm. All panels are modified from [Möller, 2017]. Anatomical rosettes
indicate the orientation of the retinae. A: anterior, P: posterior, D: dorsal, V: ventral, M:
medial (central in respect to the retina), L: lateral (peripheral in respect to the retina).
ONL: outer nuclear layer, INL: inner nuclear layer, GCL: ganglion cell layer.

The major effects of high Wnt stimulation was clone loss
and a change in differentiation potential

Previous experiments have been conducted with an RSDNGSK3 line, hereafter
termed RSDNGSK3_high [Möller, 2017]. Three CreERT2 -constructs were
used for tissue-specific recombination. RSCs were recombined by rx2:CreERT2 ,
RSCs and eRPCs were recombined by tlx:CreERT2 [Reinhardt and Tavhelidse
et al., unpublished] and a subset of lRPCs were recombined by atoh7:CreERT2
(Fig. 1.2D). The previous results are illustrated in Fig. 1.4. In the following the

13



results of the preceding work [Möller, 2017] will be interpreted more specifically
in order to compare the experiments conducted within this work with the
preceding work and elaborate on open questions.

Wnt stimulation in retinal stem cells leads to loss of clones

Recombination of wt RSCs by rx2:CreERT2 in the GaudíRSG line leads to
the formation of clones. The clones are continuous from the CMZ to the spatial
coordinate relative to the original position of the CMZ at the time point (tp) of
recombination. These clones consist of all cell types of the retina (Fig. 1.4A,B)
and are termed arched continuous stripe (ArCoS) [Centanin et al., 2014]. The
position of the clone-founding cells and their potency confirms that the initially
recombined cells are indeed SCs.

Upon recombination of RSDNGSK3_high retinae by rx2:CreERT2 , however,
no clones were detected in 38 recombined retinae (Fig. 1.4A′,B′) [Möller, 2017].
The reason behind this clone loss has so far not been addressed and will be
elucidated within this work. It has been shown in the preceding work, however,
that the construct is expressed in all retinal cell types and the construct
recombines as expected [Möller, 2017].

Wnt stimulation in retinal stem and early progenitor cells leads to
partial clone loss and multipotent maintained clones

Recombination of RSCs and eRPCs in GaudíRSG fish by tlx:CreERT2 leads
to the presence of a mixture of clones consisting of ArCoS and footprints,
stemming from the RSCs and eRPCs, respectively [Reinhardt and Tavhelidse
et al., unpublished] (Fig. 1.4C). These footprints are terminating clones,
which are therefore connecting the spatial coordinate of the CMZ at the
tp of recombination and the spatial coordinate of the CMZ at the tp of
clone termination. Both, the ArCoS and the footprints are created by
multipotent cells, i.e. each clone consists of all cell types of the NR (Fig. 1.4D).
This indicates that eRPCs are not fate-restricted and therefore still multipotent.

However, when recombining RSDNGSK3_high retinae by tlx:CreERT2 ,
two observations were made. First, similar to the recombination with
rx2:CreERT2 , a major clone loss was observed (8 clones in 6 retinae as opposed
to 38 clones in 5 retinae in GaudíRSG). Second, the remaining clones were still
multipotent, although less wide than the ones observed in wt (Fig. 1.4C′,D′).
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Concluding, the most prominent effect of Wnt stimulation in RSCs and eRPCs
is the loss of clones. This does not allow to investigate the properties of the
effect of Wnt stimulation on single cells and will be elaborated on within this
thesis.
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Figure 1.4: Previous experiments with DN-GSK3 reveal clone loss in RSCs
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lRPCs.
Retinae were recombined by indicated CreERT2 and chased for 1.5 - 2 months. A-A′

Recombination by rx2 :CreERT2 (RSCs) led to clone formation in GaudíRSG, whereas
no clones were formed in RSDNGSK3_high. Scale bar 200µm. B-B′ Close-up of A-A′

showing that all cell types are present in the GaudíRSG clones, whereas no clones are present
subsequently to recombination of RSDNGSK3_high. Scale bar 20µm. C-C′ Recombination
by tlx:CreERT2 (RSCs and eRPCs) led to clone formation in GaudíRSG, whereas fewer
and less wide clones were formed in RSDNGSK3_high. Scale bar 200µm. D-D′ Close-up
of recombined retinae, with cut-off CMZ showed all cell types are present in the GaudíRSG
and RSDNGSK3 clones. Scale bar 20µm. E-E′ Recombination by atoh7 :CreERT2 (lRPCs)
led to clone formation in GaudíRSG and RSDNGSK3_high. The number of clones also
decreased upon stimulation of β-catenin dependent Wnt signaling. Scale bar 200µm. White
arrowhead marks exemplary positive cells. F-F′ Close-up of recombined retinae, with cut-off
CMZ showed a change in clone composition upon the stimulation of β-catenin dependent
Wnt signaling, indicating a change in differentiation potential of recombined cells. Scale
bar 20µm. All panels are modified from [Möller, 2017]. Maintained clones are marked by
arrowheads for rx2 :CreERT2 and tlx :CreERT2. Anatomical rosettes indicate the orientation
of the retinae. A: anterior, P: posterior, D: dorsal, V: ventral, M: medial (central in respect
to the retina), L: lateral (peripheral in respect to the retina).
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Wnt stimulation in late retinal progenitor cells leads to a loss of
clones and a change in differentiation potential

Recombination of a subset of lRPCs by atoh7:CreERT2 in GaudíRSG retinae
resulted in small clones, mainly comprised of RGCs and few PRs [Möller, 2017]
(Fig. 1.4E,F). This hinted at an early termination of atoh7 -positive lRPCs and
inherent fate restriction. Therefore, wt lRPCs are already restricted in prolif-
erative capacity and differentiation potential in comparison to RSCs and eRPCs.

When RSDNGSK3_high fish were recombined by atoh7:CreERT2 , again
fewer clones were formed in comparison to wt clones (GaudíRSG: 6 out of 6
retinae show clones, RSDNGSK3_high: 3 out of 6 retinae show clones) [Möller,
2017]. Furthermore, the differentiation potential of lRPCs was changed
upon Wnt stimulation. The remaining clones showed a dramatically changed
distribution of cell types, with no RGCs, but more PRs and presumable
ACs [Möller, 2017] (Fig. 1.4E′,F′). A previous study showed that the activation
of Notch in atoh7 -positive cells also leads to a change in differentiation
potential [Perez-Saturnino et al., 2018]. The resulting cell types, however, were
MG, BCs and ACs located in the INL. Therefore it is very likely, that the
effect of Wnt stimulation in atoh7 -positive cells is not mediated through the
Notch pathway.
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2
Aims and Approaches

The aim of this thesis was to investigate the regulation of retinal stem and
progenitor cells by β-catenin dependent Wnt signaling in vivo. For that I
addressed the following goals with the aid of the listed approaches:

1. Enhancing in vivo imaging by light-sheet fluorescence microscopy in
medaka.

• Optimizing fluorescent protein selection
• Improving efficacy of anesthesia
• Abolishing imaging-interfering pigmentation

2. In vivo imaging of retinal stem and progenitor cells and extraction of
developmental parameters.

• Utilizing the established in vivo imaging toolset to image GaudíRSG
retinae in vivo

• Tracking single cells in the CMZ over extended time periods
• Analyzing the behavior and division mode of cells within the CMZ

3. Unraveling the effect of Wnt stimulation on retinal stem and progenitor
cells.

• Characterizing expression level differences between two independent
insertion lines

• Leveraging expression level differences to investigate dosage effects
• Extracting and analyzing parameters from lineage tracings
• In vivo imaging and TUNEL assay to unravel clone loss subsequent

to recombination
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3
Results

Establishment of in vivo imaging in medaka

In principle in vivo imaging in medaka was already possible, but it was not
fully established yet, and raised three main challenges. These challenges were
restricting possible investigation and were therefore addressed. I determined
the fluorescent proteins (FPs) with the highest fluorescence intensity (FI) in
medaka and demonstrated why and how a transient in vivo assay is necessary
and sufficient to do so. I established that α-Bungarotoxin is the best available
anesthetic for medaka. Finally, I created pigment mutants, that render medaka
more accessible to in vivo imaging, in particular the pigment-reduced lines,
spooky and spookiest.
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A high-throughput assay allowed the in vivo investigation
of fluorescent proteins

mGFPmut2 and mCherry were the fluorescent proteins with the
highest fluorescence intensity

A transient in vivo assay has been established to assess FI of commonly
used FPs. This assay utilized the capability of the ACQUIFER Imaging
Machine to image all wells of a 96-well plate in single well acquisitions over
time. Medaka couples were synchronously mated and eggs were collected.
The zygotes were microinjected with a green test FP and mCherry messenger
RNA (mRNA) or with a red test FP and eGFP mRNA. mCherry and eGFP
served as injection control and the measurements were normalized to the FI
of the controls at 10 hours post fertilization (hpf). The injection mixes were
assembled such that all mRNAs were present in equimolar amounts controlling
for the different lengths and compositions of CDSs and therefore molecular
weights of the mRNAs. Furthermore, all these CDSs were cloned into the same
plasmid (pGGEV3), linearized with the same restriction enzyme (SpeI-HF) and
transcribed with the same kit (mMessage mMachine® Sp6 Transcription Kit).
This is to ensure maximal comparability of the microinjected mRNAs, which
have the same 5’ untranslated regions (UTRs) and three times poly adenylation
sequences (3x pAs). The microinjected embryos were loaded in a volume of
150µl by a pre-defined randomized loading scheme into a 96-well plate and
imaged for at least 42 h. The resulting images were analyzed and visualized
semi-automatically in Fiji and R by masking, cropping, measuring, normal-
izing and plotting (Graphical summary of the protocol is presented in Fig. 3.1A).

At 10 hpf mVenNB is the FP with the highest FI in the green chan-
nel, directly followed by monomeric GFP carrying mutation number
2 (mGFPmut2), whereas mCherry is the FP with the highest FI in the red
channel (Fig. 3.1B). However, following the green FPs over time in Fig. 3.1C
indicates that mGFPmut2 has an overall higher FI, while mVenNB’s FI is
only higher in a limited timeframe. For red fluorescent proteins, illustrated in
Fig. 3.1D, no time-dependent difference in ranking was observed.
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Results

This high-throughput assay already hinted towards possible candidates for
the FPs with the highest FI in medaka. To validate suitable FPs for in
vivo imaging under experimental conditions via single-plane illumination
microscopy (SPIM), a type of LSFM, sample FPs were imaged via SPIM. As
presented in Fig. 3.1E these differences also hold true for data acquired with a
SPIM, indicating that the established assay is sufficient for scoring of FPs in
medaka.

The presented assay was performed with unhatched embryos, immedi-
ately after fertilization. Therefore I checked next, whether the chorion has
an impact on FI in the two tested channels. To exclude this possibility
medaka embryos were microinjected as previously described and half of
each sample type (each injection of a FP) were dechorionated at 2 days post
fertilization (dpf). Dechorionated and untreated embryos were simultaneously
imaged via the AQUIFER Imaging Machine at 2, 3 and 4 dpf (exemplary in
Fig. 3.1F and full in Fig. 7.1). No significant difference in FI was detected
between dechorionated and untreated embryos, indicating the validity of the
presented assay and the absence of the influence of the chorion on fluorescence
microscopy.

In summary, mGFPmut2 and mCherry are the FPs with the highest
FI in medaka.

21



test or eGFP mRNA
mCherry or test mRNA

randomly mount in
96-well plate

automated imaging

Imaging stops
42 hpf

semi-automated
image analysis

in FIJI / R

exp. 1
+ control

exp. 2
+ control

exp. 3
+ control control

1

#

2

3

4

5

6

x

exp. 1
+ control

exp. 2
+ control

exp. 3
+ control control

1

#

2

3

4

5

6

x

ex
pe

rim
en

ta
l

ch
an

ne
l

co
nt

ro
l

ch
an

ne
l

main 1
+ control

main 2
+ control

main 3
+ control control

1

#

2

3

4

5

6

x
exp. channel

control channel

=

raw data

masked
&

cropped normalized
exp. 1

+ control
exp. 2

+ control
exp. 3

+ control control

1

#

2

3

4

5

6

x

tim
e r

es
olu

tio
n

no
rm

al
iz

ed
 fl

uo
re

sc
en

ce

time (hpf)

data visualization in Rdata matrix

eGFPCFP Clover eGFP
var

eGFP
varA206K

Venus YFP mGFP
mut2

mVenNB mCherrymRFPmRuby2 tagRFP mRFP1* mScarlet

least intense most intense least intense most intense

●●
●●●●
●●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●
●
●●●●

●●●●

●●
●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●

●●
●
●●●●●●●●●●●●●
●●●●●●●●

●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●

●●●●

●●●●●●●

●●●

●● ●●●●●●
●●●●●●●
●●●

****
****

****
****

****

0

1

2

3

Venus Clover eGFPvarA206K eGFP tagRFP mRFP mCherry

flu
or

es
ce

nc
e 

in
te

ns
ity

no
rm

al
iz

ed
 to

 c
on

tro
l [

A.
U

.]

in vivo SPIM verification of fluorophores

0

20

40

60

80

0 10 20 30 40
time post fertilization [h]

flu
or

es
ce

nc
e 

in
te

ns
ity

no
rm

al
iz

ed
 to

 c
on

tro
l [

A.
U

.] mGFPmut2 (n = 6)

mVenNB (n = 6)

eGFP (n = 17)

eGFPvarA206K (n = 9)

eGFPvar (n = 9)

Clover (n = 11)

YFP (n = 9)

Venus (n = 12)

CFP (n = 9)

Green fluorescent proteins

0

5

10

15

20

0 10 20 30 40
time post fertilization [h]

flu
or

es
ce

nc
e 

in
te

ns
ity

no
rm

al
iz

ed
 to

 c
on

tro
l [

A.
U

.]

mCherry (n = 17)

mRFP (n = 11)

mScarlet (n = 5)

mRFP1* (n = 4)

tagRFP (n = )12

mRuby2 (n = 9)

Red fluorescent proteins

B

C

A

D

E

●
●●●●●●

●●

●●●●●●●●

●●●

●●●
●●●

●
●●
●●

●●

●●
●

1

2

3

2 3 4
days post fertilization[d]

flu
or

es
ce

nc
e 

in
te

ns
ity

no
rm

al
iz

ed
 to

 c
on

tro
l [

A.
U

.]

eGFP

mCherry

dechorionated

untreated

The influence of the chorion on fluorescence intensityF

Figure 3.1: An imaging-based assay revealed that mCherry and mGFPmut2
are the fluorescent proteins with the highest fluorescence intensities in medaka.
A Illustration of semi-automated analysis. Medaka zygotes were microinjected with a green
or red fluorescent test mRNA, along with mCherry or eGFP as injection control, respectively.
The embryos were loaded according to a randomized loading scheme into a 96-well plate
and imaged automatically for at least 42 h. The resulting images were masked, cropped and
normalized to the injection control. The resulting values were plotted in R (1-cell stage
modified from [Iwamatsu, 2004]). B At 10 hpf the FPs with the highest FI were mVenusNB
and mCherry. Green fluorescent proteins are depicted at the left hand side, whereas red
fluorescent proteins are depicted on the right hand side (embryos modified from [Iwamatsu,
2004]). C mGFPmut2 was the FP with the highest overall FI. FIs of green FPs normalized
to the control over time. n-values indicate number of analyzed embryos per fluorescent
protein. D mCherry was the FP with the highest FI. FIs of red FPs normalized to the
control over time. n-values indicate number of analyzed embryos per fluorescent protein.
E SPIM confirmed the trend of in vivo FIs acquired from single, hatched embryos. This
indicated that the assay was sufficient to test FPs for subsequent imaging via SPIM. Venus
N=3 n=1483, Clover N=3 n=1294, eGFPvarA206K N=3 n=1395, eGFP N=2 n=794,
tagRFP N=3 n=1580, mRFP N=3 n=2158 , mCherry N=2 n=980 (N indicates number
of fish, n indicates number of z-slices analyzed). F No apparent influence of the chorion on
FP FI was detected. Measured was the normalized FI of eGFP and mCherry untreated
or dechorionated at 2,3 and 4 dpf. Asterisks indicate P-values: **** P<=0.0001, ***
P<=0.001, ** P<=0.01, * P<=0.05, ns P>0.05. The full experiment is depicted in
Fig. 7.1. Figure from [Lischik et al., 2019].
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In vitro properties of fluorescent proteins are no direct predictors for
in vivo fluorescence intensity in medaka

A previous publication linked in vivo FIs to in vitro acquired properties of
FPs in Escherichia coli [Balleza et al., 2017]. It was therefore tested, whether
the correlation observed in E. coli also holds true in medaka. The relative
FI values of medaka were plotted against the relative FI values published
previously and normalized to the FPs common in both analyses. The relative
FIs were diverging largely, indicating the necessity of an in vivo assay in
vertebrate systems (Fig. 3.2A). This is in contrast to the previous publication,
which demonstrated a dependence of the FIs on in vitro parameters, such
as maturation time, expression and in vitro FI [Balleza et al., 2017]. These
experiments were conducted, however, in a non-vertebrate, moreover a
non-eukaryote. This difference in physiology seemingly had an impact on FI of
FPs.

Taken together, FP in vitro parameters can not predict in vivo FI of
FPs in medaka.

Codon usage table-driven codon averaging decreased fluorescence
intensity of eGFP in medaka

Another question arising from the previous results is whether FI of FPs
depended on codon usage and was species-specific. Therefore, all codon
adaptation indices (CAIs) of the used FPs were calculated for medaka and
Homo sapiens [Athey et al., 2017]. The CAI of a CDS is calculated based on the
sequence and an averaged codon usage table for the species of interest [Puigbò
et al., 2008]. The values for all tested fluorescent proteins were plotted in
Fig. 3.2B with solely eGFP, mCherry and mRuby2 labeled (full labels in
Fig. 7.2). Strikingly, all CAIs of FPs except mRuby2 clustered. Additionally,
all CAIs indicated a marginally higher codon adaptation for H. sapiens than
for medaka. This is not surprising, since the commonly available FPs are
usually codon adapted for mammalian codon usage tables.
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Figure 3.2: Codon usage table-driven codon adaptation decreased in vivo fluo-
rescence intensity of eGFP in medaka.
A Comparison of relative in vivo FIs of FPs in medaka and E. coli. While FPs such as
mGFPmut2 had a similar relative FI in both organisms, other FPs such as mCherry or Clover
deviated strongly. E. coli FIs have been extracted from a previous publication [Balleza
et al., 2017]. Medaka FIs were normalized to eGFP for green FPs, Venus for yellow FPs and
mRFP1* for red FPs. B Comparison of codon adaptation indices (CAIs) of all investigated
FPs showed that most used CDSs were similarly codon adapted. The CAI was calculated
with the amino acid sequence of the FP and the species-specific codon usage table. Labeled
are the controls and the outlier mRuby2. All data points are labeled in the full version
in Fig. 7.2. C Codon adaptation of eGFP for medaka decreased its FI 25-30 fold. The
experiment was conducted as outlined in Fig. 3.1A, but only with eGFP, eGFP adapted for
codon usage of medaka (OleGFP) and eGFP adapted for codon usage of yeast (SceGFP) as
negative control. D The CAIs for the sequences used in C. OleGFP was theoretically more
codon adapted to medaka than wild-typic eGFP. The diagonal line in A, B and D is solely
for orientation purposes and not part of the data. Figure from [Lischik et al., 2019].
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In order to investigate the effect of codon adaptation, eGFP was adapted to the
codon usage table of medaka [Puigbò et al., 2007], which resulted in Oryzias
latipes codon-optimized eGFP (OleGFP). Together with Saccharomyces
cerevisiae codon-optimized eGFP (SceGFP) [Xu et al., 2013], an experiment
was performed similar to the one depicted in Fig. 3.1A with eGFP, OleGFP
and SceGFP. CAIs of all used FPs were plotted indicating that OleGFP is
theoretically more adapted to the average codon occurrence in medaka than
eGFP and SceGFP, as expected (Fig. 3.2D). The FPs were subjected to the in
vivo assay (Fig. 3.2C). Surprisingly, the OleGFP in vivo FI was not improved
by pure codon usage table-driven codon averaging. On the contrary, its in vivo
FI decreased 25 to 30-fold in comparison to the original eGFP (Fig. 3.2C).
Interestingly, its FI was even lower than that of SceGFP, which was a control
for low codon adaptation.

Recapping, pure codon usage table-driven codon adaptation decreased
the in vivo FI of eGFP in medaka.

The established in vivo assay revealed different influences on
fluorescence intensities of fluorescent proteins in zebrafish

Zebrafish (Danio rerio) represents another established model teleost. This
raises the question whether the established in vivo assay can be also used
to score for optimal FPs in this species. The experiments were performed
according to Fig. 3.1A, with the exception, that due to the fast development
of zebrafish imaging was conducted in a restricted timeframe of 12 h. Solely
the most promising candidates identified in medaka were considered. The
mean of FIs indicated that mVenNB and mCherry were the most suitable
green and red FPs, respectively. However, if the plots themselves (Fig. 3.3B-C)
were investigated the FIs indicate a strong time-dependency with striking
fluctuations. Moreover, the overall FI decayed faster compared to medaka. In
contrast to medaka, the fluorescent proteins are also not following the same
relative pattern, complicating the prediction of useful FPs in juvenile and/or
adult zebrafish.

Abbreviating, FIs of FPs are not comparable between zebrafish and
medaka.
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Figure 3.3: In zebrafish fluorescence intensity of fluorescent proteins varied over
time.
FI measurements were conducted as outlined in Fig. 3.1A with the exception of a maximum
imaging time of 12 h. A On average, mVenusNB and mCherry are the FPs with the highest
FI in zebrafish. Green FPs are illustrated on the left hand side, while red FPs are illustrated
on the right hand side (embryos modified from [Kimmel et al., 1995]). B Normalized FI
of green FPs in zebrafish over time. Strikingly, no clear trend was detected. n-values
indicate number of embryos analyzed. C Normalized FI of red FPs in zebrafish over time.
Again, no clear trend was detected. n-values indicate number of embryos analyzed. Figure
from [Lischik et al., 2019].

Time courses of fluorescent proteins were classified and predicted by
artificial neural networks

To further investigate predictive power of measured time courses, machine
learning (ML) and artificial neural networks (ANNs) were deployed. The first
challenge was to classify a given time course to the name of the imaged FP.
This enables the classification of novel tested FPs to similar, already tested
FPs, indicating similar in vivo properties. However, this classification was
challenging, even when employing several ML algorithms. For investigation, I fit
the models to the same training set resulting from a standard random 80% to
20% training and test set split. The prediction accuracy is a measure defined as
correctly predicted true positives. This ranged from 11% to 16% for all tested
ML models, except for logistic regression, which was able to perform at an
accuracy of 33%. ML algorithms are statistical tools, which are based on fixed
assumptions depending on the implemented algorithms. In contrast, ANNs offer
a larger flexibility. This is due to the simulation of a neural network by using
artificial neurons and training them for a specific task. Therefore, I implemented
an ANN for classification in order to classify the FPs to the matching names.
Biological data and time courses were thought to be too complex for standard
ML algorithms. Due to their greater flexibility, ANNs are better at filtering
out inherent and/or underlying noise when compared to ML algorithms.
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Indeed, the established ANN was performing at an accuracy of 55% to 65%
depending on the run. This variability is explained by the varying randomized
training and test set split per run, which is used to ensure the ANN’s robustness.

In addition to classification (supervised learning, addition of a depen-
dent variable, here: name), I also applied clustering (unsupervised learning,
no dependent variable) to the corresponding time courses. However, since the
deployed algorithms were able to filter larger differences between different time
courses, but not the subtle differences between fluorescent proteins with a
similar FI, the challenge persisted. In simple terms, outgroups were detected,
but more minute differences were not (Fig. 7.3).

The final goal was to predict the second fraction of the time course
depending on the initial fraction of the present data. Once established,
experiments could be shortened, following the demonstration of the predictive
power of the first fraction of the experiment for the following time course.
An ANN was deployed and the same training and test set split as previously
described was used. Following training of the ANN the test set FI time course
was predicted depending on the initial fraction of the time course in the test set.
The full results are presented in Fig. 7.4, whereas Fig. 3.4 depicts exemplary
graphs. Fig. 3.4A presents an example of the prediction of a green fluorescent
protein time course, which was classified as acceptable. Currently no statistical
measure is implemented for this classification, the classification as of now relies
completely on similarity of the graphs. Using the similarity of 18 predicted test
samples 15 of 18 predicted test samples were classified as acceptable. Three
of 18 were classified as unacceptable. An example for which is depicted in
Fig. 3.4A′. For the red fluorescent proteins Fig. 3.4B illustrates an acceptable
time course, which was classified as such in 10 out of 12 samples, whereas 2
were classified as unacceptable. An example of which is depicted in Fig. 3.4B′.

Summarizing, ANNs predicted the continuation of in vivo FI time courses of
FPs.
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Figure 3.4: Prediction of the second fraction of experimental data based on
the first fraction of the time course. Exemplary excerpt for acceptable and
unacceptable predictions.
Data was split into a training set and a test set by a random 80% to 20% split. Illustrated
are the results for the test set. An artificial neural network (ANN) was deployed to predict
the continuation of the time course experiment, given the first fraction. Plotted is the
normalized fluorescence intensity to the time in hours. A-A′ Exemplary results of the
green fluorescent protein test set predictions. The occurrences based on total occurrence are
indicated in the bottom right corner. While 15 of 18 predictions were defined as acceptable
(A), 3 of 18 predictions were defined as non-acceptable (A′). B-B′ Exemplary results of the
red fluorescent protein test set predictions. The occurrences based on total occurrence are
indicated in the bottom right corner. While 10 of 12 predictions were defined as acceptable
(B), 2 of 12 predictions were defined as non-acceptable (B′). All predictions in Fig. 7.4.

α-Bungarotoxin anesthetized medaka embryos reliably

Similar to the assay described previously the efficacy of three different
anesthetics was tested in order to perform in vivo imaging of medaka embryos.
Therefore, embryos were microinjected with α-Bungarotoxin and eGFP mRNA,
mock injected with eGFP mRNA or collected without injection and treated
later. All embryos were dechorionated at developmental stage 28. Dechorion-
ated embryos were either untreated or treated, depending on whether or not
they were previously injected, respectively. The treatments were performed
with tricaine, a standard anesthetic for teleostei, etomidate, a commonly
used human anesthetic, dimethyl sulfoxide (DMSO), as solvent control for
etomidate and embryo rearing medium (ERM), as negative control. All embryos
were transferred to a 96-well plate in 150µl medium and imaged for at least 60 h.

Due to varying starting stages of embryos at the start of imaging all
imaged plates were adjusted to the latest starting stage in order to enable
fusion of the datasets. Subsequently, semi-automated image analysis has been
performed in Fiji and R. An overview of the performed analysis is depicted
in Fig. 3.5A. A normalized movement index supplying a relative readout of
movement between tps, was the resulting parameter following analysis. The
normalized movement index was obtained by squaring the difference between
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tp n and tp n+ 1, very similar to the Euclidean distance (visual depiction in
Fig. 3.5A).

Time course analysis of the normalized movement index indicated that
embryo movement remained nearly unaffected by etomidate and tricaine
treatment in 20min intervals in comparison to the controls (Fig. 3.5B). This
does not mean, however, that these embryos are continuously moving over time,
since the images were acquired in 20min intervals. In contrast, injection of
α-Bungarotoxin mRNA leads to a strong reduction in the normalized movement
index (Fig. 3.5B). This was also observed qualitatively in the corresponding wells
(data not shown, online at https://doi.org/10.1371/journal.pone.0212956.s005).
Under this treatment paradigm, however, only voluntary muscle movements
are suppressed since α-Bungarotoxin acts on neuromuscular junctions (NMJs),
which means that early, Ca2+-induced yolk contractions were not suppressed.

Taken together, α-Bungarotoxin was reliably anesthetizing medaka em-
bryos.

Anesthesia with α-Bungarotoxin was partially reversible

To assess whether embryos anesthetized by α-Bungarotoxin are surviving,
imaged embryos were demounted from 96-well plates and assayed by a startle
response regime at later tps. In brief, embryos were startled 10 consecutive
times, each with a pipette tip and the startle responses were recorded. This
assay was performed at 6, 8, 12 and 13 dpf. Strikingly, the surviving embryos
showed a significant difference in response to both wt and mock injected
controls at the beginning of the experiment. Over time, however, most
effects of the anesthetic wore off in the surviving α-Bungarotoxin mRNA
injected embryos (Fig. 3.5C). Notably, a fraction of α-Bungarotoxin mRNA
injected embryos died, possibly due to starvation caused by complete anesthesia.

Summarizing, anesthesia with α-Bungarotoxin was partially reversible,
but it must be taken into account that a fraction of fish also died from
starvation.
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The optimal concentration for α-Bungarotoxin mRNA injection in
medaka was between 12 and 25 ng/µl

To assess the concentration-dependency of anesthesia with α-Bungarotoxin
mRNA, serial dilutions of the original concentration (25 ng/µl) were microin-
jected. Strikingly, the number of hatched embryos was lowest at a concentration
of 12 ng/µl α-Bungarotoxin mRNA and not 25 ng/µl α-Bungarotoxin mRNA
(Fig. 3.5D). Furthermore, fewer embryos were actively swimming when injected
with 12 ng/µl as opposed to 25 ng/µl α-Bungarotoxin mRNA (Fig. 7.5C).

In conclusion, the supposedly optimal injection concentration of α-Bungarotoxin
mRNA lay between 12 and 25 ng/µl. This estimate takes the lethality rate and
the degree of anesthesia into account.

Cardiac development and heart rate remained unaffected by
anesthesia via α-Bungarotoxin

The major disadvantage of long-term tricaine treatment of teleostei was the
ineffectiveness of anesthesia. An additional disadvantage was its adverse effect
on cardiac development. To exclude that α-Bungarotoxin mRNA injections
also impact on cardiac development, the previously imaged and long-term
treated fish (Fig. 3.5B) were demounted for examination of gross cardiac
morphology. While mild and strong cardiac defects were detected in tricaine-
and etomidate-treated embryos, respectively, no defects were observed in
α-Bungarotoxin mRNA injected embryos (Fig. 7.5A). Furthermore, heart
rate (HR) recordings of these fish were taken through short videos (10 s,
25 frames per second (fps)) at 25 °C. No difference in HR was detected between
α-Bungarotoxin mRNA and mock injected embryos (Fig. 7.5B).

Summarizing, no cardiac defects were observed when anesthetizing medaka
embryos with α-Bungarotoxin.
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Figure 3.5: α-Bungarotoxin mRNA microinjection anesthetized medaka em-
bryos long-term and partially reversible.
A Scheme of the conducted analysis. A subset of medaka zygotes were microinjected with
eGFP or α-Bungarotoxin mRNA. The uninjected embryos were treated and imaged together
with the injected embryos. One embryo each was loaded into a single well of a 96-well plate
by a pre-defined randomized loading scheme and imaged for at least 60 h. The difference
over time of the acquired images was obtained and the resulting images were squared,
yielding a normalized movement index. This index was plotted in R (1-cell stage modified
from [Iwamatsu, 2004]). B Treatment with α-Bungarotoxin was anesthetizing all embryos
robustly, while tricaine and etomidate treatment was not distinguishable from the controls.
Multiple plates were imaged and normalized to stage 28 [Iwamatsu, 2004]. The normalized
movement index of embryos was plotted over time. Time resolution 20min. n-values indicate
fish analyzed per treatment condition. C A startle response assay reveals that anesthesia
with α-Bungarotoxin is partially reversible. Fish were startled 10 consecutive times with
the aid of a pipette tip. Response times were recorded. While α-Bungarotoxin-treated
fish did not respond initially, the responses increased over time. The same color legend
as in B applies. α-Bungarotoxin n=12 fish, mock injected: n=5 fish, wild-type control:
n=8 fish. D Hatching of fish is suppressed by α-Bungarotoxin. While control-injected
embryos hatched completely, embryos injected with 12 ng/µl α-Bungarotoxin mRNA hatched
less often. (0 ng/µl: n=33 fish, 3 ng/µl: n=34 fish, 6 ng/µl: n=16 fish, 12 ng/µl: n=24 fish,
25 ng/µl: n=22 fish). Asterisks indicate P-values: **** P<=0.0001, *** P<=0.001, **
P<=0.01, * P<=0.05, ns P>0.05. Figure from [Lischik et al., 2019].
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Medaka pigmentation was optimized for in vivo imaging
by CRISPR/Cas9

Finally, to eliminate imaging-interfering pigmentation of the embryo, pigment
knockouts were established. The CRISPR/Cas9-system was used to introduce
mutations in the genome by inducing double-strand breaks (DSBs), which
in turn induce insertions and deletions (InDels). The specificity of the Cas9
protein and therefore the location of DSBs is mediated by a variable single guide
RNA (sgRNA), which is easily synthesized in the laboratory. Several sgRNAs
targeting previously published genes involved in pigmentation pathways were
deployed in several combinations as listed in Table 3.1.

Table 3.1: sgRNA combinations deployed in CRISPR/Cas9 experiments.

oca2 pnp4a tyr pax7a slc2a15b resulting

mix 1 2 3 1 2 3 1 2 1 2 3 1 2 line

op_1 x x x spooky

op_2 x x x x x x spooky

o x x x oca2-/-

t x x tyr-/-

p x x x pax7a-/-

s x x slc2a15b-/-

ops x x x x x x x x spookiest

uninj. iCab

Combining oca2 and pnp4a mutations created a pigment-less in vivo
imaging line (spooky)

In order to facilitate in vivo imaging, sgRNAs targeting oculocutaneous
albinism II (oca2 ) and purine nucleoside phosphorylase (pnp4a) (mixes op_1
and op_2) were microinjected. For both genes mutants stemming from
mutation screens were published previously. The combination of sgRNAs
targeting both genes lead to nearly pigment free medaka with remaining
leucophore autofluorescence. In the mosaic, injected generation 12% (op_1)
or 77% (op_2) were classified suitable for immediate imaging (Fig. 3.6B).
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Fish were incrossed to the filial generation (F1), resulting in compound
heterozygotes. In this filial generation (F1) a drastic difference was detected
qualitatively in comparison to wt by assessing the pigmentation of the eyes
in embryonic and adult stages and pigmentation of the operculum and the
peritoneum in adult stages (Fig. 3.6D). The added value of the oca2 and pnp4a
double KO (spooky) in comparison to the knockout (KO) of oca2 is also very
easily visible by assessing the pigmentation of F1 adults (Fig. 7.6). oca2 KO
embryos retain a complete cover with iridescent pigment, hence the operculum,
the peritoneum and the retina remain opaque. This constitutes the most
striking differences to spooky.

Taken together, the spooky mutant enhanced imaging of previously ob-
structed tissues.

The probability of KO positively correlated with the amount of injected
sgRNAs per gene

To investigate whether an increased number of sgRNAs targeting the same
locus increases the percentage of resulting KOs various combinations of sgRNAs
were used in the injection mixes. Injection mixes as indicated in Table 3.1
were microinjected together with Cas9 mRNA. Dead and malformed embryos
were removed and embryos were scored for imaging suitability in F0 at stage
30. Embryos injected with sgRNAs targeting oca2 , pnp4a or tyrosinase (tyr)
were scored in a bright field setup. On the other hand, embryos injected with
sgRNAs targeting paired box 7a (pax7a) or solute carrier family 2 (facilitated
glucose transporter), member 15b (slc2a15b) [Kimura et al., 2014] were scored
in the green fluorescence channel (Fig. 3.6A).

The percentage of non-developmentally impaired embryos suitable for
imaging was visualized (Fig. 3.6B). Strikingly, increasing the number of
sgRNAs targeting the same locus from mix op_1 to op_2 led to a higher
prevalence of fish suitable for imaging, but also to a higher mortality rate.
When looking at mosaic KO embryos with impaired melanin synthesis, oca2
and tyr (injection mixes o and t), the rate of embryos suitable for imaging
was higher in oca2 knockout embryos in F0. Comparing mosaic KOs of genes
responsible for the formation of autofluorescent leucophore pigment, pax7a and
slc2a15b (injection mixes p and s), a higher prevalence for imaging suitability
was observed in slc2a15b mosaic mutant embryos. Therefore, I performed an
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injection combining injection mixes op_2 and s to induce mutations resulting in
pigmentation-free embryos. These oca2, pnp4a, slc2a15b triple KO (spookiest)
embryos were devoid of most of the present pigmentation, including melanin in
the melanophores, iridophore pigment, leucophore autofluorescence and less
carotenoid deposition in xanthophores.

Summing up, an increase of injected sgRNAs targeting the same locus
resulted in a higher likelihood of KO.
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Figure 3.6: Medaka pigmentation mutants created by CRISPR/Cas9 facilitate
in vivo imaging.
A Medaka zygotes were microinjected with sgRNA mixes as indicated in Table 3.1. De-
pending on the injected sgRNAs embryos were imaged in a brightfield (oca2, pnp4a or tyr)
or green fluorescence (pax7a, slc2a15b) setup. Embryos were classified as non-suitable or
suitable for imaging by loss of pigmentation. B Embryos were injected with the indicated
injection mixes and classified according to A in the injected generation (F0). An increase of
sgRNAs targeting the same locus was shown to be positively correlated with the percentage
of knockout embryos (op_1 compared to op_2). n-values indicate the number of injected
embryos per condition. C Visually no difference of oca2 and tyr or pax7a and slc2a15b mu-
tants was observed. D The oca2, pnp4a double knockout pigmentation mutant (spooky) was
created using the CRISPR/Cas9-system. In comparison to wt fish absence of pigmentation
in the eyes, the operculum and the peritoneum was observed. Figure from [Lischik et al.,
2019].
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oca2 KO was superior to tyr KO, while slc2a15b KO was superior to
pax7a KO

Subsequent to comparing the prevalence of the KOs depending on the number
of injected sgRNAs the question remains, whether there was a difference
in pigmentation while targeting different genes responsible for the same
pigmentation. Qualitatively comparing the outcome of injection in F0 in
presumably fully mutant embryos results in no detectable difference between
oca2 and tyr or pax7a and slc2a15b mutant embryos (Fig. 3.6C). Therefore,
other factors were considered, such as the additional effect of oca2 mutation,
which reduced the carotenoid deposition in xanthophores and the less deaths
in the injection of sgRNAs targeting slc2a15b in comparison to injection of
sgRNAs targeting pax7a.

In conclusion, melanin pigmentation was best eliminated by oca2 mu-
tation, while leucophore pigmentation was best eliminated by slc2a15b
mutation.

In vivo imaging of medaka was greatly enhanced by
optimal fluorescent proteins, anesthesia with
α-Bungarotoxin and the spooky pigment knockout

Utilizing the established toolkit, in vivo imaging of medaka was greatly enhanced.
For a proof of concept experiment spooky and wt embryos were microinjected
with α-Bungarotoxin, eGFP and mCherry coupled to histone2a (H2A-mCherry)
mRNA. Both mutant and wt embryos, were imaged via SPIM in order to assess
the additional value of the spooky mutants. Several tissues, that were not
accessible for investigation in the wt, e.g. the brain, the eyes, the gut were
now accessible in the mutant (Fig. 3.7A-A′). One double mutant spooky fish
was imaged for 48 h and maximum z projections of this fish were obtained to
visualize the greatly enhanced imaging (Fig. 3.7B).
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A’A’

eGFP
H2A-mCherry

Figure 3.7: The combination of the established tools facilitated in vivo imaging
of previously opaque structures.
A wt and a spooky mutant embryo were microinjected with α-Bungarotoxin, eGFP and
H2A-mCherry mRNA and imaged via SPIM. A Lateral view of the head of the injected wt
embryo. The arrowhead indicates the opaque retina, no nuclei are visible within. A′ Lateral
view of the head of an injected spooky embryo. The arrowhead indicates the retina, where
nuclei were detectable as a consequence of the pigmentation KO. B The embryo from A′

was imaged for 48 h in 1 h intervals. Depicted is a stitched maximum z-projection of the
whole body from dorsal, illustrating the increased penetrance, in particular in the head of
the embryo. Figure from [Lischik et al., 2019].

36



Results

In vivo imaging of retinal stem and progenitor

cells

α-Bungarotoxin and spooky were utilized to perform in
vivo imaging of retinal stem and progenitor cells

In order to perform in vivo microscopy of RSCs, I combined the established
tools α-Bungarotoxin and spooky with the available GaudíRSG line. The
original GaudíRSG construct contains a cyan fluorescent protein (CFP) driven
by the crystallin alpha a (cryaa) promoter as insertional control. This strongly
interferes with retinal in vivo imaging due to the strong expression of CFP
and resulting high FI directly adjacent to the region of interest (ROI). A
sgRNA that specifically targets CFP, but not eGFP, was designed (sgRNA
252 CFP_notGFP). This ensured that H2B-eGFP remained intact for lineage
tracing.

GaudíRSG fish were crossed to the hsp70:Cre driver line and zygotes
were microinjected with sgRNAs for a targeted spooky and CFP KO. The
fish were raised and screened for both pigment and CFP loss. The integrity
of H2B-eGFP was confirmed by recombination of individuals with a partic-
ularly low CFP expression. No impairment was detected (data not shown).
Positively screened fish were incrossed and the progeny was microinjected with
α-Bungarotoxin mRNA. These embryos were raised to stage 30, recombined
and imaged at varying starting tps. This variability was introduced in order
to investigate clonal properties of clones of different ages. An overview of the
acquired data is provided in Table 3.2. After initial assessment the subsequent
analyses were only conducted on data with a magnification of 250 x.

Taken together, the established toolset enabled in vivo imaging of RSCs and
RPCs.
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Table 3.2: Overview of GaudíRSG retinae imaged in vivo.

ID heat shock to
imaging [d]

duration [d] heat shock to
final tp [d]

magnification [x]

0 1 2.47 3.47 250

1 1 2.47 3.47 250

2 0 3.82 3.82 160

3 0 3.82 3.82 160

4 0 3.82 3.82 250

5 0 3.82 3.82 250

6 3 2.53 5.53 250

7 3 2.53 5.53 250

8 1 2.71 3.71 160

9 1 2.71 3.71 250

10 1 2.71 3.71 250

Single retinal cells were tracked manually

The present data with a 250 x magnification was used to perform manual
single cell tracking (an example is depicted in Fig. 3.8A,B,C). MaMuT was
employed to track cells on the raw data in a position of the retina coinciding
with RSCs or RPCs. The tracked cells were either determined by proximity
to the lens and the surface or, for older retinae, by being the most peripheral
cell of a clone (Fig. 3.8A′′,B′′,C′′, black arrowhead). The extensible markup
language file (xml file) generated by MaMuT was used to extract the tracked
data points. The data points were loaded into custom python scripts and
corrected for the z-resolution of the acquired image stack (Scripts see appendix).
Subsequently, a three-dimensional (3D) plotting package present in the
matplotlib library was deployed to interactively visualize the data points. The
3D plot was supplemented with a slider for selection of the tp, resulting in a
four-dimensional (4D) plot. This 4D plot was used for initial data visualization.
Additionally, an export function was added to export single 3D plots for
visualization (such as in Fig. 3.8).

Abbreviating, single cells were tracked within the acquired retinae and
tracks were visualized for initial data screening.
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Figure 3.8: In vivo single cell tracking of recombined retinae revealed different
cell types.
A fish positive for GaudíRSG, hsp70 :Cre and spooky was recombined and imaged at 3 dpi
(ID7). The color code indicates the Track_ID, the same color indicates cells descending
from the same original cell. A Maximum projection of the analyzed retina at tp 0 h. Due
to autofluorescence of remaining pigment cells the visualization was logarithmized to level
FI differences. Striped ellipses indicate tracked cells. Scale bar 100µm. A′-A′′ A single,
non-dividing cell is remaining at the periphery of the retina (Black arrowhead). Uncorrected
3D visualizations of tracked cells from retina shown in A. A′ is in the same orientation as A.
A′′ is rotated 90 degrees as indicated at the top. B-B′′ Same as A-A′′, but at tp 30 h. The
marked cell has not divided. It also has not shifted to the central retina as much as the other
tracked cells. C-C′′ Again, same as A-A′′, but at tp 60 h. Strikingly, the marked cell did
not divide and was located more periphal than the other tracked cells. Anatomical rosettes
indicate the orientation of the retinae or 3D plots. A: anterior, P: posterior, D: dorsal, V:
ventral, M: medial (central in respect to the retina), L: lateral (peripheral in respect to the
retina).
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Tracked data was corrected for minor movements

The xml file mentioned previously supplied by MaMuT contained cell positions
and cell connections. Additionally, the xml file contained parameters such
as velocity and direction of cell movement between tps. These parameters
were, however, not accurate since the retinae were not registered to each
other. This registration was needed due to minor movements within the
imaged retinae caused by growth and space restriction. Hence, it was necessary
to post-experimentally correct for these minor movements by software post
acquisition. For correction of these minor movements, a rigid or affine correction
were applied and the results were compared to each other. While, the rigid
correction algorithm introduced movement artifacts, the correction with an
affine algorithm corrected and stabilized the global movements satisfactorily.
The affine correction, however, also included correction of shearing and scaling.
In order to be employed the algorithm needs to be adapted to exclude shearing
and scaling of the data, which would result in data inconsistency.

Comprising, two algorithms were tested for global movement correction, but
the corrections were not robust and therefore not deployed.

A presumable retinal stem cell was tracked

The cell marked in Fig. 3.8 by a black arrowhead is a presumable RSC or eRPC.
This presumption is based on the position of the cell at the periphery of a clone
throughout the tracking experiment (Fig. 3.9). Furthermore, the cell does not
divide within a time frame of more than 60 h. The overall FI and signal-to-noise
ratio (SNR) decreased over time interfering with further tracking after 60 h.
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Figure 3.9: A presumable RSC was tracked but did not divide within 60 h.
A-A′′ Tracking of a single, presumable RSC residing at the periphery of a clone over 60 h
marked by a white striped ellipse (Data ID7). The cell is marked by a black arrowhead in
Fig. 3.8. No division was observed within 60 h, while the cell remained at the periphery of
the clone. Overall FI and SNR decreased over time. Scale bar 10µm. Anatomical rosette
indicates the orientation of the retina. A: anterior, P: posterior, D: dorsal, V: ventral, M:
medial (central in respect to the retina), L: lateral (peripheral in respect to the retina).

Single cell tracking revealed two daughter cell behaviors

Tracking the position of single cells over time revealed at least two distinct
daughter cell behaviors present in the retina. In total, six cells dividing during
imaging were tracked. Visualized are three of these cells with distinct daughter
cell behaviors (stemming from Data ID6). Some cells divide and remain in the
vicinity of each other following division (Fig. 3.10A-B′) while others divide and
strive away from one another (Fig. 3.10C-C′). On average, however, the three
analyzed daughter cells traveled similar distances. In contrast, the distance
to the lens and the CMZ tip was smaller in the cell lineage, whose daughters
strove away from each other after division. Here, the data was not corrected
for global movements in order to not interfere with the distance measurements.

Taken together, by tracking single cells, two distinct daughter cell be-
haviors were revealed in the retina.
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Table 3.3: Overview of GaudíRSG retinae cell tracks visualized in Fig. 3.10 from in vivo
imaging data (Data ID6). Distances were approximated by testing three different distances
to the point of interest and choosing the smallest distance. All values, except TrackID and
panel, are represented in µm. dis.: distance.
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�: 110.5
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(406,383,22)
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Figure 3.10: Two daughter cell behaviors were observed in the retina.
A fish positive for GaudíRSG, hsp70 :Cre and spooky was recombined and imaged at 3 dpi
(ID6). Single tracks including all tps were visualized. The first panel of each track shows
all cell positions for all time points color-coded for time, whereas the second panel shows
the same data, but color-coded by lineages as indicated with the color bar in the center of
the image. A-A′ Daughter cells in TrackID 1 stayed adjacent to one another subsequent to
division. B-B′ Similar to A-A′ daughter cells in TrackID 3 stayed adjacent to each other
subsequent to division. C-C′ Daughter cells in TrackID 9 strove away from each other
subsequent to division. Further quantifications are summarized in Table 3.3. Anatomical
rosettes indicate the orientation of the cell tracks. A: anterior, P: posterior, D: dorsal, V:
ventral, M: medial (central in respect to the retina), L: lateral (peripheral in respect to the
retina).
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Wnt regulation of retinal stem and progenitor

cells

Independent insertions in two separate medaka lines were
leveraged to investigate dosage effects of DN-GSK3

Expression levels were approximately 10 times higher in the
RSDNGSK3_high line compared to the RSDNGSK3_low line

Preceding experiments were conducted with a transgenic RSDNGSK3 line,
which in the following will be referred to as RSDNGSK3_high [Möller, 2017].
Another insertion line was created prior, in the following referred to as
RSDNGSK3_low. Most of the experimental within this thesis work has been
conducted with the latter line. A qualitative distinction between both lines
is already macroscopically visible. While fish of the RSDNGSK3_high line
exhibit a distinct red body color, fish of the RSDNGSK3_low line appear
wild-typic (Fig. 3.11A-A′). To further substantiate this, semiquantitative
PCR was performed on complementary DNA (cDNA) of embryos of both lines
and wt in quadruplets. The Polymerase chain reaction (PCR) was loaded
onto a gel and a digital image was acquired without oversaturation. The
bands were quantified and the background bands of the wt embryos were
subtracted. Previous calibration of the PCR by 10-fold dilution enabled
the estimation of the ratio of expression levels. The results indicated a
significantly lower expression of mCherry in RSDNGSK3_low embryos
compared to RSDNGSK3_high embryos (Fig. 3.11B). The expression difference
was estimated to ≈ 9.7-fold comparing expression of RSDNGSK3_high to
expression of RSDNGSK3_low insertions. The expression of mCherry was
thereby quantified before recombination in order to exclude effects of Wnt
stimulation on expression levels.

In summary, the expression difference of available lines was leveraged
to investigate the dosage effect of Wnt stimulation.
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Figure 3.11: Two independent insertions of RSDNGSK3 were leveraged to in-
vestigate dosage effects of Wnt stimulation.
A-A′ Macroscopic view of fish of both transgenic lines. Fish of the RSDNGSK3_high
line (A) appeared to have a red body color, indicating higher expression levels. Fish of
the RSDNGSK3_low line (A′) appeared to have a wild-typic body color, indicating lower
expression levels. Depicted fish are not age-matched, no objective size difference was observed
between fish of both insertion lines. B The difference in mean expression of mCherry in both
lines estimated to ≈ 9.7-fold. Semiquantitative PCR on cDNA of both lines with primers
for mCherry was performed. n=4 fish for each condition. Asterisks indicate P-values: *
P<=0.05.

ccl25b:CreERT2 recombination led to results comparable with
rx2:CreERT2 recombination

The preceding work utilized the rx2:CreERT2 transgenic line for stem cell-
specific recombination. Due to experimental constraints of this line, however,
the experiments presented within this thesis needed to be conducted with an-
other Cre driver line. The ccl25b:CreERT2 line was used for recombination. To
ensure comparability, fish with an insertion of GaudíRSG or RSDNGSK3_high
were crossed to ccl25b:CreERT2 fish. These fish were recombined by tamoxifen
addition at hatch and chased for 2 days to 4weeks. Strikingly, the results were
very similar to the results obtained with rx2:CreERT2 [Möller, 2017]. Post hoc
analysis of GaudíRSG retinae revealed a large amount of maintained clones
(Fig. 3.12A). Analysis of RSDNGSK3_high retinae revealed no detectable
clones (Fig. 3.12A′). Both of these results are comparable to the results of the
precedence work [Möller, 2017] (Fig. 1.4A,A′).

Comprising, the newly introduced ccl25b:CreERT2 line led to results
comparable to the rx2 :CreERT2 .
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Figure 3.12: Recombination of RSDNGSK3_high with ccl25b:CreERT2 led to
results comparable to recombination with rx2 :CreERT2.
A GaudíRSG fish were crossed with fish positive for ccl25b:CreERT2. Embryos were
recombined with tamoxifen at hatch and chased for 2weeks at 26 °C. Maintained clones were
present throughout the retina. Scale bar 100µm. A′ RSDNGSK3_high fish were crossed
with fish positive for ccl25b:CreERT2. Embryos were recombined with tamoxifen at hatch
and chased for 2weeks at 26 °C. No clones were detectable in the retina. Scale bar 100µm.

High Wnt stimulation led to loss of clones

The difference in clone loss between the RSDNGSK3_low and
RSDNGSK3_high lines was assessed. Fish of the GaudíRSG, RSDNGSK3_low
and RSDNGSK3_high lines were crossed with fish of the ccl25b:CreERT2 and
tlx:CreERT2 lines. Fish were recombined at hatch via tamoxifen, raised at
24 °C and fixed at various timepoints (2, 3, 7 or 14 days post induction (dpi)).
Retinae were stained for rx2 as well as for eGFP and screened initially
with a Leica Sp8 microscope for polyclone presence by using the live view.
Polyclones were defined as patches of cells, continuously connected from the
most lateral to the most medial end. These polyclones consist of single or
multiple clones, which is why they will be in the following referred to as
polyclones. Confocal stacks were acquired from retinae positive for polyclones
for further analysis. The percentage of retinae positive for any recombined
cells was visualized (Fig. 3.13). The presence of recombined cells increased
over time up to 100% in GaudíRSG and RSDNGSK3_low retinae. In
RSDNGSK3_high retinae, however, recombined cells were not detectable
at all subsequent to recombination by ccl25b:CreERT2 or after two weeks
subsequent to recombination by tlx:CreERT2. A more detailed characterization
of polyclones in GaudíRSG and RSDNGSK3_low retinae follows.

Taken together, while wt retinae and retinae exposed to low Wnt stim-
ulation formed clones, clones were absent in retinae exposed to high Wnt
stimulation.
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Figure 3.13: High Wnt stimulation led to loss of polyclones.
Fish of the GaudíRSG, RSDNGSK3_low and RSDNGSK3_high lines were crossed with
fish of the ccl25b:CreERT2 and tlx:CreERT2 lines. Fish were recombined with tamoxifen
at hatch, grown at 24 °C and fixed at the indicated tp (dpi). Retinae were imaged and
screened for any cells positive for fluorescence. They were categorized into positive and
negative retinae. Illustrated is the percentage of retinae with detectable recombined cells
per condition. Indicated on top of the bar graphs is the number of retinae analyzed per
condition. Notably, all retinae of various experimental conditions contain increasingly more
polyclones over time, except for retinae of the RSDNGSK3_high line.

Apoptosis of cells exposed to high Wnt stimulation
caused polyclone loss

Next, experiments were performed to identify the cause of the observed
polyclone loss in the RSDNGSK3_high line. Among others, apoptosis and
a change of division mode of cells exposed to high Wnt stimulation were
reasonable possibilities. In order to address this question the established in
vivo imaging toolset was utilized. The progeny of a RSDNGSK3_high and
the hsp70:Cre cross were microinjected with sgRNAs for a targeted spooky KO.
Embryos were screened for pigment loss and raised to fertility (Fig. 3.14A). The
adult fish were crossed, and zygotes were microinjected with α-Bungarotoxin
mRNA. These embryos (F1) were raised to stage 34 and recombined by heat
shock in a thermal cycler. The thermal cyler protocol is very robust and
adaptable to the needs of the experiment. The number of cycles as well as
the severity of heat shock can be adapted easily and reproducibly. The heat
shocked fish were dechorionated and subsequently two embryos (fish A and
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B) were mounted for SPIM and one embryo was imaged via SPIM (fish A,
Fig. 3.14A).

Long-term imaging was performed via SPIM. The resulting data were
visualized with the same viewing range over all tps and indicated a dramatic
loss of FI in recombined cells over time (Fig. 3.14B-B′′′). At the final timepoint
of imaging only few cells positive for eGFP were detected (Fig. 3.14C, white
arrowheads). Even more so, these residual cells are only detectable after
performing a maximum z projection and decreasing the viewing range in
comparison to Fig. 3.14B-B′′′.

In order to exclude the possibility that general FI was lost as a conse-
quence of photobleaching the first embryo (fish A) was demounted, stained
for eGFP and re-imaged via SPIM. Again, only few cells positive for eGFP
remained at the last tp of observation (Fig. 3.14D, white arrowheads).
Furthermore, a control embryo (fish B) was handled comparably and subjected
to heat shock, mounting and pre-screening in the microscope. This embryo (fish
B), however, was not imaged long-term and only mounted at the finalization
of imaging of the first embryo (fish A). In the retinae of this embryo also
only residual cells remained positive for eGFP fluorescence (Fig. 3.14D′, white
arrowheads).

Embryos from the same line as described above were recombined by a
thermal cycler at stage 35 and fixed at stage 39 (3 dpi). These embryos were
stained for eGFP and Rx2 as well as subjected to the terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) assay to reveal apoptotic cells.
Imaging was conducted by a Leica Sp8. Confocal microscopy of these retinae,
did not detect eGFP immunoreactivity, whereas signal for the Rx2 antibody
indicated the success of the staining procedure. Furthermore, TUNEL signal
was prevalent in these retinae, indicating an increased level of apoptosis.

Summarizing, the clone loss observed previously in retinae exposed to
high Wnt stimulation was caused by apoptosis.
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Figure 3.14: Apoptosis caused loss of cells exposed to high Wnt stimulation.
A Experimental fish were raised as spooky mutants with an insertion of hsp70 :Cre and
RSDNGSK3_high. Embryos were microinjected with α-Bungarotoxin mRNA. Embryos
were heatshocked at stage 34 and either imaged for 93h hours and subsequently fixed and
stained (fish A) or treated the same way, but only imaged at the finalization of fish A, fixed
and stained (fish B). Colored letters indicated the matching subpanels. Subpanels B-D′

were acquired via SPIM. B-B′′′ Long-term light-sheet microscopy of an RSDNGSK3_high
embryo, recombined at stage 34. A severe loss of fluorescent cells was observed over time,
presumably as a result of photobleaching or apoptosis of single recombined cells. All 4
subpanels were created with the same pixel viewing range. Scale bar 100µm. C The final
tp of fish A indicates few surviving cells, which were only detectable by a maximum z
projection and a very low viewing range. The autofluorescent pigments appear therefore
more intense compared to the prior visualization. Scale bar 100µm. Filled arrowheads mark
residual positive cells. D-D′ Loss of fluorescence is not caused by photobleaching. D The
same embryo as in B and C has been demounted and stained for eGFP in order to assess
the presence of bleached eGFP. As previously only residual cells were detected. Scale bar
100µm. Filled arrowheads mark residual positive cells. D′ A control embryo treated similar
to fish A showed also only residual cells positive for in vivo fluorescence. Scale bar 100µm.
Filled arrowheads mark residual positive cells. E Fish with the same genetic background as
shown in A were recombined at stage 35 and chased for three days up to stage 39 (3 dpi
(equivalent to chasing until B′′′ during imaging). These fish were fixed and stained for eGFP,
Rx2 and apoptotic cells. Colored letters indicate the matching subpanels. Images were
acquired via Leica Sp8. F-F′ Two RSDNGSK3_low retinae positive for TUNEL, indicating
apoptosis of recombined cells. Scale bar 100µm. Anatomical rosettes indicate the orientation
of retinae. A: anterior, P: posterior, D: dorsal, V: ventral, M: medial (central in respect to
the retina), L: lateral (peripheral in respect to the retina).
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The proliferative capacity of RSCs and eRPCs was
decreased by low Wnt stimulation

As shown previously the recombination in RSCs and eRPCs in the
RSDNGSK3_high line resulted in a high loss of polyclones. In order to assess
the effect of Wnt stimulation on single RSCs or eRPCs and their progeny the
RSDNGSK3_low line was employed to overcome this challenge at a lower
level of Wnt stimulation. The RSDNGSK3_low line was recombined in RSCs
(ccl25b-positive cells) or a combination of RSCs and eRPCs (tlx-positive cells,
all analyzed retinae are listed in Table 7.3). The resulting polyclones showed
an apparent qualitative difference between control and experiment. When
comparing recombined control GaudíRSG and experimental RSDNGSK3_low
retinae the clones appeared narrower in the experiment (Fig. 3.15A-B′).
Furthermore, subsequent to recombination with ccl25b:CreERT2 and two
weeks of chase only polyclones connected with the CMZ were present in
GaudíRSG retinae (Fig. 3.15C). The connection with the CMZ indicates a
polyclone maintained by a RSC or RPC. In RSDNGSK3_low retinae, however,
a mixture of polyclones connected with and disconnected from the CMZ
was observed (Fig. 3.15C′-C′′). Furthermore, polyclone morphology seemed
to change qualitatively after Wnt stimulation of RSCs or eRPCs (Fig. 3.15D-E′).

For further investigation 15 parameters were quantified for each posi-
tive retina in Table 7.3 (full quantifications in Fig. 7.7 and Fig. 7.8). It has to
be noted that no change in cell type composition of the polyclones has been
observed, i.e. all clones were founded by a multipotent cell and all cell types
were included in all polyclones. In the following I will elaborate on the minor
differences between polyclones. The distance of terminating clones to the
CMZ did only change slightly in the retinae recombined with tlx:CreERT2 .
This was only the case in the maximum distance of clones to the CMZ
(indicating the earliest terminating clone in the retina Fig. 7.7D), while the
minimum distance of clones was unaltered (indicating the latest terminating
clone in the retina Fig. 7.7C). Due to the spatiotemporal properties of the
retina it can be deduced that therefore the time of clone termination remains
unaltered. The total number of polyclones decreased upon Wnt stimulation
when recombining with ccl25b:CreERT2 (Fig. 7.7E, Fig. 7.8E). In contrast,
no change of total number of polyclones was observed when recombining
with tlx:CreERT2 . Whether this was also an apoptosis effect that is more
present in RSCs or an artifact of polyclone detection remains to be elucidated.
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A robust trend for retinal diameter was only observed at later timepoints,
where the retinae recombined with ccl25b:CreERT2 increased in size upon
Wnt stimulation of single cells. While there was no significant difference at
14 dpi, there was a significant difference at both 21 and 28 dpi (Fig. 7.8I). The
cause for this increase in size remains unclear and needs to be elucidated
in future work. Nothing could be concluded from the quantification of the
amount and the starting position of late starting clones. Late starting clones
were defined as clones connected with the CMZ but not being connected to
the induction area, indicated by the accompanying longer clones in the reti-
nae (indicating a partially quiescent founding cell, Fig. 7.7J-L,O, Fig. 7.8J-L,O).

The most prominent differences were an increase of terminating clones
and a decrease of clone width upon low Wnt stimulation. This held true
for both RSCs and eRPCs. The detailed quantification method for both
parameters is illustrated in Fig. 3.15F,G. Strikingly, the low stimulation of
Wnt in single RSCs or RPCs led to fewer polyclones connected with the
CMZ in comparison to wt (Fig. 3.15I) and narrower clonal stripes (Fig. 3.15J-J′).

Taken together, the proliferative capacity of RSCs and eRPCs is de-
creased by low Wnt stimulation. The differentiation potential however is
unaltered.
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Figure 3.15: (Opposite page) Low Wnt stimulation decreased the proliferative
capacity of RSCs and eRPCs.
Fish of the GaudíRSG and RSDNGSK3_low line were crossed with ccl25b:CreERT2 or
tlx:CreERT2. At hatch fish were treated with tamoxifen to induce recombination. The fish
were raised for 1 to 4weeks. Subsequently, fish were fixed, stained and imaged in a Leica
Sp8. A-A′ Polyclones were narrower in RSDNGSK3_low compared to GaudíRSG (white
quadrilaterals). Maximum z projections of GaudíRSG (A) or RSDNGSK3_low (A′) retinae
imaged from lateral. The retinae were recombined by ccl25b:CreERT2 and chased for 2 weeks.
Scale bar 100µm. Anatomical rosette in A valid for A-B′. B-B′ Again, polyclones were
narrower in RSDNGSK3_low compared to GaudíRSG (white quadrilaterals). Maximum z
projection of GaudíRSG (B) or RSDNGSK3_low (B′) retinae imaged from lateral. Retinae
were recombined by ccl25b:CreERT2 and chased for 2 weeks. Scale bar 100µm. C-C′′ No
GaudíRSG polyclones did terminate and therefore all polyclones form polyclonal patches
connected with the CMZ (C). RSDNGSK3_low polyclones, however, consisted of a mixture
of polyclones connected with the CMZ which were not terminated (C′) and polyclones
disconnected from the CMZ which were terminated (C′′). Representative polyclones of
GaudíRSG (C) and RSDNGSK3_low (C′-C′′) retinae recombined with ccl25b:CreERT2,
which have been chased for 2 weeks. Depicted are orthogonal sections. The white quadri-
laterals mark single polyclones. Scale bar 50µm. Anatomical rosette in C′′ valid for C-C′′.
D-D′ Lateral view of GaudíRSG (D) and RSDNGSK3_low (D′) retinae recombined by
ccl25b:CreERT2 (maximum z projections). Retinae have been chased for 2 weeks. Polyclones
were detected in both, GaudíRSG and RSDNGSK3_low retinae. Solid arrowheads mark
exemplary polyclones. Scale bar 100µm. Anatomical rosette in D valid for D-E′. n-values
indicate the total number of analyzed retinae per condition. E-E′ Lateral view of GaudíRSG
(E) and RSDNGSK3_low (E′) retinae recombined by ccl25b:CreERT2 (maximum z projec-
tions). Retinae have been chased for 2 weeks. Polyclones were detected in both, GaudíRSG
and RSDNGSK3_low, retinae. Solid arrowheads mark exemplary polyclones. Scale bar
100µm. n-values indicate the total number of analyzed retinae per condition. F Present
polyclones have been categorized into being connected with or disconnected from the CMZ.
Categorization was achieved by assessing overlap of the polyclone with the rx2 expression
domain. The results are depicted in panel I. G Polyclone widths were quantified for all
polyclones. The minimum and maximum width of polyclones per retina was normalized to
the circumference and visualized in J and J′. I-J Plots depicting major diverging parameters
comparing controls and experiments. I The percentage of polyclones connected with the
CMZ decreased drastically upon stimulation of the β-catenin dependent Wnt pathway within
the polyclone. This indicates a decreased proliferation potential of recombined cells. J-J′

The minimum (J) and maximum (J′) width of polyclones normalized to the circumference
decreased significantly upon the stimulation of the β-catenin dependent Wnt pathway, again
indicating a change in proliferation potential. Asterisks indicate P-values: **** P<=0.0001,
*** P<=0.001, ** P<=0.01, * P<=0.05, ns P>0.05. Anatomical rosettes indicate the
orientation of microscopy images and schemes. A: anterior, P: posterior, D: dorsal, V:
ventral, M: medial (NR center), L: lateral (NR periphery).

53





4
Discussion

In vivo imaging of medaka was enhanced

Fluorescent proteins were assayed in vivo

mGFPmut2/eGFP and mCherry are the fluorescent proteins of choice
in medaka

While mGFPmut2 was the FP with the highest overall FI of green FPs,
eGFP, one of the most popular FPs, was still ranking third in FI in medaka
(Fig. 3.1C). Depending on the experiment both, mGFPmut2 or eGFP are
suitable for the experimental procedure. For exclusive in vivo imaging,
mGFPmut2 is superior to eGFP. It also harbors the A206K mutation,
abolishing multimerization [Zacharias et al., 2002]. This renders it suitable for
endogenous tagging approaches such as CRISPR/Cas-based homology-directed
repair (HDR)-mediated genomic insertions [Gutierrez-Triana et al., 2018]. In
contrast, a large toolset has already been established for eGFP, including
antibodies, nanobodies, split-GFP, etc. [Kubala et al., 2010,Caussinus et al.,
2011, Kamiyama et al., 2016]. In conclusion, mGFPmut2 can be utilized
for all experiments that rely on high in vivo FI and eGFP can be utilized
for experiments which require another downstream interaction factor or staining.

For red FPs mCherry is clearly outstanding in terms of FI and appli-
cability (Fig. 3.1D). It also offers a large variety of tools such as nanobodies,
antibodies, etc. [Katoh et al., 2016]. As a monomeric FP it is also suitable for
HDR-mediated endogenous tagging methods [Gutierrez-Triana et al., 2018].
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The in vivo assay was necessary and sufficient to investigate
fluorescent protein properties for light-sheet microscopy

A previous study in E. coli has shown a direct correlation of a set of parameters
acquired in vitro and in vivo FI [Balleza et al., 2017]. As shown here this
was not the case in medaka and therefore the established in vivo assay
was necessary to test novel FPs (Fig. 3.1E). This is in concordance with a
previous study which showed that there is no direct correlation of in vitro
and in vivo FIs of FPs in Caenorhabditis elegans [Heppert et al., 2016]. The
cause of the divergence of in vitro and in vivo FIs has so far not been investigated.

Testing of a subset of investigated FPs via SPIM furthermore revealed
that the established assay is sufficient to predict in vivo FIs for LSFM.

Codon adaptation decreased eGFP in vivo fluorescence intensity

Codon usage table-driven codon adaptation of eGFP for medaka was decreasing
FI by 25 to 30-fold (Fig. 3.2C). The exact reasons for this decrease are unknown,
but are more extensively discussed in my recent publication [Lischik et al., 2019].
This is in contrast to prior studies indicating that codon usage table-driven
codon adaptation was beneficial for FI of eGFP in Ciona intestinalis [Zeller
et al., 2006].

The results of the in vivo assay are not directly transferable from
medaka to zebrafish

The results of the in vivo assay cannot directly be transferred from medaka to
zebrafish (Fig. 3.3B-C). The causes for this difference are yet unknown, but
differential time of MBT (cell cycle 10, ≈1024 cells in zebrafish and 64-cell
stage in medaka) [Kane and Kimmel, 1993,Kraeussling et al., 2011], different
metabolism or differential mechanisms of mRNA stability are likely causes for
the apparent differences.
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Discussion

An ANN performed Classification and prediction of time course
continuation

The classification of time courses to a FP name by ML algorithms was limited
due to inherent noise. However, classification was more accurate with an
ANN. This is most likely due to the ability of ANNs to distinguish predictive
components from inherent biological noise during the learning process. By
implication this also means that classification by ML algorithms might be
improved by first extracting the principal components (PCs) and subsequently
fitting the model.

Additionally, time course continuation prediction by ANN was success-
ful. The ANN was able to predict the continuation of a time course with a
high accuracy (Fig. 3.4). This implicates that all the needed information was
contained in the initial fraction of the dataset. Therefore, the imaging time of
future experiments could be shortened at least by half the time to facilitate
faster result acquisition. There is no precedence of a similar study predicting
time lapse FP data by an ANN. A previous study, however, predicted the
excitation and emission wavelengths of eGFP-derived FPs accurately, based on
structural information of their chromophore core [Nantasenamat et al., 2007].
This study used an ANN with less hidden layers (one) than in the present
thesis. However, while testing the ANN during this study, it became obvious,
that a classification or prediction of time courses was not possible with one
hidden layer.

The established high-throughput assay is applicable to future
investigations

The established high-throughput assay is applicable to future investigations, in
particular for fluorescence-based approaches. It is already deployed in another
project utilizing a fluorescent reporter and comparing its FI between mutant
and wt fish. This combination is particularly useful if the number of mutants
is limited. Therefore, imaging of up to 96 presumably mutant fish can be
performed with subsequent genotyping [Hammouda et al., 2019]. This allows
a high-throughput readout of affected pathways in mutants via fluorescent
reporters.
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α-Bungarotoxin is the best available anesthetic for
long-term imaging in medaka

The standard anesthetic for teleosts, tricaine, has shown incomplete anesthesia
and impairment of cardiac development during extended in vivo imaging [Culver
and Dickinson, 2010]. Several groups were therefore aiming at improving
this treatment [Dray et al., 2015,Readman et al., 2017,Barbosa et al., 2015].
The most effective anesthetic without induction of cardiac defects in medaka,
however, is α-Bungarotoxin, as has been shown before in zebrafish [Swinburne
et al., 2015] (Fig. 3.5).

Microinjection of α-Bungarotoxin mRNA does not only lead to effec-
tive anesthesia, it also supplies a photostable anesthetic. This is of particular
importance during fluorescence microscopy of whole organs in vivo as
conducted here. A more specific discussion on the effects and applicability of
α-Bungarotoxin is supplied in my recent publication [Lischik et al., 2019].

In vivo imaging was enhanced by pigmentation mutants

Imaging of spooky pigment mutant embryos was possible in the
injected generation

The pigment double knockout spooky is readily established in any existing
transgenic or mutant background (Fig. 3.6 and [Lischik et al., 2019]). This is
helpful in establishing transparent medaka, similar to the see-through medaka
[Wakamatsu et al., 2001], but without the need for extensive breeding and
screening. The mutant facilitated deep imaging as demonstrated in this thesis
for multiple lines in particular for the retina. The injection was additionally
enhanced by increasing the number of sgRNAs targeting the same locus, as has
been implicated in a previous investigation [Wu et al., 2018] (Fig. 3.6B).
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spookiest pigmentation mutants will eliminate the residual
autofluorescent pigment

The spookiest mutant consists of KOs of pnp4a [Kimura et al., 2017], oca2 [Fuka-
machi et al., 2004] and slc2a15b [Kimura et al., 2014]. These mutants lack the
pigments of iridophores, melanophores/xanthopores and leucophores, respec-
tively. The loss of the latter is a valuable addition to spooky due to their high FI.

In terms of pigmentation state this mutant is similar to the zebrafish
crystal mutant [Antinucci and Hindges, 2016] and see-through medaka [Waka-
matsu et al., 2001,Ohshima et al., 2013]. In contrast to the latter, it lacks
complicated maintenance due to known mutated loci. The spookiest KO is
also employable to any known medaka inbred line with available genomic
data [Spivakov et al., 2014].

The established spooky pigmentation mutant together with microinjec-
tion of α-Bungarotoxin mRNA was employed in the following to perform in
vivo microscopy of RSCs and RPCs.

A retinal stem cell and two modes of daughter

cell behavior were observed in vivo

A presumable retinal stem cell was tracked

The established tool set allowed to track single cells in the retina over long time
periods (Fig. 3.8). These tracks were subsequently analyzed. One of the cells
was not dividing in a time frame of 60 h and stayed in the periphery of a patch
of cells, which is due to the tight connection presumably the clone stemming
from this cell (Fig. 3.9). These two properties render this cell a presumable
RSC, showing that RSCs are feasible to track. However, the length of division
time might complicate the analysis of RSCs via in vivo imaging data. In order
to continue the analysis, more presumptive RSCs need to be tracked in order
to investigate their in vivo behavior.
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Two modes of daughter cell behavior were observed in the
retina

Several cell divisions were observed within the tracked data. Investigation
revealed two distinct behaviors of daughter cells subsequent to division: (1)
daughter cells stayed in close proximity to each other (2) daughter cells strove
away from each other (Fig. 3.10). Whether these movements are active or passive,
imposed by local tissue architecture, remains to be elucidated. Strikingly, the
original cell which was located closer to the SC domain at the beginning of
tracking, gave rise to the daughter cells that strove away from each other.
Again, more tracking data will be needed in order to investigate the causative
parameters for the different daughter cell behavior modes.

Global movements were corrected subsequent to data
collection

All acquired data showed global drift or movements in need of correction.
I implemented two different algorithms to do so, but the results were not
convincing. This is most likely due to the low number of anchoring tracked cells.
Therefore, I propose that for future efforts either more cells or hallmarks, such
as the total retina, need to be tracked and taken into account. This would not
only allow the registration of tps to each other, but also enable the derivation
of positions relative to the retina. This is especially helpful, since the general
domains of RSC and RPC presence are known from previous studies [Centanin
et al., 2014].

The present data offered a new resolution for tracking of
stem cells

Post-embryonic RSCs and RPCs have been extensively studied post hoc
in medaka [Centanin et al., 2011, Centanin et al., 2014]. The non-invasive
in vivo imaging, tracking and subsequent analysis of RSCs and RPCs will
lead to novel insights into the growth mode and behavior of the analyzed
cells in vivo. In comparison with the previous studies the growth mode, cell
cycle intervals and number of divisions could be directly deduced from the
data without estimation and therefore averaging the distribution. In order
to investigate these parameters and the stereotypy of cells the number of
analyzed cells needs to be improved drastically. Subsequent to the addition
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of cell tracks the stereotypy of tracks could be analyzed. This analysis could
then be directly compared to a previous study that showed the variance in
division angle and rate depending on the position of dividing cells in the
embryonic retina in zebrafish [Wan et al., 2016]. The present work focuses
solely on the post-embryonic retina, which is differentiated and harbors
homeostatic RSCs. The investigation was guided temporally by choice of the
recombination tp. Stage 30 was chosen, as it was shown that the retina is ex-
hibiting a post-embryonic growth mode at this stage [Sinn and Wittbrodt, 2013].

Compared with previous studies this data offers a new level of detail
for non-invasive, long-term investigation of SCs in vivo with a high spatiotem-
poral resolution. Previous studies were limited in non-invasiveness by labeling
cells in vitro and transplanting them [Sabapathy et al., 2015] or surgically
adding an imaging window [Ritsma et al., 2014]. In vivo investigation was
often performed in a post hoc analysis [Tolar et al., 2005, Suh et al., 2007].
Long-term acquisition was often limited to a maximum of 12 h [Park et al.,
2017,Rompolas et al., 2012,Tata et al., 2013]. Other studies sacrificed spatial
resolution for being able to image in vivo [Kraitchman and Bulte, 2009].
The present work aimed at a systematic investigation of wild-typic and
uninfluenced SCs at a high resolution in order to investigate SC behavior in vivo.

Previous studies of SC behavior have shown that SCs depend on the
circadian rhythm of the organism. This has been shown for hematopoietic
stem cell (HSC) mobilization [Lucas et al., 2008,Méndez-Ferrer et al., 2008],
skin SCs [Bjarnason et al., 2001] and neural stem cells (NSCs) in mouse
and zebrafish [Moore and Whitmore, 2014,Kochman et al., 2006]. The high
temporal resolution of the present data set will allow the comparison of the
behavior of RSCs between day and night. Previous studies have shown that
the β-catenin dependent Wnt pathway links the circadian clock with the cell
cycle in adult stem cells [Matsu-ura et al., 2018]. This link is mainly mediated
through GSK3 [Hirota et al., 2008]. Therefore, combining the here discussed
single cell analysis of RSCs and RPCs with the following analysis of the effect
of Wnt stimulation through DN-GSK3 could lead to a more fundamental
understanding of the regulation of the circadian clock in SCs.
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The effect of Wnt stimulation was dependent on

dosage and cell type

The preceding work and the resulting conclusions were limited by analyzing
polyclone formation only in the RSDNGSK3_high transgenic line. Polyclones
are patches of cells that are connected from its most lateral to its most
medial point (relative to the retina: connected from its most peripheral to its
most central point). A polyclone can consist of a single or multiple clones,
which are directly adjacent to each other, not allowing to draw reproducible
borders. Even though it was possible to deduce that polyclone formation
was affected by Wnt stimulation in RSDNGSK3_high retinae, it was not
clear whether proliferative capacity or differentiation potential were affected.
This was masked by the polyclone loss which was the predominant effect of
recombination (Fig. 1.4A′, Fig. 3.13). To assess these two inherent properties
the recombined cells need to form polyclones. Therefore, both DN-GSK3 lines
(RSDNGSK3_high and RSDNGSK3_low, Fig. 3.11) were leveraged to analyze
SCs in a β-catenin dosage-dependent manner reflecting different Wnt activity
states in entire clones.

Combining both lines it was shown that high Wnt stimulation led to
apoptosis of most cells in the retina. In lRPCs, however, it changed the
differentiation potential. High Wnt stimulation also immortalized fate-restricted
RPCs. Low Wnt stimulation decreased the proliferative capacity of RSCs and
eRPCs (summarized in Fig. 4.1).
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Figure 4.1: Wnt stimulation resulted in apoptosis, a decrease in proliferative ca-
pacity in RSCs and eRPCs and alteration of differentiation potential in lRPCs.
A Expression domains of the promoters used for CreERT2 expression. The gray arrow
indicates the progression of cells, linearized in B. B The top scheme indicates the expression
domains together with the matching cell types. The gray arrow indicates the same progression
of cells as in A. Summarized are the clone properties of GaudíRSG, RSDNGSK3_low and
RSDNGSK3_high retinae. Recombination in RSCs led to maintained clones in GaudíRSG
retinae. In contrast, fewer clones were present in RSDNGSK3_low retinae. The residual
clones were also terminating with a higher probability in comparison to wt. This indicated a
decrease in proliferative capacity. No clones were present in RSDNGSK3_high retinae due
to increased apoptosis upon Wnt stimulation. Recombination in eRPCs led to a mixture
of maintained and terminating clones in GaudíRSG retinae. In contrast, fewer clones were
present in RSDNGSK3_low retinae. The residual clones were again terminating with a
higher probability in comparison to wt, again indicating a decrease in proliferative capacity.
Very few clones were present in RSDNGSK3_high retinae due to increased apoptosis upon
Wnt stimulation. Recombination of all cell types by hsp70:Cre showed a mixture of all clone
types in GaudíRSG retinae. In RSDNGSK3_high retinae maintained clones were observed.
This is in contrast to all experiments utilizing an available CreERT2 line, indicating that
the maintained clones were most likely formed by cells not included in the promoters of the
CreERT2 lines. Together with the fate restriction of maintained clones, the clone-founding
cells were most likely located between or in eRPCs and/or lRPCs. Most likely, these cells
were immortalized by Wnt stimulation, but their fate restriction was fixed. Recombina-
tion in lRPCs in GaudíRSG retinae led to formation of terminated clones consisting of
few cells. Wnt stimulation in lRPCs, however, led to fewer clones due to apoptosis and
a change of differentiation potential. Anatomical rosettes indicate the orientation of the
schemes. A: anterior, P: posterior, D: dorsal, V: ventral, M: medial (central in respect to the
retina), L: lateral (peripheral in respect to the retina). Illustrations in panel B are modified
from [Centanin et al., 2014], with permission.
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High Wnt stimulation mainly led to apoptosis

As pointed out previously, the preceding work was limited by the loss of
polyclones, the reason for which remained to be elucidated. The shown
combination of in vivo imaging of recombined RSDNGSK3_high retinae and
the TUNEL assay revealed that most likely a large fraction of recombined cells
underwent apoptosis (Fig. 3.14). The acquisition of these results was again
supported by the established toolset.

This demarcates this work from others, which have shown that Wnt is
inducing an alteration of division symmetry [Habib et al., 2013], delay of
division, induction of quiescence [Chavali et al., 2018,Fleming et al., 2008] or
apoptosis through inhibition of β-catenin dependent Wnt signaling [Chen et al.,
2001]. The discrepancy of Wnt stimulation and Wnt inhibition both leading to
apoptosis might be explained by autoinhibition of the β-catenin dependent
Wnt pathway due to high stimulation [Jho et al., 2002].

The apoptosis of recombined cells is, however, contradicting previous
studies which show that Wnt stimulation typically leads to proliferation and
survival of cells [Reya and Clevers, 2005,Crowder and Freeman, 2000] whereas
Wnt inhibition leads to apoptosis [Grotewold and Rüther, 2002,Ellies et al.,
2000]. A possible reason for this discrepancy is that the previous studies were
either performed in vitro or via drug treatment, while this work focuses on
Wnt stimulation of single cells in their organismal context. Another possible
reason is the presumable pleiotropic effect of DN-GSK3 on other pathways,
which I will elaborate on later.

Residual positive cells were observed in RSDNGSK3_high retinae

Even though it has been shown that most cells underwent apoptosis in response
to high Wnt stimulation, residual positive cells were observed (Fig. 3.14C).
These residual cells are most likely the founding cells for the maintained fate-
restricted clones observed in the preceding work subsequent to recombination
of RSDNGSK3_high with hsp70:Cre (Fig. 1.3A′).
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The position of the residual cells was overlapping with RPCs. This is fitting
the observation that the resulting maintained clones were fate-restricted in
89% of the cases. This implicated immortalization of these residual cells and
therefore formation of exogenous clones. This is in line with a previous study
showing that Wnt stimulation increases long-term maintenance of zebrafish
RPCs [Meyers et al., 2012].

Low Wnt stimulation decreased proliferative capacity of
retinal stem and progenitor cells

The results indicate that low Wnt stimulation decreased the proliferative
capacity of RSCs and eRPCs while not altering their differentiation potential
(Fig. 3.15). The decrease in proliferative capacity was shown by an increase in
terminating clones upon Wnt stimulation (Fig. 3.15I). Additionally, the clones
resulting from Wnt stimulated cells were narrower than wt clones (Fig. 3.15J-J′).

This effect might be mediated directly through GSK3 acting on the
cell cycle [Hirota et al., 2008]. Even though most previous studies show a
positive effect of Wnt stimulation on proliferative capacity [Reya and Clevers,
2005, Crowder and Freeman, 2000], there are also supporting studies which
show a negative effect of Wnt stimulation which will be discussed in the
following. These studies have shown in vitro that Wnt3a and Wnt5a increase
the differentiation of extracted cells from the telencephalon, the ventral
midbrain and the striatum into neurons [Muroyama et al., 2004,Schulte et al.,
2005,Kasai et al., 2005]. Moreover, it has been shown in vitro and in vivo
that Wnt7a promotes differentiation of cortex neural precursors [Hirabayashi
et al., 2004] and that the differentiation of progenitors in the subventricular
zone (SVZ) is promoted by Wnts in vivo [Munji et al., 2011].

In order to elucidate how these differential effects of Wnt stimulation
came about a previous study identified FGF2 as the main switch for the effect
of Wnt stimulation [Israsena et al., 2004]. This previous study was able to show
that presence or absence of FGF2 determines whether Wnt stimulation leads to
SC maintenance or differentiation, respectively. It is conceivable, that such a
factor is also present in the medaka NR.
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High Wnt stimulation leads to apoptosis or
immortalization, low Wnt stimulation leads to a decrease
of proliferative capacity

In conclusion, the effect of Wnt stimulation is dependent on the level of
stimulation and the initially recombined cell type.

Along the axis of dosage effect it appears that cells are more prone to
undergo apoptosis when experiencing a high level of Wnt stimulation. This
was the case for all investigated cell types: ccl25b-positive RSCs (Fig. 3.15),
rx2-positive RSCs (Fig. 1.4A-A′ and [Möller, 2017]), tlx-positive RSCs and
eRPCs (Fig. 1.4C-C′., Fig. 3.15 and [Möller, 2017]) and atoh7-positive lRPCs
(Fig. 1.4E-E′ and [Möller, 2017]). Furthermore, a change of differentiation
potential was observed in the remaining polyclones of atoh7-positive cells
(Fig. 1.4F-F′ and [Möller, 2017]). The loss of RGCs matches a previous study,
which showed that Wnt stimulation in the retina leads to a loss of ipsilaterally
projecting RGCs [Iwai-Takekoshi et al., 2018].

Along the axis of the initially recombined cell type it was concluded
that there is a similar effect of low Wnt stimulation on RSCs and eRPCs
(Fig. 3.15). The main effect in these cell types is a decrease of proliferative
capacity, indicated by the more frequently terminating and narrower polyclones.
However, there does not seem to be an impact on differentiation potential, since
in all analyzed retinae the full set of cell types was present in all polyclones.
This is in contrast to previous studies, which indicated that the effect of Wnt
stimulation differs depending on the cell type [Kubo et al., 2005,Kubo and
Nakagawa, 2009,Kubo, 2003,Denayer et al., 2008].

Combining both axes, it was concluded, that high Wnt stimulation is
inducing apoptosis in varying degrees descending from RSCs via eRPCs to
lRPCs. It is also inducing a change in differentiation potential in the surviving
lRPCs. Presumably, high Wnt stimulation is also able to immortalize a subset
of RPCs, which give rise to fate-restricted lineages. Low Wnt stimulation
however, decreases proliferative capacity of RSCs and eRPCs. All experimental
interpretations are summarized in Fig. 4.1.
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Dominant-negative GSK3 has multiple targets

An important point to mention is the presumed pleiotropic effect of DN-GSK3.
However, DN-GSK3 has been widely used in prior studies to investigate Wnt
signaling [Taelman et al., 2010, Pachenari et al., 2017, Abdul et al., 2018,
Pierce and Kimelman, 1995,Yost et al., 1996] and is also targeted by chemical
compounds in many clinical trials. In contrast, there are also studies that link
GSK3 to various pathways such as the TGF-β pathway [Yang et al., 2018,Beurel
et al., 2015], the PI3K/Akt/mTOR pathway [Vallée and Vallée, 2018] and
the insulin pathway [Chami et al., 2016]. Therefore, it cannot be excluded
that additional pathways are involved and/or affected by overexpression of
DN-GSK3.

∆90-β-catenin is an alternative agent to dominant-negative GSK3

A solution for this presumed pleiotropic effect of DN-GSK3 is the usage of
∆90-β-catenin, a stabilized form of β-catenin. This protein is not binding
to the cytoskeleton or the destruction complex but remains transcriptionally
active targeting its original target genes [DasGupta et al., 2002]. This tool,
together with the presented results, might help address the question of how
specific DN-GSK3 is to β-catenin dependent Wnt signaling. Experiments will
be conducted by establishing another GaudíRSG-based construct, substituting
H2B-eGFP with ∆90-β-catenin.

67





5
Conclusions

Within this work I have approached three major goals with the aim to unravel
the regulation of RSCs and RPCs by β-catenin dependent Wnt signaling.

First, in vivo imaging of medaka was enhanced by improving fluores-
cent protein selection, anesthesia and pigmentation. The established assay
is also already employed for different fluorescence-based investigations on
wt and mutant embryos. Furthermore, with the advent of inbred lines the
pigment knockout is now universally adaptable to any line, if investigation via
microscopy is necessary.

Second, the established toolset offered the unique opportunity to per-
form in vivo microscopy of neural stem cells. In contrast to previous approaches
it a high spatiotemporal resolution (xyzt: 0.26µm, 0.26µm, 1µm, 20min),
long imaging times (up to 4 d), and non-invasive imaging (no surgery needed)
were achieved.

Finally, this work elucidated the effect of Wnt stimulation on single
retinal stem cells. High Wnt stimulation was shown to induce apoptosis
in RSCs and eRPCs, with a few residual cells remaining. These residual
cells were immortalized while keeping their differentiation potential. High
Wnt stimulation in lRPCs decreased proliferative capacity and altered their
differentiation potential. Low Wnt stimulation in RSCs and eRPCs decreased
the proliferative capacity of the cells while keeping their differentiation potential.

In the near future the continued in vivo investigation of retinal stem
cells will lead to novel insights into their wild-typic behavior. Furthermore, the
combination of the shown and established tools will enable in vivo investigation
of retinal stem cells exposed to Wnt stimulation.
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6
Materials & Methods

Materials

Fish lines

The Oryzias latipes inbred and isogenic iCab line was used as the wt and
reference strain for the experiments [Wittbrodt et al., 2002]. All fish lines were
generated from iCab and used lines are indicated in Table 6.1.

Table 6.1: Fish lines used in this thesis

Fish line name Internal stock num-
bers

Source

CR(Oca2 sgRNA57, sgRNA58) 7487, 7733, 7883,
8230

this thesis

CR(Oca2 sgRNA57, sgRNA58, Pnp4a
sgRNA250)

7732, 7886, 8038,
8229, 8232

this thesis

GaudíRSG, CR(Oca2, Pnp4a, CFP) 7975 crossing and
this thesis

HsCre, GaudíRSG, CR(Oca2, Pnp4a,
CFP)

7470, 7730, 7731,
7974, 8379, 8391,
8392, 8564

crossing and
this thesis

HsCre, RSDNGSK3_high, CR(Oca2
sgRNA57, sgRNA58, Pnp4a sgRNA250)

7457, 7734, 8231,
8474

crossing and
this thesis

ccl:CreERT2, GaudíRSG 8042 crossing

ccl:CreERT2, RSDNGSK3_high 8043, 8189 crossing

ccl:CreERT2, RSDNGSK3_low 8044 crossing

tlx:CreERT2, GaudíRSG 8045 crossing
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Fish line name Internal stock num-
bers

Source

tlx:CreERT2, RSDNGSK3_high 7976, 8046, 8190 crossing

tlx:CreERT2, RSDNGSK3_low 8047 crossing

RSDNGSK3_high 8186 crossing

RSDNGSK3_low 8258 crossing

Plasmids

The plasmids used in this thesis can be found in Table 6.2.

Table 6.2: Plasmids used in this thesis.

Internal plas-
mid stock
number

Name (additional description) Source

3632 DR274 sgRNA backbone (T7) lab stock

5357 DR274(sgRNA 57 Oca2_ex9_T1) this work

5358 DR274(sgRNA 58 Oca2_ex9_T3) this work

5359 DR274(sgRNA 250 Pnp4a_T2) lab stock

5433 DR274(sgRNA 251 Pnp4a_T41) lab stock

5000 DR274(sgRNA 252 CFP_notGFP) this work

5197 Cas9 lab stock

5432 DR274(sgRNA 280 Oca2_intron_T1) lab stock

5419 DR274(sgRNA 295 Pnp4a_T2_3) this work

5420 DR274(sgRNA 296 Pax7a_T3) this work

5421 DR274(sgRNA 298 Pax7a_T21) this work

5422 DR274(sgRNA 299 Pax7a_T34) this work

5423 DR274(sgRNA 300 slc2a15b_T2) this work

5426 DR274(sgRNA 303 slc2a15b_T8) this work

5427 DR274(sgRNA 304 tyr_T1) this work

5428 DR274(sgRNA 305 tyr_T3) this work

5180 pGGEV3_+(CloverwCR13wKpnI)+_+1_PCR this work
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Internal plas-
mid stock
number

Name (additional description) Source

5181 pGGEV3_+(eGFP)+_+1_PCR this work

5182 pGGEV3_+(eGFPwCR13_A206K)+_+1_PCR this work

5183 pGGEV3_+(mCherry)+_+1_PCR this work

5184 pGGEV3_+(mRFP)+_+1_PCR this work

5185 pGGEV3_+(mRuby2)+_+1_PCR this work

5186 pGGEV3_+(tagRFP)+_+1_PCR this work

5187 pGGEV3_+(Venus)+_+1_PCR this work

5188 pGGEV3_+(YFP)+_+1_PCR this work

5202 pGGEV3_+(CFPwCR13)+_+1_PCR this work

5340 pGGEV3_+(mGFPmut2)+_+1_PCR this work

5341 pGGEV3_+(mRFP1asterisk)+_+1_PCR this work

5342 pGGEV3_+(mScarlet-I)+_+1_PCR this work

5343 pGGEV3_+(mVenusNB)+_+1_PCR this work

5350 pGGEV3_+(H2A-mCherry)+_+1_PCR this work

5351 pGGEV3_+(lifeact-eGFP)+_+1_PCR this work

5352 pGGEV3_+(OleGFP)+_+1_PCR this work

5353 pGGEV3_+(SceGFP)+_+1_PCR this work

5173 pmtb-T7-alpha-bungarotoxin this work

Primers

All primers were ordered from Eurofins MWG Operon, Table 6.3 contains all
primers in 5’ to 3’ orientation, which were already present in the lab and could
be used as present resources, whereas Table 6.4 contains the primers in 5’ to 3’
orientation which were designed and ordered while conducting this work.

Table 6.3: Present primers used in this thesis.

Number Alias Sequence (5’ to 3’ orientation)

JW1452 ACTB_seq_R CAGGGGCAATTCTCAGCTCA

73



Number Alias Sequence (5’ to 3’ orientation)

JW2035 newGFPBamHI GCCGGATCCATGGTGAGCAAGGGCGA

JW2915 ActB_SeqF2 CCTTGAAACGAAAAGCCCCC

JW3188 newTagRFP_F_BamHI GCCGGATCCATGGTGTC
TAAGGGCGAAGAG

JW3189 newTagRFP_R_KpnI GCCGGTACCTTAATTAAGT
TTGTGCCCCAGTTTGC

JW3566 mRFP_STOP_KpnI_R GCCGGTACCTTAGGCGCC
GGTGGAGTGGCGGCC

JW3667 3377 rev TGTAGATGAACTCGCCGTCC

JW5653 mCherry
seq_downstream

CTCAGTTCATGTACGGCTCCAAG

JW6070 mRuby2_KpnI_R GCCGGTACCTTACTTGTACAGCTCGTCCA

JW6237 mRFP fwd_BamHI GCCGGATCCATGGCCTCCTCCGAGGACG

Table 6.4: Primers designed and used in this thesis.

Number Alias Sequence (5’ to 3’ orientation)

JW6523 sgRNA252_F TAGgTATAGACGTTGTCGCTGA

JW6524 sgRNA252_R AAACTCAGCGACAACGTCTATA

JW7506 ctnnb2_cDNA_R_KpnI GCCGGTACCTTACAGGTCGGT
ATCAAACC

JW7510 ctnnb2_delta90_cDNA_ATG_BglII_FGCCAGATCTATGCGTGCTCAGAG
GGTGCGTGCAGCCATG

JW7654 eGFPmutV68L_S72A CTGCAGTGCTTCGCCCGCTACC
CCGACCACATGAA

JW7655 eGFPmutF64F_S65A GCCGTAGGCGAAGGTGGTCACG
AGGGTGGGCC

JW7658 mVenus to mVenus NB_F GTGCAGTGCTTCGCCCGCTAC

JW7659 mVenus to mVenus NB_R GCCGTAGCCCAGGGTGGTCA

JW7660 mRFP to mRF-
Paster_F_BamHI

GCCGGATCCATGAGTAAAGGAG
AAGAAAACAACTTAGCTGTCA
TCAAGGAGTTCATGCGC
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Number Alias Sequence (5’ to 3’ orientation)

JW7661 mRFP to mRF-
Paster_R_KpnI

GCCGGTACCTTATTTGTATAGT
TCATCCATGCCGCCGGTGGAGT
GGCGGCCCTC

JW8200 OlGFP_F_ATG_BsaI_EV3 GCCGGTCTCAACCTCTATGGTG
AGCAAGGGAGAGGA

JW8201 OlGFP_R_TGA_BsaI_EV3 GCCGGTCTCATAGTTCACTTGT
ACAGCTCGTCCATTC

JW8206 eGFP_F_BamHI_lifeact GCCGGATCCATGGGCGTGGCC
GACCTGATCAAGAAGTTCGAGA
GCATCAGCAAGGAAGAGGGCGA
CCCACCGGTCGCCACCATGGTG
AGCAAGGGCGAGGA

JW8207 H2A_F_ATG GCCGGATCCATGGCAGGTGGAA
AAGCAGG

JW8208 ScGFP_F_BamHI_ATG GCCGGATCCATGGTTAGTAAAG
GAGAAGAACTTTT

JW8209 ScGFP_R_KpnI_STOP GCCGGTACCTTATTTGTATAGT
TCATCCATGC

JW8311 delta90_ctnnb2_cDNA_T2A_XbaI_FGCCTCTAGAGAGGGCAGAGGAA
GTCTTCTAACATGCGGTGACGTG
GAGGAGAATCCCGGCCCTATGCGT
GCTCAGAGGGTGCG

JW8579 pnp4a_T2_3_F TAGGAGGGCGTCTACGCCATGG

JW8580 pnp4a_T2_3_R AAACCCATGGCGTAGACGCCCT

JW8581 pax7a_T3_F TAGGTAATTCTGGCCTGGCGCA

JW8582 pax7a_T3_R AAACTGCGCCAGGCCAGAATTA

JW8585 pax7a_T21_F TAggGGGCTCGGTGGCGTAAGC

JW8586 pax7a_T21_R AAACGCTTACGCCACCGAGCCC

JW8587 pax7a_T34_F TAGgGGAGTGTTCATCAACGGG

JW8588 pax7a_T34_R AAACCCCGTTGATGAACACTCC

JW8589 slc2a15b_T2_F TAggCTCCGGTCATCCCGCCGA

JW8590 slc2a15b_T2_R AAACTCGGCGGGATGACCGGAG

JW8595 slc2a15b_T8_F TAggGGTAACAATAAGGACCCG

JW8596 slc2a15b_T8_R AAACCGGGTCCTTATTGTTACC

JW8597 tyr_T1_F TAggTCCAGACAAATAGGTCGT
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Number Alias Sequence (5’ to 3’ orientation)

JW8598 tyr_T1_R AAACACGACCTATTTGTCTGGA

JW8599 tyr_T3_F TAGgACGTGGGTAGATGGACCG

JW8600 tyr_T3_R AAACCGGTCCATCTACCCACGT

RNAs

The following tables list all RNAs used during this work. Table 6.5 lists all
sgRNAs, whereas Table 6.6 lists all mRNAs used in this thesis. Transcription
of sgRNAs was performed according to the protocol in the subsection sgRNA
transcription, whereas transcription of mRNAs was performed according to
the protocol in the subsection mRNA transcription. Fluorescent protein CDSs
were cloned from present plasmids except for the following. cytoplasmic EKAR
(Cerulean-Venus) was a gift from Karel Svoboda (Addgene plasmid # 18679)
[Harvey et al., 2008], mRuby2-C1 was a gift from Michael Davidson (Addgene
plasmid # 54768) [Lam et al., 2012], pcDNA3-Clover was a gift from Michael
Lin (Addgene plasmid # 40259) [Lam et al., 2012], pmScarlet-i_C1 was a gift
from Dorus Gadella (Addgene plasmid # 85044) [Bindels et al., 2016] and
SceGFP was a gift from Sabine Strahl [Xu et al., 2013]. The exact amino acid
sequences and comparison with the publication of Balleza and colleagues are
listed in Table 7.1.

Table 6.5: sgRNAs used in this thesis.

Name (additional description) Source

sgRNA 57 Oca2_ex9_T1 this work

sgRNA 58 Oca2_ex9_T3 this work

sgRNA 250 Pnp4a_T2 lab stock

sgRNA 251 Pnp4a_T41 lab stock

sgRNA 252 CFP_notGFP this work

sgRNA 280 Oca2_intron_T1 lab stock

sgRNA 295 Pnp4a_T2_3 this work

sgRNA 296 Pax7a_T3 this work

sgRNA 298 Pax7a_T21 this work

sgRNA 299 Pax7a_T34 this work
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Name (additional description) Source

sgRNA 300 slc2a15b_T2 this work

sgRNA 303 slc2a15b_T8 this work

sgRNA 304 tyr_T1 this work

sgRNA 305 tyr_T3 this work

Table 6.6: mRNAs used in this thesis.

Name (additional description) Source

CloverwCR13wKpnI this work

eGFP this work

eGFPwCR13_A206K this work

mCherry this work

mRFP this work

mRuby2 this work

tagRFP this work

Venus this work

YFP this work

CFPwCR13 this work

mGFPmut2 this work

mRFP1asterisk this work

mScarlet-I this work

mVenusNB this work

H2A-mCherry this work

lifeact-eGFP this work

OleGFP this work

SceGFP this work

α-bungarotoxin this work
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Antibodies

Antibodies used are listed in Table 6.7.

Table 6.7: Antibodies used in this thesis.

Target Host Conjunction Used Dilution Supplier Cat. no.

Rx2 rabbit none 1:250 lab made NA

eGFP chicken none 1:200 Life technologies A10262

chicken donkey DyLight488 1:250 Jackson 703-485-155

rabbit goat AlexaFluor647 1:125 Life Technologies A-21245

Antibiotics

Antibiotics used for bacterial selection are listed in Table 6.8.

Table 6.8: Antibiotics used in this thesis.

Antibiotic Stock conc. Working conc. Supplier

Ampicillin 30 mg/ml 50 µg/ml Roth

Kanamycin 50 mg/ml 100 µg/ml Roth

Kits

Kits used in this thesis are listed in Table 6.9

Table 6.9: Kits used in this thesis.

Name Supplier

innuPREP DOUBLEpure Kit Analytik Jena

MEGAShortScript T7 Kit Ambion

MinElute Gel Extraction Kit QIAGEN

mMessage mMachine® Sp6 Transcription Kit Invitrogen
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Name Supplier

QIAPrep® Spin Miniprep Kit QIAGEN

QIAquick® Gel Extraction Kit QIAGEN

QIAquick® Nucleotide Removal Kit QIAGEN

QIAquick® PCR Purification Kit QIAGEN

QIAGEN Plasmid Midi Kit QIAGEN

RNeasy Mini Kit QIAGEN

RevertAid First Stand cDNA Synthesis Kit Thermo Fisher Scientifc

Enzymes and corresponding buffers

Enzymes used in this thesis are listed in Table 6.10, whereas the corresponding
buffers are listed in Table 6.11.

Table 6.10: Enzymes used in this thesis.

Type Name conc. Supplier

Restriction Enzyme BamHI-HF 20 U/µl NEB

Restriction Enzyme BsaI-HF 20 U/µl NEB

Restriction Enzyme KpnI-HF 20 U/µl NEB

Restriction Enzyme DpnI 20 U/µl NEB

Restriction Enzyme SpeI-HF 20 U/µl NEB

Restriction Enzyme EcoRV-FD - Thermo Fisher Scien-
tifc

Restriction Enzyme BglII-FD - Thermo Fisher Scien-
tifc

Restriction Enzyme DraI-FD - Thermo Fisher Scien-
tifc

Restriction Enzyme Eco31I-FD - Thermo Fisher Scien-
tifc

DNA Ligase T4 DNA Ligase 5 U/µl Thermo Fisher Scien-
tifc
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Type Name conc. Supplier

DNA Ligase T4 DNA Ligase 30 U/µl Thermo Fisher Scien-
tifc

DNA Polymerase Q5 High-Fidelity DNA Poly-
merase

2 U/µl NEB

Kinase T4 Polynucleotide Kinase 10 U/µl NEB

Proteinase Proteinase K 10 mg/ml Roche

DNase TurboDNase I 2 U/µl Life Technologies

hatching enzyme hatching enzyme lab
made

Table 6.11: Enzyme buffers used in this thesis.

Buffer Concentration Supplier

CutSmart 10 x NEB

FastDigest 10 x Thermo Fisher Scien-
tifc

FastDigest Green 10 x Thermo Fisher Scien-
tifc

T4 DNA Ligase Buffer 10 x Thermo Fisher Scien-
tifc

Q5 Reaction Buffer 5 x NEB

Chemicals and reagents

The used chemicals and reagents are listed in Table 6.12.
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Table 6.12: Chemicals and reagents used in this thesis.

Chemical/Reagent Abbreviation/
Synonym

Supplier

2-Propanol Isopropanol Sigma-Aldrich

4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid

HEPES Roth

4’,6-Diamidin-2-phenylindol DAPI Sigma-Aldrich

Acetone Sigma-Aldrich

Adenosine triphosphate ATP Thermo Fisher Scien-
tifc

Agar Roth

Agarose Sigma-Aldrich

Agarose Low Melt Roth

Bacto-Tryptone Gibco

Bovine Serum Albumin BSA Sigma-Aldrich

Calcium chloride dihydrate CaCl2 · 2 H2O AppliChem

Chloroform Sigma-Aldrich

Deoxyadenosine triphosphate dATP Thermo Fisher Scien-
tifc

Deoxynucleotide triphosphates dNTPs Sigma-Aldrich

Dimethyl sulfoxide DMSO Roth

DNA loading dye 10 x NEB

Ethylenediaminetetraacetic acid EDTA Roth

Ethanol 70 % (denatured) EtOH Roth

Ethanol 96 % (denatured) EtOH Roth

Ethanol 99 % EtOH Sigma-Aldrich

Ethidium Bromide EtBr Sigma-Aldrich

Etomidate Sigma-Aldrich

GeneRuler™DNA Ladder Mix Thermo Fisher Scien-
tifc

Glacial acetic acid Merck

Glucose Sigma-Aldrich

Glycerin Glycerol Merck
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Chemical/Reagent Abbreviation/
Synonym

Supplier

Hydrogen Chloride HCl Merck

Hydrogen peroxide H2O2 Sigma-Aldrich

Mach1™T1R phage resistant chemical
competent E. coli

Life Technologies

Magnesium Sulphate Heptahydrate MgSO4 · 7 H2O Merck

Methylene blue trihydrate Sigma-Aldrich

N-Phenylthiourea PTU Sigma-Aldrich

Normal Goat Serum NGS Gibco

Orange G Sigma-Aldrich

Paraformaldehyde PFA Sigma-Aldrich

Phenol/Chloroform/Isoamylalcohol PCI Roth

Polyethylene glycol - 4000 PEG-4000 Thermo Fisher Scien-
tifc

Potassium acetate KAc AppliChem

Potassium chloride KCl AppliChem

Potassium dihydrogen phosphate KH2PO4 Merck

Potassium hydrogen phosphate K2HPO4 Merck

Potassium hydroxide (KOH) Merck

Red sea salt Red Sea

RNA Loading Dye 2x rapid Thermo Fisher Scien-
tific

RNase-free water Sigma-Aldrich

Roti® Roth

Sheep Serum Sigma-Aldrich

Sodium acetate NaAc Grüssing

Sodium chloride NaCl Sigma-Aldrich

Sodium citrate Sigma-Aldrich

Sodium dodecyl sulphate sodium salt SDS Serva

Sodium hydrogen phosphate Na2HPO4 Applichem

Sodium hydroxide NaOH Sigma-Aldrich

Sucrose Roth
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Chemical/Reagent Abbreviation/
Synonym

Supplier

Trans-Tamoxifen Tamoxifen Sigma-Aldrich

Tricaine MS-222 Sigma-Aldrich

Tris base Roth

Tris-hydrochloride Tris-HCl Sigma-Aldrich

Trizol invitrogen

Tween 20 Sigma-Aldrich

X-Gal Thermo Fisher Scien-
tifc

Yeast Extract Roth

Consumables

The used consumables are listed in Table 6.13.

Table 6.13: Consumables used in this thesis.

Consumable Supplier

BLAUBRAND® intraMARK BRAND

Cell saver tips 200µl Roth

D1000 ScreenTape Agilent Technologies

FEP tubes � 1 mm Karl Schupp AG

Filter paper Whatman

Filter Tips 10µl, 20µl, 200µl, 1.25 ml Starlab

Filter Tips TipOne® RPT (sterile) 10µl, 20µl, 200µl Starlab

Folded Filters Sartorius

Gas permeable moisture barrier seal (4ti-0516/96) 4titude

Glass beads Roth

Glass Petri dishes STERIPLAN® 9cm Roth

Glass vials Roth

Injection needles GC100F-10 Harvard Apparatus
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Consumable Supplier

Latex Gloves Semperguard

Microloader tips Eppendorf

Micro pestles 0.5/1.5 ml Laborversand Harten-
stein

Micro pestles 1.5/2.0 ml Eppendorf

Nitrile Gloves Starlab

Pasteur pipettes Sarstedt

Petri dishes greiner

Pipette tips Steinbrenner

Reaction tubes 1.5 ml, 2 ml Sarstedt

Sandpaper 1000 grit Bauhaus

Tubes 15 ml, 50 ml Sarstedt

Well plates (6 well) böttger

Well plates (96 well) Greiner bio-one

Whatman® Cellulose Filter Paper Whatman

Media and buffers

Table 6.14 lists all used media and buffers including instructions according to
the standard protocols.

Table 6.14: Buffers and solutions prepared for this thesis. If not stated otherwise, reagents
were dissolved in H2O.

Name Ingredient Concentration

LB-Medium Bacto-Tryptone 10 g/l

Yeast Extract 5 g/l

Sodium Chloride 10 g/l

LB-Plates Bacto-Tryptone 10 g/l

Yeast Extract 5 g/l

Sodium Chloride 10 g/l
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Name Ingredient Concentration

Agar 15 g/l

TB-Medium Bacto-Tryptone 12 g/l

Yeast Extract 24 g/l

Glycerin 0.4 % v/v

KH2PO4 2.13 g/l

K2HPO4 12.54 g/l

P1 Glucose 50 mmol/l

Tris-HCl 25 mmol/l

EDTA 10 mmol/l

pH 8, stored at 4°C

P2 NaOH 0.2 mol/l

SDS 1 % w/v

P3 KAc 5 mol/l

stored at 4°C

TAE Tris base 242 g/l

Glacial acetic acid 5.71 % v/v

EDTA 50 mmol/l

pH 8.5

1 x PBS NaCl 137 mmol/l

KCl 2.7 mmol/l

KH2PO4 240 mg/l

Na2HPO4 1.44 g/l

1 x PTW NaCl 137 mmol/l

KCl 2.7 mmol/l

KH2PO4 240 mg/l

Na2HPO4 1.44 g/l

Tween 20 0.1 % v/v

1 x ERM NaCl 17 mmol/l

KCl 0.4 mmol/l

CaCl2 · 2 H2O 0.27 mmol/l

MgSO4 · 7 H2O 0.66 mmol/l
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Name Ingredient Concentration

HEPES pH 7.3 17 mmol/l

pH 7

Medaka hatching solution Methylene blue 2 mg/l

in 1 x ERM

1 x Zebrafish medium red sea salt 300 mg/l

Finclip buffer TrisHCl pH 8 400 mmol/l

EDTA pH 8 5 mmol/l

NaCl 150 mmol/l

Tween 20 0.1 % v/v

Proteinase K 1 mg/ml

Oligo annealing buffer Tris 10 mmol/l

NaCl 30 mmol/l

10 x Orange G loading dye Orange G 2 mg/ml

Glycerol 33 % v/v

20 x Tricaine Tricaine 4 g/l

Na2HPO4 · 2 H2O 10 g/l

in Millipore water

50 mmol/l Tamoxifen Trans-tamoxifen 18.5 mg/ml

in DMSO

PBDT BSA 1 mg/ml

DMSO 1 % v/v

in final 1 x PTW

Blocking buffer Sheep serum 4 % v/v

in PBDT

Equipment and Instruments

Table 6.15 lists all equipment, which was used during this thesis.
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Table 6.15: Equipment used in this thesis.

Equipment Supplier

1.5ml tube centrifuge neoLab

Acquifer Imaging Machine DITABIS, Pforzheim Germany

Bacterial Shaker INNOVA 44 New Brunswick scientific

Borosilicate glass capillaries GC100F-10 Harvard apparatus

CAT S20 neoLab

Centrifuge 5417 C Eppendorf

Centrifuge 5425 Eppendorf

Centrifuge 5430 Eppendorf

Centrifuge 5430 R Eppendorf

Centrifuge 5810 R Eppendorf

Diamond Glass Writer VWR (Bruchsal)

DNAEngine Dyad® Bio RAD

DNAEngine® Bio RAD

FemtoJet express Eppendorf

Fish incubator Heraeus instruments

Fish incubator RuMed

Forceps 5, 55 Inox stainless steel Dumont

Freezer -20 °C Bosch

Freezer -80 °C Thermo Fisher Scientific

Fridge 4 °C Liebherr

Gel chamber peqLab and lab made

Glass Bottom Dishes MatTek

Glass Capillary Breaking Tool lab made

Incubator B 28 Binder

Incubator BD 115 Binder

InjectMan NI2 Eppendorf

KL 1500 electronic Schott

Leica DFC 500 Leica

Leica TCS SP8 Leica

Leica TCS SPE Leica
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Equipment Supplier

Microinjector 5242 Eppendorf

Microwave R-939 Sharp

Multipette plus Eppendorf

Needle puller P-30 Sutter Instrument Co USA

Gel iX20 Intas

MuVi-SPIM EMBL

Nikon Digital Sight DS-Ri1 Nikon

Parafilm Pechiney Plastic Packaging

PCR tube centrifuge neoLab

pH-meter Sartorius

pipetboy acu Integra biosciences

Pipettes 2µl, 10µl, 20µl, 200µl, 1 ml Eppendorf

Power supply PowerPac Basic Bio RAD

PowerPac 300 Bio RAD

Q-POD Merck Millipore

Scale EW 2200-2NM KERN

Shaker DRS-12 neoLab

Spectrophotometer DS-11+ DeNovix

Stereomicroscope Nikon SMZ18 Nikon

Stereomicroscope Olympus SZX7 Olympus

Stereomicroscope Zeiss Stemi 2000 Zeiss

Stereomicroscope Zeiss Stemi SV11 Zeiss

Synology RS4017xs+ Synology

Synology RX1217RP Synology

Thermal Cycler C1000 Touch™ Bio RAD

Thermal Cycler PTC-200 MJ Research

Thermomixer 5436 Eppendorf

ThermoMixer F1.5 Eppendorf

Tube revolver Thermo Fisher Scientifc

Vortexer VF2 Janke & Kunkel

X-T 20 Fujifilm
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Equipment Supplier

Computers used

An overview over the used computers can be found in Table 6.16.

Table 6.16: Computers used in this thesis.

Component Laptop Desktop 1 Desktop 2

Main purpose general, R, develop-
ment, testing

headless process-
ing

visualization

OS Windows 10 CentOS 7.5.1804 Windows 8.1

CPU Intel i7-5700HQ Intel Xeon E5-2650 Intel Xeon E5-2620
v3 (2x)

RAM 32 GB DDR3 64 GB DDR3 256 GB DDR3

GPU NVIDIA GeForce
GTX 970M

AMD Radeon HD
6450

NVIDIA GeForce
GTX Titan X

Storage capacity 1.4 TB 2.3 TB 22 TB

Vendor Schenker XMG Custom Custom

Software and packages

The used software and packages along with the reference or license are listed in
Table 6.17.

Table 6.17: Software and software packages used in this thesis.

Software/Package Reference/License

Geneious Biomatters Limited [Kearse et al., 2012]

Microsoft Office Microsoft

Adobe Illustrator Adobe

Affinity Designer Serif Europe Ltd.
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Software/Package Reference/License

CCTOP [Stemmer et al., 2015]

FileMaker Pro FileMaker, Inc.

Python Open-Source

numpy [Oliphant, 2006]

pandas [McKinney, 2010]

Scikit-learn [Pedregosa et al., 2011]

Matplotlib [Hunter, 2007]

Tensorflow [Martin Abadi et al., 2015]

Keras [Chollet and Others, 2015]

Fiji [Schindelin et al., 2012]

BigDataViewer [Pietzsch et al., 2015]

MaMuT [Wolff et al., 2018]

LAS X Leica, Inc.

R [R Core Team, 2018]

condformat [Oller Moreno, 2017]

data.table [Dowle and Srinivasan, 2017]

ggplot2 [Wickham, 2009]

ggrepel [Slowikowski, 2017]

readr [Wickham et al., 2017]

xlsx [Dragulescu, 2014]

zoo [Zeileis and Grothendieck, 2005]

Methods

Fish husbandry and microinjections

Medaka (Oryzias latipes) and zebrafish (Danio rerio) stocks were maintained as
previously described [Koster et al., 1997]. All fish are maintained in the closed
stocks of COS at Heidelberg University. Fish husbandry and experiments were
performed according to local animal welfare standards (Tierschutzgesetz 111,
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Abs. 1, Nr. 1, Haltungserlaubnis) and in accordance with European Union
animal welfare guidelines. The fish facility is under the supervision of the
local representative of the animal welfare agency. Fish were maintained with a
cycle of 14 h of light and 10 h of darkness. Embryos were staged according to
standard protocol [Iwamatsu, 2004]. Medaka microinjections were performed
as previously described [Rembold et al., 2006a].

Crossing

Crossing of medaka was performed in two ways. Either the fish were split
according to sex over night and reunited at the next day to allow synchronous
mating and eggs were collected subsequently or they were left in the same tank
over night and eggs were collected immediately at the onset of illumination.
While the first procedure was the standard procedure for wildtypes, the second
procedure was used for microinjections of RSDNGSK3 fish, which will not mate
if split over night, or for collection for the next generation.

Dechorionation with hatching enzyme

Fish to be dechorionated, were pre-treated as described in the following. Either
they were rolled on Whatman paper immediately subsequent to egg collection,
which allows for following microinjection, or they were grown to the desired
stage and then rolled on sandpaper to remove the chorion hairs and weaken the
chorion. At the desired stage embryos were treated with hatching enzyme and
incubated at 28 °C for 60 - 120min. Upon hatching of embryos, embryos were
washed with 1 x ERM and transferred into a glass Petri dish, without touching
any water/air surface. Embryos that were injected with α-Bungarotoxin mRNA
were dechorionated latest 3 dpf, due to space restriction in the chorion, resulting
in developmental malformation in properly anesthetized embryos.

Recombination of loxP constructs

Heatshock-induced recombination

Fish with an insertion of hsp70 :Cre and either GaudíRSG or RSDNGSK3 were
recombined by heat shock. Therefore, embryos (unhatched, dechorionated
or hatched) were individually transferred to PCR tubes with 50µl 1xERM.
Possible air was removed at the bottom of the tubes and they were transferred
to a thermal cycler, where the heat shock was performed as can be extracted
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from Table 6.18. The protocol is variable in length, depending on the tissue
of investigation and the desired number of recombined cells. Whereas for the
eye 7 cycles are advisable, for the somites 5 cycles are sufficient for a full
recombination of all cells.

Table 6.18: Heatshock of single embryos via thermal cycler.

Step Time

18 °C 10 min

39 °C 10 min

goto step 1 4-6 times

12 °C 5 min

Tamoxifen-induced recombination

For tamoxifen-induced recombination of embryos containing ccl25b:CreERT2 or
tlx :CreERT2 and GaudíRSG or RSDNGSK3, embryos were collected in a Petri
dish. Upon hatching the treatment was started. Therefore, a new Petri dish
was filled with 5µM tamoxifen in 1xERM. Embryos were transferred to the new
Petri dish individually with a pasteur pipette and food was added. Fish were
incubated in the dark, over night and subsequently washed three times with
1xERM, being transferred with a pasteur pipette to minimize contamination
with tamoxifen. Fish were raised according to protocol between 2 days to
4weeks until fixation and followed by staining and investigation via microscopy
described in the following section.

Fixation of fish

Fish were euthanized by a 20 x Tricaine solution. Euthanization was ensured by
checking vital signs, such as gill movement and stimulus reaction. Subsequently,
fish were transferred to 4% w/v PFA and fixed for a stage-dependent time at
4 °C. Hatchlings were fixed for 2-2.5 h, juveniles were fixed for 2.5-4 h, young
adults were fixed for 4-7 h, large adults were fixed for 6 h to over night. Finally,
fish were washed 3 x in 1 x PTW.
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Extraction of genomic DNA for PCR

Genomic DNA of single embryos for subsequent PCR was extracted and used
for standard PCR mixes as published [Hammouda et al., 2019].

Total RNA extraction

Medaka embryos were collected and incubated in 1 x ERM until they reached
the desired developmental stage [Iwamatsu, 2004]. The embryos were eutha-
nized as described prior, transferred to 2ml Eppendorf tubes and 700µl Trizol
(invitrogen) was added. Afterwards the embryos were homogenized with a
pestle, which were subsequently stored in 0.5N HCl for cleaning. The ground
tissue was spun down for 1min at 10,000 g and the supernatant was transferred
to a new 2ml Eppendorf tube. After addition of 300µl Trizol the reaction
mix was incubated for 5min at room temperature (RT), thereafter 200µl of
Chloroform were added, followed by 15 s of rigorous shaking. This was incu-
bated for 3-10min at RT and centrifuged at 10,000 g for 5min at 4 °C. The
upper, colorless phase was transferred to an 1.5ml Eppendorf tube and 500µl
2-Propanol were added, followed by rigorous shaking after which the sample
was incubated on ice for 10min. Subsequently the sample was centrifuged at
10,000 g for 10min at 4 °C and the supernatant was removed while checking for
pellet presence. The present pellet was washed with 1ml of 75% Ethanol and
centrifuged twice at 8,000 g for 10min at 4 °C. Thereafter the supernatant was
discarded by extracting it with a pipette tip and the pellet was dried for 5min
at RT. To dissolve the pellet 10 - 20µl H2O were added, where the amount of
added water was dependent on pellet size. The pellet was solved by gently
flicking the tube and the isolated ribonucleic acid (RNA) was stored at -80 °C
until further methods were applied.
For quality control the RNA concentration of the obtained extractions was
determined with the NanoDrop, while comparing the OD 260

OD 280 and OD 260
OD 230 values

to optimal values (1.8 and 2.0, respectively). As a second part of quality control
the RNA was run with a RNA gel electrophoresis to determine the 28 S and
18 S ribosomal bands and general intensity.
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Reverse transcription

DNase treatment

1µg of extracted RNA was treated with 1µl 10 x reaction buffer with MgCl2 and
1µl DNase I (1U) in 10µl reaction volume and incubated for 30min at 37 °C.
Subsequently, 50mM EDTA was added and the reaction was incubated for
10min at 65 °C. The prepared RNA can be directly used for reverse transcription.

Reverse transcription

RNA was reverse transcribed with the RevertAid™Kit (Thermo Fisher Scientifc,
all following components are part of the Kit). 1µg of total RNA was mixed
with 0.5µl oligo dT18 primer and 0.5µl Random hexamer primers in a PCR
tube and filled up with RNase-free water to a volume of 12µl. The reaction
was incubated at 65 °C for 5min and subsequently chilled on ice for at least
1min. Afterwards 4µl of reverse transcription buffer, 1µl of RiboLock, 2µl
of 10mM dNTPs and 1µl of RevertAid™Reverse Transcriptase were added.
The assembled reaction was gently mixed and spun down in a table centrifuge.
Afterwards it was incubated at 25 °C for 5min, followed by an incubation at
42 °C for 60min. Accordingly, the reaction was terminated by incubation at
70 °C for 5min and chilled on ice for at least 1min. 1µl RNase H was added
and incubated for 20min at 37 °C. Subsequently, 19µl H2O were added and the
obtained cDNA was stored at -20 °C prior to usage.

Extraction of RNA and genomic DNA

Trizol treatment

Embryos were euthanized by a 20 x Tricaine solution and transferred individually
to reaction tubes. Liquid was substituted by 700µl Trizol and the embryos
were homogenized by using a pestle. Samples were centrifuged for 10min at
12,000 g at 4 °C. The clear supernatant was transferred to a new reaction tube,
300µl Trizol were added and incubated for 5min at RT. Subsequently 200µl
Chloroform were added, the content was mixed by shaking and incubated
for 2-3min at RT. Samples were centrifuged for 15min at 12,000 g at 4 °C.
The aqueous, colorless, upper phase was transferred to a new reaction tube
(approximately 500µl), which was further used in RNA extraction. The leftover
lower, red phenol-chloroform phase and interphase were further used in genomic
DNA (gDNA) extraction.
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RNA extraction

500µl of Isopropanol were added to the previously extracted aqueous phase,
containing RNA. Samples were mixed and incubated for 10min at RT. Samples
were then centrifuged for 10min at 12,000 g at 4 °C. The supernatant was
discarded by pipetting and the pellet was washed with 1ml 75% ethanol. The
supernatant was again discarded by pipetting and the pellet was air-dried for
5-10min. The pellet was resuspended in 20µl RNase-free water by pipetting.
Samples were then incubated for 10min at 60 °C. RNA was stored at -80 °C
until reverse transcription.

Genomic DNA extraction

Any remaining aqueous phase was removed from the previously obtained samples.
300µl of 100% ethanol were added, mixed by inversion and incubated for 2-
3min. Samples were centrifuged for 5min at 2,000 g at 4 °C. The supernatant
was discarded with the pipette (could also be used for protein extraction, if
needed) and the pellet was resuspended in 1ml of 0.1M sodium citrate in
10% ethanol, incubated for 30min and occasionally mixed by gentle inversion.
Samples were centrifuged for 5min at 2,000 g at 4 °C and the supernatant was
discarded. Again, the pellet was resuspended in 1ml of 0.1M sodium citrate
in 10% ethanol, incubated for 30min, occasionally mixed by gentle inversion
and centrifuged for 5min at 2,000 g at 4 °C. The supernatant was discarded,
and the pellet was resuspended in 1.5ml 75% ethanol, incubated for 10-20min
while occasionally inverting. The resuspended solution was centrifuged for 5min
at 2,000 g at 4 °C and the supernatant was again discarded. The pellet was
air-dried for 5-10min and resuspended in 50µl TE by pipetting. This DNA
solution can be stored and used for subsequent PCR.

Whole mount immunostaining

Retinae extraction

Fixed embryos were prebleached in 3% v/v H2O2 and 0.5% w/v KOH in 1 x
PTW. Retinae were extracted in 1 x PTW utilizing two forceps. If the fish was
older than 7 dph, the lens was also enucleated from the retina.
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Bleaching

Fixed embryos or extracted retinae were bleached in 3% v/v H2O2 and 0.5% w/v
KOH in 1 x PTW for 2 h or until no residual pigment was detectable. Samples
were incubated in open reaction tubes due to the strong gas development during
the procedure.

Acetone treatment

Samples were washed 5 x in 1 x PTW for 5min each at RT. These samples
can be stored at 4 °C for 1-2 d. Subsequently samples were transferred to a
glass tube, containing acetone and incubated for 20min at -20 °C. Samples were
rinsed by H2O.

Blocking

Samples were washed 5 x in 1 x PTW for 5min at RT and subsequently incubated
in blocking solution in 2ml reaction tubes for 2 h at RT or over night at 4 °C.

Primary antibody incubation

Blocked samples were incubated with primary antibody solution, containing
rabbit-α-Rx2 (1:250, lab made) and chicken-α-GFP (1:200, Thermo Fisher
Scientifc) in blocking buffer for 3 x over night at 4 °C.

Secondary antibody incubation

Samples were washed once in 1 x PTW and transferred to a new reaction tube.
Samples were again washed 5 x in 1 x PTW. Samples were incubated with
secondary antibody solution containing donkey-α-chicken DyLight488 (1:250,
Jackson), goat-anti-rabbit AlexaFluor647 (1:125, Thermo Fisher) and DAPI
(1:250) in blocking buffer for 2 x over night at 4 °C in the dark. Subsequently,
samples were washed 5 x in 1 x PTW in the dark. If samples should be stored,
they were transferred to 1% w/v PFA in 1 x PTW and stored at 4 °C until
further analysis via microscopy.

TUNEL

For TUNEL, already stained retinae were incubated in 10 µg/ml Proteinase K
for 30-45min at RT. Samples were then postfixed in 4% w/v PFA for 20min
at RT and subsequently washed 4 x in 1 x PTW for 5min each. Samples were
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incubated in 33% acetone in ethanol for 20min at -20 °C and washed 3 x in 1 x
PTW for 5min each. Staining was performed with 90µl labeling solution and
10µl enzyme solution from the In Situ Cell Death Detection Kit (Roche) for 2 h
at 37 °C. Samples were washed 3 x in 1 x PTW for 5min each and subsequently
imaged and analyzed.

Oligonucleotide design and ordering

Oligonucleotides for PCR were designed via Geneious and, if needed, tested via
in silico PCR in the UCSC browser on the whole medaka genome. Oligonu-
cleotides for sgRNAs were designed using CCTOP [Stemmer et al., 2015].
Oligonucleotides for Q5 site-directed mutagenesis were designed using the
NEBaseChanger® (http://nebasechanger.neb.com/). All designed primers were
ordered from MWG via a custom FileMaker script and thereby also given a
unique identifier.

PCR

The PCRs were set up according to the recommendations of the manufacturer,
New England Biolabs (NEB), which can be obtained from Table 6.19.

Table 6.19: Standard PCR mix.

Component 50µl reaction Final conc.

5 x Q5 Reaction buffer (NEB) 10µl 1 x

2.5 mM dNTPs (Sigma-
Aldrich)

4µl 200 µmol/l

10µM Forward Primer 1µl 0.2 µmol/l

10µM Reverse Primer 1µl 0.2 µmol/l

Template DNA 0.1-10 ng 0.002 - 0.2 ng/µl

Q5 DNA-Polymerase (NEB) 0.5µl 0.02 U/µl

RNase-free H2O ad 50µl

Depending on the template and the primers the PCR conditions such as anneal-
ing temperature (calculated with http://tmcalculator.neb.com) and elongation
time were adapted to optimize the reaction.
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semiquantitative PCR

For semiquantitative PCR mRNA was extracted from wt, GaudíRSG,
RSDNGSK3_high and RSDNGSK3_low fish as previously described. A stan-
dard 50µl PCR reaction was assembled with primers for mCherry (JW5653
and JW3667) and primers for Actb (JW2915 and JW1452). Primer choice was
based on previous tests of several primer pairs for both transcripts. The PCR
was performed according to standard protocol, but an aliquot of 5µl was taken
from each reaction each 5 cycles between 20 and 35 cycles in order to get a
sample, in which the amplification was still in an exponential phase and not in
a satured phase. The samples were analyzed via gel electrophoresis. For this
all the samples of one tp, including control and experiment (Actin B (Actb)
and mCherry) were loaded onto the same gel to ensure comparability. Band
intensity was documented by digital acquisition of the gel documentation and
analyzed by Fiji. Mean values of bands were extracted and mCherry values
were divided by Actb values for loading control. The mean intensity of the
position of the not present mCherry band in wt was subtracted from all other
values to control for background noise. The resulting values were plotted using
ggpubr and analysis on the difference of expression of RSDNGSK3_high and
RSDNGSK3_low was performed. Previous calibration with a 1:10 dilution
could be used to determine the relative expression difference between both lines.

Q5 site-directed mutagenesis

Oligonucleotides were designed as previously described. These primers were
used in a standard PCR reaction to amplify a mutated version of the vector.
This reaction mix was treated with polynucleotide kinase (PNK), T4 DNA
Ligase and DpnI (KLD treatment) for 10min at RT. Therefore, a 15µl reaction
mix was set up containing 1µl of the PCR product, 9.5µl H2O, 1.5µl CutSmart
Buffer (NEB), 1.5µl 10mM adenosine triphosphate (ATP) (Thermo Fisher
Scientifc), 0.5µl PNK (NEB), 0.5µl T4 DNA Ligase (Thermo Fisher Scientifc)
and 0.5µl DpnI (NEB). The PNK added 5’ phosphates to the PCR fragments
to allow ligation, DpnI was digesting the bacterial amplified deoxyribonucleic
acid (DNA) (PCR template) and the T4 DNA Ligase ligated the mutated
vectors.
Finally, the mutated and ligated vector was transformed into bacteria according
to protocol.
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Oligonucleotide annealing

Oligonucleotide annealings were set up in a PCR reaction tube with 18µl of
dH2O, 20µl annealing buffer and 1µl of a 100µM dilution of each oligonucleotide.
The oligonucleotides were annealed in the PCR cycler with the program outlined
in Table 6.20.

Table 6.20: PCR cycler program for the annealing of oligonucleotides.

95 °C for 5min
ramp down to 70 °C (0.1 °C/s)
hold for 10min
ramp down to 65 °C (0.1 °C/s)
hold for 10min
ramp down to 60 °C (0.1 °C/s)
hold for 10min
ramp down to 10 °C (0.1 °C/s)

The annealed product was diluted to 0.075 pmol/µl (1µl of the annealing reaction
was diluted with 32µl H2O). Thereafter, 1µl of this dilution was used for
ligation with 0.025 pmol of the desired vector, with 1µl PEG-4000 (Thermo
Fisher Scientifc), 1µl 10 x Ligation buffer (Thermo Fisher Scientifc) and 1µl
T4 Ligase (5 U/µl, Thermo Fisher Scientifc) filled up to 10µl reaction volume
with H2O and incubated for at least 20min at RT or over night at 4 °C.

Gel electrophoresis

DNA gel electrophoresis

Gel electrophoresis was performed with 1.0% w/v or 1.5% w/v Agarose in
1 x TAE gels, depending on DNA sample size, in chambers filled with 1 x
TAE. The samples were mixed with loading dye and loaded into the wells
of the gel. The gel was run at ≈ 10 V/cm. Subsequently the gel was stained
in a 0.0002% v/v ethidium bromide (EtBr) bath and illuminated in an UV
transilluminator. GeneRuler™DNA Ladder Mix (Thermo Fisher Scientifc) was
used as a reference for determining the size of DNA fragments in basepairs.

For extraction of DNA, the corresponding band was excised using a scalpel blade
and transferred into a 2ml Eppendorf tube. DNA gel purification was conducted
with innuPREP DOUBLEpure Kit according to protocol (Analytik Jena,
https://www.analytik-jena.de/fileadmin/content/pdf_life_science/Manual/
Manual_innuPREP_DOUBLEpure_Kit.pdf) or QIAquick Gel Extraction
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Kit according to protocol (QIAGEN, https://www.qiagen.com/us/resources/
download.aspx?id=95f10677-aa29-453d-a222-0e19f01ebe17&lang=en).

RNA gel electrophoresis

RNA was run in a non-denaturing agarose gel. Therefore the comb, sledge and
chamber were preincubated with 0.1N NaOH for 30min. The gel was freshly
prepared with 1 x TAE prepared with Millipore water and pre-run for 10min.
The samples were prepared with 2 x RNA loading dye containing formamide and
incubated at 80 °C for 10min to ensure the unfolding of secondary structures
prior to loading in the wells. The gel electrophoresis and documentation was
conducted according to the DNA gel electrophoresis protocol.

Molecular cloning

Ligation

DNA ligation was performed according to Table 6.21 depending on the concen-
tration of insert and vector.

Table 6.21: DNA ligation.

Component 10µl reaction Final conc.

Vector n pmol n
10
pmol
µl

Insert 3n pmol 3n
10

pmol
µl

10x DNA Ligase buffer
(Thermo Fisher Scientifc)

1µl 1 x

T4 DNA Ligase (5 U/µl,
Thermo Fisher Scientifc)

1µl 0.5 U/µl

RNase-free H2O (Sigma-
Aldrich)

ad 10µl

After assembly the reaction was incubated for 10 - 120min at RT or over night
at 4 °C.
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Transformation of chemically competent E. coli

A 50µl aliquot of Mach1™T1R competent cells (Life Technologies) was thawed
on ice and transformed with up to 5µl of DNA solution. The bacteria were
incubated for 5min on ice, followed by heat-shocking at 42 °C for 30 s. Sub-
sequently the bacteria were chilled on ice for 1min and 300µl T-B buffer was
added. The bacteria were incubated for 10 to 60min at 37 °C depending on
the antibiotic resistance present on the transformed plasmid. Subsequently,
bacteria were plated onto LB plates with antibiotic for selection utilizing glass
beads. The plated volume of transformed bacteria and used antibiotic was
dependent on the transformed plasmid. The plates were incubated at 37 °C
over night.

Plasmid mini preparation

For a small amount of plasmid 2ml LB medium with the appropriate antibiotic
depending on the plasmid were inoculated with a single colony and incubated
over night at 37 °C and 200 rpm. On the next day the cultures were transferred
to a 2ml eppendorf tube and spun down at 21,000 g for 2min. The supernatant
was discarded and 200µl of P1 buffer was added. The pellet was solved and
200µl P2 buffer was added followed by inverting 5 - 6 times and incubation at
RT for up to 5min. After incubation 200µl of P3 buffer was added and the
sample was thoroughly mixed by inverting 5 - 6 times. The mix was spun down
at 21,000 g for 15min at 15 °C and the resulting supernatant was transferred to
a new 1.5ml eppendorf tube followed by addition of 500µl of 2-Propanol. The
tubes were shaken rigorously and afterwards centrifuged at 15 °C and 21,000 g
for 15min. The resulting supernatant was discarded and 500µl of 70% Ethanol
were added followed by centrifugation at 15 °C and 21,000 g for 5min. The
supernatant was discarded, and the pellet was air-dried for 5 - 10min. The dried
pellet was solved in 40µl H2O for further usage.

Plasmid mini preparation with QIAGEN kit

For a larger and cleaner preparation of plasmid, which is sufficient for tran-
scription of mRNAs and sgRNAs, a Mini preparation was performed using the
QIAPrep Spin Miniprep Kit (QIAGEN). Therefore, 20ml LB medium with the
appropriate antibiotic depending on the plasmid were inoculated in a 50ml
Erlenmeyer flask with a single colony and incubated over night at 37 °C and
200 rpm. Per culture two 2ml reaction tubes were filled with the incubated

101



LB medium and spun down at 8,000 g for 2min at RT. The supernatant was
discarded, incubated LB medium was again transferred to the same tubes and
the reaction tubes were centrifuged at 8,000 g for 2min at RT. The super-
natant was discarded, and the pellet was completely resuspended in 250µl
P1 resuspension buffer. 250µl of P2 lysis buffer were added and the reaction
was mixed thoroughly by inverting 4-6 times, lysis was indicated by blue color
switch. 350µl N3 neutralization buffer were added and the reaction was mixed
thoroughly by inverting 4-6 times, neutralization was indicated by white/color-
less color switch. The reaction was centrifuged for 10min at 16,000 g and the
supernatant (≈850µl) of the first reaction tube was transferred to a spin column,
contained in the kit. The column was centrifuged for 1min at 16,000 g and the
flow-through was discarded. The same centrifugation steps were repeated with
the supernatant of the second reaction tube. Subsequently, the column was
washed by addition of 750µl PE washing buffer and centrifuging for 1min at
20,000 g, the flow-through was discarded and the column was centrifuged for
1min at 20,000 g to remove residual washing buffer. The column was placed
into an RNase-free reaction tube and 50µl RNase-free water were added to the
filter followed by an incubation for 4min at RT. The tube was centrifuged for
1min at 16,000 g, the flow-through was again applied to the column and the
tube was centrifuged for 1min at 16,000 g. The resulting solution can be used
for transcription of mRNAs or sgRNAs.

Plasmid midi preparation

For a very large and clean preparation of plasmid the QIAGEN Plasmid Midi
Kit was used. 50ml LB-medium were set up in a 250ml Erlenmeyer flask.
The appropriate antibiotic was added, depending on the amplified plasmid.
Inoculated was either a single colony from a plate or a leftover of an over night
culture for Mini preparation. The inoculated culture was incubated at 37 °C
and 200 rpm shaking over night. The resulting culture was transferred to a
50ml falcon and spun down at 4 °C and 4,000 g for 30min. The supernatant
was discarded and 4ml of P1 buffer was added followed by solving the pellet
via vortexing. Afterwards 4ml of P2 buffer was added and the falcon was
inverted for 4 - 5 times. After 5min of incubation at RT 4ml of P3 buffer was
added. The falcon was inverted 4 - 5 times and incubated on ice for 15min.
Meanwhile a QIAGEN-tip column was prepared by adding a funnel and a
filter and equilibrating both by adding 4ml QBT (QIAGEN). The mixture
was applied to the filter and after flow-through the column was washed by
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adding 10ml QC buffer (QIAGEN) two times. Afterwards the column was
placed on top of a 15ml falcon and 5ml QF buffer (QIAGEN) was added. After
flow-through 3.5ml of 2-Propanol were added and the mixture was shaken
rigorously. Afterwards the falcon was centrifuged at 4 °C and 4,000 g for 60min.
The resulting supernatant was discarded and 2ml of 70% Ethanol were added,
followed by centrifugation at 4 °C and 4,000 g for 30min. The supernatant was
discarded, and the pellet was air-dried. The dried DNA was solved in 50 - 100µl
TE depending on pellet size.

Restriction digest

DNA restriction digestion was conducted according to Table 6.22. The 15µl
reaction mix has been used for the determination of successful ligation of insert
and vector after plasmid purification, whereas the 50µl reaction mix has been
used for digestion of already purified plasmids.

Table 6.22: DNA restriction digest.

Component 15µl reaction 50µl reaction

DNA template 1µg 1-10µg

Enzyme 0.2-0.3µl 0.5-1µl

optional: second Enzyme 0.3µl 0.5µl

corresponding 10x Buffer 1.5µl 5µl

RNase-free H2O (Sigma-
Aldrich)

ad 15µl ad 50µl

After assembly the 15µl reaction was incubated for 1 to 1.5 h at 37 °C and
the 50µl reaction overnight at 37 °C. The 15µl test restriction digests were
analyzed via gel electrophoresis to test for successful ligation of the insert
into the vector. Whereas the 50µl restriction digests were either directly
purified via a purification kit (innuPREP DOUBLEpure kit according to
protocol https://www.analytik-jena.de/fileadmin/content/pdf_life_science/
Manual/Manual_innuPREP_DOUBLEpure_Kit.pdf or QIAquick PCR pu-
rification kit according to protocol https://www.qiagen.com/us/resources/
download.aspx?id=95f10677-aa29-453d-a222-0e19f01ebe17&lang=en) or sep-
arated by gel electrophoresis, extracted from the gel and afterwards puri-
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fied via a purification Kit (innuPREP DOUBLEpure kit according to proto-
col https://www.analytik-jena.de/fileadmin/content/pdf_life_science/Manual/
Manual_innuPREP_DOUBLEpure_Kit.pdf or QIAquick Gel Extraction kit
according to protocol https://www.qiagen.com/us/resources/download.aspx?
id=95f10677-aa29-453d-a222-0e19f01ebe17&lang=en), depending on the di-
gested template DNA.

DNA sequencing

Standard sequencing of DNA templates was performed by MWG according to
manufacturer’s protocol.

Codon adaptation

Codon adaptation was performed as described in [Lischik et al., 2019].

CRISPR/Cas9

Cas9 mRNA transcription

10µg of the plasmid # 5197 were digested using NotI-HF (NEB) and
completed linearization was checked by gel electrophoresis of 250 ng of
the digestion. Subsequent to successful linearization the digested plas-
mid was purified by QIAquick PCR Purification kit (QIAGEN accord-
ing to protocol https://www.qiagen.com/us/resources/download.aspx?id=
95f10677-aa29-453d-a222-0e19f01ebe17&lang=en) and eluted twice in 40µl
RNase-free water. Transcription was performed with mMessage mMachine® Sp6
Transcription Kit (Invitrogen, according to protocol https://assets.thermofisher.
com/TFS-Assets/LSG/manuals/cms_055516.pdf) with 1µg template DNA,
according to protocol. Finally, mRNA was purified by RNeasy Mini Kit (QIA-
GEN, according to protocol https://www.qiagen.com/us/resources/download.
aspx?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en). Transcription was
checked by gel electrophoresis and the resulting mRNA was aliquoted.

sgRNA transcription

The larger, clean mini plasmid preparation of the template plasmid was di-
gested with DraI-FD (Thermo Fisher Scientifc) over night at 37 °C, the re-
sulting bands were separated by gel electrophoresis and the 300 bp band
purified via innuPREP DOUBLEpure kit (Analytik Jena, according to
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Materials & Methods

protocol https://www.analytik-jena.de/fileadmin/content/pdf_life_science/
Manual/Manual_innuPREP_DOUBLEpure_Kit.pdf). Transcription was
performed with MEGAShortScript T7 Kit according to manufacturer’s pro-
tocol (https://assets.thermofisher.com/TFS-Assets/LSG/manuals/fm_1354.
pdf) and sgRNA was purified via RNeasy Mini Kit (QIAGEN, accord-
ing to protocol https://www.qiagen.com/us/resources/download.aspx?id=
14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en). The concentration was mea-
sured by a spectrophotometer and RNA integrity was checked via gel elec-
trophoresis.

mRNA transcription

Transcription of mRNA was performed by digesting the plasmid with the corre-
sponding enzyme and purification of the template via kit (QIAquick Gel Extrac-
tion Kit according to protocol https://www.qiagen.com/us/resources/download.
aspx?id=95f10677-aa29-453d-a222-0e19f01ebe17&lang=en, QIAquick PCR
purification kit according to protocol https://www.qiagen.com/us/resources/
download.aspx?id=95f10677-aa29-453d-a222-0e19f01ebe17&lang=en or
innuPREP DOUBLEpure Kit according to protocol https://www.analytik-jena.
de/fileadmin/content/pdf_life_science/Manual/Manual_innuPREP_
DOUBLEpure_Kit.pdf). Transcription was performed with mMessage
mMachine Sp6 Transcription Kit (Invitrogen, according to protocol
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/cms_055516.pdf)
according to protocol and mRNAs were purified with RNeasy Mini Kit
(QIAGEN, according to protocol https://www.qiagen.com/us/resources/
download.aspx?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en) according
to protocol. Integrity of transcribed mRNAs was ensured via gel electrophoresis
and spectrophotometer.

Transcription of fluorescent proteins

Fluorescent protein coding sequences have been cloned into GoldenGate entry
vector 3 [Kirchmaier et al., 2013b] with a start and a stop codon in order to
ensure comparability of transcribed mRNAs [Lischik et al., 2019]. Vectors were
digested with SpeI-HF (NEB) and mRNA was transcribed according to the
previously described protocol.
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Transcription of α-Bungarotoxin

For transcription of α-Bungarotoxin 10µg of the vector have been digested
by EcoRV-FD (Thermo Fisher Scientifc), the digested plasmid has been pu-
rified via gel electrophoresis and extraction via QIAquick Gel Extraction
Kit (QIAGEN according to protocol https://www.qiagen.com/us/resources/
download.aspx?id=95f10677-aa29-453d-a222-0e19f01ebe17&lang=en). Tran-
scription was performed according to standard protocol, except 2µg of
linearized plasmid were used and the reaction was incubated for 4 h
at 37 °C. During clean up via RNeasy Mini Kit (QIAGEN, accord-
ing to protocol https://www.qiagen.com/us/resources/download.aspx?id=
14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en) the mRNA was eluted twice
with 25µl water pre-warmed to 50 °C.

Microscopy

Light-sheet microscopy using SPIM

Glass capillaries were shortened to a specified length using a lab made tool
for holding the capillaries at a certain length while using the Diamond Cutter.
Afterwards FEP tubes were cut and fixed into one end of the capillaries and
the compound capillaries were disinfected with 70% Ethanol at least over
night. The compound capillaries were cleared from ethanol and dried for at
least one night. Medaka embryos were anesthetized with 1x Tricaine or by
α-Bungarotoxin mRNA microinjection. Anesthetized embryos were transferred
to a drop of 0.6% w/v low-melt Agarose and sucked and adjusted into the FEP
tube with the help of an Eppendorf pipette and a 200µl pipette tip. Importantly,
the capillary should be filled with agarose to prevent movement of the sample.
The agarose was allowed to try, subsequently the compound capillaries were
mounted into the microscope and stacks were acquired with a MuVi-SPIM
(multiview selective plane illumination microscope) [Krzic et al., 2012,Tomer
et al., 2012,de Medeiros et al., 2015] configured as described before for the 25x
detection setup [Caroti et al., 2018]. Added was a 525/50 nm bandpass filter
and a 488 nm illumination.
The measurements of fluorescence intensity were performed as published previ-
ously [Lischik et al., 2019].
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High-throughput time lapse imaging

High-throughput time lapse imaging was performed as published previously
[Lischik et al., 2019].

Photography of adults

Adult fish were anesthetized by 1 x Tricaine and transferred into an agarose-
coated Petri dish. Images of the fish were taken by an X-T 20 digital camera
(Fujifilm) using a macro lens.

Leica Sp8

For imaging of whole-mount immunostained retinae, samples were mounted
in glass bottom dishes (MatTek) and imaged using matching laser and PMT
settings. Acquisition was adjusted such that no overexposure was detectable.

Image and data analysis

General image analysis was performed with Fiji [Schindelin et al., 2012]. All
scripts used for the analysis, which are published in [Lischik et al., 2019] can
be found at github via: https://git.io/fAPnh. The machine and deep learning
scripts for classification and time course analysis of fluorescent protein data can
be found in the appendix.

Extraction of polyclonal features

The polyclonal features of imaged stacks were extracted via Fiji. Polyclonal
connection with the CMZ was defined as overlap/non-overlap with the rx2
expression domain. All polyclones were classified into either group and the
number of clones for each group was noted. Distance to the CMZ was measured
from the most lateral position of the CMZ to the the most lateral position of
the clone. Clone width was measured in µm and cell diameters based on DAPI
staining. The retina diameter was measured twice and averaged for more robust
measurement.

Workflow for SPIM data

Acquired SPIM data was copied to the Synology storage solution for accessibility.
A BigDataViewer compatible .xml file was created by using a custom LabView
program supplied by the Hufnagel lab at EMBL Heidelberg, Germany. The
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BigDataViewer [Pietzsch et al., 2015] was used for screening and visualization
of time-series data. Single cells in GaudíRSG retinae were tracked by MaMuT
[Wolff et al., 2018] and further analyzed by custom Python scripts, which can
be found in the appendix.

Startle response assay

The startle response assay was performed as published previously [Lischik et al.,
2019].

Comparison of medaka and E. coli in vivo fluorescence
intensity

Comparison of medaka ac E. coli in vivo fluorescence intensity was performed
as published previously [Lischik et al., 2019].

Semi-automated analysis of anesthesia movement profiles

Semi-automated analysis of anesthesia movement profiles was performed as
published previously [Lischik et al., 2019]. Customized scripts are available
through github (https://git.io/fAPnh).

Semi-automated analysis of fluorescent intensities of
fluorescent proteins

Semi-automated analysis of fluorescent intensities of fluorescent proteins was
performed as published previously [Lischik et al., 2019]. Customized scripts are
available through github (https://git.io/fAPnh).
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7
Appendix

Table 7.1: Fluorescent proteins tested in the in vivo assay

name

ad
dg

en
e

#

relative to mutations (amino
acids)

equals
Balleza et
al.

with the
exception
of (amino
acid)

CFP 52109 wtGFP F64L, S65T, Y66W,
S72A, Y145A, N146I,
H148D, M153T, V163A,
H231L

mCerulean A206K,
H231L

Clover 40259 wtGFP S30R, Y39N, S65G,
Q69A, F99S, N105T,
Y145F, M153T, V163A,
I171V, T203H

Clover -

eGFP 45567 wtGFP F64L, S65T eGFP -

eGFPvar 45567 wtGFP F64L, S65T eGFP -

eGFPvar
A206K

45567 wtGFP F64L, S65T, A206K meGFP -

Venus 15753 wtGFP F46L, F64L, S65G,
V68L, S72A, M153T,
V163A, S175G, T203Y,
A206K, H231L

mVenus
JBC

H231L

YFP 13016 wtGFP S65G, V68L, S72A,
T203Y, A206K, H231L

meYFP A206K,
H231L
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name

ad
dg

en
e

#

relative to mutations (amino
acids)

equals
Balleza et
al.

with the
exception
of (amino
acid)

mCherry 23243 DsRed MSKGEE DNMA
IIKEF. . . V7I, R17H,
T21S, H41T, N42Q,
V44A, Q66M, V71A,
K83L, C117E, F124L,
I125R, V127T, T147S,
L150M, R153E,
V156A, H162K,
K163Q, A164R,
L174D, V175A, F177V,
S179T, I180T, M182K,
Y192A, Y194N,
D196N, S197I, T217A,
H222S, L223T, F224G
. . . EGRHSTG GMDE-
LYK

mCherry-L -

mRFP 13032 DsRed R2A, K5E, N6D,
T21S, H41T, N42Q,
V44A, V71A, K83L,
C117E, F124L, I125R,
V127T, L150M, R153E,
V156A, H162K,
K163M, A164R,
L174D, V175A, F177V,
S179T, I180T, Y192A,
Y194K, V195T, S197I,
T217A, H222S, L223T,
F224G

mRFP1 -

mRuby2 40260 eqFP611 mRuby2 -

tagRFP 57823 eqFP578 R32G, K42R, K67R,
L79F, I93V, N112D,
I115L, N122R, S131P,
R155E, H157R,
Q159D, Y169H, H171I,
S173N, F192V, H193Y,
F194Y, M216V, K220R,
R231K

tagRFP 5 SKGE

mGFPmut2 103980 mGFPmut2 -
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name

ad
dg

en
e

#

relative to mutations (amino
acids)

equals
Balleza et
al.

with the
exception
of (amino
acid)

mRFP1* 104000 mRFP1* -

mScarlet-I 85044 mScarlet-I -

mVenNB 103986 mVenNB -

OleGFP NA wtGFP F64L, S65T eGFP -

SceGFP NA wtGFP S65T, Q80R eGFP F64L, Q80R

Table 7.2: Plates imaged in the Acquifer Imaging machine (obj: objective, ch: channel, fil:
filter)

plate total
time
[h]

time
step
[min]

figure obj ch1/fil1/
ch2/fil2

treatment/ fluo-
rophore

Bungarotoxin
plate 1

45.3 20 3.5 2x BF/BF/-/- Bungarotoxin mRNA,
Etomidat, Tricaine,
DMSO, mock injected,
wildtype

Bungarotoxin
plate 2

64.35 33 3.5 2x BF/BF/-/- Bungarotoxin mRNA,
Etomidat, Tricaine,
DMSO, mock injected,
wildtype

Fluorophore
plate 1

40.67 20 3.1, 3.2A,
3.4, 7.3,
7.4

4x 470/FITC/
550/TRITC

tagRFP, mRFP,
mCherry, mRuby2,
eGFP

Fluorophore
plate 2

48 20 3.1, 3.2A,
3.4, 7.3,
7.4

4x 470/FITC
/550/TRITC

Clover, eGFPvar, eGF-
PvarA206K, Venus,
YFP, CFP, eGFP,
mCherry

Fluorophore
plate 3

83.85 43 3.1, 3.2A,
3.4, 7.3,
7.4

4x 470/FITC/
550/TRITC

eGFP, mCherry,
mScarlet, mRFP1*,
mGFPmut2, mVenNB

Fluorophore
plate 4

72 1440 3.1F, 7.1 4x 470/FITC/
550/TRITC

tagRFP, mRFP,
mCherry, mRuby2,
eGFP dechorionated
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plate total
time
[h]

time
step
[min]

figure obj ch1/fil1/
ch2/fil2

treatment/ fluo-
rophore

Fluorophore
plate 5

72 1440 3.1F, 7.1 4x 470/FITC/
550/TRITC

Clover, eGFPvar, eGF-
PvarA206K, Venus,
YFP, CFP, eGFP,
mCherry dechorion-
ated

Fluorophore
plate 6

72 1440 3.1F, 7.1 4x 470/FITC/
550/TRITC

tagRFP, mRFP,
mCherry, mRuby2,
eGFP

Fluorophore
plate 7

72 1440 3.1F, 7.1 4x 470/FITC/
550/TRITC

Clover, eGFPvar, eGF-
PvarA206K, Venus,
YFP, CFP, eGFP,
mCherry

codon adap-
tation

48.67 20 3.2, 7.2 4x 470/FITC/
550/TRITC

eGFP, OleGFP,
SceGFP
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Figure 7.1: The chorion does not interfere with fluorescence intensity of fluo-
rescent proteins in medaka.
Fluorescent protein mRNA was injected into medaka zygotes as described previously. Half of
the embryos injected with a fluorescent protein were dechorionated. All embryos were loaded
into 96-well plates and imaged at 2, 3 and 4 dpf. The resulting fluorescence intensities were
normalized to the injection controls and compared. No effect of the chorion fluorescence
intensity of fluorescent proteins in medaka was detected. Figure from [Lischik et al., 2019]
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Figure 7.2: SceGFP, mRuby2 and OleGFP codon adaptation indices deviate
strongly from the main cluster of indices.
The codon adaptation index for each sequence was determined for medaka and human.
Strikingly, most codon adaptation indices cluster indicating a similar codon adaptation for
both medaka and human. Deviating are SceGFP and OleGFP, as expected, and mRuby2.
Figure from [Lischik et al., 2019]
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Figure 7.3: Clustering of fluorescent protein time courses by machine learning
is only detecting the outgroups.
Full data of time course have been clustered by several machine learning classification
algorithms. Shown is the dendrogram for hierarchical linkage clustering. Strikingly, large
differences can be detected and clustered accordingly, but fine differences are not easily
clusterable. A Clustering of data of green fluorescent proteins. B Clustering of data of red
fluorescent proteins.
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Figure 7.4: The second fraction of experimental data can be predicted based
on the first fraction of the time course by ANN.
Data was split into a training set and test set by a standard 80% to 20% split. Shown
are the results for the test set. An artificial neural network (ANN) was used to predict the
second half of the time course experiment, given the first half. A shows the results of the
green fluorescent protein test set predictions. B shows the results of the red fluorescent
protein test set predictions. The general trend can be extracted from the predictions except
for 3 or 2 test samples marked by red crosses. This indicates that with some tuning the
results will be acceptable so the experiment can be shortened to the first half in order to
determine the overall fluorescence intensity.
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Figure 7.5: In addition to anesthesia α-Bungarotoxin does not induce cardiac
developmental defects.
A Embryos treated in Fig. 3.5B were demounted and subjected to video acquisition of 10 s.
Exemplary embryos are depicted here. B The heart rate was extracted from the previously
acquired videos. No significant difference in heart rate was observed between the injection
of α-Bungarotoxin mRNA and the mock injection. C Additional to Fig. 3.5D. In addition
to the number of hatched embryos the relative number of swimming embryos was quantified
(0 ng/µl: n=33 fish, 3 ng/µl: n=34 fish, 6 ng/µl: n=16 fish, 12 ng/µl: n=24 fish, 25 ng/µl:
n= 22 fish). Both were positively correlated. Asterisks indicate P-values: **** P<=0.0001,
*** P<=0.001, ** P<=0.01, * P<=0.05, ns P>0.05. Figure from [Lischik et al., 2019].
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Figure 7.6: The spooky dKO is superior to the oca2 KO.
A Wild-typic F1 fish are heavily pigmented at the peritoneum and the eyes. B Compound
heterozygous F1 oca2 -/- adults are devoid of melanin pigmentation. C Compound het-
erozygous F1 oca2 -/- and pnp4a-/- adults (spooky) are devoid of melanin and iridophore
pigmentation. The inner organs and the retina is more accessible than in oca2 -/- fish.
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Table 7.3: Overview of analyzed retinae.

age [d] temperature
[ °C]

Cre-driver tracing construct n

7 24 ccl25b GaudíRSG 1

7 24 ccl25b RSDNGSK3_low 3

7 24 tlx GaudíRSG 3

7 24 tlx RSDNGSK3_low 2

14 24 ccl25b GaudíRSG 3

14 24 ccl25b RSDNGSK3_low 9

14 24 tlx GaudíRSG 1

14 24 tlx RSDNGSK3_low 3

14 26 ccl25b GaudíRSG 4

14 26 ccl25b RSDNGSK3_low 4

14 26 tlx GaudíRSG 7

14 26 tlx RSDNGSK3_low 14

21 25 ccl25b GaudíRSG 10

21 25 ccl25b RSDNGSK3_low 2

28 26 ccl25b GaudíRSG 6

28 26 ccl25b RSDNGSK3_low 12

28 26 tlx GaudíRSG 12

28 26 tlx RSDNGSK3_low 6

Complete

ccl25b GaudíRSG 24

ccl25b RSDNGSK3_low 30

tlx GaudíRSG 23

tlx RSDNGSK3_low 25
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Figure 7.7: All extracted features from GaudíRSG and RSDNGSK3_low in
combination with ccl25b:CreERT2 and tlx:CreERT2. For discussion refer to
subsection 3. Differences between experiment and control were observed in the
percentage of polyclones connected with the CMZ (A), the maximum distance
of terminating clones from the CMZ (D), the total number of polyclones (E),
the minimum and maximum width of polyclones (G-H) and the minimum and
maximum width of polyclones normalized to the circumference (P-Q).
A Percentage of polyclones connected with the CMZ B Percentage of polyclones, which are
differentiated, per retina. C The minimum distance of polyclones, which are not connected
to the CMZ, per retina. D The maximum distance of polyclones, which are not connected
to the CMZ, per retina. E The absolute number of polyclones per retina. F Percentage of
ArCoS per retina. G Minimum polyclone width of all clones in a single retina. H Maximum
polyclone width of all clones in a single retina. I Retina diameter. J Percentage of late
starting polyclones per retina. K Minimum distance of start of late starting clones. L
Maximum distance of start of late starting polyclones. M Absolute number of ArCoS per
retina. N Absolute number of polyclones connected with the CMZ. O Absolute number of
late starting polyclones. P Minimum width of polyclones normalized to circumference. Q
Maximum width of polyclones normalized to circumference.
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Figure 7.8: All extracted features from GaudíRSG and RSDNGSK3_low in
combination with ccl25b:CreERT2 and tlx:CreERT2, faceted by time. For dis-
cussion refer to subsection 3. Differences between experiment and control were
observed in the total number of polyclones (E), retina diameter (I).
A Percentage of polyclones connected with the CMZ B Percentage of polyclones, which are
differentiated, per retina. C The minimum distance of polyclones, which are not connected
to the CMZ, per retina. D The maximum distance of polyclones, which are not connected
to the CMZ, per retina. E The absolute number of polyclones per retina. F Percentage of
ArCoS per retina. G Minimum polyclone width of all clones in a single retina. H Maximum
polyclone width of all clones in a single retina. I Retina diameter. J Percentage of late
starting polyclones per retina. K Minimum distance of start of late starting clones. L
Maximum distance of start of late starting polyclones. M Absolute number of ArCoS per
retina. N Absolute number of polyclones connected with the CMZ. O Absolute number of
late starting polyclones. P Minimum width of polyclones normalized to circumference. Q
Maximum width of polyclones normalized to circumference.
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Appendix

Machine Learning analysis of fluorophore data

only green data

data import

import numpy as np
import pandas as pd
greendata = pd.read_csv('greenplotdata.csv')

Checking data integrity

greendata.head()

Concatenating dataframes

mydata = greendata.iloc[:, 1:]
mydata.head()

Fusing well and fluorophore as identifier

mydata['ID'] = mydata['well'] + '_' + mydata['fluorophore']
mydata = mydata.iloc[:, 1:]
mydata.head()

Creating time series data frame

mydata_T = mydata.pivot_table(index = ['ID', 'fluorophore'], columns = 'hpf', values =
↪→ 'mean').reset_index()

mydata_T.head()

Interpolating time series data frame

mydata_T.loc[:,2:] = mydata_T.iloc[:,2:].interpolate(method = 'linear', axis = 1)
mydata_T = mydata_T.dropna(axis = 1)
mydata_T.head()

Normalizing time series to the maximum per row

mydata_T_norm = mydata_T.copy()
mydata_T_norm.iloc[:,2:] = mydata_T_norm.iloc[:,2:].divide(mydata_T_norm.iloc[:,2:].

↪→ apply(max, axis = 1), axis = 0)
mydata_T_norm.head()
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How many fluorophores have been tested?

total_fluorophores = mydata_T.iloc[:,1].unique()
fluorophore_number = len(total_fluorophores)
fluorophore_number

Clustering analysis

Defining X’s

X = mydata_T.iloc[:,2:]
X_rel = mydata_T_norm.iloc[:,2:]
X.head()

Plot X’s

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(X.T)
plt.show()

%matplotlib inline
plt.plot(X_rel.T)
plt.show()

Clustering absolute data by k-means clustering

Clustering

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

kmeans = KMeans(n_clusters = len(total_fluorophores),
init = 'k−means++', ## preventing the random initialization trap
max_iter = 300, ## maximum number of iterations
n_init = 10, ## number the algo will be run with different

↪→ initializations
random_state = 0)

## this will not only fit, but also predict for each point the cluster it belongs to
y_kmeans = kmeans.fit_predict(X)
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Appendix

y_kmeans

“Confusion matrix”

cluster_test = pd.concat([mydata_T.iloc[:,1], pd.DataFrame(y_kmeans)], axis = 1)
cluster_test

Plotting

#%matplotlib inline
#plt.figure(figsize = (25,10))
#dendrogram(cluster_test)
#plt.show()

Clustering relative data by k-means clustering

Clustering

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

kmeans = KMeans(n_clusters = len(total_fluorophores),
init = 'k−means++', ## preventing the random initialization trap
max_iter = 300, ## maximum number of iterations
n_init = 10, ## number the algo will be run with different

↪→ initializations
random_state = 0)

## this will not only fit, but also predict for each point the cluster it belongs to
y_kmeans = kmeans.fit_predict(X_rel)
y_kmeans

“Confusion matrix”

cluster_test_rel = pd.concat([mydata_T.iloc[:,1], pd.DataFrame(y_kmeans)], axis = 1)

Plotting

#%matplotlib inline
#plt.figure(figsize = (25,10))
#dendrogram(cluster_test)
#plt.show()

Comparing absolute and relative k-means clustering

total_clusters = pd.concat([cluster_test, cluster_test_rel.iloc[:, 1]], axis = 1)
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Clustering absolute data by linkage clustering

from scipy.cluster import hierarchy
from matplotlib.pyplot import show
from pylab import savefig
import matplotlib

matplotlib.rcParams['lines.linewidth'] = 2
plt.figure(1, figsize=(17, 8.5))
Z = hierarchy.linkage(X, 'ward')
hierarchy.dendrogram(Z, leaf_rotation=90, leaf_font_size=12, labels = mydata_T.iloc

↪→ [:,1].tolist())
savefig('link_cluster_green.pdf')
savefig('link_cluster_green.png', dpi = 1000)
show()

Clustering relative data by linkage clustering

from scipy.cluster import hierarchy
from matplotlib.pyplot import show
from pylab import savefig
import matplotlib

matplotlib.rcParams['lines.linewidth'] = 2
plt.figure(1, figsize=(40, 5))
Z = hierarchy.linkage(X_rel, 'ward')
hierarchy.dendrogram(Z, leaf_rotation=90, leaf_font_size=14, labels = mydata_T.iloc

↪→ [:,1].tolist())
show()

Clustering by spectral clustering

from sklearn.cluster import SpectralClustering
clustering = SpectralClustering(n_clusters=len(total_fluorophores),

assign_labels="discretize",
random_state=0).fit(X)

clustering.labels_

“Confusion matrix”

cluster_test = pd.concat([mydata_T.iloc[:,1], pd.DataFrame(clustering.labels_)], axis =
↪→ 1)

cluster_test
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Appendix

Classification

Preparing dataframes

from sklearn.cross_validation import train_test_split
y = mydata_T.iloc[:,1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state

↪→ = 0)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
X_train_rel, X_test_rel, y_train_rel, y_test_rel = train_test_split(X_rel, y, test_size

↪→ = 0.2, random_state = 0)
sc_rel = StandardScaler()
X_train_rel = sc.fit_transform(X_train_rel)
X_test = sc.transform(X_test_rel)

Random Forest Classifier

Absolute data

from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, ## default number, be aware of

↪→ overfitting to the training set
criterion = 'entropy', ## explanation in prior

↪→ tutorial
random_state = 0)

classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

Relative data

from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, ## default number, be aware of

↪→ overfitting to the training set
criterion = 'entropy', ## explanation in prior

↪→ tutorial
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random_state = 0)
classifier.fit(X_train_rel, y_train_rel)

# Predicting the Test set results
y_pred_rel = classifier.predict(X_test_rel)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test_rel, y_pred_rel)
cm

K-nearest neighbors

Absolute data

from sklearn.neighbors import KNeighborsClassifier
## n_neighbors = 5 is default
classifier = KNeighborsClassifier(n_neighbors = 5,

metric = 'minkowski', p = 2 ## needed for using
↪→ euklidian distance

)
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

Relative data

from sklearn.neighbors import KNeighborsClassifier
## n_neighbors = 5 is default
classifier = KNeighborsClassifier(n_neighbors = 5,

metric = 'minkowski', p = 2 ## needed for using
↪→ euklidian distance

)
classifier.fit(X_train_rel, y_train_rel)

# Predicting the Test set results
y_pred = classifier.predict(X_test_rel)

# Making the Confusion Matrix
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from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test_rel, y_pred_rel)
cm

Kernel SVM

Absolute data

from sklearn.svm import SVC
## penalty at the end of classification
classifier = SVC(kernel = 'rbf', ## round base function, gaussian

random_state = 0)
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

from sklearn.svm import SVC
## penalty at the end of classification
classifier = SVC(kernel = 'linear', ## round base function, gaussian

random_state = 0)
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

from sklearn.svm import SVC
## penalty at the end of classification
classifier = SVC(kernel = 'poly', ## round base function, gaussian

random_state = 0)
classifier.fit(X_train, y_train)
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# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

Relative data

from sklearn.svm import SVC
## penalty at the end of classification
classifier = SVC(kernel = 'rbf', ## round base function, gaussian

random_state = 0)
classifier.fit(X_train_rel, y_train_rel)

# Predicting the Test set results
y_pred = classifier.predict(X_test_rel)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test_rel, y_pred_rel)
cm

Decision Tree Classification

Absolute data

# Fitting classifier to the Training set
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', ## most basic and common, but

↪→ not default
random_state = 0)

classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

Relative data

152



Appendix

# Fitting classifier to the Training set
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', ## most basic and common, but

↪→ not default
random_state = 0)

classifier.fit(X_train_rel, y_train_rel)

# Predicting the Test set results
y_pred = classifier.predict(X_test_rel)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test_rel, y_pred_rel)
cm

Naive Bayes classification

# Fitting classifier to the Training set
from sklearn.naive_bayes import GaussianNB
## no arguments, since it is a naive classifier
## naive means it is assumed the variables are independent from each other
classifier = GaussianNB()
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

Logistic regression

# Fitting Logistic Regression to the Training Set
## import library
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)
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# Making the Confusion Matrix
## Evaluation of the model
## containing correct data and predictions
## class in capitals, funtions in small letters by import
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

Dimensionality Reduction

PCA

Absolute data

# Applying PCA
from sklearn.decomposition import PCA
pca = PCA(n_components = 9

)
Y_train_PCA = pca.fit_transform(X.T)
#Y_test_PCA = pca.transform(X_test)

## look at the accumulated explained variance of the PCA
explained_variance = pca.explained_variance_ratio_
explained_variance

sum(explained_variance)

extracting both PC’s - which timepoints most important?

pca.components_

pca.components_.shape

k-means clustering on pca

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

kmeans2 = KMeans(n_clusters = len(total_fluorophores),
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init = 'k−means++', ## preventing the random initialization trap
max_iter = 300, ## maximum number of iterations
n_init = 10, ## number the algo will be run with different

↪→ initializations
random_state = 0)

## this will not only fit, but also predict for each point the cluster it belongs to
y_kmeans2 = kmeans2.fit_predict(pca.components_.T)
y_kmeans2

“Confusion matrix”

cluster_test = pd.concat([mydata_T.iloc[:,1], pd.DataFrame(y_kmeans2)], axis = 1)
cluster_test

Relative data

# Applying PCA
from sklearn.decomposition import PCA
pca = PCA(n_components = 2 ## number of extracted features, which explain the most

↪→ of the variance. Here none, because this is explaining all the variance. None was
↪→ substituted by 2 after checking by explained variance.

)
X_train_rel_new = pca.fit_transform(X_train_rel)
X_test_rel_new = pca.transform(X_test_rel)
## look at the accumulated explained variance of the PCA
explained_variance = pca.explained_variance_ratio_
explained_variance

Deep Learning

Preparing dataframes

DLdata = mydata_T.iloc[:, 1:]
DLdata_rel = mydata_T_norm.iloc[:, 1:]

Getting dimensions of the data

datapoints = DLdata.shape[0]
columns = DLdata.shape[1]

DLdata.head()
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DLdata_rel.head()

Encoding absolute data

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
DLdata_enc = pd.concat((pd.get_dummies(labelencoder_X_1.fit_transform(DLdata.iloc

↪→ [:, 0].values), prefix = 'enc'), DLdata.iloc[:, 1:]), axis = 1)
DLdata_enc.head()

Encoding Min Max of absolute data

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
DLdata_enc = scaler.fit_transform(DLdata_enc)
DLdata_enc[0:5, :]

Encoding relative data

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_2 = LabelEncoder()
DLdata_rel_enc = pd.concat((pd.get_dummies(labelencoder_X_2.fit_transform(

↪→ DLdata_rel.iloc[:, 0].values), prefix = 'enc'), DLdata_rel.iloc[:, 1:]), axis = 1)
DLdata_rel_enc.head()

Encoding Min Max of absolute data

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
DLdata_rel_enc = scaler.fit_transform(DLdata_rel_enc)
DLdata_rel_enc[0:5, :]

Classification by ANN - Absolute data

Splitting dataset in X and y and test and train

X_DL_class = DLdata_enc[:, fluorophore_number:columns]
y_DL_class = DLdata_enc[:, 0:fluorophore_number]
X_DL_class_train, X_DL_class_test, y_DL_class_train, y_DL_class_test =

↪→ train_test_split(X_DL_class, y_DL_class, test_size = 0.2)
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from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
optimizer = 'adam'
classifier = Sequential()
classifier.add(Dense(units = 60, kernel_initializer = 'uniform', activation = 'relu',

↪→ input_dim = (columns − fluorophore_number)))
classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
#classifier.add(Dense(units = 20, kernel_initializer = 'uniform', activation = 'relu'))
#classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 20, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 60, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = fluorophore_number, kernel_initializer = 'uniform',

↪→ activation = 'sigmoid'))
classifier.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['

↪→ accuracy'])

classifier.fit(X_DL_class_train, y_DL_class_train, epochs=500, batch_size=25)

y_DL_class_pred = classifier.predict(X_DL_class_test)

Checking on test data

pd.DataFrame.from_records(y_DL_class_pred.round(decimals= 2))

Comparing y_pred to data

y_DL_class_pred_max = pd.DataFrame.from_records(y_DL_class_pred)
y_DL_class_pred_maxima = y_DL_class_pred_max.apply(lambda x: max(x), axis =

↪→ 1)
y_DL_class_pred_max = y_DL_class_pred_max.isin(y_DL_class_pred_maxima)
y_DL_class_pred_max = y_DL_class_pred_max.stack()
y_DL_class_pred_max = pd.Series(pd.Categorical(y_DL_class_pred_max[

↪→ y_DL_class_pred_max!=0].index.get_level_values(1)))
y_DL_class_pred_max = labelencoder_X_1.inverse_transform(y_DL_class_pred_max

↪→ )
y_DL_class_pred_max = pd.DataFrame(y_DL_class_pred_max)
y_DL_class_pred_max

y_DL_class_test_dec = pd.DataFrame(y_DL_class_test)
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y_DL_class_test_dec = pd.DataFrame.from_records(y_DL_class_test_dec)
y_DL_class_test_dec_maxima = y_DL_class_test_dec.apply(lambda x: max(x), axis

↪→ = 1)
y_DL_class_test_dec = y_DL_class_test_dec.isin(y_DL_class_test_dec_maxima)
y_DL_class_test_dec = y_DL_class_test_dec.stack()
y_DL_class_test_dec = pd.Series(pd.Categorical(y_DL_class_test_dec[

↪→ y_DL_class_test_dec!=0].index.get_level_values(1)))
y_DL_class_test_dec = labelencoder_X_1.inverse_transform(y_DL_class_test_dec)
y_DL_class_test_dec = pd.DataFrame(y_DL_class_test_dec)
y_DL_class_test_dec

y_DL_class_test_dec.columns = ['test']
y_DL_class_pred_max.columns = ['pred']
y_DL_class_test_dec = y_DL_class_test_dec.reset_index()
y_DL_class_pred_max = y_DL_class_pred_max.reset_index()
y_DL_class_pred_compare = pd.concat((y_DL_class_test_dec,

↪→ y_DL_class_pred_max), axis = 1)
y_DL_class_pred_compare

Prediction accuracy

row_ids = y_DL_class_pred_compare[y_DL_class_pred_compare.test ==
↪→ y_DL_class_pred_compare.pred].index

pred_acc = (len(row_ids)/len(y_DL_class_pred_compare))
pred_acc

Classification by ANN - Relative data

Splitting dataset in X and y and test and train

X_DL_class_rel = DLdata_rel_enc[:, fluorophore_number:columns]
y_DL_class_rel = DLdata_rel_enc[:, 0:fluorophore_number]
X_DL_class_rel_train, X_DL_class_rel_test, y_DL_class_rel_train,

↪→ y_DL_class_rel_test = train_test_split(X_DL_class_rel, y_DL_class_rel,
↪→ test_size = 0.2)

optimizer = 'adam'
classifier = Sequential()
classifier.add(Dense(units = 60, kernel_initializer = 'uniform', activation = 'relu',

↪→ input_dim = (columns − fluorophore_number)))
classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 20, kernel_initializer = 'uniform', activation = 'relu'))
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classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 20, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 60, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = fluorophore_number, kernel_initializer = 'uniform',

↪→ activation = 'sigmoid'))
classifier.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['

↪→ accuracy'])

classifier.fit(X_DL_class_rel_train, y_DL_class_rel_train, epochs=500, batch_size=25)

y_DL_class_rel_pred = classifier.predict(X_DL_class_rel_test)

Checking on test data

pd.DataFrame.from_records(y_DL_class_rel_pred)

Comparing y_pred to data

y_DL_class_rel_pred_max = pd.DataFrame.from_records(y_DL_class_rel_pred)
y_DL_class_rel_pred_maxima = y_DL_class_rel_pred_max.apply(lambda x: max(x

↪→ ), axis = 1)
y_DL_class_rel_pred_max = y_DL_class_rel_pred_max.isin(

↪→ y_DL_class_rel_pred_maxima)
y_DL_class_rel_pred_max = y_DL_class_rel_pred_max.stack()
#y_DL_class_rel_pred_max = pd.Series(pd.Categorical(y_DL_class_rel_pred_max[

↪→ y_DL_class_rel_pred_max!=0].index.get_level_values(1)))
#y_DL_class_rel_pred_max = labelencoder_X_1.inverse_transform(

↪→ y_DL_class_rel_pred_max)
#y_DL_class_rel_pred_max = pd.DataFrame(y_DL_class_rel_pred_max)
y_DL_class_rel_pred_maxima

y_DL_class_rel_test_dec = pd.DataFrame(y_DL_class_rel_test)
y_DL_class_rel_test_dec = pd.DataFrame.from_records(y_DL_class_rel_test_dec)
y_DL_class_rel_test_dec_maxima = y_DL_class_rel_test_dec.apply(lambda x:

↪→ max(x), axis = 1)
y_DL_class_rel_test_dec = y_DL_class_rel_test_dec.isin(

↪→ y_DL_class_rel_test_dec_maxima)
y_DL_class_rel_test_dec = y_DL_class_rel_test_dec.stack()
y_DL_class_rel_test_dec = pd.Series(pd.Categorical(y_DL_class_rel_test_dec[

↪→ y_DL_class_rel_test_dec!=0].index.get_level_values(1)))
y_DL_class_rel_test_dec = labelencoder_X_1.inverse_transform(

↪→ y_DL_class_rel_test_dec)
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y_DL_class_rel_test_dec = pd.DataFrame(y_DL_class_rel_test_dec)
y_DL_class_rel_test_dec

y_DL_class_rel_test_dec.columns = ['test']
y_DL_class_rel_pred_max.columns = ['pred']
y_DL_class_rel_test_dec = y_DL_class_rel_test_dec.reset_index()
y_DL_class_rel_pred_max = y_DL_class_rel_pred_max.reset_index()
pd.concat((y_DL_class_rel_test_dec, y_DL_class_rel_pred_max), axis = 1)

Deep Learning ANN for predicting time series

Preparation of data frames - Absolute data

Main question: How long do we need to record to predict all the following timepoints?
Feature scaling is already done. Setting variable parameters:

timepoints_to_predict = 60

DLdata_time = mydata_T.iloc[:, 1:]
DLdata_rel_time = mydata_T_norm.iloc[:, 1:]

DLdata_time.head()

DLdata_rel_time.head()

Encoding absolute data

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_3 = LabelEncoder()
DLdata_enc_time = pd.concat((pd.get_dummies(labelencoder_X_3.fit_transform(

↪→ DLdata_time.iloc[:, 0].values), prefix = 'enc'), DLdata_time.iloc[:, 1:]), axis = 1)
DLdata_enc_time.head()

Encoding Min Max of absolute data

from sklearn.preprocessing import MinMaxScaler
scaler2 = MinMaxScaler()
DLdata_enc_time = scaler.fit_transform(DLdata_enc)
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Encoding relative data

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_4 = LabelEncoder()
DLdata_rel_enc_time = pd.concat((pd.get_dummies(labelencoder_X_4.fit_transform(

↪→ DLdata_rel_time.iloc[:, 0].values), prefix = 'enc'), DLdata_rel_time.iloc[:, 1:]),
↪→ axis = 1)

DLdata_rel_enc_time.head()

Encoding Min Max of absolute data

from sklearn.preprocessing import MinMaxScaler
scaler3 = MinMaxScaler()
DLdata_rel_enc_time = scaler.fit_transform(DLdata_rel_enc_time)

Timecourse prediction by ANN - Absolute data

Splitting dataset in X and y and test and train

X_DL_class_time = DLdata_enc_time[:, 1:(columns − timepoints_to_predict)]
y_DL_class_time = DLdata_enc_time[:, (columns − timepoints_to_predict):columns]
X_DL_class_train_time, X_DL_class_test_time, y_DL_class_train_time,

↪→ y_DL_class_test_time = train_test_split(X_DL_class_time,
↪→ y_DL_class_time, test_size = 0.2)

(columns − timepoints_to_predict)

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout

def create_model():
optimizer = 'rmsprop'
time_predictor = Sequential()
time_predictor.add(Dense(units = 60, kernel_initializer = 'uniform', activation = '

↪→ sigmoid', input_dim = (columns − timepoints_to_predict − 1)))
time_predictor.add(Dense(units = 150, kernel_initializer = 'uniform', activation = '

↪→ relu'))
time_predictor.add(Dense(units = 140, kernel_initializer = 'uniform', activation = '

↪→ relu'))
time_predictor.add(Dropout(0.2))
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time_predictor.add(Dense(units = 120, kernel_initializer = 'uniform', activation = '
↪→ relu'))

time_predictor.add(Dropout(0.2))
time_predictor.add(Dense(units = 110, kernel_initializer = 'uniform', activation = '

↪→ relu'))
time_predictor.add(Dense(units = 70, kernel_initializer = 'uniform', activation = '

↪→ relu'))
time_predictor.add(Dropout(0.2))
time_predictor.add(Dense(units = 120, kernel_initializer = 'uniform', activation = '

↪→ relu'))
time_predictor.add(Dropout(0.2))
time_predictor.add(Dense(units = timepoints_to_predict, kernel_initializer = '

↪→ uniform', activation = 'sigmoid'))
time_predictor.compile(optimizer = optimizer, loss = 'mse', metrics = ['accuracy'])

return time_predictor

model = create_model()
model.fit(X_DL_class_train_time, y_DL_class_train_time, epochs=2500, batch_size

↪→ =25)

y_DL_class_pred_time = model.predict(X_DL_class_test_time)

Checking on test data

pd.DataFrame.from_records(y_DL_class_pred_time.round(decimals= 2))

len(y_DL_class_pred_time)

Comparing y_pred to data graphically

fig, axes = plt.subplots(len(y_DL_class_pred_time), 1, sharex=True, figsize=(10,25))
fig.suptitle('Green␣fluorescent␣proteins', fontsize = 20)
for i in range(0, len(y_DL_class_pred_time)):

axes[i].plot(y_DL_class_pred_time[i, :])
axes[i].plot(y_DL_class_test_time[i, :])
axes[i].set_xlabel('Time', fontsize = 10)
#axes[i].set_ylabel('Fluorescence intensity', fontsize = 10)

fig.legend(('predicted', 'test␣data'), fontsize = 10)
plt.tight_layout()
plt.subplots_adjust(top = 0.97)
savefig('time_pred_green.pdf')
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savefig('time_pred_green.png', dpi = 100)
plt.show

Machine Learning analysis of fluorophore data

only red data

data import

import numpy as np
import pandas as pd
reddata = pd.read_csv('redplotdata.csv')

Checking data integrity

reddata.head()

Concatenating dataframes

mydata = reddata.iloc[:, 1:]
mydata.head()

Fusing well and fluorophore as identifier

mydata['ID'] = mydata['well'] + '_' + mydata['fluorophore']
mydata = mydata.iloc[:, 1:]
mydata.head()

Creating time series data frame

mydata_T = mydata.pivot_table(index = ['ID', 'fluorophore'], columns = 'hpf', values =
↪→ 'mean').reset_index()

mydata_T.head()

Interpolating time series data frame

mydata_T.loc[:,2:] = mydata_T.iloc[:,2:].interpolate(method = 'linear', axis = 1)
mydata_T = mydata_T.dropna(axis = 1)
mydata_T.head()

Normalizing time series to the maximum per row
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mydata_T_norm = mydata_T.copy()
mydata_T_norm.iloc[:,2:] = mydata_T_norm.iloc[:,2:].divide(mydata_T_norm.iloc[:,2:].

↪→ apply(max, axis = 1), axis = 0)
mydata_T_norm.head()

How many fluorophores have been tested?

total_fluorophores = mydata_T.iloc[:,1].unique()
fluorophore_number = len(total_fluorophores)
fluorophore_number

Clustering analysis

Defining X’s

X = mydata_T.iloc[:,2:]
X_rel = mydata_T_norm.iloc[:,2:]
X.head()

Plot X’s

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(X.T)
plt.show()

%matplotlib inline
plt.plot(X_rel.T)
plt.show()

Clustering absolute data by k-means clustering

Clustering

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

kmeans = KMeans(n_clusters = len(total_fluorophores),
init = 'k−means++', ## preventing the random initialization trap
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max_iter = 300, ## maximum number of iterations
n_init = 10, ## number the algo will be run with different

↪→ initializations
random_state = 0)

## this will not only fit, but also predict for each point the cluster it belongs to
y_kmeans = kmeans.fit_predict(X)
y_kmeans

“Confusion matrix”

cluster_test = pd.concat([mydata_T.iloc[:,1], pd.DataFrame(y_kmeans)], axis = 1)
cluster_test

Plotting

#%matplotlib inline
#plt.figure(figsize = (25,10))
#dendrogram(cluster_test)
#plt.show()

Clustering relative data by k-means clustering

Clustering

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

kmeans = KMeans(n_clusters = len(total_fluorophores),
init = 'k−means++', ## preventing the random initialization trap
max_iter = 300, ## maximum number of iterations
n_init = 10, ## number the algo will be run with different

↪→ initializations
random_state = 0)

## this will not only fit, but also predict for each point the cluster it belongs to
y_kmeans = kmeans.fit_predict(X_rel)
y_kmeans

“Confusion matrix”

cluster_test_rel = pd.concat([mydata_T.iloc[:,1], pd.DataFrame(y_kmeans)], axis = 1)

Plotting

#%matplotlib inline

165



#plt.figure(figsize = (25,10))
#dendrogram(cluster_test)
#plt.show()

Comparing absolute and relative k-means clustering

total_clusters = pd.concat([cluster_test, cluster_test_rel.iloc[:, 1]], axis = 1)

Clustering absolute data by linkage clustering

from scipy.cluster import hierarchy
from matplotlib.pyplot import show
from pylab import savefig
import matplotlib

matplotlib.rcParams['lines.linewidth'] = 2
plt.figure(1, figsize=(17, 8))
Z = hierarchy.linkage(X, 'ward')
hierarchy.dendrogram(Z, leaf_rotation=90, leaf_font_size=12, labels = mydata_T.iloc

↪→ [:,1].tolist())
savefig('link_cluster_red.pdf')
savefig('link_cluster_red.png', dpi = 1000)
show()

Clustering relative data by linkage clustering

from scipy.cluster import hierarchy
from matplotlib.pyplot import show
from pylab import savefig
import matplotlib

matplotlib.rcParams['lines.linewidth'] = 2
plt.figure(1, figsize=(40, 5))
Z = hierarchy.linkage(X_rel, 'ward')
hierarchy.dendrogram(Z, leaf_rotation=90, leaf_font_size=14, labels = mydata_T.iloc

↪→ [:,1].tolist())
show()

Classification

Preparing dataframes
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from sklearn.cross_validation import train_test_split
y = mydata_T.iloc[:,1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state

↪→ = 0)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
X_train_rel, X_test_rel, y_train_rel, y_test_rel = train_test_split(X_rel, y, test_size

↪→ = 0.2, random_state = 0)
sc_rel = StandardScaler()
X_train_rel = sc.fit_transform(X_train_rel)
X_test = sc.transform(X_test_rel)

Random Forest Classifier

Absolute data

from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, ## default number, be aware of

↪→ overfitting to the training set
criterion = 'entropy', ## explanation in prior

↪→ tutorial
random_state = 0)

classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

Relative data

from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, ## default number, be aware of

↪→ overfitting to the training set
criterion = 'entropy', ## explanation in prior

↪→ tutorial
random_state = 0)

classifier.fit(X_train_rel, y_train_rel)
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# Predicting the Test set results
y_pred_rel = classifier.predict(X_test_rel)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test_rel, y_pred_rel)
cm

K-nearest neighbors

Absolute data

from sklearn.neighbors import KNeighborsClassifier
## n_neighbors = 5 is default
classifier = KNeighborsClassifier(n_neighbors = 5,

metric = 'minkowski', p = 2 ## needed for using
↪→ euklidian distance

)
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

Relative data

from sklearn.neighbors import KNeighborsClassifier
## n_neighbors = 5 is default
classifier = KNeighborsClassifier(n_neighbors = 5,

metric = 'minkowski', p = 2 ## needed for using
↪→ euklidian distance

)
classifier.fit(X_train_rel, y_train_rel)

# Predicting the Test set results
y_pred = classifier.predict(X_test_rel)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test_rel, y_pred_rel)
cm
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Kernel SVM

Absolute data

from sklearn.svm import SVC
## penalty at the end of classification
classifier = SVC(kernel = 'rbf', ## round base function, gaussian

random_state = 0)
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

Relative data

from sklearn.svm import SVC
## penalty at the end of classification
classifier = SVC(kernel = 'rbf', ## round base function, gaussian

random_state = 0)
classifier.fit(X_train_rel, y_train_rel)

# Predicting the Test set results
y_pred = classifier.predict(X_test_rel)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test_rel, y_pred_rel)
cm

Decision Tree Classification

Absolute data

# Fitting classifier to the Training set
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', ## most basic and common, but

↪→ not default
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random_state = 0)
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm

Relative data

# Fitting classifier to the Training set
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', ## most basic and common, but

↪→ not default
random_state = 0)

classifier.fit(X_train_rel, y_train_rel)

# Predicting the Test set results
y_pred = classifier.predict(X_test_rel)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test_rel, y_pred_rel)
cm

Dimensionality Reduction

PCA

Absolute data

# Applying PCA
from sklearn.decomposition import PCA
pca = PCA(n_components = 2 ## number of extracted features, which explain the most

↪→ of the variance. Here none, because this is explaining all the variance. None was
↪→ substituted by 2 after checking by explained variance.

)
Y_train_PCA = pca.fit_transform(X_train)
Y_test_PCA = pca.transform(X_test)
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## look at the accumulated explained variance of the PCA
explained_variance = pca.explained_variance_ratio_
explained_variance

Relative data

# Applying PCA
from sklearn.decomposition import PCA
pca = PCA(n_components = 2 ## number of extracted features, which explain the most

↪→ of the variance. Here none, because this is explaining all the variance. None was
↪→ substituted by 2 after checking by explained variance.

)
X_train_rel_new = pca.fit_transform(X_train_rel)
X_test_rel_new = pca.transform(X_test_rel)
## look at the accumulated explained variance of the PCA
explained_variance = pca.explained_variance_ratio_
explained_variance

Deep Learning

Preparing dataframes

DLdata = mydata_T.iloc[:, 1:]
DLdata_rel = mydata_T_norm.iloc[:, 1:]

Getting dimensions of the data

datapoints = DLdata.shape[0]
columns = DLdata.shape[1]

DLdata.head()

DLdata_rel.head()

Encoding absolute data

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
DLdata_enc = pd.concat((pd.get_dummies(labelencoder_X_1.fit_transform(DLdata.iloc

↪→ [:, 0].values), prefix = 'enc'), DLdata.iloc[:, 1:]), axis = 1)
DLdata_enc.head()
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Encoding Min Max of absolute data

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
DLdata_enc = scaler.fit_transform(DLdata_enc)
DLdata_enc[0:5, :]

Encoding relative data

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_2 = LabelEncoder()
DLdata_rel_enc = pd.concat((pd.get_dummies(labelencoder_X_2.fit_transform(

↪→ DLdata_rel.iloc[:, 0].values), prefix = 'enc'), DLdata_rel.iloc[:, 1:]), axis = 1)
DLdata_rel_enc.head()

Encoding Min Max of absolute data

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
DLdata_rel_enc = scaler.fit_transform(DLdata_rel_enc)
DLdata_rel_enc[0:5, :]

Classification by ANN - Absolute data

Splitting dataset in X and y and test and train

X_DL_class = DLdata_enc[:, fluorophore_number:columns]
y_DL_class = DLdata_enc[:, 0:fluorophore_number]
X_DL_class_train, X_DL_class_test, y_DL_class_train, y_DL_class_test =

↪→ train_test_split(X_DL_class, y_DL_class, test_size = 0.2)

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
optimizer = 'adam'
classifier = Sequential()
classifier.add(Dense(units = 60, kernel_initializer = 'uniform', activation = 'relu',

↪→ input_dim = (columns − fluorophore_number)))
classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 20, kernel_initializer = 'uniform', activation = 'relu'))
#classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
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#classifier.add(Dense(units = 20, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 60, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = fluorophore_number, kernel_initializer = 'uniform',

↪→ activation = 'sigmoid'))
classifier.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['

↪→ accuracy'])

classifier.fit(X_DL_class_train, y_DL_class_train, epochs=300, batch_size=50)

y_DL_class_pred = classifier.predict(X_DL_class_test)

Checking on test data

pd.DataFrame.from_records(y_DL_class_pred.round(decimals= 2))

Comparing y_pred to data

y_DL_class_pred_max = pd.DataFrame.from_records(y_DL_class_pred)
y_DL_class_pred_maxima = y_DL_class_pred_max.apply(lambda x: max(x), axis =

↪→ 1)
y_DL_class_pred_max = y_DL_class_pred_max.isin(y_DL_class_pred_maxima)
y_DL_class_pred_max = y_DL_class_pred_max.stack()
y_DL_class_pred_max = pd.Series(pd.Categorical(y_DL_class_pred_max[

↪→ y_DL_class_pred_max!=0].index.get_level_values(1)))
y_DL_class_pred_max = labelencoder_X_1.inverse_transform(y_DL_class_pred_max

↪→ )
y_DL_class_pred_max = pd.DataFrame(y_DL_class_pred_max)
y_DL_class_pred_max

y_DL_class_test_dec = pd.DataFrame(y_DL_class_test)
y_DL_class_test_dec = pd.DataFrame.from_records(y_DL_class_test_dec)
y_DL_class_test_dec_maxima = y_DL_class_test_dec.apply(lambda x: max(x), axis

↪→ = 1)
y_DL_class_test_dec = y_DL_class_test_dec.isin(y_DL_class_test_dec_maxima)
y_DL_class_test_dec = y_DL_class_test_dec.stack()
y_DL_class_test_dec = pd.Series(pd.Categorical(y_DL_class_test_dec[

↪→ y_DL_class_test_dec!=0].index.get_level_values(1)))
y_DL_class_test_dec = labelencoder_X_1.inverse_transform(y_DL_class_test_dec)
y_DL_class_test_dec = pd.DataFrame(y_DL_class_test_dec)
y_DL_class_test_dec
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y_DL_class_test_dec.columns = ['test']
y_DL_class_pred_max.columns = ['pred']
y_DL_class_test_dec = y_DL_class_test_dec.reset_index()
y_DL_class_pred_max = y_DL_class_pred_max.reset_index()
y_DL_class_pred_compare = pd.concat((y_DL_class_test_dec,

↪→ y_DL_class_pred_max), axis = 1)
y_DL_class_pred_compare

Prediction accuracy

row_ids = y_DL_class_pred_compare[y_DL_class_pred_compare.test ==
↪→ y_DL_class_pred_compare.pred].index

pred_acc = (len(row_ids)/len(y_DL_class_pred_compare))
pred_acc

Classification by ANN - Relative data

Splitting dataset in X and y and test and train

X_DL_class_rel = DLdata_rel_enc[:, fluorophore_number:columns]
y_DL_class_rel = DLdata_rel_enc[:, 0:fluorophore_number]
X_DL_class_rel_train, X_DL_class_rel_test, y_DL_class_rel_train,

↪→ y_DL_class_rel_test = train_test_split(X_DL_class_rel, y_DL_class_rel,
↪→ test_size = 0.2)

optimizer = 'adam'
classifier = Sequential()
classifier.add(Dense(units = 60, kernel_initializer = 'uniform', activation = 'relu',

↪→ input_dim = (columns − fluorophore_number)))
classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 20, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 20, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 60, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = fluorophore_number, kernel_initializer = 'uniform',

↪→ activation = 'sigmoid'))
classifier.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['

↪→ accuracy'])

classifier.fit(X_DL_class_rel_train, y_DL_class_rel_train, epochs=500, batch_size=25)

y_DL_class_rel_pred = classifier.predict(X_DL_class_rel_test)
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Checking on test data

pd.DataFrame.from_records(y_DL_class_rel_pred)

Comparing y_pred to data

y_DL_class_rel_pred_max = pd.DataFrame.from_records(y_DL_class_rel_pred)
y_DL_class_rel_pred_maxima = y_DL_class_rel_pred_max.apply(lambda x: max(x

↪→ ), axis = 1)
y_DL_class_rel_pred_max = y_DL_class_rel_pred_max.isin(

↪→ y_DL_class_rel_pred_maxima)
y_DL_class_rel_pred_max = y_DL_class_rel_pred_max.stack()
#y_DL_class_rel_pred_max = pd.Series(pd.Categorical(y_DL_class_rel_pred_max[

↪→ y_DL_class_rel_pred_max!=0].index.get_level_values(1)))
#y_DL_class_rel_pred_max = labelencoder_X_1.inverse_transform(

↪→ y_DL_class_rel_pred_max)
#y_DL_class_rel_pred_max = pd.DataFrame(y_DL_class_rel_pred_max)
y_DL_class_rel_pred_maxima

y_DL_class_rel_test_dec = pd.DataFrame(y_DL_class_rel_test)
y_DL_class_rel_test_dec = pd.DataFrame.from_records(y_DL_class_rel_test_dec)
y_DL_class_rel_test_dec_maxima = y_DL_class_rel_test_dec.apply(lambda x:

↪→ max(x), axis = 1)
y_DL_class_rel_test_dec = y_DL_class_rel_test_dec.isin(

↪→ y_DL_class_rel_test_dec_maxima)
y_DL_class_rel_test_dec = y_DL_class_rel_test_dec.stack()
y_DL_class_rel_test_dec = pd.Series(pd.Categorical(y_DL_class_rel_test_dec[

↪→ y_DL_class_rel_test_dec!=0].index.get_level_values(1)))
y_DL_class_rel_test_dec = labelencoder_X_1.inverse_transform(

↪→ y_DL_class_rel_test_dec)
y_DL_class_rel_test_dec = pd.DataFrame(y_DL_class_rel_test_dec)
y_DL_class_rel_test_dec

y_DL_class_rel_test_dec.columns = ['test']
y_DL_class_rel_pred_max.columns = ['pred']
y_DL_class_rel_test_dec = y_DL_class_rel_test_dec.reset_index()
y_DL_class_rel_pred_max = y_DL_class_rel_pred_max.reset_index()
pd.concat((y_DL_class_rel_test_dec, y_DL_class_rel_pred_max), axis = 1)
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Deep Learning ANN for predicting time series

Preparation of data frames - Absolute data

Main question: How long do we need to record to predict all the following timepoints?
Feature scaling is already done. Setting variable parameters:

timepoints_to_predict = 60

DLdata_time = mydata_T.iloc[:, 1:]
DLdata_rel_time = mydata_T_norm.iloc[:, 1:]

DLdata_time.head()

DLdata_rel_time.head()

Encoding absolute data

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_3 = LabelEncoder()
DLdata_enc_time = pd.concat((pd.get_dummies(labelencoder_X_3.fit_transform(

↪→ DLdata_time.iloc[:, 0].values), prefix = 'enc'), DLdata_time.iloc[:, 1:]), axis = 1)
DLdata_enc_time.head()

Encoding Min Max of absolute data

from sklearn.preprocessing import MinMaxScaler
scaler2 = MinMaxScaler()
DLdata_enc_time = scaler.fit_transform(DLdata_enc)

Encoding relative data

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_4 = LabelEncoder()
DLdata_rel_enc_time = pd.concat((pd.get_dummies(labelencoder_X_4.fit_transform(

↪→ DLdata_rel_time.iloc[:, 0].values), prefix = 'enc'), DLdata_rel_time.iloc[:, 1:]),
↪→ axis = 1)

DLdata_rel_enc_time.head()
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Encoding Min Max of absolute data

from sklearn.preprocessing import MinMaxScaler
scaler3 = MinMaxScaler()
DLdata_rel_enc_time = scaler.fit_transform(DLdata_rel_enc_time)

Timecourse prediction by ANN - Absolute data

Splitting dataset in X and y and test and train

X_DL_class_time = DLdata_enc_time[:, 1:(columns − timepoints_to_predict)]
y_DL_class_time = DLdata_enc_time[:, (columns − timepoints_to_predict):columns]
X_DL_class_train_time, X_DL_class_test_time, y_DL_class_train_time,

↪→ y_DL_class_test_time = train_test_split(X_DL_class_time,
↪→ y_DL_class_time, test_size = 0.2)

(columns − timepoints_to_predict)

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout

def create_model():
optimizer = 'rmsprop'
time_predictor = Sequential()
time_predictor.add(Dense(units = 60, kernel_initializer = 'uniform', activation = '

↪→ sigmoid', input_dim = (columns − timepoints_to_predict − 1)))
time_predictor.add(Dense(units = 150, kernel_initializer = 'uniform', activation = '

↪→ relu'))
time_predictor.add(Dense(units = 140, kernel_initializer = 'uniform', activation = '

↪→ relu'))
time_predictor.add(Dropout(0.2))
time_predictor.add(Dense(units = 120, kernel_initializer = 'uniform', activation = '

↪→ relu'))
time_predictor.add(Dropout(0.2))
time_predictor.add(Dense(units = 110, kernel_initializer = 'uniform', activation = '

↪→ relu'))
time_predictor.add(Dense(units = 70, kernel_initializer = 'uniform', activation = '

↪→ relu'))
time_predictor.add(Dropout(0.2))
time_predictor.add(Dense(units = 120, kernel_initializer = 'uniform', activation = '

↪→ relu'))
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time_predictor.add(Dropout(0.2))
time_predictor.add(Dense(units = timepoints_to_predict, kernel_initializer = '

↪→ uniform', activation = 'sigmoid'))
time_predictor.compile(optimizer = optimizer, loss = 'mse', metrics = ['accuracy'])

return time_predictor

model = create_model()
model.fit(X_DL_class_train_time, y_DL_class_train_time, epochs=2500, batch_size

↪→ =25)

y_DL_class_pred_time = model.predict(X_DL_class_test_time)

Checking on test data

pd.DataFrame.from_records(y_DL_class_pred_time.round(decimals= 2))

len(y_DL_class_pred_time)

Comparing y_pred to data graphically

fig, axes = plt.subplots(len(y_DL_class_pred_time), 1, sharex=True, figsize=(10,25))
fig.suptitle('Red␣fluorescent␣proteins', fontsize = 20)
for i in range(0, len(y_DL_class_pred_time)):

axes[i].plot(y_DL_class_pred_time[i, :])
axes[i].plot(y_DL_class_test_time[i, :])
axes[i].set_xlabel('Time', fontsize = 10)
#axes[i].set_ylabel('Fluorescence intensity', fontsize = 10)

fig.legend(('predicted', 'test␣data'), fontsize = 10)
plt.tight_layout()
plt.subplots_adjust(top = 0.97)
savefig('time_pred_red.pdf')
savefig('time_pred_red.png', dpi = 100)
plt.show

Loading MaMuT xml and resaving tracks as csv

This notebook is loading a MaMuT xml and resaving the included tracks as csv.
Setting the filenames
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import os.path
newpath = r'C:\Users\..'
if not os.path.exists(newpath):

os.makedirs(newpath)

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

## CHANGE TRUE to FALSE if there is not eye data avaliable!
eye_data_present = True

## Put in your ID of your DATA here! (look exel table)

here_your_eye_ID_data = 'ID7'

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

input_cell = 'Data/trackdata/data'+ str(here_your_eye_ID_data) + '_cell_track.xml'

output_cell = 'Data/trackdata/cell_track' + str (here_your_eye_ID_data) + '.csv'

if eye_data_present:

input_eye = 'Data/trackdata/data'+ str(here_your_eye_ID_data) + '_eye_track.
↪→ xml'

output_eye = 'Data/trackdata/eye_track' + str (here_your_eye_ID_data) + '.csv'

Loading the xml

from xml.dom import minidom

if eye_data_present:
mydoc_eye = minidom.parse(input_eye)
spots_eye = mydoc_eye.getElementsByTagName('Spot')
tracks_eye = mydoc_eye.getElementsByTagName('Track')

mydoc_cell = minidom.parse(input_cell)
spots_cell = mydoc_cell.getElementsByTagName('Spot')
tracks_cell = mydoc_cell.getElementsByTagName('Track')

Creating numpy arrays

import numpy as np
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spotdatatable_cell = np.zeros((spots_cell.length, 6))
spotIDtable_cell = np.zeros((spots_cell.length, 1))

if eye_data_present:
spotdatatable_eye = np.zeros((spots_eye.length, 6))
spotIDtable_eye = np.zeros((spots_eye.length, 1))

Reading Spots

Populating arrays for cell tracks

i = 0
for elem in spots_cell:

spotIDtable_cell[i] = elem.attributes['ID'].value
spotdatatable_cell[i,0] = elem.attributes['POSITION_X'].value
spotdatatable_cell[i,1] = elem.attributes['POSITION_Y'].value
spotdatatable_cell[i,2] = elem.attributes['POSITION_Z'].value
spotdatatable_cell[i,3] = elem.attributes['POSITION_T'].value
i += 1

# for eye tracks

if eye_data_present:
i = 0
for elem in spots_eye:

spotIDtable_eye[i] = elem.attributes['ID'].value
spotdatatable_eye[i,0] = elem.attributes['POSITION_X'].value
spotdatatable_eye[i,1] = elem.attributes['POSITION_Y'].value
spotdatatable_eye[i,2] = elem.attributes['POSITION_Z'].value
spotdatatable_eye[i,3] = elem.attributes['POSITION_T'].value
i += 1

spotIDtable_cell[0:5,:]

spotdatatable_cell[0:5,:]

Creating Pandas dataframe

for cell tracks
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import pandas as pd

spotIDdataframe_cell = pd.DataFrame(data = spotIDtable_cell, columns = ['ID'])
spotdataframe_cell = pd.DataFrame(data = spotdatatable_cell, columns = ['X', 'Y', 'Z', '

↪→ time', 'TrackID', 'prevID'])
finalspotdata_cell = pd.concat((spotIDdataframe_cell, spotdataframe_cell), axis = 1)
finalspotdata_cell.head()

for eye tracks

if eye_data_present:
spotIDdataframe_eye = pd.DataFrame(data = spotIDtable_eye, columns = ['ID'])
spotdataframe_eye = pd.DataFrame(data = spotdatatable_eye, columns = ['X', 'Y', '

↪→ Z', 'time', 'TrackID', 'prevID'])
finalspotdata_eye = pd.concat((spotIDdataframe_eye, spotdataframe_eye), axis = 1)
finalspotdata_eye.head()

Reading Tracks and adding to the dataframe

for cell tracks

i = 0

for elem in tracks_cell:
trackid_cell = elem.attributes['TRACK_ID'].value
edges_cell = elem.getElementsByTagName('Edge')
for edge in edges_cell:

finalspotdata_cell.loc[finalspotdata_cell.ID == int(edge.attributes['
↪→ SPOT_SOURCE_ID'].value), 'TrackID'] = trackid_cell

finalspotdata_cell.loc[finalspotdata_cell.ID == int(edge.attributes['
↪→ SPOT_TARGET_ID'].value), 'TrackID'] = trackid_cell

finalspotdata_cell.loc[finalspotdata_cell.ID == int(edge.attributes['
↪→ SPOT_TARGET_ID'].value), 'prevID'] = int(edge.attributes['
↪→ SPOT_SOURCE_ID'].value)

i += 1
finalspotdata_cell.head()

for eye tracks

if eye_data_present:
i = 0
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for elem in tracks_eye:
trackid_eye = elem.attributes['TRACK_ID'].value
edges_eye = elem.getElementsByTagName('Edge')
for edge in edges_eye:

finalspotdata_eye.loc[finalspotdata_eye.ID == int(edge.attributes['
↪→ SPOT_SOURCE_ID'].value), 'TrackID'] = trackid_eye

finalspotdata_eye.loc[finalspotdata_eye.ID == int(edge.attributes['
↪→ SPOT_TARGET_ID'].value), 'TrackID'] = trackid_eye

finalspotdata_eye.loc[finalspotdata_eye.ID == int(edge.attributes['
↪→ SPOT_TARGET_ID'].value), 'prevID'] = int(edge.attributes['
↪→ SPOT_SOURCE_ID'].value)

i += 1
finalspotdata_eye.head()

finalspotdata_cell.tail()

Saving CSV

finalspotdata_cell.to_csv(path_or_buf=output_cell)
if eye_data_present:

finalspotdata_eye.to_csv(path_or_buf=output_eye)

Global correction of affine transformation

between timesteps

This notebook corrects the drift and size increase between each timepoint by finding the most
likely affine transformation to the previous point cloud using tracks as anchor points.

Loading csv

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

## Put in your ID of your DATA here! (look at excel table)

here_your_eye_ID_data = 'ID7'

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
#####choose your transformation (0=affine,1=rigid,2=no transformation)####
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correction_you_desire = [1]

#### is eye data present?####

eye_data_present = False

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

from pathlib import Path

eye_file = Path('Data/trackdata/eye_track' + str (here_your_eye_ID_data)+ '.csv')
if eye_file.is_file():

# file exists

input_eyetrack = 'Data/trackdata/eye_track' + str (here_your_eye_ID_data)+ '.
↪→ csv'

input_celltrack = 'Data/trackdata/cell_track' + str (here_your_eye_ID_data) + '.csv'

import os.path
newpath_affine = r'C:\Users\...'
if not os.path.exists(newpath_affine):

os.makedirs(newpath_affine)

output_eyetrack_affine_corr = 'Data/affine/eye_track_affine_corr' + str (
↪→ here_your_eye_ID_data) + '.csv'

output_celltrack_affine_corr = 'Data/affine/cell_track_affine_corr' + str (
↪→ here_your_eye_ID_data) + '.csv'

newpath_rigid = r'C:\Users\...'
if not os.path.exists(newpath_rigid):

os.makedirs(newpath_rigid)

output_eyetrack_rigid_corr = 'Data/rigid/eye_track_rigid_corr' + str (
↪→ here_your_eye_ID_data) + '.csv'

output_celltrack_rigid_corr = 'Data/rigid/cell_track_rigid_corr' + str (
↪→ here_your_eye_ID_data) + '.csv'

newpath_no_corr = r'C:\Users\...'
if not os.path.exists(newpath_no_corr):

os.makedirs(newpath_no_corr)
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output_eyetrack_no_corr = 'Data/no_corr/eye_track_no_corr' + str (
↪→ here_your_eye_ID_data) + '.csv'

output_celltrack_no_corr = 'Data/no_corr/cell_track_no_corr' + str (
↪→ here_your_eye_ID_data) + '.csv'

import pandas as pd
import numpy as np

cell_tracks = pd.read_csv(input_celltrack).iloc[:, 1:]

eye_tracks = pd.read_csv(input_eyetrack).iloc[:, 1:]
eye_tracks.head()

eye_tracks.tail()

cell_tracks.head()

cell_tracks.tail()

Building point cloud vectors

timemin = min(cell_tracks.time)
timemin

timemax = max(cell_tracks.time)
timemax

Preparing new dataframe

temp_dataframe_cell = np.zeros((len(cell_tracks), 3)) #creating matrix with zeros #3
↪→ collums #rows same as cell tracknumbers

temp_dataframe_cell = pd.DataFrame(temp_dataframe_cell, columns = ['Xcorr', 'Ycorr',
↪→ 'Zcorr']) #converting into Dataframe in Pandas −−> renaming collums
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temp_dataframe2_cell = cell_tracks.copy() #copies dataframe from IN 1 to add the
↪→ newly forged dataframe to the original in the next step

target_dataframe_cell = pd.concat([temp_dataframe2_cell, temp_dataframe_cell], axis
↪→ = 1, sort = False) #concatinates\adds the two together to get a full dataframe
↪→ with XyZcorr collums

# Adding first points to X,Y,Zcorr for cell tracking points # dataframe.collumname calls
↪→ collum

target_dataframe_cell.Xcorr[target_dataframe_cell.time == timemin] =
↪→ target_dataframe_cell.X[target_dataframe_cell.time == timemin]

target_dataframe_cell.Ycorr[target_dataframe_cell.time == timemin] =
↪→ target_dataframe_cell.Y[target_dataframe_cell.time == timemin]

target_dataframe_cell.Zcorr[target_dataframe_cell.time == timemin] =
↪→ target_dataframe_cell.Z[target_dataframe_cell.time == timemin]

if eye_data_present:
temp_dataframe_eye = np.zeros((len(eye_tracks), 3)) #same as above, but for eye

↪→ tracks
temp_dataframe_eye = pd.DataFrame(temp_dataframe_eye, columns = ['Xcorr', '

↪→ Ycorr', 'Zcorr']) # same as aove, but for eyes
temp_dataframe2_eye = eye_tracks.copy() #copies dataframe from IN 1 to add the

↪→ newly forged dataframe to the original in the next step
target_dataframe_eye = pd.concat([temp_dataframe2_eye, temp_dataframe_eye],

↪→ axis = 1, sort = False) #concatinates\adds the two together to get a full
↪→ dataframe with XyZcorr collums

# Adding first points to X,Y,Zcorr for eye tracking points # dataframe.collumname
↪→ calls collum

target_dataframe_eye.Xcorr[target_dataframe_eye.time == timemin] =
↪→ target_dataframe_eye.X[target_dataframe_eye.time == timemin]

target_dataframe_eye.Ycorr[target_dataframe_eye.time == timemin] =
↪→ target_dataframe_eye.Y[target_dataframe_eye.time == timemin]

target_dataframe_eye.Zcorr[target_dataframe_eye.time == timemin] =
↪→ target_dataframe_eye.Z[target_dataframe_eye.time == timemin]

#view table head
target_dataframe_cell.head()

temp_dataframe2_cell.tail()

target_dataframe_cell["TrackID"].value_counts()
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target_dataframe_cell = target_dataframe_cell.loc[target_dataframe_cell.TrackID != 0]

if eye_data_present:
target_dataframe_cell["TrackID"].value_counts()
target_dataframe_eye = target_dataframe_eye.loc[target_dataframe_eye.TrackID

↪→ != 0]

Iterating through all timepoints to find the corresponding
points on the previous frame –> the transformation is
done on cell data

####AFINE TRANSFORMATION

if correction_you_desire == [0]:

for i in range(int(timemin) + 1, int(timemax)+1):

tp1 = target_dataframe_cell.loc[target_dataframe_cell.time == i − 1]
tp2 = target_dataframe_cell.loc[target_dataframe_cell.time == i]

# eliminate all points in tp2, that are not present in the tp1
tp2 = tp2.loc[tp2.TrackID.isin(tp1.TrackID)]

# prepare arrays for following optimization
primary = np.zeros((len(tp2), 3))
secondary = np.zeros([len(tp2), 3])

# iterate over all points and add to optimization arrays
for j in range(0,len(tp2)):

prevID = tp2.prevID.iloc[j]
primary[j] = [tp2.X.iloc[j], tp2.Y.iloc[j], tp2.Z.iloc[j]]
try:

secondary[j] = tp1.loc[tp1.ID == prevID, ['Xcorr', 'Ycorr', 'Zcorr']]
except ValueError:

# if new lineage, that did not exist before
secondary[j] = [0, 0, 0]

# Check whether one of the matrices is empty
if (primary.size == 0 | secondary.size == 0):

continue

# Pad the data with ones, so that our transformation can do translations too
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n = primary.shape[0]
pad = lambda x: np.hstack([x, np.ones((x.shape[0], 1))])
unpad = lambda x: x[:,:−1]
X = pad(primary)
Y = pad(secondary)

# Solve the least squares problem X ∗ A = Y
# to find our transformation matrix A
A, res, rank, s = np.linalg.lstsq(X, Y)

# defininig the transformation function
transform = lambda x: unpad(np.dot(pad(x), A))

# Transformation of the actual datapoints and adding to the dataframe
target_dataframe_cell.loc[target_dataframe_cell.time == i, ['Xcorr', 'Ycorr', '

↪→ Zcorr']] = transform(np.array(target_dataframe_cell.loc[
↪→ target_dataframe_cell.time == i, ['X', 'Y', 'Z']]))

if eye_data_present:
target_dataframe_eye.loc[target_dataframe_eye.time == i, ['Xcorr', 'Ycorr',

↪→ 'Zcorr']] = transform(np.array(target_dataframe_eye.loc[
↪→ target_dataframe_eye.time == i, ['X', 'Y', 'Z']]))

# Troubleshooting

#print("Target:")
#print(secondary)
#print("Result:")
#print(transform(primary))
#print("Max error:", np.abs(secondary − transform(primary)).max())
#A[np.abs(A) < 1e−10] = 0 # set really small values to zero
#print(A)
#print(np.array(target_dataframe.loc[target_dataframe.time == i, ['X', 'Y', 'Z']])

↪→ )
#print(transform(np.array(target_dataframe.loc[target_dataframe.time == i, ['X',

↪→ 'Y', 'Z']])))

#target_dataframe.loc[target_dataframe.time == i, ['Xcorr', 'Ycorr', 'Zcorr']]]

###### RIGID TRANSFORMATION with Kabasch algorithm

elif correction_you_desire == [1]:
print ("rigid")
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import numpy as np
import numpy.linalg
import pandas as pd

# Rigidly (+scale) aligns two point clouds with know point−to−point correspondences
# with least−squares error.
# Returns (scale factor c, rotation matrix R, translation vector t) such that
# Q = P∗cR + t
# if they align perfectly, or such that
# SUM over point i ( | P_i∗cR + t − Q_i |^2 )
# is minimised if they don't align perfectly.

def umeyama (t1, t2):
assert t1.shape == t2.shape, "t1␣and␣t2␣do␣not␣have␣the␣same␣shape" #tests if

↪→ both datasets have the same number of row/collums
n, dim = t1.shape

centered_t1 = t1 − t1.mean (axis=0) #calculates centeroids by subtracting the
↪→ means of tp1 from tp1

centered_t2 = t2 − t2.mean (axis=0)#calculates centeroids by subtracting the
↪→ means of tp2 from tp2

C = np.dot(np.transpose(centered_t1), centered_t2) / n #dot multiplicates

V, S, W = np.linalg.svd(C)
d = (np.linalg.det(V) ∗ np.linalg.det(W)) < 0.0

if d:
S[−1] = −S[−1]
V[:, −1] = −V[:, −1]

R = np.dot(V, W) #.dot calculates the product of V & W

t = t2.mean(axis=0) − t1.mean(axis=0).dot(R)

return R, t

# Testing

np.set_printoptions(precision=3)

a1 = np.array([
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[0, 0, −1],
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[1, 0, 0],

])

a2 = np.array([
[0, 0, 1],
[0, 0, 0],
[0, 0, −1],
[0, 1, 0],
[−1, 0, 0],

])
a2 ∗= 2 # for testing the scale calculation
a2 += 3 # for testing the translation calculation

R, t = umeyama(a1, a2)
print ("R␣=\n", R)

print ("t␣=\n", t)
print ("Check:␣␣a1∗cR␣+␣t␣=␣a2␣␣is", np.allclose(a1.dot(R) + t, a2))
err = ((a1.dot(R) + t − a2) ∗∗ 2).sum()
print ("Residual␣error", err)

for i in range(int(timemin) + 1, int(timemax)+1):

tp1 = target_dataframe_cell.loc[target_dataframe_cell.time == i − 1] #calls
↪→ time row in target_dataframe_cell from timepoint 0 −−> t=+1−1+0

tp2 = target_dataframe_cell.loc[target_dataframe_cell.time == i] #calls
↪→ timepoint 1 −−> t0+1

# eliminate all points in tp2, that are not present in the tp1
#isin checks bolean (true/false) and gives this as table
tp2 = tp2.loc[tp2.TrackID.isin(tp1.TrackID)] #is tp2 TrackID also in tp1 TrackID

↪→ ?
tp2 = tp2.loc[tp2.prevID.isin(tp1.ID)]

tp2 = tp2.sort_values(by=['prevID'])
tp2 = tp2.loc[tp2.prevID != 0]
print('_____________tp2_________________')
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print (tp2)

r,c = tp2.shape
print(r)
tp1_new = np.zeros((r,c))

print('_____________tp1new_________________')
print (tp1_new)
print('______________________________')

tp1_new = pd.DataFrame(tp1_new, columns = list(tp2.columns.values))

print('_____________tp1new_after␣header_________________')
print (tp1_new)
print('______________________________')

if tp1_new.shape != tp2.shape:

print('_____________shape_missmatch_________________')
print (tp1_new.shape)
print (tp2.shape)
print('______________________________')
break

prevID_change = tp2.prevID
#prevID_change = target_dataframe_cell.loc[target_dataframe_cell.time == i, ['

↪→ prevID']]
#prevID_change = prevID_change.rename(index=str, columns={"prevID": "ID"})

↪→

#print('_____________Id_change_________________')
#print (prevID_change)
#print('______________________________')

for j in range (0,len(prevID_change)):
prevID = prevID_change.iloc[j]
tp1_new.loc[j,:] = np.array(tp1.loc[tp1.ID == prevID, :])
#print('_____________j_________________')
#print(j)
#print('______________________________')

#print('_____________tp2_________________')
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#print (tp2)
#print('______________________________')
#print('_____________tp1new_alarm_________________')
#print (tp1_new)
#print('______________________________')

#check = tp2.loc[tp2.prevID == 0] #all rows in tp2 with previousID = 0 in the
↪→ check table

#if check.size != 0:
# tp1= tp1.loc[not tp1.ID.isin(check.ID)]
# tp2 = tp2.loc[not tp2.ID.isin(check.ID)] #kicks all TrackID of var tp2 with no

↪→ previousID

# check for same dataframe shape
if tp1_new.shape != tp2.shape:

print('Houston␣we␣have␣a␣problem!')
print (tp1_new.shape + tp2.shape)
break

#here we pick just X,Y,Z from the timepoints to later form products with R
tp1_new = tp1_new.loc[:,['X', 'Y', 'Z']]
tp2 = tp2.loc[:,['X', 'Y', 'Z']]

# calculate R & t for all point in tp1 and tp2
R, t = umeyama(tp1_new, tp2)

tobechanged_cell = target_dataframe_cell.loc[target_dataframe_cell.time == i,
↪→ ['X', 'Y', 'Z']]

for k in range (0,len(tobechanged_cell)):
print ("tp1shape")
print(tp1_new.shape)
print("tp2.shape")
print(tp2.shape)
print ("Rshape")
print(R.shape)

temp_cell = tobechanged_cell.iloc[k,:]
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print (temp_cell.shape)
temp_cell = temp_cell.dot(R) + t
tobechanged_cell.iloc[k,:] = temp_cell

print('tada_cell' + str(i))
print (tobechanged_cell)

if eye_data_present:
tobechanged_eye = target_dataframe_eye.loc[target_dataframe_eye.time

↪→ == i, ['X', 'Y', 'Z']]
for l in range (0,len(tobechanged_eye)):

temp_eye = tobechanged_eye.iloc[l,:]
temp_eye = temp_eye.dot(R) + t
tobechanged_eye.iloc[l,:] = temp_eye

print('tada_eye' + str(i))
print(tobechanged_eye)
target_dataframe_eye.loc[target_dataframe_eye.time == i, ['Xcorr', 'Ycorr',

↪→ 'Zcorr']] = np.array(tobechanged_eye)
target_dataframe_eye.loc[target_dataframe_eye.time == i, ['Xcorr', 'Ycorr',

↪→ 'Zcorr']] = transform(np.array(target_dataframe_eye.loc[
↪→ target_dataframe_eye.time == i, ['X', 'Y', 'Z']]))

target_dataframe_cell.loc[target_dataframe_cell.time == i, ['Xcorr', 'Ycorr', '
↪→ Zcorr']] = np.array(tobechanged_cell)

target_dataframe_cell.tail()

#Transformation of the actual datapoints and adding to the dataframe
#target_dataframe_cell.loc[target_dataframe_cell.time == i, ['Xcorr', 'Ycorr', '

↪→ Zcorr']] = transform(np.array(target_dataframe_cell.loc[
↪→ target_dataframe_cell.time == i, ['X', 'Y', 'Z']]))

# Troubleshooting

#print("Target:")
#print(secondary)
#print("Result:")
#print(transform(primary))
#print("Max error:", np.abs(secondary − transform(primary)).max())
#A[np.abs(A) < 1e−10] = 0 # set really small values to zero
#print(A)
#print(np.array(target_dataframe.loc[target_dataframe.time == i, ['X', 'Y', '

↪→ Z']]))
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#print(transform(np.array(target_dataframe.loc[target_dataframe.time == i,
↪→ ['X', 'Y', 'Z']])))

#target_dataframe.loc[target_dataframe.time == i, ['Xcorr', 'Ycorr', 'Zcorr
↪→ ']]

elif correction_you_desire == [2]:

target_dataframe_cell = target_dataframe_cell
if eye_data_present:

target_dataframe_eye = target_dataframe_eye

if correction_you_desire == 2:
len(tp2)

if correction_you_desire == 2:
len(tp1)

target_dataframe_cell.head()

target_dataframe_cell.tail()

if eye_data_present:
target_dataframe_eye.head()

if eye_data_present:
target_dataframe_eye.tail()

target_dataframe_cell.loc[target_dataframe_cell.TrackID==51]

if eye_data_present:
target_dataframe_eye.loc[target_dataframe_eye.time == 13]

if correction_you_desire == 2:
if eye_data_present:

target_dataframe_eye.loc[target_dataframe_eye.time == i]
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if eye_data_present:
target_dataframe_eye

Saving as csv

if correction_you_desire == [0]:
target_dataframe_cell.to_csv(path_or_buf=output_celltrack_affine_corr)
if eye_data_present:

target_dataframe_eye.to_csv(path_or_buf=output_eyetrack_affine_corr)
print ("Affine␣transformation␣executed␣on␣data!")

elif correction_you_desire == [1]:
target_dataframe_cell.to_csv(path_or_buf=output_celltrack_rigid_corr)
if eye_data_present:

target_dataframe_eye.to_csv(path_or_buf=output_eyetrack_rigid_corr)
print ("Rigid␣transformation␣executed␣on␣data!")

elif correction_you_desire == [2]:
target_dataframe_cell.to_csv(path_or_buf=output_celltrack_no_corr)
if eye_data_present:

target_dataframe_eye.to_csv(path_or_buf=output_eyetrack_no_corr)
print ("No␣Correction␣done␣on␣data!")

else:
print ("You␣did␣not␣choose␣an␣Transformation␣Option:␣Please␣selcet␣one␣at␣IN[17]!

↪→ ")

Calculating properties of points

This notebooks calculates the properties of points such as velocity and direction.

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

###PLEASE CHANGE TRUE TO FALSE IF NOT EYE DATA IS PRESENT!!!###

eye_data_present = True

here_your_eye_ID_data = "ID7"
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

#####choose your transformation (0=affine,1=rigid,2=no transformation)####

correction_you_desire = [1]
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#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

import pandas as pd
import numpy as np

if eye_data_present:

if correction_you_desire == [0]:

input_affine_eye = 'Data/affine/eye_track_affine_corr'+ str (
↪→ here_your_eye_ID_data) + '.csv'

output_affine_eye = 'Data/affine/eye_track_affine_corr_calc' + str (
↪→ here_your_eye_ID_data) + '.csv'

elif correction_you_desire == [1]:

input_rigid_eye = 'Data/rigid/eye_track_rigid_corr'+ str (
↪→ here_your_eye_ID_data) + '.csv'

output_rigid_eye = 'Data/rigid/eye_track_rigid_corr_calc'+ str (
↪→ here_your_eye_ID_data) + '.csv'

elif correction_you_desire == [2]:

input_no_corr_eye = 'Data/no_corr/eye_track_no_corr'+ str (
↪→ here_your_eye_ID_data) + '.csv'

output_no_corr_eye = 'Data/no_corr/eye_track_no_corr_calc'+ str (
↪→ here_your_eye_ID_data) + '.csv'

else:
print ('Choose␣the␣correction␣of␣data␣you␣used␣above!')

input_affine_cell = 'Data/affine/cell_track_affine_corr'+ str (here_your_eye_ID_data)
↪→ + '.csv'

output_affine_cell = 'Data/affine/cell_track_affine_corr_calc'+ str (
↪→ here_your_eye_ID_data) + '.csv'

input_rigid_cell = 'Data/rigid/cell_track_rigid_corr' + str (here_your_eye_ID_data)
↪→ + '.csv'

output_rigid_cell = 'Data/rigid/cell_track_rigid_corr_calc' + str (
↪→ here_your_eye_ID_data) + '.csv'

input_no_corr_cell = 'Data/no_corr/cell_track_no_corr'+ str (
↪→ here_your_eye_ID_data) + '.csv'
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output_no_corr_cell = 'Data/no_corr/cell_track_no_corr_calc'+ str (
↪→ here_your_eye_ID_data) + '.csv'

if correction_you_desire == [0]:

original_dataframe_cell = pd.read_csv(input_affine_cell).iloc[:, 1:]
if eye_data_present:

original_dataframe_eye = pd.read_csv(input_affine_eye).iloc[:, 1:]
print ("You␣chose␣to␣work␣with␣affine␣transformed␣data!")

elif correction_you_desire == [1]:
original_dataframe_cell = pd.read_csv(input_rigid_cell).iloc[:, 1:]
if eye_data_present:

original_dataframe_eye = pd.read_csv(input_rigid_eye).iloc[:, 1:]
print ("You␣chose␣to␣work␣with␣rigid␣transformed␣data!")

elif correction_you_desire == [2]:
original_dataframe_cell = pd.read_csv(input_no_corr_cell).iloc[:, 1:]
if eye_data_present:

original_dataframe_eye = pd.read_csv(input_no_corr_eye).iloc[:, 1:]
print ("You␣chose␣to␣work␣with␣non␣corrected␣data!")

else:
print ("You␣did␣not␣choose␣an␣Transformation␣Option:␣Please␣selcet␣one␣above!")

calculating velocity

timemax = max(original_dataframe_cell.time)
timemax

timemin = min(original_dataframe_cell.time)
timemin

original_dataframe_cell.head()

original_dataframe_eye.head()

target_dataframe_cell = original_dataframe_cell
target_dataframe_eye = original_dataframe_eye
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Saving as csv

#target_dataframe_cell.to_csv(path_or_buf=output_cell)
#target_dataframe_eye.to_csv(path_or_buf=output_eye)

if correction_you_desire == [0]:
target_dataframe_cell.to_csv(path_or_buf=output_affine_cell)
if eye_data_present:

target_dataframe_eye.to_csv(path_or_buf=output_affine_eye)
print ("Affine␣data␣saved␣with␣calculated␣informations!")

elif correction_you_desire == [1]:
target_dataframe_cell.to_csv(path_or_buf=output_rigid_cell)
if eye_data_present:

target_dataframe_eye.to_csv(path_or_buf=output_rigid_eye)
print ("Rigid␣data␣saved␣with␣calculated␣informations!")

elif correction_you_desire == [2]:
target_dataframe_cell.to_csv(path_or_buf=output_no_corr_cell)
if eye_data_present:

target_dataframe_eye.to_csv(path_or_buf=output_no_corr_eye)
print ("Non␣corrected␣data␣saved␣with␣calculated␣informations!")

else:
print ("You␣did␣not␣choose␣an␣Transformation␣Option:␣Please␣selcet␣one␣at␣IN[3]!"

↪→ )

3D Visualization of points using matplotlib

Loading the dataframe

import pandas as pd
import numpy as np

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

###PLEASE CHANGE TRUE TO FALSE IF NOT EYE DATA IS PRESENT!!!###

## The eye data part is not finished in this script! Right now it only loads eye data an
↪→ stores it into variables!

eye_data_present = False

here_your_eye_ID_data = "ID7"

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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#####choose your transformation (0=affine,1=rigid,2=no transformation)####

correction_you_desire = [2]

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

if eye_data_present:

if correction_you_desire == [0]:

input_eye = 'Data/affine/eye_track_affine_corr_calc'+ str (
↪→ here_your_eye_ID_data) + '.csv'

print ("you␣loaded␣eye␣data␣aswell")

elif correction_you_desire == [1]:

input_eye = 'Data/rigid/eye_track_rigid_corr_calc'+ str (
↪→ here_your_eye_ID_data) + '.csv'

print ("you␣loaded␣eye␣data␣aswell")

elif correction_you_desire == [2]:

input_eye = 'Data/no_corr/eye_track_no_corr_calc'+ str (
↪→ here_your_eye_ID_data) + '.csv'

print ("you␣loaded␣eye␣data␣aswell")
else:

print ('Choose␣the␣correction␣of␣data␣you␣used␣above!')

if correction_you_desire == [0]:

input_cell = 'Data/affine/cell_track_affine_corr_calc'+ str (
↪→ here_your_eye_ID_data) + '.csv'

original_dataframe = pd.read_csv(input_cell).iloc[:, 1:]
print ("affine␣data␣loaded")

elif correction_you_desire == [1]:

input_cell = 'Data/rigid/cell_track_rigid_corr_calc'+ str (here_your_eye_ID_data
↪→ ) + '.csv'

original_dataframe = pd.read_csv(input_cell).iloc[:, 1:]
print ("rigid␣data␣loaded")

elif correction_you_desire == [2]:
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input_cell = 'Data/no_corr/cell_track_no_corr_calc'+ str (
↪→ here_your_eye_ID_data) + '.csv'

original_dataframe = pd.read_csv(input_cell).iloc[:, 1:]
print ("non␣corrected␣data␣loaded")

original_dataframe.head()

Visualization

Importing libraries

from mpl_toolkits import mplot3d
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider

Getting first and last timepoint with data

timemin = min(original_dataframe.time)
print('First␣timepoint:␣', timemin)
timemax = max(original_dataframe.time)
print('Last␣timepoint:␣', timemax)

Function for getting the data for the current timepoint

if correction_you_desire == [0]:
def gettimepointdata(tp):

xdata = original_dataframe.loc[original_dataframe.time == tp, 'Xcorr']
ydata = original_dataframe.loc[original_dataframe.time == tp, 'Ycorr']
zdata = original_dataframe.loc[original_dataframe.time == tp, 'Zcorr']
track = original_dataframe.loc[original_dataframe.time == tp, 'TrackID']
return xdata, ydata, zdata, track

if correction_you_desire == [1]:
def gettimepointdata(tp):

xdata = original_dataframe.loc[original_dataframe.time == tp, 'Xcorr']
ydata = original_dataframe.loc[original_dataframe.time == tp, 'Ycorr']
zdata = original_dataframe.loc[original_dataframe.time == tp, 'Zcorr']
track = original_dataframe.loc[original_dataframe.time == tp, 'TrackID']
return xdata, ydata, zdata, track
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if correction_you_desire == [2]:
def gettimepointdata(tp):

xdata = original_dataframe.loc[original_dataframe.time == tp, 'X']
ydata = original_dataframe.loc[original_dataframe.time == tp, 'Y']
zdata = original_dataframe.loc[original_dataframe.time == tp, 'Z']
track = original_dataframe.loc[original_dataframe.time == tp, 'TrackID']
return xdata, ydata, zdata, track

Getting initial data points for the first time point

xdata_init, ydata_init, zdata_init, track_init = gettimepointdata(timemin)

Defining colormap for plotting

Colormap = 'Spectral'

Plotting

%matplotlib notebook

background_color = (0.6, 0.6, 0.6, 1.0)

fig, ax = plt.subplots(figsize = (9,8))
plt.subplots_adjust(left=0.25, bottom=0.25)

ax3d = plt.axes(projection='3d')

ax3d.w_xaxis.set_pane_color(background_color)
ax3d.w_yaxis.set_pane_color(background_color)
ax3d.w_zaxis.set_pane_color(background_color)

# Function for setting the axes to the maximum range that is present in the data

if correction_you_desire == [0]:
def updateaxes():

ax3d.set_xlim(min(original_dataframe.Xcorr), max(original_dataframe.Xcorr))
ax3d.set_ylim(min(original_dataframe.Ycorr), max(original_dataframe.Ycorr))
ax3d.set_zlim(min(original_dataframe.Zcorr), max(original_dataframe.Zcorr))

if correction_you_desire == [1]:
def updateaxes():

ax3d.set_xlim(min(original_dataframe.Xcorr), max(original_dataframe.Xcorr))
ax3d.set_ylim(min(original_dataframe.Ycorr), max(original_dataframe.Ycorr))
ax3d.set_zlim(min(original_dataframe.Zcorr), max(original_dataframe.Zcorr))
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if correction_you_desire == [2]:
def updateaxes():

ax3d.set_xlim(min(original_dataframe.X), max(original_dataframe.X))
ax3d.set_ylim(min(original_dataframe.Y), max(original_dataframe.Y))
ax3d.set_zlim(min(original_dataframe.Z), max(original_dataframe.Z))

updateaxes()

# Initial plotting
ax3d.scatter3D(xdata_init, ydata_init, zdata_init, c=track_init, cmap=Colormap)
ax3d.set_xlabel('x−axis␣[\my␣m]')
ax3d.set_ylabel('y−axis␣[\my␣m]')
ax3d.set_zlabel('z−axis␣[\my␣m]')

# Adding TimeSlider
timeslideax = plt.axes([0.25, 0.1, 0.65, 0.03])
timeslide = Slider(timeslideax, label = 'Time', valmin = timemin, valmax = timemax,

↪→ valstep = 1, valinit = timemin)

# Defining TimeSlider update function using previously defined functions
def update(val):

xdata_temp, ydata_temp, zdata_temp, track_temp = gettimepointdata(val)
ax3d.clear()
updateaxes()
ax3d.scatter3D(xdata_temp, ydata_temp, zdata_temp, c=track_temp, cmap=

↪→ Colormap)
ax3d.set_xlabel('x−axis␣[\my␣m]')
ax3d.set_ylabel('y−axis␣[\my␣m]')
ax3d.set_zlabel('z−axis␣[\my␣m]')

timeslide.on_changed(update)

plt.show()

Saving rotated versions of the plot

### set the elevation and azimuth:
elev = −103
azi = −89

### set the timepoint
tp = 0

### load data according to timepoint
xdata_time, ydata_time, zdata_time, track_time = gettimepointdata(tp)
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%matplotlib inline
plt.figure(figsize = (9,8))

ax3d_static = plt.axes(projection='3d')

### setting the background color:
background_color = (0.6, 0.6, 0.6, 1.0)
ax3d_static.w_xaxis.set_pane_color(background_color)
ax3d_static.w_yaxis.set_pane_color(background_color)
ax3d_static.w_zaxis.set_pane_color(background_color)

updateaxes()

# Initial plotting
ax3d_static.view_init(elev, azi)
ax3d_static.scatter3D(xdata_time, ydata_time, zdata_time, c=track_time, cmap=

↪→ Colormap)
ax3d_static.set_xlabel('x−axis␣[\my␣m]')
ax3d_static.set_ylabel('y−axis␣[\my␣m]')
ax3d_static.set_zlabel('z−axis␣[\my␣m]')
plt.savefig('3dplots/'+ here_your_eye_ID_data + '/' + str(tp) + '_elev_' + str(elev) +

↪→ '_azi_' + str(azi) +'.pdf')
plt.savefig('3dplots/'+ here_your_eye_ID_data + '/' + str(tp) + '_elev_' + str(elev) +

↪→ '_azi_' + str(azi) +'.png')
plt.show()

save all timepoints for the orientation

### set the elevation and azimuth:
elev = −173
azi = −89

for tp in range(int(timemin), int(timemax)):

### load data according to timepoint
xdata_time, ydata_time, zdata_time, track_time = gettimepointdata(tp)

%matplotlib inline
plt.figure(figsize = (9,8))

ax3d_static = plt.axes(projection='3d')

### setting the background color:
background_color = (0.6, 0.6, 0.6, 1.0)
ax3d_static.w_xaxis.set_pane_color(background_color)
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ax3d_static.w_yaxis.set_pane_color(background_color)
ax3d_static.w_zaxis.set_pane_color(background_color)

# Function for setting the axes to the maximum range that is present in the data

if correction_you_desire == [0]:
def updateaxes():

ax3d_static.set_xlim(min(original_dataframe.Xcorr), max(
↪→ original_dataframe.Xcorr))

ax3d_static.set_ylim(min(original_dataframe.Ycorr), max(
↪→ original_dataframe.Ycorr))

ax3d_static.set_zlim(min(original_dataframe.Zcorr), max(
↪→ original_dataframe.Zcorr))

if correction_you_desire == [1]:
def updateaxes():

ax3d_static.set_xlim(min(original_dataframe.Xcorr), max(
↪→ original_dataframe.Xcorr))

ax3d_static.set_ylim(min(original_dataframe.Ycorr), max(
↪→ original_dataframe.Ycorr))

ax3d_static.set_zlim(min(original_dataframe.Zcorr), max(
↪→ original_dataframe.Zcorr))

if correction_you_desire == [2]:
def updateaxes():

ax3d_static.set_xlim(min(original_dataframe.X), max(original_dataframe.X
↪→ ))

ax3d_static.set_ylim(min(original_dataframe.Y), max(original_dataframe.Y
↪→ ))

ax3d_static.set_zlim(min(original_dataframe.Z), max(original_dataframe.Z)
↪→ )

updateaxes()

# Initial plotting
ax3d_static.view_init(elev, azi)
ax3d_static.scatter3D(xdata_time, ydata_time, zdata_time, c=track_time, cmap=

↪→ Colormap)
ax3d_static.set_xlabel('x−axis␣[\my␣m]')
ax3d_static.set_ylabel('y−axis␣[\my␣m]')
ax3d_static.set_zlabel('z−axis␣[\my␣m]')
plt.savefig('3dplots/'+ here_your_eye_ID_data + '/' + str(tp) + '_elev_' + str(

↪→ elev) + '_azi_' + str(azi) +'.pdf')
plt.savefig('3dplots/'+ here_your_eye_ID_data + '/' + str(tp) + '_elev_' + str(

↪→ elev) + '_azi_' + str(azi) +'.png')
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plt.show()

This notebook creates xyz.files for chimera

Loading csv affine corrected

##here you import the uncorrected files
#type [0] for corrected (affine) or [1] rigid or [2] for non corrected
corr_non_corr = [1]

if corr_non_corr == [0]:
input_celltrack = 'Data/affine/cell_track_affine_corrID7.csv'

if corr_non_corr == [1]:
input_celltrack = 'Data/rigid/cell_track_rigid_corrID7.csv'

if corr_non_corr == [2]:
input_celltrack = 'Data/no_corr/cell_track_no_corrID7.csv'

import pandas as pd
import numpy as np

cell_tracks = pd.read_csv(input_celltrack).iloc[:, 1:]

cell_tracks.head()

cell_tracks.tail()

Building point cloud vectors

timemin = min(cell_tracks.time)
timemin

timemax = max(cell_tracks.time)
timemax
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Creating txt with XYZ coordinates of every timepoint to
load into chimera

import numpy as np
import pandas as pd
import os.path as path

for i in range(int(timemin) + 1, int(timemax)+1):

### IMPORTANT −−> change folder and create it by your own in the directiory
↪→ you want

f = open(r"D:\Chimera_XYZ\tp" + str(i) + ".xyz", "w") #creates a new txt.file for
↪→ each timepoint

tp = cell_tracks.loc[cell_tracks.time == i − 1] #selects one timepoint

sort = tp.sort_values(by=['TrackID'])
#print (sort)
#print ("tp" +str(i))
if corr_non_corr == [0]:

coordinates = sort.loc[:,('Xcorr', 'Ycorr', 'Zcorr')]
if corr_non_corr == [1]:

coordinates = sort.loc[:,('Xcorr', 'Ycorr', 'Zcorr')]
if corr_non_corr == [2]:

coordinates = sort.loc[:,('X', 'Y', 'Z')]

print (coordinates)

for row in range (1,len(coordinates)):

#print (row[str('X')], row[str('Y')])

line_X = coordinates.iloc [row,0]
line_Y = coordinates.iloc [row,1]
line_Z = coordinates.iloc [row,2]
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#print(line_X)
f.write("C" + "," + str(line_X) + "," + str(line_Y) +"," + str(line_Z)+"\n") #

↪→ write to the text file

f.close()

3D Visualization of single track points using

matplotlib

Loading the dataframe from the xml file

setting the options

import pandas as pd
import numpy as np

# where is the data for import?
dataID = 6
input_cell = 'Data/trackdata/dataID' + str(dataID) + '_cell_track.xml'

# which track should be visualized?
trackID_tobevisualized = "Track_9"

# what should be color coded
# elements of choice as of now: time, subtrack
color_code = "time"

# how should it be saved?
output = '3dplots/single_tracks/ID' + str(dataID) + '_' + trackID_tobevisualized + '_'

# how should the time be corrected? (enter the timestep in minutes)
timestep = 20

# how should z be corrected? (enter the z−step in um)
zstep = 2

loading only this track

from xml.dom import minidom

#parse data
mydoc_cell = minidom.parse(input_cell)
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spots_cell = mydoc_cell.getElementsByTagName('Spot')
tracks_cell = mydoc_cell.getElementsByTagName('Track')

# get matching track
for element in tracks_cell:

if element.getAttribute("name") == trackID_tobevisualized:
track_of_interest = element
break

number_spots = track_of_interest.getAttribute("NUMBER_SPOTS")
number_splits = track_of_interest.getAttribute("NUMBER_SPLITS")

# creating pandas dataframe to be filled
index = range(int(number_spots) + int(number_splits))
columns = ["spot_source_id", "spot_target_id", "x", "y", "z", "time", "subtrack", "color"]
df = pd.DataFrame(index = index, columns = columns, dtype = 'float')

# fill df with edges
i = 0
for element in track_of_interest.getElementsByTagName('Edge'):

df.iloc[i,0] = element.getAttribute("SPOT_SOURCE_ID")
df.iloc[i,1] = element.getAttribute("SPOT_TARGET_ID")
i += 1

# filling missing begin and end spots
missing_spots_end = df["spot_target_id"][~df["spot_target_id"].isin(df["spot_source_id"

↪→ ])].drop_duplicates()
missing_spots_end = missing_spots_end.dropna()
for i in range(len(missing_spots_end)):

row = 1 + i
df.iloc[−row, 0] = missing_spots_end.iloc[i]

# fill track data frame with x,y,z,t
for row in df.itertuples(index=True, name='Pandas'):

currid = getattr(row, "spot_source_id")
currindex = getattr(row, "Index")
## find corresponding ID in spots and fill x,y,z,t
for element in spots_cell:

if element.getAttribute("ID") == currid:
df.iloc[currindex, 2] = float(element.attributes['POSITION_X'].value)
df.iloc[currindex, 3] = float(element.attributes['POSITION_Y'].value)
df.iloc[currindex, 4] = float(element.attributes['POSITION_Z'].value)
df.iloc[currindex, 5] = float(element.attributes['POSITION_T'].value)
break

# delete NaN rows
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# df = df.dropna(thresh=3)

# correct data types
df.spot_source_id = df.spot_source_id.astype(float)
df.spot_target_id = df.spot_target_id.astype(float)

# correct z and time
df.z = df.z ∗ zstep
df.time = df.time ∗ timestep / 60

df.head()

df.tail()

establishing subtracks

so far only working with one division

import random
# finding origin
## initialize at a random position
start_position = random.randint(0,len(df.index))

## starting at the random position trace back to origin
origin = −1
not_found = True
previous_ID = df.iloc[start_position,0]
while not_found:

if previous_ID in df.spot_target_id.unique():
previous_ID = df[df.spot_target_id == previous_ID].iloc[0,0]

else:
origin = int(previous_ID)
not_found = False

# finding split events (only supports one division so far)
## starting at origin
split_event = df.spot_source_id.value_counts()
split_event = split_event[split_event > 1].index.astype(int)

# tracing along branches and assing numbers for subtracks
## origin subtrack:
next_ID = origin
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df.subtrack[df.spot_source_id == origin] = −1

while next_ID != split_event:
next_ID = df.spot_target_id[df.spot_source_id == next_ID].iloc[0]
df.subtrack[df.spot_source_id == next_ID] = −1

## determining both branch points
branch_points = df.spot_target_id[df.spot_source_id == split_event[0]]

## go through branches:
for i in range(len(branch_points)):

next_ID = branch_points.iloc[i]
next_ID_present = True
while next_ID_present:

if next_ID in df.spot_source_id.unique():
df.subtrack[df.spot_source_id == next_ID] = i
next_ID = df.spot_target_id[df.spot_source_id == next_ID].iloc[0]

else:
next_ID_present = False

df[df.spot_source_id == origin]

assigning color code

import matplotlib.colors
Colormap = 'Spectral'

if color_code == "time":
df.color = df.time

if color_code == "subtrack":
df.color = df.subtrack

Visualization

Importing libraries

from mpl_toolkits import mplot3d
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import matplotlib.cm as cm
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Plotting

%matplotlib notebook

background_color = (0.6, 0.6, 0.6, 1.0)

plt.figure(figsize = (9,8))

ax3d = plt.axes(projection='3d')

ax3d.w_xaxis.set_pane_color(background_color)
ax3d.w_yaxis.set_pane_color(background_color)
ax3d.w_zaxis.set_pane_color(background_color)
ax3d.set_xlim(min(df.x), max(df.x))
ax3d.set_ylim(min(df.y), max(df.y))
ax3d.set_zlim(min(df.z), max(df.z))

# for time have a legend with colorbar:
if color_code == "time":

## plotting
ax3d.scatter3D(df.x, df.y, df.z, c=df.color, cmap=Colormap, label = df.color)

## setup the normalization and the colormap
normalize = mcolors.Normalize(vmin=df.color.min(), vmax=df.color.max())
colormap = cm.jet

## setup the colorbar
scalarmappaple = cm.ScalarMappable(norm=normalize, cmap=Colormap)
scalarmappaple.set_array(df.color)
plt.colorbar(scalarmappaple)

# for subtracks have a legend with points:
if color_code == "subtrack":

## plotting
labels = ['origin', 'lineage␣1', 'lineage␣2']
ax3d.scatter3D(df.x, df.y, df.z, c=df.color, cmap=Colormap, label = labels)

ax3d.set_xlabel('x−axis␣[\my␣m]')
ax3d.set_ylabel('y−axis␣[\my␣m]')
ax3d.set_zlabel('z−axis␣[\my␣m]')

plt.show()

Plotting both in the same pane and save the image
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from matplotlib import gridspec

# set the elevation and azimuth:
azi = 52
elev = 51

%matplotlib inline

fig = plt.figure(figsize = (15,7.5))
gs = gridspec.GridSpec(1, 2, width_ratios=[1.13, 1])
ax3d_time = fig.add_subplot(gs[0], projection='3d')

ax3d_time.w_xaxis.set_pane_color(background_color)
ax3d_time.w_yaxis.set_pane_color(background_color)
ax3d_time.w_zaxis.set_pane_color(background_color)
ax3d_time.set_xlim(min(df.x), max(df.x))
ax3d_time.set_ylim(min(df.y), max(df.y))
ax3d_time.set_zlim(min(df.z), max(df.z))

# for time have a legend with colorbar:
## plotting
ax3d_time.view_init(elev, azi)
plot1 = ax3d_time.scatter3D(df.x, df.y, df.z, c=df.time, cmap=Colormap, label = df.time)

## setup the normalization and the colormap
normalize = mcolors.Normalize(vmin=df.time.min(), vmax=df.time.max())
colormap = cm.jet

## setup the colorbar with both labels
scalarmappaple = cm.ScalarMappable(norm=normalize, cmap=Colormap)
scalarmappaple.set_array(df.time)
cbar = fig.colorbar(scalarmappaple, fraction = 0.05)
cbar.set_label('time␣[h]')
cbar.ax.yaxis.set_label_position('left')
cbar.ax.set_aspect('auto')

# create a second axes instance and set the limits you need
ax2 = cbar.ax.twinx()
ax2.set_yticks((0,max(df.time)/2,max(df.time)))
ax2.set_yticklabels(('origin', 'lineage␣1', 'lineage␣2'))

ax3d_time.set_xlabel('x−axis␣[\my␣m]')
ax3d_time.set_ylabel('y−axis␣[\my␣m]')
ax3d_time.set_zlabel('z−axis␣[\my␣m]')
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ax3d_subtrack = fig.add_subplot(gs[1], projection='3d')

ax3d_subtrack.w_xaxis.set_pane_color(background_color)
ax3d_subtrack.w_yaxis.set_pane_color(background_color)
ax3d_subtrack.w_zaxis.set_pane_color(background_color)
ax3d_subtrack.set_xlim(min(df.x), max(df.x))
ax3d_subtrack.set_ylim(min(df.y), max(df.y))
ax3d_subtrack.set_zlim(min(df.z), max(df.z))

# for subtracks have a legend with points:
## plotting
labels = ['origin', 'lineage␣1', 'lineage␣2']
ax3d_subtrack.view_init(elev, azi)
plot2 = ax3d_subtrack.scatter3D(df.x, df.y, df.z, c=df.subtrack, cmap=Colormap, label =

↪→ labels)

ax3d_subtrack.set_xlabel('x−axis␣[\my␣m]')
ax3d_subtrack.set_ylabel('y−axis␣[\my␣m]')
ax3d_subtrack.set_zlabel('z−axis␣[\my␣m]')

plt.savefig(output + 'both_elev_' + str(elev) + '_azi_' + str(azi) +'.pdf')
plt.savefig(output + 'both_elev_' + str(elev) + '_azi_' + str(azi) +'.png')
plt.show()
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