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Summary 

 

Gene regulation is mainly controlled by a complex network of transcription 

factors (TFs). TFs activate or repress the expression of a gene by binding to its 

promoter or enhancer regions. Mutations of TFs or their binding sites are linked to 

several diseases including cancer. Here, I present a new approach to identify the 

regulatory relationships between TFs and their target genes based on Mixed Integer 

Linear Programming (MILP) and machine learning called ‘Mixed Integer linear 

Programming based Regulatory Interaction Predictor’ (MIPRIP). Compared to other 

approaches, MILP has the advantage of using the L1 norm for regression to avoid 

overestimating outliers and to implement constraints to get sparse models. MIPRIP 

predicts the expression of a gene of interest by a linear model with all TFs potentially 

binding to the gene’s promoter as covariates. MIPRIP was first enhanced with a 

statistical analysis pipeline to compare the regulatory processes of a particular gene 

between two or multiple conditions (MIPRIP-Comparison). The second 

enhancement of MIPRIP enables a modularity-based approach to analyze the gene 

regulatory network of the TFs regulating the gene of interest (MIPRIP-Network). 

MIPRIP was applied to study the regulation of telomere maintenance, which is 

crucial for cancer cells to proliferate unlimitedly. The majority of cancer cells 

maintain their telomeres by re-expressing the reverse transcriptase telomerase, 

while a minor fraction uses the alternative lengthening of telomeres (ALT) pathway. 

Firstly, MIPRIP was used to study the regulation of telomerase expression in 

Saccharomyces cerevisiae. S. cerevisiae is a well suited model system to study 

telomere maintenance because of its active telomerase and high structure-function 

homology to humans. In yeast, I uncovered novel regulators of telomerase 

expression, several of which affect histone levels or modifications, e.g. Sum1 and 

Hst1. Secondly, I performed a pan-cancer MIPRIP analysis to identify the most 

common regulators of the human telomerase reverse transcriptase (TERT) gene 

across 19 different cancer entities and also the specific TERT regulators in each 

cancer type. For prostate cancer, the modularity-based analysis using MIPRIP 

predicted a subnetwork of 20 regulators, in which PITX1, CTCF, IRF1, TFAP2D, 

MITF and BHLHE40 were the most important regulators of TERT expression. Four 



Summary  

 iv 

out of these six TERT regulators could be validated as novel prognostic markers 

with elevated protein expression levels in patient samples. 

Thirdly, I constructed a classifier to predict the active telomere maintenance 

mechanism (ALT or non-ALT) of pediatric glioblastoma (pedGBM) patients based 

on typical telomere features extracted from next-generation sequencing, cytological 

and molecular assays. After the patient classification several regulators could be 

identified which were differentially expressed between ALT and non-ALT pedGBM 

patients using the MIPRIP framework. 

In summary, the newly developed MIPRIP framework extends the methodological 

toolbox to study gene regulation. The application on telomere maintenance provided 

novel insights about the regulatory processes underlying (i) telomerase expression 

and (ii) the ALT pathway. Furthermore, I identified new prognostic markers for 

prostate cancer.
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Zusammenfassung 

Genregulation wird hauptsächlich von einem komplexen Netzwerk an 

Transkriptionsfaktoren (TFs) kontrolliert. TFs beeinflussen die Expression der Gene 

durch Bindung an Promotor- oder Enhancer-Regionen, positiv oder negativ. 

Mutationen von TFs oder ihren Bindestellen sind mit verschiedenen 

Tumorerkrankungen assoziiert. Um den Zusammenhang der TFs und ihrer Zielgene 

besser zu verstehen, habe ich einen neuen Ansatz basierend auf gemischt-

ganzzahliger linearer Programmierung und Maschinenlernverfahren entwickelt, den 

„Mixed Integer linear Programming based Regulatory Interaction Predictor“ 

(MIPRIP). Dieser Ansatz hat im Vergleich zu anderen Algorithmen den Vorteil, dass 

eine L1 Norm für die Regression verwendet wird, um zu hoch eingeschätzte Werte 

(Ausreißer) zu vermeiden, und durch die Implementierung von Beschränkungen 

dünnbesetzte Modelle entstehen zu lassen. MIPRIP verwendet ein lineares Modell 

mit allen an den Promotor des Genes bindenden TFs als Kovariaten, um die 

Genexpression eines Genes vorherzusagen. MIPRIP wurde um eine statistische 

Analysepipeline erweitert, um die regulatorischen Prozesse eines Genes zwischen 

zwei oder mehreren Datensätzen zu vergleichen (MIPRIP-Comparison). Des 

Weiteren wurde MIPRIP mit einem Modularitäts-basierten Ansatz kombiniert, um 

ein Genregulatorisches Netzwerk von TFs zu identifizieren, welches für die 

Regulation eines bestimmten Genes verantwortlich ist (MIPRIP-Network). 

MIPRIP wurde angewandt, um die Regulation der Telomererhaltung zu 

untersuchen. Telomererhaltungsmechanismen sind für Tumorzellen essentiell, um 

sich unbegrenzt teilen zu können. Die meisten Tumorzellen verlängern ihre 

Telomere, indem sie die reverse Transkriptase Telomerase exprimieren, während 

andere Tumorzellen einen alternativen Mechanismus verwenden, „alternative 

lengthening of telomeres“ (ALT). Mit Hilfe von MIPRIP wurde zuerst die Regulation 

der Telomerase-Gene in Saccharomyces cerevisiae untersucht, da sich Hefe auf 

Grund ihrer aktiven Telomerase und der großen Homologie zu menschlichen 

Telomer-Proteinen als idealer Modellorganismus für Telomererhaltungsstudien 

eignet. Hierbei wurden neue Regulatoren der Telomeraseexpression identifiziert, 

wovon einige, wie z.B. Sum1 und Hst1, die Level oder Modifikationen der Histone 

beeinflussen. Weiterhin wurde MIPRIP verwendet, um die Regulatoren des 
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menschlichen Telomerase-Reverse-Transkriptase (TERT) Genes in 19 

verschiedenen Tumorentitäten zu identifizieren. Dabei lag der Fokus auf TFs, die 

TERT in allen Tumorentitäten regulieren, sowie auf den spezifischen TFs der 

einzelnen Tumorentitäten. Für Prostatakrebs-Daten wurde mit Hilfe der 

Modularitäts-basierten Erweiterung von MIPRIP ein Netzwerk von 20 Regulatoren 

vorhergesagt, wovon PITX1, CTCF, IRF1, TFAP2D, MITF und BHLHE40 die 

wichtigsten Regulatoren von TERT waren. Vier von diesen sechs Regulatoren 

konnten anhand deren Proteinexpression auf Gewebeschnitten als klinisch neue 

prognostische Marker validiert werden. 

Außerdem habe ich einen Klassifikator konstruiert, der den aktiven 

Telomererhaltungsmechanismus in pädiatrischen Glioblastomen (pedGBM) 

vorhersagt. Dafür wurden Ergebnisse für typische ALT-Merkmale aus 

Sequenzierdaten, sowie zytologischen und molekularen Analysen kombiniert. 

Damit konnten alle pedGBM Patienten in ALT-positiv und ALT-negativ unterteilt 

werden. Mit Hilfe von MIPRIP konnten Regulatoren identifiziert werden, die eine 

unterschiedliche Aktivität zwischen ALT positiven und ALT negativen Patienten 

zeigten. 

Zusammenfassend habe ich mit MIPRIP einen neuen Ansatz entwickelt, um die 

Regulation von Genen zu untersuchen. Die Anwendung auf 

Telomererhaltungsmechanismen hat zu neuen Erkenntnissen über die Regulation 

der Telomerase, sowie den ALT-Mechanismus geführt. Außerdem konnten neue 

prognostische Marker für Prostatakrebs identifiziert werden.
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1 Introduction 

1.1 Transcriptional regulation 
The regulation of genes is a central process in living cells. A complex network of 

transcription factors (TFs), coregulators and chromatin modifier controls the 

transcription of DNA into RNA. TFs bind to specific DNA sequences in the gene’s 

promoter or enhancer regions activating or repressing the recruitment of RNA 

polymerase and therefore regulate the transcription of the gene (Fulton et al., 2009; 

Spitz and Furlong, 2012; Vaquerizas et al., 2009). In humans, there are over 1,600 

TFs known which is around 8 % of all human genes (Lambert et al., 2018). TFs can 

be grouped into families based on their binding domains. In eukaryotes the most 

prominent TF families are the families of C2H2-zinc finger, homeodomain, basic 

helix-loop-helix, basic leucine zipper and nuclear hormone receptor (Weirauch and 

Hughes, 2011). The DNA binding sites of the TFs are typically only 6-12 bases long 

and are called binding motifs. In some cases, the TF can directly recruit RNA 

polymerase while in other cases some accessory factors are needed (Frietze and 

Farnham, 2011). Gene regulation is a complex process. Most TFs act cooperatively 

with other TFs or co-regulators to induce transcription (Vaquerizas et al., 2009). 

Several TFs can regulate different genes depending on the cell type (Gertz et al., 

2012) and they can bind to more than one binding site in the promoter region of the 

gene (Wunderlich and Mirny, 2009). Furthermore, the regulation by TF can be 

controlled through posttranslational modifications, e.g. phosphorylation, 

ubiquitination or methylation. These modifications substantially influence the 

regulation of the TFs on their target genes (Filtz et al., 2014). For instance, 

phosphorylation often leads to dimerization or binding of the TF on the target gene’s 

promoter. Furthermore, TFs can regulate other TFs directly by binding to their 

promoters or indirectly by influencing the expression of signaling molecules, e.g. 

kinases, which regulated the other TF. Therefore, the activity of the TFs can often 

not be determined from their gene expression levels. A deregulation of 

transcriptional regulators can cause disease, including cancer. This can happen e.g. 

through mutations of the TF or in their binding sites (Lambert et al., 2018). 

Therefore, transcriptional regulators are interesting putative drug targets, although 
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for several TFs the exact mechanism is not known. Therefore, it is important to 

identify TF-mediated gene-regulatory mechanisms in more detail.  

 

 

1.2  Identification of TF to target gene interactions 
TF-target gene interactions can be studied by chromatin-immunoprecipitation 

(ChIP) on DNA-microarrays (ChIP-on-ChIP) or followed by sequencing (ChIP-seq), 

electrophoretic mobility shift assay (EMSA) or systematic evolution of ligands by 

exponential enrichment (SELEX) (Wilkinson et al., 2017). Particularly ChIP-seq and 

ChIP-on-ChIP allow large-scale studies of TFs to identify their interactions 

(Wilkinson et al., 2017). Large repositories of data from ChIP-experiments are e.g. 

the Encyclopedia of DNA Elements (ENCODE) (Consortium et al., 2012) or the ChIP 

Enrichment Analysis (ChEA) database (Lachmann et al., 2010). Besides 

experimental data, there are large collections of computational predictions of TF 

binding sites (TFBS) (Tompa et al., 2005), e.g. TRANSFAC (Matys et al., 2006) and 

JASPAR database (Khan et al., 2018), or methods to identify the binding sites of 

the TFs based on a motif search. These motifs can be represented by position 

weight matrices (PWMs) (Stormo and Zhao, 2010) and depicted by sequence logos 

(Schneider and Stephens, 1990). A PWM is a probabilistic description of the binding 

affinity of the TF showing which nucleotide is preferred at each position (Stormo and 

Zhao, 2010). PWMs were used to identify TFBS in the genome independent of the 

cellular function (Kranz et al., 2011). The identified TFBS were only probable 

predictions and did not include if the TF is present resulting in a high number of false 

positives (Stormo, 2000). Another computational based method to predict TF 

binding sites is the ‘Total Binding Affinity’ (TBA). TBA estimates the binding 

probability of a TF to the whole promoter region of the gene (Grassi et al., 2015; 

Molineris et al., 2011). But ChIP-experiments and computational binding site 

predictions have a high rate of false positives (Pickrell et al., 2011). Furthermore, 

each ChIP-assay is restricted to only one TF in one condition limiting the 

characterization of a TF in many different cell types (Trescher et al., 2017). All the 

available TF-target gene interactions together are a great resource to study gene 

regulation. Various modeling approaches have been developed to identify the 

functionally active TF-target gene interactions dependent on the biological context. 
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Gene regulatory network (GRN) models are well suited to study the transcriptional 

regulation. 

 

1.2.1 Basic principle of linear regression models 

Linear regression models describe the relationship between a dependent 

(response) variable and one or more independent (predictor) variables. A simple 

linear regression model with one dependent variable y and one independent 

variable x and n observations is given by: 

 

𝑦" = 	𝛽& +	𝛽(𝑥" +	𝜀"  with i = 1,2,…,n .                       (1) 

 

Equation 1 describes the dependency of y on xi. There can be either a positive, a 

negative or none-relationship between both variables. 𝜀" indicates the error term, 

which is the difference between the given and the estimated value of y. The 

regression line is depicted as the straight red line that fits the n observations best. 

𝛽& is the y-axis intercept and 𝛽( represents the slope of the regression line 

(Figure 1). 

 
Figure 1. A simple linear regression model. 
The red line indicates a straight regression line which can best fit the 
observations. 𝛽& is the y-axis intercept, 𝛽( the slope of the regression line and 
𝑦+ the estimated y-value of variable x. 
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The b-parameters are optimized for all n observations during the modeling process 

by minimizing the difference between the estimated and the actual value which is 

equal to a minimization of the errors in equation (1). This optimization problem can 

be solved by using L1 norm which uses the sum of the absolute differences between 

the estimated and the actual value. To find the best solution all possible 

combinations have to be tested. L1 optimization can be solved by specific 

algorithms, in our case by linear programming (LP). 

Alternatively, the b-parameters can be estimated by the least-squares method which 

is based on L2 norm. Compared to L1 norm, L2 norm minimizes the sum of squares 

of the differences between estimated and the actual value. 

A multiple linear regression model describes the relationship of a dependent 

variable and multiple independent variables: 

 

𝑦" = 	𝛽& +	𝛽(𝑥"( + 𝛽,𝑥", + ⋯+ 𝛽.𝑥". 	+	𝜀"  with i = 1,2,…,n  ,  (2) 

 

where k is the number of independent variables and i is the number of observations. 

The b-parameters are the regression coefficients. 𝜀" describes the variations of y 

that are not known or cannot be described by the independent variables x. The 

computation of multiple regression models is very complex. Since the error is not 

known only estimations of y are possible. As some variables are redundant or do 

not lead to an improvement of the model, they have to be eliminated. Feature 

selection is a powerful method to exclude redundant or irrelevant variables. 

Furthermore, it helps to avoid overfitting. One approach performing variable 

selection and regularization is the ‘Least Absolute Shrinkage and Selection 

Operator’ (LASSO) regression analysis which is based on L2 norm.  

 

1.2.2 Modeling approaches to study TF-target gene interactions 

Several modeling approaches to predict TF-target gene interactions are based on 

linear regression models and use binding data from ChIP-experiments or 

computational predictions as background. The most important regulators are 

identified by predicting the gene expression of a particular gene by the activities of 

the TFs. The activity of a TF is influenced more by posttranslational modifications 

and protein stability than by the gene expression value of the TF itself. Therefore, 
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several approaches infer the activity of a TF based on the expression of its target 

genes (Balwierz et al., 2014; Schacht et al., 2014). For several methods, the 

objective is to minimize the sum of errors between the measured and the predicted 

gene expression value over all samples. Schacht et al. uses a multivariate linear 

regression model to predict regulators of MITF in human melanoma cells using a 

Mixed Integer Linear Programming (MILP) based approach (Schacht et al. 2014, 

Kordaß et al. 2016). The ‘Regression Analysis of Combined Expression Regulation’ 

(RACER) method uses a two-stage regression model by integrating mRNA and 

miRNA expression data, copy number variations as well as DNA methylation data. 

In the first regression step, activity values for each sample are calculated and in the 

second step the regression coefficients from the first model are used to identify the 

TF/miRNA-target gene interactions by using a sparse LASSO approach. Applying 

this model to gene expression data of acute myeloid leukemia patients, Li and 

coworkers identified a pre-dominant list of 18 regulators that are linked to 

leukemogenesis (Li et al., 2014). Another approach is the ‘Regression Analysis with 

Background Integration’ (RABIT). Comparable to RACER, RABIT uses gene 

expression data, somatic mutations, CNVs and DNA methylation data to identify 

regulators with differential expressed target gene in cancer (Jiang et al., 2015). The 

‘Integrated System for Motif Activity Response Analysis’ (ISMARA) infers the activity 

of TFs or miRNAs from motif binding information. The active TFs or miRNAs of a 

certain promoter are identified by combining the motif binding information with gene 

expression data using a linear model similar as Schacht et al. did (Balwierz et al., 

2014). Setty and coworkers used the above described linear model to identify the 

subtype specific regulators in glioblastoma multiforme (Setty et al. 2012), while 

Dong et al. focused on the relationship between chromatin features and expression 

levels using random forests as well as linear regression (Dong et al. 2012). Besides 

linear models there are also other approaches to predict TF-target gene interactions 

like e.g. Bayesian models. The ‘Bayesian inference of context-specific regulator 

activities and transcriptional networks’ (biRte) approach uses a probabilistic 

framework to integrate TF-target gene predictions and gene expression data. The 

active TFs are then identified by a maximum likelihood model (Frohlich, 2015). A 

distinctively different approach without any background knowledge is the ‘Algorithm 

for the Reconstruction of Accurate Cellular Networks’ (ARACNE). ARACNE uses 

pairwise mutual information (MI) to determine the relationships between a 
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predefined list of regulators and their target genes. In a bootstrapping process, MI 

networks are calculated from randomly sampled gene expression profiles and a 

consensus network is constructed considering Poisson distributions to estimate if a 

specific edge is detected significantly often over all runs (Lachmann et al., 2016; 

Margolin et al., 2006) without using any kind of binding information. The ‘Virtual 

Inference of Protein activity by Enriched Regulon analysis’ (VIPER) calculates the 

activity of regulators including TFs, co-factors and signaling molecules by using 

‘analytic rank-based enrichment analysis’ (aREA). The target genes of the 

regulators are extracted from the ARACNE network and are ranked based on their 

relative and their absolute gene expression profile per sample. aREA tests if there 

is a global shift between the ranks in the relative compared to the absolute gene 

expression profile of the target genes (Alvarez et al., 2016). 

 

1.2.3 Identification of regulatory subnetworks 

Most of the above described approaches address the co-operativity of the TFs and 

aim to predict TF target gene interactions, but they ignore TF-TF interactions as well 

as feedback loops. Ideker and coworkers showed that an integration of protein-

protein interaction (PPI) or protein-DNA interaction networks and gene expression 

data can lead to active subnetworks. The regulators of these subnetworks 

significantly change their expression between subsets or conditions. For yeast, 5 

significant subnetworks were identified which could explain more than half of all 

significant expression changes (Ideker et al., 2002). Chuang and co-workers 

constructed subnetworks to identify new marker genes to distinguish between 

metastatic and non-metastatic breast cancer samples (Chuang et al., 2007) and to 

predict the disease progression in chronic lymphocytic leukemia (CLL) patients 

(Chuang et al., 2012). In both studies they combined a PPI network with gene 

expression profiles to map the gene to the corresponding protein. The activity of 

each subnetwork was defined as the average of the gene expression values of each 

patient. Differentially expressed subnetworks were identified based on mutual 

information between the activity values of the subnetwork and the disease state 

across all patients (Chuang et al., 2007). For breast cancer and CLL new 

subnetwork markers could be identified, which improve the classification into 

metastatic or non-metastatic (Chuang et al., 2007) as well as prediction of disease 

progression (Chuang et al., 2012). Yosef and coworkers constructed regulatory 
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subnetworks from a PPI network based on a Steiner tree and a shortest path 

approach. Altogether, this approach was applied to link the genes that lead to 

telomere shortening or elongation when mutated (TLM genes) with the telomerase 

complex (anchor genes). The PPI network consisted of edges weighted based on 

their reliability. The goal was to identify a connected subnetwork which links the root 

(telomerase genes) and the terminals (TLM genes). First, the likelihood of the 

subnetwork was maximized by minimizing the sum of edge weights in the graph 

(Steiner tree problem). Second, the sum of the edge weights of the shortest paths 

were optimized. They discovered that the proteasome is an important feature in the 

regulation of the telomere length and is associated with transcription and DNA repair 

(Yosef et al., 2009). These approaches are only based on PPIs and neglect the TF-

target gene interactions, which are essential for regulation processes. 

 

1.2.4 Mixed Integer Linear Programming 

Linear Programming (LP) is a powerful method to describe and solve several 

optimization problems. The linear model is optimized by using several decision 

variables, an objective function as well as linear constraints. An example of an LP 

is given here:  

             minimize					3	𝑥( + 5	𝑥,    (3) 

 subject	to							𝑥( + 4	𝑥, 	≥ 4   (4) 

             2	𝑥( + 2	𝑥, 	≥ 5   (5) 

                                2	𝑥( + 2	𝑥, 	≥ 3   (6) 

   																and																									𝑥(, 𝑥, ≥ 0,   (7) 

 

where equation (3) is the objective function and equations (4-7) are the constraints. 

The feasible solution of this LP can be graphically represented as a convex 

polyhedron in the n - dimensional space where n indicates the number of variables. 

The normal vector of the hyper planes goes through equation (3) resulting in a fixed 

point (Figure 2).  
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Figure 2. Graphical representation of the example LP 
The convex polyhedron marks the solution space and is defined by the variables 
x1 and x2. Additional constraints lead to a further restriction of the solution 
space. The dashed circle indicates the solution at the extreme point. The 
optimal solution of this example is x1 = 2 and x2  = 0.5. This leads to an objective 
value of 8.5. 

 

LP models can be generally written as: 

 

Objective	function:	𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑐N𝑥                                         (8) 

Linear	constraints: 𝐴𝑥 = 𝑏             (9) 

Boundaries:	𝐼	 ≤ 𝑥	 ≤ 𝑢,                                                 (10) 

 

where A is a matrix, while b and c are vectors. 𝑐N𝑥 describes the linear combinations 

of parameters c and variables x. The objective is to minimize this linear combination 

during the optimization process (equation 8). Equation (9) described a matrix A with 

the linear constraints of x. The vector I indicates the lower bound and u the upper 

bound of x (equation 10). Compared to a pure LP, integer linear programming (ILP) 

describes a model in which all variables are integers and both the objective function, 

and the constraints are linear. In a Mixed Integer Linear Programming (MILP) binary, 

integer and continuous variables are allowed. MILP models need an additional 

integrality constraint (equation 11). The integrality variables xi allow additional binary 

variables to capture discrete decisions. 

 

Integrality	constraint:	𝑠𝑜𝑚𝑒	𝑥"	𝑚𝑢𝑠𝑡	𝑏𝑒	𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠	      (11) 
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To solve MILP models, the branch-and-bound algorithm, the cutting-plane method 

or the branch-and-cut algorithm, which is a combination of the two other methods, 

can be used (Gurobi Optimization, 2018). 

MILPs can have a high theoretical time complexity, but there exist very efficient 

solvers (e.g. Gurobi (http://www.gurobi.com/) and CPLEX 

(https://www.ibm.com/analytics/cplex-optimizer)). These solvers can find at least 

very accurate solutions within a given time limit by using the branch-and-cut 

algorithm. 

MILP models can be applied to several different areas. The most prominent 

applications are the traveling salesman problem and the optimization of time tables. 

Biological applications are e.g. flux balance analysis with stoichiometric equations 

for thousands of metabolites and reactions (Orth et al., 2010) or the optimization of 

cell-networks to identify distinctively expressed pathways (Schramm et al., 2010). 

Furthermore, MILP can be used to infer gene regulation (Poos et al., 2016; Schacht 

et al., 2014), or gene regulatory modules in cell-networks (Beisser et al., 2012). Also 

classification problems are applicable in form of e.g. support-vector machines 

(Saraiva et al., 2017) or decision trees (Deeg et al., 2017). 

 

 

1.3 Telomere regulation 
The ends of the eukaryotic linear chromosomes are protected by specific 

nucleoprotein structures called telomeres which consist of repetitive DNA 

sequences ending in a single-stranded 3’ G-rich overhang (Martinez and Blasco, 

2011) and are well conserved between eukaryotes (Blackburn, 1990). They have 

two main functions: (i) to circumvent the end-replication problem and (ii) to protect 

the chromosomal ends for DNA-damage response (de Lange, 2009; O'Sullivan and 

Karlseder, 2010). These two functions are regulated by several proteins called 

shelterin complex binding to the telomeres (Okamoto and Seimiya, 2019). To 

protect the chromosomal ends, the single-stranded G-rich 3’ overhang invades into 

the double-stranded telomeric repeats forming a telomeric (t)-loop structure. At the 

invasion site a displacement (D-) loop is constructed (Martinez and Blasco, 2011). 

Telomeres share a common structure in Saccharomyces cerevisiae (Luke-Glaser 
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et al., 2012) and in mammals (de Lange, 2004). But the telomeric complex differs 

between S. cerevisiae and humans (de Lange, 2005), which is described in the 

following. 

 

1.3.1 Telomere maintenance in yeast 

S. cerevisiae is a well suited model organism to study telomere maintenance 

(Kupiec, 2014) because of its high homology to humans and its constitutively 

expressed telomerase (Ungar et al., 2009). In S. cerevisiae, the telomeres are 

300 ± 75 bp long (Wellinger and Zakian, 2012) and consist of repetitive 5’- (TG1-3)n-

3’ DNA sequences (Taggart and Zakian, 2003). The telomeric complex of 

S. cerevisiae is formed by the telomerase, the CST complex, Ku complex, Rap-Rif1-

Rif2 and the Sir complex (Figure 3). The telomerase includes the template RNA, 

TLC1, and the “Ever shorter telomere” proteins Est1, Est2 and Est3. The catalytic 

subunit is Est2, while Est1 and Est3 are associated proteins of TLC1 (Taggart and 

Zakian, 2003). Est1 can bind to the 3’ single-stranded overhang, but also to different 

regions of TLC1. While the binding of Est1 is independent of Est2, Est3 can bind to 

TLC1 only by interacting to Est2 (Kupiec, 2014). 

 
Figure 3. Telomeric complex and telomerase in S. cerevisiae.  
Telomeric DNA (marked in red) consists of repetitive TG1-3 repeats. The 
telomerase contains the three EST genes and the template RNA TLC1. The 
capping protein Cdc13 binds to the single-stranded telomeric DNA to protect 
the telomeres from degradation, while the Ku complex protects for unwanted 
non-homologous end-joining. Rap1 binds to the double-stranded telomeric DNA 
and interacts with the Rif complex and sirtuin proteins. The number of bound 
Rap1 molecules is dependent on the number of TG1-3 repeats. In budding yeast, 
the nucleosomes (yellow) are only in the subtelomeric region (marked in grey). 
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Cdc13 (also called Est4) binds to telomeres in a sequence-specific manner and is 

involved in the capping process preventing the chromosomal ends from 

degradation. In addition, together with Est1 it recruits telomerase. Furthermore, 

Cdc13 forms a complex with Stn1 and Ten1 (CST complex) which is substantial for 

the telomeric capping process and protects from degradation by exonucleases and 

recombination processes (Teixeira, 2013). The Ku complex consists of the two 

proteins Yku70 and Yku80 and prevents the telomeres from unwanted non-

homologous end-joining. The Ku proteins are further involved in TLC1 import in the 

nucleus. Together with the Sir complex they prevent damaged chromosomes and 

telomeres from Exo1 degradation (Kupiec, 2014). Rap1 is another essential protein 

of the telomeric complex binding to double-stranded telomeric DNA. Rap1 can 

interact with the gene silencing proteins Sir3 and Sir4 as well as the Rif proteins 1 

and 2 (O'Reilly et al., 1999). Both Rif proteins are also involved in the capping 

process (Teixeira, 2013). How many Rap1 molecules can bind to telomeres is 

dependent on the number of TG repeats (Bianchi and Shore, 2007) indicating that 

telomere length can be determined by counting the Rap1 molecules (Kupiec, 2014). 

It was shown that genes in close distance to telomeres undergo silencing which is 

called the telomere position effect (Pryde and Louis, 1999). Because of the 

heterochromatic structure in the subtelomeric regions, the promoter activity of the 

genes close to the telomeres is repressed, which can be up to 10-15 kilobases 

distant from the chromosome end. As Sir proteins play a role in gene silencing and 

interact with histones, they are recruited to telomeres via Rap1 (Kupiec, 2014). 

Nucleosomes can be found only in the subtelomeric region (Wright et al., 1992). 

Telomere replication is cell cycle dependent and is coordinated with the replication 

of the whole genome. Because not all telomeres can be replicated in each cell cycle, 

short telomeres are preferred or in other words the telomeres with a low number of 

bound Rap1 molecules (Bianchi and Shore, 2007).  

A deletion of the telomerase induces cellular senescence (Lundblad, 2002). In 

addition, it was shown that some yeast cells can survive without telomerase by using 

homologous recombination to maintain their telomeres. These cells are called 

survivors. They are either dependent on the RAD51 recombination pathway (type I 

survivor) or on RAD50 (type II survivor) (Chen et al., 2001; Teng et al., 2000). This 

recombination-dependent maintenance of the telomeres shows some similarities to 

the human ALT pathway (Lundblad, 2002). 
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TLM gene screening: Yeast is a unicellular organism with 6,275 open reading 

frames (ORFs). Some years ago, Winzeler et al. generated a collection of 4,700 

yeast deletion strains by systematically deleting each non-essential gene 

individually (Winzeler et al., 1999). This collection was extended by two additional 

studies where all 1,300 essential genes were deleted either hypomorphic (Breslow 

et al., 2008) or both alleles of a gene were made temperature-sensitive (Ben-Aroya 

et al., 2008). These mutant collections were then used for a genome-wide screening 

of genes involved in telomere maintenance. Askree et al., Gatbonton et al. , Meng 

et al. and Ungar et al. measured the telomere length of each yeast mutant by 

Southern blot to identify genes whose corresponding deletion strain showed shorter 

or longer telomeres than the wild-type length of 350 bp (Askree et al., 2004; 

Gatbonton et al., 2006; Meng et al., 2009; Ungar et al., 2009). These genes were 

then called telomere maintenance genes (TLM) and their mutants tlms. Ben-Shirit 

et al. analyzed if the phenotype in a deletion strain of gene X is changes due to the 

effect of the neighbouring gene Y using the ‘NGE inference via a network-based 

approach’ (NIRVANA) (Ben-Shitrit et al., 2012). Additionally, Shachar et al. used the 

TLM genes from (Askree et al., 2004; Gatbonton et al., 2006) for which PPI data 

was available to build a telomere length regulating subnetwork (TRS). As end-point 

of their TLM-related signaling pathways they defined the genes of the telomerase 

subunits as well as telomerase-interacting proteins. They identified TLM pathways 

that link TLM genes to telomere-binding proteins leading to a TRS with 327 proteins. 

A subset of the analyzed 180 TLM genes was found between the telomere-binding 

proteins and other TLM proteins, while most of the non-TLM proteins were 

necessary to connect the TLM proteins with the end-points (Shachar et al., 2008). 

In summary, systematic screens together with additional computational studies 

identified around 500 genes that effect telomere length when mutated (Askree et 

al., 2004; Ben-Shitrit et al., 2012; Gatbonton et al., 2006; Meng et al., 2009; Shachar 

et al., 2008; Ungar et al., 2009), which is around 8% of the yeast genome. From the 

500 TLM genes around 60% result in shorter telomeres and 40% in longer telomeres 

when mutated. Most of these proteins were not known before to play a role in 

homeostasis of telomere length, they are localized to several cell compartments and 

have many different biochemical functions. Still, because many of them are 

evolutionally conserved and have human orthologs, TLM genes could be interesting 

anticancer targets. 
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1.3.2 Telomere maintenance in humans 

In humans, telomeres of somatic cells have a length of 10 to 15 kb (Palm and de 

Lange, 2008) and consist of repetitive 5’- (TTAGGG)n -3’ sequences (Moyzis et al., 

1988). Telomerase contains the protein subunit TERT and the template RNA TERC 

(Figure 4) (Sandin and Rhodes, 2014) as well as accessory proteins like dyskerin 

(DKC1), TCAB1, NHP2, NOP10 and GAR1 (Shay and Wright, 2019).  

 
Figure 4. Telomerase and shelterin complex in human cells.  
Telomeres contains a double-stranded region of TTAGGG repeats and a 150-
200 nucleotide long single-stranded overhang of the G-rich strand. Telomerase 
consists of the protein subunit TERT and the template RNA TERC. The shelterin 
complex is built by the telomeric repeat binding factors (TRF) 1 and 2, 
repressor-activator protein (RAP) 1, protection of telomeres protein (POT) 1, 
TRF1-interactiong protein (TIN) 2 as well as the TIN2- and POT1-interacting 
protein (TPP1). TRF1 and TRF2 directly bind to the double-stranded telomeric 
repeat DNA, while POT1 binds to the single-stranded overhang. TIN2 binds to 
TRF1 and TRF2 recruiting the TPP1-POT1 complex. 

 

TERC is constitutively expressed, but the TERT gene is silenced in somatic cells 

(Feng et al., 1995; Kim et al., 1994). TERT is only expressed during development, 

in germ and stem cells as well as in most cancer cells (Gaspar et al., 2018). To 

elongate the telomeres, the telomerase complex recognizes the hydroxyl group 

(OH) at the 3’-end of the single-stranded overhang (Martinez and Blasco, 2011). 

Telomerase has been observed the shortest telomere (Hemann et al., 2001). The 

shelterin complex consists of the following six components (Figure 4): the telomeric 

repeat binding factor I and II (TRF1, TRF2), TRF1-interacting protein II (TIN2), 
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protection of telomeres protein I (POT1), TIN2- and POT1-interacting protein (TPP1) 

and repressor/activator protein I (RAP1) (Martinez and Blasco, 2011; Palm and de 

Lange, 2008). Both TRF1 and TRF2 bind to the double-stranded telomeric DNA as 

homodimers and form a scaffold for the complex structure. Furthermore, TRF2 is 

involved in t-loop formation (Okamoto and Seimiya, 2019). TIN2 interacts with TRF1 

and TRF2, while RAP1 can only bind to TRF2. TIN2 binds TPP1 recruiting POT1 to 

the telomeres. Compared to the other factors POT1 binds to the single-stranded 

telomeric DNA, which is 150-200 nucleotides long, at the 3’ overhang in the loops 

(Palm and de Lange, 2008). TRF2 and POT1 prevent the telomeres from 

recombination processes (de Lange, 2009) and DNA damage response (Martinez 

and Blasco, 2015). TPP1 is also involved in the recruitment of telomerase to single-

stranded telomeric DNA (Wang et al., 2007; Xin et al., 2007).  

 

 

1.4 Telomere maintenance in cancer 
In principle, telomeres function as a ‘molecular clock’. Due to the end-replication 

problem and degradation they shorten with each cell division by 50-200 bp therefore 

limiting the life span of each cell (Levy et al., 1992). The end-replication problem 

describes the incomplete replication of chromosome ends because DNA 

polymerase can only work from 5’ to 3’ direction and needs a primer antisense to 

the 3’ end for starting the DNA synthesis (Martinez and Blasco, 2015). It was shown 

that after 50 to 60 cell cycles telomeres get critically short and replicative 

senescence or apoptosis is induced by p53 activation and chromosomal instability 

(Hayflick, 1965; Vaziri et al., 1997; Wright et al., 1996). This process prevents the 

cells from indefinite proliferation and outgrowth of abnormal cells (Blasco, 2005; 

Shay & Wright, 2000). Critically short telomeres become unprotected and Ataxia 

Telangiectasia Mutated (ATM) and Ataxia Telangiectasia and Rad3-Related Protein 

(ATR)- dependent DNA damage cascades are induced (d'Adda di Fagagna et al., 

2003; Kaul et al., 2011; Takai et al., 2003). Checkpoint kinases (CHK) 1 and 2 mark 

the uncapped ends by telomere induced foci (TIF) (Takai et al., 2003). In primary 

fibroblasts, it was reported that only 5 dysfunctional telomeres are sufficient to 

induce replicative senescence (d'Adda di Fagagna et al., 2003; Hayflick and 

Moorhead, 1961; Kaul et al., 2011). However, some cells accumulating genetic 
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mutations in p53 or other checkpoint proteins can overcome senescence and 

proliferate further (Chin et al., 1999; Preto et al., 2004). Only a minor fraction of 

these cells acquire immortality and later carcinogenesis (Chin et al., 1999). These 

cancer cells circumvent this safeguarding mechanism and develop ways to activate 

a telomere maintenance mechanism (TMM) (Gunes and Rudolph, 2013). Since the 

activation of TMM enable replicative immortality, it is a hallmark of cancer (Hanahan 

and Weinberg, 2011).  

 
Figure 5. Active TMM leads to unlimited proliferation.  
In somatic cells the telomeres shorten with each cell division and if they get 
critically short, the cell goes into senescence or apoptosis. Due to (epi)genetic 
aberrations (*) cells can escape senescence and further telomere shortening 
induces crisis. An accumulation of these aberrations can lead to malignant 
transformation into cancer cells and an activation of telomere maintenance 
mechanisms. Mostly, the telomerase is reactivated to elongate the telomeres. 
A minor fraction of cells maintains the telomeres by using the ALT pathway. 

 

Telomere maintenance can be activated either by re-expression of telomerase, a 

reverse transcriptase (Greider and Blackburn, 1985), or by a telomerase-

independent mechanism based on recombination processes termed alternative 

lengthening of telomeres (ALT) (Dunham et al., 2000; Greider and Blackburn, 

1985) (Figure 5). In 85-90 % of all cancers and in more than 70% of immortalized 

non-proliferating, 
senescent or

apoptotic state

Telomere maintenance
mechanisms

Reactivation of
telomerase

Alternative lengthening
of telomeres (ALT)

crisis

Unlimited proliferation

replicationreplication

*

*



Introduction 

 16 

human cell lines telomerase is expressed, while a subset of the remaining cancers 

utilize an ALT mechanism (Sobinoff and Pickett, 2017). Cancer entities with a high 

prevalence of ALT are e.g. sarcomas (64%), astrocytoma (63%) and pediatric 

glioblastoma multiforme (44%) (Chudasama et al., 2018; De Vitis et al., 2018; 

Heaphy et al., 2011). In turn, there are also other cancer entities for which no ALT 

case has been reported so far. These are adenocarcinomas of the prostate, colon, 

stomach, pancreas and small intestine (Heaphy et al., 2011). This shows that ALT 

occurs more often in tumors with neuroepithelial or mesenchymal origin (Heaphy et 

al., 2011). It has been reported that there are also cell lines and primary tumors 

without telomere maintenance mechanisms (Dagg et al., 2017). These are assigned 

to the term “ever shorter telomeres”. Their telomeres are very long and shorten with 

each cell division (Dagg et al., 2017). It is assumed that telomere extension has 

been involved at some early time point and was deactivated at a later stage. 

 

1.4.1 Re-activation of telomerase 

As TERT is the limiting factor of telomerase activity (Feng et al., 1995; Kim et al., 

1994), its activation is a highly interesting research topic to understand cancer 

development. The TERT gene is located on chromosome 5 and contains 16 exons 

(Cong et al., 1999; Wick et al., 1999). There exist several different splice transcripts 

of TERT, but only the full-length transcript shows reverse transcriptase activity 

(Saeboe-Larssen et al., 2006). The core region of the TERT promoter is located 

between 330 bp upstream and 228 bp downstream of the transcription start site. 

The promoter of TERT is guanine-cytosine (GC) rich and lacks both a TATA box 

and a CAAT box (Cong et al., 1999; Horikawa et al., 1999; Takakura et al., 1999). 

Several TF binding sites have been recognized in this region. TFs that have been 

reported as activators of TERT are e.g. c-Myc, the NF-kB complex, the STAT factors 

3 and 5 as well as PAX5 and PAX8 or the estrogen receptor (Ramlee et al., 2016). 

Transcriptional repressors of TERT include MAD1, SP3, CTCF, E2F1 and AR 

(Ramlee et al., 2016). TFs like AP-1, EGR1, HIF-2A or SP1 have been identified as 

activators as well as inhibitors of TERT. For example, SP1 can have an activating 

role of TERT expression in telomerase-positive cells and a repressive role in 

telomerase-negative cells (Ramlee et al., 2016). Furthermore, it has been reported 

that the methylation level of the TERT promoter region is correlated to TERT 

expression (Devereux et al., 1999).  
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The mode of TERT activation differs between cancer entities. It has been reported 

that amplifications, rearrangements or promoter mutations can lead to an 

upregulation of TERT. TERT amplifications have been detected in ovarian cancer, 

lung adeno- and squamous cell carcinoma, oesophageal as well as adrenocortical 

carcinoma (Barthel et al., 2017). TERT promoter rearrangements have been 

identified in high-risk neuroblastomas (Peifer et al., 2015). An upregulation of TERT 

through non-coding mutations in the core promoter region was first reported in 

cutaneous melanoma. These C>T transitions occur at position 124 bp (C228T) or 

146 bp (C250T) upstream of the translation start codon (ATG). These mutations are 

early events in tumor development (Shain et al., 2015). Both mutations create a de-

novo ETS binding site (CCGGAA/T binding motif) and a two- to four-fold higher 

TERT promoter activity in melanoma cells (Horn et al., 2013; Huang et al., 2013). It 

has been reported that both mutations are functionally distinct. C228T lead to a 

recruitment of the ETS family member GABPA, which cannot bind to the native 

TERT promoter (Mancini et al., 2018). C250T generates an ETS binding site and a 

functional p52 site which requires ETS1 and ETS2 (Li et al., 2015). In melanoma 

and thyroid cancer, TERT promoter mutations often co-occur with mutations in the 

BRAF gene (V600E) (Horn et al., 2013; Huang et al., 2013; Okamoto and Seimiya, 

2019; Rusinek et al., 2018).  

Besides cutaneous melanoma, TERT promoter mutations frequently occur in 

cancers of the central nervous system (primary glioblastoma and 

oligodendroglioma), urothelial carcinoma, follicular cell-derived thyroid cancer and 

hepatocellular carcinoma as well as cutaneous basal and squamous cell 

carcinomas (Vinagre et al., 2013). Glioma, melanoma and thyroid cancer patients 

with a TERT promoter mutation have a poorer prognosis (Batista et al., 2016; 

Griewank et al., 2014; Kim et al., 2016) indicating that TERT promoter mutations 

can be used as clinical biomarker.  

 

1.4.2 Alternative lengthening of telomeres (ALT) pathway 

The exact mechanism of ALT is not yet fully understood. However, several 

molecular and cytological features have been identified that differ between 

telomerase-positive and ALT-positive, which are telomerase-negative, samples 

(Cesare and Reddel, 2010; Henson and Reddel, 2010) (Figure 6).  
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Figure 6. Hallmarks of ALT 
Several different hallmarks of ALT have been identified so far. These hallmarks 
can be studied by cytological and molecular assays as well as sequencing 
readouts. But the exact mechanism of ALT is still unknown. 

 

ALT cells typically show  

(i) heterogeneous telomere lengths (Henson and Reddel, 2010). Telomerase-

positive cells have telomeres with small range around the average length of 

usually 5 to 10 kb, while the telomere length of ALT cells spreads from 

undetectable by fluorescence in situ hybridization (FISH) to more than 50 kb. 

Another method for absolute telomere length detection is the telomere 

restriction fragment (TRF) analysis (Mender and Shay, 2015). 

(ii) lack of telomerase activity, which can be measured by the telomere repeat 

amplification protocol (TRAP) assay (Mender and Shay, 2015). Furthermore, 

the expression of TERT can be detected by RNA-seq. Since TERT transcript 

levels are very low, TERT RNA-Seq has to interpreted with caution (Ducrest 

et al., 2001; Fredriksson et al., 2014). 

(iii) high levels of extra-chromosomal telomeric repeats (ECTRs) (Cesare and 

Griffith, 2004; Tokutake et al., 1998), which can be either linear or circular, 

double-stranded or single-stranded, G- or C-rich DNA fragments (Cesare and 

Reddel, 2010; Henson and Reddel, 2010). C-circles are a well-established 
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marker of ALT cells and can be detected by the so-called C-circle assay 

(Henson et al., 2009; Henson et al., 2017).  

(iv) telomeric recombination visualized by chromosome orientation FISH 

(Nabetani and Ishikawa, 2011). These recombination processes can take 

place between sister chromatids or telomeres of different chromosomes. In 

addition, ALT cells allow homologous recombination processes at telomeres 

which are typically repressed by the shelterin complex (Lovejoy et al., 2012). 

(v) colocalizations of telomeres with promyelocytic leukemia (PML) bodies, the 

so-called ALT-associated PML bodies (APBs) (Chung et al., 2012; Yeager et 

al., 1999). PML bodies are present in normal cells, however the colocalization 

in telomeres is unique to ALT cells (cite some ALT paper). The average 

number of APBs differs between ALT cells, but most ALT cells have at least 

one APB (Henson and Reddel, 2010; Osterwald et al., 2015). 

(vi) high levels of the telomeric repeat-containing RNA (TERRA). TERRA is 

transcribed from the subtelomeres into the telomeres and was reported to 

inhibit telomerase (Ng et al., 2009). 

(vii) recurrent mutations in the alpha-thalassemia mental retardation X-linked 

protein (ATRX), the death-associated protein 6 (DAXX) (Heaphy et al., 2011; 

Lovejoy et al., 2012; Schwartzentruber et al., 2012). Mutations in ATRX and 

DAXX are typically mutually exclusive (Schwartzentruber et al., 2012; Sturm 

et al., 2012), also to TERT promoter mutations (Okamoto and Seimiya, 

2019). However, it is not possible to induce ALT by knocking down any of 

these genes (Flynn et al., 2015; Lovejoy et al., 2012). However, ATRX loss 

can enable the activation of ALT (Napier et al., 2015). Furthermore, it was 

reported that in an ATRX-negative cell line ALT can be suppressed by 

reexpression of ATRX (Clynes et al., 2015; Deeg et al., 2016), while inducing 

hTERT in ALT cells led to a repression of at least some ALT features (Perrem 

et al., 1999). 

(viii) mutations in the H3 histone family member 3A (H3F3A) often co-occur with 

ATRX mutations in pediatric glioblastoma samples (Schwartzentruber et al., 

2012; Sturm et al., 2012). Furthermore, it was reported that in HeLa cells with 

long telomeres ALT can be induced by a knockdown of the anti-silencing 

factor 1 (ASF1) (O'Sullivan et al., 2014). Furthermore, it was reported that 
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the activation of the ALT pathway is independent of the expression level of 

TERC (Zhang et al., 2011). 

 

Currently, C-circles are one of the most reliable molecular markers for ALT. Since 

C-circles are prone to degradation, a lack of C-circle signal can be interpreted as 

false-negative. Therefore, a combination of the C-circle assay with the analysis of 

different other features is necessary to get a reliable TMM prediction. 

 

 

1.5  Cancer entities analyzed in this study  

1.5.1 Prostate cancer as a cancer entity with neither TERT promoter mutations nor 

ALT occurrence 

After lung cancer (14.6 %), prostate cancer is with 13.5 % the second most common 

cancer type in men worldwide and it is the fifth most frequent leading cause of 

cancer death in men (6.7 %) (Bray et al., 2018). For 2018 the International Agency 

for Research on Cancer listed around 1.3 million new cases (Bray et al., 2018). Risk 

factors for a high incidence of prostate cancer are age, genetic susceptibility, family 

history as well as race (Al Olama et al., 2014; Cancer Genome Atlas Research, 

2015). The established screening of the prostate specific antigen (PSA) level 

considerably increases the potential of early diagnosis (Penney et al., 2013). PSA 

is produced by the prostate and can be measured from the blood. A high level of 

PSA in the blood (> 4 ng/ml for 60-69 old men) is an indicator of prostate cancer 

and consequently a biopsy is highly recommended (Pezaro et al., 2014). The PSA 

level in serum correlates with the pathological stage of the tumor and the Gleason 

Score. It was furthermore shown that a PSA-level of > 50 ng/ml is correlated with a 

poorer response to treatment and survival compared to other high-risk patients (Koo 

et al., 2015). The PSA level is also used subsequent to a radical prostatectomy to 

determine the tumor recurrence (PSA-recurrence free survival) and is often used 

instead of the overall survival. After a radical prostatectomy the PSA level is low, 

but upon tumor recurrence the PSA-level highly increases again. Most of the 

patients have an indolent form of prostate cancer and are curable, while others have 

more aggressive cancer leading to metastasis and death (Al Olama et al., 2014; 

Cancer Genome Atlas Research, 2015). Potential therapy options are radical 
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prostatectomy, radiation or brachy therapy or in some cases also active surveillance 

can be possible. For patients with metastasis also drug treatment is necessary, like 

chemotherapy (Docetaxel, Cabazitaxel) or androgen receptor inhibitors 

(Enzalutamid) (Board., 2002). The Gleason score describes the histological 

differences between healthy prostate cells and prostate cancer cells. There are five 

different grades (1-5) and the higher the grade the more aggressive is the tumor. 

The pathologist adds up the most frequent and the second most frequent pattern 

when regarding slides of tumor tissues. The poorest pattern is mentioned in addition, 

if it is not identical to the most frequent or the second most frequent pattern. Tumors 

with a Gleason score of 4+3, 4+4 or even higher are highly aggressive (Helpap and 

Egevad, 2006). The risk stratification system today combines Gleason score, pre-

operative PSA-levels, and pathological as well as clinical staging, but it cannot 

adequately predict the patient’s outcome (Cooperberg et al., 2009). Previous 

studies of primary prostate cancer patients identified several recurrent genomic 

alterations like mutations, gene fusions, DNA copy-number changes, and 

rearrangements. The most common alteration is the TMPRSS2-ERG fusion 

(Tomlins et al., 2005). This gene fusion was found mainly in early-onset prostate 

cancer patients maybe because of the increased androgen signaling in younger 

men (Weischenfeldt et al., 2013). But a follow up study revealed that the age 

dependency of the ERG-fusions in limited to patients with a low Gleason score (£ 

3+4) (Steurer et al., 2014). ERG-fusion negative patients showed an age-dependent 

accumulation of chromosomal deletions (Weischenfeldt et al., 2013). SPOP, TP53, 

FOXA1 as well as PTEN have been identified to be most frequently mutated in 

prostate cancer (Barbieri et al., 2012). The identification of new biomarkers is 

needed to improve the risk stratification, the progression of the disease as well as 

therapy decisions. 

 

1.5.2 Glioblastoma multiforme as a cancer entity with a high rate of ALT occurrence 

Glioblastoma multiforme (GBM) is the most frequent malignant primary brain tumor 

in children and adults. GBMs are highly aggressive and are classified as stage IV in 

the World Health Organization scheme (Sturm et al., 2014). With a median survival 

of less than 9 months, GBM patients have a very poor prognosis (Hakin-Smith et 

al., 2003). Patients with ALT-positive GBM had an increased median survival rate 

(Hakin-Smith et al., 2003; McDonald et al., 2010), which indicates that ALT might 
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be an interesting prognostic marker for GBM. Pediatric (ped) and adult GBM both 

have a very poor prognosis, but recent studies showed differences regarding gene 

expression signatures, genetic mutations and DNA copy number (Gilheeney and 

Kieran, 2012; Sturm et al., 2014). Mutations in ATRX and H3F3A occur more often 

in pedGBM than in adult GBMs (Heaphy et al., 2011; Schwartzentruber et al., 2012; 

Sturm et al., 2014). Mutations in H3F3A are highly specific to pedGBMs and often 

co-occur with mutations in TP53 and ATRX (Schwartzentruber et al., 2012; Sturm 

et al., 2012). H3F3A encodes the histone variant H3.3, which is enriched in 

transcriptionally active regions, but also at telomeres and pericentromeres. A 

recurrent mutation in H3F3A affected mutually exclusive either an amino acid 

change in H3.3 of lysine 27 to methionine (K27M) or glycine 34 to arginine 

respectively valine (G34R/V (Schwartzentruber et al., 2012; Sturm et al., 2012). 

Furthermore, pedGBM show a much higher frequency of ALT (44 %) compared to 

adult GBM (14 %) (Heaphy et al., 2011). This together with the high frequency of 

ATRX mutations and H3F3A mutations makes pedGBM an interesting entity for 

studying the ALT mechanism. 

 

 

1.6 Clinical aspects 

1.6.1 Patient stratification 

A deregulation of TFs or a mutation in their binding sites drive several human 

diseases, e.g. cancer (Lambert et al., 2018) indicating that TFs are well suited as 

prognostic markers. Gene regulatory models are important to identify the TF to 

target gene interactions. Furthermore, the stratification of patients into molecular 

subtypes are essential to identify the exact regulatory mechanisms and can improve 

targeted therapies. One example for an established patient stratification system is 

a classifier based on methylation data for tumors of the central nervous system 

(Capper et al., 2018).  

In addition, a patient stratification based on the active telomere maintenance 

mechanism can also improve the prognostic information in several cancer types 

(Elkak et al., 2006; Hakin-Smith et al., 2003; Lundberg et al., 2011; Poremba et al., 

2002). For instance, Lee et al. used whole genome sequencing (WGS) data to 

perform a quantitative telomere repeat variant analysis (Lee et al., 2018). Besides 
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the canonical TTAGGG telomeric repeat there also exist repeat variants which differ 

by one nucleotide, e.g. TCAGGG, TGAGGG or TTGGGG. This telomere repeat 

variant content was then used to build a classifier to distinguish between ALT-

positive and ALT-negative tumor samples. Sieverling et al. developed a classifier 

for the PanCancer Analysis of Whole Genomes (PCAWG) project to predict the 

active TMM of tumor samples with an ATRX/DAXX mutation (potentially ALT-

positive) and with TERT expression by including measures for telomere content, the 

number of telomere insertions, the number of telomeric repeats of TGAGGG, 

TCAGGG, TTGGGG, TTCGGG and TTTGGG (identified with Telomere Hunter 

(Feuerbach et al., 2016)) (Sieverling et al., 2019).  

Furthermore, TERT promoter mutations are the most common non-coding somatic 

mutations in cancer (Okamoto and Seimiya, 2019). As patients with a TERT 

promoter mutation show a poorer prognosis (Batista et al., 2016; Griewank et al., 

2014; Kim et al., 2016), the mutation status of the TERT promoter can be used as 

biomarker for patient stratification. In addition, a hypermethylation of the CpG 

(cg11625005) upstream of the transcription start site (TSS) of TERT resulted an 

expression of TERT. Since the re-activation of TERT is associated with tumor 

progression as well as a poor prognosis in pediatric brain tumors (Castelo-Branco 

et al., 2013), the TERT CpG methylation pattern is also a potential biomarker.  

 

1.6.2 Targeting telomere maintenance 

As telomere maintenance is a hallmark of cancer and inactive in somatic cells, it is 

an interesting target for cancer therapy. Because most of the cancer cells maintain 

their telomeres by re-activating the telomerase, inhibition of telomerase seems to 

be an attractive strategy. So far, immunotherapy, gene therapy, small molecular 

inhibitors and G-quadruplex ligands have been developed. Some of them have also 

entered clinical trials (Chiappori et al., 2015; Roth et al., 2010; Ruden and Puri, 

2013; Williams, 2013). For instance, the antisense oligo GRN163L (Imetelstat) 

targets TERC (Roth et al., 2010), while for TERT e.g. the small-molecule inhibitor 

BIBR1532 has been developed (Pascolo et al., 2002). However, there is no 

approved inhibitor for telomerase so far. One reason for this could be the long lag 

time between inhibition and apoptosis. Since it can take up to ~21-24 cell divisions, 

equal to 20 months (Uziel et al., 2015), until telomeres reach a critically short length 

that can induce replicative senescence or apoptosis (Min et al., 2017), the tumor 
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might have multiplied its size in the meantime. Furthermore, repression of one TMM, 

e.g. by inhibition of telomerase could result in activation of another TMM, e.g. the 

ALT pathway (Hu et al., 2012; Kelland, 2005; Shay and Wright, 2019; Villa et al., 

2000). Therefore, the most effective treatment would inhibit both telomerase and 

the ALT pathway (De Vitis et al., 2018). However, a targeted ALT therapy is lacking, 

because the complete mechanism is still unknown.  

Surprisingly, 70 % of cancer cells have shorter telomeres as compared to normal 

cells and the remaining cells may have activated the ALT pathway (Barthel et al., 

2017). In principle, telomerase inhibitors should be more efficient in cancer samples 

with shorter telomeres as they induce senescence or apoptosis earlier. This shows 

that telomere length can act as a predictive marker (Frink et al., 2016; Fujiwara et 

al., 2018). A clinical study reported that Imetelstat treatment results in elongation of 

both the median progression-free and the overall survival of non-small lung cancer 

patients with short telomeres (Chiappori et al., 2015). Shorter telomeres correlate 

also with malignancy. But there are also studies showing that genes involved in 

cancer progression, e.g. Interferon Stimulated Genes (ISGs), are activated due to 

maintenance of short telomeres. Telomere length is negatively correlated with a 

high activity of telomerase or a high expression of TERT or the shelterin genes 

(Butler et al., 2012; Hu et al., 2010). Limited telomere maintenance can also be 

explained by the ‘protein-counting’ mechanism. This means that there is a negative 

feedback loop of the telomere-bound shelterin complexes and the accessibility of 

telomerase (Marcand et al., 1997; Shore and Bianchi, 2009) balancing the effects 

of the repressors with the length of the telomeres. 
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Scope of the thesis 
All biological processes and signaling pathways in the cell are controlled by a 

complex network of transcriptional regulators. Typically, several regulators 

collaboratively regulate the expression of a gene by binding to its promoter or 

enhancer regions (Bauer et al., 2011; Cheng et al., 2012; Consortium et al., 2009; 

Dong et al., 2012; Oliveira et al., 2008; Schacht et al., 2014; Setty et al., 2012). To 

address this additive co-operativity and to identify the regulatory interactions 

between TFs and their target genes, several methods have been developed. Some 

are based on linear regression (e.g. ISMARA (Balwierz et al., 2014)), while others 

use a probabilistic framework or mutual information (e.g. ARACNE (Lachmann et 

al., 2016)). None of these methods uses the potential of Mixed Integer Linear 

Programming (MILP) allowing to study the regression in L1 norm avoiding 

overestimating outliers and to implement constraints to get sparse models. 

Deregulation of transcriptional regulators can often cause disease, including cancer, 

making TFs putative drug targets, even if their exact mechanism of action is not 

known.  

To improve prediction of regulatory processes, I developed the ‘Mixed Integer linear 

Programming based Regulatory Interaction Predictor’ (MIPRIP) (Poos et al., 2019; 

Poos et al., 2016) which can identify the most important regulators of a particular 

gene in a dataset. MIPRIP was further extended with  

(i) a statistical downstream analysis to study regulatory processes between 

two or multiple datasets/conditions and  

(ii) a modularity-based approach to identify the regulators that may not bind 

directly to the promoter of the gene of interest, but are collaterally involved 

in the regulation of the gene by interacting with other regulators. 

 

One important hallmark of cancer cells is the ability of unlimited proliferation. The 

activation of a telomere maintenance mechanism (TMM) is crucial for cancer cells 

to enable replicative immortality (Hanahan and Weinberg, 2011). Telomeres are 

repetitive DNA sequences at the ends of eukaryotic chromosomes and they shorten 

gradually with each cell division eventually triggering replicative senescence or 

apoptosis. Compared to somatic cells, cancer cells overcome this restriction mainly 

by extension of their telomeres by either re-expressing the reverse transcriptase 
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telomerase or by using a mechanism based on homologous recombination called 

alternative lengthening of telomeres (ALT). Furthermore, mutations in the promoter 

of the telomerase reverse transcriptase (TERT) gene can also lead to an 

upregulation of TERT (Horn et al., 2013; Huang et al., 2013). The underlying 

regulatory processes of telomere maintenance are only partly understood. Besides 

this, it was shown that patient stratification according to TMM can improve the 

prognostic value for survival, e.g. ALT-positive glioblastoma patients showed a 

better prognosis compared to ALT-negative patients (McDonald et al., 2010). Thus, 

understanding the mechanisms that maintain telomere length can have substantial 

medical implications, in particular for ageing and carcinogenesis. 

In this thesis, I used gene regulatory network models to study telomere maintenance 

in the model organism Saccharomyces cerevisiae and in human cancer. To get a 

better understanding of the mechanism underlying telomerase re-activation, 

MIPRIP was applied to study the regulation of the telomerase, first in S. cerevisiae 

and second in 19 different cancer types. For the cancer types, I especially focused 

on melanoma skin cancer, an entity with a high fraction of TERT promoter 

mutations, and prostate cancer, a cancer type without TERT promoter mutations or 

ALT occurrence. Compared to many other cancer entities, pediatric glioblastoma 

(pedGBM) exhibits a high occurrence of ALT (Heaphy et al., 2011) and is therefore 

well suited for the study of molecular differences between ALT and telomerase-

positive cancers. Here, I developed a classification scheme to predict the active 

TMM (ALT-positive or ALT-negative) in pedGBM tumor samples based on typical 

ALT features extracted from sequencing data as well as cytological and molecular 

assays. After the classification of the pedGBM samples, the aim was to identify a 

gene expression and transcription factor activity signature for ALT-positive cancers 

that explain the differences in TERT activity between the different TMMs. 

In summary, this thesis aimed to develop and apply new approaches based on 

Mixed Integer Linear Programming to identify the regulatory mechanisms of 

telomere maintenance in yeast as well as in different cancer entities, especially 

melanoma skin cancer, prostate cancer and pedGBM.  
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2 Materials and Methods 

2.1 Software 
 

During my PhD, I used the following software for data analysis and modeling 

(Table 1):  

 
Table 1. Software used for the analysis 
Software Reference Version 

R https://www.r-project.org/ 3.5.1 

RStudio https://www.rstudio.com/ 1.2.907 

Gurobi http://www.gurobi.com/ 7.0.1 

ARACNe-AP (Lachmann et al., 2016),  

https://github.com/califano-lab/ARACNe-AP 

 

Cytoscape (Shannon et al., 2003), https://cytoscape.org/ 3.5.1 

VIPER (Alvarez et al., 2016), doi.org/10.18129/B9.bioc.viper 3.8 

gProfileR (Reimand et al., 2016),  

https://cran.r-project.org/web/packages/gProfileR/index.html 

0.6.6 

VennDiagram https://CRAN.R-project.org/package=VennDiagram  1.6.20 

DESeq2 (Love et al., 2014), 

https://bioconductor.org/packages/release/bioc/html/DESeq2.html 

1.16.1 

MIPRIP https://www.leibniz-hki.de/en/miprip.html;  

https://github.com/network-modeling/MIPRIP;  

(Poos et al., 2019; Poos et al., 2016) 

1.0-2.0 

 

 

2.2 Datasets 

2.2.1 Yeast data 

To model the regulation of the telomerase in S. cerevisiae, gene expression data 

was used together with annotation data of TLM genes. 

 

Expression dataset: Pre-processed microarray gene expression data (Reimand et 

al., 2010) of 269 yeast regulator deletion strains (strains BY4741, S288C and 

BYTET) was downloaded from Array Express (E-MTAB-109, 

www.ebi.ac.uk/arrayexpress/). Reimand et al. re-analyzed the dataset containing 

588 two-color cDNA microarray hybridizations of 269 regulator mutants against a 
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reference sample, generated by Hu and coworkers (Hu et al., 2007). All probes that 

could not be annotated as open reading frames were filtered out and duplicated or 

triplicated probes were averaged. The pre-processed dataset contains expression 

values of 6,253 protein-coding genes and was normalized using variance 

stabilization (VSN) (Huber et al., 2002; Reimand et al., 2010). For the modeling 

approach, a z-score transformation for each gene across all samples was 

performed. For this the mean of the gene expression values �̅�" of gene i over all 

samples was subtracted from each gene expression value 𝑔". of gene i and sample 

k divided by the standard deviation 𝜎 (equation 12), 

 

𝑧". =
bcdebfc
ghc

.             (12) 

 

Annotation of TLM genes: Based on genome-wide screening and computational 

analysis around 500 genes were identified that lead to telomere shortening or 

telomere extension when mutated (Askree et al., 2004; Ben-Shitrit et al., 2012; 

Gatbonton et al., 2006; Shachar et al., 2008; Ungar et al., 2009). These genes were 

labelled as TLM genes and the mutants tlms. From the 269 deletion strains of the 

Reimand et al. dataset 18 deletion strains showed shorter telomeres than the wild-

type (short tlm mutants), 11 elongated telomeres, and 240 wild-type telomere length 

(non-TLMs or controls) (Table S1).  
 

2.2.2 RNA-seq data from The Cancer Genome Atlas (TCGA) 

For the pan-cancer analysis of TERT regulation only the cancer entities from ‘The 

Cancer Genome Atlas’ (TCGA) with freely available transcriptome expression data 

of more than 100 primary tumor samples were selected. This resulted in a dataset 

comprising 19 different cancer entities (Table 2). For the pre-processed RNA-seq 

data of these cancer entities the usage restriction has been relaxed according to the 

TCGA publication guidelines from December 21, 2015 

(http://cancergenome.nih.gov/publications/publicationguidelines) making the data 

publicly available. The normalized by ‘RNA-Seq by Expectation Maximization’ 

(RSEM) (Li and Dewey, 2011) and log2 transformed data was downloaded from the 

TCGA Genome Data Analysis Center (GDAC, http://gdac.broadinstitute.org/, 

release 2016-01-28) of the Broad Institute. Each dataset was reduced to the primary 
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tumor samples (ending -01 for solid tumors and -03 for blood-derived cancers based 

on the TCGA guidelines (https://gdc.cancer.gov/resources-tcga-users/tcga-code-

tables/sample-type-codes)). For the prostate dataset, also 52 samples from normal 

tissue (ending -11) were available. In each dataset, all genes with more than 25 % 

missing entries and with low variances (standard deviation ≤ 0.5) were removed. 

Furthermore, a z-score transformation was performed for each gene across each 

dataset (see equation 1). For the modeling, all samples without a gene expression 

value for the gene of interest were removed. 

 
Table 2. Cancer types in TCGA with more than 100 primary tumor samples, used for 
the pan-cancer analysis of TERT. 
Cancer type Number of tumor samples 
Breast cancer (BRCA) 983 
Cervical cancer (CESC) 300 
Colorectal adenocarcinoma (COADREAD) 619 
Cutaneous melanoma (SKCM) 103 
Glioblastoma multiforme (GBM) 145 
Head and neck squamous cell carcinoma (HNSC) 501 
Liver hepatocellular carcinoma (LIHC) 342 
Lung adenocarcinoma (LUAD) 491 
Lung squamous cell carcinoma (LUSC) 489 
Ovarian serous cystadenocarcinoma (OV) 294 
Prostate adenocarcinoma (PRAD) 497 
Stomach adenocarcinoma (STAD) 405 
Urothelial bladder cancer (BLCA) 399 
Uterine corpus endometrial carcinoma (UCEC) 532 
Acute Myeloid Leukemia (LAML) 168 
Testicular germ cell cancer (TGCT) 148 
Esophageal cancer (ESCA) 178 
Pancreatic ductal adenocarcinoma (PAAD) 145 
Thymoma (THYM) 120 

 

2.2.3 Next-generation sequencing (NGS) data of pediatric glioblastoma (pedGBM) 

For the TMM classification into ALT and non-ALT samples, data from 57 pedGBM 

patients and 7 cell lines were used. Most samples were from the International 

Cancer Genome Consortium (ICGC) PedBrain Tumor Project 

(http://www.pedbraintumor.org/) (International Cancer Genome Consortium 

PedBrain Tumor Project, 2016). The sequencing data of these patients can be 

downloaded from European Genome-phenome Archive (http://www.ebi.ac.uk/ega/) 

under the accession number EGAS00001001139. Additional samples 
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(ICGC_GBM84, ICGC_GBM95, ICGC_GBM96, ICGC_GBM98, ICGC_GBM100, 

and cell lines NEM168, NEM165) were processed similar to the ICGC ones. For 

nearly all samples RNA-, DNA-seq and data from methylation profiles using Illumina 

HumanMethylation450 BeadChip was available. From the methylation data only the 

methylation level at CpG cg11625005 upstream of the TERT transcription start site 

was used. 

 

2.2.4 RNA-seq data of chronic lymphocytic leukemia patients (CLL) 

The RNA-seq dataset consisted of data from 20 CLL patients and 7 non-malignant 

B-cell control samples generated in the CancerEpiSys consortium 

(http://www.cancerepisys.org/cancerepisys/index.html). More information about the 

samples and the pre-processing of the data can be found in (Mallm et al., 2019). 

For the activity calculation with VIPER (Alvarez et al., 2016) raw read counts were 

normalized with variance-stabilization transformation using DESeq2 (Love et al., 

2014), while for MIPRIP gene expression values in ‘Reads Per Kilo base per Million’ 

(RPKM) mapped reads were used.  

 

 

2.3 Assembling the initial regulatory networks 
For the calculation of the regulator’s activity value and for the MILP based models 

a network with all available regulator to target gene interactions was needed. For 

yeast and human a generic regulatory network was built mainly based on available 

ChIP-experiments. 

 

2.3.1 Generic yeast regulatory network 

A generic regulatory network for yeast was constructed based on regulator binding 

information from the YEAst Search for Transcriptional Regulators And Consensus 

Tracking (YEASTRACT) database (www.yeastract.com) and a study of Yu and 

Gerstein (Yu and Gerstein, 2006). In August 2015, YEASTRACT comprised binding 

data based on more than 1,300 publications and for the network only entries 

annotated as “DNA binding plus expression evidence” from ChIP-experiments or in 

silico refinements of this data (Harbison et al., 2004; Lee et al., 2002; Reimand et 

al., 2010) were used. All regulators without any target gene in both sources were 
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filtered out. In total this network consisted of 203,234 interactions between 382 

regulators and 6,346 target genes. 

 

2.3.2 Generic human regulatory network 

For the generic human regulatory network all available regulator to target gene 

interactions from the following seven data repositories were extracted: 

• MetaCoreTM (https://portal.genego.com/): the TF-target gene interactions are 

based on proven literature reports and are manually curated. The interactions 

are annotated as "direct" or "indirect" and are subdivided into “activating”, 

“inhibitory” or "unspecific".  

• the ChIP Enrichment Analysis (ChEA) database (Lachmann et al., 2010), which 

contains interactions from high-throughput ChIP-experiments.  

• chromatin immunoprecipitation data from the ENCODE project 

(https://www.encodeproject.org/). Only entries which were found in at least 2 cell 

types were used. 

• human ChIP-ChIP and ChIP-seq data from hmChIP (Chen et al., 2011),  

• the experimentally verified interactions from Human Transcriptional Regulation 

Interaction database (HTRIdb) (Bovolenta et al., 2012),  

• ChIP-seq data of long non-coding RNA and microRNA genes from ChIPbase 

(Yang et al., 2013) and  

• data from binding site predictions using the method of Total Binding Affinity 

(TBA) (Grassi et al., 2015; Molineris et al., 2011). Here, the TF’s binding 

probability over the whole promoter region of the gene is estimated. For TBA, a 

stringency cutoff of ³ 1.5 was set. 

The binding information of the different repositories were combined into a generic 

network of TFs and their target genes. Only TF t to target gene i interactions were 

selected if it was listed 

(i) in MetaCoreTM annotated as direct, or in Encode, 

(ii) in at least two out of MetaCoreTM (annotated as indirect), TBA (score≥1.5), 

ChEA or HTRIdb, or 

(iii) in hmChIP and ChIPbase. 

The interactions from the seven different repositories were incorporated based on 

the reliability of the sources. Interactions from MetaCoreTM were manually curated 
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from literature reports, MetaCore's direct interactions (𝑥ijk"lmc) were weighted by a 

factor of 2 and MetaCore's indirect interactions (𝑥ij"nk"lmc) by a factor of 1. A factor 

of 1 was also used for interactions from ChEA (𝑥opqrmc), HTRIdb (𝑥psl"mc) and TBA 

(𝑥strmc). Interactions from Encode (𝑥qnomc) were weighted by a factor of 0.5, and for 

interactions found in hmChIP (𝑥pumc) and ChIPbase (𝑥op"vmc) a factor of 0.25 was 

used (Poos et al., 2019). This resulted in the overall edge strength score esti: 

   

𝑒𝑠s"	: = 2 ∙ 𝑥ijk"lmc + 	0.5	 ∙ 𝑥qnomc + 	𝑎s" ∙ z𝑥ij"nk"lmc + 𝑥opqrmc + 	𝑥psl"mc + 𝑥strmc{ +

														0.25	 ∙ z𝑥pumc ∙ 𝑥op"vmc{                                                                (13) 

 

with  

𝑎s" ≔ 	 }1	𝑖𝑓	(𝑥ij"nk"lmc + 𝑥opqrmc + 	𝑥psl"mc + 𝑥strmc) 	≥ 2
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  ,   (14) 

 

𝑥strmc ≔ 	 �1	𝑖𝑓	𝑧 − 𝑠𝑐𝑜𝑟𝑒	 ≥ 1.5
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  ,      (15) 

 

and  𝑥ijk"lmc , 	𝑥ij"nk"lmc , 𝑥qnomc , 𝑥opqrmc, 𝑥psl"mc , 𝑥pumc, 𝑥op"vmc ∈ {0,1}.                    (16) 

 

Regulators for which no target genes could be identified were filtered out.  

 

 

2.4 Mixed Integer linear Programming based Regulatory Interaction 

Predictor (MIPRIP) 
MIPRIP integrates a MILP based regulatory model with machine learning methods. 

The MILP model, in which the covariates are the putative regulators binding to the 

promoter of the gene of interest, is as follows: 

   𝑔�". = 	𝛽& +	∑ 𝛽s ∙ 	𝑒𝑠s" ∙ 	𝑎𝑐𝑡s.N
s�(  ,                                       (16) 

 

where 𝑔�". was the predicted gene expression value of gene i in sample k, β0 was 

an additive offset, T the number of all putative regulators binding to the gene’s 

promoter, βt was the optimization parameter of regulator t, 𝑒𝑠s" the edge strength 

between regulator t and gene i based on the underlying network (yeast or human) 
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and 𝑎𝑐𝑡s. the activity of regulator t in sample k calculated based on the gene 

expression values of the target genes (equation 31 and 32). The edge weight in the 

network was unequal 0 if there has been an interaction between the regulator t and 

the target gene i reported.  

The objective was to minimize the difference of the measured gene expression 

value gik in the dataset and the predicted gene expression value 𝑔�"., which is equal 

to the minimization of the error terms 𝑒". (L1 regression): 

 

                min∑ |𝑔". −	𝑔�".| = 	∑ 𝑒".�
.�(

�
.�( ,                     (17) 

 

and all absolute values were transformed into two inequalities:   

 

  𝑔". −	𝑔�". −	𝑒". 	≤ 0                                        (18) 

              −	𝑔". +	𝑔�". −	𝑒". 	≤ 0                               (19) 

 

A large variety of models with different sizes was constructed by constraining the 

number of regulators. For this a binary variable was introduced for each regulator 𝑡 

called 𝑥s plus an additional constraint (eq. 20). If 𝑥s is equal to 1, then regulator t 

can be selected by the model. The sum of all binary 𝑥s variables is at most a 

specified number of regulators (limit), 

 

𝑥( +	𝑥, + ⋯+	𝑥s ≤ 𝑙𝑖𝑚𝑖𝑡	 ; 𝑥s 	∈ {0,1}.            (20) 

 

Typically, models starting with only one regulator up to a maximum of n-2 putative 

regulators, where n was the number of samples, were constructed. 

Furthermore, a variable called ‘Big M’ was utilized to define the bounds of the 𝛽s of 

regulator 𝑡. The bounds of each 𝛽s were set to −1000	 ≤ 	𝛽s 	≤ 1000.  

 

𝛽s − 1000	𝑥s ≤ 0      (21) 

𝛽s + 1000	𝑥s ≥ 0      (22) 

To solve the optimization problem the Gurobi optimizer (www.gurobi.com, version 

6.0-7.01) was used. To avoid overfitting a cross-validation was performed and the 

prediction performance was estimated by the Pearson correlation of the predicted 
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gene expression value from the training set and the measured gene expression 

value from the validation dataset. After all the resampling and cross-validation runs 

it was counted how often each regulator was selected in the models of each group 

over all the cross-validation runs. This results in a table where the regulators were 

ranked based on their frequency over all models. 

The combination of this MILP model and machine learning methods in form of cross-

validation and resampling techniques was implemented in R (https://www.r-

project.org/). Because the here described analysis is limited to a single dataset, it is 

also called a single-mode MIPRIP analysis. Furthermore, MIPRIP was extended 

with (i) statistical analysis to compare the regulatory processes between two or 

multiple datasets/conditions (MIPRIP-Comparison (MIPRIP-Comp)) and (ii) a 

modularity-based approach to identify the regulatory subnetwork that can best 

explain the regulation of the gene of interest (MIPRIP-Network (MIPRIP-Net)) (see 

next sections). 
 

2.4.1 MIPRIP-Comparison (MIPRIP-Comp) 

MIPRIP-Comp can be used to compare the regulatory processes between different 

two (dual-mode) or multiple (multi-mode) datasets/conditions based on a statistical 

downstream analysis. The basic MIPRIP analysis of only one dataset (single-mode) 

as well as the dual- and the multi-mode of MIPRIP-Comp (Figure 7) are 

implemented in the R-package “MIPRIP2”. MIPRIP2 requires the R-package “slam” 

and the solver Gurobi (free for academic use). In all three MIPRIP-modes, models 

were built for 1 up to a pre-defined number of regulators by using a prior defined 

number of cross-validation runs separately for both datasets/conditions. For each 

dataset/condition it was counted how often each regulator was selected over all 

models. In the dual-mode MIPRIP analysis, a two-sided Fisher's exact test was 

performed with the regulator frequencies to identify significant regulators of 

dataset/condition 1 being found more often compared to dataset/condition 2 and 

vice versa. The p-values were corrected for multiple testing using the Benjamini-

Hochberg method (Benjamini and Hochberg, 1995). In the multi-mode the count 

table with the regulator frequencies of all datasets/conditions was used to identify 

the most common regulators of the gene of interest across all datasets/conditions. 

For this a rank product test was performed based on the ranks of the counts of each 

regulator in each dataset/condition. To estimate if the calculated rank product value 
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over all datasets/conditions was higher than an observed value of a random 

distribution, 10,000 permutations of a rank product value calculated from random 

TF ranks of each dataset/condition were performed. An averaged expected value 

(E-value) was calculated by counting how often the rank product values in the 

permutations were below or equal to the observed value (Breitling et al., 2004). To 

identify the specific regulators of each dataset/condition a one-sided Wilcoxon Test 

for each regulator was performed based on the count distributions and the resulting 

p-values were corrected for multiple testing (Benjamini and Hochberg, 1995). This 

leads to a list of regulators which were significantly selected more often in the 

models of the dataset/condition compared to the models of all other 

datasets/conditions. 

 
Figure 7. Three different application modes in the MIPRIP2 R-package.  
The single-mode identifies the regulators which are used most often in the 
models to predict the gene expression of the gene of interest. This mode can 
be used only for a single dataset or a specific group of samples. The dual-mode 
was designed to study the regulatory processes between two datasets or two 
groups of samples (e.g. treatment vs. control). After the modeling the user 
receives a list of regulators which were significantly more often used for the 
prediction of group1 compared to group2 and vice versa. With the multi-mode 
the most common but also the group-specific regulators are predicted for 
multiple datasets/groups (e.g. for pan-cancer analysis). Image taken from (Poos 
et al., 2019).  
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The R-package MIPRIP2 can be used like this: 

> library(“MIPRIP2”) 

> library(“gurobi”) 

> miprip.result <- miprip.run(mode=c("single", "dual", "multi"), group_names=c(), 

target_gene,  num_repeats=10, num_cv=3, num_parameter=10, 

gurobi_parameter=list(timeLimit = 5, OutputFlag=0), X=expression, ES=network) 

 

,where the user specifies the mode (single, dual or multi), the groups 

(group_names), the target gene, the number of repeats and cross-validation runs 

(num_repeats, num_cv), the maximum number of regulators (num_parameter) and 

the loaded expression dataset (X) as well as the generic network (ES). Per default 

the activity values of the regulators are calculated within the MIPRIP 2.0 run, but the 

user can also provide an own activity matrix as in the first MIPRIP version. 

‘gurobi_parameter’ defines the time limit of each optimization step. 

So far there are two MIPRIP versions available at https://www.leibniz-

hki.de/en/miprip.html or https://github.com/network-modeling/MIPRIP (Poos et al., 

2019; Poos et al., 2016). MIPRIP version 1.0 was limited to a binary regulatory 

network and included a further inner cross-validation to improve the prediction 

performance. This means that the training set of the cross-validation was again 

divided into a training and a validation set to determine the regulator combination 

with the best performance. 

 

2.4.2 MIPRIP-Network (MIPRIP-Net) 

To construct a regulatory TF-TF network, MIPRIP was combined with the concept 

of modularity from Newman (Newman, 2006). This leads then to the best 

subnetwork of a particular gene consisting of direct and indirect regulators 𝑅s. All 

regulators binding to the promoter of the particular gene are called direct, while the 

regulators of the regulators are called indirect regulators of the particular gene.  

The MILP was as follows: 

    𝑥s� + 𝑥s� − 𝑦s�s� ≤ 1     (23) 

𝑦s�s� ≤ 𝑥s�    (24) 

𝑦s�s� ≤ 𝑥s�    (25) 

      	∑ 𝑥sN
s�( ≤ 𝑙𝑖𝑚𝑖𝑡     (26) 



Materials and Methods 

 37 

                     𝑤s�s� = 𝑐𝑜𝑟z𝑎𝑐𝑡s�., 𝑎𝑐𝑡s�.{ ∙ 𝑒𝑠s�s�    (27) 

𝑤�s�s� =𝑤s�s� −
km�	km�
,u

               (28) 

             with 𝑑s =∑𝑤s�,s�    

       and 𝑚 =(
,
∑ 𝑑sN
s�(     

𝑥s ∈ {0,1}	, 𝑦s�s� ∈ {0,1},      (29) 

 

where t indicates the nodes (regulators), w are the edge weights, d the degree of 

the node and T the number of all regulators. x and y are binary parameters and 

indicate if the nodes and edges were selected.  

Constraint (23) enforced that if node t1 and node t2 were in the module than also the 

edge between t1 and t2 had to be in the module. By constraints (24-25) it is ensured 

that only edges were selected for which both end nodes were inside the module. 

The size T of the module is constrained by equation (26). The goal of the modularity 

was to identify a highly connected module which can best explain the regulation of 

the particular gene of interest. Therefore, the sum of the edge weights between the 

connected nodes inside the modules was maximized and penalized if their end 

nodes had high degrees. The corresponding edge weights w were computed as 

described in (27-28) by multiplying the correlation of each regulator pair’s activity 

over all investigated samples k with the corresponding edge weights in the generic 

network. Because this weight was not always the same between node (regulator) t1 

and t2, the mean value of both directions was taken. All these weights were 

computed in a preprocessing step and were constants in the MILP. For the 

combined model of MIPRIP and modularity, all equations of MIPRIP (see 2.4) and 

the equations above were used. As objective function of the combined model the 

sum of objective functions of the single models were used:  

 

𝑀𝑖𝑛	∑ 𝑒",.�
.�( − 𝜆	∑ 𝑤s�s�

�
s�,s�∈	�;	s��s� ∙ 	𝑦s�s�.  (30) 

 MIPRIP       modularity 

 

For this, variables of the direct regulators were the same for both optimization parts. 

The parameter lambda controlled the tradeoff between MIPRIP and the modularity 

by maximizing the sum of edge weights between the connected nodes in the 
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modularity network (equation 30). The performance of the model was determined 

as with MIPRIP alone. The best subnetwork consists of the combination of MIPRIP 

regulators (defined by the 𝑥s) which was used most often in all the models and the 

corresponding modularity regulators.  

 

 

2.5 Applications of the MIPRIP approach 
MIPRIP was applied to study the regulation of the telomerase in (i) S. cerevisiae 

and (ii) different human cancer types, especially melanoma skin cancer and prostate 

cancer. 

 

2.5.1 Applying MIPRIP-Comp to gene expression data of S. cerevisiae 

MIPRIP-Comp was applied to regulator deletion strain data of S. cerevisiae to study 

the regulation of the ever shorter telomere genes EST1, EST2 and EST3.  For the 

yeast gene expression data, the activity 𝑎𝑐𝑡s. of regulator t and deletion strain k was 

calculated using absolute gene expression values:    

 

   𝑎𝑐𝑡s. = 	
∑ q�mc	∙	|bcd|
�
c��
∑ q�mc�
c��

  with 𝑒𝑠s" 	 ∈ {0,1},   (31) 

 

where 𝑒𝑠s" is the edge strength between regulator t and gene i, 𝑔". the gene 

expression value of gene i in strain k. The edge weight between regulator t and gene 

i was equal to 1 if there was an interaction in the generic yeast regulatory network, 

and otherwise zero. For the modeling, the dataset was split up into knockout strains 

showing short telomeres (short tlm mutants), long telomeres (long tlm mutants) and 

knockout strains with normal telomere length (control samples) based on the 

annotation of (Askree et al., 2004; Ben-Shitrit et al., 2012; Gatbonton et al., 2006; 

Shachar et al., 2008; Ungar et al., 2009). Deletion strains with a long telomere 

phenotype were excluded because telomere elongation is one of the hallmarks of 

cancer. This led to a dataset of 18 short tlm mutants and 240 control samples. For 

each EST gene, dual-mode MIPRIP-Comp analysis was performed. 
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Figure 8. Schematic workflow of the yeast study.  
The gene expression dataset was divided into knockout strains showing short 
telomeres (short tlms) and knockout strains with wild-type telomere length 
(controls). From the control dataset 120 samples were randomly selected. For 
each dataset a ten-times six-fold cross-validation was performed (plus a five-
fold inner-cross-validation, not shown here). For the control dataset the process 
was further repeated ten-times. It was then counted how often each regulator 
was selected in the short tlm and the control models over all cross-validation 
runs. With these regulator frequencies a one-sided Wilcoxon Test was 
performed to identify regulators that were significantly more often selected in 
the short tlm models compared to the control models. Image taken from (Poos 
et al., 2016)  

 

First, ten-times 120 samples were randomly selected (drawing with replacement) 

from the control dataset (240 patietns). For the 18 short tlm mutant dataset and for 

each of the selected control dataset, models were constructed by using a ten-times 

sixth-fold cross-validation (Figure 8). Furthermore, the number of regulators was 

constrained from 1 up to 10. For each number of regulators, a further five-fold inner 

cross-validation was performed to determine the regulator combination with the best 

performance. The performance of the model was estimated by calculating the 

correlation of the predicted and the real gene expression values.  

In summary, for each EST gene 60 different models were constructed for the short 

tlm mutant dataset and 600 for the control dataset. With the regulator frequencies a 

one-sided Wilcoxon Test was performed to identify the regulators which were 

significantly used more often in the models of the short tlm dataset compared to the 

control dataset. 

Complete dataset 

18 short tlms 120 controls 

1/6 Validation 

Identified candidates 

Significance test and performance estimate 

Predicted regulators 

5/6 Training 10
 x

 10 x 

Predicted regulators 

1/6 Validation 5/6 Training 

10 x 

6 x 6 x 
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2.5.2 Applying MIPRIP-Comp to gene expression data of different human cancer 

types 

To study the regulation of the TERT gene in different cancer types, MIPRIP-Comp 

was applied to gene expression data from TCGA. For all the MIPRIP analysis of 

TERT, models were constructed by constraining the number of regulators from one 

regulator up to 10 regulators and a ten-times threefold cross-validation was 

performed. This yields to 300 models for each dataset. The activity of the TERT 

regulators was calculated by 

 

   𝑎𝑐𝑡s. = 	
∑ q�mc	∙	bcd
�
c��
∑ q�mc�
c��

  with 𝑒𝑠s" 	 ∈ 	ℝ�&	,   (32) 

 

where the gene expression value of TERT was excluded.  

 

Pan-cancer TERT analysis: To study the regulation of TERT in 19 different cancer 

types a multi-mode MIPRIP-Comp analysis was performed with the pre-processed 

gene expression datasets of 19 different cancer types from TCGA (Table 2). This 

led to a list with the common TERT regulators across all datasets and a list with the 

specific TERT regulators of each cancer type compared to all other cancer types. 

 

Skin cutaneous melanoma (SKCM) case study: Because SKCM is a cancer 

entity with a high frequency of TERT promoter mutations, the SKCM dataset 

(primary and metastatic samples) was split up into samples with and without TERT 

promoter mutation based on the data of (Cancer Genome Atlas, 2015). With these 

two subgroups a dual-mode MIPRIP-Comp analysis was performed leading to a 

table with regulators selected significantly more often in the samples with TERT 

promoter mutation compared to the wild-type TERT promoter samples and vice 

versa. 

To validate the importance of ETS1 for the TERT promoter samples, microarray 

gene expression data of TF perturbation experiments with the melanoma cell line 

A375 was investigated. The microarray data (Affymetrix GeneChip Human Genome 

U133 Plus 2.0) was generated by Wang et al. for siRNA mediated knockdowns of 

45 TFs and signaling molecules and contains expression values of the knockdown 

experiments (1 sample per knockdown, 48 h after transfection) and untreated (3 
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replicates) as well as siRNA control treated (3 replicates) samples (Wang et al., 

2012). The RMA-normalized (robust multi-array average) expression data was 

freely available at Gene Expression Omnibus (GSE31534). For this data the Affy 

probe-ids were mapped to gene symbols using BioMart (Smedley et al., 2015). For 

multiple affy probe-ids of the same gene an average was computed. A fold change 

was calculated for TERT upon ETS1 knockdown compared to control. 

As a comparison to MIPRIP, an ISMARA analysis (Balwierz et al., 2014) was 

performed with the same TCGA SKCM samples with and without TERT promoter 

mutation. For ISMARA, gene expression values in ‘Fragments Per Kilobase per 

Million’ (FPKM) mapped reads from the TCGA SKCM dataset were downloaded 

from the GDC portal (https://portal.gdc.cancer.gov/, June 2018). Because only 

preprocessed data was available, it was not possible to use the web portal of 

ISMARA. Therefore, the developers started the ISMARA analysis using default 

settings. 

 

Prostate cancer: A dual-mode MIPRIP-Comp analysis was performed for the 

prostate cancer (n=445) and the normal prostate (control, n=18) samples to identify 

the regulators which were used significantly more often in the prostate cancer 

models.   

 

2.5.3 Applying MIPRIP-Net on gene expression data of prostate cancer 

MIPRIP-Net was applied to the TCGA prostate cancer data to identify the best 

submodule explaining TERT regulation. For this the overlap of the prostate cancer 

specific TERT regulators from the pan-cancer analysis and the significant regulators 

of prostate cancer versus healthy prostate tissue was selected for the MIPRIP-Net 

model. To reduce computational complexity, the number of regulators of these 12 

selected regulators was limited. For this a basic MIPRIP analysis was performed for 

each of the selected regulators with the same parameter setting as for the MIPRIP-

Comp analysis and the regulators used in at least 20 % of the models were selected 

for the MIPRIP-Net approach. In the pre-processed expression matrix, CTCF and 

NR2F2 were filtered out because of low variances and TFAP2D because of too 

many missing expression values. For TFAP2D no MIPRIP model was possible, 

while for CTCF and NR2F2 the unfiltered gene expression data was used. This 

means that 12 regulators were used for the MIPRIP model and additional 72 for the 
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modularity part of the model. In total, models of 2 up to 20 regulators were 

constructed and a ten-times three-fold cross-validation was performed. To find the 

optimal tradeoff between the objective functions of MIPRIP and the modularity 

approach, models with 9 different l-values (0.001, 0.01, 0.1, 0.3, 1, 3, 10, 100, 1000) 

were calculated. The optimal l was determined as the intercept of the number of 

selected MIPRIP regulators over all models and the number of selected modularity 

regulators. For the optimized l-value a combined model was constructed with the 

parameters of the other l-values. The performance was determined similar to 

MIPRIP. The best subnetwork consisted of the most often selected MIPRIP 

regulator combination and the corresponding modularity regulators. The subnetwork 

which can best predict the expression of TERT was visualized with Cytoscape 

(Shannon et al., 2003). 

 

 

2.6 Distinguishing between different telomere maintenance mechanisms 
To stratify pedGBM patients according to their TMM a decision tree-based classifier 

was constructed and after the classification an ALT signature was determined based 

on differentially activity (regulators) or expression levels (genes). 

 

2.6.1 TMM classifier 

A decision tree-based classifier was constructed to predict the TMM of pedGBM 

patients. For this TMM specific features from imaging data (presence of ultra-bright 

telomere foci from FISH, ATRX loss of expression from IHC staining), from DNA-

sequencing data (chromothripsis, loss of function mutations in ATRX and TP53, 

K27M and G34R/V mutations in H3F3A; extracted from (International Cancer 

Genome Consortium PedBrain Tumor Project, 2016)), RNA-sequencing (TERT 

expression) and telomere qPCR (telomere content) as well as from the Illumina 

450K array methylation data (TERT promoter methylation) were used as features to 

predict if a sample is ALT-positive (“ALT”) or ALT-negative (“non-ALT”) based on 

intelligent enumeration (Table S24). An incomplete list of TMM features was 

available for 57 pedGBM patients and 7 cell lines. All sequencing readouts were 

available for 44 samples, while for another 20 samples at least one sequencing 

readout was missing. The biological assays (ATRX IHC, telomere content, Ultra-
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bright telomere foci and C-circle assay) could be performed only for a subset 

because of limited patients’ material (Table 3). The C-circle assay and the TERT 

promoter mutation status were used to define the two classes (ALT vs. non-ALT). 

Samples with an activating TERT promoter mutation were in any case ALT-

negative, while a positive C-circle signal indicated an ALT-positive sample. Samples 

with a negative C-circle result and no ultra-bright telomere foci were used as training 

set for the ALT-negative group. The results from the C-circle assay and the TERT 

promoter mutation status were not included as features for training and validation. 

Altogether, the training set contained 27 pedGBM patients (13 ALT and 14 non-ALT, 

including 2 samples with TERT promoter mutation) and 7 cell lines (5 ALT and 2 

non-ALT). Most of the features could be easily translated into binary values. For the 

features “TERT promoter methylation”, “TERT expression (RPKM)” and “telomere 

content”, continuous values were available and for these features optimal thresholds 

had to be defined first. Based on the ALT and non-ALT samples of the training set 

the threshold with the fewest misclassified samples was determined by testing 

different thresholds. The thresholds were defined separately for the patients and the 

cell lines (Figure 23). For each feature combination all possible decision trees were 

calculated and the tree with the minimal number of misclassified samples and 

questions based on the training set was selected. The accuracy Acc of the tree was 

indicated by the number of correctly predicted samples in the training set and was 

determined by a leave-one-out cross-validation. The optimal tree was then derived 

by using all training samples. Since the feature information was not complete for 

each sample, decision trees with all different possibilities from 1 up to 9 features 

were constructed, which required different sample sizes. If the accuracy Acc did not 

improve with more features, the decision tree with the best feature subset was used. 

Furthermore, p-values for each tree were calculated based on the confusion matrix 

containing the numbers of correct and incorrect classified samples in the ALT and 

the non-ALT group over all cross-validation runs using Fisher’s exact test. The p-

values were corrected for multiple testing according to Benjamini and Hochberg 

(Benjamini and Hochberg, 1995). It is noted that for some feature combinations the 

p-value was not significant due to too low sample sizes (Table 3).  
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Table 3. Overview of the sample numbers with feature information in the whole 
dataset and in the training set. 
Feature # samples with feature 

present 
# training samples with 

feature present 

Chromothripsis 64 34 

TP53 mutation 64 34 

TERT promoter mutation 58 32 

TERT promoter methylation 60 32 

TERT expression (RPKM) 44 32 

ATRX mutation 64 34 

H3F3A mutation 64 34 

ATRX IHC 35 28 

Telomere content 28 22 

Ultra-bright telomere foci 25 20 

C-circle assay 46 34 

 

2.6.2 ALT gene signature 

To identify a gene signature for ALT versus non-ALT pedGBM samples based on 

gene expression data, differentially expressed genes and regulators were 

calculated. The differential gene expression analysis was performed with the raw 

gene counts of the pedGBM RNA-seq data (training set plus predicted samples) 

using DESeq2 (Love et al., 2014) and a p-value cutoff of 0.05. The regulator 

activities were calculated as described for the MIPRIP approach (equation 32) by 

using the generic human regulatory network to determine the target genes. Only 

differentially expressed target genes were used to calculate the activity of a 

regulator and activities were only calculated for regulators with at least 5 

differentially expressed target genes. A Student’s t-test was used to identify 

regulators with significant activity changes between ALT and non-ALT samples. For 

the regulators, a maximal significance level (p-value) of 0.05 after multiple testing 

correction with the Benjamini and Hochberg method (Benjamini and Hochberg, 

1995) was used. 

 

 



Materials and Methods 

 45 

2.7 Comparison of MIPRIP with the well-established tools ISMARA and 

ARACNE/VIPER 
To evaluate the advantages and disadvantages of MIPRIP a comparison with the 

well-established tools ARACNE (Lachmann et al., 2016) and VIPER (Alvarez et al., 

2016) was performed. This was done based on the CLL RNA-seq dataset.  

To calculate regulator activities with VIPER, first a B-cell specific GRN of around 

6,000 regulators and their target genes was constructed based on MI by using the 

ARACNe-AP algorithm (Lachmann et al., 2016). For the network computation 

publicly available gene expression data of 264 B-cell samples including samples of 

B-cell lymphomas, non-malignant B-cells and also cell lines (Basso et al., 2010) 

were used together with the precompiled list of 5,927 TFs, transcriptional co-factors 

and signaling pathway related genes defined by Alvarez and coworkers based on 

Gene Ontology (GO) annotations (Alvarez et al., 2016). The calculation of the GRN 

was performed within 100 bootstraps, a permutation seed of one and a MI cutoff of 

p=10-8. The B-cell specific GRN contains 214,405 interactions between 3,862 

regulators and 12,119 target genes. Based on this B-cell specific ARACNE network 

and the normalized in-house RNA-seq data of 20 CLL and 7 non-malignant B-cell 

patients the activity of each regulator in each sample was calculated by using the 

VIPER algorithm (Alvarez et al., 2016). Activity values could be computed for 2,804 

regulators and a two-sided student’s t-test was used to identify regulators with a 

significantly different activity between the CLL and the non-malignant B-cell 

samples. The p-values were corrected for multiple testing using Benjamini and 

Hochberg method (Benjamini and Hochberg, 1995)  

In comparison to the regulator activities calculated with VIPER, regulator activities 

were calculated for the same dataset as described for MIPRIP based on the generic 

human regulatory network (see above). Only regulators for which an activity value 

could be calculated with VIPER and MIPRIP were used for the comparison. 

Furthermore, a differential expression analysis was performed using DESeq2 (Love 

et al., 2014) between the CLL and the non-malignant B-cell samples. For this the 

raw counts of the in-house RNA-seq data were used and significant difference was 

determined based on a p- value cutoff of 0.05 for the regulators. To focus on target 

genes that showed a high difference between CLL and non-malignant B-cell 
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samples, a p-value cutoff of 0.01 plus a log fold change (LFC) of -1.7 < LFC > 1.7 

was defined.  

For the regulators with significant activity changes between the CLL and the non-

malignant B-cell samples identified by both VIPER and the MIPRIP framework a 

gene set enrichment analysis (GSEA) was performed. For the GSEA the R-package 

“gProfileR” (Reimand et al., 2016) was used with the pathway annotation of the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000). 
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3 Results 

For my PhD thesis, I have developed the tool “Mixed Integer linear Programming 

based Regulatory Interaction Predictor” (MIPRIP) to study the regulatory 

mechanisms of gene expression. As a case study, MIPRIP was applied to study the 

regulation of telomere maintenance.  

 

3.1 Mixed Integer linear Programming based Regulatory Interaction 
Predictor (MIPRIP) 

Typically, several regulators are involved in the expression of a gene by binding to 

its promoter (Bauer et al., 2011; Cheng et al., 2012; Consortium et al., 2009; Dong 

et al., 2012; Oliveira et al., 2008; Schacht et al., 2014; Setty et al., 2012). To identify 

the most relevant regulators of a gene of interest taking into consideration the 

additive co-operativity of the regulators, a Mixed Integer Linear Programming based 

approach (MILP) was developed. A MILP based regression model avoids over-

emphasizing outliers because the error penalties are linear (L1 norm) and not 

quadratic (L2 norm) as in a lasso model. 

The basic idea behind the MILP model is that the gene expression of the gene of 

interest can be predicted by a linear model with all the regulators R1 to Rn binding 

to the gene’s promoter as covariates (Figure 9). For this purpose, all of the putative 

regulators for the gene of interest were extracted from a generic regulatory network 

which was constructed beforehand (described in Material and Methods 2.3). 

 
Figure 9. Basic principle of MIPRIP.  
The gene expression of any gene of interest is predicted by a linear model with 
the regulators R1 to Rn binding to the gene’s promoter as covariates.  

 

Expression of the 
gene of interest

R1R2R2R2 R3R4R5R3R6R7Rn
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The described MILP model above was combined with machine learning methods in 

form of resampling and cross-validation to gain a large variety of different models. 

Furthermore, the number of regulators was restricted such that models of different 

sizes could be generated and to obtain sparse models. For this purpose, an 

additional binary parameter was used. For example, a limit of 5 regulators means 

that the optimizer tests all possible combinations of those 5 regulators out of a much 

larger number of putative regulators and identifies the combination which can best 

predict the gene expression for the gene of interest. A basic MIPRIP analysis 

predicts the most important regulators of a particular gene in one dataset or one 

group of samples.  

 
Figure 10. Overview of the MIPRIP framework.  
Besides the basic MIPRIP analysis, there are two extensions available. MIPRIP-
Comp compares the regulatory processes of a particular gene in two or multiple 
datasets/conditions. Furthermore, MIPRIP was extended with a modularity-
based approach to identify the highly connected subnetwork that can best 
predict the gene expression of the particular gene (MIPRIP-Net). 

 

To compare the regulatory processes between two or multiple datasets/conditions 

MIPRIP was extended with a statistical downstream analysis, called MIPRIP-
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Comparison (MIPRIP-Comp). In MIPRIP-Comp, the regulatory processes between 

two datasets/conditions (dual-mode) or between multiple datasets/conditions (multi-

mode) can be studied. In addition, MIPRIP was extended with a modularity-based 

approach to include direct and indirect regulators of the particular gene into a 

regulatory network (Figure 10). 

 

3.1.1 Regulatory networks used for MIPRIP 

To get all the putative regulators of a particular gene, it is essential to have a global 

regulatory network with all the regulator-target gene interactions as background. We 

constructed generic regulatory networks for S. cerevisiae (Poos et al., 2016), human 

and mouse (Poos et al., 2019) mainly based on ChIP-binding data. For the yeast 

network the regulatory interactions of around 400 regulators were extracted from 

the YEASTRACT database and from (Yu and Gerstein, 2006). The generic human 

regulatory network integrates regulatory interactions from ChIP-binding data (ChEA, 

Encode, hmChIP, HTRIdb and ChIPbase), publications (MetaCoreTM) and 

computational predictions (TBA). Most interactions were extracted from Encode, 

followed by ChIPbase and hmChIP (Figure 11A). Here, the highly reliable 

MetaCoreTM interactions represent only 4 % of all extracted TF-target gene 

interactions. We defined three criteria to integrate only reliable interactions into the 

generic regulatory network. This means that only TF-target gene interactions found 

in  

(i) MetaCoreTM direct or Encode (criteria 1), 

(ii) at least 2 out of ChEA, MetaCoreTM indirect, HTRIdb and TBA (z ³ 1.5) 

(criteria 2), 

(iii) ChIPbase and hmChIP (criteria 3) 

were used to construct the generic regulatory network (Poos et al., 2019). Because 

of these criteria, several interactions were filtered out (Figure 11B).  

The compiled generic human regulatory network consisted of 1,160 regulators, 

31,915 target genes and 618,537 interactions and was constructed by Theresa 

Kordaß from the group of Prof. König (University Hospital Jena). The regulators with 

the highest number of target genes are CTCF (# targets: 16,483), POLR2A (# 

targets: 16,076) and TAF1 (# targets: 13,956) indicating that these are among other 

master regulators, while more than half of the regulators had less than 25 target 

genes (Figure 12). This shows that regulatory interactions between TFs and their 
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target genes structure as a scale-free network with hubs as master regulators (Babu 

et al., 2004). It is to be noted that the number of target genes for a regulator seems 

to be highly dependent on the number of experiments performed for the regulator. 

 
Figure 11. TF-target gene interactions. 
(A) extracted from the 7 different sources and (B) fulfill ing the defined criteria. 

 

 
Figure 12. Number of target genes identified for the 1,160 TFs.  
The histogram shows the scale-free structure of the generic human regulatory 
network. Some regulators had up to 17,000 target genes, while more than half 
of the regulators had less than 25 target genes.  

 

The mouse regulatory network was generated by Amol Kolte analogous to the 

human generic regulatory network but was not used here for the presented 

applications. 
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3.1.2 Regulator activities 

Because regulators are post-transcriptional modified and sometimes lowly 

expressed, the activity of a regulator was calculated based on the expression of the 

regulator’s target genes, similar to previous studies (Balwierz et al., 2014). The 

activity of a regulator describes the cumulative effect of a regulator on all its target 

genes. The activity values are normalized by the sum of all target genes to balance 

regulators with extreme (very high or low) number of target genes. If many target 

genes of the regulator are differentially expressed, then the regulator itself is more 

active. The target genes of each regulator were extracted from the generic 

regulatory network. The activity values of each regulator 𝑡 in each sample k were 

then used for the modeling instead of the gene expression value of the regulator. In 

a previous study, it was shown that by implementing a binary switch, the regulator’s 

activity value was used more often by the solver than the gene expression value of 

the regulator. This led to a better prediction of the gene expression for the gene of 

interest (Schacht et al., 2014).  

 

3.1.3 MIPRIP-Comparison (MIPRIP-Comp) 

MIPRIP-Comp extends the applications of MIPRIP. The basic MIPRIP analysis was 

only applicable to one dataset or one group of samples (single-mode). Here, the 

user receives a table how often the regulator was selected in the models over the 

cross-validation runs and the performance of different sized models. The extension 

of MIPRIP with statistical downstream analysis allowed the comparison of the 

regulatory processes between two or more datasets. Using a two-sided Fisher’s 

Exact Test, in the dual-mode, the regulators that were significantly more often used 

in the models of dataset/condition 1 compared to the models of dataset/condition 2 

and vice versa were identified. Furthermore, the multi-mode option allows a MIPRIP 

analysis for more than two datasets/conditions (e.g. pan-cancer analysis). It is 

combined with a statistical analysis pipeline where the user receives (i) the most 

common regulators of a gene of interest over all datasets and (ii) the specific 

regulators of the gene of interest in one dataset/condition compared to all other 

datasets/conditions. The basic MIPRIP analysis as well as MIPRIP-Comp analysis 

are implemented in the R-package ‘MIPRIP2’. MIPRIP2 is freely available at 

http://www.leibniz-hki.de/en/miprip.html and https://github.com/network-
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modeling/MIPRIP, together with the generic regulatory networks, a user’s manual 

and some example data.  

In summary, the MIPRIP2 R-package predicts the most important regulators of a 

particular gene in one dataset, between two datasets and/or multiple datasets. It 

can be easily applied to identify crucial regulators of gene expression in yeast, 

human or mouse. 

 

3.1.4 MIPRIP-Network (MIPRIP-Net) 

MIPRIP-Net is a combination of the basic MIPRIP model and a modularity-based 

approach. Originally, modularity was introduced by Newman and was used for 

clustering of different modules (Newman, 2006). Here, it is used to identify the best-

connected submodule regulating the particular gene. Because biological processes 

are complex and regulators are highly interacting with each other or with other co-

factors to regulate the expression of a particular gene, MIPRIP-Net integrates not 

only the regulators directly binding to the promoter of the particular gene but also 

additional regulators directly interacting with the ‘direct’ regulators but only indirectly 

with the target genes (Figure 13). 

 
Figure 13. Basic principle of MIPRIP-Net.  
MIPRIP-Net is a combination of the established MIPRIP tool and a modularity-
based approach to include also the additional regulators like co-factors into a 
regulatory network. The direct regulators are constrained to be the same for 
both optimizations. 
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MIPRIP-Net selects the highly-connected subnetwork, which can best predict the 

gene expression of the particular gene by (i) minimizing the error term from MIPRIP 

and (ii) maximizing the sum of edge weights between the connected nodes 

(modularity task). These two objectives are combined by a tradeoff parameter, 

which has to be optimized first to find the right balance between high connectivity 

and accurate prediction of the direct regulators. Based on the modularity an edge is 

only selected if both end nodes are within the module.  

 

 

3.2 Telomerase regulation in yeast  
Telomere maintenance is a hallmark of cancer cells to enable their replicative 

immortality. S. cerevisiae is a well-suited model system to study telomere 

maintenance which shows a high homology to humans and has a constitutively 

expressed telomerase (Teixeira, 2013). MIPRIP was first applied to yeast gene 

expression data to study the regulation of the telomerase genes (EST1, EST2 and 

EST3). Around 500 yeast genes have been identified which affect telomere length 

when deleted (Askree et al., 2004; Ben-Shitrit et al., 2012; Gatbonton et al., 2006; 

Shachar et al., 2008; Ungar et al., 2009). These genes are called telomere length 

maintenance (TLM) genes. TLM genes leading to telomere shortening after deletion 

(“short tlm mutants”) are positive regulators of telomere maintenance and could also 

be potential anticancer targets. In this study, the regulation of EST genes was 

analyzed in yeast deletion strains with shorter telomeres (short tlms) compared to 

deletion strains with wild-type telomere length (controls). For this the microarray 

gene expression data (Reimand et al., 2010) containing only regulator (TFs and 

chromatin modifier) deletion strains was divided into a short tlm mutant and a control 

dataset. The Venn diagram (Figure 14) shows the overlap between the regulator 

deletion strains in the microarray gene expression data, the list of putative regulators 

of the EST genes extracted from the generic yeast regulatory network and the list 

of TLM genes. In total, the dataset consisted of 240 control samples and only 29 tlm 

samples (18 short tlms and 11 long tlms).  



Results 

 54 

 

Figure 14. TLM genes in the mutant dataset. 
The Venn diagram shows the overlap between the putative regulators of the 
EST genes (extracted from the yeast regulatory network, yellow), the regulator 
deletion strains in the expression dataset (blue) and TLM gene list (orange). 
Image taken from (Poos et al., 2016). 

 

3.2.1 MIPRIP analysis of the EST genes 

For each EST gene a dual-mode MIPRIP-Comp analysis was performed with the 

short tlm mutant dataset and the control dataset. This means that the gene 

expression value of each EST gene in each sample was predicted by a linear model 

consisting of the sample-specific activity values of the putative regulators. The 

putative regulators of the EST genes were selected from the yeast regulatory 

network. Each EST gene had 25 putative regulators in the regulatory network. For 

each dataset models were calculated for 1-10 selected regulators and a ten-times 

six-fold cross-validation was performed. This resulted in 60 models for the short tlm 

mutant. Because of the large number of control samples, models were calculated 

with a random subset of 120 control samples and this process was repeated ten-

times, leading to 600 models for the control samples. For all cross-validation runs, 

the number of regulators selected in the short tlm mutant models was counted, 

similar for the control models. With these regulator frequencies a significance test 

was performed to identify the regulators which were selected significantly more 

often in the short tlm mutant models compared to the control models. This resulted 

in 32 regulators (Table 4) for the three EST genes which were selected significantly 
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more often in the short tlm models compared to the control models during all the 

cross-validation runs. The performance of the models was estimated as the 

correlation of the predicted gene expression values from the models and the 

expression values from the dataset and is shown exemplarily for EST1 (Figure 15). 

Looking at the correlations of the short tlm and the control models together over all 

cross-validation runs, the mean performance was similar for the models with 1-10 

regulators (Figure 15A) and over all models r=0.51 (Figure 15B). Models predicting 

EST1 expression showed the highest performance, while for EST2 (r=0.32) and 

EST3 (r=0.12) the performance was lower. But the correlations of all EST genes 

were highly significant (p<2.2 E-16).  

 
Figure 15. Performance of EST1 models.  
(A) Correlation of predicted gene expression value and EST1 expression values 
in the microarray dataset for models of 1 up to 10 regulators over all cross-
validation runs (short tlm plus control models). (B) Scatterplot of the predicted 
vs. actual gene expression of EST1 of the short tlm (red) and the control (black) 
models. Images taken from (Poos et al., 2016). 

 

To focus on regulators which highly influence the expression level of the predicted 

EST gene, regulators with 

(i) a strong expression level in the knockout sample (absolute z-

score > 1), 

(ii) less than 1,000 putative target genes or 

(iii) a TLM annotation 
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were selected as most interesting. Regulators fulfilling criteria (i) and (ii) are marked 

in bold in Table 4, while regulators with a TLM annotation (criteria (iii)) are 

additionally marked in red (short TLM genes) or blue (long TLM genes). Several of 

the significant EST regulators are by themselves TLM genes and affect telomere 

length after mutation. The identified regulators Sum1, Hst1, Srb2 and Sin3 led to 

telomere shortening when mutated (Askree et al., 2004; Gatbonton et al., 2006), 

while a deletion of DIG1 showed longer telomeres (Gatbonton et al., 2006). A 

positive z-score indicates an upregulated expression of the EST gene after the 

regulator knockout, suggesting that this regulator is an inhibitor of the gene. A 

negative z-score shows the opposite effect that this regulator is an activator of the 

corresponding EST gene.  

 
Table 4. Significant regulators of the three EST genes for the short tlm samples 
compared to samples with wild-type telomere length (controls).  

 Regulator Z-score* Significance (P)** Number of targets 
EST1 Sum1*** 6.85 1.96 E-29 579 

 Hst1*** 3.61 1.96 E-29 219 
 Msn4 -0.63 7.61 E-13 2483 
 Mig1 0.14 2.48 E-11 423 
 Gcn4 -0.13 2.64 E-10 2712 
 Ste12 -**** 1.28 E-9 3673 
 Rfx1 -0.45 1.51 E-8 660 
 Srb2*** 2.08 1.14 E-7 785 
 Sfp1 3.24 4.86 E-4 4199 
 Cup2 -0.30 3.18 E-3 548 
 Swi3 2.69 9.43 E-3 1737 
 Mbp1 0.76 3.71 E-2 665 

EST2 Gcn4 -0.22 9.47 E-16 2712 
 Gln3 -2.67 1.57 E-12 981 
 Rme1 -0.31 6.33 E-11 399 
 Yrm1 - 4.50 E-10 2509 
 Pdr3 -0.44 3.04 E-9 929 
 Msn4 -1.17 5.48 E-9 2483 
 Msn2 0.05 5.48 E-9 3260 
 Pdr1 0.31 1.67 E-8 1318 
 Arg81 0.42 1.12 E-7 335 
 Ste12 - 4.78 E-7 3673 
 Rtg3 0.16 8.55 E-7 646 
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 Tec1 -0.22 1.53 E-6 3669 
 Sfp1 -0.06 3.12 E-5 4199 
 Abf1 -0.29 3.20 E-5 2715 
 Swi5 -2.68 3.79 E-5 1871 
 Ace2 -1.70 2.91 E-4 4683 
 Nrg2 - 4.19 E-2 331 

EST3 Dig1*** -1.87 1.77 E-24 334 
 Sok2 0.28 8.61 E-24 2160 
 Sin3*** -3.11 4.62 E-16 1759 
 Msn2 -0.46 5.27 E-14 3260 
 Ste12 - 2.38 E-12 3673 
 Ixr1 -0.17 4.17 E-11 1633 
 Msn4 0.62 9.20 E-10 2483 
 Mga1 -0.38 1.09 E-8 674 
 Hir1 -2.19 3.55 E-5 306 
 Srb2*** -2.38 4.67 E-4 785 
 Ume6 3.64 5.50 E-4 826 
 Ace2 1.05 1.93 E-2 4683 

* Effect of the knockout of the regulator on the expression of the EST genes 
(positive z-score = up-regulation of the corresponding EST gene; negative z-
score = down-regulation of the corresponding EST gene); ** Multiple testing 
corrected (Benjamini-Hochberg); *** red: short tlm mutant, blue: long tlm 
mutant; **** For some genes, no expression data was available. 

 

For EST1, Sum1 (P=1.96 E-29), Hst1 (P=1.96 E-29) and Srb2 (P=1.14 E-7) were 

identified as most important regulators of the short tlm mutants. Investigating the 

literature (Pubmed, www.ncbi.org) for the selected regulators with the keywords 

“telomere”, “telomerase” and each of the EST gene symbols, Sum1 was identified 

as a chromatin silencing factor and initiation factor of replication. Furthermore, Sum1 

plays a role in the regulation of middle-sporulation genes and in a complex together 

with Hst1 and Rfm1 it represses genes through histone deacetylation (Bedalov et 

al., 2003; Li et al., 2013; McCord et al., 2003; Zill and Rine, 2008). Sum1, Hst1 and 

Sir2 have specific co-enriched binding sites and can interact with Rap1 indicating 

that they play similar roles in telomere maintenance (Bedalov et al., 2003; Li et al., 

2013; McCord et al., 2003; Zill and Rine, 2008). Besides Sum1 and Hst1, Srb2, a 

subunit of the RNA polymerase II mediator complex, was identified as an important 

regulator of EST1 and EST3. Regarding telomere maintenance, Srb2 has been 

reported to play a direct role in TLC1 transcription or an indirect role in TLC1 
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accumulation (Mozdy et al., 2008). EST1 was highly upregulated in the sum1, hst1 

and srb2 deletion strains. For EST2, among the significant regulators, only Gln3 had 

a strong knockout effect and less than 1,000 target genes. Gln3 controls the level 

of the Ku complex and is therefore involved in telomere shortening upon starvation 

by Tor Complex 1 (TORC1) (Ungar et al., 2011). As significant regulators of EST3, 

Ume6, Sin3, Srb2, Hir1 and Dig1 were identified by the modeling approach. While 

EST1 is upregulated in the srb2 knockout strain, EST3 showed the opposite effect. 

From the above-mentioned significant regulators of EST3 only Ume6 had an 

inhibitory effect on EST3 expression, all others were activators of EST3. Sin3 has 

been reported to form histone deacetylase complexes together with Rpd2 and 

Rpd3. Sin3 can act as an activator or a repressor of transcription (Sun and 

Hampsey, 1999) and is involved in gene silencing, DNA repair processes as well as 

telomere maintenance. Sin3 and Rpd3 together affect silencing at telomeres (Sun 

and Hampsey, 1999). Ume6 is also an important regulator of early meiotic genes 

and can interact with Rpd3, similar to Sin3. Ume6 further plays a role in chromatin 

remodeling and recruits Rpd3 and Sin3 to form the histone deacetylase complex 

(Kadosh and Struhl, 1997). 

In summary, the MIPRIP analysis led to promising regulators of the EST genes and 

several of them are involved in the regulation of chromatin and histone 

modifications. 

 

3.2.2 Validation of the regulators identified for EST1 

EST1 showed the highest expression level in the sum1 knockout strain (z-

score=6.85, log2-fold change = 0.926, Figure 16A) compared to all other regulator 

knockouts in the dataset. Furthermore, EST1 was upregulated in the knockout 

strains of the two other regulators hst1 (z-score=3.61) and srb2 (z-score=2.08), 

which showed that all three regulator candidates are putative inhibitors of EST1 

expression. This inhibitory effect is surprising because the knockout strains of 

SUM1, HST1 and SRB2 showed a shorter telomere length compared to the control 

samples.  

To validate the effect of Sum1 on EST1 expression levels, our collaboration partner 

Andre Maicher from the group of Prof. Luke (IMB, Mainz) performed expression 

studies on two sum1 knockout strains. Because it has been reported that Sum1 is 

involved in the regulation of the mating-type of the yeast strain (Chi and Shore, 
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1996), the expression of EST1 was investigated in a wild-type and a sum1 mutant 

of both mating-types, Mat a and Mat a, by RT-PCR. In both mating types, EST1 was 

highly upregulated in the sum1 mutant (4.37-fold ± 0.67 SEM for Mat a and 6.00-

fold ± 0.48 SEM for Mat α) (Figure 16B) validating the inhibitory effect of Sum1 on 

EST1 expression (Poos et al., 2016).  

 
Figure 16. EST1 expression  
(A) in all regulator deletion strains from the microarray data (log2-fold change) 
and (B) in wild-type and sum1 mutants of both mating types (left: mating-type 
a; right: mating-type a) (measured by RT-qPCR and normalized to actin). The 
experiment was performed in three replicates and the error bars indicate the 
standard error (SEM). Significant differences were observed with a two-tailed 
unpaired t-test with Welch´s correction. Images taken from (Poos et al., 2016).  

 
 

3.3 Investigating telomerase regulation across 19 different human cancer 

types 
Telomere maintenance is one of the hallmarks of cancer which enables replicative 

immortality. I used gene expression data of 19 different primary cancer types 

(Table 2) from TCGA to study the regulation of the telomerase reverse transcriptase 

(TERT) gene. Based on the generic human regulatory network, which we generated 

based on ChIP-binding data from different sources, publications and computational 

predictions, I identified 75 putative regulators binding to the TERT gene’s promoter 

(Table S3). From the 75 putative regulators 60 were extracted from the manually 

curated database MetaCoreTM, and 30 were extracted from our generic regulatory 

network that were also described elsewhere (Ramlee et al., 2016). The overlap 

between both studies was of significance (Fisher’s Exact Test p=6.01E-23). Nearly 
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all of the overlapping regulators were found in MetaCoreTM, only CTCF was 

extracted from Encode data as a TERT regulator. 

 

3.3.1 MIPRIP analysis of TERT in 19 different subtypes  

To study the regulation of TERT in the selected 19 different cancer types, I 

performed a multi-mode MIPRIP-Comp analysis. For each cancer entity regulatory 

models for TERT were constructed by using a ten-times three-fold cross-validation. 

Furthermore, the number of regulators was restricted from 1-10 regulators. In total, 

300 different models were created for each cancer type. The correlation between 

the predicted expression value of TERT and the expression value of TERT from the 

RNA-seq data was calculated, to get an estimate of the performance of the models. 

The obtained performance was r=0.4 or higher for most of the cancer types 

(Figure 17A).  

 
Figure 17. Prediction performance and TERT expression in the different cancer 
entities 
(A) Performance of the regulatory models for TERT and (B) expression of TERT 
in all the 19 different cancer entities. Plots taken from (Poos et al., 2019). 
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The best performance was observed for testicular germ cell cancer (TGCT) (r=0.75) 

and thymoma (THYM) (r=0.7), while cervical (CESC), ovary (OV) and melanoma 

skin (SKCM) cancer showed the lowest performance. Furthermore, I investigated 

the expression of TERT in all the 19 different cancer types. Here, I observed the 

highest TERT expression in TCGT and THYM and the lowest TERT expression in 

breast (BRCA), pancreas (PAAD) and prostate (PRAD) cancer (Figure 17B). 

Looking at the modeling performance in relation to TERT expression, best 

performance was observed for the two cancer entities (TCGT and THYM) with the 

highest TERT expression. However, a poor performance was not associated with 

an extremely low TERT expression. While the expression of TERT in SKCM was 

comparable to the other cancer entities, the performance of the regulatory models 

was poorest (r=0.1). One reason for this could be that SKCM is a cancer entity with 

a high frequency of TERT promoter mutations indicating that there exist cancer 

subtypes with different TERT regulation processes which was investigated in 

Results section 3.3.2. The significant TERT regulators of each cancer entity are 

listed in Table S4-Table S21. 

 

3.3.2 Common TERT regulators over all 19 different cancer types  

A Rank product test was performed to identify significant common regulators. For 

this purpose, the regulators were ordered for each cancer entity based on their 

frequency in the 300 models. These ranked lists were then compared, and 

significance was tested based on a permutation-test. This led to the following nine 

common TERT regulators (Table 5): The Paired Box Proteins PAX5 and PAX8, the 

E2F factors 2 and 4, AR, BATF, SMARCB1, TAF1 as well as MXI1. 

 
Table 5. Predicted TERT regulators common to all 19 different cancer entities 

TF E-value 
E2F4 0 
AR 1.00 E-04 

PAX5 4.00 E-04 
E2F2 6.00 E-04 
BATF 3.20 E-03 
PAX8 6.30 E-03 

SMARCB1 1.38 E-02 
MXI1 1.87 E-02 
TAF1 2.12 E-02 
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To validate the identified common TERT regulators with data from the literature, a 

Pubmed search (https://www.ncbi.nlm.nih.gov/pubmed/) was performed. For this 

purpose, all regulator gene symbols from Table 5 were queried together with 

"TERT" and the terms “telomerase”, “human” and “regulation”: (E2F4 OR AR OR 

PAX5 OR E2F2 OR BATF OR PAX8 OR SMARCB1 OR MXI1 OR TAF1) AND 

TERT AND telomerase AND human AND regulation. The received number of 

Pubmed hits was compared to a query without the common regulators (TERT AND 

telomerase AND human AND regulation). As background the same two queries 

were performed without the “TERT” gene symbol. With the results of the Pubmed 

hits a Fisher’s exact test was used to validate if the nine as common identified 

regulators were significantly more often found together with TERT than without 

TERT. For the identified common TERT regulators 21 out of 1,002 articles of TERT 

were found in Pubmed indicating a significant enrichment (p-value=0.013, Table 6). 

 
Table 6. Confusion matrix for the Fisher’s Exact Test based on the results of the 
Pubmed query 

 Found with the query 
containing the nine 
predicted regulators 

Found only with the query 
which did not contain the nine 

predicted regulators  
Query with “TERT” 21 981 
Query w/o “TERT” 25 2,483 

 

 

3.3.3 Melanoma skin cancer as a cancer entity with a high fraction of TERT 

promoter mutations 

For melanoma skin cancer (SKCM) a high frequency of TERT promoter mutations 

has been discovered. The promoter mutation occurs mainly at position 124 bp and 

146 bp upstream of the translational start codon and generates a further binding site 

for TFs of the ETS-family (Horn et al., 2013; Huang et al., 2013). As described in 

the multi-mode MIPRIP-Comp analysis above SKCM was the cancer entity with the 

lowest prediction performance. Because of the high rate of TERT promoter 

mutations in SKCM and the observation that samples with a TERT promoter 

mutation lead to a higher TERT expression (Figure 18A, p-value=5.33 E-03), it was 

expected that there exist different regulatory mechanisms in the samples with and 
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without a TERT promoter mutation. This would lead to different regulatory subtypes 

and would be in line with a very low modeling performance.  

 
Figure 18. Melanoma samples with and without TERT promoter mutation 
(A) TERT expression in the SKCM samples with a TERT promoter mutation 
(mut) and without TERT promoter mutation (wt). (B) Performance of the dual-
mode MIPRIP analysis of the TERT promoter mutated and wild-type SKCM 
samples. 

 

To study the regulatory processes of TERT in SKCM samples with a TERT promoter 

mutation and with wild-type TERT promoter, I performed a dual-mode MIPRIP-

Comp analysis. Based on the study of (Cancer Genome Atlas, 2015) the TERT 

promoter status was available for 115 SKCM patients from the TCGA cohort. From 

these 115 samples 74 showed a TERT promoter mutation and 41 had a wild-type 

TERT promoter. The dual-mode MIPRIP analysis was performed with these two 

groups and a ten-times three-fold cross-validation together with a restriction of 

regulators from 1 up to 10. This leads to a much better performance for the samples 

with a TERT promoter mutation (r=0.3), while for the samples without the TERT 

promoter mutation the performance was still very low (r= -0.1) (Figure 18B). Looking 

at the regulators which were significantly used more often in the models of the 

samples with compared to the samples without TERT promoter mutation, I identified 

12 regulators as significantly more often used in the mutated group and 17 for the 

wild-type group (Table 7). For the mutated group AR, E2F1, JUND and ETS1 were 

the most significant hits, while HMGA2, HIF1, RUNX2 and TAL1 were highly 

significant for the wild-type samples. Especially ETS1 was in line with the literature 
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because a TERT promoter mutation generates an ETS1 binding site at the mutated 

position (Horn et al., 2013; Huang et al., 2013). This study showed that splitting up 

the dataset into cancer subtypes leads to more reliable results and also better 

prediction performances. In summary, the dual-mode MIPRIP-Comp analysis is well 

suited to study regulatory processes between two conditions. 

 
Table 7. TERT regulators of melanoma samples with (mut) and without (wt) TERT 
promoter mutation 

Regulators in 
mut 

P-value Regulators in 
wt 

p-value 

AR 3.97 E-37 HMGA2 1.05 E-16 
E2F1 3.00 E-29 HIF.1 1.03 E-15 
JUND 2.86 E-25 RUNX2 2.88 E-12 

SMARCB1 1.85 E-15 TAL1 1.54 E-09 
ETS1 4.46 E-13 ESR2 3.92 E-09 

SIN3AK20 1.42 E-06 AP-2 3.28 E-06 
REST 3.64 E-06 MITF 2.59 E-05 
MAZ 7.85 E-06 WT1 2.80 E-05 
E2F2 9.20 E-05 SMAD3 5.76 E-05 
TAF1 1.36 E-04 TFAP2D 2.78 E-04 

BCL11A 4.31 E-04 PAX8 6.04 E-04 
MYB 4.73 E-04 GRHL2 7.16 E-04 

  TP53 1.21 E-03 
  TCF7 1.68 E-03 
  MZF1 3.44 E-03 
  TFAP2C 3.68 E-03 
  NR2F2 7.96 E-03 

 
An ETS1 knockdown in a melanoma cell line with a TERT promoter mutation (Wang 

et al., 2012) showed that the TERT expression is lower in the ETS1 knockdown cells 

compared to controls (fold change: 0.82). This indicates that ETS1 is involved in 

TERT expression in samples with a TERT promoter mutation as suggested by our 

modeling analysis.  

As comparison to MIPRIP, the same melanoma samples with and without TERT 

promoter mutation were used for an analysis with the well-established tool ISMARA 

(Balwierz et al., 2014). Similar to MIPRIP, ISMARA calculates the activity of 

regulators based on their target genes, but here the target genes are inferred from 

motif binding information. ISMARA calculated the activities of each regulator 

separate for each sample and performed then an average estimation over all 

samples of each group (TERT promoter with vs. without mutation). For the 
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melanoma samples with TERT promoter mutation ISMARA predicted 20 regulators 

for TERT (Table 8). Compared to the MIPRIP results, only the three regulators 

SIN3A, MAZ and WT1 were found with both tools. A TERT promoter mutation leads 

to a further binding site of TFs of the ETS family (Horn et al., 2013; Huang et al., 

2013). From the ETS family of TFs, ISMARA predicted GABPA, ELF2 and ELF5 

with very low significance, while MIPRIP identified ETS1 as a highly significant 

regulator of TERT in the melanoma samples with a TERT promoter mutation. In 

summary, the overlap between MIPRIP and ISMARA was low and especially the 

highly significant MIPRIP hit ETS1 was in high agreement with the literature. 

 
Table 8. TERT regulators predicted with ISMARA for the SKCM gene expression data 
of samples with and without a TERT promoter mutation.  

Regulator Score 
MXI1_MYC_MYCN 3.40 
KLF16_SP2 1.48 
ELK4_ETV5_ELK1_ELK3_ELF4 1.41 
PLAGL1 1.37 
SIX4 1.31 
GMEB2 1.11 
MNT_HEY1_HEY2 1.05 
TCF12_ASCL2 1.05 
CTCF_CTCFL 0.85 
RCOR1_MTA3 0.85 
SIN3A_CHD1 0.84 
ARNT 0.73 
MAZ_ZNF281_GTF2F1 0.41 
AHR_ARNT2 0.38 
HES1 0.33 
TCF3_MYOG 0.32 
IKZF1 0.23 
MYF6 0.10 
WT1_MTF1_ZBTB7B 0.04 
ELF2_GABPA_ELF5 0.01 

Regulators marked in bold were also identified with MIPRIP as significant 
between both groups. For example, MXI1_MYC_MYCN indicates the motif 
name. The associated genes of this motif are Mxi, Myc and Mycn. All 3 have 
the same motif. The Score of each motif indicates the significance level that 
ISMARA assigns to each motif based on the gene expression data and is 
quantified as Z-value.  
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3.3.4 Prostate cancer as a cancer entity with neither TERT promoter mutations nor 

ALT occurrence 

So far, in prostate cancer neither TERT promoter mutations nor ALT occurrence has 

been reported (Heaphy et al., 2011). Therefore, prostate cancer is well suited to 

study the regulation of the telomerase. To identify the most important regulators of 

TERT in prostate cancer, I performed a dual-mode MIPRIP-Comp analysis for 

prostate cancer compared to healthy prostate samples from TCGA. As in the pan-

cancer analysis models were constructed for 1 up to 10 regulators and using a ten-

times three-fold cross-validation. This resulted in 17 regulators which were used 

significantly more often in the prostate cancer models compared to the normal 

prostate models (Table 9) and 40 significant regulators for the normal prostate 

models versus the prostate cancer models (Table S22). The regulators PITX1, 

MITF, AR and TFAP2C were identified as most significant TERT regulators in 

prostate cancer, while TAF9, AP-2, ETS2 and HIF1A were significantly more often 

used in healthy prostate tissue models compared to the prostate cancer models.  

 
Table 9. Significant TERT regulators of prostate cancer versus normal prostate 
tissue.  

Regulators 
tumor 

Frequency 
tumor 

Frequency 
normal 

p-value 
PITX1 186 35 1.56 E-37 
MITF 119 28 5.97 E-17 
AR 92 21 1.26 E-12 

TFAP2C 72 11 1.67 E-12 
E2F2 92 24 1.31 E-11 

NR2F2 97 27 1.31 E-11 
SMARCB1 88 24 1.15 E-10 

CEBPA 65 20 6.08 E-07 
BHLHE40 53 16 8.26 E-06 

CTCF 48 15 4.13 E-05 
ETS1 63 26 7.43 E-05 
MXI1 27 5 1.75 E-04 

POLR2A 34 9 2.23 E-04 
RAD21 32 11 2.37 E-03 
IRF1 31 12 6.38 E-03 

TFAP2D 34 18 3.91 E-02 
MAX 36 20 4.62 E-02 

The regulators which were specific for prostate cancer in the pan-cancer 
analysis are marked in bold. 
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In the pan-cancer analysis above, I predicted the significant TERT regulators for 

each cancer type compared to all other cancer types. Specific for prostate cancer I 

identified 17 significant TERT regulators (Table 10). 12 out of these 17 prostate 

cancer specific TERT regulators were also significant for prostate cancer when 

compared to healthy prostate tissue (from the dual-mode MIPRIP analysis). KLF2 

(p=7.09E-04), TFAP2A (p=4.75E-02), ZBTB48 (p=8.13E-02), MEN1 (p=3.37E-02) 

as well as the NF-kB complex (NFKB.P50.P65) (p=1.62 E-02) were additionally 

identified in the pan-cancer analysis as specific for prostate cancer. From these 

additional regulators ZBTB48 and NFKB.P50.P65 were used more often in the 

normal prostate models than in the cancer models, while KLF2, MEN1 and TFAP2A 

were not significant at all for prostate cancer versus normal prostate tissue. PITX1 

was the most significant TERT regulator of prostate cancer in the dual-mode and in 

the multi-mode MIPRIP analysis.  

 
Table 10. Specific TERT regulators of prostate cancer versus all other cancer types 
based on the multi-mode MIPRIP analysis.  

TF Adjusted p-value 
PITX1 2.79 E-21 
ETS1 3.04 E-19 

MITF 2.56 E-17 

NR2F2 8.28 E-16 

IRF1 3.38 E-13 

TFAP2D 4.24 E-10 

CEBPA 2.09 E-08 

E2F2 1.02 E-07 

BHLHE40 5.67 E-06 
KLF2 7.09 E-04 

TFAP2C 2.35 E-03 

AR 5.22 E-03 

ZBTB48 8.13 E-03 

NFKB.P50.P65 1.62 E-02 

CTCF 2.48 E-02 

MEN1 3.37 E-02 
TFAP2A 4.75 E-02 

The overlap between the pan-cancer analysis and the prostate cancer vs. 
healthy prostate tissue MIPRIP analysis is marked in bold. 
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In the multi-mode MIPRIP analysis, besides prostate cancer, PITX1 was a 

significant TERT regulator only in head and neck carcinoma (HNSC, p=1.46 E-16, 

Table S10), ovary (OV, p=2.21 E-02, Table S15) and cervical cancer (CESC, 

p=1.19 E-03, Table S6).  

In summary, the 12 TERT regulators overlapping in both MIPRIP studies seem to 

be highly specific for prostate cancer and were used for further modeling. 

 

3.4 MIPRIP-Net identifies the gene regulatory network of TERT in prostate 

cancer 
 

In the MIPRIP-Comp analysis above I identified 12 direct regulators of TERT that 

are highly specific for prostate cancer. These regulators were used for the MIPRIP-

Net analysis to identify a highly connected subnetwork that predicts the regulation 

of TERT best. 

 

3.4.1 MIPRIP-Net analysis 

To get a broader view on the TERT regulation, I applied the newly developed 

MIPRIP-Net approach to the prostate cancer data. The goal was to integrate direct 

and indirect regulators (e.g. co-regulators) that are involved in the expression of 

TERT into one regulatory subnetwork. Direct regulators mean that these regulators 

can bind to the TERT promoter and were extracted from the generic human 

regulatory network. Indirect regulators bind to the direct regulators, but not directly 

to TERT. MIPRIP-Net is a combination of the MIPRIP approach and modularity. This 

means that on the one hand the regulators were identified that can best predict the 

expression of TERT, and on the other hand that the regulators are highly connected 

within each other and with their regulators.  

To limit the number of indirect regulators, a basic MIPRIP analysis was performed 

separately for each of the 12 regulators with the same parameter setting as 

described above. To note, for TFAP2D no MIPRIP analysis was possible because 

for TFAP2D no gene expression data was available. From the MIPRIP runs, the 

regulators that were used in at least 20 % of the models (Table 11) were selected 

for the MIPRIP-Net approach. This resulted in 72 additional (indirect) regulators. 

Some of the selected regulators can also bind directly to the TERT promoter and 
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are marked in red in Table 11. The highest overlap between the selected regulators 

and putative TERT regulators was found for PITX1, MITF, NR2F2 and IRF1 

(Table 11).  

 

 
Table 11. MIPRIP-Comp dual-mode analysis of the 12 significant TERT regulators 
identified specifically for prostate cancer.  
 Regulators used in at least 20% of the models # 

regulators 
# TERT 

regulators 
PITX1 SMARCC1, TAF1, HEY1, POLR2A, FOXO1, HNF4A, 

ESR1, RBBP5, SMAD1, SMARCB1 
10 5 

AR MAFF, MAFK, ZBTB17, CREB3, GATA2, TCF4, 
CTCF, EGR1 

8 2 

MITF MXI1, ZNF263, SMC3, TAL1, MYC, EP300, MAX 7 4 
CTCF MAX, PRDM16, YY1, RBBP5, REST, POU2F2, 

FOXP2, EP300 
8 3 

BHLHE40 ARNTL, HIF1A, SIN3AK20, EGR1, NCOR1, AR, 
CEBPB, GABPA, ZNF143 

9 4 

ETS1 ETV2, PAX5, FOS, CEBPB, USF1, FOXA1, TCF7L2, 
IRF4, GATA2  

9 1 

CEBPA SP1, CLOCK, IKZF1, MYC, NCOR1, FOXP2, JUN, 
SREBF1, MAZ 

9 3 

E2F2 E2F4, PML, E2F7, MAFK, ELF1, HEY1, EBF1, E2F6, 
MAFF, TCF12 

10 4 

NR2F2 MXI1, TP53, USF1, E2F4, SF1, FOXP2, SIN3AK20, 
ZNF263 

8 4 

IRF1 NFKB.P50.P65, IRF2, SPI1, EGR1, MYB 5 3 
TFAP2C TP63, MAX, RAD21, RBPJ, SP1, POU5F1, ZFP36L1, 

MTA1, E2F1, EZH2, SETDB1 
11 3 

The regulators that can bind to the TERT promoter are marked in red. For 
TFAP2D no gene expression data was available and hence no MIPRIP model 
could be constructed. Therefore, regulators of TFAP2D were only included in 
the MIPRIP-Net model if they were found in at least 20% of the models of the 
other regulators. 

 

The MIPRIP-Net models were constructed with the 12 prostate cancer specific 

TERT regulators and the 72 additional regulators by restricting the number of 

regulators from 2 up to 20 and performing a ten-times three-fold cross-validation. 

The performance of the MIPRIP-Net models was estimated from MIPRIP, but the 

combination with the modularity influences the regulators which were selected by 

the MIPRIP model. These two objectives (good model for MIPRIP and good model 

for the regulatory network) were combined by a tradeoff parameter l which had to 

be optimized first for each gene of interest and the used dataset. For this 
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optimization, I constructed MIPRIP-Net models for 9 different l parameters (0.001, 

0.01, 0.1, 0.3, 1, 3, 10, 100 and 1000). For each l the performance over all models 

and the number of regulators was counted separately for the MIPRIP and the 

modularity part of the combined model.  

 
Figure 19. Optimization of the MIPRIP-Net models.  
(A) The number of selected regulators from the MIPRIP model (red curve) and 
from the modularity model (blue model) are plotted for different l parameters. 
The l value was determined where both curves were intersecting. (B) The 
performance over all models was plotted for the different l-values. The 
determined l from plot (A) showed a good performance. (C) Models were 
generated with l=1.188 and the performance was plotted. At least six MIPRIP 
regulators are necessary to get a good prediction of TERT expression. (D) 
Histogram which MIPRIP regulator combination was used most often over all 
models. 
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Plotting the counted number of the MIPRIP (red curve) and the modularity (blue 

curve) part of the model for the 9 different l values, both curves were intersecting 

at l = 1.188 (Figure 19A). Therefore, the optimized l = 1.188 leads to a balance 

between both objectives. For low l values the MIPRIP-Net models were dominated 

by MIPRIP, while high l values led to a modularity driven regulator selection. This 

means that there would be many indirect and only very few direct TERT regulators, 

which led to a very low performance (Figure 19B). For l values of 1, which would 

mean that the MIPRIP and the modularity optimization were weighted equally, the 

performance was constant at r=0.5. But for higher l values the performance drops 

down to around r=0.25 (Figure 19B). The optimized l=1.188 from Figure 19A still 

led to a performance of r=0.48 and was used to identify the best subnetwork of 

TERT. For this, further MIPRIP-Net models were constructed with l=1.188. As 

shown in (Figure 19C) at least six selected MIPRIP regulators were necessary to 

get a good prediction of TERT expression (r=0.45). I then counted which 

combination of six MIPRIP regulators was selected most often over all models 

(Figure 19D). This led to a distinct result. The combination “BHLHE40, CTCF, IRF1, 

MITF, PITX1 and TFAP2D” was selected in 108 of the 570 models.  

I then investigated which combination of modularity regulators were selected most 

often together with this combination of direct regulators. This led to the following 14 

regulators: E2F4, MAZ, POLR2A, POU2F2, SMARCB1, TAF1 and REST, which 

can also bind to the TERT promoter, but were not selected by MIPRIP, and the 

indirect TERT regulators EP300, MAFK, PML, SMC3, USF1, YY1 and ZNF263. The 

six significant regulators of the MIPRIP-Comp analysis (marked in red) and the 

putative TERT regulators (orange) as well as the additional regulators (grey) from 

the modularity part are visualized in a regulatory network explaining TERT 

regulation (Figure 20). The edge weights of the interactions between the significant 

and putative TERT regulators and the TERT gene are based on the scores of the 

generic human regulatory network, while the connections between the regulators 

are weighted based on the correlations of their activity profiles multiplied with the 

edge scores in the generic network. The putative TERT regulators from the 

modularity approach (marked in orange) were not identified as prostate cancer 

specific TERT regulators above, but they had several interactions to the significant 

TERT regulators of the MIPRIP-Comp analysis. To investigate if the additional 



Results 

 72 

regulators are also known to be linked to telomere maintenance, the TelNet 

database (Braun et al., 2018) was queried. The TelNet database is a large collection 

of manually curated genes that play a role in telomere biology. From the indirect 

regulators PML, SMC3 and USF1 were found in TelNet. Based on the cBioPortal 

for Cancer Genomics (http://www.cbioportal.org/) I investigated if the regulators in 

the network are frequently mutated or deleted in prostate cancer. Here, I found that 

POLR2A was deleted in around 8 % of all prostate cancer patients. 

 
Figure 20. Regulatory network model best explaining TERT regulation in prostate 
cancer constructed with MIPRIP-Net.  
Significant regulators from the MIPRIP-Comp analysis are marked in red, while 
the regulators added by the modularity approach are marked in orange if they 
can bind to the TERT promoter and in grey if they only bind to the other 
regulators. The edges between the significant and putative regulators and 
TERT are weighted based on the generic regulatory network, while the 
interactions between the regulators are weighted based on the correlation of 
their activity values multiplied with the scores in the generic regulatory network. 

 

In summary, using the newly developed MIPRIP-Net approach I identified a 

subnetwork of 20 regulators best explaining the regulation of TERT. From these 

regulators BHLHE40, CTCF, IRF2, MITF, PITX1 and TFAP2D play a direct role and 

are studied in more detail in the next section. 
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3.4.2 Clinical validation of the identified TERT regulators 

The 12 prostate cancer specific regulators of TERT from the MIPRIP-Comp analysis 

were validated in the department of Guido Sauter/Ronald Simon at the University 

Hospital in Hamburg-Eppendorf for their potential as prognostic markers. A special 

focus was on the 6 significant direct TERT regulators, which were part of the 

regulatory subnetwork in Figure 20. Using tissue-microarrays (TMAs) of 17,747 

patients an immuno-histochemical (IHC) analysis was performed for the regulators 

and the staining intensities (mostly negative, low, high) were correlated to 

histopathological and molecular features (e.g. ERG-fusion gene, PTEN deletions).  

As PITX1 was the most significant TERT regulator in prostate cancer, it was 

analyzed first. PITX1 was upregulated in around two-thirds of the tumor samples 

compared to normal prostate epithelial tissue. But over all evaluated tumor samples 

PITX1 was highly expressed in only 4 % of the tumor samples (Table S23). PITX1 

upregulation was tested to be associated with several features indicating tumor 

aggressiveness (high Gleason grade, advanced tumor stage, presence of lymph 

node metastasis, higher pre-operative PSA-levels, positive surgical margin 

(histological presence of cancer cells at the inked margin of the radical 

prostatectomy specimen)). Comparing the PITX1 expression in ERG-fusion positive 

and negative tumor samples, we found out that PITX1 was upregulated in around 

80 % of the ERG-fusion positive samples, while only 55 % of the ERG-fusion 

negative samples showed a PITX1 expression. Furthermore, we found out that 

ERG-negative tumor samples were genomic instable because they were associated 

with 10q23 (PTEN), 5q21 (CHD1), 6q15 (MAP3K7) and 3p13 (FOXP1) deletions, 

while in ERG-fusion positive tumors we only found a slightly upregulation of PITX1 

in samples with these deletions (Figure S1). PITX1 upregulation is associated with 

a higher cell proliferation independent of the Gleason score. The Kaplan-Meier 

analysis revealed that patients with a high PITX1 expression have a poorer PSA-

recurrence free survival compared to patients with a low or negative PITX1 

expression (p-value < 0.0001) (Figure 21A). The patient’s outcome was not 

dependent on the ERG-fusion status. To estimate if PITX1 can provide an added 

value to the established clinical-pathological prognostic parameters, four different 

multivariate models were calculated to resemble typical scenarios. Scenario 1 

utilizes all available parameters after radical prostatectomy (pathological tumor 

stage, Gleason grade, lymph node and surgical margin status as well as 
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preoperative PSA level) and PITX1 expression. Scenario 2 excludes the nodal 

status because lymph node dissection is not standardized in the surgical prostate 

cancer therapy. To model the preoperative situation, Scenario 3 was set up. It 

included PITX1 expression, clinical tumor stage, preoperative PSA level and the 

Gleason grade obtained from the prostatectomy specimens, while in Scenario 4 the 

preoperative Gleason grade obtained from the biopsies were used. In general, the 

postoperative determination of the Gleason grade is more precise than the 

preoperative determination (Epstein et al., 2012). It turned out that PITX1 

expression gave a significant added value in the Cox proportional hazards 

regression analysis for all four scenarios in the ERG-negative tumor samples, while 

in the ERG-positive tumor samples it yielded only a significant added value in the 

preoperative stage (scenario 4). This shows that PITX1 is a good prognostic marker, 

especially at the biopsy level and before surgery. 

For IRF1 only around 2 % of the stained tumor samples showed a high IRF1 

expression among all tumor samples, while TFAP2D was upregulated in around 75 

% of the tumor samples. For both regulators an upregulated expression is 

associated with a poorer prognosis (Figure 21B+C). For CTCF, a high expression 

is associated with poor outcome and tumor aggressiveness, especially in ERG-

fusion negative prostate cancer samples (Figure 21D) (Höflmayer et al., 2019). For 

MITF and BHLHE40 no suitable antibody for TMA IHC-staining could be found. This 

showed that 4 out of the 6 identified TERT regulators from the MIPRIP-Net analysis 

were novel prognostic markers for prostate cancer and could help especially at the 

biopsy level to improve the prognosis progression and hence the therapy decision, 

e.g. if it is necessary to perform a radical prostatectomy. Especially a combination 

of several markers can lead to more reliable results. A Kaplan-Meier analysis with 

PITX1, CTCF, IRF1 and TFAP2D together showed that an upregulation of at least 

3 of the 4 regulators is associated with a highly significant decreased PSA-

recurrence free survival compared to patients for which less than 2 of these markers 

were expressed (Figure 21E). Hence, these 4 markers may act cooperatively as 

suggested by the MIPRIP analysis. 

In summary, the modeling analysis identified new prognostic markers for prostate 

cancer. 
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Figure 21. Kaplan-Meier analysis 
of (A) PITX1, (B) IRF1, (C) TFAP2D and (D) CTCF over all patients. The PSA-
recurrence free-survival is used instead of overall survival. (E) PSA-recurrence 
free survival of patients with a high expression of a combination of these 4 
markers. (Plots were provided by the department of Guido Sauter (University 
Hospital Hamburg-Eppendorf).) 
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3.5 Telomere maintenance classification 
PedGBM show a high frequency of ALT (44 %) (Heaphy et al., 2011) and frequent 

mutations in ATRX as well as H3F3A (Schwartzentruber et al., 2012). Therefore, 

pedGBM is an interesting entity to study the ALT mechanism.  

 

3.5.1 Construction of a TMM classifier  

The classification of patient’s sample according to their active TMM is required to 

improve patient stratification. Therefore, I constructed a classifier based on typical 

TMM related features to distinguish between ALT positive (ALT) and ALT negative 

(non-ALT) samples. For this purpose, data from seven pedGBM derived cell lines 

with different genetic backgrounds were used together with 57 pedGBM patient 

samples from the PedBrain ICGC project (Bender et al., 2013; Grasso et al., 2015). 

All samples were characterized regarding their TMM features. In the cell lines the 

TMM status was determined by several functional assays (telomerase activity 

(TRAP-assay), telomere content (qPCR), C-circle levels, ATRX protein expression 

(IHC), heterogeneous telomere length (TRF blot), average number of ALT-

associated PML nuclear bodies (APBs), TERRA levels and aberrant H3.3S31p as 

well as sequencing readouts (TERT expression from RNA-seq), mutational status 

of the genes ATRX, H3F3A, TP53 and TERT promoter mutations as well as 

chromothripsis (derived by WGS) (Deeg et al., 2017). A number of 5 cell lines 

showed a H3F3A mutation, 3 cell lines an ATRX mutation and one cell line had a 

TERT promoter mutation (C250T). From the cell lines two were characterized as 

non-ALT (SF188 and KNS42), while the others were ALT-positive. Not all the 

functional assays could be performed for the patient samples because of limited 

material and technical limitations. Hence, for these samples, data about TRAP-

assays, TRF-blots, TERRA-levels and APBs was not available. The C-circle assay 

has been performed for 27 patients (by Inn Chung in the lab of Prof. Karsten Rippe, 

DKFZ, Heidelberg) and in addition the detection of ultra-bright telomere foci has 

been performed by telomere FISH for 20 patients (data provided by the lab of Prof. 

Pfister, DKFZ, Heidelberg). Sequencing readouts in form of RNA-seq (TERT 

expression), methylation data (TERT promoter methylation) and DNA-seq 

(mutations in the genes ATRX, H3F3A, TP53 and TERT promoter as well as 

chromothripsis) were available for almost all patients. The determination of the ALT 
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status was done with the results from the C-circle assay and ultra-bright telomere 

foci. A positive C-circle assay indicated an ALT-positive sample (Henson et al., 

2009), while a negative C-circle assay together with no ultra-bright telomere foci 

defined an ALT-negative sample. The combination of the C-circle assay and 

telomere FISH was performed because a lack of C-circle signal can also be 

observed from the rapid degradation of the single-stranded C-circles and might thus 

be interpreted as a false-negative result. Altogether, the results from the C-circle 

assay and the telomere FISH showed a high overlap in line with telomere FISH 

being a well-established marker for ALT-positive cells (Heaphy et al., 2011). 

Samples with an activating TERT promoter mutation were classified as telomerase-

positive. It has been reported that TERT promoter mutations and ALT occurrence 

were described as mutually exclusive (Killela et al., 2013). In the present dataset 

this was also the case, since the samples with TERT promoter mutation for which a 

C-circle assay could be performed had a negative C-circle signal. Therefore, 

telomerase-positive samples were equated as ALT-negative samples. Altogether, 

based on these criteria 13 samples could be classified as ALT-positive and 12 as 

ALT-negative and two additional samples showed a TERT promoter mutation (also 

ALT-negative). A high fraction of the ALT-positive samples showed a high 

correlation for a loss of function mutation in the gene ATRX (11 out of 13 ALT-

positive samples) and TP53 (12 out of 13 ALT samples), a higher prevalence of 

H3F3A mutations (4 out of the 6 H3F3A mutated samples are ALT positive), a lower 

TERT expression (Figure 23A), lower TERT promoter methylation (Figure 23B) and 

a higher telomere content (Figure 23C). For chromothripsis there was no correlation 

with the occurrence of ALT. 

These 27 pedGBM samples together with the 7 cell lines were used as training set 

for the decision tree-based classifier (Table S24). Here, I systematically tested all 

combinations of TMM features to identify feature combinations which were able to 

distinguish between ALT-positive and ALT-negative samples. Because of limited 

patient’s material the datasets are frequently incomplete. However, the TMM 

prediction potential of single available features is required e.g. for treatment 

decisions. It is noted that the classifier can distinguish only between ALT-positive 

and ALT-negative samples, with the latter including samples with the ever shorter 

telomere (EST) phenotype (Dagg et al., 2017).  
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The TERT methylation and the telomere content information was different for the 7 

cell lines compared to the patient samples. The TERT methylation was much higher 

in the cell lines than in the patient samples. Regarding the telomere content, a 

normalization to healthy control samples was not possible in the cell lines. 

Nevertheless, all other features were in high agreement with the patient samples. 

The C-circle and the TERT promoter mutation were not used for the training of the 

classifier, in turn, these two features were used to define the classes “ALT” and 

“non-ALT” as shown in Figure 22.  

 
Figure 22. Scheme for classification of primary pedGBM samples according to their 
TMM status.  
A positive result in the C-circle assay determines the class “ALT”, while an 
activating TERT promoter mutation shows that this sample is non-ALT. If none 
of these two criteria are true, the sample is classified based on the available 
features. Image taken from (Deeg et al., 2017). 

 

Most of the described features were binary variables, e.g. mutated or wild-type. In 

general, the presence of a feature was set to 1 (e.g. mutation present or 

chromothripsis observed), the absence to 0. In contrast, the features TERT 

expression, TERT promoter methylation and telomere content were continuous 

variables. For these variables a threshold was defined for the training sample set by 

minimizing the number of misclassified samples when testing different thresholds. 

The thresholds for the three continuous variables are shown in Figure 23. The TERT 

expression in the RNA-seq data was very low, but still higher in the non-ALT 

samples indicating that telomerase is active in these samples. The threshold was 

RPKM > 0.01 for the non-ALT samples in the pedGBM patients and cell lines (Figure 
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23A+D). As described in (Castelo-Branco et al., 2013) methylation at position 

cg11625005 of the TERT transcription start site is a marker for TERT expression. 

The ALT-negative samples showed a higher TERT promoter methylation compared 

to the ALT-positive samples. This shows that telomerase expression is correlated 

to its promoter DNA-methylation. The threshold here was determined to be 0.22 for 

the patient samples (Figure 23B) and 0.80 for the cell lines (Figure 23E). As in the 

pedGBM cell lines, the telomere content of the pedGBM patient samples was higher 

in ALT-positive compared to ALT-negative samples. This could only be measured 

for the samples for which tumor and matched control blood samples were available. 

The threshold for the ratio was 0 (Figure 23C). For the cell lines the threshold for 

the telomere content was 0.10 (Figure 23F).  

 
Figure 23. Thresholds of the continuous features. 
(A) TERT expression in pedGBMs; (B) TERT promoter methylation in pedGBMs; 
(C) Telomere content in pedGBMs; (D) TERT expression in the pedGBM cell 
lines; (E) TERT promoter methylation in the pedGBM cell lines; (F) Telomere 
content in the pedGBM cell lines for the ALT, non-ALT and TERT promoter 
mutated patient samples/cell lines. The red dashed line indicates the threshold 
which was used to construct the decision trees.  

 

For all possible feature combinations decision trees were constructed. Because of 

some missing feature information, only training samples with all available features 
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were used leading to trees calculated with different sample sizes. The accuracy Acc 

of the classifier was determined by the number of correct predicted samples based 

on a leave-one-out cross-validation with the training samples. Additionally, based 

on a confusion matrix a p-value (p) was calculated for each tree to test if this tree is 

better than a random tree. If a selected feature set led to a poor prediction 

performance the best performing subset was used. The reason for this can be e.g. 

a difference in the sample sizes for one of the features. 

Constructing a tree with only one feature, either presence of ultra-bright foci 

(Acc=0.90), ATRX protein expression and or telomere content (each Acc=0.86) as 

well as ATRX mutation (Acc=0.85), could best predict the TMM status (ALT or non-

ALT) in the pedGBM samples, while chromothripsis or H3F3A mutation alone led to 

a non-reliable prediction (each Acc = 0.59, p > 0.05). For ultra-bright telomere foci 

and telomere content the sample size was very low with 20 and 22 samples, 

respectively, but the predictions were still accurate (Table 12). 

 
Table 12. Performance and significance level if the 9 TMM features were used alone 
for the classification into ALT and non-ALT.  
Feature # samples Accuracy p-value 

Ultra-bright telomere foci 20 0.90 7.22 E-04 

ATRX IHC 28 0.86 1.53 E-04 

Telomere content 22 0.86 1.91 E-03 

ATRX mutation 34 0.85 2.80 E-05 

TERT expression 32 0.78 1.67 E-03 

TERT promoter methylation (cg11625005) 32 0.78 2.05 E-03 

TP53 mutation 34 0.71 1.45 E-02 

H3F3A mutation 34 0.59 n.s. 

Chromothripsis 34 0.59 n.s. 

n.s. = not significant 

 

Combination of features could improve the prediction. For example, a combination 

of the features TP53 mutation (alone Acc =0.71) and TERT expression 

(alone Acc =0.78) and chromothripsis (alone Acc=0.59) showed a highly increased 

prediction performance (Acc = 0.89, p = 6.88 E-05, # samples = 28) (Figure 24A). 

ATRX protein (IHC) instead of chromothripsis led to the same performance (Figure 

24B). This is surprising because ATRX protein expression was the feature with the 

second-best performance, while chromothripsis alone was the least accurate. This 
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showed that the combination of different features into one decision tree was 

powerful. It is noted that all 4 features from Figure 24 A+B together (TERT 

expression, TP53 mutation, ATRX protein and chromothripsis) did not improve the 

performance, likewise an addition of H3F3A mutation did neither. An example for a 

tree with three layers was the combination of TERT promoter methylation with 

chromothripsis and TERT expression (Figure 24C). This combination led to a 

performance of Acc=0.8 (p = 0.0025, # samples = 30) which was a slightly higher 

than TERT promoter methylation alone (Acc=0.78). 

 

 
Figure 24. Three feature combinations leading to an improved performance.  
(A) The feature combination of TERT expression, chromothripsis and TP53 
mutation led to a highly improved performance (Acc=0.89) compared to the 
features alone. (B) The tree with the feature combination TERT expression, 
ATRX protein detection and TP53 mutation shows the same performance then 
the tree in (A). (C) The combination TERT promoter methylation, chromothripsis 
and TERT expression can also improve the performance to some extent.  
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The classifier was implemented as a web-based tool called ‘Predicting Alt IN 

Tumors’ (PAINT) (http://www.cancertelsys.org/paint/index.html) by Nick Kepper 

from the group of Prof. Rippe (DKFZ, Heidelberg). The user can select all available 

TMM features of his/her pedGBM sample and receives a probability (performance 

P and p-value) with the sample being ALT or non-ALT. If the p-value of the selected 

feature combination is not significant, PAINT displays the feature subset with the 

best performance and its p-value. Next, PAINT was used to predict the TMM status 

(ALT or non-ALT) of the remaining 30 pedGBM patient samples. This resulted in 12 

ALT and 18 non-ALT samples (Table S25). 

In summary, features like detection of ultra-bright foci or ATRX mutation status alone 

led to a high performance, while the combination of TP53 mutation status, 

chromothripsis and TERT promoter methylation could greatly improve the 

prediction. This in general showsed that a combination of sequencing-based 

readouts led to a highly reliable prediction. Sequencing based readouts have been 

shown to be well suited for the clinical routine without the need of additional assays. 

 

3.5.2 ALT gene signature in pedGBM patient samples 

Next, a differential analysis was performed based on (i) gene expression level and 

(ii) regulator activities, to investigate differences in gene expression levels between 

ALT-positive and ALT-negative samples. For this purpose, all patient samples with 

available RNA-seq expression data were used, resulting in 34 patient samples. The 

TMM status (ALT, non-ALT) of the 34 samples was determined from the training set 

or was predicted with PAINT as described above. This resulted in 14 ALT-positive 

and 20 ALT-negative samples. Because the difference between cell lines and 

patient samples was too high, all cell lines were excluded from the analysis 

(Figure S2). First, a differential gene expression analysis was performed, which 

resulted in 115 differentially expressed genes (p-value<0.01; 366 genes for p-

value<0.05). Clustering of differentially expressed genes (p-value<0.01) did not lead 

to a clear separation of ALT-positive and ALT-negative samples. There were few 

genes (e.g. DRG2, PTCHD4 and CPAMD8) which were higher expressed in the 

ALT-negative samples, while most genes had a low expression in both groups. From 

the 115 differentially expressed genes (p-value < 0.01) only 5 could be found in the 

TelNet database (Braun et al., 2018) (13 out of the 366 differentially expressed 

genes with p-value < 0.05). These 5 genes were TERT, PCK1, HIST1H1A, 
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CCDC155 and ABCC12. Besides TERT, only for PCK1, repressor of telomerase 

(Cerone et al., 2011), a direct relation to telomere maintenance has been reported. 

The differentially expressed genes with a p-value < 0.05 were used to calculate the 

activities of the regulators with the MIPRIP framework. A significant change (p-

value<0.01) in their activity between the ALT-positive and the ALT-negative samples 

was observed for 15 regulators. The activity values of the 15 regulators led to two 

clearly separated clusters. One cluster with upregulated regulators and the other 

with downregulated regulators.  

 
Figure 25. TMM gene signature of pedGBM.  
(A) Clustering of pedGBM patient samples into ALT and non-ALT based on 
differential gene expression (p-value < 0.01) for which RNA-seq data was 
available. For this analysis the cell lines were excluded. (B) Clustering of 
pedGBM patient samples into ALT and non-ALT based on the activities of the 
regulators showed a significant change in the ALT compared to the non-ALT 
samples (p-value < 0.01). For this purpose, the regulator activities were 
calculated as described for MIPRIP by using only the differentially expressed 
target genes (p-value < 0.05) of the regulators. The analysis was restricted to 
regulators with at least 5 differentially expressed target genes. The boxes 
indicate that the regulator was found in the TelNet database (Braun et al., 
2018). 

 

The cluster with upregulated regulators only contains ALT-negative samples, while 

the downregulated regulator cluster includes all ALT-positive samples plus three 
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outlier (ALT-negative samples). In the TelNet database,  8 out of the 15 regulators 

could be identified as telomere maintenance genes. These are ATF2, SIN3A, ETS1, 

PAX5, MXI1, BCL11A, HDAC2 and RBBP5. The six regulators SIN3A, ETS1, PAX5, 

MXI1, POU2F2 and BCL11A are putative regulators of TERT based on the generic 

human regulatory network. These 6 out of 15 regulators were upregulated in almost 

all ALT-negative samples indicating a possible activating role of TERT expression 

in these samples. PAX5 and MXI1 were identified in the pan-cancer MIPRIP 

analysis as a common TERT regulator, while for melanoma samples with a TERT 

promoter mutations ETS1 is a highly significant hit. POU2F2 was part of the gene 

regulatory network of TERT in prostate cancer. 

In summary, the calculation of regulator activities was better suited than differential 

gene expression analysis to identify a signature that can distinguish between ALT 

and non-ALT pedGBM samples. 

 

3.6 Comparison of MIPRIP with ARACNE/VIPER based on chronic 

lymphocytic leukemia 
ARACNE and VIPER are well-established tools from the Califano Lab to study gene 

regulation. ARACNE constructs a de-novo GRN based on gene expression data 

and VIPER uses these networks to calculate regulator activities. 

The comparison of MIPRIP with ARACNE/VIPER could not be performed based on 

the regulation of TERT. Because of the low TERT expression it was not possible to 

identify reliable regulators of TERT in the ARACNE network. Instead, I used gene 

expression data of 20 CLL patients and 7 non-malignant B-cell samples for the 

comparison of the both approaches. For the comparison the following two questions 

were addressed:  

(i) How different is the generic human regulatory network compared to the 

B-cell specific ARACNE network? 

(ii) How is the overlap between the regulator activities calculated with 

MIPRIP and VIPER? 

For the latter case the overlap of significantly differential active regulators between 

CLL and non-malignant B-cell samples from MIPRIP and VIPER was estimated. 

First, I computed a B-cell specific ARACNE network with published microarray data 

of 264 malignant and non-malignant B-cell samples (Basso et al., 2010). In total, 
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214,405 interactions could be identified for 3,862 regulators and 12,119 target 

genes. The regulators include transcription factors, transcriptional co-factors and 

also signaling pathway related genes (Alvarez et al., 2016), while the generic human 

regulatory network used for MIPRIP is limited to TFs.  

To compare the generic human regulatory network with the ARACNE B-cell network 

the number of target genes was compared for both networks. Strikingly in the 

generic human regulatory network there were several regulators with a much higher 

number of target genes than in the ARACNE B-cell specific network. For the generic 

regulatory network the average was 533 target genes (maximum = 16,483 for 

CTCF), but three-quarter of the regulators (872 out of the 1,160) had less than 500 

target genes (Figure 12). In the B-cell specific ARACNE network all regulators had 

less than 500 target genes (mean » 56 target genes) (Figure 26). This showed that 

the generic human regulatory network contained only some master regulators like 

CTCF, YY1 or MYC with huge numbers of target genes, while most regulators in 

both networks showed a comparable number of target genes. 

 
Figure 26. Histogram of the number of targets for all 3,885 regulators in the ARACNE 
B-cell network. 
 

The ARACNE B-cell specific network was then used together with the in-house 

RNA-seq data to calculate the activity values of the regulators using the VIPER R-

package (Alvarez et al., 2016). Altogether, regulator activity values could be 

calculated for 2,804 regulators and 1,588 regulators (p-value £ 0.05) showed a 

significant change in their activity between the CLL and the non-malignant B-cell 
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samples. To evaluate the tissue-specificity of the constructed B-cell network, a 

pathway analysis was performed with the regulators showing the highest activity 

values in the non-malignant B-cell samples based on the VIPER analysis and the 

whole network as universe. This yielded the pathway “B cell receptor signaling 

pathway” as top hit, followed by “Pathways in Cancer” and “Thyroid hormone 

signaling pathway” (Table 13).  

 
Table 13. Top 5 significant KEGG pathways of the regulators with the highest activity 
in the non-malignant B-cell samples.  
This was calculated with the B-cell specific network, an ARACNE AML, GBM 
and PRAD network. The position of the B cell receptor signaling pathway is also 
shown for each network. 

Network Position KEGG pathway p-value 

B-cell 1 B cell receptor signaling pathway 2.55E-09 

2 Pathways in cancer 3.37E-09 
3 Thyroid hormone signaling pathway 1.70E-08 

4 Hepatitis B 1.70E-08 

5 Cellular senescence 9.14E-08 

AML 1 Pathways in cancer 1.49E-11 

2 Kaposi’s sarcoma-associated herpesvirus infection 1.13E-10 

3 Chemokine signaling pathway 2.32E-10 

4 Thyroid hormone signaling pathway 2.90E-10 

5 Autophagy – animal 9.77E-10 
6 B cell receptor signaling pathway 1.18E-09 

GBM 1 Thyroid hormone signaling pathway 2.00 E-07 

2 Transcriptional misregulation in cancer 4.19 E-07 

3 Pathways in cancer 6.18 E-07 

4 Herpes simplex infection 6.18 E-07 

6 Viral carcinogenesis 7.74 E-07 

27 B cell receptor signaling pathway 2.52 E-04 

PRAD 1 Basal transcription factors 8.55E-10 

2 Hepatocellular carcinoma 4.68E-08 
3 Herpes simplex infection 5.64E-08 

4 Colorectal cancer 1.00E-07 

5 Neurotrophin signaling pathway 1.30E-07 

65 B cell receptor signaling pathway 4.74 E-03 

 

The pathway “B cell receptor signaling” as top hit indicates that the ARACNE 

network constructed from B-cell expression data is highly tissue-specific. 
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Furthermore, I calculated the regulator activities for the CLL and the non-malignant 

B-cell samples with a publicly available ARACNE network (R-package 

‘aracne.networks’) for acute myeloid leukemia (AML), for glioblastoma (GBM) and 

prostate cancer (PRAD). For each of the three networks, the regulators with the 

highest activity in the B-cell samples were used for the pathway analysis. For the 

AML, the GBM and the PRAD network, the 5 most significant pathways are shown 

in Table 13. The “B-cell regulator signaling pathway” was ranked on position 6 for 

the AML network, on position 27 for the GBM network and on position 65 for the 

PRAD network. This shows that the network constructed with the microarray B-cell 

gene expression data is highly tissue-specific and suited best to study the 

deregulated regulatory processes between CLL and non-malignant B-cell samples. 

As comparison I calculated regulator activities in the manner of MIPRIP for the same 

CLL and non-malignant B-cell samples by determining the target genes from the 

generic human regulatory network. With the MIPRIP activity calculation, I identified 

763 out of 1,154 regulators significantly changing their activity between the CLL and 

the non-malignant B-cell samples. To note, compared to ARACNE/VIPER the 

MIPRIP activity calculation is restricted to TFs. For the comparison I limited the list 

to the regulators for which activity values could be computed with both methods. 

This resulted in an overlap of 461 regulators (Figure 27A), from which 300 showed 

a significantly different activity between the CLL and non-malignant B-cell samples 

calculated with MIPRIP and for 254 calculated with VIPER. The overlap between 

the regulators with significant activity changes was 159 (Figure 27B). With the 159 

regulators showing a significant change in their activity between the CLL and the 

non-malignant B-cell samples a pathway analysis was performed. Pathways like 

“Transcriptional misregulation in cancer”, “Th17 cell differentiation” and “TCF-beta 

signaling pathway” were identified among others as highly enriched (Figure 27C). 

Furthermore, looking at the differential expressed target genes of the 159 regulators 

in both networks a high overlap could be identified. The 159 regulators had 2,660 

differential expressed target genes in the generic network and 964 differential 

expressed target genes in the ARACNE B-cell specific network. But nearly all 

differentially expressed target genes (89 %) from the B-cell network were also target 

genes in the generic network (Figure 27D). This comparison again showed that the 

regulators in the generic regulatory network had more putative target genes than in 

the ARACNE network, but also that the target genes are highly overlapping. 



Results 

 88 

 
Figure 27. Comparison between the activity calculation with MIPRIP and VIPER. 
(A) Venn diagram showing the overlap of regulators for which activity values 
could be calculated. (B) Venn Diagram showing the number of regulators with 
a significantly higher activity in the CLL samples compared to the non-malignant 
B-cell samples calculated with MIPRIP and VIPER. (C) Top ranked KEGG 
pathways of the 159 regulators identified as significant with MIPRIP and VIPER. 
(D) Overlap of the target genes of the 159 significantly differential active 
regulators identified with MIPRIP and VIPER. (E) Significantly up- and (F) 
downregulated regulators based on the activity calculation with MIPRIP and 
VIPER compared to differential gene expression analysis with DESeq2. This 
comparison was performed for the 159 regulators with a significant activity 
change between CLL and non-malignant B-cell samples with VIPER or MIPRIP.  
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Comparing the regulators with significantly higher (Figure 27E) and lower 

(Figure 27F) activity values in CLL vs. non-malignant B-cell samples with the results 

from the differential gene expression analysis (performed with DESeq2), most 

regulators were downregulated in CLL (MIPRIP=141 genes, VIPER=95 genes and 

DESeq2=78 genes). Especially in MIPRIP, the number of regulators with a higher 

activity in the CLL samples was low (n=18 genes). The overlap between the 

activities calculated within the MIPRIP framework and VIPER was higher than 

between the significantly differential expressed regulators from the DESeq analysis 

and the regulators with significant activity change in MIPRIP/VIPER, especially for 

the regulators with lower activity in the CLL samples. 

In summary, there was a high overlap between the activities calculated with MIPRIP 

and VIPER, although the number of target genes were very different between the 

generic human regulatory network and the B-cell specific network computed with 

ARACNE. Around one third of the regulators for which activity values could be 

computed with both approaches showed a significantly change in their activities 

between the CLL and the non-malignant B-cell samples.  
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4 Discussion 

In this thesis, I developed a new approach based on Mixed Integer Linear 

Programming combined with machine learning methods to predict significant 

regulators of any given gene. Using this approach to study telomere maintenance, 

novel regulators of the telomerase in S. cerevisiae and different human cancer types 

could be identified. Furthermore, based on a classification scheme pedGBM 

patients were grouped into ALT and non-ALT and a regulator signature to 

distinguish between both groups was identified. Here, I will discuss the advantages 

and disadvantages of the new approach as well as the clinical relevance of the novel 

insights on telomere maintenance. 

 

4.1 Mixed Integer linear Programming based Regulatory Interaction 

Predictor  
The ‘Mixed Integer linear Programming based Regulatory Interaction Predictor’ 

(MIPRIP) presents a novel approach of linear regulation models based on Mixed 

Integer Linear Programming (MILP) embedded into machine learning methods to 

identify the most important regulators of a gene. It uses the advantage of L1 norm 

for regression avoiding overestimating outliers and of the implementation of 

constraints to get sparse models. The basic idea of MIPRIP is to identify the most 

relevant regulators of a target gene by predicting the target gene's expression using 

a linear model in which the covariates are all potential regulators putatively binding 

to its promoter. These potential regulators were extracted from a generic regulatory 

network which has been constructed in the lab of Prof. Dr. König (University Hospital 

Jena) for S. cerevisiae, human and mouse. The TF-target gene interactions are 

mainly based on ChIP-binding data, but results from literature research and 

computational binding predictions were also considered. For yeast the generic 

regulatory network is binary. This means that if there is an interaction then the edge 

weight is 1 and 0 otherwise. For human and mouse, the TF-target gene interactions 

were extracted from several databases and integrated into one generic network. In 

both networks, the edge weights were selected and weighted based on the reliability 

of the database and co-occurrences. One possible improvement of the generic 

regulatory network could be to optimize the edge weights from the different sources. 
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For instance, the experimentally validated direct interactions from MetaCoreTM could 

be used as a gold standard. The weighting of the interactions from the other sources 

could be based on the overlap with the gold standard. For more than half of the 

regulators less than 25 target genes were identified, while a small subset had more 

than 10,000 target genes (e.g. MYC, CTCF or YY1). These regulators are so-called 

master regulators. This is in agreement with the finding that regulatory interactions 

between TFs and their target genes organize as a scale-free network with hubs as 

master regulators (Babu et al., 2004). It is to be noted that the number of target 

genes is highly dependent on how well different regulators have been studied. The 

computed generic networks were used to identify the putative regulators of a 

particular gene and to calculate the activity of each regulator. Similar to Balwierz et 

al. (Balwierz et al., 2014) or Alvarez et al. (Alvarez et al., 2016) the activity of a 

regulator is defined as the cumulative effect on its target genes. As previously shown 

using the activity value of a regulator instead of its gene expression value led to a 

better prediction of the gene expression of the gene of interest (Schacht et al., 

2014). A reason for this could be that regulators can act cooperatively with other 

TFs or signaling molecules and are modulated by post-transcriptional modifications 

or protein stability, which makes the activity values more informative than the gene 

expression values. 

A recent study by Trescher et al. (Trescher et al., 2017) compared a previous 

version of MIPRIP (Schacht et al., 2014) with four other methods. All these methods 

determine TF activity from gene expression data using pre-defined TF-target gene 

interactions as the basis for linear regression or probabilistic models. The overlap 

between the identified regulators with the different tools was very low, although the 

approaches are methodological quite similar. One of these tools (RACER) (Li et al., 

2014) integrates data of mRNA expression, miRNA expression data, copy number 

variations and DNA methylation. Li et al. compared the results from RACER using 

different combinations of input variables in form of mRNA and miRNA expression 

data, copy number variations and DNA methylation data. If they exclude TF 

regulation from their model the performance was reduced considerably. This 

suggests that TFs seem to be most important for regulation. Still, prediction of the 

regulatory mechanism for the gene of interest may be improved by incorporating 

miRNA expression data, copy number variations and DNA methylation. Indeed, the 

MIPRIP implementation allows to incorporate also additional information extracted 
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from DNA methylation, miRNA expression and binding data, gene copy numbers, 

as well as other epigenetic regulation. This can be a promising future project. 

As transcriptional processes are highly tissue-specific and within one tissue also 

condition specific, I extended MIPRIP with a downstream statistical hypothesis 

testing framework to compare the predicted regulators between two or more 

datasets/conditions (MIPRIP-Comp). MIPRIP-Comp allows to identify significant 

regulators between two datasets/conditions (e.g. treatment vs. control) (dual-mode) 

as well as between multiple datasets/conditions (e.g. pan-cancer analysis) (multi-

mode). A multi-mode MIPRIP-Comp analysis predicts (i) the most common 

regulators of a particular gene over all datasets/conditions and (ii) the specific 

regulators of each dataset/condition compared to all other datasets/conditions 

(Poos et al., 2019). The application of MIPRIP on telomerase regulation showed 

that MIPRIP performed well and led to novel regulators (see below). 

Furthermore, MIPRIP was combined with a modularity-based approach (MIPRIP-

Network (MIPRIP-Net)) because typically several co-regulators are involved in the 

expression of a gene. These co-regulators interact with the regulators binding to the 

gene’s promoter and influence their activity. Modularity was introduced by Newman 

about ten years ago to cluster gene networks (Newman, 2006). In combination with 

MIPRIP, it was used to identify the subnetwork, which (i) can best predict the gene 

expression of the particular gene and (ii) integrates highly connected regulators that 

influence the expression of the particular gene directly by binding to its promoter or 

indirectly by interacting with other regulators. Both objectives can be easily 

combined by a tradeoff parameter, which shows the power of MILP compared to 

other approaches. Solving such an optimization problem with more than one 

objective function is called Pareto-optimization. Here, both objectives are 

understood as separate functions and are integrated by a weighting factor into one 

combined objective. This led to a reduction of the objectives and an optimal solution 

of the combined objective function is determined. To avoid an arbitrary weighting 

factor a separate optimization of several weighting factor combinations is 

necessary. Typically, there is more than one clear solution. Therefore, the set of 

solutions is called Pareto-optimum. The Pareto optimum restricts the search space 

to find the best compromise between all objectives, so that an improvement of one 

objective does not lead to a deterioration of the other. For the MIPRIP-Net approach, 

models of 9 different weighting factors were constructed. The optimal weighting 
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factor was evaluated based on the number of selected regulators per objective 

(MIPRIP and modularity). The performance of the MIPRIP-Net models was 

estimated from MIPRIP, but the combination with the modularity influences the 

regulators which were selected by the MIPRIP model. Plotting the number of 

selected regulators separately for both objectives, the intercept of both curves 

defines the optimal weighting factor. At this point the number of regulators selected 

by the basic MIPRIP approach and by the new modularity-based approach were 

balanced and the prediction performance was still comparable to MIPRIP alone. The 

final network models were then computed with the optimized weighting factor and 

the combination of direct regulators, which was used in most of the MIPRIP models 

over all cross-validation runs, was selected. For this combination the highly 

connected indirect regulators were identified. The optimization of the weighting 

factor has to be performed once per dataset. The current implementation of MIPRIP-

Net is limited to the “best” subnetwork, but it can be extended for the identification 

of several clusters/modules. 

All MIPRIP variations can be easily applied to gene expression data to identify the 

most important regulators of a particular gene in or between different conditions. So 

far, MIPRIP-Comp together with the basic MIPRIP version (single-mode) is 

implemented in the R-package ‘MIPRIP2’. ‘MIPRIP2’ together with the generic 

regulatory networks, a user’s guide and some example data is publicly available at 

https://github.com/network-modeling/MIPRIP and http://www.leibniz-

hki.de/en/miprip.html.   

In this thesis, MIPRIP was applied to study the regulation of the telomerase in S. 

cerevisiae as well as different types of human cancers. 

 

 

4.2 Telomerase regulation in S. cerevisiae 

Telomere length maintenance is a precisely controlled process in all eukaryotic 

cells. Its activation is highly important during embryogenesis as well as for cancer 

cells to enable their replicative immortality. In contrast to somatic cells, stem cells, 

most of the cancer cells as well as S. cerevisiae express the telomerase. As the 

telomeres are highly conserved between eukaryotes and around 23 % of all yeast 

genes have human homologs, S. cerevisiae is a well suited model system to study 
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telomere maintenance (Teixeira, 2013). Therefore, I studied the transcriptional 

regulation of the telomerase in S. cerevisiae. In yeast, the telomerase consists of 

the ever shorter telomere (EST) 1-3 genes and the template RNA TLC1. Around 

500 TLM genes have been identified that showed shorter or longer telomeres 

compared to the wild-type when mutated (Askree et al., 2004; Ben-Shitrit et al., 

2012; Gatbonton et al., 2006; Shachar et al., 2008; Ungar et al., 2009). TLM genes 

leading to shorter telomeres after deletion are positive regulators of telomere 

maintenance and their absence may have a direct influence on the expression of 

the telomerase as well as their activity. Hence, MIPRIP was applied to gene 

expression data of yeast deletion strains to identify the most important regulators of 

each EST gene by comparing the regulatory processes between yeast deletion 

strains with short telomeres compared to deletion strains with normal (wild-type) 

telomere length. The putative regulators of the three EST genes were extracted from 

the generic yeast regulatory network and were mainly based on ChIP-experiments. 

The MIPRIP analysis of the EST genes resulted in 32 regulators which were 

significantly more often selected in the models of the samples with short telomeres 

compared to the samples with normal telomere length (controls). For EST1, I 

identified Sum1, Hst1 and Srb2 as the most significant regulators of the short tlm 

deletion strains compared to the controls. Sum1 is a chromatin silencing factor 

which can build a complex together with Hst1 and Rfm1 (Bedalov et al., 2003; Li et 

al., 2013; McCord et al., 2003; Zill and Rine, 2008). This complex deacetylases the 

histones at the promoters and therefore represses the expression of the genes. The 

MIPRIP results led to the assumption that a complex of Sum1 and Hst1 is involved 

in EST1 regulation and maybe also Rfm1 is indirectly involved as it can be part of 

the complex (McCord et al., 2003). Furthermore, it was shown, that Sum1 can 

similarly to the sirtuins Sir2 and Hst1 interact with Rap1, indicating that Sum1 is 

involved in telomere maintenance (Li et al., 2013). However, until now no direct 

influence of Sum1 or Hst1 on the expression of the EST genes has been reported. 

A deletion of SUM1, HST1 or SRB2 led to yeast strains with shorter telomeres and 

the expression of EST1 was highly upregulated in these deletion strains. This 

upregulation of EST1 in response to SUM1 deletion could be also confirmed by 

quantitative RT-PCR from our collaboration partner Andre Maicher from the group 

of Prof. Luke (IMB, Mainz). Hence, Sum1 is a negative regulator of EST1. This 

finding is surprising as the sum1 deletion strain showed shorter telomeres. As EST1 
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is upregulated in the samples with shorter telomeres compared to samples with wild-

type telomere length, there could be some imbalances between the telomerase 

subunits which limit the activity of the telomerase. Our results suggest that Sum1 

and Hst1 are further involved in telomere maintenance besides their interaction with 

Rap1. If these regulators are not directly involved in the transcription of the EST 

genes, they can also act as chromatin remodellers. As shown for other networks 

(Fu et al., 2012; Mangan and Alon, 2003; Mangan et al., 2006; Mangan et al., 2003), 

Sum1 together with Hst1 and EST1 could form an incoherent feed-forward loop to 

regulate telomere length maintenance. In this incoherent loop, either Sum1/Hst1 or 

EST1 positively regulate telomere length, while EST1 is negatively regulated by the 

Sum1/Hst1 complex (Figure 28). Negative feedback mechanisms play a self-

regulating role in the cell and are also crucial for telomere maintenance. It was 

reported that Rap1 together with the Rif-complex represses the elongation of 

telomeres via a negative feedback loop (Yang et al., 2017). Furthermore, Est1 can 

be degraded by the proteasome and is not present during G1 phase (Osterhage et 

al., 2006). This indicates that EST1 can be part of the negative feedback loop 

together with the Rap1 interacting proteins Sum1 and Hst1. 

 
Figure 28. Incoherent feed-forward loop.  
Hst1/Sum1 negatively regulates EST1, whereby Hst1/Sum1 and EST1 
positively regulate telomere length. Image taken from (Poos et al., 2016). 

 

For EST2, only Gln3 was identified as a significant regulator in the MIPRIP analysis. 

Gln3 has not been described in the context of telomere maintenance before, but a 

deletion of GLN3 leads to a strong downregulation of EST2. According to our 

preditions, Sin3, Dig1, Srb2, Hir1 and Ume6 were significant regulators of EST3. 
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For all these regulators no direct link to telomerase regulation was reported so far. 

Ume6 and Sin3 together repress the expression of meiotic genes (Lardenois et al., 

2015). But it was also reported previously that Ume6 can act as a positive regulator 

(Rubin-Bejerano et al., 1996; Washburn and Esposito, 2001). From these 

regulators, a deletion of UME6 is associated with a strong upregulation of EST3, 

while EST3 is downregulated in the deletion strains sin3, srb2, dig1 and hir1.  

In summary, MIPRIP was applied to study the regulation of the three EST genes in 

yeast deletion strains with shorter telomeres compared to deletion strains with 

normal telomere length. This resulted in novel regulators of the telomerase 

holoenzyme and several of these regulators affect histone levels or modifications. 

Especially Sum1 had a high influence on the expression of EST1, which could also 

be validated in two cell lines.  

 
 
4.3 Pan-cancer analysis of TERT regulation 
The activation of telomere maintenance mechanisms is crucial for cancer cells to 

enable their replicative immortality. Most cancer cells maintain their telomeres by 

re-activating telomerase, a reverse transcriptase consisting of the catalytic subunit 

TERT and the template RNA TERC (Sandin and Rhodes, 2014). TERC is 

consistently expressed, but the expression of TERT is the limiting factor of 

telomerase activity (Feng et al., 1995; Kim et al., 1994) indicating that the regulation 

of TERT is an interesting research topic. Therefore, MIPRIP was applied to study 

the regulation of TERT in 19 different cancer entities. For this gene expression data 

from TCGA was used together with the generic human regulatory network. In the 

generic human regulatory network 75 TFs of TERT could be identified. The identified 

TFs of TERT from the databases showed a high overlap with 54 potential TERT 

regulators described in a review by Ramlee et al. (Ramlee et al., 2016). The TFs 

described in Ramlee et al. were limited to ChIP-experiments or EMSA, while the 

generic human regulatory network integrates also computationally predictions of 

TFBS.  

For the pan-cancer analysis the multi-mode of MIPRIP-Comp was used to identify 

(i) the most common TERT regulators over all cancer entities and (ii) the significant 

TERT regulators of each cancer type vs. all other cancer types. Nearly all cancer 
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types showed a good performance over all 300 models. Thymoma and testicular 

germ cell cancer showed the highest TERT expression and also the best 

performance. For melanoma skin cancer the worst performance was observed, 

even though the expression of TERT was not lowest.  

 

4.3.1 Nine regulators were predicted to be involved in TERT regulation in all 

different cancer entities 

The multi-mode MIPRIP analysis led to nine regulators of TERT which were 

significant across all cancer types. To validate these regulators in silico, I performed 

a Pubmed query with the regulator symbols in the context of telomerase regulation. 

This search led to a significant enrichment of Pubmed entries of these regulators 

together with TERT. From the nine common TERT regulators, AR, E2F2, E2F4, 

PAX5 and PAX8 have been described in the literature as regulators of TERT. The 

androgen receptor (AR) is a nuclear receptor and has been reported as a repressor 

of TERT in prostate cancer. Treatment with an AR agonist inhibited the promoter 

activity of TERT, while treatment with an AR antagonist did not result in the same 

effect. If AR is mutated, the recruitment to the TERT promoter was less efficient 

(Moehren et al., 2008). Besides prostate cancer, AR was also identified as a 

significant hit in bladder, breast, colorectal and ovary cancer. Several members of 

the family of E2F TFs were found as significant in 13 out of the 19 different cancer 

entities. Factors of the E2F TF family are part of the DNA damage response and are 

also involved in cell cycle. They can bind to the E2 recognition motif (Crowe et al., 

2001). E2F2 is an activator of TERT and E2F4 was found as a regulator of TERT in 

human B-cell lymphoma (Chebel and Ffrench, 2010; Mani et al., 2008). PAX5 and 

PAX8 were identified in nearly half of the cancer types (9 out of 19) and are active 

during early development. They have 2 respectively 4 binding sites at the TSS of 

the TERT promoter to activate the transcription of TERT (Bougel et al., 2010; Chen 

et al., 2008). A siRNA knockdown as well as an over-expression assay of PAX5 in 

lymphocytes showed that PAX5 is an activator of TERT (Bougel et al., 2010). PAX8 

is also an activator of TERT. In addition, it can also activate TERC (Chen et al., 

2008). Besides the 5 well characterized TERT regulators, I identified the regulators 

BATF (predicted for 6 out of 19 cancer types), MXI1 (3 out of 19), SMARCB1 (4 out 

of 19) and TAF1 (5 out of 19) as significant TERT regulators of all cancer types. 

These regulators have not been described in the literature so far. SMARCB1 is part 
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of the SWI/SNF chromatin-remodeling complex (Wang et al., 2017). In S. cerevisiae, 

it was reported that the Swi/Snf complex is involved in the silencing of genes close 

to telomeres (Dror and Winston, 2004). In humans, a depletion of the SWI/SNF 

related gene SMARCAL1 led to an ALT-like phenotype (Poole et al., 2015) 

suggesting that also other members of the SWI/SNF complex may be involved in 

telomere maintenance. 

In summary, MIPRIP performed well to predict the regulation of TERT in different 

cancer types. Several well-described regulators of TERT could be identified, but 

also new promising regulators of TERT that would need further experimental 

validation. 

 

4.3.2 TERT promoter mutations led to different regulatory mechanisms in 

melanoma 

In the pan-cancer analysis of TERT, the modeling performance was worst for 

melanoma. As melanoma skin cancer is one of the cancer entities with a high rate 

of TERT promoter mutations, the melanoma skin cancer dataset was divided into a 

group of samples showing a TERT promoter mutation and a control group with wild-

type TERT promoter to improve the modeling performance. With these subgroups 

a MIPRIP dual-mode analysis was performed to identify the regulators which were 

significantly selected more often in one of the groups compared to the other group. 

For the melanoma skin cancer samples with TERT promoter mutation the regulators 

AR, E2F1, ETS1 and JUND were most significant. AR was also a significant 

common TERT regulator in the pan-cancer analysis described above. So far, AR 

has been identified as a TERT regulator only in prostate cancer. But AR can also 

increase cell invasion in melanoma cells (Wang et al., 2017). E2F1 is a repressor of 

TERT  (Crowe et al., 2001). It was recently shown that an inhibition of E2F1 can 

increase the cell death rate in melanoma cells, even for melanoma cells resistant to 

BRAF-inhibitors (Rouaud et al., 2018). Hence, E2F1 is an interesting therapeutic 

target in melanoma cells. But from the identified regulators specific for the 

melanoma samples with a TERT promoter mutation ETS1 was the most prominent 

hit as these mutations create an additional binding site for TFs of the ETS-family 

(Horn et al., 2013; Huang et al., 2013). TERT promoter activity is enhanced by ETS 

binding and a p52 dependent activation of the non-canonical NF-kB signaling 

pathway (Li et al., 2015). It was furthermore shown that these TERT promoter 
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mutations can lead to a two- to four-fold higher TERT promoter activity in melanoma 

cells (Horn et al., 2013; Huang et al., 2013). I analyzed publicly available expression 

data of an ETS1 siRNA knockdown in a melanoma cell line with a TERT promoter 

mutation. TERT was downregulated in the knockdown sample compared to controls 

showing the activating effect of ETS1 on TERT expression. To evaluate the 

performance of MIPRIP, the MIPRIP results of the melanoma case study were 

compared to results obtained with the well-established tool ISMARA. However, the 

overlap between both tools was very low. ISMARA was not able to predict ETS1 as 

an important regulator of TERT in the samples with the promoter mutation, but 

instead GABPA, another member of the ETS-family, was predicted with very low 

significance. It was shown that GABPA can bind only to the TERT promoter mutation 

at site C228T and not at C250T (Mancini et al., 2018). However, only one third of 

the mutated samples had the mutation at C228T, while two-third showed a C250T 

mutation (Cancer Genome Atlas, 2015). Hence, it would be interesting in the future 

to perform a MIPRIP analysis separately for the C228T and the C250T mutated 

samples. 

For the melanoma skin cancer samples with the wild-type TERT promoter, the 

regulators HMGA2, HIF1, RUNX2 and TAL1 were identified as most significant 

TERT regulators. HMGA2 belongs to the high-mobility group of AT-hook proteins. 

These proteins are expressed during embryonic development (Chiappetta et al., 

1996), in several benign tumors like lipomas (Schoenmakers et al., 1995) and in 

malignant tumors of the vulva (squamous cell carcinoma and malignant melanoma) 

(Agostini et al., 2015). Only a few malignant vulva samples showed a TERT 

promoter mutation, but HMGA2 was expressed in nearly all samples (Agostini et al., 

2015). This suggests that TERT and HMGA2 are involved in tumorigenesis, while 

the association between TERT promoter mutations and HMGA2 expression is still 

unclear. The model suggests that HMGA2 regulates TERT only in the absence of a 

TERT promoter mutation, for which an experimental validation would be interesting.  

With the melanoma case study, I showed that splitting up the datasets into distinct 

subtypes increases the modeling performance and is necessary to identify the exact 

regulatory mechanisms. Melanoma skin cancer patients with a TERT promoter 

mutation have a decreased survival rate compared to patients without this mutation 

(Griewank et al., 2014). The subtype specific regulators can be used as biomarkers 

to improve risk stratification or for targeted therapies. 
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4.4 Regulatory network explaining TERT regulation in prostate cancer 
Until now, neither TERT promoter mutations nor ALT occurrence have been 

detected in prostate cancer (Heaphy et al., 2011). Therefore, prostate cancer is well 

suited to find new regulators of telomerase. The pan-cancer MIPRIP analysis led to 

17 significant regulators that were specific for prostate cancer compared to all other 

cancer entities (Table 10). As there were also some healthy prostate samples 

available, I compared the regulatory processes between prostate cancer and 

healthy prostate tissue. This led again to 17 cancer-specific regulators. Although, 

the TERT expression in healthy tissue samples was very low, 12 regulators were 

overlapping between both MIPRIP analyses. With these 12 prostate cancer specific 

TERT regulators and their most important regulators, I performed a MIPRIP-Net 

analysis to identify a regulatory network explaining TERT regulation. After the 

optimization of the tradeoff-parameter, the subnetwork, which (i) could best predict 

the expression of TERT and (ii) was highly connected with other regulators, 

consisted of six significant direct TERT regulators as well as fourteen additional 

regulators. The six significant direct TERT regulators were BHLHE40, CTCF, IRF1, 

MITF, PITX1 and TFAP2D. From the additional regulators, seven regulators can 

potentially bind to the TERT promoter, SMC3, PML and USF1 showed a link to 

telomere maintenance (based on the TelNet database) and POLR2A is relatively 

often mutated in prostate cancer patients (8%) which indicates that our subnetwork 

includes several telomere maintenance relevant hits. To validate the MIPRIP 

predictions, our collaboration partners at the University Hospital Hamburg-

Eppendorf, the group of Guido Sauter/Ronald Simon, performed an IHC-staining of 

the six significant direct regulators BHLHE40, CTCF, IRF1, MITF, PITX1 and 

TFAP2D on TMAs of approximately 17,000 patients. Here, we focused on PITX1 as 

it was the most significant regulator of TERT in both MIPRIP analysis.  

The paired-like homeodomain 1 (PITX1) gene was originally described as a 

developmental factor. A study in mice showed that the enhancer Pen can regulate 

Pitx1 only in hindlimbs because of the hindlimb’s specific 3D chromatin structure 

(Kragesteen et al., 2018). PITX1 is described as a tumor suppressor (Otsubo et al., 

2017), an activator of p53 (Liu and Lobie, 2007), an inhibitor of the RAS pathway 
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(Kolfschoten et al., 2005) and in hypoxia cells PITX1 promotes proliferation through 

the HIF1a response (Mudie et al., 2014). All these facts make PITX1 an interesting 

target for cancer therapy. There are also two studies which showed that PITX1 is a 

substrate of the protein tyrosine phosphatase 1B (PTP1B), which can be inhibited 

by Sorafenib in hepatocellular carcinoma (Tai et al., 2016) or Regorafenib in 

colorectal carcinoma (Teng et al., 2016). In the last one to two years many papers 

described PITX1 as a potential biomarker in different cancer types, e.g. melanoma 

(Osaki et al., 2013) and oral epithelial dysplasia (Nakabayashi et al., 2014). A high 

PITX1 expression is associated with a favorable outcome in osteosarcoma (Kong 

et al., 2015), colorectal (Knosel et al., 2012) and gastric cancer (Qiao et al., 2018) 

as well as esophageal squamous cell carcinoma (Otsubo et al., 2017). In lung 

adenocarcinoma patients, a high PITX1 expression is linked to DNA methylation 

and a poor prognosis (Song et al., 2018). PITX1 is described to be low expressed 

in different cancer types, including prostate and bladder cancer (Kolfschoten et al., 

2005). This is in high agreement with our data, where only 4 % of all analyzed tumor 

samples showed a high PITX1 expression. Compared to normal prostate tissue 

PITX1 is upregulated in around two-thirds of the prostate cancer patients. It turned 

out that PITX1 is a well suited prognostic marker in prostate cancer, which is 

positively correlated with ERG-fusions as around 80 % of the prostate cancer 

patients upregulate PITX1 (55 % in the ERG-fusion negative group). An 

upregulation of PITX1 led to a poorer survival in ERG-fusion positive and negative 

patients, a higher cell proliferation and all kind of tumor aggressiveness (advanced 

tumor stage, high Gleason grade, presence of lymph node metastasis, higher levels 

of pre-operative PSA and positive surgical margin). Caroline Bauer from the group 

of Karsten Rippe (DKFZ & BioQuant Heidelberg) is currently investigating the effect 

of PITX1 on TERT expression and telomerase activity in the 5 prostate cancer cell 

lines DU145, LnCap, C4-2, PC-3 and PC3-AR (provided by the lab of Aria 

Baniahmad at the University Hospital Jena). So far, PITX1 was described as a 

suppressor of mtert expression and telomerase activity in melanoma cells (Qi et al., 

2011). Qi et al. imported a human chromosome 5 into the mouse melanoma cell line 

B16F10 by using microcell-mediated chromosome transfer. They found that PITX1 

can directly bind to the mtert/hTERT promoter (1 binding site at mtert promoter, 3 at 

hTERT). In a further study they showed that PITX1 is directly regulated by the 

microRNA-19b (miR-19b). An inhibition of PITX1 expression by miR-19b is 
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associated with an increased hTERT transcription and proliferation in melanoma 

cells (Ohira et al., 2015). It was furthermore shown that PITX1 binds to the TERT 

promoter in gastric cancer (Qiao et al., 2018). In addition to prostate cancer I 

identified PITX1 as a significant TERT regulator also in head and neck squamous 

cell carcinoma, ovary and cervical cancer (Poos et al., 2019). For head and neck 

squamous cell carcinoma, PITX1 was described as a promising biomarker because 

a DNA hypermethylation of PITX1 leads to a poorer prognosis (Sailer et al., 2018) 

and PITX1 expression could be used to predict chemotherapy response (Takenobu 

et al., 2016).  

The subnetwork includes also CTCF, IRF1, TFAP2D, BHLHE40 and MITF as 

significant regulators of TERT in prostate cancer. The CCCTC-binding factor 

(CTCF)  is a chromatin-binding factor which can bind to more than 20,000 DNA loci 

in the human genome (Ohlsson et al., 2001). CTCF is crucial for the organization of 

the three-dimensional chromatin structure (Ong and Corces, 2014). Furthermore, it 

is involved in the transcriptional regulation of thousands of genes where it can act 

as activator, but for most genes CTCF has a repressive effect (Ramlee et al., 2016). 

CTCF can bind to the first exon of TERT suppressing its expression in telomerase-

negative non-cancer cells (Renaud et al., 2007), preferentially to unmethylated 

sites. It was furthermore reported to bind to an enhancer region around 4.5 kb 

upstream of the TSS of the TERT promoter repressing its expression (Eldholm et 

al., 2014). We identified CTCF as a good prognostic marker for ERG-fusion negative 

prostate cancer patients (Höflmayer et al., 2019). Furthermore, a first IHC staining 

of IRF1 and TFAP2D showed that both could be potential prognostic markers for 

prostate cancer. IRF1 is involved in the IFN-gamma signaling repression of both 

TERT expression and telomerase activity (Lee et al., 2003). MITF and BHLHE40 

could not be clinically validated, because there was no suitable antibody available. 

Still, overall four out of the six direct regulators of our subnetwork suit as prognostic 

marker and a high expression of at least 3 of the 4 markers led to a poorer PSA-

progression free survival than one marker alone. This is in line with the co-operative 

effect of TFs in the MIPRIP model.  

CEBPA was also a prostate cancer specific TERT regulator in the pan-cancer 

MIPRIP analysis but was not included in the “best” subnetwork. The 

CCAAT/Enhancer binding protein alpha (CEBPA) is a leucine zipper transcription 

factor (Johnson et al., 1987; Landschulz et al., 1988) and is involved in cell 
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proliferation (Wang et al., 2001), terminal differentiation (Chen et al., 1996; 

Timchenko et al., 1997), the control of inflammatory and immune response (Bristol 

et al., 2009; Poli, 1998) as well as maintenance of energy metabolism (Wang et al., 

1995). It has been furthermore described as a repressor of TERT and its loss is 

correlated with activation of TERT expression during tumorigenesis (Kumar et al., 

2013). CEBPA modulates the transcription of androgen responsive genes (Zhang 

et al., 2010) and two studies showed that alterations of CEBPA expression are 

associated with higher Gleason grades (Yin et al., 2009; Yin et al., 2006) suggesting 

an important role of CEBPA in prostate cancer. CEBPA was also validated by our 

collaboration partners. Here, we found a strong prognostic impact of CEBPA for 

ERG-fusion positive tumor samples with a PTEN deletion. For this subgroup a loss 

of CEBPA expression was significantly associated with a poor outcome (p-value = 

0.0011), an advanced tumor stage (p-value < 0.0001), a high Gleason grade (p-

value < 0.0001), high preoperative levels of PSA (p-value = 0.0066) and positive 

nodal stage (p- value = 0.0003) (Minner et al., 2019). 

Nowadays, the PSA level and the Gleason grading are the best-established 

parameters for prostate cancer. However, the postoperative determination of the 

Gleason grade is more precise than the preoperative determination (Epstein et al., 

2012). To optimize the grading of the biopsies novel biomarkers can be very 

important and can be included in treatment decisions or can prevent patients from 

a radical prostatectomy. So far, the Gleason grade is a quantitative estimation by a 

pathologist and in biopsies there are sometimes only a small amount of tumor 

glands present. Thus it is especially important for biopsies to have good prognostic 

markers, and the here identified candidates suit very well for this. To validate new 

potential biomarker candidates, it is very helpful to have such a large collection of 

around 17,000 prostate cancer patients as shown in this study.  

An optimized Gleason grading system was developed by our consortium partners 

(Department of Guido Sauter, University Hamburg-Eppendorf), which is called the 

quantitative Gleason score (IQ Gleason) (Sauter et al., 2018). In an area under 

curve (AUC) analysis this IQ Gleason grading was 5 % better than the conventional 

Gleason grading. This new grading includes the percental fraction of Gleason grade 

4 and 5 glands in the probe and if also glands with a Gleason grade 5 are present 

a value of 10 is added. If more than 20 % of the glands in the probe are of Gleason 

grade 5 a further value of 7.5 is added. In summary, this means that the IQ-Gleason 
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ranges from 0-117.5. For instance, a sample with a Gleason score of 4+3=7 and 

55 % Gleason 4 has an IQ-Gleason of 55, while the IQ-Gleason of a sample with a 

Gleason score of 4+5=9 (55 % Gleason 4 and 45 % Gleason 5) is 117.5 

(55+45+10+7.5). Most markers today did not improve the stratification compared to 

the IQ Gleason. For PITX1, there was still a stratification for several groups with the 

same IQ Gleason. But the sample size was quite low and the effect was not 

significant. 

In summary, I developed a novel method integrating MIPRIP with a modularity-

based approach and applied it to investigate the regulatory subnetwork which best 

explains the regulation of TERT in prostate cancer patients. The extension of 

MIPRIP led to a broader view on TERT regulation in prostate cancer because also 

the regulators indirectly influencing the expression of TERT by interacting with other 

regulators were integrated. Several of the identified TERT regulators could be 

validated as novel biomarkers for prostate cancer. According to our predictions, 

PITX1 was the most significant TERT regulator in prostate cancer. These 

biomarkers are highly relevant for clinicians to decide at the biopsy level if a radical 

prostatectomy has to be performed.  

 

 

4.5 Patient stratification according to telomere maintenance mechanisms 
Glioblastoma multiform (GBM) patients have a very poor prognosis with a median 

survival of less than 9 months and limited treatment options (Hakin-Smith et al., 

2003; Sturm et al., 2014). To improve the treatment options, it is necessary to stratify 

the tumors according to their underlying biological processes. One promising 

approach is the stratification of GBM patients based on telomere maintenance 

mechanisms (TMMs). While in most adult GBMs telomerase is re-activated to 

maintain telomeres, in 44 % of pediatric GBMs an ALT pathway is active (Hakin-

Smith et al., 2003; Heaphy et al., 2011; Schwartzentruber et al., 2012). In a recent 

study 7 pedGBM cell lines with different genetic backgrounds in the 

ATRX/DAXX/H3.3 axis and 57 pedGBM patient samples were characterized 

regarding typical TMM features extracted from sequencing data as well as 

cytological and molecular assays (Deeg et al., 2017).  
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While some telomerase inhibitors were tested in clinical trials, a promising drug 

target specific for ALT-positive tumors has not yet been identified. To use TMM as 

a therapeutical target a reliable TMM classification is crucial. As previously shown 

ALT-positive GBM patients have a longer survival rate (11.9 months compared to 

10.2 months) (Hakin-Smith et al., 2003; Mangerel et al., 2014; McDonald et al., 

2010). The presence of C-circles is a well-established marker for ALT (Cesare and 

Reddel, 2010; Henson and Reddel, 2010). For the C-circle assay only a very little 

amount of DNA (60 ng) is required. Hence, it would be also an interesting option to 

integrate this assay into the clinical routine. But the instability of the single-stranded 

C-circles can lead to false-negative results (Henson et al., 2009). Therefore, a 

combination with other ALT assays is essential to get a reliable patient stratification. 

So far, the detection of ultra-bright telomere foci by FISH (Mangerel et al., 2014) is 

the most frequent used technique to identify ALT. However, for this technique tissue 

sections are required which is a major disadvantage of this method because patient 

material is always limited. Furthermore, a quantitative evaluation is difficult (Gunkel 

et al., 2017). To construct a classifier which can distinguish between ALT and non-

ALT samples first a set of training samples with known ALT status had to be 

determined. A combination of features extracted from DNA-, RNA-seq or DNA 

methylation assays resulted in a reliable TMM prediction. As sequencing readouts 

are more and more used in the clinical routine, no additional assays have to be 

performed. Instead of performing DNA- or RNA-seq it would be also possible to 

determine the expression level or mutation status of the most reliable features by 

PCR. One limitation of the classifier here was the low sample size together with the 

incomplete feature list for most of the samples. This makes the prediction difficult 

and only comparable for similar sample sizes. The advantage of a decision tree-

based approach is that features from different datatypes (e.g. sequencing and 

experimental data) can be easily integrated. In the present form, the classifier 

distinguishes only between ALT-positive and ALT-negative samples. More specific 

subgroups could have been defined if the sample set would have been larger. For 

example, a discrimination of ALT-negative samples with activated telomerase or the 

presence of the ever shorter telomere phenotype. Furthermore, the possibilities of 

both TMMs being active in the same tumor sample or a TMM switch within a tumor 

sample exist.  
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The classifier was implemented as a web tool called ‘Predicting ALT IN Tumors’ 

(PAINT) by Nick Kepper from the group of Prof. Rippe (DKFZ, Heidelberg). At the 

moment PAINT is only available for pedGBM, however, an extension for other 

cancer entities, e.g. neuroblastoma or soft tissue sarcoma has been considered. 

Such an extension would require a sample set with a size of at least 100 samples 

for training purposes.  

A number of studies with attempts of identifying a gene expression signature to 

distinguish between ALT and non-ALT samples (Barthel et al., 2017; Doyle et al., 

2012; Lafferty-Whyte et al., 2009). To my knowledge, no reliable TMM gene 

signature has been identified. A possible explanation for this could be that tissue 

and cell type specific effects are much higher than the difference between ALT and 

non-ALT. 

Therefore, there is an unmet need to identify a TMM gene signature for pedGBM. 

Accordingly, I performed a differential gene expression analysis together with a 

calculation of regulator activities (as described for the MIPRIP framework). 

Altogether, I identified 115 genes (p-value < 0.01) and 15 regulators (p-value < 0.05) 

as differential expressed/active between ALT-positive and ALT-negative samples. 

A clustering based on the differential expressed genes did not lead to a reliable 

prediction into ALT and non-ALT. Only the clustering based on the activities of the 

differential active regulators identified 2 separate clusters. In the ALT-negative 

samples, 15 regulators showed a significantly higher activity compared to the ALT-

positive samples, including known TERT regulators: SIN3A, ETS1, PAX5, MXI1, 

POU2F2 and BCL11A. These regulators were downregulated in all ALT samples 

and only in 4 out of 20 non-ALT samples. Therefore, it seems that these six 

regulators were highly important for telomerase activity in the non-ALT samples. 

The classification based on regulator activities performed much better than a 

standard gene expression analysis. Thus, regulator activities are a powerful and 

robust method for many different applications. Furthermore, it would be interesting 

to test if the regulator signature is also valid for other cancer entities (e.g. 

neuroblastoma) to distinguish between ALT positive and ALT negative. 

As described before H3.3 G34R/V and K27M mutant tumors showed specific gene 

expression profiles that are distinct from each other and from tumors with wild-type 

H3.3 (Bender et al., 2013; Schwartzentruber et al., 2012; Sturm et al., 2012). In this 

study, 24 out of 57 pedGBM patient samples harbored a mutation in H3F3A (15 ALT 
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and 9 non-ALT). Therefore, it is important to keep in mind that there exist different 

subtypes (e.g. H3.3 K27M vs. G34R/V) when talking about gene signatures. 

Because of the low sample number, it was not possible to identify a reliable cancer 

subtype specific expression profile which can be also linked to TMM.  

In summary, I developed a reliable classification schema to stratify pedGBM patients 

into ALT and non-ALT, which has the potential to be used in the clinical routine in 

order to improve patient stratification and in-line selection of treatment strategies. 

 

 

4.6 Comparison of the MIPRIP approach with ARACNE and VIPER 
To elucidate the advantages and disadvantages of the MIPRIP approach, I 

compared MIPRIP with the well-established tools ARACNE (Lachmann et al., 2016) 

and VIPER (Alvarez et al., 2016). VIPER calculates regulator activities based on the 

expression of the target genes, which are determined from a network calculated with 

the ARACNE algorithm. ARACNE calculates a de-novo network from gene 

expression data using mutual information (Lachmann et al., 2016). The activities 

can then be calculated either across multiple samples or separately for each sample 

(Alvarez et al., 2016). As shown for the melanoma case study, MIPRIP is also 

compared to ISMARA well suited to predict regulators of TERT in melanoma 

samples with and without TERT promoter mutation (see 3.3.3). As TERT is usually 

weakly expressed (Ducrest et al., 2001; Fredriksson et al., 2014), ARACNE was not 

able in contrast to MIPRIP to detect reliable regulators of TERT. Therefore, the 

comparison between MIPRIP and ARACNE/VIPER was performed with gene 

expression data of 20 CLL patients and 7 healthy controls instead of using the 

melanoma case study of TERT. The goal here was to identify regulators that 

significantly change their activity between the CLL and the non-malignant B-cell 

samples. Because of the low sample size of the CLL-data, a B-cell specific ARACNE 

network was constructed based on publicly available microarray gene expression 

data of 267 malignant and non-malignant B-cell samples (Basso et al., 2010). The 

ARACNE network is not limited to TFs as MIPRIP and includes also co-regulators 

and signaling proteins. First, I compared the number of target genes of the 

regulators in the ARACNE B-cell network and the generic human regulatory 

network. In both networks most of the regulators had less than 500 target genes. 
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But the generic regulatory network contains some master regulators with 10,000 to 

15,000 target genes indicating the research intensity of these factors. The generic 

regulatory network integrates biological knowledge in form of ChIP-experiments, 

while ARACNE uses just gene expression data to predict regulator to target gene 

interactions. Furthermore, ARACNE requires large datasets (Ding et al., 2018) and 

the network construction is computationally very intensive. Second, I compared the 

regulators that had a significant change in their activity values between the CLL and 

the healthy samples. Here, I found a high overlap between the significant regulators 

of both methods. This showed that the activity calculation led to similar results 

although the regulator to target gene interactions were not similar between both 

networks. Both approaches seem to have problems with regulators where the 

activating and repressing effect of the target genes are similar. 

In summary, the MIPRIP approach performs well in combination with the well-

established tools ARACNE and VIPER. Therefore, MIPRIP is well suited to study 

the regulatory processes of a particular gene. Furthermore, the high overlap 

between the regulator activities calculated with the MIPRIP approach and with 

VIPER indicate that an ARACNE network could be used for the MIPRIP approach 

instead of the generic regulatory network. This would be an interesting option to 

include also co-factors and signaling molecules into the MIPRIP model, although 

this would work only for genes that are higher expressed and have several 

interacting partners in the network. 
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Conclusions and perspectives 
In this thesis, I developed a new tool called ‘Mixed Integer linear Programming 

based Regulatory Interaction Predictor’ (MIPRIP) to identify the most important 

regulators of a gene of interest. MIPRIP can be used to compare the regulatory 

processes between two different datasets/conditions (e.g. treatment vs. control) or 

multiple datasets/conditions (e.g. pan-cancer analysis) (MIPRIP-Comp). 

Furthermore, MIPRIP was extended with a modularity-based approach to identify a 

gene regulatory network of TFs regulating the gene of interest (MIPRIP-Net).  

Its application on the regulation of telomere maintenance is summarized in 

Figure 29.  

 
Figure 29. Modeling of telomere maintenance in yeast and different cancer types 
 

First, MIPRIP was applied to identify novel regulators of the telomerase holoenzyme 

(EST genes) in S. cerevisiae. Several of the identified regulators affect histone 

levels or modifications. The most prominent hit was Sum1, which could be validated 

experimentally as a regulator of EST1. Second, I performed a pan-cancer analysis 

to study the regulation of human telomerase (TERT), which identified generic as 

well as cancer entity specific regulators. Using melanoma skin cancer was as a case 

study, I showed that MIPRIP was able to identify the well-known TERT regulator 

ETS1 (Horn et al., 2013; Huang et al., 2013) as a significant TERT regulator in 

melanoma samples with a TERT promoter mutation. The novel concept of MIPRIP-
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Net led to a gene regulatory network of 20 TFs that was predicted to regulate TERT 

expression in prostate cancer. From these 20 regulators, PITX1, CTCF, IRF1, 

TFAP2D, MITF and BHLHE40 were most significant. An IHC staining of these 6 

regulators on TMAs of around 17,000 patients showed that PITX1, CTCF, IRF1 and 

TFAP2D are novel prognostic markers in prostate cancer. Thus, I could identify TFs 

whose activity can be determined in biopsy samples to support clinical decisions on 

radical prostatectomy. These interesting hits are currently validated via knock-down 

in prostate cancer cell lines. 

Third, for pediatric GBM, a cancer entity with a high occurrence of ALT, I constructed 

a decision tree-based classifier to stratify pedGBM patients according to their active 

TMM (ALT or non-ALT) by using typical TMM features extracted from sequencing-

based readouts as well as from cytological and molecular assays. Here, I could 

show that a combination of different sequencing-based readouts leads to a highly 

reliable TMM prediction. After patient stratification into ALT and non-ALT samples, 

I identified a regulator signature that is downregulated in ALT pedGBM patient 

samples. Several of these regulators can bind to promoter of TERT. It will be 

interesting to test if the activity of these regulators correlates with clinical 

parameters. 

Last, I compared the MIPRIP framework with the well-established tools ARACNE 

and VIPER from the Califano lab. Here, I found a high overlap between the TFs 

showing a significantly different activity between the CLL and the non-malignant B-

cell samples calculated with MIPRIP and VIPER. This indicates that a network 

constructed using the ARACNE algorithm could be combined with MIPRIP to 

integrate also transcriptional co-factors, chromatin modifiers and other signaling 

molecules into the regulatory models. 

In summary, MIPRIP identified new regulators of the telomerase, several of which 

could be validated as novel prognostic markers of prostate cancer. Thus, MIPRIP is 

well suited to study gene regulation. 
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Appendix 

Table S1. Corresponding genes of the investigated regulator (R) deletion strains of 
the dataset of Reimand and coworkers (Reimand et al., 2010).  
 

R Group R Group R Group R Group 
CDC73 short  ARG81 control GAT1 control LEU3 control 

CST6 short  ARG82 control GAT3 control MAC1 control 

GAL11 short  ARO80 control GCN4 control MAL13 control 

HFI1 short  ARR1 control GCR1 control MAL33 control 

HST1 short  ASH1 control GCR2 control MBF1 control 

MOT2 short ASK10 control GLN3 control MBP1 control 

MOT3 short AZF1 control GTS1 control MCM1 control 

OPI1 short BAS1 control GZF3 control MDS3 control 

PGD1 short BDF2 control HAA1 control MET28 control 

RPN4 short CAC2 control HAC1 control MET31 control 

RSC2 short CAD1 control HAL9 control MET32 control 

RTF1 short CAF17 control HAP2 control MGA1 control 

SIF2 short CAF4 control HAP3 control MGA2 control 

SIN3 short CAT8 control HAP4 control MIG1 control 

SIR3 short CBF1 control HAP5 control MIG2 control 

SRB2 short CHA4 control HAT1 control MSI1 control 

SRB5 short CIN5 control HAT2 control MSN1 control 

SUM1 short CRZ1 control HDA1 control MSN2 control 

DIG1 long CSE2 control HIR1 control MSN4 control 

HCM1 long CUP2 control HIR2 control MSS11 control 

MET18 long CUP9 control HIR3 control MTH1 control 

NUT1 long DAL80 control HMS1 control NDT80 control 

RAP1 long DAL81 control HMS2 control NGG1 control 

REB1 long DAL82 control HOG1 control NOT3 control 

RIF1 long DAT1 control HPA2 control NRG1 control 

RIF2 long DOT5 control HSF1 control OAF1 control 

SRB8 long DOT6 control HST3 control PDR1 control 

SSN2 long ECM22 control HST4 control PDR3 control 

SSN3 long ESC2 control IME1 control PDR8 control 

ABF1 control FKH1 control INO2 control PHD1 control 

ACA1 control FKH2 control INO4 control PHO2 control 

ACE2 control FLO8 control ISW1 control PHO23 control 

ADA2 control FZF1 control ISW2 control PHO4 control 

ADR1 control GAL3 control IXR1 control PIB2 control 

AFT2 control GAL4 control KAR4 control PIP2 control 

ARG80 control GAL80 control KSS1 control POP2 control 



Appendix 

 XXII 

R Group R Group R Group R Group 
PPR1 control SIN4 control SUT2 control YDR520C control 
PUT3 control SIP3 control SWI3 control YER028C control 

RCS1 control SIP4 control SWI4 control YER051W control 

RDR1 control SIR1 control SWI5 control YER130C control 

RDS1 control SIR2 control SWI6 control YER184C control 

RDS2 control SKN7 control TAF14 control YFL044C control 

RFX1 control SKO1 control TBS1 control YFL052W control 

RGM1 control SMK1 control TEC1 control YGL131C control 

RGT1 control SMP1 control THI2 control YGR067C control 

RIC1 control SNF1 control TIS11 control YGR089W control 

RIM101 control SNF11 control TOS8 control YHP1 control 

RIS1 control SNF2 control TUP1 control YIL130W control 

RLF2 control SNF5 control TYE7 control YJL103C control 

RLM1 control SNF6 control UGA3 control YJL206C control 

RLR1 control SOK2 control UME1 control YKL005C control 

RME1 control SPS18 control UME6 control YKL222C control 

ROX1 control SPT10 control UPC2 control YKR064W control 

RPD3 control SPT2 control WAR1 control YLR278C control 

RPH1 control SPT20 control WTM1 control YML081W control 

RPI1 control SPT23 control WTM2 control YMR075W control 

RSC1 control SPT3 control XBP1 control YNR063W control 

RTG1 control SPT4 control YAP1 control YOX1 control 

RTG3 control STB1 control YAP3 control YPL230W control 

RTT107 control STB2 control YAP5 control YPR022C control 

SAS3 control STB3 control YAP6 control YPR196W control 

SAS4 control STB4 control YAP7 control YRR1 control 

SAS5 control STB5 control YBL054W control ZAP1 control 

SDS3 control STB6 control YBR033W control ZDS1 control 
SEF1 control STP1 control YBR239C control ZMS1 control 

SET2 control STP2 control YDR026C control   

SFL1 control STP4 control YDR049W control   

SFP1 control SUT1 control YDR266C control   

 

The telomere phenotype was annotated from (Askree et al., 2004; Ben-Shitrit 
et al., 2012; Gatbonton et al., 2006; Shachar et al., 2008; Ungar et al., 2009). 
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Table S2. Putative regulators of the EST genes (taken from YEASTRACT). 
 

 

 

 

 

 

 

 

 
 

Regulator ESTs Regulator ESTs 
Msn4 EST1, EST2, EST3 Mbp1 EST1 

Sfp1 EST1, EST2, EST3 Mga1 EST3 

Ste12 EST1, EST2, EST3 Mig1 EST1 

Abf1 EST2, EST3 Mig3 EST3 

Ace2 EST2, EST3 Nrg1 EST2 

Cst6 EST1, EST2 Nrg2 EST2 

Fhl1 EST1, EST2 Pdr1 EST2 

Gcn4 EST1, EST2 Pdr3 EST2 

Gln3 EST2, EST3 Rfx1 EST1 

Ixr1 EST1, EST3 Rgt1 EST2 

Msn2 EST2, EST3 Rme1 EST2 

Sas3 EST2, EST3 Rsc1 EST2 

Sin3 EST1, EST3 Rtg3 EST2 

Sin4 EST1, EST3 Sko1 EST3 

Srb2 EST1, EST3 Snf1 EST2 

Swi5 EST2, EST3 Snf2 EST1 

Tec1 EST1, EST2 Snf6 EST1 

Arg81 EST2 Sok2 EST3 

Cbf1 EST1 Spt10 EST3 

Cdc73 EST2 Spt20 EST1 

Cin5 EST3 Spt4 EST3 

Cse2 EST3 Sum1 EST1 

Cup2 EST1 Swi3 EST1 

Dig1 EST3 Swi4 EST1 

Hap2 EST3 Tup1 EST1 

Hir1 EST3 Ume6 EST3 

Hsf1 EST1 Yrm1 EST2 

Hst1 EST1   
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Table S3. List of transcription factors putatively regulating TERT, from the generic 
human gene regulatory network. 

TF Edge strength 
score 

TF Edge 
strength 

score 

TF Edge 
strength 

score 
AP-2 2.00 HMGA2 2.00 PITX1 2.00 

AR 2.00 HNRNPK 2.00 POLR2A 0.50 

BATF 0.25 IKZF1 2.00 POU2F2 0.25 

BCL11A 0.25 IRF1 2.00 RAD21 0.50 

BHLHE40 2.00 JUND 2.00 RELA 2.00 

CEBPA 2.00 KLF2 2.00 REST 0.25 

CTCF 0.50 MAX 2.50 RUNX2 2.00 

CTCFL 2.00 MAZ 2.00 SIN3A 0.50 

E2F1 2.00 MEN1 2.00 SIN3AK20 0.50 

E2F2 2.00 MITF 2.00 SMAD3 2.00 

E2F4 2.25 MXD1 2.00 SMARCB1 0.25 

E2F5 2.00 MXI1 0.50 SP3 2.00 

E2F6 2.25 MYB 2.00 TAF1 0.25 

EGR1 2.50 MYC 3.75 TAF9 2.00 

EPAS1 2.00 MYCN 2.00 TAL1 2.00 

ESR1 2.00 MZF1 2.00 TCF12 0.25 

ESR2 2.00 NFAT5 2.00 TCF7 2.00 

ETS1 2.00 NFATC2 2.00 TFAP2A 2.00 

ETS2 2.00 NF.KB 2.00 TFAP2B 2.00 

GLI1 2.00 NFKB1 1.00 TFAP2C 2.00 

GLI2 2.00 NFKB.P50.P65 2.00 TFAP2D 2.00 

GRHL2 2.00 NFX1 2.00 TP53 2.00 

HEY1 0.25 NR2F2 2.00 TP73 2.00 

HIF.1 2.00 PAX5 2.00 WT1 2.00 

HIF1A 2.00 PAX8 2.00 ZBTB48 2.00 
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Table S4. Specific TERT regulators of BLCA from the pan-cancer MIPRIP analysis.  
TF p-value 

PAX8 1.92 E-14 

AR 4.23 E-12 

PAX5 5.33 E-11 

E2F6 2.50 E-09 

NF.KB 1.87 E-05 

E2F4 2.54 E-04 

SIN3A 3.10 E-04 

BATF 4.11 E-03 

GLI2 1.73 E-02 

HIF.1 1.94 E-02 

IKZF1 2.97 E-02 

NFATC2 3.95 E-02 

MYCN 3.95 E-02 

 
Table S5. Specific TERT regulators of BRCA from the pan-cancer MIPRIP analysis. 

TF p-value 

MYCN 1.17 E-17 

TAF9 5.51 E-17 

TCF12 5.47 E-13 

E2F2 5.80 E-07 

AR 5.49 E-06 

SMARCB1 9.03 E-06 

MYC 1.09 E-05 

POU2F2 4.33 E-05 

PAX8 9.28 E-05 

MAX 3.79 E-04 

TAF1 5.60 E-04 

E2F4 1.42 E-03 

BHLHE40 4.15 E-03 

CTCF 5.62 E-03 

ESR1 6.76 E-03 

HIF1A 4.73 E-02 
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Table S6. Specific TERT regulators of CESC from the pan-cancer MIPRIP analysis. 
TF p-value 

TAL1 2.76 E-15 

BCL11A 6.74 E-08 

HIF.1 6.74 E-08 

MXI1 2.04 E-07 

HIF1A 8.40 E-07 

NF.KB 1.53 E-05 

POLR2A 3.23 E-05 

E2F5 3.77 E-05 

ETS1 2.73 E-04 

MXD1 3.93 E-04 

TP73 8.11 E-04 

PITX1 1.19 E-03 

TAF9 1.74 E-03 

BATF 2.12 E-03 

AP-2 2.23 E-03 

TCF12 6.16 E-03 

TP53 4.13 E-02 

 
Table S7. Specific TERT regulators of COADREAD from the pan-cancer MIPRIP 
analysis. 

TF p-value 

RAD21 2.23 E-17 

AR 2.23 E-17 

BATF 4.61 E-13 

SP3 8.36 E-11 

TAF1 1.26 E-09 

EPAS1 4.10 E-08 

RUNX2 5.14 E-08 

SMARCB1 2.58 E-07 

HEY1 2.58 E-07 

GLI1 3.07 E-06 

CTCF 4.81 E-06 

TCF12 2.57 E-05 

E2F6 7.50 E-04 

E2F4 8.24 E-03 

PAX5 8.71 E-03 
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Table S8. Specific TERT regulators of ESCA from the pan-cancer MIPRIP analysis. 
TF p-value 

MXD1 2.23 E-19 

NR2F2 2.54 E-19 

PAX8 4.35 E-12 

GLI1 2.56 E-08 

KLF2 3.75 E-08 

GLI2 1.96 E-07 

TFAP2A 3.52 E-05 

ETS2 3.55 E-05 

RUNX2 5.54 E-05 

MAX 3.58 E-04 

NF.KB 5.19 E-04 

HMGA2 6.42 E-03 

CEBPA 2.10 E-02 

 
Table S9. Specific TERT regulators of GBM from the pan-cancer MIPRIP analysis. 

TF p-value 

ETS2 9.21 E-26 

MEN1 7.77 E-25 

WT1 7.16 E-20 

CTCFL 1.39 E-09 

EGR1 1.55 E-07 

HMGA2 1.31 E-06 

SP3 1.33 E-05 

ESR1 7.59 E-05 

TP73 2.99 E-04 

HIF.1 5.01 E-04 

RUNX2 7.10 E-03 

TFAP2D 3.69 E-02 

 

 

 

 

 

 

 

 

 

 



 

 XXVIII 

Table S10. Specific TERT regulators of HNSC from the pan-cancer MIPRIP analysis. 
TF p-value 

PITX1 1.46 E-16 

ESR1 1.39 E-15 

TAF1 1.07 E-13 

HNRNPK 1.20 E-11 

RAD21 7.91 E-11 

MYC 2.93 E-08 

ETS1 2.36 E-06 

AP-2 3.07 E-05 

IRF1 3.64 E-05 

MZF1 2.91 E-04 

GRHL2 9.20 E-04 

HEY1 9.20 E-04 

MAZ 2.98 E-03 

RELA 1.58 E-02 

MXI1 1.58 E-02 

 
Table S11. Specific TERT regulators of LAML from the pan-cancer MIPRIP analysis. 

TF p-value 

SMAD3 9.40 E-30 

ESR2 9.37 E-29 

IKZF1 8.63 E-27 

NFAT5 6.67 E-26 

CEBPA 4.29 E-16 

MZF1 2.34 E-10 

TCF7 9.38 E-06 

SP3 3.17 E-04 
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Table S12. Specific TERT regulators of LIHC from the pan-cancer MIPRIP analysis. 
TF p-value 

HMGA2 4.66 E-24 

MITF 2.51 E-17 

TFAP2D 3.01 E-15 

SIN3A 6.33 E-12 

ZBTB48 7.01 E-11 

WT1 1.54 E-10 

HNRNPK 7.73 E-06 

MYC 1.29 E-05 

REST 2.32 E-05 

SP3 2.48 E-04 

MAZ 3.60 E-04 

POU2F2 4.26 E-03 

E2F2 4.26 E-03 

JUND 1.11 E-02 

GRHL2 1.44 E-02 

KLF2 3.83 E-02 

 
Table S13. Specific TERT regulators of LUAD from the pan-cancer MIPRIP analysis. 

TF p-value 

PAX5 3.61 E-15 

E2F4 9.01 E-14 

SMARCB1 5.89 E-12 

NFKB.P50.P65 1.44 E-10 

AP-2 1.44 E-10 

RELA 2.25 E-09 

NFATC2 9.83 E-09 

ESR2 3.44 E-07 

PAX8 4.44 E-03 

HIF.1 5.25 E-03 

POU2F2 2.93 E-02 

BCL11A 2.93 E-02 

BHLHE40 4.75 E-02 

JUND 4.75 E-02 

TAF1 4.75 E-02 
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Table S14. Specific TERT regulators of LUSC from the pan-cancer MIPRIP analysis. 
TF p-value 

MYB 4.50 E-18 

POU2F2 4.50 E-18 

TCF7 1.10 E-14 

BATF 3.30 E-14 

EGR1 9.67 E-12 

IRF1 1.07 E-11 

EPAS1 3.32 E-08 

RUNX2 9.25 E-06 

E2F2 1.86 E-04 

ZBTB48 5.60 E-04 

E2F1 1.48 E-03 

BHLHE40 7.94 E-03 

MITF 8.25 E-03 

TP73 1.10 E-02 

ESR1 1.50 E-02 

NFX1 4.18 E-02 

 
Table S15. Specific TERT regulators of OV from the pan-cancer MIPRIP analysis. 

TF p-value 

ESR2 6.81 E-11 

MAX 9.02 E-11 

E2F1 5.57 E-10 

MEN1 2.37 E-07 

HMGA2 6.38 E-07 

POLR2A 1.78 E-04 

NR2F2 1.01 E-03 

AR 1.04 E-03 

NFAT5 3.61 E-03 

BCL11A 6.46 E-03 

MAZ 1.10 E-02 

PAX8 1.53 E-02 

PITX1 2.21 E-02 

TFAP2A 2.80 E-02 

GRHL2 3.29 E-02 
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Table S16. Specific TERT regulators of PAAD from the pan-cancer MIPRIP analysis. 
TF p-value 

TAL1 1.82 E-16 

JUND 5.39 E-15 

SIN3AK20 1.00 E-14 

SIN3A 3.03 E-08 

NFKB1 1.11 E-07 

TFAP2B 9.40 E-07 

NFKB.P50.P65 1.44 E-06 

TCF12 9.19 E-06 

IRF1 1.72 E-04 

E2F6 2.19 E-03 

CEBPA 4.72 E-03 

REST 2.32 E-02 

 
Table S17. Specific TERT regulators of SKCM from the pan-cancer MIPRIP analysis. 

TF p-value 

E2F5 3.66 E-27 

GLI2 2.98 E-19 

MYCN 3.55 E-07 

TP53 4.70 E-06 

GRHL2 6.41 E-04 

TCF7 4.15 E-03 

CTCF 4.71 E-03 

TFAP2C 1.24 E-02 

HIF1A 1.67 E-02 

REST 2.65 E-02 

PAX5 4.07 E-02 
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Table S18. Specific TERT regulators of STAD from the pan-cancer MIPRIP analysis. 
TF p-value 

MZF1 4.97 E-23 

SIN3AK20 8.34 E-20 

EGR1 5.48 E-19 

PAX8 2.21 E-11 

MYCN 6.15 E-11 

MXI1 1.87 E-09 

TFAP2C 3.47 E-07 

E2F4 6.42 E-04 

IKZF1 5.73 E-03 

NR2F2 6.93 E-03 

MYC 3.26 E-02 

MXD1 3.63 E-02 

 
Table S19. Specific TERT regulators of TGCT from the pan-cancer MIPRIP analysis. 

TF p-value 

CTCFL 1.72 E-21 

MYC 3.98 E-20 

HEY1 4.73 E-18 

TFAP2D 1.12 E-14 

ZBTB48 1.12 E-14 

JUND 7.67 E-09 

MYCN 5.11 E-07 

MAX 6.38 E-06 

HIF.1 1.66 E-04 

EPAS1 5.46 E-04 

TAF1 5.46 E-04 

HIF1A 6.06 E-03 

TCF12 1.53 E-02 

NFATC2 2.48 E-02 
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Table S20. Specific TERT regulators of THYM from the pan-cancer MIPRIP analysis. 
TF p-value 

SMAD3 2.66 E-19 

MXD1 6.21 E-14 

IKZF1 1.12 E-10 

RELA 1.09 E-09 

MAX 2.95 E-07 

ETS1 2.96 E-07 

BATF 4.08 E-04 

TP53 5.74 E-04 

MZF1 1.72 E-03 

SIN3AK20 5.50 E-03 

E2F6 6.74 E-03 

E2F4 7.62 E-03 

E2F2 1.80 E-02 

NFAT5 2.33 E-02 

BHLHE40 4.04 E-02 

 

 
Table S21. Specific TERT regulators of UCEC from the pan-cancer MIPRIP analysis. 

TF p-value 
HNRNPK 3.04 E-27 

NFKB1 2.43 E-17 

PAX5 1.38 E-15 

BCL11A 6.40 E-15 

E2F4 7.88 E-14 

SMARCB1 1.85 E-12 

RUNX2 1.33 E-05 

MITF 4.82 E-04 

NFATC2 9.68 E-04 

E2F5 2.10 E-03 

JUND 2.60 E-03 

BATF 4.05 E-02 
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Table S22. TERT Regulators significant for healthy prostate tissue compared to 
prostate cancer samples 

Regulators normal Frequency tumor Frequency normal p-value 
TAF9 3 53 1.60 E-12 
AP-2 1 42 2.15 E-11 
ETS2 0 31 2.81 E-09 
HIF1A 0 31 2.81 E-09 
E2F5 0 29 1.06 E-08 

HNRNPK 1 33 1.06 E-08 
EPAS1 0 27 4.33 E-08 
TP73 0 24 3.69 E-07 

CTCFL 3 33 4.91 E-07 
TFAP2B 2 30 5.57 E-07 
SMAD3 0 21 2.62 E-06 
MXD1 2 27 3.59 E-06 
MYCN 3 29 5.13 E-06 
ESR1 2 26 6.36 E-06 
NFAT5 3 27 1.62 E-05 
RUNX2 1 20 4.50 E-05 
RELA 3 25 5.07 E-05 
TP53 4 27 5.80 E-05 
SP3 3 24 8.50 E-05 
TAL1 6 29 1.75 E-04 
EGR1 1 17 2.60 E-04 
E2F4 7 29 4.41 E-04 

HMGA2 7 28 7.23 E-04 
NFKB.P50.P65 3 20 7.79 E-04 

HIF.1 4 21 1.41 E-03 
GRHL2 1 14 1.60 E-03 
ZBTB48 8 28 1.60 E-03 
NFX1 11 31 3.62 E-03 
MZF1 2 14 6.35 E-03 
PAX8 2 14 6.35 E-03 

NFATC2 3 16 6.38 E-03 
GLI1 1 11 9.37 E-03 
E2F6 13 31 1.12 E-02 
HEY1 9 24 1.70 E-02 
TCF7 2 12 1.79 E-02 
IKZF1 7 20 2.44 E-02 
ESR2 4 15 2.51 E-02 
NF.KB 1 9 2.90 E-02 
JUND 13 28 3.12 E-02 
WT1 2 10 4.83 E-02 
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Table S23. Association between PITX1 immunostaining results and prostate cancer 
phenotype in all tumors (data provided by AG Sauter/Simon) 

Parameter  n evaluable  negative (%)  low (%)  high (%) p value  

All cancers 15,011 38.3 57.7 4.0  
      

Tumor stage      

<0.0001 
pT2  9,555 41.5 55.5 3.0 

pT3a  3,366 34.6 60.4 5.0 

pT3b-pT4 2,030 30.0 63.0 7.0 
      

Gleason grade     

<0.0001 

≤3+3  2,794 41.8 55.3 2.8 

3+4 7,971 40.2 56.5 3.3 

3+4 Tert.5 720 38.9 57.6 3.5 

4+3 1,479 30.6 62.8 6.6 

4+3 Tert.5 1,056 31.3 63.5 5.2 

≥4+4  867 28.7 61.5 9.8 
      

Lymph node metastasis     

<0.0001 N0  9,067 37.7 58.0 4.3 

N+  1,121 30.2 63.2 6.6 
      

Preop. PSA level (ng/ml)     

<0.0001 
<4  1,815 35.5 59.7 4.8 

4-10 8,860 39.3 57.4 3.4 

10-20 3,167 38.3 57.2 4.5 

>20  1,081 36.9 56.7 6.4 
      

Surgical margin     

<0.0001 negative  11,973 39.2 57.1 3.7 

positive  2,985 35.1 59.8 5.1 
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Table S24. PedGBM samples and features for training the classifier (Deeg et al., 2017) 

ICG
C-ID 

CHRO
M

O
- 

THRIPSIS 

TP53 

TER
T P 

M
UTATIO

N
 

TER
T P 

M
ETHYLATIO

N
 

TER
T RPKM

 

A
TR

X 

H
3F3A

 

ATRX IHC 

TELO
M

ERE 
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NTENT  

ULTRA -
BRIG

HT 
TELO

M
ERE 

FO
CI  

C- CIRCLE 
ASSAY 

TM
M

 

GBM005 1 1 0 0 0 1 1 1 0 0 1 ALT 
GBM006 0 1 0 0 0 1 0 0 NA 1 1 ALT 
GBM011 1 1 0 1 0 0 0 1 1 0 1 ALT 
GBM015 1 1 0 0 0 1 0 0 NA 1 1 ALT 
GBM017 1 1 0 0 0 1 1 0 1 1 1 ALT 
GBM019 1 1 0 0 0 1 0 0 0 1 1 ALT 
GBM027 0 1 0 0 0 0 1 0 NA 1 1 ALT 
GBM028 0 1 0 0 1 1 0 0 NA 1 1 ALT 
GBM050 1 1 NA 0 0 1 0 0 NA NA 1 ALT 
GBM056 1 1 0 0 0 1 0 NA 1 NA 1 ALT 
GBM062 0 1 NA 0 0 1 1 NA NA NA 1 ALT 
GBM067 1 1 0 0 0 1 0 NA 1 NA 1 ALT 
GBM095 0 0 0 0 NA 1 0 NA 1 NA 1 ALT 
GBM001 1 0 0 1 1 0 0 1 0 0 0 non-ALT 
GBM002 1 1 0 0 0 0 1 1 0 0 0 non-ALT 
GBM004 1 0 0 1 1 0 0 1 NA 0 0 non-ALT 
GBM007 1 1 0 1 1 0 0 1 NA 0 0 non-ALT 
GBM023 1 0 0 1 0 0 0 1 0 0 0 non-ALT 
GBM032 1 1 0 1 1 0 0 1 NA 0 0 non-ALT 
GBM034 1 0 0 0 0 0 0 1 NA 0 0 non-ALT 
GBM036 0 0 0 0 0 0 0 1 NA 0 0 non-ALT 
GBM038 1 1 0 0 1 1 0 1 0 0 0 non-ALT 
GBM049 1 0 0 1 1 0 0 1 NA 0 0 non-ALT 
GBM052 1 0 0 1 0 0 0 1 1 0 0 non-ALT 
GBM053 1 1 0 1 1 0 0 1 0 0 0 non-ALT 
GBM058 0 1 1 1 1 0 0 NA 0 NA 0 non-ALT* 
GBM086 0 1 1 0 NA 0 0 NA 0 NA 0 non-ALT* 
SF188 1 1 0 1 1 0 0 1 0 NA 0 non-ALT 
KNS42 1 1 1 1 1 0 1 1 0 NA 0 non-ALT* 
SJ-G2 1 1 0 1 0 1 0 0 1 NA 1 ALT 

MGBM1 0 1 0 0 0 1 1 0 1 NA 1 ALT 
NEM157 0 1 0 0 0 1 1 0 1 NA 1 ALT 
NEM165 1 1 0 NA 0 0 1 1 1 NA 1 ALT 
NEM168 1 1 0 NA 0 0 1 1 1 NA 1 ALT 

* prediction based on TERT promoter mutation 
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Table S25. Predicted TMM in the remaining pedGBM patient samples 

ICG
C-ID 

CHRO
M

O
THRIPSIS 

TP53 

TER
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UTATIO
N
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HT 

TELO
M

ERE FO
CI 

C-CIRCLE ASSAY  
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ACCURACY 

GBM012 0 1 0 0 NA 1 1 NA NA NA 0 ALT 0.906 
GBM016 1 1 0 0 0 1 1 0 NA 1 NA ALT 0.9 
GBM018 0 0 0 1 1 0 1 0 NA 0 NA non-ALT 0.9 
GBM022 0 1 0 0 NA 1 1 0 NA 1 NA ALT 0.9 
GBM024 0 0 0 0 0 1 1 1 NA 0 NA non-ALT 0.9 
GBM025 0 1 0 0 0 0 0 NA NA NA NA non-ALT 0.9 
GBM026 1 0 0 1 0 0 1 NA NA NA 0 non-ALT 0.9 
GBM033 0 1 0 0 0 0 1 0 NA 1 0 ALT 0.9 
GBM042 0 0 1 0 NA 0 1 NA NA NA NA non-ALT*  
GBM043 1 1 0 1 NA 1 1 NA NA NA NA ALT  0.906 
GBM044 0 1 0 0 NA 1 1 NA NA NA NA ALT 0.906 
GBM045 0 1 0 1 NA 1 0 NA NA NA NA ALT 0.906 
GBM046 0 0 0 0 NA 0 0 NA NA NA NA non-ALT 0.906 
GBM048 1 0 0 1 NA 0 0 NA NA NA 0 non-ALT 0.906 
GBM057 0 0 NA 1 1 0 0 NA 0 NA 0 non-ALT 0.9 
GBM059 1 1 1 1 1 0 0 NA 0 NA 0 non-ALT 0.9 
GBM060 1 1 0 0 0 0 1 NA 1 NA 0 non-ALT 0.9 
GBM061 0 0 0 0 NA 0 0 NA NA NA 0 non-ALT 0.906 
GBM063 1 1 NA 1 1 1 1 NA NA NA NA ALT 0.9 
GBM065 1 1 0 1 1 0 1 NA 0 NA 0 non-ALT 0.9 
GBM066 1 1 0 1 0 0 0 1 0 NA 0 non-ALT 0.846 
GBM071 1 1 0 1 NA 0 0 1 NA NA 0 non-ALT 0.923 
GBM079 0 1 NA 1 NA 1 1 NA NA NA NA ALT 0.906 
GBM082 0 1 0 1 NA 0 0 NA NA NA NA non-ALT 0.906 
GBM083 0 0 NA 1 NA 0 1 NA NA NA NA non-ALT 0.906 
GBM084 0 0 0 1 NA 0 0 NA NA NA NA non-ALT 0.906 
GBM085 1 1 0 1 NA 1 1 NA NA NA NA ALT 0.906 
GBM096 0 1 0 0 NA 0 1 NA 1 NA 0 non-ALT 0.906 
GBM098 0 1 0 NA NA 1 1 NA NA NA NA ALT 0.853 
GBM100 0 0 0 NA NA 1 1 NA NA NA NA ALT 0.853 

* prediction based on TERT promoter mutation 
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Figure S1. Association between PITX1 and PTEN, 6q15, 5q21 and 3p13 deletions 
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Figure S2. Clustering of pedGBM patient samples and cell lines based on gene 
expression data.  
The cell lines are grouped in a separate cluster and were hence excluded by 
the differential gene expression and regulator activity analysis.  
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