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Summary 
 

More than 30 years after the discovery of HIV-1 as the causative agent of AIDS, the disease can 

still not be cured and is responsible for around 940,000 deaths worldwide in 2017. Antiretroviral 

therapy, which was started in 1995, rapidly decreased mortality and increased life expectancy. 

ART is a life-long therapy since treatment interruption leads to rapid rebound of viral loads due 

to long-lived latently infected cells mainly represented by resting CD4+ T cells. Since ART can 

have severe side effects and resistant viruses can evolve under suboptimal treatment, there is 

an urgent need for a cure, which can only be achieved by eradicating the latent reservoir. A 

promising strategy to do so is to functionally inactivate the latent HIV-1 provirus by mutating dif-

ferent sites of the proviral genome with the help of site-specific designer nucleases. In this work 

a CRISPR/Cas9 system was established, which is delivered into target cells with AAV vectors 

and allows simultaneous targeting of three sites of the HIV-1 proviral genome. The gRNAs de-

signed for this purpose were shown to successfully edit the HIV-1 LTRs, pol and gag in a 

HeLaP4 reporter cell line (HeLaP4-NLtr) with an integrated HIV-1 provirus and in J-Lat T cells, 

which harbor a latent HIV-1 provirus. Different gRNA combinations were cloned into gRNA mul-

tiplexing constructs which allow the expression of up to three gRNAs. These constructs were 

shown to edit different sites of the provirus simultaneously and facilitate the excision of proviral 

fragments between different gRNA target sites in HeLaP4-NLtr and J-Lat cells. In J-Lat cells we 

could additionally show excision of the whole proviral sequence between the LTRs upon treat-

ment with our constructs. Furthermore, the constructs protected HeLaP4 cells against HIV-1 in-

fection and reduced the population of HIV-1 infected cells by up to 80 %. In addition, the amount 

of released infectious viral particles was reduced by up to 100-fold. To show that our system en-

ables the functional inactivation of latent HIV-1, J-Lat T cells were treated with the gRNA multi-

plexing constructs and Cas9 followed by transcriptional activation of the provirus. Indeed, viral 

release was significantly reduced by up to 74 %. To enable the application of our CRISPR sys-

tem in primary human CD4+ T cells, different AAV serotypes were compared for efficient trans-

duction and AAV6 was shown to enable transduction of up to 60 % of the cells. Nevertheless, 

pretreatment with our three most effective gRNA multiplexing constructs and Cas9 did not pro-

tect the cells against HIV-1 infection, which is possibly caused by low Cas9 expression levels 

observed in these cells. Collectively, we established a CRISPR/Cas9 system that enables simul-

taneous editing of up to three sites in the HIV-1 proviral genome, the excision of proviral frag-

ments or of the whole proviral genome, thereby facilitating the protection against HIV-1 infection 

and functional inactivation of the latent provirus in human cell lines.    
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Zusammenfassung 
 

Mehr als 30 Jahre nach der Identifizierung von HIV als Erreger von AIDS, gilt die Krankheit im-

mer noch als unheilbar und hat im Jahr 2017 weltweit circa 940.000 Todesopfer gefordert. Die 

seit 1995 eingesetzte antiretrovirale Therapie (ART) hat zu einer schnellen Reduktion der Morta-

lität und zu einer gesteigerten Lebenserwartung geführt. Die Therapie muss jedoch ein Leben 

lang erfolgen, da eine Unterbrechung der Behandlung zu einer raschen Zunahme der Viruslast 

führt. Dies wird durch ein Reservoir latent infizierter Zellen mit einer langen Lebensdauer, haupt-

sächlich repräsentiert durch ruhende CD4+ T-Zellen, verursacht.  Da ART starke Nebenwirkun-

gen haben kann und unter suboptimaler Behandlung resistente Viren entstehen können, 

herrscht ein dringender Bedarf nach einer heilenden Therapie, die nur durch die Beseitigung des 

latenten Reservoirs erzielt werden kann. Eine vielversprechende Strategie ist es, Mutationen an 

mehreren Stellen des proviralen Genoms mithilfe spezifischer Nukleasen einzubringen und so 

die funktionelle Inaktivierung des Provirus zu erzielen. In dieser Arbeit wurde ein CRISPR/Cas9-

System entwickelt, das mittels AAV-Vektoren in die Zielzellen eingebracht wird und bis zu drei 

Stellen des HIV-1-Provirus gleichzeitig mutieren kann. Es wurde gezeigt, dass die für diesen 

Zweck entwickelten gRNAs die HIV-1 LTRs, gag und pol in einer HeLaP4 Reporterzelllinie mit 

einem integrierten HIV-1-Provirus und in J-Lat-Zellen, die ein latentes HIV-1-Provirus enthalten, 

mutieren können. Verschiedene gRNA-Kombinationen wurden in gRNA-Multiplexingkonstrukte 

kloniert, welche die bis zu drei gRNAs  exprimieren. Wir konnten zeigen, dass diese Konstrukte 

sowohl das gleichzeitige Mutieren des HIV-1 Genoms an verschiedenen Stellen als auch das 

Ausschneiden proviraler Fragmente zwischen verschiedenen gRNA-Bindestellen in HeLaP4-

NLtr- und J-Lat-Zellen ermöglichen. In J-Lat-Zellen konnten wir zudem das Ausschneiden der 

kompletten proviralen Sequenz zwischen den LTRs nach Behandlung mit unseren Konstrukten 

nachweisen. Außerdem bot die Vorbehandlung von HeLaP4-Zellen mit unseren Konstrukten 

schützende Wirkung gegen eine Infektion mit HIV-1 und reduzierte die Population HIV-infizierter 

Zellen um bis zu 80 %. Weiterhin wurde die Menge an freigesetzten infektiösen viralen Partikeln 

bis zu 100-fach reduziert. Um zu analysieren, ob unser System das latente Provirus funktionell 

inaktivieren kann, wurden J-Lat-Zellen mit unseren Konstrukten behandelt und darauffolgend die 

provirale Transkription aktiviert. Dies führte zu einer Reduktion freigesetzter viraler Partikel um 

bis zu 74 %. Um die Anwendung unseres CRISPR-Systems in primären humanen CD4+ T-

Zellen zu ermöglichen, wurden verschiedene AAV-Seroptypen bezüglich ihrer Transduktionseffi-

zienz untersucht und es wurde gezeigt, dass AAV6 bis zu 60 % der Zellen transduziert. Den-

noch konnte die Behandlung mit den drei effizientesten Konstrukten die Zellen nicht gegen eine 
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HIV-Infektion schützen, was möglicherweise auf ein geringes Cas9-Expressionlevel in diesen 

Zellen zurückzuführen ist. Zusammenfassend wurde in dieser Arbeit ein CRISPR/Cas9-System 

entwickelt, welches gleichzeitig bis zu drei Stellen im proviralen Genom editieren, provirale 

Fragmente und das vollständigen Provirus ausschneiden kann und somit sowohl den Schutz vor 

einer HIV-Infektion als auch die funktionelle Inaktivierung des latenten HIV-1-Provirus in huma-

nen Zellen ermöglicht.  
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1. Introduction 
 

1.1 The Human Immunodeficiency Virus type 1  

 

1.1.1 Genome and life cycle 

The human immunodeficiency virus (HIV) is the causative agent of the human acquired immu-

nodeficiency syndrome (AIDS) and belongs to the genus Lentivirus of the family Retroviridae [1, 

2]. Its genome consists of two identical single-stranded RNA molecules and is composed of the 

three major genes gag (group-specific antigen), pol (polymerase) and env (envelope), that en-

code structural proteins, and of genes encoding the regulatory and accessory proteins Vif (viral 

infectivity factor), Vpr (viral protein R), Vpu (viral protein U), Tat (trans-activator of transcription), 

Rev (regulator of expression of virion proteins) and Nef (negative factor) [3, 4] (figure 1.1). The 

coding regions are flanked by two long terminal repeats (LTRs), which are important for reverse 

transcription, packaging, integration and also have promoter functions. Env encodes the glyco-

proteins gp41 and gp120 that bind to receptors on the host cell and mediate fusion with the viral 

membrane. Pol encodes the integrase (IN), the protease (PR) and the reverse transcriptase 

(RT) and gag encodes the matrix (MA) protein p17, the capsid (CA) protein p24, the nucleocap-

sid (NC) protein p7 and the budding protein p6 [3, 4].  

 

gag

pol

LTR

env

tat

rev

LTR

Surface envelope protein (gp120)

Transmembrane envelope protein (gp41)

Matrix (p17, MA)

Capsid (p24, CA)

Integrase (p31, IN)

Reverse Transcriptase

(p66/p51, RT)

Protease (p11, PR)Vif, Vpr, Nef, p7

Membrane

Viral RNA

genome

Nucleocapsid

(p7, NC)

A

B

Figure 1.1: HIV-1 genome organization and parti-
cle structure. (A) Scheme of the HIV-1 genome. 
The gag gene encodes the matrix protein p17, the 
capsid protein p24, the nucleocapsid protein p7 and 
p6. The pol gene encodes the enzymes protease, 

reverse transcriptase and integrase. The two subu-
nits of the viral glycoprotein (gp120 and gp41) are 
encoded by env. Furthermore, the HIV-1 genome 
encodes the accessory/regulatory proteins vif, vpr, 
vpu, tat and nef. The genes are flanked by long ter-
minal repeats (LTRs) that consist of the 3´and 
5`untranslated regions U3 and U5 and the transcrip-
tion regulatory region R. Adapted from [243]. (B) 

Scheme of an HIV-1 viral particle. HIV-1 is an en-
veloped virus with a genome consisting of two cop-
ies of RNA, a conical capsid, a protein matrix and an 
envelope glycoprotein consisting of a transmem-
brane unit (gp41) and a surface subunit (gp120). 
Adapted from [244]. 
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The HIV-1 life cycle is composed of different steps: Entry, reverse transcription of the viral RNA, 

integration of the viral genome into the host genome, transcription and translation of the viral 

genes and assembly and budding of new viral particles (figure 1.2). The HIV-1 infection starts 

with the binding of gp120 to CD4 (cluster of differentiation 4) and to one of the co-receptors 

CXCR4 (C-X-C Motif Chemokine Receptor 4) or CCR5 (C-C Motif Chemokine Receptor 5) on its 

target cells and the subsequent fusion of the viral and cellular membranes [5]. After fusion, the 

viral core is released into the cytoplasm and the viral genome is reversely transcribed into dsD-

NA by the viral RT [6]. This DNA is then transported to the nucleus together with the integrase 

and other proteins. The integrase processes the 3´ ends of the viral DNA thereby creating sticky 

ends and cuts the host DNA. Finally, it joins the ends of the viral and the host DNA together [7]. 

 

Figure 1.2: HIV-1 life cycle. After binding of the viral envelope protein to CD4 and co-receptors on the target cell, the 

viral membrane fuses with the cellular membrane and the capsid enters the cytoplasm. The RNA genome is reversely 
transcribed into double-stranded DNA and imported to the nucleus where it integrates into the cellular genome with 
the help of the viral integrase. In the case of latency the transcription of the integrated viral DNA (provirus) is blocked 
by several mechanisms. Otherwise the provirus is transcribed, the RNAs are exported to the cytoplasm and translat-
ed. Viral proteins assemble at the cellular membrane and new viral particles bud from the cell. After maturation 
through cleavage of the Gag precursor protein by the viral protease the particles can infect other cells. Taken from [7]. 

 

The stably integrated viral genome, also called “provirus”, stays in a transcriptionally silent state 

in case of a latent infection or is transcribed by the cellular RNA polymerase II in case of a pro-

ductive infection. The initial transcription results in the production of short fully spliced mRNAs 

that encode Nef, Rev and Tat [8]. Tat binds the trans-activation response (TAR) element of the 

LTR and enhances its promoter function by promoting the production of longer transcripts en-

coding Env, Vif, Vpu, Vpr and the Gag-Pol-polyprotein [9–12]. These longer transcripts are then 

exported to the cytoplasm with the help of Rev and are translated [13]. The mRNA encoding 

Gag and Pol can be translated into a Gag precursor containing CA, MA, NC and p6 domains or 

due to a frameshift event into a Gag-Pol-precursor protein, which additionally contains the viral 
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enzymes [14]. Env is also translated as a precursor protein from ribosomes associated with the 

endoplasmic reticulum. The precursor protein gp160 is cleaved by a cellular protease in the Gol-

gi apparatus into gp41 and gp120 [15, 16]. After translation of the viral proteins, Env, the Gag- 

and Gag-Pol-precursor proteins are recruited to the cell membrane. NC interacts with the viral 

RNA thereby facilitating its packaging into the viral particles [17] and p6 recruits the cellular 

ESCRT (endosomal sorting complex required for transport) machinery that mediates the release 

of viral particles [18, 19]. During viral release the viral protease cleaves Gag and the Gag-Pol-

precursor at several sites, which leads to a rearrangement of the proteins in the viral particle and 

thereby to the formation of mature particles that can infect other cells [20–23].  

 

1.1.2 Antiretroviral therapy and latency 

After over 30 years of HIV research there is still no cure available against HIV-1 infections. How-

ever, since the middle of the 1990s HIV-1 infections can be treated with so called combination 

antiretroviral therapy (ART) [24]. This therapy uses at least three drugs that target different steps 

of the viral life cycle thereby inhibiting the infection of new cells. ART decreases the viral load 

below detection limit and leads to a decreased mortality and improved life quality among HIV-1- 

infected patients [25–28]. Although ART effectively decreases viremia, interruption of treatment 

leads to a rapid rebound of viral loads [29, 30]. The rebound of viral loads after treatment inter-

ruption is thought to come from reservoirs of long-lived latently infected cells. In 1995, Chun et 

al. [31] isolated resting CD4+ T cells from HIV-1-infected patients and showed that they contain 

HIV-1 DNA. Furthermore, they showed that this provirus was replication competent after activa-

tion of the cells. Over 20 years later, resting CD4+ T cells are still considered to be the largest 

latent HIV-1 reservoir. Even if it is probable that other cells like macrophages serve additionally 

as latent reservoirs for HIV-1, this has not been finally proven [32]. As HIV-1 does not efficiently 

infect resting CD4+ T cells [33–35], the current model for the establishment of the latent reser-

voirs is, that HIV-1 infects activated CD4+ T cells and some of them survive long enough to re-

vert to a resting state and persist as memory cells. These cells have only low levels of the tran-

scription factors NFAT (nuclear factor of activated T-cells) and NF-κB (nuclear factor kappa-light-

chain-enhancer of activated B-cells) and of deoxynucleosides, which are necessary for the tran-

scription of the HIV provirus [36–41]. Other mechanisms contributing to the latent state of HIV-1 

in resting CD4+ T cells include epigenetic modifications through histone deacetylases (HDACs) 

[42, 43] and DNA methylation of CpG islands at the HIV-1 transcription start site [44, 45].  
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The HIV-1 latent reservoir is very stable with a half-life of 44 months [31, 46, 47]. As a large frac-

tion of HIV-1 proviruses in patients on ART have identical sequences [48, 49] and as this was 

also reported for replication deficient proviral sequences [48, 50], it is believed that proliferation 

of latently infected cells is one mechanism that contributes to the stability of the reservoir. Sev-

eral studies indicate that this proliferation is mediated by integration of HIV-1 into genes associ-

ated with cell growth and oncogenesis [51–53]. Furthermore, it is suggested that homeostatic 

proliferation, which is induced by cytokines like IL-7 and IL-15, plays a role in maintaining the 

size of the reservoir [54–56]. Due to the remarkable stability of the HIV-1 latent reservoir, its 

clearance under ART might take around 73 years [46, 47]. Hence, ART is not curative and life-

long treatment is required. As ART can have serious side effects [57, 58] and resistance can oc-

cur under suboptimal treatment [59], the development of a cure against HIV-1 infections, which 

eliminates the latent HIV-1 reservoir, is of great interest.  

 

1.1.3 Strategies to cure HIV-1 infections 

Different strategies have been developed to eliminate or reduce the size of the latent reservoir 

and thereby achieve a cure for HIV-1 infections. The so-called “shock and kill” strategy uses la-

tency-reversing agents (LRAs) to reactivate the transcription of the provirus in latently infected 

cells which corresponds to the “shock”. Next, these cells are recognized and killed by the im-

mune system or killed through viral cytopathic effects. LRAs include reagents influencing histone 

modifications like HDAC inhibitors [60–62] and reagents that activate cellular transcription fac-

tors like Prostratin which releases NF-κB from inactivating complexes [63]. However LRAs alone 

do not significantly decrease the size of the latent reservoir in HIV-1-infected patients [62, 64, 

65] because the immune system is not efficient enough to kill the reactivated cells. Hence, it is 

suggested that LRAs should be combined with reagents enhancing the immune system like 

therapeutic vaccines, interferon or broadly neutralizing antibodies [32, 66].  

The only reported patient who has ever been cured from HIV-1, is the so-called Berlin patient 

[67, 68]. He received an allogenic stem cell transplant from a donor with a homozygous 32 bp 

depletion in the CCR5 gene, a mutation that confers resistance against HIV infection [69]. Based 

on this case, other strategies for an HIV-1 cure attempt to isolate hematopoietic stem and pro-

genitor cells (HSPCs) or CD4+ T cells from HIV infected patients, disrupt the CCR5 locus with 

the help of designer nucleases like zinc-finger nucleases (ZFNs) and then reinfuse the cells back 

to the patient. Even if this strategy is very promising and clinical studies have been initiated, 

there are still open questions remaining, like for example how big the portion of CCR5-modified 
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cells needs to be to circumvent the further propagation of the virus and the opportunity to switch 

to X4 tropism or when to remove ART after transplantation to test for viral rebound [70].  

Another strategy to cure HIV infections is to deliver recombinases or designer nucleases to the 

patient to excise the provirus from latently infected cells or to functionally inactivate it by intro-

duction of double strand breaks at functionally or structurally important proviral sites. Karpinski et 

al. [71] developed Brec-1, a recombinase that specifically recognizes a highly conserved site in 

the HIV-1 LTRs and mediates the precise excision of the proviral genome from infected cells. 

Furthermore, they showed that engraftment of mice with CD4+ T cells from HIV infected patients 

treated with lentiviral vectors encoding Brec-1 reduced the viral load below detection limit. In ad-

dition to the recombinase Brec-1, designer nucleases like ZFNs and transcription activator-like 

effector nucleases (TALENs) have been shown to facilitate excision or editing of the HIV-1 pro-

virus in different human cell lines [72–76]. However, most studies that show editing of the HIV-1 

provirus with site directed nucleases are based on CRISPR/Cas9. As this system can be very 

easily adapted to target a desired DNA sequence, it has become very popular for gene editing 

strategies including targeting the HIV-1 proviral genome. Three in vivo studies [77–79] in differ-

ent mice models, which found that CRISPR/Cas9 enables excision of HIV-1 proviral DNA in 

several tissues and reduces viral loads, show the great potential of the system for targeting the 

HIV-1 provirus in infected individuals and give hope for the development of a CRISPR/Cas9-

based cure against HIV-1 infections.  

 

1.2 CRISPR/Cas 

 

1.2.1 Origin 

Clustered regularly interspaced short palindromic repeat (CRISPR) DNA sequences are part of a 

defense system against viral or plasmid invaders found in bacteria. These repeat sequences are 

interspaced by non-repetitive sequences called “spacers”, which represent DNA sequences from 

past invaders that were integrated into the bacterial genome [80, 81], [82] (figure 1.3). Adjacent 

to the CRISPR sequences, well conserved CRISPR-associated genes (Cas) that encode a 

RNA-guided endonuclease are localized. 

The spacer and repeat sequences are transcribed into CRISPR RNAs (crRNAs), loaded on the 

Cas proteins and guide the enzyme to complementary DNA sequences (protospacers), thereby 

mediating double strand cleavage and inactivation of invading sequences [83, 84]. Depending 
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on differences in the components and their functionality CRISPR systems from different bacteria 

can be divided into two classes [85–87]. Due to the simplicity of the class II system, which uses 

only one Cas protein (Cas9), it is the most commonly used system for gene editing. This chapter 

will focus only on the class II CRISPR system as this system was used in the following work.  

 

  

 

In addition to the crRNA the class II CRISPR systems uses transactivating crRNAs                        

(tracrRNAs) that hybridize with the repeat region of the crRNAs and mediate                               

binding of the tracrRNA-crRNA complex to Cas9 [83, 88]. Cas9 only cleaves

target sequences when they are adjacent to a so-called “protospacer-adjacent motif” (PAM) [89] 

that differs between CRISPR systems of different species. The most commonly used class II 

CRISPR system from Streptococcus pyogenes uses a 5´-NGG-3´ PAM and also recognizes a 

5´-NAG-3´ PAM but with lower efficiency [90]. The cleavage of the protospacer sequence is me-

diated approximately 3 nucleotides away from the PAM [83, 84].  

Figure 1.3: The class II CRISPR system. 

The CRISPR repeat and spacer sequences 
are transcribed into a pre-crRNA which is 
processed by a complex of Cas9 tracrRNA 
and RNaseIII to a mature crRNA consisting 
of only one spacer and one repeat. The tra-
crRNA hybridizes with the repeat of the 
crRNA and the tracrRNA interacts with the 
Cas9. Cas9 is guided to DNA that is com-
plementary to the spacer sequence of the 
crRNA and adjacent to a PAM. Both DNA 
strands are cut by the RuvC and HNH (histi-
dine-asparagine-histidine) domains of Cas9. 
Taken from [245]. 
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1.2.2 Gene editing with CRISPR/Cas9 

To simplify the application of the CRISPR system for gene editing, Jinek et al. [83] showed that 

the tracrRNA-crRNA complex can be fused to one single guideRNA (gRNA). The resulting sys-

tem consisting of only two components can be easily adapted to recognize any DNA sequence 

adjacent to the required PAM. In comparison to other designer nucleases used for gene editing 

like TALENs [91, 92] or ZFNs [93, 94], which are recognizing their target sequences trough pro-

tein-DNA interactions, CRISPR/Cas9 is based on Watson-Crick base pairing between the gRNA 

and the target DNA sequence and can thereby be easily adapted to target another sequence. 

Furthermore, by using more than one gRNA (gRNA multiplexing) CRISPR/Cas9 enables simul-

taneous editing at several target sites [95]. 

CRISPR/Cas9 can be used for different gene editing applications depending on which mecha-

nism is used to repair the induced DNA double strand break (figure 1.4). The break can either be 

repaired by non-homologous end joining (NHEJ) or homologous recombination (HR) in eukaryot-

ic cells.  

 

Figure 1.4: CRISPR/Cas9 as a tool for genome engineering. To simplify the application of CRISPR/Cas9 for ge-

nome engineering the tracrRNA and crRNA were fused to one single guideRNA (gRNA) consisting of an approximate-
ly 20 nt long guide sequence (purple) complementary to the target sequence and a scaffold (green) that is bound by 
Cas9. The DNA double strand break mediated by Cas9 can either be repaired by homologous recombination (HR) or 
non- homologous end joining (NHEJ). NHEJ leads to insertions or deletions at the target site. HR uses homologous 
templates to repair the break without any mutations. This repair pathway can be used to specifically integrate certain 
sequences at the target site. Adapted from [96].  

 

NHEJ rejoins the break ends without the use of large homologies and usually leads to insertions 

or deletions at the cutting site [97]. Hence, this repair pathway can be used to knockout genes 

gRNA

(~ 20 nt guide sequence + scaffold)

Cas9

PAM

DSB
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insertion
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by introducing a frameshift mutation or by mutating a structurally or functionally important region 

of the encoded protein. Furthermore, by using several gRNAs it is also possible to generate 

large deletions. For example, several studies have shown the deletion of several megabases in 

mice using CRISPR/Cas9 [98, 99]. In contrast to NHEJ, HR uses a homologous template (for 

example the sister chromatid) to repair the break without any mutations [97]. By offering a tem-

plate with sequences homologous to the cutting site, this mechanism can be used to introduce 

reporter genes or site-specific mutations for example.  

 

1.2.3 Targeting specificity of CRISPR/Cas9 

As CRISPR/Cas9 is a very interesting tool for gene therapy applications, it is important to ana-

lyze the safety of the system with regard to unwanted off-target mutations, which could for ex-

ample cause cancer or could have other unpredictable consequences.  

Different methods have been established to detect cleavage at off-target sites. One example is 

chromatin immunoprecipitation sequencing (ChIP-Seq), a method for the analysis of DNA-

Protein interactions, that has been adapted to identify binding sites of a cleavage-deficient Cas 

(dCas9) to genomic DNA [100–102]. Other methods tag DNA double strand breaks with known 

sequences, which allows the amplification of those sites with PCR and subsequent sequencing. 

For example, GUIDE-Seq (Genome-wide Unbiased Identification of DSBs Enabled by Sequenc-

ing) is based on the integration of short double-stranded oligonucleotides via the cell`s own DNA 

repair machinery [103]. After shearing of the DNA, adapter ligation and amplification with primers 

binding the integrated oligo and the adapters, the PCR products are sequenced. Another meth-

od, that can be applied in vivo, tags DNA double-strand breaks using integrase-defective lentivi-

ral vectors, that are integrated in DNA double strand breaks via NHEJ [104]. As an alternative to 

such sequencing-based methods fluorescence in situ hybridization (FISH) has also been de-

scribed for the detection of CRISPR off-targets [105]. For this purpose DNA double strand 

breaks were marked with short DNA fragments, that were integrated via the cell`s DNA repair 

pathways, and later on these fragments were hybridized with fluorescently labelled probes.  

A general rule about how many mismatches are tolerated by Cas9 does not seem to exist. While 

it has been shown that some target sites with 6 mismatches can still be cleaved by Cas9 [95, 

106], others with only one mismatch are not cleaved anymore [107, 108]. It has been demon-

strated by many studies that in general mismatches of nucleotides distal from the PAM are bet-

ter tolerated than mismatches proximal to the PAM [83, 90, 109]. This is also in line with the 
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model that Cas9 scans the genome for PAM sequences and then unwinds the DNA starting at 

the PAM proximal region [110].  

Several different strategies have been developed to reduce off-target effects of CRISPR/Cas9. 

For example, it has been reported that shortening the region complementary to the target site by 

2 or 3 nt improves the on-target specificity, probably because less mismatches are tolerated by 

these truncated gRNAs [111]. Furthermore, addition of two unpaired guanines at the 5´ end of 

the gRNA has been shown to reduce off-target effects [112].  

Another strategy is to develop re-engineered Cas9 variants with increased targeting specificity. 

For example, Kleinstiver et al. [113] changed four residues of SpCas9 that mediate contact to 

the phosphate backbone of DNA and thereby created SpCas9-HF1, which shows reduced 

cleavage at off-target sites. Slaymaker et al. [114] mutated residues in a groove of Cas9 that 

stabilizes DNA unwinding and created the more specific variants eSpCas9(1.0) and 

eSpCas9(1.1.). 

Additionally, CRISPR-based double-nicking strategies have been developed to reduce cleavage 

at off-target sites. Using two gRNAs binding close to each other and recognizing opposite DNA 

strands in combinations with a nickase Cas9 (nCas9), which only cleaves one DNA strand, has 

been shown to decrease off-target effects [107, 115] . Also a fusion of a dCas9 and the endonu-

clease FokI in combination with two gRNAs targeting opposite DNA strands has been shown to 

reduce off-target activity [116, 117].  

 

1.2.4 Delivery of the CRISPR/Cas9 system  

The two components of the CRISPR/Cas9 system, the gRNA and Cas9, can be delivered into 

target cells in different forms. One possibility is to deliver DNA, for example a plasmid, that en-

codes Cas9 and the gRNA. In this case it is important to choose the right promoter according to 

the desired cell type. Furthermore, to ensure efficient expression of Cas9, the codons need to be 

optimized according to the organism from which the target cells originated. In addition Cas9 and 

the gRNA can also be delivered as RNAs. It was shown that RNA delivery results in a faster 

start of gene editing compared to the DNA delivery strategy probably because the transcription 

step is skipped with RNA delivery [118]. However, mRNA is less stable than DNA and can 

thereby be rapidly degraded. The third possibility is to deliver Cas9 and gRNA as ribonucleopro-

tein (RNP) [119, 120]. Here additionally the translation step is skipped making the process even 
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faster than with RNA delivery [118]. However it is challenging to deliver Cas9 as a protein due to 

the large size and the charge of the protein.  

Several methods have been used so far to deliver the CRISPR components into the target cells. 

These methods can be divided into three groups: physical delivery, chemical delivery and viral 

delivery. The physical methods include electroporation, microinjection and hydrodynamic injec-

tion. Electroporation has been successfully used to transfer the CRISPR components as RNA, 

DNA and RNP but cell death can be induced [121–123]. Microinjection allows the precise dos-

age and localization of the CRISPR components in the cell but is time consuming and therefore 

not suited for high-throughput applications [124–126]. Hydrodynamic injection is a technique 

where high volumes of a DNA solution are injected intravenously with high pressure, which 

causes pores in the blood vessels allowing the DNA to reach the target tissue. The method has 

been successfully used to deliver Cas9 and gRNA into different tissues of mice [127–129] but as 

a volume of approximately 10 % of the body weight is needed, the method is currently restricted 

to the use with small animals.  

Important chemical delivery methods include the encapsidation of the CRISPR components with 

lipid-based or polymeric carriers, that are positively charged and thereby bind the negatively 

charged DNA enabling the DNA to come close to the negatively charged cell membrane and fi-

nally being taken up by the cell via endocytosis [119, 130]. Also the delivery of Cas9 RNP com-

plexed with gold nanoparticles via a membrane fusion based process has been described [131].  

Although the previously described physical and chemical methods are suited for the work with 

cell culture, tissues or animal models, they cannot be used for therapeutic applications in hu-

mans. For this purpose, viral vectors have been used for decades. Therapeutic viral vectors rep-

resent viral particles that do not carry genes necessary for viral replication but instead carry a 

transgene of interest. Hence, the viral vector is able to enter the cell and deliver the transgene 

but cannot spread to other cells. The most popular viral vectors are based on lentiviruses and 

adeno-associated viruses (AAVs) and several studies have used these vectors for delivery of 

CRISPR/Cas9 [132]. Lentiviral vectors have a packaging capacity of around 9-10 kb and are 

able to infect dividing and non-dividing cells. Furthermore they integrate into the host genome 

enabling stable transgene expression but also bearing the risk of insertional mutagenesis [133]. 

AAV vectors are single-stranded DNA viruses with a packaging capacity of around 5 kb that do 

not integrate into the host genome, they show low immunogenicity, enable the transduction of 

dividing and non-dividing cells and are non-pathogenic [134]. As many serotypes are available, 

this vector system can be used for the transduction of various cell types. In addition, different 
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techniques have been developed to engineer new capsid variants thereby even broadening the 

host range [135]. 

 

1.3 Adeno-associated viruses (AAVs) 

 

1.3.1 AAV life cycle 

AAVs were first discovered in 1965 as a contaminant of adenovirus preparations [136]. AAVs 

belong to the family of Parvoviridae and are non-enveloped viruses with an icosahedral capsid 

and a single-stranded DNA genome [137, 138]. The genome has a size of approximately 4.7 kb 

and is composed of three open reading frames (rep, cap, AAP) that are flanked by two inverted 

terminal repeats (ITRs) with a length of around 145 bp (figure 1.5). The rep ORF encodes the 

four proteins Rep78, Rep68, Rep52 and Rep40, which are involved in the replication and pack-

aging of the viral genome [139–141]. The cap ORF encodes the three proteins VP1, VP2 and 

VP3, which assemble to the AAV capsid in a VP1:VP2:VP3 ratio of approximately 1:1:10 [142–

144]. The third ORF overlaps with cap and encodes the assembly-activating protein (AAP), 

which is involved in assembly of AAV particles. The two flanking ITRs are required for packaging 

and replication [145, 146]. 

 

 

 

AAVs enter the cell via interactions with carbohydrates and different receptors on the cell sur-

face. The sugar and receptor binding preferences differ among the 13 serotypes identified so far, 

due to differences in the capsid sequences [147]. After binding to the cell surface, the virus is 

taken up via endocytosis (figure 1.6). It has been shown that AAV seems to use different endo-

cytic pathways like clathrin-mediated endocytosis [148], caveolae-mediated endocytosis [149] or 

Figure 1.5: The AAV genome. The wildtype AAV ge-
nome consists of the two genes rep and cap, which are 

flanked by two inverted terminal repeats, that fold into 
hairpin structures. The promoter p5 drives the expres-
sion of mRNAs encoding Rep78 (unspliced) and Rep68 
(spliced). The Rep52 (unspliced) and Rep40 (spliced) 
encoding mRNAs are expressed by the promoter p19. 
The p40 promoter drives the expression of mRNAs cod-
ing the capsid proteins VP1, 2 and 3 and the assembly 
activating protein AAP. VP2, VP3 and AAP are translat-
ed from the same mRNA. VP3 under the usage of a 
conventional AUG start codon, VP2 from a weak ACG 
start codon (asterisk) and AAP from a weak CTG start 
codon (asterisk). Taken from [159]. 



                                                                                                                                       Introduction   

12 

the Clathrin-Independent Carriers/GPI-Enriched Endocytic Compartment (CLIC/GEEC) endo-

cytic pathway [150]. After entering the cell, AAV traffics to the Golgi apparatus [151–153] where 

it accumulates before it is released and enters the nucleus where the genome is uncoated [154, 

155].  

 

 

 

If no helper virus, such as Adenovirus or Herpes simplex virus, is present in the cell, Rep medi-

ates integration of the AAV genome into a certain locus of chromosome 19 where it stays tran-

scriptionally silent [156–158]. However, in case of a co-infection with a helper virus AAV actively 

replicates. The AAV genome replicates via a so-called rolling hairpin mechanism during which 

the ITRs form a hairpin that creates a 3´-OH primer for second strand synthesis by the cellular 

DNA polymerase. Nicking of the double stranded DNA by Rep78 and Rep68 followed by single-

strand displacement synthesis results in a newly formed double stranded molecule, which can 

be nicked again, starting a new cycle of DNA replication, and a displaced single strand, that can 

be packaged into capsids [159]. The assembly of the AAV capsid takes place in the nucleoli 

[146, 160]. The assembled capsids enter the nucleus and single-stranded DNA genomes are 

Figure 1.6: The AAV life cycle. After 

binding to receptors on the target cell, 
AAV is taken up by the cell via endocyto-
sis and released into the cytoplasm from 
where it enters the nucleus where the 
uncoating takes place. The single-
stranded DNA is converted to a double 
stranded DNA that is transcribed. The 
mRNA is exported from the nucleus to 
the cytoplasm and translated into the 
viral Rep and Cap proteins. These pro-
teins enter the nucleus again and as-
sembly of new viral particles takes place 
in the nucleolus. The light gray circle 
displays the nucleus and the dark gray 
circle displays the nucleolus. All steps 
from replication of the viral genome to 
viral release are only taking place in case 
of an infection with wildtype virus since 
AAV vectors do not encode viral proteins. 
Taken from [246].  
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pumped through a pore into the capsid by the helicases Rep52 and Rep40 [141]. Finally, the 

viral particles traffic to the cytoplasm and are released by helper virus induced cell lysis. 

 

1.3.2 AAV vectors 

AAV vectors usually contain a transgene flanked by ITRs. These vectors can either be produced 

by transfection or with packaging cell lines. For the transfection approach usually HEK293T cells 

are transfected with three plasmids. One containing the transgene flanked by ITRs, one contain-

ing genes of a helper virus and one encoding the Rep and Cap proteins [161–163]. Packaging 

cell lines contain one or more of the genetic components needed for AAV production stably inte-

grated allowing large scale AAV production [164, 165].  

Even if AAV vectors offer many advantages, there are also some limitations of these vectors and 

many strategies have been developed to overcome them. One such limitation is for example the 

second strand synthesis of the viral genome needed for transgene expression [166, 167]. This 

step, that slows down the initiation of transgene expression, can be overcome by using self-

complementary (sc) AAV vectors [168]. These vectors can be produced by simply mutating the 

ITR so that nicking by Rep68 and Rep78 cannot be performed and double-stranded genomes 

will be packaged. ScAAV vectors have been shown to mediate faster initiation of transgene ex-

pression but only transgenes with half of the size of the conventional AAV genome can be ex-

pressed from these vectors [168]. Another limitation of AAV vectors is the packaging limit of 

around 5 kb [169–171]. To enable the expression of larger transgenes dual overlapping AAV 

vectors have been used [172, 173]. To generate such vectors, the two halves of a transgene 

with an overlapping part are packaged into separate particles. Inside the cell the full-length 

transgene can be restored through HR. In addition to these AAV genome engineering strategies 

also capsid engineering strategies have been developed to improve transduction efficiency and 

specificity or to reduce immunogenicity. Capsid engineering strategies can be divided into ra-

tional design approaches and directed evolution approaches.  

Rational design approaches are based on knowledge about interaction of the capsid with certain 

ligands. For example, capsid residues that are marked for proteasomal degradation by certain 

enzymes have been exchanged to improve transduction efficiencies [174, 175]. Furthermore, 

Designed Ankyrin Repeat Proteins (DARPins) which are binding certain ligands, like CD4 for 

example, can be introduced into the capsid to specifically target the vectors to certain cell types 

[176].  
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Directed evolution strategies use libraries of capsid mutants to infect cells. Mutants able to pro-

duce progeny are enriched by several further rounds of infections and characterized by se-

quencing. The mutants are produced either by DNA shuffling, Error-prone PCR (EP) or AAV 

peptide display [124, 135]. DNA shuffling is based on the digestion of cap genes of many sero-

types with nucleases. The fragments are then annealed based on sequence homologies and a 

primerless PCR is performed. The Error-prone PCR strategy uses a polymerase without proof-

reading activity to randomly introduce mutations into the cap gene. In the AAV peptide display 

method peptides of a random sequence are integrated into surface exposed positions of the 

capsid. This method resulted in the identification of many new serotypes with improved trans-

duction efficiencies or altered tropism [135].  

 

1.3.3 AAV vectors as a tool for gene therapy 

To date, AAV vectors have been used in several preclinical and clinical gene therapy studies as 

they offer several properties that are advantageous for therapeutic applications. For example, 

AAV vectors have been used to recover vision in patients with homozygous recessive rpe65 de-

ficiency that causes blindness in low light [177]. Furthermore the blood clotting disorder hemo-

philia B, that is caused by deficiency of the serum protein factor IX, has been treated using AAV 

vectors [178]. As AAV vectors don`t encode Rep, they don`t specifically integrate at chromo-

some 19 like the wildtype virus and preferentially stay episomal. Although random insertions 

have been reported, these only occur at a low rate of 0.1 % to 1 %, which makes AAV vectors 

safe in regard to deleterious insertional mutagenesis [179–181]. Furthermore, AAVs are not 

pathogenic and only cause a mild immune response [182, 183]. Even though AAVs do not stably 

integrate into the host genome, it has been shown that they mediate long-term transgene ex-

pression. For example in hemophilia B patients transgene expression was still detectable after 4 

years in muscle and liver cells after one single treatment with AAV vectors [184] and in dogs 

treated with liver directed vectors transgene expression was still detectable after more than 8 

years [185]. Although AAV vectors offer many advantageous properties for use in gene therapy, 

there are some hurdles that need to be overcome. For example as most humans (> 70%) are 

seropositive for different AAV serotypes [186, 187], neutralizing anti-AAV antibodies, which af-

fect the efficient gene transfer, are a major limitation for the application in humans. However, by 

choosing an AAV serotype that is not highly prevalent in the human population or by engineering 

new capsid variants (chapter 1.3.2) that are resistant to neutralizing antibodies the limitations 

caused by pre-existing immunity can be overcome. 
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1.4 Aim of the thesis 

 

The objective of this thesis was to develop a CRISPR/Cas9 system, which is delivered into 

HIV-1-infected cells using recombinant gene transfer vectors derived from AAVs, to target differ-

ent regions in the proviral genome, thereby inhibiting the production of functional virions. The 

project is divided into three parts: 

Part 1: CRISPR tool development 

In this part of the project gRNAs targeting different sites in the HIV-1 provirus should be de-

signed and cloned into AAV vectors mediating the expression of single gRNAs, kindly provided 

by Florian Schmidt (Grimm Group). Functional editing with the gRNAs in a HeLaP4 reporter cell 

line carrying an HIV-1 NL4-3 provirus stably integrated (HeLaP4-NLtr cells) and in J-Lat T cells 

that carry a GFP-tagged latent HIV-1 provirus [188] should be tested with T7 assay and func-

tional gRNAs should be cloned into gRNA multiplexing AAV vectors that allow the expression of 

three gRNAs. 

Part 2: Technology validation 

Here, the previously established gRNA multiplexing vectors should be tested for editing and 

functional inactivation of the HIV-1 provirus in cell lines. Simultaneous editing at different proviral 

target sites should be analyzed in J-Lat cells and HeLaP4-NLtr cells using T7 assay. To further 

investigate if our system is able to functionally inactivate the HIV-1 provirus, J-Lat cells should 

be treated with our CRISPR/Cas9 vectors and imaged after activation of proviral transcription. 

Moreover, SG-PERT should be used to analyze the amount of viral particles released. Further-

more, HeLaP4 cells should be treated with our CRISPR/Cas9 vectors prior to HIV-1 infection to 

see if our system provides a protective effect against HIV-1 infection.  

Part 3: Application in primary cells 

Finally, the three best performing multiplexing constructs should be used to work with primary 

human CD4+ T-cells. For this purpose different AAV serotypes should be tested for efficient 

transduction of these cells. Next, in a first proof of concept experiment, the cells should be treat-

ed with our CRISPR/Cas9 vectors prior to HIV-1 infection. To analyze the infection rate, cells 

should be stained for p24 and analyzed by FACS. 
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2. Materials and Methods 
 

2.1 Materials 

 

2.1.1 Antibodies 

 

Table 2.1: Primary antibodies. 

Name Antigen Host Species Dilution Manufacturer 

KC57-FITC HIV-1 p24 mouse 1:100 Beckman Coulter (Brea, 

USA) 

MAK 183 HIV-1 p24 mouse 1:1000 Exbio Antibodies (Prague, 

Czech Republic) 

Rabbit anti capsid HIV-1 p24 rabbit 1:1000 Kräusslich and Müller lab, 

Centre for Infectious Dis-

eas-es/ Virology Heidelberg 

Sheep anti capsid HIV-1 p24 sheep 1:500 Kräusslich and Müller lab, 

Centre for Infectious Dis-

eases/ Virology Heidelberg 

 

 

Table 2.2: Secondary antibodies. 

Name Host Species Dilution Manufacturer 

Alexa Fluor® 647 anti-

sheep IgG (H+L) 

donkey 1:250 Thermo Fisher Scientific 

(Waltham, USA) 

Peroxidase AffiniPure 

Goat Anti-Rabbit IgG 

(H+L) 

goat 1:2000 Jackson Immu-

noResearch (Ely, UK) 
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2.1.2 Bacterial strains 

 

Table 2.3: Bacterial strains. 

Name Description Source 

E. coli ccdB SurvivalTM T1R chemically competent Life Technologies GmbH (Paisley, UK) 

E. coli MAX Efficiency 

DH5aTM 

chemically competent Life Technologies GmbH (Paisley, UK) 

 

 

2.1.3 Buffers 

 

Table 2.4: Buffers. 

Name Composition  

Benzonase buffer (pH 8.5) 50 mM  

150 mM 

Tris-HCl (pH 8.5) 

NaCl 

 2 mM MgCl 

10 x Dilution buffer for SG-PERT 50 mM (NH4)2SO4 

 200 mM KCl 

 200 mM Tris-HCl (pH 8.0) 

Iodixanol (15 %) 25 % (v/v) Iodixanol (Optiprep) 

 75 % (v/v) PBS-MK-NaCl 

Iodixanol (25 %) 41.56 % (v/v) Iodixanol (Optiprep) 

 58.19 % (v/v) PBS-MK 

 0.25 % (v/v) phenol red solution 

Iodixanol (40 %) 66.67 % (v/v) Iodixanol (Optiprep) 

 33.33 % (v/v) PBS-MK 

Iodixanol (60 %) 99.75 % (v/v) Iodixanol (Optiprep) 

 0.25 % (v/v) phenol red solution 
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Name Composition  

Luciferase assay buffer 25 mM Glycylglycine 

 15 mM KPO4 buffer (pH 7.8) 

 15 mM MgSO4 

 4 mM EGTA 

Renilla Quenching buffer 1.1 M NaCl 

 2.2 mM Na2EDTA 

 0.22 M KxPO4 (pH 5.1) 

 0.44 mg/ml BSA 

 1.3 mM NaN3 

2 x Lysis buffer for SG-PERT 50mM KCl 

 100mM Tris-HCl (pH 7.4) 

 40 % ( v/v) Glycerol 

 0.25 % ( v/v) Triton-X100 

Lysogeny broth (LB) agar 1 % (w/v) tryptone 

 0.5 % (w/v) yeast extract 

 1 % (w/v) NaCl 

 1.5 % (w/v) agar 

Lysogeny broth (LB) media 1 % (w/v) tryptone 

 0.5 % (w/v) yeast extract 

 1 % (w/v) NaCl 

PBS (1x) 137 mM NaCl 

 3 mM KCl 

 10 mM Na2HPO4 

 2 mM KH2PO4 

PBS-MK 1x PBS 

 1 mM MgCl2 

 2.5 mM KCl 

PBS-MK-NaCl 1x PBS 
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Name Composition  

 1 mM MgCl2 

 2.5 mM KCl 

 1 M NaCl 

2 x Reaction buffer for SG-PERT 1x Dilution buffer 

 10 mM  MgCl2 

 2x  BSA 

 400 µM dNTPs 

 7 pmoles/ml MS2 RNA 

 1:10.000 SYBR Green 

 1 µM primer RT-Assay-fwd 

 1 µM primer RT-Assay-rev 

 2 % (w/v) tryptone 

 0.5 % (w/v) yeast extract 

 0.05 % (w/v) NaCl 

SOB media 2.5 mM  KCl 

 10 mM MgCl2 

 10 mM MgSO4 

 2 % (w/v) tryptone 

 0.5 % (w/v) yeast extract 

 0.05 % (w/v) NaCl 

SOC media 2.5 mM KCl 

 10 mM MgCl2 

 10 mM MgSO4 

 20 mM glucose 

 2 M Tris 

 50 mM EDTA 

 1 M acetic acid 

TAE buffer (50x, pH 8.3) 2 M Tris 
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Name Composition  

 50 mM EDTA 

 5.71 % (v/v) acetic acid 

 

 

2.1.4 Cell culture media and additives 

 

Table 2.5: Cell culture media, additives and transfection reagents. 

Product Company 

12-O-Tetradecanoylphorbol 13-acetate 

(TPA) 

Sigma-Aldrich (St. Louis, USA)8< 

Dulbecco's Modified Eagle Medium 

(DMEM) with 4.5g/L D-Glucose and Glu-

taMAX™ 

Thermo Fisher Scientic (Waltham, USA) 

Dynabeads® Human T-Activator 

CD3/CD28 

Thermo Fisher Scientic (Waltham, USA) 

Fetal bovine serum (FBS)  

Interleukin-2, human (hIL-2) (10.000U/ml) Sigma-Aldrich (St. Louis, USA) 

Penicillin/Streptomycin (100x) (10.000 U/ml 

Penicillin and 10mg/ml Streptomycin) 

Capricorn Scientific GmbH (Ebsdorfergrund, Germany) 

Phytohemagglutinin-M (PHA-M) Sigma-Aldrich (St. Louis, USA) 

Polyethylenimine (PEI, linear, MW~25000) Polyscience (Warrington, USA) 

Recombinant Human TNF-alpha Protein R & D Systems (Minneapolis, USA) 

Roswell Park Memorial Institute (RPMI) 

medium 1640 with GlutaMAX™ 

Thermo Fisher Scientic (Waltham, USA) 

TurboFect Transfection Reagent Thermo Fisher Scientic (Waltham, USA) 
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2.1.5 Cell lines 

 

Table 2.6: Cell lines. 

Name Origin Description Reference 

C8166 H. sapiens Human T cell leukemia cells containing a defective 

HTLV-1 genome. Derived by phusion of primary 

umbilical cord blood cells with a HTLV-1 producing 

line from an adult T cell leukemia lymphoma pa-

tient 

[189] 

HEK293T H. sapiens Human embryonic kidney cells expressing the 

SV40 large T-antigen 

[190] 

HeLaP4 H. sapiens Cervical cancer epithelial cells isolated in 1951 

from the patient Henrietta Lacks expressing CD4 

and CXCR4 

[191] 

HeLaP4-pNltr H. sapiens Derivative of HeLaP4 cells carrying a replication-

incompetent NL4-3 HIV-1 genome with deletions 

in env, nef and tat and a gfp reporter gene at the 

nef open reading frame 

Provided by 

Dr, Jens 

Bohne 

J-Lat  H. sapiens Derivative of Jurkat T cell leukemia cells infected 

with HIV-R7/E-/GFP, which is a full length HIV-1 

genome with a non-functional env due to a 

frameshift, and GFP in place of nef. 

[188] 

MT4 H. sapiens HTLV-1 transformed human T cells isolated from a 

patient with adult T-cell leukemia 

[192] 
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2.1.6 Chemicals and reagents 

 

Table 2.7: Chemicals and reagents 

Product Company 

3,3',5,5'-Tetramethylbenzidine SERVA Electrophoresis (Heidelberg, Germany) 

Adenosintriphosphat Sigma-Aldrich (St. Louis, USA) 

Agarose Biozym Scientifc GmbH 

(Hessisch Oldendorf, Germany) 

Albumin fraction V (BSA) Roth (Karlsruhe, Germany) 

Ammonium sulfate ( (NH)4SO4 ) Thermo Fisher Scientific (Waltham, USA) 

Ampicillin Roth (Karlsruhe, Germany) 

Ampicillin Roth (Karlsruhe, Germany) 

Bacto
TM 

Agar BD (Franklin Lakes, USA) 

Bacto
TM 

Trypton BD (Franklin Lakes, USA) 

Bacto
TM

 Yeast Extract BD (Franklin Lakes, USA) 

Biocoll VWR (Radnor, USA) 

Bromophenol blue Waldeck GmbH (Münster, Germany) 

CellTiter 96® AQueous One Solution reagent Promega (Madison, USA) 

Chloramphenicol Roth (Karlsruhe, Germany) 

Coelenterazine PJK GmbH (Kleinblittersdorf, Germany) 

Dipotassium hydrogenphosphate (K2HPO4) AppliChem (Darmstadt, Germany) 

Dithiothreitol (DTT) Sigma-Aldrich (St. Louis, USA) 

D-Luciferin PJK GmbH (Kleinblittersdorf, Germany) 

dNTPs (dATP, dCTP, dGTP, dTTP) Fermentas (St. Leon-Rot, Germany) 

D-Sucrose Roth (Karlsruhe, Germany) 

Ethanol Sigma-Aldrich (St. Louis, USA) 

Ethidium bromide Roth (Karlsruhe, Germany) 

Ethylene glycol tetraacetic acid (EGTA) Sigma-Aldrich (St. Louis, USA) 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich (St. Louis, USA) 
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Product Company 

Ethylenediaminetetraacetic acid disodium 

salt dihydrate (Na2EDTA) 

Sigma-Aldrich (St. Louis, USA) 

Gel Loading Dye, Purple (6X) NEB (Frankfurt am Main, Germany) 

Gelatine Sigma-Aldrich (St. Louis, USA) 

Glycerol VWR (Radnor, USA) 

Glycylglycin Sigma-Aldrich (St. Louis, USA) 

HEPES Roth (Karlsruhe, Germany) 

Hoechst 33258 Invitrogen / Life Technologies 

(Paisley, UK) 

Hydrochloric acid (HCl) Sigma-Aldrich (St. Louis, USA) 

Iodixanol (OptiprepTM) Axis-Shield (Oslo, Norway) 

Isopropanol Sigma-Aldrich (St. Louis, USA) 

Magnesium chloride AppliChem (Darmstadt, Germany) 

Magnesium sulfate Merck (Darmstadt, Germany) 

MS2 RNA Merck (Darmstadt, Germany) 

Paraformaldehyde Sigma-Aldrich (St. Louis, USA) 

Passive Lysis 5X Buffer Promega (Madison, USA) 

Phenol red Merck (Darmstadt, Germany) 

Poly-L-lysine solution 0.1 % (w/v) in H2O Sigma-Aldrich (St. Louis, USA) 

Potassium chloride (KCl) AppliChem (Darmstadt, Germany) 

Potassium dihydrogen phosphate (KH2PO4) AppliChem (Darmstadt, Germany) 

RiboLock RNase Inhibitor Thermo Fisher Scientific (Waltham, USA) 

Sodium azide (NaN3) Sigma-Aldrich (St. Louis, USA) 

Sodium chloride (NaCl) Sigma-Aldrich (St. Louis, USA) 

Sodium hydroxide (NaOH) Sigma-Aldrich (St. Louis, USA) 

SYBR™ Green Nucleic Acid Gel Stain, 10,000X 

concentrate 

Thermo Fisher Scientific (Waltham, USA) 

TE buffer Invitrogen / Life Technologies 

(Paisley, UK) 
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Product Company 

Tris Roth (Karlsruhe, Germany) 

Tris-HCl Roth (Karlsruhe, Germany) 

Triton-X100 Merck (Darmstadt, Germany) 

Trypan blue solution 0.4 % Sigma-Aldrich (St. Louis, USA) 

Tween-20 Roth (Karlsruhe, Germany) 

 

 

2.1.7 Consumables 

 

Table 2.8: Consumables. 

Name Company 

96-well black cell culture plates Corning (New York, USA) 

96-well cell culture plates with V-bottom Corning (New York, USA) 

96-well ddPCR plates BioRad (Hercules, USA) 

Cell culture dishes (Ø 6cm, 15cm) Greiner Bio-One (Frickenhausen, 

Germany) 

Cell culture flasks ( 25 cm
2
 / 75 cm

2
 / 175 cm

2
) Greiner Bio-One (Frickenhausen, 

Germany) 

Cell culture plates with flat bottom (6-well /24-

well/ 96-well) 

Greiner Bio-One (Frickenhausen, 

Germany) 

Cell lifter (18 cm) Corning (New York, USA) 

Centrifuge tubes (15 ml / 50 ml / 500 ml) Greiner Bio-One (Frickenhausen, 

Germany), Corning 

(New York, USA) 

DG8 cartridges and gaskets BioRad (Hercules, USA) 

Erlenmeyer flasks Fisher Scientific (Schwerte, Germany) 

Filter tips Sorenson Bioscience (Murray, USA) 

Glass bottles DURAN Group (Wertheim/Main, 
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Name Company 

Germany) 

Glass culture tubes (16 x 160 mm) DURAN Group (Wertheim/Main, 

Germany) 

Microplates PS 96-well, F-bottom, white, LU-

MITRAC™ 

Greiner Bio-One (Frickenhausen, 

Germany) 

Needles (0.8 x 40 mm / 0.9 x 40 mm) BD (Franklin Lakes, USA) 

Nunc MaxiSorp™ flat-bottom 96-well plates Thermo Fisher Scientific (Waltham, USA) 

Open-Top Polyallomer tubes Seton Scientific (Petaluma, USA) 

Pasteur capillary pipettes (230 mm) NeoLab (Heidelberg, Germany) 

PCR tubes 0.5ml Sarstedt (Nümbrecht, Germany) 

Pierceable PCR plate heat foil BioRad (Hercules, USA) 

Reaction tubes (0.5 / 1.5 / 2 / 5 ml) Sarstedt (Nümbrecht, Germany) 

SepMate™-50 Stemcell Technologies (Vancouver, Kanada) 

Serological pipettes Sarstedt (Nümbrecht, Germany) 

Steritop filter (0.22 µm) Merck (Darmstadt, Germany) 

SW 32 Ti Swinging-Bucket Rotor Beckman Coulter (Brea, USA) 

Syringe filter units (0.2 / 0.45 µm pore size) Whatman / GE Healthcare (Buckinghamshire, 

UK) 

Syringes (3 ml / 50 ml) BD (Franklin Lakes, USA) 

Ultracentrifuge tubes - iodixanol purification 

(16x76 mm) 

Seton Scientific (Petaluma, USA) 

 

Ultracentrifuge tubes - iodixanol purification 

(25x89 mm) 

Beckman Coulter (Brea, USA) 
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2.1.8 Devices 

 

Table 2.9: Devices. 

Name Supplier 

Allegra X-12 Benchtop Centrifuge Beckman Coulter (Brea, USA) 

Bacterial incubator Heraeus Function Line Thermo Fisher Scientific (Waltham, USA) 

BD FACSVerse™ Flow Cytometer BD Biosciences (Franklin Lakes, USA) 

C1000 Touch™ Thermal Cycler BioRad (Hercules, USA) 

Centrifuge 5430 R Eppendorf (Hamburg, Germany) 

CFX96™ Real-Time PCR Detection System BioRad (Hercules, USA) 

Dual Block Thermocycler Mastercycler® nexus 

GX2 

Eppendorf (Hamburg, Germany) 

Eclipse Ti inverted microscope Nikon (Tokyo, Japan) 

Fixed angle JA-10 rotor Beckman Coulter (Brea, USA) 

Fixed angle type 70 Ti rotor Beckman Coulter (Brea, USA) 

Fixed angle type 70.1 Ti rotor Beckman Coulter (Brea, USA) 

Flow cytometer FC500 MPL Beckman Coulter (Brea, USA) 

Galaxy Mini Centrifuge C12xx VWR (Radnor, USA) 

Gel DocTM XR BioRad (Hercules, USA) 

GloMax 96 Microplate Luminometer Promega (Madison, USA) 

HERAcell 150 CO2 Incubator Thermo Fisher Scientific (Waltham, USA) 

HERAsafe® sterile workbench Thermo Fisher Scientific (Waltham, USA) 

Inverted microscope CKX41 Olympus (Hamburg, Germany) 

Microwave Sharp Electronics (Hamburg, Germany) 

MINI-SUB CELL GT BioRad (Hercules, USA) 

Mixing block MB-102 Biozym Scientific GmbH (Hessisch Oldendorf, 

Germany) 

Multiskan Ascent Platereader Thermo Fisher Scientific (Waltham, USA) 

NanoDrop 2000 UV-Vis Spectrophotometer Thermo Fisher Scientific (Waltham, USA) 



                                                                                                                     Materials and Methods   

27 

Name Supplier 

Pipettes Eppendorf (Hamburg, Germany) 

PX1™ PCR Plate Sealer BioRad (Hercules, USA) 

QX200™ Droplet Generator BioRad (Hercules, USA) 

QX200™ Droplet Reader BioRad (Hercules, USA) 

Rotamax 120 Heidolph Instruments (Schwabach, Germany) 

Rotor-Gene 6000 QIAGEN (Hilden, Germany) 

ScanR microscope Olympus (Hamburg, Germany) 

Shaking Incubator Multitron INFORS HT (Basel, Switzerland) 

SUB CELL GT BioRad (Hercules, USA) 

Thermostatic waterbath  Fried Electric (Haifa, Israel) 

Ultracentrifuge Optima L-90K Beckman Coulter (Brea, USA) 

Ultracentrifuge Optima LE80K Beckman Coulter (Brea, USA) 

Ultrasonic bath BANDELIN (Berlin, Germany) 

UV transilluminator UST-30M-8E Biostep GmbH (Burkhardtsdorf, Germany) 

Vortex mixer 7-2020 neoLab (Heidelberg, Germany) 

 

 

2.1.9 DNA ladders 

 

Table 2.10: DNA ladders. 

Name Supplier 

1 Kb Plus DNA Ladder Thermo Fisher Scientific (Waltham, USA) 

100 bp DNA Ladder Thermo Fisher Scientific (Waltham, USA) 
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2.1.10 Enzymes 

 

Table 2.11: Enzymes. 

Name Supplier 

Benzonase Merck (Darmstadt, Germany) 

GoTaq Hot Start DNA Polymerase Promega (Madison, USA) 

Phusion Hot Start Flex DNA Poly-

merase 

NEB (Frankfurt am Main, Germany) 

Restriction enzymes NEB (Frankfurt am Main, Germany), Thermo Fisher Scientific 

(Waltham, USA) 

T4 DNA Ligase NEB (Frankfurt am Main, Germany) 

T7 Endonuclease I NEB (Frankfurt am Main, Germany) 

 

 

2.1.11 GRNA constructs 

 

Table 2.12: GRNA constructs. 

Internal number Name Description 

#3 H1Cas9_gRNA3 ssAAV vector for the expression of Cas9 from the 224bp 

CMV promoter and gRNA3 with standard scaffold from 

the H1 promoter 

#5 H1Cas9_gRNA5 ssAAV vector for the expression of Cas9 from the 224bp 

CMV promoter and gRNA5 with standard scaffold from 

the H1 promoter 

#6 H1Cas9_gRNA6 ssAAV vector for the expression of Cas9 from the 224bp 

CMV promoter and gRNA6 with standard scaffold from 

the H1 promoter 

#7 H1Cas9_gRNA7 ssAAV vector for the expression of Cas9 from the 224bp 

CMV promoter and gRNA7 with standard scaffold from 

the H1 promoter 
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Internal number Name Description 

#21 U6_gRNA3 scAAV vector for the expression of gRNA3 with standard 

scaffold from the U6 promoter 

#23 U6_gRNA5 scAAV vector for the expression of gRNA5 with standard 

scaffold from the U6 promoter 

#24 U6_gRNA6 scAAV vector for the expression of gRNA6 with standard 

scaffold from the U6 promoter 

#25 U6_gRNA7 scAAV vector for the expression of gRNA7 with standard 

scaffold from the U6 promoter 

#28 U6_E+F_gRNA3 scAAV vector for the expression of gRNA3 with F+E 

scaffold from the U6 promoter 

#29 U6_E+F_gRNA5 scAAV vector for the expression of gRNA5 with F+E 

scaffold from the U6 promoter 

#30 U6_E+F_gRNA6 scAAV vector for the expression of gRNA6 with F+E 

scaffold from the U6 promoter 

#31 U6_E+F_gRNA7 scAAV vector for the expression of gRNA7 with F+E 

scaffold from the U6 promoter 

#32 U6_gag17 (E+F) scAAV vector for the expression of the gRNA p17 with 

F+E scaffold from the U6 promoter 

#33 U6_gag24 (E+F) scAAV vector for the expression of the gRNA p24_1 with 

F+E scaffold from the U6 promoter 

#73 gagp24_1 (E+F) scAAV vector for the expression of the gRNA p24_2 with 

F+E scaffold from the U6 promoter 

#78 pol_3 (E+F) scAAV vector for the expression of the gRNA int3 with 

F+E scaffold from the U6 promoter 

#79 pol_4 (E+F) scAAV vector for the expression of the gRNA int4 with 

F+E scaffold from the U6 promoter 

#80 pol_5 (E+F) scAAV vector for the expression of the gRNA int5 with 

F+E scaffold from the U6 promoter 

#214 U6 gag1 E+F scAAV vector for the expression of the gRNA gag1 with 

F+E scaffold from the U6 promoter 

#215 M1 scAAV gRNA multiplexing vector for the expression of 
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Internal number Name Description 

g6 from the U6 promoter, int4 from the H1 promoter and 

gag1 from the 7SK promoter (named MP11 in this work) 

#216 M2 scAAV gRNA multiplexing vector for the expression of 

p24_2 from the U6 promoter, int4 from the H1 promoter 

and gag1 from the 7SK promoter (named MP10 in this 

work) 

#217 M3 scAAV gRNA multiplexing vector for the expression of 

gag1 from the U6 promoter, int4 from the H1 promoter 

and p24_2 from the 7SK promoter (named MP9 in this 

work) 

#218 M4 scAAV gRNA multiplexing vector for the expression of 

g5 from the U6 promoter, int4 from the H1 promoter and 

gag1 from the 7SK promoter (named MP8 in this work) 

#219 M5 scAAV gRNA multiplexing vector for the expression of 

gag1 from the U6 promoter, g3 from the H1 promoter 

and int4 from the 7SK promoter (named MP7 in this 

work) 

#220 M6 scAAV gRNA multiplexing vector for the expression of 

gag1 from the U6 promoter, g5 from the H1 promoter 

and int4 from the 7SK promoter (named MP6 in this 

work) 

#221 M7 scAAV gRNA multiplexing vector for the expression of 

gag1 from the U6 promoter, g6 from the H1 promoter 

and int4 from the 7SK promoter (named MP5 in this 

work) 

#225 M9_Multi scAAV gRNA multiplexing vector for the expression of 

g5 from the U6 promoter, g6 from the H1 promoter and 

gag1 from the 7SK promoter (named MP4 in this work) 

#182 Multi_TRISPR/Cas_Flo 

gR6, gR6,gRgag17 

(E+F) 

scAAV gRNA multiplexing vector for the expression of 

g6 from the U6 promoter, p17 from the H1 promoter and 

g6 from the 7SK promoter (named MP3 in this work) 

#183 Multi_TRISPR v2/K17 scAAV gRNA multiplexing vector for the expression of 

g6 from the U6 promoter, p24_2 from the H1 promoter 
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Internal number Name Description 

and g3 from the 7SK promoter (named MP2 in this work) 

#184 Multi_TRISPR v2/K18 scAAV gRNA multiplexing vector for the expression of 

g6 from the U6 promoter, p24_2 from the H1 promoter 

and g5 from the 7SK promoter (named MP1 in this work) 

 

 

2.1.12 Kits 

 

Table 2.13: Kits. 

Name Supplier 

Invisorb RNA Cell HTS 96-Kit Stratec Molecular (Berlin, Germany) 

Invisorb Spin Plasmid Mini Two  Stratec Molecular (Berlin, Germany) 

InviTrap Spin Universal RNA Mini Kit Stratec Molecular (Berlin, Germany) 

NucleoBond AX 500  Macherey-Nagel (Düren, Germany) 

NucleoBond PC 100  Macherey-Nagel (Düren, Germany) 

PeqGOLD Tissue DNA Mini Kit VWR (Radnor, USA) 

Plasmid Plus Midi  QIAGEN (Hilden, Germany) 

QIAquick Gel Extraction Kit QIAGEN (Hilden, Germany) 

QIAquick Nucleotide Removal Kit QIAGEN (Hilden, Germany) 

SensiMixTM II Probe No-ROX Kit 

Verso cDNA synthesis Kit 

Bioline (London, UK) 

Thermo Fisher Scientific (Waltham, USA) 

TURBO DNA-free™ Kit. Thermo Fisher Scientific (Waltham, USA) 
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2.1.13 Oligonucleotides 

 

Table 2.14: Oligonucleotides. 

Name Sequence (5´3´) 

958 CGGCGGGATCCTTAAGCTTGCTCGGCTCTTAGAG 

g1for cacc AGAACTACACACCAGGGCCA 

g1rev aaac TGGCCCTGGTGTGTAGTTCT 

g2for cacc GATATCCACTGACCTTTGGA 

g2rev aaac TCCAAAGGTCAGTGGATATC 

g3for cacc AGAGAGAAGTGTTAGAGTGG 

g3rev aaac CCACTCTAACACTTCTCTCT 

g5for cacc GGTTAGACCAGATCTGAGCC 

g5rev aaac GGCTCAGATCTGGTCTAACC 

g6for cacc GGGAGCTCTCTGGCTAACTA 

g6rev aaac TAGTTAGCCAGAGAGCTCCC 

g7for cacc GCCCGTCTGTTGTGTGACTC 

g7rev aaac GAGTCACACAACAGACGGGC 

gagfor cacc GAGGCTAGAAGGAGAGAGAT 

Gagp24_forward GTCCTCTATTGTGTGCATCAAAGG 

Gagp24_reverse CCATCTTCCTGGCAAATTCATTTC 

gagrev aaac ATCTCTCTCCTTCTAGCCTC 

HIVamp CCTTGATCTGTGGATCTACCACAC 

HIV-Ex-1 CTTAATACCGACGCTCTCGCAC 

int3for cacc GGGATTGGGGGGTACAGTGC 

int3rev aaac GCACTGTACCCCCCAATCCC 

int4for cacc AAGCTCCTCTGGAAAGGTGA 

int4rev aaac TCACCTTTCCAGAGGAGCTT 

int5for cacc GATTATGGAAAACAGATGGC 

int5rev aaac GCCATCTGTTTTCCATAATC 
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Name Sequence (5´3´) 

Jlatgag24for ACCCTCTATTGTGTGCATCAAAGG 

Jlatgag24rev CATCTTCCTGGCAAACTCATTTC 

Jlatpolfor2 GGGCAGCTAACAGGGAGACT 

Jlatpolrev GGCTTGTTCCATCTATCCTCTGTC 

LTRpsirev GAACCAGCTAGCTTTGGCGTACTCACCAGTCG 

NcoIrev1 GACTGACCATGGTGGCGTCGACGCTCGGAGGACTGGCGC 

p17for cacc GATGGGTGCGAGAGCGT 

p17rev aaac ACGCTCTCGCACCCATC 

P2 TAATTTCAGTTGTCCTTATTGGAAGGG 

p24_1for cacc GACAGCATGTCAGGGAG 

p24_1rev aaac CTCCCTGACATGCTGTC 

p24_2for cacc AGAAATGATGACAGCATGTC 

p24_2rev aaac GACATGCTGTCATCATTTCT 

P3 GACTTGGTGGAAAAGGTGGA 

P7 TGTTGGGCTTGACAGCAGTTAC 

PacI for ATGCCATTAATTAACAGCTAGCTAGCTGCAGTAACGCC 

Pol_for1 GGGGCAGCCAATAGGGAAAC 

Pol_rev1 GCTTGTTCCATCTGTCCTCTGTC 

primer1ShalemCas CCAGAAGGGACAGAAGAACAG 

primer2ShalemCas TGCAGGTAGTACAGGTACAG 

psiJBAscIfor GTTGGTGGCGCGCCTGGAAGGGCTAATTTGGTCC 

psioligoascIfor GTTGGTAGATCTTTGGGTGGCGCGCCGTTGGTGCTAGCTGGTTG 

psioligoascIrev CAACCAGCTAGCACCAACGGCGCGCCACCCAAAGATCTACCAAC 

qPCR GFP FOR GAGCGCACCATCTTCTTCAAG 

qPCR GFP REV TGTCGCCCTCGAACTTCAC 

RPP30-Fw GATTTGGACCTGCGAGCG 

RPP30-Rv GCGGCTGTCTCCACAAGT 

RT-Assay-fwd TCCTGCTCAACTTCCTGTCGAG 
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Name Sequence (5´3´) 

RT-Assay-rev CACAGGTCAAACCTCCTAGGAATG 

U6for AATGCTTTCGCGTCGCGCAG 

U6rev TTGCCTGCGCGTCTTTCCAC 

Overhangs are written in small letters 

Restriction sites are underlined 

 

 

2.1.14 Plasmids 

 

Table 2.15: Plasmids. 

Name Description Source (internal 

plasmid number) 

#48_GGC_1+2_pBSU6(long

)ccdB_FE_Scaffold 

Plasmid expressing a single gRNA with 

F+E scaffold from the U6 promoter for clon-

ing of gRNA multiplexing constructs 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1589) 

#48_GGC_2+3_pBSH1_ccd

B_FE_Scaffold 

Plasmid expressing a single gRNA with 

F+E scaffold from the H1 promoter for clon-

ing of gRNA multiplexing constructs 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1592) 

#48_GGC_3+4_pBS7SK_cc

dB_FE_Scaffold 

Plasmid expressing a single gRNA with 

F+E scaffold from the 7SK promoter for 

cloning of gRNA multiplexing constructs 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1595) 

#552-EFS scAAV vector for the expression of YFP 

from the EFS promoter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1563) 

#552-SFFV scAAV vector for the expression of YFP 

from the SFFV promoter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 
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Name Description Source (internal 

plasmid number) 

(#1641) 

 

AAV TRISPR 2.0 ccdB GGC 

1+4_YFP Assembly Vector 

2nd Generation 

Assembly AAV plasmid for the expression 

of three gRNAs with F+E scaffold from U6, 

H1 and 7SK promoters 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1600) 

AAV TRISPR 2.0, 

pBS7SKccdB_FE_Scaffold 

AAV plasmid for the expression of one 

gRNA with F+E scaffold from the 7SK pro-

moter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1583) 

AAV TRISPR 2.0, 

pBSH1ccdB_FE_Scaffold 

AAV plasmid for the expression of one 

gRNA with F+E scaffold from the H1 pro-

moter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1580) 

AAV TRISPR 2.0, 

pBSU6(long)ccdB_FE_ 

Scaffold 

AAV plasmid for the expression of one 

gRNA with F+E scaffold from the U6 pro-

moter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1577) 

Adeno helper plasmid Helper plasmid with Ad5 

genes E2A, E4, VA RNA 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1111) 

EFS_Zhang/Shalem_Cas9_

60bp-Poly(A) 

AAV plasmid for the expression of SpCas9 

from the EFS promoter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1602) 

EFS_Zhang/Shalem_Cas9_

bGH-Poly(A) 

AAV plasmid for the expression of SpCas9 

from the EFS promoter with a bGH-Poly(A) 

site 

 Dr. Kathleen Börner, 

Centre for Infectious 

Diseases/ Virology 

Heidelberg (#119) 

pAAV-FZ-SpCas9 AAV plasmid for the expression of SpCas9 

from a 224bp CMV promoter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 
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Name Description Source (internal 

plasmid number) 

(#1451) 

pBS-sds-H1-gRNA scaffold AAV plasmid for the expression of one 

gRNA with standard scaffold from the H1 

promoter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1197) 

pBS-sds-U6-gRNA scaffold AAV plasmid for the expression of one 

gRNA with standard scaffold from the U6 

promoter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1196) 

pBSUF3rev-YFP-sds scAAV vector for the expression of YFP 

from the CMV promoter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#552) 

pcDNA-Tat Tat expression plasmid Müller lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#197), [193] 

pCHIV Non-replication competent HIV provirus 

derivative 

[194] 

PGK_Zhang/Shalem_Cas9_

60bp-Poly(A) 

AAV plasmid for the expression of SpCas9 

from the PGK promoter with a 60bp Poly(A) 

site 

Dr. Kathleen Börner, 

Centre for Infectious 

Diseases/ Virology 

Heidelberg (#111) 

PGK_Zhang/Shalem_Cas9_

bGH-Poly(A) 

AAV plasmid for the expression of SpCas9 

from the PGK promoter with a bGH-Poly(A) 

site 

Dr. Kathleen Börner, 

Centre for Infectious 

Diseases/ Virology 

Heidelberg (#121) 

pNL4-3 Prototype X4-HIV-1 proviral construct Kräusslich lab, Centre 

for Infectious Diseas-

es/ Virology Heidel-

berg,[195] 

psiCheck 
TM

 -2 Plasmid expressing Renilla and Firefly lu- Promega, Germany 
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Name Description Source (internal 

plasmid number) 

ciferases 

pSSV9_shortCMV-Cas9-H1 

gRNA 

AAV plasmid for the expression of spCas9 

from a 224bp CMV promoter and one 

gRNA with standard scaffold from the H1 

promoter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1296) 

scAAV_U6_BbsI(x2)_F+E 

scaffold_RSV:GFP 

AAV plasmid for the expression of one 

gRNA with F+E scaffold from the U6 pro-

moter 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1529) 

SFFV-Cas AAV plasmid for the expression of SpCas9 

from the SFFV promoter 

Cloned in this work 

(#254) 

 

SV40_Zhang/Shalem_Cas9

_bGH-Poly(A) 

AAV plasmid for the expression of SpCas9 

from the SV40 promoter with a bGH-

Poly(A) site 

Dr. Kathleen Börner, 

Centre for Infectious 

Diseases/ Virology 

Heidelberg (#124) 

synP_Zhang/Shalem_Cas9_

bGH-Poly(A) 

AAV plasmid for the expression of SpCas9 

from the synP promoter with a bGH-Poly(A) 

site 

Dr. Kathleen Börner, 

Centre for Infectious 

Diseases/ Virology 

Heidelberg (#122) 

TK_Zhang/Shalem_Cas9_60

bp-Poly(A) 

AAV plasmid for the expression of SpCas9 

from the TK promoter with a 60bp Poly(A) 

site 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1604) 

TK_Zhang/Shalem_Cas9_b

GH-Poly(A) 

AAV plasmid for the expression of SpCas9 

from the TK promoter with a bGH-Poly(A) 

site 

Dr. Kathleen Börner, 

Centre for Infectious 

Diseases/ Virology 

Heidelberg (#123) 

WHc6 WT AAV helper plasmid encoding rep and 

AAV6 

cap 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1764) 
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Name Description Source (internal 

plasmid number) 

WHc9 A2 AAV helper plasmid encoding rep and 

cap. Chimeric capsid variant with peptide 

insertion (Börner et al. manuscript 

in preparation) 

Grimm lab, Centre for 

Infectious Diseases/ 

Virology Heidelberg 

(#1790) 

 

 

2.1.15 Probes 

 

Table 2.16: Probes 

Name Sequence (5´3´) Labeling 

EGFP ACGACGGCAACTACA 5´6-FAM; 3´BHQ1 

RPP30 CTGACCTGAAGGCTCT 5´6-FAM; 3´BHQ1 

ShalemCas AGAGAATGAAGCGGATCGAAGAGGGCATCAA 5´6-FAM; 3´BHQ1 

5´HEX; 3´BHQ1 

U6 TGAGTAAGAGCCCGCGTCTGAACCCTCC 5´6-FAM; 3´BHQ1 

 

 

2.1.16 Software 

 

Table 2.17: Software. 

Name Application Company/Reference 

Ascent™ Software Plate reader software Thermo Fisher Scientific (Waltham, 

USA) 
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Name Application Company/Reference 

CFX Manager™ Software qPCR software BioRad (Hercules, USA) 

FACSuite Acquisition Software Flow cytometry software BD Biosciences (Franklin Lakes, 

USA) 

Flowing Software 2 analysis of flow cytometry 

data 

(Perttu Terho, Turku Centre for 

Biotechnology, Finland; 

www.flowingsoftware.com) 

GATCViewer 1.00 visualization of chromato-

grams from sequencing 

data 

GATC Biotech (Konstanz, Germa-

ny) 

GloMax®-96 Microplate Lumi-

nometer Software 

Luminometer software Promega (Madison, USA) 

GraphPad Prism graphic illustration and 

statisitical analysis of data 

GraphPad Software, Inc. 

(La Jolla, USA) 

ImageJ analysis of microscopy im-

ages and gel images  

 

MXP software Flow cytometry software Beckman Coulter (Brea, 

USA) 

QuantaSoft™ Software ddPCR software BioRad (Hercules, USA) 

Quantity One 1-D Analysis 

Software 4.6.9 

gel documentation software BioRad (Hercules, USA) 

Rotor Gene 6000 Series 

Software 1.7 

qPCR software QIAGEN (Hilden, 

Germany) 

ScanR acquisition software microscopy software Olympus (Hamburg, Germany) 
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Name Application Company/Reference 

SnapGene Viewer visualization of plasmid 

maps 

GSL Biotech (Chicago, USA) 

 

 

2.2 Cell biological methods 

 

2.2.1 Cell culture 

All cells were cultured at 37 °C and 5 % CO2. HEK293T, HeLaP4 and HeLa-pNLtr cells were cul-

tured in DMEM supplemented with 10 % FBS, 100 U/ml Penicillin and 100 µg/ml Streptomycin. 

J-Lat, MT4 and C8166 cells were cultured in RPMI 1640 with GlutaMAX™ supplemented with 

10 % FBS, 100 U/ml Penicillin and 100 µg/ml Streptomycin. Primary CD4+ T cells were cultured 

in RPMI 1640 with GlutaMAX™ supplemented with 10 % heat inactivated FBS (heated for 

30 min at 56 °C), 100 U/ml Penicillin, 100 µg/ml Streptomycin and 20 U/ml IL-2.  

 

2.2.2 Isolation of CD4+ T cells from Buffy coats and activation 

500 µl of RosetteSep™ Human CD4+ T Cell Enrichment Cocktail were added to 10 ml blood 

from uncooled buffy coats not older than 24 hours and the tube was inverted several times. After 

incubation for 20 minutes at RT, 10 ml 1 x PBS, sterile filtered using a membrane with 0.22 µm 

pore size, were added. 15 ml Ficoll were pipetted into a SepMate™ tube and 17 ml of the 

blood/PBS mixture were added slowly on top without mixing the phases. The tube was then cen-

trifuged 20 min at 1200 g. After centrifugation, a white ring containing the CD4+ T cells appears 

at the interface between plasma and Ficoll. Approximately two thirds of the plasma were careful-

ly removed using a 10 ml pipette. The rest of the plasma and the white ring were transferred into 

a new 50 ml tube, sterile filtered PBS was added up to 45 ml and the tube was centrifuged at 

1100 rpm for 10 min. The PBS was removed completely with a pipette and the cells were resus-

pended in 20 ml fresh PBS. 5 µl of this cell suspension were added to 20 µl trypan blue and cells 

were counted using a Neubauer counting chamber. After counting, another 25 ml of PBS were 

added to the cell suspension and the cells were centrifuged again at 1100 rpm for 10 min. The 

PBS was removed completely and the cells were resuspended in RPMI supplemented with 

20 U/ml IL-2 and heat inactivated FBS (heated at 56 °C for 30 min) to reach a cell density of 2 - 
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5 x 106 cells/ml. To activate the cells, Dynabeads were washed with medium once and 60 µl of 

the beads were added per 10 million cells. The cells were incubated three days at 37 °C and 

5 % CO2. Then, the Dynabeads were removed using a DynaMag-2 magnet. For activation with 

PHA, instead of Dynabeads PHA was added at a final concentration of 2 µg/ml to the cells and 

incubated three days at 37 °C and 5 % CO2. 

 

2.2.3 MTS assay 

40 h after activation, the viability of untransduced or transduced J-Lat cells (chapter 2.3.10) was 

measured with a MTS assay (CellTiter 96® AQueous One Solution Cell Proliferation Assay, 

Promega) according to manufacturer`s instructions. Briefly, 20 µl cellsuspension of a 24-well 

were transferred to a 1.5 ml tube and centrifuged at 1200 rpm. The old medium was replaced by 

100 µl fresh medium and the cells were transferred to a 96-well plate and 20 µl of the CellTiter 

96® AQueous One Solution reagent were added. The plate was incubated 1 h at 37 °C and 5 % 

CO2. To stop the reaction, the suspension was transferred to a white plate with 25 µl 10 % SDS 

per well. Finally, the absorbance at 490 nm was measured with a luminometer.  

 

 

2.3 Microbiological methods 

 

2.3.1 Transformation of chemo-competent bacteria 

Usually, 5 µl of ligation mix or in case of a re-transformation 1 µl plasmid were added to 50 µl of 

chemo-competent bacteria. After 15 min incubation on ice, the heat shock was performed at 

42 °C for 50 sec followed by an incubation step on ice for 2 min. The bacteria were then plated 

on LB agar plates containing 100 µg/ml ampicillin and incubated overnight at 37 °C. For plas-

mids with a chloramphenicol resistance, 800 µl SOC media were added after the 2 min incuba-

tion step on ice and bacteria were shaked 1 h at 37 °C. Afterwards, the bacteria were centri-

fuged 5 min at 400 g, approximately 700 µl supernatant were discarded and the bacteria were 

plated on LB agar plates containing 25 µg/ml chloramphenicol and incubated at 37 °C overnight.  
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2.3.2 Transfection and harvesting of HEK293T for AAV crude lysate production 

Per well 50,000 HEK293T cells were seeded in 4 ml DMEM on a 6-well plate. The day after, 

every well was transfected with a mix containing 390 µl DMEM without supplements, 8 µl Tur-

boFect, 1.3 µg of an adeno-viral helper plasmid, 1.3 µg of a cap encoding plasmid and 1.3 µg of 

a plasmid carrying the transgene flanked by ITRs. The mix was vortexed well, incubated 20 min 

at RT and added dropwise to the cells. 72 h after transfection, the cells were collected in 15 ml 

tubes and centrifuged at 2500 rpm for 15 min. The medium was removed and the cell pellet was 

resuspended in 150 µl PBS per 6-well and transferred to 1.5 ml tubes. To lyse the cells, they 

were frozen in liquid nitrogen for 5 min and thawed in a water bath at 37 °C for 5 min. This pro-

cedure was repeated 5 times. Afterwards, the cell lysate was centrifuged at 13,200 rpm for 5 min 

and the supernatant was collected, aliquoted and frozen at -80 °C. 

 

2.3.3 Transfection and harvesting of HEK293T cells for production of purified AAVs 

For large scale AAV production, 4 million HEK293T cells were seeded in 22 ml DMEM on 15 cm 

dishes two days before transfection. For the transfection of one dish, 14.7 µg of an adeno-viral 

helper plasmid, 14.7 µg of a cap encoding plasmid and 14.7 µg of a plasmid carrying the 

transgene flanked by ITRs were mixed with water to a final volume of 790 µl. In parallel, 352 µl 

PEI were mixed with 438 µl water. Directly before usage, 790 µl 300 mM NaCl were added to 

the PEI solution and to the DNA solution. After inverting both solutions, the PEI mixture was 

added dropwise into the DNA mixture. The transfection mix was vortexed, incubated 10 min at 

RT and added dropwise to each dish. Three days after transfection, the cells were harvested 

with a cell lifter and centrifuged 15 min at 400 g. The medium was removed, the cell pellet was 

resuspended in PBS and centrifuged again 15 min at 400 g. The PBS was removed and the cell 

pellet was resuspended in either 5 ml benzonase buffer for purification using a small iodixanol 

gradient or in 20 ml benzonase buffer for purification using a big iodixanol gradient. These cell 

suspensions were either stored at -80 °C or directly further processed as described in chapter 2. 

3.4.  

 

2.3.4 Iodixanol purification of AAVs 

The cells resuspended in benzonase buffer (see chapter 2.3.3) were 5 times frozen in liquid ni-

trogen and thawed in a waterbath at 37 °C. Afterwards, the samples were sonicated 1 min. 

50 U/ml benzonase were added, the samples were incubated 1 hour in a waterbath at 37 °C and 
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inverted every 10 min. Next, the samples were centrifuged at 4000 g for 15 min. The superna-

tant was transferred to a new tube and centrifuged again at 4000 g for 15 min. To prepare the 

gradient, the supernatants were filled through a pasteur pipette into ultracentrifugation tubes and 

15 % iodixanol, 25 % iodixanol, 40 % iodixanol and 60 % iodixanol were added. For the prepara-

tion of a small gradient, 1.5 ml of each iodixanol solution were added. For the preparation of a 

big gradient, 7 ml 15 % iodixanol, 5 ml 25 % iodixanol, 4 ml 40 % iodixanol and 4 ml 60 % iodix-

anol were added. The Pasteur pipette was removed carefully, the tubes were completely filled 

with benzonase buffer, sealed and centrifuged with an Optima L-90K ultracentrifuge. Small gra-

dients were centrifuged at 50,000 rpm for 2 h at 4 °C using a 70.1Ti rotor. Big gradients were 

centrifuged at 50,000 rpm for 2.5 h at 4 °C using a 70Ti rotor. After centrifugation, the 40 % 

iodixanol phase was collected using a syringe. The virus was aliquoted and stored at -80 °C.  

 

2.3.5 Titration of purified AAVs 

To measure the titer of the iodixanol purified AAVs, 10 µl of virus were diluted with 10 µl of TE 

buffer. Then, 20 µl 2 M NaOH were added, the sample was mixed and incubated for 30 min at 

56 °C to lyse the viral particles. After that, 38 µl 1 M HCl were added for neutralization and 

922 µl H2O were added in addition. To avoid inhibition of the PCR by iodixanol, the samples 

were further diluted 1:10 with water. To prepare a standard curve, a suitable plasmid was diluted 

at a range of 3.5 x 1011 to 3.5 x 106 molecules/ml in 10-1 steps. The following formula was used 

to determine the amount of molecules/ml: 

DNA concentration (
g

mL)

660 x size of plasmid in bp
 x 6.02x1023 

Samples and standards were measured in triplicates. The final PCR mix contained 1 x Sen-

siMixTM II Probe No-Rox, 0.4 µM of each primer and 0.1 µM probe. Water was added to reach a 

final volume of 10 µl. The reaction was performed using a Rotor-Gene 6000 machine and the 

program shown in table 2.18.  
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Table 2.18: QPCR program for the titration of AAVs.  

Step Temperature Time Number of cycles 

Initial activation 95 °C 10 min 1 

Denaturation 95 °C 10 sec 
40 

Annealing  60 °C 20 sec 

 

To create the standard curve, the Ct values of the standards were plotted on the y-axis and the 

logarithm of the number of molecules per ml was plotted on the x-axis. Using the linear equation 

of the standard curve and the Ct values of the samples the x-values for the samples were calcu-

lated. As the samples were diluted 1:1000 with water after neutralization, the x-values were mul-

tiplied with 1000 to determine the number of viral genomes per ml. For single-stranded AAV 

constructs this value has to be multiplied by two as the plasmid used to create the standard 

curve is double-stranded.  

 

2.3.6 HIV-1 NL4-3 production 

HIV-1 used in this work was produced from MT4 co-culture. This co-culture was started by in-

fecting 10 to 20 ml of MT4 cells in a 25 cm2 flask with 1 ml supernatant from HEK293T cells 

transfected with pNL4-3. These cells were passaged twice a week 1:10 or 1:20 at the beginning 

and 1:200 routinely. For the production of HIV-1, three days after passaging 2 ml of the co-

culture were added to 18 ml MT4 cells at a density of 5 x 105 cells/ml. At the same day 180 ml 

MT4 cells were prepared at a density of 3-5 x 105 cells/ml. 36 h later, the 20 ml infected MT4 

cells were added to the 180 ml of non-infected cells. 2 days later, the cells were transferred to 

50 ml tubes and centrifuged 5 min at 2500 rpm. The supernatant was filtered through a syringe 

filter with a pore size of 0.45 µm. 30-33 ml of this supernatant were added carefully on top of 

6 ml of a sucrose cushion (20 % sucrose (w/v) in PBS) and centrifuged at 28,000 rpm for 2 h at 

4 °C in a Optima LE80K ultracentrifuge using a SW32 rotor. The virus pellet was taken up in 

RPMI with 20 mM Hepes. The titers of the HIV-1 stocks used in this work are listed in table 2.19.  
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Table 2.19: Titers of HIV-1 stocks used in this work.  

Name pU RT/µl 

(SG-PERT) 

µg p24/ml 

(ELISA) 

infectious units/ml 

(C8166 titration) 

NL4-3_1 2.32 x 10
11

 96.11 3.16 x 10
8
 

NL4-3_2 2.25 x 10
11

 384.15 3.16 x 10
9
 

   

 

2.3.7 Titration of HIV-1 NL4-3 on C8166 cells 

4 x 104 cells were seeded in 100 µl RPMI with 10 % FBS and 1 % penicillin/streptomycin on a 

96-well plate. Supernatants from infected HeLaP4 cells (chapter 2.3.9) or HIV-1 produced from 

MT4 co-culture were diluted at a range of 10-2 to 10-11 with medium and 100 µl of these dilutions 

were added per well to the C8166 cells. 4 wells were infected in parallel with one dilution. Seven 

days post infection, the cells were checked for syncytia formation indicative for HIV-1 infection. 

The number of infectious units per ml was calculated with the following formula: 

Infectious units/ml = 10−1 ×(L−(d×(s−0.5))  × 10 

L = log of the highest dilution where all 4 wells are positive 

d = log of the dilution factor 

s = sum of the number of all positive wells (beginning at the highest dilution where all 4 wells are 

positive) divided by the number of replicates analyzed per dilution  

 

2.3.8 AAV transduction of HeLaP4-PNLtr cells 

2,500 cells were seeded in 100 µl medium on a 96-well plate and 10 µl of each crude AAV vec-

tor or 5 µl of each iodixanol-purified AAV vector were added per well. Two days later, the medi-

um was removed, replaced by 100 µl fresh medium and again 10 µl of each crude AAV vector or 

5 µl of each iodixanol-purified AAV vector were added per well. Two days later, the medium was 

removed and 140 µl of DirectPCR® Lysis Reagent Cell (VWR) diluted 1:2 with water and sup-

plemented with 11.4 U/ml proteinase K (NEB) were added per well. The plates were incubated 

at 55 °C for 5-16 h under continuous shaking and the lysates were frozen at -20 °C.  
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2.3.9 AAV transduction and HIV-1 infection of HeLaP4 cells 

2,500 cells were seeded per well in 100 µl medium on a 96-well plate and 5 µl of each AAV vec-

tor were added. Three days later, the medium was removed and 50 µl fresh medium supple-

mented with 48 ng of the viral stock HIV-1 NL4-3_1 (table 2.19) were added per well. Additional-

ly, 5 µl of each AAV vector were added per well. After 36 h, the medium was removed and the 

cells were fixed with 100 µl 4 % PFA for 90 minutes at RT. After fixation, the cells were stained 

and imaged (chapter 2.4.19). To analyze Cas9 expression in HeLaP4 cells, the cells were lysed 

three days after the first transduction and RNA was extracted (chapter 2.4.10).  

 

2.3.10 AAV transduction and activation of J-Lat cells 

50,000 cells were seeded in 500 µl medium per well on a 24-well plate and 10 µl of each AAV 

vector were added per well. After 54 h, the cells were transferred to 1.5 ml tubes and centrifuged 

at 1200 rpm. The medium was removed and 700 µl fresh medium were added. 320 µl of the cell 

suspension were transferred to a 24-well plate and 10 µl of each AAV vector were added per 

well. 21 h later, 350 µl medium supplemented with 2.7 µg/ml TPA and 20 ng/ml TNFα were add-

ed per well. 5-6 h later, the cells were transferred to 1.5 ml tubes and centrifuged at 1200 rpm. 

The medium was removed, 500 µl fresh medium were added and the cells were transferred to a 

24-well plate again. After 40 h, 200-300 µl of the cells were transferred to 1.5 ml tubes and cen-

trifuged at 1200 rpm. The medium was removed and frozen at -20 °C for later analysis with SG-

PERT (chapter 2.4.14). To isolate genomic DNA for T7 assay analysis (chapter 2.4.15), 400 µl 

DNA Lysis Buffer T (PeqGOLD Tissue DNA Mini Kit, VWR) supplemented with 20 µl Proteinase 

K and 15 µl RNase A were added to the cell pellet and shaked 30 min at 50 °C. The samples 

were further processed according to manufacturer`s instructions. The other 200-300 µl of the 

cells were also transferred to 1.5 ml tubes and centrifuged at 1200 rpm. The medium was re-

moved, the cells were stained with Hoechst and imaged (chapter 2.4.20). To validate the func-

tionality of single gRNAs in J-Lat cells, 50,000 cells were seeded in 500 µl medium per well on a 

24-well plate and 20 µl of each crude AAV vector were added per well. After 48 h, the cells were 

transferred to 1.5 ml tubes and centrifuged at 1200 rpm. The old medium was removed and 1 ml 

fresh medium was added to the cell pellet. 500 µl of the cell suspension were added on a 24-

well plate and 20 µl of each crude AAV vector were added per well. Three days later, the ge-

nomic DNA was isolated using the PeqGOLD Tissue DNA Mini Kit (VWR) following the manu-

facturer`s instructions.  
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2.3.11 AAV transduction and HIV-1 infection of primary human CD4+ T cells 

50,000 cells were seeded in 100 µl medium per well on a 96-well V-bottom plate and 10 µl of 

each AAV vector were added. Two days later, the cells were centrifuged 5 min at 1200 rpm. The 

old medium was removed, 100 µl fresh medium and 10 µl of each AAV vector were added per 

well. After one additional day, the cells were centrifuged again 5 min at 1200 rpm, the old medi-

um was removed and 50 µl medium containing 6.1 x 10-6 to 3.7 x 10-5 ng NL4-3_2 (table 2.19) 

per cell were added per well. Subsequently, the plates were sealed with a sterile sealing tape 

and centrifuged 1.5 h at 2000 rpm and 37 °C. Afterwards, the sealing tape was removed and the 

cells were incubated 5-6 h at 37 °C and 5 % CO2. After the incubation, 100 µl fresh medium 

were added to the cells and the plates were centrifuged 5 min at 1200 rpm. The medium was 

removed and replaced by 100 µl fresh medium. Three days post infection, the cells were stained 

with a viability dye, fixed, stained with a FITC-labeled anti-capsid antibody and analyzed with 

flow cytometry (chapter 2.4.18). Cells that were only transduced with a YFP-encoding AAV vec-

tor and not infected with HIV-1, were fixed 72 h after the first transduction and then analyzed 

with flow cytometry. To analyze Cas9 expression in primary CD4+ T cells, the cells were lysed 

one day after the second transduction and RNA was extracted (chapter 2.4.10).  

 

2. 4 Molecular biological methods 

 

2.4.1 Isolation of plasmid DNA 

For isolation of plasmid DNA from transformed E. coli bacteria, the following Kits were used: 

Plasmid Plus Midi (Qiagen), NucleoBond AX 500 (Macherey Nagel), Invisorb Spin Plasmid Mini 

Two (Stratec). Plasmid DNA used for test digestions was isolated by isopropanol precipitation 

using buffers S1-3 from the NucleoBond PC 100 kit. Briefly, 2 ml of bacterial culture were centri-

fuged at 13,000 rpm for 3 min. Then, the bacteria were resuspended with 300 µl buffer S1 and 

lysed by addition of 300 µl buffer S2 and incubation at RT for 5 min. For neutralization, 300 µl 

buffer S3 were added and samples were incubated 5 min at RT. After that, samples were centri-

fuged at 13,000 rpm. The supernatant was mixed thoroughly with 600 µl isopropanol and centri-

fuged at 13,000 rpm. The supernatant was removed and the pellet was washed with 70 % Etha-

nol. The pellet was dried at 65 °C for 10 min and resuspended in 60 µl water. 
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2.4.2 Restriction enzyme digestion 

In most cases (unless stated otherwise) enzymes from NEB and the corresponding buffers were 

used. For test digestions, usually 400-800 ng of plasmid DNA were mixed with 0.5 µl enzyme, 

1 µl buffer and water to a final volume of 10 µl. The reaction was incubated at the recommended 

temperature for 1 h. For cloning, either 1 µg of plasmid DNA or the complete eluate of a gel ex-

traction or nucleotide removal was mixed with 1 µl of enzyme and 5 µl of the appropriate buffer. 

Water was added up to a final volume of 50 µl. The mix was incubated at the recommended 

temperature overnight. 

 

2.4.3 Ligation reaction 

For ligation of PCR products or annealed oligonucleotides into plasmids a mix was prepared 

containing 50 ng of the digested plasmid, 1 µl T4 DNA Ligase Buffer (NEB) and 0.5 µl T4 DNA 

Ligase (NEB). The digested PCR product or annealed oligonucleotides were added at a molar 

vector to insert ratio of 1:3. Water was added to reach a final volume of 20 µl. The reaction was 

incubated 1 h at RT.  

 

2.4.4 Cloning of SFFV-Cas 

To clone an SFFV-driven Cas9 AAV vector, the plasmid #1641 was used for the amplification of 

the SFFV promoter with the primers PacI for and NcoI rev1. The reaction was performed as de-

scribed in chapter 2.4.8 with an annealing temperature of 68 °C. The PCR product was purified 

using the QIAquick Nucleotide Removal Kit (Qiagen) according to manufacturer`s instructions. 

The PCR product and the plasmid #1451 were digested with NcoI and PacI and ligated.  

 

2.4.5 Cloning of single gRNA constructs 

For cloning of AAV vectors expressing a single gRNA either with standard or E+F scaffold from 

the U6 promoter, the plasmids #1196 or #1529 were digested with BbsI. For cloning of the “all-

in-one” vectors expressing a single gRNA and Cas9, the plasmid #1296 was digested with 

BsmbI. GRNA oligonucleotides listed in table 2.14 were annealed and ligated into the plasmid 

backbones. For the annealing reaction, 5 µl of each oligonucleotide at a concentration of        

100 pmol/µl were mixed with 5 µl NEBuffer 2 (New England Biolabs) and 35 µl water. The mix 
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was heated to 95 °C for 5 min in a heating block, that was then turned off to allow the mix to 

slowly cool down to RT.   

 

2.4.6 Cloning of gRNA multiplexing constructs 

To clone plasmids expressing three gRNAs from the promoters U6, 7SK and H1, first donor 

plasmids encoding one single gRNA were produced using Golden Gate cloning. For that pur-

pose, the annealed gRNA oligonucleotides (chapter 2.4.5) were diluted 1:200 with water. 1 µl of 

the oligonucleotides was then mixed with 40 fmol of the recipient plasmid (#1589, # 1592, 

#1595) and with ATP and DTT 1 mM each, 1 µl 10 x FastDigest Buffer (Thermo Scientific), 1 µl 

T4 DNA ligase (400 U/µl) (NEB), 0.75 µl FastDigest Esp3 (Thermo Scientific) and water up to a 

final volume of 10 µl. Using a Mastercycler Nexus GX2 (Eppendorf) the reaction was performed 

as shown in table 2.20.  

 

Table 2.20: Golden Gate cloning program. 

Step Temperature Time Number of cycles 

Digestion 37 °C 3 min 

30 

Ligation 16 °C 5 min 

 37 °C 15 sec 1 

Heat inactivation 65 °C 20 min 1 

 

To assemble the multiplexing constructs, 20 fmol of each donor plasmid and the recipient plas-

mid #1600 were mixed with 0.75 µl BpiI (Thermo Scientific), 2 µl 10 x buffer G (Thermo Scien-

tific), ATP and DTT 1 mM each, 0.5 µl T4 DNA Ligase (2000 U/µl) (NEB) and water to a final 

volume of 20 µl. The reaction was performed as shown in table 2.20. 

 

2.4.7 Cloning of LTR driven luciferase constructs 

To analyze promoter activity of CRISPR modified LTRs, the SV40 promoter driving Renilla lucif-

erase expression was removed by digestion of the plasmid psiCheckTM-2 with the enzymes BglII 
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and NheI-HF. To create an AscI digestion site, the oligonucleotides psioligoascIfor and psioligo-

ascIrev were annealed, sequentially digested with NheI and BglII and ligated into the digested 

psiCheckTM-2. LTR sequences from HeLaP4-NLtr cell lysates were PCR amplified as described 

in chapter 2.4.8 with an annealing temperature of 64 °C using the primers LTRpsirev and 

psiJBAscIfor. The PCR product was purified using the QIAquick Nucleotide Removal Kit (Qi-

agen) according to manufacturer`s instructions. The PCR product and the modified psiCHECK-2 

were digested with NheI-HF and AscI. After purification of the PCR product with the aforemen-

tioned nucleotide removal kit and after purification of the plasmid with QIAquick Gel Extraction 

Kit (Quiagen), the ligation reaction was performed. The cloned constructs were sequenced using 

the primer HIVamp and the TAR loop structures were predicted using the RNAfold web server 

(rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi).  

 

 

2.4.8 Polymerase chain reaction 

For most purposes, (unless stated otherwise) a 25 µl PCR mix was prepared to amplify genomic 

or plasmid DNA. This mix contained 7.5 pmol of each primer, 5 pmol dNTPs, 3 % DMSO, 1 x HF 

buffer (NEB), 0.5 µl of Phusion Hot Start Flex (NEB) and 5 µl template DNA. Water was added 

to reach the final volume of 25 µl. The reaction was performed with a Mastercycler Nexus GX2 

(Eppendorf) as shown in table 2.21.   

 

Table 2.21: Standard PCR program.  

Step Temperature Time Number of cycles 

Initial denaturation 98 °C 30 sec 1 

Denaturation 98 °C 10 sec 

40 Annealing  variable 15 sec 

Extension 72 °C 30 sec 

Final extension 72 °C 10 min 1 

Hold 4 °C ∞ 1 
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2.4.9 Agarose gel electrophoresis 

T7 assay cleavage products, restriction enzyme digested DNA or PCR products were separated 

using agarose gel electrophoresis. To separate T7 assay cleavage products, usually a 2 % aga-

rose gel (2 % agarose (w/v) in 1 x TAE buffer) was prepared were dissolved in for all other pur-

poses a 1 % agarose gel (1 % agarose (w/v) in 1 x TAE buffer) was used. To visualize the DNA 

after the run, the gels were supplemented with 1 µg/ml ethidiumbromide. Prior to loading, the 

samples were mixed with 6 x purple gel loading dye. The gels were usually run at 100-120 V for 

30-60 min. DNA was visualized with a Gel DocTM XR (BioRad).  

 

2.4.10 RNA extraction 

To extract RNA from primary human CD4+ T cells, the cells were centrifuged in the 96-well plate 

at 1200 rpm, the medium was removed and 50 µl Lysis solution S (Stratec Molecular) were add-

ed. Plates were then stored at -80 °C. After thawing, another 300 µl of Lysis solution S were 

added and RNA was extracted according to manufacturer`s instructions using the InviTrap® 

RNA Cell HTS 96 Kit/ C (Stratec Molecular). For RNA extraction from HeLaP4 cells, the medium 

was removed, 50 µl Lysis solution S were added per well and plates were also stored at -80 °C. 

After thawing another 300 µl Lysis solution R were added per well and RNA was extracted using 

the InviTrap® Spin Cell RNA Mini Kit according to manufacturer`s instructions.  

 

2.4.11 DNase digestion of RNA samples 

To remove AAV DNA from RNA samples of transduced primary CD4+ T cells or HeLaP4 cells, a 

DNA digestion was performed using the TURBO DNA-free™ Kit (Thermo Fisher Scientific). 

Briefly, 1.8 µl 10 x TURBO DNase Buffer and 0.75 µl TURBO DNase were added to 15 µl RNA 

and the sample was incubated at 37 °C for 30 min. Afterwards, 3.75 µl DNase Inactivation Rea-

gent were added and the sample was incubated 2 min at RT. Subsequently, the sample was 

centrifuged 1 min at 10,000 rpm and the supernatant was transferred into a new tube.  

 

2.4.12 CDNA synthesis 

For cDNA synthesis the Verso cDNA Synthesis Kit (Thermo Fisher Scientific) was used. 10 µl of 

RNA solution were mixed with 4 µl 5 x RT buffer, 2 µl 10 mM dNTP mix, 1 µl random hexamer 
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primers, 1 µl RT enhancer, 1 µl enzyme mix and 1 µl nuclease free water. The reaction was per-

formed as shown in table 2.22.  

 

Table 2.22: cDNA synthesis program.  

Step Temperature Time Number of cycles 

cDNA synthesis 32 °C 30 min 1 

inactivation 95 °C 2 min 1 

 

2.4.13 Digital droplet PCR 

For one sample a 22 µl mix was prepared containing 5.5 µl sample, 11 µl ddPCR™ Supermix for 

Probes (No dUTP) (BioRad), 3.3 µl water, 1.1 µl 100 µM RPP30 probe and 1.1 µl 100 µM Cas9 

probe. For droplet generation 20 µl of this mix were added to the middle row of a DG8™ car-

tridge (BioRad) and 70 µl droplet generation oil for probes (BioRad) were added to the row be-

low. The cartridge was covered with a gasket and droplets were generated using a QX200™ 

Droplet Generator (BioRad). 40 µl of the droplets were transferred to a PCR plate, the plate was 

sealed with Pierceable PCR plate heat foil (BioRad) using a PX1 PCR Plate Sealer (BioRad) 

and the reaction was run as shown in table 2.23 using a C1000 Touch™ Thermal Cycler (Bio-

Rad). After PCR the positive droplets were detected using the QX200™ Droplet Reader (Bio-

Rad) and QuantaSoft™ Software (BioRad).  

 

Table 2.23: DdPCR program.  

Step Temperature Time Number of cycles 

Initial denaturation 95 °C 10 min 1 

Denaturation 94 °C 30 sec 

40  

Annealing and extension 57 °C 1 min 

 98 °C 10 min 1 

Hold 4 °C ∞  
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2.4.14 SG-PERT 

The standard curve was created by diluting the plasmid pCHIV with 1 x dilutionbuffer at a range 

from 5.09 x 109 pUnits RT/µl to 5.09 x 103 pUnits RT/µl in 10-1 steps. 5 µl of culture supernatant 

or standard were mixed with 5 µl 2 x lysisbuffer and incubated for 10 min at RT. Afterwards, 

90 µl of 1 x dilutionbuffer were added. For PCR, 10 µl 2 x reaction mix were added to 10 µl of 

lysed sample or lysed standard. The reaction was run on a BioRad CFX 96 using the program 

shown in table 2.24.  

 

Table 2.24: SG-PERT program. 

Step Temperature Time Number of cycles 

Reverse transcription 42 °C 20 min 1 

Taq activation 95 °C 2 min 1  

Denaturation 95 °C 5 sec 

39 

Annealing 60 °C 5 sec 

Extension 72 °C 15 sec 

Acquisition 80 °C 7 sec 

Melting curve 
65 °C 31 sec 60 

65 °C + 0.5 °C/cycle 5 sec 

 

 

2.4.15 T7 assay 

To detect cleavage and mutations caused by CRISPR/Cas at different gRNA target sites, a T7 

endonuclease assay was performed. First, the target region was PCR amplified as described in 

chapter 2.4.8. The primers and annealing temperatures used are listed in table 2.25. After PCR 

amplification of the target region, the sample was denatured for 5 min at 95 °C and then cooled 
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down to 25 °C in steps of -5 °C and 5 min per step. Then 5 U of T7 Endonuclease (NEB) were 

added to 25 µl PCR sample and incubated for 20 min at 37 °C.  

 

Table 2.25: Primers and annealing temperatures for T7 assay.  

Cells Target site Primers Annealing temperature/ 

extension time 

HeLaP4-PNLtr/JLat 5´LTR HIVamp/HIV-Ex-1 68 °C/30 s 

HeLaP4-PNLtr 3´LTR HIVamp/HIV-3.2 68 °C/30 s 

HeLaP4-PNLtr/JLat 5´LTR/gag HIVamp/958 68 °C/30 s 

HeLaP4-PNLtr gag p24 

Gagp24_forward/ 

Gagp24_reverse 

65 °C/50 s 

JLat gag p24 Jlatgag24for/ Jlatgag24rev 61 °C/30 s 

HeLaP4-PNLtr pol Pol_for1/ Pol_rev1 65 °C/50 s 

JLat pol Jlatpolfor2/ Jlatpolrev 64 °C/50 s 

 

The cleavage efficiency was calculated using ImageJ. First, the background was subtracted us-

ing a rolling ball of radius of 10-20. The different lanes were marked with the rectangular selec-

tion and plotted. Then, the area under the curve was determined using the wand tool and the 

cleavage efficiency was calculated using the following formula described by Ran et al. [196]. 

% cleavage efficiency = 100 × (1 − √1 − (fcut)) 

  fcut =
sum of areas under the curve from T7 cleavage bands

sum of areas under the curve from all bands
 

 

2.4.16 Enzyme-Linked Immunosorbent Assay (ELISA) 

To measure the p24 amount of the produced HIV-1 NL4-3 stocks, an ELISA was performed. 

First, the anti-capsid antibody MAK183 was diluted 1:1000 in 1 x PBS, 100 µl were added per 

well on a Maxisorb 96-well plate and the plate was incubated overnight at RT in a moisture 
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chamber. Then, the plate was washed two times with 0.05 % Tween-20 in 1 x PBS and 150 µl 

10 % FBS in 1 x PBS were added per well and incubated for 2 h at 37 °C for blocking. The 

standard was prepared by diluting purified capsid protein at a range from 5 ng/ml to 0.078 ng/ml 

in 1 x PBS supplemented with 0.1 % Tween-20. Viral particles were inactivated by adding 18 µl 

1 x PBS and 1 µl 5 % Triton X-100 to 1 µl of the viral stock. This 1:20 dilution of the viral parti-

cles was then further diluted with 0.1 % Tween-20 in 1 x PBS at a range from 1:2,000 to 

1:2,000,000. After incubation, the blocking buffer was removed from the plate and 100 µl per 

well of each dilution of the standard or the samples were added. Each dilution was measured in 

duplicates. The plate was incubated overnight at RT in a moisture chamber. Then, the plate was 

washed 2 times with 0.05 % Tween-20 in 1 x PBS. 100 µl rabbit anti-capsid antibody diluted 

1:1000 in 1 x PBS supplemented with 10 % FBS and 0.1 % Tween-20 were added to each well 

and incubated at 37 °C 1 h. Afterwards, the plate was washed again two times with 0.05 % 

Tween-20 in 1 x PBS and 100 µl of a horseradish-peroxidase coupled goat anti-rabbit IgG dilut-

ed 1:2000 in 1 x PBS supplemented with 10 % FBS and 0.01 % Tween-20 were added per well 

and incubated 1 h at 37 °C. Then, the plate was washed twice with 0.05 % Tween-20 in 1 x PBS 

and then three times with water. Subsequently, 100 µl substrate (0.1 M NaOAc pH6.0 supple-

mented with 0.1 mg/ml Tetramethylbenzidine and 0.006 % (v/v) H2O2) were added per well and 

incubated 5 min at RT to visualize the bound antibody. The reaction was stopped by adding 

50 µl 0.5 M H2SO4 per well and the absorbance at 405 nm was measured using a Multiskan As-

cent Platereader (Thermo Fisher Scientific). 

 

2.4.17 Luciferase assay 

25,000 HEK293T cells were seeded on a 96-well plate in 100 µl medium. The day after, the cells 

were transfected using 100 ng of modified psiCheck-2, 100 ng of pcDNA-Tat and 0.4 µl Tur-

boFect (Thermo Fisher Scientific) per well. 48 hours later, the cells were lysed by addition of 

40 µl 1 x Passive Lysis Buffer (Promega) per well and shaking the plate for 15 min at RT. 10 µl 

of the lysates were transferred to a white 96-well plate (Greiner). Renilla and Firefly luciferase 

activities were measured using homemade buffers. Before use, the luciferase assay buffer was 

supplemented with DTT to a final concentration of 1 nM, with ATP to a final concentration of 

400 nM and with D-Luciferin to a final concentration of 5 mM. Furthermore, 1.43 µM Coelen-

terazin was diluted 1:666 in Renilla Quenching buffer before use. The assay was performed us-

ing a Glomax 96 Microplate luminometer (Promega) injecting first 40 µl luciferase assay buffer 

per well followed by injection of 40 µl Renilla quenching buffer. Delaytime between the meas-
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urements was set to 2 seconds and integration time to 10 seconds. After background subtrac-

tion, Firefly luciferase signals were used for normalization of the Renilla luciferase values.  

 

2.4.18 Flow Cytometry 

To analyze the HIV-1 infection rate of primary CD4+ T cells, the cells were stained with the viabil-

ity eFluor450 (Thermo Fisher Scientific) 72 h post infection. Briefly, 50 µl of the dye diluted 

1:1000 in 1 x PBS were added per well. After incubation at 4 °C for 30 min, the cells were 

washed with 150 µl PBS and fixed with 50 µl 4 % PFA for 90 min. After fixation, the cells were 

washed again with 150 µl PBS and 50 µl KC57-FITC diluted 1:100 in 1 x PBS supplemented 

0.1 % Triton and 0.01 % BSA were added. After incubation at 4 °C for 30 min, the cells were 

washed with 150 µl PBS and resuspended in 200 µl PBS with 1 % FCS. For flow cytometry 

analysis a BD FACSVerse (BD Biosciences) or a FC500 MPL flow cytometer (Beckman Coulter) 

was used. Usually, 10,000 events were acquired or the measurement was stopped after 2 min.  

 

2.4.19 Immunostaining and microscopy of AAV-transduced and HIV-infected HeLaP4 cells 

36 h post infection, HeLaP4 cells were fixed 90 minutes with 100 µl 4 % PFA per 96-well. Then, 

cells were permeabilized with 100 µl 0.1 % Triton for 10 min at RT and washed with 150 µl PBS. 

After that, 150 µl blocking buffer (5 % (v/v) FBS in PBS) were added and the plate was incubat-

ed either overnight at 4 °C or 30 min at RT on a shaker. The blocking buffer was removed and 

the cells were stained at 4 °C overnight with 50 µl sheep anti-capsid antibody diluted 1:500 in 

blocking buffer. The next day, the cells were washed three times with 150 µl PBS and stained 

2 h at RT on a shaker with 50 µl blocking buffer supplemented 1:250 with donkey anti-sheep 

Alexa Fluor® 647 and 1:3000 with Hoechst stain 33258. Afterwards, the cells were washed 

three times with 150 µl PBS and imaged using a ScanR Inverted Microscope (Olympus) with an 

Olympus UPlanSApo 10x/0.40na objective. Per well 12 images were acquired. The number of 

nuclei and p24 positive cells as well as the infection ratio were determined with automated im-

age segmentation using a matlab script provided by Dr. Kathleen Börner. Stained uninfected 

cells were used to determine the threshold for the calculation of p24 positive cells and the mean 

of all 12 infection rate values per well was calculated.  
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2.4.20 Microscopy of AAV-transduced and activated J-Lat cells 

40 h after activation of the proviral transcription, the cells were incubated 1 h at 37 °C in a 96-

well plate with 100 µl Hoechst stain 33258 diluted 1:100 in RPMI supplemented with 10 % FBS 

and 1 % Penicillin-Streptomycin. After the incubation, the cells were transferred to 1.5 ml tubes, 

500 µl 1x PBS were added and the cells were centrifuged at 1200 rpm. The supernatant was 

removed and cells were resuspended in fresh medium and transferred to 8-well Lab-Tek cham-

ber slides coated with 0.01 % (w/v) Poly-l-lysine in water. For the coating the Lab-Tek chamber 

slides were incubated with 200 µl Poly-L-lysine per well at RT. Then, the Poly-L-lysine was re-

moved and each well was washed one time with 200 µl 1 x PBS. Images were acquired using a 

Nikon Eclipse Ti microscope with a CFI Plan Fluor DL10X (N.A. 0.3, W.D. 15.2mm) objective. At 

least 10 images were acquired per well. To quantify the percentage of GFP positive cells, the 

images were processed with ImageJ. Hoechst or GFP positive cells were determined using the 

Yen autothresholding algorithm. The median filter option was used to remove little dots and the 

watershed method was applied to separate cell clumps. The number of positive cells was count-

ed with the “analyze particles” command. Objects with a size of at least 50 pixel units and a cir-

cularity of 0.5 to 1.0 were counted.  
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3. Results 
 

The overall goal of this work was to establish a HIV-1-targeting CRISPR/Cas9 system, which is 

delivered into target cells with AAV vectors. For this purpose, we first designed a set of gRNAs 

targeting the HIV-1 LTRs, gag and pol (chapter 3.1). These were then tested with T7 assay for 

their functionality in HeLaP4-NLtr cells carrying an HIV-1 NL4-3 provirus (chapter 3.2) and in 

J-Lat cells harboring a latent HIV-1 HXB2 provirus (chapter 3.3). To enable simultaneous editing 

at different proviral sites and thereby to increase the chance to functionally inactivate the pro-

virus, a subset of gRNAs was cloned into gRNA multiplexing constructs, which express three 

gRNAs simultaneously. These constructs were then analyzed for their ability to protect HeLaP4 

cells against HIV-1-infection and to functionally inactivate the latent provirus integrated in J-Lat 

cells. After having proven the functionality of our CRISPR/Cas9 system in human cell lines, the 

three most effective constructs were chosen to test if the HIV-1-targeting CRISPR/Cas9 system 

can protect human primary CD4+ T cells against HIV-1 infection (chapter 3.4).  

 

3.1 GRNA design and in silico characterization of conservation and off-targets 

 

For the establishment of our HIV-1-targeting CRISPR/Cas9 system, first of all, different gRNAs 

binding at the HIV-1 LTRs, gag or pol were designed (figure 3.1). Nine of the gRNAs are target-

ing the LTRs (g1-9). In more detail, g1 and g2 are binding at the NF-κB binding site, g3 and g8 

are targeting the SP1 (specificity protein 1) binding site, g4 targets the TATA box, g5 and g6 are 

binding the TAR element and g7 as well as g9 are targeting the U5 (unique 5´) region of the 

LTRs. Four of our gRNAs are targeting the gag open reading frame. The gRNA gag binds the 18 

nucleotides in front of the gag open reading frame and the two first nucleotides of the gag start 

codon. The target site of gRNA p17 spans the first 16 nucleotides of gag and the last nucleotide 

in front of the open reading frame. The gRNAs p24_1 and p24_2 are binding at the p24 gene 

and int3, int4 and int5 are binding the integrase gene.  
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Figure 3.1: Target sites of the gRNAs used in this work. Schematic depiction of the HIV-1 NL4-3 genome and the 
target sites of gRNAs used in this work. LTRs and gag and pol open reading frames are depicted as rectangles. All 
other genes are not shown as indicated with the double slash. The scale on top indicates the size of the HIV-1 NL4-3 
genome in bp. Binding sites of gRNAs are shown as arrowheads. The lower image shows the LTR sub-regions U3 
(unique 3´), R (redundant) , U5 (unique5´) and important functional sites of the LTRs like the binding sites of nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB) or specificity protein 1 (SP1), the TATA box, the trans-
activation response (TAR) element and the transcription start site (+1). IN, integrase; LTR, long terminal repeat; PR, 
proteinase; RT, reverse transcriptase. 

 

All gRNAs have a length of 20 nt except for p17 and p24_1 which are 17 nt in length as gRNAs 

shorter than 20 nt were reported to show decreased mutagenesis at off-target sites [111]. The 

sequences of all gRNAs are listed in the supplementary table 5.1. 

The design of the LTR-targeting gRNAs was performed by Prof. Dr. Dirk Grimm and Dr. Kath-

leen Börner. Therefore, the 5´LTR and 3´LTR sequences of the HIV-1 strains NL4-3 and HXB2 

were aligned and screened for potential target sites (figure 3.2) using the ZiFiT online tool 

(http://zifit.partners.org/ZiFiT/Disclaimer.aspx) [197, 198]. These two HIV-1 strains were chosen 

for the gRNA design because our CRISPR/Cas9 system should be tested initially in HeLaP4-

NLtr cells harboring an HIV-1 NL4-3 provirus and in J-Lat T cells harboring an HIV-1 HXB2 pro-

virus.  
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Figure 3.2: Design of LTR-targeting gRNAs. Alignment of the 5´LTR and 3´LTR DNA sequences from the HIV-1 

strains NL4-3 and HXB2. The U3 region is underlined blue, the R region is underlined orange and the U5 region is 
underlined green. GRNA target sites are marked with red brackets, the two guanines or cytosines of the PAM se-
quences are marked with green brackets. Nucleotides that are identical between the sequences are shown in yellow, 
transitions are highlighted in blue and transversions in green. Arrows on the right side indicate the direction of the 
gRNA target DNA strand. 

 

All LTR-targeting gRNAs except for g3 exhibit 100 % conservation at both LTRs from both HIV-1 

isolates. The gRNA g3 is 100 % identical with the NL4-3 3´LTR and both HXB2 LTRs but differs 

in three bases at the NL4-3 5´LTR.  

The gRNAs targeting gag and pol were designed to bind at highly conserved target sites previ-

ously identified by ter Brake et al. [199]. Briefly, they aligned the HIV-1 strain LAI with 170 HIV-1 

genomic sequences from all subtypes listed in the Los Alamos National Laboratory database 

and thereby identified 19 highly conserved regions in the LAI genome that are 100 % identical 

with at least 75 % of the aligned sequences. The gRNAs p17 and p24_1 were designed by Dr. 

Kathleen Börner, whereas the gRNAs gag, p24_2 and int3-5 were designed by myself. 
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To compare the conservation of all our gRNAs, together with Nils Kurzawa the gRNA sequences 

were blasted against the genomic sequences from isolates belonging to the HIV-1 subtypes A, 

B, C, F and G using the HIV Blast tool from Los Alamos National Laboratory 

(https://www.hiv.lanl.gov/content/sequence/BASIC_BLAST/basic_blast.html) (figure 3.3).  

 

 

Figure 3.3: Conservation of gRNA target sites. Heatmap showing the conservation of gRNA target sites among 

different HIV-1 subtypes. GRNA sequences were aligned with HIV-1 genomic sequences from the Los Alamos Na-
tional laboratory using the HIV Blast tool (https://www.hiv.lanl.gov/content/sequence/BASIC_BLAST/basic_blast.html). 
Colors represent levels of conservation: 1 (yellow) corresponds to 100 % of the sequences found by the tool showing 
100 % identity with the gRNA sequence, while 0 (blue) indicates that none of the sequences found by the HIV blast 
tool show 100 % identity. Grey areas imply that the tool failed to perform a proper alignment. 
 

 

A gRNA was defined as 100 % conserved when all of the sequences found by the tool were 

completely identical with the gRNA sequence, whereas 0 % conservation means that none of 

the found sequences were completely identical to the gRNA sequence. Almost all LTR-targeting 

gRNAs showed the highest conservation for isolates from subtype B, as they were designed to 

target the subtype B strains NL4-3 and HXB2. In contrast, g7 showed a broad conservation 

among all of the analyzed subtypes. The gag- and pol-targeting gRNAs, that were designed us-

ing previously described highly conserved target sites showed a broad conservation among the 

different subtypes except for int4 that is weakly conserved in isolates from subtype C and A.   

To get an impression of the number of possible off-target sites in the human genome, an off-

target prediction was performed with different online tools (table 3.1).  
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Table 3.1: Off-target prediction with different online tools. The table shows the number of predicted off-targets in 

the human genome (GRCh38/hg38) using the online tools “Cosmid” (https://crispr.bme.gatech.edu/), “CCTop” 
(http://crispr.cos.uni-heidelberg.de/index.html), “CRISPR Design” (http://crispr.mit.edu/) and “Cas-OFFinder” 
(http://www.rgenome.net/cas-offinder/ or CRISPR Design). Numbers in brackets indicate exonic off-target sites. Query 
parameters with Cosmid were 3 mismatches (mm) and no indels, 2 mm and 2 deletions, 2 mm and 2 insertions. Anal-
ysis with CCTop was done with 11 nt core length, 5 mm allowed in total, 2 mm allowed in core. CRISPR Design al-
lows maximal 4mm. The query parameters with Cas-OFFinder were either 4 mm allowed (first number) or 5 mm al-
lowed (second number). As CRISPR Design allows only analysis of gRNA sequences not shorter than 20 nt, no off-
targets could be determined for p17 and p24_1. N.d., not determined. 

 

gRNA Cosmid CCTop CRISPR 

Design 

Cas-OFFinder 

g1 197 743 (51) 196 172, 1595 

g2 86 649 (45) 173 108, 1272 

g3 273 829 (41) 491 356, 3167 

g4 659 3088 (394) 501 874, 6169 

g5 48 628 (63) 132 105, 1078 

g6 59 308 (22) 147 114, 984 

g7 36 458 (30) 90 78, 853 

g8 25 381 (48) 70 48, 615 

g9 133 677 (28) 283 170, 1726 

gag 622 3350 (152) 501 764, 1764 

p17 1298 2605 (316) n. d. 2786, 27622 

p24_1 6492 13780 (909) n. d.  7504, 52341 

p24_2 222 817 (52) 417 306, 2395 

int3 131 759 (82) 278 238, 2202 

int4 201 890 (81) 350 234, 1844 

int5 212 1093 (43) 342 324, 2986 

 

The number of predicted off-targets was very variable between the different online tools as every 

tool uses different query parameters. For example, Cosmid allows three mismatches in the com-

plete gRNA sequence, two mismatches in the gRNA sequence with one bp deleted and two 

mismatches with one bp inserted. The CCTop tool allows a maximum of five mismatches as it 

was shown that more than four mismatches most likely disrupt Cas9 cleavage [90, 200]. Two of 

these mismatches are allowed to be located in the 8 to 11 bp adjacent to the PAM sequence as 
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more mismatches at this site were previously shown to disrupt Cas9 cleavage [90, 95, 200]. The 

CRISPR Design tool allows four mismatches in total. The analysis with the Cas-OFFinder was 

performed either with 4 or 5 mismatches allowed in the gRNA sequence. The number of predict-

ed off-targets ranged from 25 off-targets of g8 predicted by the Cosmid tool to 52341 off-targets 

of p24_1 predicted with Cas-OFFinder. Independent from the tool used least off-targets were 

found for the gRNAs g5, g6, g7 and g8 and most off-targets were found for p24_1. CCTop addi-

tionally gives information about the number of exonic off-targets. Maximally 13 % of the off-

targets predicted with this tool were located in exons.  

 

3.2 Application of the HIV-1-targeting CRISPR/Cas9 system in HeLaP4 cells 

 

3.2.1 Validation of single gRNAs 

The initial validation of the gRNAs was done using HeLaP4-NLtr reporter cells provided by Dr. 

Jens Bohne. These cells stably express the CD4 and CXCR4 receptors and carry a NL4-3 HIV-1 

genome with a frameshift mutation in env, mutations in the start codons of nef and tat and a gfp 

sequence at the nef open reading frame. The gRNAs were cloned into a self-complementary 

AAV vector that expresses a single gRNA from the U6 promoter and carries a RSV (respiratory 

syncytial virus) promoter driven gfp reporter gene [201]. HeLaP4-NLtr reporter cells were either 

transfected with these vectors and a vector expressing Cas9 under the control of a short 224 bp 

CMV (cytomegalovirus) promoter (shCMV) or transduced with AAV crude lysates packaging 

these vectors. The full length CMV promoter cannot be used for Cas9-expression with AAV vec-

tors as the promoter itself is already 612 bp in size and the whole construct including the ITRs 

would have a size of around 5.3 kb, which is too big for proper packaging into AAV capsids 

[169–171]. For the transduction of HeLaP4-NLtr reporter cells the synthetic serotype AAV9-A2 

was used. This AAV9-based variant carries a peptide insertion in an exposed capsid region and 

was shown to transduce HeLaP4 cells by 100 % (Börner et al., manuscript in preparation). Edit-

ing at the gRNA target sites was analyzed with T7 endonuclease assay. The T7 endonuclease 

assay for the LTR-targeting gRNAs was performed by Dr. Kathleen Börner. Therefore, different 

primer combinations were chosen to detect cleavage either at the 5´LTR, the 3´LTR or both 

LTRs (figure 3.4). 
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Figure 3.4: Validation of LTR-targeting gRNAs in HeLaP4-NLtr cells. (A) Predicted size of T7 endonuclease 
cleavage products for assays detecting editing at 5´LTR, at the 3´LTR or at both LTRs. (B) T7 endonuclease assays 

with LTR-targeting gRNAs. HeLaP4-NLtr cells were transfected with a gRNA expression plasmid and a Cas9 expres-
sion plasmid. T7 endonuclease assays were performed with primers amplifying the 5´LTR, the 3´LTR or both LTRs. 
Names of gRNAs with detectable cleavage are highlighted in green. Cleavage efficiencies in percent were calculated 
with ImageJ and are shown below the gel images. 
 
 
 

For all gRNAs editing was detectable either at the 5´LTR or 3´LTR except for g9. As the se-

quences of both LTRs are identical at the target sites of all gRNAs except for g3 (chapter 3.1, 

figure 3.2), a gRNA that mediates editing at one LTR should also be functional at the other LTR. 

Hence, it is very likely that the editing at one LTR was not detectable with the assay because the 

T7 endonuclease cleavage in these cases results in one very big fragment, that cannot be easily 

separated from the input band, and one very small fragment, that is either too light for detection, 

because ethidium bromide migrates upwards, or cannot be separated from the primer dimer 

band. The same holds probably true for the cases where editing was detectable at one of the 

two LTRs but not in the assay detecting editing at both LTRs. For g3 and g8 T7 endonuclease 

cleavage products were detectable with all three assays.  

The T7 assay for all gag- or pol-targeting gRNAs was performed by me. For all of these gRNAs 

the expected T7 assay cleavage products were detectable (figures 3.5, 3.6). As the T7 assays 

were performed to initially validate the functionality of the gRNAs, they were not repeated sever-

al times. Furthermore, the experiments were performed with crude AAV productions that were 

not titrated. Hence, it cannot be concluded from the cleavage efficiencies of these assays that 

certain gRNAs are more effective than others. 

gRNA
T7 assay fragments (bp)

5´LTR 3´LTR 5´ & 3´LTR

g1 711, 67 458, 332 458, 67

g2 684, 94 431, 359 431, 94

g3 555, 223 488, 302 302, 223

g4 411, 367 632, 158 367, 158

g5 446, 332 711, 79 446, 79

g6 466, 311 732, 58 467, 58

g7 544, 234 n.d. n.d.

g8 498, 280 510, 280 265, 260

g9 590, 188 n.d. n.d.
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Figure 3.5: Validation of gRNAs targeting gag. (A) Predicted T7 endonuclease cleavage fragments in bp for the 
different gag-targeting gRNAs. (B) T7 endonuclease assays with gag-targeting gRNAs. HeLaP4-NLtr cells were 

transduced with AAV9-A2 crude lysates encoding the different gRNAs driven from U6 promoter and a Cas9 express-
ing vector or with a Cas9 expressing vector alone. Numbers below the gel images indicate cleavage efficiencies in 
percent calculated with ImageJ.  
 
 

 

Figure 3.6: Validation of gRNAs targeting pol. (A) Predicted T7 endonuclease cleavage fragments in bp for the 
different pol-targeting gRNAs. (B) T7 endonuclease assay with pol-targeting gRNAs. HeLaP4-NLtr cells were trans-

duced with AAV9-A2 crude lysates encoding the different gRNAs driven from U6 promoter and a Cas9 expressing 
vector or with a Cas9 expressing vector alone. Numbers below the gel images indicate cleavage efficiencies in per-
cent calculated with ImageJ.  
 

 

3.2.2 Comparison of different vector designs 

For the expression of a single gRNA three different AAV vector designs were established in col-

laboration with the group of Prof. Dr. Grimm (figure 3.7). In the “standard” design a single gRNA 

is expressed under control of the Pol III promoter U6. In the “F+E” (flip and extension) design, 

which is based on a study of Chen et al. [202] a single gRNA is expressed under control of the 
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U6 promoter as well. However, in contrast to the “standard” design an A-U base flip in the gRNA 

scaffold was introduced to destroy a potential Pol III termination site. Furthermore, the scaffold is 

extended by five base pairs. It was shown by Chen et al. that this design leads to an increased 

assembly of gRNA and a cleavage deficient GFP-labeled Cas (dCas) resulting in better signal to 

background ratios in microscopy-based experiments. In the “all-in-one” design one gRNA and 

the Cas9 are expressed from one construct, where gRNA expression is controlled by the H1 

promoter and Cas9 expression by the shCMV promoter [201]. The advantage of this design is 

that the cells only need to be transduced with one virus, whereas with the other designs the cells 

need to be co-transduced with a Cas9 encoding AAV limiting the efficiency of the system espe-

cially in poorly transducable cells as editing will only occur in cells double transduced with both 

AAVs.  

 

 

Figure 3.7: AAV vector designs for gRNA and Cas9 expression. Schematic depiction of the three tested AAV vec-

tor designs. AAV ITRs are depicted as loop structures. In the standard design one gRNA is expressed from the Pol III 
promoter U6. In the “F+E” (flip and extension) design an A-U base flip in the gRNA scaffold (indicated by the red line) 
was introduced to destroy a potential Pol III termination site and the scaffold was extended by five base pairs. Both 
vectors are self-complementary. As the Cas9 is not expressed from the two vectors, cells need to be treated with a 
second Cas9 encoding vector. In the “all-in-one” design one gRNA and the Cas9 are expressed from the same single 
stranded AAV vector construct, where gRNA expression is controlled by the H1 promoter and Cas9 expression by a 
short variant of the CMV promoter. 

 

To compare the editing efficiencies reached with the different vectors, the LTR-targeting gRNAs 

g3, g5, g6 and g7 were cloned into the three different vectors. These constructs were then pack-

aged into AAV9-A2 and crude lysates were produced. In parallel, a vector expressing Cas9 from 

the shCMV promoter was packaged into AAV9-A2. HeLaP4-NLtr reporter cells were transduced 

with the three different vector designs and cells transduced with the F+E and standard vectors 

were co-transduced with the shCMV-Cas vector. After 48 hours the cells were transduced a 

second time and another 48 hours later genomic DNA was isolated to perform a T7 assay (figure 

3.8). The experiment was performed with three independent crude lysate productions.  
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Figure 3.8: Comparison of editing with LTR-targeting gRNAs in HeLaP4-NLtr cells using different AAV vector 
designs. T7 endonuclease assay with genomic DNA of HeLaP4-NLtr cells treated with Cas9 and different LTR-

targeting gRNAs expressed from three different vector designs. The cells were transduced twice either with AAV9-A2 
encoding a shCMV promoter driven Cas9 and AAV9-A2 encoding single gRNAs expressed from the standard or F+E 
design vectors or with AAV9-A2 encoding the “all-in-one” vector. Two days after the second transduction, genomic 
DNA was isolated from the cells and T7 endonuclease assay was performed. The experiment was performed three 
times, each time with a different crude lysate production. Numbers below the gel images indicate the editing efficien-
cies in percent calculated with ImageJ.  
 

 

Editing efficiencies with the F+E and the standard vector design were comparable for all gRNAs. 

With the all-in-one design no cleavage was detected. Although, the F+E design did not perform 

better in the T7 assay than the standard design, it was chosen for all further experiments, as it 

could be beneficial for later microscopy-based experiments due to the previously described bet-

ter signal-to-background ratios described by Chen et al.. 
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3.2.3 Effect of CRISPR/Cas9-mediated cleavage at the HIV-1 5´LTR on its promoter func-

tion 

After having shown that different target sites of the HIV-1 provirus can be edited with 

CRISPR/Cas9, the functional consequence of such mutations should be analyzed. As the con-

sequence of mutations in protein encoding regions is relatively easy to predict, we focused on 

the influence of mutations in the LTR on its promoter function. Therefore, HeLaP4-NLtr cells 

were either transduced with crude AAV9-A2 lysates encoding Cas9 expressed from the shCMV 

promoter and a g5 or a g6 encoding vector, or with the Cas9 encoding vector in combination 

with both gRNA expressing vectors to check if targeting the g5 and g6 target sites would more 

efficiently reduce promoter function than targeting only one target site. The 5´LTR sequences 

from the CRISPR-treated cells and from untreated cells were PCR-amplified and cloned into a 

modified psiCheck2 plasmid (chapter 2.4.7) to drive the expression of Renilla luciferase. 

HEK293T cells were transfected with the cloned constructs and a Tat-expression plasmid to en-

able the detection of effects on promoter function caused by mutations in the TAR element. 

72 hours after transfection, a dual luciferase assay was performed and values of Renilla lucifer-

ase were normalized with values of firefly luciferase expressed from the same plasmid (figure 

3.9A). A reduction of up to 80 % in Renilla luciferase expression in comparison to the expression 

with the wildtype LTR promoter sequence was detected. In total, 11 out of the 13 analyzed 

clones showed a reduction in Renilla luciferase expression, whereas two clones (g5 #9, g5g6 

#4) showed expression at wildtype level. Sequencing revealed mutations at the gRNA target 

sites in all clones (figure 3.9B). G5 and g6 are binding in the TAR element, which forms a RNA 

hairpin with a bulge and an apical loop which are bound by Tat and other cellular factors, there-

by enhancing the LTR promoter function [203, 204]. To analyze if the reduction in promoter func-

tion was caused by an impaired folding of the TAR element, we modelled the RNA folding of the 

TAR sequences from the 13 clones and compared them to the folding of the wildtype TAR ele-

ment (table 3.2). The RNA folding was predicted using the mfold web server 

(http://unafold.rna.albany.edu/?q=mfold/RNA-Folding-Form). Indeed, all clones with reduced 

LTR promoter function showed a destroyed folding of the TAR element, whereas the mutations 

in the two clones with LTR promoter function comparable to the wildtype (g5 #9, g5g6 #4) did 

not impair the TAR RNA folding. These results demonstrate that the mutations introduced with 

the gRNAs g5 and g6 can reduce LTR promoter function by destroying proper folding of the TAR 

element.  
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Figure 3.9: CRISPR/Cas9-mediated reduction of LTR promoter function in HeLaP4-NLtr cells. (A) Luciferase 

expression from g5/g6 modified LTR sequences. HeLaP4-NLtr cells were transduced twice with AAV9-A2 encoding 
g5 or g6 and Cas9. After isolation of genomic DNA, the LTRs were PCR-amplified and cloned into a modified 
psiCheck-2 in front of the Renilla luciferase cDNA. HEK293T cells were transfected with the resulting plasmids and a 
HIV Tat-expression plasmid, to enable detection of effects caused by mutations in the TAR element. Signals from 
Renilla luciferase were normalized to those from Firefly luciferase that is co-expressed from psiCheck-2. Data were 
further normalized to the values detected with the wild-type LTR that was subcloned from a HeLaP4-NLtr control 
which was not transduced with AAVs. Shown are means from two biological and two technical replicates with stand-
ard deviation. (B) TAR sequences of all analyzed clones and the wildtype (WT). Binding sites of gRNAs 5 and 6 are 

shown in green or red in the wildtype sequence. The TAR loop and bulge sequence is shown in bold letters. Point 
mutations are depicted in blue, insertions are underlined. Numbers on the right side indicate the total difference of 
base pairs compared to the wildtype sequence for each clone.  
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Table 3.2: Modelled TAR RNA structures of CRISPR-edited LTR sequences. The right column shows the TAR 

RNA structures of the clones analyzed with luciferase assay (figure 3.9). The structures were modelled with the mfold 
webserver (http://unafold.rna.albany.edu/?q=mfold/RNA-Folding-Form). The TAR loop structure is highlighted in blue, 
the TAR bulge structure is marked in red. The promoter activity analyzed with luciferase assay is shown in the middle 
column.  

Clone Promoter activity TAR RNA structure 

WT 100 % 

 
 
 
 
 
 
 

g5 #1 14.5 % 

 
 
 

 

g5g6 #1 22.5 % 

 
 
 
 
 

 
 
 
 

g5 #2 28.9 % 

 
 
 
 
 

g5 #3 29.7 % 

 
 
 
 
 

g5g6 #2 36.1 % 

 
 
 
 
 

g5 #4 36.6 % 

 
 
 
 
 

g5 #5 37.8 % 

 
 
 
 

g5 #6 39.0 % 
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Clone Promoter activity TAR RNA structure 

g5 #7 42.2 % 

 
 
 
 
 

g5 #8 46.4 % 

 
 
 
 
 

g5g6 #3 64.3 % 

 
 
 
 
 

g5 #9 114.3 % 

 
 
 
 
 
 
 
 
 

g5g6 #4 120.6 % 

 
 
 
 
 
 
 
 
 
 

 

 

 

3.2.4 Design and initial validation of gRNA multiplexing constructs 

To enable the simultaneous editing of different sites in the HIV-1 genome and thereby increase 

the chance to functionally inactivate the HIV-1 provirus, we cloned our gRNAs into multiplexing 

constructs. These self-complementary AAV vectors allow the expression of three gRNAs from 

the promoters U6, H1 and 7SK (figure 3.10A). In total, 11 multiplexing constructs were generat-

ed (figure 3.10B). The constructs MP1-MP4 were cloned by Dr. Kathleen Börner and Florian 

Schmidt, whereas MP5-MP11 were generated by myself.  
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The constructs MP1-MP3 were established first and MP4-MP11 were designed later. In these 

later established constructs, the gRNA gag was used instead of the gRNA p17, as we found that 

this gRNA is not functional in J-Lat cells (chapter 3.3.2). Furthermore, some of these constructs 

were designed to express the same gRNAs from different promoters (MP9 and MP10; MP5 and 

MP11; MP6 and MP8) to analyze if some gRNAs are expressed better from a specific promoter.  

 

Figure 3.10: gRNA multiplexing constructs. (A) Schematic depiction of the gRNA multiplexing construct. The ITRs 

are depicted as loop structures. The self-complementary construct expresses three gRNAs from the U6, H1 and 7SK 
promoter. (B) Scheme that shows the target sites of the different gRNAs encoded from the multiplexing constructs 

MP1-MP11. The HIV-1 LTRs and the gag and pol open reading frames are depicted as rectangles. For simplicity all 
other genes are not shown. Binding sites of the gRNAs are depicted as arrowheads. Colors of the arrowheads indi-
cate from which promoter gRNA expression is driven (Black: U6, Blue: H1, Red: 7SK). Gag, group-specific antigen; 
LTR, long terminal repeat; pol, polymerase. 

 

To initially test the functionality of the different multiplexing constructs, iodixanol purified AAV9-

A2 encoding MP1-MP11 or an EFS (elongation factor 1α short) promoter driven Cas9 was pro-

duced. As we found that the EFS promoter works better than the shCMV promoter for expres-

5 LTR 3 LTRgag pol

MP1

MP2

MP3

MP4

MP5

MP6

MP7

MP8

MP9

MP10

MP11

g6 gag g6int4

int4gag p24_2

int4gag p24_2

int4g5 gag g5

g3 gag g3int4

g5 gag g5int4

g6 gag g6int4

gagg5

p17g6

g6

g6

g6g3 g3 g6p24_2

p24_2g6g5 g6g5

g5g6

gRNA gRNAH1 7SKgRNAU6

A

B



                                                                                                                                             Results   

73 

sion of Cas9 in J-Lat cells (chapter 3.3.1) and that editing efficiencies using EFS-Cas9 and 

shCMV-Cas9 are comparable in HeLaP4-NLtr cells (supplementary figure 5.1), the EFS-Cas9 

construct was used for all further experiments with HeLaP4 cells. HeLaP4-NLtr cells were trans-

duced with 1.2 x 107 vg/cell of the gRNA multiplexing vectors and with 1.1 x 106 vg/cell of the 

Cas9 encoding vector. 48 hours after the first transduction, the cells were transduced a second 

time and another 48 hours later, genomic DNA was isolated from the cells to perform a T7 en-

donuclease assay. As the multiplexing constructs encode gRNAs targeting different regions in 

the HIV-1 genome that cannot be covered by one PCR, several T7 endonuclease assays were 

performed to detect editing at the different target sites. The target sites of the LTR- and the p17-

binding gRNAs could be covered by one PCR resulting in a 1693 bp large product (figure 

3.11A). Editing at these sites was therefore analyzed with one T7 assay (figure 3.11B).  

With this assay editing at all gRNA target sites at the LTR and gag p17 was detected. Only in 

some cases one of the two T7 cleavage products could not be detected. For example, the small 

220 bp cleavage product resulting from cleavage at the g3 target site after treatment with MP2 or 

MP7 and Cas9 was detectable, whereas the larger 1473 bp product was not detected, either be-

cause it could not be resolved from the 1689 bp input band or because it was additionally edited 

at the target sites of the gRNAs g6 or gag that are also expressed from MP2 and MP7. Further-

more, the 768 bp band resulting from cleavage at the p17 target site after treatment with MP3 

was not detected and the 754 bp cleavage product caused by editing at the gag target site was 

in general also very light when LTR-targeting gRNAs are expressed from the same construct. 

Hence, both cleavage products were most probably additionally cut by another gRNA and there-

fore not or only weakly detectable. In addition to the T7 endonuclease cleavage products other 

bands were detected after treatment with Cas9 and MP2, MP3, MP4, MP5, MP7, MP8 and 

MP11. Due to the size of these bands we hypothesized that they display shorter versions of the 

provirus caused by excision of fragments between the target sites of the different gRNAs ex-

pressed from the particular multiplexing constructs. To proof this theory and to show that the 

bands are not caused by T7 endonuclease mediated cleavage, a PCR was performed with the 

same DNA samples but without a following T7 assay (figure 3.11C). Indeed, the same bands 

were still visible demonstrating that the gRNA multiplexing constructs not only allow simultane-

ous editing at different target sites but also excision of whole fragments between these sites.  
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Figure 3.11: Editing at the 5´LTR and gag p17 with gRNA multiplexing constructs in HelaP4-NLtr cells. 

HeLaP4-NLtr cells were transduced with AAV9-A2 vectors packaging the multiplexing constructs MP1-MP11 or the 
single g6 and an EFS promoter driven Cas9. Two days later, the cells were transduced a second time. After another 
two days the cells were lysed and genomic DNA was isolated to perform PCR and T7 assays. (A) Schematic depic-
tion of the PCR amplified proviral part for the detection of editing at the 5´LTR and p17. GRNA binding sites are de-

picted as green arrowheads. The primers are depicted as arrows. Numbers below the scheme indicate the size of the 
PCR product in bp and the position of the cutting sites. (B) T7 endonuclease assay showing editing at the 5´LTR and 
gag p17. T7 endonuclease cleavage products from individual gRNAs are marked with different symbols that are ex-
plained by the legend on the left side of the gel image which also indicates the size of the T7 endonuclease fragments 
after cleavage at the different gRNA target sites. Numbers below the gel images indicate editing efficiencies in percent 
calculated with ImageJ. Additional bands which are no T7 endonuclease cleavage products are marked with red ar-
rows. (C) PCR amplification of the 5´LTR- and gag-spanning target site. Shorter PCR products resulting from excision 

of DNA between two gRNA binding sites are marked with symbols. The legend on the left site states the names of 
these two gRNAs and the size of the shorter PCR products.  

 

At the gag p24 target site only very weak cleavage products could be detected with DNA from 

HeLaP4-NLtr cells treated with Cas9 and MP9 or MP10 (figure 3.12A). Treatment with MP1 and 

MP2 did not result in detectable cleavage. At the pol target site treatment with all int4 expressing 
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multiplexing constructs resulted in detectable T7 endonuclease cleavage bands whereupon the 

bands from MP8, MP9, MP10 and MP11 treated samples were too weak for quantification (fig-

ure 3.12B).  

As this experiment was done to verify that the multiplexing constructs are functional, it was only 

performed one time and thereby the results do not allow conclusion about which constructs are 

more efficient in editing or which promoters are best for the expression of certain gRNAs. To an-

swer these questions, the same T7 assays were performed three times with J-Lat T cells treated 

with the gRNA multiplexing constructs (chapter 3.3.3).  

 

 
 
Figure 3.12: CRISPR/Cas9-mediated editing at gag p24 and pol in HelaP4-NLtr cells with gRNA multiplexing 
constructs. HeLaP4-NLtr cells were transduced with AAV9-A2 vectors packaging the multiplexing constructs MP1-

MP11 or the single g6 and an EFS promoter driven Cas9. Two days later, the cells were transduced a second time. 
After another two days the cells were lysed and genomic DNA was isolated to perform PCR and T7 assays. (A) T7 
assay at the gag p24 target site. Arrows highlight weakly detected cleavage bands. (B) T7 assay at the pol target site. 

Numbers under the gel picture indicate the cleavage efficiencies in percent calculated with ImageJ. 

 

 

3.2.5 Protective effect against HIV-1 infection 

After having shown editing at the LTR, gag and pol as well as the excision of fragments between 

gRNA target sites with gRNA multiplexing constructs, we aimed to analyze if HeLaP4 cells can 

be protected against HIV-1 infection after pretreatment with the multiplexing constructs (figure 
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of our most effective gRNAs, from the U6 promoter. All gRNA expressing constructs as well as 

an EFS promoter driven Cas9 construct were packaged into AAV9-A2, the viruses were purified 

by iodixanol gradient centrifugation and titrated with qPCR. HeLaP4 cells were transduced with 

1.2 x 107 vg/cell of the gRNA multiplexing vectors and with 1.1 x 106 vg/cell of the Cas9 encod-

ing vector. Three days after first transduction, cells were transduced a second time and infected 

with 48 ng p24 of HIV-1 NL4-3. After 36 hours, the cells were fixed, stained with an anti-p24 an-

tibody and Hoechst, and imaged (figure 3.13B). Automated image segmentation [205] was per-

formed to determine the percentage of p24-positive cells (figure 3.13C).  

Pretreatment with all multiplexing constructs and with the g6-encoding construct resulted in a 

significant reduction in the percentage of HIV-1-infected cells. The strongest reduction of around 

80 % was reached with the constructs MP3 and MP11 which both express a U6 promoter driven 

g6 in combination with a gag p17-targeting gRNA (p17 or gag). To analyze if this reduction in 

HIV-1 infection would still be detectable in a second round of infection due to a decreased 

amount or infectivity of viral particles produced after CRISPR treatment, C8166 cells were in-

fected with a dilution series of the HeLaP4 supernatants at the day of fixation. Seven days after 

infection, syncytia indicative for HIV-1 infection were counted and the number of infectious units 

per ml was calculated (figure 3.13D). All supernatants from cells treated with gRNA- and Cas9-

encoding vectors still showed a significant reduction in infectious units per ml in comparison to 

cells only treated with the Cas9-expressing vector. With supernatants from MP3, MP4 and MP11 

treated HeLaP4 cells a 100-fold reduction of infectious units/ml was detected, whereas treatment 

with the single gRNA6 reduced infectious units/ml only 10-fold. 
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Figure 3.13: Protective effect against HIV-1 infection in HeLaP4 cells and reduction of infectious particles 
produced. (A) Schematic depiction of the experimental procedure. HeLaP4 cells were transduced with different 

gRNA multiplexing AAV vectors or single gRNA6 and a Cas9 expressing AAV vector. After 72 hours, they were in-
fected with HIV-1 NL4-3 and transduced again. Another 36 hours later, the cells were fixed and stained with Hoechst 
and a p24-binding antibody to visualize HIV-infected cells. At the same day C8166 cells were infected with the super-
natants from the HeLaP4 cells and 7 days post infection syncytia formation indicative for HIV infection was analyzed 
and infectious units/ml were calculated. (B) Overlays of the nucleic stains (grey) with p24 expression (red) as marker 

of viral infection. Automated image segmentation was performed to classify infected and non-infected cells. Scale bar 
= 200 µm. (C) Percentage of p24-positive HeLaP4 cells. Shown are means of three biological replicates with SD. Dif-

ferences between CRISPR-treated cells and Cas only control were determined by Dunnett's post-hoc test after one-
way ANOVA. ** p<0.01; *** p<0.001. (D) Amount of infectious units/ml in the supernatant of AAV-transduced and HIV-

1-infected HeLaP4 cells. Shown are means of three biological replicates with SEM. Differences between CRISPR-
treated cells and Cas only control were determined by Dunnett's post-hoc test after one-way ANOVA. * p<0.05. 
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3.3 Application of the HIV-1-targeting CRISPR/Cas9 system in J-Lat T cells 

 

After successfully establishing the HIV-1-targeting CRISPR/Cas9 system in HeLaP4-NLtr cells, it 

should be applied to J-Lat T cells. This Jurkat-based cell line contains a latent HIV-1 provirus 

and was established by Jordan et al. [188]. They infected Jurkat cells with VSV-G pseudotyped 

viral particles containing a HIV-R7/E–/GFP genome (figure 3.14). This HXB2-based molecular 

clone carries a frameshift mutation in env and a gfp open reading frame in place of the nef gene 

[206]. 4 Days after infection, the population of GFP-negative cells containing uninfected and la-

tently infected cells was selected. This population was then treated with TNFα (tumor necrosis 

factor alpha) to activate the proviral transcription. The GFP-positive cells were selected and cell 

lines were generated from individual clones, that carry the HIV-1 provirus at different sites in 

their genome.   

 

 

Figure 3.14: Genome of the molecular HIV-1 clone HIV-R7/E
-
/GFP integrated in J-Lat cells. Schematic depiction 

of the HIV-R//E
-
/GFP genome. The HIV-1 molecular clone carries a frameshift mutation in env and a gfp open reading 

frame instead of nef. Taken from [188]. 

 

Treatment of J-Lat cells with latency reversing agents like TNFα or TPA (12-O-

Tetradecanoylphorbol-13-acetate) leads to the transcriptional activation of the latent provirus 

and thereby to the expression of the integrated GFP. Hence, this cell line allowed us to analyze 

if targeting a latent HIV-1 genome with our CRISPR/Cas9 system leads to functional inactivation 

of the provirus by imaging the cells or measuring the amount of viral particles released (chapter 

3.3.3). Furthermore, as the exact integration site of the provirus in the different J-Lat clones is 

known, we could analyze by PCR with primers flanking the provirus, if our CRISPR/Cas9 system 

facilitates the excision of the provirus with LTR-targeting gRNAs (chapter 3.3.4). 
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3.3.1 Optimization of CRISPR/Cas9 mediated proviral editing  

For the transduction of J-Lat cells with our CRISPR constructs the serotype AAV9-A2 was used 

since it was shown by Dr. Kathleen Börner that this peptide insertion variant is able to transduce 

Jurkat cells by 100 % (Börner et al., manuscript in preparation). To compare the functionality of 

our CRISPR system in HeLaP4-NLtr and J-Lat cells, the cells were transduced in parallel with 

crude AAV9-A2 vectors packaging g5 or g6 and a shCMV promoter driven Cas9 (figure 3.15). 

The gRNA-encoding vectors were either diluted 1:10 or used undiluted for transduction. Where-

as editing at the g5 and g6 target sites was detectable in HeLaP4-NLtr cells with T7 assay, no 

editing was detected in J-Lat cells (clone 15.4).  

 

 

Figure 3.15: Editing at the HIV 5´LTR in J-Lat T cells and HeLaP4-NLtr cells using a shCMV promoter driven 
Cas9 vector. HeLaP4-NLtr and J-Lat cells (clone 15.4) were transduced with undiluted (U) or 1:10 diluted crude 

AAV9-A2 vectors encoding g6 or g5 and with a vector encoding a shCMV promoter driven Cas9. Genomic DNA was 
isolated from the transduced cells and T7 assays were performed. (A) T7 endonuclease assay with genomic DNA 
from the CRISPR-treated HeLaP4 cells. (B) T7 endonuclease assay with genomic DNA from the CRISPR-treated J-

Lat cells. Numbers below the gel picture indicate cleavage efficiencies in percent calculated with ImageJ. Arrows mark 
weakly detectable cleavage bands.  

 

As the 1:10 dilution of the gRNA vector did not decrease the cleavage efficiency drastically, we 

concluded that the Cas9 vector is the limiting factor of the system and that the shCMV promoter 

that drives the Cas9 expression might not work properly in J-Lat cells. To analyze this, Dr. Kath-

leen Börner and Florian Schmidt tested different other promoters in combination with the bovine 

growth hormone (bGH) polyadenylation signal or a minimal 60 bp polyadenylation signal (min-

polyA) for Cas9 expression in J-Lat cells. Therefore, J-Lat cells (clone 15.4) were transduced 

with crude AAV9-A2 vectors packaging g6 and vectors expressing Cas9 from the EFS, the PGK 

(phosphoglycerate kinase), the TK (thymidine kinase), the full length CMV, the Syn (synapsin) or 

the SV40 (simian virus 40) promoter. Transduction of the cells with the EFS-Cas9 vector con-

taining the min-polyA site or the bGH-polyA site and transduction with the TK-Cas9 vector con-

taining the min-polyA site resulted in detectable T7 endonuclease cleavage (figure 3.16). The 
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combination of EFS promoter and min-polyA site was used for all further experiments with J-Lat 

T cells in this work as it resulted in the strongest cleavage of about 6 %, whereas the cleavage 

products detected with the other two vectors were too weak for quantification.  

 

 

Figure 3.16: Editing at the 5´LTR in J-Lat cells using Cas9 expressing AAV vectors with different promoters 
and polyA sites. J-Lat cells (clone 15.4) were transduced with crude AAV9-A2 vectors encoding g6 or Cas9 ex-

pressed from the elongation factor 1α short (EFS), the Phosphoglycerate kinase (PGK), thymidine kinase (TK), the full 
length CMV, the synapsin (Syn) or the Simian virus 40 (SV40) promoters in combination with a short 60 bp polyA site 
or the bovine growth hormone (bGH) polyA site. Genomic DNA was isolated from the cells and T7 assay was per-
formed. Arrows mark weakly detectable cleavage bands. Numbers below the gel picture indicate cleavage efficiencies 
in percent calculated with ImageJ.  

 

 

3.3.2 Validation of single gRNA cleavage in J-Lat cells 

The single LTR-targeting gRNAs were not all evaluated in J-Lat cells. Instead, g3, g5 and g6 

were cloned into gRNA multiplexing constructs and thereby shown to be functional in J-Lat cells 

(chapter 3.3.3). 

 

The single gRNAs targeting gag or pol, that were previously shown to be functional in 

HeLaP4-NLtr cells, were also tested in J-Lat cells (clone 9.2). Therefore, the cells were trans-

duced with crude AAV9-A2 vectors expressing the single gRNAs from the U6 promoter and an 

EFS promoter driven Cas9 vector. Two days after the first transduction, the cells were trans-

duced again and three days later they were lysed to extract the genomic DNA and perform a T7 

endonuclease assay. The result for the gag-targeting gRNAs is shown in figure 3.17.  
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Figure 3.17: Validation of gag-targeting gRNAs in J-Lat cells. (A) Predicted T7 endonuclease cleavage fragments 

in bp for the different gag-targeting gRNAs. (B) T7 endonuclease assays with gag-targeting gRNAs. J-Lat cells (clone 

9.2) were transduced with AAV9-A2 crude lysates encoding the different gRNAs expressed from U6 promoter and a 

Cas9-expressing vector or with a Cas9-expressing vector alone. Numbers below the gel images indicate cleavage 

efficiencies in percent calculated with ImageJ.  

 

Treatment with the gRNAs p24_1 and p17 did not result in any T7 endonuclease cleavage prod-

ucts. This was already seen in previous T7 assays (data not shown). The reason that these 

gRNAs do not work in J-Lat cells is most likely that their PAM sequence in the HXB2 isolate is 

“NAG” instead of “NGG”. It has been previously reported that this PAM sequence is also recog-

nized by SpCas9 but less efficiently than “NGG” [106]. Hence, two new gRNAs with “NGG” PAM 

sequences in NL4-3 and HXB2 were designed. The gRNA gag binds at the same conserved re-

gion as p17 and p24_2 binds at the same conserved region as p24_1. Indeed, the new designed 

gRNAs showed the expected cleavage pattern in the T7 endonuclease assay (figure 3.17).  

For the pol-targeting gRNAs only treatment with int3 and int4 resulted in quantifiable T7 endonu-

clease cleavage (figure 3.18). With genomic DNA from int5-treated cells only the upper cleavage 

band was detectable. However, as the assay was only performed once, it cannot be concluded 

that int5 is not working efficiently in J-Lat T cells.  

 

gRNA T7 assay fragments (bp)

p17 768, 925

p24_1 808, 531

p24_2 802, 537

gag 754, 939

A

B
p24

_1

p24

_2 p17

Cas

only

Cas

only
2.0
1.5
1.0

0.7

0.5

kb

3.4

gag

Cas

only

1.65

1.0
0.85

0.65

kb

2.0

4.4



                                                                                                                                             Results   

82 

 

Figure 3.18: Validation of pol-targeting gRNAs in J-Lat cells. (A) Predicted T7 endonuclease cleavage fragments 

in bp for the different pol-targeting gRNAs. (B) T7 endonuclease assays with pol-targeting gRNAs. J-Lat cells (clone 

9.2) were transduced with AAV9-A2 crude lysates encoding the different gRNAs expressed from U6 promoter and a 

Cas9-expressing vector or with a Cas9-expressing vector alone. Arrows mark weakly detectable cleavage bands. 

Numbers below the gel images indicate the cleavage efficiencies in percent calculated with ImageJ.  

 

 

3.3.3 Analysis of editing and functional inactivation of the HIV-1 provirus in J-Lat cells us-

ing gRNA multiplexing constructs 

To validate editing at the LTR, gag and pol with the gRNA multiplexing constructs in J-Lat cells 

and analyze, if treatment leads to a functional inactivation of the provirus, J-Lat cells (clone 9.2) 

were transduced with 1.2 x 106 vg per cell of purified AAV9-A2 vectors encoding MP1-MP11 or 

g6 and with 1.1 x 105 vg per cell of a EFS promoter driven Cas9 expression vector (figure 3.19). 

After 54 hours, the cells were split and transduced a second time. 21 hours later, HIV-1 proviral 

transcription was activated with TPA and TNFα for 5 hours. After another 40 hours, a part of the 

cells was lysed to extract the genomic DNA and perform T7 assays. Another part was imaged to 

quantify the percentage of GFP-positive cells as a marker for proviral expression. In addition, the 

supernatant of the cells was collected to analyze the amount of reverse transcriptase with SG-

PERT as a marker for the amount of viral particles released. The experiment was performed 

three times.  
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Figure 3.19: Experimental procedure for the analysis of editing and functional inactivation of the HIV-1 pro-
virus in J-Lat cells using gRNA multiplexing AAV vectors. J-Lat cells (clone 9.2) were transduced with AAV9-A2 

encoding different gRNA multiplexing constructs or single gRNA g6 and with AAV9-A2 encoding Cas9. After 54h, the 
cells were transduced a second time. 21h later, the proviral transcription was activated with TPA and TNFα. After an-
other 45h, genomic DNA was isolated to perform a T7 assay, supernatant was collected to perform SG-PERT and the 
cells were imaged to analyze GFP-expression. 

 

At the target site spanning the 5´LTR and gag the expected T7 endonuclease cleavage products 

for all gRNAs except for p17 encoded by MP3 were detected (figure 3.20). As described previ-

ously (chapter 3.3.2), p17 is probably not functional in J-Lat cells because the PAM is “NAG” in-

stead of “NGG” in the isolate HXB2. Hence, p17 was replaced by the gRNA gag in the later 

cloned constructs MP4-MP11. Some constructs (MP9 and MP10, MP5 and MP11, MP6 and 

MP8) were designed to express the same gRNAs from different promoters to analyze if some 

gRNAs are more efficiently expressed from a certain promoter. Treatment of the cells with MP9 

expressing gag from the U6 promoter and MP10 expressing gag from 7SK promoter resulted in 

comparable cleavage efficiencies. The combination of gag expressed from the promoter U6 and 

g6 expressed from the H1 promoter in MP5 resulted in comparable cleavage efficiencies as the 

treatment of the cells with MP11 expressing g6 from the U6 promoter and gag from the 7SK 

promoter. In two of the three experiments treatment of the cells with MP6 expressing g5 from the 

7SK promoter did not result in detectable cleavage at the g5 target site. In the other experiment 

cleavage was only detectable very weakly. In contrast, expression of g5 from the U6 promoter in 

MP8 resulted in detectable cleavage at the g5 target site in all three experiments. Overall the 

highest cleavage efficiencies at the 5´LTR- and p17-spanning target site were reached with 

MP1, MP3, MP4, MP5 and MP11, which either express g6 in combination with gag or g3 or 

which express two copies of g6.  
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Figure 3.20: CRISPR/Cas9-mediated editing at the 5´LTR and gag p17 with gRNA multiplexing constructs and 
single gRNA6. Shown are results from T7 endonuclease assays performed after two consecutive transductions of J-

Lat clone 9.2 with purified AAV9-A2 vectors expressing either Cas9 or different triple-gRNA combinations/single 
gRNA6. T7 endonuclease cleavage products from individual gRNAs are marked with different symbols that are ex-
plained by the legend on the left side of the gel image which additionally indicates the size of the T7 endonuclease 
fragments. Numbers below the gel images indicate editing efficiencies in percent calculated with ImageJ. Additional 
bands which are no T7 endonuclease cleavage products are marked with red arrows.  

 

At the pol target site quantifiable T7 endonuclease mediated cleavage was only detectable after 

treatment with MP5-7 (figure 3.21), which express the gRNA int4 from the H1 promoter. In con-

trast, treatment of the cells with MP8-11, which express int4 from the 7SK promoter, resulted 

either in very weak cleavage bands or no cleavage at all.  
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Figure 3.21: CRISPR/Cas9-mediated editing at pol with gRNA multiplexing constructs. Shown are results from 

T7 endonuclease assays performed after two consecutive transductions of J-Lat clone 9.2 with purified AAV9-A2 vec-
tors expressing either Cas9 or different gRNA multiplexing constructs. Arrows mark weakly detectable cleavage 
bands. Numbers below the gel pictures indicate cleavage efficiencies in percent calculated with ImageJ.  

 

At the p24 target site cleavage was only detectable with the constructs MP9 and MP10 in one of 

the three experiments (figure 3.22). However the cleavage was too weak for quantification. 

Treatment with MP1 and MP2 did not result in detectable editing in any of the three experiments.  

 

 

Figure 3.22: CRISPR/Cas9-mediated editing at gag p24 with gRNA multiplexing constructs. Shown are results 

from T7 endonuclease assays performed after two consecutive transductions of J-Lat clone 9.2 with purified AAV9-A2 
vectors expressing either Cas9 or different gRNA multiplexing constructs. Arrows mark weakly detectable cleavage 
bands.  
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As previously seen with HeLaP4-NLtr cells (chapter 3.2.4), treatment of J-Lat cells with our 

gRNA multiplexing vectors also resulted in additional bands detected with T7 assay at the 

5´LTR/p17-spanning target site (figure 3.20). Hence, as previously done with samples from 

CRISPR-treated HeLaP4-NLtr cells, we performed a PCR without following T7 assay with the 

DNA samples of the CRISPR-treated J-Lat cells from all three experiments to proof that these 

bands are no T7 endonuclease cleavage products but display shorter variants of the provirus 

after excision of DNA sequences between different gRNA target sites (figure 3.23). Indeed, 

shorter PCR products were detected after treatment with MP4, MP5, MP7 and MP8 with DNA 

from all three experiments. Treatment with MP11 resulted in a shorter PCR product only in one 

of the experiments.  

 

 

Figure 3.23: Excision of proviral fragments between the 5´LTR and p17. PCR amplification of the 5´LTR/p17-

spanning target site. Shorter PCR products resulting from excision of DNA between different gRNA target sites are 
marked with symbols that are explained by the legend on the left site of the gel images.  
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To analyze if the transduction of the J-Lat cells with our CRISPR-AAV vectors decreases proviral 

expression, the cells were imaged to detect the expression of the gfp that is integrated in the 

proviral sequence in J-Lat cells (figure 3.14). The cells transduced with the single g6 could not 

be analyzed because this vector expresses GFP as well. As the gfp sequence in J-Lat cells is 

integrated in the nef open reading frame, only the effect of LTR mutations can be detected with 

this readout. Indeed, treatment with MP9 and MP10, which do not encode a LTR-targeting 

gRNA, did not result in a significant reduction of GFP-expression compared to cells only trans-

duced with the Cas9-encoding vector (figure 3.24A). Also treatment with MP7 did not result in a 

significantly reduced number of GFP-positive cells. All other constricts mediated a significant 

reduction of proviral transcription and the highest reduction of about 73 % to 75 % was reached 

with the constructs MP4 and MP11.  

To additionally analyze the effect on the release of viral particles, SG-PERT was performed with 

medium from the CRISPR-treated and untreated J-Lat cells (figure 3.24B). Treatment with all 

multiplexing constructs and with the single gRNA g6 resulted in a significant reduction of detect-

able RT. Furthermore, transduction with all gRNA vectors that mediate editing at two or three 

proviral sites in J-Lat cells resulted in a stronger reduction of viral release than transduction with 

g6 and the construct MP3, that only mediates editing at the g6 target site in J-Lat cells as the 

gRNA p17 is not functional in these cells. The lowest amount of RT compared to the Cas only 

control was detected in the supernatant of cells transduced with MP4 and MP8. The amount of 

RT was reduced by 72 % after treatment with MP8 and by 74 % after treatment with MP4. Col-

lectively, constructs encoding a LTR-targeting gRNA in combination with the gRNA gag (MP4-8, 

MP11) were most effective in reducing viral release. To exclude, that the reduction of the viral 

release detected in this experiment is caused by toxic effects of the AAVs on the cells, a viability 

test was performed with transduced and untransduced cells (supplementary figure 5.2) and no 

reduction in viability of transduced cells was seen in comparison with untransduced cells.  
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Figure 3.24: Functional inactivation of the HIV-1 provirus in J-Lat cells. J-Lat 9.2 cells were seeded and co-

transduced with purified AAV9-A2 vectors encoding different gRNA multiplexing constructs or gRNA6 alone and with a 
Cas9-expressing AAV. As control, cells were transduced only with a Cas9/gRNA-encoding vector alone or treated 
with iodixanol. After 48 hours, the cells were split and transduced a second time. Another 20 hours later, HIV-1 pro-
viral DNA transcription was activated by adding TPA/TNFα for 5 hours, before the cells were washed and incubated 
for 42 hours until analysis. (A) Percentages of GFP-positive J-Lat cells after activation of proviral expression with 

TPA/TNFα. Shown are means of three biological replicates with standard deviation. Differences between CRISPR-
treated cells and Cas only control were determined using Dunnett's post-hoc test after one-way ANOVA. * p<0.05; ** 
p<0.01; *** p<0.001. (B) Results from SG-PERT assay which measures the activity of encapsidated viral reverse tran-

scriptase (RT) in HIV-1 particles and thus permits HIV progeny quantification. Shown is the mean from three biological 
replicates with SD. Differences between CRISPR-treated cells and Cas only control were determined by Dunnett's 
post-hoc test after one-way ANOVA. * p<0.05; *** p<0.001.  
 

 

3.3.4 Proviral excision in J-Lat cells 

After having found that treatment with our multiplexing vectors not only enables editing at differ-

ent sites of the provirus but also leads to the excision of fragments between the 5´LTR and gag, 

we wanted to analyze if our CRISPR system also facilitates the excision of the whole proviral 

sequence between the LTRs. Therefore, I performed a PCR with genomic DNA from J-Lat cells 

(clone 9.2) prepared by Dr. Kathleen Börner. The cells were transduced with AAV9-A2 vectors 

encoding MP1-3 and an EFS promoter driven Cas9. 54 hours later, the cells were transduced a 

second time. 21 hours after the second transduction, the proviral transcription was activated 5 

hours with TPA and TNFα. After another 40 hours, the genomic DNA was extracted from the 

cells. To amplify of the proviral sequence by PCR, the primers P2 and P3 described by Lenasi et 

al. [207] were used. These primers are flanking the proviral sequence integrated into the pp5 

(serine/threonine phosphatase 5) gene in the J-Lat clone 9.2 (figure 3.25A).  
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Figure 3.25: Excision of the proviral sequence between the LTRs in J-Lat cells using gRNA multiplexing vec-
tors. (A) Schematic depiction of proviral DNA before and after cleavage by Cas9 using different LTR-targeting 

gRNAs. Primers used for PCR amplification (P2, P3) and sequencing primers (HIVamp, P7) are depicted as arrows. 
Expected band sizes are shown below each picture. The left number indicates the band size in case of g5 cleavage 
and the right number indicates the size in case of g6 cleavage. (B) Gel picture after PCR with gDNA from either un-

treated J-Lat clone 9.2 or cells treated with AAV9-A2 encoding Cas9 and MP1, MP2 or MP3. 

 

Our standard DNA polymerase and the PCR conditions used (chapter 2.4.8) do not allow ampli-

fication of the complete proviral sequence with a length of around 10 kb. Hence, the PCR will 

only amplify short versions of the provirus resulting from excision of DNA between the LTRs. As 

MP1-3 express three different LTR-targeting gRNAs (g3, g5, g6), the PCR products can have 

variable sizes depending on the gRNA target site at which the DNA double-strand break at the 

5´LTR and the 3´LTR was made (figure 3.25A). If the break at both LTRs is mediated at the 

same target site, this will result in a 820 bp PCR product. If the break in the 5´LTR is performed 

at the g3 target site and the 3´LTR is cut at the g5 or g6 target site, this will result in either a 

576 bp or 597 bp PCR product. If the 5´LTR is cut at the g5 or g6 target site and the 3´LTR is cut 

at the g3 target site, this results in a 1064 bp or a 1043 bp PCR product. PCR amplification of 

the provirus in J-Lat clone 9.2 treated with MP1-3 resulted in a 820 bp PCR product (figure 

3.25B) indicating that both LTRs were cut at the same gRNA target site. The same PCR with 

DNA from cells transduced only with a Cas-expressing AAV did not result in a PCR product.  

To analyze at which gRNA target site the LTRs were cut, the PCR products were sequenced at 

the 5´LTR (figure 3.26) and the 3´LTR (figure 3.27) using the primers HIVamp and P7 (figure 

3.25A). The sequencing reads for the PCR products from cells treated with MP1 and MP3 were 

destroyed at the g6 target site at the 5´LTR and at the 3´LTR. The read of the PCR product from 
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MP2-treated cells showed mutations from the g3 target site on but still continued to the g6 target 

site from where on it was completely destroyed, which indicates that the sequences were mutat-

ed at the g3 target site but that cleavage occurred at the g6 target site. At the 3´LTR the read 

was also destroyed at the g6 target site. Collectively, the results show that our CRISPR system 

enables the excision of the proviral sequences between the g6 target sites of the 5´LTR and the 

3´LTR. 
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Figure 3.26: 5´LTR sequences of proviral DNA amplified with the primers P2 and P3. Chromatogram of SANG-

ER sequencing using the primer HIVamp and DNA extracted from the gel shown in figure 3.25. For comparison the 
sequencing read of the wildtype (WT) sequence is also depicted. (A) Sequencing reads of PCR products from cells 
treated with the gRNA multiplexing constructs MP1 and MP3. (B) Sequencing reads of the PCR product from cells 

treated with the gRNA multiplexing construct MP2. Black lines mark sites from where the read is destroyed. The 
dashed black line marks a site from where the read shows mutations (black boxes). Red boxes highlight the g6 target 
site, the green box depicts the g3 target site and the blue boxes mark the PAM sequences. 
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Figure 3.27: 3´LTR sequences of proviral DNA amplified with the primers P2 and P3. Chromatogram of SANG-

ER sequencing using the primer P7 and DNA extracted from the gel shown in figure 3.25. For comparison the se-
quencing read of the wildtype (WT) sequence is also depicted. Black lines mark sites from where the read is de-
stroyed. The dashed black line marks a site from where the read shows mutations (black boxes). Red boxes highlight 
the g6 target site, the green box depicts the g3 target site and the blue boxes mark the PAM sequences. 
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3.4 Application of the HIV-1-targeting CRISPR/Cas9 system in primary human 

CD4+ T cells 

 

3.4.1 Comparison of different AAV serotypes for transduction of primary CD4+ T cells 

To enable the application of our CRISPR system in primary human CD4+ T cells, different AAV 

serotypes were compared for their transduction efficiencies of these cells. Therefore, a CMV 

promoter driven YFP construct was packaged by Dr. Kathleen Börner into AAV2, AAV5, AAV6 

and AAV9-A2 capsids. To initiate proliferation and enable HIV-1 infection, T cells need to be ac-

tivated. Hence, two methods for activation of the T cells were compared in this experiment to 

analyze if they would make a difference in the transduction efficiencies of the tested AAVs. One 

method uses so-called Dynabeads, which are iron oxid beads covalently coupled to anti-CD3 

and anti-CD28 antibodies. These beads mimic the in vivo stimulation of T cells by two signals 

that are mediated by binding of the antigen/MHC (major histocompatibility complex) complex on 

an antigen-presenting cell (APC) to the T cell receptor/CD3 complex and by binding of the 

transmembrane proteins CD80 and CD86 on the APC to CD28 on T cells [208]. The other meth-

od uses phytohemagglutinin (PHA), a mitogenic lectin which binds the T cell receptor [209]. In 

addition to the Dynabeads and PHA, the T cell growth factor interleukin-2 (IL-2) was added to 

the cells.  

T cells from buffy coats of two donors were isolated and activated with the previously mentioned 

methods for three days. Then they were transduced with 2.7 x 104 vg per cell of the different 

AAVs. Three days after transduction, the cells were analyzed by flow cytometry (figure 3.28). 

Independent from the activation method used, cells from both donors were transduced best with 

AAV2 and AAV6, whereas AAV5 and AAV9-A2 transduced the cells only very poorly. The acti-

vation with Dynabeads and IL-2 resulted in higher transduction efficiencies for cells from both 

donors. For example, after activation with Dynabeads 51 % of the cells from donor A and 33 % 

of the cells from donor B were transduced with AAV6. In contrast, after activation with PHA only 

9.7 % of the cells from donor A and 6.9 % of the cells from donor B were transduced with AAV6. 

Hence, the activation method using Dynabeads was chosen for all further experiments. As Dr. 

Kathleen Börner observed that AAV6 is also very efficiently transducing macrophages (data not 

shown), this serotype was chosen for all further experiments enabling sharing of the AAV pro-

ductions for the application in macrophages and primary CD4+ T cells.  
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Figure 3.28: Transduction efficiencies of different AAV serotypes in primary CD4
+
 T cells. Human primary CD4

+
 

T cells were activated either with Dynabeads and IL-2 or with PHA and IL-2 for three days and then transduced with 
different AAV serotypes encoding a CMV promoter driven YFP. 72 hours after transduction, the cells were analyzed 
by flow cytometry. (A) Exemplary dot plot of the flow cytometry analysis of transduced and untransduced cells from 
Donor B activated with Dynabeads ad IL-2. (B) Percentage of YFP-positive cells from donor A and B activated with 
Dynabeads and IL-2. N=1 (C) Percentage of YFP-positive cells from donor A and B activated with IL-2 and PHA. N=1 

 

 

3.4.2 Comparison of different promoters for transgene expression in CD4+ T cells 

After having identified AAV6 as a serotype efficiently transducing primary human CD4+ T cells, 

we wanted to compare different promoters for efficient transgene expression in these cells. For 

that purpose, YFP reporter constructs containing either the CMV, the EFS or the SFFV (spleen 

focus-forming virus) promoter were packaged into AAV6 capsids. CD4+ T cells from three do-

nors were activated three days and subsequently transduced with 5 x 104, 1 x 105, 2 x 105 and 

4 x 105 vg per cell of AAV6 encoding the different reporter constructs. Three days after transduc-

tion the cells were fixed and analyzed by flow cytometry (figure 3.29).  
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Figure 3.29: Comparison of different promoters for transgene expression in primary human CD4
+
 T cells. Pri-

mary CD4
+
 T cells from three donors were activated three days and subsequently transduced with 5 x 10

4
, 1 x 10

5
, 2 x 

10
5
 or 4 x 10

5
 viral genomes per cell of AAV6 particles packaging either a CMV, an EFS or a SFFV promoter driven 

YFP. Three days after transduction, the cells were fixed and analyzed with flow cytometry. (A) Exemplary FACS dot 

plot of cells from donor A transduced at a MOI of 4 x 10
5
 vg/cell. To set the gates for YFP-positive cells untransduced 

cells (mock) were analyzed in parallel. YFP-positive events are shown in green. The percentage of YFP-positive cells 
is depicted in the gate. (B) Mean transduction efficiencies and standard deviation for all three donors. N=3 (C) Mean 

intensity and standard deviation of YFP-positive cells for all three donors. N=3.  

 

Two parameters were analyzed. The percentage of YFP-positive cells, which is determined by 
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ty of YFP-positive cells, which is determined by the promoter. The highest mean intensity of 

YFP-positive cells from all donors was reached with the SFFV promoter whereas the weakest 

mean intensity was seen with cells transduced with the EFS promoter driven YFP construct. The 

mean intensity of EFS-YFP transduced cells was about 3- to 4-fold lower than that of the cells 

transduced with the SFFV-YFP constructs. The mean intensity of CMV-YFP transduced cells 
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was either the same as the mean intensity of the cells transduced with SFFV-YFP or weaker by 

a factor of 1.1 to 1.5.  

The transduction efficiency, that is determined by the capsid and therefore should be the same 

for all three YFP constructs at the same MOI, was much lower with the EFS driven YFP con-

struct. Whereas for example with the CMV and SFFV driven YFP constructs a maximal trans-

duction efficiency of about 60 % was reached with cells from donor B at the highest MOI, only 

25 % of the same cells were transduced at the same MOI with the EFS-YFP construct. Even if 

the transduction efficiencies of the cells transduced with the CMV and SFFV promoter driven 

YFP construct were very similar, they were significantly different with cells from donor C at all 

MOIs and with cells from donor A at the MOIs 5 x 104, 1 x 105 and 2 x 105. The intensities 

reached with the EFS promoter driven YFP constructs were in general very low as previously 

mentioned. The intensities of cells from donor A and C transduced with the CMV-YFP reporter 

were also low compared to the intensities of cells from donor B. Therefore, in these cases the 

flow cytometer was probably not sensitive enough to detect all transduced cells.  

 

 

3.4.3 Test of CRISPR-mediated protection against HIV-1 infection  

To initially test if our CRISPR system works in primary human CD4+ T cells, we decided to 

analyze if the cells can be protected from an HIV infection, as already shown for HeLaP4 cells 

(chapter 3.2.5), by pretreating them with gRNA multiplexing constructs and a Cas9 encoding 

construct (figure 3.30).  
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Figure 3.30: Experimental procedure for the analysis of protection against HIV-1 infection with primary human 
CD4

+
 T cells using gRNA multiplexing AAV vectors. Activated human primary CD4

+
 T cells were transduced with 

AAV6 vectors encoding Cas9 and with AAV6 vectors encoding gRNA multiplexing constructs or with vectors encoding 
a YFP reporter construct. 48h after the first transduction, the cells were transduced a second time. 24h later, the cells 
transduced with the YFP reporter were fixed and the transduction efficiency was analyzed by flow cytometry. At the 
same day the cells treated with the CRISPR vectors were infected with HIV-1 NL4-3. 72h after infection, the cells were 
fixed, stained with a FITC-labeled anti-p24 antibody and the percentage of HIV infected cells was anlyzed by flow 
cytometry.  

 

As MP3, MP4 and MP11 turned out to be the most effective constructs in the experiments with 

HeLa and J-Lat cells (chapters 3.2.5 and 3.3.3 ), they were chosen for the experiments with 

primary human CD4+ T cells. As we saw that the CMV promoter (full length) is functional in 

primary CD4+ T cells (chapter 3.4.2), we first used the shCMV promoter driven Cas9 construct, 

that was already used in HeLa cells. Primary human CD4+ T cells from one donor were activated 

three days and subsequently transduced with 2 x 105 vg per cell of AAV6 encoding MP3, MP4, 

MP11 and with 2.8 x 106 vg per cell of AAV6 encoding the shCMV promoter driven Cas9. To 

analyze the transduction efficiency at the day of HIV-1 infection, cells were also transduced with 

2 x 105 vg per cell of AAV6 encoding a SFFV promoter driven YFP. Two days after the first 

transduction, the cells were transduced a second time and one additional day later, the cells 

were infected with 3.7 x 10-5 ng p24 per cell of HIV-1 NL4-3. At the same day the YFP 

transduced cells were fixed and analyzed by flow cytometry (figure 3.31A,B). The CRISPR-

treated cells were fixed and analyzed by flow cytometry three days after HIV infection (figure 

3.31C,D). The transduction with the YFP reporter construct resulted in approximatly 50 % 

transduced cells at the day of HIV infection. Hence, also around 50 % of the cells treated with 

the CRISPR AAV vectors should be transduced with the gRNA multiplexing constructs and even 

more cells should be transduced with the Cas9 encoding vector as cells were transduced at an 

higher MOI with this construct. However, the pretreatment of the cells with the gRNA 

multiplexing constructs and the shCMV-Cas9 vector did not result in a reduction of HIV infection 

in comparison to cells only transduced with the Cas9 vector.  
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Figure 3.31: Analysis of protection against HIV infection using multiplexing gRNA vectors and shCMV-Cas. 

CD4
+
 T cells from one donor were activated three days and then transduced with AAV6 encoding different gRNA mul-

tiplexing vectors (MP3, MP4, MP11) and a shCMV-Cas9-encoding vector or with AAV6 encoding a SFFV-YFP report-
er. As control, cells were only transduced with the Cas9 encoding AAV6. Two days later, the cells were transduced a 
second time. One day after the second transduction, the cells transduced with the YFP encoding vector were fixed 
and analyzed by flow cytometry to determine the transduction efficiency. The CRISPR-treated cells were infected with 
HIV-1 NL4-3. Three days post infection, the cells were fixed, stained with a FITC-labeled anti-p24 antibody and ana-
lyzed with flow cytometry to determine the percentage of HIV-infected cells. (A) FACS dot plot showing YFP-positive 

events from untransduced cells (mock) or from cells transduced with the YFP-reporter. YFP-positive events are de-
picted in green and the percentage of YFP-positive cells is shown in the gate. (B) Exemplary FACS dot plot showing 

p24-positive events from uninfected cells (mock) or from one replicate of cells either transduced with the Cas9-
expressing vector and a gRNA multiplexing vector or with the Cas9-expressing vector alone. P24-positive events are 
depicted in green and the percentage of p24-positive cells is shown in the gate. (C) Percentage of p24-positve cells 

for both replicates each.  

 

To check if the promoter used for Cas9 expression was the reason for the failure of the 

experiment, similar as seen with J-Lat cells (chapter 3.3.1), we next tested other promoters for 

the expression of Cas9. Since the SFFV promoter is very efficient in primary human CD4+ T 

cells (chapter 3.4.2), I cloned a SFFV-Cas9 construct. With a size of 5.1 kb this construct is 300 

bp larger than the wildtype AAV genome and thus, it cannot be guaranteed that the construct is 

efficiently packaged into the AAV capsid. Therefore, we decided to test the EFS-Cas construct in 

parallel. Even if this promoter was shown not to be very efficient in human primary CD4+ T cells 
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in comparison to the CMV and SFFV promoter (chapter 3.3.1), the construct was already shown 

to be functional in HeLaP4 and J-Lat cells.  

CD4+ T cells from one donor were transduced twice with 1 x 105 vg per cell of AAV6 packaging 

either MP3, MP4, MP11 or a SFFV-YFP reporter and with 2 x 105 vg per cell of AAV6 packaging 

the EFS-Cas9 or SFFV-Cas9 construct.  

 

Figure 3.32: Analysis of protection against HIV infection using multiplexing gRNA vectors and SFFV-Cas. 

CD4
+
 T cells from one donor were activated three days and then transduced with AAV6 encoding different gRNA mul-

tiplexing vectors (MP3, MP4, MP11) and a SFFV-Cas9-encoding vector or with AAV6 encoding a SFFV-YFP reporter. 
As control, cells were only transduced with the Cas9-encoding AAV6. Two days later, the cells were transduced a 
second time. One day after the second transduction, the cells transduced with the YFP-encoding vector were fixed 
and analyzed by flow cytometry to determine the transduction efficiency. The CRISPR-treated cells were infected with 
HIV-1 NL4-3. Three days post infection, the cells were fixed, stained with a FITC-labeled anti-p24 antibody and ana-
lyzed with flow cytometry to determine the percentage of HIV-infected cells. (A) Exemplary FACS dot plot showing 

YFP-positive events from untransduced cells (mock) or from one of the replicates of cells transduced with the YFP-
reporter. YFP-positive events are depicted in green and the percentage of YFP-positive cells is shown in the gate. (B) 
Mean transduction efficiency with standard deviation. N=3 (C) Exemplary FACS dot plot showing p24-positive events 

from uninfected cells (mock) or from one replicate of cells either transduced with the Cas9-expressing vector and a 
gRNA multiplexing vector or with the Cas9-expressing vector alone. P24-positive events are depicted in green and the 
percentage of p24-positive cells is shown in the gate. (D) Mean percentage of p24-positve cells with standard devia-

tion. N=3. Differences between CRISPR-treated cells and Cas only control were determined by Dunnett's post-hoc 
test after one-way ANOVA. * p<0.05; ns, not significant. 
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One day after the second transduction, the cells treated with the CRISPR vectors were infected 

with 1.2 x 10-5 ng p24 per cell of HIV-1 NL4-3 and the cells treated with the YFP reporter were 

fixed and analyzed by flow cytometry (figure 3.32A,B). The CRISPR-treated cells were fixed and 

analyzed three days after HIV-1 infection (figure 3.32C,D).  

The transduction efficiency at the day of HIV-1 infection was approximately 30 %. Pretreatment 

with MP3 and SFFV-Cas9 did not result in a significant reduction in the percentage of 

HIV-1-positive cells. In contrast, preatreatment with SFFV-Cas9 and MP4 reduced the 

percentage of HIV-infected cells around 55 % and transduction with SFFV-Cas and MP11 

resulted in a reduction of HIV infected cells of about 70 %. With the EFS-Cas construct a 

significant reduction in HIV infection was not seen in combination with MP3 and MP4 (figure 

3.33). However, transduction with EFS-Cas and MP11 resulted in a significant reduction of 

HIV-1 infection of about 77 %. 

 

Figure 3.33: Analysis of protection against HIV infection using multiplexing gRNA vectors and EFS-Cas. CD4
+
 

T cells from one donor were activated three days and then transduced with AAV6 encoding different gRNA multiplex-
ing vectors (MP3, MP4, MP11) and a EFS-Cas9-encoding vector or with AAV6 encoding a SFFV-YFP reporter. As 
control, cells were only transduced with the Cas9-encoding AAV6. Two days later, the cells were transduced a second 
time. One day after the second transduction, the cells transduced with the YFP-encoding vector were fixed and ana-
lyzed by flow cytometry to determine the transduction efficiency, which is shown in figure 3.32. The CRISPR-treated 
cells were infected with HIV-1 NL4-3. Three days post infection, the cells were fixed, stained with a FITC-labeled anti-
p24 antibody and analyzed with flow cytometry to determine the percentage of HIV-infected cells. (A) Exemplary 

FACS dot plot showing p24-positive events from uninfected cells (mock) or from one replicate of cells either trans-
duced with the Cas9-expressing vector and a gRNA multiplexing vector or with the Cas9-expressing vector alone. 
P24-positive events are depicted in green and the percentage of p24-positive cells is shown in the gate. (B) Mean 

percentage of p24-positve cells with standard deviation. N=3. Differences between CRISPR-treated cells and Cas 
only control were determined by Dunnett's post-hoc test after one-way ANOVA. ** p<0.01; ns, not significant. 
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As this experiment was performed only with cells from one donor, we wanted to check if the 

result was reproducible with cells from other donors. Since with the SFFV-Cas construct a 

reduction of HIV infection was seen in combination with two out of the three multiplexing 

constructs and with the EFS-Cas construct a significant reduction of HIV infection was only seen 

with MP11, the SFFV-Cas construct was chosen for the next experiment.  

Therefore, CD4+ T cells from three donors were activated three days and transduced with 

1 x 105 vg per cell of AAV6 encoding MP3, MP4, MP11 or SFFV-YFP and 2 x 105 vg per cell of 

AAV6 packaging the SFFV-Cas9 construct. Two days later, the cells were transduced a second 

time. One day after the second transduction, the cells treated with the CRISPR vectors were 

infected with 6.1 x 10-6 ng p24 per cell of HIV-1 NL4-3 and the cells treated with the YFP 

reporter were fixed and analyzed by flow cytometry. The CRISPR-treated cells were fixed and 

stained three days after HIV-1 infection.  

The transduction efficiency was approximately 30 % for cells from donor A, 60 % for cells from 

donor B and 50 % for cells from donor C (figure 3.34A,B). Unfortunately, no significant reduction 

in HIV-1 infection was detectable with cells from all three donors, no matter which of the three 

gRNA multiplexing constructs was used (figure 3.34C). 

In addition to the percentage of p24-positve cells we checked if the mean fluorescence intensity 

of p24-positive cells is reduced after pretreatment with our gRNA multiplexing constructs 

(supplementary figures 5.3, 5.4, 5.5). Unfortunately, this was not the case in all of the 

experiments shown in this chapter.  
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Figure 3.34: Analysis of protection against HIV infection with cells from three donors using multiplexing 
gRNA vectors and SFFV-Cas. CD4

+
 T cells from three donors were activated three days and then transduced with 

AAV6 encoding different gRNA multiplexing vectors (MP3, MP4, MP11) and a SFFV-Cas9-encoding vector or with 
AAV6 encoding a SFFV-YFP reporter. As control, cells were only transduced with the Cas9-encoding AAV6. Two 
days later, the cells were transduced a second time. One day after the second transduction, the cells transduced with 
the YFP-encoding vector were fixed and analyzed by flow cytometry to determine the transduction efficiency. The 
CRISPR-treated cells were infected with HIV-1 NL4-3. Three days post infection, the cells were fixed, stained with a 
FITC-labeled anti-p24 antibody and analyzed with flow cytometry to determine the percentage of HIV-infected cells. 
(A) Exemplary FACS dot plot showing YFP-positive events from untransduced cells (mock) or from one of the repli-

cates of cells transduced with the YFP-reporter. YFP-positive events are depicted in green and the percentage of 
YFP-positive cells is shown in the gate. (B) Mean transduction efficiency with standard deviation. N=4 (C) Mean per-

centage of p24-positve cells with standard deviation. N=4. Differences between CRISPR-treated cells and Cas only 
control were determined by Dunnett's post-hoc test after one-way ANOVA. ns, not significant. 
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3.4.4 Analysis of Cas9 expression from different promoters 

As the protective effect against HIV-1 infection in primary CD4+ T cells after pretreatment with 

our CRISPR AAV vectors was only seen with one donor and could not be reproduced, we want-

ed to analyze if Cas9 is maybe only weakly expressed or not expressed at all. Therefore, CD4+ 

T cells from three different promoters were transduced with 2 x 105 vg per cell of AAV6 vectors 

encoding Cas9 either expressed from the EFS, the shCMV and the SFFV promoters. Two days 

later, the cells were transduced a second time and one day later, when the cells were infected 

with HIV-1 in the previous experiments (chapter 3.4.3, figure 3.30), mRNA was isolated from the 

cells to analyze the Cas9 expression level at the day of HIV infection. In parallel we analyzed the 

Cas9 expression in HeLaP4 cells, since we could previously show protection of these cells 

against HIV-1 infection with our CRISPR constructs (chapter 3.2.5). Therefore, HeLaP4 cells 

were transduced with 1.1 x 106 vg per cell of AAV9-A2 encoding EFS-Cas9 and mRNA was iso-

lated three days later, which corresponds to the day of HIV infection in the previously described 

experimental outline (chapter 3.2.3, figure 3.13A). After RNA isolation, the samples were digest-

ed with DNAse to get rid of AAV DNA. Then, mRNA was reversely transcribed into cDNA and 

the expression of Cas9 and the housekeeping gene RPP30 (ribonuclease P protein subunit p30) 

was measured with digital droplet PCR (ddPCR) using fluorescently labeled probes binding the 

two genes. To determine the background values caused by genomic DNA or AAV DNA in the 

samples a minus RT control was included in the analysis. Therefore, all RNA samples were 

pooled and measured without reverse transcription.   

Tables 3.3 and 3.4 show the copies of Cas9 mRNA and RPP30 mRNA per µl detected in prima-

ry human CD4+ T cells and in HeLaP4 cells with ddPCR. The copy numbers of Cas9 mRNA de-

tected in primary human CD4+ T cells were either not significantly different from the minus RT 

control or only slightly higher. The maximum value was 1.9 copies of Cas9 per µl. In contrast, in 

HeLaP4 cells more than 1000 copies per µl of Cas9 mRNA were detected and the Cas9 mRNA 

values were more than 20 times higher than the minus RT values. Collectively, this result shows 

that indeed Cas9 is not expressed efficiently with our vectors in human primary CD4+ T cells.  
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Table 3.3: Cas9 and RPP30 expression in primary human CD4
+
 T cells. The table shows the mRNA copy num-

bers per µl of the housekeeping gene RPP30 or of Cas9. Each condition was analyzed with three biological replicates. 
Bold numbers indicate that the Cas9 values were significantly higher than that of the minus RT control, which was 
determined with Student`s t-test (p<0.05).  

 Donor A Donor B Donor C 

 RPP30 Cas9 RPP30 Cas9 RPP30 Cas9 

shCMV 

11.1 0.16 25.3 0.58 14.3 0.15 

16.7 0.28 23.3 0.73 7.9 0.57 

22.7 0.75 21.9 0.54 0.07 0.27 

SFFV 

17.9 1.1 26.1 1.9 14.4 1.7 

13.5 1.1 14.2 0.86 10.9 1 

3.2 0.63 26.3 1.8 7 1 

EFS 

5 0.36 14.9 1.2 23.9 1.5 

20.4 1.2 10.6 1.2 16.5 1.2 

9.4 0.46 22.8 0.89 13.3 1.8 

minus RT 

0 0.27 

0 0.71 

0 0.22 

 

 

 

Table 3.4: Cas9 and RPP30 expression in HeLaP4 cells. The table shows the mRNA copy numbers per µl of the 

housekeeping gene RPP30 or of Cas9. Each condition was analyzed with three biological replicates.  

 RPP30 Cas9 

EFS 

7840 1242 

6840 1366 

8180 1660 

minus RT 

0 52 

0 64 

0 66 
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4. Discussion 
 

4.1 Establishment of the HIV-1-targeting CRISPR/Cas9 system 

 

4.1.1 GRNA design and gRNA multiplexing strategy 

Targeting highly conserved regions is of special interest as these sequences should be of either 

structurally or functionally importance and mutating those should have a big impact on viral rep-

lication. In addition, Roychoudhury et al. [210] showed that selecting highly conserved target re-

gions among different HIV-1 subtypes is important for clinical application as it enables targeting 

of most global and within-host variants. Furthermore, it was shown that editing conserved pro-

viral regions delays the emergence of viruses resistant to CRISPR/Cas9 [211, 212], which occur 

through CRISPR/Cas9 induced mutations, that do not impair viral replication and prevent further 

gRNA binding. 

For the establishment of our CRISPR/Cas9 system we designed gRNAs targeting the LTRs, gag 

and pol. For the design of the LTR-binding gRNAs the 3´ and 5´LTRs of the subtype B HIV-1 

strains NL4-3 and HXB2 were aligned and regions that were identical among those sequences 

were chosen as gRNA target sites. The gRNAs targeting protein-encoding regions were chosen 

to target highly conserved regions identified by ter brake et al. [199], who aligned the genomic 

sequences of the LAI HIV-1 strain with 170 HIV-1 genomic sequences from all HIV-1 subtypes 

listed in the Los Alamos National Laboratory database. To compare the conservation of all our 

gRNAs we blasted the gRNA sequences against the genomes of HIV-1 strains belonging to the 

subtypes A, B, C, F and G available in the Los Alamos National Laboratory database. Indeed, 

the gRNAs targeting the highly conserved regions described by ter brake et al. showed a high 

conservation among the different subtypes. Only the gRNA int4 is weakly conserved in isolates 

from subtype A and C. Among the LTR-binding gRNAs only g7 showed a broad conservation 

whereas the other LTR-targeting gRNAs were highly conserved in isolates from subtype B and 

weakly conserved in the other isolates. These results suggest that our LTR-targeting gRNAs are 

well suited for the work with subtype B HIV-1 strains, but for later experiments with patient cells it 

might be necessary to design new gRNAs binding at highly conserved sites of the LTRs to ena-

ble targeting of different global and within-host HIV-1 variants and to prevent the emergence of 

resistances against CRISPR/Cas9.   
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To analyze the potential of CRISPR/Cas9 to functionally inactivate HIV-1 in cell lines and prima-

ry CD4+ T cells, we used vectors expressing three gRNAs. This gRNA multiplexing strategy im-

proves the antiviral activity of the system. On the one hand it allows simultaneous editing of dif-

ferent sites of the proviral genome as we showed with T7 assay in HeLaP4 cells and J-Lat cells. 

On the other hand we and others [213, 214] found that it allows the excision of proviral DNA be-

tween different gRNA target sites. Hence, it was not surprising that several of our multiplexing 

constructs were more efficient than the single gRNA g6 in protecting HeLaP4 cells against HIV-1 

infection or in functional inactivation of the latent HIV provirus integrated in J-Lat cells. This find-

ing is supported by several other studies that compared editing of HIV with single and multiple 

gRNAs in actively HIV-1 producing cell lines and in latently HIV-1-infected cell lines [213, 215–

217]. Another advantage of the gRNA multiplexing strategy, that was not analyzed in this work, 

but was shown by two recent studies is, that it prevents the emergence of CRISPR-resistant vi-

ruses [217, 218]. These studies showed that the combination of only two gRNAs can already 

block the breakthrough of resistant viruses. As we combine three different gRNAs in the most 

multiplexing constructs, our CRISPR system should be very effective in blocking the develop-

ment of CRISPR-resistant viruses.  

Another important point that needs to be addressed for the development of a CRISPR/Cas9-

based cure for HIV-1 infections is the cleavage of sites in the host genome that are similar to the 

gRNA target site in the HIV-1 proviral genome. Several studies have analyzed such off-target 

effects of CRISPR/Cas9 so far, but there does not seem to exist a simple rule that can be ap-

plied to gRNA design to prevent off-targeting. However it seems that mismatches near to the 

PAM sequence are less well tolerated than mismatches in the PAM distal region of the gRNA 

[83, 90, 109]. To get an impression of the number of possible off-targets of our gRNAs we per-

formed an in silico off-target prediction with different online tools. These tools predict off-targets 

based on sequence similarity with the gRNA sequence. As the tools allow different numbers of 

mismatches and some tools also restrict the position of the mismatches in the sequence, the 

number of predicted off-targets was very variable between the different online tools. For exam-

ple, the Cosmid tool that allows only three mismatches found for most gRNAs the least off-

targets, whereas the most off-targets were found by Cas-OFFinder when 5 mismatches were 

allowed. As these online tools only consider sequence similarity and do not account for other 

factors that influence gRNA binding like for example accessibility of the off-target site through 

chromatin structure [100, 219], a sequencing-based analysis like GUIDE-Seq [103] would be 

necessary to make a more realistic statement about the number of existing off-targets of our 

gRNAs.  
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4.1.2 Delivery of the CRISPR components with AAV vectors  

All studies applying CRISPR/Cas9 to target HIV-1 in cell lines used either transfection to deliver 

Cas9 and gRNAs into the cells or used lentiviral vectors to create cell lines stably expressing 

Cas9 and gRNAs. In contrast, we chose AAV vectors to deliver the Cas9 and gRNA encoding 

constructs into the target cells. The use of AAV vectors for delivery of an HIV-1-targeting 

CRISPR/Cas9 system has currently been described by two studies of one group who applied the 

vectors to mice and rats [77, 78]. We decided to use AAV vectors from the beginning of the es-

tablishment of the system. This allowed us to first test our system in easy to handle HeLaP4 

cells and adapt the system stepwise regarding to the choice of regulatory elements for Cas9 ex-

pression in human T cells.  

Several preclinical and clinical studies have shown that AAV vectors are safe and mediate long-

term expression. Furthermore as they only very rarely integrate into the host genome [179–181] 

there is no risk of insertional mutagenesis as with lentiviral vectors. As currently 13 naturally oc-

curring AAV serotypes with different tropisms have been identified [147] and different capsid en-

gineering techniques have been developed to change their tropisms [135], AAV vectors allow to 

target many different cell types. This offered us the opportunity to apply our CRISPR system to 

HeLa cells, to J-Lat T cells and finally to primary human CD4+ T cells. 

When we compared different vector designs for single gRNA expression in HeLaP4-NLtr cells, 

the all-in-one design, which should allow the expression of Cas9 and one gRNA from one con-

struct, did not result in detectable editing with T7 assay. Possible reasons for this could be that 

either the H1 promoter does not efficiently express g6, the second-strand synthesis is limited in 

these cells or the construct with a size of around 5.1 kb is too big for efficient packaging. As the 

other vector designs for single gRNA expression, that were co-transduced with a single-stranded 

Cas9 AAV vector, mediated editing at the g6 target site, the second-strand synthesis is not lim-

ited in HeLaP4-NLtr cells. Furthermore, it can be excluded that the H1 promoter is not functional 

in these cells as in later experiments with multiplexing constructs the gRNAs int4 and gag could 

be expressed from the promoter. Therefore, it is most likely that the construct was not efficiently 

packaged into AAV capsids, which is further supported by studies that showed the packaging 

efficiency of sequences larger than 5 kb is reduced and that such sequences have truncated 5´ 

ends [169, 171]. The packaging limit of around 5 kb is a major limitation of AAV vectors. As the 

SpCas9 coding sequence has already a size of around 4 kb, the choice of promoters is limited to 

small promoters. In this work, for example we used the shCMV promoter with a size of 224 bp or 

the EFS promoter with a size of 257 bp for Cas9 expression from AAV vectors in cell lines. 

Though, these promoters did not allow Cas9 expression in primary human CD4+ T cells. Lentivi-
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ral vectors, that can package sequences with a size of 9 to 10 kb, would allow the use of larger 

promoters. However, as our constructs encode gRNAs targeting the HIV-1 LTRs there is the risk 

that the gRNAs would also target the vector from which they are expressed and thereby would 

inactivate their own expression in the long run. An elegant solution that allows the expression of 

Cas9 from AAV vectors using larger promoters, is the so-called “SplitCas9” approach [220]. 

Here, the N-terminus and the C-terminus of Cas9 are expressed from two different constructs 

which reassemble to a functional Cas9 in the cell. Hence, there is around 2 kb more space for 

regulatory elements and also for gRNAs on each vector. As the field of gene therapy approach-

es using Cas9 is rising and AAV vectors are popular vectors for gene therapeutic applications, it 

is very probable that soon more strategies will be developed that simplify Cas9 expression from 

AAV vectors.  

 

 

4.2 Application of the HIV-1-targeting CRISPR/Cas9 system in cell lines 

 

4.2.1 CRISPR/Cas9 mediates the protection of HeLaP4 cells against HIV-1 infection 

Treatment of HeLaP4 cells with Cas9 and our gRNA multiplexing constructs or single g6 and 

subsequent infection with HIV-1 NL4-3, resulted in a reduction of the population of HIV-1-

infected cells of up to 80 %. Hence, pretreatment with our CRISPR-AAV vectors facilitated pro-

tection of cells against HIV-1 infection. Such a protective effect has already been described by 

others [211–213, 216–218, 221–227]. Most of these studies used SupT1 cells that stably ex-

press Cas9 and gRNAs, but one study also showed the protection of physiologically more rele-

vant cells like primary human CD4+ T cells or macrophages against HIV-1 infection [216]. Even if 

this feature is not absolutely necessary for targeting the latent HIV-1 reservoir, in a scenario 

where CRISPR/Cas9 would be used in combination with a shock and kill approach in patients 

under ART it could support the prevention of new infections mediated by ART.  

The protective effect that we and others observed is probably not only mediated by modification 

of the integrated proviral DNA but also by targeting of the pre-integrated viral DNA. Liao et al. 

[216] found for example, that CISPR/Cas9 mediated inhibition of GFP expression from a non-

integrative lentiviral reporter construct to a similar extent as inhibition of GFP expression from an 

integrating lentiviral construct. Furthermore, Mefferd et al. [212] found that in the presence of the 

integrase inhibitor Raltegravir CRISPR-mediated editing of HIV-1 DNA occurred at a similar effi-
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ciency as in the absence of Raltegravir and that CRISPR/Cas9 treatment results in a 3- to 4-fold 

decrease of integrated proviral DNA.  

Some of the studies, which show that CRISPR/Cas9 can protect cells against HIV-1 infection, 

used combinations of several gRNAs and found that this was more effective than just using a 

single gRNA [217, 218]. We also addressed this point by comparing the protective effect medi-

ated by treatment with our most potent gRNA g6 to the effect mediated by treatment with differ-

ent multiplexing constructs. Indeed, the combination of several gRNAs was at least as efficient 

as treatment with g6 alone or more effective. One reason why multiplexing is more effective than 

treatment with a single gRNA is, that it allows editing at several sites of the HIV-1 genome. As 

not all CRISPR-induced mutations will have an effect on viral replication, targeting different pro-

viral sites simultaneously increases the chance to introduce mutations that are deleterious to the 

virus. Indeed, we could prove with T7 assay that our multiplexing constructs mediate simultane-

ous editing at the LTR at gag p24, gag p17 and pol. Another reason why gRNA multiplexing in-

creases the antiviral power of the system is that it facilitates the excision of fragments between 

the gRNA target sites. PCR amplification of a proviral region spanning the 5´LTR and gag p17 in 

HeLaP4-NLtr cells treated with our multiplexing constructs revealed shorter extra bands. Even if 

they were not sequenced, the sizes of the bands lead to the conclusion that they resulted from 

excision of proviral DNA between different gRNA target sites. For example we detected bands 

with truncations of around 250 or 300 bp which corresponds to excision of DNA between g3 and 

g6 target sites, between g5 or g6 and gag target sites and between g6 and p17 target sites. Fur-

thermore, we detected bands with deletions of around 530 bp which corresponds to excision of 

DNA between g3 and gag target sites. The excision of fragments between the target sites of the 

LTR-targeting gRNAs g3, g5 or g6 and the gag p17-targeting gRNAs p17 and gag should com-

pletely inhibit the synthesis of new viral particles as many functional elements are located at this 

region like for example the primer binding site, the packaging signal, the TAR element or the ma-

jor splice donor site. Also the excision of the proviral sequence within the LTR between the g3 

and g6 target sites should inhibit the production of new virus as it deletes the TATA box and the 

TAR element.  

In general we found that constructs with a U6 promoter driven g6 in combination with a gag p17-

targeting gRNA (MP3 and MP11) were most efficient in protecting cells against HIV-1 infection. 

As the T7 assays that show editing with the multiplexing cells in HeLaP4-NLtr cells were only 

performed once, they do not allow any conclusion about ideal promoter usage for gRNA expres-

sion. Hence, it can only be speculated that the U6 promoter is more effective in HeLa cells than 

the 7SK promoter that drives g6 expression in the constructs MP1, MP4 and MP5. This hypoth-
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esis is supported by a study that showed that the U6 promoter was more effective than the 7SK 

promoter in driving the expression of a short RNA in HEK293T cells and in driving the expres-

sion of a luciferase reporter gene in the cervix carcinoma cells C33A [228]. The combination of 

g6 and a gag p17-targeting gRNA might be especially effective because excision between those 

sites removes many functionally important elements as previously mentioned. Very effective as 

well was the combination of the gRNAs g5, g6 and gag expressed from the construct MP4. As 

g5 and g6 both target the TAR element and we and others [212] found that CRISPR/Cas9-

mediated editing of the TAR element decreases LTR promoter function, the combination of both 

gRNAs in one construct might increase the chance to introduce promoter inhibiting mutations at 

this site. Furthermore, we detected excision of proviral DNA between the g5/g6 and the gag tar-

get site which probably also contributed to the strong reduction of p24 positive cells mediated by 

treatment with Cas9 and MP4.  

In addition to analyzing p24 expression from CRISPR/Cas9-pretreated HeLaP4 cells, we meas-

ured the amount of infectious viruses in the supernatant of the cells. This was done by infection 

of C8166 cells with the supernatant of the HeLaP4 cells and by counting syncytia indicative for 

HIV-1 infection 7 days post infection. As we used the same volume of supernatants from all 

samples for infection and did not adjust the amount of virus between the different samples, su-

pernatants from cells that showed a the strongest reduction in the amount of p24 positive cells 

should also contain the lowest amount of infectious virus unless certain gRNAs would cause mu-

tations that do not affect p24 expression but viral infectivity. As the overall trend of the readout 

was the same as in the microscopy readout for p24 detection, this did not seem to be the case 

or maybe only to a small extent. Since the readout was performed 7 days post infection, which 

corresponds to several rounds of HIV replication, CRISPR resistant virus variants or variants 

with mutations that enhance viral replication as described by several other groups [212, 217, 

223–225, 227, 229] could have emerged. This was not seen in our experiment and supernatants 

from all CRISPR/Cas9-treated cells showed a significantly reduced amount of infectious units 

compared to untreated cells. However, most of the aforementioned studies passaged the virus 

several times and followed viral replication over periods of 20 days or more. Breakthrough of re-

sistant viruses was usually detected after 8 days or later. Hence, a similar analysis of viral repli-

cation over a longer period of time would be necessary to exclude the emergence of resistant 

HIV-1 variants against our CRISPR constructs.  

 



                                                                                                                                      Discussion   

111 

4.2.2 Targeting of the HIV-1 latent provirus in J-Lat cells results in a reduction of proviral 

expression and of the amount of released viral particles 

To analyze if our CRISPR/Cas9 system facilitates the functional inactivation of latent HIV-1, we 

applied our CRISPR-AAV vectors to J-Lat T cells. These cells harbor a transcriptionally silent 

HIV-1 provirus with a GFP expression cassette in the nef open reading frame [230]. We trans-

duced the cells twice with AAV vectors expressing Cas9 and our multiplexing constructs or the 

single gRNA g6. Subsequently, proviral expression was activated with TPA and TNFα. We ana-

lyzed the effect on proviral transcription by measuring the amount of GFP-positive cells, the ef-

fect on release of viral particles by performing an SG-PERT and editing at the different target 

sites with T7 assay.  

Treatment with all multiplexing constructs except for MP7, MP9 and MP10 resulted in a signifi-

cant reduction in the number of GFP-positive cells. As the construct expressing g6 alone also 

encodes GFP it could not be analyzed in this readout. As the GFP expression cassette is placed 

in the nef open reading frame, which has an own start codon and is placed at the 3´end of the 

proviral genome, mutations introduced into gag or pol should not have an influence on GFP ex-

pression. Hence, only mutations in the 5´LTR that reduce transcription or the excision of proviral 

DNA between the LTR and gag or pol will lead to a reduction of GFP expression, which explains 

why the constructs MP9 and MP10, that do not contain a LTR-targeting gRNA, did not reduce 

the number of GFP-positive cells significantly. All other multiplexing constructs were comparably 

efficient in reducing proviral transcription. 

In addition to measuring the amount of GFP-positive cells the amount of reverse transcriptase in 

the supernatant of the cells, indicative for the amount of viral particles released, was measured. 

The single gRNA6 as well as all multiplexing constructs significantly reduced the amount of viral 

particles released. Furthermore, treatment with all multiplexing constructs except for MP3 result-

ed in a significantly stronger reduction of viral particles as treatment with the single gRNA g6. 

This is in agreement with two other studies that show that treatment of J-Lat cells with combina-

tions of two or three gRNAs were at least as efficient or even more efficient as a single gRNA in 

reducing the amount of released virus [213, 215]. Interestingly, MP3, which only mediates edit-

ing at the g6 target site in the LTR as shown with T7 assay, was very efficient in reducing pro-

viral transcription but was not as effective as the other constructs in reducing the amount of viral 

particles released. Furthermore, MP9 and MP10, which did not significantly reduce proviral tran-

scription, mediated significant reduction viral release. This indicates that in addition to reduction 

of proviral transcription other mechanisms play an important role in the reduction of viral release. 
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As cleavage at the p24 target site was only very weakly detectable with T7 assay in one of the 

three experiments and as mutations at the int4 target site should have no influence on the re-

lease of viral particles, probably mutations at the gag target site make a major contribution to the 

effect on viral release seen with MP9 and MP10. As the gRNA gag binds at the beginning of the 

gag open reading frame, mutations introduced at this site have the potential to either destroy the 

myristoylation site of gag or the start codon and thereby have a high chance to completely inhibit 

viral release. In general, we found that constructs that encode a LTR-targeting gRNA in combi-

nation with the gRNA gag were very effective in reducing the amount of viral particles released. 

This could be either because of the addition of both effects mediated by mutations introduced to 

the LTR and gag or because of the excision of proviral fragments between the LTR and gag. 

These excision events were detected after treatment with MP4, MP5, MP7, MP8 and MP11 and 

were additionally already seen in HeLaP4-NLtr cells after treatment with our multiplexing con-

structs. As the excision of proviral DNA between 5´LTR and gag removes many functional sites, 

this should completely destroy the release of new viral particles. However, since for the excision 

of these fragments two DNA breaks need to be induced relatively simultaneously, these events 

might be not as efficient as the introduction of mutations at different target sites as also stated by 

others [231, 232]. This is also underlined by the observation that MP6 was quite effective in re-

ducing viral release even if we did not detect excision between g5 and gag with PCR in all three 

experiments.  

In addition to the introduction of mutations at different proviral sites and the excision of proviral 

fragments, the excision of the whole proviral genome between the LTRs, which has also been 

reported by other groups [216, 221, 222, 233], contributes to the antiviral effect of our CRISPR 

system. The excision of the proviral genome was detected in a separate experiment in which 

DNA from J-Lat cells treated with Cas9 and MP1-MP3 was amplified with primers flanking the 

provirus. Treatment with all three constructs resulted in detectable PCR products that display the 

residual proviral sequence after excision. Sequencing of the bands revealed that the excision of 

the proviral sequence after treatment with all three constructs was mediated by the gRNA g6. As 

discussed previously the introduction of mutations at different target sites is probably more fre-

quently happening than the excision of DNA between two gRNA target sites. Therefore, gRNAs 

that are not as potent in inducing mutations as others will also be less potent in facilitating the 

excision of proviral DNA. Comparing the editing efficiencies at the LTR and gag spanning target 

site with the constructs MP5-7, which only differ in the LTR-targeting gRNA, shows that g6 is 

more efficient in editing than g3 or g5. This might explain why we did not observe excision of the 

proviral DNA with these gRNAs. 
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Some of the constructs (MP5 and MP11, MP6 and MP8, MP9 and MP10) were designed to ex-

press the same gRNA combinations but from different promoters to analyze if certain promoters 

are better for expression of certain gRNAs. Indeed we found that expression of g5 from the 7SK 

promoter with the construct MP6 did not result in efficient cleavage detected with T7 assay in 

comparison to the expression of g5 from the U6 promoter with the construct MP8. In addition 

editing with int4 expressed from 7SK promoter with the constructs MP8-MP11 was either not 

detectable or too weak for quantification. In contrast, expression of int4 with constructs MP5-

MP7 from H1 resulted in quantifiable cleavage in all three experiments. This finding is supported 

by other studies which show that the 7SK promoter is weaker than the U6 promoter in various 

human cell lines [228, 234]. However, g6 cleavage products were detectable no matter if the 

gRNA was expressed from U6 promoter with the construct MP11 or from the 7SK promoter with 

the construct MP5. As gRNA6 is in general one of the most potent gRNAs that we designed, 

maybe weaker expression does not have a big effect on editing of this gRNA. The aforemen-

tioned observations with the gRNAs int4 and g5 expressed from the 7SK and U6 promoters 

were also seen with CRISPR-treated HeLaP4-NLtr cells. Hence, these results suggest that less 

potent gRNAs should be expressed from the U6 or H1 promoter and more potent gRNAs from 

the 7SK promoter.  

 

4.3 Pretreatment of primary human CD4+ T cells with AAVs encoding gRNA multi-

plexing constructs or Cas9 does not result in protection against HIV-1 infection 

 

The aim of this work was develop a CRISPR/Cas9 system that targets the latent HIV-1 reservoir. 

Since CD4+ T cells are the best described latent reservoir, we wanted to apply our system to 

human primary CD4+ T cells after having proven its functionality in cell lines. To enable the ap-

plication of our CRISPR/Cas9 system in primary human CD4+ T cells we first of all compared 

different AAV serotypes for their transduction efficiencies of these cells and found that among 

these, AAV2 and AAV6 mediated the highest transduction efficiencies of around 40 to 50 %. As 

also other studies showed that AAV6 efficiently transduces human primary CD4+ T cells or hem-

atopoietic stem cells [175, 235, 236] and as Dr. Kathleen Börner found that this serotype also 

mediates efficient transduction of primary human macrophages, which possibly are also part of 

the latent HIV-1 reservoir [32, 237], we decided to choose this serotype for all further experi-

ments.  
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In addition to transduction efficiency Cas9 expression is an important parameter for the success-

ful application of the system. When editing with g5 and g6 in combination with a shCMV promot-

er driven Cas9 was compared between HeLaP4-NLtr cells and J-Lat cells, it was found that a 

1:10 dilution of the gRNA encoding vector did not dramatically affect the cleavage efficiency 

which led us to the conclusion that Cas9 is the rate limiting factor of CRISPR/Cas9. Indeed, after 

changing the promoter that drives Cas9 expression, the system worked also in J-Lat cells. Be-

cause of these earlier findings we tested different promoters using a YFP reporter construct with 

the aim to choose the most efficient one for Cas9 expression. It was found that the highest mean 

intensity of transduced CD4+ T cells from three donors was reached with the SFFV promoter di-

rectly followed by the CMV promoter which reached either the same mean intensities or intensi-

ties lower by a factor of 1.1 to 1.5. In contrast, the EFS promoter was clearly the weakest pro-

moter with mean intensities that were 3- to 4-fold lower than that reached with the SFFV pro-

moter. The SFFV promoter has a size of 404 bp and the SFFV driven Cas9 construct has a size 

of around 5.1 kb. As it was shown by others that sequences larger than 5 kb are packaged with 

truncations into AV capsids and are therefore not expressed efficiently [171], we decided to first 

test the shCMV promoter for Cas9 expression. This construct was functional in HeLaP4 cells 

and the full length CMV promoter performed well in primary CD4+ T cells. Unfortunately, pre-

treatment with the shCMV driven Cas9 construct and the multiplexing constructs MP3, MP4 and 

MP11 did not result in a reduction of HIV-1 infection in comparison to cells only treated with the 

Cas9 encoding vector. Therefore, we next tested the SFFV promoter driven Cas9 construct and 

the EFS promoter driven construct. Even if the EFS promoter was the weakest one in the exper-

iments with the YFP reporter construct, the promoter has only a size of 257 bp and the EFS-

Cas9 construct has a size of approximately 5 kb including the ITRs and therefore should be 

packaged into AAV capsids without truncations [169–171]. Furthermore, the construct was 

shown to be functional in J-Lat cells and in HeLaP4 cells. Indeed, the pretreatment of cells from 

one donor with the two Cas9 constructs and MP11 resulted in a significant reduction in the num-

ber of p24-positive cells. In combination with the SFFV promoter driven Cas9 also MP4 treat-

ment resulted in significant reduction of p24 positive cells. As this experiment was only per-

formed with cells from one donor, we aimed to reproduce this result with cells from three more 

donors. For this next experiment the SFFV-Cas9 construct was chosen as it mediated protection 

of cells against HIV-1 infection in combination with MP4 and MP11. Unfortunately, the effect 

seen was not reproducible with all three donors even if the percentage of transduced cells was 

50 % and 60 % for two donors and therefore higher than in the previous experiment where only 

around 30 % of the cells were transduced. As we still hypothesized that Cas9 expression is not 

efficient in the cells, Cas9 expression with all three constructs was analyzed using ddPCR and 
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compared with Cas9 expression from the EFS-Cas9 construct in HeLaP4 cells. Indeed, in prima-

ry human CD4+ T cells Cas9 was either not detectable at all or with a maximum of 1.9 copies per 

µl only slightly over background levels, whereas in HeLaP4 cells more than 10,000 copies per µl 

were detected. These results suggest that our system did not facilitate protection of primary hu-

man CD4+ T cells because of inefficient Cas9 expression. However as the expression of the 

gRNAs was not analyzed in this work, it cannot be excluded that these are weakly expressed as 

well.  

There are different possible reasons for the weak Cas9 expression levels. One reason could be 

that the tested promoters were either too large for packaging into AAV capsids or not potent in 

primary human CD4+ T cells. The EFS-Cas9 and the shCMV-Cas9 constructs were functional in 

HeLaP4 and J-Lat cells. Therefore, these constructs can certainly be packaged. However, since 

we tested the full length CMV promoter for YFP expression, it is possible that the shorter shCMV 

promoter used for Cas9 expression is not as efficient in the primary CD4+ T cells as in HeLaP4 

cells. As this promoter did also not mediate Cas9 expression in J-Lat cells the promoter might be 

in general not efficient in T cells. Furthermore, the EFS promoter as already shown with the YFP 

reporter construct is probably not efficient enough in these cells and the SFFV promoter which 

was very efficient for the expression of YFP might be too large together with the Cas9-encoding 

sequence. Since other promoters that have been reported to be efficient in human primary CD4+ 

T cells ,like the MSCV (murine stem cell virus) or the PGK promoters [238], have size of 500 bp 

or more, they can also not be used to express SpCas9 with AAV vectors. Therefore, one solu-

tion could be to design shorter variants of the SFFV promoter and analyze them for their effi-

ciency to express Cas9. Another solution could be the use of split Cas9 [220]. This strategy 

would allow the use of larger promoters as both halves of Cas9 are expressed from two sepa-

rate vectors.  

In addition to the size or efficiency of the promoters tested for Cas9 expression it can also not be 

excluded that the second-strand synthesis of the AAV DNA is not efficient in these cells. It has 

been reported previously that AAV second-strand synthesis is a rate limiting step [166, 167]. 

One study even reported that transduction of primary cells using AAV is inefficient in comparison 

to cell lines and the block occurs after viral entry [239]. As the YFP reporter constructs used for 

the comparison of transduction efficiencies with different serotypes and used for the comparison 

of different promoters are self-complementary double-stranded vectors and the Cas9 constructs 

are conventional single-stranded vectors, it is possible that the low Cas9 expression levels are 

caused by inefficient second-strand synthesis in primary human CD4+ T cells. This could be 

tested by comparing transduction efficiencies over several days with a single-stranded and a 
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double-stranded YFP reporter construct. If second-strand synthesis is limited in human primary 

CD4+ T cells, SpCas9 cannot be applied to those cells with AAV vectors, because the coding 

sequence is too large to express it from self-complementary vectors. An alternative would then 

be to use the smaller Cas9 enzyme from staphylococcus aureus (SaCas9) and express the N- 

and C-terminal halves on separate double-stranded AAV genomes. However, as SaCas9 uses a 

different PAM than SpCas9, new gRNAs would need to be designed in this case.  

Even if Cas9 expression can be optimized, still the transduction efficiencies that we observed 

with AAV6 ranging from 30 % to 60 % might not be sufficient to achieve a strong reduction of 

HIV-1 infection. Since many different strategies are available for AAV capsid engineering, this 

problem might be overcome by identification of a synthetic capsid variant with enhanced trans-

duction efficiency in human primary CD4+ T cells. One interesting mutant that could be tested in 

future experiments is for example the AAV6 triple mutant Y705 + 731F + T492V that has been 

described by Ling et al. [240] and has been shown to transduce human hematopoietic stem cells 

more efficiently then wildtype AAV6.   

 

4.4 Future perspectives 

 

In this work we established an AAV-delivered CRISPR/Cas9 system that targets the HIV-1 ge-

nome at up to three different sites and showed that it enables protection of HeLaP4 cells against 

HIV-1 infection and functional inactivation of the latent provirus in J-Lat T cells. Furthermore, we 

tested different gRNA combinations in parallel, which enabled us to identify particularly efficient 

ones that can be used in future experiments. In addition, the first test in primary human CD4+ T 

cells enabled us to identify the current limitations of the system for an application in these cells.   

Hence, the next step will be to optimize the system in regard to Cas9 expression and transduc-

tion efficiency in human primary CD4+ T cells. Also gRNA expression levels in these cells should 

be analyzed. The optimized system will then provide the basis for later in vivo applications in 

humanized mice. The three studies that have described in vivo targeting of the HIV-1 genome 

with CRISPR/Cas9 so far used experimental settings or mice models that do not recapitulate 

HIV-1 latency in a patient under ART. One study used a transgenic mouse model harboring 

HIV-1 proviral genomes in all tissues [77]. The second study used in addition to the aforemen-

tioned transgenic mouse model mice that were acutely infected with an HIV-luciferase reporter 

virus. Even if they show reduction of the acute infection upon CRISPR-treatment, this does not 

permit conclusion about elimination of the latent reservoir [78]. The third study used mice en-
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grafted either with in vitro HIV-1 infected human PBMCs or PBMCs from HIV-1 infected patients 

under ART [79]. Since the mice were not further kept under ART and viral loads were not ana-

lyzed at the day of CRISPR-treatment, a rebound of viral loads before treatment cannot be ex-

cluded and the reported reduction of viral levels in blood cells and the spleen do not allow con-

clusions about successful targeting of the latent reservoir. Even if these studies show the great 

potential of CRISPR/Cas9 to target HIV-1 in vivo, they still leave important questions unan-

swered. As the size of the HIV-1 latent reservoir has been described to be very small with ap-

proximately 1 of 106 resting CD4+ T cells latently infected [241, 242], it needs to be clarified if 

CRISPR/Cas9 can be delivered to these few cells. Furthermore, as resting CD4+ T cells display 

low levels of transcription factors and dNTPs [36–41], it is questionable if Cas9 and gRNAs will 

be expressed efficiently in these cells. Hence, further in vivo studies will be necessary to ad-

dress these questions. Furthermore, as one major concern about application of CRISPR/Cas9 in 

humans is the safety of the system in regard to off-targeting effects, optimization of the system 

to prevent off-targeting will be absolutely necessary to come closer towards later clinical applica-

tions.  
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5. Supplement 
 

 

Figure 5.1: Editing in HeLaP4-NLtr reporter cells using a shCMV- or EFS-Cas9 encoding AAV vector. HeLaP4-

NLtr cells were transduced with AAV9-A2 crude lysates encoding g6 driven from U6 promoter and different produc-
tions of AAV9-A2 crude lysates encoding a shCMV- or EFS-promoter driven Cas9. Numbers below the gel images 
indicate the cleavage efficiencies in percent calculated with imageJ. 
 
 
 

 
 
Figure 5.2: MTS assay with AAV transduced or untransduced J-Lat cells. J-Lat 9.2 cells were seeded and co-

transduced with purified AAV9-A2 vectors encoding different triple-gRNA combinations or gRNA6 alone and with a 
Cas9-expressing AAV. As control, cells were either not treated with AAV or transduced only with a Cas9/gRNA-
encoding vector alone or treated with iodixanol. After 48 hours, the cells were split and transduced a second time. 21 
h later HIV proviral transcription was activated with TPA and TNFα for 5 h, cells were washed and then incubated for 
24 h before the MTS assay was performed. The MTS reagent is reduced by living cells to a colored formazan product 
that can be quantified by measuring the absorbance at 490nm. Asa control, cells killed with 25% DMSO were meas-
ured. To determine the background values, DMEM and DMEM with 25% DMSO was also measured. Depicted is the 
mean from three technical replicates with standard deviation. 
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Figure 5.3: Mean fluorescence intensity of HIV-1 infected anti-p24 stained human primary CD4
+
 T cells pre-

treated with gRNA multiplexing vectors and shCMV-Cas9. Mean fluorescence intensity of FITC-positive cells. 

CD4
+
 T cells from one donor were activated three days and then transduced with AAV6 encoding gRNA multiplexing 

vectors and a Cas9 expressing vector. As control cells were only transduced with a Cas9 encoding AAV6. Two days 
later the cells were infected with HIV-1 NL4-3. Three days post infection the cells were fixed, stained with a FITC-
labeled anti-p24 antibody and analyzed with flow cytometry. N=1. 

 

 

 

Figure 5.4: Mean fluorescence intensity of HIV-1 infected anti-p24 stained human primary CD4
+
 T cells pre-

treated with gRNA multiplexing vectors and SSFV- or EFS-Cas9. Mean fluorescence intensity of FITC-positive 

cells. CD4
+
 T cells from one donor were activated three days and then transduced with AAV6 encoding gRNA multi-

plexing vectors and a Cas9 expressing vector. As control cells were only transduced with a Cas9 encoding AAV6. 
Two days later the cells were infected with HIV-1 NL4-3. Three days post infection the cells were fixed, stained with a 
FITC-labeled anti-p24 antibody and analyzed with flow cytometry. N=3. 
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Figure 5.5: Mean fluorescence intensity of HIV-1 infected anti-p24 stained human primary CD4

+
 T cells pre-

treated with gRNA multiplexing vectors and SSFV-Cas9. Mean fluorescence intensity of FITC-positive cells. CD4
+
 

T cells from three donors were activated three days and then transduced with AAV6 encoding gRNA multiplexing vec-
tors and a Cas9 expressing vector. As control cells were only transduced with a Cas9 encoding AAV6. Two days later 
the cells were infected with HIV-1 NL4-3. Three days post infection the cells were fixed, stained with a FITC-labeled 
anti-p24 antibody and analyzed with flow cytometry. N=4. 

 

Table 5.1: Sequences of the gRNAs used in this work. 

Name Sequence (5´3´) Length (nt) 

g1 AGAACTACACACCAGGGCCA 20 

g2 GATATCCACTGACCTTTGGA 20 

g3 AGAGAGAAGTGTTAGAGTGG 20 

g4 GCCTGGGCGGGACTGGGGAG 20 

g5 GGTTAGACCAGATCTGAGCC 20 

g6 GGGAGCTCTCTGGCTAACTA 20 

g7 GCCCGTCTGTTGTGTGACTC 20 

g8 GTACTCCGGATGCAGCTCTC 20 

g9 GATTTTCCACACTGACTAAA 20 

gag GAGGCTAGAAGGAGAGAGAT 20 

p17 GATGGGTGCGAGAGCGT 17 

p24_1 GACAGCATGTCAGGGAG 17 

p24_2 AGAAATGATGACAGCATGTC 20 

int3 GGGATTGGGGGGTACAGTGC 20 

int4 AAGCTCCTCTGGAAAGGTGA 20 

int5 GATTATGGAAAACAGATGGC 20 
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