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Abstract

In this thesis we develop a numerical solution method for the instationary incompressible
Navier-Stokes equations. The approach is based on projection methods for discretiza-
tion in time and a higher order discontinuous Galerkin discretization in space. We
propose an upwind scheme for the convective term that chooses the direction of flux
across cell interfaces by the mean value of the velocity and has favorable properties in
the context of DG. We present new variants of solenoidal projection operators in the
Helmholtz decomposition which are indeed discrete projection operators. The discretiza-
tion is accomplished on quadrilateral or hexahedral meshes where sum-factorization in
tensor product finite elements can be exploited. Sum-factorization significantly reduces
algorithmic complexity during assembling. In this thesis we thereby build efficient scal-
able matrix-free solvers and preconditioners to tackle the arising subproblems in the
discretization. Conservation properties of the numerical method are demonstrated for
both problems with exact solution and turbulent flows. Finally, the presented DG solver
enables long time stable direct numerical simulations of the Navier-Stokes equations. As
an application we perform computations on a model of the atmospheric boundary layer
and demonstrate the existence of surface renewal.

Zusammenfassung

In der vorliegenden Arbeit wird eine numerische Methode zur Losung der instationaren
inkompressiblen Navier-Stokes Gleichungen entwickelt. Die Methode basiert in der Zeit-
diskretisierung auf Projektionsverfahren und verwendet in der Ortsdiskretisierung ein
DG-Verfahren hoherer Ordnung. Ein Upwinding des Konvektionsterms wird vorgeschla-
gen, welches die Richtung des Flusses iiber die Gitterelemente durch den Mittelwert der
Geschwindigkeit wahlt und im Zusammenhang mit DG-Verfahren vorteilhaft ist. Neue
Klassen von divergenzfreien Projektionsoperatoren in der Helmholtz-Zerlegung werden
vorgestellt, welche tatsachlich diskrete Projektionsoperatoren sind. Die Diskretisierung
geschieht auf Vierecksgittern oder Hexaedergittern, auf denen die Tensorproduktstruk-
tur in Finiten Elementen fiir Summenfaktorisierung ausgenutzt werden kann. Summen-
faktorisierung reduziert die algorithmische Komplexitat im Assemblierungsprozess we-
sentlich. Damit werden im Rahmen dieser Arbeit effiziente, skalierbare matrixfreie Loser
und Vorkonditionierer entwickelt, welche die Teilprobleme innerhalb der Diskretisierung
losen. Erhaltungseigenschaften des numerischen Verfahrens werden sowohl fiir Prob-
leme mit exakter Losung als auch fiir turbulente Stromungen demonstriert. Schliellich
ermoglicht der vorgestellte DG-basierte Loser langzeitstabile direkte numerische Sim-
ulationen der Navier-Stokes Gleichungen. Eine Anwendung ist die Berechnung eines
Modells fir die Grenzschicht von Boden und Atmosphare, welche das Vorhandensein
der Oberflachenerneuerungstheorie zeigt.
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0 Introduction

0.1 Motivation

The simulation of atmosphere dynamics occupies a central and active area of research
including the coupling to the subsurface. Observations reveal that in the Atmospheric
Boundary Layer (ABIL) coherent turbulent structures develop which move towards the
surface where they are reflected, an effect called surface renewal (SR]). In consequence,
water vapor and trace gases come into contact with the surface and reside on this inter-
face. During these quiescent periods concentration builds up and parcels are suddenly
released by such renewal events. These repeated patterns of build-up and release ob-
served in concentration time series are referred to as the ramp effect. An illustration of
this process is depicted in figure [1.6]

In this thesis we want to demonstrate the existence of surface renewal and ramp effects
in silico by [DNS. We will solely concentrate on the ABL and its sublayers. Therefore,
efficient numerical methods are required that can run and scale on high performance
computers.

The mathematical model consists of the Navier-Stokes equations with variable density
considered by the Boussinesq approximation, and the transport of scalars. If buoyancy
and tracer transport are further neglected the system is referred to as incompressible
Navier-Stokes. Flow in the ABL for instance is fully turbulent. Numerical simulation of
the processes is a very challenging task due to the broad range of spatial and temporal
scales involved, dominating convective nonlinearity and unpredictable behavior in space
and time. The foremost goal is to develop an efficient and accurate numerical method
for the Navier-Stokes Boussinesq system where the incompressible Navier-Stokes equa-
tions constitute numerically the most demanding fraction either as part of the system
or standalone. The method shall be capable of solving three-dimensional problems in
a reasonable amount of time, as well as be able to run on High-Performance Comput-

ing (HPC) platforms.

0.2 Numerical approach and research results

The numerical approach considers interior penalty discontinuous Galerkin (DGI) methods
for the incompressible Navier-Stokes equations in the framework of projection methods.
The application of DG methods is popular due to their potentially high order of con-
vergence, the inf-sup stability and local mass conservation. In addition to the 2 x 2
block structure arising from the saddle point system discontinuous Galerkin methods
offer a further block structure when the unknowns associated per one cell of the mesh
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are grouped together. This data structure is essential for high-performance implemen-
tations of DG methods as it avoids costly memory gather and scatter operations when
compared to conforming finite element methods.

Operator splitting methods for solving the instationary Navier-Stokes equations have
been subject to detailed investigations for the recent decades. Omne possibility in the
splitting methods is to split the convective term leaving a saddle point system of the
Stokes type. Another possibility is to split between incompressibility and dynamics
which has been independently developed by Chorin [Cho68] and Témam [Té69] and
is referred to as Chorin’s projection method. The latter splitting schemes have the
appealing feature that at each time step - instead of solving a saddle point system -
only a Helmholtz equation for the velocity (in the Stokes case) and a Poisson equation
for the pressure have to be solved. The choice of artificial boundary conditions on the
pressure Poisson equation is a delicate issue in the projection methods of this class
[Ran92, [EL95, [ELI6]. In this thesis we concentrate on several higher-order extensions
of Chorin’s first order method that have been suggested in the literature [TMVDV90,
GS03|, [GS04,, [KS05l, [GMS06].

The use of a DG spatial discretization within splitting schemes is a current subject
of active research. Major contributions which are described in this thesis are: (I) We
propose a modified upwind scheme based on the Vijayasundaram numerical flux that
has favourable properties in the context of DG. The numerical flux is adapted from
DG methods for inviscid compressible flows and takes into account that the velocity
field need not be in H(div). (II) We present novel postprocessing techniques in the
Helmholtz projection step based on H(div) reconstruction. A naive computation of
the divergence-free velocity by subtraction of the (rotation-free) Helmholtz correction is
reported to be unstable when the spatial mesh is coarse and the time step is small, see
[SSL13l . TDST16, KFWKIT]. In these references several local postprocessing techniques
are discussed to overcome this difficulty. In this thesis we propose new discrete types of
solenoidal postprocessing: The first one is based on H(div) reconstruction of the discrete
pressure gradient, the second one is based on H (div) reconstruction of the full Helmholtz
flux. Both variants define a discrete projection operator, provide a velocity that satisfies
the discrete continuity equation and is in consequence locally mass conservative. For the
former variant also lower order H(div) approximations can be used. The latter variant
returns a velocity field that is moreover pointwise divergence-free. These properties are
not satisfied by the postprocessing schemes available in the literature.

The transport equations for the tracers are also discretized by the DG method using
upwinding. Numerical time integration for the model equations is fully implicit. Paral-
lelization on the highest level (in terms of domain decomposition) is done by MPI where
scalable communication infrastructure exists in the Distributed and Unified Numerics
Environment (DUNE]). Fast solution for in-time advancement requires optimal algo-
rithms with respect to complexity. Efficient element-wise assembling of high-order DG
methods can be accomplished on general quadrilateral /hexahedral grids by exploiting
tensor product structure and using sum-factorization. Sum-factorization yields a reduc-
tion in the computational complexity, and in addition parallelization on a lower level is
realized by SIMD vector instructions. This complexity reduction is particularly attrac-
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tive when matrix-free solvers are used. The traditional approach however is to assemble
the operator and perform dense matrix solves in each grid cell. This becomes first of all
expensive because the cell-local matrices size as O((p + 1)¢) where p denotes the poly-
nomial degree and d the space dimension, and counteracts any improvements achieved
in matrix-free methods. To overcome this issue, we present a new matrix-free imple-
mentation of stationary iterative methods where the block diagonal entries are inverted
iteratively on-the-fly. It is well known that stationary iterative methods (and therefore
the matrix-free versions) can be used as a preconditioner within Krylov subspace meth-
ods or as a smoother in a DG multigrid algorithm. The latter is used here for solving
the pressure Poisson equation with an algebraic multigrid in the low order subspace
where only low order components are explicitly assembled. This hybrid approach has
shown effectiveness in the solution of a set of representative partial differential equations,
[BMMP18].

We summarize the major contributions developed in this dissertation where the first
two items have already been mentioned above.

e A modified upwind scheme for the inviscid flux which is based on the Vijaya-
sundaram numerical flux and has favorable properties in the context of DG. The
numerical flux is adapted from DG methods for compressible flows and takes into
account that the velocity field need not be in H(div).

e Postprocessing techniques in the Helmholtz projection step based on H(div) re-
construction. Two variants are derived, the first one is based on Raviart-Thomas
reconstruction of the discrete pressure gradient, the second one is based on Raviart-
Thomas reconstruction of the Helmholtz flux. Both variants define a discrete
projection operator as the returned velocity field satisfies the discrete continuity
equation and is in consequence locally mass conservative. The velocity field in
the latter variant is moreover pointwise divergence-free. These properties are not
satisfied by the postprocessing schemes available in the literature.

e High-Performance implementation of the Spectral Discontinuous Galerkin Method
(SDGM]) and sum-factorization kernels in the exascale fork of DUNE (EXA-DUNE]),
as well as matrix-free nonlinear and linear solvers. This has been a multiple-person
effort where the author has targeted in particular the application to incompressible
Navier-Stokes and extension of interfaces.

e Development of a scalable parallel implementation which shows effectiveness up
to ~ 6100 cores and is able to achieve a significant fraction of node-level peak
performance as well.

e Investigation and demonstration of the surface renewal effect in the Atmospheric
Boundary Layer by direct numerical simulation with up to ~ 19000 time steps
taken.
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0.3 Outline

The thesis is organized as follows: In Chapter (1| the model equations are presented which
consist of the instationary Navier-Stokes equations in the Boussinesq limit. We give
a brief overview of turbulence in fluids, where the aforementioned coherent structures
arise, and in addition of turbulence theories. Then we summarize the surface renewal
effect and give a description how such repeated patterns can be detected in a numerical
simulation. This analysis will be utilized in a subsequent chapter to recorded DNS data.

In Chapter [2| we present the numerical discretization of the incompressible Navier-
Stokes equations. Interior penalty DG methods are combined with the framework of
projection methods. The above mentioned upwind scheme based on the Vijayasundaram
numerical flux is derived. Moreover, the discrete Helmholtz projection operators are
introduced and favorable properties like local mass conservation are shown. Numerical
results demonstrate the properties of the discretization for different polynomial degrees
applied to 2D and 3D problems with known analytical solution.

In Chapter (3| the solver for the Navier-Stokes Boussinesq system is discussed. The
and sum-factorization technique are recapitulated at first, and then applied to
the discretization from the previous chapter. We therefore present algorithms for lin-
earized operator application that repeatedly arise in the nonlinear equations. The afore-
mentioned matrix-free preconditioners are constructed from the Jacobians. Node-level
performance as well as weak and strong scaling of the code is measured towards the end
of this chapter.

In Chapter |4] we present simulation results of incompressible fluid flow. Problems
range over two-dimensional and three-dimensional turbulence and we investigate the
properties of our numerical discretization in these settings. We propose a model for
numerical study of the surface renewal effect in the ABL. The model is then analyzed
with the tools introduced in the first chapter. At the end we conclude in Chapter [5

0.4 List of Notations

Navier-Stokes

Vf Jacobian matrix of scalar-/vector-valued f, see Appendix

WV f transposed Jacobian of scalar-valued f (equals column vector)

v f tensor containing m-th order derivatives, especially V2f denotes the Hessian

€q canonical basis vector in s-th direction

x; 1-th component of a vector x. Subscripts 1,2, ... usually refer to a component
of a vector

d physical space dimension

v velocity
pressure

p density
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dt

enstrophy

helicity

background velocity

variation of background velocity

background pressure

variation of background pressure

averaging procedures, e.g. ensemble averages, temporal averages
Fourier transform of v

wave vector magnitude, wavenumber

(kinetic) energy spectrum

Finite element discretization

A~

E
E

HE

~

e

(&

W>

Eint
Eext

volume reference element (0, 1)

cell of mesh &,

transformation £ — E

face reference element (0, 1)4~1

facet

transformation ¢ — e

unit outer normal vector w.r.t. orientation on face e
coordinates in F

coordinates in F,

coordinates in é

coordinates in e

interior element w.r.t. orientation on face e

exterior element w.r.t. orientation on face e
maximum diameter of mesh &,

grid Reynolds number

grid Peclet number

polynomial degree, pressure [p| then becomes py,

set of polynomials of maximum degree p in d variables

scalar valued DG space of polynomial degree p



Ln(-t)
Aij, Bijs O
Ap(zp)
Ap(zp)ozp

List of Notations

DG space for the velocity

DG space for the pressure

velocity Dirichlet boundary function

numerical flux of on face e

switch between and

DG variational form, a = d + Jy, for viscous term in momentum equation
volume and consistency term

symmetrization and penalty term

left-hand side of continuity equation in DG

variational form ¢ for the convective part, concentration [d then becomes ¢,
right-hand side linear form in momentum equation

right-hand side linear form in continuity equation

variational form for the DDN contribution

mesh dependence on face e in penalty factor

symmetrization, anti-symmetrization or none, ¢ € {—1,1,0} (SIPG, NIPG|
MMPd), unambiguously dissipation rate [e(?)]
DG variational form, a = b + jg, for pressure-Poisson equation

symmetrization and penalty term for pressure-Poisson equation

test functions € Q¥

test functions € X}

test functions € MP~"

hat denotes functions on the reference element

discrete Helmholtz projection operator

correction in Helmholtz decomposition

update/correction (from e.g. Newton’s method) to linearization point vy,
coefficient vectors belonging to vy, dvy,

time index k

approximate velocity, pressure in corresponding DG spaces at time t*

velocity mass matrix

spatial nonlinear residual vector in discretized momentum equation
coefficients of spatial and temporal Butcher subtableau (upright Greek letters)
Jacobian matrix of £, evaluated at z,: Ap(zx) = V. Lu(z,1)]

Z=Zp

linearized operator application (matrix-vector product)



List of Notations

a'(vn, @) Fréchet derivative of a(vy, ¢) with respect to vy,

a'(vp, )dvy  linearized operator application (in finite element space X} here)



1 Turbulence, coherent structures and
surface renewal

This chapter collects the physical processes that are revisited in Chapter 4| and used
for discussion of numerical simulation results. Its outline is summarized as follows:
Section presents the governing equations that are the instationary incompressible
Navier-Stokes equations under the Boussinesq approximation. In Section we give a
brief overview of turbulence in fluids, the transition to turbulence and the mathematical
tools required for description. Section gives a description of the surface renewal
effect - repeated patterns caused by turbulent coherent structures - and its analysis. In
Section (1.4 we review several vortex identification techniques that serve as visualization
of turbulent flows in numerical simulations.

1.1 Navier-Stokes Boussinesq system

The Navier-Stokes equations follow from Newton’s equations of motion and the conser-
vation of mass. They form a fundamental model of non-relativistic fluid dynamics. In
this thesis we only consider a simplified form of the Navier-Stokes equations that are
the incompressible Navier-Stokes equations where density variations are included by the
Boussinesq approximation, [Les08, [ESW14]. Therein, density is linearized around the
value in the incompressible limit and variations only come into play by temperature.
The dependence is written as a source term that only acts in the direction of gravity.

The Navier-Stokes Boussinesq system in the space-time cylinder Q x (0,¢;] (2 C R?
open, d = 2,3) for the velocity v, pressure p, temperature 7" and tracer concentration c,
with given density, viscosity p, u and external forcing f reads

pow — puAv + p(v - Vv +WVp = f + pBlgeq — pweoorea X v (1.1)
Vou=0 (1.2)

0 — KA+ V - (Ov) =0 (1.3)

0c — DAc+V - (cv) =0. (1.4)

As described above the density variations are written as a forcing term, p(1 — 5(T —
Trer))geq, where (3 is called the thermal expansion coefficient. Note that the potential
energy pgxy is already included in the pressure. The Coriolis force eg X v is a term
that only appears in three dimensions. 6 =T — T,y is the temperature deviation from
a reference temperature. In the equation for 6, x is the thermal diffusivity. Since 6 feeds
back the velocity through the buoyancy forcing term, it is called an active scalar. One
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can also consider the evolution of a passive scalar c. 1t satisfies the same type of equation
as 0, with possibly different diffusivity D, but has no influence on the evolution of v.
This set of equations is supplemented with initial conditions, and boundary conditions
if 2 is bounded, for the velocity, active and passive scalars.

The total energy of the velocity field (with no external forcing, f = 0) and the squared
L?-norm of a scalar (here active) are

1 1 9
E(t) = J”Q S, t) - v(a,t) = 988, rade . By(t) = 5 J"Q 0(z,1)2dz. (1.5)
The dissipation rate of the velocity field or an advected scalar is the negative temporal
derivative of the energies defined above. With the help of Reynolds transport theorem
one can derive evolution equations for €(t) and €4(t), respectively:

€(t) = _dl;_it) = jﬂ vVou(z,t) : Vou(z,t) + gBrakAf(x, t)dx (1.6)
e(t) = —digt(t) = fQ kWVO(z,t) - VO(x,t)dz. (1.7)

These integral quantities of the flow can only decrease in time, except from the source
term gBxrykAf, and they measure the loss of energy through internal friction which will
become important later in the mathematical description of turbulence [1.2] In order to
describe the behavior of this system one associates a characteristic velocity denoted by
u and a characteristic length scale denoted by [. Together with the material properties
i, p, k one can identify dimensionless quantities that measure the relative size of the
various terms in the Navier-Stokes Boussinesq system. This also leads to the well-
known procedure of non-dimensionalization of the Navier-Stokes Boussinesq system.
We list and explain here the dimensionless quantities that are going to be used in this
thesis.

Reynolds number The Reynolds number Re is defined as

Re = %“l - %l (1.8)

where u and [ are the characteristic velocity and length scale of the flow. Here pu is
called the dynamic viscosity and v = p/p the kinematic viscosity. It measures the ratio
between inertia and friction. In turbulent flows (Re > 1) the frictional term is small,
at least at length scale [. The dominance of the convective term leads to nonlinear
dynamics, creation of complex flow structures and a chaotic evolution. Paradoxically,
however, the dissipation term controls the energies of the system. Thus, there must
be a profound difference in solutions between the asymptotic tendency as Re — oo, and
the Euler limit Re = oo or = 0. The difference is that as long as Re < oo, there are
small scales at which friction becomes important and Re is small.

10



1.1 Navier-Stokes Boussinesq system

Peclet number The Peclet number Pe is defined as

ul
Pe = D (1.9)
and the direct analogy of Re for an active or passive scalar with diffusivity D, or x as
well. It measures the relative importance between advection and diffusion. At large Pe,
the evolution is dominated by advection. Once more, the limit Pe — oo is very different
from Pe = oo, because dissipation, no matter how small, is eventually responsible for
removing structure from the scalar field.

Prandtl number The Prandtl number Pr is defined as
1%

Pr= - 1.10
=2 (1.10)

and measures the ratio of friction and thermal diffusivity. It is a property of the fluid, not
of the particular flow. The Peclet number can be obtained together with the Reynolds
number, Pe = Re Pr.

Schmidt number The Schmidt number Sc is defined as

Sc = — (1.11)

and specifies the ratio of friction and diffusion D. It is a property of a passive scalar
that is advected in the velocity field. The corresponding Peclet number can be obtained
together with the Reynolds number, Pe = Re Sc.

Rayleigh number The Rayleigh number Ra is defined as

3
Ra = 980T (1.12)

VK

and measures the ratio of buoyancy and diffusion. In the formula for the Rayleigh number
dT denotes the temperature difference (e.g. between a hot and cold plate that enclose
the fluid) and shall not be confused with the temperature deviation #. In buoyancy
driven flows the characteristic velocity is given by v = /g8 0T [ and thus, together with
the Prandtl number, Reynolds and Peclet number can be retrieved:

Re = y/Ra/Pr, Pe=+vRaPr. (1.13)

Rossby number The Rossby number is defined as

u

Ro = (1.14)

wCOTl

and measures the relative importance of inertia and the Coriolis force. Ro describes
the effects of a rotating reference system: Ro > 1 characterizes essentially non-rotating
turbulence, while Ro < 1 flows are strongly affected by rotation.

11



1 Turbulence, coherent structures and surface renewal

1.1.1 Non-dimensional system

With the introduction of the non-dimensional quantities above, it is convenient to
normalize the Navier-Stokes Boussinesq system with help of the characteristic veloc-
ity and length scale. This calculation is commonly known as non-dimensionalization,
[ESW14l [Ran17], and shall not be repeated here in detail. We only present now the
final form of the normalized system and for ease of writing, the subscript indicating
non-dimensional quantities will be omitted from this point on:

1 1
8tv—§AU+(U'V)U+\Vp:f+9€d_%edXU (1.15)
Vou=0 (1.16)
1
00 — e PrAe +V-(v)=0 (1.17)
1
O — o SCAC—I— V-(w)=0. (1.18)

Again this set of equations needs to be supplemented with initial and boundary condi-
tions for the velocity, active and passive scalars. Unless stated explicitly otherwise we
are only going to consider flows in non-rotating frames of reference, i.e. weg, = 0 or
Ro = oo. Buoyancy driven flows are already characterized by specifying the Rayleigh
and Prandtl number because of . In the non-Boussinesq limit the Reynolds number
is calculated from ([1.8]).

1.1.2 Properties of turbulent flows

As pointed out in Uriel Frisch’s book on turbulence [Fri95], the Navier-Stokes equations
probably contain all of turbulence. In the upcoming section we want to list as a start
properties of turbulent flows before giving a mathematical description in Section[I.2] It is
physically expected that for any positive finite viscosity the solution of the Navier-Stokes
equations is sufficiently smooth. This justifies the existence of higher order derivatives
of the velocity field and pressure, integration by parts and the permutation of mixed
partial derivatives - therefore most of the preparatory steps in Section [I.1.3]

Broadband spectrum in space and time

Turbulent flows are characterized by structures on a broad range of spatial and temporal
scales, even given smooth or periodic initial condition and forcing. In other words,
turbulent flows have broadband spectrum both in time and space. If [ is again the
characteristic length scale (that describes the largest scale motions) and if [z is the
length scale of the smallest motions in a flow, then a large range of spatial scales implies
[ > lg. The scale [y is typically the scale at which dissipation becomes important and
removes energy from the flow. It will play an important role in theories of turbulence to
be described later. The scale [, instead, is set by the forcing mechanisms from the large-
scale flow. We are going to see later that the ratio [/l; can be related to the Reynolds
number.

12



1.1 Navier-Stokes Boussinesq system

Dominated by convective nonlinearity

A field of non-interacting linear internal waves with many different frequencies and
wave-numbers can also have a large range of length scales, but it is not turbulent.
In a turbulent flow the different scales do interact through the nonlinear term in the
equation of motion. It is the convection term that redistributes energy among the
various scales of motion without affecting the global energy budget. Thus the broadband
spectrum appears as a result of the internal dynamics. In a field of linear internal waves,
instead, the broadband spectrum is generated by external controls like forcing, initial or
boundary conditions and the different modes have no coupling between each other.

Unpredictable in space and time

Turbulent flows are predictable for only short times and small distances. Even though we
know the equations that govern the evolution of the fluid, we cannot make predictions
about the details of the flow due to its sensitive dependence on initial and boundary
conditions. This sensitive dependence is once more a result of the strong nonlinearity
of the model. Predictability, however, can be recovered in a statistical sense, as will be
pointed out in Section [1.2.2] Sensitivity on initial and boundary conditions is a fun-
damental property of chaotic systems. But turbulence and chaos are not synonymous,
turbulent motions are indeed chaotic, but chaotic motions need not be turbulent. Chaos
may involve only a small number of degrees of freedom, i.e. it can be narrow band
in space and/or time. There are numerous examples of chaotic systems characterized
by temporal complexity, but spatial simplicity, like the Lorenz’s system. Turbulence is
different, because it is always complex both in space and time.

Time reversible and irreversible

Flow at low Reynolds numbers exhibits time reversibility. Turbulent motions, as time
goes on however, tend to forget their initial conditions and reach some equilibrated
state. This fact is neither incompatible with time reversibility nor time irreversibility.
For example, the Euler equations are time reversible and still turbulence mixes stuff up,
it does not unmix it. The Navier-Stokes equations, unlike the Euler equations, are time
irreversible due to the presence of internal friction and no matter how small viscosity is,
it will still become important at small scales. This once again points out that flow at
Re > 1 is fundamentally different than flow at Re = oo.

1.1.3 Nomenclature and future preparations

We start this section by introducing quantities frequently used to describe the motion
in fluid mechanics:
The strain tensor S is the symmetric part of the velocity Jacobian Vu,

S = %(Vu+va). (1.19)

13



1 Turbulence, coherent structures and surface renewal

The vorticity tensor Z is the anti-symmetric part of the velocity jacobian,

1
Z=Vv—S= §(W—WT). (1.20)

The vorticity is denoted by ¢ = V X v whose components are also in the off-diagonal
of Z. Note that we choose the letter Z for the vorticity tensor to avoid a conflicting
notation with the domain €2 and therefore, to be consistent, the letter ¢ for the curl of
the velocity field. Furthermore, note that at first the curl operator is defined in three
dimensions, but it can be extended to two dimensions: The curl of 2D vector fields is
interpreted as the 3D curl applied to such vector fields with vanishing third component.
The result can thus be viewed as a scalar function. The curl of 2D scalar functions is
interpreted as the 3D curl applied to es times the scalar function. The result can thus
be viewed as a two-dimensional vector.
Next, the enstrophy of a velocity field is defined as

E(t) = %fQ(V x v(x,t)) - (V xv(z,t))de = %fg C(x,t) - ((x,t)dx (1.21)

and the helicity of a velocity field is defined as

H(t QI v(x,t) - (V xov(z,t))d QI v(x,t) - ((x,t)dx . (1.22)

Based on the remark above, the helicity vanishes in two dimensions because the vorticity
points to ( || es and is orthogonal to the velocity field. In Equation the integrand
without the potential energy term is called kinetic energy density, in Equations
and the integrands are called enstrophy density and helicity density, respectively:

B, 1) = 5 (.03 (1.23)
£z, 1) = % IV x v(a, b)|2 (1.24)
H(z ) = %Hd _ %v(x,t) AV x (1)) . (1.25)

The nonlinear convection term has multiple representations, for instance
(v-V)v=Vov
:%\V(v-v)—vx (V x v)
= Volv —v x (V xv). (1.26)

The representation involving the cross product depictly demonstrates the fundamentally
different behavior between two-dimensional and three-dimensional turbulence. For the
following preparations we list some helpful identities from vector calculus: For v, w vector
fields, sufficiently smooth, it holds (also in 2D)

—Av =V x (Vxv)—=WV(V- ) (1.27)

14



1.1 Navier-Stokes Boussinesq system

Vx(@wxw)=(V-wv+(w-V)o—(V-v)w—(v-V)w (1.28)
Vi(wxv)=v-Vxw—w-Vxuv. (1.29)

The first identity is known as the rotational form of the Laplacian. The second is the
curl of a cross product which helps below to calculate the curl of the convection term.
The last identity states how the divergence of a cross product can be expanded.

The enstrophy can also be brought in connection to the kinetic energy, dissipation
rate. This is based on an observation regarding divergence and curl of vector fields
- an orthogonal decomposition of the Jacobian that is also related to the Helmholtz
decomposition which we review in detail in Section . Therefore let v be a (sufficiently
smooth) vector field that vanishes on 0 for € being bounded or that is periodic within
a box 2, then one can show with integration by parts and formulas above

IQ Vv : Vodr = fQ(V )3 + IQ(V xv)-(V xv)de. (1.30)

As a consequence, we have for incompressible flow fields

dE()

—q =) =2E). (1.31)

Also for incompressible velocity fields the pressure in the Navier-Stokes equations can
be recovered by a Poisson equation,

—Ap=pV - ((v-V)v) =pVol : Vo (1.32)

for divergence-free f. The momentum and mass conservation equation can be expressed
in different variables than the current primitive variables (v,p). With equation (|1.28)
the curl of the convection term can be transformed to V x (v-V)v = =V x (v x () =
—(¢-V)v+ (v-V)(. When applying the curl to the whole momentum equation, we can
readily derive

pO¢ — A+ pV x (( xv) =0 (1.33)
—Av =V x(

for irrotational f. This system corresponds to the formulation of the incompressible
Navier-Stokes equations in the so-called wvelocity-vorticity variables. The counterpart to
the momentum equation is the vorticity transport equation.

The evolution of enstrophy density can be obtained by projecting onto (:

pOE +V - (pv€ — uvE) = p¢t'S¢ — uve Ve . (1.34)

The first term on the right-hand side is called the enstrophy production term. It vanishes
in 2D which only leaves V( : V(, called the palinstrophy density, on the right-hand side.
This has important consequences for two-dimensional turbulence that we will touch on
in Section [L2.5l The remark stated can further be understood since in two dimensions
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1 Turbulence, coherent structures and surface renewal

the wvortex-stretching term (( - V)v vanishes. The vorticity transport equation ([1.33)
simplifies to
pOC — BAC + p(v- V) =0. (1.35)

As a consequence the vorticity of an inviscid fluid is conserved in two dimensions. In fact
any differentiable function in ( is a conserved quantity. For the second-order monomial
we obtain that the enstrophy is time-independent in 2D. This can also be seen from
the evolution of enstrophy density, again for v # 0 below - by either leaving out the

production term (7S¢ in ((1.34)) or by multiplying (1.35| with ¢:
€+ V- (v€ —-vVE)=—-vV(: V(. (1.36)

1.2 Turbulence

1.2.1 Transition to turbulence

We have mentioned that a property of turbulent flows is the sensitivity on initial and
boundary conditions. Small disturbances lead to a drastically different flow field as time
goes on. Experiments observe that for example stable planar background flows such as
Hagen-Poiseuille flow or Couette flow show transition to turbulence at a critical Reynolds
number. In order to understand this transition to turbulence we recall here the linear
stability theory. We follow the presentation of [CHQZ07, LesO8]. Towards the end of
this section we furthermore give a deterministic model for chaos, [Fri95].

Linear perturbation theory

Rayleigh (1880) initiated the development of incompressible, inviscid linear stability
theory. He established this theory as an eigenvalue problem by a second-order ordi-
nary differential equation for the amplitude of the disturbance, with the disturbance
wavenumber and frequency as parameters. This theory was followed by the viscous lin-
ear stability analysis which became fairly successful because it validated the observations
from experiments and it is able to predict the critical value of the Reynolds number at
which instability commences.

We start the presentation of the linear stability theory in the more general setting of
linear perturbation theory. Therein the solution (v, p) of the Navier-Stokes equations is
written as v = 0+ 0, p = p + p. The background state (v, p) satisfies

PO — A+ p(v-V)o+WVp = f
V-o=0

and (9,p) is a perturbation to the background flow. The Navier-Stokes equations for
(v,p) are linearized around (v, p) assuming that the perturbation is small compared to
o, L. [[5ly/ lloll, < 1.

pO (T +0) — puA(O+0)+p(0+0)-V(@O+0)+V(p+p) = f
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1.2 Turbulence

V- (04+0)=0.

Since ||7||, / ||7]], < 1 the quadratic term in ¥ can be dropped in the expansion. We
then obtain the linearized Navier-Stokes equations for the perturbation (7, p):

P00 — uAU + p(v - V)0 + p(v- V)o + Vp =0 (1.37)
V-o5=0. (1.38)
Two-dimensional Orr-Sommerfeld equation

Now let us assume that the background velocity takes the form
V=7 (1‘2)61

(this is also the starting point for the linear stability theory in three dimensions). In two
dimensions one can write the velocity perturbation in the stream function formulation,
W(xq, x9,t) = ¢(xg) exp(i(ax; — At)), such disturbances are called Tollmien-Schlichting
waves. The components of the perturbation can be retrieved as

T
U= a—w,—a—w and therefore V-0 =0 .
Ory  Ox

With this particular form of the background velocity, equation (|1.37)) simplifies to
PO + pU10y, U1 + pU20,, U1 = =0, P + pAD
p@tf;g + p@laxlﬁz = —05,;2]5 + ,uAfJg .
Now, the perturbation is written in terms of the stream function which yields
—pei(a“_’\t) [—z’)\amqb + 1010y @ — 100y, 01 — V (—oz28x2¢ + 832¢)] = 0, P
—peilaTi=At) [—ax\gb + 0% — v (ia?’c;ﬁ — ia@igb)] = Op,D -

Eliminate the pressure fluctuation by differentiating the x;- and xo-momentum equation
by x5 and z, respectively.ﬂ Combining those two equations gives

—i)@égb + icwl@iqb — z'ong@ifil +v (20428§2¢ — 8§2¢ — a4¢) + i) — 103 =0 .

In the last step we rearrange the terms to arrive at the final form of the Orr-Sommerfeld
equation:

2 N\ e A, ia 420, ix A2,
— - ——0y [ — — ———p= —— [ — — C(L
(dxf “ ) ¢ v o (d$22 “ ) - v dx22¢ v ( 7~ ) i (1.39)

It is a fourth-order equation for the amplitude of the disturbance and needs to be supple-
mented with the boundary conditions ¢ = d¢/dzs = 0 on the endpoints in xs-direction.

INote that the expression in the rectangular brackets of the zo-momentum equation does not depend
on rq.
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1 Turbulence, coherent structures and surface renewal

The Orr-Sommerfeld equation contains the information on linear stability for viscous,
incompressible flows. If equation is multiplied with v and afterwards v = 0 is
set, it simplifies to the Rayleigh equation for inviscid, incompressible flows. We briefly
remark that with the same type of perturbation in 3D for the components v, 05, v3, the
similar three-dimensional Orr-Sommerfeld equation for the amplitude can be derived.
Equation describes a dispersion relation between o and A with Re as a parame-
ter. If A\ is fixed the problem approach is called spatial stability. However if « is fixed this
problem is one of temporal stability and the dispersion relation constitutes a generalized
eigenvalue problem for A. In this stability analysis one searches for complex eigenvalues
A with S\ > 0 to obtain a mode that grows in time and hence the background solution
is unstable. In the generalized eigenvalue problem the continuous linear left-hand side

operator
d? a2 ia 20y
A — 2 e A2 N
(dxf “ ) v (dm22 “ ) v das

and right-hand side operator
i ( d?
B=—|(— -0
v (de2 “ )

must be discretized with high numerical accuracy.

Returning to the transition to turbulence, we now want to solve equation for the
Hagen-Poiseuille channel flow with vy(ze) = 1 — 22, x5 € (—1,1) for different Reynolds
numbers Re = 1/v. We utilize the Orr-Sommerfeld eigenvalue solver implemented in
[LMW12] [Tre06] that uses spectral collocation with Chebyshev polynomials for the rep-
resentation of ¢. Figure [I.1] shows the distribution of the eigenvalues for the Reynolds
numbers 2000, 4000, 8000 with o« = 1 and 60 Chebyshev points. The eigenvalue with
largest imaginary part is marked with the corresponding value in the plots. For Reynolds
numbers 2000 and 4000 observe that all A’s have a negative imaginary part. At Reynolds
number 8000 the transition of the background flow to turbulence happens and there is
a single eigenvalue with positive imaginary part, A = 0.24708 4 0.00266:. From the
associated eigenfunction ¢ the velocity perturbation can be calculated as (0,,%, —04,9)
and then by taking the real part. Figure shows the velocity disturbance where the
unstable mode ¢ was scaled to have a maximum of 107, It can be seen that the peak
is located at the walls of the channel and therefore this particular mode is called a wall
mode, [CHQZ07].

A deterministic model for chaos

In this section let us study the following map

V=— Av* — Re 'k (1.40)
ov=—((v-V)v+WVp)+ Re "Av + f

with the Navier-Stokes momentum equation written directly underneath. [Eri95] presents
a similar map for v which is here the special case of Re = 0o as we will see later. The
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Figure 1.1: Distribution of the eigenvalues in the Orr-Sommerfeld problem for Reynolds

numbers 2000 (top left), 4000 (top right) and 8000 (bottom).
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Figure 1.2: Magnitude of the velocity perturbation from the single unstable mode at Re
= 8000. The mode was scaled to have a maximum of 10~%.
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1 Turbulence, coherent structures and surface renewal

evolution of v is called the logistic map or the poor man’s Navier-Stokes equation that
mimics some of the properties of the Navier-Stokes equations but has no spatial struc-
ture.

Straightforward the explicit Euler method is used to solve numerically:

Vgl — V.
S~ AV — Re Py, .
-
The equation can be solved for v, and under appropriate choice of time step 7 and A,
the forward iteration can be written as

Vg1 = 4(1 — Re ' 7EH)v, (1 — vp) = v (1 —vy,) . (1.41)

r can take the values in [0,4] such that v, € [0,1] = v,41 € [0,1] and the limit r — 4
from below corresponds to Re — oo. Except for the initial conditions vg = 0, vy = 1 the
logistic map has a single fixed point for all  in [0,4]. Though for different ranges
of r the progress of iterates differ significantly. For the values r < 3 the fixed point is
stable, almost all initial conditions converge to this point. These solutions correspond to
the laminar flows at small Reynolds numbers. Nonlinearities are subdominant. Above
the value 3 there is the first bifurcation. The solution converges to an orbit which
alternately visits two values. This regime mimics a periodic wake behind a cylinder
obstacle. At r = 3.5 the trajectory converges to a period four orbit. Further increasing
values exhibit orbits that become very irregular and we can no longer see any oscillations.
At r = 4 the map is fully chaotic. Slight variations in the initial condition yield different
results. All of this is illustrated in figure [I.3] Observe that for » = 4 the iterations
appear to be completely random yet there are time windows appearing - called islands
of stability - where the trajectory is close to the fixed point 0.75 before it eventually
moves away. Despite this semblance of randomness the histogram of the velocities taken
by the orbit of an arbitrary initial condition are reproducible. Figure [1.4] shows the
normalized histogram taken of a 10000 iterates sample. To give insight in the reason of
this reproducibility, let us take the transform

v, = sin? (gzn> L 0<z <1, (1.42)

The iterates z, are described by the tent map,

22, for 0 <z, <32
:{ o=z . (1.43)

<
2—2z, fori<z, <

2
distributed on [0,1]. A calculation shows that the v,, are distributed along

dP(v) _ 1 (1.44)

dv T/ v(1 —v)

Ll%iv)dv:f;szl.

such that with v, = sin? (Ezn) = Vpi1 = sin? (gznﬂ). Now the z, are equally

such that
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Figure 1.3: The first 200 iterates of the logistic map for different values of r initiated by
Vo = 0.7.

Figure 1.4: Normalized histogram taken of a 10000 iterates sample. The red curve shows
the probability density function of the logistic map for r = 4.
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1 Turbulence, coherent structures and surface renewal

The quantity dP(v)/dv is called the probability density function of the logistic map for
r = 4. It is also displayed in figure and obviously the normalized histogram follows
this distribution. We close the section and keep this example in mind when turning to
the statistical description of turbulence.

1.2.2 Statistical description of turbulence

In the previous section we have presented an example that exhibits a highly fluctuating
behavior, but the statistical properties are reproducible. [Fri95] also shows measurement
data taken in a wind tunnel as a motivation (c.f. Section 3.1 in his book).

The statistical description here should only give a rough and minimal outline of the
concepts. For a more profound treatment refer to [Eri95 Les08]. A random wvariable
w is defined by (I) the set of its possible values, sometimes called the phase space and
(IT) the distribution of probability over this set. The distribution of probability may be
described by the cumulative distribution function (CDEFE]) or by the probability density
function (PDE]). To give a concrete example related to turbulence, consider the Navier-
Stokes system with initial condition as a (vector-valued) random variable cw:

poyv — pAv + p(v-V)v+Vp = f
V-v=0
V=U9=1w.
Here the velocity is a vector-valued random function v(z,t,w) that depends on the

position, time and the random initial condition. In this case the cumulative distribution
function is calculated from the velocity components,

Prob{v;(z,t,w) < wy;} = Ply;;z,t), i=1,...,d, (1.45)
and then the probability density function is given by dP(y;;x,t)/dy;. The PDF is
normalized,

dP(y;; x, t
== m yi=[dP=1. (1.46)

Mean values, or generally ensemble averages, are derived from the PDF,

dP( y,,x t)

)

(vi(m,t»:jvl(xtde j dyi, i=1,....d, (1.47)

and will be denoted by the (-)-brackets.

Moments of the velocity field - homogeneity, stationarity and isotropy

For the following section we assume (I) velocity fields defined on the whole Euclidean
space R? that decrease rapid enough towards infinity or (II) velocity fields within a box
2 with periodic boundaries.
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1.2 Turbulence

Moments of the velocity field are higher-order ensemble averages than the mean value.
A moment of order n is a tensor depending on n space-time variables,

(Viy (21, t1) i, (T2, t2) - - - V4, (X, 1)) (1.48)

Note that here for example z; does not denote the first component of z, but the re-
alization of a space variable. The second order moment (v;, (z1,t1)v;,(x2,t2)) is called
the velocity correlation tensor at points x; and zo and at times ¢; and t,. Comput-
ing ensemble averages is a daunting task when dealing with laboratory experiments or
numerical simulations, as it requires to repeat experiments or numerical runs over and
over. Fortunately, under certain assumptions to be described below, ensemble means
can be estimated by taking averages over one realization.

e Homogeneity

Turbulence is called homogeneous if all moments of the velocity field built with

a set of n space-time points (x1,t1),. .., (zn, t,) are invariant under any translation

of the set (z1,...,x,). One has in particular

(Vi) (21, t1)viy (T2, t2) - - 03, (T, T0)) = (Vi) (1 4y, E1) Vi, (T2 F Y, t2) - - 0 (T4, T0))-
(1.49)

This implies that the velocity correlation tensor only depends on the separation
between two points x; and x,. Therefore we write the velocity correlation tensor
as a function of the spatial separation, and particularly at same time snapshots as

Corr(vs, v;)(z,t) = (vi(y, t)vj(x + y, 1)) . (1.50)

Now the ergodic theorem allows to replace the ensemble average by a spatial av-
erage. For velocity fields defined on the whole R? this results for the correlation

tensor in ]
Corr(v;, v;)(z,t) = Vlgrolo v fv vi(y, t)v;(z +y,t)dy . (1.51)
If the velocity field is periodic within a box €2, then ((1.51)) can be replaced by
1
Corr(v;, vj)5(z, t) = 9] fg vi(y, t)vj(x +y,t)dy (1.52)

where z 4 y is identified by its equivalent position inside the box (2.

The descriptions in the following sections are primarily based on homogeneous
turbulence.

e Stationarity
Turbulence is called stationary if all moments of the velocity field involving n space-
time points (x1,t1), ..., (s, t,) are invariant under any translation of (1,...,%,).
In particular
(Vi (21, 81)vig (w2, 82) -+ 03, (T, 1)) = (Vi (@1, 8+ 7)), (T2, T2+ T) -+ - 03, (T, L+ 7))
(1.53)
This implies that the velocity correlation tensor only depends on the time difference
between t; and t,.
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1 Turbulence, coherent structures and surface renewal

e [sotropy

Turbulence is called statistically isotropic if all moments of the velocity field are
invariant under simultaneous rotation of the coordinates. The first immediate
consequence is that the mean value under mirroring of the coordinate becomes

(v(z,t)) =0.

1.2.3 Kinetic energy, helicity, enstrophy and scalar spectra

One property of turbulent flows is the broad spectrum in frequency and wave space. In
this section we want to briefly recapitulate the necessary mathematical tool and present
the quantities of interest in turbulence to analyze. For simplicity we assume, as in the
previous section, periodic velocity fields or velocity fields defined on the whole Euclidean
space that decrease rapidly enough to infinity.

Spectral tools

The Fourier transform of a velocity field v(x,t) is defined as

(Fo)(k,t) =

2r)? fRd v(x,t) exp(—ik - x)dz . (1.54)

Note that with this convention the inverse Fourier transform writes

vz, t) = de(fv)(k,t> exp(ik - z)da . (1.55)

Differentiation in physical space becomes multiplication of the Fourier transform with &
in wave space,

(F(Vv))(k,t) = i(Fv)(k,t) @ k
(F(V x0))(k,t) =ik x (Fv)(k,t) . (1.56)
An important equation is the Fourier representation of the Dirac delta distribution:

5(k) = (Q;d de exp(ik - )dz . (1.57)

For possibly complex-valued functions f(z),g(z) : R? — C that possess the same regu-
larity assumption as for the velocity field above, their cross-correlation is defined as

(fxg)@) = |, FWgx +y)dy .

Now, the cross-correlation theorem states that correlation between two functions in
physical space transforms to multiplication in wave space, i.e.

(F(f x9))(k) = 2m)" (Ff)(k) (Fg)(k) . (1.58)
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1.2 Turbulence

Kinetic energy spectrum

Starting from the normalized kinetic energy

1.
]Q|2f v(z,t) - v(z, t)de , (1.59)

the kinetic energy spectrum is defined as a function E(k,t) : Ry x (0,7] — R, such
that E(t) = [;° E(k,t)dk. E(k,t) corresponds to the kinetic energy density in Fourier
space 1ntegrated on a sphere. It is always real and positive and specifies the amount
of energy contained in the wavenumber interval [k, k 4+ dk]. The kinetic energy can be
brought into connection with the velocity correlation tensor,

d
E(t) = %ZCorr(Ui,vi)(O,t) .

Based on this formula F(k,t) can be numerically computed by taking the Fourier trans-
form of the right-hand side, see Appendix Turbulent flows are expected to have
a long-range kinetic energy spectrum. Theories of turbulence, as we will see in Section
1.2.4] aim at describing the dependency of the spectrum on the wavenumber k£, amongst
other quantities.

Helicity spectrum

We recall that helicity is a concept only defined in three dimensions. Similarly as for
the kinetic energy, with the mean helicity

H(t) = ﬁ [ vo(t) -ty

the helicity spectrum is defined as function H(k,t) : Ry x (0,7] — R such that H(t) =
J5° H(k,t)dk. We can also write the helicity as

d
- % Z Corr(vj, (;)(0,1) .
=1

The helicity spectrum can be numerically computed by taking the Fourier transform
of the velocity-vorticity correlation tensor. As for the kinetic energy spectrum refer to
appendix for details. The helicity spectrum is also real-valued, but it cannot be
determined by the kinetic energy spectrum F(k,t). In fact the Fourier transform of
the velocity correlation tensor in three dimensions can be decomposed into a real and
imaginary part, [LesO8] Eq. (5.84). The real part consists of an orthogonal projection
onto the transverse plane with respect to k scaled by the kinetic energy spectrum. The
imaginary part consists of the anti-symmetric operator representing a cross product with
the wave vector scaled by the helicity spectrum.
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1 Turbulence, coherent structures and surface renewal

Enstrophy spectrum

The enstrophy spectrum is defined as a function E(k,t) : Ry x (0,7] — R, such that
fo (k,t)dk, with the enstrophy

|Q|2j§mt x,t) dzx .

Similar to the kinetic energy and helicity the Fourier transform of the vorticity correlation
tensor is taken. The transformation of the curl operator in wave space, equation ,
implies that the enstrophy spectrum is completely determined by the kinetic energy
spectrum, &(k,t) = k*E(k,t). This is not the case for the helicity spectrum.

Scalar spectrum

The scalar spectrum is defined as a function Ey(k,t) : Ry x (0,7] — R, such that
Ey(t) = [, Eg(k,t)dk holds. Since Ey(t) is the analog of the kinetic energy its spectrum
can be derived in the same way.

1.2.4 Kolmogorov’s 1941 theory

With the spectral tools and quantities introduced we are now ready to recapitulate
theories of turbulence. Kolmogorov’s 1941 theory is one of the milestones in turbulence
theory in still humankind’s little understanding of turbulence up to today. It describes
the behavior of the kinetic energy cascade - the redistribution of energy among the
various scales of motion through the convective term that we have already mentioned.
Kolmogorov assumed before that the kinetic energy spectrum is described by a power
law and in his 1941 work he determined the 5/3 exponent. This theory can also be
formulated in physical space where it is equivalent to the two-thirds law.

In the following Kolmogorov’s 1941 theory will be abbreviated by the acronym [K41l
We summarize the presentation from [Les08, [Fri95] and refer to it for a more profound
treatment. K41 is a theory of homogeneous and isotropic turbulence in three space
dimensions. It assumes that the kinetic energy spectrum at wavenumbers in the range
k; < k < kg (k; and kg to be explained below) only depends on the dissipation rate e
and k. A dimensional analysis yields

E(k,t) = Cge(t)?3k=5/3 (1.60)
where C'x is a universal constant called the Kolmogorov constant.

Characteristic scales

Turbulent flows - not only in the setting of Kolmogorov - can be separated into three
regimes. We therefore mention those.
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1.2 Turbulence

Integral range At length scale [ that describes the largest scale motions, the geometry
of the flow domain and the specific forcing are the essential determinants of the flow
field. To the characteristic length scale [, one can associate the injection wavenumber
k;, I ~ 1/k;, which is the smallest wavenumber for the power spectrum to hold.

Inertial range The inertial range is described by the interval k; < k < kg where the
kinetic energy spectrum follows a power law, E(k,t) = Cge(t)>3k~%/3. In this range,
energy cascades from the larger scales where it was injected ultimately to the dissipation
range.

Dissipation range In the dissipation range, the effects of finite viscosity come into
play. At wavenumbers k > k; viscous dissipation damps the velocity perturbations. kg
is called the dissipation wavenumber or the Kolmogorov wavenumber. It is given by

1
€\1
ko= () (1.61)
and therewith one can associate the Kolmogorov dissipative scale l; = 1/k4. In this
range the kinetic energy spectrum will rapidly (possibly exponentially) drop to negligible
values.

A schematic plot of the characteristic spectral energy distribution is shown in figure [L.5]

Injection

= Inertial

subrange Dissipation

Figure 1.5: Schematic kinetic energy spectrum in the Kolmogorov cascade.

Another relation between the energy dissipation rate, the scale [ and the characteristic
velocity u can be established. A simple dimensional analysis yields

e~ L (1.62)
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1 Turbulence, coherent structures and surface renewal

Note that in this relation there is no dependency on the viscosity. In fact this law has
a wider applicability than K41, it only uses the finiteness of energy dissipation (in the
limit ¥ — 0) which has been also verified experimentally. From Equation (1.6 we also
have ¢ = —dF/dt ~ —du?/dt which leads to the kinetic energy decay law over time:

Elt) [(t\°
E<t0)_(%) . >t (1.63)

Kolmogorov 1941 in physical space

Kolmogorov’s 1941 theory in physical space relies on the velocity increment and gives
a description of its statistical moments. The velocity increment is

v =v(x+y,t)—ov(y,t) (1.64)

for spatial lags z € R?. The longitudinal velocity increment is defined by projection
onto the separation direction. For it, let  be a unit vector and r the scalar spatial lag.
Without loss of generality we can assume r > 0. The longitudinal velocity increment
writes

dv | = (v(y +ra,t) —v(y,t)) o . (1.65)

Statistical moments of the (longitudinal) velocity increment are called structure func-
tions, in particular

((6vy)") (1.66)

denotes the n-th order longitudinal structure function which is a function of the spatial
separation distance r. To give a connection to the formulation in wave space, consider
the second order velocity structure function (||dv||2). Expansion therein of the velocity
increment and using homogeneity on the second order moments gives

([6v]13) = (w(z +y,t) - v(z +y,t) = 2v(x +y,1) - v(y, t) + v(y,t) - v(y, 1))
= 2<U(y7 t) : U<y’t)> - 2<’U(l‘ + y7t) ' U(y7t)>

d d
2 Z Corr(v;, v;)(0,t) — 2 Z Corr(vs, v;)(z,t) .
i=1 i=1
Next we use inverse Fourier transform formula ([1.55):

—9 Z fRd(}"(Corr(vi, v)) (k, £)(1 — exp(ik - 2))dk .

The integral is transformed to spherical coordinates. For isotropic velocity fields the
Fourier transform of the correlation tensor only depends on separation distance. The
angular integrals (in three dimensions) need only be performed with the integrand (1 —
exp(ik - z)). The radial remainder contains the kinetic energy spectrum,

- 4f0°° E(k, 1) (1 - Smk(—kr)> dk

r
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1.2 Turbulence

where k now stands for the modulus of the wave vector and r = ||z||, is the separation
distance. Substitute the kinetic energy spectrum to follow E(k,t) oc k™™ from k; > r~1.
Note at first that the integral [ k=™ (1 — sin(kr)/(kr)) dk is finite in the vicinity of zero
k if m < 3 and finite towards the limit & — oo if 1 < m. Based on the primitive of
the substitution E(k,t) oc k=™ from k; > r~! we can express the final outcome of the
transformation to wave space:

When the kinetic energy spectrum follows a power law

E(k,t) cc k™™ for 1l <m < 3,
the second order velocity structure function has also a power law of the form
<H(5’UH§> ocr™ (1.67)

Isotropy of the velocity field further implies that ((dv))?) and (|6v]|2) underlie the same
power law.

Kolmogorov’s two-thirds law states that the second order longitudinal velocity struc-
ture function behaves as

((6v))?) oc e(t)* 323 . (1.68)

Based on the derivation above, it is immediate to see that the two-thirds law is equivalent
to the statement that the energy spectrum F(k,t) is proportional to e(t)>/3k=5/3. With
K41 it can be shown in general that the statistical moments of the longitudinal velocity
increment should scale as

((6vy)") ox e(t)"/3T”/3 ) (1.69)

For n = 3 the four-fifths law is obtained which is an exact result on the constant in the
scaling law for the 3rd-order moment:

((6v))%) = —4/5 e(t)r . (1.70)

In his 1941 papers Kolmogorov made explicit predictions only for second and third or-
der structure functions. Accurate measurements obtained for the second order structure
function didn’t detect any discrepancy in the 2/3 exponent. However those experiments
(taken in the 1980’s-90’s) indicate a deviation from the n/3-law for high order structure
functions. A behavior that is related to the phenomenon of intermittency. The results
suggest that statistical moments follow power laws

((Sv)™) o< 7 (1.71)
The &,’s are called exponents of the structure functions and are specified depending on

the intermittency theory. A clearly arranged overview of intermittency models can be
found in [KPCS06], Table 1. A non-intermittent model as K41 falls back to &, = n/3.
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1 Turbulence, coherent structures and surface renewal

1.2.5 Degrees of freedom of turbulence

In a numerical simulation the number of degrees of freedom per direction is given by the
extent of the domain divided by the number of cells in this direction. Similarly, the ratio
/1y gives the number of degrees of freedom which are needed to describe the
motion (from dissipative scales under which the motion is quickly damped by viscosity,
to large-scale energy-containing eddies) in each direction.

Three-dimensional turbulence In three dimensions [ is proportional to the character-
istic velocity cubed as stated in equation ((1.62)). Together with the formula for [; one
can derive

(li) ~ (Re)% per direction in 3D
d

AW 0

= (l—) ~ (Re)? in 3D. (1.72)
d

Thus the number of DOFs to perform a [DNS in three dimensions scales with Re”.

Obviously we have

and hence k;/k; ~ Re*/4.

Two-dimensional turbulence Some more preparations are required to describe the
scaling on the Reynolds number as two-dimensional turbulence is inherently different
than its three-dimensional counterpart. We have already pointed out the differences
between 2D and 3D vorticity transport equation and accordingly the evolution of en-
strophy density. From the differential form (1.36]), we can pass on to the integral form
and use Reynolds transport theorem.

Recall the integrand on the right-hand side is referred to as palinstrophy density which is
solely responsible for the enstrophy rate of change in two dimensions. As for the kinetic
energy define the enstrophy dissipation rate as

B(t) = jQ vV (1)« V(z,t)d . (1.73)

Finally, we present the enstrophy cascade, a major conclusion of the two-dimensional
Navier-Stokes equations

dE{) _
dE(t) _
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1.3 Surface renewal

This similar result for the enstrophy will form the basis of two-dimensional turbulence
theory.

In a hand-waving manner - which can be justified when explicating the theory -
kinetic energy cascade and kinetic energy dissipation rate may be replaced by enstrophy
cascade and enstrophy dissipation rate, respectively. The kinetic energy spectrum - by
dimensional analysis - is in proportion to

E(k,t) o< B(t)*2k3 . (1.76)

As before we have the injection wavenumber k; but in contrast the enstrophy dissipation

wavenumber )
B\
kg = (;) ) (1.77)

Also a counterpart to 1) can be derived: u ~ 3'/3/k; . Then, the total number of

DOFs to perform a DNS in two dimensions,

LA N7 (1.78)
;)] \ Kk vk, ‘

is of order Re.

1.3 Surface renewal

The outline of this section can be summarized as follows: In[1.3.1we give an introduction
to surface renewal process based on [TPUSSS| [KPCS06]. In we develop the tools
utilized as detection of ramps in measurements and estimation of their characteristics.
In|[I.3.3] we present surface renewal models that specify the shape of ramps, especially the
termination during the ejection phase. Finally in we test the detection methods on
synthetic time series before applying those on a direct numerical simulation in Chapter [4]

1.3.1 Introduction to surface renewal process

The concept of surface renewal was originally developed in the chemical engineering
literature. Higbie (1935) described the transport of gases to liquids. Liquid fresh ele-
mental volumes, with some scalar value characteristic of the outer liquid layers, were
hypothesized to come into contact with the surface-gas interface for fixed time intervals.
During this contact time (or residence time), molecular diffusion transferred the gas into
the liquid which was finally removed from the surface and replaced by fresh fluid from
above.

Explanations on turbulence in atmosphere-subsurface coupling are based on the dom-
inance of turbulent coherent structures, analogous to such structures reported in the
engineering literature. In the following turbulent coherent structures are referred to as
coherent structures for brevity. In common with engineering flows over both smooth and
rough surfaces, coherent structures are characterized by repeated temporal and spatial
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1 Turbulence, coherent structures and surface renewal

patterns of the velocity and scalar field. Ejections and sweeps are features of such coher-
ent motion. In stable atmospheric conditions a slow drop of temperature/concentration
would be terminated by an ejection where low field values instantaneously rise upward.
In wunstable atmospheric conditions however a slow rise of temperature/concentration
would be terminated by an ejection where high field values instantaneously rise upward.
In both conditions the ejection is followed by a sweeping motion where the near-surface
region is filled by fresh parcels. Near a surface, where the fluid is assumed to reach zero
velocity, a shear zone must be created if the fluid is moving in respect to the surface. In
the turbulent boundary layer hairpin vortices evolve that are the dominant kinematic
structure responsible for surface renewal, [HSLR99].

yn,  Ejection

o

Air Parcel ‘.

(depleted

in CO2)
Air Parcel
(enriched
with CO2)

P

Forest Floor & N

Aboveground

Respiration

Residence
Time

Figure 1.6: Demonstration of the surface renewal effect in [KPCS06]. Shown are the
definition of the canopy height A, in a loblolly pine forest and the mechanisms
of sweep, residence and ejection under unstable conditions. Note that the
corresponding excerpt of the CO, time series is normalized to have zero mean
and unit variance.

1.3.2 Detection of coherent structures - Structure functions

Van Atta (VA) suggested in [VAT7] the use of temperature structure functions to detect
coherent and random parts of a time series. Repeated patterns as ramps in the scalar
trace create special shapes in structure functions. For the upcoming development of the
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1.3 Surface renewal

detection method consider for simplicity, concentration only dependent on time, c(t).
The steps can be repeated with temperature as an active scalar, ().

Concentration is decomposed as ¢(t) = ¢, (t) + ¢,q(t) into a coherent (ch) and random
(rd) part. The coherent part models repeated ramp patterns in the surface renewal
process. The random part consists of the turbulent fluctuations. Structure functions
have already been encountered for spatial lags, c.f. Kolmogorov’s two-thirds law in
Section [1.2.4] and were successful in describing turbulence. Here the analysis is based
on the concentration increment

dc = c(t) —c(t — At) (1.79)

for a time lag At. Obviously the decomposition of the concentration translates to the
increment,

oc = 5Cch + (SCTd . (180)

Temporal average over a duration 7 is denoted by the brackets (-),. This averaging
procedure applied to the concentration increment leads to structure functions. In explicit

((6)"), (1.81)

denotes the n-th order structure function that is only a function of the time lag At. Anal-
ysis of the ramp characteristics is based on higher order structure functions. Therefore
with respect to the decomposition of ¢(t), the following three assumptions are required:

1. The first order structure function of the coherent part vanishes,
((0cen))r =0

2. The turbulent fluctuating signal is locally isotropic, so that

((0crq)™)r = 0 for n odd .

3. The two parts are statistically independent,
((0cen)"(0¢ra)™ )7 = ((0cen)" )z ((0¢ra)™)r -

Based on these assumptions higher order structure functions of the time series can be
separated into its coherent and random part. In particular the 2nd-, 3rd- and 5th-order
structure functions simplify to

((9)*)r = ((dce)*)r + {(d€ra)*)- (1.82)
((0)*)7 = ((dcen)*)r (1.83)
((0¢)*)r = {(dce))= + 10((dccn)*) - ((dera)?) - (1.84)

It is important to note that the 3rd-order structure function is completely determined
by the coherent part, Equation (1.83). Detection of ramp characteristics is therefore
primarily focused on the 3rd-order structure function.
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1.3.3 Surface renewal models
Van Atta’s model for surface renewal

[VATT] assumed that ramps were regular patterns of fixed geometry that had instanta-
neous terminations for unstable conditions. In the VA model the coherent part c.,(t) is
described as a signal with period 7 that consists of a quiescent period t; > 0 followed
by a sawtooth ramp of amplitude M.

The temporal dependence of ¢, is displayed in figure [I.7] Temporal averaging is

M,,

Ceh (t)

0 ts T=1s+ 1,

Figure 1.7: Ramp model of VA showing definitions of c¢.,(t), M, ts, t, and 7.

sufficient to take over a single period T,

(5ca)™) = %f;(écch)"dt |

The concentration increment is considered for time lags in the range 0 < At < t,. This

results in
— Mt - At+7—1t,), 0<t<At

0, At <t <t

OCep, = , 1.85
) M —ty), o<t <t,+ Al (1.85)
MAt to+At<t<rt

t,
and the first-order structure function vanishes, (dc.,), = 0. Similarly, the integrals can
be carried out to derive expressions for the 2nd-, 3rd- and 5th-order structure function:

(e, = LA L0 (180
(e = LB 3 (B L L (ALY (187
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MPAt 5 /At 10 [A\® 5 (AN 2 [A°
B R W iaty o fAat s (=2t
for 0 < At < t,. If At < t, we obtain the linearized VA model:
M"™At
((0cen)™)r = (1) forn > 2. (1.89)

T

Based on the linearized VA model the following observations are recorded:
1. ((0cen)™)» depends linearly on At for At < t,.

2. The n-th order structure function divided by At has a finite value in the small
time lag limit,

. ((deen)™)r nM"
N (190
M can be estimated in the VA model by solving real roots of the cubic equation
M+ Mp+q=0 (1.91)

where (607
2 ¢) ) 3
p = 10((d¢c)), (30, and ¢ = 10((dc)°), . (1.92)
The choice of coefficients p, ¢ can be understood by using the decompositions -
therein and then inserting p, ¢ into . This only leaves structure functions of
the coherent part in the cubic equation without any approximation. In the small time
lag limit the left-hand side of equation (|1.91) vanishes which explains the key idea in

this approach. In a second step the ramp duration 7 is computed with the help of (|1.83])

and (1.89),
M3At

((6c)?)7

A model alike Van Atta with no quiescent period

(1.93)

T =

In this subsection we want to derive an analog of VA’s model which exhibits instan-
taneous termination, but has no quiescent period. The derivation needs to be done
separately to the VA model since above 0 < At < t, was assumed but here the quiescent
period is missing, t; = 0. As in the VA model temporal averages are calculated as

(5can)"™), = % [ Geanyat

The concentration increment equals

" 1.94
AL At<t<rT (1.94)

T ) -

MoAt — <t <At
5Ctr_{7( 7)7 0=
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and obviously the first-order structure function vanishes. The 2nd-, 3rd- and 5th-order
structure function read

((6cen)?)r = M;At (1 — At) (1.95)
((6cen)’)r = —MT?)N (1 — At)(T — 2At) (1.96)
((6cen)?)r = —M;At (T — At) [77 — AT At + 6TAL — 4AL7] . (1.97)

((0¢en)?)~ is a polynomial of degree two in At with roots at At = 0 and At = 7. {(dcen)?)~

and ((dce)?), are polynomials of degree three and five in At, respectively, with roots at

At =0, At = 7/2 and At = 7. The expressions can be linearized in the limit At < 7

which yields

L MTAL
T

((0cen)")r = (=1)

The linearized structure functions exhibit the same behavior as in the linearized VA
model. Therefore the observations stated above - (1) ((dcen)™)- depends linearly on At
for At < 7 and (2) limp,_o etz — (—=1)"M - also apply here. Furthermore the

At
parameters M and 7 can be estimated through equations (1.91)) - (1.93) as well.

forn>2. (1.98)

A surface renewal model with finite microfront time

It was observed by [GSPUR9|] and [UBCT92] the existence of microfronts separating air
sweeping into the canopy from within-canopy air. Measurements for example in [VATT]
and [CNBL97a)] indicate a departure from the linear law in the 3rd-order structure func-
tion for small time lags. Whereas the linearized theory is applicable in an intermediate
range of At.

[CNBL97a] considered ramps of total duration 7 that have non-instantaneous ter-
minations with no spacing in between. In this model an additional parameter t; is
required to specify the width of the finite microfront. [CNBL97al did a rigorous analysis
on this signal that is summarized here. In their article structure functions were devel-
oped to estimate the ramp dimensions. They also noted that the results do not change
significantly with a quiescent period included, but did not present equations in their
subsequent publication [CNBLI7D] either.

The temporal dependence of ¢, is displayed in figure As usual temporal averages
are calculated as

((Gea)") = [ (Ge)

The concentration increment can be separated into three regimes with respect to At,
c.f. figure [1.9. By carrying out the integrations one arrives at the 1st-order structure
function,

LMr (1 LYA2 0<At<t
<acch>7<m>:{w< ) ar o< arst,

(1.99)
0, tf S At S T — tf
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Cech (t)

0 T—tf T

Figure 1.8: Finite microfront model showing definitions of c.(t), M, t; and 7.

The same way formulas for the 2nd-, 3rd- and 5th-order structure function divided by
At are derived:

( n—1 2
nMm | (At tr—At (n—1) { At tr—At
(=15 {(ﬁ) (1 =7 ) (D) (ﬁ) (1 BE=7 )1 0= At<ty
(6Cch ")z nM" | (T=AH)+ (=) (r—AH)An ! (n=1)ts7" fn
% e (_1) T |: (T—tf)n - (n+1)At{T—tf)n:| 3 tf < At S T — tf
M" | (T=AH™ (n—1)(T—At)"*1
kT [ t;}flAt T ()AL ‘| ) T—tr < At <T
(1.100)
with
1, forn =2
fa=q1-2(%), forn=3 .

153+ B (37 -5 (3" forn =5

2\ T T T

If At < ty < 7 we can truncate powers of At/t; to obtain the small time lag behavior

(Ocen)’)r _ M* (At) , (1.101)

At T E
Sean)®)e M [ AL
o= (5) (1.102)
Sean)®),  2MB [ At)?
{ Aht)> = (?) . (1.103)

We can now make the following observations (recall the observations with no finite
microfront):
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Figure 1.9: Concentration increment of the finite microfront model in the three regimes

with respect to At shown on the right.
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1.3 Surface renewal

1. ((0cen)™)+ does not depend linearly on At as At — 0.

2. The n-th order structure function divided by At approaches zero as At approaches
zZero,
((dcen)™)~
Jim S—e——= 0. (1.104)
In the following we want to restrict ourselves to the 3rd-order structure function as the
corresponding superpositioned time series is completely determined by the coherent part,
Equation . Therefore let M, 7,t; be fixed and consider {(dc.)?), /At as a function
of At.
Obviously ((dcen)?)-/At has a root At = 0. It is negative in the first range 0 < At < ¢
and takes the value —M?/(27) at At = t; which coincides to the value given by the lowest
order approximation . In the intermediate range t; < At < 7—1%; aroot is located
at At = 7/2 and afterwards the function is positive. In the last range 7 —ty < At <7
there is a root of ((dce,)?),/At at At = 7. An inflection point can be found in the
first range if 7 < Tt;. Moreover a minimum if 7 < 2.5¢;. Hence for practical ratios of
ty/7 the minimum is taken in the intermediate range besides to the root at At = 7/2.
The position of the extremal value can be further specified such that At g 1.5t for
ty <0.17.

After clarification of the curve shape the ramp dimensions can be estimated. We
pick an appropriate part of data to perform a least squares fit to minimize the func-
tional in the intermediate range, c.f. Equation (1.100)). [CNBL97a] also noted the lin-
earized VA model is applicable away from the different behavior of the finite microfront
model. Thereby ramp amplitude and total ramp duration can be estimated for time lags
At > At,,, where At,, corresponds to the separation such that —((dce,)?), /At takes its
maximum value. Especially those estimates can be used as an initial guess in the least
squares fit.

1.3.4 Analysis of synthetic data

We perform an ideal surface renewal analysis that only requires the temporal trace of
a scalar as input. A simple model example from [KPCS06] is taken. The time series is
generated from 1024 samples over the interval [0, 2]. For the coherent part we either take
a sawtooth shape without microfront or with microfront width of t; = 0.17. Both signals
have a total duration of 7 = 0.1 and an amplitude of M =~ 3.463. For the random part
we take a fractional Brownian motion ({Bml) time series with Hurst exponent H = 1/3
to model K41 turbulence. The Hurst parameter is obtained by evaluating the exponent
of the structure functions in turbulence at n = 1. All signals are normalized to
have zero mean and unit variance. In total the two purely coherent signals are analyzed
plus a convex combination of each with the fBm-series. The parameter in the convex
combination is denoted by «,

c=acq+ (1 —a)cq
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1 Turbulence, coherent structures and surface renewal

and set to & = 0.6. A display of all signals can be found in figure [I.1I0, In both
superpositions on the right ramp patterns are observable, mainly such repeating patterns
in the time window from t ~ 1.1 to ¢t ~ 1.6. Moreover note in between, existing time
windows around ¢ ~ 1.0 or at the beginning/end of the sampling interval where the
iterates seem to be completely random. Such time windows of randomness and repeating
ramp shapes, respectively, will be rediscovered in measurements taken within a direct
numerical simulation.
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Figure 1.10: Collection of time series used for structure function analysis.
Left column shows the sawtooth shape (top), fractional Brownian motion
(middle) and sawtooth shape with finite microfront (bottom).
Right column shows the corresponding superposition given by a convex
combination with parameter o = 0.6.
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1.3 Surface renewal

Approximations to the n-th order structure function are the discrete truncated version

—

((0c)™) - (JAL) = —— Z (iAt) — c((i — j)At))" (1.105)

and the discrete periodic version
— 1=, . - .
((00)")pe (G AE) = — > (clirt) = ¢((i — j)modm At))" . (1.106)
=0

In the two formulas m denotes the number of sampling points, j the integer lag and
At the inverse sampling frequency. The averaging window in ([1.106]) is mAt for all lags
since the discrete periodic version assumes perfectly periodic signals and thereby i — j is
identified within the set {0, ...,m—1}. In contrast the truncated version exhibits
truncation errors for lags approaching the sampling length due to less points collected.
We prefer nevertheless the truncated version because it is applicable for non-periodic
signals, too.

The computed 2nd-, 3rd- and 5th-order structure function of the two coherent signals
are displayed in figure [[.11} Note the repeated patterns created: The dip in the second
order structure function that resembles an ejection event. The change of sign in the
third and fifth order structure function every half-integral multiple of the ramp duration.
Further in the proximity of ejection events, progression of third and fifth order structure
function squeezed to a double bend clearly visible in the finite microfront model. In
figure the behavior of the 3rd-order structure function in the small lag limit is
demonstrated. The top row shows the negative function in a log-log plot together with
a linear law. It can be clearly seen that the instantaneous termination model depends
linearly whereas the finite microfront model reveals a steeper descent in log-log axes.
The bottom row shows the negative 3rd-order structure function divided by the integer
lag. Again the finite limit in the instantaneous termination model predicted by equation
(1.90) is evident. In contrast the limit tends to zero for the finite microfront model as
predicted by equation (1.104)).

Next the ramp parameters for the two coherent signals are estimated from the trun-
cated third order structure function. In the linearized VA model we always choose the

results of (1.91)- (1.93) for which — ((50) Ver(JAL) /7 takes its maximum value.

Instantaneous termination ramp In the model alike Van Atta with no quiescent pe-
riod it is only possible to apply the linearized VA model. The maximum value criterion
yields the following estimates of the ramp amplitude M and ramp duration 7:

(Mya,7y4) = (3.3876,0.09955) .

Note that both values are slightly lower than the correct values (M, 1) = (3.463,0.1).
This can be explained since the zero lag limit is not available and the remainder in the
analytic version (1.96|) is a parabola (7 — At)(7 — 2At) that we can also observe in the
bottom left of figure The same analysis based on the discrete periodic structure
function does not have an impact on the digits presented above.
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Figure 1.11: Plot of discrete structure functions. Left column belongs to sawtooth shape
and right column to sawtooth shape with finite microfront. Top row shows
second order structure functions. Middle row shows third order structure
functions. Bottom row shows fifth order structure functions.

Finite microfront ramp In the model suggested by [CNBL97a] both the linearized VA
model and the corresponding finite microfront model can be applied. The maximum

value of —((5/0)3\>tr(jAt) /7 is located at j = 7. The linearized VA model for this lag
yields the following estimates of M and 7 only:
(My A, 7y4) = (2.6939,0.09765) .

Especially the ramp amplitude is much lower than the correct value as the largest value
picked for the evaluation at lag j = 7 is further away from lag zero than the instantaneous
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Figure 1.12: Discrete negative third order structure function behavior in the small lag
limit. Left column belongs to sawtooth shape and right column to sawtooth
shape with finite microfront. Top row shows a log-log plot together with
linear law. Bottom row shows negative structure function divided by integer
lag.

termination ramp. For successively larger lags both results agree well until deviations
for the lag approaching the ramp duration, c.f. bottom row of figure [1.12]

In the finite microfront model the least squares functional in the intermediate range
is minimized, Equation for t; < At < 7 —ty. Therefore recall the discussion
on the curve shape given by Equation when M, 7,1 are parameters. Knowing
the maximum position in terms of the integer lag and the corresponding result from
the linearized VA model, the least squares fit can be carried out. The obtained ramp
amplitude, ramp duration and microfront width are

M; = 3.4166 £8.7-107%
Fmp = 0.09906 4+ 6.0 - 107°
trms =0.00982 £2.3-107° .

All three values are slightly lower than the correct (M, 7,t;) = (3.46388,0.1,0.01) which
can be explained by errors from the truncated version of the structure function. The
same analysis based on the discrete periodic structure function gives

M,,; = 3.464008 & 4.6 - 107
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Fmp = 0.1001034 £3.2- 1077
tr.ms=0.0100103 £ 1.2-107"

which delivers a better estimate of the ramp dimensions. The fit of the intermediate
range to the data is found figure [1.14] left part. The graph parametrized by the correct
values (M, 7,ts) has been omitted as it would have led to a indistinguishable curve with
respect to the fit and the data points.

Finally the third order structure function of superposed signals ¢ = ac,q + (1 — @)cep
are studied. The left column of figure [1.13| shows the result of the instantaneously
terminated ramp as coherent part, the right column the result of the finite microfront
ramp as coherent part. Note that the range up to intermediate lags is well reproduced

1.0 <<6Crh)3>/r 1.0 <(5(:,/,):5>[,.

. AR AR A

Lag ) ) Lag

“ch)” ch)

0.06 ~{(Occ))ur/lag 0.030 ~{(Ocen)}ur/lag

0.
0.00 \ —0.005

—

o 10 20 30 10 50 0 10 20 30 10
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Figure 1.13: Computed third order structure function of the superposed signal ¢ = ac,q+
(1 — a)cen, a = 0.6. Left column shows the curves with instantaneously
terminated sawtooth as a coherent signal, right column the curves with
finite microfront sawtooth as a coherent signal. Top row corresponds to
third order structure function in terms of integer lag. Bottom row negative
function divided by integer lag.

and resembles the respective coherent part, but contains wiggles and is not smooth. The
signal is still dominated by noise which is weighted by the factor a = 0.6 whereas the
coherent part is weighted by the factor 1 — o = 0.4. For lags larger than the ramp
duration, the curve is affected by statistical errors due to only 1024 iterates generated.
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1.3 Surface renewal

Nevertheless repeated patterns in the structure function related to ejection events are
visible. As mentioned in previous discussions we are mainly interested in the small till
intermediate lag behavior.

Instantaneous termination ramp + fBm(1/3) Asin the corresponding coherent sam-
ple, only the linearized VA model is employed. The estimates of the ramp amplitude M
and ramp duration 7 are

(My a,7y4) = (1.3978,0.10486)

which approximates well the correct value (M, 7) = (1.3852,0.1). Note that the correct
value of the amplitude in the superponed signals are rescaled by 1 — a = 0.4 whereas
the durations remain unchanged.

Finite microfront ramp + fBm(1/3) As above both the linearized VA model and the

—

finite microfront model are applied. The maximum value of —((d¢)3),,.(jAt)/j is located

~

at 7 = 6. The linearized VA model for this lag gives the following M and 7 only:
(Mya,7va) = (1.0891,0.09712) .

For the reasons already mentioned in the coherent part, the ramp amplitude is much
lower than the correct value, in contrast to the ramp duration. The finite microfront
model returns estimated ramp amplitude, ramp duration and microfront width equal to

~

M,,; = 1.3773 + 0.0042
Fong = 0.09693 + 0.00072
t5 ms = 0.00944 %+ 0.00019

that are slightly lower than the correct (M, 7,t;) = (1.385552,0.1,0.01), but approximate
the triple well. A comparison with the discrete periodic structure function gives

~

M,y = 1.3819 £ 0.0039
Tmyf = 0.09624 £ 0.00065

tr.ms = 0.00951 % 0.00017

which does not reveal a significant difference with respect to the results from the trun-
cated version. Though only the prescribed value of M lies within the error bound of
Mmf. The error estimates of Mmf,%mf,ff ms for the discrete and periodic structure
function have an overlap. This is different to the purely coherent signal where moreover

the standard deviation of each parameter in the periodic identification is two orders of

L —

magnitude lower. The fit of —((0¢)3)4.(jAt)/j in the intermediate range to the data
is depicted in figure right part. The graph parametrized by the correct values
(M, T,tr) is added in dashed line style.
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Figure 1.14: Third order structure function plotted over the time lag. Left picture shows
the result coming from the finite microfront ramp, right picture superposi-
tion with the fBm(1/3) time series. Also included is a least squares fit to
the intermediate range in the finite microfront model.

1.4 Vortex identification in Computational Fluid
Dynamics

We have pointed out that turbulent flows can be separated into three regimes. In the
inertial range the only relevant process is vortex dynamics. This is already described
by the Richardson cascade that has been discovered before K41 and offers basis as-
sumptions in Kolmogorov’s phenomenology. In fact the cascade picture brings wvortices
encompassing smaller vortices with still smaller vortices and so on all the way down to
the Kolmogorov dissipative scale. For the upcoming summary on vortex identification
methods we refer to [JH95]. Difficulties in the identification arise for flow fields in three
dimensions which is the starting point here.

1.4.1 Intuitive measures on v and p

Local pressure minima are commonly used to extract vortex regions. The concept of
a local pressure minimum in three dimensions requires clarification because pressure
may have minimum in all three directions in a point, or it may have a minimum only
in a plane perpendicular to the vortex axis. Here the latter condition (i.e. minimum in
a plane) is considered. The definition of a pressure minimum in a vortex region may be
misleading as for example it can occur due to the unsteady straining even though the
flow has no vortex or it can be eliminated due to viscous effects in a flow with vortical
motion. Also [JH95] mentions the example where pressure is inherently of a larger
scale than vorticity in vortex regions which highlights the point of carefully choosing
the threshold for the minimum. It is furthermore stated that an isopressure surface in
mixing layer turbulence fails to capture the ribs and rolls simultaneously. Within a rib
pressure is much higher than at the roll center and therefore enlarging the value does
not give a clear identification of the rolls.

Pathlines and streamlines are identifications based on the velocity field that have been
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Figure 1.15: Illustration on Richardson cascade, [ETi95]. In this picture , denotes the
integral scale [, 0 < r < 1 is a parameter and 71 denotes the Kolmogorov
dissipative scale [4.

proposed to use as vortex regions extraction. However closed or spiral pathlines may not
capture a vortex accurately as it can undergo pairing, stretching or breakdown. Closed
or spiral streamlines used as identification are also problematic because they are not
Galilean invariant.

1.4.2 Vorticity and helicity

Vorticity magnitude ||(||, or components of the vorticity have been widely used to rep-
resent vortex regions and cores. This approach is fairly successful in free shear flows,
however in shear flows vorticity does not only identify vortex cores. For example in
a turbulent boundary layer, extremal values for the vorticity magnitude as well as for
a vorticity component occur at the wall. However, the flow near the wall is characterized
by shear and exhibits by no means vortical motion.

Helicity can be used to identify vortices. At first it was discovered by [Mor61, [Mof69)
that for inviscid flows H(t) is a conserved quantity. The potential for vortex extraction
has been recognized in [DLS90]. Therein besides the mean helicity H(t),

e the helicity density Hy =v - (V X v)

. .. v (Vxw)
e and the normalized helicity H, = LIV <o,

are taken as criteria. Vortex regions can be detected by considering absolute values of
the helicity density above a threshold. The aim of the normalized helicity is to extract
vortex core lines. The underlying assumption is, that near vortex core regions the angle
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between v and V x v is small. The limiting case is v || V x v = H,, = %1 inside the
core regions.

1.4.3 ()-criterion

Let us consider Galilean invariant definitions of a vortex based on the velocity Jacobian
Vu. Several criteria can be constructed from the characteristic polynomial of Vv. By
() the second invariant in the characteristic equation of the velocity Jacobian is denoted
and accordingly the )-criterion is based upon. It is useful to split the velocity Jacobian

into its symmetric and anti-symmetric part, c.f. Equations (1.19)) and (1.20)),

e strain tensor S = 1(Vov + Vo),

(Vo — Vo).

e vorticity tensor Z = Vv — § = %

Then () can be expressed as
1
Q:§(Z:Z—S:S). (1.107)

(@ represents thus the local balance between vorticity magnitude and shear strain rate.
It can be easily shown that () vanishes at a wall, unlike ||(||,. Hence the Q-criterion
defines vortex regions as

connected regions of ) > 0 (1.108)

meaning that over there vorticity magnitude is stronger than shear strain rate. This
definition is free from the problem associated with ||¢||, which fails to properly recognize
vortical motion near a wall.

() can also be interpreted as the source term in the Poisson equation for the pressure.
From the right-hand side pVo® : Vv in , insert the decomposition into S and Z to
obtain

Ap = 2pQ .

From the maximum principle, [Eval(], we can conclude that if @ > 0 the pressure
maximum only occurs at the boundary and if () < 0 the pressure minimum only occurs
at the boundary. However, () > 0 does not necessarily imply that the pressure minimum
occurs within the region, it can also take its minimum on the boundary of () > 0. Thus
there is no explicit connection between a region with () > 0 and region of a pressure
minimum.

1.4.4 )\,-criterion

We have summarized that a pressure minimum cannot be used as a general detection
criterion for a vortex region because it can be created by unsteady straining without
involving a vortex or it can be eliminated by viscous effects in a flow with vortical motion.
Nevertheless it provides a starting point for a new definition by simply discarding those
effects. Information on local extremal pressure values are contained in the Hessian V?p.
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The acceleration is denoted here in shorthand by a = %. The derivation of the As-

criterion starts by taking the gradient of the momentum equation,
pVa = uVAv—V?p .

The acceleration Jacobian on the left-hand side can be decomposed into symmetric and
anti-symmetric parts as follows

ds dZ
p[a+52+z2] +p[E+ZS+SZ] = uVAv — V.

The third-order derivatives on the right-hand side can be written in terms of the strain
tensor and vorticity tensor:

ds 4z
p{5+52+z2] +p[E+ZS+SZ} = PAZ+pAS - Vp .

-~

The terms embraced by the bracket constitute the vorticity transport equation ((1.33]).
The remainder is the symmetric part

ds

Pt

The first term on the left-hand side represents unsteady straining, the second term
viscous effects. As motivated above, both terms will not be considered which leaves
p(S? +7Z?). The occurrence of a local pressure minimum in a plane requires two positive

eigenvalues of V2p. This in turn leads to the definition based on two negative eigenvalues
of the matrix S? + 7Z2. Now S? + Z2? is symmetric,

— pAS + p(S? +7%) = —Vp.

(82 4+ 722" = STST + 7777 = 52 + (—1)°7% = S* + 7°

and is so diagonalizable with real eigenvalues A\; > Ay > A\3. The sufficient condition for
the pressure to take a minimum in a plane translates to

connected regions of Ay < 0 (1.109)

which is the As-criterion.

Connection between ()-criterion and \,-criterion

The quantity @ can also be related to the eigenvalues of S? 4 Z2:

1 9 9 1 T 1 T 1

—= 7°)=—= —tr(Z°72) = =

2tr(S +77) Ztr(S S) + 2tr( ) 5

and on the other hand —1tr(S? + Z?) = —2(A\; + X2 + A3). This points out that those

two definitions do not necessarily agree. They are the same indicators if Ay < 0 and

YA <0orif Ay >0and ), \; > 0 but different for Ay < 0 and the sum being positive
or vice versa.

(Z2:Z2-S5:9)=Q
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1.4.5 Extension to two-dimensional flows

So far the review on the identification techniques assumed three-dimensional flow fields.
We now want to point out how those measures can be extended to two dimensions.

At first, recall the discussion in [I.1.3] helicity cannot be used in 2D for extraction
because it is identically zero.

Obviously the Q-criterion remains unchanged in 2D. The As-criterion comes from the
2 x 2 matrix S? + 72 with eigenvalues A; > ). As in three dimensions take connected
regions of Ay < 0 for the criterion. Moreover a simple calculation shows that in 2D
S? + 72 = Xyl and A} = . So Q = — )\, both definitions agree and also correspond to
a local pressure minimum.
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2 Development of a simulation
method for incompressible fluid flow

An efficient Navier-Stokes solver holds the key to solving general multiphysics problems
that have an incompressible fluid model as a component. In this section we present the
spatial discretization of the Navier-Stokes system with an interior penalty method
taken from |[GRMWO04]. The convective term is discretized using the Vijayasundaram
flux, [PMBIS]. Operator splitting methods for solving the transient Navier-Stokes equa-
tions are employed such that the splitting is between incompressibility and dynamics.
There are three classes of such time discretizations: (I) pressure-correction schemes (II)
velocity-correction schemes (III) consistent splitting schemes, [GMS06, KIO91]. Here
we concentrate on the pressure-correction schemes and consistent splitting schemes.

2.1 Discontinuous Galerkin discretization of the
incompressible Navier-Stokes equations

The instationary incompressible Navier-Stokes equations in an open and bounded do-
main Q C R? (d = 2,3) and time interval (0,7 with velocity v and pressure p as
unknowns for given right-hand side f, viscosity p and density p are given by

pov — pAv + p(v-Viv+Vp = f in Q x (0,7 (2.1a)
V-v=0 in Q x (0,7 (2.1b)
v =g fort=0. (2.1c)
Either Dirichlet boundary condition for the velocity:
v=yg onI'p =00t e (0,T] (2.1d)
together with
IQ pdx =0 for all t € (0,7 (2.1e)
or mixed boundary conditions:
v=yg onI'p # {09Q,0} (2.1f)
pNVon —pn —pB(v-n)_v =0 onl'y =0Q\T'p (2.1g)
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are supplemented with the system. For pure Dirichlet boundary conditions ¢ is required
to satisfy the compatibility condition [,,g-nds = 0. On Iy, (v-n)- = min(0,v -
n) denotes the negative part of the flux across the boundary. The parameter § can
take the values 8 = 0 (classical do-nothing, [CDN]) or 3 = 3 (directional do-nothing,
[DDN)), [BM14]. In the numerical examples below we will also consider periodic boundary
conditions in addition. Under appropriate assumptions the Navier-Stokes problem in
weak form has a solution in (H(2))? x L?(Q2) for ¢t € (0, T)], [GRS6, [Té87]. In absence
of do-nothing conditions the pressure is only determined up to a constant and is in the
space L§(Q) = {q € L*(Q) | [, gdz = 0}.

For the discretization let &, be a quadrilateral mesh (in dimension d = 2) or a hexa-
hedral mesh (in dimension d = 3) with maximum diameter h. We denote by I'" the set
of all interior faces, by I'Y the set of all faces intersecting with the Dirichlet boundary
I'p and by 'Y the set of all faces intersecting with the mixed boundary T'y. We set
[, =TtuTrPUTy. To an interior face e € T shared by elements E! and E? we define
an orientation through its unit normal vector n, pointing from E! to E?. The jump and
average of a scalar-valued function ¢ on a face is then defined by

8] = ¢ |gr —¢ lpz = @™ — ™, (2.2)
1 1 1 int 1 ext
{¢} = 5625 Jop! +§¢ B2= §¢ + §<Z5 .

Note that the definition of jump and average can be extended in a natural way to vector
and matrix-valued functions. If e € 02 then n, corresponds to the outer normal vector
n. Below we make heavy use of the identities and notation, respectively:

[wo] = [ul{v} + {u}[v] , (U, v)ow = f wode (u, v scalar-valued)  (2.3)
[w-v] =[u]-{v}+{u}-[v], (w,v)0w= j w-vdr, (u,v vector-valued)
[w:v]=[u] : {v}+{u}: ], (u,v)ow= J u:vdr, (u,v matrix-valued).

where w C (2 is a d-dimensional subset together with the d-dimensional measure dzx. The
same shorthand notation holds for the hypersurface measure ds when integrating over
codimension one subsets as (parts of) the boundary or possible collection of faces. The

IDG] discretization on hexahedral meshes is based on the non-conforming finite element
space of polynomial degree p

P {ve LD | vlp = gopz' q € Quu B € &) (2.4)

where g : E — E is the transformation from the reference cube E to E and Q,, 4 is the
set of polynomials of maximum degree p in d variables. The approximation spaces for
velocity and pressure are then

XPx MPTH = (@) x (QY TN LA(Q)) (Dirichlet b. c.), (2.5a)
XPx MPTH = (@) x Qv (mixed b. c.). (2.5b)
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2.1 Discontinuous Galerkin discretization of the incompressible Navier-Stokes equations

We make use of the following mesh-dependent forms defined on X7 x X7, X7 X M}’L’_l,
X? and MY~ respectively:

a(u,v) = d(u,v) + Jo(u,v), where (2.6a)
d(u,v) = Y (1Vu, Voo — Y (p{Vulne, [W)oe — > (1V™ne, v™)oe, (2.6b)
Ee&y eclint ecrP
Jo(u,v) =€ Z (u{Vuvline, [u])oe+ € Z (VU™ ng, u™) o,
eelint eel'?
o o
+ Z :U’h_equ]? [U])U,e + Z Mh_e(ulnt7vlnt)0,€7 (26C)
eclint ecl'P
b(v,9) == > (V-v,0om+ > ([V] ne;{a})oe+ Y (0™ - n,¢™)o,, (2.6d)
Eeg, eclint e€TP
. o .
(oet) = 32 (0. 0o+ € 3 (V0 ne g+ 3 i (0l 0 e (260)
Eegy ecl’P ecl'’P ¢
r(gt) = > (9(t) - n, ™o - (2.61)
ecl'D

Here we made the time dependence of the right hand side functionals explicit. For ease
of writing this will be omitted mostly below. In the interior penalty parameter o/h.,
the denominator accounts for the mesh dependence. The formula for A,,

min(

Eint(e)‘,’Eext(e)D Elnt(e) m Eext(e) —e
he = Eint |e| ’ )
(©) ,EM(e)NTp =e

le|

has been stated in [HHO8] where it was proven that this choice ensures coercivity of the
bilinear form for anisotropic meshes. For o we choose 0 = ap(p + d — 1) as in [BBS12]
with a a user-defined parameter to be chosen @ = 3 in the computations reported below.
In Jy the Symmetric Interior Penalty Galerkin (SIPG) (e = —1) method is preferred
since the matrix of the linear system in absence of the convection term is then symmetric.
Other choices are the NIPG (e = 1) or [IPG (e = 0) method.

[Hil13] presents a rigorous analysis on the optimal penalty parameter where exact
bounds from the trace inverse inequality for triangles, tetrahedra, quadrilaterals, hex-
ahedra, wedges and pyramids are derived. See Table 3.1 in his doctoral dissertation.
There are two conditions mentioned to ensure coercivity, Equation (3.22) and Equation
(3.23). [Hil13] also verifies that an optimal penalty parameter is not sharply confined by
these equations. The condition expressed in (3.22) is used in [KEWKI7] and a related
series of publications. The condition expressed in (3.23) gives the same mesh dependence
on the penalty parameter as the formula for h.. It is cheaper than the former condition
which requires to iterate over all faces in the adjacent elements for each face. Further
in Equation (3.23) setting the number of faces per element (n. in his notation where
e denotes an element) equal to 2d for quadrilaterals and hexahedra, and our choice of
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2 Development of a simulation method for incompressible fluid flow

a = 3, yields a good agreement compared to the penalty parameter o/h. introduced
above.

A first discretization of the nonlinear term in the Navier-Stokes equations is the stan-
dard (or centered) discretization,

C(Ua 50) = Z ((U ' V)U> QD)O,E> (27)

Ecé&y

which is applicable only for small Reynolds numbers. For higher Reynolds numbers the
convective term is treated with an upwind scheme already introduced in [PMBI8| that
will be reviewed in Section R.1.1] below:

c(v,0) == > (F),Vo)os+ Y (Fe(v,n), [WDoe+ Y (Fo(v,ne), @)oe
E€E&y, eEFih“t eEFhDUF]}:’
(2.8)
with the numerical fluxes
) max(0, {v} - ne)v'™ + min(0, {v} - n)v™>* e e it
F.(v,n.) = max(0,v™ - n,)v™ + min(0, v - n.)g ,ecP

max (0, v'™ - n,)v™"* el

On the outflow boundary the variational form of the [DDNI contribution is

So(u,v) = Z ((w-n)-u,v)ge - (2.9)

eel“,ll\'

The discrete in space, continuous in time formulation of the Navier-Stokes problem ([2.1))
now seeks to find v, (t) : (0,T] — X2, pu(t) : (0,T] — MF~":

P(Orvn, p)oa + a(vn, @) + pc(vn, ) — pBse(vn, p) + b(w, pr) = L(p;t), (2.10a)
b(vn, q) = r(q;t), (2.10b)

for all (p,q) € X? x MP~'. The following observation will be used in several circum-
stances below.

Remark 1. The bilinear form b(v, ¢) has the equivalent representation

b(v,q) =Y (v, Vaor— Y ({v}-neld)oe = Y (01 o (2.11)

Eegy, eef‘ih“t eEFﬁ’

This holds true for Dirichlet and mixed boundary conditions (in the former case just set
Y = §).
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2.1 Discontinuous Galerkin discretization of the incompressible Navier-Stokes equations

Proof. Follows from integration by parts and ({2.3)).

b(v,q) == > (V-v,0oe+ Y (0] ne,{q oe+ D (v-1,0)0e

Ecéy, eclint eerP
= Z [(v,Vq)o,p — (v nE, q)oor] + Z ([v] - me, {q})oe + Z (v 7, q)oe
Beéy eelint ecT'P
= Z <U7 vQ)O,E + Z [(U * Ne, Q)O,e - (U * Ne, Q)O,e] - Z (U - n, Q)O,e
Eegy, eeFE ethN
+ Z [([0] - 7, {a})o.e — ([0] - mes {@})o.e = ({v} - 7es [a))oe]
= Z (U7 VQ)QE - Z ({U} * Ne, [Q])O,e - Z ('U *Me, Q)O,e-
Ee&y eclint ecl'lV
(2.12)
O

As a corollary we obtain the following local mass conservation property by testing
(2.10b)) with ¢ = x g, the characteristic function of element F., and using Remark :

S (ol ne Dot Y. (eoneDoet D (gomloe=0.  (213)

el NIk ecTVNOE e€T'PNOE

It is helpful to split the variational forms into volume, interface and boundary face
contributions:

a(vp, ) = Z ap(vp, @ Z Qint,e(Vn, ) + Z arp (Vn, )

Ee&y, eel"“1t eGFD
C(Ulm @) - § CE(Uha SD) + E Cint,e Uha + § CFD Uha E CFhN,e(Uha 90) )
Ee&y eclint ecl'P ecl'lV
b(, ) 5 be(v, pn) 5 bint,e (¢, D) + 5 bro (. pr)-
Ecéy, ecIint eerP

The DDN contribution —pfs,(vp, ¢) has a corresponding obvious splitting.

2.1.1 Upwind discretization of the convective part

For higher Reynolds numbers we employ a suitable upwind discretization based on the
Vijayasundaram numerical flux adapted from [DGl methods for inviscid compressible flow
[EFS03], [DF04].

Note that due to V - v = 0 the convective term in the momentum equations can be
written equivalently as (v-V)v =V - (v ® v) where

Fv)=v®uv=[vv,...,v50] = [F1(v),..., Fy(v)]
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2 Development of a simulation method for incompressible fluid flow

is the convective flux matrix with columns Fy(v) = vpv and V,Fi(v) = (vl + v ® ey).
I denotes the identity matrix and (ey); = d; are the coordinate unit vectors. In order
to derive the upwinding we consider the first order system

v+ V-F(v)=0

which is said to be hyperbolic if the matrix
d
n) = anVUFk(v) =@w-n)I+v®n

is real diagonalizable for all v,n € R? with ||n| = 1 [Eval0]. This is indeed the case for
v-n#0. When v-n =0, P(v,n) =v®n has d eigenvalues zero with a corresponding
eigenspace W = {w : w-n = 0} of dimension d — 1.

When discretizing the conservative form of the convective terms with DG one uses
element-wise integration by parts to arrive at

C(UaSO):(V'F(U)790)0,Q:Z(V'F(U),SO)O,E: Z( V800E+Z v)n, @)oo

Eeg&), Eegy, Eeg&),

= Z V900E+Z 1o + Z V)N, P)oe -

Ecé&y ecTint eerPuryy

Now the flux in face normal direction F'(v)n. needs to be replaced by a consistent and
conservative numerical flux function F'(v,n.) which we now derive. Since Fi(v) = vgv
is homogeneous of degree 2 (i.e. Fp(av) = a?Fy(v) for a a real number) it admits a
representation

1
Fi(v) = §Vka(v)v
and therefore
1 1
F(v)n = §P(v, njv = 5[(1} ‘n)[+v®njv=:B
Using the identity (v-n)v = (v ® n)v we see
F(v)n = Bg(v)v:=[(1 = B)(v-n)I + fv @ njv

for any 8 € [0,1]. For v-n # 0, Bg(v,n) is real diagonalizable with eigenvalues \g; € R
and a full set of right eigenvectors r;, span{ry,...,rq_1} = rq = v, admitting the
decomposition

n )

Bs(v,n) = By (v,n) + B; (v,n),

where BjE (v,n) = TDjET*1 T =[ry,...,74, D; are diagonal matrices with (D;)u =
max(0, )\52) and (Dy )n = min(0, Ag;) (all eigenvectors and eigenvalues depending on v
and n).
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2.1 Discontinuous Galerkin discretization of the incompressible Navier-Stokes equations

Following [DE04], in the DG scheme we employ the Vijayasundaram numerical flux
given by R _
Fs(v,n.) = By ({v},ne)v™ + By ({v}, ne)v™ . (2.14)

Here the matrices B;({v}, n.) are not applied to {v} and therefore ({v}-n)I and {v}®@n

act differently. The effect is shown by the following
Observation 1. Assume {v} -n # 0. Then the numerical flux (2.14]) satisfies

Fy(v,n.) = (1 — B) [max(0, {v} - n.)o™ + min(0, {v} - n)v™]
+BH{v} - ne) (0™ - ne) + H(—{v} - ne) (0™ ne)l{v} .
where H(x) is the Heaviside function.
Proof. We consider the interior part. The eigenvectors of Bg({v},n.) are d — 1 vectors

spanning W and {v} independent of 8 € [0,1]. We can uniquely decompose

e ) e et

where w € W=. Now
B ({v},ne)v™ = By ({v}, ne) (w + a{v})
= (1 — ) max(0, {v} - n.)w + max(0, {v} - n.)a{v}
= (1 — B)max(0, {v} - n.) (™ — afv}) + max(0, {v} - n.)af{v}

= (1 - ﬂ) max(o, {U} . ne)vint + 5max(0, {qzi} 7‘1;)€<Umt . e) {U} .

By ({v},ne)v™ can be treated in the same way. O

The observation shows that for g > 0 the v ® n. part gives a contribution in the flux
in the direction of {v}, i.e. a central flux which moreover might have the wrong sign
since the signs of {v} - n, and v™ - n, or v™* - n, might differ since the DG velocity is
not in H(div; Q). (Note, however, that the new projection scheme to be described below
improves significantly on this point). Also note that the upwind decision is based on the
average velocity which is locally mass conservative due to .

For these reasons we propose to employ S = 0 in the numerical flux function, leading

to the simple form:

A max (0, {v} - n.)v™ + min(0, {v} - n)v™>* e € T'int
F.(v,n.) = max(0,v™ - n,)o™ + min(0, v - n.)g ,eeP
max (0, v - n, )v" el

and the upwind DG discretization of the convective term

v, 0) ==Y (F),Velor+ Y (Fe(v.ne), [Woct+ Y (Fu(v,ne), 9o -

Ee€é&y eel"‘“t eEFEUF,T

(2.15)

In the following computations we drop the hat in the variational form ¢ and use it in
solving equation ([2.10a)).
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2 Development of a simulation method for incompressible fluid flow

2.2 Projection methods

2.2.1 Continuous Helmholtz decomposition

The Helmholtz decomposition takes a fundamental role in the construction of splitting
methods for incompressible flows. It states that any vector field in L?(2)¢ can be de-
composed into a divergence-free contribution and an irrotational contribution, see e.g.
[Cho68), [KS05l [AE04], [Sch13, BNPB13]. In order to define the decomposition boundary
conditions on the pressure need to be enforced which are not part of the underlying
Navier-Stokes equations. The choice and consequence of these boundary conditions is
a delicate issue in projection methods [Ran92, [EL95, [EL96]. Before turning to the
Helmholtz decomposition in the discrete setting of methods we recall the Helmholtz
decomposition in the weak continuous setting.

First consider Dirichlet boundary conditions , . Let us denote the space
of weakly divergence free functions by

H(Q) :={ve L2 (] (v, Vfoa—(g-n, for, =0Yf € H'(Q)} (2.16)

where I'p = 0€). This definition is motivated by the identity (V-v, f)oo = —(v, WV f)oa+
(g-n, flor, = 0 which holds true for v € H(div; Q) = {u € L*(Q)? | V-u € L*(Q)}. In
that case the normal component of v can be prescribed on the boundary. In addition,
we employ the pressure space

Up(Q2) = {q € H'(Q) | (g, L)oo = 0}. (2.17)
in the following decomposition.

Theorem 1 (Helmholtz decomposition, Dirichlet boundary conditions). For any w €
L%*(Q)? there are unique functions v € H(Q) and 1 € ¥p () such that

w=v+ V.
Proof. Define 1 € Up(Q2) by

(W, Vq)oo = (w, Vq)oa — (91, q)or, Vg € Up(Q). (2.18)

According to the Lax-Milgram theorem this problem has a unique solution. Since any
f € HY(Q) can be written as f = ¢ + ¢ with ¢ € ¥p(Q2) and ¢ a constant function,
equation holds also true for all test functions in H*(2) (Note the compatibility
condition on g). Now set v = w — V1 and verify that (v, V f)oa — (¢-n, f)or, = 0 for
all f € HY(Q). O

Remark 2. 1) Note that equation (2.18)) is the weak formulation of a Poisson equation
with homogeneous Neumann boundary conditions.

2) The map P : L2(Q)¢ — H(Q) given by Pw = w — Wt is a projection since the
right hand side of (2.18)) is zero for w € H(2). P is called the continuous Helmholtz
projection.
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2.2 Projection methods

3) The construction above can be equivalently written as

(v, 9)o0 + (W, 0)o0 = (W, ¢)on Vo € L*(Q)? (2.19a)
(v, V@)oo = (9-1,¢)or, Vg € Up(Q) (2.19Db)

since from the first equation we get v = w — W1 and inserting in the second equation

yields ([2.18]).

4) In Chorin’s classical projection scheme [Cho68] the (divergence-free) velocity vF
and pressure p**! at time t**! are computed from a tentative velocity w**! by the
system

+1

oL Rt

+Wptt =0

At VP
vV - Uk+1 =0

in strong form. Setting ¥**! = AtpF*! this is equivalent to

Uk+1 + \vwk}—‘rl — wk+1
Vot =0

which is the strong form of (2.19)). Thus, ¢/At from the Helmholtz decomposition
is the new pressure from Chorin’s projection scheme. O

In the case of mixed boundary conditions (2.11), (2.1g) the space Up () is replaced by
Uy (Q):={q€ H(Q) | ¢g=0ae on Iy} (2.20)

employing homogeneous Dirichlet boundary conditions on I'y. This can be understood
from ([2.1g)) which implies p &~ 0 for small p, i.e. large Reynolds number. The irrotational
part is defined as in (2.18) with Up(Q2) replaced by W, (£2), meaning that 1 satisfies
homogeneous Neumann conditions on I'p, and homogeneous Dirichlet conditions on I'y.
Again, v € H() is uniquely defined (observe that now I'p C 02 in H(2)).

2.2.2 Discrete Helmholtz decomposition

We now seek discrete versions P, : X — X} of the Helmholtz projection operator P.
A direct reconstruction of the weakly divergence free velocity as v = w — W in
splitting schemes is reported to be unstable when the spatial mesh is coarse and the time
step is small [SSL13] lJDST16, KFWKI17] and several local postprocessing techniques are
discussed in the literature. Here we propose a new postprocessing technique based on
H (div) reconstruction which is popular in porous media flows [BR0O3, [ENV07]. These re-
constructions are element-local, easy to compute and provide a locally mass conservative
projected velocity, a property not shared by the reconstructions in [SSL13, [KFWKIT7].
[JDS™16] takes into account inter-element continuity in a regularized least-squares sense
but does not provide a projection. The construction presented here is easier to compute,
provides exact local mass conservation, satisfies the discrete continuity equation exactly
and provides a projection.
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2 Development of a simulation method for incompressible fluid flow

Standard projection

For any given tentative velocity w, € X} the straightforward translation of the Helmholtz
decomposition (2.19)) in the DG setting reads

(vh, @)oo + (Vpthn, ©)oa = (Wi, ¥)og Vo € X7, (2.21a)
b(vn, @) = r(q) Vg e M. (2.21D)

Note that the second equation requires the projected velocity to satisfy the discrete
form of the continuity equation at fixed time (hence silently dropping the time
dependence from now). From the first condition we get v, + W, = wy, < vy =
wy, — Wiy, since all involved functions are in X?. Inserting this into yields an
equation for y:

b(Vin,q) = b(wn,q) —r(q) Vg€ M.
Using Remark [If on the left hand side we get

bW, q) = Y (Vo Vahor— Y ({Vn}-ne [q)oe— Y (Vb ne, q)oe. (222)

Ecéy eclint ecl'N

This is part of the standard SIPG formulation of Poisson’s equation with homogeneous
Neumann boundary conditions on T'Y with the stabilization terms missing. In order to
stabilize, we define

o0 = = 3 ({Va} e [alloe + 3 7-(al. Bl

eclint eeF““

(2.23)
_Z \vq ne7¢h Oe+z qal/)h
e’y eeFN
and solve the stabilized version
Un € M7 (W, q) = b(wn,q) —r(q) Vg€ M) (2.24)

where

a(Vn, q) = b(VYn, q) + jo(Un, q).

Note that this system naturally corresponds to homogeneous Neumann conditions on
I'p and homogeneous Dirichlet conditions on I'y (which might be empty). Now we may
define the first projection scheme.

Algorithm 2.1 The standard projection P5* is given by the following algorithm:

i) For any tentative velocity wy, € X} and fixed ¢ solve

wh S Msil : Oé('(bh, qh) = b(wh, qh) — r(qh; t) th c M,Z;il. (225)
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2.2 Projection methods

ii) Set Ptdwy, = v, where vy, solves

(Vn, en)oa = (Whyon)oo — (Vibn, on)oa  Ven € X7 (2.26)

This requires the solution of a mass matrix which is block-diagonal. Choosing an
orthogonal basis it can even be diagonal and thus the computation is cheap. Note
also that this implies v, = wy, — W1y, since V1), € X7.

Unfortunately, this projection is reported to be unstable in the small time step limit
[SSL13] and we also observed this behavior. Part of the problem is that Pt is actually
not a projection, i.e. (P5id)? £ Pstd,

Div-div projection

In order to overcome the stability problem the authors in [KEWKIT7] suggested to sta-
bilize the projection by an additional term in ([2.26)):

Algorithm 2.2 The div-div projection P-4 is given by the following algorithm:

i) For any tentative velocity wy, € X} and fixed ¢ solve (same as before)
Un € M7 oW, qn) = b(wn, ) — (g t)  Van € MY
ii) Set Pdiv-divyy, = v, where vy, solves

(vny en)oa + (V- 0n, V- @n)oa = (Wny on)oo — (Vbn, on)oa  Yor € XF (2.27)

where 7p is a user-supplied constant.

Again this requires the solution of an element-local system which is not diagonal.
As reported in [KFWK17] and the examples below this gives good results with quite
small point-wise divergence. However, the projected velocity does not satisfy a local
mass conservation property and (Pgiv-div)? o£ pdiv-div

Pressure Poisson Raviart-Thomas projection

The aim of this subsection is to reconstruct —\W, in the Raviart-Thomas space of
degree k [BF91] on hexahedral meshes given by

RTY = {v € H(div;Q) | v|g € RTLVE € &,} (2.28)
with the Raviart-Thomas space on element F given by

RT: = {v e H(div; E) | v = Tg(d), (0); = > i} (2.29)
{a]0<a; <k+6;;}
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2 Development of a simulation method for incompressible fluid flow

where we made use of the Piola transformation to the element E € &, i.e. for ug() :

E — E defined as ]

Tg (U = ————Vugr(2)o(z).
For k > 0 the construction needs also the space
Ul = {ve H(div;E) |v="Tg(0),(0); = Y cad®} (2.30)

{a|0<a;<k—6;;}

Note that in contrast to the polynomial degree in direction 4 in component i is
decreased instead of increased.

Assume that 1y, € MP~" solves as before. Following [ENV07] we now compute
vh = Gy, € RTf;, k = p—1, as reconstruction of —\W1, as follows. On element F € &,
with faces e € OF define

o .

(- Mey @oe = (—{Vp} - n. + h_w}h]u Qo,e ec™ qe ng, (2.31a)
o

(/yh e, Q)O,e = (_\V¢h “Ne + h_,lvz)ha Q)O,e ES FhN7 q € QS? (231b)

(Y - Mes @)o,e =0 e € Ff, q € Qf:, (2.31c¢)

and for k > 0 define in addition

(Y, T)o,5 = —(\thﬂ“)o,E—i-% D e [noe+ D (rne,noe, Vre Ui

ecOENInt e€OENIY

(2.31d)

With this we can define our final projection step:

Algorithm 2.3 The pressure Poisson RT projection PR is given by the following
algorithm:

i) For any tentative velocity wy, € X} and fixed ¢ solve
Yn € MPTU e a(n, an) = b(wn, qn) — r(anit) Van € MP .
ii) Reconstruct v, = Gpib, € RTZfl.
iii) Set PFwy, = vy, where vy, solves

(Vn, on)oa = (Why on)oa + (Grdn, on)oa  Veon € X7

This requires the solution of a (block-) diagonal system.

The reconstruction Gy, defined above satisfies the following important property on affine
hexahedral meshes.
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2.2 Projection methods

Lemma 1. Let ¢, € M~ solve a(¢y,q) = I(¢) for all ¢ € MP~" and any linear right
hand side functional [. Let furthermore v, = Gy € RTffl be the reconstruction
defined above. Then for every ¢q € Qﬁfl and xg the characteristic function of element
E € &, we have

(VY axe)oe = laxe). (2.32)

Proof. Straightforward extension of Theorem 3.1 in [ENV07] from simplicial to hex-
ahedral elements. Essential steps are the special definition of the right-hand side in
(231d) and that for any ¢ € Q7' = WVq|g € ¥% " where the condition on an affine

transformation is only required. The calculation in detail:

(V9 axp)oe = —(n, Vaxe)or + Z (Vh " Mes QX B)o,e
ecOFE

E31d)
= a(tn, qxe) = laxr) -

And with this lemma we can prove the following theorem.

Theorem 2. The projected velocity PiTw, satisfies the discrete continuity equation
exactly, i.e.
b(PF wh, q) = r(q)  Yge MP'. (2.33)

Proof. The characteristic functions form a partition of unity, i.e. for any ¢ € Q:Z_I we
have ¢ = e qxp. Inserting into the definition of b, observing that [vy4] - n. = 0 since
v € H(div; ) as well as v, - n. = 0 due to (2.31c|) and using Lemma [1] gives:

b(Py " wh, q) = b(wy, q) + b(Grtn, q)
= b(wp, q) — Z (VY axE)o.e + Z (L] - 1 {q})o.e + Z (Y~ Tte, @ose

EeE), eerint e€l'
=b(wn,q) — Y _ Uaxe) = blwn,q) = > [b(wn, gxr) — r(gxs)]
Ecé&y, Ee&y
= b(wp, q) — b(wn, q) +7(q) = r(q)
(2.34)
]

Remark 3. As corollaries we have

1) The projected velocity v, = Prrwy, satisfies the discrete conservation property (2.13)
(use the fact yz € MP™' and Theorem . Note that this discrete conservation
property can be achieved with reconstruction in Raviart-Thomas space with degree
kE<p-—1.

2) (P2 = PRT follows from Theorem [2/ and the fact that I(q) = b(PF wy, q) — r(q) =
0,q € M,Iz_l, is the right-hand side in step i) of Algorithm . Therefore when

applying PT twice a zero correction is produced in the second application.
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2 Development of a simulation method for incompressible fluid flow

The discrete continuity equation does not imply that the divergence of the projected
velocity vanishes point-wise. The following Lemma shows that the divergence in the
interior of elements is controlled in an integral sense only by the jumps of the tentative
velocity:

Lemma 2. The projected velocity v, = PRl wy, satisfies for all ¢ € M,ffl, E € &, and
qe = 4XE:

(V- Uh,CJE)o,E = % Z ([ws] '”eJJE)O,e + Z (wn —g) - neaQE)O,e- (2.35)

el NOE ecl'PNOE

Proof. Using Lemma [I] we get

(V " Uh, CJE)O,E = (V * W, QE)O,E + (V * Vhs QE)O,E = (V * W, CZE)O,E + Z(QE)
= (V- wn,qr)o.r + bu(wn, qr) — r(ge)

= (V-wn,qe)op — (V- wh, qr)oEe (2.36)
1
t3 Z ([wn] - nes gp)oe + Y ((wn = g) -1, am)oe -
eclMNIE ecT'PNOE
O]

Helmholtz-flux Raviart-Thomas projection

In this subsection we present a reconstruction of the Helmholtz-flux w;, — W, in the
Raviart-Thomas space of degree k that does not only satisfy the discrete continuity equa-
tion but is also pointwise divergence-free. The development of Helmholtz-flux Raviart-
Thomas projection originated from studying pressure-robust discretizations of the incom-
pressible Navier-Stokes equations. In pressure-robust discretizations the velocity does
not depend on the pressure and remains unchanged under certain types of transforma-
tion - to be described below - as it would in the continuous case. It is understood that a
violation of this so-called invariance property is connected to the Helmholtz decomposi-
tion such that discretely divergence-free vectors need not be divergence-free vector fields.
Recently the following results were shown with respect to pressure robustness: [Linl4]
presents a modified Crouzeix-Raviart element for the incompressible Navier-Stokes equa-
tions. [JLMT™17| derives a reconstruction operator for the mixed finite element pair on
triangles consisting of conforming Ps space for velocity enriched with bubble functions
and discontinuous P; for pressure. [PELS16| presents a higher-order reconstruction op-
erator on simplicial meshes for a discontinuous method where the cell-based unknowns
are eliminated by static condensation. [LLMSI17] develops a reconstruction for pressure-
robust Stokes discretizations with continuous pressure finite elements. However to the
best of our knowledge, no results have been presented first of all for discontinuous ve-
locity and pressure spaces, on quadrilateral /hexahedral meshes.

Divergence-preserving reconstruction operator In order to present a divergence-preserv-
ing operator for both discontinuous velocity and pressure spaces, let us introduce the
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2.2 Projection methods

discrete divergence operator By. It is a map By, : X} — Qf;l satisfying

(Bhwm Qh>0,Q = —b(wm C]h) + T(Qh) Y, € QZ_l . (2-37)

The kernel of By, is called the set of discretely divergence-free vector fields. It is an affine
linear subspace of X} denoted by

X7 i = {on € X7 | b(vn, q) = r(an) Yan € Qf '} (2.38)
with the belonging vector space

XPhom = {on € X2 | bgn, an) = 0Ya € Q4 '} (2.39)

p—1
Next we introduce the reconstruction operator HSTh that maps the velocity space X7

to the Raviart-Thomas space RTiz_1 of degree p — 1. Based on the results presented in

—1

[Lini14, JLM™17, [PELS16] we define v, = HSTZ (wp), wy, € X}, as follows: On element
E € &, with faces e € OF compute

(Uh * Ne, Qh)O,e = ({wh} * Ne, Qh)O,e e € Fi}?ta q € Q;:il ) (240)
(Uh N, Qh)ﬂ,e = (g N, Qh)ﬂ,e e c Fh ,q € Qg_l ) (241)
(vh * M, @n)oe = (Wh * Me, Gn)oe ecy,ge @™, (2.42)

and in addition for p —1 > 0
(Vs Th)o, e = (Wh, Th)o,E vr e whot (2.43)

Obviously this defines a projection. Further its divergence is in fol and on affine
hexahedral meshes we can show:

P
Theorem 3. The velocity reconstruction operator H,P:Th defined through the equations
(2.40)- (2.43) is divergence-preserving. In explicit it holds

RT? !

V-I," =B,. (2.44)

Proof. Same line of argument as in proof of Lemma [I}

p—1 p—1

(V- (wn), an)oo = Z (V- (wn), an)o,s
Ee&y,
Th! s !
=) T (wn), Van)o.s + >, (wn) - ne,gr)oe
Eeéy e€OF
_ b1
= - Z T wh WVan)or + Z I, (wh) - Ne, [qn))o,e
Eegy, ecly
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2 Development of a simulation method for incompressible fluid flow

p—1

since [H?Th (wh)} -ne =0 for e € T in the last term. Further

== Z (wn, Van)o,m + Z (wh M, Gn)oe

Ecéy, eery
+ Y (wnd - neslanloe + Y (9(t) - e andoe
eclint ecr’P

= —b(wn, qn) + r(qn) using Remark

= (Bhwha Qh)o,Q .
1

p—1
(wp) € QP we have V- II," " (wy,) = Bywy,. O

p—1
Lemma 3. The operator HSTh maps discretely divergence-free vector fields to divergence-

free vector fields. The image also satisfies the discrete continuity equation.

Finally, because V - HSTK

-1
Proof. Let v, € X,’;dw. Then according to Theorem 3| V - HSTi (vp) = Bpyp, = 0.

Writing this in the weak sense, we can add zeroes

p—1
0= (V ) HfTh (Uh)> Qh)O,Q

= (V-1 @ aon — 3 (I @] me (e — 30 (00) - mes g

eerint eerP

RT? !
+ Z (Hh 4 (Uh) : neth)O,e

eEl"}’LD

— <H§T271(vh), Qh) + 7(qn)

to show the second statement. O]

Invariance property and pressure robustness A consequence of the Helmholtz decom-
position is an invariance property of the Navier-Stokes equations that reads: A trans-
formation of the forcing by f +— f+ W1 changes the Navier-Stokes solution by (v, p) —
(v,p+ 1), i.e. the velocity field does not change and the additional forcing is balanced
by the pressure gradient. A desirable property of a discretization scheme is to maintain
an unchanged velocity field under such irrotational force translation.

As a simple example let us consider the mixed DG-discretization of the stationary
incompressible Stokes equations. Find (vy, pn) € X2 x MP™" s.t.

a(vn, n) + b(pn, pn) = l(on) Yeon € Xy
b(vn, qn) =r(qn) Vg, € M

In [GRMWO04, RGO6] it was shown to be a inf-sup stable method. Employing a k-th
polynomial order approximation Xf x M;~! to the strong solution (v, p) of the Stokes
problem, it was also shown

1
W—WMSCMOWM+EMO
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2.2 Projection methods

with the mesh-dependent norm [H . H],

2 2
llonll™ = llonlls.c + Jonl
o
= (v, vn)oa + Y (Vow, Vun)oe + Z h—e([vh], [vr])o,e -
Ecé), eclintyrb

The right-hand side in the a-priori estimate is a standard bound for classical mixed
finite element methods. Observe that the velocity error depends on the pressure scaled
by the inverse of viscosity which can become large if p is small. Moreover it is not
robust with respect to irrotational forces - that would be balanced solely by the pressure
in the continuous case - and a discretization suffers spurious velocity oscillations. The
pressure part ihk |p|x originates for non-divergence-free methods and it is understood
that the pressure term is indeed equivalent to the fact that such mixed methods do not
fulfill the invariance property in a discrete sense. It can be avoided by divergence-free
mixed methods as the Scott-Vogelius element for example. For instance in the mixed
DG-discretization of the Stokes problem, vector fields satisfying do not necessarily
satisfy . Discretely divergence-free test functions lack a L?-orthogonality to the
irrotational fields. However with help of the introduced reconstruction operator, ¢y
is replaced as in previous publications by the reconstructed ¢, in the source term.
Motivation is just Lemma [3] which states discretely divergence-free functions are mapped
to divergence-free functions. With such a variational modification we can prove that a
discrete counterpart of the invariance property is established.

p—1
Theorem 4. Let HSTh be the test function reconstruction operator defined through

-1
the equations ({2.40))- (2.43) with zero g. Let th - L*(Q) — Q"' be the L*-projection.
The modified mixed scheme for the Stokes problem reads: Find (vs,ps) € XP x MP~
s.t.

a(vn, on) + b(n, pn) = L) Voo, € XJ (2.45)
b(vn, qn) = r(qn) Van € M}~ (2.46)

with the modified right-hand side functional

lon) — Uen) = (S TE (04) = @)oa - (2.47)

Then for a irrotational translation f — f + Wi where (1) v € ¥p(Q2) if I'p = 9Q
defined in (2.17)) or (2) ¢ € Wy () if Tp # {0,002} defined in (2.20]), the scheme fulfills
-1

P
a discrete counterpart to the invariance property: (vs,ppn) — (vp, P + W}?h (¥)).

Proof. Same line of argument when showing the invariance property in the weak con-
tinuous case: The saddle point problem formulated in the affine linear subspace: Find
v, € X,f’dw s.t.

p,hom

a(vn, pn) = Uen) Veon € Xy g,
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2 Development of a simulation method for incompressible fluid flow

With this constrained problem it is shown that the discrete velocity stays unchanged.
Leaving the trial space unchanged and testing in the orthogonal complement induced
by the bilinear form a,

XPrw = {on € XE | Vo, € X2 4+ alvg, 1) = 0},

gives p, € MP™" s.t.
b(wn,pn) = U(p) Ve € Xﬁ:;v :
With this it is shown the balancing of a irrotational translation by the discrete pres-

sure gradient. When f — f + W, let (vyp, pyn) denote the discrete solution to the
transformed source term. For ¢, € X7:

(f + W, en)oe = (fron)on + > (Vb on)ok

Eec&y
= (f,on)oa + blpn, ¥) using Remark [I].

p—1 p—1
RT?

= (F 4+ VO I (on))on = (£ (0n))os + bATET (gn), 1)
= (LI (o — 3 (V-TITH (04),¥)oe

Ee&y
RT? 1 RT? 1 QP!
= (£, " (en)oa— > (VI " (en).m " (¥))os
Ee&y
RTY p—1

= (f, 10, (©n))o0 + b(en, W;?h (¥))

where we have used that a reconstructed test function has zero normal component on
the Dirichlet boundary and that the operator is divergence-preserving.

p—1

= [(¢h) — Z(goh) + b(wh,ﬂgh () .

The constrained problem with the transformed source term:

—1

(Vg 0n) = Upn) + bl T () = U(n)  Vin € XPhom
= Uy, = Up. Secondly

~ -1

b(pns i) = Lpn) + bleon, meh (1))

& b(gn, ppn — 700 (1)) =

(on) Von € XD,

p—1

= pn + W}?h (1) = py p by inf-sup stability. ]

The projection operator A motivation for the Helmholtz-flux Raviart-Thomas projec-
tion comes from Lemma[2] which states the result of the pressure Poisson Raviart-Thomas
reconstruction not to be pointwise divergence-free. An improvement to the correction
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2.2 Projection methods

v, = wy, + Gy, is to replace wy,. Based on the discussion above, a straightforward
choice is to take the image of the divergence-preserving operator. This would lead to a
velocity field that is pointwise divergence-free. So the proposition for the Helmholtz-flux
Raviart-Thomas reconstruction thus consists of combining the reconstruction operator

for the velocity field with the accurate flux reconstruction from the pressure Poisson
—1

P
equation: vy, = HSTh (wp) + Gpby,.
In explicit: On element E € &, with faces e € OF compute

g .
(Un  Me, qn)oe = ({wn} - ne, gn)oe + (—{Vp} - ne + h—[?ﬁh], qn)o,e ecMqge@ ™,

(2.48)

(Uh * Ne, Qh)(),e = (g * Ne, Qh)(),e ec Ffa q S ngl )
(2.49)

o _

(U - Nes qn)oe = (Wi~ Nes qn)o,e + (= V1 - ne + h—l/Jh, qn)o.e ecTy,qeq ",
(2.50)

and in addition for p —1 >0

(Vn, rn)o.e = (W, rn)o.p — (Vn, 7)o
1 _
+3 o rne [Woet Y (renedn)oe Vre Wi
e€cOENInt ecOENIY

(2.51)

The projection step is then defined as:

Algorithm 2.4 The Helmholtz-flux RT projection PR is given by the following algo-
rithm:

i) For any tentative velocity wy, € X} and fixed ¢ solve

Yy, € Mﬁfl o o(Wn, an) = b(wn, qn) — r(qnst) Vau € Mﬁfl .

-1

ii) Reconstruct HSTZ (wp) + Gpiop, € RTP

iii) Set PXTwy, = v;, where vy, solves

—1

RT?
(vns en)o = (I, " (wh) + Gribn, SOh)O’Q Von € X}, .

This requires the solution of a (block-) diagonal system.

We are now able to prove the following theorem given on affine hexahedral meshes.

Theorem 5. The operator PFT is a projection. The image v, = PRTw;, is pointwise
divergence-free and satisfies the discrete continuity equation exactly.
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2 Development of a simulation method for incompressible fluid flow

Proof. First consider the divergence of v,. Owing to Theorem [2| and

(V- vn, qn)oa = (V- I, " (wy) + V- Gy, ) o g

= —b(wn, qn) + r(gn) + b(wn, qn) — r(an)
=0 Vg, € Qf;l .
. . RT? !
Or equivalently in shorthand: V- v, = V- 1I,"" (wy) + V -y, = Bywy, — Bywy, = 0.
Using this and owing to the calculation in Lemma |3 we can further conclude

b(vn, qn) = b(HET’; (wn), an) + b(Gntn, qn)
=Y (9 ne.qn)oe +0 =r(qg) Vg €Qy .

eeff

A second application of PFT produces at first a zero Helmholtz correction and leaves

p—1
h

the input velocity unchanged since HST is a projection. O

In contrast to the sole pressure Poisson flux reconstruction those conservation proper-
ties cannot be achieved by reconstructing in a Raviart-Thomas space of degree k < p—1.
For lower degrees especially divergence-preservation is lost and moreover the image of

k
Hf}Th where the tentative velocity would be mapped to, is too small compared to the
size of the velocity ansatz space X} .

We conclude this section that both Raviart-Thomas reconstructions can be employed
on non-affine hexahedral meshes by evaluating the Piola transform pointwise. If ug
is not affine linear on a cell E, the local space RTY given by may not form
a reasonable approximation to H(div; £) as constant functions need not be contained.
Though desirable properties are still satisfied exactly on elements that are the image of
E under an affine transformation.

2.2.3 Pressure-correction schemes

For ease of writing the DDN-term is omitted in the presentation of the splitting method.

Incremental Pressure Correction Scheme (IPCS))

The TPCS is a straightforward way to split between incompressibility and dynamics.
In the viscous substep the pressure is made explicit that we denote by ph*’kH. In the
second substep a pressure correction is computed to accordingly correct the velocity.
The particular choice of the time discretization is not important. It is possible to use
the implicit Euler time stepping or second order time stepping methods such as BDF2
or Alexander’s second order strongly S-stable scheme [Ale77]. The semi-discretized in
space splitting scheme then reads as follows: Given vf, pf at time t*, compute vﬁ“, p’ffl

at time tFH1 = tF + AtFH1 as follows:
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2.2 Projection methods

1. Choose explicit extrapolation of pressure ph*’kH at time t**! and compute tentative
velocity '17,]:“ by temporal evolution of

POy on)o.a + alvn, o) + pc(vn, @) + blon, ™) = U(pn;t)  Von € XP .

2. Projection step: Solve the pressure Poisson equation to compute correction §p’fl+1

(c.f. step i) in Algorithm [2.2] 2.3} [2.4)):

1 .
a(op o) = g (00 @) = (e 1) Vo € MY

where

a(n, qn) = (U, qn) + Jo(Vn, qn)-

Then compute vy™ = Py (7)), P, = {PIv-dv PRTY specified by step ii) in
Algorithm , , where 1), = AtFFLophtt.

3. Pressure update:

k+1

K
pitt = optt 4t

In general a (¢ — 1)-th order pressure extrapolation can be employed,

0 or
k
> k41 by, , forg =1
A ) 2.52
Ph 2pk — p’,j_l , forqg =2 ( )

3pk — 3p£71 + pifg , forqg =3

However, the pressure extrapolations for ¢ > 1, are not self-starting and only valid for
constant time step sizes.

Usage of constant extrapolation ph""]€+1 = pf gives the IPCS. The IPCS introduces
the artificial boundary conditions for the pressure correction which lead to the series of
equalities

k
6nph+1‘FD =...= npi‘rD = anpg\FD (2.53)
k
pthl‘FN =...= pfll’FN = p%’FN (2'54)
for the pressure itself over time.
The choice ph’\"kJrl = 0, implicit Euler as time stepping reproduces Chorin’s projection

method where those boundary conditions even become homogeneous. Due to the neglect
of the pressure in the momentum equation this scheme has an irreducible splitting error
of order O(At). Hence using a higher-order time stepping scheme does not improve
the overall accuracy. These artificial boundary conditions induce a numerical boundary
layer that prevents the scheme to be fully first-order on the velocity in the H}-norm
and on the pressure in the L?-norm. For purely Dirichlet boundary conditions it can be
shown that the error in these two norms converges as O(v/At), (c.f. [Ran92]).
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2 Development of a simulation method for incompressible fluid flow

The IPCS is in the purely Dirichlet case, i.e. I'y = 0, fully first-order accurate even if
the implicit Euler time stepping is used. But when I'y # () the order of approximation
of the velocity in the Hj-norm and of the pressure in the L?-norm is degraded due to the
homogeneous Dirichlet boundary conditions for the pressure. There is little improvement
regarding the order of the scheme when a second order time stepping method is used.
In the purely Dirichlet case the scheme is fully second order on the velocity in the L2-
norm but it stays first order on the velocity in the Hi-norm and on the pressure in the
L?-norm. For I'y # () the approximation order even stays the same.

The constant extrapolation for the explicit pressure in the momentum equation implies
that the scheme has an irreducible splitting error of O(At?). Hence using a higher than
second order time discretization does not improve the overall accuracy.

Rotational Incremental Pressure Correction Scheme (RIPCS))

One reason for the above scheme to have poor convergence properties especially when
outflow boundary conditions are present is that the pressure boundary conditions stay
constant over time. To overcome this difficulty it was first introduced by Timmermans,
Minev and Van De Vosse [TMVDV96] to use the rotational form of the Laplacian,
namely

—Av=V x(Vxv)—WV(V-v). (2.55)

To understand why this modification performs better we consider for simplicity the
momentum equation in classical form and insert the rotational form of the Laplacian:

ﬁili—i_l Uk + Mv x (v % ,Uk+1) + \V( *,k+1 /*LV ~k+1) f(thrl) (2 56)
Atk+1 )
*,k+1

where p; is as before an approximation of p(-,#*™!). Eliminating the tentative ve-
locity vk“ = vyt 4 APV Epit! with the Helmholtz decomposition gives

k+1 k
Uy, — Uy

INGE

Thus the quantity 5pk+1 +py uVv - ka can be interpreted as an approximation
of the pressure. Hence retaining the time step with the momentum equation the tables
can be turned to obtain the incremental pressure-correction scheme in rotational form:

Given vf, pf at time ¥, compute vF ™!, pi™t at time t*+1 = ¢tk + At*+1 as follows:

+ ,uv % (V % Uk+1) + \V((Skarl +ph* K+l NV ~k+1) f(tk+1) ) (257)

*,k+1

1. Choose explicit extrapolation of pressure p,f’kﬂ at time t**! and compute tentative
velocity f},’f“ by temporal evolution of

P(atvm SOh)o,Q + a(vh, <Ph) + /JC(Um 80) + b(@ Ph* k“) l(@m t) Vo € X;f .

2. Projection step: Solve the pressure Poisson equation to compute correction 5pk+1

(c.f. step i) in Algorithm [2.2] 2.3} [2.4)):

1
(5pk+17 Qh)

Atk+1 (b( k+17 qh) (Qha tk+1)) VQh S M}I;_17
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where

Oé(wh, Qh) = b(\Vn, qn) + jo(¥n, an).

Then compute vy ™ = Py (o)), P, = {Plv-dv PRTY specified by step ii) in
Algorithm . - . Where wh AtFHLphtt,

3. Pressure update with scaling factor w:

*,k+1

k+1 4 ph

(it an) = (wopj,

cqn) + u(O@ T an) = r(an 1Y) Van € M
The scaling factor is usually set to w = 1 for first order time stepping schemes and to
w = § for second order time stepping schemes.

The contribution V - ka improves the accuracy of the scheme such that it is first
order accurate for both Dlrlchlet and outflow boundary conditions. The use of a second
order time stepping scheme improves the convergence rate on the velocity in the H-
norm and on the pressure in the L?-norm to ‘%’ when I'y = (). In the presence of outflow
boundary conditions the convergence rate % for the velocity in the L?-norm is likely to
be the best possible whereas the convergence rate in the H}-norm for the velocity and
in the L?-norm for the pressure is limited to 1. As in the IPCS higher than second order
time stepping schemes do not improve the overall accuracy.

2.2.4 Consistent Splitting Schemes

In this section we review the fractional step techniques introduced in Guermond and
Shen [GS03]. The schemes are based on a weak form of the pressure Poisson equation
derived from the momentum equation. However, unlike the pressure-correction schemes,
these splitting schemes deliver full accuracy on the velocity and pressure for first and
second order temporal approximations in case of purely Dirichlet boundary conditions.
For ease of writing we only consider the instationary Stokes equations. The nonlinear
convection term does not affect the derivation. Moreover we assume in these schemes
a constant decomposition of the time interval with time step size At.

The key idea in the derivation
The derivation starts by considering 1| and testing with V,qn, qn € M ,f*l therein:
b(Vgn, pr) = LV 1gn, ) — p(Ovn, Vagn) — a(vn, Vigp). (2.58)

Using Observation [I] on the left hand side we get

B(Vagn,pn) = Y (Van, Vpn)or— Y ({Van}ne, [pa)oe— D (Vann, p)oe, (2.59)

Eeéy ecTint ey

but importantly compared to (2.22)) the role of test and ansatz functions are inter-
changed. Thus interpreting (2.59)) as a part of the SIPG formulation the last two terms
already correspond to the symmetrization of the interior penalty terms whereas the
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2 Development of a simulation method for incompressible fluid flow

consistency terms are missing. We add the missing terms exploiting symmetry of the bi-
linear form b+ jo in order to replace b(\Vqp, pr) by a(p, gr) in with the boundary
conditions d,p, =0 on I'p and pp, =0 on I'y.

If vy, is explicitly given then the pressure can be computed from the momentum equa-
tion by solving a Poisson equation. Hence the fractional step technique for the consistent
splitting schemes can be formulated in two consecutive steps: First compute the velocity
by making the pressure explicit, then we update the pressure with the Poisson equation
derived from the momentum equation.

Standard Splitting Scheme (SSS))

The main focus in this section lies in the derivation of the right-hand side for the pressure
Poisson equation in the consistent splitting schemes. On the right side of , second
order derivatives of the test functions ¢, are hidden in the term a(v,, Wgqp) that one
wants to get rid of. In [GS03| this elimination begins by taking the L2-inner product
of the momentum equation for Wq,q € H'(Q) and is based on the assumption
U |oo= 0 when integrating the term (pd;v, Wq)oqo by parts. It is easy however to add
the missing term for non-constant boundary conditions:

(PO, Vq)oa = Jasz poyv - qnds . (2.60)

We will redo this derivation for discontinuous test functions g, € M,’l’*l. Hence let
us go back to (2.58) and forget about (2.59) for the moment. Assuming that V - v =
0:(V -v) =0, the term (pd:v, Wpan)oa can be integrated by parts as follows:

P00, Vign)oo = Z (PO, Van)oE

Ecéy

= 3" (0, V- (0o

Ecé&y

- Z (PO, @rn)o.or

Ecé&y

= Z ({pOv}, [qn]ne)oe + LQ poyv - gpnds . (2.61)

int
ecly

Now approximate p(0;vn, Wap)oo in (2.58) by the right side of (2.61). This gives the
first intermediate result of the pressure Poisson equation subsequent to (2.58)),

b(Vnan, pr) =U(Vagn,t) — Z L{Patvh} - [qn]neds — L)Q POy, - qpnds

int
e€l'in

— a(vn, Wian)- (2.62)

Now we test with W},¢q;, in the viscous substep (with explicit extrapolation of the pres-

sure),
p(Ovn, Vian) + a(v, Viar) + b(Wian, pi ") = 1(Vagn, t).
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Then considering b(\Wqp, pi+ ph* k“) the source term and af(+, -) cancel out. Equation

- ) thus becomes

o(Vaan, pf ™ =) = p(Ovn, Vian)oo — Z j{patvh} “lgn]neds — fag POy, - grnds,
eclint ‘

(2.63)
which is the second intermediate version of the pressure Poisson equation. As discussed
in | on the left-hand side b(\W gy, pp™ ph* kol ) is replaced by a(pf™ ph* iy qn)-
The remammg puzzle piece towards the ﬁnal version of the pressure P01sson equation is
the computation of d,v, on the right-hand side. Here we use the ¢-th order backward
difference formula (BDF) to approximate d,v |,—x+1 by Dvy ™ /At, in explicit

k+1 k

ki1 U — g , forg=1

Du™ = {30“1 —F 4+ Lot forg=2" (2.64)
h h T 3V ) q=

The final version of the right-hand side in the pressure Poisson equation is abbreviated

by £(qn):

Ugp) = Z <At DU;/%+1 WQh) Z ( c ka+1’qhn)0e

Ec& ecI';,NON ’

- 3 (e ndan)

int
eel'in

(2.65)

0,e

Now one step of the SSS consists of the following problems: Given v}, pF at time t*,

compute vt phtt at time t**1 = ¢tk + At as follows:

1. Choose explicit extrapolation of pressure pz‘"k+1 at time t**! and compute velocity
vr ! by temporal evolution of

p(Owvn, on) + alvy, vn) + b(en, Py TR = U(pn,t) Vo € X7

2. Pressure Poisson equation: Compute correction 5pk+1

a(0py™, qn) = Uan) Van € MY

3. Pressure update:

pz—l-l — p: k41 + 5pz+1‘

In the first order SSS, implicit Euler time stepping is used together with the pressure
extrapolation (2.52)) and BDF approximation (2.64)) of order ¢ = 1. In the second order
formulation of the SSS an appropriate time stepping is used (most likely BDF2) together

with the pressure extrapolation (2.52)) and BDF approximation (2.64) of order ¢ = 2.
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2 Development of a simulation method for incompressible fluid flow

Note that if ¢ > 2, the scheme is not self-starting and then for 1 < k < ¢ — 1 the
(k — 1)-th order formulation is used for initialization.

As in the IPCS the scheme introduces the artificial boundary conditions for the pres-
sure correction which lead to the series of equalities

Onpp M, == Ounilp = Ol (2.66)
P ey = = phlp, = Phln, (2.67)

for the pressure itself over time. Thus the SSS has as poor approximation properties as
the IPCS especially when T'y # ().

Consistent Splitting Scheme ([CSS))

Similarly to the pressure-correction scheme the accuracy of the above splitting scheme
can be improved by using the rotational form of the Laplacian. Following the same
argumentation as in [2.2.3| an additional divergence correction in the pressure update
appears whereas the viscous substep and the pressure Poisson equation for the pressure
correction remain unchanged.

Given vf, p¥ at time ¥, compute vf ™' pF*t at time t**1 = ¥ + At as follows:

tk+l

1. Choose explicit extrapolation of pressure ph*’kJrl at time and compute velocity

vﬁ“ by temporal evolution of

p(svn, on) + a(vn, on) + b(on, D) = Upn, t) Ve € X2,

2. Pressure Poisson equation: Compute correction 5p’,“1+1

a(0pi™, an) = (qn) Vg, € MP.

3. Pressure update:
(ph ™ an) = @GPy + o™ an) + b(op ™ gn) = r(an; 1) Vg, € M

As in the SSS, the first order formulation uses implicit Euler time stepping together
with the pressure extrapolation and BDF approximation of order ¢ = 1.
The second order formulation of the CSS uses an appropriate time stepping (most likely
BDF2) together with the pressure extrapolation and BDF approximation ([2.64f) of
order ¢ = 2. Note that if ¢ > 2, the scheme is not self-starting and then for 1 < k£ < ¢—1
the (k — 1)-th order formulation is used for initialization.

Numerical experiments indicate that the pressure approximation is no longer plagued
by an artificial boundary condition. Consequently the scheme is truly g¢-th order for
g = 1 as has been proved by [GS03] for the purely Dirichlet case and as numerical
evidences show for the case I'y # (). Numerical experiments show that the scheme is
truly ¢-th order for ¢ = 2 in the purely Dirichlet case, but a rigorous proof of this fact
is still elusive.

76



2.2 Projection methods

2.2.5 Temporal discretization of the viscous substep

The discrete in space viscous substep in the IPCS, RIPCS, SSS and CSS is equivalent
to solving a system of ordinary differential equations

dzh(t)

M
At

+ Ch(zh(t), f}) =0 (268)

im(X?
for the unknown coefficients zj,(¢) in the expansion vy (t) = Z?Zl(xh)

matrix and the nonlinear spatial residual vector have the entries

2n(t) ;5. The mass

(Mn)ij = p(¢;, pi)oo
(Lalzn(t),0)i = D ales, 0i)zn(t); + pe( D 2n(t)jps, i) + b, pi (1)

J J
— pBso( Y 2n(t)jps,05) — Ui t).
J
For the in-time evolution of (2.68)) several classes of time stepping methods can be used.
Diagonal implicit Runge-Kutta methods The temporal evolution with the diagonal

implicit Runge-Kutta methods is done in the Shu-Osher representation, [SO88, [(GKS11].
One time step in an s-stage scheme includes the following computations:

1. Set z}(LO) = zf.

(%)

2. Fori=1,...,s compute 2, given by
50D By L (2 1+ 8 A ] = 0 2.69
Akt hZh +Bl] h('Zh s+ 04 ) : ( . )
§=0

3. Set 20! = 219

The rectangular matrices a, p € R¥*T! are lower Hessenberg and & € R¥™!. The repre-
sentation through the Butcher tableaus becomes unique by setting a; = 1. Note that
diagonal implicit Runge-Kutta methods in the standard textbook formulation can be
converted to the Shu-Osher representation if the last row in the s x s Butcher tableau
is equal to the row vector of coefficients in the final linear combination of the vectors k;.
Though every explicit Runge-Kutta method can be transformed back and forth.

At each stage a possibly nonlinear system R(z}(f)) = 0 has to be solved where R(zf(:)) is
defined by the left-hand side of (2.69). For the solution Newton’s method is employed and
according to this the residual R(z,(f)) is decomposed into a constant part with respect
to the unknown z,(j) and the non-constant part (Atkﬂ)flaiiMth) + Biiﬁh(zl(j),tk +
8;AtFt1). Several Butcher tableaus of diagonal implicit Runge-Kutta methods are listed
in Appendix [A.5]
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2 Development of a simulation method for incompressible fluid flow

k+

Linear multistep methods In the linear m-step procedure z; 1is computed as

Z G My Z[Sm L (2 iy (2.70)

Here a € R™™!, B € R™"! and this system looks formally the same as one of the Shu-
Osher stages, 1} A difference is that the coefficient vectors z,’f‘l, . zZ“ ™ of the
previous time steps need to be explicitly remembered. The normalizatlon O, = 1 is used
such that the representatlon becomes unique. As above the residual R(z;™) is defined
by the left-hand side of (2.70)) and is decomposed into a constant and non-constant part
with respect to the unknown ZZ—H. Linear multistep methods are most easily applied
for constant time step sizes. Second order temporal derivatives can also be discretized
without decoupling into a first order system, an example is the the Newmark S-scheme

[Zie77]. Butcher tableaus of several linear implicit multistep methods can be found in

Appendix [A.6]

IMEX Runge-Kutta methods In Implicit-Explicit (IMEX) Runge-Kutta methods the
spatial residual vector is split into £, = L;5 + Lg. The subscript I denotes the
implicitly treated part in the time stepping and the subscript E denotes the explicitly
treated part. A detailed description of such methods can be found in [ARS97]. Recall
that the idea behind these methods is: If Lg ), is treated explicit the resulting systems
should be easier to solve or if L;, is treated implicit the choice of the time step size
should not be too restrictive. Similar to the diagonal implicit Runge-Kutta methods,
IMEX methods can be brought to the Shu-Osher form. One time step in an s-stage
scheme includes the following computations:

1. Set z(o) = zF.
(4)

2. Fori=1,...,s compute z,’ given by
i @,
N Mz + Z (Br)ij Lon(z0) 5 + (85); At
j=0 j=0

+Z (Br)is Lop(z0) 85 + (81); A1) = 0. (2.71)

3. Set zkH = zf).

All the matrices are rectangular, a, B, Bz € R¥**T! the first two are lower Hessenberg
and the latter is lower triangular. The vectors 07,8 for the intermediate times are in
Rs*1. Again we set a; = 1 to obtain a unique representation. In particular for the
viscous substep the diffusion is treated implicit and the nonlinear convection term is
treated explicit:

(Lrn(an(t)t))i =D ales ei)zn(t); + blgs, o (1)) — Ui ) (2.72)

J

78



2.3 Numerical experiments

(Len(zn(t),1))i = pe(Y_ 2(t)jp5,0:) — pBso(Y 2 (t) 05, i) - (2.73)

J J

The system ([2.71)) is then linear and corresponds to a Helmholtz equation for the un-

known z,(f) at each stage. We list several Butcher tableaus of IMEX Runge-Kutta meth-

ods in Appendix

2.3 Numerical experiments

The numerical experiments start by cross-comparing the pointwise divergence and local
mass conservation for the div-div projection and the pressure Poisson H(div) recon-
struction (summarized in Algorithm . Then the convergence properties of the IPCS,
RIPCS, SSS and CSS for global Dirichlet boundary conditions [2.3.2] and mixed bound-
ary conditions are illustrated. For periodic boundary conditions [2.3.4] and in 3D
using the Beltrami flow problem we restrict ourselves to the IPCS and RIPCS.
All schemes are tested in their second order formulation. Temporal convergence is an-
alyzed for the Taylor-Hood-like DG-spaces Q5/Q1, Q3/Qs, Q4/Q3 and also local mass
conservation - given as the left-hand side of - is investigated.

2.3.1 Local mass conservation

We consider the Navier-Stokes equations on the domain Q = (—1,1)% and take the
two dimensional Taylor-Green vortex which has been studied before by [TG37, [Cho68,
RBO6]. In two dimensions the Taylor-Green vortex possesses the exact solution

vy(z,y,t) = —e 2™ ¥t cos (m x) sin (T y)
vo(x,y,t) = e 2™V gin (mx) cos(my) (2.74)
p(z,y,t) = —0.25,06_4”2” (cos(2my) +cos(2mx)) .

The source term is given by f = 0. Weset p = 1, p = 1/100 and v = p/p. Periodic
boundary conditions are imposed in both the z and y directions. We do the computations
on a 160 x 160 rectangular mesh. The discussion on the temporal convergence rates is
postponed to Section [2.3.4]

We start the discussion on the choice of order in the Raviart-Thomas space for pressure
Poisson H (div) reconstruction. We have shown in Theoremthat for RT? " it holds: (I)
(PRT)? = PRY (1) the reconstructed velocity satisfies the continuity equation and (III)
is locally mass conservative. However a naive approach by looking at the dimension of
the local function space of VM }f*l also accounts to possibly choose RTJ,TQ. As stated in
Remark [3] local mass conservation can still be achieved with reconstruction in Raviart-
Thomas space of degree p—2. This is demonstrated on the right of figure [2.2|and notably
we get the same distribution with RTZ,';_l. Moreover numerical experiments with the
power iteration applied to the operator PR' have shown that (PFT)2or ! = PRIGFT also
for RTZfQ. Table - compare the temporal accuracy between the discretizations

79



2 Development of a simulation method for incompressible fluid flow

Q,/Q, with reconstruction in RT} or RT}. It can be seen that there is no significant
difference on the error at final time. Reconstruction in the RT?';*2 space provides thus
to be a sufficient alternative in the splitting algorithm.

Next we want to cross-compare the temporal accuracy for the spatial discretizations
Qy/Q1, Q3/Qs with the div-div projection and Q,/Q; with reconstruction in RTZ,
Q3/Q, with reconstruction in RT},. Table — show the errors for the RIPCS Q5/Q4
with div-div projection and the RIPCS Q,/Q; with reconstruction in RT?I and table —
the errors for the RIPCS Q3/Qs with div-div projection and the RIPCS Q3/Qs with
reconstruction in RT,ll, respectively. There is no significant difference in the temporal
behavior for both pairs, a logarithmic plot of the errors would lead to indistinguishable
curves. Thus for the upcoming investigation on the convergence properties we will use
the div-div projection technique because it is an inexpensive alternative to the pressure
Poisson H (div) reconstruction which was at the time only implemented up to order one.
Note that the errors in the tables [2.1] 2.4] are also contained in the figures of 2.7]

Table 2.1 Errors for the Taylor-Green vortex at final time T=2 obtained by RIPCS
and Q/Q; with div-div projection.

dt L? error v | H} error v | L? error p
2.000e-01 | 3.89336e-02 | 3.12769e-01 | 2.24301e-02
1.000e-01 | 1.00536e-02 | 7.86088e-02 | 6.49292¢-03
5.000e-02 | 2.54833e-03 | 1.96963e-02 | 2.07180e-03
2.500e-02 | 6.40802¢-04 | 5.00184e-03 | 7.85322¢-04
1.250e-02 | 1.60275e-04 | 1.93785e-03 | 3.74214e-04
6.250e-03 | 3.99586e-05 | 1.67405e-03 | 2.24884e-04

Table 2.2 Errors for the Taylor-Green vortex at final time T=2 obtained by RIPCS
and Q,/Q; with pressure Poisson reconstruction in RT%.

dt L? error v | Hj error v | L? error p
2.000e-01 | 3.89026e-02 | 3.06282¢-01 | 2.24215e-02
1.000e-01 | 1.00444e-02 | 7.72283e-02 | 6.49243e-03
5.000e-02 | 2.54548e-03 | 1.96643e-02 | 2.07260e-03
2.500e-02 | 6.39597e-04 | 5.44801e-03 | 7.86167¢e-04
1.250e-02 | 1.59573e-04 | 2.63178e-03 | 3.75384e-04
6.250e-03 | 3.97373e-05 | 2.33037e-03 | 2.27288e-04

In figure the pointwise divergence for p = 2 on each mesh element is presented.
The element-local div-div projection leads to smaller pointwise divergence than obtained
with the pressure Poisson H (div) reconstruction. But it does not really cure the error on
the local mass conservation. Compared to the standard L2-projection the div-div pro-
jection reduces the values of the pointwise divergence and local mass conservation. The
magnitude of the pointwise divergence from the pressure Poisson H(div) reconstruction
is in between the magnitudes from the standard L2-projection and the stabilized variant,
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2.3 Numerical experiments

it is not identically zero as predicted by Lemma [2 The distribution of the divergence
error with Q,/Q; and reconstruction in RT,l1 is similar and has the same maximum.

Figure shows the error on local mass conservation for p = 2. According to our

discussion at the beginning of this appealing conservation property is perfectly
fulfilled for the RT?~" and RT?~* reconstructions of the Helmholtz correction.

Table 2.3 Errors for the Taylor-Green vortex at final time T=2 obtained by RIPCS
and Q/Q; with pressure Poisson reconstruction in RT,ll.

dt

L? error v

Hg error v

L? error p

2.000e-01
1.000e-01
5.000e-02
2.500e-02
1.250e-02
6.250e-03

3.88824e-02
1.00387e-02
2.54417e-03
6.39432e-04
1.59699¢-04
3.99134e-05

3.03453e-01
7.71449e-02
1.96504e-02
5.44560e-03
2.63182e-03
2.33056e-03

2.24163e-02
6.49254e-03
2.07356e-03
7.86989¢-04
3.75972e-04
2.27698e-04

Table 2.4 Errors for the Taylor-Green vortex at final time T=2 obtained by RIPCS
and Q3/Qy with div-div projection.

dt

L? error v

H; error v

L? error p

2.000e-01
1.000e-01
5.000e-02
2.500e-02
1.250e-02
6.250e-03

3.88929e-02
1.00411e-02
2.54558e-03
6.40610e-04
1.60670e-04
4.02320e-05

3.03675e-01
7.70569e-02
1.94734e-02
4.89254e-03
1.22611e-03
3.06909e-04

2.23165e-02
6.38400e-03
1.96199e-03
6.72911e-04
2.60387e-04
1.11552e-04

Table 2.5 Errors for the Taylor-Green vortex at final time T=2 obtained by RIPCS
and Q3/Q, with pressure Poisson reconstruction in RT}L.

dt

L? error v

H; error v

L? error p

2.000e-01
1.000e-01
5.000e-02
2.500e-02
1.250e-02
6.250e-03

3.88969e-02
1.00423e-02
2.54588e-03
6.40684e-04
1.60689¢e-04
4.02364e-05

3.03581e-01
7.70650e-02
1.94755e-02
4.89306e-03
1.22624e-03
3.06934e-04

2.23175e-02
6.38402e-03
1.96185e-03
6.72797e-04
2.60320e-04
1.11516e-04
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Vot Vot
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Figure 2.1: Pointwise divergence of the Taylor-Green vortex solution at time 1 with
At = 0.025 obtained by the RIPCS.
Left part shows Qy/Q; with div-div projection. Right part shows Q,/Q;
with pressure Poisson reconstruction in RT?.

|b(”f’1c+1 Xe)—r(Xe )| |b(”f’f+1 Xe)—r(Xe )|

1e13 1e12 Te-11 1e-10 1e17 1e-16

Y m— e

9.05¢-14 4.04e-10 Tel1s 7.74e-15

Figure 2.2: Local mass conservation of the Taylor-Green vortex solution at time 1 with
At = 0.025 obtained by the RIPCS.

Left part shows Qy/Q; with div-div projection. Right part shows Q,/Q;
with pressure Poisson reconstruction RT?L, identical to reconstruction in RT,ll.
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2.3.2 Global Dirichlet boundary conditions

We consider the Stokes equations on the domain Q = (0, 1)? and take the exact solution
to be

vi(z,y,t) = sin (z +t) sin (y + t)
vo(z,y,t) = cos (z +t) cos (y + 1) (2.75)
p(z,y,t) =sin(z —y+1) .

The source term is given by f = 0,v — Av + Wp. The density and viscosity are both set
to p = p = 1. Computations were done on a 160 x 160 rectangular mesh.

Figure [2.3] shows the error and the convergence rates as function of At for the IPCS
and RIPCS. The green curves show the L?-error for the velocity, the red curves the
H}-error for the velocity and the blue curves the L*-error for the pressure obtained by
the polynomial degrees p = 2,3,4. The curves grouped by the same color are almost
identical meaning that the splitting error is dominant in the measured range of At.
Therefore we have left out the curves with p = 4 on the right for the sake of clarity.
A transition towards smaller time steps causes earlier flattening out of the error curves
the lower the spatial order is. This emerges at first for the Hi-error for the velocity and
L?-error for the pressure. This is demonstrated for the Taylor-Green vortex solution in
section 2.3.4] c.f. right of figure [2.7]

Theory states that the solution of the second order IPCS satisfies the following error
estimates: (I) L%-velocity: O(At?) (II) H}-velocity, L?-pressure: O(At). On the left of
figure it is observed that the velocity error in the L?-norm is second order accurate,
in the other two error measures the rate is 1.5 which is better than the prediction. Now
the solution of the RIPCS satisfies the following error estimates: (I) L-velocity: O(A#?
(II) Hi-velocity, L2-pressure: O(At2). The convergence rates on the right of figure
are consistent with the error estimates. Note that the L2-errors on the velocity and
pressure are almost identical to the results presented in [GS04]. The reason for the
slight difference is likely to be the usage of BDF2 in [GS04] as time stepping.

A consideration of local mass conservation shows that it is well satisfied in the interior
of the domain for the div-div projection. However the largest values ~ 1079 are located
in the cells that share an edge with the boundary. This is due to the artificial boundary
conditions on the pressure.

The situation is different for the pressure Poisson H(div) reconstruction. In that case
the distribution is similar to the right in figure 2.2 with maxg [b(vi™, xg) — r(x&)| ~
5-10714

The SSS and CSS are only considered for the polynomial degree p = 2. The BDF2
method is used for both schemes to march in time in order to compare with the results
from [GS04]. Figure 2.4 shows the error and convergence rates as a function of At.

It can be shown that the second order SSS has similar convergence properties as the
second order IPCS: (I) L2-velocity: O(At?) (II) H}-velocity, L*-pressure: O(At). The
left of figure [2.4] shows that the error is second order accurate on the velocity in the
L*-norm. However the convergence rates in the H}-norm and in the L?-norm for the
pressure behave rather like O(At%). These results are in agreement with the error plot
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Figure 2.3: Errors and convergence rates at final time T=1 for the global Dirichlet prob-
lem and spatial discretizations Qs/Q;, Q3/Qs, Q4/ Q3. Left part shows the
IPCS. Right part shows the RIPCS.

> p=2: L*error v > p=2: L*errorv
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Figure 2.4: Errors and convergence rates at final time T=1 for the global Dirichlet prob-
lem and spatial discretization Q/Q;. Left part shows the SSS. Right part
shows the CSS.

presented in [GS03|. As for the SSS there is no proven error estimate for the second
order CSS. But the right part of figure indicates that the scheme is truly second
order accurate. Note that the error in the L?-norm for the pressure is saturated by the
spatial discretization error for smaller time steps. The results lead to an identical error

plot as presented in [GS03].
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2.3.3 Mixed boundary conditions

We consider again the Stokes equations on the domain 2 = (0,1)? and take the exact
solution to be

v1(z,y,t) = sinx sin (y + t)
vo(x,y,t) = cosx cos (y + t) (2.76)
p(z,y,t) = cosx sin(y +1) .

The source term is again given by f = 0,v — Av + Wp. The density and viscosity are
both set to p = p = 1. The outflow boundary is located at I'y = {(z,y) € 9Q | x = 0}.
Computations were done on 160 x 160 rectangular mesh.

Figure shows the error and the convergence rates as function of At for the IPCS
and RIPCS. The green curves show the L2-error for the velocity, the red curves the
H}-error for the velocity and the blue curves the L?-error for the pressure obtained by
the polynomial degrees p = 2,3,4. The curves grouped by the same color are almost
identical meaning that the splitting error is dominant in the measured range of At.
Therefore we have left out the curves with p = 3 on the left and p = 4 on the right for
the sake of clarity. A transition towards smaller time steps causes earlier flattening out
of the error curves the lower the spatial order is. This emerges at first for the H}-error
for the velocity and L2-error for the pressure. This is demonstrated for the Taylor-Green
vortex solution in section [2.3.4] c.f. right of figure 2.7]

The solution of the IPCS satisfies the following error estimates: (I) L2-velocity: O(At)
(I) Hl-velocity, L>-pressure: O(At2) which are identical to the first order IPCS. The
results on the left of figure indeed show that the pressure approximation is poor due
to the homogeneous Dirichlet boundary condition imposed on I'y. The RIPCS delivers
improved error estimates in presence of mixed boundary conditions: (I) L*-velocity:
O(At2) (I1) Hl-velocity, L:-pressure: O(At). The convergence rates on right of figure
[2.5] are consistent with those estimates. Furthermore the error on the velocity in the
L%-norm behaves like O(At3) which is also observed in Guermond, Minev and Shen
[GMS06, [GMS05]. The error in the Hi-norm is close to O(At1) which is higher than
the rate O(At) predicted by theory. Note that [GMS06, [GMS05] have used BDF2 as
time stepping for this problem and therefore the error curves are almost identical.

Another consideration of local mass conservation shows that it is well satisfied in the
interior of the domain. But due to the homogeneous Dirichlet boundary conditions for
the pressure imposed on I'y, the largest errors ~ 1077 are located in the cells next to
outflow boundary.

With the pressure Poisson H (div) reconstruction we have maxg |b(
5107 whereat the maximum also occurs in the boundary cells.

As in the previous section the SSS and CSS are briefly discussed. Figure shows
the error and convergence rates as function of At for the SSS.

The second order SSS has the same convergence properties as the IPCS: (I) L2-velocity:
O(At) (IT) Hj-velocity, L*-pressure: O(Atz). Figure[2.6{confirms those rates and shows
that pressure approximation is poor due to the homogeneous Dirichlet boundary condi-
tion imposed on I'y. There is no proven error estimate for the CSS in case of I'y # ()

U;lfﬂa XE>_T(XE)’ ~
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Figure 2.5: Errors and convergence rates at final time T=1 for the mixed boundary
condition problem and spatial discretizations Qy/Q1, Q3/Qa, Q4/Q3. Left
part shows the IPCS. Right part shows the RIPCS.
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Figure 2.6: Errors and convergence rates at final time T=1 for the mixed boundary
condition problem using the SSS and spatial discretization Qs/Q;.

at the time of writing. Numerical evidences show that the first order formulation is
truly first order accurate which we can confirm. However the second order CSS becomes
unstable if the time step goes below a certain threshold At ~ h%. This behavior has also
been reported by [GMS06].

2.3.4 Periodic boundary conditions

The following problems have only been calculated with the pressure-correction schemes.

We continue with the configuration and test problem presented in [2.3.1] Figure
shows the error and convergence rates as a function of At for the IPCS and RIPCS.
The green curves show the L%-error for the velocity, the red curves the H}-error for the
velocity and the blue curves the L?-error for the pressure obtained by the polynomial
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degrees p = 2, 3. The results for p = 4 are almost identical to p = 3, therefore it has been
omitted for the sake of clarity. For the IPCS the curves grouped by the same color are
almost identical meaning that the splitting error is dominant in the measured range of
At. Note however that for p = 2 in the RIPCS the spatial error is already not negligible
in this range and becomes all-dominant for additionally smaller time steps taken. It
can be seen on the right that the Hj-error on the velocity and L2-error on the pressure
flattens out whereas the errors from spatial order three continue decreasing with the
same rate. That puts in favor higher polynomial degrees since the error on the same
spatial mesh for moderate time step sizes is minimized.

> p=2: L*errorv - p=2: L*errorv
10-1l> p = 2: H}-error v 1! s p=2: Hj-error v ‘
* p=2: L*error p > p=2: L*error p
| p=3:L*eroru ¥ p=3: L*-error v
107°H o p=3: Hi-errorv| 10-2L= p=23 H{-error v |
-+ p=3: L*error p -+ p=3: L*error p

,’/ Slope 2 o .
’ L7 Slope 2

1071 1073 1072 107! 100 1071 1073 1072 107! 100

Figure 2.7: Errors and convergence rates at final time T=2 for the periodic boundary
condition problem and spatial discretizations Qy/Q1, Q3/Qs, Q4/Q3. Left
part shows the IPCS. Right part shows the RIPCS.

There is no rigorous error analysis of the projection methods for purely periodic bound-
ary conditions. But since in the periodic case no artificial boundary conditions are im-
posed on the pressure, both the standard and rotational formulation are expected to
be fully second order accurate. This is validated for the pressure-correction schemes in
figure 2.7 The error of the RIPCS is slightly lower than the error of the IPCS, but both
schemes have the same convergence rate. It is close to O(At?) in the L:-norm on the
pressure while the rates of the velocity in the L*norm and H}-norm are perfectly of
second order.

The absence of artificial boundary conditions also implies that the error on local mass
conservation is distributed over the interior on the domain. This was shown before in

figure 2.2

2.3.5 Beltrami flow

The Beltrami flow is one of the rare test problems where an exact fully three-dimensional
solution of the Navier-Stokes equations is derived. It has its origin from [ES94] and has
been later studied by [LMWI12]. The domain is Q@ = (—1,1)® and global Dirichlet
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2 Development of a simulation method for incompressible fluid flow

boundary conditions are imposed by the exact solution

vy (z,y, 2, 1) = —ae~ Tt (%% sin(dz + ay) + cos (dy + ax) )

vo(z, Yy, 2, (e cos (dz 4 ay) +e? sin(az+ dx))

—ae‘d b eV cos(az+dx) +sin(dy +azx) e*?)

( )
U3(.T, Y,z t)
2.77

( ) (2.77)

p(z,y, 2,t) = —05a’pe Tt (2 cos (dy + az) e+ sin (dz + ay)
+2e*W+) gin (az +dx) cos(dz+avy)

+2sin(dy+ax) e cos(az+dx) + > + €2 4 227

The Beltrami flow has the property that the velocity and vorticity vectors are aligned,
namely d v — V x v = 0 The source term is given by f = 0, the density, viscosity are set
to p = p = 1. The constants a and d may be chosen arbitrarily and have been set to
a=m/4,d=mn/2 as in [ES94]. Computations were done on a 50 x 50 x 50 cubic mesh.

Figure shows the error and convergence rates as a function of At for the RIPCS.
The green curves show the L2-error for the velocity and the red curves the H}-error
for the velocity obtained by the polynomial degrees p = 2,3. The curves grouped by
the same color are almost identical meaning that the splitting error is dominant in the
measured range of At. It can be concluded from the figure that the error is fully second
order convergent in both norms.
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Figure 2.8: Errors and convergence rates at final time T=0.5 for the Beltrami test prob-
lem using the RIPCS with the spatial discretizations Qs/Q1, Q3/Qs.

2.4 Conclusion - Which method to choose

After the extensive numerical experiments on operator splitting methods, we close this
chapter on a discussion which method to choose.

The choice of time stepping in the viscous substep in all variants of the projection
methods presented here can be among onestep, multistep and IMEX Runge-Kutta meth-
ods. Though linear multistep methods are most easily applied for constant time step
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sizes. Especially a BDF-approximation is required in the pressure Poisson equation for
the consistent splitting schemes, c.f. for the right-hand side. Further it has been
observed that multistep methods such as BDF2 are less stable than Alexander’s second
order method or the Fractional-Step #-method for high Reynolds numbers. In the IMEX
Runge-Kutta method the diffusion is treated implicit and the nonlinear convection term
is treated explicit. This follows from the drastic restriction of the time step size from
the diffusive term based on the Courant number since it scales with h? instead of h
for convective term. Also the explicit treatment of the convective term leads to linear
equations of Helmholtz type. The application of IMEX Runge-Kutta methods did not
provide a stable method for in-time evolution. According to the formula of the convec-
tive flux, F'(v) = v ® v, the matrix P(v,n) is not real diagonalizable for v-n = 0. Hence
the incompressible Navier-Stokes equations are a degenerate hyperbolic system. The
characteristics of degenerate hyperbolic systems is scarcely discussed in the literature.
We think that the case v - n = 0 triggers instabilities if convection is treated explicitly.
In the end we take diagonal implicit Runge-Kutta methods, preferably the Fractional-
Step #-method or Alexander’s second order method. Adaptive time stepping based on
a CFL-criterion is straightforward.

The second order CSS which is fully accurate for global Dirichlet boundary condi-
tions is unstable in presence of outflow boundary conditions if the time step is small.
A behavior that has been also reported in [GMS06]. Hence we choose second-order
pressure-correction schemes, in particular the RIPCS which has superior accuracy over
the IPCS.

Another reason that puts the pressure-correction schemes in favor is the H(div) post-
processing in the projection step. Both variants return a velocity field that satisfies the
discrete continuity equation exactly, and is in consequence locally mass conservative.
As the postprocessed velocity fulfills the discrete continuity equation, those procedures
both define a projection operator. Raviart-Thomas reconstruction of the discrete pres-
sure gradient can also be done in lower order H(div) approximations where local mass
conservation still can be achieved. Raviart-Thomas reconstruction of the full Helmholtz
flux provides in addition a pointwise divergence-free velocity and gives a smoother vi-
sualization of the flow field. Properties that are not given by other discrete Helmholtz
decompositions and also by the consistent splitting schemes.
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3 Solvers, High-Performance and
implementation issues

Based on the development of a simulation method for incompressible fluid flow, this
chapter is devoted to the evolution of the Navier-Stokes Boussinesq system, reducing
complexity in the solution and an efficient implementation to realize high-performance
computations. In the first Section the solvers used across the whole range are
discussed. The Navier-Stokes Boussinesq system is decoupled by means of operator
splitting. The linear and nonlinear solvers for the individual problems that include
elliptic/parabolic partial differential equations are presented next. In Section the
Spectral Discontinuous Galerkin Method and sum-factorization technique are
described. The latter extracts common factors in the tensor product structure present
in SDGM. Development of a code that combines sum-factorization with DG in the lin-
ear /nonlinear and elliptic/parabolic partial differential equations is a major part of this
work. Sum-factorization practice for tensor product bases leads to a significant reduc-
tion of computational complexity in variational form evaluation respective on-the-fly
preconditioned operator evaluation and thereby in the solution of those equations. In
Section [3.3| the performance of the code is investigated. GFLOPs/s and MDOFs/s rates
are measured on main and repeatedly occurring components of the solver which are
variational form evaluation and matrix-free linearized operator application. Test cases
start with a simple affine mesh covering a cuboid where geometry transformations are
cheap and go to more complicated multilinear geometries. Scalability studies of our im-
plementation for a realistic example problem are carried out. Weak and strong scaling
on the BWFORDEYV development cluster in Heidelberg for the 3D Taylor-Green vortex
problem is investigated.

3.1 Solution of the Navier-Stokes Boussinesq system

3.1.1 Linearization in transport and buoyancy

The system ([1.1)- (1.4]) or (1.15])- (1.18]), respectively, has more nonlinearities compared

to the individual problems due to coupling as the advective field is also an unknown for
example. By means of operator splitting it is simplified to a sequence of solutions to
the Navier-Stokes equations and convection-diffusion equations. It is summarized in the

following Algorithm [3.1}
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Algorithm 3.1 Solution approach for the Navier-Stokes Boussinesq system:

Given are (vF,pf) and 0F cf at time t*.

1. Keep 6 fixed in the buoyancy forcing term. Compute (vy ™, pi*!) at time t*+! by
doing one time step AtF+1 = t¥+1 — ¢* on the fully discrete system of

1 1
8tv—§A0+(U-V)v+\Vp=f+9,’§ed—%edxv
V-v=0.

2. Use velocity vy ™! as advection field and compute 07, cf ™ at time t**! by doing

one time step AtFT!l = tF+1 _ ¢k on each discrete formulation of the convection-
diffusion equation

1 k+1 _
0 — 75 A0+ V - (0f10) = 0
1

%¢ ~ Rese

Ac+ V- (vfe) =0

individually.

3. Set k=k+1 and go to 1.

For the Navier-Stokes problem use a fractional stepping technique established in Chap-
ter[2] The scalars are simulated with the spatial discretization presented in [MPBIT]. It
is based on the conservative form of the advection term, so the velocity field vF™ need
not be divergence-free but has to be an element of H(div;€2). Unless an advection field
is used with continuous normal component across the interfaces in a mesh, additional
numerical artifacts are excited in the temperature and concentration field. However the
Raviart-Thomas postprocessing techniques in the projection step meet this requirement
and return a ’UIZ—H that is in H(div;2). Time stepping is fully implicit as in the viscous
substep of Navier-Stokes problem.

Parallel implementation

Before heading to the solution of the subproblems in the operator splitting approach,
we address here in brief the parallelization with domain decomposition. In the first
instance a non-overlapping DG method is used. Decomposition is done on the level of
linear systems. Preconditioners are therefore either inexact additive Schwarz methods
(subdomain solves to be specified) or a hybrid AMG-DG. The latter has been initi-
ated in [BBS12] and recently further developed in [BMMP18]. We also summarize this
preconditioner again below.
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3.1.2 Navier-Stokes viscous substep

All of the discussion held here can be straightforwardly transferred to the method of
lines (MOTI) discretization for the scalars in the Navier-Stokes Boussinesq system. The
difference is that the spatial part is linear there.

Recall the section on temporal discretization of the viscous substep. We have explained
that equations of the form have to be solved for in-time advancement. Such
nonlinear systems are solved here with Newton’s method. Formulated in the space X}
it can be written:

Algorithm 3.2 Solution procedure for the root of R : X} — X} with Newton’s method.

1. Current iterate vj,, compute R(vp). If norm of R(v,) sufficiently small, stop suc-
cessfully.

2. Solve linear system: Find dv, € X7 s.t. R'(vy)ov, = R(vy). R’ is the Fréchet
derivative of R.

3. Update vy, = v, — Adv, with line search parameter \, A = 1 undamped Newton,
and go to 1.

As X7} is finite dimensional an equivalent view passes in the vector space RAMXE) of
coefficients. Still we write R : REm(7) — RImXE)  The Fréchet derivative becomes the
Jacobian matrix € RIMX})xdim(X0) i1y gtep 2.

VZR(Z) = Vz <%Mhz + Biiﬁh(z, tk + 61Atk+1)>
Ol

= WM}L —+ ﬁmAh<Z)
where Aj(z) is the linearized operator of £ (z, t* + 8;At**1) at position 2.

Several types of Newton’s method are well-known that can be used in combina-

tion. The first one being already implicitly formulated in Algorithm [3.2] is to use the
Fréchet derivative/Jacobian, respectively, instead of an approximation to it. Then it
is known that for sufficient regularity in R the undamped Newton method converges
locally quadratic.
Another type are inexact Newton methods where the linear system in step 2 is only solved
with finite and preferably low tolerance. In order to maintain quadratic convergence the
accuracy in each Newton iteration to solve the linear system has to be chosen carefully.
We realize this by setting the accuracy to the quadratic rate of convergence of the last
two residual norms ||R(z)|,. Such an inexact Newton method is initiated by a fixed
linear reduction in the first linear solve.

Finally we arrive at Newton-Krylov and Jacobian-Free Newton-Krylov meth-
ods. In Newton-Krylov, Krylov subspace methods are used to compute a correction in
step 2. This becomes feasible together with the loose tolerance coming from inexact
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Newton methods. The term JFNK is commonly used in the community [KK04]. We use
however the synonym matrix-free for the abbreviation JF. As Krylov solvers, variants
of the GMRes method are used that get restarted after every 20th iteration. Unpre-
conditioned GMRes [SS86] needs an acceptable amount of iterations (in the order of
4 ~ 5 restarts) on structured quadrilateral/hexahedral grids without anisotropies. An
alternative is to use the flexible GMRes method [Saa93| [Saa03] which is formulated in

Algorithm [3.3]

Algorithm 3.3 The flexible GMRes(m) method. If the preconditioner T; is constant
during the iterations then this method is equal to right-preconditioned GMRes.

initial guess (¥, dimension m of the Krylov subspace
compute 70 = b — Az 5 = Hr(o) H2 and v = r©) /5
for 1=1,2,...,mdo
solve T;z(1) = ¢
compute w = Az
for k=1,...,7 do
hii = wTp®)
w=w — hkjiv(k)
end for

hivii = llwl,
plitl) — _w
hit1,i

define upper Hessenberg H; = {hy j }1<k<ji1, 1<j<i> and Z; = [z . 2]
compute Hr(i)”Q = min, H561 — F[Z-sz
if |[r® Hg small enough then
compute y; = argmin, Hﬁel = P_Iiy||2 and 2 = 2 + Z,y,
stop successfully
end if
end for
compute y,, = argmin, H561 - ﬁmsz and ™ = 2O + Z vy,
set (9 « z(™ and go to 1.

If the preconditioner is constant during the iterations then it is equal to right-preconditioned
GMRes. Effects of preconditioning strategies are studied by Taylor expansion in R after
a Newton update:

R(zn — A6z4) = R(24) — AVLR(2) |ozsy, 620 + O(|[624]12) .

A negligible quadratic error in 4z, yields a domain indicator where the linearization
is valid. Moreover R(z,) is the right-hand side in the linear system. With a zero
initial iterate that is used throughout in the Krylov solver it is also the initial defect,
R(zp) — V.R(2) |s=2, 0 = R(2). In right-preconditioning the unpreconditioned and
preconditioned defect are the same for every Krylov iteration. So at the final iterate when
the convergence criterion from inexact Newton is met, the defect is R(2) —V.R(2) |.—.,
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0zp. Consequently, in right-preconditioning the final linear defect at previous Newton
iteration and the nonlinear residual/initial linear defect at current Newton iteration
are equal up to linear order. We observe that this minimizes the amount of Newton
iterations compared to left-preconditioning for instance where the defects depend on the
preconditioner.

In step 2, the traditional approach is to assemble the linearized operator, do opera-
tor applications with matrix-vector products and construct a preconditioner from the
assembled operator. Now in the matrix-free method the linearization point is stored
and operator applications are done on-the-fly. The essential is to have a matrix-free
preconditioner to obtain also a fast convergent iterative method. Those precondition-
ers are inexact additive Schwarz methods with subdomain solves of the type Jacobi,
Gauss-Seidel ([GS) or symmetric Gauss-Seidel ([SGS)). The on-the-fly subdomain solves
are summarized in Section [3.2.6] For a detailed description refer to [BMMPIS].

3.1.3 Pressure Poisson equation

The solution of the Poisson equation for the pressure correction, step i) in Algorithms
- 2.4} is accomplished with the Conjugate Gradient method and a hybrid AMG-DG
preconditioner. The idea of the particular hybrid multigrid preconditioner originated
from [BBS12]. The combination of matrix-free block smoothers and low-order subspace
corrections is described in detail in the subsequent publication [BMMP18] We consider
low-order subspaces spanned by the piecewise constant Qy and conforming piecewise
linear elements Q. The subspace matrix is re-discretized so that the DG operator is not
required for this purpose and the subspace problem is solved using the aggregation based
algebraic multigrid (AMG]) solver described in [Blal(, BIB12]. The computationally
most expensive components in this multigrid algorithm are the operator application and
block-smoothing on the DG level - given by the decomposition in the inexact additive
Schwarz - which are implemented in a matrix-free way.

The Conjugate Gradient method is equipped with the energy error estimator from
[STO05] as a stopping criterion. The quality of the estimation depends on the error-
bandwidth or delay with respect to the previous iterates, see Algorithm for instance.
Also observe that the quantities needed for the estimator are already available through
the Lanczos procedure and thus this does not produce a significant overhead. The rel-
ative norm of the residual is not guaranteed to decrease in the Conjugate Gradient
iterations. As numerical experiments in [BMMP18] indicate: The energy error estima-
tion is more robust which reflects in a monotonic and smooth decrease of the curve
during the iterations. We use an error-bandwidth of 4 as a greater value does not have
a discernible impact on the results.

In case of purely Dirichlet or periodic boundary conditions the matrix in the Poisson
equation for the pressure correction - when discretized in the space Qiil - is rank one de-
ficient. We have for 1 € Q¥™": a(1,q,) = 0 Vg, € QV". Let qs,i € {1,...,dim(QY )},
be a basis of the space Qﬁ_l. Since the basis functions form a partition of unity, the
belonging coefficients vector to the function = 1in Q¥ " is 1 € RAm(@™) | The matrix
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. p—1
(a(qn 5, qhi))iljri(fz " ) in the Poisson equation for the pressure correction is symmetric.
Moreover its kernel is Ker(a(gnj,qn:)) = span{l} and it is positive definite on the
space span{1}+. The well-known relations from linear algebra between the orthogonal

complement of image and kernel, respectively,

Im(Oé(CZhj, th))L = Ker((x(th, qni)),

i (3.1)
Im(a(gn j, 1)) = Ker(alan 5, qn 1))

state that the right-hand side in the Poisson equation needs to fulfill a consistency
requirement in terms of solvability. If the right-hand side has a contribution in direction
to the kernel then there is no solution to the system. In exact arithmetic a breakdown
of unpreconditioned Lanczos recurrence is to happen at some iteration. However, it is

. p—1
easy to check that the right-hand side (b(wp, qn:) — r(qn i; t))?lm(Qh )is in span{1}+:
dim(Q5 1)
> (b(wnygni) = r(gnist) - 1= blwn, 1) — r(1;t)
i=1
= —r(1;t) using Remark [I] on bil. form b
=0 either compatibility cond. on g

for I'P = 9 or periodic boundary conditions. If the consistency requirement is met the
unpreconditioned Conjugate Gradient method passes in the subspace Ker(a(gp j,qni))*
Though care needs to be taken in constructing a preconditioner that returns a correction
in the right subspace and does not destroy desirable properties such as symmetry or
positive definiteness. We assure this by explicitly orthogonalizing to the kernel after
preconditioning. The example of constant null space elimination is included in Algorithm

B4

Algorithm 3.4 The preconditioned Conjugate Gradient method with constant null
space correction and error estimation.

initial guess (@, calculate () = b — Az, delay d for error estimation
solve T2 = (0
orthogonalize to null space z(® = 20 —

po = (10, 20)

(1,z<0))
a1

p© = 20
for i=0,1,... do
¢ = Ap(d
a; = (p(i)7 q(l))
Ai = pia

P Z ) ) g0
solve T2+ = p(+1)

orthogonalize to null space 2+ = 2(+1)
Pi+1 = (r(iﬂ)a Z(Hl))

(1,Z(i+1))
~ oo L
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Bit1 = piv1/ps

P+ = L6+ 1 g ()

save \;p; for error estimation
if i4+1>d then

Gauss quadrature approximation 4/ j;lfd Aepre < ||z — 219 HA

end if
end for

3.2 Sum-factorization

3.2.1 Tensor product Finite Element functions

Upon choosing a basis for Q)f = span(¢y, ..., ¢n,), on a given element E € &, a finite
element function u, € QP is in the span of {¢,(uz'(z))} for j € J. Here the ¢; are the
|J| shape functions on the reference element spanning the polynomials Q, 4. The two
main assumptions for the algorithms developed are:

1. Typically for discontinuous Galerkin we choose global basis functions that have
support in only one element. This implies a disjoint partitioning of the index
set {1,---, N}. Together with an ordering imposed on the elements in &, the
vectors € R and matrices € RV*Nn associated to @F can be written in block
notation. Finally this leads to the so called minimal stencil property, the off-
block-diagonal of a matrix in this notation is only non-zero if two elements share
a face. This property will become crucial later in the construction of matrix-free
preconditioners.

2. The shape functions have tensor product structure,

d
2. 2 . . ACK) /
(&) = OG- 2a) = [T 65 (@) (3.2)
k=1
where J = JW x ... x J@ JE = {1 ... n}, consists of d-tuples enumerating

the shape functions and éj(f) is the one-dimensional basis function number jj in
direction k£ on the reference element.

In principle, the one-dimensional basis can be different for every direction and a different
basis can be chosen for each element (anisotropic hp-refinement).
For the numerical evaluation of integrals quadrature of appropriate order is used:

Léf("%)d”%:fol"'folf(@h“' 2a)diy - - - dig

= Z . Z f (5?, . i(j)) Wiy, ig) + €ITOor. (3.3)

i1€1(1) igel(d)
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Each integral over [0, 1] is approximated by a 1D quadrature rule with points §Z«(:) and
k)

weights wEk ,k=1,--- d, that may be different per direction and per element. In multi-
index notation we have then a quadrature formula with points &g, ... ;,) = (fl(ll) yeen ,fg?)
and weights w, . ;,) = szl wgf) that have tensor product form. i, € I®) = {1,...,m;}

and Z = IM x ... x I is the index set of all quadrature points. As above quadrature
type and quadrature order can be chosen different per element and direction.

However in our implementation the one-dimensional polynomials and quadratures are
chosen to be the same in every direction for all elements, i.e. ny =---=ng=n=p+1
and m; = --- = myg = m but not necessarily m = n. As 1D polynomials we take the
Lagrange polynomials at p + 1 Gauss-Lobatto-Legendre quadrature points. Those are
abbreviated by [GLIl polynomials. The particular non-equidistant Lagrange nodes which
include the end-points of the interval as well ensure that the maximum magnitude of the
polynomials never grows beyond unity even for high degrees. As a demonstration the
GLL basis of degree 3 and 10 with corresponding nodes are displayed in figures [3.1] and
. Quadrature points §Z-(f) and weights wg:) are given by Gauss-Legendre numerical
integration of order ¢ to be specified below. The number of nodes is then m = |¢/2| +1.
Both the GLL polynomials and quadrature formula are transformed to the 1D reference
element [0, 1].

Figure 3.1: Shape of all GLL basis polynomials for degree p = 3 transformed to the unit
interval [0,1]. Depicted are also the distribution of Lagrange nodes on the
X-axis.
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Figure 3.2: Shape of all GLL basis polynomials for degree p = 10 transformed to the
unit interval [0, 1]. Depicted are also the distribution of Lagrange nodes on
the x-axis.
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3.2.2 Geometry maps as Finite Element functions

In this subsection we want to review formulas for transformation of volume and surface
integrals that arise in the DG-discretization for the Navier-Stokes Boussinesq system.
Together with exploiting tensor-product structure on geometry maps we head for an effi-
cient implementation of the quantities encoding geometrical information. It has already
been implicitly stated by the shape of the mesh elements at the beginning of Section
that up € Qi qa % -+ x Q14 VE € &, i.e. pug is a multilinear transformation from the
reference cube E to E. Special cases that require a separate consideration in terms of
efficient implementation are:

(1) pg being affine linear: Vyug(#) is constant for all # € E. E has the shape of a
parallelepiped in R¢.

(2) pup being further an axi-parallel transformation: Vyg(#) is a constant diagonal
matrix for all # € E. F has the shape of a rectangle or a rectangular cuboid. A
square/cube is a special case where @,u £(Z) is even a multiple of the identity matrix.

Some more notation is needed to describe the evaluation of face integrals. The embed-
ding of face e into E'™* E* is described by maps n™text : ¢ — E of the corresponding
reference elements such that p Emt ext(¢) O = 11, holds. The maps ™" : é — E map
coordinate number ¢ € {1,. — 1} in ¢ to coordinate number 7i"*xt(q) € {1,...,d}
in E. We may extend the map 7Tmt ot to {1,...,d} by requiring 7"*t(d) to be the
unique coordinate number that face é is perpendlcular to in the embedded E Thereby
mintext jg a permutation of {1,...,d} and the numbers m"*(q), q € {1,. — 1} are
referred to as the tangential dzrectzons in E. This implies an extension of the map nntext

to é x {0} and the normal component can take the values nmtfftext ( d)( ) € {0,1}. Finally,

since faces in the volume reference element are axis- parallel “the component

int,ext ) int,ext ~ int,ext ~
int,ex = i S) = ; S
(77@ ( ) ﬂ_lent,e t (q) ne,ﬂ_;nt,ext (q) ( ) 776771_16[)';,6)(': (q) ( q)

is a function of one variable and in absence of hanging nodes it is even an isometry.
The following formulas with respect to change of coordinates can be found in [Guel5),
AE04] and also hold for diffeomorphic pp.

e Transformation of volume measures: The volume measure in F at z and in £ at
T are related by integration with substitution:

dz = | det Vie(Z)

d . (3.4)

e Transformation of surface measures: The surface measure in e at s = p.($) and in
¢ at § are given by

ds = \/det(we(g)Twe(g))dg . (3.5)

Note that the Jacobian of the map g, is a rectangular matrix, ?,ue(§) € R¥x(d-1)
Therefore the transformation is accomplished by the quantity Vue(§)TV,ue( )
RE-1x(@=1) that is referred to as the surface metric tensor.
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We want to give a sketch of the proof for in R®. It is known from analysis
and differential geometry that Vi (8)e; and Vi (8)es, here er,e; € R2, form
tangent vectors at fi.(8) to the hypersurface parametrized by .. Now let us write
for brevity columnwise Vpo(3) = [a,b] € R3*2. An object that measures the
infinitesimal area at each point on the hypersurface can be calculated in terms of
the cross-product @ue(é)el X @ue(é)eQ = a x b. The square of the integration
element can be recast to Euclidean scalar products and norms:

2 2 2 .
lla x Bll; = llall; [[bll; sin® 0

= llallz lIbl; (1 = cos®6)

a2 (1= et
= a _—
N S P

2 17012 2
= [lally |6ll; = |a- 0" .

On the other hand consider the surface metric tensor:
T T T
ST | @ | aa a'b
V6 0) = | 4 [ la = | Gt Gy |
= det(Vie(3)" Vie(8)) = (a"a)(b"b) — (a"b)
which finishes the sketch of proof. O

Transformation of tangent vectors: Let & € dE and t(2) be a unit tangent vector
on OF at 2. Then

t(r) = Vup()i(2) (3.6)
is tangent on OF at @ = ug(z).

Transformation of normal vector: Let & € dE and n(z) be the unit outward normal
vector on OF at 2. Then

n(r) = Vup(@) (@) (3.7)

is an outward normal vector on OF at = ug(z).

It can be immediately seen that n(z) and ¢(x) are orthogonal to each other. Out-
ward normal vector on e with respect to E™™ and tangent vectors can be computed
by the geometrical information on the inside cell with the outward normal n and
t on the corresponding face on E that are easily known. This has advantages over
using the map p.. The problem is not the computation of tangent vectors on e
that are the columns of V. (3) but the construction of the outer normal. Espe-
cially in three dimensions the order of column vectors in @ue(§) need to be chosen
carefully for the cross product. It depends on the orientation of tangent vectors
on e with respect to E™ and requires also geometry and embedding information
with respect to the inside cell.
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e Transformation of surface measures on 0F: The surface measures on OF at x and
on OF at & are related as follows:

ds = | det Vug(2) (2) Th(z

(3.8)

e Relation of surface measures on OF to the surface metric tensor: If the embedding

map 7" is an isometry (exterior case can be treated similar), then for & = n"*(3)

\/det (Vie(3)TVpe(3)) = | det V(i (3.9)

|VME Tﬁ(i)

B

and the transformation weight in (3.5)) can be replaced.

Identity together with , are very important since the transformation
of surface integrals can be expressed by using only quantities attached to adjacent
cells. For instance the computation of an outer normal vector by can be
reused on the right-hand side of . Therein the Jacobian inverse transposed is
calculated via inversion of the Jacobian for which closed formulas exist in 2D and
3D. Such type of inversion requires the determinant of the Jacobian that can also
be reused in the transformation weight .

Now let us go back to multilinear transformations and investigate how those can be
implemented efficiently with amongst others sum-factorization. We also point out to
savings in the affine linear case and axi-parallel case. The idea is motivated that corners
of the quadrilateral/hexahedral element F can inexpensively be obtained in the
grid implementations considered. Hence let a corner of an element E be denoted by

V(E, k) = pg(k) for k € {0,1}7. (3.10)

Compare with the construction of reference elements in 1D, 2D and 3D in figure [A2.1]
Further let a corner of the face e be denoted by

Ve k) = pe(k) for k € {0,1}4°1 . (3.11)

Choosing equidistant Lagrange polynomials with nodes at the end points 0 and 1 as
one-dimensional basis functions, a Lagrange basis of (@1 4 can be built whose nodes are
the 2¢ corners of E. We name those functions q)j = q)(]l,,_dd) € Qua, J1,---,Ja € {0,1}.
The numbering of this basis is given by the lexicographic numbering of the corners in
the 1D/2D/3D reference element, respectively, c.f. figure . Then the coefficient of
basis function j is given by the image of the j-th corner in F under ug. Eventually the
map g can be expressed as

Z V ]17 S 7jd)) &)(jl,...,jd)(ii') . (312)

J1yeJa=0
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The global coordinate x € FE is interpreted as a vector-valued finite element function,
similar to the velocity ansatz space. Obviously the Jacobian has the expansion

1

Vip(@) = Y V(E (i.---.Ja) ® V.0 (@) - (3.13)

Owing to both identities , global coordinates and Jacobian of a multilinear
geometry map can be evaluated efficiently using sum-factorization, as we will see in the
next subsection.

In the affine linear case it is # = Bg& + bg with By € R™4 by € RY both not
depending on . As F is a parallelepiped it is sufficient to request for the corners

V(E,(0,0,0)) = bg

V(E,(1,0,0)) = Bge; + b
V(E,(0,1,0)) = Bges + b
V(E,(0,0,1)) = Bges + b

. . . . ~ d A~ A~
in three dimensions. Then writing & = Y7, ;e;, we have for BgZ

Bpi = & <V(E, (1,0,0)) — V(E, (0,0, 0))) v :zQ(V(E, (0,1,0)) — V(E, (0,0, 0)))
+ :zg(wE, (0,0,1)) — V(E, (0,0,0))) (3.14)

The factors grouped by Z; are called the extents of the parallelepiped and make up
the i-th column of the Jacobian Vyug(z). The global coordinate can consequently be
expressed as

v =V(E,(0,0,0)) + &1 (V(E, (1,0,0)) = V(E, (0,0,0)))
+ @(V(E, (0,1,0)) — V(E, (0,0, 0))) + iy (V(E, (0,0,1)) — V(E, (0,0, 0))) .
(3.15)

In contrast to the general multilinear case the global coordinate x € E can be calculated
instead by fused-multiply-add operations with the extents. The Jacobian is sufficed to
compute once per cell. The two-dimensional case can be derived analogously.

If further pp describes an axi-parallel transformation, only the corners V(E, (0,0,0))
and V(E,(1,1,1)) have to be requested as E is an axis-aligned rectangular cuboid in
three dimensions. The extents for the parallelepiped can be retrieved as

V(E,(1,0,0)) — V(E, (0,0,0)) = (61 ® 61> (V(E, (1,1,1)) — V(E, (0,0, 0)))

V(E, (0,1,0)) — V(E, (0,0,0)) = (62 ® 62) (V(E, (1,1,1)) - V(E, (0,0,0)))
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V(E, (0,0,1)) — V(E, (0,0,0)) = (eg ® eg> (V(E, (1,1,1)) — V(E, (0,0, 0)))

such that (3.15) simplifies to
z=V(E,(0,0,0)) + e - (V(E, (1,1,1)) — V(E, (0,0, 0))) Frer +es (V(E, (1,1,1))

—V(E, (0,0, 0))) Baes + €3 (V(E, (1,1,1)) — V(E, (0,0, 0))) #es

(3.16)
and to
Vip(i) = diag(V(E, (1,1,1)) — V(E, (0,0, 0))) . (3.17)

3.2.3 Start-up examples

In the previous two subsections we have briefly introduced tensor product finite elements,
expressed geometry maps in terms of tensor product finite elements and pointed out there
the use of sum-factorization. Here we want to demonstrate sum-factorization in the
finite element solution. The evaluation of volume and face integrals in the finite element
discretization is carried out in three consecutive steps. This procedure is explained in
simple examples.

Volume integrals Consider the volume integral

(un, @)oo = Z (Un; 9ok -

Ee&y

As usual in the finite element approach the per-element summand (uy, ¢)o g is trans-
formed to the reference element E for all ¢ with support on E:

| n(@)6; (@)
(0 d)\ 2 1 d
~ Z s Z Un (gi(l)? e 751‘(d)> Dj1eeia) <£z‘(1)7 e 751‘2)) Wix,...ia) V(i,....ia) (3.18)

eI igel(@

det Vup(2)|dz, jeJ

where

2 d
’Y(z} ,,,,, id) = ‘detv/’LE<€Z(ll)77€Z(d))’

is the Jacobian determinant evaluated at quadrature points. The computation of the
quantity (3.18) is done in three stages.

Stage 1 1y is evaluated at all quadrature points exploiting tensor product structure.
The local coefficients vector is interpreted as a rank d tensor x(j, ;.-

— (1) (d) (d) (1)
Y(ir,...sia) = Un <§i1 7"'7§id ) = Z Z Aid,jd .“"Ai17j1x(j1 ..... Jd)

ja€J(d jreJ@)
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The matrices A%, = é](:) (55?) contain the 1D basis functions evaluated at the 1D

1k ]k
quadrature points. This step can be done efficiently using sum-factorization which re-

duces the point evaluations to a sequence of d matrix-vector products with tensor ro-
tations in between. The tensor rotations are required to have the ordering (iy,...,1iq)
in the multiindex consistent with the orientation in the volume reference element. Note
that 74, i, can be evaluated with the same exploitation if the multilinear formula
(3.13) is chosen. Otherwise the Jacobian and its determinant are computed once per

cell, Equation (3.14]) and (3.17)).

Stage 2 In the quadrature loop multiply with weights and geometry transformations -
compute componentwise r; = y;w;y; Vi € L.

Stage 3 Finish quadrature, multiply with all local basis functions qgj, 1€ J.

A0 B
Z Z Azd ga 11 jlr(il,...,id) = (3.18

igel(d) i1er®

This has the same abstract structure as Stage 1. In the sum-factorization we use the
transpose of the matrices Alk o
Face integrals Now consider the surface integral ([up], [¢])o. on a face e. Let us choose
basis functions ¢ that have only support on E™(e). In the finite element approach the
integral is transformed to the reference face element with the hypersurface parameteri-
zation fi.:

(funl, [0 = (fusl, ¢int>oe
= [ (O (8)) — (2 (3))) 6y (8))y et (Ve (8)T Ve (9))ds

for j € J. If n™ is an isometry, the hypersurface map can be moreover avoided by
means of Equation (3.9))

— j /\lnt 1nt ext( gxt( ))) ]( 1nt ‘detV,uEmt( (,§))‘
HvﬂEmt 1nt(8)> TTL( 1nt H ds .

For the sake of clarity we will concentrate on the interior part of the jump operator and
apply quadrature in the style of (3.3):

S > (e ) b (A ED )

i€l ig_1 €Id=1)

W(iy,nig—1) V(it,eesia—1) - (319)

V(ir,ig_1) 18 the rank (d — 1) tensor containing the transformation weights at all face
quadrature points. As in a volume integral the computation is split in three consecutive
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stages.

~int

Stage 1 Evaluate u;" at all face quadrature points exploiting tensor product structure.
The local coefﬁments vector is still interpreted as a rank d tensor.

. pint [, int (1) (d-1)
Y(irseia—) *= Up <77@ (57,1 R RN P )
_ (1) (d-1) @ . A
- Z T Z Bll g1t Bid—lvjd—lBidvjdx(]ﬂ_ént*1(1)7"'7]7Tént*1(d))
LeJERE W) e g i)

Here we introduced the matrices that contain the 1D basis functions evaluated at the 1D
quadrature points in the (d — 1)-dimensional tensor product quadrature on the reference
face - and as a last factor the endpoints of the interval (0, 1) since the local basis functions
are defined on the reference element.
A(ﬂ'ient(k)) int k)) k
R Mmk)(lk» 1<k<d,j,eJm ()zke[()

ik A(rint(d . (rin(d))
O (g (0) R =do e JE@) G 1
Again this step can be done efficiently using sum-factorization by a sequence of d matrix-
vector products with tensor rotations in between. To achieve optimal complexity the
normal direction is done first. The output y,,. ., ,) of stage 1 is consistent with the
orientation in the face reference element. Furtherrnore Us** is processed the same way
and also the tensor 7,....i,_,) When given by the multilinear formula (3.13).

Stage 2 In the quadrature loop multiply with weights and geometry transformations -
compute componentwise r; = y;wyy; Vi € 1M x ... x I Y The exterior contribution
from Stage 1 is calculated in the same go.

Stage 3 Finish quadrature, multiply with all local basis functions éj, jeJ.

B (1) _
Z ’ Z Zd:] wint (q) ’Ld 1, mint (g 1) o Bil:jﬁiSnt(Ur(Zl’“"(Ld*l) - 319

ig_1 €I(d=1) i1eI()

Again this has the same abstract structure as Stage 1. In the sum-factorization we use
the transpose of the matrices Bz(f)% To achieve optimal complexity the normal direction

is done last.

3.2.4 Variational form evaluation

For the rest of this section, focus is on the fully discretized viscous substep. Novel-
ties compared to the application of sum-factorization in the linear convection-diffusion
equation are: Nonlinearities and a system of equations. The latter application has been
discussed in [MPBI17]| before in detail and covers here the evolution of passive/active
scalars, respectively, and the pressure Poisson equation. Parameter functions as the ad-
vective velocity field or the continuity equation on the right-hand side of pressure Poisson
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- that are given by finite element functions as well - can also be directly evaluated using
sum-factorization.

Integration over volume elements and faces is done with Gauss-Legendre quadrature
which is optimal/minimal in the number of nodes in order to fulfill the given accuracy.
Quadrature order in the viscous substep is chosen to be at least ¢ = 3p so that the
number of points per coordinate direction is m = [3p/2| + 1. In the remaining problems
of the operator splitting approach quadrature order is chosen to be at least ¢ = 2p so
that the number of points per coordinate direction here is m = |2p/2] +1 = p+1. Both
quadrature orders are exact for the corresponding variational forms on affine cells and
avoid aliasing effects due to inexact quadrature. On non-affine meshes order is increased
by a constant qu,qq > 0.

The basis set for the velocity space is straightforwardly constructed from the basis
of the space Q. We set {¢1,...,0an,} = {ques}Nh’ . Where e is the canonical basis
vector in the s-th direction. The basis functions are sorted in interleaved ordering.
Given an element F € &, each in the system associated to this element is mapped
contiguously into one block. Now the matrices and vectors in this ordering look formally
the same as in the partitioning for Q7 such that the number of blocks is equal but their
size is larger.

We have seen in the Sections|2.2.5] - 3.1.2/that the nonlinear residual evaluation requires
computations of the form (A¢F+1)~ a”Mhzh + Biiln(zn, t* + 8;AtFTL) (note that we
have silently dropped the mdex mdlcatmg the stage from now on). Testing in this
expression with functions ¢; = ¢;e, and using the ansatz ¢; = ¢;e; leads to a set of
d equations of convection-diffusion type for the velocity components (recall that e.g.
(¢35, ¥i)o.a = (¢4, Pi)o.adrs and a(w;, ;) = a(g;, ¢i)drs). The belonging variational forms
in the space @ are evaluated efficiently using sum-factorization in three steps per mesh
entity, c.f. start-up examples in Section [3.2.3] A detailed description of this procedure
can furthermore be found in [MPBI7]. Algorithm summarizes the computations
done for the viscous substep.

Algorithm 3.5 Variational form evaluation p(vs,p)oq and a(vs, ) + pc(vn, p) +
b(p, pX) Yy in basis set of X7

for F in ordered &, do
(1) Compute o0y, Vi, and ﬁh* for all quadrature points on corresp. E
(2) Compute coefficients at all quadrature points
(3) Compute p(vn, 9)o.e and ag(vn, @) + pee(vn, @) + be(e, b))
for all basis functions ¢ with support on E
for e € '™ N OF and e not treated yet do
(4) Compute omt et Vit Voot and pi Jo itk ext
for all quadrature points on correspondlng e
( 5) Compute coefficients at all quadrature points
( 6) Compute Gint.e(vh, ™) + peint.c(Vn, P") + bing,o (", i)
for all basis functions ™, ¢** with support on E™(e), E®**(e)
( 7) Mark e as treated
end for

int,ext
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for e € (TP UTY)NOE do
(' 8) Compute o™, Voirt and pi ™
for all quadrature points on corresponding é
( 9) Compute coefficients at all quadrature points
(10) Compute arp (vn, @) + perp o (vn, ) + pepx o(vn, @) + brp (0, D)
for all basis functions ¢ with support on E
end for
end for

As said steps (1), (4), (8) in algorithm are calculated per velocity component:
i, Vg, for i € {1,...,d}. Since {¢ | supp(e) C E} = {¢e, for r € {1,....d} |
supp(¢) C E}, steps (3), (6), (10) in algorithm are calculated per test functions
¢. The explicit pressure contribution and buoyancy forcing term if required in step
(1), are also evaluated using sum-factorization. The optimizations with respect to high-
performance computations presented in [MPBI7] are incorporated into the code. In
particular for the viscous substep: In stage 1, ¥;p, @ﬁi,h are collected into one SIMD
vector instruction for ¢ € {1,...,d}. In 3D this gives fully loaded AVX2 registers. In
stage 2, the quadrature loop is calculated in parallel using the same vector instructions.
Finally, stage 3 is repeated d times with different input tensors coming from stage 2. For
each (scalar) basis function ¢, V¢ is gathered into one SIMD vector instruction. The
sequence of matrix-matrix computations is completed by a horizontal-add in order to
accumulate a test function and its gradient into the same residual entry.

3.2.5 Matrix-free linearized operator application

The solution of the linearized systems in Newton’s method requires operator applications
of the form (Atk“)_laiiMh(Szh + BiiAn(21)02, with linearization point z;, and input dzy,
c.f. Section [3.1.2] At the finite element level the linearized operator can be expressed as
a Fréchet derivative of the variational form. Hence let a’(vy, ) be the Fréchet derivative
of a(vy, ) with respect to vy, for ¢ € X}. If the variational form is linear in vy, then
the application of the Fréchet derivative to an element of the space can be written in
terms of the original operator. For example a': a'(vp, @)ovy, = a(dvy, ). Similarly for
the mass term. In that case we are back in the setting of [MPBI7], Algorithm 1.

Algorithm presents the linearized operator application of the viscous substep. As
for the variational form evaluation in steps (1), (4), (8) the linearization point is calcu-
lated per component - and besides the input for the operator application: d9; , @&%ﬁ for
i€ {1,...,d}. Steps (3), (6), (10) are calculated per test functions ¢ since {¢ | supp(yp) C
E} = {¢e, forr € {1,...,d} | supp(¢) C E}. Recall the high-performance optimizations
for the form evaluation with respect to stages 1, 2 and 3 in sum-factorization that are
also found in here.

Algorithm 3.6 Matrix-free linearized operator application p(dvp,¢)on and
a' (vp, p)ovy, + pc (vg, p)ovy, Y in basis set of X}

for E in ordered &, do
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(1) Compute linearization point vy, Vi, and input 09y, Voo,
for all quadrature points on corresponding E
(2) Compute coefficients at all quadrature points
(3) Compute p(dvp, ©)o.r and a’y(vs, p)ovy + pcy(vh, ©)ovn,
action of Fréchet derivatives for all ¢ with support on F
for e € '™ N OF and e not treated yet do
( 4) Compute linearization point 5™, 5¢X*, Vo' Vet and input
SOIM | 502 VoI Vot for all quadrature points on corresp. é
( 5) Compute coefficients at all quadrature points
( 6) Compute aly, (vh, G™1)50, + pel (01, P™) 50y,
action of Fréchet derivatives for all basis functions @™t ¢
with support on E'™(e), E™(e)
( 7) Mark e as treated
end for
fore e (TP UTY)NOF do
( 8) Compute linearization point 4, Vi™ and input 61", Voo
for all quadrature points on corresponding é
( 9) Compute coefficients at all quadrature points
(10) Comp. arp  (vn, ©)ovn + perp (0n, 9)00n + pepn (Vn, )0V,
action of Fréchet derivatives for all ¢ with support on F
end for
end for

ext

3.2.6 Matrix-free preconditioning

Let Ty, (zy,) denote a preconditioner to the linearized operator (Atk“) _1aiiM ntBiAn(zn).
In preconditioned Krylov subspace methods it is required to compute T} (zp,) 10z, for
inputs dz,. Now, in the matrix-free approach, the preconditioner inverse application is
to happen on-the-fly without assembling the linearized operator. We consider T} (z)
to be either a block Jacobi, block GS or block SGS approximation. Utilization as
a subdomain solve in an inexact additive Schwarz preconditioner is straightforward by
restriction. Following the block partitioning of the velocity function space, let A, (z) =
L(zn) + Di(2zn) + Un(2) be decomposed into the strictly lower block triangular part
Lp(zp), the block diagonal Dy(z5) and the strictly upper block triangular part Uy(zp).
M, (z) is already block diagonal with the choice of support in the basis functions. The
action of Tj,(2;) ™! involves solutions with the block diagonal (Atk“) _10L,;,;Mh+[37;,;Dh(zh)
that can be carried out per block independently due to the disjoint partitioning of the
index set. We recapitulate the three implementations used to solve with the block
diagonal:

1. Matrix-based (MX]I) The traditional approach is to assemble the full linearized
operator, do operator applications with matrix-vector products and realize the
preconditioner from the assembled operator by amongst others storing the LU-
factorization of the diagonal blocks.
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2. Partially matrix-free (PME]) In this approach the operator application and the
application of the off-block-diagonal elements in the GS and SGS process are done
matrix-free. Only the block diagonal of the linearized operator is assembled to
store the LU-factorization per element.

3. Matrix-free (MF]) As in the partially matrix-free variant the operator and off-
block-diagonal applications are done matrix-free. The diagonal blocks are inverted
iteratively in a local matrix-free solver. This requires on-the-fly applications of the
diagonal blocks.

For all three items the optimizations discussed in Sections are utilized, though
the focus is on the last two items.

Local solvers and the block Jacobi method

In the PMF variant the systems associated to the blocks of (Atk+1)_laiiMh + Bii Dn(21)
are solved with the previously set up LU-factorization. It requires in addition not only
the action of the local Fréchet derivatives but their explicit setup.

In the MF variant we choose BICGSTAB as a element-local solver. It is a Krylov
subspace method with a short recurrence of operator applications that is suited for non-
symmetric diagonal blocks as well. Algorithm contains the computations needed to
apply Mpoz, and Dy(zp,)0z, on-the-fly in order to realize such a BICGSTAB solver. Note
that nevertheless both traces of the linearization point on a face need to be computed.
Also all interior faces are visited twice, thus the application of the block diagonal has
the same proportion as a full operator application. Several such local applications are
needed per cell in the iterative inversion and therefore it has the computationally most
expensive operations part of the outer Krylov solver. A fast inversion is desirable and
to speed up the convergence of the local matrix-free solver a point Jacobi preconditioner
is used which requires therefore the explicit point diagonal assembly in the linearized
operator. The results in [BMMPI8] already demonstrate that a loose tolerance in the
iterative inversion is sufficient. Here we stop the BiCGSTAB solver after a relative
reduction of 107 in the defect norm is achieved. This does not deteriorate the number
of outer iterations in flexible GMRes and puts the approach in a competitive spot.

For structured isotropic quadrilateral /hexahedral meshes local BICGSTAB is observed
to require 4 ~ 5 iterations per average which corresponds - owing to our implementation
- to twice as many block diagonal applications. It outperforms the PMF variant espe-
cially for high polynomial degrees of the ansatz space. However the number of average
local BiCGSTAB iterations grows significantly in presence of strong anisotropies in the
elements even for the mesh still being structured. On such grids where the aspect ratio
of elements can become greater than 10, the PMF variant is eventually faster in terms
of total time and time per iteration within the outer Krylov loop. The same conclusion
has been obtained when solving the SPE10 test case in [BMMP18]. Recall that the
LU-factorizations are reused for every preconditioned operator application. In partic-
ular for the viscous substep: The block or point diagonal for the Jacobi, GS or SGS
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preconditioner setup are computed even once per time step and reused over multiple
invocations of Newton’s method therein.

Algorithm 3.7 Matrix-free application of the block diagonal contributions M0z, and
Dy,(2z1,)02;, on the finite element level Vi in basis set of X7.

for E in ordered &, do
(1) Compute linearization point vy, Vi, and input 09y, Voo,
for all quadrature points on corresponding E
(2) Compute coefficients at all quadrature points
(3) Compute p(dvn, p)o.r and az (v, @)dvs + pcp(vn, @),
action of Fréchet derivatives for all ¢ with support on £
for e e T N OF do
(4) Compute linearization point 0}, 0, Vot Vst and input
H0Int VHoin® for all quadrature points on corresp. é
(5) Compute coefficients at all quadrature points
(6) Compute ay, (vh, @OV + pely (v, ™3P,
action of Fréchet derivatives for all basis functions @™
with support on E™(e)
end for
fore € (TP UTY)NOF do
(7) Compute linearization point ¢, Vo™ and input 00, Vit
for all quadrature points on corresponding é
(8) Compute coefficients at all quadrature points
(9) Comp. alp (0n, P)0vn + pcrp  (Un, P)00n + e (O, )T,
action of Fréchet derivatives for all » with supf)ort on
end for
end for

Block Gauss-Seidel and symmetric block Gauss-Seidel

As recap for the GS iteration and in the light of developing MF and PMF variants,
consider for simplicity the matrix M, + AtA,(z,). With some initial guess 52,&0) and
right-hand side d;, compute perpetually

-1
02 = 62 4 (W (M), + AtDy(21)) + AtLy (1)) (dn — (M + AtAy(24))02," ) .
h h h

The GS preconditioning process is retrieved as one iteration with zero initial vector.
One such iteration can be transformed to the solution with the diagonal blocks post
to application of off-block-diagonals Lh(zh)éz,(LkH) and Uh(zh)éz}(f). Due to the disjoint
partitioning of the index set, 62,(;“) can be manipulated in place by a forward substitu-
tion to obtain 5z,(f+l). Now with respect to the on-the-fly application the two crucial
assumptions from Section [3.2.1] come into play. The minimal stencil property allows us
to compute these contributions per block row as the integrals over all faces surrounding
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the associated E. Compare with Steps (1)-(3) in Algorithm [3.8/ The lower triangular
solve in the GS process is accomplished by the forward iteration through the ordered
mesh elements.

Algorithm 3.8 Matrix-free off-block-diagonals application Lh(zh)ézéﬂl), Uh(zh)ézf(f) in
a forward substitution followed by a local solve. This implements a partially matrix-free
or matrix-free GS process, respectively.

for E obtained by forward iteration in ordered &, do
for e € ™ N OF do
(1) Compute linearization point o, 5, Vit Vi and input
S0, @(5@2’“ for all quadrature points on corresp. é
(2) Compute coefficients at all quadrature points
(3) Compute ajy . (vn, P )OVE™ + pciyg (U, )OIV,
action of Fréchet derivatives for all basis functions ™
with support on E™(e)
(4) Subtract these contributions from local defect dj, g
end for
(5) Solve local system with the help of e.g. Steps (1)-(9) in Algorithm [3.7on E
(6) Update 0z, g
end for

Owing to our discussion GS is not significantly more expensive than a Jacobi iteration
since the time-dominating part is the solution with the diagonal blocks. The correspond-
ing backward GS is obtained by reverse iteration in ordered &,. It can be shown that one
matrix-free SGS process is equivalent to a forward GS iteration followed by a backward
sweep.

3.3 High-Performance implementation tests

We have realized the numerical scheme outlined in the Sections 2.1} 2.2] and B.IF B.2]
within the PDELab [BHMI0] finite element framework which is based on the Dune
framework [BBDT0§|. By design, Dune and PDELab are very general and allow for dif-
ferent mesh types and general discretizations. This flexibility sacrifices - to some extent -
performance for generality and in order to obtain a high-performance implementation of
our sum-factorized DG assembly, we had to redesign parts of the underlying framework.
One part that was crucial for the performance of our code is the implementation of a sep-
arate assembler tailored to DG. Like other general-purpose finite element discretization
frameworks, PDELab by default uses a temporary buffer to gather all degrees of free-
dom associated with a single element contiguously into memory before processing the
element computations. Likewise, the computational results associated with one element
are stored in a buffer and then scattered to corresponding locations in the global data
structure. While this cannot be avoided for continuous Galerkin methods, the gather
and scatter operations are not necessary in DG where the global data may already be
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arranged contiguously in memory. In fact due to our assumptions on the support of basis
functions and an ordering imposed on the mesh elements, the index set of the has
a disjoint partitioning. We thus extended PDELab with a DG-specific code path that
exploits this block structure of DG problems avoiding any superfluous copy operations.

Another part is to exploit local parallelism of modern CPU architectures by using
SIMD vector instructions in the three stages of sum-factorization. For a detailed de-
scription thereof we refer to [MPB17]. Our implementation precomputes and caches
the values of one-dimensional polynomials and their derivatives used to build the tensor
product bases for Q, 4 and Q,_; 4. It also does so for the local coordinates and weights of
the d-dimensional and (d — 1)-dimensional tensor product quadrature rule. This allows
to use a flat iteration space during the quadrature loops instead of a nested iteration to
reconstruct the multiindex.

3.3.1 Floating-point operations and solution time throughput

Two measures are used here to evaluate the performance of our implementation: (1)
Floating-point operations per second expressed as GFLOPs/s and given as a percentage
of the machine’s maximum floating-point performance. (2) Degrees of freedom per
second processed during a full variational form evaluation and matrix-free linearized
operator application. Numbers are given in MDOFs/s - note that we prefer this measure
over its inverse (time per degree of freedom) because a higher value yields a faster
throughput. Good results on the latter measure are always more important from the
application point of view, as it gives an accurate level of how fast a real problem can be
solved. However, the former is still an interesting measure that allows reasoning about
how good a code is suited for a given hardware and how much of the theoretical peak
performance is actually reached. For this benchmark methodology we are concerned
with Intel Haswell processors offering the AVX2 instruction set which operates on four
double-precision floating-point numbers in parallel. We therefore use the wrapper type
from [Fogl7] that overloads the common arithmetic operators from single- and double-
precision for the AVX2 instruction set. Our compute node is equipped with two 16-core
Intel Xeon E5-2698 v3 sockets. The peak floating-point performance of this processor
is decomposed into its frequency, AVX2 parallelism and 2 fused multiply-add (FMA)
instructions per cycle. This gives a theoretical rate of 30.4 GFLOPs/s per core and thus
972.8 GFLOPs/s on a fully loaded node.

In order to give accurate numbers on floating-point operations per second, the number
of performed floating-point operations needs to be measured exactly. We exploit the fact
that we are within the PDELab discretization framework which uses C++-templates
to the extent that we can replace the underlying floating-point type throughout all
our simulation. Instead of using double and the wrapper type Vec4d from [Fogl7],
respectively, we use a custom templated type which has overloads for all arithmetic
operations that increase a global counter and forward the operation to the underlying
type. This counting of course introduces a non-negligible performance overhead. We
therefore compile different executables from the same source for (1) the benchmark
run and time measurement only on the outermost PDELab call, (2) fine-grained time
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measurement and (3) operation counting. Apart from counting operations, accurate
time measurements are needed. We instrument our code with C macros to start and
stop high resolution timers using the std: : chrono library.

It is important as well to achieve performance of the code with problems of different
computational intensity. We therefore have implemented separate code paths for axi-
parallel, affine and multilinear geometry transformations pug. Those code paths are
based on the formulas (3.16)- (3.17) for axi-parallel transformations, ([3.14)- for
affine linear transformations and (3.12])- for multilinear transformations. Recall
that on an element E for the last code path sum-factorization is employed. Furthermore
it is possible to enable/disable evaluations of the right-hand side f, the buoyancy and
Coriolis forcing term at compile time depending on the problem.

We are going to focus on GFLOPs/s and MDOFs/s rates attained in the viscous
substep. In particular the full variational form evaluation,

1
—MhZh + ,Ch(Zh, At) s (320)
At
c.f. Algorithm [3.5] and matrix-free linearized operator application,
1
EMhézh + Ah(zh)ézh s (321)

c.f. Algorithm [3.6], that are both repeatedly required in implicit time-stepping. Note
that M), and L, (zp, t) are defined below . Therein the parameter functions f and g
are constructed from rational functions of the type 1/(14||z|2) where each component is
scaled differently in the enumerator, and shifted in space such that the maximum is not
always at = 0. The same construction is made for the velocity field v(x) and pressure
p(z) which are then L*-interpolated to obtain v, € X} and ph* € Qf;l. Thereby the
linearization point zj is given by v, = Zj]j{l zp, j; and the input for operator application
by 025 = 2. Bach core of the node has the computational domain Q = (0,1)* with 20
cells per coordinate direction for this first benchmark. Quadrature order is chosen to be
q = 3p. A realistic setting where such calculations occur would be the 3D Taylor-Green
vortex, Section or the 3D turbulent channel flow, Section [4.6]

Figure [3.3 and show throughput and floating-point performance of our implemen-
tation for the DG-discretization pairs Q,/Q,-1, 2 < p < 7. The curves grouped by
the blue color show the results on affine, axi-parallel cells. The curves grouped by the
green color show the results on cells expressed as multilinear geometries. Results are
presented for a fully loaded node, 2x Xeon E5-2698 v3, where each core has the same
workload of 20 cells per direction. We observe that given a sufficiently high polyno-
mial degree, our code hits the flopbound regime. Matrix-free operator application for
affine, axi-parallel transformations performs best in terms of GFLOPs/s rates. 50% of
machine’s peak capability is reached. For the multilinear code path it is expected that
more work per DOF needs to be done. Also the floating-point performance falls to in
between 40 — 50%. In the case of axi-parallel cells, only d FLOPs are needed to set up
@HE(.%) once per cell and further d FMA operations to calculate the global coordinate
r = pp(Z) using vector math units which is cheaper than the cost of sum-factorized
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Matrix-free linearized operator application
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Figure 3.3: Floating-point performance in GFLOPs/s and throughput in MDOFs/s for
full linearized operator application in the viscous substep. Measurements
for multilinear (green curve) and affine, axi-parallel (blue curve) geometry
transformations refer to a fully loaded node, 2x Intel Xeon E5-2698 v3.

Variational form evaluation
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Figure 3.4: Floating-point performance in GFLOPs/s and throughput in MDOFs/s for
variational form evaluation in the viscous substep. Measurements for multi-
linear (green curve) and affine, axi-parallel (blue curve) geometry transfor-
mations refer to a fully loaded node, 2x Intel Xeon E5-2698 v3.

evaluation of these quantities. For the variational form evaluation we measure perfor-
mance for the same two cases. The curves compared to the upper figure [3.3] only differ
by an offset in the vertical direction, for both the left and right part. The GFLOPs/s
rates measured on operator application are higher whereas the MDOFs/s throughput
measured on variational form evaluation is then higher. The latter achieves a rate of
384 MDOFs/s for p = 3 in the axi-parallel case. This effect can be explained by the
difference with respect to algorithmic complexity. While both procedures compute the
linearization point v, € X7, on-the-fly operator application requires the evaluation of
input dv, € X} as a vector-valued finite element function. In contrast variational form
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evaluation computes the explicit pressure p: € fol which is part of £, in Equation
1) ph* is a scalar-valued finite element function by one polynomial degree lower than
ovp, which grasps the difference in algorithmic complexity.

The second benchmark uses a fully multilinear grid on a non-cuboid computational
domain. The setting arises in the 3D flow over a 2D periodic hill. This benchmark
is extensively described in [QNE13] and further referenced by [Wan09]. It has been part
of the problem collection for the international workshop on High-Order CFD Methods
(HiOCFEDI) until the third edition, [Perl5]. The domain € is obtained by deformation
of a host Q2 = (0,9) x (0,3) x (0,4.5) such that the crest is located at the outflow plane
in streamwise direction and the hill is periodically continued from the opposite inflow
plane. We use here however a simpler parameterization of the hill than proposed in
[QNE13] which is given by

z =0+ C(3— i) [1 + tanh (B(|;z=1 Al B))] es 1€Q i€ (3.22)

with the constants A = 4.5, B = 3.5, C = 1/6 as in [Nekl7]. A Qi-approximation to
the target domain is depicted in figure . The host grid for Q) has 20 cuboid cells per
direction and the deformed vertices are precomputed by the map . Each multilinear
geometry transformation is then built from the stored vertices.
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Figure 3.5: Benchmark multilinear grid for the GFLOPs/s and MDOFs/s measurements.
Number of cells are 203. The deformation represents a coarse approximation
to the two-dimensional periodic hill flow.

Figure [3.6] and show throughput and floating-point performance of the multilinear
code path for the DG-discretization pairs Q,/Q,—1, 2 < p < 7. The curves are colored
in green in order to link to the corresponding measurements presented in figure [3.3| and
.4l Note here the suitably rescaled y-axes in both plots though. We observe that for
the lowest polynomial degrees an overhead of the underlying grid implementation is
present as performance results drop by ~ 1 GFLOPs/s/core and ~ 1 MDOFs/s/core,
respectively. For increasing polynomial degrees this overhead becomes negligible. Our
code hits the flopbound regime, and from p = 7 onwards the results converge to the rates
depicted above. Differences between on-the-fly operator application and variational form
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evaluation with respect to GFLOPs/s and MDOFs/s are furthermore consistent with
the above cases and have been already discussed. Notably for matrix-free operator
application (examine left part of figure , 40% of the theoretical peak is still achieved

on this multilinear grid manager.

Matrix-free linearized operator application
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Figure 3.6: Floating-point performance in GFLOPs/s and throughput in MDOFs/s on
a multilinear grid for linearized operator application in the viscous substep.
Measurements refer to a fully loaded node, 2x Intel Xeon E5-2698 v3.

Variational form evaluation
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Figure 3.7: Floating-point performance in GFLOPs/s and throughput in MDOFs/s on
a multilinear grid for variational form evaluation in the viscous substep.
Measurements refer to a fully loaded node, 2x Intel Xeon E5-2698 v3.

The last benchmark uses another fully multilinear grid that is provided by the grid
manager from the finite element code UG. This grid manager is able to handle unstruc-
tured meshes with triangular and quadrilateral elements in 2D, and with tetrahedral
and hexahedral elements in 3D. Functionality in DUNE exists to read files in the Gmsh
[GR0O9] mesh generator format, which are processed for storage within the UG grid man-
ager. Hence this test case shows the performance of our code for a broader class of
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applications with complex geometries involved. The measurement setup here is mo-
tivated by the three-dimensional flow around a cylinder obstacle, a well-studied CFD
problem that we summarize in Section [4.3 The domain is discretized with 8448 hexa-
hedral elements and is displayed in figure [3.8] For a fair comparison the workload size
per core is approximately equal to the size of the previous two benchmarks (8000 cells).

Figure 3.8: Multilinear grid for benchmarking GFLOPs/s and MDOF's/s rates using the
grid manager UG. The number of cells (8448) is chosen to reach the count for
the previous two benchmarks (8000).

Figure[3.9and show throughput and floating-point performance of the multilinear
code path achieved with the UG grid manager. As above results for the DG-discretization
pairs Q,/Q,_1, 2 < p < 7, are shown. We use the same range for the y-axes as in the
previous test case to provide an easier comparison. There is no significant difference to
the performance curves in figure and 3.7 We observe that for the lowest polynomial
degrees an overhead of the underlying grid implementation is again present. Compared
to the previous grid manager, performance measures drop further by a minor fraction of
~ 0.5 GFLOPs/s/core and ~ 0.5 MDOFs/s/core. This overhead becomes negligible as
the polynomial degree increases, and eventually differences in the rates to the above test
cases tend to vanish (from p = 7 onwards). Still we are able to reach on this grid manager,
40% of machine’s theoretical peak for matrix-free linearized operator application (c.f.

left part of figure [3.9).
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Matrix-free linearized operator application

400 F-

GFLOPs /s

-3

3 1 5 6
polynomial degree p

~1
—_
()

1 2 3 4 5 6
polynomial degree p

Figure 3.9: Floating-point performance in GFLOPs/s and throughput in MDOFs/s on
a multilinear grid managed by UG. The curves show the result of linearized
operator application in the viscous substep for a fully loaded node, 2x Intel
Xeon E5-2698 v3.

Variational form evaluation
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Figure 3.10: Floating-point performance in GFLOPs/s and throughput in MDOFs/s on
a multilinear grid managed by UG. The curves show the result of variational
form evaluation in the viscous substep for a fully loaded node, 2x Intel Xeon

E5-2698 v3.
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3.3.2 Scalability tests

In this subsection we investigate the scalability of our implementation for a realistic
example problem on the BWFORDEV development cluster in Heidelberg. The cluster
is equipped with 416 nodes of Intel Haswell E5-2630 v3 16 core processors, 64 GiB/node,
connected by QDR Infiniband. Weak and strong scaling is tested on the 3D Taylor-
Green vortex problem. The description to the problem is postponed to Section [4.5]
We nevertheless want to give some details of the benchmark setup: The fractional step
technique is the RIPCS[2.2.3] where the computationally dominant parts are the viscous
substep (step 1 in this section) and the pressure Poisson equation (first part of step 2).
The remainder are the projection step (second part of step 2) which is here unlike
Section given by Helmholtz-flux H (div) reconstruction in RTffl and the divergence
correction in the rotational formulation (step 3). Both leave only a (block-) diagonal
system to solve.

Run times are measured per viscous substep and entire fractional step. Time-stepping
is done with the two-stage diagonal implicit Runge-Kutta method from Alexander, Ap-
pendix [A.5.2] Each nonlinear equation is solved JFNK and flexible GMRes as a linear
solver. Here, both the MF and PMF variant of a Gauss-Seidel iteration are tested as
subdomain solvers for weak scaling. The solver for the pressure Poisson equation is
made from the Conjugate Gradient method with energy error estimation and null space
correction, Algorithm [3.4] It is preconditioned by a hybrid AMG-DG. On the DG level,
block smoothing per subdomain is carried out with one symmetric Gauss-Seidel sweep
of the PMF variant. The subspace to this is spanned by the conforming piecewise linear
elements Qp, the corresponding matrix is rediscretized and a further hierarchy is built
from the aggregation based AMG. Number of pre-/post-smoothing steps on all levels
are set to one.

Figure |3.11| and [3.12] show the efficiency of weakly scaling the Taylor-Green vortex
problem for p = 3 with 16 cells/core from 1 to 384 nodes of the cluster. The DOFs
per core is ~ 800000, number of unknowns in Raviart-Thomas postprocessing are not
counted. The total number of DOF's on 6144 cores in weak scaling is therefore ~ 5.51 -
10°. As our implicit Navier-Stokes solver is essentially made up of local computations
and the time step is calibrated to have the Courant number Cr ~ 0.2, we expect the
mostly flat efficiency curve observed in our measurements. However at larger problem
sizes communication jitter increases as the program starts to span more of the cluster’s
communication infrastructure which can be seen in the standard deviations from the
mean times for both the viscous substep and entire operator splitting. Furthermore
we observe a performance degradation for the maximum number of nodes in the total
RIPCS which is absent in the viscous substep. The number of unknowns in the internal
AMG implementation are repartitioned to one core once the DOFs per processor are
too low for further coarsening. Now post to this accumulation, for the largest number
of cores (6144) a multigrid hierarchy is still constructed on one rank. This causes the
sequential part of the parallel multigrid algorithm to become more pronounced and is
therefore visible in the efficiency curve. Successive accumulation to fewer processors was
regrettably dysfunctional at the time of benchmarking.
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16 33.336 36.15141.356 41.798 44.672£1.357
96 35.342 35.7214+0.826 43.988 44.401£0.914
288 37.362 37.384+0.010 50.413 50.66240.125
576 40.145 40.165+0.014 51.301 51.442+0.107
768 40.651 40.666=0.006 51.796 52.001+0.133
1536 42.495 43.013£1.784 58.078 99.835%3.345
3072 40.510 40.986£1.178 56.068 57.520+2.218
6144 42.786 44.48142.941 83.594 87.324£5.222

Figure 3.11: Efficiency and run times for the matrix-free viscous substep solver and the
entire operator splitting on IWR compute cluster (416 nodes with 2 x E5-
2630 v3 each, 64 GiB/node, QDR infiniband). The plot is based on the
fastest times, mean values show a large amount of jitter as seen in the
table.

The results of our strong scalability benchmarks are shown in figure and [3.14]
For the discretization Q,/Q,_1 with p = 2,3, we are able to measure scalability from
12 to 6144 cores on up to 384 nodes. Across this range, the number of cells per core
shrinks from 24 x 24 x 16 to 3 x 3 x 2, which corresponds to 1602 or 3942 DOF's per
core at 6144 cores, respectively. For the pair Q,/Q,_; with p = 5 however, we measure
scalability from 32 to 6144 cores. In this case the number of cells per core shrinks from
12 x 12 x 24 to 3 x 3 x 2, which corresponds to 13914 DOF's per core at 6144 cores.
For these small working sets, scalability suffers mostly because our implementation is
currently not able to overlap computation and halo communication, which can be seen
in more details in the tables below.
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16 33.335 33.463+0.628 42.133 42.265+0.626
96 34.090 34.102£0.007 42.824 42.926£0.069
288 36.163 36.284£0.530 49.268 49.664£0.543
o976 35.355 35.527+0.489 46.776 47.054+0.464
768 35.479 36.064+2.392 46.754 47.903+3.762
1536 38.393 39.570+3.833 04.495 06.486+4.889
3072 36.700 36.975+0.772 53.050 53.8174+1.093
6144 42.698 44.197+1.980 84.748 87.986£4.400

Figure 3.12: Efficiency and run times for the partially matrix-free viscous substep solver
and the entire operator splitting on IWR compute cluster (416 nodes with
2 x E5-2630 v3 each, 64 GiB/node, QDR infiniband). The plot is based on
the fastest times, mean values show a large amount of jitter as seen in the
table.
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Figure 3.13: Run times and efficiencies of strong scaling for the matrix-free viscous sub-
step solver on IWR compute cluster (416 nodes with 2 x E5-2630 v3 each,
64 GiB/node, QDR infiniband). Shown are the polynomial degrees p = 2,3
in the discretization pair Q,/Q,_;. The solid black line shows the slope of
ideal strong scaling.
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Figure 3.14: Run times and efficiency of strong scaling for the matrix-free viscous substep
solver on IWR compute cluster (416 nodes with 2 x E5-2630 v3 each, 64
GiB/node, QDR infiniband). Shown is the polynomial degree p =5 in the
discretization pair Q,/Q,_;. The solid black line shows the slope of ideal
strong scaling.
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4 Simulations of incompressible fluid
flow

The last two chapters were focused on a numerical method for incompressible fluid flow,
and its implementation using the Spectral Discontinuous Galerkin Method (SDGM]) re-
spective solution of the arising systems. In this chapter we give a description of numerical
simulations performed on types of incompressible flow that have been introduced to some
extent in Chapter [I] In Section we present a setup of two-dimensional mixing layer
turbulence. In the next section together with number [£.4] we move on to turbulence
in buoyancy driven flows with vertical heating in two and three space dimensions, re-
spectively. In Section we are concerned with the flow around a cylinder obstacle,
in particular the formation of a turbulent wake behind it. In Section we are go-
ing to consider the 3D Taylor-Green vortex as an example of decaying Homogeneous
Isotropic Turbulence (HITJ). results are compared to reference quantities which
are available to the public, likewise the behavior of our method in underresolved tur-
bulence. Further and related to that topic, we investigate the spectral distribution of
kinetic energy. Mainly we are interested in the appearance of a power law in the inertial
subrange followed by a rapid decay of the spectrum. A comparison is made between
the numerically determined power exponent and the outcome of [K41] theory. Another
example situation of turbulence is described in Section - the case of boundary layer
turbulence between two parallel flat plates. An extension to this configuration is given
in Section where we propose a model for numerical study of surface renewal (SRI)
effect in the Atmospheric Boundary Layer (ABL). The proposed model is then analyzed
with the methodology summarized in Chapter [I, Movement of coherent structures in
surface renewal are detected by structure functions and concentration cross-sections.

4.1 2D Mixing layer turbulence

Mixing layer turbulence arises in the setting of either two fluids at different height with
opposing velocities and possibly different densities or a single fluid with such a velocity
difference. In the interface across the velocity difference a shear zone is created with
high vorticity which is zero away from the interface. The flow is stably stratified with
the lighter layer uppermost. However above a critical Reynolds number, small verti-
cal perturbations in the shear zone cause the configuration to mix up and transition
to turbulence. From the thin vorticity band several vortex roll-ups are observed which
are responsible for the well-known shape of the Kelvin-Helmholtz instability. As an in-
compressible Navier-Stokes problem, mixing layer turbulence is modeled with constant
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density and an initial velocity field that exhibits a shear zone. As a two-dimensional
flow it has been investigated recently in [SS12] ISTL 18] in great detail.

The simulation parameters for the Kelvin-Helmholtz instability are based on the pub-
lications mentioned above. As a domain we take Q = (0,1)? with periodic boundary
conditions in all directions and no external forcing, f = 0. The initial velocity field is
another double shear zone with a smooth transition:

€1 =

tanh(30(z2 — 0.75)) , else (4.1)

vo(z) - e2 = esin(4mxy) .

(@) -1 = {tanh(30(0.25 — 1)), <05

The bottommost layer up to xo ~ 0.25 characterizes a flow in positive z;-direction with
unit magnitude, the intermediate layer 0.25 < zo 5 0.75 a flow in negative z;-direction
with unit magnitude and the uppermost layer is identical to the bottommost one. A small
sinusoidal perturbation is added to the vertical component with magnitude € = 1072.
A wavenumber of two with respect to the horizontal extent triggers the most unstable
modes within linear perturbation theory, recall Section We consider further the
evolution of two different tracers in this stratification that get advected either in positive
x1-direction or negative xi-direction. Therefore a passive scalar is chosen with a double-
valued initial condition and smooth transition in the shear zones:

1 tanh —0.2 3 <0.
CO(I):{2 anh(30(z; — 0.25)) + 3, 2, < 0.5 (42)

1tanh(30(0.75 — z5)) + 2, else

so that 1 < co(z) < 2. The fluid parameters are set to p = 1, u = 107%, Sc = 1. The
Reynolds number is then Re = 1 and the Peclet number also has the value 10*. Compu-
tations have been done on a 512 x 512 equidistant rectangular mesh. Polynomial degree
for velocity and passive scalar ansatz spaces is p = 3 and p — 1 = 2 for the pressure.
The variant of the discrete solenoidal projection operator is given by pressure Poisson
H(div) reconstruction in RT}. The Navier-Stokes equations are advanced in time with
the RIPCS. Temporal discretization of the viscous substep is done with Alexander’s sec-
ond order method. The systems arising therein are solved with JENK where the flexible
GMRes method is used. The subdomain solves in the additive Schwarz preconditioner
are carried out with the partially matrix-free variant of one symmetric Gauss-Seidel it-
eration. The initial time step is At! = 5. 107, otherwise the time step is calibrated
by a fixed Cr,q = 0.5 where the Courant number is estimated by means of Equation
and the corresponding explanation in Appendix[A.2] The mixing layer problem
is simulated up to time T = 20, sizes in the range At ~ 7-10~* and therefore number
of time steps ~ 29000.

Two time snapshots in the Kelvin-Helmholtz instability are displayed in figure [4.1}
The left column shows the distribution of the passive scalar during vortex during onset
and nicely demonstrates the formation of Kelvin-Helmholtz billows. The bottom row
shows the vortex roll-up at later times where sharp fronts of high and low concentration
are already nested within each other that are well resolved by the spatial discretization.
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4.2 2D Rayleigh-Bénard convection

Figure 4.1: Passive scalar distribution and Asg-criterion of the velocity field in Kelvin-
Helmholtz instability. Two different time snapshots grouped by row. Left
column shows passive scalar concentration. Right column shows the Ao-
criterion where regions of low values are displayed by bluish colors.

The right column shows the distribution of the As-criterion. It is seen that it is able
to capture the rolls in mixing layer turbulence indicated by regions of low values and
the ribs which are the tails of the minima. At later times which is not shown here, the
vortices then pair to larger and larger vortices until finally one vortex remains. Such an
inverse energy cascade from small to large scales is characteristic for two-dimensional
high Reynolds number flows. Three-dimensional flows cannot reorganize themselves into
large structures.

4.2 2D Rayleigh-Bénard convection

Rayleigh-Bénard convection is modeled within a vertically heated thin cavity. The bot-
tom boundary is hot and the top boundary is cold so the buoyancy effect of rising warm
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4 Simulations of incompressible fluid flow

fluid is balanced by gravity acting downward. Such problems in two dimensions have
been studied before for example in [DHOT09, [CGS02, [ESW14]. If the temperature gra-
dient is in vertical direction, below a critical Rayleigh number a quiescent steady state
will be taken. In this case the temperature decreases linearly in height and is solely
balanced by the pressure gradient. In fact the horizontally stratified configuration, c.f.
Equation for the specific choice of boundary conditions below, is a solution for all
Rayleigh numbers. However above a critical Rayleigh number this equilibrium solution
is not stable and the system will pass over to time-periodic solutions. In this regime the
fluid circulates in attached regions between the lower and upper plate that are referred
to as steady Rayleigh-Bénard convection rolls.

The choice of domain is Q = (0,8) x (0,1) with periodic boundary conditions in
x1-direction and Dirichlet boundary conditions at the lower and upper plate. No-slip
conditions are imposed for the velocity on the Dirichlet boundary. The temperature is
held constant to 0.0 on the top/cold boundary and to 1.0 on the bottom/hot boundary.
The flow is driven by the buoyancy forcing term with no additional external forcing,
f = 0. The analytical solution describing the quiescent steady state is (d = 2, 3)

1 1
v(x):(), p<x):__$62i+xd_§7

2
There is no convection, a parabolic profile in the pressure that balances the linear tem-
perature decrease. Isosurfaces are parallel to the lower and upper plate.

The simulation is initiated by vo(z) = 0 and a temperature field which is zero apart
from a thin layer at the hot boundary. This layer is perturbed in the middle in order to
accelerate the onset of instabilities. We set Ra = 10°, Pr = 1 which gives Re = 1000.
Computations have been done on a 320 x 40 equidistant rectangular mesh. Polynomial
degree for velocity and active scalar ansatz spaces is p = 3 and p—1 = 2 for the pressure.
Consequently the pressure dependency in Equation is in the ansatz space for the
discrete pressure. The temperature profile is contained in the piecewise linear polynomial
space @}, though a polynomial degree equal to the velocity space balances the spatial
approximation order in the momentum equation. The variant of the discrete solenoidal
projection operator is given by pressure Poisson H(div) reconstruction in RT}L. The
Navier-Stokes equations are advanced in time with the RIPCS. Temporal discretization
of the viscous substep is done with Alexander’s second order method. The systems
arising therein are solved with JFNK where unpreconditioned GMRes is used. The
time step is kept constant at At = 1072. The Rayleigh-Bénard convection problem is
simulated up to time 7" = 80 with 8000 time steps taken.

Two time snapshots of the temperature field are displayed in figure [£.2] Surface Line
Integral Convolution (LIC]) has been added which is a streamlines visualization technique
of the velocity field. Our choice of the Rayleigh number is even a couple of magnitudes
larger than the critical value which causes the formation of unstable upward fingers in a
unpredictable way as can be seen in the upper part of figure The two-dimensional
system transitions then to a chaotic motion but eventually reorganizes itself to quasi
steady-state convection rolls. This is different to the three-dimensional counterpart as
we will see in Section [4.4]

O(z)=1—xz4. (4.3)
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4.3 3D Flow around cylinder

Figure 4.2: Visualization of two-dimensional Rayleigh-Bénard convection with Ra = 10°
and Re = 1000. Two time snapshots of temperature distribution shaded
by Surface LIC with the velocity field. Upper part shows the onset of in-
stabilities by upward rising finger of warm fluid. Bottom part shows the
reorganization of the two-dimensional flow to quasi steady convection rolls
at later times.

4.3 3D Flow around cylinder

Flow around a cylinder originates from the two-dimensional setting where a disc is placed
slightly asymmetric with respect to the middle of the channel. The three-dimensional
problem is obtained by spanwise extrusion in xs-direction and has been investigated in
[Nab98, BMTTI] [Joh05] for example. Configuration with measures of the channel and
the cylindrical obstacle are displayed in figure No slip boundary conditions are
imposed except from the inflow plane where a parabolic profile is prescribed, and except
from the outflow plane where the condition is imposed. The flow is only driven by
the parabolic profile

mae S0 (Z min(t, 4)) [To, 22=e . if 2 € 9Q and 21 = 0
o) = {u sin (Zmin(¢, 4)) [T, =45 er, ifzedand x, (4.4)

0, else

with no additional forcing, f = 0. As an initial velocity field let vg(x) = 0. The Reynolds
number Re = 2 is defined via the diameter D of the cylinder and the mean inflow
velocity v at ;1 = 0. U can be calculated by the normalized surface integral

1 H 0H
U= ﬁj;] J;) Ul(O,ZCQ,(L'g)dZL'Qde'g

4 (H ?
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4

= ZUmaz -
9

Together with the diameter D = 0.1 we then obtain for the Reynolds number

2
Re = — s - 4.5
ST (45)
putflow bound
L=12
0.16
T Y
(0, H,0) D=0
0.1 0.1
: T2
T
. H=041 _
inflow plane
xs3
(0,0,0) (0,0, H)T

Figure 4.3: Computational setup for the three-dimensional flow around a cylindrical ob-
stacle. Shown are the choice of coordinates and the measures of the channel
and obstacle.

For laminar flows a periodic wake behind the obstacle is observed, a phenomenon which
is called the von Kdrman vortex street. In contrast to the two-dimensional setting, there
is no vortex shedding behind the cylinder for Re = 100, [Joh05]. If wpe = 2.25 is
chosen, the formula further simplifies to Re = 1/10v. With v = 2-10~* we obtain
a Reynolds number of 500 which exhibits already irregular patterns in the wake. The
mesh of the coarsest level consists of 320 hexahedra and is displayed in figure [4.4] From
boundary layer theory, the thickness of linear decrease from maximum velocity to zero
is determined by ~ D/ vRe where D is the diameter of the object to circulate around.
With our choice of parameters this quantity is equal to 0.00447 which is in the same
order of magnitude as 0.0025, the meshing width of the coarse grid on the boundary
layer in radial direction. The size of the elements behind the obstacle on the coarsest
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Figure 4.4: Coarse mesh for 3D flow around cylinder which consists of 320 hexahedra.
Anisotropic cells have been placed to account for the boundary layer on
the obstacle. The mesh is equidistantly extruded with four hexahedra in
xs-direction.

level however is too coarse to resolve the wake zone. For the computations the mesh
has been refined three levels so that the number of hexahedra is 163840. This problem
tests the handle of complex geometries (i.e. non-affine geometries) in our spectral DG
code. Through the grid manager in DUNE the mesh is treated as an unstructured
grid and each cell is treated as a multilinear map from the reference element. Global
coordinates and Jacobian are calculated by Equations — and no shortcuts
are taken as in an affine transformation. Also the ability of discretization and solvers
to handle high aspect ratio cells - already indicated by the coarsest mesh in figure
- are tested. We take polynomial degree p = 3 for the velocity ansatz space and
p — 1 = 2 for the pressure. The variant of the discrete solenoidal projection operator is
given by Helmholtz-flux H(div) reconstruction in RT;. Recall that the Piola transform
here is evaluated per quadrature point. Time advancement is realized with the RIPCS
and Alexander’s second order method within the viscous substep. The equations in
the viscous substep are solved with JFNK, as a linear solver flexible GMRes is used.
The subdomain solves in the additive Schwarz preconditioner are accomplished with the
partially matrix-free (PME]) variant of one Gauss-Seidel iteration. The initial time step
is At! = 5-107*. The remaining time steps are calibrated by a fixed Cr,,q, = 1.0 where
the Courant number is estimated by means of Equation (and the corresponding
explanation in Appendix such that during warm-up of the inflow they also never
exceed the maximum At,,,, = 5-1073. Eventually the problem has been simulated up
to time T' = 7.

The resulting flow field at two time snapshots is displayed in figure [£.5 Formation
of first tongues in the wake with hairpin vortices at the end can be seen in the upper
part. Such regions are characterized by low velocity magnitude as indicated by the
cross-section on the right. This snapshot represents the time ¢t = 2.16 and confines the
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4 Simulations of incompressible fluid flow

time window of transition from laminar flow to creation of vortices at Re = 500. At
later times vortex shedding behind the obstacle is observed which is demonstrated in
the bottom part for time ¢ = 4.76. Note further that from the boundary of the channel,
coherent structures evolve which are also identified as vortex cores by normalized helicity
H,, being close to */- 1 (in red/blue color). Such creation of vortex tubes with high
respective low helicity are visible through disturbance of the low-velocity thin boundary
layer on the two-dimensional cut, c.f. bottom right of figure. The channel length is
chosen 1.21 so that the base drag from the obstacle is still noticeable at the outflow
plane. Hence regions of backward-facing velocity vectors with respect to the mean
streamwise direction get a correction from the DDN contribution.

Figure 4.5: Flow field in vortex shedding behind a cylinder obstacle at Re = 500. Shown
are the Ag-criterion colored by the helicity H,, (left) and distribution of veloc-
ity magnitude on the cross-section x3 = 0.23 (right). Upper snapshot taken
at time t = 2.16, lower snapshot at time t = 4.76.

Streamlines starting from the inflow plane at time ¢t = 4.9 are depicted in figure [4.6]
The set of curves are colored by the velocity magnitude and do not only show swirling
of the field behind the cylinder but also on the boundary of the channel. An effect that
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4.4 3D Rayleigh-Bénard convection

Figure 4.6: Visualization of three-dimensional flow around a cylinder with Re = 500.
Shown are the streamlines colored by velocity magnitude at time ¢ = 4.9.

we have already recognized above in terms of coherent vortex cores.

4.4 3D Rayleigh-Bénard convection

The three-dimensional Rayleigh-Bénard configuration is constructed from the two-dimen-
sional counterpart by spanwise extension. The domain is = (0, 8) x (0, 8) x (0, 1) with
periodic boundary conditions in x1- and xs-direction, here x5 being the vertical direction
to the lower and upper plate. No-slip boundary conditions for the velocity are imposed
on both plates and the temperature is held constant to 0.0 at the top, constant to 1.0
at the bottom. The initial condition in the Navier-Stokes Boussinesq system are the
zero velocity field, the initial temperature perturbation is placed at the bottom center.
Rayleigh, Prandtl and thus Reynolds number are adopted from the two-dimensional
problem. Computations have been done on a 105 x 105 x 14 equidistant cuboid mesh.
Polynomial degree for velocity and active scalar ansatz spaces is p =3 and p —1 = 2
for the pressure. The variant of the discrete solenoidal projection operator is given by
pressure Poisson H(div) reconstruction in RT}. The temporal evolution in the Navier-
Stokes subproblem is realized with the RIPCS and Alexander’s second order method
within the viscous substep. The appearing systems are solved with JENK and the linear
solver from the two-dimensional configuration is utilized. Time steps are kept constant
at At = 5-1073 and the simulation has been carried out with 30000 time steps up to
T = 150.

The horizontal cross section of the temperature field for three time snapshots at height
x3 = 0.85 are displayed in figure [£.7] As in the two-dimensional case the onset of insta-
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bilities is caused by upward rising fingers of warm fluid. After transition to turbulence,
when the system has reached a statistical equilibrium, large islands of warm fluid (in red
color) moving to the top that are separated by sharp thin valleys of cold fluid (in blue
color) are visible in all three time snapshots collected in figure In contrast to two
dimensions those observed patterns evolve chaotically in time and no quasi steady-state
convection rolls are recaptured.

Figure 4.7: Visualization of three-dimensional Rayleigh-Bénard convection with Ra =
10% and Re = 1000. Shown is the temperature field on a horizontal cross
section for three time snapshots at height z3 = 0.85. All three time snapshots
have been taken after the system has reached a statistical equilibrium in
turbulence. Visible are patterns resembling to large islands of warm fluid (in
red color) separated by sharp thin valleys of cold fluid (in blue color) that
evolve chaotically in time.

4.5 3D Taylor-Green vortex

The three-dimensional Taylor-Green vortex is aimed at testing the accuracy and per-
formance of high-order methods in a DNS. The flow starts from a simple large scale
initial condition. In the early phase it undergoes vortex stretching until laminar break-
down before the maximum dissipation of the fluid is reached. The flow then transitions
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4.5 3D Taylor-Green vortex

to turbulence followed by a decay phase of eventually Homogeneous Isotropic Turbu-
lence (HIT). The problem originates from [T'G37] where classes of sinusoidal fields
were considered as an initial condition that satisfy the continuity equation V -v = 0. It
has been proposed as a reference benchmark since the first edition of the international
workshop on High-Order CFD Methods (HIOCFDI) and is quoted in [Tay13], C3.5, for
instance. Recall the fundamentally different two-dimensional Taylor-Green vortex which
possesses the exact solution that describes a steady in space, exponential decay
in time, of the initial vortex distribution.

The simulation domain is = (==L, 7L)3 with periodic boundary conditions in all
directions and no external forcing, f = 0. The initial flow field is given by

vo(x) - g = Vpsin <%) cos (%) cos (%)

vo(z) - eg = —=Vj cos <%> sin (%) cos (%) (4.6)

vo(z)-e3=0

po(x) = po + polxgﬁ (cos (%) + cos (%)) (Cos (2§3> + 2) . (4.7)

The Reynolds number of the flow here is defined as Re = ”OVOL . As in the references
[Tay13, LMWI2] weset L=1, Vo =1, po=p=1, po =0, Re 1600. Computations
have been done on a series of umformly refined, equ1dlstant cuboid meshes. We present
here only results for the polynomial degree p = 3 of the velocity ansatz space and
p — 1 = 2 of pressure. The variant of the discrete solenoidal projection operator is
given by pressure Poisson H(div) reconstruction in RT},. The incompressible Taylor-
Green vortex problem is advanced in time with the RIPCS and Alexander’s second
order method in the viscous substep. The arising systems therein are solved with JENK
and flexible GMRes as a linear solver. Subdomain solves on the equidistantly isotropic
meshes here are the matrix-free variant of one Gauss-Seidel iteration.

The finest mesh for the computation with the Q3/Q, discretization consists of 1283
cuboid cells. Based on the convective time unit t. = V%? the simulation ranges over the
time interval ty) = 0 up to T' = 30t. which is by 10¢. longer than the suggested reference
duration. Time steps are kept constant at At = 5-1073 ¢, yielding an estimated Courant
number of Cr,,., ~ 0.25 around t ~ 8t.. In total 6000 time steps are taken with about
4.6 - 10® spatial DOFs partitioned to 16% = 4096 processors. This DNS amongst other
runs are computed on the BWFORDEV development cluster in Heidelberg. Figure
shows the evolution of the resulting velocity field. Arising turbulent structures are
captured by the Q-criterion colored with the normalized helicity H,,. The upper left part
shows the vortex distribution given by initial condition (4.6). The upper right picture
shows the flow field at ¢ = 9¢.., around the maximum dissipation rate of the fluid, where
small scale structures start to develop. Such structures are identified as vortex cores
with helicity H, being close to +/- 1 (depicted in red/blue color) and are further visible
in bottom left snapshot at time ¢ = 12¢.. Both snapshots demonstrate the phase of
decaying homogeneous turbulence for ¢ 2 9¢. yet here non isotropic. Finally the bottom
right part visualizes decaying HIT at time t = 25t¢..
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Time: Ot, Time: 9t

Time: 12t, A Time: 25t,

Figure 4.8: Visualization of the three-dimensional Taylor-Green vortex at Re = 1600 on
the finest mesh level. Utilized are the ()-criterion colored by the helicity H,.
Added are also the times of the corresponding snapshots.

We now compare the results to the reference values that contain the temporal evolution
of the

1
pol€2|

e kinetic energy E(t) =
ible fluids,

%(pv, v)o.0, equal to Equation (1.59) in for incompress-

e dissipation rate €(t) = 15 (Vv, Vu)oa,
e enstrophy £(t) = ﬁ%(pg ,()o,o which differs for incompressible fluids from Equa-
tion ({1.21]) by normalizing with the integration volume.

The reference solution was obtained with a dealiased pseudo-spectral code run on a 5123
grid, time integration was performed with a low-storage three-step Runge-Kutta scheme
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4.5 3D Taylor-Green vortex

an a time step of At = 1073¢t,, but only up to time ¢t = 20¢,. A comparison with those
three quantities is presented in figure 4.9, The values computed on the finest mesh
give a good agreement with the reference. The resulting kinetic energy and dissipation
rate curves are colored in green and look almost indistinguishable with respect to the
blue reference curves. Further those quantities are connected through the relation
which holds on the continuous level. Therefore deviations from the equalities indicate
discrete dissipation and divergence errors in a numerical scheme. Differences in our
results over time between €(t) and —dﬁit) computed with the central difference quotient
in the interior, are similar to the reference dissipation rate. A zoomed-in plot around
the maximum amount of dissipation can be found in the top right. Besides the L2-error
over time ¢ty = 0 until 30¢. of the computed €(t) — 2vE(t) on the finest level is in the
order of 9.077 - 10~% where the integral is approximated by the trapezoidal rule.
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Figure 4.9: Evolution of kinetic energy and dissipation rate of the Taylor-Green vortex

at Re = 1600. Shown are results for the Q3/Qs space on various mesh levels
together with the reference spectral code.

A typical evolution of the kinetic energy in decaying turbulence represented in a log-
log plot is displayed at the bottom of figure The curve exhibits a plateau-like
progression up to the point around maximum dissipation followed by a decay law of the
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form (|1.63)).

The behavior of kinetic energy, dissipation and enstrophy under h-refinement consti-
tutes the first part of investigation on our code with respect to accuracy in underresolved
turbulence. Runs have been performed with {40, 64,128} cells per direction and time
step sizes {2-1072¢,,1-1072¢.,5-1073¢.}. A previous run with 105 cells per direction
and a time step size 5- 1073 ¢, from [PMBI1§] is also taken into account. The dissipation
curve for 40 cells per direction is found together with the 128 cells per direction and
reference curve in figure 4.9 The progression for 64 cells per direction has been omitted
in the plot for sake of clarity. It can be seen that the solution is over-dissipative on
the coarsest level as expected, but the curve already captures well the shape of the fine
resolution. On the top right a zoom into the vicinity of maximum dissipation is taken
where the result from 1052 cells is added in purple color. Grid convergence towards the
reference is expected as the green curve is confined by the blue and purple one.

Now let us discuss computed energy spectra from the Taylor-Green vortex. An ap-
proximation quality of a method is to at first reproduce the schematic plot of
the spectral energy distribution in figure [1.5| caused by the three regimes in a turbu-
lent flow. In explicit the curve should exhibit an integral range at smallest wavenum-
bers, a power law in wavenumbers representing the inertial range and a rapid decay at
smallest wavenumbers used for the computation. Secondly a desirable outcome is the
numerical verification of the 5/3 exponent in K41 theory. One of the first publications
that measured the kinetic spectrum numerically was [BMOT83] who performed DNS
on the Taylor-Green vortex in a set of Reynolds numbers including 1600 up to 3000.
And [Bra91] who further examined the Taylor-Green vortex at Reynolds number 5000.
[GB12] gives a detailed investigation of high-order methods in underresolved turbulence
applied to the Taylor-Green vortex at Reynolds numbers 800 and 1600. Computation of
the kinetic energy spectrum has been included to the collection of reference values since
the 4th edition of HHOCFD [Tay16].

We have characterized turbulent flows by a broad range of spatial and temporal scales.
A resolution of all fine scales in a DNS may thus become infeasible as the total number
of unknowns depends on the Reynolds number through the power law presented in
Equation . Robust behavior of high-order methods in underresolved turbulence,
or in treatment of fractions of finest scales not captured, is of interest and advantage -
even when used in a DNS, also for possible cost reasons. [GB12] mentions high-order
methods in underresolved turbulence to be unstable and presents necessary stabilizations
that are applied to the Taylor-Green problem. One of them is exact integration of the
nonlinearity which is referred therein as overintegration to achieve dealiasing. Recall
that our choice of quadrature points delivers exact quadrature for the variational forms
on affine cells. The distribution of spectral energy should ideally be a decaying power law
in the numerically resolved inertial subrange, smaller scales below the mesh resolution
should be suppressed as if they belong to the dissipative subrange.

Figure contains a collection of computed kinetic energy spectra over various times
and for a fixed time under h-refinement. Starting from a large scale initial condition
where modes are settled at low wavenumbers, small scale structures develop. This is seen
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Figure 4.10: Plots of kinetic energy spectra: Top left shows early build-up. Top right
shows decaying homogeneous turbulence yet here non isotropic. The second
row shows grid convergence for the spectral energy distribution at time
t = 9t. with fits to the inertial and dissipative subrange.

for the curves E(k,t) at times t € {2t,, 3t., 5t., 7t.} in the top left. In the following the
blue curve represents the spectrum at time ¢t = 9¢, for the finest mesh resolution of 128
cells per direction. A fit to the inertial subrange added in the top right part demonstrates
the desired behavior of a power law which is clearly separated by progression within the
integral and dissipative subrange. Note that the curves taken at times ¢t € {10¢., 11¢.} do
not change significantly. They are slightly reduced towards the bottom through decrease
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Figure 4.11: Plots of kinetic energy spectra continued: The green curve shows decaying
HIT at later times.

of dissipation €(t) which is in agreement with Equation ((1.60). The reference spectra
are typically measured around t ~ 9t. in the community. The exponent for the inertial
subrange fit however is —7/3 and thus steeper than —5/3 from Kolmogorov. This is not
a contradiction to theoretical considerations that allow exponents up to —8/3, [Fri95],
and consistent with the spectrum taken from HiOCFD4. Figure 4.12 reproduces the
plot of this spectrum found in [Tay16] and adds our result at time ¢ = 9¢.. together with
lines in proportion to the power law with exponents —5/3 and —7/3. Both curves do
not differ significantly and show a decay with exponent —7/3 in the inertial subrange
that is caused by decaying homogeneous turbulence yet here non isotropic - as already
indicated by the time snapshots at ¢t = 9¢, and t = 12¢.. in figure above.

The second row of shows the spectral energy distribution at time t = 9¢, un-
der h-refinement. Largest scales that are resolved by all meshes considered, give the
same progression at smallest wavenumbers. There are no oscillations around the shorter
inertial subrange at coarser levels. Moreover the higher modes below each discretiza-
tion resolution are suppressed by an exponential drop as can be seen in a log-lin plot
of the same range on the right half. The lower the accuracy is, preferably the more
corresponding wavenumbers get dissipated in our grid convergence results.

Finally, figure shows decaying HIT at later times ~ 20t, where a power spectrum
with exponent close to —5/3 is observed. This is demonstrated by the dashed line in
the log-log plot. For comparison we have added the energy spectrum at time ¢ = 9¢, in
blue color from the plots above with its belonging fit to the inertial subrange in dotted
linestyle.
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Figure 4.12: Kinetic energy spectrum at time ¢ = 8 taken from the problem description to
the 4th International Workshop on High-Order CFD Methods. In addition:
A spectral energy distribution of our code calculated at time ¢ = 9, dashed
and dash-dotted lines showing &5/ and k~7/3-law, respectively.

4.6 3D Turbulent channel flow
4.6.1 Modeling

The 3D turbulent channel flow is strictly speaking a flow between two in streamwise
and spanwise infinitely extended plates. The flow is driven by a pressure gradient in the
streamwise direction. In order to understand the modeling of the problem we refer for
the following to [TL72]. The idea is based on splitting up the velocity and pressure into
a mean part (0,p) and a fluctuating part (o, p), c.f. Section [1.2.1] The mean part of the
turbulent profile is considered to be a time-averaged steady quantity

()7 = B(x) = % [ e

3 1 pt+T
() =ple) =7 [, ple.0)dt. (4.8)
Then the fluctuating part has a vanishing temporal average:
1 pt+T _ 1 pt+T _ _ —
fft- Bz, t)dt = ?L (a,t) — (x)dt = B(x) — 5(x) =0, (4.9)

similar for the pressure. Now insert this decomposition first into the mass conservation
equation. This gives

V-5=0=V-7. (4.10)
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In contrast to (1.37)) we do not neglect the quadratic term in the momentum equation.
Primarily we have

—1AD — pAT+ p[(0- V)0 + (0 V) + (0-V)o+ (8- V)] + Vp+WVp=0.

Since V - 0 = 0 we can write the last term in the expansion of the convective term as
(0-V)0 =V - (0®0). Now we do the temporal averaging 1/T EJFT dt and exchange
order with the spatial derivatives. By construction,

(1) terms with only the background velocity remain unchanged

(2) all terms that are linear with respect to the fluctuation are zero.

This simplifies to
— AT+ p(v-V)o+pV - (0@ 0)r + Vp=0. (4.11)

For simplicity the subscript for temporal averages is to be dropped from this point on.
If 9; and ©; for i # j are independent (uncorrelated) on each other, then

(0:05) = (0:)(0;) = 0.
But if they were correlated, the average does not have to be zero. Equation (4.11)) is the
mean momentum equation averaged over time.
Now let us return to the specific problem of a turbulent flow in a channel. The
turbulent velocity profile takes the form v = v;(x9)e;. A coordinate system is used

where the xi-direction is the streamwise direction, the x,-direction is the wall-normal
direction and the xs-direction is the spanwise direction. ¢ denotes the half channel

Ty = 20 | Sseo

———\ "-._ parabola

- 5 \\ :C2

) R

x2:(5 . ///

N ,//
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- & >
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Figure 4.13: Cross-section of the 3D channel flow perpendicular to the spanwise direc-
tion. Shown are the definition of 4, the turbulent and laminar velocity
profile in streamwise direction.

height. The turbulent profile satisfies v;(x2 = 0) = 0 and vy(z2 = 20) = 0 and by
symmetry with respect to the middle plane
d@1(1’2>

=0.
dIQ

To=0
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4.6 3D Turbulent channel flow

It is much flatter than the laminar profile which would be parabolic at the same Reynolds
number. At the wall no-slip boundary conditions are imposed. All this information is
inserted into the time-averaged mean momentum equation (4.11J):

P 0105, 01 + 0205,01] = —0p, b+ pAUL — p0y, (T7) — pOa, (0172)
1% [1718361172 + ?7281;2172] = —01215 + /,LA/EQ - p(?xl <’l§1?~]2> — p6x2 <?7§> .

In this flow we have no variation in the z-direction apart from the pressure and v, = 0.
It remains

0= —0,,D + p02, 01 — pOy, (U102)
0= —05,p — pO, <1~);> :

By further manipulation of these equation one can derive the important relations
° pu = 10y, 01 = Ty (4.12)

where 7, is the mean shear stress at the wall and wu, is the friction velocity. The mean
shear stress and friction velocity can be numerically computed with the viscous force
exerted at the surface, F' = un x (. At the bottom wall n = —e; and the mean force is

F = —pey X ¢ = —pulzer = pdp, 0161 = Tyey .

b — = 0P = _axlpw (4'13)

where p,, is called the wall pressure (at x5 = 0 or xo = 24) being only a function of ;.
The first equality gives a formula for the prescribed pressure gradient in z;-direction.

. — plE12) + 0y, 01 = puid (1 - %) (4.14)

In a further analysis of this equation s is replaced by y. (4.14) is non-dimensionalized
by introducing the coordinate y* = y/0 (= z2/d) and becomes

(0177) 1 0 (1
————4+Re. — | — | =1—-y"
2 + Re, oy \u, Y
with the friction Reynolds number

Re, — 2 (4.15)

v

Another coordinate is the viscous or wall coordinate y© = yu,/v. The scaled equations

then read s -
_ i) + 0 (ﬂ) = (1 —Re;'y") .

2
u? dy*t \u,
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4 Simulations of incompressible fluid flow

U1/u, as a function of y* is denoted by u*(y*). ©1/u, as a function of y* is denoted by
ut(y™). In the viscous sublayer, towards the wall, the fluctuations have to go to zero.
In this region y* ~ 1 the leading order terms are Ju™/dy™ = 1 which has the solution

ut(y") =y". (4.16)

Therefore the turbulent velocity profile the viscous sublayer increases linearly away from
the wall. By further calculations one can derive a law in the intermediate region

*

y* <1 and y'>1 while y——ReT.

vt
A matched asymptotic expansion gives
* * 1 *
u'(y") = —log(y") — 1 (4.17)
1
ut(y") = —log(y") +5 (4.18)
K

with constants determined by experiments, in particular the von Kdrmdn constant xk =
0.4. This dependency of the profile is called logarithmic law of the wall.

4.6.2 Computational setup

There is a vast collection of publications on computations performed and statistics col-
lected; for instance in [KMMS87, MKM99, [HJ08] where reference databases on mean
velocity profile, its derivative, and correlations of velocity fluctuations for different fric-
tion Reynolds numbers are provided. The problem has been more recently investigated
by [JRO7, VK14, KFWKI17]. Tt has furthermore been added to the benchmark collection
since the latest editions of HHOCFD, [3DT1§|, where our setup is based upon.

The computational domain is Q = (0,27d) x (0,20) x (0,76), 6 = 1, with periodic
boundary conditions in the streamwise (z1-) and spanwise (z3-) direction. At the walls
no-slip boundary conditions are used. The mesh is graded towards the no-slip bound-
aries to improve resolution of near-wall turbulent structures according to the hyperbolic
tangent mesh mapping

[0,1] — [0, 20]

tanh(y(2x2 — 1))
) ( bl " 1) (4.19)

using the mesh stretching parameter . The initial flow field is decomposed as vy(z) =
Uo(z) 4+ 0o(x) into the mean part plus a perturbation. No-slip boundary conditions read

v(z,t) = g(z,t) =0 onxzy=0and zy =24 .
The forcing term is chosen to reflect the constant pressure gradient (CPG) drive, [QFH16],

f= %”el . (4.20)
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4.6 3D Turbulent channel flow

Other possibilities with respect to the forcing are constant flow rate (CFR) and con-
stant power input (CPI) where in both cases the streamwise component is dynamically
adjusted over time. In the former to accomplish the bulk velocity of the flow to be
constant. This strategy is also utilized in the simulation of flow over a periodic hill,
[Per1d]. Here the bulk velocity is defined as an average of the turbulent mean profile
over streamwise-normal cross-sections

wy = ﬁ jﬂ 1 (2)da . (4.21)

To the bulk velocity one can associate as well the bulk Reynolds number

Ry — 2 (4.22)
14

The current bulk velocity at simulation time t* used for calibration with u; is then

1
Up sim (tF) = @ LZ vy (z,t%)dx . (4.23)

In the modeling section the main goal was to derive the turbulent velocity profile (4.16))
in the viscous sublayer and in the intermediate range. The Reichardt function
approximates the profile up to the half channel height and matches the behavior at
yT ~ 1 and y* > 1. It is used for the mean initial condition vy(x):

Uo(z) = 1 1+ryt)+C(1- AR v (4.24)
Vo(T) = ur - og KY exp 1 11 exp 3 €1 .

with @ k = 0.4 the von Karman constant
e (C chosen to be of value 7.8
oyt =wu, /v min(zy, 2§ — x3) .
A display of the Reichardt function - together with the linear law and a DNS profile
obtained by temporal averaging - is shown in figure 4.14
We set the simulation parameters to 6 = 1, 7, = 1, p = 1, v = 2.3 which leads
to u, = 1 and Re, = 1/u. Further the friction Reynolds number is set to Re, =
550. The computed bulk velocity of this flow has the value around 18 which yields the
corresponding Reynolds number Re, = 9900. The initial velocity field vy () is perturbed
by adding
Uo(z) =€ (c sin(ax1) sin(4m(zs — 0)°) cos(cz3)) e

— € (a cos(azy) sin(4m(zy — 6)°) sin(cxs)) es (4.25)

with amplitude € = 1072, wavenumber k, = 2 and wavelength a = k, (27)/(274) in
streamwise direction, wavenumber k, = 2 and wavelength ¢ = k, (27)/(70) in spanwise
direction. The choice of xo-dependency is motivated by a simple wall-mode approxima-
tion.
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— DNS profile

— Reichardt function
ut
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Figure 4.14: Graph of DNS profile, Reichardt function and y™ in lin-log plot. The

zoomed-in plot on the middle-right shows the behavior at y* = Re, or

y* = 1. The DNS profile is obtained by temporal averaging over accurate

numerical simulation snapshots. It is part of a collection of reference values

for given friction Reynolds number. The boundary layer can be confined
up to where the deviation from the linear law is small.

Computations have been done on a 128 x 96 x 64 rectangular cuboid mesh that is
anisotropically partitioned in wall-normal direction by means of Equation . Mesh
size in xo-direction of the boundary layer cells is y™ ~ 1.10779. Polynomial degree for
the velocity ansatz space is p = 3 and p — 1 = 2 for the pressure. The variant of the
discrete solenoidal projection operator is given by Helmholtz-flux H(div) reconstruction
in RT7. Temporal evolution of the incompressible channel flow is done with the RIPCS
and Alexander’s second order method in the viscous substep. The equations therein are
solved with JFNK and flexible GMRes as a linear solver. In presence of the anisotropies
due to Equation (4.19) and the mesh stretching parameter v, the partially matrix-
free variant of Gauss-Seidel is used as subdomain solves in the preconditioner. The
mean initial condition is downscaled by a fraction. With CPG employed, the flow is
accelerated towards the bulk velocity in balance of forces and eventually transitions to
turbulence. To the channel flow a viscous time unit ¢t = §/u, and a convective time
unit t, = 276 /u, can be associated. A constant time step of At =5-107*¢T is chosen
such that the estimated Courant number is Cr ~ 0.7 when the flow is fully developed. A
constant sampling rate avoids further biasing in the ideal surface renewal analysis with
discrete structure functions that is carried out in Section [£.7] In total 18623 time steps
are taken up to time 7" = 11.213t* with about 1.73 - 10® spatial DOFs. Computations
have been done on the BWFORDEV development cluster in Heidelberg.

Figures and show two time snapshots of the velocity field. The first image
demonstrates the onset of boundary layer turbulence. The upper part of this figure gives
a three-dimensional vector field visualization with the Ay-criterion colored by the velocity
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Figure 4.15: Onset of boundary layer turbulence in a three-dimensional channel flow at
friction Reynolds number Re, = 550. Shown are evolving hairpin vortices
captured by the As-criterion that are colored by velocity magnitude. The
bottom row shows a two- and one-dimensional plot of the velocity at the

center of the channel where in the former the streamwise direction points
upward.
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Figure 4.16: Fully developed boundary layer turbulence in a three-dimensional channel
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at friction Reynolds number Re, = 550. Shown are a visualization with
the Ag-criterion colored by ||vg|[,. The bottom row shows a two- and one-
dimensional plot of the velocity at the center of the channel where in the
former the streamwise direction points upward.



4.7 A model for surface renewal in the Atmospheric Boundary Layer

magnitude. The development of first hairpin vortices at both walls are captured which
are the characteristic kinematic structures of boundary layer turbulence. The lower part
of this figure shows the velocity magnitude at cross-section x3 = 79/2 and the veloc-
ity components on the line in wall-normal direction with endpoints (7§, 0,76/2)" and
(76,26, 76/2)". There the baseline mean profile in z;-direction is still visible but already
interspersed with wall-near oscillations. Note that the display of the two-dimensional
cross-section is rotated by 90° such that the streamwise direction points upward. The
second image [4.16|shows a corresponding visualization of fully developed boundary layer
turbulence with the As-criterion. A two- and one-dimensional cut of the velocity field as
for the first snapshot has also been added.

Now let us again examine pointwise divergence and mass conservation errors here in a
three-dimensional turbulent flow. According to Theorem [5] the postprocessed tentative
velocity field by Helmholtz-flux reconstruction is pointwise divergence-free and satisfies
the discrete continuity equation exactly. Figure |4.17 shows the error distribution at
cross-section x5 = 70/2 during the time snapshot taken as in figure [£.16] The pointwise
divergence error ’V . v,’f“’ is displayed in logarithmic scale, the maximum errors are
located in the wall-near regions whereas the maximum in the middle is of order 210711,
Mass conservation ‘b(v’,j“, xE) — r(xp; t"T = 10.3519t7) | for each cell E that intersects
with the cross-section is displayed in the bottom picture, maximum errors up to 1.7-10~ 4
are located in the wall-near regions as well. In the middle of the channel the error is by
two orders of magnitude lower.

4.7 A model for surface renewal in the Atmospheric
Boundary Layer

4.7.1 Description and related work

A model setup that we are to present for study of surface renewal events in the Atmo-
spheric Boundary Layer (ABL]), is based upon 3D turbulent channel flow. [HSLR99,
KKSI11] have performed direct numerical simulations of turbulence in an open channel
with passive scalar transport. At the open end that is also referred to as free surface, a no
penetration condition v - n = 0 plus free-slip for the tangential directions vVun x n =0
are imposed to model a shear-free flat interface. In both publications it has been ar-
gued that hairpin vortices or bursting events near the solid boundary are the dominant
kinematic structure for surface renewal. Buoyancy effects in this setup are negligible
because the streamwise velocity component is by one order of magnitude larger than
the wall-normal component, c.f. bottom right in figure [£.16] The cited investigations
were focused on the surface renewal at the shear-free interface where parcels close to
the interface are replaced by fresh parcels coming with coherent structures from below.
We are interested however in surface renewal within boundary layer turbulence in the
wall-near region that are the viscous sublayer and the intermediate region. [KPCS06]
shows and analyzes data of three measurement sites with different surface roughness.
One site is located at the Antarctica which represents a smooth surface as the solid walls
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Figure 4.17: Pointwise divergence and mass conservation errors on cross-section zz =
70 /2 at same time snapshot of boundary layer turbulence as in figure
Note that both quantities are scaled logarithmically.

in the channel. Another site is a loblolly pine forest as a rough surface example where
it is explicitly demonstrated that the time series of a passive scalar exhibits more ’ex-
ternal intermittency’ - which is less evident in the active scalar time series and visually
absent in the velocity components. By external intermittency the authors name ejec-
tions of enriched parcels separated by quiescent periods. Returning to DNS, obtained

root-mean-square (rms) profiles of the streamwise velocity 4/ <17%> /u, and concentration

\/<62> have a maximum near the solid boundary. Approaching further the wall fluctu-

ations have to go to zero due to the Dirichlet condition imposed. This region around
maximum amount of fluctuations (y* < 72) supports observations that surface renewal
events have their origin over there. Away from this region the streamwise rms velocity
values are significantly lower. Evolution of passive scalar transport in open channel flow
requires boundary conditions at the free surface. Either Dirichlet boundary condition or
Neumann boundary conditions have been utilized in the direct numerical simulations.
A sublayer at the open channel end has been observed for both boundary conditions.
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4.7 A model for surface renewal in the Atmospheric Boundary Layer

There are noticeable differences around y* = Re, in the mean profile (¢) for each of the
two boundary conditions prescribed since either the concentration is fixed or its normal
derivative. This is even more clearly visible in the root-mean-square fluctuations. For
Neumann boundary conditions a second local maximum is at the free surface. In con-
trast the local maximum for Dirichlet boundary conditions is in short distance below the
interface since fluctuations eventually have to go to zero. The vicinity of this sharp peak
is characterized by strong positive skewness and flatness of the root-mean-square profile.
Skewness and flatness of fluctuations over there with Neumann conditions imposed are
lower and become even negative.

In our model setup the domain configuration is mirrored at the open end and instead
of boundary conditions, we place a sink for the passive scalar in the vicinity of the
symmetry plane. The channel half height then models the maximum height of the ABL
which captures parcels of high concentration moving away from the boundary layer and
is a reservoir of low concentration parcels that travel towards the wall. As an initial
condition we use ¢o(z) = 0 and set the Dirichlet boundary condition value to ¢ = 0.5
at the solid walls x5 = 0 and x5 = 20, respectively. Periodic boundary conditions are
prescribed in streamwise and spanwise direction. We add a sink term s(z)c(z,t) on
the left-hand side of the convection-diffusion equation with s(z) > 0. s(x) only
depends on the wall-normal position and is parametrized by a Mexican Hat potential
centered at the channel half height. At the roots of the fourth-order polynomial we cut
off the progression to stay at zero. The shape of s(x) is displayed in figure m The

10

s(xa/d)

) 0.5 1.0 15 2.0
1‘2/(5
Figure 4.18: Shape of the sink - within the evolution of a passive scalar in 3D turbulent
channel flow - as a function of x5 between the lower and upper plate. The
maximum is scaled to have a value of 9.

distribution along wo-direction is further overlayed with an instantaneous concentration

field in figure [4.19, The Schmidt number for scalar transport is set to Sc = 1. We
use polynomial degree p = 3 for the passive scalar ansatz space. Besides the same
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Figure 4.19: Instantaneous concentration field in fully developed boundary layer turbu-
lence on the cross-section x3 = 7§/2, overlayed with the wall-normal sink
dependence (scaling in z;-direction arbitrary units).

discretization settings as in 3D turbulent channel flow are used.

Starting from the initial condition ¢y(z) and prescribed further by the Dirichlet bound-
ary condition, the total concentration in the computational domain fQ c(x, t)dz increases
at first over time. With help of Reynolds transport theorem the rate of change can be
written as

%IQ c(z,t)dr = IQ Oe(x,t) + V- (c(z, t)v(z, t))dx . (4.26)

It is physically to be expected that for unit Schmidt number and ¢ > ¢, = 0 the
concentration field is sufficiently smooth such that the partial differential equation holds
in its classical form:

% IQ c(x,t)dr = jQ DAc(x,t) — s(x)e(x, t)dx . (4.27)
During the build-up phase the rate of change is dominated by fQ DAc(z,t)dz > 0.
At later times the total tracer concentration tends to be in balance of production and
extraction from the sink — [, s(x)c(z, ¢)da. This behavior is displayed by the computed
total concentration in figure

For the ideal surface renewal analysis we place measurement probes at streamwise and
spanwise center with different wall-normal positions that are summarized in Table .1}
We use the techniques that have been employed in Section to synthetic data, here
to the concentration time series. 10000 samples are considered for structure function
analysis with constant inverse sampling frequency At = 5-107%7". Start of the sam-
pling period is indicated by a vertical green line in the total concentration curve, figure
Comparing the viscous coordinate for each probe in the table with the linear and
logarithmic velocity profile in figure 4.14) we note that c_y0 is in the viscous sublayer.
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4.7 A model for surface renewal in the Atmospheric Boundary Layer

Table 4.1 Wall-normal measurement positions for time series of concentration in surface

renewal. Given are also the corresponding viscous coordinate. All probes are further
located at x; = 7 and z3 = 7 /2.

cy0 cyl cy2 cy3 cyd cydb cyb cy7
y/o le-2 be-2 le-l 2e1 3e-l 5He-l 075 1.0
y™ 55 275 55 110 165 275 4125 550

Joen(z, t)da

12

Figure 4.20: Computed total concentration over time in the proposed model for surface
renewal. Also included is a vertical line in green color which indicates the
start of time series for surface renewal analysis.

This time series is influenced by the constant Dirichlet boundary condition. Furthermore
c_yl is found in the transition from linear to logarithmic law. c_y2 and c_y4 are in the

intermediate range. The remaining higher located probes are already in the support of
the sink term.

4.7.2 Time series analysis

Figure shows the time series of interest split up into two time windows. The most
visible ramp events have been marked in magenta color therein upon the data points
and on the time axes. For all three positions we will examine the small-lag behavior of
the truncated third-order structure function divided by the integer lag while keeping the
analytical results and in mind. Secondly we will apply the linearized VA
model and the finite microfront model to estimate ramp amplitude and ramp duration.

Thirdly we will compare the obtained parameters with the computed truncated structure
function and the ramp patterns in the time series.
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Figure 4.21: Passive scalar concentration time series at three different locations with
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wall-normal distance y*© = 27.5,55,165. Shown is only the time window
used for structure function analysis. Most visible ramp signals are further
marked in magenta color.



4.7 A model for surface renewal in the Atmospheric Boundary Layer

Figure shows the recorded structure function at y™ = 27.5. The left part exhibits

the typical small-lag behavior for the finite microfront model. —(((5/0;1)\3>tr /j has its
maximum value at j = 9. The linearized VA model for this lag yields the following
estimates of M and 7:

(My 4, 7y4) = (0.16259, 0.175412¢™) . (4.28)

The least squares fit to the finite microfront model in the intermediate range returns the
values and belonging error bounds

~

M,,; = 0.12351 + 0.000642
Tmg = 0.05389¢" £+ 0.001171¢F (4.29)
trms = 0.00168¢" £ 0.000212¢" .

The right part shows an overlay of the data with the approximating function. It demon-
strates that the model describes the third-order structure function well around the max-
imum, and the decline for At < At,, and At > At,,, respectively.

Figure [4.24] shows the recorded structure function at y* = 55. Again/t_h\e left part
exhibits the typical small-lag behavior for the finite microfront model. —({(d¢)?);.(jAt)/j
has its maximum value at j = 6. The linearized VA model for this lag yields the following
estimates of M and 7:

(My a4, 7v4) = (0.13307,0.111292t™) . (4.30)

The least squares fit to the finite microfront model in the intermediate range returns the
values and belonging error bounds

~

M.,y = 0.10817 £ 0.000996
Tms = 0.04991¢™ £ 0.001691¢* (4.31)
t5 mp = 0.00127¢F £ 0.000128t™ .
The right part shows an overlay of the data with the approximating function. As above
it demonstrates that the model describes the third-order structure function well around
the maximum, and the decline for At < At,, and At > At,,, respectively. Finally, figure

[4.26] shows the recorded structure function at y* = 165. As in the two previous cases
the typical small-lag behavior for the finite microfront model is offered in the left part.

—

—((6¢)3)4-(JAL) /7 has its maximum value at j = 7. The linearized VA model for this
lag yields the following estimates of M and 7:

(My 4, 7y4) = (0.10139, 0.100244¢™) . (4.32)

The least squares fit to the finite microfront model in the intermediate range returns the
values and belonging error bounds

Myp = 0.08950 =+ 3.58 - 10~
Fmp = 0.04966tT £ 7.17- 107 (4.33)
timp = 0.00166tT +8.0- 107t .
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Figure 4.22: Computed third-order structure function at y™ = 27.5. Left part shows

the results divided by the integer lag and scaled by minus sign. Right
part shows the results in terms of the time lag. Also included is a finite
microfront model curve from the least squares fit.
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Figure 4.23: Concentration time series at y* = 27.5 and analytical sawtooth signals with
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the estimated parameters at selected time intervals. Magenta color shows
the linearized VA model, black color the finite microfront model.
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Figure 4.24: Computed third-order structure function at y* = 55. Left part shows
the results divided by the integer lag and scaled by minus sign. Right
part shows the results in terms of the time lag. Also included is a finite
microfront model curve from the least squares fit.
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Figure 4.25: Concentration time series at y* = 55 and analytical sawtooth signals with
the estimated parameters at selected time intervals. Magenta color shows
the linearized VA model, black color the finite microfront model.
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Figure 4.26: Computed third-order structure function at y™ = 165. Left part shows
the results divided by the integer lag and scaled by minus sign. Right
part shows the results in terms of the time lag. Also included is a finite
microfront model curve from the least squares fit.
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Figure 4.27: Concentration time series at y* = 165 and analytical sawtooth signals with
the estimated parameters at selected time intervals. Magenta color shows
the linearized VA model, black color the finite microfront model.
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4.7 A model for surface renewal in the Atmospheric Boundary Layer

The right part shows an overlay of the data with the approximating function. As al-
ready mentioned the model describes the third-order structure function well around the
maximum, and the decline for At < At,, and At > At,,, respectively.

The estimated ramp duration in the linearized VA model are approximately three
times larger at y© = 27.5 and two times larger at y™ = 55,165. This is likely due to
the reasons mentioned in [CNBL97al as the computation of 7y 4 with in the VA
model requires the cube of My 4 and therefore gives error amplification 1f MV A is already
defective. Our ratios for My 4/ Mz, 7y a/Tms and (M /7)ya/(M /7)ms ave in agreement
with the experimental results from [CNBL97al, Table 1 over there. The results are
summarized in Table .2l We also observe that the linearized VA model overestimates
M by 10% — 30% and overestimates 7 by a factor 2-3. The authors of [CNBLQ?aJ

therefore introduce a correction factor for the maximum value of —((56) Yir(AL) /At
which can be computed during sampling, to account for the value M/ 71/3 Let v be

5= A (4.34)

Mo _7[ (00 (At |*

where —<((5c) >tr(At )/At,, denotes the maximum value of —(((50) yir(At)/At. With
Equation (1 and the procedure to evaluate this at At = At,, we obtain a correction
for the linearized VA model:

My {(00))ir(At)
Tva Aty ’

(4.34) now becomes
_ ,yMVA
S

(4.35)

Obviously v = 1 corresponds to not correcting. Inserting the values from the microfront
model on the left-hand side of respective gives corrections in the range
1.06-1.13. The last row of Table presents the results for our three measurement
locations. This is as well in agreement with values in [CNBLI7a|: v = 1.167 for the
bare soil measurement site, v = 1.217 for the straw mulch site, and v = 1.080 for
the Douglas-fir forest site. Figure [4.23| shows a plot of sawtooth signals based on the

parameters ({4.28]) and (4.29)), figure sawtooth signals based on the parameters (4.30))
and (4.31) and figure sawtooth signals based on the parameters (4.32) and (4.33)),

each at selected time intervals in the corresponding time series where such patterns are
visible. Compare with upper left, upper right and bottom. The ramps in magenta
color display the result of the linearized VA model, the ramps in black color the result of
the finite microfront model. For sake of clarity we have chosen the base offset such that
the analytical ramp signals are below the measured data points. In the three figures
observe that the finite microfront model captures ramp events of shorter duration well
within larger structures indicated by the drawings. However it should be noted that the
ramps parametrized by linearized VA estimates capture the larger structures.
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4 Simulations of incompressible fluid flow

Table 4.2 Ratios of M, 7 and M /7 determined with VA’s linearized theory to those
determined using the ramp model with finite microfront time.

y* 275 55 165
VA 1316 1.230 1.133
Mo,
VA 3955 2230 2.019
Tfm
M ~
w 0.404 0.552 0.561
(M/7)fm
~ 1126 1.062 1.116

We close the time series analysis and compare ramp dimensions for the locations
presented against each other. Note at first that for both the linearized VA and finite
microfront model, the amplitude M decreases the further being away from the wall.
This is in agreement with the mean concentration profile (c;) and root-mean-square
fluctuations /(¢7). Both curves are displayed in figure M The statistical averaging
has been done for every 10th time step in the period of structure function analysis. The
first order statistical moment drops monotonically when moving away from the wall. As
mentioned in [HSLR99] we also observe a logarithmic law for the average concentration
which is indicated by a line in log-lin axes. Towards the center of the channel (c)
tends to zero. The second order statistical moment exhibits a peak in the transitional
region from linear to logarithmic law. The closest probe to the wall (at y* = 5.5)
is before the maximum amount of fluctuations, the closest probe for consideration (at
yT = 27.5) is just at the maximum before the decrease. The remaining probes are
located where the descent of the rms-profile becomes flatter. Towards the center of the
channel \/(¢?) is suppressed by the sink. Comparing the values \/(¢7)(y") for y* €
{27.5,55,165} with the standard deviations of the sawtooth signals with amplitudes
My4 € {0.16259,0.13307,0.10139}, we can confine the ratio of surface renewal activity
over total fluctuations to 60% — 70%. Ramp duration 7 on the other hand is expected
to stay constant within the different layers in channel turbulence. This is confirmed by
the results. The values in {([4.30)), (4.31)} and {(#.32)), (4.33)} come from measurements
in the range of logarithmic law. They do not change significantly for both models, the
error bounds from the finite microfront model do intersect. The value in {(4.28), (4.29)}

from the transitional region is higher.

4.7.3 Comparison with experimental data

We consider water vapor measurements that have been analyzed in [Okal7] with the lin-
earized VA model as well. Exact origin of the dataset - in terms of a further publication,
location of the measurement site and its surface roughness - has not been reported by
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Figure 4.28: Computed average passive scalar concentration (left) and root-mean-square
(right) in the proposed model for surface renewal. Both curves are plotted
in lin-log axes over the viscous coordinate.

the author. Figure [4.29) shows the the whole time series split up into several windows.
The most visible ramp events have been marked in magenta color upon the data points
and on the time axes. Units for this record are given in g/m? at sampling frequency
20Hz. Figure shows the computed structure function. Also the experimental data
exhibits the typical small-lag behavior for the finite microfront model as seen in the left

_—

part. —((d¢)3)s-(jAt)/7 has its maximum value at j = 5. The linearized VA model for
this lag yields the following estimates of M and 7:

(My A, 7v4) = (0.96297 g/m?, 8.99948s) . (4.36)

The least squares fit to the finite microfront model in the intermediate range returns the
values and belonging error bounds

My = 0.92416 g/m® 4 0.00333 g/m?
g = 6.58747s £ 0.10904s (4.37)
tf. ms = 0.07227s £ 0.00629s .

—

The right part shows an overlay of ((dc)3),.(At)/At with the approximating function.
It demonstrates that the model describes the third-order structure function well around
the maximum, and the decline for At < At,, and At > At,,, respectively. Figure
shows a plot of sawtooth signals based on the parameters and at selected
intervals in the time series where such patterns are visible, c.f. figure top right
and bottom right. The ramps in magenta color display the result of the linearized VA
model, the ramps in black color the result of the finite microfront model. For sake of
clarity we have chosen the base offset such that the analytical ramp signals are below
the measured data points. We observe that both models capture ramp events well in
the experimental results. There are no significant differences compared to the DNS
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Figure 4.29: Water vapor concentration measurement. Most visible ramp signals in the
time series are further marked in magenta color.

data with respect to the visual appearance of (1) the time series and the coherent
structures appearing therein and of (2) the postprocessing results with the third-order
structure function and its approximation by the finite microfront model. Sensitivities in
the parameter triple (Mm £y T fs ¢ 7, ms) arise one or two digits, respectively, after the first
non-zero decimal number for both the experimental run and numerical runs. Ratios of
the parameters coming from the two models are MVA/Mfm = 1.042, Ty a/Tms = 1.366,
and (M /7)ya/(M/7)ms = 0.763. They are closer to unity than the values collected in
Table but give nevertheless a similar correction factor of v = 1.065.
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Figure 4.30: Computed third-order structure function from the water vapor time series.
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Left part shows the results divided by the integer lag and scaled by minus

sign. Right part shows the results in terms of the time lag. Also included
is a finite microfront curve from the least squares fit.
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Figure 4.31: Water vapor concentration and analytical sawtooth signals with the es-

timated parameters at selected time intervals. Magenta color shows the
linearized VA model, black color the finite microfront model.
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4 Simulations of incompressible fluid flow

4.7.4 Concentration field analysis

In this subsection we want to give a sketch of the surface renewal mechanism. The passive
scalar concentration is studied on spanwise-normal cross-sections around z3 = 7§/2. We
want to track the movement of coherent structures from the channel half height that
are characterized by low concentration towards the boundary layer. The position of
the probes that have been picked for structure function analysis are indicated by black
squares in the concentration field. Compare with figures [£.32] and [C0.1] which show
several distribution snapshots of ¢;,. Below each, a time window of the recorded series
at the probe closest to the wall is appended, y* = 27.5. A vertical green line in the
measurement series shows the current time of display. Figure shows three instants
of time and demonstrate the movement of coherent structures. In the first subfigure
(at t = 7.32194¢™) a low concentration parcel in the vicinity of the channel half height
is marked by a black circle. It is going to travel to the measurement location in the
middle. Its route is indicated by an arrow. The settling is characterized by regions
of negative wall-normal velocity which go along the streamwise direction. The second
subfigure (at t = 7.48694¢") shows how high concentration has just been replaced by this
fresh parcel at the lower probes. This can be seen in the termination of a ramp pattern
at the bottom part. During residence time we have evaporation from the boundary.
Concentration grows and marks the onset of a next ramp signal, compare the third
subfigure at t = 7.60194¢t". Bursting events at the boundary layer are visible in the
concentration field, also at different positions along the wall, in the other snapshots
as well. These patterns in the concentration are generated by hairpin vortices of the
flow field. A restricted visualization of the As-criterion to the cross-sections which is
not shown here demonstrates that negative values of Ay coincide with those patterns.
Bursting events take away high concentration from the boundary. In the meantime the
low concentration parcel has been enriched and has moved upwards. The black circle
indicates that it has joined with another depleted region. Figure in the appendix
gives a further example of coherent structure movement. In the first subfigure (at ¢t =
9.98694¢™) two low concentration parcels in the vicinity of the channel half height are
marked by black circles. Their travel route is depicted by black arrows and continued
in the uppermost part of the second subfigure. Note that the cross-section at time
t = 10.1019¢" is at 23 = 1.556 to track the low concentration better until it eventually
reaches the measurement locations. Just before the arrival - as indicated by the arrows -
the upper concentration parcel forms a tail that is slowed down and joins the lower parcel.
The middle and bottom part of the second subfigure finally show the surface renewal
event, the third subfigure (at ¢ = 10.3269¢t") the subsequent growth of concentration
and ejection.
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Figure 4.32: Surface renewal event - Part 1. Settling of low concentration parcel indi-

cated by black circle on cross-section z3 = 79/2. The bottom part shows a
time window of the measured concentration at y/d = 0.05, indicated by the
lowermost black square on the cut. The current time of display is marked
by a vertical green line.
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Figure 4.32: Surface renewal event - Part 2: On the cross-section z3 = 76/2 low con-
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centration parcel has arrived at the lower measurement probes as indicated
by the black circle. It has replaced enriched concentration over there. The
time series below takes a termination of a ramp pattern. The ejection phase
to follow is indicated by a black arrow.
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Figure 4.32: Surface renewal event - Part 3: Enrichment of the low concentration parcel

during residence time in the reference frame moving in streamwise direction,
and ejection. The black circle points out that it has joined with another
depleted region from the channel half height. Growth of concentration at
the lowermost measurement probe.
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4 Simulations of incompressible fluid flow

4.7.5 Summary of the surface renewal [DNSI

We have presented a flat model of the ABL to observe the surface renewal effect. It
is built upon 3D turbulent channel flow such that the configuration is symmetric with
respect to the channel half height. The boundary surface is smooth and flat, and already
with unit Schmidt number and friction Reynolds number Re, = 550 surface renewal is
evidently present. According to [ZBKIT] values of Re, greater than 10° occur in the
atmosphere. We observe coherent structures that are particularly characteristic for sur-
face renewal (I) in the structure functions, (IT) in the time series of measurement probes
and (III) in two-dimensional visualizations of the concentration field. The small-lag be-
havior of the third-order structure function is represented well by the finite microfront
model. Both the finite microfront model and the instantaneous termination model give
a simple description of the activity based on fixed ramp amplitude, duration and qui-
escent period. Yet they reproduce the sampled structure function progression well for
experimental data and also our DNS data. If only turbulent fluctuations in the time
series were present, the computed third-order structure function would not resemble the
typical small-lag behavior. This has been verified by computing the correlation of a
purely fBm(1/3) signal, c.f. Section [1.3.4] but is not shown here. Further recall that in
this section the coherent part made up 40% of the synthetic signal. By simply looking at

—

the smoothness of the —((d¢)3):.(jAt)/j curves compared to figure [1.13} this supports
the conclusion that surface renewal activity is of higher fraction in 3D turbulent channel
flow.
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5 Conclusions

In this chapter we discuss results obtained in the whole dissertation. For the numerical
solution of the incompressible Navier-Stokes equations (being part also of the Navier-
Stokes Boussinesq system) we have considered splitting methods, in particular the in-
cremental and rotational pressure correction schemes, in combination with a high-order
discontinuous Galerkin discretization.

e The upwind discretization of the convective term in the momentum equation uses
a modified Vijayasundaram numerical flux function that takes into account that
the discrete velocity field is not in H(div). This discretization is applicable to high
Reynolds number flow whereas the standard (or centered) discretization is limited
to small Reynolds numbers.

e We developed postprocessing techniques in the Helmholtz projection step based
on H(div) reconstruction. We have shown that the induced projections are indeed
discrete projection operators. The velocity field satisfies the discrete continuity
equation, is thus locally mass conservative, and is for one variant also pointwise
divergence-free.

e Numerical results confirm the conservation properties attained by these operators.
The [RIPCS|is second-order convergent in time for Dirichlet and periodic boundary
conditions.

e The fully implicit fractional-step solver has been implemented in the frame-
work. It is able to run in both matrix-based and matrix-free mode. We have in-
corporated the and sum-factorization on quadrilateral/hexahedral meshes.
Especially in combination with matrix-free methods algorithmic complexity is
thereby reduced and our computations confirm that this leads to a significantly
faster solution time even for low polynomial degrees. This observation is also
true for the matrix-based method. On-the-fly computations further reduce storage
requirements as the matrix does not have to be assembled and stored explicitly.

For a fast convergent matrix-free iterative method the essential is to have ro-
bust and scalable preconditioners. We described matrix-free stationary iterative
methods where the diagonal blocks are inverted iteratively on-the-fly. This new
approach is used as a preconditioner to linearized problems from Newton’s method
for instance, likewise as a smoother in a hybrid DG multigrid algorithm with low
order subspace correction.

We have demonstrated the node-level performance of our code as well as scala-
bility up to ~ 6100 cores. The efficient implementation of the numerical method
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described in this work required a significant amount of low-level optimizations,
leading to sophisticated code which is hard to maintain. Simultaneous work on
a Python-based code generator that can transform a very abstract description of

the variational form into highly optimized code has been shown to give promising
results, [KHMBIS].

e We have carried out computations of various types of turbulent flow. The proper-
ties of the numerical method have been investigated as a DNS tool and in underre-
solved turbulence. The resulting spectral distribution of kinetic energy exhibits the
behavior predicted by the different flow regimes. Scales below numerical resolution
are suppressed in the distribution of modes whereas larger scales are equivalently
represented as on a finer resolution.

We have proposed a model for numerical study of the surface renewal effect in the
ABL. With the help of structure functions and parameterizations based on fixed
ramp dimensions, we have demonstrated the existence of surface renewal events in
silico by direct numerical simulation.

The numerical solver developed herein provides an efficient tool for simulating fluid flow
prescribed by the incompressible Navier-Stokes equations or the Navier-Stokes Boussi-
nesq system. However there are some minor limitations in the current version of the
code: Only one passive and active scalar each can be coupled to the evolution at the
time of writing.

Free-slip boundary conditions have not been incorporated into the weak form. The
viscous term and discrete projection operators can be adapted accordingly, though. In
the former, consistency and symmetrization variational forms only have to correct with
the normal component of Von on the free-slip boundary. Penalization on this part of
the boundary is applied to the normal component of the velocity field.

A possible direction for future work is to apply the tensor product optimizations to a
spectral DG solver for viscous compressible flow.
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Appendix

A Discretization related

A.1 Multidimensional Calculus - Notation

Let n,m > 1 and f : U — R™, U C R" open, be differentiable. Then the Jacobian
matrix of f in a point x € U reads

nfr .. Oufi
Vix)= : : (x) e R™™ . (A1.1)
Ofm - Onfm

As a shorthand notation we will simply write V f. With this particular sorting in the
Jacobian, components f; per row and partial derivatives per column, recall the chain
rule. Let f: U — V and g : V — RP, U C R” open, V' C R™ open, be differentiable,
then the composition g o f is also differentiable and it holds

V(go f)(x) =Vg(f(x))Vf(x) (matrix-matrix product) . (A1.2)

As stated in the formula above Vg(f(z))V f(z) denotes the matrix-matrix product,
and similarly for the matrix-vector product no operation symbol is used as the meaning
should be clear from the context. Furthermore a-b denotes the Euclidean scalar product
between the two vectors a,b € R™. For two equally sized rectangular matrices A, B €
R™ " A: B = tr(AT B) is the Frobenius scalar product between A and B.

Let f: U — R, U C R" open, be a differentiable scalar function. Based on (A1.1]) we
have defined V f to be a row vector. In the case of scalar functions, we also introduce
the transpose of the Jacobian matrix

V=V eR". (A1.3)

Now let f € C™(U). By V™ f(z) we denote the tensor that contains the order m partial
derivatives of f at x € U. As for the Jacobian we use the shorthand notation V™ f. In
particular V2 f is the Hessian matrix. For f € C*(U) it is known from Schwarz’s theorem
that the Hessian is symmetric:

V2T =v2f, fecC*U). (A1.4)
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A Discretization related

Example - Chain rule: Jacobian transformation of a finite element function.

Let E ,E C R" open, ¢ : E — R continuously differentiable, ug : E — E a diffeomor-
phism. In the finite element context (ﬁ and ¢ are assigned by qg = ¢opug. The Jacobian
of ¢ at x = pup(Z) can be expressed with the Jacobian of gg at & € E:

V(i) = Volun(s) B2 Ve(z)Viun(z)
& Vo(r) = Vo(2)Viup(d) ™.

This formula holds as well for vector-valued ¢. Taking now the transpose on both sides
gives

Vo(z) = Vup() TVe() .

Another theorem that uses the Jacobian and derivatives of higher order is the ex-
pansion given by Taylor’s theorem. For example let f € C*(U), U C R™ open. In the
vicinity of z € U, f can be expressed as

flz+ Az) = f(z) + Vf(x)Ax + %AxTV2f(x)Ax + remainder
(A1.5)
= f(x)+ Vf(z) Az + %AmTVQf(x)AJE + remainder .

Particular choice of the remainder is not important here. For f € C*(U;R™) a similar
expression holds:

flz+ Az) = f(z) + Vf(z)Ax + i <AmTV2fl(x)Ax> e; + remainder . (A1.6)
1=1

Throughout this thesis the divergence operator is used. Therefore let A : U — R™*",
U C R” open, be a differentiable matrix-valued function. Note that m does not neces-
sarily have to be equal to the number of columns n, but the number of columns has to
match the dimension of U. Then the divergence of A is defined as

> i1 974
V-A:= : (A1.7)
> i1 0iAm;
For vector-valued v : U — R", the divergence of v reads
i=1

Example - Divergence of the Jacobian matrix Let f : U — R™ be sufficiently
smooth. The divergence applied to the Jacobian of f is equal to the Laplacian of f:

V-Vf=Af. (A1.9)
If now p : U — R is sufficiently smooth, we have the identities
V-Vp=Ap=V-Vp. (A1.10)
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A.2 Courant and grid Reynolds number estimation

Example - Pressure gradient in the Navier-Stokes equations Asaboveletp: U — R
be differentiable. Consider the pressure gradient Wp in the Navier-Stokes equations.
Based on (A1.7) we have an alternative representation

V-(pl)=Vp. (A1.11)

When the definitions (A1.7) and (A1.8) are applied to the divergence of a matrix-
vector product, we can readily derive for V - (Au) another product rule. In explicit let
A:U—=>R"™ and u:U — R™, U C R" open, then it holds

V- (Au) = (V-AT) - u+tr(AVu) = (V- AT) -u+ AT : Vu . (A1.12)

Example - Integration by parts of the Laplacian Consider the integrand in the vari-
ational formulation of the Laplacian. For v : U — R", u : U — R", use formula (A1.12))

and insert AT = Vv to obtain

V- (Volu) = Av-u+Vv: Vu . (A1.13)

A.2 Courant and grid Reynolds number estimation

In the Sections we have mentioned the choice of the time-step size based
on a computed Courant number. This estimation is realized with the updated velocity
field during the volume integrals in the variational form, compare with Section [3.2.4]
The results are used to calibrate the next simulation step. Recall the notation for
a corner in F X R
V(E, k) = pp(k)

where the position of the corners in the reference element are given by k € {0,1}¢
and displayed in figure [A2.1] Both numbers are estimated with what corresponds to

(0,1) (1,1)

2 3 3 ©,1,1) 1D

g -/
Z
(0,0,1) o (1,0,1
ZI -
3
0 1 1
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,1,0) 1.1,0)
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Lotion
0) 1 2 1 ¢ 1
(0,0) (1,0) (0,0) (1,0 (0,00 (1,0,0)

Figure A2.1: Corner numbering (and face numbering) in the reference elements [0, 1]¢ in
1D, 2D and 3D.

the extends if F is a parallelepiped, and are already required to set up the geometry
transformation. In the following steps:
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A Discretization related

1. Calculate V(E, (0;1, di2,0:3)) — V(F,(0,0,0)) fori € {1,...,d}. On an axis-aligned
quadrilateral /hexahedral mesh this gives h;e;.

2
2. Calculate HV (0i1,0i2,6:3)) — V(E, (0,0, 0))H which gives h? on an axis-aligned
2

quadrilateral / hexahedral mesh.

3. At each quadrature point in the volume reference element E calculate

o (V(E, (0, 02, 65)) = V(E, 0,0,0)))|

2

|V (B, (80,60, 6)) = V(. (0,0,0))

2

and

O, - (V(E, (6i1, 6i, 0i3)) — V(E, (0,070))>) :

On an axis-parallel grid the first quantity is equal to 3¢ |(vs)| /s and the lat-
ter to S0, |(v)il hi at the image of the quadrature point in E. On quadrilat-
eral/hexahedral meshes these two quantities serve as an estimation for ||vyll, /h
and ||up||, h at this point. Taking the maximum over all quadrature nodes in E
gives a cell-wise estimation for both quantities.

4. The maximum over all cells estimates ||v,]|, /h and |vp||, 2

With the current time step size At, density p and viscosity p, Courant number and grid
Reynolds number can be estimated,

Cr = ””h”T2At (A2.14)
h
Rey, = % . (A2.15)

A.3 Face embeddings

As in Section [3.2.2 recall the notation:
The embedding of face e into E'™ E®* is described by maps 7™ : ¢ — FE of the
corresponding reference elements such that fipincesey o N = p, holds. The maps

pitext - 6 5 F map coordinate number ¢ € {1,...,d — 1} in é to coordinate num-

ber mi"et(g) € {1,...,d} in E. We may extend the map wrtext o {1,... d} by
requiring int eXt(d)Ato be the unique coordinate number that face é is perpendlcular to
in the embedded E. Thereby 7" is a permutation of {1,...,d} and the numbers

int,ext

T (q),q € {1,...,d — 1} are referred to as the tangential directions in E. This im-

&
plies an extension of the map n™** to é x {0} and the normal component can take the
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A.3 Face embeddings

int,ext
int,ext
()

axis-parallel, the component

values 7 (0) € {0,1}. Finally, since faces in the volume reference element are

int,ext [ 4 ) ___int,ext ~ int,ext ~
S)) = - S) = » S
(ne ( ) 7r;nt,cxt (q) ,'7677rlent,ext (q) ( ) ne’ﬂ_lent,ext (q) ( q)

is a function of one variable and in absence of hanging nodes it is even an isometry.

A.3.1 Example

Let d = 3 and consider the trivial embedding in case of a structured cuboid grid:
Prescribing the normal directions to 1, 2 or 3, respectively, the permutation 7"t takes
the form

71_ielqt,ext(g) -1 SO {1, 2, 3} — {2, 3, 1}
7_‘_ient,ext(?)) =92 SO {1, 2, 3} — {1, 3; 2}
71_(i;qt,ext(g) =3 SO {1, 2, 3} — {1, 2, 3}

However m™** does not describe the entire information of a face embedding. Also one
needs to specify the ™" (3,) : (0,1) — (0,1) which is given by the identity here.

g

Return now to the general case of a face e to embed into elements E™ E*¢ By

prescribing 7"*(d), the normal direction of e in the associated E, and nien:r}iffext (d)(()),

the sign of the unit outer normal vector on OF, the face of the volume reference element
is fixed where é is mapped to. Note that both quantities can be easily obtained with
the face numbering that comes with the implementation of the reference elements, c.f.
figure . Then there are (d — 1)! possibilities left for 7" to be a permutation of
{1,...,d}. Moreover each component can be of the form

My oy (30) 1 (0,1) = (0, 1)
Sq > 54

or s, —1—35,

giving another 2971 possibilities. Hence there are 277!(d — 1)! possibilities in total.

Two embedding variants in three dimensions (for fixed normal direction and fixed sign
of the unit outer normal vector) are displayed in figure . The corners of the reference
face are denoted by 0, 1,2, 3. Their image in E are shown for mirroring and rotation by
90°. The mirroring variant is given such that the orientation of the tangential directions
is preserved, m.(1) < m.(2) as in the trivial embedding stated above. Each component
is mapped according to

ne,we(l)(él) =1- <§1
ne,ﬁe(Z)(§2) = 59 .
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In contrast, rotation by 90° causes the tangential directions to be swapped, m.(2) < m.(1).
Each component is then mapped as per

neﬂre(l) (él)

=&
Nero(2)(82) =1 -3

2 .

3

mirroring 1

2

Figure A3.2: Two example embeddings of é into E in three dimensions. The corners
of the reference face (in the middle) are denoted by 0,1,2,3. To the left
the position of these face corners in E are shown for mirroring along the
So-direction. To the right resulting positions for rotation by 90° can be
seen.

A.4 Dimension of local function spaces

Table A4.1 Dimension of element-local function spaces for polynomial degrees p €
{1,...,10}. The left subtable shows the local size of @Q*~', X” and RT?"" (second from
left to right column) on quadrilateral elements in two space dimensions. Right subtable
the corresponding sizes on hexahedral elements in three space dimensions.

P Qpiz QpaxQue RT];;—l P Qpiz Qp3zx Q3 xQps RT%_I
1 1 8 4 1 1 24 6
2 4 18 12 2 8 81 36
3 9 32 24 3 27 192 108
4 16 50 40 4 64 375 240
5 25 72 60 5) 125 648 450
6 36 98 84 6 216 1029 756
7 49 128 112 7 343 1536 1176
8 64 162 144 8 512 2187 1728
9 81 200 180 9 729 3000 2430
10 100 242 220 10 1000 3993 3300
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A.5 Diagonal implicit Runge-Kutta Butcher tableaus

A.5 Diagonal implicit Runge-Kutta Butcher tableaus

In the following three sections we list Butcher tableaus of different numerical methods
for ordinary differential equations. The use of Butcher tableaus for in-time evolution has
been introduced in Section using the example of the Navier-Stokes viscous substep.

A.5.1 One-Step A-method
a=(-11) p=(1-600) &6=(0 1)
with 0 <0 <1.

A.5.2 Alexander’s two-stage method

-1 10 0O a O
a:(—l 0 1) B:(o 1-a a) 5=(0 a 1)

2
5 -

&

with a =1 —

A.5.3 Fractional-Step /-method

-1 1 00 01 —a) ba 0 0
a=| 0 -1 10, B= 0 fa 0(1l—a) 0 8=(0 60 1-6 1)
0 0 -1 1 0 0 6(1—a) fa

with = 1-¥2 o = 20,0’ = 1-20 = 1—a = v/2—1. Note also that fa = ¢'(1—a) = 20°.

A.6 Implicit multistep methods

A.6.1 Newmark (-scheme

a=(1 2 1) Bp=(8 1-28 8)
with

e 3 =0, Central difference scheme
e (3 =1/4, Average acceleration

e (3 =1/10, Linear acceleration

e 3 =1/12, Fox-Godwin method

e § =1, BDF2 method for second order ordinary differential equations.
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A Discretization related

A.6.2 BDF2 scheme

A.6.3 BDF3 scheme
a=(-% & -2 1) p=(000 &)

11 11 11

A.6.4 Adams-Moulton2

a=(0 -1 1) p=(~4 % &)

A.6.5 Adams-Moulton3

a=(00 -1 1) >

24

=
I
—~
2=
|
Rl
I
W
~

A.7 IMEX Runge-Kutta Butcher tableaus

A.7.1 IMEX-0-method

Implicit-explicit counterpart to the one-step #-method, presented in [KotO8b]:

a=(-11) p=(1-060) &=(0 1)
Be=(10) dp=(0 1)

with 1 <60 < 1.

A.7.2 IMEX trapezoidal rule

Implicit-explicit counterpart to the trapezoidal rule, to be found in [Kot08bl [Kot08al:

-1 10 110
a:( 1 11) [31:(?%0> or=(0 1 1)
—3 T3 11
Br = LU0 dp=(0 1 1)
P o Lo b ‘

A.7.3 IMEX Alexander’s two-stage method

Implicit-explicit counterpart to the diagonal implicit two-stage method by Alexander,
presented [ARS97]:

-1 10) 0 v 0
o= Br = d5r=(0 ~ 1)
(5 (01—% v>
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A.7 IMEX Runge-Kutta Butcher tableaus

v 0 O
BE:(é—l 1—6 o> op=(0 7 1)

2

witha =2—-v2, y=0a/2, 6=1-1/a .

A.7.4 IMEX Pareschi2
Second order three-stage method presented in [KotO8b]:

-1 1 00 0 100

a=| -3 -3 10 pr=[0 -1 10| &=(0131)
-3 -1 -3 0 -5 31
1000

Be = 0000 dg=(013 1)
-1 010

A.7.5 IMEX Ascher3
Third order four-stage method presented first in [ARS97] and then in [BPR13]:

-1 1 0 00 0 3 000
-5 -3 1 00 0 —% 3 00
| 2 = 22 &,=(0 3 2 41
I A N S IR
-1 _1 _1 _1 o 3 _7 3 1
4 4 4 4 24 4 8 2
L 00 00
3 1
5 5 0 00
pe=| 2 B, ., | ee=(03 3101
54 27 2
_1T 3% 5 1
72 8 8 4
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B Energy spectra

In this part of the appendix we revisit the spectral distribution of kinetic energy, helicity
and enstrophy that we have briefly introduced in Section [1.2.3] We derive here relations
for the practical computation of these spectra.

B.1 Kinetic energy spectrum

For a velocity field, E(k,t) is numerically computed by taking the Fourier transform of
the velocity correlation tensor,

ZCOII v;,v;)(0, %) ZJ F(Corr(v;,v;))) (k, t)dk.

Now since the velocity field is real-valued we replace the Fourier transform of the corre-
lation tensor in the style of (1.58]) by (Fuv;)(k,t) and its complex conjugate,

d
| / ,
E(t) ~ 52m)" Y [ I(Fo) (k. 0) dk
=1
1 d
oo / 2 12
3 Jy G D NFRIEDF

d
Bk, t) ~ %g‘j”k,”fk; (Fos) (K 6)[2 di . (BL.1)

Obviously (B1.1)) confirms the remark that the kinetic energy density is always real and
positive.

B.2 Helicity spectrum

Similar to the kinetic energy, helicity equals the velocity-vorticity correlation tensor at
zero separation. Using ((1.55) we furthermore obtain

ZCorr v, ¢;)(0,1) ZI F(Corr(vj,¢;)))(k, t)dk .
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B FEnergy spectra

Again as for the kinetic energy spectrum, we replace the correlation between velocity
and vorticity in the style of (1.58)) and use (1.56|) afterwards,

27r Zf (Fo)) (&, )(F¢) (k, t)dk
~ %i@m jm (k x (Fo) k. 1))k
Cyclic permutation in the triple product finally gives
H(t) ~ %i(Qw)d IRd k- ((Fvu)(k,t) x (F(v))(k,t))dk .

As above, the helicity spectrum can be obtained by integrating over a sphere of radius

k,
1
H(k,t) ~ =i

2! Kl =k - (Fo)(R, 1) x (F(o) (K1) dk’ . (B2.2)

Note that due to the properties of the triple product the helicity spectrum is real-valued.

B.3 Enstrophy spectrum

Similar to the spectra of kinetic energy and helicity, the enstrophy spectrum is derived
from the Fourier transform of vorticity correlation tensor. We use and (| - ) to
arrive at

E(t) ~ %(27r)d [ TFO)R,0) -k x (Fo) (k. £))dk

With Lagrange’s identity the integrand can be written as (kx (Fv)(k, t))-(kx (Fv)(k,t)) =
k- k|(Fo)(k,t)|* = (k- (Fo)(k,t))(k - (Fv)(k,t)). Now since V - v = tr(Vv), and be-

cause of the second term in Lagrange’s identity vanishes for divergence-free flow.

Therefore it turns out that

E(t) ~ %(zw)d [k RIF) kD dk

and that the enstrophy spectrum is completely determined by the kinetic energy spec-
trum, E(k,t) = K*E(k,1).

B.4 Implementation details

For the computation of the fast Fourier transform we assume for simplicity that the
velocity field vy, is given on an evenly spaced rectangular/cuboid mesh. Each discrete
velocity component is evaluated at different grid points that form by themselves the
vertices of an axi-parallel equidistant grid. Note that those points are chosen in such a
way that the locations do not coincide with the grid cell interfaces where the approximate
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B.4 Implementation details

solution is discontinuous. These generated d arrays that contain the point values per
component are then processed using the library FFTW3.

The discrete Fourier transform assumes input data in Cartesian coordinates and pro-
duces output data in the same coordinate frame. In order to perform the surface integral
over a sphere of radius k for data f(k’) that is given at discrete Cartesian points, we use
the quadrature

/ / ~ 47Tk2 /
gSkwf(k)dk ~ o ST Fw)

k'eC (k)

where C(k) := {k' | k — 1Ak <||K'||, < k+ 1Ak}. Note that (I) in 2D the factor in the
enumerator is replaced by 27k and that (II) the band thickness Ak is a natural number.
For the quadrature approximation we choose Ak = 2 as in [BMO™83].
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C Surface renewal

Recall the discussion on coherent structures movement in Section [£.7.4f The three-page
figure displays a second example of such motion.

0.0e+00 0.05
—

0.
|

c_h
1 0.15 0.2 0.25 3.0e-01
| U

Time: 9.98694t *

0.40

0.35

0.30 |

025

0.20

0.15

0.10

0.05

0.00

—_—

9.0

95 100 105 1.0 15 2.0
Time t/t+

Figure C0.1: Surface renewal event - Part 1: Settling of low concentration parcels indi-

cated by black circles on cross-section 3 = wd/2. The bottom part shows a
time window of the measured concentration at y/d = 0.05, indicated by the
lowermost black square on the cut. The current time of display is marked
by a vertical green line.
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C Surface renewal

c_h
0.0e+00 005 0.1 0.15 02 025 3.0e-01
— ! 1 —

Time: 10.1019t*

0.0e+00 005 0.1 015 02 025 3.0e-01
— ‘ Dl

Time: 10.1769t*

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

l).()%

.0 9.5 10.0 10.5 1.0 115 12.0
Timet/t*

Figure C0.1: Surface renewal event - Part 2: Further settling and joining of low concen-

136 tration parcels in the top part indicated by black circles and arrows. Here
on cross-section xz = 1.550. Middle part shows arrival of concentration
parcel at the probe location, again on cross-section z3 = md/2. Bottom
part displays the corresponding termination of a ramp pattern in the time
series.



C_
0.0e+00 0.05 0.1 0.1 02 025 3.0e-01

— | | b —

Time: 10.3269t*

0.40

0.35F
0.30 A
0.25}

0.20 KM
0.15

0.10}
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0.00
6.() 9.5 10.0 10.5 11.0 11.5 12.0
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Figure C0.1: Surface renewal event - Part 3: Enrichment of the depleted concentration
parcel during residence time in the reference moving in streamwise direc-
tion. The black circle indicates the current position after ejection. Mean-
while growth of concentration at fixed position of the lowermost probe.

In the first subfigure (at ¢ = 9.98694¢™) two low concentration parcels in the vicinity
of the channel half height are marked by black circles. Their travel route is depicted by
black arrows and continued in the uppermost part of the second subfigure. Note that
the cross-section at time ¢ = 10.1019¢" is at 3 = 1.556 to track the low concentration
better until it eventually reaches the measurement locations. Just before the arrival - as
indicated by the arrows - the upper concentration parcel forms a tail that is slowed down
and joins the lower parcel. The middle and bottom part of the second subfigure finally
show the surface renewal event, the third subfigure (at ¢ = 10.3269¢t") the subsequent
growth of concentration and ejection.
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