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Artifact Correction and Real-Time Scatter Estimation for X-Ray Computed To-
mography in Industrial Metrology

Artifacts often limit the application of computed tomography (CT) in industrial metrology. In
order to correct these artifacts, the so-called simulation-based artifact correction (SBAC) was
developed in this thesis. For this purpose, analytical and Monte Carlo (MC) based models
were set up to simulate the CT measurement process for a given component as accurately
and efficiently as possible. Calculating the difference between this simulation and an ideal
one yields an estimate of the present artifacts that can be used to correct the corresponding
CT measurement. The potential of this approach was demonstrated for the correction of the
most common CT artifacts, i.e. beam hardening, x-ray scattering, off-focal radiation, partial
volume effects, and cone-beam artifacts. In any case, the SBAC provided CT reconstructions
that showed almost no artifacts and whose quality was clearly superior to state-of-the-art
reference approaches. In this context, the problem of long runtimes of scatter simulations was
solved by another novel approach, the so-called deep scatter estimation (DSE). The DSE uses
a deep convolutional neural network which was trained to map the acquired projection data
to given MC scatter estimates. Once the DSE network is trained, it can be used to process
unknown data in real-time. In different simulation studies and measurements, it could be
shown that DSE generalizes to various acquisition conditions and components while providing
scatter distributions that differ by less than 2 % from MC simulations. Thus, the two developed
approaches make an important contribution to correct CT artifacts efficiently and to extend the
applicability of CT in the field of industrial metrology.

Artefaktkorrektur und Echtzeit Streustrahlschitzung fiir die Rontgen-
Computertomographie in der industriellen Messtechnik

Artefakte schrinken hiufig die Anwendung der Computertomographie (CT) in der industriellen
Messtechnik ein. Um diese zu korrigieren, wurde hier die sogenannte simulationsbasierte
Artefaktkorrektuur (SBAC) entwickelt. Dazu wurden analytische und Monte Carlo (MC)
basierte Modelle aufgestellt, die den CT Messprozess fiir ein gegebenes Bauteil moglichst
genau und effizient simulieren. Aus der Differenz zwischen dieser und einer idealen Simulation
kann anschliefend ein Korrekturterm abgeleitet werden, der die Artefakte der entsprechen-
den CT-Messung korrigiert. Das Potential dieses Verfahrens wurde hier fir die Korrektur
der haufigsten CT-Artefakte, d.h. Strahlaufhértung, Streustrahlung, Extrafokalstrahlung, Par-
tialvolumeneffekte und Kegelstrahlartefakte, demonstriert. In jedem Fall lieferte die SBAC
CT-Rekonstruktionen, die fast keine Artefakte mehr zeigten und deren Qualitdt die gingiger
Referenzverfahren deutlich {ibertraf. In diesem Zusammenhang wurde das Problem der langen
Laufzeiten von genauen Streustrahlsimulationen durch ein weiteres neu entwickeltes Verfahren,
der sogenannten ,deep Scatter Estimation“ (DSE), gelost. Dazu verwendet die DSE ein tiefes
faltendes neuronales Netz, welches darauf trainiert wurde gemessene Projektionsdaten auf
gegebene MC Streustrahlschétzungen abzubilden. Sobald das Training abgeschlossen ist, erlaubt
DSE unbekannte Daten in Echtzeit zu prozessieren. In verschiedenen Simulationsstudien und
Messreihen konnte gezeigt werden, dass DSE dabei auf verschiedene Aufnahmebedingungen und
Bauteile generalisiert und Streustrahlverteilungen liefert, die um weniger als als 2 % von MC
Simulationen abweichen. Damit leisten die beiden entwickelten Verfahren einen wichtigen Beitrag
zur effizienten Korrektur von CT-Artefakten und zur Erweiterung der Anwendungsmoglichkeiten
der CT im Bereich der industriellen Messtechnik.
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1 Introduction

Since its introduction by Godfrey N. Hounsfield in 1972 [1], x-ray CT has become an
indispensable imaging modality in several fields of application. The first applications of
CT, however, were restricted to medical imaging and led to the award of the 1979 Nobel
Prize in Physiology or Medicine to Hounsfield and Allan M. Cormack who laid several of
the theoretical foundations of CT [2]-[4]. Being able to recover the spatial distribution
of the x-ray attenuation coefficient from a set of transmission measurements (i.e. line
integrals over the attenuation coefficient), the potential of CT has soon been recognized
for other applications apart from medicine. In the early 1980s first adaptions of medical
CT started to appear for industrial purpose, mainly in the field of nondestructive
material inspection [5]-[7]. The emergence of large area planar detectors and the
development of the corresponding cone-beam CT (CBCT) reconstruction algorithms
further pushed this trend [8]. With the rising variety and complexity of industrial
components and the need for tolerance and geometrical quality control, the use of
CT for dimensional metrology started to be investigated in the 1990s [9]-[11]. The
development continued until the introduction of the first commercial dimensional CT
system in 2005 [12]. This enabled the accurate measurement of hundreds of tolerances
of a given workpiece simultaneously. Furthermore, CT allows to assess internal features
nondestructively which is a big advantage compared to other modalities such as tactile
coordinate measurement machines or optical scanners. Nowadays, dimensional metrology
and flaw detection are still the primary applications of industrial CT [12]. While it
is used routinely e.g. in plastics industry, the investigation of highly attenuating or
multi-material components, however, remains a major challenge. As depicted in figure
1.1, the CT reconstructions of these components are often corrupted by severe artifacts
that appear as cupping, shading or dark streaks. The degradation of image quality that
comes along with the presence of artifacts impairs or even precludes an appropriate
metrological assessment, and therefore, limits the applicability of metrological CT [13].
To overcome this drawback, this thesis aims at developing efficient approaches to correct
for these artifacts.

In general, CT artifacts arise whenever the physics of the CT data acquisition is
not modeled appropriately within the reconstruction process or if sampling criteria
are not met [14]. Analytic reconstruction algorithms that are used most commonly
in metrological CT, for instance, assume a linear relationship between the acquired
projection data and the intersection length through the sample. However, practically
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Figure 1.1: Models (top row) and CT reconstructions (bottom row) of typical highly
attenuating (left column) and multi-material components (middle and right
column). The CT reconstructions clearly show the severe impact of CT
artifacts that prevent an appropriate metrological assessment.

there are several effects that lead to a violation of this assumption. Here, beam hardening
that is caused by the increasing x-ray attenuation for decreasing x-ray energies, x-ray
scattering, partial volume effects and off-focal radiation are the most prominent ones
[15]. Another common source of artifacts is the use of circular scan trajectories in
combination with a cone-beam setup. Since this trajectory only allows for an exact
CT reconstruction within the mid-plane, so-called cone-beam artifacts are introduced,
especially in the periphery of the reconstructed volume.

There are several approaches that have been proposed for the correction of CT artifacts
[16]-[25]. Most of them can be classified as either iterative, pre- or postcorrection
approaches. The former solve the reconstruction problem iteratively while incorporating
dedicated models of the interaction between x-rays and matter within the reconstruction
process. Pre- and postcorrection approaches, in contrast, apply empirically or physically
motivated correction terms prior or post to an analytic reconstruction. However, existing
approaches are typically optimized for a certain artifact or can be applied to either
single- or multi-material components only. Therefore, a novel approach that applies
to arbitrary components and accounts for all of the CT artifacts mentioned above is
presented in this thesis. The basic idea of this approach, referred to as simulation-
based artifact correction (SBAC), is to correct for artifacts using simulations of the
CT data acquisition process. Given a prior model of the component, two simulations



are performed: one simulation that models all the physics leading to artifacts and a
second one that fulfills all assumptions of analytic reconstruction algorithms, and thus,
represents an ideal CT measurement. The difference of these simulations is an estimate
for the present artifacts and can be used subsequently to correct the measurement.
Since the performance of the SBAC highly relies on the accuracy of the simulations
to reproduce measured data, precise models have been developed or existing models
have been refined to fit this purpose. Namely, these models that are described and
validated in chapter 3 of this thesis cover the generation of x-rays, the effect and the
determination of the focal spot distribution including off-focal radiation, the interaction
of x-ray photons within the measured object as well as the x-ray detection process. The
application of these models within the framework of the SBAC as well as a dimensional
evaluation of the SBAC can be found in chapter 4.

Besides accuracy, computational performance is another important issue to be con-
sidered. Typically, an industrial CT acquisition is performed within the order of several
minutes [12]. Thus, any correction approach should not exceed this time considerably
to be applied within the workflow routinely. Here, x-ray scatter correction turns out to
be the main bottleneck. Due to the complexity of x-ray scatter interactions, accurate
scatter prediction approaches usually rely on Monte Carlo (MC) methods which are,
however, very time consuming and require dedicated prior knowledge [26]. While several
more efficient scatter estimation approaches have been proposed, they are by far less
accurate than MC methods [27]. Thus, up to date there is always a trade-off between
accuracy and computational performance. To combine both of these properties, a novel
scatter estimation approach based on a deep convolutional neural network (DCNN)
is proposed as a third major development in this thesis. Inspired by the outstanding
performance of DCNNs in several areas of CT imaging such as denoising [28]-[32],
registration [33], artifact reduction [34]-[36], segmentation [37]-[40] or sparse view CT
[41]-[44], the so-called deep scatter estimation (DSE) is presented. The basic idea of
DSE is to set up a DCNN that is trained to reproduce MC scatter estimates given only
a function of the measured projection data as input. Presenting the DSE network a
sufficiently large amount of training samples, i.e. pairs of projection images and MC
scatter estimates, it is able to learn a suitable mapping. Once that mapping has been
learned, DSE can be applied to unknown projection images and yields scatter estimates
with similar accuracy as MC simulations. Since DCNNs can be implemented efficiently
on a graphics processing unit (GPU), DSE performs in real-time. An extensive evalua-
tion of DSE for metrological CT, demonstrating its potential as well as its limitations,
is given in chapter 5 of this thesis.

Although the focus of this work is set on CT metrology, it has to be noted that none
of the approaches presented here is restricted to that field. Since all of them address a
general problem of CT imaging, their use might also be beneficial for other applications
such as clinical CT or interventional CT, for instance.






2 Fundamentals

2.1 X-Ray Imaging and CT

X-rays have the ability to traverse objects or patients while being attenuated (absorbed
or scattered) with a certain probability. As this probability depends on the material
as well as the density distribution, x-rays are used by several imaging modalities to
investigate the object’s or patient’s morphology. A brief overview of the underlying
physics and their application to x-ray imaging is given in the following.

2.1.1 X-Ray Generation

Electromagnetic radiation in the energy range of 100 eV up to several MeV is referred
to as x-ray radiation [45]. X-rays used in medical and industrial imaging applications
are usually generated using reflection or transmission x-ray tubes. The basic working
principle of these tubes relies on the generation of free electrons, their acceleration in an
electric field and their subsequent deceleration within a metal target. The basic setup is
depicted in figure 2.1. Electrons are emitted from a hot cathode (glow filament), which
is heated to approximately 2400 K to overcome the binding energy of the electrons in
the filament [14]. An acceleration voltage U4 (also referred to as tube voltage), applied
between the hot cathode and a ring anode, accelerates the free electrons towards the
anode. In that process the electrons gain kinetic energy 7' that is given by T' = eUy4,
with e being the elementary charge. To focus the electron beam as well as to control
its intensity, a grid cap (also known as Wehnelt cylinder) is placed in between the hot
cathode and the ring anode. The grid cap is biased to a negative voltage Uq relative to
the hot cathode, thus, creating a repulsive electric field that suppresses the emission
of electrons from the outer areas of the cathode. The effective size of the electron
source can be adjusted by varying the bias voltage. However, as an increasing bias also
decreases the beam current, there is always a trade-off between beam quality and beam
intensity in practice. On its way to the target, the electron beam passes an additional
system of centering and focusing coils. While the centering coils control the incidence
of the electron beam on the target, the focusing coils serve as convergent magnetic lens
to adjust the focal spot size.

When the fast electrons hit the x-ray target they loose energy by interactions with
the target atoms. Here it is convenient to distinguish between collision energy loss
and radiative energy loss. The collision energy loss is caused by inelastic Coulomb
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collisions with bound atomic electrons leading to excitation and ionization [46], [47].
This may lead to vacancies in inner electronic shells which are subsequently filled by
outer shell electrons. The corresponding transition energy is given off as electromagnetic
radiation which is also referred to as characteristic radiation. The transitions are termed
with the letters K, L, M, ...denoting the final electronic state, and Greek indices
a, B3,7,. . .denoting the difference between the initial electron shell and the final electron
shell. Thus, a transition from L to K shell is termed K, , a transition from M shell to K
shell is termed Kg, and so on.

Reflection x-ray tube Transmission x-ray tube

Hot cathode

Grid cap > L J

D A

A

Ring anode

m— | —

<+—— Evacuated tube —»

—— Focusing coils

Electron beam

Target — /

X-ray beam ——

A

Figure 2.1: Basis setip of reflection (left) and transmission x-ray tubes (right). Here,
reflection x-ray tubes can usually be operated with higher tube currents
as there is a better heat dissipation. Therefore, they are used whenever a
high power is required. Transmission x-ray tubes are used if small focal spot
sizes are needed.

In contrast, the radiative energy loss is caused by the deflection of the incident
electrons by the Coulomb field of atomic nuclei and is associated with emission of
bremsstrahlung [48]. As the initial momentum of the electron is shared between
three bodies (the residual electron, the emitted photon, and the atomic nucleus), the
emitted bremsstrahlung spectrum is continuous with a maximum energy that equals
the kinetic energy of the incident electron hvpmax = T'. For electrons, the ratio between
collision energy loss per path length and radiative energy loss per path lengths can be
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approximated as [49]:

dT/dS’rad . Z-T

= 2.1
dT/ds|ee 1400 - moc?’ (2.1)

with T being the electron’s kinetic energy, Z being the atomic number and mgc? ~

511 keV being the energy of a free electron at rest. Therefore, materials with a
high atomic number such as tungsten (Z=74) usually serve as x-ray target. However,
according to equation (2.1) only about 1 % of the electron’s energy is converted to
bremsstrahlung assuming typical tube voltages in the order of 100 kV. The remaining
99 % are absorbed as heat which poses a limitation on the maximum power or the tube
current, respectively.

2.1.2 Interaction of X-Rays with Matter

X-rays can interact with matter in several ways. Possible interactions can be summarized
systematically as follows [50]:

Type of interaction Interaction effect
1. Interaction with atomic electrons (a) Absorption
2. Interaction with nucleons (b) Elastic scattering

3. Interaction with the electric field of the nuclei / elec- (c) Inelastic scattering
trons
4. Interaction with the meson field of the nucleons

Theoretically, there are 12 possibilities to combine both columns. However, many of
these processes are quite infrequent or have not been observed yet. Considering energy
ranges of medical and industrial CT which are typically below 1 MeV, there are only
three relevant processes: photoelectric absorption (la), Rayleigh scattering (1b) and
Compton scattering (1c). These effects are commonly described in terms of the linear
attenuation coefficient p(E) which corresponds to the interaction probability per path
lengths P/dl for dl < 1/pu. Here, the total attenuation coefficient is simply the sum of
the attenuation coefficients of the photoelectric effect upg, Rayleigh scattering purg and
Compton scattering pcs:

1(E) = ppe(E) + prs(E) + pes(E). (2.2)

The contribution of these three effects to the total attenuation coefficient is shown
in figure 2.2. At low energies the photoelectric effect typically makes up the main
contribution while Compton scattering becomes dominant at higher energies. The latter
poses a major problem to CT imaging which will be discussed in more detail in chapter
4.

From a physical point of view, x-ray matter interactions are rather described by
the (differential) interaction cross section o. The cross section is proportional to the
interaction probability but is given in units of an area. Thus, it can be interpreted as
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effective target area for a certain interaction. Having a sample with Np target particles,
an interaction probability P and an area F' that is irradiated homogeneously, ¢ is given
as:

F
o(E)=P(E)—. (2.3)
Nr
The relation to the attenuation coefficient is given by:
(B) = L u(B) (24)
o = — ) .
PNAM

with p being the density, N4 being the Avogadro constant and A being the atomic mass.
A more detailed description of the photoelectric effect, Rayleigh scattering and Compton
scattering as well as the phenomenological Beer-Lambert law that is commonly used in
CT to describe x-ray matter interactions is given in the following sections.
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Figure 2.2: Contribution of the photoelectric effect, Rayleigh scattering and Compton
scattering to the total attenuation coefficient for water, aluminum, iron and
lead at energies between 1 keV and 1000 keV.
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i.) Beer-Lambert Law of Attenuation

X-ray matter interactions, in terms of the attenuation of a well-collimated x-ray beam,
can be described by the Beer-Lambert law [51]-[53]. In contrast to charged particles,
the attenuation shows a truly exponential behavior as x-rays are absorbed or scattered
in a single event. The corresponding law can be derived by assuming an infinitesimally
thin absorber of thickness dl that is irradiated with a large number of N x-rays. With
the interaction probability of the absorber being p dl, the change dN of the number of
x-rays N is given by:

dN = —Npdl. (2.5)

This is justified by the fact that any interaction leads to the complete removal of the
corresponding x-ray from the (collimated) beam. Solving the corresponding differential
equation with boundary conditions N(0) = Ny and N(co) = 0 yields the Beer-Lambert
law:

N(l) = Ny - e, (2.6)

where g is the linear attenuation coefficient (units of an inverse length). Equation
(2.6) describes the attenuation of an homogeneous absorber for a single monochromatic
energy. However, x-ray imaging applications usually deal with inhomogeneous objects
(& — p(r)) and polychromatic x-ray beams (Nyg — No(E), p — p(E)). Accordingly,
the polychromatic Beer-Lambert law for inhomogeneous objects is given by:

1
N(l, E) = No(E) - ¢ Jo et (2.7)

where s and ¢t are the emission point and the directional vector parametrizing the
x-ray beam. However, common x-ray detectors do not provide an appropriate energy
resolution to measure N (I, ) according to equation (2.7) directly. They rather measure
the integral over a certain energy range:

10)= [ € n(B)- No(B)-e” Jusrt.E)N g g (2.8)
b

with n(E) being the detector efficiency, i.e. the fraction of x-rays that is absorbed within
the detector, and

B Discriminator threshold Ideal photon counting detectors (2.9)
- 0 Energy integrating detectors, '
and
_J1 Ideal photon counting detectors (2.10)
|\ E Energy integrating detectors. '

As can be seen by equation (2.9) and (2.10), there are currently two different detector
technologies used in x-ray imaging which will be discussed in more detail in section
2.1.3.
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ii.) Photoelectric Effect

The transition of atomic electrons between a bound state and a continuum state induced
by the absorption of electromagnetic radiation is referred to as photoelectric effect.
Considering the interaction between the electron and the photon field as first-order
perturbation (which is valid for low photon density fields) implies that the interaction
is restricted to one photon and one electron. Thus, the photon is absorbed by an
electron in a certain shell b with the corresponding binding energy FEj. Obviously,
photoionisation of a given shell requires the photon energy E, to exceed the binding
energy (E, > Ej,) which gives rise to the edges in the photoelectric cross section (see
figure 2.2). The remaining energy is transferred to kinetic energy 7' of the electron:

T = E, — E, (2.11)

Theoretically, the photoelectric cross section opg for a certain electronic shell can be
derived from quantum mechanics by calculating the corresponding transition matrix
element. It can be shown that the important region for the matrix element is large
compared to nuclear size but small compared to the dimension of the atomic cloud.
Consequently, the photoelectric interactions occur predominately with K-shell electrons
[54]. First attempts to derive an analytic expression for the photoelectric cross section
have been performed in 1930 by Stobbe using dipole approximation with exact non-
relativistic hydrogen-like electron wave functions for the 1s state [55]:

1

2 2 _—4njcot™img

mocC €K €

0153%’,??:(4\/525044E <P0> 2m <E> Tz | (212)
Y Y

with Z being the atomic number, a the finestructure constant, mg the electron rest
mass, ¢ the speed of light, E, the energy of the incident photon, o the Thomson
cross-section that holds for the elastic scattering of photons at free charged particles,
ex the K-shell binding energy and ny = \/ex /(Ey — €x). Although this result relies on
several approximations it yields a roughly correct dependence of the cross section on
the atomic number and the energy. For small photon energies close to the absorption
edge equation (2.12) yields opg oc Z°/ E%, while opg o Z°/ E3 for high photon energies.
With the availability of high speed computers the calculation of more accurate results
became possible using numerical methods. An extensive discussion of these models
that consider relativistic electron wave functions, all contributing multipoles as well
as shielding effects can be found in reference [54]. Today, accurate photoelectric cross
sections are available for all shells of the elements Z = 1 — 100 and photon energies up
to 1000 GeV. In this work, photoelectric cross sections are obtained by interpolation of
tabulated values from the evaluated photon data library (EPDL) [56] that are based on
theoretical shell cross sections of Scofield and total cross sections of Hubbell [57], [58].

iii.) Compton Scattering

The inelastic scattering of electromagnetic waves at charged particles, usually electrons,
is referred to as Compton scattering. It is named after Arthur H. Compton who first

10
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came up with a theoretical explanation of the wavelength shift (A — \) of scattered
photons (wavelength \') as a function of the scatter angle ¥ [59]. Assuming inelastic
scattering at quasi-free electrons at rest, the corresponding relation can be deduced
from energy and momentum conservation as:

N — X=X (1—cos?), (2.13)

where A\. = h/(mgc) is the so called Compton wavelength. Using the relation £ = he/\
in equation (2.13), the energy Ei/ of the scattered photon is given by:

L.
B, = B :
1+ —%(1—cos?)

moc?

(2.14)

In case of free electrons at rest, the differential Compton scattering cross section is
given by the Klein-Nishina formula [60]:

do 1 a? E; 2
d€? Klein-Nishina a 2 m% E’Y

where « is the fine-structure constant and £ /E. is defined by equation (2.14). Consid-
ering the scattering at atomic electrons, which are neither free nor at rest, deviations
from equation (2.15) can be observed. These deviations that are caused by the elec-
tron binding energy as well as interference effects with bound electrons are commonly
accounted for by a so-called incoherent scatter function S(gq, Z) that depends on the
momentum transfer ¢ and the atomic number Z. Thus, the differential cross section for
incoherent scattering at atomic electrons is given by:

E! E
Y Y i02
E + E — S 19‘| y (215)

do do

30 = S(q,2) (2.16)

dQ Klein-Nishina
A detailed description of the evaluation of the incoherent scatter function and a
comparison to measurements is given in reference [61]. In this work, the differential as
well as total Compton scatter cross sections are obtained by interpolation of tabulated
values from the EPDL [56] that are calculated according to equation (2.16) using the
incoherent scatter function of Hubbell et al. [61], [62].

iv.) Rayleigh Scattering

Rayleigh scattering refers to the elastic scattering of photons at bound atomic electrons.
Therefore, Rayleigh scattering only leads to a change of the initial flight direction while
the energy of the scattered photon remains unchanged. The atomic Rayleigh scattering
differential cross section can be calculated using non-relativistic perturbation theory.
For energies much higher than the K-shell binding energy it is given as [63]:

do _
aQ

do
F(q,2)*—= 2.1
| (q’ )| dQThomson7 ( 7)

11
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where

do 14 9
— =—r2(1 2.1
dS) Thomson 2 Te ( +cos 19) ( 8)

is the Thomson differential cross section that describes scattering at free charged
particles by classical electromagnetism and F(q,Z) is the atomic form factor that
corresponds to the Fourier transform of the electron density distribution with ¢ being
the magnitude of the momentum transfer and Z being the atomic number. For energies
in the range of the K-edge binding energy, equation (2.17) is commonly modified as
follows [64]:

do _
aa

where the complex term f’' + i - f” is the so-called anomalous scatter factor that is
associated with scattering via absorption and reemission. In this work, the differential
cross sections for Rayleigh scattering are obtained by interpolation of tabulated values
from the EPDL [56]. The EPDL cross sections are based on equation (2.19) using the
non-relativistic form factors of Hubbell [61] and the anomalous scattering factors of
Cullen [65].

d
\F(q.Z)+ f +i- f'|25Z

2.1
ds? Thomson’ ( 9)

2.1.3 Detection of X-Rays

The detection of x-rays relies on their attenuation within the detector material and the
subsequent conversion of the x-ray energy to an electrical signal that can be further
processed by the detector’s electronics. Here it has to be distinguished between indirect
conversion and direct conversion as depicted in figure 2.3. The two different detector
technologies are briefly described in the following.

Indirect Converting Detectors Indirect conversion refers to a two-step process
in which x-rays are converted to optical photons that are subsequently detected by
photomultiplier or a photo diode [66]. In medical and industrial CT, the corresponding
detectors are usually based on inorganic scintillators. Here, the scintillator has a band
gap between the valence band and the conduction band of energy Egap, [67]. Incident
x-rays lead to multi-step interactions with the lattice of the scintillator material. In a
first step, incident x-rays transfer energy to bound electrons by the photoelectric effect
or Compton scattering as described in section 2.1.2. Subsequently, these electrons can
transfer their kinetic energy by elevating further electrons from the valence band to the
conduction band, leaving holes in the valence band. The whole process requires less
than 1 ps [66]. The corresponding number of electron-hole pairs can be approximated
as [67]:

E, E,
Eehp B . Egap’

where F, is the energy of the incident x-ray and Eey,p is the energy that is required
to generate an electron-hole pair. This energy is typically a factor § =~ 3 — 7 higher

Nenp = (2.20)
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Energy integrating detector Photon counting detector
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Figure 2.3: Layout of a conventional scintillator-based energy integrating detector (indi-
rect conversion) and a semiconductor-based photon counting detector (direct
conversion).

than the energy of the band gap as there is an energy loss e.g. due to lattice vibrations
[68]. Considering the pure crystal, the return of electrons from the conduction band to
the valence band by the emission of photons would be an inefficient process. Another
drawback would be the typical band gap energies which resulted in photons outside
the optical spectrum when electrons deexcite to the ground state. To increase the
probability of optical photon emission, impurities are commonly added to the scintillator
crystal. These impurities, i.e. dopants like Eu, Ti or Tb create special sites within the
lattice (luminescence centers) that distort the regular band structure. Thus, compared
to the pure crystal, there are additional energy levels within the band gap. Once an
electron-hole pair is created, the positive hole drifts to the location of the luminescence
center and ionizes it as the ionization energy is lower than the one of a lattice site.
The corresponding electron moves freely in the conduction band until it encounters
an ionized luminescence center. If the dopant is appropriately chosen, the subsequent
recombination leads to the emission of optical photons. Using the formula of equation
(2.20), their number can be estimated as [67]:
E,

B Egp Egap
with S being the transport efficiency of electron-hole pairs and ) being the quantum
yield of the luminiscence process. Typically, 10 — 10° photons are created per MeV
which are then converted to an electrical signal by the photo diode [66]. As the half-life
time of the excited states is in the order of 50-500 ns, indirect converting detectors are
not able to register single x-rays assuming typical fluxes in CT [69]. The measured
signal corresponds to the integrated charge over the readout time. Since the charge is

proportional to the energy, these detectors are also referred to as energy integrating
detectors.

Nph = Nepp - S -Q = -5-Q, (2.21)

Direct Converting Detectors Direct converting detectors are based on semiconduc-
tor sensors that are operated to measure the electron-hole pairs, generated by incident
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x-rays. Here, the first steps of the detection process until the formation of electron-hole
pairs are as described in the previous section. To detect the electron-hole pairs, the
semiconductor sensor is equipped with electrodes on its surface. Applying a bias voltage,
typically in the order of a few hundred volts, allows to accumulate the charge @) = eNepp
in a capacitor with capacity C. Subsequently, the capacitor can be discharged over a
resistance R which yields a time-dependent voltage pulse:

U(t) = Uy e /O, (2.22)

where Uy = Qo /C corresponds to the total collected charge Qg. The pulse train U (t)
is then processed by a pulse-shaping amplifier followed by a pulse height analysis. In
that process, the incoming signal U (t) is compared to a reference voltage. That voltage
can be related to a certain energy threshold Fj by an appropriate calibration. Once
the signal exceeds the reference voltage or the energy threshold, respectively, the event
is counted as an incident photon with energy E., > Ej. Since the readout process
is much faster than for energy integrating detectors, single photons can be counted.
Furthermore, this detector technology allows to sort incident x-rays by their energy
while suppressing electronic noise by an appropriate choice of the threshold.

2.1.4 Imaging

X-ray imaging applications make use of the material specificity of x-ray matter interac-
tions. X-rays that traverse different materials are attenuated differently which allows to
get insight in the object’s morphology. Here, the acquisition of x-ray projection images
corresponds to the measurement of line integrals over the attenuation coefficient (see
equation (2.7)). Thus, a single projection cannot resolve the morphology of an object in
beam-direction but only to some extend in lateral direction. While this information is
sufficient in several applications such as conventional radiography, 3-dimensional (3D)
information can be reconstructed by acquiring several projections over an angular range
of at least 180°. The principle setup as well as the mathematical basics of CT image
reconstructions are briefly explained in the following.

i.) CT Setup and Data Acquisition

The basic setup of a CT system consists of an x-ray source and an opposed detector
measuring the x-rays that traversed the scanned object without interaction. To acquire
x-ray projection images from at least 180°, the source and the detector are either
mounted on a rotating gantry or the object itself is rotated. The first CT system
developed by Sir Godfrey N. Hounsfield had only two detector elements aligned in
z-direction [70]. As only two rays could be acquired simultaneously, the source and the
detector had to be moved step by step across the object to derive a complete projection
for a given view angle. Thus, the data are acquired in parallel beam geometry and
can be reconstructed as described in the following section. Later generations of CT
systems used a fan beam geometry with multiple laterally aligned detector elements to
acquire a complete projection in one shot. Today’s CT systems typically acquire several
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z-slices at once using a cone-beam geometry and detectors with up to several thousands
rows and columns. While clinical CT systems use cylindrical detectors, industrial CT
systems are usually equipped with flat detectors. Each detector element measures the
x-ray intensity I which is assumed to follow the monochromatic Beer-Lambert law as
given by equation (2.6). This intensity is normalized to a flat field image Iy, i.e. an
acquisition without object to calculate projection values p as:

p:—ln— /us—i—)\ t)d (2.23)

which evaluates to p = p - L in case of a homogeneous object with intersection length L.
Thus, for ideal data, there is a linear relationship between the projection value and the
line integral over the attenuation coefficient.

ii.) CT Reconstruction

The mathematical basics of 2D CT reconstruction are based on the work of Johann
Radon who showed that a continuous function f(z,y) with [ [ da dy &2

< 00 can
\/7

be recovered from an infinite set of line integrals along straight lines in the 2-dimensional
(2D) Euclidean space [71]. This section briefly discusses the application to CT imaging
but is, for the sake of simplicity, restricted to the most simple case of 2D reconstruction
in parallel beam geometry.

The CT Reconstruction Problem in 2D Parallel Beam Geometry In 2D
parallel beam geometry rays are usually parametrized as shown in figure 2.4. Here, 9
describes the angle of the ray with respect to the x-axis and £ denotes the distance of
the ray from the isocenter which is assumed to be the origin of the coordinate system.
Thus, any ray is described by the following equation of a line:

rcost+ysind —&E=r-nyg— & =0, (2.24)

with 7Ly = (cosJ,sin®)” being the unit vector normal to the projection direction. Using
equation 2.24, the line integrals given by equation (2.23) can be expressed as:

p(0,6) = /,u(s + X t)dA
_ /M(x, Y)3(x cosd + ysind — &)dady
—/M §(r - g — &)dr
R, (2.25)

and is also referred to as Radon transform (or x-ray transform in case of 3D data) with
R being the radon transform operator. Given the line integrals over an angular range
of at least 180°, the CT reconstruction aims at recovering p(r) by inverting equation
(2.25), i.e. =R !p.
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Figure 2.4: Left: Schematic of an ideal 2D pencil beam geometry. Parallel rays, emitted
by the x-ray source, are described by their distance £ to the origin and the
angle 9 between the x-axis. Right: Corresponding sinogram. Each pixel of
the sinogram corresponds to a certain £ and 9 and represents the value of
the line integral given in equation (2.23).

Backprojection Backprojection refers to the “smearing” of the projection values
back to image domain. For a given angle 1, the image f(r) is assigned the projection
value that corresponds to the ray through r:

fo(r) =p(0,7 - Ny) (2.26)

Performing the backprojection for all angles yields:

Fr) = /Oﬂp(ﬁ,r - fag)dd
= Bp(0.). (2:27)

where B is the backprojection operator. It can be easily shown that the application of
the backpropagation operator does not yield the desired solution to the reconstruction
problem, i.e. B # R
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Substituting equation (2.25) into equation (2.27) yields:
/ /u ((r — r')ig)d* dvY
—/M(r) / 5(( rr)nﬁ)dﬁ]dz !
= /u(r') / 5(|r — 7’| cos(p — ﬁ)dﬁ} d*r’
LJo
[ [T 59 — Vo) } 9
_ / /
B /M(T) _/0 |r —r’|sin(:t7r/2)dl9 dr

—/u /
’I"—’I"

(r) % h(r). (2.28)

In step 2 the relation a - b = |a| - |b| cos £% was used with ¢ being the angle between
|r — 7| and the x-axis. In step 3, the relation §(g(z)) = 3, |¢'(z:)|1d(x — ;) was
used, with ¢’(x) being the derivative of g(z) and z; being the simple zero points of g(z).
The argument of the J-distribution has exactly one zero point g within the interval
0<¥<m Yg=p+m/2o0r Jy= ¢ — /2 which evaluates to the expression given in
the fourth line.

As shown by equation (2.28), the backprojection of the projection data p does not
yield the distribution of the attenuation coefficient p(r) but its convolution with the
point spread function h(r) = 1/|r|.

Filtered Layergram: Deconvolution of the Backprojection One possibility
to recover pu(r) from f(r) as given in equation (2.28) is to perform a deconvolution.
Applying the convolution theorem which states that a convolution in spatial domain
corresponds to a multiplication in Fourier domain yields:

Faf(r) = FaBp(9,€) = Fa(u(r) « h(r)) = Faplr) - Fah(r), (2.29)

where F5 is the 2D Fourier transform operator. With the 2D Fourier transform of the
point spread function h(r)

Fah(r) = Folr| ™ = |k, (2.30)
equation (2.29) can be rearranged to:

Fop(r) = [k|F2Bp(9, ). (2.31)
Applying the inverse 2D Fourier yields u(r) as

p(r) = Fy k| F2Bp(9, €) (2.32)

Thus, a solution to the reconstruction problem is to perform a backprojection of the
projection data p followed by a filtering in Fourier domain with a 2D ramp function |k|
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and an inverse Fourier transform to get back to image domain. This method, which is
also known as filtered layergram, has the drawback of requiring all projections before
Fourier domain filtering can be started. Thus, practical applications are usually based
on the so-called filtered backprojection (FBP) that applies a filtering operation to every
acquired projection prior to the backprojection. The FBP algorithm can be derived
from equation 2.32 using the central slice theorem.

Central Slice Theorem The central slice theorem relates the 1-dimensional (1D)
Fourier transform of the projection data p(¢,€£) to the 2D Fourier transform of the
distribution p(r). The 1D Fourier transform of the projection data with respect to ¢ is
given as:

Py(k) =F1{p(¥,8)}¢
=[] [ ot g — ] e2riag
= [t [ [ sty — e >mag]

:/u(r)e*%ik(r'ﬁﬂ)d% (2.33)
Comparing equation (2.33) to the 2D Fourier transform of u(r)

M (k) =Fao{pu(r)}
::jfﬁm7qe*ﬂﬂﬂrk>d2r (2.34)

shows:
Py(k) = M(kny). (2.35)

Equation (2.35) is referred to as Fourier slice theorem. It states that the 1D Fourier
transform of a projection corresponds to a straight line [ through the origin of 2D
Fourier space of u(r) that is given as [ : k- ny = 0. Considering all angles, it equals the
2D Fourier transform of u(r) in polar coordinates. Using the operator notation yields:

FiR = Fo. (2.36)

Applying simple operator algebra, equation (2.36) can be rearranged to R~! = F, ' Fy,
which is obviously a solution to the reconstruction problem and referred to as direct
Fourier reconstruction. However, as measured data are sampled on a discrete polar
grid a resampling to a Cartesian grid is required before applying the inverse Fourier
transform. As this resampling includes a complex interpolation, this approach is usually
not the method of choice in practice.
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Filtered Backprojection (FBP) Starting with equation (2.32), the FBP can be
derived by replacing the 2D Fourier transform as well as their inverse according to the
central slice theorem (see equation (2.36)):

u(r) = Fy k| FaBp(d,€)
=RV KIFIRBp(V, ),
with |k| = |k - fig| = |k| this can be rearranged to:
p(r) = BFy k| Fp(9,€)
= BF k| Py(k)
= B(Fy ' [k]) * p(9, §). (2.37)
In the last step the convolution theorem according to equation (2.29) was applied such
that the filter operation is performed in spatial domain. Equation (2.37) is referred

to as FBP. It states that the distribution of the attenuation coefficient p(r) can be
reconstructed by filtering the acquired projections p(¥, £) with the reconstruction kernel

-1
2772 62
and the subsequent backprojection of the filtered projections to image domain as
described by (2.27).

Fi k] :/\klem’“gdk: (2.38)

2.1.5 Industrial CT

In contrast to conventional optical or tactile inspection techniques, CT is able to
reconstruct a complete virtual 3D model of the sample in terms of a voxel volume
or a surface mesh, respectively. This offers several benefits: internal structures can
be investigated nondestructively, all features of the sample are measured at once and
the evaluation of the measurement is mostly independent of the data acquisition.
Furthermore, CT provides a high spatial resolution up to a few tens of nanometers [72],
comparably short scan times and only minor restrictions with respect to the shape, the
size or the material of the sample. Therefore, CT has become an important tool in
several areas of industry such as flaw detection, failure analysis, reverse engineering,
assembly analysis or metrology [12].

In contrast to clinical CT systems in which the detector and the x-ray source are
mounted on a gantry, industrial CT systems are usually based on a table-top setup
in which the object itself is rotated. Using a rotary table that is displaceable in
source-detector direction allows to change the geometric magnification i.e. the spatial
resolution as well as the field of measurement. Thus, the geometry can be adjusted to
fit samples with varying dimensions. Besides the geometry, the spatial resolution is
mainly determined by the focal spot size as well as the detector pixel size. Therefore,
industrial CT systems are preferably equipped with high resolution flat detectors and
micro-focus transmission x-ray tubes that are typically operated between 40 kV and
450 kV [12].
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2.2 Monte Carlo Methods

MC methods refer to a broad class of approaches that make use of repeated random
sampling to solve deterministic or stochastic problems. The earliest calculations date
back to Compte du Buffon’s needle tossing experiments in 1777 to calculate the number
7 [73] 1. However not until the availability of digital computers, MC methods became
widely applicable. Today, MC finds various applications ranging from social science
to quantum chemistry. In this thesis, however, the main purpose is the simulation
of radiation transport. As several results are derived using MC methods, the basic
principles are briefly reviewed in the following.

2.2.1 Basics of Probability Theory

i.) Random Variables

A random variable is a variable that results from a repeatable process with at least two
possible outcomes which, however, cannot be predicted with certainty. While the actual
realization of random variables is unknown in advance, their distribution is typically
well known. Considering a continuous random variable X, it is given in terms of a
probability density function (PDF) p(z) that describes the probability P of finding X
in an interval [x,z + dz]:

p(z)dr = Plz < X < x4+ dz]. (2.39)

Since the probability of finding X within a given interval cannot be negative and the
probability of finding X anywhere has to equal 1, a PDF has to have the following
properties:

p(z) =0, (2.40)

and

[ee]
/ p(x)dx = 1. (2.41)
—0o0

In case of discrete random variables the PDF can be defined similarly using delta
distributions d(z — ). Considering a random variable that can take N discrete values
x = x9,%1,-..,xN—1 With the corresponding probabilities pg, p1,...,pNn—1, it is given
as:

p(x) = ppd(x — xy). (2.42)

! Assume to have a needle of length d tossed on a plane ruled with parallel lines of distance d. For
a certain angle ¥ the probability to hit the line is P = d - |cos?|/d. Averaging over all angles
(1/m) - fow | cos 9|dv) yields a probability of 2/m. Thus, 7 can be estimated as twice the number of
tries divided by the number of misses.
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Sometimes it is more convenient to characterize random variables by their cumulative
distribution function (CDF) C(x) that describes the probability P(X < z) of X being
equal or smaller than x. Thus, C(z) is given as the following integral over the PDF:

T

C(x) :/ p(x')da’ (2.43)

—00

ii.) Expected Value, Variance and Covariance

The expected value E(X) of a random variable X with the PDF p(x) is defined as:

o0

B(X) = / 2 p(x) de. (2.44)

— 00

Similarly, the expected value E(f) of a function f(X) is defined as:

B(f) = [ F@)pla)de. (2.45)

The variance Var(X) of a random variable X is defined as the expected value of the
squared deviation from the mean:

Var(X) = E[(X — E(X))?%. (2.46)
Similarly, the variance Var(X) of a function f(X) is defined as:
Var(f) = E[(f — E(f))*]. (2.47)

Given two random variables X and Y and a constant ¢, the following properties can be
derived using equation (2.44) and equation (2.46), respectively:

E(cX+Y)=cEX)+E®Y) (2.48)
Var(cX +Y) = ¢ Var(X) + Var(Y) + 2¢E[(Y — E(Y)) - (X — E(X))]. (2.49)

The last term in equation (2.49) is referred to as covariance and describes the correlation
between the random variables X and Y. In case of X and Y being independent, the
covariance equals zero.

iii.) Two-Dimensional Random Variables

Similar to section i.) the PDF p(z,y) of a 2D random variable (X,Y) must have the
following properties:

p(z,y) >0, (2.50)

a,

nd
/ da:/ p(z,y)dy = 1. (2.51)
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The PDF over a subset of the sample space, i.e. the probability that X takes a value in
the interval [x,z + dz| and Y any other value is referred to as marginal PDF ¢(z):

a@) = [ playdy. (252)

The joint probability density can be expressed as:
p(z,y) = q(x)p(ylz) = a(y)p(zly), (2.53)

where p(x|y) is the conditional PDF, i.e. the probability of X taking a value in [z, x + dx]
given Y = y:

_ p(x,y)

(2.54)

It has to be noted that using the definition of the conditional PDF, any joint PDF of
many random variables can be decomposed as follows:

p(z1,...,2n) = q(z1) - p(x2|zr) ... p(xN|TN-1,. .., 21) (2.55)

iv.) Law of Large Numbers & Monte Carlo Integration

The basic idea of MC methods relies on the law of large numbers which states that
the mean fy of a sequence of samples {f(X,,)}, with X,, being drawn from the same
distribution p(x), converges to the expected value:

_ 1 o
Jim fi = Jim 557 (00 = | r@p)ds. (2.56)
Note that the this holds only true as long as the function f is integrable, finite and
piecewise continuous. In that case f is referred to as a consistent estimator of the
integral on the right-hand side of equation (2.56).

Reading equation (2.56) the other way round can be applied to solve integrals using
random samples. This so-called Monte Carlo integration shall be briefly explained by
considering the following integral:

IZLZ@mm (2.57)

Introducing an arbitrary PDF p(z) with p(x) =0V z ¢ [a, b], the function g(z) to be
integrated can be expressed as g(x) = G(z)p(x), with G(z) = g(x)/p(x). Substitution
yields:

= lim N;G(Xn) =~ NZG(Xn), (2.58)
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where the second step applies the law of large numbers. Thus, an estimator of the
integral I is given as the average of {G(X,,)}, with X,, being random variables drawn
from the distribution p(z). Given Var(G), the unbiased estimate of the variance Var(I)
can be calculated as:

Var(I) = % 3" Var(G)) = Va;éG>. (2.59)

It has to be noted that equation (2.59) also holds true for integrals of higher dimension D,
which is a major advantage over other numerical integration approaches, e.g. first-order
numerical quadrature with a variance proportional to N~2/2.

v.) Central Limit Theorem

While the law of large numbers states that the Monte Carlo estimate converges to the
expected value for increasing sample numbers IV, the central limit theorem applies to
the distribution of that estimate. It basically states that the average X of a sequence
{X,} of independent and identically distributed random variables, with expected values
E(X) = p and variance Var(X) = o2, converges in distribution to a normal N(0,0?),
ie.

VN(X — ) — N(0,0?). (2.60)

Here, convergence in distribution means that the CDF of v/ N(X — E(X)) converges
pointwise to the CDF of N(0,0?). Thus, the central limit theorem enables us to turn
knowledge of the expected value and the variance, that are given according to equation
(2.48) and equation (2.49), into statements on the probability of u being the result of a
given trial.

2.2.2 Random Sampling

Monte Carlo methods require the generation of random numbers that are distributed
according to a given PDF. Random sampling, in that sense, refers to the process of
drawing samples from that PDF. In most cases the corresponding random numbers
are rather so-called pseudo-random numbers as they are generated by a deterministic
approach. Thus, in contrast to true random numbers that may result from a random
physical process such as radioactive decay or thermal noise, they are reproducible
and not at all random in the mathematical sense. However, true randomness is not
necessary and not even wanted as long as a sequence of pseudo-random numbers is
indistinguishable from a sequence of true random numbers. The basics of generating
such sequences are briefly discussed in the following. For a more comprehensive review
of random number generation the reader is referred to [74].

i.) Generation of Uniform Random Numbers

The generation of arbitrarily distributed random numbers is usually based on the use of
uniform random numbers £ € [0, 1) as shown in the next section. The earliest computer-
based method of generating such numbers has been proposed by von Neumann in 1946
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and is referred to as mid-squares method [75]. Given any number as seed, this approach
squares it and removes the middle digits of the resulting number as the random number.
Subsequently, that number is used as seed for the next iteration and so on. Running into
cyclic behavior with a very short periods, the mid-square method was soon abandoned.
In the following decades so-called multiplicative linear congruential generators (MLCGs)
were widely used [76]. Given a seed Ry, they produce a sequence of random numbers
as:

Ry = (aRn + C) modm, &p1 = Rn+1/ma (2'61)

with mod referring to the modulo operation, and a, ¢ and m being constants to be
properly chosen. Good random properties are e.g. achieved using a = 7°, ¢ = 0, and
m = 231 —1 [77]. However, the period of this generator is only in the order of 10° which
might not be sufficient for several MC calculations. Modern uniform random number
generators are therefore often based on so-called Xorshift-generators that produce
random sequences with high period by a small number of XOR and bitshift operations
[78] or combined generators that combine MLCG and Xorshift-generators. If not stated
otherwise, all random numbers used in this work are generated by a combined generator
as described in reference [79].

ii.) Inverse Transform Method

The inverse transform method represents an approach to draw samples from a given
PDF px(z) using random numbers § distributed uniformly in the interval [0,1). The
basic principle is depicted in figure 2.5 and relies on the properties of the CDF of p(x).
By definition (see (2.43)) the CDF Cx () of X is a monotonically increasing function
of z, and thus, has an inverse function C’)_(l : [0,1] — R. The equation

Y =Cx'(9) (2.62)

defines a new random variable Y. The CDF of Y is given as:

: (2.63)

where P(a < b) denotes the probability of a being smaller or equal to b. To derive
equation (2.63) the fact that C'x(x) is a monotonically increasing function was used in
the first step, the definition of ¢ according to equation (2.62) was used in the second
step, and the definition of the PDF of a uniform random variable p¢(x) = 1 was used in
the last step. As Cy(z) = Cx(x), it is proven that the random variable Y is distributed
according to the PDF p(z). Thus, random samples from p(x) can be drawn by sampling
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1.0
— Exponential probability density p(x)
Cumulative distribution C(x)
0.8 A
0.6 A
Random sample £ € [0,1] from a uniform distribution
0.4 A
0.2 A
0.0 -
0 2 4 6 8 10

Figure 2.5: Basic principle of the inverse transform method. Given a PDF p(x), it’s
corresponding CDF Cx (), and a uniform random variable £ € [0,1), the
inverse transform Cy' (¢) defines a new random variable Y that is distributed
according to px ().

a uniform random number and applying the inverse transform as given in equation
(2.62).

It has to be noted that the inverse transform method does not require the CDF Cx ()
to have an analytic inverse. Rewriting equation (2.62) as

¢ = /_ ‘; (') da, (2.64)

defines the sampling equation of a variable from an arbitrary PDF p(z). In any case,
this integral can be solved numerically.
iii.) Discrete Distributions

Considering the special case of discrete distributions with point probabilities pg, ..., pN—1
corresponding to the discrete points xg, x1,...,2zxy_1, the CDF is given as:

n<x

. N-1
Cw)= [ X pudla—wa) = > pu (265
X n=0 n=0
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As depicted in figure 2.6, the random sample X € xgx1,...,xny_1 can be determined
by finding the index n such that

Clzn) <& < Czny1). (2.66)

Thus, most easily X can be found using some sort of search algorithm. However, even
fast approaches such as a binary search (complexity O(log n)) might require too long
to be applicable in high speed MC codes. An optimal sampling approach for discrete
distributions is described in the following section.

1.0
Cumulative distribution
® Discrete probabilities
0.8 A
P3
0.6 A @® Random sample

Ee [0,1] from a
uniform distribution

Random sample
according to p(x)

P1
0.2 Pa
P2
O-O 1 T 1 1
0 1 2 3 4 5

Figure 2.6: Basic principle of the inverse transform method for discrete distributions.
Using a uniform random variable £ € [0, 1], random samples distributed
according to a given PDF, with the corresponding CDF C(z) can be drawn
by finding the index n such that C(x,) < £ < C(xp41).

iv.) Walkers’s Discrete Sampling Method

To avoid the need of a search algorithm to determine the discrete random variable
X, it was desirable to have equal probabilities (p; = 1/N) for each of the N possible
realizations xg, x1,...,xny_1 of X. In that case, these realizations could be distributed
on a regular grid with the grid points i € {1,2,..., N — 1} corresponding to the
realization x;. Given a (continuous) uniform random number ¢ € [0, 1), a certain z; can
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be sampled as the realization corresponding to the index
i=[€-N), (2.67)

where | | denotes the cast to an integer number by cutting the decimal places of
the argument. However, as depicted in figure 2.7, in case of p; # p; for i # j
the possible realizations of X are distributed on an irregular grid. To make use of
a fast sampling scheme as given by equation (2.67), Walker’s method introduces a
regular grid with N points and assigns each grid point at most two possible realiza-
tions z; and z;; of X as well as the conditional probability p(i|z;;), i.e. a 3-tuple
(i, 5, p(i]xij)), with ¢ being the index of the grid point. Thus, there are N tu-
ples (.TU(), xoj,p(()\xoj)), (.7}1, l'lj,p(1|$1j)), ey (I'N_l, .%'(N_l)j,p(N — Hx(N—l)j))' Now
the sampling process consists of the following steps:

1. Sampling of a uniform random number &.

2. Set the index i = |N&|, and r = N& — | N¢] (note that r is again a uniform
random number in [0, 1)).

3. If r < p(i]zsj) return x;;.

4. Else return z;.

I ' s 1
0 1 b2 3

0 1/|N Z{N 3/|N le

f VL] 1 T 1
0 2|1 2 2 3 2

1 —p(0lzo2) p(0|zo2)

Figure 2.7: Basic principle of Walker’s method. The point probabilities p; of a discrete
distribution form an irregular grid if p; # p; for i # j (see top row). Thus,
a given uniform random number £ cannot be directly mapped to a sample
point ¢ but requires a search algorithm to determine the corresponding point
according to equation (2.66). Therefore, Walker’s method rearranges the
probabilities onto a regular grid. Each grid point is assigned at most two
different realizations of the discrete random variable X that occur with the
conditional probability 1 — p(i|z;;) and p(i|x;;), respectively.
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Considering this sampling routine, the probability P(X = x;) of drawing the sample z;
can be calculated as:

P(X =)= 1 ((1 ~ pliles) + Zp(j\m) . (2.68)
J#i

Thus, given the point probabilities pg, p1, ..., pn—1 of a discrete distribution, samples
can be drawn using Walker’s method by setting the realizations z;; as well as the
conditional probabilities p(i|z;;) such that P(X = ;) = p; Vi € {0,1,...,N —1}.

v.) Rejection Methods

Rejection methods, introduced by von Neumann [80], represent another class of ap-
proaches to draw random samples from a given PDF p(x). The basic idea of rejection
methods is to draw samples from a PDF 7(z) (different from p(x)) and to reject them
subsequently with a certain probability such that the accepted samples are distributed
according to p(x) (see figure 2.8). The corresponding rejection function r(z) is defined
by the following equation:

p(z) = Cr(z)r(z), (2.69)

with C' being a constant such that Cm(z) > p(x). This choice of C ensures that
0 <r(z) < 1. Given p(z),nm(x) and C, the rejection method consists of the following
four steps:

1. Sample a random variable X from 7 (z).

2. Sample a uniform random number & € [0,1).
3. If £ > r(x) reject X and start over at 1.

4. Else return X.

The efficiency 7 of rejection methods can be defined as the expected value of the rejection
function r(x), i.e.

n= /r(x)w(x)d:c = é (2.70)

Thus, the PDF p(x) should be chosen such that the constant C' can be set as low as
possible while fulfilling the requirement C'w(x) > p(x). However, it has to be noted that
the efficiency as defined above does not consider the computational cost of sampling X
from m(z). Distributions that can be sampled efficiently might be preferred over more
complex distributions that are more similar to p(x).
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1.0

- Probability density function p(x) to be sampled
Scaled probability density Cr(x)
- Rejection function r(x)

Figure 2.8: Basic principle of rejection methods. Samples are drawn from a PDF
m(x) (different from p(z)) with Cn(z) > p(z) and rejected with a certain
probability P = 1 — r(z) such that the accepted samples are distributed
according to p(x).

vi.) Multivariate Random Variables

As stated in equation (2.55) the PDF of a multivariate distribution can be expressed as
the product of a marginal PDF and conditional PDFs. Since marginal and conditional
PDFs depend only on one variable, samples can be drawn as described in the previous
sections. Finally, the random variable is composed as the product of the individual
samples.
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2.2.3 Application to X-Ray Imaging

Considering x-ray imaging, the state S = (ry, 1y, s, dy, dy, d>, E)T of an x-ray photon
is typically determined by it’s position r = (rs,ry,7:)T, it’s flight direction d =
(dy,dy,d-)T as well as it’s energy E. According to equation (2.44) the expected value of
any quantity of interest f(.5), e.g. the absorbed dose at a given position or the number
of x-rays reaching a certain detector element, can be calculated as:

E(f) = [ £(S)p(S)as. (2.71)

As stated by equation (2.58), an MC estimate of E(f) can be derived by averaging f
over a sequence of random samples {S'} 5 distributed according to p(.S). Unfortunately,
the joint PDF p(S) is usually unknown or too complex to be calculated. However,
the simulation of random walks of single photons, where each step is sampled from a
conditional PDF, provides a practical approach to draw samples from the joint PDF.
For a typical CT setup, a straightforward implementation of an MC simulation consists
of the following steps:

1: Define the margins of the volume to be simulated in terms of a bounding box
2: for Number of x-ray photons N to be simulated do
3:  Sample the position rg of the x-ray emission

4:  Sample the flight direction dg of the x-ray photon

5:  Sample an x-ray energy Ey according to the x-ray source spectrum

6: while F, > 0 and r,, inside bounding box do

7 Sample path length A to the next interaction point: r,4+1 = r, + Ad,

8: Sample interaction effect I,

9: Sample new flight direction d, 1 according to the interaction effect and the
flight direction d,, of the incident x-ray photon

10: Update energy FE,.1 of the x-ray photon according to the interaction effect
and the scatter angle ¢ = arccos(d,, - d,+1)

11: New state of the x-ray photon is given as Sy11 = (Pni1, dni1, Fng1)’

12: if X-ray photon is in region of interest then

13: Score the contribution of the current trial: ¢ += f(Spn+1)

14: end if

15:  end while

16: end for

17: MC estimate of E(f) is given as E(f) ~ q/N

i.) Sampling the Initial State of the X-Ray Photon

Considering x-ray imaging applications, x-ray photons are generated using x-ray tubes
as described in section 2.1.1. Thus, the initial state of the x-ray photon is determined
by the emission characteristics of the x-ray source. Assuming a point like focal spot at
position s = (s, Sy, s.)T, it is completely described by the differential photon fluence
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jé—é%((p, Y, F), with N denoting the number of x-ray photons, {2 denoting the solid

angle, ¢ denoting the azimuth angle, and 9 denoting the polar angle. The corresponding
PDF p(¢, ¥, E) can be calculated as:

. 2

$in(9) 4225 (6,9, )

3 max 2
0" dp J§ sin(9)dd Jy" e A g (0,9, B)
Expressing the joint PDF as

plp, 9, E) = q()p(9]e)p(Elp, ), (2.73)

samples (p, 1, E) can be drawn according to the marginal PDF ¢(¢) or the conditional
PDFs p(¥|¢) and p(E|Y, ¢) which are given as:

S sin(9)dd [ dE 4605 (0,0, )

p(p, 0, E) = : (2.72)

q(p) = 5 : (2.74)
o dy [ sin(9)dv [ dE-EN-(p,9, E)
3 ax 2
Il — sin(d) g dE 05 (0,9, B)
p( ’90) T . Frmax 2N (275)
Jo sin(@)dd [y dE 1575 (0,9, E)
d2N
AN (9 F
p(ElD, p) = indp (9.0, F) (2.76)

Emax 2
o " dE foup (0,9, B)

Typically, the photon fluence is not available as a continuous function but rather
evaluated on a discrete grid. Thus, the PDFs above are given by their discrete equivalents
and can be sampled e.g. using Walker’s method. In the special case of an isotropic
emission which is often assumed due to the lack of more appropriate models, the photon
fluence has no solid angle dependency, and therefore jé—d]\g(ﬂ, o, B) = %(E). Thus, the
PDFs are given as:

p(o) = 5 (277

p(9) = Sinzw). (2.78)
Applying the inverse transform method yields the following sampling equations:

¢ =2m¢ (2.79)

¥ = cos 1 (2¢ — 1). (2.80)
In any case a realization of the initial state Sg is given as:

So = (52, 8y, 5, 8in() cos(p), sin () sin(gp), cos(Vo), Fo) 7, (2.81)

with ¢g, ¥g and Fy being random samples of the azimuth angle, the polar angle and
the energy.

It has to be noted that the assumption of a point like focal spot does not hold true
for real CT systems. To be precise, it should be considered within the PDF given in
equation (2.73). However, as the focal spot dimensions are usually small compared to
the volume to be simulated, it can be neglected in several applications such as x-ray
scatter prediction which is the main purpose of the MC simulation in this thesis.
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ii.) Sampling the Path Length

Given the actual state S, of an x-ray photon, the probability p(A|S,,)dA of having the
next interaction after a path length A, i.e. in the interval [r,, + Ad,, r, + (A + d\)d,],
corresponds to the relative number of x-ray photons absorbed in that interval. Thus, it
can be calculated using the Beer-Lambert (see equation (2.7)) as follows:

N\, En) — N\ + dX, Ey)

A A+dA
— 6_ fO /I‘(rn“!‘)\/dn:En)d)‘/ _ 6_ 0 * #(rn+>\/dnaEn)d>‘/
A A+dA
I ,u(rn+)\’dn,En)dX(1 _ o ,u(rn+)\’dn,En)d)\’)

0 N dn En )X (1 _ ot M, En)X )

A ’ ’
— 6_ f() p‘(?"n"")\ dn;En)d)\ ('LL(T'n + )\dn,En)d)\) (282)
The corresponding CDF C(A|S,,) can be calculated by integrating equation (2.82) and
is given as:
A / /
CA|Sn) = 1 — ¢~ Jo #rntXdn Bn)dX' (2.83)
Applying the inverse transform method yields the following sampling equation for the

path length A:

In(é) = — /O Y 4 Ny, By )X, (2.84)

with £ being a uniform random number. In case of a homogeneous distribution of the
attenuation coefficient u(r, E) = u(FE), the integral term equals A\u(F,). Thus, there is
an analytic inverse that is given as:

A=————In(&). (2.85)

Otherwise, i.e. if u(r, E) # u(FE), equation (2.84) has to be solved for A numerically.
Since this inversion might be computationally expensive, a so-called Woodcock sampling
is often used instead [81]. This approach determines the path length in an iterative
manner according to the following update scheme:

)\m—‘,—l = )\m — @ hl(fm), (286)
and
1

Here, the path length of the mth iteration is accepted with a probability equal to
w(ry + A+ dp, En)/ timax(Er), with r,, being the starting point of the x-ray photon
and d,, being its flight direction. Subsequently, the accepted path length is used to
calculate the next interaction point 7,1 as:

Tnil = Tn + Amdp. (2.88)
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iii.) Sampling the Interaction Effect

Most x-ray imaging techniques use x-ray energies below 1022 keV. Therefore, the relevant
x-ray matter interactions are absorption through the photoelectric effect (PE), Compton
scattering (CS) and Rayleigh scattering (RS)(see section 2.1.2). Given the energy E,
of an x-ray photon, the conditional probabilities of the three effects are given as:

B prE(En)
PIPEIEL) = (B + pios (Bn) + irs (B (2.89)
_ pes(En)
PICSIB) = ) + s (En) + pins (Bn) (2:90)
p(RS|E,) = pes (En) (2.91)

pre(En) + pes(En) + prs(En)’

where 11; denotes the attenuation coefficient due to the interaction effect i € {PE, CS, RS}.
Given a uniform random number £, the interaction effect can be sampled using the
inverse transform method as:

Photoelectric effect if ¢ < p(PE|E),) (2.92)
Compton scattering if p(PE|E,) < ¢ < p(PE|E,,) + p(CS|E},,) (2.93)
Rayleigh scattering if p(PE|E,) + p(CS|E,) <& <1 (2.94)

iv.) Updating the Flight Direction

The flight direction is updated according to the actual energy F,, of the x-ray photon
as well as the interaction effect that has been sampled. In case of an interaction via
the photoelectric effect the x-ray photon is absorbed, and thus the flight direction is
not updated but the simulation is terminated at this point. Considering Compton and
Rayleigh scattering, the scatter angles are distributed according to their differential
cross sections j—g(gp, 9, F)(see section 2.1.2). In both cases, the differential cross section
does not depend on the azimuth angle ¢, i.e. the angle within the plane perpendicular
to the x-ray photon’s flight direction d,,. Thus, it can be sampled similar to equation
(2.79) as ¢ = 27&, with & being a uniform random number. Given the energy E,,, the
conditional PDFs p;(¥|E,,) for the polar angle can be calculated as:

27 sin(0) G do o (e, 0, )
T dy [T sin (0 wmmﬁm

pi(9]En) = (2.95)

with ¢ € {CS, RS} denoting the interaction effect. Typically, MC codes do not use
analytic expressions of the differential cross section but rather rely on tabulated values
of a certain database such as the EPDL for instance. Therefore, the polar angle can
be derived using the discrete equivalent of equation (2.95) and an appropriate discrete
sampling approach (e.g. Walker’s method). With d,, | being a vector perpendicular to
the initial flight direction d,,, the new flight direction d, 1 can be calculated as:

n+1 Rd ( )Rdn,l(ﬁ)dna (296)
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where Ry (a) denotes a rotation matrix that rotates a given vector by the angle «
around the axis n.

v.) Updating the Energy

The energy is updated according to the interaction effect and the polar scatter angle 4.
In case of a photoelectric interaction, the photon is absorbed. Thus, the energy E, 41
equals zero. In case of Compton scattering the energy is updated according to equation
(2.14) while Rayleigh scattering is an elastic process that leaves the energy unchanged.
Thus, the energy updates are given as follows:

Potoelectric effect:  E,. 1 =0, (2.97)
E

Compton scattering: E,11 = n , 2.98

p g Ln+1 1+ m€)22 (1= cosd) ( )

Rayleigh scattering: FE,1 = F,. (2.99)

2.2.4 Variance Reduction

According to equation (2.59) the variance of any MC estimate can be reduced by
increasing the number of samples or, the number of simulated x-ray photons, respectively.
However, as the computation time increases linearly with the number of samples, the
term variance reduction rather refers to the application of more sophisticated sampling
techniques which lead to a decrease of the variance without affecting the computation
time significantly. The basic idea can be motivated as follows. Suppose to be interested
in solving the integral

3 P12 1 g(Xa)
I:/ a:dx:/ —e zdr~ — , 2.100
 stone= [ e e 22 210

where the latter term represents the MC estimate according to equation (2.58), and
X, is a random variable sampled from p(z). Here, p(x) can be any function that can
be interpreted as a PDF. Figure 2.9 shows the evaluation of the integral using three
different PDFs, namely a uniform PDF, a triangular PDF and an exponential PDF.
Obviously, the variance is smaller the more similar the PDF is to the function to be
evaluated. Thus, the variance can be reduced by adjusting the sampling such that
regions with a high contribution to the integral are sampled more often.
Unfortunately, the application of this strategy to x-ray imaging is more complicated
as the PDF of the quantity to be evaluated is (usually) unknown. As described in
section 2.2.3, samples are drawn by simulating single x-ray photon tracks according
to conditional PDFs. However, this procedure might not sample the unknown PDF
optimally. A demonstrative example is given in figure 2.10. Using a conventional path
length sampling according to equation (2.85), points that (almost) do not contribute to
the scatter distribution at all are sampled with the same probability as points with a high
contribution. Thus, using a conventional sampling might simulate several unnecessary
photon tracks. Furthermore, it can be seen that the contribution highly depends on
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the imaging setup. Therefore, an optimal sampling of the unknown PDF often requires
dedicated prior knowledge. A brief description of the most common strategies is given
in the following. For a more comprehensive discussion of variance reduction approaches
the reader is referred to Bielajew and Rogers [82] or Mainegra-Hing and Kawrakow [83].

1.0
—— Gaussian
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== Triangular PDF “
0.8 1 Exponential PDF O 100 fmamsd TS el I
o
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=
£
9]
0.6 1 £ f
w“— |
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-~
g So s = Sampling from an uniform PDF
0.2 1 - = = Dampling from a triangular PDF
"__-———:” —————————————— \iz ——————— Sampling from an exponential PDF
,” \\\ == True value of the integral
- ~ 2
- ~ 10 T T T T
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-3 -2 -1 0 1 2 3 Number of samples

Figure 2.9: MC estimate of the integral from —3 to 3 over a Gaussian with zero mean
and unit variance using different sample numbers (right) and different PDFs
(left). The lowest variance can be achieved using a triangular PDF which is
most similar to the Gaussian.

i.) Basic Principle

The basic principle of most variance reduction approaches is to sample points with
a high contribution to the quantity to be evaluated more frequently. Thus, samples
have to be drawn according to biased (conditional) PDFs ppi.s(x) that have the desired
properties but, consequently, do not represent the underlying physics correctly. To
keep the MC simulation unbiased, the improper sampling is accounted by introducing a
weight such that

Whias * pbias(x) = preal(x)' (2101)

Given a sequence of random samples { Xpias} n and the corresponding weights {wpias } v,
the MC estimate of the expected value of X can be calculated as:

1 1
E(X) ~ N Z Xn,real = N Z Wn, bias * Xn,bias' (2.102)
n n

ii.) Stratified Sampling

Considering MC as an estimator of the integral given in equation (2.71), stratified
sampling makes use of the fundamental property of the Riemann integral:

M
E(f) = /l f@p()de =3 /I f(@)p(z)dz, (2.103)
m=1""'m
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Figure 2.10: MC scatter simulation of a water phantom with three different setups. The
grayscale image indicates the contribution of every pixel to the simulated
scatter distribution (bright = high contribution). Using a straightforward
sampling approach, all points of the green curve are sampled with the same
probability although their contributions to the scatter distribution differ
significantly.

X-ray detector

where {I,} are M mutually exclusive sub-intervals of I. With wy, = [; p(x)dz being
the probability of drawing a random sample from p(x) within the interval I, the latter
term of equation (2.103) can be rewritten as:

M M
mgl /Im f(@)p(z)dr = mzzjl /Im f(@)wnp(z|z € I,)dz, (2.104)

where p(z|z € I,,) denotes the conditional PDF of p(z) given that X € I,,. Thus, an
unbiased MC estimator of the integral in equation (2.103) is given by:

M Npm
E(f)|strat ~ Z ]U\'}]—im Z f(XZm)7 (2105)
m=1""T j=1

where N, denotes the number of samples of the sub-interval m and X, the i-th random
number distributed according to p(z|z € I,). With py = [;  f(z)p(z|x € I)dz and
oz, = [ (f(x) = pm)?p(z]z € Iy)dz being the mean and the variance of the m-th
sub-interval, the variance of the stratified sampling estimate (equation (2.105)) can be
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calculated as:

(2.106)

2.‘3,0

Var | strat — Z U}

Obviously, the variance can be reduced by distributing a given number of samples N
smartly among the sub-intervals. However, typically the variance o2, of the sub-interval
is unknown. Therefore, it needs to be estimated by the sample variance or by an
educated guess. Considering, for instance, the setup depicted in figure 2.10. An x-ray
photon will not contribute to the scatter signal if it hits the collimator. Thus, it
is beneficial to divide the solid angle to be sampled into two intervals, one of them
corresponding to the acceptance angle of the collimator. Sampling this interval more
often reduces the variance of the scatter estimate. It has to be noted that stratified
sampling is similar to a sampling scheme that uses a biased PDF such that the important
regions are sampled more often.

iii.) Forced Interaction

Forced interaction refers to modifying the PDF in such a way that interactions within a
certain region of interest or via a desirable interaction effect are promoted. Suppose,
for instance, to be interested in x-ray scattering. In that case, an interaction via
the photoelectric effect is not desirable as it absorbs the x-ray photon, and thus,
terminates the simulation of the track at this point. Consequently, Compton and
Rayleigh scattering can be forced by not sampling the interaction effect according to
the PDFs given equations (2.89), (2.90), and (2.91), but by neglecting the photoelectric
effect. The biased sampling is accounted for by decreasing the weight of the x-ray photon
by the probability of a Compton or Rayleigh interaction, i.e. by wpias = 1 —pupp(E)/u(E).
Similarly, it is beneficial to force interactions with the x-ray detector. Otherwise it may
happen that simulated x-ray photons leave the volume of interest without contributing
to the signal at all.

iv.) Splitting and Russian Roulette

Splitting refers to transforming a particle that is described by its weight wy and its
state Sy into N split particles with state Sgpis = So and weight wepiir = wo/N. This
technique is particularly useful if the interest of the simulation is focused on a certain
spatial region. Here, splitting should be applied when the particle approaches the region
of interest. Russian roulette can be seen as the reverse process. It kills a particle with a
probability of K when the particle moves away from the region of interest. To keep
the simulation unbiased, the particle’s weight is increased by a factor of 1/(1 — K) if it
survived the Russian roulette. Here, the efficiency of these methods highly relies on the
parameters S and K as well as on the strategy that is used to decide when a particle is
splitted and when a particle is subject to a Russian roulette.
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2.3 Artificial Neural Networks and Deep Learning

Artificial neural networks (ANNs) are computational frameworks that are inspired by
the way information is processed in the human brain. Similar to biological neural
networks, they are based on an ensemble of artificial neurons. Here, the key advantage
over other machine learning approaches is that such systems are able to learn complex
tasks from observational data without the need for explicit feature engineering. For
example, an ANN can learn to recognize cats by just considering a set of labeled images,
but without having any prior knowledge on cats. In that process, deep learning refers
to techniques that make the ANN learn a certain task.

As a deep learning based approach to estimate x-ray scattering in real-time is presented
in this thesis, the corresponding basics are briefly reviewed in the following. For a more
comprehensive introduction to deep learning, the reader is referred to reference [84].

2.3.1 Artifical Neurons

The basic computational unit of an ANN is the artificial neuron that is designed in
analogy to its biological counterpart (see figure 2.11). In the biological case, each neuron
receives input signals from its dendrites. If the sum of all input signals exceeds a certain
threshold, the neuron generates an action potential that is transmitted along its axons,
which are connected via synapses to the dendrites of other neurons.

A similar operation is performed by the artificial neuron as depicted in figure 2.11.
Here, the artificial neuron receives a given number of inputs {a;} as well as a bias b.
Each of the inputs is assigned a weight w; ,which might be interpreted as synaptic
strength or relative importance of the associated input. To generate the output, the
neuron applies an activation function o to the weighted sum of the inputs and the bias.
Here, the purpose of the activation function is to introduce a non-linearity in the output,
which is necessary as most problems to be solved are non-linear. Practically, there is
a variety of different activation functions that are used in artificial neurons or ANNs,
respectively (see figure 2.12). While the first artificial models used simple threshold

Biological neuron Artificial neuron

\F
’/

[

Dendrites “&\ ~=<

Cell body

Nucleus

Axon

Figure 2.11: Structure of biological and artificial neurons.
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Figure 2.12: Common activation functions of artificial neurons. Note that the identity
is usually only used in the output layer.

functions, equivalent to the Heaviside step function, more continuous functions such as
sigmoids became popular in the 1980s. However, recent works mostly rely on rectified
linear unit (ReLU) activation functions or variants of it (see figure 2.12) [85].

2.3.2 Feedforward Artificial Neural Networks

Feedforward ANNs, also referred to as multilayer perceptrons (MLPs), were one of
the first and most simple types of ANNs. Therefore, they are briefly discussed in the
following to explain some of the basic properties of neural networks.

i.) Architecture and Nomenclature

The basic structure of a feedforward ANN as well as the corresponding nomenclature is
depicted in figure 2.13. It consists of a set of artificial neurons (see section 2.3.1) that
are arranged in layers. In contrast to other types of ANNs, these layers are connected
in such a way that information is propagated only in one direction and only between
neighboring layers.

The first layer, receiving the external input to the ANN, is referred to as input layer.
It does not perform any computation but only passes the input to the next layer. The
output of the ANN can be accessed via its last layer, the so-called output layer. Any
layer in between, i.e. layers that do not interact with the external environment, are
referred to as hidden layers. While feedforward ANNs only have one input and one
output layer, they may have multiple hidden layers.

Most commonly, the layers of feedforward ANNs are designed to be fully connected,
i.e. any neuron of a certain layer receives an input from all neurons of the previous layer.
As described in section 2.3.1, the output of the receiving neuron is calculated as the
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Layer 1 Layer 2 Layer 3
Input layer Hidden layer Output layer [ =layer index
j =neuron index in I** layer
k =neuron index in (I — 1)*® layer
o =activation function

wﬁlz =weight from &' neuron

in layer (I — 1) to j*® neuron
in layer [

b](” =bias of the j*" neuron
in the I*" layer

ay) =activation of the j*" neuron

in the I*" layer

~, (Z wlall ¢ bgv)
k

Figure 2.13: Basic architecture and nomenclature of feedforward ANNs. It has to be
noted that these networks are not restricted to a single hidden layer but
may have multiple hidden layers.

value of its activation function applied to the weighted sum of all inputs and the bias.
Here, all weights and all biases are trainable parameters that are optimized such that
the network performs a predefined task. The corresponding training procedure will be
discussed in more detail in section 2.3.3.

ii.) Feedforward Computation

Given an input vector @, the output of a feedforward ANN can be calculated by
sequentially applying the mapping of each layer. Considering the example given in
figure 2.13, the network might perform the mappingf : R3 — R?, which is given as:

f@) = a®(@®(aV())), (2.107)
where a(® denotes the output activation of the i-th layer. As the first layer is the input
layer, its activation equals the identity mapping, i.e. a(l)(w) = «. Denoting the weight

of the k' neuron in the first layer to the j*! neuron in the second layer as w](?k) and the

corresponding bias of the j** neuron as b§~2), the activation of the j* neuron is given as:
) =g (Z wial) + b§-2)> . (2.108)
k
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Arranging the weights in a matrix W) and the biases in a vector b the calculation
of the activation vector a(® is given as:

a? = & (WPal) +b?)

2 2 2
uy g gl e [
1 2
w w 1 b
o | [ "% ]+ %] | (2.109)
w3é1 w3éz 3é3 agl) bf(’>2)
o) ol il g

where, o (x) applies the activation to each element of the vector. Similarly, the activation
of the third layer, or the output respectively, can be calculated as:

a® = o (W(3)a(2) + b(3))
(2)

ag
3 3 3 3 2 3
o[ e )
Wg1 Wog Wo3 Wyy az(aQ) by
ay

Therefore, the mapping performed by a feedforward network can be implemented as
repeated matrix multiplications interwoven with activation functions. It has to be noted
that a set of input vectors can be efficiently processed in parallel by rearranging them
into an input matrix X where each column represents one input vector.

iii.) Representational Power

ANNSs can be viewed as mathematical models to approximate some unknown function
f:X =Y. This leads to the question of the representational power of ANNs, or more
specifically, whether there is any function that cannot be modeled using an ANN. The
universal approximation theorem answers this question [86]. It states that a feedforward
ANN with at least one hidden layer, a suitable non-linear activation function (e.g. a
sigmoid activation), and a linear output layer can approximate any Borel measurable
function with any desired accuracy.

A rather intuitive explanation of the universal approximation theorem can be derived
as described in reference [87]. It considers the network depicted in figure 2.14 that
consists of one input neuron, two hidden neurons with a sigmoid activation function
o(z) = (1 + e *)~! and one output neuron with a linear activation function. Given an
input x, the activation of the first neuron in the hidden layer can be calculated as:

2 2) (2 1
af? (z, wi?, 01?) = IOL (2.111)
1+ e—wlyl:z:—‘,-b1

(2)

If the weight is set to a value wy1 > 1, the activation approximates the Heaviside step
function O:

w(2)>>1 b(2)
a0 2 o L), (2.112)
1,1
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Figure 2.14: Approximation of a rectangular function to using an ANN with two hidden
neurons and a sigmoid activation function.

Similarly, the activation of the second neuron (wé? =w

approximated as:

(2)
1

1) in the hidden layer can be

)

(2)) 51> by’

2 2
of (@, wi b7) R O+ 2. (2.113)
w11
Setting b§2) > ng), and the weights of the output layer to wﬁ) = —wf’%, the activation

of the linear output layer approximates a boxcar function:

1 ng)_béZ)
T —3 ( @ )
4 _ (@ _ o)~ w1 vy

y=ay =wij(a; OO ) (2.114)
1" Y2
wiy
where II(x) is the rectangular function:
_foo, iffz]>1
() _{ L it < L (2.115)

Additional, arbitrarily shaped boxcar functions can be constructed in the same way by
adding pairs of neurons to the hidden layer. Thus, by a suitable choice of the weights
and biases, any function f(x) can be approximated as the sum of these boxcar functions.
Similarly, this explanation can be extended to higher dimensional functions.

However, it has to be noted that the universal approximation theorem is practically
a rather weak statement. Considering the 1D example given above, the sum of boxcar
functions could be directly used as an universal approximator, but no one would
suggest to use them as the basis for a machine learning algorithm. Furthermore,
empirical observations show that deeper networks perform better than single-hidden-
layer networks, despite their representational power is equal.
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2.3.3 Training of Artificial Neural Networks

As mentioned in the previous section, ANNs aim to approximate an unknown function
f: XY, e.g. a classifier that maps a given input x to a certain class y. To do so,
a neural network defines the mapping y = f(x,0), with € X, and optimizes the
parameter vector @ (usually the weights and the biases) such that f(x, @) is a suitable
approximation to f . Here, the process of finding (or learning) the optimal parameter
set is referred to as training. The corresponding basics are briefly discussed in the
following.

i.) Training Data and Testing Data

ANNs are designed to learn the function f using a set of representative examples
which is denoted as training data set. Here, it is distinguished between supervised
and unsupervised learning. The former requires the training data set to be labeled,
i.e. every training example to be a pair (x(i),yg?le) of an input £ € X and the
corresponding ground truth ygzle = f(x®). Unsupervised learning, in contrast, refers
to learning in absence of a ground truth. In that case the training data set only consists
of examples ¥ € X. Thus, there are infinitely many possible solutions which need to
be constrained in a some way to reasonable outputs. This can, for instance, be achieved
by an appropriate choice of the loss function (see next section).

Since the training data set Xipaim = {m(i)} is only a proper subset of the input space X,
the training rather leads to an approximation of the function h : Xiain — Y. Therefore,
the performance of an ANN needs to be evaluated for a testing data set Xiesy = {w(j )}
with ) € X and 2\ ¢ Xirain- Although this does not proof that the ANN applies
in a similar way to any other unknown input, a good performance on the testing data
gives at least some confidence that a suitable mapping has been learned.

ii.) Loss Function

Similar to other optimization problems, the parameter vector 8 of a neural network is
determined by minimizing (or maximizing) an objective function, also referred to as loss
function L. Here, the loss function provides a qualitative measure, rating the discrepancy
between the mapping f(a, @) defined by the neural network and the unknown function
f to be approximated.

Considering supervised learning, the loss function usually compares the output of
the ANN and corresponding ground truth (or their statistics) according to a similarity
metric. The appropriate choice of the loss function depends on the problem to be solved.
In case of a regression problem, for instance, the mean squared error (MSE) loss is a

common choice.
1 N-1 0 1 N1
7
LMSE Z L SE 7ytrue? Hf ytrueHg, (2116)
1=0

=0

2 \

with L) being the per-example loss. Classification problems, in contrast, rather rely
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on probability based loss functions such as the cross entropy (CE) loss:

N—1J—
Lor(6 Z LD, yi,. 0 Z Z Y\ e In f (29, 6);. (2.117)
i=0 j=0

It has to be noted that the activation of the output layer needs to fit the requirements of
the loss function. e.g. using the CE loss function requires the output to be interpreted

as probability distribution, i.e. 37, f (™, 0); = 1.

Considering unsupervised learning, there is no ground truth yﬁﬂw available. Thus, the
loss function is rather based on some sort of prior knowledge on the target distribution
Y. For instance Y may be the distribution of smooth CT images, while the input
distribution X may be the distribution of noisy CT images. Thus, the loss function

might look as follows:

N—-1 N—-1
= 2 L0, 0) = Y [ 7(@,0) — 2|2 + N[V S, 0)], (2118)
1=0 1=0

where the latter term enforces the smoothness, while first term restricts the solution to
outputs that are similar to the input, i.e. for that particular example to outputs that
look like CT images. Therefore, ANNs that are based on this principle are referred to
as autoencoders. It has to be noted there are several other approaches to unsupervised
learning. A more detailed discussion can be found in reference [84].

iii.) Gradient-Based Learning

Most commonly, the parameters of an ANN are learned using a gradient decent approach
[88] or a variant of it. It can be motivated by the following relation that holds true for
any differentiable function f(a) and a small but positive constant 7:

fla=nVf(a)) < f(a). (2.119)

L.e. moving the argument of a differentiable function along the direction of its negative
gradient will decrease its value. Thus, starting with an initial guess ag, the following
sequence

ant+1 = an, —NVaf(an) (2.120)

converges to a local minimum of f(a), at least for particular choices of . As 1 controls
the speed of convergence, it is also referred to as the learning rate.

Given a training data set {(x;, yt(;zle)}, an ANN defining the mapping y = f(x, ), and
a differentiable loss function L(8), the gradient descent approach yields the following
update scheme to find the parameter vector that locally minimizes the loss:

i1 = 0, — VL (0,). (2.121)

It has to be noted that due to the nonlinearities of the ANN, the loss function is
nonconvex with respect to the parameters 8. Consequently, the gradient descent will
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most like converge to a local minimum. Therefore, it is important to use a proper
initialization. Furthermore, increasing the size of the training data set potentially helps
converging to a local minimum closer to the global optimum.

Stochastic Gradient Descent and Mini-Batch Gradient Descent Calculating
a parameter update according to equation (2.121) requires to evaluate the gradient for
any example QNS Xirain Of the training data set:

N
1 , . :
Vﬂxm:aNz;VﬂﬂNﬂ%yﬁwe» (2.122)
Consequently, the calculation of the update step is computationally expensive, espe-
cially in case of large training data sets. Therefore, the gradient Vg L(0) is typically
approximated by evaluating only a subset Xp train = {a:(b)} with b < B < N of the
training data set:

1 B
VoL(0) ~ = > VoL W (@), y{1)..0). (2.123)
b

If the subset contains only a single element i.e. B = 1, this variant is referred to as
stochastic gradient descent while for any other B < N it is referred to as mini-batch
gradient descent and B is referred to as batch size.

Momentum Momentum is a concept that has been introduced to accelerate learning
in case of small but consistent gradients, high curvature, or noisy gradients [89]. It
accumulates the past gradients by an exponentially decaying average and moves within
the direction of that average. Therefore, it defines the velocity v that is updated as:

Unt1 = avy +nVeL(6,,). (2.124)

with a being the decay constant. The corresponding update of the parameter vector
including the momentum concept is given as:

0n+1 =0, - Un+1- (2125)

Algorithms with Adaptive Learning Rates The learning rate n is one of the
most important parameters to set in ANNs as it strongly affects the performance of the
model. Setting the learning rate too small leads to slow convergence while setting the
learning rate too high may lead to no convergence at all. Furthermore, it is beneficial
to adapt the learning rate of each parameter of the network individually. At first, this
issue was addressed by the AdaGrad algorithm [90]. It accumulates the the squared
values of the gradient in every update step:

Prs1 = o+ VoL(0,) ® VoL(6,), (2.126)
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with @ being the Hadamard product, and scales the learning rate according to the
inverse square root. Thus, the parameter update is given as:

0n+1 =0, © VBL(an)a (2'127)

n

NZaTEa:
with € being a small constant to prevent a division by 0. It has to be noted that the
square root and the division are applied element-wise. In that way, the learning rate of
parameters with a high partial derivative decreases more rapidly, pushing the update
towards more gently sloped directions of the parameter space.

Other variants of adaptive learning rate algorithms such as RMSProp [91], or Adam
[92] rely on a similar principle, i.e. changing the learning rate individually according to
some function of the accumulated gradient.

iv.) Backpropagation

Gradient-based learning requires to evaluate the gradient of the loss function with
respect to the network’s parameters. A straight forward way to compute the gradient
or the partial derivative of the ith parameter 6;, respectively, would be to evaluate the
difference quotient:

OL(0) L(0+e-e)— L(O)

T - : (2.128)

where é; is the unit vector corresponding to the entry 6;. This, however, requires
to calculate N 4 1 passes through the network to calculate the partial derivatives of
N parameters. Since ANNs typically have up to several million parameters, such an
approach is rather impractical.

An efficient way to calculate the gradients is provided by the so-called backpropagation
algorithm that has been proposed in the 1970s, but has not emerged in the field of
ANNs until the famous publication of Rumelhart et al. in 1986 [93].

Defining the the error 550 of jth neuron in the lth layer with respect to the loss
function L as:

5O oL

J azj(l) ’

(2.129)

0 0 _

with z; being the output of the corresponding neuron prior to the activation a:’ =

O] ’
o(z;):

0 = Sl 1) = o) 4 (150
k k

the backpropagation algorithm calculates the gradients for a given example (9 € Xirain
using the following steps.

1. Input: The input activation aV) is set to =¥,
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0

2. Feedforward: Calculation of z;" for every neuron j in every layer [ € {2,...,L}
by a forward pass through the network (see section 2.3.2):

20 = wWa=1) 4 b0 with a¥ = 5(2®). (2.131)

3. Output error: Calculation of the error of the output layer (note that V,L refers
to the gradient of the loss function and must not be confused with the index of
the output layer):

L~

L)

0L L Oa; oL L
5 =~ = 2 5= —mo ) (2.132)
8zj da 82 8aj
& 6 =V, Lod(z <L>) (2.133)

4. Backpropagation of the error: The error of any previos layer [ is calculated
recursively by:

(l+1) (l+1)
@ oL 0L 0z B 0z, (I+1)
Rl R Dl = R U Dl G (2.134)

According to equation (2.130), the partial derivative can be evaluated as:

o) 0 (1) Oy (41 _ (1) s ()
O = .0 Zwa o(z;")+b, 7 =wy o (z”) (2.135)
Zj Zd

Substituting equation (2.135) back into equation (2.134) yields:

I 14+1) c(1+1 !
5= Sl 2139
k
& 60 = (WENT 04Dy ¢ o/ (z(0), (2.137)

5. Output: The gradients with respect to the weights and the biases are given as:

!

oL 0L Bz,g) _ D50 (2.138)
811}27,9 (3'2,(!) 6w(l)
()

OL 0L 0z, _ 50 (2.139)

W ol al

Thus, the backpropagation approach allows to calculate all gradients by a one forward
and one backward pass through the network.
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v.) Hyperparameters and Validation Data

Any open parameter of an ANN that is not optimized during the training process
is referred to as hyperparameter. Hyperparameters include the parameters of the
optimization algorithm, such as the learning rate n, but may also be used to define the
layout of the ANN, e.g. the number of layers or the number of artificial neurons per layer.
Since the particular choice of the hyperparameters strongly affects the performance
of an ANN, several effort is made to tune the hyper parameters (see e.g. [84]). The
concept of hyperparameter tuning typically involves the use of a so-called validation
data set. It consists of a set of unknown examples that is not used to learn the weights
and biases, but differs from the testing data set. Now, the optimal realization of the
hyperparameters is considered to be the one that minimizes the loss on the validation
data. To have an unbiased estimator of the ANN’s performance, it still needs to be
evaluated for the testing data.

vi.) Generalization, Underfitting and Overfitting

The major challenge of deep learning is to find a suitable approximation of an unknown
function that applies not only to examples of the training data set, but also to unknown
examples. This property is referred to as generalization and corresponds to a small
loss on the training data set as well as on the testing data set. In this context it is
distinguished between underfitting and overfitting as depicted in figure 2.15. Here,
underfitting occurs if the representational power of the model is too small. In that
case, a small loss cannot even be achieved on the training data set. Overfitting, in
contrast, corresponds to having a small training loss but considerably higher errors
on the testing data set. This might happen if the model does not fit the task to be
learned. One may think of it as fitting a higher order polynomial to data that have
been sampled a according to a second order polynomial, for instance. Another common
cause of overfitting is an inappropriate composition of the training data set, e.g. if the
function to be approximated is defined on the interval [0, 1] but the training data set
only represents the interval [0, 0.5].

6 Underfitting 6 Appropriate fit 6 Overfitting
e Sample points e Sample points e Sample points
Fit Fit Fit

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Figure 2.15: Example of underfitting, apropriate fitting and overfitting. Here, the red
points correspond to the training examples while the blue curve corresponds
to the function learned during the training phase.
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While the problem of underfitting can be tackled more easily by increasing the
complexity of the ANN (i.e. increasing the number of layers or the number of artificial
neurons per layer), it is more difficult to prevent the ANN from overfitting. Some of
the most common strategies to do so are the following.

Training Data and Data Augmentation Most obviously, the problem of overfit-
ting can be tackled by increasing the size of the training data set, and thereby, reducing
the number of possible solutions leading to a small loss. However, practically it is often
difficult to acquire a huge amount of training data. Therefore, the existing training data
are often altered artificially, e.g. by applying some sort of transformation, to generate
additional data. This strategy is referred to as data augmentation.

Penalizing Large Weights Penalizing large weights is another strategy to prevent
overfitting. This is motivated by the fact that a large weight make the output strongly
depend on the input corresponding to that weight. Practically, this is usually realized
by adding a penalty such as the 11-norm or the 12-norm of the weight matrix to the loss
function.

Early Stopping When training ANNs, it is often observed that the training loss
steadily decreases for each parameter update. Evaluating the loss after each update for
unknown data, however, shows that it starts to increase at some point. Thus, a simple
approach to prevent overfitting is to use a validation data set and to stop the training
once the validation loss starts increasing.

Dropout Dropout provides a computational inexpensive approach to regularize a
broad class of ANN models [94]. It is inspired by so-called bagging approaches that
average (in the most simple case) the output of multiple ANNs that have been trained
to learn the same task. Here, the averaging process helps reduce the error of individual
ANNSs, and therefore, to reduce overfitting. Since training several ANNs is computa-
tionally expensive, the basic ideal of dropout is to drop individual neurons out of the
network in every epoch of the training phase. For instance, this can be realized by
setting the activation the network’s neurons to zero with a probability 1 — P. Thus,
dropout can be seen as training an ensemble of subnetworks at the same time. Once
the network is trained, their average is approximated by using the full network with
each neuron’s output weighted by a factor of P.

2.3.4 Convolutional Neural Networks

Convolutional neural networks represent a class of ANNs that are designed to process
data with a grid-like topology such as 2D images or 3D volumes for instance [95]. The
architecture of convolutional neural networks is inspired by the organization of neurons
in the animal visual cortex [96]. Here, cortical neurons only respond to stimuli that are
received in a particular region (receptive field) of the visual field. In that process two
different types of cells were found to be involved. Simple cells that have a maximum
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activation when patterns with a particular orientation are present in their receptive
field, and complex cells that respond similar to simple cells but have a larger receptive
field and a lower sensitivity to the exact position of the pattern [97]. Convolutional
neural networks realize a similar behavior by their two basic building blocks depicted in
figure 2.16: convolution layers and pooling layers.

i.) Convolution Layers

In principle, convolution layers are very similar to the ones introduced in section 2.3.2:
they are made up of artificial neurons with learnable weights and biases. Each neuron
calculates the dot product of its inputs and its weights, adds the bias, and applies an
activation function. Thus, a convolution layer also represents a differentiable function
that can be trained, as described in section 2.3.3, i.e. by minimizing a loss function
using a gradient-based approach and backpropagation.

However, in contrast to fully connected layers, convolution layers arrange their neurons
in a grid-like structure and restrict the receptive field of a single neuron to only a small
patch of the previous layer (see figure 2.16). Here, each layer uses shared weights, i.e.
any neuron within a particular layer uses the same weights to calculate its output D.
Interpreting the weights to be entries of a kernel K with a size equal to the receptive
field of the neuron, the operation applied to a given 2D input S can be expressed in
terms of a convolution:

Dij=0((S*K)ij+b) =0 Si—y—yKyj+b]|, (2.140)
i 5’
where 7 and 7 denote the pixel indices, and ¢ and b refer to the activation function and
the bias, respectively. It has to be noted that convolutional layers are not restricted
to 2D data but process 1D or higher dimensional data with a grid-like structure in a
similar same way.

The output D is also referred to as feature map as it indicates whether and where a
certain feature, encoded by the kernel K, is present in the input. Rather than extracting
just a single feature, a convolution layer typically uses a certain number of G kernels to
extract G different features simultaneously. This adds an additional feature dimension
to every layer D; ; — D; ;4. Similarly, the kernel receives a third dimension once a an
input with f features is processed K; ; — K; ; r. In that case the output is given as:

Di7j7g =0 Z(Sf * K}g))iﬂ' + b(g) =0 Z Z Si—i’7j—j’7sz'(z'?f + b(g) . (2.141)
f fg

Here, the summation over f is required to keep the dimension of the feature map.

Otherwise, every convolution layer would add an addition dimension to the feature

map.

Stacking several convolution layers in that way allows the network to extract high-level
features from a given input. Since the weights of the kernels are learnable parameters,
a convolutional neural network does not rely on handcrafted features but is trained to
find meaningful features itself during training phase.
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Figure 2.16: Basic building blocks of convolutional neural networks.

ii.) Pooling Layers

Pooling layers are typically used in convolutional neural networks in between successive
convolution layers. Here, the objective of the pooling layer is to reduce the spatial
dimensions of the input while extracting the dominant features. Therefore, every unit
of the pooling layer replaces the data within its receptive field by some sort of summary
statistic. Most commonly, this is done by applying a 2 X 2 maximum operation (max
pooling, see figure 2.16) or by averaging over non-overlapping 2 x 2 patches (average
pooling). Here, the pooling layer operates independently on every feature map of the
input. E.g. a 2 x 2 pooling of an I x J x F input (width x height x # features) yields
an I/2 x J/2 x F output. Since max pooling and average pooling are non-trainable
operations some authors prefer to use strided convolutions instead. Therefore, the
convolution operation described in the previous section is applied with a stride of s
to achieve an s X s pooling. Thus, it is potentially possible to learn the most suitable
summary statistic during training phase rather than using a predefined operation.
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3 Simulation of the CT Data
Acquisition

Precise models describing the CT data acquisition process are required in several areas
of CT imaging such as iterative reconstruction [21], [22], [98], [99], protocol optimization
[100] or artifact correction [24], [101], [102]. The latter is also the focus of this thesis.
Here, the most common CT artifacts caused by x-ray scattering, beam hardening,
partial volume effects and off-focal radiation shall be corrected using a simulation-based
correction approach. Most accurately, these effects could be modeled using MC methods.
However, for the sake of performance it is advantageous to use analytic expressions
whenever it is possible. This sections sets up the corresponding physical models and
validates them by a comparison to MC simulations or reference measurements.

3.1 Material and Methods

3.1.1 Geometry and Object Specification

The basic setup of an industrial cone-beam CT (CBCT) system is depicted in figure
3.1. The geometry of a certain view angle « is completely described by the four vectors
s(a),o(a),u(a) and v(«). Here, the vector s points from the isocenter, that is defined
to be at (0,0,0), to the position of the x-ray source. The vector o defines the origin of
the x-ray detector and points to the center of the first detector pixel. The vectors u
and v have a magnitude equal to the pixel spacing and span the detector plane. Thus,
the position d of the detector pixel (n,,n,) is given as:

d=o+mn, u+n,- v (3.1)

The object to be simulated is either given as a voxel volume or is defined by its
surface in terms of a triangular mesh. The voxel volume is defined on a regular grid
with origin o = (20, %0, 20)7, spacing = (dx,0,0)", y = (0,dy,0)T, z = (0,0,dz)T
and dimensions (N, Ny, N;). Similar to equation (3.1), every voxel (n.,ny,n,) can be
related to a physical coordinate r by the following transform:

T=0+Ng; XT+Ny-Y+n,-z. (3.2)

A voxel-based representation has the advantage that every voxel can be assigned a
different property e.g. a different density or different attenuation, respectively. A
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3 Simulation of the C'T' Data Acquisition

surface mesh, in contrast, can only be used to describe homogeneous objects but has
the advantage of lower memory requirements and higher computational performance,
especially when it comes to line integral calculations.

-

Focal spot pI/a,né ,

G(k)* ' - Rotary table

ffffff

Figure 3.1: Geometry and basic setup of a CBCT system.

3.1.2 X-Ray Spectra of Transmission X-Ray Tubes

The simulation of x-ray emission spectra of transmission x-ray tubes is based on a slight
modification of the method proposed by Tucker et al. [103]. In their paper the x-ray
spectrum was estimated using semiempirical models approximating the generation of
bremsstrahlung and characteristic x-rays. The corresponding derivation of these models
is briefly reviewed in the following.

i.) Bremsstrahlung Model

Considering an electron with kinetic energy T, deflected in the field of a nucleus with
charge Ze, the differential cross section for the emission of a photon with an energy
between E and E + dFE is modeled according to reference [104]:

T + moyc? dE

dorad = ow"g Z°B T 7

(3.3)

where o denotes the fine structure constant, r. the classical electron radius, and B a
slowly varying function of Z and T that is determined as described in iii.). For an x-ray
target with density p and atomic mass A, there are N = p/A atoms per unit volume.
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3.1 Material and Methods

Accordingly, the average bremsstrahlung energy, emitted by an electron traversing the
distance dz along its incident direction, can be calculated as:

AT 1a(E) = %E doraq d, (3.4)
Penetrating a distance dz, the electron loses the energy dT'. The fraction dT.q/dT
corresponds to the radiative energy loss. Thus, the bremsstrahlung intensity generated
by an electron with an initial energy 7Tj can be calculated as:

EN(E)dE = /E b (ddT;d> dr, (3.5)

where N (F)dE refers to the number of photons having an energy between E and dE.
Substituting equation (3.4) and (3.3) yields:

ar?Z*dE (To T +moc? (1dT\ !
N(EYdE = ——— B——— | —— dT’ 3.6
(pyap = e [ (D50) . (36)
where %‘C% is the mass stopping power that can be derived by an interpolation of

tabulated data. Finally, target attenuation F(z, E) of x-rays generated at depth = needs
to be considered. Considering a perpendicular incidence of electrons onto a transmission
target of thickness D, it is given according to the Beer-Lambert law (see equation (2.6)):

F(x,E) = ¢ HE)D-2), (3.7)

To use this expression in equation (3.6), the position z needs to be related to the kinetic
energy of the electron 7. This is done using the Thomson-Whiddington relation [105]:

pex =T — T2, (3.8)

where c is the empirical Thomson-Whiddington constant. Including the target attenua-
tion, the bremsstrahlung spectrum is given as:

N(E)dE =

272 T T2 12 2 -1
are 2705 [ —ue)(D-=tm—) p T4 Moc” (1dT> dr.  (3.9)

A FE Jg T p da

ii.) Characteristic X-Ray Model

Theoretical and experimental findings indicate that the intensity Ix of characteristic
x-rays can be approximated as:

I = Ax(Tp — Ex)"™, (3.10)

where, A is a proportionality constant, Fx is the k-shell binding energy, and Ty is the
initial electron energy. The exponent ng typically takes values in the range of 1.6 to
1.7 [106].
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3 Simulation of the C'T' Data Acquisition

Since electrons loose energy while penetrating deeper into the target, there is a
decreasing probability for the generation of characteristic x-rays with increasing depth.
Tucker et al. modeled this behavior using a parabolic distribution function:

3 z2
P(x) = 3 (1 — R?> , (3.11)

where R refers to the distance at which the average kinetic energy of electrons equals
Fx. Including the target attenuation in a similar way as described in the previous
section, the total number of characteristic x-rays can be modeled as:

NE) = i (1) g8 [ P 0, (3.12)

Here, the fractional yield f(E;) of the of the E; characteristic x-ray is taken from
tabulated data [107]. Ag and ngx are model parameters that are determined as
described in iii.).

iii.) Determination of the Open Parameters

In the paper of Tucker et al., the function B in equation (3.9) is parametrized as:

o=t aaty (1 (2) 4 () s (B) +m(B)) oo

The open parameters Ay, A1, B1, Bo, B3, By as well as the parameters Ax and ng of the
characteristic x-ray model were determined such that the model reproduces measured
spectra of a reflection x-ray tube.

In this thesis, this model was supposed to be used to simulate transmission x-ray
spectra. Therefore, the open parameters had to be recalibrated to fit this purpose.
To do so, Monte Carlo (MC) simulations of transmission x-ray tubes were performed
using the Geant4 (v. 10.4) MC code. Simulations were performed for tungsten targets
assuming different target thicknesses and different tube voltages. Here, the target
thickness was set in steps of 2 pm between 4 pm and 24 pm. The tube voltage was set
in steps of 20 kV between 80 kV and 300 kV. Subsequently, the open parameters of
the Tucker model were optimized by minimizing the mean squared error between its
prediction and the MC spectra.

3.1.3 X-Ray Object Interactions

Interactions of x-ray photons with the object to be measured can be divided into
primary interactions and x-ray scattering interactions. While primary interactions can
be simulated using analytic expressions, there is no closed-form solution to describe
x-ray scattering. Therefore, primary interactions and x-ray scattering are modeled
separately. The corresponding models are described in the following.
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3.1 Material and Methods

i.) Primary Interactions

Primary interactions are described by the Beer-Lambert law according to equation
(2.6). Given the x-ray spectrum w(E), the prefilter attenuation x(E), the detector
efficiency n(F) as well as the distribution of the object’s attenuation coefficient p(r),
the normalized primary intensity can be calculated as:

(g = J w(E)s(B)p(E)e o Hetr =00
I [w(E)s(E)n(E)dE ,

(3.14)

Here, the x-ray spectrum w(F) and the detector efficiency n(E) are modeled as described
in section 3.1.2 and section 3.1.5, respectively. The prefilter attenuation is modeled as
#(E) = e #(E)l swhere p,(F) is the prefilter material’s attenuation coefficient and 1,,
is the corresponding intersection length. To simulate primary intensities, equation (3.14)
is evaluated for the center of every detector pixel with d being calculated according to
equation (3.1). To account for partial volume effects, a given number of subsamples
may be calculated and averaged in intensity domain for every detector pixel.

ii.) X-Ray Scattering

Analytic approaches to calculate the distribution of scattered x-rays are typically
restricted to single scattering [108]. In order to derive accurate scatter estimates,
x-ray scattering is modeled here using MC methods. For the sake of computational
performance, the MC scatter simulation is implemented from scratch rather than using
an existing MC code such as Geant4 [109] for instance. Since the MC code differs at
several points from the straight forward implementation given in section 2.2.3, the basic
structure is briefly described in the following.

Input to the MC Simulation The simulation of x-ray scattering for a given setup
requires to specify the acquisition geometry, the object geometry, its composition as
well as the underlying physics (see figure 3.2).

Acquisition geometry Here, the acquisition geometry is specified in terms of the
vector s pointing to the position of the x-ray source and a triangle mesh representing
the x-ray detector. In case of a typical flat detector with quadratic pixels, each pixel
is composed of two triangles or their three vertices, respectively. However, due to the
flexibility of triangle meshes the simulation is not restricted to simple detector layouts,
but allows to model arbitrarily shaped detectors. Optionally, a preweighting mesh and
an anti-scatter grid can be provided. The preweighting mesh allows to model prefilters
or shaped filters that are commonly used in clinical CT. Therefore, every triangle is
assigned a spectral weight. Once an x-ray photon with energy E. intersects with a
triangle of the preweighting grid, it is weighted accordingly. Similarly anti-scatter grids,
which are commonly used to suppress the contribution of scattered x-ray photons, can
be defined.
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3 Simulation of the C'T' Data Acquisition

Object specification The MC simulation is designed to operate on voxel volumes
that are defined according to section 3.1.1. The composition of the object is specified
by a material voxel volume that assigns every voxel a certain material. Similarly, a
density voxel volume is provided to specify the density of every voxel.

Physics The simulation of random photon tracks requires to know their initial spec-
tral distribution as well as their material and energy dependent interaction probabilities.
The former is passed to the simulation in terms of the (normalized) x-ray spectrum
that is evaluated at a given number of discrete points. The interaction probabilities
for every material, specified by the material voxel volume, are given in terms of the
materials’ attenuation coefficients as well as their differential scattering cross sections.
Both of them are derived by interpolation of tabulated values given in the EPDL and
are passed to the simulation as discrete arrays.

Geometry Object Physics

Material classification X-ray spectrum

X-ray source at S

0 20 40 60 80 100 120 140 160 180
Energy / keV.

Attenuation coefficients

Density distribution

b \\
B

6 8 100 120 140 160 180)
Energy / keV.

Differential cross sections

— Compton differential cross section
—— Rayleigh differential cross section

20 40 60 8 100 120 140 160 180
Angle

Detector mesh

Figure 3.2: Input to the MC simulation. The acquisition geometry is specified in terms
of a source vector s and a detector triangle mesh such that arbitrary shapes
can be realized. Optionally, a preweighting mesh and an anti-scatter grid
can be specified as a triangle mesh. The object information is provided in
terms of a voxel volumes that assign ever voxel a certain material as well as a
density. The physics are given by the spectral distribution of incident x-rays
in terms of an x-ray spectrum as well as by the attenuation coefficients and
the differential scatter cross sections for every material.
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Simulation of Random Photon Tracks The general procedure to simulate random
photon tracks is similar as described in section 2.2.3. However, a biased sampling scheme
is applied here at several points to increase the performance of the simulation. Therefore,
a weight w is assigned to each photon. Initially, the weight wq is set equal to 1 and is
updated every time an interaction is not sampled according to the physically “correct”
PDF (see section 2.2.4). The main steps of the simulation are as follows.

Sampling the initial energy The initial energy distribution of x-ray photons is given
by the normalized x-ray spectrum that is provided as input to the simulation. As
the spectrum is evaluated on a discrete grid, the energy Ey is sampled using Walker’s
method as described in section 2.2.2. As the sampling is not biased, the weight remains
unchanged.

Sampling the first interaction point Here, the first interaction point is determined
by sampling a random voxel from a uniform distribution. Since interactions in air occur
with a very low probability, the corresponding voxels are not considered in the sampling
process. Having Ngtart voxels representing a material different than air, the probability
of drawing the voxel ng with 0 < ng < Ngtart is given as:

1
Nstart ‘
Assuming an isotropic emission of the x-ray source, the physically correct probability

density to have the first interaction at position r can be calculated as described in
section 2.2.3. According to equations (2.77), (2.78), and (2.82) it is given as:

Plst, bias(ns) = (315)

1 1
217[_8111129(?0)}1(7’)6_ fo ,u(s—i-)\(r—s),Eo)d)\‘ (316)
The probability to have the first interaction within the voxel corresponding to 7 requires
to integrate equation (3.16) over the volume V' of that voxel. Here, the integration is
approximated as follows:

Dist, real('r') -

Plst7 real(nm Ny, nz) = /Vplst, real('r)dv

AV _ [t _
~ p(s+A(r—s),Eo)dA
~ —sulr)e Jo o)A, (3.17)
where AV denotes the volume of the voxel. To account for the biased sampling, the
photon’s weight is updated according to the fraction of the real and the biased sampling
probability:

Pig, real AV _IA (AN o o) AN
bins mT N, 3.18
Plst, bias 47‘(")"2#(”’)6 0 start ( )

Wn+1 = Wp -

It has to be noted that the advantage of this biased sampling scheme is twofold: first,
to ensures that any simulated x-ray interacts with the object and second, to promote
interactions more close to the detector as they have a higher impact on the scatter
distribution.
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3 Simulation of the C'T' Data Acquisition

Forced detection and photon splitting To avoid simulating photon tracks that do
not contribute to the scatter distribution, i.e. photons that leave the volume of interest
without hitting the detector, a forced detection approach is implemented. The basic
principle of that approach is depicted in figure 3.3. Instead of scoring the contribution
to the scatter distribution only when the photon hits the detector, its contribution is
scored at every interaction point. Here, this is realized by the introduction of so-called
split photons. Once an interaction point is sampled, Ny split photons, that share all
properties except for the weight with their master photon, are generated. To keep
the simulation unbiased, the weight of the split photons is reduced according to their
number:

’wo’split = %z (319)
For each split photon an interaction effect as well as the corresponding flight direction is
sampled(see below). However, in contrast to the master photons, no further interactions
are simulated for split photons. Thus, whenever their flight direction intersects with a
detector triangle, their contribution is scored (forced detection). Otherwise, they are
removed from the simulation. To account for the negligence of split photon interactions,
the split photon weight has to be decreased accordingly. Considering the forced detection
approach, the probability Pyet, bias Of the photon not being absorbed (i.e. reaching the
detector) equals 1:

]Ddet7 bias = 1. (320)
The physically correct probability, however, is given by the Beer-Lambert law as:

1
Pdet, real = € fo u(r—i—)\(r—q),E)d)\’ (3.21)
where 7 is the interaction point of the master photon, or the starting point of the split
photon, respectively, and q is the intersection point with the detector triangle. Thus,
the split photon weight is given as:

1
Wi splis = Wo - ]P?det, real wy - e fo /L(T‘F)\(T*Q),E)d)\. (3.22)
det, bias

Here, interactions in the detector are not included in the MC simulation but are
considered in terms of the detector efficiency n(E, d, ®) that can be calculated e.g. as
described in section 3.1.5. Thus, any split photon hitting a certain detector triangle m
of thickness d with an incident angle ® contributes to the scatter distribution S(m, E)
as follows:

S(ma E) += wl,split : 77(E7 d7 (I)) (323)

Once all split photons are processed, the simulation continues with the simulation of
the random track of the master photon.

60



3.1 Material and Methods

Conventional random sampling Splitting & forced detection

X-ray source X-ray source

Master photon Master photon

Detector Detector

Figure 3.3: Conventional random sampling (left) and particle slitting and forced de-
tection (right). The conventional sampling approach simulates a random
photon track until the photon leaves the volume of interest or hits the
detector. Particle splitting, in contrast, generates a given number of split
photons at any interaction point and scores their contribution to the detector
signal immediately when they point towards the detector.

Sampling the interaction effect Considering energies below 1022 keV, x-ray photons
can interact via the photoelectric effect (PE), Compton scattering (CS) and Rayleigh
scattering (RS). However, as a photoelectric effect would terminate the simulation
without contributing to the scatter distribution, it is not considered explicitly. Thus,
only Compton and Rayleigh scattering are sampled with the following probabilities:

_ pos(E)
PLO8) = pes(E) + prs(E) (324
P(RS) = — 1rs(E) (3.25)

 pes(E) + prs(E)

The probability that the photon interacted via the photoelectric effect is equal to
(1 — ppr(E)/p(E)). It’s negligence has to be accounted by the decreasing the photon
weight accordingly:

_ . (, _ meE(E)
Wpt1 = Wn (1 (E) > . (3.26)

Updating the energy of the x-ray photon The energy of the simulated x-ray photon
has to be updated according to the interaction effect. This is done as described in
section 2.2.3.
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3 Simulation of the C'T' Data Acquisition

Updating the flight direction of the z-ray photon The flight direction is updated
according to the differential cross sections that are given as input to the simulation.
Here, the update does not differ from the straight forward implementation given in
section 2.2.3.

Sampling the path length Once the energy and the flight direction are updated, the
path length is sampled to determine the next interaction point of the master photon.
Given the attenuation of every material, the path length sampling is performed using a
Woodcock tracking as described in section 2.2.3.

Termination of the simulation The simulation of a random photon track is terminated
once the master photon leaves the volume. It has to be noted that the master photon
does not contribute to the scatter distribution directly, but only via its split photons.

3.1.4 Focal Spot Distribution

Ideally, all x-ray photons are emitted from a single point at position s (see figure 3.1).
However, practically the area x-ray photons are generated has a certain extension and
is rather described by a focal spot distribution. This distribution is determined by
several factors such as the power of the x-ray tube, the electromagnetic fields to focus
the electron beam, the geometry of the x-ray tube as well as its physical properties.
Typically, it is composed of a narrow distribution that corresponds to the area electrons
are focused on and flat but broad distribution, referred to as off-focal radiation, that is
associated with electron backscattering.

Given the projection G(k) of the focal spot distribution into the focal spot plane
(ky-k,-plane parallel to the detector plane), the normalized intensities can be calculated
as:

Iyost gy _ JGU) J (e Jo MM LR o
Toor [ Gk) [ 0(E)dE & | |

with w(E) = w(E)x(E)n(E) being product of the source spectrum, the prefilter attenu-
ation and the detector efficiency.

i.) Simulation of Projection Data

Given the distribution function G(k), projection data can be simulated by evaluating
equation (3.27) for a given number of discrete grid points (k,, k.) within the focal spot
plane. Subsequently, the normalized intensity is given as their weighted sum with the
corresponding weight G (k). However, as the computation time increases linearly with
the number of grid points, this approach is not the method of choice if performance is
an issue. Therefore, a convolution-based approach as derived in the following is used
instead.
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Considering the projection of a thin sample of thickness dl located at position yg, the
line integral over the attenuation coefficient given in equation (3.27) can be approximated
as:

/(Jlu(s+k+)\ (d—(s+k),E)dA~ p(s+k+ Ao (d— (s +k)), E)dl, (3.28)

where Ay = 32%‘2’/ is given according to the intersection point with the x-z-plane at

y = yo. Inserting this approximation into equation (3.27) yields:

Iyt gy _J G) [(E)e o MR BB
Ty off [G(k) [@(E)dE d?k

N f G(k) f ,uj(E)e*u(5+k+/\0'(d*(5+k)):E)dldE a2k

~ [ G(k) [@(E)dE d2k

1-Xg

B f G(k) f ,u~}(E)e—#()\o(d+(5+k)(TO)))7E)dldE A2k
N [ G(k) [w(E)dE d?k
2
(2% ) G- 1255 k) [ @(B)e#Nol@r)BMlq R @2,
[ G(k) [w(E)dE d?k

~ 1
=G * 2(d), (3.29)

Io

Ao 2 g

(17>\0) G(_17x0d)

[ G(k)d2k
distribution into the detector plane and %(d) denotes the ideal polychromatic forward
projection, i.e. the polychromatic forward projection for a point-like focal spot at
position s. Thus, the effect of the non-ideal focal spot distribution can be modeled

approximately by a single forward projection followed by a convolution operation. For
the sake of performance, this model is also applied to thick samples.

where G (d) = represents the mirrored projection of the focal spot

ii.) Determination of the Distribution Function G(k)

Edge Measurement The spatial distribution G(k) of the emitted x-rays can be
reconstructed directly using a transmission measurement of an absorbing edge as
depicted in figure 3.4. Suppose to have a measurement of a straight line within the
x-z-plane at yo. According to equation (3.29) this so called line-spread function (LSF)
is given as:

LSF(9, ) — / G(d)S(d - hry — &)d?u. (3.30)

Obviously, the LSF equals the Radon transform of the function G. Thus, the recon-
struction problem is similar to the CT reconstruction problem described in section 2.1.4.
Consequently, the function G can be reconstructed using an FBP approach:

G(d) = R7ILSF(¥, €). (3.31)
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However, due to the lack of appropriate line samples it is more convenient to measure
the edge-spread function (ESF) as depicted in figure 3.4. Given the ESF, the LSF
can be calculated as its derivative. Assuming a rotational symmetry of the focal spot
distribution, G can be determined from a single transmission measurement.

Profile plot

Flat detector

Absorbing edge

X-ray source

Figure 3.4: Setup to determine the focal spot distribution using an absorbing edge.

Calibration Sphere Measurement Using an edge measurement is potentially the
most accurate way to determine the distribution function G (k). However, it is rather
complicated to integrate an edge measurement in the workflow of a CT scan. Therefore,
it is proposed to determine the function G(k) or its projection G(d), respectively,
from the measurement of a calibration sphere. These high-precision crystalline spheres
have well-known dimensions and are typically measured prior to any CT acquisition to
calibrate the geometry of the system as well as the geometrical distortion of the detector.
Using this approach, the determination of the distribution function is formulated as an
optimization problem. Therefore, it is modeled using a a weighted sum of a set of basis
functions. Here, estimates derived from an edge measurement, as depicted in figure 3.4,
suggest that the basis functions can be chosen as Gaussian functions and step functions.
Thus, the following parameterization is proposed:

i=4
A i (r—b)2
Gest(r,9,0) = ag + O(by — |r]) + Y e (=07, (3.32)
i=1
with @ = {a, b, ¢ } denoting the parameter vector and © denoting the Heaviside function.
It has to be noted that a rotational symmetry of G is assumed here, and therefore,
there is no dependence on .
Given the calibration sphere measurement I,¢.5, the open parameters are determined
by minimizing the following cost function with respect to 6.
I

Coff(e) = ”éest(e) * TO - Imeas||2- (333)
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It has to be noted that the convolution is evaluated on a Cartesian grid. Therefore, the
distribution function given in equation (3.32) is resampled onto a Cartesian grid.

3.1.5 X-Ray Detection

The x-ray detection process is typically characterized by the detection efficiency n(FE,),
i.e. the fraction of energy that is absorbed per incident x-ray photon with energy £, :

_ Edep(Ew)

n(By) = B2, (3:34)

where Fgep, refers to the energy deposition in the detector. Given a detector of thickness
d and attenuation pu(FE), a common approximation of the detector efficiency is given by:

n(E,) ~ 1 — e HE)d (3.35)

which equals the probability of the x-ray photon undergoing an interaction within the
detector. Thus, it is assumed that any interaction leads to the deposition of the complete
energy of the x-ray photon. Since this assumption does not hold true, especially for
Compton and Rayleigh scattering, the detector efficiency is typically overestimated by
this model. Therefore, the attenuation coefficient is often replaced by the so-called
energy transfer coefficient ¢, that corresponds to the mean fraction of energy transferred
to kinetic energy of electrons per unit path length [110]. This assumption, however,
leads to an underestimation of the detector efficiency since higher order interactions are
neglected. Therefore, a more accurate model is derived as follows.

In general, the interactions depicted in figure 3.5 can occur when x-ray photons hit
the sensitive area of the detector. Here, the first interaction via the photoelectric effect,
Compton scattering or Rayleigh scattering is referred to as first-order interaction while
single or multiple interactions of fluorescence or scattered x-rays are referred to as
higher-order interactions. Calculating the detector efficiency according to equation
(3.34) requires to sum up the energy deposition of these interactions. Thus, the energy
deposition of an x-ray photon with energy E, within a detector of thickness d can be
calculated as:

d _
Baep(Byyd) =3 Eaepi = 3 /0 Pt (r| By Ei(r, B )dr, (3.36)

where pin ;(r|E5) is the PDF for an interaction at position r, and E;(r, E,) is the mean
energy transfer to the medium given a certain interaction ¢. To estimate the energy
deposition according to equation (3.36), the following models and approximations are
applied:
i.)  Probability of first-order interactions
According to equation (2.82), the PDF pin(r|E,) for an interaction at position r
within a homogeneous detector material with attenuation p(E,) is given as:

pint(r|Efy) = H(EV)C—M(EW)'T_ (337)
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Figure 3.5: Sketch of possible interactions in the x-ray detector.

The probability of the interaction being a photoelectric interaction (PE), Comp-
ton scattering (CS) or Rayleigh scattering (RS), equals P;(E) = ‘:Z((g)) with
i € {PE, CS, RS} and pui(E) being the interaction effect specific attenuation
coefficient. Thus, the complete PDF is given as:

pi(Ey)

Pint,i(7|Ey) = p(Ey) e BT m, (3.38)
2

Energy deposition of first-order interactions via the photoelectric effect

As described in section 2.1.2, a photoelectric interaction leads to the absorption of
the incident x-ray photon leaving the absorbing atom in an excited state. With a
certain probability the atom deexcites emitting a fluorescence photon that might
escape the detector. Therefore, it is assumed that the energy deposition of a
photoelectric interaction equals the energy E, of the incident x-ray photon minus
the mean energy that is transferred to fluorescence photons. For the sake of
simplicity, the energy transfer is restricted to K, and Kz fluorescence photons
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iii.)

as they occur most likely and have sufficient energy to escape the detector [111].
Given the probability Px, and Pk s for a K, and a Kz fluorescence, the mean
energy transfer is given as:

Epg(r, Ey) = (By — Pk, Pk, — Pk, Fx,) (3.39)

where Ex_, and EKﬂ are the energies of the K, and a Kz fluorescence photons.
The probability Py _ /5 Can be calculated as the product of the k-shell ionization
probability Ppg k, the k-shell fluorescence yield ®, i.e. the fraction of k-shell
vacancies that are filled by a radiative transition, and the probability P,k -k
that a K-shell vacancy is filled by an electron of the L-shell or the M-shell,
respectively. Here, Ppr, k is approximated as:

w(Ex+e)

w(Exte)—p(Ex—e) if B> Bk
, else

where Fx is the k-edge energy. ® and P,k M-k, in contrast, are taken from
data tables given in the evaluated atomic data library (EADL) [107].

Substituting equation (3.38) and equation (3.39) into equation (3.36) yields the
energy deposition of first-order photoelectric interactions::

d _
Eqdep, pE(E, d) :/0 Pint, PE(7|Ey) Epg(r, Ey)dr

d
_ +HPE(E
:/0 (B, e HE) M(é))(EW—PKaEKa — Px,Ex,)dr
—LE(EW)Q ~u(Ey)dy (B — Px Ex. — Px. E

= —e ) - (By — Px,Ex, — PxyExg)

ﬂ(EW)
(3.41)

Energy deposition of first-order interactions via Compton scattering

A Compton scattered x-ray photon transfers a fraction of it’s energy to atomic
electrons. According to equation (2.14), the energy transfer can be calculated as:

1+ —5(1 —cos(v))

E
Mec?

E/(0,E,) = E, — E\(0) = E, (1 - ! ) , (3.42)

with FE, being the energy of the incident x-ray photon and ¥ being the scatter
angle. Given the angular distribution of Compton scattered x-ray photons in
terms of the differential Compton scatter cross section dggs, the mean energy
transfer can be calculated as the weighted average from 0 to =:

= T do
Ecg(r, E,) = i TQ(;SE;}(&EW)M. (3.43)
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iv.)

vi.)

68

Thus, the energy deposition of first-order Compton scatter interactions is given
as:

d _
Egep, cs(E5, d) :/o Pint, cs(7|Ey) Ecs(r, Ey)dr

d E s
= [ty nEr KSR TSy g agar
0

w(Ey) Jo dv

,UCS(E'V) —u(E~)-d T docs
= —— (1 —e M —=F_ (¢, E.)dv. 44
/L(E’y) ( € ) 0 d’lg e( ’ ’Y) (3 )

Energy deposition of first-order interactions via Rayleigh scattering

Since Rayleigh scattering is an elastic process, there is no energy transfer to
electrons and therefore no energy deposition:

Edep. rs(Ey, d) = 0. (3.45)

Higher-order interactions

It is assumed that any interaction of fluorescence or scattered x-ray photons
leads to the deposition of their complete energy. Thus, all calculations here are
restricted to secondary interactions. Given a primary interaction at position r,
the fluorescence or the scattered photon interacts with the detector material with
a probability equal to 1 — e #E)UrY) where ¥ is the polar angle of the scattered
photon and [(r, 1) is the intersection length with the detector. Thus, the mean
energy transfer can be calculated as:

_ ™ do; B
Eonai(r ) = | %Ezndw,m)u—e #(Bna ()00 gy, (3.46)

where Ufg,f is the differential cross section for the considered interaction and Eo,q
is the energy of the fluorescence or scattered x-ray photons.

It has to be noted that equation (3.46) assumes a rotational symmetry with
respect to the azimuth angle ¢ (otherwise, the intersection length also depends on
©). Therefore, equation (3.46) only holds true for flat detectors and x-ray photons
with an incident angle perpendicular to the detector’s surface. The treatment of
skew incident angles will be discussed later.

Energy deposition of fluorescence photons

It is assumed that fluorescence photons are emitted isotropically ( g—g = Sigﬁ). K.
fluorescence photons that are emitted with the probability Pk, have the energy
Kk, while Kg fluorescence photons (probability Pk,) have the energy Ex,. Thus,
according to equation (3.46) and equation (3.36), their energy deposition is given
as:

T sin ¢

d
Edep, 2nd PE(Ey, d) :/0 pp(r, Ey)efu(r’E”)'r/O 5

+(1 _ e—u(EKa)J(r,ﬂ)) + PKBEK[-}(]‘ _ ei'u(EKﬂ).l(T’ﬂ))d’ﬂdT,

Px Ex,
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vii. )

viii. )

(3.47)

Energy deposition of Compton scattered x-ray photons

The angular distribution of Compton scattered x-ray photons is given by the
differential Compton scatter cross section d‘df%. The remaining energy Ei/ of the
scattered photon is given by equation (2.14). Substitution into equation (3.36)

yields:

T docs

75 (1~ e M B OHOD 4o
0

d
Edep, 2nd cs(Ey, d) = /0 pes(r, Ev)e’“(’"’Ev)"”
(3.48)

Energy deposition of Rayleigh scattered x-ray photons
The angular distribution of Rayleigh scattered x-ray photons is given by the

differential Rayleigh scatter cross section d%s' The energy of the scattered
photons equals the energy E. of the incident photon. Thus, the energy deposition

can be calculated as:

T dogrs

1 — e H(Ey)U(r0)
a9 (1—e H&r )dvdr

(3.49)

d
Edep, 2nd RS (Ey, d) = /0 pirs (7, By )e BT

Treatment of skew incident angles

The calculations above assume the incident angle of the x-ray photon to be
perpendicular to the detector’s surface. In principle, they could be adjusted
such that they also hold true for skew incident angles. However, for the sake
of performance the incident angle ® is accounted by applying a multiplicative
correction term c(E,, ®) such that:

N(Ey,d,®) = n(Ey,d) - c(E,,d, ®). (3.50)

Here, the correction term is calculated according to the simple detector efficiency
model given by equation (3.35):

d
1— e_lu’(E'Y) Cos @

C(E77da P) = 1 — e n(BE)d °

(3.51)

where ﬁ accounts for the increased intersection length with the detector.

Substituting the energy deposition of first- and higher-order interactions into equation
(3.34) yields an expression for detector efficiency which can be evaluated by numerical
integration over the detector thickness d and the polar angle 9. Here, the use of a step
size of Ad = 5 pm and Ad¢ = 1° seem to be a good compromise between speed and

accuracy.
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3.2 Results and Validation

3.2.1 X-Ray Emission Spectra

The simulation of transmission x-ray spectra is based on a modification of the model of
Tucker et al. As the original model has been developed for reflection x-ray tubes, its
parameters were recalibrated here to fit MC simulations of transmission tubes. The
corresponding parameters are summarized in table 3.1. It has to be noted that all
other parameters were kept unchanged. Exemplary spectra including a 1 mm aluminum
prefilter are shown in figure 3.6. While there are some deviations in the low energy
range of the spectrum, higher energies are reproduced quite accurately. Evaluating the
mean absolute percentage error (MAPE) between the predicted spectra and the MC
reference for all tube voltages and all target thicknesses, there is an error of 9.7 %.

140 kV, 8 um target

180 kV, 8 um target

- Modified Tucker spectrum - Modified Tucker spectrum

0.05 == Geant4 MC simulation 0.05 4 == Geant4 MC simulation
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Figure 3.6: Exemplary results of the x-ray spectra derived with the modified Tucker
model. All spectra are prefiltered with 1 mm of aluminum.
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Table 3.1: Parameter of the spectrum model.

Bl BQ B3 B4 AK ng
Tucker et al. -5.049 10.847 -10.516  3.842 1.349x1073  1.648
Recalibration 0.088 1.565 -6.398 4.302 3.233x1073  1.652

3.2.2 X-Ray Scattering

To validate the scatter predictions of the MC simulation described in section 3.1.3
(referred to as DKFZ MC code), they are compared against scatter distributions
calculated with the well established Geant4 (v. 10.4) MC code [109]. Since the Geant4
MC simulation is only used for reference, it is not optimized for performance but relies
on a straight forward implementation as described in section 2.2.3. For both MC
codes, simulations were performed using a CBCT setup with an ideal (100 % efficiency)
30x 30 cm detector, a source-to-isocenter distance of 300 mm and an isocenter-to-detector
distance of 300 mm (see figure 3.7). The object to be simulated consists of different
sized spheres (10 mm and 25 mm radius) of different materials (water, aluminum and
iron). Furthermore, simulations were performed using different x-ray spectra with a
maximal tube voltage of 50 kV, 100 kV, 200 kV and 400 kV. A qualitative comparison
of the scatter distributions for 10'0 x-ray photons is shown in figure 3.8. A quantitative
comparison in terms of the mean absolute percentage error (MAPE) between the DKFZ
MC simulation and the Geant4 simulation yields deviations of 2.1 % (50 kV spectrum),
1.7 % (100 kV spectrum), 1.4 % (200 kV spectrum), and 1.2 % (400 kV spectrum). Thus,
there is a good accordance between both MC codes, while the remaining deviations
may result from the discretization that is required for the DKFZ simulation or from
slightly different cross section tables that are used for the simulation.

0.12
A X-ray source —— 50 kV Spectrum
\ 100 kV Spectrum
4 0.10 —— 200 kV Spectrum

§ } —— 400 kV Spectrum
600 mm;

4 ron Y

l /,\/ Water
o'
i - Aluminum

Normalized intensity
o
o
(o))

K
/ 0.00 . . = : - . ,
/ Detector 50 100 150 200 250 300 350 400

Energy / keV

Figure 3.7: Setup for the validation of the MC scatter simulation (left) and x-ray tube
spectra that were used for the simulation (right).

71



3 Simulation of the C'T' Data Acquisition

200 kV spectrum 100 kV spectrum 50 kV spectrum
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Figure 3.8: Scatter simulations of 10'% x-ray photons for the sphere phantom shown in
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figure 3.7 at four different tube voltages between 50 kV and 400 kV (top row
to bottom row). The left column shows the scatter distribution calculated
using the Geantd MC code, the middle column shows the results for the
MC code developed in this thesis, while the relative difference is shown in
the right column.



3.2 Results and Validation

3.2.3 Focal Spot Distribution

To evaluate the limits of the convolution-based approach to model the focal spot distri-
bution, simulations using the line pair phantom depicted in figure 3.9 were performed.
The phantom consists of 50 line pairs that were assigned increasing densities such
that there are projection values between 0 and 10. For the sake of simplicity, the
simulations were restricted to a 2D setup as depicted in figure 3.9. The focal spot
distribution was modeled as a Gaussian function with varying standard deviations,
namely 0.05 mm, 0.1 mm, 0.5 mm, 1.0 mm and 2.0 mm. For each simulation 50000
x-positions of the x-ray source were sampled randomly from the corresponding Gaussian
distribution. Subsequently, the respective forward projections were averaged in intensity
domain. The proposed method, in contrast, applied a convolution operation to a single
forward projection assuming a point-like focal spot. As described in section 3.1.4,
this method is theoretically equivalent to a real simulation in case of (infinitely) thin
objects. Therefore, the line pairs were simulated with different heights of 1 mm, 10 mm,
50 mm, 100 mm, and 200 mm. In any case, the line pairs were focused on the x-ray
source (see figure 3.9). Furthermore, different magnifications (1.25, 2.0, and 5.0) were
investigated by shifting the line pair phantom relative to the x-ray source while keeping
the source-detector distance fixed at 1000 mm. To have always the same detector signal,
the spacing of the line pairs was changed according to the magnification. Thus, there
is a spacing of 3.125 Ip/cm for the low magnification, a spacing of 5.0 Ip/cm for the
medium magnification and 12.5 Ip/cm for the high magnification.

X-ray source 10 7

8
6
Line phantom
2
200 250

0 50 100 150
X-ray detector Detector coordinate / mm

Projection value

Figure 3.9: Sketch of the line pair phantom (left) and the corresponding projection
values for a point-like focal spot (right). The line pairs are simulated with
increasing density, resulting in a decreasing intensity.

Qualitative results of the real simulation and the proposed model are shown in
figure 3.10 for a setup with a magnification of 1.25. Here, it can be observed that the
convolution model is able to reproduce the physically correct simulation with only minor
deviations if either the width of the focal spot distribution is small or the extension of
the object in source-detector direction is small. Otherwise (see figure 3.10, bottom right)

73



3 Simulation of the C'T' Data Acquisition

1o Height = 10.0, o = 0.1 10 Height = 200.0, o = 0.1
Projection value, pointlike focal spot Projection value, pointlike focal spot
—— Projection value, exact simulation —— Projection value, exact simulation
g8 ----- Projection value, convolution model g ----- Projection value, convolution model
Q (‘D
3 2
[ 6 [ 6
= c
k=] o
=1 =1
5 o
§ 44 § 44
a a
| ‘ ‘ ‘ | l
ol |||”| ol |l“n n
50 100 150 200 250 0 50 100 150 200 250
Detector coordinate / mm Detector coordinate / mm
10 Height = 10.0, 0 = 2.0 10 Height = 200.0, 0 = 2.0
Projection value, pointlike focal spot Projection value, pointlike focal spot
—— Projection value, exact simulation —— Projection value, exact simulation
g4 - Projection value, convolution model 84 - Projection value, convolution model
(‘D i
= =
[ 6 [ 6
c c
L o
=1 =1
3 3
§ 4 - § 4 4
a a
oy
24 24
0 T T - - ) 0
0 50 100 150 200 250 0 50 100 150 200 250
Detector coordinate / mm Detector coordinate / mm

Figure 3.10: Comparison of the proposed convolution-based model to a physically correct
simulation using a setup with a magnification of 1.25.

higher deviations may arise. A quantitative evaluation in terms of the mean absolute
percentage error (MAPE) between the convolution model and the reference simulation
is provided in table 3.2. Here, similar trends can be observed. The accuracy decreases
by increasing the width of the focal spot distribution or the height of the line pairs.
Furthermore, simulations that were performed with a small magnification show slightly
lower deviations. This might be explained by the fact that effective width of the focal
spot distribution, i.e. the focal spot distribution projected to the isocenter, decreases
for decreasing magnifications. However, for most practical cases the convolution model
seems to be a valid approximation to a physically correct simulation.

A practical example of the application of the convolution-based model is depicted
in figure 3.11. Here,the projection of the focal spot distribution G(d) was estimated
using a calibration sphere measurement as described in section 3.1.4. To investigate
whether this distribution also applies to other measurements, a luster terminal was
measured subsequently. As shown in the second row of figure 3.11, the application of
the convolution-based model reduced the discrepancies between the simulation and the
measurement significantly which indicates the applicability of this approach.
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Table 3.2: Mean absolute percentage error of the convolution-based focal spot simulation

for the line pair phantom.

Standard deviation of the Gaussian

0.05 mm 0.1 mm 0.5 mm 1.0 mm 2.0 mm

Height of the lines
Magnification 1.25
1.0 mm 0.6 0.5 0.5 0.6 0.7
10.0 mm 0.5 0.6 1.1 1.6 3.9
50.0 mm 0.5 0.8 3.2 3.9 9.1
100.0 mm 0.7 1.1 5.7 11.1 13.2
200.0 mm 0.8 1.5 8.7 17.2 20.2
Magnification 2.0
1.0 mm 0.6 0.7 0.7 0.8 0.9
10.0 mm 0.5 0.6 3.0 5.2 6.5
50.0 mm 0.8 1.4 3.9 7.6 9.3
100.0 mm 1.2 2.4 6.9 124 15.6
200.0 mm 1.9 4.1 13.1 18.3 24.2
Magnification 5.0
1.0 mm 0.5 0.5 0.6 0.7 0.9
10.0 mm 0.9 1.1 1.6 4.2 11.9
50.0 mm 3.6 5.7 10.2 21.3 33.0
100.0 mm 6.0 10.0 16.9 26.3 32.9
200.0 mm 3.6 6.9 12.7 17.5 21.2

A: Measurement B: Simulation witha  C: Simulation including B/A C/A

point-like focal spot the focal spot distribution

2
[
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"
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8
C=0.6,W=0.8 C=0.6,W=0.8 C=0.6,W=0.38
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Figure 3.11: Simulation with and without the focal spot model. The kernel representing
the projection of the focal spot distribution was determined using the
calibration sphere measurement in the top row. The same kernel also
applies to the measurement of the luster terminal.
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3.2.4 X-Ray Detection

To evaluate the accuracy of the detector model derived in section 3.1.5, it was compared
against an ¢ MC simulation which is considered as ground truth. The reference MC
simulation was implemented using the well established Geant4d MC framework (v.
10.4)[109]. Simulations were performed for cesium iodine (Csl), cadmium telluride
(CdTe) and gadolinium oxysulfide (Gd202S) which are three commonly used detector
materials in CT. For each material 300 energies distributed equally between 1 keV
and 300 keV were simulated using different detector thicknesses (0.25 mm, 0.5 mm,
1.0 mm) and different incident angles (0°, 25°). Additionally, the detector efficiency was
calculated according to the simple model given by equation (3.35). The corresponding
results are shown in figure 3.12 (Csl), figure 3.13 (CdTe), and figure 3.14 (Gd202S). For
all configurations the proposed model is very close to the ground truth MC simulation
except for some small deviations in the range of the k-edge energy. More simple models,
in contrast, lead to significantly higher deviations, especially for lower energies. A
qualitative evaluation in terms of the mean absolute percentage error (MAPE) with
respect to the ground truth is given in table 3.3. The lowest accuracy is achieved modeling
the detector efficiency as n(E,) =1 — e~HE7)d This leads to an overestimation of the
detector efficiency with deviations from the ground truth between 18 % and 44 % on
average. More accurate results can be achieved by replacing the attenuation coefficient
by the mean energy transfer coefficient. In that case, however, the detector efficiency
is slightly underestimated leading to a MAPE between 7 % and 14 %. The proposed
model clearly outperforms the two simple models and deviates from the ground truth
MC simulation by only 1 % to 4 % while being about 1000 times faster.

Table 3.3: Mean absolute percentage error with respect to the MC ground truth of the
three detector efficiency models for energies between 1 keV and 300 keV.

Configuration 1 — e mE)d 1 _ e~mue(By)d  Proposed model
Material d / mm @

Csl 0.25 0°/25° 437 /430% 75/71% 43 /4.4 %
Csl 0.5 0°/25° 355/322% 83/82% 3.5 /34 %
Csl 1.0 0°/25° 252/25.0% 10.5/104 % 22 /21 %
CdTe 0.25 0°/25° 335/333% 10.8/10.5% 2.7 /26 %
CdTe 0.5 0°/25° 263/2.2% 129/128 % 20/19%
CdTe 1.0 0°/25° 21.1/209% 139/ 13.7% 1.9 /2.0%
Gda02S  0.25 0°/25° 357/354% 88/84% 39/39%
Gda02S 0.5 0°/25° 258 /25.7% 11.2/10.8% 24 /24 %
Gda02S 1.0 0°/25° 18.6 /183 % 12.2/12.0% 1.6 /1.4 %
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Figure 3.12: Comparison of different models to calculate the detector efficiency of
Csl. A Geant4 MC simulation (dashed blue curve) which is considered as
ground truth serves as reference. Simulations were performed for detector
thicknesses of 0.25 mm (top row), 0.5 mm (middle row), and 1.0 mm
(bottom row). The two columns show different incident angles (left: 0°,

right: 25°).
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Figure 3.13: Comparison of different models to calculate the detector efficiency of
CdTe. A Geant4 MC simulation (dashed blue curve) which is considered as
ground truth serves as reference. Simulations were performed for detector
thicknesses of 0.25 mm (top row), 0.5 mm (middle row), and 1.0 mm
(bottom row). The two columns show different incident angles (left: 0°,
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Figure 3.14: Comparison of different models to calculate the detector efficiency of
Gd202S. A Geant4 MC simulation (dashed blue curve) which is considered
as ground truth serves as reference. Simulations were performed for detector
thicknesses of 0.25 mm (top row), 0.5 mm (middle row), and 1.0 mm
(bottom row). The two columns show different incident angles (left: 0°,

right: 25°).
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3.3 Discussion

This chapter presents different models to describe the CT data acquisition process.
Besides accuracy, the focus was set on computational performance. Therefore, analytical
approximations were derived whenever possible. The particular models are briefly
discussed in the following.

X-Ray Spectra The simulation of x-ray spectra is based on a model proposed by
Tucker et al. to describe spectra of reflection x-ray tubes [103]. It could be shown
that recalibrating the open parameters allows to apply this model to simulate spectra
of transmission x-ray tubes, as they are used in this thesis. Here, the mean absolute
percentage error with respect to reference MC simulations is about 10 %. These
deviations are probably a result of the simplified treatment of the electron energy
distribution. Here, electrons contribute to the bremsstrahlung spectrum according to
their average kinetic energy as given by the Thomson-Whiddington law. However, the
kinetic energy of of 200 keV electrons penetrating a tungsten target is, for instance, about
140 keV after 10 pm. Thus, applying the Tucker model to thin transmission targets
leads to the complete disregard of lower energy electrons. To increase the accuracy
of the predicted spectra, it seems to be necessary to include the depth-dependent
electron energy distribution within the model. This has been done in a slightly different
approach by Poludniowski et al. using look-up tables of precalculated MC electron
energy distributions [112], [113]. While being potentially more accurate, the requirement
of MC simulations makes it rather impractical. Alternatively, the x-ray spectra could
be estimated directly from calibration measurements as proposed e.g. by Leinweber
et al. [114]. However, the results presented in chapter 4 indicate that the proposed
approach provides a sufficient accuracy to fit the purpose of artifact correction.

Focal Spot Distribution The effect of non-ideal focal spot distributions is modeled
here using a convolution-based approach. It was shown that this approach is equivalent
to a physically exact simulation for infinitely thin objects. Increasing the object thickness
leads to a reduced accuracy, especially in case of large focal-spot sizes. Due to the
perspective geometry, the effective focal spot distribution changes in source-detector
direction. Therefore, a better accuracy might be achieved by subdividing the object along
this axis and to process every subobject with a specific convolution kernel. However,
for most practical cases the proposed approach seems to provide a sufficient accuracy
while being computationally efficient. Compared to a physically more exact simulation
that required, let’s say, at least 5 x 5 samples of the focal spot, the runtime is about 25
times faster.

Besides the computational model, the focal spot distribution itself needs to be
determined. Here, a pragmatic approach was introduced that derives the focal spot
distribution from a calibration sphere measurement. It was shown that the distribution
derived from such a measurement also applies to subsequent CT acquisitions. Since
the calibration sphere is typically measured prior to the actual CT measurement, the
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proposed approach can be easily integrated in the workflow of a CT scan without the
need for additional calibration procedures.

X-Ray Scattering X-ray scattering is the only effect that was not modeled using
analytic approximations, but rather MC methods. To achieve a reasonable performance,
several variance reduction techniques were implemented. This reduces the typical
runtimes to about 20 s for a single projection. Several applications, however, would
greatly benefit from faster scatter estimation approaches. To meet this demand, the
so-called deep scatter estimation (DSE) is introduced in this thesis. Therefore, the
reader is referred to chapter 5 for a more comprehensive discussion on x-ray scatter
estimation.

Detector Efficiency The detector efficiency model relies on a precise simulation of
first order interactions and an approximate treatment of higher order interactions. It
could be demonstrated that the proposed model applies to different detector materials
and different detector dimension. Here, it yields estimates of the detector efficiency
that differ by less than 4 % from MC simulations. Considering the computational
performance, the model yields the detector response for a 300 kV spectrum in about 0.9 s
on a single core central processing unit (CPU). Thus, the proposed model provides a fast
alternative to MC methods that clearly outperforms commonly used approximations of
the detector efficiency.
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4 Simulation-Based Artifact
Correction

This chapter describes a novel approach to correct for CT artifacts using simulations
of the CT measurement process. After a brief review of prior work, the potential of
the simulation-based artifact correction (SBAC) is demonstrated for simulated data as
well as measurements of single- and multi-material components and compared to state
of the art artifact correction approaches. It has to be noted that parts of this chapter
have been published in reference [102].

4.1 Background and Prior Work

As highlighted in chapter 1, CT reconstructions of highly attenuating or multi-material
components are often corrupted by artifacts which impair the metrological assessment.
Existing artifact correction approaches that have been proposed to address this issue
are briefly reviewed in the following. Since medical CT has to deal with similar artifacts,
especially in case of patients with metallic implants, most of them have been initially
proposed for medical applications.

In principal, artifact correction approaches can be divided into iterative approaches,
post- or precorrection approaches. Iterative approaches, which became very popular
in clinical CT in recent years, try to solve the reconstruction problem in an iterative
manner. Therefore, they usually set up a forward model that predicts projection data
given an estimate of the CT image. This estimate is refined in every iteration step
by calculating an update based on the discrepancy between the prediction and the
measured projection data. This procedure is repeated until convergence is reached,
i.e. the prediction fits the measurement. Depending on the design of the forward
model, iterative approaches are able to account for the most common CT artifacts
[22]-[24], [115], [116]. Furthermore, they allow for the incorporation of prior knowledge
such as the shape of the measured component or image sparsity for instance [17], [21],
[117]-[119]. However, the need for at least a few forward and backprojections makes
iterative approaches computationally expensive. Especially in metrological CT that has
to deal with comparably large data sets this turns out to be a major limitation.

Postcorrection approaches are often used as a faster alternative. These approaches
apply correction terms, which are motivated by empirical or physical considerations, to
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an analytic reconstruction. Therefore, they typically set up models with a given number
of open parameters that can potentially account for a certain artifact. Subsequently,
the open parameters are adjusted such that an appropriate metric, sensitive to artifacts
in image domain, is minimized [16], [19], [25], [120]. Thus, no dedicated prior knowledge
such as the x-ray spectrum for instance is required. In addition to computational
performance this can be seen as further advantage compared to iterative methods. More
recently, the use of DCNNs has been proposed as another realization of postcorrection
approaches [34]-[36].

Besides being applied in image domain, correction terms can also be applied in pro-
jection space prior to the reconstruction. There are several flavors of these precorrection
approaches. Considering multi-material components containing metal, so-called metal
artifact reduction (MAR) algorithms are frequently applied. Initially MAR approaches
have been proposed for the correction of artifacts caused by metalic implants in medical
CT [121]. Their basic principle relies on the identification of the metal trace within the
acquired projection data and its subsequent replacement with some sort of interpolated
data [20], [122]-[124]. The corrected projections are then reconstructed and the metal is
reinserted to the CT image. While this strategy is potentially useful for multi-material
components with a small amount of metal [125], interpolation errors may degrade the
correction result for higher metal fractions.

The correction of single-material components, in contrast, often relies on approaches
similar to water precorrection in clinical CT [126]. These approaches aim to invert
the relationship between the measured projection data and the intersection length
through the object being investigated. Since, the projection values strictly increases
with the intersection length (see equation (2.8)), there is a unique solution of that
inversion. Typically, it is implemented as an analytic function or a look-up table
that can subsequently be used to map a given measurement to ideal data [18], [127].
Here, the correction function is either derived from theoretical considerations, i.e. by
numerical inversion of a certain physical model describing the data acquisition or by
performing calibration measurements of a known component. However, strictly speaking
only beam hardening artifacts can be corrected using this approach. In case of other
artifacts such as x-ray scattering or off-focal radiation, there is no unique relationship
between projection values and intersection lengths. Consequently, these effects have
to be considered a priori. While there is only little prior work on off-focal correction,
scatter correction is reviewed more detailed in chapter 5.

4.2 Material and Methods

4.2.1 Basic Principle

Analytic reconstruction approaches assume the measured projection data p to be the
monochromatic x-ray transform (denoted as X) of the measured component:
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with f being the CT image, i.e. the spatial distribution of the component’s attenuation
coefficient. Similar to the 2D case described in section 2.1.4, the function f can be
reconstructed from a set of projection images by applying the inverse x-ray transform
which is typically implemented as FBP.

However, conventional CT systems usually acquire projection data ¢ which deviate
from the ideal case given by equation (4.1). There are several effects that may be
responsible for these deviations. Here, beam hardening, off-focal radiation, x-ray
scattering and partial volume effects have been identified to be the most severe ones.
Considering these effects, ¢ can be expressed as described in chapter 3:

. f G(k) f 'lI)(E)@i fol u(s+k+)\-(d7(s+k)),E)d/\dE ko

a(d) = [G(k) [w(E)dE d°k

+5|, (4.2)

with S denoting the scatter distribution, G(k) being the spatial distribution of x-rays
within the focal spot plane, w(FE) being the detected x-ray spectrum, fol u(s+k—+ M-
(d—(s+k)), E)dX\ being the line integral over the attenuation coefficient and s and d
denoting the position of the source and detector element, respectively.

A comparison of equation (4.1) and equation (4.2) shows that p # ¢. Thus, an
analytic reconstruction, i.e. the application of the inverse x-ray transform operator X1,
does not yield f but rather an image g that is corrupted by artifacts a:

g=X"lg=X"p+ X (g-p)
=f+XYg—p)
=f+a. (4.3)

Accordingly, the simulation-based artifact correction (SBAC) aims to derive an estimate
a of the artifact term such that a corrected image can be calculate as:

fspac=g—a=g—X(G-p), (4.4)

with ¢ and p being estimates of real and ideal projection data, respectively. The basic
workflow of the SBAC is depicted in figure 4.1. It relies on precise simulations of
the CT measurement process to derive the estimates ¢ and p which are then used to
calculate a. Here, the simulations are based on a prior model fprior of the component,
e.g a computer-aided design (CAD) model. However, in most cases fprior can also
be generated directly from the measurement by a segmentation of the uncorrected
reconstruction g:

fprior =Ty, (45)

where T represents the corresponding segmentation operator. If not stated otherwise,
the operator T is implemented here as a marching cubes algorithm that yields a surface
mesh of the component [128].
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Figure 4.1: Schematic of the SBAC workflow. An initial reconstruction g is used to
generate a prior model. Based on that model, a real and an ideal simulation is
performed. Their difference represents the artifacts within the measurement
and can be used to calculate a correction term for the initial reconstruction.

4.2.2 Simulation of Ideal and Real Projection Data

To simulate ideal projection data p as well as real projection data ¢, the SBAC applies
the physical models derived in chapter 3 as follows.

i.) Simulation of Ideal Data

Ideal data are simulated as a CT measurement with a monochromatic x-ray source,
a point-like focal spot, an ideal detector and no x-ray scattering. Thus, an ideal
measurement can be described by equation 4.2 with G(k) = §(0), w(E) = §(Ey) and
S=0:

o [ 6(0) [ 6(Eq)e™ Jo methtX (k) BN oy,

“d)_'Jnl 75(0) [ 3(Bo)dE d% (46)
= tu [e w05 (4.7)
:ATM5+A4d—s%E» (4.8)
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Here, Fy represents a reference energy that can, in principle, be set to an arbitrary
non-negative value. However, to have similar CT values as the artifact image, it is set
equal to the center of mass of the spectrum:

_ [®EdE

Eo = 5o BB (4.9)

Furthermore, it is assumed that any material of the object to be investigated has a
homogeneous density distribution. In that case the line integral over the attenuation
coefficient given in equation (4.8) can be calculated as:

[ s+ A (@ 8), B = 3 B (s, ), (4.10)

with /;(s, d) being the intersection length through the object for a straight line from s
to d. Thus, it can be calculated by determining the intersection points of a given ray
with the surface mesh that is used as prior model fprior.

ii.) Beam Hardening and Partial Volume Effects

Beam hardening is simulated according to equation (3.14) using the x-ray spectrum
model described in section 3.1.2 and the detector model described in section 3.1.5. Similar
to the simulation of ideal data, a homogeneous density distribution is assumed such that
the line integral over the attenuation coefficient can be calculated as >, i (EF) - li(s, d).

To account for partial volume effects, 4 x 4 subsamples are calculated and averaged
in intensity domain for every detector pixel.

iii.) Simulation of X-Ray Scattering

X-ray scattering is simulated based on the prior model fprior using the MC simulation
described in section 3.1.3. To increase the performance of the MC simulation, the size
of the prior model is decreased by resampling onto a lower resolution voxel grid. Since
x-ray scatter distributions are known to be low frequent, the corresponding loss of
resolution has only a minor effect on the accuracy of the scatter prediction but speeds
it up significantly. Similarly, the detector is downsampled prior to the MC simulation.
Finally, the scatter prediction is upsampled again to the original detector size.

iv.) Simulation of Off-Focal Radiation

The focal spot distribution including off-focal radiation is simulated using the convolution-
based model derived in section 3.1.4. The corresponding convolution kernel representing
the projection of the focal spot distribution into the detector plane was determined
according to section 3.1.4 using a calibration sphere measurement.
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v.) Simulation of Cone-Beam Artifacts

The use of circular scan trajectories in combination with a cone-beam setup leads to
the introduction of so-called cone-beam artifacts as this trajectory only allows for an
exact CT reconstruction within the mid-plane. If § and p are simulated in cone-beam
geometry, both of them show similar cone-beam artifacts as the measurement. Thus
a correction is not possible. Therefore, the simulation has to be performed using a
geometry that allows for an exact reconstruction. Here, a parallel beam geometry is
used for that purpose. In that case, however, the reconstruction operator X! is different
for § and p. Consequently, the subtraction has to be calculated post to reconstruction:

f=g-a=g-(X'q-X"p), (4.11)

and one additional reconstruction is required.

4.2.3 Simulation Study

A quantitative evaluation of the SBAC was performed using simulated projection data.
As prior for the simulation a CAD model, representing a multi-material component
composed of poly methyl methacrylate (PMMA) and copper, was designed. Projections
were simulating according to equation (4.2) assuming a cone-beam setup with a 1944 x
1536 flat detector and a pixel size of 150 x 150 pm. The detected x-ray spectrum was
simulated with a tube voltage of 225 kV using the models described in section 3.1.2
and section 3.1.5. X-ray scattering was simulated using the MC simulation described
in section 3.1.3 while the effect the non-ideal focal spot distribution was modeled by a
convolution with a Gaussian function in intensity domain. The ground truth is given
by the reconstruction of an ideal simulation as described in section 4.2.2.

4.2.4 Measured Data

In order to demonstrate the potential of the SBAC for real data, measurements were
conducted on a commercial industrial CT system (Werth TomoScope® 200) that is
equipped with a 225 kV micro-focus x-ray tube and a 3888 x 3072 flat detector with a
pixel size of 74.8 x 74.8 nm. For any measurement, the detector was operated in the 2 x 2
binning mode leading the an effective pixel size of 149.6 x 149.6 pm. However, it has to be
noted that the pixel size in the isocenter, which is the important quantity to characterize
the spatial resolution, differs for all measurements as they are acquired with different
magnifications. The single- and multi-material components that have been measured for
this study are shown in figure 4.2. The measurement parameters as well as the maximum
and the mean intersection lengths are summarized in table 4.1. All measurements were
reconstructed analytically using the FBP-type Feldkamp-David-Kress algorithm [8].
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Figure 4.2: Photograph of the components to test the SBAC. 1. Electrical plug 1, 2.
Luster terminal, 3. Plastic Inhalator, 4. Electrical plug 2, 5. Die-cast zinc
hinge.

Table 4.1: Acquisition parameters of single-material and multi-material measurements
as well as the mean and the maximum intersection length (L). It has to be
noted that these measures refer only to the metal intersection length in case
of multi-material components.

Pixel size

Projections . Mean L /
Sample Voltage Current Prefilter per 360° »?; isocen- oL
Plug 1 225 kV 170 pA 1.2 mm Sn 1200 41 pm 3.0 mm /
' 15.9 mm
Luster ter- 49 mm /
minal 225 kV 170 pA 1.2 mm Sn 1200 41 pm 99.8 mm
4.3 mm /
Inhalator 160 kV 90 pA 0.5 mm Al 800 80 pm 42.6 m
1.1 mm /
Plug 2 225 kV 170 nA 1.2 mm Sn 1200 25 pm 6.8 mm
Zinc hinge 215 kV 180 pA 1.0 mm Sn 800 43 pm 3.8 mm /
' 20.5 mm
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4.2.5 Evaluation of Single-Material Measurements

The focus of the single- material measurements was set on dimensional accuracy. A
dimensional evaluation of a given component is usually performed by comparing the
surface mesh calculated from the CT reconstruction to a certain reference such as a
CAD model for instance. The presence of CT artifacts, however, may cause significant
deviations of that surface mesh from the real surface. Here, a quantitative evaluation
of these deviations before and after applying the SBAC is performed by a comparison
to a reference measurement that is considered as ground truth. In case of the die-
cast zinc hinge, a tactile measurement with a commercial coordinate measurement
machine (Werth Touch Probe TP 200) serves as reference. Therefore, a given number
of predefined points on the surface of the die-cast zinc hinge is sampled using a tactile
probe (maximum permissible probing error = 2 ym). Subsequently, the surface mesh
extracted from the CT reconstruction was compared to that point cloud.

The correction of cone-beam artifacts using the SBAC, was tested for a plastic
inhalator that was measured with small and a large cone-angle. While the the acquisition
with the large cone-angle shows severe cone-beam artifacts, the other acquisition is
almost free of artifacts and was therefore used as a reference.

4.2.6 Evaluation of Multi-Material Measurements

In general, multi-material components cannot be assessed using a tactile measurement
without disassembling them. Therefore, a quantitative evaluation in terms of a compar-
ison to an ideal reference was performed for simulated data which were generated as
described in section 4.2.3. To evaluate the performance of the SBAC for measured data,
corrected images were compared to two state of the art artifact correction approaches:
the normalized metal artifact reduction (NMAR) [20] and, and an iterative reconstruc-
tion with total variation (TV) regularization [17], [129]. The NMAR belongs to the
inpainting-based correction approaches that identify the metal trace within the acquired
projection data and replace it by interpolated data. Additionally, NMAR makes use
of prior knowledge that is incorporated to improve the accuracy of the interpolation.
The iterative reconstruction, in contrast, derives a corrected image by minimizing the
following cost function C' in an iterative manner for f:

C=I[Xf=ql[+A-TV(f), (4.12)

where ) is a weighting factor and TV(f) refers to the total variation operator that is
defined a:

V() = [ 951V (4.13)
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4.3 Results

4.3.1 Simulation Study

The projection data were simulated according to section 4.2.3, and were reconstructed
using the analytic Feldkamp-David—Kress algorithm [8]. This initial reconstruction was
used as a prior model for the SBAC. For that purpose, it was segmented into air, plastic
and metal. As the metal artifacts are mainly propagated into the plastic part, the
corresponding plastic segmentation is degraded similarly. The metal part can usually
be segmented more accurately. Therefore, the simulation of beam hardening, off-focal
radiation and partial volume effects was based on the metal prior only. It is assumed
that this strategy has only minor impact on the accuracy of the correction as these
effects are caused predominantly by the metal part. The simulation of x-ray scattering,
in contrast, was based on both the plastic prior as well as the metal prior. Since scatter
distributions are usually smooth, inaccuracies of the segmentation can be neglected for
that purpose.

CT reconstructions showing the correction result of the SBAC as well as the two
reference approaches introduced in section 4.2.6 are displayed in figure 4.3. Here,
the NMAR as well as the iterative reconstruction cannot remove the streak artifacts
efficiently. The SBAC, in contrast, leads to images that are almost free of artifacts.
Considering the difference to the ground truth, there are only small deviations mainly
related to the CT value of the metal part.

Analytic
reconstruction

Reconstruction

Difference

Figure 4.3: Top row: CT reconstructions of simulated data using different correction
approaches (the gray scale is centered to the attenuation of plastic: C =
0.012 mm~—%, W = 0.030 mm~!). Bottom row: Difference to the ground
truth (the gray scale is centered to zero: C = 0.00 mm~* / W = 0.05 mm~1).
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4.3.2 Measured Data
i.) Single-Material Components

A qualitative evaluation of the single-material measurements is shown in figure 4.4. Here,
the zinc hinge measurement shows CT artifacts that are caused by x-ray scattering, beam
hardening as well as off-focal radiation. The reconstruction of the inhalator measurement,
in contrast, shows mainly cone-beam artifacts. In any case, the application of the SBAC
yields CT images that are almost free of artifacts. However, since the visual impression
does not necessarily correlate with the dimensional accuracy of the CT measurement,
a dimensional evaluation was performed in addition. To do so, a surface mesh was
calculated from every CT reconstruction and compared against a reference that is not
corrupted by artifacts. The corresponding results are shown in figure 4.5. Considering
the die-cast zinc hinge, there are large deviations from the tactile reference measurement
that exceed the tolerances specified by the manufacturer by up to 400 %. These
deviations can be reduced significantly by applying the proposed SBAC. Here, the
dimensional assessment shows a good agreement between the CT and the tactile probe
(note that the deviations along the edges of the component result from missing sample
points of the tactile measurement).

The inhalator measurement demonstrates that similar results can be achieved for CT
reconstructions that are corrupted by cone-beam artifacts. Here, the surface meshes
were compared against a surface mesh calculated from a CT measurement with a narrow
cone-angle. Without correction there are deviations, especially in the periphery of the
field of measurement where the cone-angle is large, that exceed the tolerances of the
manufacturer more than 200 %. Applying the SBAC reduces these deviations well
below values of 40 %.

ii.) Multi-Material Components

The correction of multi-material components using the SBAC was evaluated for three
typical components with different metal fractions or metal intersection lengths, respec-
tively (see table 4.1). Since multi-material components cannot be assessed entirely using
a tactile probe, two commonly used artifact correction algorithms, namely NMAR and
an iterative reconstruction with TV regularization, were implemented as a reference.
The corresponding CT reconstructions as well as an analytic reconstruction and the
SBAC result are shown in figure 4.6. As expected, the presence of metal leads to severe
artifacts appearing as dark steaks if no correction is applied. In contrast to clinical CT
where NMAR usually leads to a considerable improvement of image quality, it fails to
improve the multi-material measurements here. Similarly, the iterative reconstruction
approach does not remove streak artifacts but only leads to a small improvement.
Compared to the analytic reconstruction and the reference approaches, the SBAC is
able to correct for almost all artifacts and yields CT volumes that allow for a clear
discrimination between plastic and metal.
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No correction SBAC

Zinc hinge (metal widow)

Zinc hinge (air widow)

Inhalator (air widow)

\ﬁO}

10 mm

Figure 4.4: Reconstruction of the measured die-cast zinc hinge (top) and the inhalator
(bottom) without and with simulation-based artifact correction (left and
right). The zinc hinge is displayed at two different window levels centered
to metal and centered to air (top and middle).

93



4 Simulation-Based Artifact Correction

No correction SBAC

Zinc hinge (front)

Zinc hinge (back)

600 %
500%
400%
300%
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100%
80%
60%
40%
20%
0°
-20%
40 %
-60 %
-80 %
-100 %
-200 %
-300 %
400 %
-500 %
-600 %

Inhalator
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Figure 4.5: Dimensional evaluation of the CT measurement of the die-cast zinc hinge
(top) and the inhalator (bottom) with and without simulation-based artifact
correction. The color scale refers to the tolerances specified by the manufac-
turer. Here, 100 % and -100 % are the maximum acceptable deviations of
the CT measurement from the reference measurement.
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Analytic NMAR TV SBAC
reconstruction

Plug 1

Plug 2

Luster terminal

Figure 4.6: CT reconstructions of two different multi-material plugs (top row C = 0.012
mm~! / W = 0.030 mm~!, middle row C = 0.02 mm~! / W = 0.06 mm~1)
and a luster terminal (bottom row C = 0.03 mm~! / W = 0.10 mm™1).
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4.4 Discussion

This chapter presents the simulation-based artifact correction (SBAC), a novel approach
to correct for CT artifacts using precise simulations of the CT measurement process.
While the basic principle of the SBAC allows to correct for any artifact that is modeled
appropriately within the simulation, the focus of this study was set on the correction
of beam hardening, x-ray scattering, off-focal radiation, partial volume effects and
cone-beam artifacts which are considered to be the most prominent artifacts in CBCT.
In order to evaluate the potential of the SBAC, it was applied to simulated and measured
data of highly attenuating as well as multi-material components that currently pose a
major challenge to metrological CT. A first observation of these experiments concerns
the model of the component that is required as prior for the simulation. In principle, the
CAD model that comes with most components can be used for that purpose. However,
for several reasons it is beneficial to be independent of additional CAD data. First
and most obvious, there are cases where no CAD model is available or where the CAD
model only describes parts of the component to be investigated. Second, the use of the
CAD model requires to align it with the measured component. Thus, an additional
registration routine is required that needs to be robust against CT artifacts. Third,
there are certain applications that prohibit the use of CAD data within an artifact
correction framework as this can potentially bias the corrected measurement towards
the CAD model. Therefore, the prior model was calculated in this study directly from
an initial CT reconstruction by segmentation. It turns out that accurate correction
results can be achieved even if that segmentation deviates to some extend from a true
representation of the component. In case of single material components these deviations,
which correspond to several voxels, can be seen in the left column of figure 4.5. As
they do not change the appearance of most CT artifacts the SBAC correction term also
applies to images that differ by a few voxels. Considering multi-material components,
also the complete negligence of the plastic part in the prior has only a minor influence
on the accuracy of the correction (see figure 4.3). This is because the contribution to
CT artifacts, except for x-ray scattering, is dominated by the metal part of the object.
Therefore, the difference between the ideal and the real simulation of the metal part
seems to be a good estimate for the present artifacts. Since this does not hold true for
x-ray scattering, it is the only artifact that requires the consideration of the plastic part
of the component.

Furthermore, it could be shown that the SBAC clearly outperforms other commonly
used artifact correction approaches, namely the NMAR and an iterative reconstruction
with TV regularization. Both of these approaches are adapted from medical CT and
show convincing correction results in that field. Here, however, they are not able to
remove the artifacts in a similar way. This is a result of the high metal fraction of
the components investigated in this study. As the NMAR relies on the replacement
of measured data with interpolated data, it works best if the metal fraction is small.
Similarly, the iterative reconstruction only leads to a minor improvement of image
quality whereas the SBAC yields images that are almost free of artifacts.

Besides the visual impression of image quality, the dimensional accuracy of a certain
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artifact correction approach is an important issue for several applications. Since these
quantities are not necessarily correlated, a dimensional evaluation was performed for
the single-material components by a comparison to an artifact-free reference. Here, the
results demonstrate that the SBAC is able to reduce these deviations significantly com-
pared to a standard analytic reconstruction. Therefore, the SBAC increases the validity
of the metrological assessment and makes CT applicable even to highly attenuating
components or multi-material components, respectively.
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5 Real-Time Scatter
Estimation using a Deep

Convolutional Neural
Network

X-ray scattering is a major source of artifacts in most CT applications. Especially in
CBCT, which has to deal with high scatter-to-primary ratios, the CT reconstructions
suffer from severe streak and cupping artifacts. As the presence of scatter artifacts
has a strong impact on the quality of any metrological assessment, accurate scatter
correction is necessary. However, considering existing scatter correction approaches,
there is always a trade-off between accuracy and computational performance. Therefore,
a novel approach that is able to overcome this drawback using a deep convolutional
neural network (DCNN) is presented in the following. After a brief review of prior work
on scatter correction, the proposed approach is introduced and evaluated for simulated
and measured data. It has to be noted that parts of the results have also been published
in reference [130] and reference [131].

5.1 Background and Prior Work

In general, there are two typical strategies to reduce the impact of scattered x-rays on
CT image quality: scatter suppression and scatter estimation. The former approach is
based on the use of additional hardware, such as anti-scatter grids or collimators, which
are designed to reduce the number of scattered x-rays reaching the detector [26]. Scatter
estimation approaches, in contrast, aim to remove scattered x-rays that are present in
the measured data. Therefore, they derive an estimate of the scatter distribution that
is subtracted post to data acquisition [27]. One option to derive this estimate is to use
dedicated hardware, e.g. primary modulation grids or beam blockers, that allows to
distinguish between primary and scattered x-rays [132]-[139]. Other approaches use
software-based solutions that set up empirical, physical or consistency-based models
that predict or approximate x-ray scattering [19], [140]-[153].

The gold standard among these methods is Monte Carlo (MC) simulation which
is able to model the entire physics of the CT data acquisition process, and therefore,
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yields highly accurate scatter estimates [27]. On the downside, MC simulations are
very time-consuming and cannot be applied in real-time using conventional hardware.
Furthermore, they need prior information such as the material distribution and the
density distribution that have to be estimated a priori [154].

So-called kernel-based scatter estimation (KSE) approaches are therefore used as a
fast alternative to MC. Basically, there are two flavors of kernel-based scatter estimation
(KSE) approaches. The first one estimates scattered x-rays as an integral transform of
a scatter source term and a scatter propagation kernel [140], [141], [155]-[157]. In that
process, the scatter source term, which is typically derived from a simplified theoretical
model (e.g. only single scattering in forward direction is considered), represents the
fraction of x-rays that are scattered along a straight line starting at the position of the
x-ray source. The scatter propagation kernel reflects the spatial spreading of scattered
x-rays and is usually calibrated to fit reference measurements or MC simulations. Since
the multiplication of these two quantities represents the scatter distribution for a single
ray, the total scatter distribution can be estimated by integrating the contribution of
any ray between the x-ray source and a detector element.

Instead of using analytic models to approximate scattering along a certain line, other
KSE approaches perform needle-beam MC simulations of primitive geometries, e.g.
ellipsoids or cuboids, with varying dimensions [143], [145]-[147]. The corresponding
scatter distributions are then stored as a look-up table. To estimate x-ray scattering of a
given measurement each detector pixel is assigned one of the precalculated needle-beam
scatter distributions according to a similarity metric. Similar to model-based KSE
approaches, all contributions are integrated to calculate the total scatter distribution.
To account for the different shape of the actual object and the primitive geometry
that has been used to generate the look-up table, additional correction terms are often
included within the correction framework [147].

However, being real-time capable, KSE approaches are by far less accurate than MC
simulations. Furthermore, it needs several efforts to calibrate the open parameters of
these models to fit different acquisition parameters as well as different components.
Therefore, hybrid approaches have been proposed that incorporate MC information
within the KSE framework [149], however, at the cost of computational performance.
To achieve real-time performance without losing accuracy, this chapter introduces the
deep scatter estimation (DSE) and demonstrates the potential for different industrial
applications and compares it against state of the art KSE approaches.

5.2 Material and Methods

5.2.1 Kernel-Based Scatter Estimation

Kernel-based scatter estimation (KSE) approaches estimate scatter Seg; by an integral
transform of a so-called scatter source term T'(p) and a scatter propagation kernel G
[26]:

Sut(d) = / T(p)(d)G(d, d, e)d*d, (5.1)
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with d denoting the detector coordinate, p denoting the logarithm of the primary
intensity p = —In(I/Iy) and ¢ denoting a parameter vector that is typically calibrated
such that the model reproduces reference measurements or MC simulations. In recent
year several models to implement equation (5.1) have been proposed [140], [141], [143],
[147], [149], [155]. Here a slight modification of the model of Ohnesorge et al. that has
been proposed by Baer et al. is used as a reference [149]. This model defines the scatter
source term as:

T(p)=K-p-e?, (5.2)

which has the physical meaning of a forward scatter intensity and can be derived by
the following consideration. Assume an x-ray photon is emitted at position (0,0,0)
and heads along t through an object with attenuation pu(r). According to equation
(2.82), the probability of a scatter interaction between At and (A 4+ dA)t is proportional

A ’ /
to u(At)e” Jo nNDAN probability of the scattered x-ray photon reaching the

. o — [ p(VyaN . . :
detector at position d = \gt is given as e” Jx ¥ . Accounting for all interactions

on the line from (0,0,0) to d requires to integrate the product of these probabilities
A / ! Ad i /

over A: [ pu(Mt)e” Jo BN = [T DN g3 ich can be evaluated as p-e P with

p= fo’\d w(At). The parameter K in equation (5.2) is an open parameter of the model

and can be interpreted as a proportionality factor that accounts for the differential

cross section for forward scattering that has been neglected in the derivation above.
The scatter kernel G(d, d’, ¢) is defined as:

G(d, d/,c) — Zefcl((dfd/)éliCQ)z . 26703((d*d')é2i04)2_ (53)
+ +

This parametrization of G as a shift invariant function further simplifies the calculation
of equation (5.1) as it can be expressed as a convolution operation.

Here, the open parameters { K, c} of the model are determined by minimizing the
squared difference between the model’s scatter prediction and an MC simulation:

{K,c} = argminz |Sest (n, d, K, €) — Snc(n, d)||3, (5.4)
€ nd
where, n represents the sample index and Syic denotes the MC scatter prediction.
Here it is assumed that these parameters, which are only calibrated once, apply to any
measurement and any view angle subsequently. However, practically this assumption
leads to a decrease of performance. Therefore, Baer et al. proposed to use a distinct set
of parameters { K, c},, for any projection to be corrected using a similar minimization
scheme as equation (5.4):
{K,c}n = ar%{min | Sest (1, d, K, €) — Snic(n, d)||3. (5.5)
,C d
In contrast to the KSE approach, this so-called hybrid scatter estimation (HSE) uses
only a very coarse MC simulation Syi¢ to achieve a reasonable performance. Thus, it
can be seen as physics-based regularizer to the noisy MC scatter prediction. In this
study the HSE was used as a second reference approach.
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5.2.2 Deep Scatter Estimation (DSE)

Conventional KSE approaches come with the drawback of being restricted to a predefined
model that is based on simplified assumptions and approximations on x-ray scattering.
Therefore, they might not generalize suitably to arbitrary cases. However, given only
the projection data as input, it is challenging to develop more comprehensive models
and to set their parameters appropriately. Potentially, deep learning based approaches
are able to overcome these drawbacks as, in contrast to conventional approaches, they
do not use handcrafted models or features to solve a certain problem but learn the most
suitable model intrinsically from a large set of training data. Therefore, the DSE uses a
deep convolutional neural network (DCNN) that is trained to predict x-ray scattering.
The proposed DSE network, which is similar to the U-net proposed by Ronneberger
et al. [39], is shown in figure 5.1. It is an encoder-decoder network with concatenated
skip connections between the encoding path and the decoding path that help to restore
high resolution features and to improve the training convergence. The encoding path,
that extracts a hierarchy of features of the input images, consists of seven stages. Each
applies three convolution layers with a 3 x 3 kernel size and ReLU activation. While
the spatial dimensions are reduced by applying a convolution with a stride equal to two,
the features are doubled starting with 16 features in the first layer. The decoding path
is designed similarly but applies a 2 x 2 nearest neighbor upsampling instead of the
strided convolutions to restore the spatial dimensions.

The DSE network was implemented using the open source framework Keras (v. 2.15)
in combination with the Tensorflow backend (v. 1.7). Given only a function of the
acquired projection data as input, DSE was trained by optimizing the network’s weights
w and biases b to minimize the mean absolute percentage error (MAPE) between an
MC scatter prediction Syic and the network’s output:

100
w, b} = argmin—
R A

DSE(n,d,w,b) — Smc(n, d)
SMC (TL, d) ’

(5.6)

with n denoting the sample index, d denoting the detector coordinate, and M the
product of the number of training samples and detector pixels. The weights were
initialized with a Glorot uniform distribution [158]. The biases were initialized with
zeros. The training was performed for 80 epochs on an NVIDIA Quadro P6000 using
an Adam optimizer and a batch size of 16.

As x-ray scattering is known to be low frequent, the DSE network does not take the
full size projection data as input, but downsamples them to have with 256 x 256 pixels.
Thus, the DSE scatter estimate needs to be upsampled to the original projection size
prior to scatter correction.
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) o 5t

Feature dimensions:
256x256 128x128 64x64  32x32 16x16 8x8 4x4 8x8 16x16 32x32  64x64 128x128  256x256

Number of features of the convolutional layer:
16 32 64 128 256 512 1024 512 256 128 64 32 16/1

D 3 x 3 Convolution (stride = 1), ReLU D 3 x 3 Convolution (stride = 2), ReLU ' 1 x 1 Convolution (stride = 1), ReLU ‘ 2 x 2 Upsampling

O Depth concatenate

Figure 5.1: Architecture of the DSE deep convolutional neural network. Note that
the network does not take the full size projection data as input, but a
downsampled 256 x 256 version. Thus, the DSE scatter estimate needs to
be upsampled prior to scatter correction.

5.2.3 Simulation Study

Practically, it is advantageous to have a scatter estimation approach that can be applied
to different components and different acquisition conditions without major adjustments.
The potential of DSE as well as the two reference approaches to do so, was investigated
using simulated data. The scatter estimation approaches were evaluated with respect
to:

i.) Generalization to different tube voltages

ii.) Generalization to different noise levels

iv.) Generalization to different magnifications

Generalization to different components

)
)
iii.) Generalization to different materials
)
v.)

All simulations were performed using CAD prior models from a public database
(www.grabcad.com). Here, the experiments i.) - iv.) are based on the compres-
sor wheel models shown in figure 5.2, while experiment v.) was based on the six models
shown in figure 5.3. Given the prior model, artificial projections of an industrial CT
system were simulated as:

I+ N,+ S
Psim = — In (+p]0+MC> s (57)

with I being the polychromatic primary intensity according to equation (3.14), N,
being Poisson distributed noise, Syig being the distribution of scattered x-rays that
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was calculated using the MC simulation described in section 3.1.3, and Iy being the
flat field image, i.e. an image without the component inside the field of measurement
(FOM). For each component and each parameter set 36 views, distributed equally over
a scan range of 360°, were simulated. Additionally, DSE was investigated with respect
to the mapping to be learned by the network. To do so, DSE was trained to for the
following mappings:

. Mep: ¢~ Psim —  SMmc
o Mp: Psim — SMC

° pep - Psim * e Psim Smc

For any mapping the data were divided into two sets. A training data set that is
used to optimize the network’s parameters and testing data set to investigate the
performance for unknown data. A detailed description of the simulation parameters
for each experiment can be found in the following sections. The training of the DSE
network was performed as described section 5.2.2. The open parameters of the KSE
approach were determined according to equation (5.4) using the same training data as
DSE. As the HSE approach is based on a recalibration of the open parameters for every
projection, it is applied directly to the testing data set using a coarse MC simulation. To
quantify the performance of the three scatter estimation approaches, the mean absolute
percentage error (MAPE) with respect to ground truth MC scatter distribution Syc
was used as a performance measure (see equation (5.6)).

To evaluate the impact of the quality of the scatter estimates on CT images, CT
reconstructions of scatter-corrected projections were performed. Therefore, a 360°
circle scan with 720 projections was simulated according to equation (5.7) using the
six components shown in figure 5.3 as prior. For any projection scatter was estimated
using DSE, KSE, and HSE. This estimate was subtracted in intensity domain to derive
a corrected data set. The scatter-corrected data were precorrected for beam-hardening
using a similar approach to water-precorrection in clinical CT [126], (i.e. by numerical
inversion of the relationship between polychromatic projection values and intersection
lengths). Subsequently, the projections were reconstructed on a 1024 x 1024 x 1024
voxel grid with 0.2 mm voxel size using the analytic Feldkamp algorithm [8].
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50 mm

Figure 5.2: Compressor wheel models that have been used to generate simulated data.
Simulations of model T1-T6 have been used for training while simulations
of model V1 and V2 have been used for testing.

TV1: Compressor wheel (Ti) | TV2: Cylinder head (Al) TV3: Casting (Al)

50 mm

Figure 5.3: Models of the compressor wheel (TV1), the cylinder head (TV2), the casting
(TV3), the cassette (TV4), the profile (TV5), and the impeller (TV5) that
have been used to generate simulated data to investigate the generalization
to different components.
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i.) Generalization to Different Tube Voltages

In contrast to clinical CT that uses a few predefined tube voltages, typically between
70 kV and 150 kV, industrial CT uses a wider range of tube voltages. Therefore, it is
desirable that a scatter estimation approach does not need to be optimized for every
tube voltage separately. This issue was investigated using simulations of compressor
wheels (see figure 5.2) at different tube voltages, namely 100 kV, 150 kV, 200 kV, 250 kV,
300 kV, 350 kV, and 400 kV. The training data were generated according to equation 5.7
using the models T1-T6 while the scatter estimation was tested on data of the models
V1 and V2. For each prior model and each tube voltage, simulations were performed
using different scaling, different displacements and different tilt angles of the model.
The corresponding simulation parameters are summarized in table 5.1. For each of the
three mappings (Mep, My, Mpep) given above, DSE was trained nine times: for any
of the seven tube voltages separately, for 100 kV and 400 kV data, and for all data
together. To evaluate the generalization, any of the nine DSE networks was applied to
the test data of each tube voltage. The KSE approach was optimized and tested in a
similar way. As stated above, HSE was optimized and applied for the test data only.

Table 5.1: Parameters of the simulation study on the generalization of the scatter

estimation approaches with respect to different tube voltages.

Sample Training Testing

Models (see figure 5.2) T1-T6 V1, V2
Source-to-isocenter distance 375 mm 375 mm
Source-to-detector distance 1000 mm 1000 mm

View angle 0° — 360°, Aa = 10° 0° - 360°, Aa = 10°
Detector elements 1024 x 1024 1024 x 1024

Detector pixel size
Tube voltage

Prefilter

Detector material
Photons per pixel
Object scaling

Object z-displacement
Object tilt angle
Object material
Object density

Data augmentation
Samples

0.4 mm x 0.4 mm

100 kV — 400 kV,

AV =50 kV

1 mm Sn

1 mm Csl

10k

0.9, 1.0, 1.1

—20 mm, 0 mm, 20 mm
0°, 18°, 72°

Al

2.7 g/cm?

Horizontal flipping
6Xx36x3x3x3x2 = 11664
for every tube voltage

0.4 mm x 0.4 mm

100 kV — 400 kV,

AV =50 kV

1 mm Sn

1 mm Csl

10k

0.9, 1.0, 1.1

—20 mm, 0 mm, 20 mm
36°, 54°

Al

2.7 g/cm?

Horizontal flipping
2x36x3x3x2x2 = 2592
for every tube voltage
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ii.) Generalization to Different Noise Levels

Depending on the requirements on image statistics, resolution and scan time, CT
acquisitions are conducted with different tube currents or different integration times,
respectively. The number of photons being detected scales linearly with these two
quantities. Thus, different tube currents or integration times lead to different noise
levels with the standard deviation being proportional to their square root. To investigate
the generalization of DSE and the two reference approaches to different noise levels,
simulations of the compressor wheels shown in figure 5.2 were performed. Similar to i.)
different models and different simulation parameters were used for training and testing.
However, in contrast to the previous study, the tube voltage was set to a fixed value of
250 kV but the noise level was varied by simulating different numbers of photons per
detector pixel (0.5k, 1k, 2k, 5k, 10k, 20k, 50k). A summary of all simulation parameters
can be found in table 5.2. Again DSE and KSE were optimized once for each noise level
separately, once for data that were simulated with 500 and 50000 photons per pixel,
and once using all noise levels together. Subsequently, each DSE network and each KSE
parameter set was applied to any noise level’s testing data set.

Table 5.2: Parameters of the simulation study on the generalization of the scatter

estimation approaches with respect to different noise levels.

Sample Training Testing

Models (see figure 5.2) T1-T6 V1, V2
Source-to-isocenter distance 375 mm 375 mm
Source-to-detector distance 1000 mm 1000 mm

View angle 0° - 360°, Aa = 10° 0° - 360°, Aa = 10°
Detector elements 1024 x 1024 1024 x 1024
Detector pixel size 0.4 mm x 0.4 mm 0.4 mm x 0.4 mm
Tube voltage 250 kV 250 kV

Prefilter 1 mm Sn 1 mm Sn

Detector material 1 mm CsI 1 mm Csl

Photons per pixel

Object scaling

Object z-displacement
Object tilt angle
Object material
Object density

Data augmentation
Samples

0.5k, 1k, 2k, 5k, 10k, 20k,
50k

0.9, 1.0, 1.1

—20 mm, 0 mm, 20 mm
0°, 18°, 72°

Al

2.7 g/em?®

Horizontal flipping
6x36x3x3x3x2 = 11664
for every noise level

0.5k, 1k, 2k, 5k, 10k, 20k,
50k

0.9,1.0,1.1

—20 mm, 0 mm, 20 mm
36°, 54°

Al

2.7 g/cm?

Horizontal flipping
2x36x3x3x2x2 = 2592
for every noise level
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iii.) Generalization to Different Materials

Typically, industrial CT systems are designed to allow for the measurement of various
objects differing in size, shape and material. Therefore, scatter estimation approaches
should be able to handle different materials without the need for a material specific
calibration. This is especially important as the exact material composition is not always
known to the operator of the CT system (e.g. measurement service providers). To
investigate this issue, simulations of the compressor wheels shown in figure 5.2 were
performed assuming different object materials and different densities, namely: water
(p1 = 1 g/cm?, po = 1.5 g/cm3,), aluminum (p; = 2.7 g/cm?, py = 4.0 g/cm?)), titan
(p1 = 4.5 g/cm3, ps = 6.7 g/cm3,) and iron (p; = 7.8 g/cm?3). A list of all simulation
parameters is given in table 5.3. Similar to the previous sections DSE and KSE were
optimized once using the training data set of each material separately, once using
training data of HoO (p; = 1 g/cm?) and iron (p; = 7.8 g/cm?), and once using all
training data together.

Table 5.3: Parameters of the simulation study on the generalization of the scatter

estimation approaches with respect to different object materials.

Sample Training Testing

Models (see figure 5.2) T1-T6 V1, V2
Source-to-isocenter distance 375 mm 375 mm
Source-to-detector distance 1000 mm 1000 mm

View angle 0° — 360°, Aa = 10° 0° - 360°, Ao = 10°
Detector elements 1024 x 1024 1024 x 1024
Detector pixel size 0.4 mm x 0.4 mm 0.4 mm x 0.4 mm
Tube voltage 250 kV 250 kV

Prefilter 1 mm Sn 1 mm Sn

Detector material 1 mm Csl 1 mm CsI

Photons per pixel 10k 10k

Object scaling 0.9,1.0,1.1 0.9,1.0,1.1

Object z-displacement —20 mm, 0 mm, 20 mm —20 mm, 0 mm, 20 mm
Object tilt angle 0°, 18°, 72° 36°, 54°

Object material H>0, Al, Ti, Fe H,0, Al, Ti, Fe

Object density

Data augmentation
Samples

H,0: 1.0 g/cm?, 1.5 g/cm?,

Al: 2.7 g/em?, 4.0 g/cm?,
Ti: 4.5 g/cm?®, 6.7 g/cm3,
Fe: 7.8 g/cm?

Horizontal flipping
6Xx36x3x3x3x2 = 11664

for every material

H,0: 1.0 g/cm?; 1.5 g/cm?,
2.7 g/cm?, 4.0 g/cm?,
4.5 g/em?, 6.7 g/cm?,
Fe: 7.8 g/cm?
Horizontal flipping
2x36x3x3x2x2 = 2592

for every material
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iv.) Generalization to Different Magnifications

As depicted in figure 3.1, most industrial CT systems are table-top CBCT systems that
place the sample on a rotary table and keep source and detector fixed. Several vendors
mount the rotary table on a linear axis which can be moved in source-detector direction.
By doing so, the magnification m, that is defined as

source-to-detector distance
m = . . , (5.8)
source-to-isocenter distance

can be changed. Accordingly, the change of the magnification also leads to a change of
the FOM and the effective pixel size in the isocenter, or the resolution, respectively.

To investigate the performance of DSE as well as the reference approaches to estimate
scatter for varying magnifications, simulations of the compressor wheels (figure 5.2)
were performed. Different magnifications were realized using a fixed source-to-detector
distance of 1000 mm but different source-to-isocenter distances of 125 mm, 250 mm,
375 mm 500 mm, and 625 mm. Since practical applications usually measure components
with the maximum spatial resolution i.e. such that their x-ray projection covers (almost)
the complete detector, the size of the compressor wheel is scaled to meet this criterion.
The corresponding scaling factor -~y is calculated as:

source-to-isocenter distance

_ 5.9
i 375 mm ’ (5.9)

with 375 mm being the reference source-isocenter distance as it is used by the other
experiments.

Since that scaling leads to an increase of the intersection lengths, there are higher
projection values for simulations that have been performed with lower magnification.
However, this effect can be reverted by scaling the object’s density p by the reciprocal of
v (recall that the attenuation of an x-ray of energy E traversing the distance [ through
an object with mass attenuation coefficient &f) is given by exp(—% -p-1)). In
that case, the primary intensity is distributed equally for any magnification. Thus,
projections only differ by their respective scatter distributions which increase with
decreasing isocenter-detector distances. To investigate whether the scatter estimation
approaches can handle this (rather theoretical) scenario, a second simulation study was
performed that scales the object as well as the density of the object. The corresponding
simulation parameters for both experiments are summarized in table 5.4. To evaluate
the generalization of DSE and KSE, they were optimized once using the training data
of every setting separately, once using the training data that have been simulated with
a source-isocenter distance of 125 mm and 625 mm, and once using all data together.
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Table 5.4: Parameters of the simulation study on the generalization of the scatter
estimation approaches with respect to different magnifications. Note that
the scaling factor «y is chosen according to equation (5.9).

Sample Training Testing

Models (see figure 5.2) T1-T6 V1, V2

Source-to-isocenter distance 125 mm, 250 mm, 375 mm, 125 mm, 250 mm, 375 mm,
500 mm, 625 mm 500 mm, 625 mm

Source-to-detector distance 1000 mm 1000 mm

View angle 0° — 360°, Aa = 10° 0° — 360°, Aa = 10°

Detector elements 1024 x 1024 1024 x 1024

Detector pixel size 0.4 mm x 0.4 mm 0.4 mm x 0.4 mm

Tube voltage 250 kV 250 kV

Prefilter 1 mm Sn 1 mm Sn

Detector material 1 mm Csl 1 mm Csl

Photons per pixel 10k 10k

Object scaling ~- (0.9, 1.0, 1.1) ~-(0.9, 1.0, 1.1)

Object z-displacement —20 mm, 0 mm, 20 mm —20 mm, 0 mm, 20 mm

Object tilt angle 0°, 18°, 72° 36°, 54°

Object material Al Al

Object density y71 2.7 g/em? v~ 2.7 g/em?

Data augmentation Horizontal flipping Horizontal flipping

Samples 6x36x3x3x3x2 = 11664 2x36x3x3x2x2 = 2592
for every magnification for every magnification

v.) Generalization to Different Components

There is broad spectrum of components that can potentially be tested using x-ray
computed tomography. Therefore, it is desirable to have a scatter estimation approach
that shows similar performance for different components without the need for dedicated
components-specific optimization. To investigate the ability of DSE, KSE and HSE
to generalize to different components, simulations of six components (see figure 5.3)
that differ in size, shape and material have been performed. For each component a
training data set and a testing data set was simulated. To make sure that the training
data does not resemble the testing data, it was generated using different tube voltages,
different tilt angles of the component and different scaling factors. A complete list of all
simulation parameters can be found in table 5.5. The optimization and testing of DSE
and KSE is similar to what is described in the previous sections. For each component
a network is trained or a parameter set is calculated, respectively, by using only the
training data of that particular component. Additionally, one optimization is performed
using the training data of the cassette (TV4) and the profile (TV5) and one that uses
all available training data.
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5.2 Material and Methods

Table 5.5: Parameters of the simulation study on the generalization of the scatter
estimation approaches with respect to different components. Note that the
scaling factor ~ is chosen according to equation (5.9).

Sample Training Testing

Models (see figure 5.3) TV1-TV6 TV1-TV6
Source-to-isocenter distance 250 mm, 375 mm, 500 mm 250 mm, 375 mm, 500 mm
Source-to-detector distance 1000 mm 1000 mm

View angle 0° - 360°, Aa = 10° 0° - 360°, Aa = 10°
Detector elements 1024 x 1024 1024 x 1024

Detector pixel size
Tube voltage

Prefilter

Detector material
Photons per pixel
Object scaling

Object z-displacement
Object tilt angle
Object material

Object density

Data augmentation
Samples

0.4 mm x 0.4 mm

150 kV, 200 kV, 300 kV

1 mm Sn

1 mm CsI

10k

~v-{09, 1.1}

—20 mm, 0 mm, 20 mm
0°, 18°, 72°

Al (TV2, TV3, TV5),

Ti (TV1),

Fe (TV4, TV6)

2.7 g/cm?® (TV2,TV3,TV5)
4.5 g/em? (TV1)

7.8 g/cm? (TV4, TV6)
Horizontal flipping
3x36x3x2x3x6 = 11664
for every component

0.4 mm x 0.4 mm

250 kV, 350 kV

1 mm Sn

1 mm CsI

10k

~v- 1.0

—20 mm, 0 mm, 20 mm
36°, 54°

Al (TV2, TV3, TV5),
Ti (TV1),

Fe (TV4, TV6)

2.7 g/cm? (TV2,TV3,TV5)
4.5 g/em? (TV1)

7.8 g/cm? (TV4, TV6)
Horizontal flipping
3x36X2x3x2x2 = 2592
for every component

5.2.4 Measured Data

To test the application of DSE to real data, measurements of an aluminum profile were
performed at our DKFZ table-top CT system which is equipped with a Varian 4030 flat
detector and a 110 kV Hamamatsu micro-focus x-ray source (see figure 5.4). To train
the DSE network, representative training data needs to be generated. Basically, there
are different strategies that can be used to do so. Probably the most accurate way is
to derive the training data from reference measurements, e.g. measurements with and
without anti-scatter grid or with and without collimation. However, practically it is
difficult to acquire a huge amount of data following this strategy. Therefore, training
data were generated using CT simulations based on the models derived in chapter 3.
Here, the simulations were designed to resemble the measurement data in terms of the
acquisition geometry and the acquisition conditions. Primary radiation was simulated
analytically including the source and detector models described in section 3.1.2 and
section 3.1.5, respectively. The effect of the focal spot distribution including off-focal
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DKFZ table-top CT

Figure 5.4: DKFZ table-top setup to test the application of DSE to measured data (left)
and the corresponding test sample (right).

radiation was modeled using the convolution-based approach introduced in section 3.1.4,
while the distribution itself was derived from an edge measurement. X-ray scattering
was simulated using the MC simulation described in section 3.1.3.

All simulations were based on the prior models that have been used for the simulation
study (see figure 5.3). However, since our x-ray tube can only be operated at a maximum
voltage of 110 kV, it is not able to penetrate titanium or iron appropriately. Therefore,
the material of all prior models was set to aluminum. A complete list of all simulation
and measurement parameters is given in table 5.6.

Table 5.6: Parameters for the simulated training data set and the measurement.

Training Measurement
Models (see figure 5.3) TV1-TV6 -
Source-to-isocenter distance 100 mm, 110 mm, 120 mm 110 mm
Source-to-detector distance 580 mm 580 mm
View angle 0° — 360°, Aa = 10° 0° — 360°, Aa = 0.5°
Detector elements T68x 768 768 <768
Detector pixel size 0.388 mm x0.388 mm 0.388 mmx0.388 mm
Tube voltage 100 kV, 110 kV, 120 kV 110 kV
Prefilter 1.0 mm, 2.0 mm Cu 2.0 mm Cu
Detector material 1 mm Csl 1 mm Csl
Photons per pixel 10k -
Object scaling 1.0 -
Object z-displacement 0 mm -
Object tilt angle 0°, 30°, 60°, 90° 0°
Object material Al Al
Object density 2.7 g/cm? 2.7 g/cm?
Samples 15552 720
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5.3 Results

Given the primary and the scatter simulation, training samples were calculated
according to equation (5.7), followed by a 3x3 downsampling to as size of 256x256.
Subsequently, KSE and DSE were optimized as described in section 5.2.1 and 5.2.2,
by minimizing the error between the scatter prediction and the MC simulation. The
parameters of HSE, were optimized using a coarse MC simulation based on an initial
reconstruction. Since there is no scatter ground truth for measured data, a slit scan
acquisition with a narrow collimation was performed as a reference.

5.3 Results

5.3.1 Simulation Study
i.) Generalization to Different Tube Voltages

The generalization of the DSE as well as the two reference approaches with respect to
varying tube voltages was evaluated as described in section 5.2.3. Qualitative results of
the corresponding scatter estimates for an exemplary projection are shown in figure 5.5.
Quantitative results on the generalization of the three scatter estimation approaches
including the three mappings Mep, My, and Me, to be learned by the DSE network
are summarized in table 5.7.

In general, it can can be observed that the accuracy of any scatter estimation approach
(except for a few KSE cases) is reduced if it is applied to estimate scatter for a tube
voltage that was not included in the training data set. However, compared to the
variation of other parameters (see following sections) the reduction is rather small.
Here, the accuracy decreases by 1.6 % / 100 kV (KSE), 4.4 % / 100 kV (DSE, M),
0.9 % / 100 kV (DSE, M) and 1.1 % / 100 kV (DSE, Myc,) on average (note that
these are absolute measures in terms of percentage points). However, table 5.7 shows
that there is no need to train for each tube voltage separately as training for all tube
voltages does not lead to a major decrease of accuracy but applies to all tube voltages
in a similar way. Even the training on only two tube voltages (100 kV and 400 kV)
leads to a high accuracy for any of the seven tube voltages.

Comparing the accuracy among the different scatter estimation approaches, KSE
shows the poorest performance, as expected. In any case, the MAPE between the
ground truth and the scatter estimate is larger than 12 %. Using a distinct parameter
set for every projection to be processed, like HSE does, improves the accuracy to a
MAPE between 5.0 % (400 kV) and 6.0 % (100 kV). DSE clearly outperforms the
reference approaches if it is trained to learn a mapping based on projection data (M)
or “pep” data (Mpep). Here, a training on all available training data yields a MAPE
between 1.2 % (400 kV) and 1.5 % (100 kV) for the M, mapping. Similar accuracy
is achieved for the Myc, mapping with a MAPE between 1.5 % (400 kV) and 1.6 %
(100 kV). In contrast, training DSE to learn M., mapping leads to scatter estimates
with a significantly lower accuracy. Here, the MAPE is between 7.5 % (250 kV) and
8.0 % (400 kV).
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Pep image Scatter GT (KSE-GT)/ GT (HSE-GT)/GT (DSE-GT) /GT

S SN

100 kV

150 kv

200 kv

250 kv

300 kv

350 kv

400 kv

C=02,W=04 C=0.007,W=0.014 C=0%,W=50% C=0%,W=50% C=0%,W=50%

Figure 5.5: Percentage error of KSE, HSE and DSE (mapping Mp.p) scatter estimates
with respect to the MC ground truth (GT) for different tube voltages. KSE
and DSE were optimized using all available training data (100 kV to 400 kV).
HSE was optimized directly for the test data.
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Table 5.7: Mean absolute percentage error of KSE, HSE and DSE scatter estimates for
different tube voltages.

Testing

100 kV 150 kV 200 kV 250 kV 300 kV 350 kV 400 kV
Training
KSE
100 kV 12.9 16.4 18.1 19.3 20.2 20.9 21.6
150 kV 13.0 15.4 16.8 17.8 18.4 19.0 19.5
200 kV 13.4 14.8 15.7 16.2 16.6 17.0 17.3
250 kV 14.7 14.9 15.1 15.3 15.5 15.7 15.9
300 kV 16.2 15.3 15.0 14.9 14.8 14.8 14.9
350 kV 16.7 15.5 15.0 14.7 14.6 14.5 14.6
400 kV 19.5 16.9 15.5 14.7 14.2 13.9 13.7
100 kV & 400 kV 134 14.7 15.6 16.1 16.5 16.8 17.2
All tube voltages  13.9 14.8 15.3 15.7 16.0 16.3 16.6
HSE
100 kV 6.0 5.5 5.3 5.2 5.2 5.1 5.0
DSE7 Mep i e Psim SMC
100 kV 7.5 9.2 11.6 13.7 15.4 16.7 18.0
150 kV 12.2 7.0 7.7 9.3 10.8 12.0 13.3
200 kV 16.4 8.6 6.7 7.1 8.0 8.9 10.0
250 kV 21.4 10.9 6.8 5.8 6.2 7.0 8.0
300 kV 23.3 12.9 8.3 6.3 5.9 6.1 6.7
350 kV 27.1 15.2 10.0 7.5 6.6 6.5 6.8
400 kV 31.5 18.7 12.7 9.4 7.6 6.7 6.2
100 kV & 400 kV 7.1 9.8 10.3 10.0 9.6 9.3 9.0
All tube voltages 7.8 7.7 7.6 7.5 7.6 7.8 8.0
DSEv Mp  Psim — SMC
100 kV 1.6 2.0 2.4 2.7 3.2 3.6 4.2
150 kV 2.2 1.3 1.7 2.3 2.9 3.3 3.7
200 kV 2.6 1.7 1.2 1.5 1.9 2.3 2.7
250 kV 4.3 2.9 1.7 1.2 1.5 1.9 2.4
300 kV 4.0 3.0 2.2 1.7 1.4 1.5 1.8
350 kV 4.5 3.6 2.6 1.8 1.4 1.2 14
400 kV 3.8 3.3 2.6 2.0 1.6 1.4 1.3
100 kV & 400 kV 1.9 2.9 3.6 2.9 2.1 1.6 1.4
All tube voltages 1.5 1.4 1.4 1.3 1.3 1.3 1.2
DSE, Mpep * Psim - e Psim —, Smc
100 kV 1.6 2.5 3.0 3.5 3.9 4.4 4.8
150 kV 2.4 1.3 1.8 2.5 3.0 3.4 3.8
200 kV 2.6 1.9 1.5 1.6 1.8 2.2 2.5
250 kV 4.0 2.8 1.7 1.1 1.4 1.8 2.2
300 kV 4.1 3.2 2.2 1.4 1.2 1.4 1.7
350 kV 5.0 3.8 2.7 1.9 1.4 1.2 1.3
400 kV 4.9 3.9 3.0 2.3 1.7 1.4 1.2
100 kV & 400 kV 1.6 2.1 2.4 2.0 1.6 1.4 1.3
All tube voltages 1.6 1.5 1.5 1.5 1.5 1.5 1.5

115



5 Real-Time Scatter Estimation using a Deep Convolutional Neural Network

ii.) Generalization to Different Noise Levels

The generalization to different noise levels was investigated as described in section
5.2.3 by simulating different photon numbers per detector pixel (0.5k to 50k). The
corresponding results in terms of the MAPE between the scatter estimates of the testing
data set and the MC ground truth are summarized in table 5.8 (note that qualitative
results are not shown here as they are almost equal to the fourth row of figure 5.5).

It can be observed, that the accuracy of KSE with a MAPE of 15.3 % and the accuracy
of HSE with a MAPE of 5.2 % is independent of the noise level. This is probably a result
of large receptive field of the convolution kernel that is used to estimate scattering.

Considering DSE the behavior for varying noise levels highly depends on the mapping
to be learned by the neural network. The M, mapping yields a MAPE of 6.0 %=0.1 %,
irrespective of the noise level it has been trained on. Training DSE to learn the M,
mapping or the M., mapping, in contrast, shows a strong dependence on the noise level.
While networks that have been trained on a high noise level still show a considerable
performance when they are applied to low noise data, the MAPE increases significantly
if networks trained on low noise data are applied to high noise data. An exemplary case
that demonstrates this behavior is shown in figure 5.6. While the result of the M,
mapping is not affected by the high noise level, both of the mappings M, and Mpe,
lead to a noise-related texture outside the object as well as an overestimation of scatter
inside the object.

However, DSE generalizes well to different noise levels once low and high noise levels
are included within the training data set. Training on data that have been simulated
with 0.5k photons per pixel and 50k photons per pixel, yields scatter estimates with
MAPE lower than 3.2 % (Mp) or 3.3 % (Mpep), respectively, for any other noise level.
Similar to the variation of tube voltage in the previous section, training on data of all
noise levels can further improve the accuracy.

Scatter GT DSE estimate, M, DSE estimate, M, DSE estimate, M,

Figure 5.6: Ground truth (GT) and DSE scatter estimates for high noise data (0.5k
photons per pixel) using a network that has been trained for low noise data
(50k photons per pixel). The three last images show the results for the three
different DSE mappings that have been investigated.
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Table 5.8: Mean absolute percentage error of KSE, HSE and DSE scatter estimates for
different noise levels or number of photons per pixel, respectively.

Testing

0.5k 1k 2k 5k 10k 20k 50k
Training
KSE
0.5k 15.3 15.3 15.3 15.3 15.3 15.3 15.3
1k 15.3 15.3 15.3 15.3 15.3 15.3 15.3
2k 15.3 15.3 15.3 15.3 15.3 15.3 15.3
5k 15.3 15.3 15.3 15.3 15.3 15.3 15.3
10k 15.3 15.3 15.3 15.3 15.3 15.3 15.3
20k 15.3 15.3 15.3 15.3 15.3 15.3 15.3
50k 15.3 15.3 15.3 15.3 15.3 15.3 15.3
0.5k & 50k 15.3 15.3 15.3 15.3 15.3 15.3 15.3
All noise levels 15.3 15.3 15.3 15.3 15.3 15.3 15.3
HSE
0.5k 5.2 5.2 5.2 5.2 5.2 5.2 5.2
DSE7 Mep i e Psim SMC
0.5k 6.0 6.0 6.0 6.0 6.0 6.0 6.0
1k 6.0 6.0 6.0 6.0 6.0 6.0 6.0
2k 6.1 6.1 6.1 6.1 6.1 6.1 6.1
5k 6.0 6.0 6.0 6.0 6.0 6.0 6.0
10k 6.0 6.0 6.0 6.0 6.0 6.0 6.0
20k 6.1 6.1 6.1 6.1 6.1 6.1 6.1
50k 6.0 6.0 6.0 6.0 6.0 6.0 6.0
0.5k & 50k 6.1 6.1 6.1 6.1 6.1 6.1 6.1
All noise levels 5.9 5.9 5.9 5.9 5.9 5.9 5.9
DSEv Mp  Psim — SMC
0.5k 2.8 3.2 3.7 4.0 4.1 4.1 4.1
1k 4.2 2.3 2.6 3.1 3.4 3.5 3.6
2k 6.1 6.1 6.1 6.0 6.0 6.0 6.0
5k 38.5 13.0 2.6 1.5 1.5 1.6 1.7
10k 52.5 26.5 5.4 1.5 1.2 1.2 1.2
20k 72.1 38.1 12.1 1.8 1.2 1.0 1.0
50k 87.2 55.6 29.0 5.7 1.5 1.0 0.9
0.5k & 50k 2.8 3.1 3.2 2.2 1.6 1.3 1.1
All noise levels 3.0 2.4 2.0 1.7 1.5 1.4 1.3
DSE, Mpep * Psim - e Psim —, Smc
0.5k 2.8 3.8 4.8 5.4 5.7 5.8 5.8
1k 4.1 2.3 2.5 3.1 3.4 3.5 3.6
2k 7.5 3.0 1.9 2.0 2.2 2.3 2.4
5k 15.6 6.0 2.4 1.4 1.4 1.5 1.6
10k 23.3 10.1 3.7 1.5 1.2 1.2 1.2
20k 35.5 17.0 6.9 1.9 1.2 1.0 0.9
50k 59.1 27.7 12.0 3.5 1.4 1.0 0.8
0.5k & 50k 2.8 3.1 3.3 2.4 1.5 1.2 1.1
All noise levels 2.8 2.4 2.0 1.6 1.4 1.3 1.2
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iii.) Generalization to Different Materials

The generalization to different materials was investigated for simulated projections of
compressor wheels that were assigned different materials (H2O, Al, Ti, Fe) and different
densities. Qualitative results showing the deviation of the scatter estimates from the
MC ground truth are shown in figure 5.7 for an exemplary projection. Quantitative
results in terms of the MAPE between the scatter estimates of the testing data set and
the ground truth are summarized in table 5.9.

As to be expected, any scatter estimation approach shows a decreased performance
if it is applied to a material that was not present in the training data set. Besides,
it can be observed that, compared to a variation of the object material, the scatter
estimation approaches are more robust against a variation of the density. In this study
H>0O, Al, and Ti were simulated with two different densities that differ by a factor
1.5. Scatter estimation approaches that were trained on only one of them, also show a
good performance when they are applied to test data of the other density. Considering
figure 5.7, this might be explained by the fact the scatter distributions for the two
different densities but the same material are very similar. Furthermore, KSE, HSE and
DSE perform worse the more absorbing the material becomes. In that case the scatter
distribution is less homogeneous which might be more difficult to learn.

Comparing the different scatter estimation approaches in terms of accuracy, KSE
again shows the poorest performance. Using a parameter set that has been derived
by an optimization that is based on all available training data, the MAPE is between
15.8 % (Al p = 2.7 g/cm?) and 29.6 % (Fe, p = 7.8 g/cm?). HSE improves the accuracy
ans yields scatter estimates with a MAPE between 3.6 % (H20, p = 1.0 g/cm?) and
9.5 % (Fe, p = 7.8 g/cm?®). DSE trained on all data to learn the mapping M, shows a
similar performance with a MAPE between 3.9 % (H0, p = 1.0 g/cm?) and 9.5 % (Al,
p = 4.0 g/cm?3). The highest accuracy can be achieved by training the DSE network to
learn the mapping M, or the mapping Mpe,. The former yields a MAPE on the test
data set between 1.2 % (H20, p = 1.0 g/cm?®) and 1.9 % (Fe, p = 7.8 g/cm?), while
the latter yields a MAPE between 1.2 % (H0, p = 1.0 g/cm?®) and 2.0 % (Fe, p =
7.8 g/cm?).

iv.) Generalization to Different Magnifications

The generalization of KSE, HSE, and DSE was investigated as described in section 5.2.3
by simulating compressor wheels with different source-to-isocenter distances (125 mm to
625 mm). Keeping the source-to-detector distance fixed, leads to different magnifications,
and therefore, also a different FOM. Since metrological CT measurements are usually
performed such that the object covers almost the complete FOM, the size of the
compressor wheels was changed according to equation (5.9). A second experiment was
performed that not only changes the size of the object but also its density with the inverse
of equation (5.9). By doing so, projections simulated with different magnifications show
the same primary intensity distribution but differ only by their scatter distribution.
Qualitative results for an exemplary projection are shown in figure 5.8 and figure 5.9,
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Pep image Scatter GT (KSE-GT)/GT  (HSE-GT)/GT  (DSE-GT)/GT

Ti, 6.7 g/cm3 Ti, 4.5 g/cm3 Al,4.0g/cm3 Al, 2.7 g/cm3 H,0, 1.5 g/cm?3 H,0, 1.0g/cm?3

Ti, 7.8 g/cm3

- >

C=0.2,W=04 C=0.007,W=0.014 C=0%,W=50% C=0%,W=50% C=0%,W=50%

Figure 5.7: Percentage error of KSE, HSE and DSE (mapping Mycp) scatter estimates
with respect to the MC ground truth (GT) for different materials. KSE and
DSE were optimized using a training data set containing all materials. HSE
was optimized directly for the test data.
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Table 5.9: Mean absolute percentage error of KSE, HSE and DSE scatter estimates for
different materials.

Testing

H20, p1 H20, po Al py Al po Ti, p1 Ti, po Fe, p1
Training
KSE
H>0, p1 =1.0 g/cm3 9.3 9.8 18.5 20.9 18.7 18.6 30.0
Hy0, pp = 1.5 g/cm® 10.4 9.1 16.1 18.3 21.0 21.0 34.6

Al pp =27 g/cm3 32.8 28.3 15.3 15.3 19.7 22.0 40.1

Al po = 4.0 g/cm®  33.5 28.5 15.4 14.4 23.6 25.8 45.7
Ti, py = 4.5 g/cm? 314 29.0 19.4 20.8 15.3 16.5 27.0
Ti, p2 = 6.7 g/em®  30.1 27.4 20.0 21.5 14.9 16.2 26.9
Fe, py = 7.8 g/cm®  26.8 26.5 27.9 29.9 19.3 18.5 17.6
H,0 & Fe, p; 18.1 18.2 24.9 27.2 16.6 16.0 17.9
All materials 23.4 20.8 15.8 17.5 15.5 16.4 29.6
HSE

Hz0, p=1.0g/cm?® 3.6 3.9 5.2 6.4 7.6 8.6 9.5
DSE, Mep : e Psim SMC

Hs0, p = 1.0 g/em?® 4.2 6.4 16.6 19.4 23.1 25.1 45.2
Hs0, po = 1.5g/cm3 4.3 4.6 14.0 16.3 39.8 57.4 107.4
Al py =2.7g/cm?® 17.6 16.3 6.2 11.0 45.9 71.2 127.0
Al pp =4.0g/cm® 19.4 15.7 6.9 6.8 36.0 59.1 110.1
Ti, p; = 4.5 g/cm®  25.6 27.0 22.6 19.8 9.0 16.2 43.4
Ti, pp = 6.7 g/cm3 289 30.5 28.1 25.0 10.4 9.2 24.2
Fe, p = 7.8 g/cm?®  41.9 40.9 40.2 36.6 21.8 17.8 8.4
H50 & Fe, p; 4.9 9.3 20.2 26.0 16.4 14.4 8.7
All materials 3.9 7.0 5.8 9.5 8.3 8.4 8.8
DSE, Mp { Psim — SMC

H0, p =1.0g/cm3 1.5 2.2 10.2 10.1 10.4 9.7 11.9
Hs0, po = 1.5 g/em?® 1.1 1.1 8.7 8.6 11.9 12.6 19.5
Al p; =27g/ecm® 11.3 9.2 1.2 1.9 3.4 4.9 8.3
Al po =4.0g/cm® 11.2 9.1 1.2 1.2 2.9 3.0 5.0
Ti, py = 4.5 g/cm? 124 10.8 2.0 2.2 1.6 2.7 4.9
Ti, p2 = 6.7 g/em® 7.0 71 3.1 2.8 2.2 1.8 2.6
Fe, py = 7.8 g/cm?® 8.1 7.0 5.5 3.7 2.8 2.2 2.1
H,0 & Fe, p; 1.2 1.3 5.0 2.5 2.1 2.0 2.0
All materials 1.2 1.3 1.1 1.3 1.4 1.6 1.9
DSE, Mpep * Psim ° e Psim —; Smc

Hs0, p1 = 1.0 g/cm? 1.4 2.0 10.7 11.5 12.0 11.3 12.0
Hs0, po =1.5g/cm3 1.4 1.3 8.4 8.5 10.7 10.4 11.7
Al py =2.7g/cm?® 122 9.1 1.2 1.6 2.7 3.8 75
Al py = 4.0 g/cm®  10.9 8.9 1.2 1.2 3.1 3.7 6.0
Ti, p; = 4.5 g/cm®  10.6 9.7 1.8 2.1 1.6 2.1 3.3
Ti, pp = 6.7 g/cm3 115 9.4 2.2 2.1 1.9 1.7 2.5
Fe, py = 7.8 g/cm?® 9.6 8.4 3.6 3.1 2.3 1.8 1.9
Hy0 & Fe, p; 1.5 1.6 5.2 3.6 2.4 2.3 2.2
All materials 1.2 1.3 1.2 1.3 1.5 1.6 2.0

120
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respectively. Quantitative results summarizing the MAPE with respect to the MC
ground truth are given in table 5.10 and table 5.11, respectively.

Compared to the variation of the tube voltage, the noise level or the material, the
variation of the magnification has the strongest impact on the amplitude of the scatter
distribution. However, especially for the second experiment, in which the density is
scaled, the input to the scatter estimation approaches is very similar (see e.g. “pep”
image in figure 5.9). Therefore, it is difficult to distinguish between two data sets that
have been acquired with different magnifications. As a result, there are high deviations
once a scatter estimation approach is applied to a magnification that is not included in
the training data set. Here, the performance is worst if a scatter estimation approach
trained on data with a source-to-isocenter distance of 625 mm is applied to testing data
that were simulated with a source-to-isocenter distance of 125 mm. In that case KSE
yields scatter estimates with deviations up to 284.4 %, DSE, M., shows deviations up
to 204.4 %, DSE, M, shows deviations up to 63.0 %, and DSE, M., shows deviations
up to 84.9 %. Since HSE is optimized for the testing data set only, the accuracy is
similar to the other experiments with a MAPE between 3.2 % (fixed density, 125 mm)
and 9.6 % (fixed density, 625 mm).

Furthermore, it can be observed that KSE seems to have too few degrees of freedom
to account for different magnifications appropriately. Even if it is trained on all available
data, there are high deviations ranging from 16 % (fixed density, 500 mm) to 118.8 %
(fixed density, 125 mm). DSE trained to learn the M, or the M., mapping, in contrast,
already leads to reasonable results if it is trained on data that were simulated with a
source-isocenter distance of 125 mm and 625 mm. Here, the Me, mapping shows the
smallest deviations with a MAPE less than 6.1 %. Similar to the other experiments of
the simulation study, a further improvement can be achieved by incorporating data of
all magnifications in the training data set. In that case the M, and the M, mapping
lead to scatter estimates that deviate less than 1.6 % from the ground truth.

Interestingly, a comparison of the two experiments shows only minor differences
regarding the accuracy of the scatter estimates. This suggests that the DSE neural
network is able to extract meaningful features even if there is an equal distribution of
the primary intensity but only a slightly different scatter distribution.
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Pep image Scatter GT (KSE-GT)/GT (HSE-GT)/GT (DSE-GT) /GT

500 mm 375 mm 250 mm 125 mm

625 mm

C=02,W=04 C=0.010,W=0.025 C=0%,W=50% C=0%,W=50% C=0%,W=50%

Figure 5.8: Percentage error of KSE, HSE and DSE (mapping Mpep) scatter estimates
for different magnifications. Here the size of the compressor wheel was
changed according to equation (5.9) while the density was set to a fixed
value of 2.7 g/ecm®. KSE and DSE were optimized using all available training
data (125 mm to 625 mm). HSE was optimized directly for the test data.
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Table 5.10: Mean absolute percentage error of KSE, HSE and DSE scatter estimates for
different magnifications but fixed densities. The labels refer to the source-
to-isocenter distance while the source-to-detector distance is set to a fixed
value of 1000 mm. Given these measures, the magnification is calculated
according to equation (5.8).

Testing

125 mm 250 mm 375 mm 500 mm 625 mm
Training
KSE
125 mm 16.6 33.1 49.5 64.1 76.1
250 mm 39.0 18.6 36.0 53.6 69.9
375 mm 72.7 34.2 15.3 30.9 53.0
500 mm 145.0 86.6 41.2 14.4 34.7
625 mm 284.4 185.1 113.7 52.7 14.8
125 mm & 625 mm 189.3 127.9 71.3 26.1 22.5
All magnifications 118.8 70.5 31.5 16.0 40.1
HSE
125 mm 3.2 3.8 5.2 7.1 9.6
DSE, M.y, : e Psim 3 Sy
125 mm 3.3 23.8 40.6 55.2 68.0
250 mm 24.3 4.1 19.3 36.8 54.0
375 mm 57.8 25.3 6.1 21.1 42.0
500 mm 106.0 62.9 31.1 8.3 27.1
625 mm 195.1 122.1 83.0 41.8 10.8
125 mm & 625 mm 2.9 94.5 85.5 42.8 11.2
All magnifications 3.6 7.6 16.4 22.0 17.0
]:)SE7 Mp ! Psim — Smc
125 mm 2.2 10.4 20.4 33.5 48.1
250 mm 6.6 1.4 3.3 8.4 19.2
375 mm 14.4 2.9 1.2 4.4 16.1
500 mm 34.1 6.3 2.6 1.0 4.3
625 mm 63.0 13.6 5.8 2.9 1.0
125 mm & 625 mm 2.2 17.7 10.7 4.4 1.2
All magnifications 1.5 1.3 1.2 1.1 1.1
DSE, Mpep ! Psim * e Psim SMc
125 mm 3.1 21.8 37.1 01.7 63.7
250 mm 4.9 1.2 3.4 7.0 12.0
375 mm 12.9 2.8 1.3 3.7 12.6
500 mm 24.7 6.1 3.0 1.0 5.0
625 mm 84.9 18.4 5.8 2.4 1.0
125 mm & 625 mm 2.4 6.1 5.0 2.1 1.0
All magnifications 1.6 1.3 1.1 1.0 1.0
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Pep image Scatter GT (KSE-GT)/GT (HSE-GT)/GT (DSE-GT) /GT

500 mm 375 mm 250 mm 125 mm

625 mm

C=02,W=04 C=0.010,W=0.025 C=0%,W=50% C=0%,W=50% C=0%,W=50%

Figure 5.9: Percentage error of KSE, HSE and DSE (mapping Mep) scatter estimates for
different magnifications. Here the size of the compressor wheel was changed
for every magnification according to equation (5.9) while the density was
changed according to the inverse of (5.9). KSE and DSE were optimized
using all available training data (125 mm - 625 mm). HSE was optimized
directly for the test data.
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Table 5.11: Mean absolute percentage error of KSE, HSE and DSE scatter estimates
for different magnifications. The object density is scaled according to the
inverse of equation (5.9). The labels refer to the source-isocenter distance
while the source-detector distance is set to a fixed value of 1000 mm. Given
these measures, the magnification is calculated according to equation (5.8).

Testing

125 mm 250 mm 375 mm 500 mm 625 mm
Training
KSE
125 mm 14.8 22.0 38.4 53.2 72.6
250 mm 24.8 15.3 24.8 44.0 65.9
375 mm 54.2 29.8 15.3 29.1 51.1
500 mm 110.7 73.5 37.6 14.8 35.0
625 mm 211.7 157.1 100.0 48.6 14.8
125 mm & 625 mm 92.4 58.2 28.6 16.9 38.5
All magnifications 73.2 43.7 19.2 21.1 44.7
HSE
125 mm 4.3 4.6 5.2 6.2 7.6
DSE, M.y, : e Psim 3 Sy
125 mm 5.1 16.6 34.1 50.9 66.1
250 mm 22.7 5.5 20.5 40.7 59.0
375 mm 55.5 27.9 6.0 24.9 48.1
500 mm 108.7 71.6 35.2 6.8 30.4
625 mm 204.4 150.2 97.0 46.5 7.7
125 mm & 625 mm 4.7 17.6 32.8 30.9 6.0
All magnifications 5.2 3.9 3.7 3.8 5.1
]:)SE7 Mp ! Psim — Smc
125 mm 1.5 3.3 6.7 13.8 284
250 mm 3.9 1.4 3.2 6.8 16.8
375 mm 6.1 3.3 1.2 3.6 12.2
500 mm 12.8 7.4 3.7 1.1 4.3
625 mm 19.9 11.9 6.8 3.5 1.0
125 mm & 625 mm 1.5 3.8 6.3 3.7 1.0
All magnifications 1.5 1.3 1.2 1.1 1.1
DSE, Mpep ! Psim * e Psim SMC
125 mm 1.5 4.2 7.5 13.6 28.3
250 mm 7.7 1.8 5.1 8.6 15.5
375 mm 6.2 3.2 1.3 4.5 16.7
500 mm 9.7 5.7 3.0 1.0 44
625 mm 24.7 12.4 6.4 3.2 1.0
125 mm & 625 mm 14 3.1 3.5 2.9 1.0
All magnifications 14 1.3 1.2 1.1 1.0
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v.) Generalization to Different Components

The generalization of KSE, HSE and DSE to different components was investigated
by performing simulations based on the six CAD models shown in figure 5.3 and the
parameters given in table 5.5. Exemplarily, the accuracy of the three scatter estimation
approaches is shown for a single projection in figure 5.10. The results of the quantitative
evaluation are given in table 5.13.

Similar to the other experiments, it can be observed that a certain scatter estimation
approach trained on data of a single component only, shows a decreased performance
when it is applied to data of any other component that was not included within the
training data set. However, there is a difference between the different components that
seems to be related to their material. A scatter estimation approach that has been
trained on one of the three aluminum components (cylinder head, casting, profile) also
yields reasonable accuracy when it is applied to the other two components without
being trained on them. In that case the average MAPE decreases from 14.5 % to
15.2 % (KSE), 10.0 % to 20.0 % (DSE, Mp), 1.0 % to 5.4 % (DSE, M,), and 1.0 % to
3.1 % (DSE, Mpep). In contrast, the performance is reduced significantly if it is applied
to a component with higher attenuation, i.e. the compressor wheel (titanium), the
bicycle cassette (iron) or the impeller (iron). Here, the average MAPE can be evaluated
as 56.8 % (KSE), 87.4 % (DSE, M,,), 55.6 % (DSE, M), and 28.2 % (DSE, Mpep).
Interestingly, the deviation is much lower if training and testing are performed the
other way round, i.e. training on one of the high attenuation components and testing
on one of the aluminum components. This might be explained by the fact that the
high attenuation components have a wider range of possible projection values. Thus,
a network trained on aluminum components only might fail as it has not seen these
projection values during training.

Considering a training on data of all components, there are similar trends for KSE.
While testing on the aluminum components yields almost the same accuracy compared
to training and testing on only one of them. Here the deviations are between 14.8 %
(profile) and 15.5 % (cylinder head). Higher deviations up to 51.8 % (impeller) can be
observed for the three components with high attenuation. This trend is also visible
for HSE. However, as its parameters are recalibrated for every projection there is a
lower MAPE which is between 2.0 % (profile) and 8.1 % (cassette). A similar MAPE
is achieved using DSE when it is trained to learn the mapping M. In that case it is
between 4.3 % (profile) and 8.1 % (cassette). However, compared to training and testing
on a single component only, the MAPE improves here considerably. This is possibly
due to the higher number of samples that is used for the training when projections of
all components are used. Furthermore, the higher variability of the samples might help
to prevent the network from overfitting. Just as for the other experiments, DSE shows
the best performance if it is trained to learn the mapping M, or the mapping Mpep.
For both cases there is an almost equal performance with a MAPE ranging from 0.8 %
(casting) to 1.4 % (cassette).

To demonstrate the impact of scatter correction on CT images, CT reconstructions
were performed for the six components shown in figure 5.3. The simulation parameters
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were chosen equal to the parameters of the testing data (see table 5.5). The tube
voltage was set to 250 kV and the source-to-isocenter distance as well as the isocenter-
to-detector distance was set to 500 mm. For every CT simulation the scatter correction
was performed as described in section 5.2.3 by subtracting KSE, HSE, and DSE scatter
estimates in intensity domain. The corresponding CT reconstructions are shown in
figure 5.11. A qualitative evaluation of the CT value accuracy in terms of the MAPE
with respect to a noiseless, scatter free reconstruction is given in table 5.12. It can be
observed that all three scatter estimation approaches lead to a significant improvement
of the CT values. Similar to the evaluation in projection domain, the highest accuracy
can be achieved using DSE followed by HSE and KSE. However, considering the MAPE
only, all approaches seem to have similar performance. This is because the MAPE is
rather insensitive to artifacts that might be introduced by an inappropriate scatter
correction. This can clearly be seen for the KSE correction results (figure 5.11, third
column). Here, the overestimation of scatter, especially in regions with high scatter-to-
primary ratio, leads to an overestimation of the attenuation, and therefore, to bright
streaks in the CT images. Being recalibrated for every projection, HSE further improves
image quality but cannot completely account for all scatter artifacts. DSE, in contrast,
leads to CT images that are almost equal to the scatter free ground truth.

Table 5.12: Mean absolute percentage error of CT reconstructions of the testing data set
with respect to a noiseless scatter free reference. Scatter correction has been
performed as described in section 5.2.3 using KSE, HSE and DSE scatter
estimates. It has to be noted that errors of the scatter free reconstruction
are only a result of the noise.

Scatter free No . KSE HSE DSE (Mpep)
correction

Compressor 6.0 18.3 10.2 7.5 6.2
Cylinder

Hzad 5.7 23.2 11.1 7.3 5.8
Casting 3.9 14.0 8.9 6.0 4.2
Cassette 6.1 19.8 9.3 7.0 6.3
Profile 3.7 11.6 6.4 4.9 4.0
Impeller 5.1 20.9 6.3 5.9 5.3
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Pep image Scatter GT (KSE-GT)/ GT (HSE-GT) /GT (DSE-GT) /GT

Compressor

Cylinder head

Profile Cassette

Impeller

C=02,W=04 C=0.015,W=0.020 C=0%,W=50% C=0% W=50% C=0%,W=50%

Figure 5.10: Percentage error of KSE, HSE and DSE (mapping M,ep,) scatter estimates
for different components. KSE and DSE were optimized using a training
data set containing all components. HSE was optimized directly for the
test data.

128



5.3 Results

Table 5.13: Mean absolute percentage error of KSE, HSE and DSE scatter estimates

for different components.

Testing

Sroersr;r gzel:élder Casting Cassette  Profile Impeller
Training
KSE
Compressor 15.4 21.6 20.8 24.3 18.9 22.8
Cylinder Head 53.0 14.6 16.3 79.5 15.1 73.7
Casting 34.2 15.3 15.2 60.6 16.7 63.1
Cassette 17.5 29.9 29.1 17.3 26.9 14.9
Profile 31.5 13.9 14.1 56.7 13.7 59.3
Impeller 18.1 31.2 30.3 17.2 28.2 14.6
Profile & Cassette 26.4 15.7 15.4 47.2 13.9 49.4
All Parts 27.8 15.5 15.4 49.5 14.8 51.8
HSE
Compressor 7.7 5.6 3.5 8.1 2.0 5.6
DSE, Mep : e Psim — S0
Compressor 10.5 27.5 51.0 23.6 40.1 29.2
Cylinder Head 7.7 10.0 17.4 86.3 22.8 54.1
Casting 45.7 17.0 9.5 85.1 14.3 40.3
Cassette 17.2 23.9 37.0 9.4 27.6 26.4
Profile 132.8 29.4 19.0 170.8 10.5 94.2
Impeller 22.8 23.9 314 20.3 39.0 12.6
Profile & Cassette 21.7 16.4 39.3 12.5 11.4 21.7
All Parts 6.5 5.4 4.3 8.1 4.3 6.2
DSE, Mp ! Psim — SMC
Compressor 1.2 8.3 44 4.8 6.9 4.4
Cylinder Head 36.5 1.0 3.3 49.9 5.0 28.2
Casting 20.8 4.6 1.0 24.6 6.0 12.2
Cassette 3.4 6.3 3.9 1.5 3.8 2.1
Profile 158.4 5.7 7.9 128.7 1.0 40.9
Impeller 4.5 8.9 5.9 7.2 6.4 1.2
Profile & Cassette 2.2 3.3 1.8 1.4 0.9 1.8
All Parts 1.2 1.0 0.8 1.4 0.9 1.0
DSE, Mpep : Psim e Psim _ Gy
Compressor 1.3 6.1 4.0 4.3 5.3 3.8
Cylinder Head 28.1 1.0 3.8 38.1 4.9 234
Casting 16.3 2.3 0.9 24.9 2.1 14.3
Cassette 3.0 5.2 3.3 1.4 3.5 1.5
Profile 35.6 3.5 1.9 48.6 1.3 24.9
Impeller 5.3 8.7 5.3 4.8 6.2 1.1
Profile & Cassette 2.1 3.2 1.8 1.5 1.8 1.7
All Parts 1.2 0.9 0.8 1.4 0.9 1.1
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Scatter free (GT)  No correction - GT KSE - GT HSE - GT DSE - GT

Profile Cassette Casting Cylinder head Compressor

Impeller

Bl EEN

C=10.W=05 C=0.0.W=0.5 C=0.0.W=0.5 C=0.0.W=05 C=0.0.W=05

Figure 5.11: Scatter corrected CT reconstructions of simulated data. The simulations
were performed assuming a tube voltage of 250 kV. Scatter was estimated
using KSE, HSE and DSE (mapping Mep) and subtracted in intensity
domain to get a corrected data set. Prior to reconstruction the projections
were precorrected such that they represent intersection lengths. Therefore,
an ideal reconstruction has a CT value equal to 1.
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5.3.2 Measured Data

To evaluate the potential of DSE as well as the reference approaches to estimate scatter
for real data, measurements were performed at our DKFZ table-top CT using the
settings given in table 5.6. Due to the absence of a ground truth scatter distribution, a
slit scan measurement was performed as reference using the same parameters except for
the collimation that was set to about 16 detector rows. Similar to the simulation study,
the scatter estimates were subtracted in intensity domain to derive a corrected data
set. Additionally, a scatter correction using an MC scatter estimate was performed.
Prior to reconstruction an aluminum precorrection was applied that converts projection
values to aluminum-equivalent intersection lengths. The slit scan reconstruction, the
scatter-corrected reconstructions as well as difference images are shown in figure 5.12.

Visually, all scatter estimation approaches are able to reduce the scatter-related
artifacts. Compared to the uncorrected reconstruction, all these images are more
similar to the slit scan reconstruction. However, especially KSE and HSE lead to the
introduction of bright streaks to the CT images. This is caused by an overestimation
of scatter which has also been observed for the simulated data. Compared to KSE
and HSE, DSE shows a better performance and yields CT images that are similar
to the reconstructions that were corrected using an MC scatter estimate. However,
considering the difference images (figure 5.12, bottom), both, the DSE and the MC
corrected reconstructions, show some streaks which indicate an overestimation of scatter.
Potentially, these streaks might also be caused by noise. Since the scatter estimates
only represent the (smooth) expectation of the scatter distribution, the scatter related
noise remains in the projection data after correction. Thus, compared to a slit scan that
does not measure the scatter at all, there is a higher noise level. As this is especially
the case for high intersection lengths, steaks may arise along the corresponding rays.

A quantitative evaluation in terms of the MAPE with respect to the slit scans yields
similar trends. Here the following errors can be measured: 30.0 % (no correction),
15.9 % (KSE), 13.2 % (HSE), 6.0 % (DSE), and 5.8 % (MC). In comparison to the
simulation study the performance of the scatter estimation approaches seems to be
slightly decreased. However, it has to be noted that the slit scan is not completely free
of scatter. Furthermore, there might be other effects such as detector backscatter, for
instance, that have not been modeled in the MC simulation that is used as basis for
KSE, HSE and DSE optimization.
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CT reconstruction

Difference to slit scan

Slit scan No correction KSE

DSE MC

C=10,W=1.0 C=10,W=1.0 C=10,W=1.0

Slit scan No correction KSE

DSE MC

C=0.0,Ww=1.0 C=0.0,Ww=1.0 C=00,W=10

Figure 5.12: Scatter corrected CT reconstructions of measured data. Scatter was esti-
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mated using KSE, HSE, DSE (mapping Myep) as well as a MC simulation.
Prior to reconstruction the projections were precorrected such that they
represent intersection lengths. Therefore, an ideal reconstruction has a CT
value equal to 1.



5.4 Discussion

5.4 Discussion

This study demonstrates the potential of using a DCNN for x-ray scatter estimation in
industrial CT. Compared to existing scatter estimation approaches such as the KSE or
HSE, the proposed neural network based method does not rely on a predefined theoretical
model but learns a suitable model itself given labeled training data. Therefore, it can
potentially derive more complex models based on local features of the acquired projection
images, which are used as input to the network. Once DSE is trained, it provides scatter
estimates in about 10 ms, and thus, enables a real-time scatter correction.

Considering a practical application of a certain scatter estimation approach, it has to
be robust against variations of the acquisition parameters and the acquisition geometry.
Therefore, a simulation study was set up to investigate the generalization of DSE with
respect to different tube voltages, different noise levels, different materials, different
magnifications, and different components.

Here, training DSE on samples of a single parameter realization only, e.g. on one
noise level only, may lead to high deviations when it is tested on a different parameter
set. This holds especially true for high noise levels, different magnifications and different
components. In contrast, a DSE network trained on one tube voltage only, leads to
accurate scatter estimates when it is applied to other tube voltages that were not
represented in the training data set. This is possibly a result of the variability of the
input and the target distributions. These are very similar for different tube voltages,
but differ significantly for e.g. varying magnifications.

In any case, the use of a training data set containing samples with any parameter
realization led to scatter estimates that differ by less than 2 % from the MC ground
truth. Furthermore, this training does not lead to a major loss of accuracy compared
to training and testing on the same parameter realization. Thus, there is no advantage
in having a separately trained network for different scatter estimation tasks, but rather
a single DSE network trained on representative data can be used for that purpose.
Even the training of DSE on samples of two parameter realizations only, led to a good
generalization to any other tested acquisition parameter. In that case, the MAPE
between the ground truth and the DSE estimate did not exceed 6.1 % (at least for the
mapping Mpep). Practically, this suggests that DSE does not need to be trained for any
possible acquisition parameter, but the acquisition parameter space can be sampled on
a coarse grid to generate representative training data.

Considering the accuracy of DSE, the mapping to be learned by the network turned
out to be of particular importance. While training DSE to learn a mapping based on
logarithmic data (M) or “pep” data (Mpep) yields scatter estimates that are almost
equal to the MC ground truth, the intensity based mapping (M.p) performs up to a
magnitude worse. It has to be noted that this discrepancy is not a matter of convergence
on the training data. While the training loss converges for all mappings to a similar
MAPE between 0.5 % and 1.0 %, there is only a difference in terms of the testing loss.
This might be explained by the similarity between the input and the scatter distribution.
In case of intensity data there is a lower correlation between the scatter to be estimated
and the input distribution than for projection and “pep” data. Thus, it might be more
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difficult to learn meaningful features that allow for a good generalization on the test
data set.

Compared to DSE, the conventional scatter estimation approaches, KSE and HSE, lead
to significantly higher errors. Considering all experiments, there is an average MAPE of
27.3 % for KSE and an average MAPE of 5.6 % for HSE. Here, the poor performance
of KSE can be explained by the limits of the underlying model to reproduce MC
simulations as well as to generalize to different acquisition conditions. As demonstrated
by HSE, more sophisticated approaches can improve the performance considerably,
however, at the cost of a higher processing times (= 7 s / projection). To the author’s
best knowledge, there is no conventional approach that is able to combine both, accuracy
and computational performance.

Similar trends have been observed for measured data. While KSE and HSE led to an
overestimation of x-ray scattering, and therefore, introduced streak artifacts to the CT
reconstructions, DSE yields CT images similar to the slit scan reference. Compared
to the simulation study, there seem to be slightly higher deviations. The reason for
that might be twofold: firstly, the slit scan acquisition is not perfectly free of scatter
and secondly, there are potentially other sources of scatter. Since only scatter from
the object was modeled to simulate the training data set, DSE does not account for
scattering from parts of the experimental setup or the backside of the detector, for
instance. However, there is no conceptual restriction of DSE to a training on simulated
data. To account for effects that can hardly be modeled, it can also be trained to
reproduce scatter estimates that have been derived from measurements e.g. using a slit
scan, a primary modulation grid or a beam blocker.

Finally, it has to be noted that DSE is not restricted to industrial CT in particular, but
can be used with any other x-ray imaging modality, even if they are not of tomographic

type.
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Today, x-ray computed tomography (CT) finds a variety of applications in industrial
metrology ranging from dimensional inspection and flaw detection to reverse engineering.
However, the measurement of highly attenuating or multi-material components remains
a major challenge as the corresponding CT reconstructions are often corrupted by CT
artifacts. To overcome this limitation, two novel approaches were presented here: the
simulation-based artifact correction (SBAC) and the deep scatter estimation (DSE).

Simulation-Based Artifact Correction The SBAC represents a very general ap-
proach to correct for various CT artifacts. Given a prior model of the component
to be corrected, it performs an accurate simulation of the CT measurement process,
modeling all physical effects causing artifacts. The difference between this simulation
and an ideal one yields an estimate of the present artifacts, and can be used to correct
the corresponding CT measurement. Thus, the SBAC can, in principle, account for
any artifact that is considered in the simulation. Here, the simulation was restricted
to beam hardening, x-ray scattering, off-focal radiation, partial volume effects and
cone-beam artifacts. Therefore, accurate and efficient models describing the generation
of x-rays, the interaction of x-rays with the measured object, and the detection of x-rays
were developed or existing models were refined, respectively. It could be demonstrated
that the proposed models differ by less than 10 % from reference Monte Carlo (MC)
simulations, while being orders of magnitude faster.

The potential of the SBAC was evaluated for metrological CT measurements of single-
and multi-material components. Based on these measurements, it was shown for the
first time that the most common CT artifacts can be corrected with a single correction
term derived from CT simulations. Here, the SBAC provided CT reconstructions
that showed almost no artifacts and whose quality was clearly superior to state-of-the-
art reference approaches. Furthermore, it could be shown that the SBAC not only
increases the visual impression of the CT reconstructions, but also their dimensional
accuracy. The comparison of surface meshes extracted from SBAC-corrected CT
reconstructions revealed only minor deviations from tactile measurements, the gold
standard of dimensional metrology. This is important to meet the high demands on
the quality of the surface meshes, especially when investigating components with small
manufacturing tolerances in the range of a few tens of microns.

Thus, the SBAC helps to extend the applicability of CT in the field of industrial
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metrology and to establish CT as an alternative to tactile measurements even for highly
attenuating components.

Deep Scatter Estimation In the context of scatter artifact correction, the DSE was
developed to solve the problem of long processing times of accurate scatter estimation
approaches. Therefore, DSE trained a deep convolutional neural network (DCNN) to
reproduce MC scatter simulations given only a function of the acquired projection data
as input. Once, the network is trained, it can be applied to unknown data in real-time
(=~ 10 ms / projection). In that, process DSE does not rely on a certain theoretically
motivated scattering model, but learns the most suitable model itself from observational
data. This is especially an advantage if a certain scatter estimation approach needs to
be adapted to novel data, e.g. data that have been acquired with different acquisition
parameters or at a different system. While conventional approaches might require to
refine the underlying theoretical model, DSE can be adapted by simply exchanging or
extending the training data set.

To demonstrate the practical applicability of DSE, different simulation studies and
measurements were carried out. Here, the simulation study demonstrated that DSE
generalizes well to different tube voltages, different noise levels, different materials,
different magnifications, as well as different components. In particular, it could be
shown that DSE is clearly superior to conventional reference methods, and thereby,
provides scatter distributions that deviate on average by less than 2 % from MC
simulations. Furthermore, these experiments suggest that a single DSE network, trained
on representative data, can be used universally for various scatter estimation tasks.

A similarly good performance could be observed for measured data of an experimental
CBCT system. Here, DSE provided scatter-corrected CT reconstructions whose quality
was almost equal to slit scan measurements. Furthermore, this study demonstrated
that a DSE network, trained on simulated data, also applies to measured data. This is
of particular importance as simulation is an easy way to generate an arbitrary number
of training examples. However, it has to be noted that several efforts have been made
here to tune the simulations to reproduce measurements of the experimental CBCT
system. To which extent the simulation must match the measured data is the subject
of further investigations.

Obviously, if a sufficiently accurate simulation is practically not possible, DSE can
also be trained using measured data, e.g. of a slit scan or a beam blocker measurement.
Conceptually, there are no restrictions for the generation of training data.

It can be concluded that DSE makes an important contribution to improve the
accuracy of x-ray scatter correction. Therefore, DSE helps to further improve the
quality of metrological CT measurements, especially in case of time-critical appliactions
such as inline-CT measurements, for instance, that require real-time capable correction
approaches.
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