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Summary  

Adult neural stem cells (NSCs) in the subventricular zone (SVZ) of the lateral ventricles 

remain largely quiescent. Unravelling the mechanism regulating lineage progression from 

NSCs to newborn neurons is critical for understanding tissue homeostasis and aging. 

Extrinsic and intrinsic factors regulate NSC self-renewal and differentiation. In this study, I 

analyse the effects of one extrinsic and one intrinsic factor in NSC regulation. In both 

analyses, I investigate the effect of the regulators on the so-called apical NSCs, because they 

display an apical membrane and apical/basal polarity, and basal NSCs, which lack an apical 

attachment.  

Focusing on the neurotransmitter γ-aminobutyric acid (GABA) as an extrinsic regulator of 

NSC activation, I show that activation of GABA type A receptors (GABAARs) on adult NSCs 

induces cell swelling and cell cycle entry by recruiting the epidermal growth factor receptor 

(EGFR). Although apical and basal NSCs underwent swelling upon GABAAR activation, 

increased EGFR phosphorylation and cell cycle entry was only observed in in the latter, 

which also displayed higher Egfr transcripts than apical NSCs. Underscoring the importance 

of EGFR signalling in proliferation, pharmacological blockade of EGFR prevented NSC 

proliferation. In addition, I show that activation of GABAARs also promotes a decrease in the 

expression of the cell adhesion receptor β1Integrin, both in basal and apical NSCs and loss 

of the epithelial marker Prominin1 in apical NSCs.  

As an intrinsic regulator of NSC activation, I have studied the role of the orphan nuclear 

receptor TLX and its interaction with NOTCH signalling. This analysis revealed that lack of 

Tlx leads to the overexpression of Hes1 and increases NOTCH activation in apical NSCs, 

suggesting that this may contribute to impaired neurogenesis. Indeed, downregulation of 

Hes1 in the apical SVZ restored neurogenesis and increased proliferation. Interestingly, this 

effect was mostly noted in basal NSCs, highlighting a non-cell autonomous regulatory 

mechanism mediated by NOTCH signalling.  

Thus, altogether my results show that GABA and TLX-HES1 interaction both play an 

important role in the regulation of adult NSC quiescence, being both essentials for proper 

NSC activation and apical-basal lineage progression. 
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Zusammenfassung 

Adulte neurale Stammzellen (NSZ) in der subventrikulären Zone (SVZ) der lateralen 

Ventrikel ruhen hauptsächlich. Um Gewebehomöostase und Altern zu verstehen ist es 

unumgänglich, den Mechanismus, der die Linienprogression von NSZ zu neugeborenen 

Neuronen reguliert, zu entschlüsseln. Intrinsische und extrinsische Faktoren steuern 

Selbsterneuerung und Differenzierung. In dieser Arbeit analysiere ich die Effekte eines 

intrinsischen und eines extrinsischen Faktors auf die Regulation von NSZ. In beiden Analysen  

untersuche ich den Effekt der Regulatoren auf die sogenannten apikalen NSZ, die eine 

apikale Membran sowie apikal-basale Polarität besitzen, und die basalen NSZ, denen eine 

apikale Verbindung fehlt. 

Mit Hauptaugenmerk auf den Neurotransmitter γ-Aminobuttersäure (GABA) als 

extrinsischer Regulator für Zellzyklusaktivierung zeige ich, dass die Aktivierung von GABA-

Typ-A-Rezeptoren (GABAAR) auf adulten NSZ durch die Rekrutierung des epidermalen 

Wachstumsfaktorrezeptors (EGFR) Schwellung und Eintritt in den Zellzyklus induziert. 

Obwohl apikale und basale NSZ durch GABAAR-Aktivierung anschwellen, ist erhöhte EGFR-

Phosphorylierung und Eintritt in den Zellzyklus nur bei apikalen NSZ feststellbar; diese 

zeigen auch mehr Egfr-Transkripte als die apikalen NSZ. Pharmakologische Blockierung von 

EGFR verhindert die Proliferation der NSZ, was die Wichtigkeit von EGFR-Signalen in der 

Proliferation unterstreicht. Zusätzlich zeige ich, dass die Aktivierung von GABAAR sowohl in 

apikalen als auch in basalen NSZ zu einer Verringerung des Zelladhäsionsrezeptors β1-

Integrin, sowie zum Verlust des epithelialen Markers Prominin-1 in apikalen NSZ führt.  

Als einen intrinsischen Regulator für NSZ-Aktivierung untersuche ich die Rolle des “orphan“ 

Kernrezeptors TLX und seine Interaktion mit der NOTCH-Signalkette. Diese Untersuchung 

ergab, dass Mangel an Tlx zur Überexpression von Hes1 führt und NOTCH-Aktivierung in 

apikalen NSZ erhöht, was nahelegt, dass dies zur eingeschränkten Neurogenese beitragen 

könnte. Tatsächlich wird durch das Herunterregeln von Hes1 in der apikalen SVZ die 

Neurogenese wiederhergestellt und die Proliferation steigt. Interessanterweise fällt dieser 

Effekt vor allem in basalen NSZ auf, was einen nicht-zellautonomen 

Regulationsmechanismus aufzeigt, der durch NOTCH vermittelt wird. 
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Zusammengenommen zeigen meine Ergebnisse daher, dass sowohl GABA als auch die 

Interaktion von TLX und HES1 eine wichtige Rolle in der Ruheregulation adulter NSZ spielen, 

da beide für die ordnungsgemäße NSZ-Aktivierung und apikal-basale Linienprogression 

essentiell sind. 
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Chapter 1. Introduction 

1.1 Neural stem cells and adult neurogenesis 

 

A stem cell is a cell with the ability of renewing itself and giving rise to multiple cell types. 

By definition, neural stem cells (NSCs) have the ability to create cells in the neural lineage, 

like neurons, oligodendrocytes and astrocytes (Gage, 2000; McKay, 1997). During 

development, neuroepithelial and radial glial cells are considered the NSCs that give rise to 

the different cell types forming the central nervous system in vertebrates and mammalians 

(Kriegstein, 2009). However, for a long time, it was believed that the formation of new 

neurons only occurred during embryonic stages. This belief continued until the 1960s, when 

Joseph Altman reported the generation of new neurons in multiple regions of the adult 

mammalian brain like hippocampus, cortex and olfactory bulbs (Altman, 1962; Altman and 

Das, 1965). These findings were also confirmed with the studies in songbirds by Fernando 

Nottebohm, who found newly formed cells in the brain with not only the structure of 

neurons but also the electrophysiological properties (Burd & Nottebohm, 1985; Paton & 

Nottebohm, 1981). However, several decades after this discovery, there are still many 

questions regarding the mechanism of regulation and activation of adult NSCs.    

 

1.1.1 Neurogenesis during development 

 

In early stages of development, neuroepithelial cells derived from ectoderm can give rise 

the first neurons in the neural system. At the moment when cortical neurogenesis begins, 

approximately at E9-E10 in the mouse, the neuroepithelial cells start acquiring radial glia 

(RG) features (Fig.1.1) as they express glial markers, like glial fibrillary acid protein (GFAP) 

and they transition to become RG cells (Götz & Huttner, 2005). These RG cells display an 

apical-basal polarity that allows them to be in contact at the same time with the ventricular 

cavity and with the blood vessels at the apical and basal side respectively (Angevine et al., 
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1970). These cells are able to symmetrically divide creating two RG cells, or divide 

asymmetrically giving rise to an identical cell and, either an intermediate progenitor (IPC) 

or a differentiated cell (neuron, astrocyte or oligodendrocyte) (Kriegstein, 2009). The 

resulting neuronal IPC will colonize the embryonic subventricular zone (SVZ) as the newly 

formed neurons migrate through the RG fibres until reaching their final position (Noctor et 

al., 2004). These new neurons can differentiate in different neuron subtypes due to intrinsic 

cellular mechanisms (transcriptional factors and epigenetic modifications) which are 

influenced by their original region in the ventricular zone (VZ) and by the moment in the 

development in which differentiation takes place (Qian et al., 2000; Weinandy et al., 2011).  

 

 

 

Figure 1.1. Embryonic and adult neurogenesis. Scheme representing the formation of neurons, astrocytes 

and oligodendrocytes during development and in the adult. Neuroepithelial cells give rise to radial glial 

cells (RG) which present the ability to differentiate and give rise to intermediate progenitor cells (IPC), 

neurons, astrocytes and oligodendrocytes during embryonic stages. These RG have apical-basal polarity, 

and they are the origin of adult NSCs (or B cells). Abbreviations: MZ= marginal zone, NE= 

neuroephithelium, oIPC= oligodendrocyte intermediate progenitor, nIPC= neuron intermediate 

progenitor, MA= mantel, SVZ= subventricular zone, VZ= ventricular zone. (Scheme adapted from 

Kriegstein & Alvarez‐Buylla 2009). 
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1.1.2 Postnatal neurogenesis 

 

In the mammalian brain there are two known regions that where postnatal neurogenesis 

occurs, one is the granular zone of the dentate gyrus in the hippocampus (Cameron et al., 

1993; Eriksson et al., 1998), and the other is the SVZ of the lateral ventricles (Doetsch et al., 

1999; Lois & Alvarez-Buylla, 1993). In these two niches, NSCs give rise to intermediate 

progenitors, which ultimately differentiate into neurons, astrocytes and oligodendrocytes. 

At the end of development, most of RG cells differentiate into astrocytes (Noctor et al. 

2008). Some of these cells with astrocytic characteristics derived from RG become indeed 

the source of NSCs in the adult individual (Merkle et al., 2004).  

 

1.1.2.1 Neurogenesis in the hippocampus 

 

The subgranular zone (SGZ) of hippocampus comprises NSCs and intermediate progenitor 

cells that give rise to granular neurons involved in pattern separation, learning and memory 

(Ming & Song, 2011). These NSCs, also called cell type I in the SGZ niche, stay in a quiescent 

state presenting a very low rate of cell divisions until they become activated. They can give 

rise to intermediate progenitors type II and III which produce neuroblasts that migrate into 

the inner granular layer, where they differentiate into adult granular neurons in the 

hippocampus (Encinas et al., 2011). The process of neurogenesis is regulated by several 

intrinsic and extrinsic factors in a tightly way, the participation of different transcription 

factors as well as growth factors is crucial in this regulation (Song et al., 2012). 

The final integration of the newly formed neurons within the circuitry depends on the 

synaptic input/output from the other existing neurons. Several studies have found that the 

synaptic integration of these cells is depending on a specific sequence in which NSCs get 

activated by ambient GABA, followed by input-specific GABAergic signalling (Ge et al., 2006; 

Overstreet-Wadiche & Westbrook, 2006; Song et al., 2012). 
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1.1.2.2 Neurogenesis in the subventricular zone 

 

The SVZ of the lateral ventricles is the largest adult neurogenic niche in the mammalian 

brain. NSCs in this niche are maintained in a quiescent state, which far from being a passive 

state, it comprises the activation of a specific cell program that is strictly regulated and is 

very important for stem cell renewal, somatic replacement and DNA integrity (Orford & 

Scadden, 2008). Activation of these cells is controlled by different extrinsic and intrinsic  

factor. Once activated, NSCs can give rise to transit amplifying progenitors (TAPs) which are 

actively dividing cells (Doetsch et al., 1999). These TAPs eventually differentiate and 

Figure 1.2 Adult neurogenesis in SVZ. Scheme representing adult neurogenesis in the SVZ. NSCs in the 

SVZ of the lateral ventricles (LV) give rise to transit amplifying progenitors (TAPs). After several cell 

divisions, TAPs differentiate into neuroblasts which leave the niche and migrate tangentially through the 

rostral migratory stream (RMS) toward the olfactory bulbs (OBs). Once neuroblasts reach the OB, they 

migrate radially and differentiate into GABAergic interneurons. Abbreviations: OB= olfactory bulbs, RMS= 

rostral migratory stream, LV= lateral ventricles, SVZ= subventricular zone, Str= striatum, CSF= cerebral-

spinal fluid, E= ependymal cell, qNSC= quiescent neural stem cell, aNSC= activated neural stem cell, Nb= 

neuroblast, TAP= transit amplifying progenitor, BV= blood vessel. (Scheme adapted from Chaker et al., 

2016) 



Introduction 

8 

 

produce neuroblasts, which migrate tangentially through the rostral migratory stream 

(RMS) towards the olfactory bulbs (OBs) (Fig.1.2). Once they reach the OBs, neuroblasts 

migrate radially while they differentiate and integrate in the neural circuit as GABAergic 

interneurons (Chaker et al., 2016). Within the SVZ, NSCs are contained in the centre of the 

so-called pin-wheel structures, where they are surrounded by ependymal cells (Mirzadeh 

et al., 2008). These stem cells, also known as type B cells, show astrocytic features in an 

ultrastructural and molecular level, including the expression of glial fibrillary acidic protein 

(GFAP) and glutamate aspartate transporter (GLAST) (Doetsch et al., 1999). However, unlike 

differentiated astrocytes, they present a bi-polar morphology with an apical process that 

exhibits a primary cilium in contact with the cerebral spinal fluid (CSF), and a basal long 

process in contact with vascular vessels and the extravascular basal lamina, which is rich in 

laminin and collagen-1 (Fig.1.2 and 1.3). The primary cilium is involved in signal processing 

from CSF, and it is characterized for presenting the transmembrane glycoprotein Prominin1, 

also known as CD133 (Khatri et al., 2014; Mirzadeh et al., 2008) (Fig.1.3). 

Over the years, it has been a difficult task to identify specific markers that allow NSCs 

identification and isolation from the rest of progenitor cells in the niche. As previously 

described, quiescent neural stem cells (qNSCs) express the glial marker GFAP and 

Prominin1, although qNSCs can also present negative immunoreactivity for Prominin1 

(Codega et al., 2014). When NSCs activate, they exhibit the epidermal growth factor 

receptor (EGFR) at the cell surface, and they also present immunoreactivity for the 

intermediate filament protein nestin. TAPs are identified for their immunoreactivity to EGFR 

and nestin, whereas neuroblasts present immunoreactivity to the cytoplasmic protein 

doublecortin (DCX) (Fig.1.3) (Codega et al., 2014). 

 

1.2 Extrinsic regulation of NSCs in the SVZ 

 

Among the variety of molecules that create the niche, we can find many different extrinsic 

signals that regulate self-renew, activation and differentiation of NSCs in adult SVZ. Of note, 
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it is important to mention that in the adult niche, compared with the developing or 

postnatal brain, NSCs receive signals from a fully formed brain, a brain with complex 

structures and with all the connections stablished. Therefore, the extrinsic regulation of 

NSCs in the adult brain is a complex selection of molecules that in combination create the 

niche. These regulatory molecules include factors from neighbour cells, like ependymal 

cells, as well as signals from the choroid plexus, the CSF and the vasculature. 

As mentioned before, NSCs present an apical non-motile primary cilium that lack the central 

pair of microtubules. This cilium is implicated in signal transduction, although the 

mechanism of this regulation is not well known. Even though the function of the primary 

Figure 1.3 NSCs and progenitors in the SVZ niche. Scheme representing the different cell types included 

in the SVZ. The scheme also shows the different markers used for cell identification and their in vivo and 

in vitro properties. Quiescent stem cells are label-retaining cells (dark blue line) that present few cell 

divisions in vivo and in vitro. Activated stem cells are highly proliferative (green line), in a same way as 

transit amplifying progenitors. Abbreviations: GFAP: glial fibrillary acidic protein, EGFR= epidermal growth 

factor receptor, DCX= doublecortin. (Scheme adapted from Codega et al., 2014) 
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cilium is not yet understood, it is interesting that other progenitor cells in the developing 

and adult brain present this type of primary cilium, like radial glia, embryonic 

neuroepithelial cells and adult avian neural precursors (Alvarez-Buylla et al., 1998; Sotelo & 

Trujillo, 1958). The primary cilium is required during the development in the neural tube for 

the proper sonic hedgehog (SHH) signalling (Wong & Reiter, 2008), and it may be implicated 

in signalling from other molecules in the CSF. Indeed, there are other signalling molecules 

in the CSF like insulin growth factor 2 (IGF-2), SHH, retinoic acid, Wnts, and bone 

morphogenetic protein (BMP) that are implicated in NSC regulation (Huang et al., 2010; 

Lehtinen et al., 2011). Similarly, microglia and endothelial cells secrete molecules which 

regulate neuroblast migration (Leventhal et al., 1999) and NSC self-renewal (Shen et al., 

2004). Indeed, NSC contact with endothelial cells is involved in the regulation of the 

quiescent state and cell cycle arrest (Ottone et al., 2014).  

Other molecules that act as extrinsic regulators of NSCs are the fibroblast growth factor 2 

(FGF-2) and the epidermal growth factor (EGF). It is not clear which cells secrete these 

mitogens in the SVZ, however, both of them participate in NSC activation, lineage 

progression and possibly dedifferentiation (Anderson, 2001; Raff, 2003). 

Ependymal cells displayed at the apical surface of the SVZ (Fig.1.2) are also involved in 

secreting substances that regulate NSC. These cells secrete Noggin, an antagonist of the 

BMP, another growth factor that is expressed in the SVZ and regulates quiescence. Secreted 

Noggin promotes neurogenesis in vitro and in vivo (Lim et al., 2000). 

Likewise, neurotransmitters play a role in the regulation of adult neurogenesis. For 

example, serotonin (5-HT) regulates cell proliferation and OB neurogenesis by acting 

through receptors in the SVZ (Banasr et al., 2004; Brezun & Daszuta, 1999), and dopamine 

innervations from the mid brain act mainly on TAPs promoting neurogenesis through an 

EGFR related mechanism (Kim et al., 2010; O’Keeffe et al., 2009).  

In this study, I focus in the extrinsic mechanisms involved in NSCs regulation by the 

neurotransmitter γ-aminobutyric acid (GABA). 

 

 



Introduction 

11 

 

1.2.1 GABAergic regulation of NSCs 

 

In the central nervous system, GABA is the major inhibitory neurotransmitter. Its actions 

are mediated by ionotropic GABAA and metabotropic GABAB receptors. The former are 

implicated in short-term responses, while the latter mediate long-term responses (Owens 

and Kriegstein, 2002). GABAA receptors (GABAARs) have been thoroughly studied in the 

context of neurogenesis. These receptors belong to the superfamily of ionotropic receptors 

(Moss & Smart, 2001). They are chloride channels formed by five subunits, which can differ 

from 19 different subunits (α1–6, β1–3, γ1–3, δ, θ and π) assembled to form a pentameric 

structure (Dieriks et al., 2013). 

Different studies have shown that GABA is involved in the regulation of multiple aspects of 

neurogenesis, including proliferation, migration, and neuronal specification in the postnatal 

neurogenic niche (Aprea & Calegari, 2012; Cesetti et al., 2011). In the SVZ, GABA is mainly 

released by neuroblasts, creating a GABA ambient which activates GABAARs in precursor 

cells. Another source of GABA in the SVZ may be represented by ependymal cells, meninges, 

the choroid plexus (Tochitani & Kondo, 2013) and the synaptic output from striatal neurons 

(Young et al., 2014). Even though many studies have indicated that GABAARs are the main 

receptors implicated in this regulation by GABA in the SVZ, it is not well known the 

mechanism by which this regulation takes place. During development, activation of GABAAR 

promotes proliferation of primary precursors in the apical SVZ while it blocks proliferation 

at the basal side of the niche (Haydar et al., 2000). Besides this, in the postnatal niche, GABA 

presents an inhibitory effect on the proliferation of intermediate progenitors including TAPs 

and neuroblasts (Aprea and Calegari, 2012). This inhibitory effect is proposed to be part of 

a negative feedback by which GABA released by neuroblasts, in a non-synaptic manner, 

interferes with proliferation of intermediate progenitors, thereby decreasing the number 

of neuroblasts that are being generated.  This feedback would explain a mechanism for 

controlling the rapid proliferation of TAPs. However, this regulation is less clear when it 

comes to NSCs, as they remain mostly quiescent, presenting very few cell divisions. Some 

studies have indicated that GABAAR activation inhibits adult NSC proliferation (Fernando et 
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al., 2011; Liu et al., 2005), while other reports have shown that GABAAR activation may in 

fact increase the proliferation of apical precursors in the pre- and neonatal niche (Cesetti et 

al., 2011; Young et al., 2012), in a similar way as the GABA effect on proliferation of 

progenitors in the embryonic SVZ. Thus, many aspects of GABAergic regulation in the SVZ 

niche are not yet elucidated.  

 

1.3 Intrinsic regulation of NSCs in the SVZ 

 

Besides the distinctive molecules that create the niche and regulate neurogenesis in the 

adult brain, it is very important to point out that NSCs are regulated by transcription factors 

and differential gene expression that make them respond in an intrinsic differential way to 

the external signals (Lim & Alvarez-Buylla, 2016). For instance, NSCs give rise to different 

OB neurons depending on the region that they occupy within the SVZ (dorsal, lateral, 

ventral, anterior or posterior) (Merkle et al., 2007). In this sense, ventral NSCs give rise to a 

different pool of neurons in the OB than dorsal NSCs, suggesting that even though they are 

exposed to similar niche molecules, their internal program makes them respond in a 

different way. Several genes, transcription factors and epigenetic marks are involved in this 

regulation. In this study we focus in the intrinsic regulation by the orphan nuclear receptor 

TLX and NOTCH1 receptor. 

 

 

1.3.1 Orphan nuclear receptor TLX in neurogenesis 

 

Tlx gene, also known as Nr2e1 (nuclear receptor subfamily 2, group E, member 1), is the 

vertebrate homolog of the Drosophila gene tailless (tll). This gene, mainly expressed in the 

developing brain and retina, encodes an orphan nuclear receptor with no identified ligand.  

Tlx expression increases with age, reaching high levels in the adult brain. Adult mice lacking 

Tlx expression (Tlx-/- ) present extremely reduced hippocampal dentate gyri, besides, they 
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show enlarged lateral ventricles while OBs present a reduction in size, suggesting a failure 

in neurogenesis (Monaghan et al., 1995; Shi et al., 2004). Dysregulation of Tlx has an effect 

in the appearance of human neurological disorders. In fact, Tlx-/- mice present an aggressive 

and un-social phenotype (Kumar et al., 2007; Monaghan et al., 1995). 

TLX receptor is found in qNSCs and in TAPs in adult brain (Li et al., 2012; Obernier et al., 

2011). In fact, the receptor has been shown to be implicated in regulation of NSC 

maintenance and self-renewal in the adult brain (Shi et al., 2004).  

TLX regulates the transcription of multiple genes by activating or repressing their 

expression, although it mostly acts as a transcriptional repressor. This activity as repressor 

is carried out by recruiting histone deacetylases (HDAC3 and HDAC5) into the promoter of 

target genes, like p21 and Pten (Sun et al., 2007), inhibiting these cell cycle regulators. It 

also activates the expression of proneural genes like Mash1 (Elmi et al., 2010). TLX has been 

also described to regulate gene expression through microRNAs (miRNAs), non-coding RNA 

sequences that function as negative regulator of gene expression. For instance, in the SVZ, 

miR-9 inhibits the expression of Tlx gene, and at the same time, TLX acts as a transcriptional 

repressor for miR-9, being their expressions inversely correlated during differentiation. This 

comprises a negative feedback loop that allows a quick transition from NSCs to intermediate 

progenitor during differentiation (Zhao et al., 2009). TLX can be also regulated by lethal-7b, 

another miRNA that acts as a regulator for NSCs (Zhao et al., 2010). Another interesting 

feature of TLX in relation to NSCs regulation is that it activates Wnt7a/Beta-catenin 

signalling pathway to stimulate NSC proliferation and self-renewal (Qu & Shi, 2009). 

Besides, TLX interacts with SOX2, a transcription factor necessary for neurogenesis. This 

interaction is proposed to be necessary for regulating the transcriptional activity in the SVZ 

(Shimozaki et al., 2012). Thus, TLX is involved in many mechanisms necessary for the 

regulation of proliferation and differentiation of NSCs. 
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1.3.2 NOTCH signalling regulation of NSCs 

 

NOTCH is a single-pass transmembrane receptor that, during the canonical signalling,  

activates through ligands expressed in the neighbour cells. Binding of the ligand with the 

receptor activates a cellular program, and as a result, the NOTCH intracellular domain 

(NICD) is released. This activated portion of NOTCH receptor translocates to the nucleus 

where it binds to the recombining binding protein suppressor of hairless (RBPJ), forming a 

complex that activates specific gene expression (Ables et al., 2011). In mammals we can find 

four different NOTCH receptors (NOTCH1, NOTCH2, NOTCH3 and NOTCH4) and five 

different ligands, the delta like ligands (DLL1, DLL2 and DLL3) and the Jagged proteins (JAG1 

and JAG2) (Kageyama et al., 2009). NOTCH signalling is very important during development, 

given that most of the spatial pattern differentiation depends on its activation. However, 

NOTCH receptors and ligands are also expressed in different cell types in the adult brain, 

suggesting the importance of this signal not only in development but also in brain 

functioning (Berezovska et al., 1998). In the adult SVZ, cells express NOTCH1 and its two 

ligands JAG1 and DLL1 (Stump et al., 2002). NOTCH signalling in NSCs supresses neuronal 

differentiation while promoting stem cell maintenance (Aguirre et al., 2010). In  fact, 

Chambers et al.  transduced postnatal SVZ cells with an activated form of NOTCH receptor, 

finding that this alteration prevented cell migration to the OB and supressed differentiation,  

keeping the cells in a more quiescent state. In a similar way, conditional deletion of Rbpj in 

the adult SVZ forces NSCs differentiation into TAPs and neuroblasts, leading to a complete 

depletion of NSCs (Imayoshi et al., 2010). These findings show the importance of NOTCH in 

NSC regulation. 

NOTCH signalling activates target genes such as Hes1 and Hes5, two transcription factors 

belonging to the family of Hairy/enhancer of split (Hes) basic helix-loop-helix (bHLH) (Iso et 

al., 2003). HES1 represses the transcription of the proneural gene Mash1 (Sasai et al., 1992). 

Interestingly, Mash1, which is mostly expressed in TAPs, promotes the expression of NOTCH 

ligands, thereby promoting activation of NOTCH signalling in the neighbour cells and 

preventing differentiation (Kageyama et al., 2009), which suggests a potential feedback 
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from progenitors to regulate NSC differentiation. Given the importance of Hes genes in 

regulation of NSCs and in the canonical signalling pathway of NOTCH, many experiments 

were made in mutant mice to understand this regulation.  For instance, overexpression of 

Hes1, Hes3 and Hes5 in the embryonic brain leads to inhibition of differentiation and 

maintenance of the RG phenotype. In a similar way, in mice lacking Hes1 and Hes5 

expression, RG cell differentiate prematurely into neurons. Interestingly, in mice lacking Hes 

gene expression, the premature differentiation of radial glia is correlated with an increased 

expression of proneural bHLH transcription factors like Mash1 (Hatakeyama, 2004; Ishibashi 

et al., 1994; Ohtsuka et al., 1999). Altogether, these findings indicate that NOTCH signalling 

and its targets play an important role for NSC regulation. 

 

1.4 Aims of this study 

 

Adult neurogenesis has been studied for many years, however, there is not yet a complete 

understanding of all the molecules and regulators implicated in the formation of new 

neurons. The study of NSC regulation is of vital importance given that understanding the 

signals that control NSC activation and differentiation can help in future treatments like 

stem cell therapy and in the understanding of tumour dynamics in the brain.  

In this study I have investigated the regulation of NSC activation by extrinsic and intrinsic 

factors. On one side, as an example of extrinsic regulation I have investigated the effect of 

GABA released in the SVZ on cell cycle activation, focusing on: 

The effect of GABAAR activation on the cycling properties of the neural precursors in the 

adult SVZ. 

1) The response of quiescent NSCs and proliferating NSCs to GABAAR activation. 

2) Implications of epidermal growth factor receptor (EGFR) in the GABAergic regulation 

of NSC proliferation. 

3) Analysis of the involvement of the cell adhesion molecule Integrin in the GABAergic 

regulation of NSC proliferation. 
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On the other side, as an example of intrinsic regulator, I investigated the role of TLX and its 

interaction with NOTCH signalling in regulating NSC activation, using a mouse model where 

the expression of  Tlx gene is ablated by LacZ knock in (Tlx-/-). For this analysis I have focussed 

on: 

1) Analysis of NOTCH signalling activation in cells and brain slices from Tlx-/- mice. 

2) Viral transduction of apical cells in lateral ventricles to downregulate Hes1 

expression in the mutant SVZ. 

3) Analysis of the implications for neurogenesis of Hes1 downregulation in Tlx-/- mice. 
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Chapter 2. Materials and methods 

2.1 Chemicals, reagents and materials used 

2.1.1 General reagents 

Reagent                                                                                   Company 

Ammonium chloride      Merck 

DAPI       Roche 

Diazepam      Ratiopharm 

Doxycycline      BioChemica AppliChem 

Ethanol       Sigma 

Fetal bovine serum     Gibco 

Glycine       Life Technologies 

Isopropanol      Applichem 

Low Melting Agarose     Life Technologies 

Narcoren      Boehringer Ingelheim 

Mowiol       Calbiotech 

NP-40       CN Biomedicals Inco. 

Paraformaldehyde     Riedel de Häel 

Triton- X100      Sigma 

 

Equipments      Company 

FACS Aria II      BD 

Bench Centrifuge      Eppendorf 

Centrifuge (Heraeus)     Thermo scientific 

Pro-Flex PCR system     Applied biosystems 

StepOnePlus Real-time-qPCR system   Applied biosystems 

Spectrophotometer     Denovix 

Confocal Microscope SP8     Leica 

Fluorescence microscope Axiophot    Zeiss 

Vibratome HM 650V     Microm 
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2.1.2 Reagents and materials for genotyping 

 

Reagent       Company 

Agarose       Biozym 

dNTPs       VWR 

DNA ladder (1Kb)      Thermo scientific 

EDTA       Sigma-Aldrich 

Loading Buffer      Thermo scientific 

NaCl       Fisher scientific 

Midori green nucleic acids stain    Nippon genetics 

Proteinase K      Merk 

SDS       OMNI life science                                                                                               

Taq-DNA Polymerase     PeqLab 

Tris       Roth 

 

2.1.3 Reagents and materials for cell culture and FACS 

 

Reagents and materials     Company 

B27 supplement      Invitrogen 

Chamber slide (8 wells)     Lab-tek, Nunc 

DiI       ThermoFisher  

D-(+)-glucose 45%     Sigma-Aldrich 

DNase       Sigma-Aldrich 

Euromed-N (NS-A) medium    Euroclone/Biozol 

FCS       Gibco 

huFGF-2       Peprotech 

huEGF       Peprotech 

KCl       Sigma 

Leibowitz L15 medium     Gibco 

L-glutamine      Gibco 

Muscimol      Sigma 

Neurobasal-A (NB-A) médium    Euroclone/Biozol 

Ovomucoid      Sigma-Aldrich 

Papain       Sigma-Aldrich 
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Reagent       Company 

Penicillin/Streptomycin     Gibco 

PD 158780      Calbiochem 

Sucrose       Sigma 

 

2.1.4 Reagents and materials for RNA extraction, RT-PCR and qPCR 

 

Reagents      Company 

dNTPS       VWR 

M-MLV enzyme      Promega 

Oligo dT(primers)      Promega 

PicoPure™ RNA Isolation Kit    Applied Biosystems 

qPCR assay      Applied Biosystems 

RNAsin       Promega 

 

TaqMan probe (Applied Biosystems)    Reference Number 

β-actin       Mm01205647_g1 

EGFR       Mm00433023_m1                  

β1-Integrin      Mm01253227_m1 

 

2.1.5 Reagents and materials for viral production and stereotaxic injections 

 

Reagents and materials        Company 

Amicon Ultra-4 Centrifugal Filter      Millipore 

Atipamezol        Prodivet pharmaceuticals 

Benzonase        Sigma 

Buprenorphine        Norbrook 

Dulbecco’s Modified Eagle Medium (DMEM), high glucose, pyruvate  Gibco 

FCS         Gibco 

Fentanyl         Piramal 

Flumazenil        Fresenius Kabi 

HiTrap Heparin Column       Amersham 

Iscove's Modified Dulbecco's Medium (IMDM)    Life Technologies 

L-glutamine        Gibco 

https://www.thermofisher.com/taqman-gene-expression/product/Mm00433023_m1?CID=&ICID=&subtype=
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Naloxon         Inresa Arzneimittel 

Non-essential amino acids       Gibco 

Medetomedin        Alvetra 

Midazolam        Hameln 

Mini-prep Kit        Quiagen 

Maxi-prep Kit        Invitrogen 

Penicillin/Streptomycin       Gibco 

Sodium Deoxycholate       Sigma 

 

2.1.6 Antibodies 

 

Primary Antibodies   Dilution     Company 

BrdU mouse IgG    1:10    Roche 

beta1 Integrin rat IgG2K   1:500     Merk Millipore 

DCX (Doublecortin) mouse IgG  1:500    Santa Cruz 

EGFR mouse IgG1    1:100    Sigma 

phospho-EGFR (Y1068) rabbit IgG  1:500    Abcam                     

GFAP mouse IgG1   1:1000    Sigma 

Hes1 mouse IgG2b   1:50    Santa Cruz biotech. 

Ki67 Rabbit IgG    1:100    Abcam 

LeX (SSEA1) mouse IgM   1:30    Hybridoma Bank Iowa 

Nestin mouse IgG1   1:100    Sigma 

NICD (activated Notch 1) rabbit IgG  1:500- 1:2000   Abcam 

Prominin1 APC conjugated  1:100    Miltenyi Biotec 

 

Secondary Antibodies   Dilution    Company 

Mouse IgG-488    1:1000    Thermo Fisher 

Mouse IgG-cy3    1:200    Jackson Lab (Dianova) 

Rabbit IgG-488    1:1000    Thermo Fisher 

Rabbit IgG-cy3    1:200    Jackson Lab (Dianova) 

Rat IgG-647    1:500     Thermo Fisher 
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2.1.7 Software 

 

Microsoft Office (Word, Excel, PowerPoint) 

GraphPad Prism 5.0 

Adobe illustrator CS4 

ImageJ/ FIJI software 

Mendeley 

 

2.2 Mice lines and genotyping 

 

All animal procedures were carried out with the permission of the local authorities and 

according to the ethical guidelines for the care and use of laboratory animals (Karlsruhe, 

Germany). These mice were kept with water and food ad libitum during the entire 

experimental procedure. Adult C57Bl/6, hGFAPtTA;H2B-GFP, and Tlx-/- mice were killed by 

neck dislocation after CO2 exposure, whereas neonatal C57Bl/6 were killed by decapitation. 

 

2.2.1 Wild type (WT) mice 

 

For in vivo experiments and stem cell isolation, 8-week-old wild-type C57Bl/6 mice from 

both genders were used. For FACS experiments, mice were injected intraperitoneally twice 

every 12 hours with diazepam (3 µg/g of body weight) to activate GABA type A receptors 

(GABAAR) or phosphate buffer (PBS) as control, and killed within 24 hours after the first 

injection. For immunohistochemistry analysis, mice were intraperitoneally injected twice 

every 12 hours with diazepam (3 µg/g of body weight) or PBS. These mice were also given 

a single intraperitoneal injection of the thymidine analogue iododeoxyuridine (IdU) (100 

mg/kg body weight, dissolved in PBS) at the same time of the first diazepam/PBS injection. 

Mice were perfused 24 hours or 7 days after the first injection. 
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2.2.2  GFAP-H2B mice (hGFAPtTA;H2B‐GFP) 

 

The hGFAPtTA;H2B‐GFP mice (abbreviated as GFAP-H2B) were obtained by crossing two 

different transgenic mouse lines, one of them containing a transgene expressing the human 

histone H2B fused to the green fluorescent protein (H2B‐GFP) under the control of a 

tetracycline‐responsive regulatory element (Tumbar et al., 2004). The other mouse line 

contains  a genetic insert in which the human glial fibrillary acidic protein (GFAP) promoter 

drives the expression of a tetracycline‐controlled trans-activator protein (tTA) (Wang et al., 

2004). 

In the resulting selected progeny, we have mice with both inserts, so in order to repress the 

expression of the reporter fusion protein, 1‐month‐old animals were given 50 mg 

doxycycline (doxy) in the drinking water during four weeks. With this treatment, the new 

production of the reporter protein GFP-H2B was stopped. Therefore, only quiescence 

neural stem cells (qNSCs) that had not divided more than five times (Waghmare et al., 2008) 

during the treatment period are GFP positive (GFP+). In mice without doxy treatment, all 

stem cells (cells expressing GFAP) are GFP+. 

8-week-old mice treated with doxy and without doxy were injected twice every 12 hours 

with diazepam (3 µg/g of body weight) or PBS (as control) as shown in table 1. These mice 

were killed 24 hours after the first injection by either neck dislocation or by perfusion for 

immunohistochemistry.  

 

Table 1. NSC types labelled in each condition   

 Doxycycline 

treatment 

No doxycycline 

treatment 

Diazepam  

injection 

qNSCs  

(activated GABAAR) 

Proliferating and qNSCs 

(activated GABAAR) 

PBS 

 injection 

qNSCs Proliferating and qNSCs 
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The genotyping of the mice was performed from tail tissue biopsies. To extract the DNA, 

tissue was incubated in TESS buffer (Table 1) containing proteinase K (20µg/µl) over night 

(O/N) on a rocker at 560C. Next day, sodium chloride (NaCl) (5M) was added to the solution 

and mixed by inversion at room temperature (RT). After 15 minutes of full speed 

centrifugation, supernatant containing the DNA was isolated and mixed with 500µl of 

isopropanol. The mixture was mixed by inversion and centrifuged at full speed for 15 

minutes. The supernatant was carefully removed, and the pellet was let to dry at 370C for 

30-60 minutes. Last, pellet was resuspended in 100 µl TE buffer (Table 2). 

 

Table 2  

TESS buffer: TE buffer: 

50mM Tris pH8 10mM Tris pH8 

100mM EDTA 1mM EDTA pH8 

100mM NaCl  

1% SDS  

 

To genotype the mice, polymerase chain reaction (PCR) was performed to amplify the 

transgenes in the DNA solution extracted from the tail biopsies. The primers used to amplify 

both transgenes were:  

H2B trans Forward: 5’-AAG TTC ATC TGC ACC ACC G-3’ 

H2B trans Reverse: 5’-TCC TTG AAG AAG ATG GTG CG-3’ 

GFAP trans Forward: 5’-CGC TGT GGG GCA TTT TAC TTT AG-3’ 

GFAP trans Reverse: 5’-CAT GTC CAG ATC GAA ATC GTC-3’ 

 DNA solution was mixed with primers, polymerase, polymerase buffers and 

deoxynucleotides triphosphates (dNTPs) as described in table 3. 
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Table 3  

PCR mix genotype GFAP-H2B: PCR conditions: 

1µl 10x Reaction buffer S 94 oC  1.5 min 

2µl 5x Enhancer buffer P 94 oC  30 s* 

0.2µl dNTP (10mM)  62 oC  60 s* 

0.2µl Primer GFAP transFW (100µM) 72 oC  60 s*   

0.2µl Primer GFAP transRW (100µM) 72 oC  2 min 

0.2µl Primer H2B transFW (100µM) 4 oC  forever 

0.2µl Primer H2B transRW (100µM)  

0.1µl   peqGOLD Taq-DNAPolymerase  

4.7µl H2O  

1.2µl DNA solution  

*=35x  cycles  

 

The PCR conditions are described in table 3. 

The PCR product was mixed with 6x Loading Buffer and loaded into a 2% Agarose gel in TBE 

Buffer (Tris‐borate 89 mM, EDTA 2 mM pH 8), to which Midori green nucleic acids stain 

(1:500000) was added to visualize the DNA. 1Kb Plus DNA ladder was used (0,5 μg). The 

expected bands were:  

H2B transgene: 173bp  

GFAP transgene: 450bp  

 

2.2.3 Tlx-/- mice 

 

Mice lacking the tailless gene homologue (Tlx) expression by LacZ knock in (Tlx-/-) were 

generated by Taconic Farms Inc., for Dr Paula Monaghan, University of Pittsburgh. This 

mouse line was maintained by crossing heterozygotes mice. Tissue extracted from tail 

biopsies was used to genotype them. The same protocols used for GFAP-H2B mice were 

used to isolate the DNA, PCR of the target gene, and electrophoresis. Amplification of the 

genomic DNA was done using three primers: 5’- GCCTGCTCTTTACTGAAGGCTCTT-3’, 

5’ATTGGGTCC AGACATGGCCCTAGTTG-3’, and 5’-GTTCATGTTGACT TCCAAACACTTCTTC-3’. 

The PCR conditions are described in table 4. 
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Table 4 

PCR conditions Tlx-/- genotype: 

95oC  15 min 

95oC  30 s* 

55oC  1 min* 

72oC  30 s * 

72oC  10 min 

4oC           forever 

*=  32 x cycle 

 

2.3 Stem cell isolation and cell culture procedures 

2.3.1 Subventricular zone (SVZ) dissection and flow cytometry analysis by 

FACS 

 

Subventricular zones from 8-week-old mice were dissected in dissection solution (Table 5). 

The dissected tissue was digested with papain solution (1.6mg/ml) for 3 min at 37°C. 

Afterwards, the enzyme was inhibited with ice cold ovomucoid solution (1.4mg/ml) and 

washed away, and the tissue was dissociated in sort medium (table 5) with a pipette.  The 

cell suspension was then filtered in a 35 μm nylon mesh BD falcon tube to obtain a single 

cell solution.  

The cell suspension was incubated for 30 minutes at 4oC with an antibody against Prominin1 

directly conjugated to an allophycocyanin (APC) fluorophore (1:100).  After the incubation 

time, the non-bound antibody was washed away from the cell suspension by centrifugation 

for 5 minutes at 1000 rcf. Cells were incubated then with propidium iodide (PI) (1:100) to 

discard dead cells. After this, cells were analysed and sorted by FACS. The gates used to 

isolate the different populations are shown in figure 1. 
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For the experiments meant to label the apical side of the SVZ, brains were dissected, and 

ventricles were cut open by the medial wall. Then, the apical surface of the lateral wall of 

the ventricles was exposed to DiI lipophilic dye for 3 minutes at room temperature.   The 

stained tissue was then washed twice with Leibowitz L15 medium, and the SVZ was 

dissected and dissociated as described above.  

Cells were sorted in sort medium and plated in Euromed-N (NS-A) cell medium (Table 5) for 

overnight experiments and clone analysis. For immunocytochemistry analysis, sorted cells 

Figure 2.1 Gate settings for florescent activated cell sorting (FACS). 
Cell suspension from the dissected SVZ was stained with Prominin1-APC conjugated antibody. Cells were 

selected according to their size with gate P1 (A). The viability of the cells was analysed using PI (B). Negative 

controls were used to set the gates for Prominin1 staining (C) and when cells expressing GFP were analysed 

(E). D and F show a representative example of cells immunopositive for Prominin1 (D) or GFP (F).  

Abbreviations: SSC: side scatter, FSC: forward scatter, PI: propidium iodide, GFP: green fluorescent protein. 
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were plated in an 8 well chamber slide coated with poly-D-lysin in Neurobasal-A (NB-A) cell 

medium (Table 5).  

 

Table 5    

Dissection solution  

(pH 6.9): 

Sort medium: NS-A cell medium: NB-A cell medium: 

150 mM Sucrose  1:2 NS-A complete* NS-A complete*  NB-A complete* 

125 mM NaCl  1:2 Leibowitz L15 Medium  1:50 (50X) B27  1:50 B27 

3.5 mM KCl  2% B27 supplement 10ng/ml huFGF-2 10ng/ml huFGF-2 

1.2 mM  NaH2PO4  1%FCS  20ng/ml huEGF 20ng/ml huEGF 

2.4 mM CaCl2・2H2O  45% D-(+)- Glucose    

1.3 mM MgCl2・6H2O  10 ng/ml huFGF-2   

0.1%(6.65 mM) Glucose  0.001% DNAse   

2 mM Hepes     

*NS-A/NB-A complete: NS-A/NB-A medium supplemented with L-Glutamine (2mM) and 

penicillin/streptomycin (100g/ml). 

   

 

2.3.2 Muscimol and PD 158780 treatments 

 

Cells directly isolated from the SVZ were treated with muscimol to activate the GABAAR. 

These cells were plated either in NS-A (for re-sort experiments) or in NB-A cell medium (for 

immunocytochemistry analysis) with muscimol (50µM) for 24 hours at 37oC 5% CO2. After 

this time, cells were either fixed with 3% paraformaldehyde (PFA) in PBS containing 4% 

sucrose for immunocytochemistry analysis, or they were incubated with an APC directly 

conjugated antibody against Prominin1 (1:100) and processed for flow cytometry. 

In the experiments meant to block EGFR tyrosin kinase, PD 158780 (20µM) was added to 

the cells plated in NB-A cell medium for 24 hours at 37oC, 5% CO2. After this time, cells were 

fixed with 3% PFA in PBS containing 4% sucrose for 10 minutes and processed for 

immunocytochemistry analysis. 
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2.3.3 Immunocytochemistry 

 

Fixed cells were incubated with 10 mM glycine in PBS for 5 minutes. Then, cells were either 

permeabilized in 0.5% NP-40 in PBS for 5 minutes (when permeabilization was necessary) 

and rinsed with PBS, or directly incubated with the primary antibody. The incubation with 

the primary antibodies was performed O/N at 4°C. Next day, after washing twice with PBS, 

the secondary antibody was applied to the cells for 1 hour at RT. Cells were also incubated 

with 4′,6-diamidino-2-phenylindole (DAPI) (1:100) during this time. Afterwards, cells were 

washed twice with PBS, and 30μl Mowiol was added to the slide. Finally, a 24 mm X 60 mm 

glass coverslip was put on top of the slice to cover the cells. Mowiol was let to dry at RT for 

24 hours. After this time, cells were analysed by microscopy. 

 

2.4 RNA isolation, retrotranscription and quantitative PCR 

2.4.1 RNA isolation 

 

Each selected population of cells was sorted by FACS directly into 100 μl RNA lysis buffer. 

Then, cells were briefly homogenized by vortexing and kept at -80oC until RNA extraction. 

RNA was extracted accordingly to the PicoPure™ RNA Isolation Kit (Applied Biosystems). 

Briefly, the lysate was mixed with same volume of 70% ethanol before transferring into the 

spin column. To bind the RNA to the column, the column was spin down, and the flow-

through was discarded. The column was then washed with 100 μl of W1 buffer. DNAse was 

added to the column to eliminate non-target DNA. The column was washed twice with 100 

μl of W2 buffer, and RNA was eluted in 20 μl of elution buffer. RNA concentration was 

measured with a Denovix spectrophotometer. 
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2.4.2 Retrotranscription 

 

The RNA was retro-transcribed into cDNA directly after the extraction.  8 μl RNA were 

annealed with 2 μl OligodT at 80oC for 3 minutes. Then, the RNA containing solution was 

mixed with the rest of components showed in table 6 to a final volume of 20 μl. All the 

reagents were mixed well and incubated at 42oC for 60 minutes for retrotranscription in a 

Pro-Flex PCR system. The reverse transcription was stopped by incubation at 80oC for 10 

minutes. The resulting cDNA was stored at -20 oC until performance of quantitative PCR. 

 

Table 6 

Retrotranscription mixture: 

1:5 MLV buffer (5x) 

dNTP´s (10mM) 

RNAsin (40U/ μl) 

M-MLV (200 U/ μl) 

10 μl RNA and oligodT 

DEPEC water (up to 20 μl) 

 

2.4.3 Quantitative PCR (qPCR) 

 

To analyse the levels of mRNA of the genes of interest in each cell population, the Taqman 

gene expression assays (Applied Biosystems) were used. The analysis was based on pre-

designed probes for the genes of interest, and their expression was quantified respect to 

the basal expression of β-actin.  The cDNA solution was mixed with probes and master mix 

as showed in table 7. Then, the mixture was incubated at 95oC for 10 min and followed by 

55 cycles of 95oC  for 15 seconds and annealing at 60oC for 1 minute in a real-time-qPCR 

instrument (Applied biosystems). The data was collected during the annealing procedure. 

Table 7 

qPCR mixture: 

Taqman Master Mix (2X) 10 μl 

Probe 1 μl 

RNase-free ddH2O 5 μl 

cDNA 4 μl 
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Cycle threshold (CT) values were obtained from the logarithmic phase of amplification plots 

for the genes of interest and were normalized to the average CT value of beta Actin 

calculating the delta CT value (ddCT) for each cell population.   

 

2.5 Adeno associated virus (AAV) production and surgeries 

2.5.1 Plasmid preparation 

 

Plasmids constructs used to create adeno-associated viral particles (AAV) type 2/1 were 

created by Dr. Yan Shi (Shi, 2015). These plasmids contain either a short-hairpin sequence 

to downregulate Hes1 gene or a scramble sequence as control, both expressed under the 

regulation of a U6 promoter. These sequences are followed by the humanized recombinant 

green fluorescent protein (hrGFP) sequence which is driven by the chicken β-actin promoter 

(CBA) and follow by the woodchuck hepatitis virus posttranscriptional regulatory element 

(WPRE) and bovine growth hormone (bGH) polyA signal. Besides these, the following 

packaging plasmids were used: 

pRV1 - Containing the AAV2 Rep and Cap sequences. 

pH21 - Containing the AAV1 Rep and Cap sequences. 

pFdelta6 - Adenovirus-helper plasmid. 

All plasmids were amplified using the bacterial strain Stbl3 (Invitrogen) to avoid 

recombination and partial deletion. To do so, competent cells were transformed by heat 

shock at 42oC for 45 seconds using 100ng of DNA. After that, bacteria cells were incubated 

in LB medium for 1 hour at 37 oC. These cells were plated in LB agar plates containing 100 

µg/ml ampicillin and grown overnight at 37 oC. Isolated colonies were selected and grown 

in 5 ml LB medium with 100 µg/ml ampicillin at 37 oC on a shaking plate overnight. DNA 

from these cells was isolated following the instructions of the Quiagen Mini prep kit. In 

order to verify the plasmid sequence, DNA from the different plasmids was digested with 

restriction enzymes as shown in table 8. 
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Table 8    

Vector: Enzyme: Buffer: Products: 

pFdelta6 HindIII R 5572bp 

3011 bp 

2937 bp 

2381 bp 

1522 bp 

pRV1 XbaI Tango 7505 bp 

3867 bp 

pH21 SacI SacI 3953 bp 

2827 bp 

540 bp 

pAAV-U6-shHes1-CBA-GFP HindIII  BamHI NeBuffer 2.1 70 bp 

pAAV-U6-shSC-CBA-GFP HindIII  BamHI NeBuffer 2.1 70 bp 

 

The different fragments were checked by agarose gel electrophoresis. The correct clones 

were amplified by growing them in 500 ml of LB medium with 100 µg/ml ampicillin at 37 oC 

on a shaking plate overnight. DNA from these cells was isolated according to the instructions 

of the Invitrogen Maxi-prep kit. 

 

2.5.2 AAV production 

 

The cell line HEK293 was used for viral production. Cells were grown in DMEN high glucose 

medium supplemented with heat inactivated fetal calf serum (FCS) (1:10), non-essential 

amino acids (1:100), sodium pyruvate (1mM) and penicillin/streptomycin (100g/ml). Cells 

were split when 70% confluence was reached. Two viral particles were prepared, one 

containing the plasmid with the short hairpin sequence to downregulate Hes1 (AAV shHes1) 

and one with a scramble sequence as control (AAV SC). For each viral production, 5x 14cm 

plates of HEK293 cells were plated. All procedures related to virus production were carried 

out in biosafety Class II laboratory and tissue culture hood. Before transfection, medium 

from the cells was change to Iscove's Modified Dulbecco's Medium (IMDM). Transfection 

mixture was prepared as shown in table 9, and after being filter with a 0.2 µm syringe, it 

was mixed with 13 ml HEBS buffer (table 9) wilst vortexing the solution. 5ml of the final 

solution were added to each plate drop-wise in a circular motion to transfect the cells. 
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Table 9  

Transfection mixture: HEBS Buffer (pH 7.05): 

12 ml H2O 50 mM HEPES 

1.65 ml 2.5M CaCl2 280 Mm NaCl 

62.5 µg AAV plasmid 1.5 mM Na2HPO4 

125 µg pFdelta6 plasmid  

31.25 µg pRVI plasmid  

31.25 µg pH21 plasmid  

 

The cells were incubated at 37oC. After six hours, the medium was replaced with DMEM 

complete medium, and plates were returned to the incubator for further 60 hours. 

After the incubation time, cells were washed with PBS and detached using a cell scraper. 

The cell suspension was collected and spin down for 5 minutes at 800 g. The pellet was 

resuspended in 150 mM NaCl/ 20 mM Tris Sodium deoxycholate (0.5%) and benzonase 

(50U/ml) were added to the viral suspension, and it was incubated for 1 hour at 37oC in the 

water bath. Afterwards, the mixture was centrifuged at 3000g for 15 minutes at 4oC to 

remove cell debris. The supernatant was collected and kept at -20oC until the purification 

procedure. 

To purify and concentrate the AAV, the viral suspension was centrifuged at 3000g for 15 

minutes at 4oC. Heparin columns were pre-equilibrated with 10 ml of 150 mM NaCl/ 20 Mm 

Tris. Supernatant from the viral suspension was loaded in the heparin column with a 60 ml 

syringe and a pump set at 1 ml/min flow rate. Afterwards, the column was washed with 20 

ml 100 mM NaCl/ 20 Mm Tris, continued by with 1 ml 200 mM NaCl/ 20 Mm Tris and 1 ml 

300 mM NaCl/ 20 Mm Tris. To elute the virus from the column, column was washed 

sequentially with 1.5 ml 400 mM NaCl/ 20 Mm Tris, 3.0 ml 450 mM NaCl/ 20 Mm Tris and 

1.5 ml 500 mM NaCl/ 20 Mm Tris. The final elution was concentrated using Amicron Ultra-

4 concentrators at 2000g for 2 minutes to a final volume of 250 µl. The vector solution was 

sterilized by filtration through a 13 mm, 0.2 µm syringe filter. 
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2.5.3 Intracranial viral injections 

 

WT and Tlx-/- mice were transferred to the KEB facilities (IBF Heidelberg) two days before 

the surgical injection for adaptation. Mice were anesthetized with 10 µl/g of body weight 

of sleeping mix (table 10). Then, they were fixed in a WPI stereotaxic frame and, after 

removing hair, the head was sterilized with 70% ethanol. A 2 cm long incision was made in 

the skin and two holes were drilled in the skull (one in each hemisphere) according to the 

right coordinates to target the lateral ventricles (Table 11). Using a Nanofil 10µl syringe with 

a 33-gauge needle, 0.5 µl of AAV was injected in each hemisphere at 200 nl/s. Once the AAV 

was injected, the needle was left 5 minutes inside the ventricle in order to minimise the 

reflux. After stitching, mice were injected with 300 µl pain killer and 250 µl wake up mix 

(table 10). 

 

Table 10   

Sleeping mix: Pain killer mix: Wake up mix: 

4,5 ml  0,9% NaCl 4,75 ml 0,9% NaCl 0,5 ml Atipamezol 

0,5 ml Medetomedin   0,25 ml Buprenorphine   5 ml Flumazenil   
1,0 ml Midazolam    3 ml Naloxon 

1,0 ml  Fentanyl     

 

Table 11   

Coordinates from Bregma: WT Mice: Tlx-/- mice: 

Anterior-posterior (Y):  0 mm +1.2 mm 

Medium-lateral (X): +/- 1.2 mm +/- 0.8 mm 

Dorso-ventral (Z): -2.5 mm  -2.5 mm 

 

 

2.6 Histology and fluorescence microscopy 

2.6.1 Perfusion 

 

To preserve brain tissue for immunohistochemistry, mice were intracardially perfused. First, 

mice were injected intraperitoneally with 50 µl Narcoren (160 mg/ml) to anesthetize them. 

After confirming the loss of podal reflexes, mice were immobilized to the table.  Then, the 
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chest was cut open to expose the heart, and PBS solution was pumped into the left ventricle 

with a butterfly needle. An incision was made in the right atrium to remove the blood from 

the body. Once the blood was clean out (after pumping around 20 ml PBS), when the liver 

showed a light brown color, PBS solution was switched to 4% paraformaldehyde (PFA) in 

PBS. PFA was pumped until the body showed stiffness (around 20 ml). Then, the brain was 

extracted and kept in 4% PFA at 4oC overnight for post-fixation. Next day, brains were 

washed twice with PBS and kept in 0.05% Azide in PBS at 4oC. 

 

2.6.2 Vibratome sectioning 

 

Brains were embedded in 4% low melting agarose in a squared plastic scaffold. Once the 

agarose was solid, brains were glued to the slicing base of a Vibratome HM 650V. Coronal 

sections of 35 µm were made from the olfactory bulbs until the hippocampus. Slices were 

collected and kept in 0.05% Sodium Azide in PBS at 4oC until they were processed for 

immunohistochemistry.   

 

2.6.3 Immunohistochemistry 

 

Brain sections were washed once with PBS to eliminate the azide. If permeabilization was 

necessary, sections were incubated in 0.5% NP 40. Then, after washing twice to eliminate 

the detergent, they were incubated in 100 mM glycine for 15 minutes on a rocking plate at 

RT, and then changed to 50 mM ammonium chloride and incubated on a rocking plate for 

15 minutes at RT for quenching. Slices were incubated in 5% FCS blocking solution for 1 

hour.  Then, primary antibody was added and incubated overnight at 4oC on a rocking plate. 

Next day, slices were washed twice with PBS to eliminate primary the antibody, after that, 

the secondary antibody was added and incubated for 1.5 hours at RT on a rocking plate. The 

slices were afterwards washed twice with PBS and incubated with DAPI 1:500 in PBS for 10 

minutes. The sections were then mounted on glass microscope slides using Mowiol and 

protected with glass coverslips on top. 
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For the immunostainings against IdU, sections were treated (before the incubation with the 

primary antibody) with DNAse (300 µg/ml) in DNAse buffer (table 12) for 30 minutes at 

37oC. Then, the above described immunohistochemistry protocol was followed. 

 

Table 12 

DNAse buffer 10X: 

100 mM Tris 

25 mM MgCl2 

5 mM CaCl2 

 

Confocal pictures from these slices were taken using either an AR1 Nikon confocal 

microscope or a Leica SP8 confocal microscope. Pictures from coronal sections were taken 

from slices in region 20 and 30 (counting the region 1 as the beginning of the lateral 

ventricles and continue with next region numbered every 35 µm).  

 

2.7 Quantification and statistical analysis 

 

For each immunohistochemistry analysis, three different regions from the SVZ (dorsal, 

lateral and ventral) from at least three mice were analysed. Positive cells for the different 

antigens were counted in relation of total number of cells stained with DAPI. In analysis per 

region of interest (ROI), cells were counted within a fixed rectangular area (15000 μm2) 

aligned with the longest side along the apical side of the SVZ.  For quantification of the 

protein levels, all slices or plated cells were incubated with the same antibody mix. Later, 

pictures of these sections or cells were taken with a Leica SP8 confocal microscope using a 

HyDTM detector, which allows photon quantification per pixel. The intensity from the 

protein of interest was measured using ImageJ and normalized to the background. For these 

analyses, ≥30 cells per condition were measured.  

All images were analysed with ImageJ, and analyses were performed either with Microsoft 

Excel software or with GraphPad Prism 5.0. Plots show the result as the mean ± SEM 

(Standard Error of the Mean). For statistical analysis, Student’s t test was utilized, with 
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Welch’s correction being used where necessary (if the variances were significantly different 

as measured by the F-test). (n.s.: not significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001). 
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Chapter 3. Results 

3.1 Extrinsic regulation. GABA regulation of NSCs quiescence 

3.1.1 Diazepam promotes cell cycle activation in the adult subventricular 

zone 

In order to study whether GABA in the subventricular zone (SVZ) might be regulating 

activation of adult neural stem cells (NSCs), 8-weeks-old wild type (WT) mice were given an 

intraperitoneal injection of diazepam, a positive allosteric modulator of GABAAR, or PBS (as 

control) in combination with the thymidine analogue IdU, and sacrificed 1 or 7 days after 

the injection. Coronal sections from the SVZ were stained with antibodies against Ki67 and 

IdU to analyse cell cycle entry and DNA replication, respectively (Fig.3.1). 

The analysis showed, that 24 hours after the injection, diazepam treatment significantly 

increased the number of cells that entered the cell cycle (Ki67+) and of cells that had 

undergone DNA synthesis (IdU+) in the SVZ (Fig.3.1A). Seven days after the injection, the 

number of cycling cells, but not of IdU+ cells, was still increased in the SVZ of diazepam-

treated mice (Fig.3.1B). This suggested that, even though diazepam elicited cell cycle entry 

and DNA synthesis, the dividing cells were not undergoing through repetitive cycles of cell 

division, since in this case they would have lost with the IdU label after seven days. 

To further understand how diazepam affects the cycling dynamics, I quantified the number 

of single and double immunopositive cells for Ki67 and IdU in the SVZ of diazepam and 

control injected animals (Fig.3.2). I found that there was no change in the number of single 

positive cells for Ki67 neither at 1 day nor at 7 days after diazepam injection (Fig.3.2A). 

However, when looking at the single positive cells for IdU, I observed a significant decrease 

seven days after treatment (Fig.3.2B), finding at the same time an increase in double 

positive cells (Ki67+IdU+) (Fig.3.2C). These results indicate that IdU+Ki67- cells entered cell 

cycle after diazepam treatment and became IdU+Ki67+, suggesting that diazepam is 

activating a population of slow dividing cells that, even when they are in cell cycle, they are 

not actively dividing, so after seven days, they still have the IdU label.  
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To establish whether diazepam also promoted the proliferation of NSCs, I took advantage 

of the genetically modified hGFAPtTA:H2B-GFP mice, here after referred to as GFAP-H2B 

mice. These mice express the tetracycline trans activator (tTA) under the control of the 

human Gfap promoter (a marker for NSCs), and the human histone H2B fused to the green 

fluorescent protein (H2B-GFP) under the control of a tetracycline-responsive regulatory 

element (TRE) (Fig. 3.3A). This construct represents a Tet- off system by which the 

expression of the reporter gene is downregulated by the administration of doxycycline 

(doxy). Thus, after four weeks of doxy administration in the drinking water, GFP positive 

cells represent non-dividing label-retaining progenitors, i.e. quiescent NSCs (qNSCs) 

(Fig.3.3B). However, In the absence of doxy administration, GFP positive cells include 

proliferating and non-proliferating NSCs (Fig.3.3C). To further investigate the suitability of 

this mouse model, I performed a thorough characterization of the GFP labelled cells. Upon 

FACS analysis of the dissociated SVZ (Fig.3.3B, C), I observed that NSCs with very high levels 

of GFP (GFPhigh), i.e. cells undergoing mitosis with condensed chromatin (Kanda et al., 1998; 

Sivakumar et al., 2014) are significantly rarer in mice treated with doxy in the drinking water 

for four weeks than in the untreated counterpart (Fig.3.3E).  Besides, the analysis of the cell 

cycle marker Ki67 in coronal slices from treated and untreated mice showed a higher 

number of NSCs in cell cycle in the mice without doxy treatment (Fig.3.3D). Taken together, 

these data confirmed that administration of doxy to GFAP-H2B mice for four weeks 

promotes labelling of qNSCs, whereas in the absence of doxy, labelled NSCs are mostly in a 

proliferative state (pNSCs). Hereafter I will refer to qNSCs and pNSCs, to indicate H2B-GFP-

labelled NSCs derived from GFAP-H2B mice treated with doxy in the drinking water for four 

weeks or left untreated, respectively. 

Figure 3.1  Diazepam promotes cell cycle activation in the SVZ. Analysis of Ki67 expression and IdU 

incorporation in vivo. (A)Scheme of cell cycle phases where Ki67 and IdU are found. (B, C) Confocal 

photomicrographs of coronal section of the adult SVZ immunostained for Ki67, IdU and DAPI one and 

seven days after diazepam treatment respectively. (B, C) Second panel: quantification of total Ki67 y and 

IdU immunoreactivity one and seven days after diazepam treatment respectively. Samples normalized to 

control. Data is shown as mean+SEM (n≥4, **: p<0.005, ***: p<0.001). Scale bar=50 μm. Arrow head: 

single immunopositive cell, arrow: double immunopositive cell. 
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To investigate whether GABAAR activation promotes NSC proliferation in the SVZ, I injected 

intraperitoneally with diazepam or PBS 8 week-old GFAP-H2B mice, which had been either 

administered doxy for four weeks or left untreated.  After further 24 hours mice were 

sacrificed and processed for immunohistochemistry to investigate Ki67 expression in NSCs 

(Fig.3.4). This analysis revealed an increased Ki67 expression both in pNSCs (Fig.3.4B) and 

Figure 3.2 Diazepam increases cell cycle activation of a slow dividing population of cells. Analysis of cell 

cycle dynamic in adult SVZ after diazepam treatment based on Ki67 and IdU immunoreactivity. (A, B, C) 

Quantification of total Ki67 y and IdU immunoreactivity in coronal sections of adult SVZ one and seven 

days after diazepam treatment. (A) Representation of cells in cell cycle that have not incorporated IdU 

(Blue: 1 day after treatment) or cells in cell cycle entry (orange: 7 days after treatment). (B) Representation 

of cells in S phase that left cell cycle after 24h (blue) or label retaining cells outside the cell cycle (orange).  

(C) Represent cells in S/G2/mitosis phase (blue) or label retaining cells that were kept in cell cycle during 

the seven days of treatment (orange). Data is shown as the percentage of the total IdU immunoreactivity. 

Bars represent the mean of the total populations analysed. (n≥4, #: p<0.05 between days of treatment, 

***: p<0.001 between control and treatment). Abbreviations: DAT= day after treatment. 
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qNSCs (Fig.3.4C) upon diazepam injection, indicating that NSCs were indeed affected by 

diazepam treatment. However, I realized that labelled cells in the SVZ showed different 

visible intensities of the GFP reporter. I reasoned that in pNSCs GFP intensity positively 

correlates with the stemness state of the cell, as the expression of GFAP, and therefore of 

the reported gene, is turned off upon lineage progression (Fig.3.5A, B). Thus, I took 

advantage of GFP intensity to discriminate between NSCs from more differentiated 

progenitors. Since the intensity of Ki67 expression also changes according to the phase of 

the cell cycle, being strong (Ki67++) in mitotic cells compared to the remaining cycling cells 

(Ki67+), I analysed the NSCs according to the intensity of both parameters (Fig.3.5A, B). This 

Figure 3.3 Mouse model for the analysis of neural stem cell dynamic. (A) Genetic construct of the hGfap-

(tTA):(TRE)H2B-GFP genetically modified mice (GFAP-H2B to simplify). This construct presents a Tet off 

system in which doxycycline (doxy) treatment stops the production of the histone H2B-GFP fusion protein. 

(B, C) Gates used for FACS analysis of stem cells. Here, the GFP+ gate contains all the GFP positive cells 

while the GFPhigh contains those cells with high levels of GFP. (D) Number of NSCs in cell cycle (GFP+Ki67+) 

for both conditions (with or without doxy). (E) Number of cells with high GFP levels (highly condensed 

chromatin). Data shown as mean+SEM (n≥4, *: p<0.05, **: p<0.01, ***: p<0.005). Abbreviations: GFP= 

green fluorescent protein, FACS= fluorescence-activated cell sorting, SVZ= subventricular zone, pNSC= 

proliferating neural stem cell, qNSC= quiescent neural stem cell. 
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analysis showed that diazepam treatment increases the proportion of pNSC, which are 

GFP++Ki67+ (diazepam: 7.91 ± 0.75% vs control: 4.89± 0.42%) (Fig,3.5C), showing that 

GABAAR activation promotes cell cycle entry of NSCs. 

 

  

Figure 3.4 Diazepam promotes cell cycle activation in NSCs. Analysis of cell cycle dynamics on 

proliferating (A-B) and quiescent NSCs (C- D) after diazepam treatment. (A, C) Confocal microphotographs 

of coronal sections from the SVZ of GFAP-H2B mice with or without doxy treatment. Mice were injected 

with diazepam or PBS and perfused 24 hours later. (B, D) Quantification of total double positive cells for 

GFP and Ki67 in mice without doxy treatment (B) or with doxy treatment (D). Data shown as mean+SEM 

(n≥4, *: p<0.05, **: p<0.01). Scale bar= 50 µm. Arrow: double immunopositive cell. Abbreviations: GFP= 

green fluorescent protein, SVZ= subventricular zone, qNSC= quiescent neural stem cell, PBS= phosphate 

buffered saline. 
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Figure 3.5 NSCs enter cell cycle after GABAAR activation. Analysis of cell cycle dynamics on proliferating 

NSCs. (A) Scheme showing the cell dynamics when NSCs (labelled in non-doxy conditions) enter the cell 

cycle. The scheme shows the different stages according to the intensity of the markers: high or low GFP 

(GFP++ or GFP+) and high or low Ki67 (K++ or K+). In this mouse model, all NSCs show high intensity for GFP, 

however, when they start differentiating, they lose GFP expression. (B) Confocal microphotographs of 

double immunopositive cells illustrating the different cell cycle stages analysed. (C) Quantification of the 

different cell groups showed in A in control and diazepam injected mice. Data shown as mean+SEM (n≥4, 

*: p<0.05, **: p<0.01). Scale bar= 10 µm. Abbreviations: GFP= green fluorescent protein, SVZ= 

subventricular zone, pNSC= proliferating neural stem cell, PBS= phosphate buffered saline. 
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Thereafter, I performed a similar analysis in qNSCs (Fig.3.6). In this situation, GFP intensity 

is associated with the quiescence state of the cell, as those cells that have not divided during  

administration of doxy will  show greater GFP levels (GFP++), while those that have divided 

will progressively dilute the expression of the reporter protein (GFP+), until becoming 

undetectable  after 5 rounds of cell division (Waghmare et al., 2008)  (Fig.3.6A).  In this 

analysis I observed that diazepam injection led to an increase in the number of GFP+Ki67+ 

cells (Fig.3.6B), whereas cycling GFP++ NSCs showed a trend increase, which was not 

Figure 3.6 Quiescent NSCs activate and enter the cell cycle following GABAAR activation. Analysis of cell 

cycle dynamics on quiescent NSCs. (A) Scheme showing the cell dynamics when quiescent NSCs (qNSCs) 

(labelled in doxy conditions) enter the cell cycle. The scheme shows the different stages according to the 

intensity of the markers: high or low GFP (GFP++ or GFP+) and high or low Ki67 (K++ or K+). In mice with 30 

days of doxy treatment, qNSCs that have not divided over the treatment period show high intensity for 

GFP, however, when they start dividing, they lose GFP expression. (B) Quantification of the different cell 

groups showed in A in control and diazepam injected mice. Data shown as mean+SEM (n≥4, *: p<0.05, **: 

p<0.01). Abbreviations: Doxy= doxycycline, GFP= green fluorescent protein, SVZ= subventricular zone, 

qNSC= quiescent neural stem cell, PBS= phosphate buffered saline. 
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significant, suggesting that diazepam mostly promotes activation of qNSCs and this effect 

was stronger in those cells that had already divided.  

 

3.1.2 GABAAR activation in NSCs leads to lineage progression from 

Prominin1+ to Prominin1- NSCs 

 

The previous experiments showed that diazepam promotes cell cycle entry of NSCs in the 

adult SVZ.  To further characterize the effect of GABAAR activation, I took advantage of flow 

cytometry to purify qNSCs and pNSCs from the SVZ of GFAP-H2B mice 24 after 

intraperitoneal injection of diazepam. In these experiments, cells from SVZ were further 

immunostained  with antibodies against Prominin1, which is expressed in  cells in contact 

with the ventricles  including ependymal cells and NSCs (Khatri et al., 2014; Mirzadeh et al., 

2008)) (Fig.3.7A). 

 

Figure 3.7 Quiescent NSCs become proliferating NSCs after diazepam treatment. FACS sort analysis of 

the effect of diazepam in GFAP-H2B mice. (A) FACS plot representing the two cell populations analyzed 

according to prominin1 expression (P+ or P-) and to the presence of GFP (G+ or G-). (B, C) FACS analysis, 

24h after diazepam treatment, of adult SVZ from GFAP:H2B mice after four weeks of treatment with 

doxycycline and without doxycycline respectively. Data are the mean+SEM of the total cell number 

normalized to the total Prominin1+EGFR-  cells (P+E-) (n≥5, *: p<0.05, **: p<0.01). Abbreviations: P= 

Prominin1, qNSCs= quiescent neural stem cells, pNSCs= proliferating neural stem cells FACS= 

Fluorescence-activated cell sorting. 
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This analysis revealed that both pNSCs and qNSCs were mostly represented by Prominin1- 

cells (G+P-) and only the minority were Prominin1+ cells (G+P+). Consistent with the previous 

observations in cell cycle analysis, I found that G+P+ and especially G+P- qNSCs were 

decreasing 24 hours after diazepam injection (Fig.3.7B), as expected if GABAAR activation 

causes qNSCs proliferation and loss of the H2B-GFP labelling.  In contrast, in pNSCs, i.e. 

isolated from mice not exposed to doxy, G+P- increased in number upon diazepam injection 

(Fig.3.7C). However, this change was not obvious in the G+P+ stem cell pool, suggesting the 

possibility that diazepam-induced proliferation is concomitant with the loss of Prominin-1 

expression. This could be caused by a lineage progression from P+ to P- NSCs, and therefore, 

this could be the reason why the increase in G+P+ cells could not be detected. To test this 

possibility, apical and basal NSCs were isolated after labelling of the apical SVZ with DiI 

(Fig.3.8A). These cells were exposed to the GABAAR agonist muscimol for 24 hours. 

Thereafter, G+P+ and G+P- cells were quantified within both apical (DiI+) and basal (DiI-) SVZ 

populations.  This analysis revealed that the apical cells were losing Prominin1 expression 

after GABAAR activation with a concomitant increase in the number of G+P- cells (Fig.3.8B). 

Moreover, this effect was not observed in the pool of basal SVZ cells. Strangely, the basal 

pool of cells, which virtually is compounded only by P- cells, showed high number of G+P+ 

cells 24 hours after being plated. Therefore, in order to understand if this was not the result 

of an in vitro artefact, and to unveil if the NSCs were migrating from an apical to a basal 

position or just losing the Prominin1 expression, I isolated the whole SVZs and culture them 

with or without muscimol for 24 hours. Later, DiI was applied and the levels of Prominin1 

were measured (Fig.3.8D). This analysis showed again an increase in the number of P- cells 

at the expenses of the number of P+ cells within the apical DiI+ population (Fig.3.8E). I also 

found no change in Prominin1 expression among basal DiI- cells. Taken together these data 

suggest that after GABAAR activation a subset of apical NSCs loses Prominin1 expression but 

not the apical surface. To Further confirm that no migration had taken place after GABAAR  
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activation, wild type (WT) mice were intra-ventricularly injected with adeno associated viral 

particles (AAV) containing a construct that expresses the humanized Gfp gene under the 

control of the constitutive CBA promoter to label the apical cells. We have previously shown 

that this approach leads overwhelmingly to the transduction and labelling of apical cells. 

After 14 days, mice were further injected intraperitoneally with diazepam/PBS and perfused 

24 hours later (Fig.3.8F). Coronal slices from these brains were obtained to investigate the 

position of the GFP+ cells. These analyses revealed however that virtually all infected cells 

maintained an apical position, independent of the diazepam treatment, confirming that 

GABAAR activation promotes the lineage progression from G+P+ to G+P- at the apical side of 

the ventricles. 

 

3.1.3 EGFR is upregulated in NSCs after GABAAR activation 

 

My results showed that GABAAR activation promoted an increase in cell cycle activation and 

lineage progression in NSCs. Since previous studies in our laboratory have shown that 

GABAAR activation increases the expression of the epidermal growth factor receptor (EGFR) 

at the cell surface (Cesetti et al., 2011; Li et al., 2015), I next investigated the involvement 

of EGFR expression in the GABAergic regulation of NSC proliferation.  To do so, I isolated 

Figure 3.8 GABAAR activation by muscimol on NSCs promotes lineage progression from P+ into P-. (A) 

Apical and basal NSCs from GFAP-H2B mice are separated using the GFP expression (marker for NSCs) and 

DiI staining in the apical surface of the ventricles. These cells are treated with muscimol, after 24h, 

Prominin1 is measured in both cell pools. (B, C) Quantification of total Prominin1 immunopositive cells 

after muscimol treatment in apical DiI+ cells (B) and basal DiI- cells (C). (D) Whole SVZs are dissected and 

incubated with muscimol. 24 hours later, DiI is applied in the apical surface and cells are analyzed 

according to GFP expression, DiI incorporation and Prominin1 expression. The quantification of this 

analysis is shown in E. (F) Mice are intraventriculary injected with AAV expressing GFP under a 

constitutional promoter to label the apical cells. 14 days after the surgeries, mice are intraperitoneally 

injected with diazepam/PBS to study cell migration from an apical to basal position. Representative 

coronal sections from this analysis are shown. Samples are normalized to control. Data is shown as 

mean+SEM (n≥4, *: p<0.05, **: p<0.01). Scale bar= 100 µm and 50 µm in magnifications. Abbreviations:  

G+= GFP+, P= Prominin1, D+= DiI+, SVZ= subventricular zone, AAV= adeno associated virus. 
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the RNA from G+P+ and G+P- qNSCs and pNSCs purified from GFAP-H2B mice 24 hours after 

intraperitoneal injection of diazepam or PBS as control (Fig.3.9A). In order to study the 

differential regulation in adults SVZ compared to the postnatal niche, I also performed a 

similar analysis on G+P+ and G+P- pNSCs derived from neonatal (P7) mice, as at this age the 

effect of GABAAR on EGFR regulation was previously observed (Cesetti et al., 2011; Li et al., 
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2015) (Fig.3.9A). This analysis revealed that G+P- pNSCs and qNSCs express higher levels of 

Egfr than the G+P+ counterpart, suggesting that the latter population proliferates less than 

the first. Moreover, diazepam only increased Egfr transcript levels in G+P+ qNSCs, consistent 

with previous findings that GABAAR activation increases EGFR protein transportation at the 

cell membrane (Cesetti et al., 2011a; Li et al., 2015b), but not overall transcript expression.  

In line with previous observations (Carrillo-García et al., 2014), P7 pNSCs cells showed 

higher Egfr expression levels than the adult counterparts. However, qNSCs also showed high 

Egfr expression, which was unexpected considering their quiescent state. Thus, I next 

investigated expression of the EGFR protein.  To this end, G+P+ and G+P- pNSCs were isolated 

from GFAP-H2B mice and afterwards plated in the presence or absence of muscimol for 24 

hours. Thereafter, cells were immunostained with antibodies against an extracellular 

epitope of the EGFR to quantify the protein levels expressed on the cellular membrane. 

Besides EGFR fluorescent intensity I also measured the cell area. The analysis showed that 

only G+P- cells increased the levels of EGFR at the cell surface (Fig.3.9D). However, both cells 

types augmented in cell size (Fig.3.9E, D). Altogether these data confirms that both cells 

types respond to GABAAR activation, first by increasing cell size, which leads to cell cycle 

activation as previously observed in the neonatal niche (Li et al., 2015), and second, by 

upregulating EGFR.  To understand whether the increase in EGFR expression reflected an 

increase in its activation, I looked at the activated form of EGFR by analysing the 

phosphorylated EGFR at tyrosine 1068 (pEGFR) (Fig.3.10).  Coronal slices from mice injected 

Figure 3.9 GABAAR activation on NSCs upregulates EGFR, both in RNA and protein levels. (A) G+P+ and 

G+P- cells are isolated by FACS from the SVZ of adult mice, with or without doxy treatment, 24h after being 

intraperitoneally injected with diazepam/PBS. These cells were also isolated from postnatal GFA-H2B mice 

in the day 7 after birth (P7). (B) RNA levels of Egfr in G+P+ and G+P- from the different treatments explained 

in A. Values are mean of RQ from ddCT +SEM   normalized to proliferating G+P+ (n≥7, #: p<0.05 between 

G+P+ and G+P- ; *: p<0.05, **: p<0.005 inside the same cell subset (G+P+ or G+P-). (C-F) G+P+ and G+P- cells 

were also isolated from GFA-H2B mice and plated to be stained with antibodies against EGFR in the cell 

membrane. Fluorescent values are measured for G+P+ (C) and G+P- (D).  Also, cell area was measured for 

both cell types (E and F respectively). Direct measurements from single cells are plotted, using a n≥100 

cells from n≥4 mice per condition (*: p<0.05, **: p<0.01, ***: p<0.005). Abbreviations: G+= GFP+, P= 

Prominin1, RQ= Relative quantification values, ddCT= delta-delta threshold cycle, pNSCs= proliferating 

neural stem cell, qNSCs= quiescent neural stem cell, RFU= relative fluorescence units. 
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with diazepam/PBS in doxy and non-doxy conditions, and from P7 mice were analysed for 

double positive cells (GFP+ pEGFR+), showing that, as expected, P7 mice displayed the 

highest number of activated NSCs (Fig.3.10B). But this result was not the consequence of 

mice at postnatal age having more NSCs than at adult age, but rather an increase in the 

Figure 3.10. Diazepam promotes EGFR activation on NSCs. (A) Representative confocal 

microphotographs of SVZ stained against phosphorylated EGFR (pEGFR) from adult GFAP-H2B mice, with 

or without doxy treatment, 24h after being intraperitoneally injected with diazepam/PBS, and from 

postnatal P7 GFAP-H2B mice. (B) Cell number of total double positive cells for GFP and pEGFR from the 

mice showed in A. (C) Double immunopositive cells for GFP and pEGFR from the mice showed in A 

separated according to their position respect to the ventricle cavity (apical= in contact with de ventricle, 

basal= no physical contact with the ventricle). Data shown as mean +SEM, *= significant difference inside 

the same cell type, #= significant difference between G+P+ and G+P- (n=4, *: p<0.05, **: p<0.01, ***: 

p<0.005, #: p<0.05, ##: p<0.01). Scale bar= 50 µm. Abbreviations: pE= phosphorylated EGFR, ND= non-

detected 
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proportion of NSCs displaying pEGFR immunoreactivity, because from the total NSCs pool, 

the EGFR activated fraction represented the 94,6 ± 2,3 % in postnatal mice, while in adult 

mice it only represented a 8,9 ± 0,7 % of total NSCs. This result explains why NSCs in young 

mice show a greater increase in proliferation in response to diazepam that NSCs in adult 

niche. Looking at the adult SVZ, diazepam increased EGFR activation both in pNSCs and 

qNSCs (Fig.3.10B). To have a better understanding of which subset of cells was being more 

affected by diazepam treatment, I analysed separately the NSCs in the apical surface of the 

ventricles (mostly integrated by G+P+ cells) from those at the basal side (comprising G+P- 

cells, (unpublished observations)), as shown in figure 3.10 A. This analysis revealed that 

neonatal SVZs present the highest number of GFP+pEGFR+ cells, in both apical and basal 

subregions of the SVZ compared to adult individuals (Fig.3.10C). Also, independent of the 

age and doxy treatment, the greatest quantity of pEGFR+ NSCs were found at the basal 

region, consistent with the RNA data showing that EGFR transcripts in G+P- NSCs are greater 

than in G+P+ NSCs.  Diazepam significantly increased the number of pEGFR+ pNSCs and qNSCs 

at the basal side of the niche, however, although comparatively fewer, pNSCs with activated 

EGFR at the apical side were only detected after diazepam treatment (Fig.3.10C) and never 

in the control condition.  

Altogether, these data show that EGFR signal is up-regulated in NSCs when GABAAR is 

activated in the adult niche. 

 

3.1.4 β1Integrin is downregulated in qNSCs after GABAAR activation 

 

My previous results showed that G+P+ and G+P- cells increased in cell size after GABAAR 

activation. Also, previous analysis in our lab, demonstrated that in the postnatal niche, 

GABAAR activation leads to an increase in aquaporin4, cell swelling, and cell activation 

(Cesetti et al., 2011; Li et al., 2015). Therefore, I thought that activation of NSCs might be as 

well affecting their interaction with the extracellular matrix (ECM). In order to investigate 

this, I analysed the expression of the β1Integrin subunit of the integrin receptor, a cell 

surface receptor implicated in the interaction with the ECM. First, I analysed the transcripts 
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expression of β1Integrin in G+P+ and G+P- pNSCs and qNSCs 24 hours after diazepam/PBS 

injection. The analysis revealed that only qNSCs were decreasing β1Integrin mRNA levels 

after diazepam treatment, and this decrease was observed in both, G+P+ and G+P- cells 

(Fig.3.11A). Next, I analysed β1Integrin in the intact SVZ of mice with or without doxy after 

being injected with diazepam/PBS (Fig.3.11B). The quantification of GFP+β1Integrin+ cells 
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showed that, again, only qNSCs were affected by diazepam, and undergoing a reduction in 

the expression of the receptor (Fig.3.11C). Also in this analysis, I quantified the effect of 

diazepam in the basal and apical region of the SVZ (Fig.3.11B) to investigate the differences 

in response between the two NSCs pools. The analysis showed that, in both apical and basal 

subregions of the niche, only qNSCs reduced β1Integrin expression after diazepam 

(Fig.3.11D), again suggesting that the change in β1Integrin expression occurred only in 

qNSCs. 

Next, in order to understand the GABAergic regulation of EGFR activation and β1Integrin 

expression, I analysed β1Integrin (β) together with pEGFR (pE) in qNSCs and pNSCs upon 

diazepam/PBS injection (Fig.3.12A). The analysis of apical and basal region of the SVZ 

showed that, compared to the controls and independent of the subregion of the niche, the 

activation of GABAAR led to a decrease in the population of NSCs displaying only β1Integrin 

immunoreactivity (G+β+) (Fig.3.12B, four left panels). A similar and stronger effect of 

diazepam was observed in qNSCs (Fig.3.12B, four right panels). At the same time, diazepam 

also led to an increase in the number of pNSCs displaying only pEGFR immunoreactivity 

(G+pE+) in the basal region of the SVZ (Fig.3.12B, four left panels), and, again, this effect was 

stronger in qNSCs (Fig.3.12B, four right panels). However, double immunopositive NSCs 

(G+pE+β+) were not affected by the treatment. Suggesting that GABAAR activation in NSCs 

activates a process by which cells with activated EGFR progressively lose the β1Integrin 

expression, changing from G+β1+pE- to G+pE+ β-. Since the increase in EGFR at the cell surface 

occurs within minutes of GABAAR activation and does not require a change in EGFR 

Figure 3.11 Diazepam decreases β1Integrin in RNA and protein levels on NSCs. (A) RNA levels of 

β1Integrin in G+P+ and G+P- from adult GFAP-H2B mice, with or without doxy treatment, 24h after being 

intraperitoneally injected with diazepam/PBS. Values are the mean of RQ from ddCT +SEM   normalized 

to proliferating G+P+ (n≥7, #: p<0.05 between G+P+ and G+P- ; *: p<0.05, **: p<0.01 inside the same cell 

subset (G+P+ or G+P-). (B) Representative confocal microphotographs of SVZ stained against β1Integrin 

from adult GFAP-H2B mice in the same treatment conditions as in A. (C) Quantification of total double 

positive cells for GFP and β1Integrin from the SVZs showed in B. (D) Double immunopositive cells for GFP 

and β1Integrin from the mice showed in B separated according to their position respect to the ventricle 

cavity (apical= in contact with the ventricle, basal= no physical contact with the ventricle). Scale bar= 50 

µm. Data shown as mean+SEM (n≥4, *: p<0.05, **: p<0.01, ***: p<0.005). Abbreviations: β1Int. = 

β1Integrin. 
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expression (Cesetti et al., 2011), my data are consistent with a model by which the decrease 

in β1Integrin is downstream to EGFR activation.  Moreover, the fact that the effect on 

β1Integrin transcript and protein is stronger in qNSCs suggests that GABAAR activation 

modulates the EGFR-β1Integrin signalling axis to affect specifically proliferation of NSCs 

undergoing quiescence, and this effect is greatly noted at basal region of the adult SVZ. 

 

3.1.5 Cell cycle activation of qNSCs after GABAAR activation is EGFR 

dependent 

 

My previous results confirmed that GABAAR activation directs NSCs into cell cycle activation, 

and they also showed that EGFR plays an important role in this regulation. For this reason, 

I investigated next whether increase in NSC proliferation requires activation of EGFR. To do 

so, I isolated G+P+ and G+P- qNSCs and plated them in the presence or absence of muscimol 

(GABAAR agonist) with or without PD158780 (a specific ErbB receptor tyrosine kinase 

inhibitor) for 24 hours (Fig.3.13). Thereafter, I fixed the cells and immunostained them for 

Ki67. The analysis showed that the blockage of EGFR activation signal was enough to restore 

cell cycle entrance to control values, and, this effect was observed in both cell types, G+P+ 

(Fig.3.13B) and G+P- (Fig.3.13C). Altogether, these data show that after GABAAR activation, 

NSCs need EGFR activation signalling to enter cell cycle. 

Figure 3.12 Diazepam affects mostly a population of qNSCs that upregulate EGFR signalling while 

decreasing β1Integrin expression. (A) Confocal microphotographs representing examples of the different 

triple immunopositive cells for GFP, β1Integrin and pEGFR found in the SVZ of adult GFAP-H2B mice with 

or without doxy treatment, 24h after being intraperitoneally injected with diazepam/PBS. (B) 

Quantification of the different GFP+ cells in relation with their expression of phosphorylated EGFR only 

(G+pE+β-), β1Integrin only (G+β+pE-), the expression of both (G+pE+β+), or only GFP expression (G+). Cell 

quantifications are shown according to their position in the SVZ (apical/basal) and according to treatment 

of the mice (doxy/non-doxy, diazepam/PBS). Data shown as mean+SEM (n≥4, *: p<0.05, **: p<0.01, ***: 

p<0.005). Scale bar= 10 µm. Abbreviations: β = β1Integrin, pE= phosphorylated EGFR, G=GFP 
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Figure 3.13 Cell cycle entrance of NSCs after GABAAR activation is EGFR dependent. (A) G+P+ and G+P- 

cells from adult GFAP-H2B mice with doxy treatment are plated and treated with muscimol to activate 

GABAAR or with muscimol and PD 158780 to block EGFR signaling. Cells are then stained with antibodies 

against Ki67. The figure shows confocal microphotographs representing examples of the different double 

immunopositive cells for GFP and Ki67 found in the control, muscimol and muscimol+ PD158780 

treatments. (B) Quantification of the cells in cell cycle (Ki67+) in the three experimental settings for G+P+ 

and G+P- cells. Data is shown as mean +SEM (n≥3, *: p<0.05, **: p<0.01, ***: p<0.005). Scale bar= 10 µm.  
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3.2 Intrinsic regulation. TLX regulation of NSCs quiescence 

3.2.1 Lack of Tlx leads to changes in NOTCH signalling in the SVZ 

 

Previous studies in our group asserted the importance of the orphan nuclear receptor TLX 

in the activation of NSCs in the SVZ. NSCs lacking Tlx expression (Tlx-/-) showed impaired 

proliferation and lineage progression (Obernier et al., 2011). Also, recent findings show that 

TLX interacts in an inhibitory way with Hes1 and Hes5 promoters, and lack of Tlx exerts an 

upregulation of NOTCH signalling related genes (Shi, 2015). Therefore, in order to have a 

better understanding of the relationship between TLX with NOTCH signalling in the 

regulation of NSCs, I analysed the activated form of NOTCH1 receptor, notch intracellular 

domain (NICD), in WT and Tlx-/- mice. As previously described (Carrillo-García et al., 2014; 

Cesetti et al., 2011; Khatri et al., 2014), NSCs and progenitors from the SVZ can be isolated 

based on the expression of Prominin1 (P+/P-) and high or low levels of EGFR (EH/EL), however 

EH cells are almost inexistent in the adult Tlx-/- niche. For this reason, only EL cells could be 

analysed. In this way, P+EL cells, which include qNSCs and ependymal cells, and P-EL, i.e. 

neuroblasts and the majority of cells in the SVZ, were analysed with an antibody against 

NICD. These results showed that in mice lacking Tlx, a higher proportion of P-EL cells 

presented NICD immunoreactivity (Shi, 2015). In order to better characterise this 

population of P-ELNICD+ cells that was increased in the mutant niche, I isolated P-EL cells 

from WT and Tlx-/- mice and performed double immunostainings against NICD plus different 

stem cell and progenitor markers such as doublecortin (DCX), GFAP, LeX-SSEA1 (LeX) and 

nestin (Fig.3.14A). This analysis revealed that the extra P-ELNICD+ cells in Tlx-/- were also 

GFAP+ (Fig.3.14B). Next, I looked at the NICD expression in the intact niche. Since the lack 

of Tlx also causes changes in brain morphology, I analysed the number of cells in the apical 

and basal region of the SVZ (Fig.3.14C), finding that the mutant niche presents a lower 

quantity of cells in the basal region compared to WT (Fig.3.14D). The analysis of NICD in the 

adult SVZ showed that lack of Tlx leads to an increase of NICD+ cells in the apical SVZ 

(Fig.3.14F) which was significant, both in comparison to the cells in the respective basal 

subregion as well as to the apical WT subregion of the SVZ. Taken together, these data show 
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that lack of Tlx increases NOTCH activation, and this increase takes place in an apical 

population of P- cells. 

 

 

 

Figure 3.14 NOTCH1 receptor activation increases in NSCs lacking Tlx expression. (A) Representative 

microphotographs of P-EL cells isolated from the SVZ of WT and Tlx-/- adult mice displaying 

immunoreactivity to NICD (green) and the indicated antigens (red). (B) Quantitative analysis of the double 

immunostaining illustrated in A. (C) Confocal microphotographs of SVZ in WT and Tlx-/- mice illustrating 

the different morphology between both adult mice.  (D) Quantification of cells in apical/ basal region in 

WT and Tlx-/- mice. (E) Confocal microphotographs of SVZ in Tlx-/- mice illustrating the immunoreactivity 

of NOTCH1 intracellular domain (NICD). (F) Quantification of NICD immunopositive cells in the apical/ 

basal SVZ of WT and Tlx-/- mice. Data is shown as mean +SEM (n≥3, *: p<0.05, ***: p<0.005). Scale bar= 10 

µm (in A) and 50 µm (in C- E).  
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3.2.2 Hes1 downregulation in Tlx-/- SVZ leads to NOTCH1 inactivation 

 

My previous results showed that NOTCH signalling is upregulated in mice lacking Tlx. 

Besides this, earlier analysis (Shi, 2015) also showed that NSCs in mice lacking Tlx showed 

an increase in the transcript levels of the NICD target gene Hes1. This gave us the idea that 

the impaired proliferation and lineage progression present in these mice could be due to an 

upregulated Hes1 expression. Therefore, I next used a viral construct to downregulate Hes1 

by injecting adeno-associated viral particles into the lateral ventricle of Tlx-/- adult mice. 

These viral constructs express Gfp, and either a short hairpin to target the Hes1 mRNAs 

(AAV shHes1) or a scrambled sequence (AAV Sc) as control. Mice were sacrificed 14 after 

the intraventricular injection. The downregulation efficiency of the construct was previously 

tested by infecting NSC cultures of the cell line O4ANS (Fig.3.15A). The analysis of mice 

injected with the AAV particles showed that, despite finding the same number of infected 

cells (GFP+) (Fig.3.15C), the SVZs of mice transduced with AAV shHes1 presented a higher 

number of cells (Fig.3.15B). To confirm that Hes1 downregulation also decreases HES1 

protein levels, coronal slices from transduced brains where stained with antibodies against 

HES1 (Fig.3.15D, E). The result showed that, consistent with previous observations, Tlx-/- 

mice present higher levels of HES1 protein compared to WT (Fig.3.15E). Additionally, 

transduced cells (GFP+) with AAV shHes1 presented significantly lower HES1 levels than the 

AAV scramble counterpart.  Also, and in line with my previous results, transduced cells, 

which represent only apical cells, showed higher immunofluorescence for HES1 than the 

non-transduced counterpart (GFP-) in the control situation, confirming again that apical 

cells in the mutant niche show an upregulated NOTCH-HES1 axis. Indeed, in a similar 

analysis of NICD immunoreactivity, apical (GFP+) control cells displayed the highest NICD 

values. This analysis also showed a significant downregulation of NICD expression in GFP+ 

cells upon injection of AAV-shHes1, but not AAV-Scramble viral particle in the mutant SVZ  

(Fig.3.15F, G). Thus, Hes1 downregulation is accompanied by NICD downregulation in the 

mutant niche.  
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3.2.3 Hes1 downregulation in Tlx-/- SVZ leads to proliferation and lineage 

progression 

 

The previous analysis showed that the SVZ in Tlx-/- mice displayed a higher number of cells 

after downregulation of Hes1. For this reason, to investigate a possible increase in 

proliferation after Hes1 downregulation, I analysed the cell cycle marker Ki67 together with 

the lineage markers GFAP and nestin in mice injected with AAV SC and AAV shHes1 

(Fig.3.16). Compared to the scramble-injected controls, transduced and non-transduced 

cells displayed a significantly higher immunoreactivity for Ki67 (Fig.3.16B), GFAP (Fig.3.16C) 

and nestin (Fig.3.16D). The fact that this effect was taking place in transduced and non-

transduced cells suggested a non-cell autonomous mechanism. For this reason, I performed 

a similar analysis quantifying the changes in marker expression in GFP+ and GFP- cells 

separately (Fig.3.17). As a result, downregulation of Hes1 changed the expression of the 

different markers in GFP+ and especially in GFP- cells. Cells in cell cycle increased in 

transduced and non-transduced cells with AAV shHes1 (Fig3.17A-C). However, even though 

the expression of GFAP (Fig.3.17E, F) and nestin (Fig.3.17H, I) was increased in both 

populations, the effect was significant only in GFP- cells. Interestingly, most of GFP- cells 

localized at the basal region of the SVZ, and since they do not express the reporter gene, it 

Figure 3.15 Downregulation of Hes1 in Tlx-/- mice reduces activation of NOTCH1 receptor. (A) RNA levels 

of Hes1 in O4ANS cell line after infection with adeno associated viral particles (AAV) containing a construct 

expressing GFP as reporter gene and either a control scrambled sequence ( Sc), or a short hairpin targeting 

Hes1 (shHes1). (B) Number of nuclei per region of interest (ROI) in the SVZ of Tlx-/- adult mice 14 days after 

the intraventricular injection of AAV Sc or AAV shHes1. (C) Quantification of GFP+ infected cells in the SVZ 

of Tlx-/- mice 14 days after the injection with AAV Sc and AAV shHes1.  (D, F) Confocal microphotographs 

illustrating representative examples of double immunostaining for GFP (green) and HES1/NICD (red) in 

the SVZ of WT mice (D) and Tlx-/- mice 14 days after intraventricular injections with AAV Sc and AAV shHes1. 

(E, G) Quantification of HES1 (E) and NICD (G) levels (brightness intensity normalized to background). Data 

for immunohistochemistry quantification is shown as mean ± SEM n≥30 cells per condition. RNA 

expression data are shown as the mean of RQ from ddCT ± SEM. Quantification data is shown as mean 

+SEM (n≥3, *: p<0.05, ***: p<0.005). Scale bar= 10 µm. Abbreviations: ROI= region of interest, RFU= 

relative fluorescence units, NICD= notch1 intracellular domain, Sc= scramble sequence, sh= short hairpin, 

AAV= adeno associated virus. 
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is reasonable to think that they derived from a basal pool of cells in a quiescent state. I next 

analysed whether the manipulation with AAV shHes1 affected also neurogenesis. To do so, 

I look at the expression of DCX (a marker for neuroblasts), finding that, as with the previous 

makers, there were an increased number of DCX+ cells upon Hes1 downregulation, and most 

of these cells were also GFP- (Fig.3.17J). Altogether, these findings show that 

downregulation of Hes1 expression in Tlx-/- mice promotes proliferation and neurogenesis 

in apical and especially in basal progenitors by a cell autonomous and non-cell autonomous  

Figure 3.16 Downregulation of Hes1 in Tlx-/- mice increases proliferation and lineage progression. (A) 
Representative confocal microphotographs of coronal section of Tlx-/- SVZ analysed 14 days after 

intraventricular injection of AAV Sc and AAV shHes1 particles and immunostained against Ki67, GFAP and 

Nestin. (B- D) Quantification of immunopositive cells for Ki67 (B), GFAP (C) and Nestin (D) in the coronal 

sections showed in A. Quantification data is shown as mean +SEM (n≥3, *: p<0.05, ***: p<0.005). Scale 

bar= 10 µm. Initials: GFP = green fluorescent protein, GFAP = Glial fibrillary acidic protein, ROI= region of 

interest, Sc= scramble sequence, sh= short hairpin. 

 

 



Results 

64 

 

mechanism respectively. This confirms, that Hes1 overexpression is a key event in the 

Figure 3.17 Downregulation of Hes1 in Tlx-/- mice promotes differential proliferation and lineage 

progression in the apical/basal regions of the SVZ. (A, D, G, J) Representative confocal microphotographs 

of coronal section of Tlx-/- SVZ analysed 14 days after intraventricular injection of AAV Sc and AAV shHes1 

particles and immunostained against Ki67 (A), GFAP (D), Nestin (G) and DCX (J). (B, E, H) Quantification of 

double immunopositive cells for GFP (GFP+) and Ki67 (B), GFAP (E) and Nestin (H). (C, F, I) Quantification 

of GFP- cells immunopositive for Ki67 (C), GFAP (F) and Nestin (I). Data is shown as mean +SEM (n≥3, *: 

p<0.05, ***: p<0.005). Scale bar= 50 µm (big panels) and 10 µm (in magnifications). Abbreviations: GFP = 

green fluorescent protein, GFAP = Glial fibrillary, DCX= Doublecortin, Sc= scramble sequence, sh= short 

hairpin. 
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NOTCH-HES1 regulatory axis, which leads to impaired proliferation and neurogenesis in Tlx-

/- mice. 
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Chapter 4. Discussion 

4.1 Extrinsic regulation of NSC quiescence 

4.1.1 GABAAR activation promotes cell cycle activation of NSCs 

 

In the first part of this thesis I studied the mechanisms by which GABA in the SVZ regulates 

adult NSC activation. My results show that, by using diazepam in vivo, activation of GABAAR 

promotes cell cycle entry in the adult SVZ. I also found that a portion of these cells that 

enter cell cycle after GABAAR activation remain cycling in the SEZ for up to one week, which 

suggests that diazepam activates slowly proliferating cells. Furthermore, by using a mouse 

model to genetically tag qNSC and pNSCs, I could identify that activation of cell cycle 

affected activation of both NSC pools but not the cell cycle speed. Since in this animal 

model, also in the absence of doxycycline part of the GFAP-GFP-tagged NSCs are quiescent, 

it is plausible that the observed increase in cell cycle activation in pNSCs reflects  the 

contaminating qNSCs present in this population.  

My differential analysis of G+P+ apical and G+P- basal NSCs showed that diazepam increased 

the proliferation especially in the latter, suggesting a differential regulation between the 

two groups of NSCs. This increase in cell cycle activation is consistent with previous 

observations in the neonatal niche (Cesetti et al., 2011), however, while in the neonatal 

brain a single injection of diazepam led to striking increase in NSC proliferation, in the adult, 

diazepam significantly affects proliferation only of the G+P- basal NSCs. Diazepam is a 

positive allosteric modulator that binds to the interface of α-γ subunits in GABAARs (Richter 

et al., 2012).  Both GABAARs subunits are present on NSCs, besides, diazepam mediated 

activation of GABAARs in NSCs has already been tested in vivo (Cesetti et al., 2011), 

confirming its utility to study GABAergic regulation of NSCs. Therefore, since diazepam, 

being an allosteric modulator, cannot by itself activate GABAARs, responsiveness to 

diazepam by NSCs reflects an effect directly proportional to endogenous GABA, 

representing a physiological way to measure the effects of GABA. The effect of GABAAR 

activation has also been investigated in the embryonic brain, where GABA promotes cell 

cycle activation in the VZ, the region where RG cells are found, while it inhibits proliferation 
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in the embryonic SVZ, suggesting that this inhibitory effect is mostly affecting intermediate 

progenitors (Haydar et al., 2000). Other studies suggest instead that GABA inhibits NSC 

proliferation (Fernando et al., 2011; Liu et al., 2005). Interestingly, in these studies the 

GABAAR agonist muscimol use the antagonist bicuculline have been used to modulate in 

vivo GABAAR activation in NSCs. Since, in physiological conditions, GABAAR activation 

depends on how much GABA is released in the niche, and given the difficulty of measuring 

the amount of GABA to which NSCs are exposed, the external tonic activation of GABAARs 

could cause a misreading of the physiological effects that normal GABA levels exert in NSC 

regulation. In fact, Prominin1+ precursors in the neonatal SVZ showed striking smaller 

GABAergic current (30 times) compared to neuroblasts (Cesetti et al., 2011), reflecting the 

differences in the levels of receptor expression and possibly regulation in both cell 

populations. This supports the notion that a better knowledge of physiological cues is 

necessary to fully understand GABAergic regulation of NSCs.  

 

4.1.2 GABA induces lineage progression from Prominin1+ to Prominin1- NSCs 

 

Although Prominin1 is known for being a marker of NSCs, previous reports found NSCs 

which also display a negative immunoreactivity to Prominin1 (P-) (Codega et al., 2014). 

Indeed, my observations highlight how the vast majority of GFAP-GFP-labelled NSCs are P-. 

The analysis of these cells has shown that all G+P+ cells are located in the apical region of 

the SVZ, while most of G+P- exist in the basal SVZ (unpublished observations). Moreover, by 

analysing the effect of diazepam separately on G+P+ and G+P- NSCs, I also observed that 

GABAAR activation increased proliferation mostly in the pool of G+P- NSCs, whereas G+P+ 

NSCs only showed a trend increase in cell number.  This finding led me to formulate the 

hypothesis that GABAAR activation might not only induce cell proliferation but also lineage 

progression from G+P+ to G+P- NSCs. Investigating this theory, I found that GABAAR 

activation induced a loss in Prominin1 expression, leading G+P+ to become G+P- NSCs 

(Fig.4.1). Surprisingly, despite losing Prominin1 expression, G+P- NSCs did not detached from 

the apical side of the SVZ but maintained an apical cell surface. This is in keeping with the 
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observation of a recent study where they also identified an apical population of NSC that 

lack Prominin1 immunoreactivity (Obernier et al., 2018). However, G+P- NSCs also showed 

a trend increase in the basal region of the niche, and since the total number of cells in the 

basal region is greater (almost 100 times more) this suggests that in proportion, a small 

increased in the basal pool could be difficult to detect. All together, these observations 

suggest that the lineage progression from qNSCs to neuroblasts implicate different 

activation states of NSCs, which include a change in Prominin1 expression as well as a 

delamination from the apical to the basal side of the niche (Fig.4.1). Since TAPs lack GFAP 

and Prominin1 immunoreactivity (Chaker et al., 2016), a GFAP+ P- NSC population could 

represent an intermediate state of differentiation between G+P+ NSCs and TAPs. 

Interestingly, it has been described that during development, neuroepithelial cells (NE), the 

primary neural stem cells, release Prominin1-containing vesicular bodies into the CSF. The 

main source of these vesicular bodies are the midbodies formed during symmetrical 

divisions with an apical-basal axis (Dubreuil et al., 2007). The authors suggest that this 

release of Prominin1 could be a way of losing a stem cell marker while losing apical 

Figure 4.1 Effects of GABAAR activation on P+ and P- NSCs. Scheme representing the departing hypothesis 

and the findings on GABA regulation in G+P+ and G+P- NSCs. GABAAR activation promotes cell cycle entry 

(arrows), however these effects are mostly seen on G+P-NSCs. Nevertheless, GABAAR activation also 

induces lineage progression (dashed arrow) from G+P+ into G+P- pNSCs. This would explain the fact that 

G+P+ pNSCs do not display a strong increase in number. Suggesting that the increased number of G+P- 

pNSCs is due not only to cell cycle activation but also to differentiation. Abbreviations: qNSCs = quiescent 

neural stem cells, pNSCs= proliferating neural stem cells, P= Prominin1 
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membrane to proceed into neurogenesis, influencing the balance between proliferation 

and differentiation. My results indicate that GABAAR activation reduces Prominin1 

expression, which, in a similar way, could be also explained by this mechanism of 

symmetrical division where Prominin1 is released within the midbodies, therefore 

decreasing the expression of the marker and decreasing the apical surface while proceeding 

into lineage progression.  

 

4.1.3 GABAAR activation involves cell swelling and promotes NSC 

proliferation by recruiting EGFR 

 

EGFR participates in many aspects of NSC regulation, and several studies have shown its 

involvement in cell proliferation and migration (Ayuso-Sacido et al., 2010; Suh et al., 2009; 

Wee and Wang, 2017). For this reason, to study its contribution to the GABAergic regulation 

of NSC activation, I analysed Egfr transcript levels in G+P+ and G+P- pNSCs and qNSCs. As 

expected, I found higher Egfr transcript levels in the G+P- population, suggesting again that 

this group of NSCs represents a more proliferative and differentiated state than G+P+ NSCs. 

Consistent with previous analyses from our laboratory showing that GABAAR activation 

increases EGFR expression by a mechanism which does not involve regulation of transcript 

levels (Cesetti et al., 2011; Li et al., 2015), I found that diazepam did not increase Egfr 

transcript levels in the pool of G+P- qNSCs. Nevertheless, Egfr mRNAs was significantly 

increased in G+P+ qNSCs upon diazepam stimulation, which suggest a differential GABAergic 

regulation of EGFR expression in this group of cells. This differential regulation may reflect 

the difference in transcript levels for the EGFR between the two groups of NSCs. Since G+P+ 

have a smaller amount of Egfr transcript than G+P-, it is possible that these cells need to 

increase transcription to reach the minimal protein levels necessary to promote cell cycle 

activation. In fact in G+P+  EGFR protein levels did not increase upon muscimol treatment, 

which highlights the need of increasing the transcript levels to promote cell cycle activation. 

However, G+P- have higher levels of Egfr transcripts, thus, it is possible that the activation 

of these cells does not require an increase in transcription, since they already present 
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enough protein levels to translocate to the cell membrane. In fact, these cells showed an 

increase of EGFR protein levels upon muscimol, and they also presented higher EGFR 

activation, which is in keeping with my previous FACS analysis showing that G+P- increase 

proliferation upon GABAAR activation.  Altogether these results confirm a differential 

GABAergic regulation between adult G+P+ and G+P-. Interestingly, this difference between 

G+P+ and G+P- is not present in postnatal mice, where both Egfr transcripts levels and EGFR 

activation showed similarly high levels in both cell groups. This indicates that in the adult, 

not only EGFR level decrease in general but there is also a differential regulation between 

apical and basal NSCs that is not present in neonatal. 

Surprisingly, qNSCs showed higher transcript levels than pNSCs, which could also indicate 

that EGFR levels in these cells are regulated in a post-transcriptional way, as described in 

previous studies (Katakowski et al., 2010; Seth et al., 1999), where EGFR protein and 

transcript levels present sometimes inverse patterns, due to posttranscriptional regulatory 

mechanisms. Indeed, I found that pNSCs and qNSCs present similar number of cells 

displaying phosphorylated EGFR, which represents a functional reading of EGFR activation.  

Previous analysis in the neonatal niche, showed that activation of GABAAR in NSCs from the 

SVZ leads to Cl- influx thereby promoting osmotic swelling and trafficking of EGFR to the cell 

membrane. In the presence of EGF, this event promotes a change in the expression of the 

cell cycle regulators PTEN (phosphatase and tensin homolog deleted on chromosome 10) 

and Cyclin D1, promoting cell cycle entry (Cesetti et al., 2011). The fact that both apical G+P+ 

and basal G+P- NSCs increase in size in response to muscimol, shows that in both groups of 

adult NSCs activation, like in the neonatal counterpart, GABAAR activation leads to Cl- entry 

and cell swelling. However, as discussed above, redirection of EGFR to the cell membrane 

and activation of the receptor occur only in basal NSCs, as G+P+ , unlike the neonatal 

counterpart, display low EGFR expression.   
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4.1.4 GABA regulates NSC activation via EGFR and β1Integrin 

 

Since the activation of GABAAR affected cell size, it was logical to think that it would also 

affect the cell interaction with ECM, and therefore, the molecules implicated in this 

interaction. The integrin family of surface receptors is involved in interaction between cells 

and ECM, and this interaction is responsible not only for anchoring the cell surface to ECM 

but also for initiating the proper response to extracellular signals (Chen et al., 2007;  

Flanagan et al., 2006). The vast majority of NSCs and progenitor cells express the β1Integrin 

subunit family of integrins (Hall et al., 2006; Pruszak et al., 2009), which highlights its 

importance in regulating these cells. For these reasons, I analysed the participation of 

β1Integrin in the GABAergic regulation of NSCs. My observations showed that transcript 

levels of β1Integrin were downregulated in G+P+ and G+P- qNSCs following diazepam 

injection. Similarly, the proportion of cells displaying β1Integrin immunoreactivity was 

reduced in apical and basal qNSCs. This indicated that GABAAR activation signalling cascade 

affects the expression of β1Integrin in qNSCs. Recently, it has been shown that in NSCs 

β1Integrin interacts with laminin present in a specialized ECM structure called fractone 

bulbs. It was also shown that this interaction keeps the NSCs anchored in the pinwheel 

structure (Nascimento et al., 2018). Besides, studies in the developing brain suggest that 

anchorage of NSCs to the VZ surface through β1Integrin may be critical for NSC maintenance 

(Campos et al., 2004). Interestingly, Leone et al.  showed that lack of β1Integrin leads to a 

decrease in Nestin+ precursors, suggesting a role in NSCs differentiation. Supporting this, it 

has been shown that neuronal differentiation is also accompanied with a decrease in α5β9 

Integrin (Yoshida et al., 2003). Thus, the fact that GABAAR activation decreases β1Integrin 

expression in NSCs indicates a possible mechanism of detachment of NSCs from pinwheel 

structures, suggesting again cell cycle activation of these cells and possibly differentiation.  

My combined analysis of β1Integrin and pEGFR expression showed that following GABAAR 

activation, basal qNSCs decrease β1Integrin expression, both at a transcript and a protein 

level, while increasing at the same time the activation of EGFR (Fig.4.2). A similar effect was 

observed in apical qNSCs with respect to β1Integrin but not to EGFR activation, which again 
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points out that low levels of EGFR in these cells are a limiting factor that prevent their 

proliferation. Analysis of pNSCs also depicted a similar response in terms of  β1Integrin and 

pEGFR expression, albeit to a lower extent than in qNSCs. However, as discussed in chapter 

4.1.1, in light of the fact that GFAP-GFP-labelled pNSCs also include a subset of qNSCs, the 

change of β1Integrin and pEGFR expression likely reflects the activation of this subset of 

qNSCs by GABAAR. Previous studies have also demonstrated a negative correlation between 

EGFR and β1Integrin activation. Xu et al.  showed that conditional deletion of β1Integrin 

expression in the murine intestine led to overexpression of EGFR protein levels and aberrant 

proliferation of intestinal epithelial cells. Α1β1Integrin was also found to function as a 

negative regulator of EGFR through activation of a protein tyrosine phosphatase (Mattila et 

al., 2005). Interestingly, β1Integrin signalling promotes proliferation and self-renewal of 

neuroepithelial cells in chick (Long et al., 2016), which would suggest a positive correlation 

between β1Integrin expression and proliferation. In fact, several studies found that ECM 

adhesion through Integrins can activate EGFR in a growth factor independent manner 

(Cabodi et al., 2004). Consistent with these observation, Moro et al. found that in early 

stages of cell adhesion, Integrins are associated with EGFR in macromolecular complexes, 

and Integrin response promotes phosphorylation of several tyrosine residues in EGFR, 

leading to cell survival or actin-cytoskeletal reorganization. However, a crosstalk between 

β1Integrin and EGFR signalling has also been described in epithelial (Bill et al., 2004) and 

tumour cells (Adelsman et al., 1999; Wang et al., 1998) which points out their complex 

mechanism of regulation, and suggests a complementary control of proliferation between 

the two receptors. In fact, in embryonic stem cells (ESCs), interaction of β1Integrin with 

laminin α inhibits differentiation, keeping cells in a low proliferative early progenitor state 

(Domogatskaya et al., 2008; Rodin et al., 2010). Consistent with this effect of β1Integrin-

laminin interaction on the maintenance of qNSCs, in the adult SVZ, several ECM-binding 

receptors, including α6β1Integrins, are downregulated upon activation of NSCs (Codega et 

al., 2014). In addition, blocking of α6β1Integrins in vivo affects cell adhesion and promotes 

proliferation in the adult SVZ (Shen et al., 2008).  This inverse correlation between the 

integrin signalling and EGFR and activation is in keeping with my observation that β1Integrin 
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is downregulated following GABAAR activation whereas EGFR activation increases, 

indicating again that GABA promotes NSCs activation in the adult SVZ (Fig.4.2). My results 

also indicated that cell cycle activation in these cells is dependent on EGFR, since selective 

blocking of the receptor kinase led to a reduction of cell cycle activation. However, it is 

unlikely that the activation of EGFR receptor is ligand independent, as it was  previously 

shown that the presence of exogenous EGF is necessary to obtain increased clone formation 

upon GABAAR activation (Cesetti et al., 2011). Altogether, these findings demonstrate that 

GABA exerts a regulatory effect on NSCs in the adult niche, inciting activation of qNSCs 

through an EGFR dependant mechanism that involves the signalling mechanisms of 

β1Integrin with ECM. 

 

 

Figure 4.2 Summary of effects of GABAAR activation found in NSCs. Scheme representing a summary of 

the findings on GABA regulation in NSCs. GABAAR activation promotes cell cycle entry in NSCs, given by 

the increase in Ki67. It also promotes a reduction in Prominin1 expression. GABAAR activation also 

promotes proliferation of basal NSCs. The mechanism of regulation implicates cell-swelling, 

phosphorylation of EGFR and cell detachment from the ECM, by downregulating β1Intengrin expression. 

Abbreviations: GABA= gamma aminobutyric acid, GABAAR= GABA A Receptor, EGFR= epidermal growth 

factor receptor, pEGFR= phosphorylated EGFR, E= ependymal cell. 
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4.2 Intrinsic regulation of NSCs 

4.2.1 NOTCH signalling is up-regulated in Tlx-/- SVZ 

 

Previous reports have already shown the importance of TLX during development and for 

stem cell activation (Monaghan et al., 1995; Obernier et al., 2011; Wang et al., 2013). In 

fact, mice lacking Tlx expression show a phenotype with enlarged ventricles and thinner 

cortex and OB, which already suggested an absence of neurogenesis. However, little is 

known about the mechanism by which TLX regulates neurogenesis.  

Previous experiments in our lab demonstrated that in NSCs cultures, TLX binds the promoter 

of Hes1 and Hes5 genes, inhibiting their transcription (Shi, 2015). This inhibition of genes 

involved in NSCs maintenance causes an increase in expression of the pro-neural gene 

Mash1, facilitating the differentiation and lineage progression. These results showed that 

mice lacking Tlx expression present an up-regulation of Hes1 transcripts and other genes 

related in NOTCH signalling. Following up on these observations, I found that in fact, 

NOTCH1 activated domain (NICD) is up-regulated in the apical region of the SVZ in Tlx-/- 

mice, specifically in a population of GFAP+P-E- cells.  This upregulation is accompanied by an 

increased levels of HES1 protein also in the apical region, confirming that NOTCH signalling 

is affected in the mutant niche and this effect is stronger in the apical cells. Similarly, an 

apical-basal NOTCH gradient was also found in the neuroepithelium of the zebrafish retina, 

showing higher levels of NOTCH in the apical side (Del Bene et al., 2008). In fact, consistent 

with my findings in the Tlx mutant mice and in the zebrafish retina, it was recently observed 

in our lab the presence of an apical-basal HES1 gradient also in the SVZ of WT mice, albeit 

with overall lower HES1 levels than in the SVZ of Tlx-/- mice. The fact that the mutant SVZ 

shows increased levels of HES1 could be the cause of impaired neurogenesis. Consistent 

with this hypothesis, it has been shown that Hes1 displays an oscillatory expression that 

allows proliferation and lineage progression, however,  persistent expression of the gene 

leads to cell cycle exit (Andersen et al., 2014; Baek et al., 2006; Imayoshi et al., 2013). 

Indeed, the levels of pro-neural genes are proposed to be one of the regulating factors of 

NSC status of quiescence, activation or differentiation. And these genes are under the 
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control of NOTCH signalling target Hes genes. Also, given that NOTCH signalling is necessary 

for NSC maintenance  (Imayoshi et al., 2010), my results indicate that the aberrant elevated 

Notch-Hes1 signalling in the apical region of mutant SVZ prevents NSCs from activating, 

thereby inhibiting adult neurogenesis.  

 

4.2.2 Hes1 downregulation in Tlx-/- SVZ leads to cell cycle activation and 

lineage progression 

 

NSCs in mice lacking Tlx expression present impaired cell cycle activation, consequently, 

neurogenesis is virtually absent in adult mice (Obernier et al., 2011). Previously I discussed 

that impairment in neurogenesis in Tlx-/- mice is likely due to elevated HES1 levels. 

Therefore, I tried to rescue proliferation and lineage progression by downregulating Hes1 

levels using a viral transduction of shHes1 in vivo. My analysis showed that this 

downregulation promoted cell cycle activation, and this was accompanied by an increase in 

GFAP+ and Nestin+ precursors, and more importantly, Hes1 downregulation restored 

neurogenesis, given by the increase in DCX+ neuroblasts. Interestingly, this effect was 

mostly found in the non-transduced cells, indicating that Hes1 downregulation in apical 

cells, by a non-cell-autonomous mechanism, modified cell cycle activation and lineage 

progression in the basal pool of cells. Since counteracting NOTCH signalling elicited a similar 

effect on the proliferation of basal cells, this cell-cell communication is likely to be mediated 

by interaction of NOTCH receptors with their ligands. Indeed, I also observed that 

downregulation of Hes1 causes a decrease in NICD protein levels, pointing out a regulating 

crosstalk between HES1 and NICD (Fig.4.3). A similar example of cell-cell communication 

was found in the work of Aguirre and colleagues, where overexpression of EGFR in TAPs led 

to decreased NOTCH signalling in NSCs via a cell-cell communication mechanism (Aguirre et 

al., 2010). Also, a similar mechanism of cell-cell regulation was described in the adult 

zebrafish (Chapouton et al., 2010). Here, the authors suggested a Notch lateral-inhibition 

mechanism regulating the balance between NSCs and proliferating progenitors after 
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observing that proliferative progenitors were located close to high-Notch-expressing RG 

cells and that after blocking NOTCH signalling, proliferation increased in the first rather than 

in the latter,  suggesting a NOTCH regulating mechanism by which progenitors, expressing 

the Delta ligand, induce quiescence in neighbour NSCs by activation of NOTCH.  Once 

progenitors migrate to differentiate, NOTCH activation decreases in RG cells, allowing 

proliferation of these cells. These observations highlight the dynamic NOTCH interaction 

between apical and basal precursors which is very important for neurogenesis not only 

during development (Nelson et al., 2013) but also in the adult niche. Altogether, these data 

represent a new found role of TLX in regulation of NSC self-maintenance and differentiation 

through HES1-NOTCH signalling, where TLX inhibition of Hes1 in apical cells counteracts 

quiescence and NOTCH activation (Fig.4.3). This decrease in NOTCH activation in apical cells 

interferes with the Notch-mediated lateral inhibition of basal progenitors, increasing their 

proliferation. 

 

Figure 4.3 Summary of effects seen in TLX-NOTCH signalling in NSCs. Scheme representing a summary of 

the findings on TLX regulation in NSCs. When TLX is presented in high levels, its interaction with Hes1 

promoter blocks Hes1 expression, which turns out in a decrease of NOTCH activation, promoting cell 

proliferation and decreasing the lateral inhibition from basal cells. When cells display low levels of TLX, 

HES1 increases in an apical-basal gradient, keeping the cells in a quiescent state and promoting lateral 

inhibition from the basal cells.   
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4.3 Final notes about extrinsic and intrinsic regulation of NSCs 

 

Understanding the mechanisms by which NSCs are regulated can be an important tool for 

future progress in stem cell therapy. Also, given the similarities between NSCs and cancer 

stem cells in brain tumours, a better understanding of this regulation can shed light into 

new targets for future treatments.  

In this thesis, I have investigated the regulation of adult NSCs by extrinsic and intrinsic 

factors, focusing on GABA regulation and TLX-NOTCH signalling respectively. Both analyses 

have highlighted the presence of two pools of NSCs, i.e. so called apical and basal NSCs., 

which differ in terms of cytoarchitecture and gene expression. Although both groups of 

NSCs respond to intrinsic and extrinsic clues, my analyses have highlighted differences in 

the responses, which depend on the differential expression of the molecules EGFR and HES1 

between the two NSC groups. Whereas the expression of first increases along the apical-

basal axis, levels of HES1 protein decrease. Since both molecules have opposite effects on 

NOTCH signalling, it is tempting to speculate that both factors affect NSC activation by 

modulation of NOTCH signalling along the apical-basal axis of the niche. With respect of the 

effect of the extrinsic modulator GABA, my results showed that GABAAR-dependent 

activation of qNSCs involves cell swelling, EGFR activation and downregulation of 

β1Integrins. At the same time, I showed that TLX by downregulating Hes1 expression and 

NOTCH signalling in apical NSCs, allows the expression of pro-neural genes, leading to 

lineage progression and neurogenesis. Interestingly, I also observed that NOTCH-mediated 

lateral inhibition in the apical niche affects proliferation of basal progenitors. Indeed, 

consisting with my observation, it has been shown before that the cell adhesion receptor 

β1Integrin co-localizes with NOTCH1 in the developing VZ, and the interaction of both 

molecules is necessary for NSC maintenance (Campos et al., 2006). Interestingly, in our 

laboratory it was recently found that another cell-cell adhesion molecule, LeX-SSEA, is 

associated with NSCs quiescence, and disruption of its interactions promotes cell cycle 

activation (Luque-Molina et al., 2017). Since LeX-SSEA1 promotes notch signalling in neural 

precursors (Yagi et al., 2012) it is possible that the antigen affect NSC quiescence by 
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promoting NOTCH signalling. Consistent with this premise that NOTCH signalling and 

interaction with the ECM are key points in the regulation of NSC proliferation, it was found 

that endothelial cell contact with NSCs, which is mostly mediated via Integrin interaction, 

promotes cell-cell interaction and activation of NOTCH and HES1 which stimulates self-

renewal and inhibits proliferation of NSCs (Shen et al., 2004). Taken together, my results 

and the data of the literature suggest that the effect of GABA and TLX on NSC activation 

may impinge in both cases on the regulation of NOTCH signalling across the niche, indicating 

that NOTCH signalling may represent a convergence pathway for the integration of extrinsic 

and intrinsic cues that keep the balance between NSC maintenance and adult neurogenesis.     
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Abbreviations: 
 
APC: allophycocyanin. 

AAV: adeno associated virus. 

bHLH: basic helix-loop-helix. 

BMP: bone morphogenetic protein. 

CBA: β-actin promoter. 

CT: cycle threshold.  

CSF: cerebral-spinal fluid.  

DCX: doublecortin. 

DNA: Deoxyribonucleic acid. 

Doxy: doxycycline.  

ddCT: delta cycle threshold.  

ECM: extracellular matrix.  

EGF: epidermal growth factor 

EGFR: epidermal growth factor receptor. 

FACS: fluorescence activated cell sorter. 

FGF: fibroblast growth factor. 

GABA: gamma amino butyric acid. 

GABAARs: GABA type A receptors. 

GFAP: glial fibrillary acidic protein. 

GFP: green fluorescent protein. 

GLAST: glutamate aspartate transporter. 

hrGFP: human recombinant GFP. 

IdU: iododeoxyuridine. 

IMDM: Iscove's Modified Dulbecco's Medium. 

IPC: intermediate progenitor cell. 

LB: Luria Bertani. 

LV: lateral ventricles. 

NICD: notch intracellular domain. 
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NSC: neural stem cell. 

pNSCs: proliferating neural stem cells. 

qNSCs: quiescent neural stem cells. 

OBs: olfactory bulbs.  

P: prominin1. 

PBS: phosphate buffered saline. 

PI: propidium iodide  

PCR: polymerase chain reaction. 

qNSC: quiescent neural stem cell. 

RCF:  Relative Centrifugal Force. 

RG: radial glia. 

RNA: ribonucleic acid. 

RMS: rostral migratory stream. 

RT: room temperature. 

SGZ: subgranular zone of hippocampus. 

SVZ: subventricular zone. 

TAPs: transit amplifying progenitors.  

tTA: tetracycline trans activator.  

TRE: tetracycline-responsive regulatory element. 

WPRE: woodchuck hepatitis virus posttranscriptional regulatory element. 

WT: wild type.  
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