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Abstract

This thesis presents a study of the decay B0
s → J/ψφ with the LHCb experiment.

Due to the mixing between B0
s and B0

s mesons and a final state that is accessible for

both species, this decay is sensitive to CP violation originating from the interference

between the mixing and the decay process. The CP violating is parametrized

by the weak phase difference φs, which can be precisely constrained within the

Standard Model of particle physics based on other measurements. Thus, the

measurement of this phase difference constitutes an interesting test for possible

contributions of physics phenomena from beyond the Standard Model. A flavour-

tagged analysis of the time-dependent decay rates of B0
s and B0

s mesons is performed.

In addition, an angular analysis is needed to disentangle the different CP components

of the final state. The analysis is based on a proton-proton collision data set

collected in 2015 and 2016 by the LHCb experiment, corresponding to an integrated

luminosity of 1.9 fb−1. The obtained value for the CP violating phase difference is

φs = (0.083± 0.041stat ± 0.006syst) rad, which, combined with a previous analysis of

this channel by the LHCb experiment, constitutes the most precise single channel

and single experiment measurement of this quantity. No significant deviation from

the Standard Model expectation is observed.

Besides the measurement of φs, the main other determined parameters are the

decay width and decay-width splitting of the B0
s meson system. In contrast to

previous analyses of this channel, the decay width is directly measured with respect

to decay width of the B0 meson.





Kurzfassung

In dieser Arbeit wird eine Studie des Zerfalls B0
s → J/ψφ mit dem LHCb-

Experiment vorgestellt. Aufgrund der Mischung von B0
s - und B0

s-Mesonen und

einem Endzustand der diesen beiden zugänglich ist, ist dieser Zerfall sensitiv auf

CP-Verletzung die aus der Interferenz zwischen Mischung und Zerfall entsteht.

Diese CP-Verletzung wird durch die schwache Phasendifferenz φs parametrisiert,

welche, basierend auf anderen Messungnen, präzise innerhalb des Standardmod-

ells der Teilchenphysik vorhergesagt werden kann. Deshalb stellt die Messung

dieser Phasendifferenz einen interessanten Test auf mögliche Beiträge von außer-

halb des Standardmodells dar. Eine flavour-abhängige Analyse der zeitabhängigen

Zerfallsraten von B0
s - und B0

s-Mesonen wird durchgeführt. Zusätzlich ist eine

Winkelanalyse notwendig um die unterschiedlichen CP-Eigenzustände der Zerfall-

sprodukte voneinander zu trennen. Die Analyse basiert auf einem Proton-Proton

Kollisions-Datensatz, der in den Jahren 2015 und 2016 durch das LHCb Exper-

iment aufgezeichnet wurde und der einer integrierten Luminosität von 1.9 fb−1

entspricht. Der gemessene Wert der CP-verletzenden Phasendifferenz liegt bei

φs = (0.083 ± 0.041stat ± 0.006syst) rad und bildet, kombiniert mit einer früheren

Messung in diesem Kanal, die präziseste Messung in einem einzelnen Kanal und

durch ein einzelnes Experiment. Es ist keine signifikante Abweichung von dem im

Standardmodell erwarteten Wert zu beobachten.

Zusätzlich zur Messung von φs sind die wichtigsten anderen gemessen Parameter

die Zerfallsbreite und der Zerfallsbreitenunterschied im B0
s -Meson-System. Im

Gegenteil zu frühere Analysen dieses Kanals, wird die Zerfallsbreite hier relative

zur Zerfallsbreite des B0-Mesons gemessen.
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Introduction

Since millennia, mankind is wondering about the most fundamental building blocks

of nature and about the cement that keeps them together. Today, the Standard

Model of particle physics (SM) summarizes our current understanding of this

underlying structure in nature. It describes all known fundamental interactions

except gravity, and within the last decades it has been probed and confirmed to

amazing precision. Also the Higgs boson, whose discovery in 2012 [1, 2] completed

the particle content of the SM, more and more proves to behave like predicted by

the SM [3].

However, this tremendous success of the SM puts the scientific community in

an unpleasant situation. One the one hand the SM precisely describes elementary

processes, on the other hand it lacks explanations for some very fundamental

observations. An example is the energy content of the universe. Cosmological and

astronomical observations strongly suggest the presence of dark matter, an at most

weakly interacting form of matter, with an abundance more than five times larger

than the baryonic matter we know [4]. Within the SM, none of the fundamental

particles is suited to serve as candidate for this dark matter. Other examples for

the shortcomings of the SM are the large matter antimatter asymmetry observed in

the universe and the origin of the extremely small neutrino masses.

All this leads to the idea of an even more fundamental underlying theory. Thus,

the primary interest in these days lies no longer in the precise determination of the

SM parameters alone, but in finding inconsistencies and processes where the theory

breaks down. The Large Hadron Collider (LHC) at CERN is currently the most

powerful particle accelerator and is therefore predestinated for these kind of searches.

While the two largest experiments at the LHC, ATLAS and CMS, primarily aim

to detect potential new particles that are directly produced in the proton proton

collisions, the LHCb experiment follows an alternative, indirect strategy. Possible

extensions of the SM, manifested in new heavy particles or interactions, are likely to

enter in quantum loops of SM processes and therefore modify these. Since particles

contributing to these quantum loops are not limited by the available energy in the

proton-proton collision, one can probe energy scales that are typically not reached

in direct searches.
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Introduction

Besides precise measurements of such SM processes, the indirect strategy relies

on the availability of predictions or constraints within the SM at a similar or better

level. One of the most promising channels at the LHCb experiment is the decay1

of a B0
s meson to a J/ψ and a φ meson. Since the final state is accessible for

the B0
s as well as for the B0

s meson, a CP-violation measurement in this decay is

sensitive to the B0
s -B

0
s mixing process, which is primarily governed by the above

mentioned quantum loops. In addition, the size of the CP violation can be preciously

constrained withing the SM from other measurements.

Currently2, the LHCb experiment provides the most precise single measurement of

CP violation in this channel [5]. This thesis presents an update of this measurement

with data recorded in 2015 and 2016. It is based on a decay-time- and angular-

dependent analysis of the decay rates of B0
s and B0

s mesons. Besides the CP-violation

and mixing parameters, also the decay-width difference between the B0
s and B0

mesons is precisely determined.

The thesis is structured as follows: Chapter 1 provides a theoretical introduction

to the topic. Afterwards, the LHCb experiment is briefly described in Chapter 2,

and the analysis strategy is outlined in Chapter 3. After a short introduction of

relevant statistical tools and techniques in Chapter 4, Chapters 5 to 7 provide

detailed descriptions of the selection of B0
s → J/ψφ decays, the determination of the

B0
s flavour at production and the modeling and extraction of detector acceptances

and resolutions, respectively. The heart of the analysis, a maximum likelihood fit

to the decay time and angular observables, is presented in Chapter 8. It is used to

determine the CP-violation, mixing and decay-width parameters, which are then

presented in Chapter 9. After a discussion of the relevant systematic uncertainties

in Chapter 10, the thesis will conclude with a summary of the results and their

combination with other measurements.

Besides the analysis presented in the following, the author of this thesis was the

main contributor to two other projects within the LHCb collaboration. During his

master studies and in the first year of his PhD, he worked on the measurement

of CP violation in D0 → K+K− decays, which was published in Ref. [6]. Fur-

thermore, he developed a fast parametrized Kalman filter for the LHCb upgrade

tracking system, which will be used in the future trigger. An overview of this study

is presented in Ref. [7].

1If not stated otherwise, the charge-conjugated decays are implied.
2Currently means at the time the analysis, presented here, was first shown to the public.
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1 Theoretical background

In this chapter the basic theoretical concepts and formulas that are needed for the

analysis of the decay B0
s → J/ψφ are introduced. It starts with a short overview of

the Standard Model of particle physics (SM), which is currently the best available

description for fundamental interactions. After that, the concept of CP violation is

introduced as a sensitive way to probe the SM. In this context, the chapter continues

with a detailed description of the Cabibbo-Kobayashi-Maskawa mechanism, which

is the only source of CP violation in the SM. After a general introduction to meson

mixing and CP violation in neutral meson systems, these concepts are applied to

the decay B0
s → J/ψφ. The chapter concludes with a detailed discussion of the

differential decay rate of this decay, which is later used to model the observed data

and to extract the underlying physics parameters.

1.1 Standard Model of particle physics

When in 2012 the existence of the Higgs boson was confirmed by the LHC ex-

periments ATLAS and CMS [1, 2], the last elementary particle predicted by the

Standard Model of particle physics was discovered. Therefore, we are now in the

situation to have a model that can describe every known fundamental elementary

particle and whose principle predictions are fully confirmed with high precision by

experiment. In the following, a short overview of this model is given1.

Fundamental particles

The visible matter in our universe is completely made up of elementary particles

with spin 1
2
, called fermions. The SM describes these as fields and categorizes them

into leptons and quarks. The quarks interact via the strong interaction, while the

leptons do not. In the quark sector there are so-called up-type and down-type

quarks, which have an electric charge of 2
3
e and −1

3
e, respectively. The fermions

can be grouped into leptons with electric charge −1 e and neutrinos, which are

1For a more detailed introduction to the Standard Model see for example Ref. [8].
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Chapter 1 Theoretical background

Table 1.1: Fermionic content of the Standard Model of particle physics. For each of
these particles also the corresponding anti-particle with the opposite charge is
implied. The masses are taken from Ref. [3].

Leptons Quarks

Generation Type El. charge [e] Mass Type El. charge [e] Mass

1st
u +2

3
2.2MeV/c2 e− −1 0.511MeV/c2

d −1
3

4.7MeV/c2 νe 0 < 2 eV/c2

2nd
c +2

3
1.275GeV/c2 µ− −1 106MeV/c2

s −1
3

95MeV/c2 νµ 0 < 0.19 eV/c2

3rd
t +2

3
173GeV/c2 τ− −1 1.777GeV/c2

b −1
3

4.18GeV/c2 ντ 0 < 18.2 eV/c2

neutral. Both, quarks and leptons, always come in pairs of up-type and down-type

or charged and neutral, respectively. There are three generations of these pairs in

the quark sector as well as in the lepton sector, which are ordered by increasing

mass. Table 1.1 provides a list of all SM fermions.

Fundamental interactions

The SM is a quantum field theory that describes the previously introduced el-

ementary particles and their interactions. These interactions are generated by

requiring the Lagrangian to be invariant under local gauge transformations of the

SU(3)
�

SU(2)
�

U(1) symmetry group. According to Noether’s theorem [9], each

of these symmetries leads to a charge that is conserved in the respective interaction.

In addition, the generators of the gauge groups correspond to so-called gauge bosons

that are spin 1 particles and mediate the three fundamental interactions, which are

the electromagnetic, the weak and the strong force.

Quantum chromodynamics (QCD) describes the strong force and is gener-

ated by the SU(3) group. The eight massless gauge bosons are called gluons and

carry the three strong charges, called colors. Besides the gluons themselves, only

quarks carry such a color charge and are therefore the only other fundamental

particles that participate in the strong interaction. Two important features of QCD

are the confinement and the dependence of the coupling constant on the energy

scale. The former describes a property of the QCD potential. In contrast to other

forces, the strong force between two colored objects does not decrease for large

distances but stays constant. The result is that colored particles always form color

neutral objects, called hadrons, and never appear barely. Most hadrons can be

categorized as either mesons, combinations of a quark and an anti-quark, or baryons,

bound systems of three quarks or three anti-quarks.

2



1.1 Standard Model of particle physics

The coupling constant αs(Q
2) strongly depends on the transferred four-momentum

squared, Q2. It is increasing with decreasing energy, which prohibits calculations

within perturbation theory in this regime. Only at energies significantly above a

certain reference scale, ΛQCD ≈ 200MeV, perturbative calculations become reliable.

The electroweak interaction is the unification of the electromagnetic and

weak interaction and is generated by the SU(2)⊗U(1) symmetry. The corresponding

gauge bosons are indicated with W 1,2,3
µ and Bµ, and the charges are the weak

isospin and hypercharge. The left-handed fermions carry weak isospin 1/2 while

the right-handed fermions do not couple to the SU(2) part of the electroweak force

and have a weak isospin of zero. This means that the W i
µ bosons couple only to

left-handed particles and right-handed anti-particles. However, the Bµ boson, which

couples to the weak hypercharge, interacts with all fermions of the SM.

The spontaneous symmetry breaking within the Higgs mechanism gives mass to

the fermions and converts the previously introduced gauge bosons of the electroweak

interactions to the three massive bosons W+, W− and Z of the weak interaction,

and the massless photon, which couples to the electric charge. As a superposition of

two W i
µ bosons, the charged weak gauge bosons couple only to left-handed particles

and right-handed anti-particles, while the neutral Z retrieves a contribution from

the U(1) gauge boson and couples also to particles with the opposite chirality. A

further implication of the Higgs mechanism is the prediction of the massive Higgs

boson, which couples to all massive fundamental particles and completes the bosonic

content of the SM.

Beyond the SM

Although the SM is impressively successful in explaining qualitative and quantitative

aspects of fundamental particle physics, there are good reasons to consider it not

to be the final theory in this field. An obvious shortcoming is that none of the

particles described by the SM can explain the amount and nature of the dark matter

that is observed in the universe [4]. In addition, there are theoretical arguments

that suggest the existence of a more fundamental theory. An example is the large

spread of fermion masses, which are parameters of the SM, across many orders of

magnitude. The aim is to develop a theory that contains a mechanism to explain

such extreme numbers and, ideally, decreases the number of input parameters.

Therefore, experimental particle physics is continuously searching for fundamental

particles or interactions that are not part of the SM (so-called New Physics). The

first approach is the direct search for such particles produced in high energetic

proton-proton collisions. The maximum mass of new particles that can be discovered

3



Chapter 1 Theoretical background

in this way is limited by the energy available in a single proton-proton collision.

Another approach that is not directly limited by the energy the accelerators can

provide, is the indirect search for such new particles. These particles might be too

heavy to be produced as real particles, but they might well enter in quantum loops

where they stay virtual. The indirect search is therefore based on three ingredients:

• a process or observable that obtains sizable contributions from such a quantum

loop,

• a way to precisely measure this observable in experiment,

• and a precise prediction of it within the SM to which the measurement can

be compared to.

One interesting concept that fulfills these requirements in many cases is CP violation.

In the following sections, the general concept of CP violation and the specific decay

channel chosen in this thesis will be introduced.

1.2 CP violation

Symmetries play an important role in the fundamental description of nature. As

an example, for a long time the parity (P) transformation was considered to be

such a symmetry. This means that physical systems should be invariant under the

inversion of spacial coordinates −→x :

P−→x = −−→x , (1.1)

where P is the parity operator. However, in 1956 Lee and Yang postulated [10]

and Wu discovered [11] that the weak interaction maximally violates parity by

coupling differently to left and right-handed particles. Charge conjugation (C) flips

all internal charge like quantum numbers of a system and relates thereby particles

and their antiparticles. It is also maximally violated by the weak interaction. This

lead to the hypothesis of CP, as the combined transformation of parity and charge,

being the actual fundamental matter-antimatter symmetry [12]. This idea was

falsified by the observation of CP violation in the neutral kaon system in 1964 [13].

In the following, the basic requirements for a process in particle physics to show

CP violation are discussed. A generic process is characterized by its initial state

I and final state F. Charge and parity conjugation of an individual amplitude A

contributing to this process does not change the absolute value but at most the

4



1.2 CP violation

B0
s

B0
s

J/ψφ

|A1|ei(φ1+δ1)

|A2|ei(φ2+δ2)

Figure 1.1: Schematic representation of the two main amplitudes responsible for CP
violation in the decay B0

s → J/ψφ. The amplitudes follow the definition given
in the text.

phase of this amplitude. Typically, the phase of A can therefore be split into a

strong phase δ, which does not change sign, and a weak phase φ, which changes

sign under CP transformation:

CPA = CP|A|ei(φ+δ) = |A|ei(−φ+δ). (1.2)

In case the process I→F is governed only by a single amplitude, the transition

probability, which is proportional to AA∗, does not change. However, if two (or more)

amplitudes, A1 and A2, are contributing to the total amplitude Atot, interference can

occur and the situation is different. Given the two amplitudes and their respective

strong and weak phases,

A1 = |A1|ei(φ1+δ1), (1.3)

A2 = |A2|ei(φ2+δ2), (1.4)

the difference between the original and the CP-conjugated transition probability is

proportional to:

CP[AtotA
∗
tot]− AtotA

∗
tot = CP[(A1 + A2)(A1 + A2)

∗]− (A1 + A2)(A1 + A2)
∗

(1.5)

= 4|A1||A2| sin(φ1 − φ2) sin(δ1 − δ2). (1.6)

This means that there can be only CP violation if the strong phases as well as the

weak phases differ between the two amplitudes.

5



Chapter 1 Theoretical background

Having a look at the decay studied in this thesis, one can identify the two main

contributing amplitudes as the decay of the B0
s meson to the final state J/ψφ and

the mixing of a B0
s meson into a B0

s meson with the subsequent decay B0
s → J/ψφ,

see Fig. 1.1.

Typically, at least one of the amplitudes contains an internal quantum loop

where non-SM-like particles can enter and alter the strong or weak phase difference.

Together with the fact that the SM values of many CP observables can be precisely

determined from other measurements, this makes the study of CP violation an

excellent probe for non-SM-like interactions or particles.

1.3 Flavour changing currents of the

weak interaction

Within the SM, CP violation only occurs when flavour and charge changing currents

of the weak interaction are involved. The gauge bosons W+ and W− mediate these

currents. Their coupling to the fermions is described by the following part of the

SM Lagrangian:

L = − g

2
√
2

��

i

W+
µ φu

i γ
µ(1− γ5)φd

i +
�

i

W−
µ φd

i γ
µ(1− γ5)φu

i

�
. (1.7)

Here, g is the coupling constant of the SU(2)L gauge group and φu/φd are the fields

of up and down type quarks or leptons:

φu =



u

�

c
�

t
�


 ,φd =



d

�

s
�

b
�


 or φu =



νe

νµ

ντ


 ,φd =



e−

µ−

τ−


 . (1.8)

Dirac matrices are denoted by γµ and γ5, and the operator 1/2(1 − γ5) projects

out the left-handed part of the fermion fields.

In Equation (1.8) the quarks are given as electroweak eigenstates (u
�
i, d

�
i), which

in general do not coincide with the mass eigenstates. After symmetry breaking, the

quarks and charged leptons obtain their mass via the Higgs mechanism. Neutrino

masses are ignored at this point, since they are not relevant for this study. The

quark mass eigenstates (ui, di) are then given by a rotation of the electroweak

eigenstates. When writing the weak interaction Lagrangian in terms of the mass

6



1.3 Flavour changing currents of the weak interaction

eigenstates, these rotations of the up and down type quarks can be absorbed to a

single unitary matrix V :

Lquark = − g

2
√
2

��

i,j

W+
µ uiγ

µ(1− γ5)Vijdj +
�

i,j

W−
µ djγ

µ(1− γ5)V †
ijui

�
. (1.9)

This means that up and down type quarks from different families i and j couple to

each other with a relative strength proportional to Vij.

The matrix V is called Cabibbo-Kobayashi-Maskawa matrix (VCKM) [14] and is

strongly related to CP violation in the SM. This can be understood by analyzing

the behavior of the Lagrangian under CP transformation. Objects like φγµφ change

sign and therefore transform as vector under parity transformation. Adding an

additional γ5 changes the transformation behavior, which is why φγµγ5φ transforms

as axial vector and flips no sign. This reflects the V-A structure of the weak

interaction that maximally violates parity. Also under C transformation, which flips

all charge-like quantum numbers, the vector and axial vector parts obtain a relative

minus sign. Therefore, C is also maximally violated. Using these transformations of

Equation (1.9) one can derive that the combination of C and P can only be violated

if VCKM �= V ∗
CKM .

The CKM matrix describes the couplings of the charged weak bosons to the

different combinations of an up-type and a down-type quark. As an unitary three

by three matrix it has nine degrees of freedom, which are further reduced to four

by the free choice of the unobservable quark phases. These four degrees of freedom

can be split into three rotation angles and one phase. The latter is the origin of the

weak phase discussed in Section 1.2.

One of the most common parametrizations of the CKM matrix was developed by

Wolfenstein [8]:

VCKM =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 =




1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4),

(1.10)

where λ ≈ 0.23, is the sine of the rotation angle between the first two generations and

is used as an expansion parameter. A, ρ and η are ofO(0.1−1). This parametrization

nicely visualizes the nearly diagonal structure of the matrix, which reflects suppressed

7



Chapter 1 Theoretical background

transitions between different quark families. In this parametrization and up to

O(λ3), the only elements with a non-zero phase are Vub and Vtd.

One of the relations between the CKM elements following from the unitarity of

the CKM matrix is:

VudV ub + VcdV cb + VtdV tb = 0. (1.11)

This equation can be presented by a so-called unitarity triangle in the complex

plane with the angles

α = arg

�
− VtdV

∗
tb

VudV ∗
ub

�
, β = arg

�
−VcdV

∗
cb

VtdV ∗
tb

�
, γ = arg

�
−VudV

∗
ub

VcdV ∗
cb

�
, (1.12)

where β and γ are, using the Wolfenstein parametrization, to first order the phases

of Vtd and Vub.

As discussed later, these two CKM elements do not occur in the dominant

amplitudes of B0
s mixing or the decay B0

s → J/ψφ. However, the element Vts enters

in the mixing and at O(λ4) acquires a complex part. Via another unitarity relation,

namely

VusV ub + VcsV cb + VtsV tb = 0, (1.13)

one can define another angle that is of particular interest in the scope of this thesis:

βs = arg

�
−VtsV

∗
tb

VcsV ∗
cb

�
. (1.14)

Due to the relatively small complex part of Vts, this angle and any CP violating

effect in the B0
s system is expected to be small. To probe βs is one of the central

aspects of this thesis, and its relation to the decay B0
s → J/ψφ will be discussed in

more detail in the next sections.

1.4 Neutral meson phenomenology

In the following section, the phenomenology of mixing and CP violation in neutral

meson systems is summarized2. Although the focus is on the B0
s system, the

presented formalism is also valid for all other neutral mesons. A discussion of the

specific features of the decay B0
s → J/ψφ will follow in the next section.

2This section is based on Ref. [3, 15].
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B0
s B0

sW W

b

q

q

b

u, c, t

u, c, t

(a)

B0
s B0

s
u, c, t u, c, t

b

q

q

b

W

W

(b)

Figure 1.2: Leading order diagrams for the transition between B0
s and B0

s mesons.

1.4.1 Mixing

The two neutral mesons B0
s and B0

s are flavour eigenstates with the quark content��bs
�
and |bs�. Due to the presence of flavour changing currents in the weak interac-

tion, transitions between these two states are possible. Examples of such amplitudes

are the so-called box-diagrams that are shown in Figure 1.2. These transitions

imply that the flavour eigenstates do not coincide with the mass eigenstates of the

system. A general state in this system is given by a superposition of the two flavour

eigenstates, |Ψ(t)� = a(t)|B0
s �+ b(t)|B0

s�. Thus, the mass eigenstates are given by

the eigenstates of the effective Hamiltonian describing the two-state B0
s -B

0
s system.

The according Schrödinger equation can be written as:

i
d

dt

�
a(t)

b(t)

�
=

�
M − i

2
Γ

��
a(t)

b(t)

�
, (1.15)

where the effective Hamiltonian is split into a hermitian matrix M and an anti-

hermitian matrix i
2
Γ. The off diagonal elements M12 = M∗

21 and Γ12 = Γ∗
21 represent

the short range and long range contributions to the transitions between the flavour

eigenstates. The former originate from the box diagrams, which involve heavy virtual

particles, while the latter accounts for transitions via on-shell light states, like for

a example a π+π− pair. The CPT invariance theorem constrains the diagonal

elements:

M11 = M22 and Γ11 = Γ22. (1.16)

9



Chapter 1 Theoretical background

The mass eigenstates are labeled as B0
s,L (light) and B0

s,H (heavy) according to

their masses ML and MH , have the decay widths ΓL and ΓH and are given by:

|B0
s,H� = p|B0

s �+ q|B0
s�, (1.17)

|B0
s,L� = p|B0

s � − q|B0
s�, (1.18)

with

q

p
= −

�
M∗

12 − i
2
Γ∗
12

M12 − i
2
Γ12

. (1.19)

These states evolve in time as:

|B0
s,H/L(t)� = e−iMH/Lt−ΓH/Lt/2|B0

s,H/L�. (1.20)

One defines the following important quantities describing the mixing:

Δm = MH −ML, m =
MH +ML

2
= M11, (1.21)

ΔΓ = ΓL − ΓH , Γ =
ΓH + ΓL

2
= Γ11. (1.22)

The mass and lifetime differences can be related to the effective Hamiltonian via:

(Δm)2 − 1

4
(ΔΓ)2 = 4 |M12|2 − |Γ12|2 , ΔmΔΓ = −4�(M12Γ

∗
12). (1.23)

Using these variables, and the Equations (1.17), (1.18) and (1.20), one can derive

the time evolution of the two initial flavour eigenstates:

|B0
s (t)� = g+(t)|B0

s �+
q

p
g−(t)|B0

s�, (1.24)

|B0
s(t)� =

p

q
g−(t)|B0

s �+ g+(t)|B0
s�. (1.25)

Here, g+(t) and g−(t) are given by:

g+(t) = e−imte−Γt/2

�
cosh

ΔΓt

4
cos

Δmt

2
− i sinh

ΔΓt

4
sin

Δmt

2

�
, (1.26)

g−(t) = e−imte−Γt/2

�
− sinh

ΔΓt

4
cos

Δmt

2
+ i cosh

ΔΓt

4
sin

Δmt

2

�
. (1.27)

10



1.4 Neutral meson phenomenology

Given that a B0
s (B0

s) meson was produced at time t = 0, the probability that it

has mixed to a B0
s (B0

s ) meson after time t can be expressed by:

���B0
s|B0

s (t)|
�
|2 =

����
q

p

����
2

|g−(t)|2 , (1.28)

���B0
s |B0

s(t)|
�
|2 =

����
p

q

����
2

|g−(t)|2 , (1.29)

(1.30)

with

|g−(t)|2 =
e−Γt

2

�
cosh

ΔΓt

2
− cosΔmt

�
. (1.31)

The mass splitting Δm plays the role of the frequency of an oscillation modifying

an exponential decay. In the B0 system the current world average for this frequency

is Δmd = (0.5065± 0.0019) ps−1 [16], which is significantly smaller than in the B0
s

system, Δms = (17.757± 0.021) ps−1 [16]. The latter was measured most precisely

by the LHCb collaboration with B0
s → D−

s π
+ decays [17]. In addition, the pure

exponential decay is modified by the decay-width splitting ΔΓ, which is negligible

for the B0 system but sizable for B0
s mesons: ΔΓs = (0.085± 0.006) ps−1 [16].

The difference between Equations (1.28) and (1.29), namely the absolute value of

the ratio q/p, indicates that the mixing probabilities do not have to be the same

for an initial B0
s and B0

s meson. This is one of the types of CP violation that can

occur in neutral meson systems. All of them will be discussed in the next section.

1.4.2 CP violation

The two neutral B0
s mesons transform into each other under CP as:

CP|B0
s � = −|B0

s� and CP|B0
s� = −|B0

s �. (1.32)

Therefore, any observable difference in the decay rates of the two mesons is equivalent

to CP violation in this system. Of special interest is the case when the B0
s mesons

decay to a CP eigenstate that is accessible for the B0
s as well as for the B0

s state.

An example for such a decay is the mode B0
s → J/ψφ which is studied in this thesis.

11



Chapter 1 Theoretical background

In the following, the decay amplitudes of a B0
s and B0

s mesons to such a final

state f will be denoted as:

Af = �f |B0
s � and Af = �f |B0

s�. (1.33)

These amplitudes allow to define a further quantity that can be used to parametrize

CP violation:

λf =
q

p

Af

Af

. (1.34)

The time dependence of the decay rates of B0
s and B0

s mesons are given by

dΓB0
s→f (t)

dt
∝

���f |B0
s (t)�

��2 , (1.35)

dΓB0
s→f (t)

dt
∝

���f |B0
s(t)�

��2 . (1.36)

Using Equations (1.24) to (1.27) and the definition of λf this gives:

dΓB0
s→f (t)

dt
∝ |Af |2

1

1 + Cf

e−Γst
�
cosh

�
ΔΓst

2

�
+Df sinh

�
ΔΓst

2

�

+ Cf cos (Δmst)− Sf sin (Δmst)
�

(1.37)

dΓB0
s→f (t)

dt
∝ |Af |2

����
p

q

����
2

1

1 + Cf

e−Γst
�
cosh

�
ΔΓst

2

�
+Df sinh

�
ΔΓst

2

�

− Cf cos (Δmst) + Sf sin (Δmst)
�
, (1.38)

with

Cf =
1− |λf |2

1 + |λf |2
, Sf =

2�(λf )

1 + |λf |2
and Df = − 2�(λf )

1 + |λf |2
. (1.39)

CP violation is equivalent with Equations (1.37) and (1.38) being not identical.

This is the case when either |q/p| or λf deviate from unity. There are three types

of CP violation that alter these quantities in different ways.

CP violation in the decay

The probably most intuitive type of CP violation occurs when the absolute decay

amplitude |Af | of a B0
s to a final state f is different from |Af |, the absolute decay

amplitude of a B0
s to the final state f . This results in a difference in the partial

12



1.4 Neutral meson phenomenology

decay width of the CP conjugated decays B0
s → f and B0

s → f . Given that the CP

eigenstate f has the CP eigenvalue ηCP ,

�f | = CP �f | = ηCP �f |, (1.40)

λf can be written in terms of the two amplitudes Af and Af :

λf =
q

p

Af

Af

= ηCP
q

p

Af

Af

. (1.41)

Assuming that |q/p| = 1, CP violation in the decay is equivalent with a deviation

from unity of the absolute value of λf .

CP violation in mixing

Another type of CP violation occurs when the probability of the transition B0
s → B0

s

is different from the one of B0
s → B0

s . This causes the decay rates Γ(B0
s (→ B0

s) → f)

and Γ(B0
s(→ B0

s ) → f) to flavour specific final states f and f to be different.

According to Equations (1.28) and (1.29) this is equivalent to:

����
q

p

���� �= 1. (1.42)

Assuming no CP violation in decay this leads as well to a modification of the

absolute value of λf .

CP violation in the interference between mixing and decay

In case the final state f is a CP eigenstate there can be CP violation even if the

two previously discussed sources are not present. While they modify the absolute

value of λf , CP is also violated if λf has a non-zero imaginary part:

λf = |λf | eiφ with φ �= 0. (1.43)

According to Equations (1.37) and (1.38) this would cause a difference in the time-

dependent decay rates of B0
s and B0

s mesons. Since CP violation in mixing and in

the decay are expected to be negligible in the case of B0
s → J/ψφ, CP violation in

the interference of these two is of special interest in the scope of this thesis, and

measuring the phase φ in Equation (1.43) will be a central aspect.
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B0
s

s s

s
c

c

b
V ∗
cb Vcs φ

J/ψ

(a)

B0
s

s s

s
c

u, c, t

c

b

V ∗
qb Vqs φ

J/ψ

(b)

Figure 1.3: Feynman diagrams for the decay B0
s → J/ψφ. The dominant tree amplitude

(a) and the higher order penguin contributions (b) are shown.

1.5 The decay B0
s → J/ψφ

As discussed in the previous section, decays of neutral mesons to CP eigenstates

offer a rich phenomenology to study CP violation. One of the most interesting decay

channels is the mode B0
s → J/ψφ for which the most relevant Feynman diagrams

are shown in Figure 1.3. The φ meson is reconstructed via the decay to two charged

kaons. As discussed later, there are also non-resonant B0
s → J/ψK+K− decays

contributing, but for simplicity in the following B0
s → J/ψφ will be used for both

categories. In this section, the concepts presented in the previous chapter are

applied to this decay, and further specific aspects of it are discussed.

1.5.1 CP violation

According to Figure 1.3 the amplitude AJ/ψφ of a B0
s meson decaying to the J/ψφ

state can be written as:

AJ/ψφ ≈ VcsV
∗
cb T + VusV

∗
ub Pu + VcsV

∗
cb Pc + VtsV

∗
tb Pt

= VcsV
∗
cb (T + Pc − Pt) + VusV

∗
ub (Pu − Pt), (1.44)

where T is the tree level and Pu, Pc and Pt are the respective penguin contributions.

The unitarity of the CKM matrix, i.e. Equation (1.13), is exploited from the first

to the second row. Contributions proportional to the small factor VusV
∗
ub (O(λ4))
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are typically neglected, which allows then to give the following expression for the

ratio Af/Af :

Af

Af

= ηCP

Af

Af

≈ −ηCP

����
Af

Af

����
VcsV

∗
cb

V ∗
csVcb

= −ηCP

����
Af

Af

���� e2iφD , (1.45)

where f denotes the final state J/ψφ and ηCP its CP eigenvalue. The phase

φD = arg(VcsV
∗
cb) is called the weak decay phase.

For the other part of λf , namely the ratio q/p, Equation (1.19) can be used.

Given that in the Bs system |Γ12| � |M12| this equation can be simplified to:

q

p
≈ −e−iarg(M12) = −e−iφM , (1.46)

with φM being the weak mixing phase that is defined by the CKM elements of

the box diagram in Figure 1.2. Since the top quark gives by far the dominant

contribution, the phase can be approximated as:

q

p
≈ −e−φM ≈ −VtsV

∗
tb

V ∗
tsVtb

. (1.47)

The absolute value of q/p is assumed to be unity, which is equivalent to the assump-

tion of no CP violation in mixing. This is supported by dedicated measurements of

semileptonic asymmetries in the B0
s system [18].

Combining Equations (1.45) and (1.47) allows to give the following expression

for λJ/ψφ, which will be in the following only denoted as λ:

λ =
q

p

Af

Af

≈ ηCP

����
Af

Af

����
VcsV

∗
cb

V ∗
csVcb

VtsV
∗
tb

V ∗
tsVtb

= ηCP |λ| e−iφM+2φD

= ηCP |λ| e−iφs . (1.48)

The phase difference φs = φM − 2φD can be related to the angle βs of one of

the CKM unitarity triangles, see Equation (1.14), as φs = −2βs. Within the SM

the angle βs can be precisely determined from global fits of the CKM matrix:

2βs = (0.03686+0.00096
−0.00068) rad [19]. This precise prediction makes the measurement of

βs via the CP-violating phase difference φs an excellent probe of the SM.
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Using the expression for λ of Equation (1.48) for Equations (1.37) and (1.38)

yields the following time-dependent decay rates for the mode B0
s → J/ψφ:

dΓB0
s→J/ψφ(t)

dt
∝

��AJ/ψφ

��2 1

1 + C
e−Γst

�
cosh

�
ΔΓst

2

�
+ ηJ/ψφ D sinh

�
ΔΓst

2

�

+ C cos (Δmst)− ηJ/ψφ S sin (Δmst)
�

(1.49)

dΓB0
s→J/ψφ(t)

dt
∝

��AJ/ψφ

��2 1

1 + C
e−Γst

�
cosh

�
ΔΓst

2

�
+ ηJ/ψφ D sinh

�
ΔΓst

2

�

− C cos (Δmst) + ηJ/ψφ S sin (Δmst)
�
,

(1.50)

with

C =
1− |λ|2

1 + |λ|2
, S = − 2 |λ|

1 + |λ|2
sinφs and D = − 2 |λ|

1 + |λ|2
cosφs. (1.51)

These time-dependent decay rates build the core of the measurement presented in

this thesis. Figure 1.4 shows these rates when assuming realistic values for Δms,

ΔΓs and Γs, a CP eigenvalue of 1 for the final state and CP violating parameters

as λ = 1 and φs = 0.3 rad. The latter value is an order of magnitude larger than

the SM prediction in order to visualize the oscillations. For the same reason, also

an ideal reconstruction of the decay time and the initial B0
s flavour is assumed.

1.5.2 Polarization amplitudes

As shown in Equation (1.50), the time-dependent decay rates depend on the CP

eigenvalue of the final state. The decay B0
s → J/ψφ is the decay of a pseudo scalar

to two vectors and allows therefore for three different relative angular momenta

(l=0,1,2) between the J/ψ and the φ meson. This leads to different CP eigenvalues

according to:

ηJ/ψφ = (−1)l. (1.52)

In order to be able to correctly describe the time-dependent decay rates, a disen-

tangling of the different CP eigenstates is necessary. Since these components are

related to different angular momentum states, the angular distributions of the final

state particles allows such a separation. Three different combinations of polarization

states of the J/ψ and φ meson are used as basis for this decomposition. They are
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Figure 1.4: Simplified time-dependent decay rates of B0
s and B0

s mesons to the final state
J/ψφ. A final state CP eigenvalue of 1 is assumed. While the mass and decay-
width splitting of the B0

s system are set to the current world averages [16], the
CP-violating phase difference is set to 0.3 rad, which is one order of magnitude
larger than the SM prediction. No experimental effects are taken into account
that would dilute the oscillations.

Figure 1.5: The three different polarization amplitudes of the J/ψφ system in the decay
B0

s → J/ψφ. The short arrows indicate the spin orientation of the two vector
mesons.

shown in Figure 1.5. The amplitude A0 represents the case when both mesons have

a longitudinal polarization, while A⊥ and A� label the states of perpendicular and

parallel transverse polarizations, respectively. A0 and A� are even under CP, while

A⊥ has a relative angular momentum of 1 and is therefore CP-odd.

Each of the three amplitudes comes with a potentially different phase, which

are labeled as δ0, δ⊥ and δ�. They originate from QCD interactions of the final
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Figure 1.6: Definition of the angles in the helicity basis, which is used to describe the
angular distribution of the B0

s → J/ψφ decay. Figure taken from Ref. [20].

states and are therefore also called strong phases and do not change sign under CP

transformation. Since only phase differences are observable, the three phases reduce

to two phase differences that were chosen to be δ⊥ − δ0 and δ� − δ0. These are the

parameters that will be later quoted in the results.

The final state angular distributions are described by three angles that form the

so-called helicity basis. Their definition is shown in Figure 1.6. The angle θµ is

defined as the angle between the positively charged muon and the negative flight

direction of the Bs meson in the center-of-mass system of the J/ψ meson. Similarly,

the angle θK is defined for the positively charged kaon and the φ meson. Comparing

the orientations of the two decay planes of the resonances in the B0
s center-of-mass

system defines the angle ϕh. By convention, the angle between the side of the

negatively charged kaon and the side of the positively charged muon is chosen.

S-wave

Besides the three polarization states of the J/ψφ system, there is one more compo-

nent that contributes to the data samples used in this analysis. Although the φ

resonance dominates the two kaon system in the chosen mass range, there is a small

scalar contribution that consists out of a non-resonant part and the scalar f0(980).

This CP-odd component is called S-wave and comes with an additional strong

phase that is labeled with δS. As for the other components, the absolute phase is

not measurable, and only the phase difference to the phase of the perpendicular

polarization amplitude will be later quoted as a result.

1.5.3 Time-dependent decay rate

Following the previous discussion of the four different components contributing to

the decay B0
s → J/ψφ, one can write down the full time- and angle-dependent decay
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Table 1.2: Definition of prefactors in the time-dependent functions hk(t) of the differential
B0

s → J/ψφ and B0
s→ J/ψφ decay rates, Equations (1.55) and (1.56).

k ak bk ck dk
1 1 D C −S
2 1 D C −S
3 1 −D C S
4 C sin(δ⊥ − δ�) S cos(δ⊥ − δ�) sin(δ⊥ − δ�) D cos(δ⊥ − δ�)
5 cos(δ� − δ0) D cos(δ� − δ0) C cos(δ� − δ0) −S cos(δ� − δ0)
6 C sin(δ⊥ − δ0) S cos(δ⊥ − δ0) sin(δ⊥ − δ0) D cos(δ⊥ − δ0)
7 1 −D C S
8 C cos(δ� − δS) S sin(δ� − δS) cos(δ� − δS) D sin(δ� − δS)
9 sin(δ⊥ − δS) −D sin(δ⊥ − δS) C sin(δ⊥ − δS) S sin(δ⊥ − δS)
10 C cos(δ0 − δS) S sin(δ0 − δS) cos(δ0 − δS) D sin(δ0 − δS)

rate [21]. Including interference between the components, there are in total ten

different terms:

dΓ(B0
s → J/ψφ)

dt dθµ dθK dϕh

∝
10�

k=1

Ak hk,+1(t) fk(θµ, θK ,ϕh), (1.53)

dΓ(B0
s → J/ψφ)

dt dθµ dθK dϕh

∝
10�

k=1

Ak hk,−1(t) fk(θµ, θK ,ϕh). (1.54)

The time-dependent terms hk,+1(t) and hk,−1(t) are derived from Equations (1.49)

and (1.50) and can be written as:

hk,+1 =
1

1 + C
e−Γst

�
ak cosh

�
ΔΓst

2

�
+ bk sinh

�
ΔΓst

2

�

+ ck cos (Δmst) + dk sin (Δmst)
�
, (1.55)

hk,−1 =
1

1 + C
e−Γst

�
ak cosh

�
ΔΓst

2

�
+ bksinh

�
ΔΓst

2

�

− ck cos (Δmst)− dk sin (Δmst)
�
. (1.56)

where the prefactors ak, bk , ck and dk are defined in Table 1.2. The angular

functions fk(θµ, θK ,ϕh) and amplitudes Ak are given in Table 1.3.

1.5.4 Current experimental and theoretical status

Figure 1.7 shows the current experimental status for φs and ΔΓs together with

the SM prediction. Especially for the CP-violating phase difference φs, the world
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Table 1.3: Definition of the angular functions fk(θµ, θK ,φ) and amplitudes of the differen-
tial B0

s → J/ψφ and B0
s→ J/ψφ decay rates, Equations (1.53) and (1.54).

k Ak fk(θµ, θK ,ϕh)
1 |A0|2 2 cos2 θK sin2 θµ
2 |A�|2 sin2 θk(1− sin2 θµ cos

2 ϕh)
3 |A⊥|2 sin2 θk(1− sin2 θµ sin

2 ϕh)
4 |A�A⊥| sin2 θk sin

2 θµ sin 2ϕh

5 |A0A�| 1
2

√
2 sin 2θk sin 2θµ cosϕh

6 |A0A⊥| −1
2

√
2 sin 2θk sin 2θµ sinϕh

7 |AS|2 2
3
sin2 θµ

8 |ASA�| 1
3

√
6 sin θk sin 2θµ cosϕh

9 |ASA⊥| −1
3

√
6 sin θk sin 2θµ sinϕh

10 |ASA0| 4
3

√
3 cos θK sin2 θµ

average is dominated by the LHCb measurements using data corresponding to an

integrated luminosity of 3 fb−1. These measurements contain the previous version

of the analysis presented here [5] but also the study of the complementary decay

B0
s → J/ψπ+π− [22]. Other relevant contributions come from the ATLAS and

CMS collaborations [23, 24]. The numeric values for the world averages are given

in Ref. [16]:

ΔΓw.a.
s = (0.085± 0.006) ps−1,

φw.a.
s = (−0.021± 0.031) rad.

These values are consistent with the theoretical prediction in the case of ΔΓs [25]

and the indirect determination from global fits of the CKM matrix parameters in

the case of φs [19]:

ΔΓtheo.
s = (0.088± 0.020) ps−1,

φtheo.
s = (−0.03686+0.00096

−0.00068) rad.

For the latter, the experimental uncertainties are still significantly larger. Thus,

any improvement of the experimental precision directly translates to an increased

sensitivity for effects beyond the SM.

1.5.5 Impact of higher order diagrams

As discussed above, the interest in the channel B0
s → J/ψφ is, amongst others,

justified by the precise constrain on the angle βs that can be related to the CP-
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Figure 1.7: The experimental status of φs and ΔΓs measurements shortly before the
analysis presented in this thesis was published. The black bar indicates the
SM calculation and constraint of ΔΓs and φs, respectively. Figure taken from
Ref. [16].

violating phase difference φs, which is observable in this channel. This relation,

φs = −2βs, is only valid when terms proportional to VusV
∗
ub can be neglected in

Equation (1.44). In order to be able to compare the measured value of φs to

the value obtained from indirect measurements, it is necessary to determine the

contribution to φs of these higher order penguin diagrams, Δφpeng.
s :

φs = −2βs +Δφpeng.
s (1.57)

It is not possible to reliably calculate the necessary hadronic quantities within

QCD, but measurements of direct CP violation and branching fractions in related

decay channels allow to put constraints on Δφpeng.
s . Following the strategy proposed

in Ref. [26], the LHCb experiment employed the decays B0
s → J/ψK∗(892)0 and

B0 →J/ψρ0 [27]. In these channels, the relative contributions of similar higher

order penguin diagrams are enhanced with respect to the channel B0
s → J/ψφ,

which enables a precise determination of Δφpeng.
s . The obtained value is close to

0 with an uncertainty, depending on the polarization state, between 0.014 and

0.016 radian [27]. Although this is still significantly smaller than the experimental

uncertainty on φs, a more precise determination of the penguin contributions will

become necessary to keep up with future measurements of φs.
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1.5.6 Possible non-Standard-Model contributions

The measured CP violation in the decay B0
s → J/ψφ can be affected by processes of

New Physics contributing to the B0
s/B

0
s mixing diagrams shown in Figure 1.2. An

overview of New Physics models affecting this mixing processes can be found in [25].

Any such modification of the meson mixing can be parametrized by a change of the

off-diagonal matrix element M12 in Equation (1.15). This is the starting point of a

model-independent way to constrain New Physics contributions described in [28].

The change can be written as:

M12 = MSM
12 ·Δs with Δs = |Δs|eiφ

Δ
s . (1.58)

where MSM
12 is the SM value and any deviation from Δs = 1 corresponds to a

contribution of New Physics. The absolute value of Δs affects the mass splitting

Δms and any nonzero phase φΔ
s modifies the value of φs according to:

φs = φSM
s + φΔ

s . (1.59)

Current available measurements of φs, Δms and ΔΓs were used, together with

other measurements, to perform a global fit that puts constrains on the real and

imaginary part of Δs [28]. The corresponding contour plot is shown in Figure 1.8.

The SM value of Δs = (1, 0) is in good agreement with the current best fit value,

which is dominated by the constrains due to the mass splitting Δms and the phase

difference −2βs ≈ φs. While the width of the Δms band originates mainly from

the uncertainty of the theoretical quantities, the width of the φs contribution is

dominated by experimental uncertainties. This is a strong motivation to improve

the measurement of φs.

1.5.7 Polarization-dependent CP violation

The time-dependent decay rates presented above assume that the CP-violation

parameter λ is the same for all polarization amplitudes. However, some New

Physics models may induce a polarization-dependent shift of the phase difference

φs, see Ref. [29]. Therefore, an alternative parametrization of the decay rates

with polarization-dependent CP violation is useful. In this parametrization, each
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polarization, including the S-wave component, comes with a separate parameter λp

that is given by:

λp =
q

p

Ap

Ap
, (1.60)

where Ap and Ap are the decay amplitudes of a B0
s and a B0

s meson to the polarization

p, respectively. This means that there are separate values for |λp| and φp
s for every

polarization p ∈ [0, ⊥, �] and the S-wave component p = S. Following Ref. [30],

the time-dependent decay rate with polarization-dependent CP violation is given

in Appendix A. While the polarization-independent CP-violation parametrization

is used as nominal model throughout the analysis presented here, a crosscheck

is performed using the more complex parametrization to test for any sign of

polarization-dependent CP violation.

1.5.8 The B0
s lifetime

Besides the CP-violating phase difference φs, which can be precisely predicted from

global fits of the CKM parameters, the lifetime-related parameters ΔΓs and Γs

are two of the main physical quantities measured in the presented analysis. In
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Figure 1.9: One of the Feynman diagrams representing possible QCD iterations within
and between the initial and final state particles.

contrast to φs, these parameters lack a precise theoretical prediction. While the

decay width of the most simple weak decay, the decay of a muon to an electron and

two neutrinos, can be precisely calculated considering only the pure weak process

and the phase space, decay-widths predictions of processes involving strongly bound

objects in the initial and final state suffer from a range of QCD effects.

Figure 1.9 shows a version of Figure 1.3b where possible QCD interactions within

and between the initial and final state particles are added. Such diagrams can

not be calculated perturbatively. However, the Heavy Quark Expansion (HQE)

formalism uses an expansion in 1/m(B0
s ) of an effective Hamiltonian to describe such

processes [31]. Especially lifetime or decay-width ratios of different B mesons can be

predicted with high precision within this formalism. Many corrections and related

uncertainties cancel, which yields the following value for the decay-width ration

of the B0
s and B0 meson: Γs/Γd = 1.0006± 0.0025 [32]. This precise prediction is

consistent with the current experimental value, Γs/Γd = 1.007±0.004 [16]. Reaching

now an experimental precision comparable to the prediction, makes this quantity

an excellent testing case of HQE, which is used for many theoretical predictions in

the B-meson systems.

The analysis presented here, is directly sensitive to the decay-width difference

Γs
d = Γs −Γd, which can be easily related to the corresponding ratio when using the

current experimental world average for the B0 lifetime, τB0 = (1.520±0.004) ps [16].
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This chapter provides an overview of the LHCb experiment at the Large Hadron

Collider. The purpose of this chapter is not to give a full-length review of all

components of the experimental apertures, but to briefly introduce the elements

and concepts that are relevant for the analysis presented in this thesis.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) operated by the European Organization for

Nuclear Research (CERN) near Geneva is up-to-date the most powerful particle

accelerator [33]. Its controlled operation started in 2010 with symmetric proton-

proton collisions at a center-of-mass energy of 7TeV. The circular accelerator has a

circumference of 26.7 km and while the most runtime is reserved for proton-proton

collisions, a sizable fraction is also spent on the acceleration and collision of lead

nuclei.

Although so far not reached, the LHC is designed for a maximum proton-proton

center-of-mass energy of 14TeV with proton beams that each consist of up to 2808

bunches of approximately 1011 protons. This corresponds to a collision rate of up to

40MHz. While the LHC was run at 7 to 8TeV center-of-mass energy in the years

2010 to 2012, the following upgrade phase allowed to operate it at 13TeV in the

years 2015 to 2018. Currently the second upgrade phase is taking place, and in

2021 the LHC will finally resume operation with the design center-of-mass energy

of 14TeV.

In total, the LHC provides 4 interaction points at which the four main experiments

are located: ALICE [34], ATLAS [35], CMS [36] and LHCb [37]. The analysis

presented here is based on a proton-proton sample recorded in 2015 and 2016 by

the LHCb experiment.
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Figure 2.1: Schematic view of the LHCb detector (a) and distribution of the angles
between produced bb quark pairs and the beam axis in simulated proton-
proton collisions (b). In (b) the LHCb acceptance is indicated in red. The
figures are taken from Ref. [38, 39].

2.2 The LHCb detector

In comparison to the other three main experiments at the LHC, the LHCb ex-

periment features a unique detector geometry. Is is shown in Figure 2.1a. While

especially ATLAS and CMS are multipurpose detectors that cover a symmetric

area around the proton-proton interaction point and mainly concentrate on the

reconstruction of heavy particles that are produced with high momentum transverse

to the beams, the LHCb detector is realized as a forward spectrometer covering

an angle between 10 and approximately 300mrad with respect to the beam line.

This forward geometry is motivated by the research focus of the LHCb experiment,

namely the study of heavy mesons and baryons containing bottom or charm quarks.

These are produced mainly in the forward1 direction as can be seen in Figure 2.1b.

Each of the detector components is specifically designed to efficiently reconstruct

and select decays of such heavy mesons and baryons and will be shortly described

in the following.

1Forward represents here both directions along the beam pipe. For practical reasons the LHCb
detector is equipped only in one direction.
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Figure 2.2: Schematic view of the Vertex Locator. The overall arrangement of the stations
is shown on the top and the position and structure of the two halves of one
station are shown at the bottom. The figure is taken from Ref. [44].

2.2.1 Tracking system

Most of the produced heavy mesons and baryons decay within picoseconds after their

production and can therefore not be directly detected. Thus, their identification

heavily relies on the precise reconstruction of their decay products, which originate

from a common vertex and have an invariant mass matching the mass of the mother

particle. This requires a precise measurement of the trajectory and the momentum

of these particles. Within the LHCb detector and for charged particles, both is

provided by the tracking system. It consists of a Vertex Locator [40] around the

interaction point, two tracking stations before (Trigger-Tracker or TT) and three

tracking stations behind [41, 42] (T1-T3) a dipole magnet [43], see Figure 2.1a.

The Vertex Locator

The Vertex Locator (VELO) is responsible for the reconstruction of particle trajec-

tories (tracks) near the proton-proton interaction point. It consists of 21 circular

stations arranged along the beam line, see Figure 2.2. Each of them contains two

types of silicon-strip detectors. The so-called R sensors are oriented tangentially
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(a) (b)

Figure 2.3: Resolution plots of the Vertex Locator. In (a) the primary vertex resolution
perpendicular to the beam axis is shown as a function of the number of
associated tracks. The gray histogram indicates the distribution of this
number in data. In (b) the resolution of the impact parameter perpendicular
to the beam axis is shown as a function of the transverse momentum of a
particle. The figures are taken from Ref. [46].

and measure the distance to the beam line. In contrast, the φ sensors are arranged

in radial direction. The sensors have a minimal distance of 7mm to the beams and

only a thin aluminum pipe separates the LHC vacuum and the detector. During the

injection phase of the LHC, the VELO has to be removed from its nominal position

in order to protect it from the unstable beams. For this purpose, the complete

Vertex Locator consists of two halves that can be moved to and away from the

beams, see Figure 2.2.

In a first step during the reconstruction of tracks inside the VELO, only the

information of the R sensors is used [45]. Given that most of the particles passing

the detector are produced directly at or close to the primary interaction point, their

projection of the radial distance to the beam axis as a function of their z position

can be approximated by a straight line. This allows to find track candidates by

searching for four or three hits building a straight line in this projection. These track

candidates are then further extended by adding additional hits that match to the

extrapolation. Only after that, hits from the φ sensors are associated to the tracks.

Besides the reconstruction of individual tracks, the main purpose of the VELO is

the identification and precise position measurement of vertices. The reconstruction

of the primary vertex (PV) of the proton-proton collision and secondary vertices of

the decays of relatively long-living particles, such as B-mesons, is crucial to identify

the latter and to measure their decay time. Figure 2.3 shows the PV resolution

in the two directions transverse to the beam axis and the impact parameter (IP)

resolution in one of these directions. The IP is defined as the minimal distance of

a track to the PV, and requiring a large IP is a way to identify tracks originating
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Figure 2.4: Main component of the magnetic field as a function of the z position. The
figure is taken from Ref. [47].

from a secondary vertex. Due to the forward geometry of the LHCb detector, the

respective spatial resolution along the beam axis are typically a factor 5-8 worse.

The magnet

While the position of charged particles near the collision point is precisely measured

by the VELO, their momenta is so far completely unknown. For this, the curvature

of the particle trajectories inside a magnetic field has to be measured. In the LHCb

detector, this magnetic field is provided by a dipole magnet and is aligned with the

y-axis, see Figure 2.1a. The polarity is flipped on a regular basis, which allows to

control effects arising from potential asymmetries of the detector. In Figure 2.4, the

magnetic field is shown as a function of the z position. For particles transversing

the complete detector, the field adds up to 4Tm. Inside the VELO the magnetic

field is nearly negligible, and therefore no momentum measurement is possible using

only hits in this detector. For this purpose, further tracking stations are located in

front and especially behind the magnet, see Figure 2.4. They will be described in

more detail in the following subsections.
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Figure 2.5: Schematic view of the four layers of the TT (a) and of one layer of the IT (b).
The figures are taken from Ref. [48, 49].

Silicon trackers

The tracking stations before (TT) and the inner part of the tracking stations behind

(IT) the dipole magnet are based on silicon micro-strips. These strips are oriented

perpendicular to the bending plane and have a pitch of 183µm and 197µm for the

TT and IT, respectively. Both sub-detectors are shown in Figure 2.5. While the

IT covers only the most inner LHCb acceptance and is surrounded by the outer

tracker, which will be described later, the TT detector covers the full acceptance.

It is arranged in two stations of two layers each, of which the respective inner ones

are tilted by 5◦ around the z axis in opposite directions. This allows a more precise

position measurement along the y axis.

The TT stations are mainly needed to detect very low-momentum particles

(� 2GeV/c), which are bent out of the detector by the dipole magnet, and particles

that originate from long-living neutral resonances that decay outside the VELO,

like K0
s mesons or λ0 baryons. TT measurements also improve the momentum

resolution by further constraining the slope of the trajectories before the main

magnetic field.

Outer tracker

Together with the IT, the outer tracker (OT) forms the tracking stations behind

the dipole magnet, which are crucial for the momentum measurement. While the

highly occupied inner region is covered by the high-resolution IT, the OT does not
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Figure 2.6: Schematic view of the cross section of a single OT layer on the left, and of
the arrangement of the three OT stations on the right. The figures are taken
from Ref. [50].

have to deal with these high multiplicities and provides a coarser granularity in the

outer regions with lower activity. The OT is based on straw tubes arranged in two

rows per layer. They have a pitch of 5.25mm and a resolution of less than 200µm

is achieved in the direction perpendicular to the tubes. Figure 2.6 shows the cross

section of a single layer and the arrangement of the full OT in three stations with

four layers each. The OT covers an area of approximately 5× 6m2 and as for the

TT station, the respective inner layers are tilted by 5◦ around the z axis in opposite

directions to allow the position measurement in the y direction.

Combining the tracking sub-detectors

The information of the tracking sub-detectors are combined by several algorithms to

identify tracks, see e.g. [46]. There are different track types, describing from which

sub-detectors the track is receiving hits. In the scope of this analysis, only the

so-called long tracks are of interest. They have at least hits in the VELO and in the

tracking stations behind the magnet and show the highest momentum resolution.

After the hits associated to a track have been identified, a Kalman filter is performed

to identify and remove outliers, and to obtain the optimal estimate of the track

parameters including the final momentum estimate. For long tracks a resolution

Δp/p of 5 to 8 per mill for momenta between 20 and 100GeV/c is achieved [46].

In addition, the Kalman filter provides a χ2
track for the track fit describing the

fit quality. This is the main input to a combination of the information from the

tracking systems that is used to reject bad-quality track candidates, which are likely

to not correspond to a real particle passing the detector.
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2.2.2 Particle-species identification system

Especially for experimental flavour physics, the possibility discriminate between

different particle species is essential. In order to identify and study a wide range

of possible decays of heavy mesons and hadrons, it is crucial to correctly identify

the particle types of the decay products. The LHCb detector provides a dedicated

particle identification system that allows to distinguish between electrons, muons,

charged pions and kaons, protons and photons. In the following, the different

detectors, relevant for the particle identification, are shortly presented.

Ring-Imaging Cherenkov detectors

Two Ring-Imaging Cherenkov detectors (RICH1 and RICH2) are responsible for the

identification of charged hadrons. Their functional principle is based on Cherenkov

radiation, which occurs when charged particles transverse a material with a velocity

that is larger than the speed of light in this medium. Depending on the velocity β

of the particle and the refractive index n of the material, the photons are emitted

under a specific angle that is given by cos θ = 1/(βn). By measuring the angle

θ, the velocity of the particle can be determined. When matching a signal in the

RICH detectors to a track, its momentum estimate can be related to the mass and

thereby to the species of the respective particle.

The RICH detectors are placed before and after the magnet and its surrounding

tracking stations. They contain different radiator materials with different refractive

indices. While the RICH1 detector in front of the magnet uses the gas C4F10 and

is able to discriminate particles in the momentum range between 2 and 50GeV/c,

the RICH2 detector is located behind the magnet and contains the gas CF4, which

allows to discriminate charged hadrons up to a momentum of 100GeV/c. Besides

the radiator material, both RICH detectors contain mirrors to guide the Cherenkov

light away from the beam pipe and position resolving photon detectors that detect

the light rings. Figure 2.7a shows the structure of the RICH1 detector.

For each of the RICH detectors, the detected light patterns are matched to the

traversing tracks, and mass hypothesis are assigned. For each track and possible

mass hypothesis a likelihood to match the observed pattern is calculated. Differences

in this likelihood for the respective particle hypothesis are then used to discriminate

between the species. Typically, the likelihood of the pion hypothesis is chosen as

reference. Figure 2.7b shows the efficiency of the kaon hypothesis for two different

cuts on the respective logarithmic likelihood difference (ΔLL). It is shown as a

function of the momentum and separately for kaons and pions.
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(a) (b)

Figure 2.7: Schematic view of the RICH1 detector (a) and efficiency of the kaon
(miss)identification for different particles as a function of their momentum
and for different cuts on the RICH response (b). The figures are taken from
Ref. [51, 52].

Calorimeters

The calorimeter system at LHCb fulfills three main tasks. It measures energies

of charged and neutral particles, it allows to discriminate light hadrons, electrons

and photons, and it is a crucial part of the trigger system, see Section 2.2.3. The

four calorimeter sub-systems are placed behind the RICH2 detector and are all

based on alternating layers of absorber and scintillation material, see Figure 2.8a.

Inside the Electromagnetic Calorimeter (ECAL) electrons and photons produce

electromagnetic showers via bremsstrahlung and e+e− pair production and are

typically fully absorbed. Their energy can be measured by collecting the light

inside the scintillator layers and reading it out with photomultipliers. The Hadronic

Calorimeter (HCAL) is located behind the ECAL and creates and detects hadronic

showers of neutral and charged hadrons entering it. A Scintillating Pad Detector

(SPD) and a Pre-Shower (PS) detector are located in front of the ECAL and are

separated by an additional lead plate. Since the SPD only gives signal for charged

particles, it helps to distinguish between electromagnetic showers created from

photons and electrons. The PS detector supports the separation of electrons and

light hadrons by their different shower behavior inside the lead layer.
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(a) (b)

Figure 2.8: Schematic views of the calorimeter system in (a) and the muon detectors in
(b). The figures are taken from Ref. [37, 53].

Muon system

In contrast to other charged particles, muons at the typical LHC energies behave

like minimum ionizing particles and therefore pass through the whole calorimeter

system without depositing a sizable amount of energy. Their identification is based

on a dedicated muon system, which is located mostly behind the calorimeters, see

Figure 2.8a. It consists mainly out of multi-wire proportional chambers, which are

separated by 80 cm thick layers of iron aiming to stop high energy hadrons that

might pass the calorimeter system. Charged particles passing the chambers ionize

the gas inside, and the produced charge is collected and amplified.

Since the muon chambers can be read out at 40MHz and provide a clean signal

of high energy muons, they are a crucial part of the LHCb trigger, see Section 2.2.3.

The muon chamber that is positioned in front of the calorimeter system significantly

improves the transverse momentum resolution in the trigger.

Combining the sub-systems

As shortly describe for the RICH detectors, for every particle identification sub-

detector per-track likelihoods for specific particle hypothesis can be calculated.

Again, the pion hypothesis is chosen as reference since these are the most abundant
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particles. The differences in logarithmic likelihood are then linearly combined and

global particle identification variables are defined for every particle species X [46]:

ΔlnLXπ = lnL(X)− lnL(π). (2.1)

Here, lnL(X) is the sum of logarithmic likelihoods of all sub-detectors for the

particle hypothesis X.

A more advanced set of global particle identification variables was developed in

the last years [54]. It is based on machine learning and employs neural networks

to identify particle species. In addition to the logarithmic likelihood differences

discussed above, further information coming from the particle identification and

tracking detectors are used as input. The output variables of the neural nets are

labeled as ProbNNX, where X represents one of the particle species.

2.2.3 Trigger system and data flow

As described above, the LHC provides proton bunch collisions at a rate of 40MHz.

With the current LHCb detector it is not possible to fully read out and record the

information from all sub-detectors at this rate. Anyhow, only in one of approximately

1000 proton-proton collisions a bb quark pair is produced inside the LHCb acceptance.

While this rate is fairly high in comparison to the production rate of heavier

particles like the Higgs boson, the decay products of the produced B-hadrons

have a similar momentum distribution as the underlying event. Therefore, it is

challenging to identify and record only events that are likely to contain the decays

of interest. In the following, the LHCb trigger system, which is performing this

task, is shortly presented.

The strategy for triggering events within the LHCb experiment is based on three

consecutive stages, which stepwise reduce the rate while including the information

of increasingly more sub-detectors, see Figure 2.9. Only the muon chambers and the

calorimeters can be read out at 40MHz and are therefore the only detectors available

for the first trigger stage. This level-zero (L0) hardware trigger is looking for high

transverse components of the energy deposits in the hadronic or electromagnetic

calorimeter, or for single muons or pairs of muons with a high transverse momentum.

Typical calorimeter thresholds are ET � 3GeV for hadrons and ET � 2GeV for

photons and electrons. For the muon triggers, typical threshold on the transverse

momentum of a single particle are around pT � 1.2GeV/c, and for a pair of muons

the threshold is defined as
�
p1T p2T � 1.1GeV/c. This reduces the total rate to

around 1MHz, which is low enough to read out the full tracking system and enter
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Figure 2.9: Flow diagram describing the structure of the LHCb trigger system. The figure
is taken from Ref. [55].

the first stage of the software high level trigger (HLT1). In the HLT1 stage, tracks

and primary vertices (PVs) are reconstructed. A more detailed discussion of the

HLT1 trigger strategy, relevant for this thesis, can be found in Section 5.1. In

general, the reconstruction of tracks and vertices allows to identify high momentum

particles that have a large distance to any PV and are therefore likely to come

from a long-living B or charm hadron. In addition, also two muons forming a

good vertex and providing a high invariant mass are used to select an event. After

the HLT1 stage, the output rate is reduced to approximately 150 kHz, which can

then be written to a buffer. This allows to perform detector calibrations and

alignments before entering the second and final stage of the software high level

trigger (HLT2). Here, the full information of all sub-detectors is available and a

comprehensive reconstruction of the event is performed. This allows to trigger on a

range of inclusive and exclusive signatures of multi body decays of B and charm

hadrons. This ranges from the identification of secondary vertices, requirements on

the invariant mass of particle combinations as far as to the complete reconstruction

of decay chains. A more detailed summary of the HLT2 selection that is relevant for

the analysis presented here, is given in Section 5.1. The events passing the HLT2

stage correspond to a rate of 12.5 kHz, which can then be finally written to disk.
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2.2 The LHCb detector

For a large fraction of the events passing the trigger, the complete detector output

is stored and another offline reconstruction is performed. The other events are

processed in the so-called turbo stream [56] where the reconstruction in the HLT2

stage is directly further processed. This allows to reduce the event size by an order

of magnitude. Although the turbo stream is not used in the presented analysis,

it will become more and more important and the default option after the current

upgrade of the LHCb detector [57, 58].

Simulated samples

In particle physics, simulations of the decays and processes of interest and their

signature in the detector are often a crucial ingredient for the analysis of experimental

data. Key aspects of an analysis, like the detector efficiencies and resolutions can be

studies and understood using these simulated samples. Therefore, it is important

that the generated samples match the real data samples as closely as possible. The

generation process can be split in two parts. The first is the simulation of the

proton-proton collision with the Monte-Carlo event generator Pythia [59] and of

the subsequent decays of unstable particles with the EvtGen library [60]. The

second and more time consuming part is the simulation of the LHCb detector. It is

realized with the Geant4 toolkit [61] as described in Ref. [62]. With the detector

response at hand, the simulated events are processed in the exact same way as

real data. This includes an emulation of the digitization of the analogous detector

responses and of the complete trigger system.

37





3 Analysis overview

3.1 Analysis strategy

The analysis presented in this thesis aims to measure properties of the decay

B0
s → J/ψφ, where the J/ψ and φ mesons decay further to two charged muons and

two charged kaons, respectively. Of main interest are the CP-violating phase differ-

ence φs, the decay width Γs and the decay-width splitting ΔΓs. These parameters

are all defined in Chapter 1. To determine them requires a measurement of the

time-dependent decay rate separated according to the initial flavour of the B0
s/B

0
s

mesons. To disentangle the different CP components of the J/ψφ final state, in

addition an angular analysis is necessary. In the following, a rough outline of the

structure of this thesis is given:

• Before starting with the actual analysis, Chapter 4 introduces some statistical

tools and techniques that are employed throughout the following chapters.

• In order to be able to extract the physics parameters, it is necessary to

have a pure sample of fully reconstructed B0
s → J/ψφ decays without any

background originating from other particles being produced in the proton-

proton collisions. In Chapter 5, the corresponding reconstruction, signal

selection and background removal strategies are discussed.

• As mentioned above, the analysis requires a separation of the data set according

to the initial flavour of the B0
s/B

0
s mesons. Since the final state does not allow

to deduce the initial flavour, dedicated methods were developed that allow to

obtain this information by a reconstruction of other particles being produced

in the respective proton-proton event. Chapter 6 summarizes these methods

and their calibration.

• Given that a time-dependent angular analysis is performed, several detector

acceptance and resolution effects have to be considered. They originate from

the geometrical detector acceptance, the selection strategy and the intrinsic
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measurement uncertainties. The determination of these detector effects is a

central part of this thesis and is described in Chapter 7.

• Once a clean flavour-tagged signal sample with a correct description of the

resolution and acceptance effects is obtained, in Chapter 8 a maximum

likelihood fit to the decay-time and angular distributions is employed to

extract the physics parameters of interest. In the same chapter, a more

detailed description of the treatment of the S-wave component is given. As

a consequence of this study, the maximum likelihood fit is simultaneously

performed in bins of the invariant mass of the two kaon system.

• After presenting the results of this fit in Chapter 9, a detailed summary of

the considered systematic uncertainties is given in Chapter 10.

This analysis is based on previous studies of the channel B0
s → J/ψφ with data

collected in Run I by the LHCb experiment [5]. Several aspects were improved or

completely redeveloped. An important change is the way the decay-time acceptance

is determined. It is obtained from the topological similar channel B0→ J/ψK∗0,

which leads to the interesting fact that a direct measurement of the decay-width

difference between the B0
s and B0 meson, ΔΓs

d = Γs−Γd, is possible. This difference

can be related to the ratio Γs/Γd, which is of much more theoretical interest than

the individual decay width of the B0
s system. Details are given in Section 7.2.

3.2 Own contribution to the official

LHCb analysis

The content of this thesis is part of an official LHCb analysis that is close to be

published in Ref. [63], was first shown at [64] and is documented in detail in the

internal note Ref. [65]. For such a complex study it is common that a team of

several people contribute and that not every part of it can be done by a single

person. Nevertheless, it is crucial that important parts of the analysis are performed

independently as a cross-check by at least two scientists. Given that everything is

consistent, the choice of the exact numbers that will then enter in the final official

result is arbitrary.

The situation discussed above also applies to the analysis presented here. Starting

after the selection of signal decays and exploiting the flavour tagging that was

developed and crosschecked by the LHCb collaboration over the last years, this thesis

presents an autonomous study of the decay B0
s → J/ψφ. The decay-time and angular
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acceptance and the decay-time resolution determined here are close to the ones

used in the official analysis, while the final fit result and the statistical subtraction

of background candidates were only used as a cross-check. For consistency reasons,

it was decided to present the results of this autonomous study rather than the one

of the official LHCb analysis. A comparison of the two sets of results is shown

in Appendix G.3.

3.3 Probability density function of the

decay B0
s → J/ψφ

The extraction of the physics parameters is strongly based on a correct description

of decay-time and angular distributions of the selected B0
s → J/ψφ decays. The

parametrization of this distribution is called probability density function (PDF)

and will be developed throughout the following chapters. The starting point is

the underlying PDF as it would be present if the complete information about all

B0
s → J/ψφ decays would be available. It is essentially given by Equations (1.53)

and (1.54):

PDF(t,Ω|q) = 1

Nq

10�

k=1

Ak hk,q(t) fk(Ω), (3.1)

where Ω represents the three angles of the helicity basis and q = ±1 corresponds to

the initial flavour of the B0
s/B

0
s meson. The absolute amplitudes squared A2

⊥,0,�,S are

parametrized by a S-wave fraction, F j
S = A2

S, for every bin in m(K−K+) and values

for |A⊥|2 and |A0|2 representing the respective fraction of the resonant component.

The parallel component is fixed by A2
⊥ + A2

0 + A2
� = 1. Nq is a normalization factor

that is given by:

Nq =

∞�

t=0

�

Ω

PDF(t,Ω|q) dΩ dt. (3.2)

This PDF has to be modified when introducing flavour tagging, detector acceptances

and resolution effects. At the end of the respective chapter or section, the relevant

modifications of the PDF are given.
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4.1 Efficient selection: Boosted decision trees

The task to solve

A typical situation at the beginning of an analysis based on data from a collider

experiment is a sample of signal candidates that is swamped by background processes.

It is crucial to effectively discriminate between these two contributions and to obtain

a signal sample as large and pure as possible. While the classical approach is based

on the optimization of a set of rectangular cuts on some of the properties of the

candidates, the method presented here allows to automatically consider correlations

between these properties. In addition, it reduces the final optimization decision

between signal efficiency and background rejection rate to the simple choice of a

cut value on a single classification variable.

Machine learning

The algorithms presented here fall in the class of supervised machine learning. This

means that the algorithm is trained to discriminate between signal and background

candidates using a set of labeled candidates of these two categories. Typically, these

training data sets are obtained from control regions in data or from simulation. An

independent set of such samples can then be used to get an unbiased estimate of

the performance of the algorithm.

Decision trees

We consider a training sample N that consists of two species, labeled as y = 1 and

y = −1, which have a set of properties x. A decision tree (DT) aims to create

regions, called leafs, in the property space and classifies them as either y = 1 or

y = −1. These leafs are defined in an iterative procedure that is based on binary

decisions in one of the properties xi. Figure 4.1 shows a simple example of a DT.

In every step k, the algorithm searches for the optimal combination of one property
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xi0 ≤c0 xi0 >c0

xi1 ≤c1 xi1 >c1

Figure 4.1: A simple example of a decision tree. The colors blue and red represent the
two species that are separated by splits in the variables xi0/i1 at values c0/1.

xik and a respective cut value ck such that the chosen metric is minimized. An

example for such a metric is the sum of squares of the difference between the

predicted species and the true species for all elements n in the leaf Ñ ⊂ N that is

currently processed:

�

n∈Ñ
x
ik
≤ck

(ỹ1 − yn)
2 +

�

n∈Ñ
x
ik
>ck

(ỹ2 − yn)
2. (4.1)

Here, yn ∈ {1,−1} is the actual species of the element n and ỹ1/2 are the predicted

species in the specific leaf. This prediction is typically defined as the species that

is more abundant in this region. In this case, the metric is therefore directly

proportional to the number of wrongly assigned species hypothesis.

The same concepts can be also applied to regression trees, which try to predict a

continuous variable y instead of a binary classification. Typically, the average y value

of the entries of the training sample in a leaf is chosen as predicted value. A decision

and regression tree is then completely defined by the parameters {(i0, c0), ..., (il, cl)},
i.e. the cut values ck and the properties xik to cut on. The number of those cuts, l,

depends on the depth of the tree.

Boosting and gradient boosting

The decision trees presented previously can in principle perfectly solve the task of

classifying a training sample. However, they suffer from instability under small

variations of this training sample. To mitigate this effect and ensure a good per-
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4.1 Efficient selection: Boosted decision trees

formance also on an independent sample, the method of boosting is employed [66].

The concept of boosting involves the sequential combination of many relatively weak

classification or regression algorithms, called weak learners, to obtain a more power-

ful, but still robust, overall algorithm. One way to formulate a boosting algorithm,

is the gradient boosting method [67], which is discussed in more detail below.

We consider again a training data set with N entries that have the properties

x and y. The aim is to find a function F , such that F (x) infers the variable

y of an entry based on its other properties x. Given a general loss function

L(F (x1), y1, ..., F (xN ), yN ) that measures the deviation between the predicted and

true values of y, the gradient boosting algorithm tries to minimize L in terms of a

gradient descent method, in which the gradients are approximated by weak learners.

An example for such a loss function is the metric given in Equation (4.1):

L(F (x1), y1, ..., F (xN), yN) =
N�

i=1

(F (xi)− yi)
2, (4.2)

but in general any loss function can be used. In the case discussed here, the weak

learners, φ(x, θ), are the previously introduced regression trees that are described

by the parameters θ = {(i0, c0), ..., (il, cl)}, see Figure 4.1.

The first step of the boosting is to fit a weak learner, φ(x,θ0), to the training

data, which is then the first estimate F0(x) of the desired relation between y and x.

The following three steps, see Figure 4.2 for illustration, are then repeated M times

to sequentially improve this approximation:

For m = 1, m < M :

1. Calculate the gradient rm of the loss function L with respect to the prediction

of the current model:

rmi = −
�
∂L(F (x1), y1, ..., F (xN), yN)

∂F (xi)

�

F=Fm−1

(4.3)

In the case of the loss function given in Equation (4.2), these residuals are

given for every element i of the training sample by:

rmi = −2[Fm−1(xi)− yi]. (4.4)

2. Fit another weak learner, φ(x, θm), to this gradient
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F (xi)Fm−1(xi)Fm(xi)

−rmi ≈ φ(xi,θm)

L
(F

(x
1
),
y 1
,.
..
,F

(x
N
),
y N

)

Figure 4.2: Schematic view of one step during the gradient boosting technique. The red
line indicates the value of the loss function L evaluated for the training sample.
The x axis represents one dimension of the high dimensional space F (xi),
with i ∈ {1, ..., N}.

3. Update the estimate of the relation between y and x:

Fm(x) = Fm−1(x) + νmφ(x, θm), (4.5)

where νm is a real parameter that can be determined using line search to

minimize the loss function.

In this way, the final prediction of y based on x is given by the linear combination

of the output of many weak learners:

F (x) =
M�

m=1

νmφ(x, θm), (4.6)

and minimizes the defined loss function L. During the boosting iterations, the step

parameters νm are typically scaled by a number of the interval (0, 1]. This procedure

is called shrinkage and, although more weak learners have to be combined, makes

the boosting more robust.

In the analysis presented in this thesis, the implementation of gradient boosting

within the TMVA framework [68] is used to discriminate between signal and

background candidates in data. Although the classifier consists solely out of

regression trees, such a classifier is usually called a boosted decision tree (BDT).
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4.2 Boosted weighting

4.2 Boosted weighting

The task to solve

Several components of the analysis presented in this thesis rely on the weighting

of one data set such that the distributions of some of its variables agree with the

respective ones of another data set. This is for example needed when correcting

simulated samples to better describe data. To obtain such weights for one or two

variables at the same time is trivial and can be achieved by dividing histograms

containing the respective distributions. However, higher dimensional agreement

can often not be achieved with this method, since the histograms are increasingly

sparsely populated. To overcome this limitation, a method is presented that is

based on boosted regression trees [69].

Boosted weighting

The principle idea to overcome the problem of high dimensional weighting is to

sequentially apply weak weighting algorithms, and thereby gradually correct the

high dimensional distribution. This is implemented as a boosted regression tree,

see Section 4.1, where each regression tree is trained to minimize the symmetrized

χ2 of its leafs. Given the normalized distributions of two data sets D1 and D2, the

symmetrized χ2 is defined as:

χ2 =
�

leafs

�
ND1

leaf −ND2
leaf

�2

ND1
leaf +ND2

leaf

, (4.7)

where N
D1/2

leaf are the normalized number of entries in the respective leaf for the two

data sets. The prediction of the regression tree in the respective leaf is then given by

the ratio ND2
leaf/N

D1
leaf. Once the first regression tree is trained, its prediction is used

to weight the data sample D1. This procedure is iteratively repeated with replacing

the previous version of the sample D1 with the newly weighted version of it. Again,

as for the gradient boosting method, a shrinkage factor η is applied such that the

applied weights are modified to be (ND2
leaf/N

D1
leaf)

η. A shrinkage factor significantly

smaller than 1 helps to stabilize the weighting algorithm. If not explicitly stated

differently, the boosted weighting technique is employed as default weighting tool

throughout this thesis.
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4.3 Parameter estimate:

Maximum likelihood method

The task to solve

The heart of this thesis is the extraction of certain physics parameters from the

measured decay times and angles of a sample of B0
s → J/ψφ decays. Given a set of

values for these physics parameters, the expected distribution of these observables

is known, see for example Equation (3.1). However, the opposite direction, i.e. to

infer the values of the physics parameters from the observed distributions, is more

challenging. In the following, the concept of maximum likelihood estimation is

introduced1 as a way to achieve this inversion.

Maximum likelihood estimation

Given a sample X of N independent measurements of some set of observables

x that are distributed according to a normalized probability density function

PDF(x|θ) with some unknown parameters θ, the likelihood L of this sample given

the parameters θ̃ is defined as:

L(X|θ̃) =
N�

i=1

PDF(X i|θ̃). (4.8)

According to Bayes theorem

p(A|B) =
p(B|A) p(A)

p(B)
, (4.9)

which connects the conditional probabilities p(A|B) and p(B|A), this likelihood,
interpreted as probability of the observed data X given the parameters θ̃, can be

transformed to an estimator of the parameters given the data:

p(θ̃|X) =
L(X|θ̃) p(θ̃)

p(X)
. (4.10)

The prior p(θ̃) is typically chosen to be flat and p(X) is given by the normalization.

The best estimates of the parameters θ̃ are therefore obtained by maximizing the

1For a detailed discussion of this concept see e.g. Ref. [70].
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likelihood function or, what is typically done, by minimizing the negative logarithmic

likelihood:

logL(X|θ̃) =
N�

i=1

log
�
PDF(X i|θ̃)

�
. (4.11)

It can be shown that in the limit of large N , the likelihood function converges to a

normal distribution that can be used to estimate the true underlying parameters

θ. Therefore, a natural uncertainty estimate corresponding to a one σ interval

is given by the parameter value where the negative logarithmic likelihood has

changed by halve a unit with respect to the minimum. This also allows to determine

asymmetric uncertainties in case the likelihood shape is not symmetric. In case

that each element X i of the sample X features a weight wi, the likelihood function

is modified according to:

L(X|θ̃) =
N�

i=1

PDF(X i|θ̃)wi . (4.12)

To ensure that the uncertainty estimate is not biased by the overall scale of these

weights, they have to be normalized such that [71]:

N�
i=1

wi

N�
i=1

w2
i

= 1. (4.13)

In case of absolute yield estimations, the maximum likelihood method has to be

extended [70]. The normalized PDF is replaced by the one that contains the yields

N of every species (e.g. signal and background) present in the PDF as parameters

and a Poisson factor is added:

L(X|θ̃) = e−
�N

N !

N�

i=1

PDF(X i|θ̃,N ), (4.14)

where
�N is the sum of all yields. The term N ! is constant and thus can be

dropped during the minimization.

The maximum likelihood method also allows to include external constraints on

the parameters θ̃. Given a set of parameters θ̃
� ⊂ θ̃, for which a prior knowledge,

represented by the values ν and the according covariance matrix Cν , should
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be considered, the likelihood can be adjusted by adding a Gaussian constraint

according to:

L(X|θ̃) = 1

Ñ
e−

1
2
(θ̃

�−ν)TC−1(θ̃
�−ν)

N�

i=1

PDF(X i|θ̃), (4.15)

where Ñ is the normalization of the multidimensional Gaussian.

Throughout this thesis, the minimization of the negative logarithmic likelihood

and the uncertainty estimates are based on the Minuit [72] implementation within

the Root framework [73].

4.4 Statistical background subtraction: sPlot

The task to solve

Although the boosted decision trees described in Section 4.1 are typically quite

powerful in reducing the amount of background candidates, a pure signal sample is

practically never obtained. Under certain conditions the remaining background can-

didates can be statistically subtracted, in order to anyhow extract the distributions

of the pure signal sample. The sPlot technique [74] constitutes the optimal way to

achieve this and is presented in the following.

The concept of background subtraction.

We assume a data set with N entries consisting of two species, each of them having

values for two uncorrelated observables x and y. Their respective distributions are

shown in Figure 4.3. Species 1, in red and called signal, is distributed according

to a normal distribution with width 1 and mean value 0 in y and according to

a normal distribution with width 2 and mean value 1 in x. Species 2, in green

and called background, is distributed uniformly in y and according to a normal

distribution with width 2 and mean -1 in x. The aim is to get an estimate of the x

distribution of the signal without knowing the underlying true distribution of the

two species in this variable. However, we assume that the respective distributions in

the control variable y are known. This information allows to statistically subtract

the background component from the overall x distribution. The most straight

forward way to achieve this in this simple case is the sideband subtraction. In y,

there are regions (|y| > 5) that are to very good approximation purely populated by

background. When adding the entries of these regions to the remaining entries with
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Figure 4.3: Toy distributions used to demonstrate the techniques of statistical background
subtraction. The signal and background distributions in the two variables x
and y are shown in red and green, respectively. The combined distribution is
shown in blue.
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Figure 4.4: Signal distributions in the variable x. The red histogram show the true
generated distribution, while the black points are obtained by the respective
statistical background-subtracted full sample. In (a) and (b) the results of
the sideband subtraction and sPlot technique are shown, respectively.

a weight of −1, the resulting distribution in x approximates the true distribution of

signal in this variable. This is shown in Figure 4.4a.

The sideband subtraction technique does only work if there are regions in the

control variable that are populated purely by species 2. On top, there is no unique

way how to apply it. The exact choice of these regions is arbitrary and every choice

leads to a slightly different background-subtracted signal sample.
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The sPlot technique

The sPlot technique generalizes the method of sideband subtraction by providing

a weight wi for every entry of the data set such that the weighted distribution

resamples the background-subtracted distribution. In addition, the weights are

chosen such that effective size Neff defined as [71]:

Neff =

�
N�
i=1

wi

�2

N�
i=1

w2
i

, (4.16)

is maximized. Given an estimate of the number Ns of entries of each of the S species

and an according covariance matrix C, the weights wn
i to obtain a background-

subtracted sample for species n are given by:

wn
i =

S�
s=1

Cns fs(yi)

S�
s=1

Ns fs(yi)

. (4.17)

Here, fs(yi) is the know distribution of species s in the control variable(s) yi. One

way to obtain the yields Ns and their covariance matrix is to perform an extended

maximum likelihood fit, see Section 4.3, to the control variables. In the simple

example introduced above, the sPlot technique results in the background-subtracted

signal distribution shown in Figure 4.4b.

It is crucial to note that the assumption of no correlation within one species

between the control variables and the variable of interest x, for which a background-

subtracted sample has to be obtained, has to hold for the sideband subtraction as

well as for the sPlot technique.
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In the proton-proton collisions at the LHCb interaction point many different particles

are produced. Most of them are pions and other light particles, and only a small

fraction of the events contains a B0
s meson. Of these B0

s mesons, only approximately

one in a thousand decays to the final state J/ψφ [3]. In this chapter, the strategy

to obtain a large and background free sample of B0
s → J/ψφ decays is presented.

The first step of the selection is happening in the LHCb trigger system. Only

events that pass all stages of this trigger are stored and can be further analyzed.

In total, roughly 60 billion complete proton-proton events were recorded in the

years 2015 and 2016 and build the basis from which B0
s → J/ψφ candidates have to

be selected. Those events are filtered in a LHCb wide offline selection procedure,

which is afterwards further refined. A multivariate classifier is trained and applied

to reject most of the remaining background candidates. In the last section of this

chapter, the sPlot technique is applied to statistically remove the remaining fake

B0
s → J/ψφ candidates.

5.1 Triggering

According to the description in Section 2.2.3, the LHCb experiment has a three

stage trigger system. In principle it is not necessary to specify which exact trigger

line has sparked the respective trigger stage. However, the requirements in the

trigger strongly influence the acceptances, see Chapter 7, and a fixed set of trigger

lines that are required to have triggered the events helps to understand and describe

these detector effects. In the following, the chosen configurations are summarized.

The L0 trigger selection

In the L0 trigger roughly 87% of the finally selected events containing B0
s → J/ψφ

candidates were triggered by the muons originating from the J/ψ meson. For

those, either one of the muons fulfilled a minimum requirement on the transverse

momentum or the product of the transverse momentum of both muons was above
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Figure 5.1: Decay topology of the decay B0
s → J/ψφ. The red star indicates the origin

vertex of the B0
s meson that typically is directly produced in the primary

proton-proton collision point (PV). In addition, the flight distance (FD) of the
B0

s meson and the impact parameters (IP) of one of the muons with respect
to the PV are indicated.

a certain threshold. Since the L0 trigger requirements are typically rather loose

compared to the requirements in the succeeding selection steps and are therefore not

expected to have large impact on the acceptances, it was decided to do not select

any specific set of L0 trigger lines, but keep all events, independently of how they

were triggered. The remaining 13% of the selected B0
s → J/ψφ decays are therefore

reconstructed in events that are triggered by either the kaons of the φ decay or by

any other particle produced in the underlying proton-proton collision.

The HLT1 selection

Already during the first online stage of the LHCb trigger system, a complete

reconstruction of tracks with high transverse momentum is performed. This allows

to access information about momenta and trajectories of individual particles. In

addition, the primary proton-proton interaction points (PVs) are reconstructed, and

muons can be identified by tracks that have associated hits in the muon stations.

Based on this, general selection strategies were developed to effectively trigger on a

range of inclusive signatures.

Figure 5.1 provides a schematic view of a B0
s → J/ψφ decay at the track level.

There are two principle ways that are used to select such a decay topology. The first

is based on the two muons that form a vertex and have a relatively high invariant

mass. Muons typically leave a clear signature in the detector and are much less

often produced directly in the proton-proton collision than kaons or pions. The

according trigger line is called Hlt1DiMuonHighMass and besides requirements on

the vertex quality of the two muons and their invariant mass, it contains cuts on
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the momentum and transverse momentum of the two muons. Detailed values are

given in Appendix B.

The other strategy is based on the relatively long lifetimes of weakly decaying

particles. A B0
s meson with a momentum of 100GeV has an average flight distance

of 8.5mm, which can be resolved by the VELO and is used to discriminate such

decays from particles originating directly from the PV. Although the B0
s decay

vertex is not completely reconstructed in HLT1, properties of the final state tracks

are related to the flight distance. For a single track the impact parameter IP is

defined as its minimal distance to the PV, see Figure 5.1. A related quantity is the

impact parameters significance χ2
IP, which is defined as the difference in χ2 when

fitting a PV with and without this track.

The trigger line Hlt1TrackMuon requires a muon with high transverse momentum

and large χ2
IP with respect to any of the PVs in this event. In contrast to that,

the line Hlt1TwoTrackMVA relies on a vertex reconstructed from two tracks with

high transverse momentum. The minimal significance of the separation to any PV

and other vertex and track properties are combined in a multivariate classifier. In

Appendix B a detailed list of the variables used in these two trigger lines is given.

Since the last two trigger lines are more efficient for B0
s mesons with a long

flight distance, they introduce a decay-time-dependent efficiency, which will bias

the measured lifetime. This is not the case for the first trigger line. Therefore,

throughout the analysis many data sets will be split in two categories:

• Unbiased candidates that are triggered by the Hlt1DiMuonHighMass line,

• Biased candidates that are triggered by either the Hlt1TrackMuon or the

Hlt1TwoTrackMVA line.

Separate decay-time and angular acceptances will be determined for these two

categories.

The HLT2 selection

In the second HLT2 trigger stage the rate is low enough to enable a nearly complete

reconstruction of the events. This allows to trigger directly on J/ψ candidates, which

constitute a relatively clean signature for the decay B0
s → J/ψφ. Only a very loose

cut on the significance of the vertex separation to any PV is applied to suppress J/ψ

mesons that are directly produced in the primary proton-proton collision. As will

be shown in Section 7.2.1, this requirement on the vertex separation significance has

nearly no impact on the decay-time-dependent efficiency observed for the candidates

55



Chapter 5 Selecting B0
s → J/ψφ decays

Table 5.1: Selection criteria used to identify B0
s → J/ψφ candidates.

Variable Cut
all tracks χ2

track/nDoF < 4

J/ψ → µ+µ− m(µ+µ−) ∈ [3017, 3177]MeV/c2

ΔlnLµπ (µ±) > 0
χ2
vtx/nDoF < 16

χ2
DOCA < 20

pT (µ±) > 500 MeV/c

φ → K+K− m(K+K−) ∈ [990, 1050]MeV/c2

ΔlnLKπ (K+) > 0
χ2
vtx/nDoF < 25

χ2
DOCA < 30

pT (φ) > 500 MeV/c
B0

s → J/ψφ m(J/ψK+K−) ∈ [5150, 5570]MeV/c2

χ2
vtx/nDoF < 20

mDTF(J/ψK+K−) ∈ [5200, 5550]MeV/c2

tDTF ∈ [0.3, 15] ps

passing the final offline selection. Again, in Appendix B a more detailed summary

of the requirements is given.

5.2 Offline selection and reconstruction

All events selected by the described LHCb trigger configurations are written to disk,

and the full event reconstruction is repeated. This includes the reconstruction of

tracks, particle identification information and PVs. Starting from these objects,

B0
s → J/ψφ candidates are reconstructed and a first loose cut based selection is

applied. These criteria are summarized in Table 5.1.

Two muon candidates are combined to form a J/ψ candidate with a mass that

lies in a 160MeV/c2 window around the nominal J/ψ mass [3]. A loose cut on the

difference of the logarithmic likelihood for the muon versus the pion hypothesis,

see Section 2.2.2, is applied to suppress misidentified particles. To reject J/ψ

candidates formed from random tracks, the χ2 per degree of freedom of the vertex

fit, χ2
vtx/nDoF, and the significance of the distance of closest approach of the two

muon tracks, χ2
DOCA, are required to be small.

In full analogy, a φ candidate is reconstructed. The respective invariant mass is

required to lie in a 60MeV/c2 window around the nominal φ mass [3]. To further

clean the sample, minimum transverse momentum cuts are placed on the φ meson

and the two muons. Combining J/ψ and φ candidates that form a vertex with
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Figure 5.2: Invariant mass distribution of B0
s → J/ψφ candidates after the first offline

selection. Projections of a fit to the data are overlaid.

reasonable χ2
vtx/nDoF and that have an invariant mass that is close to the nominal

B0
s mass, allows to build candidates of the decay B0

s → J/ψφ.

These candidates are then associated to one of the PVs in the event. First, all

PVs are reconstructed again after removing the tracks that are used to build the

B0
s candidate. This avoids any bias of the PV position towards the B0

s decay vertex

position. Afterwards, the χ2
IP of the B0

s candidate with respect to every PV is

calculated and the one with the smallest value is assigned. Thereafter, the four final

state tracks are again combined using the so-called Decay Tree Fitter (DTF) [75].

The DTF allows to include additional constraints in this combination that help

to increase the mass, momentum and vertex resolution. In the case of the decay

B0
s → J/ψφ, the mass of the J/ψ meson is constrained to the world average [3], and

the B0
s meson is required to point to the associated PV. In addition to a more

precise B0
s mass estimate, the DTF uses the vertex separation |xB0

s
− xPV | and the

momentum estimate pB0
s
of the B0

s meson to determine a value for its decay time t

according to:

t = mB0
s

|xB0
s
− xPV |
pB0

s

. (5.1)

To suppress prompt background, this decay time is required to be larger than

0.3 ps. An upper bound on the reconstructed decay time of 15 ps is set because no

significant amount of true B0
s meson decays are expected beyond this.

Figure 5.2 shows the invariant mass distribution of the selected B0
s → J/ψφ

candidates for the two years of data taking. Besides a clear peak from true
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Figure 5.3: Signal and background distributions of the variables included in the multi-
variate classifier. Their definition is given in the text.

B0
s → J/ψφ decays, a large background component is visible. The main source of

this background consists of random tracks that are wrongly combined to form a decay

candidate. In order to further suppress this so-called combinatorial background,

variables are identified that have a significant discrimination power between true

signal decays and these background candidates. This is achieved by comparing

a sample of simulated B0
s → J/ψφ decays to a pure background sample obtained

from selected B0
s → J/ψφ candidates in data that have an invariant mass above

5450MeV/c2. Figure 5.3 shows the respective distributions for the selected variables.

They are given by:
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5.2 Offline selection and reconstruction

1. The transverse momenta p
B0

s
T and pφT of the B0

s and φ candidates.

2. The χ2 per degree of freedom of the DTF , χ2
DTF/nDoF.

3. The χ2 per degree of freedom of the B0
s and J/ψ vertex fits , B0

s χ2
vertex/nDoF

and J/ψ χ2
vertex/nDoF.

4. The impact parameter significance of the B0
s candidate with respect to the

PV, B0
s χ

2
IP.

5. The respective maximum χ2 per degree of freedom of the track fits,

χ2
track/nDoF, of the two kaons and muons.

6. The minimum particle identification variable ProbNNK of the two kaons.

7. The minimum particle identification variable ProbNNµ of the two muons.

Variables such as the flight distance of the B0
s candidate or the impact parameter

of the daughter particles have a high separation power but are strongly correlated

to the decay time and would cause strong decay-time acceptance effects. Therefore,

these variables are not considered.

Based on the chosen discriminating variables, a boosted decision tree (BDT), see

Section 4.1, is trained to achieve a high signal efficiency while removing most of the

background. This training relies on a sample of events that are clearly labeled as

either signal or background. Again, the high mass sideband is used as a proxy for

the overall combinatorial background, while simulated signal decays are representing

the signal decays in data. To achieve the optimal separation power on real data,

the simulated signal sample is required to be as similar as possible to the signal

sample in data. This is ensured in terms of a weighting of the simulated sample

to a statistically background-subtracted signal sample. This relatively clean signal

data sample is obtained with the sPlot technique, see Chapter 4, which is based

on an extended maximum likelihood fit to the invariant mass distribution of the

B0
s → J/ψφ data sample. The projection of this fit can be seen in Figure 5.2. Two

Gaussian distributions with the same mean and an exponential function are used

to model the signal and background component, respectively.

Figure 5.4 shows the background-subtracted data and the simulated sample for

a set of variables for which these two do not perfectly agree. In the same figure,

the distributions are shown after a multidimensional weighting in these variables is

applied. No significant differences are visible afterwards. It is important to note

that any differences between the simulated signal sample and the real decays could
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Figure 5.4: Distributions of B0
s → J/ψφ decays in background-subtracted data and simu-

lation. The respective lower plot show the distributions after the simulated
sample is weighted to match data in these variables.
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Figure 5.5: Performance plots of the Boosted Decision Tree (BDT) employed to separate
B0

s → J/ψφ decays from background candidates. In (a), the BDT response
is shown for the signal and background training (shaded area) and testing
(points) samples. The background rejection rate as a function of the signal
efficiency when placing a cut on the BDT response can be seen in (b). Finally,
(c) shows the effective signal sample size as a function of the BDT cut value.

cause differences in the separation power of the BDT in simulated and in real data,

but that this would not automatically cause any biases on the physics parameters

extracted later. Remaining differences between data and simulation can therefore

also be dealt with at a later stage when the decay-time and angular acceptances

are determined.

The signal and background proxy samples are split into large training and smaller

testing samples. After the training of the BDT, the testing samples are used to

evaluate the separation power and to test for possible overtraining. Figure 5.5a

shows the distribution of the BDT response for the training and testing samples of

the signal and background proxy. No significant differences between the training

and testing samples are observed. In Figure 5.5b, the background rejection rate and

signal efficiency are shown when scanning the cut value on the BDT response. A

high signal efficiency can be retained while at the same time most of the background
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Figure 5.6: Invariant mass distribution of B0
s → J/ψφ candidates after the BDT based

selection. Projections of a fit to the data are overlaid.

is rejected. To choose the optimal cut on the BDT response, the effective signal

yield Neff , defined in Section 4.4, of the background-subtracted data sample is

employed as figure of merit. A scan of the BDT cut value is performed, and at every

step the background in the data sample is subtracted with the sPlot technique.

The obtained effective yields are shown in Figure 5.5c, and the optimal value was

found to be 0.58. This corresponds to a signal efficiency of roughly 96% on the

signal testing sample. In Figure 5.6, the mass distributions of the 2015 and 2016

data samples are shown after applying the cut on the BDT response.

Peaking backgrounds

Besides random combination of tracks, other B meson or hadron decays can

contribute to the background if one of their final state particles is misidentified and

thus gets assigned to a wrong mass hypothesis. The thereby wrongly reconstructed

mass of the fake B0
s candidate can fall into the selected mass window of real B0

s

candidates. Two decays are identified that can have a significant contribution. The

first is the decay B0→ J/ψK∗0, where the K∗0 meson decays into a charged kaon

and a charged pion. In case the pion is reconstructed as a kaon, the lower mass of

the B0 meson with respect to the B0
s meson is partially compensated. The resulting

mass distribution of such wrongly reconstructed decays is shown in Figure 5.7a for

simulated B0→ J/ψK∗0 decays.

The second non-combinatorial background component arises from Λ0
b→ J/ψpK

decays where the proton is misidentified as a kaon. In analogy to the decay
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Figure 5.7: Mass distributions illustrating wrongly reconstructed B0→ J/ψK∗0 and
Λ0
b→ J/ψpK decays in the B0

s → J/ψφ data sample. In (a), the distributions
of simulated B0→ J/ψK∗0 and Λ0

b→ J/ψpK decays that are reconstructed
as B0

s → J/ψφ are shown on top of the data distribution. In (b) and (c) the
presence of these wrongly reconstructed backgrounds in the selected data
sample is shown by determining the invariant mass under respective alternative
mass hypotheses of the final state particles. Details are given in the text.

B0→ J/ψK∗0, the wrongly assigned mass hypothesis leads to a reconstructed mass

that lies in the selected B0
s mass region, see Figure 5.7a.

Figure 5.7b shows the selected B0
s → J/ψφ candidates in data when assigning

the pion mass hypothesis to the kaon with the larger ProbNNπ value. To suppress

the dominant contribution of real B0
s → J/ψφ decays, only candidates with a re-

constructed B0
s mass that is at least 20MeV/c2 larger than the nominal one are

considered. The peaking structure at approximately 5280MeV/c2 corresponds to

the expected misidentified B0 mesons [3]. In analogy, Figure 5.7c shows the selected

B0
s → J/ψφ candidates in data when assigning the proton mass hypothesis to the

kaon with the larger ProbNNp value. This time, both B0
s mass sidebands are consid-

ered by selecting candidates with B0
s masses that are at least 20MeV/c2 away from
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the nominal one. A clear peak at the expected Λ0
b meson mass of approximately

5620MeV/c2 [3] is visible.

In the following, the strategy to suppress the Λ0
b→ J/ψpK background is presented.

The B0→ J/ψK∗0 component is treated in a similar way, but due to its relatively low

yield it is less relevant. As a first step, a veto is applied to the selected B0
s → J/ψφ

data to reject a large fraction of the misidentified Λ0
b decays. In principle, any

candidate with a matching reconstructed Λ0
b mass could be rejected. However,

this would remove a significant fraction of the B0
s → J/ψφ signal. Instead, such

candidates are only rejected if the maximum ProbNNp value of the kaons is larger

than 0.7. The reconstructed Λ0
b mass has to lie within 30MeV/c2 around the nominal

Λ0
b mass.

To estimate the remaining Λ0
b background, the candidates of Figure 5.7c are split

according to the ProbNNp criteria of the veto. Figure 5.8 shows the two categories and

projections of fits from which the yields of Λ0
b→ J/ψpK candidates are determined.

The background component is modeled by a fourth order polynomial and the signal

peak is described by an Ipatia function, see Ref. [76], whose parameters are fixed

from simulation. From the extracted yields, the signal shape in combination with

the mass window of the veto, and a simulation driven correction that accounts for

the fact that only the B0
s mass sidebands are considered, the number of Λ0

b→ J/ψpK

decays remaining after the veto can be estimated. For both years of data taking

combined, this number is 1626± 100.

In the case of the B0→ J/ψK∗0 background component, an analog veto is applied.

The only difference is that the PID requirement is given by probNNπ > 0.7 ||
probNNK < 0.35. The estimated number of remaining background candidates

after the veto is determined to be approximately 200± 100. While this number is

relatively small, the remaining Λ0
b decays can not be neglected. Instead, simulated

Λ0
b→ J/ψpK decays are injected into the data sample with negative weights to

compensate the estimated Λ0
b yield.

5.3 Subtraction of the remaining background

After removing the components of the background that arise from other B hadron

decays, the remaining combinatorial background is statistically subtracted in means

of the sPlot technique, see Section 4.4. The mass of the B0
s candidates is chosen as

discriminating variable.
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Figure 5.8: Invariant mass distribution of the selected B0
s → J/ψφ candidates when as-

signing the proton mass hypothesis to the kaon with the larger ProbNNp value.
The sample is split according to this ProbNNp value being lager (a) or smaller
(b) than 0.7.
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Figure 5.9: Dependence of the mass resolution on the helicity angle of the muons. The
left plot shows the invariant mass distribution of the selected B0

s → J/ψφ data
sample in bins of | cos θµ|. The two dimensional plot at the right shows the
correlation between this variable and the estimated mass uncertainty δM .

Per-event mass uncertainty

However, the mass of the B0
s candidate is correlated with the cosine of the helicity

angle of the muons, cos θµ, which is one of the variables that is needed to extract

the physics parameters. This correlation is shown in Figure 5.9a, where the signal

mass region in data is shown for different regions of the absolute value of cos θµ. It
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originates from a correlation of this variable with the momenta and opening angles

of the muons in the rest frame of the detector and therefore also with the mass

resolution. This is taken into account by using the Decay-Tree-Fitter estimated

per-event mass uncertainty δM as a conditional variable when describing the

signal mass shape. In Figure 5.9b, the two dimensional distribution of δM and cos θµ

is shown. The same dependence as in Figure 5.9a is observed. This means that

the correlation between the helicity angle of the muons and the mass resolution is

correctly taken into account by the usage of δM .

The mass model

In the fit to the mass distribution that is needed for the sPlot technique, the

combinatorial background is modeled with a single exponential, while the signal

is described by a double sided Crystal Ball function [77]. The latter consists of a

Gaussian core and asymmetric power law tails. It is commonly used in high energy

physics and can model possible radiative tails in the mass shape. Its definition is

given by:

CB(x|σ, µ,α1, n1,α2, n2) = N





e−
(x−µ)2

2σ2 , for α1 <
x−µ
σ

< α2

A1 ·
�
B1 − x−µ

σ

�−n1

, for x−µ
σ

< α1

A2 ·
�
B2 − x−µ

σ

�−n2

, for x−µ
σ

> α2

, (5.2)

where N is the normalization constant, and Ai and Bi ensure the continuity of the

function and its first derivative. The tails are parametrized by the parameters α1,

n1, α2, n2, and µ and σ are the mean and the width of the Gaussian core. In the

fit, σ is parametrized as a function of the estimated mass uncertainty as:

σ = s1δM + s2δ
2
M , (5.3)

with the two scaling parameters s1 and s2, which are freely floating. This scaling

of the estimated per-event mass uncertainty is necessary to correct for possible

differences between the estimated and actual mass resolution.

In addition to the combinatorial background, a further background component is

added to account for the suppressed decay B0→ J/ψφ, which has the same final

state as the signal decay and lies in the lower mass sideband. Its contribution is

accounted for by a Gaussian function with a mean value µB0 that is shifted with

respect to the mean value of the signal peak by the mass difference between the B0
s
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Figure 5.10: Distribution of the invariant two kaon mass in background-subtracted data
(black) and simulation (red). The binning employed in the analysis is indi-
cated by the dotted lines: [990, 1008, 1016, 1020, 1024, 1032, 1050]MeV/c2.

and the B0 meson [3]. The width σB0 is fixed to the width observed for the decay

B0→ J/ψK∗0, see Section 7.2.2.

The total PDF used in the extended maximum likelihood fit to the mass is then

given by:

PDF(m|δM) =fsig CB(m|σ(s1, s2, δM), µ,α1, n1,α2, n2)

+ (1− fsig)
�
fB0 G(m|µB0 , σB0) + (1− fB0)N e−γm

�
. (5.4)

The parameter µB0
s
represents the peak position of the signal component, γ is

the exponential constant of the combinatorial background component, N is the

normalization of this background and fsig and fB0 parametrize the fractions of the

three components.

Fit strategy

The final decay-time and angular fit is performed simultaneously for the two years

of data taking, for the two trigger categories Unbiased and Biased, and in six bins

of the invariant mass of the two kaons, see Section 8.1. The latter splitting is shown

in Figure 5.10 for the data and the simulated sample. Especially in bin 1 and 6

the presence of the S-wave component in data can be seen, as it is not present

in the simulated sample. Since separate PDFs are used in the 24 different data

categories, also the weights for the background subtraction, calculated with the

sPlot technique, have to be obtained separately in each of them.

For every category, first a fit to the respective simulated sample is performed

to fix the tail parameters α1, n1, α2, n2 of the Crystal Ball function. With these
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Figure 5.11: Fit projections of the invariant J/ψ K+K− mass. On the left, the simulated
sample is shown from which the tail parameters are obtained. On the right,
the according fit projection for the data sample is shown. In both cases, only
the 2016 Unbiased category in the fourth m(K+K−) bin is shown.

fixed parameters, the fit to data is performed, in which the remaining parameters,

including the scale parameters of per-event mass uncertainty, are floating. Fig-

ure 5.11 shows the fit projections of this two step fit procedure for the category

with the highest signal yield, and Figure 5.12 shows combined projections of the

fits for 2016 data sample split by trigger category. The pull distributions of these

fits show some minor structures at the left tail of the signal peak, indicating that

either the background or the signal distribution is not perfectly modeled. A range

of systematic studies are presented in Section 10.1 that aim to account for this

and possible bias due to the usage of the sPlot technique. In Appendix C, the

parameters of the mass fits in all data categories are given.

Figure 5.13 shows fit projections of the 2016 Unbiased category in three bins of

| cos θµ|. As expected, the varying width of the signal peak is well modeled by the

usage of the per-event mass uncertainty.

Table 5.2 gives the estimated signal yields in each of the 24 categories. In total,

approximately 117.9 k B0
s → J/ψφ decays are selected. Due to the weights applied by

the sPlot technique, this number reduces to an effective sample size, see Section 4.4,

of Neff ≈ 107.6 k.
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Figure 5.12: Combined fit projections of the two trigger categories in the 2016 data set.
The top and bottom plots show the Unbiased and Biased trigger category,
respectively. At the right, the same plots with a logarithmic y-axis are shown.

Table 5.2: Approximate signal yields of the B0
s → J/ψφ data sample split in the 24 dif-

ferent categories. They are obtained by the extended maximum likelihood
fit that is performed in the context of the background subtraction with the

sPlot technique.

2015 2016
Unbiased Biased Unbiased Biased

mKK bin 1 237 74 1803 429
mKK bin 2 1270 404 8885 2193
mKK bin 3 4238 1383 30607 7418
mKK bin 4 3556 1071 24592 5888
mKK bin 5 1570 461 10640 2581
mKK bin 6 804 257 6119 1450
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(c) 0.67 ≤ | cos θµ| ≤ 1

Figure 5.13: Distributions and fit projections of the invariant mass in the B0
s → J/ψφ

data sample split in three bins of | cos θµ|. The 2016 Unbiased category is
shown.
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6 Determination of the

initial B0
s flavour

An essential component of measuring mixing-related CP violation in neutral-meson

systems is the determination of the initial flavour of the meson, called tagging. In

particular, the heart of the analysis presented in this thesis is the measurement

of the difference between the decay rates of initial B0
s and B0

s mesons. In this

chapter, the tagging strategies developed by the LHCb collaboration to determine

the initial flavour of neutral Bs mesons are presented. After a short introduction

to the two available classes of tagging algorithms, their calibration for the channel

B0
s → J/ψφ and the way their information is used in the final maximum likelihood

fit is discussed. Since the tagging algorithms are centrally developed and optimized

by the LHCb collaboration, this chapter is rather brief and focuses mainly on the

determination of the calibration parameters specific for the channel B0
s → J/ψφ and

the general usage of tagging information in a flavour-tagged maximum likelihood fit.

6.1 Flavour tagging at LHCb

At the LHCb experiment, the determination of the flavour of neutral B mesons is

based on the reconstruction and classification of the underlying event in which the

B meson is produced. The available tagging algorithms (taggers) can be divided

into two classes. The opposite-side (OS) taggers rely on the fact that b quarks are

predominantly produced in bb pairs and try to infer the initial flavour from the decay

chain of the respective other b quark. In contrast, the same-side (SS) taggers exploit

the charge of particles that are created in association with the fragmentation of

the signal b quark. For a detailed description of the current versions of the tagging

algorithms see Ref. [78–81]. Figure 6.1 illustrates the concepts of the taggers relevant

for this analysis and divides them in the OS and SS categories.

Three of the OS algorithms try to identify kaons or leptons from either b → c → s

or semileptonic decays of the opposite-side b quark. The charge of the kaon or

lepton determines then the flavour of the signal b quark. In addition, the other

two OS taggers aim to reconstruct the charge of the opposite-side b decay vertex
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Figure 6.1: Schematic view of the tagging algorithms relevant in this analysis. The top
half contains the signal B0

s decay and the same-side (SS) tagger. The bottom
half shows the opposite-side (OS) taggers. Figure modified from Ref. [44].

or the flavour of the charm meson produced in a b → c decay. The information

of all available OS taggers are centrally combined and transformed to a single

tagging decision.

In contrast to the OS algorithms, the SS tagger is specific for the light quark

of the signal B meson. In the case of the B0
s meson, the aim is to reconstruct the

charged kaon that is often produced in association to the hadronization of the b

quark with a s quark. In the case of a B0 meson the kaon has to be replaced by a

pion. Again, the charge of the kaon determines the flavour of the B0
s meson.

The algorithms of both tagging categories rely on a preselection of particles

that aims to suppress contributions from the remaining underlying event, which

spoils their performance. Kinematic and geometrical properties of these preselected

particles and the respective signal B0
s decay are then used as input for multivariate

algorithms that aim to determine the flavour of the B meson. These algorithms

are trained either on real B+ meson decays in the case of the OS taggers or on

simulated samples in the case of the SS kaon tagger. Finally, the output of these

algorithms is transformed into a tagging decision with values 1 (B0
s ), 0 (no tagged),

-1(B0
s) and a mistag probability that is a per-event estimate of the chance of a

wrongly tagged B-meson.
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6.2 Calibration of the estimated

mistag probability

In order to correctly take into account the possibility of wrongly tagged candidates,

the previously mentioned estimated mistag probabilities need to be calibrated to

be applicable for the selected B0
s → J/ψφ data sample. Given the estimated mistag

probability η for one of the tagging algorithms, the respective calibrated version of

it, ω(η), is parametrized by:

ω(η) =

�
p0 +

Δp0
2

�
+

�
p1 +

Δp1
2

�
(η − �η�) for initial B0

s ,

ω̄(η) =

�
p0 −

Δp0
2

�
+

�
p1 −

Δp1
2

�
(η − �η�) for initial B0

s. (6.1)

Here, �η� is the average estimated mistag probability of the sample used in the

calibration, and p0 and p1 are the main calibration parameters. The additional cali-

bration parameters Δp0 and Δp1 allow for different calibrated mistag probabilities

w and ω̄ for initial B0
s and B0

s mesons, respectively. Separate calibration procedures

and parameters are applied and obtained for the OS and SS taggers. They rely

on standard techniques and decay channels that are commonly used in the LHCb

collaboration, but they were performed with a specific selection and weighting of

the calibration channels in the scope of the analysis presented here. This ensures

the portability of the calibration parameters from the calibration channels to the

selected set of B0
s → J/ψφ candidates.

Opposite-side tagging algorithm

The combined opposite-side (OS) tagger is calibrated using the decay channel

B± → J/ψK± for which the charge of the kaon determines the initial flavour of

the B± meson. The rate of wrongly tagged candidates is directly accessible and

can be compared to the estimated mistag probability. After a similar selection and

background subtraction as for the B0
s → J/ψφ data sample, an unbinned maximum

likelihood fit is performed to determine the calibration parameters introduced in

Equation (6.1). Depending on the initial B± flavour, the PDF is given by:

PDF(a|η) = (1− a)ω(η) + a(1− ω(η)) for initial B+,

PDF(a|η) = (1− a)ω̄(η) + a(1− ω̄(η)) for initial B−, (6.2)
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Figure 6.2: Calibration function for the estimated mistag probability ηos of the combined
OS tagger. The red line shows the fitted calibration function, while the
true mistag probability obtained from B+ → J/ψK+ decays in bins of ηos is
represented by the black points. In addition, the distribution of ηos in the
background-subtracted B0

s → J/ψφ data sample is shown in gray. The figure
is taken from Ref. [63].

where a is 1 and 0 for correctly and wrongly tagged candidates, respectively. To

improve the portability of the calibration parameters from the B+ → J/ψK+ to

the B0
s → J/ψφ data sample, the former is weighted in kinematic and event multi-

plicity variables, like the number of reconstructed tracks, to match the respective

distributions in the B0
s → J/ψφ data sample.

Figure 6.2 shows the resulting calibration curve for the combined set of B+ and

B− candidates. In addition, in the same figure, the distribution of the estimated OS

mistag probability in the B0
s → J/ψφ data sample is shown. The portability from

the calibration to the signal decay is studied using respective simulated samples.

For each of them, the calibration is repeated using the truth information and

the difference of the obtained calibration parameters is assigned as a systematic

uncertainty. Table 6.1 shows the final values and uncertainties for the calibration

parameters.

Same-side tagging algorithm

The calibration of the same-side (SS) kaon tagger is less straight forward than the one

of the OS tagger since the calibration channel has to be a B0
s decay and is therefore

also subject to B0
s − B0

s mixing. However, using the flavour specific calibration

channel B0
s → D−

s π
+ allows at least to determine the flavour at decay. Following

the formulas presented in Section 1.4.1, and considering decay-time acceptance and
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Table 6.1: Calibration parameters for the OS and SS taggers. Where given, the first
uncertainty is statistical and the second is systematic. Numbers are taken from
Ref. [63].

Tagger OS SS
p0 0.3890± 0.0007± 0.0028 0.4325± 0.0108± 0.0030
p1 0.8486± 0.0062± 0.0265 0.9241± 0.1314± 0.0196
Δp0 0.0090± 0.0014 0.00± 0.03
Δp1 0.0143± 0.0124 0.00± 0.03
�η� 0.3602 0.4167

resolution effects, see Chapter 7, the expected decay-time distribution of the decay

B0
s → D−

s π
+ is given by:

PDF(t|qmix) ∝ ε(t) [Γ(t|qmix)⊗G(t)] , (6.3)

with

Γ(t|qmix) = e−Γst [cosh(ΔΓst/2) + qmix(1− 2ω(η)) cos(Δmsst)] . (6.4)

The decay-time acceptance and resolution are represented by ε(t) and G(t) and

qmix is either 1 or -1 depending on whether the B0
s meson has or has not changed its

flavour. Since the mistag probability ω(η) enters here, the calibration parameters of

the SS kaon tagger can be determined from a maximum likelihood fit to the decay-

time distribution of mixed and not-mixed B0
s mesons in this decay channel. While

the decay-time resolution is obtained from a prompt sample of D−
s π

+ candidates

in analogy to the procedure described in Section 7.1, the decay-time acceptance is

modeled with the empirical function ε(t) = 1− 1/(1 + (at)n + b) and is determined

directly in the fit. The values for the B0
s meson parameters Γs, ΔΓs and Δms are

constrained to the current world averages [3].

In analogy to the OS tagging calibration, the selected and background-subtracted

B0
s → D−

s π
+ data is weighted to match the B0

s → J/ψφ data sample before per-

forming the fit to the decay-time distribution. The projections of this fit are shown

in Figure 6.3a. Clear oscillations are visible. Their amplitude is proportional to

the dilution factor (1− 2ω(η)) and allows therefore the calibration of the mistag

probability. Figure 6.3b shows the obtained calibration curve together with the

distribution of the estimated SS mistag probability in the B0
s → J/ψφ data sample.

Since the true initial flavour is not known, the tagging calibration parameters

Δp0 and Δp1 are fixed to 0. A systematic uncertainty of 0.03 is assigned based
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Figure 6.3: Background subtracted decay-time distribution of B0
s → D−

s π
+ decays split

according to the agreement (unmixed) or disagreement (mixed) of the assigned
B0

s flavour at decay and production (a). Fit projections of the respective cate-
gories are overlaid. Calibration function for the estimated mistag probability
ηss of the SS tagger (b). The red line shows the fitted calibration function,
while the true mistag probability obtained from a fit to B0

s → D−
s π

+ decays
in bins of ηss is represented by the black points. In addition, the distribution
of ηss in the background-subtracted B0

s → J/ψφ data sample is shown in gray.
The figures are taken from Ref. [63].

on the study presented in [81]. Furthermore, the same procedure as for the OS

tagging calibration is performed to estimate the systematic uncertainty due to the

portability from calibration to signal sample. Table 6.1 shows the final values and

uncertainties for the calibration parameters.

6.3 Performance and combination

When studying the performance of a tagging algorithm, it is useful to understand

the effect of wrongly tagged candidates on the measured CP asymmetry. Assuming

no direct CP violation, the difference between the decay rates of initial B0
s and

B0
s mesons, see Equations (1.37) and (1.38), is proportional to sinφs sin(Δmst).

Therefore, also the CP asymmetry ACP is to first order given by:

ACP (t) := sinφs sin(Δmst). (6.5)

In the presence of a mistag probability ω, decays can not longer be uniquely assigned

to either Equation (1.37) or Equation (1.38), but obtain also contributions from
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the respective opposite initial flavour. Thus, the observed CP asymmetry is then

given by:

ACP (t) := D sinφs sin(Δmst), (6.6)

where D = (1− 2ω) is the dilution factor. The precision on a diluted asymmetry,

and therefore in this case on sinφs, is directly proportional to this dilution factor.

Alternatively, one can state that the effective size of a tagged sample is reduced by

the factor D2. Since not all candidates get a tag hypothesis assigned, the tagging

efficiency ε has to be considered additionally and further reduces the effective sample

size. The combined quantity εD2 is called the effective tagging power and is a

measure of the tagging performance.

For a weighted sample with partially tagged events and specific mistag probabili-

ties ωi for each candidate i, the effective tagging power is then given by:

εD2 =

�
tagged vi(1− 2ωi)

2

�
all vi

, (6.7)

where vi is the weight of the respective candidate. These weights are for example

given by the background subtraction with the sPlot technique, see Section 4.4, and

are labeled here as vi instead of wi to avoid a confusion with the mistag probability.

Equation (6.7) allows to calculate the effective tagging power for candidates that

are either exclusively tagged by the OS or the SS tagger. For candidates where both

taggers give a decision, their output has to be combined. Given the two tagging

decisions of the two tagger categories qss and qos and the respective uncorrelated

mistag probabilities
( )

ω ss and
( )

ω os, the probabilities p(B0
s )/p(B

0
s) for an initial B0

s/B
0
s

meson are given by:

p(B0
s ) =

1

N
(1 + qos(1− 2ωos))(1 + qss(1− 2ωss)), (6.8)

p(B0
s) =

1

N
(1− qos(1− 2ω̄os))(1− qss(1− 2ω̄ss)), (6.9)

where N = p(B0
s ) + p(B0

s) is a normalization factor. A detailed derivation of these

equations can be found in Appendix D. The dilution factor D = (1− 2ω) can be

expressed in terms of these probabilities as D = |p(B0
s )− p(B0

s)|, which, together
with Equation (6.7), allows to calculate the effective tagging power of the combined

OS and SS tagged events. The respective numbers for the background-subtracted

B0
s → J/ψφ data sample can be found in Table 6.2. In total, a tagging efficiency of

roughly 78% with an average dilution factor of 0.061 is reached. This corresponds
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Table 6.2: Tagging performance numbers. The tagging efficiency of the respective category
is given with respect to the total number of candidates. Thus, the effective
tagging powers and efficiencies can be added linearly. The total dilution factor
is then obtained by dividing the total effective tagging power by the total
tagging efficiency.

Category εtag(%) D2 εtagD2(%)
OS-only 11.349 0.078 0.88± 0.04
SSK-only 42.574 0.032 1.38± 0.30
OS&SSK 23.837 0.104 2.47± 0.15
Total 77.760 0.061 4.73± 0.34

to a total effective tagging power of (4.73± 0.34)% where the uncertainty originates

from the total uncertainties on the tagging calibration parameters.

6.4 Embedding in the probability

density function

For a given combination of tagging decisions qos and qss and estimated mistag

probabilities ηos and ηss of the opposite-side (OS) and same-side (SS) taggers,

Equations (6.8) and (6.9) give the probability for an initial B0
s and B0

s meson,

respectively. Thus, they can be directly plugged into Equation (3.1) to obtain the

PDF for a sample with tagging information:

PDF(t,Ω|qos, qss, ηos, ηss) = (6.10)

1

Nηos,ηss

qos,qss

10�

k=1

Ak fk(Ω)

[(1 + qos(1− 2ωos(ηos)))(1 + qss(1− 2ωss(ηss))) · hk,+1(t)

+(1− qos(1− 2ω̄os(ηos)))(1− qss(1− 2ω̄ss(ηss))) · hk,−1(t)].
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The calibration relations of the mistag probabilities
( )

ω
os/ss

are part of the PDF and

their parameters have Gaussian constraints, see Chapter 4, to the values presented

in this section. The normalization is given by:

Nηos,ηss

qos,qss = (6.11)

15 ps�

t=0.3 ps

�

Ω

10�

k=1

Ak fk(Ω) dΩ

[(1 + qos(1− 2ωos(ηos)))(1 + qss(1− 2ωss(ηss))) · hk,+1(t)

+(1− qos(1− 2ω̄os(ηos)))(1− qss(1− 2ω̄ss(ηss))) · hk,−1(t)] dt.
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7 Acceptance and resolution effects

The extraction of the underlying physics parameters is based on a fit to the decay-

time and angular distributions in the decay B0
s → J/ψφ. In order to obtain unbiased

results, any reconstruction and selection step that changes these distributions has

to be taken into account. One can distinguish two categories. The first contains

resolution effects that are caused by the finite precision of momentum and position

measurements of the particles in the detector. They lead to reconstructed angles and

decay times that differ slightly from the underlying true quantities. Reconstruction

or selection efficiencies that depend on the decay time or the helicity angles of the

respective B0
s → J/ψφ decay constitute the other category. Such dependencies are

called acceptances and alter the shape of the observed distributions.

While the correct determination of the resolution of the measured decay time is

crucial to correctly describe the fast B0
s −B0

s oscillations caused by the B0
s meson

mixing, the resolution of the helicity angles is significantly higher than the angular

structures that have to be resolved [5]. Therefore, the angular resolution can be

neglected.

In the following, the decay-time resolution and the decay-time and angular

acceptances are examined. Each section is divided into a short discussion of the

origin, a description of the chosen method for the determination and the embedding

in the PDF of the respective resolution or acceptance component.

7.1 Decay-time resolution

In order to be able to get the best sensitivity to the CP-violating parameters φs

and λ, it is necessary to resolve the oscillations in the time-dependent decay rate,

see Equations (1.55) and (1.56). The relevant frequency is given by the mass

splitting Δms ≈ 17.8 ps−1. This requires a measurement of the decay time of the B0
s

candidates with a precision that is significantly higher than the according oscillation

period. The part of the time-dependent decay rate that gives the highest sensitivity
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Figure 7.1: Dilution of the CP asymmetry in B0
s → J/ψφ decays as a function of the

decay-time uncertainty σt. The area in light red shows the typical range
covered by the LHCb experiment.

to φs is the asymmetry between the rates of B0
s and B0

s decays, ACP , which is

roughly given by:

ACP (t) := sinφs sin(Δmst). (7.1)

Assuming a decay-time resolution function with a Gaussian shape, the measurable

asymmetry Ameas
CP (t) becomes:

Ameas
CP (t) =

∞�

−∞

dt� sinφs sin(Δmst
�)

1√
2πσt

e
− (t−t�)

2σ2
t (7.2)

= e−σ2
t
Δms

2 sinφs sin(Δmst), (7.3)

where the width of the resolution function, σt, is called the decay-time uncertainty.

The dilution D is therefore defined as:

D = e−σ2
t
Δms

2 (7.4)

and relates the measurable and the underlying CP asymmetry. In analogy to the

dilution due to the flavour tagging, see Chapter 6, the precision on φs is directly

proportional to this factor. Figure 7.1 shows the dilution as a function of the

decay-time uncertainty σt. In the LHCb experiment, typical values for B meson

decays lie between 40 and 50 fs, which corresponds to a dilution of about 0.7-0.8.

Although, the relative gain in precision by a relative improvement in the decay-time

resolution is much higher for larger decay-time uncertainties, there is still a lot to

gain in this region. Therefore, it is important to achieve the best resolution possible
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Figure 7.2: Topological illustration of the properties relevant for the decay-time resolution.

by using all available information for every single B0
s candidate. This leads to the

usage of a decay-time uncertainty that is calculated for every candidate individually,

called per-event decay-time uncertainty.

This section will continue with a brief discussion of the origin of the finite decay-

time resolution of the LHCb detector, and will then focus on the calculation and

calibration of the per-event decay-time uncertainty.

7.1.1 Origin of the decay-time resolution

As presented in Chapter 5, the decay time of a B0
s → J/ψφ candidate is basically

determined by the positions of the PV and the B0
s decay vertex and the measured

momentum and mass of the B0
s candidate:

t = mB0
s

|xB0
s
− xPV |
pB0

s

. (7.5)

Figure 7.2 illustrates the relevant topology for the decay-time resolution. Due to the

limited spacial and momentum resolution of the LHCb detector, the quantities that

enter the decay-time calculation come with uncertainties that lead to an uncertainty

on the derived decay time. The uncertainty on the measured mass of the B0
s

candidates is typically negligible or does even cancel part of the uncertainty on

the measured momentum. Figure 7.3a shows the decay-time resolution obtained

from the simulated B0
s → J/ψφ sample. The reconstructed decay time in this figure

is determined directly from the vertex separation and the measured momentum,

without employing the Decay Tree Fitter (DTF). This allows to disentangle the

different contributions to the total decay-time uncertainty by using the true in-

formation for some of the components. Figures 7.3b to 7.3d show the respective

decay-time resolution when using the true information for all components except
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Figure 7.3: Decay-time resolutions obtained from a simulated sample of B0
s → J/ψφ decays.

The reconstructed decay time is calculated using Equation (7.5). The different
figures show the resolution when using only reconstructed or reconstructed
and true values for the three inputs. The B0

s mass is fixed to the nominal
value [3].

for one. The dominant contribution to the decay-time uncertainty is the resolution

of the B0
s decay vertex. A PV is typically reconstructed by much more tracks and

has therefore a significantly better resolution.

An important feature of this analysis is the previously mentioned per-event

decay-time uncertainty. This means that the precision with which the decay

time can be measured is not the same for every B0
s → J/ψφ candidate. There are

many different dependencies contributing to the total decay-time uncertainty. Two

of them are shown in Figure 7.4. For a given decay time, B0
s mesons with a low

momentum have a smaller flight distance than the ones with high momentum.

Therefore, the same uncertainties on the vertices yields a higher relative uncertainty

on the decay time. This can be seen in Figure 7.4a. The effect is not very pronounced
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Figure 7.4: Decay-time resolutions obtained from a simulated sample of B0
s → J/ψφ decays.

The resolution is shown for different equally populated bins of: (a) the number
of tracks associated to the PV (a) and (b) the B0

s momentum.

since daughters of B0
s mesons with higher momentum tend to have a smaller opening

angles, which leads to a less precisely reconstructed B0
s decay vertex. This partially

compensates the dependence on the B0
s momentum. Another effect can be seen in

Figure 7.4b. Although the impact of the PV resolution is small, there is a small

dependence on the number of tracks associated to the PV. A PV reconstructed

from a low number of tracks causes a higher decay-time uncertainty.

During the Decay Tree Fit, see Chapter 5, the uncertainties on the reconstructed

vertices, and thereby also the previously discussed dependencies, are taken into

account, and an estimate of the decay-time uncertainty for the respective candidate

is calculated. Figure 7.5 shows the distribution of this estimated decay-time

uncertainty δt in the simulated B0
s → J/ψφ sample. In addition, the observed decay-

time resolution histogram is shown for different ranges of the estimated decay-time

uncertainty. At this point, these graphs are only presented for illustration purposes.

The calibration of the per-event decay-time uncertainty will follow in one of

the next sections.

7.1.2 Strategy to determine the resolution

The estimated decay-time uncertainty allows to optimally exploit the statistical

potential of the selected data sample. However, to obtain unbiased results, this

estimate of the DTF has to be calibrated. Instead of relying on the simulated

sample, a data driven method is employed. This method is based on a sample of

prompt fake B0
s → J/ψφ candidates. Such a sample is dominated by prompt J/ψ
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Figure 7.5: Distribution of the estimated decay-time uncertainty δt obtained by the DTF
for the simulated B0

s → J/ψφ sample (a). Observed decay-time resolution in
bins of δt (b). The δt bins are indicated by the dotted lines in (a).

mesons that are combined with two random kaons from the PV. By definition,

these candidates have a true decay time of 0. Thus, their distribution can be used

to determine the decay-time resolution. Splitting the prompt sample in bins of

δt, allows then to do the desired calibration between the estimated and observed

decay-time uncertainty.

The prompt data sample

The sample of prompt fake B0
s → J/ψφ candidates is triggered and selected in the

same way as the sample of signal B0
s → J/ψφ candidates except that the requirements

related to the separation of the PV and B0
s decay vertex are omitted. This means

that the Biased HLT1 trigger configuration is not considered and that the HLT2

trigger line is changed to a version that has no requirement on the flight distance.

Since a trigger configuration like this would result in an extremely high rate of

events passing the requirements, the HLT2 line is prescaled by a factor of 0.2. This

means that only one of five events passing the trigger line is written to disk. During

the offline selection, the same cuts and multivariate classifier are applied as for the

signal sample, except for the cut on the decay time, which is omitted.

The decay-time distribution of the selected prompt candidates is shown in Fig-

ure 7.6. Besides the dominant peak at t = 0ps, a tail towards high decay times is

visible that originates from decay products of long-lived particles, e.g. from real

B0
s → J/ψφ decays. When determining the resolution, this component has to be

taken into account.
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Figure 7.6: Decay-time distribution of the prompt fake B0
s → J/ψφ candidates. The right

plot shows a zoomed view of the region around the peak at 0 ps.

Extracting the resolution from the prompt data sample

The resolution is determined by a maximum likelihood fit to the observed decay-time

distribution of the prompt sample. The PDF for this fit consists of the component

describing the prompt candidates, P (t), and another component representing the

candidates from the decay of long-living particles, L(t). Both are folded with the

resolution function R(t). In addition, the wrong PV component, W (t), is added to

account for prompt B0
s → J/ψφ candidates that are associated to a wrong PV and

have therefore a broad symmetric distribution in the reconstructed decay time. In

total, the PDF is then given by:

PDF(t) = (1− fwpv) [fprompt P (t) + (1− fprompt)L(t)]⊗R(t) + fwpv W (t), (7.6)

where fprompt and fwpv define the fractions of the three categories. The wrong

PV component is modeled by a double-sided double-exponential function whose

parameters are determined in a dedicated study that is summarized in Appendix E.

The prompt component is given by a delta function and L(t) consists of two

exponential functions to account for potentially different lifetimes of the contributing

long-living particles:

P (t) = δ(t) (7.7)

L(t) =
1

N

�
fs e

(− t
τs
) + (1− fs) e

�
− t

τl

��
. (7.8)
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N is a normalization factor and the fractions of the two long-lived components with

lifetimes τs and τl are parametrized via fs and (1− fs).

The resolution function is defined as the sum of three Gaussian distributions:

R(t) =
3�

i=1

fi
1√
2πσi

e
− 1

2

�
t−µ
σi

�2

, (7.9)

with the common mean µ, the widths σi and the relative fractions fi that sum up

to 1. Following previous studies [5], the two components with the smaller widths

(σ1 < σ2 < σ3) are parametrized as a function of two parameters σ� and σ�� in order

to reduce the correlation of the fit parameters:

σ� = (1− f)σ1 + fσ2, (7.10)

σ�� =
�

f(1− f)(σ2 − σ1), (7.11)

σ1 = σ� −
�

f

1− f
σ��, (7.12)

σ2 = σ� +

�
1− f

f
σ��, (7.13)

with (1 − f)/f ≡ f1/f2 being the relative fraction between the first and second

Gaussian component.

Figure 7.7 shows the fit projections when fitting the decay-time distribution in

eleven bins of the per-event decay-time uncertainty δt. All parameters except

the ones describing the shape of the wrong PV component are floating in these

fits. While the maximum likelihood fit is performed for candidates in the interval

t ∈ [−4, 10] ps, the projections are only shown in a smaller range to better illustrate

the different resolution components.

Calibrating the estimated decay-time uncertainty

Instead of the complicated triple Gaussian resolution model defined above, a single

Gaussian function is chosen for the implementation in the final time-dependent

angular fit. This allows a more reliable and simple evaluation of systematic un-

certainties related to the calibration of the per-event decay-time uncertainty,

see Chapter 10. To make sure that this simple resolution model has the same

effect as the more complex one, the dilution defined in Equation (7.4) has to be
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Figure 7.7: Decay-time distributions of the prompt fake B0
s → J/ψφ data sample in bins

of the estimated decay-time uncertainty δt. The data histograms are overlaid
by projections of the maximum likelihood fit that is used to determine the
resolution function.
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Figure 7.8: Measured effective decay-time resolution as a function of the estimated decay-
time uncertainty. The linear and quadratic calibration fits are shown.

the same for both. Replacing the single Gaussian resolution in Equation (7.2) with

Equation (7.9) yields the following dilution for the triple Gaussian model:

D =
3�

i=1

fi e
−σ2

i
Δm2

s
2 . (7.14)

This corresponds to the dilution of a single Gaussian with a width of:

σeff =

�
−2 lnD

Δm2
s

, (7.15)

where σeff is called the effective resolution.

This effective resolution is calculated from the result of the maximum likelihood

fit for every bin of the estimated decay-time uncertainty δt and added to Figure 7.8.

Especially for low values of δt, the Decay Tree Fitter underestimates the uncertainty

on the measured decay time, which clearly demonstrates the need for a dedicated

calibration. This calibration is obtained by describing the effective resolution as a

function of δt by either a linear or a quadratic function:

σeff (δt) = p0 + p1δt + p2δ
2
t (7.16)

with the coefficients p0, p1 and p2. The latter is set to zero in the linear case.

Figure 7.8 shows the linear and the quadratic function obtained by a fit to the

measured effective resolutions. Since the former yields an already good description

of the measurements, the quadratic calibration is only tested as a systematic
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study, see Chapter 10. The parameters of the linear calibration are given by

p0 = (0.01297± 0.00022) ps and p1 = 0.8446± 0.0057.

Applying this calibration to the background-subtracted B0
s → J/ψφ signal data

sample yields an average effective resolution of �σeff� = (45.54±0.05±0.04) fs, where

the first uncertainty accounts for the uncertainties on the calibration parameters

and the second is due to the limited statistics of the data sample. According to

Equation (7.4), this corresponds to an average dilution of D ≈ 0.72.

7.1.3 Embedding in the probability density function

For the maximum likelihood fit to the background-subtracted sample of B0
s → J/ψφ

decays, the resolution is modeled by a single Gaussian function with a width given

by the calibrated effective resolution σeff (δt). Equation (6.10) has to be modified

according to:

PDF(t,Ω|qos, qss, ηos, ηss, δt) = (7.17)

1

Nηos,ηss,δt
qos,qss

10�

k=1

Ak fk(Ω)

{[(1 + qos(1− 2ωos(ηos)))(1 + qss(1− 2ωss(ηss))) · hk,+1(t)

+ (1− qos(1− 2ω̄os(ηos)))(1− qss(1− 2ω̄ss(ηss))) · hk,−1(t)]⊗G(t|σeff (δt))},

where G(t|σeff(δt)) is the Gaussian with a width that depends on the estimated

decay-time uncertainty δt . The normalization is given by:

Nηos,ηss,δt
qos,qss = (7.18)

15 ps�

t=0.3 ps

�

Ω

10�

k=1

Akfk(Ω) dΩ

{[(1 + qos(1− 2ωos(ηos)))(1 + qss(1− 2ωss(ηss))) · hk,+1(t)

+ (1− qos(1− 2ω̄os(ηos)))(1− qss(1− 2ω̄ss(ηss))) · hk,−1(t)]⊗G(t|σeff (δt))} dt.

7.2 Decay-time acceptance

In this section a detailed discussion of the decay-time dependence of the efficiency,

abbreviated with decay-time acceptance, is presented. As a first step, a huge sample

of simulated B0
s → J/ψφ decays is used to motivate the shape of the efficiency,

which receives contributions from several different effects. After that, a data driven
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Figure 7.9: Decay-time acceptance observed in a simulated B0
s → J/ψφ sample split by trig-

ger category. The black points represent the ratio of observed and generated
decays in the different decay-time bins, and the blue curves are parametriza-
tions of the acceptances by a cubic splines, see Section 7.2.2. The absolute
scale is arbitrary.

method is presented that provides analytic acceptance functions for the usage in

the extraction of the physics parameters.

7.2.1 Origin of the decay-time acceptance

In Figure 7.9 the decay-time acceptance of simulated B0
s → J/ψφ decays after all

reconstruction and selection steps is shown. The sample is split according to the

two previously defined trigger categories, Unbiased and Biased. This is motivated

by the significantly different decay-time acceptance of these two trigger strategies.

The samples were simulated with zero decay-width difference ΔΓs, which results in

a generator level decay-time distribution that is completely described by a single

exponential. Neglecting the effect of decay-time resolution, this allows a direct

extraction of the decay-time acceptance by comparing the number of signal decays in

a specific decay-time interval with the number expected from a simple exponential

distribution. This ratio is shown as the black points in Figure 7.9. The blue

curves in the same figure are obtained by maximum likelihood fits to the respective

decay-time distribution taking into account the decay-time resolution. Details on

this procedure are given in the next section. For now, these curves are only needed

to lead the eye.

92



7.2 Decay-time acceptance

Low decay-time acceptance

When comparing the decay-time acceptance below t ≈ 3 ps, a clear difference

between the Unbiased and Biased trigger category is visible. This difference is the

defining feature of these two categories. The low efficiency at low decay times is

typically caused by trigger requirements that are based on the separation of the

B0
s decay vertex from the primary vertex (PV). In the case of the HLT1 lines that

define the Biased category, these are the cuts on the impact parameter significance

of the final state particles, see Chapter 5. A B0
s meson with a short decay time

tends, depending on its moment, to decay near the PV. Final state tracks of this B0
s

meson are likely to roughly point to the PV and therefore do not pass this trigger

requirement.

Although the HLT1 trigger line of the Unbiased category does not contain such

cuts, a small effect is visible at very low decay times. This is a result of the chosen

HLT2 trigger line that is common for both categories. It contains a requirement of

the decay length significance of the J/ψ meson, see Chapter 5. Compared to the

effect on the decay-time acceptance due to the HLT1 trigger lines of the Biased

category, this bias is small, which justifies the name of the Unbiased category.

High decay-time acceptance

Consistently for both trigger categories, a decreasing efficiency for very high decay

times is observed in Figure 7.9. The main origin of this dependence is the pattern

recognition algorithm used to find tracks in the VELO. As briefly described in

Section 2.2.1, this algorithm relies on the assumption that the tracks originate

from a point on the beam axis. Thus, tracks with a significant separation from

this axis are reconstructed less efficiently. Decay products of B0
s mesons with a

high decay time and therefore also long flight distance are more likely to show such

large separations. Since this track reconstruction is already part of the high level

trigger, this inefficiency can not be recovered offline and leads to the observed drop

of efficiency at high decay times. This effect is nicely visible when determining

the decay-time acceptance as a function of the transverse momentum p
B0

s
T of the

B0
s meson, see Figure 7.10. For a given decay time, the transverse momentum

determines the distance of the B0
s meson decay vertex to the beam axis. A high pT

B0
s meson corresponds to a large such distance, which leads to large separations

of the final state tracks from the beam axis. Therefore, it is expected that the

drop of efficiency at high decay times is more pronounced for high p
B0

s
T value. This

dependence is clearly visible in Figure 7.10.
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Figure 7.10: Decay-time acceptance observed in a simulated B0
s → J/ψφ sample for the

Unbiased trigger category in bins of transverse momentum of the B0
s meson.

The black points represent the ratio of observed and generated decays in
the different decay-time bins, and the blue curves are parametrizations of
the acceptances by cubic splines, see Section 7.2.2. The absolute scale is
arbitrary.

Other effects

Another prominent feature of the decay-time acceptance is the dip at roughly

1− 2 ps in Figure 7.9. It is mostly visible for the Unbiased trigger category, because

in the Biased sample it is spoiled by the dominant effect of the low decay-time

acceptance discussed previously. The dip is caused by events in which the B0
s vertex

is reconstructed as an additional PV. If this happens, the reconstructed B0
s → J/ψφ

decay does not fulfill the vertex separation criteria and will not pass the trigger. In

order to be reconstructed as PV, the B0
s vertex has to gather at least one additional
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7.2 Decay-time acceptance

track, since the minimum number of tracks that are needed to form a PV is chosen

to be five.

There are counteracting effects contributing to the decay-time dependence of this

wrong PV reconstruction. The first is related to the true PV, which has typically

more associated tracks and is reconstructed first. For very low B0
s decay times,

the final state tracks are more likely absorbed into the fit of the first PV and are

therefore not longer available to build a second one. Therefore, this wrong PV

reconstruction plays no role at very small decay times. At high decay times, which

means by trend higher distances from the true PV, it becomes less likely that a

random track passes near the B0
s vertex and in this way forms an additional PV.

Furthermore, there is a maximal distance a vertex is allowed to be separated from

the beam axis in order to be classified as a PV. For low multiplicity vertices this

distance is 0.2mm, which is more likely do be exceeded by B0
s mesons with high

decay time. Especially the latter two effects nicely explains the dependence of this

dip as a function of p
B0

s
T , which can be seen in Figure 7.10. At low p

B0
s

T , many of

the B0
s vertices fulfill the requirement of the maximal allowed distance to the beam

axis and are therefore more likely reconstructed as an additional PV. For higher

p
B0

s
T nearly all B0

s vertices fall outside this area and are never considered as a PV.

In addition, vertices with higher separation from the beam axis do less likely pick

up additional random tracks that are necessary to form a PV.

7.2.2 Strategy to determine the acceptance

After the qualitative discussion of the decay-time acceptance above, in this section

the method developed to determine the acceptance of the B0
s → J/ψφ data sample is

presented. Although the simulated sample is expected to include all basic acceptance

effects, it is better to not rely on the correct description of all these interplaying

contributions. Therefore, a data driven method is employed. It is based on the

decay B0→ J/ψK∗0, where the K∗0 is decaying into a K+ and a π−. Topologically,

this decay is very similar to the decay B0
s → J/ψφ, and since the the decay-width

splitting ΔΓd in the B0 system is negligible [82], B0→ J/ψK∗0 decays are produced

with a simple exponentially falling decay-time distributing, which allows an easy

determination of the decay-time acceptance.

The principle idea is to extract the acceptance εB
0
s (t) according to:

εB
0
s (t) ∝ NB0

(t)

e−Γdt ⊗GB0(t)
, (7.19)
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Chapter 7 Acceptance and resolution effects

where NB0
(t) is the observed decay-time distribution of B0→ J/ψK∗0 decays and

GB0
(t) the decay-time resolution function of this sample. This means that the

extracted decay-time acceptance depends on the chosen value of the decay width Γd

of the B0 meson. The current world average is given by Γw.a.
d = (0.6579±0.0017) ps−1

[16], and the decay-time acceptance for any arbitrary value of Γd can be parametrized

using a deviation δΓd from this value:

Γd = Γw.a.
d + δΓd. (7.20)

The decay-time acceptance for a given value of Γd becomes then:

εB
0
s (t|Γd) ∝

NB0
(t)

e−(Γw.a.
d +δΓd)t ⊗GB0(t)

(7.21)

≈ eδΓdt
NB0

(t)

e−Γw.a.
d t ⊗GB0(t)

, (7.22)

where the last step is valid because the decay-time resolution ( O(0.045 ps)) is

significantly smaller than the lower bound on the decay time (0.3 ps). Thus, the

decay-time acceptance changes by an exponentially time-dependent factor that is

directly given by the change in Γd. Thus, by a similar argument, such a change of

Γd in the acceptance determination would result in the same shift of the measured

decay width Γs of the B
0
s system. One way to deal with this is to quote a value of Γs

that receives a systematic uncertainty arising from the uncertainty of Γw.a.
d . A more

elegant solution is to quote the difference between the decay widths, ΔΓs
d = Γs−Γd,

which is independent of the exact value of Γd used in the acceptance determination

and is the actual quantity that is measured when taking the decay-time acceptance

from a B0→ J/ψK∗0 sample. Furthermore, this difference can be easily related to

the ratio Γs/Γd, which is of high theoretical interest, see Section 1.5.8.

Selection of B0→ J/ψK∗0 decays

The similarity between the decays B0→ J/ψK∗0 and B0
s → J/ψφ allows a nearly

identical selection strategy for those two channels. In the following, only differences

with respect to the selection presented in Chapter 5 are mentioned. While the

chosen trigger configuration is not changed, there are a few small differences in

the first step of the offline selection. The respective requirements are shown in

Table 7.1. The tighter requirements on the transverse momentum of the pion and

the K∗0 resonance account for the larger amount of combinatorial background with

respect to the channel B0
s → J/ψφ due to the presence of a pion in the final state.
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7.2 Decay-time acceptance

Table 7.1: Selection criteria applied in the first step of the offline selection of B0→ J/ψK∗0

decays. Only differences with respect to the selection applied to B0
s → J/ψφ

candidates, see Chapter 5, are given.

Variable Requirement
pT (π

−) > 250MeV/c
pT (K

∗0) > 1300MeV/c
m(K+π−) ∈ [826, 966]MeV/c2
ΔlnLKπ(π

−) < 0

m(J/ψK+π−) ∈ [5150, 5350]MeV/c2
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Figure 7.11: Invariant mass distribution of selected B0→ J/ψK∗0 candidates. They are
split according to the trigger category. Projections of fits are overlaid.

After this first step of the offline selection, the same multivariate classifier as

for the B0
s decay channel is applied. The transverse momentum of the φ meson

is replaced by the one of the K∗0 resonance, but the exact same classifier is used

without a dedicated training for the B0 decay. Although the input variables were

chosen such that the impact on the decay-time distribution is small, there are

small correlations between the decay time and these variables. Using the identical

selection for both channels, ensures that these correlations enter the same way in

both cases.

Figure 7.11 shows the invariant mass distribution of the selected B0→ J/ψK∗0

candidates, split by trigger category. In analogy to theB0
s decay, the sPlot technique

is employed to statistically subtract the remaining background contribution. Since

no angular analysis of the decay B0→ J/ψK∗0 is needed, the correlation between

the mass resolution and the angular variables is not as crucial as it is in the case of

the B0
s decay. Therefore, the maximum likelihood fit to the mass distribution can

be performed without taking into account the per-event mass uncertainty. The
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Chapter 7 Acceptance and resolution effects

Table 7.2: Approximate number of B0→ J/ψK∗0 decays after the full selection. The
yields are determined by fits to the invariant mass distribution.

Year Trigger category Yield
2015 Unbiased 56.5k

Biased 18.2k
2016 Unbiased 381.5k

Biased 90.0k

background is modeled using an exponential function and the signal is described by

a double-sided Ipatia function [76]. The latter allows a correct description of the

tails of the signal distribution. As in the case of the B0
s decay, the shape parameters

are determined from a simulated B0→ J/ψK∗0 sample. Combined fit projections

of the two years of data taking are shown in Figure 7.11. For orientation, Table 7.2

shows the approximate signal yields of the different categories determined by the fit.

These yields are significantly larger than the ones of the decay B0
s → J/ψφ quoted

in Chapter 5 because of the significant larger B0 hadronization fraction [83].

Correcting differences between B0→ J/ψK∗0 and B0
s → J/ψφ decays

Although the decay B0→ J/ψK∗0 is topologically similar, there are some second

order differences with respect to the decay B0
s → J/ψφ. These might cause differences

in the decay-time acceptance between the two channels and have to be taken into

account. The main relevant difference is the phase space that is available for the

final state particles of the hadronic resonance. While the mass of the two kaons,

m(K+) +m(K−) ≈ 987MeV/c2 [3], is relatively close to the mass of the φ meson,

mφ ≈ 1020MeV/c2 [3], the mass of the kaon-pion pair,m(K+)+m(π−) ≈ 633MeV/c2

[3], is significantly lower than the mass of the K∗0 resonance, mK∗0 ≈ 892MeV/c2 [3].

Thus, the opening angle of the final state mesons tends to be larger in the B0 decay

in comparison to the B0
s decay. Larger opening angles can lead to a larger separation

of the track from the primary vertex and also from the beam axis. Following the

discussion in Section 7.2.1, this can have an effect on the decay-time acceptance.

In order to correct for this and other possible sources of biases, the acceptance

determined from the B0→ J/ψK∗0 data sample, εB
0

data, is corrected using the accep-

tances observed in simulated B0→ J/ψK∗0 and B0
s → J/ψφ decays, εB

0

sim and ε
B0

s
sim:

ε
B0

s
data(t) =

ε
B0

s
sim(t)

εB
0

sim(t)
× εB

0

data(t). (7.23)
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Figure 7.12: Momentum and transverse momentum distributions of the background-
subtracted B0→ J/ψK∗0 and B0

s → J/ψφ data samples. The top row shows
the distributions before and the bottom row the distributions after the
weighting of the B0→ J/ψK∗0 candidates. Only the 2016 data sets are
shown.

In addition, the background-subtracted B0 data sample is weighted1 to match the

respective B0
s data distributions of the momentum and transverse momentum of

the B mesons. Neglecting the small mass difference between the two B mesons,

the weighting in momentum ensures that the relation between decay time and

flight distance is the same for both channels. The weighting in the transverse

momentum is motivated by the strong dependence of the decay-time acceptance on

this quantity, see Figure 7.10. Figure 7.12 shows the momentum and transverse

momentum distributions of B0→ J/ψK∗0 and B0
s → J/ψφ decays before and after

the weighting. A good agreement is achieved.

Besides these corrections of the B0 data sample, the simulated B0
s and B0 samples

are corrected to be more similar to the respective data set. In contrast to the real

data sets, the simulated samples do not contain S-wave components, which means

that all their final state hadrons originate from an intermediate φ or K∗0 meson.

Furthermore, the relative phases and fractions of the different polarization states

do not necessarily agree with the ones observed in real data. These two effects

1Throughout this thesis, the boosted weighting technique, see Section 4.2, is employed when not
stated otherwise.
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Chapter 7 Acceptance and resolution effects

can cause differences in the angular distributions of the final state particles, which

might affect the decay-time acceptance. In order to correct these differences, the

simulated samples are weighted to match the S-wave and polarization fractions and

phases measured in earlier LHCb analyses [5], [82]. This weighting can be achieved

in two steps. In a first step, every simulated event gets a weight that is determined

by evaluating the decay-time-dependent angular distribution function (PDF) for

this event once with the physics parameters set to the ones used in the simulation

(λgen) and once with the parameters observed in data (λobs). The ratio of these two

values is then used as the weight ω:

ω =
PDF(te,Ωe|λobs)

PDF(te,Ωe|λgen)
. (7.24)

Here, te is the decay time and Ωe represents the angles in the helicity basis of the

respective event. The fraction of the S-wave component is part of the PDF and

was determined in bins of the mass of the K+K− and K+π− system, respectively.

Therefore, a second step is necessary to obtain the correct total fraction of the

S-wave: the mass distribution of the hadron system is aligned between simulated

and data candidates in terms of a weighting. Together with this last step, again

a weighting of the simulated samples according to the differences to data in the

transverse momentum distributions of the B0
s/B

0 meson is performed.

Figure 7.13 shows the distributions of data and simulation before and after this

weighting. Again, a good agreement is achieved. The total effect of the corrections

applied to the simulated samples can be seen in Figure 7.14. There, the decay-time

acceptance of simulated B0
s → J/ψφ decays is shown with and without them.

Extracting acceptance parametrizations

In the previous sections, the origin of the decay-time acceptance and the principle

strategy of its determination was discussed. Now the technical method to obtain

an analytical parametrization of the final acceptances including all corrections is

presented. Such an analytical parametrization allows a direct implementation of the

decay-time acceptance into the PDF and is furthermore less sensitive to statistical

fluctuations that are present when using directly the acceptance histograms.

It was chosen to employ cubic splines for this purpose. A cubic spline is defined

on a set of intervals, which are defined by the so-called knot positions or knots [84].

In each of these intervals, the cubic spline is given by a third order polynomial.

At every knot position, the spline is required to be continuously differentiable.

Given a cubic spline with N knots, this requirement allows for N + 2 freely varying
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Figure 7.13: Simulation and background-subtracted data distributions of B0→ J/ψK∗0

and B0
s → J/ψφ decays. The respective top row shows the distributions before

and the bottom row the distributions after the weighting of the simulated
candidates. Only the 2016 data sets and corresponding simulated candidates
are shown.
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Figure 7.14: Change of the decay-time acceptance of simulated B0
s → J/ψφ decays due

to the corrections applied to math the B0
s → J/ψφ data sample. The points

represent the ratio of observed and generated decays in the different bins of
the reconstructed decay time, and the solid curves are parametrizations of
the acceptances by a cubic spline, see Section 7.2.2. The absolute scale is
arbitrary.

parameters. One such basis of parameters that is completely describing the spline

is given by the spline values at the knot positions and the slopes of the spline at

the first and last knot. A more common and robust parametrization, which is also

chosen in this thesis, is based on the decomposition of the cubic spline in N + 2

independent B-splines [85]. Every cubic spline S3(x) can be written as the sum of

these B-splines Bi,3(x):

S3(x) = ci
�

i

Bi,3(x). (7.25)

The coefficients ci are then the parameters that uniquely define the cubic spline.

Motivated by the exponential distribution of the decay time, the knots are chosen

to be distributed in a similar way. Knots at [0.3, 0.58, 0.91, 1.35, 1.96, 3.01, 7.00] ps

turned out to be a good choice to describe all features of the acceptance without

picking up to many random fluctuations. Since this choice is rather arbitrary, a

systematic uncertainty will be assigned by choosing another set of knot positions.

After the last knot, the spline is extrapolated with a linear function. This is one

further way to get less sensitive to statistical fluctuations, which are more relevant

at the sparely populated high decay-time region.

The aim is to determine a single cubic spline that parametrizes the final B0
s

data decay-time acceptance defined in Equation (7.23). This is achieved by a
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7.2 Decay-time acceptance

simultaneous fit to the decay-time distributions of the B0→ J/ψK∗0 data set and

the simulated samples of B0→ J/ψK∗0 and B0
s → J/ψφ decays. Each distribution

is described by an exponential function that is folded with a Gaussian resolution

function and multiplied with an acceptance. The acceptances, ε
B0

s
sim(t), ε

B0

sim(t) and

εB
0

data(t), of the three samples are parametrized as:

ε
B0

s
sim(t) = s

B0
s

sim(t), (7.26)

εB
0

sim(t) = s
B0/B0

s
sim (t)× s

B0
s

sim(t), (7.27)

εB
0

data(t) = s
B0

s
data(t)× s

B0/B0
s

sim (t), (7.28)

using the three cubic splines s
B0

s
sim(t), s

B0/B0
s

sim (t) and s
B0

s
data(t). With this definition,

the spline s
B0

s
data(t) represents exactly the desired combination of acceptances of

Equation (7.23): ε
B0

s
data(t) = s

B0
s

data(t).

In the fit to the three decay-time distributions, the respective decay widths

are fixed to the value used in the respective simulation and to the current world

average of Γd in the case of the B0→ J/ψK∗0 data set. The widths of the Gaussian

resolution functions are motivated by the study in Section 7.1 and by the ratio of

decay-time resolution widths observed in the two simulated samples. The values

are σ
B0

s
sim = 41.7 fs, σB0

sim = 38.6 fs and σB0

data = 42.4 fs. The free parameters of the fit

are the coefficients of the three cubic splines, where the respective first coefficient is

fixed to 1 to fix the arbitrary overall scale of the acceptance functions.

For each trigger category and year of data taking, separated acceptances are

determined in this way. Figure 7.15 shows the fit projections of the 2016 samples.

The respective determined cubic splines are shown in Figure 7.16. While the ratio

of acceptances in the two simulated samples is nearly flat for the Unbiased trigger

category, there is a clear difference visible for the candidates of the Biased trigger

category. The selection of B0→ J/ψK∗0 decays is more efficient at low decay times.

This might be explained by the difference in the opening angles of the final state

particles. Even for Biased trigger categories the corrections based on the simulated

samples are significantly smaller than the acceptance effects themselves. This

justifies the term ”data driven method”.

The coefficients of the cubic splines describing the acceptance in the B0
s → J/ψφ

data sample are given in Table 7.3. Since they are obtained from a simultaneous fit

to the three previously mentioned samples, they come with a covariance matrix that

represents the uncertainty due to the limited statistics of all these three samples.

This will allow an easy determination of a systematic uncertainty in Chapter 10.
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Figure 7.15: Background subtracted decay-time distributions and fit projections of the
simultaneous fit to the three samples used to determine the decay-time
acceptance. The 2016 samples are shown and split according to the two
trigger categories.
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(b) B0
s → J/ψφ simulation, Biased
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(c) Ratio of simulation acceptances, Unbiased
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(d) Ratio of simulation acceptances, Biased
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(e) Final acceptance, Unbiased
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Figure 7.16: Acceptance splines obtained by the simultaneous fit to B0→ J/ψK∗0 data
and simulation and B0

s → J/ψφ simulation. The black points are obtained
by acceptance histograms, and the blue lines show the cubic splines. Only
the 2016 categories are shown.
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Table 7.3: Coefficients of the cubic splines that describe the decay-time acceptance of
the B0

s → J/ψφ data sample. They are determined by the simultaneous fit
described in the text. The first coefficient is set to 1 in all four data categories
to fix the arbitrary absolute scale.

2015 2016
Unbiased Biased Unbiased Biased

c0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
c1 1.05± 0.07 1.69± 0.31 1.008± 0.028 1.49± 0.16
c2 1.097± 0.049 1.73± 0.21 1.031± 0.018 2.06± 0.13
c3 0.969± 0.049 1.85± 0.27 1.001± 0.021 2.12± 0.17
c4 1.051± 0.051 1.99± 0.26 0.984± 0.018 2.28± 0.16
c5 1.05± 0.047 1.92± 0.26 1.0± 0.019 2.29± 0.17
c6 1.028± 0.064 2.0± 0.3 1.009± 0.024 2.46± 0.19
c7 1.094± 0.06 2.19± 0.31 0.989± 0.024 2.25± 0.18
c8 1.051± 0.05 1.95± 0.27 0.987± 0.02 2.34± 0.17

7.2.3 Validation of the Strategy

Since the strategy for the determination of the decay-time acceptance has changed

with respect to previous versions of the analysis, it demands dedicated valida-

tion tests. Especially the correction for differences between the decay channels

B0
s → J/ψφ and B0→ J/ψK∗0 via simulation needs to be verified. To do so, two

kinds of tests are performed. The first is based on a measurement of the decay-width

difference, ΔΓu
d = Γu − Γd, between the channels B+ → J/ψK+ and B0→ J/ψK∗0.

The decay-time acceptance of the B+ → J/ψK+ candidates is determined in full

analogy to the method presented above, with replacing the simulated B0
s → J/ψφ

sample with a respective B+ → J/ψK+ one. The channel B+ → J/ψK+ was trig-

gered in the same way as the other two channels, but the offline selection, including

the BDT, has to be changed slightly due to the missing fourth final state track.

Details are given in Ref. [65]. Using this decay-time acceptance and a fixed decay-

time resolution obtained in the same way as for the B0→ J/ψK∗0 data sample, a

maximum likelihood fit to the decay-time distribution of the background-subtracted

B+ → J/ψK+ data sample is performed.

Figure 7.17 shows the fit projection of this fit for the 2016 data sample. Trans-

forming the measured decay-width difference between the B+ and B0 meson, ΔΓu
d ,

to the ratio of their lifetimes, the fit returns: τ (B+)/τ (B0) = 1.0783± 0.0024. Only

statistical uncertainties are considered. This is in good agreement with the current

world average of τ(B+)/τ(B0)w.a. = 1.076± 0.004 [16]. This gives confidence that
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Figure 7.17: Fit projection of the maximum likelihood fit to the background-subtracted
B+ → J/ψK+ data sample.

the method does also work for the channel B0
s → J/ψφ that is even more similar to

the channel B0→ J/ψK∗0.

In a second validation study, the B0→ J/ψK∗0 data and simulation samples are

split in two. In this way, two independent sets, labeled as A and B, are obtained,

which are then used as calibration and testing samples, respectively. The idea is to

determine the decay-time acceptance for the data sample A using the data sample

B and the simulated samples A and B. This is done in full analogy to the procedure

of the B0
s → J/ψφ decay-time acceptance determination. With this decay-time

acceptance at hand, a maximum likelihood fit to the decay-time distribution of the

background-subtracted data sample A is performed, and the lifetime is determined.

In a first step, the samples are split randomly. By definition this should reproduce

the input value for the B0 lifetime of τB0 = 1.520 ps and sets the baseline for the

further tests. The same random splitting is used, but additional cuts are placed on

the samples A:

• A cut on the per-event decay-time uncertainty δt: δt < 0.04 ps.

• A cut on the opening angle of the K+π− pair α: α < 0.025 rad.

For each of them, the procedure is repeated. As an additional test, the samples are

split according to the mass of the K∗ resonance. All these cuts and splittings are

chosen to mimic the differences between the channels B0
s → J/ψφ and B0→ J/ψK∗0,

which differ in the decay-time resolution and the hadronic resonance. The same

correction procedure as discussed in Section 7.2.2 is applied to the respective samples.

However, the tests are also repeated without applying these corrections. This allows
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Chapter 7 Acceptance and resolution effects

Table 7.4: Values of τ(B0), obtained during the validation of the decay-time acceptance
method, for the different considered splittings, with (first column) and without
applying the corrections discussed in Section 7.2.2.

Splitting Without corrections With corrections
Random 1.513± 0.006 ps -

Random + δt < 0.04 ps 1.489± 0.006 ps 1.507± 0.007 ps
Random + α < 0.025 rad 1.507± 0.007 ps 1.511± 0.008 ps

m(K∗0) 1.522± 0.006 ps 1.523± 0.006 ps

to visualize their effect. Table 7.4 summarizes the measured decay time. While

the lifetimes obtained with the random splitting and the splitting in m(K∗0) have

to be compared to the input value of τ(B0) = 1.520 ps, the values obtained by

applying additional cuts on top of the random splitting have to be compared to the

value obtained from the random splitting alone, τ(B0) = 1.513 ps. Of course these

values are correlated, but when estimating the uncorrelated statistical uncertainty

as
�

σ2
2 − σ2

1, where σ2 and σ1 are the uncertainties form the test with and without

the additional cut, none of the values show a significant bias.

As in the case of the validation with the channel B+ → J/ψK+, this gives confi-

dence that the decay-time acceptance for B0
s → J/ψφ decays is correctly determined.

7.2.4 Embedding in the probability density function

The cubic splines describing the decay-time acceptance for the different years of data

taking, y, and trigger categories, c, are included in the PDF of the time-dependent

angular fit of B0
s → J/ψφ data. Equation (7.17) has to be modified according to:

PDFy,c(t,Ω|qos, qss, ηos, ηss, δt) = (7.29)

1

Nηos,ηss,δt
qos,qss,y,c

10�

k=1

Ak fk(Ω) εy,c(t)

{[(1 + qos(1− 2ωos(ηos)))(1 + qss(1− 2ωss(ηss))) · hk,+1(t)

+ (1− qos(1− 2ωos(ηos)))(1− qss(1− 2ω̄ss(ηss))) · hk,−1(t)]⊗G(t|σeff (δt))},
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where εy,c(t) is the respective cubic spline. The normalization is given by:

Nηos,ηss,δt
qos,qss,y,c = (7.30)

15 ps�

t=0.3 ps

�

Ω

10�

k=1

Ak fk(Ω) εy,c(t) dΩ

{[(1 + qos(1− 2ωos(ηos)))(1 + qss(1− 2ωss(ηss))) · hk,+1(t)

+ (1− qos(1− 2ω̄os(ηos)))(1− qss(1− 2ω̄ss(ηss))) · hk,−1(t)]⊗G(t|σeff (δt))} dt.

The representation of the acceptance with a single cubic spline allows the analytic

integration of the PDF [86].

7.3 Angular acceptance

As discussed in Section 1.5.2, an angular analysis is necessary to disentangle the

different CP components of the J/ψφ final state. Any possible dependence of the

reconstruction and selection efficiency on the three helicity angles can bias the

determined relative fractions of these components and therefore also the extracted

CP-violation and lifetime parameters. Thus, it is crucial to incorporate this angular

dependence of the efficiency, called angular acceptance, in the maximum likelihood

fit to data. This section will start with a motivation of the angular acceptance

shape using large simulated samples. After that, the principle method used for

the integration into the PDF is presented. The final determination of the angular

acceptance is then based on a sample of simulated B0
s → J/ψφ decays and a dedicated

technique developed to correct for possible differences between simulation and data,

which is presented at the end of this section.

The angular acceptance, ε(θµ, θK ,ϕh), is defined as follows:

ε(θµ, θK ,ϕh) ∝
N obs(θµ, θK ,ϕh|t, q)
N exp(θµ, θK ,ϕh|t, q)

, (7.31)

where N obs(θµ, θK ,ϕh|t, q) is the angular dependent density of the observed data at

a give reconstructed decay time t and initial flavour q, while N exp(θµ, θK ,ϕh|t, q)
is the respective expected density function of the decay at generation. Practically,

the shape of the angular acceptance can be obtained from a simulated B0
s → J/ψφ

sample by splitting the candidates in three dimensional bins, Ωi, of the three helicity
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Figure 7.18: Projections of the three dimensional angular acceptance histogram obtained
from a simulated sample of B0

s → J/ψφ decays.

angles and by comparing the observed numbers, N obs(Ωi), to the ones expected

from the density function at generation:

ε(Ωi) ∝
N obs(Ωi)�

q

�
Ωi

�
t
N exp(θµ, θK ,ϕh|t, q) dt dθµ dθK dϕh

. (7.32)

This equation is only valid if the angular distribution of the underlying PDF does

not depend on the decay time t. As can be seen from Equation (1.37), this is the case

if ΔΓs = 0. Therefore, the sample used to extract the acceptance in this way was

generated with this specification. In addition, Equation (7.32) neglects any possible

decay-time dependence of the angular acceptance. This assumption is tested in

Chapter 10, and an according systematic uncertainty is assigned. Projections of

the obtained three dimensional acceptance histogram are shown in Figure 7.18.

7.3.1 Origin of the angular acceptance

The helicity angle of the muons/kaons are defined with respect to B0
s flight direction

in the center-of-mass system of the J/ψφ meson. Their relation to momenta

distributions in the lab frame is therefore highly unintuitive and always depends on

all three defined angles. Thus, it is hardly possible to give a simple explanation of

the origin of the shape of the angular acceptance. In order to anyhow understand

the different contributions to the shapes observed in Figure 7.18, a large sample of

simulated B0
s → J/ψφ decays with a pure phase space distribution was produced

with the RapidSim package [87]. Since the decay products are distributed according

to the available phase space, the distributions of cos θµ, cos θK and ϕh are expected

to be uniformly distributed. This simplifies the determination of the angular

acceptance. The sample is a pure generator level simulation, meaning that no
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Figure 7.19: Projections of the three dimensional angular acceptance histogram obtained
from a generator level phase space simulation of B0

s → J/ψφ decays.
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Figure 7.20: Projections of the three dimensional angular acceptance histogram obtained
from a generator level phase space simulation of B0

s → J/ψφ decays. The final
state particles are required to lie in the acceptance of the LHCb detector.

detector and therefore no reconstruction and selection is simulated. Thus, the

angular acceptance determined from this sample is flat, see Figure 7.19.

As a first step, the final state particles are required to lie inside the acceptance

of the LHCb detector. This corresponds to an angle between the beam axis and

the final state particle trajectory in the interval [10, 400]mrad. The effect of this

requirement is shown in Figure 7.20. While the acceptance projections of cos θK

and ϕh are largely unaffected, there is a significant impact on the acceptance as a

function of the helicity angles of the two muons. This is expected since the mass

of the J/ψ meson is significantly larger than the mass of two muons, while the

kaons originate from the φ meson, which is not much heavier than the two kaons

combined. This means that for the muons the helicity angle has a much larger

impact on their momenta than this is the case for the kaons.

All final state particles of this analysis are required to leave a signal inside the

detector after the dipole magnet. This places further momentum dependent cuts

on the flight direction of the particles. Choosing only decay candidates where all

final state particles fulfill this requirement leads to the angular acceptance shown

in Figure 7.21. Again, a similar effect is visible and as previously, the effect is
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Figure 7.21: Projections of the three dimensional angular acceptance histogram obtained
from a generator level phase space simulation of B0

s → J/ψφ decays. The
final state particles are required to lie in the acceptance of the LHCb detector
and to not be bent out of the detector by the dipole magnet.
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Figure 7.22: Projections of the three dimensional angular acceptance histogram obtained
from a generator level phase space simulation of B0

s → J/ψφ decays. The
final state particles are required to lie in the acceptance of the LHCb detector
and to not be bent out of the detector by the dipole magnet. In addition the
transverse momentum distributions of the final state tracks is weighted to
match the fully simulated sample.

much less significant for the kaons. In addition, a very small effect is visible for the

angle ϕh.

During the online and offline selection presented in Chapter 5, a range of require-

ments is placed on the momenta and transverse momenta. Both of these types of

criteria are expected to alter the angular acceptance. They are studied separately by

weighting the distributions of the generator level simulation to match the respective

distribution in the fully simulated sample. Figure 7.22 shows the angular accep-

tance when applying the weighting in transverse momentum on top of the LHCb

acceptance requirements discussed previously. Comparing these acceptances to the

ones in Figure 7.21, an opposite effect is visible. While the acceptance requirements

especially reject particles with too high rapidity, the selection strategy is typically

based on tracks with high transverse momentum, which explains the observed

reversed impact on the angular acceptance. Weighting the momentum distributions
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Figure 7.23: Projections of the three dimensional angular acceptance histogram obtained
from a generator level simulation of B0

s → J/ψφ decays. The final state
particles are required to lie in the acceptance of the LHCb detector and
to not be bent out of the detector by the dipole magnet. In addition the
momentum distributions of the final state tracks is weighted to match the
fully simulated sample.

instead of the transverse momentum distributions yields the acceptances shown in

Figure 7.23. This weighting has a similar effect as the weighting in the transverse

momentum.

These different effects on the angular acceptance overlap and give in the end the

shape that is observed in the fully simulated B0
s → J/ψφ sample, see Figure 7.18.

7.3.2 Strategy to determine the acceptance

Normalization weights

In principle, the three dimensional acceptance histogram obtained in the previous

section could be directly used for embedding the angular acceptance in the final

time-dependent angular PDF. However, there is another way that has a range of

benefits with respect to the usage of acceptance histograms. To understand this

second strategy, it is useful to write down the logarithm of the likelihood function

L that is later minimized to determine the physics parameters. Showing only the

relevant parts and including the angular acceptance ε(Ω) it is given by:

logL(λ) ≈
�

i

log [PDF(ti,Ωi, qi|λ)]

≈
�

i

log

� �10
k=1 Ak hk,qi(t|λ) fk(Ω) ε(Ω)�

t

�
Ω
Ak hk,qi(t|λ) fk(Ω) ε(Ω) dΩ dt

�

=
�

i

log

� �10
k=1 Ak hk,qi(t|λ) fk(Ω)�

t

�
Ω
Ak hk,qi(t|λ) fk(Ω) ε(Ω) dΩ dt

�
+

�

i

ε(Ω), (7.33)
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which is a sum over all the decay candidates i and depends on the physics parameters

λ. The last term does not depend on these parameters. It is therefore irrelevant

for the shape of the likelihood function and can be neglected. This means that

the angular acceptance has only to be taken into account in the normalization

of the PDF. Furthermore, the objects ωk =
�
Ω
fk(Ω)ε(Ω) dΩ are independent of

the physics parameters and the properties of the candidate and have therefore to

be calculated only once. Since these normalization weights ωk are the only place

where the angular acceptance enters in the maximum likelihood fit, they will be

determined in the following and used as a parametrization.

The absolute scale of the efficiency is of no interest, and by using Equation (7.31)

the normalization weights can be written as:

ωk =

�
fk(Ω)ε(Ω) dΩ

=

�
fk(Ω)

N obs(Ω|t, q)
N exp(Ω|t, q) dΩ. (7.34)

The integration over Ω can be replaced by a Monte Carlo summation integral using

fully simulated events:

ωk =
1

Ñobs

�

e∈obs
fk(Ωe)

N obs(Ωe|te, qe)
N exp(Ωe|te, qe)

�
dΩ

N obs(Ωe|te, qe)

=

�
dΩ

Ñobs

�

e∈obs

fk(Ωe)

N exp(Ωe|te, qe)
. (7.35)

This is a sum over the simulated decays that are ”observed” after all selection

steps. Ñobs is the total number of these ”observed” simulated decays. In words, the

normalization weights are determined by iterating over the simulated B0
s → J/ψφ

sample and summing the ratio of the respective angular function and the total

underlying PDF evaluated for the current candidate. The factor in front of this

sum does not depend on k and represents an arbitrary normalization. Typically,

the normalization weights are scaled uniformly such that ω1 = 1.

There are two main advantages of using these normalization weights instead of

any analytic description of the angular acceptance based on the three dimensional

histogram. First, the normalization weights do not require any specific model for

the acceptance and are therefore not subject to any systematic uncertainty arising

from the choice of such a model. Furthermore, they do not require a vanishing

decay-width splitting ΔΓs, and also other simulated samples can be added in order

to decrease the statistical uncertainty.
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Table 7.5: Normalization weights representing the uncorrected angular acceptance for
B0

s → J/ψφ decays.

2015 2016
Unbiased Biased Unbiased Biased

ω1 1± 0 1± 0 1± 0 1± 0
ω2 1.0270± 0.0019 1.0291± 0.0035 1.02497± 0.00065 1.0208± 0.0014
ω3 1.0270± 0.0018 1.0283± 0.0034 1.02469± 0.00064 1.0208± 0.0014
ω4 −0.0020± 0.0015 −0.0095± 0.0029 −0.00063± 0.00052 0.0024± 0.0012
ω5 0.00017± 0.00087 0.0039± 0.0017 0.00099± 0.00031 0.00321± 0.00067
ω6 0.00139± 0.00087 0.0020± 0.0017 0.00012± 0.00031 −0.00018± 0.00067
ω7 1.0082± 0.0013 1.0137± 0.0024 1.00624± 0.00044 1.0113± 0.0010
ω8 −0.0007± 0.0011 −0.0033± 0.0022 0.00032± 0.00040 −0.00003± 0.00087
ω9 0.0007± 0.0011 −0.0013± 0.0022 0.00024± 0.00041 −0.00003± 0.00088
ω10 −0.0001± 0.0024 −0.0052± 0.0045 −0.00104± 0.00084 −0.0022± 0.0018

As the decay-time acceptance, the angular acceptance is determined separately

for the two years of data taking and the two trigger categories. Table 7.5 shows the

normalization weights obtained from the available samples of simulated B0
s → J/ψφ

decays.

Correcting for differences between simulation and data

Since the angular acceptance is determined from simulation, it is important to

check that this simulation correctly describes the data. As shown in the previous

section, there is a direct relation between the angular acceptance and the kinematic

distributions of the final state particles. Figure 7.24 compares these distributions

for the data and the simulated sample. Clear differences are visible for the muons as

well as for the kaons, which could be caused by a wrong simulation of the detector

acceptance. Therefore, corrections have to applied to the simulated samples to

account for these differences. This is done in terms of a multidimensional weighting2

according to the differences observed in the final state kinematics, which corrects

the differences in the acceptance as a function of the final state kinematics and

therefore also the angular acceptance.

However, besides a wrongly simulated angular acceptance, there are other possible

contributions to the differences seen in these distributions. The most obvious is a

difference in the momentum distribution of the initial B0
s mesons. Given a correctly

described acceptance, the kinematic distributions would nevertheless differ from

data if the B0
s mesons have a wrong three dimensional momentum distribution

2Throughout this thesis, the boosted weighting technique, see Section 4.2, is employed when not
stated otherwise.
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Figure 7.24: Distributions of kinematic variables of the muons and kaons in the background-
subtracted B0

s → J/ψφ data and simulation samples. The 2016 Unbiased

trigger category is shown.
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Figure 7.25: Distributions of the three dimensional momentum of B0
s mesons and the

invariant mass of the two kaons for the background-subtracted B0
s → J/ψφ

data and simulation samples. The bottom row shows the distributions after a

weighting of the simulated sample in the variables pB
0
s , p

B0
s

T and m(K−,K+).
The 2016 Unbiased trigger category is shown.

in simulation. An additional effect of second order is a possible difference in the

simulated two kaon invariant mass, which can also cause differences in the kinematic

variables of the two kaons. The top row of Figure 7.25 compares the respective

distributions in data and simulation. The differences are corrected by weighting

the simulated sample to match data in the momentum of the B0
s meson, pB

0
s , its

transverse momentum, p
B0

s
T , and the invariant mass of the two kaons, m(K−, K+).

The result can be seen in the bottom row of Figure 7.25. All distributions agree.
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Figure 7.26: Distributions of kinematic variables of the muons and kaons in the background-
subtracted B0

s → J/ψφ data and simulation samples. A weighting of the

simulated sample in the variables pB
0
s , p

B0
s

T and m(K−,K+) is applied. The
2016 Unbiased trigger category is shown.

With this correction applied, the final state kinematic distributions, shown in

Figure 7.26, agree significantly better. However, there are still small differences

visible in the distributions of the momentum and transverse momentum of the

kaons. A further effect that can cause these differences is a wrongly modeled

angular distribution in the simulation at generator level. Although the samples

are generated with physics parameters close to the ones observed in data, there

are some second order differences. The most significant one is the absence of the

S-wave, i.e. non resonant K+K−, component in the simulated samples. To take

into account these differences, the simulated sample is weighted to be effectively

a sample that is generated with the physics parameters observed in data. This is

achieved by giving every simulated decay candidate e a weight ωe according to:

ωe =
PDF(te,Ωe, qe|λobs)

PDF(te,Ωe, qe|λgen)
, (7.36)

where λgen are the physics parameters with which the simulation was generated

and λobs the respective ones determined from the maximum likelihood fit to data.

PDF(t,Ω, q|λ) is the probability density function at generator level, i.e. without any

acceptance and resolution effects. Since these weights depend on the parameters

determined in the maximum likelihood fit to data, which depend on the angular

normalization weights determined using these weights, the simultaneous determina-

tion of the physics parameters from data and of the correct angular normalization

weights is done iteratively. Figure 7.27 illustrates this procedure. After the simu-
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Simulated sample DataSample
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and m(K+, K−)
weighting

simulated sample
Corrected

Fit to data
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Normalization
weights

Physics
parameters

Final state
weighting

Figure 7.27: Schematic illustration of the iterative procedure used to correct the angular
acceptance obtained from simulated B0

s → J/ψφ samples.

lated sample is corrected for the differences in the B0
s meson kinematics and the

m(K+K−) distribution, a set of normalization weights is determined. These weights

are used to represent the angular acceptance in a full time-dependent angular fit to

the data sample. The obtained physics parameters allow then a weighting of the

simulated sample according to Equation (7.36). Finally, the corrected simulated

sample is then weighted to match data in some final state kinematic distributions. A

new set of normalization weights is calculated from this weighted simulated sample.

This procedure is repeated until the extracted normalization weights do not change

anymore. While the weighting of the simulated sample is always done separately

for the two years of data taking and trigger categories, the fit to data is performed

simultaneously to all samples.

Motivated by the differences between data and simulation observed in Figure 7.26,

the weighting of the final state kinematics during the iterative procedure was chosen

to cover the four dimensional momentum and transverse momentum distribution of

the two kaons. Figure 7.28 shows the kinematic distributions of the two kaons for

data and simulation without and with the weights obtained in the last iteration of

the correction procedure. A good agreement is achieved. The angular normalization

weights for the 2016-Unbiased sample, obtained at each step of the correction

procedure, are shown in Table 7.6. After five iterations the convergence is achieved.

As the decay-time acceptance, the angular acceptance is determined separately for

the two years of data taking and the two trigger categories. Table 7.7 shows the
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Figure 7.28: Distributions of kinematic variables of the kaons in the background-subtracted
B0

s → J/ψφ data and simulation samples. In addition to the weighting of

the simulated sample in the variables pB
0
s , p

B0
s

T and m(K−,K+), the weights
of the last iterative weighting step are applied. The 2016 Unbiased trigger
category is shown.

Table 7.6: Normalization weights representing the angular acceptance for B0
s → J/ψφ

decays at different steps of the correction procedure. The numbers for the 2016
Unbiased category are shown.

Step ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Uncorrected 1.0 1.02497 1.02469 −0.00063 0.00099 0.00012 1.00624 0.00032 0.00024 −0.00104
B0

s and m(K−K+) 1.0 1.02614 1.02582 −0.00084 0.00078 0.00023 1.00648 0.00045 0.00016 −0.00074
Iteration 1 1.0 1.03660 1.03632 −0.00080 0.00035 0.00025 1.00941 0.00008 0.00010 −0.00384
Iteration 2 1.0 1.03754 1.03729 −0.00078 0.00030 0.00023 1.00999 0.00004 0.00011 −0.00355
Iteration 3 1.0 1.03785 1.03762 −0.00079 0.00027 0.00023 1.01021 0.00005 0.00011 −0.00329
Iteration 4 1.0 1.03787 1.03765 −0.00079 0.00026 0.00023 1.01022 0.00004 0.00010 −0.00362
Iteration 5 1.0 1.03788 1.03765 −0.00079 0.00026 0.00023 1.01022 0.00004 0.00010 −0.00362
Iteration 6 1.0 1.03788 1.03765 −0.00079 0.00026 0.00023 1.01022 0.00004 0.00010 −0.00362

normalization weights obtained from the available samples of simulated B0
s → J/ψφ

decays after the iterative correction procedure.
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Chapter 7 Acceptance and resolution effects

Table 7.7: Normalization weights representing the angular acceptance for B0
s → J/ψφ

decays.

2015 2016
Unbiased Biased Unbiased Biased

ω1 1 ± 0 1± 0 1 ± 0 1± 0
ω2 1.0434± 0.0020 1.0463± 0.0039 1.03788± 0.00070 1.0336± 0.0015
ω3 1.0442± 0.0020 1.0445± 0.0038 1.03765± 0.00069 1.0336± 0.0015
ω4 −0.0026± 0.0016 −0.0105± 0.0032 −0.00079± 0.00054 0.0028± 0.0013
ω5 −0.00142± 0.00094 0.0037± 0.0018 0.00026± 0.00033 0.00298± 0.00074
ω6 0.00139± 0.00093 0.0023± 0.0018 0.00023± 0.00033 −0.00020± 0.00072
ω7 1.0156± 0.0014 1.0262± 0.0027 1.01022± 0.00047 1.0196± 0.0011
ω8 −0.0014± 0.0012 −0.0045± 0.0024 0.00004± 0.00042 0.00019± 0.00094
ω9 0.0006± 0.0012 −0.0007± 0.0024 0.00010± 0.00043 0.00019± 0.00094
ω10 −0.0171± 0.0026 −0.0348± 0.0050 −0.00362± 0.00089 0.0057± 0.0019

7.3.3 Embedding in the probability density function

As described in Section 7.3.2, the normalization weights model the effect of the

angular acceptance on the maximum likelihood fit in its entirety. Therefore, the

PDF, Equation (7.29), has to be changed only slightly:

PDFy,c(t,Ω|qos, qss, ηos, ηss, δt) = (7.37)

1

Nηos,ηss,δt
qos,qss,y,c

10�

k=1

Ak fk(Ω) εy,c(t)

{[(1 + qos(1− 2ωos(ηos)))(1 + qss(1− 2ωss(ηss))) · hk,+1(t)

+ (1− qos(1− 2ω̄os(ηos)))(1− qss(1− 2ω̄ss(ηss))) · hk,−1(t)]⊗G(t|σeff (δt))},

with the normalization:

Nηos,ηss,δt
qos,qss,y,c = (7.38)

15 ps�

t=0.3 ps

10�

k=1

Ak ω
y,c
k εy,c(t)

{[(1 + qos(1− 2ωos(ηos)))(1 + qss(1− 2ωss(ηss))) · hk,+1(t)

+ (1− qos(1− 2ω̄os(ηos)))(1− qss(1− 2ω̄ss(ηss))) · hk,−1(t)]⊗G(t|σeff (δt))} dt,

where ωy,c
k is the normalization weight for the respective angular function and data

category.
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8 The fit procedure

8.1 Including the S-wave component

As described in Section 1.5.2, the presence of the scalar component in the two kaon

system leads to the necessity of an additional amplitude and further interference

terms in the time- and angular-dependent decay rates of B0
s and B0

s mesons, see

Equations (1.53) and (1.54). However, this S-wave component furthermore allows

to resolve a twofold ambiguity in these equations. The transformation

(φs,ΔΓs, δ�, δ⊥, δS, δ0) → (π − φs,−ΔΓs,−δ�, π − δ⊥,−δS,−δ0) (8.1)

does not change the measurable decay rate and would therefore lead to two indistin-

guishable results for the physics parameters extracted in the maximum likelihood fit.

This is not longer the case if the different two kaon mass (mKK) dependencies of

the S-wave and P-wave amplitudes are taken into account. The four amplitudes are

given by:

A0(mKK) = A0 ρ(mKK) A�(mKK) = A� ρ(mKK)

A⊥(mKK) = A⊥ ρ(mKK) AS(mKK) = AS σ(mKK), (8.2)

where the line shapes ρ and σ parametrize the mass dependence of the P-wave and

S-wave component, respectively.

Instead of including these functions in the final fit, which would require to also

model the mKK distribution, the time-dependent angular analysis is simultaneously

performed in the six bins of mKK that are defined in Section 5.3. For a given mass

of the two kaon system, the amplitudes appear in the differential decay rate as

Ai(mKK)A
∗
j(mKK), Ai(mKK)A

∗
S(mKK) and AS(mKK)A

∗
S(mKK) with i, j ∈ [0, �,⊥].
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Averaging these amplitude combinations over a given mKK range [m1, m2] yields

then the following contributions:

� m2

m1

Ai A
∗
j ρ(mKK) ρ

∗(mKK) dmKK = |AiAj|
� m2

m1

AS A
∗
S σ(mKK) σ

∗(mKK) dmKK = |AS|2
� m2

m1

Ai A
∗
S ρ(mKK) σ

∗(mKK) dmKK = |AiAS|CSP e−iθSP . (8.3)

Here, the functions ρ and σ are chosen to be normalized in the respective mK−K+

region, and the factor CSP e
−iθSP accounts for the interference between S-wave and

P-wave. While the phase θSP gets absorbed by the strong phase δS, the real factor

CSP has to be calculated in order to correctly determine the fraction of the S-wave

component. For this calculation, the P-wave is described by a Breit-Wigner function

with the mean and width of the φ meson [3], and the S-wave is assumed to be a f0

resonance, which is described by a Flatté distribution [88]. Both distributions are

modified according to Ref. [89]. Alternative descriptions of the S-wave component

are considered, and a systematic uncertainty is assigned in Chapter 10.

Given the line shapes of the two components, the CSP factors can be calculated

according to:

CSP e
−iθSP =

� m2

m1
ρ(mKK) σ

∗(mKK) dmKK�� m2

m1
|ρ(mKK)|2 dmKK

� m2

m1
|σ(mKK)|2 dmKK

. (8.4)

Figure 5.10 shows the mKK distribution and the six bins for which separate such

correction factors have to be calculated. Since the mass of the two kaon system can

only be reconstructed with finite precision, decay candidates can migrate between

the bins. This can be taken into account in terms of efficiencies εj(mKK), for every

mKK bin j. Figure 8.1 shows these efficiencies as a function of the true value of

mKK . With this, Equation (8.4) gets:

Cj
SP e

−iθjSP =

�
ρ(mKK) σ

∗(mKK) ε
j(mKK) dmKK��

|ρ(mKK)|2 εj(mKK) dmKK

�
|σ(mKK)|2 εj(mKK) dmKK

. (8.5)

Table 8.1 shows the CSP factors for the six mKK bins. Since no differences between

the two years of data taking and the two trigger categories are observed, the same

factors are used in all categories. The integration of these factors into the maximum

likelihood fit is described in the next section where the final PDF is shown.
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LHCb simulation
Internal

Figure 8.1: Efficiency of the division into the six bins of the reconstructed two kaon
mass as a function of the true mKK value. The values are obtained from a
simulated B0

s → J/ψφ sample. Figure taken from Ref. [65].

Table 8.1: CSP factors in the six mKK bins. They account for the interference between
S-wave and P-wave line shapes. Numbers are taken from Ref. [63].

mKK bin
1 2 3 4 5 6

CSP 0.8463 0.8756 0.8478 0.8833 0.9415 0.9756

8.2 The complete probability density function

A simultaneous fit to the four data categories created by the splitting in the two

trigger categories, c ∈[Unbiased, Biased], and in the two years of data taking,

y ∈ [2015, 2016], is preformed. This is necessary, because each of these sample is

associated to a different set of decay-time and angular acceptances. In addition,

each sample is split in six bins of mKK , j ∈ [1,2,3,4,5,6], in order to resolve the

twofold ambiguity of the differential decay rate. For each of these samples, a time-

and angular-dependent PDF is defined that depends on five additional conditional

observables to account for the tagging (qos, qss, ηos, ηss) and estimated decay-time

resolution (δt):

PDFj
y,c(t,Ω|qos, qss, ηos, ηss, δt) = (8.6)

1

Nηos,ηss,δt,j
qos,qss,y,c

10�

k=1

Ãj
k fk(Ω) εy,c(t)

{[(1 + qos(1− 2ωos(ηos)))(1 + qss(1− 2ωss(ηss))) · hk,+1(t)

+ (1− qos(1− 2ω̄os(ηos)))(1− qss(1− 2ω̄ss(ηss))) · hk,−1(t)]⊗G(t|σeff (δt))}.
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The normalization factor Nηos,ηss,δt,j
qos,qss,y,c is given by:

Nηos,ηss,δt,j
qos,qss,y,c = (8.7)

15 ps�

t=0.3 ps

10�

k=1

Ãj
k εy,c(t)ω

k
y,c

{[(1 + qos(1− 2ωos(ηos)))(1 + qss(1− 2ωss(ηss))) · hk,+1(t)

+ (1− qos(1− 2ω̄os(ηos)))(1− qss(1− 2ω̄ss(ηss))) · hk,−1(t)]⊗G(t|σeff (δt))} dt.

The amplitudes Ãj
k are given by Ak for k ≤ 7 and by Cj

SP Ak for the S-wave interfer-

ence terms, k ∈ [8, 9, 10]. The amplitudes Ak and the angular and time-dependent

functions fk and hk,±1 are defined in Tables 1.2 and 1.3. The absolute amplitudes

squared A2
⊥,0,�,S are parametrized by a S-wave fraction, F j

S = A2
S, for every bin in

m(K−K+) and values for |A⊥|2 and |A0|2 representing the respective fraction of

the resonant component. The parallel component is fixed by A2
⊥ + A2

0 + A2
� = 1.

As discussed in Chapter 7, the decay-time acceptance and resolution, and the

angular acceptance are taken into account by the efficiency functions εy,c(t), the

calibrated Gaussian decay-time resolution G(t|σeff (δt)), and the angular acceptance

normalization weights ωk
y,c. The raw mistag probabilities ηos/ss are transformed by

the calibration functions
( )

ω os/ss. All physics parameters besides the S-wave fractions

and phases are shared between all years of data taking, trigger categories and mKK

bins. In case of the S-wave related parameters, different values are allowed for the

different mKK bins.

During the simultaneous fit, the tagging calibration parameters are constrained,

see Section 4.3, to the values obtained in Chapter 6. Again, these parameters are

shared between all data categories.

8.3 Validation of the fit procedure

In order to validate the implementation and general behavior of the PDF and the

maximum likelihood fit, toy studies are performed. A sample of B0
s → J/ψφ decays

is generated, the maximum likelihood fit is performed, and the results are compared

to the values used to generate the decays. The aim is to include all acceptance,

resolution and tagging effects as they are present in real data. For every trigger

category, year of data taking and mKK bin, separate samples of B0
s → J/ψφ decays

are generated with the parameters measured in this analysis, see next chapter.

The number of generated decays corresponds to the effective sample size observed
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8.3 Validation of the fit procedure

in data for the respective category. For the generation of every single decay the

following steps are performed:

1. A random initial flavour of the B0
s/B

0
s meson is generated.

2. Given this initial flavour, the respective PDF without any acceptance and

resolution effect is used to randomly generate a value for the decay time and

the three angles in the helicity basis.

3. A random value for the estimated decay-time uncertainty δt is generated from

the distribution observed in background-subtracted data, and a reconstructed

decay time is generated by smearing the generated true value with a Gaussian

of the width σeff(δt). The same calibration function σeff(δt) as in data is

used.

4. The decay is randomly rejected according to its reconstructed decay time and

the respective decay-time acceptance function. This includes the lower and

upper decay-time cuts at 0.3 ps and 15 ps, respectively.

5. Similarly, the decay is randomly rejected according to its generated helicity

angles and an angular acceptance function that is obtained by fitting a

multidimensional polynomial to the acceptance histogram obtained from the

fully corrected simulated sample, see Section 7.3.2.

6. The conditional tagging variables are randomly generated using the tagging

efficiencies and mistag distributions observed in data.

7. A set of tagging calibration parameters is generated from the measured values

and their correlations and uncertainties. With these parameters, the generated

initial B0
s/B

0
s flavour and the generated mistag probabilities, the assigned

tagging decisions are randomly changed.

After the generation of this toy sample, a maximum likelihood fit is performed

based on the exact same PDFs that are also used in the fit to real data. The only

difference is that the angular acceptance normalization weights are analytically

calculated for the parametrized acceptance shape. This procedure is repeated 5000

times. Figures 8.2 and 8.3 show the distribution of the observed deviations from the

generated value in units of the statistical uncertainty for every parameter. Positive

values mean that the result from the fit is larger than the input value. While most

of the main physics parameters show an unbiased behavior, especially the S-wave

related parameters feature strongly asymmetric pull distributions. This behavior is
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Figure 8.2: Pull distributions of the main physics parameters observed in the toy studies.
The mean and the root mean square are given. For illustration, a Gaussian
function is fitted to the distribution.

studied later and systematic uncertainties are assigned on all parameters based on

the observed biases.

Impact of the effective resolution

As describe in Section 7.1.2, a triple Gaussian resolution function is transformed

into a single Gaussian with an effective width. While this simplifies the fitting

procedure and the estimation of systematic uncertainties, it might as well bias the

extracted physics parameters. A dedicated toy study is performed to access possible

systematic uncertainties arising from this strategy. In analogy to the procedure

described in the previous section, toy data sets are generated. The only difference

is that instead of a single Gaussian, a triple Gaussian resolution function with the

same effective dilution is chose. The fractions and width ratios between the three
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Figure 8.3: Pull distributions of the S-wave parameters observed in the toy studies. The
mean and the root mean square are given. For illustration, a Gaussian function
is fitted to the distribution.
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Figure 8.4: Pull distributions of the main physics parameters observed in the toy studies
for the single Gaussian resolution. The difference between the fit result
obtained with single Gaussian and triple Gaussian resolution model are shown
in units of the statistical uncertainty. The mean and the root mean square
are given.

Gaussian contributions are fixed to values that are observed in the fit to the prompt

data sample during the decay-time resolution determination.

These generated samples are once fitted with PDFs that contain the full triple

Gaussian resolution and once with the PDFs that contain only the single Gaussian

effective resolution. Figure 8.4 shows the distribution of the observed differences

between these two fits for every parameter in units of the statistical uncertainty

of the fit with the single Gaussian resolution. Positive values mean that the result

from the fit with triple Gaussian resolution is larger. In Appendix F, the respective

distributions for the S-wave related parameters are shown. The only parameter with

a sizable bias is the decay-width difference ΔΓs
d. This is caused by the lower decay

time cut (t = 0.3 ps) being relatively close to the physical boundary at t = 0ps.
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8.3 Validation of the fit procedure

Neglecting the long tails in the decay-time resolution alters the expected decay-time

distribution at very low decay times. However, the bias is small in comparison to the

statistical uncertainty, which justifies the usage of the single Gaussian resolution.

Besides a possible shift in the central value of the fit results, also the estimated

uncertainty could be biased by the choice of a single Gaussian resolution. Using

the same toy study, no significant differences in the estimated uncertainties are

observed.
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9 Results of the fit

In this section, the results of the maximum likelihood fit described in Chapter 8 are

presented. Table 9.1 shows the estimated values for all physics parameters together

with their statistical uncertainties. The correlations between these parameters

are given in Appendix G.2. If appropriate, asymmetric uncertainties are quoted.

These asymmetric uncertainties partially account for asymmetric shapes of the

likelihood projections along the respective parameters. Especially the strong phases

are affected by this. The complete picture is visible when looking at Figures G.1

and G.2 in Appendix G.1. There, the likelihood scans for all parameters are shown.

Table 9.1: Fit results for the freely floating parameters of the maximum likelihood fit to
the decay-time and angular distributions.

Parameter Fit result
φs [ rad] −0.083±0.041
|λ| 1.012±0.016
ΔΓs [ ps

−1] 0.0773±0.0076
0.0077

Δms [ ps
−1] 17.702±0.057

0.059

ΔΓs
d [ ps

−1] −0.0040±0.0023
|A⊥|2 0.2455±0.0040
|A0|2 0.5189±0.0029
δ� − δ0 [ rad] 3.060±0.084

0.073

δ⊥ − δ0 [ rad] 2.64±0.13
FS1 0.491±0.043
FS2 0.0406±0.0081

0.0075

FS3 0.0044±0.0029
0.0018

FS4 0.0069±0.0061
0.0046

FS5 0.073±0.013
FS6 0.151±0.019

0.018

δS1 − δ⊥ [ rad] 2.21±0.17
0.20

δS2 − δ⊥ [ rad] 1.55±0.29
δS3 − δ⊥ [ rad] 1.07±0.49

0.34

δS4 − δ⊥ [ rad] −0.28±0.16
0.27

δS5 − δ⊥ [ rad] −0.536±0.090
0.103

δS6 − δ⊥ [ rad] −1.10±0.13
0.16
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Figure 9.1: Projections of the decay-time and angular fit. Besides the background-
subtracted data (black) and the overall fit projections (blue), also the CP-even
(red), CP-odd (green) and the S-wave (purple) components are shown.

During a likelihood scan, the maximum likelihood is calculated as a function of the

parameter of interest. For every value of this parameter, the likelihood is maximized

by varying all other parameters. The main physics parameters of interest, namely

the CP and lifetime observables, have a nearly Gaussian shape, which justifies the

interpretation of the quoted uncertainties as the 68% confidence interval. In contrast,

many of the S-wave related amplitudes and phases show strongly asymmetric shapes,

which corresponds to the asymmetric pull distributions observed in the toy study

presented in Section 8.3.

For illustration, Figure 9.1 shows the projection of the final fit together with the

background-subtracted data distribution for the decay time and the helicity angles.

In these plots, neither the data nor the fit projections are split according to the

estimated B0
s flavour. An oscillation as in Figure 1.4 would be anyhow not visible

because of the small value of φs and the dilution due to the mistag probability, the

decay time resolution and the presence of different CP components in the final state.

A better way to visualize an oscillating difference between the decay rates of B0
s
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Figure 9.2: Asymmetry between B0
s and B0

s tagged decays as a function of the decay
time. The full decay-time range is projected to one oscillation period. The
decay candidates are weighted to enhance the visible asymmetry. The fit
projection is shown in blue, and the weighted data is shown in black.

and B0
s mesons, is to project the asymmetry over the full decay-time range to a

single oscillation period, see Figure 9.2. In Appendix G.4, a detailed description of

the procedure to create this plot is given.

For completeness, in Appendix G.3, the above presented results are compared to

the official LHCb publication presented in Ref. [63].

Polarization-dependent CP violation

As described in Section 1.5.7, the data can also be fitted with a model that allows

polarization-dependent CP violation. The according PDF is obtained from the

nominal one developed so far by replacing the time-dependent terms hk(t) in

Equation (3.1) with the ones defined in Appendix A. The maximum likelihood fit is

repeated, and Wilks’ theorem [90] is employed to test the hypothesis of polarization-

dependent CP violation. Given that there is no polarity dependent CP violation,

the difference in logarithmic likelihood of the two fit results should be distributed

according to a χ2 distribution, with the number of degrees of freedom given by the

difference of the number of floating parameters of the two models. The observed

difference in likelihood is 6.1, which corresponds, with 6 additional parameters in

the case of the polarization-dependent model, to a p-value of 0.41. This means that

the data is perfectly consistent with the hypothesis of no polarization-dependent

CP violation.
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Chapter 9 Results of the fit

9.1 Consistency checks

A common way to ensure that all effects that could bias the extracted parameters

are correctly taken into account, is to repeat the fit in subsets of the data set.

Assuming an appropriate description of all detector effects and a working background

subtraction, the results obtained from these subsets should be consistent. The data

set is split according to a wide range of criteria. For the following splittings only

the final fit is repeated:

• A splitting according to the year of data taking: Table 9.2

• A splitting in the two trigger categories Unbiased and Biased: Table 9.3

• A splitting according to which tagging algorithm provides a decision (SS and

OS, only OS, only SS): Table 9.4

• A splitting according to the polarity of the dipole magnet: Table 9.5

• A splitting according to the number of primary vertices in the respective

event: Table 9.6

For criteria that are expected to heavily affect the decay-time or angular acceptance,

a larger part of the analysis chain is repeated. For the following splittings, a separate

background subtraction and acceptance determination is performed:

• A splitting according to the transverse momentum of the B0
s candidate:

Table 9.8

• A splitting according to the pseudo rapidity of the B0
s candidate: Table 9.7

• A splitting according to the estimated decay-time uncertainty of the B0
s

candidate: Table 9.9

The respective tables show the main parameters obtained in each of the categories,

and a p-value for their consistency is quoted. When interpreting these p-values,

two aspects have to be taken into account. They are calculated assuming Gaussian

uncertainties and can therefore underestimate the consistency for parameters that

show large asymmetries in their likelihood profiles, see Appendix G.1. Especially for

the relatively small data sample collected in 2015 and the parameter δ�−δ0 this is the

case. Therefore, the small p-value observed in Table 9.2 is clearly underestimated.

Furthermore, the uncertainties of the parameters do not include any systematic

uncertainty. While for most parameters and sources of systematic uncertainties these
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9.1 Consistency checks

Table 9.2: Main parameters of the final fit when splitting in the years of data taking. A
p-value for consistency is given for each of them.

Parameter 2015 2016 p-value
φs [rad] −0.06± 0.11 −0.211± 0.044 0.202
|A0|2 0.5226± 0.0083 0.5185± 0.0031 0.643
|A⊥|2 0.242± 0.012 0.2449± 0.0042 0.842
δ� − δ0 [rad] 3.53± 0.12 3.090± 0.074 0.002
δ⊥ − δ0 [rad] 2.99± 0.43 2.63± 0.13 0.423
|λ| 1.003± 0.055 1.015± 0.016 0.829
ΔΓs [ps

−1] 0.147± 0.023 0.1663± 0.0081 0.431
ΔΓs

d [ps
−1] −0.0003± 0.0069 −0.0045± 0.0025 0.568

Δms [ps
−1] 17.57± 0.13 17.715± 0.057 0.308

Table 9.3: Main parameters of the final fit when splitting in the two trigger categories. A
p-value for consistency is given for each of them.

Parameter Unbiased Biased p-value
φs [rad] −0.176± 0.046 −0.200± 0.089 0.812
|A0|2 0.5181± 0.0032 0.5223± 0.0066 0.566
|A⊥|2 0.2464± 0.0045 0.2424± 0.0088 0.686
δ� − δ0 [rad] 3.042± 0.096 3.12± 0.12 0.612
δ⊥ − δ0 [rad] 2.55± 0.15 2.87± 0.26 0.280
|λ| 1.009± 0.016 1.014± 0.048 0.915
ΔΓs [ps

−1] 0.1643± 0.0086 0.158± 0.017 0.756
ΔΓs

d [ps
−1] −0.0039± 0.0026 −0.0038± 0.0051 0.980

Δms [ps
−1] 17.649± 0.070 17.79± 0.10 0.276

are strongly correlated between the subsamples and would therefore not improve

the consistency, the uncertainty related to the finite size of the samples used in the

decay-time acceptance determination has to be treated differently. In case such

acceptances are determined separately for each category, this systematic uncertainty

is completely uncorrelated. In Section 10.2.2 the systematic uncertainty is evaluated

for the overall samples and turns out to be halve the statistical uncertainty for the

decay-width difference ΔΓs
d. Assuming a similar uncertainty in each of the bins of

the transverse momentum, see Table 9.8, the respective p-value increases to roughly

4%.

In total, no significant dependencies are observed. This gives further confidence in

the extracted nominal fit result and in the correct treatment of detector acceptance

and resolution effects.
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Table 9.4: Main parameters of the final fit when splitting according to which tagging
algorithm provides a decision. A p-value for consistency is given for each of
them.

Parameter OS and SS Only OS Only SS p-value
φs [rad] −0.174± 0.057 −0.19± 0.11 −0.226± 0.096 0.898
|A0|2 0.5207± 0.0059 0.5028± 0.0087 0.5202± 0.0045 0.171
|A⊥|2 0.2465± 0.0086 0.261± 0.012 0.2414± 0.0063 0.330
δ� − δ0 [rad] 2.89± 0.11 3.18± 0.19 3.05± 0.11 0.356
δ⊥ − δ0 [rad] 2.38± 0.17 2.85± 0.26 2.97± 0.19 0.056
|λ| 0.999± 0.023 0.934± 0.049 1.076± 0.031 0.031
ΔΓs [ps

−1] 0.169± 0.015 0.147± 0.022 0.156± 0.012 0.690
ΔΓs

d [ps
−1] −0.0033± 0.0047 −0.0011± 0.0070 −0.0060± 0.0036 0.792

Δms [ps
−1] 17.669± 0.081 17.79± 0.11 17.74± 0.14 0.661

Table 9.5: Main parameters of the final fit when splitting according to the polarity of the
dipole magnet. A p-value for consistency is given for each of them.

Parameter Mag. up Mag. down p-value
φs [rad] −0.237± 0.056 −0.140± 0.060 0.238
|A0|2 0.5245± 0.0040 0.5132± 0.0042 0.053
|A⊥|2 0.2403± 0.0054 0.2505± 0.0059 0.208
δ� − δ0 [rad] 3.11± 0.12 3.02± 0.10 0.563
δ⊥ − δ0 [rad] 2.53± 0.17 2.64± 0.18 0.642
|λ| 1.028± 0.019 0.993± 0.024 0.257
ΔΓs [ps

−1] 0.174± 0.010 0.153± 0.011 0.168
ΔΓs

d [ps
−1] −0.0076± 0.0032 −0.0001± 0.0034 0.108

Δms [ps
−1] 17.605± 0.077 17.732± 0.080 0.248

Table 9.6: Main parameters of the final fit when splitting according to the number of
primary vertices. A p-value for consistency is given for each of them.

Parameter #PV = 1 #PV = 2 #PV > 2 p-value
φs [rad] −0.242± 0.057 −0.100± 0.071 −0.173± 0.096 0.299
|A0|2 0.5212± 0.0044 0.5154± 0.0048 0.5214± 0.0068 0.624
|A⊥|2 0.2462± 0.0060 0.2457± 0.0067 0.2429± 0.0093 0.957
δ� − δ0 [rad] 3.04± 0.10 3.10± 0.26 3.09± 0.13 0.952
δ⊥ − δ0 [rad] 2.41± 0.19 2.70± 0.21 2.95± 0.26 0.239
|λ| 1.016± 0.019 1.031± 0.027 0.977± 0.034 0.449
ΔΓs [ps

−1] 0.172± 0.011 0.156± 0.013 0.159± 0.018 0.639
ΔΓs

d [ps
−1] −0.0046± 0.0035 0.0022± 0.0039 −0.0126± 0.0053 0.073

Δms [ps
−1] 17.558± 0.079 17.798± 0.079 17.88± 0.13 0.035
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Table 9.7: Main parameters of the final fit when splitting according to the pseudo rapidity
of the B0

s candidate. A p-value for consistency is given for each of them.

Parameter η < 3.3 η ∈ [3.3, 3.9] η > 3.9 p-value
φs [rad] −0.170± 0.059 −0.135± 0.070 −0.317± 0.091 0.260
|A0|2 0.5133± 0.0046 0.5214± 0.0051 0.5290± 0.0056 0.091
|A⊥|2 0.2400± 0.0064 0.2466± 0.0070 0.2480± 0.0075 0.672
δ� − δ0 [rad] 3.11± 0.11 3.02± 0.12 3.13± 0.17 0.835
δ⊥ − δ0 [rad] 2.52± 0.17 2.61± 0.21 2.69± 0.27 0.843
|λ| 1.012± 0.020 1.026± 0.028 0.982± 0.026 0.500
ΔΓs [ps

−1] 0.171± 0.012 0.156± 0.013 0.165± 0.014 0.729
ΔΓs

d [ps
−1] −0.0048± 0.0037 −0.0006± 0.0041 −0.0058± 0.0042 0.644

Δms [ps
−1] 17.653± 0.070 17.734± 0.093 17.40± 0.12 0.086

Table 9.8: Main parameters of the final fit when splitting according to the transverse
momentum of the of the B0

s candidate. A p-value for consistency is given for
each of them.

Parameter pT < 4GeV/c pT ∈ [4, 7]GeV/c pT > 7GeV/c p-value
φs [rad] −0.16± 0.10 −0.205± 0.076 −0.157± 0.054 0.876
|A0|2 0.5278± 0.0057 0.5160± 0.0051 0.5143± 0.0045 0.147
|A⊥|2 0.2506± 0.0076 0.2490± 0.0071 0.2396± 0.0065 0.470
δ� − δ0 [rad] 3.12± 0.13 3.08± 0.12 2.909± 0.091 0.320
δ⊥ − δ0 [rad] 3.00± 0.26 2.49± 0.23 2.72± 0.16 0.340
|λ| 1.045± 0.045 0.988± 0.025 1.024± 0.023 0.432
ΔΓs [ps

−1] 0.169± 0.014 0.154± 0.014 0.163± 0.012 0.755
ΔΓs

d [ps
−1] 0.0061± 0.0044 −0.0108± 0.0041 −0.0010± 0.0037 0.018

Δms [ps
−1] 18.10± 0.19 17.67± 0.11 17.740± 0.064 0.133

Table 9.9: Main parameters of the final fit when splitting according to the estimated
decay-time uncertainty of the B0

s candidate. A p-value for consistency is given
for each of them.

Parameter δt < 4GeV/c δt ∈ [4, 7]GeV/c δt > 7GeV/c p-value
φs [rad] −0.084± 0.059 −0.211± 0.063 −0.312± 0.091 0.080
|A0|2 0.5167± 0.0056 0.5266± 0.0048 0.5157± 0.0050 0.218
|A⊥|2 0.2409± 0.0080 0.2428± 0.0065 0.2510± 0.0069 0.570
δ� − δ0 [rad] 2.876± 0.092 3.11± 0.10 3.15± 0.19 0.158
δ⊥ − δ0 [rad] 2.54± 0.19 2.46± 0.18 2.39± 0.25 0.878
|λ| 0.997± 0.024 0.997± 0.023 1.031± 0.019 0.417
ΔΓs [ps

−1] 0.176± 0.017 0.165± 0.013 0.146± 0.012 0.302
ΔΓs

d [ps
−1] −0.0079± 0.0053 −0.0065± 0.0040 −0.0003± 0.0035 0.359

Δms [ps
−1] 17.641± 0.083 17.686± 0.075 17.49± 0.12 0.353
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10 Systematic uncertainties

In this chapter, for each of the components of the analysis systematic studies are

presented. If necessary, systematic uncertainties are estimated. The exact numbers

assigned as uncertainties can be found in Tables 10.1 and 10.2 at the end of this

chapter.

10.1 Selection and background subtraction

This section shortly describes the systematic uncertainties assigned to take into

account possible biases arising from certain assumptions or choices during the

selection and background subtraction procedure.

Peaking backgrounds

As presented in Section 5.2, two peaking background components are considered.

Dedicated vetos are applied and the number of remaining misidentified decays is

estimated. While this number is negligible in the case of B0→ J/ψK∗0 decays, the

Λ0
b→ J/ψpK component has to be further suppressed by injecting simulated Λ0

b

decays with negative weights. The yield of these injected simulated candidates

is varied by ±1σ of the estimated Λ0
b→ J/ψpK yield in data, and the final fit is

repeated. Since no significant changes in the extracted parameters are observed, no

systematic uncertainty is assigned.

Mass shape

For the correct subtraction of the combinatorial background with the

sPlot technique, a correct description of the mass distribution observed for the

B0
s → J/ψφ candidates is needed, see Section 5.3. Two systematic studies are per-

formed to test the impact of a potentially wrong model. The first study tests the

intrinsic uncertainty of the mass shape parameters on the background subtraction

procedure. Before applying the sPlot technique, these parameters are randomly

varied according to their covariance matrix, and the background subtraction and the
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Figure 10.1: Mass distribution of the B0
s → J/ψφ candidates in two bins of the decay time.

On the left and the right only candidates with a decay time smaller or larger
than 1.2 ps are used, respectively. The overlaid fit projections corresponds to
fits where all parameters except the relative fractions are fixed to those of
the fit to the overall data set. Only candidates collected in 2016 and falling
in the Unbiased trigger category are shown.

final fit are repeated. No significant changes in the physics parameters are observed,

and therefore no systematic uncertainty is assigned. The second systematic study

is the usage of an alternative scaling function of the estimated per-event mass

uncertainty. Instead of a second order polynomial scaling function, a liner trans-

formation, σ = s1 δM , between the estimated and real resolution is employed. The

background subtraction and the final fit are repeated and the observed differences

in the physics parameters are assigned as systematic uncertainties, see Tables 10.1

and 10.2 at the end of this chapter.

Mass factorization

The suppression of the combinatorial background with the sPlot technique, see

Section 5.3, relies on the assumption of no correlation between the mass of the

background or signal candidates and the variables that are used in the final fit. The

correlation between the signal mass shape and cos θµ is already taken into account

by the usage of the estimated mass uncertainty. To test for other correlations, the

data sample is split in two bins of the respective variable. Each sample is fit with

a mass model with all parameters except the yields fixed to the values obtained

by the nominal fit. Only for the decay time a small dependence of the slope of the

combinatorial background component is found. This is shown in Figure 10.1. To

estimate the bias due to this correlation, the mass fit is repeated in bins of the

decay time. Three, four and five equally populated bins are tested. For each of

these binning schemes, new weights for the background subtraction are calculated
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10.2 Acceptance and resolution effects

separately in every bin. The final fit to the whole sample with these new weights

is repeated. For every parameter, the maximal observed deviation is taken as

systematic uncertainty. These numbers are shown in Tables 10.1 and 10.2 at the

end of this chapter.

Multiple candidates

The chance to have two B0
s → J/ψφ decays within one event is extremely small.

However, in the data set of this analysis roughly 1.5% of the events contain more

than one candidate. In most cases these candidates share the same J/ψ candidate

but differ at least in one of the kaons. In principle these fake multiple candidates

are distributed like combinatorial background, but they can also peak below the

true B0
s mass if the wrongly chosen kaon is built from a clone track of the true

kaon track. These clone tracks share a large fraction of the detector hits with the

underlying true track and are therefore likely to be reconstructed with the same

momentum.

In order to estimate the effect of these sort of multiple candidates, two candidates

within one event are removed from the selection if it is likely that they are clones.

Candidates for which all final state tracks form a respective opening angle of less

than 5mrad fall in this category. The background removal with the sPlot technique,

the acceptance determination and the final fit is repeated. Any difference with

respect to the nominal result is assigned as systematic uncertainty for the respective

parameter. These numbers are shown in Tables 10.1 and 10.2 at the end of this

chapter.

10.2 Acceptance and resolution effects

10.2.1 Decay-time resolution

The calibration parameters of the estimated per-event decay-time uncertainty

δt, determined in Section 7.1.2, come with uncertainties reflecting the limited size

of the sample of prompt fake B0
s → J/ψφ candidates. The final fit is repeated

several times with varying these parameters according to their uncertainties and

correlations. No effect on the fit parameters is observed. The same is true when

using a quadratic instead of a linear calibration function.

However, there is a significantly more severe possible source of systematic un-

certainty that has to be considered. The strategy presented in Section 7.1.2 relies

on the portability of the calibration from the prompt sample to the sample of
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Figure 10.2: Calibration curves of the estimated per-event decay-time uncertainty

for the simulated prompt fake and the simulated signal B0
s → J/ψφ samples

(a). Mean parameter of the decay time resolution function as a function of
the estimated per-event decay-time uncertainty as it is observed in the
prompt fake B0

s → J/ψφ data sample (b).

true B0
s → J/ψφ decays. This assumption is studied on simulation. Figure 10.2a

shows the calibration obtained with the same strategy for simulated samples of

prompt fake and signal B0
s → J/ψφ decays. A clear difference is visible between the

calibration curves. The signal sample calibration clearly deviates from the linear

behavior observed in the prompt data and simulation sample. The ratio of the two

calibration curves in simulation is used to scale the effective resolutions measured

in the prompt fake B0
s → J/ψφ data. Then, a quadratic calibration function is fit

to these new values. The shifts in the parameters of the final fit when using this

new decay-time resolution calibration is assigned as systematic uncertainty.

In the nominal fit, the decay-time resolution is assumed to be centered around

zero. However, in the sample of fake prompt B0
s → J/ψφ candidates, a significant

bias is observed. Figure 10.2b shows the mean parameter of the resolution model

in bins of δt. A clear dependence is visible, which is not present in simulation and

was understood1 to be an effect of misalignments between different regions of the

VLEO. It is included in the final fit by a quadratic dependence of the mean value

of the resolution function on the estimated decay time uncertainty δt. Again, the

difference of this fit result with respect to the nominal one is assigned as systematic

uncertainty.

An additional systematic uncertainty is assigned to account for the unknown

fraction of wrongly assigned primary vertices in the prompt and signal data sample.

1The discussion of this is out of the scope of this thesis and was part of a study performed within
the LHCb collaboration.
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Figure 10.3: Decay-time acceptance variations for the 2016 Unbiased (a) and Biased

(b) categories. The solid blue line indicates the nominal acceptance, while
the other curves are obtained by randomly varying the spline coefficients
according to their covariance matrix.

The fraction is fixed to either 0 or 1.5% in the calibration fits to the prompt sample.

Depending on the δt bin, this corresponds to an up to ten times increased fraction.

The two obtained calibrations replace the nominal one in the final fit and the

maximal observed difference is assigned as systematic uncertainty.

The numbers for all these systematic uncertainties are shown in Tables 10.1

and 10.2 at the end of this chapter.

10.2.2 Decay-time acceptance

An obvious source of systematic uncertainty related to the decay-time acceptance is

the limited size of the B0→ J/ψK∗0 data sample. Although its size is significantly

larger than the one of the B0
s → J/ψφ data sample, a sizable effect is expected. In

addition, also the simulation samples that are used to correct for the difference

between the two decay channels contribute in the same way. The combined uncer-

tainty of all three samples is represented by the covariance matrices of the spline

coefficients that are determined in the decay-time acceptance fit, see Section 7.2.

To translate this uncertainty to a systematic uncertainty on the parameters of the

time-dependent angular fit, the spline coefficients are randomly varied according to

their covariance matrices and the fit is repeated. Figure 10.3 shows the nominal

acceptance together with a range of such random variations for the data collected

in 2016.
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Figure 10.4: Spread of the main physics parameters in units of their statistical uncertainty
when varying the decay-time acceptance within its statistical uncertainty.

In total, 300 fits with randomly generated splines are performed. The distributions

of the deviations of the main final parameters from the nominal result are shown in

Figure 10.4 in units of the statistical uncertainty of the nominal fit. As expected,

the decay-width difference ΔΓs
d is most sensitive to the spline variations, but also

the decay-width splitting ΔΓs shows a sizable spread. For all parameters that

are subject to a sizable variation, the root mean square (RMS) of the respective

distribution is assigned as a systematic uncertainty.

A further systematic uncertainty is assigned by increasing the number of knots

of the splines. Thereby, any structures that are not correctly modeled with the

nominal spline configuration should be picked up. Figure 10.5 shows the nominal

acceptance and the acceptance with knots at [0.3, 0.43, 0.58, 0.74, 0.91, 1.12, 1.35,

1.63, 1.96, 2.40, 3.01, 4.06, 9] ps for the 2016-Unbiased data category. Using these
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Figure 10.5: Decay-time acceptance of the 2016 Unbiased category. In (a) the nominal
acceptance and in (b) the acceptance with an increased number of spline
knots is shown.

new splines in the final fit results in a minor shift on the measured value of the

decay-width difference ΔΓs
d, which is assigned as a systematic uncertainty.

During the decay-time acceptance determination, the calibration data and simu-

lation samples are corrected in two ways. The first is a weighting of the simulated

samples to ensure the correct fraction of the S-wave component. In addition, the

simulated samples and the B0→ J/ψK∗0 data sample are weighted in kinematic

variables to match the respective data sample and the B0
s → J/ψφ data sample,

respectively. To get a conservative estimate of a possible systematic effect arising

from the first mentioned ”PDF” weighting, it is completely omitted, and new accep-

tances are determined. Since only very minor changes in the decay-width related

parameters are observed, the differences are assigned as conservative systematic

uncertainties.

In the case of the kinematic weighting, an alternative, less powerful, configuration

of the boosted weighting algorithm, see Section 4.2, is tested. The resulting differ-

ences in the final fit are reasonable small and are therefore assigned as systematic

uncertainty. In addition, a range of other configurations with similar or higher

weighting power are tested, but the resulting differences in the final fit parameters

are always smaller than the already assigned uncertainty.

The impact of the chosen values for the decay-time resolution of the different

samples on the extracted decay-time acceptance is studied. In a conservative

approach, these values are varied by ±10% and new decay-time acceptances are

obtained. Repeating the final fit with these acceptances yields no significant shift

of the final parameters, and therefore no systematic uncertainty is assigned.
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Figure 10.6: Spread of the main physics parameters in units of their statistical uncertainty
when varying the angular acceptance within its statistical uncertainty.

All systematic uncertainties related to the decay-time acceptance are summarized

in Tables 10.1 and 10.2 at the end of this chapter.

10.2.3 Angular acceptance

As for the decay-time acceptance, the angular acceptance, parametrized with the

normalization weights, is subject to statistical fluctuations of the sample used to

determine it. The related systematic uncertainty on the final fit parameters is

accessed by repeating the decay-time and angular fit 300 times with normalization

weights that are randomly varied according to their covariance matrix. Figure 10.6

shows the obtained deviations from the nominal fit results in units of the statistical

uncertainty for the main parameters. The root mean square of these distributions

is assigned as a systematic uncertainty. None of the parameters is effected by more

than 12% of the respective statistical uncertainty.
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Since the angular acceptance is determined from simulation, is has to be corrected

for any differences between simulation and data, see Section 7.3.2. In this correction

procedure, a range of choices of variables to correct for and of weighting configu-

rations are made. To study the effect of these choices and possibly not corrected

differences, a variety of alternatives of this procedure is tested:

• The iterative weighting procedure for the angular acceptance determinations

starts with a weighting of the simulated sample to match the pB
0
s , p

B0
s

T and

m(K+, K−) distributions in data. To ensure that these distributions also

agree at later stages of the procedure, an alternative iterative procedure is

tested where these variables are included in addition in all following weighting

steps.

• Although the simulated sample reproduce the muon transverse momentum

distributions of data quite nicely after the initial weighting step in pB
0
s , p

B0
s

T

and m(K+, K−), an alternative iterative procedure is performed that includes

the transverse momenta of both muons in addition to the kinematic variables

of the kaons.

• A wide range (O(100)) of different configurations of the boosted weighting

algorithm used during the correction procedure is tested. The number and

depth of the trees and the shrinkage factor are varied.

For all these alternative angular acceptance determinations, the final time-dependent

angular fit is performed and for every parameter the maximal observed difference is

considered as a systematic uncertainty. The numbers can be found in Tables 10.1

and 10.2 at the end of this chapter. For all parameters, the variation of the

configuration of the boosted weighting algorithm results in the largest shift.

As described in Section 7.3.2, the determination and implementation of the

angular acceptance requires that the angular acceptance is independent of the decay

time. This assumption is tested by calculating the normalization weights in bins

of the decay time. The result is shown in Figure 10.7 for the 2016-Biased data

category. For some of the normalization weights, a significant inconsistency is

observed. This can originate from the impact parameter related requirements in

the trigger, see Section 5.1, which place geometrical requirements on the muon

tracks that depend on the separation of the B0
s decay vertex from the primary

vertex and therefore also on the decay time. To study the effect of this dependence

on the final fit parameters, fits to the simulated samples of B0
s → J/ψφ decays are

performed. First, the available simulated samples are split in subsamples of the
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Figure 10.7: Angular acceptance normalization weights in regions of the reconstructed
decay time. The values for the 2016 Biased category are shown. In addition,
p-values for their consistency and a constant fit are shown.

same size as the background-subtracted B0
s → J/ψφ data sample. The simulated

samples are weighted as discussed before, such that they are effectively generated

with the parameters observed in the fit to data. From each sample, the decay-time

and angular acceptance is determined individually and a time-dependent angular

fit it performed. Using the acceptances determined from the same sample reduces

the expected statistical spread of the fit parameters and increases the sensitivity

to any biases. The decay-time resolution is determined from the full simulated

sample by comparing reconstructed and true decay times. As the bias due to the

neglected time dependence of the angular acceptance is not expected to depend

on the tagging performance, the true initial B0
s flavour is used in the fits. In total,

O(80) independent simulated samples and fits are performed and the deviation

of the most important final parameters from the generated values is shown in

Figure 10.8 in units of the statistical uncertainty observed in data. Especially the

distributions of the two polarization amplitudes show a significant bias. A toy study,

similar to the one presented in Section 8.3, is performed using the true initial B0
s
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Figure 10.8: Spread around the true values of the main physics parameters observed in
fits to simulated samples. The deviations are given in units of the respective
statistical uncertainties observed in data.

flavour. No significant biases are found for the main parameters, indicating that

the observed biases in the fits to the fully simulated samples are real effects and

not related to the intrinsic fit bias. Therefore, the full observed biases, added in

quadrature with their respective uncertainty, are taken as systematic uncertainty.

One has to note that this systematic uncertainty might also cover other effects than

the neglected dependencies of the angular acceptance. However, the main other

systematic uncertainties related to the decay-time and angular acceptance are at

least diminished by determining these acceptances from the exact same sample.

Therefore, any double counting of systematic effects is expected to be small.

Again, all systematic uncertainties related to the angular acceptance are summa-

rized in Tables 10.1 and 10.2 at the end of this chapter.
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10.3 Other sources of systematic uncertainties

S-wave line shape

In Section 8.1 the CSP factors are introduced, which are necessary to correctly

model the interference between the resonant (P-wave) and S-waveK+K− component.

Their calculation relies on a model of the P-wave and S-wave line shapes. While

the P-wave is known to be a φ resonance, which has small model uncertainties, the

S-wave line shape is not known to such high precision. Therefore, a systematic

uncertainty is assigned by varying the S-wave model in several ways:

• The parameters for the nominal S-wave model, a Flatté distribution describing

the f0(980) resonance, are taken from Ref. [91] and come with uncertainties.

They are varied within 1σ in different combinations. In addition, the second

solution for the f0(980) parameters found in Ref. [91] is tested.

• A model-independent parametrization with a cubic spline of the S-wave line

shape is also tested as an alternative. This spline has 8 knots in the range

m(K+K−) ∈ [990, 1060]MeV/c2, and the complex amplitude at each knot was

measured in the analysis presented in Ref. [89].

New CSP factors are calculated and the final fit is repeated for every alternative

S-wave model. The largest observed deviation from the nominal result is assigned as

systematic uncertainty. As expected, the S-wave amplitudes and phases are affected

most. The main parameters show only small deviations, see Tables 10.1 and 10.2 at

the end of this chapter.

Tagging related systematic uncertainties

As discussed in Section 6.4, the statistical and systematic uncertainties of the

tagging calibration parameters are directly included in the final time- and angular-

dependent fit by means of Gaussian constraints. The only additional studied

systematic uncertainty originates from using a quadratic opposite side tagging

calibration function instead of a linear one. However, the effect is negligible for all

relevant parameters, and no systematic uncertainty is assigned.

Fit bias

In Section 8.3 a dedicated toy study was performed to estimate possible biases

arising from the maximum likelihood fit itself. For every parameter, the bias

observed in the residual distributions is assigned as a systematic uncertainty. It is
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important to note that for strongly asymmetric likelihood shapes, see Appendix G.1,

this is only a rough estimate. For those parameters the likelihood shapes themselves

provide a much better representation of the best value and its uncertainties than

a central value with possibly asymmetric statistical and systematic uncertainties.

Anyhow, for all parameters the respective systematic uncertainty can be found in

Tables 10.1 and 10.2.

Length and momentum scale

The determination of the decay time of a B0
s candidate basically only relies on

its measured flight distance, momentum and mass. In the LHCb experiment, the

length scale uncertainty is estimated to be 0.022% [17], which directly translates to

the same relative uncertainty on the parameters ΔΓs
d, ΔΓs and Δms. Given the

statistical precision of these parameters, only Δms is significantly affected and an

according systematic uncertainty is assigned, see Tables 10.1 and 10.2 at the end of

this chapter.

The uncertainty on the momentum scale is with 0.03% slightly larger [46]. How-

ever, since the momentum, as well as the measured mass of the B0
s are affected by

this uncertainty, the effect is canceled to large extend for the measured decay time

and therefore also for ΔΓs
d, ΔΓs and Δms. No systematic uncertainty needs to be

assigned.

Truth matching of the simulated samples

The analysis presented in this thesis relies in many places on simulated samples

of the decays B0
s → J/ψφ and B0→ J/ψK∗0. As described in Section 2.2.3, these

simulated decays are reconstructed in the same way as the real data and therefore

have to be matched to the underlying generated decay afterwards. This so-called

truth matching is not fully efficient and the decay candidates in the simulated sample

that are categorized as background, i.e. not truth matched, can still contain true

decays. In the nominal analysis they are included by applying the sPlot technique

to the simulated samples in the same way as it is done for data. A mass fit is

performed to the full simulated sample with the tail parameters of the signal fixed

to the ones obtained from the fit to the truth matched simulated sample. As

in data, an exponential function models the background component. With the

sPlot technique the true background candidates are statistically subtracted from

the full simulated samples, which can than be used in the following.
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Table 10.1: Systematic uncertainties for some of the final parameters. For comparison,
the respective statistical uncertainty is given in the first row.

Source φs[ rad] |λ| ΔΓs[ ps
−1] Δms[ ps

−1] ΔΓs
d[ ps

−1]

Statistical uncertainty 0.041 0.016 +0.0076
−0.0077

+0.057
−0.059 0.0023

Mass parametrization - - 0.0002 0.001 -

Mass factorization 0.004 0.004 0.0022 0.016 0.0007

Multiple candidates 0.001 0.001 0.0001 0.001 0.0003

Time res.: prompt - - - 0.001 -

Time res.: mean offset 0.003 0.001 0.0003 0.005 0.0002

Time res.: wrong PV - - - 0.001 -

Dec. time acc.: statistical - - 0.0008 - 0.0012

Dec. time acc.: knot position - - - - 0.0002

Dec. time acc.: PDF weighting - - 0.0001 - 0.0001

Dec. time acc.: kinematic weighting - - - - 0.0002

Ang. acc.: statistical 0.001 0.002 - 0.001 -

Ang. acc.: sim. correction 0.002 0.004 0.0002 0.001 0.0001

Ang. acc.: Neglected dependencies 0.001 0.001 0.0010 0.003 0.0002

CSP factors 0.001 0.001 0.0001 0.002 -

Fit bias 0.001 - 0.0003 0.001 0.0001

Length scale - - - 0.004 -

Simulation truth matching 0.001 0.001 0.0001 - 0.0002

Quadratic sum of syst. unc. 0.006 0.006 0.0026 0.018 0.0015

A systematic is assigned by performing the background subtraction in simulation

in an alternative way. Instead of applying the sPlot technique to the whole simulated

sample, it is only applied to the sample of candidates classified as background.

The truth matched simulated candidates are kept without applying any weight for

the background subtraction. The full analysis is repeated using these alternative

simulated samples and the difference in the final parameters is assigned as a

systematic uncertainty. Since the fraction of these wrongly classified background

candidates in simulation is anyhow quite small (O(2%)), the effect on the final

result is small compared to the statistical uncertainties, see Tables 10.1 and 10.2.

10.4 Summary of systematic uncertainties

Tables 10.1 and 10.2 show all considered systematic uncertainties for the main fit

parameters. The respective tables for S-wave fractions and phases are shown in

Appendix H. For all parameters, the quadratic sum of all systematic uncertainties

is smaller than the respective statistical one. Especially the parameter of most

interest, φs, is clearly statistically limited, and also the parameters λ, ΔΓs and Δms
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Table 10.2: Systematic uncertainties for some of the final parameters. For comparison,
the respective statistical uncertainty is given in the first row.

Source |A0|2 |A⊥|2 δ� − δ0[ rad] δ⊥ − δ0[ rad]

Statistical uncertainty 0.0029 0.0040 +0.084
−0.073 0.13

Mass parametrization 0.0006 0.0005 0.009 0.05

Mass factorization 0.0002 0.0004 0.004 0.01

Multiple candidates 0.0006 0.0001 0.002 0.01

Time res.: prompt - - 0.001 -

Time res.: mean offset - - 0.001 0.08

Time res.: wrong PV - - 0.001 -

Dec. time acc.: statistical 0.0002 0.0003 - -

Dec. time acc.: knot position - - - -

Dec. time acc.: PDF weighting - - - -

Dec. time acc.: kinematic weighting - - - -

Ang. acc.: statistical 0.0003 0.0004 0.004 -

Ang. acc.: sim. correction 0.0020 0.0011 0.008 0.01

Ang. acc.: Neglected dependencies 0.0008 0.0012 0.006 0.03

CSP factors - 0.0001 0.005 0.01

Fit bias 0.0001 0.0006 0.037 0.02

Length scale - - - -

Simulation truth matching 0.0002 0.0001 0.002 -

Quadratic sum of syst. unc. 0.0024 0.0019 0.040 0.10

have a statistical uncertainty, at least twice as large as the systematic one. They

all are affected most by the systematic uncertainty assigned for the factorization of

the mass and the decay time in the background subtraction procedure.

The lifetime difference ΔΓs
d shows a sizable systematic uncertainty. However, its

largest contribution comes from the statistical uncertainty related to the decay-

time acceptance and therefore directly reflects the statistical uncertainty of the

B0→ J/ψK∗0 data sample. Since the decay-width difference between the B0
s meson

and the B0 meson is measured, this systematic uncertainty is irreducible, given a

B0→ J/ψK∗0 data set, and could also be considered as a statistical one.

As expected, the polarization amplitudes obtain their largest systematic uncer-

tainties from the angular acceptance. Especially the differences between data and

simulation and the neglected dependence between angular acceptance and decay

time contribute.
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11 Summary

This thesis presented a flavour-tagged time- and angular-dependent analysis of the

decay rate of B0
s → J/ψφ decays using proton-proton collision data collected by

the LHCb experiment and corresponding to an integrated luminosity of 1.9 fb−1.

A complete list of all measured parameters with their statistical and systematic

uncertainties is given in Table I.1 in Appendix I. In the following, only the most

relevant parameters are discussed.

The weak phase difference φs, responsible for CP violation in the interference

between B0
s meson mixing and the decay, and the parameter |λ|, parametrizing the

amount of direct CP violation in this decay, have been measured to be:

φs = (−0.083± 0.041stat ± 0.006syst) rad,

|λ| = 1.012± 0.016stat ± 0.006syst,

where the first and second uncertainty are statistical and systematic, respectively.

Thanks to an improved selection and tagging performance, and the higher center-of-

mass energy of 13TeV, these results supersede the precision reached in the previous

LHCb analysis [5]. Furthermore, the mass and decay-width splitting in the B0
s

meson system, Δms and ΔΓs, were determined to be:

ΔΓs = (0.0773±0.0076
0.0077 stat ± 0.0026syst) ps

−1,

Δms = (17.702±0.057
0.059 stat ± 0.018syst) ps

−1.

These measurements build the basis for a combination of a range of LHCb

analysis measuring φs, |λ| and ΔΓs. This list further contains studies of the decay

B0
s → J/ψφ using LHCb Run I data [5], B0

s → J/ψπ+π− decays using Run I and

Run II data [22,92], B0
s → J/ψK+K+ decays with a two kaon invariant mass above

1.05GeV/c2 [89], B0
s → ψ(2S)φ decays [93] and B0

s → D+
s D

−
s [94]. The combination
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Figure 11.1: The experimental status of φs and ΔΓs measurements shortly after the
analysis presented in this thesis was published. The black bar indicates
the SM calculation and constraint of ΔΓs and φs, respectively. Preliminary
figure taken from Ref. [16].

is presented in [63] and yields the following values for the CP violation parameters

and ΔΓs:

φs = (−0.041± 0.025) rad,

|λ| = 0.993± 0.010,

ΔΓs = (0.0816± 0.0048) ps−1.

Figure 11.1 shows the preliminary updated current experimental status. Besides

the new LHCb result presented above, a new ATLAS measurement [95], presented

at the same day as the LHCb result, strongly contributes to the world average. The

corresponding world average values for the parameters:

ΔΓw.a.
s = (0.0764± 0.0034) ps−1,

φw.a.
s = (−0.055± 0.021) rad

are consistent with the prediction within the SM, and therefore no sign for contri-

butions from beyond the SM is visible. However, the experiments are reaching now

a level of precision on φs that clearly underlines the importance of more precise

estimates of the impact of higher order penguin diagrams, see Section 1.5.5. Without

those, possible deviations from the SM of future measurements, consistent with the

current world average, might be explained by these penguin contributions and not
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by any effect beyond the SM. The LHCb collaboration has the potential and also

the responsibility to provide not only the most precise measurement of φs from a

single experiment, but also to estimate the penguin pollution to a level that allows a

clean interpretation of the results. With the strategy followed in Ref. [27], updated

measurements of these pollutions will be possible.

Besides these CP violation and mixing related quantities, the decay-width differ-

ence between the B0
s and B0 mesons was directly measured. Using the current world

average for the B0 decay width of (Γd = 0.6579± 0.0017) ps−1 [16], this difference

can be transformed to the theoretically more interesting ratio of decay widths:

Γs − Γd = (−0.0040± 0.0023stat ± 0.0015syst) ps
−1,

Γs/Γd = 0.9938± 0.0035stat ± 0.0023syst.

Here, the uncertainty on Γd is negligible, and the uncertainty on Γs/Γd is purely

determined from the uncertainty on Γs − Γd. The value for the ratio is consistent

within 2.3σ with the current world average, Γs/Γd = 1.0070±0.0040, and is reaching

the same precision. It is also perfectly compatible with the theory prediction of a

value very close to unity [32].

Outlook

Although the current experimental value of the CP violating phase difference φs is in

good agreement with the SM expectation, the interest in more precise measurements

remains high. Assuming future updated estimates of the impact of higher order

penguin contributions, the SM expectation is still significantly more precise. The

LHCb experiment will also in future be the main contributor to the experimental

value. In the years 2017 and 2018, it collected additional proton-proton data,

corresponding to 4 fb−1 of integrated luminosity, which is now analyzed. With

this and further potential improvements in especially the flavor tagging, another

doubling of the effective sample size seems to be realistic. Given the small current

systematic uncertainty, also these future measurements will be statistically limited.

In addition, the LHCb detector is currently upgraded and is planned to be run

at a significantly higher instantaneous luminosity. Within the next decade, an

integrated luminosity of up to 50 fb−1 will be reached. With this, the precision on

φs should clearly fall below 10mrad and will either put stringent constraints on

non-SM contributions or will establish these.
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A Polarization dependent

CP violation

As mentioned in Section 1.5.7, the time- and angular-dependent decay rate of

B0
s → J/ψφ decays can be parametrized allowing polarization dependent CP viola-

tion. It is then given by:

dΓ(B0
s → J/ψφ)

dtdθµdθKdϕh

∝
10�

k=1

Akh̃k,+1(t)fk(θµ, θK ,ϕh), (A.1)

dΓ(B0
s → J/ψφ)

dtdθµdθKdϕh

∝
10�

k=1

Akh̃k,−1(t)fk(θµ, θK ,ϕh), (A.2)

where the time-dependent terms are given by:

h̃k,+1 = e−Γst
�
ãkcosh

�
ΔΓst

2

�
+ b̃ksinh

�
ΔΓst

2

�

+ c̃kcos (Δmst) + d̃ksin (Δmst)
�
, (A.3)

h̃k,−1 = e−Γst
�
ãkcosh

�
ΔΓst

2

�
+ b̃ksinh

�
ΔΓst

2

�

− c̃kcos (Δmst)− d̃ksin (Δmst)
�
. (A.4)

The angular functions fk(θµ, θK ,ϕh) and amplitudes Ak are the same as in the

polarization independent case, and the coefficients ãk, b̃k, c̃k and d̃k are defined in

Table A.1, following Ref. [30].
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Table A.1: Coefficients of the time-dependent terms in the decay rate of B0
s → J/ψφ decays

with polarization dependent CP violation.

k ak bk ck dk

1 1
2
(1 + |λ0|2) −|λ0| cos(φ0)

1
2
(1− |λ0|2) |λ0| sin(φ0)

2 1
2
(1 + |λ|||2) −|λ||| cos(φ||)

1
2
(1− |λ|||2) |λ||| sin(φ||)

3 1
2
(1 + |λ⊥|2) |λ⊥| cos(φ⊥)

1
2
(1− |λ⊥|2) −|λ⊥| sin(φ⊥)

4

1
2

�
sin(δ⊥ − δ||)− |λ⊥λ|||

sin(δ⊥ − δ|| − φ⊥ + φ||)

�
1
2

�
|λ⊥| sin(δ⊥ − δ|| − φ⊥)

+|λ||| sin(δ|| − δ⊥ − φ||)

�
1
2

�
sin(δ⊥ − δ||) + |λ⊥λ|||

sin(δ⊥ − δ|| − φ⊥ + φ||)

�
−1

2

�
|λ⊥| cos(δ⊥ − δ|| − φ⊥)

+|λ||| cos(δ|| − δ⊥ − φ||)

�

5

1
2

�
cos(δ0 − δ||) + |λ0λ|||

cos(δ0 − δ|| − φ0 + φ||)

�
−1

2

�
|λ0| cos(δ0 − δ|| − φ0)

+|λ||| cos(δ|| − δ0 − φ||)

�
1
2

�
cos(δ0 − δ||)− |λ0λ|||

cos(δ0 − δ|| − φ0 + φ||)

�
−1

2

�
|λ0| sin(δ0 − δ|| − φ0)

+|λ||| sin(δ|| − δ0 − φ||)

�

6
−1

2

�
sin(δ0 − δ⊥)− |λ0λ⊥|

sin(δ0 − δ⊥ − φ0 + φ⊥)

�
1
2

�
|λ0| sin(δ0 − δ⊥ − φ0)

+|λ⊥| sin(δ⊥ − δ0 − φ⊥)

�
−1

2

�
sin(δ0 − δ⊥) + |λ0λ⊥|

sin(δ0 − δ⊥ − φ0 + φ⊥)

�
−1

2

�
|λ0| cos(δ0 − δ⊥ − φ0)

+|λ⊥| cos(δ⊥ − δ0 − φ⊥)

�

7 1
2
(1 + |λS|2) |λS| cos(φS)

1
2
(1− |λS|2) −|λS| sin(φS)

8

1
2

�
cos(δS − δ||)− |λSλ|||

cos(δS − δ|| − φS + φ||)

�
1
2

�
|λS| cos(δS − δ|| − φS)

−|λ||| cos(δ|| − δS − φ||)

�
1
2

�
cos(δS − δ||) + |λSλ|||

cos(δS − δ|| − φS + φ||)

�
1
2

�
|λS| sin(δS − δ|| − φS)

−|λ||| sin(δ|| − δS − φ||)

�

9
−1

2

�
sin(δS − δ⊥) + |λSλ⊥|

sin(δS − δ⊥ − φS + φ⊥)

�
−1

2

�
|λS| sin(δS − δ⊥ − φS)

−|λ⊥| sin(δ⊥ − δS − φ⊥)

�
−1

2

�
sin(δS − δ⊥)− |λSλ⊥|

sin(δS − δ⊥ − φS + φ⊥)

�
−1

2

�
− |λS| cos(δS − δ⊥ − φS)

+|λ⊥| cos(δ⊥ − δS − φ⊥)

�

10

1
2

�
cos(δS − δ0)− |λSλ0|

cos(δS − δ0 − φS + φ0)

�
1
2

�
|λS| cos(δS − δ0 − φS)

−|λ0| cos(δ0 − δS − φ0)

�
1
2

�
cos(δS − δ0) + |λSλ0|

cos(δS − δ0 − φS + φ0)

�
1
2

�
|λS| sin(δS − δ0 − φS)

−|λ0| sin(δ0 − δS − φ0)

�

159



B Trigger criteria

In the following, a more detailed summary of the trigger requirements mentioned in

Section 5.1 is given.

B.1 First stage of the software trigger

Table B.1 shows the requirements of the selected trigger lines in the first stage of

the software trigger (HLT1). The variables not mentioned in Section 5.1 are defined

as following:

• IsMuon encodes whether a track has associated hits in the muon stations

• pghosttrack is the output of a multivariate classifier that was trained to reject ghost

tracks

• χ2
FD is the significance of the distance between the PV and the respective

vertex.

In addition, the trigger line Hlt1TwoTrackMVA contains a cut on a multivariate

classifier (MVA) that uses the variables given in the respective row as input.

B.2 Second stage of the software trigger

Table B.2 shows the requirements of the selected trigger line in the second stage of

the software trigger (HLT2).
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B.2 Second stage of the software trigger

Table B.1: Configuration of the HLT1 trigger lines used in this analysis. The numbers
changed over the years 2015 and 2016, and only the configuration with with
the largest fraction of data was recorded is shown.

(a) Hlt1DiMuonHighMass

Object Variable Cut

µ+, µ− pT > 300MeV/c

p > 6000MeV/c

χ2
track/nDoF < 4

IsMuon true

µ+ + µ− DOCA < 0.2mm

χ2
vtx < 25

m(µ+µ−) > 2700MeV/c2

(b) Hlt1TrackMuon

Object Variable Cut

µ+/µ− pT > 1100MeV/c

p > 6000MeV/c

χ2
IP > 35

χ2
track/nDoF < 3

pghosttrack < 0.2

IsMuon true

(c) Hlt1TwoTrackMVA

Object Variable Cut

track 1, track 2 pT > 500MeV/c

p > 5000MeV/c

χ2
track/nDoF < 2.5

pghosttrack < 0.2

χ2
IP > 4

IsMuon true

µ+ + µ− χ2
vtx < 10

m(µ+µ−) > 1000MeV/c2

MVA(χ2
vtx, χ

2
FD,

�
pT , #tracks with χ2

IP < 16)

Table B.2: Configuration of the HLT2 trigger line used in this analysis.

Object Variable Cut

µ+, µ− pghosttrack < 0.4

χ2
track/nDoF < 4

IsMuon true

µ+ + µ− χ2
FD > 3mm

χ2
vtx < 25

|m(µ+µ−)−m(J/ψ )| < 120MeV/c2
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C Mass fit parameters

In Section 5.3, a fit to the mass distribution of the selected B0
s → J/ψφ candidates

is performed. Tables C.1 to C.4 show the fit parameters for the different data

categories. The tail parameters are fixed from fits to the simulated sample and are

therefore quoted without an uncertainty.

Table C.1: Parameters of the fit to the mass of B0
s → J/ψφ candidates in the 2015

Unbiased data category. The values without uncertainty are fixed from a fit
to the simulated sample.

m(KK) bin 1 m(KK) bin 2 m(KK) bin 3 m(KK) bin 4 m(KK) bin 5 m(KK) bin 6

s1 0.84± 0.57 1.02± 0.18 0.915± 0.089 1.120± 0.098 1.16± 0.15 1.05± 0.24

s2 0.05± 0.11 0.034± 0.030 0.043± 0.015 0.009± 0.017 0.004± 0.026 0.001± 0.039

µ 5366.66± 0.54 5366.46± 0.22 5366.75± 0.11 5367.48± 0.12 5367.38± 0.19 5367.07± 0.28

γ 0.00193± 0.00032 0.00130± 0.00035 0.00107± 0.00036 0.00185± 0.00036 0.00113± 0.00033 0.00142± 0.00022

fsig 0.176± 0.014 0.591± 0.013 0.8297± 0.0060 0.8212± 0.0067 0.614± 0.011 0.271± 0.010

fB0 0.021± 0.011 0.012± 0.011 0.030± 0.012 0.0000± 0.0047 0.011± 0.011 0.0000± 0.0048

α1 2.77 2.09 2.10 2.17 2.22 2.47

α2 −2.06 −1.92 −2.04 −2.01 −2.12 −2.28

n1 0.332 1.65 3.09 3.20 1.96 1.11

n2 1.83 3.00 3.78 3.09 1.69 1.30

Table C.2: Parameters of the fit to the mass of B0
s → J/ψφ candidates in the 2015 Biased

data category. The values without uncertainty are fixed from a fit to the
simulated sample.

m(KK) bin 1 m(KK) bin 2 m(KK) bin 3 m(KK) bin 4 m(KK) bin 5 m(KK) bin 6

s1 0.71± 0.70 1.23± 0.33 0.92± 0.20 0.82± 0.20 1.79± 0.30 1.11± 0.39

s2 0.09± 0.13 0.003± 0.054 0.052± 0.034 0.065± 0.034 −0.084± 0.049 0.016± 0.066

µ 5364.5± 1.0 5366.15± 0.42 5366.69± 0.20 5367.21± 0.23 5367.41± 0.40 5367.21± 0.54

γ 0.00116± 0.00069 0.00090± 0.00070 0.00289± 0.00066 0.00090± 0.00075 0.00061± 0.00075 0.00167± 0.00049

fsig 0.245± 0.034 0.658± 0.023 0.850± 0.010 0.845± 0.012 0.685± 0.021 0.348± 0.022

fB0 0.000± 0.011 0.000± 0.032 0.0000± 0.0080 0.033± 0.026 0.061± 0.029 0.024± 0.016

α1 2.89 2.08 1.98 2.06 2.19 2.59

α2 −2.23 −2.09 −2.13 −1.77 −2.04 −2.35

n1 0.133 1.62 3.21 3.33 1.88 1.02

n2 1.64 2.35 3.54 4.14 2.09 1.22
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Table C.3: Parameters of the fit to the mass of B0
s → J/ψφ candidates in the 2016

Unbiased data category. The values without uncertainty are fixed from a fit
to the simulated sample.

m(KK) bin 1 m(KK) bin 2 m(KK) bin 3 m(KK) bin 4 m(KK) bin 5 m(KK) bin 6

s1 1.09± 0.18 1.085± 0.074 1.016± 0.033 0.992± 0.038 0.988± 0.064 0.993± 0.093

s2 0.014± 0.031 0.019± 0.013 0.0243± 0.0056 0.0317± 0.0065 0.034± 0.011 0.026± 0.016

µ 5367.26± 0.22 5366.669± 0.083 5366.824± 0.040 5367.401± 0.045 5367.430± 0.073 5367.02± 0.11

γ 0.00193± 0.00011 0.00134± 0.00012 0.00141± 0.00012 0.00126± 0.00013 0.00171± 0.00012 0.001693± 0.000080

fsig 0.1584± 0.0048 0.5599± 0.0047 0.8113± 0.0023 0.7955± 0.0026 0.5694± 0.0043 0.2626± 0.0037

fB0 0.0059± 0.0033 0.0086± 0.0039 0.0004± 0.0080 0.0070± 0.0040 0.0034± 0.0036 0.0012± 0.0024

α1 2.63 2.09 2.03 2.12 2.24 2.37

α2 −2.22 −2.08 −2.02 −1.95 −2.05 −2.30

n1 0.470 1.68 3.60 3.33 1.97 1.37

n2 1.71 2.57 4.05 3.64 1.98 1.37

Table C.4: Parameters of the fit to the mass of B0
s → J/ψφ candidates in the 2016 Biased

data category. The values without uncertainty are fixed from a fit to the
simulated sample.

m(KK) bin 1 m(KK) bin 2 m(KK) bin 3 m(KK) bin 4 m(KK) bin 5 m(KK) bin 6

s1 0.94± 0.14 1.23± 0.15 1.194± 0.071 1.009± 0.082 0.98± 0.14 0.63± 0.18

s2 0.048± 0.027 −0.002± 0.027 0.000± 0.012 0.036± 0.014 0.044± 0.024 0.100± 0.032

µ 5366.88± 0.43 5366.65± 0.17 5366.761± 0.084 5367.402± 0.096 5367.15± 0.16 5366.81± 0.22

γ 0.00153± 0.00028 0.00107± 0.00033 0.00150± 0.00030 0.00104± 0.00033 0.00158± 0.00030 0.00152± 0.00021

fsig 0.233± 0.013 0.6712± 0.0099 0.8643± 0.0043 0.8543± 0.0049 0.6688± 0.0092 0.3566± 0.0095

fB0 0.0057± 0.0089 0.014± 0.011 0.000± 0.012 0.018± 0.010 0.0098± 0.0093 0.0049± 0.0063

α1 2.66 2.03 2.02 2.11 2.17 2.52

α2 −2.23 −2.05 −1.97 −2.01 −2.06 −2.33

n1 0.396 1.74 3.37 3.28 2.14 1.12

n2 1.57 2.50 4.17 3.28 1.87 1.38
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D Tagging

In this section the general formalism to add the information from two independent

tagging algorithms to a PDF that depends on the initial B flavour is derived.

Given two tagging algorithms, with tagging decisions q1, q2 ∈ {−1, 0, 1} and mistag

probabilities
( )

ω 1,
( )

ω 2, and a PDF that depends on the initial flavour of the B meson,

PDF(...|
( )

B), the PDF describing the observed distributions correctly is given by:

PDF(...|q1, q2, ( )

ω 1,
( )

ω 2) =p(B|q1, q2, ( )

ω 1,
( )

ω 2) PDF(...|B)

+p(B̄|q1, q2, ( )

ω 1,
( )

ω 2) PDF(...|B̄), (D.1)

where p(B|q1, q2, ( )

ω 1,
( )

ω 2) and p(B̄|q1, q2, ( )

ω 1,
( )

ω 2) are the probabilities that a certain

candidate is an initial B or B̄ meson, given its tagging algorithm outputs.

Following Bayes theorem, these probabilities can be expressed as:

p(B|q1, q2, ( )

ω 1,
( )

ω 2) =
p(q1, q2|B,

( )

ω 1,
( )

ω 2) p(B|( )

ω 1,
( )

ω 2)

p(q1, q2|( )

ω 1,
( )

ω 2)

=
p(q1, q2|B,

( )

ω 1,
( )

ω 2)
p(

( )

ω 1,
( )

ω 2|B) p(B)

p(
( )

ω 1,
( )

ω 2)

p(
( )

ω 1,
( )

ω 2|q1,q2) p(q1,q2)
p(

( )

ω 1,
( )

ω 2)

=p(q1, q2|B,
( )

ω 1,
( )

ω 2) p(B)
p(

( )

ω 1,
( )

ω 2|B)

p(
( )

ω 1,
( )

ω 2) p(q1, q2)

:=p(q1, q2|B,
( )

ω 1,
( )

ω 2)p(B)XB(q1, q2,
( )

ω 1,
( )

ω 2), (D.2)

with treating p(B̄|q1, q2, ( )

ω 1,
( )

ω 2) in full analogy. Here, XB is defined as shown above

and will be discussed later.

Each tagging algorithm comes with a tagging efficiency ε(
( )

B), which might depend

on the true initial flavour. In addition, there might be a production and/or selection

asymmetry Ap that alters the overall ratio of initial B and B̄ mesons:

p(B) =
1 + Ap

1− Ap

p(B̄), (D.3)

where p(B) and p(B̄) are the overall probabilities that a candidate was produced as

B or B̄ mesons if no further information is given. Given these probabilities and the

164



tagging efficiencies, the probabilities p(q1, q2|B,
( )

ω 1,
( )

ω 2) and p(q1, q2|B̄,
( )

ω 1,
( )

ω 2) can

be calculated. Before giving the general expression, one specific case is chosen to

show the derivation. We want to get the probability p(q1 = −1, q2 = 0|B,
( )

ω 1,
( )

ω 2),

i.e. the probability that the first tagging algorithm identifies a B̄ meson and the

second algorithm gives no decision in the case that the true flavour corresponds to

a B meson. The assumption is that the two tagging algorithms are independent,

which means:

p(q1 = −1, q2 = 0|B,
( )

ω 1,
( )

ω 2) = p(q1 = −1|B,
( )

ω 1) p(q2 = 0|B,
( )

ω 1). (D.4)

Using the tagging efficiency and the definition of the mistag probabilities, this can

be written as:

p(q1 = −1, q2 = 0|B,
( )

ω 1,
( )

ω 2) = ε1(B)ω1 (1− ε2(B)). (D.5)

The other cases can be easily calculated in the same way. It is possible to give a

closed-form expression covering all of them:

p(q1, q2|
( )

B,
( )

ω 1,
( )

ω 2) =

�
1

2

�|q1| �
1 +

(−) q1(1− 2
( )

ω 1)
�
ε1(

( )

B)|q1|
�
1− ε1(

( )

B)
�1−|q1|

·
�
1

2

�|q2| �
1 +

(−) q2(1− 2
( )

ω 2)
�
ε2(

( )

B)|q2|
�
1− ε2(

( )

B)
�1−|q2|

. (D.6)

Plugging this in Equation (D.1) yields:

PDF(...|q1, q2, ( )

ω 1,
( )

ω 2) =
1

N

�
[1 + q1(1− 2ω1)] [1 + q2(1− 2ω2)] PDF(...|B)

+ [1− q1(1− 2ω̄1)] [1− q2(1− 2ω̄2)]
p(B̄)

p(B)

XB̄

XB

·
�
ε1(B̄)

ε1(B)

�|q1| �ε2(B̄)

ε2(B)

�|q2| �1− ε1(B̄)

1− ε1(B)

�1−|q1| �1− ε2(B̄)

1− ε2(B)

�1−|q2|
PDF(...|B̄)

�
,

(D.7)

where N is a normalization factor depending on the tagging decisions and mistag

probabilities. The production asymmetry enters via:

p(B̄)

p(B)
=

1− AP

1 + Ap

, (D.8)
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Appendix D Tagging

and the ratio XB̄/XB can be expressed using its definition in Equation (D.2):

XB̄

XB
=

p(
( )

ω 1,
( )

ω 2|B̄)

p(
( )

ω 1,
( )

ω 2|B)
. (D.9)

Given that the mistag probabilities are derived from estimated mistag probabilities

η1 and η2, as it is the case in the analysis presented in this thesis, this ratio is unity

if the distribution of these estimated mistag probabilities is independent of the

true flavour. This is confirmed in simulation and also the production and tagging

efficiency asymmetries are typically neglected, which then leads to the formulas

shown in Section 6.3.

Toy studies were performed with a production asymmetry of 3% and no significant

biases on top of the ones observed with no production asymmetry are visible.

However, for future reference, in the following a generic extension to the PDF is

presented that allows to incorporate possible production and tagging efficiency

asymmetries.

It is not possible to determine all five additional parameters, Ap, ε1(B), ε1(B̄),

ε2(B) and ε2(B̄). In principle, the PDF is sensitive to an asymmetry factor A(q1, q2)

for every of the nine possible combinations of the tagging decisions q1 and q2:

PDF(...|q1, q2, ( )

ω 1,
( )

ω 2) =
1

N

�
[1 + q1(1− 2ω1)] [1 + q2(1− 2ω2)] PDF(...|B)

+ [1− q1(1− 2ω̄1)] [1− q2(1− 2ω̄2)]A(q1, q2)PDF(...|B̄)
�
.

(D.10)

However, matching these factors with Equation (D.7) establishes the following

relations:

A(1, 1) = A(1,−1) = A(−1, 1) = A(−1,−1) (D.11)

A(1, 0) = A(−1, 0) (D.12)

A(0, 1) = A(0,−1) (D.13)

A(0, 0) =
A(1, 0)A(0, 1)

A(1, 1)
, (D.14)

which reduces the independent parameters to the three asymmetry factors A(1, 1),

A(1, 0) and A(0, 1). In future, these parameters could be included in the fit

and would account for any possible asymmetry in the tagging efficiencies or the

production of B mesons.
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E Decay-time resolution

Wrong primary vertex component

As described in Section 7.1.2, the decay-time distribution of the sample of prompt

fake B0
s → J/ψφ candidates contains a component that arises mainly from prompt

J/ψ mesons that are associated to a wrong primary vertex (PV). In order to correctly

extract the decay-time resolution shape this component has to be included in the

respective fit. An event mixing technique was employed to determine the decay-

time distribution of such wrongly associated J/ψ mesons. For each reconstructed

event in the prompt data sample, a PV from another event was added. Then,

the reconstruction is repeated with the original PV replaced with the new one.

Figure E.1 shows the decay-time distribution of B0
s → J/ψφ candidates constructed

from these J/ψ candidates. A double-sided double-exponential given by:

E(t) = f
1

N1

e−|t|/τ1 + (1− f)
1

N2

e−|t|τ2 (E.1)

is used to model the observed distribution. Besides the normalization factors N1 and

N2, it is described by the two decay parameters τ1 and τ2 and the relative fraction

f between the two exponential functions. A maximum likelihood fit yields the

following values for these parameters: τ1 = (0.377± 0.012) ps, τ2 = (1.83± 0.11) ps

and f = 0.776± 0.018.

LHCb
Internal

Figure E.1: Shape of the decay time distribution due to wrongly associated primary
vertices. The right plot shows a wider decay time range and provides a
logarithmic y axis. Figure taken from Ref. [65].
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F Fit validation

Effective single Gaussian resolution

As described in Section 8.3, toy studies are performed to validate the usage of an

effective single Gaussian instead of a triple Gaussian resolution function. Figure F.1

shows the relevant pull distributions for the S-wave related parameters.
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Figure F.1: Pull distributions of the S-wave related physics parameters observed in the
toy studies for the single Gaussian resolution. The difference between the fit
result obtained with single Gaussian and triple Gaussian resolution model are
shown in units of the statistical uncertainty. The mean and the root mean
square are given.
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G Fit results

G.1 Likelihood scans

Figures G.1 and G.2 show the likelihood profiles for all freely floating parameters

in the final decay-time and angular fit. While the main parameters show nearly

parabolic, i.e. Gaussian, behavior, some of the strong phases and the S-wave

fractions clearly deviate from this shape.

G.2 Correlation matrix

Table G.1 shows the correlations of the main physics parameters how they are ob-

tained from the maximum likelihood fit to the decay-time and angular distributions

of the B0
s → J/ψφ sample.
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Figure G.1: Likelihood profiles of the main parameters.
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Appendix G Fit results
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Figure G.2: Likelihood profiles of the parameters related to the S-wave component.

Table G.1: Correlations of the main physics parameters observed in the final time and
angular fit.

φs |λ| ΔΓs Δms ΔΓs
d |A⊥|2 |A0|2 δ� − δ0 δ⊥ − δ0

φs 1.00 0.19 0.00 0.00 -0.03 -0.03 0.03 0.01 -0.01

|λ| 1.00 -0.04 -0.04 0.01 0.02 -0.02 0.01 0.02

ΔΓs 1.00 0.02 -0.47 -0.69 0.63 -0.03 0.01

Δms 1.00 -0.01 -0.03 0.01 -0.05 0.74

ΔΓs
d 1.00 0.40 -0.32 0.03 0.00

|A⊥|2 1.00 -0.60 0.16 0.01

|A0|2 1.00 0.00 0.01

δ� − δ0 1.00 0.20

δ⊥ − δ0 1.00
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G.3 Comparison to the official LHCb result

Table G.2: Comparison of the fit results presented in this thesis and the results published
by the LHCb collaboration in Ref. [63]. Only statistical uncertainties are
shown.

Parameter This thesis Official result

φs [ rad] −0.083±0.041 −0.083±0.041

|λ| 1.012±0.016 1.012±0.016

ΔΓs [ ps
−1] 0.0773±0.0076

0.0077 0.0773±0.0077

Δms [ ps
−1] 17.702±0.057

0.059 17.703±0.059

ΔΓs
d [ ps

−1] −0.0040±0.0023 −0.0041±0.0024

|A⊥|2 0.2455±0.0040 0.2456±0.0040

|A0|2 0.5189±0.0029 0.5186±0.0029

δ� − δ0 [ rad] 3.060±0.084
0.073 3.062±0.082

0.074

δ⊥ − δ0 [ rad] 2.64±0.13 2.64±0.13

FS1 0.491±0.043 −
FS2 0.0406±0.0081

0.0075 −
FS3 0.0044±0.0029

0.0018 −
FS4 0.0069±0.0061

0.0046 −
FS5 0.073±0.013 −
FS6 0.151±0.019

0.018 −
δS1 − δ⊥ [ rad] 2.21±0.17

0.20 −
δS2 − δ⊥ [ rad] 1.55±0.29 −
δS3 − δ⊥ [ rad] 1.07±0.49

0.34 −
δS4 − δ⊥ [ rad] −0.28±0.16

0.27 −
δS5 − δ⊥ [ rad] −0.536±0.090

0.103 −
δS6 − δ⊥ [ rad] −1.10±0.13

0.16 −

G.3 Comparison to the official LHCb result

The analysis presented in this thesis is published by the LHCb collaboration,

see [63]. As described in Section 3.2, the results shown in Chapter 9 serve as a

partial independent cross-check of the official LHCb results. Table G.2 compares

the main parameters of the final fit. No significant deviation is observed.

G.4 Asymmetry plot

In the following, the procedure to create Figure 9.2 is presented. In order to

obtain the largest possible visible oscillating asymmetry, the tagging, angular and
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Appendix G Fit results

decay-time resolution information of every candidate has to be taken into account.

For every candidate, an angular weight wang(Ω) is calculated according to:

wang(Ω) =
(|A0|2f1(Ω) + |A⊥|2f2(Ω))− (|A�|2f3(Ω) + |AS|2f7(Ω))
(|A0|2f1(Ω) + |A⊥|2f2(Ω)) + (|A�|2f3(Ω) + |AS|2f7(Ω))

, (G.1)

where Ω represents the three helicity angles and fi are the angular functions defined

in Table 1.3. This weight reflects the amount of even or odd CP component for

a given set of angles. Furthermore, a weight is defined to take into account the

tagging information. Based on Equations (6.8) and (6.9) the weight is defined as:

wtag = p(B0
s )− p(B0

s), (G.2)

and reflects on one hand the tag decision, but also gives more weight to candidates

that have a smaller probability for a wrongly assigned tag. Finally, a weight is

defined following the definition of the dilution factor for the decay-time resolution

in Equation (7.4):

wres = e−σ2
t
Δms

2 , (G.3)

where σt is the calibrated decay-time resolution of the respective candidate.

These three weights are multiplied, and the asymmetry between weighted candi-

dates with positive and negative such weights is plotted. Each of these categories is

normalized before calculating the time-dependent asymmetry. The projection of

the fit is obtained by calculating for every candidate the PDF value as a function of

the decay time given the tagging outputs, the decay-time resolution and the helicity

angles. These functions are weighted and split in two categories using the same

weights as the respective candidate. After adding the functions within one category,

an asymmetry is calculated.
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H Systematic uncertainties

Tables H.1 to H.3 show the systematic uncertainties on the S-wave related parameters

that were discussed in Chapter 10.

Table H.1: Systematic uncertainties for some of the final parameters. For comparison, the
respective statistical uncertainty is given in the first row.

Source FS1 FS2 FS3 FS4 FS5 FS6

Statistical uncertainty 0.043 +0.0081
−0.0075

+0.0029
−0.0018

+0.0061
−0.0046 0.013 +0.019

−0.018

Mass parametrization 0.005 0.0006 0.0001 0.0008 0.003 0.005

Mass factorization 0.006 0.0006 - 0.0004 0.002 0.003

Multiple candidates 0.002 0.0012 0.0001 0.0007 0.001 0.001

Time res.: prompt - - - - - -

Time res.: mean offset - - - 0.0001 - -

Time res.: wrong PV - 0.0001 - 0.0001 - -

Dec. time acc.: statistical - - - - - -

Dec. time acc.: knot position - - - - - -

Dec. time acc.: PDF weighting - - - - - -

Dec. time acc.: kinematic weighting - - - - - -

Ang. acc.: statistical 0.001 0.0003 0.0001 0.0003 0.001 0.001

Ang. acc.: sim. correction 0.002 0.0003 0.0001 0.0006 0.001 0.001

Ang. acc.: Neglected dependencies 0.006 0.0007 0.0002 0.0001 0.001 0.002

CSP factors 0.001 0.0031 0.0004 0.0004 0.001 0.007

Fit bias 0.001 0.0032 0.0012 0.0009 - -

Length scale - - - - - -

Simulation truth matching - 0.0002 0.0001 0.0002 0.001 0.001

Quadratic sum of syst. unc. 0.010 0.0048 0.0013 0.0017 0.004 0.009
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Appendix H Systematic uncertainties

Table H.2: Systematic uncertainties for some of the final parameters. For comparison, the
respective statistical uncertainty is given in the first row.

Source δS1 − δ⊥[ rad] δS2 − δ⊥[ rad] δS3 − δ⊥[ rad]

Statistical uncertainty +0.17
−0.20 0.29 +0.49

−0.34

Mass parametrization 0.01 - 0.01

Mass factorization 0.08 0.03 0.02

Multiple candidates 0.01 - 0.02

Time res.: prompt - - -

Time res.: mean offset - - -

Time res.: wrong PV - - -

Dec. time acc.: statistical - - -

Dec. time acc.: knot position - - -

Dec. time acc.: PDF weighting - - -

Dec. time acc.: kinematic weighting - - -

Ang. acc.: statistical - 0.01 0.01

Ang. acc.: sim. correction 0.01 0.02 0.03

Ang. acc.: Neglected dependencies 0.01 0.02 0.03

CSP factors 0.18 0.02 0.03

Fit bias 0.04 0.02 0.08

Length scale - - -

Simulation truth matching - - -

Quadratic sum of syst. unc. 0.20 0.05 0.10
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Table H.3: Systematic uncertainties for some of the final parameters. For comparison, the
respective statistical uncertainty is given in the first row.

Source δS4 − δ⊥[ rad] δS5 − δ⊥[ rad] δS6 − δ⊥[ rad]

Statistical uncertainty +0.16
−0.27

+0.090
−0.103

+0.13
−0.16

Mass parametrization 0.01 0.010 0.01

Mass factorization 0.01 0.007 0.03

Multiple candidates 0.01 0.004 0.01

Time res.: prompt - 0.001 -

Time res.: mean offset - 0.006 -

Time res.: wrong PV - 0.001 -

Dec. time acc.: statistical - - -

Dec. time acc.: knot position - - -

Dec. time acc.: PDF weighting - - -

Dec. time acc.: kinematic weighting - - -

Ang. acc.: statistical 0.01 0.004 -

Ang. acc.: sim. correction 0.01 0.005 -

Ang. acc.: Neglected dependencies 0.03 0.010 0.01

CSP factors 0.01 0.010 0.10

Fit bias 0.05 0.010 0.04

Length scale - - -

Simulation truth matching - 0.002 -

Quadratic sum of syst. unc. 0.06 0.023 0.11
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I Final results

Table I.1 shows the measured values with associated statistical and systematic

uncertainties for the parameters determined in the maximum likelihood fit to the

decay-time and angular distributions.

Table I.1: Fit results for the freely floating parameters of the maximum likelihood fit to
the decay-time and angular distributions. In addition, systematic uncertainties
for every parameter are given.

Parameter Fit result

φs [ rad] −0.083 ±0.041stat ±0.006syst
|λ| 1.012 ±0.016stat ±0.006syst

ΔΓs [ ps
−1] 0.0773 ±0.0076

0.0077stat ±0.0026syst
Δms [ ps

−1] 17.702 ±0.057
0.059stat ±0.018syst

ΔΓs
d [ ps

−1] −0.0040 ±0.0023stat ±0.0015syst

|A⊥|2 0.2455 ±0.0040stat ±0.0019syst
|A0|2 0.5189 ±0.0029stat ±0.0024syst
δ� − δ0 [ rad] 3.060 ±0.084

0.073stat ±0.040syst
δ⊥ − δ0 [ rad] 2.64 ±0.13stat ±0.10syst

FS1 0.491 ±0.043stat ±0.010syst
FS2 0.0406 ±0.0081

0.0075stat ±0.0048syst
FS3 0.0044 ±0.0029

0.0018stat ±0.0013syst
FS4 0.0069 ±0.0061

0.0046stat ±0.0017syst
FS5 0.073 ±0.013stat ±0.004syst
FS6 0.151 ±0.019

0.018stat ±0.009syst
δS1 − δ⊥ [ rad] 2.21 ±0.17

0.20stat ±0.20syst
δS2 − δ⊥ [ rad] 1.55 ±0.29stat ±0.05syst
δS3 − δ⊥ [ rad] 1.07 ±0.49

0.34stat ±0.10syst
δS4 − δ⊥ [ rad] −0.28 ±0.16

0.27stat ±0.06syst
δS5 − δ⊥ [ rad] −0.536 ±0.090

0.103stat ±0.023syst
δS6 − δ⊥ [ rad] −1.10 ±0.13

0.16stat ±0.11syst
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[39] LHCb collaboration, C. Elsässer, bb production angle plots, URL: http://lhcb.

web.cern.ch/lhcb/speakersbureau/html/bb_ProductionAngles.html,

last visited on 11/04/2019.

[40] LHCb collaboration, LHCb VELO (VErtex LOcator): Technical Design Report,

CERN-LHCC-2001-011.

[41] LHCb collaboration, LHCb outer tracker: Technical Design Report, CERN-

LHCC-2001-024.

[42] LHCb collaboration, LHCb inner tracker: Technical Design Report, CERN-

LHCC-2002-029.

[43] LHCb collaboration, LHCb magnet: Technical Design Report, CERN-LHCC-

2000-007.

[44] LHCb, LHCb webpage, URL: http://lhcb.web.cern.ch/lhcb/

speakersbureau/html/Material_for_Presentations.html, last visited on

10/04/2019.

[45] O. Callot, FastVelo, a fast and efficient pattern recognition package for the

Velo, Tech. Rep. LHCb-PUB-2011-001, CERN, Geneva, Jan, 2011. LHCb.

[46] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod.

Phys. A30 (2015) 1530022, arXiv:1412.6352.

[47] LHCb collaboration, LHCb reoptimized detector design and performance: Tech-

nical Design Report, CERN-LHCC-2003-030.

[48] LHCb, LHCb public webpage, URL: https://lhcb-public.web.cern.ch/

lhcb-public/en/Detector/Trackers2-en.html, last visited on 10/04/2019.

180



Bibliography

[49] G. A. Cowan, Performance of the lhcb silicon tracker, Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment. Proceedings of the 8th International Hiroshima

Symposium on the Development and Application of Semiconductor Tracking

Detectors 699 (2013) 156 .

[50] R. Arink et al., Performance of the LHCb Outer Tracker, JINST 9 (2014)

P01002, arXiv:1311.3893.

[51] LHCb RICH, J. He, Real-time calibration and alignment of the LHCb RICH

detectors, Nucl. Instrum. Meth. A876 (2017) 13, arXiv:1611.00296.

[52] LHCb RICH, A. Papanestis and C. D’Ambrosio, Performance of the LHCb

RICH detectors during the LHC Run II, Nucl. Instrum. Meth. A876 (2017)

221, arXiv:1703.08152.

[53] J. R. Harrison, Radiation damage studies in the LHCb VELO detector and

searches for lepton flavour and baryon number violating tau decays, PhD thesis,

Manchester U., 2014, CERN-THESIS-2014-068.

[54] R. Aaij et al., Selection and processing of calibration samples to measure the

particle identification performance of the LHCb experiment in Run 2, EPJ

Tech. Instrum. 6 (2019) 1, arXiv:1803.00824.

[55] B. Sciascia, LHCb Run 2 Trigger Performance, PoS BEAUTY2016 (2016)

029. 7.

[56] S. Benson, V. Gligorov, M. A. Vesterinen, and J. M. Williams, The LHCb

Turbo Stream, Journal of Physics: Conference Series 664 (2015) 082004.

[57] LHCb collaboration, Framework TDR for the LHCb Upgrade: Technical Design

Report, CERN-LHCC-2012-007.

[58] LHCb collaboration, LHCb Trigger and Online Technical Design Report,

CERN-LHCC-2014-016.

[59] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1,

Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.

[60] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum.

Meth. A462 (2001) 152.

181



Bibliography

[61] Geant4 collaboration, J. Allison et al., Geant4 developments and applications,

IEEE Trans. Nucl. Sci. 53 (2006) 270.

[62] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolu-

tion and experience, J. Phys. Conf. Ser. 331 (2011) 032023.

[63] LHCb collaboration, R. Aaij et al., Updated measurement of time-dependent

CP-violating observables in B0
s → J/ψK+K− decays, LHCb-PAPER-2019-013,

in preparation, to be submitted to JHEP.

[64] E. G. for the LHCb collaboration, Mixing and time-dependant CP-Violation in

beauty at LHCb, Rencontres de Moriond EW, 3, 2019. URL: http://moriond.

in2p3.fr/2019/EW/Program.html, last visited on 03/05/2019.

[65] S. Benson et al., Measurements of CP violation in B0
s → J/ψK+K− decays in

the low K+K− mass range with 13 TeV data, , LHCb-ANA-2017-028.

[66] R. E. Schapire, The strength of weak learnability, Machine Learning 5 (1990)

197.

[67] J. H. Friedman, Greedy function approximation: A gradient boosting machine,

The Annals of Statistics 29 (2001) 1189.

[68] H. Voss, A. Hoecker, J. Stelzer, and F. Tegenfeldt, TMVA - Toolkit for Multi-

variate Data Analysis, PoS ACAT (2007) 040.

[69] A. Rogozhnikov, Reweighting with Boosted Decision Trees, J. Phys. Conf. Ser.

762 (2016) , arXiv:1608.05806, URL: https://github.com/arogozhnikov/

hep_ml, last visited on 03/05/2019.

[70] G. Cowan, Statistical data analysis, Oxford University Press, USA, 1998.

[71] L. Kish, Survey sampling, Wiley classics library, J. Wiley, 1965.

[72] F. James and M. Roos, Minuit: A System for Function Minimization and

Analysis of the Parameter Errors and Correlations, Comput. Phys. Commun.

10 (1975) 343.

[73] R. Brun and F. Rademakers, ROOT: An object oriented data analysis frame-

work, Nucl. Instrum. Meth. A389 (1997) 81.

[74] M. Pivk and F. R. Le Diberder, sPlot: A statistical tool to unfold data distri-

butions, Nucl. Instrum. Meth. A555 (2005) 356, arXiv:physics/0402083.

182



Bibliography

[75] W. D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum.

Meth. A552 (2005) 566, arXiv:physics/0503191.

[76] D. Mart́ınez Santos and F. Dupertuis, Mass distributions marginalized over

per-event errors, Nucl. Instrum. Meth. A764 (2014) 150, arXiv:1312.5000.

[77] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-

prime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow,

1986, DESY-F31-86-02.

[78] D. Fazzini, Flavour Tagging in the LHCb experiment, in Proceedings, 6th Large

Hadron Collider Physics Conference (LHCP 2018): Bologna, Italy, June 4-9,

2018, vol. LHCP2018, p. 230, 2018. doi: 10.22323/1.321.0230.

[79] LHCb collaboration, R. Aaij et al., B flavour tagging using charm decays at

the LHCb experiment, JINST 10 (2015) P10005, arXiv:1507.07892.

[80] LHCb collaboration, R. Aaij et al., Opposite-side flavour tagging of B mesons

at the LHCb experiment, Eur. Phys. J. C72 (2012) 2022, arXiv:1202.4979.

[81] LHCb collaboration, R. Aaij et al., A new algorithm for identifying the flavour

of B0
s mesons at LHCb, JINST 11 (2016) P05010, arXiv:1602.07252.

[82] LHCb collaboration, R. Aaij et al., Measurements of the B+, B0, B0
s meson

and Λ0
b baryon lifetimes, JHEP 04 (2014) 114, arXiv:1402.2554.

[83] LHCb collaboration, R. Aaij et al., Measurement of the fragmentation fraction

ratio fs/fd and its dependence on B meson kinematics, JHEP 04 (2013) 001,

arXiv:1301.5286.

[84] E. Cohen, R. F. Riesenfeld, and G. Elbe, Geometric Modeling with Splines: An

Introduction, A. K. Peters, Ltd., Natick, MA, USA, 2001.

[85] C. De Boor, A practical guide to splines; rev. ed., Applied mathematical

sciences, Springer, Berlin, 2001.

[86] T. M. Karbach, G. Raven, and M. Schiller, Decay time integrals in neutral

meson mixing and their efficient evaluation, arXiv:1407.0748.

[87] G. A. Cowan, D. C. Craik, and M. D. Needham, RapidSim: an application

for the fast simulation of heavy-quark hadron decays, Comput. Phys. Commun.

214 (2017) 239, arXiv:1612.07489.

183



Bibliography

[88] V. Baru et al., Flatte-like distributions and the a0(980)/f0(980) mesons, Eur.

Phys. J. A23 (2005) 523, arXiv:nucl-th/0410099.

[89] LHCb collaboration, R. Aaij et al., Resonances and CP -violation in B0
s and

B0
s → J/ψK+K− decays in the mass region above the φ(1020), JHEP 08 (2017)

037, arXiv:1704.08217.

[90] S. S. Wilks, The large-sample distribution of the likelihood ratio for testing

composite hypotheses, Ann. Math. Statist. 9 (1938) 60.

[91] LHCb collaboration, R. Aaij et al., Measurement of resonant and CP

components in B0
s → J/ψπ+π− decays, Phys. Rev. D89 (2014) 092006,

arXiv:1402.6248.

[92] LHCb, R. Aaij et al., Measurement of the CP -violating phase φs from B0
s →

J/ψπ+π− decays in 13 TeV pp collisions, Submitted to: Phys. Lett. B (2019)

arXiv:1903.05530.

[93] LHCb collaboration, R. Aaij et al., Measurement of the CP violating phase

and decay-width difference in B0
s → ψ(2S)φ decays, Phys. Lett. B762 (2016)

253, arXiv:1608.04855.

[94] LHCb collaboration, R. Aaij et al., Measurement of the CP -violating phase φs in

B0
s → D+

s D
−
s decays, Phys. Rev. Lett. 113 (2014) 211801, arXiv:1409.4619.

[95] ATLAS Collaboration, Measurement of the CP violation phase φs in Bs →
J/ψφ decays in ATLAS at 13 TeV, Tech. Rep. ATLAS-CONF-2019-009,

CERN, Geneva, Mar, 2019.

184



Acknowledgments

This thesis would have not been possible without the help of many people. First

of all I have to thank my supervisor Prof. Stephanie Hansmann-Menzemer. She

gave me the chance to start with my PhD in the LHCb group in Heidelberg and

introduced me to the topic presented in this thesis. I am grateful for her trust in

my work that gave me a lot of freedom in what I did. On the other side I profited

a lot from her valuable feedback, no matter if this was on analyses or on the way

how to present them. She also promoted me in my application for the International

Max Planck Research School for Precision Tests of Fundamental Symmetries, which

supported me for most of the time of my PhD studies. I also thank Prof. Ulrich

Uwer as my second supervisor for his valuable comments during the regular LHCb

meetings we had in Heidelberg.

Next, I want to thank the members of my thesis committee, Prof. Ulrich

Glasmacher, Prof. Tilman Plehn and especially Prof. Klaus Reygers who agreed to

be the second referee for my thesis.

I also thank Dr. Michel De Cian and Dr. Sevda Esen who supported me a lot

during my time in the LHCb Heidelberg group. Besides the analysis presented

here, I also developed a fast Kalman filter for the LHCb upgrade and Michel always

provided extremely valuable guidance in these studies. Sevda I want to thank for

her patience when I started to work on what is presented in this thesis. During that

time I had a lot of questions, and it was of great help to have her in Heidelberg.

An analysis as presented here is hardly feasible without a collaboration of many

people contributing to it. I had the fortune to be part of a team that always gave

me the feeling to be a valuable member of it. Although also other people have

contributed, I want to express special thanks to Diego, Francesca, Greig, Jennifer,

Katya, Konstantin, Liming, Miriam, Sevda, Veronika and Wenhua for their always

fruitful collaboration.

At this point, I would also like to thank all members of the LHCb group in

Heidelberg. I am very grateful to have met all these nice people and enjoyed the

time a lot.

Last but for sure not least I thank my family and my friends who always supported

me and also showed interest for what I was doing. In this context, I am particular

thankful to my wife Marissa for her trustfulness in my decision to start my PhD.

185


