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Solving Machine Learning Problems with Biological Principles

Spiking neural networks (SNNs) have been proposed both as models of cortical com-
putation and as candidates for solving problems in machine learning. While increasing
recent works have improved their performances in benchmark discriminative tasks, most
of them learn by surrogates of backpropagation where biological features such as spikes
are regarded more as defects than merits. In this thesis, we explore the generative abili-
ties of SNNs with built-in biological mechanisms. When sampling from high-dimensional
multimodal distributions, models based on general Markov chain Monte Carlo methods
often have the mixing problem that the sampler is easy to get trapped in local minima.
Inspired from traditional annealing or tempering approaches, we demonstrate that in-
creasing the rate of background Poisson noise in an SNN can flatten the energy landscape
and facilitate mixing of the system. In addition, we show that with synaptic short-term
plasticity (STP) the SNN can achieve more efficient mixing by local modulation of ac-
tive attractors and eventually outperforming traditional benchmark models. We reveal
diverse sampling statistics of SNNs induced by STP and finally study its implementation
on conventional machine learning methods. Our work thereby highlights important com-
putational consequences of biological features that might otherwise appear as artifacts
of evolution.

Probleme des maschinellen lernens mit biologischen Prinzipien lösen

Spikende neuronale Netze (SNN) sind vielversprechende Modellsysteme für die Unter-
suchung der Funktionsweise des menschlichen Gehirns. Auch im Bereich des maschinellen
Lernens finden sie zunehmend Verwendung. Obwohl die Leistungsfähigkeit solcher Netze
in letzter Zeit deutlich verbessert wurde, sind die Trainingsmethoden häufig nur Abwand-
lungen des traditionellen Fehlerrückführens, wobei Spikes hier eher als Hindernisse als als
Vorteil gesehen werden. Die vorliegende Arbeit untersucht die generativen Eigenschaften
von SNNs, im besonderen unter Zuhilfenahme biologischer Mechanismen. Ein Beispiel ist
die Aufgabe, Stichproben aus hoch-dimensionalen Verteilungen mit vielen lokalen Minima
zu ziehen. Traditionelle Sampler, basierend auf Markov-Chain-Monte-Carlo-Verfahren,
bleiben dabei häufig in einer dieser Moden gefangen. Inspiriert von traditionellem Simu-
lated Annealing bzw. Tempering, wird in dieser Arbeit gezeigt, dass eine Erhöhung des
Hintergrund-Poisson-Rauschens eines SNNs zu einer Verflachung der Energielandschaft
führt und somit das Mixing verbessert wird. Weiterhin wird gezeigt, dass mit Hilfe
von synaptischer Short-Term-Plasticity (STP) SNNs besseres Mixing zeigen, was auf die
lokale Modulation von Attraktoren zurückgeführt wird. Die Ergebnisse übertreffen in der
Qualität des Mixings die von traditionellen Methoden. Statistische Mae des Samplings
von SNNs mit STP werden entwickelt und ihre Eigenschaften werden auf konventielles
maschinelles Lernen übertragen. Das Ergebnis dieser Arbeit macht deutlich, dass biol-
ogische Eigenschaften nicht nur nicht als Balast der Evolution zu sehen sind, sondern
sogar Vorteile gegenüber traditionellen Herangesehensweisen aufzeigen können.
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1. Introduction

Recently, artificial intelligence has achieved state-of-art or even superhuman perfor-
mances on benchmark datasets such as natural image classification (Krizhevsky et al.,
2012) and language modeling (Devlin et al., 2018), as well as hard practical problems like
computer games (Mnih et al., 2015; Oriol Vinyals, 2019) and Go (Silver et al., 2017).
However, their training is usually task-specific and often requires a huge amount of data
and iterations which are computationally expensive.

In contrast, humans are able to learn from small samples and generalize from knowledge
with low energy consumption. One potential direction for future intelligence system,
therefore, is to take inspiration from underlying biological principles in the brain. Dif-
ferent from conventional artificial neural networks (ANNs) that adopt uniform initial
architectures, information processing in the brain involves intricate interactions between
diverse structures and mechanisms, whose functions still lack sufficient study. Such
explorations can be bottom-up including constructing spiking neural networks (SNNs)
(Maass, 1997) and local synaptic learning rules - an approach also known as neuror-
morphic computing (Mead , 1990), or top-down by developing high-level mechanisms like
reinforcement learning (Sutton and Barto, 2018), attention (Xu et al., 2015; Vaswani
et al., 2017) or meta-learning (Schmidhuber , 1987; Thrun and Pratt , 1998), etc.
Compare to the usual task driven top-down approach which is receiving increasing

popularities, proofs of the computational advantage of SNNs - which are embedded as
core computing frameworks in most existing neuromorphic platforms - over traditional
ANNs are still insufficient, making them uninteresting for the mainstream machine
learning community. The success of deep learning (LeCun et al., 2015) has motivated
efforts to implement similar learning principles in SNNs. While an increasing number
of recent works have improved their performances in benchmark discriminative tasks
(Lee et al., 2016; Neftci et al., 2017; Zenke and Ganguli , 2018), the majority of them
adopt supervised learning and use surrogates of backpropagation where a large amount
of labeled data are still required and certain biological features such as spikes are more
regarded as defects than merits.

Different from discriminative models which usually learn a conditional probability
distribution of the label given the input data, generative models are statistical models of
the joint probability distribution on data and labels. When labels are not provided, the
model can be trained in an unsupervised way where the input can be encoded by latent
variables. Afterward, generation can be done by sampling from those latent variables.
One typical example of these models is the Boltzmann machine (Smolensky , 1986)

whose variants and related deep architectures are among the earliest efficient models in
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1. Introduction

deep learning (Hinton et al., 2006; Salakhutdinov and Hinton, 2009; Dahl et al., 2010;
Srivastava and Salakhutdinov , 2012). Recent works (Buesing et al., 2011; Petrovici et al.,
2013, 2016) have related its dynamics to SNNs. When sampling from high-dimensional
multimodal distributions which are cases for many real-world datasets, models based on
general Markov chain Monte Carlo (MCMC) methods often have the mixing problem
that the sampler is easy to get trapped in local minima. Traditional solutions includes
annealing or tempering algorithms Desjardins et al. (2010a); Salakhutdinov (2010); Ben-
gio et al. (2013). More recent models avoid this problem by replacing MCMC with other
Bayesian approaches (Kingma and Welling , 2013; Goodfellow et al., 2014). However,
these models use backpropagation to transmit a global error signal, which, despite many
recent efforts (Lillicrap et al., 2016; Whittington and Bogacz , 2017; Scellier and Bengio,
2017; Sacramento et al., 2017), is still controversial in terms of biological plausibility.
In this thesis, under a sampling context, we explore the generative abilities of SNNs

and demonstrate how they solve the mixing problem by leveraging built-in biological
mechanisms, i.e. background noise and synaptic short-term plasticity (STP).

Outline

First, we give a brief introduction of generative models and the corresponding mixing
problem. We specifically focus on Boltzmann machines which are used as benchmark
models throughout the work and their learning algorithms (section 2.1). Subsequently,
we discuss the implementation of stochastic sampling on spiking neurons and introduce
the LIF sampling framework (section 2.2).
In chapter 3, we study the influence of noise on the membrane potential distribution

and the activation function of the LIF neuron (section 3.1), based on which we establish
a mapping relation between the rate of background Poisson noise and the temperature
of energy based models (section 3.2). For the functional application of the network, we
further develop a spike-based tempering framework with a noise variation scheme inspired
by neural oscillations and apply it for generation tasks (section 3.3).
In chapter 4, we introduce the biological basis of STP and the Tsodysk-Markram

model. Based on this model, we discuss the functionality of synapses with specific shapes
of PSP envelopes (section 4.1). On a range of dimensions, we demonstrate how STP can
improve the mixing of LIF networks through local modulation of active population and
enable them to outperform conventional approaches in machine learning (section 4.2).
Furthermore, we reveal the effect of STP on the probability distribution of network states,
providing a theoretical explanation for its functionality (section 4.3).
Finally, motivated by the mixing advantage of STP-endowed sampling, we study the

implementation of a similar mechanism on traditional restricted Boltzmann machines
(chapter 5). Potential influence induced from a variation of PSP shape on sampling
is discussed. With preliminary experiments, we demonstrate similar generative perfor-
mances can be achieved by these networks using a different range of STP parameters.
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2. Prerequisites

In this chapter, we first give a brief introduction of generative models and the mixing
problem. Specifically, due to their close connections with spiking neural networks in
dynamics, we will discuss Boltzmann machines which are used as benchmark models for
generative tasks throughout the thesis and their corresponding learning algorithms.
In the second part of this chapter, we introduce the implementation of sampling dy-

namics on both stochastic spiking neurons and the deterministic leaky-integrate and fire
(LIF) neurons. The established LIF sampling network integrated with certain biological
mechanisms will be used for generative tasks in the following chapters.

2.1. Generative networks and the mixing problem

Recently, machine learning and particularly deep learning related approaches have
achieved state-of-art or even superhuman performances on benchmark datasets such as
natural image classification (Krizhevsky et al., 2012) and language modeling (Devlin
et al., 2018), as well as hard practical problems like computer games (Mnih et al., 2015;
Oriol Vinyals, 2019) and Go (Silver et al., 2017). Among them, much of the applications
involve discriminative models which learn the conditional probability distribution of the
target given the input data, and the supervised learning usually requires a huge amount
of labeled data which are expensive or sometimes unavailable.

In contrast, humans, however, are able to learn by much smaller datasets with few
or no labels and even create new samples based on past knowledge or experience. In
machine learning, such functionalities are partially realized by generative models which
are able to learn the distribution of data either in an unsupervised way or in a super-
vised way when provided with targets. These models usually encode the input using
latent variables and the generation process involves sampling from the latent probability
distribution.
One of these generative models is the Boltzmann machine (Smolensky , 1986). And the

corresponding deep architectures are among the earliest efficient models in deep learning
(Hinton et al., 2006; Salakhutdinov and Hinton, 2009; Dahl et al., 2010; Srivastava and
Salakhutdinov , 2012). The learning of BMs depends on Markov chain Monte Carlo
(MCMC) sampling to approximate the model distribution (see section 2.1.2), which often
has the so-called mixing problem (see section 2.1.3) particularly in high dimensional space
that sampling gets stuck in a local minimum and produces correlated samples.
More recent models avoid this problem by substituting MCMC with other techniques.

The variational autoencoder (VAE) (Kingma and Welling , 2013; Rezende et al., 2014)
uses variational inference to approximate the posterior distribution of the latent variable
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2. Prerequisites

and generates through a decoder network. Another model that has recently gained great
popularity is the generative adversarial network (GAN) (Goodfellow et al., 2014) where
learning of the generative network is driven by a discriminative network in order to cheat
it, and generation is performed by sampling from a uniform distribution. However, these
approaches use backpropagation to transmit a global error signal, which, despite many
recent efforts (Lillicrap et al., 2016; Whittington and Bogacz , 2017; Scellier and Bengio,
2017; Sacramento et al., 2017), is still controversial in terms of biological plausibility.
In comparison, the learning of BMs only requires local information. The use of binary

signals also resembles electrical spikes transmitted between synapses. Recent works
(Buesing et al., 2011; Petrovici et al., 2013, 2016) have related its dynamics to spiking
neural networks based on biologically plausible neuron models and its training has
been proved implementable with spike-timing-dependent plasticity (Neftci et al., 2014).
Despite other aspects of it that contradict what has been observed in a biological nerves
system such as the violation of Dale’s law (Dale, 1935) and the requirement of symmet-
rical reciprocal connections. It can still be considered as a sufficiently good prototype to
study neuronal dynamics, especially when related to tasks in high dimensional space.

We will introduce BMs and its learning algorithms in subsequent sections and demon-
strate how certain biological principles can solve its mixing problem in the following
chapters.

2.1.1. Boltzmann machines

A Boltzmann machine (BM) is a type of recurrent neural network which consists of
symmetrically connected binary units. It resembles a Hopfield network except its units
are stochastic. Different from the unit in a Hopfield network whose state is determined
by comparing its input to a hard threshold, a unit i in a BM ’fires’ with a probability
defined by a logistic function:

p(zi = 1) =
1

1 + e−ui
, (2.1)

ui =
J∑
j=1

Wjizj + bi , (2.2)

where zi is the binary state of unit i and ui is its potential which equals to the sum of
input it receives plus its own bias bi, Wji is the symmetric weight connecting units zj
and zi, satisfying Wii = 0 and Wij = Wji.
A BM further defines an energy function on its state {z} as

E(z) = −
∑
i,j

1

2
Wijzizj −

∑
i

bizi , (2.3)

The network assigns a probability to a state vector via the energy function E(z)

p(z) =
1

Z
exp[−E(z)] , (2.4)
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2.1. Generative networks and the mixing problem

Figure 2.1.: Left: A Boltzmann machine with visible units v and hidden units h. W,
L and J are symmetric, zero-diagonal matrices that contain the visible-to-
hidden, visible-to-visible and hidden-to-hidden couplings. Middle: Setting
interaction terms L and J to zero obtains an RBM. Right: A three-layer
DBM. It can be viewed as three RBMs stacked together. (Images taken from
Salakhutdinov and Hinton, 2009).

where Z =
∑

z exp[−E(z)] represents the so-called partition function. The network states
thus follow a Boltzmann distribution. With certain sampling algorithms (usually Gibbs
sampling) the network can update its state and produce samples sequentially, which will
reflect the distribution defined by the model parameters.
The units in a BM can be further subdivided into a set of visible units v, whose states

can be determined by the input , and a set of hidden units h, whose states cannot be
directly determined by the input and act as latent variables (see Fig. 2.1). The energy
of the state {v,h} is then defined as:

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

Wijvihj −
∑
i,i′

1

2
Lii′vivi′ −

∑
j,j′

1

2
Jjj′hjhj′ ,

(2.5)

where vi and hj are the binary states of visible unit i and hidden unit j and ai and bj
are their biases, Wij , Lii′ and Jjj′ represent the visible-to-hidden, visible-to-visible and
hidden-to-hidden connection weights. The probability for a particular state of the visible
units to occur in a BM is given by summing (marginalizing) over all possible hidden
vectors

p(v) =
1

Z

∑
h

exp [−E(v,h)] . (2.6)

When only allowing connections between the visible and hidden units, the network forms
a layered structure and becomes a restricted Boltzmann machine (RBM) (see Fig. 2.1).
During learning, the visible layer receives training data and the hidden layer learns to
model dependencies between the visible units. Hidden units in a way act as feature
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2. Prerequisites

detectors are able to capture complex features of a pattern. The connectivity reduction
leads to faster states update and allows for more efficient learning algorithms than the
ones used for general BMs.
Furthermore, by adding additional layers of hidden units to RBMs, one obtains mul-

tilayer deep architectures such as deep belief networks (DBNs) (Hinton et al., 2006)
and deep Boltzmann machines (DBMs) (see Fig. 2.1) (Salakhutdinov and Hinton, 2009),
with improved efficiency of representing complex distributions (Bengio and LeCun, 2007;
Srivastava and Salakhutdinov , 2012).

2.1.2. Learning of BMs

In practice, when provided with a training dataset, a BM can be trained to represent the
dataset with high probability, corresponding to low energy. Since the stochastic dynamics
of a BM favors state vectors that have low energy values, during the learning process, its
parameters are updated to lower the energy function of the data in the training set.
By differentiating Eq. 2.4 over the weights and using the fact ∂E(z)/∂Wij = −zizj , it

can be shown that

∂p(z)

∂Wij
=

∂

∂Wij

[
e−E(z)∑
z′ e
−E(z′ )

]
= e−E(z) · zi · zj ·

[∑
z′ e
−E(z

′
)
]−1
− e−E(z) ·

[∑
z′ e
−E(z

′
)
]−2
·
∑

z′

[
e−E(z

′
) · z′i · z

′
j

]
= p(z) · zi · zj − p(z)


∑

z
′

[
e−E(z

′
) · z′i · z

′
j

]
∑

z
′ e−E(z

′
)

 , (2.7)

where
∑

z′ is a sum over all possible states of the model. Moving the p(z) from the LHS
of the equation, we get

∂ log p(z)

∂Wij
= zi · zj −


∑

z
′

[
e−E(z

′
) · z′i · z

′
j

]
∑

z
′ e−E(z

′
)

 , (2.8)

which can be further transformed to〈
∂ log p(z)

∂Wij

〉
= 〈 zi · zj 〉data − 〈 zizj 〉model , (2.9)

where 〈 · 〉data denotes an average over all the training samples and 〈 · 〉model denotes the
expectation value of the distribution defined by the model. This can lead to a learning
rule (Hinton, 2010) for performing gradient ascent in the log-probability of the training
data

∆Wij = η(〈 zizj 〉data − 〈 zizj 〉model) , (2.10)

6



2.1. Generative networks and the mixing problem

where η represents the learning rate. The learning rule for the bias bi is the same as in
Eq. 2.9, but with zj omitted:

∆bi = η(〈 zi 〉data − 〈 zi 〉model) . (2.11)

Parameter updates for an RBM follow a similar derivation, except that now we model
the data distribution only with p(v). Differentiating p(v) over the weights yields〈

∂ log p(v)

∂Wij

〉
= 〈 vihj 〉data − 〈 vihj 〉model . (2.12)

which gives a learning rule similar to Eq. 2.10 and 2.11

∆Wij = η(〈 vihj 〉data − 〈 vihj 〉model) (2.13)
∆ai = η(〈 vi 〉data − 〈 vi 〉model) (2.14)
∆bj = η(〈hj 〉data − 〈hj 〉model) , (2.15)

However, different from a fully visible BM where 〈 zizj 〉data can be given by the training
data, the binary state of a hidden unit hj in 〈 vihj 〉data is obtained by evolving the RBM
for one sampling step with the visible units clamped to the input.
The computation of 〈 · 〉model requires the calculation of the partition function of the

model, which becomes exponentially expensive as the number of units increases. As an
alternative, an approximation can be made by drawing an appropriate sample from the
model distribution. Proposed by Hinton (Hinton, 2002), contrastive divergence (CD)
approximates the expectation value for the model distribution by initializing the model
with a training sample and collecting a sample approximating the model distribution after
freely evolving the network for k steps of Gibbs sampling. Although it can be shown that
CD is not actually following the gradient in Eq. 2.9 (Sutskever and Tieleman, 2010), it
has been proven to work well enough in many applications (Hinton, 2010).

2.1.3. The mixing problem

When trained from data, the energy landscape E(z) of a BM is shaped in a way that
assigns low energy values (modes) to the samples in the training data. If this dataset
is composed of very dissimilar classes, training algorithms tend to separate them by
high energy barriers (see Fig. 2.2) (Salakhutdinov , 2010; Breuleux et al., 2010). As
their height grows during training, traditional MCMC sampling methods such as Gibbs
sampling become increasingly ineffective at covering the entire relevant state space es-
pecially for high-dimensional multimodal distributions, as reflected by a high correlation
between consecutive samples (see Fig. 2.2) caused by the component-wise update of
states (Salakhutdinov , 2010; Bengio et al., 2013; Breuleux et al., 2010; Desjardins et al.,
2010b). Consequently, this leads to a poor approximation of the model distribution in
the learning process and will increase the time for the network to converge towards its
underlying distribution after learning.
The ability of a sampling-based generative model to jump across energy barriers, also

known as mixing (see Fig. 2.2), has therefore received significant attention (Marinari
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2. Prerequisites

mixing

energy 
minimum

energy 
barrier

tempering

Figure 2.2.: Upper left: A conceptual plot of the multimodal energy landscape of the
BM formed by training on a high dimensional dataset. Upper right: To
facilitate mixing, tempering methods globally rescale the energy landscape
with a temperature factor and thus make it easier for the network to jump
out from a local minimum. Bottom left: A sequence (per column) of images
generated by an RBM with Gibbs sampling. Due to the large variance in the
energy landscape, Gibbs sampling becomes trapped in a local mode, there-
fore constantly generating similar images. Bottom right: A sequence (per
column) of images generated by an RBM with adaptive simulated tempering
(Salakhutdinov , 2010). Within the same amount of samples, the tempering
method generates more diverse class of images, significantly better in mixing.

and Parisi , 1992; Wang and Landau, 2001; Salakhutdinov , 2010; Bengio et al., 2013). A
plain solution to obtain samples with better mixing property is to run the Markov chain
for a longer time (Tieleman, 2008). However, it assumes a persistent sampling chain
during learning and requires small learning rates, which will eventually reduce the changes
made to the energy landscape and prolong the dwell times in local minima, ultimately
leading to poor generative models (Salakhutdinov , 2010). An alternative approach adopts
annealing or tempering techniques (Marinari and Parisi , 1992; Desjardins et al., 2010b;
Salakhutdinov , 2010). The energy landscape is rescaled by a temperature which controls
the mixing speed of the sampling process:

p(z) =
1

Z
exp[−βE(z)] , (2.16)

8



2.1. Generative networks and the mixing problem

where β ∈ (0, 1] is the temperature which changes dynamically during the network evo-
lution. The energy landscape is globally flattened (β < 1) so that the network is easier
to jump out from a local minimum and cooled down (β = 1) for gathering valid samples
(Fig. 2.2). While greatly increasing the mixing capabilities of generative networks, it
is important to note that all tempering schedules come with a cost of their own, both
because they require additional computations and because they only gather valid samples
at low temperatures, thereby effectively slowing down the sampling process.

2.1.4. Solutions to the mixing problem

We now introduce a tempering algorithm called adaptive simulated tempering (AST)
(Salakhutdinov , 2010) which we used in following mixing experiments. It can also be
further integrated to form an efficient learning algorithm called coupled adaptive sim-
ulated tempering (CAST) (Salakhutdinov , 2010), which we use in large size RBMs for
high-dimensional learning tasks in subsequent chapters.
AST is a combination of simulated tempering (ST) (Marinari and Parisi , 1992) and

the Wang-Landau (WL) algorithm (Wang and Landau, 2001). The WL algorithm is
used to approximate the partition functions in ST, which are originally computationally
intractable. In AST, states z(t+ 1) are updated by Gibbs sampling from the conditional
distribution p(z|βT ). After each state update, the inverse temperature β is itself updated
by an adaptive rule that ensures the algorithm spends a roughly equal amount of time at
each value. Details of the AST algorithm is described in table 2.1. The CAST algorithm

Table 2.1.: Adaptive simulated tempering

1: Given adaptive weights {gk}Kk=1 and the initial configuration of the
state z1 at temperature 1, k = 1:

2: for t = 1 : T (number of iterations) do
3: Given zt, sample a new state zt+1 from p(z|kt)

by Gibbs sampling.
4: Given kt, sample kt+1 from proposal distribution q(kt+1 ← kt).

Accept with probability: min
(

1,
p(zt+1,kt+1)q(kt←kt+1)gkt
p(zt+1,kn)q(kt+1←kt)gkt+1

)
5: Update adaptive adjusting factors:

gt+1
i = gti(1 + γtI(kt+1 = i)), i = 1, ...,K.

6: end for
7: Collect data: Obtain (dependent) samples from target distribution

p(z) by keeping k = 1.

improves mixing during the learning process of the RBM. In CAST, two instances of the
RBM are simulated in parallel, with one of them staying at a constant inverse temperature
β = 1 for parameter update using persistent contrastive divergence (PCD) (slow chain)
(Tieleman, 2008) and the other one using adaptive simulated tempering (AST) for mixing

9



2. Prerequisites

(fast chain). The states of the two RBMs are swapped constantly to help the slow chain
jump out of local minima during parameter updating. A draft of the algorithm is plotted
in Fig. 2.3.

AST

PCD

Figure 2.3.: Double-chain system of CAST. The network parameters are updated by
PCD, while AST facilitates mixing by adaptively changing the global en-
ergy landscape. It is easier for the network to jump out of local minima
when energy barriers are lower. The state is swapped between the AST and
PCD chain when the former reaches a state with temperature equals 1, i.e.
recovers to the original target distribution.
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2.2. Stochastic sampling with spiking neurons

2.2. Stochastic sampling with spiking neurons

The sampling dynamics of generative neural networks discussed in the previous section
depends largely on the stochastic nature of their units. In this section, we will demon-
strate how stochastic sampling is implemented on the seemly incompatible, deterministic
biological plausible spiking neurons. As a start, we first create a link between MCMC
sampling and the firing activity of simplified, abstract spiking neurons.

2.2.1. Sampling with abstract neurons

The work from Buesing et al. (2011) proposed a model of abstract spiking neuron (ASNs)
with finite time postsynaptic potentials (PSPs) and refractory mechanisms, which is able
to implement irreversible MCMC sampling.
In the ASN model, the firing activity of the network at time t is represented by a

binary vector (z1, ..., zK) as follows:

zk(t) = 1⇔ neuron k has fired within the time interval (t− τ, t] ,

meaning that a spike of neuron k sets the value of the associated binary variable zk to
1 for a duration of τ . Further, the membrane potential uk(t) of neuron k at time t is
defined by the so-called neural computability condition (NCC):

uk(t) = log
p(zk(t) = 1|z\k(t))
p(zk(t) = 0|z\k(t))

, (2.17)

wherez\k(t) are the firing states of all other units with i 6= k. For the Boltzmann
distribution, plugging its formulation (Eq. 2.4) into the NCC gives a membrane potential
of the form:

uk(t) = bk +
I∑
i=1

Wkizi(t) , (2.18)

where bk is the bias of neuron k which regulates its excitability, Wki is the synaptic
strength between neuron k and i. Wkizi(t) thus represents the time course of the post-
synaptic potential in neuron k triggered by the spike of neuron i.
In order to specify exactly when the neuron has fired within the time interval (t− τ, t],

additional non-binary variables (ζ1, ..., ζK) are introduced. The auxiliary variable record
the finite length of the refractory process once the corresponding neuron has fired. In
discrete time and for a neuron with an absolute refractory mechanism , the dynamics of
ζk is defined in the following way: ζk is set to τ (the refractory period) when neuron k
fires, and decays by 1 in each subsequent discrete time step (see figure 2.4). The neuron
can only spike if ζk ≤ 1 and the spiking probability is defined by

p [zk(t) = 1|ζk(t) ∈ {0, 1}, uk(t)] = σ(uk − log τ) , (2.19)

11



2. Prerequisites

Figure 2.4.: Left: A schematic of the internal state variable ζk of a neuron k with an
absolute refractory period. During the refractory period, ζk decays by 1 in
each subsequent discrete time step and is reset to τ when the neuron fires
again. The neuron can only fire in the resting state ζk = 0 and in the
last refractory state ζk = 1, with a probability defined by a logistic function.
(Image is taken from Buesing et al., 2011). Right: The figure shows example
traces of z, ζ and u of a single neuron for 100 sampling steps in a network
of 100 neurons with randomly selected weights and biases. The refractory
period τ is chosen to be 20. While the membrane potential u is updated at
every discrete time step, ζ decreases from τ to 1 in a fixed manner during
the refractory period, and is reset to τ at z = 1 or z = 0 with a probability
depending on the value of u at that time. The state of the neuron z is set
to 1 during the refractory period, otherwise 0.

where σ(x) = (1 + e−x)−1 is the logistic function, and when τ = 1 it resembles the
activation function of a unit in BM. Figure 2.4 illustrates how zk, ζk and uk evolve
during a sampling process in discrete time.
Having the three variables defined for the ASN model, Buesing et al. (2011) further

demonstrated with rigorous mathematical proves that the network dynamics suffices the
invariance property of probabilistic inference. And, in the particular case of applying the
Boltzmann distribution in the NCC, one can construct a BM based on ASNs.

2.2.2. Spiking activity of single LIF neuron in the high-conductance state

In contrast to the ASN model which fires according to a certain probability, neurons in
vitro experiments and in biological plausible neural circuits are highly deterministic: the
neuron spikes when its membrane potential is above a certain threshold. An often-used
model with such properties is the leaky integrate-and-fire (LIF) neuron model, with its

12



2.2. Stochastic sampling with spiking neurons

membrane potential u described by the ODE

Cm
du

dt
= gl(El − u) + I(t) , (2.20)

where Cm is the membrane capacitance, gl and El the leak conductance and potential,
and I the input current. When u crosses a threshold ϑ from below, a spike is emitted,
which causes the membrane to be clamped to a reset potential for a duration equal to
the refractory period of τref . The synaptic current is modeled as a sum of exponential
kernels triggered by presynaptic spikes s with a synaptic time constant τsyn and weighted
by synaptic efficacy wi and reversal potentials Erev

i :

Isyn(t) =
∑

s

∑
iwi (Erev

i − u) exp [−(t− ts)/τsyn] . (2.21)

In a noisy environment, the total input current I to a neuron can be partitioned
into recurrent synaptic input, diffuse synaptic noise and additional external currents:
I = Irec + Inoise + Iext. For the analysis of individual neurons, Irec and Iext can be
set to zero. When a neuron receives enough synaptic stimulation, it enters a so-called
high-conductance state (HCS), in which the neuron is "driven" by synaptic inputs rather
than being dominated by its intrinsic dynamics, and usually characterized by accelerated
membrane dynamics. In the high input rate circumstance, the equation governing the
membrane potential can then be written as

τeff
du

dt
= ueff − u (2.22)

ueff =
glEl

〈 gtot 〉
+

∑
i g

noise
i Erev

i

〈 gtot 〉
, (2.23)

with 〈 · 〉 denoting the mean and gnoise
i representing the total conductance at the ith

synapse. The membrane time constant τm = Cm/gl in Eq. 2.20 is replaced by an
effective time constant τeff = Cm/gtot, with the total conductance gtot subsuming both
leakage and synaptic conductance. In a first-order approximation, τeff can be considered
very small in the HCS, resulting in u ≈ ueff , with the effective potential ueff simply being
a linear transformation of the synaptic noise input.

Derived from the approach in Ricciardi and Sacerdote (1979), Petrovici et al. (2013) have
shown that, if stimulated by a large number of uncorrelated spike sources, the synaptic
current Inoise - and therefore, also ueff - can be described as an Ornstein-Uhlenbeck (OU)
process

du(t) = θ · (µ− u(t)) +Σ · dW (t) , (2.24)
where W (t) represents the Wiener process, with parameters

θ =
1

τsyn
(2.25)

µ =
Iext + glEl + ΣiνiwiE

rev
i τsyn

〈 gtot 〉
(2.26)

Σ2 =
∑
i

νiw
2
i (E

rev
i − µ)2τsyn/

〈
g2

tot

〉
, (2.27)
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where νi represents the input rate at the ith noise synapse.
Based on the comprehensive description of the free membrane potential dynamics, an

activation function of the LIF neuron in a spiking noisy environment can be derived when
a firing threshold is introduced (Petrovici et al., 2013). Analogously to the ASN model,
a neuron with a freely evolving membrane potential is said to be in the state zk = 0 and
switches to the state zk = 1 upon firing, where it stays for the duration of the refractory
period (see Fig. 2.5). For neuron membrane dynamics with a reset mechanism, two

T

U3

U2

U1

z 0
1
0

1
1
0

0
0
1

Figure 2.5.: Interpretation of states as samples in a spiking network. The plot shows
membrane potential traces of three neurons and their corresponding binary
states interpretation. When an LIF neuron is in a refractory period its state
is defined as zk = 1, otherwise as zk = 0.

modes can be observed: the "bursting" mode, where the effective membrane potential
after the refractory period is still above the threshold, and the freely evolving mode,
where the neuron does not spike again immediately after the refractory period. Denoting
the relative occurrence of burst lengths n by Pn and the average duration of the freely
evolving mode that follows an n-spike-burst by Tn, the following relation can be derived:

p(z = 1) =

∑
n Pn · n · τref∑

n Pn ·
(
nτref +

∑n−1
k=1 τ

b
k + Tn

) , (2.28)

where τb
k represents the average drift time from the reset to the threshold potential

following the kth refractory period within a burst. The calculation of Pn, Tn and τb
k

depend on all neuron and noise parameters, where Pn, Tn can be computed recursively1.
Petrovici et al. (2016) demonstrated that, under HCS created by independent excitatory
and inhibitory Poisson input noise with certain frequencies, the firing probability of the
LIF neuron as a function of its mean membrane potential2 resembles a logistic function
(see figure 2.6). The LIF neuron can thus closely approximate the spiking activity of the
ASN model.

1For detailed derivation see Petrovici (2016).
2The mean membrane potential can be determined by leak potential or external input currents.
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2.2. Stochastic sampling with spiking neurons

Figure 2.6.: The activation function of a LIF neuron. Theoretical prediction (red) vs.
simulation results (green). A logistic function σ(ū) (red) is fitted to the
prediction.

2.2.3. Sampling with LIF networks

Based on the logistic activation function, we can construct a sampling framework based
on LIF neurons by mapping the corresponding ASN network parameters to the LIF
domain. For a single ASN without recurrent synaptic connections, its firing probability
is fully determined by its bias (see Eq. 2.18), which can be translated to the LIF domain
as:

bk = (ūbk − ū0
k)/α , (2.29)

where k is the neuron index, ūbk denotes the mean free membrane potential, ū0
k is the

mean free potential when the neuron has a firing probability of 0.5 and α is a scaling
factor.
The synaptic efficacy in the LIF domain is estimated by making the impact of a pre-

synaptic spike on the post-synaptic neuron the same as the one in the ASN model.
Specifically, the impact is an average interaction and can be calculated as the integrated
area of PSPs for a duration of the refractory period (see figure 2.7). The synaptic weights
translation can thus be written down as (Petrovici et al., 2013):

Wkj = 1
αCm

wkj(Erev
kj −µ)

1− τsyn
τeff

[
τsyn(e−1 − 1)−τeff

(
e
− τsyn
τeff − 1

)]
. (2.30)

where wkj is the synaptic weight in the LIF domain projecting from neuron k to j, Erev
j is

the reversal potential for synapse wkj . Furthermore, short-term synaptic depression (see
section 4.1 for details) was employed to approximate the theoretically optimal rectangular
PSP shape for consecutive spikes (bursts). This setup of parameter translations allows an
accurate sampling of LIF networks from target Boltzmann distributions, as demonstrated
in Fig. 2.7.
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Figure 2.7.: Left: Sketch of synaptic weight translation. The synaptic efficacy in the
LIF domain is estimated by making the impact of a pre-synaptic spike on
the post-synaptic neuron the same as the one in the ASN model which is
a rectangle. Middle: Sampled distribution of a fully connected 4-neuron
LIF network vs. target distribution. Right: Evolution of Kullback-Leibler
divergence between sampled (pN) and target (pB) distribution for 5 different
random seeds.
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In the previous chapter, we have shown that a network consisting of LIF neurons can ap-
proximate the dynamics of stochastic sampling. Specifically, when the activation function
of the LIF neuron is calibrated to well fit a logistic function under Poisson background
noise, the network is able to closely match the statistics of Gibbs sampling in a Boltzmann
distribution after appropriate parameter translations. However, this close approximation
also inherits the mixing problem of traditional Boltzmann machines, particularly when
sampling from high dimensional multimodal distributions, as discussed in section 2.1.3.
In this chapter, we demonstrate that instead of using a homogeneous Poisson noise,

a variation of noise rate can change the slope of the activation function of individual
neurons which leads to a rescaling of the global energy landscape. This enables the
network to jump out of local attractors and facilitates mixing. The approach is analogous
to principles in traditional annealing or tempering algorithms, therefore, we named it as
spike-based tempering.

To start with, in section 3.1, we will first discuss how noise modulates the mem-
brane potential distribution of the LIF neuron and its further influences on the shape of
the activation function. Based on this, in section 3.2, through theoretical calculation,
we derive a mapping relation between the temperature defined for energy based models
and the rate of background Poisson noise in LIF sampling networks. In addition, we
demonstrate how to counteract the shift of activation functions induced from the reset
mechanism by using imbalanced excitatory and inhibitory noise. In section 3.3, inspired
by neural oscillations observed in the cortex, we develop a rate variation scheme for the
background noise and apply the LIF network to high dimensional image generation tasks
where we test the mixing performance. In the end, with a quantitative measurement of
mixing, we search for an optimal configuration of noise parameters.

The work described in this chapter are collaborate works with Agnes Korcsák-Gorzó
(Korcsak-Gorzo, 2017) and are currently preparing for publication. Mihai A. Petrovici
also offered a lot of insightful advice during the discussion. The corresponding simulator
module based on PyNN (Davison et al., 2008) is developed by Agnes Korcsák-Gorzó
and Oliver Breitwieser. The neuron parameters for all simulations in this chapter are
described in appendix A.2.1 unless specifically mentioned.
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3. LIF networks with temperatures

3.1. Dynamics of LIF neurons under varying background
noise

To sample accurately from a target distribution, the LIF sampling framework relies on
Poisson noise with a constant input rate. In this section, we will investigate how varying
background noise modulates the activation function of LIF neurons.

3.1.1. Free membrane potential dynamics under Poisson noise

Figure 3.1.: Left: Histogram of the free membrane potential of a LIF neuron in a simu-
lation for 10 seconds (transparent colored area) and fitted with a Gaussian
(envelope line). The simulation is performed for balanced Poisson noise of 2
kHz (blue), 5 kHz (orange) and 10 kHz (green). With increasing rates the
variance of the membrane potential increases. Right: The free membrane
potential distributions (transparent colored area) opposed to distribution
with a threshold potential (colored areas) for balanced input of 2 kHz (blue)
and 10 kHz (green). The threshold potential is set identical to the resting
potential -50 mV (gray dashed line). The vertical line at the reset membrane
potential -50.01 mV (green overlays blue) corresponds to the reset states
after the spikes. At the reset potential even more states are accumulated,
which are cut off for clarity. Figure is taken from Korcsak-Gorzo (2017).

The dynamics and statistics of Poisson-driven LIF neurons were nicely elaborated in
Petrovici (2016). According to the work, when the Poisson rate is high enough (HCS),
the mean and variance of the membrane potential of a current-based (CUBA) LIF neuron
can be expressed as

E[u] = El +
Iext

gl
+

∑n
k=1wkνkτ

syn
k

gl
, (3.1)

Var [u] =

n∑
k=1

[
τmτ

syn
k

Cm(τm − τ syn
k )

]2

w2
kνk

(
τm

2
+
τ syn
k

2
− 2

τmτ
syn
k

τm + τ syn
k

)
. (3.2)

18
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where wk and νk are the synaptic weight and rate of the corresponding input noise. The
expressions for a conductance-based (COBA) LIF neuron are:

E[u] =
glEl + Iext +

∑
k wkνkτ

syn
k Erev

k

gl +
∑

k wkνkτ
syn
k

, (3.3)

Var [u] =

n∑
k=1

[
〈 τeff 〉 τ syn

k (Erev
k − 〈ueff 〉)

Cm(〈 τeff 〉 − τ syn
k )

]2

w2
kνk

(
〈 τeff 〉

2
+
τ syn
k

2
− 2

〈 τeff 〉 τ syn
k

〈 τeff 〉+ τ syn
k

)
(3.4)

where 〈ueff 〉 equals E[u] and 〈 τeff 〉 takes the form

〈 τeff 〉 =
Cm

gl +
∑

k wkνkτ
syn
k

. (3.5)

Under HCS, according to the central limit theorem, the free membrane potential of a
LIF neuron will follow a Gaussian distribution. For both CUBA and COBA neurons, it
can be seen that Var [u] is proportional to the noise input rate νk and the squared input
weight wk . Changing these two terms leads to a change in the width of the Gaussian
distribution (Fig. 3.1 left). This results in a slope change in the cumulative function
of the Gaussian, which approximates the change of the activation function. This role
played by the noise laid the theoretical foundation of spike-based tempering.

3.1.2. Activation functions under varying background noise

For a single LIF neuron embedded in a noisy background without external input from
other neurons, its activation function can be measured by the proportion of its spiking
period (refractory duration multiply the number of spikes) over the total simulation time
on a range of mean membrane potentials.
As we know from the previous section, an increasing noise rate or input weight will

lead to the broadening of the membrane potential distribution. Its influence on the
activation function can be briefly illustrated. For the case when the mean membrane
potential is smaller than the threshold, a neuron with a broader membrane potential
distribution will have a larger distributed area above the threshold than a neuron with a
narrower membrane potential distribution (see Fig. 3.2 left), leading to elevated spiking
probabilities, corresponding to a more flattened slope (see Fig. 3.3). Similarly, for the
case when the mean membrane potential is larger than the threshold, a neuron with a
broader membrane potential distribution will have a larger distributed area below the
threshold than a neuron with a narrower membrane potential distribution (see Fig. 3.2
right), leading to a decrease of spiking probabilities, which also corresponds to a more
flattened slope (see Fig. 3.3).
However, the above analysis is only an approximation. In practice, the influence of

the threshold and reset mechanism distorts the original membrane potential distribution,
especially near the threshold (see Fig. 3.1 right). Intuitively, it occurs due to the mem-
brane potential can no longer evolve to the nearby region of the threshold from values
above. The reset mechanism allocates all membrane potential above the threshold to the
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Figure 3.2.: Left: Membrane potential distribution when the mean membrane potential
is below the threshold. The shaded area indicates the membrane potential
above the threshold. It can be clearly seen that the broader the distribution,
the larger this area. Right: Membrane potential distribution when the mean
membrane potential is above the threshold. The shaded area indicates the
membrane potential bellow the threshold. The broader the distribution, the
larger this area.

Figure 3.3.: Left: Activation functions with balanced excitatory and inhibitory noise
of 0.5 (blue), 2 (orange), 9 (green) kHz and 0.002 nA synaptic weights.
With increasing noise rate, the slope decreases and the activation function is
shifted to the left. Right: Activation functions with balanced excitatory and
inhibitory noise of 2 kHz and different synaptic weights of 0.002 (blue), 0.01
(orange), 0.02 (green) nA. With increasing weight, the slope decreases and
the activation function is shifted to the left. Figure is taken from Korcsak-
Gorzo (2017).

reset potential immediately. The distortion eventually leads to a shift of the activation
function, which can be seen from Fig. 3.3. However, the activation functions seem always
cross at a particular point. For further investigation, we swept over a range of noise rates
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and found the cross point at a firing probability of approximately 0.8 (see Fig. 3.4)1.
At this specific mean membrane potential, the firing probability is stable independent

Figure 3.4.: Sigmoid functions fitted to activation functions of a LIF neuron, calibrated
on 2 kHz under different balanced noise rates: 0.4, 0.5, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10 kHz. All lines cross at a firing probability of approximately 0.8. A
close-up of the area between the gray lines in the left plot is on the right.
Figure is taken from Korcsak-Gorzo (2017).

of the value of the balanced noise rate pair. The position of the crossing point could
be important for potential functional applications. Further investigation is needed to
understand this phenomenon.

1Value might differ for other neuron parameters
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3.2. From noise to temperatures

In annealing or tempering approaches, the inverse temperature of the system varies be-
tween 0 and 1 in order to modify the attractor strength of the energy landscape. For
functional use of the noise, we need to derive a mapping relation between the temperature
and the noise.

3.2.1. Mapping temperature to the slope of activation function

We first derive the relation between the temperature and the slope of the activation
function. The activation function of a unit in a Boltzmann machine with temperature β
is defined as a logistic function

p(zi = 1) =
1

1 + e−βui
, (3.6)

ui = bi +
J∑
j=1

Wjizj , (3.7)

The activation function of a LIF neuron is fitted by

p(z = 1) =
1

1 + e−(u−up0.5)/α
(3.8)

where up0.5 is the mean membrane potential when the neuron fires at a probability of
0.5, α denotes the slope. Comparison between Eq. 3.6 and Eq. 3.8 reveals the relation
between α and β. Since β is unit free and varies between 0 to 1, we need to set a certain
α0 for reference as the equivalent of β0 = 1, which leads to the following mapping relation

βn =
α0

αn
(3.9)

3.2.2. Mapping noise to the slope of activation function

The shape of the activation function of a LIF neuron can be approximated by the cumu-
lative distribution function (CDF) of the free membrane potential. Since the membrane
distribution is modulated by the noise, we can then derive the relation between the noise
and the slope of the activation function α.
The probability density function of a Gaussian is given by

PDF(x|µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
(3.10)

where x is the random variable, µ the mean and σ2 the variance. The CDF is defined as
the integral over the probability density function from minus infinity to x

CDF(x|µ, σ) =
1

2

[
1 + erf

(x− µ
σ
√

2

)]
(3.11)
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where the error function is defined as

erf(x) =
1√
π

∫ x

−x
e−t

2
dt =

2√
π

∫ x

0
e−t

2
dt (3.12)

Consider the case when the CDF is at the center (µ = 0), the same as with the LIF
activation function in Eq. 3.8 (up0.5 = 0) and set their slope (derivative) to be equal at
x = 0:

∂xCDF|x=0 =
1√

2πσ2
e−

x2

2σ2 |x=0 =
1√
2πσ

(3.13)

∂xσ(x)|x=0 =
1

α

e−
x
α

(1 + e−
x
α )2
|x=0 =

1

4α
(3.14)

1√
2πσ

=
1

4α
(3.15)

The 0th order approximation yields the dependency of the slope on the variance of the
membrane potential distribution

α =
1

4

√
2πσ . (3.16)

This estimate can be used as an initial value for the fit of the activation function in the
LIF sampling framework. The dependence of the variance on the noise rate (Eq. 3.2,
3.4) further yields

1

β
∼ α ∝ σ ∝

√
ν (3.17)

This approximation can be further verified from simulation. The resulting temperature
(inverse alpha ratio) values of a range of input noise rates are plotted in Fig. 3.5. The
logarithmic plot shows a linear dependence based on which we calculate the underlying
power law

β =
α0

α
= const · νm (3.18)

Taking the logarithm of both sides and solving for the power m by plugging into two
data points

m =
log
(β1

β2

)
log
(
ν1
ν2

) (3.19)

gives a value of m of approximately -0.5, which leads to

β =
α0

α
∼ 1√

ν
. (3.20)

This result matches our previous approximation in Eq. 3.17. Fig. 3.6 further shows the
close match between the prediction and simulation.
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Figure 3.5.: Simulation results of temperature values (inverse alpha ratio) corresponding
to input noise rates. The reference noise rate and its corresponding β value
are marked with gray dashed lines. Left: Display with linear scales. Right:
Display with logarithmic scales. Figure is taken from Korcsak-Gorzo (2017).

Figure 3.6.: Left: Simulated temperature values versus predicted values calculated from
Eq. 3.16. Right: α from simulation and prediction calculated from Eq.
3.16. Both results show generally good accordance. Figure is taken from
Korcsak-Gorzo (2017).

3.2.3. Calibration of the activation function

After establishing the mapping between noise and temperature, the final step is to adjust
the horizontal shift of activation functions caused by the reset mechanism (see Fig. 3.3),
which can be achieved by changing the mean membrane potential of the neuron. In the
following, we take CUBA type LIF neuron as an example.
For a single CUBA LIF neuron under excitatory and inhibitory Poisson noise input,

its mean membrane potential is calculated according to Eq. 3.1 as

E[u] = El +
Iext + weνeτ

syn
e + wiνiτ

syn
i

gl
(3.21)
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where Iext can be set to zero. In the case of balanced noise input, the inhibitory weight
wi has a negative sign so that the inhibitory noise term cancels the excitatory, and the
mean membrane potential is fully determined by El. To change E[u], one can modify
Iext, or break the balance of the input noise by changing w or ν. In practice, considering
biological plausibility and the potential need to change the temperature continuously, we
take the rate of the noise as the means of modulation. This approach of varying the rate
of the background noise also resembles neural oscillations observed in the brain.
We take a benchmark noise rate of 2 kHz, where the shift of up0.5 of other rates is

measured from. For other noise rates, we sweep a number of inhibitory rates, below
and above the excitatory rate. The resulting shift values for the pairs of excitatory and
inhibitory rates are plotted in Fig. 3.7 and encoded by color. The blue line corresponds
to the balanced case with rexc = rinh . The black circles mark the noise pairs that
diminish the shift closest to zero. In this way, we collect a set of noise pairs that can
be better mapped to temperatures. The right plot of Fig. 3.7 shows three calibrated
activation functions (solid lines) achieved with the noise pairs we found. The dashed
lines correspond to the activation function before calibration with balanced input noise.

Figure 3.7.: Left: Determination of the shift-compensating inhibitory rates. The x-axis
corresponds to the excitatory rate and the y-axis to the inhibitory rate. The
excitatory rate values are chosen in equal distances between 400 Hz and 10
kHz. A neuron is stimulated by each noise rate pair and the corresponding
shift of up0.5 value of the activation function is plotted encoded by color.
The blue line corresponds to the case of balanced excitatory and inhibitory.
Black circles denote the inhibitory rates that reduce the shift closest to 0.
Right: Activation functions with shift-compensating inhibitory rates (solid
lines) compared to balanced noise input (dashed lines) for different rates:
0.4 (blue), 2 kHz (orange) and 9 kHz (green). The activation function cor-
responding to the reference rate at 2 kHz, stays unchanged. The other two
functions are shifted by adjusting the inhibitory noise rate until the inflection
points overlap at a spike probability of 0.5, marked with a dashed gray line.
Figure is taken from Korcsak-Gorzo (2017).
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3. LIF networks with temperatures

3.3. Spike-based tempering

In this section, based on the noise to temperature mapping, we develop LIF networks
with background Poisson noise of varying rates and apply them for generation tasks on
the MNIST handwritten digits (LeCun, 1998). We first describe the design of the rate
variation schemes.

3.3.1. Rate variation schemes

As a reference of the rate variation scheme, we take AST (Salakhutdinov , 2010) described
in section 2.1.4 where the inverse temperature β of the system varies between 0 and 1
(see Eq. 2.16). Presumably, the rate variation range needs to cover a certain region of
the temperature values after mapping, with higher rates (corresponding to low inverse
temperatures) facilitating mixing and smaller rates stabilizing the generated pattern.
However, changing the noise rates influences the sampling approximation of the LIF
network as the neuron needs high-conductance state for diffusion approximation (see
section 2.2). Intuitively, the sampling accuracy decays when the noise rates become
too small. To find an appropriate range of noise rates, we need to study the quality of
different noise rates in terms of sampling accuracy.

We construct a small LIF-based RBM with 10 neurons and measure the sampling
accuracy using the Kullback-Leibler divergence (DKL). The weights and biases of the
RBM are randomly drawn from a beta distribution, whose probability density function
is expressed as

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1 (3.22)

B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt (3.23)

where α and beta are the non-negative shape parameters, B(α, β) is the normalization
function which ensures the integral over the total probability equals 1. The uniform dis-
tribution corresponds to an α and β of 1. By changing these parameters, the probability
mass of the distribution can be modulated. Here, we follow the setup in Petrovici et al.
(2016) (see Fig. 3.8) which reads:

W, b ∼ 1.2 · (f(x; 0.5, 0.5)− 0.5) (3.24)

These settings ensure dissimilar distributions comprising several orders of magnitude and
a linear projection on values in [-0.6, 0.6].
The simulation result can be seen in Fig. 3.9. Each noise rate is simulated with 10

different random seeds for initialization. The DKL time course with Gibbs sampling on
the traditional RBM is included for comparison, which converges to the target distri-
bution for an infinite time. Opposed to that LIF sampling converges to a higher value
since it only approximates sampling. We observe that smaller rates lead to higher DKL
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3.3. Spike-based tempering

Figure 3.8.: Histogram of the beta distribution from which the network parameters are
sampled from. The histogram is retrieved from 105 samples. Figure is taken
from Korcsak-Gorzo (2017).

values following our expectation, and rates from 400 Hz converge to similar small values.
Based on this, we select 400 Hz as the lower boundary of the chosen rate range and 10
kHz as the upper.

Figure 3.9.: DKL time course for a 10 unit LIF-based BM stimulated with 10 rates be-
tween 10 Hz and 10 kHz. Gibbs sampling is included as a reference. The
lines correspond to the mean value from 10 different random seed initializa-
tions. For rates from 400 Hz to 10 kHz, the converged lines are sufficiently
close, which establishes the range for the experiments. Figure is taken from
Korcsak-Gorzo (2017).

Inspired from the wave patterns in neural oscillations, we adopt a sinusoidal rate
variation scheme which ensure that it will oscillate around the reference rate (corre-
sponding to β = 1) and visit both higher and lower rates. The sinusoidal scheme is
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3. LIF networks with temperatures

defined as

y = a · sin[b(x+ c)] + d (3.25)

where d is the shift along the y-axis, a is the amplitude of the sine function, c is the phase
and b is the scale factor along the x-axis and encodes the period length. In practice,
since the PyNN-NEST simulator requires a certain duration for a certain rate (minimum
duration is 0.1 ms), we use a discretized sine function and approximate it with stepwise
constants. An example is depicted in Fig. 3.10 left.

Figure 3.10.: Left: An example of the sinusoidal variation of excitatory and inhibitory
Poisson noise rates between 0.4 and 4 kHz with a period length of 1s (cor-
responding to beta variation of approximately 2 to 0.5). The corresponding
inhibitory rate is adjusted accordingly to compensate for the shift of acti-
vation function as described in section 3.2.3. At the reference rate (corre-
sponding to β = 1) of 2 kHz inhibitory and excitatory rates overlap. The
length of the red and blue dashes indicates how long the respective rate is
present. The step size here is 25 ms. Right: Sampling accuracy of the
LIF network under varying noise with different discretized step sizes. We
stimulate a LIF-based RBM with noise of sinusoidal varying rates, which is
discretized linearly in time in a 1000 s long simulation. The minimal rate
is at 400 Hz and the maximal rate at 10 kHz. The DKL between the simu-
lated and the theoretical joint distribution is plotted over step sizes 1, 2, 5,
10, 25, 50, 100 and 250 ms. The standard deviations (bars) are gained from
10 different random seed initializations. The DKL values are distributed in
a close range leading to the conclusion that the step size is not critical for
sampling accuracy. Figure is taken from Korcsak-Gorzo (2017).

To test the sampling accuracy of the LIF network under noise with varying rates, we
measure the DKL of a small network of 5 neurons. We compare the theoretical with
the simulated joint distribution, once over all rates and once specifically at the reference
rate. For the theoretical distribution, we calculate the target distribution for different
rates by mapping them to corresponding temperatures, and finally make an average for
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3.3. Spike-based tempering

each state configuration for the histogram. The results are depicted in Fig. 3.11. In
both cases, simulation and theory are in good accordance.

Figure 3.11.: Comparison between simulated and theoretical joint distribution. The joint
distribution shows the probability of all possible state permutations of the
binary states of the 5 samplers. The states are retrieved from a single sim-
ulation of a 5-unit LIF-based RBM, stimulated with sinusoidally varying
Poisson noise. The minimal rate is 400 Hz, the maximal rate is 10 kHz and
the reference rate is 2 kHz. 100 sine periods are simulated with equal step
size of 10 ms. Left: Averaged over all rates in the simulated distribution
and all β’s in the theoretical distribution. The simulated distribution ap-
proximates the theoretical well. Right: Specifically for the reference rate
corresponding to β = 1 , i.e., 2 kHz. The simulated distribution approxi-
mates the theoretical well. Figure is taken from Korcsak-Gorzo (2017).

We further investigate the effects of different step sizes on the sampling accuracy
of the network. A LIF-RBM is simulated with noise of sinusoidal varying rate discretized
linearly in time in a 1000 second long simulation. The sine period is set to 1 second.
Results (see Fig. 3.10 right) show that step sizes in a certain range (from 1 to 250 ms)
leads to similar DKL values.

3.3.2. Image generation tasks

In this section, we apply the spike-based tempering approach in image generation tasks
and compare its performance with other sampling methods. We construct an RBM
with 784 visible and 400 hidden units and train it with the CAST algorithm (for details
of the training see appendix) on 1000 samples (100 random samples from each class)
draw from the MNIST handwritten digit dataset. The trained network parameters are
then mapped to the LIF domain. Three other approaches are used for comparison, i.e.
RBM with Gibbs sampling and AST algorithm, and LIF-based RBM with homogeneous
Poisson noise.
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3. LIF networks with temperatures

The results of RBMs are plotted in Fig. 3.12. 100 consecutive samples are separately
obtained from each sampling method. The pixels of generated images are calculated
as the firing probabilities of visible units from the states of hidden units. The images
generated by Gibbs sampling basically stay in class ’1’ and slowly transfer to class ’2’ in
the end, showing slow mixing speed. In the case of AST, images are distributed in several
classes, demonstrating the mixing-facilitation ability of the algorithm. Notice that the
images are sometimes blurred during transitions between classes, which is expected
since the network is traveling at the energy barriers corresponding to low probability
region. We also plot a sequence of temperatures during the evolution process, from
which one can see that the temperature changes adaptively with fluctuation. Though
mixing faster, AST comes with much higher computational cost than Gibbs sampling:
all samples other then those with temperature at 1 are discarded.
For the LIF-based RBM with homogeneous Poisson noise, we simulate the network

with 2 kHz noise for 100 seconds with the first second as burn-in. In the LIF-sampling
framework, one sampling step is defined as the duration of one refractory period. There-
fore, after the simulation, 100 samples are gathered with a sample interval of 100. For
spike-based tempering (LIF-based RBM with sinusoidal noise input), we set the mini-
mum noise rate at 1.5 kHz, the maximum rate at 3 kHz, and the reference rate at 2 kHz
where samples are taken. The sine period is 4000 ms and the network is simulated for
100 periods to gather 100 images. The results are plotted in Fig. 3.14. Images produced
with homogeneous Poisson input noise are quite clear, but all reside in class ’0’, showing
bad mixing. In contrast, images produced with spike-based tempering are much more
diverse. Moreover, the image quality is even slightly better at mode transition compared
with AST, presumably due to the smooth variation of noise rate.

3.3.3. Optimal tempering parameters and the measurement of mixing

To further investigate the influence of rate variation parameters on the generation perfor-
mance, we run multiple simulations with a sweep over different parameter configurations,
i.e. the sine period, the minimum and the maximum noise rate. To have a more quan-
titative comparison of mixing between different methods, we use the so-called indirect
sampling likelihood (ISL) method (Breuleux et al., 2010; Desjardins et al., 2010b). ISL
constructs a non-parametric density estimator to evaluate how close each test example
is from any of the generated examples. The likelihood of a test sample y given a series
of generated sample {xi} is defined as:

p(y) =
1

N

N∑
i=1

d∏
j=1

β1yj=xij (1− β)
1yj 6=xij , (3.26)

where N is the number of generated samples, d is the dimension of y and xi, and β is
a hyperparameter which controls the gain (β) and punishment (1− β) to the likelihood
when comparing the test sample with the generated sample. In practice, all images are
first binarized with a threshold of pixel value 0.5 for calculation.
We set the training set as {y} and calculated the average ISL value over all the train-

ing samples. Intuitively, the higher the averaged ISL value within the early sampling
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3.3. Spike-based tempering

Figure 3.12.: Top left: 100 consecutive images (per row) produced by Gibbs sampling.
The Gibbs sampling is run for 200 steps and the first 100 sampling steps
are discarded as burn-in. The images mainly reside in class ’1’ and slowly
transfer to class ’2’, showing bad mixing. Top right: 100 consecutive im-
ages (per row) produced by AST. In total 200 samples are obtained and the
first 100 samples are discarded as burn-in. The network is able to switch
between multiple image classes, showing fast mixing speed. Bottom: A
sequence of temperature trace of AST during the evolution process. Sam-
ples are gathered when the temperature reaches 1, otherwise discarded. 20
temperatures are used here ranging from 0.9 to 1 with equal space.

process, the better the mixing. We therefore take the first 1000 generated samples as
{xi}. We set β = 0.95 to optimize the likelihood; other values (β ∈ (0.5, 1]) would
rescale the likelihood but without causing qualitative differences.

The result is shown in Fig. 3.14. For sine periods of 200, 300, 400, 500 and 600
ms, a scan of possible rate configurations with maximums from 3 kHz to 8 kHz (1 kHz
as interval) and minimums from 1 kHz to 1.8 kHz (0.2 kHz as interval) are made. The
reference rate is set at 2 kHz. The final ISL value is encoded with color and each square
is an average over 10 simulations with different random seeds. The result shows that the
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3. LIF networks with temperatures

Figure 3.13.: Left: 100 images (per row) produced by LIF-based RBM with homoge-
neous Poisson noise. The images are obtained with a sample interval of
100. The network gets stuck in the “0” mode, showing poor mixing.
Right: 100 images (per row) produced by spike-based tempering. The
sine period length is 4000 ms, the minimum of the sine wave is at 1.5 kHz
(corresponding to β ≈ 1.1) and the maximum at 3 kHz (corresponding to
β ≈ 0.8). The reference rate is at 2 kHz. The handwritten digits are clear
and distributed among multiple classes, showing good mixing. Figure is
taken from Korcsak-Gorzo (2017).

optimal sine period is at 400 ms. Across all sine periods, the influence of the maximum
noise rate is more significant than the minimum noise rate, with the optimum value at 8
kHz corresponding to β ≈ 0.5. The result is in a way in accordance with our empirical
finds with AST, that networks of relatively small size would need larger temperature
variations for better mixing.
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3.4. Discussion

Figure 3.14.: ISL values of multiple simulations with different sine periods, the minimum
and the maximum noise rate. The sine period ranges from 200 to 600 ms
with 100 ms as an interval. The maximum noise rate ranges from 3 kHz to
8 kHz with 1 kHz as interval, corresponding to a β range of approx. 0.8 to
0.5. The minimum noise rate ranges from 1 kHz to 1.8 kHz with 0.2 kHz
as interval, corresponding to a β range of approx. 1.4 to 1.1. The value
of each square is an average of 10 simulations with different random seeds.
The discretized step size of the sine wave is fixed to 10 ms. Figure is taken
from Korcsak-Gorzo (2017).

3.4. Discussion

In this chapter, based on the membrane potential dynamics described in the LIF-
sampling theory, we developed the spike-based tempering approach which improves the
mixing capability of the network in high dimensional space. We studied the relation
between temperature and the rate of the Poisson input noise, based on which we derived
a mapping equation. Inspired from neural oscillations, we designed a sinusoidal rate
variation scheme of the input noise during the sampling process and further applied the
LIF network to generation tasks along with other methods as comparisons. The results
showed significant improvement in the mixing of spike-based tempering, competitive
to sophisticated machine learning algorithms. Finally, in order to search for optimal
parameter configurations, we performed multiple simulations with a sweep on rate vari-
ation parameters including sine period and rate changing scales, during which we used
the ISL method for quantitative measurements of mixing.

Although we have demonstrated the mixing ability of spike-based tempering in an
image generation task (section 3.3.2), its pre-simulation defined rate variation scheme is
very different from the mixing-facilitating principle in traditional tempering algorithms.
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3. LIF networks with temperatures

In AST, the Markov chain samples from the joint distribution of the state and tem-
perature p(x, k), and guarantees its convergence to the target distribution p(x) by only
keeping samples obtained at k = 1. Meanwhile, its mixing efficiency is maintained by
adaptively changing the adaptive weight {g} of state space partitions. Further experi-
ments are needed to investigate the convergence property of spike-based tempering, i.e.,
what stationary distribution it will converge to under different rate variation schemes,
or, even whether it will converge eventually? To answer these questions, one can first
perform multiple simulations on small size networks and measure the DKL value between
the simulation and theoretical distribution.

Our sinusoidal rate variation scheme is inspired from neural oscillations observed in
mammalian cortex (Buzsáki and Draguhn, 2004), which are separated into several bands
covering frequencies from approximately 0.05 Hz to 500 Hz (see Fig. 3.15). This

Figure 3.15.: Oscillatory classes in the rat cortex. For each band, the range of frequencies
is shown, together with its commonly used term. Image is adapted from
Buzsáki and Draguhn (2004).

oscillatory behavior on membrane potentials or local field potentials are suggested to
be related to functional neural activities such as input selection, neuronal assemblies
formation, synaptic plasticity and long-term consolidation of information (Buzsáki and
Draguhn, 2004). The oscillation frequencies in our experimental setup are within the
range suggested from biology. However, we directly implemented a background Poisson
noise with oscillatory rates without specifying how it is generated and the underlying
biophysical basis. Recent work (Dold et al., 2018) proposed that the homogeneous
Poisson noise required for LIF sampling can be generated from the functional output of
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spiking networks. Future works can study the feasibility of introducing oscillation into
the output of these networks.
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4. LIF networks with short-term synaptic
plasticity

The discriminative capacity of the neocortex is well-established, as evidenced by the diffi-
culty of artificial systems to achieve superhuman classification performance Schmidhuber
(2015). Simultaneously, however, the brain also appears to learn a generative model
of its sensory environment (Fiser et al., 2010; Jezek et al., 2011; Hindy et al., 2016).
How these capabilities are achieved remains an open question. In the previous chapter,
we introduced the spike-based tempering approach inspired by traditional tempering
algorithms which significantly improves the mixing of the network by modulating the
global energy landscape. However, analogous to its traditional counterparts, samples
at the target distribution can only be obtained when the system evolves to the base
temperature (or base noise rate), otherwise they are wasted, therefore, the system will
need longer time to obtain the same number of valid samples, compared to plain MCMC
sampling algorithms.

One mechanism that is capable of modulating synaptic efficacy and thereby shap-
ing the probability landscape of a neural network is short-term plasticity (STP). The
activity-dependent nature of STP enables it to adaptively changing the connection
strength of subpopulations, which is potentially more computationally efficient than the
global change of tempering methods. Throughout this chapter, we investigate the ability
of this biologically ubiquitous mechanism to improve the mixing capabilities of generative
neural networks. Furthermore, we show how hierarchical LIF networks endowed with
STP can simultaneously become good discriminative and generative models, a feature
that is difficult to achieve due to the conflicting nature of these two tasks.

We first give a brief introduction about the information transmission process on the
synapse and the corresponding STP model (section 4.1). Under the context of LIF
sampling, we develop synapses of specific functionalities with different configurations of
STP parameters.
In section 4.2, we construct LIF-based RBMs with STP and study their performances

on various tasks. We start by discussing how STP can improve the sampling accuracy
of small networks configured to sample from a fully specified target distribution where
mixing is easy (section 4.2.1). This is no longer the case when networks are trained on
multimodal datasets. In the case of a bar experiment (section 4.2.2) we compare the
mixing performances between LIF sampling with STP and traditional Gibbs sampling.
We then train the network on the MNIST benchmark datasets in which we study the in-
fluence of STP on both its generative and discriminative properties (section 4.2.3). With
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quantitative measurements on mixing, we demonstrate the advantage of LIF networks
with STP in generative tasks. In the end, as preliminary functional applications, we show
how STP can aid balance sampling and pattern completion when networks are trained
on highly imbalanced datasets (section 4.2.4).
In section 4.3, based on previous experiments, we further study the influence of

STP on the probability distribution of network states and demonstrate its local modula-
tion effect on active attractors and inhomogeneous modification on the energy landscape.

A large part of this work has been done in collaboration with Mihai A. Petrovici,
some of the contents have already been included in publications (Leng et al., 2016,
2018). Others involved in this work include Roman Martel who performed early studies
of the generative properties of spiking networks (Martel , 2015), Oliver Breitwieser who
developed the spike-based-sampling (SBS) module (Breitwieser , 2015), a software mod-
ule based on NEST which enabled faster, larger-scale simulations and Ilja Bytschok who
was involved in the early analysis of results and discussions that shaped the study.
The neuron parameters for all simulations in this chapter are described in appendix

A.2.1 unless specifically mentioned. All details regarding the training of networks can be
found in appendix A.2.2.
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4. LIF networks with short-term synaptic plasticity

4.1. STP and its functional application in sampling

As mentioned in section 2.2.3, short-term depression (STD) is implemented in the LIF-
sampling framework to guarantee the approximation accuracy of sampling dynamics.
In this section, based on the signal transmission process of the synapse, we introduce
the short-term plasticity (STP) mechanism and corresponding models. We then demon-
strate how STP modulates the synaptic efficacy based on the spiking frequency of the
presynaptic neurons and develop specific PSP envelopes for functional use in generative
models.

presynaptic neuron
(axon)

neuron transmitter

R

u

postsynaptic neuron
(dendrite or soma)

synaptic vesicle

receptor

fac

1-R

Figure 4.1.: Top: A rough plot of information transmission in the chemical synapse.
The presynaptic neuron transmits electrical signals via chemical messengers
called neurotransmitters which are stored and released from synaptic vesicles
by fusion with the presynaptic membrane. They then diffuse into and across
the synaptic cleft which is approximately 20-40 nm wide and are recycled
back for reprocessing after binding with receptors located on the membrane
of the postsynaptic neuron. Bottom: The Tsodyks-Markram mechanism
models this process in a simplified way, with R representing the available
synaptic resources, τrec representing the exponential recovery time constant
of neurotransmitters, u representing the utilized fraction of neurotransmit-
ters upon each spike and τfac representing its exponential decay time constant
during facilitation.
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4.1. STP and its functional application in sampling

In the nervous system, neurons transmit electrical signals through synapses1, which are
structures formed usually between the axon of the presynaptic neuron and the dendrite
or soma of the postsynaptic neuron (see Fig. 4.1). When an electrical signal or a spike
is generated at the axon, it produces an influx of calcium ions triggering the release
of neurotransmitters from the plasma membrane of the presynaptic neuron, which are
chemical molecules like glutamate or choline stored in synaptic vesicles. They diffuse
across the synaptic cleft and bind to the receptors located on the membrane of the
postsynaptic neuron which triggers flux of certain ions to generate postsynaptic potentials
(PSPs). After binding the neurotransmitters are recycled back to the presynaptic site
for reprocessing.

4.1.1. Tsodys-Markram model

Simplified from the complex biophysical process of synaptic transmission, Tsodyks and
Markram (1997); Markram et al. (1998); Fuhrmann et al. (2002) described a phenomeno-
logical model of synaptic efficacy depending on the history of presynaptic activity (see
Fig. 4.1). This model of STP comprises STD whose underlying phenomenon is the deple-
tion of neurotransmitters consumed during the synaptic signaling process of presynaptic
neuron, and short-term facilitation (STF) caused by the influx of calcium after spike
generation which increases the release probability of neurotransmitters. The momentary
synaptic efficacy is reflected in the size of the elicited PSP

PSP ∝ w · U ·R (4.1)

where U and R are described by

dR

dt
=

1−R
τrec

− U ·R · δ(t− ts) (4.2)

dU

dt
= − U

τfac
+ U0 · (1− U) · δ(t− ts) . (4.3)

Here, w represents the (static) synaptic weight and U ∈ [0, 1] the utilized fraction of
available synaptic resources R ∈ [0, 1]. Upon the arrival of a presynaptic spike at time
ts, the synapse is depressed by subtracting U from R, which recovers exponentially
with the time constant τrec. Facilitation is modeled by a pulsed increase in U by the
amount of U0(1−U), followed by an exponential decay with a time constant τfac. Notice
that the model in Tsodyks and Markram (1997) only captures STD, the following work
in Markram et al. (1998) further extends the model to include STF and describes the
following discrete equation on which our simulations are based2:

Rn+1 = Rn(1− Un+1)exp

(
−∆t

τrec

)
+ 1− exp

(
−∆t

τrec

)
(4.4)

Un+1 = Unexp

(
−∆t

τfac

)
+ U0

(
1− Unexp

(
−∆t

τfac

))
(4.5)

1Here, we only discuss chemical synapse.
2In practice, we take R1 as 1 different from the 1 − U0 in the original paper, for consistency with
equation 4 in the paper.
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4. LIF networks with short-term synaptic plasticity

Figure 4.2.: Left: The mapping between conventional RBM weight and neural synaptic
strength is achieved by making the area below the rectangular PSP (pink)
and exponential PSP (blue) to be equal. Short-term depression (STD) main-
tains the LIF PSP height (blue), renewing the synapse and keeping the
synaptic efficacy constant. Without STD, consecutive PSPs will exceed the
height of the first one due to the accumulation on the exponential tail of
the previous kernel. Right: STD modulates synapse according to the spik-
ing frequency of the presynaptic neuron. With decreasing spiking frequency
(blue), the modulation effect start to vanish and the amplitude of consecutive
PSPs recovers towards the level of the renewing synapse.

4.1.2. Renewing synapse and modulated synapse

By modulating synaptic interactions, STP shapes the sampled distribution. This can
be helpful when a spiking network needs to approximate a distribution that is otherwise
incompatible with biological neuro-synaptic dynamics, as we discuss in the following.
In the case of LIF-based BMs, when a neuron needs to continuously represent a state

zk(t) = 1 for an extended period, it fires a sequence of n spikes at maximum frequency
1/τref . Following equation 3.7, the resulting PSPs should increase a postsynaptic neuron’s
membrane by a constant ∆ui = Wji, which implies a rectangular PSP shape. However,
this is not a realistic shape for a more biologically plausible scenario, where PSPs have
an exponentially shaped decay. This causes them to accumulate (Fig. 4.2 left), such
that the average increment 〈∆ui 〉n becomes a function of the burst length n, thereby
distorting the sampled distribution.
STD can mitigate this effect (Fig. 4.2 left) by causing a gradual decrease in the

amplitude of consecutive PSPs. By setting τrec to values close to τref , we can create a
renewing synapse which maintains the average synaptic efficacy as a constant (see section
4.2.1 for more details), thus fulfill the requirement for sampling approximation. Since
both tempering and STP effectively modify the energy landscape by changing network
parameters during sampling, they clearly bear some conceptual resemblance. However,
while tempering simultaneously affects all synaptic weights, STP only affects the efferent
connections of those neurons with high firing rate, and the modulation effect decreases
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4.1. STP and its functional application in sampling

when the firing rate gets lower (Fig. 4.2 right). Therefore, in contrast to the global
modifications of the energy landscape incurred by tempering, STP has a more local
effect focusing on active attractors, as sketched in Fig. 4.3. For applications on high-
dimensional datasets, we use STP to create a modulated synapse (Fig. 4.3 top) with
potentiation-depression envelope which enables the network to produce clear patterns
during potentiation and escape from local energy minimum during the depression (see
section 4.2.3 for more details).
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Figure 4.3.: Top: PSPs with potentiation-depression pattern first strengthen, then
weaken the effective interaction. The potentiation-depression changes the
energy landscape, first deepening the energy trough and sharpening the pro-
duced image, followed by a local flattening of the energy trough which pushes
the network state into a different mode. Bottom: To facilitate mixing,
tempering methods globally rescale the energy landscape with an inverse
temperature (top). In contrast, STP can be viewed as only modulating the
energy landscape locally, thereby only affecting the currently active attractor
(bottom).
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4.2. LIF-based RBMs with STP as generative and
discriminative models

Throughout this section, we study the effects of STP on the performance of LIF-based
RBMs trained for different tasks. We start by discussing how STP can improve the
sampling accuracy of small networks configured to sample from a fully specified target
distribution (section 4.2.1), even when the energy landscape is shallow enough to not
cause mixing problems. We gradually increase the size of the network to model a bar
experiment (section 4.2.2) where mixing becomes hard for traditional sampling methods,
and demonstrate the mixing advantage of STP-endowed spiking networks. We further
extend the network size for training on the MNIST benchmark dataset of handwritten
digits (section 4.2.3), in which we study the influence of STP on both generative and
discriminative properties. Finally, we show how STP can aid balance sampling and
pattern completion when the training datasets are highly imbalanced (section 4.2.4).
These experiments are the result of discussions together with Mihai A. Petrovici, Ilja
Bytschok, and others, and have already been reported at the Leng et al. (2016), as well
as published in Leng et al. (2018).

4.2.1. Sampling from a fully specified target distribution

As discussed in section 4.1.2, by modulating the amplitude of consecutive PSPs, STP
can be helpful in maintaining a constant average synaptic efficacy and thus accurately
approximating the sampling process. We verify this theory by constructing a 10-neuron
(5 hidden, 5 visible) LIF-based RBM and study its sampling performance under different
STP parameters. We use a target Boltzmann distribution pB (z|W, b), with parameters
drawn from a Beta distribution

W, b ∼ 1.2 · (f(x; 0.5, 0.5)− 0.5) (4.6)

which is the same as Eq. 3.24, that produce a diverse energy landscape but not so rough
as to create problems with mixing, similar to the approach in 3.3.1.
We simulate the LIF-based RBM with a sweep over the (U0, τrec, τfac) parameter space.

For parameter sets with U0 < 1, the weights of the network are rescaled by a weight
dividing factor fw = U0 to maintain the amplitude of the first PSP:

W =
W

fw
(4.7)

Each simulation is initialized with 5 different random seeds and run for 4.8 ×106ms until
convergence. After simulation, we calculate the averaged DKL between the sampled and
target distribution over all random seeds. The results are plotted in Fig. 4.4. We find that
an optimal reproduction of the target distribution is achieved for τrec ≈ 15 ms (Fig. 4.4
left bottom), which is close to the synaptic time constant of τsyn = 10 ms. This affords an
intuitive explanation: In the HCS, the effective membrane time constant becomes small
and τsyn dominates the PSP decay. If the recovery of synaptic resources R (equation 4.2)
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b

Gibbs

spiking

Gibbs

spiking

a

a

Figure 4.4.: Left: Distribution sampled by the LIF-based RBM for two different con-
figurations of synaptic parameters. Depressing synapses (bottom) allow the
network to come much closer to the target distribution (blue) than non-
plastic ones (top). The colored crosses in labels indicate their corresponding
positions in the right plot. Note that we plot here the joint distribution of
four neurons randomly selected from the network. Right: Kullback-Leibler
divergence between sampled (pN) and target (pB) distribution of the LIF-
based RBM with 10 neurons (5 hidden, 5 visible) for different STP param-
eters (U0, τrec, τfac). Note that many different parameter combinations lead
to close to optimal (white cross) sampling, but static synapses (black cross)
are not among them. Figure is taken from Leng et al. (2018).

happens at the same speed as the PSP decay, the STP mechanism essentially emulates
a renewing synapse with an approximately constant running average (Fig. 4.2 left). The
slightly larger optimal recovery time constant further compensates for the long tails of
exponential PSPs, which potentiate interaction strengths compared to the ideal case of
rectangular PSPs. Note that the manifold for which the target distribution is close-to-
optimally reproduced contains many different STP configurations, including the range of
biologically observed parameters (Wang et al., 2006), but not the (u, τrec, τfac) = (1, 0, 0)
triplet for static synapses (Fig. 4.4 left top).
In the above experiment, training is not needed, as synaptic weights of the LIF network

can be computed directly from the parameters W and b of the Boltzmann distribution
(Eq. 2.29, 2.30). This changes when the network parameters are learned from data, as
we discuss in the following.

4.2.2. Mixing in a simple learning scenario

As discussed in section 2.1.3, when learning from high-dimensional multimodal datasets,
traditional MCMC sampling algorithms such as Gibbs sampling are prone to get trapped
in local minima due to high energy barriers, which is known as the mixing problem. This
can be improved with STP which adaptively modulates the local active attractor during
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4. LIF networks with short-term synaptic plasticity

the sampling process, as we proposed in section 4.1.2. We demonstrate it with the
following experiments.

Hard

Easy

Overlap

Figure 4.5.: Training data for the easy (top) and hard (bottom) learning scenario in
grayscale. The 3 images from the training set, each containing a single
oriented bar, are superimposed to highlight the overlap of the oriented bars
(or lack thereof). Note the actual pixel value (for training) of black pixels is
0 and for white pixels is 0.5. Figure is adapted from Leng et al. (2018).

Borrowing from observations in the early visual system, we generate 2 sets of oriented
bar images, with 3 bars in each set (Fig. 4.5). Each bar is a 20 × 20 pixels grayscale image
where the value of the background pixel is 0 and otherwise 1. The bars are positioned in
a way that gave rise to an "easy" (overlapping) and a "hard" (non-overlapping) dataset.
We then train a LIF-based RBM (400 visible, 30 hidden units) on each of these datasets
using CAST (Salakhutdinov , 2010) algorithm.
Intuitively, the difficulty of learning a generative model of this data increases when

the bars have little or no overlap: in this case, training gives rise to three nearly disjoint
populations that have, on average, excitatory connections within and inhibitory connec-
tions between them. The emergence of such a population-based winner-take-all structure
can be characterized by the mean interaction strength w̄ij =

〈
zT
i

〉
W 〈 zj 〉 between two

population activity vectors 〈 zi 〉 and 〈 zj 〉, which represent the average network activity
during the presentation of the ith and jth input pattern, respectively. In practice, we
calculate 〈 zi 〉 by running the network (with classical Gibbs sampling or LIF-sampling
with STP) for 5000 sampling steps3 with the visible layer clamped to corresponding
training image, and average the neural activities over the number of collected samples.

In the case of Gibbs sampling, for the easy dataset, learning give rise to a mean within-
population interaction strength of 〈 w̄ii 〉i = 92.75 and a mean between-population
interaction strength of 〈 w̄ij 〉i 6=j = −145.48. These values change to 〈 w̄ii 〉i = 102.82
and 〈 w̄ij 〉i 6=j = −164.66 for the hard dataset, reflecting the increased competition and
disjointedness between the three emerging populations. For the LIF network, we use
an STP parameter set of (U0 = 1, τrec = 19 ms, τfac = 0 ms) (see Fig. 4.6) to create

3For the LIF-sampling framework, one sampling step is defined as the duration of one refractory period.
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STD in the sampling process. For the easy dataset, we obtain 〈 w̄ii 〉i = 54.32 and
〈 w̄ij 〉i 6=j = −93.40. And 〈 w̄ii 〉i = 67.74 and 〈 w̄ij 〉i 6=j = −113.93 for the hard dataset.
The result shows that STD causes a reduction in the mean within-population interac-
tion and an increase in the mean between-population interaction, which facilitates the
network to switch between different modes.

Figure 4.6.: PSPs with STP parameter set of (U0 = 1, τrec = 19 ms, τfac = 0 ms) (blue)
and renewing synapse (dashed green) as comparison. The convergence height
of the depressing synapse is about 60% of the renewing one. Note that
this ratio is close to the ratio of change in the mean within- and between-
population interaction strength observed from the LIF network.

To have a more intuitive comparison, we further plot a sequence of consecutive freely
generated samples using Gibbs sampling and the LIF network with STD, as shown in
Fig. 4.7. For the easy dataset, both the Gibbs sampler and the LIF network are able

Gibbs

Spiking

Gibbs

Spiking
Easy

Hard 

Figure 4.7.: Sequences of images generated by a Gibbs sampler and an STP-endowed
LIF network after learning the easy (top) and hard (bottom) cases. For each
method, 20 samples are taken from 5000 consecutively generated images with
an equal interval. Note that to strengthen pattern visibility, for the easy case,
we set all pixel values above 0.07 to be 1, otherwise 0. For the hard case,
the threshold value is 0.1.

to mix, although the former spent on average 100 times longer in the same mode before
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4. LIF networks with short-term synaptic plasticity

switching, thereby requiring more time to converge to the target distribution. For the
hard dataset, the spiking network retains its ability to mix, whereas Gibbs sampling is
unable to leave the (randomly initialized) local mode.
While this simple experimental setup is specifically designed to illustrate the potential

problems of sampling-based generative models and the ability of STP-endowed spiking
networks to circumvent them, we show in the following that these properties are preserved
in more complex scenarios.

4.2.3. Generation and classification of handwritten digits

In the previous section, we have demonstrated the ability of STP to facilitate mixing in
multimodal distributions created by bar images. The problem of mixing becomes even
more pronounced when dealing with larger, more complex datasets. Here, we increase
the number of neurons and train a hierarchical 3-layer network with 784 visible, 600
hidden and 10 label units (Fig. 4.8) on handwritten digits from the MNIST dataset
LeCun (1998) (60,000 training and 10,000 testing 28 × 28 pixels images), which is one
of the most widely used benchmark datasets in machine learning. By treating the label
units as part of the visible layer during learning, the RBM can be trained in a supervised
way. In this way, we simultaneously train a generative as well as a discriminative model
of the data. This objective is particularly challenging because mechanisms that improve
mixing tend to disrupt classification and vice-versa Bengio et al. (2013).

 
 

 

 

label

hidden

visible

v1 v2 v3

h1 h2 h3 h4

l1 l2

Figure 4.8.: Left: A hierarchical LIF-based RBM for classification and generation tasks.
The network consisting of 784 visible, 600 hidden and 10 label units is trained
on the full MNIST dataset with CAST. Right: Selected spike trains from the
LIF network: Note the increasing sparseness of the activity in consecutive
layers. The network produces different images when the activity in the label
layer switches on from one neuron to another.

After training (see section A.2.2 for training details), to evaluate the quality of gener-
ated samples, we compute a log-likelihood estimation of 2000 test images (not used during
training, with 200 samples randomly selected from each class) using the ISL method men-
tioned in section 3.3.3. Due to the size of the network, a full scan of the parameter space
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for finding optimal STP parameters is no longer feasible. Therefore, starting from a good
parameter set found by trial and error, we perform two 2D-scans of the (U0, τrec, τfac)
parameter space (Fig. 4.9). As in the previous examples, we find short-term depression
to be essential for achieving high ISL values. Furthermore, a small value of U0 combined
with short-term facilitation is also beneficial, allowing an initial strengthening followed
by a weakening of the active attractor, as sketched in Fig. 4.3. Similar observations have
been made in cortex, where STP can promote the enhancement of transients Abbott and
Regehr (2004).

Figure 4.9.: 2D parameter scans of the STP parameters (U0, τrec, τfac) with multiple con-
figurations leading to good generative performance. For each parameter set,
the simulation is initialized with 5 different random seeds and run for 104

ms to collect 103 samples, based on which we calculate the mean ISL value.
Left: Parameter scans of (U0, τrec) with τfac fixed to 0 ms. Right: Param-
eter scans of (U0, τfac) with τrec fixed to 280 ms. Figure is taken from Leng
et al. (2018).

We use one of the optimal STP parameter sets (U0 = 0.01, τrec = 280 ms, τfac = 0 ms)
(see Fig. 4.10) to compare the generative performance of LIF networks to classical
Gibbs sampling. During experiments, we find that the network generates clearer digits
when the synaptic efficacy can be maintained for a while before depression. This effect
was not significant is the previous section. The intuition behind this phenomenon
could be that with the increase of the average number of neurons representing a lo-
cal minimum, the network needs a longer time to synchronize those neurons into a
local attractor. Therefore, as discussed in section 4.1.2, we develop a potentiation-
depression synapse by using small U0 values to create a PSP envelope with a plateau
in the initial period. To compensate the lose of synaptic efficacy due to small U0, we
also need to rescale the weight matrix by an appropriate factor. Further discussions of
the influence of the shape of the PSP envelope on mixing performance are in section 5.1.

To observe the mixing performance of the network over time, we plot the mean
log-likelihood of 2000 samples from the test set against the number of generated samples
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Figure 4.10.: Envelope of consecutive PSPs (with inter spike interval of 10 ms) for
three parameter sets (U0, τrec, τfac) from the manuscript: (1, 0, 0) (black),
(1, τsyn, 0) (green) and (0.01, 280 ms, 0 ms) (blue). Note how the latter only
weakly modulates the PSP height. To compensate the lose of synaptic effi-
cacy due to small U0, we rescale the weight matrix by dividing fw = 0.014
.

(Fig. 4.11). For each method, we initialize the simulation with 10 different random
seeds and collect 105 samples from each simulation. To provide a frame of reference, we
also plot two additional ISL curves. The POM (product of marginals) sampler generates
images by sampling each pixel individually from its intensity distribution over the entire
training set. This sampler preserves the marginal probability distributions for each
pixel but discards any further structure of the image (encoded in correlations between
pixel intensities). The OPT (optimal) sampler starts out with a base set of 105 images
generated with AST, from which it randomly picks images sequentially. This guarantees
optimal mixing for the underlying model, because the base set covers all main modes of
the state space, but consecutive samples have no correlation.
Due to its improved mixing capability, the LIF network is able to quickly cover a large

portion of the relevant state space, as reflected by the on average faster ISL compared
with Gibbs sampling (Fig. 4.11). This is a systematic effect and only weakly dependent
on initial conditions, as can be seen in Fig. 4.11 right, which shows a histogram over 103

random seeds. For this comparison, we chose a sampling duration of 10 s as a conservative
estimate for the maximum duration for a biological agent to experience stable stimulus
conditions and therefore sample from a stable target distribution. The faster mixing
is the result of the spiking network’s ability to jump out of local attractors, which is
reflected in a much shorter time spend on average within the same mode (Fig. 4.12).
Here, we define a mode as the dominant class of the currently represented image; a mode
is therefore defined by the identity of the neuron in the label layer with the highest firing
rate.
However, it is important to note that, due to the STP-modulated interaction, the

spiking network does not sample from the exact same distribution as the Gibbs sampler,
despite using an equivalent (W , b) parameter set. For a very large number of samples
(> 105), the two methods converge towards the same ISL (Fig. 4.11), indicating that the
discrepancy in performance for shorter sampling durations is not due to a fundamental
difference in their respective ground truths.
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Figure 4.11.: Left: Log-likelihood from ISL of the test set calculated from an increasing
number of samples. Each sampling method is simulated with 10 differ-
ent random seeds (dashed lines) and their mean value is calculated (solid
lines). The ISLs of an optimal sampler with the same parameters (OPT,
gray) and the product of marginals (POM, brown) are shown for compari-
son. Right: Direct comparison between the two sampling methods for 103

samples, equivalent to a sampling duration of 10 s in the biological domain.
ISL histogram generated from 103 random seeds. Figure is taken from Leng
et al. (2018).

Figure 4.12.: Histogram of times spend within the same mode. For each method, the
statistics are made on 10 simulations initialized with different random seeds
with each collecting 105 samples. The LIF network spend much shorter time
on average within the same mode compared to Gibbs sampling.

While the ISL, as an abstract quantity, provides a useful numerical gauge of the
quality of a generative model, a direct depiction of the produced images is particularly
instructive. Here, we use the t-SNE method Maaten and Hinton (2008) (see section
A.2.3) to project the generated images on a 2D plane. The similarity between samples
is largely reflected by their distances on the plane and a large jump can be interpreted
as a switch between attractors. As seen in Fig. 4.13, within the same sampling steps,
the LIF network produces a significantly more diverse set of samples compared to the
Gibbs sampler.
When the visible layer is clamped to a particular input, the same network can be
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Gibbs

Spiking

Figure 4.13.: Superior generative performance of an STP-endowed spiking network com-
pared to an equivalent Gibbs sampler. t-SNE plots of images produced by
the two methods over 1800 consecutive samples. For every 6th of these sam-
ples, an output image is shown. Consecutive images are connected by gray
lines. Different colors represent different image classes, defined by the label
unit that shows the highest activity at the time the sample is generated.
Note that t-SNE inherently normalizes the area of the 2D projection; the
volume of phase space covered by the Gibbs chain is, in fact, much smaller
than the one covered by the spiking network. Figure is taken from Leng
et al. (2018).
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used as a discriminative model of the learned data. Using the same parameters as for
the generative task, the benchmark Gibbs sampler obtained a classification accuracy of
93.4% on the MNIST test data. The LIF network with STP performed only slightly
worse, at 93.2%. The additional generative capabilities gained by the spiking networks
through STP were therefore not strongly detrimental to their classification accuracy.
Better classification performances can be achieved by increasing the number of hidden
units and direct training of the LIF network.
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4.2.4. Modeling on imbalanced dataset

In the previous section, we studied the mixing performance of LIF-based RBMs with
STP in benchmark dataset where the distribution of samples among different classes are
roughly equal. In many real-world scenarios, the available data is imbalanced, with much
of the data belonging to one class and significantly less samples being distributed over
others. It is well-known that imbalanced data can cause severe problems for data mining
and classification Chawla (2005); García and Herrera (2009). One solution is to create a
more balanced dataset from the imbalanced one, which can be achieved by methods such
as under- or over-sampling García and Herrera (2009); Chawla et al. (2002). However,
such an a-priori modification of the input data does not seem biologically plausible.
Still, cognitive biological agents appear to easily overcome this problem: humans will
have little difficulty imagining a platypus from seeing only its bill, despite having likely
seen many more ducks throughout their lifetime. In this section, we demonstrate in
the following experiments that LIF networks with STP provide a simple solution to the
problem of imbalanced training data, without any need for preprocessing.

We create an imbalanced dataset of 1000 images by randomly selecting 820 digits
of class ’1’ and 45 from the ’0’, ’2’, ’3’ and ’8’ classes from the MNIST dataset. After the
training of the model (see section A.2.2 for training details), we compare the generative
output of a Gibbs sampler, an AST sampler and the LIF-based RBM with STP. Note
that the effective sampling speed of AST is roughly Ntemp times slower compared to
Gibbs sampling where Ntemp is the number of temperatures4. For the LIF network, we
use three STP parameter sets of (U0 = 0.07, τrec = 60 ms, τfac = 0 ms, fw = 0.085, ),
(U0 = 0.01, τrec = 280 ms, τfac = 0 ms, fw = 0.014) and the renewing synapse of
(U0 = 1.0, τrec = 10 ms, τfac = 0 ms). Their envelopes of consecutive PSPs are shown in
Fig. 4.14. These parameter sets are largely empirical, and we believe that there exist a
wide range of parameter sets which will produce similar result.

We collect 16000 consecutive samples from each sampling method and plot their
mode distribution and evolution traces (Fig. 4.15 top). The result shows that samples
from Gibbs sampling and AST mainly stay in mode ’1’ which is the dominant class.
In contrast, the LIF network presents diverse sampling dynamics with different STP
parameters. With τrec = 280 ms it maintains a close approximation of the data distribu-
tion, but with faster mode switching compared to Gibbs sampling as shown in the trace
evolution. With τrec = 60 ms the PSP envelope achieves a faster and higher potentiation
followed by a more rapid decay, which further improves the mixing of the network and
enables it to generate much more uniformly distributed samples, without focusing on
the majority mode. The STP-induced weakening of active attractors balances out their
activity and facilitates the network to switch between different modes. With renewing
synapse of τrec = 10 ms the network seems to be trapped in some minority modes,
this could be largely due to the latency effect induced from an exponential shape of
PSP which will be better illustrated and discussed in the next chapter. With different

4Here we use 20 temperatures, more details see section A.2.2.
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Figure 4.14.: Envelopes of consecutive PSPs of renewing synapse (green) and STP pa-
rameter sets of (U0 = 0.07, τrec = 60 ms, τfac = 0 ms) with fw of 0.085
(blue), and (U0 = 0.01, τrec = 280 ms, τfac = 0 ms) with fw of 0.014 (black).
Notice that the duration of the potentiation plateau of τrec = 60 ms is much
shorter than τrec = 280 ms which is also used in the previous section.

configuration of STP parameters, the LIF network exhibits diverse sampling statistics,
demonstrating potentials in multi-functional tasks.
A t-SNE plot further shows consecutive images generated by the LIF network with

τrec = 60 ms during the sampling process (Fig. 4.15 bottom).

In another scenario, the ability of STP-endowed LIF network to escape active at-
tractors become particularly useful for inference based on incomplete information, which
we demonstrate with a pattern completion example. Here, we create a training set of
5000 images with 6 majority classes (’0’, ’1’, ’2’, ’3’, ’4’, ’6’, 800 samples each) and one
minority class (200 samples of ’5’) from the MNIST dataset. We use an RBM with the
same size as the first experiment. After training, we generated an ambiguous image by
clamping the lower half of the visible layer to a configuration compatible with both a ’3’
and a ’5’ (Fig. 4.16). We clamp the ambiguous image to the network by multiplying the
biases of corresponding neurons with a factor of 5, and clamp off the rest background
neurons in the lower half by setting their biases to -50. The top half neurons of the
visible layer are left for free to complete the pattern.

We generate a sequence of consecutive images with different samplers (Fig. 4.17
top left) and plot their mode distributions (Fig. 4.17 top right). The result shows Gibbs
and AST strongly undersample the minority class ’5’, with a ’3’ to ’5’ ratio of 95.6
and 90.0. In contrast, the LIF network produces a much more balanced set of images,
with swift transitions between modes (Fig. 4.17 middle, bottom). The ratio between
’3’ and ’5’ is 3.7, which closely reflects their ratio in the dataset. With an appropriate
choice of parameters, STP enables the LIF network to become a better sampler with
fast mixing. The estimate of the possible realities underlying the incomplete observation
is therefore improved both on long and on short time scales. This can be particularly

53



4. LIF networks with short-term synaptic plasticity

Figure 4.15.: Comparison of Gibbs and AST samplers with STP-endowed LIF networks
for imbalanced training data. Top left: Histogram of relative time spent
in different modes calculated from 16,000 samples. The Gibbs and AST
sampler mainly stay in the dominant class ’1’. In contrast, the LIF net-
work shows diverse sampling statistics with different STP parameters. With
τrec = 280 ms it mixes faster then Gibbs sampling meanwhile closely approx-
imates the data distribution. With τrec = 60 ms the PSP envelope varies
more rapidly with a higher potentiation level, which further improves the
mixing of the network and enables it to generate much more uniformly
distributed samples. With renewing synapse of τrec = 10 ms the network
seems to be trapped in some minority modes, this could be largely due to
the latency effect induced from an exponential shape of PSP. Top right:
Mode evolution over 8,000 consecutive samples. Gibbs and AST sampler
basically trapped in the majority mode. Modulated synapse improves the
mixing of the LIF network: with τrec = 280 ms the network achieves faster
mixing compared to the Gibbs sampler. With τrec = 60 ms a more rapid
variation of the PSP envelope further improves its mixing enabling it to
produce much more balanced samples. Bottom: t-SNE plot of 250 con-
secutive images generated by the LIF network over a duration of 10 s, with
40 ms between consecutive images.
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Ambiguous pattern

Figure 4.16.: Ambiguous input to the visible layer. The upper half is not clamped and
free to complete the pattern.

useful for an agent in need of a quick reaction, as, for example, often required in nature
in a fight-or-flight scenario.
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Gibbs

Spiking

AST

Figure 4.17.: Comparison of different samplers for pattern completion after learning im-
balanced dataset. Here, we use an STP parameter set of (U0 = 0.01, τrec =
280 ms, τfac = 0 ms) with fw of 0.014, the same as the previous section.
Top left: Comparison of sequences of images generated by different meth-
ods over 5000 samples (only every 500th is shown). Top right: Histogram
of relative time spent in different modes during the pattern completion task,
measured over 20,000 consecutive samples. Middle: Mode evolution over
5,000 consecutive samples. The Gibbs and AST sampler spend most of the
time in class ’3’ and seldom go to class ’5’. In contrast, the STP-endowed
LIF network is able to switch to class ’5’ much more frequently. Bottom:
Histogram of times spend within the same mode over 20,000 samples. The
LIF network spend much shorter time on average within the same mode
compared to the AST and Gibbs sampler.
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4.3. Modulation of STP on probability distributions

In the previous section, we have demonstrated the ability of STP for improving mix-
ing in generative tasks ranging from low to high dimension. The network performances
are measured by their generated images and criterion established upon them. How-
ever, the generated images reflect the variation of visible states which is essentially a
phenomenon caused by STP-endowed sampling, it does not explain why or how mode
variations happen. Throughout this section, we study the modulation of STP on proba-
bilities of network states, which provides more details and an intuitive understanding of
the STP-endowed sampling dynamics.
In the previous section we designed a bar experiment to compare the mixing per-

formances between LIF-sampling with STP and the traditional Gibbs sampling. We
continuously use this example and further illustrate the variation of marginal probabili-
ties of network states during the sampling process. Subsequently, we reduce the network
dimension and reveal the local variation of attractors through strict calculation of the
conditional probability distribution of network states.

4.3.1. Modulation on marginal probability distributions

As discussed in section 2.1.1, the probability for a visible state to occur in a BM is given
by the marginal distribution

p(v) =
p∗(v)

Z
=

1

Z

∑
h

exp [−E(v,h;W,b)] . (4.8)

For an RBM in our case, the computation of p(v) can be further simplified by making use
of the connection restriction between the visible and hidden layer, which can be derived
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as following
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This avoids the ergodic calculation of all h states as required by Eq. 4.8. We used a
similar approach in Martel (2015). Considering the bipartite architecture of an RBM,
the marginal probability of a hidden state can also be expressed as

p(h) =
1

Z
exp

(
M∑
i=1

bjhj

)
N∏
i=1

[
1 + exp

(
ai +

M∑
j=1

Wijhj

)]
(4.10)

For traditional Gibbs sampling or LIF-sampling with renewing synapse, the marginal
probability of a certain visible or hidden state is constant since the synaptic connections
are (or on average) constant during the sampling process. For modulated synapse, p(v)
or p(h) becomes a variable due to the temporary change of synaptic efficacy caused by
STP. Since STP modifies the weights W of the network according to the activity of
the presynaptic neuron. After simulation, we can compute the STP variables R and U
at each spike based on the spiking history of each neuron (see Eq. 4.4 and 4.5). The
marginal state probability during STP-endowed sampling process can then be calculated
by multiplying these variables to the weight matrix.
Specifically, for the calculation of p(v) and p(h) at sampling step n, we multiply weight

Wij by (Uni R
n
i + Unj R

n
j )/2. For neurons which are silent (not in refractory state) at the

measured sampling step, their corresponding U and R are set to 1. Since the computation
cost for the partition function increases exponentially with the number of neurons which
makes it impractical for large size networks, we temporally denote the new partition
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function at sampling step n as Zn. The unnormalized probabilities p∗(v) and p∗(h) at
sampling step n, therefore, are expressed as:

p∗n(v) = exp

(
N∑
i=1

aivi

)
M∏
j=1

[
1 + exp

(
bj +
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i=1

Uni R
n
i + Unj R

n
j

2
Wijvi

)]
, (4.11)

p∗n(h) = exp
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[
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n
j

2
Wijhj

)]
. (4.12)

Now, we apply this approach to the bar experiment presented in section 4.2.2 to
inspect probability variations of certain network states. Due to the size of the network,
it is impractical to calculate for all possible visible or hidden states. Instead, we collect
all emerged visible and hidden states in simulation, which are in total 4944 visible and
3009 hidden states for a simulation of 5000 sampling steps (50,000 ms). To obtain a more
panoramic visualization, we project these high dimensional vectors into a 2 dimensional
plane (Fig. 4.18, 4.19 bottom) using the t-SNE method Maaten and Hinton (2008)
(see section A.2.3) as before . The similarity between vectors is reflected by their 2D
distances and the vectors roughly form three clusters, each corresponding to a mode of
the bar image.
We calculate the ratio change of p∗(v) and p∗(h) relative to their original value (all

U and R equal to 1) during three mode switches observed from the generated images
(Fig. 4.18, 4.19 top), i.e. 200-400 ms, 1000-1200 ms and 1700-1900 ms. Specifically,
these ratios represent the modulation level of the probability of each state multiplied
by a factor of Z

Zn . Since we don’t know the value of Zn, the ratio reflects more of the
modulation on the state’s probability relative to other states at the same sampling step.
An alternative option is to calculate the Boltzmann factors between states.

The results show that for both visible and hidden states, when the network gener-
ate a certain bar image, a large number of marginal probabilities in the corresponding
cluster are weakened accordingly (since similar states tend to encode similar patterns),
while states in other clusters either maintain or increase their values, intuitively demon-
strating the local modulation effect of STP. The relative activity changes of the cluster
are also in pace with the variations of image in the visible layer. For the visible case,
one can observe that the intersected region of clusters always has a relatively high ratio,
indicating a mixing principle which facilitates the transition states. For the hidden case,
states in the same cluster change their ratio less uniformly compare to the visible case,
indicating a more sparse encoding in the hidden layer.

In addition, we randomly choose 6 networks states (separated into visible and hid-
den states, indicated by the black dots in Fig. 4.18 and 4.19) when the network presents
certain bars (two states for each bar) and plot the temporal evolution of the ratio of
their unnormalized marginal probabilities. The results are shown in Fig. 4.20 and 4.21.
It can be observed that when the network produces a certain bar image, the marginal
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4. LIF networks with short-term synaptic plasticity
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Figure 4.18.: Top: Image sequence generated from simulation, along with simulation
times the image samples are obtained. Note that here we directly use the
binary activity of the visible layer, different from Fig. 4.7. Bottom: Ratio
change of p∗(v) during three mode switches observed from the generated
images, i.e. 200-400 ms (fist row), 1000-1200 ms (second row) and 1700-
1900 ms (third row). The times at which we measure the probabilities
are indicated on the upper left of each plot. The black dots refers to the
selected visible states plotted in Fig. 4.20. One can observe that the inter-
sected region of clusters high ratio, indicating the mixing facilitation prin-
ciple. The inhomogeneous ratio change of p∗(v) intuitively demonstrates
the local modulation effect of STP. More details during the mode switch
are revealed. For example, STP not only decreases probabilities of local
states to encourage mixing, but also simultaneously increases probabilities
of potential states in other clusters, as observed in 350 - 400 ms, 1100 -1150
ms and 1700 - 1750 ms. Notice that to increase image contrast we set all
ratios above 4.5 (approx. 0.1%) to be 4.5.
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 10.5   11   11.5   12   12.5  13   13.5  14   14.5  15   15.5   16   16.5  17   17.5   18  18.5   19 

Figure 4.19.: Top: Image sequence generated from simulation, along with simulation
times the image samples are obtained. Note that here we directly use the
binary activity of the visible layer, different from Fig. 4.7. Bottom: Ratio
change of an ensemble of p∗(h) during three mode switches observed from
the generated images, i.e. 200-400 ms (fist row), 1000-1200 ms (second row)
and 1700-1900 ms (third row). The black dots corresponds to the hidden
states plotted in Fig. 4.21. Similar local modulation effect of STP occurs
as in the case of marginal visible probabilities. Notice that for states in the
same cluster their ratio change less uniformly compare to the former visible
case, the reason could be that hidden states are more sparse than visible
states in terms of encoding. Notice that to increase image contrast we set
all ratios above 3 (approx. 6%) to be 3.
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4. LIF networks with short-term synaptic plasticity

probabilities encoding the corresponding bar image are significantly weakened due to
STD while those encoding other bars are fluctuating around values of the same order of
the original value, therefore only the strength of the local active attractor is intensely
depressed. This mechanism facilitates the network to jump out of local minima and
the weakened marginal probabilities recover when the network switch to other modes.
Finally, we also calculate the average ratio variation of p∗(v) and p∗(h) in terms of
different modes. The mode allocation of a network state (v,h) is determined by the
minimum Euclidean distance between the firing probability of the visible state p(v) and
pixel values of three bar images. The results are plotted in Fig. 4.22 and 4.23 which
show similar variation pattern.

4.3.2. Modulation on conditional probability distributions

To avoid the influence of potential variations in the partition function induced by STP,
an alternative option is to calculate the conditional probability p(v|h) and p(h|v), which
represent the transition probability from one state to another during the sampling pro-
cess.
The conditional probability during the STP-endowed sampling at sampling step n is

calculated as:

pn(v|h) =
N∏
i=1

pn(vi|h) , (4.13)

pn(vi|h) =
1

1 + exp(−
∑J

j=1R
n
j U

n
j Wjihj − bi)

. (4.14)

pn(h|v) =

M∏
j=1

pn(hi|v) , (4.15)

pn(hj |v) =
1

1 + exp(−
∑I

i=1R
n
i U

n
i Wjivi − bj)

. (4.16)

Notice that here we assume a synchronized synaptic transmission from one layer to
the other, which is an approximation since spike transmission in the LIF network is
asynchronous, This problem no longer exist when we implement STP mechanism in
traditional RBMs in the next chapter.

To perform an ergodic calculation of all possible states, we reduce the network size
to 12 visible and 12 hidden units and created a training set of 3 3 ×4 horizontal bar
images (Fig. 4.24). After training (see section A.2.2 for training details), we run the
LIF network with STP (U0 = 1, τrec = 13 ms, τfac = 0 ms) and generate a sequence of
images (Fig. 4.25 top). At each sampling step n, we calculate for all visible (or hidden)
states their conditional probabilities given the current state, and sum up for each mode
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4.3. Modulation of STP on probability distributions

2      3       4      5       6      7      8      9     10     11    12     13    14    15    16     17    18 
[100 ms]

Figure 4.20.: Ratio change of p∗(v) for selected states during simulation. Top: Images
(binary states) produced by the network on the visible layer. Images are
sampled with an interval of 100 ms, starting from 200 ms to 1800 ms. The
time span corresponds to the bottom plot. Bottom: p∗(v) evolutions of
6 randomly selected visible states, with two states for each bar. Their
corresponding visible images are plotted in the end. The network first
generates bottom bars, resulting a strong local weakening of p∗(v) for v
encoding the corresponding bar image (blue and red lines). This encourages
the network to jump out of the local mode and the once weakened p∗(v) are
recovered after the network switches to another bar, which again leads to a
local weakening of p∗(v) for v encoding that bar (yellow and green lines),
and this pattern repeats. Notice that roughly between 1600 and 1700 ms,
there is a decrease in the weakening of the local attractor, indicating that
attractors are competing with each other, resulting that no clear bar images
are produced.
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4. LIF networks with short-term synaptic plasticity

2      3       4      5       6      7      8      9     10     11    12     13    14    15    16     17    18 

[100 ms]

Figure 4.21.: Ratio change of p∗(h) for selected states during simulation. Top: Images
(binary states) produced by the network on the visible layer. Images are
sampled with an interval of 100 ms, starting from 200 ms to 1800 ms. The
time span corresponds to the bottom plot. Bottom: p∗(h) evolutions of
6 randomly selected hidden states, with two states for each mode. The
corresponding hidden states are plotted in the end. Similar phenomena can
be observed as in the visible state case.

Figure 4.22.: Variations of local active attractors reflected on the ratio change of mean
p∗(v) for each mode during simulation. Their corresponding modes are
plotted in the end.
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4.3. Modulation of STP on probability distributions

Figure 4.23.: Variations of local active attractors reflected on the ratio change of mean
p∗(h) for each mode during simulation. Their corresponding modes are
plotted in the end.

Figure 4.24.: Training set of 3 bar images. Each image has the size of 3 × 4 pixels. The
pixel value (for training) of black pixels is 1 and for white pixels is 0.
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4. LIF networks with short-term synaptic plasticity

according to their allocation:

pvkhn =
∑

v∈mode k

pn(v|hn) (4.17)

phkvn =
∑

h∈mode k

pn(h|vn) (4.18)

The result (Fig. 4.25 middle) shows that both pvkh and phkv are dominant if the network
in in mode k, which is as expected. This phenomenon should also occur for plain Gibbs
sampling.
In addition, for all visible (or hidden) states, we calculate its averaged conditional

probability over all potential hidden (or visible) states,and sum them up for each mode,
obtaining:

pvkh̄n =
∑

v∈mode k

Eh 〈 pn(v|h) 〉 (4.19)

phkv̄n =
∑

h∈mode k

Ev 〈 pn(h|v) 〉 (4.20)

The result (Fig. 4.25 bottom) shows that during the sampling process, both pvkh̄ and
phkv̄ are depressed if the network is in mode k, demonstrating the local modulation
effect of STP. Note that for Gibbs sampling these two quantities will be constant since
the model parameters are unchanged.
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4.3. Modulation of STP on probability distributions

  2          4           6.         8         10         12        14         16         18       20

Simulation time [10 ms]

Figure 4.25.: Top: Images (binary states) produced by the network on the visible layer.
Images are sampled with an interval of 20 ms, starting from 20 ms to 200
ms. The time span corresponds to the middle and bottom plots. Middle:
Temporal evolution of pvkh (left) and phkv (right). Bottom: Temporal
evolution of pvkh̄ (left) and phkv̄ (right).
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4. LIF networks with short-term synaptic plasticity

4.4. Discussion

In this chapter, we have shown how a combination of spike-based communication and
short-term plasticity can enhance the ability of neural networks to perform probabilistic
inference in high-dimensional data spaces. Specifically, we discussed the functional-
ity of different types of PSP envelopes and developed a modulated synapse based
on the Tsodyks-Markram model of STP for generation tasks where mixing are hard.
Here, we demonstrated through both simulations and theoretical calculations that the
spike-triggered plasticity rule modifies active local attractors, in contrast to simulated
tempering methods used for classical neural networks which require complex compu-
tations on the global network state and long waiting times between valid samples.
The spiking networks outperformed their classical counterparts as generative models of
benchmark dataset, with little disturbance to their classification capability, which we
expect to be largely remediable by additional fine-tuning of the network parameters.
Furthermore, they were also able to cope with imbalanced training data, as demonstrated
by their superior performance in the balance sampling task and the pattern completion
task on ambiguous input. Intriguingly, the synaptic parameters used to achieve this
performance are compatible to experimental data (Wang et al., 2006). We thereby offer
a potential explanation for the generative capabilities of cortical networks, while at the
same time proposing a simple but efficient mechanism to bolster the usefulness of spiking
networks for machine learning applications.

Depending on the nature of the task and the associated optimal parameters, STP
can play multiple roles. For low-dimensional spaces in which networks only rarely
have mixing problems, STP can narrow the gap between the sampled and the target
distribution, as demonstrated in section 4.2.1. With an appropriate deviation from the
benchmark renewing synapse, STP improves mixing in multimodal distributions while
closely approximates the target data distribution (section 4.2.3, 4.2.4). When the data
distribution is highly imbalanced, by further increasing its potentiation level, STP is able
to generate much balanced samples presenting a functionally advantageous distortion of
the network’s underlying distribution. In search of an optimal range of parameters, a
theoretical study of how variations of PSP envelope leads to different sampling statistics
on certain probability distributions is needed.

The STP parameters themselves require only little tuning, as evidenced by the com-
paratively large volume in parameter space that enhances performance, especially for
high-dimensional problems. However, the optimal parameter set may vary, depending
on the goal of the task. In a machine learning context, various algorithms for meta-
parameter optimization have been proposed and could be applied to STP as well (Reif
et al., 2012; Thornton et al., 2013; Shahriari et al., 2016). With respect to biology,
as the function and location of individual brain areas remain largely conserved both
within and among species, we speculate evolution to have played a key role in parameter
optimization.
In fact, it was suggested that during a working memory task studied in vivo with
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rats, short-term synaptic depression in the medial prefrontal cortex sets the “life time”
of high-dimensional neuronal assemblies that code for the integrated representation of
position and sensory inputs (Fujisawa et al., 2008). While the rat navigates in a maze,
the representation moves from one assembly to another on a time scale that roughly
corresponds to the one of synaptic depression. Short-term synaptic plasticity, originally
found in rat sensory cortices (Zucker and Regehr , 2002), has also been found in the
prefrontal cortex using paired recordings in vitro Hempel et al. (2000).

As a potential downside of the functional gains discussed in the manuscript, the inclusion
of more complex membrane and synapse dynamics are likely to increase the computa-
tional cost of applying our paradigm to classical neural networks such as Boltzmann
machines. However, we expect a simple, local synaptic update rule to be overall more
efficient than global updates required by, e.g, tempering schedules. Moreover, in phys-
ical neuromorphic emulation, added complexity in neural dynamics incurs no runtime
penalty compared to conventional simulation platforms. Based on specifically designed
hardware (Pfeil et al., 2013; Schemmel et al., 2010), our approach can potentially create
fast and energy-efficient physical models of neuro-synaptic dynamics.
In a physical system such as a biological brain, the studied plasticity mechanism es-

sentially comes for free, as it only requires a limited pool of synaptic resources. Together
with other activity-modulating mechanisms such as neuronal adaptation, it could be a key
contributor to the ability of the brain to navigate efficiently in a very-high-dimensional
stimulus space. Importantly, these mechanisms provide immediate computational ad-
vantages for spike-based neuromorphic devices, facilitating the development of efficient
artificial agents that replicate the inferential capabilities of their biological archetypes.
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5. RBMs with STP

First invented by Smolensky in 1986 (Smolensky , 1986), RBMs and related deep ar-
chitectures are among the earliest efficient discriminative and generative models in
deep learning (Hinton et al., 2006; Salakhutdinov and Hinton, 2009) and are used in
recent applications such as concept learning (Mordatch, 2018) and many-body quantum
mechanics (Carleo and Troyer , 2017). However, as introduced in chapter 2, its mixing
problem inherited from general MCMC methods has proposed a challenge for sampling
and learning tasks, particularly in high dimensional space.

In the previous chapter, we have demonstrated the mixing-facilitation mechanism
of STP by modulating active local attractors and inhomogeneously modifying the energy
landscape. The high efficiency of this self-adaptive principle compared to traditional so-
lutions naturally motivates the question of whether this biologically inspired mechanism
can be adapted to traditional machine learning algorithms and artificial neural networks.
As a start, throughout this chapter, we study the implementation of STP in traditional
RBMs and test its influences on sampling and mixing performances of the network in
several experiments.
Specifically, we first give a brief introduction of the model and then measure the

sampling accuracy of STP-RBMs with different STP parameter configurations using the
Kullback-Leibler divergence. Subsequently, we increase the network dimension and study
its mixing behavior in a previous designed experiment where we compare and identify
the differences between the STP-RBM and the LIF network with STP. In the end, we
apply STP-RBMs to high dimensional generative tasks of handwritten digits, in which
we compare the generation performances of different STP parameters and discuss their
corresponding influences on sampling dynamics.
Preliminary studies of STP-RBM were done together with Ruyi Zuo, however, works

presented in this chapter has its own focus.
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5.1. RBM with STP in sampling

In this section, we implement STP into the sampling process of traditional RBMs and
study its influence on generative properties of the network.
We select RBMs for the implementation rather than general BMs because it is con-

venient to make comparisons of mixing in high-dimensional generation tasks from the
previous chapter. In the RBM, the binary state z = 1 is interpreted as a spike with a
duration of one sampling step, corresponding to the refractory period of the LIF neuron.
With STP embedded in the sampling process, the only variable we modify is the poten-
tial of the neuron. Since STP modulates the connection weights depending on the firing
history of the afferent neuron, the potential of a neuron can thus be expressed as:

uj =

I∑
i=1

Rni U
n
i Wjizi + bj , (5.1)

(5.2)

where Rni and Uni are described similarly as in Eq. 4.4, 4.5:
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)
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)
+ U0

[
1− Uni exp

(
−∆t
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)]
(5.4)

where ∆t is the number of sampling steps from the last spike.
The original sampling process in the RBM is Gibbs sampling, which is an MCMC

method and guarantees convergence to the equilibrium distribution given enough sim-
ulation time. By clamping R and U to be constant at 1 the STP sampling retrieves
back to Gibbs sampling. However, in practice, these variables will change according to
the neuron’s self-firing activity and break symmetric interactions between neuron pairs
as defined in BMs, which is required for sampling from the target distribution. This
can be further elaborated in the derivation of the conditional firing probability using the
Bayesian rule.
The probability of neuron k to fire given the states of other neurons, p(zk = 1|z\k) is

expressed as according to the Bayesian rule:

p(zk = 1|z\k) =
p(zk = 1, z\k)

p(z\k)

=
p(zk = 1, z\k)

p(zk = 1, z\k) + p(zk = 0, z\k)

=
1

1 +
p(zk = 0, z\k)

p(zk = 1, z\k)

. (5.5)

71



5. RBMs with STP

When we plug into the Boltzmann distribution (Eq. 2.4), the second term of the denom-
inator in Eq. 5.5 becomes

p(zk = 0, z\k)

p(zk = 1, z\k)
=

1

Z
exp

[
− E(zk = 0, z\k)

]
1

Z
exp
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− E(zk = 0, z\k) + E(zk = 1, z\k)

]
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So the conditional firing probability is expressed as

p(zk = 1|z\k) =
1

1 + exp
[
−
(∑

jWkjzj + bk
)] , (5.7)

where
∑

jWkjzj + bk is the original formulation of the potential uk (Eq. 3.7). Notice
that the derivation from the third last to the second last step in Eq. 5.6 only holds
when Wkj = Wjk. Therefore, the induced STP variables in the neural potential (Eq.
5.1) no longer guarantees convergence to the predefined Boltzmann distribution. Further
researches are ongoing regarding the convergence of STP-RBMs, including by forcing
symmetric connections within each sampling step. Our aim here is a direct mechanistic
approximation of the LIF network with STP.
To test the sampling accuracy and mixing performances of STP-RBMs, we set up

several experiments similar to the previous chapter.

5.1.1. Sampling from a fully specified target distribution

We start from the case of a fully specified target distribution as presented in section
4.2.1 with the same network parameters. We scan through different combinations of
STP parameters and measure the sampling accuracy of the network with DKL. For
parameters with U0 < 1, the weights of the network are rescaled by dividing fw = U0,
the same as in section 4.2.1. Each parameter set is initialized with 5 different random
seeds and run for 2 ×105 steps until convergence. The averaged DKLs of all random
seeds are plotted in Fig. 5.1.
We find that an optimal reproduction of the target distribution is achieved at (U0 =

1, τrec = 0) and for all parameter sets with (τrec = 0, τfac = 0), which are essentially
Gibbs sampling. This is as expected since Gibbs sampling guarantees convergence to the
target distribution and any perturbations induced by other STP parameters will deviate
from it.
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5.1. RBM with STP in sampling

Figure 5.1.: Kullback-Leibler divergence between sampled (pN) and target (pB) distribu-
tion of the STP-RBM with 10 neurons (5 hidden, 5 visible) for different STP
parameters (U0, τrec, τfac). The minimum value is achieved with parameter
sets with τrec = 0, τfac = 0, which are essentially Gibbs sampling. Note that
for U0 = 1, the facilitation mechanism is shut down by definition (Eq. 5.4)
and U becomes a constant, i.e. the effective τfac equals 0. change u to U0

5.1.2. Mixing in a simple learning scenario

To further investigate the mixing performance of STP-RBMs in high dimensional tasks,
we apply the STP-RBM to previous bar experiments in section 4.2.2.
To facilitate mixing, we construct STD envelopes similar to those used in the LIF-based

RBM. The guiding rule is to equalize the average synaptic impact within each sampling
step between two networks. However, due to the tail-overlapping phenomenon in LIF
PSPs, it is impossible to match the envelope of rectangular PSPs of the STP-RBM to be
entirely the same as the exponential ones, even when using the same STP parameter sets.
This tail effect of exponential PSPs becomes more evident in the case of lager inter-spike
intervals (ISIs).
Figure 5.2 gives an intuitive illustration of this problem. The left plot shows PSPs of

a single neuron triggered by spikes trains of another neuron with ISI = 10ms (maximum
firing frequency, since the refractory period of the LIF neuron is set to 10 ms), and right
plot with ISI = 20ms. The equivalent integrated rectangular area of the exponential PSP
within each sampling step1 is indicated by light red shadows. When using parameter
set (U0 = 1.0, τrec = 1.9, τfac = 0.0) for the STP-RBM which is effectively the same
parameter set as the parameter set (U0 = 1.0, τrec = 19.0ms, τfac = 0.0ms) for the LIF
neuron , the integrated area under PSPs of the STP-RBM is significantly lower than the

1For the LIF-sampling framework, one sampling step is defined as the duration of one refractory period.
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5. RBMs with STP

Figure 5.2.: PSPs triggered by consecutive inputs with constant ISI of 10 ms (left) adnd
20 ms (right). The red shadow represents rectangular PSPs with the equiv-
alent integral area as the exponential PSPs (blue) over each ISI duration.
The light green dashed line denotes PSPs of a renewing synapse. In practice,
for STP-RBM (SR) we use STP parameters with slightly larger envelope to
compensate for the exponential tails for the case of ISI > 10 ms.

LIF counterparts, due to consecutive PSPs in the LIF neuron will overlap upon the tails
from former PSPs. In the case for ISI = 10ms, compensation can be made by decreasing
τrec for the STP-RBM to 0.9 (black dash line). However, when the ISI is doubled2

the tails will continuously influence the membrane potential which is not the case for
rectangular PSPs in the STP-RBM. In practice, this gives a latency for the sampling
dynamics of LIF networks and leads to imprecisions of sampling. When sampling from
multimodal distributions with strong attractors, in the majority of the period, neurons
either fire with minimum ISI or remain silent. Continuous firing with low frequencies
are considered to be minor cases and their influences on overall sampling statistics are
limited, but might scale with the size of the network.

We apply two sets of STP parameters for the STP-RBM in the bar genera-
tion experiments, one with (U0 = 1.0, τrec = 0.9, τfac = 0.0) and the other
(U0 = 1.0, τrec = 0.6, τfac = 0.0) as shown in Fig. 5.2. The latter one is designed
to have a higher envelope endeavored to compensate the effect of tails for large ISI in a
certain degree, though it also induces more deviations for the minimum ISI case.
Similar approaches as in section 4.3.1 are taken to inspect the modulation effect of

STP on marginal probability distributions of network states. We collected all emerged
marginal states in a simulation of 5000 sampling steps (4998 visible and 2867 hidden
states) and the average ratio variation of p∗(h) in terms of different modes are plotted in

2We show doubled ISI here for the convenience of comparison, in practice, the ISI for a LIF neuron can
change continuously.
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Figure 5.3.: Top: Images generated from an STP-RBM with (U0 = 1.0, τrec = 0.9, τfac =
0.0). Samples cover 200 sampling steps (corresponding to the bottom plot,
count by rows, from left to right) with a sample interval of 10. The pixels of
most images are scatter into multiple modes, less concentrated than images
produced with τrec = 0.9 in Fig. 4.23. Bottom: Ratio variations of aver-
aged p∗(h) for each mode during simulation. Their corresponding modes are
plotted in the end.

Fig. 5.3 and 5.4. By comparing the generated image quality, one can see that network
with τrec = 0.6 produces better separated bars than τrec = 0.9 and its variation of p∗(h)
also more resembles to what we observed in the LIF case (Fig. 4.23). This indicates
that for the STP-RBM, a relative higher envelope in the minimum ISI case could better
reproduce the dynamics of the LIF counterparts. However, more simulations need to be
performed to find an optimal range of envelopes.
The t-SNE plots for STP-RBM with τrec = 0.6 during 3 mode switches are shown

in Fig. 5.5. While similar local modulation effects of STP are found compared to the
LIF case (Fig. 4.19), we see a clearer separation of states between different modes and
less randomness in terms of a more uniform variation of ratio within the same cluster.
This could be largely attributed to synchronized synaptic transmission of the STP-RBM,
which is fundamentally different from the LIF network.

5.1.3. Generation of handwritten digits

We further applied STP-RBMs to generation tasks of MNIST handwritten digits in which
the same model parameters (weights and biases) are used as in section 4.2.3.
Based on the experience from the previous section, we again apply two sets of STP
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Figure 5.4.: Top: Images generated from an STP-RBM with (U0 = 1.0, τrec = 0.6, τfac =
0.0). Samples cover 300 sampling steps (corresponding to the bottom plot,
count by rows, from left to right) with a sample interval of 6. Bottom:
Ratio variations of averaged p∗(h) for each mode during simulation. Their
corresponding modes are plotted in the end. The variation resembles to what
we observed in the LIF case (Fig. 4.23).
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12 15 18  2421

66 69 72 7875

240 243 246 252249

Figure 5.5.: Ratio change of an ensemble of p∗(h) during three mode switches observed
from simulation, i.e. sampling steps from 12-24 (fist row), 66-78 (second
row) and 240-252 (third row). The whole image sequences are plotted in
Fig. 5.4 top. The red dot indicates the position of the current network state,
and its corresponding visible state is shown on the top right. Similar local
modulation effect of STP occurs as in the case of LIF-based RBM with STP
(Fig. 4.19). However, it can be observed that ratio changes in the same
cluster are more uniform compare to the LIF case.
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Figure 5.6.: Left: PSPs triggered by consecutive inputs with constant ISI of 10 ms.
The STP parameter set (blue solid line) of the LIF network is the same
as the one used in section 4.2.3 for generation of handwritten digits. The
red shadow represents rectangular PSPs with the equivalent integral area as
the exponential PSPs (blue) over each ISI duration. The light green dashed
line denotes PSPs of a renewing synapse. Two sets of STP parameters are
plotted for the STP-RBM, both with fw of 0.014, the same as the LIF PSPs.
Right: Image samples generated from the LIF network (top) and STP-
RBMs (middle: τrec = 15.0, bottom: τrec = 13.0). A black pixel represents 0
firing probability of the corresponding visible neuron and white corresponds
to 1. The pixel value is generated from the conditional firing probability of
the visible neuron given the state of hidden layer.

parameters: (U0 = 0.01, τrec = 13.0, τfac = 1.4) and (U0 = 0.01, τrec = 15.0, τfac = 1.1).
The former is a close match of the exponential PSPs used for the LIF network in the
minimum ISI case and the latter creates a slightly higher envelope, as shown in Fig. 5.6.
The generated images show that the STP-RBM with higher envelope generates samples
of similar qualities to the LIF network, which is in accordance with the hypothesis in
the previous section. Notice that different from the previous bar experiment, a close
PSP envelope match at the minimum ISI now generates almost blank pixels, this could
be due to the increase of the size of the network and more complicated probability dis-
tribution, which magnifies the integral difference caused by the tails of exponential PSPs.

In addition, we further investigate the influences of difference STP envelopes on
sampling dynamics in terms of the firing rate of the hidden layer, as shown in Fig. 5.7.
Together we plot the corresponding STP envelopes and image samples produced by
these networks as references.

The result shows that a pure STD for the LIF network with (U0 = 1.0, τrec =
15.0ms, τfac = 0.0ms) decreases the strength of each individual synaptic transmis-
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Figure 5.7.: Top left: Firing rate of the hidden layer (600 neurons in total) for networks
with different STP parameter sets. Top right: Envelopes of PSPs caused
by consecutive spikes with minimum ISI. Envelopes of equivalent rectangular
PSPs of LIF neurons are denoted with solid lines. Bottom: Images gener-
ated by networks with corresponding STP parameters. Each image sequence
cover 1500 sampling steps with a sample interval of 100.
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5. RBMs with STP

sion leading to a much higher firing ratio in the hidden layer and insufficient firing in the
visible layer. This also occurs for the STP-RBM with (U0 = 0.01, τrec = 13.0, τfac = 1.4),
indicating a similar scenario.
For the two STP parameter sets, i.e. (U0 = 0.01, τrec = 13.0, τfac = 1.4) and (U0 =

0.01, τrec = 280.0ms, τfac = 0.0ms) which produce recognizable images, their firing rates
are in similar range as Gibbs sampling. This indicates a good approximation of sampling
dynamics to the benchmark network. Note that their images switch to different modes
much faster than Gibbs sampling.
Finally, for the LIF network using renewing synapse with (U0 = 1.0, τrec =

10.0ms, τfac = 0.0ms), the firing rate in the hidden layer is much lower compared to
other networks and the visible layer much higher, resulting in quite blurred images. This
could be largely due to the tail effect of the exponential PSP which causes deviation to
the ideal sampling process.
Notice that for the LIF network a potentiation-depression envelope close to the re-

newing envelope approximates Gibbs sampling dynamics much better than the renewing
synapse itself. This is in accordance to what we observed previously in Fig. 4.15. Theo-
retically, similar latency effects should also occur for potentiation-depression envelopes,
however, it seems that this special pattern with a certain deviation from the bench-
mark can counteract the effect in a degree. This specific shape of PSP envelope could
be necessary and particularly effective for large size networks where latency effects can
be alleviated by asynchronous activities from other neurons encoding the same mode.
Interestingly, similar shapes are also found in biology (Tsodyks and Markram, 1997).

5.2. Discussion

Throughout this chapter, we discussed the implementation of STP in the sampling of
RBMs and presented initial results on several applications ranging from low to high
dimensions. When sampling from a distribution defined in a limited state space where
mixing is easy, the STP mechanism seems to be redundant for fast convergence to the
target distribution.
For multimodal distributions in higher dimensions, STP-RBMs achieved similar per-

formances as LIF networks, however with a different range of optimal STP parameters
due to the difference in PSP shapes. Based on experiments, we derived a hypothesis (or
rule of thumb) that the envelope of STP-RBM under minimum ISI needs to be slightly
higher than the LIF one in order to compensate for the potential latency effects and
achieve similar sampling statistics. More simulations are needed to quantify an optimal
range of parameters and collecting the firing spectrum of all neurons can be helpful for
the investigation.

In this study, a quantitative comparison between the mixing performances of STP-
RBMs and LIF networks is still missing, which can be performed in the future by a
broad sweep of potential STP parameter configurations and a subsequent ISL calcu-
lation, as in section 4.2.3. We conjecture that the overlapping effect of exponential
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PSPs for individual synapse combining with STP could make the LIF network a sharper
filter than the STP-RBM, enable it to jump in and out of a local mode faster. Relate
works concerning sampling with different PSP shapes can be found in Gürtler (2018).
Furthermore, from a theoretical perspective, a convergence study of STP-RBMs re-
mains to be done, related works can be found in Apolloni et al. (1991). Moreover, the
influence of synchronized computation in mixing needs to be further investigated, a
comparison can be made by implementing STP in the abstract spiking neuron model in-
troduced in section 2.2.1, which uses rectangular PSP but with asynchronous computing.

Another potential future direction is to study the implementation of STP in learn-
ing. However, one needs to be cautious if STP-endowed sampling is used for the
approximation of the model distribution due to its mixing advantage, which could be
helpful if the distribution is multimodal but could also be harmful when the distribution
is imbalanced as demonstrated in section 4.2.4. For the latter case, a more careful choice
of STP parameters is needed. Another option is to run the STP-endowed sampling as a
parallel chain to facilitate mixing.
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Conclusion

In this research, we started from a brief introduction of generative models and the cor-
responding mixing problem, then focused on Boltzmann machines which were used as
benchmark models throughout the work because of their efficiency and resemblance to
biological neural networks (section 2.1). Subsequently, we discussed the implementation
of stochastic sampling on LIF neurons (section 2.2) and scaled up the network for high
dimensional generative and discriminative tasks, where they rival or surpass traditional
machine learning counterparts by leveraging certain biological mechanisms (chapter 3
and 4).
By studying the membrane potential distribution of the LIF neuron and its activation

function (section 3.1), we established a mapping relation between the rate of background
Poisson noise and the temperature of energy based models (section 3.2). On the network
level, we further developed a spike-based tempering framework implemented with sinu-
soidal background noise inspired by neural oscillation, which generates with sufficient
mixing comparable to traditional tempering methods (section 3.3).
In contrast to noise which changes the dynamics of the global system, synaptic short-

term plasticity (section 4.1) modulates the local active population by facilitating or de-
pressing instant synaptic efficacy. With a certain range of STP parameters, we cre-
ated modulated synapses with specific shapes of PSP envelopes (section 4.1.2) and im-
plemented them in LIF networks for generative tasks on different scales (section 4.2).
The activity-dependent modulation mechanism of STP naturally facilitates the system
to escape from local attractors, outperforming plain MCMC methods in mixing mean-
while maintaining its discriminative ability (section 4.2.3). When applied to imbalanced
datasets, while traditional sampling methods stuck in the majority mode, with different
synaptic envelopes created by STP the LIF network realizes diverse sampling statistics,
demonstrating its versatility (section 4.2.4). In addition, we revealed the effect of STP
on the probability distribution of network states, providing a theoretical explanation for
its functionality (section 4.3).
Motivated by the mixing advantage of STP-endowed sampling, we applied a similar

mechanism to traditional restricted Boltzmann machines and studied their performances
with preliminary experiments (chapter 5). The variation of PSP shape and synchrony
of computation make the system different from LIF networks. We discussed potential
effects caused by these factors and demonstrated that similar generative performances
can be achieved with a different range of parameters.
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6.1. Outlook

Plain MCMC methods are well known for their pool mixing in high dimensional multi-
modal distributions (Salakhutdinov , 2010; Bengio et al., 2013). Traditional solutions like
tempering algorithms usually have high computational cost and are inefficient in obtain-
ing valid samples. The STP-endowed sampling mechanism takes a different strategy: the
active attractor triggers the modulation of STP which in turn causes the deactivation of
itself. More versatile sampling algorithms can be inspired by this adaptive mechanism,
with the potential for different sampling tasks by modifying only a few parameters.
To this end, a theoretical study of how variations of PSP envelope leads to different
sampling statistics on certain probability distributions is needed. With a spiking history
dependency, STP-endowed sampling loosely resembles a high order Markov chain. Their
connections could be a direction for future studies.

Throughout the work, we train the network using traditional learning algorithms
and then map the model parameters to the LIF domain. As demonstrated in our exper-
iments, the latency effect causes deviation of the mapping which eventually contributes
to the imprecision of sampling. A direct on-line learning algorithm of the LIF network
could potentially solve this problem. It has been recently proved that contrastive diver-
gence can be approximated by spike-timing-dependent plasticity (Neftci et al., 2014).
However, its robustness to noise, which is inevitable for analog neuromorphic hardware,
is still questionable. Counter solutions have been proposed and researches are ongoing.
This approach could be integrated with STP-endowed sampling to create more efficient
learning algorithms for generative SNNs.

Currently, the scale of our LIF networks is limited by the computation power of
conventional simulation platforms. The efficiency of our framework will be magnified
through a physical neuromorphic emulation where added complexity in neural dynamics
incurs no runtime penalty. A circuit emulating STP (Billaudelle, 2017) has recently
been implemented in the latest HICANN-DLS chip (Aamir et al., 2018) which covers a
broad range of optimal parameters that can facilitate the mixing of LIF networks. Based
on specifically designed hardware (Schemmel et al., 2010; Aamir et al., 2018), our ap-
proach can potentially create fast and energy-efficient physical models of neuro-synaptic
dynamics.
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A.1. Acronyms and Abbreviations

AIS - Annealed Importance Sampling

ANN - Artificial Neural Network

AST - Adaptive Simulated Tempering

BM - Boltzmann Machine

CAST - Coupled Adaptive Simulated Tempering

GAN - Generative Adversarial Network

ISI - Inter-Spike Interval

ISL - Indirect Sampling Likelihood

MCMC - Markov Chain Monte Carlo

PCD - Persistent Contrastive Divergence

PSP - PostSynaptic Potential

RBM - Restricted Boltzmann Machine

SNN - Spiking Neural Network

STD - Short-Term Depression

STF - Short-Term Facilitation

STP - Short-Term Plasticity

VAE - Variational Autoencoder
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A.2. Supplementary Information

A.2.1. Neuron Parameters

Table A.1 lists the LIF CUBA and COBA neuron parameters used in simulations in
chapter 3 and chapter 4.

Table A.1.: Neuron parameters
COBA CUBA

Cm 0.1 nF 0.2 nF membrane capacitance
τm 20 ms 0.1 ms membrane time constant
τref 10 ms 10 ms refractory time constant
τsyn 10 ms 10 ms synaptic time constant
ϑ −50 mV −50 mV threshold voltage
ρ −53 mV −50.01 mV reset potential

Erev
exc 0 mV - excitatory reversal potential

Erev
inh −100 mV - inhibitory reversal potential

To speed up simulations, we used an effective current-based (CUBA) model to replace
the COBA one (Table A.1). Fig. A.1 shows a comparison between the two models.
Under appropriate parametrization, we could reduce the background input rates from
ν = 5 kHz to ν = 0.4 kHz.

Figure A.1.: Free membrane potential (ϑ = 0) of a biologically plausible COBA LIF neu-
ron in the HCS compared to an equivalent CUBA LIF neuron (parameters
given in Table A.1).

A.2.2. Training hyperparameters

The used hyperparameters (number of epochs T , batch size N , learning rate η) were
based on suggestions from previous work Hinton (2010) and empirical experience. For all
datasets trained with CAST, we used 20 equidistant inverse temperatures βk ∈ [0.9, 1].
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The adaptive weights {gk}Kk=1 were initialized to 1 for all temperatures and as γt → 0
the adaptive weights will converge. In all experiments, we set γt as 90/(150 + t).

For the bar example (section 4.2.2), we used T = 100, 000, N = 3 and η = 10/(2000 + t).

For the full MNIST example (section 4.2.3), we used T = 200, 000, N = 100 and
η = 40/(t+ 2000).

For the first example of an imbalanced dataset (Fig. 4.15), we used a network with 784
visible, 10 label and 400 hidden units with T = 100, 000, N = 100 and η = 20/(t+2000).

For the example of pattern completion from an imbalanced dataset (Fig. 4.17), we
used a network with 784 visible, 10 label and 400 hidden units with T = 200, 000,
N = 100 and η = 40/(t+ 2000).

For the reduced bar experiment in section 4.3.2, we trained the network using PCD with
N = 3 and η = 15/(t+ 2000).

A.2.3. t-distributed stochastic neighbor embedding

The t-SNE method (Maaten and Hinton, 2008) finds a low-dimensional map for a high-
dimensional data set, in which the similarity between samples is reflected by their dis-
tances in the low-dimensional map. Here, we projected the generated digits to a plane to
provide an intuitive understanding of the network dynamics and the mixing between dif-
ferent modes (digit classes). The Euclidean distances between high-dimensional samples
{xi} are converted into symmetric pairwise similarities

pij =
pj|i + pi|j

2n
, (A.1)

where n is the number of samples and pj|i is a conditional probability:

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )
, (A.2)

with variance σi, which is determined by first defining a so-called perplexity value as the
effective number of neighbors of a data point, and then running a binary search. For the
low-dimensional points yi and yj mapped from the high-dimensional data points xi and
xj , the similarity is defined using a t-distribution with one degree of freedom:

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

. (A.3)

If the mapped points correctly model the similarity between the high-dimensional data
points, the similarities pij and qij will be equal.
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With this motivation, tSNE minimizes the sum of Kullback-Leibler divergences over
all data points using a gradient descent method. The cost function C is given by

C = DKL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

. (A.4)

Its gradient with respect to the map point i can then be derived to provide an update of
the mapping:

∆yi ∝
∂C

∂yi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1 . (A.5)
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