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ABBREVIATIONS 

ABCB5  ATP-binding cassette sub-family B member 5 

ADME   absorption, distribution, metabolism and excretion 

AF   AlexaFluor 

ALCAM  activated leukocyte cell adhesion molecule 

ANOVA  analysis of variance 

BME   basement membrane extract 

BRAF   B-rapidly accelerated fibrosarcoma 

CAM   cell adhesion molecule 

CLS   Cell Line Service 

CTLA-4  cytotoxic T-lymphocyte antigen-4 

DMEM  Dulbecco's Modified Eagle Medium 

DMSO  Dimethylsulfoxid 

ECM   Extracellular matrix 

ERK   extracellular signal-regulated kinase 

IFN   interferon 

IKVAV  Ile-Lys-Val-Ala-Val 

IL   interleukin 

IMDM   Iscove’s Modified Dulbecco’s Medium 

KRT   keratin 

MAPK   mitogen-activated protein kinase 

MEK   mitogen-activated extracellular signal-regulated kinase 

Mel-CAM  melanoma cell adhesion molecule 
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PCNA   Proliferating Cell Nuclear Antigen 

PCR   Polymerase Chain Reaction 

PDMS   polydimethylsiloxane 

PD-1   programmed cell death protein 1 

PEG   polyethylene glycol 

PI3K   phosphatidylinositol 3-kinase 

PLA   polylactic acid 

PLG   polylactide-co-glycolide 

PVA   polyvinyl alcohol 

RGD   Arg-Gly-Asp 

RGP   radial growth phase 

RTK   receptor tyrosine kinase 

SMART  substrate modification and replication by thermoforming 

TGF   transforming growth factor 

TNF   tumor necrosis factor 

UV   ultraviolet 

VCAM   vascular cell adhesion molecule 

VGP   vertical growth phase 

2D   two-dimensional 

3D   three-dimensional 
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1 INTRODUCTION 

1.1 3D cell culture 

Cell-based assays play a central role in the process of drug discovery. They provide 

simple, fast, and cost-effective tools to avoid large-scale and cost-intensive animal 

testing. Until now, the majority of cell-based assays are based on traditional 

two-dimensional (2D) monolayer cells cultured on flat and rigid substrates. While the 

widely used 2D cell culture has proven to be a valuable method for cell-based studies, 

it has also serious restrictions. In the in vivo environment, where cells grow in a 

three-dimensional (3D) manner, almost all cells are surrounded by other cells and the 

extracellular matrix (ECM). In contrast, 2D cell culture does not sufficiently take into 

account the natural 3D environment of cells. As a consequence, results achieved by 

2D cell culture experiments are often misleading and their predictive value for in vivo 

responses is rather limited 1,2. Nonetheless, in drug discovery, the standard procedure 

of screening compounds still starts with 2D cell culture-based studies, followed by 

animal tests and clinical trials. Only about 10 % of the compounds are successful in 

clinical development. The majority of drugs fail during clinical trials, especially during 

phase III, which is the most expensive phase in this process 3,4. This is mostly due to 

a lack of clinical efficacy and/or acceptable toxicity 5,6. A reason for this failure is caused 

by data collected from the 2D monolayer culture studies where, owing to the artificial 

microenvironment, the cellular response to drugs is altered. Thus, the development of 

more realistic and predictive in vitro cell-based systems is essential to identify 

non-specific, ineffective, or toxic compounds early in the drug development process, 

ideally before animal tests. 3D and organoid cell cultures promise to be a big step 

forward in that direction. 

1.2 Types of 3D cell cultures 

While most studies on 3D cultures use established cell lines, organoid cell cultures 

using patient-derived primary cells or stem cells in 3D cultures are on the rise. 

Organoids are capable of self-renewal, self-organization and exhibit organ 

functionality 7. They provide similar composition and architecture to primary tissue, 

relevant models of in vivo conditions, and a stable system for extended cultivation 8. 

Conversely, established cell lines are cost effective, easy to handle, provide an 
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unlimited source of material, and avoid ethical concerns associated with the use of 

animal and human tissue. Furthermore, cell lines represent a pure cell population 

allowing reliable samples and reproducible results 9. 

3D cell culture techniques are classified as scaffold-based and non-scaffold-based 

techniques. 

1.2.1 Scaffold-based and non-scaffold-based techniques 

In 3D cell cultures, cells grow into 3D aggregates/spheroids using a scaffold/matrix or 

they develop in a scaffold-free way. The generation of scaffold/matrix-based 3D cell 

cultures is performed by either seeding cells on an acellular 3D matrix or by dispersing 

cells in a liquid matrix and a further solidification or polymerization. Scaffold/matrix 

materials that are commonly used include biologically derived scaffold systems and 

synthetic-based materials. Biologically derived matrices that are commercially 

available products are for example BD Matrigel™ basement membrane matrix (BD 

Science), Cultrex® basement membrane extract (BME; Trevigen), and hyaluronic acid. 

To form synthetic scaffolds, polyethylene glycol (PEG), polyvinyl alcohol (PVA), 

polylactide-co-glycolide (PLG), and polylactic acid (PLA) are commonly used 

materials 10–13. 

Scaffold-free techniques allow cells to self-assemble and to form non-adherent cell 

aggregates mimicking solid tissues that secrete their own extracellular matrix and 

exhibit an inherent gradient of nutrients, oxygen, and metabolites within themselves 14. 

The generation of scaffold-free 3D cell spheroids is made in suspensions by the forced 

floating method, the hanging drop method, or agitation-based approaches 4 (figure 1). 

The forced floating method uses low adhesion polymer-coated well-plates to produce 

spheroids. An advantage of this method is that it can be used for high-throughput 

screening due to its possible automation 15. The hanging drop method consists of a 

cell suspension inside a tray. By inverting the plate/tray, cell suspensions become 

droplets presenting cell aggregates on their tip and thereby creating compact 

spheroids 16,17. Spheroids produced by this method have a relatively higher gas 

exchange 18 and possible effects of contact materials on cells are avoided. 

Nevertheless, to use these spheroids in cell-based assays, they need to be transferred 

to other standard plates after spheroid formation 18. Finally, the agitation-based method 

uses bioreactors to obtain 3D spheroids. Herein, cell suspensions are placed into a 
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rotating bioreactor that gradually turns isolated cells into aggregates that cannot 

adhere to the container wall due to continuous stirring. Consequently, a wide range of 

non-uniform spheroids is generated. Each of the above mentioned methods allow cells 

to grow naturally in a 3D environment with cells interacting with other cells, the ECM, 

and their microenvironment. These interactions in such 3D spatial arrangement affect 

a variety of cellular functions, such as cell proliferation, differentiation, morphology, 

gene and protein expression, and cellular responses to external stimuli 19. 

Figure 1: Scaffold-free 3D cell culture techniques. Scaffold-free techniques allow cells to 

self-assemble. The forced floating method uses low adhesion plates to produce spheroids. The hanging 

drop method creates spheroids by inverting a tray with cell suspensions that become droplets presenting 

cell aggregates on its tip. And the agitation-based approaches uses bioreactors to obtain 3D spheroids. 

Adapted from Breslin et al 2013. 

1.2.2 Microfluidic 3D cell culture: Organs-on-chips 

The transition from 2D to 3D cell culture techniques is an important step to gain more 

physiological relevant models. However, most 3D cell culture systems do not take into 

account the multicellular complexity of tissues and do not present tissue vasculature. 

Furthermore, they do not offer gradients and continuous perfusion 20. Microfluidic 3D 

cell cultures allow co-culturing of cells in a spatially controlled manner, generation and 

control of gradients, and a continuous perfusion/flow. Combining multiple cell types 

represents the organization of tissues and organs more closely. By culturing them in a 

spatially controlled manner, the in vivo situation can be mirrored. For example, the 

interaction between stromal cells with cancer cells can be mimicked 21. Microfluidics 
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are also a useful tool for co-cultivation of whole tissues, so called organs-on-chips, and 

interconnecting them with microfluidic channels for media circulation 22,23. To further 

include vasculature, seeding of endothelial cells inside the interconnecting channels 

can be performed 24. In the in vivo environment, many soluble molecular gradients are 

found in different biological processes such as angiogenesis, invasion, and 

migration 20. To study these processes, microfluidic devices have been developed. The 

flow of fluids can be spatially controlled by microfluidics, and therefore gradients can 

be achieved. For example, it is possible to build a hydrogel between fluids that forms 

a stable linear gradient, or to alter the geometry of channels and apply flow rates to 

gain more complex gradients 25. Perfusion inside microfluidic 3D cell culture devices 

enables stable nutrient and oxygen supply and constant removal of waste products. 

Furthermore, it is essential in terms of vasculature, since the flow of fluids provides 

shear stress that affects cell morphology and gene expression 26,27. Figure 2 displays 

such a microfluidic 3D cell culture device. It allows efficient human-like tissue nutrition, 

flexible combination of different tissues, and long-term performance. 

Figure 2: Microfluidic organ-on-chip. A microfluidic device allows cultivation of different organ models 

in a common media perfusion circuit in a miniaturized format. Adapted from Tissuse, 2-Organ-Chip 

(2-OC), URL: https://www.tissuse.com/en/products/2-organ-chip/ [15.02.2019]. 

1.3 Modeling cancer in 3D for drug discovery 

One of the numerous advantages of 3D cell culture is the reflection of the tumor in vivo 

situation by the possibility to incorporate elements of the tumor microenvironment such 

as fibroblasts, immune and inflammatory cells, the blood and lymphatic vascular 

network, adipose cells, and neuroendocrine cells 28,29. The tumor microenvironment 

displays following properties: (I) oxygen and nutrient gradients, (II) non-uniform 
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exposure to drug/compounds, (III) increased cell-cell interactions, (IV) cell-matrix 

interactions, (V) influence of stromal/tumor site specific cells via paracrine signaling, 

and (VI) dissimilar proliferation rates throughout the 3D structure (figure 3) 30. These 

characteristics are closely mimicked by 3D cell culture models. Hence, drug research 

is much more efficient when performed in such 3D cell cultures. Several 3D cell culture 

systems with different cancer cell types have been developed to test various 

anti-cancer drugs. Direct comparison of the same cancer cells revealed a 

lower/reduced sensitivity to the anti-cancer agent when performed in 3D systems as 

compared to 2D growth 31–33. On the other hand, there are studies showing that cancer 

cells cultured in 3D models are equal or even more susceptible to a drug compared to 

2D monolayer cultures 34–36. 

Figure 3: Properties of the tumor microenvironment. 3D architecture of tumors presents (I) oxygen 

and nutrient gradients, (II) uneven exposure to drug/compounds, (III) enhanced cell-cell interactions, 

(IV) cell-matrix communications, (V) effect of stromal/tumor site specific cells through paracrine 

signaling, and (VI) different proliferation rates throughout the 3D structure. Adapted from Lovitt et al 

2014. 
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1.4 Skin 

1.4.1 Composition and function 

Human skin covers an area of almost 2 m2 in the adult and thus represents our second 

largest organ only exceeded by the vascular system 37. It consists of the three major 

layers, subcutis, dermis, and epidermis. The subcutis comprises primarily adipose 

tissue and epithelial cells. Adipose tissue consists of clusters or sheets of lipid-filled 

cells, called adipocytes. Furthermore, the subcutis is composed of blood vessels, 

neurites of peripheral neurons, Vater-Pacini mechanosensors, and, partially, also 

sweat glands and hair follicles 38. Moreover, it connects the skin to periosteum and 

fascia, absorbs forces, and adds thermal insulation 39. 

The dermis of the skin is stratified into an inner, reticular, and an outer, papillary, area. 

It supplies the epidermis with mechanical support and nutrients. Most sebaceous 

glands, sweat glands, hair follicles, smooth muscle cells, and capillary beds are located 

in the dermis. Thus, the dermis regulates skin moisture and body temperature, and 

performs the secretory function of the skin 38. The papillary layer houses loose 

connective tissue. Herein, Meissner corpuscles are located that are responsible for 

sensitivity to gentle touch 40. On the contrary, the reticular layer is characterized by 

dense connective tissue. Additionally, immune cells, especially mast cells and dendritic 

cells, are placed in the papillary layer and mediate local inflammatory reactions and 

immune surveillance 38. Finally, tensile strength and elasticity of skin are mediated by 

dermal fibroblasts. These also secrete extracellular matrix and basement membrane 

components which are primarily collagens I and III, and a proteoglycan-rich ground 

substance 37. The two skin compartments, dermis and epidermis, are separated from 

each other by a special basement membrane (figure 4). This comprises a 

laminin/collagen IV rich scaffold and components that are typical for the basement 

membrane such as perlecans and nidogens 37. 

The epidermis of the skin is a 50-150 µm thick squamous epithelium. It contains 

keratinocytes, Merkel cell mechanosensors, Langerhans immune cells, and 

melanocytes 38. Keratinocytes give mechanical strength to the skin through a dense 

network of intracellular intermediate filament systems built up of keratins (KRT). They 

interconnect neighboring cells via desmosomes containing desmoplakin 41 and link to 

the basement membrane via hemidesmosomes containing plectin 42,43 (figure 4). 



Introduction 

9 

 

Figure 4: Elements of the basement membrane. Schematic draft shows the anchorage between 

epidermis (E) and dermis (D) centered around a special basement membrane. Dermal fibroblasts 

secrete collagens and keratinocytes in the epidermis, interconnected via desmosomes, give strength to 

the skin through keratin filaments that connect the cells to the basement membrane via 

hemidesmosomes. Adapted and modified from Breitkreutz et al 2009. 

Epidermal keratinocytes are organized in four well-defined strata with increasing 

differentiation status from the inner to the outer side (figure 5). In detail, it first shows 

two germinal layers, the stratum basale and stratum spinosum. In the stratum basale, 

the inner layer, where the cells are linked to the lamina basale via hemidesmosomes, 

the keratinocytes divide and give rise to cells that constitute in the spinous layer. In the 

spinous layer, the cells exit from the cell cycle and reinforce their cytoskeletal keratin 

and desmosome network 44. In the stratum granulosum, keratinocytes display a more 

flattened shape and express late differentiation markers such as filaggrin and loricrin. 

Finally, keratinocytes undergo terminal differentiation to become dead, flattened 

corneocytes in the outer layer of the epidermis, the stratum corneum 45. During this 

process, a cornified envelope is created at the inner side of the cytoplasmic membrane, 

that is composed of keratins, involucrin, filaggrin, and loricrin 45,46. Additionally, lipids 

are stored in secreted lamellar bodies that consist of ceramides, cholesterol, and fatty 

acids 47 to form a water-repelling envelope around the cornified envelope as a 

permeability barrier function 44,45,48. Terminal differentiation of keratinocytes depends 
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on temperature and Ca2+ 46,49. In fact, in the presence of millimolar amounts of Ca2+ 

and lowered temperature, the formation of such envelopes is preferred 46,49. 

Furthermore, the secretion of lamellar bodies is triggered by Ca2+-influx into 

keratinocytes 46 and occurs at the same time as keratinocytes convert to corneocytes 

by apoptotic cell death, indicated by the marker cleaved caspase 3 (table 1) 50. In 

contrast, cells in the basal layer require low, micromolar amounts of Ca2+ for their 

proliferation 38. A common marker of proliferation is ki67 (table 1). To ensure this 

variable function of Ca2+, a sharp gradient is essential between the inner and outer 

layers of the epidermis. Between the stratum granulosum and stratum corneum, thick 

skin on palms of hands and feet features an additional layer, the stratum lucidum 51. 

Figure 5: Layered structure of the epidermis. Keratinocytes located at the lamina basale proliferate 

to form the stratum basale. Then, they differentiate and build up the stratum spinosum, where they exit 

from the cell cycle and reinforce their cytoskeleton. In the stratum granulosum, they express late 

differentiation markers and, finally, become corneocytes in the outer most layers of the epidermis, the 

stratum corneum. Adapted and modified from Denecker et al 2008. 

1.4.2 Role of cytokeratins in skin development and disorders 

In a normal healthy adult, epidermis undergoes a complete renewal every 60 days 46. 

Consequently, keratinocytes undergo a robust longitudinal change in gene expression. 
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This is particularly well understood and characterized for keratins 43,52–54. As mentioned 

in table 1, KRT5 and KRT14 are typical markers for basal keratinocytes, while KRT1 

and KRT10 are mainly expressed during differentiation in the stratum spinosum. The 

transition from KRT5/14 to KRT1/10 is a gradual process, typically resulting in a mixed 

expression of different keratins at several differentiation stages 43. 

Table 1: Major markers of epidermal stratification 

Protein Epidermal layer Physiological function Ref. 

KRT5/KRT14 Stratum basale Resilience 43,55 

KRT1/KRT10 Stratum spinosum Resilience, part of cornification 43,55 

KRT6/KRT16 Activated keratinocytes Resilience 53 

KRT17 Contractile keratinocytes Resilience, regulation of protein synthesis 

and cell size 

53,54,56 

Involucrin Stratum spinosum, 

Stratum granulosum, 

Stratum corneum 

Cornification of plasma membrane, 

scaffold for other envelope proteins 

45,57 

Loricrin Stratum granulosum, 

Stratum corneum 

Major cornified envelope component 45,58 

Profilaggrin Stratum granulosum Filaggrin precursor 45,59,60 

Filaggrin Stratum corneum Keratin crosslinking 45,59,60 

Ki67 Stratum basale, Stratum 

spinosum 

Undefined role in cell division, rRNA 

synthesis, maintenance of mitotic spindle 

61–63 

Cleaved caspase 3 Stratum granulosum Execution of apoptosis 63–65 

Disturbance of keratinocyte differentiation can lead to chronic skin disorders such as 

atopic dermatitis and psoriasis 38. In psoriatic epidermis, immune cells secrete 

inflammatory cytokines like TNF-alpha and IL-17, which results in a strongly altered 

gene expression 66. This leads to an enhanced proliferation and an incomplete terminal 

differentiation of keratinocytes 66. While the hyperproliferation-associated markers 

KRT6, KRT16, and KRT17 are highly expressed in psoriatic keratinocytes 67,68, the 

differentiation markers KRT1 and KRT10 are downregulated 68. Consequently, 

psoriatic skin is associated with massive epidermal hyperplasia but poorly adherent 

stratum corneum leading to the characteristic flakes of psoriasis lesions 66. In case of 

wound healing, keratinocytes undergo a different pathway called keratinocyte 

activation cycle 53 (figure 6). This process is initiated by the release of IL-1 from 

keratinocytes, which leads to the formation of blood vessels and immune response 38. 

IL-1 functions as chemoattractant to trigger lymphocyte migration to the injury 69. In 
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addition, IL-1 turns keratinocytes into hyperproliferative, migratory cells and changes 

their gene expression 53. The cytokine TNF-α and growth factor TGF-α are induced 

and transmit the signal of injury to surrounding cells 53. Furthermore, they are 

responsible for the maintenance of activation 53. Activated keratinocytes express 

KRT6, KRT16, and KRT17 (table 1) and produce paracrine factors to alert fibroblasts, 

endothelial cells, melanocytes, and lymphocytes 53. This activates fibroblasts to form a 

new ECM. Moreover, activated keratinocytes release autocrine signals targeting 

neighboring keratinocytes 53. The next step of wound healing is the contraction of newly 

synthesized ECM. Therefore, keratinocytes become contractile caused by the 

signaling molecule IFN-γ. This, in turn, leads to the expression of KRT17. KRT17 is 

usually not found in healthy epidermis, but only at the end of the wound-healing 

process or in certain pathologies like psoriasis and allergic reactions 70. To finish the 

process of wound healing, keratinocytes have to revert to their basal cell phenotype. 

Therefore, they need the signal that the injury is healed and the tissue repaired. This 

signal is caused by TGF-β released by fibroblasts 53. TGF-β suppresses cell 

proliferation, reactivates the standard keratinocyte differentiation program, and induces 

expression of ECM and basement membrane components like fibronectin 71, 

laminin 72, and collagen IV 72 and VII 73,74. Particularly, TGF-β induces the synthesis of 

the basal keratinocyte markers KRT5 and KRT14 75. 
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Figure 6: The keratinocyte activation cycle. Basal keratinocytes express KRT5 and KRT14. They can 

either differentiate, which depends on Ca2+ and vitamin D3, and produce KRT1 and KRT10, or become 

activated and produce KRT6 and KRT16. For this activation process, IL-1 has to be released. TNF-α 

and TGF-α are responsible for the maintenance of activation until another factor like IFN-γ is received. 

IFN-γ triggers KRT17 expression and induces contractility in keratinocytes. TGF-β reverts this pathway 

by induction of KRT5 and KRT14 expression. Adapted from Freedberg et al 2001. 

1.5 From melanocytes to malignant melanoma 

Melanoma is a malignant tumor that arises from the uncontrolled proliferation of 

melanocytes. Melanocytes are derived from the neural crest and produce the pigment 

melanin, which is responsible for human skin pigmentation 76. Melanin can be classified 

into two major types of pigments: eumelanin (dark brown and black) and pheomelanin 

(yellow, red, and light brown) 77–79. Both are produced and deposited in melanosomes. 

In human skin, melanocytes are located at the most basal epidermal layer, attached to 

the basement membrane, which separates epidermal and dermal compartments of the 

skin. In addition, they also mediate pigmentation of hair and iris 80. Moreover, 

melanocytes are present in the inner ear for normal development of the cochlea 81, 

nervous system, sharing common embryologic origin 82, heart, influencing atrial 

reactive oxygen species 83,84, and probably many more locations 80. Besides 
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melanocytes, also other cells have the ability to produce melanin. These include cells 

of pigmented epithelia of retina and iris, the ciliary body of the eye 85, some neurons 86, 

and adipocytes 87. Melanocytes, placed at the basal layer of the epidermis, together 

with approximately 36 associated keratinocytes, form the epidermal melanin 

units 80,88,89. In order to maintain this balance, melanocyte division is carefully 

regulated. Indeed, for proliferation, melanocytes need to detach from the basement 

membrane and neighboring keratinocytes, pull in their dendrites, divide, and finally 

migrate along the basement membrane, where they re-attach to the matrix and to 

keratinocytes to form a new epidermal melanin unit 90. This growth of melanocytes is 

under the control of surrounding keratinocytes through (I) extracellular communication 

via paracrine growth factors, (II) intracellular communication via second messengers 

as well as signal transduction, and (III) intercellular communication via cell-cell 

adhesion molecules, cell-matrix adhesion, and gap junctions 90–92. In normal skin, 

homeostasis decides whether a cell is quiescent, proliferative, differentiates, or 

undergoes apoptosis 90. If this homeostasis is disturbed, the resulting imbalance of the 

epidermal melanin unit might cause a continuous proliferation of melanocytes, leading 

to the development of melanoma 90,92. 

1.5.1 Cell-cell adhesion of melanocytes and melanoma cells 

Normal melanocytes interact with the ECM through collagen IV and laminin. But in 

melanoma cells, this attachment is altered and they rather interact with collagen I and 

vitronectin 90. This change is often associated with the aggressive potential of 

melanoma cells to invade from the epidermis to the dermis 93. Cell-cell adhesion is also 

changed during tumor progression. While normal melanocytes connect to 

keratinocytes via E-cadherins (figure 7A), melanoma cells exhibit N-cadherins in order 

to attach to fibroblasts and endothelial cells in the tumor environment (figure 7B) 94. 

Normal melanocytes were found to express only few cell-cell adhesion receptors of the 

family of cell adhesion molecules (CAMs) 90. In contrast, melanoma cells display an 

increased expression of melanoma cell adhesion molecule (Mel-CAM), vascular cell 

adhesion molecule 1 (VCAM-1), L1 cell adhesion molecule (L1-CAM), and activated 

leukocyte cell adhesion molecule (ALCAM) 90. 
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Figure 7: Difference in cell-cell adhesion in melanocytes versus melanoma cells. Normal 

melanocytes are interconnected to keratinocytes via E-cadherin and desmoglein allowing for 

communication through gap junctions (A). Melanoma cells interact with each other via N-cadherin, 

Mel-CAM/Mel-CAM ligand, ALCAM, αvβ3 integrin/L1-CAM, and connexins, with fibroblasts via 

N-cadherin, and with endothelial cells via N-cadherin, Mel-CAM/Mel-CAM ligand, αvβ3 integrin/L1-CAM, 

α4β1 integrin/VCAM-1, and connexins (B). Adapted from Haass et al 2005. 

Mel-CAM mediates cell-cell adhesion between melanoma cells and endothelial cells 

through a heterophilic adhesion to a still unknown ligand 95. Mel-CAM expression is 

first found in melanocytic cells in nevi, where they start to separate from epidermal 
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keratinocytes and migrate into the dermis 96. With ongoing malignancy, the expression 

of Mel-CAM increases and is found to be highest in metastatic melanoma cells 97. 

Moreover, a correlation between Mel-CAM expression and tumor thickness exists 97,98. 

Inhibition of Mel-CAM expression in metastatic melanoma cells through genetic 

suppressor elements of Mel-CAM cDNA results in the inhibition of adhesion between 

melanoma cells and thus downregulates the tumorigenic phenotype 99. L1-CAM 

mediates adhesion of melanoma cells to other melanoma cells as well as to endothelial 

cells through binding to αvβ3 integrin in a heterophilic way 100. This binding appears to 

play a central role in transendothelial migration of melanoma cells 101. Next, the 

adhesion molecule ALCAM is only expressed in metastatic melanoma cells and 

facilitates cell-cell adhesion in a homophilic manner 102. Its expression correlates with 

melanoma progression 103. Finally, VCAM-1, a cytokine inducible cell adhesion 

molecule, is predominantly present on endothelial cells 90. It serves as a receptor for 

α4β1 integrin, which is expressed by malignant melanoma, and therefore guides 

adhesion of melanoma cells to the vascular endothelium 104. 

1.5.2 Melanoma genetics 

Melanoma gene mutations are highly induced by carcinogenic ultraviolet (UV) light 

irradiation 105. Most of these mutations are cytidine to thymidine (C>T) transitions 105. 

About 50-60 % of melanoma cases are caused by B-rapidly accelerated fibrosarcoma 

(BRAF) V600E mutations 106 and 20–30 % by NRAS mutations 107. Since the MAP 

(mitogen-activated protein) kinase/ERK (extracellular signal-regulated 

kinases)-signaling pathway is activated in the majority of melanoma cases, BRAF 

V600E and NRAS Q61R are seen as driver mutations for malignant melanoma 108. The 

MAPK pathway is an important intracellular signaling pathway that involves a series of 

protein kinase cascades to regulate cell proliferation (figure 8). It is activated through 

binding of extracellular growth factors to receptor tyrosine kinases (RTKs) 109. This 

binding activates a small G protein such as RAS. RAS proteins are usually in an 

inactive state but become active when binding to GTP. Activated RAS, in turn, activates 

BRAF, which subsequently phosphorylates and thereby activates MEK 

(mitogen-activated extracellular signal-regulated kinase). Finally, MEK phosphorylates 

and activates ERK causing a normal cell proliferation and survival 110. 
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Figure 8: Normal and oncogenic BRAF signaling pathway. Normal cell proliferation and survival is 

triggered by activation of RAS via binding of extracellular factors to RTK. The following signaling involves 

the sequential activation of RAF, MEK and ERK. Point mutations like in BRAF V600E lead to an 

excessive activation of this pathway causing immense cell proliferation. Inhibition of BRAF V600E blocks 

the constitutively activated signaling and thereby hinders downstream activity. Adapted from Ascierto et 

al 2012. 

However, in melanoma, where BRAF V600E is mutated, the MAPK pathway proceeds 

in a different way. Here, activation of BRAF V600E does not require RAS activation 

through extracellular factors. BRAF V600E is constitutively activated and continuously 

activates MEK followed by ERK. This leads to excessive cell growth and proliferation. 

BRAF inhibitors such as vemurafenib 111 aim to selectively bind to oncogenic BRAF 

kinase and thus block the signaling pathway 106,109,110. However, the MAPK pathway is 

not the only signaling pathway that is critical for many essential cellular processes. The 

PI3K (phosphatidylinositol 3-kinase)-AKT pathway plays also an important role in 

normal cellular physiology and is frequently activated in melanomas 112. 
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1.5.3 Stages and types of melanoma 

Melanoma is the most common form of cancer and its incidence is rising faster than 

any other cancer 107. It is currently responsible for over 80 % of deaths from skin 

cancer 113. Melanoma can be subdivided into two growth phases, radial and vertical. 

While in the radial growth phase, malignant cells stay in the epidermis and grow only 

radially, the vertical growth phase is characterized by the invasion of malignant cells 

into the dermis and the ability to metastasize beyond its primary site 114. In more detail, 

melanoma can be grouped into different stages from 0-IV. Stage 0 melanoma (in situ) 

is characterized by restriction to the outer layer of the skin, the epidermis. It has not 

yet invaded the dermis but stays in place. Furthermore, it has not spread to the lymph 

nodes or distant sites. Stage I melanoma is divided into stage IA and stage IB. In stage 

IA, the tumor has no ulceration and is not more than 1 mm thick. In stage IB, the tumor 

is either not more than 1 mm thick but with ulceration, or between 1 and 2 mm thick 

and without ulceration. Moreover, the cancer cells have not spread to lymph nodes or 

distant sites. Stage II melanoma has invaded the dermis and is also divided into 

subclasses. Stage IIA melanoma is defined by either a thickness between 1 and 2 mm 

with ulceration, or between 2 and 4 mm thickness without ulceration. Stage IIB 

melanoma is either between 2 and 4 mm thick with ulceration, or more than 4 mm thick 

without ulceration. Stage IIC melanoma is more than 4 mm thick with ulceration. Stage 

III melanoma does not depend on thickness or ulceration. Here, the cancer cells have 

spread to one or more lymph nodes. And finally, in stage IV melanoma, the cancer has 

spread far away from its primary site to other places in the body including lung, liver, 

brain, bone or soft tissue 115. Additionally, there are four types of melanoma, according 

to their growth pattern: (I) superficial spreading melanoma, the most common form, is 

flat but can become asymmetrical and elevated in advanced stages with various colors, 

(II) nodular melanoma, the second most common type, are normally blue-black but can 

also lack pigment, (III) lentigo maligna melanoma, which affects 4-10 % of melanomas, 

are often larger than 3 cm, flat, tan, and with marked notching of the borders, (IV) acral 

lentiginous melanoma, the rarest kind, appears on the palms and soles, or under the 

nails. They look flat, tan, or brown with irregular borders 114. 

1.5.4 Treatment options of melanoma 

When diagnosed in its early non-tumorigenic stages, resection of the lesion leads to 

promising survival rates 116. However, melanoma is an aggressive malignancy that 
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tends to metastasize beyond its primary site. Once melanoma is advanced, surgery is 

no longer sufficient and the disease becomes more challenging to treat. Treatment 

options for late-stage melanomas include kinase inhibitors and immunotherapies. 

Vemurafenib is an approved BRAF inhibitor 117,118 and trametinib, an selective inhibitor 

for MEK1/2 119. Furthermore, pimasertib and binimetinib (MEK162) have been reported 

to be promising in patients with NRAS mutations 120. Immunotherapies use checkpoint 

inhibitor antibodies against cytotoxic T-lymphocyte antigen-4 (CTLA-4) like 

ipilimumab 121 and/or programmed cell death protein (PD-1) 122,123. However, 

monotherapy is unlikely to bring a long-term benefit due to drug resistance. Therefore, 

drug combinations with different targeted and immunotherapies as well as standard 

chemotherapeutics are the best option to overcome resistance and obtain long-term 

response 124–127. For example, co-targeting the MAPK and PI3K/AKT signaling 

pathways, or the MAPK and p53 pathways, might be options 107. 

1.5.5 Role of ABCB5 in drug resistance 

Although there are some promising targeted therapies against metastatic melanoma 

such as the BRAF kinase inhibitor vemurafenib 117, melanomas constantly become 

resistant to these agents 128. In addition to general mechanisms of resistance that are 

found in various cancers, including downregulation of drug uptake mechanisms, 

altered drug metabolism, and increased repair or cellular tolerance 129, melanomas 

exhibit specific features 130. For example, it was shown that the 

melanogenesis-associated vesicles, the melanosomes, are involved in trapping and 

export of drugs 131. Furthermore, melanoma cells express ATP-binding cassette (ABC) 

transporters, in particular of type ABCB5, which are related to multidrug resistance by 

decreasing the accumulation of cytotoxic drugs inside the cells 132. ABCB5 was found 

to mediate resistance to the chemotherapeutics doxorubicin and temozolomide 130,133. 

Although it is also present in several human tissues 134,135, ABCB5 is highly abundant 

in melanocyte progenitors, melanoma cell lines, and melanoma biopsies 133,136–139. 

ABCB5-expressing cells in melanoma have the ability to self-renew, differentiate and 

become tumorigenic 130,140. Furthermore, expression of ABCB5 correlates with tumor 

progression and metastasis competence 140. Schatton and colleagues showed that the 

growth of melanoma xenografts in mice was delayed when treated with a monoclonal 

anti-ABCB5 antibody 140. 
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1.6 Current 3D in vitro test systems for skin and melanoma 

The skin plays a central role in human health and physiology. Therefore, it is a principal 

organ of the human body. In order to find novel drugs and treatments in 

pharmacological and biomedical research, it is necessary to develop appropriate test 

systems. In both cases, animal models are not the first choice. The most common 

species used in animal models are rodents. However, their skin composition is too 

different to human skin to be comparable. Other animals with more human-like skin, 

such as pigs, are difficult to handle and too expensive for regular application. 

Furthermore, ethical reasons exclude them as well. Taken together, animal models 

turn out to be less and less attractive for skin and melanoma research 38. Nonetheless, 

also 2D skin and melanoma cell cultures that have been used since decades are 

physiologically irrelevant. Most principal functions of skin, like barrier function, 

resilience, cell sheeting, cell layering, developmental profiles, immune function, blood 

perfusion, and innervation, cannot be addressed in simple 2D cultures 38. In addition, 

melanoma cells do not grow in isolation rather interacting with their stroma and other 

cell types such as endothelial cells, fibroblasts, and immune cells 141. Therefore, 3D 

cell cultures present a reasonable compromise between ease of use and predictability. 

Several 3D cell culture models have been developed to study skin and melanoma in 

vitro: spheroids, hydrogel systems, 3D bioprinting, and organ-on-a-chip. 

1.6.1 Spheroids 

The spheroid technology and its use in oncology came into existence, when Halpern 

and colleagues observed that malignant cells are more likely to form aggregates than 

normal cells when cultured in an Erlenmeyer on a shaker 142. The team around 

Sutherland titled their Chinese hamster V79 lung cell aggregates “multicellular 

spheroids” and added a description of the three typical zones found in the majority of 

these 3D spherical cultures, i.e. an inner necrotic core, an intermediate zone of 

quiescent cells as well as an outer stratum of proliferating cells 143. Spheroids are 

primarily formed by the Hanging Drop method 17 or by the use of non-adherent 

U-bottom shaped plates 144. Sometimes, the addition of coatings is essential for the 

formation of spheroids. For example, melanocytes need the addition of chitosan 145. 

Recently, new technologies have been developed and are now commercially available 

that force aggregation via magnetized cells 146. However, spheroids are not the 

classical model for 3D cultivation of skin cells. They are more suitable when addressing 
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cancer, such as melanoma. 3D melanoma spheroids embedded in a collagen matrix 

closely resemble the in vivo tumor structure and microenvironment 147,148. It mirrors the 

heterogeneity of a tumor with oxygen/nutrient gradients, a hypoxic area, and a necrotic 

core, and lets melanoma cells interact with their stroma. For example, it was found that 

ERK is homogeneous in 2D cell cultures and can be totally inhibited by treatment with 

small-molecule inhibitors of the MAPK pathway 149, whereas in 3D spheroids, 

ERK-activity is restricted to the periphery, which is similar to the in vivo situation 150. 

This indicates the heterogeneous expression of signaling molecules inside a tumor 

and, thus, its implications for cancer therapies 141. Okochi and colleagues used the 

spheroid technique to investigate the interaction of fibroblasts on the invasion of 

melanoma. In order to generate a co-culture spheroid, they magnetically labelled 

fibroblasts and melanoma cells 146. Another melanoma model used a bioreactor 

system to produce HaCaT spheroids as a scaffold for melanoma cells 151. Peura et al. 

highlight the importance of paracrine factors released by fibroblast spheroids to 

produce an active matrix 152. Nevertheless, none of these publications describes a skin 

spheroid model with the typical stratification pattern observed in the epidermal layer of 

the skin. First promising attempts have been reported, describing a spherical 

microtissue that contains different keratinocyte sheets and a dermal fibroblast core 

producing extracellular matrix proteins so that no exogenous collagen is required 153. 

Due to their simplicity, low cost, and high reproducibility, spheroids are very interesting 

3D models, even for skin research (table 2). They could be used for high-throughput 

cell function and cytotoxicity analysis 38,154. Most spheroids can be disassembled by 

lysis buffer or enzymes, allowing them for biochemical analysis 155. Imaging of whole 

mount spheroids can be performed by confocal microscopy 156 or light-sheet 

microscopy 157, whereas conventional microscopy requires sectioning of spheroids 

prior imaging 158. 

1.6.2 Hydrogel systems 

Besides spheroids as the easiest 3D cell culture method, the most dominant system to 

create an in vitro skin model is the use of hydrogels. Hydrogels function as a scaffold 

for dermal fibroblasts, which are then co-cultured with keratinocytes on top. Typically, 

hydrogels are made of collagen I, the leading class of ECM protein, and usually dermal 

fibroblast cells are embedded in the collagen gel mimicking the dermal layer of the 

skin 159,160. Bell and colleagues were the first to describe a hydrogel system containing 
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epidermal cells on top of a primary rat fibroblast-seeded collagen matrix 161. However, 

there are also other ECM-related proteins that can be used for the generation of 

hydrogels. For instance, Alameda et al. created a 3D model comprising HaCaT 

keratinocytes and fibroblasts in fibrin gels to achieve a human skin equivalent that 

includes both, a dermal and epidermal compartment. This resembled the structure and 

stratification found in normal human skin 162. Apart from that, there are numerous 

commercially available skin models based on hydrogels, such as EpiDerm (MatTek, 

Ashland, MA, USA), Episkin (L´Oreal; SkinEthic, Nice, France), Apligraf 

(Organogenesis Inc., Canton, MA, USA), and Labskin (Innovenn, Dublin, Ireland). 

Taken together, hydrogels are a good technique to assemble the dermal stratum and 

the stratified layers of the epidermis. Moreover, complete stratification of keratinocytes, 

including cornification, can be achieved by special protocols of air exposure 163,164 or 

combination of high Ca2+ and low temperature 49. The principal advantage of hydrogel 

systems is their high level of differentiation. This makes it a good approach to study 

effects on specific epidermal layers 38. The most common used cell types are primary 

human dermal fibroblasts and primary keratinocytes 159,165. However, also keratinocyte 

cell lines, like HaCaT cells, are used 163. For example, Zanoni and co-workers 

investigated the cytotoxicity of different chemicals, such as hair dyes on a 

hydrogel-based skin system using HaCaT keratinocytes 160. In order to study diseases 

of the skin, such as psoriasis, simple models are on the market (MatTek Corp., 

Ashland, MA, USA), comprising healthy keratinocytes and diseased fibroblasts 

isolated from psoriatic lesions of patients. Still, the use of psoriatic epidermal 

keratinocytes is more appropriate to mirror the psoriatic situation 166. Furthermore, it is 

possible to assemble a human skin equivalent including all three major skin layers, 

even the subcutis, with human adipose derived stem cells and adipocytes 167. To 

address melanoma, melanocytes and/or melanoma cells can be added 168. Melanoma 

cells from different stages of progression share similar properties in human skin 

reconstructs as in the skin of a patient. For example, cells derived from melanoma in 

situ (RGP) do not invade the dermis, whereas advanced primary VGP and metastatic 

melanoma cells are able to invade the dermal compartment in such a model 90,169,170. 

Meier and colleagues used the reconstruction of melanoma in an organotypic human 

skin culture technique to show that combinations of MAPK and AKT inhibitors totally 

suppressed invasive tumor growth of melanoma cells 171. Since melanoma, psoriasis, 

and other skin diseases involve cross-talk between different cell types and cytokines, 
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the addition of immune cells to the 3D skin model is very helpful 38. The first 3D skin 

equivalent including different T-cell populations was described by van den Bogaard et 

al. It was used to study the migration of immune cells and the secretion of 

proinflammatory cytokines in psoriasis 172. However, this system lacked 

hyperproliferation and the cytokine levels were much lower compared to the in vivo 

condition, suggesting that there are still components and cell types missing to create 

an accurate model of psoriasis 38. 

While 3D in vitro hydrogel systems are mainly used to study epidermal behavior, 

biology of melanoma, and drug response of melanoma cells at early stages 141, 

spheroid models can be used for high-throughput assays to evaluate proliferation, 

invasion, and drug response of distant metastatic melanoma 141. As summarized in 

table 2, the major advantage of 3D in vitro hydrogel systems is their defined biomimetic 

properties. Their site of cell adhesion can be adjusted by the use of peptides like RGD 

or IKVAV 173,174. Additionally, the cell-degradability, the stiffness of the gels as well as 

the material of the gels itself can be varied (e.g. collagen, fibrin, gelatin) 38,162,175,176. 

Since the hydrogel systems allow the cells to recover from the gels by proteases, they 

are also applicable for molecular analysis like Western Blot and Polymerase Chain 

Reaction (PCR) 165,168. Due to their transparency, they can be imaged by 

microscopy 163. Regarding costs, hydrogels are in a moderate range. They are much 

cheaper than microfluidic devices but more expensive than simple spheroid 

systems 38. Even though their handling is easy, they need a constant monitoring 

throughout the whole culture time of up to 21 days or even longer 155,177,178. Since the 

hydrogels involve biological components, the gels might have a high batch-to-batch 

variability which makes it difficult to reproduce the same results 38 (table 2). 

1.6.3 3D bioprinting 

Using the 3D bioprinting technique, complex tissue structures can be generated 

automatically 179. Therefore, different layers of a desired material, which is in most 

cases a hydrogel or biodegradable matrix, are printed creating such arrangements. 

Afterwards, cells or biomolecules are added in a defined way to form the desired 

biological structure 180. In 1986, Charles W. Hull presented the stereolithography 

method, where he combined thin layers of certain materials with UV light 181. Then, the 

method was further improved leading to methods like the laser printing 182 and ink 

printing 183. Later, soft lithographic methods have been developed. This technique uses 
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stamps to form cell-containing sheets and stacks these layers to create a 3D 

shape 184,185. However, these approaches are often associated with complex 

manufacturing processes to ensure precise positioning of the cell-containing layers 38. 

Since 3D bioprinting is able to produce 3D structures in an on-demand fashion, it was 

used to manufacture diverse biomimetic architectures, such as fluidic channels 186, 

vascular-like structures 187, growth-factor releasing matrices 188, neural tissues 189, and 

cancer cell-holding tissues as a model for angiogenesis 190. Regarding bioprinted skin, 

complex skin tissues were generated comprising dermal and epidermal layers made 

of keratinocytes, melanocytes, and fibroblasts 179,191–193. However, so far, there is no 

attempt to emulate a more complete 3D bioprinted skin including subcutis or disease 

models such as melanoma. Using 3D bioprinting, Lee et al. generated a human skin 

that is biologically and morphologically representative of human skin tissue in vivo. It 

comprises keratinocytes and fibroblasts resembling epidermis and dermis, and 

collagen resembling the dermal matrix 179. Koch and colleagues used the 

laser-assisted bioprinting to embed keratinocytes and fibroblasts in collagen. Then, 

they evaluated the influence of the printing procedure on the cellular proliferation, 

survival rate, and apoptotic activity. All cells maintained their proliferation ability, were 

able to differentiate, and formed functional gap and adherent junctions 192. 

Current 3D bioprinting techniques are mostly automated, hence they provide a good 

reproducibility and allow for high-throughput (table 2). 3D bioprinting is a highly flexible 

method, since the scaffold as well as the cell types and active molecules can be varied 

on demand. Therefore, this system is potentially applicable in tissue engineering, 

cytotoxicity assays, and pathophysiology of skin diseases 38,179. Moreover, bioprinted 

tissue can be further analysed by biochemical methods and imaged by fluorescence 

microscopy 179,194. However, 3D bioprinting is a cost-intensive, complex method 

(table 2). Consequently, it is only available in a few laboratories. 

1.6.4 Organ-on-a-chip 

The term organ-on-a-chip stands for cell culture devices for the cultivation of living cells 

under continuous perfusion to simulate tissue and organ physiology with high 

spatiotemporal control 195,196. These aim to create minimal functional units of tissue 

and organs rather than forming a completely living organ. The easiest system consists 

of only one cell type presenting functions of one tissue and is perfused in a single 

microfluidic chamber 38. More complex approaches exhibit two or more microfluidic 
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chambers containing different cell types. They are connected by porous membranes 

mimicking the borders between different tissues 196. Microfluidic devices usually rely 

on soft lithography, a complementary extension of photolithography. Replicating 

patterns are etched into silicon chips in more biocompatible and flexible materials. A 

liquid polymer like polydimethylsiloxane (PDMS) is poured on an etched silicon 

substrate. After its polymerization, it is an optically clear, rubber-like material serving 

as a stamp 197. Most microfluidic chips are perfused with a pumping system 198, but 

some are pumpless using a rocking platform 199. Compared to the other 3D in vitro 

systems, microfluidic devices are the best option to emulate skin physiology and 

functionality. Perfusion produces shear stress increasing cell viability and proliferation 

which is not achieved in static cultures 200. Furthermore, almost all systems are able to 

cultivate with an air-liquid interface 200. Depending on the application, either cell lines, 

primary cells, or skin biopsies are used 198,200,201. An additional source of cells are 

presented by human induced pluripotent stem cells. As they have the ability to 

differentiate into keratinocytes 202, fibroblasts 203, melanocytes 204, and endothelial 

cells 199, human induced pluripotent stem cells can be used in healthy and diseased 

skin models. Simple skin models include epidermis and dermis, but there are also more 

complex models with hair follicles and adipocytes 22, immune cells 205, and structures 

similar to sweat gland pores 206. Additionally, skin-on-a-chip can be combined with 

other tissues to study drug metabolism. For that reason, Maschmeyer et al. and 

Wagner et al. created two and four organ chips with intestine, liver, skin, and kidney 207–

209. Besides, skin disease models such as inflammation and edema are present 210. 

The integration of microfluidics in 3D tumor environment may provide a powerful 

platform for the precise and fast monitoring of the response of cancer cells to drugs 211. 

Furthermore, the small amounts that are needed in such systems make it a 

cost-effective tool for drug screening applications 211. Mori and co-workers used a 

perfusable skin equivalent model with vascular channels composed of endothelial cells 

to evaluate the amount of drug absorbed by the vascular channels 212. Pandya and 

colleagues used mouse melanoma cells in a microfluidic platform for drug 

screening 213. In addition, Mattei and co-workers co-cultivated mouse melanoma cells 

and immune cells to explore their cross-talk 214. 

One of the major advantages of microfluidic chips is the physiological flow of medium 

allowing a constant oxygen and nutrient supply. This has an effect on cell-cell 

interactions and local concentrations of secreted ligands of tissues 215. Combining skin 
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with the organ equivalents of intestine, liver, and kidney, an in vitro ADME (absorption, 

distribution, metabolism and excretion) profiling is possible 209. Molecular analysis, like 

PCR, can be performed 210, and, since the chips are typically made of PDMS, 

microscopy is feasible 208. However, the great disadvantage of PDMS is that it absorbs 

small molecules such as drugs 216. The central constraints of microfluidic devices are 

the high costs and the expertise needed for the complex assembly of such systems 38 

(table 2). Another fact is that arising air bubbles within the system can harm biological 

function and viability 217,218. 

Table 2: Advantages and disadvantages of different 3D in vitro test systems 

System Advantages Disadvantages 

Spheroids Ease of use 

Low costs 

High reproducibility 

Allow for high-throughput screening 

Simplified architecture 

Hydrogel systems Ease of use 

Defined biomimetic properties 

Applicable to microplates 

High reproducibility 

Allow for high-throughput and high-content 

screening 

Simplified architecture 

Constant monitoring required 

High batch-to-batch variability 

3D bioprinting High reproducibility 

Custom-made architecture 

Allow for high-throughput screening 

High costs 

Complex method 

Difficult to be adapted to 

high-throughput and 

high-content screening 

Organ-on-a-chip In vivo like architecture High costs 

Complex assembly 
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1.7 Aims of the project 

Melanoma is the most common form of cancer 107. Thus, test systems resembling the 

in vivo situation are required for the development of new drugs and therapies. Several 

3D cell culture approaches have been developed to test drugs and perform 

mechanistic studies on melanoma. They all exhibit varying degrees of complexity 211. 

Although 3D cultures are superior to traditional 2D approaches, these cultures are 

either composed of only one cell type, the melanoma cells, or they are so complex that 

it is difficult to study the behavior of a single cell type. Moreover, they are hard to 

establish and expensive. 

Therefore, the aim of this project was to establish a novel, simple, spheroid-based 

melanoma model composed of human fibroblasts, keratinocytes, and melanoma cells. 

Furthermore, this study aimed to characterize the melanoma tri-culture model in a 

cell-type specific way and to study the effect of the cytostatic drug, docetaxel, on this 

system. In order to avoid batch-to-batch variability and achieve a cost effective system, 

the established cell lines CCD-1137Sk fibroblasts, HaCaT keratinocytes, and 

SK-MEL-28 melanoma cells were used. To identify general features for 3D cultivation 

of normal and neoplastic cells, the prostate cancer cell lines LNCaP and PC-3 were 

used in addition. In order to study differences in culture conditions and behavior of 

these cell lines, they were cultivated in 2D and compared to 3D cultures. Furthermore, 

their proliferation and apoptosis potential was examined. 

The established 3D melanoma model might now be complemented by the addition of 

further cell types like immune cells or, to address personalized medicine, primary cells. 

Moreover, this model might be applied to screen new drugs and analyze their mode of 

action in a cell-type specific manner. 
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2 MATERIAL AND METHODS 

2.1 Cell Culture 

The human fibroblast cell line CCD-1137Sk (ATCC® CRL-2703™) was cultured in 

Iscove’s Modified Dulbecco’s Medium (IMDM), with L-Glutamine, supplemented with 

10 % fetal bovine serum (Sigma), and 1 % Penicillin Streptomycin (Capricorn). HaCaT 

cells (immortal human keratinocytes, order no. 300493) and SK-MEL-28 cells (human 

malignant melanoma cell line, order no. 300337), both from Cell Line Service (CLS) 

GmbH (Heidelberg/Germany), were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) High Glucose (4.5 g/l), with L-Glutamine, with Sodium Pyruvate (Capricorn) 

supplemented with 10 % fetal bovine serum, and 1 % Penicillin Streptomycin. LNCaP 

(ECACC Catalogue no. 89110211) and PC-3 (DSMZ order no. ACC 465), human 

prostate carcinoma cell lines, were cultured in RPMI 1640 Medium, with L-Glutamine 

(Capricorn), supplemented with 10 % fetal bovine serum, and 1 % Penicillin 

Streptomycin. All cells were maintained under standard conditions at 37 °C in 5 % CO2. 

0.05 % Trypsin EDTA in DPBS (1x) (Capricorn) was used to detach the cells. 

Mycoplasma tests using the MycoAlert™ Mycoplasma Detection Kit (Lonza) were 

routinely performed to ensure mycoplasma-free cell cultures. Thawing of cells was 

performed rapidly in a 37 °C water bath. Then, thawed cells were diluted in pre-warmed 

growth medium and centrifuged for 6 min at 800 rpm. Afterwards, the cell pellet was 

resuspended in fresh growth medium and plated in a T75-flask. In order to freeze cells, 

they were detached from the tissue culture plates by trypsinization and counted using 

a VI-CELL XR cell counter (Beckman Coulter) (1 x 106 cells/cryovial). Required volume 

of cell suspension was centrifuged at 800 rpm for 6 min and cell pellet was 

resuspended in appropriate amount of cold freezing medium containing 20 % fetal 

bovine serum and 10 % dimethylsulfoxide (DMSO). Aliquots of the cell suspension 

were dispensed into cryovials, placed in an isopropanol chamber and stored at -80 °C 

overnight. Next day, frozen cells were transferred to liquid nitrogen. 

2.2 3D spheroid cultures and docetaxel treatment 

Spheroids were plated using 96- and 384-well cell-repellent plates from Greiner. For 

mono-culture spheroids, fibroblasts (10,000 cells/well), HaCaT cells (20,000 

cells/well), SK-MEL-28 cells (5,000 cells/well), LNCaP cells (1,000 cells/well) and PC-3 
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cells (5,000 cells/well) were seeded. For skin bi-cultures, 10,000 cells of each, 

fibroblasts and keratinocytes, were used per well, whereas HaCaT cells were added 

three days after formation of the fibroblast core. Mono- and bi-cultures were cultured 

for 7 or 14 days as indicated. For tri-culture spheroids, fibroblasts (10,000 cells/well) 

were seeded. After three days, HaCaT (10,000 cells/well) and SK-MEL-28 cells (2,500 

cells/well) were added simultaneously. Spheroid formation was facilitated by 

centrifugation of the plates for 4 min at 500 rpm after each seeding step. To distinguish 

between the different cell lines, CellTracker Fluorescent Probes (Life Technologies) 

were applied. Before adding cells to the 3D co-culture, HaCaT cells were labeled with 

CellTracker Red CMPTX dye (Life Technologies, C34552) and SK-MEL-28 cells were 

labeled with CellTracker Green CMFDA (Life Technologies, C2925), each for a time 

period of 45 min according to the CellTracker manuals. Another two days later, 

tri-culture spheroids were treated with 100 nM docetaxel or 0.01 ‰ of DMSO as control 

for 15, 24, 48, and 72 h, respectively. Stock solutions (10 mM) of docetaxel (Sigma) 

were prepared in DMSO. After treatments, spheroids were normally fixed and 

immunostained as described below. For some experiments, tri-culture spheroids were 

transferred to 3D agarose molds (Sigma, Z764051) on day five after seeding in 

cell-repellent plates. Treatment with DMSO or 100 nM docetaxel for 72 h, as well as 

fixation and cryosectioning were then carried out in the molds. 

2.3 3D cultures using a microchip-based bioreactor system 

2.3.1 Chip design and manufacturing 

For microfluidic 3D cultivation of cells, Dynarrays were used (Dynarrays© 

MCA-C300-300-PC, 300MICRONS). They are made of polycarbonate and contain 

microcavities with 300 µm diameter and 300 µm in depth. For perfusion of the chips, 

they possess pore sizes from a few nanometers to several micrometers. The chip is 

made by a microthermoforming technique, the so-called SMART (substrate 

modification and replication by thermoforming) process, developed by 

300MICRONS 219–221. Briefly, thin polymer films with a thickness of only 50 μm are 

heated and pressed into a mold by applying appropriate pressure. Prior to 

microthermoforming, surface modifications onto the planar polymer film can be 

introduced leading to a translation of the surface modification from the planar state into 

the third dimension after thermoforming. In a post-process step, pores can be 

introduced into the polymer film leading to highly porous microcavities. 
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2.3.2 Bioreactor setup 

The bioreactor for the housing of the Dynarrays can support perfusion as well as 

superfusion flow schemes (figure 9 A, C and D). When the superfusion mode is 

applied, the fluid flows in parallel to the surface of the tissue, leading to the supply of 

nutrients and gases in the depth of microcavities by diffusion over both, the top and 

bottom surfaces of the chip (figure 9 D). In contrast, in the perfusion mode, the medium 

is flowing vertically to the surface of the tissue, i.e. through the porous bottom of the 

chip and the tissue of each microcavity (figure 9 C) 222. All experimental data presented 

in this work were generated by applying the superfusion flow regime at 130 μL/min. 

Figure 9: 300MICRONS Dynarray and bioreactor setup. Closed circulation loop of the bioreactor 

setup with bioreactor housing, medium reservoir, and pump (A). After cell seeding (B), the Dynarray is 

transferred into the bioreactor and cultivated with either the perfusion mode (C), or the superfusion flow 

scheme (D). Adapted and modified from Wuchter et al 2016. 

2.3.3 3D chip culture 

Prior to cell seeding, the air in the cavities of the chip was removed to ensure complete 

wetting of the microstructured surface area by applying a descending series of 

isopropanol/water. Since the micro-chips are made of polycarbonate, the 

microstructured area of the chips was coated with 30 µg collagen from rat tail tendon 

(Roche, #11179179001, stock solution 1 mg/mL) overnight at 4 °C to improve initial 

cell adhesion inside the cavities. Inoculation of the chips was achieved by pipetting 
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6 x 106 HaCaT cells or 3 x 106 SK-MEL-28 cells/150 µL culture medium onto the 

microstructured area of the chip, followed by 5 h incubation at 37 °C in an incubator to 

allow cell adhesion (figure 9 B). Afterwards, inoculated chips were transferred into the 

bioreactor and cultivated with superfusion for 7 or 9 days, respectively. 

2.4 Sectioning and immunofluorescence staining 

Immunostaining of spheroids used the following steps. After cultivation time, spheroids 

were collected in an Eppendorf tube, washed once with PBS (137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4 x 2 H2O, 2 mM KH2PO4, pH 7.4), and fixed with 4 % wt/vol 

paraformaldehyde in PBS at room temperature for 30 min. Next, spheroids were 

incubated overnight at 4 °C in 15 % sucrose (Roth, 4621.1) in PBS, followed by an 

incubation overnight at 4 °C in 25 % sucrose in PBS, before they were embedded in 

OCT (Leica). For preparing 10 µm thick sections, a CM-1950 cryostat (Leica 

Biosystems, Nussloch, Germany) was used. 3D molds were washed once with PBS 

and fixed with 4 % wt/vol paraformaldehyde in PBS at room temperature for 30 min. 

Then, molds were embedded in OCT and cut with the cryostat into 20 µm thick 

sections. All sections were permeabilized with 0.1 % Triton X-100 (Roth, 3051.4) in 

PBS, blocked with 3 % BSA (Roth, 8076.3) in PBS, and stained with rabbit anti-ki67 

(Merck, AB9260), rabbit anti-cleaved caspase 3 (Cell Signaling, 9661), rabbit 

anti-cytokeratin 10 (Thermo Fisher Scientific, PA5-32459), rabbit anti-collagen IV 

(Rockland, 600-401-106S), mouse anti-cytokeratin 14 (Merck, MAB3232), or mouse 

anti-ABCB5 (3C2-1D12 and Thermo Fisher Scientific, MA5-17026) antibodies, 

followed by goat anti-rabbit Alexa Fluor 647 (Invitrogen, A21246), goat anti-mouse 

Alexa Fluor 555 (Invitrogen, A21424), or donkey anti-mouse Alexa Fluor 647 

(Invitrogen, A31571) secondary antibody labeling. The corresponding dilutions of 

antibodies are outlined in table 3. Nuclei were stained with Dapi (Sigma, 10236276001; 

1:1,000 dilution). As a final point, sections were washed with PBS and mounted with 

Mowiol (Roth, 0713.2) for confocal microscopy (SP8, Leica). Immunostaining of 

Dynarrays used the following steps. Dynarrays were washed once with PBS, and fixed 

with 4 % wt/vol paraformaldehyde in PBS at room temperature for 30 min. Then, they 

were washed 3 times for 10 min with PBS and embedded in 2 % agarose. For 

preparing 30 µm thick sections, a vibratome (Leica VT1000S) was used. At first, 

sections were washed at least 3 times (PBS, 0.5 % Triton X-100) and afterwards 

quenched with quenching buffer (PBS, 0.5 % Triton X-100, 20 % DMSO, 0.3 M 
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glycine) for 2 hours. Next, samples were permeabilized and blocked (PBS, PTwH 

(0.5 %Tween-20 with 10 µg/mL heparin in PBS), 0.5 % Triton X-100, 10 % DMSO, 6 % 

bovine serum albumin) overnight at 4 °C and then stained with rabbit anti-ki67, rabbit 

anti-cleaved caspase 3, rabbit anti-cytokeratin 10 or mouse anti-cytokeratin 14 

followed by donkey anti-rabbit Alexa Fluor 488 (Invitrogen, A21206) or goat anti-mouse 

Alexa Fluor 555 secondary antibody labeling (table 3). Nuclei were stained with Draq5 

(Thermo Fisher Scientific, 62251; 1:1,000 dilution). Slices were washed carefully, 

placed on a glass slide and embedded in Mowiol for confocal microscopy. Images were 

taken with an inverted Leica SP8 (Leica Microsystems CMS, Mannheim, Germany) 

confocal microscope equipped with a HC PL APO 20x /0.75 IMM CORR objective. 

Table 3: Antibodies and their dilutions used for immunofluorescence (IF) and Western Blot (WB) 

analysis 

Antibody host, company, number Dilution 

anti-ki67 rabbit polyclonal, Merck, #AB9260 IF: 1:500 

anti-cleaved caspase 3 rabbit polyclonal, Cell Signaling, 

#9661 

IF/WB: 1:500 

anti-cytokeratin 10 rabbit polyclonal, Thermo Fisher 

Scientific, #PA5-32459 

IF/WB: 1:500 

anti-collagen IV rabbit polyclonal, Rockland, 

#600-401-106S 

IF: 1:50 

anti-cytokeratin 14 mouse monoclonal, Merck, 

#MAB3232 

IF/WB: 1:500 

anti-ABCB5 3C2-1D12 IF: 1:50 

mouse monoclonal, Thermo Fisher 

Scientific, #MA5-17026 

IF: 1:200 

WB: 1:500 

anti-GAPDH mouse monoclonal, Thermo Fisher 

Scientific, #MA5-15738 

WB: 1:10,000 

anti-PCNA mouse monoclonal, Thermo Fisher 

Scientific, #13-3900 

WB: 1:500 

anti-rabbit-AF647 goat polyclonal, Invitrogen, #A21246 IF: 1:1,000 

anti-rabbit-AF488 donkey polyclonal, Invitrogen, 

#A21206 

IF: 1:1,000 
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anti-mouse-AF555 goat polyclonal, Invitrogen, #A21424 IF: 1:1,000 

anti-mouse-AF647 donkey polyclonal, Invitrogen, 

#A31571 

IF: 1:1,000 

anti-rabbit-HRP goat polyclonal, Dako, #P0448 WB: 1:3,000 

anti-mouse-HRP goat polyclonal, Thermo Fisher 

Scientific, #32430 

WB: 1:3,000 

2.5 SDS PAGE and Western Blotting 

Cells grown in 2D cultures were harvested by trypsination. After centrifugation, the cell 

pellet was lysed with 100 µL lysis buffer (50 mM Tris-HCl (pH 7.5), 15 mM NaCl, 0.5 % 

NP-40, 50 mM NaF, 1 mM PMSF and Sigma Inhibitor Cocktail (1:100)) for 30 min on 

ice. Spheroids were washed once with PBS and then also lysed with 100 µL lysis buffer 

for 30 min on ice using a glass homogenizer. Afterwards, cells were centrifuged for 

10 min at 10,000 g at 4 °C and the supernatant (=lysate) was stored at -20 °C. Protein 

concentration of respective lysates were colorimetric measured using BCA assay 

(Pierce™ BCA Protein Assay Kit, Thermo Fisher Scientific, #23225). For Western Blot, 

lysates containing an amount of 20 or 50 µg total protein in Laemmli buffer (200 mM 

Tris-HCl (pH 6.8), 40 vol % Glycerol, 8 vol % SDS, 0.01 vol % BPB, 100 mM 

β-mercaptoethanol) 223 were loaded on a 12 % polyacrylamide gel. Afterwards proteins 

were transferred to a PVDF membrane (Merck Millipore, #IPVH00010) using 

PerfectBlue® semi-dry electroblotter (Peqlab). Primary and secondary antibodies for 

detection of respective proteins and antibody dilutions are displayed in table 3. Bands 

were detected by using chemiluminescence analysis with G-Box Chemi XX6 

(Syngene, Cambridge, UK). 

2.6 Statistical analysis 

Images were processed using ImageJ software (NIH, Bethesda, MD) and composed 

using Adobe Illustrator (Adobe Systems Software). All numeric data were handled 

using Microsoft Excel 2013 and were subsequently incorporated into the Adobe 

Illustrator composite. Quantitative analysis of ki67-, cleaved caspase 3-, and 

ck10-positive cells was performed using ImageJ. In brief, images were background 

subtracted and the channel containing Dapi or Draq5 was median filtered (kernel 1 x 1) 

and an appropriate threshold (pixel size of 10 to infinity) was set. Screening of Dapi or 

Draq5 signals yielded total amounts of nuclei structures, which were imported into a 
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ROI (region of interest) manager. Next, the segmented structures were screened in 

the ki67 and cleaved caspase 3 channel. Only those structures were considered, that 

showed a value higher than background plus two times standard deviation. For the 

case of ck10, only the peripheral nuclei were manually counted and colocalized ck10 

stainings were counted as positive. For Western Blot analysis, densities of bands were 

quantified using the Gel Analysis plugin of ImageJ software. Relative values were then 

normalized to the housekeeping gene (GAPDH). Graphs are presented as 

mean ± S.E.M. or mean ± SD as indicated and statistically analyzed using one-way 

ANOVA with post-hoc Tukey HSD Calculator or Student`s t-test. P-values are indicated 

as *<0.05, **<0.01. 
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3 RESULTS 

3.1 Spheroids of HaCaT keratinocytes and fibroblasts were shrinking in size over 

time 

To study differences in culture conditions and behavior of normal and neoplastic cells, 

3D cell cultures of different cell types were compared. For this purpose, stromal, skin, 

and cancer cells were used. In more detail, the fibroblast cell line CCD-1137Sk, HaCaT 

keratinocytes, SK-MEL-28 melanoma cells, as well as the prostate cancer cell lines 

LNCaP and PC-3, were grown as monoculture on cell-repellent plates to create 3D 

spheroids. In order to study their growth and stability, they were monitored over time. 

Cultivation of HaCaT keratinocytes on cell-repellent plates led to the formation of round 

spheroids (figure 10 A`). During seven days in 3D culture, their volume decreased from 

1.4 x 108 µm3 (day 1) to 2.7 x 107 µm3 (day 7) (figure 10 A). The largest drop was 

visible in the first two days when the volume decreased by half. However, after seven 

days they were still forming round spheroids without dissociating. Similar to 

keratinocytes, also stromal fibroblast cells formed stable spheroids and those shrank 

in size over a period of 14 days (figure 10 B`). While on day 1, their volume was 

2.7 x 107 µm3, on day 14 it was only 8.2 x 106 µm3 (figure 10 B). Within the first six 

days, their volume was reduced by half. Still, their shape was compact with a sharp 

boundary. Together, these results suggest that 3D cultivation of fibroblast and skin 

cells leads to compact round spheroids with decreasing sizes over time. 
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Figure 10: Spheroids of keratinocytes and fibroblasts were decreasing over time. HaCaT (A and 

A`) and fibroblast (B and B`) spheroids were cultivated on cell-repellent plates for 7 and 14 days, 

respectively. During this period, an exponential decrease in size was observed. Loss of volume by 50 % 

was observed after two and six days for keratinocytes and fibroblasts, respectively (dashed lines). The 

graphs show the volume of spheroids in µm3 over time ± S.E.M. with n = 3 independent experiments. 

For each experiment and time point, 3 spheroids were measured. 

3.2 Tumor spheroids were increasing in size over time 

Previously, spheroids of cancer cells were found to increase in size over time 224. To 

confirm this finding, 3D cultivation of SK-MEL-28 melanoma cells, and LNCaP and 

PC-3 prostate cancer cells was performed on cell-repellent plates to form spheroids. 
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Unlike SK-MEL-28 and LNCaP cells, PC-3 cells required the addition of 2.5 % Matrigel 

to create compact spheroids. Figure 11 displays an increase in spheroid volume for all 

three tumor cell lines over time. Since the melanoma spheroids were first becoming 

more compact, their volume was getting smaller at the beginning (figure 11 A). But 

then, these spheroids’ volumes were continuously increasing from 1.2 x 108 µm3 on 

day 4 to 1.8 x 108 µm3 on day 7. The borders of the spheroid were not as sharp as 

those made from other cancer cells. Nevertheless, their structure was stable and they 

did not disaggregate during the time of cultivation (figure 11 A`). LNCaP spheroids 

were stable in size over seven days (figure 11 B). Even though this cell line formed 

compact spheroids with clear borders (figure 11 B`), they were not as round as 

SK-MEL-28 spheroids. The last cancer cell line, PC-3, was not able to make spheroids 

unless 2.5 % of Matrigel were added. Under these conditions, compact and round 

spheroids were obtained already after one day (figure 11 C) in culture. Here, the 

amount of their volume was 6.8 x 107 µm3. The following days, the volume further 

increased to 4.6 x 108 µm3 on day 7. Although they needed the addition of a basal 

membrane matrix, they aggregated to produce round compact spheroids 

(figure 11 C`). Altogether, these results suggest and thereby confirms previous studies 

that spheroids of cancer cells are increasing in size over time in 3D culture. 
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Figure 11: Spheroids of melanoma and prostate cancer cells were increasing over time. 

SK-MEL-28 (A and A`), LNCaP (B and B`), and PC-3 (C and C`) spheroids were cultivated on 

cell-repellent plates for 7 days. During this period, their size was rising. The graphs show the volume of 

spheroids in µm3 over time ± S.E.M. with n = 3 independent experiments. For each experiment and time 

point, 3 spheroids were measured. 

3.3 Proliferation of skin, melanoma, and prostate cancer cells was decreased when 

cultivated under 3D conditions 

In order to analyze the effect of 3D cultivation on cell proliferation, HaCaT, SK-MEL-28, 

LNCaP, and PC-3 cells were grown in 2D and as spheroids. Additionally, HaCaT and 
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SK-MEL-28 cells were cultured on Dynarrays with superfusion. Cells were grown in 

2D, as spheroids, and on Dynarrays. After seven days, spheroids and Dynarrays were 

fixed and sliced into 10 µm and 30 µm thick slices, respectively. Cell proliferation was 

analyzed by immunofluorescence for the proliferation marker ki67. When cultivated as 

2D monolayers, HaCaT cells were highly proliferative with intense ki67 staining, while 

in spheroids as well as on Dynarrays, only few proliferating cells were observed at the 

periphery of the spheroids and at the bridges of the cavities on the Dynarrays 

(figure 12 A). The 3D cultivation of keratinocytes on Dynarrays generated only a few 

layers of cells, while in spheroids, HaCaT cells assembled numerous sheets of cells. 

Quantitative analysis revealed that 3D cultivation led to a significant decrease of the 

amount of proliferating ki67-positive cells with only 2.0 % ± 0.9 %, 6.1 % ± 1.7 %, and 

74.7 % ± 17.5 % in spheroids, Dynarrays, and 2D culture, respectively (figure 12 B). 

Similarly, Western Blot analysis of HaCaT cells cultured in 2D as well as spheroids 

showed a significant decrease of the proliferation marker PCNA upon 3D cultivation 

(figure 12 C). Due to the insufficient quantity of proteins on Dynarrays, it was not 

possible to perform Western Blot analyses of HaCaT cells cultured on Dynarrays. 
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Figure 12: Decreased proliferation of HaCaT keratinocytes upon 3D cultivation. HaCaT cells were 

grown in 2D, as spheroids, and on Dynarrays. After 7 days, spheroids and Dynarrays were sectioned 

into 10 µm and 30 µm thick slices, respectively. All samples were immunostained for the proliferation 

marker ki67 and the nuclear dye Draq5. Images were taken at the confocal microscope. A 

Representative images of 2D and 3D samples are shown as indicated, exhibiting fluorescence signal 

from ki67 and Draq5 and overlay of both. In overlay, ki67 is coloured in green and Draq5 signals in red. 

Scale bar is 100 µm. B Quantitative analysis of ki67-positive cells in 2D cultures, spheroids, and 

Dynarrays. Numbers are depicted in mean ± S.E.M. with n = 3 for all conditions. Statistical significance 

was probed by ANOVA with **p<0.01. C Western Blot analysis of HaCaT cells cultured in 2D and as 

spheroids. Relative band intensities were normalized to internal GAPDH control. A number of three 

independent samples was analysed. Values are mean ± SD with n = 3. Significance was tested by t-test 

(**p<0.01). Adapted and modified from Klicks et al 2017. 

Figure 13 shows the same trend for the cultivation of SK-MEL-28 cells. 2D cultures 

exhibited high amounts of ki67 staining, whereas spheroids and Dynarrays only 

displayed proliferating cells at the outer layers of 3D cultures (figure 13 A). Statistical 

analysis of ki67-positive cells confirmed this finding. 2D cultivation of melanoma cells 

yielded 94.0 % ± 5.1 % of ki67-positive cells, whereas the number of ki67-positive cells 

is significantly less in spheroids with 27.0 % ± 5.8 % and in Dynarrays with 

32.0 % ± 13.0 % (figure 13 B). Western Blot analysis displayed the same trend. 3D 

cultivation of melanoma cells revealed a significant reduction of proliferating cells in 

spheroids as well as on Dynarrays (figure 13 C). 
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Figure 13: Proliferation of SK-MEL-28 melanoma cells was reduced when cultivated under 3D 

conditions. SK-MEL-28 cells were grown in 2D, as spheroids, and on Dynarrays. After 7 days in 3D 

culture, spheroids and Dynarrays were sectioned into 10 µm and 30 µm thick slices, respectively. All 

samples were stained with an antibody against ki67 and nuclei were stained with Draq5. A 

Representative confocal images of 2D and 3D samples are shown as indicated, presenting fluorescence 

staining of ki67 and Draq5 and overlays of both. Overlay shows ki67 signals in green and nuclei signals 

in red. Scale bar is 100 µm. B Quantitative analysis of ki67-positive cells in 2D cultures, spheroids, and 

Dynarrays. Numbers are depicted in mean ± S.E.M. with n = 3 for 2D and 3D. Statistical significance 

was probed by ANOVA (**p<0.01). C Relative intensity of respective bands were measured and 

normalized to internal GAPDH loading control. Given is mean ± SD from three independent 

experimental sets with statistical significance probed using ANOVA (**p<0.01). 

Finally, LNCaP and PC-3 cells were also analyzed in 2D and 3D cultures similar to the 

melanoma cells. Both cell lines were actively proliferating when grown in 2D 

monolayers, but, in spheroids, only those cells that are at the periphery were 

proliferating (figure 14 A and B). Quantitative analysis of ki67-positive cells of both, 

LNCaP and PC-3 cells, displayed a significant reduction of proliferation in spheroids 

compared to 2D cultures (figure 14 C). 82.3 % ± 3.3 % of LNCaP cells were 

ki67-positive in 2D cultures and 13.2 % ± 1.4 % in spheroids. For PC-3 cells, it was 

similar. Here, 92.4 % ± 9.7 % were ki67-positive in 2D and only 22.9 % ± 3.6 % in 3D 

cultures. 
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Figure 14: 3D cultivation effected cell proliferation in prostate cancer cell lines. LNCaP and PC-3 

cells were grown in 2D and as spheroids. After 7 days in 3D culture, spheroids were sectioned into 

10 µm thick slices. All samples were stained for ki67 and Draq5. A and B Representative confocal 

images of 2D monolayers and spheroid sections of LNCaP (A) and PC-3 (B) cells are shown as 

indicated, demonstrating fluorescence signals of ki67 and Draq5 and overlays of both. Overlay displays 

green ki67 signals and red nuclei signals. Scale bar: 100 µm. C Quantitative analysis of ki67-positive 

cells in 2D cultures and spheroids. Numbers are depicted in mean ± S.E.M. with n = 3 for 2D and 3D. 

Statistical significance was probed using t-test (**p<0.01). 

In summary, these findings show that 3D cultivation of skin, melanoma, and prostate 

cancer cells has a significant effect on the number of ki67-positive cells, i.e. a reduction 

of proliferation. Although cancer cells were proliferating on the periphery of the 

spheroids and Dynarrays, respectively, the overall amount of proliferation was 

diminished. 

3.4 Apoptosis in 3D cultures differed among cell types 

To further characterize the 3D structures of HaCaT, SK-MEL-28, LNCaP, and PC-3 

cells and analyze the effect of 3D cultivation on apoptosis, cells were grown in 2D 

monolayers, as spheroids, and on Dynarrays. After seven days in 3D culture, spheroids 

and Dynarrays were fixed and sliced into 10 µm and 30 µm thick slices, respectively. 

All samples were then stained for the apoptosis marker cleaved caspase 3. Confocal 

microscopy revealed that there was almost no signal for cleaved caspase 3 in HaCaT 

cells when cultivated in 2D (figure 15 A). Conversely, cleaved caspase 3-positive cells 
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were equally distributed in the whole spheroid. 3D cultivation of keratinocytes on 

Dynarrays produced less apoptotic cells. Counting of cleaved caspase 3-positive cells 

in HaCaT 2D and 3D cultures revealed that spheroids exhibit significant more apoptotic 

cells than 2D and Dynarray cultures. While the amount of cleaved caspase 3-positive 

cells in spheroids was 32.1 % ± 2.7 %, it was only 11.0 % ± 5.9 % in 2D cultures and 

8.3 % ± 1.4 % on Dynarrays (figure 15 B). 
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Figure 15: HaCaT keratinocytes displayed an increase in apoptosis when cultivated as spheroids 

compared to 2D and Dynarrays. HaCaT cells were grown in 2D, as spheroids, and on Dynarrays. After 

7 days, spheroids and Dynarrays were sectioned into 10 µm and 30 µm thick slices, respectively. All 

samples were immunostained for the apoptosis marker cleaved caspase 3 and the nuclear dye Draq5. 

Images were taken at the confocal microscope. A Representative images of 2D and 3D samples are 

shown as indicated, exhibiting fluorescence signal from cleaved caspase 3 and Draq5 and overlay of 

both. In overlay, cleaved caspase 3 is coloured in green and Draq5 signals in red. Scale bar is 100 µm. 

B Quantitative analysis of cleaved caspase 3-positive cells in 2D cultures, spheroids, and Dynarrays. 

Numbers are depicted in mean ± S.E.M. with n = 3 for all conditions. Statistical significance was probed 

by ANOVA with *p<0.05 and **p<0.01. Adapted and modified from Klicks et al 2017. 

Figure 16 shows the cultivation of SK-MEL-28 cells in 2D and 3D. Similar to HaCaT 

keratinocytes, melanoma cells were not apoptotic when cultivated as 2D monolayers. 

Spheroids of SK-MEL-28 cells were found to be only sparsely cleaved 

caspase 3-positive. On Dynarrays, apoptotic cells were unevenly distributed 

throughout the 3D structure (figure 16 A) and more cleaved caspase 3-positive cells 

were found. This observation was confirmed by quantitative analysis of cleaved 

caspase 3-positive cells in all samples. Melanoma cells in 2D cultures display no 

apoptotic cells at all, and spheroids exhibited only 2.9 % ± 3.7 % of cleaved 

caspase 3-positive cells. Although Dynarrys were cultivated in a bioreactor with 

superfusion, SK-MEL-28 cells were significantly more apoptotic in this condition 

(14.3 % ± 5.4 % of apoptotic cells) than in 2D or spheroids (figure 16 B). 
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Figure 16: Apoptosis of SK-MEL-28 melanoma cells was enhanced when cultivated under 

perfused 3D conditions. SK-MEL-28 cells were grown in 2D, as spheroids, and on Dynarrays. After 7 

days in 3D culture, spheroids and Dynarrays were sectioned into 10 µm and 30 µm thick slices, 

respectively. All samples were stained with an antibody against cleaved caspase 3 and nuclei were 

stained with Draq5. A Representative confocal images of 2D and 3D samples are shown as indicated, 

presenting fluorescence staining of cleaved caspase 3 and Draq5 and overlays of both. Overlay shows 

cleaved caspase 3 signals in green and nuclei signals in red. Scale bar is 100 µm. B Quantitative 

analysis of cleaved caspase 3-positive cells in 2D cultures, spheroids, and Dynarrays. Numbers are 

depicted in mean ± S.E.M. with n = 3 for 2D and 3D cultures. Statistical significance was probed by 

ANOVA (**p<0.01 and *p<0.05). 

Finally, the prostate cancer cells LNCaP and PC-3 were analyzed in terms of 

apoptosis. Both cancer cell lines showed a similar behavior upon 3D cultivation. 

Compared to 2D cultures, where almost no apoptotic cells were visible, spheroids had 

an apoptotic core after 7 days in 3D culture (figure 17 A and B). Statistical analysis of 

fluorescent signals revealed that spheroid cultivation leads to a significant higher 

amount of cleaved caspase 3-positive cells (19.7 % ± 3.4 % in LNCaP and 

8.7 % ± 1.5 % in PC-3) compared to 2D cultures (0.6 % ± 1.3 % in LNCaP and 

0.0 % ± 0.0 % in PC-3) (figure 17 C). 
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Figure 17: 3D cultivation effected cell apoptosis in prostate cancer cell lines. LNCaP and PC-3 

cells were grown in 2D and as spheroids. After 7 days in 3D culture, spheroids were sectioned into 

10 µm thick slices. All samples were stained for cleaved caspase 3 and Draq5. A and B Representative 

confocal images of 2D monolayers and spheroid sections of LNCaP (A) and PC-3 (B) cells are shown 

as indicated, demonstrating fluorescence signals of cleaved caspase 3 and Draq5 and overlays of both. 

Overlay displays green cleaved caspase 3 signals and red nuclei signals. Scale bar: 100 µm. C 

Quantitative analysis of cleaved caspase 3-positive cells in 2D cultures and spheroids. Numbers are 

depicted in mean ± S.E.M. with n = 3 for 2D and 3D cultures. Statistical significance was probed using 

t-test (*p<0.05). 
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3.5 Qualitative assessment of HaCaT differentiation 

After the study of proliferation and apoptosis, the effect of 3D cultivation on keratinocyte 

differentiation was assessed. Therefore, HaCaT cells were cultured in 2D, as 

spheroids, and on Dynarrays. After seven days in 3D culture, spheroids and Dynarrays 

were fixed and sliced into 10 µm and 30 µm thick sections, respectively. Then, all 

samples were stained for the basal keratinocytes marker ck14 and the differentiation 

marker ck10. As displayed in figure 18, confocal microscopy revealed differences in 

the location and amount of ck10- and ck14-positive cells. HaCaT cells in 2D were 

sometimes ck10-positive when grown to confluency but with random distribution. 

Conversely, spheroids regularly assembled to form a ck14-positive core and a 

ck10-positive external layer of cells. Similarly, also Dynarrays showed a clearly layered 

expression of keratinocyte differentiation markers, ck14 and ck10. To sum up, 3D 

cultivation allowed keratinocytes to build up layers of cells that show a stratification of 

keratin differentiation markers ck14 and ck10, which was not observed in 2D cultures. 
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Figure 18: Differentiation of HaCaT keratinocytes was promoted by 3D cultivation. HaCaT cells 

were grown in 2D, as spheroids, and on Dynarrays. After 7 days, spheroids and Dynarrays were 

sectioned into 10 µm and 30 µm thick slices, respectively. All samples were immunostained for ck14 

and ck10 to mark basal cells and more differentiated keratinocytes, respectively. Images were taken at 

the confocal microscope. The panels show representative images of 2D and 3D samples as indicated, 

exhibiting fluorescence signal from ck10 and ck14 and overlay of both. In overlay, ck10 is coloured in 

green and ck14 signals in red. Scale bar is 100 µm. Adapted and modified from Klicks et al 2017. 

3.6 Characterization of spheroid keratinocyte and fibroblast mono- and bi-cultures 

After the successful establishment of 3D cultures of various cell types, further 

investigation was restricted to stromal, skin, and melanoma cells. Here, the goal was 

to set up a simple, robust and multiplexable 3D melanoma test system. Due to their 

ease of preparation and clear stratification of keratinocytes, investigations were limited 
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to spheroids. In addition, potential effects of co-culturing were analyzed. Thus, HaCaT 

cells and CCD-1137Sk fibroblast cells were either cultured as mono- or co-cultures on 

cell-repellent plates with a culture time of seven days. Then, spheroids of all types were 

cryosectioned into 10 µm thick slices and immunostained for ki67 or cleaved 

caspase 3. Cytokeratins ck10 and ck14 were immunostained to assess keratinocyte 

stratification. Nuclei were labeled with Dapi. Figures 19 A-C show representative 

confocal images of these samples as indicated. While proliferation was restricted to 

few cells in the periphery of spheroids (figure 19 A), apoptotic cells were found 

throughout the whole spheroid diameter (figure 19 B). In mono-cultures as well as in 

bi-cultures, HaCaT keratinocytes showed a clear stratification with basal-like 

ck14-positive cells in the center of the spheroid and more differentiated ck10-positive 

cells on the periphery of the spheroids (figure 19 C). In bi-cultures, fibroblasts formed 

a central core, and keratinocytes were located in a ring-like fashion around this 

fibroblast core. Quantitative analysis revealed that co-culturing significantly reduced 

the number of proliferating and increased the amount of ck10-positive peripheral 

keratinocytes (figure 19 D). These results suggest that the 3D spheroid skin model 

mirrors some stratification and differentiation characteristics of skin even without the 

use of a pH or Ca2+ gradient or an air-liquid interface to induce differentiation. 
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Figure 19: Proliferation, apoptosis, and differentiation of fibroblasts and HaCaT cells in mono- 

and bi-culture spheroids. Spheroids were cultured as mono- and bi-cultures for seven days, 

cryosectioned into 10 µm thick slices, and then stained for markers for cell proliferation (A, ki67, green), 

apoptosis (B, cleaved caspase 3, green), differentiated (C, ck10, green) and basal keratinocytes (C, 

ck14, red). In A and B, nuclei were stained with Dapi (blue). A-C Representative confocal images. Scale 

bars: 100 µm. D Quantification of ki67- and cleaved caspase 3-positive cells in percentage of total and 

ck10-positive cells in percentage of peripheral nuclei. Given is mean ± S.E.M. with n ≥ 3 independent 

experiments and **p<0.01 according to ANOVA. Adapted and modified from Klicks et al 2019 (revised 

revision). 

3.7 Melanoma cells invaded the fibroblast core and decreased keratinocyte 

differentiation in tri-cultures 

After these first characterizations, the spheroid skin model was supplemented by the 

addition of SK-MEL-28 melanoma cells. For that reason, fibroblasts were seeded and 

cultivated in 3D. Three days later, HaCaT keratinocytes and SK-MEL-28 melanoma 

cells were added simultaneously. To distinguish between the different cell types, 

HaCaT cells were labeled with CellTracker Red CMPTX and SK-MEL-28 cells with 

CellTracker Green CMFDA. After another four days, tri-culture spheroids were 
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collected, cryosectioned into 10 µm thick slices and stained for ki67, cleaved 

caspase 3, ck10 and ck14, or the basement membrane marker collagen IV. As shown 

in figure 20 A, collagen IV rich fibroblasts stayed in the central core of these tri-cultures, 

followed by a few layers of basal ck14-positive and a sheet of more differentiated 

ck10-positive keratinocytes. Most melanoma cells were clustered on the shell of the 

cultures. However, a few melanoma cells were also very regularly found in the 

fibroblast core, but almost never in the keratinocyte layers. For simplicity, in the 

following, SK-MEL-28 cells in the outer border of the tri-cultures will be termed 

‘external’ (figure 20 A zoom out, arrows), those in the fibroblast core as ‘internal’ 

(figure 20 A zoom out, arrowhead) melanoma cells. The qualitative examination further 

showed that plenty of external melanoma cells were proliferating, while internal 

melanoma cells, keratinocytes, and fibroblasts were rarely doing so. Remarkably, ck10 

expression, which indicates keratinocyte differentiation, was strongly diminished at the 

contact sites with melanoma cells. Furthermore, most external melanoma cells got lost 

upon treatment with docetaxel (figure 20 B). 
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Figure 20: Features of a melanoma tri-culture spheroid model. Tri-culture spheroids were produced 
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by 3D cultivation of CCD-1137Sk fibroblasts for three days, followed by the simultaneous addition of 

HaCaT keratinocytes and SK-MEL-28 melanoma cells. Afterwards, they were cultured for another four 

days. HaCaT and SK-MEL-28 cells were labeled with CellTrackerRed CMPTX and CellTrackerGreen 

CMFDA dyes, respectively. As indicated, spheroids were incubated on day five after seeding either with 

0.01 ‰ DMSO as control (A) or 100 nM docetaxel in DMSO (B) for 48 h, then cryosectioned into 10 µm 

thick slices and stained for ki67, cleaved caspase 3, ck10, ck14, or the basal membrane marker 

collagen IV. Nuclei were labeled with Dapi. Most melanoma cells were clustered on the shell of the 

cultures (A zoom out, arrows). However, a few melanoma cells were also very regularly found in the 

fibroblast core (A zoom out, arrowhead). Images show representative confocal sections of these 

samples. In overlay panels, all immunostainings except for ck14 are depicted in red, SK-MEL-28 cells 

in green, HaCaT cells or ck14 in yellow, and nuclei in blue. Scale bars are 100 µm. Adapted and modified 

from Klicks et al 2019 (revised revision). 

To address, whether melanoma cells distributed passively or actively into the fibroblast 

core or on the periphery of the tri-cultures, we harvested tri-culture spheroids after four 

and five days in culture. After fixation, they were sliced into 10 µm thick sections and 

stained for the nuclear dye Dapi (figure 21). On day four, which is one day after the 

simultaneous seeding of melanoma cells and keratinocytes, most melanoma cells 

were embedded in the keratinocyte ring, while on day five, they segregated from 

keratinocytes and either accumulated in the periphery of the culture (‘external’ 

melanoma cells) or within the fibroblast core (‘internal’ melanoma cells). This suggests 

that the separation of melanoma cells into the fibroblast core as well as the periphery 

of the tri-cultures is an active process. 

Figure 21: Melanoma cells in tri-cultures separated actively to form external melanoma cells. 

Tri-culture spheroids were generated by 3D cultivation of fibroblasts for three days, followed by the 
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combined addition of keratinocytes and melanoma cells. HaCaT and SK-MEL-28 cells were labeled with 

CellTrackerRed CMPTX and CellTrackerGreen CMFDA dyes, respectively, prior seeding. After one 

(‘day 4’, upper row) or two (‘day 5’, lower panels) more days, tri-culture spheroids were cryosectioned 

into 10 µm thick slices and stained with Dapi. Representative confocal sections are shown. While on 

day four, most melanoma cells were located in the keratinocyte ring, on day five, they separated from 

keratinocytes and either accumulated in the periphery of the culture (‘external’ melanoma cells) or within 

the fibroblast core (‘internal’ melanoma cells). The fibroblast core is found in the center of the tri-culture 

and marked as Dapi-positive plus CellTracker-negative. Scale bars: 100 µm. Adapted and modified from 

Klicks et al 2019 (revised revision). 

3.8 Docetaxel treatment affected external melanoma cells 

Since the tri-culture system was established to serve as a model for testing drug 

candidates, docetaxel, which is being explored in particular for combination treatments 

of malignant melanoma 225–227, was tested. In order to find a suitable concentration for 

in vitro tests, a dose-response curve was set up. Therefore, fibroblasts were cultivated 

for three days in 3D culture, followed by the simultaneous addition of HaCaT and 

SK-MEL-28 cells. Two days later, tri-cultures were incubated for 48 h with various 

concentrations of docetaxel, i.e. 0 nM, 10 nM, 50 nM, 100 nM, 500 nM, and 1,000 nM. 

Remaining external melanoma cells after 48 h were used as an end point 

measurement for docetaxel assessment. As demonstrated by the dose-response 

curve shown in figure 22, the number of remaining external melanoma cells decreased 

with increasing concentration of docetaxel. Already the lowest docetaxel 

concentrations slightly reduced external melanoma cells, but the effects were 

statistically significant in this setting only at concentrations ≥ 100 nM of docetaxel. 

Therefore, in all following experiments, this drug concentration was used. In 

comparison, SK-MEL-28 cells were also cultured in 2D and incubated with various 

concentrations of docetaxel for 24 h. Here, melanoma cells appeared much more 

susceptible to docetaxel treatment. Already a docetaxel concentration of 10 nM 

significantly reduced the number of cells (figure 22). Higher concentrations of 

docetaxel did not change the number of remaining cells compared to 10 nM. 
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Figure 22: SK-MEL-28 cells were more susceptible to docetaxel in 2D compared to 3D. 2D cultures 

of SK-MEL-28 cells were grown until they reached 50 % of confluency. Tri-culture spheroids were made 

by 3D cultivation of fibroblasts for three days, followed by the combined addition of keratinocytes and 

melanoma cells, and another two days without treatment. Then, all cultures were treated with different 

concentrations of docetaxel for 24 h (2D) or 48 h (spheroids). Spheroids were cryosectioned into 10 µm 

thick slices, 2D cultures were directly fixed. Subsequently, all samples were labeled with Dapi and then 

imaged by confocal microscopy. The numbers of remaining SK-MEL-28 cells (2D cultures) or of external 

SK-MEL-28 cells (spheroids) were determined. The graph shows the amounts of SK-MEL-28 cells as a 

function of docetaxel concentration and normalized to the control condition without docetaxel. Given is 

mean ± S.E.M. with n ≥ 3, *p<0.05 and **p<0.01 according to ANOVA. Adapted from Klicks et al 2019 

(revised revision). 

3.9 Docetaxel treatment of tri-culture spheroids reduced melanoma cell proliferation 

In order to get an insight into the kinetics of docetaxel effects on the proliferation of the 

tri-culture spheroids, they were treated with 100 nM docetaxel for 15, 24, 48, and 72 h 

prior harvesting. Samples were then cryosectioned and slices were immunostained for 

the proliferation marker ki67. Figure 23 A and B depict representative fields of view. 
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Figure 23: Docetaxel treatment led to a reduction of proliferating cells in melanoma 3D 

tri-cultures. Tri-culture spheroids were created by 3D cultivation of fibroblasts for three days, followed 

by simultaneous addition of keratinocytes and melanoma cells. HaCaT cells were marked with 

CellTrackerRed CMPTX dye and SK-MEL-28 cells with CellTrackerGreen CMFDA. After another 

cultivation period of two days, tri-culture spheroids were treated either with 0.01 ‰ DMSO as control or 

100 nM docetaxel for 15, 24, 48, and 72 h. Spheroids were cryosectioned into 10 µm thick slices and 

stained for ki67. A and B Representative confocal images of control (A) and docetaxel-treated cultures 

(B). In overlay images, ki67 fluorescent signals, SK-MEL-28, HaCaT, and nuclei are depicted in red, 

green, yellow, and blue, respectively. Scale bars: 100 µm. C Quantitative analysis of ki67-positive cells. 

Graph displays the amounts of ki67-positive cells as mean ± S.E.M. in percent of the whole cell count 

per slice with n ≥ 3 independent experiments. ANOVA was applied to calculate statistical significance 

with **p<0.01. For each experiment and time point, ≥ 3 spheroids were analyzed. Adapted and modified 

from Klicks et al 2019 (revised revision). 

DMSO controls showed a continuous increase in the number of external melanoma 

cells over time (figure 23 A, table 4) and between 82.4 % ± 2.4 % (mean ± S.E.M., at 

15 h) and 79.1 % ± 3.2 % (mean ± S.E.M., at 72 h) of those cells were proliferating. 

On the contrary, treatment with docetaxel led to an increasing loss of external 

SK-MEL-28 cells (figure 23 B, table 4). Interestingly, survival of internal SK-MEL-28 

cells in the fibroblast core was apparently not affected by docetaxel. Since external 

melanoma cells represented the major source of proliferating cells in untreated 

tri-cultures, their selective ablation upon docetaxel treatment reduced the fraction of 

ki67-positive cells in the whole tri-culture from 20.9 % ± 3.4 % (mean ± S.E.M., n = 5 

independent experiments, figure 23 C) to 10.2 % ± 3.0 % (mean ± S.E.M., n = 5 

independent experiments, figure 23 C) after 48 h of treatment. 72 h after starting the 
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treatment, the difference was even higher with 27.8 % ± 3.6 % (mean ± S.E.M., n = 3 

independent experiments, figure 23 C) compared to 9.2 % ± 2.1 % (mean ± S.E.M., 

n = 4 independent experiments, figure 23 C) in the absence and presence of 

docetaxel, respectively. In summary, these data prove that docetaxel affects 

proliferating cells, which constitute in this model primarily external melanoma cells. 

Table 4: Docetaxel gradually decreased the number of external SK-MEL-28 cells. 

 DMSO control 100 nM docetaxel 

15 h 80.4 ± 6.6 81.1 ± 4.0 

24 h 77.6 ± 6.9 58.4 ± 6.2 ** 

48 h 142.9 ± 20.5 33.1 ± 3.1 ** 

72 h 135.2 ± 1.9 19.7 ± 3.2 ** 

3.10 Docetaxel treatment did apparently not affect apoptosis in tri-culture spheroids 

Next, the effect of docetaxel on the apoptosis of tri-culture spheroids over time was 

investigated. Therefore, tri-cultures were incubated with DMSO control or docetaxel as 

before and collected after 15, 24, 48, and 72 h of treatment. Cryosections were made 

and stained for cleaved caspase 3. Figure 24 A and B shows representative confocal 

microscopy images of spheroids treated with DMSO as control (figure 24 A) or 

docetaxel (figure 24 B). The overall morphology of tri-cultures with increasing numbers 

of external melanoma cells in the control and decreasing numbers in the 

docetaxel-treated samples did not change. Quantitative analysis revealed that the 

fraction of cleaved caspase 3-positive cells in the entire tri-culture was not altered by 

the treatment with docetaxel. Only at 24 h of treatment, a significant difference was 

observable with 68.1 % ± 6.7 % (mean ± S.E.M., n = 3 independent experiments, 

figure 24 C) of cleaved caspase 3-positive cells in the absence of docetaxel compared 

to 46.9 % ± 10.5 % (mean ± S.E.M., n = 4 independent experiments, figure 24 C) in 

the presence of docetaxel. This result suggests that apoptosis was either not involved 

in the drug response or that technical limitations of the model led to an unclear 

information. 
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Figure 24: Docetaxel treatment did not alter apoptosis in 3D tri-culture spheroids. Tri-culture 

spheroids were generated by 3D cultivation of fibroblasts for three days, followed by simultaneous 

addition of keratinocytes and melanoma cells. HaCaT and SK-MEL-28 cells were labeled with 

CellTrackerRed CMPTX and CellTrackerGreen CMFDA dyes, respectively. After another two days, 

tri-culture spheroids were treated with 0.01 ‰ DMSO as control or 100 nM docetaxel for 15, 24, 48, and 

72 h. Spheroids were cryosectioned into 10 µm thick slices and stained for cleaved caspase 3. A and 

B Representative confocal images of control (A) and docetaxel-treated cultures (B). In overlay images, 

cleaved caspase 3 immunostaining signals are depicted in red, SK-MEL-28 in green, HaCaT in yellow, 

and nuclei in blue. Scale bars: 100 µm. C Quantification of cleaved caspase 3-positive cells. Graph 

shows the amounts of cleaved caspase 3-positive cells as mean ± S.E.M. in percent of the whole cell 

count per slice with n ≥ 3 independent experiments and *p<0.05 according to ANOVA. For each 

experiment and time point, ≥ 3 spheroids were analyzed. Adapted and modified from Klicks et al 2019 

(revised revision). 

3.11 Docetaxel-induced loss of external SK-MEL-28 cells was avoided by a modified 

preparation 

As shown previously, docetaxel treatment of tri-culture spheroids led to an ablation of 

external melanoma cells. To understand why they got lost and what possibly happened 

to those cells, experiments using a 3D mold technique were performed. Since 

docetaxel might weaken cell-cell interactions, many of the affected cells might have 

been lost in the previous assays where tri-cultures were transferred by pipetting from 

the culture plates to a staining/washing place after docetaxel treatment. The use of 

these agarose molds should avoid this post-treatment stress to the samples. 

Therefore, tri-culture spheroids were first cultured as before in cell-repellent plates, but 

were then transferred on day five into an agarose 3D mold. Treatment with docetaxel 
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and all following processing steps were then carried out in these molds. Actually, the 

complete molds with the treated spheroids inside were embedded in OCT, 

cryosectioned, and slices were stained for nuclei and ki67 or cleaved caspase 3. 

Figure 25 A shows a comparison of representative confocal images of the tri-culture 

spheroids processed with the agarose mold (‘with mold’, left panels) and the standard 

transfer washing/staining station technique (‘without mold’, right panel). As obvious in 

figure 25 A, the majority of external SK-MEL-28 cells were lost or still present upon 

docetaxel treatment when processed without or within the molds, respectively. This 

was confirmed by quantitative analysis of external melanoma cells, which showed 

significant differences in the numbers of external melanoma cells between the two 

methods (figure 25 B). Upon processing without the molds, docetaxel treatment 

resulted in a significant decrease of the number of external SK-MEL-28 cells from 

135 ± 2 to 20 ± 3 (mean ± S.E.M., n ≥ 3 independent experiments, figure 25 B). On the 

contrary, when processed within the molds, the number of external melanoma cells 

remained unchanged after docetaxel treatment (figure 25 B). Regarding the number of 

proliferating cells, the processing technique had only little impact. Actually, in both, with 

and without the mold, docetaxel treatment led to a significant reduction of the 

ki67-positive numbers of external melanoma cells (figure 25 C). Nevertheless, the 

processing was significant when addressing the fraction of apoptotic cells. Using the 

technique without mold, the number of cleaved caspase 3-positive external melanoma 

cells decreased from 59 ± 12 cells (mean ± S.E.M., n = 3 independent experiments) to 

6 ± 3 cells (mean ± S.E.M., n = 4 independent experiments) in the absence versus 

presence of docetaxel (figure 25 D). Conversely, when processed within the molds, 

the number of cleaved caspase 3-positive external SK-MEL-28 cells significantly 

increased from 25 ± 6 (mean ± S.E.M., n = 4 independent experiments) with DMSO to 

56 ± 5 (mean ± S.E.M., n = 4 independent experiments) with docetaxel (figure 25 D). 

In summary, these data suggest that accurate post-treatment processing is critical for 

the interpretation of the behavior of external melanoma cells and that both, a reduced 

proliferation and increased apoptosis, is induced by docetaxel treatment. Moreover, 

docetaxel-induced apoptosis can, at least to some extent, explain the loss of external 

melanoma cells in the tri-culture model. 
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Figure 25: Processing of tri-cultures in special agarose molds led to a docetaxel-induced 

increase of apoptosis and reduction of proliferation of external melanoma cells. Tri-culture 

spheroids were made by 3D cultivation of fibroblasts for three days, followed by the simultaneous 

addition of keratinocytes and melanoma cells. HaCaT cells were labeled with CellTrackerRed CMPTX 

dye and SK-MEL-28 cells with CellTrackerGreen CMFDA dye. For the mold technique, spheroids were 

transferred on day five into 3D agarose molds and treated with 0.01 ‰ DMSO as control or 100 nM 

docetaxel in DMSO for 72 h. Spheroids in the mold were then cryosectioned into 20 µm and spheroids 

without the mold into 10 µm thick slices, and stained for either ki67 or cleaved caspase 3 as indicated 

(A). Scale bars: 100 µm. B-D Quantitative analysis of total numbers of external SK-MEL-28 cells (B), as 

well as amounts of ki67- (C) and cleaved caspase 3-positive external SK-MEL-28 cells (D) of tri-culture 

spheroids processed with or without mold. Graph shows mean ± S.E.M. with n ≥ 3 independent 

experiments. Statistical significance was probed using ANOVA (**p<0.01). For each experiment, ≥ 3 

spheroids were analyzed. Adapted and modified from Klicks et al 2019 (revised revision). 
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3.12 Docetaxel treatment of tri-culture spheroids restored differentiation of 

keratinocytes 

In order to address previous findings, in which neoplastic cells in human malignant 

melanoma biopsies where found to hamper keratinocyte differentiation 228, in our 

3D-melanoma model, we stained cryosections of tri-culture spheroids with an antibody 

against ck10 in the absence and presence of docetaxel. Figure 26 A and B shows 

representative confocal images of these samples. In the DMSO-treated spheroids, an 

increase in the number of external SK-MEL-28 cells as well as a constant low level of 

the keratinocyte differentiation marker ck10 were observed during the experiment time 

course (figure 26 A). Remarkably, treatment with docetaxel resulted in a restoration of 

ck10 expression that occurred in parallel to the ablation/apoptosis of external 

melanoma cells (figure 26 B). Quantitative analysis revealed that the number of 

peripheral ck10-positive cells was significantly higher in the docetaxel treated 

spheroids as compared to the controls, starting after 24 h of treatment until the end of 

the observation period (figure 26 C). Treated tri-culture spheroids reached a number 

of ck10-positive cells of 36 % ± 5 % (mean ± S.E.M., n = 4 independent experiments, 

figure 26 C). Overall, these results suggest that the tri-culture model is able to reflect 

effects of melanoma cells on keratinocyte differentiation as observed in human disease 

and that such loss of differentiation can be restored by treatment with docetaxel. 
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Figure 26: Melanoma cells weakened the expression of the keratinocyte differentiation marker 

ck10. Tri-culture spheroids were produced by 3D cultivation of fibroblasts for three days, followed by 

the simultaneous addition of HaCaT and SK-MEL-28 cells. HaCaT and SK-MEL-28 cells were labeled 

with CellTrackerRed CMPTX dye and CellTrackerGreen CMFDA, respectively. Another two days later, 

tri-culture spheroids were treated with 0.01 ‰ DMSO as control or 100 nM docetaxel for 15, 24, 48, and 

72 h. Spheroids were cryosectioned into 10 µm thick slices and stained for ck10. A and B 

Representative confocal sections of control (A) and docetaxel-treated spheroids (B). In overlay images, 

ck10 immunostaining signals, SK-MEL-28, HaCaT, and nuclei are depicted in red, green, yellow, and 

blue, respectively. Scale bars: 100 µm. C Quantification of ck10-positive cells. Graph displays the 

amounts of ck10-positive cells as mean ± S.E.M. in percent of the peripheral nuclei per slice with n ≥ 3 

independent experiments. Significance was tested using ANOVA (**p<0.01). For each experiment and 

time point, ≥ 3 spheroids were analyzed. Adapted and modified from Klicks et al 2019 (revised revision). 

3.13 Docetaxel treatment led to enhanced ABCB5-signals in external melanoma cells 

Bearing in mind that ABCB5 is capable of inducing multidrug resistance for doxorubicin 

and temozolomide in melanoma cells 130,133, a correlation between ABCB5 expression 

and melanoma cell survival to drug treatment was also tested in the tri-culture model. 

Thus, tri-cultures were incubated with 100 nM docetaxel or DMSO for 48 h, fixed, 

sliced, and then immunostained for ABCB5 with m3C2-1D12 133 primary antibody. As 

described in figure 27 A-F, melanoma cells as well as keratinocytes were the major 

source that showed ABCB5 immunoreactivity. Quantitative analysis revealed a rise in 

the number of external melanoma cells with high ABCB5 immunofluorescence intensity 

upon drug treatment (figure 27 G), while internal melanoma cells were apparently 

unaffected in this sense (figure 27 H). Interestingly, also keratinocytes were found to 

exhibit an increased ABCB5 staining upon docetaxel treatment (figure 27 B and E). 
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Figure 27: Docetaxel treatment augmented ABCB5-signals in keratinocytes and external 

melanoma cells. Tri-culture spheroids were generated by 3D cultivation of fibroblasts for three days, 

followed by the combined addition of keratinocytes and melanoma cells. HaCaT keratinocytes were 

labeled with CellTrackerRed CMPTX dye and SK-MEL-28 melanoma cells with CellTrackerGreen 

CMFDA dye. After additional two days, tri-culture spheroids were treated with 0.01 ‰ DMSO as control 

(A-C) or 100 nM docetaxel in DMSO (D-F) for 48 h. Spheroids were cryosectioned into 10 µm thick 

slices and stained with an antibody against ABCB5 from the company TICEBA GmbH. A and D Overlay 

images of the confocal sections shown in B and E. In overlays, ABCB5 signals are depicted in red, 

SK-MEL-28 cells in green, HaCaT cells in yellow, and nuclei in blue. Scale bars: 100 µm. C and F Detail 

images of ABCB5 stainings from boxed regions in B and E. G and H Quantitative analysis of the relative 

intensity of ABCB5-positive external (G) and internal (H) SK-MEL-28 cells in percentage of total. Given 

is mean ± S.E.M. with n = 4 independent experiments, *p<0.05, and **p<0.01 according to ANOVA. For 

each experiment, ≥ 3 spheroids were analyzed. Adapted from Klicks et al 2019 (revised revision). 

This observation with a drug-induced enrichment of strongly ABCB5-positive external 

SK-MEL-28 and HaCaT cells and the lack of effect on internal melanoma cells was 
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similarly confirmed by another anti-ABCB5 antibody (figure 28). Altogether, these data 

display either a docetaxel-induced enhancement of ABCB5 expression in weakly 

expressing cells or a selection of cells with high ABCB5 immunofluorescence. 
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Figure 28: Enrichment of ABCB5-levels in keratinocytes and external melanoma cells upon 

docetaxel treatment was confirmed by another anti-ABCB5 antibody. Tri-culture spheroids were 

made by 3D cultivation of CCD-1137Sk cells for three days, followed by the joint addition of HaCaT and 

SK-MEL-28 cells. HaCaT cells were labeled with CellTrackerRed CMPTX dye and SK-MEL-28 cells with 

CellTrackerGreen CMFDA dye. Another two days later, tri-culture spheroids were treated with 0.01 ‰ 

DMSO as control (A-C) or 100 nM docetaxel in DMSO (D-F) for 48 h. Spheroids were cryosectioned 

into 10 µm thick slices and stained for ABCB5 (MA5-17026). A and D Overlay images of the confocal 

sections shown in B and E. In overlays, ABCB5 signals, melanoma cells, keratinocytes, and nuclei are 

represented in red, green, yellow, and blue, respectively. Scale bars: 100 µm. C and F Detail images of 

ABCB5 stainings from boxed regions in B and E. G and H Quantitative analysis of the relative intensity 

of ABCB5-positive external (G) and internal (H) SK-MEL-28 cells in percentage of total. Given is 

mean ± S.E.M. with n = 4 independent experiments and *p<0.05 according to ANOVA. For each 

experiment, ≥ 3 spheroids were analyzed. Adapted from Klicks et al 2019 (revised revision). 
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3.14 Western Blot analysis of melanoma tri-culture largely confirmed 

immunofluorescence results 

Finally, we aimed to confirm/corroborate the immunostaining data on proliferation, 

apoptosis, and differentiation of tri-cultures by Western Blot analysis. For this, 

tri-culture spheroids were cultivated as before and treated with DMSO as control or 

docetaxel. After harvesting, spheroids were homogenized and lysates were 

subsequently subjected to Western Blot analysis. Using an ABCB5 antibody 

(figure 29 A and B) expression levels were found to remain constant in both conditions, 

while cleaved caspase 3 was upregulated upon docetaxel treatment (figure 29 A and 

B). The analysis of proliferation using a PCNA antibody showed a decrease when 

treated with docetaxel (figure 29 A and B). Furthermore, expression profiles showed a 

significant increase in ck10 upon docetaxel treatment (figure 29 B). Thus, apart from 

ABCB5, all parameters tested here largely reflected the outcomes of the 

immunofluorescence staining. 
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Figure 29: Expression profiles of melanoma tri-cultures largely confirmed immunofluorescence 

outcomes. Tri-culture spheroids were generated by 3D cultivation of fibroblasts for three days, followed 

by the simultaneous addition of HaCaT and SK-MEL-28 cells. HaCaT cells were labeled with 

CellTrackerRed CMPTX dye and SK-MEL-28 cells with CellTrackerGreen CMFDA dye. Another two 

days later, tri-culture spheroids were treated with 0.01 ‰ DMSO as control or 100 nM docetaxel in 

DMSO for 48 h. A After harvesting the spheroids, lysates were prepared and equal amounts of substrate 

were loaded on SDS-PAGE for Western Blot analysis with detection of ABCB5, cleaved caspase 3, 

PCNA, and ck10. B Relative intensity of respective bands for ABCB5, cleaved caspase 3, PCNA, and 

ck10 were measured and normalized to internal GAPDH loading control. Given is mean ± S.E.M. from 

three independent experimental sets with statistical significance probed using ANOVA (*p<0.05; 

**p<0.01). 
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4 DISCUSSION 

3D in vitro models are increasingly becoming more and more the preferred choice for 

researchers and pharma companies to study drug efficacy and mode of action as well 

as drug combinations. Compared to traditional 2D cell cultures, 3D models are thought 

to better mimic numerous parameters that are critical for the behavior of cancer cells. 

Such parameters include cell-cell interactions, oxygen and nutrient gradients, 

distribution of waste products, substrate stiffness, as well as drug diffusion 122. 

Currently, several 3D models exist that are either simple and allow high-throughput, or 

they are complex and function to mirror the in vivo situation or be useful for 

personalized medicine 49,122,141,148,211,229–233. The present study aimed to set up a 3D 

model for early stage melanoma to investigate a series of drug-induced processes in 

a quantitative and cell-type specific manner. In addition, its performance should be 

simple, fast, and reproducible. Hence, an easy to handle spheroid-based system was 

established composed of melanoma cells, human fibroblasts and keratinocytes, the 

latter two being the major components of a stroma-like environment. In order to avoid 

batch-to-batch variability and achieve a cost effective system, the established cell lines 

SK-MEL-28, HaCaT, and CCD-1137Sk fibroblasts were used. To identify generalizable 

features for 3D culture of neoplastic and normal cells, the prostate cancer cell lines 

LNCaP and PC-3 were used in addition. 

4.1 3D cultivation of stromal, skin, and cancer cells decreased proliferation and 

simultaneously increased apoptosis compared to 2D cultures 

Cells grown under 2D conditions are equally exposed to medium allowing constant 

oxygen and nutrient supply and removal of waste products 19 (table 5). Presumably, 

this largely explained that all cell lines used in this study were highly proliferative in 2D 

cultures with almost no apoptotic cells (figure 12-17). Conversely, cells cultured under 

3D conditions are unevenly exposed to nutrients and oxygen (table 5). While cells on 

the periphery of the 3D structure exhibit most access to nutrients and oxygen and, 

hence, appear to be proliferative, cells inside the 3D architecture are excluded from 

this leading to quiescent and necrotic cells (figure 13-17). Gene and protein expression 

of cells in 2D cultures often display differential levels compared to in vivo models. 

Conversely, 3D models exhibit more similar profiles to the in vivo tissue origins 

concerning this characteristic (table 5). 
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Table 5: Key differences of 2D and 3D cell cultures (Adapted and modified from Edmondson et 

al 2014) 

Characteristics 2D 3D 

Morphology Flat and stretched cells as monolayer Natural shape in a 3D 

architecture 

Proliferation Often faster than in vivo Faster/slower compared to cells 

cultured in 2D depending on cell 

type and 3D model 

Exposure to 

medium and 

drugs 

Equally exposed Medium and drugs may not be 

able to fully penetrate the 3D 

structure 

Stage of cell cycle Cells are more likely to be in the same 

stage 

Spheroids are composed of 

proliferating, quiescent, hypoxic, 

and necrotic cells 

Gene/protein 

expression 

Often different to in vivo models More similar to in vivo tissue 

Drug sensitivity Appear to be very sensitive More resistant compared to 2D 

cultures, often being more 

predictive to in vivo drug 

responses 

The major difference between normal, non-tumorigenic cells and neoplastic cells is 

their cell division. Cells divide to form new tissue or to replace old and damaged cells 

in a highly regulated manner mediated by a complex set of chemical processes. In 

neoplastic cells, these signals do not exist anymore and cells divide in an 

uncontrollable way 234. This feature was also reflected in our study. Spheroids of 

normal cells, like fibroblasts and keratinocytes, decreased in size over time (figure 10) 

and exhibited only few proliferating cells (figure 12 and 19 A). Conversely, spheroids 

of neoplastic cells, like SK-MEL-28, LNCaP and PC-3 cells, increased in size over time 

(figure 11) and displayed more proliferating cells compared to non-tumorigenic cells 

(figure 13 and 14). Since fibroblasts are the principal cellular components of connective 

tissues, maintenance of balance between fibroblast proliferation and differentiation is 

essential for skin homeostasis 235. Fibroblasts are activated by skin injury, migrate into 

damaged tissue and proliferate 236. Accordingly, proliferation rate is lowered in healthy 

skin. This finding was reflected in this study by 3D cultivation of CCD-1137Sk 

fibroblasts. Spheroids were sparsely proliferating at the periphery (figure 19 A). 

Instead, their volume decreased over time and they got more compact (figure 10 B and 

B`). Suggesting that oxygen and nutrients did not penetrate the spheroid sufficiently 
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and waste products could not be removed, apoptotic cells were found to be equally 

distributed inside the spheroid (figure 19 B). Contrary to the in vivo situation, in which 

basal keratinocytes renew and proliferate to upper layers 44, 3D cultivation of HaCaT 

cells yielded only few proliferating cells on the periphery of spheroids and between the 

cavities of Dynarrays where cells were able to grow as monolayer (figure 12). Similar 

to fibroblast spheroids, the volume of HaCaT spheroids decreased and they got 

densely packed (figure 10 A and A`) resulting in numerous apoptotic cells throughout 

the spheroid diameter (figure 15 A and 19 B). Comparing spheroids and Dynarrays, 

which can be cultivated in a bioreactor allowing continuous flow of medium, the amount 

of ki67-positive cells did not change (figure 12). However, spheroids displayed higher 

numbers of apoptotic cells compared to Dynarrays (figure 15). This might be explained 

by less cell density on Dynarrays. Even co-culturing of HaCaT cells with fibroblasts, 

which is known to enhance proliferation of keratinocytes 237, did not improve 

proliferation of HaCaT cells in spheroids. Actually, the number of ki67-positive cells 

was significantly reduced (figure 19 D). This suggests that 3D cultivation of HaCaT 

cells as spheroids and on Dynarrays is not appropriate to investigate proliferation and 

apoptosis of keratinocytes. In contrast, 3D cultivation of cancer cells, like melanoma 

and prostate cancer, reflects the in vivo situation more closely than 2D cultures. 

Spheroids as well as Dynarrays produced 3D structures with proliferating cells at the 

periphery and apoptotic cells in the core (figure 13-14 and 16-17) similar to in vivo 

tumors 144,238. Consequently, spheroids of cancer cells are increasing in size over 

time 224,239 (figure 11). While the amount of proliferating melanoma cells in spheroids 

compared to Dynarrays did not differ (figure 13), SK-MEL-28 cells showed more 

apoptotic cells on Dynarrays compared to spheroids (figure 16) even though Dynarrays 

were cultivated with superfusion allowing constant nutrient and oxygen supply. This 

suggests that 3D cultivation in a microfluidic device does not improve survival of cells 

in that case. 

4.2 3D skin and melanoma model reflected stratification of keratinocytes and 

melanoma-induced loss of keratinocyte differentiation 

Concerning keratinocyte differentiation, the 3D skin model presented in this study is 

very promising. Usually, optimal differentiation of keratinocytes in vitro leading to 

human skin equivalents requires the use of primary cells and multiple external factors 

like pH and Ca2+ gradients as well as air liquid interface 49,230,232. Since the 



Discussion 

80 

implementation of this external control is very time consuming and difficult to perform 

in high amounts, this was avoided and HaCaT cells were allowed to automatically 

stratify in monoculture spheroids as well as on top of a fibroblast core (figure 18 and 

19 C). Indeed, a partial differentiation with ck14-expressing lower strata and 

ck10-expressing upper strata was observed. However, our skin model lacked a 

cornified layer. Compared to HSE models, which involves generation times of several 

weeks 155, the spheroid-based melanoma tri-culture was already complete for further 

studies after seven days. It is an open question, whether the observed stratification 

was achieved by differentiation of HaCaT cells or if pre-differentiated keratinocytes 

migrated to the outer rim of the spheroid. Nevertheless, a surprising discovery was 

made regarding keratinocyte differentiation, which is also known from human 

melanoma. Actually, it was reported that melanoma cells influence the differentiation 

pattern of human epidermal keratinocytes in vivo leading to a loss of ck10 in 

hyperplastic regions 228. Accordingly, melanoma cells decreased ck10 expression of 

HaCaT cells in the 3D tri-culture model (figure 20 and 26). Particularly, such loss of 

ck10 expression was predominantly found in direct contact with melanoma cells and 

was restored upon treatment with docetaxel leading to apoptosis of external melanoma 

cells (figure 26 and 29). 

4.3 3D melanoma tri-culture spheroids presented two populations of melanoma cells 

One more interesting feature was observed in the presented model, i.e. the division of 

melanoma cells into external and internal cells. The observation of SK-MEL-28 cells 

inside the fibroblast core suggests their invasion ability and fits to the fact that this cell 

line is from the metastatic phase of melanoma 229 and thus known to migrate quickly 

downwards through the skin 240. Hence, this melanoma tri-culture model could be used 

as a simple test system to examine antimigratory effects of various drugs. Besides this 

future application, it was fascinating to observe different behaviors of the two 

melanoma cell populations. The first difference was that external melanoma cells were 

located at the outside of the spheroid in direct contact to keratinocytes. Furthermore, 

they aggregated to growing clusters. In contrast, internal melanoma cells were found 

in the fibroblast core and were usually separated from each other not merging 

(figure 20). One day after the simultaneous addition of HaCaT and SK-MEL-28 cells, 

melanoma cells were still embedded in the keratinocyte ring. The following day, they 

were already found rarely in the HaCaT ring, but always in the fibroblast core 
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(figure 21). The second difference that was visible between internal and external 

melanoma cells was the effect of docetaxel on those cells. External cells were 

extremely apoptotic and lost cell-cell interactions, whereas internal cells showed 

apparently no response to docetaxel. The number of internal melanoma cells remained 

unchanged even after 72 h of treatment with docetaxel. Their relative amounts of 

proliferating and apoptotic cells were unchanged. It is not clear whether such uneven 

behavior was caused by a limited diffusion of the drug into the spheroid or rather by 

cell-specific variances. It could well be that only drug-resistant cell subpopulations 

were able to invade the fibroblast core. This characteristic is regularly found in 

malignant melanoma 241. Another explanation could be that this drug insensitivity was 

triggered by some cellular signaling within the core. Anyway, it was fascinating to 

detect that docetaxel affected proliferation and apoptosis exclusively in melanoma cells 

and not in keratinocytes or fibroblasts. The last difference between external and 

internal melanoma cells was according to their expression of the ATP-dependent 

transporter protein, ABCB5. It was observed that docetaxel led to higher ABCB5 

immunofluorescence signals in external but not in internal melanoma cells (figure 27 

and 28). This does not mean that internal melanoma cells were unable to increase 

ABCB5 expression. Differently than expected, they showed lower ABCB5 signals upon 

docetaxel treatment than before treatment. Again, this loss of drug-induced changes 

in gene expression could be explained by internal melanoma cells representing a 

special subpopulation of cells, insufficient penetration of the drug, or disturbance of the 

local environment. However, the effect of docetaxel on ABCB5 signals observed in 

external melanoma cells is consistent with an up-regulation of ABCB5 in weakly 

expressing cells or a selection of strongly expressing cells. Overall, these results match 

previous studies that described an enhanced ABCB5 expression in malignant 

melanoma 242, the functional role of ABCB5 in tumor growth 243,244, and the selection 

of ABCB5-expressing cells upon chemotherapy 130. However, the enhanced 

expression of ABCB5 upon docetaxel treatment was not confirmed by Western Blot 

analysis (figure 29). Here, the expression profile remained unchanged. A reason for 

this could be the difference in harvesting the samples. Tri-culture spheroids for 

immunofluorescence analysis were transferred after docetaxel treatment and washed 

leading to loss of external melanoma cells. In contrast, tri-culture spheroids for Western 

Blot analysis were collected and completely lysed. In this step, no cells got lost. The 

hypothesis is that in DMSO treated control spheroids there are many ABCB5-low 
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external melanoma cells, while in the docetaxel treated spheroids there are only few 

ABCB5-high external melanoma cells but much more apoptotic cells that lost ABCB5 

expression. Thus, these apoptotic cells compensated the few ABCB5-high cells that 

were seen in immunofluorescence. 

4.4 Docetaxel presented a classical agent against melanoma cells 

Since the tri-culture spheroids should serve as a model system to study drug 

candidates, the cytostatic drug, docetaxel, was tested as a test substance. Even if 

MAPK pathway inhibitors like the approved BRAF inhibitor vemurafenib 117,118 and 

immunotherapies against CTLA-4 like ipilimumab 121 and PD-1 122,123 substituted 

traditional alkylating and cytostatic chemotherapeutics as first-line therapy, the mitotic 

inhibitor paclitaxel and its derivative docetaxel 245 are still used as adjuvant 

treatments 124,126,127. Moreover, they are probed for their use in innovative 

drugs 226,227,246,247. Up to now, the here presented model lacks immune cells. 

Therefore, immunotherapies were not taken into consideration. Although the addition 

of T-cells and other immune cells is an interesting and possible aspect in the future, 

this study focused on the response of melanoma cells to a classical agent and its effect 

on melanoma chemoresistance. Significant effects on external melanoma cell survival 

were detected after 48 h at 100 nM of docetaxel. Hence, this drug concentration was 

used in all experiments. In contrast, docetaxel reached a higher effect in 2D cultures 

of SK-MEL-28 cells (figure 22). This is consistent with previous studies, which reported 

that docetaxel had a maximal effect on different melanoma cell lines grown in 2D at 

around 10-20 nM 248 and a changed sensitivity of cells cultured in 2D and 3D in 

general 249–251. 

4.5 3D tri-culture model has beneficial aspects compared to other systems 

Other 3D melanoma spheroid models such as the liquid overlay technique 147 are only 

made of one cell type, the melanoma cells. Therefore, they do not represent the 

stromal environment of a tumor. This aspect is fulfilled in the 3D tri-culture model of 

this study by the insert of fibroblasts and keratinocytes. More complex HSE models 

are often produced by seeding primary fibroblasts in collagen type I followed by the 

combined addition of primary keratinocytes and melanoma cells 252 or by embedding 

primary fibroblasts together with melanoma cells in the collagen I matrix 155. Both 

methods spontaneously formed melanoma nests leading to variations in number and 
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sizes of such nests between individual skin reconstructs. Consequently, quantitative 

validation of these models and prediction of therapeutic impacts are often difficult. In 

comparison, the presented tri-culture model always generated very similar spheroids 

with highly reproducible organization of the different cell types. This allowed reliable 

quantification of drug effects on specific cells. Skin-on-a-chip devices have the 

advantage of a controlled perfusion of growth factors and nutrients 196. This cannot be 

performed in a static system like the melanoma tri-culture spheroid. Abaci and 

colleagues demonstrated on their skin-on-a-chip platform that the cancer drug 

doxorubicin may have direct toxic effects on the proliferation and differentiation of 

keratinocytes 253. Still, this method is not appropriate for high-throughput screening. 

Here, a simple spheroid-based model might be more suitable. Since the melanoma 

tri-culture spheroid model contains stroma as well as tumor cells, it can be used to 

assess general cell toxicity of a drug by examining the effect on the neighboring 

non-cancerous cells 254. 

4.6 Post-treatment processing was essential for the interpretation of cell behavior 

It was obvious that treatment with docetaxel led to a loss of external melanoma cells 

in tri-culture spheroids (figure 20 B). However, this happened due to the transfer of 

spheroids after treatment from cell-repellent plates to another place for washing and 

embedding (figure 25). If this transfer was avoided which means that docetaxel 

treatment as well as washing and embedding was performed at the same place, 

apparently all cells, dead and alive, were still present within close proximity to the 

spheroid (figure 25). It cannot be excluded that the different cell numbers were caused 

by distinct effect of the drug in the agarose mold versus the plastic plate. However, the 

most straightforward explanation seems to be that most of the external melanoma cells 

became loose in response to drug treatment and were lost during the transfer from the 

plates to the washing place due to mechanical shear stress (figure 30). Given that this 

treatment-induced loss of cells might also happen in other spheroids and organoids, 

this finding might be interesting for a broad range of researchers. In case of analyzing 

either culture size, cell number, or amount of proliferating and apoptotic cells, this 

influence could lead to incorrect data interpretations. 
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Figure 30: Transfer of tri-culture spheroids after docetaxel treatment led to immense loss of 

external melanoma cells. Scheme depicts proposed way of losing external SK-MEL-28 cells in 

response to docetaxel treatment. Spheroid formation was performed in cell-repellent plates. Typically, 

they were also treated inside the plates and then transferred to another place for washing and 

embedding. In mold experiments, spheroids were transferred to agarose molds prior treatment with 

docetaxel. Washing, embedding, and cryosectioning were then carried out in these molds. Adapted and 

modified from Klicks et al 2019 (revised revision). 
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4.7 Conclusion 

The present work describes a novel, simple spheroid-based melanoma tri-culture 

model composed of fibroblasts, keratinocytes, and melanoma cells. This model 

mimicked characteristics found in early stages of melanoma, with loss of keratinocyte 

differentiation, melanoma cell invasion, and drug-induced selection of 

ABCB5-expressing cells. A future approach might be the complementation of this 

system by the addition of further cell types like immune or primary cells to further 

expand the applicability of such model for screening drug candidates and their mode 

of action. 
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5 SUMMARY 

Melanoma is the most common form of cancer. Thus, test systems for the development 

of new drugs and therapies are required that resemble the in vivo situation. Currently, 

most cell-based assays are performed in two-dimensional (2D) cell cultures. While 

cells cultured in 2D monolayers appear to be flat and stretched allowing for equal 

exposure to medium and drugs, three-dimensional (3D) structures of cells are more 

realistic to the in vivo situation displaying cells of varying stages of the cell cycle, i.e. 

proliferating cells on the periphery of the 3D structure, followed by quiescent and 

necrotic cells in the center. Several 3D cell culture approaches that exhibit varying 

degrees of complexity have been developed to perform drug testing and mechanistic 

studies on melanoma. Although 3D cell culture systems of melanoma are superior to 

traditional 2D approaches, these 3D cultures are either composed of only one cell type, 

the melanoma cells, or they are so complex that it is challenging to understand the 

behavior of individual cell types. Additionally, they are often difficult to establish and 

expensive. Therefore, this work aimed to establish a novel, simple, spheroid-based 

melanoma model. This study used low-attachment plates to generate spheroids that 

are composed of up to three different cell types, i.e. stromal, skin, and cancer cells. To 

study differences in culture conditions and behavior of normal and neoplastic cells, 3D 

cultures of these cell types were compared. 3D cultivation revealed decreasing volume 

sizes of normal cells, fibroblasts and keratinocytes, with only few proliferating cells on 

the periphery of the spheroids. In contrast, neoplastic cells, SK-MEL-28, LNCaP, and 

PC-3 cells, displayed increasing volume sizes with proliferating cells on the outside of 

the spheroids. All tested cell types showed a significant reduction of proliferation with 

a concurrent rise of apoptosis in 3D compared to 2D cultures. The presented tri-culture 

model allowed the study of cellular behavior in a cell-type specific way and represented 

different features of early melanoma stages. Fibroblasts formed a collagen IV rich 

center of the tri-culture spheroid, keratinocytes built up a ring around this center, and 

melanoma cells arranged highly proliferating clusters on the outside. Some melanoma 

cells were also found regularly in the fibroblast core. In the absence of melanoma cells, 

keratinocytes stratified into an inner basal-like ring and more differentiated cells on the 

periphery. In contrast, addition of melanoma cells clearly reduced keratinocyte 

differentiation. Upon treatment with the cytostatic drug, docetaxel, this keratinocyte 

differentiation was restored and apoptosis of external melanoma cells was induced. 
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Furthermore, docetaxel treatment significantly increased the amount of 

immunoreactivity to the transporter protein ABCB5 in remaining intact external 

melanoma cells. Taken together, a novel, simple, spheroid-based melanoma tri-culture 

model composed of fibroblasts, keratinocytes, and melanoma cells was described. 

This can now be applied for the development of new drugs and the analysis of their 

cell-type specific mode of action. 
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6 ZUSAMMENFASSUNG 

Das Melanom, besser bekannt als schwarzer Hautkrebs, ist die häufigste Krebsart. 

Daher besteht der Bedarf nach einem in vivo nahen Testsystem für die Entwicklung 

neuer Medikamente und Therapien. Derzeit werden die meisten zellbasierten 

Untersuchungen mit Hilfe der zweidimensionalen (2D) Zellkultur durchgeführt. Zellen, 

die als 2D Einzelschicht kultiviert werden, sehen phänotypisch flach und gestreckt aus, 

wohingegen im lebenden Organismus Zellen in einem dreidimensionalen (3D) 

Verbund wachsen. Dies hat zur Folge, dass in der 2D Zellkultur eine gleichmäßige 

Exposition zu Medium und Medikamenten vorliegt, welche nicht der in vivo Situation 

entspricht. Zudem zeigen 3D kultivierte Zellen unterschiedliche Stadien des Zellzyklus, 

das heißt proliferierende Zellen an der Peripherie der 3D Struktur, gefolgt von 

ruhenden und nekrotischen Zellen im Zentrum. Es wurden bereits einige 3D 

Zellkulturkonzepte unterschiedlicher Komplexität für Arzneimittelprüfungen und 

mechanistische Untersuchungen an Melanomen entwickelt. Obwohl 3D 

Zellkultursysteme von Melanomen den traditionellen 2D Methoden überlegen sind, 

bestehen bisherige 3D Systeme entweder nur aus einem Zelltyp, den Melanomzellen, 

oder sind so komplex, dass es schwierig ist, das Verhalten einzelner Zelltypen zu 

verstehen. Zusätzlich sind diese komplexen 3D Systeme oft schwer zu etablieren und 

teuer. Daher ist das Ziel dieser Arbeit, ein neuartiges, einfaches, sphäroidbasiertes 

Melanommodell zu etablieren. Für die Herstellung der Sphäroide wurden beschichtete 

Platten verwendet, die ein Anheften der Zellen verhindern. In diese wurden bis zu drei 

verschiedene Zelltypen, Stroma-, Haut- und Krebszellen, ausgesät. Um Unterschiede 

in den Kultivierungsbedingungen und dem Verhalten von normalen und 

neoplastischen Zellen zu untersuchen, wurden 3D Kulturen dieser Zelltypen 

miteinander verglichen. Die 3D Kultivierung ergab einen reduzierten Umfang der 

Sphäroide von normalen Zellen, Fibroblasten und Keratinozyten, mit nur wenigen 

proliferierenden Zellen an der Peripherie der Sphäroide. Dagegen präsentierten 

neoplastische Zellen, SK-MEL-28, LNCaP und PC-3 Zellen, eine zunehmende Größe 

der Sphäroide mit proliferierenden Zellen an deren Außenseite. In 3D Monokulturen 

zeigten alle getesteten Zelltypen eine signifikante Abnahme der Proliferation mit 

gleichzeitigem Anstieg an Apoptose im Vergleich zu 2D. Mit Hilfe des hier vorgestellten 

Trikulturmodells war es möglich, das zelluläre Verhalten von Stroma-, Haut- und 

Krebszellen zelltypspezifisch zu untersuchen. Das Trikulturmodell repräsentiert hierbei 
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ein frühes Melanomstadium. Fibroblasten bildeten ein Kollagen IV-reiches Zentrum im 

Trikultursphäroid, wohingegen Keratinozyten sich zu einem Ring um dieses Zentrum 

ansammelten und Melanomzellen sich zu proliferierenden Clustern an der Außenseite 

anordneten. Einige Melanomzellen wurden auch regelmäßig im Fibroblastenkern 

beobachtet. In Abwesenheit der Melanomzellen stratifizierten die Keratinozyten zu 

einem inneren basalähnlichen Ring und stärker differenzierten Zellen an der 

Peripherie. Dagegen reduzierte die Zugabe von Melanomzellen deutlich die 

Differenzierung der Keratinozyten. Die Behandlung mit dem Zytostatikum Docetaxel 

stellte diese Differenzierung der Keratinozyten wieder her und induzierte Apoptose in 

den externen Melanomzellclustern. Darüber hinaus erhöhte die Docetaxelbehandlung 

erheblich den Umfang der Immunreaktivität auf das Transporterprotein ABCB5 in den 

verbliebenen, unbeschädigten, externen Melanomzellen. Zusammenfassend wurde 

ein neuartiges, einfaches, sphäroidbasiertes Melanomtrikulturmodell beschrieben, 

welches aus Fibroblasten, Keratinozyten und Melanomzellen besteht. Dieses kann 

nun zur Entwicklung neuer Wirkstoffe und zur Analyse der zelltypspezifischen 

Wirkungsweise verwendet werden. 
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