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Abstract

In this thesis, the first high-precision measurement of the ground-state g-factor of a
boronlike ion, “°Ar'3* with a fractional uncertainty of 1.4 x 107, is presented. The
measurement has been performed on a single boronlike argon ion with the double
Penning-trap setup of the newly developed ALPHATRAP experiment. Within this work,
the trap tower of the experiment has been developed, assembled and tested prior
to commissioning it together with the rest of the ALPHATRAP setup. The resulting
measurement presented here corresponds to the most precise g-factor determination
of a five-electron system to date. Not only does it allow testing the currently
available theoretical predictions for the many-electron, QED and nuclear-recoil
contributions, but also distinguishes between calculations that are in disagreement.
The g-factor obtained here is in agreement with the most recent and most precise
theoretical prediction, which has a relative uncertainty of 9 x 10~7. This level
of agreement constitutes one of the most accurate tests of many-electron QED
contributions in strong fields. The sensitivity of this test will improve in the future
with anticipated improvements on the theoretical g-factor, which includes higher-
order QED contributions. Furthermore, this measurement paves the way towards the
independent determination of the fine-structure constant with heavier highly charged
ions in ALPHATRAP, where a specific difference of the boron- and hydrogenlike ions’
g-factors will be used to cancel nuclear structure effects.

Zusammenfassung

In der vorliegenden Arbeit wird die erste Hochprazisionsmessung des g-Faktors im
Grundzustand eines bordhnlichen Ions, “°Ar'3*, mit einer relativen Genauigkeit
von 1.4 x 10~? présentiert. Die Messungen wurden an einem einzelnen boridhn-
lichen Argonion in dem Doppel-Penningfallensystem des neu entwickelten ALPHA-
TRAP-Experiments durchgefiihrt. Im Rahmen dieser Arbeit wurde der Fallenturm
entwickelt, aufgebaut und getestet, bevor er gemeinsam mit dem Rest des ALPHA-
TRAP Aufbaus in Betrieb genommen wurde. Dieses Ergebnis stellt die bis jetzt
genaueste Bestimmung des g-Faktors eines Fiinf-Elektronen-Systems dar. Die ex-
perimentellen Ergebnisse erlauben nicht nur aktuelle theoretische Vorhersagen von
Vielelektronen-, QED- und Kernriickstol3beitrdgen zu testen, sondern auch die Un-
terscheidung zwischen Berechnungen die nicht miteinander ibereinstimmen. Der
hier erhaltene g-Faktor stimmt mit der neuesten und genauesten theoretischen
Vorhersage mit einer relativen Genauigkeit von 9 x 10~7 iiberein. Dieser Grad an
Ubereinstimmung stellt einen der genauesten Tests von Vielelektronen-Beitrigen
in starken Feldern dar. Die Empfindlichkeit dieses Tests wird sich in Zukunft mit
erwarteten Verbesserungen des theoretischen g-Faktor, der QED-Beitrdge hoherer
Ordnung beinhalten wird, verbessern. Dariiber hinaus bereitet diese Messung den
Weg in Richtung einer unabhéngigen Bestimmung der Feinstrukturkonstante mit
schwereren hochgeladenen Ionen in ALPHATRAP, bei denen eine spezifische Differenz
zwischen den g-Faktoren von bor- und wasserstoffahnlichen Ionen verwendet wird,
um Effekte der Kernstruktur aufzuheben.






Contents

1 Introduction

2 Theoretical g-factor
2.1 Free-electron g-factor

2.2 Bound-electron g-factor . . ... ... ... ... ... . ...,

2.3 Boronlike ion g-factor

2.4 Measurement principle . . . . . ... ..o

3 Penning trap
3.1 Ideal Penning trap .
3.2 The real Penning trap

3.2.1 Electric field imperfections . . . . .. ... ... ... ...,

3.2.2 Magnetic field imperfections . . . . . . ... ... ... ....

3.2.3 Relativistic corrections . . . . . . . . .ttt e e e

3.3 The ALPHATRAP optimised design . . . . . . ... ... ........

lon detection and manipulation

4.1 Image currentdetection . . . . . . . . . . . ...

4.2 Jon-resonator iNteraction . . . . . . . v v v v v v v v e e e e e e e

4.3 Axial frequency detection . . . .. ... ... ... ... ..

4.4 Radial frequency detection - Doubledip . . ... ... ........

4.5 Larmor frequency detection . . . . . . . ... ... ... ...

4.6 Magnetic moment dynamics . . . . . . . .. ..o u e e

4.6.1 Magnetic moment in the laboratory frame (LF) . ... .. ..

4.6.2 Magnetic moment in the rotating frame (RotF) . ... .. ..

4.6.3 mm-wave injection . . . . . . . . ... e
4.6.4 Adiabatic rapid passage (ARP) . ... .............
4.6.5 Adiabatic rapid passage at ALPHATRAP . . . . ... ......

5 Experimental setup

5.1 ALPHATRAP traptOWEer . . . . . .« . v v v v v i et et e e e e e

5.1.1 Precision trap
5.1.2 Analysis trap

5.1.3 Millimeter-wave SEtUp . . . . . . v v v v vt e e e .

5.2 Magnet and cryostat

13

15
15
18
19
21
21
22

25
25
27
30
31
35
37
37
38
39
41
42

47
47
48
55
58
59

Vii



5.3 Beamline andion sources . . . . . . . . . o it i e e

6 Towards the first Alphatrap g-factor measurement
6.1 Singleion preparation . . . . . . ... ... ...t
6.2 Electric Field Optimisation . . . . . . ... ... ... ... ......
6.3 DB inhomogeneity in the precisiontrap . . . . . .. ... ... ....
6.4 B; inhomogeneity in the precisiontrap . . . . .. ... ... ... ..
6.5 Magnetic bottle in the analysistrap . . . . .. ... ... ... ....
6.6 Cyclotron heating in the precisiontrap . . .. ... ... ... ....
6.7 Axial temperature measurement 7, . . . . . ... .. ... ... ..

7 The g-factor of boronlike argon “CAr!3+
7.1 Measurement procedure . . . . . . . . ... ...
7.2 g-factor resonance . . . . . . . ..o e e e e e e e
7.2.1 Line shapeofthe'resonance . . . . . ... ... ... ....
7.2.2 Maximum-likelihood estimation . . . . . . ... ... .....
7.2.3 Statistical uncertainty estimation . . . ... ... ... . ...
7.3 Sources of systematic shifts and uncertainties . . ... ... ... ..
7.3.1 Drift of the axial potential . . . . ... ... ..........
7.3.2 Image chargeshift . .. ... ... ... ... ........
7.3.3 Relativistic mass increase . . . ... .. ... ... ... ..
7.3.4 Lineshapeofdip-fit . ... ... ... ... ..........
7.3.5 Frequencypulling . .......... ... ... ... ...,
7.3.6 Magnetron frequency v_ measurement . . . . . . . . .. ...
7.3.7 Elevated E, during the axial frequency measurement . . . . .
7.3.8 Electric field anharmonicity . . . . ... ... .. ... ....
7.3.9 Line shapeofthe'resonance . . . . . ... ... ... ....
7.3.10 Residual magnetic field imperfections. . . . . . ... ... ..
7.4 Final experimental result for the g-factor of CAr'3+ . . . . . ... ..
7.5 Comparison with theory . . ... ... .. ... ... .........

8 Conclusion and outlook

Bibliography

63
63
65
68
71
72
74
75

79
79
81
81
82
83
86
86
89
90
90
90
91
91
92
92
93
94
96

99

101



Introduction

The interactions of particles are described by means of the four fundamental forces,
i.e. the electromagnetic, weak, strong, and the gravitational force. While the
electromagnetic, weak and strong interactions are described within the Standard
Model by quantum field theories, gravitation is described by the theory of general
relativity. Efforts to treat it in a quantum mechanical framework have not been
fruitful so far, mostly due to the lack of experimental confirmation of the currently
existing theories.

Quantum electrodynamics (QED) is the theory of the interaction between charged
particles and the electromagnetic field by the exchange of photons. Ever since the
theory was developed, no significant discrepancies between the experimental and
theoretical results have been observed. QED is termed as the most successful quan-
tum field theory of the Standard Model because it can predict physical observables
in all accessible electric field strength scales. The observables that are typically
employed for testing QED are the Lamb shift of energy levels in the hydrogen atom,
the hyperfine splitting and the g-factor, as those quantities can be both measured
and predicted with high accuracy. The most suitable for preforming high-precision
tests of QED in strong fields is the g-factor as it is less sensitive to nuclear properties,
and thus can be calculated to high precision.

Even though the theory has been verified with astonishing precision in weak fields,
most notably for the case of a free electron [1], the precision of tests in the presence
of strong fields has been limited so far. Therefore, the high-field range is marked as
an unexplored territory for high-precision tests of QED, which could potentially lead
to new physics beyond the Standard Model.

To this end, highly charged ions (HCI) are studied, where a bound electron is
exposed to the extreme conditions of the binding field of a heavy nucleus, which
leads to the strongest electric fields achievable in the laboratory of up to 106V /cm

208pph®+  Due to the strong scaling of the

for the 1s electron in hydrogenlike
transition frequencies, from ground to excited states, with the nuclear charge Z,
most orbital transitions are no longer in the optical regime! for heavy HCI which
limits the experimental and theoretical precision. A series of experiments have been
performed with the experimental storage ring (ESR) at the GSI Helmholtz center of
research, with heavy HCI up to hydrogenlike uranium [3]. There, the ground-state
Lamb shift in hydrogenlike uranium has been measured with an accuracy of 1%,
with the studied transitions being in the X-ray regime. The hyperfine splitting in the

ground state of hydrogenlike holmium as a test of QED has been measured in an

IBismuth constitutes one of the exceptions. The HFS in hydrogenlike and lithiumlike bismuth has
been recently measured in the ESR storage ring [2].
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electron beam ion trap (EBIT) [4] via spontaneous emission spectroscopy, as well as
hydrogenlike rhenium and thallium [5, 6].

The goal of ALPHATRAP, which is a Penning-trap setup for high-precision g-
factor determination, is to investigate the validity of the theory in the presence
of strong electric fields where nonlinear effects (such as photon-photon interactions)
might be present, by performing high-precision measurements with an intended
relative uncertainty of 107! or better.

The ion’s magnetic moment in terms of Bohr magnetons is related with its spin
via the g-factor which can be predicted to very high precision within the Standard
Model. Measuring this gyromagnetic proportionality constant g not only permits
high-precision tests of bound-state QED (BS-QED) in the strong-field regime, but
also allows the determination of fundamental constants, e.g. the electron mass [7,
8] and the fine-structure constant « [9, 10, 11]. With an appropriate choice of the
element and charge state, different contributions to the theoretical prediction can be
individually addressed.

Currently, the most stringent test of QED in strong fields has been performed
using hydrogenlike silicon [12, 13] at the Mainz g-factor experiment. Measuring
the isotope shift of the g-factor of lithiumlike calcium [14] gave access to the
relativistic nuclear recoil effect, which represents a stringent test of BS-QED beyond
the external-field approximation in strong fields [15]. Finally, relativistic many-
electron contributions to the g-factor of the 15%2s state and the interplay of QED and
interelectronic interaction effects have been investigated using lithiumlike silicon [16,
17].

The experimental determination of the g-factor of a boronlike ion allows for high-
precision tests of BS-QED for the 15225%2p, /2 state (with the subscript 1/2 denoting
the total angular momentum of the 2p valence electron) where the bound electron
has a non-vanishing orbital angular momentum. Also, it permits scrutinising more
sophisticated many-electron corrections to the g-factor. Additionally, the g-factor of
heavy boronlike ions can be used for an independent determination of the fine-
structure constant. For this, instead of a comparison between absolute g-factor val-
ues, which would be unfavourable due to the uncertainty of the nuclear structure
contributions, one may compare specific g-factor differences between hydrogen-
and boronlike ions [9, 10] of the same element. Thus, nuclear contributions can
be isolated and cancelled, leading to an improved theoretical prediction which can
be used for an independent determination of a, being competitive in precision
to the presently best literature value [18]. In this determination, the extracted
value of o will largely depend on the theoretical calculations. Therefore, it is of
utmost importance that the theory is tested in a broad range of atomic numbers.
For the presented work a boronlike argon ion has been used, which belongs to
the low-/medium-Z regime. This system enables testing the methods to calculate
electron-electron interaction effects more rigorously than in heavy ions, where
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the strong central nuclear Coulomb field and the large QED effects suppress the
importance of electron-correlation effects.

ALPHATRAP is a follow-up experiment to the Mainz g-factor experiment on HCI.
This experiment was limited due to its in-trap ion production to low- and medium-Z
ions up to lithiumlike calcium. A significant advantage of ALPHATRAP is the access
to externally produced ions. Coupling the high-precision experimental setup to
independent ion sources such as the Heidelberg EBIT will allow extending the
experiment to the range of extremely strong electric fields of high-Z HCI up to
208pp81+

During the course of this thesis, the ALPHATRAP group has successfully constructed,
assembled and commissioned the full experimental setup located at the Max Planck
Institute for Nuclear Physics in Heidelberg. The main focus of the present work has
been the development of ALPHATRAP’s Penning-traps. That involved the physical
construction, assembly and testing of the traps, followed by developing the control
system and commissioning of the trap tower. Finally, the first measurement cam-
paign of the experiment was performed, which was dedicated to the ground-state
g-factor of boronlike argon “CAr'®*. Besides the confirmation of the successful
implementation of the ALPHATRAP apparatus, this measurement corresponds to
the most precise g-factor measurement of a five-electron system. Moreover, the
obtained result distinguishes between different theoretical predictions currently in
the literature, which show a discrepancy in the order of 850, and paves the way
towards the independent determination of « with heavy HCI in ALPHATRAP.

The next chapter of this thesis, chapter 2, is dedicated to a brief introduction of
the theoretical g-factor predictions, mainly focusing on the different contributions
of the g-factor of “°Ar'3*. In chapter 3 the working principles of the Penning trap
are introduced. In chapter 4, the ion detection is discussed as well as the tech-
niques employed within this thesis for frequency measurements. The last section of
this chapter is introducing the magnetic-moment dynamics and the adiabatic rapid
passage technique, that has been implemented for the fist time in this kind of a
Penning-trap setup. The experimental setup is discussed in chapter 5, with the main
focus on the double-trap setup. In chapter 6 the preparatory measurements, which
are essential for preforming a g-factor experiment, are presented. The g-factor mea-
surement of “°Ar'3* is presented in chapter 7, including the measurement procedure,
the final experimental result along with the analysis of the corresponding statistical
and systematic uncertainties, and the comparison between the experimental and the
theoretical result. The final chapter of this thesis, chapter 8, briefly summarises the
presented work and gives an outlook into the fascinating future prospectives of this
unique experiment.






Theoretical g-factor

Quantum electrodynamics (QED) is considered to be the most successful of the
quantum field theories within the Standard Model. In order to test the validity of the
theory, different observables of various systems can be experimentally determined
and compared to their corresponding predicted value. One of those observables is
the g-factor, which is the subject matter of this thesis.

The theoretical calculation of the g-factor is addressed in this chapter starting
with the free-electron g-factor in section 2.1. Afterwards, the bound-state g-factor is
introduced in section 2.2 followed by the g-factor of boronlike ions. Finally, the
basic principle of the experimental determination of the g-factor is discussed in
section 2.4.

2.1 Free-electron g-factor

The gyromagnetic proportionality constant g relates the electron’s magnetic moment
to its spin in the following way:

—

il
h?

where g, is the g-factor, ugp = eh/2m, is the Bohr magneton, e is the elementary

charge, m, is the electron mass, S is the spin and i = h/27 is the Planck constant.
Because the g-factor describes the magnetic moment of an electron in an external
magnetic field, it serves as one of the observables in quantum physics together
with the hyperfine splitting and the Lamb shift. Those observables can be both
measured and predicted within QED to high precision. Therefore, by carrying out a
high-precision measurement of the g-factor and comparing it to the predicted value,
a test of the validity of QED, and consequently the Standard Model, is performed.

Dirac’s relativistic quantum theory [19] predicts a value of g = 2 for a free electron.
However, the experimentally determined free-electron g-factor demonstrated a
deviation from the expected value of 2. This discovery, which was termed as the
anomalous magnetic moment, together with the observation of the Lamb shift
formed the basis of the modern QED development. The QED contributions to the
g-factor are expressed as a power series in terms of /7

oo a n
g—2=> Cyy () : (2.2)
T
n=1
o e2 ~ 1 . . .
where a = £+ ~ 735 is the fine-structure constant with e being the elementary

charge, ¢¢ the vacuum permittivity and c the speed of light. The leading order
contribution shown in Fig. 2.1, the so-called Schwinger term, yielding Co = 1 [20]
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describes the self-energy interaction of the electron with the electromagnetic field
via emission and reabsorption of a virtual photon.

To date, the coefficients up to Cj, i.e. five-loop terms, which corresponds to
12672 Feynman diagrams, have been calculated [21, 22]. The theoretical calculation
depends on the value of « and its precision is limited by the uncertainty of the
independent experimental determination of the fine-structure constant. Inserting
the independently determined « using caesium atoms [18] into the series expansion
and comparing the calculated with the measured value of g — 2 [1] allowed for a
high-precision test of QED.

Fig. 2.1: Feynman diagram for the Schwinger correction for the free electron. The free
electron and the photon are depicted by a straight and a curly line, respectively.
The magnetic field is shown with a triangle. Before the electron interacts with
the external magnetic field, it emits a virtual photon, which it reabsorbs later
in order to conserve total energy.

2.2 Bound-electron g-factor

Even though QED has been tested to high precision in the case of a free particle,
the validity of the theory has not been verified in the strong-field regime where
non-linear effects might be of importance. In order to introduce the required strong
fields we use highly charged ions (HCI), where the electron is exposed to the strong
binding potential of the nucleus. For heavy HCI the electric field strength is in the
order of 10'® V/cm, as can be seen in Fig. 2.2.

Since the electron is no longer a free particle but bound to a nucleus, it is described
by the hydrogenic wave functions instead of the plane-wave solution to the Dirac
equation. As a result, the g-factor of the bound electron is altered with respect to the
free-electron case. The lowest-order relativistic correction to the 1s-state g-factor in
a has been calculated by Breit [23]:

g — §<1 o1 (aZ)2>, (2.3)

where for heavy ions with aZ ~ 1 the a-dependence becomes significant, a fact that
could be exploited for an independent determination of the fine-structure constant.
Additionally, the QED contributions of a bound system differ from the free-electron
case. The corresponding theory of bound-state QED (BS-QED) accounts for the

Chapter 2 Theoretical g-factor
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Fig. 2.2: The electric field strength in hydrogenlike ions with respect to the nuclear
charge Z. In the high-Z regime the bound electron is exposed to the strongest
field available in the laboratory for precision experiments on stable systems.
Some of the hydrogenlike systems that have been measured already at the
Mainz HCI experiment and their respective field strength regime are displayed
(blue circles) for reference, as well as hydrogenlike lead 208pp8i+ (red circle),
the heaviest system to be targeted by ALPHATRAP. The field-strength of
boronlike argon is indicated with a green circle. (*) The Schwinger limit is
also displayed here.

interaction of the electron with the Coulomb potential of the nucleus in two different
ways:

» Using two series expansions in orders of « and «Z, one for calculating the loop
interactions of the electron with the quantised electromagnetic field or the
Dirac electron-positron field, and a second one accounting for the interaction
with the Coulomb potential.

* Calculating all Feynman diagrams using the eigenfunctions from the solution
of the Dirac equation in the QED propagator. This leads to a solution in all
orders in aZ.

The first approach is not favourable for heavy systems, as the expansion in aZ
no longer converges sufficiently fast preventing a high-precision calculation of the
g-factor. Using the second approach, the six Feynman diagrams shown in Fig 2.3
which correspond to the one-loop correction for the hydrogenlike system have been
calculated to all orders in aZ [24]. In second order, most of the 50 Feynman
diagrams have not been yet been calculated to all orders in a.Z.

2.2 Bound-electron g-factor
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19 9%

Fig. 2.3: The six Feynman diagrams of first order in the bound-state framework. Here,
the double line indicates the bound-state propagator or wave function. These
diagrams represent the one-loop corrections and can be calculated in all
orders of aZ. (a) Corresponds to the self-energy vertex correction, while the
remaining diagrams represent self-energy and vacuum-polarisation corrections
to the g-factor.

In addition to the QED contributions, there are corrections arising from the
nucleus within the BS-QED. Those effects are related to the finite size as well
as the internal structure of the nucleus. The finite size contribution is larger for
high-Z systems. The nuclear effects can be canceled when considering specific
weighted g-factor differences [9, 25, 11] of different charge states of the same
isotope. Furthermore, the nuclear recoil effect due to the finite mass of the nucleus
needs to be considered.

Finally, for many-electron ions the interelectronic contribution needs to be ac-
counted for. Those contributions can be divided into the ones involving photon
exchanges between the electrons and the ones including additional photon or fermion
loops which are called QED screening corrections.

To this date several hydrogenlike systems have been studied, leading to the
stringent test of QED in strong fields which have been preformed with the g-factor of
hydrogenlike silicon 28Si'3* [12, 13]. The g-factor of lithiumlike ions has been
exploited to access the recoil effect. That was achieved by measuring the isotope
shift in lithiumlike calcium [14], where the calcium isotopes *°Ca and #*Ca have
an almost identical nuclear charge radius. Furthermore, the g-factor of lithiumlike
silicon [16] gave access to the relativistic many-electron contributions.

Within the course of this thesis, the g-factor of a five-electron system, that of a
boronlike argon “°Ar!3*, has been measured. The experimental determination of
the g-factor of such a system allows, for the first time, for precision tests of QED
involving a bound electron possessing orbital angular momentum, and for more
stringent tests of many-electron correlations. Furthermore, such ions, in combination

Chapter 2 Theoretical g-factor



with their hydrogenic counterparts, can also be used in the future for an independent
determination of the fine-structure constant « [9, 25, 11], competitive in precision
with the presently best literature value [18].

2.3 Boronlike ion g-factor

For many-electron ions the uncertainty of the interelectronic interactions contribu-
tions typically dominate the uncertainty of the theoretical g-factor. For lithiumlike
ions, the uncertainty of this contribution has been significantly improved [25, 26] by
a rigorous QED calculation in all orders of «Z. For boronlike ions however, similar
calculations are still anticipated.

The g-factor calculation of a five-electron system is increasingly challenging and
requires the consideration of relativistic corrections within and beyond the Breit
approximation. The most precise theoretical g-factor of “°Ar'* to date has a
relative uncertainty of 9 x 10~7 [27]. This uncertainty is dominated by the current
uncertainty of the many-electron, QED, and nuclear terms.

The 15%2522p, /2 configuration of boronlike argon requires solving the Dirac equa-
tion including the negative-energy states of the Dirac spectrum since their contribu-
tion is comparable to the positive-energy states, similarly to the lithiumlike ions [16].
The ground-state g-factor of such an ion without nuclear spin can be expressed as:

&=8p + Agin‘c + AgQED + Agret:oﬂ + AgNSa (24)

where g, is the Dirac value for a pointlike nucleus, Ag; , is the interelectronic
interaction, Agqpp is the QED contribution, Ag,..; is the nuclear recoil correction
and Agyg is the nuclear size correction. These contributions have been calculated
for a boronlike argon °Ar'3" in [27] and are given in Tab. 2.1. For a range of
nuclear charges, Z, these contributions are plotted in Fig. 2.4. It can be seen that
most of the individual contributions increase in the presence of stronger fields. The
minimum of the VP curve is due to the partial cancellation of the one-electron VP
and VP screening diagrams [28].

Dirac value
The Dirac contribution to the g-factor is the leading-order contribution in o and 1/7
and it is given analytically for a pointlike nucleus, as described in Refs. [29, 30]:

gp = §<\/2(1+\/1 — (aZ)2> — 1) = % — %( Z)%— .., (2.5)

where Z is the atomic number. Because of the nonvanishing angular momentum

of the state, unlike for s states, this g-factor is significantly different from the free
Dirac value of 2. This modifies the range of the Larmor frequency to be measured by
about a factor of three, however, with slight modifications in the ALPHATRAP setup
the g-factor for p states can be determined with the same technique.

2.3 Boronlike ion g-factor
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Fig. 2.4: Individual contributions to the g-factor of boronlike ions [28]. Here contri-
butions due to the interelectronic interaction, one-loop QED, screened QED,
vacuum polarisation (VP) and finite nuclear size are plotted. The current level
of precision for “°Ar'3" gives access to the individual contributions.

Interelectronic interaction
In a boronlike ion, the presence of five electrons increases the complexity of the sys-
tem at hand. The electron-correlation effect of such systems is commonly calculated
with the configuration-interaction method. Within this method, the 1s and 2s core
electrons are fully correlated, i.e. they are not assumed to be frozen orbitals which
only influence the 2p valence electron via their electrostatic screening potentials.
The one-photon exchange term (1/2)! of the interelectronic interaction contri-
bution was calculated within the QED framework [31, 32, 33] for “°Ar'3*. The
two-photon exchange term (1/2)%* was calculated in the so-called Breit approxima-
tion, i.e., neglecting certain higher-order retardation terms in the photon exchange
using the configuration-interaction method in the Dirac-Fock-Sturm (CI-DFS) basis
as for lithiumlike ions in Refs. [34, 35, 36]. Furthermore, it has also ben recently
confirmed using the coupled-cluster method [37]. In Ref. [38] the term is calculated
for middle-Z boronlike ions within second order perturbation theory in 1/Z. In
order to improve the precision of this contribution, a combination of CI-DFS and
recursive higher-order perturbation theory is used and the result is indicated with a
* in Tab. 2.1.

QED contributions
The leading effects of the QED contribution for many-electron ions such as a boron-
like ion, are the self-energy and the vacuum polarisation correction. Those two

Chapter 2 Theoretical g-factor



corrections comprise the one-loop QED contribution. The self-energy corrections
have been calculated in Ref. [39, 40] for hydrogenlike ions to all orders in Z«
for low-Z ions. In Ref. [35] it has been calculated for “°Ar!3* using an effective
screening potential. Within this approximation the core electrons are considered as
frozen, which allows estimating the interaction of the active electron and nucleus
with the use of a modified potential, the effective screening potential.

The precision of the self-energy contribution to the g-factor of boronlike argon
has been improved by means of considering the screening effect of the 2p, ), valence
electron as an effective potential induced by the core electrons by two different
numerical methods. This has been achieved (1) by a local screening potential follow-
ing Ref. [41] and (2) on the basis of the dual-kinetic balance (DKB) approach [32]
following Refs. [42, 43]. The self-energy correction calculated using method (2) is
indicated in Tab. 2.1 with a *. The two-electron self-energy Feynman diagrams have
not been calculated yet. However, it has been estimated by calculations performed
for lithiumlike ions [25]. This resulted in an uncertainty of 0.51 x 10~ which is
included in the final theoretical g-factor.

zgéf}g E’

a) < b) c)

Fig. 2.5: Examples of vacuum-polarisation screening corrections of order 1/Z to the
g-factor of the boronlike ground state. (a) electron-positron correction for
the bound-electron interaction with the nucleus (electric loop VP) or (b) its
interaction with the external magnetic field (magnetic loop VP). (c) Photon-
exchange VP loop correction. A single line represents a free virtual fermion,
and the wavy line terminated by a cross stands for the interaction with the
nuclear Coulomb potential.

The vacuum-polarisation corrections are not relevant for the current theoretical
precision of “°Ar'3*. Nevertheless, they are calculated and given in Tab. 2.1 and
some example Feynman diagrams of VP corrections are shown in Fig. 2.5. Those
contributions will be significant for heavy HCI (see Fig. 2.4) such as boronlike lead
208pb”7* | for which they are estimated to be —4.06 x 106, For more details see
Ref. [28].

Nuclear recoil

The nuclear recoil contribution which is caused by the relativistic interaction between
the nucleus, which has a finite mass, and the electron, necessitates calculations
beyond the external-field approximation (Furry picture). That means that the nucleus

2.3 Boronlike ion g-factor
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in not considered as a stationary Coulomb potential. The purely relativistic nuclear
recoil effect has been addressed in the isotope shift of lithium like calcium [14, 44].

Compared to the hydrogenlike and lithliumlike ions experimentally investigated
so far, the contribution is more pronounced for a p state of a boronlike ion, i.e. for
H0Ar!3T it amounts to —9.09(19) x 10~%. Furthermore, the current uncertainty of
the recoil correction of boronlike ions is much larger than the one for hydrogen- and
lithiumlike ions. The nuclear recoil correction for an “°Ar'®* ion has been evaluated
to zeroth and first orders of 1/Z in Refs. [36, 45].

Nuclear size

The leading contribution of the nuclear-size correction for a 2p, ), state is given
by [46, 38]:

6
(@Z) 2p2 (2.6)

AgNS = 16 e’ lnucly

where R, is the root-mean-square (rms) charge radius of the nucleus. According to
Ref. [46] this contribution scales with %(aZ ) for ns states. For boronlike argon this
contribution amounts to < 10719, which is much smaller that the current theoretical
precision and is thus negligible. However, in the high-Z range it is on the order of
1075 to 1075, as can be seen in Fig. 2.4. When considering specific g-factor differ-
ences of heavy hydrogen- and boronlike ions, it has been demonstrated [9] that the
large suppression of the nuclear size correction for the 2p, , compared to the 1s
state, does not induce a significant cancelation of the a-dependent term. Therefore,
this specific difference could allow for a high-precision determination of a.

Theoretical g-factor of “Ar'**

The different contributions discussed above are summarised in Tab. 2.1. The final
theoretical g-factor is

gy, = 0.663 648 12(58), (2.7)

where the uncertainty has been improved by reducing the uncertainty of the one-
loop QED contribution by a factor of 3 [28] and by reducing the uncertainty of the
electron correlation contributions by combining the CI-DFS approach with recursive
perturbation theory (P. Th.) to third and higher orders in 1/Z.

This result is in good agreement with previous results given in Ref. [38] and in
Ref. [36]. Those results vastly disagree with the calculated values given in Ref. [48]
and Ref. [49]; furthermore, the result in the latter article is given without error bars.
The different theoretical g-factors together with the experimental one presented in
this thesis are compared in Fig. 7.7.
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Tab. 2.1: Theoretical contributions to the g-factor of “°Ar'**. The parenthesised num-
bers indicate the uncertainty of the last digit(s). All digits are significant if no
uncertainty is given. Those contributions have been calculated in Ref. [27].
The predicted value of the g-factor from different calculations are given
below.

Contribution Value Ref.
Dirac value 0.663 77545
Finite nuclear size < 10710
Electron correlation:
one-photon exchange, (1/Z)!  0.000657 53
(1/Z)%**, CI-DFS —0.000007 5(4) [36]
(1/Z)**, P. Th. & CI-DFS —0.000007 57(20)*
Nuclear recoil —0.00000909(19) [45, 36]
One-loop QED:
self-energy, (1/2)° —0.000 768 372 3(3)
(1/2)4+ —0.000 000 98(15)
(1/2)1+ —0.000001 04(19)*
vacuum polarisation
electric loop, (1/7)° —4.187 x 10710
(1/2)} 6.526(2) x 107°
magnetic loop, (1/2)° 4.131 x 10710
(1/2) —1.341 x 10710
Two-loop QED, (Za)° 0.000 001 18(6) [47]
Total theory 0.663 648 2(5)
0.663 648 08(58)*
Theory g-factor 0.663 648 12(58) [27]
0.663 648 8(12) [38]
0.6636477(7) [36]
0.663899(2) [48]
0.663 728 [49]

2.4 Measurement principle

In order to test the validity of the theory the same quantity is experimentally
determined. To this end, a single HCI of interest is exposed to a strong magnetic
field By where the Zeeman splitting of the ground-state energy level is given by

AE = gupBy = h-2 By, (2.8)
4mm

(&)

with

By (2.9)

e
vy, =
g4ﬂ'me

being the spin-precession frequency or else Larmor frequency. The determination

of the g-factor requires measuring the strength of the external magnetic field Bj.

2.4 Measurement principle
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This is achieved by means of the ion’s free-cyclotron frequency in the same magnetic
field:
1
ve=—2p, (2.10)
2T m
where ¢ is the charge state and m is the mass of the ion. Combining equations (2.9)
and (2.10) we obtain the g-factor with respect to the Larmor-to-cyclotron frequency
ratio as follows:
gzgﬁgﬂzgﬁgr’ (2.11)

m el m e

where I' = 7=. Therefore by measuring the frequency ratio I" and obtaining the mass
ratio = from independent dedicated measurements, we experimentally determine
the g-factor.
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Penning trap

For the experimental determination of the g-factor with a fractional uncertainty of
10~? or better, the frequency ratio I' needs to be determined with the same precision.
For this, we need to perform experiments on a single ion of interest when it is
exposed to a very homogeneous magnetic field. Additionally, a very good vacuum
in the order of 1 x 10~'6 mbar or better is necessary that allows for storing a single
ion for long periods of time without any disturbance in the ion’s motion due to
collisions with residual gas particles. For these reasons a Penning trap is the most
appropriate tool and is used in our experimental setup for ion confinement and high-
precision spectroscopy. In this chapter the main principles of an ideal Penning trap
are introduced in section 3.1, followed by the real Penning-trap setup in section 3.2.
Finally, the optimised design of the ALPHATRAP high-precision Penning trap is briefly
introduced in section 3.3.

3.1 ldeal Penning trap

An ideal Penning trap is the superposition of a magnetic and an electrostatic field that
can confine charged particles in all directions. The strong homogeneous magnetic
field, defined as B = B2, confines the charged particle radially. By means of the
Lorentz force

Fi, =qix B (3.1)
the ion with charge ¢ and velocity ¥ is forced to gyrate around the magnetic field
lines with an angular frequency

We = iBOa (32)
m

with v, = w./27 being the so-called free-space cyclotron frequency and ¢/m the
ion’s charge-to-mass ratio. Thus, the particle is confined within the radial plane. The
axial confinement of the particle in the Z-direction is achieved by a weak electric
quadrupole potential (Fig. 3.1(right)):

Co P’

ﬁ(ZQ - 5)7 (3.3)

where V} is the voltage difference between the ring electrode and the endcap

‘/ideal(pa Z) = %

electrodes, d is a characteristic trap length, C5 is a dimensionless field parameter
and p? = 22 + y2.

For the ideal case of a perfectly harmonic quadrupole potential, a Penning trap
with infinitely large electrodes would be necessary. A Penning trap with hyperboli-
cally shaped electrodes as well as the resulting quadrupole potential are shown in
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Endcap electrode

)

Ring electrode

Endcap electrode

Fig. 3.1: (left) Sketch of a Penning trap with hyperbolically shaped electrodes. The
external magnetic field is in the axial direction. In red the ring electrode is
shown where the voltage V is applied with respect to the endcap electrodes.
(right) The resulting potential V;4.q:(p, 2) is plotted.

Fig. 3.1. Creating a trapping potential would require at least three electrodes!: a
ring electrode and a set of endcap electrodes. Typically, the endcap electrodes are
grounded and the voltage difference V} is created by applying the voltage V[, on the
ring electrode.

The resulting motion is the superposition of three harmonic modes of oscillation.
In the non-relativistic classical framework, the equation of motion reads:

AT 7o

.| _4B0 | . 4q Vol2

ijl = - T —I—m WP y |- (3.4)
z —2z

The motion in the axial direction, conventionally defined in the z-direction, is de-
coupled from the other two radial components and describes a harmonic oscillation
in the axial direction, with the axial frequency?

[ 4 VoC
W, = || = (3.5)

In the radial direction, the ion is exposed to both the confining force of the

magnetic field and the de-confining effect of the perpendicular component of the
electric field. Solving the system of differential equations in (3.4) for the radial
modes yields two independent solutions with the radial frequencies being:

w 1
wi:?C:ti\/wg—Qw%, (3.6)

n principle at least two electrodes are required, e.g. a ring electrode enclosed in a spherical endcap
electrode.
2For simplicity, the frequency v and angular frequency w = 27w are used interchangeably.
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where w, and w_ are the modified cyclotron and the magnetron frequency respec-
tively.

The two radial modes are the modified cyclotron mode and the magnetron mode.
The latter is a result of the E x B drift, which forces the ion into a slow oscillation
in the radial plane, with frequency w_. This drift is caused by the E | component
of the electric field, which shifts the centre of the cyclotron mode outwards from
the trapping centre, as shown in Fig. 3.2(left). The modified cyclotron mode is
in the ideal case the free-space cyclotron frequency w. reduced by the magnetron
frequency.

M

)

Fig. 3.2: Motion of a ““Ar'®*" ion in a Penning trap when projected in the xy-plane
(left) and the zz-plane (right). The frequency ratio w; /w_ is here arbitrarily
chosen to be 382 for demonstration purposes.

The superposition of the three modes resulting in the combined orbit of a single
ion in a Penning trap when projected in the zy- and xz-plane is shown in Fig. 3.2.
The stability region of a Penning trap is defined in the limit of real frequencies, and

from equation (3.6) we obtain:
Vo C
By > (|2 h 02 (3.7)
q d?

which is satisfied for a weak electric field and light masses. When this condition is

not satisfied the ion is no longer confined in the radial direction leading to ion loss.
Consequently, for typical trapping parameters, the frequencies are sorted following
the hierarchy

We > Wy > Wy > w_. (3.8)

For an “°Ar'®* ion in a magnetic field By ~ 4.02 T and an electrostatic potential of
Vo ~ —75V, the eigenfrequencies are v, ~ 20 MHz, v, ~ 650kHz and v_ ~ 10 kHz.
In an ideal Penning trap, the following relations between the eigenfrequencies hold:

3.1 Ideal Penning trap
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We = W4 +w_, (3.9)
2

wy = 2wiw_, (3.10)
both of which are a direct outcome of equation (3.6). Within the invariance theo-
rem [50, 51] the free-space cyclotron frequency w. is related with the three eigenfre-
quencies as follows:

w? = wi + w2+ w. (3.11)
The above relation is the one we use to determine the free-space cyclotron frequency
by measuring the three eigenmodes’ frequencies in our Penning trap. That is because
equation (3.11) holds not only in the case of an ideal Penning trap, but also in
the presence of imperfections (see section 3.2) such as misalignment between the
electric and the magnetic field as well as ellipticity of the electrodes. The latter
would force the motion of the ion into an elliptical radial orbit. These unavoidable
imperfections that are met in a real Penning trap are cancelled via the invariance
theorem.
Within the classical interpretation, the energy of the radial modes is given by the
sum of the kinetic energy and the repulsive electrostatic potential energy [50]:

1 1 1

E, = im(wiri - Wi~ imwiri, (3.12)
1 1

E_ = §m(w%r% — fwzrg) ~ —zmwfrg, (3.13)

where 7, and r_ are the radius of the modified cyclotron and magnetron motion,
respectively. From equations (3.13) and (3.8) it should be noted that the magnetron
mode is dominated by the potential energy and therefore exhibits a negative energy.
Consequently, the energy of the mode is decreased by increasing its radius »_ and
vice versa, making this mode metastable.

Due to the frequency hierarchy given in equation (3.8) it becomes immediately
apparent that the largest contribution to the free-space cyclotron frequency determi-
nation comes from measuring the modified cyclotron frequency. Consequently, the
final uncertainty of v, is dominated by the uncertainty of v, .

3.2 The real Penning trap

The ideal Penning trap, that has been discussed in the previous section, assumes
infinitely large electrodes which makes it impossible to be implemented in the
laboratory. Furthermore, even if an infinitely large trap would be possible the motion
of the ion would be disturbed by, e.g., relativistic (see section 3.2.3) and image
charge effects (see section 4.2).
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Nevertheless, the realisation of a Penning trap as close to the ideal case as possible
is a challenging task and it is essential for the remaining imperfections to be well
understood and compensated for as much as possible. Even though a Penning trap
with hyperbolically shaped electrodes seems appropriate because the shape of the
trapping electrodes follow the equipotential field lines, this type of a Penning trap has
disadvantages. These include the manufacturing precision, the additional difficulty
in handling and aligning hyperbolically-shaped electrodes and, most importantly,
the fact that there is no possibility for external ion injection or ion transport without
introducing holes on the electrodes. The latter would modify the electrostatic
quadrupole potential and shift it from the perfectly harmonic field. To overcome
these, G. Gabrielse suggested the use of a cylindrical Penning trap instead [52],
where the simpler geometry makes the machining of the individual electrodes easier,
trap assembly becomes more straight forward and the trapping region is externally
accessible within this open-endcap configuration.

A cylindrical Penning trap consists of at least three stacked electrodes: a ring
electrode and two endcap electrodes. Typically in most experiments that use the
cylindrical configuration, five electrodes which includes another set of correction
electrodes are used. A drawing of such a configuration is shown in Fig. 3.3.

3.2.1 Electric field imperfections

Given the finite size of the electrodes, the electrostatic quadrupole potential will
deviate from the ideal case even with a hyperbolical Penning trap. As mentioned
above, most of the disadvantages of a hyperbolical trap can be avoided with a
cylindrical Penning trap which is also used in ALPHATRAP. Machining imperfections,

B Endcap electrode

z

;

Correction electrode
- Ring electrode

Correction electrode

Endcap electrode

T

Fig. 3.3: Drawing of a cylindrical Penning trap. In this example, the trap consists of a
ring electrode, a set of correction electrodes and two endcap electrodes that
are typically grounded. The external magnetic field is in the axial direction
while the axial particle confinement is achieved by applying a voltage V}, at
the ring electrode.

3.2 The real Penning trap
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the presence of patch potentials on the inner surface of the electrodes as well as
possible electrode misalignment during trap-assembling do contribute to a non-
perfect trapping potential. Even though for a cylindrical configuration these effects
can be reduced leading to a close-to-ideal field, the unavoidable remaining sources
of trapping inhomogeneities need to be entirely understood and controlled.

A cylindrical Penning trap consists of a stack of cylindrical electrodes where the
trapping potential is created by applying a voltage on the central electrode (the ring
electrode), while the endcap electrodes are typically grounded as in the example
case in Fig. 3.3. In order to create a quadrupole electric potential that resembles
the ideal one as much as possible, additional sets of electrodes are placed next to
the ring electrode. The dimensions of these correction electrodes and the voltage
applied to them are chosen such that the axial symmetry is maintained.

It should be noted that the cylindrical symmetry of the trap is broken by existing
slits on the electrodes, that are split in order to allow for ion excitation, manipulation
and detection. Nevertheless, the remaining dominant electric field inhomogeneities
maintain cylindrical symmetry. The trapping potential can be written as a series
expansion:

V(r,6,z) VOZC( ) P, (cosb), (3.19)

where 1} is the voltage difference between the ring electrode and the endcap
electrodes, d is a characteristic length of the trap, C,, are dimensionless expansion
coefficients and P, (cos 6) are the Legendre polynomials. In the axial direction, all
odd coefficients vanish due to the inherent mirror symmetry. For the ideal quadrupole
potential all coefficients would be zero for n > 2, and the Cs-term describes the
harmonic electrostatic potential in the z-direction, and it is given according to
equation (3.5). Energy dependent frequency shifts were rigorously calculated in
Ref. [50], and the dominant contribution, which relates to the Cy coefficient in first
order, can be written in a matrix form:

Avy [vy 6C 1w/v)t —5(/ve)® —(v/vi)?\  [(Es
Av,Ju, | = VC‘{Q —L(w,/vy)? 1 1 | B, | 3.15)
Av_Jv_ o —(vy/vy)? 1 1 E_

The presence of C,,-related contributions of the electrostatic field, would limit
the measurement precision. Therefore, it is of outmost importance to eliminate as
many higher-order contributions as possible. For this purpose, the design of the
ALPHATRAP trap electrodes have been very carefully calculated and optimised. The
remaining inhomogeneities can be experimentally determined and compensated for.

Chapter 3 Penning trap



3.2.2 Magnetic field imperfections

The externally imposed magnetic field will always slightly deviate from the perfectly
homogeneous magnetic field lines even if great care is taken when, e.g., the supercon-
ducting magnet is shimmed. The remaining B-field imperfections are additionally
caused by the residual magnetisation of the different material that compose the
experimental setup, when the latter is exposed to the external magnetic field.

Similarly to the electric field, the magnetic field can be expanded in terms of
Legendre polynomials. The corresponding series expansion can be further simplified
for the case of r = 0 at the center of the magnet:

By(2) =Y _ Bz, (3.16)
=0

where the radial components are insignificant in comparison with the axial ones. The
leading order contribution for the B-field imperfections in the trapping region, the
quadratic residual magnetic bottle ~ B,z? inhomogeneity, induces energy dependent
frequency shifts that have been calculated in Ref. [50]:

Av vy S 12
Av, /v B 1 0o —1| [
z/ Vz 2 -
S B |. 3.17
Av_Jv_ Bom(27v,)? 2 -1 -2 g ( )
Avy /v, —(v /v ) 1 2 B

It should be noted that the energy dependent frequency shifts that are given in
equations (3.15) and (3.17) are according to Ref. [50], where it is assumed that
v+ > v_. This approximation is suitable for small shifts and the typically low
energies, therefore they are suitable for the present work. The same shifts have been
calculated in Ref. [53], where the energy dependent shifts are obtained from first
principles. There, a Taylor expansion is used which assumes small effects which
applies for ALPHATRAP and the present work.

3.2.3 Relativistic corrections

So far, the ion motion and the corresponding shifts are considered non-relativistically.
The high precision of our measurements, however, requires to account for the
relativistic mass increase. A simple model is commonly used to describe frequency
shifts due to the relativistic mass increase of the ion in the reference frame of the
lab. Even though in reality the relativistic corrections are more complex, it has
been shown in Ref. [54] that this approximation is in very good agreement with the
complex relativistic corrections to the equation of motion, and is more than sufficient
to describe the relative shift of the free-space cyclotron frequency.

According to Ref. [54], and since typically the ion’s velocity and amplitudes are
small enough to allow approximating the mass of the particle by

3.2 The real Penning trap
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m (Y

= ~m(l4+ — 3.18
R V1—v?/c? m +202) (3.18)
with the relative mass increase
Am V2
- 3.1
m 2c2 (3.19)

Translating the mass shift into a free-space cyclotron frequency shift by use of
equation (3.2), we obtain the relative shift of v.:
Av, A E
ve _ _Am _(F+) (3.20)

Ve m mc?

It is shown in the same paper that this approximation is in very good agreement
with the precise determination of the relativistic shifts.

The reference frame of the valence electron’s precession is the particle itself,
therefore in order to estimate the size of the effect on the I' ratio we need to
transform back to the reference frame of the laboratory. Taking the latter into
account, the relativistic shift on the electron precession frequency reads [55] :

Av,  Ave ve

~

v, Ve VI,

(3.21)

For the case of the relativistic correction to the Larmor frequency, it is interesting
to note that the shifts in the two frequencies do not cancel out, the shift is different
for both. For typical energies and amplitudes during the g-factor measurement, and
for a single *°Ar'3* in our setup, the maximal relativistic mass increase is in the
order of ~ 10713, and thus negligible for the current level of precision.

3.3 The ALPHATRAP optimised design

The central tool of our experimental setup is the Penning trap, specifically the
precision trap that is used for high-precision spectroscopy. Therefore, it is of outmost
importance to optimise as well as understand and control the characteristics of the
precision trap as much as possible. The advantages that are entailed by the choice of
a cylindrical Penning trap (see also section 3.2), include better machining precision,
external access for ion injection as well as laser and microwave injection without
modifications on the electrodes.

In a real configuration, the potential is deviating from the ideal case. For this
reason, additionally to the ring electrode, correction electrodes are used to minimise
anharmonicities of the quadrupole trapping potential. Most Penning-trap setups
use a 5-electrode configuration. In order to compensate for higher order field
components, in ALPHATRAP we use a 7-electrode configuration. That way, we achieve
higher harmonicity and a larger trapping region, which allows excitations to larger
amplitudes without energy dependent frequency shifts.
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Endcap electrode

Endcap electrode

Fig. 3.4: Drawing of the seven-electrode configuration. The length definition variables
for all electrodes are indicated in the figure.

The ALPHATRAP precision trap consists of a ring electrode two upper correction
electrodes, two lower correction electrodes and upper and lower endcap electrodes
as shown in Fig. 3.4. In order to minimise the deviation of the real trapping poten-
tial from the ideal electrostatic quadrupole potential, the dimensions of the trap
electrodes where optimised prior to manufacturing. The design of the precision-trap
electrodes are similar to the LIONTRAP electrodes [56, 57] but with a larger radius
of r = 9mm, which allows for high-precision measurements up to hydrogenlike
208phS1+ . Both the ALPHATRAP and LIONTRAP electrode dimensions where opti-
mised analytically by Florian Kohler [44]. Within this work, the dimensions of the
ALPHATRAP precision trap were independently analytically verified to be optimal.
A detailed description of the trap as well as the trapping potential is discussed is
section 5.1.1.

3.3 The ALPHATRAP optimised design
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lon detection and manipulation

In order to perform high-precision measurements of the g-factor with a single ion
in a Penning trap, not only a highly-optimised setup is required as described in the
previous chapter, but also the ability to perform several measurements on the same
ion over a significant course of time. This can be achieved with a non-destructive
ion-detection scheme, where the ion’s eigenfrequencies are detected via the induced
charges on the electrodes surfaces. The very low oscillating current combined with
the cryogenic environment require sophisticated detection electronics, which have
been detailed in Refs. [58, 59].

The g-factor is obtained by the frequency ratio I' = vy, /v, which in extend requires
measuring the three eigenfrequencies of the ion as well as determining the ion’s
Larmor precession frequency. In this chapter, the basic principle of the image current
detection technique will be presented in the first section 4.1, followed by section 4.2
where the interaction between the ion and the detection system is discussed. In
section 4.3 the measurement technique of the axial frequency is presented. The
detection of both radial modes can be achieved by suitable coupling to the axial
mode as explained in section 4.4. The Larmor frequency is measured by use of
the continuous Stern-Gerlach effect which is introduced in section 4.5. Finally, the
magnetic moment dynamics as well as the Adiabatic Rapid Passage technique, that
was used for the search of the resonance prior to the g-factor measurement, is
presented in section 4.6.

4.1 Image current detection

While the ion oscillates in the trap, it induces charges on the surfaces of the electrodes.

In the axial direction for example, the induced image charges oscillate between the
upper and lower correction electrodes with the ion’s axial frequency. If we consider
the trap as an ideal capacitor with the ion oscillating between the two plates, the
current that it induces is

q .
g = 2, 1
d Deﬂz 4.1)

where z(t) = zp cos(w,t + ¢) and D.g being the effective electrode distance. D
is defined as the distance between the two infinitely-large capacitor plates, where
the induced charge due to the ion is the same field as in the real trap. In the real
case of a cylindrical Penning trap, the effective electrode distance can be numerically
calculated and it depends on the trap geometry and on the particular electrode
chosen to be the signal pick-up electrode.

The induced current on the electrodes’ surfaces is typically a few fA. In order to
measure this tiny oscillating current, we connect a large impedance in parallel to the
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trap. That way, we can probe the oscillation frequency of the ion by measuring the
voltage drop across the impedance. This tank circuit is essentially a superconducting,
high-impedance coil with inductance L and a high impedance Z. Details about the
detection electronics can be found in the ALPHATRAP review publication [58] and in
the PhD thesis of Andreas Weigel [59]. In combination with the parasitic capacitance
C of the trap, the total impedance of the tank circuit is

1 i\
In the case where the ion is absent, the detected spectrum of the resonator (as
shown in figure 4.1) is described by the function [55, 44]:

A-R

— “R))2 (4.3)

Upes(w) = 101ogyg <A(2)ff + > +0-(w—wr),
where A.g is the noise level offset due to the electronic noise of the cryogenic ampli-
fier which is also amplified by the amplification factor Amp, A = Amp\/4kgT v Rp
is the amplitude with v the frequency bandwidth, R is related to the effective
parallel resistance of the resonator, (Q = vg/Av is the quality factor of the resonator,
and 6 is the slope of the transfer function of the amplifier. Here u,¢s(w) is given in
units of dBVrms with 1 dBVrms = 201log;(1 Vrms).
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Fig. 4.1: The thermal noise of the axial resonator connected to the trap. In the figure,
the width Av of the resonance is indicated at —3 dB from the maximum,

which is related to the @ value by Q = vg/Av.
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4.2 lon-resonator interaction

If we now consider an ion present in the trap, it will interact with the resonator as
well as with the induced image charges. These interactions lead to some important
effects: resistive cooling, dip detection, image charge shift and frequency pulling.
Even though resistive cooling and dip detection are essential for ion cooling and
non-destructive detection, the image charge and frequency pulling effects introduce
unwanted shifts. These effects are being discussed in this section.

The detection system is cryogenically cooled to a temperature of 4.2 K. Therefore,
there is no access to the cryogenic detection electronics while the experiment is in
operation. Consequently, it is not trivial to change the parameters of the tank circuit,
such as the resonator’s frequency vr. Conveniently, the axial frequency v, of the
ion depends on the trapping voltage according to equation (3.5). That way, the
quadrupole trapping potential can be adjusted by the voltage on the trap electrodes,
which shifts the axial frequency of the ion accordingly. Like this, the ion is brought
into resonance with the (fixed) resonator frequency vg.

Due to the oscillation of the ion in the axial direction, the induced image current
back-acts on the ion’s motion. This is expressed by an extra damping term in the
equation of motion, leading to

¢*Re(Z(w))

Z4—Ti 4 wfz =0, 4.4
mDeff

with %Ze;“)) being the damping constant.

Resitive cooling

When the ion is in contact with the resonator, and its axial frequency is the same
as the resonator, it would initially appear as a peak on top of the resonator. The
amplitude of the peak depends on the excess of axial energy of the ion, compared to
the thermal noise of the resonator. In resonance, power

P=1I.4 R (4.5)

11

is dissipated on the tank circuit, leading to the ion’s resistive cooling. The axial
energy is reduced exponentially oc e~*/™ with the cooling time constant

2 2
m Deff @Deff

TTPRe(ZW) £ R (4.6)

until thermal equilibrium is reached. The cooling time constant for an *°Ar'3* ion
on the axial detector of our precision trap is about 7 ~ 40 ms.

4.2 |on-resonator interaction
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Dip detection

After a few cooling time constants, thermal equilibrium is reached between the ion
and the electron plasma of the resonator which in turn is in thermal equilibrium
with the bulk of the resonator as well as possible excess noise originating e.g. from
the cryogenic amplifier. The bulk of the resonator is cooled to 4.2 K. At thermal
equilibrium the trapped ion is equivalent to a series LC circuit with parameters:

D2
Lion = %7 (47)
q2
Cion=——5—. (4.8)
mwzzoanff

The spectral noise is calculated using the real part of the total impedance of the
ion and the resonator. The resulting spectrum is the characteristic dip which is
shown in figure 4.2. There, the ion when oscillating at the same frequency as the
resonator, w, = wg it shorts the thermal noise of the resonator and the noise signal
drops to the background noise level. The line shape that describes the ion-resonator
interaction is

AR
Tes =101 A2 ) 0 - - s 4.9
Ures(w) Oglo( OH+1+(Q(£—%{)—§)2 + 6 (w—wnr) (4.9)
where
W =71(Ww? — ). (4.10)

From the above expression it is easy to notice that when w = w, the denominator
goes to infinity and thus the second term in (4.9) is nulled. That forces the noise
spectrum to sharply drop to the background noise level, creating a dip. It is also
interesting to note, that if there were no background noise and if the ion would be
infinitely stable, the spectrum noise would go to —oc in logarithmic units.

Image charge shift

?

The presence of an ion inside the trap induces image charges on the electrodes
surfaces. Those image charges create an electrostatic field E;- which creates a force
F = qE;¢ and adds an extra term in the equation of motion. That effect leads
to a systematic shift of the eigenfrequencies. The shift affects mostly the radial
modes while due to the axial symmetry the axial mode is shifted by a much smaller
amount. In fact, in a perfect cylinder there would be no shift of the axial frequency
while in a real cylindrical trap there exists a small shift of v, due to, e.g., the slits
that break the axial symmetry. The image charge shift has been approximated
analytically [60] and semi-analytically [55] for the cylindrical Penning trap of the
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Fig. 4.2: Simulation of the characteristic dip signal of a single “°Ar'3* ion on the axial
detector of the precision trap.

Mainz g-factor experiment on highly charged ions. Furthermore, this effect has been
experimentally determined and calculated numerically [61], among others, for the
LIONTRAP experiment. The frequencies shifts according to [61]:

&
Avy = :Fn27rB0 4.11)
q &
Av, = —n— 12
v m 82y, (4.12)

where n is the charge state of the ion, ¢/m is the ion’s charge-to-mass ratio, and
&- and &, are the linear field gradients of the radial and the axial component of
the electric field EIC, respectively. The numerical factor & o e/4meqr®, where ¢
is the vacuum permittivity and r is the trap radius, is given in units of V/m? and
is numerically calculated using COMSOL for the specific geometry of the trap in
consideration, in the case of ALPHATRAP including the vertical slits of the half-split
electrodes. The corresponding shift of the free-space cyclotron frequency is given by

26, + €&, &
~ 1
47TBO " 27TBO ’ (4 3)

Av, ~n

which leads to the relative shift of the free-space cyclotron frequency

Av. mé&;
Ve eB?’

4.14)

4.2 |on-resonator interaction

29



30

This systematic effect has been the limiting factor for previous high-precision
measurements, since it contributed the largest systematic uncertainty. It becomes
obvious from equation (4.14) that the shift is increased for heavier ion masses. The
image charge shift can only be reduced by increasing the trap radius, which is the
case for the ALPHATRAP precision trap where, for the current precision level, the shift
of an “°Ar'3* jon is negligible.

Frequency pulling

The interaction of the ion with the tank circuit leads to the formation of a dip
signal on the thermal noise spectrum of the resonator which enables detecting the
ion’s frequency by considering the circuit’s total impedance. The real part of the
impedance has an insignificant effect on the frequency of the ion. However, the
imaginary part of the impedance can create and effective potential as described in
Refs. [62, 55], which leads to a frequency shift. This shift can be minimised for
when the ion is exactly at resonance with the tank circuit or when the resonator’s
frequency is sufficiently far from the ion’s frequency.

The frequency pulling due to the axial tank circuit which is on resonance with
v, is corrected for by the dip line shape described in equation (4.9). The cyclotron
resonator however, is detuned from the ions modified cyclotron frequency and it
gives rise to a relative shift of the modified cyclotron frequency according to [62,
55]:

Avy Q@ WR — Wy

~_ < , 4.15
vy T4 w? + 4Q?(wr — wy)? (4.15)

where 7, is the cooling time constant of the modified cyclotron mode in resonance.
This effect of the frequency being shifted by the resonator is commonly referred to
as frequency pulling or as the image current effect.

4.3 Axial frequency detection

The axial frequency can be obtained when fitting the noise spectrum of the ion in
resonance with the tank circuit, using equation (4.9) with v, as a free parameter.
The dip signal (shown in Fig. 4.2) is characterised by its width at the —3 dB level,
the so-called dip width:

_Nl
T

Av,(N) (4.16)

with N being the number of ions of the same species and 7 is given in equation (4.6).
For a single “°Ar'3* the dip width is about 4.2 Hz.

The dip detection technique, as described in section 4.2, is used for detecting
the ion’s frequency in thermal equilibrium with the resonator. The typically low
temperatures of about 4.2 K correspond to small thermal amplitudes of the modes
(about 10 um for the axial motion). Therefore, the effect of systematic shifts due to

Chapter 4 lon detection and manipulation



imperfections of the trapping fields, to the image charge shift and to shifts due to
patch potentials are highly suppressed during the dip detection. However, the long
measurement time (~ 85s) that is required for resolving the dip signal during FFT
analysis makes the measurement of the axial frequency prone to fluctuations of the
trapping potentials.

4.4 Radial frequency detection - Double dip

In principle the modified cyclotron mode can be measured by using the induced
image charges as described in section 4.1. By use of the half-split ring and correc-
tion electrodes, the induced charges can be detected with a dedicated cyclotron
resonator connected to those half-electrodes. That way v, can be measured as well
as resistively cooled.

Even though such a cyclotron detector is attached to the ALPHATRAP precision
trap, it was not used until now. By means of a cyclotron resonator the temperature
of the modified cyclotron mode can be cooled down to 4.2 K. Due to the fact that
v, cannot be shifted by changing the trapping voltage the resonance frequency of
the tank circuit has to be adjusted to match the modified cyclotron frequency. Even
though the target frequency is planned carefully for the specific charge-to-mass ratio
before the experiment is cooled down, there will always be a shift of the resonator’s
frequency at cryogenic temperatures. For that reason, the cyclotron resonator is
equipped with a varactor diode which allows for tuning the resonator’s frequency
within a range of about 500 kHz. During the course of the measurement campaign
presented in this thesis, the cyclotron resonator’s frequency range did not overlap
with the modified cyclotron frequency of boronlike argon.

Instead, the axial detector is used also for measuring the radial eigenfrequencies of
the ion by use of the double-dip technique. For the determination of v, a quadrupole
excitation Qy, is applied on the red sideband with frequency v,y = vy — v,. This
excitation field has the form:

VQXZ
D2

eff ,xz

, 4.17)

Eax, = (cos wret + Pr)

8 O

where Vi, is the applied voltage and D.g , is the effective electrode distance of
the first upper correction electrode, which is a half-split electrode. By coupling this
radiofrequency field to the ion’s motion the modified cyclotron mode is coupled to
the axial mode. Equivalently to a two-level system interacting with a classical field,
the two modes are forced into a Rabi oscillation while the quadrupole excitation is
applied. At resonant coupling the axial mode is amplitude modulated according to

4.4 Radial frequency detection - Double dip
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2(t) = zp sin(w,t + ¢,) sin ((2275 + gZ)Q)

- ;{cos <27r<1/z - VQQ)t + qb’) — cos (27r<1/z + V;)t + qbllﬂ, (4.18)

where at ¢ = 0 the axial amplitude z = 2o = 0, vg = Q/27, ¢’ = ¢,—dq, ¢ = P, +da
and ¢,, ¢q are arbitrary initial phases. When the modes are coupled, energy is
transferred between the two modes with the Rabi frequency (2, which depends
on the coupling strength of the field. When the two modes are coupled, the axial
state is dressed with the modified cyclotron state and the two dressed states are
coupled to the axial tank circuit and thus resistively cooled. Therefore, while the
modified cyclotron mode is coupled to the axial mode excessive energy of v, is
dissipated on the axial resonator. After a few cooling time constants, both modes
are resistively cooled and are in thermal equilibrium with the detector. Thus their
quantum numbers (n,) and (n,) are equal, leading to the energy relation [50]:

_ Ly _ v 1 e
() = hy+<<n+> + 2) -4 zwz(<nz> + 2) -2 (B). 4.19)
Similarly, the magnetron mode can be cooled at the upper sideband, when a
quadrupole excitation is applied with frequency v,s = v, + v_. At thermal equilib-

rium, the expectation value of the energy of magnetron mode reads:

(E-) = —— (Ey) . (4.20)

Due to the fact that the magnetron mode is metastable and exhibits negative energy
(equation (3.13)), cooling this mode is only possible with sideband coupling at the
upper sideband. Decreasing the mode’s energy via direct resistive or laser cooling
would increase the magnetron radius and lead to ion loss. With the appropriate
coupling frequency, both radial modes can be resistively cooled via the axial resonator
and thus also become thermally distributed. Consequently, the temperatures of the
radial modes can be written as

T, =" 7, and 7_ = -1, (4.21)
Uy Vg
Sideband coupling is therefore used for temperature measurements, as will be
discussed in section 6.7.

After the modes are cold they can be detected via the characteristic double-dip
signal. During continuous irradiation of a )., wave with v, = v, — v, the modified
cyclotron frequency can be determined. According to equation (4.18) the initial
axial dip is split into two dips as shown in Fig. 4.3.
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Fig. 4.3: Sideband coupling at v, = v — v,. In red, the typical axial dip with v, of the
ion when no coupling is applied is shown. In blue the double dip is plotted,
with the frequencies of the left (1) and right (1) dips indicated in the figure.
The width of each dip of the double dip is half the width of the single axial
dip, when the coupling is exactly resonant.

The frequencies of the left and right dips are given by

V= U, — V?Q, (4.22)
Ve = vy + %Q (4.23)

where 11 and v; are the frequencies of the left and right dip, respectively. Assuming
a non-perfectly resonant coupling rf drive, the double-dip splitting is no longer
symmetric around the axial single dip. Rather, the two dips show an avoided
crossing behavior, which can be seen in figure 4.4. There, the left, right and non-
coupled axial dip are shown. The frequency of each dip is recorded for different
coupling frequencies v+ within a frequency range of +20 Hz.

For a small detuning § around the coupling frequency such that v, = vy — v, + 9,
the Rabi frequency becomes [63]

vao = /18 + 02 (4.24)

and the ion oscillates at the axial mode with frequency components

j 1
U:VZ—§:|:§\/(52+VQ%. (4.25)

4.4 Radial frequency detection - Double dip

33



34

20 T T T T T T

v left dip ¢y

o right dip v
10

v- 651400 Hz
o
T

1

—_

o
T

-20

51/1{ (HZ)

Fig. 4.4: Avoided crossing of the left and right dip (see Fig. 4.3) due to coupling of
the axial and modified cyclotron modes using the the sideband v, — v,. The
axial frequency v, is independently measured after each sideband coupling
measurement. The fit (red line) is according to equation (4.25) in [63].

The modified cyclotron frequency can thus be obtained by use of
vy = v+ 1Y — v, + Uy, (4.26)

which is exact within the rotating wave approximation. Here, the axial frequency v,
is measured independently when the rf drive is off. During the g-factor measurement
and in order to account for drifts of the axial frequency during the double-dip
measurement due to the trapping potential, v, is measured before and after the
sideband coupling of the reduced cyclotron mode to the axial mode (see sections 7.1
and 7.3.1).

In the same way, the magnetron frequency is determined using the double-dip
technique, when the magnetron frequency is coupled to the axial one via the sideband
frequency v+ = v, + v— which leads to the following relation:

vV_ = Vrf + Vy — Vr — 7/1. (427)

The line shape of the double-dip is described by

AR
HQE -2 -2 -2

wWR w

Ures(w) = 101ogyg (Agﬁf + )2> +60-(w—wr) (4.28)

where w; = n(w? — w?) and wy = 7 (wW? — W?),
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with w; and w, being the frequencies of the left and the right dip, respectively. Fitting
the data with the frequencies of the left and right dip as free parameters, allows for
determining the radial modes’ frequencies. In that way, all three eigenfrequencies
are measured. The axial frequency v, is measured directly with the dip technique
and the two radial modes are measured via the double-dip technique. Therefore, the
free-space cyclotron frequency v. can be obtained by use of the invariance theorem
given in equation (3.11).

Instead of using the double-dip technique to measure the modified cyclotron
frequency a phase sensitive detection scheme can be used alternatively, the so called
Pulse and Amplify (PnA). This technique has been developed by Sven Sturm and is
detailed in Refs. [64, 55]. When coupling v and v, on the upper sideband with a
coupling frequency v,y = v; + v, the modes’ amplitudes increase exponentially. At
the same time the motional phase can be transferred from one mode to the other.
The PnA detection scheme provides with a higher precision than the double-dip
and is planned to be implemented at ALPHATRAP for the upcoming measurement
campaigns. During the course of this thesis the PnA detection was not necessary, the
double-dip technique was sufficient for the current level of precision.

4.5 Larmor frequency detection

The experimental determination of the g-factor as explained in section 2.4, requires
measuring the frequency ratio I' = JL. So far, the measurement principle of v, has
been introduced. Those techniques cannot be applied in determining the spin
precession frequency v, since it does not induce image charges on the electrodes.
Instead, the Larmor frequency is deduced by probing the Zeeman transition between
two states. For this, the Continuous Stern-Gerlach effect [65] is employed, which
was first introduced by Hans Dehmelt [66] and allows for spin-state determination.
By introducing a strong magnetic field inhomogeneity which modifies the magnetic
field By as follows:

2
By(2,7) = By + Ba(2% — %), (4.29)

the axial frequency couples to the magnetic moment

ty = —guBSy/h, (4.30)

where up = eh/(2m,) is the Bohr magneton, S, = i%h the magnetic quantum num-
ber and h = h/2r is the reduced Planck constant. This magnetic field configuration
is often referred to as magnetic bottle. That way, an additional force is introduced in
the z-direction

F,= _vz(,usz) = FgupbBaz, (4.31)

which leads to the following equation of motion:
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B
i+ <w§0 + g‘“fn?)z =0 (4.32)

and couples the axial frequency of the ion with the spin direction of the valence
electron. The axial frequency thus becomes

guBBa
Wy, & Wy H . (4.33)
2mwyo
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Fig. 4.5: (left) Axial frequency shift in the analysis trap due to a spin flip. After the
injection of mm-waves, the dip signal shifts by about 300 mHz. (right) Several
consecutive axial dip measurements where the spin orientation has been
changed from spin-down to spin-up and vice versa a few times. The stability
of the axial frequency allows for unambiguous spin-state determination.

Therefore, when introducing mm-waves with frequency close to the Larmor
frequency v, the spin state can be changed. Within a magnetic bottle configuration
this quantum jump between the two spin states, the so-called spin flip, is translated
into a small shift of the ion’s axial frequency as

B
Ay, = +IHBZ2 (4.34)

mdr3v,’
which can be measured. The magnetic field inhomogeneity is characterised by the
Bs coefficient and is created by a dedicated ring electrode of our analysis trap, and it
has been measured to be By = 44.35(84) kT /m?, as discussed in section 6.5. A spin
flip of a “°Ar!3* in our setup corresponds to a shift of about 300 mHz out of 335 kHz,
and is shown in Fig. 4.5.

The detection of such a shift requires a stable enough trapping voltage as discussed
in section 5.1.2 and at the same time minimising the effect of possible external
heating sources of the modified cyclotron mode. A change in £, due to noise or
insufficient cooling of the mode would lead to unwanted v, shifts in the analysis trap
due to the strong magnetic bottle configuration. Explicit spin-state determination
becomes increasingly challenging with the mass of the ion. Even more so for the
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case of heavy boronlike ions such as , with an expected axial frequency shift

due to a spin flip in the order of only 54 mHz.

4.6 Magnetic moment dynamics

With the continuous Stern-Gerlach effect the spin state of the particle can be probed
and thus the Larmor frequency can be determined. The latter is obtained after
several attempts to induce a spin flip in the precision trap with mm-waves with
different frequencies vy within a range of frequencies that includes vy,. In the case
of boronlike argon, the relative precision of the theoretical g-factor is in the order
of 1076, which would make it tedious to find a 10~® resonance within reasonable
measurement time scales. For this reason the appropriate range for vy, has been
defined by means of the adiabatic rapid passage (ARP) method, a technique novelly
implemented in a high-precision Penning-trap experiment.

In this section the dynamics of the system are described starting from the simple
precession of the magnetic moment in a static field in the laboratory frame (LF),
when a transformation to the rotating frame (RotF) is applied and with the injection
of mm-waves. Finally the principle of rapid adiabatic passage and how this has been
implemented, for the first time, in a Penning-trap setup is discussed at the end of the
section.

The classical dynamics of i is being discussed. For the case of a two-level spin
system the classical solution is exactly identical to the quantum mechanical treatment.
In the following discussion the classical results are used to derive some quantum-
mechanical quantities, such as the Rabi frequency (2g and the spin-flip probability
Psr.

4.6.1 Magnetic moment in the laboratory frame (LF)

A magnetic moment /i that precesses around a static homogeneous magnetic field is
described by the interaction energy V = —jiBy, the force F = —V - V which is zero
in a homogeneous field, and the torque 7' = i x By. This results in a change of the
angular momentum L which we define as L = % ii. This change is described by

d - - o -
() L=vyLxBy=T, (4.35)
dt) g

where ~ is the gyromagnetic ratio and it is v = 29750 for our system. Equation (4.35)
describes a pure precession of the angular momentum (or ) around By, as shown
in Fig. 4.6(left). That means that |/ is constant and is rotating around EO with a

constant angular velocity, which is called the Larmor frequency:

O = —Bo. (4.36)

4.6 Magnetic moment dynamics
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4.6.2 Magnetic moment in the rotating frame (RotF)

Here we consider the same system in the rotating frame. For a vector A any change
in the LF can be expressed by a change in the RotF as

1) () 44
— ] A={(-— A+ Qx A, (4.37)
(dt LF dt) Rotr
with  being the rotational frequency of RotF. Applying this to the angular momen-
tum we get:
d - d S 2o
() - () L-GxL (4.38)
dt RotF dt LF

From equations (4.35) and (4.38) we obtain:

d " o o 4
() L=~LxBy—Qx1L
dt RotF

= ~L x (By + /). (4.39)

Comparing equation (4.39) to the dynamics of L in the lab frame given in equa-
tion (4.36), it is shown that in the rotating frame the magnetic field By is replaced by
an effective magnetic field B.g and thus in the rotating frame the magnetic moment
precesses around the effective magnetic field

—

. s T
Beg = By + 5 = By + BRotF, (4.40)

as illustrated in Fig. 4.6(right). The additional field BRrotr is a pseudo magnetic field
that arises from the frame transformation.

Fig. 4.6: (left) Illustration of the magnetic moment precession with frequency Or,
around a static magnetic field By, in the frame of the laboratory. (right) The
same precession depicted in the rotating frame where the magnetic moment
precesses around the effective magnetic field B

The interesting case is when the RotF rotates with the Larmor frequency § = ;..
In this case:
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Brotr = — = — By, (4.41)

which means that ERotF =0, L does not change in the rotating frame.

4.6.3 mm-wave injection

So far only the interaction of /i with a stationary magnetic field has been considered.
We now investigate how the magnetic moment behaves when an additional rotating
magnetic field is introduced.

When mm-waves are injected a rotating magnetic field Bomw = Bimw (2 sin(wt) +
g cos(wt)) is introduced to the system!. This field rotates with a frequency w in
the frame of the laboratory. As already mentioned, in resonance w = p, and
ERotF = —B,. That leads to

geﬂ” = EO + éRotF + gmmW = émmW> (442)

and is demonstrated in Fig. 4.7(left). This means that in the RotF and in resonance
the field in the z-direction is cancelled out and the only remaining field is the field of
the mm-waves Bpmw. Consequently 77 is precessing around By,mw with a frequency

Qsp = YBumw = WR, (4.43)

which is the Rabi frequency on resonance or the spin-flip frequency.
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Fig. 4.7: (left) The effective magnetic field in the RotF during mm-wave irradiation
with frequency w. (right) The magnetic moment precesses around the effective
magnetic field Beg. On resonance the angle 6 is 90°.

In the off-resonant case the RotF and émmw are not rotating with the Larmor
frequency. They rotate with a frequency w # )y, and the effective magnetic field is

—

_ _ w o
Beff = BO - ; + BmmW7 (44‘4)

n our case the field is linearly polarised since it is transmitted via a rectangular waveguide as will
be discussed in section 4.6.5.

4.6 Magnetic moment dynamics
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which leads to

| Bogt| = \/Bfnmw 4 (Bo _ ‘;) (4.45)

where we assume that By,w L Bo, as shown in Fig. 4.7(left). Therefore the
magnetic moment x precesses around the magnetic field B.g with the generalised
Rabi frequency

Qr = yBest = \/’YQBIQan + (vBo —w)? = \/%2% + (L —w)?, (4.46)

where (wy, — w) is the frequency detuning. In order to study the spin-flip dynamics
we are interested in the dynamics of the magnetic moment fi(¢), specifically the
z-component of the magnetic moment y,(t). From Fig. 4.7(right) the following
relations are obtained:

r=psing = u%, (4.47)
o (t) = peos a, (4.48)

22 = 2p%(1 — cosa), (4.49)

2% = 2r%(1 — cos ). (4.50)

From equations (4.49) and (4.50) we obtain:

2
[t = u(l - 2<;"21;> sin2 <92Rt>> (4.51)

The spin-flip probability is given by

(4.52)

_ (;”;;):w <Q2Rt> (4.53)

This means that turning off the drive field émmW after t = n/Qg will lead to an
inversion of the direction of ji. This is known as “w-pulse”. In our experiment
however, the fluctuations of the magnetic field for low wg do not allow for a 7-pulse
therefore we estimate the average of the probability over one period:

(Pse) = % /0 T (?ﬁ)QsinQ(ﬂ)dﬁ 4.54)
_ ;(;11:)2 (4.55)
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From equations (4.55) and (4.46) we obtain the spin-flip probability as a function
of the mm-wave frequency:

2
wWRr

W= S o)

(4.56)

which is a Lorentzian distribution and exhibits a maximum of 0.5.

4.6.4 Adiabatic rapid passage (ARP)

Until now the injected field By,,,w was assumed to be rotating at a constant frequency;
where the maximum spin-flip probability is 0.5 even if we perfectly guess Qr, in
the case that coherency is removed by the magnetic field fluctuations. Now we
introduce the adiabatic rapid passage method, a technique with which Psp = 1 can
be realised. Once again the dynamics is discussed in the classical framework. The
quantum mechanical equivalent of ARP is a Landau-Zener transition [67, 68].

Considering now a change in the frequency of the injected field, we introduce
the ARP technique. This technique is used to invert the direction of the magnetic
moment (spin flip) by means of a frequency sweep of the drive field across the
resonance frequency, with the sweep starting from a value far off-resonance. For a
successful ARP the frequency sweep, or the rotation of the effective field, needs to
be slower than the Larmor frequency:

Or = 7B < 0, (4.57)

where 6 is the angle between B.g and By, as shown in Fig. 4.7. For a magnetic
moment that precesses around a static field B, we assumed that the drive field
Bmw is much smaller than the static field. For the case where w < ~ By, the angle ¢
and the field épwtp are so small that the drive field is considered as perturbative and
the effective magnetic field is (almost) aligned with the z-direction. The magnetic
moment is assumed to be aligned with Beg and thus for a small angle # the magnetic
moment is tightly coupled to the effective field. Therefore, the fast-precessing ;i will
follow B.g with a constant angle 6 as long as the rotation of the effective field is
slow enough.

Once the sweep has reached 2, the magnetic moment /i is tilted by 7/2 and
Eeﬁ = émmW and is pointing towards the z-direction. At this point B.g has its
smallest and 6 its largest value during the sweep. By continuing the drive frequency
sweep through the resonance to frequencies larger than the Larmor frequency
w > vBy, then Brir > 7By which leads to the effective field pointing to the —z-
direction. In that way the direction of /i is changed by 7 and a spin flip is achieved
by means of ARP. Close to resonance the rotation angle of the effective magnetic
field is
By et

- = (4.58)

T
0=—
2 BmmW’
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and the effective field is

Bz7eff = By — wfyt) (4.59)

Combining equations (4.57), (4.58) and (4.59) we obtain the condition for adia-
baticity:

Y Y <un, (4.60)

§ = =
"YBmmVV WR

which finally leads to

|| < wi. (4.61)

When this condition is satisfied, and the frequency of the drive field is swept so
that from the z-direction it ends up pointing to the opposite direction, a spin flip
is performed with a 100% probability. Otherwise, if the direction of B.g changes
non-adiabatically the magnetic moment will not remain tightly bound and will start
precessing around the field with the new angle 6.

The magnetic field By is sufficiently stable so that magnetic field fluctuations can
be ignored. Including the B-field stability in the adiabaticity condition yields

By w

0=— + :
BmmW ’YBmmW

(4.62)

which leads to the condition for the fluctuations of the static magnetic field By <
vB2 w ~ 7 x 1074 T/s. The stability of our magnetic field is shown in Fig. 5.5.

4.6.5 Adiabatic rapid passage at ALPHATRAP

So far the dynamics of the magnetic moment that precesses around a magnetic field
as well as the principle of ARP have been introduced. Some remarks concerning
ALPHATRAP and how the ARP has been implemented are discussed here.

* Because the mm-wave generator was not equipped with an appropriate computer-
controlled sweeping module, instead in this work a sweep of the static magnetic
field By has been performed. In that configuration the drive field Bryr is
kept constant while the B is reduced thus the effective field B.g is scanned
through resonance, in the same way as discussed previously in section 4.6.4. In
other words, instead of changing the frequency of the drive field, we actually
change the Larmor frequency.

In practice this has been achieved by using a set of Helmholtz coils that
are placed outside the superconducting magnet. The sweep is performed by
modifying the additional field generated by the Helmholtz coils at the position
of the ion.
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* The transfer efficiency of the injected power has been measured in an offline
setup to be about 1 ~ 8% from the output of the mm-wave generator to the
end of the mm-wave guide. Assuming that the transfer efficiency is the same
after the mm-wave setup has been installed at the ALPHATRAP setup, the power
that is injected on the particle in the center of the precision trap is

Pomw = 0P, s (4.63)

where P! . is the power set on the mm-wave generator. Assuming a plane
wave for the injected mm-waves and that there are no intensity losses from
the principal mode to other modes, the power of the drive field is given by

1 B?
Pomw = §ACM, (4.64)

2410

where A = 72 with r = 9mm being the trap’s radius, c the speed of light,
Bnmw the magnetic field component of the mm-waves, po the magnetic per-
meability of vacuum and the additional 0.5 factor originates from the RWA
discussed below. Here it is assumed that the propagation velocity through the
cylinder is the speed of light. Furthermore, it is assumed that there are no
reflections and therefore that the absorption cone at the end of the cylinder is
perfectly absorbing.

During the ARP measurement, a power of 10dB was set on the mm-wave
generator. Note that during the g-factor measurement the power was lower.
According to equation (4.64) the field strength is in the order of By,w ~
1.1 x 10~7 T which leads to

wR = YBmmw = 27 - 1kHz. (4.65)

Concerning the interaction of the ion, a plane wave is a good approximation
of the flat Gaussian profile which is adiabatically enlarged when travelling
from the AT through the much larger PT, especially when considering the small
motional amplitudes of the ion. However, for an accurate estimation of the
field strength one would need to integrate the Poynting vector over the area.
Alternatively, the power can be calibrated by the measured resonance width of
the g-factor resonance.

The Lorentzian distribution that describes the spin-flip probability distribution
with respect to the mm-wave frequency in equation (4.56) has a FWHM of
2wg. Therefore the width of the resonance is expected to be in the order of

2WR - ’YBmmW

~ 1078, (4.66)
27TI/L0 T™UVL0
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* The ARP technique reduced significantly the measurement time that would be

required to find the resonance prior to the g-factor measurement campaign.
The relative precision of the theoretical g-factor in the order of 10~% and the
Larmor frequency of “°Ar'3" in our ~ 4.023 T being about 37 GHz leads to
a scanning frequency range of about 100kHz. To “hit” the 10~® resonance
would require scanning the range with steps of about 150 Hz. Using the
typical g-factor measurement cycle to find the resonance would translate into
about 670 measurement cycles with each cycle lasting about 15 min. With
this technique the spin-flip probability is maximally 50% therefore each step
should be repeated at least twice. Thus the total measurement time would be
in the order of 335h.

With this particular set of Helmholtz coils that has been installed outside the
ALPHATRAP superconducting magnet, the magnetic field at the center of the trap
is modified by 0.588 86 uT/mA. The sweep during the ARP is in fact performed
my increasing the current in the Helmholtz coils to a value of 350 mA in 30
steps, in a timescale of 40 ms/step. Therefore, the magnetic field is changed
by 6.867 uT /step which translates into a relative change of 1.7 x 1075, That
means that the Larmor frequency v, is changed by 15.9 kHz/step leading to
a total of 6 measurement cycles (~1.5h) for scanning a frequency range of
100 kHz. That way the range is reduced to 15.9 kHz and with a few additional
sweeps with adequate sweep-range overlapping the range has been finally
reduced to the desired range of 2 kHz.

The adiabaticity condition from equation (4.61) reads as:

2
|T§|| ~ 19 4.67)

Instead of a rotating mm-wave field the injected field is in fact a linearly
polarised field. This can be considered as a superposition of a co-rotating and
a counter-rotating field. Close to resonance and when we apply the trans-
formation to the rotating frame, we “select” the co-rotating field component
according to the rotating wave approximation (RWA). That way the co-rotating
component becomes time independent while the counter-rotating component
rotates with twice the frequency. The amplitude of the co-rotating field is
reduced by a factor of 2.

The presence of a counter-rotating field introduces a shift of the Larmor
frequency, namely the Bloch-Siegert frequency shift [69, 70]. It is given by

AwL le 2
w <2 wL) ’ (4.68)
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which could be non-negligible for small static magnetic fields Bj or strong
drives Bymw. For the g-factor of °Ar'3+ at ALPHATRAP this shift is estimated
to be in the order of 5 x 10712, therefore it is negligible.

4.6 Magnetic moment dynamics
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Experimental setup

Considering the different conditions under which the free-space cyclotron frequency
v. and the Larmor precession frequency vy, are being determined, it become obvious
that the experimental setup is a rather complicated one. An essential part is the
necessity for a double-trap setup in order to account for both a very homogeneous
magnetic field for high-precision frequency measurements and a very strong magnetic
bottle for spin-state spectroscopy. Additionally, the demanding extreme high vacuum
and detection electronics as well as the cryogenic operational temperatures lead to a
challenging experimental setup.

The newly assembled setup of ALPHATRAP, even though it is a predecessor of
the Mainz g-factor experiment on highly charged ions, has some demanding re-
quirements given, for instance, the coupling to an external ion beamline. More
details about the bulk of the experiment, such as the magnet, cryostat and cryo-
genic electronics can be found in the PhD thesis of Andreas Weigel [59] and in the
ALPHATRAP review paper [58].

In this chapter the double-trap setup of ALPHATRAP is presented in section 5.1, with
emphasis on the precision trap and analysis trap. It is followed by a brief description
of the rest of the experimental setup, including the magnet and the cryostat of the
experiment in section 5.2 as well as the room-temperature ion-beamline and the ion
sources which are coupled to the trap tower in section 5.3.

Parts of this chapter have been published in Ref. [58].

5.1 ALPHATRAP trap tower

The ALPHATRAP trap tower shown in Fig. 5.1 consists of a double Penning-trap system
and a set of capture electrodes. The capture trap is used for capturing externally
injected ions by fast switching of the potential of this set of electrodes [59]. The
double Penning-trap system involves the so called “precision trap” and “analysis trap”,
which are the tools necessary for the g-factor determination via the double-trap
method.

The capture trap, the precision trap and the analysis trap are separated by a series
of transport electrodes that allow adiabatic ion transport from one trap to another.
The externally injected ions have to travel through the ion injection diaphragm with
3mm inner diameter that was planned to be used also as a Faraday Cup during the
first attempts of external ion injection. Between the diaphragm and the capture trap
a microwave damping cone made from carbon nanotube filled peek (TECAPEEK ELS
nanoblack [71]) is installed, which has a specific volume resistance within the range
of 102 Q cm to 10° Q2 cm. Every electrode is isolated from its neighbouring electrodes
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Fig. 5.1: The ALPHATRAP trap tower. The precision trap is used for high-precision
spectroscopy and the analysis trap is used for the spin-state determination
via the continuous Stern-Gerlach effect. The ions enter via the ion injec-
tion diaphragm before they are captured within the capture trap. Modified
from [27].

by sapphire or quartz insulators!, whilst the insulator between the bottom plate of
the analysis trap and the mm-wave guide is made out of PEEK material.

To prevent undesired effects due to paramagnetic oxygen contaminations, which
would lead to sizeable fluctuations of the magnetic field at cryogenic temperatures,
all electrodes are made out of Oxygen Free High Conductivity (OFHC) copper and
have been machined with a tolerance of 10 um. After manufacturing, in order to
avoid oxidation, all electrodes were subjected to gold-plating, where a uniform layer
of 10 um of gold was deposited on the electrodes’ surfaces via galvanic deposition. A
2 um silver layer acts as a diffusion barrier between copper and gold.

All the electrodes have been very carefully cleaned before and after the gold-
plating procedure. The assembly of the trap tower as well as the wiring of all
electrodes took place inside a clean-room. The trap assembly was performed under a
microscope after which the dimensions of the trap were verified using high-precision
measurement tools with 1 um measurement precision.

5.1.1 Precision trap

In order to allow for high-precision experiments with both low and highly charged
ions, the precision trap has to meet a number of special requirements. For this reason,
the precision trap is larger than predecessor high-precision Penning traps and fea-
tures an exceptionally harmonic electrostatic potential. In Fig. 5.2 the precision-trap
electrodes are depicted. The trap features some non-standard characteristics:

!Both the sapphire and the quartz-glass insulators were manufactured with tolerances down to 3 um
for the critical surfaces.

Chapter 5 Experimental setup



UC1l RE LC1
UE2 UEL uc2 LC2 LE1L LE2

29
18 mm

/O

Quarter-split electrode  Half-split electrodes

Fig. 5.2: A schematic representation of the precision trap is shown. It consists of a ring
electrode (RE), two sets of correction electrodes - upper correction 1 (UC1),
lower correction 1 (L.C1) and upper correction 2 (UC2), lower correction 2
(LC2) - and four endcap electrodes (UE1, LE1, UE2 and LE2). The sapphire
and glass insulators are shown in grey. The ring electrode as well as the upper
and lower correction electrode 1 are half-split while the upper correction
electrode 2 is quarter split. Two sets of endcap electrodes are used rather
than one set of double-in-length endcap electrodes. Functionally, the endcaps
(together with the rest of the trap tower), act together to define the ground
potential reference [58].

Large radius

All electrodes of the precision trap have a radius of 9 mm predominantly to reduce
systematic uncertainties that are caused by the image charge shift [55, 61] of the
ion’s free cyclotron frequency, which scales with ;15, as has been discussed in
section 4.2. Since the relative image charge shift scales linearly with the ion’s mass,
it would be dominant for heavy ions such as 2°°Pb®'*. With the optimised trap
geometry with » = 9 mm, the image charge shift is reduced by more than an order of
magnitude compared to predecessor experiments using only a radius of » = 3.5 mm.
Additionally, the effect of patch potentials on the electrode surfaces on the ion’s
motion is also reduced with a large trap radius. Such patch potentials can occur due
to variations of the work function of the gold layer or accumulation of charges on
the electrodes during ion loading.

5.1 ALPHATRAP trap tower
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7-Electrode Configuration

Higher electric field harmonicity allows excitation to larger amplitudes without the
effect of systematic shifts that would arise otherwise. Cylindrical traps can be made
harmonic by suitable electrode geometries and by additional proper tuning of the
applied voltages (see section 6.2) in order to correct for the unavoidable deviation
from the ideal trap case. Most cylindrical Penning traps are composed of a stack of 5
electrodes, namely a ring electrode, two correction electrodes positioned bilaterally
symmetric with respect to the ring electrode and a set of endcap electrodes that are
typically grounded. Introducing an extra set of correction electrodes (see Fig. 5.2),
allows for compensating higher order field components via two degrees of freedom,
leading to much better harmonicity. That way excitations of the ion’s motion to larger
radii are enabled, an essential feature for high-precision measurement techniques
like PnA [64, 55].

The ALPHATRAP precision trap consists of a ring electrode, two sets of correction
electrodes and two sets of endcap electrodes (see Fig. 5.2). The ideally very long
endcap electrodes have been split in shorter sections. That way the ion can be
adiabatically transported to and from the precision trap. Ensuring that the transport
between the traps is adiabatic is essential for preventing changes in the spin state or
energy of the ion.

On the inner cylinder surface all electrodes have a distance of I, = 140 um from
their adjacent electrodes, a distance maintained by means of sapphire or quartz-glass
ring insulators. As can be seen in Fig. 5.2, the insulators between the ring and
correction electrodes are T-shaped. They are made out of quartz glass and have
been machined to at least the same precision as the electrodes. Since the shrinking
coefficient of sapphire is significantly smaller than the one of copper, the electrodes
shrink onto the insulators in a controlled fashion. This allows for a well-defined final
position of the electrodes when cooling down from room temperature to 4 K. The
same distance of 140 um separates the segmented electrodes. The ring electrode as
well as the set of first correction electrodes are half split allowing dipole as well as
quadrupole excitation that is used for coupling the radial modes to the axial one via
sideband coupling (see section 4.4). The second upper correction electrode (UC2) is
a quarter-split electrode permitting radial mode coupling. All split electrodes in the
precision trap are insulated via sapphire plates which are unnoticeable in Figs. 5.1
or 5.2.

The dimensions of our precision trap, which is designed similarly to the precision
trap of the Light Ion Trap (LIONTRAP) [56], a high-precision mass spectrometer for
light ions in Mainz, are listed in table 5.3b and have been calculated analytically
during the optimisation process [44] and independently verified numerically as well
as analytically. In this 7-electrode configuration, five parameters can vary towards the
optimum geometry for the highest electric field harmonicity. For a fixed trap radius
and gap between adjacent electrodes, these parameters are the length of the ring,
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(a)
Electrode Abbreviation | Variable | length (mm)
Ring RE Iy 1.997
Correction 1 LC,/UCy la 3.715
Correction 2 | LC9/UC, leo 6.164
Endcap | LE12/UE: lec 9.023
Radius - r 9.002
Gap - lg 0.140
(b)

Fig. 5.3: The length definitions of the precision trap are defined in the largely simplified
sketch show in (a). Note that here only one set of endcap electrodes is shown,
for simplicity. The optimised dimensions of the trap’s electrodes are listed in

b).

5.1 ALPHATRAP trap tower




52

first and second correction electrodes as well as the voltages applied to the correction
electrodes (Iy,l¢1, lc2, Vo1, Vea). The potential in the gap between electrodes has been
modelled either as a linear potential or as a 5th order polynomial [72]. It should be
noted that in our calculations we found good agreement between the calculations
mentioned above.

Assuming an empty trap and cylindrical as well as axial mirror symmetry with
respect to the trap centre, the electrostatic potential inside the trap follows equation
(3.14) where the C,, coefficients are dimensionless expansion parameters, Vj is the
voltage difference between the ring and the endcap electrodes, d = %(z& + %) =
9.156 mm is a characteristic length of the trap and zq is defined as zg = I;/2+1g+ 11+
lg + lec2 + lg, as shown in Fig. 5.3a. The optimisation parameters (I, lc1, lc2, Ve1, Ve2)
have been chosen such that Cy = Cg = Cs = C19 = 0 as well as Dgomb = 0 where

Cypeff = Cp + D™, (5.1)
D™ = D1 . TRy 4 Dpy - TRo, (5.2)
and
Vei,2
TRy 5 = —2=. 5.3
1,2 7 (5.3)

Here, the so-called tuning ratios TRy, and TR, are defined which are the ratios
between the voltage applied to the respective correction electrode and the voltage
applied to the ring electrode. By optimising both tuning ratios in situ, it is possible to
completely null at least Cy and C simultaneously even in the presence of unavoid-
able machining imperfections. In this case the robustness of our trap design typically
causes Cg to remain small as well. The remaining anharmonicities lead to frequency
shifts that are typically negligible even for high-precision measurements.

To be able to practically operate the trap, it is important that the orthogonality
criterion is fulfilled. In an orthogonal trap, the ion’s axial frequency is independent
of the correction voltages. That is, the axial frequency v, « /Cs given in equation
(3.5), remains unaffected while changing the applied tuning ratio. Since double
orthogonality (Dy; = D9y = 0) is not possible in this kind of configuration, the trap
is orthogonalised by imposing the “combined orthogonality” criterion of D$®™ = 0
in equation (5.2). In other words, the trap is not orthogonal with respect to the
individual correction voltages. When adjusting the voltages that are applied to the
first set of correction electrodes also the voltage applied to the second set has to be
changed in order to keep the axial frequency invariant. Specifically, the trap was
designed such that it is orthogonal when changing both tuning ratios TR, » by the
same factor. Measuring this factor and optimising the trapping field will be discussed
is section 6.2.
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Fig. 5.4: Contour plot of the potential lines of the 7-electrode precision trap. The poten-

tial of the ring electrode when 1V is applied to it and all of the other electrodes
are grounded (a), the same configuration for the correction electrodes 1 and
2 ((b) and (c) respectivelly) and the total potential of the trap when the
optimal TR, 5 are applied (d). Lighter colour indicates higher potential. The
dimensions of the electrodes are to scale but the gaps between the electrodes
are considered to be larger than 140 um, for representation purposes.

5.1 ALPHATRAP trap tower
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The total potential is a superposition of the field produced by Vj, V.1 and V.o,

yielding
Vo

Vo ¢co = ¢g + TR1¢c1 + TRopco. (5.4)

cl
B = gp+ Ll g,
oo + V0¢1+

Following Ref. [72] the field produced by the ring electrode and the first and second
correction electrode can be written as

o Jo(itEr) nm
op(r,z) = Z anm cos(fz), (5.5)

n=0

where k& = {0, c1, c2} for the individual electrodes, .Jj is the Bessel function of the
first kind, r( is the trap radius and

2 (L nm
ap = Z/o ok (10, 2) cos(fz)dz, (5.6)

with ¢y (ro, z) being the boundary conditions for the corresponding electrode. The
potential field ¢ (r, z) produced by each electrode when 1V is applied to the corre-
sponding electrode while the rest are grounded is plotted in Fig. 5.4a,5.4b and 5.4c.
The total field ® for the optimum individual tuning ratios is plotted in Fig. 5.4d.

Magnetic Field Homogeneity and stability

The magnetic field in the z-direction is given in equation (3.16) and the shift due
to the leading order correction, the quadratic magnetic bottle ~ Byz?, is given in
equation (3.17).

For high-precision determination of the ion’s free cyclotron frequency, not only
the harmonicity of the electric field is necessary but also the homogeneity of the
magnetic field is essential. Due to the shimming procedure, the magnetic field of
our superconducting magnet is very homogenous without the trap tower setup.
When the double-trap setup is inserted inside the bore of the magnet, the dominant
magnetic field inhomogeneity contribution in the precision-trap region is the residual
B> due to the magnetic bottle configuration. For this reason, a ring that is also
made out of the same ferromagnetic material VACOFLUX50 [73] was designed and
positioned appropriately so that it compensates for magnetic field inhomogeneities
notably, about one order of magnitude. The resulting B; in the precision trap was
measured to be By = 0.0643(32) T/m? and the linear field gradient of our setup is
By =2.638(24) mT/m and will be discussed is sections 6.3 and 6.4, respectively.

The magnetic field not only needs to be homogeneous but also as temporally
stable as possible. Unlike long-term drifts, the medium-term fluctuations (in the
order of ~ 1 min) of the magnetic field can limit the precision of the measurement
when the double-dip technique is employed. Although the frequencies vy,,w and v,
are determined simultaneously, fluctuations during the measurement period increase
the Larmor resonance linewidth as discussed in sections 4.6 and 7.2.
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Fig. 5.5: (left) Axial and free-cyclotron frequency measurements in the precision trap
over the course of several hours. The data was recorded after refilling the
cryogen reservoirs and a thermalisation process is clearly visible over the first
hours. (right) Modified Allan deviation of the time sequence on the left. For
the green and yellow traces only data after the thermalisation (indicated on
the left plot) is used [58].

ALPHATRAP’s superconducting magnet has been shimmed and the resulting mag-
netic field has been measured with an NMR probe prior to full assembly of the
experiment. Afterwards, while measuring the relative stability of v, the observed
frequency drift required the implementation of a self shielding superconducting
coil [58, 74] which is designed to compensate for externally induced magnetic
field gradients by conservation of the flux in the centre of the precision trap. The
resulting field stability after the superconducting self-shielding coil was installed
is demonstrated in Fig. 5.5, where several consecutive measurements of v, were
taken over the course of about 15 hours. During the same time, the behaviour of
the axial frequency is monitored in order to check the stability of the voltage source
simultaneously. The voltage applied on the precision-trap electrodes is supplied by
a custom-made voltage source, the Stable Reference for Penning-trap experiments
(StaRep) [75]. It can supply up to —100 V with each channel having a precision of a
few nV and a voltage stability < 1072 for a time scale of 15 min.

It should be noted that to date, neither the experimental setup nor the voltage
source are temperature or pressure stabilised. This is an ongoing project that is ex-
pected to improve the frequency stability by reducing the influence of environmental
conditions.

5.1.2 Analysis trap

The analysis trap is dedicated to the determination of the ion’s spin state via the
continuous Stern-Gerlach effect [66] (see section 4.5). There, in contrast to the
precision trap, a very strong magnetic inhomogeneity is required in order to allow
for detectable axial frequency jumps caused by spin flips. This trap differs from the
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precision trap in a few important aspects: it has a ferromagnetic ring electrode, it is

smaller in dimensions and it is a 5-electrode trap.

UE2 UE1l UC RE LC LE1 LE2

Split electrode CoFe alloy
(a)
Electrode | Abbreviation | length (mm)
Ring RE 0.823
Correction Lc/uc 2.309
Endcap LELQ/ UELQ 3.004
Radius - 3.002
(b)

Fig. 5.6: Schemtic of the analysis trap (a) [58] as well as its dimensions (b).The
trap consists of a ring electrode (RE), a set of correction electrodes (upper
correction (UC) and lower correction electrodes (L.C)) and two sets of endcap
electrodes (upper endcap 1 and 2 (UE1 and UE2) and lower endcap 1 and
2 (LE1 and LE2)). The ferromagnetic ring electrode (RE), that is depicted
here in black for demonstrative purposes, is also gold-plated in reality. The
half-split electrode (UE2) for @), excitation is shown. The electrodes are
insulated via sapphire rings (grey).

Magnetic Bottle

The ring electrode of this trap is made out of VACOFLUX50 [73], which has a very
high saturation magnetisation corresponding to about 2.35 T and can locally create
the strong magnetic bottle configuration that is necessary for the spin-flip detection
(for details see section 4.5). The strength of the magnetic bottle is experimentally
determined as discussed in section 6.5.
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5-Electrode Configuration

The analysis trap, shown in Fig. 5.6, is much smaller than the precision trap. With a
radius of rar = 3 mm the necessary strong magnetic bottle configuration is enabled.
The lower limit for the radius of the analysis trap was set by the spin transition
frequency of boronlike lead 2°*Pb""* | as a smaller radius would not support trans-
mission of the mm-waves required to induce a spin flip. The dimensions of the
analysis-trap electrodes are given in table 5.6b.

The analysis trap is a five-electrode trap with only a single set of correction
electrodes as shown in Fig. 5.6. Just like in the case of the precision trap, the
analysis trap includes two sets of short endcap electrodes instead of one set of long
endcap electrodes to enable adiabatic ion transport.

Similarly to the precision trap, the electrodes are made out of OFHC copper and
have been gold plated with the same galvanic process that is mentioned in section
5.1.1. Owing to the small radius of this trap, and therefore the larger impact of
the image charge shift and patch potentials on the surface of the electrodes, the
inner surface of the analysis-trap electrodes has been plasma polished to ensure
a smoother surface. Unlike the T-shaped insulators that are used in the precision
trap for controlled positioning of the electrodes at a temperature of 4 K, here the
sapphire insulators have a simpler rectangular shape. They maintain the same
distance between the electrodes, a distance of 140 um, whilst the two halves of the
split electrode of the trap are kept in distance by spherical quartz glass insulators.

Axial Frequency Stability

For unambiguous spin-flip determination in the analysis trap, disturbances of the
modified cyclotron frequency, v, need to be minimised since unwanted noise would
compromise the stability of the axial frequency, v,. Due to the strong magnetic field
inhomogeneity, energy fluctuations of the modified cyclotron mode E, would inhibit
measurable axial frequency fluctuations. Within this configuration, the influence of
the trap voltage is low (due to the low axial frequency) compared to the desirable
large influence of the spin state and the influence of F, on the axial frequency
stability.

In the case of a boronlike argon ion the expected frequency jump due to a spin
flip is 312mHz. To detect a shift of 312mHz out of the 335kHz of the ion’s axial
frequency with high fidelity, we impose the requirement of at least 75 mHz stability.
That means that the applied voltage needs to be stable at a 4.5 x 10~" level. This level
of stability is provided by a UM1-14 voltage source [76] (for details see Ref. [59])
and as can be seen in Fig. 5.7 the axial frequency stability requirement is met
for *0Ar'3* permitting explicit spin-flip detection. Measuring the axial frequency
consecutively over the course of several hours, the obtained jitter was found to be
about 55 mHz. In the same figure, the strong drift that occurred during the first 3h
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Fig. 5.7: (left) Axial frequency stability in the analysis trap over time. Consecutive
axial frequency measurements over the course of 14 h where each data point
is obtained every 80s. The strong drift during the first 3h of the measurement
shown in the left plot is due to thermalisation of the voltage source, and is
plotted for demonstration purposes. (right) The Allan deviation is plotted
with respect to measurement time, excluding the thermalisation data [58].

is due to thermalisation of the voltage source with the environmental conditions of
the lab.

5.1.3 Millimeter-wave setup

The mm-wave injection is essential for spin-flip spectroscopy. For the ground state of
a boronlike ion the Zeeman splitting within our 4.023 T magnet is about 37.3 GHz.
These mm-waves are generated by a synthesizer (Anritsu MG3694C) which can
generate waves with frequencies up to 40 GHz. Those waves are transmitted in the
room-temperature apparatus towards the trap with rectangular waveguides, the
dimensions of which is chosen with respect to the frequency of the wave.

The waves are transmitted from the output of the generator to the bottom of the
magnet and inside the magnet bore. There, the mm-waves propagate from room
temperature to the cryostat’s insulation vacuum and finally to the cryogenic vacuum
of the trap chamber. For this, different horn-to-horn transitions are installed for each
of the different temperature/pressure stages. At the bottom of the trap chamber,
which is at 4 K, a UV fused silica window is installed and allows transmission of both
the mm-waves as well as light over a broad spectral range from visual down to near
ultraviolet. That way simultaneous injection of mm-waves and a laser beam, which
can be used for e.g. Doppler laser cooling as described in Refs. [58, 77, 74] or laser
spectroscopy of HCI [78], is possible.

For hydrogenlike ions however, the spin-flip frequency amounts to 112 GHz, about
a factor of three higher than boronlike ions. To be able to transmit those waves in
the trap for future experiments, not only the the output of the synthesiser needs
to be multiplied by an active multiplier chain (OML S10MS), but also single-mode
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operation needs to be ensured. This is achieved by a mode-cleaner in the cryogenic
setup which would replace the currently attached straight tube. The setup for
112 GHz wave transmission is detailed in Ref. [79].

5.2 Magnet and cryostat

The Penning traps of the ALPHATRAP setup are inserted in the warm bore of a
superconducting magnet which provides the homogeneous and temporally stable
magnetic field. The magnet, a schematic of which is shown in Fig. 5.8, is an
Oxford 200/130 NMR vertical bore magnet, which has previously been used in
the SMILETRAP experiment [80]. It can generate a field of up to 4.7 T, but has
been charged to only 4 T. This choice brings the Larmor and cyclotron frequencies
into a convenient regime. Prior to inserting the setup in the magnet’s bore, the
magnetic field has been shimmed to about 2 - 10~7 based on the line shape of a
1.5 cm? cylindrical NMR probe.

The experiment is cryogenically cooled by an independent liquid helium cryostat
which has been specifically designed for ALPHATRAP. That way the trap chamber is
surrounded by an insulation vacuum, which significantly reduces the challenging
requirements on the leak-tightness of the setup. The liquid nitrogen (LN,) tank is
placed on top of the magnet. It which contains 551 of LNy, sufficient to keep the
experiment cold for about 5 days. A copper shield tube extends into the supercon-
ducting magnet’s bore and provides the thermal shielding of the inner 4 K insert,
which hangs vertically on three Vespel SP1 rods for minimum heat conductance.

While the 4 K part can be easily removed by a crane, the 77K cryostat is per-
manently mounted. To provide optimal radiation shielding, the LN, cryostat is
completed by a piece of copper shield, which is mounted on the 4 K insert. It is
attached by copper braids and copper-beryllium springs to the LN, cryostat just
before the final lowering of the 4 K insert. The complete 77 K stage is insulated by
vacuum and multi-layer insulation (MLI). The 4 K stage, which is mainly subjected to
conductive load via the electric cabling, is radiation-shielded by a high-conductivity,
single layer metal foil, which minimises absorption of heat radiation from the 77 K
stage. The overall load on the 4 K stage, including dissipated power in the cryogenic
amplifiers, is sufficiently low to result in a hold-time of about 5 days with 141 of LHe.

5.3 Beamline and ion sources

The ALPHATRAP trap tower is connected to several ion sources, which can deliver ions

208ph®1+ | via an ion beamline as shown in Fig. 5.8.

of any charge-to-mass ratio up to
Those ion sources are the Heidelberg electron beam ion trap (EBIT) [81], the
Heidelberg compact EBIT (HC-EBIT) [82] and a laser ablation ion source (LIS) [83].
The ion sources as well as the beamline are also discussed in Refs. [58, 59].

The cryogenically operated HD-EBIT is going to deliver the heavy HCI up to

208ph®1+ that will allow ALPHATRAP to preform high-precision tests of QED in strong

5.2 Magnet and cryostat
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Fig. 5.8: Overview of the ALPHATRAP beamline, cryostat and magnet. The ion sources
indicated in the figure. The setup is distributed over two levels, with the
floor separating the two levels indicated here with a dashed grey line. The
main laboratory houses the trap which is placed in the warm bore of the
superconducting magnet and it is located in the basement of the experimental
hall of MPIK. In the ground-floor, the superconducting HD-EBIT is located. A
part of our beamline coupling ALPHATRAP to the HD-EBIT is not shown in the
figure. Externally produced ions are guided towards the vertical beamline by
electrostatic quadrupole benders. Before the ions are injected towards the
trap and captured in the capture-trap, a pulsed drift-tube is used to reduce the
kinetic energy of the ion bunch down to 100V x q. Figure taken from [58].
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fields. HD-EBIT is designed to generate and electron beam with up to 150 keV energy
and a current of 500 mA. The strong magnetic field of up to 9 T is produced by a
superconducting magnet. It can, in principle, produce ions such as 205Pb®'*. At the
moment, the HD-EBIT is being modified in order to reach the design parameters
that would allow heavy HCI production. Before the heaviest HCI can be delivered
however, a wide range of middle-Z HCI are of interest and will be produced by
HD-EBIT and delivered to ALPHATRAP in the near future.

The HC-EBIT is a room-temperature, permanent magnet EBIT. The magnetic field
in the center of the trap is about 0.74 T which compresses the electron beam for
higher ionisation rates. The cathode is typically at potential of —1 kV to —1.5kV with
respect to ground while the inner electrodes, which are used for axial ion trapping,
are at potentials of about +2kV, resulting in electron energies of up to 3.5keV in the
center of the structure. Using this HC-EBIT low- and medium-Z ions up to *°Ar!6+
and '2Xe3™" have been produced in a pulsed ejection mode [82]. The “°Ar'3* used
for the g-factor measurement presented in this thesis has been produced by the
HC-EBIT.

LIS is a laser ablation source where a high-intensity pulsed laser (doubled Nd:YAG
laser system by Litron Nano S) is used to ablate atoms from a solid target. It has
a maximum pulse energy of 35mJ and a pulse length of 6ns to 8ns at 532 nm.
With high power density of > 1 x 10® W /cm? a plasma is created the ions of which
are extracted by applying a constant electric field. So far, LIS has been used for
beryllium-ion production which have been successfully delivered and trapped in
ALPHATRAP.

The externally produced HCI are directed to the trap by means of an ultra-high
vacuum (UHV) beamline. During ion injection there exists a line-of-sight from room
temperature to the 4 K cryogenic environment of the trap. In order to minimise the
particle flux, vertical section of the room-temperature beamline has a pressure of
10~ mbar. Several diagnostic units are installed that consist of a microchannel
plate (MCP), a phosphorous plate and a CCD camera (Allied Vision Prosilica GC655).
Additionally, the beamline is equipped with focus lenses and steerers that allow
successfully guiding the ion beam until the magnetic field gradient which finally
guides the ions towards the capture section of ALPHATRAP.

5.3 Beamline and ion sources
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Towards the first ALPHATRAP g-
factor measurement

In order to preform a g-factor measurement, the trap and thus the behaviour of the
particle inside the trap need to be very well under control and understood. For that
purpose series of measurements have been performed with the goal of optimising
the trapping conditions and probing the residual effects.

The preparation for a g-factor measurement is essential for the final result and
is presented in this chapter. This includes the creation of a single ion of interest
which is presented in section 6.1 as well as the optimisation and characterisation
of the trapping fields of the precision trap which are presented in sections 6.2, 6.3
and 6.4. Furthermore, the characterisation of the magnetic bottle configuration
in the analysis trap which enables spin-state detection is described in section 6.5.
Achieving a sufficiently low temperature of the particle is essential throughout a
g-factor measurement. A source of heating of the modified cyclotron mode is shown
in section 6.6 and finally the determination of the axial temperature of the ion is
discussed in section 6.7.

6.1 Single ion preparation

After an ion bunch has been captured with the capture electrodes and transported to
the precision trap, the very important task of reducing the cloud to a single ion of
interest takes place. Different techniques exist for reducing the ion cloud population
down to a single ion, namely the axial, magnetron and cyclotron cleaning techniques,
which will be discussed in this section. It should be noted that the data presented
in this section has been obtained for carbon ions. Nevertheless, the exact same
techniques are used for preparing a single boronlike argon ion.

Axial cleaning is used to remove all particles with ¢/m different to the one of
interest. It consists of strong rf-excitation sweeps that are applied on all frequencies
except the axial frequency of the ion of interest. That way, unwanted species are
excited to large amplitudes before the applied confining potential is shortly relaxed,
so that the energetic ions are no longer axially confined. In Fig. 6.1 a cloud of
five 12C5* ions is shown in blue, after axial cleaning has been applied. When the
impurities are removed from the trap, a single ion is prepared by lowering the trap
potential until all ions but one are lost due to collisions between the ions.

Another possibility to reduce the ion population down to the one of interest, is
by addressing the magnetron mode. With this magnetron cleaning technique, a
wideband excitation in the form of noise close to the magnetron frequency is applied.
Only the magnetron motion of the ion of interest is simultaneously cooled using the
axial-magnetron sideband, in order to cancel the effect of the applied noise. This
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Fig. 6.1: The axial dip formed by a single '2C5* ion (yellow) and the dip corresponding
to five 12C°* jons (blue). The dip width scales linearly with the number of
ions, see also Fig. 6.2.
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Fig. 6.2: Measured dip width with respect to the number of 12C° ions. The linear fit
to the data is plotted in red.

way all unwanted species are eventually lost radially to the walls of the trap, leaving
the ion(s) of interest confined inside the trap.

When the cloud consists only of ions of the desired charge-to-mass ratio, the
cyclotron cleaning technique can be used to reduce it to a single ion of interest.

Since the width of the noise dip scales linearly with the number of ions resonant
with the detection system, we can extract the number of ions inside the trap from a
fit to the dip. In Fig. 6.2 the number of '?C5* ions with respect to the dip-width is
plotted. By applying a burst excitation on the modified cyclotron frequency of the
ion species, all existing ions are excited to slightly different amplitudes mostly due
to collisions. Consequently, each ion appears as an individual peak on the cyclotron
resonator, assuming that the cyclotron resonator is tuned to the ion’s v, which was
not the case for “°Ar'3*. In this configuration it is possible to address individual ions
by individual chirped cyclotron excitations. Finally, the hot ions can be removed
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from the trap either by exciting the now individually shifted axial frequencies or by
simply lowering the trap potential and waiting for collisions of the hot ions. A good
signature for the success of the cleaning procedure is shown in figure 6.1, where
the dip width of the signal shown in the yellow spectrum corresponds to a single
ion. Especially in the analysis trap, the stability of the axial frequency is a good
indicator for remaining contaminants as any interactions between different ions
would inevitably lead to frequency fluctuations in the strong magnetic bottle.

6.2 Electric Field Optimisation

The goal of creating a quadrupole trapping potential as close to the ideal as possible
is central for preforming high-precision measurements, as discussed in sections 3.2.1
and 5.1.1. Even though the dimensions of the trap have been thoroughly optimised,
the potential will differ slightly from the calculated one due to the finite machining
precision and unavoidable variations of the potential on the electrode surfaces, the
so-called patch potentials.

As mentioned in sections 3.2.1 and 5.1.1 the C), coefficients in equation (3.14)
that characterise the leading order anharmonicities of the electric field (Cy, Cg, Cy
and ) in the case of ALPHATRAP) can be minimised by applying suitable correction
voltages. To do so, the ion’s axial frequency was monitored while the radius of the
ion’s magnetron motion was altered. In the presence of electric field imperfections,
the relative axial-frequency shift by the dominant C contribution is given by [53]

Av,  Cy 3

yz = —@ﬁrf (6.1)

in first order. Because the precision trap is a 7-electrode trap, it needs to be dynami-
cally compensated as discussed in section 5.1.1. Therefore, during the optimisation
measurement for each magnetron radius the correction voltage of both correction
electrodes is multiplied by a factor called here “TR.,”. Note that the optimum
combined tuning ratio is in fact the factor that the calculated tuning ratios TR, and
TRs need to be multiplied by for a highly harmonic electric field in the centre of the
precision trap. Up to second order, therefore considering up to the Cs anharmonicity,
the axial frequency shifts with the magnetron excitation strength as

Cy 3

G 3 Ce 45
Cy2d2 "

Av, ~ K2 (U )? + v, - Kt Uge)?, (6.2)

where _ is the magnetron radius calibration factor. Assuming the ion is originally
cooled to negligible amplitudes, x_ relates the magnetron radius to the excitation
burst as

r—=#kK_-t-Ug,

exc*

(6.3)

With optimal settings, even for large radii up to 0.8 mm (compared to the thermal
radius of about 2um), the axial frequency shifts by significantly less than 1 Hz.

6.2 Electric Field Optimisation
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Fig. 6.3: Axial frequency shifts for different tuning ratios at different excitation pulses
of the magnetron mode. After having extracted the calibration factor x_ (see
text) the excitation pulses are converted into radii of the magnetron mode, r_.
The plotted axial frequency shift is the difference between the axial frequency
when the magnetron mode is pulsed and thermalised (11" — p<°ld),

Z

Therefore, the axial frequency is essentially independent of the oscillation amplitude,
demonstrating excellent harmonicity.

To obtain the optimal settings for the voltages applied to the correction electrodes,
a measurement cycle is as follows: The trap is detuned by scaling the individual

tuning ratios with a factor TR.omp, different to the calculated ideal value TR,

cold

which has a value of 1.0 by definition. There the axial frequency ¢ is recorded.

z
Then, having set the trap back to the estimated close-to-optimal voltages (therefore
setting the factor back to TR, ), the magnetron burst is applied leading to a
larger magnetron radius. At this stage the 1°! is recorded with the tuning-ratio
factor set to TR.omp- Finally the ion is cooled back via sideband cooling and the
cycle is repeated for a different trap detuning and for different excitation pulses.
The applied excitation pulses of the magnetron mode are dipole rf drives on the
Dy electrode and their strength is varied via the pulse length whilst the excitation
pulse amplitude is fixed to 0.24 V,;,. Setting an amplitude larger than 0.24 V,,;, on
the particular function generator switches on an amplifier that amplifies the output
signal. When this happens we have observed an increase of the noise which is

avoided by a suitable amplitude setting.

By changing the ions magnetron radius for different TR .}, settings we can map
the harmonicity of the trap as can be seen in Fig. 6.3. The obtained data from
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Fig. 6.4: Polynomial fit parameters P, (ox Cj) as a function of the combined tuning-ratio
factor TRcomp- From the linear fit the optimum value TRggfnb is obtained for
P, = 0, where the axial frequncy shifted is nulled.

all individual excitation pulse strength scans for each tuning ratio is fitted using

equation (6.2). The fitting coefficients are defined as P, = —%%VZ - k2 and
P, = g—glé%yz - k1. Considering the linear dependence of the C; coefficient with

respect to the applied tuning ratio (Fig. 6.4), the optimum combined tuning ratio
can be obtained.

In order to minimise the C, coefficient we chose the tuning ratio factor TR.omp
that corresponds to the zero crossing in Fig. 6.4, which is TR2>" . = 1.000566(13).
This value deviates from the expected calculated value by about 5 x 10~%, which
shows a good performance of the experimental setup with respect to the theoretical
predictions. For comparison, when we consider the manufacturing tolerances of
the PT electrodes (10 um) and assume that the length of all electrodes and the gap
between the electrodes is increased by 10 um while the trap radius is smaller by
10 um, the deviation from the optimum combined tuning ratio is about 1%. The
effect of patch potentials, which have been estimated to be maximally 16 mV, on the
optimum expected combined tuning ratio is in the order of 2 x 1077.

From the slope a of the fit in Fig. 6.4 and from equation (6.2) we obtain the
calibration constant x_:

2 CLCQdQ
K = |5 by, = UL7(A-3pm/(V - m) (6.4)

6.2 Electric Field Optimisation
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where Cy = —0.590325, D™ is calculated to be D™ = —0.786505, d = 9.1565 mm
is the characteristic trap size and « is given by the slope in Fig. 6.4 as a =
—193.9(2.3) Hz/(V - ms)?. During this optimisation measurement there was no effect
of the (s contribution. However, the trap can be further optimised in the future by
using larger excitation amplitudes and addressing TR; and T'Rs individually. That
way the condition Cy = Cs = 0 can be satisfied.

6.3 B, inhomogeneity in the precision trap

In a similar way as described in the previous section the modified cyclotron mode
can be addressed for probing the axial frequency shift for different trap detunings
at different amplitudes r,. Here the shifts caused by relativistic effects and the
magnetic inhomogeneity B, are non-negligible. The absolute axial frequency shift
due to the relativistic contribution is given by [54]:

2

1 ViU, 27)%m T
+ (27) vi(vy — y_)ri s —C—QViyzri. (6.5)

(AVZ)RGI = -

me? 2(vy —v-) 2

When all modes are thermalised with the axial tank circuit, the amplitudes of the
modes given by equations (3.13), (4.19), (4.20), and (4.21) are given by

2k,
(2) = mdr2y2’ (6.6)

(rs) = \/”7<z>, 6.7)
Vi
(r) = ﬁ(z) (6.8)

Therefore, for a “°Ar'3* jon with 7, = 6K, v, ~ 20MHz, v, ~ 651kHz and
v_ =~ 10kHz the thermal radius of the modified cyclotron mode (r;) is about 2 um.
According to equation (6.5) the induced relative shift of the axial frequency of
40Ar!13+ is in the order of 1.7 x 10~'3. Furthermore, the axial frequency shifts due to
the By-contribution according to [53]:

By (V_;,_—FV_)VZTZ _ DB ﬁ 9

A 7 = ~ .
( v >B2 4BO v_ + 2B() Vy "+

(6.9)

Finally the axial frequency shifts in first order due to electrostatic imperfections
according to [53]:

— 5 5 VT — VT
242 Cy © T T Oy 16dt T T

when accounting for contributions related with up to the Cj coefficient and assuming

(AVZ)C4,CG = (6.10)

that the coupling terms in the Cg-contribution are negligible at typical thermal am-
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plitudes. Adding linearly the contributions of the electrostatic potential, relativistic
effect and the magnetic inhomogeneity B, given in equations (6.10), (6.5) and (6.9),
the axial frequency shifts with respect to the modified cyclotron excitation strength
as

Ces 45

3 C 2 By V2
AVZ:( ! WV—Q&-V2+2+>H3—'(YS'U;(C)2 6216d41/z

4 + \4
G @ w0 U

(6.11)

where higher order magnetic field inhomogeneities such as the B4-contribution are
assumed to be negligible. Here « . is the reduced cyclotron radius calibration factor
relating r to the excitation burst as

ri=ry t-Ul. (6.12)

By exciting the reduced cyclotron mode to different amplitudes the B;-coefficient
can be extracted. The corresponding measured Av, with respect to the square of
the applied excitation pulse is shown in Fig. 6.5. The measurement cycle is the
same as discussed in section 6.2 but here we excite the modified cyclotron mode
instead, using the same set of pulse lengths as before for the same trap detuning
while the amplitude of the pulse is kept constant to 0.15 V,;,. The data is fitted using

equation (6.11) with fitting coefficients defined as

3 Cy 2 By V2N o
P=(—-—=——v,— SViv,+—— , 6.13
' ( 22 Gy, T @V T op, uz>'€+ (013

= 2 —— K. 6.1

27 Oy 16dd (6.14)
The linear dependence of P; with respect to TR¢onyp iS plotted in Fig. 6.6. From

the slope of the linear fit and equation (6.14), the calibration factor « is determined

2 ayCyd?
Ky = ‘/_51)}7;'3% = 173.76(98) wm/(V - ms), (6.15)

where a; = —468.9(2.6) Hz/(V - ms)®. In the same plot, the parameter P is nulled
only when the C; contribution is compensated by both the relativistic and the B,
contribution. Therefore, the tuning ratio at the zero-crossing point is TRggglb =
1.0008807(85). Here the optimum is defined for Av, = 0, unlike the one presented

in section 6.2 where the optimum combined tuning ratio was obtained for C; = 0.

as

The value of TRgopl;b is shifted with respect to the optimum value that is obtained
using magnetron-mode pulses. Estimating the contribution of Cy at TRggrtnb, the By

coefficient is determined from

6.3 B> inhomogeneity in the precision trap
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Fig. 6.5: Axial frequency shift for different tuning ratios at different radii of the modified
cyclotron mode mode, . The plotted axial frequency shift is the difference
between the axial frequency when the modified cyclotron mode is pulsed and
thermalised (v2°t — p<old),
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Fig. 6.6: Polynomial fit parameters P; as a function of the combined tuning-ratio factor
TRcomb. From the linear fit the optimum value TRggrtrllb is obtained for P, = 0,
where C, is compensated by the relativistic and the B, contribution, unlike in
Fig. 6.4 where TRX' | is determined for Cy = 0.
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2B01/2 3VZ b Opt’ opt 7T21/_2i_l/z
By = V?r z (2d202 D™ (TR oy, — TR o) + 2 >, (6.16)

as By = 0.0643(32) T/m?. (6.17)

6.4 B; inhomogeneity in the precision trap

The linear gradient of the magnetic field in the center of the precision trap is
experimentally determined. The magnetic field gradient creates a net force on the
magnetic moment due to the finite cyclotron energy and shifts the axial position of
the trapping center.

In order to determine this B;-inhomogeneity in the precision trap, the position of
the ion in the axial direction has been changed assuming that the magnetic force
is purely axial. At different positions the free-cyclotron frequency of the ion is
extracted, leading to the determination of the magnetic field with respect to the
axial distance from the center of the precision trap.

To shift the position of the ion in the axial direction, asymmetric voltages are
applied on the outer correction electrodes namely the upper and lower correction
electrode 2 (UCE2 and LCE2, respectively). The corresponding shift in z due to an
asymmetric voltage applied on those correction electrodes is estimated by means
of a simulated potential, shown in Fig. 6.7. By increasing the voltage applied on
the UCE2 and simultaneously decreasing the voltage applied on LCE2 by 8 V, the
expected shift of trapping center in the axial direction is 1 mm.
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Fig. 6.7: (left) Simulation of the trapping potential in the axial direction. Three differ-
ent cases are plotted: axially symmetric potential (blue), asymmetric potential
where the voltage applied on the UCE2 electrode is increased by 0.8 V and
the voltage on the LCE2 is reduced by 0.8 V (red) and the same asymmetry
as before but with the UCE2 electrode increased increased by 1.6 V and the
voltage on the LCE2 reduced by 1.6 V (yellow). The right plot is only a zoom
into the z—direction so that the shift of the trapping center becomes visible.

6.4 B; inhomogeneity in the precision trap
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Fig. 6.8: Measured magnetic field at different axial positions in the precision trap.
From the linear fit the gradient of the magnetic field is obtained as B; =
2.566(29) mT/m.

The measured magnetic field with respect to z is shown in Fig. 6.8. From the
slope of the linear fit the magnetic field gradient coefficient B; is found to be
B; = 2.566(29) mT /m. Here the uncertainty includes a 0.4% uncertainty of the ion’s
position due to the trap’s electrodes machining tolerance (10 um). The effect of patch
potentials, which have been estimated to be maximally 16 mV, on B is negligible.
The relative shift of the modified cyclotron frequency due to B is given by [84, 85]:

Al/+ Bl

R,
— = | —=r. 6.1
Vi <Bo> V2 = (618)

Given the small radius of about 2um that typically exist in the present work, the
effect of By on v, is < 1071° and thus insignificant.

6.5 Magnetic bottle in the analysis trap

The strong magnetic bottle configuration in the analysis trap is caused by the
dedicated ferromagnetic ring. To measure the strength of the resulting magnetic
field inhomogeneity the radius of the modified cyclotron mode r; is modified
in order to observe the shift in the axial frequency according to equation (6.9).
The contributions due to electrostatic anharmonicities and relativistic effects are
negligible.

Similarly to the calibration of the magnetron mode radius r_ with respect to
the applied pulse which was discussed in section 6.2, the modified cyclotron mode
radius r, has been calibrated. The relation of the radius to the excitation pulse in
the precision trap is given by equation (6.12) and the calibration constant . given
in (6.15).
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To determine the By coefficient of the ring electrode in the analysis trap, the ion’s
axial frequency is measured in this trap before the ion is adiabatically transported to
the precision trap. There, the modified cyclotron mode is pulsed to a well-defined
radius, according to equations (6.12) and (6.15). Then the ion is transported back to
the analysis trap where the axial frequency of the ion is measured anew. The shift of
the axial frequency in the analysis trap for various different r is shown in Fig. 6.9.

It should be noted that the plotted radii are the radii in the analysis trap 47T,

The ion is pulsed to a well-defined radius in the precision trap T and after it
is transported to the analysis trap the radius is modified due to the different By
magnetic field, according to:

ar . BOT pr

TR Wnr . (6.19)
At the beginning of each measurement cycle, the ion is sideband cooled via the
axial resonator in the precision trap before it is pulsed to a different radius and
transported to the analysis trap. Each radius has been measured five times. In order
to obtain By, the data is fitted using a parabolic fit of the form f(z) = p;2? where
weights of the form 1/r2 are considered. That is, due to the fact that a jitter in the
modified radius dr leads to a jitter of the axial frequency shift approximately linear

to the radius . The obtained result is:
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Fig. 6.9: The magnetic bottle configuration in the analysis trap. The ion is pulsed
to a well-defined amplitude of the modified cyclotron mode r, before it is
transported to the analysis trap. There, the axial frequency shifts accordingly
and follows a parabolic behaviour with respect to the radius r.. The coefficient
B, is extracted from the fit, for more details see text.

6.5 Magnetic bottle in the analysis trap
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BYT = 44349(837) T/m?, (6.20)

which corresponds to an expected axial frequency jump in the case of “°Ar'3* due
to a spin flip in the order of 312(6) mHz and agrees with the observed value during
the g-factor measurement.

6.6 Cyclotron heating in the precision trap

It is important to investigate that the temperature of the ion is not modified by
spurious noise sources during, for instance, ion transport or waiting times between
steps in the g-factor measurement cycle.

During the preparatory measurements, the ion was transported several times
from the precision trap to the analysis trap and back in order to check the absence
of energy accumulation. This dedicated measurement demonstrated adiabatic ion
transport between the two traps [59]. Therefore, in the absence of mode coupling in
the precision trap, the temperature of the ion should remain unchanged after being
transported to the analysis trap. Thus by recording the axial frequency of the ion in
the analysis trap after every transport to the precision trap should exhibit a jitter that
would only represent the stability of the voltage source of the AT. However, in the
here presented measurements the axial frequency shift in the AT indicated a change
in the modified cyclotron mode. Within the magnetic bottle, an excess energy in
v, leads to a shift in the axial frequency.

To identify the source of heating, several measurements were performed and are
plotted in Fig. 6.10. The ion was transported from the analysis trap to the precision
trap and back, using different conditions. The data indicate a heating source related
to the cyclotron resonator in the precision trap, while the ion’s adiabatic transport is
confirmed by the last set of data shown in green (circles) in Fig. 6.10. There, the ion
has been partly transported to PT and the axial frequency shift in the AT reflects the
expected stability of about 60 mHz.

All data shown in Fig. 6.10 have been obtained while the cryogenic amplifier
of the cyclotron resonator is in the “off” state. For details about the cyclotron
resonator see Ref. [59]. The () value of the resonator has been measured to be about
3500. The ion’s modified cyclotron frequency is v~ 20.0899 MHz which leads to
a cooling time constant of 7oy = 55.5 x 103s and 7419y = 13.5 x 10%s for 0V and
10V on the varactor diode, respectively. From this the resonator’s electronic noise
is estimated to be about 10000 K. This is a rough estimation given that this set
of data is the only one recorded so far. Even though it is possible that the initial
temperature of the ion was unfavourably high, the estimated temperature is too high
to assume a coincidence. This effect needs to be further investigated by measuring
the temperature of the cyclotron resonator and verify the source of heating.

It should be noted that the varactor diode is used to shift the cyclotron resonator’s
frequency as far away as possible from the ion’s frequency during the g-factor mea-
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Fig. 6.10: Investigation of the source of heating of the ion above the ambient tem-
perature of 4.2K. Here we plot the axial frequency difference between
consecutive measurements in the analysis trap after the ion is transported
to the PT. The points in blue are obtained by transporting the ion in the PT,
waiting for 120s and transporting the ion back to the AT where a dip signal
is recorded. Data plotted in red are obtained exactly the same way only that
after the first data set in blue was finished an attempt to remove possible
electrons trapped in the potential hills of the trap tower has been made. That
was followed by a data set where the waiting time in the PT was reduced
to Os plotted in . Thereafter, in purple the axial frequency is plotted
where the waiting time in the PT is once more 120 s and the frequency of the
cyclotron resonator is shifted as close as possible to the ion’s frequency using
the varactor diode. Finally, the ion was only partially transported to the PT,
i.e. specifically transported to the second lower endcap of the PT before it
was transported back to the AT where the axial frequency was recorded and
plotted in

surement. Additionally, during the g-factor measurement the modified cyclotron
mode is coupled to the axial mode and therefore it is cooled during the determina-
tion of I'. However, this is not the case during the single dip measurements. This
effect is taken into account in the final result of the “°Ar'3* g-factor in section 7.3.7.

6.7 Axial temperature measurement 7,

In order to reduce energy-related shifts, such as shifts due to magnetic field inhomo-
geneities, electric field anharmonicities, relativistic mass increase as well as the line
shape of the I" resonance, the temperature of the ion needs to be as low as possible
during the g-factor measurement.

6.7 Axial temperature measurement T,
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When the ion is in contact with the axial resonator, it is in thermal equilibrium
with the effective temperature of the detection system. This can be higher than the
ambient temperature of 4.2 K due to electronic noise of the cryogenic amplifier. In
resonance, the ion’s energy fluctuates with the cooling time constant 7 ~ 40 ms. The
ergodic hypothesis states that at thermodynamic equilibrium, the time average and
the ensemble average of the energy are equivalent. Therefore, a set of measurements
of the ion’s energy is also Boltzmann distributed. The thermal distribution of the
axial mode is given by

1 _ E

= ip T e kBT (6.21)

p(E,)

as shown in figure 6.11.

80

number of counts
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Fig. 6.11: Boltzmann distribution of the ion’s axial energy E,, yielding a temperature
of TPT = 5.70(82) K. The modified cyclotron mode is coupled to the axial
mode before the ion is transported to the AT. There the axial frequency shifts
as shown here. From this, the axial temperature of the ion can be deduced.
For details, see text.

According to equation (3.17), a change in the axial energy E, would not induce
an axial frequency shift assuming that shifts due to electric field imperfections
and relativistic mass increase are insignificant in the presence of a large magnetic
inhomogeneity Bs. Instead, a modification in the energy of the radial modes causes
a shift in the axial frequency. Hence, by measuring the modified cyclotron energy
E., the axial temperature 7, is extracted by use of equations (4.19) and (4.21).

The modified cyclotron mode is coupled to the axial mode in the precision trap for
several cooling time constants, until both modes are thermalised with the detection
system. That way the modified cyclotron mode also becomes Boltzmann distributed,

Chapter 6 Towards the first ALPHATRAP g-factor measurement



as discussed in section 4.4. Subsequently the ion is adiabatically transported to the
analysis trap, where the axial frequency shifts according to equation (3.17):

AT By" AT

Av) = ——=——F". (6.22)
z BiTman2yT

Then the ion is adiabatically transported back to the precision trap and the mea-

surement cycle is repeated several times. To finally extract the axial frequency of

the ion in the precision trap the adiabatic invariant due to conservation of angular

momentum is considered: the magnetic moment of the modified cyclotron mode

_md B By
_QBO_BONLU+’

Pt (6.23)

which leads to

pr_ VY AT
T+ — ﬁT—O— . (6-24)
vy
Combining equations (4.21) and (6.24) the axial frequency in the precision trap is

determined to be

PT
VZ

AT
vy

TP = 2T = 5.70(82) K. (6.25)

Here the uncertainty is estimated by considering both the statistical uncertainty of
the measurement as well as the uncertainty of the magnetic bottle in the analysis
trap BT

6.7 Axial temperature measurement 7,
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The g-factor of boronlike argon
4OAI.13+

The previously discussed techniques and preparatory measurements have been em-
ployed in the course of this thesis in order to measure the g-factor of the 1522s522p, /2
ground state of boronlike argon “°Ar'3*. The final result is obtained after two reso-
nances were recorded using the measurement procedure described in section 7.1.
The corresponding g-factor resonance that is discussed in section 7.2, is obtained
by fitting the data with a Lorentzian line shape using the maximum likelihood esti-
mation. Besides the statistical uncertainty, which is discussed in section 7.2.3, the
experimental result largely depends on the systematic uncertainty, which is detailed
in section 7.3. Finally, the determination of the g-factor as well as its comparison to
the theoretical prediction are discussed in sections 7.4 and 7.5, respectively.

The results obtained here together with a theoretical calculation of the boronlike
argon g-factor with an improved precision by collaborating teams is accepted for
publication in Phys. Rev. Lett. [27].

7.1 Measurement procedure

After the trap tower has been studied carefully and a single ion was prepared, the
g-factor measurement can be implemented. The measurement procedure is fully au-
tomated using Matlab and it includes online checks during each measurement cycle
which ensure that crucial information (such as, for instance, the spin-state determina-
tion) are successfully extracted. The measurement cycle of the g-factor measurement
is schematically depicted in Fig. 7.1 and is detailed in the following.

The measurement cycle starts with the ion in the analysis trap (AT). There, the spin
state of the boronlike argon “°Ar'3* ion is determined. That is achieved by, firstly,
measuring the ion’s axial frequency in the AT twice before mm-wave irradiation.
The two measurements are averaged to deduce the axial frequency in the AT. That
way changes of the frequency due to the unknown cyclotron energy or the effect of
long-term voltage drift can be excluded. Secondly, after mm-wave injection two more
consecutive axial frequency measurements take place. By comparing the average
axial frequency before and after the mm-wave irradiation, it is established whether
a spin flip occurred in the AT or not. If the axial frequency did not shift by more that
170 mHz, the latter being the threshold for the online check for a spin flip which has
an expected shift of 312(6) mHz (see sections 4.5 and 6.5), the ion is irradiated with
mm-waves again and two more measurements of the axial frequency are obtained.
In case the spin-flip attempt was successful, the spin state is now determined and the
ion is adiabatically transported to the PT where the frequency ratio I' = vyymw/ve
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is determined. There, the ion’s magnetron mode is sideband cooled! as described
in section 4.4. Then the cryogenic switch is switched on and remains in this state
throughout the whole part of the measurement cycle in the PT, to avoid affecting
the frequencies when the switch is operated. Then the first axial frequency dip is
recorded for an averaging time of 85s, after which v, is measured by means of
the double-dip technique. While the mode coupling for v, determination is on,
the ion is irradiated with mm-waves. The frequency of the injected mm-waves is
randomly chosen from the predefined frequency range that has been determined
using the adiabatic rapid passage technique as described in sections 4.6.4 and 4.6.5
and includes the Larmor frequency?. The mm-wave injection is then turned off as
well as the mode coupling. Another axial dip measurement takes place, after which
the switch is turned off and the ion is transported back to the AT. There, the spin
state of the ion is established anew. The spin state before it was transported to the
PT and the spin state which the ion had when it arrived back to the AT are compared.
Repeating this measurement cycle several times and mapping the spin-flip attemp to
the applied mm-wave frequency, a g-factor resonance is obtained.

distance from AT center (cm)
1
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produced ions
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Fig. 7.1: The ALPHATRAP double-trap setup as well as the different measurements
taking place within each trap is shown in the upper part of the figure. The
frequency ratio vymw/v. is determined in the precision trap (PT) and the
spin state information is obtained within the magnetic bottle of the analysis
trap (AT). In the lower part of the figure a schematic representation of the
measurement cycle is shown [27].

!Unlike in the case of v, and v,, the magnetron frequency v_ is only determined once before the
g-factor measurement and once after the measurement is over, which is sufficient for the required
precision of v_ and will be discussed in section 7.3.6.

2In fact, the center of the frequency range is adjusted on-line after measuring v, and v, . The magnetic
field is re-calculated using the invariance theorem which is then used to estimate the expected
Larmor frequency vr..
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7.2 g-factor resonance

During this measurement campaign two resonances were recorded (Res. A and
Res. B) one of which is shown in Fig. 7.2. Each data point that is obtained during
the measurement corresponds to either a successful (1) or an unsuccessful (0) spin

flip for the corresponding frequency ratio I.
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Fig. 7.2: T resonance (Res. B), depicting the spin-flip probability as a function of the
frequency ratio I = vymw /.. The data is fitted with a Lorentzian (solid line)
using the maximum likelihood method. The dashed lines indicate the 1-o
confidence interval of the fit. The blue points represent the binned data with
binomial error bars and are included in the plot only as a guide for the eye.
The red dots represent the single spin-flip events with 1 being a successful
spin flip and 0 being an unsuccessful one.

The obtained data is then fitted with a Lorentzian using the maximum-likelihood

estimation and is discussed in section 7.2.2.

7.2.1 Line shape of the I" resonance

The dynamics of the spin under the influence of an oscillating magnetic field has
been discussed in detail in section 4.6. There the probability of a spin flip with

respect to the mm-wave frequency is given by a Lorentzian probability distribution.

Equation (4.56) in terms of I is given by

W (7.1)

with

7.2 g-factor resonance
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WR YMBmmw

2
We qBo (7.2)

wo =

Here wy is the half width at half maximum (HWHM) of this distribution which
linearly depends on the strength of the driving field. When additionally considering
the normally distributed magnetic field fluctuations the resulting probability distri-
bution is described by a Voigt profile, which is a convolution of a Lorentzian and
a normal probability distribution. That means that in the limit of low mm-wave
power the probability distribution is predominantly Gaussian and the maximum
spin-flip rate is well below 0.5. However, during the here presented measurement
campaign the mm-wave power was sufficiently large to dominate the magnetic field
fluctuations leading to a distribution best described by a Lorentzian with a maximum
spin-flip rate close to 0.5. The analysis described below has also been performed
using a pseudo-Voigt profile, which confirmed that the contribution of the Gaussian
distribution is insignificant.

7.2.2 Maximum-likelihood estimation
The maximum-likelihood estimation (MLE) is advantageous over the least-squares
fitting for two crucial reasons. Firstly, no binning of the data is required for the MLE
and secondly, the MLE does not assume normally distributed errors.

Performing n measurements for a given I" the probability of observing k successful
events is given by a binomial distribution

p=PD)"1—PT)" " (7.3)

To obtain the overall probability from the whole data set, we multiply the indi-
vidual probabilities of the uncorrelated single events. That leads to the maximum
likelihood function which is defined as

1, spin flip,

L(To, wo, Ro) = [[ PM)" (1 — P(T')' %), with k; = { (7.4)

0, no spin flip,

with P(T") being a Lorentzian distribution, with the maximum spin-flip rate R as a
free parameter:

wg

P(T'T’ Ry)=Ry———=——=
( | 0, Wo, 0) Owg+(ro_r)2a

(7.5)

with the parameters I'j) being the center of the distribution. The maximum likelihood
function L(I'g, wo, Ry) is not trivial to differentiate® therefore it is almost always
simplified by using the natural logarithm of L. This yields

3The small numbers involved in the product would make the differentiation very challenging numeri-
cally.
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& =log(L) =Y In(P(Ty)k - (1— P(Ty))*), (7.6)

which is often referred to as the “log likelihood”. For the maximum likelihood
estimation we are maximising . in equation (7.6) with (I';, k;) being the measured
set of single events. Here, k; is a logical array and it denotes successful spin flips as
1 and the unsuccessful ones with O at their corresponding frequency ratios I';. The
fitting parameters are the Larmor to cyclotron frequency ratio I'y, the HWHM of the
distribution wy and the maximum spin-flip rate Ry. From the MLE we obtain the
optimum values of the fitting parameters for both resonances A and B, which are
given in Tab. 7.1. The estimation of the statistical error of those values is discussed
in section 7.2.3. In Fig. 7.2 the single-event data is shown in red with respect to
I'/Ty — 1 for Res. B. In the same figure the best fit is plotted with a solid grey line.

Tab. 7.1: Optimised values for the fitting parameters of both recorded resonance ob-
tained via the MLE, with their corresponding relative statistical uncertainties.
parameter Res. A Res. B
Iy 1859.082871 1859.082881
+1.72 +1.76
OT/Tolppb) 7y ~1.72
wo 0.000019 0.000019
+25.8 +29.4
ow/wo(%) ~19.2 —21.0
Ry 0.442 0.505
+19.6 +23.4
OR/Ro(%) —18.4 —22.2

7.2.3 Statistical uncertainty estimation

To estimate the uncertainty for the three fitting parameters, naively we could vary
one parameter while the other two are kept constant at their optimum values. The
1-0 uncertainties are estimated by calculating the value of .# (given in equation
7.6) when it is decreased by 1/2 compared to its optimum value. Similarly, the 2-o
and 3-0 uncertainties correspond to the points where .# is reduced by 2 and 4.5,
respectively. That way we can check how the errors behave at a range of 3-o and
probe the symmetry of the error of the fitting parameters as well as exclude the
possibility of a local maximum instead of the global maximum.

The results obtained with this approach are plotted in Fig. 7.3, where .# is shown
as a function of one of the three fitting parameters individually with the other two
kept constant at their respective optimum values.

That approach would have been sufficient if all the parameters were uncorrelated,
meaning that the optimum value of every parameter would be independent of the

7.2 g-factor resonance
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Fig. 7.3: Estimation of the statistical uncertainty of all 3 fitting parameters. Each time,
the linear cut of the parameter space is plotted for each of the parameters,
while the other 2 remain constant at their optimised values given by the MLE.
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Fig. 7.4: Estimation of the statistical uncertainty of all three fitting parameters. Each
subfigure shows .# as a function of 2 fit parameters with 0 corresponding to
the optimum values (where . = %...x). Each contour represents a value of
¢ with the red contours highlighting the values within the 1-0, 2-0 and 3-0
ranges. Every one of the three parameters is varied up to the 3-o range while
the other two parameters are re-optimised. That way the existence of close-by
secondary minima can be excluded.
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other two. This is not the case, as can be seen in the 2D cuts of .# in Fig. 7.4. As can
be seen in the dR with respect to dw plot, the shape of the contour lines indicate
a coupling of the two parameters. Increasing the value of dR, the optimum value
of dw (where ¥ = %...x) is shifted to a lower value and vice versa. Therefore, it is
not sufficient to evaluate the uncertainties from the linear cut that was discussed
previously.

Instead the entire parameter space fulfilling the condition .2 > %,.x — 0.5 has to
be considered. For this, each of the fitting parameters is varied while the remaining
two parameters are re-optimised. This treatment results in a slightly larger, more
conservative uncertainty estimation.

The relative statistical uncertainties for all fitting parameters for both resonances
are given in Tab. 7.1. The 1-0 confidence interval plotted in Fig. 7.2 is obtained by
estimating the worst values for the fitting parameters within the 1-o range where
L > Zax — 0.5.

In the case of asymmetric errors special care needs to be taken when estimating
the final error of the parameter at hand. However, the very small asymmetry in the
statistical error of I'y obtained from Res. B is not taken into account in our statistical
uncertainty estimation because the error is virtually symmetric. Therefore, the error
is treated as symmetric and we select conservatively the larger uncertainty, in this
particular case 0I' /Ty = £1.76(ppb).

The weighted average between the two values of I'y for each of the obtained
resonances yields

b = 1859.082 876 9(23), (7.7)

with a relative statistical uncertainty of 1.26 x 107%. The value of I'j needs to
be corrected for systematic shifts. An important remark concerning the weighted
average that results in I'{,, is that the weights include the systematic uncertainty
caused by the axial frequency drift during the I' measurement. Additionally, the
above value has been already corrected for the corresponding systematic shift of this
effect. This drift is discussed in section 7.3.1.

7.3 Sources of systematic shifts and uncertainties

In order to obtain the final result for the g-factor determination, several effects need
to be evaluated that could possibly influence the result. For the current precision
level of 10~ combined with our highly optimised setup most of the effects that were
in previous experiments prominent now become insignificant. All systematic shifts
and their uncertainties are discussed in this section and are summarised in Tab. 7.2.

7.3.1 Dirift of the axial potential
During ion transport the potential on the transport electrodes is modified so that
the potential trap is adiabatically shifted from one electrode to the next. While
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the voltages are applied to the corresponding transport electrode, the rest of the
electrode stack is set to 0 V. That means that the nominal trapping voltages in
the precision trap are set anew after every time the ion arrives in the trap after
being transported from the analysis trap. The slow thermalisation of the power
supply after the voltages are set causes a drift in the ion’s axial frequency during the
measurement. This effect proved to be the most prominent systematic effect during
this first measurement campaign of ALPHATRAP, the drift of the axial frequency
during the Larmor-to-cyclotron frequency-ratio measurement.

The axial frequency v, can’t be determined at the same time as the modified
cyclotron frequency when the double-dip technique is employed, therefore the effect
was estimated independently after the first resonance of the g-factor measurement
campaign was finished. During this “check” measurement the scheme of a “dip-
dip-dip” instead of the “dip-doubledip-dip” was employed. As shown in figure 7.5,
the axial frequency drift is not linear and non-negligible. Therefore, in order to
determine the axial frequency v, during the double-dip time, the observed shift is
removed from the actual data. For the first resonance the observed shift with respect
to 7,9 amounts to

U, = —0.2249(94) Hz, (7.8)
ﬁzg = OHZ, (79)
7,3 = 0.0891(96) Hz, (7.10)

where 7,1, 1,2 and 7,3 are the first, second and third axial frequency measurement
during the “dip-dip-dip” check measurement. The above shifts with respect to the
axial frequency during the I" determination is removed accordingly from the v, data.

Because increasing the waiting time before the PT part of the measurement cycle
begins would make the measurement time unacceptably longer, instead the effect
was reduced by minimising the time that the voltages of the PT electrodes are set to
0 V. Essentially, while the ion is transported to the analysis trap the voltages in the
precision trap are set back to their nominal value decreasing the thermalisation time
for the power supply. Employing this technique during the second resonance, Res. B,
reduced the shift to

7,1 = —0.0762(58) Hz, (7.11)
7,5 = 0Hz, (7.12)
77,3 = 0.0145(63) Hz. (7.13)

7.3 Sources of systematic shifts and uncertainties
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Fig. 7.5: Axial frequency drift during the measurement cycle taking place in the preci-
sion trap. The plotted data was obtained during a check measurement after
the g-factor data for each of the resonances was obtained. Note that the effect
was significantly reduced for Res. B by a more suitable choice of transport
voltages. For details see text.

To correct for this drift, we shift the axial frequency before and after the double-dip
during the g-factor measurement accordingly as follows:

Vgl = Vg1 + ﬁzh (714)
Vg3 = Vg3 — U3, (7.15)
Vg + V.
Vz2guess = %, (7.16)

where v,95es5 15 finally the determined axial frequency v, during the I' ratio determi-
nation. The uncertainty for this shift is given by the distribution of the data obtained
during the “check” measurement for each of the resonances, yielding

0V; Resa = 17mHz, (7.17)
57/z,ResB = 7mHz, (718)

which in the case of employing a measurement technique for v, that measures
v, not as a shift with respect to v, (for instance PnA), would be further reduced by a
factor of v /v2. Since the measurement of the reduced cyclotron frequency is done
via the double-dip technique, the above shift has to be taken into account during
the estimation of the systematic shift of the free cyclotron frequency. The shift of v
considering the shift of the axial frequency can be written as
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Av, ~ \/I/CQ + 2Av,(vy + 1) — v, (7.19)

which amounts to a relative systematic uncertainty of the free cyclotron frequency

Ve!
(‘”) —8.7-1071°, (7.20)
Ve ResA
(‘m) —3.6-10710, (7.21)
Ve ResB

It is important to point out that the frequency shifts given in equations (7.8), (7.10)
for Res. Aand (7.11), (7.13) for Res. B, have been applied during the data evaluation.
That means that the value of I'}, given in equation (7.7) has already been shifted for
the drift of the axial potential during the frequency ratio measurement.

The resulting systematic uncertainties are different for the two resonances and are
included in the weights when determining the value of I'{) given in equation (7.7).
Those originate from the determination of the effect during this dedicated measure-
ments after each of the resonances was recorded. The corresponding systematic
uncertainties due to the axial potential drift are assumed to be uncorrelated because
they are dominated by the statistical uncertainty of the measurement.

7.3.2 Image charge shift

The effect of the image charge shift that has been discussed in section 4.2, has
been calculated using COMSOL. For this calculation the geometry of the ALPHA-
TRAP precision trap has been slightly simplified but it takes into account all existing
slits, including all radial ones (i.e. the quarter- and half-split electrodes). From this
numerical simulation the linear field gradient of the radial component has been
obtained:

& = 1964.3(98.2) uV /m?. (7.22)

Estimating the shift of v, and v_ (the shift of v, is negligible) using the invariance
theorem we obtain the effect on v.. From equation (4.14) we thus obtain the relative

systematic shift of v, for 0Ar!3+:

Av,

Ve

~ —5.03(25) x 107 (7.23)

Note that the shift needs to be added to the measured frequency in order to obtain
v. without the effect of the image charges.

In the past a semi-analytical model has been used to estimate the effect and it
is given in Ref. [60]. There an infinitely long cylinder has been assumed without
any split electrodes. Also, a model that accounts for the slits in first order has been
presented in Ref. [13]. Furthermore, a numerical calculation has been performed

7.3 Sources of systematic shifts and uncertainties
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for calculating the effect using COMSOL for the LIONTRAP experiment [61] which
has a similar geometry to that of the ALPHATRAP precision trap.

In order to estimate the uncertainty of the image charge shift in ALPHATRAP, we
additionally: (i) calculated the effect using the semi-analytical model and (ii) scaled
the numerical results obtained for LIONTRAP to our trap’s dimensions. By comparing
our numerical result given in equation (7.22) to the two other methods we used for
estimating the image-charge effect, we find agreement at the ~ 1% level. Finally we
assign a more conservative uncertainty of ~ 5% which can be reduced with a more
rigorous calculation if necessary.

7.3.3 Relativistic mass increase

The relativistic corrections that has been discussed in section 3.2.3 leads to a shift of
both the free-space cyclotron frequency v, and the Larmor frequency vy, but not by
the same amount. For a “°Ar'3* ion the systematic shift of v, due to the relativistic
mass increase is given by equation (3.20) and it amounts to

Av,

Ve

~ —0.43(6) x 10712, (7.24)

The corresponding relative systematic shift of the Larmor frequency due to the
relativistic shift of the precession frequency is given by equation (3.21) and it is
calculated to be in the order of 10716,

7.3.4 Line shape of dip-fit

Using the maximum likelihood estimation, the effect of the centre frequency of
the resonator on the fitted axial frequency dip of the ion was investigated. The
parameters seem to be well behaved. Assuming a shift of the resonator’s frequency
by 1-0, that would mean a shift of the fitted axial frequency by 5.2mHz. That
corresponds to a systematic uncertainty of the free cyclotron frequency in the order
of

OV

—< ~927.10719, (7.25)
Ve

7.3.5 Frequency pulling

The image current shift, or frequency pulling, has been discussed in section 4.2. In
Fig. 7.6 the effect is demonstrated for a range of 200 kHz, using equation (4.15).
This estimation is based on a set of parameters for the cyclotron resonator that have
been experimentally obtained. A more accurate knowledge of those parameters
requires additional measurements. For now, and since at this level of precision
the effect is negligibly small, we treat the effect as follows: We do not account for
a systematic shift, but instead we give a very conservative uncertainty of 25% of
the maximum possible shift. That leads to an upper estimation of the systematic
uncertainty:
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Fig. 7.6: Relative modified cyclotron frequency shift due to the frequency pulling effect
caused by the cyclotron resonator with respect to the frequency difference
v — vRp. The shift is zero exactly at resonance and minimised when v, is far
from the resonance frequency of the cyclotron resonator.

Ve

Ve

<5-107'% (7.26)

7.3.6 Magnetron frequency v_ measurement

During a g-factor measurement campaign the magnetron frequency is typically
measured using the double-dip technique once before the resonance is recorded and
once after, which is sufficient for the current relative uncertainty of 10~°. According
to equation (3.11), for 10~ relative uncertainty v_ needs to be determined with an
uncertainty of 107?22 /v_ = 40 Hz. That leads to a relative uncertainty of only 1073,

The largest shift of the magnetron frequency that was observed before and after

resonances A and B was Av_ = 0.13 Hz. That corresponds to a systematic uncertainty
of

OV

Ve

=34 x 1072 (7.27)

7.3.7 Elevated F, during the axial frequency measurement

In section 6.6 a source of heating of the modified cyclotron mode has been observed,
that has not been conclusively identified yet. Nevertheless, this effect needs to be
estimated for the evaluation of the g-factor.

7.3 Sources of systematic shifts and uncertainties
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During the double-dip measurement the heating effect on v, is dominated by the
stronger cooling effect of the axial detection system. However, that is not the case
during the axial frequency measurements before and after the double-dip. During
the g-factor measurement an axial temperature of about 6 K has been obtained.
Assuming that this elevated temperature by about 2K is caused by this heating
effect in the precision trap, we assume as a worst-case-scenario that during one dip
measurement the axial temperature increases by 2 K. That means that 7, during
the first dip measurement (that is before the double-dip) is increased by about 4 K.
For simplicity, in the following the waiting times before and after the double-dip
measurement are assumed to be equal which leads to the assumption that the
temperature T, during both dip measurements is elevated by 7/’ T = 4 K.

The corresponding axial frequency shift is given by equations (3.17) and (4.21)
as

Av,  BYTkpTPT <1/+ —v_

= ~25x 1071 28
vy, Bom(27v,)? ) . (7.28)

Vg

and leads to a relative systematic uncertainty of v, of

e _ g9y 10713, (7.29)

Ve

7.3.8 Electric field anharmonicity

The trapping potential can be tuned to minimise the anharmonicities, as discussed
in section 6.2. After the optimisation of the electric field, the applied tuning ratio is
known with a 1075 uncertainty. If we assume a detuning of 1 x 10~?, the leading
order anharmonicity that is described by the coefficient C; would be 1075 - D$o™b,
The corresponding modified cyclotron and axial frequency shift according to equa-
tion (3.15) are

AVt 38 %1071, (7.30)
Vi

AV o 18%10-1, (7.31)
Vy

respectively, for a temperature 7, = 6 K. Due to the fact that the double-dip
is employed for the measurement, the shift of v, is taken into account. Using
equation (7.19) we obtain

oV

=59x 1071, (7.32)

Ve

7.3.9 Line shape of the I' resonance
For the determination of the g-factor, v, is measured during the mm-wave irradiation.
However, the free-cyclotron frequency is measured at every measurement cycle while
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the Larmor frequency is extracted from fitting all the recorded data. That gives rise
to a systematic shift of vy, , because the presence of B is not accounted for in the
line shape, which in turn leads to a shift of the obtained T.

The line shape that is used to fit the experimental data of the spin-flip probability
with respect to the frequency ratio I' is a Lorentzian. The presence of a magnetic
bottle inhomogeneity B, combined with the non-vanishing axial temperature of
the ion, leads to a slight asymmetry as well as a shift of the maximum of the
probability distribution function. The asymmetric line shape has been thoroughly
studied for the hydrogenlike oxygen g-factor [85, 86] where it was an effect of
significant magnitude. However, this effect is negligible for ALPHATRAP, given the
low temperatures and the highly reduced BY™" of BY'T = 0.0643(32) T/m?.

Following the argument in Refs. [85, 86], a Lorentzian line shape convoluted with
a Boltzman distribution due to the B, inhomogeneity has been studied. Comparing
the results obtained using the slightly asymmetric convoluted line shape to the one
obtained using a Lorentzian line shape the relative systematic shift of I" is estimated.
For an axial temperature of 7, = 6 K it amounts to

ST
T = 2.1 x 107, (7.33)

7.3.10 Residual magnetic field imperfections

During the frequency-ratio measurement I' = vy, /1., both frequencies are measured
simultaneously. That means that in the presence of inhomogeneities of the mag-
netic field both frequencies shift, but they shift by almost exactly the same amount.
Considering the typically low motional amplitudes of the ion as well as the min-
imisation of the By and B, in our precision trap, the effect of the magnetic field
inhomogeneities on both v, and vy, is highly suppressed. However, since both radial
modes are thermalised to the axial resonator by means of the double-dip technique,
the effect of Bs on the axial frequency needs to be taken into account.

In the following the shift of I due to B; is estimated followed by the shift of
vy, and v, due to the B; inhomogeneity are addressed individually. Finally, the
corresponding shift of I' is estimated.

The first-order inhomogeneity of the magnetic field in the precision trap has been
measured to be B; = 2.638(24) mT/mm and it has been discussed in section 6.4.
That induces a relative shift of both the free-cyclotron frequency v, and the Larmor
frequency vy, in the order of 1 x 10~1?, for typical radii and axial temperatures of
ry = 2.2um and T, = 6 K, respectively.

The residual By in the precision trap has been measured to be BY™ = 0.0643(32) T /m?

(see section 6.3). The corresponding shift of the Larmor frequency is given by equa-
tion (3.17), and it amounts to a relative shift of

AVL 111 x 10712 (7.34)
v

7.3 Sources of systematic shifts and uncertainties
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for an axial temperature of T, = 6 K. Additionally, the residual magnetic bottle
inhomogeneity causes a shift of the free-space cyclotron frequency according to
equations (3.17) or equivalently according to Ref. [53], leading to a shift of

Av,

Ve

~1.15 x 10712 (7.35)

with T, = 6 K. The corresponding relative shift in the frequency ratio I' is

AT
T = 0.02(13) x 10715, (7.36)

where in the estimation of the uncertainty given in equation (7.36) the uncertainties
of T,, BT, BT and the uncertainty of the axial frequency shift are taken into
account.

7.4 Final experimental result for the g-factor of
40Ar13+

The experimental result I'j) in (7.7) needs to be corrected for the systematic effects
that have been discussed in the previous section. All the systematic shifts and
their corresponding uncertainties are summarised in Tab. 7.2. The corrected final
frequency ratio I'y reads:

Ty = 1859.082876 8(23), (7.37)

with the number in the parenthesis being the statistical uncertainty.

Tab. 7.2: Relative systematic corrections ((I'o — I'(;)/I'{) and their uncertainties for
each of the obtained I" resonances.

Effect Res. A(ppt) Res. B(ppt)
Drift of axial potential 0(870) 0(360)
Image charge —50.3(2.5)
Relativistic mass increase —0.43(6)
line shape of dip fit 0(270)
Frequency pulling v 0(50)
V_ measurement 0.0(3.4)
Elevated E., during v, meas. 0.00(82)
Electric field anharmonicity 0.00(60)
line shape of T" resonance 0.00(2)
Magnetic field inhomogeneity <1072
Total systematic uncertainty 6.4 x 10~10

An important note concerning the systematic shift due to the drift of the axial
potential and its uncertainty, should be pointed out once more for clarity. The
systematic shift caused by this effect has been considered during data evaluation.
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Therefore, I', in equation (7.7) has already been corrected for the drift of the axial
potential. Hence, the systematic shift is given as zero in Tab. 7.2. The systematic
uncertainties of the shift are different for the individual resonances. Nevertheless,
we quote a total systematic uncertainty which is the result of a weighted average of
the systematic uncertainties of the two resonances. The weights used for the average
are the same ones that were used for the determination of I'j,. These include not
only the statistical uncertainty of the resonances but also the systematic uncertainty
of the dominant systematic effect, i.e. the drift of the axial potential.

The g-factor is determined using

q Me
& OeM’

(7.38)
with the electron mass m, = 5.485 799090 70(16) x 10~ u as given by CODATA [87]
and M (*°Ar'3") = 39.9552551545(26) u. The latter is deduced after correcting
the atomic mass M (*°Ar) = 39.962 383 123 8(24) u [88] for the mass and binding
energies of the missing electrons [89]. Our experimental result for the g-factor when
using I'y from equation (7.37) is

8exp = 0.663648 456 29(83)(42)(5), (7.39)

where the number in the first bracket represents the statistical uncertainty, the
second the systematic uncertainty and the third one accounts for the uncertainty of
the electron and the argon atomic* masses.

In “OAr'**, mixing of the closely spaced 2p; , and 2p;, levels leads to nonlinear
contributions to the Zeeman splitting. However, the quadratic Zeeman shift is
identical for both m = +1/2 sublevels, therefore, its contribution to the Zeeman
splitting vanishes for the ground state. The lowest non-zero nonlinear term is the
cubic one, ~ B3. Its contribution to the g-factor has been evaluated in Refs. [90,
26] and amounts to 6.0 x 10~!! (B/T)?2. For the magnetic field of By ~ 4.023 T of
ALPHATRAP this results in an absolute shift of 9.7 x 10719, Based on [90, 26] and
given our experimental g-factor uncertainty, the uncertainty of the cubic Zeeman
shift is negligible. Taking the effect into account, we finally obtain for By = 0T:

g = 0.663648 455 32(83)(42)(5). (7.40)

This result corresponds to the first high-precision measurement of a boronlike

ion’s g-factor and it is here obtained with a fractional uncertainty of 1.4 x 10~ for
40 713+

*The uncertainty of the atomic mass of of argon is dominated by the uncertainties of the binding
energies of the removed electrons.

7.4 Final experimental result for the g-factor of “°Ar!3+
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7.5 Comparison with theory

The presented level of precision of the g-factor of *°Ar'3* gives access, for the first
time, to the individual contributions to the g-factor of a boronlike ion. This result is
not only sufficient to test the theoretical results for the interelectronic interaction,
QED, and nuclear-recoil effects, but also to test the foreseen developments in this
field, including higher-order (two-loop and many-electron) QED contributions. The
currently available individual contributions to the theoretical g-factor of boronlike
argon are given in Tab. 2.1 and are discussed in section 2.3.

g€ - 8.
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2018} — 138]
2019  —al. 127]
TW} + 127]

2 1 0 1x10° 249 250 251 252 253 x10°

g 8.,

Fig. 7.7: Comparison of the experimental (circles) and theoretical (squares) g-factors
obtained in this work (TW) with previously calculated values as well as the
previous experimental result with 1 x 1072 relative uncertainty (note axis label
above). The fractional uncertainty of 1.4 x 10~ of this work’s experimental
g-factor is not visible in this plot [27].

In collaboration with this experimental campaign theoretical calculations were
performed and the results have been also included in the same Letter [27]. Those
theoretical calculations improved the one-loop QED contributions by a factor of 3,
resulting in a total relative uncertainty of 9 x 10~7. The agreement between theory
and experiment represents one of the most accurate tests of many-electron QED con-
tributions in strong fields, and paves the way towards an independent determination
of the fine-structure constant. The current experimental result compared to previous
calculations as well as the improved value obtained for [27] can be seen in Fig. 7.7.
Our measured value also disproves the theoretical predictions of Marques et al. [48]
and Verdebout et al. [49]. The predicted value obtained in the latter is not plotted
in Fig. 7.7, as it is given without errorbars.
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Comparing the experimental and the theoretical g-factor values demonstrates an
excellent agreement at a 10~7 level. Further improvement of the theory towards the
experimental precision level will constitute a more precise test of the relativistic and
QED many-electron effects.

7.5 Comparison with theory
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Conclusion and outlook

During the course of this thesis a measurement of the ground-state g-factor of
boronlike argon “°Ar'3* has been performed, yielding:

g = 0.66364845532(93), (8.1)

with a fractional uncertainty of 1.4 x 1079 [27]. This result provides the most precise
g-factor measurement of a five-electron system and gives access to the currently
calculated contributions of the electron-electron interaction, QED, and nuclear recoil
effects. This level of experimental precision allows to perform the most accurate
test of many-electron QED contributions of a boronlike ion in strong fields. It is in
excellent agreement with the currently most precise theoretical prediction, which
exhibits an uncertainty of 9 x 10~7. Since our experimental result is almost three
orders of magnitude more precise than the current theoretical prediction, it imposes
a challenge to theory for an improved uncertainty which would lead to a more
sensitive test of the many-electron contributions. Furthermore, this experimental
result settles the discrepancy between theoretical predictions [27, 38, 36, 48].

This measurement was made possible after the complete ALPHATRAP apparatus,
which is a follow-up to the Mainz g-factor experiment on highly charged ions (HCIs),
has been assembled and commissioned. This included the trap tower of ALPHATRAP,
which is the central tool of the experiment. This highly optimised high-precision trap
tower has been developed, assembled and tested within this thesis and independently
of the rest of the setup. After the traps were attached to the experiment, the final
commissioning phase took place, of which the results are presented within this
thesis.

Coupling the traps to external ion sources by means of a room-temperature UHV
ion beam line extends the range of the experiment to virtually any element and
charge state up to hydrogenlike lead 2°5Pb®'™. This is the heaviest HCI that the
Heidelberg electron beam ion trap (HD-EBIT) is designed to produce. Despite the
external coupling, the vacuum inside the trap chamber is estimated to be in the
order of 10~'7 mbar or better. The boronlike argon ion that has been measured in
this thesis, has been produced and injected from the Heidelberg compact electron
beam ion trap (HC-EBIT). The ion bunch is then transported via the ion beam line
to the trap tower, where the ion cloud is captured by fast switching of the potentials
of the capture electrodes.

Before the experiment was conduced, the adiabatic rapid passage technique has
been implemented in ALPHATRAP. This was achieved by sweeping the magnetic field
through the use of a set of Helmholtz coils located externally to the superconducting
magnet. This technique allowed to efficiently search for the resonance within a
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large frequency range, which was indicated by the theoretical calculation of the
g-factor. After the resonance was found, the resonance was recorded twice using the
double-dip technique, leading to the determination of the g-factor with ppb precision.
The dominant systematic uncertainty during this measurement has been the drift of
the applied voltages due to the slow thermalisation of the power supply when the
voltages are set after ion transport from one trap to the other. This effect will be
mitigated in the near future by using a dedicated voltage source for ion transport.
This measurement campaign has been the first one of the ALPHATRAP experiment
and signifies the excellent performance of the experiment, and a step towards higher
precision and heavier HCI up to 208Pb®! T,

Based on the remarkable performance demonstrated in this first measurement
campaign, the precision of g-factor measurements can be improved in the near
future by using more sophisticated measurement methods. Namely, implementing
the PnA detection scheme [64] for measuring the modified cyclotron frequency can
push the uncertainty to the 10~!! level in our highly harmonic trap. This technique
is currently being implemented [92] and will be used for g-factor measurements of
medium-Z HCI. Additionally, measurements with low-Z ions, such as '2C°*, with an
improved precision could lead to a more precise determination of the electron mass.

This highly versatile experimental setup can be used for a wide range of experi-
ments. In fact, a novel laser-spectroscopy measurement scheme has been already
implemented on the fine-structure transition of “°Ar!3* [78, 74]. This new scheme
does not rely on fluorescent detection, rather it allows detection of the laser-induced
transition by means of the continuous Stern-Gerlach effect.

Furthermore, the ongoing project of sympathetic laser cooling using beryllium
ions [77, 74] has the potential to boost the measurement precision by reducing the
ion’s initial modified cyclotron temperature prior to PnA detection. Also, the lower
energies of the modified cyclotron mode, F, that can be achieved with sympathetic
laser cooling will enable unambiguous spin-flip detection of boronlike lead 203Pb"" .

After the recommissioning of the HD-EBIT resumes, high-precision g-factor mea-
surements of heavy-Z HCI will be performed where high-precision and the strongest
achievable electric fields will combine for the stringent test of QED. In this regime,
the anticipated independent determination of the fine structure constant with com-
petitive precision can be realised.

Chapter 8 Conclusion and outlook
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