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Abstract

Software systems are an integral part of modern society. As we continue to har-
ness software automation in all aspects of our daily lives, the runtime performance
of these systems become increasingly important. When everything seems just a
click away, performance issues that compromise the responsiveness of a system
can lead to severe �nancial and reputation losses. Designing e�cient code is criti-
cal for ensuring good and consistent performance of software systems. It requires
performance expertize, and encompasses a set of di�cult design decisions that
need to be continuously revisited throughout the evolution of the software. De-
velopers must test the performance of their core implementations, select e�cient
data structures and algorithms, explore parallel processing when it provides per-
formance bene�ts, among many other aspects. Furthermore, the constant pressure
for high-productivity laid on developers, aligned with the increasing complexity
of modern software, makes designing e�cient code an even more challenging en-
deavor.

This thesis presents a series of novel approaches based on empirical insights that
attempt to support developers at the task of designing e�cient code. We present
contributions in three aspects. First, we investigate the prevalence and impact
of bad practices on performance benchmarks of Java-based open-source software.
We show that not only these bad practices occur frequently, they often distort the
benchmark results substantially. Moreover, we devise a tool that can be used by
developers to identify bad practices during benchmark creation automatically.

Second, we design an application-level framework that identi�es suboptimal
implementations and selects optimized variants at runtime, e�ectively optimizing
the execution time and memory usage of the target application. Furthermore, we
investigate the performance of data structures from several popular collection li-
braries. Our �ndings show that alternative variants can be selected for substantial
performance improvement under speci�c usage scenarios.

Third, we investigate the parallelization of object processing via Java streams.
We propose a decision-support framework that leverages machine-learning mod-
els trained through a series of benchmarks, to identify and report stream pipelines
that should be processed in parallel for better performance.
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Zusamenfassung

Softwaresysteme sind integraler Bestandteil der modernen Gesellschaft. Die im-
mer weitere Durchdringung aller Bereiche des täglichen Lebens durch die Automa-
tion durch Software macht das Laufzeitverhalten dieser Systeme immer wichtiger.
Wenn alles nur einen Klick entfernt scheint, können Leistungsprobleme, die die Re-
aktionsfähigkeit eines Systems beeinträchtigen, schwere �nanzielle Schäden ver-
ursachen sowie rufschädigend wirken. E�zienten Code zu entwerfen ist kritisch
wichtig um gute und gleichmäßige Leistung von Softwaresystemen sicherzustel-
len. Das erfordert Expertise in Softwareleistung, und beinhaltet schwierige Desi-
gnentscheidungen, die immer wieder überdacht werden müssen, während die Soft-
ware ihrer Evolution unterliegt. Entwickler müssen die Leistungsfähigkeit ihrer
zentralen Implementationen testen, e�ziente Datenstrukturen und Algorithmen
wählen, parallele Verarbeitung in Erwägung ziehen, falls dies Leistungsgewinne
verspricht; neben vielen anderen Gesichtspunkten. Weiterhin macht der konstan-
te Erwartungsdruck hoher Produktivität, der auf Entwicklern lastet, sowie die an-
wachsende Komplexität moderner Software den Entwurf von e�zientem Code zu
einer umso größeren Herausforderung.

Diese Arbeit stelle eine Reihe neuartiger, auf empirischen Einsichten beruhen-
der Ansätze vor, die Entwickler beim Entwurf e�zienten Codes unterstützen sol-
len. Wir präsentieren Beiträge in drei Bereichen. Erstens untersuchen wir die Ver-
breitung von schlechten Programmierpraktiken und ihren Auswirkungen auf Leis-
tungsbenchmarks von Java-basierter Open-Source-Software. Wir zeigen nicht nur
dass diese schlechte Praktiken häu�g vorkommen, sondern sogar oft die Bench-
markergebnisse erheblich beeinträchtigen. Außerdem entwickeln wir ein Tool, das
von Entwicklern genutzt werden kann, um schlechte Praktiken während der Bench-
markerstellung automatisch zu erkennen.

Zweitens entwerfen wir ein Framework auf Anwendungsebene, das suboptima-
le Implementationen erkennt und optimierte Varianten zur Laufzeit wählt, und so
e�ektiv die Ausführungszeit und den Speicherverbrauch der Zielanwendung opti-
miert. Weiterhin untersuchen wir die Leistung von Datenstrukturen aus verschie-
denen populären Programmierbibliotheken für Collections. Unsere Ergebnisse zei-
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gen, dass alternative Varianten so ausgewählt werden können, dass bedeutende
Leistungsgewinne unter bestimmten Gegebenheiten erzielt werden können.

Drittens untersuchen wir die Parallelisierung von Objekt-Verarbeitung mittels
Java-Streams. Wir stellen ein Framework zur Unterstützung von Entscheidungen
vor, das Modelle des maschinellen Lernens nutzt, die mit einer Reihe von Bench-
marks trainiert werden, und so Stream-Pipelines erkennt und meldet, die durch
Parallelisierung mit höherer Leistung verarbeitet werden können.
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1 Introduction

We live in a technological era. Software systems are the main driver of our tech-
nological outburst, embedded in all areas of our modern society: automating our
commerce and �nancial systems, coordinating our transportation, connecting mil-
lions of people through social networks, and many more. As we continue to har-
ness the bene�ts of software automation, the quality attributes of these systems,
such as the runtime performance, are evermore crucial to our lives.

Performance issues that ripple through production systems a�ect the reliability
and the reputation of the service and its provider. Consequences of performance
problems vary from mild frustration of its user-base to massive monetary and rep-
utation costs. A one-second slowdown in the checkout processes would cost Ama-
zon an estimated $1.6 billion per year [75]. A report from AppDynamic [54] has
estimated that among the Fortune 500 companies, more than $46 million is spent
annually in labor costs alone, due to performance problems.

Ensuring good and consistent performance in a software system is a di�cult
multi-layered problem: it starts with the planning of system architecture and un-
derlying technologies; it encompasses e�cient code design, with e�cient data
structures and algorithms; ending up with the appropriate provision of system
resources.

The process of writing e�cient code alone encompasses a broad range of prac-
tices in software development. From measuring and analyzing the performance
of implementations, to selecting e�cient data structure and algorithms that �ts to
the problem at hand, these practices focus on preventing performance issues from
appearing in the production environment. While a great deal of performance opti-
mization is automatically performed by compilers [3, 170], a number ine�ciencies
in the code can only addressed by developers and require extensive manual anal-
ysis.
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1 Introduction

This thesis presents a series of empirical insights and approaches that aim at
helping developers in developing e�cient applications. In particular, we study
three important performance-related problems: 1) the creation of sound perfor-
mance tests through benchmarking; 2) the selection of e�cient data structures;
and 3) the e�cient parallelization of element processing via the Java Stream API.

1.1 Benchmark-driven Software Performance
Optimization

A recurring theme in this thesis is the use of performance benchmarks to mea-
sure, model, and predict software performance. We investigate practices for sound
Java performance benchmarking, and design benchmark suites to model the per-
formance of data structures and stream processing via the Java Stream API. These
models are used in our proposed tools for supporting developers by providing per-
formance feedbacks and automated optimizations.

In the following, we give a short introduction on the three problems, addressed
in the context of Java programming, that shall be discussed throughout this thesis.

1.1.1 Sound Java Performance Benchmarking

To avoid performance issues in production, developers must thoroughly test the
performance of their systems. Similarly to functional tests, performance tests
should be conducted at di�erent granularities, from system performance (e.g., load
and stress tests) to the accurate measurement of a method call via (micro/nano/mili)-
benchmarking. Developers use benchmarks for precise performance evaluation of
an isolated segment of code at the method, loop, or even statement level. Bench-
marking are typically used to ensure the performance of critical low-level code
components or to compare di�erent implementation alternatives .

Despite the existence of robust benchmark frameworks in Java [136], developers
often struggle with writing expressive benchmarks, which accurately represent the
performance of such methods or statements. The Java Virtual Machine introduces
a series of intricacies and pitfalls [83] that, if not addressed by developers, may
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1.1 Benchmark-driven Software Performance Optimization

obliterate the setup of benchmarks, distorting the benchmark results and leading
developers to the wrong conclusions.

We address this problem in Chapter 3, by presenting a large-scale empirical
study on the prevalence of bad practices in open-source projects, and experimen-
tally evaluate their impact in the benchmark results. Moreover, we develop a static
analysis tool called SpotJMHBugs, that identi�es the bad practices in the source-
code of a benchmark, which can be used by developers to avoid said bad practices
during benchmark creation.

1.1.2 Efficient Collection Selection

Selecting data structures is crucial for developing e�cient applications. Java has
a rich ecosystem of distinct collection libraries and implementations, providing
developers a large pool of data structures with di�erent performance trade-o�s.
While developers can make good use from the variety of collection variants, de-
velopers only rarely tune their data structures [98], and often select variants that
are ine�cient for their particular workload, leading to signi�cant performance is-
sues in their applications [67, 158, 178, 179].

We address this problem in two chapters of this thesis. In Chapter 4, we con-
duct an experimental study to explore the performance of alternative collection
libraries. Then, in Chapter 5, we propose an application-level framework called
CollectionSwitch, that selects collection implementations at runtime to optimize
the time and memory performance of applications.

1.1.3 Efficient Parallelization of Element Processing via
Streams

The Java Stream library [52] provides a concise API for processing streams of ele-
ments in a similar fashion to the popularized map-reduce frameworks. The library
allows developers to process objects in parallel with a simple change of operators in
the pipeline. However, developers need to account for numerous factors to bene�t
from this parallel processing [110], which are di�cult and time-consuming to eval-
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1 Introduction

uate through manual analysis. Furthermore, if done incorrectly, the parallelization
of streams may lead to severe performance issues and incorrect behavior.

We address this problem in Chapter 6, with the introduction of the decision
support framework called StreamAssist. We leverage machine-learning models
learned from generated stream benchmarks, to report to developers the stream
pipelines that are likely to bene�t from parallelism, and the ones that are better
processed in sequence.

1.2 Contributions

In this work we present the following contribution:

1. Understanding the prevalence and impact of bad practices in Java
benchmarks - We perform the �rst large-scale empirical study of bad prac-
tices in the creation of Java benchmarks under the Java Microbenchmark
Harness (JMH) framework. We devise an automated tool that statically iden-
ti�es �ve bad practices in a benchmark source code. Using this tool, we
empirically investigate the occurrence of bad practices in Java-based open-
source projects and experimentally evaluate its impact on benchmark re-
sults. Our �ndings show that bad practices are prevalent in Java-based open-
source systems, and they often severely impact the quality of the benchmark,
leading to results that substantially deviates from the correct measurements.
This work is shown in Chapter 3 and was accepted to appear in [46].

2. Characterization of collections performance pro�le fromvarious col-
lection libraries - We conduct an empirical study on the usage and per-
formance of Java collections. We focus on comparing the performance of
non-standard collection implementations against the most commonly used
standard variants. Our results show that alternative variants outperform
standard collections on several usage scenarios. We devise a guideline that
can be used by practitioners to select variants for better execution time and
memory consumption of their applications. This is detailed in Chapter 4 and
was published in [43].

4



1.2 Contributions

3. An application-level framework that selects collection implementa-
tion at runtime - We describe the development of the CollectionSwitch.
Given an optimization criteria from developers, our framework identi�es
allocation sites that instantiate suboptimal implementations and selects op-
timized variants for future instantiations. We evaluate CollectionSwitch on
a series of synthetic benchmarks and real-world applications and observe
better runtime and memory usage on several cases, without incurring in a
noticeable monitoring overhead. This work is described in Chapter 5 and
was published in [42].

4. Adecision-support framework for e�cient parallelization of streams
- We propose a support-decision framework for e�ective stream paralleliza-
tion. Our framework leverages machine-learning models trained through a
series of stream-tailored benchmarks, to identify and report pipelines that
can be executed in parallel for better performance. In our evaluation, we
show that our trained models can be used to identify the optimal execution
mode of stream pipelines of real-applications. We present this work in Chap-
ter 6.

This thesis is partially based on several publications by the author. A list of
publications is presented in the reverse chronological order as follows:

• D. Costa, C.-P. Bezemer, P. Leitner, and A. Andrzejak. “What’s Wrong With My
Benchmark Results? Studying Bad Practices in JMH Benchmarks”. Transactions on
Software Engineering, 2019 (to appear)

• D. Costa and A. Andrzejak. “CollectionSwitch: A Framework for E�cient and Dy-
namic Collection Selection”. In: Proceedings of the 2018 International Symposium on

Code Generation and Optimization. CGO 2018. ACM, Vienna, Austria, 2018, pp. 16–
26. doi: 10.1145/3168825.

• D. Costa, A. Andrzejak, J. Seboek, and D. Lo. “Empirical Study of Usage and Per-
formance of Java Collections”. In: Proceedings of the 8th ACM/SPEC on Interna-

tional Conference on Performance Engineering. ICPE ’17. ACM, L’Aquila, Italy, 2017,
pp. 389–400. doi: 10.1145/3030207.3030221.
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1 Introduction

During his Ph.D studies, the author also contributed to the following publica-
tions that do not directly relate to the core topic of this thesis:

• M. Ghanavati, D. Costa, J. Seboek, D. Lo, and A. Andrzejak. “Memory and Resource
Leak Defects and their Repairs in Java Projects”. Empirical Software Engineering,
2019 (to appear).

• M. Ghanavati, D. Costa, A. Andrzejak, and J. Seboek. “Memory and Resource Leak
Defects in Java Projects: An Empirical Study”. In: Proceedings of the 40th Interna-

tional Conference on Software Engineering: Companion Proceeedings. ICSE ’18. ACM,
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and the basic concepts that shall be used throughout the thesis. In Chapter 3, we
present our empirical investigation of bad practices on Java benchmarks. Chap-
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2 Context of the Work and
Background

In this chapter, we establish the context of this work and introduce the elemen-
tary concepts and the terminology that will be used throughout the thesis. As our
work addresses three di�erent problems within the broad area of writing e�cient
code, our related work is partitioned into three di�erent areas. We refrain from
presenting the related work in this chapter. Instead, we describe the related lit-
erature after introducing the addressed problems and motivating our approaches,
within the following chapters.

The structure of this chapter is as follows: We start by positioning this work in
the context of academic research �elds in Section 2.1, by brie�y describing the
research areas this touches: empirical software engineering and software per-
formance engineering. Afterward, in Section 2.3, we describe the most relevant
performance-related components of the Java Virtual Machine that will be revis-
ited in later chapters. In Section 2.4 we acquaint the reader with the challenges
and methods for Java performance measurement. Then, in Section 2.4 we describe
the basics of Java collections and how selecting variants are important to optimize
Java applications. Lastly, we present in Section 2.5 an introduction to the Java
Stream API, together with a glimpse on the factors practitioners need to consider
when parallelizing stream pipelines.

2.1 Context of the Work
In general terms, this thesis focuses on aiding developers at writing e�cient code
by providing empirical assessments and methods for performance measurement
and optimization. Therefore, the work is situated on two research �elds: the em-
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pirical software engineering and performance software engineering. In the fol-
lowing, we introduce these two research �elds.

2.1.1 Empirical Software Engineering

Empirical Software Engineering (ESE) is an area of research that “emphasizes the
use of empirical methods in the �eld of software engineering” [119]. The area
focuses on aiding software engineering processes through collecting, analyzing,
assessing, and interpreting the data collected from software repositories. The in-
creasing availability of public and open-source repositories, championed by the
popularity of GitHub [68], has made Empirical Software Engineering not only ef-
fective but essential for producing high quality, low cost, and maintainable soft-
ware.

The method of mining software repositories is integral to the methodology used
in all studies in this thesis. In Chapter 3, the repository mining takes the center-
piece of the chapter, as we investigate the occurrence and impact of bad practices
on benchmark creation in Java. In the remaining chapters, the data extracted from
open-source repositories are used to identify patterns in software development
that will help us devise benchmarks, methods, and models that can be e�ectively
used to optimize real applications.

2.1.2 Software Performance Engineering

The Software (and Systems) Performance Engineering (SPE) is a research area that
encompasses methods, practices, and disciplines that can be used to ensure the
meet of non-functional software requirements, such as latency, throughput, and
memory usage [21]. It is a sub�eld of software engineering and includes the study
of topics such as performance measurement, performance modeling, benchmark
design, and runtime memory management.

In its core, this thesis is focused on the SPE research area. While we use the
empirical data to get insights on how developers perform certain performance-
related tasks, we use these insights to provide tools that help practitioners create
better benchmarks (Chapter 3), we devise benchmarks to model the performance
of commonly used libraries in Chapter 4, and we create tools that optimize the
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performance of running applications (Chapter 5) and report possible performance
optimizations (Chapter 6).

2.2 The Java Language Environment

This thesis is focused on analyzing and optimizing the performance of Java pro-
grams. The conceptual contributions presented in later chapters may generalize
to other programming languages in performance-related or similar tasks. On the
technical side, however, both tasks of performance analysis and optimization re-
quire specialization to be e�ective. Our work exploits the particularities of the Java
language environment that need �rst to be established to the reader. In this sec-
tion, we discuss the basic concepts of the components that have direct in�uence
on Java’s performance, namely the JIT Compiler, the Garbage Collector and the
Heap, and the Java Threads component. Such components will be referenced in
later chapters.

The Java language environment (or Java for short) is an object-oriented pro-
gramming language and support runtime environment created by James Gosling
[74] and released in 1996 by Sun Microsystems [96]. The language is class-based, as
each object state and behavior is de�ned in classes, and concurrent, giving native
support for concurrent programming and allowing developers to write applica-
tions that exploit multi-core parallelism.

Oracle acquired Sun Microsystems in 2010, becoming the primary developer
and maintainer of the Java language environment [139] to this date. Throughout
the years, Java has become one of the most popular programming languages in
the world, �guring at the top of most searched programming languages [34] and
consistently being the second most popular general-purpose language in Stack-
Over�ow [145]. An estimated 3 billion devices run Java today, including Android
devices, embedded systems, and Java servers.

Since its genesis, Java has had high performance as one of its design goals [140].
As stated in the introductory paper from Gosling and McGilton [74]: “To live in
the world of electronic commerce and distribution, Java must enable the develop-
ment of secure, high performance, and highly robust applications on multiple
platforms in heterogeneous, distributed networks”. This high-performance goal
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has shaped the conception and the evolution of the Java language and the runtime
system throughout the years, and made Java a solid choice for developing robust
and high-performance applications [94].

2.2.1 The Java Virtual Machine

The Java runtime environment was introduced with the slogan “Write Once, Run
Anywhere” (WORA) [124], illustrating the bene�ts of a cross-platform develop-
ment environment. That means that a compiled Java program can be executed on
di�erent platforms (that support Java) without needing any re-compilation. This
portability was realized by the introduction of an intermediate program represen-
tation (instruction set) called bytecode. Java programs are compiled to bytecode as
opposed to native machine-code, and the bytecode is then interpreted, compiled
and executed by a virtual machine.

The Java virtual machine (JVM) speci�cation describes an abstract computer
that reads and executes programs compiled into bytecode [115]. JVM speci�es what
a virtual machine implementation needs to provide to run bytecode programs, in-
cluding the execution engine and the dynamic memory management. Currently,
the HotSpot [138] is the de-facto implementation of the JVM speci�cation main-
tained by Oracle. We conduct all our analysis and experiments in this thesis with
the HotSpot JVM, and for the sake of simplicity, we here onwards refer to HotSpot
simply as JVM.

Figure 2.1 illustrates the JVM and its most important components. We focus on
covering the basics of the components highlighted in blue, as they have a direct
impact on the performance of Java applications.

JIT Compiler The Just-In-Time Compiler (JIT) is part of the JVM execution en-
gine and is responsible for compiling bytecode into native code for better perfor-
mance [3]. It di�ers from typical compilers as the compilation takes place during
the program’s execution. Before the introduction of the JIT compiler, the same
method bytecode had to be interpreted into native machine code every time this
method was called, incurring in a repeated penalty of a relatively lengthy transla-
tion process [49]. The inclusion of JIT Compiler changed this picture, by allowing
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Figure 2.1: Illustration of the JVM architecture. JVM is composed of three subsystems, the
Class Loader Subsystem, Runtime Data Areas and the Execution Engine. We
highlight in blue the components referenced throughout this thesis, as they
have a direct in�uence in the performance of Java applications.

the JVM to compile methods into native machine code and reusing this compiled
version on future method calls [12].

While the compiled code is substantially faster than the interpreted counterpart,
compiling code at runtime is a costly process [3]. The JVM needs to focus this
compilation on methods in which the bene�t of the performance gain surpasses
the cost of analyzing and compiling it to native code. JVM addresses this problem
through a process called pro�le-guided optimization [11], essentially keeping track
of the most called methods (typically through sampling) and restricting the analy-
sis and compilation to such cases. Furthermore, JIT Compiler also applies a series
of optimizations while compiling the code, such as inlining methods, eliminating
dead-code and unrolling loops [24].

Garbage Collector and the Heap The Garbage Collector (GC) is a component
of the JVM responsible for the automatic management of dynamic memory [87].
In Java, objects created during the program’s execution are typically allocated in
the heap1, a globally shared and dynamically sized memory space. The GC is re-
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sponsible for the memory deallocation, identifying objects no longer in-use and
removing them from the heap.

On the one hand, the GC takes away the burden of managing memory from
developers, allowing them to focus on other aspects of software development. On
the other hand, the GC needs to actively search for unused objects at runtime to
free up memory for future allocations. This process consumes resources and might
lead to severe performance issues if GC executes for extended periods [26]. In Java,
poorly managed memory also leads to performance problems on execution time,
as the GC needs to intervene and frequently remove unused memory.

Java Threads Java provides built-in support for threads, the concurrent and
lightweight paths of program execution, and thread synchronization [91]. Devel-
opers can make use of this concurrent support to exploit parallelism and asynchro-
nism in their applications. Threads can be created by either extending the Thread

class or by de�ning a Runnable class in a very simple manner. On top of the
language and environment support, Java ships with a series of libraries tailored
for the concurrent environment. In particular, the Fork/Join framework [59] is a
framework designed to facilitate parallel processing of a task by dividing it into
sub-tasks recursively and processing it with a pool of threads. This framework
paved the environment for libraries with friendly-support for parallelization, such
as the Java Stream [52], discussed in details in Section 2.5.

2.3 Measuring Java Performance

Software performance has never been less transparent [83]. Developers can no
longer rely solely on theoretical models to predict the performance of their data
structures and algorithms. Java programs are compiled through multi-staged com-
pilers [3], continuously optimized at runtime through analytical methods and heuris-
tics [157, 170], and orthogonal factors such as memory layout may have a more
substantial impact on performance than a worse asymptotic algorithm [98].

1If an object is guaranteed to have a very restricted local scope, JIT might be able to allocate parts
or the entire object in the stack memory as a form of optimizing the allocation and object’s
access time. This optimization is called Scalar Replacement.
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Performance experiments o�er an empirical take on performance analysis. It is
reasonable to expect that by measuring the performance through experiments we
assess the ground truth of a system’s performance. Unfortunately, the same factors
that make performance less transparent for developers also a�ect performance
tests and may guide developers to the wrong conclusions.

A virtually-managed environment such as the JVM introduces new sources of
non-determinism into the performance experiment, which are of less concern on
compiled languages such as C and C++. Such new factors include heap size, the
memory management strategy, the class loader, the JIT Compiler, thread scheduler,
and dynamic optimizations. Consequently, much evidence shows that it is hard to
write performance experiments that produce reliable results [16, 66, 78, 128].

A large bulk of optimizations are expected to happen at the start time of a Java
application [62, 66]. First, the JVM loads classes on demand. The core classes of a
program are expected to be load in the very beginning and are seldom unloaded.
Second, several JIT optimizations will also happen soon after the program starts.
There is an inherent trade-o� with the JIT Compiler between the initial perfor-
mance loss caused by the compilation of bytecode and the long-term gain of the
compiled version. Moreover, most JIT Compilers have a tiered optimization strat-
egy, compiling methods to di�erent levels of optimization, gradually moving them
from low to high levels of optimizations at each tier.

Consequently, Java applications have an unstable initial phase, as JVM has to
warm-up its optimization heuristics and mechanisms, followed by a more stable
(and typically faster) overall performance. The performance at this initial phase is
called start-up performance and the performance at the second and stable phase is
named steady-state performance [62]. In this work, we are interested in measuring
and optimizing the steady-state performance of applications and will focus on this
aspect of Java performance in the following paragraphs. For more information on
how to measure start-up performance, we refer to the work of Georges et al. [62].

2.3.1 Measuring Steady-state Performance

By measuring the steady-state performance of an application, we focus on the
long-running performance, past the initial set of optimizations. This is the in-
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dicated method for measuring the performance of applications that have a total
running time far longer than the start-up time [62].

There are two challenges in measuring the steady-state performance of an ap-
plication. First, how to determine when the program reaches the steady-state per-
formance? Each application and input is expected to stabilize at a di�erent point in
time. Second, how to ensure that the same steady-state is reached across multiple
VM invocations? Non-deterministic factors may play a role in optimizing appli-
cations, for instance, optimization heuristics that rely on sampling might select
di�erent methods even when running the same program with identical inputs.

In the in�uential “Statistically Rigorous Java Performance Evaluation”, Georges
et al. [62] propose the following methodology for evaluating the steady-state per-
formance of Java benchmarks.

S1 Consider p VM invocations, each VM invocation running at most q bench-
mark iterations. Suppose that we want to retain k measurements per invo-
cation.

S2 For each VM invocation i, determine the iteration si where the target ap-
plication reaches the steady-state performance. To determine this, we verify
the iteration which the coe�cient of variation (CoV 2) of the k iterations falls
below a threshold.

S3 For each VM invocation, compute the mean xi of the k benchmark iterations
under steady-state.

xi =

si∑
j=si−k

xij.

S4 Compute the con�dence interval for a given con�dence level across the com-
puted means xi from the di�erent VM invocations. The overall mean equals
x =

∑p
i=1 xi, and the con�dence interval is computed over the xi measure-

ments.

2The coe�cient of variation (CoV) is de�ned as the standard deviation s divided by the mean x
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At the end of the experiment, we have the mean xi computed across a single VM
iteration, and can compute the con�dence interval across multiple VM invocations,
as they are, in fact, independent of each other.

Unless otherwise speci�ed, we use this methodology throughout the thesis with
the aid of Java performance frameworks. We also use third-party benchmarks that
focus on steady-state performance evaluation. The DaCapo benchmark [15], for
instance, implements such methodology and reports results after the benchmark
has converged to the steady-state performance.

2.3.2 Java Microbenchmark Harness (JMH)

Several frameworks have been proposed to facilitate specifying and executing
steady-state performance measurements in Java. The Java Microbenchmark Har-
ness (JMH) is a commonly used framework [135], that allows users to specify a
benchmark through Java annotations. Practitioners can create benchmarks simi-
larly to unit tests in the JUnit framework [167]. Listing 2.1 shows an example of
a simple benchmark that measures the performance in terms of execution time
and throughout of the Math.log method call. Every public method annotated with
@Benchmark is executed as part of the benchmark suite.

Listing 2.1: Example of a JMH benchmark measuring the performance of the Math.log
method call. In this case, JMH will e�ectively execute two benchmarks, one
for x = 10 and the second for x = 1000.

@Param({"10.0", "1000.0"})

private double x;

@Benchmark

public void mathLogPerformance() {

return Math.log(x);

}

The JMH framework is designed with an intricate knowledge of JVM optimiza-
tions and can help benchmark designers in avoiding related pitfalls. For example,
JMH provides the Blackhole class, which consumes return values and circumvents
dead code elimination [105]. Besides, JMH provides the infrastructure for measur-
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ing steady-state performance and aggregate results with rigorous statistical esti-
mates. In Figure 2.2 we illustrate the execution �ow that JMH uses to evaluate
benchmarks in four major steps.

1. Initially, an optional benchmark �xture is invoked. The benchmark �xture
is the code which initializes the benchmark environment (e.g., by �lling a
data structure with test data).

2. Afterward, a de�ned number of warmup iterations are executed. These are
identical to benchmark iterations, but their results are discarded. Warmup
iterations are intended to bring the JVM into the steady state.

3. In the actual benchmark phase, a de�ned number of benchmark iterations
is executed. Each iteration takes a de�ned amount of time (typically 1s),
during which the framework repeatedly calls the method annotated with
@Benchmark (a single invocation in JMH parlor) and records all con�gured
performance counters (e.g., throughput, execution time, latency).

4. One entire run of steps 1-3 (executing the benchmark �xture, zero to many
warmup iterations, one to many benchmark iterations) is called a trial. By
default, JMH executes each trial in a separate VM, and developers may spec-
ify how many forks each benchmark will sequentially execute (e.g., we present
an example with two forks in Figure 2.2).

After the last iteration, JMH reports a summary of the results to the user and/or
saves the results into an CSV or JSON �le. Parameters (e.g., the int x in Listing 2.1)
can be used to easily de�ne di�erent benchmark instances of the same method. In
the example in Listing 2.1, JMH will e�ectively execute the mathLogPerformance

benchmark twice; once with x = 10.0 and once with x = 1000.0.

2.4 Selecting Java Collections

Selecting e�cient data structures is a crucial part of writing e�cient code. In Java,
developers are commonly exposed to data structures in the form of collections [141].
Collections, also referred to as containers, are data structures that group multiple
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Figure 2.2: JMH execution �ow for a benchmark con�gured with two forks, 6 benchmark
warmups and 8 benchmark iterations. In this example, the �xture methods are
con�gured to be executed before and after each trial.

objects or primitives into a single unit, allowing them to be managed as a group.
A collection uses one or more data representations to e�ciently store, manipulate
and provide access to the held elements [51]. For instance, an ArrayList is a list
implemented with an array representation, while the LinkedHashMap uses both
a hash-table and linked-list to provide an ordered map with amortized constant
element access time.

Each collection implements a set of operations de�ned by an abstract data type
[116], hereby denoted as the collection abstraction, which binds a semantic contract
for a collection. For instance, the list abstraction de�nes collections that maintain
the insertion order and provide access to elements by their position. The map
abstraction, on the other hand, de�nes collections that map keys to values, where
no duplicated keys are allowed and a key can only map to one value.

The semantic contract imposed by each collection abstraction establishes some
ground rules for each collection but leaves the implementation open for di�erent
approaches. The map abstraction, for instance, can be implemented using data rep-
resentations such as hash-tables (HashMap), red-black or AVL trees (TreeMap), or
even arrays (ArrayMap), as long as the contract established by the map abstraction
is not broken.
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Listing 2.2: Example of collection abstractions and variants in Java code. Variant here pre-
sented are standard implementations from java.util package.

// Array-backed list variant
List<E> list = new ArrayList<>();

// Hash-backed map with double-linked nodes variant
Map<K, V> map = new LinkedHashMap<>();

// Red-black Tree-backed set
Set<E> set = new TreeSet<>();

In practice, this abstraction takes the form of commonly used Java interfaces,
such as the java.util.Map. By using these interfaces, developers may switch to
di�erent variants of the same abstraction, without a�ecting the functionality of
their code, and may do so to explore functional and non-functional properties of
di�erent implementations. Listing 2.2 shows examples of variants of list, map and
set abstractions, and how they are normally de�ned in Java code.

2.4.1 Collections Libraries

Collection libraries are so important for software development, that programming
languages such as Java, C#, Python, or Ruby include them as a part of the core
language environment.The standard implementation of collections in Java is the
Java Collections Framework, or JCF [137]. Albeit the name, JCF is more closely re-
lated to a library and was introduced in the early stages of Java development (Java
1.2). The library provides implementations of all major collection abstractions in
several variants, e.g., ArrayList, LinkedList and Vector are all JCF variants of the
list abstraction.

While JCF o�ers developers stable and reliable collection implementations, nu-
merous alternative libraries have been developed to provide further options to
practitioners [60, 69, 112, 171]. Alternative libraries supply variants with features
not supported by JCF (e.g., support for primitive-collections) or richer and domain-
speci�c APIs, such as multisets that are designed to count frequencies of elements.
Furthermore, alternative libraries also supply variants to replace commonly-used
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Figure 2.3: Conceptual view of object collections with the example of an ArrayList, and
terms related to memory usage.

JCF implementations, providing lower memory overhead and/or faster operations.
We perform an in-depth analysis of alternative Java libraries in Chapter 4.

2.4.2 Selecting Variants

During software development, programmers select di�erent collection variants for
numerous reasons: more expressive APIs, additional features, library reliability
and performance. In this thesis, we focus on selecting collection variants for better
performance, i.e., lower memory consumption and/or faster operations.

Collections use metadata to track, access and manipulate its elements via spec-
i�ed APIs. Naturally, this metadata incurs extra memory consumption (collection
overhead) in addition to the memory used by its elements (element footprint). In
Figure 2.3 we illustrate the collection overhead, element and collection footprint
of an ArrayList.

Typically in data structures, execution time and memory consumption have a
strong inverse relation: faster collections tend to use more memory and variants
with low-footprint su�er from less e�cient operations. In some cases, however,
variants with lower footprint may have better memory locality, thus boosting time
and memory performance. To illustrate both scenarios, we present in the follow-
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ing, an example of collection variants that have clear time-space trade-o� relations,
and a second case where alternative variants might positively impact both time and
space performance of an application.

Memory-Time Trade-off: Arrays vs. Hashed-Tables

As the name suggests, ArrayMap and HashMaps use respectively arrays and hash-
tables to represent their key-map element relations. At �rst glance, it may appear
ill-advised to use array-backed implementations of maps. Array-backed maps con-
sume a small fraction of the memory required for the hash-backed counterparts
but rely on binary searches, posing a considerable time penalty in element lookups.
The hash-table essentially gives amortized constant lookup time, at the cost of
higher memory consumption, caused by the hash-table overhead.

However, when holding a small number of elements (typically at most hun-
dreds), performing binary search on an array have comparable performance to
hash-table lookups, due to e�ects of caching and memory locality. This motivated
the Android JDK to provide variants of ArrayMap [8] and ArraySet [9], as mobile
applications are sometimes optimized for memory consumption.

When Memory gains Performance: Objects vs. Primitives

If a collection contains wrappers of primitive objects like Integer, Long, or Double,
primitive collections can be used to reduce the collection memory footprint. The
key di�erence is that a primitive collection stores data directly in an array of prim-
itives (int, long, double), instead of using an array of objects. Figure 2.4 illustrates
an ArrayList of integers as a primitive collection on the right-side, compared to the
standard object collection (left). The primitive variant reduces collection footprint
in two ways.

1. The primitive collection needs only a single reference to an array of primi-
tives instead of an array of references. By itself, this reduces the memory-
footprint of the collections in 4-bytes/8 bytes per element depending on the
JVM con�guration.
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Figure 2.4: Conceptual view of object collections vs. primitive collections with the example
of ArrayList, and terms related to memory usage.

2. Each primitive data element (type int) requires only 4 bytes instead of 16
bytes of an object Integer.

In the example of Figure 2.4, using an int-primitive collection can slash memory
footprint of collections by a factor of 4. Furthermore, primitive-collections often
also improve the execution time of operations, by considerably improving mem-
ory locality and making better use of the processor’s cache. We investigate this
performance gain in Chapter 4.

2.5 Parallelizing Java Stream Pipelines

The introduction of lambda expressions in Java 8 marked a shift in Java devel-
opment paradigm [122], enabling functional programming in the Object Oriented
environment and paving the path for expressive APIs such as the Java Stream [52].
The Java Stream API provides the support for writing functional-style operations
to process a stream of elements. Element processing is described as a pipeline
of aggregate operations (e.g., distinct, filter), aiming at a declarative program-
ming style: the code focus on “what” it does as opposed to “how”. To illustrate the
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Listing 2.3: Example of two code snippets that compute the sum of the weights of distinct
red widgets. The �rst uses the traditional procedural approach, while the sec-
ond exploits the expressiveness of functional programming

// #1 Procedural form
int sum = 0;
Set<Widget> distinctWidgets = new HashSet<>(widgets);// removing duplicates
for(Widget widget: distinctWidgets) {

if(widget.getColor() == RED) {
sum += widget.getWeight();

}
}

// #2 Stream pipeline (functional) form
sum = widgets.stream()

.distinct()

.filter(b -> b.getColor() == RED)

.mapToInt(b -> b.getWeight()).sum();

expressiveness of stream pipelines, we present in Listing 2.3 an example of two
semantically equivalent code snippets. In the �rst expression, we observe a proce-
dural form that uses a for-loop and a Set to remove duplicates. The second code
snippet, using Java Stream, declares each process as an operator on a pipeline.

2.5.1 The Java Stream Library

The Java Stream Library implemented in the java.util.stream package [52] is
used to process sequences of objects and primitives. A stream is essentially a view
on a sequence of elements organized by an underlying data structure, a (stream)
source. The stream source can be any object that is associated with a Splitera-

tor [161], object for traversing and partitioning elements of a data structure (sim-
ilar to Iterators). Typical stream sources are collections, arrays, and I/O channels.
Developers may process this sequence by de�ning a stream pipeline of functional
operations, such as filter, map, and others.

Operations are either intermediate or terminal. An intermediate operation, such
as mapToInt, produces another stream as a result, while a terminal operation (e.g.,
sum, count) results in another object, e�ectively marking the end of the stream
pipeline. Each operation produces a result without modifying its source and is
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typically implemented in a lazily fashion, i.e., operations are only computed when
the entire pipeline is de�ned, enabling cross-operation optimizations.

2.5.2 Parallelizing Stream Pipelines

On the level a single element in a stream, the operations are performed in the
same order as de�ned in the pipeline. The entire stream, however, may be pro-
cessed in parallel by several threads. A developer can achieve this by simply
replacing the stream method to parallelStream or parallel methods. For the
pipeline in Listing 2.3 this would require changing the �rst code line to wid-

gets.parallelStream(). The task of handling the parallel processing of a stream
of elements is delegated to the Fork/Join framework [109], that divides the process-
ing into smaller tasks and submits it to a pool of threads.

On the surface, using parallel stream processing is rather programmer-friendly.
However, there are no guarantees that parallel stream pipelines will yield better
performance than sequential ones nor even lead to a correct result. The correctness
of the parallel stream depends primarily on behavioral parameters [52], i.e., the
functions or predicates used to process each element [103]. In Listing 2.3, e.g., the
lambda expression b -> b.getWeight() is such a behavioral parameter.

Potential performance improvement due to parallel stream processing depends
on a larger number of factors than the behavioral parameters: the number of el-
ements to be processed, the cost of processing each element, the pipeline opera-
tions, the data type of the stream source and output. All such factors make the
manual assessment of parallelizing stream pipelines a time-consuming and error-
prone endeavor. We propose an automated approach for analyzing and reporting
the possible bene�ts of parallelizing stream pipelines in Chapter 6.
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3 A Study of Bad Practices on
Java Benchmarks

As we have established in Chapter 3, measuring the performance of Java appli-
cations is a challenging undertaking. Academia has devised methods for sound
performance measurement, and the industry has provided tools that allow the cre-
ation of �ne-grained performance test suites. However, due to the complexities of
the Java Virtual Machine, developers still struggle with writing sound benchmarks
that accurately represent the performance of the code under test. In this chapter,
we present a large-scale empirical study of bad practices in the creation of Java
benchmarks under the Java Microbenchmark Harness (JMH) framework.

Contributions. In this chapter, we present the following contributions:

I A tool that leverages static analysis to identify �ve bad practices in JMH bench-
mark creation automatically.

II An empirical investigation of the prevalence of bad practices in 123 open-
source Java projects.

III An experimental evaluation of the impact of each bad practice in multiple case
studies.

IV An assessment of the receptivity of �x-patches to projects with benchmarks
largely impact by bad practices.

Reference. This chapter is based on the following manuscript accepted to ap-
pear in [46].
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3.1 Introduction & Motivation

In large-scale applications, performance issues found during production may cost
millions of dollars in maintenance expenses and lost clients [75]. Therefore, prac-
titioners are in a constant battle to identify performance issues during the devel-
opment phase, where issues can be cheaply �xed and without public scrutiny.

To that aim, practitioners need to test the performance of their system during
development. Similar to functional testing (e.g., through integration and unit tests),
performance testing should be done at di�erent granularities. The ultimate goal of
performance testing is to achieve a good end-to-end performance. Even though the
impact of the performance of each component on the end-to-end performance of
a system is not necessarily linear, obvious performance issues at the component-
level are likely to ripple through to the system-level. Hence, practitioners must
�rst ensure that the performance of each component of the system is adequate.

Benchmarking and performance unit testing are two related approaches to as-
sess the performance of program code. Benchmarks evaluate the performance of
a (typically small) code segment [5, 107, 135, 154]. In contrast to stress or load
tests, which test the end-to-end performance of a system, benchmarks are rela-
tively short-running and aim at measuring the �ne-grained performance of spe-
ci�c units of program code. For instance, a benchmark may measure method-level
execution times of a class, the performance of a speci�c data structure, or the im-
plementation of an algorithm.

The outcome of a benchmark run is a set of one or multiple performance coun-
ters, such as the execution time or the throughput of an operation. A developer
or quality engineer uses these performance counters to compare di�erent imple-
mentation alternatives or detect slowdowns (i.e., by statistically comparing the
performance counters produced in a new version of the product with counters
produced by previous releases). Performance unit tests similarly operate on small
code segments, but they entail real target values, akin to asserts in unit testing for
functional defects [50, 163].

We have brie�y described in Section 2.3, the challenges of performance mea-
surement in Java and how academy and industry have both provide tools and
methodologies for accurate steady-state performance evaluation. Recall that ex-
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perts developed the Java Microbenchmark Harness (JMH) to provide the sca�old
to measure steady-state performance and an API to deal with some of the dynamic
optimizations the JVM performs in the code. While the JMH o�ers a reliable in-
frastructure for benchmarking, the responsibility of creating a reliable and correct
benchmark remains with the developer.

Unfortunately, developers still struggle with the creation of sound JMH bench-
marks that represent the performance of the target code [154]. Previous work es-
tablished several pitfalls developers need to avoid [62] and the execution results
of real-life benchmarks of large open source projects can vary signi�cantly across
repeated executions in identical environments [107].

In this chapter, we conduct the �rst empirically study on bad practices of writing
JMH benchmarks that can lead to misleading benchmark results. In particular, we
attempt to answer two key open-questions:

RQ1 How frequently do bad JMH practices occur in real-life open source
software? To assist developers with avoiding bad practices, we implement
a plugin (SpotJMHBugs [44]) for the SpotBugs static analysis tool. SpotJMH-
Bugs can automatically identify the bad JMH practices and is used in this
study to identify the bad practices in a set of 123 open-source Java projects.

RQ2 What is the impact of the identi�ed bad JMH practices on the bench-
mark results? We manually �x benchmarks found across six projects and
measure the impact of the bad practices by comparing the results before and
after the �x.

3.2 Related Work

The accurate performance measurement of a software is a problem that has contin-
uously attracted research attention in the past decades. We categorize the related
work into three categories: 1) pitfalls of benchmarking, 2) errors in performance
evaluation, and 3) methodologies for robust performance analysis.
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3.2.1 Pitfalls of Benchmarking

A major challenge of correct benchmarking is to prevent misleading results due
to the compiler and JVM optimizations, including constant folding, loop unrolling,
and method inlining [5]. Frameworks such as JMH [135] are designed with an
intricate knowledge of JVM optimizations and can help benchmark designers in
avoiding related pitfalls.

Especially close to our study on bad practices in benchmark creation are ap-
proaches and methodologies which ensure the correctness of benchmarks or per-
formance unit tests [5, 83, 97, 154]. Rodriguez-Cancio et al. [154] proposed a
combination of static and dynamic analysis and code generation to synthesize
benchmarks evaluating code segments extracted from large applications. Their
tool, named AutoJMH, generates payloads which prevent dead code elimination
and constant folding, optimizations which can lead to common mistakes in bench-
marks.

In the investigation that follows, we consider a broader set of problems related
to JMH, including more complex ones, e.g., using accumulation to consume loop
computation in a benchmark. We also focus on detecting such bad practices via a
static analysis tool and conduct empirical studies on the prevalence of bad practices
and the impact of their �xes.

Further work focusing on the correctness of benchmarking discusses the issues
that can hinder the experiment or mislead the evaluation in Java [83], or describe
how JMH can be used to avoid typical pitfalls [97]. Additional contributions in this
area propose methods for generating benchmarks for scenarios in which JVM opti-
mizations are not harmful [106, 149]. Kuperberg et al. [106] proposed an automated
solution for benchmarking any set of APIs, e.g., the Java Platform API. Contrary
to the approaches mentioned above, this solution speci�cally induces the JIT opti-
mizations to “obtain realistic benchmarking results”. Pradel et al. [149] introduced
SpeedGun, a technique which can automatically discover performance regressions
in thread-safe classes. Also, in this scenario, JVM optimizations do not a�ect the
results (assuming that both code versions are optimized).
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3.2.2 Performance evaluation errors

A large number of work studies the reasons for incorrect or biased performance
evaluation results. A commonly identi�ed problem is non-determinism of indi-
vidual executions caused by the complexity of the runtime environments, in par-
ticular, the JVM [16]. Another source of performance variations is the OS Jitter
phenomenon [131], e.g., the impact of the thread a�nity values and settings on the
execution time.

While the impact of non-determinism on the results can be addressed by repe-
tition of experiments and rigid statistical procedures [25, 62], a more serious prob-
lem is a measurement bias caused by presumably innocuous factors [129]. Such
so-called hidden factors can take various forms, such as link order of code seg-
ments/libraries, or UNIX environment size [29].

Mytkowicz et al. [129] conducted one of the �rst comprehensive studies on hid-
den factors and their causes and proposed a method for their detection (via causal
analysis) and for avoiding them (setup randomization). Curtsinger et al. [50] ad-
dressed the impact of the layouts of code, stack, and heap objects at runtime on the
performance. They developed a tool for randomizing the memory layout, which
is combined with statistical techniques such as ANOVA for sound performance
optimization (in particular related to the impact of compiler optimization levels).

Other studies reported di�erent types of hidden factors. Kalibera et al. [99]
demonstrated the impact of the initial state of the system on the performance re-
sults. Harji et al. [79] showed that the Linux kernel had multiple performance-
related regressions, resulting in performance variation as much as 45% between
two subsequent versions. Consequently, the choice of the kernel version might
have a signi�cant impact on the benchmark results. In an earlier version of the
JVM, changing the names of symbols signi�cantly a�ected the cache miss count
and thus the performance of applications [77]. In another study of Java perfor-
mance, the authors reported that simply restarting the virtual machine could cause
performance variations as high as 3% [66].

Our work focuses on the incorrect usages of the JMH framework which can
result in measurement biases. The reasons for such errors are in most cases un-
wanted JVM optimizations. Contrary to the approaches to avoid hidden factors
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such as setup randomization, unwanted optimizations can be eliminated via a thor-
ough understanding of the optimization process and correct benchmarking code.
Nevertheless, detection of measurement biases due to novel optimizations or JVM
internals remains an open challenge, similarly to generic detection approaches for
hidden factors.

3.2.3 Methodologies for robust performance analysis

Prior work proposed methodologies, frameworks, and speci�c techniques to en-
sure correctness and robustness of performance evaluation results in the face of
non-determinism inherent in complex computer systems. In most cases, this work
is complemented by empirical studies or literature analyses which demonstrate
the problems.

Georges et al. [62] focus on the data analysis aspects of the performance evalua-
tion of Java programs. Their study of reported Java performance results available
at that time uncovered a need for a statistically rigorous evaluation methodology in
the face of the non-determinism of the Java runtime. They proposed and evaluated
several statistical measures to address this problem while considering practical as-
pects, such as best practices for quantifying startup and steady-state performance.
The conclusions of this work were partially extended by Bulej et al. [25], where
the authors showed the pitfalls of applying basic statistical methods to data from
a real performance benchmark (SPECjbb2015).

Blackburn et al. [16] showed how the complexity and a large number of degrees
of freedom of the Java runtime system could lead to misleading performance re-
sults. They argue that benchmark designers must use relevant workloads, princi-
pled experimental design, and rigorous analysis to produce meaningful results, and
illustrate their reasoning on the design choices for the DaCapo benchmark [15].

Other work focused on speci�c aspects of performance evaluation. Alexander
et al. [6] proposed using nonlinear time series analysis techniques to capture the
complex dynamics of computer performance data. Kalibera and Jones [100] ad-
dressed the trade-o� between the cost of experiments (in terms of the number of
repetitions) and the statistical validity of the results. They introduced a mathemat-
ical model for adjusting the number of repetitions to the level of uncertainty and
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evaluate it using the DaCapo and SPEC CPU benchmarks. De Oliveira et al. [132]
proposed DataMill, a distributed infrastructure for rigorous performance evalua-
tion with a particular focus on eliminating the impact of hidden factors via their
automated variation. Moreno and Fischmeister [127] discussed a simple technique
to eliminate the systematic error introduced by the get_current_time() system
call, a relevant problem in benchmarking.

The work we present in the following focuses on the particular domain of Java
benchmarks, which is a relatively new class of evaluation methods. Our study
quanti�es the prevalence and impact of misuse of the JMH benchmarks, attempt-
ing to raise the awareness of correct benchmarking. We also provide a set of rec-
ommendations for practitioners and researchers as a “soft” methodology for robust
performance analysis.

3.3 Bad JMH Practices in Benchmark Creation

The art of designing sound benchmarks is a hard craft to master. Reading and be-
coming acquainted with the JMH documentation and API is the �rst of many steps,
in the long path for mastering JMH benchmark creation. JMH o�ers in its docu-
mentation a series of 38 samples benchmarks [142] that illustrate coding pitfalls
and bad JMH practices that can a�ect the reliability and correctness of a bench-
mark. In the remainder of this section, we discuss �ve of the most important bad
JMH practices described in the JMH documentation (see Table 3.1 for an overview).
All code examples in this section were taken from the JMH samples.

Table 3.1: Bad JMH practices collected from the JMH documentation.
ID Bad JMH Practice Description Undesired E�ect

RETU Not using a returned computation Dead code optimization
LOOP Using accumulation to consume values inside a

loop
Loop optimization

FINAL Using a final primitive for benchmark input Constant folding
INVO Running �xture methods for each benchmark

method invocation
JMH overhead

FORK Con�guring benchmarks with zero forks Pro�le-guided optimization
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3.3.1 RETU: Not consuming a result from a method call

Description: A benchmark typically calls one or more methods from the main ap-
plication code. If such a method returns a result that is not used in the benchmark,
the JVM may consider the called method “dead code” and eliminate the call either
partially or entirely.

Symptoms: Because the call to the benchmarked method was eliminated, the
code will appear faster than in actual usage. Listing 3.1 shows an example of
the RETU bad JMH practice and two possible solutions. In the benchmark mea-

sureWrong(), Math.log(x1) is redundant and may be eliminated by the JVM.
Solution: Every object that is returned by a method called directly from the

benchmark should be used in the benchmark method. In the benchmark mea-

sureRight1(), Math.log(x1) is used as a return of the benchmark method, and
therefore, not eliminated. Alternatively, the JMH infrastructure o�ers a BlackHole
object which can be used to prevent dead-code elimination by consuming the re-
sult. As shown in measureRight2(), Math.log(x1) is consumed by a BlackHole

object.

Listing 3.1: Example of the RETU bad JMH practice and two possible solutions.

private double x1;

@Benchmark
public double measureWrong() {

Math.log(x1); // Call is redundant and will be removed by the compiler
}

@Benchmark
public double measureRight1() {

return Math.log(x1); // JIT will not remove the call as it has no
// guarantee the return is not used

}

@Benchmark
public double measureRight2(Blackhole bh) {

bh.consume(Math.log(x1)); // Blackhole object tricks the JIT compiler
// into "thinking" the result is being used

}
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3.3.2 LOOP: Using accumulation to consume loop
computation

Description: Developers often have to design benchmarks that measure a method
call within a loop. If the method call returns a numeric variable, it is intuitive to
accumulate the returned objects as a way of avoiding dead-code elimination [105].
However, this leads to another set of JVM optimizations that optimizes the code
beyond what would be expected in real usage.

Symptoms: The code appears faster than in actual usage, as the loop can be ex-
tensively optimized by the JVM. Listing 3.2 shows an example of the LOOP bad
JMH practice. The measureWrong() method executes every work() method as in-
tended, but the JVM is able to unroll the loop and merge operations between two
distinct work() calls. Such optimizations are only performed because accumula-
tion is used instead of a proper consume method, and will not hold in a scenario
where the application actually uses or stores the return of each method call.

Solution: The user should avoid using accumulation as a method of consuming
the numeric return and use the Blackhole facilities instead. The measureRight()

method shows how a loop can be benchmarked safely.

Listing 3.2: Example of the LOOP bad JMH practice and a possible solution.

@Benchmark
public int measureWrong() {
int acc = 0;

for (int x : xs) {
// Loop can be unrolled and multiple work() calls can be merged
// optimizations that would not be possible without the += accumulator
acc += work(x);

}
return acc;

}

@Benchmark
public void measureRight(int x, Blackhole bh) {

for (int x : xs) {
bh.consume(work(x));

}
}
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3.3.3 FINAL: Using final primitives for benchmark input

Description: If the JVM realizes that the result of a computation is predictable, it
will optimize the computation (i.e., using constant folding [173]), thereby a�ecting
the runtime of the benchmark.

Symptoms: Because the constant computation was folded, the code will appear
faster than in actual usage. Listing 3.3 shows an example of the FINAL bad JMH
practice. The measureWrong() method does a computation using the Math.PI con-
stant, making the result of the computation predictable and hence foldable.

Solution: Benchmark inputs should always be read from non-�nal primitive in-
stance �elds. The measureRight() method in Listing 3.3 conducts the computation
in a proper way, since its result is not predictable at compile time.

Listing 3.3: Example of the FINAL bad JMH practice and a possible solution.

private double x = Math.PI;
private final double wrongX = Math.PI;

@Benchmark
public double measureWrong() {

// Computation is predictable
return Math.log(wrongX);

}

@Benchmark
public double measureRight() {

// Computation is not predictable
return Math.log(x);

}

3.3.4 INVO: Using invocation-level fixture methods

Description: Fixture methods are methods that are used to setup or tear down a
benchmark. In Figure 3.1 we illustrate the three levels at which JMH allows �xture
methods to run: (1) before/after a benchmark trial, (2) before/after a benchmark
iteration and (3) before/after a benchmark method invocation. In most cases, it is a
bad JMH practice to use the third option, as the overhead of the JMH infrastructure
might be large compared to the actual benchmark runtime.
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Benchmark MethodsFixture Methods
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Figure 3.1: JMH setup execution �ow when con�gured to run (1) before a benchmark trial,
(2) before each benchmark iteration and (3) before each benchmark invocation.
The third option has several drawbacks and is classi�ed as a bad practice (INVO)
for short-running benchmarks.

Symptoms: The JMH infrastructure must add a timestamp to each method invo-
cation to calculate its execution time, as the time spent in the �xture methods is ex-
cluded from the performance measurement. On short-running benchmarks, which
typically run for less than a millisecond, JMH saturates the system with timestamp
requests, o�setting the measurements. According to the JMH documentation, this
level might also omit hiccups from time measurement, introducing unexpected
and surprising results. Listing 3.4 shows an example of the INVO bad practice.
As �xture methods are shared among benchmarks of the same class, the overhead
caused by JMH will o�set the measurements of all benchmarks, including the ones
that do not access objects created in the setup/teardown methods.

Solution: Every invocation-level �xture method should be checked to make sure
that it is necessary to be called at the invocation level. This necessity is rare and
can be avoided in most situations by including the contents of the �xture method
in the benchmark method (causing less overhead).

Listing 3.4: Example of the INVO bad JMH practice.
// This method will be executed before and after every benchmark invocation
@TearDown(Level.Invocation)
public void check() {
assert x > Math.PI : "Nothing changed?";

}
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3.3.5 FORK: Configuring benchmarks with zero forks

Description: The JVM is good at pro�le-guided optimization, i.e., optimization that
is based on the usage pro�le of a method [11]. However, such optimizations should
be avoided in benchmarking, since a pro�le that was optimized for one benchmark
may be reused across other benchmarks. In addition to the pro�le-guided opti-
mization, running a non-forked benchmark may cause the JMH infrastructure to
omit JVM options and compiler hints. These options and hints could be paramount
to ensuring the correctness of the benchmark results. To avoid pro�le-guided op-
timization and risk a�ecting the execution correctness, each benchmark should be
executed in its own VM. Running a benchmark per VM is the JMH default behavior,
however, it is possible to override this behavior using the @Forks annotation.
Symptoms: The code can appear faster or slower than in actual usage, depending

on the optimized pro�le that was used by the JVM. The Listing 3.5 contains an
example of a case where pro�le-guided optimization leads to unreliable benchmark
results.

Solution: Do not override the default JMH behavior for running a benchmark
trial per VM unless there is a very good reason to do so.

Listing 3.5: Example of the FORK bad JMH practice.
// Forces JMH to execute the benchmark in the same JVM invocation
@Fork(0)
@Benchmark
public int measureWithNoForks() {

return work();
}

3.4 Methodology

We devise the methodology of this study focusing on three main goals:

1. Identify how frequently bad JMH practices occur in open source software
projects (Section 3.5).
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Figure 3.2: Overview of our study approach. Each step of our methodology is detailed in
the respective sections.

2. Study the performance impact of the used bad practices on the benchmark
results of those projects (Section 3.6).

3. Validate our �ndings with the developers of those projects, by proposing
patches to address the identi�ed bad practices (Section 3.7).

We present in Figure 3.2 the overview of our methodology, further detailed in
the following sections.

3.4.1 Identifying Instances of Bad JMH Practices

To identify the usage of bad JMH practices in the studied projects, we built a static
code analyzer, SpotJMHBugs, for the JMH benchmarks. Our analysis tool was
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implemented as a plugin for the SpotBugs1 tool, the successor of FindBugs [58].
SpotJMHBugs is a rule-based tool that analyzes Java byte-code, identi�es bad JMH
practices, and reports them to the developer. We discuss the SpotJMHBugs tool in
more detail in Section 3.5.1.

3.4.2 Collecting Data

Below we present our methodology for collecting the data for our study on (1) the
frequency of bad JMH practices and (2) the performance impact of these bad JMH
practices on the benchmark results of the projects. The full list of projects and data
sets that we base our results on can be found in our online appendix [45].

Data Collection for Studying the Freqency of Bad JMH Practices

We queried the 2017 GitHub snapshot (the latest snapshot available at the time
of our study) using Google Bigquery2 to identify open source Java projects that
contain at least one JMH benchmark. Concretely, we query for source �les that
import org.openjdk.jmh.annotations.Benchmark and have at least one method
annotated with @Benchmark. This led to a full data set of 839 projects.

In a second step, we remove forked projects to avoid biasing our analysis to-
wards popular programs’ characteristics. Projects such as RxJava have 16 forked
versions in our dataset (aside from the original from ReactiveX) and would distort
our results. The set without forked projects contains 506 projects. Because our
SpotJMHBugs tool analyzes JVM bytecode, it requires a compiled project to ana-
lyze. As manually compiling and executing tests for a large number of projects is
extremely time-consuming, if at all possible [107], we select a subset of 123 projects
that could be built automatically or with minimal intervention using Gradle or
Maven for our study. Figure 3.3 shows the descriptive statistics of the selected
projects in terms of their number of stars and subscribers. Our selected projects
cover a range of popular and less-popular projects.

1https://spotbugs.github.io/
2https://cloud.google.com/bigquery/
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Figure 3.3: Distribution of stars and subscribers of the 123 projects used to identify bad
JMH practices.

Data Collection for Studying the Performance Impact of Bad JMH
Practices

In the second part of our study, we study the performance impact of the bad JMH
practices (Section 3.6). We limit our project selection further for this part of our
study, as it requires manually addressing the instances of the identi�ed bad JMH
practices (and therefore requires knowledge about the project). To study the per-
formance impact of bad JMH practices, we select projects that match the following
criteria:

• The project is in the top-3 projects ranked by the number of stars on GitHub
for a speci�c bad JMH practice.

• The project contains at least 2 instances of the identi�ed bad JMH practice.

These selection criteria help us focus our e�orts on popular projects and projects
with multiple instances of a bad JMH practice, thereby reducing the e�ort that is
necessary to address bad JMH practices.

Table 3.2 gives an overview of the projects for which we study the performance
impact of the followed bad JMH practices. Initially, our set of projects was com-
posed of three projects per bad JMH practice. However, after careful inspection,
we decide to remove two projects initially considered for the impact assessment of
the FORK bad practice: oopsla15-artifact and benchmark-arraycopy. The �rst
project was created as a paper artifact for the OOPSLA conference and the second
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Table 3.2: Selected projects per bad JMH practice. We select the top-3 most starred projects
with at least two instances of each bad JMH practice. Column # BP shows the
total number of bad practice instances that were identi�ed in the three projects.

Selected Projects # BP

RETU netty gs-collections logging-log4j2 54
LOOP netty druid logging-log4j2 29
FINAL netty druid logging-log4j2 9
INVO netty druid h2o-3 18
FORK pgjdbc 2

Total number of evaluated instances of bad JMH practices 112

is a series of benchmarks created to evaluate a speci�c library function. Hence,
both are not good examples of production-quality open-source software, which is
the primary subject of our study. Table 3.2 shows the list of projects ultimately se-
lected for the impact assessment. Note that some projects (e.g., the netty project)
were selected for multiple categories. For the performance impact study, we se-
lected 6 projects which contain a total of 93 instances of the 5 studied bad JMH
practices (see Section 3.3).

3.4.3 Assessing the Performance Impact of Bad JMH Practices

To assess the performance impact of bad JMH practices, we manually analyze the
instances of the bad JMH practices that we identi�ed in the 6 projects in Table 3.2.
We then generate an alternative, “�xed” version of the benchmarks, by removing
the bad practices according to the solutions proposed by the JMH documentation
as stated in Section 3.3. It is of paramount importance that in our �x we do not
introduce arti�cial latency or modify what has been measured in a benchmark.
Most �xes are non-intrusive, and require simple code refactoring, such as consum-
ing variables, removing the �nal modi�er from a primitive �eld, or some level of
benchmark recon�guration.

However, one solution for removing the INVO bad practice required us to intro-
duce the code from �xture methods inside the benchmark. We classify this partic-
ular solution as intrusive and benchmarks �xed with such solution are evaluated
using a separate methodology.
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Assessing the Impact of Non-Intrusive Fixes. At the end of our experiment
we collect the resulting performance counters (in particular, we focus on the exe-
cution time of the benchmarks). If a bad JMH practice is irrelevant to the bench-
mark result, both the original and �xed version should lead to similar performance
counter distributions. If the distributions di�er signi�cantly, we conclude that the
bad practice impacts the benchmark result.

Assessing the Impact of Intrusive INVO Fixes. In the case of the INVO �x, we
also collect and compare both performance counter distributions. If inserting the
setup/teardown code inside a benchmark method makes the benchmark faster to
execute, the JMH overhead takes longer than the time spent on �xture methods. In
this case, we conclude that the benchmark was impacted by the INVO bad practice.

To test whether the distributions of performance counters for the original ver-
sion and �xed version are statistically signi�cantly di�erent, we used the Wilcoxon
non-parametric test [176] with a signi�cance level of α = 0.01. The Wilcoxon test
only indicates whether the distributions have a statistically signi�cant di�erence.
However, the test does not indicate whether the di�erence is large enough to be no-
ticeable in practice. To quantify the di�erence, we use Cli�’s Delta e�ect size [33].
We use the following common thresholds [155] for interpreting the e�ect size:

E�ect size d =



negligible(N), if |d| ≤ 0.147

small(S), if 0.147 < |d| ≤ 0.33

medium(M), if 0.33 < |d| ≤ 0.474

large(L), if 0.474 < |d| ≤ 1

We consider the benchmark as impacted if it has at least one benchmark instance
where the performance counters of the �xed version di�er signi�cantly from the
original, with a non-negligible e�ect size. In the particular case of the INVO intru-
sive �x, we consider the benchmark as impacted if all benchmark instances yield
performance counters comparable or faster than the original version.

We further de�ne the benchmark e�ect size, as the highest absolute e�ect size
observed in its instances. The reasoning behind this de�nition is that a benchmark
should yield consistent results on all de�ned input parameters. A single set of

41



3 A Study of Bad Practices on Java Benchmarks

parameters in a benchmark that is impacted by a bad JMH practice, is su�cient to
mislead an analysis and a�ect the benchmark quality.

3.4.4 Evaluating Fixed Versions and Results with Developers

To evaluate the identi�ed instances of bad JMH practices, and their assessed im-
pact, we manually submitted pull requests to six open source projects (selected
based on where we found the largest impact on the benchmark results). These
pull requests contained the �xed versions that we constructed as part of our study.
The goal of this step was two-fold. Firstly, we wanted to see whether the develop-
ers agree with our assessment that the original benchmarks produced misleading
results. Secondly, we wanted to validate whether the developers agree with the
�xes we implemented for the benchmarks.

3.5 Identifying Bad JMH Practices

In this section, we present the results of our �rst RQ: How frequently do bad JMH
practices occur in real-life open source software?

3.5.1 The SpotJMHBugs Tool

To investigate the occurrences of bad JMH practices in Java projects, we �rst derive
a set of rules that can be used to identify such practices via static code analysis. We
present a brief description of each derived rule in Table 3.3. Bad JMH practices that
relate to the benchmark con�guration, such as INVO and FORK are easily veri�able
and have unique static rules. For instance, FORK requires a simple check on the
occurrence of a @Fork annotation with a value of 0.

The RETU, FINAL and LOOP bad JMH practices are related to the source-code
and manifest themselves in di�erent ways. In such cases, we use heuristics to
identify scenarios in which the undesired JVM optimizations could happen. For
instance, the RETU bad practice may occur when a variable is not properly con-
sumed in the benchmark or when developers ignore the return of a static method
call. Our rule for identifying unconsumed variables in a benchmark is based on
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the following principle. A local variable V is considered consumed if at least one
of the following criteria are met:

1. V is stored into a class �eld.

2. V is returned at the end of the benchmark method.

3. V is consumed by a JMH Blackhole object.

4. There exists another variable V ′ that has a data dependency on V and V ′

is a consumed variable. To check if such a dependency exists, we build a
data-dependency graph [174], and verify the existence of a path between V
and V ′ in the graph.

Our rule reports every local variable that does not ful�ll the above mentioned crite-
ria and is therefore prone to dead-code elimination. For an explanation of the other
rules, we refer the reader to the source-code documentation of SpotJMHBugs [44].

Our tool can be executed through a batch command using Maven, Gradle or Ant,
or integrated with the Eclipse IDE. If used in conjunction with Eclipse, the warn-
ings about bad JMH practices are shown directly in the editor view. SpotJMHBugs
restricts its analysis to classes that contain at least one method annotated with
@Benchmark, as bad JMH practices are only potentially harmful in the context of
JMH benchmarks. Calls to methods outside of benchmark classes are skipped,
keeping the analysis time short and primarily dependent on the JMH benchmarks,
which tend to be a very small fraction of the overall application code base [111,
163].

Table 3.3: Static rules used to identify bad JMH practices.
Bad JMH Practice Static Rule

RETU Variable not consumed in the benchmark
Ignored return of static method calls

LOOP Numerical variable is accumulated in a loop
FINAL Final and non-static primitives in @State classes
INVO @Setup/@Teardown with invocation level
FORK @Fork with a value of zero
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3.5.2 Results

35 out of 123 projects (28%) contained at least one instance of a bad JMH practice.
Table 3.4 shows the number of identi�ed instances of bad JMH practices per project
together with the number of benchmarks potentially a�ected by such instances. If
we limit our consideration to the 49 projects with more than 10 benchmarks, the
share of projects with at least one bad JMH practice increases to 51%. The num-
ber of benchmarks potentially a�ected by bad JMH practices varies considerably
per project. In 23 projects we identi�ed at most 10 instances, while we identi�ed
more than 10 instances in 12 other projects. In total, SpotJMHBugs identi�ed 331
instances of bad practices in our dataset.

Table 3.4: Distribution of identi�ed instances of bad JMH practices in all 123 projects and
on a subset of 49 projects containing at least 10 benchmarks.

# of Identi�ed Bad JMH Practices
Dataset 0 1 2 3 4 5 6-10 +10

All projects 88 9 6 2 1 1 4 12
Projects with 10+ benchs 24 3 4 1 1 0 4 12

LOOP was the most commonly identi�ed bad JMH practice, with a presence
in 13% of the studied projects. Table 3.5 summarizes the number of identi�ed in-
stances for all bad practices. The second most commonly identi�ed bad JMH prac-
tice was the RETU bad practice, occurring in 12% of the studied projects. FINAL
and INVO occurred in respectively 9 (7%) and 10 (8%) of the studied projects. The
FORK bad practice was identi�ed in only 3 projects.

Table 3.6 gives a detailed overview of the distribution of the bad practices across
the top 25 projects with the largest number of benchmarks in their benchmark suite
in our dataset. Overall, the distribution of identi�ed bad JMH practices appears to
be very particular to each project. For example, although RxJava has 215 bench-
marks, SpotJMHBugs did not identify any bad JMH practice in the project. On
the other hand, we identi�ed instances of four di�erent bad JMH practices in the
benchmarks of netty. In total, we found 22 bad practice instances in this project
alone. Aside from FORK (which was found in only three projects) every bad JMH
practice was found in at least six projects.
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Table 3.5: The number of identi�ed instances of bad JMH practices for all 123 studied
projects. The ‘Total’ column shows the number of instances found in all projects
per bad JMH practice.

Bad JMH Practice Total # of Projects % of Projects

RETU 89 15 12.2
LOOP 128 16 13.0
FINAL 25 9 7.3
INVO 82 10 8.1
FORK 7 3 2.4

RQ1. How frequently do bad JMH practices occur in real-life open
source software?

28% of the studied projects contained at least one instance of a bad JMH
practice. Our results show that the studied bad JMH practices occur fre-
quently in open source projects: LOOP was the most frequently ocurring
bad JMH practice, but aside from FORK, all bad practices appeared in at
least 6 projects.

3.6 Impact of Bad JMH Practices

In this section, we present the results of our second RQ: How frequently do bad
JMH practices occur in real-life open source software?. To answer the aforemen-
tioned question, we �x the identi�ed bad JMH practices in selected projects (Sec-
tion 3.6.1) and compare the benchmark times of the �xed and original benchmarks
(Section 3.6.2).

3.6.1 Generating Fixed Versions

We aim to evaluate the impact on performance of each bad JMH practice sepa-
rately. Thus, in projects that had multiple identi�ed bad practices, we generate
multiple �xed versions, each containing �x-patches for a single bad practice. For
instance, we identi�ed three bad JMH practices in druid, thus we generate three
�xed versions. In total, we �x 93 instances of bad JMH practices, generating 13
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Table 3.6: The number of instances of bad JMH practices that were found in the 25 studied
projects with the largest benchmark suites. The projects in bold were selected
for an experimental evaluation of the impact of bad JMH practices instances in
the next step of the study. The “Benchs” column denotes the number of @Bench-
mark-annotated methods. We also included the h2o-3 project in the impact as-
sessment which was not in the listed top-25 projects.

.

Project Stars Benchs RETU LOOP FINAL INVO FORK

gs-collections 1652 451 47
logging-log4j2 256 346 5 7 5
RxJava 23558 215
oopsla15-artifact 16 213 4 1 2 12 3
netty 9746 159 2 14 2 4
reactive-streams 106 157 2
druid 4743 148 8 2 2
JCTools 1053 92 1 2
golo-jmh-benchmarks 4 92
zipkin 5627 74
microbenchmarks 7 67 17 5
xodus 248 66 7 18
lab-java8stream 4 64 6
mini2Dx 137 55
fast-select 3 48
jenetics 183 47 8 1
rtree 482 42
byte-buddy 1495 39
ca�eine 2414 38 1
pgjdbc 322 35 2
java-�nal-benchmark 10 34
streamalg 15 34 4
pinot 1475 31 16
cache2k-benchmark 12 28 1
template-compiler 12 27

h2o-3 1943 18 6 12

�xed versions for 6 selected projects. Our concrete process for generating �xes
di�ers per bad JMH practice. We detail how �xed versions were generated when
discussing the results for each bad practice.
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3.6.2 Running Benchmarks

As mentioned in Section 2.3, JMH helps to mitigate the uncontrolled factors by
allowing developers to con�gure the number of warmup iterations, benchmark
iterations, and forks. This con�guration is highly important to achieve reliable and
repeatable results in a benchmark, e.g., too few warmup or benchmark iterations
may yield a large variance in the performance counters of some benchmarks [107].

To avoid building our analysis on unreliable benchmark con�gurations, we re-
peat each experiment 5 times, while keeping the original benchmark con�guration
(i.e., the number of warmup and benchmark iterations, and forks). Our experi-
ments generate a median of 780 performance counters (min=100, max=14,400) for
each benchmark instance. Finally, we also alternate runs between the original and
�xed versions to reduce the chances of circumstantial external in�uence impacting
only one version of the program.

We conducted our experiments on a computational server with an E5-1660-
3.3GHz CPU, with 6 physical cores and 64 GB RAM using Linux 3.16.0-53. The
benchmarks use the JVM HotSpot 64 bits and jdk1.8.0_65 as the Java version. Aside
from the basic operating system functionality, no other process was running dur-
ing the execution of our experiments.

3.6.3 False Positives

We describe in this section, for each bad JMH practice, the criteria for �ltering
false-positives. False positives are bad JMH practices that were wrongly reported
by our tool, due to (1) limitations in our rules or (2) needing to understand the
intent behind the benchmark creation.

Table 3.7 shows the number of false positives found (the ‘FP’ column) per bad
JMH practice. Upon manual analysis of the 112 bad practice instances that were
initially identi�ed by SpotJMHBugs, we found that 19 (17%) were false positives
reported by our tool. Note that the remaining 93 bad JMH practice instances could
a�ect 105 benchmarks, as a single instance of INVO and FORK may a�ect multiple
benchmarks. We further detail the criteria used to �lter the encountered false
positives.

47



3 A Study of Bad Practices on Java Benchmarks

Table 3.7: Identi�ed bad JMH practice instances instances characterized as false-positives
(FP) by further manual inspection. The ‘TP’ column shows the correctly iden-
ti�ed cases by SpotJMHBugs and ‘# Benchs’ shows the number of benchmarks
that are potentially a�ected by the bad JMH practices.

Bad JMH Practice Identi�ed FP TP # Benchs

RETU 54 11 43 43
LOOP 29 4 25 25
FINAL 9 2 7 7
INVO 18 2 16 25
FORK 2 0 2 5

Total 112 19 93 105

RETU : 11 of 54 instances of RETU were considered false positives after manual
inspection. In those cases, developers inserted the variable inside a conditional
check, throwing an exception in case of an unexpected value. This can be done by
a call to an assert method, or through an explicit if clause followed by throwing an
exception. This is a valid strategy for checking the value of a variable and prevent-
ing dead code elimination, and is currently not considered by our SpotJMHBugs
tool.

LOOP : In 5 of 29 cases, the accumulation of a numeric variable in a benchmark
loop was considered a false positive after manual inspection. In these cases, the
accumulation was an integral part of the benchmark, and not only used to consume
the return of a method call.

FINAL: From the initial set of 9 FINAL cases, 2 were considered a false positive.
The �nal primitives were used in a method unrelated to benchmarks.

INVO: From the initially reported 18 INVO bad practices, 2 could not be removed
or reduced with our methodology. Both scenarios are comprised of �xture methods
that are required to execute on every invocation, and run for too long (longer than
1 ms) to be included in the benchmark without o�setting the measurements. These
constitute correct con�guration of invocation level �xture methods, and are hence
false positives.

FORK : We found no false positives in the two instances of FORK reported by
SpotJMHBugs.
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3.6.4 Results

In this section, we describe the methodology used to generate the �xed version
and the results of the impact analysis for each of the studied bad JMH practices.
For each bad practice, we also detail a speci�c case where removing the bad JMH
practice had a signi�cant impact on the performance counters of the benchmarks.

Table 3.8: The number of benchmarks that were impacted by the bad JMH practices which
were removed through non-intrusive �xes. In the ‘E�ect Size’ column we cat-
egorize the observed impact after removing the bad JMH practice in small (S),
medium (M) and large (L) e�ect sizes, according to Cli�’s delta.

Bad JMH Project Benchmarks E�ect Size
Practice Impacted % S M L

RETU

netty 1/1 100.0 1
gs-collections 9/37 24.3 1 8
logging-log4j2 5/5 100.0 1 4
Total 15/43 34.8 1 1 13

LOOP

netty 10/10 100.0 10
druid 6/8 75.0 1 5
logging-log4j2 7/7 100.0 1 2 4
Total 23/25 92.0 1 3 19

FINAL

netty 1/2 50.0 1
druid – –
logging-log4j2 4/5 80.0 4
Total 5/7 57.1 4 0 1

INVO

netty 12/12 100.0 1 11
druid 2/3 66.7 2
h2o-3 6/6 100.0 2 2 2
Total 20/21 95.2 2 3 15

FORK pgdbc 5/5 100.0 5

Table 3.8 shows the analysis of the impact of bad JMH practices for all non-
intrusive �xes, and Table 3.9 shows the result of removing the INVO bad practices
through the intrusive �x. In both tables we show how often a benchmark was im-
pacted (the ‘Impacted’ column) by removing the bad JMH practice and the ‘E�ect
Size’ of the observed di�erences compared to the original version.
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Table 3.9: Benchmarks impacted by the INVO bad practice, �xed by adding the �xture code
inside the benchmark (intrusive �x).

Bad JMH Project Benchmarks E�ect Size
Practice Impacted % S M L

INVO netty 3/4 75.0 3

Impact of RETU

Fix Patches. We can ensure that unconsumed variables will not be eliminated by
the JIT in two ways: (1) we can return a variable at the end of the benchmark
method, or (2) we can call Blackhole.consume() to consume the variables. We
apply the �rst patch to every void benchmark with a single unconsumed variable,
as we consider this solution more elegant (which is relevant as we contribute a
subset of �xes to the projects, as discussed in Section 3.7). In all other cases, we
consume the variable using a Blackhole object.

Results. As shown in Table 3.8, we evaluate 43 benchmarks containing the bad
JMH practice. In our results, 15 of 43 benchmarks (34%) were impacted by �xing
the RETU bad practices. For 13 benchmarks the di�erence has a large e�ect size.
The di�erences for the other two impacted benchmarks have smaller e�ect sizes.

Listing 3.6: Source-code of a benchmark a�ected by the RETU bad practice in the logging-
log4j2 project.

@Benchmark
public void baseline() {

consume(bytes); // return is not used
}

private static long consume(final byte[] bytes) {
long checksum = 0;
for (final byte b : bytes) {

checksum += b;
}
return checksum;

}

The highest impact after �xing a RETU bad practice came from a baseline bench-
mark of logging-log4j2 presented in Listing 3.6. Developers called a static
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Figure 3.4: Performance counters before and after �xing a RETU bad JMH practice in
3 benchmarks in the AbstractStringLayoutEncoding class from logging-
log4j2. The e�ect size is large for the baseline benchmark, and medium and
small for the other 2 benchmarks.

self-implemented consume method, to consume the computation, but ignored the
method return. After changing the code to consume the computation, the result-
ing performance counters showed that the execution time increased by 32% (see
Figure 3.4), which indicates that the developers originally failed to appropriately
take JIT optimization into account. In addition, other benchmarks from the same
class (e.g., usAsciiGetBytes) were also impacted by our �x, although with smaller
e�ect sizes.

Impact of RETU bad JMH practice

35% of the benchmarks containing the RETU bad practice were signi�cantly
impacted by the bad practice. In 30% of the cases, the impact had a large
e�ect size.

Impact of LOOP

Fix Patches. We refactor the accumulation inside a loop into a Blackhole.consume

method call.
Results. Table 3.8 shows how often an instance of the LOOP bad JMH practice

impacted a benchmark. 23 of 25 benchmarks (92%) had their performance coun-
ters impacted by �xing this bad JMH practicea. For 19 of these 23 impacted bench-
marks, the di�erence in execution time before and after removing the LOOP bad
practice has a large e�ect size.
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Listing 3.7: Source-code of a benchmark in druid project a�ected by the LOOP bad prac-
tice.

@Benchmark
public void readContinuous(Blackhole bh) {

ColumnarLongs columnarLongs = supplier.get();
int count = columnarLongs.size();
long sum = 0;
for (int i = 0; i < count; i++) {

sum += columnarLongs.get(i);
}
bh.consume(sum);
columnarLongs.close();

}

To illustrate, we present a benchmark class from the druid project, where we
observed the largest e�ect sizes in our experiment. LongCompressionBenchmark

has two benchmarks de�ned: the �rst benchmark reads sequentially from an array
(see Listing 3.7) while the second randomly skips array positions. The �rst example
can have its loop unrolled and the operations merged by JIT, arti�cially speeding-
up the benchmark with a median of 22%, and up to 9 times in one extreme case. We
present the impact of our �x of the sequential read benchmark in Figure 3.5 for the
execution with all 20 benchmark parameters. The second benchmark cannot easily
be optimized by JIT, and was not impacted by our �x (see our online appendix [45]).

Impact of the LOOP bad JMH practice

23 out of 25 benchmarks containing the LOOP bad JMH practice were im-
pacted by the bad practice. For 19 benchmarks the impact had a large e�ect
size.

Impact of FINAL

Fix Patches. To �x FINAL bad JMH practices, we simply removed the final modi�er
of primitive variables.

Results. As shown in Table 3.8, we found that 5 of 7 (71%) benchmarks had their
performance counters impacted by �xing the FINAL bad JMH practice. The e�ect
size of the impact was large for one benchmark, and small in the other four cases.
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Figure 3.5: Performance counters before and after the �x of an instance of the LOOP bad
practice in a druid benchmark. The e�ect size of the di�erences is large for all
20 benchmark parameters (i1 to i20).

The four benchmarks with small e�ect size measure the execution time of logging
an event in the logging-log4j2 project. Developers used a �nal boolean variable
to check whether to perform further logging operations as depicted in Listing 3.8.
JVM can optimize the �rst check of the if-clause away. The impact of such an
optimization is statistically noticeable, and may be relevant in some practical use
cases, but the absolute impact of the bad FINAL bad JMH practice is considerably
lower than for the previously discussed bad JMH practices (see Figure 3.6).

Impact of FINAL bad JMH practice

5 out of 7 benchmarks were impacted by the FINAL bad practice, but the
impact typically has only a small e�ect size.

Listing 3.8: Source-code of a benchmark a�ected by FINAL bad practice in the logging-
log4j2 project.

private final additive = true;
//Method called by a benchmark
private void logParent(final LogEvent event) {

if (additive && parent != null) {
parent.log(event);

}
}
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Figure 3.6: Performance counters before and after the �x a FINAL bad practice on 3 bench-
marks in logging-log4j2. The e�ect size is small for all 3 benchmarks.

Impact of INVO

Fix Patches. The process of �xing the INVO bad JMH practice requires both the
analysis of the benchmark code and a preliminary set of experiments. The JMH
documentation [142] explicitly mentions the requirement of an ad-hoc evaluation
of the invocation level usage.

We �rst determined which objects need to be created or cleaned up on every
invocation. Every object that does not require this was moved to a �xture method
with Level.Iteration. Then, we ran a set of preliminary experiments to iden-
tify �xture methods that run in less than one millisecond, which we de�ne as
short-running. In such cases, we moved the �xture method code into the relevant
benchmark method, as suggested by the JMH documentation. We made sure to
never refactor class �elds into local variables to prevent the JVM from performing
further optimizations. The JVM can identify if a local variable is accessed in a re-
stricted scope through a static analysis technique called Escape Analysis [18] and
avoid allocating the object in the heap through Scalar Replacement [].

SpotJMHBugs reported 16 INVO instances, which a�ected 25 benchmarks in to-
tal. In 21 benchmarks, the invocation level �xture could be removed or reduced
without adding code to the benchmark method (non-intrusive �x). In the remain-
ing 4 benchmarks, we added the setup/teardown code inside the benchmark (in-
trusive �x).

Results of the non-intrusive �x. Table 3.8 shows the impact analysis for instances
of the INVO bad practice that could be removed without changing the benchmark
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Figure 3.7: Performance counters before and after the non-intrusive �x for the INVO bad
practice on 3 benchmarks from CodecOutputListBenchmark class. The e�ect
size is large for all benchmarks, each evaluated with 2 sets of parameters (i1
and i2).

code. In our evaluation, 20 of 21 (95%) benchmarks had their performance counters
impacted by the INVO bad practice, and in 15 benchmarks the impact had a large
e�ect size.

For instance, the CodecOutputListBenchmark class from the netty project had
its �xture methods unnecessarily con�gured to invocation level. The created ob-
jects were not modi�ed during the benchmark execution and could instead be in-
stantiated on every iteration. After our �x, every benchmark executed on average
three times faster (see Figure 3.7).

Results of the intrusive �x. As shown in Table 3.9, 3 of 4 benchmarks had sig-
ni�cantly faster performance counters after moving the setup code inside of the
benchmark. This speedup indicates that the JMH overhead was considerably higher
than the time spent in the setup phase.

Figure 3.8 shows the comparison of the performance counters in three of the
benchmarks. The benchmarks were up to 20% faster after our �x. More impor-
tantly, such benchmarks were de�ned in a single class HeadersBenchmark, which
contained nine other benchmarks that were indirectly a�ected by the invocation
level �xture. Therefore, our �x eliminated the JMH invocation overhead from the
remaining nine benchmarks as well.
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Figure 3.8: Performance counters before and after the �x for 3 benchmarks that had their
INVO bad practice removed through an intrusive �x.

Impact of INVO bad JMH practice

23 out of the 25 benchmarks that used the INVO bad practice were miscon-
�gured which impacted their performance counters. Including the setup
code in the benchmark itself, actually accelerated benchmark execution in
3 of 4 cases.

Impact of FORK

Fix Patches. Benchmarks con�gured with zero forks can be recon�gured by mod-
ifying the annotation @Fork or by overriding the fork parameter of JMH directly
when starting the benchmark through the command line. We opt for the �rst
approach in our study (as it allows us to �x the bad practice directly in the source-
code).

Results. We evaluated two instances of the FORK bad JMH practice, which con-
�gured the fork parameter for �ve benchmarks (see Table 3.8). All �ve benchmarks
were impacted by the FORK bad JMH practice. In all cases, the di�erence in exe-
cution time after removing the FORK bad practice had a large e�ect size.

In our evaluation, the AddingPaddingZeroes class from pgjdbc showed the high-
est impact after our �x, with di�erences of up to three times (see Figure 3.9).
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Figure 3.9: Performance counters before and after �xing the FORK bad practice in the
AddingPaddingZeroes benchmark of the pgjdbc project. The impact of remov-
ing the FORK bad practice had a large e�ect size in all three instances.

Impact of FORK bad JMH practice

All �ve benchmarks con�gured with zero forks had their performance coun-
ters largely impacted by removing the FORK bad practice.

3.7 Submitting Pull Reqests

After evaluating the impact of bad JMH practices, we submitted a number of pull
requests to the maintainers of a subset of the studied projects. In this study, the
purpose of submitting the pull requests are twofold: (1) To validate our bad JMH
practice detection and impact assessment with the benchmark creators, and (2) to
contribute to open-source projects by �xing potentially misleading benchmark im-
plementations.

We restricted our pull requests to the cases where our analysis has shown that
the e�ect size of removing the bad JMH practice was large. This limited our e�orts
to benchmarks where misleading results could have consequences on the project’s
performance. We also refrained from submitting a pull request for one benchmark
from the pgjdbc project, because this benchmark did not evaluate project code, but
only compared the performance of bitwise operations instead. Table 3.10 shows
a description of the pull requests that we submitted to each project, per bad JMH
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practice. In total, our pull requests applied changes to 57 benchmarks across 6
open-source projects.

Table 3.10: Pull requests submitted to developers of studied open-source projects. Column
Ref links the Github pull-request and Issue description, while column Status
shows how developers received our patch.

Ref Project Bad JMH # of Status
Practice Benchmarks

[36] gs-collections RETU 23 Accepted
[38] logging-log4j2 RETU 5 Accepted
[41] druid LOOP 4 Accepted
[40] druid INVO 2 Accepted
[39] h2o-3 INVO 2 Accepted
[35] netty INVO 16 Accepted
[37] pgjdbc FORK 5 Rejected

Total 57

Accepted pull requests. 6 of 7 issued pull requests were well received and accepted
by developers and maintainers of the studied projects. In these pull requests, de-
velopers agreed on merging the recommended patch into the main branch. In one
case, a developer mentioned having previously identi�ed such unsafe loops, but
never had the chance to �x it [41]. In another case [40], the developers agreed
with the �x but asked to remove the benchmark altogether instead since it was
not in use anymore. The gs-collections project has the largest benchmark suite,
with almost every class making a good use of Blackhole and variable sinking op-
tions. Still, we found 23 cases of the harmful RETU bad JMH practice, �xed by our
patch [36].

Rejected pull requests. The only rejected pull request was the patch that recon-
�gured the @Fork parameter from zero to one. The developers acknowledged that
con�guring a benchmark with zero forks could lead to misleading results, but jus-
tify that such con�guration was only used to debug the benchmark in the IDE. Fur-
thermore, the pull request was not accepted and merged into the pgjdbc project
for two reasons: (1) The benchmarks were not part of the continuous integration
process and are executed on a case-by-case basis, thus would not impact the qual-
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ity of the main product and (2) the developers intend to remove JMH from the
project due to licensing issues.

3.8 Discussion

We now discuss the implications of our results for software developers and re-
searchers, as well as threats to the validity of our study.

3.8.1 Implications

Our results show that existing JMH benchmarks even in prominent open source
software systems contain bad practices that impact the benchmark results.

Although well-documented in research [62] as well as in the JMH documenta-
tion, many open source developers still appear to be struggling to correctly ac-
count for the many intricacies of benchmarking Java applications. The fact that
our pull requests containing �xed benchmarks have been merged back in 6 of 7
cases indicates that developers generally care about the bad JMH practices we have
presented (i.e., they appear to not be cases of conscious trade-o�s), but often fail
to avoid them in practice. This should be addressed in the following orthogonal
ways:

Improve developer training and documentation Based on our results, we
speculate that the information that developers currently have is not e�ective in
guiding them towards rigorous benchmarking solutions. One reason may be that
without detailed knowledge of the inner workings of the JVM and just-in-time
compilation, many bad JMH practices may appear obscure and unimportant to de-
velopers. It is possible that developers are aware that their code contains bad JMH
practices according to the documentation, but fail to see how these bad practices
impact their own projects. Improving this understanding is di�cult, but may re-
quire more explicitly and extensively discussing the e�ects of bad practices (for ex-
ample in the JMH documentation) rather than only listing what they are. However,
ultimately, better developer training with regards to performance engineering for
Java applications will be required.
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Improve developer tooling In addition to training, better tooling should be
provided to help developers avoiding bad JMH practices. Our own tool, SpotJMH-
Bugs, is a good starting point. As a SpotBugs plugin, SpotJMHBugs is easy to
integrate into standard IDEs and can be used already during development to point
out bad JMH practices. Another angle may be to extend JMH itself to, for instance,
analyze the con�guration input and benchmark code before the execution of the
benchmarks. Through this analysis, JMH could produce warning messages when
it discovers con�gurations or benchmark code that appears to contain bad JMH
practices (similar to what it already does for the FORK bad practice). A signi�cant
advantage of this approach is that at runtime, JMH has access to a much richer set
of metrics than our static analysis approach to determine whether any given exe-
cution is likely to lead to trustworthy benchmark results. For instance, JMH knows
how many warmup iterations, benchmark iterations, and forks are actually being
executed, and can use statistical power analysis to evaluate if this con�guration is
trustworthy given the benchmark value dispersion it observes.

Studying approaches for automatic benchmark repair In our work, we
have manually �xed a number of instances of bad JMH practices. However, in
doing so, it has become evident that for a subset of bad practices, (e.g., LOOP,
FINAL and RETU) �xes actually only require a fairly static and simple transforma-
tion of the code. Future studies should investigate automatic benchmark repair,
which could help to �x bad JMH practice instances without direct developer in-
volvement. Such a tool would have a large positive impact on performance testing
practices, as it (1) could be employed to provide widespread �xes of the many in-
stances of bad JMH practices we have identi�ed in our study, and (2) act as another
tool for developer training. That is, such an automatic benchmark repair tool could
educate developers in how a rigorous implementation of their benchmark would
look.

3.8.2 Threats to Validity

The external validity concerns the generalizability of our work. One threat is that
we selected open source projects from GitHub only. Future studies are necessary to
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identify the frequency and impact of bad JMH practices in other types of projects,
such as industrial projects.

In addition, our study focused on JMH benchmarks. While JMH has become one
of the most popular benchmarking frameworks for JVM-based languages (such as
Java, Scala and Clojure), future studies are necessary to investigate whether our
�ndings hold for other benchmarking frameworks in Java and other programming
languages. In addition, future studies should investigate the impact of these bad
practices when using non-default JIT compilers, such as the Graal compiler.

The internal validity concerns the con�dence that we have in our �ndings. One
threat is that we consider the �xes that are suggested by the JMH documentation as
the current ‘industry-standard’ for addressing bad JMH practices. It is possible that
these JMH-proposed �xes themselves impact the performance of the benchmark.
Regardless, our tool can detect the bad JMH practices; if in the future a di�erent
‘industry-standard’ �x arises, future studies should re-evaluate the impact of the
bad JMH practices that our tool can detect.

Another threat is that we use the thresholds that were proposed by Romano et
al. [155] for Cli�’s Delta e�ect size to quantify the impact of a bad JMH practice
on the benchmark results. Some projects may require di�erent thresholds to meet
their performance requirements. Future studies should investigate these di�er-
ences in performance requirements.

Because our detection rules are heuristic-based, manually veri�ed instances of
bad practices investigated in this study could represent only a subset of all existing
cases in the studied projects. If a bad practice manifests itself in a di�erent way our
tool will not detect it. Future studies should investigate how our detection rules
can be extended and improved.

The construct validity concerns the construction of our experiments. One threat
is that our tool for identifying bad JMH practices is based on heuristics, and is
therefore inherently susceptible to false positives. The major challenge is that de-
veloper intent is an important factor in deciding whether an identi�ed instance
of a bad JMH practice is indeed a bad practice. For example, a developer might
actually want to benchmark the impact of JVM optimization on variable accumu-
lation inside a loop. Hence, our tool should be used as a guideline by developers
to identify potential instances of bad JMH practices.
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In addition, our rules do not cover all possible cases of undesired JVM opti-
mizations. JVM also uses runtime analysis to perform optimizations, e.g., it might
eliminate dead code after inlining a method call during the benchmark execution.
Because our tool uses static analysis only, it cannot detect instances of bad JMH
practices that depend on runtime information.

3.9 Summary of the Chapter

In this chapter, we studied bad practices of writing benchmarks using the JMH
framework. We presented �ve bad JMH practices related to not consuming prod-
ucts of computation, using a loop to accumulate computations, using �nal primi-
tives that are prone to constant folding, incorrect usage of test �xtures, and incor-
rect usage of JMH forks.

We showed that:

• The studied bad JMH practices are indeed prevalent in Java-based
open source systems. Half of the projects with more than 10 benchmarks
tests contain bad JMH practices in their code base.

• Bad JMH practices are indeed often severely impacting the outcome
of benchmarks as they lead to benchmark results that substantially deviate
from the correct measurements.

We submitted pull requests containing �xed benchmarks to developers of im-
pacted open source projects to validate whether developers agreed with our as-
sessment and analysis. Six of seven submitted pull requests were accepted and
merged quickly (one was rejected as the developers plan to remove JMH from the
project due to licensing issues), indicating that developers con�rmed the iden-
ti�ed issues after being presented with the results of our study.

Our study results indicate that many open source developers still struggle to ac-
count for the many intricacies of benchmarking Java applications. Consequently,
we suggest that we need (besides improving developer training as well as the JMH
documentation) better tooling to guide developers towards rigorous benchmark
implementations. As part of our study, we have developed the SpotJMHBugs,
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a static analysis tool that can be used to assist developers on automatically
identifying bad JMH practices during benchmark creation. As a plugin to
SpotBugs, SpotJMHBugs is easy to integrate into standard Java IDEs. However,
even more important may be to improve JMH itself. Such improvement could for
example consist in generating warning messages when JMH discovers con�gura-
tions or benchmark code that appears to contain bad JMH practices. Further, we
suggest that our work can be used as a starting point for studying approaches for
automatic benchmark repair.
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4 Investigating Collections
Usage and Performance

The selection of data structures is the bread and butter of e�cient software de-
velopment. Java has a particularly rich ecosystem of data structure variants, with
variants provided by the standard library (JCF) with general-purposed implemen-
tations to alternative and more focused collection libraries, giving practitioners a
large pool of options to draft their preferred data structures. In this chapter, we
investigate how practitioners select their collections in the context of open-source
Java programs and how alternative and less-commonly used implementations can
be selected to improve both the execution time and the memory usage of applica-
tions.

Contributions. Hence, in this chapter, we make the following contributions:

I An empirical analysis of the popularity and usage patterns of collection li-
braries based on mining a large dataset of open-source Java projects.

II A framework for systematic evaluation of collection’s performance.

III An experimental evaluation of the performance of JCF and six major alterna-
tive libraries in terms of execution and memory under a variety of scenarios.

IV A guideline to practitioners on replacing standard JCF collections based on
performance characteristics.

References This chapter is partially based on a peer-reviewed publication [43]
and the following manuscript in preparation.

D. Costa, E. Schubert, A. Andrzejak, and D. Lo. “Beyond the Java Collections Frame-
work: An Empirical Study of Usage and Performance of Java Collection Libraries and
APIs”
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4.1 Introduction & Motivation

Collections are prominent on current software development and modern programs
instantiate such data structures in thousands of program locations [158]. Hence,
selecting an appropriate abstraction and variant is a crucial aspect of developing
e�cient applications. Choosing an inappropriate collection variant may result in
performance bloat, the excessive use of memory and computational time for ac-
complishing simple tasks.

Numerous studies have identi�ed the inappropriate use of collections as the
main cause of performance bloat [67, 125, 179, 180]. In production systems, the
memory overhead of individual collections can be as high as 90% [125], and Chris
et al. [30] have concluded that collection usage is related to 7 out of 11 patterns of
memory ine�ciencies.

Experienced developers also struggle in selecting their data structures on large
softwares. A study from researchers at Google [117] found many instances where
expert developers have selected ine�cient collection variants, or miscon�gured
collections initial capacity on Google’s applications. To exemplify the impact of
collections on the performance of real applications, we present in Table 4.1 exam-
ples of real applications that su�ered signi�cant performance bloat due to collec-
tion miscon�guration and/or selection. All cases were �xed by changing a handful
of code lines, indicating that the collection selection is a problem hard to identify,
with signi�cant performance impact, but can be ultimately easy to �x by develop-
ers.

In the case of Java development, the problem of selecting an appropriate col-
lection becomes more complex when accounting for third party libraries. These
allow for many more choices compared to the standard Java Collection Framework
(JCF), from simple alternatives to existing JCF implementations to collections with
extra features such as immutability and primitive-type support.

Despite its importance, we found a gap in experimental studies comparing exe-
cution and memory performance of non-JCF collections. Partial benchmarks, es-
pecially on the websites of the libraries, are common enough; they, however, do
not give a performance comparison for di�erent libraries, nor do they provide an
evaluation under a large set of scenarios. The work presented in this chapter at-
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Table 4.1: Examples of the ine�cient selection as the main cause of performance bloat.
We present here one example per study, where changing a few lines of code
could impact the application’s execution time, memory consumption and energy
consumption.

Study Application Metric Impact

[117] Anonymous Time 17% of application higher execution time due to bad
con�guration of one HashMap allocation-site.

[158] TVLA Memory 54% of application higher memory consumption for
using HashMap instead of ArrayMap on instances
holding few elements.

[80] Google JSON Energy 300% of higher energy consumption when using
LinkedList instead of ArrayList.

tempts to �ll this gap in experimental studies and derive a set of guidelines for
developers on how can they improve performance with little code refactoring. To
this aim we:

• Study the usage of collections in real Java code via repository mining

• Evaluate the memory consumption and execution performance of collection
classes o�ered by six most popular collection libraries.

The key question to be answered by our study is: “Can we improve perfor-
mance of applications in typical scenarios by simply replacing collection
implementations, and if yes, to which degree?”. In particular, we explore al-
ternatives to JCF implementations under the same collection abstraction

4.2 Related Work

The experimental evaluation of data structure’s performance has been constantly
explored by academic and non-academic studies. Due to the emerging concern on
limiting energy consumption of applications, the energy e�ciency of data struc-
tures - and its relation to time and memory consumption - has attracted a lot of
attention in the past decade. Hunt et al. [84] evaluated the time performance and
its relation to energy e�ciency of lock-free data structures. The study results point
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to a strong positive correlation of performance and energy consumption, showing
that data structures that run for longer also consume more energy.

Hasam et al. [80] and Pereira et al. [147] both presented an experimental work
that extracted an energy pro�le for the most commonly used Java collections via a
series of benchmarks. These energy pro�les were further used to guide the replace-
ment of collections to evaluate its impact on the overall energy consumption of
their subject applications. The result of this analysis showed that collections have
a signi�cant role on the energy e�ciency of applications, particularly in Hasan ex-
periments, showing that choosing the wrong collection can cost up to 300% more
energy consumption on a speci�c application.

Furthermore, some studies focus on a speci�c category of collections, Pinto et
al. [148] presented a study evaluating the energy e�ciency of thread-safe collec-
tion variants, and Saborido et al. [156] evaluated the time, memory and energy
performance focused solely on map variants in Android.

Prior to our work, we found a surprising lack of academic studies focused on
non-standard libraries, and how such alternative collection variants can be used to
provide new choices for developers or replace standard implementations. Bench-
marks provided by such alternative libraries, or that focus on a speci�c scenario
and/or category of collection are common enough in the web. Lewis [114] com-
pares JCF implementations and proposes a new customized collections for a spe-
ci�c graphical user interface (GUI) usage scenario. Another article [113] exem-
pli�es the time and memory trade-o�s of HashMap variants through a series of
benchmarks, con�rming that hash-tables with higher memory footprint are con-
siderably faster than memory-e�cient counterparts.

The article entitled “Large HashMap Overview” [172] is the closest study to pro-
vide an overview of the performance of variants from alternative libraries. The
article focus on HashMap variants only, provided by �ve alternative libraries and
the JCF implementation, evaluated under three usage scenarios. Results presented
in this article give a glimpse of the advantages alternative libraries might bring to
Java applications, but the focus on a single collection type limits the applicability
and leaves a gap for further studies.

Similar to the above mentioned studies, we also evaluate di�erent collection
variants under a variety of usage scenarios. The focus and scope of our study,
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however, di�ers in two signi�cant ways from past studies. First, we perform a
preliminary study to understand how collections are used in a large Java corpus,
and use this information to based our experimental plan. Second, we explore the
performance of alternative libraries and how non-standard variants can be used to
reduce memory usage and improve time performance.

4.3 Analysis of Collections Usage

We begin our study by investigating the usage patterns of collections found in
a large Java code corpus. Understanding such patterns will help us identify the
most popular collection types and implementations, how developers instantiate
their collection instances, and what are the most commonly help element type.
These patterns of collection usage will serve as a basis of our experimental study
on collections performance, described in Section 4.4.3.

4.3.1 Data and Static Analysis

We use the GitHub Java Corpus [7], a dataset containing open-source Java projects
from GitHub, to perform our analysis on patterns of collections usage. The GitHub
Java Corpus has 10,986 Java projects, totalizing more than 268 millions lines of
code, and consists only of projects with more than one fork to eliminate small
or inactive projects, which prevail at GitHub [101]. In addition, the creators of
GitHub Java Corpus analyzed and pruned this dataset manually in order to elim-
inate project clones. The resulting curated corpus contain projects like Eclipse
IDE [55], Clojure [72], RxJava [153] and Elastic Search [56], all popular and mature
open-source Java projects

We need to extract from the code every declaration of a collection and every
site of a collection instantiation. This is needed to count the usages of collection
classes, record the types of held elements, and count how often the initial capac-
ity is speci�ed. To this aim, we develop a project called CollectionsExplorer 1, a
static analyzer that uses JavaParser [95] to extract each variable declaration and

1Available at https://github.com/DiegoEliasCosta/collections-explorer
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instantiation site in the code. We then �lter the collection instances by applying a
heuristic as de�ned by the following regular expression:

.*List|.*Map|.*Set|.*Queue|.*Vector

This pattern �nds all collection implementations of interest but also retrieves
some false positives, e.g., java.util.BitSet is not a general purpose collection but
is retrieved by our heuristic regardless. We rank the retrieved types and manually
inspect and �lter out false positive for the top 99% of the retrieved data, ranked by
occurrence.

4.3.2 Collections Usage in Real Code

In the following, we present the methodology of classi�cation and our results on
the usage patterns of collection in Java projects. We focus on the aspects of the
most commonly selected collection and held element types, and how often does
developers tune their collection creation.

What are the Most Commonly Selected Collection Types?

We analyze the instantiations sites and extract the most used collections in the
code (see Figure 4.1). Unsurprisingly, list is the most commonly used collection
abstraction 57%, followed by map 28%, and �nally by set 14%. Contrary to this,
queues are rather rare (1% of usages). Our ranking is dominated by JCF as devel-
opers only rarely opted for others, not nearly often enough to make it into our
charts.

Among lists, ArrayList makes up the bulk of all collections usages, namely 44%.
The LinkedList is also rather common, with 4% and is ranked as the fourth most
common implementation. In maps, HashMap is most commonly used, represent-
ing 20% of all collections instantiation, followed by LinkedHashMap (2%), and the
TreeMap (1%). Set instances follow a similar pattern to maps: HashSet is most
used (9%), followed by TreeSet and LinkedHashSet with both 1% of occurrences.
We found a similar distribution in Top50, which have a slightly higher usage of
concurrent collections and a lower variety of types.
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Figure 4.1: Most selected collection abstraction and collection types in 10,796 Java projects.
All top collection types are from JCF as alternative variants are only rarely used.

In summary, the top four most frequently used collections are the JCF implemen-
tations of ArrayList, HashMap, HashSet and LinkedList and together they account
for approximately 77% of all collections declared in our dataset.

What are the Most Commonly Held Element Types?

The element type is the type of objects held by collections instances. Understand-
ing the element type distribution can help us design benchmarks that closely re-
sembles the most frequent real scenarios. To simplify, we group the element types
into four categories:

• Strings: Objects such as String, String[], and String[][].

• Numeric: The primitive-wrappers such as Double, Float, Long, Short, In-
teger, as well as Boolean, Character, and their respective arrays.

• Collections: Collection types that can be identi�ed by our heuristic from
Section 4.3.1.
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Figure 4.2: Distribution of element types held by lists and set declarations in our dataset.

• Other: All the classes and data types not �tting any of the mentioned cate-
gories.

We present the result of our analysis in Figure 4.2. A pattern that emerges is the
similar usage of primitive wrappers throughout the categories, always ranging
from ≈5% to ≈8% of the declarations. This category is particularly interesting
because it contains the collections that can be replaced by primitive collections
with simple code refactoring.

The remaining categories show a distinct pattern for each of lists, maps and
sets. Lists have the highest variability of element types, but hold strings 20% of
the time. Sets hold strings more often than lists, 31% of the time. Maps also hold
strings very often: 70% of all declared maps use the String as a key and 28% as
a value. Map values are often a collection (15%) pointing to a common usage of
maps as a collection holder. This is an interesting �nding as alternative collection
variants called multi-maps are speci�cally tailored for use-case, o�ering a richer
API than the general purposed maps.

In summary, Strings are the most frequently used category of element type in
collections. Maps use String as key in 70% of declared instances, and have their
values commonly mapped to collection types (15%). List and sets typically hold a
higher variety of element types.

How Often do Developers Specify the Initial Capacity of Collections?

De�ning an appropriate initial capacity of a collection is a simple but e�ective
method for optimizing runtime and memory. We sample 400 instantiation sites
of ArrayList, HashSet, and HashMap, which give us 5% con�dence interval on
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Figure 4.3: Statistics on the style of specifying initial capacity of collections. “Speci�ed”
denotes that the developer explicitly set the initial capacity, and “Copy” that a
copy constructor was used.

our results. Then we manually categorize whether a developer speci�es an initial
capacity, copies this instance from another collection, or uses default constructor
values.

Figure 4.3 shows that programmers specify initial capacities for ArrayList only
in 19% of the declarations. HashMap and HashSet have their capacity speci�ed
in 7% and 8% of collection declarations, respectively. Interestingly, HashSet is the
category more commonly created through copy instruction (in 10% of cases).

4.4 Experimental Design

In this section we describe the design of experiments for evaluating performance
of collection implementations in terms of execution time and memory usage. We
�rst identify a suitable set of collection libraries for this evaluation through rank-
ing of libraries in terms of their popularity (Section 4.4.1). Then in Section 4.4.2
we describe a benchmark framework capable of measuring the steady-state per-
formance of collections with high precision. Finally, we design an experimental
plan which covers a large set of usage scenarios based on the �ndings of usage
patterns reported in Section 4.4.3. The results of our rigorous statistical analysis
of each evaluated scenario are presented then in Section 4.5.
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4.4.1 Selection of Collection Libraries

As one of the most popular programming languages, Java has a rich ecosystem
of third-party libraries. We initially searched the Web for alternative collection
libraries implemented in Java and �nd a total of 14 libraries. All found libraries
had stable releases, with more than a year of development time and could be used
in most open-source Java projects. Our goal with this study is not to evaluate all
available open-source collection libraries, but to provide a glimpse of performance
opportunities some alternatives might yield to anaware developers. Therefore, we
�rst select a subset of collection libraries using two di�erent approaches. First, we
rank them by popularity of their project in GitHub, see Table 4.2. Second, we ana-
lyze how many times they have been included in existing benchmarks (Table 4.3).

The GitHub metrics such as number of stars and number of watches provide a
simple but e�ective method for ranking software projects. Such metrics have also
been used as a criterion in other studies [130], and are a good indication of the
quality of the project [152].

To account for libraries that are not on GitHub, we retrieve a set of collection
benchmarks from the web, and count the occurrence of libraries in collections
benchmarks. With this criterion, we expect to capture libraries that have drawn the
attention of the performance engineering community, for instance, by providing
variants with better performance than standard collections.

Furthermore, we �lter libraries that do not provide implementations that can
serve as a replacement to JCF collections. This excludes Javaslang as it provides
only immutable collections for lambda function usage. In the �nal step we select
the top �ve libraries from each ranking and merge them into a single list. This
yields seven unique libraries (three of them occur in both rankings) to be included
in our experimental evaluation.

4.4.2 Benchmark Design

In Section 2.3 we describe the plethora of factors that pose a challenge for per-
formance measurement in a managed runtime environment such as the Java Vir-
tual Machine. To reduce the impact of these factors we follow the suggestions by
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Table 4.2: Ranking of collection libraries by GitHub popularity. We select the top 5 col-
lections from this ranking. Data was obtained on 28 September 2015. Javaslang
library does not provide variants that replace JCF implementation and thus was
not considered for our study.

Rank Library # Stars # Watches

1 Guava 5067 641
2 GS-Collection 1293 196
3 Koloboke 369 69
* Javaslang 309 31
4 HPPC 189 31
5 Fastutil 69 6
6 HPPC-RT 8 3

Georges et al. [63] and implement a four-step methodology for evaluating a steady
state performance of collection implementations:

S1 For each scenario we execute ten warm-up iterations to achieve a steady
performance 2.

S2 We execute 30 iterations while measuring our response variables. Each it-
eration executes the same operation (sample) in an uninterrupted fashion
for �ve seconds. After reaching the timeout, we calculate the average of all
samples as a result. Each result also contains the experimental error of the
iterations at a 99% con�dence interval.

S3 We execute steps S1 and S2 twice to avoid circumstantial external in�uence.

S4 We analyze the results of 2 x 30 iterations using rigorous statistical methods.
In detail, we analyze the variance with ANOVA [126] and compare multiple
means accounting for their experimental errors.

To evaluate the performance of Java collections through this methodolody, we
create a benchmark suite calledCollectionsBench. CollectionsBench is a benchmark
framework tailored to collections performance, built upon JMH. As described in
Section 2.3, JMH provides the necessary infrastructure for reliable Java bench-

2Our preliminary analysis showed that the execution time of the experiment converges after seven
warm-up iterations
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Table 4.3: Ranking of collection libraries by number of occurrences in benchmarks. We
select the top 5 collections from this ranking.

Rank Library # Occur

1 JCF 13
2 Trove 10
3 HPPC 6
4 Koloboke 5
5 Fastutil 4
6 GS-Collection 4
7 Javolution 4
8 Guava 3
9 Mahout 3

10 Commons 2
11 Brownies 1
12 Colt 1
13 Javaslang 0
13 HPPC-RT 0

marks, with forks, warm-up iterations, and can give the benchmark results with
nanosecond precision.

To reliably measure performance using CollectionsBench, we perform the fol-
lowing steps: First, we guarantee a homogeneous benchmark behavior throughout
di�erent collection variants by implementing our framework with the Template
design pattern [61]. The Template design pattern helps us reuse the same test code
in all JCF compliant libraries (see Table 4.4) and to delegate the collection creation
to the library speci�c code. Second, we adopt the best practices on JMH bench-
marking (as studied in Chapter 3) with, for instance, consuming every non-void
return to avoid dead-code elimination (RETU bad practice).

Finally, to only measure time and memory on the collections operations, we
create all elements in the setup phase, i.e., outside the measurement phase. The
values of each element are generated randomly through a uniform distribution,
and we then reuse the random seed to ensure the same conditions in all tests. In the
benchmark phase we execute the collection operations and measure the following
response variables:
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• Execution time: Time spent executing the benchmark in nanoseconds, using
JMH native support.

• Memory allocation: The sum of memory requested during the benchmark
execution. Since we allocate the elements in the setup phase, this variable
shows only the memory requested for the collection overhead (including
the collection object header and eventual memory padding), but does not
consider the element footprint. We extract this information through the JMH
GC pro�ler.

We also collect some performance indicators through the Perf3 pro�ler, such as
the number of instructions executed, cache miss rate and branch misprediction
rate. In Section 4.6 we analyze those indicators along with the source-code to
understand the reasons for performance di�erences of implementations.

The memory allocated during the benchmark is sensitive to bu�ers and tem-
porarily allocated objects. For instance, the ArrayList allocates a new and larger
bu�er to accommodate more elements during its expansion. The previously allo-
cated bu�er and the new one will be measured by the memory allocation variable.
Therefore, the memory allocation alone cannot provide an accurate view of the
memory usage of a collection.

To account for this problem, we evaluate the memory usage of a collection by
computing their collection overhead. We use the tool Java Object Layout (JOL)4

to retrieve the collection overhead of each implementation. We then analyze both
memory allocation and overhead together, to give a detailed perspective of a collec-
tion’s memory consumption. CollectionsBench is open-source and is fully avail-
able online5.

4.4.3 Experimental Planning

Our experimental plan takes into consideration the �ndings on collections usage
presented in Section 4.3.2. First, we focus on the most frequently used collec-
tion types while investigating possible alternatives (from third-party libraries) to

3https://perf.wiki.kernel.org/index.php/Main_Page
4http://openjdk.java.net/projects/code-tools/jol/
5https://gitlab.com/DiegoCosta/collections-bench
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the JCF collections. Therefore, we select the four most used collection types, Ar-
rayList (AL), LinkedList (LL), HashMap (HM), and HashSet (HS), which accounts
for approximately 77% of all declared collections.

Most of the libraries do not implement an alternative to LinkedList, so we opted
to compare JCF LinkedList implementations against ArrayList alternatives, as they
are interchangeable under the List abstraction 6. We also pro�le primitive alterna-
tives to the top three collection types, as they provide a small-footprint option to
collections that hold primitive wrappers (see Table 4.4).

Table 4.4: Selected libraries and evaluated collection implementations. Object collections
are marked as “Obj” while primitive implementations are represented with
“Prim”. The column JCF indicates whether the libraries provide implementations
compatible with the Java Collection Framework (only for object collections). In
total we evaluate 33 implementations.

Library Version JCF List(AL/LL) HashMap (HM) HashSet (HS)

JCF [137] 8.0_65 yes Obj/Obj Obj Obj
Guava (Gu) [73] 18.0 no – MultiMap MultiSet
Fastutil (Fu) [171] 7.0.10 yes Obj + Prim Obj + Prim Obj + Prim
Koloboke (Ko) [31] 0.6.8 yes – Obj + Prim Obj + Prim
HPPC (HP) [143] 0.7.1 no Obj + Prim Obj + Prim Obj + Prim
GSCollections (GS) [70] 6.2.0 yes Obj + Prim Obj + Prim Obj + Prim
Trove (Tr) [69] 3.0.3 yes Prim Obj + Prim Obj + Prim

Second, we pay a special attention to collections holding the element type String.
Strings are particularly interesting in Java due to their extensive use, and have
been studied by various authors [102]. To expand on the results, we evaluate the
collection implementations for Integer and Long objects as well. We opt for these
two numeric objects as they are representative: primitive-wrappers are the second
most common category identi�ed. Moreover, they mainly represent objects with
32 bytes and 64 bytes respectively, a common object size.

Third, we do not specify the initial capacity in our benchmark because from our
static analysis results, specifying the initial capacity is done rarely in real code.
Since we aim to provide results that are useful to the widest range of programmers,
we evaluate collections with their default initial capacity.

6LinkedList also implements the Queue abstraction and cannot be replaced by ArrayList under
this usage scenario.
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Table 4.5: Benchmark scenarios used in the experimental evaluation of collections perfor-
mance.

Benchmark Description

Populate Populate the collection with N random elements.
Iterate Traverse through all elements of a collection.
Contains Check if a collection contains an existing random element.
Add Add a random element to the collection.
Get Retrieves a random existing element from a collection.
Remove Find and remove a random element.
Copy Copy all elements into another collection instance.

Fourth, we evaluate a collection under seven benchmark scenarios, as shown
in Table 4.5. Each scenario stresses a single collection operation, executed unin-
terruptedly during a benchmark iteration. Albeit simple, this style of benchmark
provides insightful results to developers, as each scenario’s result can be used as
building blocks for more complex use-cases. Furthermore, this style of benchmark
is commonly adopted by studies on collections performance [80, 147, 172].

As we could not study the typical size of collections through static analysis, we
account for multiple levels of workload, by running our benchmarks with multiple
collection sizes ranging from 100 to 1M, with the interval set as a power of ten (�ve
categories of size).

In summary, we perform a factorial experiment [126] with three element types
and �ve collection sizes, in a total of 15 di�erent con�gurations. This experiment is
run through the seven scenarios for each of the 33 collection types (see Table 4.4).
We execute a total of 3,465 experiments, where each experiment lasts �ve minutes
including replications and forks. Running the full benchmark takes 12 days to
�nish.

We conduct our experiments on a machine with a E5-1660 3.3GHz CPU, 64GB
RAM using Linux 3.16.0-53. We use 64-bits JVM HotSpot, and the jdk1.8.0_65 as
our Java version. All tests were executed in a single-threaded environment, as our
target collections were built for such settings. Regarding memory measurement,
we use the default con�guration of JVM, which enables the option of compressed
object pointer (+Compressedoops).
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4.5 Experimental Evaluation
Our goal is to �nd a superior alternative that can outperform JCF in terms of exe-
cution time and/or memory consumption in several use-case scenarios, while in-
troducing no or minimal penalties in others. To achieve this, we ask the following
research questions:

RQ1. Are there superior alternatives to the most used JCF collections with
regard to execution time? We experimentally evaluate the performance of
alternatives to JCF ArrayList, LinkedList, HashMap and HashSet and present
variants that could yield performance bene�ts on execution time on sec-
tion 4.5.1.

RQ2. Do primitive collections perform better than JCF collections with re-
gard to execution time? In this question we focus on evaluating the int-
primitive variants of the most used JCF collections. We show in Section 4.5.2
that aside for the expected lower memory footprint, primitive collections in-
deed provide substantially faster operations than their JCF counterpart.

RQ3. Are there superior alternatives to the most used JCF collections with
regard to memory consumption? In this question we evaluate the mem-
ory footprint and allocation of collection variants in comparison to stan-
dard JCF implementations. Our results in Section 4.5.3 show that substantial
memory footprint reduction can be reached without complex changes in the
source-code.

In this thesis, we focus on the most important results that will lead us to our
approach in Chapter 5. The analysis of element type impact and a complete dis-
cussion on the results of our experimental study can be found in the original pa-
per [43]. We omit the analysis of primitive-collections on memory consumption,
as this question is rather well-explored and exempli�ed in Section 2.4.2.

4.5.1 Alternatives for Faster Collections

We report our results as a comparison to the JCF implementation instead of the
absolute performance. First, we extract only comparisons where the errors (99%
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con�dence interval) do not overlap. Then, we calculate the impact of an alternative
collection over JCF using the following speedup/slowdown S de�nitions:

S =


Tjcf
Talt

, if Tjcf > Talt

− Talt
Tjcf

, otherwise

(4.1)

where Tjcf and Talt are the time obtained with using the JCF implementation and
the time using an alternative implementation respectively.

We present our results in a broad heatmap analysis in Figure 4.4, labeled by
color. We make an in-depth analysis for each category in the remainder of the
section.

ArrayList In the populate scenario occurrences of JCF ArrayList can be replaced
by the implementation from GSCollections to achieve faster population without
compromising the speed of any other operation. In fact, all evaluated alternatives
are faster than JCF when populating the list (see Figure 4.4a). The HPPC imple-
mentation is, however, slower when iterating the elements in both the iterate and
the contains scenario. In addition, both Fastutil and HPPC copy their lists from 3
to 14 times more slowly.

LinkedList JCF LinkedList is outperformed by all ArrayList implementations
by a large margin, even in scenarios where LinkedList has a theoretical advantage
(Figure 4.4b). This is the case for the remove scenario, where we search and re-
move the element through the remove(Object) method. Despite the asymptotic
advantage, LinkedList was outperformed by a large margin for collections with
more than 1k elements. Furthermore, LinkedList has a comparable performance
in the populate scenario, even without having to reallocate its bu�er (as ArrayList
does). The LinkedList is up to three times slower when searching for a random
element on collections with one million elements, and it was also outperformed
in the iteration scenario by some ArrayList variants. Note that in our benchmark
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(b) ArrayList alternatives to LinkedList
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Figure 4.4: Heatmap showing speedup/slowdown (as de�ned in Equation 4.1) of alterna-
tive collections compared to JCF, per scenario and size. Green cells indicate a
speedup, red cells represent a slowdown. Performance ratios larger than factor
2x are rounded to the nearest integer and printed inside the cell. LinkedList get
ratios are substantially higher and not shown.

design the LinkedList is unfragmented as the elements are inserted without any
removal. Hence, we consider these results a best-case scenario for LinkedList.

HashMap JCF HashMap provides solid performance and cannot be easily re-
placed by any alternative in terms of execution time improvement. As shown in
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Figure 4.4c, some implementations have a comparable performance, like Fastutil,
GSCollections and HPPC. Standard HashMap is outperformed only in the copy
scenario, where Koloboke is able to copy up to 11x faster. However, Koloboke is
substantially slower in most of the other remaining scenarios.

HashSet Standard HashSet is outperformed by many alternatives, mostly in
the iterate and copy scenarios (Figure 4.4d). Koloboke is a superior alternative
to JCF, outperforming JCF HashSet for large set iteration, and copying at least 10x
faster. Fastutil and GSCollections can also be selected as good alternatives: both
are slower when populating but faster in the copy and and iterate scenarios. The
JCF implementation is faster than the majority of alternatives when adding ele-
ments to the set, but is often outperformed in the remaining scenarios for large
workloads (more than 100k elements).

RQ1. Are there superior alternatives to themost used JCF collections
with regards to execution time?

GSCollections provides a superior alternative to JCF ArrayList. LinkedList is
outperformed by any other ArrayList implementation, and both the HashSet
of Koloboke and Fastutil are a solid improvement over the standard one. We
found no superior alternative to the JCF HashMap, which provides a stable
and fast implementation throughout all the scenarios.

4.5.2 Alternatives for Faster Primitive Collections

Our results for analyzing the experiments are summarized in a colored heatmap
in Figure 4.5.

Primitive ArrayList. Primitive lists provide a superior alternative to JCF Ar-
rayList (Figure 4.5a). The speedup in some cases reaches four times better than
the baseline when checking or removing an element from the list. GSCollections
consistently outperforms the JCF, followed by Fastutil, which is slightly slower
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(b) HashMap primitive alternatives
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Figure 4.5: Heatmap showing the speedup/slowdown (Equation 4.1) of primitive collec-
tions (int) compared to the JCF collections holding Integers, per scenario and
workload.

when iterating through the list. HPPC and Trove are much slower when copying
their lists, and should be avoided if the workload demands this operation often.

Primitive HashMap. As a consequence of the good performance of the standard
JCF HashMap, in some scenarios there is no underlying bene�t gained from chang-
ing to a primitive-type map implementation (Figure 4.5b). Iterations are especially
good with the standard HashMap, up to �ve times faster than the alternatives. For
the contains, add, get, and remove scenarios, most primitive implementations can
provide an improvement. when also considering the copy scenario, GSCollections
and Koloboke provide the highest performance gain among the alternatives.

Primitive HashSet. Primitive-based sets can be bene�cial for the application’s
performance when it comes to a large number of elements (Figure 4.5c). In fact, the
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speedup commonly reaches four times as fast across many scenarios with one mil-
lion elements. GSCollections, Fastutil, and Koloboke provide superior alternatives
and can copy their instances up to 27 times faster. HPPC is also a good alternative
but it does not provide the same copy operation speed gain as the other mentioned
libraries. Trove’s implementation was the only primitive-based HashSet outper-
formed by the standard HashSet in the add, remove and copy scenarios.

Table 4.6: Comparison of collection overhead and memory allocation of various implemen-
tations. The overhead is given in bytes in the form α×N + β, where N is the
number of elements in the collection, and α and β are implementation-speci�c
factors. The average allocated is given in bytes per element.

Category Libs Collection Avg Allocated
Overhead populate copy

Array Lists

JCF 4×N + 24 14.83 4.01
Fu 4×N + 24 10.07 4.02
GS 4×N + 24 13.56 4.01
HP 4×N + 48 15.10 4.01

Linked Lists JCF 24×N + 32 24.07 28.11

Hash Maps

JCF 36×N + 48 49.93 41.05
Fu 8×N + 64 35.52 42.18
GS 8×N + 64 59.87 24.62
Gu 96×N + 64 96.90 132.36
HP 8×N + 96 36.41 18.16
Ko 8×N + 232 35.47 17.96
Tr 8×N + 72 47.23 18.37

Hash Sets

JCF 36×N + 80 48.85 40.43
Fu 4×N + 40 24.43 8.43
GS 4×N + 32 34.44 14.21
Gu 52×N + 112 64.77 58.25
HP 4×N + 88 16.88 8.43
Ko 4×N + 208 16.84 8.43
Tr 4×N + 64 22.25 8.35
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RQ2. Do primitive collections perform better than JCF collections
with regard to execution time?

For all three abstraction types (list, map, set), we found a set of primitive
implementations that are superior to JCF implementations. GSCollections
and Koloboke provide the fastest primitive-based alternatives, followed by
Fastutil and HPPC. Trove is often outperformed by JCF implementations in
this context.

4.5.3 Alternatives for Memory-Saving Collections

In this section, we analyze the di�erence in the overhead of collections as the main
goal for a superior collection replacement. As a supplementary analysis, we also
looked at an aspect often neglected by micro-benchmarks: memory allocation.
A collection that allocates more memory than indicated by its overhead requests
memory for two reasons: (i) allocation as a bu�er for future operations, (ii) allo-
cation for temporary objects. The latter reason has a negative impact on perfor-
mance and can be used as an indicator of how often a collection implementation
can trigger the action of the Garbage Collector (GC). Collections that require fre-
quent intervention of the GC can reduce the performance of an application in a
long run, a behavior di�cult to observe with micro-benchmarks.

Since the elements are pre-allocated in the setup phase, memory allocation only
comes into play when elements are added to the collection, namely by populate
and copy operations.

ArrayList. All implementations have a similar overhead (see Table 4.6). Due
to its bu�er reallocation, each implementation allocates on average three times its
own overhead in the populate scenario. Regarding only memory allocation, Fastutil
can be a good alternative, saving 30% of allocations in the populate scenario.

LinkedList. We show in Table 4.6 that the standard LinkedList implementation
has an overhead of 24 bytes per element, as opposed to the 4 bytes required in
each ArrayList implementation. This is a consequence of the pointers to neigh-
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bor elements for each LinkedList entry. Essentially, an ArrayList saves 83% of the
memory overhead. Despite the bu�er expansion of ArrayList, LinkedList still al-
locates twice as much memory in the populate scenario, and it allocates �ve times
more memory when copying from a previous instance.

HashMap. We can observe in Table 4.6 that the JCF implementation has a con-
siderably higher overhead. Standard HashMap has an overhead of 36 bytes per
each entry in the map while almost every other alternative consumes only 8 bytes.
This di�erence occurs because JCF uses a Node object for each entry, a structure
that contains three references (12 bytes) and a primitive (4 bytes), but, being an
object, also has an overhead of 12 bytes of header and 4 bytes lost due to align-
ment. The alternatives do not de�ne each entry as an object and instead use two
arrays where each key and value pair are stored. As a consequence, they save 77%
of memory overhead. Regarding allocations however, the di�erence of JCF and the
alternatives are not quite as drastic as in the collection overhead.

HashSet. Similarly to Maps, JCF HashSet is implemented with a larger overhead
than almost any of the potential alternatives. In fact, it uses a HashMap internally
to store the elements, causing the same additional overhead of 36 bytes per el-
ement, due to the HashMap’s Node object. The alternatives, on the other hand,
implement the HashSet as a simple single array. This allows them to save 88% of
memory overhead compared to the JCF HashSet. Unlike HashMap, this di�erence
holds in the memory allocation as well, where JCF allocates twice as much memory
in the populate and �ve times as much memory in the copy scenario.

RQ3. Are there superior alternatives to themost used JCF collections
with regards to memory consumption?

We found no superior alternative to the JCF ArrayList in terms of mem-
ory overhead, but Fastutil allocates less memory when populating its own
list implementation. Numerous alternatives o�er a superior alternative to
the JCF HashMap and HashSet. LinkedList has a higher overhead than any
considered ArrayList alternative.
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4.6 Discussion

4.6.1 Reasons for Performance Differences

Our investigation of the source code of collections revealed some implementation
patterns responsible for performance di�erences in collections. We discuss these
in the following.

Distinct API calls. The implementations often di�er in usage of the API call for
copying an array. Here developers use two distinct methods: System.arraycopy()
and Arrays.copyOf(). The latter is just a wrapper for System.arraycopy() which
requires only the original array, as opposed to the System version, where the target
must be passed as a parameter. Our experiments showed that System.arraycopy()
is 25% faster than Arrays.copyOf() for arrays up to 1 million elements. This is one
of the reasons why GSCollections ArrayList (which calls System.arraycopy()) is
faster than JCF counterpart, since populate scenario is dominated by the bu�er
expansion cost.

Add copy versus memory copy. Collections copy is the scenario with the largest
discrepancy in performance of our experiments. We found that libraries implement
two main approaches: they either add all elements one by one to a new created
collection instance, or they perform a memory copy. Needless to say, the memory
copy is faster as adding elements one by one has the burden of manipulating ob-
jects individually. This explains why Koloboke executes up to 50x faster than JCF
when copying a set with 1 million elements.

Nevertheless, libraries often opt for adding the elements into the new instance
for the simplicity of the work�ow. The copy constructor receives a collection ref-
erence as a parameter and must be able to polymorphically handle all kinds of
collection types. A memory copy is restricted only to copies from the same type.
GSCollections and JCF use memory copy for ArrayLists but rely on addAll for
HashSet and HashMap. Koloboke is the only library that use memory copy for
HashSet/HashMap. It is important to address that copy is called 11% of the Hash-
Set instantiations. Therefore applications can strongly bene�t from memory copy
implementation.
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Sub-optimal primitive API. Iterating elements of FastList’s ArrayList primi-
tive collection is slower than JCF ArrayList, and far more time-consuming than
any other primitive implementation. To understand this, note that each primi-
tive library provides a forEach(IntProcedure) method to iterate and process the
list. However, FastList provides a forEach() method de�ned by JCF Abstract-

Collection, which accepts an Object and implicitly converts each primitive to its
wrapper, degrading the performance by a factor of 5x. This case illustrates the
complexity of a collection API, which often provides multiple ways of performing
the same task, but with distinct performance costs.

Sub-optimal loop implementation. The contains() method of Trove prim-
itive ArrayList is 3 times slower than any other primitive implementation (see
Fig 4.5a). The code inspection reveals that contrary to other primitive alternatives,
Trove de�ned the array loop using an unconventional for loop, namely for(int

i = offset; i– > 0; ). This loop, albeit correct, produces three times more
branches and 30% more branch misses than a backwards loop de�ned with the
decrement in third position of the for-statement. In fact, after refactoring the
contains()-method in an obvious way in our own extension of Trove’s primitive
ArrayList the performance bottleneck was �xed.

4.6.2 Implications for Practitioners

Each additional alternative collection implementation used in a software project
increases its complexity and maintenance e�ort. Consequently, developers should
consider replacing collection implementations only if such a change will result in
a signi�cant bene�t. It is unlikely that a developer is willing to include multiple
alternative collection implementations to optimize time and memory pro�les for
each collection usage as the complexity of dealing with multiple implementations
might overshadow the performance bene�ts. In order to support programmers in
such decisions, we present a guideline (Tables 4.7 and 4.8) showing the potential
bene�ts and drawbacks of using alternative implementations for several relevant
scenarios and/or optimization objectives.
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Table 4.7: A guideline showing the impact of replacing JCF collections with alternative
collection implementations for some relevant scenarios/optimization objectives.
To reduce JCF collection overhead Overhead Speedup/Slowdown

Rule and improve time performance Savings 1M elements

3x faster contains
R1 JCF LinkedList→ JCF, FU or GS ArrayList 84% 2x faster remove

4x faster copy
3x faster iterate

R2 JCF HashSet→ Ko HashSet 88% 1.5x faster contains
51x faster copy

To reduce overhead
with smallest time penalty

R3 JCF HashMap→ GS HashMap 78% 1.5x slower copy

To reduce overhead with faster copy
78% 11x faster copy

R4 JCF HashMap→ Ko HashMap 2x slower populate
4x slower remove

Table 4.8: A guideline showing the impact of replacing JCF collections with alternative
primitive-collection (“prim-collection”) implementations for some relevant sce-
narios/optimization objectives. The memory savings include overhead reduc-
tion as well as smaller element footprint (results assume replacing Integer ob-
jects by the primitive int).
To reduce JCF collections footprint Footprint Speedup/Slowdown

Rule and improve time performance Savings 1M elements

2x faster populate
R5 JCF ArrayList→ GS prim-collection 60% 4x faster contains

2x faster remove
2x faster populate

R6 JCF HashMap→ GS/Ko prim-collection 76% 2x slower iterate
6x/4x faster copy
4x faster populate

R7 JCF HashSet→ GS/Ko prim-collection 84% 4x/3x faster iterate
33x/7x faster copy

In this thesis we illustrate the e�ect of JCF collection replacement on execution
time for collections one million elements (large). Note that in case of object collec-
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tions the memory savings come solely from a reduced overhead as the elements
themselves are not modi�ed. In case of the primitive collections the programmer
must replace the object element type by its respective primitive. However, the im-
pact on memory savings is higher as the memory footprint of elements is reduced
as well.

Table 4.7 presents four recommendations for replacements leading to a substan-
tial improvements. Recommendation R1 describes the replacement of a LinkedList
by an ArrayList from one of three libraries, each o�ering a consistent improve-
ment in time and memory. In R2 we recommend Koloboke’s alternative to JCF
HashSet, as it provides a substantial improvement on execution time and memory
overhead. For HashMaps it is possible to aim for a memory overhead reduction
with a small execution time penalty (R3), or to reduce memory and improve the
execution time of copy operations (R4).

An important result is the universal superiority of primitive collections (shown
in Table 4.8). It is possible to considerably improve both memory footprint (over-
head + elements) and execution time for all three major collections: ArrayList (R5),
HashSet (R6) and HashMap (R7). Note that in all cases the replacement is particu-
larly bene�cial for large collections as the savings of memory and execution time
are, in general, bigger.

4.7 Summary of the Chapter
In this chapter, we present an empirical study on the usage and performance of
Java collection libraries. We analyzed the usage patterns of collections by mining
a large code corpus of Java projects and conducted a rigorous evaluation of the per-
formance of standard Java Collection Framework and six most popular alternative
collection libraries.

We showed that:

• Developers rarely select non-standard collections, relying heavily on
general-purposed collection implementations.

• Developers seldom tune the performance parameters of collection cre-
ation, such as the initial capacity and load factor.
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• We found that alternative implementations can o�er programmers a signif-
icant improvement over standard libraries on both execution time
and memory consumption on several usage scenarios.

We have devised a guideline to advise developers on the performance bene�ts of
swapping standard implementations by alternative variants. Moreover, the results
of this study served as the main motivation for our work in Chapter 5, where we
develop and evaluate a low-overhead method for automatic and dynamic selection
of collections, including selecting variants provided by alternative libraries.
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5 A Framework for Efficient
and Dynamic Collection
Selection

Our study presented in Chapter 4 have indicated that developers rely heavily on
standard and general-purposed variants to develop their applications. While al-
ternative implementations can be selected to improve time and memory of appli-
cations, the burden of selecting data structures still lies ultimately in the hands of
practitioners. In this chapter, we present an application-level framework for ef-
�cient collection adaptation. It selects at runtime collection implementations in
order to optimize the execution and memory performance of an application, es-
sentially removing the need for manual analysis from practitioners.

Contributions. In this chapter, we present the following contribution:

I An approach for dynamic (runtime) selection of collection implementations.
The choice of collection variants optimizes (for a speci�c allocation site) per-
formance along multiple dimensions according to the workload pro�les of
monitored instances and according to con�gurable rules.

II CollectionSwitch: a low-overhead, concurrent implementation of this approach
as an application-level library.

III An analysis and implementation of adaptive collections which dynamically
switch their underlying data structure according to the size of the collection.

IV An empirical evaluation of both concepts and their implementation on syn-
thetic benchmarks and real applications.

Reference. This chapter is partially based on a peer-reviewed publication [42].
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5.1 Introduction & Motivation

Let us suppose you are a developer of an application that contains the code snip-
pet depicted in listing 5.1. This example shows a Java code with a list use-case
comprised of multiple insertions followed by a traversal. A number of list variants
could be selected for this use-case, but let us take only LinkedList and ArrayList
variants: which variant would provide the fastest implementation in this exem-
plary scenario?

Listing 5.1: Example of Java code using list collection abstraction.

List<Integer> list = new _____________<>();

...

for(Integer toAdd : anotherList) {

list.add(calculateIndex(toAdd), toAdd); // Insertion

}

...

Integer sum = 0

for(Integer toSum : list) { // Traversal

sum += toSum;

}

The standard LinkedList implementation tends to perform better when inser-
tions are done in the middle of the list, while it performs comparably worse at
traversals due to bad memory locality of linked nodes. On the counterpart, the
ArrayList variant provides faster iterations, and if the calculateIndex method
returns an index near the end of the list, the cost of shifting every subsequent ele-
ment in the array can be relatively small compared to the traversal of linked nodes.
In fact, if the collection �ts in the processor cache, adding an element in the middle
is often faster than �nding the node to concatenate in a LinkedList in modern pro-
cessors. Therefore, in this code, the decision to use either an array-backed list or
a linked-list depends on 1) the amount of insertions, 2) the position of inserted el-
ements given by calculateIndex, 3) the amount of traversals performed and last,
but not least 4) the characteristics of the underlying system hardware.

Following the �rst commandment of performance-engineering “Don’t guess: Mea-
sure!”, the advisable approach in this case is to measure the performance of both
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LinkedList and ArrayList using workloads that represent the system in production.
Naturally, this approach raises the common challenges of creating performance
tests that accurately represent the workload of their program. Does the underly-
ing system has a well-de�ned known workload or is it composed by a complex
interweaving of multiple algorithms?

Furthermore, as software evolves through continuous development, the usage
of its collections might also be modi�ed beyond what has been designed in the �rst
place. A second developer might want to add a patch that checks if the element is
already in the list, through the method contains, before inserting it again. Hence,
this new usage would be better suited for a set implementation, or at the very least
would bene�t more by using an ArrayList variant, as the new contains method
call e�ectively adds another traversal to the list.

Shortcomings of Manual Selection

The sub-optimal selection of collection may cause signi�cant performance degra-
dation in both execution time [117] and memory consumption of applications [158].
Everyday, developers face the problem of selecting collections for their application
and have to do such tasks manually. In this chapter, we make the case that manu-
ally selecting data structure for applications have the following shortcomings:

1. Developers have to rely solely on theoretical models, such as asymptotic
analysis, which may yield sub-optimal results in practice.

2. Developers need to be aware of the performance bene�ts provided by spe-
cialized collection variants tailored for speci�c use-cases (e.g., primitive col-
lections).

3. Developers need to have a realistic understanding of the application’s work-
load during production, to select the variant that optimally matches the ap-
plication’s demand.

Limitation of Asymptotic Models. Developers have at their disposal the asymp-
totic analysis to guide their decisions. Albeit being a suitable approach for un-
derstanding time and memory complexity of di�erent data structure operations,
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the asymptotic model might lead to wrong conclusions in a real usage context.
In the realm of collections performance, constant matters. For example, take the
TreeSet (red-black tree) and the HashSet (hash-table) Java implementations. The
TreeSet has worse asymptotic behavior but almost always has faster lookup times
on modern architectures when holding fewer than 200 data elements. In a similar
fashion, ArraySet outperforms HashSet on lookups with less than 100 elements (as
described in Section 2.4.2), which is extremely common in real Java applications
[30]. Therefore, developers need empirical models to guide the selection of their
data structures.

Specialized variants. In Chapter 4 we investigate the most frequently selected
collection types by developers of Java open-source projects, and concluded that
Java programmers rely heavily on the four JCF implementations of ArrayList,
HashMap, HashSet, and LinkedList. While such variants are designed to perform
reasonably well on general use-cases, our experimental evaluation showed that
some alternative variants provide superior performance in particular scenarios.
We conjecture that developers are typically not aware of the bene�ts of alter-
native variants and have a narrow set of general-purpose collection variants to
choose from. Thus, it stands to reason that developers need tools to increase the
space-search of variants at their disposal, and identify specialized variants that �t
better to their application’s workload.

Dynamic Workload. The third shortcoming related to manual collection se-
lection is the fact that the workload of a program is often dynamic and might
drastically change during execution. Many studies have shown that a real-world
execution often consists of multiple phases, and workloads (as well as program be-
havior) can change many times during a single run [92, 159]. In many cases, it has
proven to be impossible to �nd a single optimal solution for the whole program
run [178].

Our Approach. While crucial for performance, selecting a suitable collection
type and implementation essentially creates additional burden to developers dur-
ing software development. This problem demands automated solutions that can
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analyze the application workload, and decide which collection variant to use based
on the current usage scenario.

We propose an approach and its implementation for dynamic (runtime) selec-
tion and optimization of collection variants. Particular attention was given to ef-
�ciency, resulting in a negligible overhead despite of runtime adaptation capabil-
ities. Our approach works at two levels of granularity: at the level of a collection
allocation site, and at the level of individual collection instances.

5.2 Related Work
There is a substantial body of research on proposing new data structures and rec-
ommendation tools that aid developers on identifying collection ine�ciencies. In
this section, we present the related work containing approaches for di�erent pro-
gramming languages, as in many cases the same technique can be applied or com-
pared to proposed ideas for Java collections. We categorize these works into the
following areas:

• Design of new collection variants groups studies that propose new ver-
sions of the standard collections that produce better performance, for a cer-
tain usage scenario and performance criteria.

• Detection of collection ine�ciencies is comprised by studies that pro-
pose approaches to identify the ine�cient usage of collections, but do not
focus on the collection selection problem. Such studies focus on pinpointing
collections API miscon�guration, that yield software non-functional issues
such as memory leak or memory bloat.

Furthermore, we dive into more details on studies that aim speci�cally at auto-
matically selecting collection variants for better performance. This �eld of study
can be further divided into two categories, according to their methodology and
scope of variants selection:

• O�line collection selection groups studies that monitor the application
workload and report to developers a series of bene�cial code transforma-
tions to improve application’s performance. Such studies are denoted o�ine
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because the process of changing the collection is performed by developers,
after the program execution. It also may involve a larger scope of collection
variants, including non-functionally equivalent candidates - as developers
have the chance to adapt the code accordingly.

• Adaptive collection selection, consist of approaches that monitor the ap-
plication and select the appropriate collection variant at runtime. As all
operations have to be performed during application’s execution, the time
and space overhead is the greatest challenge of adaptive approaches. Fur-
thermore, the changes need to preserve the functional aspect of previously
selected collections as the swap is performed without the consensus of de-
velopers.

5.2.1 Design of new collections variants

This related �eld of research aims at providing new collection implementations
that either replace or complement commonly used variants. As collections have
been pointed as one of the main cause of memory overhead in applications [30, 125],
memory e�ciency is the most commonly tackled aspect of new collection design
studies. Gil and Shimrom [67] studied strategies to reduce the memory overhead
of maps and sets in Java. Using a series of memory compaction techniques, in-
cluding new hashing mechanisms, the authors re-implemented hash-backed and
tree-backed variants, and were able to reduce memory overhead from 20% to 70%
depending on the VM (32 or 64bits) and collection implementation.

Bergel et al. [13] focus on the Pharo language1 , and propose the use of lazy ini-
tialization as a measure to reduce the memory wasted on empty collections, and a
mechanism of recycling internal arrays to mitigate the memory cost of collections
expansions. Furthermore, authors investigated the usage of a hybrid data struc-
ture from Lua [85], which has both array and hash data representations, and can
be used to reduce the memory overhead of Pharo collection’s by 19%.

Moreover, Bolz et al. [20] presents a series of storage strategies that can be ap-
plied to dynamically typed languages (such as Python) to reduce memory waste.

1Pharo is an open-source object-oriented language. More information can be found on the project
website: http://pharo.org/
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Such techniques exploits the homogeneity of collection elements to reduce the
memory overhead, essentially trading type �exibility for better memory usage
and faster execution time. The evaluation showed an improvement of time per-
formance on average by 18% and lowering peak memory usage by 6% in some
Python benchmarks.

The work of Steindorfer and Vinju [164] propose a new version of immutable
hash-array mapped trie 2 of Scala and Clojure programming languages. Authors
optimize the object layout - formally bloated by suboptimal port from C++ - and
introduce a new encoding for the tree data structure, that reduces memory over-
head and improves the memory locality of studied collections. This new variant
outperformed Clojure and Scala collections in both memory footprint and runtime
e�ciency.

Overall, studies that propose new collection variants further enhance the pos-
sibilities for developers to optimize their applications. While �nding ine�ciencies
on current implementations and proposing new variants certainly contribute to-
wards better performance of applications in general, developers still need to ac-
knowledge the existence of these alternatives, and select them when the applica-
tion workload matches their intended use.

This chapter presents an approach that focus on automatically selecting vari-
ants for better performance, and newly customized variants can be included in
our approach to increase the search-space that our framework analyzes.

5.2.2 Collection inefficiencies

The sub-optimal selection of collections is only one among many collection-related
pitfalls practitioners may fall when developing applications. This body of research
focus on identifying patterns of collection ine�ciencies such as collection miscon-
�guration, calls to redundant operations and the unnecessary creation of interme-
diate data structures.

Xu and Rountev [179] proposed a tool that combines both static and dynamic
analysis to �nd underutilized and overpopulated collections. The former occur

2Also referred as a radix tree, a trie is essentially an ordered tree data structure for �nite stsrings
and acts like a Deterministic Finite Automaton without loops.
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when a collection holds a very small number of elements, but waste memory with
a largely de�ned capacity. The latter problem occurs when a collection holds too
many elements, but most elements are never accessed again during program’s ex-
ecution. Authors re-framing all collections operations into a uni�ed ADD-GET
model, and use the reachability algorithms from graph theory to detect underuti-
lized and overpopulated collections. Yang et al. [181] build upon Xu’s work and
implement a collection-element �ow graph, obtained through dynamic analysis,
which is able to also identify unnecessary intermediate collections.

Olivo et al. [133] focus on statically identifying redundant traversals on collec-
tions, i.e., cases where the program iterates repeatedly over the same collection not
modi�ed between repeated traversals. The proposed approach uses the asymptotic
model to establish an upper-bound between collection relations, and any identi�ed
code fragment that breaches this threshold is �agged as a performance bug.

The inappropriate usage of collections is also linked to memory-leak issues in
Java [64]. Typically, elements never removed from collections are never released
back to the JVM, until the collection itself becomes eligible for garbage collection.
Xu and Rountev [180] propose a pro�ling technique that records each collection
operation. After a program run, the approach combines a set of heuristics (e.g.,
an element never removed is likely to be a leak) and builds a ranking of collection
instantiations that are prone to memory-leak.

Studies on collection ine�ciencies target performance problems related to col-
lections without exploring the e�ect of di�erent collection variants. Similarly to
works on design of new variants (Section 5.2.1), studies on collection ine�cien-
cies tackle an orthogonal problem to the collection selection. The above mentioned
studies could be combined to automated collection selection approaches to provide
developers a more complete feedback of performance bloats caused by collections.

5.2.3 Automated Collection Selection

Studies that tackle the collection selection problem aim at aiding developers on
properly choosing their data structures, either by providing a report of bene�cial
code transformations (o�ine approaches) by changing their collections automat-

100



5.2 Related Work

ically (adaptive approaches). In all cases, selecting an appropriate collection re-
quires three fundamental steps:

1. Understanding the application workload. To perform a sensible selec-
tion, approaches need �rst to understand the usage context of a particular
collection. This e�ectively requires the monitoring and pro�ling of collec-
tion objects.

2. Searching for better variants. Given a particular workload, an automated
approach needs to �nd in the search-space of collection variants a better can-
didate. Essentially, the search mechanism needs to match the usage context
with a model that guides which variant should be selected.

3. Selecting a new variant. After the identi�cation of a better variant, the
approach then needs to perform the selection. As aforementioned, selecting
a new variant means either reporting to developers potential optimization
opportunities, or changing the program during runtime to use better vari-
ants.

All approaches described in the following subsections di�er on how they imple-
ment the above mentioned three-steps methodology. Particularly, the model used
for searching new variants has been extensively explored in the past decade, with
studies proposing the use of rule-based system, machine-learning techniques such
as genetic algorithm and neural network, or the use of empirical models guided by
benchmark results. We present the related work in chronological order of publi-
cation.

Offline Collection Selection.

O�ine collection selection is comprised by approaches that monitor applications,
�nd a better variant and report to developers a list of optimization opportunities.
These approaches are not �t to adapt the code in production, and are sometimes
designed to be executed on a speci�c test environment.

One of the �rst proposed tools for guiding developers on selecting better col-
lections was Chameleon [158]. Chameleon pro�les the access patterns and space
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utilization of each collection instance, aggregating the information by call-site.
The pro�le information is then combined with user-written rules for collection
selection, reporting back to developers any matched criteria. The strong suit of
Chameleon is its ability to monitor a variety of collection features with low-overhead,
allowing the tool to be used during production, and work essentially as a runtime
veri�er of optimization opportunities on collection usage. However, Chameleon
still relies on developers rules to guide the framework during search, still requiring
an expertize in the performance of data structure from developers.

Liu et al. [117] propose Per�int, a performance adviser tool for C++ programs.
Per�int monitors the usage of collections to infer the collection usage context, but
searches on the space of collection variants through an empirical cost model. This
model calculates each operation cost through a series of benchmarks, and extrap-
olates the obtained metrics to an observed context usage. This creates a hardware-
sensitive search method, which tends to be more accurate, without requiring any
input from developers. Per�int also tackles other categories of optimizations, such
as sorting algorithms and string usage and due to monitoring of several objects, it
may incur in a prohibitive overhead for a production environment.

In 2011, Jung et al. proposed Brainy [98], an approach that relies on a machine-
learning model to advise the developer. In this approach, the process of search-
ing for better variants for a determined usage context is learned by an Arti�cial
Neural Network (ANN). Before the learning phase, authors generate thousands of
random and synthetic programs that make extensive usage of collections, using
di�erent variants, and evaluate their performance. This data is then feed into an
ANN model, that attempts to learns what variants would �t best in a speci�c use-
case scenario. Brainy combines hardware awareness with a �exible model that can
be applied to di�erent applications, at a cost of a long initial training section of its
ANN model.

As energy consumption has emerged as an important performance concern for
the research community, Manotas et al. [120] propose SEEDS, a decision-support
framework for energy optimization. As its core, SEEDS uses exhaustive search
to �nd the best variant, guided by developer transformation rules and functional
tests. Compared to previous approaches, SEEDS not only evaluates the energy con-
sumption of a program under speci�c test-cases, but also modi�es the program’s
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byte-code automatically to cover all combinations of variants, reporting the set of
collections that yield the lowest energy consumption. On one hand, by measuring
all combinations SEEDS approach is likely to �nd a set of variants with empirically
accurate energy improvement. On the other hand, however, the absence of a model
to limit the search-space may incur in a prohibitive cost on large projects, as the
number of combinations in projects where thousands of collections are declared is
too large to be evaluated.

Compared to adaptive approaches in general, approaches that apply o�ine col-
lection selection techniques are able to perform more extensive searches, use more
complex models and report di�erent aspects of collections ine�ciencies. However,
such approaches ultimately rely on developers to apply the suggested transforma-
tions, often require a testing environment that is representative of the application’s
workload, or incur in a prohibitive overhead to be used in production.

Adaptive approaches - such as the one to be described in Chapter 5 - aim at sup-
plying developers with tools that overcome the limitations of o�ine tools, through
the use of simpler but faster search models. Hence, our approach is fundamentally
di�erent from the above mentioned in a core aspect: our framework identi�es and
select better collection variants at runtime, e�ectively moving from the role of a
performance adviser to an automated performance optimizer, adapting the collec-
tions to the current application demand.

Adaptive Collection Selection.

Online solutions propose to shift the responsibility of selecting an implementation
from the developer to the runtime, realized by adaptive collections. As the name
suggests, an adaptive collection adapts its own implementation to another variant,
better suited for its current usage scenario. Apart of taking away this burden from
the developer, the adaptive collection also tackles the problem of optimizing pro-
grams with multiple workload patterns. Several works [10, 51, 178] have shown that
a single implementation and algorithm is often not optimal for the entire program
execution, specially on large-scale softwares.

Moving the entire process of selecting a suitable collection variant to runtime
environment is a complex task, which is often tackled by adding an intermediate
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layer between the collection and the application source code. Adaptive approaches
essentially encapsulate standard collections to implement an adaptive behavior,
but di�er on what the level of adaptivity, how to reduce the inevitable overhead
and on the search scope of new variants.

CoCo [178] was the �rst fully automated approach to tackle the collection selec-
tion in Java and served as an inspiration for our framework: CollectionSwitch. In
CoCo, each collection instance monitors its usage and carries multiple data struc-
ture representations, gradually transitioning to the most appropriate when seems
�t. As its core, CoCo trades memory for better execution time, amortizing the
cost of switching to a new variant by carrying all possible data representation in a
single instance. Hence, this approach is not suited for memory-constraint applica-
tions - memory overhead of CoCo was reported as high as 85% in one application
- nor can be used to optimize their memory usage. Another limitation of CoCo
is its user de�ned model to replace the collections at runtime, relying solely on
asymptotic analysis to select the most suitable collection type. As shown in [98],
the asymptotic analysis sometimes fail to capture important nuances of collec-
tions performance. Furthermore, CoCo does not consider alternative collection
libraries, or variations of the same data representation, and focus only on standard
implementations from JCF, as opposed to our approach.

Orsterlund and Lowe [144] propose the use of context composition to identify
scenarios in which transforming the collection would lead to performance bene-
�ts. Essentially, context-composition focus on learning a dynamic dispatcher, i.e.,
a state machine that reads a sequence of collection operations and transitions to a
data representation that best �ts the current scenario. As opposed to CoCo, the ap-
proach here performs an instant transition to the best variant, copying all elements
in the process. Copying elements into a new data structure is an expensive oper-
ation, and could negatively impact the application’s execution time if performed
multiple times during the lifetime of a single collection instance. Authors address
this problem by analyzing a sequence of operations and only transforming the data
representation if this sequence indicates a more stable usage scenario.

De Wael [51] presents “Just-In Time Data Structures”, a proposal to shift the fo-
cus from selecting the best data representation, which may not be unique through-
out the program’s life-cycle, to selecting the best sequence of data structures. Au-
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thors focus on the general approach of designing adaptive collections and pro-
pose the taxonomy used throughout this thesis. Furthermore, authors have im-
plemented an extension of Java language, called JitDS-Java, where experts could
provide the set of rules for swapping data representations, and their compiler could
create the adaptive collections.

Our work extends the adaptivity proposed of the collection instance to the call-
site of the collection instantiation (allocation context). This extension allows us to
reduce the overhead impact of the proposed adaptive instances while improving
the performance of applications in both execution time and memory consump-
tion. Furthermore, our framework can be combined with the adaptive instances
proposed by Xu [178] and Osterlund [144], by including their implementations in
our set of variant candidates.

5.3 A Framework for Dynamic Collection
Selection

In this section, we present the fundamental aspects of CollectionSwitch, our frame-
work for e�cient collection adaptation. The CollectionSwitch selects at runtime
collection implementations in order to optimize the execution and memory per-
formance of an application. We propose a novel approach that uses workload data
on the level of collection allocation sites to guide the optimization process. Our
framework identi�es allocation sites which instantiate suboptimal collection vari-
ants, and selects optimized variants for future instantiations.

The optimization of collection variants of our approach takes place at two levels
of granularity: at the level of a collection allocation site, and at the level of the
individual collection instances.

• Allocation site-level adaptation. We modify the allocation sites of col-
lections in order to enable the workload-aware selection of variants created
during future instantiations (Section 5.3.1). To this aim we monitor and an-
alyze the behavior of previous instances created by a speci�c allocation site,
and decide on switching to other variants according to user-de�ned perfor-
mance rules. The overall approach is illustrated in Figure 5.1.

105



5 A Framework for E�cient and Dynamic Collection Selection

Application

Model Builder

Benchmarks

Target 

Machine

Performance 

Model

CollectionSwitch

Modify 

Allocation-sites

Benchmark Run

Manage 

Collections

Runtime 

Profile

Automated

Manual

Benchmark 

Results

Specify 

Selection Rules

Figure 5.1: Overview of the processes and dependencies used in our approach. Blue ar-
rows denote processed that are automatically handled by our framework, while
white arrows are manual processes required by developers.

• Instance-level adaptation. We introduce adaptive collection variants ca-
pable of changing the internal data structures depending on the collection
size (Section 5.3.2). Such variants are suitable if collection instances created
by the same allocation sites can have both only few or a large number of
elements.

In the allocation-site level adaptation, our framework exploits previously com-
puted performance models, and the runtime data characterizing the workloads of
the deployed collection instances (Figure 5.1).

5.3.1 Adaptation on Allocation Site-Level

Technically, selected allocation sites are instrumented with a code layer called al-
location context which creates, monitors and adapts the collections (see Figure 5.4).
Each allocation context initially instantiates default collections variants, as speci-
�ed by the developer.

A sample of all created collection instances is instrumented and monitored in or-
der to obtain the workload pro�les of these instances. A workload pro�le comprises
the number of executed critical collection operations (listed in Section 5.4.1, such as
populate, contains, or iterate) and essentially the maximum size of a collection.
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Figure 5.2: Selection of collection variants by allocation contexts based on the workload
pro�les on collection instances.

The allocation context periodically evaluates these pro�les to decide whether
future instantiations should use another collection variant than the current one
(i.e., whether to “switch”), and if yes, which variant (Figure 5.2). After switching
to a new variant a fraction of the instances is monitored to allow a continuous
adaptation process.

Variant Selection Algorithm The allocation context in our approach selects a
collection variant by considering multiple cost dimensions such as execution time
and memory overhead. While the interplay of these dimensions is described in
Section 5.3.1, we assume in the following a �xed cost dimension D.

We compare the collection variants V (per cost dimension D) according to the
total cost tc(V ) metric. This metric depends on the observed workload pro�les
W of the monitored collection instances. In particular, W comprises the numbers
of executed critical operations Nop during the lifetime of a monitored collection
instance, and the maximum size s of this instance. Moreover, tc depends on the
performance models obtained for each variant that will be further described in
this chapter (Section 5.4.1). These models yield the averaged costs costop,V (s) of
a critical operation op of the collection V depending on s, the maximum size of a
collection.
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With these preliminaries, we de�ne tc(V ) = tcW (V ) as:

tcW (V ) =
∑
op

Nop,W ∗ costop,V (s).

Note that tc(V ) only estimates the total cost of all operations under a workload,
since we use themaximum collection size s as an argument to a performance model
costop,V (s), and not the actual collection size when a speci�c operation is executed.
As the cost of an operation are typically larger with growing s, the value of tc(V )

is an overestimate of the real performance cost of a variant instance.
The above description assumed workload data from only a single monitored

collection instance. In reality we monitor multiple instances per allocation context.
We exploit all this data by summing up the total cost over all monitored instances.
These sums TCD(V ) (per collection variant V and a cost dimension D) are used
when applying the selection rules described below.

Configurable Selection Rules As described in Chapter 2, time and memory
have a strong trade-o� relation in data structures and an improvement on one cost
dimension might incur penalties on other cost dimensions. To account for such
trade-o�s, we introduce con�gurable selection rules.

A selection rule R consists of one or more criteria (predicates) C1, C2, . . ., each
corresponding to a unique cost dimension (e.g., execution time, memory overhead,
or energy usage). A collection variant is selected by R if all of the criteria are
satis�ed. A criterion Ci is satis�ed if the ratio of the total cost TCD(Vnew) of a
candidate collection variant Vnew (i.e., a potential replacement) by the total cost
TCD(Vcur) of the current variant Vcur is not larger than a user-speci�ed threshold
TD. In other words, Ci is satis�ed if

TCD(Vnew)

TCD(Vcur)
≤ TD.

Note that TD < 1 enforces a cost reduction, while TD ≥ 1 expresses a maximum
penalty incurred by the candidate variant. Table 5.5 shows examples of selection
rules, each focusing on optimizing applications for a particular performance di-
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Table 5.1: Example of Selection rules and their interpretation in the performance optimiza-
tion of applications.

Rule Improvement Max Penalty Interpretation

Rtime TCtime < 0.8 – Select variants with predicted time perfor-
mance at least 20% lower

Ralloc TCalloc < 0.8 TCtime < 1.2 Select variants with predicted memory allo-
cation at least 20% lower with maximum of
20% of time penalty.

mension. We use these same rules later when evaluating our approach in further
sections.

During periodical evaluation of workload data for a given allocation context,
we switch the collection variant if a selection rule �nds a variant di�erent from
the currently used one. If multiple candidates satisfy all the criteria, we select a
variant with a largest improvement on the �rst criterion C1.

5.3.2 Adaptation on Instance-Level via Adaptive Collections

Adaptive collections are able to change their internal data structure depending
on the current size of the collection (i.e., number of contained elements). The
motivation for such data structures is that for small collection sizes, operations
such as element search (or set contains) require comparable or even shorter time
if it is implemented as linear search on an array as compared to a lookup in a
proper hash table. However, using an array as the underlying data structure reduce
signi�cantly the memory footprint.

We studied adaptive collections that change the underlying data structure from
an array (lower memory overhead but linear search) to a hash table (higher mem-
ory overhead, constant lookup time). For the hash tables, hash denotes an imple-
mentation which creates a bag of keys in case of hash function con�icts (similarly
to JDK’s HashMap implementation). The openhash version solves hash function
con�icts by shifting the key placement to the next free position in the underlying
table. Table 5.3 lists the three adaptive data structures and their transition types.
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Table 5.2: Adaptive collection types studied in this work, their transition types, and the
optimal transition thresholds (in terms of the collection size).

Col. Variant Transition Threshold

AdaptiveList array → hash 80
AdaptiveSet array → openhash 40
AdaptiveMap array → openhash 50

In CollectionSwitch, such adaptive variants are considered as candidates for fu-
ture instantiations only if the corresponding allocation context has identi�ed that
the previously created collection instances had widely ranging sizes.

Transition threshold of adaptive collections. Adaptive collections use lo-
cal criteria to change its internal implementation, based on the collection size
(number of elements). This criteria has a signi�cant impact on the performance of
such data structures. Transitioning from array to hash too soon may jeopardize
the memory-bene�ts while even introducing unnecessary transitions to small col-
lections, while having a large collection with array representation is ill-advised.

To create performance models of these data structures, we had to optimize and
�x the transition thresholds for all studied variants. We used the lookup search as
the scenario for �nding this threshold, since our adaptive collections attempt to
optimize element search.

We calculate the transition threshold by �nding the collection size for which
the cost of transition to a hash table would be surpassed by the cost of calling the
lookup operation for every collection element. Figure 5.3 illustrates this method
for the AdaptiveSet. The optimal thresholds for each adaptive collection are shown
in Table 5.2.

5.4 Implementation

In this section, we describe the design decisions and implementation details of the
CollectionSwitch. Our framework is composed by two components: the perfor-
mance model builder and a library. The performance model builder creates perfor-
mance models of collection variants via benchmarking, essentially calibrating our

110



5.4 Implementation

-1

0

1

2

10 20 30 40 50 60 70 80

P
er

fo
rm

an
ce

 B
en

ef
it

HashSet Size

𝑎𝑟𝑟𝑎𝑦→ℎ𝑎𝑠ℎ

Figure 5.3: Transition threshold analysis of AdaptiveSet. The performance bene�t is cal-
culated subtracting the cost of transition from array→hash by the aggregated
lookup cost for every element in the Set. The optimal threshold for transition-
ing from array to hash table is at collection size of 40.

adaptive framework to a speci�ed hardware. The CollectionSwitch library exploits
these performance models at runtime for adaptive selection of collection variants
(Section 5.3.1).

5.4.1 Performance Models via Benchmarking

In any performance-related issue, the hardware con�guration is a fundamental
component of in�uence. Experiments in related work have shown examples of
di�erent hardware architectures yielding distinct best data structure for the same
application [98, 178]. Hence, the architectural changes of the underlying hardware
can make the data structure suboptimal as the workload of the application changes.

This substantiates the need for hardware-speci�c benchmarking and perfor-
mance modeling as a prerequisite to optimization of collection selection. Another
bene�t of such benchmarking is uncovering the performance di�erences hidden
by theoretical models such as the asymptotic analysis.

Considered Collection Variants Motivated by the �ndings presented in Chap-
ter 4 we consider in this work multiple implementations of the most used collection
abstraction types: Lists, Sets, and Maps. In order to have a compelling search space
to explore, we select implementations from both JCF and alternative collection li-
braries. We consider implementations from Koloboke [112], EclipseCollections [60]
and FastUtil [57] due to their good overall performance.

Additionally, we include implementations not provided by a collection library,
such as the ArraySet/ArrayMap provided by Google HTTP Client [71] and Stanford
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Table 5.3: Collection implementations identi�ed as candidates for variants.
Variant Implemented by Description

ArrayList JDK Array-backed list
LinkedList JDK Double-linked list
HashArrayList Switch ArrayList + HashBag for faster

lookups
AdaptiveList JDK, Switch ArrayList on small sizes and

HashArrayList for large sizes

HashSetMap JDK Chained hash-backed set/map
OpenHashSet Koloboke, Eclipse, Fastutil Open-address Hash-backed set
LinkedHashSet JDK Chained hash-backed with double-

linked entries
ArraySet Fastutil, Google, NLP Array backed set/map
CompactHashSet VLSI Byte-serialized map for high mem-

ory e�ciency
AdaptiveSet NLP/Google, Koloboke Array-backed on small sizes and

Hash-backed on large sizes

HashMap JDK Chained hash-backed map
OpenHashMap Koloboke, Eclipse, Fastutil Open-address Hash-backed map
LinkedHashMap JDK Chained hash-backed with double-

linked entries
ArrayMap Fastutil, Google, NLP Array backed set/map
CompactHashMap VLSI Byte-serialized map for high mem-

ory e�ciency
AdaptiveMap NLP/Google, Koloboke Array-backed on small sizes and

Hash-backed on large sizes

NLP [76]. Those variants have a narrow best-case scenario, but o�er a substantial
improvement when used in the right circumstances. We show the variants used in
this study in Table 5.3, in total CollectionSwitch is able to adapt a list to 4 di�erent
variants, and a map/set to 10 distinct variants.

Computing the Performance Models The CollectionSwitch uses performance
models to guide its search for a better variant during program’s execution. To com-
pute the performance models, we run a set of benchmarks using a factorial exper-
imental plan [126], designed to evaluate each collection variant in a wide scope of
usage scenarios (see Table 5.4). Each usage scenario is composed of a single op-
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Table 5.4: Factors and levels adopted in the empirical evaluation of collections.
Factor Levels/Categories

Abstraction List,Set,Map
Library JDK, Koloboke, EclipseCollections
Collection Size [10,50,100,150,..,1000]
Scenarios populate, contains, iterate, middle
Data Type Integer
Data Distribution Uniform

eration executed on a range of collections size from 1 to 10K. To reduce the time
of the benchmark, we only evaluate critical operations, i.e., operations that have in
at least one variant a linear or above asymptotic cost (O(n)). Consequently, we
evaluate collections when adding elements to the collection (populate), searching
for an element (contains), traversing (iterate) and adding/removing an element in
the middle (middle), which is linear on array and linked implementations.

We build the empirical model considering the Integer element data type. Albeit
having an impact on the performance of some operations, we believe this impact
will be dwarfed by the di�erences of performances caused by di�erent collection
implementations. The data distribution, on the other hand, can impact hash and
sorted structures as it has a direct in�uence on element collisions. We only con-
sider uniform distribution in this model.

We build the benchmark using the CollectionsBench, our collections benchmark-
ing tool introduced in Section 4.4.2. We use the JMH native pro�ling method for
collecting the execution time, and we use the GC pro�ler to retrieve the mem-
ory allocated and footprint required in each scenario. Each iteration runs for �ve
seconds, executing the de�ned scenario continuously and returning the average of
the measured performance indicators. We run 20 unmeasured iterations to achieve
the steady-performance, and use the average results of 40 measured iterations in
our performance model, a similar methodology used to evaluate collections per-
formance in Chapter 4
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Modeling collection performance. We model the cost of each critical opera-
tion as a polynomial function of the collection size s:

costop(s) =
d∑

k=0

aks
k

The coe�cients are calculated using the least squares polynomial �t on the re-
sults of the benchmark. For this work we use polynomials of third degree (d = 3),
as this choice provided the small residuals, while polynomials of higher degree did
not increase the least-square �t signi�cantly.

5.4.2 The CollectionSwitch Library

We designed the CollectionSwitch as an application library as opposed to a cus-
tomized Virtual Machine (VM). This design choice was based solely on facilitating
the adoption of our framework by developer teams. A modi�ed VM would incur
on a harsh constraint, as to use CollectionSwitch applications would be required
to deploy using our personalized VM. The CollectionSwitch is open-source library
and is available online3.

The core component of our library is the instrumented version of a collection-
allocation site, the allocation context. The allocation context creates collections and
monitors a subset of the created instances to obtain workload data, characterizing
the current usage scenario. When collections �nish their life-cycle, typically when
collected by the garbage collector, the workload data is passed to the allocation
context. As described in Section 5.3.1, this initiates the performance analysis of
collection variants. If a better variant is found, the allocation context switches
the current implementation for future collection instantiations and starts another
monitoring round.

Specifying an Adaptive Context. The CollectionSwitch is essentially a middle
layer between the application and the collection libraries, collecting information
and switching the adaptive allocation sites to the appropriate variant. The allo-
cation context is implemented as a Java object, instantiated before the creation of

3https://github.com/DiegoEliasCosta/collectionSwitch
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// Original allocation site
List<?> list = new ArrayList<>();
// Modified code with allocation context
static ListContext ctx = Switch.createContext(CollectionType.ARRAY);
List<?> list = ctx.createList();

Figure 5.4: Instrumenting collection allocation sites with allocation context.

the collections. The context creation is speci�ed by the programmer via API and
is exempli�ed in Figure 5.4.

We leave the scope of the allocation context in charge of developers. Developers
may choose to use static or non-static allocation context, which drastically change
the scope of collection objects monitored by the context. A static context is cre-
ated as soon as the class is loaded in the class-loader and is kept alive until the
end of the application 4. The usage of static context greatly reduces the potential
overhead incurred by the framework, and it is closely related to the concept of
tuning the allocation site. However, a developer could use a non-static context if
the collections behavior is dependent on the instance that creates it, moving the
adaptive behavior from allocation-site to object instance granularity.

Monitoring the Collections Usage. Each allocation context collects metrics
on a subset of created instances to characterize their overall collections usage. Ex-
ample of metrics include the maximum collection size and the amount of critical
operation calls. We analyze only a subset of created collections to avoid a potential
overhead in case of a huge amount of collection instantiation in a short period of
time. The size of this monitored subset is de�ned by the monitored window size,
and can be parametrized by the developer. The monitored collections are created
with an extra layer called monitor, a wrapper that logs the metrics in the context
and forwards the collection logic to the proper implementation.

Analyzing the Collections Usage. A vital aspect of the CollectionSwitch im-
plementation is when the allocation context should use the feedback to perform its

4In the rare cases where the class-loader is displaced during program’s execution the context
would also be removed from the application and thus stop the monitoring and adaptation.
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transitions. In principle, a feedback should be used only when it provides a com-
plete context, i.e., when collections have already ended their life-cycle. In practice,
this delays the decision of the allocation context when collections are retained for
too long in memory, hurting the context adaptivity. To address this we created
the �nished ratio, which de�nes the ratio of monitored collections that needs to
be �nished, before the context can take any decision. For instance, a �nished ratio
of 0.6 implies that the allocation context will only take action when at least 60%
of the instances have �nished their execution. It is important to note that we al-
ways use the whole set of metrics to analyze the collections usage, the ration only
determines when the feedback should be analyzed.

To assess whether the collection object has �nished its execution, the allocation
context saves a WeakReference to the instance. As soon as the collection is eli-
gible for garbage collection, this weak reference returns null, when asked for the
referenced object. This method is more reliable and does not incur the substantial
overhead caused by the finalize method [19].

We implement the analysis of the collections usage using a thread pool to ana-
lyze every collections context. A periodic task is scheduled to analyze collections
metrics every interval of a parametrized (monitoring interval). To further reduce
the overhead of CollectionSwitch, this thread pool can be assigned to a speci�c
processor, hence shielding the impact of the analysis on the monitored application
time.

5.4.3 Limitations

While developing our framework we have identi�ed two important conceptual
limitations of CollectionSwitch: 1) estimation error of our performance cost model,
and 2) the potential increase of susceptibility to faults due to increased complexity.
We elaborate more on each limitation in the following paragraphs.

Estimation errors. Adaptive approaches have the constraint of using fast and
simpli�ed models during variant search, and our simpli�ed performance cost model
has the following shortcomings. First, we use accumulated execution cost, which
might hide the true behavior of collections in a real application. For example,
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short-lived instances and collections executed in parallel can have distinct impact
on the application’s performance. Also factors such as memory locality and branch
misprediction are not considered in our performance model and are two major fac-
tors for predicting collections performance. On the other hand, CollectionSwitch
only needs accuracy su�cient to expose the performance di�erences between col-
lection implementations. Using a more or fully accurate model might increase the
runtime overhead and thus limit the bene�ts of the approach.

Increased susceptibility to faults. By introducing alternative libraries we
enhance not only the search-space of collection variants, but also the complex-
ity of programs using the CollectionSwitch. Our framework comes with new li-
brary dependencies, and increases the deployed application binary by approxi-
mately 20MB. Di�erent scenarios might yield distinct collection implementations,
increasing the chance of functional bugs and raising the cost of diagnosis. We mit-
igate this by selecting well-tested implementations, and by providing a detailed
log system for tracing our framework events. A production-grade version of Col-
lectionSwitch should be released with JCF and one alternative library implemen-
tation, in order to reduce the possibilities of bugs and the dependency list of our
framework.

5.5 Evaluation

In this section we evaluate the e�ectiveness of CollectionSwitch on selecting data
structures to optimize applications for better execution time or memory usage.
Our framework is evaluated through two benchmark suites:

1. The CollectionsBench [43], a set of micro-benchmarks speci�cally designed
to evaluate collections performance. We use this benchmark to observe Col-
lectionSwitch monitoring overhead and to assess the gains in performance
our framework could give in a scenario dominated by collections operations.

2. The DaCapo benchmark, a set of real-world application benchmarks [15]. In
this experiment we e�ectively evaluate how CollectionSwitch can be used
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Table 5.5: Selection rules Rtime and Ralloc used in our evaluation.
Rule Improvement Penalty

Rtime TCtime < 0.8 –
Ralloc TCalloc < 0.8 TCtime < 1.2

to optimize real applications by adapting their collection to their speci�c
demands.

We conduct all our experiments on a machine with the i7-2760QM 2.40GHz CPU
and 8GB RAM under Ubuntu Linux 3.16.0-53 (64 bits).

To optimize applications for time and space dimensions we use two rules shown
in Table 5.5. The rule Rtime target at optimizing execution time while Ralloc focus
on reducing memory allocation of our target applications and benchmarks. Note
thatRalloc comprises a maximum penalty allowed on the execution time, otherwise
CollectionSwitch would only select array-backed implementations due to their low
memory footprint.

For the whole experiment we use a window size of 100 instances, a level that
showed a good compromise between fast analysis and stable transitions in our
preliminary analysis. Furthermore, the �nished ratio is set 0.6, that is, our frame-
work defers the adaptation until we have 60% of monitored collections �nished
in the current monitoring round. We con�gure our dedicated thread to wake-up
every 50ms (monitoring interval) to inspect and adapt each allocation-context con-
�gured in an application.

5.5.1 Micro-benchmarks

We extended the CollectionsBench benchmark to evaluate the CollectionSwitch
through experiments covering scenarios dominated by a single collection opera-
tion (single-phased), and scenarios with the dominant operation varying over time
(multi-phased). We follow the methodology [62] for evaluating the steady-state
performance of Java programs. In particular, we run each test scenario with 20
unmeasured iterations for warm-up, followed by 40 measured executions.
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Albeit having trained our models with the Integer element type, we evaluate
our framework adapting collections holding String objects. Strings are a very
commonly used data type (as shown in Chapter 4), and by changing the content
type we attempt to appraise the robustness of the performance model.

Single-Phased scenario. In this experiment, each scenario consists of creat-
ing and populating 100k collection instances, followed by 100 lookup searches
(contains()). We focus on the lookup operations for this experiment as this oper-
ation have di�erent asymptotic complexities on array/hash implementations and
showcase an interesting trade-o� between time and memory consumption.

Figure 5.5 shows the time performance against JDK implementations (ArrayList,
HashSet, HashMap) for varying collections size. CollectionSwitch was able to se-
lect variants with better performance on all collection abstractions. In Figure 5.5a,
the performance is gained by switching to a HashArrayList implementation. On
sets and maps (Figures 5.5b and 5.5c) this performance was achieved by switching
to the Koloboke OpenHash implementation.

In case of Ralloc, CollectionSwitch switches multiple times for both sets and
maps. We present the performance in terms of allocated memory during our
benchmark in Figure 5.6. On small collections (size < 400), FastUtil OpenHash
implementation is selected (the most memory e�cient variant). For medium size
collections, the time penalty for using FastUtil lookup crosses the threshold es-
tablished by Ralloc, and EclipseCollection is selected. A yet better implementation
(Koloboke) is identi�ed and used when the collection size reaches 700.

Multi-Phased scenarios. We craft this experiment to evaluate the e�ectiveness
of our dynamic collection adaptation in a controlled multi-phased scenario. Each
iteration of this experiment is comprised of the creation and population of 100k
instances followed by an execution of 100 operations. Every �ve iterations we
change the operation type resulting in the phases depicted in Figure 5.7.

In our experiments our framework switched to the expected best-�t implemen-
tation for all phases except for the phase “search and remove”. Here the HashAr-

rayList instead of the optimal ArrayList was used. We attribute this to a lim-
itation in our performance model, our model assumes that cost of removing an
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Figure 5.5: CollectionSwitch time performance comparison on populating 100k collections
and executing 100 random lookups (contains), evaluated with theRtime selec-
tion rule. The marker indicates a size where our framework performed a switch
to a di�erent variant.

element by index is identical on both variants. In reality, HashArrayList imple-
mentation is slower as it searches on both hash and array structures.

5.5.2 Evaluation on Real Applications

DaCapo is a benchmark suite [15] comprised by a set of 14 open-source, real-
world Java applications, carefully created by researches to be used as a tool by the
community. Each benchmark contains realistic and non-trivial memory-intensive
workloads, and for this particular reason is widely used as an evaluation tool for a
variety of scienti�c studies. The latest DaCapo version (dacapo-9.12) contains 14
benchmarks from which we use the following �ve: avrora, fop, h2, lusearch and
bloat (2006 version). We select this subset as ine�ciencies related to collections
were previously reported [144, 158, 178] on those projects.
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Figure 5.6: CollectionSwitch memory allocation performance comparison on populating
100k collections and executing 100 random lookups (contains), evaluated with
the Ralloc selection rule. The marker indicates a size where CollectionSwitch
performed a transition to a di�erent variant.
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Figure 5.7: CollectionSwitch time performance on a multi-phased scenario, evaluated with
Rtime. As each phase is comprised by one dominant operation and hence has a
di�erent variant as the most optimal choice. CollectionSwitch switches to the
best-�t variant in almost but one scenario.

CollectionSwitch requires modi�cations of existing code to use the adaptive al-
location contexts. To limit this e�ort, we modify only allocation-sites that yield at
least one thousand instances and that comply with JCF interfaces (possibly with
little refactoring e�ort). To this end, we �rst monitor a regular benchmark execu-
tion and rank the allocation sites by the number of generated instances.

To compare the e�ectiveness of the full framework against the bene�ts of a
simple adaptivity at instance-level we use two modi�ed versions of DaCapo. In
the �rst version (FullAdap), each target allocation site is modi�ed to use our al-
location context, providing full framework capabilities. In the second version (In-
stanceAdap), the target allocation sites are simply changed to always instantiate
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5 A Framework for E�cient and Dynamic Collection Selection

an adaptive variant (e.g., ArrayList→ AdaptiveList), i.e., without the capability of
selecting the collection types through the analysis of previous instances.

In this experiment we run the original and the two modi�ed DaCapo bench-
marks 35 times with a maximum heap size of 1 GB (�rst 15 runs are discarded as
warm-ups).

Table 5.6: Results of our approach on DaCapo benchmarks. Section “Original Run” re-
ports the execution time (T ) and the peak of memory consumption (M ) of the
original Dacapo run. Section “Full CollectionSwitch” shows the results for the
full optimization level (FullAdap) under both selection rules Rtime and Ralloc.
We present the gain/loss percentages for the signi�cant di�erences (Tukey HSD
test [126]) compared to the original run (positive values are better). Non-
signi�cant di�erences are reported as –.

Bench
Original Run Full CollectionSwitch (FullAdap)

Rtime Ralloc

T(s) M(MB) T1(s) M1(MB) T2(s) M2(MB)

avrora 4.1 72.4 4.2 – 72.1 – 4.4 -7% 65.4 +10%
bloat 30.3 96.7 28.9 – 96.9 – 26.6 +12% 89.4 +8%
fop 0.5 53.4 0.5 – 57.0 -7% 0.5 – 53.9 –
h2 40.1 509.0 38.3 +6% 508.7 – 44.6 -11% 470.1 +8%
lusearch 3.6 282.4 3.1 +15% 269.4 +5% 3.4 +6% 268.2 +5%

Time Improvement (Rtime) for FullAdap. The largest improvement of the ex-
ecution time (15%) was obtained for lusearch. The dominant transition in lusearch
was performed on map variants, as most of its HashMap instances held less than
20 elements, and were replaced by AdaptiveMap and Koloboke OpenHashMap.
Thus, as a side e�ect, CollectionSwitch also reduced the memory peak consump-
tion of lusearch by 5%. Benchmarks fop and h2 showed similar characteristics of
collection transitions. Both of them have allocations sites that extensively instan-
tiate lists exposed to large amount of lookup calls. CollectionSwitch has correctly
transitioned them to AdaptiveList (array → hash). This transition improved the
execution time of h2, but provided no signi�cant improvement for fop.

Memory Improvement (Ralloc) for FullAdap. In case ofRalloc, CollectionSwitch
managed to reduce the peak of memory consumption of most of the applications.
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Typically, HashSet and HashMap were replaced by adaptive and open-hash vari-
ants. Interestingly, the bloat benchmark had a lower execution time in this case
(Ralloc) than when aiming at the time reduction (Rtime). We conjecture that a re-
duction of memory usage implied in a better cache utilization and lower Garbage
Collection time.

Comparison of FullAdap and InstanceAdap. Table 5.7 shows the compari-
son of the original runs of DaCapo benchmark and the limited version of Collec-
tionSwitch with only adaptive instances (InstanceAdap). Compared with the full-
version presented in Table 5.6, the simpler version InstanceAdap featured compara-
ble (but not better) improvement grades for memory usage as the full framework
under the rule Ralloc. However, the InstanceAdap version failed to achieve any
improvement on the execution time, especially in comparison with the full Collec-
tionSwitch under the Rtime. These results indicate that allocation-site adaptivity
is essential for improvement of execution time Such mechanism help to consider
multi-dimensional criteria (memory and time), which prevents the uncontrolled
performance degradation which might be introduced by adaptive collection.

Table 5.7: Results of our approach on DaCapo benchmarks considering only pure adaptive
instances as opposed to the full version of CollectionSwitch. Section “Original
Run” reports the execution time (T ) and the peak of memory consumption (M )
of the original Dacapo run. We present the gain/loss percentages for the signif-
icant di�erences (Tukey HSD test [126]) compared to the original run (positive
values are better). Non-signi�cant di�erences are reported as –.

Bench Original Run CollectionSwitch (InstanceAdap)
T(s) M(MB) T3(s) M3(MB)

avrora 4.1 72.4 4.4 -7% 64.9 +10%
bloat 30.3 96.7 29.5 – 89.6 +8%
fop 0.5 53.4 0.5 – 53.8 –
h2 40.1 509.0 44.9 -12% 493.2 +3%
lusearch 3.6 282.4 3.5 – 275.7 +2%

Common Transitions. Table 5.8 shows the most frequently selected transitions
(by application and by selection rule). Only 11 out of the 25 possible variants were
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Table 5.8: Most commonly performed transitions (AL = ArrayList, LL = LinkedList, HS =
HashSet, HM = HashMap).

Benchmark Rtime Ralloc

avrora HS→ OpenHashSet HS→ AdaptiveSet
bloat LL→ AL HS→ AdaptiveSet
fop AL→ AdaptiveList AL→ AdaptiveList
h2 AL→ AdaptiveList HS→ ArraySet
lusearch HM→ OpenHashMap HM→ AdaptiveMap

used in our evaluation. This indicates that a small set of collection variants might
be su�cient to cover most of the real cases found in the applications. Moreover,
in most allocation sites our framework replaced the original implementation. We
conjecture that our approach o�ers unexploited potential for improving perfor-
mance in applications.

How e�ective was CollectionSwitch in selecting collections for real-
applications?

CollectionSwitch managed to positively impact the execution time and the
peak of memory consumption in most evaluated applications. The time and
memory improvement vary considerably by application and selection rule,
with the most substantial speedup observed in lusearch (15%) and the highest
memory peak reduction observed in avrora (10%).

5.5.3 Overhead of the CollectionSwitch Framework

To evaluate the time and space overhead incurred by our approach on DaCapo
benchmark, we compare the performance statistics of the unmodi�ed benchmarks
against such statistics under CollectionSwitch (FullAdap) with disabled optimiza-
tion actions. We achieve the latter by setting an impossible selection rule (required
1000x time/space improvement for a transition). We found no signi�cant di�er-
ence (Tukey HSD) in the execution time in any DaCapo benchmark when using
our standard con�guration.
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Figure 5.8: Overhead of analyzing the collections metrics by window size.

Additionally, we run a micro-benchmark to evaluate the cost of analyzing a set
of collection metrics while varying the window size from 100 to 100k. Figure 5.8
con�rms that the overhead is negligible (<285ns), and can be easily amortized by
a multi-threaded environment.

Regarding the memory overhead, each allocation context has a footprint of ap-
proximately 1KB. As the amount of allocation context is limited by the amount of
allocation sites, we consider the memory overhead of the CollectionSwitch non-
signi�cant for real applications.

5.6 Summary of the Chapter

In this chapter, we presented CollectionSwitch, an application-level framework
for e�cient collection adaptation. It selects at runtime collection implemen-
tations in order to optimize the execution and memory performance of an
application. Unlike previous works, we use workload data on the level of collec-
tion allocation sites to guide the optimization process. Given a set of performance
rules, our framework identi�es allocation sites which instantiate suboptimal col-
lection variants, and selects optimized variants for future instantiations. As a fur-
ther contribution, we propose adaptive collection implementations which switch
their underlying data structures according to the size of the collection.

We implement this framework in Java and demonstrate the improvements
in terms of time and memory peak consumption across a range of bench-
marks. While implemented for collections, the concept of exploring allocation-
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site regularities can be applied to di�erent programming languages and domains,
to optimize the execution time and memory consumption of applications with low
overhead.
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6 A Decision Support Framework
for Effective Parallelization
of Java Streams

The Java Stream library aims at facilitating element processing while providing
friendly support for parallelization. Object processing can be parallelized with a
simple switch of method calls. The performance bene�ts of this parallelization,
however, require careful deliberation from developers, that need to account for a
myriad of di�erent factors through manual analysis, potentially leading to subop-
timal choices and performance issues. In this chapter, we address this problem by
introducing a framework that combines machine learning models with static and
dynamic analyses of the target application to identify stream pipelines that can be
e�ectively parallelized for better runtime performance of the application.

Hence, in this chapter, we make the following contributions:

I An approach for identifying streams that can bene�t from parallelization, by
leveraging machine learning models and synthetically generated stream bench-
marks.

II An implementation of this approach in the form of a decision support frame-
work that monitors the application workload and reports to developers op-
portunities for optimizing Java streams.

III An evaluation of the accuracy of our models on three benchmark suites from
real applications.

This chapter is partially based on the following manuscript under-revision.
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D. Costa, J. P. Sandoval, and A. Andrzejak. “Leveraging Machine Learning Models for
E�ective Parallelization of Java 8 Streams”. In: Automated Software Engineering. Under
revision

6.1 Introduction & Motivation

As introduced in Chapter 2, the Java Stream provides a concise API for process-
ing objects and primitives, with a programmer-friendly method for paralleliza-
tion: processing streams in parallel requires a simple call to parallel in a stream
pipeline. The bene�ts of parallelizing streams, however, require careful deliber-
ation from developers [110]. As evidenced by some of the most viewed stream
questions in Stack Over�ow [118, 121, 150], developers struggle on understanding
when to use parallel streams for better performance.

Unfortunately, the JVM cannot automatically parallelize streams. The prob-
lem of fully unguided automated multi-core parallelism remains a grand chal-
lenge [151], and the JVM takes a conservative approach. As it cannot guarantee
the correctness neither the performance bene�ts of the parallel code [110], the JVM
leaves to developers the decision to use parallelism in their stream processing. In
turn, developers need to account for the following factors to decide whether using
parallel streams is bene�cial or not in terms of performance:

1. The number of elements and the amount of computation performed on
each element. In essence, the task of processing the entire stream needs to
be large enough to justify the need for parallelization and compensate the
costs of splitting and combining each sub-tasks running in parallel.

2. The side-e�ects of the behavioral parameters. Stateful lambda expressions
[89] might introduce external thread contention that may jeopardize the ben-
e�ts of parallelization. For instance, behavioral parameters that perform I/O
operations are unlikely to bene�t from stream parallelization.

3. The stream source determines how e�cient a stream of elements will be
partitioned. Every stream source in a pipeline has to provide a Splitera-

tor [161] data structure, which de�nes how a source can be split and tra-
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versed. Furthermore, the source data type may enforce a speci�c order of
the elements (e.g., ArrayList guarantees the insertion order), which in com-
bination with short-circuit pipeline operations (such as findFirst or limit)
may lead to early termination of pipeline processing. This can, in turn, pro-
foundly in�uence the bene�t of potential parallelization. As the order of the
source elements potentially needs to be preserved in the output, the costs
of coordinating the split and merge would rarely pay-o� when processing a
pipeline.

4. The stream output determines the costs of combining results from parallel
tasks. For example, combining partial sums in parallel sum is fast. On the
other hand, merging sets is more expensive as it might involve copying large
amounts of data.

5. Eachpipeline operation also in�uences the performance of parallel streams.
Some operations such as distinct needs to process the entire sequence of el-
ements before producing any result, which may penalize the parallelization.
A short-circuit operation mentioned above �nishes as soon as a criterion
is met but still has to coordinate with executing threads, jeopardizing the
performance gains of parallel execution.

6. Aside from factors related directly to the stream pipeline and stream source,
factors like the number of CPUs in the underlying hardware, the data lo-
cality of the source, and the cost of managing the thread pool might also
a�ect the performance gains from parallel streams.

To illustrate the e�ect of stream source and the pipeline operations, we show
in Figure 6.1 the performance of two pipelines under di�erent stream sources,
in both execution mode. In Figure 6.1a, using parallel streams with ArrayList is
highly bene�cial for performance, while streams created from HashSet showed
performance bene�ts or parallelization only with streams containing more than
100 thousand elements. The streams from LinkedHashMap, however, show no
trend of being bene�cial in parallel. The pipeline containing the distinct() op-
eration showed no bene�ts of parallelization for all stream source types, up to 100
thousand elements (Figure 6.1b).
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Figure 6.1: Execution time comparison (lower is better) of two stream pipelines with dis-
tinct stream sources in both parallel and sequential mode. Results were ob-
tained with streams containing Integer elements, and �ltering is performed
with a trivial behavioral parameter (x -> x.hashCode() % 2 == 0). The tests
were performed on a machine with E5-1660-3.3GHz CPU, with 6 physical cores.

Table 6.1: Example of Java projects in GitHub that make extensive use of stream pipelines,
ranked by the number of pipelines declared in its code-case (test �les included).

Project # of stream pipelines

OpenJDK 4,818
Cyclops 4,705
Intellij-Community 3,154
Onos 2,185
Sonarqube 2,164

Furthermore, large software projects that make extensive use of the Stream API
have thousands of stream pipelines de�ned in their source-code (Table 6.1). For
instance, the project Intellij-community has more than 3 thousand stream pipelines
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de�ned in its code-base. This makes it practically unfeasible for developers to
analyze each pipeline with performance tests that re�ect the real workload of the
application, to foster possible bene�ts of parallelization.

All the factors mentioned above and their potential interactions pose a non-
trivial challenge to developers to decide whether parallelization is bene�cial (and
even semantically equivalent), or not. In this chapter, we address only the perfor-
mance aspect and focus on the following problem.

Problem definition Given a speci�c use-case and environment, identify an op-
timal execution mode (sequential or parallel) for each stream pipeline to optimize
the application’s runtime performance. The execution mode is decided by classi-
fying each stream pipeline into one of the following two types:

• Sequential-optimal: a stream pipeline that has faster runtime performance
processing streams in the sequential mode (stream()).

• Parallel-optimal: a stream pipeline that has faster runtime performance pro-
cessing streams in the parallel mode (parallelStream()).

6.2 Related Work

In this section, we categorize the related literature into 1) stream programming
model in Java, 2) adapting the Java Stream library, and 3) supporting parallel streams.

6.2.1 Stream Programming Model in Java

The notion of stream processing programs has been around for decades [2]. In the
stream programming model, a program is a collection of independent �lters (func-
tional unit) communicating through uni-directional data channels. This model
lends itself naturally to concurrent and e�cient implementations on modern mul-
tiprocessors [162]. After the popularization of streaming media in the early 2000s,
the research community has devoted more attention to modern languages and
compilers for stream processing applications [1, 23, 168, 184].
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In Java, approaches for distributed stream processing were proposed a decade
prior to the introduction of the Java Stream library [162, 168]. StreamIt [168] pro-
vide a high-level data �ow abstractions for stream programming, represented with
autonomous actors that communicate through FIFO data channels, and a compiler
infrastructure that generated both Java and native code. More closely related to the
Stream Library, was the approach proposed by Spring et al. [162]. Authors propose
an extension to Java that enabled the development of programs using the stream
programming model, with traditional object-oriented components.

Furthermore, frameworks for Big Data processing are notorious for using the
stream programming model, typically by implementing the Map-Reduce algorithm.
The most popular Apache Hadoop [175] and Apache Spark [183] provide extensive
support for Java developers.

6.2.2 Adapting the Java Stream Library

A substantial body of work aims at improving the current speci�cation and imple-
mentation of Java Stream library to improve data locality, or provide support for
distributed and real-time processing.

Chan et al. [28] studied the data locality of streams for processing very large
datasets. While loading such datasets from disk, the authors showed that the lack
of thread a�nity and data locality seriously degraded the performance of standard
Java streams. Authors proposed an approach called JUNIPER, that allows applica-
tions to tailor their levels of parallelism, thread a�nity, and to better exploit data
locality to improve the performance of Java streams when processing Big Data
systems.

Su et al. [166] proposed a new abstraction layer built on top of Java Streams, that
supports the execution of stream queries over a set of distributed machines. By
reusing patterns and concepts of standard Java streams, their approach provided a
friendly way of integrating distributed queries into Java programming language.

Chan et al. [27] presented a set of extensions to Java Stream library to support
the processing of large datasets. Authors point a set of issues with the current
Java Stream programming model, that makes it suboptimal for distributed pro-
cessing, such as the constraint of using only in-memory sources (e.g., collections).
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Similarly, to [166], a prototype is proposed that enables distributed collections, dis-
tributed streams, and a new set of eager operations for distributing data across
multiple computers.

Biboudis et al. [14] address the lack of extensibility of current streams libraries.
In most implementations (Java included), stream libraries are not �exible enough
to enable the customization of the semantics of pipeline operators. For instance,
developers have to change the library code to add new combinators or to log in-
termediate operations. Authors propose the usage of parametrized pipelines that
can be infused with customized semantics. This new extensible stream is shown
to have no negative impact on performance.

Furthermore, Mei et al. [123] conduct a study on the feasibility of using Java
streams for the Real-Time Speci�cation (RTSJ) [4]. Authors conclude that the cur-
rent framework design cannot supply a pool of real-time worker threads, due to
the lack of �exibility of the Fork/Join framework [109], used to process parallel
streams.

Hayashi et al. [81] leverage machine learning models to extract a set of perfor-
mance heuristics for computing streams of primitives in a GPU. Customized JIT
compilers [93, 182] have also been proposed that optimizes parallel streams APIs
for GPU execution. All approaches focus on the IntStream use-case alone, as GPU
processing is a better �t for array processing, and do not tackle the more general
use-case of processing objects with Java streams.

6.2.3 Supporting parallel streams

To the best of our knowledge, there is a surprising lack of studies and approaches
that aim at helping developers on using parallel streams.

To guide practitioners in deciding when to use parallel streams, Lea [110] cre-
ated a simple model called the NQmodel. Given an e�ciently splittable source and
an independent behavioral parameter, the NQ model consists on multiplying N
(number of elements) by Q (cost per element) and if NQ > 10000 the paralleliza-
tion is bene�cial. The cost per element can be roughly estimated, in a tiny and fast
function such as x -> x + 1,Q can be assigned to one. While this model provides
an easy thought model to be used in practice, it has a non-trivial assumption of

133



6 A Decision Support Framework for E�ective Parallelization of Java Streams

e�ciently splittable source and may yield sub-optimal solutions by neglecting all
the remaining factors described in Section 6.1.

Khatchadourian et al. [103] proposed a tool for safe stream refactoring that uses
a novel typestate analysis [165] to identify when it is safe to parallelize, by taking
into account the possible lambda side-e�ects and stream source type. While this
work is the most closely related to this chapter, our approach targets an orthog-
onal aspect of stream parallelization, by focusing on the performance bene�ts as
opposed to the safeness of the refactoring. While the work of Khatchadourian et
al. [103] aims at identifying whether a pipeline could be refactored, we focus on
the performance aspect of stream parallelization, e�ectively identifying whether
a stream pipeline should be refactored. A practical method can be devised by
combining both approaches into a cohesive tool, tackling both the safeness and
the performance bene�ts of using parallel streams.

6.3 A Decision Support Framework for Effective
Stream Parallelization
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Figure 6.2: Overview of the StreamAssist framework.

To address the problem of �nding the optimal execution mode for stream pipe-
lines, we devise a decision-support framework that analyzes the application at run-
time and reports back to developers the stream pipelines that are likely to bene�t
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from sequential or parallel processing. To accomplish this, our approach extracts
all stream pipelines in the application source code and monitors the streams cre-
ated during the runtime of the application, to construct a pipeline pro�le. This
pro�le is then used as an input of a performance model that classi�es whether the
stream pipeline is sequential or parallel-optimal.

In the following, we detail how the stream pipelines are extracted from the
source-code (Section 6.3.1), how we monitor streams at runtime (Section 6.3.2),
and how pipeline pro�les are fed to machine learning models to classify stream
pipelines (Section 6.3.3).

6.3.1 Extracting stream pipelines

We build a tool using the support of the Java Parser library [95] to parse the Java
code and extract each stream pipeline from the application source code. To identify
a stream pipeline, our parser analyzes the return type of every method call in the
Java code of the target application. If the return type inherits from the base class
for all stream objects (java.stream.BasicStream), the tool considers the method
call an entry-point of a stream pipeline. Every subsequent method call is recorded
until a terminal operation is identi�ed, marking the end of the pipeline.

The parser extracts stream pipelines de�ned within a method scope. Streams
that are passed as a parameter to other methods are currently not considered for
our prediction. Our tool records the call-site of the pipeline (class name and line
number) and the sequence of stream operations that compose the pipeline.

6.3.2 Monitoring Stream Pipelines

Aside from the stream pipeline, which can be extracted statically, the factors that
may in�uence the performance of stream pipelines can only be obtained at run-
time. We develop a customized Java agent within StreamAssist, with the support of
the ByteBuddy library [177] to monitor the streams created on each stream pipeline
during application runtime. A Java agent is a software that uses the Java Agent
framework [88] to instrument programs running in the JVM by modifying the byte-
code of their methods.
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Our agent monitors the creation of streams by instrumenting the class respon-
sible for creating streams, the java.streams.StreamSupport [90]. This class pro-
vides a low-level utility method for creating and manipulating streams and con-
stitutes a single entry-point for our data collection. Naturally, this class is also
used by third-party libraries and the JVM itself to create stream objects. We �lter
the streams created by the target application code by inspecting the package of
the caller in the stack trace. As inspecting the stack-trace can incur on substantial
monitoring overhead, we search only the �ve �rst frames in the stack, as all stan-
dard methods for creating streams in Java reach to StreamSupport within at most
�ve method calls.

After identifying a stream created by the target application, our tool records:
the number of elements e and the type of the data source s. This info is grouped
by pipeline call-site (class and line number). To avoid the expensive overhead of
tracing every stream creation, we only count the unique occurrences of the pairs
(e′, s), with e′ = e/100, essentially grouping the recorded stream size in groups of
hundreds.

The information collected is serialized either when the agent is uninstalled from
the JVM - characterizing the end of the data collection; or at the end of the JVM
execution. Our agent subscribes for a JVM shutdown hook [86], a mechanism pro-
vided by JVM to execute methods when the Java process is �nalizing.

6.3.3 Predicting the Pipeline Optimal Execution Mode

A stream pipeline can generate numerous streams during the program’s life-cycle.
Consequently, the pipeline pro�le is comprised of multiple stream pro�les, each
potentially di�ering in terms of the number of elements and source type. We group
the pipeline extracted statically with the information collected at runtime, con-
structing a pipeline pro�le. Given a stream pipeline p, we denote the pipeline
pro�le as Xp = {xp1, xp2, ..., xpn}, where xpi is the pro�le of the i-th stream.

We formulate the problem of �nding the optimal execution mode as a classi-
�cation task of a pipeline pro�le Xp to an execution mode y, where y ∈ Y =

{seq, par}. We denote the time of running a pipeline p in the execution mode y
under the pro�le Xp as Ty(Xp). Hence, in general terms the goal of our perfor-
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mance model is to �nd a function f : Xp → y such that Ty(Xp) < Ty′(Xp), with
y′ denoting the opposite execution mode to y. We detail in the following section,
the methodology used to create the performance model.

6.4 A Benchmark-driven Model Builder
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Figure 6.3: Overview of our approach for building the stream performance model.

The model builder has the goal to create a model that accurately predicts the
performance of stream pipelines in both parallel and sequential mode. We ap-
proach the modeling of stream performance from an empirical viewpoint: we use
benchmarks to evaluate the most commonly used pipelines in open-source soft-
ware under a variety of workloads and usage scenarios (Section 6.4.1), and use
such patterns to design a benchmark generator (Section 6.4.2). The benchmarks
generated are run in both sequential and parallel modes. The results are fed into
machine learning models, trained to predict the optimal execution mode for each
stream (Section 6.4.3), and aggregated into a prediction for a stream pipeline. The
overview of our model builder is depicted in Figure 6.3.

6.4.1 Finding Patterns of Stream Usage

We mine repositories to identify the most commonly used stream operations and
pipelines in open-source Java projects. In particular, we query the GitHub reposi-
tory for the 10,000 most starred Java projects, aiming at analyzing a range of very
popular to less popular projects.
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Figure 6.4: Cumulative distribution of the 1,426 unique pipelines found in the dataset. The
highlighted area corresponds to the 120 pipelines selected to compose our train-
ing set, which covers 82% of all found stream pipelines.

We use the same parser used to extract the static features of stream pipelines (Sec-
tion 6.3) to extract the pipelines from our dataset of projects. Recall that our tool
extracts stream pipelines de�ned entirely within a method scope. Hence the num-
ber and variety of pipelines observed in this section are a lower bound of what
projects may use in reality. For our purposes, however, the statistics can still be
used to guide our e�orts towards optimizing the more commonly de�ned stream
pipelines.

Table 6.2: Descriptive statistics of stream pipelines extracted from the top 10k most-starred
Java projects in GitHub.

Statistics #

# of Projects that use Java streams 1,307
total of # stream pipelines found 156,096
# of unique pipelines 1,426

We present a preliminary analysis of this investigation in Table 6.2. Out of
ten thousand projects, 1,307 projects (13%) have at least one instance of a stream
pipeline de�ned in its source code. In total, more than 156 thousand instances of
stream pipelines were retrieved by our tool. Disregarding the behavioral parame-
ters, we identify only 1,426 unique pipelines, i.e., 1,426 unique sequence of pipeline
operators.
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Table 6.3: Top 10 most frequently used stream pipelines in the most starred 10k GitHub
Java projects

Stream Pipeline # % # Projects

map-collect 17571 11.2 825
�lter-collect 6513 4.1 612
forEach 5878 3.7 535
collect 5536 3.5 539
anyMatch 3548 2.2 445
�lter-forEach 2834 1.8 406
�lter-map-collect 2210 1.4 421
�lter-�ndFirst 1368 0.8 315
map-forEach 1365 0.8 275
map-toArray 1290 0.8 260

The distribution of unique pipelines occurrences is presented in Figure 6.4, which
shows that the usage of stream pipelines is highly concentrated on a small subset
of pipelines. The combinations of the intermediate operators map, filter with the
terminal collect make approximately 20% of the all declared pipelines (see Ta-
ble 6.3). Notably, pipelines with zero and one intermediate operators make the
majority of all occurrences. We decided to model all combinations of stream pipe-
lines with zero and one intermediate operation, to include all operations at least
once in our performance model. Furthermore, we include the most used pipelines
with two intermediate operations, until we reach 120 pipelines that account for
82% of all pipelines retrieved from open-source Java projects.

6.4.2 Stream Benchmark Generator

To evaluate the performance of streams under both execution modes, we build
a benchmark suite called StreamBench. StreamBench can generate benchmarks
accounting for all combinations of stream operations, under a variety of work-
load parameters. Table 6.4 details the factors considered in the current version
of StreamBench. Note that these parameters are further combined with stream
pipelines with a di�erent number of operations. As described in Section 6.4.1, we
con�gure our StreamBench to generate benchmarks for 120 distinct pipelines.
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Table 6.4: Factors evaluated by StreamBench benchmark suite. The column # of levels
shows how many di�erent values are considered in StreamBench.

Factor Example of levels # of levels

# of elements 100, 1k, 10k, 50k, 100k 5
Source Type HashMap, Array 11
Element Type Integer or int 2
Intermediate Op filter(), map() 6
Terminal Op collect(), toArray() 12
Workload Level trivial, light, medium, heavy 4

Our benchmark simulates the behavioral parameter by arti�cially consuming
CPU cycles when processing each element, through the call of consumeCPU [17]
from the Blackhole object of the JMH infrastructure. As shown in the NQ Model,
the larger the processing time per element, the more likely the pipeline can bene�t
from parallelization. However, at the current stage of our approach, we can not
extract with reasonable precision and low-overhead the performance of behav-
ioral parameters on target applications. Hence, we train our models with the low-
est workload-level. This translates to essentially taking a conservative approach
and favoring sequential streams when predicting the optimal execution mode of a
pipeline.

We build the framework upon the Java Micro-benchmark Harness (JMH) [136].
Each benchmark is con�gured with 20 warm-up iterations to reach the steady-state
of the JVM, and 10 measured iterations (in both sequential and parallel mode). This
entire process is forked twice to mitigate the e�ects of external in�uence.

6.4.3 Training Machine Learning Models

Training set. For each generated benchmark (Section 6.4.2) we record the com-
bination of factor levels shown in Table 6.4. This information encoded using one-
hot-encoding for multi-category factors (e.g., stream source), and values are nor-
malized to the range of [0, 1]. This preprocessing yields a vector with 31 features
per benchmark. Each vector is complemented with the execution time observed in
sequence and parallel modes, together with a label (for classi�cation) derived from
the execution times of the respective benchmark. In total, we obtain a labeled data

140



6.4 A Benchmark-driven Model Builder

set with 8,135 elements. A machine with E5-1660-3.3GHZ CPU needs eight days
to execute all benchmarks.

Machine Learning Models. Given a pipeline p and a stream pro�le xp, we de-
note by tseq(xp) and tpar(xp) the execution time of processing the stream sequen-
tially and in parallel, respectively. We train two types of models:

1. Classi�cation: We train each model to classify each stream pipeline as either
sequential-optimal or parallel-optimal. A pipeline is considered parallel-
optimal if tpar(xp) ∗ 1.05 < tseq(xp). As parallel streams consume more
system resources, we consider the 5% to be the bare minimum to apply par-
allel execution mode.

2. Regression: We train each model to predict tseq(xp) and tpar(xp). The pre-
dicted performance will be used to quantify the expected performance im-
provement of the optimal execution mode against the sub-optimal one.

We use the data set from the synthetic benchmarks described above to compare
machine learning models against two baselines and to select the best-performing
models. The two baselines are: a strati�ed model (Baseline I), that uses the dis-
tribution of labels for the prediction; and the NQ model described in Section 6.2.
Since we train the models with benchmarks at the lowest workload level, we assign
the amount of work to Q = 1. This is the only method documented and currently
used by developers. Hence our model needs to outperform the NQ model to be
useful in practice.

Table 6.5 reports the model accuracy over 5-fold cross validation for the best
ML estimator types. Our results show that conventional machine-learning models
(from Scikit-Learn [146]) such as Decision Tree [22] and Multi-Layer Perceptron (1
hidden layers with 100 units) [82] without further hyper-parameter tuning are able
to learn a good classi�cation model for our stream problem, considerably superior
to the NQ model.

Feature Importance. Figure 6.5 shows all features ranked by their importance
for the classi�cation according to the χ2 score. A higher value of the χ2 score
indicates a lack of independence between a feature and labels; that is, the feature
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Table 6.5: Score obtained during training of machine-learning models.
Model Classi�cation Score Regression Score

Strati�ed (Baseline I) 0.57 -0.01
NQ Model (Baseline II) 0.70 –
Linear Regression 0.32 0.25
Logistic Regression 0.79 –
SVM / SVR 0.81 0.22
Decision Tree 0.96 0.78
Multi-layer Perceptron 0.97 0.88

is more signi�cant for the prediction. As expected, the size of the stream source
is the factor most signi�cant for the classi�cation, followed by the short-circuit
terminal operations (findAny and findFirst) in the pipeline. Terminal operators
dominate the top half part of the ranking, with only three intermediate operations
appearing in the top-15: filter, distinct and sorted.

The source-types LinkedHashSet, HashMap and TreeMap also showed signi�cant
in�uence and appeared high in the ranking. Source types that provide e�cient
Spliterator implementations such as ArrayList, Vector and Array, showed little
or no importance to the classi�cation. This indicates that streams created from
those sources are far more in�uenced by the stream size and pipeline operators.

Overall, at least 20 factors showed signi�cant importance score to the stream
pipeline classi�cation. The results con�rm that, while the number of elements is
the primary factor, pipeline operators and the source type still play a crucial role
in the performance of stream parallelization.

6.4.4 Aggregating Stream Predictions to Stream Pipeline

Our models are trained to predict the performance of a single stream, generated
from a stream pipeline. A stream pipeline generates numerous streams during
the program’s life-cycle. As each stream might di�er in terms of its dynamic fea-
tures (number of elements, source type), our model may predict con�icting optimal
execution-modes within the same pipeline. We need to aggregate all predictions
to provide a report for a stream pipeline.
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Figure 6.5: Ranking of the most signi�cant features for the classi�cation according to the
χ2 score.

Given a stream pipeline p and a set of streams generated from the pipeline as
Xp = {xp0, ..., xpn}, we denote the t′seq(xpi) and the t′par(xpi) the predicted exe-
cution time of processing the pipeline p under a scenario xpi. We aggregate the
stream predictions made by our classi�cation and regression models as follows:

1. We aggregate the predictions from the classi�cation models by showing the
ratio Rcla between the classi�ed sequential and parallel-optimal streams.
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2. We aggregate the predictions from regression models by showing the ratio
Rreg of the summed predicted performances of all streams in both execution
modes.

Rreg =

∑
xp∈Xp

t′seq(xp)∑
xp∈Xp

t′par(xp)
(6.1)

As stated in Section 6.3.3, we consider a pipeline to be parallel-optimal ifRreg >

1, and sequential-optimal otherwise. In practice, however, developers should use
both metrics (Rcla and Rreg) to make an educated decision on whether using par-
allel streams can provide performance bene�ts or not. As our Rreg is particularly
sensitive to outliers - streams with millions of elements might a�ect Rreg sub-
stantially - developers can use the Rcla to assess the consistency of the pipeline
classi�cation. Developers are also encouraged to use higher thresholds values for
Rreg (e.g., 2 or 4) to only rely on parallel streams if the expected bene�t is two or
four times faster than the sequential counterpart, to justify the use of all CPUs to
stream processing.

6.4.5 Limitations

While developing our framework, we have identi�ed two important conceptual
limitations of our model: 1) the lack of hardware features, and 2) the lack of behav-
ioral parameter estimation. We elaborate more on each limitation in the following
paragraphs.

Lack of Hardware Features. As described in Section 6.1, the underlying hard-
ware is a crucial factor for deciding to parallelize streams. The JVM con�gures
the number of threads used to process parallel streams based on the number of
available CPUs to the application [59], hence, a machine with more CPU’s is more
likely to bene�t from parallel streams. On the other hand, a high-speed CPU might
be able to sequentially process the entire stream faster than the threads can split
and combine the processed task.

Currently, our model does not take into account any hardware feature. To reli-
ably use StreamAssist, a user would have to re-run the benchmarks on its produc-
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tion environment. While benchmarks need to be run just once on the production
environment, we plan to embed hardware features (e.g., number of CPUs, clock
speed) into our training data and to provide benchmark results run in machines
with distinct hardware con�guration. In this way, our models can learn the e�ects
of the underlying architecture during the classi�cation of stream pipelines, and
a user could opt to re-use previously learned models by providing its hardware
con�guration.

Lack of Behavioral Parameter Estimation. Our benchmark generator is pre-
pared to simulate behavioral parameters with di�erent workload levels and can be
used to enrich our machine-learning models by taking into account the cost of
processing each element. However, to use this information in the prediction, we
have to estimate the cost of behavioral parameters in the target application. An
estimation can be performed by statically analyzing the behavioral parameter or
by measuring the time spent to process an entire stream during the application
runtime.

An approach could be devised to evaluate whether a behavioral parameter is
stateless and does not interfere with the stream source, i.e., are non-interfering.
Stateless and non-interfering behavioral parameters are more likely to bene�t from
parallelization, and their performance can be estimated by, for instance, the num-
ber and type of generated byte-code instructions. Also, identifying behavioral pa-
rameters that call methods hostile for parallelization, such as I/O operation, can
be used to �lter out stream pipelines from our analysis to prevent reports with
misguided information.

Furthermore, we could also provide a Java agent that measures the performance
of behavioral parameters and feeds this information back to the models. Measuring
the time of stream processing during runtime can lead to high application over-
head; hence, this approach is indicated to be used only during application testing.

6.5 Evaluation

In this section, we evaluate our trained models and the monitoring of stream op-
erations from StreamAssist. We conducted our experiments on the same machine
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Table 6.6: Applications selected for our evaluation. Column “# of Benchs” depicts the num-
ber of stream benchmarks selected for the classi�cation.

Application Version Description # of Benchs

EclipseCollections 10.0.0 Collections library 416
Guava 27.1 Google Core Libraries for Java 32
HTM 0.6.13 Hierarchical Temporal Memory 10

where our models were trained, a computational server with an E5-1660-3.3GHz
CPU, with 6 physical cores and 64 GB RAM using Linux 3.16.0-53 and Java 12.0.1
with HotSpot JVM. The evaluation focuses on answering the following research
questions:

RQ1. How accurate is our model at classifying streams execution mode of
real applications? As we train our models using synthetically generated
pipelines, we evaluate if our models can generalize to classify stream pipe-
lines from real applications.

RQ2. What is the overhead of StreamAssist whenmonitoring stream pipe-
lines? We quantify how intrusive is our Java agent to the application’s
performance, during the process of collecting the dynamic information of
streams from stream pipelines.

6.5.1 Selecting Applications

The evaluation of our tool requires selecting applications that make extensive use
of Java streams and ideally have sound performance tests that evaluate the per-
formance of stream pipelines. Unfortunately, writing performance tests is not a
popular task in open-source projects [111] and projects that make extensive use of
streams are an even smaller subset of Java-based projects. We inspect projects that
have more than a thousand declared stream pipelines and manually verify if they
contain a benchmark suite which evaluates streams performance. The Table 6.6
shows the three selected applications for this preliminary evaluation.

The EclipseCollection and Guava are both collection libraries and have been sub-
ject of our experimental studies in Chapter 4. As collections are a common stream
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source, both projects include benchmarks dedicated to evaluating their collection
implementation through streams pipelines under several scenarios. Moreover, we
also include the HTM project, as this project was also selected in the evaluation of
a related approach [103].

6.5.2 Experiment Preparation

After selecting the applications, we need to establish the ground-truth dataset. The
ground-truth is a labeled dataset that contains the optimal execution mode for all
pipelines per benchmark. Hence, we need to run all benchmarks with streams in
both sequential and in parallel mode and compare their performance to establish
the optimal-execution mode for each pipeline and benchmark. The EclipseCol-
lection project already contains identical benchmarks that execute each stream in
sequential and parallel-mode. We create new benchmarks for Guava and HTM,
con�gured to run with the opposite execution mode of the original benchmark.

Note that a proper evaluation of the impact of multiple pipelines in a benchmark,
would require us to perform a factorial experiment [126] with all possible execution
mode combinations. To reduce the e�orts during this evaluation, we �lter out
benchmarks that execute multiple stream pipelines.

Table 6.7: The labeled ground-truth dataset per project.

Projects Ground-truth
# of pipelines Seq-optimal Par-optimal

EclipseCollections 463 115 348
HTM 10 10 0
Guava 32 31 1

We then execute both the sequential and parallel versions of each benchmark
and compare the performance counters of each benchmark to establish the optimal
execution mode for a pipeline. If the faster benchmark version contains a pipeline
with the sequential mode, we label the pipeline “seq-optimal”, otherwise we la-
bel “par-optimal.” If no signi�cant di�erence is found between both benchmark
versions, using the Tukey HSD test [126] we by default label the streams as “seq-
optimal”, as the sequential execution mode consumes fewer resources and should
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Table 6.8: Score of the Multi-layer Perceptron model in the classi�cation of the optimal
execution-mode of stream pipelines per project.

Project Opt. Mode Accu. Prec. Recall f1-score Support

Seq-optimal 1.00 0.02 0.05 123EclipseCollections Par-optimal 0.76 0.74 1.00 0.85 340

HTM Seq-optimal 1.00 1.00 1.00 10
Par-optimal 1.00 – – – 0
Seq-optimal 0.97 0.94 0.95 31Guava Par-optimal 0.91 0.00 0.00 0.00 1

be preferred in this case. The result of this process is the labeled dataset sum-
marized in Table 6.7. EclipseCollection benchmark suite contains 75% of parallel-
optimal pipelines, while the other two projects contain almost exclusively sequential-
optimal pipelines.

6.5.3 Accuracy of the Stream Pipeline Classification

Our models are trained entirely with synthetically generated stream pipelines,
with simulated behavioral parameters. Hence, in this question, we attempt to
quantify if our models can generalize to predict the performance of real stream
pipelines. We present here only the results obtained with the Multi-Layer Percep-
tron [82], as this was the best model in our training phase.

We show in Table 6.8 the score of our models using standard metrics for classi-
�cation: accuracy, precision, recall, and the harmonic f1-score metric. Overall, the
model showed promising results, classifying all pipelines from HTM correctly and
getting an accuracy of 0.91 and 0.76 for Guava and EclipseCollections, respectively.
However, our model obtained very low recall value when classifying seq-optimal
pipelines in the EclipseCollections application, indicating that our model tends to
over-parallelize, classifying as par-optimal pipelines that have better performance
is processed in sequence.

We further detail the results of our classi�cation in Figure 6.6, for both EclipseC-
ollections Figure 6.6a and Guava Figure 6.6b. In these two �gures, we present each
pipeline classi�ed by whether it was predicted correctly (correct prediction axis),
its optimal execution-mode, and the performance impact of executing the pipeline
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Figure 6.6: Evaluation of our model prediction by application, optimal execution mode,
and performance impact. The performance impact shows the slowdown factor
when the pipeline is executed with the sub-optimal mode. HTM results were
omitted as it showed no incorrect predictions.

in its sub-optimal execution mode. For instance, if the performance impact of a
parallel-optimal pipeline is 5x, that means the same pipeline would take �ve times
longer if executed in sequential mode. Note that, in some benchmarks, the impact
of wrongly de�ning the pipeline execution mode reaches up to 30x in EclipseCol-
lections and more than 250x in Guava. Our trained model classi�es all pipelines
correctly with performance impact larger than a factor of four.

Wrong Predictions. We investigate the stream pipelines that were not cor-
rectly classi�ed by our models. Upon further inspection, we identify two possible
causes for the wrong classi�cation of 120 benchmarks and present them in Ta-
ble 6.9. First, we encounter pipelines that were not trained by our model (C1).
While we model every stream operation, the pipeline as depicted in C1 was not
part of our training set. This particular pipeline was used in 64 benchmarks, and
our model mistakenly classi�ed it as parallel-optimal in all 64 cases. Second, some
benchmarks from EclipseCollections use the collect(Collectors.groupBy()) to
return a result grouped by a particular �eld (C2). The grouping conveys expensive
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Table 6.9: Wrong pipeline predictions grouped by its possible causes.
ID Possible cause Example #

C1 Pipeline not modeled filter-map-map-filter-collect 64
C2 Grouping-by not modeled collect(Collectors.groupingBy()) 56
– Others reduce((a, b) -> b) 3

merge operations that are unfavorable for parallelization. Currently, our bench-
mark generator only considers the more streamlined toList, toSet collectors.

6.5.4 Overhead of StreamAssist

We design StreamAssist as a tool to be used during the development cycle of an ap-
plication through the monitoring of performance and integration tests. However,
the real bene�t of using such framework is the possibility of monitoring streams
in a system in production (within a speci�ed time frame) and using the collected
data to analyze the stream pipeline’s performance. To achieve that, we need to
guarantee a reasonable overhead to reduce the performance impact of collecting
streams data at every stream creation.

We quantify the overhead of StreamAssist by running all benchmarks from the
projects EclipseCollections, HTM, and Guava with and without our monitoring
agent, comparing both performance counters to assess the monitoring overhead.
The impact of the overhead in the benchmarks is depicted in Figure 6.7. In average,
using our agent during benchmarks caused an overhead of 41% in the benchmarks
execution time. In the EclipseCollection project, we also observe a few cases
with more extreme overhead, with benchmarks being up to 9 times slower. These
numbers were observed on benchmarks dominated by the stream creation oper-
ation. Such benchmarks are very short-running, with execution time below 100
nanoseconds.

While the overhead of StreamAssist is non-negligible, we expect the overhead of
each stream creation to be amortized by the processing time of a stream pipeline
during the application runtime. Moreover, as our agent can be uninstalled any-
time from a running JVM, practitioners can turn o� the monitoring, if excessive
slowdowns are observed during the dynamic collection.
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Figure 6.7: Distribution of observed monitoring overhead incurred on the benchmarks of
EclipseCollection, HTM and Guava.

6.6 Summary of the Chapter
In this chapter, we presented StreamAssist, a decision-support framework for ef-
fective stream parallelization. The framework uses static and dynamic analysis to
extract the pro�le of stream pipelines in an application. These pro�les are fed into
machine-learning models, trained with numerous stream benchmarks, that pre-
dicts the optimal execution mode of each stream pipeline. The framework reports
back to developers what stream pipelines can bene�t from parallel processing and
what pipelines should run in sequential mode.

We evaluate the models using benchmarks from three open-source Java applica-
tions. The results show that machine-learning models can capture essential
features of stream performance and can identify with high accuracy the
best execution mode for stream pipelines of real applications. While incur-
ring in a non-negligible overhead during the monitoring of a running application,
the agent system is �exible enough to be active for a brief period to extract the
workload of a system in production, without compromising its performance.

While in its early stage, we plan to augment StreamAssist with hardware fea-
tures to improve the generalization of its models and devise approaches to estimate
the performance of behavioral parameters. Both additions can make StreamAssist
a more practical tool to support Java developers on stream programming.
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Developing e�cient applications is a complex and multi-faceted problem that re-
quires the knowledge and practices of multiple computer science disciplines. De-
velopers have to continuously measure the performance of core implementations,
use appropriate data structure and algorithms, have an in-depth knowledge of
hardware speci�cities, and optimize sub-optimal program routines.

The goal of this thesis was to provide practical insights and novel methods to
support developers in the laborious task of designing e�cient applications. In the
following, we summarize the previous chapters and highlight the most important
contributions presented in this thesis.

7.1 Summary and Contributions

In Chapter 1, we start by motivating the need for performance e�ciency in the de-
sign of software applications and by introducing the three problems tackled in this
thesis: 1) the creation of sound performance tests through benchmarking, 2) the
selection of e�cient data structures, and 3) the e�cient parallelization of element
processing via the Java Stream API.

The following Chapter 2 establishes the research context of this work and de-
scribe the performance-related components of the Java programming environ-
ment. We then proceed to introduce the basic concepts and the terminology used
throughout the thesis.

Creating Sound Performance Tests through Benchmarking

In Chapter 3, we present an empirical study on bad practices in the creation of Java
benchmarks under the Java Microbenchmark Harness (JMH) framework, referred
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to as bad JMH practices. In this study, we empirically investigate the occurrence of
bad JMH practices in open-source projects and experimentally evaluate its impact
on benchmark results. The investigation yielded the following �ndings:

• The studied bad JMHpractices are prevalent in Java-based open-source
systems. Bad practices in Java benchmark creation were found in half of the
projects with more than ten benchmarks tests. Using accumulation to con-
sume method calls in a loop (LOOP) was the most frequently occurring bad
practice, but all bad practices appeared in multiple projects.

• Bad JMH practices often severely impacting the outcome of bench-
marks as they lead to benchmark results that substantially deviate from the
correct measurements. Our �ndings were also con�rmed by developers that
promptly accepted the pull requests containing the �xed benchmarks.

Moreover, we devise a static analysis tool called SpotJMHBugs [44], that auto-
matically identi�es the studied �ve bad practices. This tool can be integrated
into Eclipse IDE and support developers in the creation of sound performance
benchmarks.

Selection of efficient data structures

In Chapter 4, we conduct an experimental study on the usage and performance of
Java collections. We analyzed the usage patterns of collections by mining software
repositories and experimentally compare the performance of non-standard collec-
tion variants against the most commonly used variants. The �ndings in this study
showed that:

• Developers only rarely select non-standard collections or tune their
collection instantiations. Developers rely mostly on standard and general-
purposed variants, while performance-related parameters such as the initial
capacity are seldom speci�ed.

• Alternative implementations can o�er programmers a signi�cant im-
provement over standard libraries on both execution time and memory
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consumption on several usage scenarios. We devise a guideline that can be
used by practitioners to identify scenarios where non-standard variants o�er
substantial performance bene�ts.

In Chapter 5, we present an application-level framework for e�cient collection
adaptation named CollectionSwitch. Our framework selects at runtime collec-
tions variants that better suits the applicationworkload, in order to optimize
the execution and memory performance of the target application. To accomplish
this with low-overhead, we propose the use of adaptive allocation-sites, that moni-
tor the workload of past collection instances to decide for a better variant on future
collection instantiations. We implement the framework and experimentally eval-
uate our approach on a range of synthetic and real-application benchmarks. Our
evaluation showed that:

• CollectionSwitch can improve the execution time and memory con-
sumption of several applications by selecting better collection variants at
runtime. The framework uses empirical models to predict the performance
of each collection variant and switches to variants according to customized
selection rules given by developers.

• Collections can be adapted at runtime with very low-overhead. We
accomplish this by centering the monitoring, analysis, and selection of vari-
ants on the collection allocation-site - as opposed to each collection instance
- and only selecting better variants for future instances.

Efficient Parallelization of Element Processing via Streams

Finally, in Chapter 6, we present a decision-support framework that identi�es
stream pipelines that can be e�ectively parallelized to improve the runtime perfor-
mance of an application. To that aim, the framework monitors stream pipelines of
the target application at runtime to extract their pro�les and combine it with a per-
formance model that predicts the fastest execution mode (sequential or parallel)
of stream pipelines. The performance model is crafted by training machine learn-
ing models on thousands of synthetically generated stream benchmarks, executed
in sequential and parallel mode. We implement this framework and evaluate the
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accuracy of our performance models and the overhead of monitoring the stream
pipelines:

• Machine-learning models can capture essential features of stream
performance and can identify with high accuracy the best execu-
tion mode for stream pipelines. While trained with synthetically gener-
ated benchmarks, our performance model showed reasonably good accuracy
when classifying stream pipelines of real applications.

• Monitoring stream pipelines can yield noticeable runtime overhead.
We mitigate this limitation by devising a �exible pro�ling method with agents
that can be removed after collecting pipeline pro�les for a determined pe-
riod.

7.2 Outlook

In this thesis, we presented a series of empirical studies and automated methods
that aim at facilitating the development of e�cient applications. Although we have
discussed the quality of the insights provided and the usefulness of our approaches,
there are some interesting areas in which our work could be extended as detailed
in the following paragraphs.

A study of even more bad practices on Java benchmarks. The study in
Chapter 3 focused on �ve bad practices on Java benchmark creation. The JMH
documentation [142] lists 38 samples containing several pitfalls not investigated by
our study, that have the potential for substantially impacting the benchmark qual-
ity. For instance, false-sharing [169] is a di�cult problem to handle when writing
multi-threaded benchmarks. While JMH attempts to mitigate this problem by au-
tomatically padding �elds declared within State objects [134], the internals of State
objects are not padded and might a�ect the benchmark results. Our SpotJMHBugs
can be further extended to identify new bad practices statically, and a new study
should investigate its prevalence and impact, to give further insights into the prob-
lems developers face when writing benchmarks.
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Automated Benchmark Repair. Our work, presented in Chapter 3, can be used
as a starting point for automatic benchmark repair. Except for the INVO bad prac-
tice, our study showed that the removal of bad practices from benchmarks could
be done with patches touching only a few lines of code. In many cases, the �x
encompasses recon�guring a benchmark parameter, or making proper use of the
JMH infrastructure (e.g., using Blackhole object to consume method call returns).
Current automated program repair techniques can �x highly localized bugs, with
�x-patches spanning few lines of code [108]. In particular, template-based tech-
niques [104] could be extended to �x several bad practices of Java benchmarks.

Benchmark-driven Models for Performance-Sensitive Libraries. The ap-
proaches presented in Chapter 5 and Chapter 6 used models crafted from bench-
marks to predict the performance of Java collections and streams, using this predic-
tion to optimize the application’s performance and provide feedback to developers.
Both the Java Collections Framework (JCF) and the Java Stream are performance
sensitive libraries. Developers have to manually identify the performance trade-
o�s of using a particular data structure or processing a determined pipeline in
parallel, with suboptimal decisions potentially leading to performance issues in
their application.

Benchmark-driven models o�er a cheap and hardware-sensitive approach for
modeling the performance of core libraries. Benchmarks need to be run once in
the production environment, and derived models can be integrated into the devel-
oper’s workstation, providing valuable feedback and increasing the performance
awareness during the development cycle. Since Java 12, the JDK releases a basic
micro-benchmarking suite [32]. This suite can be used as a good starting point, as
it is likely to cover core and performance-sensitive implementations, and will be
maintained and enriched with new benchmarks on further JDK releases.
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