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Summary 
 

The infection with HIV-1 nowadays does not represent a condition with a deadly outcome. Due to 

current therapeutic approaches, the infection with HIV-1 represents a chronic condition in which viral load 

is kept at undetectable levels, but patients depend on a lifelong therapy without a chance of cure. The 

eradication of integrated viral DNA still remains the biggest challenge in curing HIV-1.  

The aim of this work was to contribute to a better understanding and definition of genomic regions and 

epi-genomic features that HIV-1 targets for integration, and give a detailed description on the importance 

of chromatin accessibility, as well as the importance of certain genomic features in the process of HIV-1 

integration.   

The first part of this project deals with the importance of HMT G9a activity and H3K9me2 

histone mark distribution and deposition in the context of HIV-1 integration in primary CD4+ T cells, 

which was studied by the application of G9a inhibitor BIX0129, also known as a very potent latency 

reversing agent. The significance of G9a activity and facultative heterochromatin mark H3K9me2 

deposition has previously been shown to affect T cell development and impact shaping of the nuclear 

architecture. In this work it was demonstrated that the chemical inhibition of G9a and depletion of 

H3K9me2 by BIX01294 has an increasing effect on HIV-1 integration. The increase in integration was 

also followed by increased viral transcriptional activity, as well as spatial repositioning of the provirus 

from the preferred nuclear periphery towards the nuclear center. Similar spatial repositioning has been 

demonstrated for genes highly and recurrently targeted by HIV-1 for integration (RIGs). However, genic 

nuclear repositioning upon BIX01294 treatment did not affect transcriptional profiles of HIV-1 RIGs, as 

demonstrated by RNA microarray analysis, but other groups of genes mainly involved in iron metabolism 

and inflammatory response were upregulated upon BIX01294 treatment. In addition, HIV-1 integration 

patterns were shown not to be affected by H3K9me2 depletion, and the virus was still targeting similar 

genic regions for integration. The analysis of chromatin mark distribution and chromatin binding elements 

upon BIX01294 treatment on RIGs revealed increased binding profiles of open chromatin mark 

H3K36me3 which is followed by increased LEDGF/p75 binding upon H3K9me2 depletion. The observed 

phenomenon might provide an explanation for the observed increased viral integration upon BIX01294 

treatment, considering that LEDGF/p75 is a prominent host cell factor involved in the viral integration 

process.  

Overall, the first part of this study clearly demonstrated that chromatin accessibility significantly affects 

HIV-1 integration levels which are directly proportional to viral expression levels and viral activity.   

 

The second part of this study deals with the relevance of R-loops, as specific genomic structures, 

as sites selected for HIV-1 integration in primary CD4+ T cells and macrophages. It was demonstrated that 

the GFP tagged IN enzyme of HIV-1, in a high occurrence, colocalizes with R-loops in cells, and that for 

the occurrence of this process a functionally active IN is required. This finding implicated that the 

observed colocalization is not randomly taking place and that HIV-1 is actively docked to R-loop forming 

genomic sites. In addition, biochemical as well as computational meta data analysis revealed that HIV-1 

RIGs are enriched in R-loops and that R-loop forming sites can accommodate integrated viral DNA. 

Further on, it was demonstrated that HIV-1 IN has R-loop binding capacity and is also capable of 

performing the strand transfer reaction on R-loop containing DNA templates. It was also demonstrated 

that R-loop depletion by RNase H1 overexpression in several cell lines, as well as in primary cells, 

significantly impairs HIV-1 integration, indicating that R-loop presence is crucial for efficient HIV-1 

integration. In line with this result was the finding that RIGs expression was not affected by R-loop 

removal, indicating that only the presence of R-loops, as structural genomic elements, is more affecting 

HIV-1 integration compared to gene expression levels. The final finding is also in line with previous work 

from our lab.  

In summary, the second part of this study provides strong evidence that R-loops represent structural 

genomic elements targeted by HIV-1 for integration and also gives new insight into HIV-1 IN functional 
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features which have not been addressed before.  
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Zusammenfassung  
 

Die Infektion mit HIV-1 ist heutzutage nicht mehr ein Zustand mit tödlichem Ausgang. Dank 

moderner therapeutischer Maßnahmen ist die Infektion ein chronischer Zustand in dem die Viruslast in 

Patienten auf nicht nachweisbaren Niveau gehalten wird. Jedoch sind Patienten auf lebenslange Therapie 

angewiesen, ohne eine Chance auf Heilung. Die Eradikation integrierter viraler DNA bleibt die größte 

Herausforderung in der Heilung einer HIV-1 Infektion.  

Das Ziel dieser Arbeit war es, zu einem besseren Verständnis und einer detaillierten Definition von HIV-1 

Integrationsstellen beizutragen, als auch einen detaillierten Überblick über die Bedeutung und Relevanz 

von Chromatin Struktur und spezifischer genomischer Elemente im Kontext des HIV-1 Integrations 

Prozesses zu geben.  

Der erste Teil dieser Arbeit befasst sich mit der Aktivität von G9a und der Komposition von 

Chromatin Merkmal H3K9me2 im Zusammenhang mit HIV-1 Integration in primären CD4+ T-Zellen. Um 

den Effekt von G9a Aktivität und H3K9me2 Komposition in Zusammenhang mit HIV-1 integration zu 

ermessen, wurde BIX01294, als prominenter chemischer Inhibitor von G9a angewendet. BIX01294 ist 

auch als sehr effizientes Latenzumkehrmittel bekannt. In vorherigen Studien wurde gezeigt das die 

Aktivität von G9a und der Aufbau von Heterochromatin Markierung H3K9me2 einen signifikanten 

Einfluss auf die Entwicklung von T-Zellen haben, als auch einen großen Einfluss auf die Chromatin 

Architektur des Zellkerns. Als Teil dieser Arbeit wurde gezeigt dass die chemische Hemmung von G9a 

und die darauf folgende gehemmte Ablagerung von H3K9me2, durch BIX01294, eine signifikante 

Wirkung auf HIV-1 Integration haben. Die durch BIX01294 ausgelöste erhöhte HIV-1 Integration hatte 

auch eine erhöhte virale Transkriptionsaktivität zur folge, sowie eine räumliche Neupositionierung des 

Provirus von der bevorzugten Kernperipherie zum Kernzentrum. Eine ähnliche räumliche 

Neupositionierung im Zellkern wurde auch für Gene gezeigt die HIV-1 wiederholt für seine Integration 

selektiert (RIGs). Jedoch hatte die Neupositionierung von RIGs keinen Einfluss auf ihre Transkription, 

dass via RNA microarray Analyse gezeigt wurde. Gruppen von Genen die durch die Behandlung mit 

BIX01294 eine erhöhte Transkription zeigten gehörten hauptsächlich zu Genen die in Prozessen wie 

Eisenstoffwechsel oder Entzündungsreaktionen involviert sind. Darüber hinaus wurde gezeigt, dass HIV-1 

Integrationsmuster nicht durch den Schwund von H3K9me2 beeinflusst werden, und dass das Virus 

immer noch ähnliche Regionen zur Integration favorisiert. Die Analyse der Verteilung von Chromatin 

Markierungen und der Chromatin Bindungselemente nach H3K9me2 Schwund ergab dass HIV-1 RIGs 

eine erhöhte Bindung von Chromatin Markierungen spezifisch für offenes Chromatin hatten, was zur 

Folge auch eine erhöhte LEDGF/p75 Bindung aufgewiesen hat, ausgelöst durch H3K9me2 Schwund nach 

der Behandlung mit BIX01294. Dieses Resultat könnte eine Erklärung für die erhöhte HIV-1 Integration 

darstellen da LEDGF/p75 ein prominenter Wirtszellenfaktor ist der in die virale Integration involviert ist.   
Insgesamt zeigte dieser Teil der Arbeit, dass die Zugänglichkeit von Chromatin das HIV-1 

Integrationsniveau signifikant beeinflusst, und dass das virale Integrationsniveau direkt proportional zu 

viraler Genexpression und virale Aktivität ist.  

 

Der zweite Teil dieser Studie beschäftigt sich mit der Bedeutung von R-Loops als Strukturen 

favorisiert für die HIV-1 Integration in primären CD4+ T-Zellen und Makrophagen. Es wurde gezeigt, das 

die HIV-1 IN in hohem Maße mit R-Loops in Zellen kolokalisiert und dass für ein hohes Auftreten dieser 

Kolokalisierung eine aktive IN erforderlich ist. Dies implizierte, dass die beobachtete Kolokalisierung 

nicht zufällig erfolgt und dass HIV-1 aktiv an R-Loops angedockt wird. Darüber hinaus zeigten 

molekulare Ergebnisse, als auch Computeranalysen dass HIV-1 RIGs in R-Loops angereichert sind und 

dass R-Loops integrierte virale DNA enthalten können. Weiterhin wurde gezeigt, dass die HIV-1 IN eine 

R-Loop Bindungskapazität besitzt und auch in der Lage ist die Strang-Transfer-Reaktion an einem R-

Loop durchführen kann. Es wurde auch gezeigt, dass die R-Loop-Depletion durch RNase H1 in mehreren 

Zelllinien sowie in primären Zellen die HIV-1-Integration signifikant beeinträchtigt, was darauf hinweist 

dass die Präsenz von R-Loops für eine effiziente HIV-1-Integration von entscheidender Bedeutung ist. In 
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Übereinstimmung mit diesem Ergebnis war auch die Feststellung, dass die RIG-Expression nicht durch 

die Entfernung der R-Loops beeinflusst wurde, was darauf hindeutete dass die Anwesenheit von R-Loops, 

als Strukturen im Genom, die Integration von HIV-1 stärker beeinflusst als das Expressionsniveau dieser 

Gene. Dieses Resultat übereinstimmt auch mit bisherigen Erkenntnissen aus unserem Labor.   

Zusammenfassend liefert der zweite Teil dieser Studie eindeutige Beweise dafür, dass R-Loops 

strukturelle genomische Elemente darstellen die sich HIV-1 zur Integration aussuchen kann. Außerdem 

liefert dieser Teil der studie auch neue Erkenntnisse über bisher nicht erforschte Funktionsmerkmale der 

HIV-1 IN.  
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I. Introduction 
 

I.I. Human immunodeficiency virus 1 (HIV-1)  
 

Human immunodeficiency virus 1 (HIV-1) is a lentivirus that primary infects cells of the host 

immune system. HIV primary infects CD4+ T cells, macrophages and dendritic cells causing a 

depletion of immune cell numbers (mainly CD4+ T cells) potentially causing a disease assigned 

as Acquired Immune Deficiency Syndrome (AIDS).  

HIV-1 remains a major global and public health challenge (Sharp & Hahn, 2011; UNAIDS. 

AIDS by the numbers (2015)). More than 36 million individuals live with HIV world-wide. And 

about 2 million new infections are occurring each year (UNAIDS. Fact Sheet 2018. 1–6 (2018). 

  

HIV-1 origin and phylogenetic position  

 

Strong phylogenetic evidence, which can be traced back to a single transmission event, suggests 

that HIV-1 originated by zoonotic cross-species transmission of the simian lentivirus; Simian 

immunodeficiency virus (SIV) from the chimpanzee subspecies Pan troglodytes troglodytes to 

humans (Gao et al, 1999; Keele et al, 2006; Sharp & Hahn, 2011).  

 

HIV-1 is characterized by extensive and dynamic genetic diversity. This heterogeneity is driven 

by several factors. A major source of HIV-1 genetic heterogeneity is the lack of proofreading 

ability of the viral enzyme reverse transcriptase (RT) (Roberts et al, 1988; Op de Coul et al, 

2001), the rapid turnover of HIV-1 in vivo (Ho et al, 1995), host selective immune pressure 

(Michael, 1999), as well as recombination events during replication (Temin, 1993). Mentioned 

phenomena contribute to HIV-1 being a virus with several distinct molecular subtypes and 

recombinant forms. Such a high diversity of the virus has significant implications on general 

understanding of viral transmission, pathogenesis and diagnosis (Buonaguro et al, 2007).  

 

According to the Baltimore classification of viruses (1971) which is based on structural features 

of viral genomes (type of nucleic acid, strandedness, sense and method of replication), HIV-1 is 
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classified into virus group VI (single stranded (ss) RNA-RT viruses, + strand (sense), with a 

DNA intermediate in its life cycle), family Retroviridae, genus Lentivirus.  

Due to its variability, HIV-1 variants can be further classified into three major phylogenetic 

groups: group M (main), group O (outlier) and group N (non-M/non-O) (Gürtler et al 1994; 

Simon et al, 1998; Ayouba et al, 2000). Viruses classified into group M are responsible for most 

of the infections worldwide. This group can be further subdivided into 10 recognized 

phylogenetic subtypes (A-K).  

Classification of HIV-1 subtypes was originally based on subgenomic regions of individual 

genes. Nowadays, with sequencing method improvements, HIV-1 phylogenetic classification is 

based on nucleotide sequences derived from multiple subgenomic regions (gag, pol and env 

gene) of the same viral isolate or on full-length sequence analysis (Buonaguro et al, 2007) 

(Figure 1.1.). 

 

Apart from HIV-1, in 1986 a related virus was isolated from African individuals and named 

HIV-2, which is known to be less pathogenic than HIV-1 (Clavel et al, 1986) and has two major 

subtypes, A and B. The lower infectivity of HIV-2 is assigned to its relatively poor capacity for 

transmission. HIV-2 is largely confined to West Africa (Reeves & Doms, 2002) (Figure 1.1.).  
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Figure 1.1. Phylogenetic tree of HIV subtypes and simian lentiviruses.  

The phylogenetic tree shows the similarity between HIV and SIV generated by full genome alignment of 87 

human and simian lentiviruses (from: Arien et al, 2007).  
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HIV-1 & AIDS 

 

A large sero-epidemiological study conducted in 1984 clearly showed that HIV causes AIDS. In 

addition, this research was the basis of the development of the first diagnostic tests for HIV 

infection (Schupbach et al, 1984; Brun-Vezient et al, 1984). 

From a historical point of view, an estimated number of 75 million people worldwide have been 

infected with HIV. Untreated HIV replication causes progressive CD4 T cell loss and a wide 

range of immunological abnormalities, which can also lead to an increased risk of infectious and 

oncological complications. Since the mid-1980s, when the first successful reverse transcriptase 

inhibitor was produced, antiretroviral drugs are highly effective in inhibiting HIV replication. 

Viral suppression enables immune recovery and the near elimination of the risk for developing 

AIDS (Deeks et al, 2015).  

Still, the problem of not being able to fully eradicate the virus from infected individuals persists. 

Apart from mentioned reasons for HIV-1 heterogeneity which represent one of the difficulties for 

HIV-1 cure strategies and beside the viral immune escape, the major reason why HIV-1 infection 

can not be eradicated by current therapies is due to the property of the virus to establish latent 

infection in resting CD4 T cells. These latently infected cells do not express viral proteins and 

therefore remain undetectable for the immune system and refractory to the current antiretroviral 

therapies (Chun et al, 1995; Lassen et al, 2004; Williams & Greene, 2007). In addition, non-T 

cell derived viral reservoir represents another challenge in eradicating the virus from infected 

individuals. Several studies showed that the viral genome can also be found in different cell 

types, such as monocytes/macrophages (Le Douce et al, 2010; Kumar et al, 2014), other myeloid 

cells (Scadden et al, 1990; Churchil et al, 2006) and even epithelial cells (Veazey et al, 1998; Liu 

et al, 2008; Liu et al, 2013a). 
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I.II. HIV-1 structure 
 

HIV-1 virion structure 

 

The HIV-1 viral particle (virion) has a spherical shape with a diameter of 100 nm. HIV-1 is an 

enveloped virus in which the envelope functions as a protector for inner viral components and 

contains proteins that allow the virus to recognize host cells. Inside the virion viral structural 

proteins assemble into a shell, or the viral capsid (CA) which protects and organizes the viral 

genome. HIV-1 virions can adopt two distinct morphological states (Ganser-Pornillos et al, 2008; 

Briggs & Kräusslich 2011; Sundquist & Kräusslich 2012). First the virion buds from a producer 

cell in its immature form, having a spherical CA which is composed of the immature (precursor) 

structural protein Gag. In order to become infectious, the immature virion undergoes 

morphological changes into the mature form (Figure 1.2.). This process of HIV-1 maturation is 

triggered by site-specific proteolytic processing; cleavage of the precursor Gag protein by the 

viral protease. This cleavage creates new structural proteins among which the capsid protein or 

p24 is one of the most important ones and it resembles into a new cone-shaped CA. The mature 

CA contains the viral RNA genome which is associated to enzymes important for integration 

(integrase – IN) and reverse transcription (reverse transcriptase – RT). The mature CA and its 

contents together constitute the virion core. The core is the structural part which is introduced 

into the cytoplasm of an infected cell at the start of a new round of viral replication.  

Apart from the core, which contains two copies of the single stranded viral RNA genome and is 

closely bound to nucleocapsid proteins (Figure 1.2., right), the virion contains viral enzymes IN, 

RT, proteases, ribonucleases,  as well as an  envelope.  

The envelope is composed of a lipid bilayer which originates from the host cell plasma 

membrane in the process of budding. The envelope of a virion contains proteins inherited from 

the host cell and some copies of the viral envelope protein. The viral envelope protein is 

composed of three molecules of glycoprotein 120 (gp120) and three molecules of glycoprotein 41 

(gp41) (Figure 2; legend on the right). The function of viral envelope proteins is the attachment 

to a host target cell, fusion of the lipid membranes of the viral particle and host cell membrane 

and thereby release the viral core into the infected cell (Chan et al, 1997).  
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Figure 1.2. Schematic representation of HIV-1 virion structure. 

Left: Structure of an immature HIV-1 virion. The viral capsid is not yet assembled. Gag molecules (purple) are 

concentrated under the viral envelope (yellow and green) and in complex with the viral RNA genome (red). 

Right: Structure of a mature HIV-1 virion. The viral core is assembled upon Gag cleavage by the viral protease. 

Upon protease cleavage nuclear core (NC) proteins (purple dots) associate with the viral RNA genome (red) and 

mature matrix proteins (MA) are docked to the viral envelope (yellow and green).  

A more detailed composition of HIV-1 virion building blocks is shown in the legend on the right (adapted from: 

Pornillos & Ganser-Pornilos, 2013).  

 

Structure of the HIV-1 genome  

 

The genome of HIV-1 is a coding RNA with nine open reading frames which code for fifteen 

different proteins (Coffin et al, 1997). The size of the HIV-1 HXB2 complete genome is 9719 bp 

(Genbank accession number K03455.1). The HIV-1 genome contains three major genes gag, pol 

and env which encode the main structural proteins and enzymes of the virus (Figure 1.3).  

The 5’ and 3’ ends of the viral genome each contain a Long Terminal Repeat (LTR) sequence, 

which participate in the process of proviral integration into the host genome. Both LTRs are 

composed of identical nucleotide sequences, and divided into three identical regions (U3, R, U5). 

However, once the virus has been integrated, the 5’ end LTR serves as a promoter for the viral 

genome, and the 3’ LTR is important in the polyadenylation of the transcribed viral RNA (Krebs 

et al, 2001). In theory, both LTRs can function as transcriptional promoters, since they have the 
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same nucleotide sequence. Still, it has been suggested that the transcriptional activity of the 5’ 

LTR is more potent in comparison to the 3’ LTR, which is also very similar to the scenario 

occurring in other retroviruses (Klaver & Berkhout, 1994).  

Viral proteins are translated 

as polyproteins which are 

further processed and 

proteolytically cleaved to 

produce the mature 

proteins. From the gag 

polyprotein precursor, the 

matrix protein (MA or 

p24), capsid (CA or p7), 

nucleocapsid (NC or p17) 

and p6 protein are 

generated.  From the gag-

pol polyprotein important 

viral enzymes as protease (PR), reverse transcriptase (RT) and integrase (IN) are generated. The 

env gene encodes a 30 amino acid signal peptide – SP and two glycoproteins assigned as gp120 

and gp41. Apart from the three major HIV-1 genes, additional six genes (tat, rev, nef, vpr, vif, 

vpu) encode HIV-1 accessory proteins which are participating in the life cycle of HIV-1 (Figure 

1.3). Inside of virions, the HIV-1 genomic RNA is found as a non-covalent dimer with a 5’ cap, a 

3’ polyadenylated tale and annealed to a host tRNALys3 molecule (Coffin et al, 1997; Watts et al, 

2009). The tRNALys3 acts as a primer for RT-catalyzed synthesis of viral DNA (vDNA) 

(Kleiman, 2002).   

 

 

 

Figure 1.3. Scheme of HIV-1 genome structure and its functional products. 

HIV-1 genome is 9719 bp in size and contains 9 open reading frames. Viral 

LTRs are represented in gray rectangles, whereas the viral genes are depicted in 

colorful rectangles. The functional products of the three major viral genes (gag, 

pol and env) are listed below them.  
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I.III. HIV-1 life cycle 
 

The life cycle of HIV-1 is 

a multistep process which 

can be divided into eight 

stages:  

1) binding;  

2) fusion; 

3) reverse transcription;  

4) integration;  

5) replication;  

6) assembly;  

7) budding and  

8) maturation (Figure 1.4). 

 

Binding & fusion 

 

As already mentioned, HIV-1 is an enveloped virus. The viral envelope is formed during the 

budding process and contains both viral and cellular proteins. Viral proteins present in the 

envelope are gp120 or the surface subunit of the envelope and gp41, the transmembrane subunit. 

gp120 interacts with specific cellular receptors; the CD4 receptor and two chemokine receptors 

CCR5 and CXCR4 (Dalgleish et al, 1984; Klatzmann et al, 1986; Alkhatib et al, 1996; Choe et 

al, 1996; Endres et al, 1996; Deng et al, 1996, Feng et al, 1996). Based on its ability to bind these 

receptors HIV-1 can be divided into different strains; CCR5 (R5 strain), CXCR4 (X4) strain or 

both (R5X4).  

Previously it has been assumed that HIV-1 directly fuses with the plasma membrane of the target 

cell (Stein et al, 1987; McClure et al, 1988; Melikyan, 2008). However, fusion occurs after a 

conformational change in gp41 (the transmembrane unit of the HIV-1 envelope) (Chan & Kim, 

1998). But it was also shown that HIV-1 entry can occur via virion endocytosis (Miyauchi, 

2009).  

 

Figure 1.4. Overview of HIV-1 life cycle. 

The illustration depicts the most important stages in the life cycle of HIV-1 from 

the moment of entering the target cell to possible scenarios of an active 

transcription of the virus and virion production, or reversion into latency (from: 

Lusic & Siliciano, 2017).  
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After HIV-1 virion fusion, uncoating steps take place, which means that the viral CA is 

disassembled and the viral genome is released into the cytoplasm. 

   

Reverse transcription 

 

Reverse transcription is the process in which the viral RNA genome is reversely transcribed into 

cDNA (complementary DNA). The produced cDNA represents the substrate for the integration 

process. The most important enzyme involved in the process of reverse transcription is the viral 

enzyme reverse transcriptase (RT) (Baltimore, 1970). 

Two important features of RT are necessary to carry out reverse transcription;  

1) it is a DNA polymerase that can copy either an RNA or DNA template and  

2) it has RNase H properties - it can degrade RNA only if it is a part of a DNA-RNA duplex.  

 

RT requires a primer 

and a template for its 

function. The viral 

genomic RNA is plus-

stranded and the primer 

for the first minus-

stranded DNA is a host 

cell tRNALys3 whose 3’ 

is complementary to a 

sequence close to the 5’ 

end of the viral RNA, 

known as the primer 

binding site (pbs). The 

ends of the viral RNA 

are direct repeats, called 

“R”. They function as a 

bridge that allows the 

newly synthesized 

 

Figure 1.5. Schematic representation of HIV-1 reverse transcription process  
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minus-strand DNA to be transferred to the 3’ end of the viral RNA, where the synthesis of the 

minus-strand can continue along the genome. The HIV-1 RNA genome contains two purine-rich 

regions (the so called polypurine tract – ppt) that are resistant to RNase H degradation by the RT. 

This ppt region functions as a primer for the initiation of the plus-strand DNA synthesis. After 

reverse transcription a DNA product is generated that is longer than the initial RNA genome. 

Both ends of the DNA contain sequences from each end of the RNA template (U3 from the 3’ 

end and U5 from the 5’ end), meaning that each end of the viral DNA has the same sequence; 

U3-R-U5. These are the Long Terminal Repeats (LTRs), that represent the ends of the integrated 

provirus (Hu & Hugens, 2012) (Figure 1.5).  

 

Integration 

 

After reverse transcription, the viral cDNA is actively transported from the cytoplasm to the 

nucleus, through the nuclear pore complex (NPC) in a large nucleoprotein complex known as the 

Preintegration Complex (PIC). The PIC is derived from the core of the infecting virion 

(Bowerman et al, 1989) and, apart from the viral DNA, contains the viral integrase (IN), the 

enzyme responsible for the process of integration. 
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In vitro studies showed that IN 

requires magnesium for its activity. 

The CCD (Catalytic Core Domain) 

of HIV-1 IN contains the DDE 

(aspartic acid - aspartic acid - 

glutamic acid) motif essential for 

the catalytic function of the enzyme 

(Kulkosky et al, 1992; Leavitt et al, 

1993). The amino acid residues of 

the DDE motif require a pair of 

Mg2+ ions for its catalytic function 

in the process of integration and the 

presence of Mg2+ ions was shown 

to be very important in the 

stabilization of the intasome (Miri 

et al, 2014; Engelman & 

Cherepanov, 2014).  

In addition, studying integration 

intermediates revealed DNA cutting 

and joining steps of the viral DNA 

during the process of integration (Fujiwara & Mizuuchi, 1988; Brown et al, 1989).  

Before the start of any enzymatic activity of IN and the integration of the vDNA into the target 

host DNA, the intasome has to be formed. “The intasome comprises a homo-hexadecamer of IN 

with a tetramer-of-tetramers architecture featuring eight structurally distinct types of IN 

protomers supporting two catalytically competent subunits” (Ballandras-Colas et al, 2017), which 

stably bind and assemble on both ends of the vDNA (Lesbats et al, 2016).  

Upon intasome formation, the first step of integration represents the 3’ end processing and 

removal of two nucleotides from both 3’ ends of the viral DNA. The resulting 3’ ends of the 

vDNA in all cases terminate with the conserved CA-3’ sequence. The second step of integration 

is the DNA strand transfer in which the “sticky” 3’ ends of the vDNA attack a pair of 

phosphodiester bonds on opposite strands across the major groove of the host target DNA. At this 

 

 

Figure 1.6. Scheme of HIV-1 integration (from: Lusic & Siliciano, 

2017). 
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intermediate step, the 3’ends of the vDNA are covalently joined to the target DNA. The single 

strand gaps and the two-nucleotide overhang at the 5’ end of the vDNA have to be repaired by 

cellular enzymes in order to complete the integration process. The joining sites of the two target 

DNA strands in the case of HIV-1 IN activity are five base pairs apart, resulting in a five 

base-pair duplication (Brown et al, 1987; Bushman et al, 1990; Engelman et al, 1991) (Figure 

1.6).  

 

Viral replication, assembly, budding & maturation  

 

Upon successful integration, the viral genome can be actively transcribed and new infectious 

virions can be produced. During active transcription of HIV-1, the viral mRNA is transported out 

of the nucleus and viral proteins are translated in the cytoplasm. The produced viral proteins are 

involved in the process of virion assembly and budding from the host cell membrane.  

 

Virion assembly and release of HIV-1 virions are processes that occur predominantly at the 

plasma membrane of infected cells (Sundquist & Krausslich, 2012; Freed 2015). The building 

“blocks” of an HIV-1 virion are composed of two copies of the viral RNA genome, which are 

associated to cellular tRNALys,3 to prime later on cDNA synthesis, viral Env protein, the Gag 

polyprotein and the three major viral enzymes: IN, RT and PR.  The Gag polyprotein is the main 

mediator in the process of virion assembly, which means that it binds the host cell plasma 

membrane and mediates protein-protein interactions that promote virion assembly. Via its 

binding to the host cell plasma membrane, the Gag polyprotein affects the docking and 

concentration of Env proteins and the packaging of the viral genome via its RNA packaging 

sequence (Ψ) (Sundquist & Kräusslich, 2012).   

 

Even though the viral Gag polyprotein is the main actor in mediating virion assembly, in the 

process of virion budding the virus takes advantage of the host cell endosomal machinery, the so 

called endosomal sorting complex required for transport (ESCRT). The ESCRT pathway is to 

terminate Gag polymerization and catalyze virion release (Morita & Sundquist, 2004; Bieniasz, 

2009, Peel et al, 2011).  
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Maturation of the viral particle starts simultaneously with the budding process or right after 

budding. The main mediator in this process is the viral PR. PR cleaves off the Gag and 

Gag-Pro-Pol polyprotein in order to produce fully processed viral MA, CA, NC, p6, PR, RT and 

IN (Hill et al, 2005). During the process of maturation, the mentioned viral proteins undergo 

significant rearrangements in order to shape the mature and infectious viral particle (Figure 1.2.).  

 

I.IV. HIV-1 integration  

 

Viral DNA variants  

 

Successful integration of the viral genome into the host cell genome is a prerequisite for  

productive HIV-1 infection. However, the viral cDNA can also persist as non-integrated viral 

DNA, which is ubiquitously formed in infected cells (Hamid et al, 2017).  

Non-integrated vDNA can be represented in the form of 2LTR or 1LTR circles (2 or 1 Long 

Terminal Repeat circles). Most 2LTR circles are formed due to the process of autointegration - 

meaning that the viral DNA integrates into itself creating modified forms of double-stranded 

DNA circles (Lee & Craigie, 1994). A minor fraction of 2LTRs is created in the process of the 

end-joining reaction of linear viral DNA, whereas 1LTR circles have been shown to represent a 

product of recombination between the 5’ and 3’ LTR of the vDNA (Farnet & Haseltine, 1991), 

but can also be formed due to aberrant reverse transcription by strand displacement failure (Hu & 

Hughes, 2012). Non-integrated forms of vDNA do not support viral replication and represent a 

dead-end of the viral life cycle (Farnet & Haseltine, 1991).  

Certain cellular factors contribute to the formation of non-integrated vDNA forms. Cellular 

nucleases as RAD50, MRE11 and NBS1 have been shown to be involved in the formation of 

1LTR circles (Sloan & Wainberg, 2011). The inactivation of factors of the DNA repair 

machinery as Ku70/80, ligase IV and XRCC4 causes an impairment of 2LTR circle formation 

indicating their importance in the circularization reaction necessary for the creation of those 

non-integrated viral DNA forms (Li et al, 2001; Jeanson et al, 2002). In addition, 2LTR circles 

can be formed as a result of cellular DNA repair mechanisms activated due to foreign DNA 

sensing (Shoemaker, et al 1980). Interestingly, a host cell protein, BAF, involved in the process 

of DNA condensation, was in vitro shown to block auto integration of vDNA (Yan et al, 2009). 
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The persistence of non-integrated DNA forms of HIV-1 in infected cells is debated and different 

studies demonstrate opposing results in that regard (Butler et al, 2002; Sharkey et al, 2005; 

Murray et al, 2012; Pace et al, 2013). However, an observed rapid drop of 2LTRs in T cells is 

possibly a consequence of cell division and not direct degradation of 2LTR circles (Stein et al, 

2016). In contrast, macrophages, as non-dividing cells, represent a certain reservoir of 2LTR 

circles where persistent levels of 2LTR circles have been detected up to 21 days after infection 

(Gillim-Ross et al, 2005).  

Non-integrated vDNA forms are usually studied as a marker for nuclear import (Bushman, 2003; 

Hamid et al, 2016), as well as a marker for on going viral replication in patients on combined 

Antiretroviral Therapy (cART) (Pace et al, 2013). In a functional context, non-integrated forms 

of vDNA represent a dead end of viral replication.  

 

Factors involved in HIV-1 integration 

 

The entire  host genome is in theory available for HIV-1 integration. However, certain genomic 

features seem to be preferred for integration in comparison to others. Integration site selection of 

retroviruses does not seem to depend on the underlying sequences of the host genome, but it is 

also not a random process (Mitchell et al, 2004). Sites targeted by HIV-1 for integration are 

frequently actively transcribed genomic regions (Schröder et al, 2002; Ikeda et al, 2007; Brady et 

al, 2009; Maldarelli et al, 2014; Wagner et al, 2014) associated to marks of active transcription as 

histone H3/H4 acetylation (Wang et al, 2007; Marini et al, Lucic et al, 2019). Regions targeted by 

HIV-1 for integration are mainly composed of nucleosomal DNA (Pruss et al, 1994), contain 

repetitive genomic elements (Stevens & Griffith, 1994), and are mainly in introns of transcribed 

genes (Cohn et al, 2015).  

In the context of structured elements of the genome, HIV-1 integration sites were shown to be 

outside of centromeric regions (Carteau et al, 1998) and lamina associated domains (LADs) 

(Guelen et al, 2008; Marini et al, 2015; Achuthan et al, 2018), and in line with that, away from 

repressive chromatin marks as H3K27me3 or DNA CpG methylation (Wang et al, 2007). 

In addition, HIV-1 integration site selection seems to be affected by the organization of the 

nuclear architecture. Apart from integrating into transcribed genes, especially in their intron 
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regions (Han et al, 2004; Cohn et al, 2015), the virus also shows integration preference for genes 

harboring marks of structured elements as enhancers (Wang et al, 2007; Chen et al, 2017b). 

Spatially, HIV-1 preferentially occupies the outer shell of the host cell nucleus where it binds 

elements of the nuclear pore complex (Marini et al, 2015). In contrast, a recent study 

demonstrated that CPSF6 acts as the main nuclear viral trafficking factor, leading the virus 

towards gene rich regions away from the nuclear periphery. In addition, the loss of CPSF6 caused 

viral integration into lamina associated domains (LADs) (Achuthan et al, 2018). However, this 

study was performed in HEK293T cells (Human Embryonic Kidney cell line), which are not 

primary targets of HIV-1. The HIV-1 integration site dataset used in this study (Sowd et al, 

2016), generated from HEK293Tcells, was cross-compared with DamID (DNA adenine 

methyltransferase identification) data (Meuleman et al, 2013), generated from human embryonic 

stem cell line SHEF2, in order to show the lack of association of viral integration sites with the 

NPC. In addition, in order to underlie the deterministic role of CPSF6 in nuclear positioning of 

the virus, CPSF6, LEDGF7p72 knockout (KO) cells, as well as double knockout cells of 

HEK293T and CD4+ T cells were included into the integration site and FISH/imaging analysis. 

The results showed that integration sites retrieved from KO cells represent mainly cell type 

specific genes, and the FISH results demonstrated that the majority of those genes indeed have a 

perinuclear position (Achuthan et al, 2018). Accordingly, cell activation status as well as cell type 

specificity seem to be important factors that need to be taken into account in the context of HIV-1 

integration. Those factors can significantly affect the viral life cycle, but also the fate of the host 

cell (Churchil et al, 2006; Liu et al, 2008; Le Douce et al, 2010). In the next section the most 

important viral factors and host cell factors included in the process of HIV-1 integration will be 

described.  

 

HIV-1 integrase 

 

HIV-1 integrase (IN) is a protein containing 288 amino acids (32 kDa) which is encoded by the 

end of the viral pol gene. It is synthesized as a part of the Gag-Pol polypeptide precursor by viral 

protease-mediated cleavage.  

The enzyme contains three independent functional domains; (1) the N-terminal domain (NTD) 

that carries an HHCC motif which is analogous to a zinc finger and very effectively binds Zn2+ 
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(Zheng et al, 1996). This domain possibly favors protein multimerization which is a key step in 

viral integration (Zheng et al, 1996; Lee et al, 1997).  

(2) The central domain or the catalytic domain (CCD) of the enzyme contains a D, D-35, E motif 

which is necessary for the catalytic activity and represents a domain which is highly conserved 

between retroviral IN enzymes and transposases. The CCD is essential in vDNA binding 

(residues Q148, K156 and K159) (Engelman et al, 1993; Jenkins et al, 1997; Heuer & Brown, 

1997; Drake et al, 1998; Esposito & Craigie, 1998; Johnson et al, 2006). Structurally the CCD 

shows an RNase H folding pattern. The RNase H-like fold was shown to be one of the 

evolutionary oldest protein folds (Ma et al, 2008). The Ribonuclease H-like (RNHL) superfamily 

members (called also the retroviral integrase superfamily) share the position of active site 

residues, which typically include aspartic acid, glutamic acid and in some cases histidine (Yang 

et al, 1990; Majorek et al, 2014), which is also the case for HIV-1 IN, where the CCDs active site 

is composed of Asp64, Asp116 and Glu152. The active site contains a conserved spacing of 35 

amino acids between Asp116 and Glu152 (D,D(35)E motif). During the integration process the 

CCD interacts with the vDNA and the target DNA. Mutations in the D,D(35)E motif cause 

inhibition of IN activity (Kulkosky et al, 1992; Leavitt et al, 1993). Importantly, all IN activities 

require the presence of a metallic cation cofactor which is coordinated by two residues of the 

catalytic triad (D64 and D116) (Goldgur et al, 1998; Maignan et al, 1998).  

(3) The C-terminal domain (CTD) binds non-specifically to DNA and is mainly involved in 

stabilizing the complex of IN and the DNA. Residues 220-270 are responsible for the DNA 

binding function. The CTD contains three lysine residues, in particular, lysine residues at position 

264, 266 and 273, which can be acetylated. These post-translational modifications regulate IN 

strand transfer activity and viral integration (Cereseto et al, 2005; Lusic & Siliciano, 2017). It has 

also been demonstrated that the same three lysine residues (K264, K266 and K273), have RNA 

binding properties and when mutated cause the production of non-infectious viral particles (Kessl 

et al, 2016).  

 

The function of IN is crucial in the process of HIV-1 integration. However, the enzyme itself is 

only functional in its multimeric form (van Gent et al, 1993; van den Ent et al, 1999), structurally 

forming a homo-hexadecamer (Ballandras-Colas et al, 2017). The presence of Zn2+ ions was 
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shown to be very important in the process of IN multimerization, but also in facilitating the Mg2+ 

ion-dependent catalytic activity of the viral enzyme (Lee et al, 1997). 

Integration starts upon intasome formation in which IN stably binds both ends of the vDNA 

(Lesbats et al, 2016). Also, apart from the crucial presence of Mg2+ ions for the catalytic function 

of IN, they have been shown to have an important role in intasome stabilization (Miri et al, 2014; 

Engelman & Cherepanov, 2014).  

 

Other factors involved in HIV-1 integration 

 

Apart from IN other viral and host cell factors are involved in enabling the integration process of 

HIV-1.  

 

Viral factors  

 

Most of the viral proteins which are known to participate in the integration process are involved 

in the nuclear entry of the PIC. Among these proteins are CA, MA, Vpr and the central 

polypurine tract (Suzuki & Craigie, 2007; Matreyek & Engelman, 2013).  

 

Capsid  

 

The HIV-1 CA is involved in early viral post entry events and participates in PIC moving all the 

way to the nucleus of the infected cell, while viral uncoating is taking place (Campbell & Hope, 

2015). During that process, several proteins interact with CA, and very likely, affect the 

navigation process towards the nucleus (Di Nunzio et al, 2012; Hilditch & Towers, 2014; Chin et 

al, 2015).  

The CA protein has an important role in the PIC nuclear entry, especially in non-dividing cells as 

macrophages (Yamashita & Emerman, 2004). Via its interaction with other cellular factors, CA 

was shown to affect HIV-1 integration profiles in infected cells (Schaller et al, 2011; Koh et al, 

2013; Sowd et al, 2016).  

Cyclophilin A (CypA) is a prominent example of a protein that via its direct interaction with CA 

affects HIV-1 infection (Sokolskaja et al, 2004; Hatziioannou et al, 2005). Interestingly, the 
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effects of Cyp-CA interactions seem to be cell type dependent (De laco & Luban, 2014). The 

knockout of CypA impairs HIV-1 infectivity in Jurkat cells, whereas viral infectivity is not 

affected in other cell types (Braaten & Luban, 2001). CypA can also have a stabilizing effect on 

the viral CA core by binding to it and thereby causing a delay in the uncoating process, but it can 

at the same time have a destabilizing effect too (Li et al, 2009; Shah et al, 2013; De laco & 

Luban, 2014). What kind of effect Cyp-CA interactions may have in the context of CA core 

stabilization seem to be regulated by dose-dependent presence of CypA (Li et al, 2009; Liu et al, 

2016). 

A colocalization between CA and CPSF6 (host cell factor involved in RNA binding and 

processing) has also  been demonstrated in the cytoplasm (Peng et al, 2014). In addition, the 

depletion of CPSF6 causes a decrease in viral infectivity (Lee et al, 2010; Sowd et al, 2016), a 

reduction in vDNA and CA localization in the nucleus (Chin et al, 2015), as well as decreased 

viral integration (Sowd et al, 2016). 

Moving from the cytoplasm closer to the nucleus, it was shown that CA directly interacts with 

NUP358, a component of the NPC, via the NUPs cyclophilin homology domain (CHD) (Schaller 

et al, 2011; Di Nunzio et al, 2012). CA does not contain a nuclear localization signal (NLS) and 

might localize to the nucleus by its interaction with NUP358 on the outer side of NPC (Lee et al, 

2010; Schaller et al, 2011). In addition, in the context of nuclear entry, it has been demonstrated 

that CA directly binds another protein of the nuclear pore complex - NUP153 (Matreyek et al, 

2013). According to demonstrated interactions of CA and nuclear pore complex proteins, as well 

as the fact that the HIV-1 integration process has to occur rapidly after nuclear entry and that it 

occurs in the outer shell of the nucleus  (Di Primo et al, 2013; Marini et al, 2015), it is evident 

that HIV-1 integration is also, in part, regulated by CA and proteins interacting with CA 

(Matreyek & Engelman, 2013).   

Further on, it has recently been shown that CA stays associated to nuclear PICs in primary 

macrophages and its presence also affects viral infectivity (Peng et al, 2014; Bejarano et al, 

2019). Mentioned findings indicate that CA is not only playing a role in the docking of PICs to 

the nuclear envelope and NPC, but also exerts functions inside the nucleus. In line with that are 

recent findings showing that CFSF6 via its interaction with CA functions as the main regulator of 

PIC localization in the nucleus, leading it to transcriptionally active chromatin (Sowd et al, 
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2016), but also moving it away from heterochromatic regions at the nuclear periphery and more 

towards gene rich genomic regions in the nuclear interior (Achuthan et al, 2018). 

 

Matrix 

 

The MA protein was shown to be implicated in the nuclear import of HIV-1 cDNA, given the 

fact that it contains two nuclear localization signals (NLSs) (Burinsky et al, 1993; Nadler et al, 

1997; Hearps & Jans, 2007). However, the role of MA in the nuclear import does not seem to be 

crucial since it was shown that HIV-1 can still infect macrophages even without having a 

functional MA (Reil et al, 1998). 

 

Vpr  

 

Vpr is a small virion-associated, nucleocytoplasmic shuttling regulatory protein, which is best 

known for its function of arresting the cell cycle in G2 phase that is completed by the induction 

of apoptosis (Rogel et al, 1995). The cause of cell cycle arrest activates the host cell DNA repair 

machinery, which plays an important role in completing the integration process (Votteler & 

Schubert, 2008; Yan et al, 2019). It is still under debate how Vpr can induce apoptosis, but it has 

also been demonstrated that uninfected bystander cells can be targeted by Vpr (Cummins & 

Badley, 2010; Abbas, 2013).  

Vpr was one of the first viral proteins that were shown to be associated in the docking process of 

the PIC to the NPC and binding to NUPs (Popov et al, 1998; Fouchier et al, 1998; Lusic & 

Siliciano, 2017). 

 

Host cell factors 

 

LEDGF/p75 (lens epithelium-derived growth factor) 

 

LEDGF/p75 is probably the most important host cell factor involved in HIV-1 integration. 

LEDGF/p75 was first identified as a transcriptional mediator protein that promotes 

activator-dependent transcription in vitro (Ge et al, 1998a; Craigie & Bushman, 2012). In a series 
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of different studies LEDGF/p75 was identified as a cellular protein that tightly binds HIV-1 IN 

(Cherepanov et al, 2003; Turlure et al, 2004; Emiliani et al, 2005).  

 

LEDGF/p75 is ubiquitously expressed by the PSIP1 gene and represents a protein containing 530 

amino acids (Ge et al, 1998a). Apart from LEDGF/p75, cells also express a shorter splice variant 

- LEDGF/p52. Both proteins share the first 532 amino acids of the N-terminus, but contain 

unique C-terminal ends (Ge et al, 1998a; Ge et al, 1998b). Only the longer LEDGF/p75 form was 

found to directly interact with HIV-1 IN (Cherepanov et al, 2003; Cherepanov et al, 2005), via its 

IN-binding domain located at the C-terminus of the protein, which is missing in the shorter p52 

variant (Cherepanov et al, 2005; Busschots et al, 2007).  

 

In a series of studies it was also demonstrated that the interaction between LEDGF/p75 and IN is 

important for the nuclear localization of IN (Cherepanov et al, 2003; Maertens et al, 2003; Llano 

et al, 2004a). In addition, IN mutants, designed to be unable to bind to LEDGF/p75, lose their 

ability to associate to chromatin (Emiliani et al, 2005). Imaging studies showed that LEDGF/p75 

can be bound to condensed chromosomes during mitosis. Accordingly, it has been demonstrated 

that in the presence of LEDGF/p75, HIV-1 IN could accumulate on chromatin too (Maertens et 

al, 2003; Craigie & Bushman, 2012). In line with this finding is the described ability of 

LEDGF/p75 to specifically read the histone modification H3K36me3 via its PWWP domain 

(Pradeepa et al, 2012; Eidahl et al, 2013), which gives strong indication that LEDGF/p75 is 

responsible for the tethering of IN to chromatin.  

In addition, LEDGF/p75 was shown to facilitate integration in gene bodies (Sowd et al, 2016), 

which are usually decorated with H3K36me3 - a mark of transcribed genomic regions associated 

with elongating RNA Pol2 (RNA Polymerase 2) (Venkatesh et al, 2012). LEDGF/p75 also, apart 

from its function of tethering IN to chromatin, protects IN from degradation and evidently affects 

HIV-1 integration profiles (Llano et al, 2004b; Poeschla, 2014).  

Structural analysis of LEDGF/p75 showed that the PWWP chromatin-binding domain is located 

at the N-terminus of the protein, together with an NLS, as well as two copies of an A/T hook 

domain which is involved in DNA binding.  
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CPSF6 (Cleavage and polyadenylation specificity factor 6) 

 

CPSF6 is a member of the Pre-messenger RNA cleavage factor I complex and takes place in 

mRNA polyadenylation site determination (Rüegsegger et al, 1996). CPSF6 is predominantly 

localized in the nucleus where it interacts with HIV-1 CA (Lee et al, 2010; Fricke et al, 2013), 

but has also been shown to interact with CA in the cytoplasm (Peng et al, 2014). The protein is 

composed of the N-terminal domain, which is involved in RNA recognition, a proline-rich 

central domain, and a C-terminal domain rich in arginine and serine residues (S/R). The C-

terminal S/R-rich domain is involved in the binding of CA (Price et al, 2012). Apart from its 

interaction with HIV-1 CA it was shown that CPSF6 can be implicated in the nuclear import of 

the PIC (Lee et al, 2012; Bhattacharya et al, 2014; Rasheedi et al, 2016), and also seems to play a 

role in the targeting of HIV-1 integration sites (Achuthan et al, 2018). In addition, it has been 

shown that CPSF6 depletion decreases the nuclear localization of vDNA and CA (Chin et al, 

2015), and has a decreasing effect on viral integration (Sowd et al, 2016). Certain amino acid 

substitutions in the viral CA, as N74D and A77V, which are located in the CPSF6 RNA binding 

domain, have been identified having a decreasing effect on the interaction between virus and host 

cell (Lee et al, 2010; Saito et al, 2016).  

Although CPSF6 is not considered to be essential for viral integration, CPSF6-binding mutants of 

HIV-1, interestingly, seem to make the virus insensitive to the depletion of other cofactors, as 

TNPO3, NUP358 and NUP153, which are also involved in the process of nuclear entry and 

integration (Schaller et al, 2011; Lee et al, 2010; Matreyek & Engelman, 2011; Price et al, 2012).  

 

Cyclophilin A 

 

Cyclophilin A (Cyp A) is a product of the PPIA gene and represents a peptidyl-prolyl cis-trans 

isomerase, usually involved in the process of cis-trans isomerization of certain peptide bonds. 

The active site of Cyp A represents a hydrophobic pocket that binds  to proline-rich peptides. It 

was shown that Cyp A affects HIV-1 infection via its direct interaction with CA (Sokolskaja et 

al, 2004; Luban 2007). The effect of Cyp A on HIV-1 infection seems to be cell type specific (De 

laco & Luban, 2014), considering that it was shown that Cyp A depletion in Jurkat cells has a 

decreasing effect on viral infectivity, but not in other analyzed cells (Braaten & Luban, 2001; 
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Saito et al, 2016). Interestingly, Cyp A can affect any post-entry step of the HIV-1 infection. It 

was shown to affect the viral uncoating process (Li et al, 2009; De laco & Luban, 2014), the 

efficiency of the RT process (De laco & Luban, 2014), the interaction and utilization of other 

factors involved in the nuclear entry of the PIC, and to affect integration site selection of the virus 

(Schaller et al, 2011; Yamashita & Engelman, 2017).  

 

Other host cell factors participating in HIV-1 integration were identified in studies in which the 

technology of short-interfering RNA (siRNA) was applied. In such screens proteins involved in 

the nuclear import as NUP153, RANBPs, TNPO3 and RGPD8 were identified to be associated 

with the trafficking of HIV-1 (Varadarajan et al, 2005; Brass et al, 2008; Konig et al, 2008; 

Luban 2008; Christ et al, 2008).  

 

RANBP2 (RAN binding protein 2) or NUP358 

 

RANBP2 (or NUP358) is a protein located at the outer part of the NPC and has the capacity to 

bind RAN, which is a small GTP-binding protein involved in nuclear trafficking. RANBP2 is 

enriched in FG repeats, contains a cyclophilin-related nucleoporin and a domain that binds UBC9 

important for SUMO1 transfer. It has been demonstrated that HIV-1 CA can directly bind to this 

protein, which affects the nuclear import of the viral PIC (Schaller et al, 2011).  

 

NUP153 

 

NUP153 is a nucleoporin of the inner nuclear basket showed to be involved in the PIC import via 

its interaction with CA (Di Nunzio et al, 2013; Matreyek, 2013), as well as in the export of 

HIV-1 Rev protein (Zolotukhin, 1999). It was also demonstrated that NUP153 can affect HIV-1 

integration site distribution (Koh et al, 2013) and to bind directly the integrated viral genome 

(Marini et al, 2015). 
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TNPO3  

 

TNPO3 was shown to be involved in the PIC import into the nucleus (Brass et al, 2008; Konig et 

al, 2008; Christ et al, 2008).   

 

RGPD8 (RANBP2-like and GRIP domain containing 8) 

 

RGPD8 is shown to accumulate at the NPC and is believed to assist in RNA and protein transport 

(Bushman et al, 2009) 

 

Other host cell factors 

 

Other proteins involved in HIV-1 integration that were mainly identified in siRNA screens were 

described as members of the cell microtubule system. Among them are MAP4 (a 

microtubule-associated protein), MID1IP1 (a regulator of microtubule organization) and CAV2 

(involved in plasma membrane invaginations) (Bushman et al, 2008). Accordingly, other studies 

suggest that HIV particles may traffic along microtubules to reach the nucleus (McDonald et al, 

2002). Also, in a yeast two-hybrid system, other members of the microtubule machinery, 

MAP1A and MAP1S have been identified to bind HIV-1 CA cores in vitro, colocalize with the 

virus, and when depleted, cause impaired infection as a result of impaired CA trafficking  

(Fernandez et al, 2015).  

It has also been shown that Dynein is involved in the movement of the virus along microtubules 

and that its depletion causes an accumulation of viral particles in the periphery of the cell 

(McDonald et al, 2002; Arhel et al, 2006). In addition, Dynein was demonstrated to take function 

in viral uncoating too (Lukic et al, 2014; Pawlica et al, 2014).  

Finally, Kinesins, as another group of proteins associated to the microtubule machinery, have 

been demonstrated to be involved in the process of HIV-1 infection. They have been shown to 

take action in viral trafficking, as well as the uncoating process (Lukic et al, 2014).  
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 I.V. Cells targeted for HIV-1 infection 
 

It has been reported that HIV-1 has the capability to infect a wide range of different cell types in 

vitro. For instance, it was demonstrated that cells from organs as the liver, lungs, salivary glands, 

eyes, prostate, testicles and adrenal glands could be infected. However, the only cell types that 

are in vivo regularly detected to be infected by HIV-1 are cells of the lymphoid and myeloid cell 

lineage, and among them, predominantly CD4+ T lymphocytes and macrophages (Telesnitsky & 

Goff, 1997). 

 

HIV-1 infection of CD4+ T cells and macrophages  

 

A critical point in the HIV-1 life cycle is the viral entry. It was shown that viral entry is not only 

dependent on the expression of the primary CD4 receptor on the cell surface, but also on 

expression of co-receptors as CCR5 or CXCR4, which are differentially expressed on CD4+ T 

cells (Grivel et al, 2000; Doms, 2001). CXCR5 is highly expressed on the vast majority of 

peripheral T cells, whereas CCR5 is not expressed by all CD4+ T cells. Its expression is 

upregulated as part of the late differentiation of effector and effector memory T cells (Veazey et 

al, 2000; Poles et al, 2001; Okoye & Picker, 2013). Still, CD4+ T helper cells represent major 

target cells for HIV-1 in the blood, since they can express high levels of the CD4 receptor and are 

highly permissive for HIV-1 production (Maddon et al, 1986; Lifson et al, 1986).  

Other immune cells also express CD4 and HIV-1 co-receptors and serve as viral targets too. 

Among these cells macrophages were described to carry markers of productive HIV-1 infection 

in vivo (Koenig et al, 1986), even though they express low levels of the CD4 receptor. 

Macrophages are infected by CCR5 tropic HIV-1 (R5 viruses – using CCR5 as co-receptor 

during infection). Together with dendritic cells and CD4+ T memory cells macrophages are the 

first immune cells facing the virus in the mucosa (Shen et al, 2011). A significant portion of 

macrophages is directly productively infected in the mucosa with HIV-1 (Shen et al, 2009). In 

addition, macrophages secrete cytokines that attract and recruit T lymphocytes to sites of 

infection. They can even facilitate viral infection by enlarging the number of viral target cells at 

sites of infection (Swingler et al, 1999, Herbein et al, 2010).  
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Further on, macrophages are more resistant to viral cytopathic effects than activated CD4+ T cells 

(Perelson et al, 1996; Reynoso et al, 2012), and in particular long-lived macrophages may harbor 

the virus for longer periods, which represents a major obstacle for virus eradication 

(Koppensteiner et al, 2012).  

In summary, apart from CD4+ T cells which represent the main targets for HIV-1 infection, 

macrophages represent long-term reservoirs of the virus and can help to establish viral infection 

at viral entry sites.  

 

The importance of activation and chromatin status in primary CD4+ T cells in HIV-1 infection 

 

In the context of HIV-1 infection in primary CD4+ T cells it is notable that HIV-1 preferentially 

infects and replicates in activated CD4+ T cells (Margolick et al, 1987).  

Although integrated HIV-1 DNA can be detected in resting CD4+ T cells from infected 

individuals (Chun et al, 1995: Chun et al, 1997), it is still unclear how these cells are infected. 

According to one hypothesis, HIV-1 can directly infect resting CD4+ T cells (Brady et al, 2009; 

Pace et al, 2012). The prevailing view is that resting CD4+ T cells with integrated HIV-1 DNA 

are derived from activated infected CD4+ T that  reverted back to a resting memory state (Han et 

al, 2014; Sengupta & Siliciano, 2018).  

Activated CD4+ T cells are highly permissive for HIV-1 infection, but resting cells seem to resist 

infection. Blocks to infection in resting cells occur at different post-entry steps of the viral life 

cycle (Doitsch et al, 2010).  

Widely accepted is that a deoxynucleoside triphosphate triphosphohydrolase (SAMHD1 – SAM 

domain and HD domain-containing protein), which is expressed in resting CD4+ T cells, dendritic 

cells, monocytes and macrophages, but not in T cell lines, prevents the reverse transcription of 

HIV-1 RNA in resting CD4+ T cells and macrophages by limiting the access of free dNTPs 

(Goldstone et al, 2011; Powell et al, 2011). By exposing this function, SAMHD1 represents a 

major HIV-1 restriction factor in resting CD4+ T cells (Baldauf et al, 2012; Descours et al, 2012), 

and acts as a lineage-specific infection barrier for HIV-1 (Hrecka et al, 2011; Laguette et al, 

2011).   

The activation of CD4+ T cells occurs through simultaneous engagement of the T-cell receptor 

(TCR) and co-receptors (mainly CD28) on the T cell surface by major histocompatibility 
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complex (MHCII) peptide and co-stimulatory molecules on the surface of an antigen presenting 

cell (APC). 

One of the most important co-stimulatory 

molecules on the surface of an APC is the B7 

protein (Figure 1.7.). The interplay of these two 

activation signals (coming from the MHC and B7) 

determines the outcome of a T cell’s response to an 

antigen (Sharma et al, 2011).  

 

Activation of CD4+ T cells causes major changes in 

cell function, gene expression, metabolism as well 

as changes in chromatin organization. It has been shown that CD4+ T cells upon activation 

undergo a global increase in chromatin accessibility, showing higher amounts of open chromatin 

features such as increased acetylation of lysine 27 of histone 3 (H3K27Ac), as compared to 

resting cells (Gate et al, 2018).  

Target cell chromatin organization plays an important role in HIV-1 integration site selection as 

well as viral fate, especially regarding replication and virion assembly (Lusic & Siliciano, 2017). 

Chromatin composition as well as its importance and effects on HIV-1 life cycle will be 

discussed further on.   

 

I.VI. HIV-1 integration site selection  

 

As previously briefly mentioned in the chapter of HIV-1 integration, the integration of HIV-1 

vDNA can hypothetically occur throughout the host cell genome, but it has been  demonstrated 

that integration is rather a non-random process (Mitchell et al, 2004; Bushman et al, 2005).  

Certain genomic factors affect the process of integration site selection among which the target 

DNA sequence plays a specified role, its chromatin composition, as well as their interplay with 

HIV-1 tethering factors. 

 

 

 

 

Figure 1.7. Schematic overview of the T cell 

activation process (from: Sharma et al, 2011). 
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Genomic regions targeted for HIV-1 integration 

 

On a global sequence specific level, HIV-1 integration sites show features of DNase I 

hypersensitivity (Verdin, 1991), they are enriched in genic and GpC island rich regions and show 

high G/C skew (Brady et al, 2009).  

Even though there is considerable variation among various retroviruses, each of them displays 

certain weak consensus sequence preferences. These consensus sequences extend at least over 20 

nucleotides, which can be determined by aligning large numbers of integration sites (Figure 1.8.). 

Although the consensus sequence is palindromic, reflecting the average of all integration sites in 

both directions, individual integration sites are not necessarily symmetric. Since retroviruses have 

a high mutation rate, it is plausible that mutations in IN, which alter its interaction with the host 

DNA, can also alter the preferred sequence where the vDNA is integrated (Demeulemeester et al, 

2014; Serrao et al, 2014; Hughes & Coffin, 2016). However, the consensus sequences for viral 

integration are always palindromic.  

 

Figure 1.8. Consensus motif of HIV-1 integration site. 

A 30 bp sequence consensus motif for HIV-1 integration. The preferred site of integration is marked with the 

dotted line. The sequence was generated by analyzing and comparing 100 bp around viral integration sites by 

MEME algorithm (Bailey & Elkan, 1994) (adapted from: Cohn et al, 2015).  

 

About 80% of HIV integration events are in genes. For both HIV and MLV, integration site 

preferences reflect, at least in part, the chromatin distribution of host factors to which the 

respective INs bind (LEDGF/p75 and BET proteins). In the absence of LEDGF/p75, the 

efficiency of HIV integration is reduced (Llano et al, 2006; Engelman & Cherepanov, 2008), as 

well as its preference for integrating into actively expressed genes, although integration is not 

completely random (Busschots et al, 2005; Ciuffi et al, 2005). It is also likely, at least in the case 
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of HIV-1 and MLV, that the PICs interact with other host factors which affects integration site 

selection (as previously described). 

 

DNA sequence specificity 

 

In several independent studies which included the analysis of different cell lines, it was shown 

that HIV-1 preferentially integrates into gene rich regions, close to Alu elements, distant from 

gene transcription start sites (TSS) and rather into intronic than exonic regions of genes (Stevens 

& Griffith, 1994; Schroder et al, 2002; Lewinski et al, 2006; Barr et al, 2006; Singh et al, 2015). 

This preference was confirmed in vivo in resting CD4+ T cells from infected patience 

(Demeulemeester et al, 2015) as well as by viral outgrowth assays performed from patients under 

retroviral therapy (Cohn et al, 2015). In addition, it was shown that HIV-1 in different cell types 

recurrently integrates in the same set of highly expressed genes which are not randomly 

distributed in the genome, but are rather positioned in clusters on targeted chromosomes. These 

genes were assigned as recurrent integration genes (RIGs) (Marini et al, 2015; Lucic et al, 2019). 

These genes are included in different lists of HIV-1 integration sites derived from either in vitro 

experiments or from patient material. One of these genes is BACH2 (Basic Leucine Zipper 

Transcription Factor 2). In a study of HIV-1 integration sites derived from patient data it was 

shown that this gene contained even 15 independent HIV-1 integration events in intron 4 

(Maldareli et al, 2014). Some other interesting RIGs are STAT5B (Signal Transducer And 

Activator Of Transcription 5B) and MKL2 (MKL1/Myocardin Like 2) which are, as well, 

frequently appearing on different HIV-1 integration site lists (Sherrill-Mix et al, 2013; Maldarelli 

et al, 2014; Wagner et al, 2014; Cohn et al, 2015). An interesting fact is that all of the three 

mentioned genes encode proteins which are cellular growth factors or mediate the process of 

DNA transcription, and are directly or indirectly included in the cell cycle. Some studies suggest 

that HIV-1 integration into certain genes may lead to clonal expansion and contribute to the 

persistence of HIV-1 infected cells (Maldarelli et al, 2014; Cohn et al, 2015; Laskey et al, 2016). 

In line with this observation is the finding that HIV-1 integrations are frequently occurring in 

cancer-associated genes and can be found in the same patient at the same genomic spot in 

multiple cells that harbor the provirus. In the group of “cancer-associated genes” CREBBP, 

STAT5B, BACH2, C2CD3 and MKL2 are frequently found (Wagner et al, 2014). Again, these 
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genes are all involved in processes as cell growth, proliferation and mitosis (Rezaei & Cameron, 

2015).  

Considering that HIV-1 integrations are frequently found in those genes, it may be possible that 

certain genomic regions are preferred for viral integration over others. It has also been 

demonstrated that in CD4+T cells HIV-1 integration genes are distributed in clusters over the 

human genome and may also move together in clusters during cellular activation (Marini et al, 

2015; Lucic et al, 2019).    

The analysis of HIV-1 patient samples revealed that BACH2 and MKL2 had a very peculiar 

pattern of viral integration. Upon prolonged cART exposure, integrated viral DNA could only be 

detected upstream of the transcription start site in intron 5 of BACH2, and intron 4 or 6 of 

MKL2. In addition, the analyzed proviral integration sites had the same transcriptional 

orientation as the host target gene, and again confirmed HIV-1 integration close to Alu genomic 

elements (Maldarelli et al, 2014; Cohn et al, 2015). 

In a strictly host sequence specific context, apart from detecting HIV-1 integrations in active 

transcription units (Mitchell et al, 2004; Wang et al, 2007), it was demonstrated that viral 

integrations seem to be favored in GC genomic regions which overlap with regions of high gene 

density (Craigie & Bushman, 2012; Goncalves et al, 2016). HIV-1 integrations are also 

frequently found at sites showing DNaseI hypersensitivity and distribution of CpG islands over 

longer genomic stretches (Brady et al, 2009). It was also shown that HIV-1 integration frequently 

occurs at DNA sections that wrap around nucleosomes (Pruss et al, 1994; Wang et al, 2007). 

DNA that wraps around nucleosomes was shown to be enriched in AT repeating motifs (Segal et 

al, 2006). This finding is in contrast to the observed preference of the virus to integrate into GC 

rich genomic sites (Brady et al, 2009). However, the viral preference for integration into 

nucleosomal DNA is still in correlation with integration site data from CD4+ T cells that show 

that when longer stretches of DNA (up to 10 Mb) are analyzed for HIV-1 integration sites, the 

overall integration is favored at GC rich genomic sites. Although the observed trend is less 

obvious when shorter genomic intervals (shorter than 2 kb) are analyzed (Brady et al, 2009). 

Apart from the host cell DNA sequence features, chromatin marks as well as genome 

organization significantly impact the distribution of viral integration sites (Wang et al, 2007; 

Brady et al, 2009; Pradeepa et al, 2012; Sherrill-Mix et al, 2013; Marini et al, 2015; Lucic et al, 

2019).  
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General chromatin features of HIV-1 integration sites 

 

Chromatin is an important determinant of  HIV-1 integration site selection. HIV-1 preferentially 

targets regions of open chromatin, as it has been shown that the viral PIC selectively targets open 

chromatin regions (Albanese et al, 2008). Upon integration  into regions of open active chromatin 

(euchromatin) the provirus can be actively transcribed, whereas integration into condensed 

inactive chromatin regions (heterochromatin) would result in transcriptionally inactive proviruses 

(Maldarelli et al, 2014; Cohn et al, 2015; Laskey et al, 2016; Lusic & Siliciano, 2017). 

Several studies showed a link between certain chromatin features and the frequency of HIV-1 

integration sites (Ikeda et al, 2007; Wang, 2007; Marini et al, 2015). For example, it was shown 

that H3K9 acetylation (a mark of transcriptionally active genes) and trimethylated H3Lys36 

(H3K36me3 – a mark associated with the elongating RNA Pol2 regions and actively transcribed 

genes) are related to frequently targeted HIV-1 integration sites (Marini et al, 2015), which is in 

line with the finding that LEDGF/p75, as the main IN binding partner, can specifically read the 

H3K36me3 chromatin mark via its PWWP domain (Pradeepa et al, 2012; Eidahl et al, 2013). In 

addition, HIV-1 integrations are frequently found in regions of open-accessible chromatin 

harboring marks as H3/H4 acetylation, but away from repressive chromatin marks as H3K27me3 

or DNA CpG methylation (Wang et al, 2007; Goncalves et al, 2016).  

 

I.VII. Chromatin organization and nuclear architecture  
 

The nucleus is a highly dynamic and structured environment. The functional organization of the 

genome can be described in a hierarchical fashion, where the interplay of spatial and temporal 

factors act together to enable major nuclear functions (Misteli, 2007). The genomic DNA is 

compacted and organized into functional domains by the activity of several protein complexes 

and distinct DNA-binding inter-players inside of the nuclear space. The nucleus is separated from 

the cytoplasm by the nuclear envelope, which does not function only as a physical barrier, but 

significantly contributes to genome organization and regulation (Buchwalter et al, 2019). The 

nuclear envelope is perforated with nuclear pore complexes, which enable the communication 

between the inner nuclear space and the cytosol, while at the same time impacting genome 

organization and function (Akhtar & Gasser, 2007; Capelson & Hetzer, 2009; Capelson et al, 
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2010). The next section describes chromatin structure starting from the histone modifications, 

and then moving towards higher order genomic structures which  shape the nuclear architecture, 

ending with the relation of HIV-1 to the spatial organization of the host cell genome.  

 

Chromatin organization 

 

The DNA fiber is compacted by histone proteins, and this DNA-histone complex is defined as 

chromatin. Chromatin is further compacted into chromosomes and the mitotic chromosome 

represents the final level of DNA compaction. 

The basic repeating structural and functional unit of chromatin is the nucleosome, which contains 

eight histone proteins and about 146 pairs of (bp) DNA (Van Holde, 1988; Wolfe, 1999). 

Histones are a family of small, positively charged proteins termed H1, H2A, H2B, H3 and H4 

(Van Holde, 1988). Pairs of histone proteins H2A, H2B, H3 and H4 form an octamer of histones 

to compose the nucleosome core.  

Histone H1 is holding the 

nucleosome core and the 

wrapped DNA around it (146 

bp), and additionally wraps 

another 20 bp long stretch of 

DNA around the histone 

octamer (Figure 1.9.). 

 

The compaction of DNA into 

nucleosomes has, generally, a 

repressive effect on gene expression. However, the positioning of nucleosomes at gene elements 

as promoters, has a significant impact on gene regulation in cells (Wolfe, 1999; Wyrick et al, 

1999). Nucleosomes are not rigid structures. In vitro they can be shifted and positioned in a way 

that enables the access of RNA Polymerase and the transcription of nucleosomal DNA 

(Meersseman et al, 1992; Studitsky et al, 1997). In vivo, chromatin remodeling elements are 

directly interacting with nucleosomes and affect their movement along the DNA, even without 

DNA release from the nucleosome core (Elgin & Workman, 2000; Tsukiyama 2002).  DNA 

 

Figure 1.9. Schematic representation of a histone octamer (adapted 

from: Füllgrabe et al, 2011).  
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structure analysis in the nucleosome core revealed that the DNA structure in nucleosomes is 

significantly different when compared to “naked” DNA. Nucleosomal DNA was shown to have 

an unexpectedly high curvature, caused by the binding of histone proteins, which can affect the 

DNA sequence-dependent recognition of chromatin remodelers or transcription factors, as well as 

the movement of nucleosomes (Richmond & Davey, 2003).  

HIV-1 IN shows preference in binding to nucleosomal DNA (Pryciak & Varmus 1992), and the 

integrated viral genome has been shown to have precisely positioned nucleosomes on the LTRs  

(Verdin, 1991; Verdin et al, 1993; Van Lint et al, 1996). 

 

Apart from forming the chromatin fiber and compacting DNA, histones are important 

determinants in the process of gene expression, as they make the chromatin more or less 

accessible to transcription factors and other enzymes. Easier access for polymerases and other 

enzymes is either achieved by the displacement of histones upon the action of  chromatin 

remodeling complexes (Smith & Peterson, 2005), or by enzymatic modifications of histone 

amino acid residues (“histone tails”) (Figure 1.9) by the addition of phosphate, acetyl, methyl, 

crotonyl, ubiquitin or SUMO modifications, as well as modified by the activity of ADP-ribosyl 

transferases (Jason et al, 2002; Fischle et al, 2005; Gomez et al, 2006; Keppler & Archer, 2008).   

 

In the process of histone acetylation, which is performed by the enzymatic activity of histone 

acetyl transferases (HATs), an acetyl group is added to the ∑-amino group of histone lysine side 

residues. The acetyl group is negatively charged, and by its addition to positively charged histone 

lysine residues, a neutralization of the histon’s electric charge occurs, causing loosening of the 

tight association to the DNA (Bannister & Kouzarides, 2011). The opposite reaction, which is the 

removal of acetyl groups, is performed by histone deacetylases (HDACs) and causes compaction 

of the chromatin structure (Wang et al, 2009; Frank et al, 2016).  

In the context of HIV-1, it has been described that during an acute infection or reactivation from 

latency HATs as CBP, GCN5 or P/CAF are recruited to the proviral LTR (Marzio et al, 1998; 

Benkirane et al, 1998; Lusic et al, 2003; Turner & Margolis, 2017) and thereby influencing 

proviral transcription. In addition, it has also been demonstrated that HATs can affect Tat activity 

by its direct acetylation (Ott et al, 1999; Col et al, 2001). Marks of acetylated histones frequently 

found close to transcriptionally active HIV-1 proviruses are H3K9ac, H3K14ac, H4K5ac, 
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H4K8ac, and H4K16ac (Benkirane et al, 1998; Lusic et al, 2003; Brady et al, 2009; Turner & 

Margolis, 2017).  

On the other hand, the importance of HDACs in the HIV-1 life cycle has been noticed when 

HDAC inhibitors were shown to reactivate the virus from latency (Shirkawa et al, 2013; Archin 

et al, 2014). In addition, HDAC1 was one of the first proteins demonstrated to bind to the 

proviral LTR in complex with other transcriptional repressors (Romerio et al, 1997; Coull et al, 

2000) and cause proviral silencing. Further work confirmed the binding of a variety of different 

proteins to the proviral LTR such as YY1, LSF, c-myc, Sp1 or NF-kB which cause the 

recruitment of HDACs and subsequent proviral silencing (Romerio et al, 1997; Coull et al, 2000; 

Williams et al, 2006; Jiang et al, 2007). Some HDAC inhibitors are currently even under clinical 

investigations as latency reversing agents (LRAs) (Turner & Margolis, 2017) .  

 

Histone methylation predominantly takes place at histone lysine and arginine residues. The 

addition of the methyl group, by histone methyltransferases (HMTs) and their active SET 

domain, does not cause any change in the charge of histone proteins. The position of the added 

methyl group, as well as the number of added methyl groups (-mono, -di or -tri-methylation) 

(Murray, 1964; Paik & Kim, 1967; Hempel et al, 1968) can have different outcomes in the 

context of chromatin compaction and accessibility. Depending on the context and potential of 

histone modifications a variety of multi-protein complexes are recruited to the chromatin, 

allowing for tightly regulated transcriptional control (Greer & Shi, 2012). The removal of methyl 

groups is performed by histone demethylases (HDMs). Different groups of enzymes regulate the 

demethylation of lysine (Forneris et al, 2005; Tsukada et al, 2006) and arginine residues 

(Cuthbert et al, 2004; Wang et al, 2004).  

H3K4me3 is a mark associated with active promoters and has been linked to both proviral 

activation and repression (Le Douce et al, 2012). H3K36me3 marks gene bodies of actively 

transcribed genes and is the mark most frequently associated with  HIV-1 integration sites (Brady 

et al, 2009), probably due  to the fact that host integration factor LEDGF/p75 specifically reads 

this chromatin mark (Pradeepa et al, 2012). Interestingly, recently it has been demonstrated that 

active genes which are frequently targeted for HIV-1 integration have a distinct distribution of 

H3K9me2 chromatin mark (Lucic et al, 2019), which is usually linked to facultative 

heterochromatin (Huisinga et al, 2006). However, the importance of H3K9me in the context of 
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HIV-1 has first been described in microglia cells by investigating the activity of transcriptional 

repressor CTIP2. The study found that CTIP2 negatively affects HIV-1 transcription by the 

simultaneous recruitment of Tat and HP1- (Marban et al, 2005). HP1-  (heterochromatin 

protein 1-) binds methylated lysine residues and causes transcriptional repression (James and 

Elgin, 1986). One of the main H3K9 HMTs is SUV39. However, in the context of HIV-1 latency 

it has been demonstrated that the direct knockdown of another HMT; G9a, or its chemical 

inhibition by BIX01294 has a more increasing effect on viral transcription and is even synergized 

by the addition of HDAC inhibitor SAHA (Imai et al, 2010). Recent work demonstrated that the 

combination of H3K9me and H3K27me machineries can specifically affect the regulation of 

HIV-1 latency and force the virus to engage even in a deeper state of latency (Matsuda et al, 

2015).  

H3K27me2/me3 are chromatin marks are mainly decorating repressive chromatin regions which 

are linked to reduced genetic activity (Wang et al, 2008). H3K27me3 and the presence of its 

HMT EZH2 have been shown to be linked to HIV-1 latency (Friedman et al, 2011; Matsuda et al, 

2015). Different levels of H3K27me3 at the viral LTR have been demonstrated to affect the 

ability of TNF-  (a strong proinflammatory cytokine) to reactivate HIV-1 from latency 

(Friedman et al, 2011). In addition, EZH2 inhibitors in combination with HDAC inhibitor SAHA 

and the bromodomain inhibitor JQ1 have been demonstrated to have a more pronounced effect on 

reverting HIV-1 from latency (Tripathy et al, 2015), compared to the effects of single LRAs.  

 

When focusing on histone phosphorylation, it has been shown that this chromatin modification 

mainly affects serine, threonine and tyrosine residues (Xhemalce et al, 2011). The phosphate 

group is added from an ATP molecule to a hydroxyl group of a targeted amino acid of the histone 

tail by the enzymatic activity of kinases. The phosphate group is negatively charged and its 

addition to a histone tail has a significant impact on chromatin structure, mainly causing its 

compaction (Bannister & Kouzarides, 2011). The best known function of histone 

phosphorylation occurs during cellular response to DNA damage, when phosphorylated histone 

H2A(X) marks large chromatin domains around the site of DNA breakage (Rosseto et al, 2012). 

It has been demonstrated that retroviral integration causes a transient formation of 

phosphorylated histone H2A(X) regions at viral integration sites (Daniel et al, 2004). In addition, 

in HIV-1 latently infected Jurkat cell clones, as well as infected primary T cells, a significant 
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increase in phosphorylated histone H2A(X) sites was detected upon treatment with DNA damage 

response (DDR) inducing agents or cancer chemotherapies, compared to non-infected cells. The 

authors of the study propose a new marker and strategy to detect and eliminate latently infected 

cells (Piekna-Przybylska et al, 2017).  

 

Chromatin organization as well as the activity of chromatin modifying machineries significantly 

impact transcriptional control and, accordingly, many cellular processes. In line with that are 

results of several studies demonstrating that chromatin modifications and chromatin modifying 

enzymes impact HIV-1 transcription. Understanding the interplay between HIV-1 latency and its 

reversal, and the maintenance of normal host cell function could provide a more detailed insight 

and better understanding on general chromatin regulation, but also provide clues for a more 

targeted application of LRAs and a potential eradication of latent HIV-1 (Lusic & Siliciano, 

2017; Turner & Margolis, 2017).   

 

The 3D genome organization  

 

The composition of genomic DNA including AT/GC skew, gene density, distribution of 

repetitive elements or virus derived elements represents a linear perspective of genome 

organization (Bickmore & van Steensel, 2013). The first level of genome structuring represents 

the compaction of DNA together in a complex with histone proteins forming the nucleosome, 

which represents the elementary repetitive unit of chromatin (Van Holde, 1988; Wolfe, 1999). 

The further organization of chromatin, including the formation of chromatin loops, contacts, 

chromatin domains, chromosomes and chromosomal territories represent higher orders of 

genome organization (van Steensel et al, 2001; Cremer et al, 2006; Bickmore & van Steensel, 

2013).  

 

Chromosomes and chromosome territories 

 

Ever since the pioneering work on cell division, chromosomes have been proposed to reside in 

distinct chromosome territories (Rabl, 1885; Boveri, 1909). Nowadays it is established that 

chromosome territories represent the main feature of chromosome architecture (Dixon et al, 
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2016). More recent studies, applying genome capturing techniques (C-techniques), provide 

evidence that a single chromosome represents a specialized individual territory in which genomic 

segments that are closer to each other  interact more with each other (cis-interactions), compared 

to genomic segments which are on the other arm of the same chromosome, or even on another 

chromosome (trans-interactions) (Lieberman-Aiden et al, 2009; Kalhor et al, 2012; Sexton et al, 

2012; Zhang et al, 2012; Bickmore & van Steensel, 2013). However, it has also been 

demonstrated that certain trans-interactions can be very robust. Such trans interacting sequences 

are usually located in regions of high gene density and transcriptional activity, and also show 

DNase I hypersensitivity (Simonis et al, 2006; Lieberman-Aiden et al, 2009; Hou et al, 2012; 

Kalhor et al, 2012; Sexton et al, 2012). It has also been shown that colocalization of genomic loci 

in trans can have effects on gene expression (Noordermeer et al, 2011), emphasizing the 

relevance of genome organization, genomic contacts and spatial gene positioning in a functional 

context.  

 

Chromatin domains 

 

Series of recent studies provide evidence that single chromosomes are composed of distinct 

chromatin domains or topologically associated domains (TADs). TADs are comprised of long 

stretches of chromatin spreading over up to several million bases (Jackson and Pombo, 1998; Ma 

et al, 1998; Dixon et al, 2012; Nora et al, 2012; Sexton et al, 2012). TADs are defined as genomic 

compartments in which two genomic regions are observed to associate more frequently, 

compared to regions outside the TAD (Dixon et al, 2012; Nora et al, 2012; Sexton et al, 2012; 

Dixon et al, 2016). TADs have been demonstrated to remain stable during cell division and show 

high similarity among evolutionary related species. (Cremer & Cremer, 2010; Dekker & Heard, 

2015; Sexton & Cavalli, 2015). TADs frequently contain “sub-TADs” (Phillips-Cremins et al, 

2013; Rao et al, 2014), mainly composed of locally separated loops or insulated neighborhoods 

(Rao et al, 2014; Dowen et al, 2014; Ji et al, 2016). Sub-TADs usually represent features that can 

have a distinct organization in different cell types, depending on cell type specific functions 

(Phillips-Cremins et al, 2013; Dowen et al, 2014; Ji et al, 2016; Dixon et al, 2016). The 

organization of TADs significantly influences gene expression, DNA replication and 

recombination (Lucas et al, 2014; Pope et al, 2014; Hu et al, 2015). The organization of 
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chromatin domains and their effect on genome activity depends on the chromatin site which 

creates a domain (Boettiger et al, 2016). For instance, domains harboring polycomb proteins have 

a remarkably different organization compared to other chromatin domains. A hallmark of 

polycomb domains is the decoration of chromatin with H3K27me3 mark and the dense 

compaction of chromatin forming a mainly repressive chromatin environment (Morey & Helin, 

2010; Boettiger et al, 2016; Dixon et al, 2016). 

Also, chromatin marked with H3K9me2/me3 induces a special compartmentalization of the 

chromatin. H3K9me2 and H3K9me3 are frequently considered to be repressive marks, but many 

examples show their involvement in marking actively transcribed genes (Kwon & Workman, 

2001; Bickmore & van Steensel, 2013). Those, usually long stretches of DNA covered with 

H3K9me2 and H3K9me3 which cover up to 45% of the genome are also referred to as large 

organized chromatin domains - LOCKs (Wen et al, 2009; Hathaway et al, 2012).  

Beside the importance of certain chromatin stages and presence of histone modifications and 

protein complexes in TADs, the interaction between different types of TADs is an important 

element of genome organization. One of the most important proteins involved in the shaping of 

TAD interactions is the insulator protein CTCF, which is a zinc finger DNA binding protein 

(Phillips-Cremins & Corces, 2013; Ghirlando & Felsenfeld, 2016). In line with this is the finding 

that TAD borders of mammalian cells are significantly enriched in CTCF binding sites (Dixon et 

al, 2012). The binding of insulator proteins as CTCF is demonstrated to be a highly regulated 

process which finally affects the transcriptional activity of certain chromatin domains. For 

instance, the binding of isolator proteins to DNA can affect and regulate interactions between 

enhancers and gene promoters, as well as affect the genomic distribution of euchromatin and 

heterochromatin and thereby influence gene expression/repression (Phillips-Cremins & Corces, 

2013; Ghirlando & Felsenfeld, 2016; Dixon et al, 2016).  

 

The nuclear periphery and the nuclear pore complex  

 

The nuclear periphery is composed of the nuclear envelope (NE), the nuclear lamina (NL) and 

nuclear pore complex (NPC). Apart from these structural elements the underlying chromatin and 

its composition is important in determining the functional aspects of the genome.   
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Parts of the chromatin fiber which are occupying the tight space under the NL in the nuclear 

periphery are often organizing nuclear territories assigned as Lamina-associated domains 

(LADs). LADs are regions of condensed chromatin enriched in repressive chromatin marks as 

histone 3 lysine 9 dimethylation (H3K9me2), which is a mark of heterochromatin and silenced 

genes (Pombo & Dillon, 2015). Regions of open chromatin and actively transcribed genes are 

rather excluded from LADs.  

The NPC has been shown to associate with both silent and active chromatin domains, and can 

therefore represent an environment having an activating or repressing effect on gene expression 

(Raices & D’Angelo, 2017). First studies on the chromatin surrounding the NPCs showed an 

association of silent chromatin with the NPC (Brown et al, 2008; Jacinto et al, 2015). However, 

more recent studies showed that genes associated to the NPC can be either activated or silenced, 

and not exclusively repressed as previously thought  (Ibarra et al, 2016; Pascual-Garcia et al, 

2017; Toda et al, 2017; Raices et al, 2017). Considering that  NPCs can have activating or 

repressing effects on genes closely associated to them, as well as the fact that have the capacity of 

binding active and silent chromatin it becomes evident that those structures also have the 

potential to create and shape the nuclear landscape around them. The chromatin surrounding 

NPCs is mostly having and open and decondensed structure (Schermelleh et al, 2008; Lemaitre & 

Bickmore, 2015). It has also been demonstrated that super enhancers can cluster in their 

proximity (Ibarra et al, 2016) and that certain groups of genes need the association with nuclear 

pore proteins for their expression (Raices et al, 2017). In addition, the “gene-gating” hypothesis 

proposes an explanation in which compact chromatin associates with the nuclear lamina, while 

transcribed genes associate with the NPC, which would facilitate the nuclear export of RNA. 

Also, the non-random distribution of NPCs in the nuclear envelope reflects the non-random 

organization of chromatin in the nuclear periphery (Blobel, 1985; Ciabrelli & Cavalli, 2015; 

Lemaitre & Bickmore, 2015). Mentioned findings indicate that NPCs take an active role in 

shaping the chromatin in the nuclear periphery, and influence gene expression (D’Angelo, 2017).  

 

Lamina Associated Domains (LADs)  

 

The nuclear lamina (NL) represents a scaffold element of the nucleus, located in its periphery and 

is also involved in chromatin organization (Goldberg et al, 1999; Gruenbaum & Medalia, 2015; 
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Ulianov et al, 2019), DNA repair and nuclear assembly (Burke & Stewart, 2013; de Leeuw et al, 

2017). The NL is composed of lamin proteins which are organized into dense, net-like structures, 

and also interact with other lamin-binding proteins.  

The NL of mammalian cells is composed of 4 lamin isoforms; two type A lamins (lamin A and 

C), and two type B lamins (lamin B1 and B2). Type A lamins are encoded by the LMNA gene, 

whereas type B lamins are encoded by the LMNB2 gene (Krohne et al, 2005; de Leeuw et al, 

2017).  

 

Mammalian cell LADs are usually large and gene-poor domains spanning from 0.1 to 10 Mb, 

covering about 40 % of the genome in a cell population (Guelen et al, 2008; Peric-Hupkes et al, 

2010; Ciabrelli & Cavalli, 2015).  

LADs that are present in all so far analyzed cell types are defined as constitutive LADs, whereas 

LADs that differ between cell types or change their association to the NL depending on the cell 

cycle are known as facultative LADs (Dixon et al, 2016; Bonev & Cavalli, 2016; Lusic & 

Silliciano, 2017). Apart from having a role in shaping the nuclear architecture, LADs are 

important in gene expression determination. Genes located inside LADs were shown to have low 

transcriptional activity, lacking any active histone mark. In addition, single cell studies in 

mammalian cells showed that less than one third of LADs are located less than 1 µm from the NL 

at any time in the cell cycle, indicating a dynamic character of lamin tethering (Kind et al, 2013). 

In addition, certain gene promoters consistently found in LADs have certain mechanisms of 

avoiding the repressive effect of the LAD environment, whereas other types of LAD-associated 

promoters can be activated when moved away from the LAD (Leemans et al, 2019).  

The repressive nature of LADs is evolutionary conserved and is supported by genome-wide 

studies, showing that the average gene expression levels in LADs are lower than outside of them 

(Guelen et al, 2008; van Bemmel et al, 2010; Kind et al, 2013; Ciabrelli & Cavalli, 2015).  

Mammalian LADs also show very sharp borders. These borders are genetically defined since 

they contain bidirectional transcription units where the active domains are mainly pointing 

outward from LADs and bearing CpG islands and CTCF binding sites (Guelen et al, 2008), 

where CTCF binding is important in shaping LAD borders and chromatin looping between its 

binding sites (Splinter et al, 2006; Handoko et al, 2011).   
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Also, more recent studies underlie the importance of lamins in shaping the interactions between 

TADs and the effect on genome regulation based on these interactions (Zheng et al 2018; Ulianov 

et al, 2019). The loss of lamins was shown to disrupt LAD organization, change the interaction 

between active and inactive chromatin domains and cause global changes in transcription (Zheng 

et al, 2018).  

Considering specific chromatin marks, it has been demonstrated that mammalian LADs harbor 

specific features as enrichment in G9a-dependent H3K9me2 chromatin mark which is important 

fort LAD tethering to the NL (Guelen et al, 2008; Kind et al, 2013).  

 

Chromatin composition in the nuclear periphery 

 

The global nuclear architecture is shaped by the enzymatic activity of many different proteins, 

but a special subset of them is involved in the organization of the mainly transcriptionally 

repressive environment in the nuclear periphery. The interactions of the NL and chromatin is 

maintained due to the activity of several chromatin modifying enzymes and DNA binding 

proteins (LAP2B, EMD, BAF, LBR, HP1). Histone methyltransferases (HMTs) G9a/GLP and 

histone deacetylases (HDACs) are shown to interact with NL proteins (Somech et al, 2005; 

Holaska & Wilson, 2007; Montes de Oca et al, 2009) and may locally dimethlyate H3K9 and 

deacetylate histones of chromatin positioned in close proximity to the NL, as well as contributing 

to the repression of genetic activity close to the NL Figure 1.10.). Large domains of repressive 

chromatin marks as H3K27me3 (established by the activity of Polycomb Repressive Complex 2 

– PRC2), H3K9me2 and H3K9me3 are present in this area of the nucleus, rather then clearly 

active marks as H3K4me3 or lysine acetylations (Guelen et al, 2008; Ciabrelli & Cavalli, 2015;  
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Figure 1.10. Representation of the repressive chromatin environment of LADs.  

Chromatin associated with the nuclear lamina is mostly decorated with repressive marks (H3K9me2 and 

H3K27me3) and HDACs are very often present and ensure the establishment of a repressive chromatin 

environment. DNA binding proteins ensure the close association of DNA and the nuclear lamina (Lap2B, EMD, 

BAF) and the maintenance of a closed chromatin state (HP1). The presence of protein complexes as PRC2 helps 

keeping a closed chromatin structure and an environment of low gene expression. Cell receptors as LBR anchor 

heterochromatin at the nuclear lamina, whereas receptor MAN1 can release the chromatin from the nuclear 

lamina in case of growth factor signaling and induce, by a cascade of reactions, gene expression (the bigger red 

dots in the picture represent the interactions) (adapted from: Kind & van Steensel, 2010).  

 

Briefly, in the context of higher order chromatin structures (chromosomes) and their relation to 

the nuclear periphery, it was shown that distinct chromosomes generally occupy a preferred 

position in the nucleus (Dekker et al, 2013). Chromosome positioning seems to correlate with 

gene density, where gene-poor chromosomes tend to localize to the nuclear periphery (e.g. 

human chromosome 18), whereas gene-dense chromosomes rather occupy inner nuclear 

positions (Rouquette et al, 2010; Ciabrelli & Cavalli, 2015).  

 

H3K9me2 chromatin mark and G9a histone methyltransferase 

 

H3K9me2 was shown to cover large genomic portions described as Large Organized Chromatin 

Domains (LOCKS) (Wen et al, 2009), and these domains where shown to mainly overlap with 

LADs (Kind & van Steensel, 2010). H3K9me1/me2 marks are important in anchoring the 

chromatin fiber to the nuclear periphery, whereas H3K9me3 is responsible for transcriptional 

repression (Towbin et al, 2012).  
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Chromatin decorated with H3K9me1/me2 marks, except for its role in shaping the chromatin 

landscape of the nuclear periphery, is also found in large euchromatic regions, suggesting a 

contribution of these chromatin marks in dynamic mechanisms of gene repression or activation 

(Tachibana et al, 2002; Black et al, 2012).  

G9a histone methyltransferase (HMT) belongs to the Su(var)3-9 family mainly catalyzing 

H3K9me1 and H3K9me2. Structurally G9a is composed of a catalytic SET domain, a domain 

containing ankyrin repeats and a nuclear localization signal on the N-terminus (Esteve et al, 

2006; Nakanishi et al, 2008; Collins & Cheng, 2010) (Figure 1.11.). The SET domain is 

responsible for the addition of methyl groups on histone H3, whereas the ankyrin repeats have 

been shown to represent mono- and dimethyl lysine (K) binding regions. Accordingly, G9a is not 

only able to methylate histone tails, but also able to recognize this modification and function as a 

scaffold for the recruitment of other molecules on the chromatin (Shahbazian et al, 2005; 

Casciello et al, 2015). G9a functions mainly as a heterodimer together in a complex with GLP 

(G9a Like Protein). It has been demonstrated that if one of the two proteins is depleted, H3K9 

mono- and dimethylation levels get reduced in euchromatic regions (Tachibana et al, 2002). In 

vitro studies showed that both G9a and GLP can also form homodimers and perform H3K9 

mono-, di-, and trimethylation (Collins et al, 2005; Kubicek et al, 2007).  

 

 

 

 

Figure 1.11. Scheme of G9a histone methyltransferase structure.  

At the N-terminal end of the enzyme ankyrin repeats (orange) recognize (read) H3K9me1 or H3K9me2 

chromatin mark. At the C-terminus the catalytic SET domain (red) deposits mono or di-methyl H3K9. 

 

G9a mainly methylates H3K9 in euchromatic regions, which causes gene repression (Tachibana 

et al, 2002; Hyun et al, 2017). Considering that H3K9 methylation affects gene expression, the  
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activity  of G9a is very important in the context of cell viability and development, respectively. In 

mammalian cells, the disruption or inhibition of G9a was shown to weaken the NL-LAD 

association (Bian et al, 2013; Chen et al, 2012; Kind et al 2013; Harr et al, 2015), which, as 

mentioned, can affect gene expression.  

In studies with murine G9a-deficient embryonic stem cells (ESC) a global loss methylation in 

chromatin was observed but surprisingly not in heterochromatic regions. While HMT function 

can generally be associated with both heterochromatin and euchromatin organization (Tachibana, 

2015), this example shows that G9a can specifically associate with euchromatin and be involved 

in the repression of active promoters (Peters et al, 2001; Rice et al, 2003; Tachibana et al, 2005). 

In addition, the repressive activity of G9a was proved to be essential in embryo-genesis in mice. 

G9a depletion resulted in embryonic lethality or severe differentiation defects in ESC, showing 

that G9a is crucial for the repression of developmental genes and necessary during development 

(Tachibana et al, 2002). Likewise, G9a was found to be involved in the development of cell 

specification as an important factor of oct-3/4 gene inhibition, a homeobox gene important for the 

maintenance of pluripotency (Feldman et al, 2006).  

In terms of T-cells (which are the main target cells for HIV-1 infection), it was shown that the 

normal functioning of G9a is important in hematopoietic cell lineage commitment, as well as 

T-cell development during inflammatory response (Lehnertzt et al, 2014; Antignano et al, 2014). 

Specifically, it was shown that G9a is a negative regulator of pathogenic T-cell differentiation as 

G9a depleted T-cells were shown to have an increased sensitivity to TGF-β1 (Transforming 

Growth Factor Beta 1) which is promoting naïve T-cell differentiation in pathogenic T-cells, 

Th17 (T-helper cells) and Treg (T-regulatory cells), in the absence of intestinal inflammation 

(Antignano et al, 2014). This finding showed that G9a is important in the maintenance of T-cell 

homeostasis. In addition, G9a was shown to be involved in T-cell differentiation, as CD4+ T cells 

fail to differentiate into Th2 cells both in vitro and in vivo in the absence of G9a. Mice carrying a 

T-cell specific G9a deletion could not develop Th2 cells in response to infection in the absence of 

interferon γ (Lehnertz et al, 2014).  

In summary, apart from mediating the establishment of H3K9me2 and shaping the chromatin 

conformation in the nuclear periphery of T cells, G9a is evidently very important for T cell 

development and normal cell functioning. 

 



Introduction 

44 
 

HIV-1 in the 3D nuclear space 

 

HIV-1 tethering factors and proviral interactors 

 

One of the most important factors that influences HIV-1 integration into certain chromatin 

regions is LEDGF/p75. Binding sites of LEDGF/p75 were mapped on chromosomes making 

reference to the highly annotated ENCODE (encyclopedia of DNA elements). LEDGF/p75 

binding sites (also assigned as LEDGF islands) were described to be dominantly distributed at 

transcribed genomic regions which overlay with the observed trend for these regions to be 

favored for HIV-1 integration (De Rijck et al, 2010). In addition, LEDGF/p75 knock down was 

observed to cause increased integration in regions of higher G/C content and closer to CpG 

islands (Brady et al, 2009). The overall dataset defines a model in which LEDGF/p75 directs 

HIV-1 integration by binding to IN on one side, and on the other side to open chromatin regions 

(De Rijck et al, 2010; Craigie & Bushman, 2012). LEDGF/p75 has been described as an 

H3K36me3 chromatin mark reader (Venkatesh et al, 2012; Pradeepa et al, 2012; Demeulemester 

et al, 2015, Singh et al, 2015), and it was shown that LEDGF/p75 binds to H3K36me3 regions in 

the genome (Marini et al, 2015) supporting the notion that LEDGF/p75 binds to open chromatin.  

Apart from LEDGF/p75 and its function in IN binding and directing the process of integration 

site selection, it was shown that the interaction of the PIC with proteins of the NPC is important 

in positioning of the virus inside of the nuclear space and determining its transcriptional activity 

(Marini et al, 2015; Lelek et al, 2015). It was shown that vDNA integration sites are associated to 

transcriptionally active histone marks and several nucleoporins; as NUP62, NUP96, NUP153 and 

the inner nuclear basket protein TPR. In addition, TPR depletion was shown to reduce 

LTR-driven gene expression in HIV-1 infected cells (Lelek et al, 2015). Although the knockdown 

of TPR might inhibit the levels of HIV-1 expression, it has a minor impact integration of the 

vDNA. Knockdown of NUP153 on the other hand almost completely abolishes HIV-1 

integration, with HIV DNA signals, most probably corresponding to the non-integrated virus, can 

be observed randomly positioned in the nuclear space (Marini et al, 2015).  

Chromatin composition underneath the NPC has been shown to be composed of “open-easy 

access-transcriptionally active” chromatin (Schermelleh et al, 2008), and depletion of TPR was 

shown to cause a reduced density of H3K36me3 in the nuclear periphery, creating a less 
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accessible chromatin environment (Lelek et al, 2015). It has also been demonstrated that the 

overexpression of TPR leads to a stabilization of LEDGF7p75 at the nuclear periphery (Lelek et 

al, 2015; Wong et al, 2015). These findings underlie the significant interplay between H3K36me3 

chromatin mark, LEDGF/p75 as a reader of that mark (Pradeepa et al, 2012) and TPR in the 

context of creating an environment for HIV-1 integration (Lusic & Siliciano, 2017).  

It has also been shown that the role of LEDGF/p75 in viral integration is more in the process of 

navigating the virus towards gene bodies, whereas the function of CA interacting factor CPSF6 

(Lee et al, 2010; Price et al, 2012; Fricke et al, 2013) is the localization of the virus into 

euchromatic regions (Sowd et al, 2016). 

On the other hand, it has also been demonstrated that CPSF6 via its interaction with CA localizes 

the virus towards euchromatic regions in the nuclear interior, away from the nuclear periphery 

and that LEDGF/p75 plays a more important role in directing the virus towards gene bodies, than 

determining its nuclear localization (Sowd et al, 2016; Achuthan et al, 2018). The consensus of 

mentioned studies is that the integrated virus preferentially resides in open chromatin regions, in 

the gene bodies of actively transcribed genes (Mitchell et al, 2004; Wang et al, 2007; Marini et al, 

2015; Achuthan et al, 2018). 

 

Spatial positioning of HIV-1 in the nucleus 

 

In respect to the spatial positioning of the virus in the nucleus, structural cell specific features 

may potentially affect the discrete proviral positioning in the nucleus, considering that opposing 

data arose from studies which analyzed viral positioning in different cell types (Albanese et al, 

2008; Di Nunzio et al, 2012; Marini et al, 2015; Lelek et al, 2015; Achuthan et al, 2018). 

However, upon knockout of HIV-1 tethering factors LEDGF/p75 and CPSF6, and HIV-1 

infection in HeLa and CD4+ T cells it was shown that genes targeted for integration by the virus 

were mostly cell type specific and had a perinuclear position in the different cell types (Achuthan 

et al, 2018). Accordingly, cell type specificity seems to be a significant determinant of HIV-1 

integration site selection and proviral spatial positioning in the nucleus.  

In addition, in the context of LEDGF/p75, knock down experiments performed in HeLa cells 

demonstrated that LEDGF/p75 does not play a crucial role in the macrolocalization of HIV-1 in 
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the nucleus, but rather contributes to the  directing of the virus into gene-rich regions (Quercioli 

et al, 2016; Sowd et al, 2016).  

However, in primary CD4+ T cells, which are the main target of HIV-1, the proviral genome 

predominantly resides in the nuclear periphery, in open chromatin regions which are located in 

the vicinity of the NPC and excluded from LADs (Albanese et al, 2008; Di Nunzio et al, 2012; 

Marini et al, 2015).  

Regarding chromatin features of the environment where HIV-1 positions, apart from knowing 

that the chromatin of these regions is decorated with open chromatin marks, which mark actively 

transcribed genes (Schröder et al, 2002; Wang et al, 2007; Marini et al, 2015), it was confirmed 

that the provirus occupies regions with low densities of heterochromatin specific markers (Brady 

et al, 2009; Friedman et al, 2011; Vranckx et al, 2016). Chromatin accessibility and chromatin 

features evidently play important roles in HIV-1 integration site selection and spatial positioning 

of the provirus.  

On a genome-wide scale, chromatin composition and nucleosome positioning/shuffling 

throughout the genome have a significant impact on genome regulation, by modifying the in vivo 

availability of binding sites of TFs and the general transcription machinery. Mentioned 

phenomena affect DNA-dependent processes such as transcription, DNA repair, replication and 

recombination (Radman-Livaja & Rando, 2010; Tsompana & Buck, 2014), and can therefore also 

affect HIV-1 transcriptional activity (Easley et al, 2010; Matysiak et al, 2017).  

In studies aiming to understand how nucleosomal positioning regulates gene expression it was 

shown that transcriptional activation coincides with nucleosome perturbation, whereas 

transcriptional regulation requires the repositioning of nucleosomes throughout the eukaryotic 

lineage (Wallrath et al, 1994; Boeger et al, 2003; Lee et al, 2004; Hogan et al, 2006; Buck & 

Lieb, 2006; Schones et al, 2008; Shivaswamy et al, 2008). In addition, open or accessible regions 

of the genome are very often regarded as primary positions for regulatory elements (John et al, 

2011) and have been in the very beginning characterized by nuclease hypersensitivity assays in 

vivo (Gross & Garrard, 1988). Low-throughput experiments in Drosophila using DNase I and 

MNase treatment, provided the first demonstration that active chromatin coincides with nuclease 

hypersensitivity, which is chromatin accessibility (Wu et al, 1979, Wu, 1980; Keene & Elgin, 

1981; Tsompana & Buck, 2014). Accordingly, several independent studies proved that HIV-1 
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integration sites coincide with regions 

of DNase I hypersensitivity (Verdin, 

1991; Brady et al, 2009; Busschots et 

al, 2005; Ciuffi et al, 2005; Chen et al, 

2017a).  

In silico predictions have shown that 

HIV-1 preferentially integrates into 

nucleosomal, compared to naked 

DNA, as well as that HIV-1 integration 

sites are mainly found on outer 

portions of the major DNA groove 

which is also attributed to a preference 

in integrating into more flexible DNA 

regions (Wang et al, 2007; Michieletto 

et al, 2019).  

 

In summary, the interplay between host cell chromatin features (Marini et al, 2015; Lusic & 

Siliciano, 2017; Lucic et al, 2019), HIV-1 tethering factors, as well as host cell type specificity 

significantly impact the spatial positioning of HIV-1 provirus in the host cell nucleus (Sowd et al, 

2016; Achutnan et al, 2018) (Figure1.12.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12. Scheme of HIV-1 integration. 

HIV-1 integrating into open chromatin regions (outside of 

LADs) and interacting with elements of the NPC, as well as host 

cell factor LEDGF/p75 and CPSF6) (from: Lusic & Siliciano, 

2017).  
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I.IX. R-loops –  DNA-RNA hybrids shaping the chromatin landscape 
 

DNA-RNA duplexes that are mainly 

occurring co-transcriptionally, in DNA 

accessible and DNase I hypersensitive 

regions, are named R-loops (Sanz et al, 

2016; Chen et al, 2017a). R-loops 

represent tri-stranded nucleic acid 

structures composed of a DNA-RNA 

hybrid and a displaced single stranded 

DNA (Figure 1.13.). These structures, 

first described in 1976 (Thomas et al, 

1976) are predominantly found in G/C 

rich genomic regions (Ginno et al, 2012; 

2013). where RNA polymerase II (Pol 

II) transcribes a C-rich template. The 

generated G-rich RNA transcript bounds 

back to C-rich DNA generating a hybrid 

of increased thermodynamic stability. 

Although it is still unclear how R-loops are really formed, the most probable seems  the “thread 

back model”, according to which the RNA/DNA hybrid is formed before the two strands of the 

DNA duplex can reanneal.  

 

R-loops have been shown to be ubiquitously present across different organisms from bacteria to 

mammals and they are believed to have numerous regulatory effects, which may also affect cell 

fitness (Skourti-Stathaki & Proudfoot, 2014). 

 

I.IX.I. Mechanisms of R-loop formation and their genome-wide distribution 

 

R-loop formation is supported by factors that provide a thermodynamic advantage to the 

DNA-RNA hybrid, which is formed during transcription, over the corresponding DNA strand 

 

 

Figure 1.13. Scheme of an R-loop and the co-transcriptional 

mechanism of its formation.  

Legend on the right indicates elements and factors included in 

the process of R-loop formation. 

The picture on the left, below the thick arrow, shows a scenario 

in which the transcribed mRNA normally exits the 

transcriptional machinery. 

The picture on the right, below the thin arrow, shows a situation 

in which an R-loop is formed as a consequence of high G/C 

content asymmetries between the leading and lagging DNA 

strands and the re-annealing of the nascent RNA (adapted from: 

Chedin, 2016).  
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duplex.  

Factors which are facilitating R-loop formation represent intrinsic R-loop prone DNA sequences 

which can form much more stable duplexes with RNA than DNA (Roy et al, 2008; 

Belotserovskii et al, 2010). In addition, R-loop formation is favored at genomic sites prone to 

form breaks in the non-template DNA strand, negative supercoils (positively affecting DNA 

unwinding) (Roy et al, 2010), or non-canonical DNA structures (as G4-quadruplexes and 

triplexes) (Duquette et al, 2004). R-loop formation also frequently occurs during transcription 

scenarios in which the non-template DNA strand is sequestered by a ligand (Belotserovskii & 

Hanawalt, 2015). Interestingly, factors sequestering the nascent RNA, as it is exiting the 

transcriptional complex, seem to suppress R-loop formation (Santos-Pereira et al, 2013).   

The formation of an R-loop and the maintenance of an R-loop structure seem to be two distinct 

processes. In vitro studies demonstrated that for the R-loop formation initiation, within duplex 

DNA, an R-loop initiating sequence is required. Such a sequence contains clusters of guanines 

(very high G/C skew) which have also been demonstrated to form very stable R-loops. On the 

other hand, a higher thermo-dynamic stability of an R-loop, compared to a DNA-DNA duplex, 

might be sufficient for R-loop maintenance, but not for R-loop formation initiation  (Roy & 

Lieber, 2009). However, in vivo R-loop formation depends not only on intrinsic R-loop forming 

properties of a certain DNA sequence, but also on DNA-protein interactions. It was shown that 

R-loop formation is strongly increased close to polyA stretches, even though they are not 

intrinsically R-loop prone sequences. An explanation for the observed phenomenon might be that 

polyA stretches disfavor nucleosome binding and offer more “space” for the occurrence of 

R-loops in terminal gene regions (Wahba et al, 2016; Sanz et al, 2016). 

It was also shown that R-loop formation predominantly occurs in genomic regions transcribed by 

Pol II and that R-loop turnover is a very dynamic and controlled process. Co-transcriptionally 

formed R-loops are resolved with a half-life of ~10-20 minutes (Sanz et al, 2016). The observed 

phenomenon is in correlation with estimates of the paused promoter-proximal Pol II half-life 

(Jonkers et al, 2014), suggesting that R-loop formation is compatible with the normal dynamics 

of transcription. Accordingly, R-loop formation is a process most probably regulated in terms of 

frequency and residence time (Sanz et al, 2016). 

 

Apart from high G/C content occurring in R-loop forming regions, especially in the non-template 
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DNA strand (Ginno et al, 2012, 2013) (Figure 1.13.), other R-loop features have recently been 

described. The size of an average R-loop ranges from 150 to 500 bp, as directly visualized by 

electron microscopy (EM) (Duguette et al, 2004), but their size can range up to 2000 bp as shown 

by molecular R-loop mapping approaches (reviewed in: Santos-Pereira & Aguilera, 2015). In 

addition, it was estimated that R-loops occupy 5-8 % of the genome (Sanz et al, 2016; Halasz et 

al, 2017).  

The detection of R-loops is based on the use of the S9.6 monoclonal antibody which specifically 

detects DNA-RNA hybrids (Boguslawski et al, 1986). Most R-loop studies combine the use of 

the S9.6 antibody for R-loop pull-down, deep sequencing and genome-wide R-loop mapping in 

different species, from yeast (Chan et al, 2014; El Hage et al, 2014; Wahba et al, 2016) to plants 

(Xu et al, 2017) and mammals (Ginno et al, 2012; 2013; Nadel et al, 2015; Sanz et al, 2016; 

Stork et al, 2016; Halasz et al, 2017). 

R-loop peaks have been mapped close to gene promoters (Chen et al, 2015), but they have also 

been found being more spread in gene bodies (Ginno et al, 2012; 2013; Stork et al, 2016) or 

downstream of transcription start sites (TSS) (Sanz et al, 2016). The observed differences my 

also possibly be attributed to slight differences in R-loop mapping approaches. Although most 

R-loop studies show a clear link between R-loops and G/C skew, in yeast R-loops, could be 

detected even an A/T skew (Wahba et al, 2016).  

In a recent study where R-loops where captured in a method called R-ChIP (based on R-loop 

binding via a catalytically dead RNase H1 followed by strand-specific amplification of 

immunoprecipitated DNA) it was shown that R-loops have a predominant distribution in 

promoter proximal regions (59,3%), whereas additional R-loops were mapped across various 

locations within gene bodies (17,2%), close to gene terminal (6,6%), or in intergenic regions 

(16,9%). In addition, most detected R-loop peaks were overlapping with open chromatin, which 

suggests that active gene promoters are hotspots for R-loop formation in the genome (Chen et al, 

2017a).  

 

The interplay of R-loops and chromatin composition 

 

R-loops are involved in all stages of gene expression, but are also implicated in almost all the 

other nuclear processes involving chromatin. Their formation is therefore tightly correlated with 
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chromatin composition, while on the other hand R-loops also influence chromatin patterning at 

genomic regions. Several studies, including those with genome-wide mapping of R-loops  

showed an association of R-loop peaks with open chromatin marks and an overall chromatin 

accessibility in R-loop rich regions occurring at gene promoters or gene bodies  (Nadel et al, 

2015; Zeller et al, 2016, Sanz et al, 2016, Chen et al, 2017).  

At promoter regions, R-loops were proposed to negatively regulate DNA methylation levels and 

to facilitate transcription (Gino et al, 2012). R-loop destabilization at the human VIM promoter 

causes a shift from an open, non-methylated chromatin state to a closed and methylated 

chromatin (Boque-Sastre et al, 2015). R-loops in promoter regions were shown to associate with 

high levels of histone marks of active transcription, such as mono and trimethylation of lysine 4 

of histone H3 (H3K4me1 and H3K4me3), histone acetylation as well as transcription elongation 

mark H3K36me3. H3K4me1 was also found at terminal R-loops, implying that this is a common 

mark of R-loops (Chen et al, 2015; Sanz et al, 2016; Chedin, 2016).   

In addition,  R-loops may affect the chromatin environment by recruiting chromatin-modifying 

complexes,  Genes with R-loop(+) promoters show high amounts of H3K36me3 over the R-loop 

formation peak (Sanz et al, 2016). This might be further connected with recruitment of other 

chromatin factors such as SETD2. Elongation factor Spt6 responsible for Pol II escape from 

promoter pausing (Vos et al, 2018) and elongation plays a role in maintaining the transcription 

within protein-coding gene transcription units. In the absence of this factor, H3K36me3 

redistributes on intergenic regions, causing increased long non-coding RNA (lncRNA) 

transcription. These aberrant lncRNAs transcripts can anneal to DNA templates and cause 

formation of damaging levels of  R-loops (Nojima et al, 2018).  

H3K4-methylation is also enriched over R-loop(+) promoters - H3K4me3 shows a predominant 

transcription start site (TSS) distribution, whereas H3K4me1 distributes 1-2 kb downstream of 

TSS (Sanz et al, 2016), Accordingly, it is proposed that R-loops may have a more direct role in 

recruitment of H3K4me1, but the mechanism still needs to be elucidated. Interestingly, PAF1 

complex which contributes to both H3K4me1 and H3K36me3 methylations, is enriched over 

R-loop regions (Sanz et al, 2016; Chedin, 2016). 

Loss of histone chaperone complex FACT, which functions in chromatin reassembly, leads to 

R-loop accumulation (Herrera-Moyano et al, 2014). This finding suggests that not only R-loops 

are inhibitory for nucleosome formation, but nucleosomes may help prevent R-loop 
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accumulation. Assuming that R-loops are similarly inhibitory for nucleosome formation through 

the genome, R-loops formation likely alters the kinetics of nucleosome turnover, and 

consequently contributes to regulation of transcription (Dion et al, 2007).  

R-loops were also connected to H3S10P, a histone modification associated mainly with mitotic 

chromatin condensation. It has been shown that H3S10P levels could be suppressed by 

expression of RNase H1 enzyme, suggesting a link to R-loops (Castellano-Pozo et al, 2013) but it 

remains unclear in which context is this histone modification related to R-loops .  

Interestingly, R-loop formation has also been linked to increased deposition of marks of 

repressive chromatin. In one such example, R-loop formation has been linked to H3K9me2/me3 

and heterochromatin formation on expanded triplet repeats in Friedrichs’s ataxia and Fragile X 

syndrome, (Colak et al, 2014; Groh et al, 2014).  

In C. elegans knockout  of MET-2 and SET-25, the only two HMTs placing H3K9-methylation  

results in the frequent accumulation of R-loops  behind replication forks, causing genomic 

instability due to occurring torsional stress. DRIP-Seq (DNA-RNA immunoprecipitation 

followed by deep sequencing revealed that DNA transposons, usually repressed genomic 

sequences, show higher levels of R-loops compared to RNA transposons  and that loss of H3K9 

methylations resulted in  de-repression of those sequences. It was thus proposed that H3K9me2 

or H3K9me3 chromatin marks stabilize and protect repeat-rich genomes and sequences by 

suppressing transcription-induced replication stress (Zeller et al, 2016).  

Accumulation of H3K9me2 marks and increased R-loop formation was observed in the 

transcription termination regions in a subset of genes in mammalian cells. This seems to be a 

consequence antisense transcription, localized dsRNA accumulation and RNAi factor 

recruitment, as well as the recruitment of heterochromatin protein 1 (HP1) (Skourti-Stathaki et al, 

2014). 

Interestingly, R-loops were also shown to be negatively correlated with transcription of several 

developmental genes in murine embryonic stem cells. There, formed R-loops are responsible for 

the increased binding of Polycomb Repressive Complex 1 and 2, strong epigenetic regulators of 

transcriptional repression. Conversely, R-loop removal resulted in decreased recruitment of 

PRC1 and PRC2 and increased Pol II activation (Skourti-Stathaki et al, 2019).  

 

Still, what remains very important to note when studying R-loop biology is their context 
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dependent function. It needs to be taken into account that R-loops can both facilitate, or terminate 

DNA transcription depending on their genomic position and interaction with other factors. 

Hence, the effects of chromatin regulatory factor binding may vary at genes according to the 

extent of R-loop accumulation (Fazzio, 2016).  

 

Factors interacting with R-loops 

 

It is well established that R-loop forming regions can also be associated to DNA damage 

(Skourti-Stathaki et al, 2011; Chan et al, 2014; El Hage et al, 2014).  

R-loops formed after the transcribing Pol II can block further elongation (Huertas & Aguilera, 

2003), while the ones  formed after replication forks can block the DNA replicating machinery 

(Tudori et al, 2009), induce torsional stress, transcription and replication conflicts and contribute 

to genomic instability (Zeller et al, 2016; Hamperl et al, 2017).  

Consequently, cells have evolved multiple mechanisms to control R-loop accumulation and avoid 

DNA damage and genomic instability, which are crucial in monitoring and keeping cell 

homeostasis since molecular approaches showed a clear correlation between R-loops and certain 

diseases (Groh et al, 2014; Lim et al, 2015; Garcia-Rubio et al, 2015; Grunseich et al, 2018).  

 

All regulators of R-loops 

have a negative effect on 

them, either resulting in 

their removal or by 

preventing their 

formation (Santos-Pereira 

& Aguilera, 2015) 

(Figure 1.14.). One 

prominent example is the 

DNA-RNA helicase 

SETX (Sen1 in yeast). 

SETX causes the 

degradation of the 

 

 

Figure 1.14. Schematic representation of the activity of certain R-loop 

removing factors. 

The removal of co-transcriptionally formed R-loops can occur by the interplay 

of distinct enzymes.  

The RNA moiety of an R-loop can be degraded by RNase H enzymatic 

activity. R-loops can also be removed by unwinding mechanisms of cellular 

helicases (for example Rho in bacteria, Sen1 in yeast and SETX in mammalian 

cells). The human helicase aquarius (AQR) is possibly also involved in the 

process of R-loop removal (adapted from: Santos-Pereira & Aguilera, 2015). 
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DNA-RNA duplex of R-loops (Kim et al, 1999), which can be followed by the degradation of the 

RNA transcript by the RNA exonuclease, Xrn2 (Skourti-Stathaki et al, 2011).  

R-loop removal occurs also via the activity of RNase H enzymes (RNase H1 and RNase H2 in 

eukaryotes), which degrade the RNA strand of the R-loop through their endonuclease activity 

(Cerritelli & Crouch, 2009). RNase H enzymes represent a family of non-sequence-specific 

endonucleases that catalyze the cleavage of RNA in a DNA-RNA hybrid via a hydrolytic 

mechanism (Figure 1.15.). Two main types of RNase H enzymes exist and at least one of them is 

present in most organisms (Cerritelli & Crouch, 2009). 

Early studies on RNase H1 enzymes demonstrated that the N-terminal domain of the protein is 

responsible for binding of RNA-RNA and DNA-RNA duplexes (Cerritelli et al, 2003; 

Gaidamakov et al, 2005). This domain is known as the Hybrid Binding Domain (HBD). The 

HBD shows a 25-fold higher preference for DNA-RNA hybrid binding compared to the same 

sequence of dsRNA (Nowotny et al, 2005). In addition, it was shown that type 1 RNase H 

enzymes require at least a four ribonucleotide substrate for cleavage to occur (Cerritelli & 

Crouch, 2009). 

RNase H2 was shown to be clearly different from RNase H1 regarding DNA-RNA hybrid 

hydrolysis. RNase H2 displays higher affinity in recognizing and cleaving a single ribonucleotide 

embedded in a DNA duplex.  This implies that the function of RNase H2 resembles that of a 

repair enzyme, since it is cleaving DNA at sites where DNA polymerases mistakenly 

incorporates a ribo- instead of a deoxyribonucleotide (Cerritelli & Crouch, 2009). 

 

Apart from RNase H enzymes and helicases, Topoisomerase I (Top I) is also involved in the 

removal of R-loops. Top I is responsible for the relaxation of supercoiled DNA, especially during 

transcription and DNA replication. For example, depletion of Top I in HEK293T cells results in 

both R-loop loss and R-loop gain at thousands of transcribed loci. R-loop gains were observed in 

highly transcribed genes located in gene-poor regions associated to LADs, in close proximity to 

H3K9me3 enriched regions. On the other hand, R-loop loss in response to Top I depletion was 

observed in regions repressed by Polycomb group complexes and marked with H3K27me3 mark. 

In addition, Top I depletion and rearrangement of R-loops throughout the genome resulted in cell 

cycle arrest in G0/G1 phase, which indicates that Top I function and R-loop regulation is just 

another level of replication initiation control (Manzo et al, 2018). 
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Also, by applying a very broad approach in mapping R-loop interacting partners in a human B 

cell line, 803 new R-loop interacting partners have been identified. Most identified proteins can 

be classified into groups of proteins involved in RNA processing as splicing or RNA strand 

unwinding. Interestingly, among the identified R-loop interacting proteins, nuclear pore complex 

proteins have also been identified too (Wang et al, 2018). So far, it is not known whether there 

are proteins that specifically promote R-loop stability, either directly or by counteracting the 

functions of proteins that destabilize R-loops.  
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I.X. The rationale of studying HIV-1 integration site selection in a chromatin 

and R-loop dependent context   
 

HIV-1 integration, as well as the completion of the viral life cycle and viral activity, significantly 

depend on host cell chromatin organization (Le Douce et al, 2012; Maldarelli et al, 2014; Cohn et 

al, 2015; Matsuda et al, 2015; Laskey et al, 2016; Lusic & Siliciano, 2017). Several studies have 

demonstrated an association between the distribution of certain chromatin marks and HIV-1 

integration sites (Benkirane et al, 1998; Lusic et al, 2003; Ikeda et al, 2007; Wang, 2007; Brady 

et al, 2009; Marini et al, 2015; Goncalves et al, 2016; Turner & Margolis, 2017). 

On the other hand, R-loops, interestingly, expose features that have already been described for 

HIV-1 integration sites, as DNase I hypersensitivity (Verdin, 1991; Sanz et al, 2016; Chen et al, 

2017a) and occurrence in G/C rich genomic regions (Brady et al, 2009; Roy & Lieber, 2009; 

Ginno et al 2012; Sanz et al, 2016). In addition, R-loop rich regions are frequently associated to 

open chromatin marks (Sanz et al, 2016; Chedin, 2016) which are also distributed over HIV-1 

integration sites (Brady et al, 2009; Marini et al, 2015; Turner & Margolis, 2017).  

Finally, HIV-1 RT has a known RNase H function (Davies et al, 1991; Beilhartz & Götte, 2010) 

and HIV-1 IN exposes features that can be attributed to RNase H enzymes; enzymes that 

specifically recognize and resolve R-loops (Majorek et al, 2014). The following section will 

provide further insight into putative RNase H functions of HIV-1 IN.  

 

I.X.I.  HIV-1 IN is an RNase H-like enzyme 

 

HIV-1 IN is composed of three independent functional and structural domains, as previously 

mentioned. In the context of putative RNase H properties of HIV-1 IN the CCD stands out. Also, 

as mentioned before, the CCD of IN shows an RNase H folding pattern and HIV-1 IN is 

accordingly classified into the group of Ribonuclease H-like (RNHL) superfamily of enzymes 

(Figure 1.15.) (Majorek et al, 2014).  
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Still, the two most important 

functions of the CCD, and IN in 

general, are performing the 3’ 

processing and strand transfer 

reaction. IN order to successfully 

perform its function, IN activity 

highly depends on the efficiency 

of host cell DNA binding. In 

addition, of significant 

importance is the fact that IN 

activity is also highly regulated 

by the structure of the viral and host DNA substrates which can be influenced by protein 

interactions. It was shown that the structure of target host DNA greatly influences the site of viral 

integration as well as that DNA curvature and flexibility influence the frequency of integration 

(Pruss et al, 1994a; Pruss et al, 1994b; Wang et al, 1999). 

Apart from DNA binding properties, it was also shown that IN exhibits properties of binding 

highly structured RNA elements. 

It was demonstrated that HIV-1 

IN in virions shows RNA 

binding properties where 95% of 

the bound RNA was derived 

from viral RNAs, whereas the 

other 5% were of cellular origin. 

In addition, it was shown that IN 

shows preference for binding 

selected structural viral RNA 

elements (RNA-TAR). In this 

context, three lysine residues in 

the CTD of HIV-1 IN were 

identified to be important for IN 

RNA binding properties (K264, 

 

 

Figure 1.15. Scheme of HIV-1 IN structural domains.  

The active residues of the CCD are indicated in red. This region of IN 

has a demonstrated RNase H conformation.  

Three lysine residues that have been described to have RNA binding 

properties (K264, K266, K273) are highlighted in the CTD of IN.  

 

 

Figure 1.16. Structural superimposition of crystal structures of 

HIV-1 IN CCD and B. halodurans RNase H in complex with an 

RNADNA-RNA hybrid. 

The CCD of HIV-1 IN is represented in yellow, whereas the bacterial 

RNase H enzyme is represented in turquoise. The red and black regions 

represent the structurally aligned protein residues of IN (red) and RNase 

H (black) (adapted from: Savarino, 2007).  
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K266, K273) (Kessl et al, 2016) (Figure 1.15.).   

 

Supporting evidence for potential RNase H function, as well as R-loop binding properties of IN 

come from an in silico study in which the crystal structures of HIV-1 IN CCD (Goldgur et al, 

1999) and an averaged crystal structure of RNase H from Bacillus halodurans in the complex 

with an R-loop (Nowotny et al, 2005) were superimposed (Figure 1.16.). The structural 

alignment involved 45 amino acids surrounding D71 and D132 of the bacterial RNase H and D64 

and D116 of IN (Savarino, 2007).  

Considering that the viral RT has a known RNase H function (Kati et al, 1992), and that both 

enzymes are  derived by proteolytic cleavage of the Gag-Pol polyprotein, it seems plausible  that 

the RNase H like domain in  HIV-1 IN might have some remaining similar function. .   
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I.X.II. Questions and objectives 

 

The integrated HIV-1 genome can still not be eradicated from infected cells in patients. 

Accordingly, it is very important to understand how HIV-1 selects sites in the genome where it 

integrates and what is the contribution of certain epi-genomic features that could possibly affect 

this process.  

In respect to the fact that HIV-1 integration could potentially occur anywhere in the host cell 

genome, but still does not, it is worthwhile to further investigate and describe in more detail 

where and how HIV-1 selects certain genomic sites for integration.  

Considering that the virus shows certain preferences for integration site selection and that these 

integration sites expose similar epi-genomic features, it would be interesting to assess HIV-1 

integration patterns once the chromatin composition of HIV-1 target cells is changed.  

Apart from understanding and analyzing HIV-1 integration profiles, it would also be important to 

further explore the 3D positioning of the virus in the nuclear environment and its consequences 

on viral activity, since previous studies (Albanese et al, 2008; Di Nunzio et al, 2013; Marini et al, 

2015) indicate that the nuclear position of the virus is also not random and that the virus 

preferentially positions in open chromatin regions of the nuclear periphery which are underlying 

the NPC.  

In the context of HIV-1 integration site selection and viral positioning in the genome, the aim 

would be to focus the attention on the importance and effects of H3K9me2 chromatin mark 

composition. Mainly because previous studies showed a significant influence of this chromatin 

mark in shaping the nuclear landscape (Wen et al, 2009; Kind et al, 2013), as well as the 

importance of H3K9me2 depositing HMT G9a in T cell life cycle and functioning (Lehnertz et 

al, 2014; Antignano et al, 2014), which represent the main cells targeted for HIV-1 infection. 

Another reason why the focus of this work is directed to this particular chromatin mark is the fact 

that it was shown that genes targeted for HIV-1 integration have a slightly different distribution 

of H3K9me2 chromatin mark throughout their gene body, compared to non-HIV-1 target genes 

(Lucic et al, 2019).  

 

Taking into account that the host cell chromatin under the NPC is the first open chromatin 

structure the incoming virus encounters on its way to the nucleus, and that the surrounding closed 

chromatin is significantly decorated with H3K9me2 chromatin mark, it seems to be important to 
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further explore the dynamics of HIV-1 integration from a chromatin perspective. 

Questions that have to be addressed in this context and that will be pursued in the scope of this 

work are: 

1. Is the virus positioning in open chromatin regions in close proximity to the NPC, just 

because it is the first accessible chromatin domain on its way to the nucleus? 

2. How does chromatin composition affect HIV-1 integration? 

3. Are some other genomic features also affecting HIV-1 integration site selection and its 

positioning in the 3D nuclear environment? 

 

In addition, in order to have a broader insight into HIV-1 integration site selection this work aims 

to implement questions on HIV-1 integration site selection from a viral perspective too, but still 

integrating the possible importance of R-loops (as a genomic feature) as targets for HIV-1 

integration.  

The main reasoning to implement such a perspective on HIV-1 integration site selection into this 

work arises from HIV-1 IN properties, as well as R-loop properties that can be associated to viral 

integration sites.  

 

Respectively, HIV-1 IN is classified into the enzymatic family of Ribonuclease H-like enzymes 

and its CCD shows an RNase H folding pattern which can also in silico be superimposed to the 

structure of a bacterial RNase H enzyme in complex with a DNA-RNA hybrid (Savarino, 2007). 

This finding from a computational approach already demonstrates that HIV-1 IN has potential 

RNase H function and could potentially  bind to a DNA-RNA hybrid.  

Apart from computational approaches demonstrating DNA-RNA hybrid binding properties of 

HIV-1 IN, clear RNA binding properties of the CTD of HIV-1 IN have been shown (Kessl et al, 

2016) which represents supporting evidence that HIV-1 IN could bind to an R-loop, and 

particularly to its RNA part.  

In addition, when comparing certain features of HIV-1 integration sites with features of R-loop 

forming regions certain similarities seem to be evident; 

Most R-loops are formed during transcription in G/C rich genomic regions (Ginno et al, 2012; 

2013), whereas HIV-1 preferentially integrates into gene bodies of highly transcribed genes with 

high G/C content (Busschots et al, 2005; Ciuffi et al, 2005; Brady et al, 2009). In addition, 
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R-loop forming regions as well as HIV-1 integration sites show features of DNase I 

hypersensitivity (Verdin, 1991; Chen et al, 2017a), and both R-loops and HIV-1 integration sites 

are mostly associated to regions of active chromatin marks (Wang et al, 2007; Marini et al, 2015; 

Sanz et al, 2016).  

 

Finally, with respect to all described features of HIV-1 IN, R-loops as specific genomic features 

and their similarities to sites targeted for HIV-1 integration, questions that can be raised and that 

will be addressed in this work are: 

1. Do HIV-1 target genes contain R-loops? 

2. Do R-loops represent genomic features recognized by HIV-1 IN?  

3. Does HIV-1 integrate into or in the close proximity of R-loops? 

 

The main objective of this work is to contribute to a better and more detailed understanding, and 

description of sites targeted for HIV-1 integration.  

In addition, by trying to answer all set questions, this work will try to unreel potential novel 

features of HIV-1 IN, as well as try to contribute to a better understanding of the importance of 

H3K9me2 chromatin mark and R-loops in the context of HIV-1 integration.  
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II. Results 

 

II. I. Chromatin structure disruption affects HIV-1 integration in primary 

CD4+ T cells  
 

Primary CD4+ T cells, isolated from healthy blood donors, were pretreated with several drugs 

affecting the activity of different chromatin modifying enzymes and subsequently infected with 

HIV-1. Used drugs in this assay were SAHA, JQ1 and BIX01294 (Figure 2.1.).  

 

 

 

Figure 2.1. Scheme of the experimental procedure of primary CD4+ T isolation, activation and infection. 

Primary CD4+ T cells were isolated from whole blood of healthy blood donors and activated for 48 h with 

CD3/CD28 activation beads and IL-2. After activation cells were treated with selected drugs for 7 h and 

subsequently infected with HIV-1. The cells were collected 72 h post infection and processed for Alu PCR 

analysis.  

 

HDAC inhibitor SAHA (also known as Vorinostat) is a pan- histone deacetyltransferase (HDAC) 

inhibitor expected to increase global histone acetylation patterns (Bradner et al, 2010; Kim et al, 

2013; Seto & Yoshida, 2014). BET inhibitor JQ1 was described to cause the unloading of 

super-enhancers and thereby cause an overall chromatin remodeling (Filippakopoulos et al, 

2010). HMT inhibitor BIX01294 is known to specifically inhibit the activity of G9a, cause a 

reduction of H3K9me2 repressive chromatin mark and modify an overall chromatin structure 

(Kubicek et al, 2007). The drugs effects in changing the chromatin composition and their 
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potential effects on HIV-1 integration levels were assessed by Alu PCR (Figure 2.2. A). All 

tested drugs caused an increase in HIV-1 integration, but the effect of G9a inhibitor BIX01294 

was consistently the most prominent, by causing an overall increase of integration by 2,8-5 fold 

compared to HIV-1 integration in untreated conditions. 

 

In addition, the effect of UNC0642 on HIV-1 integration, which is another G9a inhibitor with 

improved biochemical properties (more specificity and improved Pharmacokinetic properties in 

comparison to other HMT inhibitors) (Liu et al, 2013b) was also tested. Still, the effect of 

BIX01294 causing an increase in HIV-1 integration by 2-4,6 fold was always more pronounced, 

since UNC0642 was only able to cause an increase in HIV-1 integration by maximum of 1,6 fold 

(Figure 2.2. B). Based on these results, we opted to use BIX01294 in all further experiments with 

a goal to determine the importance of chromatin composition on HIV-1 integration.  

 

 

 

Figure 2.2. Alu PCR results of HIV-1 integration levels upon drug treatments.  

A. HIV-1 integration levels were determined in at least 3 independent donors upon primary CD4+ T cell 

pretreatment with SAHA, JQ1 and BIX0124. The untreated infected control is set to 1, and is used as a reference 

for the integration efficiency, as measured by Alu PCR, under different treatment conditions. Integrated vDNA 

(Alu Ct values) is normalized over total genomic DNA levels amplified with primers for the lamin B2 gene (B13 

region). The graphs represent a summary of 3 experiments, B. HIV-1 integration levels determined in 3 

independent donors upon primary CD4+ T cell pretreatment with 2 different G9a inhibitors; UNC0642 and 

BIX0124. The untreated infected control is set to 1, and is used as a reference for the integration efficiency, as 

measured by Alu PCR, under different treatment conditions. Integrated vDNA (Alu Ct values) is normalized over 

total genomic DNA levels amplified with primers for the lamin B2 gene (B13 region). 
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II. II. Determining the kinetics and effects of BIX01294 in primary CD4+ T 

cells 
 

In the first instance, cells were treated 6-7 h with BIX01294. The effect of BIX01294 after 6-7 h 

treatment of primary CD4+ T cells was first tested and confirmed by western blot, where a 

significant reduction of H3K9me2 chromatin mark was observed (Figure 2.3. A).  

 

 

 

Figure 2.3. Effect of BIX01294 on H3K9me2 chromatin mark depletion.   

A. Western blot results upon 6-7 h 7 µM BIX01294 treatment. As a readout for drug treatment efficiency 

H3K9me2 chromatin mark levels are shown, as BIX01294 inhibits G9a activity which deposits H3K9me2 

chromatin mark. As protein loading control total levels of ß-Actin are presented. B. Schematic representation of 

the effect of BIX01294 on G9a activity and deposition of H3K9me2 chromatin mark. In untreated conditions G9a 

is depositing H3K9me2 chromatin mark, creating an environment of condensed chromatin primarily in the 

nuclear periphery. During BIX01294 treatment the catalytic activity of G9a is inhibited which causes a decrease 

in H3K9me2 chromatin mark deposition and a global opening of the chromatin.  
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In addition, the reduction of H3K9me2 

could also be appreciated by IF 

(Immunofluorescence) staining and STED 

(Stimulated Emission Depleted) 

microscopy, where a clear global reduction 

of H3K9me2 chromatin mark was 

determined in cell nuclei (Figure 2.4.). 

Interestingly, two different H3K9me2 

staining patterns have been detected among 

cells of the same donor (Figure 2.4. upper 

panels). One staining pattern shows a global 

nuclear distribution of H3K9me2 which 

upon BIX01294 treatment also gets reduced 

on a global nuclear level. The other 

observed staining pattern of H3K9me2 

shows a more peripheral distribution of the 

chromatin mark which upon BIX01294 

treatment also gets reduced in the nuclear 

periphery.  

In addition, a control staining of related 

chromatin mark H3K9me3 was performed 

in untreated and BIX01294 treated 

conditions, since BIX01294 is expected to 

specifically inhibit the activity of HMT G9a 

and respectively only affect the deposition 

of H3K9me2 chromatin mark. As expected, 

and as seen by IF and immunoblot, H3K9me3 was not affected by BIX01294 treatment (Figure 

2.4. and Figure 2.6. A).  

 

 

 

 

 

Figure 2.4. Specific reduction of H3K9me2 upon 

BIX01294 treatment.   

IF staining for H3K9me2 chromatin mark followed by 

STED microscopy of control (untreated) or cells treated 

with BIX01294 is shown in the upper panels.  Staining of 

related H3K9me3 chromatin mark under same conditions 

represents a control for the specificity of the drug treatment 

(lower panels) (scale bars: 1 µm) (imaged with the help of 

Dr. Vibor Laketa).  
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Cell viability assessment upon BIX01294 treatment and HIV-1 infection 

 

In order to assess cell viability upon BIX01294 treatment, HIV-1 infection as well as 

simultaneous drug treatment and infection, the MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromidefor assay) was performed.  

The MTT assay is used to determine cell metabolic activity by assessing the presence of 

NAD(P)H dependent oxidoreductases in the sample. Oxidoreductases can reduce the tetrazolium 

dye MTT to its insoluble form - formazan which turns the sample into a purple color. The more 

oxidoreductases are present in the sample, the more formazan will be produced indicating that the 

sample contains less viable cells. 

Upon BIX01294 treatment no significant 

difference in cell viability was observed. On 

average 92% of the cells are still viable in 

comparison to untreated conditions where 

assumed that 100% of cells are viable. Cells 

upon HIV-1 infection on average do not show 

any difference in viability compared to 

untreated conditions, whereas upon BIX01294 

treatment and HIV-1 infection, on average, 

64% of cells are still viable (Figure 2.5). 

However, some cell death upon HIV-1 

infection was expected (Costin, 2007), and 

especially upon drug treatment and infection. 

Accordingly, the observed MTT results 

indicate that 7 µM BIX01294 treatment does 

not have any harmful effect on cell viability, 

which is also confirmed by one-way ANOVA 

statistical analysis which gave a p value of 

0,073 (the value is higher than 0,0001 and 

considered as statistically not significant) .  

 

 

 

 

Figure 2.5. CD4+ T cell viability test upon BIX01294 

treatment and HIV-1 infection.  

MTT assay results of 4 independent donors upon 

BIX01294 treatment, upon HIV-1 infection and 

simultaneous  BIX01294 treatment and HIV-1 infection. 

The untreated control is set to 1 and used as a reference 

to assess cell viability in the analyzed conditions. The 

difference in cell viability between analyzed conditions is 

not statistically significant as assessed by one-way 

ANOVA analysis (p value is shown in the graph).  
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The timeline of BIX01294 effect on H3K9me2 chromatin mark 

 

In order to further assess the kinetics of BIX01294 treatment and its effects, levels of H3K9me2 

were assessed at different time points post drug treatment and drug release by western blot 

(Figure 2.6. A). Blot quantifications showed that after 6 h of treatment H3K9me2 levels were 

reduced to 62,33%; 12 h post drug release to 40,33%; 24 h post drug release to 33,67%; 48 h post 

drug release to 57,67% and 72 h post drug release to 69,67% of initial H3K9me2 levels. The 

strongest effect regarding H3K9me2 reduction was appreciated between 12 and 24 h post drug 

release. After 24 h post drug release H3K9me2 levels start getting reconstituted back to initial 

levels (Figure 2.6. B). 

Observing the strongest reduction of H3K9me2 between 12 and 24 h post drug release is also in 

accordance with the timing of occurred HIV-1 integration (Mohammadi et al, 2015). Obtained 

results are compatible with increased levels of HIV-1 integration upon BIX01294 treatment 

observed by Alu PCR (Figure 2.2). 

In addition, it can also be appreciated that H3K9me3 levels are not changing over time, which 

also shows that the drug treatment specifically targets only G9a and H3K9me2 chromatin mark 

(Figure 2.6. A).  

 

 

 

Figure 2.6. The kinetics of BIX01294 treatment followed by the assessment of H3K9me2 levels at different 

time points post drug treatment and drug release.  

A. Levels of H3K9me2 chromatin mark at different time points post BIX01296 treatment and drug release were 
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assessed by immunoblot. At each time point,  levels of H3 core histones and H3K9me3 control chromatin mark, 

which are not changed upon BIX01294 treatment, were also assessed.  ß-Actin  served as a loading control. B. 

Quantification of optical density of 3 independent immunoblots for H3K9me2 chromatin mark upon BIX01294 

treatment and drug release. Optical density values of H3K9me2 chromatin mark at each time point are 

normalized over protein loading control ß-Actin values. Time point 0 h of the drug treatment is set to 1 and used 

as a reference to assess optical density values of H3K9me2 chromatin mark at different time points post drug 

treatment initiation and drug release.  

 

Assessment of potential DNA damage upon BIX01294 treatment 

 

In order to exclude the possibility that the observed increase in HIV-1 integration might be 

caused by increased levels of DNA damage upon drug treatment, immunofluorescence (IF) 

staining of Gamma H2AX, DNA damage marker, which stains DNA double strand breaks was 

performed in untreated and drug treated conditions. 

By confocal microscopy it could be observed that primary CD4+ T cells in untreated conditions 

and upon 6-7 h of 7 µM BIX01294 treatment have similar numbers of cells positive for Gamma 

H2AX signals. In untreated conditions 32% cells contained Gamma H2AX signals, whereas in 

BIX01294 treated conditions 28% cells contained Gamma H2AX signals (Figure 2.7. B).  

In addition, the total amount of Gamma H2AX signals was also quantified by measuring total 

immunofluorescence intensity in both conditions. In both cases, no difference in total 

immunofluorescence intensity of Gamma H2AX could be detected. Accordingly, any DNA 

damage occurring upon BIX01294 treatment could be excluded (Figure 2.7. B and C). 

The obtained results indicate that increased levels of HIV-1 integration upon BIX01294 treatment 

are not a consequence of possible DNA damage occurring due to drug treatment. 
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Figure 2.7. Assessment of Gamma H2AX DNA double-strand break marker occurrence upon BIX01294 

treatment.  

A. Confocal images of primary CD4+ T cells stained for Gamma H2AX (green) and lamin B1 (red) in untreated 

conditions and upon BIX01294 treatment (scale bars: 2 µm). B. Graph shows results of absolute cell counts 

containing Gamma H2AX signals in untreated conditions and upon BIX01294 treatment, expressed in 

percentages. Numbers above the bars show total cell counts for 2 independent donors. C. Graph shows results of 

total IF intensity signals quantified in untreated conditions and upon BIX01294 treatment in 2 independent 

donors. The IF intensity values in untreated conditions are set to 1 and used as a reference to assess IF intensity 

values upon BIX01294 treatment.  

 

Cell activation status upon BIX01294 treatment 

 

Considering the observed increase in HIV-1 integration upon BIX01294 treatment and the fact 

that HIV-1 can only infect activated CD4+ T cells, the activation status of resting primary CD4 T 

cells upon BIX01294 treatment was tested by staining for CD38 and CD69 cell surface marker 

and subsequent FACS (Fluorescence-activated cell sorting) assay. This experiment was 

performed in order to verify whether the observed increase in HIV-1 integration upon BIX01294 

treatment could possibly be a consequence of increased cell activation status. 
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Figure 2.8. Determination of CD38 and CD69 cell surface marker expression upon BIX01294 treatment.  

A. Representative FACS profiles of resting primary CD4+ T cells for CD38 and CD69 cell surface marker in 

untreated conditions and upon BIX01294 treatment. The unstained condition is given as a negative control, and 

shows the gating of only live cells which are occupying forward and side scatter scales of up to 102. CD38 positive 

cells appear in the upper left quadrant of the FACS plot (FITC stained) (y-axis). CD69 positive cells appear in the 

lower right quadrant of the FACS plot (APC-Cy7 stained) (x-axis). The given p value of two-way ANOVA analysis 

is given in the graph. B. The graph shows CD38 and CD69 cell surface marker expression levels summarized for 4 

independent donors expressed in percentages. The legend in the upper right corner indicates that the black bars 

correspond to cell surface marker expression results in untreated conditions, whereas the white bars correspond to 

results upon BIX01294 treatment.  

 

Levels of CD38 expression vary during lymphocyte development, activation and differentiation, 

and is usually highly expressed in activated cells. CD69 is considered to be an early activation 
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marker. In untreated conditions 32,26% cells are expressing CD38, whereas upon BIX01294 

treatment 29,37% cells express CD38. In case of CD69, in untreated conditions 0,42% cells 

express CD69, whereas upon BIX01294 treatment 1,11% cells express CD69 (Figure 2.8.). 

The obtained FACS results, performed statistical analysis and given p value of p=0,1739 

(p>0,0001) indicate that there is no significant change in cell activation status upon BIX01294 

treatment of resting primary CD4 T cells. The results indicating that the observed increase in 

HIV-1 integration levels upon BIX01294 treatment are not due to increased cell activation status, 

but rather due to a general more open and permissive chromatin structure. 

 

II.III. G9a knock down has the same effect on HIV-1 integration as BIX01294 

treatment 
 

To verify whether BIX01294 treatment and G9a depletion  have the same increasing effect on 

HIV-1 integration, G9a was directly knocked down (KD) by using a lentivirus containing a 

siRNA (small interfering RNA) sequence against this histone methyltransferase in Jurkat T cell 

line.  

The lentivirus additionally contained a puromycin resistance gene, which enabled selection of 

cells containing the successfully integrated viral vector harboring  G9a shRNA.  

Consistent with an observed reduction of G9a (Figure 2.9. A) and decreased H3K9me2 levels, a 

~3-fold increase in HIV-1 integration upon infection of Jurkat cells was measured by Alu PCR 

(Figure 2.9. B). 

Obtained results indicate that BIX01294 treatment, as well as direct KD of G9a induce a global 

reduction of H3K9me2 chromatin mark, which both have an increasing effect on HIV-1 

integration. 
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Figure 2.9. G9a knock down and its effect on HIV-1 integration in Jurkat T cell line.    

A. Efficiency of G9a KD, as well as consequent H3K9me2 depletion measured by immunoblot. G9a levels were 

assessed upon lentiviral KD of the protein, followed by the assessment oh H3K9me2 levels upon G9a KD. As 

protein loading controls total levels of ß-Actin are presented. B. Alu PCR results showing HIV-1 integration 

levels upon G9a KD, summarized for 2 individual experiments. HIV-1 integration in untreated conditions is set to 

1 and used as a reference to assess HIV-1 integration levels upon G9a KD. Integrated vDNA (Alu Ct values) is 

normalized over total genomic DNA levels amplified with primers for the lamin B2 gene (B13 region). 

 

II. IV. H3K9me2 depletion has an increasing effect on HIV-1 integration, viral 

RNA expression and viral activity 
 

Considering  that BIX01294 treatment results showed increased HIV-1 integration (Figure 2.10 

A), we asked if these integrations read to productive or aberrant viral transcription. We therefore 

assessed the levels of HIV-1 transcription and viral mRNA production. For this purpose, RNA 

was extracted upon BIX01294 treated and HIV-1 infected cells, and viral transcripts were 

quantified by RT-PCR followed by qPCR (quantitative PCR) using primer and probes for short, 

mostly (NUC1B) aberrant and long (U1A) viral transcripts from the gag gene (Lusic et al, 2003). 

Indeed, the increase in HIV-1 integration upon H3K9me2 depletion was followed by increased 

viral mRNA levels in both, early and late viral transcripts, 72 h post infection, compared to 

untreated and infected samples. Short aberrant viral transcripts were 1,57 fold increased, whereas 

long viral transcripts, corresponding to the mature forms of the gag gene were 2,54 fold 

increased, following the increase in HIV-1 integration of 2,5 fold in comparison to untreated 

conditions (Figure 2.10. B).  
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Viral activity upon BIX01294 treatment was assessed by FACS assay, by measuring the 

production of viral p24 protein. Obtained FACS results show an increase in p24 levels upon 

BIX01294 treatment and viral infection up to 2,59 fold compared to untreated conditions (Figure 

2.10. C). The obtained FACS results are in correlation with the previously observed increase in 

HIV-1 integration upon BIX01294 treatment of 2,5 fold and the increase in detected mature 

forms of gag gene transcripts of 2,54 fold, compared to untreated conditions.  
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Figure 2.10. Assessment of HIV-1 integration levels, viral RNA expression and viral activity upon 

BIX01294 treatment and H3K9me2 depletion.     

A. HIV-1 integration in untreated conditions and upon BIX01294 treatment, summarized for 3 independent 

donors, as measured by Alu PCR. HIV-1 integration in untreated conditions is set to 1 and used as a reference to 

assess HIV-1 integration upon BIX01294 treatment. Integrated vDNA (Alu Ct values) is normalized over total 

genomic DNA levels amplified with primers for the lamin B2 gene (B13 region). B. HIV-1 RNA expression 
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levels upon BIX01294 treatment, summarized for 3 independent donors. Graph on the left shows mRNA 

expression of early viral transcripts, where the values in untreated conditions are set to 1 and used as a reference 

to assess the expression of early viral transcripts upon BIX01294 treatment. The graph on the right shows mRNA 

expression levels of late viral transcripts, where the values in untreated conditions are set to 1 and used as a 

reference to assess the expression of early viral transcripts upon BIX01294 treatment. Viral gene expression 

levels are normalized over host cell housekeeping gene GAPDH. C. Representative FACS profiles of primary 

CD4+ T cells infected with HIV-1 in untreated and BIX01294 treated conditions and stained for viral protein p24. 

Unstained cells in both conditions are represented as a negative control, and show the gating of only live cells 

which are represented in the orange window and occupy forward and side scatter scales of up to 102. Live p24 

positive cells are marked in respect to the cells marked as live in the unstained control, but shifted to forward 

scatter values up to 105, caused by the presence of the p24 protein. The graph on the right represents a summary 

of p24 positive cells upon HIV-1 infection in untreated and BIX01294 treated conditions for 3 independent 

donors expressed in percentages. Results from 3 independent donors shown in panel A correspond to the same 

donors and results shown in panel B and C. 

 

Apart from increased HIV-1 integration upon H3K9me2 depletion, which is followed by 

increased viral activity, assessed by measuring  viral RNA and p24 production (Figure 2.10. A, B 

and C), we also observed a decrease in non-integrated viral DNA. This decrease, as measured by 

PCR for 2LTR circles (Figure 2.11. A and B), suggests that following nuclear entry all copies of 

HIV-1 viral DNA get integrated into the cellular genome, probably due to more open chromatin 

structure following BIX01294 treatment.  
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Figure 2.11. Quantification of non-integrated HIV-1 DNA (2LTR circles) upon H3K9me2 depletion.  

A. Graph shows the quantification of 2LTR circles upon HIV-1 infection following BIX01294 treatment, as 

normalized over levels of total vDNA (graph in panel B). A summary of 3 independent donors is shown B. 

Quantification of total vDNA upon HIV-1 infection in untreated and BIX01294 treated conditions, summarized 

for 3 independent donors. Total vDNA was quantified by plotting the amounts of total vDNA qPCR Ct values 

(y-axis) over the values obtained by serial dilutions of DNA (represented as ng/μl) from latent HIV-1 clone J-Lat 

9.2 cell DNA (x-axis). 3 independent donors, same as the ones shown in Figure 2.10., were used for 

quantification.   

 

II.V. H3K9me2 depletion affects 3D nuclear position of HIV-1  
 

The 3D positioning of HIV-1 in CD4+ T cell nuclei was determined by immuno-DNA FISH 

(Fluorescent in situ Hybridization) followed by confocal microscopy in untreated and BIX01294 

treated conditions. In untreated conditions, the virus preferentially positions in the outer shell of 

the nucleus (occupying nuclear zone 1), as previously described (Marini et al, 2015). Upon drug 

treatment, due to the modification of histone methylation patterns, more HIV-1 DNA FISH 

signals per nucleus (cell) were observed, consistent with the detected increase in HIV-1 

integration upon BIX01294 treatment, as seen by Alu PCR. 

Interestingly, upon BIX01294 treatment, we observed changes in the distribution patterns of the 

virus, as it is positioned in the interior zones of the nucleus, occupying predominantly nuclear 

zone 2 (Figure 2.12. A and B). In untreated conditions 68,87% HIV-1 DNA FISH signals occupy 

nuclear zone 1, 28,12% occupy nuclear zone 2 and 3,01% nuclear zone 3. In BIX01294 treated 

conditions 40,28% HIV-1 DNA FISH signals occupy nuclear zone 1, 52,78% occupy nuclear 
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zone 2 and 6,94% nuclear zone 3. This finding was quantified by radial measurements of nuclei 

and determination of relative distances of HIV-1 signals to the nuclear lamina as previously 

described in Marini et al, 2015. 

 

 

 

Figure 2.12. 3D nuclear position of HIV-1 upon H3K9me2 depletion and BIX01294 treatment.      

A. Schematic representation of the nuclear zones and the 3D nuclear distribution of HIV-1 in untreated vs. 

BIX01294 treated conditions. Legend on the right indicates nuclear zones and division of the nucleus into areas 

of equal volume according to their distance to the nuclear lamina. B. FISH results of HIV-1 3D nuclear position 

in untreated conditions and upon BIX01294 treatment. Numbers under the images indicate the number of infected 

cells in which the distance of HIV-1 FISH signals to the nuclear lamina was measured (scale bars: 2 µm). Graph 

below shows the cumulative distribution of HIV-1 proviral signals by the Kolmogorov-Smirnov test in relation to 

their relative distance to the nuclear lamina, with the corresponding p value above the x-axis of the graph.  
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II.VI. HIV-1 RIGs follow the pattern of HIV-1 positioning in the 3D nuclear 

space 
 

As for HIV-1, the nuclear position of selected HIV-1 RIGs and HIV-1 non-target genes in 

untreated and BIX01294 treated conditions was determined by immuno-DNA FISH and confocal 

microscopy.  

In total, 15 genes were analyzed (BACH2, NPLOC4, STAT5B, MKL2, DNMT1, RPTOR, 

SMG1, GRB2, GNB1, NFATC3, PACS2, KDM2B, ACTN1, RNF157, CNTN4). Genes as 

BACH2, NPLOC4, STAT5B, MKL2, DNMT1, RPTOR, SMG1, GRB2, GNB1, RNF157 and 

NFATC3 were chosen among RIGs, whereas PACS2, KDM2B, ACTN1, CNTN4 where chosen 

as HIV-1 non-target genes. RIGs BACH2, NPLOC4, STAT5B, MKL2, DNMT1, RPTOR, 

SMG1 GRB2 and RNF157 clearly change their nuclear position upon BIX01294 treatment and 

H3K9me2 depletion (Figure 2.13.), whereas GNB1& NFATC3 did not change their 3D nuclear 

position upon BIX01294 treatment (Figure 2.14.).  
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Figure 2.13. 3D nuclear position of RIGs that change their nuclear position following BIX01294 
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treatment.      

Numbers under the images indicate the total cell count in which the distance of the gene FISH signals to the 

nuclear lamina was measured. Graphs below the images show the cumulative distribution of alleles by the 

Kolmogorov-Smirnov test in relation to their relative distance to the nuclear lamina, with the corresponding 

p value above the x-axis of the graph (scale bars: 2 µm). 
 

 

 

  

 

Figure 2.14. 3D nuclear position of RIGs that do not change their nuclear position upon H3K9me2 

depletion and BIX01294 treatment.      

Numbers under the images indicate the total cell counts in which the distance of the gene FISH signals to the 

nuclear lamina was measured. Graphs below the images show the cumulative distribution of alleles by the 

Kolmogorov-Smirnov test in relation to their relative distance to the nuclear lamina, with the corresponding 

p  value above the x-axis of the graph (scale bars: 2 µm). 

 

Chosen HIV-1 non-target genes PACS2, KDM2B, ACTN1, CNTN4 do not move from their 

initially occupied nuclear zone, which is zone 2 for PACS2 and KDM2B. For CNTN4 gene 

locus, which is inside a LAD, we observed a slight, statistically significant (p<0,0001) shift 

towards the nuclear periphery upon BIX0124 treatment. In the case of ACTN1 the opposite 

phenomenon can be appreciated, where a minor, although statistically significant (p=0,0014) shift 

towards the center was observed. (Figure 2.15.). 
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Figure 2.15. 3D nuclear position of HIV-1 non-target genes. 

Numbers under the images indicate the total cell counts in which the distance of the gene FISH signals to the 

nuclear lamina was measured. Graphs below the images show the cumulative distribution of alleles by the 

Kolmogorov-Smirnov test in relation to their relative distance to the nuclear lamina, with the corresponding 

p  value above the x-axis of the graph (scale bars: 2 µm). 

 

In summary, out of 11 analyzed RIGs, 9 genes change their nuclear position and move more 

towards the nuclear center, following the example of HIV-1 upon BIX01294 treatment and 

H3K9me2 depletion. Out of 4 analyzed non-HIV-1 target genes, 2 do not change their nuclear 

position, but 2 are slightly moved more towards the nuclear periphery (CNTN4), or more towards 
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the nuclear center (ACTN1). In total, out of 15 analyzed genes 12 change their nuclear position 

upon BIX01294 treatment and H3K9me2 depletion, following the behavior of HIV-1 provirus 

(Figure 2.16). 

 

 

 

Figure 2.16. Summarized representation of 3D nuclear position of HIV-1, RIGs and non-RIGs in untreated 

and BIX01294 treated conditions.   

Graph shows the cumulative distribution of all analyzed alleles and vDNA signals  by the Kolmogorov-Smirnov 

test in relation to their relative distance to the nuclear lamina. The black line on the histogram indicates the 

position of HIV-1 and RIGs in untreated conditions. The red line shows the repositioning of HIV-1 upon 

BIX01294 treatment. The green line shows the repositioning of RIGs upon BIX01294 treatment. The blue line 

shows the nuclear position of not moving RIGs and non-RIGs in the nucleus upon BIX01294 treatment.   

 

II.VII. Changed nuclear position does not affect transcriptional activity of 

HIV-1 RIGs 
 

Given that BIX01294 treatment causes a reduction of facultative heterochromatin mark 

H3K9me2 and that it also has an effect on gene positioning, we reasoned that there might be also 

a change of global gene expression levels.  

In order to assess potential changes in gene expression levels, RNA microarray analysis, of 

untreated and BIX01294 treated primary CD4+ T cells 6-7 hours post treatment was performed, 

via BeadArray microarray Technology (Illumina) by using the HumanHT-12 Expression 
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BeadChip kit. Interestingly, RNA expression profiles of most genes were not affected by the 

treatment. Still, we observed that certain portion of genes were either downregulated or 

upregulated (Figure 2.17. A). In addition, we performed the Gene Ontology (GO) term analysis 

and among the downregulated genes we find genes involved in membrane trafficking, protein and 

ion binding. In the group of upregulated genes, genes involved in iron metabolism and 

inflammatory response are dominating (Figure 2.17. B). It is known that G9a function is pivotal 

in cell proliferation and differentiation (Lehnertz et al, 2010; Rao et al, 2016). In addition, it has 

been shown that G9a impairment by BIX01294 treatment can reduce cellular proliferation rates 

or cause cell cycle arrest (Shankar et al, 2013). On the other hand, iron is vital for T cell 

proliferation and is involved in pathways protecting cells from cytotoxicity, oxidative stress and 

DNA damage (Bowlus, 2003; Ruttkay-Nedecky et al, 2013). Thus,  it might be plausible that 

there is  an ongoing compensatory effect, where iron and inflammatory pathways are activated in 

order to prevent cell cycle arrest. 

 

 

 

 



Results 

84 
 

 

 

Figure 2.17. RNA microarray results of global gene expression profiles upon BIX01294 treatment.   

A. Volcano plot shows the global change in gene expression profiles upon BIX01294 treatment. The plot shows a 

clear diversification between downregulated genes (genes on the left of the x-axis, showing an expressional log 

fold change bellow the value 0) and upregulated genes (genes on the right of the x-axis, showing an expressional 

log fold change above the value 0) upon drug treatment, summarized for 2 independent donors (data analysis 

performed by Constantin Ahlmann-Eltze). B. Heatmap shows the top 50 genes with changed expression profiles 

upon BIX01294 treatment. The color code in the upper left corner indicates log fold changes of gene expression 

levels. The top upregulated genes are indicated on the box on the right. The top upregulated genes are members 

of metalloproteases and chemokine receptors involved in iron metabolism and inflammatory response (data 

analysis performed by Constantin Ahlmann-Eltze).  

 

We then analyzed the expression profiles of HIV-1 targeted genes (RIGs) and observed again that 

some of them were downregulated whereas others were upregulated (Figure 2.18. A, B and C). 
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We compared f RIGs to a random set of 424 genes (Figure 2.18. panel A; blue lines) a clear shift 

towards lower p-values could be noticed, suggesting  that overall, RIGs change their expression 

profiles in BIX01294 treatment (Figure 2.18. A), although this seems to be a rather mild change. 

The only significant change could be appreciated for BACH2, with a log fold change of 2, which 

corresponds to the same result we have observed by RT-qPCR (Figure 2.18. C).   

 

 

 

 

 



Results 

86 
 

 

 

 

Figure 2.18. RIGs expression profiles upon BIX01294 treatment.  

A. The barcode plot shows, in red, the distribution of p-values for each RIG expression change. A maximum 

p  value of 7e-14 is detected (generated by using the geneSetTest from limma in R studio) (data analysis 



Results 

87 
 

performed by Constantin Ahlmann-Eltze). B. The heatmap shows the top 50 RIGs with changed expression 

profiles upon BIX01294 treatment, with BACH2 being the most significantly upregulated RIG. The color code in 

the upper left corner indicates log fold changes of gene expression levels (data analysis performed by Constantin 

Ahlmann-Eltze). C. Bar plots show RT-qPCR results of mRNA expression levels of BACH2 and STAT5B at 

different time points post BIX01294 treatment. The values in untreated conditions for each time point are set to 1 

and used as a reference to assess mRNA expression changes upon BIX01294 treatment at each analyzed time 

point. Gene mRNA expression is normalized over expression profiles of housekeeping gene 18.  

 

In conclusion, the obtained results show that BIX01294 treatment affects gene expression 

profiles. However, RIGs expression was not dramatically impacted by the treatment, whereas 

groups of genes involved in iron metabolism and inflammatory response showed clear 

overexpression. This result might also indicate that increased HIV-1 integration upon BIX01294 

treatment is not due to increased RIGs expression, but rather due to a more loose and accessible 

chromatin composition.   

 

Cell cycle profiles upon BIX01294 treatment 

 

Considering that BIX01294 treatment causes a global reduction in H3K9me2 chromatin mark, 

opening of chromatin structure and change in gene expression levels, testing potential changes in 

cell cycle profiles of untreated activated primary CD4+ T cells and BIX01294 treated cells was 

also performed.  

The cell cycle analysis was performed by propidium iodide staining of cells, followed by FACS 

analysis 7 h post BIX01294 treatment. Upon BIX01294 treatment, no significant change in the 

cell cycle profile was observed. Cells were predominantly in G1 phase (on average 67,32% of 

untreated cells; 72,75% of BIX01294 treated cells), a portion was  also found  in G2 (on average 

25,54 % of untreated cells; 22,11 % of BIX01294 treated cells) phase and late G2 or M phase (on 

average 5,06% of untreated cells; 314% of BIX01294 treated cells) (Figure 2.19. A and B).  

In untreated conditions 2,08% of cells were not gated as live, whereas in BIX01294 treated 

conditions 2% of cells were not gated as live. 

Obtained results indicate that BIX01294 treatment does not cause any changes in cell cycle 

profiles of primary CD4+ T cells. Such a scenario has also previously been described in the case 
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of G9a KD, where cell cycle profiles and cell proliferation were not affected after G9a KD 

(Yokochia et al, 2009). 

 

 

 

Figure 2.19. Cell cycle profiles upon BIX01294 treatment.   

A. Histogram of cell FACS profiles upon BIX01294 treatment (orange line) compared to untreated conditions 

(black line). Results represent an output of the BD Biosciences FACS analysis software where peaks occurring 

before 103 PE-A density represent cells in G1 phase of the cell cycle, peaks occurring at 103 PE-A density 

represent cells in G2 phase of the cell cycle and peaks occurring after 103 PE-A density represent cells in the late 

G2 or M  phase of the cell cycle. B. The graph shows a summary of total amounts of cells in G1, G2 and M phase 

of the cell cycle expressed in percentages for 2 independent donors.  
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II. VIII. Chromatin composition of HIV-1 target genes upon H3K9me2 

depletion  
 

Assessment of RIGs chromatin composition by ChIP-qPCR 

 

BIX01294 treatment and H3K9me2 depletion did not cause a significant change in transcription 

profiles of HIV-1 target genes, but significantly affected their position in CD4+ T cell nuclei. We 

therefore sought to understand how H3K9me2 depletion affects the surrounding chromatin 

composition and LEDGF/p75 binding at selected RIGs.   

ChIP-qPCR (Chromatin Immunoprecipitation followed by quantitative PCR) was performed for 

selected chromatin marks (H3K9me2, H3K9me3, H3K36me3), as well as for host cell factor 

LEDGF/p75. In total, 9 genes were analyzed by ChIP-qPCR, 5 of which were RIGs (BACH2, 

STAT5B, MKL2, RPTOR, NPLOC4) and 4 were non-RIGs (KDM2B, PACS2, ACTN1, 

CNTN4). For all the genes, primers for the first intron region, gene body and exon/intron junction 

at the gene end were designed in order to follow possible changes along selected genes. 

H3K9me2 chromatin mark served as a readout for efficient BIX01294 treatment, and was 

expected to decrease in regions where it otherwise binds. H3K9me3 served as a control for the 

treatment, since the binding of this chromatin mark should not be significantly affected by 

BIX01294 treatment. H3K36me3 was probed in ChIP as it is expected that this chromatin mark is 

deposited on HIV-1 target genes (Marini et al, 2015; Lucic et al, 2019), and might also be 

affected by BIX01294 treatment. Host cell factor LEDGF/p75 was included into the analysis 

considering its important role in HIV-1 integration site selection (De Rijck et al, 2010; Craigie & 

Bushman, 2012; Achuthan et al, 2018) as well as its know feature to act as H3K36me3 chromatin 

mark reader (Venkatesh et al, 2012; Pradeepa et al, 2012 Demeulemester et al, 2015, Singh et al, 

2015). 
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Figure 2.20. ChIP-qPCR results of the first intron region of selected genes. 

Distribution of H3K9me2, H3K9me3 and H3K36me3 chromatin marks, as well as of LEDGF/p75 in the first 

intron region of selected RIGs and non-RIGs in untreated conditions and upon BIX01294 treatment. The graphs 

represent summarized results for 3 independent donors, normalized over input DNA levels. The legend in the 

upper right corner indicates which bars of the graphs correspond to untreated and BIX01294 treated samples.  
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H3K9me2 distribution in 

untreated and BIX01294 treated 

conditions showed an overall 

decrease in H3K9me2 levels upon 

BIX01294 treatment. This trend 

could be observed in the first 

intron region in almost all of the 

analyzed genes (except for 

ACTN1) (Figure 2.20.), as well as 

in gene bodies and gene ends 

(Figure 2.21. and 2.22.). When the 

enrichment of H3K9me3 was 

analyzed, as expected, and as 

previously seen by immunoblot 

and IF (Figure 2.4. and 2.6.), the 

levels of this chromatin mark 

mainly remained unchanged upon 

BIX01294 treatment. H3K9me3 

levels do not change in the first intron region and gene ends of analyzed genes (Figure 2.20. and 

2.22.). However, a slight decrease of H3K9me3 binding can be appreciated in the gene bodies of 

analyzed genes (Figure 2.21.), which is not surprising considering the very strong effect of 

BIX01294 on related H3K9me2 chromatin mark and the high sensitivity of the used antibodies 

(Rothbart et al, 2015).  

H3K36me3 distribution showed an overall increase in the first intron region of all analyzed genes 

upon BIX01294 treatment (Figure 2.20.), whereas it’s levels in gene bodies seemed not affected 

by the treatment. Interestingly, in the gene ends of MKL2 and CNTN4 an increased binding of 

H3K36me3 could be detected. As a mark of elongating Pol II transcription, H3K36me3 is usually 

found in gene bodies and transcribed  

 

 

Figure 2.21. ChIP-qPCR of the gene body region of selected genes. 

Same as in Figure 2.20., assays in PCR with primers designed for the 

gene body (coding regions) of the respective genes.  
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genomic regions (Venkatesh 

et al, 2012), but it can  also 

be linked to alternative 

splicing, dosage 

compensation, DNA 

replication and repair 

(Wagner & Carpenter, 2012; 

Suzuki et al, 2016). We did 

not observe an increased 

deposition of H3K36me3 in 

gene bodies of analyzed 

genes (Figure 2.21.) upon 

BIX01294 treatment, 

consistent with the 

unchanged expression 

profiles of RIGs upon 

H3K9me2 depletion and 

BIX01294 treatment. 

Interestingly, increased 

deposition  of H3K36me3 was observed in gene ends of MKL2 and CNTN4, and might  possibly 

be associated to some alternative implications of this chromatin mark.  

Analyzing ChIP-qPCR profiles of LEDGF/p75, which is also a known H3K36me3 chromatin 

reader (Pradeepa et al, 2012), revealed that LEDGF/p75 binding was enriched only in the first 

intron of RIGs upon BIX01294 treatment (Figure 2.20.), whereas it remained unchanged on non-

RIGs, similarly to the observed H3K36me3 distribution. When looking into gene bodies and gene 

ends, levels of LEDGF/p75 did not change upon BIX01294 treatment (Figure 2.21. and 2.22.). 

Only in the gene bodies of BACH2 and MKL2 a certain reduction of LEDGF/p75 binding could 

be observed, which might be justified by almost 50% more binding in the first intron region of 

these genes and the repositioning of LEDGF/p75 binding along these genes. In addition, the 

observed enrichment of H3K36me3 and LEDGF/p75 in the first intron regions of RIGs could be 

associated to the observed increased integration of HIV-1 upon BIX0124 treatment and the fact 

 

 

Figure 2.22. ChIP-qPCR results of the gene end region of selected genes. 

Same as in Figure 2.20., assays in PCR with primers designed for the gene 

end (exon/intron junction) of the respective genes.  
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that HIV-1 preferentially integrates into introns of expressed genes (Craigie & Bushman, 2012; 

Han et al, 2014; Cohn et al, 2015). 

 

Global H3K36me3 and LEDGF/p75 protein levels remain unchanged upon H3K9me2 depletion 

 

Given that H3K36me3 and LEDGF/p75 showed some differences in their deposition profiles 

along analyzed genes upon BIX01294 treatment, we assessed their overall levels in BIX01294 

treatment. Immunoblot analysis showed that global levels of H3K36me3 remain unchanged upon 

BIX01294 treatment (2.23. A and B). This result indicates that, while the global levels of 

H3K36me3 do not change, some probably local changes in its distribution occur upon BIX01294 

treatment (Figure 2.20., 2.21. and 2.22). 

 

 

 

Figure 2.23. Quantification of H3K36me3 levels upon BIX01294 treatment.  

A. Immunoblot assessment of H3K36me3 levels upon BIX01294 treatment. As a readout for the treatment 

efficiency, H3K9me2 levels were probed. ß-Actin served as a loading control  B. Optical density quantification of 

H3K36me3 chromatin mark of western blot results of 3 independent donors upon BIX01294 treatment. Optical 

density values of H3K36me3 are normalized over optical density values of ß-Actin loading control and in 

untreated conditions set to 1 and used as a reference to assess optical density changes in H3K36me3 chromatin 

mark upon BIX01294 treatment.  
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Global levels of LEDGF/p75 were assessed by western blot and IF staining in two additional 

conditions; untreated, BIX01294 treated, HIV-1 infected only and BIX01294 treated and HIV-1 

infected. Levels of LEDGF/p75 remain unchanged upon BIX01294 treatment, HIV-1 infection or 

under both, treated and infected conditions, as seen and quantified by western blot as well as 

quantified by microscopy and total immunofluorescence intensity (2.24. A, B, C and D).  

Similarly, as in the case of H3K36me3, this result indicates that only the binding profile of 

LEDGF/p75 is affected upon BIX01294 treatment and H3K9me2 depletion, whereas total protein 

level remain unchanged. 
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Figure 2.24. Quantification of total LEDGF/p75 levels upon BIX01294 treatment.  

A. IF staining results of LEDGF/p75 upon BIX01294 treatment. The images show maximum projection of taken 

Z-stacks. The dashed line indicates the nuclear rim, and was marked in relation to Hoechst nuclear staining (scale 

bars: 1 µm). B. Total IF intensity quantification of LEDGF/p75 upon BIX01294 treatment (31 cells in total). IF 

intensity values in untreated conditions are set to 1 and used as a reference to assess  IF intensity changes upon 

BIX01294 treatment. C. Western blot results show the assessment of LEDGF/p75 levels upon BIX01294 

treatment, HIV-1 infection and BIX01294 treatment and infection. The efficiency of BIX01294 treatment is 

demonstrated by the assessment of H3K9me2 chromatin mark levels. As protein loading controls total levels of 

ß-Actin are presented. D. Optical density quantification of LEDGF/p75 levels of western blot results of 2 

independent donors upon BIX01294 treatment and HIV-1 infection. Optical density values of LEDGF/p75 are 

normalized over optical density values of the ß-Actin loading controls and in untreated conditions set to 1 and 

used as a reference to assess optical density changes in the analyzed conditions.  
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 II. IX. Determining HIV-1 integration sites upon H3K9me2 depletion 

 

Finally, we wanted to address HIV-1 

integration profiles by directly 

sequencing the integration sites. As 

BIX01294 treatment and H3K9me2 

depletion resulted in alterations of 

spatial distribution of HIV-1 in the 

nuclear space (Figure 2.12. B), we 

wanted to test if  HIV-1 integration 

profiles changed as well. Therefore, 

we sought to directly sequence HIV-1 

integration upon drug treatment.  

HIV-1 integration sites have been 

sequenced in untreated and BIX01294 

treated conditions by LAM-PCR 

(Schmidt et al, 2007). In addition, a 

comparison of HIV-1 integration 

profiles in both conditions has been 

conducted, as well as a comparison of 

our dataset to other HIV-1 integration 

sites lists (Ikeda et al, 2007; Brady et 

al, 2009; Wagner et al, 2014; 

Maldarelli et al, 2014; Kok et al, 2016) 

(Figure 2.25.). This was done in 

collaboration with the group of 

Manfred Schmidt (previously NCT, 

now Genewerk) and the data analysis 

was performed by Dr. Raffaele 

Fronza.  

 

 

Figure 2.25. Cluster dendrogram of HIV-1 integration sites 

from untreated and BIX1294 treated conditions compared to 

other HIV-1 integration site lists.  

The obtained cluster dendrogram shows that HIV-1 integration 

sites obtained upon BIX01294 treatment produce a distribution 

pattern similar to integration sites obtained in untreated 

conditions, and similar to integration sites from other studies 

(indicated on the height scale of the dendrogram) (data analysis 

performed by Dr. Raffaele Fronza).   



Results 

97 
 

The obtained results show that HIV-1 integration patterns in untreated and BIX01294 treated 

conditions cluster together, and are clearly separated from other HIV-1 integration site datasets. 

This indicates  that a high degree of similarity between the two conditions we analyzed is 

probably due to the sequencing method used.  

 

The obtained result shows that even with a 

small dataset (in total 910 integration sites; 

413 in untreated conditions and 497 in 

BIX01294 treated conditions from 2 donors) 

an increase of 1,2 fold more integration sites 

upon BIX01294 treatment can be appreciated 

(Table 2.1.).  

However, the increase in HIV-1 integration 

upon BIX01294 treatment observed by 

Alu PCR, which was always in the range of a 

2,8-5 fold increase (Figure 2.2), does not 

correspond to the increase observed by 

integration site sequencing. This discrepancy 

might be explained by underestimating 

capacities of integration site sequencing 

approaches (Cui et al, 2016; Hughes & Coffin, 

2017).   

In addition, the results indicate that H3K9me2 

depletion does not cause a change in HIV-1 integration site selection, but rather causes an 

increase in integration into the proximal genomic regions due to increased chromatin 

accessibility. This possibility will be tested in the future experiments, where the same donors in 

which HIV-1 integration sites were sequenced, will be tested for chromatin profiles of 

H3K9me2m H3K36me3 and LEDGF/p75 under BIX01294 treated conditions.  

 

 

 

Table 2.1. Summary statistics of retrieved  HIV-1 

integration sites in untreated and BIX01294 treated 

conditions.  
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Our results so far show that chromatin composition, in particular that related to H3K9me2 

deposition, has an effect on HIV-1 integration levels. The obtained results indicate that a global 

increase in chromatin accessibility induced by G9a inhibitor BIX01294 increases HIV-1 

integration and changes the localization of the viral genome in the 3D nuclear space.  

In addition, the results show that the drug treatment specifically targets H3K9me2 chromatin 

mark, without affecting related H3K9me3 chromatin mark. It can also be excluded that the 

observed increase in HIV-1 integration occurs due to any DNA damage, changes in cell cycle 

profiles or activation status of the cells caused by drug treatment, indicating that the observed 

increase in HIV-1 integration is related to increased chromatin accessibility.  

Analyzed gene expression profiles upon BIX01294 treatment show that RIGs expression levels 

are not significantly impacted by the drug treatment and that potentially increased HIV-1 target 

gene expression profiles can not be correlated to the observed increase in HIV-1 integration upon 

BIX01294 treatment. On the other hand, gene expression profiles of genes involved in iron 

metabolism, inflammatory response or membrane trafficking were significantly affected by the 

drug treatment.  

Finally, the detailed analysis of chromatin composition of RIGs and non-RIGs upon BIX01294 

treatment and H3K9me2 depletion revealed increased binding of H3K36me3 chromatin mark in 

the first intron region of analyzed genes, which was followed by increased binding of host cell 

factor LEDGF/p75 only on RIGs. This results might give a certain explanation for the observed 

increase in HIV-1 integration upon BIX01294 treatment, which might be connected to a global 

increase in chromatin accessibility.  

The observed increase in HIV-1 integration could additionally be observed by the analysis of 

viral integration sites upon BIX01294 treatment and H3K9me2 depletion. The integration site 

data demonstrated no change in the distribution of HIV-1 integration sites upon H3K9me2 

depletion, indicating that still the same genomic sites are targeted for HIV-1 integration, but they 

become even more targeted due to a global increase in chromatin accessibility upon BIX01294 

treatment. This finding also indicated that the observed nuclear re-distribution of the proviral 

genome upon BIX01294 treatment, as seen by FISH analysis, could not be connected to a 

redistribution in viral integration sites.  
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In the following results section, a more viral perspective on HIV-1 integration will be given, 

integrating the interplay of viral IN and its catalytic and chromatin binding properties with 

R-loops as special genomic features.  
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II. X. R-loops show strong association with HIV-1 RIGs 
 

Our results so far show that chromatin composition related to H3K9me2 levels has a significant 

impact on HIV-1 integration levels. The global increase in chromatin accessibility induced by 

G9a inhibitor BIX01294 increases significantly HIV-1 integration and changes the localization of 

the viral genome in the 3D nuclear space. In order to understand if there are other genomic 

features related to H3K9me2 chromatin mark and to viral integration, we performed a 

computational analysis in which we analyzed the presence of DNA-RNA hybrids or R-loops on 

HIV-1 integration sites (genes). For the analysis, we used HIV-1 integration sites from two 

studies (Cohn et al, 2015; Kok et al, 2016) reporting patient derived integration sites from the two 

major HIV-1 target cell types (T cells and macrophages). The  R-loop profiles were derived from 

the study by the Chedin lab, where K562 myelogenous leukemia cell line and Nt2 human 

embryonic carcinoma cell line were assayed by DRIP-Seq (DNA-RNA Immunoprecipitation 

followed by genome wide sequencing (Sanz et al, 2016). By using a cut-off of at least 3 hybrids 

per gene, we observed that genes targeted by HIV-1 have an increased incidence of R-loop 

forming structures.  (Figure 2.26. A). We then analyzed the presence of R-loops (as mapped in 

K562 myelogenous leukemia cell line by Sanz et al, 2016) in HIV-1 RIGs (Lucic et al, 2019) and 

observed that a striking 83% of HIV-1 RIGs have 3 or more R-loops (Figure 2.26. B). The same 

graph shows the control analysis of HIV-1 RIGs with the LAD regions, retrieved from human 

fibroblasts and Jurkat T cell line (Guelen et al, 2008; Robson et al, 2017), from which HIV-1 

RIGs are normally excluded (Marini et al, 2015, Achuthan et al, 2018, Bativelli et al, 2018).  
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Figure 2.26. Computational overlap of HIV-1 integration site lists and R-loop maps.   

A. Heatmap shows an overlap of HIV-1 integration sites (Cohn et al, 2015; Kok et al, 2016) and R-loop maps 

(Sanz et al, 2016). The color code on the right indicates levels the overrepresentation of R-loop forming sites in 

HIV-1 integration sites (data analysis performed by Constantin Ahlmann-Eltze). B. Heatmap shows an overlap of 

RIGs (listed in the upper part of the heatmap) and an R-loop map from K562 cells (Sanz et al, 2016), by 

including genomic LAD regions retrieved from human fibroblasts and Jurkat T cell line (Guelen et al, 2008; 

Robson et al, 2017), as outliers, into the analysis (data analysis performed by Maja Kuzman).  

 

This in silico retrieved dataset represented the first indication that R-loop forming sites might be 

associated to HIV-1 integration sites.  

 

II. XI. HIV-1 Preintegration Complexes (PICs) colocalize with R-loops 

 

In order to gain the experimental support for our hypothesis that R-loops represent the necessary  

genomic feature for HIV-1 integration, we first set up to visualize at the cellular level a possible  

colocalization of HIV-1 PICs and R-loops in primary macrophages as well as primary CD4+ T 

cells was performed.  

Cells were infected with an engineered wt HIV-1 virus containing a GFP-tag on the viral IN 

protein, produced by the Vpr-trans incorporation strategy (Albanese et al, 2008). The cells were 

collected at early time points post infection (36 h in macrophages and 18 h in CD4+ T cells) in 

order to capture the PICs before the integration step is completed. IF staining of R-loops was 

performed using the S9.6 antibody, followed by microscopy and PIC/R-loop colocalization 

analysis.  

A striking colocalization pattern between R-loop structures and HIV-1 PICs could be observed at 

early time points post HIV-1 infection in primary human CD4+ T cells and macrophages,  in both 

confocal and super-resolution microscopy. In CD4+ T cells 75% of HIV-1 PICs in the nucleus 

colocalized with R-loops (Figure 2.27. A). In macrophages a similar trend of 72% of colocalizing 

R-loop signals and HIV-1 PICs was observed (Figure 2.27. B). 
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Figure 2.27. HIV-1 IN.eGFP colocalization with R-loops.  

A. IF R-loop staining with S9.6 antibody in primary CD4+ T cells upon RNase H1 pretreatment of fixed cells, 

followed by confocal microscopy. The cell on the left shows R-loop staining patterns in untreated conditions. The 

cell on the right shows the reduction of R-loop signals upon RNase H1 pretreatment of the cells, confirming the 

specificity of the S9.6 antibody for IF. The images show maximum projections of acquired z-stacks (staining 
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performed by the help of Dr. Bojana Lucic) (scale bars: 2 µm). B. Primary human CD4+ T cells  infected with 

HIV-1 INeGFP (18 h post infection) stained with S9.6 antibody - representative STED images, with the 

quantification of colocalizing PICs and R-loops, shown in the graph below (expressed in percentages) - 75% of 

PICs colocalize with R-loops. The number next to the graph indicates the number of analyzed cells in 6 

independent donors. C. Macrophages infected with HIV-1 IN.eGFP (36 h post infection) stained with S9.6 

antibody - a representative STED image, with the quantification of colocalizing PICs and R-loops, shown in the 

graph below (expressed in percentages) - 72% of PICs colocalize with R-loops. The number next to the graph 

indicates the number of analyzed cells in 4 independent donors (scale bars: 2 µm).  
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These obtained results could be confirmed by HIV-1 DNA FISH in primary macrophages at 

different time points post infection (36 h, 48 h & 60 h) (Figure 2.28. A and B). 

   

 

Figure 2.28. HIV-1 DNA immuno-FISH and R-loop staining in macrophages.   

A. The images show viral DNA colocalizing with R-loop signals at different time points post infection assessed 

by IF staining of R-loops (S9.6 antibody) and performed HIV-1 DNA FISH. Macrophages were infected with 

HIV-1 IN.eGFP and collected at early time points post infection for DNA immuno-FISH, followed by confocal 

microscopy. The red channel represents the R-loop IF signal. The green channel represents the HIV-1 DNA FISH 

signal. In the merged view the blue channel represents the DNA-Hoechst staining. The white arrows indicate a 

colocalizing HIV-1 FISH and R-loop signal (scale bars: 2 µm). B. Graph shows the quantification of HIV-1 FISH 

signals colocalizing with R-loop signals summarized for all analyzed time points, expressed in percentages (total 

number of analyzed infected cells  n=28). 
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Obtained results show that HIV-1 PICs colocalize with R-loops, thus suggesting that  HIV-1 

PICs by docking to R-loop structures, could integrate the viral genome into these  genomic 

structures (as seen by HIV-1 DNA FISH).   

 

II. XII. Functionally impaired HIV-1 IN contributes to less PIC and R-loop 

colocalization in macrophages 
 

In order to verify that the initially observed colocalization between HIV-1 PICs and R-loops does 

not represent an artifact or a phenomenon occurring just by chance, the same set of experiments 

was performed on macrophages, as already described, but with PICs containing a functionally 

impaired IN (CCD mutant D116N). As an additional control, we used Raltegravir (Markowitz et 

al, 2007),  which impairs HIV-1 integration by acting as an Integrase strand transfer inhibitor.  

All viruses used in this set of experiments were produced by the Vpr-trans incorporation strategy 

(Albanese et al, 2008) and contained a IN.eGFP.  

 

HIV-1 IN CCD mutant  

 

We used a CCD mutant containing a point mutation at position 116 (D116N) of HIV-1 IN, which 

renders the virus catalytically inactive for integration (Engelman et al, 1995). With this mutant 

we infected macrophages to test for R-loop colocalization in the absence of integration. 

Upon infection of primary macrophages a significant reduction of PICs colocalizing with R-loops 

could be observed. Only 30,1% of the PICs were detected to colocalize with R-loops, which 

represents a drop of 41,45 % compared to the wt virus (Figure 2.29.).  

 

HIV-1 wt IN in the presence of Raltegravir 

 

Upon the assessment of a drop in HIV-1 D116N IN PICs and R-loop colocalization, the 

following question to answer was whether a chemical inhibitor of wt IN would contribute to a 

similar drop in PIC and R-loop colocalization. The colocalization of wt IN PICs and R-loops was 

quantified in the presence of IN strand transfer inhibitor Raltegravir.   



Results 

107 
 

Raltegravir contains Mg2+ chelating groups and is supposed to bind the two metal ions in the 

catalytic site of IN and block the binding of host DNA (Mouscadet & Tchertanov, 2009).  

Upon infection of macrophages with HIV-1 and the addition of Raltegravir at the moment of 

infection and after 24 h of infection, a drop in the number of PICs colocalizing with R-loops at 60 

h post infection could be appreciated. Only 21,45% of the PICs were colocalizing with R-loops, 

which represents a drop in colocalization of 50,1%, compared to the colocalization of wt IN 

without the addition of any IN inhibitor (Figure 2.29.).  

 

 



Results 

108 
 

Figure 2.29. Comparison of wt IN.eGFP HIV-1, D116N IN.eGFP HIV-1 and wt IN.eGFP HIV-1 in the 

presence of Raltegravir and their colocalization with R-loops.  

A. Representative confocal images of HIV-1 PIC colocalization with R-loops in all analyzed conditions. White 

arrows indicate PICs colocalizing with R-loops, whereas yellow arrows indicate PICs not colocalizing with 

R-loops. The blue channel represents IF staining of Lamin B1. The red channel represents IF staining of R-loops. 

The green signals represent the GFP signals from the IN.eGFP. The very pronounced R-loop signals correspond 

to cellular nucleoli which are composed of ribosomal genes and nucleolar organizer regions known to be very R-

loop rich (Wahba et al, 2016; Kuznetsov et al, 2018) (scale bars: 2 µm). B. Graph shows a summary of quantified 

PIC colocalization with R-loops for all analyzed conditions. The numbers above the bars indicate numbers of 

analyzed donors. Showed results were generated 60 h post infection.  

 

The obtained results suggest that catalytically active HIV-1 IN is required for high occurrence of 

PIC and R-loop colocalization. In addition, the results point to a scenario in which PICs 

containing wt IN do not just by chance colocalize with R-loops, but that this colocalization 

represents a non-random process that is observed in the case of 75% of PIC signals in primary 

CD4+ T cells and 72% of PICs in macrophages.   
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II.XIII. Assessment of IN C-terminal mutant and replication deficient HIV-1 

colocalization with R-loops  
 

We further reasoned that 3 residues in the  C-terminal region of HIV-1 IN, which have previously 

been shown to decrease the DNA binding activity of the viral enzyme (Cereseto et al, 2005) 

could contribute to the R-loop binding capacity of HIV-1 PIC. The same 3 residues (K264,K266 

and K273) were also shown to have RNA binding properties (Kessl et al, 2016), and could 

therefore indeed be important for the recognition of RNA-DNA hybrids. Accordingly, cells were 

infected with a virus containing mutations in those 3 lysine residues (K264,K266,K273) in the 

C-terminal domain of IN.  

We also used a tat deficient, replication incompetent HIV-1, in order to verify if the  

colocalization between PICs and R-loops is due to the recognition and of viral docking to R-loop 

sites, or if it is a consquence of of  R-loop formation at the replicating viral genome.  

All virus variants used in this set of experiments were produced by the Vpr-trans incorporation 

strategy (Albanese et al, 2008) and contained a IN.eGFP.  

 

HIV-1 IN C-terminal mutant (K264,266,273Q) 

 

Viral infectivity of the C-terminus IN mutant was assessed by infecting primary CD4+ T cells and 

Jurkat cells. The virus showed a severe drop in integration capacity, which is followed by the 

absence of viral RNA production (Figure 2.30. B and C). In addition, the assessment of early and 

late viral cDNA transcripts was performed, in order to exclude any other deficiency in the viral 

life cycle and to prove that only integration is affected by the C-terminal domain mutations of IN 

(K264,266,273Q) (Figure 3.30. B and D). The results show that the reverse transcription is not 

affected by the C-terminal domain mutations of IN, and that viral DNA is generated. 
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Figure 2.30. Features of HIV-1 IN (K264,266,273Q) C-terminal mutant.   

A. Quantification of total vDNA levels upon CD4+ T cell and Jurkat cell infection with HIV-1 K264,266,273Q IN. 

Total vDNA was quantified by plotting sample total vDNA qPCR Ct values over a graph of total vDNA qPCR Ct 

values (y-axis) of serial dilutions of latent HIV-1 clone J-Lat9.2 cell DNA (x-axis). B. Graphs show integration 

levels of HIV-1 K264,266,273Q IN compared to wt HIV-1 levels in CD4+ T cells and Jurkat cells. HIV-1 integration 

levels in wt HIV-1 infection are set to 1 and used as a reference to assess integration levels upon cell infection with 

HIV-1 K264,266,273Q IN mutant. Integrated vDNA (Alu Ct values) is normalized over total genomic DNA levels 

amplified with primers for the lamin B2 gene (B13 region). C. Graph shows RNA expression levels of the gag gene 

upon HIV-1 K264,266,273Q IN infection. Viral gag  mRNA expression levels in wt HIV-1 infection are set to 1 and 

used as a reference to assess gag mRNA expression levels upon cell infection with HIV-1 K264,266,273Q IN 

mutant. Viral gag mRNA expression is normalized over expression profiles of housekeeping gene GAPDH. D. 

Graphs show the production of early and late viral DNA transcripts of wt HIV-1 and HIV-1 K264,266,273Q IN, 

normalized over the levels of total vDNA. The levels of early and late viral DNA transcripts of wt HIV-1 are set to 1 

and used as a reference to assess the amount of early and late viral DNA transcripts upon cell infection with HIV-1 

K264,266,273Q IN mutant. Panels A-D represent the results of the same material from 2 independent donors and 2 

independent repetitions.  
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Further on, the colocalization between PICs of HIV-1 K264,266,273Q IN.eGFP and R-loops was 

assessed in primary CD4+ T cells and macrophages. 

 

 

 

Figure 2.31. HIV-1 IN (K264,266,273Q) C-terminal mutant colocalization with R-loops.   

A. Representative confocal images of HIV-1 K264,266,273Q IN,eGFP PICs colocalization with R-loops in 

primary CD4+ T cells. Images were acquired 72 h post infection. The blue channel represents IF staining of 

Lamin B1. The magenta channel represents IF staining of R-loops. The green signals represent the GFP signals 

from the IN.eGFP. Graph below corresponds to the analysis of the nuclear position of IN.eGFP signals in relation 

to the nuclear lamina or nuclear interior, analyzed in 25 cells of 2 donors. B. Representative confocal images of 

HIV-1 K264,266,273Q IN.eGFP PICs colocalization with R-loops in primary macrophages. The blue channel 

represents IF staining of Lamin B1. The magenta channel represents IF staining of R-loops. The green signals 

represent the GFP signals from the IN.eGFP. The R-loop channel is shown separately and the white arrows are 

pointing to the spots where HIV-1 PICs are positioned. Images were acquired 60 h post infection. Graph below 

corresponds to the analysis of the nuclear position of IN.eGFP signals in relation to the nuclear lamina or nuclear 

interior, analyzed in 51 cells of one donor (scale bars: 2 µm). 
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The obtained results show that HIV-1 K264,266,273Q IN.eGFP PICs either remain trapped in the 

nuclear lamina, or once inside the nucleus, do not colocalize with R-loops. Based on the analysis 

performed on primary CD4+ T cells, 88% of HIV-1 K264,266,273Q IN.eGFP PICs are found in 

the nuclear lamina, whereas 12% of the signals can be detected inside of the nucleus (Figure 2.31. 

A). A very similar scenario was observed for macrophages in which 71% of HIV-1 

K264,266,273Q IN.eGFP PICs were detected in the nuclear lamina, and 29% inside the nucleus 

(Figure 2.33. B). It remains elusive at this point why HIV-1 K264,266,273Q IN.eGFP PICs are 

being trapped in the nuclear lamina. However, the PICs of the analyzed C-terminal mutant of IN 

are not docked to R-loop forming genomic regions, which represents another indication that only 

wt HIV-1 PICs are successfully docked to R-loops.  
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II. XIV. R-loops are enriched in HIV-1 RIGs 
 

The initial bioinformatic analysis of HIV-1 RIGs 

and R-loops (Sanz et al, 2016) (Figure 2.26. B) 

indicated that RIGs are enriched in R-loops. To 

experimentally verify the presence of  DNA-RNA 

hybrids on selected RIGs, immunoprecipitation 

followed by qPCR (DRIP-qPCR)  was performed in 

primary CD4+ T cells, according to the method from 

Chedin’s lab (Ginno et al, 2012, 2013; Sanz et al, 

2016 and personal communication). DRIP-qPCR 

represents an approach in which R-loops can be 

mapped by using the R-loop specific antibody S9.6 

(Boguslawski et al, 1986) (Figure 2.32.).   

Genomic DNA, isolated from primary CD4+ T 

cells, was sheared to fragment sizes around or 

below 500 bp to enable efficient S9.6 antibody 

binding and final DNA pull down. After shearing, 

the initial material was split in two different tubes, 

which were treated as a positive (only RNase A 

treated) and negative control sample (RNase A and 

RNase H1 treated). Upon shearing and enzymatic digestion both samples were incubated with the 

S9.6 antibody overnight which was followed by DNA pull down with agarose beads and DNA 

extraction. After DNA extraction, qPCR was performed for selected control genes known to be 

either R-loop rich or R-loop poor genomic sites (Gino et al, 2012; Sanz et al, 2016), as well as for 

selected RIGs (BACH2 and STAT5B) (Figure 2.33.). 

 

 

Figure 2.32. Schematic representation of 

DRIP-qPCR workflow.   
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Figure 2.33. DRIP-qPCR results of control genes and selected RIGs.   

A. S9.6 immunoprecipitation of DNA-RNA hybrids on selected positive control gene APOE and negative control 

gene MYADM in the presence of RNase A (control treatment) or RNase A+ RNase H1 treatment, which removes 

the formed RNA-DNA Hybrids. All samples were normalized over R-loop negative gene SNRPN. The qPCR results 

of positive and negative R-loop genes represent a control and readout for the efficiency of the DRIP procedure. B. 

Graph shows the enrichment of R-loops in BACH2 and STAT5B gene in primary CD4+ T cells, normalized over R-

loop negative gene SNRPN. The black bars in the graphs correspond to the positive portion  of the samples (only 

RNase A treated) which should contain R-loops, whereas the gray bars corresponds to the negative control samples 

(RNase A and RNAse H1 treated) in which R-loops should be depleted. The graphs represent a summarized results 

of the same 3 independent donors.   

 

According to the results of  DRIP-qPCR on primary CD4+ T cells, a clear enrichment in R-loop 

signals could be appreciated on two most prominent RIGs, BACH2 and STAT5B (Figure 2.33. 

B). The results represent a confirmation of the metadata analysis (Figure 2.26.) which indicated 

that RIGs are enriched in R-loops. The detection of R-loops in RIGs was also somewhere 

expected, considering that HIV-1 integration genes usually have high G/C skew and are highly 

expressed (Schröder et al, 2002; Brady et al, 2009; Marini et al, 2015) and that R-loops mainly 

occur co-transcriptionally in G/C rich genomic regions (Gino et al, 2012; Sanz et al, 2016; 

Chedin, 2016).  
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II. XV. Integrated HIV-1 is detected  in R-loop rich regions  
 

We aimed to confirm that 

the integrated HIV-1 

genome can be found in 

genomic regions where 

DNA-RNA hybrids are 

formed.  For this purpose, 

the DRIP procedure was 

performed on HIV-1 

infected primary CD4+ T 

cells, and was modified to 

specifically amplify the 

genomic regions containing 

HIV-1 by applying the  Alu 

PCR protocol  to detect the 

integrated viral DNA in the 

precipitated fraction  

(Figure 2.34. A).  

Upon performing this 

modified approach on 

infected primary CD4+ T 

cells, we observed that   the 

integrated HIV-1 DNA is  

enriched in R-loop rich 

genomic sites (Figure 2.34. B). This result represents a direct proof that HIV-1 integration can 

occur in R-loop regions, thus confirming the meta data analysis (Figure 2.26.), as well as the 

colocalizing events of HIV-1 PICs and R-loops (Figure 2.27. B).  

 

 

 

 

 

Figure 2.34. Assessment of the presence of integrated vDNA in R-loop rich 

genomic DNA.  

A. Schematic representation of the DRIP-Alu PCR in which upon the classical 

DRIP approach on infected primary CD4+ T cells Alu PCR is performed. B. 

Graph shows results of the DRIP-Alu PCR in HIV-1 infected primary CD4+ T 

cells. HIV-1 integration levels in the actual sample are set to 1 and used as a 

reference to assess HIV-1 integration levels in the RNase H1 treated, negative 

control sample.  DRIP-Alu PCR are normalized over R-loop negative gene 

SNRPN. The graph represents a summary of 3 independent donors.   
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II. XVI. In vitro assessment of the interaction between HIV-1 IN and R-loops 
 

Upon making the observation that HIV-1 PICs colocalize with R-loops with high occurrence 

(more than 72% of PIC signals) in primary CD4+ T cells and macrophages, and that a 

functionally active HIV-1 IN is required for this colocalization, the following questions to answer 

were whether HIV-1 IN indeed has R-loop binding properties, whether it can perform the strand 

transfer reaction on an R-loop, and whether it eventually has RNase H1 properties and can  thus 

resolve an R-loop. The need to answer those questions was even more strengthened  by the 

observation that according to the DRIP-Alu PCR in HIV-1 infected primary CD4+ T cells the 

integrated viral DNA can be detected at R-loop forming sites.  

In order to get a more detailed insight into the catalytic features of HIV-1 IN in the context of 

R-loops, in vitro binding and strand transfer assays were performed in the presence of HIV-1 IN 

and R-loop and non-R-loop nucleic acid substrates. 

The main part of the following results were generated by our collaborator from the University of 

Bordeaux, Dr. Vincent Parissi. 

 

HIV-1 IN binds R-loops 

 

The assessment of R-loop binding by HIV-1 IN was performed in an assay in which an in vitro 

formed R-loop on the pFC53 plasmid (provided by the Chedin Lab), as well as the pFC53 

plasmid only (without R-loop) were offered to HIV-1 IN for binding.  

The pFC53 plasmid contains a G/C rich Airn region flanked by a T3 and T7 promoter. By in vitro 

transcription initiation from the plasmids T3 promoter, by T3 RNA polymerase, R-loop 

formation can be induced on the plasmid. R-loop formation can be monitored by agarose gel 

electrophoresis and appreciated as a shift on the gel (Figure 2.35.). In addition, the R-loop 

forming region of the plasmid is flanked by recognition sites of restriction enzymes and can be 

cut from the plasmid, which enables the monitoring of the R-loop and non-R-loop fragments of 

the plasmid in further experimental steps. 
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Figure 2.35. Monitoring of in vitro R-loop formation on the pFC53 plasmid.   

In lane 1 a shift and a smear on the gel can be detected upon transcription initiation on the pFC53 plasmid, 

indicating successful R-loop formation. In lane 2 the recognizable profile of the transcribed and RNase H1 treated 

plasmid can be appreciated. In line 3 a clear shift on the gel can be appreciated, indicating successful R-loop 

formation, as well as a release of all plasmid fragments upon HpaI digestion. Lane 4 represents a control 

digestion of the pFC53 plasmid with HpaI, confirming that the plasmid can be successfully cut into its 2 main 

fragments; the R-loop fragment and non-R-loop fragment.  

 

Upon in vitro R-loop formation and preparation of nucleic acid substrates, HIV-1 IN was added 

to the reaction. The binding of IN to the different substrates was monitored by gel shift assays. IN 

was also added in different concentrations to the substrates, ranging from 0,2-1,6 µM, in order to 

monitor binding affinity and efficiency (Figure 2.36. A). The results show that HIV-1 IN can 

bind to R-loops (shifted high molecular complexes that can be detected in the gel pockets). In 

addition, upon this initial observation, IN binding to R-loops was further monitored by using 

lower concentrations of IN (below 0,4 µM) to assess binding efficiency (Figure 2.36. B). The 

results show that IN can efficiently bind to R-loops, even when low concentrations of IN are 

exposed to nucleic acid substrates containing formed R-loops.  
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Figure 2.36. In vitro binding of HIV-1 IN to nucleic acid substrates which contain or not contain formed 

R-loop structures.   

A. Comparison of HIV-1 IN binding affinity to nucleic acid substrates containing R-loops and not containing 

R-loops via gel shift assay and by the addition of increasing amounts of recombinant IN enzyme (indicated in the 

upper part of the gel). R-loop formation was performed via transcription initiation on the pFC53 plasmid which 

was used as the nucleic acid of the binding assay. The marks on the right part of the gel indicate the generated 

plasmid fragments upon HpaI enzymatic digestion of the pFC53 plasmid which either contained formed R-loops 

or did not. B. Assessment of HIV-1 IN binding efficiency on R-loops by providing low concentrations of IN to 

the nucleic acid substrate (pFC53 plasmid) via gel shift assay (indicated in the upper part of the gel). The marks 

on the right part of the gel indicate the generated plasmid fragments upon HpaI enzymatic digestion of the offered 

nucleic acid substrate. C. Graph shows quantified optical density values of shifted R-loop/IN and non-R-loop/IN 

complexes from the gel shift assays (data obtained by Dr. Vincent Parissi).  

 

In addition, optical density quantification of shifted R-loop/IN and non-R-loop/IN complexes 

from the gel shift assays indicated that HIV-1 IN showed more affinity for the binding of R-loops 

in comparison to nucleic acid substrates without containing an R-loop structure (Figure 2.36. C).  

The obtained results represent proof that HIV-1 IN can efficiently bind R-loops. 

 

HIV-1 IN performs the strand transfer on R-loop templates 

 

Upon defining that HIV-1 IN has the property of binding R-loop containing nucleic acid 

substrates, the assessment of IN strand transfer reaction on R-loop templates was performed. As 

previously mentioned, nucleic acid substrates were generated from the pFC53 plasmid and 

offered to HIV-1 IN in the context of a strand transfer reaction. After the integration assay was 

performed, the generated integration products were treated with either RNase A or RNase A and 

RNase H1 and HpaI in order to release the integration products. Upon enzymatic digestion, the 

products of the strand transfer assay were monitored by gel shift assays (Figure 2.37.).  
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Figure 2.37. Monitoring the HIV-1 IN strand transfer reaction on R-loop containing and non-R-loop 

containing nucleic acid substrates.  

A. Gel shift assay results of the performed strand transfer reaction on R-loop and non-R-loop containing DNA 

templates generated on the pFC53 plasmid. Different smears on the gel represent the generated and shifted 

integration products. The arrows on the right indicate the positions of the R-loop forming and non-R-loop 

forming part of the pFC53 plasmid upon HpaI enzymatic digestion, which was used as the nucleic acid template 

for the strand transfer reaction. The first lane shows the result of the integration assay performed on the pFC53 

plasmid containing an in vitro formed R-loop, whereas the second line shows the result of the integration assay 

performed on the naked pFC53 plasmid. B. Graph shows quantified optical density values of integration products 

generated R-loop and non-R-loop containing DNA templates (data obtained by Dr. Vincent Parissi). 

 

The obtained results show that HIV-1 IN can perform the strand transfer reaction with equal 

efficiency on nucleic acid substrates containing R-loops or not containing R-loops. A slightly 

higher efficiency towards the R-loop containing substrate was, however, not statistically 

significant (Figure 2.37.).   

In addition, in a very similar experimental setup in which RNase H1 was added to the strand 

transfer reaction in the presence of HIV-1 IN and nucleic acid substrates, it was observed that the 

strand transfer reaction is performed more efficiently on R-loop templates once the R-loop is 

resolved by RNase H1 (Figure 2.38.). This result implies that HIV-1 IN does not have RNase H1 
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functions, and is not capable to solve an R-loop independently. The obtained result suggests that  

HIV-1 IN might require a binding partner with helicase activity, possibly similar to RNase H1, in 

order to efficiently perform integration of the viral genome into R-loop forming regions.  

 

 

Figure 2.38. HIV-1 IN strand transfer reaction results with nucleic acid substrates with and without R-loop 

structures in the presence of RNase H1.   

A. Gel shift assay results of the performed strand transfer reaction on R-loop and non-R-loop containing DNA 

templates in the presence of RNase H1. The pFC53 plasmid was used as  the nucleic acid template for the strand 

transfer reaction. B. Graph shows quantified optical density values of integration products generated R-loop and 

non-R-loop containing DNA templates in the presence of RNase H1. The legend on the right shows the 

comparison of integration product amounts between nucleic acid templates and RNase H1 treated and untreated 

templates.  Blue bars indicate the amount of circular half and full side integration products, the red bar shows the 

amount of linear full side integration products, the gray bar shows the amount of present donor DNA (viral 

genome) and the yellow bar represents the total activity of the recombinant IN enzyme measured by the presence 

of integration products (data obtained by Dr. Vincent Parissi).   
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II. XVII. R-loop depletion affects HIV-1 integration  
 

Considering the datasets  obtained so far, which strongly supports HIV-1 integration into 

R-loops, it was important to understand how and if HIV-1 integration is affected once R-loops 

are depleted in cells. In order to test whether HIV-1 integration is affected by R-loop removal, 

different cell lines (HEK293T, HeLa and Jurkat cells) as well as primary cells (CD4+ T cells and 

macrophages) were transfected with the pMMM-FLST plasmid construct coding for human 

RNase H1 and containing a M27 nuclear localization signal (to ensure RNase H1 expression and 

R-loop depletion in the cell nucleus), as well as a GFP tag (to control for plasmid transfection 

efficiency) (Suzuki et al, 2010). Upon transfection and RNase H1 overexpression, cells were 

infected with HIV-1, and subsequently HIV-1 integration was assessed by Alu PCR (Figure 

2.39.). 

 

 

 

Figure 2.39. Scheme of experimental workflow of R-loop depletion and HIV-1 infection.    

The image on the left shows successful transfection and expression of the pMMM-FLST construct in HEK293T 

cell nuclei. The timeline on the right shows the experimental procedure at certain time points. First, cells are 

transfected with the pMMM-FLST plasmid construct containing an NLS and expressing an GFP-RNase H1. 24 h 

post transfection, transfection efficiency is assessed by FACS analysis or microscopy approaches. Cells are left 

for another 24 h in culture to reach a peak of GFP expression (estimated to occur 48 h post plasmid construct 

transfection). 48 h post transfection cells are infected with HIV-1 and collected 72 h post infection for Alu PCR 

analysis.   
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Apart from Alu PCR, PCRs in which we controlled for the presence of total vDNA and the 

formation of 2LTR circles were performed (Figure 2.40.).  
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Figure 2.40. Assessment of HIV-1 integration upon RNase H1 overexpression in human cell lines and 

primary cells.     

Alu PCR results of HIV-1 integration upon RNase H1 overexpression are shown, as well as the assessment of 

2LTR circles upon RNase H1 overexpression and HIV-1 infection. Alu PCR values in untreated conditions are 

set to 1 and used as a reference to assess HIV-1 integration levels upon RNase H1 overexpression. Integrated 

vDNA (Alu Ct values) is normalized over total genomic DNA levels amplified with primers for the lamin B2 

gene (B13 region). The amounts of 2LTR circles were normalized over total vDNA values and 2LTR circle levels 

in untreated conditions are set to 1 and used as a reference to assess 2LTR circle levels upon RNase H1 

overexpression. Total vDNA was quantified by plotting sample total vDNA qPCR Ct values over a graph of total 

vDNA qPCR Ct values (y-axis) of serial dilutions of latent HIV-1 clone J-Lat9.2 cell DNA (x-axis). The numbers 

below or next to the graphs indicate the number of independently performed repetitions.  

 

According to the Alu PCR results, HIV-1 integration is significantly decreased after 

overexpression of RNase H1 and depletion of R-loops in different human cell lines (HeLa, 

HEK293T, Jurkat), as well as primary CD4+ T cells and macrophages.  

The remaining HIV-1 integration in HeLa cells compared to untreated conditions upon infection 

was 16,67%, in HEK293T cells 46,67% and in Jurkat cells almost fully abrogated (0,79%). 

In primary CD4+ T cells integration levels of 25,5% could still be observed, whereas in 

macrophages integration was almost fully abrogated (0,4%), as seen in Jurkat cells. 

The observed decrease in HIV-1 integration upon RNase H1 overexpression, was followed by 

increased levels of 2LTR circles measured in cell lines. In HeLa cells an increase in 2LTR circles 

of 2,89 fold was observed, in HEK293T cells 2,45 and in Jurkat cells 1,76. 

In addition, total vDNA levels were assessed by direct comparison of real time PCR Ct values of 

amplified total vDNA (Apolonia et al, 2007) and real time PCR Ct values of serial dilutions of 

latent HIV-1 clone J-Lat 9.2 DNA.  
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In HeLa and HEK293T cells in untreated conditions and upon RNase H1 overexpression 

identical amounts of total vDNA were detected, whereas in Jurkat cells in RNase H1 treated 

conditions 3 times more total vDNA was detected, and still less integrated HIV-1 DNA.   

Obtained results suggest that the depletion of R-loops in cell lines, as well as primary cells affects 

efficient HIV-1 integration.  

 

In order to claim that the observed decrease in HIV-1 integration upon RNase H1 overexpression 

is a consequence of R-loop removal, and not due to potential degradation of viral RT products by 

the presence of RNase H1, we controlled for the presence of early (short DNA reverse transcripts 

from the 5’ LTR) and late (reverse transcripts from the gag gene) viral RT-products, as well as 

2LTR circle formation upon RNase H1 overexpression and infection at different time points post 

infection in primary CD4+ T cells. For this purpose the digital droplet PCR (ddPCR) was 

performed, which enables an absolute quantification of selected targets in the sample, by using 

specifically designed primer probes for early and late HIV-1 RT products, as previously 

described by Bejarano et al, 2018. In addition, we controlled for successful R-loop removal upon 

RNase H1 overexpression by dot blot assay as previously described by Wahba et al, 2013 (Figure 

2.41. A).  
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Figure 2.41. RNase H1 overexpression in primary CD4+ T cells and quantification of early and late HIV-1 

RT-products, as well as 2LTR circles at different time points post infection. 

A. Overexpression of RNase H1 in primary CD4+ T cells was performed by transfecting the pMMM-FLST 

plasmid construct containing a GFP-RNase H1 gene sequence. Plasmid transfection efficiency as well as 

GFP-RNase H1 expression was verified by microscopy approaches 24 h post transfection. The R-loop 

quantification 24 h post plasmid transfection is demonstrated by showing a representative dot blot where levels of 
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R-loops were assessed by the incubation of 500 µg loaded total genomic DNA  with the S9.6 antibody. Optical 

density quantification of R-loop levels are shown below the dot blot. 24 h upon plasmid transfection, cells were 

infected with HIV-1 and collected at different time points post infection for ddPCR analysis of early and late viral 

RT products, as well as the presence of 2LTR circles. B. The quantification of early and late viral RT products, as 

well as 2LTR circles was performed by ddPCR. The obtained values for early and late viral RT products, as well 

as 2LTR circles were normalized over housekeeping gene RPP30 values. The obtained values were subsequently 

normalized to the highest detected absolute number. The black lines correspond to untreated condition, whereas 

the green lines correspond to RNase H1 overexpression. The graphs represent summarized results of 3 

independent donors.  

 

The obtained results show that the production of early and late viral RT-products is not affected 

by RNase H1 overexpression, indicating that the previously observed decrease in HIV-1 

integration is a consequence of R-loop removal (Figure 2.41. B). In addition, the quantification of 

2LTR circles showed an increasing trend in samples where RNase H1 was overexpressed (Figure 

2.42. B), which is in correlation with the previously observed decrease in successful vDNA 

integration upon RNase H1 overexpression.  
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RNase H1 mutants do not affect HIV-1 integration 

 

The observation that RNase H1 overexpression strongly reduces HIV-1 integration in cell lines 

and primary cells prompted us to better characterize this effect of the transfected enzyme. In 

particular, we wanted to understand if the observed effect is indeed due to the R-loop removal, or 

if it can be caused by the inability of HIV-1 IN to bind the R-loops in the presence of the 

functional RNase H1 helicase.    

In order to answer this question, HEK293T and HeLa cells were transfected with plasmid 

constructs defective in R-loop binding (D210N), or RNase H1 mutants defective in both R-loop 

binding, as well as in the catalytic activity (WKKD). The cells were then infected with HIV-1, as 

further processed by Alu PCR to measure HIV-1 integration (Figure 2.42.).  

 

 

 

Figure 2.42. Scheme of experimental workflow of RNase H1 mutant D210N and WKKD overexpression 

and HIV-1 infection.     

Cells transfected with either D210N or WKKD RNase H1 mutant plasmid constructs, both containing a GFP 

reporter gene (used to assess the transfection efficiency) were infected with HIV-1 48 h post transfection, and 

collected 72 h post infection to determine HIV-1 integration levels via Alu PCR.  

 

Measuring HIV-1 integration upon cell transfection with RNase H1 mutants revealed that HIV-1 

integration levels are not affected by the overexpression of these RNase H1 variants (Figure 

2.43.).  
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Figure 2.43. Estimation of HIV-1 integration levels upon overexpression of RNAse H1 mutants D210 and 

WKKD in HEK293T and HeLa cells.       

A. HIV-1 Alu PCR results of HEK293T and HeLa cells upon RNase H1 binding mutant D210N overexpression. 

Alu PCR values in untreated conditions are set to 1 and used as a reference to assess HIV-1 integration upon 

D210N RNase H1 mutant overexpression. B. HIV-1 Alu PCR results of HEK293T and HeLa cells upon RNase 

H1 binding and catalytic mutant WKKD overexpression. Alu PCR values in untreated conditions are set to 1 and 

used as a reference to assess HIV-1 integration upon WKKD RNase H1 mutant overexpression. Integrated vDNA 

(Alu Ct values) is normalized over total genomic DNA levels amplified with primers for the lamin B2 gene (B13 

region). The numbers next to the graphs represent numbers of performed repetitions.  

 

The results obtained with the mutant forms of RNase H1 together with the results with the wild 

type enzyme strongly support the findings that HIV-1 integration depends on the presence of 

R-loops and that their removal, mediated by the catalytic activity of RNase H1, has a very 

significant effect on HIV-1 integration efficiency.  
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II. XVIII. HIV-1 RIGs expression is not affected by R-loop depletion 
 

Taking into account that most 

R-loops are formed 

co-transcriptionally (Sanz et al, 

2016, Chedin, 2016), and that HIV-1 

RIGs have been described as 

transcriptionally highly active genes 

(Marini et al, 2015, Lucic et al, 

2019), the next question to ask was 

R-loop depletion by RNase H1 can 

affect expression profiles of HIV-1 

RIGs. In addition, the assessment of 

RIGs expression profiles upon 

RNase H1 overexpression might 

provide an additional explanation to 

the observed decrease in HIV-1 

integration upon R-loop depletion. 

Mainly because a potential decrease 

in RIGs expression levels would 

argue for a scenario in which HIV-1 

integration is decreased because of 

decreased gene expression activity of 

HIV-1 target genes and not because 

of the removal of R-loops.  

 

To tackle these questions, RNase H1 was overexpressed in primary CD4+ T cells and the RNA 

expression profiles of selected HIV-1 RIGs (BACH2, STAT5B and MKL2) and HIV-1 non-RIGs 

(GPC5 and PACS2) were analyzed by RT-qPCR.  

The obtained results show that HIV-1 RIGs, as well as non-RIGs RNA expression profiles are 

not affected by RNase H1 overexpression and R-loop removal (Figure 2.44.).  

 

 

Figure 2.44. Gene expression profiles of selected HIV-1 RIGs and 

non-RIGs upon RNase H1 overexpression.       

Gene expression profiles are generated by RNA extraction upon RNase 

H1 overexpression, following RT-qPCR analysis. Gene expression 

levels in untreated conditions are set to 1 and used as a reference to 

assess gene expression levels upon RNase H1 overexpression. Gene 

expression levels are normalized over expression profiles of 

housekeeping gene Tubulin. The slight differences observed in the 

height of the bars, which are indicating RNA expression levels, are not 

statistically significant as determined by one-way ANOVA statistical 

analysis (p value is given in the graph legend). The number next to the 

graph represents the number of independent donors. The legend in the 

right upper part of the graph indicates bars corresponding to untreated 

and RNase H1 overexpressed conditions, as well as which analyzed 

genes represent RIGs and non-RIGs.  
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The result might be in line with previously reported data stating that high R-loop occurrence does 

not necessarily mean high transcriptional output (Stork et al, 2016), considering that R-loops also 

have many regulatory functions and are not exclusively associated to gene expression (Ginno et 

al, 2012; Chen et al, 2015; Zeller et al, 2016).  

However, the obtained result argues for a scenario in which HIV-1 integration is more affected 

by the presence of R-loops on genes which are highly targeted for HIV-1 integration, than by 

their expression levels. Such a result is in correlation with, yet unpublished data from our lab, 

which show that the spatial organization of super-enhancers is more important in the 

determination of HIV-1 integration sites, than gene expression activity of genes selected for 

HIV-1 integration (Lucic et al, 2019). These data indicate that the presence of a structure as 

R-loops, or the spatial conformation of T-cell nuclei has significant impact on HIV-1 integration 

site selection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion 

133 
 

III. Discussion 

 

III. I. Chromatin accessibility and HIV-1 integration 
 

Integration of HIV-1 vDNA into the host genome represents an important step in the life cycle of 

the virus. Without the successful completion of this process, the virus is not able to replicate and 

produce viral progeny. At the same time, the viral integration site selection and underlying 

genomic features of those selected sites can contribute to our understanding on how HIV-1 

integration sites contribute to viral transcriptional activity or silencing, which results in latent 

infection. In addition, a more detailed definition and understanding of the genomic features 

HIV-1 integration sites can provide a potential platform for future drug treatment strategies 

contributing to viral eradication from infected cells.  

 

HIV-1 integration can potentially occur anywhere in the host genome. However, the virus shows 

certain preferences in integration site selection. HIV-1 preferentially integrates into gene bodies 

of actively transcribed genes (Schröder et al, 2002), especially into introns (Cohn et al, 2015), 

which are closely associated to Alu elements of the host genome (Stevens & Griffith, 1994). In 

addition, it has been shown that HIV-1 integration sites are decorated with marks of open/active 

chromatin (Wang et al, 2007) and delineated with super-enhancers (Lucic et al, 2019), which is in 

accordance with HIV-1 integration into actively transcribed genomic regions. It has also been 

shown that the integrated viral genome positions in the nuclear space in a non-random fashion, 

predominantly in the outer shell of the nucleus, in open chromatin regions, where it also interacts 

with elements of the NPC, as well as host cell factor LEDGF/p75 (Albanese et al, 2008; Di 

nunzio et al, 2013; Marini et al, 2015). Considering that the chromatin organization in HIV-1 

target cell nuclei has an evident effect on viral integration site selection and viral replication 

(Lusic & Siliciano, 2017), the first aim of this study was to understand how chromatin 

composition affects HIV-1 integration? Does integration into open chromatin regions represent a 

phenomenon occurring just by chance, considering that this is the first chromatin environment the 

incoming virus encounters when entering the nucleus through the nuclear pore (Schermelleh et al, 

2008; Lemaitre & Bickmore, 2015)? Alternatively, can there be an additional (epi)genomic 
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feature involved in HIV-1 integration site selection in such a nuclear and chromatin surrounding?  

 

To start tackling these questions, primary CD4+ T cells were first treated with drugs affecting the 

activity of different types of chromatin modifying enzymes, infected with HIV-1 and further on 

HIV-1 integration levels were assessed by Alu PCR in order to measure eventual changes in 

HIV-1 integration after changing the chromatin structure. The results showed that all used drugs, 

SAHA, JQ1 and BIX01294, had an increasing effect on HIV-1 integration levels.  

SAHA, as an HDAC inhibitor was expected to cause a global opening of the chromatin structure 

(Kim et al, 2013; Frank et al, 2016), BET inhibitor JQ1 was expected to cause the unloading of 

super-enhancers and thereby cause a general chromatin reshuffling (Filippakopoulos et al, 2010; 

Kumar Bid & Kerk, 2016; Brown et al, 2018; Lucic et al, 2019), and BIX01294 as HMT G9a 

inhibitor was expected to cause a drop in H3K9me2 facultative heterochromatin mark deposition 

and increase global chromatin accessibility (Kubicek et al, 2007; Ciechomska et al, 2016).  

The results of this experiment already gave an indication that chromatin structure, especially 

chromatin accessibility, can affect HIV-1 integration. The effect on HIV-1integration of HDAC 

inhibitor SAHA was very modest and could almost be neglected, and so was that of BET 

inhibitor JQ1. That JQ1 has no effect on HIV-1 integration profiles was also shown in our recent 

study, where we sequenced the integration sites using this drug (Lucic et al, 2019). On the other 

hand, G9a inhibitor BIX01294 had consistently in all the experiments an increasing effect on 

HIV-1 integration. HMT G9a and with it H3K9me2 chromatin mark, have a well-documented 

role in T-cell development and differentiation, as they regulate expression of genes important for 

T cell metabolism (Tachibana et al, 2002; Lehnertz et al, 2014). In addition, the previously 

described impact of H3K9me2 in chromatin structure and organization (Wen et al, 2009; Kind & 

van Steensel, 2010; Kind et al, 2013) could be confirmed here through the observed effect of 

BIX01294 on HIV-1 integration. 

  

According to the assessed kinetics of BIX01294 in primary CD4+ T cells after 6-7 h of 7µM 

BIX01294 treatment, primary CD4+ T cells are still viable, which is in accordance to previously 

reported IC50 values of BIX01294 (Dhayalan et al, 2009; Ho et al, 2017), and the decrease in 

H3K9me2 chromatin mark can be appreciated in both immunoblot and immunofluorescence 

followed by microscopy analysis. Interestingly, STED microscopy revealed the presence of two 
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different staining patterns of H3K9me2 chromatin mark in the same population of primary CD4+ 

T cells from the same donor. One staining pattern showed a global nuclear distribution of the 

chromatin mark, whereas the other staining pattern showed a clear peripheral distribution of the 

chromatin mark. The peripheral staining pattern of H3K9me2 is more in line with previous 

findings showing that this chromatin mark is mainly deposited in the nuclear periphery where it 

also contributes to the organization of LOCKs and LADs (Wen et al, 2009; Kim & van Steensel, 

2010; Harr et al, 2015). However, the observation of different chromatin states or patterns in 

single cells of the same population is not a novel phenomenon (Lieberman-Aiden et al, 2009; 

Nagano et al, 2013). In addition, it is also well known that different cellular phenotypes or 

chromatin patterns in the same population of cells represent a consequence of distinct gene 

expression differences (Elowitz et al, 2002; Blake et al, 2003; Golkaram et al, 2017).  

H3K9me2 levels, which showed the strongest drop 12-24 hours post BIX01294 release (after 

initial 6-7 hours of drug treatment), correlated well with the timing of HIV-1 integration post 

viral infection in T cells (Mohammadi et al, 2015) when also the increase in HIV-1 integration 

was observed. 24 hours post drug release H3K9me2 levels start reconstituting back to initial 

levels, which is underlining the importance of G9a activity in T cells, as well as the establishment 

of H3K9me2 chromatin mark (Tachibana et al, 2002; Lehnertz et al, 2014). Finally, BIX01294 

treatment does not have any detectable effect on related H3K9me3 chromatin mark, as seen by 

immunoblot and immunofluorescence staining. This result indicates that BIX01294 treatment 

specifically affects G9a and the deposition of H3K9me2 chromatin mark.  

Additionally, cell viability and proliferative potential, assessed by MTT test upon BIX01294 

treatment only, or followed by HIV-1 infection showed that upon BIX01294 treatment no 

significant change in cell viability could be observed, whereas cells upon BIX01294 treatment 

and HIV-1 infection on average showed a drop of 36% in cell viability. This increased cell death, 

as detected with the MTT test (determines cellular metabolic activity through the presence of 

NAD(P)H dependent oxidoreductases) was expected upon HIV-1 infection (Costin, 2007), as 

well as upon drug treatment and infection (Ivanov et al, 2017; Shytaj et al, 2019).   

 

G9a inhibitor UNC0642, which is supposed to have improved biochemical properties as 

compared to BIX01294 (Liu et al, 2013b) did not have a reproducibly significant effect on HIV-1 

integration. We therefore continued using BIX01294 in the context of HIV-1 integration and 
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chromatin.  

 

To confirm that the observed increase in HIV-1 integration is a consequence of the drug 

treatment and its effect on H3K9me2 chromatin mark only, we tested if the drug has any 

damaging effect on the cells. The assessment of DNA double strand break marker Gamma H2AX 

upon BIX01294 treatment by IF staining revealed that the drug treatment does not have DNA 

damaging effects in primary CD4+ T cells, and gave more supporting evidence to the fact that the 

observed increase in HIV-1 integration upon BIX01294 treatment can be attributed to the 

changes in chromatin structure and organization mediated my G9a.  

The activation status of cells represents an important aspect in HIV-1 infection. As HIV-1 

preferentially infects and replicates in activated CD4+ T cells (Margolick et al, 1987), even 

though integrated HIV-1 DNA can also be detected in resting CD4+ T cells (Chun et al, 1995; 

Chun et al, 1997). However, activated CD4+ T cells are highly permissive for HIV-1 infection. 

The process of cell activation has major repercussions on cellular function, gene expression, 

metabolism, affecting also chromatin organization. Activated CD4+ T cells, as compared to the 

resting ones, undergo a global increase in chromatin accessibility, such as an increase in 

H3K27ac levels (Gate et al, 2018; Lucic et al, 2019). Considering the importance of cellular 

activation on chromatin organization and on HIV-1 infection, it was important to assess whether 

BIX01294 treatment can eventually influence the activation status of cells, which would 

consequently affect HIV-1 integration levels. The expression levels of cell surface markers CD38 

and CD69 were assessed in primary resting CD4 T cellswhich were treated with BIX01294. Cell 

surface marker CD38 has a known tight regulation during T cell activation and differentiation 

(Sandoval-Montes & Santos-Argumedo, 2005; Quarona et al, 2013); CD69 is known as another 

marker of T cell activation status (Simms & Ellis, 1996). The obtained results show that 

BIX01294 treatment does not cause a change in cell activation status of resting T cells. Thus, the 

observed increase in HIV-1 integration upon BIX01204 treatment can not be attributed to 

enhanced  cellular activation status of the cells. High permissiveness to HIV-1 integration can 

solely be attributed to the changes in chromatin structure. Finally, to control the effect of 

BIX01294 and exclude possible pleiotropic effects of the drug treatment, a direct knock down of 

G9a, histone methyltransferase that deposits H3K9me2 was performed followed by HIV-1 

infection in Jurkat T cell line. The results demonstrated that direct G9a knock down significantly 
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depleted H3K9me2 chromatin mark, as expected. Similarly, an increasing effect on HIV-1 

integration was observed, providing an important control and supporting the use of BIX01294 in 

the following study.  

In conclusion, all performed controls regarding the effect of BIX01294 treatment on primary 

CD4+ T cells contribute to a very detailed understanding of the drug’s effect on CD4+ T cells. The 

results provide strong evidence that the observed phenomenon of increased HIV-1 integration 

levels upon drug treatment can only be attributed to the changes in H3K9me2 chromatin levels 

and represent a consequence of increased global chromatin accessibility.  

The effect of BIX01294 on increased HIV-1 integration was also followed by increased viral 

activity, as assessed by  the production of viral RNAs and viral p24 protein. This finding was not 

surprising considering that more viral DNA was successfully integrated into the host genome due 

to a generally more open chromatin structure upon BIX01294 treatment, which might also have a 

stimulating effect on viral RNA production. It is in fact well established that the chromatin 

environment can influence basal HIV gene transcription (Jordan et al, 2001; Lusic & Giacca, 

2014; Turner & Margolis, 2017). In addition, the assessment of total vDNA levels upon 

BIX01294 treatment and HIV-1 infection showed that viral entry into cells is not affected by the 

treatment and that identical levels of total viral DNA are found in cells upon drug treatment. 

Moreover, a decrease in 2LTR circles, episomal viral forms formed due to inefficient integration, 

and a concomitant increase in HIV-1 integration suggest that nuclear entry is not affected by 

BIX01294 treatment. Still, more copies of the viral genome integrated into the cellular chromatin 

due to its increased accessibility.  

 

HIV-1 provirus positions non-randomly in primary CD4+ T cell nuclei in respect to structural 

elements of the cellular chromatin and the NPC (Albanese et al, 2008; Guelen et al, 2008: Di 

Nunzio et al, 2012; Di Nunzio et al, 2013; Marini et al, 2015). It was therefore important to 

assess the effect of BIX01294 treatment and H3K9me2 depletion on HIV-1 provirus spatial 

positioning in primary CD4+ T cell nuclei, especially considering that H3K9me2 represents a 

chromatin mark which mainly decorates chromatin in the nuclear periphery (Kind & van 

Steensel, 2010). The performed immuno-DNA FISH results in this context showed a clear 

repositioning of the provirus from the nuclear periphery towards the nuclear center. Apart from 

the fact that the integrated virus occupies a new nuclear environment upon BIX01294 treatment, 
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the increase in HIV-1 integration levels upon drug treatment could also be visually appreciated 

(Figure 2.12.). 

Considering that HIV-1 integration genes occupy certain nuclear areas which are excluded from 

LADs, but still in the outer shell of the nucleus (Marini et al, 2015; Lucic et al, 2019), it became 

relevant to assess their nuclear position upon BIX01294 treatment. Obtained immuno-DNA FISH 

results of HIV-1 RIGs upon BIX01294 treatment clearly indicate that the majority of analyzed 

genes follow the behavior of the provirus and change their nuclear position, from peripheral 

towards inner nuclear zones. In addition, considering chromosomal positions of RIGs, this result 

indicates that RIGs are not just clustering together on chromosomes (Marini et al, 2015), but 

could also potentially move in clusters upon H3K9me2 depletion, as recently observed in the 

case of transition from resting to activated T cell status (Lucic et al, 2019).  

Focusing only on HIV-1 provirus spatial positioning in untreated conditions, results from 

previous studies could be confirmed, demonstrating that the provirus predominantly positions in 

the nuclear periphery (Albanese et al, 2008; Di Nunzio et al, 2012; Di Nunzio et al, 2013; Marini 

et al, 2015; Lucic et al, 2019). However, a recent study suggested a different scenario, according 

to which integrated HIV-1 preferably occupies central areas of cell nuclei (Achuthan et al, 2018). 

The study however differs in several points from here presented results. First of all, the amounts 

of the virus the authors used in their study exceeds significantly the more physiological 

conditions which we aimed in maintaining in this and in a parallel study by Lucic et al, 2019. 

Second, most of their analysis was performed on HeLa and U20S cells, which are not primary 

targets of HIV-1. This could account for the observed differences in integration patterning and 

gene position, as HIV-1 integration sites are delineated with super-enhancers which mainly 

control the expression of cell identity genes (Whyte et al, 2013; Lucic et al, 2019). Mentioned 

findings indicate that cell type specificity seems to be another significant determinant of HIV-1 

integration site selection and proviral spatial positioning in the nucleus apart from chromatin 

composition, as demonstrated by the results of this work.  

 

The analysis of RIGs expression levels upon BIX01294 treatment was performed in order to test 

if changed chromatin composition and changed nuclear position could affect their expression 

levels. A potential increase in RIGs expression could give an additional explanation for increased 

HIV-1 integration upon drug treatment considering also previous studies which demonstrated that 
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HIV-1 predominantly integrates into active transcription units (Han et al, 2014; Cohn et al, 

2015).  

However, RNA microarray profiling upon BIX01294 treatment showed that RIGs transcriptional 

profiles are not significantly affected upon drug treatment. Possibly because these genes are 

already highly expressed in T cells (Marini et al, 2015; Lucic et al, 2019). However, two groups, 

one of downregulated and the other of upregulated genes could be distinguished upon BIX01294 

treatment. According to the performed GO term analysis, in the group of downregulated genes, 

genes involved in membrane trafficking, protein and ion binding are dominating, whereas in the 

group of upregulated genes, genes involved in iron metabolism and inflammatory response are 

overrepresented. It is known that G9a activity (which is inhibited by BIX01294 treatment) is 

pivotal in cell proliferation and differentiation (Lehnertz et al, 2010; Rao et al, 2016). In addition, 

it has been shown that G9a impairment by BIX01294 treatment can reduce cellular proliferation 

rates or cause cell cycle arrest (Shankar et al, 2013), whereas iron is vital for cell proliferation in 

T cells and is involved in pathways protecting cells from cytotoxicity, oxidative stress and DNA 

damage (Bowlus, 2003; Ruttkay-Nedecky et al, 2013). The results might indicate an ongoing 

compensatory effect, where iron and inflammatory pathways are activated in order to prevent cell 

cycle arrest.  

In order to prove whether BIX01294 treatment causes cell cycle arrest in primary CD4+ T cells, 

cell cycle analysis was performed. The obtained FACS profiles upon propidium iodide staining 

of cells show that BIX01294 treatment does not cause any changes in cell cycle profiles of 

primary CD4+ T cells. This result is in accordance with previous findings in which H3K9me2 

depletion caused by direct G9a knock down did not affect cell cycle profiles and cell proliferation 

(Yokochia et al, 2009). 

 

In respect to the fact that BIX01294 is a drug that affects the activity of HMT G9a, and 

consequently changes the deposition of H3K9me2 chromatin mark, which might alter the 

distribution of other histone marks or chromatin binding factors, ChIP-qPCR was performed in 

order to verify whether any type of changes can be appreciated in that regard. The results show 

that upon BIX01294 treatment the most prominent changes, in the context of chromatin mark 

binding, can be detected in the first intron region of analyzed genes. However, a general drop 

throughout analyzed RIGs and non-RIGs in H3K9me2 can be detected, which is not surprising 
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considering the known effect of BIX01294. Also, H3K9me3 chromatin mark distribution was not 

significantly affected by the treatment, which is in line with previously obtained immunoblot and 

IF results. However, a slight decrease of H3K9me3 binding was appreciated in the gene bodies of 

analyzed genes, which is not surprising considering the very strong effect of BIX01294 on 

related H3K9me2 chromatin mark and the high sensitivity of the used antibodies (Rothbart et al, 

2015). The distribution of H3K36me3 and LEDGF/p75 upon BIX01294 treatment was not 

significantly affected in regions of gene bodies or gene ends. Main differences were observed for 

H3K36me3 and LEDGF/p75 binding in the first intron region of analyzed genes, but this requires 

further confirmation at the global genome-wide level. H3K36me3 is a chromatin mark which is 

mainly associated to gene bodies and represents a signal of elongating Pol II transcription 

(Venkatesh et al, 2012). However, a slight increase in H3K36me3 binding was detected in gene 

ends of MKL2 and CNTN4. This finding might be connected to some alternative implications of 

this chromatin mark, considering that it can also be linked alternative splicing, dosage 

compensation, DNA replication and repair (Wagner & Carpenter, 2012; Suzuki et al, 2016). 

Interestingly, an increased LEDGF/p75 binding was detected only on RIGs upon BIX01294 

treatment, and could not be detected on non-RIGs. One can presume that LEDGF/p75 cannot 

bind to non-RIGs in the first intron region due to the presence of H3K9me3, which was detected 

in first introns of analyzed genes. Considering that H3K9me3 is a repressive chromatin mark that 

induces the compaction of chromatin it might also prevent LEDGF/p75 binding. LEDGF/p75 is a 

transcriptional mediator protein that promotes activator-dependent transcription and is binding to 

active transcription units (Ge et al, 1998a; De Rijck et al, 2010; Craigie & Bushman, 2012). 

However, the fact that LEDGF/p75 binding is following H3K36me3 enrichment on RIGs is not 

very surprising considering that LEDGF/p75 is a known reader of this particular chromatin mark 

(Pradeepa et al, 2012).  

Furthermore, the observed enrichment of H3K36me3 and LEDGF/p75 in the first intron regions 

of RIGs can possibly be associated to the observed increased integration of HIV-1 upon BIX0124 

treatment and the fact that HIV-1 preferentially integrates into introns of expressed genes 

(Craigie & Bushman, 2012; Han et al, 2014; Cohn et al, 2015). 

In addition, taking into account the obtained RNA microarray results which suggest that RIGs 

gene expressions are not affected by the drug treatment, meaning that RIGs are under all 

circumstances highly expressed in T cells (Marini et al, 2015), argues for a scenario in which 
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LEDGF/p75 binding is always facilitated on RIGs. This possibility might be explained by the 

fact that LEDGF/p75 is known to bind active transcription units, located downstream of 

transcription start sites (De Rick et al, 2010).  

Interpretation of increased HIV-1 integration in the context of the obtained ChIP-qPCR results 

points further to the necessity of performing a global, genome-wide analysis of chromatin 

features upon BIX01294 treatment.   

 

HIV-1 immuno-DNA FISH results upon BIX01294 treatment revealed a changed proviral 

nuclear position and gave a visual proof of increased HIV-1 integration upon drug treatment. 

These data also pointed to the possibility that HIV-1 might target alternative genomic sites for 

integration upon H3K9me2 removal. Consequently, HIV-1 integration site sequencing was 

performed. The initial statistical analysis of retrieved HIV-1 integration sites upon BIX01294 

treatment, compared to integrations obtained after infection of CD4+ T cells from the same donor 

under non-treated conditions confirmed a slight increase in HIV-1 integration. However, the 

number of retrieved integration sites did not fully correlate to HIV-1 integration levels measured 

by Alu PCR. This discrepancy might be explained by general underestimating capacities of 

integration site sequencing approaches (Cui et al, 2016; Hughes & Coffin, 2017).  

The analysis of HIV-1 integration patterns showed that HIV-1 still maintains its integration 

patterns into active genes, probably marked by H3K36me3 and bound by LEDGF/p75. In 

addition, the analysis revealed that the in vitro generated dataset of HIV-1 integration sites from 

this study can be separated from other HIV-1 integration site datasets where different sequencing 

methods were used (Ikeda et al, 2007; Brady et al, 2009; Wagner et al, 2014; Maldarelli et al, 

2014; Kok et al, 2016). This could be due to different library preparation methods, as well as 

different sequencing methods used in our and different studies to retrieve HIV-1 integration sites. 

However, based on a prediction that was recently made, HIV-1 integrations seem to be non 

saturating, meaning that as many times as integration site sequencing is performed, new 

integrations can always be detected (Lucic et al, 2019). It is of course worth noting that some 

genomic regions, which can be defined as hot spots or recurrent integration genes do appear in 

both, untreated and treated conditions.  

Although we did not detect a clear change in the integration patterns, it has to be pointed out that 

a more detailed chromatin patterning under BIX01294 conditions is required. Only by matching 
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BIX01294 integration sites with the respective chromatin profiles can one be absolutely sure that 

there are no differences in integration patterns between control and treated conditions. Similarly, 

the mentioned analysis will be crucial in making a final conclusion about the relevance of 

chromatin for HIV-1 integration. One can also take into account the possibility that there are 

other, yet undefined genomic features that contribute to the constant targeting of identical 

integration sites by the virus. This possibility was investigated in the second part of this study. 

 

 

Overall, the results of the first part of this study show that chromatin composition and 

accessibility significantly affect HIV-1 integration levels. In the obtained dataset, G9a inhibition 

by BIX01294, and the consequent H3K9me2 depletion had the most prominent effect on HIV-1 

integration levels. How the manipulation of other chromatin patterns might influence HIV-1 

integration and integration site selection remains to be explored. Still, this part of the work 

underlines the importance of the chromatin state in target cells determining the fate of the 

invading virus, as well as infected cells, as already proven by other studies (Archin et al, 2009; du 

Chene et al, 2007; Gijsbers et al, 2011; Wagner et al, 2014; Cohn et al, 2015; Marini et al, 2015; 

Singh et al, 2015).  
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III. II. R-loops as genomic sites of HIV-1 integration 
 

The investigation of HIV-1 integration from a chromatin related perspective, especially 

determining the effects of HMT G9a activity and deposition of H3K9me2 chromatin mark, 

revealed that chromatin accessibility significantly affects HIV-1 integration levels. 

However, in this work, HIV-1 integration, or more precisely, HIV-1 integration site selection was 

also investigated from a different perspective, taking into account the intrinsic and poorly 

explored property of HIV-1 integrase, which is responsible for HIV-1 integration into the cellular 

chromatin. Hence, the second part of this thesis focuses on the viral IN and its catalytic and 

chromatin binding properties to R‑ loops, as special genomic features selected for HIV-1 

integration.  

 

The reasoning for this perspective on HIV-1 integration site selection arises from the fact that the 

CCD of HIV-1 IN exposes an RNase H folding pattern, and when in silico superimposed to the 

RNase H1 enzyme of Bacillus halodurans in complex with a DNA-RNA hybrid, a perfect match 

of the active residues of both enzymes can be appreciated (Goldgur et al, 1999; Nowotny et al, 

2005; Savarino, 2007). Respectively, RNase H enzymes specifically resolve DNA-RNA hybrid 

structures (Eder et al, 1993; Cerritelli & Crouch, 2009). In addition, it has been shown that the 

CTD of HIV-1 has the ability of binding structured RNA elements (Kessl, 2016). Moreover, 

when comparing the known features defining HIV-1 integration sites with R-loop forming 

regions, a clear overlap can be observed. HIV-1 integration sites have been described as sites of 

transcriptionally active genes with increased DNaseI hypersensitivity (Verdin, 1991; Brady et al, 

2009; Busschots et al, 2005; Ciuffi et al, 2005; Chen et al, 2017a), and with high G/C content 

and. On the other hand, R-loop regions represent sites of DNaseI hypersensitivity (Ginno et al, 

2012, 2013; Sanz et al, 2016) and are formed mainly co-transcriptionally in highly transcribed 

G/C rich genomic regions (Ginno et al, 2012, 2013; Sanz et al, 2016). Intriguingly, another 

finding which might possibly connect R-loops to the first part of the study, is the fact that the 

distribution of H3K9me2 also seems to affect the formation of R-loops (Zeller et al, 2015; 

Skourti-Stathaki et al, 2014). However, in the second part of this work, the focus was exclusively 

directed to R‑ loops, as genomic structures, and their possible importance in HIV-1 integration.  

First supporting evidence that R-loops could possibly represent sites for HIV-1 integration, arose 
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from computational metadata analysis in which R-loop maps (Sanz et al, 2016) were overlapped 

with lists of HIV-1 integration sites (Cohn et al, 2015; Kok et al, 2016), showing that R-loop 

forming regions tend to be overrepresented at sites of viral integration. Further analysis, in which 

R-loop maps from K562 cells (Sanz et al, 2016) and HIV-1 RIGs (Lucic et al, 2019) were 

overlapped, showed that 83% of HIV-1 integration genes (RIGs) had 3 or more R-loops on them. 

This feature clearly distinguishes HIV-1 integration genes from HIV-1 non-target regions. 

According to these preliminary analysis, we reasoned that studying R-loops as potential target 

sites for HIV-1 integration could provide a more detailed insight into HIV-1 integration site 

selection and lead to a more detailed description of HIV-1 integration sites.  

 

In the first experimental analysis, we tested the colocalization between HIV-1 PICs and R-loops 

using an engineered viral construct carrying an eGFP tag on the C-terminus of viral IN, which 

enabled the detection of viral PICs (Albanese et al, 2008). Cells were collected at early time 

points post infection to increase the possibility to observe PIC docking to certain nuclear areas. 

According to this analysis in primary CD4+ T cells 75% of analyzed PICs colocalized with 

R-loops, which was followed by the observation of a similar trend in macrophages where 72% of 

analyzed PICs colocalized with R-loops. This finding suggests that the vast majority of PICs in 

HIV-1 target cells are docked to R-loop forming sites. This colocalization was also confirmed by 

HIV-1 DNA immuno-FISH in macrophages at different time points post infection.  

To further address the observed colocalization and to verify whether the high occurrence in PICs 

colocalizing with R-loops represents an active process and not just a stochastic observation, 

macrophages were either infected with the same viral construct in the presence of IN strand 

transfer inhibitor Raltegravir, or with a construct containing a mutation at the active residue 

D116N of the CCD of IN. The obtained colocalization results show that in the case of HIV-1 

D116N mutant, only 31,1% of PICs colocalize with R-loops, which represents a drop of over 

41%. In the presence of Raltegravir the effect is even more pronounced, and only 21,45% of PICs 

colocalize with R-loops representing a drop of more than 50%. Raltegravir is known to inhibit the 

strand transfer activity of HIV-1 integrase. The observed drop in colocalization with R-loops 

after Raltegravir treatment points to the fact that strand transfer reaction might be important to 

keep HIV-1 IN docked to R-loops. The results indicate that for a high occurrence of PIC and R-

loop colocalization the presence of a functionally active IN is required. In addition, the results 
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provide evidence that colocalization between HIV-1PICs and R‑ loops is not a randomly 

occurring process.  

Considering previous reports that the CTD of HIV-1 has RNA binding properties and that lysine 

residues 264, 266 and 273 have been defined as key players in that process (Kessl et al, 2016), 

assessing colocalization between R-loops and a HIV-1 variant containing mutations in those 

residues would possibly strengthen the hypothesis of HIV-1 IN binding to R-loops. Before 

performing the colocalization assessment, the activity and the behavior of such a virus had to be 

determined, considering that such a viral construct represented a newly obtained tool in the lab. 

Viral cDNA production, integration and RNA production capacities were determined in primary 

CD4+ T cells and Jurkat cells. The obtained results show that the HIV-1 K264,266,273Q virus is 

able to produce viral DNA, but incapable of integrating its genome into the host cell genome, and 

accordingly does not produce viral RNA, as seen upon infection of both cell types. The results 

regarding viral integration are in accordance with previous findings showing that the acetylation 

of these three lysine residues by p300 histone acetyltransferase contributes to more efficient viral 

integration, and once these residues are mutated there is an evident drop in viral integration 

efficiency (Cereseto et al, 2005). The obtained results show that viral reverse transcription, as 

well as PIC assembly, are not affected by the presence of the three mutated residues, which 

enabled us to continue with a colocalization analysis of HIV-1 K264,266,273Q viral PICs and R-

loops. Primary CD4+ T cells and macrophages were infected with the virus and the colocalization 

with R-loops was assessed. The obtained results show that viral PICs either remain trapped in the 

nuclear lamina, or once inside the nucleus, do not colocalize with R-loops. In primary CD4+ T 

cells, 88% of PICs are found in the nuclear lamina, whereas 12% of the signals can be detected 

inside of the nucleus, but outside of R-loop forming sites. A very similar scenario was observed 

for macrophages in which 71% of PICs were detected in the nuclear lamina, and 29% inside the 

nucleus, but also away from R-loop forming regions. The results clearly show that the PICs of the 

analyzed C-terminal mutant of HIV-1 IN are not docked to R-loop forming genomic regions, 

which represents another indication that only wt HIV-1 PICs, without the impairment of IN 

activity, are successfully docked to R-loops. On the other hand, what contributes to the 

phenomenon of HIV‑ 1 K264,266,273Q PICs remaining trapped in the nuclear lamina, remains 

elusive at this point and would require further investigation.  
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After obtaining microscopic evidence that HIV-1 IN and R-loops are colocalizing in HIV-1 target 

cells, that for the occurrence of this process a catalytically active IN is required, indicating that 

PICs are actively docked to genomic R-loops, further attention was directed to another result that 

arose from the initial metadata analysis. Apart from a high correlation between HIV-1 integration 

sites and genomic R-loop sites, which was predicted by the analysis, the in silico analysis also 

indicated that most HIV-1 RIGs contain more than one R-loop forming region. In order to prove 

whether RIGs are enriched in R-loops, DRIP-qPCR (Gino et al, 2012; 2013) was performed on 

primary CD4+ T cells. The results of this analysis demonstrate that selected RIGs, BACH2 and 

STAT5B, are enriched in R-loops, which confirms the in silico prediction. In addition, 

considering that BACH2 and STAT5B are highly expressed in T cells, as well as genes of high 

G/C content (Brady et al, 2009; Marini et al, 2015), such an outcome might not be surprising. 

However, those genes are found on the vast majority of HIV-1 integration site list (Maldarelli et 

al, 2014; Wagner et al, 2014; Cohn et al, 2015; Kok et al, 2016; Lucic et al, 2019), which 

supports the hypothesis of R-loops representing genomic sites of HIV-1 integration.   

 

The obtained DRIP-qPCR result raised the question whether integrated viral DNA can be situated 

in R-loop forming sites. In order to tackle this question, a modified approach of the initial DRIP-

qPCR procedure was applied on HIV-1 infected primary CD4+ T cells. Instead of directly 

performing the qPCR upon the DRIP procedure, Alu PCR was performed in order to try detecting 

integrated viral DNA (Tan et al, 2006) in R-loop rich genomic regions that have previously been 

pulled down in the DRIP procedure. The obtained DRIP-Alu PCR results show that integrated 

viral DNA can be detected in R-loop rich genomic regions. Apart from representing another 

confirmation of the initial computational prediction, this result shows that R-loops represent 

genomic sites that can accommodate the integrated viral genome. Considering evident similarities 

between HIV-1 integration sites (Verdin, 1991; Brady et al, 2009; Busschots et al, 2005; Ciuffi et 

al, 2005; Chen et al, 2017a) and R-loop forming sites (Ginno et al, 2012, 2013; Sanz et al, 2016), 

this finding provides supporting evidence to the hypothesis that R-loops represent sites of HIV-1 

integration and potential HIV-1 IN binding.  

Attempting to further strengthen this hypothesis, and prove whether HIV-1 IN can directly 

interact with R-loops, in vitro binding and strand transfer assays of HIV-1 IN in complex with 

R‑ loop templates were performed (with the help of Dr. Vincent Parissi from the University of 
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Bordeaux). The performed in vitro binding assays show that HIV-1 IN can bind to nucleic acid 

substrates containing R-loops, even more efficiently compared to nucleic acid substrates without 

R-loops, as well as exposing higher binding affinity to nucleic acid substrates containing R-loops 

compared to non-R-loop containing DNA substrates. The obtained results might primarily not be 

very surprising considering the RNase H fold of the CCD of HIV-1 (Yang et al, 1990; Majorek et 

al, 2014). However, it represents a finding that is clearly in line with the obtained microscopy 

data showing that HIV-1 PICs are docked to R-loops and provides additional prove to the 

concept of defining R-loops as sites of HIV-1 integration. 

 

The results of the in vitro strand transfer reaction performed on R-loop and non-R-loop 

containing nucleic acid templates showed that HIV-1 IN can perform the strand transfer reaction 

on R-loops, even slightly more efficient than on non-R-loop containing DNA templates. The 

results of this set of experiments also revealed that the putative RNase H domain, still present in 

HIV-1 IN, is not enzymatically functional, and that the strand transfer reaction is even more 

efficiently completed on R-loop containing DNA templates once the R-loop is resolved in the 

presence of an RNA helicase. The finding that HIV-1 IN does not have RNase H1 function, 

although its CCD has an RNase H-like fold is not very surprising considering that a certain 

protein fold, or folding pattern of a protein domain does not necessarily imply certain enzymatic 

function. In accordance with that is the fact that HIV-1 IN is classified into the RNHL 

(ribonuclease H-like) superfamily of proteins, which is composed of a large group of 

evolutionary related, but functionally diverse group of proteins (Majorek et al, 2014). For 

instance, when performing protein sequence alignment and similarity analysis, by using NCBI’s 

BLASTp tool (Altschul et al, 1997), between HIV-1 RT, with known RNase H function, and the 

CCD of HIV-1 no sequence similarity can be found. On the other hand, the finding that HIV-1 IN 

can perform the strand transfer reaction on DNA templates containing R‑ loops is in accordance 

with previous findings showing that the structure of target host DNA greatly influences the site of 

viral integration as well as that DNA curvature and flexibility influences the frequency of 

integration (Pruss et al, 1994a; Pruss et al, 1994b; Wang et al, 1999; Michieletto et al, 2019). 

Also, the result of successful strand transfer on R-loop containing DNA templates is in line with 

previous findings showing that HIV-1 IN shows preference for binding structured RNA elements 

(Kessl et al, 2016), considering that prior to the strand transfer reaction on the R-loop, binding of 
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the R-loop has to occur.  

The finding that the strand transfer reaction is even more efficiently completed on R-loop 

containing nucleic acid templates once the R-loop is resolved can possibly be explained by the 

fact that HIV-1 IN and RNase H1 are enzymes which are interacting, and most probably 

competing for the same substrate (Lusic Lab, unpublished data). In such a scenario, most 

probably both, HIV-1 IN and RNase H1 bind to the R-loop; and while RNase H1 resolves the 

R‑ loop structure, IN performs the strand transfer reaction.  

 

Further on, upon obtaining mentioned series of molecular data indicating that RIGs are enriched 

in R-loops, that integrated viral DNA can be situated in R-loop forming regions and that HIV-1 

IN can in vitro bind to R-loops and perform the strand transfer reaction on them, the focus was 

again directed to HIV-1 integration in an R-loop dependent context. In order to investigate how 

the presence of R-loops affects HIV-1 integration, viral integration was assessed upon RNase H1 

overexpression and R-loop depletion in cell lines (HeLa, HEK293T, Jurkat), as well as primary 

cells (CD4+ T and macrophage). The results of this experiment show that HIV-1 integration is 

significantly impacted in different cell lines and primary cells. Alu PCR results show that HIV-1 

integration is decreased upon RNase H1 overexpression, throughout all analyzed groups of cells, 

and almost abrogated in Jurkat cells and primary macrophages. The observed decrease in 

integration is followed by an increasing trend of 2LTR circle formation, which is expected 

considering that integration is less efficient, or even abrogated in some cases. In addition, the 

final prove that R-loop removal is the main reason for decreased viral integration upon RNase H1 

overexpression was provided by absolute quantifications of early and late HIV-1 RT-products, as 

well as 2LTR circles by ddPCR (Bejarano et al, 2018) in primary CD4+ T cells. The obtained 

results showed that the production of both early and late RT-products is not affected by RNase 

H1 overexpression. Accordingly, the results indicate that viral reverse transcription process is not 

impaired by RNase H1 overexpression, and that the observed decrease in HIV-1 integration is an 

exclusive consequence of R-loop depletion. In addition, the absolute quantification of 2LTR 

circles in untreated conditions and upon RNase H1 overexpression showed a slight increase in the 

numbers of formed 2LTR circles upon RNase H1 overexpression, which is in correlation with the 

observed decrease in viral integration and previous quantification of 2LTR circles by qPCR. This 

result indicates that more non-integrated viral forms are present as a consequence of less efficient 
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integration upon R-loop depletion. Further on, this results also represents a confirmation that 

RNase H1 only gets expressed in the nucleus of the cell, considering the M27 NLS of the plasmid 

construct used for protein overexpression (Suzuki et al, 2010), and that viral RT-products cannot 

be exposed to the effect of RNase H1 since the protein seems to have a nuclear localization, an 

RT is considered to be initiated in the cytoplasm (Francis et al, 2016; Rankovic et al, 2017; Lusic 

& Siliciano, 2017). 

 

In order to further validate that only R-loop removal represents the cause of the observed 

decrease in HIV-1 integration, the same experimental setup was performed on selected cell lines 

(HeLa and HEK293T), but using mutated variants of RNase H1. An RNase H1 binding mutant 

(D210N), as well as an RNase H1 binding and catalytic mutant (WKKD) were used for this 

purpose, which have also been used in previous studies for the purpose of R-loop pull down 

approaches (Chen et al, 2017a). Obtained Alu PCR results upon overexpression of the two 

mentioned RNase H1 mutants in cell lines showed that HIV-1 integration is not affected by their 

presence, which provided proof that the previously observed decrease in HIV-1 integration 

represents a consequence of R-loop depletion.  

The results from this experiment indicate that R-loop presence is required for efficient HIV-1 

integration, which is in accordance with the in vitro data of IN binding and strand transfer activity 

on R-loops, as well as the finding of integrated viral DNA in R-loop forming regions. These 

results together argue for the possibility of describing R-loops as sites of HIV-1 integration.  

 

However, the observation that R-loop depletion causes a decrease in HIV-1 integration led to a 

question if gene expression levels are affected by RNase H1 overexpression and whether the 

decrease in viral integration could be due to a general drop in gene expression levels rather than a 

consequence of R-loop removal. These questions were especially important to respond 

considering that R-loops are mainly formed co-transcriptionally (Ginno et al, 2102; 2013) and 

that HIV-1 preferentially integrates into actively transcribed genes (Schröder et al, 2002, Lucic et 

al, 2019). In order to test for this option, RNA expression profiles of selected RIGs and non-RIGs 

were analyzed by RT-qPCR in primary CD4+ T cells upon RNAse H1 overexpression. Obtained 

results show that both RIGs (BACH2, STAT5B, MKL2) and non-RIGs (GPC5, PACS2) 

expression profiles are not affected by RNase H1 overexpression. In the context of non-RIGs, 
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this result might not be very surprising considering that those are genes mainly poorly expressed  

in T cells (Marini et al, 2015). In the context of RIGs, this result argues for a scenario in which 

transcriptional activity of HIV-1 target genes is a less favored feature in the context of HIV-1 

integration, compared to the presence of an R-loop structure. Such an outcome would 

conceptually be in line with the finding that the nuclear organization of T cells is more important 

in dictating HIV-1 integration site selection, compared to only gene expression levels (Lucic et 

al, 2019). In this context, the obtained results indicate that the structural organization of the 

genome, together with the presence of certain genomic structural elements and their interplay 

with host cell factors impact HIV-1 integration and integration site selection more than any other 

factor described to influence HIV-1 integration.  
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III. III. Perspectives and concluding remarks  
 

The first part of this study clearly shows that HIV-1 integration is significantly affected by 

chromatin accessibility. Series of experimental data show that the use of chemical G9a inhibitor 

BIX01294 and the depletion of H3K9me2 chromatin mark in primary CD4+ T cells have an 

increasing effect on HIV-1 integration, indicating that the process of HIV-1 integration and 

integration efficiency can not be separated from (epi)genomic factors such as chromatin 

composition.  

In addition, the results from this part of the study also suggest that when manipulating with the 

chromatin composition of a certain chromatin mark, in order to appreciate discrete changes in the 

chromatin distribution of other chromatin binding factors at certain genomic sites, a deeper and 

more targeted analysis of selected genes or genomic sites will provide more information, 

compared to general global scale analysis. 

 

Of note, the finding that chromatin accessibility in the context of H3K9me2 histone mark 

significantly affects HIV-1 integration becomes especially important considering that BIX01294 

is a known and very strong HIV-1 latency reversing agent (Imai et al, 2010; Bouchat et al, 2012; 

Nguyen et al, 2017). Accordingly, future studies on HIV-1 latency reversing agents which are 

manipulating chromatin structure composition and accessibility should be conducted carefully 

and include the factor of possible increase in HIV-1 integration efficiency. 

 

 

The final conclusion of the second part of this study is that the presence of R-loops, as structural 

genomic elements, in HIV-1 integration genes, is of more importance for efficient viral 

integration compared to high transcriptional activity of HIV-1 target genes.    

Nevertheless, it would still be very important to assess how RNase H1 overexpression affects 

gene expression on a global scale. Also, it would be of significant importance to understand and 

distinguish the influence of co-transcriptional R‑ loops (Ginno et al, 2012; 2013) and regulatory 

R-loops (Yu et al, 2013; Santos-Pereira & Aguilera, 2015; Grunseich et al, 2018) in the context 

of HIV-1 integration. Still, in order to further strengthen the concept of R-loop structures as sites 

for HIV-1 integration it would be of significant importance to uncouple the importance and 
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presence of R-loops in the process of transcription (Skourti-Stathaki et al, 2011; Skourti-Stathaki 

et al, 2014), from the fact that R-loops are also structural genomic elements that evidently 

influence HIV-1 integration. In line with the concept of R-loops as structural genomic elements 

possibly affecting a plethora of other biological processes, are findings indicating that 

transcriptional output does not seem to be correlated to R-loop levels on individual genes (Stork 

et al, 2016; Wahba et al, 2016).  

 

Overall, the results of the second part of this work provide strong evidence that R-loops, as 

structural genomic features, represent sites of HIV-1 IN binding and, accordingly, HIV-1 

integration. The initially obtained computational results provided an accurate prediction on HIV-

1 RIGs as genomic sites enriched in R-loops, which was further on confirmed by molecular 

approaches in cells. In addition, R-loops were shown to be genomic sites having the capacity to 

accommodate integrated HIV-1 DNA. In addition, microscopic data on HIV-1 PICs 

colocalization  with R-loops provided first indication that HIV-1 IN is docked to R-loop forming 

genomic sites. In respect to the entire dataset on microscopy, it was demonstrated that for high 

occurrence of PIC and R-loop colocalization a functionally active viral IN is required, confirming 

that the observed colocalization does not represent a randomly occurring event. Further on, HIV-

1 IN binding on R-loop nucleic acid templates was confirmed in vitro, as well as the capability of 

HIV-1 IN to perform the strand transfer reaction on R-loop containing DNA templates. In line 

with that are obtained results showing that R-loop depletion in cells has a decreasing effect on 

HIV-1 integration. And finally, R-loop depletion was shown not to affect transcriptional activity 

of selected RIGs, indicating that the presence of R-loops, as structural genomic elements, on 

these genes is more important in affecting HIV-1 integration, compared to their transcriptional 

activity.  

However, the in vitro dataset also demonstrated that HIV-1 IN strand transfer is more efficient at 

R-loop forming sites once the R-loop is resolved by RNase H1. Studying the interplay between 

IN and other R-loop resolving enzymes (as Aquarius, Senataxin, Topoisomerases, etc) in the cell 

seems to be crucial in understanding HIV-1 integration in an R-loop dependent context, and gives 

rise to the need of further investigations.  
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Considering that the focus of the second part of this study was directed towards R-loops as 

structural genomic elements, without implying their regulatory aspects, it is important to mention 

the interplay between R-loops and chromatin, considering that the first part of this work 

predominantly deals with the importance of chromatin composition related to HIV-1 integration. 

Several studies showed the association of R-loop peaks and open chromatin marks, as well as 

overall increased chromatin accessibility in R-loop rich regions, mainly occurring at gene 

promoters or gene bodies (Zeller et al, 2016, Sanz et al, 2016, Chen et al, 2017a). Presumably, 

such findings could represent another connection between R-loops and HIV-1 integration sites 

considering that HIV-1 preferably integrates into gene bodies of actively transcribing genes, 

carrying open chromatin marks (Schröder et al, 2002; Wang et al, 2007; Cohn et al, 2015). 

However, gene terminal R-loops where shown to show features of transcription terminators (Sanz 

et al, 2016). Also, in a variety of different organisms it was shown that R-loop formation can be 

connected to RNA Pol II termination, as well as the establishment of heterochromatin 

(Castellano-Pozo et al, 2013; Skourti-Stathaki et al, 2014, Boque-Sastre et al, 2015; Sanz et al, 

2016; Skourti-Stathaki et al, 2019). In summary, what appears evident from mentioned studies is 

that the interplay between chromatin and R‑ loops, as well as its outcome in a context of 

chromatin accessibility and genomic activity significantly depends on the region of R-loop 

formation. Respectively, if R-loop formation occurs at gene TSS, TTS, gene bodies, before or 

after replication forks significantly affects chromatin accessibility and vice versa (Santos-Pereira 

& Aguilera, 2015; Chedin, 2016).  

 

 

 

In conclusion, both parts of this study provide strong evidence that chromatin composition, 

chromatin accessibility mediated by the deposition of H3K9me2 mark, as well as structural 

genomic elements - R-loops, significantly impact HIV-1 integration. Both aspects of this study 

provide more detailed description of HIV-1 integration sites, HIV-1 integration efficiency, as 

well as HIV-1 integration site selection. 
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IV. Materials and methods 

 

IV.I. Cell lines and cell culture 
 

Human lymphoblastiod cancer Jurkat cell line and latent HIV-1 clone J-Lat9.2 was kept in RPMI 

medium supplemented with heat inactivated 10% FBS and 1% Penicillin/Streptomycin.  

Human epithelial HEK293T and HeLa cell lines were kept in DMEM medium supplemented 

with 10% FBS and 1% Pen/Strep antibiotics.  

 

IV.II. Primary cell isolation 
 

CD4+ T cells  

 

Primary CD4+ T cells were purified from whole blood from healthy donors with RosetteSep™ 

Human CD4+ T Cell Enrichment Cocktail (STEMCELL TECHNOLOGIES). Cells were 

activated with Dynabeads Human T-Activator CD3/CD28 (ThermoFisher) and 5 ng/mL IL-2 for 

48 h and kept in RPMI medium supplemented with heat inactivated 10% FBS and 1% Pen/Strep 

antibiotics.  

 

Monocyte derived macrophages (MDMs) 

 

Human peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats of healthy 

blood donors by Ficoll density gradient centrifugation. PBMCs were seeded in 8-well LabTek 

chamber slides (Thermo Fisher Scientific, Waltham, MA) in DMEM containing 10% heat 

inactivated FBS and incubated at 37°C for 6 h. Subsequently, floating lymphocytes were 

removed and adherent monocytes were washed followed by cultivation in DMEM containing 

10% heat inactivated FBS and 10% human AB serum (Sigma-Aldrich, St. Louis, MO) for 7 days 

to allow differentiation into macrophages. 
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IV.III. Drug treatments 
 

Primary CD4+ T cells were treated for 6-7 h with 7 µM BIX10294 (Sigma-Aldrich), 1 µM JQ1 

(Sigma-Aldrich), 7 µM SAHA (Sigma-Aldrich) and 7 µM UNC0642 (Sigma-Aldrich).  

 

IV. IV. Cell viability test 
 

Cell viability was determined by performing live cell staining and flow cytometry. For the 

purpose of this assay 2*105 cells were collected for each analyzed time point. Living cells were 

washed in PBS and stained for 30 minutes on ice with Fixable Viability Dye eFluor 450 

(eBioscience). After the staining cells were washed in PBS and fixed for 10 minutes in 4% 

PFA/PBS. Subsequently the cells were washed and resuspended in PBS. Flow cytometry was 

performed on BD FACSVerse flow cytometer and flow cytometry data was analyzed in the BD 

FACSuite software (BD Biosciences). Live cells were gated according to a negative control 

sample in which all cells were dead. The negative control sample was generated by keeping cells 

for 10 minutes in 100% ethanol, which would kill most cells in the sample. The cells were 

subsequently fixed and stained as previously described. 

 

IV. V. Cell cycle analysis 
  

Cell cycle analysis was performed on primary CD4+ T cells after 7 µM BIX01294 treatment in 

order to determine potential changes in cellular cycles upon drug treatment. For the purpose of 

this analysis 1*106 cells were collected after 7 h of drug treatment (as well as untreated control 

cells), washed in PBS and fixed in icecold methanol (methanol was added dropwise to cells while 

vortexing them). After fixation the cells were washed with PBS and treated with 1 mg/mL 

RNase A for 30 minutes at 37°C. After RNase A treatment cells were washed with PBS and 

stained with Propidium Iodide (Roche) in 1:20 ratio. Propidium Iodide is a DNA binding and 

intercalating dye and according to the amount of bound Propidium Iodide in the cells, cell cycle 

profiles can be determined, since cells contain certain DNA amounts in specific phases of the cell 

cycle.   
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Flow cytometry was performed on BD FACSVerse flow cytometer and flow cytometry data was 

analyzed in the BD FACSuite software (BD Biosciences). 

 

IV. VI. Cell proliferation assay (MTT test) 
 

The viability and proliferative potential of cells upon BIX01294 treatment was assessed through 

the CellTiter 96® Non-Radioactive Cell Proliferation Assay (MTT) assay (Promega; Madison, 

WI, USA), as previously described by Shytaj et al, 2015.  

For the MTT assay 300*105 cells of each analyzed condition were resuspended in 100 μL 

RPMI/10% FBS and transferred into a 96-well plate. To each well the MTT solution was added 

(15 μL) and, after 2-4 h, the reaction was stopped by the addition of 100 μL of the 

Solubilization/Stop Solution. Absorbance values at 570nm were acquired with an Infinite 200 

PRO (Tecan, Männedorf, Switzerland) multimode plate reader. Reactions were conducted in 

triplicate and the averages of the triplicates were normalized over the matched untreated controls 

and expressed as a percentage. 

 

IV. VII. G9a knockdown 
 

Jurkat cells were stably transduced with pGZIP-G9a lentiviral vector containing a puromycin 

resistance sequence. 48 h after transduction, cells were grown in selection medium with 

increasing amounts of puromycin reaching a final concentration of 4 µg/mL. 

 

IV. VIII. Total protein amount quantification by western blot 
 

Cell pellets were lysed 10 minutes on ice in RIPA buffer (150mM NaCl, 20mM Tris-HCl pH 7.4, 

1mM EDTA, 0.5% NP-40, 0.5% DOC, 0.1%SDS) and sonicated for 5 minutes (30 s ON, 30 s 

OFF) at 4°C in Bioruptor (diagenode). The total protein concentration of cellular extracts was 

measured by Bradford assay (BioRad). Western blot gels were loaded with 8 µg of protein lysate. 

Gels were running on 120 V and 400 mA (western blot system from Biometra) in 1X SDS 

running buffer (25 mM Tris, 192 mM Glycine, 0,1% SDS, pH 8.3). Proteins were transferred to a 
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nitrocellulose membrane with a Trans-Blot device for semi-dry transfer (BioRad). The 

nitrocellulose membrane was blocked for 1 h at room temperature in 1% skim milk in 0,1% 

PBS/Tween. Upon blocking the membrane was incubated with primary antibodies, which were 

also diluted in 1% skim milk in 0,1% PBS/Tween, rotating overnight at 4°C. Western blots were 

developed after washings in 0,1% PBS-Tween and incubation with secondary antibodies for 1 h 

at room temperature with Amersham ECL Prime Western Blotting Detection Reagent (GE 

Healthcare Life Sciences).  

Used primary antibodies: mouse monoclonal anti-β-actin (Sigma-Aldrich), mouse monoclonal 

Anti-dimethyl-Histone H3 (Lys 9) 05-1249 (Millipore), rabbit-polyclonal Anti-Histone H3 06-

755 (Millipore), rabbit polyclonal LEDGF/p75 A300-847A (Bethyl Laboratories), rabbit 

monoclonal G9a/EMT2 (C6H3) 3306 (Cell Signaling Technology). 

Used secondary antibodies: anti- mouse and anti-rabbit (Jackson immunoresearch).  

 

IV. IX. Virus production  
 

Viral particle production procedure 

 

Production of viral particles was performed as previously described in Marini et al, 2015.  

Producer HEK293T cells were seeded to reach 70% confluency in plastic round 15 cm dishes. 

The Ca-Phosphate approach for cell transfection was used (list of reagents is listed in Table 4.1.). 

6-8 h after plasmid DNA transfection into HEK293T cells, the medium was changed and cells 

were kept for another 48 h post transfection at 37°C to produce viral particles which were 

released into the medium (supernatant). After 48 h the cell medium was collected, filtered 

through 0,45 μm (Roth GmBH) filter and prepared for ultracentrifugation on a SW40 rotor 

(Beckman Coulter ultracentrifuge) through a 20% sucrose gradient at 28 000 rpm for 1,5 h. After 

ultracentrifugation the viral pellet was resuspended in sterile 1X PBS and aliquoted and stored at 

-80°C. 
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Single round infection HIV-1 viral stocks 

 

For the production of single round infection HIV-1 viral stocks a plasmid obtained from the Env- 

molecular clone pNL4-3/E-R- was used. This molecular clone contains a frameshift mutation 

introduces close to the 5’ end of the env gene (Connor et al, 1995) and performs a single-round 

infection once pseudotyped with the glycoprotein envelope from vesicular stomatitis virus (VSV-

G). This disables the virus from performing multiple rounds of infections and causing massive 

cell death.  

This virus was used in the context of monitoring levels of viral integration by Alu PCR in either 

primary cells or cell lines, as well for FISH analysis in order to monitor the exact positioning of 

single proviruses and avoid superinfection. 

 

C-terminal IN mutant HIV-1 viral stocks 

 

For the production of viral particles containing K264,266,273R mutations in the viral IN the 

construct HIV-1BRU(K264,266,273R) was used (Cereseto et al, 2005), which contains the full viral 

genome.  

This virus was used to test for its integration capacity, transcription capacity and the capacity to 

form retro-transcribed viral DNA products.  

 

IN.eGFP HIV-1 viral stocks 

 

Production of the engineered HIV-1 wt virus, HIV-1 virus with the K264,266,273R mutations in 

the C-terminus of the viral IN, the D116N CCD HIV-1 mutant, as well as the tat deficient HIV-1 

mutant having an eGFP tagged integrase was performed as previously described in Albanese et 

al, 2008, through the “trans-incorporation” technique. 

The trans-incorporation technique takes advantage of the viral protein Vpr being able to shuttle 

fused exogenous proteins inside the viral particle. In order to produce HIV-1 viruses containing a 

tagged IN protein pVpr-IN-eCFP was constructed by cloning Vpr (PCR amplified from pNL4.3) 

in frame with the codon optimized IN (Limon et al, 2002) into the peCFP-N1 vector (Clontech 

Laboratories, Inc., Saint-Germainen-Laye, France). Also, an HIV-1 protease cleavage site 
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(IRKVL), flanked at both C- and N- terminus by a flexible linker (KRIQST) which was 

introduced between Vpr and IN. pVpr-IN-eGFP was constructed by substituting the eCFP cDNA 

with eGFP. 

For viral particle production the constructs containing either the full viral genome, a mutation in 

the CCD of IN, mutations in the C-terminus of IN, or a tat deletion, as well as the belonging 

pVpr-IN-eGFP construct were transfected via the Ca-Phosphate approach into HEK293T 

producer cells as previously described. 

 

Creation of adequate Vpr constructs 

 

The K264,266,273R mutations in the C-terminus of the viral IN, as well as the CCD mutant 

D116N were constructed by a quick change PCR and introduction point mutations in the IN 

domain of the created pVpr-IN-eGFP construct.  

The tat deficient HIV-1 viral construct was made by deleting a 34 bp segment in the big tat exon 

of the pNL4-3 HIV-1 original molecular clone. This virus has also been tagged with the IN.eGFP 

fusion construct.   

The mentioned eGFP tagged viral constructs were used mainly for microscopy approaches, but 

were also successfully used to verify their integration capacity Alu PCR. 

 

Table 4.1. List of reagents for calcium phosphate transfection of HEK 293T cells. 

Reagent Amount per 15 cm dish of cells 

2.5 M CaCl2 300 μL 

2X HBS (50 mM HEPES, 280 mM NaCl, 1.5 mM Na2HPO4, pH 7.5) 2.5 mL 

pNL4-3/E-R- plasmid 25 μg 

VSV-G plasmid 5 μg 

H2O 2.5 mL 

*Procedure:  

Mix DNA and H2O. 

Add CaCl2 dropwise (incubate 10 min) 

Add mixture to 2X HBS by vortexing (incubate 20 min). 

Add to cells dropwise. 
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IV. X. SG-PERT assay 
 

The SG-PERT assay was performed for virion number quantification in viral stocks. SG-PERT 

assay was performed as previously described in Pizzato et al, 2009.  

A 5 μL aliquot of the viral stock was lysed in 5 μL 2X lysis buffer (0.25% Triton X-100, 50 mM 

KCl, 100 mM TrisHCl pH7.4, 40% glycerol). RNase inhibitor (0.4 U/μL) was added to the 

volume of buffer needed for virus disruption immediately before use. 90 μL 1X dilution (diluted 

to 1X from 10 X stock (50 mM (NH4)2SO4, 200 mM KCl and 200 mM Tris–HCl, pH 8.3) buffer 

was added to the lysed sample after 10 minutes of lysis. 10 μL of the diluted virus lysate samples 

were mixed immediately with 10 μL of 2X reaction mix (10 mM (NH4)2SO4, 40 mM KCl and 

40 mM Tris–Cl pH 0.3, 10 mM MgCl2, 0.2 mg/ml BSA, 1/10,000 SYBR Green I, 400 μM 

dNTPs, 1 μM forward primer,1 μM reverse primer, 1.2 μg/ml BMV RNA). Hotstart Taq was 

added (0.2 U/reaction) immediately before use. 

 

Used thermal cycler conditions used were: 30 min RT reaction at 37 °C, 5 min hot-start Taq 

activation at 95 °C and 45 cycles of amplification. Each amplification cycle was composed of 5 s 

denaturation at 95 °C, 5 s annealing at 55 °C, 15 s extension at 72 °C, 7 s acquisition at 83 °C, 

using the lightcycler; 5 s denaturation at 95 °C, 5 s annealing at 55 °C, 20 s extension at 72 °C, 

11 s acquisition at 83 °C, using the CFX96 Touch platform (Bio Rad). 

Data analysis was performed by using the CFX Maestro Software (Bio Rad) by comparison of 

real time Ct values of 10 fold serial dilutions of a recombinant HIV-1 RT standard which was 

prepared in parallel to the analyzed samples (activity of undiluted standard is 5,088 * 109 pUnits 

RT/μL) and the analyzed sample.  

 

*Used primers:  

forward: 5′-TAGTTGTTGGGCTTCGCTTT-3′; 

reverse:5′-TTGTCGGCTTTACCTGCTTT3′ 
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IV. XI. Infections 
 

Cell infections for FISH and integration analysis  

 

Cell lines and primary cells were infected with 100 ng p24 per 105 cells pNL4-3/E-R- HIV-1, and 

subsequently kept in culture and collected 72 h post infection.  For the purpose of FISH analysis, 

only MDMs were fixed and collected at different time points post infection (36, 48 and 60 h post 

infection).  

 

Cell infections for colocalization analysis  

 

Primary cells were infected with pNL4-3/E-R- HIV-1, IN.eGFP HIV-1 wt, IN.eGFP D116N, 

IN.eGFP K264, 266, 273R and  IN.eGFP 𝚫tat in a concentration of 100 ng p24 per 105 cells. 

For microscopy and colocalization analysis primary CD4+ T and macrophages were collected at 

different time points post infection (18, 36, 48, 60 or 96 h).   

 

5 uM Raltegravir (HIV-1 strand transfer inhibitor) was added to macrophages at the moment of 

infection wit IN.eGFP HIV-1 wt and sequentially added every 24 h as long as the cells were kept 

in culture. 

 

IV. XII. Genomic DNA extraction 
 

DNA was extracted with DNeasy Blood & Tissue kit (Qiagen) by following manufacturer 

instructions. DNA concentration was measured via spectrophotometry on P-class P 300 

NanoPhotometer (IMPLEN).  

 

IV. XIII. Measurement of integrated vDNA (Alu PCR) 
 

The presence of integrated viral DNA was evaluated by Alu PCR as previously described (Tan et 

al, 2006). Alu LTR sequences were amplified from 250 ng of genomic DNA in the first round 

PCR. In the second round Real Time PCR, a 1:50 dilution of the first round PCR product was 
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used as a template together with the I-specific primer λT, the internal LTR primer LR and the 

probe ZXF-P. 

As a normalizer gene for the Real Time PCR the amounts of housekeeping gene lamin B2 (B13 

region) were quantified from 10 ng genomic DNA.  

Alu PCR was normalized using the 2(-Delta Delta C(T)) method for analysis of real time 

quantitative PCR (Livak & Schmittgen, 2001).  

 

Table 4.2. List of used primers for Alu PCR. 

Primer Sequence 

LM667 ATGCCACGTAAGCGAAACTCTGGCTAACTAGGGAACCCACTG 

LR TCCACACTGACTAAAAGGGCTTGA 

ZXF-P probe TGTGACTCTGGTAACTAGAGATCCCTCAGACCC 

Alu1 TCCCAGCTACTGGGGAGGCTGAGG 

λ-primer ATGCCACGTAAGCGAAACT 

B13 Fwd primer CCCCAGGGAGTAGGTTGTGA 

B13 Rev primer TGTTATTTGAGAAAAAGCCCAA 

B13 probe CAGCAGGAAAGGAC 

 

 

IV. XIV. Quantification of 2LTR circles and total viral DNA 
 

Quantification of 2 LTR circles and total viral DNA was performed as previously described by 

Apolonia et al, 2007. Total DNA from infected cells was extracted with DNeasy Blood & Tissue 

kit (Qiagen) as previously described. qPCR was performed by using an input of 250 ng genomic 

DNA, primers that were designed for the 5’ and 3’ LTR junction (for 2 LTR quantification) and 

primers annealing to the 5’ LTR and Gag gene (for total viral DNA quantification), as well as 

fluorescently labeled probes and TaqMan chemistry (BioRad) (Table 4.3.). 2LTR circles were 

quantified by normalization over the total viral DNA values by using the 2(-Delta Delta C(T)) 

method for analysis of real time quantitative PCR (Livak & Schmittgen, 2001). 
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Table 4.3. List of used primers and probes for 2 LTR circle and total viral DNA quantification. 

Primer Sequence 

2 LTR circles Fwd primer  AACTAGAGATCCCTCAGACCCTTTT 

2 LTR circles Rev primer CTTGTCTTCGTTGGGAGTGAATT 

2 LTR circles probe CTAGAGATTTTCCACACTGAC 

Total viral DNA Fwd primer TGTGTGCCCGTCTGTTGTGT 

Total viral DNA Rev primer GAGTCCTGCGTCGAGAGAGC 

Total viral DNA probe CGCCCGAACAGGGACTTGAA 

 

 

IV. XV. Infectivity test 
 

The amount of infected primary CD4+ T cells was determined via staining of p24 marker on 

cellular surfaces cells and subsequent flow cytometry analysis. For the purpose of this assay 

2*105 cells were collected 72 h post infection, washed in PBS and fixed for 1,5 h in 4% 

PFA/PBS. Cells were stained for 30 minutes with anti-p24 antibody Coulter Clone KC57-RD1 

(Beckman Coulter) and subsequently washed and resuspended in PBS. Flow cytometry was 

performed on BD FACSVerse flow cytometer and flow cytometry data was analyzed in the BD 

FACSuite software (BD Biosciences).  

 

IV. XVI. HIV-1 integration site sequencing 
 

HIV-1 integration site analysis was performed as previously described in Schmidt et al, 2007, by 

performing linear amplification-mediated PCR (LAM-PCR). 

Upon DNA extraction of previously infected primary CD4+ T cells the material was prepared for 

the linear PCR initiated from 5′-biotinylated vector-specific primer(s) as described in the table 

below (Table 4.4. and Table 4.10.). A starting material of 500 ng was used for the initial linear 

PCR reaction.  
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Table 4.4. Linear PCR setup. 

Reagent Final amount (1X reaction) 

10X Taq polymerase reaction buffer 5 μL 

dNTPs 1 μL 

Primer LTR I (0.5 pmol/μL) 0.5 μL 

Template DNA (1 ug) X μL 

Taq polymerase (2.5 U/μL) 0.5 μL 

ddH2O Up to 50 μL 

 

Linear PCR parameters are described in the table below (Table 4.5.). 

 

Table 4.5. Linear PCR. 

Temperature Time Cycle number 

95C 5 min 1 

95°C 1 min 

 

60°C 45 s 

72°C 90 s 

72°C 10 min 

4°C ∞  

 

After performing linear PCR, magnetic Dynabeads (Invitrogen) were washed twice in 0.1% 

BSA/PBS and 3 M LiCl buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 3M LiCl) and 

resuspended in 6 M LiCl buffer (10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 6 M LiCl). Beads were 

added in a 1:1 ratio to the PCR product.  To covalently link the biotinylated PCR product to the 

streptavidin-coupled magnetic beads the samples were overnight incubated at room temperature 

on a horizontal shaker at 300 rpm.  

To generate double-stranded DNA fragments a hexanucleotide priming reaction was carried out 

on the bead-DNA complexes for 1 h at 37°C (reaction setup Table 4.6.). 

 

 

 

 

 

 52 
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Table 4.6. Hexanucleotide priming reaction. 

Reagent Amount (1X reaction) 

10X hexanucleotide mixture (Roche) 2 μL 

dNTPs (200 uM) 0.5 μL 

Klenow polymerase (2 U/μL) 1 μL 

ddH2O Up to 20 μL 

  

After the hexanucleotide priming reaction, the bead-DNA complexes were washed twice with 

ddH2O on a magnetic stand and divided in 2 separate tubes and prepared for enzymatic digestion 

with MseI and MluCI restriction enzymes for 1-2 hr at 37°C to generate restriction sites suitable 

for the annealing of DNA linker cassettes. The linker cassette fulfills the purpose of a 12 bp 

unique barcode for each sample which can be later on tracked after the sequencing is performed. 

The linker cassette ligation reaction was performed after the enzymatic digestion (Table 4.7.).  

 

Table 4.7. DNA linker cassette ligation reaction. 

Reagent Amount (1X reaction) 

*10X incubation buffer 1 μL 

*ATP (10 mM) 1 μL 

Linker cassette 2 μL 

*Fast Link DNA ligase (2 U/μL) 1 μL 

ddH2O Up to 10 μL 

*Fast Link DNA ligation kit (Biozym) 

 

After the linker cassette ligation reaction, the samples were washed twice with ddH2O on a 

magnetic stand. The bead-DNA complexes were denatured by a 10-60 min 0.1 M NaOH wash on 

a horizontal shaker at 300 rpm at room temperature (increasing denaturation times increases the 

purity of DNA). Beads were removed with a magnetic stand and the released DNA was prepared 

for the First Exponential PCR in order to amplify the amount of successfully linker-ligated DNA 

(Table 4.8. and Table 4.9.). 
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Table 4.8. First Exponential PCR setup. 

Reagent Final amount (1X reaction) 

10X Taq polymerase reaction buffer 5 μL 

dNTPs 1 μL 

Primer LTR II (50 pmol/μL) 0.5 μL 

Primer LC I (50 pmol/ μL) 0.5 μL 

Template DNA (1 ug) 2 μL 

Taq polymerase (2.5 U/μL) 1 μL 

ddH2O Up to 50 μL 

 

Table 4.9. Linear PCR I. 

Temperature Time Cycle number 

95C 2 min 1 

95°C 45 s 

 

60°C 45 s 

72°C 1 min 

72°C 5 min 

4°C ∞  

 

PCR products of the first exponential PCR were captured with streptavidin-coupled magnetic 

beads as previously described (same procedure as after the Linear PCR). Captured DNA was 

prepared for the Second Exponential PCR. The Second Exponential PCR has the same 

temperature and cycle regime as the First Exponential PCR, as well as the same chemical regime. 

The only difference is that in this PCR setup another primer pair was used. Primer LTR III and 

LC II, in order to ensure the amplification of only successfully linker-ligated DNA on the 3’ end, 

and DNA fragments containing the viral LTR on the 5’ DNA end.  

After performing the Second Exponential PCR a control 2% agarose gel was run with the 

obtained PCR products in order to verify that the LAM-PCR procedure was successfully 

performed and to control for eventual contaminations in the H2O negative control sample. Upon 

the Second Exponential PCR, DNA purification of the PCR products was performed.  

DNA products were purified from the PCR with AMPure beads (Beckman Coulter). The beads 

were added to the PCR product in a 1:1,1 ratio and incubated 5 min at room temperature. The 

supernatant was removed by using a magnetic stand and the beads were washed twice with 80% 

EtOH. After the washing steps, the beads were resuspended in 20 μL water and the purified DNA 

 35 
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was transferred into fresh tubes by using a magnetic stand. This purified DNA was used as an 

input for the sequencing library preparation.  

  

Table 4.10. List of used primer pairs for LAM-PCR procedure. 

Primer Sequence 

LTR I GAGCTCTCTGGCTAACTAGG 

LTR II AGCTTGCCTTGAGTGCTTCA 

LTR III AGTAGTGTGTGCCCGTCTGT 

LC I GACCCGGGAGATCTGAATTC 

LC II AGTGGCACAGCAGTTAGG 

 

Sequencing library preparation 

 

For the sequencing library preparation, a 40 ng DNA input of the purified DNA from the 

LAM-PCR procedure was used and a PCR was performed to ligate the sequencing linker to the 

purified DNA (Table 4.11. and Table 4.12.). 

 

Table 4.11. Mega PCR – Library preparation. 

Reagent Final amount (1X reaction) 

10X Taq polymerase reaction buffer 5 μL 

dNTPs 1 μL 

Mega primer (5 pmol/μL) 1 μL 

*Mega Linker (CCTAACTGCTGTGCCACT) 1 μL 

Template DNA (40 ng) 2 μL 

Taq polymerase (2.5 U/μL) 1 μL 

ddH2O Up to 50 μL 

*Always the same for all samples 
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Table 4.12. Linear PCR II. 

Temperature Time Cycle number 

95C 2 min 1 

95°C 45 s  

60°C 45 s 

72°C 1 min 

72°C 5 min 

4°C ∞  

 

The Mega primer sequence was individually chosen for each sample and was dependent on the 

ligated linker cassette. It is important that the Mega primer anneals to the unique linker cassette. 

After performing the PCR another control 2% agarose gel was run to check for successful DNA 

amplification and the amplified DNA was further purified with AMPure beads as previously 

described. The only difference in this DNA purification step is that the beads are added in a lower 

ratio to the PCR product (1:0.7) in order to amplify only PCR products above the size of 100 bp, 

since PCR products of this size most probably contain the target sequence and successfully bound 

linker cassettes and sequencing linker.  

 

Next generation sequencing 

 

The prepared sequencing libraries were sequenced on an Illumina MiSeq platform by 250 bp 

Paired End sequencing method.  

 

Integration site data analysis and comparison 

 

The pairwise comparison of the common integration site (CIS) profile was performed to evaluate 

the similarity of the samples. The CIS definition is based on an approach based on graph and 

described in Fronza et al, 2015. Each combination of the insertion site set of samples were 

analyzed in order to obtain a mixed CIS profile. Normalized entropy N between 0 and 1 was then 

computed for each CIS >2th order in the mixed profile. The normalized entropy value for the CIS 

in the mixed profile of the samples is defined as Nijl= (Sk pijlk)/log 2, where pijlk is the IS 

fraction belonging to the sample k, which represents the dataset of IS from other studies (Ikeda et 

 15 
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al, 2007; Brady et al, 2009; Wagner et al, 2014, Maldarelli et al, 2014; Kok et al, 2016). Then, all 

those CIS with Nijl > 0 were defined as shared. The fraction of shared CIS with respect to the 

total number of CIS was used as a measure of association between the two samples. The values 

together form a 9 x 9 association matrix, with values ranging from 0 (no shared CIS) to 1 (all CIS 

are shared). The matrix was then loaded into R suite and converted to a dissimilarity table. 

Briefly, for each element eij in the matrix, with i = 1, 2, … 9, a dissimilarity table was 

constructed where the dissimilarity values di,j = 1 – eij are used as a distance in order to perform 

a hierarchical clustering. The tree structure is then obtained by plotting the results returned from 

the R function hclust(). 

 

IV. XVII. RNA extraction 
 

RNA was extracted with Invitrap spin universal RNA mini kit (Stratec biomedical) by following 

manufacturer instructions. RNA concentration was measured via spectrophotometry on P-class P 

300 NanoPhotometer (IMPLEN). 

 

IV. XVIII. Quantitative reverse transcription PCR  
 

The quantitative reverse transcription PCR was performed as previously described in Marini et al, 

2015.  

For the quantification of HIV transcript levels, RNA was purified from the cells with the Invitrap 

spin universal RNA mini kit (Stratec biomedical), as previously described. The messenger RNA 

(mRNA) levels were quantified by TaqMan quantitative reverse transcription PCR (qRT-PCR) 

using HIV-1 primers and probe, and housekeeping gene 18S and GAPDH (both containing 

VIC™/TAMRA™ fluorescent probe) (Applied Biosystems) as controls. 

The RT-PCR reaction was performed using M-MLV reverse transcriptase and reagents from 

Invitrogen and the qPCR reaction was performed using TaqMan technology from Biorad (Table 

4.13.). 
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Table 4.13. RT-PCR setup. 

Reagent 1X reaction reagent final amount RT-PCR program 

Mix 1 

RNA input 

Random primers 

dNTPs 

 

- 500 ng 

- 3 ⎧g 

- 10 mM 

Incubate reaction 

 

65 °C – 5 min 

4 °C - ∞ 

Mix 2 

5X First strand buffer buffer 

DTT 

RNA inhibitor 

 

- 1X 

- 3 ⎧M 

- 40 U 

Add mix 2 to reaction and incubate 

 

37 °C – 2 min 

4 °C - ∞ 

Addition of M-MLV reverse 

transcriptase 

- 200 U Add enzyme to reaction and incubate 

 

25 °C – 10 min 

37 °C – 50 min 

70 °C – 15 min 

4 °C - ∞ 

 

Table 4.14. List of used primers and probes for HIV mRNA expression levels quantification. 

Primer Sequence Position 

U1a Fwd primer  ACATCAAGCAGCCATGCAAAA 543 

U1a Rev primer CAGAATGGGATAGATTGCATCCA 629 

U1a probe AAGAGACCATCAATGAGGAA 605 

Nuc1b Fwd primer CGTCTGTTGTGTGACTCTGGTAACT 111 

Nuc1b DNA Rev primer CACTGCTAGACATTTTCCACACTGA 158 

Nuc1b probe ATCCCTCAGACCCTTT 140 

 

For the quantification of cell gene transcription levels, the same procedure as described for HIV 

transcript levels was performed. 

 

Table 4.15. List of used gene expression assays (Applied Biosystems). 

Gene Expression assay code 

BACH2 Hs00222364_m1 

STAT5B Hs0273500_m1 

MKL2 Hs00539161_s1 

Tubulin 1a Hs03045184_g1 

 1X 
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IV. XIX. RNA expression analysis by microarray 
 

RNA expression levels were determined via BeadArray microarray Technology (Illumina) by 

using the HumanHT-12 Expression BeadChip kit.  

BeadArray data analysis was performed in GenomeStudio software (Illumina) and R statistical 

software.  

 

IV. XX. Bacterial Artificial Chromosome (BAC) DNA purification   
 

BAC DNA was purified with NucleoBond Xtra Maxi kit (Macherey-Nagel) according to 

manufacturer instructions. BAC DNA constructs containing sequences of selected RIGs and non-

RIGs were used for the generation of fluorescent DNA FISH probes.  

 

Table 4.16. List of used BAC constructs. 

Gene name BAC reference code 

BACH2 RP11-59717 

NPLOC4 RP11-765O14 

MKL2 RP11-1072B15 

STAT5B CTD-3124P7 

DNMT1 CTD-2240E14 

RPTOR RP11-28G8 

SMG1 RP11-1035H13 

GRB2 RP11-16C1 

GNB1 RP11-798H13 

NFATC3 RP11-67A1 

KDM2B RP11-44F24 

ACTN1 RP11-226F19 

PACS2 RP11-521B24 

CNTN4 RP11-63O1 

RNF157 RP11-449J21 

 



Materials and methods 

172 
 

IV. XXI. Immunofluorescence (IF) 
 

Cell preparation and permeabilization  

 

Suspension cells were seeded and fixed with 4% PFA/PBS on glass cover slips which were 

previously coated with 0,5 mg/mL PEI (Polyethyleneimine), whereas adherent cells were directly 

grown on glass coverslips. 

Only for R-loop staining cells were fixed 10 minutes in methanol at -20°C and subsequently 1 

minute in Acetone at -20°C. Cells were washed with PBS and permeabilized with 0,5% 

Triton/0,1% PBS/Tween for 10 minutes at room temperature, and subsequently washed with 

0,1% PBS/Tween. 

 

Staining 

 

After washing and 30 minutes blocking in 4% BSA/PBS cells were incubated with primary 

antibodies diluted in 1% BSA/PBS overnight at 4°C. After incubation with primary antibodies 

cells were washed with 0,1% PBS/Tween and incubated with secondary Alexa Fluor antibodies 

(ThermoFisher) for 1 h at room temperature. After 0,1% PBS/Tween washing cells were 

counterstained with Hoechst and mounted on glass slides with mowiol solution.  

For STED nanoscopy Anti-Rabbit IgG ATTO 647N and Anti-Mouse IgG ATTO 594 (Sigma-

Aldrich) secondary antibodies were used.  

Used primary antibodies: rabbit polyclonal lamin B1 16048 (abcam), mouse monoclonal mAb 

414 24609 (abcam) mouse monoclonal Anti-Histone H3 (di methyl K9) 1220 (abcam), rabbit 

polyclonal Anti-Histone H3 (tri methyl K9) 8898 (abcam), rabbit polyclonal LEDGF/p75 A300-

847A (Bethyl Laboratories), mouse monoclonal (9F3) to gamma H2A.X (phospho S139) 

(abcam). 

 

R-loop staining 

 

For the R-loop staining in primary CD4+T cells and macrophages different staining approaches 

had to be applied. The R-loop antibody epitopes had to be exposed via different fixation and 
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permeabilization strategies in the two cell types. 

Primary CD4+T cells were fixed with 4% PFA/1X PBS/0,1%Tween for 10 minutes at room 

temperature. During the last two minutes of fixation a few drops of PBS/0,5% TritonX-100 were 

added. Cells were subsequently washed 3 times with 0,05%TritonX-100/PBS. Cells were 

permeabilized with 0,5% TritonX-100/PBS for 10 minutes at room temperature. Permeabilization 

was followed by 3 washes of 0,05%TritonX-100/PBS. Cells were blocked for 30 minutes at room 

temperature with 4% BSA/PBS/0,1% Tween. Cells were incubated overnight at 4°C with the 

primary antibody - S9.6 (Kerafast) and other tested antibodies (lamin B1 16048 - abcam) in a 

1:500 dilution in 1% BSA/PBS/0,1% Tween. The cells were washed 3 times with PBS/0,1% 

Tween and incubated for 1 hour at room temperature with the secondary antibody Alexa Fluor 

antibodies (ThermoFisher) in a 1:1000 dilution in 1% BSA/PBS/0,1% Tween. After 3 times 

washing in PBS/0,1% Tween, cells were stained with Hoechst for 5 minutes at room temperature 

and once rinsed in PBS. Coverslips were mounted with mowiol on glass microscopy slides. 

 

For R-loop staining in primary macrophages cells were fixed 10 minutes in methanol at -20ºC 

and 1 minute Acetone at -20ºC. Cells were subsequently washed 3 times with PBS and 

permeabilized with 0,5% Triton in 0,1% PBS/Tween for 10 minutes at room temperature. After 3 

times washing with PBS/0.1% Tween and 30 minutes blocking in 4% BSA/PBS cells were 

incubated with primary antibodies (S9.6 and lain B1) diluted 1:500 in 1 % BSA/PBS overnight at 

4C. Cells were afterwards washed 3 times with PBS/0.1% Tween and incubated for 1 hour at 

room temperature with the secondary antibody Alexa Fluor antibodies (ThermoFisher) in a 

1:1000 dilution in 1% BSA/PBS/0,1% Tween. After 3 times washing in PBS/0,1% Tween 

washing cells were stained with Hoechst for 5 minutes, rinsed in PBS and coverslips were 

mounted on glass microscopy slides with mowiol solution. 

 

IV. XXII. DNA fluorescent in situ hybridization (FISH) 
 

Cell preparation 

 

Cells were first prepared and permeabilized as already described in the IF section. Upon cell 

preparation, cells were first immunostained (as previously described) either with lamin B1 or 
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nuclear pore complex antibodies, which served as a landmark for the nuclear periphery. Upon 

incubation of the secondary antibodies, secondary antibodies were 10 minutes fixed with 

EGS/PBS in order to preserve their presence until completion of the entire FISH procedure. Cells 

were further permeabilized with 0.5% triton/0.5% saponin/PBS and 0.1 M HCl for 10 minutes, 

which was followed by 0,1% PBS/Tween washings between the incubation steps. Further on 

cells were equilibrated in 2X SSC buffer (Table 4.17.) and left in hybridization buffer overnight 

(Table 4.18.). Only for HIV FISH before cell equilibration in 2X SSC buffer and incubation in 

hybridization buffer, cells were treated with with 100 µg/ml RNase A (PureLink RNase A 

(Invitrogen)) in 2x SSC for 30 min at 37°C, in order to avoid possible HIV-1 FISH probe 

hybridization to viral RNA transcripts.  

 

Table 4.17. Preparation of saline-sodium citrate buffer (SSC). 

20X SSC buffer 

NaCl 175,3 g (In stock solution 3M) 

Na3Citrate x 2 H2O 88,2 g (in stock solution 300 mM) 

Dissolve chemicals in 800 ml ddH20 

Adjust pH to 7.0 with 14 N (or similar) HCl 

 

Table 4.18. Preparation of FISH hybridization buffer. 

FISH hybridization buffer 

50 ml deionized Formamide 

10 ml 20x SSC 

20 ml sterile water; adjust pH to 7.0, 

20 ml of 50% dextran sulfate 

Final volume = 100 ml 

Store at 4°C 

 

FISH probe preparation 

 

Biotinylated HIV-1 FISH probes were prepared with the Nick Translation Kit (Roche) and 

Dioxigenin labeled BAC FISH probes were prepared with the DIG-Nick Translation Mix 

(Roche) according to manufacturer instructions. Probe size was controlled by loading 1 µL of 

probe labeling reaction on a 1% agarose gel. If the prepared DNA FISH probes had the desired 

size between 200-500 bp, they were cleaned up with Illustra Microspin G-25 columns (GE-

Healthcare) according to manufacturer instructions, and precipitated in the presence of human 
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Cot-1 DNA (Roche) and DNA from herring sperm (Sigma). The presence of highly repetitive 

human sequences and fish sperm DNA in the target DNA FISH probe should facilitate specific 

binding of the FISH probe to the genomic target. Finally, after ethanol precipitation, the probes 

were resuspended in 10 µL formamide, incubated at 37°C for 15-20 min and 10 µL of 20% 

dextran in 4X SSC was added to a final volume of 20 µL. 

 

FISH probe hybridization and detection 

 

1-10 µL of the FISH probes were loaded onto glass slides which were covered with coverslips 

containing the cells, followed by sealing in a metal chamber, and heat-denatured in a water bath 

at 80°C for 7 min. Hybridization was performed for 48 h at 37°C in a water bath. Upon 

hybridization, coverslips containing the cells were washed in 2X SSC buffer (10 min each wash), 

which was followed with three washings in 0.5X SSC buffer at 56°C in order to wash away 

potential unspecific bound DNA FISH probe fragments. FISH detection, for Dig-labelled BAC 

probes, was performed by using FITC-labelled anti-digoxigenin antibody (Roche), whereas 

biotin-labelled HIV-1 probes were detected by a TSA Plus system from Perkin Elmer, allowing 

signal amplification, by using an anti-biotin antibody (SA-HRP) and a secondary antibody with a 

fluorescent dye (usually FITC for HIV). 

Upon FISH probe detection, the cells were counterstained with Hoechst and coverslips were 

mounted with moviol solution on glass slides  

 

IV. XXIII. Microscopy  
 

Confocal microscopy 

 

Confocal microscopy was performed on the confocal laser-scanning microscope Leica TCS SP8, 

by taking Z-stacks from each analyzed sample.  

Images were analyzed in ImageJ Fiji image processing package and Volocity imaging software 

(Perkin Elmer).  
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Measurements and FISH data analysis 

 

Distance measurements between the FISH signals and the nuclear envelope were measured using 

ImageJ Fiji image processing package and Volocity imaging software (Perkin Elmer). Distance 

measurements were normalized over nuclear radius (defined as half of the middle of the 

mAb414-TRITC or lamin B1 ring), and then binned into three classes of equal surface area 

(FISH signals positioned in the area of 1-19% of nuclear radius length occupied nuclear zone 1, 

signals in the area of 20-43% of nuclear radius length occupied nuclear zone 2 and signals in the 

area of 44-100% of nuclear radius length occupied nuclear zone 3). 

In addition, movement and redistribution of alleles upon distance measurements was assessed by 

performing the Kolmogorov-Smirnov test and p value definition in Prism Graphpad software. 

Images of representative cells containing FISH signals were adjusted in ImageJ Fiji image 

processing package by adjusting brightness and contrast ratio in order to increase signal to noise 

ratio and highlight the visibility of the FISH signal. Gaussian Blur filter was applied to the 

images by setting the gamma value to 1.  

 

Colocalization analysis 

 

The colocalization analysis between R-loop signals and HIV-1 IN.eGFP signals was conducted 

via visual appreciation of the analyzed signals. A colocalization between R-loop signals and 

HIV-1 IN.eGFP signals was counted as positive only in case of a total match/overlap of the 

analyzed signals (appreciated by a color-change in the colocalizing signals upon channel merge 

in Fiji image analysis software - R-loop channel set to magenta and IN.eGFP set to green; a 

merge of the channels and colocalization between analyzed signals appears as a white/yellow 

signal). Signals positioned next to each other were not counted as colocalizing signals.  

 

The position assessment of HIV-1 IN.eGFP (K264,266,273Q) mutant in primary CD4+ T cells 

and macrophages was performed via visual appreciation of the IN.eGFP signals in respect to their 

position to the nuclear lamina - stained with rabbit polyclonal lamin B1 16048 (abcam) antibody. 
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STED (Stimulated Emission Depletion) nanoscopy  

 

STED nanoscopy was performed on a gated λ=775 nm STED system containing an easy 3D 

optics module (Abberior Instruments) and the λ=640 nm excitation laser line. Additional confocal 

images of eGFP signals excited at λ=488 nm were acquired.  

Deconvolution of STED images was performed in Imspector software (Abberior Instruments) via 

the linear deconvolution tool.  

Images were further processed in ImageJ Fiji image processing package and Gaussian Blur filter 

was applied to the images by setting the gamma value to 1, in order to increase signal to noise 

ratio. 

 

IV. XXIV. Plasmid DNA purification 
 

Plasmid DNA was extracted with Plasmid Midi Kit (Qiagen) according to manufacturer 

instructions.   

 

IV. XXV. Plasmid transfections 
 

pMMM-FLST plasmid, containing RNase H1 coding sequence and NLS, as well as GFP reporter 

sequence, was transfected into Jurkat cells and primary CD4+T cells via electroporation using 

Amaxa Cell Line Nucleofector Kit V (Lonza). Again, 0,5 µg of plasmid DNA was used for 

transfection of 106 cells. 

The same plasmid was transfected into MDMs with the PromoFectin kit (PromoKine). 0,5 µg of 

plasmid DNA was used for transfection of 106 cells.  

 

pMMM-FLST, RNase H WKKD (binding and catalytic mutant) and D210N (binding mutant) 

plasmid constructs were delivered into HEK293T cells and HeLa wt cells via lipofection. 2*106 

cells were lipofected with 0,5 µg plasmid per 1*106 cells with Lipofectamine LTX with Plus 

Reagent kit (Thermo Fisher).  

The efficiency of plasmid delivery was assessed via fluorescence microscopy and detection of 

GFP expression on Olympus IX81 microscope (Olympus). 
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IV. XXVI. Chromatin immunoprecipitation followed by quantitative PCR 

(ChIP-qPCR) 
 

ChIP was performed as described in Chen et al, 2012 with smaller modifications. 

CD4+T cells (10x106) were washed twice in PBS before crosslinking with 1% final formaldehyde 

for 10 min at room temperature, followed by termination of the reaction with 125 mM glycine on 

ice. The cell pellet was washed twice with PBS and was lysed in 0.5% NP-40 buffer (10 mM 

Tris-Cl pH7.4, 10 mM NaCl, 3 mM MgCl2, 1 mM PMSF and protease inhibitors). The nuclei 

obtained were washed once in the same buffer without NP-40. Lysis of the nuclei was performed 

using a nuclear lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8) and keeping the 

cells for 30 minutes on ice. DNA was sheared by sonication (on Bioruptor sonicator Diagenode) 

to obtain fragment size of 400-200 bp. Extracts were pre-cleared by incubation with 

immunoglobulin-γ and agarose beads, followed by centrifugation at 1,200g for 5-10min. The 

lysate was then diluted to 1X in a 5X ChIP binding buffer (50 mM Tris-HCl pH 7.4, 150 mM 

NaCl, 1 % NP40, 0.25 % Na-DOC, 1 mM EDTA pH 8 and protease inhibitors) and incubated 

with 2-4 µg of the indicated antibody overnight at 4°C, followed by incubation for 2 h with 

MagnaChIP Protein A/GMagnetic Beads (Millipore). Beads were then washed with ChIP binding 

buffer (1X PBS, 0,1% BSA, 2 mM EDTA, pH7.4), LiCl-containing buffer (10 mM Tris-HCl, 

pH8, 250 mM LiCl, 1% IGEPAL, 1% NaDoc, 1 mM EDTA) and with TE buffer (10 mM Tris-

HCl, pH8, 50 mM NaCl, 1mM EDTA). ChIP samples were subsequently treated with RNase A 

for at least 30min at 37°C, and then treated with proteinase K for at least 2 h at 56°C. De-

crosslinking of protein-DNA complexes was performed by an overnight incubation at 65°C. 

Afterwards the DNA was pulled down by a 2 h incubation with AMPure XP magnetic beads 

(Beckman Coulter) at room temperature. The beads containing bound DNA fragments were 

washed twice with 80% ethanol and afterwards air dried for 45 min. Upon drying the beads were 

resuspended in water, and the magnetic beads were removed with a magnet, which released the 

immunoprecipitated DNA.  

Target enrichment was determined by quantitative PCR. Enrichment was calculated by using the 

2(-Delta Delta C(T)) method for analysis of real time quantitative PCR (Livak & Schmittgen, 

2001) and the results were normalized over ChIP input values.  
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Used antibodies: mouse monoclonal Anti-Histone H3 (di methyl K9) 1220 (abcam), rabbit 

polyclonal Anti-Histone H3 (tri methyl K9) 8898 (abcam), rabbit polyclonal LEDGF/p75 A300-

847A Bethyl Laboratories), rabbit polyclonal Anti-Histone H3 (tri methyl 36) 9050 (abcam). 

 

Table 4.19. List of used primers for ChIP-qPCR analysis. 

Gene Region Sequence 

BACH2 First intron F: GAAGAGTGCCTAGCACAGTAAG 

R: GAGCACACAGGTTTAGGAGATG 

Gene body F: CAACTCCAAGGGCCAGAG 

R: AGAGGCTGAACCAACAAGAG 

Exon/intron junction (gene end) F: TCTGCCTCTGATCCCTATGT 

R: GGTAGCAAGTAAGGGTCCAAA 

STAT5B First intron F: TCAAACGTGGTGGAAGTGTTAG 

R: CACCCAGCCTACCATCTTATTT 

Gene body F: GGTGATGGTCATGGTTTCCT 

R: GAGACACCTGCTTCTGCTG 

Exon/intron junction (gene end) F: CTTCCTCTGAAGGGATGGTATTG 

R: TCACGCTGATGACTTGAAACT 

MKL2 First intron F: GACCCTTTGCGTACCTTCTT 

R: GTGGAGCTCAGAGTCTACATTTC 

Gene body F: TGAAACACAAGATTCGGATCG 

R: GGGAATAAACAGAAATGGTGGAAAT 

Exon/intron junction (gene end) F: AGAGGAAAGACCACTCCCTAT 

R: GGCTTTCTGTTGTGAGTTGTATG 

RPTOR First intron F: TGCTGGCAGATTGTGGTAAA 

R: GGGAAGGAAGGAAGGAAGAAAG 

Gene body - 

Exon/intron junction (gene end) - 

NPLOC4 First intron F: CCAAGGCCAACTCCAGTATT 

R: GGTCTGTCTCTTCCTGTGTATTT 

Gene body - 

Exon/intron junction (gene end) - 

KDM2B First intron F: GTTGCTTGGGTTGCAATGG 

R: AGAGAGCCCGGGACATTAT 

Gene body - 
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Exon/intron junction (gene end) - 

PACS2 First intron F: CCCAAATCTCATAGCCAGTAGG 

R: GTGAGGGAGCACAGGAAATA 

Gene body - 

Exon/intron junction (gene end) - 

ACTN1 First intron F: AGGTAGAGAGGAACCAGAAA 

R: AATGCCAGGGAAAGGTAAGG 

Gene body - 

Exon/intron junction (gene end) - 

CNTN4 First intron F: CTTACACACCCTTCACCACTAC 

R: CGCAAGACTCCCACAATAGAA 

Gene body F: CAGGAGTGATGGGTGAATATGAG 

R: TAAAGCAAAGCATTCCAGCTTC 

Exon/intron junction (gene end) F: TACTTGTCTTTCGGGAGCATTT 

R: GCTCTGGGTCATCTAGATTTGG 

 

 

IV. XXVII. DNA-RNA hybrid immunoprecipitation (DRIP) 
 

DRIP was performed as previously described in Ginno et al, 2012.   

107 primary CD4+ T cells were used as starting material. After collection, cells were washed with 

PBS and used for DNA extraction with DNeasy Blood & Tissue kit (Qiagen). 4 μg of DNA was 

sheared by sonication (Bioruptor, Diagenode). After sonication the sample was split, where one 

part of the sample was treated only with RNase A (to remove possible residual RNA) and the 

other part of the sample was treated with RNAse A (PureLink RNase A, Invitrogen) and RNAse 

H1 (NEB M0297S) (to remove R-loops) overnight at 37°C. The RNAse H1 treated sample was 

used as a negative control for the R-loop pull down procedure. After RNase A and RNase H1 

digestion the samples were additionally digested with proteinase K (Proteinase K Solution, 

ThermoFisher) for 30 minutes at 37°C. After proteinase K digestion, the DNA was extracted 

from the samples by phenol/chloroform extraction. Samples are resuspended in 450 μL of TE 

buffer and 50 μL of binding buffer (10X binding buffer: 100 mM NaPO4 pH 7, 1,4 M NaCl, 0,5% 

Triton X100,) was added. To each sample 10 μL of S9.6 antibody (Kerafast) was added and the 

samples are incubated at 4ºC overnight. Agarose A/G beads (Pierce) were pre-washed 3 times 
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with 1X binding buffer (diluted in TE) before addition to the samples. The beads were added to 

DNA-S9.6 antibody complexes and left incubating on a rotisserie shaker for 2 h at 4ºC. After 

incubation, bead-antibody complexes were washed 3 times with 1X binding buffer and 

resuspended in 250 μL elution buffer (50 mM Tris, pH 8; 10 mM EDTA, 0,5% SDS). Afterwards 

another proteinase K digestion was performed for 1 h at 55ºC, by the addition of 7 μL of the 

enzyme. After digestion, the DNA was cleaned up with QIAquick PCR purification kit (Qiagen).  

 

 

The enrichment of R-loops was 

determined by qPCR using control 

primers for R-loop rich and R-loop poor 

genes (Table 4.20.). R-loop enrichment 

was also assessed for selected RIGs, and 

the results were analyzed by the 2(-Delta 

Delta C(T)) method for analysis of real 

time quantitative PCR (Livak & 

Schmittgen, 2001), and normalized over 

the R-loop poor region of the SNRPN 

gene, which turned out to be the best 

normalizer for primary CD4+ T cells, and has previously been demonstrated to be an adequate 

DRIP-qPCR normalizer gene (Garcia-Rubio et al, 2015) .  

  

To control for the efficiency of the DRIP procedure and successful R-loop pull-down, the DRIP 

was in parallel performed on an R-loop containing plasmid construct (kindly provided by the lab 

of Frederick Chedin), which was also used as a spike in control in the actual DRIP samples. 

The pFC53 plasmid, containing an R-loop forming sequence and a T3 promoter first had to be in 

vitro transcribed, which would initiate R-loop formation. For this reaction 3 μg of plasmid DNA 

was used, which was mixed with 1 M DTT, 2,5% Tween, 2,5 mM rNTPs, 5X reaction buffer 

(Promega) and T3 RNA Polymerase (Promega). The reaction was incubated for 30 minutes at 

37ºC, and the T3 RNA Polymerase was subsequently heat inactivated for 10 minutes at 65ºC. 

The reaction was afterwards split for either only RNase A treatment or RNase A and RNase H 

 

 

Figure 4.1. Scheme of the binding region of the R-loop 

specific antibody S9.6.  

The epitope of the R-loop specific S9.6 antibody is 

demonstrated to be 6 bp in size (Phillips et al, 2013).  
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treatment, as previously described for the actual DRIP samples. Upon subsequent Proteinase K 

digestion, the samples were ran on a 2% agarose gel to check for R-loop formation. The formed 

R-loop fragment can be appreciated on the gel in form of a smear and slight shift of the plasmid 

on the gel. In order to separate the R-loop fragment from the rest of the plasmid and use both 

fragments as spike in controls, only the RNase A treated sample was further digested with ApaLI 

(NEB) restriction enzyme by following manufacturer instructions. Upon digestion, the reaction 

was cleaned up with the QIAquick PCR purification kit (Qiagen). 
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Table 4.20. List of used primers for DRIP-qPCR. 

Positive R-loop primer Sequence 

APOE F: CCGGTGAGAAGCGCAGTCGG 

R: CCCAAGCCCGACCCCGAGTA 

MYADM F: CGTAGGTGCCCTAGTTGGAG 

R: TCCATTCTCATTCCCAAACC 

RPL13A F: AATGTGGCATTTCCTTCTCG 

R: CCAATTCGGCCAAGACTCTA 

EGR1 F: CCAATTCGGCCAAGACTCTA 

R: CTTGTGGTGAGGGGTCACTT 

BTBD19 F: GGCTGCTCAGGAGAGCTAGA 

R: ACCAGACTGTGACCCCAAAG 

Negative R-loop primer Sequence 

SNRPN F: GCCAAATGAGTGAGGATGGT 

R: TCCTCTCTGCCTGACTCCAT 

EGR1 negative region F: GAACGTTCAGCCTCGTTCTC 

R:GGAAGGTGGAAGGAAACACA 

MYADM negative region F: TGCATCTACATCCGCAAAAG 

R: AGAGTGGACGCTGCAGAAAT 

pFC53 primer Sequence 

R-loop fragment F: TTTAGAGCTTGACGGGGAAA 

R: CAACAGTTGCGTAGCCTGAA 

Non-R-loop fragment F: TTGCCGGGAAGCTAGAGTAA 

R: GCTGCCATAAGCATGAGTGA 

RIGs primer Sequence 

BACH2 F: GAAGAGTGCCTAGCACAGTAAG 

R: 

GAGCACACAGGTTTAGGAGATG 

STAT5B F: TCAAACGTGGTGGAAGTGTTAG 

R: CACCCAGCCTACCATCTTATTT 
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IV. XXVIII. DNA-RNA hybrid immunoprecipitation (DRIP) combined with 

Alu PCR 
 

In order to verify whether integrated HIV-1 DNA can be situated in R-loop rich regions a 

combined approach of DRIP and Alu PCR was performed. 

DRIP was performed on infected material - pNL4-3/E-R- HIV-1 infected CD4+ T cells as 

previously described. DRIP was performed to the last step of DNA extraction, which was 

followed by using the extracted genomic DNA as an input for an Alu PCR reaction. Alu PCR 

was performed in 2 steps as previously described. The results were analyzed by the 2(-Delta 

Delta C(T)) method for analysis of real time quantitative PCR (Livak & Schmittgen, 2001), and 

normalized both over both, the B13 region of the lamin B2 gene or R-loop poor region of the 

SNRPN gene.  

 

IV. XXIX. Absolute quantification of early and late HIV-1 RT-products and 

2LTR circles 
 

The absolute quantification of early and late HIV-1 RT-products and 2LTR circles was 

performed by digital droplet PCR (ddPCR) as previously described by Bejarano et al, 2018. Early 

and late RT-products were detected with primers and probes annealing to the long terminal repeat 

(LTR) or to the gag gene of the HIV-1 genome. A specifically designed set of primers and probe 

were used for the detection of 2LTR circles (Table 4.21.). As a housekeeping control gene of the 

host genome ribonuclease P protein subunit p30 (RPP30) was also quantified and used for the 

normalization of really and late RT-product values, as well as 2LTR circles. In addition, 20 µL 

reactions, containing 2-4 µL of the diluted DNA, 900 nM of each primer, 200 nM probe, 1x 

ddPCR Supermix for probes (no dUTP) (Bio Rad) and water were prepared for each sample and 

analyzed target. The droplets were generated by using the droplet generation oil for probes 

(BioRad). The droplets were immediately transferred to a 96-well microplate. The PCR 

amplification was performed by applying the following temperature regime: initial denaturation 

and stabilization at 95°C for 10 min, 40 cycles of denaturation at 94°C for 30 s, and 

annealing/extension at 57°C for 60 s, followed by 10 min at 98°C. Following PCR amplification, 

the droplets were sorted and analyzed in a QX200 droplet reader (BioRad) by using the 

QuantaSoft v1.6 software (BioRad) and the settings for absolute quantification. Results were 
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analyzed using the same software, and copy numbers were normalized to the copy numbers of the 

housekeeping gene. 

 

Table 4.21. List of used primers/probes for ddPCR amplification of early and late 

HIV-1 RT-products and 2LTR circles (Bejarano et al, 2018).  

Target Sequence 

5’ LTR Fwd TTAAGCCTCAATAAAGCTTGCC 

5’ LTR Rev GTTCGGGCGCCACTGCTAG 

5’ LTR probe FAM–CCAGAGTCACACAACAGACGGGCA–BHQ1 

Gag Fwd CATGTTTTCAGCATTATCAGAAGGA 

Gag Rev TGCTTGATGTCCCCCCACT 

Gag probe HEX—CCACCCCACAAGATTTAAACACCATGCTAA–BHQ1 

2LTR Fwd CTAACTAGGGAACCCACTGCT 

2LTR Rev GTAGTTCTGCCAATCAGGGAA  

2LTR probe  FAM—AGCCTCAATAAAGCTTGCCTTGAGTGC–BHQ1 

RPP30 Fwd GATTTGGACCTGCGAGCG 

RPP30 Rev GCGGCTGTCTCCACAAGT 

RPP probe FAM–CTGACCTGAAGGCTCT–BHQ1 

 

 

IV. XXX. Total quantification cellular R-loop levels by dot blot assay 
 

The dot blot assay was performed as previously described by Wahba et al, 2013.  

500 ng of genomic DNA was directly spotted on a nitrocellulose membrane (GE Healthcare Life 

Sciences) and left to dry. Afterwards, the nitrocellulose membrane was UV-crosslinked and 

blocked for 30 minutes in 5% FBS/1% Tween/1xPBS at room temperature. Further on the 

nitrocellulose membrane was incubated with the primary S9.6 antibody in a 1:500 dilution in 1% 

FBS/1% Tween/1xPBS overnight at 4°C. Afterwards the membrane was washed in 0,1% 

Tween/1xPBS and incubated with mouse secondary antibody (Jackson immunoresearch) for 1 h 

at room temperature. After secondary antibody incubation, the membrane was again washed in 

0,1% Tween/1xPBS and R-loop signals were detected with the Amersham ECL Prime Western 

Blotting Detection Reagent (GE Healthcare Life Sciences) and exposing the membrane on a 

western blot chemiluminescence imaging device Alliance Q9 Touch (Mandel).  
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IV. XXXI. In vitro integration assays  
 

Integration assays were performed as previously described by Benleulmi et al, 2015. For the 

purpose of assay performance, recombinant purified IN was used. IN/v DNA complexes were 

pre-assembled as previously described by Lesbats et al, 2008 and Benleulmi et al, 2015. 10 ng of 

donor DNA containing the U5 viral ends was used to assemble the IN/vDNA complexes. Pre-

assembled complexes were further on incubated with 50 ng of, either transcribed (containing R-

loop) or non-transcribed pFC53 plasmid constructs (not containing R-loop) in 20 mM HEPES 

pH7, 15% DMSO, 8% PEG, 10 mM MgCl2, 20 µM ZnCl2, 100 mM NaCl, 10 mM DTT final 

concentration. After the integration reaction was performed, the reaction was further treated for 1 

h at 37ºC with HpaI restriction enzyme in order to cut the pFC53 plasmid construct into its R-

loop and non-R-loop fragment, as well as to release the formed integration products. Afterwards 

the resultant integration products were deproteinized by Proteinase K treatment and 

phenol/chloroform/isoamyl alcohol (25/24/1 v/v/v) treatment before loading onto a 1% agarose 

gel. The obtained gel was further dried and submitted to autoradiography. The bands 

corresponding to free substrate (S), donor/donor, linear FSI (FSI) and circular HSI + FSI 

(HSI + FSI) products were quantified.  

This part of the study was completed by the help and work of Dr. Vincent Parissi (University 

Bordeaux).  

 

IV. XXXII. In silico analysis of R-loops and HIV-1 integration sites 
 

The initial screen of the overlap between R-loop forming sites and HIV-1 integration sites was 

performed using the R statistical software via the application of the sequence alignment and 

analysis plugin Bioconductor, by using a cut-off window for sequence alignment of 50 kb. HIV-1 

integration site maps were used from data generated from MDMs and CD4+ T cells (Cohn et al, 

2015; Kok et al, 2016) and R-loop maps were used from data generated from the NT2 cell line 

and K562 cell line (Sanz et al, 2016).  
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This part of the study was completed by the help and work of Constantin Ahlmann-Eltze 

(Heidelberg University).  

The second part of the screen was performed by using the extended list of RIGs from the Lusic 

lab (containing 11.537 genes) (Lucic et al, 2019) which was overlapped with R-loop maps from 

K562 cells (Sanz et al, 2016) using the R statistical software via the application of the sequence 

alignment and analysis plugin Bioconductor, by using a cut-off window for sequence alignment 

of 50 kb. As an internal control and as an outlier of the analysis, LAD maps from human 

fibroblasts (Guelen et al, 2008) and human Jurkat T cell line (Robson et al, 2017) were included 

into the analysis.  

This part of the study was completed by the help and work of Maja Kuzman (University of 

Zagreb).  
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VI. Appendix 
 

VI.I. List of Abbreviations  
 

 
Abbreviation  Elaboration 

 

 

°C degree Celsius  

Δ Delta  

µg microgram  

µL microliter  

µm micrometer  

µM micromolar  

3 D Tridimensional  

A Alanine  

ACTN1 Alpha actinin  

ADP Adenosindiphosphat  

AIDS Acquired Immune Deficiency Syndrome  

Airn Antisense Igf2r RNA  

Alu Arthrobacter luteus (repetitive genomic sequence)  

ApaLI Acetobacter pateurianus LI (enzyme)  

APC Antigen presenting cell  

APOE Apolipoprotein E  

AT Adenin Thymine  

B cell Bursa Fabricius lymphocyte  

BAC Bacterial artificial chromosome  

BACH2 Basic leucine zipper transcription factor 2  

BAF Barier to autoregulation protein   

bp Base pair  

BTBD19 BTB Domain Containing 19  

C2CD3 C2 Calcium Dependent Domain Containing 3  

Ca Calcium  
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Abbreviation 

 

Elaboration Continuation 

CA Capsid protein   

CaCl2 Calcium chloride  

cART Combined antiretroviral therapy  

CCD Catalytic core domain  

CCR5 C-C Motif Chemokine Receptor 5  

CD3 Cluster of Differentiation 3  

CD4 Cluster of Differentiation 4  

CD28 Cluster of Differentiation 28  

CD38 Cluster of Differentiation 38  

CD69 Cluster of Differentiation 69  

cDNA Complementary deoxyribonucleic acid   

C. elegans Caenorhabditis elegans  

ChIP Chromatin immunoprecipitation  

CNTN4 Contactin 4  

CPSF6 Cleavage and polyadenilation specificity factor 6  

CREBBP CREB Binding Protein  

Ct Cycle threshold  

CTCF CCCTC-binding factor  

CTD C-terminal domain  

CXCR4 C-X-C Motif Chemokine Receptor 4  

Cyp A Cyclophilin A  

D Aspartic acid  

DamID Deoxyribonucleic acid adenine methyltransferase identification  

DDR Deoxyribonucleic acid damage response   

Dig Digoxigenin   

DMEM Dulbecco’s modified eagle medium  

DNA Deoxyribonucleic acid   

DNase Deoxyribonuclease  

DNMT1 DNA Methyltransferase 1  

dNTP Deoxyribonucleotide  

DOC Deoxycholic acid  
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Abbreviation 

 

Elaboration Continuation 

DRIP DNA-RNA immunoprecipitation  

dsRNA Double stranded ribonucleic acid  

DTT DL-Dithiothreitol  

E Glutamic acid  

ECL Enhanced chemiluminescence   

eGFP Enhanced green fluorescent protein   

EGR1 Early Growth Response 1  

EGTA Ethylene glycol-bis(ßaminoethyl ether) tetraacetic acid  

EMD Emerin  

env Envelope  

ESC Embryonic stem cell  

ESCRT Endosomal sorting complex required for transport  

F Forward  

FA Formaldehyde  

FACS Fluorescence activated cell sorting  

FACT Facilitates transcription complex  

FBS Fetal bovine serum  

FISH Fluorescent in situ hybridization  

FG Phenylalanine-Glycine  

FSI Full site integration  

Fwd Forward  

G0 Growth 0 phase  

G1 Growth 1 phase  

G2 Growth 2 phase  

GO  Gene ontology  

GC  Guanine Cytosine  

GLP G9a-like protein  

GNB1 Guanine Nucleotide-Binding Protein G(I)/G(S)/G(T) Subunit Beta-1  

GRB2 Growth Factor Receptor Bound Protein 2  

h hours  

H1 Histone 1  
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Abbreviation 

 

Elaboration Continuation 

H2A Histone 2 A  

H2A(X) Phosphorylated histone 2  

H2B Histone 2 B  

H2O Water  

H3 Histone 3  

H3K4me3 Histone 3 Lysine 4 trimethylation  

H3K9ac Histone 3 Lysine 9 acetylation  

H3K9me2 Histone 3 Lysine 9 dimethylation  

H3K9me3 Histone 3 Lysine 9 trimethylation  

H3K14ac Histone 3 Lysine 14 acetylation  

H3K27ac Histone 3 Lysine 27 acetylation  

H3K27me3 Histone 3 Lysine 27 trimethylation  

H3K36me3 Histone 3 Lysine 36 trimethylation  

H3S10P Histone 3 serine 10 phosphorylation  

H4 Histone 4  

H4K5ac Histone 4 Lysine 5 acetylation  

H4K8ac Histone 4 Lysine 8 acetylation  

HAT Histone acetyl transferase  

HBD Hybrid binding domain  

HBS HEPES buffered saline  

HDAC Histone deacetylase  

HDAC1 Histone deacetylase 1  

HDM Histone demethylase  

HEK293T Human embryonic kidney 293T cells  

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

HIV-1 Human immunodeficiency virus type 1  

HIV-1 Human immunodeficiency virus type 2  

HMT Histone methyltransferase  

HP1 Heterochromatin protein 1  

HpaI Haemophilus parainfluenza I (enzyme)  

HSI Half site integration  
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Abbreviation 

 

Elaboration Continuation 

IBD Integrase binding domain  

IF Immunofluorescence  

IN Integrase protein   

IN.eGFP Vpr.Integrase.enhanced Green Fluorescent Protein-fusion  

K Lysine  

kb kilobase  

KCl Kalium chloride  

kDa kilodalton  

KDM2B Lysine Demethylase 2B protein  

KO Knockout  

L Liter  

LAD Lamina associated domain  

LAM PCR Linear amplification mediated polymerase chain reaction  

LAP2B Lamina associated polypeptide 2  

LBR Lamin B receptor  

LC Linker cassette  

LEDGF Lens epithelium derived growth factor  

LiCl Lithium chloride  

LOCK Large organized chromatin domain  

LRA Latency reversing agent  

LTR Long terminal repeat  

Lys Lysine  

m mili (10-3)  

M Mitosis  

mA miliamper  

Ma Matrix protein  

Mb Megabase  

MDM Monocyte derived macrophage  

Mg Manesium  

MgCl Magnesium chloride  

MHC Major histocompatibility complex  
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Abbreviation 

 

Elaboration Continuation 

min Minute  

MluCI Micrococcus luteus CI (enzyme)  

MLV Murine leukemia virus  

MKL2 Myocardin like 2  

mM milimolar  

MNase Micrococcal nuclease  

mRNA Messenger ribonucleic acid  

MseI Micrococcus species (R. Morgan) (enzyme)  

MTT assay 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor 

assay 

 

MYADM Myeloid Associated Differentiation Marker  

N Asparagine  

NaCl Sodium chloride  

NC Nuclear core protein  

NE Nuclear envelope  

nef Negative factor  

NFATC3 Nuclear Factor Of Activated T-Cells 3  

ng nanogram  

NL Nuclear lamina  

NLS Nuclear localization signal  

nm nanometer  

NPC Nuclear pore complex  

NPLOC4 NPL4 Homolog, Ubiquitin Recognition Factor  

NTD N-terminal domain  

NUP Nuclear pore protein  

ON Overnight  

p piko (10-12)  

PACS2 Phosphofurin Acidic Cluster Sorting Protein 2  

PBMC Purified Blood Mononuclear Cell  

PBS Phosphate-buffered saline   

pbs Primer binding site  
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Abbreviation 

 

Elaboration Continuation 

PCR Polymerase chain reaction  

PIC Preintegration complex  

PEI Polyethylenimine  

Pen/Strep Penicillin/Streptomycine  

PFA Paraformaldehyde  

PMSF Phenylmethylsulfonyl fluoride  

pol Polymerase  

polyA Polyadenylated  

ppt Polypurine tract  

PR Protease protein   

PRC2 Polycomb repressive complex 2  

PWWP Proline-Tryptophan-Tryptophan-Proline  

Q Glutamine  

qPCR Quantitative polymerase chain reaction  

R Reverse  

RANBP2 Ran binding protein 2  

Rev Reverse  

RGPD8 RANBP2-like and GRIP domain containing 8  

RIG Recurrent integration gene  

RIPA Radioimmunoprecipitation assay buffer   

RNA Ribonucleic acid  

RNAi Ribonucleic acid interferin  

RNA Pol2 Ribonucleic acid polymerase 2  

RNase Ribonuclease  

RNF157 Ring Finger Protein 157  

RNHL Ribonuclease H-like  

rNTP Ribonucleotide  

RPL13A Ribosomal Protein L13a  

RPMI Roswell Park Memorial Institute medium  

RPTOR Regulatory Associated Protein Of MTOR Complex 1  
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Abbreviation 

 

Elaboration Continuation 

RT Reverse Transcriptase (enzyme), Reverse Transcription (process) or 

Room Temperature 

 

RT-PCR Reverse transcriptase polymerase chain reaction  

s Second  

SA-HRP Streptavidin-horse radish peroxidase   

SAMHD1 SAM domain and HD domain-containing protein  

SDS Sodium dodecyl sulfate  

SETX Senataxin  

SG-PERT SYBR Green PCR-enhanced reverse transcriptase assay  

siRNA Small interfering ribonucleic acid  

SIV Simian immunodeficiency virus  

SMG1 Serine/threonine-protein kinase 1  

SNRPN mall nuclear ribonucleoprotein polypeptide N  

SSC Saline-sodium citrate  

STAT5B Signal transducer and activator of transcription 5B  

STED Stimulated emission depletion (microscopy)  

TAD Topologically associated domain  

T cell Thymus derived lymphocyte  

tat Transactivator of transcription  

TF Transcription factor  

TGF-β1 Transforming Growth Factor Beta 1  

Th T-helper cell  

Top I Topoisomerase 1  

TRC T cell receptor  

Treg T-regulatory cells  

Tris Tris Buffered Saline  

tRNA Transport ribonucleic acid  

TSS Transcription start site  

U Unit  

V Valine (aminoacid) or volt (electrical unit of voltage)  

vDNA Viral Deoxyribonucleic acid  

vif Viral infectivity factor  
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Abbreviation 

 

Elaboration Continuation 

vpr Viral protein R  

vpu Viral protein U  

VSV-G Vesicular stomatitis virus G protein  

WKKD Tryptophan-Lysine-Lysine-Aspartic acid  

wt Wilde type  

YY1 Ying yang 1 protein   

Zn Zink  

ZnCl Zink chloride  
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II. Results  
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VI.III. List of Reagents and Material 
 
 

Cells and culture medium 

 

 

Cell type Medium Medium composition   

Primary CD4+ T cells 

Supplemented RRPI 

RPMI 

10% FBS 

1% Pen/Strep 

*For CD4+ T activation: 

CD3/CD28 Dynabeads 

Human T-Activator 

CD3/CD28 

(ThermoFisher) and 5 

ng/mL IL-2  

MDMs 

Jurkat T cell line 

HEK293T cell line 

Supplemented DMEM 

DMEM 

10% FBS 

1% Pen/Strep 
 

HeLa cell line 

 

 

Drug compounds 

 

 

Drug name Supplier 

SAHA Sigma-Aldrich  

JQ1 Sigma-Aldrich  

BIX01294 Sigma-Aldrich  

UNC0642 Sigma-Aldrich  

 

 

Buffers and solutions 

 

 

Buffer/solution Composition 

RIPA 

150mM NaCl 

20mM Tris-HCl pH 7.4 

1mM EDTA 

0.5% NP-40 

0.5% DOC 

0.1%SDS 

 25 mM Tris 
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Buffer/solution Composition 

1X SDS running buffer 192 mM Glycine 

0,1% SDS, pH 8.3 

 

2X HBS  

50 mM HEPES 

280 mM NaCl 

1.5 mM Na2HPO4, pH 7.5 

 

SG-PERT cell lysis buffer 

0.25% Triton X-100 

50 mM KCl 

100 mM TrisHCl pH7.4 

40% glycerol 

 

10X SG-PERT dilution buffer 

50 mM (NH4)2SO4 

200 mM KCl  

200 mM Tris–HCl, pH 8.3 

 

 

 

 

2X SG-PERT reaction mix  

10 mM (NH4)2SO4 

40 mM KCl  

40 mM Tris–Cl pH 0.3 

10 mM MgCl2 

0.2 mg/ml BSA 

1/10,000 SYBR Green I 

400 μM dNTPs 

1 μM forward primer 

1 μM reverse primer 

1.2 μg/ml BMV RNA 

 

3M LiCl buffer  

10 mM Tris-HCl, pH 7.5 

1 mM EDTA 

3M LiCl 

 

6M LiCl buffer  

10 mM Tris-HCl, pH 7.5 

1 mM EDTA 

6 M LiCl 

IF blocking buffer 4% PFA in 1X PBS 

Cell permeabilization buffer  0,5% Triton 

0,1% Tween in 1X PBS 

IF wash buffer  0,1% Tween in 1X PBS 

FISH permeabilization buffer   0.5% Triton 

0.5% Saponin in 1X PBS 

 

20X SSC buffer  

3M NaCl 

300mM Na3Citrate x 2 H2O 

pH 7 

 

FISH hybridization buffer 

50% Formamide 

2X SSC buffer 

10% Dextran sulfate 

pH 7 
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Buffer/solution Composition 

 

 

NP-40 buffer 

0.5% NP-40 

10 mM Tris-Cl pH7.4 

10 mM NaCl2 

3 mM MgCl 

1 mM PMSF and protease 

inhibitors 

Nuclear lysis buffer 1% SDS 

10 mM EDTA 

50 mM Tris-HCl, pH 8 

 

 

5X ChIP buffer 

50 mM Tris-HCl, pH 7.4 

150 mM NaCl 

1 % NP40 

0.25 % Na-DOC 

1 mM EDTA, pH 8 and protease 

inhibitors 

 

ChIP binding buffer 

1X PBS 

 0,1% BSA 

2 mM EDTA, pH7.4 

LiCl buffer 10 mM Tris-HCl, pH8 

250 mM LiCl 

1% IGEPAL 

1% NaDoc 

1 mM EDTA 

TE buffer 10 mM Tris-HCl, pH8 

50 mM NaCl 

1mM EDTA 

 

DRIP binding buffer 

100 mM NaPO4, pH 7 

1,4 M NaCl 

0,5% Triton X100 

DRIP elution buffer  50 mM Tris, pH 8 

10 mM EDTA 

0,5% SDS 

 

 

 

In vitro integration assay buffer 

20 mM HEPES pH 7 

15% DMSO 

8% PEG 

10 mM MgCl2 

20 µM ZnCl2 

100 mM NaCl 

10 mM DTT 

Mowiol mounting medium 77 µM Mowiol 4-88 

30% Glycerol 

10mM Tris-HCl, pH 8.5 
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Chemicals and reagents  

 

 

Chemical/reagent Supplier 

Amersham ECL Prime Western Blotting Detection Reagent GE Healthcare Life Sciences 

AMPure XP magnetic beads Beckman Coulter 

Cot-1 DNA Roche 

Fixable Viability Dye eFluor 450 eBioscience 

Hering sperm DNA Sigma-Aldrich  

Immunoglobulin-γ and agarose beads Sigma-Aldrich  

MagnaChIP Protein A/G Magnetic Beads Millipore 

PBS Sigma-Aldrich  

PEI Sigma-Aldrich  

Propidium Iodide Roche 

Puromycin InvivoGen 

 

 
Enzyme Supplier 

ApaLi NEB 

DNA Polymerase Invitrogen 

HpaI NEB 

MluCI NEB 

M-MLV Reverse transcriptase Invitrogen 

MseI NEB 

Proteinase K Invitrogen 

PureLink RNase A Invitrogen 

RNase H1 NEB 

 T3 RNA Polymerase Promega 
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Antibody/ target protein Species Supplier 

β-actin mouse Sigma-Aldrich 

dimethyl-Histone H3 (Lys 9) mouse Millipore 

G9a/EMT2 rabbit Cell Signaling Technology 

Histone H3 rabbit Millipore 

Lamin B1 rabbit Abcam 

LEDGF/p75 rabbit  Bethyl Laboratories 

mAb 414 mouse Abcam 

p24 - Beckman Coulter 

S9.6 mouse Kerafast 

trimethyl-Histone H3 (Lys 9) rabbit Abcan 

trimethyl-Histone H3 (Lys 36) rabbit Abcam 

gamma H2A.X (phospho S139) mouse Abcam 

 

 
Secondary antibodies Species Supplier 

anti-digoxigenin - Roche 

Alexa 488 mouse ThermoFisher 

Alexa 568 mouse ThermoFisher 

Alexa 647 rabbit ThermoFisher 

ATTO 594 mouse Sigma-Aldrich  

ATTO 647N rabbit Sigma-Aldrich  

Western blot anti-mouse mouse Jackson immunoresearch 

Western blot anti-rabbit rabbit Jackson immunoresearch 
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Plasmid constructs 

 

Plasmid name Description 

pFC53 DNA template for R-loop formation in vitro 

pGZIP-G9a Lentiviral vector for G9a KO 

pMD2.G Expression vector for viral VSV-G presudotyping 

pMMM-FLST Expression vector for RNase H1 overexpression 

pMMM-FLST, RNase H1 D210N Expression vector for RNase H1 D210N mutant overexpression 

pMMM-FLST, RNase H1 WKKD Expression vector for RNase H1 WKKD mutant overexpression 

pNL4.3 Full-length proviral HIV-1 group M sequence containing plasmid 

for virus particle production 

 

pNL4-3/E-R-  

Full-length proviral HIV-1 group M sequence with a frameshift 

mutation in env gene containing plasmid for virus particle 

production 

HIV-1BRU(K264,266,273R)  
Full-length proviral HIV-1 group M sequence with K264, K266 

and R273 mutations in IN C-terminus for virus particle production 

vpr.IN.eGFP Expression vector for fluorescent virus particle labeling  

 

 

Commercial kits  

 

 

Kit name Supplier 

10X hexanucleotide mixture Roche 

Amaxa Cell Line Nucleofector Kit V Lonza 

Bradford assy BioRad 

CellTiter 96® Non-Radioactive Cell Proliferation Assay (MTT) assay  Promega 

DIG-Nick Translation kit Roche 

DNeasy Blood & Tissue kit Qiagen 

Fast Link DNA ligation kit Biozym 
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Kit name Supplier 

Invitrap spin universal RNA mini kit  Stratec biomedical 

Lipofectamine LTX with Plus Reagent kit ThermoFisher 

Nick Translation Kit Roche 

NucleoBond Xtra Maxi kit  Macherey-Nagel 

Plasmid Midi Kit Qiagen 

PromoFectin kit PromoKine 

QIAquick PCR purification kit Qiagen 

RosetteSep™ Human CD4+ T Cell Enrichment Cocktail STEMCELL 

TECHNOLOGIES 

TSA Plus system Perkin Elmer 

 

 
Devices and instruments 

 

 

Device/instrument Supplier 

BD FACSVerse flow cytometer BD Biosciences 

BeadArray microarray Technology / HumanHT-12 Expression BeadChip kit.  Illumina 

Bioruptor (sonication device) diagnose 

ddPCR automated droplet generator QX200  BioRad 

ddPCR droplet reader QX200 BioRad 

DNA gel electrophoresis device Biometra Compact Biometra 

Infinite 200 PRO multimode plate reader.  Tecan 

Leica TCS SP8 Laser Confocal Leica Microsystems Scanning Microscope Leica 

MiSeq platform Illumina 

Olympus IX81 microscope Olympus 
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Device/instrument Supplier 

P-class P 300 NanoPhotometer IMPLEN 

PCR Biorad CFX96 Touch platform BioRad 

SimpliAmp Thermal Cycler ThermoFisher 

STED system containing an easy 3D optics module Abberior Instruments 

Trans –Blot device for semi-dry transfer  BioRad 

Transiluminator (GEL-V-U-04-07) Zenith 

Ultracentrifuge L8-M Beckman Beckman Coulter 

Western blot gel running system Biometra 

Western blot chemiluminescence imaging device Alliance Q9 Touch Mandel 

 

 

Analytical softwares 

 

 

Software name Application Supplier 

Adobe Illustrator Data graphs and image arranging Adobe 

Adobe Photoshop Image analysis Adobe 

BD FACSuite software FACS data analysis BD Biosciences 

CFX Manager qPCR data analysis BioRad 

GraphPad Prism 
Data organization and statistic analysis GraphPad Software Inc. 

ImageJ Fiji  Image analysis Open source 

Imspector software STED image data deconvolution Abberior Instruments 

R software In silico data analysis; microarray data 

analysis 
R Core Team 

QuantaSoft Software ddPCR droplet analysis BioRad 

Volocity imaging software Image analysis; FISH distance measurements Perkin Elmer 
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Primer and primer probe sequences 

 

 

Primer name Primer sequence (5’-3’ direction) Application 

SG-PERT F: 

TAGTTGTTGGGCTTCGCTTT 
SG-PERT assay 

SG-PERT R: 

TTGTCGGCTTTACCTGCTTT3 

LM667 ATGCCACGTAAGCGAAACTCTGGCTAACTAG

GGAACCCACTG 

Alu PCR 

LR TCCACACTGACTAAAAGGGCTTGA 

ZXF-P probe TGTGACTCTGGTAACTAGAGATCCCTCAGAC

CC 

Alu1 TCCCAGCTACTGGGGAGGCTGAGG 

λ-primer ATGCCACGTAAGCGAAACT 

B13 Fwd primer CCCCAGGGAGTAGGTTGTGA 

B13 Rev primer TGTTATTTGAGAAAAAGCCCAA 

B13 probe CAGCAGGAAAGGAC 

2 LTR circles Fwd primer AACTAGAGATCCCTCAGACCCTTTT 

2LT circle 

quantification 2 LTR circles Rev primer CTTGTCTTCGTTGGGAGTGAATT 

2 LTR circles probe CTAGAGATTTTCCACACTGAC 

Total viral DNA Fwd primer TGTGTGCCCGTCTGTTGTGT 

Total viral DNA 

quantification Total viral DNA Rev primer GAGTCCTGCGTCGAGAGAGC 

Total viral DNA probe CGCCCGAACAGGGACTTGAA 

LTR I GAGCTCTCTGGCTAACTAGG 

LAM-PCR 

primer LTR II AGCTTGCCTTGAGTGCTTCA 

LTR III AGTAGTGTGTGCCCGTCTGT 



Appendix 

243 
 

Primer name Primer sequence (5’-3’ direction) Application 

LC I GACCCGGGAGATCTGAATTC 

LC II AGTGGCACAGCAGTTAGG 

U1a Fwd primer  ACATCAAGCAGCCATGCAAAA 

Quantification of 

late HIV-1 

mRNA products 
U1a Rev primer CAGAATGGGATAGATTGCATCCA 

U1a probe AAGAGACCATCAATGAGGAA 

Nuc1b Fwd primer CGTCTGTTGTGTGACTCTGGTAACT 

Quantification of 

early HIV-1 

mRNA products 
Nuc1b DNA Rev primer CACTGCTAGACATTTTCCACACTGA 

Nuc1b probe ATCCCTCAGACCCTTT 

BACH2 First intron F GAAGAGTGCCTAGCACAGTAAG 

ChIP-qPCR 

primer 

BACH2 First intron R GAGCACACAGGTTTAGGAGATG 

BACH2 Gene body F CAACTCCAAGGGCCAGAG 

BACH2 Gene body R AGAGGCTGAACCAACAAGAG 

BACH2 Gene end F TCTGCCTCTGATCCCTATGT 

BACH2 Gene end R GGTAGCAAGTAAGGGTCCAAA 

STAT5B First intron F TCAAACGTGGTGGAAGTGTTAG 

STAT5B First intron R CACCCAGCCTACCATCTTATTT 

STAT5B Gene body F GGTGATGGTCATGGTTTCCT 

STAT5B Gene body R  GAGACACCTGCTTCTGCTG 

STAT5B Gene end F CTTCCTCTGAAGGGATGGTATTG 

STAT5B Gene end R TCACGCTGATGACTTGAAACT 

MKL2 First intron F GACCCTTTGCGTACCTTCTT 

MKL2 First intron R GTGGAGCTCAGAGTCTACATTTC 

MKL2 Gene body F TGAAACACAAGATTCGGATCG 
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Primer name Primer sequence (5’-3’ direction) Application 

MKL2 Gene body R GGGAATAAACAGAAATGGTGGAAAT 

MKL2 Gene end F AGAGGAAAGACCACTCCCTAT 

MKL2 Gene end R GGCTTTCTGTTGTGAGTTGTATG 

CNTN4 First intron F CTTACACACCCTTCACCACTAC 

 

CNTN4 First intron R CGCAAGACTCCCACAATAGAA 

CNTN4 Gene body F CAGGAGTGATGGGTGAATATGAG 

CNTN4 Gene body R  TAAAGCAAAGCATTCCAGCTTC 

CNTN4 Gene end F TACTTGTCTTTCGGGAGCATTT 

CNTN4 Gene end R  GCTCTGGGTCATCTAGATTTGG 

RPTOR First intron F TGCTGGCAGATTGTGGTAAA 

RPTOR First intron R GGGAAGGAAGGAAGGAAGAAAG 

NPLOC4 First intron F CCAAGGCCAACTCCAGTATT 

NPLOC4 First intron R GGTCTGTCTCTTCCTGTGTATTT 

KDM2B First intron F  GTTGCTTGGGTTGCAATGG 

KDM2B First intron R AGAGAGCCCGGGACATTAT 

PACS2 First intron F CCCAAATCTCATAGCCAGTAGG 

PACS2 First intron R GTGAGGGAGCACAGGAAATA 

ACTN1 First intron F AGGTAGAGAGGAACCAGAAA 

ACTN1 First intron R AATGCCAGGGAAAGGTAAGG 

APOE F CCGGTGAGAAGCGCAGTCGG 

DRIP-qPCR 

primer 

APOE R CCCAAGCCCGACCCCGAGTA 

MYADM positive F CGTAGGTGCCCTAGTTGGAG 

MYADM positive R TCCATTCTCATTCCCAAACC 



Appendix 

245 
 

Primer name Primer sequence (5’-3’ direction) Application 

RPL13A F AATGTGGCATTTCCTTCTCG 

RPL13A R CCAATTCGGCCAAGACTCTA 

EGR1 F CCAATTCGGCCAAGACTCTA 

EGR1 R  CTTGTGGTGAGGGGTCACTT 

BTBD19 F GGCTGCTCAGGAGAGCTAGA 

BTBD19 R ACCAGACTGTGACCCCAAAG 

SNRPN F GCCAAATGAGTGAGGATGGT 

SNRPN R TCCTCTCTGCCTGACTCCAT 

EGR1 negative F GAACGTTCAGCCTCGTTCTC 

EGR1 negative R GGAAGGTGGAAGGAAACACA 

MYADM negative F TGCATCTACATCCGCAAAAG 

MYADM negative R AGAGTGGACGCTGCAGAAAT 

R-loop fragment F  TTTAGAGCTTGACGGGGAAA 

R-loop fragment R CAACAGTTGCGTAGCCTGAA 

Non-R-loop fragment F TTGCCGGGAAGCTAGAGTAA 

Non-R-loop fragment R GCTGCCATAAGCATGAGTGA 

BACH2 F GAAGAGTGCCTAGCACAGTAAG 

BACH2 R GAGCACACAGGTTTAGGAGATG 

STAT5B F TCAAACGTGGTGGAAGTGTTAG 

STAT5B R  CACCCAGCCTACCATCTTATTT 

Early RT products F TTAAGCCTCAATAAAGCTTGCC 

Quantification of 

early RT 

products 
Early RT products R GTTCGGGCGCCACTGCTAG 

Early RT products probe CCAGAGTCACACAACAGACGGGCA 
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Primer name Primer sequence (5’-3’ direction) Application 

Late RT products F CATGTTTTCAGCATTATCAGAAGGA 

Quantification of 

late RT products Late RT products R TGCTTGATGTCCCCCCACT 

Late RT products probe CCACCCCACAAGATTTAAACACCATGCTAA 

2LTR circles ddPCR F CTAACTAGGGAACCCACTGCT 

Quantification of 

2LTR circles 2LTR circles ddPCR R GTAGTTCTGCCAATCAGGGAA  

2 LTR circles ddPCR probe AGCCTCAATAAAGCTTGCCTTGAGTGC 

RPP30 F GATTTGGACCTGCGAGCG Normalizer gene 

for absolute 

quantification of 

early and late 

RT products and 

2LTR circles 

RPP30 R GCGGCTGTCTCCACAAGT 

RPP30 probe CTGACCTGAAGGCTCT 

 

 
Gene expression assays 

 

 

Target gene Expression assay code (Applied Biosystems) 

BACH2 Hs00222364_m1 

STAT5B Hs0273500_m1 

MKL2 Hs00539161_s1 

Tubulin 1a Hs03045184_g1 
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BAC constructs  

 

 

Gene name BAC reference code 

BACH2 RP11-59717 

NPLOC4 RP11-765O14 

MKL2 RP11-1072B15 

STAT5B CTD-3124P7 

DNMT1 
CTD-2240E14 

RPTOR 
RP11-28G8 

SMG1 
RP11-1035H13 

GRB2 
RP11-16C1 

GNB1 
RP11-798H13 

NFATC3 
RP11-67A1 

KDM2B 
RP11-44F24 

ACTN1 
RP11-226F19 

PACS2 
RP11-521B24 

CNTN4 
RP11-63O1 

RNF157 
RP11-449J21 
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