
Post-transcriptional regulation of the 

transition from neural stem cells to early 

neuroblasts 

 

Dissertation 

submitted to the 

Combined Faculty of Natural Sciences and Mathematics of the 

Ruperto Carola University Heidelberg, Germany 

for the degree of 

Doctor of Natural Sciences 

 

 

 

 

 

Presented by 

Yonglong Dang 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Dissertation 

submitted to the 

Combined Faculty of Natural Sciences and 

Mathematics of the Ruperto Carola 

University Heidelberg, Germany 

for the degree of 

Doctor of Natural Sciences 

 

 

 

 

 

Presented by 

M. Sc. Yonglong Dang 

born in Jinan, Shandong, China 

Oral examination: July 25, 2019 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Post-transcriptional regulation of the 

transition from neural stem cells to early 

neuroblasts 

 

 

 

 

 

 

 

 

 

 

 

 

Referees: Prof. Dr. Ana Martin-Villalba 

Prof. Dr. Aurelio Teleman 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract: 

In mammals, the process of neurogenesis consists in the generation of various types of 

neuronal and glial cells from neural stem cells (NSCs).  It begins intensively at the 

embryonic stage and continues through the whole adulthood. In adult rodents, 

neurogenesis is mainly located in two regions: the ventricular-subventricular zone (V-

SVZ) of the lateral ventricles and the dentate gyrus of the hippo-campus. In the last two 

decades huge progress has been made to characterize the process in detail and to get 

further insights of its regulation. However, still some fundamental questions remain 

unanswered. Among those, whether post-transcriptional regulation plays a critical role in 

NSC activation and differentiation. In this project, I investigated protein synthesis and its 

modulation upon activation of NSCs using the mouse adult brain as an experimental 

model. The analysis of the nascent synthesized peptides in NSCs and early neuroblasts 

(ENBs) of the same lineage revealed that the level of global protein synthesis decreases 

upon the transition from NSCs to ENBs. The transcriptome and translatome analysis of 

NSCs and ENBs clearly showed an active involvement of post-transcriptional regulation 

in gene expression at the onset of NSC differentiation. In particular, translation of 

neuronal specification transcripts such as Sp8 and Dusp4 was enhanced. On the 

contrary, the translation of some mRNAs carrying the Terminal Oligo Pyrimidine (TOP) 

and the Pyrimidine Rich Motif (PRM) such as Sox2 and Rpl18 were selectively 

repressed. At this transition, we also observed a drop of mTOR activity upon cell cycle 

exit that was causally linked to repression of TOP- and PRM-transcripts. Altogether, our 

study underscored the role of protein synthesis and its regulation in NSC differentiation. 

It also demonstrated a causal link between cell cycle exit, TOR activity and exit of the 

stem cell state.  

 

 

 

 

 

 



Zusammenfassung: 

Bei Säugetieren besteht der Prozess der Neurogenese in der Erzeugung verschiedener 

Typen von Nerven- und Gliazellen aus neuralen Stammzellen (NSCs). Es beginnt 

intensiv im embryonalen Stadium und setzt sich durch das gesamte Erwachsenenalter 

fort. Bei adulten Nagetieren findet die Neurogenese hauptsächlich in zwei Regionen 

statt: der ventrikulär-subventrikulären Zone (V-SVZ) der lateralen Ventrikel und dem 

Gyrus dentatus des Hippocampus. In den letzten zwei Jahrzehnten wurden große 

Fortschritte gemacht, um den Prozess im Detail zu charakterisieren und in seine 

Regulierung einzugreifen. Trotzdem bleiben einige grundlegende Fragen offen. Dazu 

gehört die posttranskriptionelle Regulation, die eine wichtige Rolle bei der Aktivierung 

und Differenzierung von NSC spielt. In diesem Projekt wurde anhand des Mäusegehirns 

als Modellsystem die Proteinsynthese und ihre Modulation bei der Aktivierung der NSCs 

untersucht. Die Analyse der im Entstehungsprozess befindlichen Peptide während des 

Differenzierungsprozesses der NSCs zu frühen Neuroblasten (ENBs) zeigte, dass das 

Niveau der globalen Proteinsynthese bei diesem Prozess abnahm. Durch die 

Transkriptom- und Translatomanalyse der NSCs und ENBs wurde eine aktive 

Beteiligung der posttranskriptionellen Regulation an der Genexpression bei und kurz 

nach Beginn der NSC-Differenzierung sichtbar. Insbesondere wurde die Translation von 

neuronal-spezifischen Transkripten wie Sp8 und Dusp4 verstärkt. Im Gegensatz dazu 

wurde die Translation einiger mRNAs, wie beispielsweise Sox2 und Rpl18 selektiv 

unterdrückt. Dies hängt damit zusammen, dass diese mRNAs Träger des terminalen 

Oligo Pyrimidine (TOP) und des Pyrimidine Rich Motif (PRM) sind, deren Translation 

durch die Aktivierung von mTOR reguliert wird. Zu Beginn des Differenzierungsprozesse 

kommt es zum Austritt der Zelle aus dem Zellzyklus, was mit einer Abnahmen der 

mTOR-Aktivität einhergeht. Unsere Daten weisen darauf hin, dass die Rolle der 

Proteinsynthese und ihre Regulation in ursächlichem Zusammenhang zwischen dem 

Austritt der NSC aus dem Zellzyklus, bei der NSC-Differenzierung, und der 

posttranskriptionellen Modulation der Synthese einiger wichtiger Stammzellfaktoren 

steht. 
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1 Introduction 

In mammals, neurogenesis is the process of neural stem cells (NSCs) differentiation into 

neurons. This process involves many layers of regulations. Post-transcriptional 

regulation during the onset of NSC differentiation is incompletely understood. 

 

1.1 Adult neurogenesis 

 

In rodents, NSCs differentiate and give rise to functional neurons during development 

and in adulthood. Two neurogenic regions are present in the adult brain: the 

subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of 

the dentate gyrus (DG) in the hippocampus (Bellusci et al., 1997; Clarke et al., 2000; 

Götz and Huttner, 2005; Ihrie and Alvarez-Buylla, 2011; Ming and Song, 2011). 

In 1960s the group of Altman showed pioneering results in rats, with the first anatomical 

evidence of postnatal hippocampal neurogenesis (Altman and Das, 1965). Some years 

later, he published neurogenesis in the subependymal zone of the lateral ventricles. In 

his histological and auto radiographic studies, the cells in the subependymal layer of the 

lateral ventricles were shown to proliferate and migrate along the rostral migratory 

stream (RMS) towards the olfactory bulb (OB). This process was shown in both neonatal 

and adult rats (Altman, 1969). His work was ignored until 30 years later its reproduce by 

different groups (Kaplan and Hinds, 1977; Eriksson et al., 1998; Gould et al., 1999). 

Since then, adult neural stem cells were successively isolated by several groups 

(Reynolds and Weiss, 1992; Richards et al., 1992; Lois and Alvarez-Buylla, 1993). 

These findings support the possibility that a resident population of stem cells is the 

source to remedy neuronal loss throughout lifetime. NSCs in hippocampus were first 

characterized in 1997. Palmer and colleagues showed that the precursor cells isolated 

from the hippo-campus were capable of maintaining proliferative normal diploid 

progenitors in vitro, providing evidence for the existence of adult hippocampal NSCs 

(Palmer et al., 1997).  

In the adult SVZ, NSCs give rise to neural precursor cells, which migrate along the RMS 

towards their final destination: the OB (Lois et al., 1996). This neurogenesis process is 



2 
 

under regulation of both intrinsic neurogenic transcription factors and extrinsic factors 

such as transmitters, hormones, and growth factors (Lledo et al., 2006). When reaching 

the core of the OB, the new born neurons migrate radially to invade the overlaying layers, 

where they become functional granule cells and periglomerular neurons, which are 

located in the deeper and the most superficial layer, respectively (Lledo et al., 2006).  

Growing evidence showed that adult NSCs remained from an embryonic stage and were 

retained until adulthood (Fuentealba et al., 2015; Furutachi et al., 2015; Berg et al., 

2019). During homeostasis, adult NSCs stay largely in a quiescent state in the brain 

(Morshead et al., 1994; Seri et al., 2001). These quiescent NSCs still retain fundamental 

epithelial properties. Their apical side extends to the lateral ventricle through the core of 

the pinwheel structure formed by ependymal cells and their basal side contacts the 

blood vessel (Mirzadeh et al., 2008). Once activated, these NSCs lose their ventricle 

contact and divide symmetrically to maintain the stem cell pool and support continuous 

neuron production (Obernier et al., 2018). It was estimated that in SVZ about 20-30% of 

NSCs self-renew and 70-80% of NSCs undergo differentiation (Obernier et al., 2018). 

NSC activation is associated with reduction in glycolytic metabolism, Notch and BMP 

signaling as well as increases in lineage-specific transcription factors and protein 

synthesis (Llorens-Bobadilla et al., 2015). The balance of NSC quiescence and 

activation is tightly controlled with the involvement of key signaling molecules such as 

BMPs (Mira et al., 2010). Recently Kalamakis and colleagues reported that with age 

NSCs in the SVZ tend to be more quiescent but once activated behave the same as 

NSCs in the young animal (Kalamakis et al., 2019). Apart from homeostatic activation, 

quiescent NSCs can also be activated upon multiple stimulatory signals such as injury or 

any other neurological diseases (Llorens-Bobadilla et al., 2015; Baser et al., 2017). 

Prior to trigger their differentiation program, NSCs usually enter an intermediate state to 

become transit amplifying progenitor cells (Doetsch et al., 1999). Multiple lineages of 

such intermediate progenitor cells divide for a limited number of times and generate 

neurons and glial cells such as astrocytes and oligodendrocytes (Kriegstein and Alvarez-

Buylla, 2009). NSC differentiation is a complicated process composing multiple layers of 

regulation, ranging from transcription to translation with numerous regulators involved. 

Basic helix-loop-helix (bHLH) transcription factors are such key regulators  (Kageyama 

et al., 2005). The expression of activator type and repressor type of bHLH transcription 
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factors is well organized in NSCs during NSC maintenance and differentiation 

(Kageyama et al., 2005). Many more molecules were reported to affect the process of 

NSC differentiation at embryonic or adult stage either transcriptionally or through 

affecting the function of the intracellular organelle (Braccioli et al., 2017; Mendivil‐ Perez 

et al., 2017; Zhu et al., 2018). In addition, cell cycle also affects NSC differentiation. In 

the embryonic mouse, lengthened G1 phase induces neuroepithelial cell differentiation 

(Calegari and Huttner, 2003). 

 

 

 

Figure 1. Neurogenesis in the V-SVZ of the adult mouse brain 

(a) A schematic diagram of the adult mouse brain. The ventricle-subventricular zone (V-SVZ) continuously 

produces neuroblasts, which migrate along the rostral migratory stream (RMS) to reach the olfactory bulb 

(OB) and become local mature and functional intern neurons. (b) A cross-section view of the adult mouse 

brain. Str, striatum; LV, lateral ventricle. (c) A schematic diagram of the cellular components of the 

subventricular zone. Adult NSCs reside close to the ependymal zone (EZ) in the SVZ with extended redial 

processes contacting the lateral ventricles and blood vessels. CSF, cerebrospinal fluid. Figures were 

modified from (Franklin and Paxinos, 2008; Bond et al., 2015; Chaker et al., 2016). 
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1.2 Protein synthesis in eukaryotic cells 

 

Protein synthesis, or translation, is a complex, multi-step, tight-regulated process. It 

occurs with the involvement of ribosomes, which are located in the cytoplasm or 

endoplasmic reticulum. The eukaryotic ribosomes are ribonucleoproteins composed of a 

40S small subunit and an 80S large subunit. Each subunit comprises one or more 

ribosomal RNA(s) and a variety of ribosomal proteins. There are around 106 to 107 

ribosomes in a eukaryotic cell. In some cases the number is even higher. For example, it 

was estimated that there are up to 1012 ribosomes in a single non-dividing cell during 

oogenesis in Xenopus (Rosbash and Ford, 1974). Recent reports showed that the 

composition of ribosomes is also in heterogeneity, being associated with translation of 

subpopulation of messenger RNAs (mRNAs) in the cell (Shi et al., 2017; Simsek et al., 

2017).  

Protein synthesis is the process of ribosomes translating mRNAs into proteins, which 

consists of translation initiation, elongation, and termination (Figure 2). Translation 

initiation is tightly controlled and is the rate-limiting step of the whole protein synthesis 

pathway. Translation initiation begins by the formation of 43S pre-initiation complex 

(PIC), which is composed of 40S ribosomal subunit, ternary complex eIF2-GTP-tRNAMet
i 

and some eukaryotic initiation factors (eIFs) such as eIF1, eIF1A, eIF2, eIF3 and eIF5 

(Sonenberg and Hinnebusch, 2009; Aitken and Lorsch, 2012; Fraser, 2015; Hinnebusch, 

2017). Binding of the PIC to the 5’ UTR of mRNAs is recruited by eIF4F complex, 

comprising RNA helicase eIF4A, cap-binding protein eIF4E and scaffold protein eIF4G 

(Sonenberg and Hinnebusch, 2009). The PIC then scans downstream successive 

triplets for complementarity to the anticodon of tRNAMet
i. Recognition of AUG leads to 

scanning arrest and hydrolysis of GTP in the eIF2-GTP-tRNAMet
i ternary complex. With 

release of eIF2-GDP and eIFs, 60S ribosomal subunit joins to form 80S initiation 

complex, an intact ribosome competent to enter elongation phase of protein synthesis 

(Pestova et al., 2007; Sonenberg and Hinnebusch, 2009). During elongation, new aa-

tRNAs are selectively recruited to the ribosome through base-pairing between anticodon 

and the codon in the t-RNA and mRNA, respectively. Sequentially added amino acids 

are catalyzed to form polypeptides. When the ribosome reaches the stop codon, which 
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leads to ribosome disassemble and the release of polypeptides, protein synthesis is 

terminated (Hershey et al., 2018). For translation of most mRNAs, the formation of 

initiation complex is in a cap-dependent manner, which needs the aid of cap-binding 

proteins to recruit PIC to the 5' end of the mRNA to initiate translation. eIF4E is the most 

well-known cap-binding protein in mediating cap-dependent translation. Recent 

discoveries showed that eIF3d also works as a cap binding protein to mediate 

specialized translation, independent of eIF4E (Lee et al., 2016). However, mRNAs which 

have an internal ribosome entry site (IRES) element can directly recruit PIC without the 

involvement of the cap structure. Originally found in viral mRNAs, the existence of IRES 

element was later confirmed in cellular mRNAs, which are mainly involved in stress 

response (Jang et al., 1988; Pelletier and Sonenberg, 1988; Jang et al., 1989; Godet et 

al., 2019).  

Protein synthesis in eukaryotic cells is a very complex process, involving numerous 

tightly controlled steps. Deeper knowledge on the regulatory mechanisms in protein 

synthesis would increase our understanding how neurogenesis is regulated. 

 



6 
 

 

Figure 2. A brief overview of protein synthesis in eukaryotes 

The eIF4F recruits 43S PIC to the 5’UTR region of the mRNA to initiate protein synthesis, which is the rate 

limiting step of protein synthesis, followed by elongation and termination. eIF4E in the eIF4F, is the cap 

binding protein. eIF4A is a helicase. eIF4G is a scaffold protein which also binds to poly(A)-binding protein 

(PABP), which connects the poly(A) tail of the mRNA to the eIF4F complex. Modified from (Robichaud et 

al., 2018). 
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1.3 mTOR signaling in translational control 

 

Mammalian target of rapamycin (mTOR) is an atypical serine threonine kinase involving 

in many fundamental cellular activities such as cell growth, metabolism, and disease 

(Saxton and Sabatini, 2017). As the core component of two major complexes mTOR 

complex 1 (mTORC1) and mTOR complex 2 (mTORC2), mTOR is under the regulation 

of multiple pathways (Figure 3). 

The most well-known role for mTOR is its involvement in translation, mainly mediated by 

mTORC1. Downstream targets of mTORC1 are p70S6 kinase 1 (S6K1) and 4E binding 

protein (4EBP) (Brown et al., 1995; Saxton and Sabatini, 2017). mTOR activity is crucial 

for translation initiation, e.g. when mTOR activity is low, S6K1 is dephosphorylated and 

4EBP binds to the eukaryotic initiation factor 4E (eIF4E) to inhibit the assembly of the 

eIF4F complex and finally repress translation initiation (Graves et al., 1995; Lin et al., 

1995; Gingras et al., 1998; Proud, 2002). On the other hand, activation of mTOR 

phosphorylates 4EBP, which causes the dissociation from eIF4E and thereby mediating 

translation initiation (Lin et al., 1994). 4EBP has a hierarchical phosphorylation 

mechanism for regulating eIF4E mediated cap dependent translation. The 

phosphorylation in Thr-37 and Thr-46 in 4EBP is not associated with the loss of eIF4E 

binding. However, phosphorylation at these sites is required for subsequent 

phosphorylation of several carboxy-terminal serum-sensitive sites (Gingras et al., 1999). 

In addtion, promotion of translation is mediated by the phosphorylation of S6K1 through 

mTOR. The phosphorylation levels of 4EBP and S6K1 are often used as indicators for 

mTOR activity. 

mTOR activity tightly controls the translation of a subset of genes, those transcripts 

contain 5’ terminal oligopyrimidine (TOP) motif, which usually contains 4 to 14 “C” or “U” 

and locates at the 5’ end of the mRNA, following the cap structure (Levy et al., 1991; 

Meyuhas, 2000). First described in mammalian ribosomal protein mRNAs, TOP mRNAs 

were successively reported in multiple species (Levy et al., 1991; Avni et al., 1994; 

Meyuhas et al., 1996; Amaldi and Pierandrei-Amaldi, 1997; Carroll et al., 2004; Meyuhas 

and Dreazen, 2009). However, how TOP mRNAs are regulated by mTOR is still unclear. 

Damgaard and colleagues reported amino acid starvation-mediated mTOR inhibition 



8 
 

and activation of GCN2 kinase could induce binding of stress granule-associated TIA-1 

and TIAR proteins to the 5’ end of TOP mRNAs. This caused translational arrest of the 

5’ TOP mRNAs at the initiation step (Damgaard and Lykke-Andersen, 2011). Recent 

studies reported that LARP1 is a direct substrate of mTORC1, mediating TOP mRNA 

translation (Fonseca et al., 2015; Hong et al., 2017; Lahr et al., 2017; Philippe et al., 

2018). When mTOR activity is too low to phosphorylate LARP1, LARP1 binds to both 5’ 

and 3’UTRs of TOP mRNAs and inhibits their translation. mTOR activation 

phosphorylates LARP1, which then dissociates from the 5’UTR to relieve the inhibition of 

translation. Thoreen and colleagues suggested a unifying model that almost all the 

transcripts that are specifically regulated by mTORC1 have a TOP or TOP-like motif 

(Thoreen et al., 2012). The selective inhibition of those transcripts is caused by the 

decreased phosphorylation of 4EBP upon mTORC1 inhibition. However, this model 

needs to be further studied since there have been new TOP or TOP-like mRNAs 

successively detected. 

 

 

Figure 3. Regulatory network of mTOR signaling pathway 

mTOR signaling pathway is regulated by multiple upstream regulators such as amino acids, insulin, 

growth factors. Modified according to (Silvera et al., 2010; Meng et al., 2018). 
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1.4 Post-transcriptional control during neurogenesis 

 

Post-transcriptional regulation is an important process to control gene expression at the 

RNA level. In this process, RNAs are finely processed under multiple types of 

regulations like mRNA capping, alternative splicing, polyadenylation, mRNA nucleolar 

export, stabilization, translation. This process involves many types of regulators such as 

RNA binding proteins, microRNAs, long noncoding RNAs etc. RNA binding protein 

mediated regulation is most prevalent, the malfunction of which is often associated with 

severe diseases. The impaired function of the decapping enzyme DCPS, which 

functions in the last step of the 3′ end mRNA decay pathway, is linked to syndromic 

intellectual disability with neuromuscular defects (Ng et al., 2015). Mutations in core 

components of spliceosome were reported to cause impaired pre-mRNA splicing and 

retinitis pigmentosa (Cao et al., 2011; Tanackovic et al., 2011; Carey and 

Wickramasinghe, 2018). Lethal congenital contracture syndrome, a fetal motoneuron 

disease, is resulted from the mutation in mRNA export mediator GLE1 (Nousiainen et al., 

2008). RNA binding proteins usually have zinc-finger RNA recognition motif, which allow 

them to recognize, bind and catalyze biochemical reactions (Colgan and Manley, 1997). 

Most of these RNA binding proteins are evolutionally conserved. Around 6% work in a 

tissue specific manner and the majority of them are ubiquitously expressed (Gerstberger 

et al., 2014). 

In neurons, mRNAs are usually tightly controlled for local translation in response to rapid 

extracellular stimuli (Jung et al., 2012). Zappulo and colleagues reported that RNA 

localization is a key determinant of neurite-enriched proteome (Zappulo et al., 2017), 

suggesting the key role of post-transcriptional regulation in neuronal function. Notably, 

post-transcriptional regulation also plays a role in NSC fate control, including NSC 

differentiation. Numerous post-transcriptional regulation mechanisms involving mRNA 

splicing, mRNA decay and translation have been reported (Kim, 2016). RNA binding 

protein Musashi1 mediated translational repression of m-Numb activates Notch signaling 

for NSC maintenance (Imai et al., 2001; Kawahara et al., 2008). Meanwhile, Musashi1 

inhibits translation of Doublecortin (DCX) to repress NSC differentiation (Horisawa et al., 

2009). The mammalian Pumilio proteins Pumilio1 and Pumilio2, members of the PUF 
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family of sequence-specific RNA-binding proteins, bind thousands of targets, from which 

over 690 are involved in neurogenesis. They are involved in multiple processes such as 

stem cell fate and neurological functions by inhibiting translation, promoting mRNA 

decay or in certain contexts enhancing protein expression (Zhang et al., 2017; 

Goldstrohm et al., 2018). The neural-specific inactivation of Pumilio1 and Pumilio2 leads 

to a decrease in the number of NSCs in the dentate gyrus and impaired learning and 

memory (Zhang et al., 2017). However, studies of post-transcriptional control in 

translation during NSC differentiation are still in a low number. The role of post-

transcriptional regulation in early onset of NSC differentiation remains to be elucidated.  

 

 

1.5 Transcriptome and translatome analysis of NSCs and 

their progenies 

 

Single cell RNA sequencing-based transcriptome analysis has advanced our knowledge 

in the process of dormant NSC activation (Llorens-Bobadilla et al., 2015). However, the 

transcriptome of a cell does not necessarily reflect its translatome. For the translation of 

an mRNA transcript, multiple layers of regulation may occur post-transcriptionally in 

response to multiple stimuli and result in dynamic levels of protein in the cell. 

Furthermore, transcriptome analysis normally requires cell isolation, which usually 

causes damage of cellular morphology and subsequently changed gene expression,  

introducing biases in the final sequencing data (Haimon et al., 2018). Therefore, it is 

very inaccurate to investigate protein information through analysis of the transcriptome. 

The development of translating ribosome affinity purification (TRAP) technique 

suggested a good solution for this problem (Doyle et al., 2008; Heiman et al., 2008). By 

labeling ribosomes with a tag protein to perform anti-tag immunoprecipitation, it is 

possible to isolate the ribosome-associated mRNAs in a cell, termed the translatome. 

Driven by a cell type specific promoter, it is also possible to isolate the translatome of a 

specific cell type in a complicated tissue or organ. Soon after the invention of this 

technique, Sanz and colleagues developed the Cre inducible Ribotag mouse line, which 

was a more robust system and had broader applicability (Sanz et al., 2009; Shigeoka et 

http://dict.youdao.com/w/tag%20protein/#keyfrom=E2Ctranslation
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al., 2016). The Exon 4 of the endogenous ribosomal protein 22 (Rpl22) in this mouse 

line is floxed by the lox P sites, followed by an identical Exon 4, which is tagged by 

hemagglutinin (HA). Multiple cell types can be targeted by crossing this line to a cell type 

specific Cre line.  

In order to study the role of translation during neurogenesis, previous work in our lab 

established transgenic mouse models Tlx-CreER-Rpl22.HA-eYFP (TiCRY) and DCX-

CreER-Rpl22.HA-eYFP (DiCRY) based on the Ribotag mouse line to analyze the 

transcriptome and translatome of NSCs and their progenies: early neuroblasts (ENBs) in 

the SVZ, late neuroblasts (LNBs) and neurons in the OB (Figure 4). HA tagging and 

parallel YFP expression were induced in the targeted cells by tamoxifen administration. 

Next generation RNA sequencing was performed to the fluorescence activated cell 

sorting (FACS) isolated YFP positive cells to acquire the transcriptome.  Meanwhile, 

RNAs isolated through anti-HA immunoprecipitation were sequenced as the translatome. 

The transcriptome and translatome were acquired for NSCs, ENBs, LNBs, and neurons. 

In the following text, the term “RNA-seq” will be used to represent the sequenced 

transcriptome and the term “RiboIP-seq” to represent the sequencing data acquired from 

the translating ribosomes. 

The combined analysis of transcriptome and translatome of the four types of cells 

identified numerous genes, which were selectively repressed or enhanced for translation 

upon the transition from NSCs to ENBs. De novo analysis of the regulatory region of 

these transcripts revealed that the translationally repressed gene transcripts featured a 

“CUCUU” Pyrimidine Rich Motif (PRM) in their 5’ UTR. This motif resembles the 

previous reported TOP or TOP like motif, suggesting its translational sensitivity to mTOR 

activity. However, the association of the PRM containing genes and mTOR activity as 

well as the molecular mechanism leading to repressed and enhanced gene translation 

during NSC differentiation remains to be investigated. 
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Figure 4. Ribo-tag mouse models allow parallel isolation of ribosome-bound mRNAs and total RNA 

of the same type of cells 

Cell type specific Cre promoters drive gene recombination in NSCs and their progenies, introducing HA-

tagged ribosomes and parallel YFP expression in the cells in a spatially and temporally controllable 

manner. Ribosome bound mRNAs and total RNAs of the same cells can be isolated by anti-HA 

immunoprecipitation (IP) and YFP based FACS followed by high throughput sequencing. Here NSCs, 

ENBs, LNBs and neurons were analyzed. Figures were modified from (Sanz et al., 2009; Baser, 2018). 
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1.6 Aim of the project 
 

We attempt to investigate the molecular mechanism of early neural stem cell 

differentiation, and specifically focus on the role of mTOR during the post-transcriptional 

regulation of NSC differentiation. We would like to: 

(1) Reveal the level of global protein synthesis along the NSC-to-ENB lineage; 

(2) Investigate mTOR activity in NSCs and ENBs in vivo; 

(3) Study how mTOR specifically regulates translation of PRM containing transcripts 

such as ribosomal protein Rpl18 and stem cell marker Sox2 during the process of early 

NSC differentiation.   
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2 Materials and methods 

2.1 Materials 
 

2.1.1 Instruments/software  

 

Table 1, Instruments/software and their manufacturers/sources 

Instruments Manufacturer 

Biophotometer Eppendorf 

CFX384 Touch™ Real-Time PCR 

Detection System 

Bio-RAD 

ChemiDoc Touch Imaging System Bio-RAD 

Density Gradient Fractionator Teledyne Isco 

FACS Analyser Fortessa BD Biosciences 

FACS Canto analyzer BD Biosciences 

FACS Canto sorter BD Biosciences 

FlowJo FlowJo LLC 

Gradient Makers Model SG 15 Thermo Fisher Scientific 

Image Lab Bio-RAD 

ImageJ NIH 

Inkscape Inkscape Project Software developer 

Lab-Tek Chambers (8-well/16-well  

chamber slide) 

Thermo Fisher Scientific 

NanoDrop™ Spectrophotometer Thermo Fisher Scientific 
Qubit 2.0  Fluorometer Life Technologies 
SP5 Leica 
Ultra-centrifuge Model L-90K Beckman Coulter 
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2.1.2 Chemicals/Reagents/Kits 
 

Table 2, Chemicals/Reagents/Kits and their source 

Chemicals/Reagents/Kits Source 

Accutase Sigma-Aldrich 

Acid-Phenol: Chloroform (5:1), pH 4.5  Ambion 

Agilent RNA 6000 RNA Pico Kit Agilent 

Amersham ECL Prime Western Blotting  

Detection Reagent 

GE Healthcare 

AZD2014 Biomol 

Azide 488 or Azide 647 Thermo Fisher Scientific 

β-mercaptoethanol Sigma 

BCA kit Thermo Fisher Scientific 

bFGF Relia Tech 

Boric Acid Thermo Fisher Scientific 

Bovine serum albumin (BSA) Sigma 

B27 Supplement Life Technologies 

Click-IT Cell Reaction Buffer Kit Life Technologies 

C Tubes Miltenyi Biotec 

Cycloheximide (CHX) Sigma-Aldrich 

C0mplete Protease Inhibitor Cocktail  

Tablets 

Roche 

D-(+)-Glucose Sigma-Aldrich 

Diethyl Pyrocarbonate (DEPC) Sigma-Aldrich 

Dimethyl Sulfoxide (DMSO) Sigma-Aldrich 

Dithiothreitol (DTT) Sigma-Aldrich 

dNTP Mix (10mM) Fermentas 

Epidermal Growth Factor (EGF) Promocell 

Ethanol Riedel de Haen 

Ethylenediaminetetraacetic Acid  

(EDTA) 

Thermo Fisher Scientific 
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Fetal Bovine Serum (FBS) Biochrom 

Fluoromount-G eBioscience 

Fluoromount G with DAPI Southern Biotech 

Glutamine Life Technologies 

Glycerol Sigma 

Glycine Sigma-Aldrich 

Glycoblue Ambion 

Hank’s Balanced Salts Solution  

(HBSS) 

Life Technologies 

Heparin Cell Culture Grade Sigma-Aldrich 

HEPES Gibco 

Hoechst 33342 Biotrend 

Hydrochloric Acid (HCl) VWR 

Isoflurane Baxter 

Laemmli  (4x Sample Buffer) Bio-Rad 

Laminin Sigma-Aldrich 

L-Glutamine (100x) Invitrogen 

LY294002 Cell signaling 

Magnesium Sulfate (MgSO4) Sigma-Aldrich 

Neural Tissue Dissociation Kit, Papain Miltenyi Biotec 

Neural Tissue Dissociation Kit, Trypsin Miltenyi Biotec 

Neurobasal Medium (NBM) Thermo Fisher Scientific 

Nonidet P-40 (NP-40) Roche 

Nuclease free water 10x 50 mL Ambion 

Oligonucleotide Primers MWG 

Omnican Insulin Syringes Geyer 

O-Propargyl-Puromycin (OP-Puro) Jena Bioscience 

Paraformaldehyde (PFA) Ampules (16%) Thermo 

Paraformaldehyde (PFA) (4%) Roth 

PBS (without Mg2+/Ca2+) PAA 

Penicillin Streptomycin Life Technologies 
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PicoPure RNA Isolation Kit Arcturus 

Pierce BCA Protein Assay Kit Thermo Fisher Scientific 

Pierce IP Lysis Buffer Thermo Fisher Scientific 

phosphatidylinositol-3,4,5-trisphosphate 

 (PIP3)/AM(DOG) 

Schultz Lab, EMBL 

Pluronic F-127 (20% Solution in DMSO) Invitrogen 

Poly-D(L)-lysine hydrobromide (PDL or PLL) Sigma-Aldrich 

Potassium Chloride (KCl) Applichem 

Proteinase K Peqlab 

Potassium Phosphate Monobasic  

(KH2PO4) 

Gerbu 

Precision Plus Protein™ WesternC™ 

 Blotting Standards 

Bio-Rad 

Puromycin Life Technologies 

QuantiTect Primer Assays Qiagen 

Qubit dsDNA High-Sensitivity (HS) Kit Life Technologies 

RNase-Free DNase Set Qiagen 

RNasin Plus RNase Inhibitor (RNAsin) Promega 

Sodium Acetate (C2H3NaO2) Ambion 

Sodium Azide (NaN3) Merck 

Sodium Chloride (NaCl) Sigma 

Sodium Chloride 0.9% Sterile (NaCl) Braun 

Sodium Dihydrogen Phosphate 

 Monohydrate (NaH2PO4) 

Roth 

Sodium Dodecyl Sulfate (SDS) Roth 

Sodium Hydroxide (NaOH) Sigma-Aldrich 

Sodium Phosphate Dibasic Heptahydrate 

 (Na2HPO4·7H2O) 

Sigma-Aldrich 

Sodium Tetraborate  

(Borax, Na2B4O7·10H2O) 

Merck 

Sucrose Sigma-Aldrich 
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Sunflower Oil Sigma-Aldrich 

SuperFrost Slides Roth, Germany 

SuperScript VILO cDNA Synthesis Kit Life Technologies 

SYBR Green PCR Master Mix Applied-Biosystems 

Tamoxifen Sigma-Aldrich 

Thymidine Sigma 

Torin 1 (simplified as Torin in the following 

text) 

Biomol 

Trans-Blot® Turbo™ RTA Midi  

Nitrocellulose Transfer Kit 

Bio-Rad 

Trichloroacetic Acid (Cl3CCOOH) Sigma-Aldrich 

Tris Base (C4H11NO3) Sigma-Aldrich 

Triton X-100 Sigma-Aldrich 

Trypsin-EDTA (0.05%) Life Technologies 

Tween-20 Merck 

Ultracentrifuge Tubes for SW41 rotor Beckman Coulter 

12% Criterion™ TGX Stain-Free™ Protein  

Gel, 18 well, 30 µl 

Bio-Rad 

10% Mini-PROTEAN® TGX Stain-Free™  

Protein Gels, 10 well, 50 µl 

Bio-Rad 

40 μm strainer BD Falcon 
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2.1.3 Solutions/media/buffers 

 

Table 3, Solutions/media/buffers and their recipes 

Experimental 
procedure 

Buffer/Solution/Media Recipe 

Isolation of NSCs/ 
FACS 

Tamoxifen solution Tamoxifen, 10 mg/mL (final); 
Vsunflower oil : VEtOH= 9:1. 

FACS buffer 10% FBS in PBS 

Dissection solution 50 mL 10x HBSS; 1.25 mL 1M 
HEPES; 3.25 g D- Glucose; 5 
mL Pen/Strep; Adjust to 500 mL 
with ddH2O and filter (sterile). 

Immunocytochemistry 

Phosphate Buffered 
 Saline (PBS), 1x 

To prepare 20x PBS: 
160g/L NaCl (final); 28.4g/L 
Na2HPO4 (final); 4g/L KCl 
(final); 4.8g/L KH2PO4 (final); pH 
7.4 (final). 

0.1 M Phosphate buffer 77.4 mL of 1 M Na2HPO4; 22.6 
mL of 1 M NaH2PO4; Dilute the 
combined 1 M stock solution up 
to 1 L with distilled H2O; pH was 
finally adjusted to 7.4 

Tris-Buffered Saline 
(TBS), 10x 

Tris base, 0.2 M (final); NaCl, 1.5 
M (final); pH was finally adjusted 
to 7.2 - 7.4. 

Permeabilization buffer 0.25% Triton X-100, dissolved in 
PBS. 

Blocking solution 0.25% Triton-X 100 with 5% BSA 
in PBS (5g BSA and 0.25 mL 
Triton-X 100 per 100 mL PBS) 

Alkyne-Azide reaction buffer 
(1 mL) (The reaction buffer, 
additive and CuSO4 were 
from Click-IT cell reaction 
buffer Kit) 

876 μL 1x reaction buffer; 100 μL 
Addictive; 20 μL CuSO4; 4 μL 
Azide 488 or Azide 647 (1:250 
dilution). 

Cell Culture 

Neurobasal medium 
supplemented with growth 
factors (GFs) 

500 mL Neurobasal Medium; 10 
mL B27 supplement (50x); 5 mL 
L-Glutamine (200mM); 500 μL 
2mg/mL Heparin (final: 2 μg/mL); 
20 μL 0.5 μg/μL bFGF (final: 20 
ng/mL); 20 μL 0.5 μg/μL EGF 
(final: 20 ng/mL). 

Borate buffer 1.24 g boric acid; 1.9 g sodium 
tetraborate (Borax); Adjust to 
400mL with H2O, adjust pH to 
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8.5 and sterile filtered. 

PDL coating solution 1mg/mL Poly-D-Lysine, dissolve  
in borate buffer and  sterile 
filtered.  

Laminin coating solution 50 μg/mL laminin, dilution in 
NBM.  

OP-Puro solution Stock solution 20 mM (5% 
DMSO, 95% PBS); applied to 
cell cultures at 1:400 dilution 
(50μM final).  

Torin solution Dissolve 10mg in 5.5mL DMSO 
to make 3mM stock (-80 °C); 
Dilute 1:30 in PBS to make 
100μM working solution for use 
(-20 °C); Applied to cell cultures 
at 1:400 when use (final: 
250nM). 

Sucrose Gradient 
Fractionation 

DEPC H2O Add 1 mL DEPC to 1 L H2O. 
Leave in the hood overnight and 
autoclave. 

Gradient buffer (2x)  Tris-HCl pH 7.4 (40 mM); MgCl2 
(10 mM); NaCl (240 mM); 
Prepare in DEPC H2O. 

Polysome Lysis Buffer 
supplemented with 
cycloheximide (PLB+) 
 

3 mL Gradient buffer (2x); 2.56 
mL DEPC H2O; 240 μL Nonidet 
NP-40 (25%); 60 μL CHX 
(10mg/mL); 120 μL c0mplete 
protease inhibitor (50X); 6 μL b-
mercaptoethanol; 15 μL RNAsin. 

Light sucrose  
gradient solution  
(17.5%) 

7 g sucrose; 20 mL 2X Gradient 
buffer; 80 μL 1 M DTT (final: 2 
mM) ; 0.4 mL 10 mg/mL CHX 
(final: 0.1 mg/mL); Adjust to 
40mL with DEPC H2O. 

Heavy sucrose  
gradient solution  
(50%) 

20 g sucrose; 20 mL 2X Gradient 
buffer; 80 μL 1 M DTT (final: 2 
mM); 0.4 mL 10 mg/mL CHX 
(final: 0.1 mg/mL); Adjust to 
40mL with DEPC H2O. 

RNA isolation from 
 sucrose  
gradient solution 

Proteinase K solution Per 1 mL of sucrose fraction: 
37.5 μL 10% SDS; 7.5 μL 0.5 M 
EDTA; 1 μL Glycoblue; 4 μL 20 
mg/mL Proteinase K 

Western blot 
PI (10x) 0.42 g NaF; 0.65 g NaN3; 3.71 g 

p-nitrophenyl phosphate; 4.46 g 
Sodium pyrophosphate; 3.06 g 
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beta-glycerolphosphate; Adjust 
to 100 mL 

C0mplete protease inhibitor 1 cocktail tablet, dissolve in 1 mL 
H2O. 

Vanadate Use sodium orthovanadate to 
prepare 100 mM solution, heat 
the solution up to boiling.  

Cell lysis buffer Pierce IP Lysis Buffer 
supplemented with 1x protease 
inhibitors such as PI, c0mplete 
protease inhibitor and vanadate. 

Laemmli sample  
loading buffer 

The Laemmli buffer was supplied 
with β-mercaptoethanol and 
diluted to 1x.  

Running buffer  
10X  

Dissolve 30.0 g of Tris base, 
144.0 g of glycine, and 10.0 g of 
SDS in 1000 ml of H2O. pH=8.3. 
Stored at room temperature and 
dilute to 1X before use. 

PBST/TBST PBS or TBS supplemented with 
0.1% Tween20 

Membrane  
transfer buffer 

Prepare according to Trans-
Blot® Turbo™ transfer kit (Bio-
Rad).  
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2.1.4 Antibodies/reagents used for FACS 

 

Table 4, Antibodies/reagents used for FACS 

Antibodies/reagents Conjugates Manufacturer Dilution Isotype/Clone 

Anti-O4 antibody APC-vio770 Miltenyi Biotec 1:50 Mouse IgM/O4 

Anti-Ter119 antibody APC-Cy7 BioLegend 1:100 Rat IgG2b/ TER-119 

Anti-CD45 antibody APC-Cy7 BD Biosciences 1:200 Rat IgG2b/30-F11 

Anti-CD133 antibody APC eBioscience 1:75 IgG1, kappa/13A4 

Anti-GLAST antibody PE Miltenyi Biotec 1:20 Mouse IgG2a/ACSA-1 

Anti-PSA-NCAM antibody PE-Vio770 Miltenyi Biotec 1:75 Mouse IgM/2-2B 

EGF (protein) Alexa488 Life Technologies 1:200 - 

EGF (protein) Alexa647 Life Technologies 1:100 - 

FcR Blocking Reagent - Miltenyi Biotec 1:20 - 

Sytox Blue (1 mM) - Life Technologies 1:1000 - 
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2.1.5 Antibodies used for Western blot or immunofluorescence 

  

Table 5, Antibodies used for Western Blot or ICC/IHC 

Antibodies Manufacturer Clone 
Molecular 

weight 
Dilution Host/Isotyoe 

AKT Cell signaling Polyclonal 60 kDa 1:1000 Rabbit 

Phospho-AKT (Ser473) Cell signaling Polyclonal 60 kDa 1:1000 Rabbit 

DCX Merck Polyclonal - 1:1000 Guinea Pig 

Dusp4 Abcam Polyclonal 44 kDa 1:500 Rabbit 

4EBP1 Cell signaling 53H11 15 to 20 kDa 1:1000 Rabbit/IgG 

Phospho-4EBP1 (Thr37/46) Cell signaling 236B4 15 to 20 kDa 1:1000 Rabbit/IgG 

GLAST Frontier Institute Polyclonal - 1:1000 Guinea pig 

Ki67 
Novus 

Biologicals 
SP6 - 1:100 Rabbit/IgG 

Rgs16 OriGene OTI3B4 25 kDa 1:2000 
Mouse/ 

IgG1 

PLP1 OriGene Polyclonal ~ 26-29 kDa 1:400 Chicken 

S6 Ribosomal Protein Cell signaling 5G10 32 kDa 1:1000 Rabbit/IgG 

Phospho-S6 (Ser240/244) Cell signaling Polyclonal 32 kDa 1:1000 Rabbit 

S6 Kinase Cell signaling Polyclonal 70, 85 kDa 1:1000 Rabbit 

Phospho-p70 S6 Kinase 

(Thr389) 
Cell signaling Polyclonal 70, 85 kDa 1:1000 Rabbit 

Sox2 Abcam EPR3131 34 kDa 1:1000 Rabbit/IgG 

Tuberin/TSC2 Cell signaling D93F12 200 kDa 1:1000 Rabbit 

Phospho-TSC2 (Thr1387) Cell signaling Polyclonal 200 kDa 1:1000 Rabbit 

Phospho-TSC2 (Thr1462) Cell signaling 5B12 200 kDa 1:1000 Rabbit 

Vash2 Abcam Polyclonal ~ 41 kDa 1:500 Rabbit 

Vinculin Abcam EPR8185 124 kDa 1:5000 Rabbit 

YFP Aves Labs Polyclonal - 1:1000 Chicken/IgY 
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2.1.6 Secondary antibody used for immunocytochemistry 

 

Table 6, Secondary antibody used for ICC 

Antibodies Manufacturer Conjugate Dilution Host 

Anti-chicken Dianova DyLight488 1:500 Donkey 

Anti-guinea pig Life Technologies Alexa546 1:500 Goat 

Anti-rabbit Life Technologies Alexa555 1:500 Donkey 

 

2.1.7 Primers used for quantitative PCR  

 

Table 7, Primers used for quantitative PCR 

Gene Primer Source Cat. no. 

Atp2b1 Mm_Atp2b1_1_SG QuantiTect Primer Assay Qiagen QT01072106 

Birc6 Mm_Birc6_1_SG QuantiTect Primer Assay Qiagen QT00163863 

Dusp4 Mm_Dusp4_1_SG QuantiTect Primer Assay Qiagen QT00140357 

Plp1 Mm_Plp1_1_SG QuantiTect Primer Assay Qiagen QT00096096 

Rgs16 Mm_Rgs16_1_SG QuantiTect Primer Assay Qiagen QT00137753 

Rheb Mm_Rheb_1_SG QuantiTect Primer Assay Qiagen QT00168133 

Rps20 Mm_Rps20_1_SG QuantiTect Primer Assay Qiagen QT00251433 

Sp8 Mm_Sp8_1_SG QuantiTect Primer Assay Qiagen QT01056930 

Vash2 Mm_Vash2_1_SG QuantiTect Primer Assay Qiagen QT00114765 

Vim Mm_Vim_1_SG QuantiTect Primer Assay Qiagen QT00159670 

Sox2 Mm_Sox2_1_SG QuantiTect Primer Assay Qiagen QT00249347 

 

  
 

 

 

 

 

 

https://www.qiagen.com/de/shop/pcr/real-time-pcr-enzymes-and-kits/two-step-qrt-pcr/quantitect-primer-assays/?catno=QT01072106
https://www.qiagen.com/de/shop/pcr/real-time-pcr-enzymes-and-kits/two-step-qrt-pcr/quantitect-primer-assays/?catno=QT00163863
https://www.qiagen.com/de/shop/pcr/real-time-pcr-enzymes-and-kits/two-step-qrt-pcr/quantitect-primer-assays/?catno=QT00137753
https://www.qiagen.com/de/shop/pcr/real-time-pcr-enzymes-and-kits/two-step-qrt-pcr/quantitect-primer-assays/?catno=QT00168133
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2.2 Methods 
 

2.2.1 Animal models 
 

All experimental mice (Mus musculus) were bred and housed under standard conditions 

in the animal facility of the German Cancer Research Center (DKFZ, Heidelberg, 

Germany). Legal requirements with regard to housing, space, temperature, humidity, 

enrichment, minimal stress and disease free etc. were ensured for the animals prior to 

experiments. The animals had access to food and water ad libitum and maintained in 12 

hour dark/light cycles. All animal experiments were in accordance with the institutional 

guidelines and under animal permissions (DKFZ 288, DKFZ 352 and G-272/15) 

approved by the Regierungspräsidium Karlsruhe, Germany. 

C57BL/6N mice (6-8 weeks old) hereafter referred to as wild type (WT). Two transgenic 

mouse lines were used. 1) TlxCreER-eYFP-Rpl22-HA (TiCRY) mice were generated by 

crossing Tlx-CreERT2 mice to R26-LSL-EYFP mice and Rpl22-HA mice. Tlx-CreERT2 

mice were a nice gift from Prof. Hai-kun Liu. 2) Fluorescent ubiquitylation-based cell 

cycle indicator (Fucci2) mice were a kind gift from the Milsom lab in HI-STEM 

(Heidelberg, Germany). The official nomenclature of the above mentioned mice were 

listed in Table 8.  

To induce recombination in the Cre/loxP-System, tamoxifen was injected 

intraperitoneally (i.p.) into 8 to 12-week-old mice at concentration of 40 mg/kg 

bodyweight. For cell cycle experiments, Fucci2 mice were sacrificed and NSCs were 

isolated and taken in culture. These NSCs were used for FACS analysis after 

synchronization. 
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Table 8, Official nomenclatures of transgenic mice 

Short name Official nomenclature 

C57BL/6N B6-Wlstm1.1 Arte Tg(CAG-Flpe)2Arte/Mbtr 

Tlx-CreERT2 B6-Tg(Nr2e1-Cre/ERT2)1Gsc 

R26-LSL-EYFP B6.129X1-Gt(ROSA)26Sor-tm1(EYFP)Cos 

Rpl22-HA B6.129-Rpl22tm1.1.1Psam/Atp 

TlxCreER-eYFP-

Rpl22-HA 

B6-Tg(Nr2e1-Cre/ERT2)1Gsc Gt(ROSA)26Sortm1(EYFP)Cos 

Fastm1Cgn Rpl22tm1.1Psam/Amv 

R26p-Fucci2 B6-Tg(Gt(ROSA)26Sor-Fucci2)#Sia  

 

2.2.2 Cell culture 
 

a) Isolation and maintenance of primary neural stem cells 

For NSCs isolation, 8-12 weeks old mice were sacrificed by cervical dislocation. SVZs 

were microdissected as a whole mount according to the previously described protocol 

(Mirzadeh et al., 2010). Cells were isolated by treating the tissue with trypsin and DNase 

supplied from the Neural Tissue Dissociation P kit in a Gentle MACS Dissociator 

(Miltenyi Biotec). After that, they were cultured in NBM in the presence of growth factors 

(20 ng/mL of bFGF and EGF).  

 

b) Inhibitor treatments 

To inhibit mTOR activity in NSCs, multiple compounds were used either individually or in 

combination. Torin was added to cells to reach a final concentration of 250 nM. The final 

concentration of LY294002 was 5 μM and the final concentration for puromycin was 0.5 

μM. 

 

c) Lab-Tek Chamber/glass slide coating 

Lab-Tek Chamber/glass slides were firstly coated with 100 μg/mL PDL solution 

overnight at 37°C in a CO2 incubator. After PDL removal by washing 2x 1h with sterile 

Milil-Q water, the slides were recoated with 50 μg/mL of laminin at 37°C for 2 h. Laminin 

was washed away with NBM, and cells were immediately plated for culture. 
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d) PIP3 treatment 

PIP3/AM(DOG) was synthesized as described before (Dinkel et al., 2001) and was 

kindly supplied by the Schultz Lab (EMBL, Heidelberg, Germany). PIP3/AM, dissolved in 

DMSO, was stored at -80°C as a stock solution (50 mM). Cells were treated at final 

concentration of 10 µM. To facilitate penetration through the cell membrane, PIP3 was 

diluted in 20% pluronic F127/DMSO. After 10 min incubation at 37°C, PIP3 was washed 

away by centrifugation and the cells were replenished with fresh NBM. For double 

treatment with PIP3 and Torin, Torin was first added to the cells at a final concentration 

of 250 nM 5 min prior to PIP3 treatment, which was incubated for additional 10 min. 

PIP3 was washed out before Torin was re-added to the cells for 2 h incubation. Upon 

completion, Torin containing medium was replaced with fresh NBM.  

 

e) Cell synchronization 

NSCs at a low passage (passage 2) were synchronized by double thymidine block (dTB) 

to accumulate them at G1/S phase. Cells were incubated with a final concentration of 2 

mM thymidine in normal NBM for 18 hours. Thereafter the cells were washed twice and 

fresh NBM was added to the cells for 9 hours to release the cell cycle block. The second 

round of thymidine treatment was performed for additional 16 hour to ensure a complete 

block of NSCs at G1/S phase. 

  

f) Polysome profiling of NSCs in vitro 

For each sample, 106 NSCs were seeded in a 150 cm2 flask 3 to 4 days before cells 

lysis. Cells were used for polysome profiling at 70% confluency. 17.5% - 50% sucrose 

gradient was formed in polypropylene centrifugal tubes for SW41 rotor by mixing 5.5 ml 

of each freshly prepared sucrose solution in a SG15 gradient maker. The tubes were 

kept at 4°C until use to hold the sucrose solution pre-cooled.  

To prevent ribosome dissociation from mRNAs during cells lysis and centrifugation, CHX 

was added to each flask and the cells were incubated at 37°C for 5 min to freeze 

preformed polysomes. Afterwards cells were collected by centrifugation. After two 

rounds of wash with 10 ml of ice-cold PBS containing CHX, pellets were re-suspended 

in 600 μL of polysome lysis buffer (PLB) and kept on ice for 10 min, followed by 
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centrifugation at 15000 g, 4°C for 10 min to remove cell debris including the nuclei. The 

supernatant containing the cytoplasmic lysate was transferred into a new reaction tube, 

lysate concentration was measured by absorption at 254 nm in Nanodrop and the same 

amount of each lysate was loaded onto sucrose gradient solution in the tubes. PLB was 

used to equilibrate the tubes before placing them into the centrifugal buckets of a SW41 

rotor. Centrifugation was performed at 35000 rpm at 4°C for 2.5 hours using an L8M 

Beckman Ultracentrifuge. After centrifugation, the content of each tube was fractionated 

with a density gradient fractionator and 12 fractions of 1 mL volume were collected. 

During fractionation, the absorption of the fractionated solutions was measured at 254 

nm to draw polysome profiles across the gradient. The obtained fractions were kept at -

80°C until further processing. 

To analyze RNA distribution across the polysome profiles, total RNAs from individual 

fractions were extracted and used for cDNA synthesis and qRT-PCR. (Data produced 

jointly with Dr. M. Skabkin, division of Molecular Neurobiology, DKFZ) 

 

g) Differentiation assay  

NSCs were seeded on a glass slide pre-coated with Poly-D Lysine and laminin in NBM 

supplied with growth factors as previously described. Following overnight incubation, 

growth factors were withdrawn and 4 hours later the cells were treated with PIP3, Torin 

or DMSO as described in figure legends. After 7 days of culturing under differentiation 

conditions (NBM without growth factors), cells were fixed with 2% PFA and 

immunohistochemically stained for Sox2 and DCX (Data produced jointly with Dr. S. 

Kleber, division of Molecular Neurobiology, DKFZ). 

 

h) Neurosphere Assay 

To perform a neurosphere assay upon treatment with PIP3, DMSO and PIP3/Torin like 

previously described for PIP3 treatment (d), early neuroblasts were FACS sorted and 

500 cells were plated on PDL and laminin-coated 16-well Lab-Tek chambers (Thermo 

Fisher Scientific). 5 wells were quantified for each condition. The number of spheres was 

calculated after 7 days in culture (Data produced jointly with Dr. S. Kleber, division of 

Molecular Neurobiology, DKFZ). 
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2.2.3 Flow cytometry 

 

a) Cell sorting 

Mice were sacrificed by cervical dislocation. SVZs were microdissected from the brains. 

SVZs from up to 5 mice were pooled as one sample for sorting. Samples were 

dissociated using the Neural Tissue Dissociation kit and a Gentle MACS Dissociator 

(Miltenyi Biotec). Sytoxblue (Thermo Fisher Scientific, 1:500) was used to detect and 

exclude dead cells. NSCs or ENBs were sorted following the protocol described before 

(Llorens-Bobadilla et al., 2015). GLAST, Prominin and EGFR were used as markers for 

NSCs, PSA-NCAM was used to sort ENBs.  

 

b) Cell cycle phase analysis 

NSCs isolated from Fucci2 mice were used to detect cell cycle phases by FACS after 

synchronization.  

During cell cycle progression of the Fucci2 NSCs, fluorescently labeled Cdt1 and 

Geminin accumulate, labeling the nuclei of the G1 phase cells in red and S/G2/M phase 

cells in green, respectively. Thus, this dual color imaging technique makes it possible to 

pinpoint cell cycle phases for alive cells by FACS. Wild type NSCs without any 

fluorescence were used as control to define the negative population and set up the 

proper gates. The distribution of FITC and mCherry was analyzed in those cells. All 

Fucci flow cytometry cell cycle data was acquired with a FACS Analyser Fortessa (BD 

Biosciences) and was further analyzed using FlowJo. 

 

2.2.4 Confocal microscopy and image processing 

 

Cell images for lineage tracing and PIP3 treatment were acquired with a Leica TCS SP5 

confocal microscope (Leica, Germany). Sequential scanning was used during imaging 

for different fluorophores to reduce cross interference between channels. All images 

within compared groups were acquired with identical settings. ImageJ/Fiji was used for 

image processing. 
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For OP-Puro, SOX2 and pS6 quantifications, a custom-written macro was applied to 

ImageJ/Fiji software for unbiased segmentation and quantification of pixel intensity and 

cell size. The integrated pixel intensity, reflecting the amount of incorporated OP-Puro 

amount, was normalized to ENBs as control group within the same experiment. All cells 

in the image were quantified for OP-Puro intensity. Those cells which showed dim YFP 

expression were discarded, leaving bright YFP positive cells for comparison. Besides, 

cell type markers were also used to further trace NSCs and ENBs of the YFP lineage. In 

graphs, mean and SD values were shown. Inkscape was used for the figure assembly. 

 

2.2.5 Biochemistry techniques/assays 

 

a) OP-Puro assay 

The sorted cells were seeded in a Lab-Tek Chamber filled with 200 μL NBM without 

growth factors for 2 hours. OP-Puro solution was added to the cells and incubated at 

37°C for 1 hour. Fixation of the OP-Puro treated cells was performed with 200 μL 4% 

PFA directly (final PFA concentration: 2%). Afterwards fixed cells were washed twice 

with PBS to remove residual OP-Puro. Cells were permeabilized with 0.25% Triton-X 

100 solution and used for immunostaining. OP-Puro “click” reaction solution 

supplemented with Alexa Fluor 647-coupled azide was added to the cells and incubated 

for 30 min at room temperature following two times wash with PBST and one more time 

with PB solution. Finally, cells were mounted with Fluoromount G with DAPI (Southern 

Biotech) and used for subsequent microscopy. 

 

b) Immunocytochemistry 

Chambers or coverslips were pre-coated with PDL solution and laminin. Cells were 

seeded and cultured in the chambers with 200 µL NBM (containing growth factors) for 2 

hours to attach. The double coated surface of the chambers/cover slips improved cells 

attachment, thereby reducing cell loss due to several rounds of washing after fixation. 

4% PFA was added to the chambers/coverslips with NBM to double the total volume so 

that cells were fixed in 2% PFA. 20 min later, cells were washed with PBS for two times 
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followed by incubation with 0.25% Triton-X 100/PBS for 10 min for permeabilization. 

Two-time PBS washing was performed before blocking in 5% BSA for 30 min at room 

temperature. Cells were incubated with primary antibodies at 4°C overnight followed by 

incubation with corresponding secondary antibodies at room temperature for 1 hour. At 

least two-time PBS wash was used for both primary and secondary antibody staining to 

reduce the background. Finally, cells were dried, and mounted in standard mounting 

media including DAPI. The glass slides were used for confocal microscopy after drying 

at room temperature overnight in dark place. 

 

c) Western blot 

To perform a Western blot using freshly isolated in vivo cells, 12 to 20 mice were 

sacrificed to prepare for FACS isolation. Around 10 000 cells for in vivo NSCs and ENBs 

were sorted in protein low bind Eppendorf tubes. 5 μL of Glycoblue was added to the 

cells for centrifugation at full speed for 5 min. FACS buffer was discarded and 50 μL of 

IP lysis buffer supplemented with protease inhibitors was added to the cell pellet before 

kept at -80°C overnight to promote cells lysis. Next day, BCA kit was used estimate the 

protein concentration, the rest proteins were used for Western blot. Due to a small 

amount of the input protein and a limited number of possible re-probing steps for WB 

membranes, several rounds of FACS and WB were performed. Vinculin was used as a 

loading control. For WB of the cells in culture, 106 cells were lysed in 150 μL of lysis 

buffer and kept at -80°C overnight.  

Next day, samples were thawed on ice. Each sample was mixed with a 30 gauge 

syringe for several times to improve lysate homogenization. The lysate was centrifuged 

at 13,000 rpm for 10 min at 4°C and the supernatant was transferred into a new reaction 

tube without touching the pellet. Protein concentration of the lysate was measured with 

the BCA kit. 10 μg of total protein was prepared in 1x Laemmli buffer and was heated for 

5 min at 95°C to denature. Samples were loaded onto a 10% precast gel and run for 40 

min at 200 Volt in 1x running buffer. After electrophoresis, roteins were transferred from 

gel onto a nitrocellulose membrane in the Trans-blot turbo instrument (Bio-Rad). TBST 

with 5% BSA was used for membrane blocking and correspondent primary antibodies 

were added for overnight incubation at 4°C. After that, the membrane was washed in 
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PBST or TBST for 3 times, with 10 min for each, to remove unbound primary antibodies. 

Secondary antibodies were added and incubated at room temperature for 1 h, followed 

by 3 times washing. Amersham ECL Prime reagent was prepared and added to the 

membrane to detect antibody signal in ChemiDoc Touch Imaging System.  

 

2.2.6 RNA extraction 

 

a) RNA extraction from sorted cells 

Total RNA was extracted from cells with a PicoPure RNA isolation kit following 

manufacturer’s protocol. The kit is designed to recover RNA from less than 10 cells and 

can also be used to recover up to 100 μg RNA. DNase I was used as recommended by 

the kit to eliminate genomic DNA contamination, allowing for high quality RNA recovery. 

The extracted RNA was finally obtained in 11 μL water. RNA concentration was 

measured with a NanoDrop Spectrophotometer and RNA samples were stored at -80°C 

until further analysis. 

 

b) RNA extraction from sucrose gradient fractions 

RNA extraction from sucrose gradient fractions was performed according to the protocol 

described by Faye and colleagues (Faye et al., 2014) with minor modifications. 

300 μL of each fraction was placed in a reaction tube to incubate with 16.7 μL 

Proteinase K solution at 50°C for 1 h. The equal volume of phenol: chloroform (5:1) was 

added upon incubation. Extra 200 μL of chloroform were added to fractions 7-12 to 

avoid phase inversion as a result of high sucrose concentration in these fractions. After 

vortexing for 30 seconds, fractions were centrifuged at full speed at room temperature 

for 5 min. The upper aqueous phase of each fraction was taken out and transferred into 

a new reaction tube. Equal volume of chloroform was added to the aqueous solution, 

mixed and centrifuged at full speed for 5 min. The upper aqueous solution was again 

taken out and transferred into a new reaction tube filled with 1/10 volume of 3 M sodium 

acetate (pH 5.2) and 2.5 volume of cold, absolute ethanol. After 15 sec of vortex, all 

samples were placed at -20°C overnight. On the next day, samples were centrifuged at 
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full speed for 30 min at 4°C. The liquid phase was discarded, leaving the pellet, which 

was once washed with 75% ethanol. Then, pellets were air dried for 7 min at RT and 

dissolved in nuclease free H2O. Finally, all samples were quantified for RNA 

concentration using Qubit Fluorometer and stored at -80°C until further usage.  

 

c) cDNA synthesis 

RNAs were extracted from the freshly isolated NSCs and ENBs or sucrose gradient 

fractions. For qPCR analysis, the cDNAs were synthesized using SuperScript VILO 

cDNA Synthesis Kit.  

2 μL of each RNA sample (but not more than 2.5 μg of total RNA) were used as input to 

synthesize cDNA in a 20 μL reaction using a SuperScript VILO cDNA synthesis kit 

(Table 9). Reactions were incubated at 25°C for 10 min followed by 42°C for 60 min and 

85°C for 5 min. cDNA sample stocks were stored at -20°C until further analysis.   

 

Table 9, cDNA synthesis reaction composition 

Component Quantity 

5x VILO Reaction Mix 4 μL 

10x SuperScript Enzyme Mix 2 μL 

RNA (up to 2.5 μg) 2 μL 

Nuclease free water  12 μL 

  

2.2.7 Real-Time Quantitative PCR 

 

Real-Time Quantitative PCR (qRT-PCR) was used to estimate relative transcriptional 

expression of candidate genes. qPCR reactions were performed using 384-well plates in 

a CFX384 Touch™ Real-Time PCR Detection System. Each well contained a 10 μL 

reaction, including 5 μL of SYBR Green master mix, 3 μL of H2O, 1 μL of primers and 1 

μL of corresponding cDNA. Primers from Qiagen were thawed and directly used without 

dilution. cDNAs were diluted according to their concentrations (e.g. 2-5 times for RNA 

from sorted NSCs and ENBs; up to 10 times for RNA from cultured cells). All reactions 

were performed with 3 technical replicates. Actb was used as an internal control to 
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compare different cells types (NSCs vs ENBs) or different treatments (DMSO vs Torin). 

Relative expression of genes was calculated using ΔΔCt method. 

2.2.8 Computational analysis  

Bioinformatic analysis for both the repressed and up-regulated genes was performed in 

collaboration with Manuel Göpferich (division of Molecular Neurobiology, DKFZ) and Dr. 

Bernd Fischer (division of Computational Genome Biology, DKFZ).  

 

2.2.9 Statistical analysis 

 

The used statistical tests varied with the type of input data and they were specified in the 

respective figure legends. 

Data were presented as mean ± SD in GraphPad Prism 6. Statistical significance was 

determined using unpaired Student’s t test, with p < 0.05 for appropriate significance 

and p < 0.01 for extremely high significance. 
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3 Results 

In order to gain comprehensive understanding of neurogenesis, previous work in our lab 

using lineage tracing mice has been undertaken to acquire the transcriptome and 

translatome of NSCs and their progenies such as ENBs, LNBs and neurons. The 

analysis revealed unique gene expression landscapes of each type of cells and unveiled 

a strict lineage-dependent regulation in the expression of the genes involved in protein 

biosynthesis and its control, what could indicate a critical role of post-transcriptional 

regulation in the process of neurogenesis. The following calculation of translation 

efficiency based on the comparison of the transcriptome and translatome of each stage 

identified a number of candidate genes undergoing post-transcriptional regulation. A 

series of studies were conducted in vivo, ex vivo and in vitro in order to determine the 

mechanism guiding post-transcriptional regulation during NSC differentiation, which is 

described in the following text. 

3.1 Validation of RNA-seq data for NSCs and ENBs  
 

Here we performed qPCR to validate the lineage tracing based RNA-seq data upon the 

NSC-to-ENB transition (Figure 5). 

NSCs and ENBs were FACS isolated and collected using dissected SVZs pooled from 

mice. Total RNA was extracted from each type of cells and converted into cDNA, which 

was used for qPCR to detect the relative changes in the abundance of mRNAs for 

previously found candidate genes. 

The earlier performed RNA-seq analysis showed that a number of genes encoding 

important cell fate defining transcription factors like Sox2 and Pax6 exhibited no change 

upon the NSC-to-ENB transition. Transcripts like plasma membrane calcium-

transporting ATPase 1 (Atp2b1), baculoviral IAP repeat-containing protein 6 (Birc6), 

regulator of G-protein signaling 16 (Rgs16), and vasohibin-2 (Vash2) also showed no 

significant change. However, we detected up-regulation for dual specificity protein 

phosphatase 4 (Dusp4) and specificity protein 8 (Sp8) upon the transition. The mRNA 

levels of ribosomal protein S20 (Rps20), intermediate filament gene vimentin (Vim), 

myelin proteolipid protein gene proteolipid protein 1 (Plp1) and mTOR activator Ras 
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homolog enriched in brain (Rheb) in ENBs dropped to 20% -50% of the level in NSCs, 

manifesting significantly repressed gene expression upon the transition (Figure 5, a). 

Interestingly, the expression changes observed by qPCR showed similar result (Figure 5. 

b). Correlation analysis performed for the fold changes acquired from qPCR and RNA-

seq showed a high correlation (Cor = 0.94), indicative of high accuracy of previously 

performed RNA-seq (Figure 5. c).  
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Figure 5. RNA-seq and qPCR data show strong correlation 

(a) Relative qPCR quantification of mRNAs for the indicated genes in freshly isolated NSCs and ENBs. 

Actb was used as an internal control to normalize gene expression. (b) Fold change in mRNA abundance 

according to RNA-seq upon NSC-to-ENB transition. Fold changes were calculated for abundance of the 

analyzed mRNAs in ENBs over NSCs. (c) Pearson's correlation coefficient computed between the log2 

mRNA read counts upon NSC-to-ENB transition and log2 fold change from qRT-PCR values. 
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3.2 Validation of translation efficiency derived from RiboIP-

seq and RNA-seq 
 

Previous work in our lab calculated the translation efficiency of genes in NSCs and 

ENBs by normalizing translatomes to their corresponding transcriptomes. Upon the 

NSC-to-ENB transition, genes such as Birc6, Dusp4, Sp8, Plp1, Vash2, Rgs16 exhibited 

increased translation and Rps20, Rpl18, Rps17, Sox2 and Pax6 etc. showed repressed 

translation.  

To validate these data, we checked the protein levels of FACS isolated NSCs and ENBs 

based on the above mentioned genes (Figure 6). Vinculin, a membrane-cytoskeletal 

protein stably expressed across different cell types, served as a loading control. The 

absence of appropriate antibodies restricted the number of proteins we could test, 

especially operating with a very limited amount of cell lysate from the sorted cells. For 

example, we tried but failed to test PAX6, RPL18 and RPS17 proteins. After some pilot 

experiments, we chose SP8, DUSP4, PLP1, RPS20 and SOX2 for Western blot analysis. 

For the NSC-to-ENB transition, there was increased amount of SP8 and DUSP4. PLP1 

exhibited the same protein level. On the contrary, the level of RPS20 dropped 

significantly. An even more significant drop was observed for SOX2. We quantified the 

intensity of the protein bands and normalized them to the loading control ACTB. The fold 

changes in the abundance for the candidate proteins were calculated as ENBs to NSCs. 

Intriguingly, the values were highly correlated to the previously determined translation 

efficiency for each protein, meaning the high throughput RiboIP-seq data was in good 

quality, giving high credibility to the post-transcriptional analysis for each candidate gene.  

Gene ontology analysis revealed that the translationally enhanced genes are involved in 

neuronal functions such as axon extension, synaptic plasticity and the repressed genes 

are enriched in ribosome biogenesis and translation, indicating the need for translational 

arrest and neuronal specific gene expression during the early onset of NSC 

differentiation (Figure 6. c). 
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Figure 6. Validation of translation efficiency data through Western blot and GO analysis 

(a) Western blot analysis of the protein level for the candidate genes showing considerable change upon 

NSC-to-ENB transition. (b) Pearson's correlation coefficient computed between the NSC-to-ENB log2 read 

counts from the high throughput sequencing-based translation efficiency and the log2 fold change 

according to intensities from western blots. (c) Gene ontology (GO) analysis of repressed and enhanced 

genes according to the translation efficiency list.  
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3.3 Onset of differentiation is accompanied with global drop 

in protein synthesis 
 

Based on cell surface marker expression (Figure 7), quiescent and active NSCs as well 

as their progenies were isolated for OP-Puro assay to study the level of global protein 

synthesis (Baser, 2018). Very dynamic changes were observed among these neuronal 

populations and the level of global protein synthesis in ENBs was significantly lower than 

in NSCs. However, the level of global protein synthesis along the neuronal lineage 

remained unknown. Here we specifically focused on the variation of global protein 

synthesis upon the NSC-to-ENB transition. To study this, NSCs and ENBs from the 

lineage traced mice were isolated to perform OP-Puro assay (Figure 8). 

TAM was administrated to the TiCRY mice to induce recombination at the Rosa26 locus, 

and to label the NSCs and their progenies with the expression of YFP. 5 days later, the 

amount of YFP labeled NSCs and ENBs reached the highest number. SVZs from these 

mice were micro-dissected and prepared for FACS (Figure 7). After proper gating for 

specific cellular markers, doublets and non-target cell exclusion, NSCs and ENBs were 

collected in high purity (Figure 7). 

After ICC and OP-Puro assay, the well-mounted cells were analyzed by confocal 

microscopy. ENBs exhibited smaller size than NSCs (Figure 8, c). Cells expressing low 

intensity of YFP, GLAST or DCX were discarded due to the possibility of being false 

positive, leaving the bright ones for the following OP-Puro quantification. From 2752 

NSCs and 2534 ENBs, we recovered 70 NSCs and 71 ENBs for microscopy due to 

subsequent washing steps after cells staining. After the exclusion of the false positive 

cells, 38 YFP positive NSCs and 52 YFP positive ENBs were used for OP-Puro 

quantification. An extremely significant drop of OP-Puro incorporation upon the NSC-to-

ENB transition was detected, manifesting that this transition is accompanied by a 

dramatic down regulation of global protein synthesis (Figure 8. d). 
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Figure 7. Strategy to sort NSCs and ENBs by flow cytometry 

(a) Schematic view of FACS workflow. SVZ cells were immunostained for cell surface markers and were 

analyzed by flow cytometry. (b) FACS strategy to sort for aNSCs and ENBs. First SVZ cells were gated 

stringently; Second doublets were excluded; Third dead cells, O4+ cells like oligodendrocytes, CD45+ 

cells such as microglia, Ter119+ cells like erythroid cells were excluded. Fourth the GLAST-/PSA-NCAM+ 

ENBs were sorted. Fifth the GLAST+/Prominin+/EGF+ NSCs were sorted. The percentage of each 

population (P) is highlighted in the plots. 
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Figure 8. Level of global protein synthesis dropped during NSC lineage progression 

(a) Scheme of tamoxifen administration. TAM was administrated intraperitoneally (i.p.) to the TiCRY mice 

(n=6) with one shot every 12 hours for 5 days, 10 mg tamoxifen in total for each mouse. 5 days post-

injection the mice were used for SVZ dissection to isolate NSCs and ENBs by FACS. (b) Schematic 

description of TiCRY mice and the migrating path of YFP NSCs lineages from the SVZ to the OB. (c) 

Representative confocal images after immunostaining and OP-Puro assay. (d) Quantification of OP-Puro 

incorporation of NSCs (n=38) and ENBs (n=52) (relative to ENBs). Statistical significance was calculated 

by student’s t-test; **** p<0.001. Scale bars: 10 µm. 
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3.4 The activity of mTOR is dropped upon the NSC-to-ENB 

transition 
 

Upon the NSC-to-ENB transition, the level of global protein synthesis dropped. 

Specifically, Dusp4, Sp8 and more neuronal genes were translationally enhanced, what 

could be the drive of neuronal cell fate specification. Notably, a set of gene transcripts 

containing PRM in their 5’ UTR was translationally repressed at ENBs stage. Among 

these transcripts, there were stem cell markers Sox2 and Pax6 as well as mRNAs 

encoding ribosomal proteins. These transcripts were exclusively repressed at ENBs 

stage, presumably due to the low activity of their common positive regulator mTOR.  

To determine the molecular mechanism responsible for the transition of NSCs to ENBs 

in vivo and meanwhile inspired by the enriched mTOR-dependent mRNAs in the ENBs, 

we focused on the role of mTOR in the regulation of the above mentioned candidate 

genes and try to gain insights into the control mechanism of NSC differentiation.  

Freshly FACS isolated NSCs and ENBs were used to analyze the abundance and 

modifications of mTOR signaling components by Western blot analysis (Figure 9). 

Comparing to NSCs, ENBs exhibited reduced expression of TSC2 the mTOR upstream 

inhibitor, and significantly lower level of RHEB, which is the direct upstream activator of 

mTOR. However, we could not detect any phospho Ser1378 or phospho Thr1462 in 

TSC2 (data not shown), maybe due to the limited input protein material. There was no 

change in the expression level of total p70 S6 kinase. However, the level of phospho 

p70 S6K, the direct catalytic product of mTOR, was considerably decreased in the ENBs. 

A well-described substrate of p70 S6 kinase ribosomal protein S6 exhibited a drop in its 

total level and a much more significant drop in its phospho level, indicating a very low 

mTOR activity in ENBs (Figure 9. a). Of note, the amount of Sox2 mRNA remained 

equal in NSCs and ENBs while the protein dropped dramatically upon the NSC-to-ENB 

transition (Figure 9. b), suggesting a strong post-transcriptional repression of Sox2 

translation. This is likely to be associated with the decreased activity of mTOR since 

Sox2 mRNA has a PRM in its 5’ UTR, which can confer mTOR dependence. The 

following studies were carried out focusing on the regulation of mTOR in Sox2 

expression. 
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Figure 9. NSC-to-ENB transition is accompanied with reduced mTOR activity and post-

transcriptional repression for Sox2 expression 

(a) Western blot analysis of mTOR activity upon the NSC-to-ENB transition using cells collected by FACS. 

Vinculin served as a loading control. Vinculin was used as a loading control. (b) qPCR and Western blot 

analysis of Sox2 upon the NSC-to-ENB transition. Vinculin was used as a loading control for Western blot 

analysis.  
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3.5 Inhibition of mTOR has no effect on the level of SOX2 
 

The in vitro NSC culture allows more detailed and convenient studies of molecular 

mechanisms, which is very complicated and barely possible to carry out in vivo because 

of very limited number of NSCs and their progeny in adult mammalian brain. 

Torin, a chemical compound fully inhibiting mTORC1 and mTORC2, was used to treat 

NSCs to mimic the decreased level of mTOR activity in ENBs. 

2 hours after treatment, although the mTOR upstream regulators TSC2 and RHEB did 

not show any change, the phospho level of two typical mTOR substrates p70-S6 kinase 

and 4EBP dropped significantly. The level of phospho ribosomal protein S6 exhibited a 

decrease after 2 hours vehicle treatment and a more significant decrease after 2 hours 

of Torin treatment. Of note, their total level remained unchanged, indicating significant 

decrease in mTOR activity. SOX2 did not show any significant changes upon mTOR 

inhibition (Figure 10). We also tried an alternative mTOR inhibitor, AZD2014 and again 

did not observe a significant change for the level of SOX2 (data not shown). This led us 

to consider alternative methods to investigate Sox2 translation.  
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Figure 10. The level of SOX2 remained constant when mTOR activity is reduced in vitro 

Torin treatment was incubated for 2 h. DMSO treatment served as a vehicle controls and was incubated 

for 0 h and 2 h. Vinculin served as a loading control. 
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3.6 Sox2 ribosome loading is not affected upon mTOR 

inhibition 
 

We performed polysome profiling to investigate the distribution of mRNAs according to 

the number of bound ribosomes on them (Figure 11). 

Upon Torin treatment, the overall RNA distribution displayed a shift to earlier fractions. 

Moreover, the increased amount of the material in the zone of monosome and ribosome 

subunits in the Torin treated group compared to the vehicle control group indicated 

efficient repression in the translation of corresponding mRNAs, indicating their 

dependence on mTOR. 

We analyzed a number of candidate genes involved in the repressed and enhanced 

translation during NSC differentiation as well as mTOR insensitive transcripts like Actb 

and Sox9. As controls, the translation of which is mTOR insensitive, Actb and Sox9 

mRNAs didn’t exhibit any shifted distribution to lighter fractions, indicating tight 

association of their mRNA to the ribosomes.  

We observed a significant shift of Rpl18 mRNAs away from polyribosomes to the 

mRNP/monosome fractions upon Torin treatment, demonstrating reduced accessibility 

to the translational machinery in contrast to the control vehicle treatment. The same shift 

was observed for Rps17, eIF3f, eEF1b2 mRNAs. Dusp4 demonstrated a slight shift to 

heavier polyribosomes, confirming increased translation efficiency upon mTOR inhibition. 

However, the Sox2 mRNA distribution did not show any shift (Figure 11), reflecting 

unchanged translation efficiency.  
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Figure 11. Polysome profiling of NSCs exhibits different profiles for the of candidate gene 

transcripts upon mTOR inhibition by Torin 

The first plot shows the overall polysome profiles of the treatments. The rest plots show specific analysis 

of the following gene transcripts: Actb, Sox2, Dusp4, Rpl18, eEF3f, eEF1b2, Rps17 and Sox9. Torin 

treatment was incubated for 2 hours. DMSO treatment served as a vehicle control.  
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3.7 The level of SOX2 protein is not affected by modulation of 

mTOR upstream regulators 
 

In vivo, mTOR activity is controlled by many factors such as the abundance of growth 

factors, the availability of amino acids, PI3K activity etc. Here we investigated the effect 

of growth factors and PI3K activity on Sox2 translation in NSCs (Figure 12). 

NSCs were cultured in NBM with the presence or absence of growth factors and 

subsequently subjected to treatments such as LY294002, an inhibitor targeting upstream 

mTOR activator PI3K, as well as Torin or LY294002/Torin. When cultured in NBM with 

growth factors, the LY294002 treatment significantly decreased the level of p-4EBP, 

indicating LY294002 mediated reduction in mTOR activity. We did not observe a 

significant drop for the level of p-AKT and p-TSC2, whereas they dropped considerably 

upon Torin treatment. Growth factor withdrawal decreased mTOR activity as shown by 

diminished level of p-4EBP and p-AKT as well as their total proteins. However, Sox2 

expression was not affected upon the growth factor withdrawal or LY294002 treatment, 

indicating that modulation of mTOR activity via its upstream regulators does not impact 

the level of SOX2 protein.  
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Figure 12. Upstream modulation of mTOR doesn’t affect the abundance of SOX2 protein 

NSCs were cultured in NBM with or without growth factors. Cells were incubated with DMSO, LY294002, 

Torin or LY294002/Torin for 2 hours. DMSO served as a vehicle control. 
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3.8 Translation of Sox2 mRNAs is not affected by modulation 

of mTOR activity via its upstream regulators 
 

Next, we investigated the effect of PI3K inhibition on Sox2 mRNA translation (Figure 13). 

Actb and Rpl18 mRNAs were used as controls. Indeed, distribution of Actb mRNA did 

not show any shift to lighter fractions upon either Torin or LY294002 treatment. Also, 

LY294002/Torin combinatorial treatment showed a shift to heavier fractions for Actb but 

not for Rpl18. Rpl18 mRNA showed a typical binary distribution. One portion of the 

Rpl18 mRNA is actively in translation whereas the rest not and co-sedimentated with 

free ribosomal subunits and monosomes. Sox2 polysome profiles upon the treatments 

were almost identical to the control. Sox2 mRNA was mainly present in the 

polyribosome fractions, indicating its insensitivity to the PI3K inhibition. 

 

   

 

Figure 13. Sox2 mRNA translation is resistant to the repression of upstream mTOR regulators  

NSCs cultured with growth factors were treated with LY294002, Torin, or LY294002/Torin for 2 hours. 

DMSO served as a negative control. Actb, Rpl18 and Sox2 were analyzed.  
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3.9 Active Sox2 translation is further confirmed 
 

Puromycin treatment was introduced in the polysome profiling experiment to double 

check if Sox2 mRNA was under-going active translation upon Torin treatment (Figure 

14). As structural analog of the aminoacyl-transfer RNA (aa-tRNA), puromycin is 

recognized by ribosomes as the acceptor end of aa-tRNAs, resulting in transfer of 

nascent polypeptide to puromycin followed by dissociation of the resulted complex and 

final release of the ribosomes from mRNAs (Starck and Roberts, 2002). 

In contrast to the selective effect of Torin on the translation of mTOR sensitive 

transcripts, puromycin represses translation in a transcript unspecific manner. The RNA 

distribution of Actb was not changed upon Torin treatment but shifted to lighter fractions 

upon puromycin treatment, indicating strong block of translation by puromycin. Similar 

translational block was observed for Rpl18. The effect of Torin on Rpl18 translation is 

stronger than that of puromycin, indicating a very high sensitivity of Rpl18 mRNA to 

mTOR activity reduction. Sox2 exhibited a shift to lighter fractions upon puromycin 

treatment when compared to the controls, confirming that Sox2 mRNA is undergoing 

active translation upon Torin treatment and did not recapitulate the repression detected 

in vivo upon the NSC-to-ENB transition. 
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Figure 14. Active translation of Sox2 mRNA upon Torin treatment was further confirmed by 

polysome profiling 

NSCs were treated with Torin, Puromycin or Torin/Puromycin. Torin treatment was incubated for 2 hours 

and puromycin for 20 min. Actb, Rpl18 and Sox2 were analyzed. 
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3.10 The activation of mTOR reverts ENBs to stemness state 
 

To investigate the role of mTOR in Sox2 mRNA translation in vivo, we focused on sorted 

NSCs and ENBs due to their close physiological state to their counterparts in vivo. NSCs 

and ENBs were sorted and subjected to the modulation of mTOR activity to study the 

effect on Sox2 mRNA translation (Figure 15).  

Sox2 is a stem cell marker. Therefore, NSCs served as a positive control and were 

directly PFA fixed after sorting. To demonstrate whether differentiation of ENBs is mTOR 

dependent, a membrane-permanent phosphatidylinositol-3,4,5-trisphosphate (PIP3) was 

introduced to modulate mTOR activity in the cells. ENBs were stimulated with either 

PIP3 or PIP3/Torin for the indicated time points. The expression levels of Sox2 and pS6 

as mTOR activity indicator were analyzed. Upon PIP3 stimulation, a significant increase 

in Sox2 and pS6 expression levels were detected in ENBs, which was reduced when 

mTOR was additionally inhibited (Figure 15. b, c). In summary, the increase of mTOR 

activity could induce SOX2 expression in ENBs and presumably revert the differentiation 

process. 
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Figure 15. Activation of mTOR in ENBs promoted SOX2 expression 

(a) Scheme of PIP3 or control treatment for ENBs. DMSO served as a vehicle treatment (b) 

Representative ICC image of SOX2 (red) and pS6 (turquoise) from microscopy. Co, vehicle control. Scale 

bar: 5 μm. (c) Quantification of the relative expression level of SOX2 and pS6. For each condition, 20 cells 

were analyzed and the intensity was normalized to the cell area. Statistical significance analysis was 

performed by student’s t-test p < 0.01**, p < 0.005***. 
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3.11 ENBs regain stem cell features by activation of mTOR 
 

Previous experiments showed that increased mTOR activity in ENBs leads to the re-

expression of SOX2 in ENBs. We hypothesized that this could enable ENBs to regain 

stem-cell like behavior. To prove this hypothesis freshly isolated ENBs by FACS were 

used for neurosphere forming assay (Figure 16).  

Cells were treated with PIP3 to activate mTOR activity. DMSO or PIP3/Torin treatments 

were used as controls. 7 days after the plating and treatments, formed spheres were 

counted (Figure 16. a, b). Intriguingly, in the PIP3 treated group, the ENBs formed on 

average 4 spheres per well, significantly more than the DMSO or Torin/PIP3 treated 

groups (Figure 16. b, c). These results showed that mTOR activation in ENBs hampered 

their differentiation program and reverted the cells to a stem cell-like phenotype. 
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Figure 16.  Activation of mTOR in ENBs forms neurospheres 

(a) Scheme of the sphere assay for the FACS sorted ENBs after treatments. (b) Schematic pictures of 

neurospheres. (c) Quantification of neurospheres for each treatment. Statistical significance was 

calculated by student’s t-test, p < 0.01**. Scale bar: 10 μm. 
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3.12 Activation of mTOR disrupts NSC differentiation in vitro 
 

Next, we asked whether activating mTOR in NSCs which undergo differentiation would 

also affect Sox2 expression and also the process of differentiation. NSCs were cultured 

under differentiation conditions and in parallel treated with PIP3, PIP3/Torin or DMSO 

vehicle control for the indicated times points (Figure 17. a). During the process of 

differentiation, NSCs loose the expression of stemness marker SOX2 and start 

expressing neuronal markers such as DCX. Moreover, their morphology resembled 

more neurons, characterized by developing dendrites and axons. After 7 days under 

differentiation conditions, cells were fixed and stained for SOX2 and DCX. 

Under control conditions around 70% of the cells were SOX2 positive and around 30% 

showed DCX expression. These cells showed already dendrites and axon-like 

processes, indicating the differentiation process. Similar observations were detectable in 

PIP3/Torin double treated cells. Whereas PIP3 treatment only inhibits NSCs 

differentiation since none of the analyzed cells showed DCX expression. This pointed 

out that the NSC differentiation process was blocked by mTOR activation (Figure 17. b, 

c). 
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Figure 17. mTOR activation in NSCs blocks the undergoing differentiation 

(a) Scheme of NSCs differentiation assay with treatment of PIP3, DMSO vehicle control, and PIP3/Torin 

for the indicated time points. (b) Representative confocal microscopy showing SOX2 (green) and DCX 

(red) expression in NSCs undergoing differentiation. Scale bar: 10 μm. (c) Quantification of SOX2 or DCX 

positive cells across treatments. Statistical significance was calculated by student’s t-test p < 0.05*, p < 

0.01**, p < 0.005***. 
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3.13 NSCs in vitro can be synchronized at late G1/early S 

phase 
 

mTOR is highly involved in NSC maintenance in vivo, however during neurogenesis 

NSCs have to exit from the cell cycle before starting their differentiation program. Since 

we detected that mTOR activation has important effects on the expression of stem cell 

marker SOX2 ex vivo, we further wanted to investigate how Sox2 mRNA translation is 

regulated. Therefore, NSCs were synchronized by using double thymidine block (dTB). 

To estimate the efficiency of this method, we first synchronized cultured NSCs isolated 

from fluorescent ubiquitination-based cell cycle indicator 2 (Fucci2) mice, followed by 

subjecting the cells to FACS analysis. This technique allows the visualization of cell 

cycle progression in live cells, marking cells in G1 and S/G2/M phase with mCherry and 

GFP, respectively. 

NSCs isolated from the Fucci2 mice were cultured up to passage 2, followed by cell 

cycle synchronization via dTB (Figure 18. a). Afterwards, NSCs were collected and 

analyzed by a flow cytometer (Figure 18. b). Without synchronization, 27.6% of the cells 

stayed in S/G2/M phase and 69.4% staying in G1 phase. While after cell synchronization, 

the ratio of cells in the S/G2/M phase went up to 37.8% and the ratio of cells in the G1 

phase remained similar, being 68.5%. The unsynchronized cells were characterized by a 

mCherry gradient, indicating the increasingly accumulated Cdt1 during G1 phase 

progression (Figure 18. b).  

Cells expressing low mCherry accounted for 31.3% of all cells after doublet exclusion 

and mCherry level went down to 6.3% after cell cycle synchronization, suggesting 

accumulation of cells in late G1/S phase (Figure 18 b). As a result of synchronization, an 

increase of FITC positive cells from 27.6% to 37.8% could be detected (Figure 18. b).  

In addition, a time course experiment was performed to demonstrate how long the 

synchronization lasts after releasing the cells from synchronization (Figure 19). The 

percentage of mCherry positive cells decreased, accompanied by an increase of FITC 

positive cells, caused by the progression of NSCs from G1 to S phase. After that, the 

ratio of mCherry positive cells increased and the ratio of FITC positive cells decreased 

continually for 5 hours, indicating cells cycling into G1 phase. There is a drop for the 

percentage of both FITC and mCherry cells probably because the cells loose FITC 
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expression when entering early G1 phase and still hasn't expressed mCherry. Over time, 

the percentage of mCherry positive cells went up again, which indicates that more cells 

progress into G1 phase. Basically, cell cycle release for 10 hours illustrated that 

synchronized NSCs need approximately 10-12 hours to re-enter the early G1 phase. 

Overall, the Fucci2 NSCs were successfully synchronized by double thymidine treatment, 

resulting in over 90% of the NSCs staying in late G1/early S phase (Figure 19).  
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Figure 18.  Double thymidine block and FACS analysis 

(a) Scheme of double thymidine block for NSCs cell cycle synchronization in vitro. (b) Cell cycle phase 

analysis of dTB synchronized Fucci2 NSCs via flow cytometry. WT cells served as control. 
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Figure 19.  NSCs were synchronized at late G1/early S phase 

(a) Schematic picture of cell cycle distribution before and after dTB cell synchronization. (b) Time course 

release of dTB synchronized Fucci2 NSCs. 
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3.14 Sox2 is not transcriptionally regulated by mTOR 
 

To further investigate the regulation of mTOR on Sox2 expression, synchronized NSCs 

were treated with Torin for 1 and 2 hours (Figure 20). Candidate genes such as Sox2, 

Rpl18, Dusp4 and Actb were analyzed by qPCR. Dusp4 increased on the transcriptional 

level upon Torin treatment while Sox2, Rpl18 and Actb remained the same, comparable 

to the vehicle control. Therefore, mTOR inhibition doesn’t change Sox2 expression at 

the transcriptional level.  

 

 

Figure 20. The transcription of Sox2 is not changed upon mTOR inhibition in cell cycle 

synchronized NSCs 

Relative gene expression of Sox2, Rpl18, Dusp4 and Actb in NSCs after 1 or 2 hour Torin treatment was 

analyzed. DMSO served as a vehicle control. 
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3.15 Inhibition of mTOR represses Sox2 translation 
 

Next, we focused on the regulation of mTOR on Sox2 mRNA translation. Western blot 

analysis was performed to assess the effect of mTOR inhibition on Sox2 translation in 

synchronized NSCs (Figure 21). The synchronized NSCs were treated with Torin for 1h, 

2h, and 4h. DMSO treatment served as a vehicle control. Besides, unsynchronized 

NSCs and synchronized NSCs without any treatment were also set as controls.  

Upon Torin treatment, p-p70-S6K as mTOR downstream activity indicator dropped 

significantly. The same drop was also observed for p-S6, p-AKT and p-4EBP1 though 

there was no change in their total protein level. SOX2 also exhibited repressed 

translation 1h, 2h or 4 hours after Torin treatment. This was further confirmed by the 

shift in polysome profile to lighter fractions for Sox2, indicating the post-transcriptional 

regulatory role of mTOR on Sox2 at G1 phase.  
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Figure 21. The translation of Sox2 is repressed upon mTOR inhibition in synchronized early 

passage NSCs 

(a) Western blot representative images of different time points of Torin treatment for the effects on the 

mTOR effectors and SOX2. (b) Quantifications of SOX2, p-S6, p-4EBP1, and p-AKT normalized either to 

the loading control Vinculin or to the respective total protein (n=3). (c) Polysome profiling using cell cycle 

synchronized NSCs showed the repressed translation for Sox2 upon Torin treatment.  
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4 Discussion 

4.1 Analyzing the transition from NSCs to ENBs 

4.1.1 Global protein synthesis during the NSC-to-ENB transition 

 

Protein synthesis virtually relates to all fundamental cellular processes such as cell 

growth, proliferation, differentiation. Therefore, protein synthesis is tightly regulated and 

proper techniques to study the level of protein synthesis are needed to understand the 

physiological state of the cell. One of those is based on incorporation of a chemical 

compound O-Propargyl-puromycin (OP-Puro) upon ongoing translation (Liu et al., 2012). 

OP-Puro is a puromycin analog, bearing a terminal alkyne group. Biosynthetic 

incorporation of it into the nascent peptide causes protein synthesis termination. The 

resulting peptides can be fluorescently detected by copper (I)-catalyzed azide-alkyne 

cycloaddition (CuAAC) (Liu et al., 2012). This method shows improved sensitivity and 

accuracy in comparison with previous tools (Isaacs and Fulton, 1987; Starck et al., 2004; 

Smith et al., 2005; Dieterich et al., 2010). It can be used both in vitro and in the living 

organism (Liu et al., 2012). However, OP-Puro could not go through the blood brain 

barrier, making quantification of protein synthesis in NSCs and ENBs in vivo difficult. 

Therefore, OP-Puro assay was conducted using ex vivo NSCs and ENBs, which were 

kept in culture for only 2 hours before OP-Puro incoporporation. Whether OP-Puro 

incorporation in ex vivo NSCs and ENBs reflect faithfully the in vivo scenario remains to 

be further validated with the development of techniques, which could be applied well in 

vivo. 

Mis-regulation of global protein synthesis causes malfunction of the cell. In the Rpl24Bst/+ 

mice, the hypomorphic mutation in ribosomal protein gene Rpl24 causes a significant 

drop for global protein synthesis in multiple cell types, which exhibit impaired functions. 

For example, Rpl24Bst/+ bone marrow cells show significant decreased proliferative 

potential (Signer et al., 2014). Conditional deletion of Pten in HSCs strongly increased 

protein synthesis by 30%. An accompanying phenotype is reduced self-renewal, final 

exhaustion of the HSCs and even leukaemogenesis (Yilmaz et al., 2006; Zhang et al., 

2006; Signer et al., 2014).  
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Improper increase of protein synthesis in the NSCs could cause impaired neurogenesis. 

Pten deletion in adult mice led to disturbed differentiation of premature neuroblasts by 

termination of their migration along the RMS to the OB, meaning that presumably the 

increased protein synthesis accelerated the maturation of neuroblasts (Zhu et al., 2012). 

During the transition from NSCs to ENBs, which are ready to initiate long distance 

migration along the RMS, cells experience dramatic changes such as reduction in cell 

size and lowered proliferative potential, which is mirrored in a significant decreased 

global protein synthesis. In comparison with such a translational decrease, translation 

during T cell differentiation is more dynamically controlled (Araki et al., 2017). The 

translation of mRNAs encoding translation machinery was upregulated during the T cell 

clonal-expansion phase upon antigen stimulation while inhibited when CD8+ effector T 

cells stopped dividing before the contraction phase. Besides, there are also examples 

where global protein synthesis is only increased during the differentiation process, e.g. 

in the transition from murine ESCs to embryoid body (Sampath et al., 2008), or in 

muscle stem cells, where the level of protein synthesis is kept low under stemness 

conditions by the phosphorylation of translation initiation factor eIF2α at serine 51. 

Differentiation of these cells is induced by dephosphorylation of eIF2α, which results in 

increased global protein synthesis (Zismanov et al., 2016). So, the trend of global 

protein synthesis varies a lot across cell types during the process of differentiation, 

probably directly linked to cell proliferation. The proliferative nature of NSCs, which 

means their self-renewal potential, is important to maintain the stem cell pool constant 

and furthermore to provide neuronal resources for brain homeostasis. Neuroblasts are 

less proliferative and are characterized by their migratory property. The decrease in 

global protein synthesis exhibits its regulatory role in NSC differentiation and presumably 

underlies the reduced proliferation capacity of ENBs. 
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4.1.2 Combined analysis of transcriptome and translatome revealed 

post-transcriptional regulation during the NSC-to-ENB transition 

 

The high throughput single cell sequencing technique made it possible to investigate 

cellular heterogeneity of various cell types with high accuracy and resolution. 

Accumulated data on single cell transcriptomes showed the dynamic of activity of 

different individual genes in stem cell activation and differentiation. However, study 

about the translatomes of these cells had slow progress until the invention of the TRAP 

technique which was development by Heiman and colleagues (Doyle et al., 2008; 

Heiman et al., 2008). Based on bacterial artificial chromosome (BAC) transgenic 

technique, they introduced an EGFP tagged large-subunit ribosomal protein L10a 

(EGFP-L10a) to the genome, which results in tagged ribosomes and thereby purifying 

ribosome bound mRNAs through immunoprecipitation. In a preliminary in vitro 

experiment in HEK293T cell transfected with EGFP-L10a, 10% of RPL7 was co-purified 

from 30% of cells expressed EGFP-L10a, meaning 1/3 of ribosomes are tagged in the 

vector transfected cells. Analysis based on in vivo bacTRAP mouse model revealed that 

immunoaffinity-purified samples exhibited no bias for mRNA length or abundance.  

However, the TRAP is based on random integration of exogenous vector into the 

genome, which exhibits unstable expression of the tagged protein in a mouse line 

dependent manner. This problem was improved by the work from Sanz and colleagues, 

who tagged endogenous ribosomal protein Rpl22 with HA and developed the Ribotag 

mouse line (Sanz et al., 2009). This line expresses the tagged epitope in a better 

controllable manner, minimizing the potential of unknown effects coming from the 

random integration of exogenous vectors. Therefore, our work based on this Ribotag 

mouse line has greater reliability compared to the TEAP line. However, one 

accompanying issue is that the proportion of epitope labelled ribosomes for the targeted 

cells is unknown, which could affect data analysis and interpretation later on. In rat, the 

estimated half-lives for brain ribosomal RNA and protein were 9 days (Retz and Steele, 

1980), which means ribosome turnover in mouse NSCs and ENBs takes around the 

same time to ensure all ribosomes to be tagged. When immunoprecipitation was 

performed at 3 or 4 days after TAM administration, both untagged and tagged ribosomes 

exist in the NSCs or ENBs. To what extent the tagged ribosome bound mRNA 
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transcripts could recapitulate the intact translatome of the targeted cells remains to be 

explored. Since the translation of different gene transcripts varies a lot, a clear answer to 

this question would greatly help to improve the data interpretation, especially when it 

comes to combined analysis of multiple gene transcripts which differ in their translation 

efficiency.  

An accompanying issue with the Ribotag technique is the “noise”, which comes from the 

unspecific binding of the antibody during immunoprecipitation. Reduction of the “noise” 

could be improved by following standardized experimental procedures such as strict 

control of tissue dissection, timing of treatments of multiple reagents, the use of antibody 

with improved specificity. We applied mock immunoprecipitation as well as subsequent 

sequencing to subtract the “noise” from the translatomes, ending up with good quality 

data, which was further validated through conventional methods such as qRT-PCR and 

Western blot. The relative expression of gene activity revealed from the RNA-seq data 

on the transcriptional changes was consistent with what we quantified via qPCR. The 

high correlation of the fold changes discovered between Western blot and RiboIP-seq 

data further confirmed the liability of the Ribotag method to investigate the translatome. 

The combined analysis of the transcriptome and the translatome allowed us to calculate 

the translational activity of specific transcripts during the NSC-to-ENB transition and to 

detect considerable changes of the activity indicative of a critical role for post-

transcriptional regulation during the transition. 

Though our Ribotag mouse model made it possible to co-analyze the transcriptome and 

the translatome of NSCs and ENBs, care should be taken when analyzing and 

interpreting the data because ribosome loading does not necessarily mean that proteins 

are produced. For example, ribosomal stalling is a mechanism to control protein quality 

normally caused by mRNA degradation and ribosome recycling (Joazeiro, 2017). During 

the stalling process, no proteins are being produced. But, the stalling ribosome bounded 

mRNAs can be mistakenly classified as “being translated” while using the Ribotag 

mouse model, which would be a false positive result. Besides, translation reinitiation 

upon the use of multiple upstream open reading frames could give rise to totally different 

proteins, which is again beyond the power of Ribotag. Notably, the above mentioned 

translation events could be well annotated by ribosome profiling, a technique to identify 

the location of ribosomes on their bounded mRNAs (Ingolia et al., 2009). As a 
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complementary method in studying translation, ribosome profiling could be co-applied 

with Ribotag to investigate the transition from NSCs to ENBs with improved resolution 

and accuracy.  

 

4.2 Molecular mechanisms of post-transcriptional regulation 

at the onset of NSC differentiation 

4.2.1 mTOR activity during NSC-to-ENB transition 

 

mTOR is the master regulator of various cellular events such as cell growth, proliferation, 

metabolism. Environmental inputs such as growth factors and nutrients are well 

orchestrated by mTOR to regulate protein synthesis in the cell. During the transition from 

NSCs to ENBs, we found that mTORC1 activity decreased significantly, suggesting its 

tight association with NSC differentiation.  

Upstream of mTORC1, multiple pathways or components could be targets of regulatory 

signals such as growth factors, amino acids, stress, etc. Grow factors could positively 

regulate multiple pathways to activate mTORC1 (Sengupta et al., 2010). Upon NSC 

activation, these proliferative cells express grow factor receptors for sensing those 

positive signals. Accompanying the NSC-to-ENB transition, cells lose expression of 

growth factor receptors, which contributes to mTOR activity reduction in ENBs. 

Moreover, the low exposure to nutrients in the compact RMS as well as decreased cell 

body size to adapt migration could also restrict mTOR activity in ENBs. mTOR activity is 

actively adjusted by these environmental inputs during NSC-to-ENB transition to 

guarantee proper protein production and differentiation.  

Given the important role of mTOR in almost all types of cells, any deregulation may 

cause severe consequences such as obesity, diabetes and cancer (Dann et al., 2007; 

Populo et al., 2012). Accumulated evidence showed that hyperactivation of mTOR 

activity in NSCs induces premature differentiation (Magri et al., 2011; Feliciano et al., 

2012; Costa et al., 2016). On the other hand, improper mTORC1 reduction could also 

cause impaired neurogenesis. Hartman et al. showed that genetically decreased 

mTORC1 activity by silencing RHEB in SVZ NSCs leads to decreased neuronal 

production (Hartman et al., 2013).  
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The role of mTORC2 is still not very clear. Growing evidence indicated that mTORC2 

works upstream of AKT and is part of the PI3K/AKT pathway (Sengupta et al., 2010). 

This is in line with our finding that Torin inhibition of mTORC2 significantly decreased the 

level of phospho AKT (Figure 12). However, we could not observe a significant drop in 

the level of phospho AKT through LY294002 mediated PI3K inhibition though its 

application in 293 cells exhibited significant mTOR inhibition (Stolovich et al., 2002). This 

was probably because of its non-selectivity (Maira et al., 2009) or concentration 

dependent effects in different cell systems. The same reason may also explain why the 

mTOR inhibitor AZD2014 was not working in the NSC system though it was shown to 

work better than the clinically approved rapalogs in breast cancer cells (Guichard et al., 

2015). 

mTOR activity is not consistent throughout the whole cell cycle (Edelmann et al., 1996; 

Boyer et al., 2008). Recently Romero-Pozuelo and colleagues reported that TORC1 

activity is high when cells enter the G1/S transition in Drosophila wing disc (Romero-

Pozuelo et al., 2017). This is mediated by CycD/Cdk4 binding and phosphorylating the 

TOR inhibitor TSC2. Similar result was also observed in the Drosophila eye disc (Kim et 

al., 2017), where Kim and colleagues reported that the spatial activation of TORC1 is via 

Hedgehog and this mechanism is conserved in mammals as well. In our synchronized 

NSC system, mTOR repression exhibited a clear repression for Sox2 translation (Figure 

16), highlighting cell cycle regulation on mTOR activity.  

mTOR activity depends on the cellular state. We found that the transient chemical 

activation of mTOR in the early differentiated neuroblasts could alter the fate of the cell 

and reprogram the ENBs to a more stem cell-like state (Figure 15, 16, 17). Similar 

results were also reported previously in different cell systems. Zhao and colleagues 

found that stimulation of the AKT/mTOR pathway leads to retinal pigment epithelial cell 

dedifferentiation and hypertrophy (Zhao et al., 2011). The dedifferentiation of 

liposarcomas also is also accompanied by activation of mTOR (Ishii et al., 2016). 

However, dedifferentiation of NSCs through activation of mTOR should be further 

validated in vivo. Moreover, mTOR driven dedifferentiation in vivo could cause 

pathological consequences (Zhao et al., 2011). Future work could be performed to 

understand more about the impact of mTOR activation on fate determination of 

neuroblasts. 
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4.2.2 Cell cycle progression is involved in NSC fate determination 

 

Pauklin and colleagues showed that the cell cycle stages of human embryonic stem 

cells respond differently to differentiation signals (Pauklin and Vallier, 2013). Cells 

staying in the early G1 phase differentiate into endoderm. At the late G1 phase, Cyclin D 

blocks Smad2/3 mediated endodermal cell fate and drives the cells towards 

neuroecotodem while the S/G2/M phases don’t respond to differentiation signals. Sela 

and colleagues showed that human ESCs in G1 have higher propensity to differentiate 

than cells in S and G2 phase (Sela et al., 2012). Differentiation is presumably preceded 

by checkpoint activation, which is indicated by dephosphorylation of the checkpoint 

regulator retinoblastoma protein on Ser-795 residue. They reported that ESCs in S/G2 

phase are not sensitive to differentiation. Increased cell density also prevents cell 

differentiation into G1. The same could be observed by co-culture experiments of G1 

cells in S/G2 phase. In particular, this underpins the necessity of cell cycle 

synchronization of NSCs for in vitro studies of mTOR activity and potential effects of its 

modulation on the expression of stemness and differentiation markers such as Sox2.  

After double thymidine treatment to mediating cell cycle synchronization, over 90% of 

the NSCs are arrested in the late G1/early S phase. According to our data, inhibition of 

mTOR activity in synchronized NSCs kept them in late G1/early S phase, which enabled 

the more prominent repression for “PRM” containing mRNA transcripts featured with 

attenuated translation of Sox2 mRNA. Overall, these results emphasize the significance 

of mTOR regulation in G1 phase to modulate NSC differentiation. 
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4.2.3 Molecular regulatory mechanism of neuronal fate determination 

during NSC differentiation 

 

We identified a biological process during the NSC-to-ENB transition in vivo that critically 

depends on the selective sensitivity of gene transcripts to mTOR-mediated translation. 

The study conducted in our lab identified about 282 transcripts translationally repressed 

during this transition (Baser et al., 2019). Among these are the PRM containing mRNAs 

encoding ribosomal proteins, which significantly decrease ribosome biogenesis and as a 

result exerts a considerable reduction of global protein synthesis. This could be the 

reason for decreased cell proliferation and cell size in the ENBs.  

Key stemness maintenance factors Pax6 and Sox2 are among the repressed transcripts. 

The expression level of these master genes usually plays a critical role in regulating 

differentiation of stem cells. Pax6 is involved in the regulation of many fundamental 

developmental events including embryonic and adult neurogenesis. Pax6 has three 

isoforms produced via alternative splicing as well as usage of different promoters or 

translation start codons (Epstein et al., 1994; Kammandel et al., 1999; Kim and 

Lauderdale, 2006). The cooperative expression of these isoforms guarantees the normal 

development of embryonic brain. Pax6 interacts with multiple molecules, which are key 

components of multiple signaling pathways. These interactions are involved in many 

fundamental processes such as cell proliferation, differentiation, adhesion and tissue 

patterning. Given the fact that Pax6 operates upstream of so many regulatory pathways 

and processes, its translational regulation is essential for the control of cell’s fate. 

Sox2 is a key transcription factor, whose over-expression in the terminally differentiated 

cells changes expression of numerous genes and causes cell reprogramming, reverting 

the cells back to a pluripotent stem state (Takahashi and Yamanaka, 2006; Takahashi et 

al., 2007; Yu et al., 2007). Similar finding was previously shown that the ectopic 

expression of transcription factor MyoD in fibroblasts reprogrammed these cells into 

myoblasts (Davis et al., 1987; Weintraub et al., 1991). We found that increased level of 

SOX2 in ENBs could dedifferentiate the cells back to stemness, highlighting the 

importance to control the level of SOX2 during the process of NSC differentiation. As a 

master regulator of translation, well controlled mTOR activity is indispensible to 

coordinate the complicated gene networks.  
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The well-known role of mTOR in translation is the phosphorylation and inactivation of 

4EBP proteins, which usually bind to the cap-binding protein eIF4E responsible for PIC 

recruitment to mRNAs. These cap structure dependent mRNAs are among the most 

sensitive to mTOR activity, which usually encode abundant proteins in cells, such as the 

ribosomal proteins. These mRNAs, efficient in translation, form a class of so-called 

“strong” mRNAs (Pelletier et al., 2015). However, considerable number of mRNAs were 

also reported to show resistance to mTOR repression and even get stimulated (Hsieh et 

al., 2012; Thoreen et al., 2012). mTOR activity decreased upon the NSC-to-ENB 

transition and as a result repressed translation of “strong” mRNAs, such as ribosomal 

proteins and stem cell markers Sox2 and Pax6. In addition, a subset of previously less 

competitive “weak” mRNAs such as Sp8 and Dusp4 increased their translation efficiency. 

Other studies demonstrated that many such mRNAs can apply other mechanisms of 

40S recruitment independent on the eIF4E-cap interaction, thereby being less 

dependent on eIF4E (Shatsky et al., 2014). Translation of these mRNAs is through 

isoforms of initiation factors eIF4E and eIF4G, which do not bind to 4EBP and could 

confer less dependence on mTOR to these mRNAs. Furthermore, these mRNAs being 

less competitive under high mTOR activity get considerable advantages upon mTOR 

inhibition, taking advantage of the resources due to repressed translation of the “strong” 

mRNAs.  

Sp8 is a zinc finger transcription factor expressed in migrating neuroblasts as well as the 

olfactory bulb interneurons. Sp8 regulates survival, migration, and molecular 

specification of the migrating neuroblasts (Waclaw et al., 2006). DUSP4 was shown to 

be required for neuronal differentiation (Kim et al., 2015). The specific elements of such 

mRNAs providing mTOR independence remain to be studied. Recently discovered 

capability of N6-methylated adenines localized in the 5’-UTRs to directly attach 40S in 

an eIF4E-independent manner might be a potential mechanism to explain the mTOR 

independence of those genes (Meyer and Jaffrey, 2017). Future studies of N-6-

methylated adenines may further our understanding of increased translation efficiency in 

the frame of low mTORC1 activity for this set of mRNA transcripts.  
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4.2.4 The role of Sox2 in ENBs 

 

Sox2 is involved in many regulatory events in neural stem cells (Pevny and Nicolis, 

2010). During the NSC-to-ENB transition, translational repression of master gene Sox2 

dramatically decreased its protein level. However, the RNA level remains comparable in 

the two cell types, opening a question about the functional meaning for that. Does the 

Sox2 mRNA specifically stored in ENBs resume translation further in LNBs or neurons 

after the long distance migration? Or is it finally degraded later during neuronal 

maturation?  

Though we revealed post-transcriptional repression of Sox2 mRNA by reduced mTOR in 

ENBs, the molecular mechanism responsible for establishing such “silenced” state is still 

not clear. In ESCs, RNA nuclear export of pluripotency gene transcripts is well controlled 

to balance self-renewal and differentiation of the cells (Wang et al., 2013). Thoc2 and 

Thoc5, two members of the THO complex, are involved in RNA export of transcripts 

from the nucleus. The knockdown of Thoc2 and Thoc5 causes nuclear accumulation of 

a subset of pluripotency mRNAs, including Sox2. In another study, also using ESCs, it 

was shown that RNA binding protein Rbm35a binds to the 5'UTR of the Sox2 and Oct4 

mRNAs and prevents their ribosomal loading, what could finally drive differentiation 

(Fagoonee et al., 2013). Future studies should pay attention to the translocation of Sox2 

mRNA during the transition from NSCs to ENBs. Regulatory proteins or protein complex 

like the THO complex in regulating Sox2 mRNA nuclear export, transport, and 

translation may be critical for leading to the “silenced” state of Sox2 mRNA in ENBs. 

Besides, numerous mRNA modifications such as N6-methyladenosine (m6A), N1-

methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine work collectively to 

form the epitranscriptome to regulate mRNA metabolism via control of their stability, 

localization and involvement in protein synthesis might be responsible for the modulation 

of Sox2 mRNA activity as well (Zhao et al., 2017). Further, comprehensive studies of the 

specific regulation of Sox2 translation in ENBs would provide new insights into our 

understanding of the molecular mechanisms of neurogenesis and its regulation.  
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4.3 Concluding remarks 
 

Finally, we proposed a post-transcriptional regulation model, critical for the onset of NSC 

differentiation.  

During NSC maintenance, the activated mTOR activity promotes high protein synthesis 

to support cell proliferation. Upon the need of differentiation, mTOR activity is repressed 

at G1 phase and global protein synthesis is significantly inhibited. The translation of 

PRM motif containing transcripts such as Sox2 is inhibited while the translation of 

neuronal specification transcripts such as Sp8 is enhanced, both synergistically 

triggering and driving NSC differentiation.  
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