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“I believe that no one who is familiar, either with mathematical 

advances in other fields, or with the range of special biological 
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Introduction 

Chapter 1: Multiple myeloma and related diseases 

Multiple myeloma (MM), a rapidly progressing plasma cell dyscrasia, is a neoplastic growth 

in terminally differentiated plasma cells.  Plasmocytes are the antibody producing cells of 

our immune system and in MM, monoclonal plasma cells proliferate in abundance (a state 

more recognized as monoclonal gammopathy) to produce plasmacytoma. These malignant 

plasma cells, although usually reside in host bone marrow, can also be found in peripheral 

blood, soft tissues and organs, predominantly towards the end stages of the disease 

(Gonsalves et al., 2014).  With the highest incidence observed in developed countries in 

Western Europe, northern America and Australia, MM accounts for 1.7% of all 

malignancies and almost 10% of all hematological cancers (Siegel et al., 2016). However, 

the most common plasma cell dyscrasia is a benign precursor of MM termed monoclonal 

gammopathy of undetermined significance (MGUS). Towards a malignant progression to 

MM, MGUS is succeeded by yet another asymptomatic stage called smoldering multiple 

myeloma (SMM) and rarely MGUS also progresses to amyloid light-chain amyloidosis (AL 

amyloidosis). These four phases broadly inscribe the MM disease family.  

Whilst the specific cause of MM is unknown, an array of environmental exposures are 

hypothesized to predispose to MM, such as ionizing radiation, pesticides, certain solvents, 

benzene, petroleum products, infectious agents and hair dye but without much precedence 

(Altekruse et al., 1999a; Bergsagel et al., 1999; Burmeister, 1981a; Khuder and Mutgi, 

1997; Kuznetsova et al., 2016). Genetic susceptibility to MM on the other hand is a long-

proposed theory with familial studies speculating familial aggregation due to inherited MM 

risk (Maldonado and Kyle, 1974). However, direct compelling evidence of inherited 
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susceptibility to MM was, until recently, largely undescribed along with the possible 

mechanisms responsible for the apparently sporadic progression of MGUS to the later stages 

of malignancy. Historically, gammopathies in general have presented investigators with 

confusion in clinical, cytological and etiological characterization since as early as the early 

twentieth century and we are still far from understanding genetic underpinnings of this class 

of plasma cell dyscrasias.  

 

1.1. History of Gammopathy 

Gammopathies are comprised of several different conditions distinguished with clinical 

characterization of abnormal proliferation of cells of lymphoid lineage producing 

immunoglobulins (Ig). This class of plasma cell disorders was historically also known as 

hyperproteinemia due to abundance of Ig in blood serum. Swedish hematologist Jan G. 

Waldenström first hypothesized the concept of monoclonal and polyclonal gammopathy in 

Harvey lecture series in 1961 where he also lucidly speculated on the disease severity and 

possible transformation to a malignant state (Waldenstrom, 1961). Whilst monoclonal 

gammopathy meant an increased production of a single clone of immunoglobulin (mostly 

gamma globulin, the condition is also known as hypergammaglobulinemia), polyclonal 

gammopathies were a result of aberrant proliferation of several different immunoglobulin 

clones. Waldenström labeled individuals showing a fine band of hypergammaglobulinemia 

as harboring monoclonal protein. Even though a handful of these patients had or later 

developed MM, several of them initially did not show  evidence of malignancy hence were 

described to have “essential hypergammaglobulinemia” or benign monoclonal gammopathy 

(Kyle and Anderson, 1997). He also later went on to coin the term “monoclonal 
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gammopathy of unknown etiology” while describing this unusual asymptomatic condition 

distinguishing it from other paraproteinemias. 

A concrete case study of MGUS progressing to MM first came to light in 1966 raising more 

questions than it answered on the apparent benign status of MGUS. As professor of 

Medicine and Laboratory Medicine and Pathology at Mayo Clinic College of Medicine, 

Rochester, Minnesota, Robert A. Kyle had been studying a local cohort which he followed 

since 1945 who shared a MM-like electrophoretic Ig pattern (Kyle et al., 1960). After 20 

years of follow-up, one of the subjects developed severe MM in 1964 after undergoing a 

short phase of myelomatosis starting in 1963. In his seminal work citing this aberrant 

prognosis of MGUS to MM, Dr. Kyle first reported the notorious M spike (albumin – 

gamma globulin spike) on serum protein electrophoresis with evidence of abnormal plasma 

cell presence in bone-marrow aspirate (Figure 1.1) (Kyle and Bayrd, 1966). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 1| Bone marrow aspirate and serum electrophoretic pattern, Kyle R. A. et al., 1966. 
After 20 years of follow-up, the first thoroughly reported cases of MM subject to progression from MGUS as reported by R. A. Kyle in 

1966. 
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In a previous observational study published in 1964, Waldenström had followed twelve 

patients of essential hypergammaglobulinemia from 1955 although till the conclusion of the 

study none of the patients developed a sustained malignancy. Only one had the ɣ-globulin 

related high but stable M spike signature (WaldenstrÖM, 1964). Consequently in the case 

report from the Mayo Clinic Dr. Kyle argued “… this ‘chronic benign process’ can erupt 

into a progressive and serious phase at a much later date, and extends our understanding of 

plasma proliferative disease.” 

 

1.2. Clinical characterization  

Etiology of MGUS remains unclear to date; yet a handful of studies have established a role 

of genetic and environmental factors in its development (Boursi et al., 2016; Korde et al., 

2011a; Kyle et al., 2010; Landgren et al., 2009). As discussed previously, contrary to the 

great variety of normal immunoglobulins, monoclonal gammopathy dictates a condition 

predominated by a single abnormal cell line. It usually yields an intact immunoglobulin free 

light chains but not heavy chains, however, rarely it can also produce heavy chains 

exclusively. Conspicuously, such abnormal cell line yields only a κ or a λ light chain, never 

the both. Consequently numerous discrete clinical types (IgM, non-IgM and light-chain 

MGUS) have arose to have established it as a clinically heterogeneous disorder. In general, 

MGUS is characterized with a serum M-protein <30 g/l, <10% clonal plasma cells in the 

bone marrow and absence of end-organ damage. Contextually, the end organ damage is a 

frequently observed phenotype infested in clonal plasma cell proliferative disorders. 

SMM is the next stage of progression without myeloma-defining end-organ damage and is 

characterized by the presence of ≥ 30 g/L serum M-protein and/or 10 – 60 % bone marrow 

clonal plasma cell infiltration (Gao et al., 2015). International Myeloma Working Group 
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(IMWG) defines Myeloma-defining end-organ damage with CRAB criteria. IMWG dictates 

“related organ or tissue impairment (ROTI)(end‐organ damage), which is typically 

manifested by increased calcium, renal insufficiency, anaemia, or bone lesions (CRAB) 

attributed to the plasma cell proliferative process. Symptomatic myeloma requires evidence 

of ROTI” (Anonymous, 2003).  

AL amyloidosis is characterized by systemic accumulation of monoclonal Ig light chains 

synthesized by a bone marrow plasma cell clone in the form of misfolded amyloid protein 

deposits in tissues and other vital organs (heart, kidney, liver). The organ involvement 

pattern here is unclear and complex. A heart involvement construes to the majority followed 

by that of kidney, liver, peripheral nerve and soft tissues in gastrointestinal tract and lung. 

Detailed diagnostic criteria for the four diseases can be found in later update of IMWG 

definition (Table 1.1). 
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Table 1. 1| Diagnostic criteria for plasma cell disorders (taken from published IMWG definition) 

Plasma cell disorder Definition 

Non-IgM (MGUS) Serum monoclonal protein <30g/L 

Clonal bone marrow plasma cells <10% 

Absence of end-organ damage such as hypercalcemia, renal insufficiency, anemia, and 

bone lesions (CRAB) or amyloidosis that can be attributed to the plasma cell proliferative 

disorder 

IgM MGUS Serum IgM monoclonal protein <30g/L 

No evidence of anemia, constitutional symptoms, hyper viscosity, lymphadenopathy, 

hepatosplenomegaly, or other end-organ damage that can be attributed to the plasma cell 

proliferative disorder 

Light-chain MGUS Abnormal FLC ratio (<0.26 or >1.65) 

Increased level of the appropriate free light chain (increased FLC in patients with ratio 

>1.65 and increased FLC in patients with ratio <0.26) 

No immunoglobulin heavy chain expression on immunofixation 

Absence of end-organ damage such as hypercalcemia, renal insufficiency, anemia, and 

bone lesions (CRAB) or amyloidosis that can be attributed to the plasma cell proliferative 

disorder 

Clonal bone marrow plasma cells <10% 

Urinary monoclonal protein <500mg/24h 

  

SMM Both criteria must be met 

Serum monoclonal protein (IgG or IgA) 3 gm/dl and/or clonal bone marrow plasma 

cells 10%, and 

Absence of end-organ damage such as lytic bone lesions, anemia, hypercalcemia, or 

renal failure that can be attributed to a plasma cell proliferative disorder  

  

MM All three criteria must be met except as noted 

Clonal bone marrow plasma cells 10% 

Presence of serum and/or urinary monoclonal protein (except in patients with non-

secretory multiple myeloma), and 

Evidence of end organ damage that can be attributed to the underlying plasma cell 

proliferative disorder, specifically 

Hypercalcemia: serum calcium 11.5 mg/dl or 

Renal insufficiency: serum creatinine >1.73 mmol/l)  

Anemia: normochromic, normocytic with a hemoglobin value of >2 g/dl below the 

lower limit of normal or a hemoglobin value <10 g/dl 

Bone lesions: lytic lesions, severe osteopenia or pathological fractures  

  

AL amyloidosis Presence of an amyloid-related systemic syndrome (e.g., renal, liver, heart, 

gastrointestinal tract, or peripheral nerve involvement) 

Positive amyloid staining by Congo red in any tissue (e.g., fat aspirate, bone marrow, or 

organ biopsy) 

Evidence that amyloid is light-chain-related established by direct exmination of the 

amyloid using mass spectrometry-based proteomic analysis or immunoeletronmicroscopy 

Evidence of a monoclonal plasma cell proliferative disorder (serum monoclonal protein, 

abnormal free light chain ratio, or clonal plasma cells in the bone marrow) 
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1.3. Disease progression 

The cumulative probability of progression of MGUS to MM was 12% at 10 years, 25% at 

20 years and 30% at 25 years (Kyle et al., 2010). Individual risk of MM development was 

roughly 1% every year (Kyle et al., 2002). At the time of recognition of MGUS, it is very 

difficult to predict the progression patterns to identify patients who will observe a stable 

condition compared to those who would observe a severely progressive disease as the 

underlying mechanism of prognostication is yet unclear. Nonetheless, the type of M-protein, 

size of the M-protein, the free light chain (FLC) ratio and the number of bone marrow clonal 

plasma cells present are some of the reliable indicators in identifying patients at a higher 

risk of further progression. At the time of recognition of MGUS, size of the M-protein is 

shown to be the most reliable prognosticator of progression to SMM (Kyle et al., 2010). The 

same study estimated the risk of development of MM defining characteristic or a related 

condition after 20 years from MGUS diagnosis to be 49% for individuals with a 25 g/l level 

of M-protein, in comparison to a merely 14% for patients with an early M-spike of 5 g/l or 

less. Estimated risk of progression with a15 g/l M-protein abundance was two-fold in excess 

to that of individuals with 5 g/l. The IgM and IgA clones are in general more susceptible to 

progression compared to the IgG clonal MGUS. Several studies also report a monotonous 

proportional relation among risk of progression and abundance of clonal plasma cells in 

bone marrow with probable increase risk of up to 37% (Baldini et al., 1996; Cesana et al., 

2002). Similarly progression risk is found in excess for patients with elevated FLC ratio 

than in those without; and this is an independent marker of progression since FLC ratio does 

not depend on the type or size of serum monoclonal protein (Kyle et al., 2010; Rajkumar et 

al., 2005). 
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Chapter 2: Population epidemiology 

Proper demographic estimation of MGUS related events are difficult due to a number of 

reasons. Firstly, it is an asymptomatic disorder which means that there is little possibility of 

tracking individuals with MGUS by systematic registration at time of diagnosis.  Secondly, 

as MGUS is associated with a rate of progression to MM of around 1% per year, 

additionally to SMM or AL amyloidosis with similar proportion, MGUS patients require 

follow-up to ascertain future events. However, the spontaneous discovery of MGUS is not 

uncommon and very rarely is associated to an individual’s primary health-related issue. The 

caveats thus presented result in under-diagnosis of MGUS in routine clinical practice and 

hinders planning preventive strategies based on it. 

 

2.1 Incidence, prevalence and mortality: worldwide and in Europe 

MGUS infests in 3.2% of all individuals over the age of 50 years and around 5.3% of the 

people aged 70 years or older (Kyle et al., 2006). For men, age adjusted prevalence rates for 

MGUS were found higher (4.0 per 100) in comparison to women (2.7 per 100). Irrespective 

of sex, risk of MGUS increases monotonously in comparison with age.  Yearly incidence of 

MGUS paints a similar picture. For all men over 50 years of age, annual incidence is 120 

per 100,000 which increases up to 530 for men older than 90 years of age. Whereas for 

women above 50 years of age incidence is 60 per 100,000 which goes up to 370 for women 

aged 90 or more (Therneau et al., 2012). Being largely a progression free condition, the 

mortality patterns remains merely inflated with a death rate of 1.25 for males and 1.11 for 

females compared to general population. 
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For SMM, sex adjusted incidence is reported at 0.9 cases per 100,000 persons in United 

States compared to that of 0.4 in Sweden (Anonymous, 2013; Ravindran et al., 2016). An 

estimate of newly diagnosed SMM cases is thus approximated around 4,100 annually 

(Ravindran et al., 2016). Although the cumulative probability of progression to SMM was 

73% at 15 years (Kyle et al., 2007), progression rate of SMM to MM (80%–90% at 2 years) 

compared to that of MGUS is substantially higher affecting overall survival of SMM 

patients (Blum et al., 2018); (Rajkumar et al., 2015). 

Disease burden of MM is more robustly explored over the years due to its severity in the 

malignant stage. An age standardized incidence rate of 2.1 per 100,000 was reported for 

MM in United States (Cowan et al., 2018). Although predominantly more incident in 

western developed countries, MM commands significant cancer burden worldwide as shown 

below (Figure 2.1).  

Figure 2. 1| Age standardized incidence rate per 100,000 people from MM 
Country specific incidence rate of MM as calculated with the GLOBOCAN data, 2018. Well developed countries show higher incidence in 

general compared to that in the lesser developed ones. Produced from http://globocan.iarc.fr  
 

http://globocan.iarc.fr/
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In 2016 MM was responsible for approximately 98,000 deaths globally with an age-

standardized death rate of 1.5 per 100,000 persons (Cowan et al., 2018). The authors also 

report a 94% increase in MM related deaths worldwide since 1990. It is likely that 

population growth and ageing global population contributes to such increments in statistics, 

nevertheless the rate of monotonic increase in mortality is alarming. In Europe, age 

standardized mortality rate in MM ranges from 0.7 per 100,000 people to 2.7. Four of the 

five Nordic countries (Norway, Denmark, Sweden and Finland) are estimated to have 

mortality rate of more than 2.0 per 100,000 persons comprising some of the highest rates 

observed in Europe. Estimated 1-year prevalence among European nations is highest for 

France (10.7 per 100,000 individuals) and lowest for Albania (0.2) with Norway (10.3), 

Sweden (7.4) and Finland (6.9) belonging in the top 10 countries with highest prevalence 

rates (Figure 2.2). 

 

 

 

 

 

 

 

 

 

Figure 2. 2| Age standardized prevalence and mortality rate per 100,000 people from MM in Europe 
Country specific prevalence and mortality rates of MM as calculated with the GLOBOCAN data, 2012. Nordic countries show a higher 

prevalence and mortality in general. Produced from http://globocan.iarc.fr  
 

 

http://globocan.iarc.fr/
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2.2 Subsequent primary cancers in MM survivors 

Management of MM encompasses massively dynamic investigations of permuted regimens, 

changes in treatment modalities and improvement upon suggested therapies over time. 

Initiation of treatment with alkylating agents, autologous stem cell transplantation, and 

immunotherapy has brought incremental but dramatic changes in MM survival landscape 

over the last few decades (Figure 2.3) (Fonseca et al., 2016). 

 

 

 

 

 

 

 

 

Figure 2. 3| Survival estimates of MM patients by year of diagnosis. Adapted from Fonseca et al., 2016 
Survival estimates were presented for MM patients diagnosed and treated during 2006–2012 matched against control cohort during the 

same time. 

 

This improvement in survival presented with a new problem, diagnosis of subsequent 

primary and therapy related cancers. Initially reports were published on frequently 

diagnosed second primary acute myeloid leukemia and myelodysplasias in MM patient 

cohorts which was later attributed to conventional chemotherapy before autologous stem-

cell transplantation (Bergsagel et al., 1979). From 1960s Melphalan in combination with 

prednisone was the standard treatment for all MM patients. With melphalan, 

cyclophosphamide, and carmustine, Bergsagel et al. conducted the first prospective clinical 

study that evaluated the value of a combination of 3 alkylating agents in MM treatment 

where they described an excess in expected incidence of several types of hematological 
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malignancies (Bergsagel et al., 1979). However, with incorporation of high-dose melphalan 

followed by autologous stem cell transplantation, immunomodulatory drugs and proteasome 

inhibitors paved the road towards a sustained and prominent improved survival at a cost of 

higher numbers of subsequent cancers (Palumbo and Anderson, 2011; Palumbo et al., 2014; 

Singhal et al., 1999). Furthermore, estimations even suggested an increased number of 

therapy induced hematological malignancies after Ig-M MGUS (Mailankody et al., 2011). 

Until very recently leukemias originated from myeloid cell lineage were believed to be 

primarily incident as second cancers and an expected increase of such cases were frequently 

speculated (Landgren and Mailankody, 2014; Landgren et al., 2011; Thomas et al., 2012). 

In a combined investigation of Swedish and German cancer cohorts, Chen et al reported 

several solid tumors occurring in MM patients aside from the hematological malignancies 

(Chen et al., 2016). In fact prostate, colorectal and breast cancers were more frequently 

diagnosed than leukemia as second primaries in both the countries. This indicated to a 

relatively new era of MM patient management where consequences of treatment on a 

prolonged survival period needed to be considered. 

 

2.3 Risk stratification and epidemiological models 

Plasma cell dyscrasias including MM are genetically and biologically a heterogeneous 

group of disorders that present with variable disease burden depending upon their inherent 

characteristics which translates to variable response to treatment and outcome. Accounting 

for high-risk disease features, disease burden and pathogenic factors present in host, MM is 

categorized indicating a risk stratification of prognostic nature. The first predictive clinical 

staging system for MM was introduced in 1975 by assessment of A) extent of bone lesions, 

B) hemoglobin level, C) serum calcium level, and D) M-component levels in serum and 
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urine (Durie and Salmon, 1975). However, the then Durie-Salmon staging system was later 

criticized for being dogmatically disease-burden driven (Hari et al., 2009). 

IMWG introduced international staging system (ISS) for MM in 2005 incorporating a 

combination of serum beta2-microglobulin, serum albumin, platelet count, serum creatinine, 

and age (Greipp et al., 2005). In a 2014 updated release of ISS, IMWG distinguished 

between prognostic and predictive markers to have separately refined the risk stratification 

criteria (Chng et al., 2013). This updated ISS also takes genetic aberrations and gene 

expression profiles (GEP) into account. Chromosomal translocations, gains, deletions and 

amplifications had shown significant power in prognostic likelihood and thus inclusion of 

tumor cytogenetics rendered in greater accuracy in prediction. At the same time gene 

expression driven predictive modeling also added power in stratification. Development of 

GEP70 (Gene Expression Profile 70) saw the first large-scale gene expression driven 

classification based on which later models such as GEP5 were established (Heuck et al., 

2014; Shaughnessy et al., 2007). Finally the revised ISS (R-ISS) was developed by pooling 

data from newly diagnosed MM patients enrolled on 11 international trials (Table 2.1) 

(Palumbo et al., 2015). It combined the ISS with high-risk chromosomal aberrations 

[deletion del(17p), translocation t(4; 14) (p16; q32) or translocation t(14; 16) (q32; q23)] 

and serum lactate dehydrogenase to stratify patients in three risk categories. According to R-

ISS, the 5-year overall survival probability of MM patients with stage I was 82%, 62% for 

sage II and 40% for stage III, whereas the 5-year progression-free survival for the same 

groups were 55%, 36% and 24%, respectively. 
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Abbreviations: CA, chromosomal abnormalities; iFISH, interphase fluorescent in situ hybridization; ISS, International Staging System; 
LDH, lactate dehydrogenase; MM, multiple myeloma; R-ISS, revised International Staging System. 

 

  

Table 2. 1| Standard Risk Factors for MM and the R-ISS. Adapted from Palumbo et al., 2015 

Prognostic Factor Criteria 

ISS stage 

I Serum β2-microglobulin < 3.5 mg/L, serum albumin ≥ 3.5 g/dL 

II Not ISS stage I or III 

III Serum β2-microglobulin ≥ 5.5 mg/L 

 

CA by iFISH 

High risk Presence of deletion del(17p) and/or translocation t(4;14) and/or 

translocation t(14;16) 

Standard risk No high-risk CA 

 

LDH 

Normal Serum LDH < the upper limit of normal 

High Serum LDH > the upper limit of normal 

 

A new model for risk stratification for MM 

R-ISS stage 

I ISS stage I and standard-risk CA by iFISH and normal LDH 

II Not R-ISS stage I or III 

III ISS stage III and either high-risk CA by iFISH or high LDH 
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2.4 Modifiable risk factors 

Although what causes MGUS or MM is yet not definitively known, several studies have 

evaluated potential environmental, behavioral (externally modifiable) risk predisposing 

factors. One of the frequently speculated yet tantalizing risk factor is exposure to ionizing 

radiation. In a 1982 study, a threefold increased incidence of MM was reported with an age 

adjusted incidence of 0.048 cases per 100,000 person-years subject to intensity of radiation 

exposure to bone marrow of ≥ 0.5 Gy about 20 years after the atom bomb explosion in the 

cities of Hiroshima and Nagasaki (Ichimaru et al., 1982). On the contrary a more recent 

analysis consisting of follow up data from 1950 until 1987 with 2,778,000 person-years, 

found that individuals with a total radiation dose exposure of < 4 Gy did not exhibit any 

evidence of excess risk of MM, compared to the unexposed individuals (Preston et al., 

1994). The authors even went on to speculate that exposure to ionizing radiation due to 

direct effect of atom bombs bore little to no evidence for drawing any robust conclusion on 

MM risk modulation. Additionally, results from investigation on effect of therapy related 

radiation exposure due to routine diagnostic procedure on incidence of MM has been 

inconclusive (Boice et al., 1991; Hatcher et al., 2001). Exposure to UV radiation has been 

shown to attribute to moderate excess risk (Boffetta et al., 2008). The exact mechanism 

behind this is also speculated with expression regulation of established MM therapeutic 

target genes via irradiation but no causal inference is drawn (Shen et al., 2017). 

Occupational exposure to possible carcinogenic elements and associated MM risk has been 

studied in several populations. Farming has been systematically associated to an excess risk 

of MM (Burmeister, 1981b; Khuder and Mutgi, 1998; Perrotta et al., 2008). Speculations 

are presented on possible detrimental effects of pesticide exposure, DDT exposure, and 

exposure to solvents such as phenoxyacetics, chlorophenols as well as exposure to farm 
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animals, infectious agents and other factors but all too with elusive precedence. Firefighters 

were also found to have an elevated susceptibility to MM (LeMasters et al., 2006). The 

underlying mechanisms here could include recognized exposure to detrimental agents such 

as heavy metals (antimony, cadmium, lead), chemical constituents (formaldehyde, xylene, 

trichlorophenol, toluene, polycyclic aromatic hydrocarbons, methylene chloride, benzene, 

acrolein) along with other minerals (non-crystalline silica, crystalline and asbestos) (Brandt-

Rauf et al., 1988). Rather peculiarly, hairdressers were also found to be at higher risk of 

developing MM compared to general population with an estimated excess lifetime risk of 

almost 40% (Takkouche et al., 2009). It’s noteworthy that hairdressers admittedly have a 

higher risk of cancer compared to the general population primarily due to their frequent 

exposure to hair dye which carries a significant carcinogenic load (Altekruse et al., 1999b). 

They are also exposed to many different chemicals including and not restricted to 

nitrosamines contained in hair-care products, methacrylates, formaldehyde, shampoos, hair 

conditioners and bleaches and propellants, aerosols from hairsprays and other volatile 

solvents which may contribute to the risk burden thus observed (International Agency for 

Research on, 1993). Additionally occupational exposure to methylene chloride, benzene, 

engine exhaust was also postulated to have minimum to moderate association with excess 

MM incidence (Liu et al., 2013; Sonoda et al., 2001; Vlaanderen et al., 2011). 

Not surprisingly, there are a multitude of lifestyle parameters and behavioral patterns that 

link to excess MM risk. As observed for most of the cancers, obesity and over-weight 

correlates with a higher proportion of both MGUS and MM (Blair et al., 2005; Calle et al., 

2003; Samanic et al., 2004). Markedly, in postmenopausal women, an elevated BMI of ≥ 36 

associated with an excess in relative risk of 2.0 for MM against general population (Blair et 

al., 2005). Effect of dietary routines has also been examined by few studies. While 
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investigating relationship between specific foods or food groups and MM risk, frequency of 

dairy (excluding yogurt) , meat and grain intake were not found to be associated (Chatenoud 

et al., 1998; Tavani et al., 2000); however, for butter consumption, positive association was 

found (Vlajinac et al., 2003). Vegetable consumption also expectedly associated with a 

diminished risk (Vlajinac et al., 2003). However, no significant relation was found between 

animal fat intake and excess risk, consumption of fish was inversely linked to MM risk 

(Fritschi et al., 2004). 

A number of studies have examined association between tobacco consumption and MM 

(Adami et al., 1998; Mills et al., 1990). There was not enough evidence to establish tobacco 

consumption as a major risk factor since relative risks of the exposed group (smokers) did 

not differ significantly to non-smokers (assuming main form of tobacco consumption is 

smoking) (Mills et al., 1990). Even in large case-control studies, the odds ratio depicting 

risk effect size followed a similar trend (Brownson, 1991; Fritschi and Siemiatycki, 1996; 

Linet et al., 1987; Williams and Horm, 1977). Contrarily, although believed to be a strong 

risk predisposing factor for several malignancies, epidemiological evidence for alcohol 

consumption in light of MM risk modulation is limited at best. Moreover, the handful 

numbers of studies that exist, have not found any significant excess risk of MM in relation 

to alcohol consumption (Brown et al., 1992; Nieters et al., 2005). The biological reason 

behind this unwavering risk has been argued with immunomodulatory effects of alcohol by 

inhibition of the mammalian target of rapamycin signaling via m-TOR pathway through 

ethanol (Hagner et al., 2009). However whether these factors are causal or surrogate 

agencies for other socio-economic pattern related lifestyle traits is yet to be determined. 
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Chapter 3: Genetic epidemiology 

For most of the major forms of cancers, association studies including Genome-Wide 

Association Studies (GWAS), Genome-Wide Interaction Studies (GWIS) and other similar 

study designs have demonstrated that genetic risk of cancer can be explained by the impact 

of co-inherited common genetic lesions. Single nucleotide polymorphisms (SNPs) are one 

of the major sources of genetic lesions and are presumed to be accountable, at least in part, 

for the singular alterations in genetic susceptibility to complex phenotypes such as cancers. 

It has been recently shown to hold true for Waldenström macroglobulinemia (McMaster et 

al., 2018) and the same is also probable to be true for the disorders in MM disease family as 

well and several published GWAS indicate this (Broderick et al., 2011; Chubb et al., 2013; 

Mitchell et al., 2016; Thomsen et al., 2017). Numerous SNPs and therefore the annotated 

genes harboring such lesions belonging to different biological pathways have been shown to 

predispose to MM, although the detection strategies vary greatly to have explained MGUS 

and MM heritability. At the same time, high penetrance mutations, which were shown to 

explain a small proportion in many common cancers, has been elusive in MGUS, MM; 

nevertheless some somatic variations have been identified (Leich et al., 2013a; Mikulasova 

et al., 2017; Miller et al., 2017). 

 

3.1 Inherited susceptibility 

The notion of a possible inherited familial predisposition to MM was initially proposed in 

the 1920s. In 1925, Meyerding reported a case where a MM patient had an aunt with a 

bone disease with a fractured leg possibly indicative of myelomatic bone lesion (Meyerding, 

1925). Later Geshickter and Copeland published a review of MM where they briefly 
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discussed a case where both the brothers in a family died of MM (Geschickter and 

Copeland, 1928). In 1954 first detailed case study was revealed where two sisters with MM 

were discussed in depth (Mandema and Wildervanck, 1954). More recently, Lynch reported 

39 families with several family members affected by MM, MGUS, Waldenström 

macroglobulinemia or amyloidosis as well as another 8 African American families with 

multiple occurrences of MM or MGUS in 2009 (Jain et al., 2008; Lynch et al., 2005). To 

date, more than 100 families with multiple affected members either with MM, MM like or 

other plasma cell disorders have been reported which provide strong evidence for the 

existence of inherited susceptibility. 

With the introduction of linkage studies in early 1980s and 1990s, a number of cancer 

predisposing genes have been identified in high-risk families. Rare variants in breast cancer 

related genes (BRCA1/2), colorectal cancer associated gene APC and mismatch repair genes 

(MLH1, MSH2), Melanoma with CDKN2A were shown to produce highly penetrant 

phenotypes but these mutations are rare and account for a very marginal proportion of the 

‘familial’ element of a cancer (Bodmer et al., 1987; Cannon-Albright et al., 1992; Hall et 

al., 1990; Lindblom et al., 1993; Peltomaki et al., 1993; Wooster et al., 1994).  The linkage 

and pedigree mapped familial studies in MM have not been largely as successful in 

discovering truly high penetrant carrier mutations. The gradual revelation of familial 

inclination and association of risk also argues for existence of sizable fraction of the MM 

susceptibility due to heritable factors. As discussed earlier, several GWAS have successfully 

identified a handful number of risk SNPs predisposing to MM and effect sizes exerted by 

these risk SNPs were meta-analytically assessed for acumen of true risk predisposition 

(Mitchell et al., 2016). 
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Although these studies bring about possibility of therapeutic target discovery and 

development, it is yet to be known, how much of the inherited risk is explained by the 

already identified risk loci and what percentage of the heritable risk remain to be uncovered. 

Heritability estimate under the assumption of causal sentinel SNPs (along with tagged 

SNPs) being detected can answer this question. As the exact distribution of minor allele 

frequency (MAF) for MM causal SNPs is unknown any heritability estimate regarding the 

risk SNPs would be prone to bias. Yet taking MAF threshold of 0.5, adjusted heritability 

was assessed at 17.2% whereas the same with a MAF threshold of 0.1 was 27.8% (Table 

3.1) (Mitchell et al., 2015). 

 

Table 3. 1| Heritability of multiple myeloma adjusted for incomplete LD between causal SNPs and 

those used to compute the genetic relationship matrix. Adapted from Mitchell et al., 2015. 
 Heritability 

MAF threshold GCTA PCGC 

No adjustment 0.152 ± 0.028 0.168 ± 0.041 

0.5 0.173 ± 0.032 0.192 ± 0.049 

0.4 0.180 ± 0.033 0.200 ± 0.049 

0.3 0.192 ± 0.035 0.212 ± 0.058 

0.2 0.212 ± 0.039 0.235 ± 0.070 

0.1 0.278 ± 0.051 0.307 ± 0.079 

 

3.2 Family history of cancer and excess risk 

An increase in relative risks of MM was already reported in patients with first degree 

relatives with cancer diagnosis almost three decades ago (Bourguet et al., 1985; Brown et 

al., 2000; Eriksson and Hallberg, 1992). In an investigation from 1989 Grufferman et al. 

reported that MM patients were 4.4 times more likely to have at least one first-degree 

relative with a prior diagnosis of degenerative or demyelinating central nervous system 

disease (Grufferman et al., 1989). Using the Swedish cancer registry data in 2003 

Hemminki et al. reported an excess risk of MM in children of parents with MM with a 
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standardized incidence ratio of 3.3 (Hemminki et al., 2003). There have been investigations 

of MM risk in distantly related family members and also in spouses, although no conclusive 

inferences could be drawn due to the small number of reported cases in spouses (Kyle and 

Greipp, 1983; Kyle et al., 1971; Lynch et al., 2001). 

As the evidence of familial clustering of MM became more pronounced, population based 

observational studies started investigating excess MM risk in several pockets of population 

associated with a history of other cancer in family. Initial studies suggested an elevated risk 

of MM both in males and females subject to history of MM in family (relative risks ranging 

up to 3.23 for females and 2.33 for males and females combined) (Ogmundsdottir et al., 

2005). Although, there was no excess risk of MGUS, the authors additionally claimed that 

irrespective of gender, there was elevated risk of hematological malignancy in individuals 

related to a family member diagnosed with MM. In 2006 Landgren et al. reported a 

statistically insignificant increased risk of MM among people with a first-degree relative 

with MGUS and speculated that the statistical insignificance was possibly due to low 

reporting of MGUS cases and the actual risk would probably have been far more alarming 

(Landgren et al., 2006). Although familial clustering in MM and MGUS were previously 

described, these studies elucidated inherited risk predisposition to these diseases subject to 

existence of cancer history in family in general. As existence of strong genetic influence 

would become clear in the later years, these findings in principle laid the fundamental 

framework for investigating a true polygenic inherited susceptibility to MM. 
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Chapter 4: Strategies to address inherited risk 

Traditionally population demography and molecular and genetic epidemiology have been 

the main tools to enquire inherited risk in all realms of phenotypes. The scientific 

apparatuses addressing the questions have themselves gone through extensive evolution. 

Today this dynamic metamorphosis of statistical methods and computational algorithm is 

happening more rapidly than ever which obviously was not always the case. 

 

4.1 Epidemiological methods in population risk prediction 

Essentially the aim of studying an association between two events is to quantify the measure 

of effect (of one event subject to the other). This measure of effect is usually calculated with 

relative risk or odds ratio. In observational framework, the relative risk is assessed by ratio 

of incidence proportions and the numeric estimate is often accompanied by a measure of 

precision, confidence intervals (confidence bands in Bayesian set up) (Tripepi et al., 2007). 

On the other hand, the odds ratio is as the name suggests, ratio of odds of two events 

occurring. Odds are a way of presenting scaled / weighted probability. Odds are mostly 

synonymous to case-control studies where odds of exposure to the cases and controls are 

calculated as probabilistic point estimates by dividing the numbers of exposed by unexposed 

in each group. Similar to relative risk, the ratio of odds is also accompanied by confidence 

interval which in both instances is largely influenced by number of individuals contributing 

(sample points) and inherent heterogeneity of the data (due to confounders, non-linear 

effects and other parameters; not to be confused with parametric set up). 

A similar notion is also employed in estimation of survival probabilities. As the rate of 

attrition is of prime importance in survival study, odds representing mortality is called 
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hazard. Hazard is defined in a time dependent manner as a ratio of events occurred until a 

specific time point and the hazard ratio can be calculated in a way similar to that of odds 

ratio (Clark et al., 2003).  

Cumulative incidence is frequently used to assess age, follow-up stratified or life-time risk 

of an event often with the help of bracketed survival probabilities. The added benefit of 

observing cumulative incidence is in consideration of competing event. Several adjustments 

are developed to attribute the inflation in risk due to this phenomenon (Coviello and 

Boggess, 2004).  

Another intuitive method to assess effect of exposure in a population is demonstrated with 

population attributable fraction. The development of this method dates back to 1953 (Levin, 

1953). It is defined as the fraction of individuals representing an outcome of interest which 

presumably manifests due to a certain risk factor amidst a population. A synonymous 

estimate is called population attributable risk and is defined as the difference in the rate or 

risk of disease for the population compared to the unexposed (calculated on linear scale 

compared to that in multiplicative scale for the former). However confusion in 

epidemiological studies in application of such methods due to lack in understanding is quite 

pronounced in literature (Zapata-Diomedi et al., 2018).  

It is also to be noted that all of the discussed estimation strategies can be assessed in either 

parametric or non-parametric fashion subject to distributional information of the underlying 

data pattern and conformity to inherent assumptions levied on the particular strategies to be 

employed.  
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4.2 Linkage, GWAS and GWIS 

From a strictly molecular and genetic perspective, a long studied goal in explaining 

variation of a quantitative trait or the risk of a disease has been motivated by the 

identification of genes that contribute to such phenomenon. To that end the study design of 

choice had been linkage studies for over two decades, primarily due its viability with 

comparatively sparse array of genetic markers, obtaining which was technologically 

feasible. Linkage studies were established to investigate surplus co-segregation among 

sentinel alleles underlying a certain trait with the tagged alleles at a putative risk locus in 

family data. For years the linkage analysis had been the major instrument in interrogating 

the genetic mapping of both complex and Mendelian traits with familial accretion. The basic 

principle of linkage analysis dictates that the likelihood of meiotic recombination between 

two points in the genome is proportional to the distance between the physical maps of the 

points. Hence variations in polymorphic sites (deviant alleles) are more likely to reside in 

close proximity of a disease-causing locus inherited in families through generations. 

Therefore by studying the co-segregation of variation in polymorphic loci and inherited 

phenotype, certain genomic windows can be identified that are inherited with said 

phenotype. Formal linkage analysis has identified several risk loci related to MGUS and 

MM (Kristinsson et al., 2009; Lynch et al., 2008b). Several separate variations of this 

particular design have also been proposed over the years to investigate genetic co-

segregation. The limitation of linkage analysis is in its detection power. Admittedly due to 

its nature of looking into sparse ‘candidate’ regions in context of a phenotype, linkage 

studies demonstrate high statistical power of detection when it comes to high penetrant 

alleles. Contextually, high penetrant alleles are those alleles which make largest contribution 

(assumed the causal loci is included) to the excess risk of expression of a phenotype or to 



Inherited genetic susceptibility to multiple myeloma and related diseases   

 

25 
 

the regulation of a quantitative trait. Nevertheless, due to selection such high penetrant 

alleles tend to be rarer in nature. Contrarily for capturing signals from common alleles 

which tend to have a small effect size for most diseases or traits of polygenic nature, GWAS 

designs are adequately powered. However, until the start of last decade, performing such 

association studies in a genome-wide scale were not feasible due to technological caveats in 

obtaining dense polymorphism arrays to have acceptable detection capability. 

Humoring the idea of polygenic risk, in 1974 Anderson in his investigation of familial risk 

in breast cancer speculated that the excess risk of cancer observed in first-degree relatives of 

cancer patients “… are not indicative of a strong genetic effect. They are more suggestive of 

a polygenic mechanism, that is, the involvement of many genes with small effects acting in 

concert with environmental or nongenetic factors with larger and more important effects” 

(Anderson, 1974). This reasoning was later proven to be incorrect with observational studies 

reporting similar inflation of relative risk in cancer-susceptible families and with the 

largescale linkage studies identifying cancer susceptible genes in major cancers (Cannon-

Albright et al., 1992; Hall et al., 1990; Hemminki et al., 2003; Peltomaki et al., 1993). 

Although, the high penetrant rare variants only explained a very moderate amount of the 

estimated heritability which indicated the presence of aggregated risk exerted by common 

SNPs with comparatively lower effect sizes (Figure 4.1) (Sud et al., 2017a).  
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Figure 4. 1| Genetic architecture of cancer risk. Adapted from Sud et al., 2017a 
This graph depicts the low relative risks associated with common, low-penetrance genetic variants (such as single nucleotide 

polymorphisms identified in genome-wide association studies); moderate relative risks associated with uncommon, moderate-penetrance 

genetic variants (such as ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHEK2)); and higher relative risks associated with 
rare, high-penetrance genetic variants (such as pathogenic mutations in BRCA1 and BRCA2 associated with hereditary breast and ovarian 

cancer).  

For example, only about 25% of the two-fold excess risk observed in the first degree 

relatives of breast cancer patients is attributed to the BRCA1/2 deleterious mutations 

(Anonymous, 2000; Peto et al., 1999). Similarly, almost 60% of the heritable risk for 

colorectal cancer still remains unaccounted for (Chubb et al., 2016; Lubbe et al., 2009). 

Ironically, although the justification in Anderson's account was unbecoming, today 

polygenic inheritance is acknowledged to have greatly explained the architecture of 

inherited genetic predisposition to cancer. In search of such risk loci, the focus in genetic 

epidemiology has been shifted towards GWAS since the last decade because of the 

affordability and availability of compact collection of arrays containing large number of 

markers which can be genotyped for a much greater number of people. This school of 

analysis examines common variants associated with disease or quantitative trait. GWAS has 

been largely successful in identifying large number of risk SNPs for simple to complex 

phenotypes including almost every cancer. However, this methodological improvement in 

detection algorithm is not impervious to apparent caveats. The associative relation between 
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disease and risk SNPs revealed by GWAS are by no means causal in nature; at least the 

study design of GWAS cannot make any such assertion. Secondly, most of association 

studies report detection of risk SNPs dichotomously differentiated by the magnitude of 

effect size. Elaborating on cancer susceptible genes discovered by traditional association 

studies (not to be confused with GWAS) Sud et al. demonstrates these two classes of 

susceptibility loci (Sud et al., 2017a). One, which are the rarer and moderately penetrant 

variants (MAF < 2% and effect size > 2.0) identified by candidate gene study (ex. ATM, 

CHEK2, PALB2 mutations for breast cancer); two, the low penetrant risk alleles that were 

mostly identified by GWAS. The authors then speculate that “it is likely that the spectrum of 

penetrance and frequency of risk alleles for many cancers occurs on a continuum”; meaning 

there is possibly a subgroup of risk alleles which are predisposed to be readily detected in 

certain study designs. If we are to extrapolate, the problem of missing heritability in cancers 

is due to the rigidity of the study design. 

In attempt to explain the problem of missing heritability, several justifications were 

proposed. To begin with, GWAS identified SNPs are probably surrogate markers found 

(lacking) in linkage disequilibrium with the real causal loci. Hence such markers even when 

considered together will probably lack in power to completely capture the totality of the 

causal effects, particularly since the causal variants if present are intermittent in general 

populace due to selection. Furthermore, GWAS are power-compromised in distinguishing 

loci with moderate effects indicating that bulks of the true risk predisposing loci are left 

unaccounted for. This indicates that despite some of the single SNPs having moderate to 

poor effect on a phenotype, their (collective) impact may be of greater magnitude and 

measurable from the perceived genetic data. Additionally, alarming is the fact that the 

single-locus testing strategy is probably underpowered to observe signals at a statistically 



Inherited genetic susceptibility to multiple myeloma and related diseases   

 

28 
 

significant level from markers which interact with other genetic (or environmental) elements 

as impact of such loci remains elusive except the simultaneous existence of the contributing 

factors. Hence, investigating gene-gene (and gene-environment) interactions is another 

design to observe the missing heritability of complex phenotypes (Phillips, 2008). Disease 

advancement is believed to be a complex process reflecting interactions within a 

multifaceted biological construct structured into an assortment of interactive networks via 

regulation of pathways. According to modern complexity theory, biological interaction can 

be considered to be a sensible quantification of complexity of a biological system since the 

complexity is accredited to the interactions among the components of a system. Therefore, 

the underlying hypothesis is that a disease may be caused by joint effects of multiple loci 

predisposing to the disease in interaction (Cordell, 2009). Additionally from an algorithmic 

point of view, incentive for developing design to interrogate statistical interaction in 

inherited genetic predisposition is to provide improved opportunity for identifying 

cooperatively influencing effects of loci in interaction compared to investigating merely the 

marginal associations arising from each individual loci (Murcray et al., 2009). 

 

4.3 Functional validation of risk loci 

Several classes of functionally stratified of genetic variations are associated as the 

foundation of risk predisposition via markers recognized by GWAS. Depending on the 

physical location of the SNPs identified, they can directly influence the amino acid sequence 

of the expressed protein, RNA processing or DNA methylation (Michailidou et al., 2013; 

Schulz et al., 2017; Stacey et al., 2011; Wang et al., 2014). In addition it is perfectly 

plausible for coding variants to harbor subtle influences which essentially do not involve 

direct regulation of protein functions, instead are responsible for tagging non-coding SNPs. 
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In 2010, Manolio has demonstrated that most of the GWAS detected risk loci lay on the 

non-coding regions of the genome and are therefore likely to be involved in gene regulation 

(Manolio, 2010). With expression quantitative trait loci (eQTL) analysis, effect of such 

variants on gene expression in cell or tissue in context can be measured. eQTL analysis on 

malignant plasma cells extracted from German MM patients helped identify several cis-

regulatory signals including that of MYC-interacting gene CDCA7L by rs4487645 and 

several HLA genes (Weinhold et al., 2015). Another study from UK later reported a 

moderate association with WAX and PREX1 with strong signals observed in methylation 

quantitative trait loci (meQTL) in CD138-positive MM plasma cells (Mitchell et al., 2016). 

Although in the above algorithm the landscape of risk loci association is well investigated, it 

is not optimal to identify true causal signals scaling for the noise very plausibly present in 

genome-wide analyses due to the number of tests performed. Mendelian randomization 

(MR) leverages genetic variants as instrumental variables as they are most likely to be 

independent of confounding factors (Hernán and Robins, 2006; Lawlor et al., 2008; Smith 

and Ebrahim, 2003). One of the difficulties of a MR study is to identify in addition to proper 

exposure and effect, instrumental variable(s) unbiased by possible confounding. 

Interrogating genetic data as instrumental variable, Zhu et al. developed MR algorithm 

applicable to genome-wide scale that integrates phenotypes as effect and gene expression 

data as exposure (Zhu et al., 2016; Zhu et al., 2018). Although this method of MR based 

inference has effectively identified causal putative loci for complex traits, large scale 

application on malignant phenotypes is overdue (Colodro-Conde et al., 2018; Hemani et al., 

2018; Luijk et al., 2018; Qi et al., 2018). 

Another school of well-traversed in silico algorithms for functional annotation of risk SNPs 

is enrichment analysis. Gene set prioritization based pathway, tissue and cell enrichment 
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analyses are used to consolidate the effects of multiple GWAS detected variants. Several 

annotation tools have been developed with this specific need in mind and have helped 

discovery of causal pathways in complex traits (Lamparter et al., 2016; Pers et al., 2015). In 

context of MGUS and MM, several studies have shown activation or differential regulation 

in NF-κB, Ras/Raf/MAPK/Erk, PI3K/Akt/mTOR, Jak2/Stat3, VEGF signaling pathways 

(Korde et al., 2011b; Ramakrishnan and D’Souza, 2016; Zingone and Kuehl, 2011). 

However as more of the heritability gets explained with risk loci, the landscape of pathways 

and underlying genetic and mechanistic links becomes clearer. 
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Aim of the study 

As inherited genetic architecture of risk predisposition to MGUS and MM mostly involves 

common variants with moderate to underwhelming effect sizes, the work detailed in this 

thesis aims at obtaining further insight into it by interrogating genetic data with available 

technologies leveraging several genome-wide analyses. Additionally, it also investigates 

association of cancer burden exerted by family history of cancer on MM patients in 

developing subsequent primary cancers. 

Specifically I aim at: 

1) Identification of low-penetrant germline variants in interaction predisposing to 

MGUS risk. 

2) Providing functional annotation to identified risk SNPs with genetic network 

construction and pathway enrichment. 

3) Characterization of inherited genetic susceptibility to MM through genome-wide 

genetic interaction. 

4) Functional annotation of discovered risk loci by interrogating eQTL, MR assessed 

with GWA summary statistics, gene-set prioritization, network enrichment as well as 

tissue and cell enrichment. 

5) Investigating the role of familial susceptibility in the form of family history of 

cancer in MM patients in developing second primary cancers and assess causes of 

death.  
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Schematized design of the study 
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Materials and Methods 

Chapter 5: Datasets 

The molecular-genetic part of the study focuses on data obtained from genotyping. 

Genotyping is the process of obtaining genotype of an individual with a biological assay, 

frequencies of which thus obtained are compared between individuals with a certain 

phenotype and those without (given homogeneous ancestry) in a case-control set-up 

predominantly with association tests.  

On the other hand, the population observational side will focus on the Swedish cancer 

registries with a nation-wide follow-up of complete cancer diagnoses since 1958. Detailed 

description on each of the relevant sources of data follows. 

 

5.1 Genotype data 

Genotype data procurement strategy and data description are directly taken from published 

studies without much alteration as is hereby referred to: MGUS sample data from 

(Chattopadhyay et al., 2018c; Thomsen et al., 2017); MM sample data from (Mitchell et al., 

2016) and eQTL sample data from (Weinhold et al., 2015). 

 

5.1.1 MGUS samples 

The University Clinic of Heidelberg and the University Clinic Ulm discovered 243 

MGUS cases among which 114 (47%) were males with a mean age at diagnosis of 62 

years, standard deviation (SD) ± 11 years. The Ig isotype distribution was 72% IgG, 12% 

IgA, and 16% other Ig isotypes (Thomsen et al., 2017; Weinhold et al., 2014b). These 

MGUS cases were identified during diagnostic work-out of a different disease. Out of the 
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243 cases, two developed MM within three years after sampling and 46 individuals were 

seen only at the time of sampling. IgM MGUS cases were excluded from the Heidelberg 

cohort. For replication, 236/82 MGUS patients were identified for case-control/case-only 

replication in Essen within the Heinz-Nixdorf Recall (HNR) study (Schmermund et al., 

2002; Thomsen et al., 2017). About 61% of the replication set were males with the mean 

age at diagnosis of 64 years, SD ± 9 years. Detection of MGUS was based on 

internationally accepted criteria (Anonymous, 2003): monoclonal protein concentration 

less than 30 g/l, less than 10% monoclonal plasma cells in bone marrow, normal plasma 

calcium and kidney function and no bone destruction or anemia. The reference 

population for the Heidelberg set consisted of 1285 German individuals from the HNR 

study with almost 50% males (Schmermund et al., 2002). The reference population for 

the Essen set was also recruited within the HNR study, adding up to 2484 individuals 

(51% males) not overlapping with the reference population for the Heidelberg set. 

Illumina HumanOmniExpress-12v1.1 chip arrays were used for genotyping the 

Heidelberg MGUS set and the corresponding control set was genotyped using the 

Illumina HumanOmniExpress-12v.1.0 chip array (Schmermund et al., 2002). The Essen 

set was genotyped using six different chips: 365 (15 cases, 350 controls) were genotyped 

on Illumina HumanCoreExome-12v1.1 chip arrays, 1491 (82 cases, 1409 controls) on 

Illumina HumanCoreExome-12 v1.0 chip arrays, 133 (119 cases, 14 controls) on Illumina 

Human660W Quad_v1 chip arrays, 811 (45 cases, 766 controls) on Illumina Human 

Omni-Quad V.1 chip arrays and 1385 (82 cases, 1303 controls) on Illumina 

HumanOmniExpress-12v.1.0 chip arrays (Table 5.1). 
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Table 5. 1| Summary of Illumina bead chips used for genotyping different batches of cases and 

controls 
 Genotyping chip Number of SNPs No. of cases No. of controls 

Chip1 Illumina HumanCoreExome-12v1.1 542,585 § 15 § 350 

Chip2 Illumina HumanCoreExome-12v1.0 538,448 § 82 § 1409 

Chip3 Illumina Human660W-Quad_v1 657,366 § 119 § 14 

Chip4 Illumina HumanOmni-Quad V.1 1,140,419 § 45 § 766 

Chip5 Illumina HumanOmniExpress 12v1.0 730,525 £ 82 ¥ 1303 

Chip6 Illumina HumanOmniExpress-12v1.1 730,725 ¥ 243 N/A 

¥ Discovery set cases and controls; £ Follow up set cases; § Replication set cases and controls 

 

The study design was restricted to overlap of SNPs in respective chips combined for each 

of the analysis phase. This amount of overlaps among the SNPs genotyped between the 

arrays is reported in (Table 5.2). 

Table 5. 2| Overlaps in number of SNPs prior to quality control between different genotyping 

arrays used. Chip numbers are defined in Table 5.1 

 Chip1 Chip2 Chip3 Chip4 Chip5 Chip6 

Chip1 542585 535478 128261 244172 252942 205700 

Chip2  538448 128337 244385 253159 205723 

Chip3   657366 392615 324520 266040 

Chip4    1140419 706093 534858 

Chip5     730525 534604 

Chip6      730725 

 

5.1.2 MM samples 

Diagnosis of MM (International Classification of Disease (ICD)-10 C90.0) adhered to the 

guidelines established by World Health Organization. Samples retrieved from all subjects 

were either before treatment or at presentation. 

The UK GWAS consisted of 2282 cases (1755 male (post quality control (QC)) recruited 

through the UK MRC Myeloma-IX and Myeloma-XI trials (ISRCTN68454111: 

Myeloma-X http://www.isrctn.com/search?q=ISRCTN68454111 and ISRCTN49407852: 

Myeloma- XI http://www.isrctn.com/search?q=ISRCTN49407852). DNA was extracted 

from EDTA-venous blood samples (90% before chemotherapy) and genotyped using 

http://www.isrctn.com/search?q=ISRCTN68454111
http://www.isrctn.com/search?q=ISRCTN49407852
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Illumina Human OmniExpress-12 v1.0 arrays (Illumina). Controls were recruited from 

publicly accessible data generated by the Welcome Trust Case Control Consortium 

(WTCCC) from the 1958 Birth Cohort (58C; also known as the National Child 

Development Study) and National Blood Service. The control population comprised of 

5197 individuals (2628 male (post QC)). Genotyping of these controls was conducted 

using Illumina Human 1-2 M-Duo Custom_v1 Array chips (www.wtccc.org.uk). 

The German GWAS comprised 1717 cases (981 male (post QC); mean age at diagnosis: 

59 years). The cases were ascertained by the German-Speaking Multiple Myeloma 

Multicenter Study Group coordinated by the University Clinic, Heidelberg 

(ISRCTN06413384: GMMG-HD3 http://www.isrctn.com/search?q=ISRCTN06413384;  

ISRCTN64455289: GMMG-HD4 http://www.isrctn.com/search?q=ISRCTN64455289;  

ISRCTN05745813: GMMG-MM5 http://www.isrctn.com/search?q=ISRCTN05745813) . 

DNA was prepared from EDTA-venous blood or CD138-negative bone marrow cells 

(<1% tumor contamination). Genotyping of these samples was performed using Illumina 

Human OmniExpress-12 v1.0 arrays (Illumina). For controls, genotype data on 2,107 

healthy individuals, enrolled into the HNR study was used. These samples were 

genotyped using either Illumina HumanOmni1-Quad_v1 or OmniExpress-12 v1.0 arrays. 

Out of the whole recruited control population, 2069 (1028 male) remained after QC. 

 

5.2 Expression quantitative trait loci data 

eQTL data was generated on malignant plasma cells from 665 German MM patients (389 

male, mean age 59±9 years) of the Heidelberg University Clinic and the German-speaking 

Myeloma Multicenter Group. Plasma cells were CD138-purified from bone marrow 

aspirates. Gene expression profiling of CD138-purified plasma cells using Affymetrix U133 

http://www.wtccc.org.uk/
http://www.isrctn.com/search?q=ISRCTN06413384
http://www.isrctn.com/search?q=ISRCTN64455289
http://www.isrctn.com/search?q=ISRCTN05745813
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2.0 plus arrays were performed (Meißner et al., 2011). Expression data have been deposited 

in ArrayExpress (E-MTAB-2299) (Weinhold et al., 2015). 

 

5.3 Swedish population data 

The Swedish Family-Cancer Database (SFCD) includes the total population of Sweden 

classified in families and linked to the national cancer registry. It records a little over than 

2.1 million cancer cases diagnosed in Sweden since 1958 (Chattopadhyay et al., 2018d). 

The registry relies on distinct obligatory notifications from clinicians who diagnosed the 

neoplasms and from pathologists/cytologists with an estimated coverage of more than 90% 

of all cancer diagnoses (Ji et al., 2012). The registry counts tumors not patients, except for 

skin and urinary tract tumors diagnosed at the same topological area (https://www.ancr.nu/ 

dyn/resources/File/file/7/4247/1412940269/total_document_survey_optimeret.pdf). The 

project database is located at Center for primary health care in Malmö, Sweden. 

  

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2299/
https://www.ancr.nu/%20dyn/resources/File/file/7/4247/1412940269/total_document_survey_optimeret.pdf
https://www.ancr.nu/%20dyn/resources/File/file/7/4247/1412940269/total_document_survey_optimeret.pdf
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Chapter 6: Heritable risk analysis 

6.1 Quality control 

Erroneous study design and faulty genotype calling introduces systematic bias in genetic 

cases-control studies. It leads to spurious associations increasing the amount of both false-

positive and false-negative discoveries (Zondervan and Cardon, 2007). Due to the enormous 

number of tests to be performed, even a negligible amount of systematic error can introduce 

bias that can inflate or deflate signals invalidating the sensitivity and specificity of the 

results. This error can potentially be introduced in two stages of the study, initially in the 

genotypes of the study samples and then due to outlier-like markers present in original and 

extrapolated sample (Anderson et al., 2010). Therefore, in the two-staged QC process thus 

applied, the second stage can also correct for loss in detection power due to removal of 

samples with detrimental effect on the analysis (Marchini et al., 2007). These two stages of 

QC are described as follows: 

 

6.1.1 Sample-based quality control 

a) Sex check  

Genotype data from the sex chromosome of the samples is tallied against the ascertained 

sex in the sample to detect discordance in sex determination. As the homozygosity rates 

for males (ideally 1) and females (<0.2) differ substantially, DNA sample and report 

concordance abnormalities are easily detectable. Errors of such kind are often due to 

misreporting or sample getting mixed up, although possibilities of erroneous genotyping 

of sex chromosome also remain. 

 



Inherited genetic susceptibility to multiple myeloma and related diseases   

 

39 
 

b) Heterozygosity rate  

Variation in DNA sample quality can have a major impact in determining strength of 

associated signals. Heterozygosity rate helps determining individual DNA sample quality 

of every sample. Excess heterozygote genotypes indicate contaminated DNA sample 

where as a low observation means highly inbred sample. Hence samples are pruned for 

proportion of heterozygous genotypes. 

c) Relatedness 

Basic assumption of case-control study design is that each individual should be distant 

in pedigree compared to that among second-degree family relatives. This is checked 

with the statistic identity by state (IBS). 

d) Population stratification 

Often based on ancestry, certain loci are shown to have undergone strong selection 

(Campbell et al., 2005). These loci if left unchecked to their own devices, can introduce 

inherent population stratification resulting in instable sensitivity (Cardon and Palmer, 

2003).  Principal component analysis is probably the most common tool to identify (and 

consequently remove) people with extensive modifications in ancestry (Price et al., 

2006). In this analysis principal component model was assessed using genome-wide 

template genotype data obtained from populaces of reported ancestries using the 

genotype data from phase II HapMap project for Europe, CEU (60); Asia (90 CHB + 90 

JPT) and Africa (60 YRI). Thus from the overlapping clusters, outliers due to dubious 

ancestry were detected and removed. 

 

 

 



Inherited genetic susceptibility to multiple myeloma and related diseases   

 

40 
 

6.1.2 Marker-based quality control 

a) Genotyping failure 

Removal of substandard markers is of immense importance as they introduce large 

variance in data that compromises quality. Based on call-rates (< 99%) of markers, all 

outliers were removed 

b) Hardy-Weinberg equilibrium 

Markers that violate Hardy-Weinberg equilibrium (HWE) are evidence of problematic 

genotype distribution and are fatal to the analysis (but in cases, it may be indicative of 

selection and may be causal to phenotype). Departure from HWE in control often means 

genotyping errors that generate enormous type 1 error and thus are removed. 

c) Differential missingness 

SNPs with considerable inconsistencies in missing genotype rates among cases and 

controls introduce confounding due to missingness (Moskvina et al., 2006). These errors 

usually appear if cases and controls are genotyped separately or in separate arrays. 

Sample qualities, array exhaustiveness, batch effect in sampling are some of the main 

reason for such discrepancy. These erroneous markers are hence removed with 

simultaneous calling of cases and controls (Plagnol et al., 2007). 

d) Minor allele frequency 

Due to the voluminous number of tests compared to the number of samples, detection 

power for rare alleles is very low in genome-wide studies (Morris and Zeggini, 2009). 

Secondly, alleles with very low frequencies if present, introduces high rate of false 

positive signals in these analyses (Anderson et al., 2010). Hence SNPs harboring alleles 

with very low frequencies are removed. 
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6.2 Phasing 

Determination of haplotype phase estimated using computational approaches is an integral 

part of GWAS. Such computational methods are based on pooling information from 

genotype data across individuals to have estimated haplotype phase. Unrelated individuals 

are phased by assuming that common haplotype sets can explicate the probable observed 

genotypes (Browning and Browning, 2011). This unrelated set of individuals work as a 

genetic blueprint in construction of the final genetic assembly; hence the number of 

individuals considered in the reference panel (blueprint) is of utmost importance. The 

genotype data was phased against the reference panel released by the phase II HapMap 

project (The International HapMap Consortium et al., 2010). 

 

6.3 Imputation 

Imputation is the prediction algorithm to obtain a denser genetic assembly to increase 

statistical power of detection. During imputation, the sample genotypes are used to be 

mapped on a denser platform to estimate genotypes for untyped SNPs in sample, generally 

obtained from published reference genotypes. This increases power and overlap between 

several different samples. Imputation was performed with combined phased haplotype 

(3,781 UK individuals) from UK10K project (http://www.uk10k.org/) and (1,092 individuals 

from Africa (n=246), Asia (n=286), Europe (n=379) and the Americas (n=181)) 1000 

genome project (http://www.internationalgenome.org/) reference panel on NCBI build 37 

(human genome 19, hg19) (Huang et al., 2015; Marchini and Howie, 2010). 

 

 

 

http://www.uk10k.org/
http://www.internationalgenome.org/
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6.4 Association study 

Association analysis evaluates the effect of individual markers (SNPs) compared between 

presence and absence of a given phenotype. The underlying hypothesis is that adjacent 

stretches of DNA are non-independently inherited through generations which lets tagged 

SNPs assume similar signal to that displayed by a causal SNP in such a co-inherited region 

(Daly et al., 2001). Associations between SNPs and MGUS (and MM) phenotype were 

assessed by fitting logistic regression with the presumption of an additive inheritance model. 

Risk alleles for each of the sample population were assessed against the reference and odds 

ratios (95% CI) were calculated from the regression estimate and a test of association 

rendered the P-value. Adequacy of the distribution of P-values was later checked with 

quantile-quantile plots under the assumption of null hypothesis. 

 

6.5 Interaction study (Epistasis) 

Epistasis i.e. genetic interactions is recognized as fundamental in understanding the 

structure as well as functionality of biological networks and evolutionary processes of 

multifaceted traits for long (Phillips, 1998). Fisher introduced the idea of statistical epistasis 

where “the average deviation of combinations of alleles at different loci is estimated over all 

other genotypes present within a population” for studying association of the deviation and a 

phenotype of interest (Tong et al., 2001). Genetic interaction was performed with logistic 

regression considering fixed effects due to any two SNPs and their joint interactive effect 

again with an additive inheritance model. Odds ratios and other quantitative measures were 

obtained in a similar fashion as was done for association analyses. 
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6.6 Meta-analysis 

Meta-analyses were undertaken to obtain pooled estimates using the Mantel-Haenszel 

method to combine raw data. Joint odds ratios, 95% CIs and P values were obtained with an 

inverse variance weighted fixed effects model for both association and interaction obtained 

results. 

  

6.7 Linkage disequilibrium score regression 

Linkage disequilibrium score regression (LD score regression) assumes that due to inherited 

genomic widow around each GWAS detected loci, the estimated effect size of any given 

SNP is due to the combined effect of all SNPs in LD. Hence for polygenic complex traits, 

SNPs in high LD will contribute a larger 𝜒2test statistic compared to the SNPs with low LD 

(Bulik-Sullivan et al., 2015b). This method tests for genetic correlation between two study 

populations that helps estimating dependency between two traits. Extending from the same 

assumption, it would mean for testing whether two traits are genetically correlated, 

multiplied Z scores (scale and location adjusted statistic) can be tested against 𝜒2 (Bulik-

Sullivan et al., 2015b; Yang et al., 2011b). Baseline LD scores were initially calculated 

from genetic data supplied by the individuals of European ancestry in the UK10K and 1000 

genomes project (Bulik-Sullivan et al., 2015a). LD score regression was then assessed to 

obtain effect size of genetic correlation between meta-analyzed MM and MGUS. 

 

6.8 Expression quantitative trait loci 

As GWAS can only decipher associative genetic loci when it comes to investigating 

incidence of phenotype, gene expressions are widely used as quantitative trait to impose 

biological mechanics on the observed signals. In principle eQTL analysis links DNA 
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sequence variants to tissue specific differential regulations in gene expression (Clyde, 2017; 

Gilad et al., 2008). Studies often focus on genes residing in the nearby regions of a queried 

SNP (cis-eQTL).  eQTL data on malignant plasma cells of 665 German MM patients was 

used to observe changes in gene expression against the genetic-interaction detected sentinel 

SNPs (Weinhold et al., 2015). 

 

6.9 Summary data-based Mendelian randomization 

In order to identify causal signals, summary data-based Mendelian randomization (SMR) 

analysis (http://cnsgenomics.com/software/smr/) was performed (Zhu et al., 2016). 

Mendelian randomization (MR) is a statistical tool that uses instrumental variable to assess 

causal association between an exposure and its effect (Paternoster et al., 2017). There has 

been several studies that focuses on application of MR in GWAS (Benn and Nordestgaard, 

2018; Porcu et al., 2018). The major problem is in determining the validation of the three 

major assumptions for selection of a justified instrumental variable (more precisely, the 

exclusion principle criteria) (Davey Smith and Hemani, 2014). In SMR gene expression is 

treated as the exposure, the phenotype is the effect of the exposure and the genotype-

associated summary data is treated as the instrumental variable. Conformity to the 

underlying assumptions of the instrumental variable was examined by testing heterogeneity 

for independent instruments (gene expression) against multiple SNPs present in each cis-

eQTL window. Under the null hypothesis of absence of pleiotropy, effect sizes for all the 

SNPs belonging to a cis-eQTL region would demonstrate identical effect sizes. Hence by 

testing for absence of heterogeneity among effect sizes between SNPs in cis-eQTL, the 

instrumental variable assumptions were also controlled for. 

 

http://cnsgenomics.com/software/smr/
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6.10  Selection of test statistic 

The notion of statistical interaction or ‘biological epistasis’ if simply put is additional effect 

exerted by a selection of alleles on top of each of their fixed effects on expression of a 

quantity (or that of a phenotype). In that case the simplest form of regression structure 

would be modeled as a departure from single co-variate regression model by introducing 

join effects due to more than one variant on the phenotype odds. It’ll take the following 

shape: 

log
𝑝

1 − 𝑝
= 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥1𝑥2 

Where 𝑝 represents probability of incitation of the chosen phenotype which in case-control 

set up can be replaced with the point estimate of proportion of cases in the sample 

population; 𝑎0 is the location or intercept parameter (can be null depending on scenarios); 

𝑎1 and 𝑎2 are fixed effects parameters due to marker 𝑥1 and 𝑥2 ; and finally 𝑎3 is the 

parameter for the interaction effect due to 𝑥1 and 𝑥2. 

Initial releases of the computational platform PLINK includes this simple logistic regression 

oriented model which is traditionally very computational-heavy and resource hungry. As an 

improvement to this design fast-epistasis is later incorporated which uses linkage dependent 

correlative measure as test statistic. In summary, it takes the unphased genotype data from 

the sample and first expands it in a 2-way cross tabular format for estimating each of the 

allelic pair frequencies (Table 6.1 to Table 6.2) 

 

Table 6. 1| Genotype counts from two SNPs 

 BB Bb bb 

AA 𝑛22 𝑛21 𝑛20 

Aa 𝑛12 𝑛11 𝑛10 

aa 𝑛02 𝑛01 𝑛00 
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Table 6. 2| Allele counts for alleles of two SNPs obtained from genotypes 

 B b 

A 𝐾1 = 4𝑛22 + 2𝑛21 + 2𝑛12 + 𝑛11 𝐾2 = 4𝑛20 + 2𝑛21 + 2𝑛10 + 𝑛11 

a 𝐾3 = 4𝑛02 + 2𝑛01 + 2𝑛12 + 𝑛11 𝐾4 = 4𝑛00 + 2𝑛01 + 2𝑛10 + 𝑛11 

 

The log odds ratio with this table is calculated by the formula: 𝐿𝑚 log
𝐾1𝐾4

𝐾2𝐾3
 with a sample 

estimated variance 𝐿𝑣 =
1

𝐾1
+

1

𝐾2
+

1

𝐾3
+

1

𝐾4
.The fast-epistasis algorithm tests under the null 

hypothesis that no correlation between the alleles at the two loci exists with a test on the 

case-control generated statistic: 

𝑇𝑓𝑎𝑠𝑡−𝑒𝑝𝑖𝑠𝑡𝑎𝑠𝑖𝑠 =
[𝐿𝑚(𝑐𝑎𝑠𝑒𝑠) −  𝐿𝑚(𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)]2

𝐿𝑣(𝑐𝑎𝑠𝑒𝑠) + 𝐿𝑣(𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)
 

Wellek and Ziegler later pointed out that instead of using allelic frequency proportion, if 

Pearsonian 𝑟 is used, it can be calculated without phasing and additionally the loss in 

precision due to using unphased genotype data is negligible subject to the variants’ 

conformity to HWE (Wellek and Ziegler, 2009). In this case for obtaining a Pearsonian 𝑟 

based measure, the statistic proposed was: 

𝑟 =
2(𝐾1𝐾4 − 𝐾2𝐾3)

√(𝐾1+𝐾2)(𝐾1 + 𝐾3)(𝐾2 + 𝐾4)(𝐾3 + 𝐾4)
 

The sample variance is also calculated in a similar estimation procedure (Wellek and 

Ziegler, 2009). Although their study proposes on squared difference of Z score as mean 

square estimate, Ueki et al. proposed a generalized efficient form if this correlation based 

statistic: 

𝑇𝑊𝑍𝑐𝑎𝑠𝑒/𝑐𝑜𝑛𝑡𝑟𝑜𝑙
=

[𝑟(𝑐𝑎𝑠𝑒𝑠) − 𝑟(𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)]2

𝑉𝑎𝑟(𝑟(𝑐𝑎𝑠𝑒𝑠)) + 𝑉𝑎𝑟(𝑟(𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠))
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This transformed statistic has been used for all cases-control interaction analysis discussed 

throughout this work. 

 

6.11  Threshold selection 

The ideology behind use of P-value is at the least very well discussed but often poorly 

understood. In brief, P-vale of a quantity observed in sample quantifies the probability of 

obtaining a value at least as extreme as that observed given it is selected from the population 

by chance. Hence, if the P-value obtained from a test is smaller than a predetermined level 

of significance, then the null hypothesis is rejected (constraints may apply such as simple 

null, test statistic is uniformly minimum variance in its class etc.). Hence the two pronged 

problem is first, to determine a good statistic, possibly an unbiased one (which was done for 

both single marker and two-marker association test); and secondly, to determine the 

predefined threshold in a way that it controls for type I and type II errors (possibly keeps 

them simultaneously to a minimum). Traditionally at 95% confidence, for a single test 

performed to control the family wise error rate (number of type I error ≤ 1) level of 

significance need to be fixed at 0.05. 

Genome-wide studies pose a problem with the number of tests performed. To understand 

this in short, if there are 𝑁 number of tests performed at 95% confidence, it’d mean 5% of 

those 𝑁 tests performed would end up being a false discovery just by chance. Now for 1 

million tests performed, this number is 50,000 which compromise integrity of the design. 

Hence, for large number of tests to be performed, proportionally large confidence is required 

to restrict the number of false positive signals. Because of the LD structure present among 

the genomic variants, hypothetically a large amount of tests would be testing for identical 

association, hence correcting the level of significance with a factor of 𝑁 (Bonferroni 
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correction) would result in overcorrection and subsequent deletion of true signals i.e. Type 

II error (Noble, 2009). As for the GWAS, a standard level of significance at 5𝑥10−8 was 

employed (Fadista et al., 2016). Whereas depending on final number of tests after selection, 

this threshold was determined at 5𝑥10−10 for GWIS. Additional tests performed throughout 

the work were all corrected with Bonferroni correction unless explicitly stated otherwise. 

 

6.12  Resources 

6.12.1 In Silico analysis tools 

a) CASSI 

CASSI is a genome-wide interaction analysis software (https://www.staff.ncl.ac.uk/ 

richard.howey/cassi/). It can implement a transformed Pearsonian r statistic centered 

genetic interaction test. Fixed effects based logistic regression was assessed with Wellek-

Ziegler statistic to obtain association odds ratio, 95% CI and P-value. 

In separate steps case-control and case-only studies were performed with inherent options 

defined in the tool for discovery, validation and replication analyses respectively. A 

default selection criteria for each SNPs was passed which was employed according to the 

single marker association test subject to passing the threshold level of significance at 

<0.001. This reduced the number of tests to a legible amount and conserved the effective 

level of significance to be employed on the output after correcting for multiple testing. 

b) Genome-wide Complex Trait Analyses 

Although originally developed for heritability estimation, GCTA (http://cnsgenomics 

.com/software/gcta/#Overview) has developed as a hub for tools for interrogating several 

genetic features of phenotypes using GWAS level summary statistics (Yang et al., 

2011a). GCTA was used to obtain results of an array of different statistical queries 

https://www.staff.ncl.ac.uk/%20richard.howey/cassi/
https://www.staff.ncl.ac.uk/%20richard.howey/cassi/
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PCA was used to perform principle component analysis in determining population 

structure and stratification. 

SMR is a tool that interrogates GWAS summary data and a related exposure 

(eQTL data) to perform Mendelian randomization. Causal sentinel SNPs were 

identified with this tool. 

c) IMPUTE 

IMPUTE implements a haploid extrapolation algorithm (https://jmarchini.org/impute-4/) 

to impute untyped SNPs in association studies. It uses embedded reference genotype 

panel from UK Biobank (http://www.ukbiobank.ac.uk/) dataset containing around 

500,000 individuals (Bycroft et al., 2017). It uses weighted genotypes from sample 

population and extrapolates genotypes of the SNPs present in the reference panels 

consistent with the LD structure (genome build). It extrapolates genotypes of the said 

SNPs in LD from the typed SNP in sample where the signal intensity is counter-

proportional to that of the genomic distance between the two. As an output it provides 

marginal probabilities of each projected genotype. In previous build of the program 

along with the projections additional information were included on information content 

as proxy for ‘genotype quality’ in a probabilistic scale of 0 to 1 which enabled user to 

determine imputation confidence for each variant (Marchini and Howie, 2010). Since 

this metric was discontinued in the latest build (IMPUTE4), the information pruning was 

carried out in SNPTEST. 

d) INTERSNP 

INTERSNP (http://intersnp.meb.uni-bonn.de) is a JAVA based alternative for 

computation of epistasis. The additional attribute of this package is in predictively 

determining genome-wide significance for each SNP with Monte Carlo simulation 

https://jmarchini.org/impute-4/
http://www.ukbiobank.ac.uk/
http://intersnp.meb.uni-bonn.de/
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(Herold et al., 2009). Furthermore it is capable of considering more than two variants at 

a time building a complex linear interactive model for association test (gene-gene 

interaction or Fisher’s combined test). In addition to GWIS, it includes embedded 

KEGG database that can be leveraged with the identified SNPs for assessing pathway 

enrichment with prioritized genes (Herold et al., 2012). INTERSNP was used as a 

parallel tool to perform discovery analysis. 

e) METAINTER 

METAINTER is a meta-analysis tool for multiple regression analysis in GWAS and 

GWIS (https://metainter.meb.uni-bonn.de/) (Vaitsiakhovich et al., 2015). It specializes 

in the file format generated with parameter provided by the INTERSNP platform. It 

enforces a modified ‘method for the synthesis of linear regression slopes’. With an 

inverse variance weighted model from each population, the meta-analytic results include 

odds ratio, 95% CI and P value for each paired observation. It also outputs I
2
 statistics as 

a measure of heterogeneity between the study populations. 

f) METAL 

METAL (http://www.sph.umich.edu/csg/abecasis/metal/) is a tool for meta analyzing 

GWAS which reads logistic regression output file created by PLINK (Willer et al., 

2010). It is a widely used tool in meta-anlyses as it can employ inverse-variance 

weighted linear regression on a fixed-effects model and also sample size weighted 

combined Z-score model (Anonymous, 2011; Lambert et al., 2013; Locke et al., 2015). 

METAL also includes a process for including genomic controlling parameter for each 

input population (Willer et al., 2010). By comparing the median of the observed test 

statistic to that expected by chance, METAL estimates inflation in the test statistic. 

https://metainter.meb.uni-bonn.de/
http://www.sph.umich.edu/csg/abecasis/metal/
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Additional filters can also be imposed on the selection of markers obtained from each of 

the GWAS studies included in the analysis.  

g) PLINK 

PLINK v2.7 (http://zzz.bwh.harvard.edu/plink/) is an improved version of PLINK, a 

whole genome association computational tool designed for a range of basic large-scale 

analyses (Chang et al., 2015; Purcell et al., 2007). Several different toolkits are 

embedded in PLINK that can be queried from data extraction, deletion, manipulation, 

several steps of QC required before imputation, association analyses with different 

statistical models, data type conversion, pruning and so on. PLINK is typically one of 

the most valuable tools in any traditional GWAS design and have been used in this work 

in following steps: 

Sample-based QC Check for sex information, heterozygosity rates and 

relatedness. 

Marker-based QC Check for genotyping failure, differential missingness, HWE 

and MAF. 

LD based SNP pruning. 

Checking and flipping transposed alleles between reference panel and sample 

population. 

Logistic regression based association analysis. 

Fast epistasis for gene-gene interaction based association analysis. 

h) QCTOOL 

QCTOOL version 2 (http://www.well.ox.ac.uk/~gav/qctool_v2/) is an improvement on 

original release QCTOOL that performs an array of quality control related 

computational algorithms on genome-wide genetic data. Among many other functions, it 

http://zzz.bwh.harvard.edu/plink/
http://www.well.ox.ac.uk/~gav/qctool_v2/
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can annotate, merge, perform GWAS related QC steps. This tool was mainly used in this 

study to employ a screening based on the imputation quality in one of the final stages of 

QC. In some cases it was also used to prune on defined MAFs. 

i) R 

R v3.3.1 (https://www.R-project.org/) is a publicly owned computational platform. It is 

used from statistical analyses to large scale data processing, editing and for producing 

figures (R Development Core Team, 2018). To this end numerous packages were used 

that cater to specific types of statistical, bioinformatic computation or graphics 

processing. 

j) SHAPEIT 

Genotype data stored in the sample files are generally in the shape of unphased 

haplotypes. Hence it is ambiguous to determine which of the parental chromosomes or 

haplotypes an allele belong to which makes identification of co-localized alleles in 

shorter genomic windows impossible which is a primary requirement to test assumption 

of an association study design. At the same time, for imputation shared co-localized 

haplotypes are grouped between the study sample and the genotyped reference panels. 

Segmented HAPlotype Estimation and Imputation Tool (SHAPEITv2) uses hidden 

Markov chain model to estimate haplotypes from genotype data (Delaneau et al., 2011; 

Delaneau et al., 2012). This method is used to create phased haplotypes from the sample 

genotypes that are later utilized in combination with the reference panels during 

imputation. In this study, the sample data and the reference haplotypes were pre-phased 

letting the imputation procedure run much efficiently (Delaneau et al., 2014). 

 

 

https://www.r-project.org/
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k) SNPTEST 

SNPTEST v2.5.4 (https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html) 

is a tool for single marker association analysis in study design of GWAS (Marchini and 

Howie, 2010; Marchini et al., 2007; The Wellcome Trust Case Control et al., 2007). 

This tool was built to intake file formats directly generated by IMPUTE and perform 

association analysis by adjusting for covariates (if available). SNPs can be tested for 

phenotypic association under several different models such as additive, dominant, 

recessive, general or even heterozygote model. This was used in converting file times 

from IMPUTE4 output with the help of the corresponding sample information to the 

binary or pedigree format accessible by PLINK. 

 

6.12.2 Web-based resources 

a) 1000 Genomes project  

The 1000 genome project was initiated to create a comprehensive catalogue of human 

genetic variation that are present with >1% (The Genomes Project et al., 2012). It attains 

a dense map with sequencing large numbers of individuals at 4x coverage. Data from the 

pilot phase, phase one and phase three of the project have been made publicly available. 

It is currently the largest publicly available resource for genome-wide variant frequency 

data across different populations worldwide. Variant data from 1000 genome project 

was used in combination with sample data obtained for MGUS and MM separately to 

allow for accurate imputation of variants not directly covered in the low coverage 

genotyping. 

 

 

https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
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b) Ensemble genome browser 

The Ensemble genome browser (https://www.ensembl.org) is a genome annotation tool 

maintained by European bioinformatic institute. It was used to retrieve genetic 

information regarding genomic assembly of introns, exons and regulatory domains, 

known transcripts etc. (Yates et al., 2016). 

c) HaploReg 

The HaploReg database (http://archive.broadinstitute.org/mammals/haploreg/) has a web 

based user interface that queries annotation of genomic variants in non-coding regions 

(Ward and Kellis, 2012). It also helps to visualize all other variants in user specified 

linkage threshold and respective chromatic state and their effect on regulatory motifs. 

d) National Centre for Biotechnology Information 

The NCBI web server (http://www.ncbi.nlm.nih.gov/ ) acts as a host for a multitude of 

databases and bioinformatics tools (Coordinators, 2013). Several different aspects and 

features of the browser were leveraged as follows: 

dbSNP a database containing information on genetic variations. SNPs were 

queried for chromosomal position, allele frequency, and genomic build position. 

Pubmed was utilized for literature search and citation gathering. 

RefSeq was used for interrogating annotation. 

e) The International HapMap project  

The international HapMap project (http://hapmap.ncbi.nlm.nih.gov/) aims at cataloguing 

all common genetic variants present in human genome across several different 

populations (The International HapMap Consortium et al., 2003). It enables retrieval of 

high density SNP genotype data geo-spatially stratified over populations representing 

different ancestries (Caucasian, Chinese, Japanese and African). Variant data obtained 

https://www.ensembl.org/
http://archive.broadinstitute.org/mammals/haploreg/
http://www.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
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from HapMap project was used to cluster sample population and detect population 

stratification. 

f) UK10K project  

The UK10K project aims at sequencing genome of 10,000 individuals at even a larger 

coverage (6x) (The U. K. K. Consortium et al., 2015). It is mainly comprised of three 

cohorts: the Twins UK and the Avon Longitudinal Study of Parents and Children 

(ALSPAC) cohorts include 1,854 and 1,927 whole-genome sequenced individuals and a 

further 6,000 individuals with specific phenotypes (neurodevelopment, obesity and rare 

diseases) have been exome sequenced. Variant data from the whole-genome sequenced 

cohorts were used in combination with the 1000 genome reference panel for the 

imputation. 

g) University of California Santa Cruz genome browser 

The UCSC genome browser (http://genome.ucsc.edu/) is a virtual map of the human 

genome, annotated with known genes, transcripts, polymorphic variation, repeated 

sequences, conservation, structural variation and experimental data from external 

databases. These features are mapped against the physical map of chromosomes in an 

interactable interface. Various bioinformatic tools are embedded in the website and are 

utilized for visualizing genes, specific regions of DNA, introns, regulatory regions and 

other specific features of genomic region; in downloading tables argued by specific 

queries. 

 

  

http://genome.ucsc.edu/
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Chapter 7: Enrichment analysis 

7.1 Gene prioritization and genetic network 

Relating analytically discovered risk loci to a presumed polygenic phenotype requires 

identification of possibly causal sets of genes that are involved in pathway regulation or 

have some functional classification (Moreau and Tranchevent, 2012). As the set of possibly 

relevant genes are assumed to co-localize the sentinel variants discovered via analytical 

methods (such as GWAS, GWIS etc.), it is of immense important to identify which of those 

genes are responsible to have impact on the phenotype (often not only the mere expression 

of a disease phenotype but also disease state, stage differentiation, responsiveness to therapy 

and so on) and in what way (Hung et al., 2012). Till date prioritization via gene set 

enrichment has proven involvement of several pre-associated genes in cancer and in some 

cases those with active mechanistic link to therapy response via gene expression modulation 

(Garnett et al., 2012; Haibe-Kains et al., 2012). Shortly, gene prioritization algorithms 

invoke prior knowledge of a phenotype or a process of interest either with the description of 

the trait with key words or by constructing a scaffold of genes already known to have been 

associated to the entity (Aerts et al., 2006). Either of the two or both in combination are later 

interrogated in a biological network to identify the most closely associated candidates 

usually with guilt by association technique (Oti and Brunner, 2006; Perez-Iratxeta et al., 

2002). The algorithm works by querying databases containing simple networks of genes or 

proteins (such as protein-protein network) and associating those to the existing query genes 

based on a predefined enrichment index calculated depending on several quantities such as 

the strength of each edge, directional weights, node importance (Lage et al., 2007). Several 
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different algorithms were used to perform gene prioritization as well as to construct protein-

protein enrichment network for this study. 

 

7.2 Pathway enrichment 

In 2012, Califano et al. said in their introduction to discussion of strategies to leverage 

GWAS in building network based association models, “the results of genome-wide 

association studies (GWAS) have been mostly sobering” (Califano et al., 2012). They go on 

to argue that association detection just identifies suggestive genomic region(s) without any 

prompt biological or mechanistic inheritance; arguments similar to that made by researchers 

before (Hardy and Singleton, 2009; Manolio et al., 2009; Stranger et al., 2011). But more 

importantly so, it was more a critique on dearth of ways to infer biological understanding 

rather than that of GWAS as associated loci encompasses candidate gene studies or linkage 

detected loci where this was a pre-existing concern voiced years ago (Altshuler et al., 2008; 

Goldstein, 2009; Kraft and Hunter, 2009; Lyssenko et al., 2008). A standalone solution to 

this problem is relating the prioritized genes thus detected with biological pathways 

combined with different data modalities (Subramanian et al., 2005; Zhong et al., 2010). 

Since genetic pathways are frequently implicated in susceptibility to phenotypes as well as 

progression of disease (Schadt, 2009), considering existing contextual knowledge-base of 

genes and pathways into account provides a superior probability of understanding 

underlying mechanisms enforced by genes in pathogenesis. To this end preliminary 

algorithms were introduced based on expression regulation of the prioritized genes as 

temporal aggregation of phenotypic burden was well known to be caused by moderate 

expression regulation in a cluster of genes (Mootha et al., 2003; Subramanian et al., 2007). 

This model of pathway identification has been largely successful and has collectively shown 
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that pathway discovery based approaches provide additional functional information 

complementary to traditional risk loci bases detection of genes (Chen et al., 2010; Holmans 

et al., 2009; Peng et al., 2009; Wang et al., 2009). This study implements pathway 

enrichment analysis in several stages with different tools to infer such biological 

underpinnings. 

 

7.3 Tissue and cell enrichment 

Similar to the notion of pathway enrichment, cell and tissue enrichment exerts additional 

implicating information on specific regulatory patterns of the association analysis detected 

loci. In addition to GWAS summary data, expression omnibus derived data can be used in 

prioritization of cell and tissue types. Although this is a new direction in including 

complementary evidence along with that obtained via pathway analyses, several studies 

reported successful validation of the sentinel loci and pathways detected which are found to 

be enriched in cells and tissues of contextual importance (Chan et al., 2015; Geller et al., 

2014; Locke et al., 2015; Shungin et al., 2015; van der Valk et al., 2015; Wood et al., 

2014). Following similar design, tissue and cell enrichment was performed to obtain 

evidence on justification of involvement of the loci discovered. 

 

7.4 Resources 

7.4.1 In silico analysis tools 

a) MAGENTA 

Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA version 2.4) 

is a pathway analysis module in MATLAB compiled and maintained by Broad Institute  

(https://software .broadinstitute.org/mpg/magenta/) (Segrè et al., 2010). It tests for 
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enrichment of genetic associations in functionally associated genes or predefined 

biological processes using SNP data obtained from association studies as input. It only 

requires human genome build dependent chromosomal position of the associated loci 

and the association test P-values. Literature on pathway analyses in general is fret with 

application of MAGENTA (Global Lipids Genetics et al., 2013; Lango Allen et al., 

2010; Okada et al., 2013; Speliotes et al., 2010; the et al., 2012; The International 

Consortium for Blood Pressure Genome-Wide Association et al., 2011). For executing 

pathway analysis, single marker association P-values and chromosomal regions (hg19) 

were annotated to genes corresponding to a pre-existing chromosomal range and 

computation of gene prioritization based pathway enrichment was applied on non-

confounders. False discovery rate (FDR) was inherently adjusted for multiple testing 

with Bonferroni correction and was provided by the software (Segrè et al., 2010). 

b) PASCAL 

Pathway Scoring Algorithm (PASCAL) is another pathway analysis tool developed for 

association summary statistics for variants annotated to genes (https://www2.unil.ch 

/cbg/index.php?title=Pascal) (Lamparter et al., 2016). PASCAL uses maximum of chi-

squares (MOCS) or sum of chi-squares (SOCS) statistics with null Gamma distribution 

with varying degrees of freedom which has proven to be a potent estimator in several 

investigations (Ghosh and Bouchard, 2017; Watanabe et al., 2017). To create mapping 

of genes and single entity gene-fusions, it considers all genes within a symmetric 

genomic window with an index SNP in the middle and fuses all the annotated / flanking 

genes together when they were found regulated in same pathway(s) to have created a 

single genetic entity with greater weight subject to linkage among the SNPs. With 

empirical sampling and subsequent supervised clustering according to the significance 
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levels extracted from the single marker association tests, it utilizes this idea of gene 

fusions i.e. clusters of correlated genes, for which the variants are in LD. Gene set 

prioritization and subsequent pathway enrichment analysis was performed using single 

marker P-values obtained from GWAS on MGUS and MM. Although pathway scoring 

was performed using both MOCS and SOCS statistics, the results were comparable and 

SOCS produced deflated significance levels with similar order as of that by MOCS. Sum 

of chi-square statistics with individual one degree of freedom was computed by 

summing over association statistics corresponding to each pathway. Enrichment scores 

of individual pathways were subsequently obtained by a test assuming chi-square 

distribution with degrees of freedom equal to the cardinality of fused gene sets. The 

enrichment FDRs against each pathway were again provided by the tool with correction 

due to multiple testing. 

c) DEPICT 

Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) is a large-

scale enrichment analytical tool also maintained by Broad Institute (https://data. 

broadinstitute.org/mpg/depict/index.html) (Pers et al., 2015). It uses predicted gene 

functions obtained from embedded data to prioritize the most likely causal genes derived 

from the sentinel SNPs and its tagged loci in LD to identify enriched pathway and 

highlight tissues and cells where these causal genes are most likely to have differential 

expression. DEPICT is built on an algorithm of large-scale gene co-expression analyses, 

leveraging the summary statistics of GWAS (Locke et al., 2015; Wood et al., 2014). 

Depict derives enrichment analysis viability from 77,840 gene expression datasets. 

DEPICT’s gene set knowledge base derived from Gene ontology (GO), Ensemble, The 
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Mammalian Phenotype (MP), KEGG and REACTOME was employed and analogous 

analyses followed. 

It was employed to analyze tissue and cell type enrichment that predicts differential 

regulation of the selected loci on any of the Medical Subject Heading (MeSH) 

annotations. To this end 209 such annotations were tested for 37,427 inbuilt backend 

human microarrays on the Affymetrix HGU133a2.0 array platform. The tissue/cell type 

enrichment is thus performed on the normalized expression matrix after subjecting it to 

user selected dimension reduction criteria. SNP pairs discovered with interaction test 

represented uniquely mapped regions against which the enrichment was tested against a 

conservative threshold of significance at negative log transformed P-value of 2.37 

correcting for multiple testing which retained the false discovery rate at <5% (Geller et 

al., 2014). 

 

7.4.2 Web-based resources 

a) BioCarta 

BioCarta (http://www.biocarta.com/) is community-fed database featuring a collection 

of dynamic map of metabolic and signal transduction pathways maintained by NCI. This 

database is downloadable and virtually importable in any open source analysis tool to 

investigate pathway map, enrichment and so on. Pathway data from BioCarta was used 

for pathway analysis via MAGENTA and PASCAL. 

b) Ensembl 

Although primarily known for the Ensembl genome browser (http://www.ensembl.org 

/index.html), this resource maintained by European Bioinformatic Institute in 

collaboration with European molecular biology laboratory includes genetic libraries on 

http://www.biocarta.com/
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biological pathways, genomic organization of exons, introns and known regulatory 

domains, known transcripts, proteins, homologues and recorded variation within the 

gene sequence (Zerbino et al., 2018). Ensembl pathway library is embedded in DEPICT 

and was explored in pathway enrichment analysis. 

c) Gene Ontology 

Gene ontology (GO) is part of genetic annotation initiative called the Open Biomedical 

Ontologies maintained by Gene Ontology Consortium (http://www.geneontology.org/) 

(Ashburner et al., 2000). GO annotation tracks function of a gene with a measure of 

associations defined between genes and GO terms. These GO terms are often used as 

schematics of underlying biological processes hence relatable to biological pathways. 

GO database is readily embedded in MAGENTA and DEPICT for investigation on 

biological process enrichment. 

d) Kyoto Encyclopedia of Genes and Genomes 

Kyoto Encyclopedia of Genes and genomes (KEGG) is a highly diverse database of 

high-level biological functions and utilities of such systems (https://www.genome.jp/ 

kegg/). It encompasses an array of datasets including those for pathway maps, process 

hierarchy, orthologs, compounds, biochemical reactions, enzyme, disease associated 

biological networks, drugs etc. KEGG pathways in particular is a library of manually 

drawn pathways that connects and relies on biological entities such as Metabolism, 

genetic information, cellular processes, interaction reaction with environmental features, 

organismal systems, human diseases, drug developments and so on. It is one of the most 

exhaustive existing libraries of biological pathways present till date. KEGG pathway 

data were in use by all three of the pathway analysis tool in concern. 

 

http://www.geneontology.org/
https://www.genome.jp/%20kegg/
https://www.genome.jp/%20kegg/
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e) Mammalian Phenotype 

The Mammalian Phenotype (MP) Ontology is an annotation library that relates 

phenotypes present in mammals and it is part of the Mouse Genome Database (MGD) 

Project (http://www.informatics.jax.org/vocab/mp_ontology/) (Smith and Eppig, 2009). 

MP terms represent observable morphological, physiological, behavioral and other 

features of mammals and are used as proxy for biological phenotypes by DEPICT. 

f) Protein Analysis through Evolutionary Relationships 

Protein Analysis through Evolutionary Relationships (PANTHER) pathway is also a 

database maintained under the flagship project of GO (http://www.pantherdb.org/ 

pathway/). It includes over 177 manually curated biological pathway maps providing 

individual mapping to subfamilies and protein sequences (Mi et al., 2013). In the present 

study PANTHER was only used by MAGENTA. 

g) Reactome 

Reactome (https://reactome.org) is another curated database of biological pathways and 

reactions related to human biology. Reactome encompasses all binding, activation, 

translocation, degradation and classical biochemical events involving a catalyst as 

‘reactions’ which is defined as any event that facilitates change of a biological molecule. 

Reactome also includes cross-references with KEGG, Ensembl, GO and other similar 

databases helping matching of biological functions overlapped through them. Reactome 

pathway definitions were imported via all three in silico pathway analysis tools used in 

this study. 

h) STRING 

STRING (https://string-db.org/) is a library of protein-protein interaction network 

maintained by Swiss Institute of Bioinformatics, CPR-NNF center for Protein Research 

http://www.informatics.jax.org/vocab/mp_ontology/
http://www.pantherdb.org/%20pathway/
http://www.pantherdb.org/%20pathway/
https://reactome.org/
https://string-db.org/
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and European molecular Biology laboratory (Szklarczyk et al., 2017). This database 

consolidates known and predicted protein–protein association data for a large number of 

organisms. In STRING protein-protein interactions are predicted from: (a) systematic co-

expression analysis, (b) detection of shared selective signals across genomes, (c) 

automated text-mining of the scientific literature and (d) computational transfer of 

interaction knowledge between organisms based on gene orthology (Szklarczyk et al., 

2017). It also provides a dynamic user interface to visualize the interaction assembly 

predicted. STRING only requires protein names and referred organism for input to 

create a network. 

The network thus constructed will retain all the proteins provided in input as nodes but 

only include interacting edges that have used defined threshold of confidence 

(interaction score). This threshold can be manually defined although the system-defined 

preset is at 0.4. It provides an enrichment P-value of the network by comparing expected 

and observed edges in the network. Node colors in the interaction map signify 

different/shared protein functionality. Colored edges convey status of predicted network 

edge correspondingly (a) cyan: curated database, (b) magenta: experimentally 

determined (c) forest green: gene neighborhood (d) red: gene fusion (e) navy blue: gene 

co-occurrence, (f) lawn green: text mining, (g) black: co-expression and (h) lavender 

indigo: protein homology. The interactive menu also lets user add first order interacting 

proteins to the network based on protein-protein enrichment score. There are additional 

options of performing K-means or MCL clustering on the network to stratify the 

network based on interaction score. Analysis of genetic-network with MGUS and MM 

GWAS/GWIS summary data in its entirety was performed with this tool.  
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Chapter 8: Second primary cancer risk analysis 

8.1 Case identification 

SFCD was used to obtain data for the present study that includes information concerning the 

residents of Sweden organized in families and covers more than a century and through 

several generations. The cancers diagnosed in the Swedish residents (first or any subsequent 

cancers including in situ tumors) are linked to the cancer registry with an individual unique 

proxy (Hemminki et al., 2009). The database was first created in 1998 and it consists of all 

the cancer cases in Sweden since 1958 (Hemminki and Vaittinen, 1998). The most recent 

release of SFCD encompasses over 2.1 million cancer diagnosis (malignant tumors) in a 

little more than 16.1 million individuals until the end of 2015 (Chattopadhyay et al., 2018a). 

For all individuals born after 1932 in Sweden, SFCD provides linkage to the same 

information of their biological parent(s) through the Multi-generation Register with few 

exceptions (lack of data for some older Swedes and immigrants) effectively making them 

the offspring generation (Hemminki, 2001). 

The database records cancers according to the ICD-7 and also incorporates later revisions. 

The following system was followed to have all the cancers classified in broader categories 

described in Table 8.1. 
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All registered cancer cases were mostly histologically verified. Although the SFCD does not 

publish statistics on histological verification of all first and subsequent primary cancers 

separately, all are reported to have been included with primary cancers for which 

histological verification has been around 98% from the 1970s (CentreforEpidemiology, 

2013). Ad hoc study on the diagnostic accuracy of second malignancies found 98% to be 

correctly classified (Frodin et al., 1997). 

Information on causes of death were available as the SFCD is also linked to the national 

causes of death register and the death certificate notification database (Ji et al., 2012). 

Causes of death are annotated with gradually updated ICD over the years in the following 

manner, ICD-7 (1958 –1968), ICD-8 (1969 – 1986), ICD-9 (1987 - 1996) and with ICD-10 

(1997 onwards). 

 

Table 8. 1| Cancer site classification based on ICD-7 

ICD-7 Cancer classification  ICD-7 Cancer classification 

140, 141, 143-148, 161 Upper aerodigestive tract  177 Prostate 

142 Salivary gland  178 Testis 

150 Esophagus  179 Other male genitals 

151 Stomach  180 Kidney 

152 Small intestine  181 Urinary bladder 

153, 154 (except 1541) Colorectum  190 Melanoma 

1541 Anus  191 Skin (squamous cell carcinoma) 

155, 156 Liver  192 Eye 

157 Pancreas  193 Nervous system 

160 Nose  194 Thyroid gland 

162, 163 Lung  195 Endocrine glands 

170 Breast  196 Bone 

171 Cervix  197 Connective tissue 

172 Endometrium  200, 202 Non-Hodgkin lymphoma 

173 Uterus  201 Hodgkin lymphoma 

175 Ovary  203 Multiple myeloma 

176 Other female genitals  204-209 Leukemia 

   199 CUP 
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8.2 Study population and parameters 

Out of the total 16.1 million individuals present in the database, in order to create family 

pedigree-based analysis people belonging to the offspring generation were only considered 

as index individuals. The registry assigns proxy identifier to each person registered and tags 

biological parents of each offspring with the same identifier corresponded to the offspring. 

Hence people belonging to the offspring generation can be linked as biological siblings with 

the combination of their parents’ identifiers (unless missing). A biological family pedigree 

can be constructed in this way (Figure 8.1). 

 

 

Figure 8. 1| Family identification thematized in SFCD 
Siblings identified via same identifiers in both parents. Half siblings tracked via same identifier in one of the parents. 

 

25,787 individuals were diagnosed with MM since 1958 till 2015 in Sweden out of whom 

5,205 belong to the offspring generation. Among them 360 went on to have developed a 

second primary cancer with 4 years of median time of follow-up. Evidence of prior history 

of cancer in family was assessed and 246 among these 360 were found to have at least one 

first degree relative (either parents or siblings) with cancer. 

Follow-up began from commencement of registry in 1958, with year of birth, immigration 

or diagnosis of MM whichever was later and was terminated in 2015 (end of registry 

period), on death, emigration or diagnosis of a second cancer, whichever occurred the 
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earliest. For further calculations regarding incidence, person years and contributing 

individuals were counted separately for case (people with MM diagnosis) and reference 

population (people without cancer) stratified over age-group (5 year age bands), calendar 

period (10 year bands), residential area, occupation (proxy for socio-economic status) and 

existence of cancer family history (binary identifier). 

 

8.3 Familial relative risk estimation 

For last couple of decades the incidence rate ratio obtained from linear regression has been a 

standard measure of relative risk estimation that quantifies excess risk between two 

populations by a calculating measure of multiplicative difference; magnitude of which lies 

on non-negative real line (Prentice, 1985). This method leverages generalized linear model 

to estimate standardized incidence risk with underlying distributional assumption of Poisson 

point process (inverse generalized waiting time distribution) (Nelder and Wedderburn, 

1972). In short, diagnoses of cases are presumed to follow a waiting time distribution over 

the years making the observed frequency of cases to follow a Poisson process. As the 

variance of the response count variable is to be unbiasedly estimated with explanatory 

covariates, the regression takes the following shape: 

𝑓(𝑌̃) = 𝑋𝛽 

Here 𝑓 is the (link) function that relates the expected value of the random variable to the 

linear predictor of the explanatory variables. As the underlying count process is supposed to 

follow a Poisson mass function, a log link of the expected occurrence odds takes the form: 

𝑙𝑜𝑔𝐸 (
𝑛𝑜.𝑜𝑓 𝑐𝑎𝑠𝑒𝑠

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝑝𝑒𝑟𝑠𝑜𝑛 𝑦𝑒𝑎𝑟𝑠
)

𝑗
= 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + ⋯ + 𝛽𝑘𝑥𝑘𝑗  …      (1) 

or,  ln (𝜇𝑗) =  𝑋𝛽 …              (2) 
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Where 𝜇𝑗is related to covariate matrix 𝑋 via transformation with coefficients 𝛽 through 

natural logarithm link function. The estimated regression coefficients 𝛽̂ are obtained by 

maximizing likelihood function. 

Equation (2) can be extended to the following form: 

𝑉𝜇̂ = 𝐸(𝑌𝑗 − 𝜇)2 = ∑ (𝑌𝑗 − 𝑒𝑋𝛽̂)2
𝑗=1 𝑡𝑜 𝑁  …           (3) 

This generalization of equidispersed variance function (as mean and variance of a Poisson 

variable is quantitatively equal) is then maximized first to obtain estimates of the 

coefficients and later to obtain confidence level. To this end, it can be extended to show: 

𝜒2 ≔  ∑
(𝑌𝑗−𝜇̂𝑗)

𝑉𝜇̂
𝑗=1 𝑡𝑜 𝑁  …             (4) 

Statistical significance of this transformed statistics can be obtained with a test against a 𝜒2 

distribution with degrees of freedom 1, against a pre-defined level (ex. 0.001). Following 

estimation of risk a test of trend was assessed with Kolmogorov-Smirnov statistic to note 

significance in difference in two series. 

 

8.4 Interaction 

Multiplicative interaction indexes (MIIs) and interaction contrast ratios (ICRs) were used to 

investigate the possible interaction between family history of a specific cancer and MM 

treatment (Zhang et al., 2009). The formulations of interaction statistics were modified to 

incorporate relative risk in the context of the current study in the following way: 

𝐼𝐶𝑅 = 𝑅𝑅𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑙 𝑆𝑃𝐶𝑋
− 𝑅𝑅𝑐𝑎𝑛𝑐𝑒𝑟𝑋

− 𝑅𝑅𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑙 𝑐𝑎𝑛𝑐𝑒𝑟𝑋
+ 1 

𝑀𝐼𝐼 =
𝑅𝑅𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑙 𝑆𝑃𝐶𝑋

𝑅𝑅𝑐𝑎𝑛𝑐𝑒𝑟𝑋
× 𝑅𝑅𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑙 𝑐𝑎𝑛𝑐𝑒𝑟𝑋
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Here 𝑅𝑅𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑙 𝑆𝑃𝐶𝑋
is relative risk of SPC 𝑋 in MM patients with history of cancer 𝑋 in 

family; 𝑅𝑅𝑐𝑎𝑛𝑐𝑒𝑟𝑋
is relative risk of cancer 𝑋 in general population and 𝑅𝑅𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑙 𝑐𝑎𝑛𝑐𝑒𝑟𝑋

 is 

relative risk of cancer 𝑋 among people with cancer 𝑋 in family. 𝐼𝐶𝑅 > 0 signifies a more 

than positive interaction and 𝑀𝐼𝐼 > 1 signifies greater than multiplicative interaction. 

Confidence intervals and P-values for MII and ICR were assessed with bootstrapping based 

on 100,000 replications on each sample and tested empirically.  
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Results 

Chapter 9: Heritable risk in MGUS 

9.1 Genetic interaction 

9.1.1 Discovery set: Case-control design 

The fast epistasis function provided in PLINK was Initially employed to explore genome-

wide interaction on the discovery cohort of 243 German individuals diagnosed with 

MGUS. Among the 489,555 genotyped quality-controlled SNPs, a brute search algorithm 

required 1.2 × 1011 tests at a whole-genome scale to perform multivariate log-linear 

interaction test. PLINK operates without a prior selection criterion, hence the multiple 

testing adjusted level of significance to retain FWER at 5% was found at close to 4.2 ×

10−13. None of the signals thus discovered could attain this genome-wide threshold of 

significance (Table 9.1).  
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Later the discovery analyses were expanded throughout three different computational 

platforms (Table 9.2). 

  

Table 9. 1| Top interactions from simple logistic linear interaction test (brute force epistasis with 

PLINK). 
Gene1 Chr1 SNP1 Gene2 Chr2 SNP2 P-value 
PRELID2 5 rs6580355 LOC390299 12 rs33233 3.57E-11 

OR6B3 2 rs12471071 CDC37L1 9 rs1385453 8.67E-11 

C1orf129 1 rs4656817 hCG_1820717 13 rs1326701 1.62E-10 

ABHD5 3 rs4682696 PPFIBP1 12 rs7958124 2.18E-10 

OR6B3 2 rs12471071 CDC37L1 9 rs6476893 2.72E-10 

LOC730216 7 rs292661 CSMD1 8 rs4875730 4.37E-10 

SLC13A1 7 rs4731094 LOC390829 18 rs2077149 6.39E-10 

MYEOV2 2 rs1992307 CDC37L1 9 rs1385453 6.94E-10 

IHPK3 6 rs568901 TRPC6 11 rs1230960 7.61E-10 

ABHD5 3 rs4682696 PPFIBP1 12 rs7966058 8.04E-10 

LOC729108 3 rs7652856 LOC727862 17 rs8074928 8.97E-10 

MYEOV2 2 rs1992307 CDC37L1 9 rs6476893 1.52E-09 

PI15 8 rs2731995 CDKN3 14 rs4898835 1.84E-09 

CRISPLD1 8 rs2954870 CDKN3 14 rs4898835 2.17E-09 

EFR3B 2 rs7575363 MACROD2 20 rs716316 3.24E-09 

AGTPBP1 9 rs11141010 ST8SIA2 15 rs11632278 4.17E-09 

BARX1 9 rs3996253 LOC347292 9 rs1885968 4.19E-09 

MAN2A1 5 rs185088 XRCC1 19 rs3213356 4.43E-09 

MAN2A1 5 rs185088 ZNF575 19 rs2030404 4.82E-09 

LOC645521 2 rs13383210 tcag7.893 7 rs12672973 7.37E-09 

GJB5 1 rs4653061 OLFML2B 1 rs2490431 1.18E-08 

ACVR2A 2 rs12691767 TRBV20OR9-2 9 rs855508 1.82E-08 

BARX1 9 rs4344139 LOC347292 9 rs1885968 2.12E-08 

MCAM 11 rs2249466 CCL23 17 rs854666 3.97E-08 

GRIA2 4 rs17246641 ZFAND3 6 rs6933547 6.99E-08 

HABP2 10 rs4918844 OTOR 20 rs4814551 1.05E-07 

Abbreviations: 
SNP1 and SNP2 are the two SNP candidates of a pair from the discovery population belonging to chromosomes denote by Chr1 and 
Chr2; gene1 and gene2 are the corresponding genes annotated to SNP1 and SNP2, respectively. 
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Table 9. 2| Overview of tools and different subsequent protocols in use. Study designs enlist three stages of 

analysis. 
Tool in use Statistic 

used 

Statistical model in 

use 

Selection 

criteria 

Study design No. of tests 

performed 

Bonferroni 

adjusted 

genome-wide 

level of 

significance 

(<1% FWER) 

No. of risk 

loci pairs 

discovered 

PLINK Chi-square log-linear model n.a. Discovery 

study 

1.2x1011 4.2x10-13 none 

CASSI Wellek-

Ziegler 
statistic 

Logistic regression; 

Fixed effects 
weighted model 

Single marker 

test  
P value < 10-3 

Discovery 

study 

2.8x107 5x10-10 561 

Follow up study 4.4x105 5x10-10 352 

Replication 

study 

8.2x106 5x10-10 23 

INTERSNP Chi-square 

statistic 

Full log-linear model Top 5000 

variants of 
single marker 

test 

Discovery 

study 

1.25x107 8x10-11 none 

Abbreviations: 
FWER, family wise error rate 

 

CASSI was later employed to explore curated genome-wide interaction on the same 

discovery set. It included default selection criteria (Table 9.2) that restricted the runs to 

approximately 2.8 × 107 overall tests at the system-defined single marker association test 

threshold of 𝑃 = 10−3. As approximately 2.8 × 107 tests were performed, Bonferroni 

corrected level of global threshold of significance was determined to be 5.0 ×

10−10 which restricts the family-wise error rate (FWER) at less than 1% (Table 1). At 

this level CASSI reported 561 significant variant pairs with overall concordance with the 

PLINK registered results (Table 9.3). 
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Table 9. 3| Top interactions from simple logistic linear interaction test (brute force epistasis with PLINK) and 

its concordance with CASSI detected signals 

Gene1 Chr1 SNP1 Gene2 Chr2 SNP2 PLINK 

P-value 

CASSI 

W-Z P-value 

PRELID2 5 rs6580355 LOC390299 12 rs33233 3.57E-11 1.65E-12 

OR6B3 2 rs12471071 CDC37L1 9 rs1385453 8.67E-11 4.19E-13 

C1orf129 1 rs4656817 hCG_1820717 13 rs1326701 1.62E-10 6.67E-13 

ABHD5 3 rs4682696 PPFIBP1 12 rs7958124 2.18E-10 1.25E-12 

OR6B3 2 rs12471071 CDC37L1 9 rs6476893 2.72E-10 2.02E-12 

LOC730216 7 rs292661 CSMD1 8 rs4875730 4.37E-10 1.21E-12 

SLC13A1 7 rs4731094 LOC390829 18 rs2077149 6.39E-10 1.65E-12 

MYEOV2 2 rs1992307 CDC37L1 9 rs1385453 6.94E-10 2.62E-12 

IHPK3 6 rs568901 TRPC6 11 rs1230960 7.61E-10 7.22E-12 

ABHD5 3 rs4682696 PPFIBP1 12 rs7966058 8.04E-10 1.18E-11 

LOC729108 3 rs7652856 LOC727862 17 rs8074928 8.97E-10 6.63E-13 

MYEOV2 2 rs1992307 CDC37L1 9 rs6476893 1.52E-09 9.37E-12 

PI15 8 rs2731995 CDKN3 14 rs4898835 1.84E-09 3.93E-12 

CRISPLD1 8 rs2954870 CDKN3 14 rs4898835 2.17E-09 3.68E-12 

EFR3B 2 rs7575363 MACROD2 20 rs716316 3.24E-09 7.64E-12 

AGTPBP1 9 rs11141010 ST8SIA2 15 rs11632278 4.17E-09 1.34E-11 

BARX1 9 rs3996253 LOC347292 9 rs1885968 4.19E-09 1.32E-11 

MAN2A1 5 rs185088 XRCC1 19 rs3213356 4.43E-09 9.95E-12 

MAN2A1 5 rs185088 ZNF575 19 rs2030404 4.82E-09 1.10E-11 

LOC645521 2 rs13383210 tcag7.893 7 rs12672973 7.37E-09 1.10E-11 

GJB5 1 rs4653061 OLFML2B 1 rs2490431 1.18E-08 8.08E-12 

ACVR2A 2 rs12691767 TRBV20OR9-2 9 rs855508 1.82E-08 1.18E-12 

BARX1 9 rs4344139 LOC347292 9 rs1885968 2.12E-08 2.22E-12 

MCAM 11 rs2249466 CCL23 17 rs854666 3.97E-08 3.31E-12 

GRIA2 4 rs17246641 ZFAND3 6 rs6933547 6.99E-08 3.05E-12 

HABP2 10 rs4918844 OTOR 20 rs4814551 1.05E-07 7.00E-12 

Abbreviations: 
Gene1 and Gene2 are the corresponding genes annotated to SNP1 and SNP2, respectively. SNP1 and SNP2 are the two SNP candidates of a pair 
from the discovery population belonging to chromosomes denote by Chr1 and Chr2; W-Z signifies Wellek-Ziegler test. 

 

INTERSNP operated with a top-down selection criteria to have a defined subpopulation 

of variants for the test. It selected top 5,000 variants which resulted in 5,000 × 5,000 

pair-wise tests. These 2.5 × 106 tests helped the effective level of significance to restrain 

at 8.0 × 10−11 to obtain 99% confidence. The top signals thus observed until the level of 

10−7 are shown in Table 9.4. 
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Table 9. 4| Top interactions from simple logistic linear interaction test in INTERSNP subject to single-marker selection criteria.  

SNP1 Chr1 Allele1 BP1 Single marker 

P-value 

SNP2 Chr2 Allele2 BP2 Single marker 

P-value 

Logistic model 

Interaction 

P-value 

Standard error 

rs10099120 8 T 85101510 3.17E-03 rs3738270 1 C 201195119 1.38E-02 9.0E-08 0.207567 

rs6604717 1 A 223647907 5.85E-03 rs10236139 7 T 9667148 8.62E-03 1.9E-07 0.199375 

rs10991722 9 A 93718266 5.98E-03 rs882937 11 A 93908872 8.52E-03 2.8E-07 0.139297 

rs10266589 7 C 150182338 6.47E-04 rs2171529 3 C 46047032 2.38E-02 2.9E-07 0.24014 

rs2651148 3 A 193561684 1.79E-02 rs6857709 4 A 65784245 2.44E-02 3.8E-07 0.435404 

rs10991722 9 A 93718266 5.98E-03 rs1792634 11 A 93929510 1.90E-02 4.6E-07 0.140359 

rs177040 9 A 93714388 6.28E-03 rs882937 11 A 93908872 8.52E-03 5.0E-07 0.139257 

rs3853275 9 T 30443903 2.01E-02 rs6470796 8 T 131064299 2.03E-02 5.4E-07 0.18791 

rs6976643 7 C 77841529 1.17E-02 rs10505385 8 A 121982031 1.93E-02 6.2E-07 0.235587 

rs10986270 9 T 126967977 1.52E-02 rs269554 5 T 140324431 1.66E-02 7.0E-07 0.285327 

rs177040 9 A 93714388 6.28E-03 rs1792634 11 A 93929510 1.90E-02 7.2E-07 0.139967 

rs7201659 16 A 17273019 1.30E-02 rs1795734 4 T 89933630 2.36E-02 7.5E-07 0.154884 

rs11002693 10 T 80584333 1.78E-02 rs11663706 18 A 11219792 2.42E-02 9.5E-07 0.273795 

rs9472446 6 A 12734891 1.32E-02 rs8124695 20 A 39028436 2.40E-02 9.8E-07 0.372317 

rs3853275 9 T 30443903 2.01E-02 rs7833007 8 T 131108193 2.27E-02 9.9E-07 0.186747 

Abbreviations: 
SNP1 and SNP2 are the two SNP candidates of a pair from the discovery population belonging to chromosomes denote by Chr1 and Chr2 represented by two corresponding effect alleles Allele1 and Allele2; BP1 
and BP2 are the base pair position of the SNPs. Single marker P-values are calculated by INTERSNP to prune through and select the top SNPs for interaction test P-value for ehich is demonstrated in the 
penultimate column. Standard error is calculated as a measure of heterogeneity. 
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Subsequently, 693 unique interaction pairs were identified at 5.0 × 10−5 significance 

level where none of the observations reached genome-wide threshold of 

approximately 8.0 × 10−11. The top interaction was found to be between rs10099120 and 

rs3738270 with 𝑃 = 9.0 × 10−8 and conspicuously, rs10099120 is located in the intronic 

region of RALYL and rs3738270 corresponds to a missense mutation on IGFN1.  

 

Contrastingly the top ranked overlapped interaction (rs12471071 [2q37] - rs1385453 

[9p24]) from the discovery set had a CASSI Wellek-Ziegler (W-Z) 𝑃 = 4.2 × 10−13  and 

a simple logistic regression PLINK-𝑃 = 8.7 × 10−11 (Table 9.3). Although the CASSI 

algorithm detected 561 common variant SNP pairs to be genome-wide significant, 

previous researches demonstrate that such findings were often subject to false discovery. 

Hence the investigation was extended with exhaustive search using other algorithms. 

Overall 52 common variant pairs were co-discovered with varied level of confidence for 

both INTERSNP and CASSI. Top signals from CASSI discovery analysis is summarized 

in Table 9.5. 
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Table 9. 5| Top interaction signals from logistic regression defined Wellek-Ziegler test using CASSI 

Gene1 Chr1 SNP1 BP1 Gene2 Chr2 SNP2 BP2 W-Z P-value 

FBXL17 5 rs1799011 107325759 MAGI2 7 rs967489 78529329 2.59E-36 

LOC728394 4 rs11090644 92431729 FBLN1 22 rs7677659 45982997 1.52E-35 

NELL1 11 rs11640925 21308199 A2BP1 16 rs7127622 8156523 1.73E-35 

DTNBP1 6 rs10266202 15625808 NXPH1 7 rs2743868 8957041 1.13E-34 

NULL 4 rs8181443 8541869 RAB11FIP2 10 rs6447879 119670998 3.07E-32 

IRX1 5 rs12051446 3845683 A2BP1 16 rs9687393 7409031 5.21E-32 

PLXDC2 10 rs2015847 20405138 CDRT4 17 rs2461941 15318855 7.52E-30 

ERBB4 2 rs2144066 212974828 DIO3OS 14 rs17416172 101938855 4.42E-29 

LOC646538 1 rs7159563 81177525 LOC730105 14 rs841666 82783075 2.93E-28 

TSNARE1 8 rs10904319 143233312 LOC338588 10 rs10110636 4741842 3.03E-28 

SOX11 2 rs214742 5361397 TMEM135 11 rs10181393 86985581 4.05E-28 

LOC646538 1 rs12588076 81177525 LOC730105 14 rs841666 82746477 1.42E-27 

TCERG1L 10 rs8045250 132963432 A2BP1 16 rs4751335 6879583 1.62E-27 

LOC344371 2 rs2502294 34575895 RCADH5 6 rs7577875 67792729 1.69E-27 

FHIT 3 rs909876 61177577 DHX35 20 rs7617424 38025235 1.78E-27 

COL9A1 6 rs509333 71064295 MN1 22 rs7772055 27640747 2.71E-27 

NKAIN2 6 rs10759037 124200765 PTPRD 9 rs9388287 9064330 4.52E-27 

NSUN2 5 rs11070218 6599222 LOC644779 15 rs6876835 39823058 8.56E-27 

RAP2B 3 rs10267303 152994772 AUTS2 7 rs7355869 70082913 9.61E-27 

UHRF2 9 rs7983829 6459274 MYO16 13 rs524888 109736676 1.25E-26 

ROBO2 3 rs6575656 77720924 C14orf177 14 rs9883373 98761422 1.49E-26 

PTPRD 9 rs4755435 8227101 LDLRAD3 11 rs10976860 36136580 1.94E-26 

RIMS1 6 rs4820127 72908366 LOC730062 22 rs1852702 34395171 2.74E-26 

LOC390419 13 rs3859840 91448197 ISX 22 rs2152310 35359702 3.04E-26 

LOC388474 18 rs134794 36232589 MN1 22 rs1540018 27668370 3.05E-26 

HTR1B 6 rs12193281 78298165 SNAP91 6 rs2252216 84325184 5.75E-26 

Abbreviations: 
Gene1 and Gene2 are the corresponding genes annotated to SNP1 and SNP2, respectively. SNP1 and SNP2 are the two SNP candidates of a pair from the discovery 
population belonging to chromosomes denote by Chr1 and Chr2 and their chromosomal locations described in base pairs by BP1 and BP2; W-Z signifies Wellek-Ziegler 
test. 
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9.1.2 Confirmation set: Case-only design 

As a confirmational study to the detection sensitivity provided by CASSI, a follow-up 

case-only analysis on the 82 cases rendered approximately 4.4 × 105 overall tests after 

initial single marker test shrinkage similar to that described above. The most significant 

interaction (rs4433825 [16p13] - rs2295179 [20p12]) showed a case-only 𝑃 = 3.3 ×

10−24 against W-Z case-control 𝑃 = 1.5 × 10−12 with a statistically significant odds 

ratio of 2.05 with interactions between two unique sets of variants of A2BP1 and PLCB1. 

At 5 × 10−10 level, 352 variant pairs replicated in the discovery set with varying levels 

of significance (Table 9.6). The magnitude of test P-values observed in the follow-up 

analysis is consistent with that of a case-only design that usually demonstrates higher 

detection power due to the inherent mathematical assumptions. One needs to be careful in 

interpretation of the results as an evidence of functional relation between variants because 

of the constraint due to restriction of analysis within SNP pairs found in overlap that were 

tested with the discovery set. As the pre-selection criteria is in place according to the 

single marker test which are performed with different designs in the two different set-ups, 

the observed overlaps are ensured to have higher individual fixed effects in case-only 

design if there is bias due to linkage, a caveat in this design. Whilst the case-only study 

does not accurately identify sentinel interacting pairs; nonetheless it confirmed viability 

of the case-control replication study in larger cohort as the highest signals were observed 

from overlapping chromosomal regions in interaction. 
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Table 9. 6| Overlapped top interactions from simple logistic linear interaction test in case-only and cases-control analysis in separate cohorts observed in CASSI 

    Case-only analysis  Case-control analysis 

Gene1 Gene2 Chr1 Chr2 SNP1 BP1 SNP2 BP2 Case-only 

P-value 

 SNP1 BP1 SNP2 BP2 Case-control 

P-value 
A2BP1 PLCB1 16 20 rs4433825 7378192 rs2295179 8678446 3.35E-24  rs11860241 7294639 rs6055995 8662222 1.50E-12 

LOC644624 RUNX1 4 21 rs12509315 124592367 rs2242901 36456189 7.25E-20  rs1433218 124707000 rs2834757 36467070 2.90E-10 

CNTNAP2 DDHD1 7 14 rs1496547 146923861 rs1959843 53859798 3.43E-19  rs3194 148114265 rs1954308 53940700 7.07E-12 

CMYA5 ASTN2 5 9 rs259103 79094685 rs4240422 120163466 6.17E-17  rs13159668 79047407 rs10481683 119803933 1.43E-10 

BUB3 DSEL 10 18 rs6599673 125008718 rs12966710 65286267 8.16E-17  rs6599689 125106194 rs9319727 64967509 1.00E-11 

RAPGEF2 CSMD1 4 8 rs3846243 161292814 rs4875703 3224561 1.23E-16  rs4591547 160357877 rs11136609 3214873 3.55E-12 

ERC2 SOX2OT 3 3 rs1795648 55571760 rs9845058 181342415 5.29E-15  rs9878600 56017598 rs4855056 181638250 4.65E-11 

GBE1 LOC729993 3 16 rs9877327 81643583 rs4781415 13217905 1.46E-14  rs7618878 83089596 rs8056716 13643974 1.60E-10 

LOC391470 MAGI2 2 7 rs7566549 196442418 rs2714676 79293845 3.17E-14  rs1849068 195967027 rs1829989 77830751 1.83E-10 

CNTNAP5 CAMK1D 2 10 rs12616423 124279775 rs3802570 12805430 9.70E-14  rs1543901 125189434 rs7897059 12591712 4.13E-10 

NRXN1 A2BP1 2 16 rs2194388 50871821 rs7203146 7597995 1.11E-13  rs9679539 51065644 rs1424125 6062553 6.29E-12 

IQGAP2 CNTN5 5 11 rs4704346 75908982 rs7947488 99198902 1.33E-13  rs4235701 75964280 rs7947002 98626907 3.94E-10 

CTNND2 LOC283584 5 14 rs26001 11303908 rs8016687 86636646 1.42E-13  rs31897 11428523 rs12436912 86821763 3.22E-11 

KLHL29 CNTN5 2 11 rs7598792 23444263 rs2514231 98699317 9.23E-12  rs1653763 23724991 rs1815913 97852498 3.23E-10 

DNM3 ADRA2A 1 10 rs9425291 172312769 rs1537769 112871088 1.42E-11  rs633995 172186729 rs7098615 113139169 5.45E-11 

Abbreviations: 
Results are described in two different panels for case-only and case-control designed analysis respectively. SNP1 and SNP2 are the two SNP candidates of a pair from the discovery population belonging to 
chromosomes denote by Chr1 and Chr2; BP1 and BP2 are the base pair position of the SNPs.  
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9.1.3 Replication set: Case-control design 

Signals from discovery sets were compared against a replication set to obtain culminating 

evidence. Replication set was evaluated with W-Z interactions ordained by CASSI in the 

consisting 8.2 × 106 test pairs with an inflation factor of 1.02. This set was able to 

replicate 23 out of all 561 genome-wide significant variant pairs of the discovery set 

which are annotated to same chromosomal regions with varying degrees of significance 

(Table 9.7, Figure 9.1). The top interaction was found among variants annotated to TNC 

and CRYL1 corresponding to 9q33.1 and 13q12.11 (rs10118040 – rs7337130, W-Z 

𝑃 = 6.9 × 10−11 and rs1330368 – rs7337231, W-Z 𝑃 = 2.4 × 10−8 respectively). 

Among the 23 replications, 14 were unique regions and there were 5 regions with 

multiple unique interactions. Interestingly, SETBP1 and PREX1 interaction at 18q12.3 

and 20q13.13 were represented by 6 SNP-SNP pairwise interactions with LD coefficient 

of 𝑟2 < 0.2 between SNPs belonging to each of the corresponding regions. The 20q13.13 

locus is speculated as a risk predisposing locus for MM and as an expression and 

methylation QTL at PREX1 without having any direct impact on an active promoter site 

(Mitchell et al., 2016). SETBP1 on the other hand has been reported to harbor somatic 

mutations and play a role in oncogenesis. It is often found harboring aberrations in 

various myeloid malignancies including secondary acute myeloid leukemia (sAML) and 

chronic myelomonocytic leukemia (CMML) although germ-line mutations are reported 

(Makishima et al., 2013).  The first GWAS on MGUS reported 10 sentinel variants with 

moderately strong signals, among those two SNPs were yet again identified with 

moderate interactions: rs10251201 (7p21.3, GLCCI1) with rs1104869 (2p23.2-p23.1, 
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ALK), W-Z 𝑃 = 8.7 × 10−7 and rs16966921 (18q12.2, GALNT1) with rs8092870 

(18q12.1, CDH2), W-Z 𝑃 = 1.7 × 10−7. 
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Table 9. 7| Overlapped top interactions from simple logistic linear interaction test in discovery cases-control analysis found replicated in replication cohort observed in CASSI 

    Discovery set Replication set 

Gene1 Chr1 Gene2 Chr2 SNP1 

(Risk 

allele) 

Position 

(hg19,bp) 

MAF SNP2 

(Risk 

allele) 

Position 

(hg19,bp) 

MAF WZ  

P value 

OR (95% 

CI) 

SNP1 

(Risk 

allele) 

Position 

(hg19,bp) 

MAF SNP2 

(Risk 

allele) 

Position 

(hg19,bp) 

MAF WZ  

P value 

OR (95% 

CI) 

TNC 9q33.1 CRYL1 13q12.11 rs10118040 

(T) 

117879414 0.40 rs7337130 

(C) 

21021343 0.31 6.91E-11 2.64 (1.91-

3.65) 

rs1330368 

(A) 

117821026 0.48 rs7337231 

(G) 

20896618 0.49 2.48E-08 1.05 (0.96 – 

1.14) 

SETBP1 18q12.3 PREX1 20q13.13 rs12959213 

(C) 

42769020 0.41 rs6066791 

(T) 

47251687 0.26 7.07E-11 2.39 (1.75-

3.25) 

rs11082429 

(G) 

42743790 0.44 rs170536 

(A) 

46878722 0.32 4.25E-08 1.01 (0.93 – 

1.09) 

SETBP1 18q12.3 PREX1 20q13.13 rs12959213 

(C) 

42769020 0.41 rs6066791 

(T) 

47251687 0.26 7.07E-11 2.39 (1.75-

3.25) 

rs1376230 

(T) 

42703052 0.35 rs6063251 

(C) 

47015157 0.43 6.37E-07 1.03 (0.94 – 

1.11) 

ERBB4 2q34 RORA 15q22.2 rs1546717 

(G) 

212902339 0.10 rs1159814 

(A) 

61431996 0.41 9.07E-11 5.03 (2.89-

8.77) 

rs6745249 

(G) 

213130571 0.48 rs974065 

(A) 

60952440 0.34 1.06E-10 1.13 (1.04 – 

1.22) 

PARK2 6q26 C14orf177 14q32.2 rs6455744 

(T) 

162060468 0.38 rs7359146 

(C) 

99084602 0.14 1.12E-10 2.92 (1.96-

4.33) 

rs6927285 

(G) 

162010329 0.43 rs8022922 

(A) 

98987292 0.44 1.23E-14 1.06 (0.98 – 

1.14) 

ETNK1 12p12.1 TMC2 20p13 rs2467112 

(C) 

23071644 0.19 rs1028441 

(T) 

2600186 0.24 1.20E-10 3.24 (2.12-

4.95) 

rs7313039 

(C) 

23091130 0.47 rs6050256 

(T) 

2554907 0.48 2.04E-07 1.05 (0.97 – 

1.14) 

HFM1 1p22.2 LOC647259 13q21.1 rs674135 

(G) 

91675675 0.26 rs4146191 

(A) 

62872965 0.47 1.44E-10 2.61 (1.89-

3.60) 

rs7416823 

(T) 

157386394 0.31 rs428328 

(C) 

63110606 0.41 2.24E-09 1.05 (0.96 – 

1.13) 

ERBB4 2q34 PTPRD 9p23 rs1437919 

(A) 

212110840 0.23 rs10978043 

(G) 

9860402 0.19 2.64E-10 3.38 (2.19-

5.22) 

rs6747637 

(G) 

212406789 0.45 rs4427223 

(A) 

10663815 0.48 7.35E-14 1.01 (0.93 – 

1.09) 

AUTS2 7p11.22 HS6ST3 13q32.1 rs1011780 

(A) 

70124648 0.28 rs9556582 

(G) 

97040531 0.46 2.68E-10 2.40 (1.75-

3.29) 

rs10267303 

(T) 

70082913 0.47 rs12876541 

(C) 

97304003 0.44 3.33E-08 1.06 (0.97 – 

1.14) 

SETBP1 18q12.3 PREX1 20q13.13 rs12959213 

(C) 

42769020 0.41 rs4810836 

(T) 

47228931 0.25 3.04E-10 2.40 (1.75-

3.25) 

rs11082429 

(G) 

42743790 0.44 rs170536 

(A) 

46878722 0.32 4.25E-08 0.98 (0.90 – 

1.06) 

SETBP1 18q12.3 PREX1 20q13.13 rs12959213 

(C) 

42769020 0.41 rs4810836 

(T) 

47228931 0.25 3.04E-10 2.40 (1.75-

3.25) 

rs1376230 

(T) 

42703052 0.35 rs6063251 

(C) 

47015157 0.43 6.37E-07 0.97 (0.89 – 

1.05) 

CNTN4 3p26.3 FAM19A1 3p14.1 rs2619566 

(C) 

2624938 0.12 rs1032376 

(A) 

68317975 0.19 3.28E-10 4.66 (2.71-

8.02) 

rs1499133 

(C) 

2952214 0.41 rs7610023 

(T) 

68123731 0.40 4.14E-09 1.05 (0.97 – 

1.14) 

CNTN4 3p26.3 FAM19A1 3p14.1 rs2619566 

(G) 

2624938 0.12 rs1032376 

(A) 

68317975 0.19 3.28E-10 4.66 (2.71-

8.02) 

rs1178491 

(G) 

2342825 0.36 rs6549098 

(A) 

68323280 0.40 2.83E-08 0.98 (0.90 – 

1.06) 

TNC 9q33.1 CRYL1 9q33.1 rs2071520 

(T) 

117880792 0.32 rs7337130 

(C) 

21021343 0.31 3.50E-10 2.80 (1.99-

3.15) 

rs1330368 

(A) 

117821026 0.48 rs7337231 

(G) 

20896618 0.49 2.48E-08 0.96 (0.89 – 

1.04) 

CSMD1 8p23.2 LOC392301 9q13 rs1700112 

(G) 

4097418 0.41 rs410684 

(A) 

31673588 0.42 3.84E-10 2.16 (1.62-

2.87) 

rs2740939 

(C) 

3872513 0.48 rs7853053 

(T) 

32211402 0.49 2.04E-16 1.04 (0.95 – 

1.12) 
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Table 9.7 continued| Overlapped top interactions from simple logistic linear interaction test in discovery cases-control analysis found replicated in replication cohort observed in CASSI 

    Discovery set Replication set 

Gene1 Chr1 Gene2 Chr2 SNP1 

(Risk 

allele) 

Position 

(hg19,bp) 

MAF SNP2 

(Risk 

allele) 

Position 

(hg19,bp) 

MAF WZ  

P value 

OR (95% 

CI) 

SNP1 

(Risk 

allele) 

Position 

(hg19,bp) 

MAF SNP2 

(Risk 

allele) 

Position 

(hg19,bp) 

MAF WZ  

P value 

OR (95% 

CI) 

CSMD1 8p23.2 LOC392301 9q13 rs1700112 

(G) 

4097418 0.41 rs410684 

(A) 

31673588 0.42 3.84E-10 2.16 (1.62-

2.87) 

rs2740929 

(C) 

3879918 0.49 rs7853053 

(T) 

32211402 0.49 3.81E-10 1.04 (0.95 – 

1.12) 

ERBB4 2q34 PTPRD 9p23 rs1437919 

(A) 

212110840 0.23 rs7851513 

(G) 

9842176 0.19 3.92E-10 3.10 (2.05-

4.69) 

rs6747637 

(G) 

212406789 0.45 rs4427223 

(A) 

10663815 0.48 7.35E-14 0.92 (0.85 – 

0.99) 

KHDRBS3 8q24.23 KSR2 12q24.23 rs4909494 

(C) 

136646548 0.46 rs10774941 

(T) 

118037655 0.27 4.22E-10 2.51 (1.83-

3.45) 

rs16905387 

(G) 

136539132 0.42 rs7972142 

(A) 

118211046 0.44 3.97E-13 1.05 (0.96 – 

1.13) 

SETBP1 18q12.3 PREX1 20q13.13 rs12959213 

(C) 

42769020 0.41 rs6095212 

(T) 

47233383 0.25 4.25E-10 2.39 (1.75-

3.25) 

rs11082429 

(G) 

42743790 0.44 rs170536 

(A) 

46878722 0.32 4.25E-08 1.04 (0.96 – 

1.12) 

SETBP1 18q12.3 PREX1 20q13.13 rs12959213 

(C) 

42769020 0.41 rs6095212 

(T) 

47233383 0.25 4.25E-10 2.39 (1.75-

3.25) 

rs1376230 

(T) 

42703052 0.35 rs6063251 

(C) 

47015157 0.43 6.37E-07 1.03 (0.95 – 

1.11) 

MAN1A1 6q22.31 FRMD4A 10p13 rs808034 

(A) 

119467743 0.39 rs789761 

(C) 

14137678 0.48 4.72E-10 0.46 (0.34-

0.61) 

rs1295392 

(G) 

119676177 0.45 rs751498 

(A) 

13929130 0.47 1.25E-09 1.05 (0.96 – 

1.14) 

BNC2 9p22.3 CDH13 16q23.3 rs7867771 

(T) 

16314909 0.28 rs11149564 

(C) 

83441027 0.44 4.82E-10 2.20 (1.62-

3.00) 

rs1415471 

(A) 

16656653 0.44 rs7194615 

(G) 

82769498 0.44 1.07E-08 1.02 (0.94 – 

1.09) 

DAOA 13q33.2 TOM1L1 17q22 rs5012127 

(G) 

105119100 0.17 rs4793773 

(A) 

52646414 0.27 4.89E-10 2.81 (1.88-

4.02) 

rs3015345 

(A) 

105860621 0.45 rs8070668 

(G) 

52991636 0.38 6.06E-10 1.05 (0.97 – 

1.14) 

Risk allele is the allele corresponding to which the test is performed and the odds ratio is calculated. Frequency of risk allele pair is tested against controls. SNP1 and SNP2 are the two SNP candidates of a pair from each population; gene1 and 

gene2 are the corresponding genes annotated to SNP1 and SNP2, respectively. WZ p-value is Wellek Ziegler test p-value. OR, interaction odds ratio; MAF, minor allele frequency; bp, base pair; hg19, human genome build 19; CI, confidence 

interval. 

Bolding indicate genome wide significant observation at 99% level of significance. Underline indicate significant odds ratio. 
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Figure 9. 1| Interaction Analysis identifies unique risk loci pairs. 
a, Circos plot of genome-wide association and significant interaction results for the identified paired risk loci. The second outer most panel displays results from genome-wide association study on a Manhattan plot 
for autosomal variants on a log transformed scale (-log). Negative log transformed interaction P-values corresponding to each of the interaction pair is calculated from log linear transformed regression on the 

discovery set and is represented on an adjusted inflated scale of 9.3 to 10.2 in the second inner most panel. More than one unique variant pair combinations are present in the same interacting regions which are marked 

with their corresponding odds in this panel. Genome-wide significant paired loci are line-joined in the inner most panel based on their chromosomal positions (NCBI build 19 human genome). Annotations of single 
nucleotide polymorphisms to gene ids are displayed at the outer most panels. 

b, Forest plot with embedded confidence intervals for each of the identified interaction pairs. Each pair indicates two interacting chromosomal locations with base pair information for the indexing loci. Paired variants 

annotated to the same indexing chromosomes are line joined 
Abbreviations: chr, chromosome; BP, base pair; OR, odds ratio; CI, confidence interval. 

a b 
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9.2 Genetic interaction-based network 

A partnership dependence structure of functional network was constructed with the risk 

variants from the final overlapping set subject to identifiable annotation from the interaction 

analyses. 26 such reconstituted genes were used as nodes which together with first order 

interacting genes created scaffolding for further enrichment analysis (Figure 9.2). 36 

potentially differentially regulated pathways were identified (Table 9.8). Among them were 

18 enriched pathways at 0.01 level of significance, with as many as 5 gene nodes 

downstream to KEGG ErbB signaling pathway (𝑃 = 7.1 × 10−5) and 3 gene nodes 

downstream to KEGG B cell receptor signaling pathway (𝑃 = 5.3 × 10−3) were found to be 

the two most significant pathways. 
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Table 9. 8| Gene set enrichment analysis in genetic network with STRING.  

Pathway Gene count P-value  Pathway Gene count P-value 

ErbB signaling pathway 5 7.09E-05  Neurotrophin signaling pathway 3 1.32E-02 

B cell receptor signaling pathway 3 5.32E-03  Thyroid cancer 2 1.32E-02 

Fc epsilon RI signaling pathway 3 5.32E-03  FoxO signaling pathway 3 1.38E-02 

Prolactin signaling pathway 3 5.32E-03  Natural killer cell mediated cytotoxicity 3 1.38E-02 

MicroRNAs in cancer 4 5.32E-03  Circadian rhythm 2 1.38E-02 

Renal cell carcinoma 3 5.32E-03  Insulin signaling pathway 3 1.62E-02 

Endometrial cancer 3 5.32E-03  Parkinson s disease 3 1.73E-02 

Glioma 3 5.32E-03  Prion diseases 2 1.73E-02 

Chronic myeloid leukemia 3 5.32E-03  Hepatitis B 3 1.73E-02 

Acute myeloid leukemia 3 5.32E-03  Bladder cancer 2 1.76E-02 

Non-small cell lung cancer 3 5.32E-03  PI3K-Akt signaling pathway 4 2.22E-02 

Gap junction 3 8.29E-03  Chemokine signaling pathway 3 3.04E-02 

GnRH signaling pathway 3 8.29E-03  Long-term depression 2 3.87E-02 

Prostate cancer 3 8.29E-03  VEGF signaling pathway 2 3.88E-02 

Proteoglycans in cancer 4 8.66E-03  Focal adhesion 3 3.94E-02 

Estrogen signaling pathway 3 8.82E-03  Long-term potentiation 2 4.15E-02 

Dorso-ventral axis formation 2 9.67E-03  Ras signaling pathway 3 4.65E-02 

T cell receptor signaling pathway 3 9.67E-03  Melanoma 2 4.68E-02 

Based on the indexing nodes and the additional predicted first order interacting nodes, STRING performs enrichment analysis on several molecular, biological, 
cellular process related pathway analysis with Gene Onltology (GO) and KEGG database.  

All tests are performed with guilt by association assumption and P values are corrected for multiple testing. A protein-protein enrichment index is reported with 

analysis depicting level of confidence in the detected enriched processes which is reported to be 0.0039 (significant at 5% level) 
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Figure 9. 2| Genetic interaction network constructed with STRING. 
A network of 26 identified genes annotated to risk loci with added predicted genes in interaction. All nodes represent first order interaction. 

Colored edges convey status of predicted network edge correspondingly cyan, curated database; magenta, experimentally determined; forest 

green, gene neighborhood; red, gene fusion; navy blue, gene co-occurrence; lawn green, text mining; black, co-expression; lavender indigo, 
protein homology. Node color signifies protein functionality. Additional nodes are considered based on prediction score ≥ 0.9 (for more details, 

refer to STRING data base). 
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9.3 Pathway analysis 

Gene-set enrichment and subsequent pathway analysis was interrogated with three different 

in silico approaches. Employing MAGENTA on the discovery set GWAS summary results 

111 functionally enriched pathways significant at 5% Bonferroni corrected level of 

significance (22 at 99%) were detected (Table 9.9). For confirmation of the results the same 

summary statistics were assessed with PASCAL and 65 enriched pathways were identified 

at 5% adjusted level of significance (19 at 1%, Table 9.10). Although 28 overlapping 

pathways between these two algorithms used were discovered at a combined simultaneous 

testing corrected 𝑃 < 2.5 × 10−3 (Table 9.11), to extend the search and impart functional 

information, further enrichment analysis was carried out utilizing curated microarray data. 

Expression data-based gene set enrichment and pathway enrichment was carried out with 

DEPICT to have identified 99 pathways at a genome-wide suggestive threshold of 1.0 ×

10−5) and 4 at genome-wide threshold of 𝑃 = 5.0 × 10−8 (Table 9.12). Whilst 

demonstrating varied significance throughout out different platforms, a combined pooled 

analysis with the summary statistics from all three algorithms, 9 pathways with multiple-test 

adjusted 5% levels of significance were identified (Table 9.13). Among the overlapping 

pathways, KEGG allograft rejection pathway (combined 𝑃 = 5.6 × 10−4) and KEGG 

autoimmune thyroid disease pathway (combined 𝑃 = 9.3 × 10−4), both downstream to B 

cell receptor signaling pathway, the most significant pathway detected interrogating 

interaction detected loci. EGFR downregulation, a signaling cascade upstream to ERBB 

signaling pathway was another observation with a moderate signal (combined 𝑃 = 2.4 ×

10−2). Thus, the B-cell receptor signaling pathway and EGFR regulatory network are found 

in both the interaction and GWAS-driven analyses implicating a role in MGUS.  
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Table 9. 9| MAGENTA gene set enrichment analysis results at 1% level of significance. 

Data base Pathway P-Value 

Ingenuity T Cell Receptor Signaling 1.10E-03 

REACTOME CD28_DEPENDENT_VAV1_PATHWAY 1.30E-03 

PANTHER_BIOLOGICAL_PROCESS Blood_clotting 1.80E-03 

PANTHER_BIOLOGICAL_PROCESS Purine_metabolism 2.00E-03 

GOTERM nucleotide binding 2.50E-03 

GOTERM cilium assembly 3.20E-03 

REACTOME EGFR_DOWNREGULATION 3.20E-03 

REACTOME INTEGRIN_ALPHAIIBBETA3_SIGNALING 3.50E-03 

GOTERM odontogenesis 4.10E-03 

GOTERM small GTPase mediated signal transduction 4.60E-03 

GOTERM regulation of cell shape 4.70E-03 

KEGG KEGG_ALLOGRAFT_REJECTION 5.10E-03 

GOTERM lipopolysaccharide binding 5.40E-03 

REACTOME PLATELET_AGGREGATION_PLUG_FORMATION 5.50E-03 

GOTERM intracellular protein transport 6.30E-03 

PANTHER_MOLECULAR_FUNCTION Interleukin 7.20E-03 

GOTERM positive regulation of interleukin-8 production 7.50E-03 

BIOCARTA ASBCELL_PATHWAY 8.30E-03 

PANTHER_MOLECULAR_FUNCTION Non-receptor_tyrosine_protein_kinase 8.40E-03 

BIOCARTA DC_PATHWAY 8.40E-03 

PANTHER_BIOLOGICAL_PROCESS Cell_cycle 9.20E-03 

PANTHER_BIOLOGICAL_PROCESS Cytoskeletal_regulation_by_Rho_GTPase 1.00E-02 
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Table 9. 10|  PASCAL gene set enrichment analysis results at 1% level of significance 

Data base Pathway P-value 

REACTOME METABOLISM_OF_POLYAMINES 3.77E-05 

REACTOME THROMBIN_SIGNALLING_THROUGH_PROTEINASE_ACTIVATED_RECEPTORS_PARS 6.17E-04 

REACTOME GPCR_DOWNSTREAM_SIGNALING 8.98E-04 

REACTOME THROMBOXANE_SIGNALLING_THROUGH_TP_RECEPTOR 9.35E-04 

REACTOME G_ALPHA_Z_SIGNALLING_EVENTS 1.24E-03 

REACTOME KERATAN_SULFATE_BIOSYNTHESIS 1.31E-03 

REACTOME KERATAN_SULFATE_KERATIN_METABOLISM 2.38E-03 

REACTOME SIGNAL_AMPLIFICATION 2.62E-03 

REACTOME ADP_SIGNALLING_THROUGH_P2RY1 3.44E-03 

REACTOME G_ALPHA_I_SIGNALLING_EVENTS 4.07E-03 

REACTOME AMINE_LIGAND_BINDING_RECEPTORS 4.54E-03 

BIOCARTA TCRA_PATHWAY 4.76E-03 

REACTOME AQUAPORIN_MEDIATED_TRANSPORT 5.40E-03 

REACTOME PROSTACYCLIN_SIGNALLING_THROUGH_PROSTACYCLIN_RECEPTOR 5.87E-03 

KEGG KEGG_PARKINSONS_DISEASE 8.18E-03 

REACTOME G_ALPHA_Q_SIGNALLING_EVENTS 8.43E-03 

KEGG KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SULFATE 8.45E-03 

REACTOME GLUCAGON_TYPE_LIGAND_RECEPTORS 9.74E-03 

REACTOME GPCR_LIGAND_BINDING 9.85E-03 
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Table 9. 11| All detected pathways mutually discovered in both MAGENTA and PASCAL at a 5% level of 

combined significance. 

  PASCAL MAGENTA  

Data base Pathway P value P value Combined  P value 

REACTOME CD28_DEPENDENT_VAV1_PATHWAY 4.55E-02 1.30E-03 5.92E-05 

REACTOME PLATELET_AGGREGATION_PLUG_FORMATION 4.40E-02 5.50E-03 2.42E-04 

KEGG KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_

KERATAN_SULFATE 

8.45E-03 3.65E-02 3.08E-04 

KEGG KEGG_ALLOGRAFT_REJECTION 8.38E-02 5.10E-03 4.27E-04 

REACTOME G_PROTEIN_ACTIVATION 1.40E-02 3.74E-02 5.22E-04 

KEGG KEGG_TYPE_1_DIABETES_MELLITUS 4.48E-02 1.94E-02 8.69E-04 

BIOCARTA ASBCELL_PATHWAY 1.10E-01 8.30E-03 9.15E-04 

KEGG KEGG_AUTOIMMUNE_THYROID_DISEASE 4.32E-02 2.24E-02 9.68E-04 

REACTOME P130CAS_LINKAGE_TO_MAPK_SIGNALING_FOR_I
NTEGRINS 

3.60E-02 3.23E-02 1.16E-03 

REACTOME INTEGRIN_CELL_SURFACE_INTERACTIONS 1.61E-01 1.11E-02 1.78E-03 

REACTOME EGFR_DOWNREGULATION 7.77E-01 3.20E-03 2.49E-03 

BIOCARTA DC_PATHWAY 3.50E-01 8.40E-03 2.94E-03 

BIOCARTA INTEGRIN_PATHWAY 8.65E-02 3.62E-02 3.13E-03 

KEGG KEGG_DORSO_VENTRAL_AXIS_FORMATION 1.52E-01 2.20E-02 3.34E-03 

REACTOME MRNA_3_END_PROCESSING 2.18E-01 1.90E-02 4.14E-03 

REACTOME TOLL_RECEPTOR_CASCADES 3.90E-01 1.18E-02 4.60E-03 

BIOCARTA TH1TH2_PATHWAY 1.20E-01 4.40E-02 5.26E-03 

BIOCARTA ACH_PATHWAY 1.56E-01 4.03E-02 6.28E-03 

BIOCARTA CTLA4_PATHWAY 2.03E-01 4.25E-02 8.64E-03 

REACTOME SEMA3A_PAK_DEPENDENT_AXON_REPULSION 2.96E-01 2.93E-02 8.66E-03 

REACTOME MAPK_TARGETS_NUCLEAR_EVENTS_MEDIATED
_BY_MAP_KINASES 

1.98E-01 4.52E-02 8.97E-03 

REACTOME FGFR_LIGAND_BINDING_AND_ACTIVATION 2.95E-01 3.10E-02 9.14E-03 

REACTOME SIGNALING_BY_ROBO_RECEPTOR 4.78E-01 1.92E-02 9.19E-03 

REACTOME CD28_CO_STIMULATION 1.91E-01 4.83E-02 9.25E-03 

KEGG KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IG
A_PRODUCTION 

5.99E-01 2.14E-02 1.28E-02 

BIOCARTA CYTOKINE_PATHWAY 3.29E-01 4.55E-02 1.50E-02 

REACTOME CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORI
GIN_COMPLEX 

6.42E-01 3.38E-02 2.17E-02 

BIOCARTA MAPK_PATHWAY 4.66E-01 4.67E-02 2.17E-02 
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Table 9. 12| DEPICT gene set prioritization analysis utilized enriched pathways at Bonferroni corrected 

genome wide 5% significance level. 

Data base Functional pathway Chi-square P-value 

ENSEMBLE BCL2A1 subnetwork 7.09E-11 

GO T cell activation 1.87E-09 

MP decreased T cell apoptosis 2.61E-09 

MP abnormal pro-erythroblast morphology 9.89E-09 

GO, Gene Ontology; MP, Mammalian Protein  

Table 9. 13| Combined results of gene set enrichment analysis from MAGENTA, PASCAL and DEPICT. 

    PASCAL DEPICT MAGENTA  

Data base Pathway P-value P-value P-value *Combined P-value 

KEGG Allograft rejection 0.083 0.001 0.005 5.62E-04 

KEGG Autoimmune thyroid disease 0.043 0.001 0.022 9.30E-04 

KEGG Glycosaminoglycan biosynthesis keratan sulfate 0.008 0.171 0.036 9.89E-03 

REACTOME Platelet aggregation plug formation 0.044 0.952 0.005 2.28E-02 

REACTOME EGFR downregulation 0.776 0.951 0.003 2.45E-02 

REACTOME Integrin cell surface interactions 0.16 0.396 0.011 4.51E-02 

KEGG Dorso ventral axis formation 0.151 0.233 0.022 4.78E-02 

REACTOME P130CAS linkage to MAPK signaling for integrins 0.035 0.988 0.032 4.85E-02 

Pathways are pooled from several repositories which are enlisted with data base. P-values from PASCAL, DEPICT and MAGENTA are corrected 

for multiple testing. 

  *Pooled p values are combined using empirical Brown’s method assuming dependency across test hypotheses. 
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Chapter 10: Heritable risk in MM 

10.1 Genetic interaction 

Two separate cohorts of MM patients consisting 2,282 cases (and 5,197 controls obtained 

from WTCCC) from the UK and 1,717 cases from Heidelberg, Germany (and 2,069 HNR 

controls) were subjected to interaction analysis each consisting of genotype data on 

approximately 430,000 and 520,000 common SNPs respectively. The W-Z statistics was 

employed as described previously. Subsequent meta-analysis of the  linear interaction 

summary statistics subject to controlling for variance in each set rendered 16 unique SNP 

pairs belonging to 16 exclusive chromosomal regions that attained genome-wide significant 

threshold of  5.0 × 10−10 (Table 10.1, Figure 10.1).   

The strongest meta-analyzed signal was observed for an interaction between rs7048811 at 

9q21.31 (associated gene GNAQ) and rs7204305 at 16q24.1 (IRF8) (OR-Meta = 1.22; 95% 

CI = 1.12 – 1.32;  𝑃 = 1.3 × 10−10). This interaction was consistent in both cohorts with a 

conservative level of significance (UK cohort: OR= 1.20, 95% CI = 1.08 – 1.33,  𝑃 = 7.0 ×

10−6; German cohort: OR = 1.24, 95% CI = 1.09 – 1.41,  𝑃 = 7.6 × 10−6). The highest 

statistically significant effect size was  observed for the second most strong interaction 

signal between rs2167453 at 11p15.2 (PDE3B) and rs2734459 at 19q13.31 (ZNF229) (OR-

Meta = 1.52, 95% CI = 1.33 – 1.73,  𝑃 = 1.3 × 10−10). 
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Table 10. 1| Genome-wide interaction analysis of the UK and the German MM samples and their meta-analysis. 
 UK samples German samples Meta-analysis 

Gene1 SNP1 

(Risk allele) 

Chr1 Position 

(hg19,bp 

Gene2 SNP2 

(Risk allele) 

Chr2 Position 

(hg19,bp 

OR (95% CI) P UK OR (95% CI) P German OR (95% CI) P Meta-analysis 

GNAQ rs7048811 

(G) 

9q21.2 80469747 IRF8 rs7204305 

(A) 

16q24.1 86068776 1.20 (1.08 - 1.33) 7.0E-06 1.24 (1.09 - 1.41) 7.6E-06 1.22 (1.12 - 1.32) 1.3E-10 

PDE3B rs2167453 

(G) 

11p15.2 14865666 ZNF229 rs2734459 

(C) 

19q13.31 44928885 1.48 (1.21 - 1.80) 3.0E-05 1.55 (1.30 - 1.85) 1.7E-07 1.52 (1.33 - 1.73) 1.3E-10 

LRRC15 rs923934 
(G) 

3q29 194081900 RMND1 rs13201167 
(C) 

6q25.1 151773504 1.32 (1.11 - 1.56) 9.8E-06 1.25 (1.12 - 1.39) 6.6E-06 1.27 (1.16 - 1.39) 1.5E-10 

CACNA1C rs2238087 

(T) 

12p13.33 2613716 KCNA5 rs17777157 

(T) 

12p13.32 5221668 1.35 (1.17 - 1.57) 8.7E-05 1.39 (1.16 - 1.67) 6.9E-08 1.37 (1.22 - 1.53) 1.6E-10 

PGCP rs6990629 

(A) 

8q22.1 98180213 NELL1 rs10766743 

(T) 

11p15.1 20925039 0.64 (0.57 - 0.72) 9.4E-08 0.93 (0.84 - 1.01) 8.0E-05 0.81 (0.75 - 0.87) 2.0E-10 

CNR1 rs806366 
(C) 

6q15 88847589 FABP5L1 rs17089906 
(C) 

13q22.1 73686332 1.68 (1.52 - 1.85) 1.1E-07 0.83 (0.72 - 0.96) 8.2E-05 1.34 (1.24 - 1.46) 2.3E-10 

ACTL8 rs4141983 

(C) 

1p36.13 18122009 CSMD2 rs3131529 

(T) 

1p35.1 34514486 1.17 (1.07 - 1.27) 1.6E-05 1.31 (1.18 - 1.45) 5.7E-07 1.23 (1.15 - 1.31) 2.3E-10 

TUT7 rs2860107 

(T) 

9q21.33 89212523 RUNX1 rs2834882 

(T) 

21q22.12 36666340 1.03 (0.92 - 1.23) 7.3E-07 0.90 (0.82 - 1.09) 1.4E-05 0.96 (0.87 - 1.06) 2.7E-10 

DISC1 rs1888601 
(C) 

1q42.2 232266922 TTC5 rs10130942 
(C) 

14q11.2 20756405 0.82 (0.80 - 1.05) 2.0E-04 1.26 (1.13 - 1.40) 8.0E-08 1.07 (0.98 - 1.16) 4.2E-10 

PRKD1 rs12436395 

(T) 

14q12 30706026 TMEPAI rs427278 

(T) 

20q13.31 56235119 1.42 (1.28 - 1.50) 2.0E-07 1.22 (1.11 - 1.35) 9.2E-05 1.34 (1.26 - 1.42) 4.6E-10 

HDAC9 rs7788833 

(C) 

7p21.1 19034191 NCAM2 rs2408239 

(T) 

21q21.1 23332626 0.64 (0.57 - 0.72) 1.9E-07 0.96 (0.89 - 1.04) 9.4E-05 0.85 (0.79 - 0.90) 4.6E-10 

C6orf195 rs6918808 
(A) 

6p25.2 2608995 TGDS rs17181808 
(A) 

13q32.1 95186815 1.18 (1.08 - 1.29) 2.4E-07 0.83 (0.72 - 0.96) 7.7E-05 1.07 (0.99 - 1.15) 4.7E-10 

HSP90AA4P rs1496937 

(G) 

4q35.2 190004805 LOC730121 rs1365524 

(T) 

14q31.3 87770671 1.25 (1.12 - 1.39) 8.3E-07 1.61 (1.45 - 1.78) 2.2E-05 1.43 (1.33 - 1.54) 4.7E-10 

THSD7B rs719790 

(C) 

2q22.1 138207269 SLC8A2 rs4802363 

(C) 

19q13.32 47940364 1.13 (1.06 - 1.21) 2.9E-05 1.28 (1.13 - 1.46) 6.4E-07 1.16 (1.09 - 1.23) 4.7E-10 

HSP90AB2P rs17362130 
(G) 

4p15.33 12613974 LOC642681 rs4706511 
(G) 

6q13 73448086 1.24 (1.09 - 1.41) 1.4E-05 1.24 (1.12 - 1.38) 1.3E-06 1.24 (1.14 - 1.34) 4.8E-10 

SORCS1 rs7095427 

(C) 

10q25.1 108426206 LOC646801 rs7130727 

(T) 

11p11.12 50232757 1.47 (1.21 - 1.80) 1.0E-05 1.19 (1.08 - 1.30) 1.9E-06 1.23 (1.13 - 1.34) 4.9E-10 

Abbreviations: 

SNP, single nucleotide polymorphism; Chr, Chromosomal band; Position, base pair; OR, odds ratio; CI, confidence interval, Px, P value obtained from X 
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Figure 10. 1| Interaction Analysis identifies 16 unique risk loci pairs. 

Circos plot of genome-wide association and significant interaction results for the identified paired risk loci. The two outer most panels display results from genome-wide association study on a Manhattan plot 

for autosomal variants on a negative log transformed scale. Inner numbered panel represents the chromosomes and effect-sizes of significant interacting pairs are plotted on bar charts from both samples (dark: 

German sample; light: UK sample). Interacting pairs are line joined in the inner most panels based on their chromosomal positions (NCBI build 19, human genome). Annotations of single nucleotide 
polymorphisms to gene ids are displayed on the inner manhattan plot. 
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10.2 Biological inference of the interacting chromosomal loci 

Most of the risk SNPs identified, although showing promising signals for genotypic 

interactions, are mapped to non-coding regions of the genome and possibly contribute to 

MM etiology by affecting gene expression via differential regulation. Association of 

variations in quantitative traits with respect to the identified risk loci can shed light into such 

mechanisms. Hence eQTL data generated on malignant plasma cells obtained from MM 

patients of the German MM trials was interrogated. The most prominent eQTL signals were 

observed by rs2167453 at 11p15.2 for cytochrome P450, family 2, subfamily R, polypeptide 

1 (CYP2R1) and by rs923934 at 3q29 for family with sequence similarity 43, member A 

(FAM43A), both with 𝑃𝑒𝑄𝑇𝐿 = 4.4 × 10−5 (Table 10.2). The interacting partners of these 

SNPs, rs2734459 and rs13201167 served as eQTLs with a moderate signal for other genes 

(rs2734459 for CLASRP, ZNF224 and APOE and rs13201167 for AKAP12 and C6orf211). 

Summary-data-based Mendelian randomization addresses pleiotropic heritable effects 

observed between a trait and genetic exposure via gene expression regulation and the 

observed genetic component (usually genotypes). SMR was used to analyze pleiotropic 

effects between the GWAS signal and the cis-eQTL for genes residing within 1 Mb window 

of the sentinel loci in interaction to assess causal association between SNPs and disease 

phenotype via instrumentation of gene regulation. The strongest pleiotropic signal was 

observed at 4p15.33 by rs17362130 for RAS oncogene family member 28, RAB28 ( 𝑃𝑆𝑀𝑅 =

4.8 × 10−3) and at 6p25.2 by rs6918808 for receptor (TNFRSF)-interacting serine/threonine 

kinase 1, RIP1 ( 𝑃𝑆𝑀𝑅 = 5.4 × 10−3, Table 10.2, Figure 10.2), respectively. Contextually, 

it is well known that oncogenic ras family members are frequently mutated in MM (Aronson 

et al., 2014). RIP1 interacts with RIP3 to activate the necrosome complex responsible for 
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instigation of several death receptors that induces apoptosis, necroptosis or cell 

proliferation. Additionally rs17362130 is found to be an eQTL for NK3 Homeobox 2 

(NKX3-2) with a moderate signal ( 𝑃𝑒𝑄𝑇𝐿 = 2.1 × 10−3) and rs6918808 was an eQTL for 

Serpin Family B Member 9 (SERPINB9).  
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Table 10. 2| GWAS summary data-based Mendelian randomization. 

probe Gene name Gene ID SNP ID eQTL P-value GWAS P-value SMR P-value 

9364_at RAB28, member RAS oncogene family RAB28 rs17362130 1.14E-03 3.68E-05 4.84E-03 

8737_at receptor (TNFRSF)-interacting serine-threonine kinase 1 RIP1 rs6918808 1.23E-03 4.01E-05 5.04E-03 

7289_at tubby like protein 3 TULP3 rs2238087 1.14E-03 2.58E-04 1.27E-02 

808_at calmodulin 3 (phosphorylase kinase, delta) CALM3 rs4802363 1.76E-03 1.99E-03 1.28E-02 

11133_at kaptin (actin binding protein) KPTN rs4802363 1.98E-03 2.91E-03 1.30E-02 

8605_at phospholipase A2, group IVC (cytosolic, calcium-independent) PLA2G4C rs4802363 1.72E-03 4.62E-03 1.33E-02 

120227_at cytochrome P450, family 2, subfamily R, polypeptide 1 CYP2R1 rs10832312 4.40E-05 2.53E-02 1.55E-02 

120227_at cytochrome P450, family 2, subfamily R, polypeptide 1 CYP2R1 rs11023346 4.40E-05 2.56E-02 1.72E-02 

120227_at cytochrome P450, family 2, subfamily R, polypeptide 1 CYP2R1 rs11821380 4.40E-05 2.56E-02 1.72E-02 

57820_at cyclin B1 interacting protein 1, E3 ubiquitin protein ligase CCNB1lP1 rs10130942 1.41E-03 3.98E-03 1.86E-02 

10082_at glypican 6 GPC6 rs17181808 1.06E-03 6.41E-04 1.86E-02 

1690_at coagulation factor C homolog, cochlin (Limulus polyphemus) COCH rs12436395 3.52E-04 1.88E-02 2.03E-02 

120227_at cytochrome P450, family 2, subfamily R, polypeptide 1 CYP2R1 rs2167453 4.40E-05 2.56E-02 2.10E-02 

579_at NK3 homeobox 2 NKX3-2 rs17362130 2.11E-03 1.18E-03 2.72E-02 

80759_at KH homology domain containing 1 KHDC1 rs4706511 1.01E-03 5.49E-03 3.47E-02 

10553_at HIV-1 Tat interactive protein 2, 30kDa HTATIP2 rs10766743 1.85E-03 2.11E-03 3.60E-02 

79624_at chromosome 6 open reading frame 211 C6orf211 rs13201167 4.40E-04 2.47E-03 3.65E-02 

160897_at G protein-coupled receptor 180 GPR180 rs17181808 4.40E-04 5.04E-03 3.66E-02 

5272_at serpin peptidase inhibitor, clade B (ovalbumin), member 9 SERPINB9 rs6918808 1.01E-03 3.04E-03 3.80E-02 

23483_at TDP-glucose 4,6-dehydratase TGDS rs17181808 4.84E-04 6.32E-03 3.82E-02 

440145_at mitotic spindle organizing protein 1 MZT1 rs17089906 2.64E-04 9.85E-03 4.20E-02 

9590_at A kinase (PRKA) anchor protein 12 AKAP12 rs13201167 2.16E-03 3.63E-03 4.27E-02 

688_at Kruppel-like factor 5 (intestinal) KLF5 rs17089906 1.76E-04 2.01E-02 4.54E-02 

7767_at zinc finger protein 224 ZNF224 rs2734459 7.04E-04 3.59E-03 4.66E-02 

348_at apolipoprotein E APOE rs2734459 1.23E-03 5.19E-03 5.55E-02 

81029_at wingless-type MMTV integration site family, member 5B WNT5B rs2238087 1.98E-03 6.45E-03 5.65E-02 

404550_at chromosome 16 open reading frame 74 C16orf74 rs7204305 1.98E-03 6.74E-03 5.67E-02 

11129_at CLK4-associating serine/arginine rich protein CLASRP rs2734459 2.64E-04 1.32E-02 8.43E-02 

131583_at family with sequence similarity 43, member A FAM43A rs923934 4.40E-05 1.90E-02 8.89E-02 
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Figure 10. 2| Summary-data-based Mendelian randomization analysis of interaction detected multiple myeloma risk loci and gene expression 

in plasma cell  

Negative log transformed P-values are plotted from GWAS against that of SMR identified causal cis-eQTLs at suggestive level. Top two significant 
elements are annotated in red. The blue line represents fitted liner regression representing linear association and the shaded region encompasses 95% 

confidence interval  
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10.3 Genetic interaction based Network 

The hypothesis behind genetic interaction relies on deregulation of an array of genes that 

have an impact on a biological process leveraging expression of a certain phenotype. To 

investigate shared biological reciprocity as well as information driven connection between 

genes annotated to the variants identified via interaction study, a genetic network map was 

constructed. Unique annotations from the 16 interaction-identified variants along with the 

SMR-identified causally related genes were thus assessed with network enrichment and first 

order interacting genes based on data-mined enrichment index (protein-protein interaction 

index >0.95 on a scale of 0 to 1) were additionally added to increase confidence of  the  

network. 

The network thus created had a statistically significant enrichment P-value of 𝑃𝑛𝑒𝑡𝑤𝑜𝑟𝑘 =

2.7 × 10−5. The top most enriched nodes were three genes (ZNF224, ZNF229 and KLF5) 

heavily involved in transcription regulation along with enzyme modulators like CALM3 and 

genes with direct involvement in B-cell selection and survival such as GNAQ. The 

disconnected nodes were disregarded from the network and interacting edges with minimum 

enrichment of 0.7 (on a scale of 0 to 1) were included (Figure 10.3). 
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Figure 10. 3| Genetic network enrichment with STRING 

All nodes represent direct annotations of interaction-identified elements or first order interaction. Colored edges convey status of predicted network edge 

correspondingly cyan, curated database; magenta, experimentally determined; forest green, gene neighborhood; red, gene fusion; navy blue, gene co-
occurrence; lawn green, text mining; black, co-expression; lavender indigo, protein homology. Node color signifies different/shared protein 

functionality. Additional nodes are considered based on prediction score ≥ 0.99 
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Figure 10. 4| Tissue and cell-type enrichment of interaction identified loci with DEPICT 
a. Tissue enrichment identifies significant tissue types mostly affected with interaction-identified genes. b. Cell type enrichment analysis identifies cells with observed expression regulation of the same candidates.   
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10.4 Tissue and cell type enrichment 

In silico detection of gene expression enrichment in tissues and cell types for the genes 

annotated to the interaction-associated loci were performed with DEPICT. Sentinel SNPs 

were prioritized based on the annotation and backend expression data predicted functional 

relevance and were subsequently clustered into 12 unique loci. These fused loci were tested 

for significant deregulated expression of the corresponding genes in 209 MeSH annotations 

against 37,427 microarrays procured in backend. A total of 27 tissue or cell type annotations 

were found significant at a suggestive level (P < 0.05). Among the enriched tissue 

annotations, 16 were pertinent to the hemic and immune system, two belonged the 

musculoskeletal system and one to the stomatognathic system (Figure 10.4a) and 

additionally six cell types were found enriched that were related to hematopoietic system 

(Figure 10.4b). 

 

10.5 Biological inference of the GWAS-identified loci with Pathway analysis  

Next, relationships amongst the previous GWAS-identified loci in the context of regulation 

of pathways using the pathway analysis tool PASCAL were interrogated. To avoid possible 

complications arising from unconformity to statistical convergence of the test statistic, sum 

of chi-square method was used to test for functional association against pathway annotations 

extracted from REACTOME, KEGG and BIOCARTA libraries. A total of 12 enriched 

pathways reached a global threshold of 0.0025 for the combined pooled   P-value (Table 

10.3). Among all the pathways thus detected, three were signaling cascades reflecting the 

activation status of the SMAD family proteins, as signal transducers for receptors of the 

cytokine Transforming Growth Factor β. They were represented with the following 
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pathways, “SMAD2 SMAD3 SMAD4 heterotrimer regulates transcription”,  𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =

6.9 × 10−4,  “TGFβ receptor signaling activates SMADs”,  𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 1.1 × 10−3 and 

“Transcriptional activity of SMAD2 SMAD3 SMAD4 heterotrimer”,  𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 2.8 ×

10−3. “Circadian repression of expression by REV-ERBA”,  𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 5.5 × 10−4 was 

the top signal; and an additional pathway “RORA activates circadian 

expression", 𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 2.1 × 10−3 was also found related to the regulation of circadian 

rhythm which was mediated by two nuclear receptor proteins RORA and REV-ERBA. 

Furthermore, modulation of ALK receptor tyrosine kinase activity was indicated to be 

enriched with ALK pathway,  𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 2.8 × 10−3.  
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Table 10. 3|  Pathway enrichment analysis with PASCAL detects 12 putative pathways related to MM.  

Data

base 

Pathway 𝑷𝑮𝒆𝒓 𝑷𝑼𝑲 𝑷𝑴𝒆𝒕𝒂 
‡𝑷𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅 

REACTOME Circadian repression of expression by REV-ERBA 3.50E-04 1.45E-01 4.16E-03 5.52E-04 

REACTOME APOBEC3G mediated resistance to HIV infection 5.79E-02 1.74E-03 2.09E-03 1.02E-03 

REACTOME RORA activates circadian expression 1.24E-03 1.83E-01 1.20E-02 2.13E-03 

REACTOME Deposition of new CENP-A containing nucleosomes as the 
centromere 

7.00E-02 7.49E-03 3.82E-03 4.48E-03 

REACTOME SMAD2 SMAD3 SMAD4 heterotrimer regulates transcription 8.83E-02 7.81E-03 1.88E-02 5.70E-03 

REACTOME TGFβ receptor signaling activates SMADs 1.73E-02 6.39E-02 4.38E-03 8.60E-03 

REACTOME GABAA receptor activation 2.36E-02 6.27E-02 1.62E-02 1.11E-02 

REACTOME Iron uptake and transport 4.84E-02 4.20E-02 8.91E-03 1.46E-02 

REACTOME Transcriptional activity of SMAD2 SMAD3 SMAD4 

heterotrimer 

9.53E-02 2.18E-02 4.15E-02 1.49E-02 

REACTOME Purine salvage 8.82E-02 2.51E-02 3.71E-02 1.57E-02 

REACTOME Apoptosis induced DNA fragmentation 1.76E-02 1.29E-01 2.32E-02 1.60E-02 

BIOCARTA ALK pathway 9.49E-03 3.28E-02 3.12E-02 2.82E-03 

Abbreviations: 
‡combined with Brown’s method for dependent P-values 

𝐏𝐗: P-value obtained from interaction analysis of set 𝑿 
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Chapter 11: Risk of second primary cancer in MM patients 

11.1 Rationale  

As is the case with almost every other cancer, advancement in treatment of MM has resulted 

in increasingly prolonged survival and in turn has observed rising incidence of second 

primary cancers (SPCs). The reasons behind increased risk of second cancers are of several 

multitudes and have been discussed in details in section 2.2. Over the last two decades MM 

risk has been extensively established to be moderately carried by an inherited/shared 

familial component (Lynch et al., 2008a; Lynch et al., 2005). The first investigation on risk 

of MM in people with family history of a cancer was performed more than three decades 

ago (Bourguet et al., 1985), and since then a number of confirmational studies have shown a 

family history of cancer greatly influences the risk of MM itself (Alexander et al., 2007; 

McDuffie et al., 2009). On the other hand starting from the same period, an existing history 

of cancer in family has been shown to harbor detrimental effects towards developing 

subsequent cancers in patients of several different cancers (Bernstein et al., 1992; Kony et 

al., 1997). First documented case of development of second cancers in MM patients dates 

back to 1982 and a plethora of investigations have shown almost all type of cancers arising 

in MM patients ever since (Chen et al., 2016; Razavi et al., 2013; Thomas et al., 2012; 

Zalcberg et al., 1982).  

It has long been postulated that a subset of patients with cancer display a high sensitivity to 

mutational agents because of genetic predisposition. The extent of impact due to family 

history of cancer in context of MM is previously investigated by means of the 2004
th

 update 

of the FCD which demonstrated pertinent familial clustering of MM with several different 

types of leukemia as well as with a number of solid tumors (Altieri et al., 2006). Family 
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history is a prominent surrogate for heritable genetic and environmental constituents and the 

impact of family history of cancer in predisposition of excess heritable risk of second cancer 

has not been addressed yet.  

To gain insight on relationship of family history of cancer and SPC in concordant sites, a 

cohort of 5,205 Swedish MM patients was analyzed. Also influence of second cancers on 

the cause of death was investigated to understand severity of outcome in patients with MM. 

 

11.2 Patients 

Starting from 1958 in Sweden there were 5,205 MM patients identified via the family 

cancer registry who had full parental information mapped and were diagnosed before the 

end of 2015, marked by the end of study follow-up. Among them 360 (6.9%) developed a 

subsequent SPC. Familial SPCs were compared to non-familial cases where analysis of all 

SPCs was restricted subject to availability of at least two cases having the same tumor 

(concordant) in a parent or sibling. Family history was treated as a dichotomous outcome 

without quantification of number of affected family members present. Without 

consideration of the overlapping impact of more than one cancer in family, prostate cancer 

was the major contributor to the family history (20%) followed by colorectal (14%), breast 

(10%), bladder (5%),and lung cancer (4%) and skin SCC (4%).  

 

11.3 Familial risk of second cancer in patients with MM 

In patients without a family history of cancer, the risk of SPC was increased for skin cancer 

(squamous cell carcinoma, SCC, RR = 2.58, 95% CI = 1.81 - 3.67, Table 11.1) and 

leukemia (RR = 4.55, 95% CI = 3.11 - 6.24). For patients with a family history of cancer, 
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even though case numbers were low, familial risks were found with significant excess with 

a trend test for colorectal (RR familial, 95% CI: 2.10 [1.00 - 4.41] vs. RR non-familial , 95% CI: 

1.01 [0.69 - 1.47]), prostate (RR familial, 95% CI: 1.60 [1.03 - 2.48] vs. RR non-familial , 95% CI: 

0.56 [0.41 - 0.77]) and skin SCC (RR familial, 95% CI: 8.82 [3.31 - 23.52] vs. RR non-familial , 

95% CI: 2.58 [1.81 - 3.67]). Although high excess familial risk was observed for lung 

cancer, the trend test was not significant (P = 0.061) possibly indicative of weak confidence 

due to inadequate sample size. The highest familial SPC risk was observed for MM patients 

with a family history of leukemia (RR familial, 95% CI: 9.14 [2.29 - 36.55], only 2 cases) 

although again with insignificant trend P-value. Overall patients with any cancer history in 

family (N = 246) were 68.3% of all SPCs and the RR was in significant excess; RR familial, 

95% CI: 1.38 [1.22 - 1.57] vs. RR non-familial, 95% CI: 1.13 [1.17 - 1.43] respectively (trend 

test P < 0.001).   

 

11.4 Population drift and temporal effect on incidence 

Population drift overtime is a major source of bias in epidemiological studies especially 

when the sample size is expanding in a non-linear trend over the follow-up period 

(Carstensen, 2006). Sensitivity of the analysis needed to be tested for possible skewed 

patient reporting based on the multiple applied conditions and to this end case frequencies 

were plotted to observe the patient accrual over the study period (Figure 11.1). The figure 

shows MM patients with SPC and with or without family history (246 and 114 patients) 

plotted with temporal stratification by 5-year intervals of MM diagnosis. No skewed drift 

was observed to suspect incremental bias. 
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11.5 Cause of death 

By the end of 2015 a total of 2872 (55.2%) among 5,205 MM patients were declared 

deceased; and the total number of deaths among 360 patients with SPC was 228 (60.6%). 

The proportion was equally high among 246 patients with familial SPC, of whom 146 

(59.3%) had died by then. Kolmogorov-Smirnov test on proportion difference found no 

evidence of statistical difference between the familial and non-familial groups (P > 0.05). 

MM itself is characterized with moderate to poor prognosis in most cases, and 

unsurprisingly MM was the most common cause of death in patients without SPC (83%, 

2194/2644), with 17% of deaths due to other causes. For MM patients with a SPC, the 

distribution of causes of death is shown in Table 11.2. Here also MM was found to be the 

foremost cause of death with 38.7% of demises, followed by SPCs accountable for 35.8% 

and other causes the rest 25.5% of all death; among other causes the majority of deaths 

(62.9%) were due to non-neoplastic causes. The mortality of SPC varied between second 

cancer types in proportion to the severity of detrimental survival. For second pancreatic 

cancer, all 7 patients died of this cancer; more than half of MM patients died of SPC when it 

was lung or nervous system cancer or leukemia. Other causes were important for CUP as 

SPC.  There were 82 deaths observed in patients with SPC in absence of a cancer family 

history, again majority of death was due to MM (36.6%), followed by SPCs (34.2%). 

 

11.6 Interaction in personal history and family history of cancer 

Personal history of cancer and family history of cancer can be strong attributor of bias in 

this study design. Usually genetic aberrations have deleterious consequence in cancer 

patients starting from diagnosis, disease progression or remission. Very often such 
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aberrations are shared among a broad family of malignancies which the patients are already 

exposed to and hence the inference on association is expected to carry larger departure from 

causality in presence of interaction between personal and family history of cancer. Linear 

and non-linear interactions of significant family risks and risk of SPC with additive and 

multiplicative interactions were tested. A stronger than additive interaction was found for 

skin cancer (P = 0.04, Table 11.3). Although several other interactions carried large effect 

sizes, these were all statistically insignificant at 5% level. 
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Table 11. 1| Relative risks of SPCs among all multiple myeloma patients stratified over family 

 At least 1 FDR with cancer No FDR with cancer Total Trend test 

P value 

Cancer N RR 95% CI N RR 95% CI N RR 95% CI  

Colorectum Colorectum 7 2.10 1.00 - 4.41 27 1.01 0.69 - 1.47 34 1.13 0.81 -1.58 0.033 

Lung 3 5.40 1.74 - 16.75 10 1.13 0.61 - 2.10 13 1.38 0.80 - 2.38 0.061 

Breast 4 1.13 0.42 - 3.01 24 0.93 0.62 - 1.39 28 0.95 0.66 - 1.38 0.176 

Prostate 20 1.60 1.03 - 2.48 38 0.56 0.41 - 0.77 58 0.72 0.56 - 0.93 0.006 

Melanoma 2 5.04 1.26 - 20.14 18 1.46 0.92 - 2.32 20 1.57 1.01 - 2.44 0.087 

Skin (squamous 

cell carcinoma) 

4 8.82 3.31 - 23.52 31 2.58 1.81 - 3.67 35 2.81 2.01 - 3.91 0.029 

Leukemia 2 9.14 2.29 - 36.55 32 4.41 3.11 - 6.24 34 4.55 3.25 - 6.37 0.093 

All 246 1.38 1.22 - 1.57 114 1.13 0.94 - 1.36 360 1.29 1.17 - 1.43 <0.001 

Abbreviation: 

FDR, first degree relative; N, frequency; RR, relative risk; CI, confidence interval; 

Bold, italics and underline indicate 5%, 1% and 0.1% level of significance; 
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Figure 11. 1| Period overview of SPC diagnosis in MM patients 
MM patients with SPC stratified with or without family history (246 and 114 patients) in 5-year intervals of MM diagnosis.  
Abbreviations: SPC, second primary cancer; FH-, family history negative and FH+, family history positive. 
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Table 11. 2| Causes of death distribution of multiple myeloma patients diagnosed with SPC 

 MM 
a
 Second primary 

cancer 

Other causes 

Cancer N % N % N % 

Upper aero-digestive tract 2 50.0 2 50.0 - - 

Stomach - - 4 100.0 - - 

Colorectum 8 33.3 11 45.8 5 20.9 

Anus - - 1 100.0 - - 

Liver 2 33.3 3 50.0 1 16.7 

Pancreas - - 7 100.0 - - 

Lung 3 13.6 15 68.2 4 18.2 

Breast 6 42.9 1 7.1 7 50 

Cervix - - 1 100.0 - - 

Ovary 1 50.0 1 50.0 - - 

Prostate 11 42.3 5 19.2 10 38.4 

Kidney 3 37.5 3 37.5 2 25 

Urinary bladder 5 41.7 3 25.0 4 33.3 

Melanoma 7 58.3 3 25.0 2 16.7 

Skin (squamous cell carcinoma) 16 72.7 1 4.5 5 22.7 

Nervous system 3 42.9 4 57.1 - - 

Non-Hodgkin lymphoma 5 45.5 4 36.4 2 18.2 

Hodgkin lymphoma - - 1 50.0 1 50 

Leukemia 7 24.1 16 55.2 6 20.6 

Cancer of unknown primary 3 21.4 1 7.1 10 71.4 

b Total 94 38.7 87 35.8 62 25.5 

a Cases noted only when at least one death is observed due to second cancer. 

b Total includes all cancers without constraints. 
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Table 3. Table 11. 3| Interaction between concordant cancer family history and individual history of multiple myeloma 

 Risk in population 
with at least one 
FDR with 
concordant cancer 

Risk in multiple 
myeloma survivors 

Risk in multiple 
myeloma survivors 
with FDR diagnosed 
with cancer 

Type of Interaction 

    Additive  Multiplicative 

Cancer site RR (95% CI) RR (95% CI) RR (95% CI) ICR (95%CI) P  MII (95% CI) P 

Colorectum 1.91 (1.83 – 1.99) 1.13 (0.81 – 1.58) 2.10 (1.00 – 4.41) 0.06 (-1.22 – 5.62) 0.79  0.97 (0.71 – 2.30) 0.61 

Prostate 2.49 (2.42-2.57) 0.72 (0.56 – 0.93) 1.60 (1.03 – 2.48) -0.61 (-1.38 – 1.95) 0.66  0.89 (0.59 – 1.68) 0.57 

Skin SCC 1.99 (1.80 – 2.21) 2.81 (2.01 – 3.91) 8.82 (3.31 – 23.52) 5.02 (0.86 – 13.43) 0.04  1.58 (0.77 – 2.96) 0.39 

Abbreviation: 

FDR, first degree relative; RR, relative risk; CI, confidence interval; SCC, squamous cell carcinoma; ICR, interaction contrast ratio; MII, multiplicative interaction index; 

Confidence intervals and P values calculated by bootstrapping 100,000 replications;  
Bolding indicate statistical significance; 
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Discussion 

Chapter 12: Inherited polygenic risk in MGUS 

MGUS being an asymptomatic condition has resulted in difficulty in case ascertainment and 

poorly understood etiology. Since the beginning of exploration in inherited genetic 

landscape of MM, similar researches in MGUS have been designed to 

i. Identify novel loci predisposing to MGUS 

ii. Replicate risk loci identified for disease downstream to MGUS such as MM, Al 

amyloidosis in MGUS. 

To this end initial reports were on confirmation signals observed through GWAS of MM 

found in MGUS which mostly reported insignificant to very moderate signals (Greenberg et 

al., 2012; Weinhold et al., 2014a). Next was the first attempt to address the architecture of 

polygenic predisposition in MGUS by means of GWAS on 242 people in 2017 (Thomsen et 

al., 2017). This study discovered 10 common SNPs exerting excess MGUS risk but the 

signals were again mostly moderate in strength due to caveats in design. 

Genetic aberrations associated with age are a major carrier of neoplastic growth burden. As 

MGUS is prevalent in almost 6.6 % of general “healthy” population aged 80 years or above 

(Wadhera et al., 2011). Due to its apparent asymptomatic nature it is difficult to gauze the 

spectrum or enormity of its inherited genetic landscape. Notwithstanding studies depict that 

all MM is preceded by MGUS but the genetic makeup of progression is still elusive and so 

is its possible implication on survival and mortality (Bladé et al., 2009; Kyle and Rajkumar, 

2015; Weiss et al., 2009). All of these led to investigation of the following questions: 

1. Can we have a clearer picture of inherited genetic predisposition in MGUS? 

2. How the identified genetic aberrations can alter biology in host? 
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3. How much of it is related to what we know about MM?* 

4. Is the detection algorithm novel?* 

To address the problem of missing heritability pertinent to cumulative aggregation of 

polygenic risk in MGUS the assumption of this study design was two-fold,  

i. MGUS is influenced by cumulative risk of sub-par signals with no apparent 

deleterious impact co-inherited by the host. 

ii. The susceptibility loci are truly polygenic (they predispose to MGUS with elevated 

risk in concert). 

Keeping these in mind this investigation attempted to find answers to the previously posed 

questions in context of this research. 

*These two points are later discussed with MM. 

 

Can we have a clearer picture of inherited genetic predisposition in MGUS? 

As the assumptions dictate departure from single marker risk, inter/inter-chromosomal risk 

was analyzed with genome-wide interaction studies. There were 14 unique loci confirmed 

with three stages of the analyses. The strongest signal was found to harbor Tenascin C 

(TNC), a protein coding gene residing in 9q33.1 in interaction with Crystallin Lambda 1 

(CRYL1) in 13q12.11, a potent regulator of alternative glucose metabolic pathway. 

Expression of TNC is found upregulated in certain MM cell lines in the presence of 

mutations in insulin growth factor receptor and receptor tyrosine-protein kinase genes 

(Leich et al., 2013b).  

The second strongest signal was observed between SETBP1 and PREX1 interaction at 

18q12.3 and 20q13.13. The locus at 20q13.13 predisposes to MM as an expression and 
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methylation quantitative trait locus at PREX1 without affecting an active promoter site 

(Mitchell et al., 2016). PREX1 is expressed mainly in peripheral blood leukocytes and 

moderately in lymph nodes, and much weaker in most other tissues (Welch et al., 2002). 

SETBP1 is a well-established candidate gene harboring somatic mutations in various 

myeloid malignancies including secondary acute myeloid leukemia (sAML) and chronic 

myelomonocytic leukemia (CMML) (Makishima et al., 2013).   

Two other interactions showed a shared mutual homology. These include Erb-B2 Receptor 

Tyrosine Kinase 4 (ERBB4) at 2q34, Retinoic Acid Receptor Related Orphan Receptor A 

(RORA or alias RORɑ) at 15q22.2 and Protein Tyrosine Phosphatase, Receptor Type D 

(PTPRD) at 9p23. Both RORA and PTPRD were found to have ERBB4 as interacting 

partner. All three of these genes in the context of the disease biology in concern will be 

discussed later. In summary, ERBB4 is the fourth member of a tyrosine protein kinase 

family and is known by its alias HER4. It plays an important role as a cell surface receptor 

for neuregulins (NRGs) and EGF family members as well as in gene transcription, cell 

proliferation, differentiation, migration and apoptosis. PTPRD encodes a protein tyrosine 

phosphatase (PTP) family member protein. PTPs in general are implicated in several 

cellular processes including cell growth, differentiation, mitotic cycle and even in 

oncogenesis. PTPRD demonstrates tumor suppressing mechanism in MM; it also 

dephosphorylates STAT3, an IL6 signaling promoter that has a major consequence in MM 

pathogenesis (Egan et al., 2012; Kamada et al., 2012; Lohr et al., 2014). Lastly the protein 

encoded by RORA is a member of nuclear receptor 1 subfamily of nuclear hormone 

receptor. It binds to the DNA as a monomer to Retinoid-Related Orphan Receptor (ROR) 
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response elements and is a key regulating element in circadian clock mediation (circadian 

rhythm), immunity, and cellular differentiation.   

 

How the genetic aberrations alter biology in host 

Epidermal growth factor receptor, a cell membrane growth factor receptor mediated by 

tyrosine kinase activity, is a member of ErbB receptor family and is widely expressed in 

human tissues regulating important cellular processes. In both cancerous and non-cancerous 

cells, EGFR plays a crucial role in controlling key cellular transduction pathways 

influencing cell proliferation, differentiation and development and overexpression of which 

is associated to multiple site-specific tumors including that of breast, lung, colorectum, head 

and neck, pancreas and bladder (Warta and Herold-Mende, 2017; Yarden, 2001). ERBB4 

was identified to be a high risk loci interacting with 15q22.2 and 9p23 establishing its 

regulatory burden on EGFR downregulation pathway, one of the enriched pathways in 

pathway analysis. Formation of EGFR-EGFR dimers mediates the 170kDa protein 

functionality and is dependent on three members of human epidermal receptor (HER) family 

proteins; namely HER1 (ErbB1/EGFR), HER2 (ErbB2) and HER4 (ErbB4). The EGFR 

triggering signal transduction operated by HER1:4 includes a. RAS- and mitogen-activated 

protein kinase (MAPK) pathway which controls cell proliferation b. phosphatidylinositol-3 

kinase (PI3K) pathway driving cell development and c. protein kinase B (Akt) pathway 

arbitrating apoptosis. 

Also found was an interacting pair annotated to intronic anaplastic lymphoma receptor 

tyrosine kinase (ALK), an oncogene and a common variant located 36kb 5’ to GLCCTI1 

which is one of previously identified risk loci for MGUS with moderate significance. In 
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anaplastic large-cell lymphomas, overexpression of ALK shows substantial unregulated 

tyrosine kinase activity. Deregulation in Akt-pathway also downregulates expression of 

multiple members of EGFR signaling cascades which hinders cancer cell cycle arrest and 

cell death. 

Cell adhesion is an integral part of cell surface interaction and is essential for the 

organization and various biological functions of multicellular organisms. There are two 

major types of cell adhesions; cell-to-cell and cell-to-extracellular matrix (ECM), both of 

which consist of transmembrane cell adhesion molecules, intracellular scaffold or signaling 

proteins and cytoskeletons. Cadherin (CDH) family cell adhesion molecules and their 

associated scaffold proteins (catenins) play important roles in the formation and functions of 

cell-cell adhesions. One previously identified MGUS risk locus annotated to GALNT1 was 

shown in the data to have moderately significant interaction with Cadherin 2 (CDH2), an 

adhesion molecule and an important downstream target of FGFR3 signaling pathway. 

CDH2 has been reported to be overexpressed among a cohort with MM diagnosis having 

t(4,14) translocation (Dring et al., 2004). The identified novel risk locus on a cadherin group 

gene CDH13 was found in interaction with a tumor suppressor gene Basonuclin 2 (BNC2) at 

9p22.3. CDH13 protects vascular endothelial cells from apoptosis due to oxidative stress 

and is found to be hypermethylated in myeloid leukemia, B-cell lymphomas among several 

other cancers (Alkebsi et al., 2016; Ogama et al., 2004).   

Among the pathways that were found enriched in all three algorithms was dorsoventral axis 

formation, KEGG autoimmune thyroid disease as well as allograft rejection. Although 

belonging to a larger network of downstream signaling, KEGG allograft rejection pathway 

is regulated by differential expression of EGFR, MAPK1-3, and NOTCH1-3; in addition to 
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MM pathogenic proto-oncogenes such as KRAS and BRAF. These finding allude to 

underlying mechanisms that relate progression of MGUS to MM at a cellular level.  
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Chapter 13: Inherited polygenic risk and its implications in MM 

Now as a clearer picture emerges elucidating genetic inheritance pattern and biological 

mechanisms pertinent to MGUS development, it burrows pathologic interpretation from 

available literature on MM. Genetic predisposition of MM has been broadly investigated in 

the recent years and so far the largest meta-analysis has identified/confirmed 23 

susceptibility loci exerting excess risk (Went et al., 2018). Yet all of it put together only 

explains a moderate portion of MM heritability (15.2%) (Mitchell et al., 2015). MM is 

characteristically a heterogeneous disease that infests several different chromosomal 

abnormality profiles in different hosts and depending on that the disease progression has 

vastly different consequences. Hence a one model fits all type risk loci dependent linear risk 

estimation would always perform moderately and sensitivity of such a model to forecast 

pathogenic consequences would remain poor. Overcoming this caveat would require 

evidence implicating the risk loci to biological processes which will vary in sensitivity 

depending on penetrance and pathogenicity. 

The problem of missing heritability still remains to be explored in MM in a similar setting 

as MGUS. Secondly, the risk loci thus to be discovered also require biological interpretation 

to MM pathogenesis and furthermore, due to the overlap of investigation design, it is also 

desirable to interrogate possible overlap between MGUS and MM biology (if any) that may 

pose as mechanistic link between the benign and malignant phases of the disease 

transformation which is presumably incited by myelomagenesis. Hence this phase of the 

study is enshrined with the following three main objectives: 

1. Interrogating genetic predisposition architecture of MM form the perspective of 

chromosomal interaction. 
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2. Identifying and implicating biological mechanisms of MM predisposition 

3. Investigating mechanistic overlap in biology between MM and MGUS pathogenesis. 

 

Interferon regulatory factors and T helper cells 

In the interaction study GNAQ at 9q21.2 and IRF8 at 16q24.1 held the strongest meta-

analyzed signal. G Protein Subunit Alpha Q (GNAQ) as the name suggests encodes a 

guanine nucleotide-binding protein that regulates B-cell development and survival 

(Offermanns, 2006). Mutation in this gene has been associated to aberrant platelet 

aggregation and activation. Interestingly, platelet aggregation and plug information was 

detected to be one of the most enriched pathways in MGUS (section 9.3). Involvement of 

GNAQ in MM predisposition and differential regulation of its entry pathway allude to a 

possible mechanistic connection between MGUS and MM. Additionally, its interacting 

partner IRF8 has been implicated in a significant repertoire of MM pathogenesis literature. 

Most importantly IRF8 harbors an intergenic common SNP for Ig trait modulation, a critical 

mechanism MM and related paraproteinemias (Jonsson et al., 2017). Additionally IRF8 is 

responsible for critical functions in regulation of innate as well as adaptive immunity and 

immune cell development including B- and T-cells, dendritic cells and myeloid cells (Zhao 

et al., 2015). In the development of B-cells IRF8 and IRF4 (another member of interferon 

regulatory factor family of transcription factors) function redundantly and regulate transition 

of pre-B-cells to matured B-cells. In germinal center development, the roles of interferon 

regulatory domains are complementary: where IRF8 directs early centroblast development 

which is later taken over by IRF4 as centrocytes mature into plasma cells. IRF8 induces 
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activation-induced cytidine deaminase with is a key enzyme catalyzing somatic 

hypermutations of plasma cell (Zhao et al., 2015). 

Furthermore, the underlying mechanism of IRF8 transcriptional activity in MM may also be 

vastly elucidated with its role in T helper cell (Th) differentiation. Elevated cytokines in 

bone-marrow microenvironment is a key part of MM niche. In MM, cytokines such as IL6 

and TGFβ are often expressed in abundance and are important for generation of Th17 cells. 

Th17 cells among other interleukins produce high level of IL-17 that promotes MM cell 

growth and inhibits immune function. IRF8 acts as an intrinsic transcriptional inhibitor of 

Th17 cells, at least partly through its physical interaction with retinoic acid receptor-related 

orphan receptor RORγt (Ouyang et al., 2011). These findings are well-aligned with 

previously identified MM risk SNP rs4487645 at 7p15.3, as a modulator of IRF4 binding at 

an enhancer element of c-Myc interacting gene CDCA7L and support the role of the genetic 

variants in IRF8 and its interacting partner in GNAQ in MM susceptibility (Broderick et al., 

2011; Li et al., 2016; Weinhold et al., 2015). 

  

Retinoic acid receptor and circadian rhythm 

It is also well-known that orphan nuclear receptors (RORɑ, RORɣt) have indispensable role 

in generation and maturation of Th17 cells. As a confirmation of involvement of retinoic 

acid receptors in MM (also in MGUS, section 9.1), enriched function of RORA in circadian 

function in pathway analysis was observed. Contextually cytochrome P450 Family 26 

Subfamily B Member 1 (CYP2R1) was identified to have moderate differential expression in 

the eQTL and SMR analysis in MM plasma cells. This gene encodes a member of the 

cytochrome P450 superfamily of enzyme, a vitamin D hydroxylase which converts vitamin 
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D3 in the vesicle membrane to 25-hydroxyvitamin D3 [25(OH)D3], an active ligand for 

vitamin D receptor and an inverse agonist of RORA reducing receptor activation (Cheng et 

al., 2018). Additional signal implicating the same mechanism, nuclear receptor super family 

member REV-ERBɑ was consecutively found enriched in circadian expression mediation. 

REV-ERBs (ɑ and β) are often co-expressed in the same tissue as RORs that bind to the 

same sites and co-regulate shared target genes (Solt et al., 2017). As Th17 cell 

differentiation is also regulated by circadian clock, all of the evidence on regulation of 

receptor activity crucial to retinoic acid dependent mediation of circadian clock indicate it 

having more than the impact previously described in MM pathogenesis (Yu et al., 2013). 

 

Transforming growth factor β 

A separate signaling cascade that entails major influence on immunoglobulin trait 

modulation, Th17 cell differentiation and bone morphogenesis is the transforming growth 

factor β (TGFβ) pathway (David and Massagué, 2018), and probably not so surprisingly was 

represented by three different enriched pathways in MM. Enhanced bone resorption in MM 

releases and activates TGFβ, which is a potent inhibitor of osteoblast differentiation and 

mineralization (Takeuchi et al., 2010). Interaction analysis identified an intergenic variant 

rs2834882 corresponding to runt related transcription factor 1 (RUNX1) in interaction with 

rs2860107 at 9q21.33 annotated to zinc finger CCHC-type containing 6 (ZCCHC6, alias 

TUT7). Activities of RUNX family member transcription factors have been linked to 

retinoic acid signaling and TGFβ-induced IgA class switching which is involved in MM 

pathogenesis (Jonsson et al., 2017; Takeuchi et al., 2010).  While ZCCHC6 and ZCCHC11 

based TUTase inhibitors are being investigated for management lymphoid malignancies as 
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potential agents for targeted therapy alluding a therapeutic connection (Lin and Gregory, 

2015), runt proteins demonstrate implications in vastly diverse biological processes related 

to MM. Transcription factors of runt domain are integral components of one of the two 

TGFβ family member-imposed signaling cascades including bone morphogenic proteins 

(BMPs). Both RUNX1 and RUNX2 are established regulators of BMP-2/7/9-induced 

osteoblast differentiation.  Both of these genes are often found co-expressed in skeletal 

elements that regulates expression of BMP-2, 9. Mis-regulation of these induces osteogenic 

differentiation of mesenchymal cells and in MM, causes growth arrest and anemia (Lagler et 

al., 2017; Ludwig, 2010). Function of these runt domain transcription factors are even more 

implicated by the SMR analysis. RUNX2 regulatory activity in osteoblast differentiation is 

regulated by transcriptional repressor protein encoded by NKX3-2, causal eQTL for sentinel 

SNP rs17362130 (Caron et al., 2013). Additionally, as these runt transcription factors are 

also transcriptional effectors of SMAD signaling (SMADs contribute to some of the most 

enriched pathways along with TGFβ receptor signaling for MM), these data suggest a 

broader role of TGFβ family signal transduction in MM.  

Differential regulation of SMAD dependent TGFβ signaling pathway has been established 

to be vital for cancer since its prominent regulatory role in cell growth, differentiation and 

migration and its mis-regulation can result in tumorigenesis. Cancer cells can circumvent 

tumor-suppressive actions of TGFβ in two branches, either by recruiting other stromal cell 

types (myofibroblast, osteoclast) facilitating tumor spread or through silencing core 

components of the pathway, such as TGFβ receptors (Massagué, 2008). The TGFβ cytokine 

receptors phosphorylate SMAD2 and SMAD3 (alias R-SMADs) which bind to SMAD4 

(alias Co-SMAD) to form hetero-trimer complex that constitutes the canonical SMAD-
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dependent TGF-beta signaling cascade whereas those of the other branch phosphorylate 

SMAD1, 5 and 8 to create other R-SMAD/Co-SMAD complexes that bind to transcription 

factors in order to regulate transcription of target genes. It is traditionally believed that the 

first group of hetero-trimer is responsible for canonical TGFβ pathway regulation (also 

sometimes non-canonical, SMAD-independent TGF-beta signaling pathways) and BMPs 

are responsible for signaling via Smad1, 5, 8-phosphorylation (Wakefield and Hill, 2013). 

TGFβ –activated SMADs promote growth inhibition in epithelial progenitor cells, apoptosis 

in pre-malignant cells and induce metastatic invasion in cancer cells (David and Massagué, 

2018). Contextually in MM, TGFβ induces differentiation arrest in osteoblasts, increases 

osteoclast genesis enhancing MM cell growth and survival, promote angiogenesis 

suppressing host immunity in bone marrow microenvironment to create the so called MM 

niche (Takeuchi et al., 2010). 

 

Histone Deacetylase 

In another context relevant to MM biology, SMADs also interact with chromatin binding 

proteins HDAC1 and HDAC2. HDAC1 is a class I histone deacetylase gene and MM 

patients with high protein levels of HDAC1 were shown to have poor progression-free and 

overall survival (Mithraprabhu et al., 2014). Moreover inhibition of HDAC1 expression 

induces MM cell death (Mithraprabhu et al., 2013). Interaction analysis identified a 

significant interaction pair including class II HDAC family member, HDAC9 and NCAM2. 

Aberrant mutation and high gene expression of HDAC9 in cells of lymphoid lineage is 

believed to induce B-cell lymphoproliferative disorders including Waldenström 

macroglobulinemia and is associated with general poor progression in cancer (Sun et al., 
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2011), additionally deregulation of expression of HDAC9 in B-cells upholds lymphoma and 

lymphoproliferative neoplastic growth (Gil et al., 2016). HDAC9 is in addition assumed to 

be accountable for lymphomagenesis by regulation of growth and survival related pathways 

and by modulation of BCL6 and p53 tumor suppressor activity (Gil et al., 2016). In 

germinal cells HDAC9 is often co-expressed with BCL6, a novel therapeutic target for MM 

(Hideshima et al., 2009).  As HDACs in general pose a vital role in cell cycle arrest 

induction and activation of intrinsic apoptotic mechanism, it’s a fair speculation that the 

common variation observed in 7p21.1 may be construed to predispose to MM pathogenesis. 

 

MGUS risk loci in context of MM 

The strongest signal from the MGUS study was found between TNC and CRYL1. 

Expression of TNC is found upregulated in certain MM cell lines in the presence of 

mutations in insulin growth factor receptor and receptor tyrosine-protein kinase genes 

(Leich et al., 2013b). Additionally, the recurrent significant interaction was found between 

several non-unique loci annotated respectively to SETBP1 and PREX1. The common 

variation at 20q13.13 predisposes to MM as an expression and methylation quantitative trait 

locus at PREX1 (Mitchell et al., 2016). PREX1 is also shown to have abundant expression in 

peripheral blood leukocytes and moderately in lymph nodes, and much weaker in most other 

tissues deregulation in which was alluded to MM pathogenesis (Welch et al., 2002). ERBB4 

harbored two significant interactions and parallel to the pathway enrichment results that 

identified role of EGFR downregulation, was established to be one of the most compelling 

finding in this study. 
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Although gene amplification can usually be associated with EGFR expression mis-

regulation, around 20% of tested glioblastomas lacks ErbB family gene amplification (Tripp 

et al., 2005), suggesting existence of other innate mechanisms in cancer cells that promote 

aberrant EGFR expression. Results on gene fusion confers aggregation of HER2 and HER3 

with Growth factor receptor bound protein 7 (GRB7), Retinoic acid receptor alpha (RARA) 

and Ring Finger Protein 41 (RNF41). Amplification of RARA has been demonstrated in 

hematological malignancies of myeloid lineage and RARɑ2 overexpression is related to 

progression, treatment efficacy and pathogenesis in MM (Asleson et al., 2010; Pedersen-

Bjergaard et al., 2002). Chromosomal translocation t(15:17) is hypothesized to rearrange 

RARA and give rise to aberrant EGFR overexpression upstream to RAS activated pathway 

(Pedersen-Bjergaard et al., 2002).  RNF41 encodes a ubiquitin ligase and maintains steady 

ErbB3 levels mediating its growth factor-independent degradation (Fry et al., 2011). GRB7 

is a protein coding gene which although mostly associated with ERBB2 amplification, is 

influential to signal transduction in response to external growth factor. GRB7 also promotes 

activation of protein kinases important to regulation of MAPK pathway such as MAPK1/3, 

STAT1, and AKT1. Remarkably, GRB7 is also responsible for enrichment of cell surface 

interaction at vascular wall which is highly regulated by KRAS and NRAS mutations.  

In contrast to the cell-cell adhesion mediators, the major transmembrane proteins at cell-

ECM adhesions are integrin heterodimers. The ability of integrins to dictate cellular 

responses to a variety of inputs lies in their capacity to differentially recognize distinct 

environments. Several integrins, including integrin-β1, -β7 and -α8 have been shown to play 

crucial a role in maintenance of MM bone marrow niche drug resistance. β1-Integrin 

mediated adhesion of MM cells to fibronectin provides MM cells protection against drug-
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induced apoptosis, triggers nuclear factor κB-dependent transcription and secrets 

interleukin-6 (IL6), a major growth factor for MM (Damiano and Dalton, 2000). A study on 

integrin-β7 mediated regulation of MM cells demonstrated its critical role in MM cell 

adhesion, migration, invasion and bone marrow homing (Damiano and Dalton, 2000). 

Another report on 16 relapsed MM patients shows highly expressed integrin-α8, newly 

discovered from gene expression profiling indicating towards EMT-like features of MM 

cells, causing migration, invasion and drug resistance (Jiyeon et al., 2016).  

RORA has effect on MM bone marrow microenvironment and bone homeostasis via integrin 

channels. It resides downstream to IL6 and TGFβ protein encoding genes and 

synergistically enforces lineage specification to uncommitted T helper cells into Th17 cells. 

It is already discussed how circadian rhythm, interleukins and T helper cells are speculated 

to co-predispose to MM. But in the current context, RORA is also shown to have interaction 

with hypoxia-inducible factor-1 alpha (HIF1-ɑ) in regulation of activation and 

transcriptional activity, a potent mediator of intergrin-β1 and therapeutic target for MM 

(Muz et al., 2014; Perrone et al., 2011). Integrin cell surface interaction pathway was 

enriched for MGUS. It along with discovery of related risk loci indicate interplay between 

cell adhesion and integrin pathways which is additionally supported by discovery of the 

platelet aggregation (plug information) pathway, crucial to adhesion mechanism in platelet 

and a regulatory agent to integrin signaling. 

Although it is very desirable to be able to explain disease burden commonality between 

MGUS and MM, a non-linear, possibly branched heterogeneous genetic progression binds 

several phases of MM disease family. Dorsoventral axis formation, KEGG autoimmune 

thyroid disease (hsa05330) and allograft rejection (hsa05320) pathways were discovered to 
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be enriched in all three pathway enrichment algorithms. Whereas the allograft rejection 

pathway is dependent on EGFR, MAPK1-3, and NOTCH1-3; and regulated by proto-

oncogenes such as KRAS and BRAF; both allograft rejection and autoimmune thyroid 

disease pathways are downstream to B cell receptor signaling pathway. Exploring pathway 

regulation among MGUS, SMM and MM, one study asserted KEGG allograft rejection 

pathway to be uniformly enriched among MGUS and SMM cell lines (Dong et al., 2015).  

Furthermore Demchenko et al. reported KEGG allograft rejection pathway and autoimmune 

thyroid disease pathway, both of which are enriched in the data, to be differentially 

regulated with most significance among all the MM cell lines tested (Demchenko et al., 

2010). Whilst RAS and BRAF family mutations and NOTCH pathways have been well-

discussed in myeloma literature, all of these hierarchy hints at a functional dependency 

among MGUS and MM. 

 

Algorithm novelty and computational efficiency 

By assessing genome-wide interaction with hierarchical case/control and case-only data 

together with subsequent follow-ups, this computational protocol reduces brute-force search 

to a comparably smaller genomic regions increasing efficiency and power of detection. 

Using the correlation-based test statistics and subsequently extending the interrogation of 

discovered signals against network and single-marker linear association detected signals a 

workflow is implemented to integrate statistical findings with biological knowledge base. 

Streamlining detection of risk loci with enriched protein-protein interacting networks to 

discover differentially regulated novel pathways facilitates understanding of disease 
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mechanisms and accumulates statistical evidence with biologically interpretable 

information. 

Genome-wide interaction analysis has thoroughly faced criticism in contemporary literature 

because of the computational burden needed to be handled keeping in mind the loss in 

genomic resolution due to the high number of tests. A ‘divide and conquer algorithm’ was 

used to tackle this problem. Rather than testing each variant against the other throughout the 

genome, the data sets were partitioned into 21 different sets corresponding to each of the 22 

autosomal chromosomes and comprised of all the downstream variants starting from first 

variant of each of the corresponding chromosome. Detection tests were parallelized in 21 

different loops. For an arbitrary chromosome A, the interaction tests were performed against 

all the SNPs corresponding to chromosome A against all the SNPs belonging to 

chromosomes A to 22 where A=1, 2, 3, ⋯, 22. Parallelizing the whole test space reduced the 

caveat of single run on large number of tests remarkably (Figure 12.1). As expected, 

significant reduction in computation time was observed in the parallelized algorithm 

compared to single run. A comprehensive prediction on computational time gain with a 

predictive simulation was also calculated. Treating time (computational time) as a 

dependent quantity solely explainable by number of tests performed, a polynomial fixed 

effects regression with intercept conforming to linearity assumption was simulated. 

Computational time prediction for a gross 28,133,824 tests (total number of pairs in 

discovery set) with the predictive model is approximately little less than 109 days compared 

to mere little over than an approximate 19 days for proposed algorithm. 
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Figure 12. 1| Computational efficiency of parallelized algorithm 
A single run reports a run time of approximately 109 days where as the parallelized run only take a little over than 19 days.
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Limitation 

The design of the analyses was developed in a way to have incorporated strict QC criteria in each 

individual step but certain caveats remain. Firstly, as genome wide-interaction is the main metric 

of investigation, the adequacy of sample size is a major concern. Although stringent QC and 

supervised selection mandated tests were performed, even a 0.1% level of significance would 

harbor a handful of false positive results. To counter this issue functional validation was of 

immense importance. The in-silico enrichment analyses provided convincing evidence referring 

to contextual biological processes but these results are not of causal nature and should be 

interpreted with caution. For better mechanistic understanding, confirmational studies need to be 

carried out with the repertoire of suggestive evidences provided here with before any definitive 

inference can be drawn. Secondly, inherited susceptibility to a phenotype is not always genetic. 

Pre/post-natal environment, Socio-economic environment and exposure to other environmental 

factors play a major role in a wide array of pathogenic development. Environmental exposure 

related MM predisposition is somewhat well-discussed but the same by no mean can be said true 

for MGUS due to its elusive asymptomatic nature. There are certain study designs for 

quantifying genetically heritable nature of a trait such as twin-studies, case-control studies in 

population with diverse ancestry. Such investigations are needed to understand (and to not 

overestimate) actuality of causal genetic aberrations in these diseases. Thirdly, although it is a 

multi-center study, the entire population is of European decent and the results need to be 

interpreted with this in mind. Arguably the recent development of reference panels from projects 

such as UK10K, HapMap consortium or 1000 Genomes provide data on densely genotyped 

panel primarily for western population implicating a bias towards experiment design. But none 

the less this is a major caveat in generalizability of the results. Additionally, association studies 

such as this are blind to causal regulators/enforcers that mask the genotypic effect. Impact of 
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metabolism, enzyme, hormonal or other biological process often act as triggers that activate 

downstream mis-regulation. Signals in common SNPs in encoding domain affecting such causal 

elements can be impossible to detect if the activation is not automatic or the phenotype can stay 

dormant until certain inciting event occurs. It is therefore advisable that only cautious and 

conservative inference be drawn from these results until further studies prove the validity of the 

speculations with definitive evidence. 

  

Conclusion 

In conclusion, the findings provide further evidence that MGUS and MM are primarily different 

phases of a family of plasma cell disorders with inherited genetic susceptibility that contribute to 

excess risk via regulation of an assortment of regulatory networks and pathways. Novelty of the 

investigation is firstly in interrogating risk predisposition mechanisms under a true polygenic 

assumption where low risk variants are not asymptotically nominalized as low penetrant 

background noise, rather is observed in pairs for shared mutual susceptibility. Secondly, in 

harmonizing GWAS summary statistics driven pathway, tissue, cell enrichment results with 

interaction detected signals. If bias due to design and sample is granted adequately controlled for, 

this study demonstrates that true biological signals are likely to overlap due to co-inheritance 

alluding to mechanistic link between risk loci and phenotype rather than elusive association 

signals where biological inference is left for the interpreter to speculate about. Thirdly the 

investigation identifies key regulators predisposing to MGUS and MM pathogenesis.  



Inherited genetic susceptibility to multiple myeloma and related diseases   

 

135 
 

Chapter 14: Inherited risk of SPCs in MM patients 

As the average survival of MM patients prolongs with change in therapeutics and 

management, diagnosis of SPCs has become more frequent and this study provides 

architecture for inherited familial risk of such SPCs. It also demonstrates that over the past 

few decades there has not been a population drift in diagnosis of MM and SPCs that can 

substantiate bias in observed effect due to age-period interaction in time of diagnosis. The 

Swedish study cohort of this analysis observed as high as 68.3% MM patients with a family 

history of cancer to have diagnosis of a SPC compared to that of 59.9% of those without 

such a family history. A recent study on the same cohort (with data until end of 2012) 

analyzed familial clustering of cancers with MM and reported almost uniform excess risk 

accumulation of MM with colorectal, prostate and some other cancer types while stratified 

over sex and type of first degree relative (parent / sibling) with the index caces (Frank et al., 

2015). For MM patients with family members having same cancer as was diagnosed as SPC 

in the patients, excess significant risk was also observed for colorectal, prostate and 

squamous cell skin cancer (section 11.3). This probably substantiates that genealogically 

inherited shared susceptibility manifests in already immunocompromised MM patients to 

develop subsequent primary cancer(s). 

The second novel observation was influence of SPC on survival of MM patients. It was 

shown that 60.6% of all SPC patients died by the end of 2015 following a moderately worse 

survival in comparison to those without, of whom 55.2% had died. Although having a 

family history of cancer did not increase mortality (59.3% dead), this may be owing to the 

small sample size of SPC patients even in a large nation-wide cohort. Additionally, the rate 

of survival in MM although increasing, is still relatively poor thereby affecting the time-
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window to have a diagnosis of SPC and maturity of follow-up for the patient cohort. Due to 

such caveats in sample size further analysis of hazard and survival or risk stratification on 

covariates was not carried out. In addition, the cancer register lacks data on behavioral 

patterns, clinical data on diagnosis and other possible variables that could have been treated 

as explanatory factors reducing probability of confounding as well as adjusting for inherent 

variation in data. 

Therapy related SPCs have been largely characterized in MM in several studies many of 

which recorded increased risk of t/s-acute myeloid leukemia (therapy related/secondary) and 

this trend overlaps with the recent finding in the Swedish cohort (Chen et al., 2016; Musto 

et al., 2018). And part of the study cohort that overlaps with the cohort used in that study 

shows a more than four-fold increased risk of leukemia (non-familial patients). 

Additionally, recently effect of family history on development of SPC has been investigated 

for a large number of hematological malignancies where a similar familial clustering is also 

observed (Chattopadhyay et al., 2018b; Chattopadhyay et al., 2018d; Sud et al., 2017b). 

Although therapy-induced deleterious effects are still considered weak in MM and 

proportion of diagnosis of SPC or secondary cancers are not in much excess (Yang et al., 

2012), one can speculate that this picture will change when a larger group of patients will 

achieve longer survival (Musto et al., 2018). With continued therapeutic successes in MM 

management SPCs will be receiving increasing attention and this study shows family history 

information is crucial in evaluating strategies for long-term follow-up and possible 

screening of all patients with MM. 
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Main findings of the study 

There are certain novel insights that this study provides the reader with: 

1. Inherited susceptibility to MGUS and MM is possibly truly polygenic where temporal 

aggregation of risk due to co-inherited common variations contributes to predisposition.  

2. In MGUS, common SNPs in cancer predisposing domains (SETBP1, ALK) were found 

in interaction with MM risk loci such as PREX1or previously discovered MGUS risk 

loci GLCCTI1 to exert excess inherited risk. 

3. Two major pathways are differentially regulated in MGUS; B cell receptor signaling and 

EGFR downregulation pathway. The identified risk loci in interaction analyses have 

involvement in these two pathways that may highlight further underlying mechanisms. 

4. MM is also influenced by polygenic inherited risk intrinsically exerted by co-inherited 

common SNPs in interaction. Strongest signals were observed from genes that have key 

roles in cellular growth, differentiation, survival and apoptosis. 

5. GNAQ, IRF8, PDE3B, ZNF229, RUNX1, HDAC9 are some of the signals discovered in 

interaction that predispose to MM. These loci collectively play crucial role in MM 

biology via processes such as and not restricted to Ig trait modulation, osteoclast 

genesis, T helper cell development, interleukin secretion, bone marrow 

microenvironment mediation in creating MM niche. 

6. Two dominant signaling cascades were identified to have shown that TGFβ signaling 

through its signal transducers SMADs and circadian rhythm regulation by RORA as 

well as REV-ERBA influence Ig class switch recombination, Th17 cell differentiation 
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and bone morphogenesis and may provide a mechanistic link between the predisposition 

markers of MGUS and intrinsic biology of progression to MM. 

7. Family history of cancer makes MM patients susceptible to development of SPCs. As 

cancer predominantly is a disease developed due to accumulation of genetic aberrations, 

patients with prior history of cancer in family probably inherit certain genetic variations 

and/or share detrimental exposure of environmental factors which render them prone to 

develop subsequent primary cancers. 

8. Concordant family history of leukemia, lung, squamous cell skin cancer and melanoma 

increases risk of SPC at the same site in MM patients by more than 5 folds compared to 

the patients without; whereas that for colorectal cancer is little over than 2 fold and for 

prostate cancer is 1.6 fold. 

9. Beside squamous cell skin cancer, there was hardly any evidence found for more than 

additive or multiplicative interaction between individual, family history of a cancer and 

MM.   

10. Family history of cancer in MM patients with SPC does not alter mortality patterns. As 

overall survival in MM is gradually improving with better-quality management, this 

indicates that efforts in reducing SPC diagnosis by screening with family history 

information will have positive impact on survival of MM patients. 
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Outlook 

The evidence of inherited genetic susceptibility to MGUS and MM observed in this study 

answers some key issues but also brings up some questions. Firstly, if there is non-random 

mechanism to the progression of MGUS to MM and that is also true with AL amyloidosis, 

what is the shared genetic origin of the three diseases? Secondly, although the pathogenic 

consequences of the three disorders are different and heterogeneous, how far apart are they? 

And thirdly, Since MGUS precedes MM and AL amyloidosis, how much genetic correlation 

is present among the patients? 

The extension of the current study will try to address these questions initially by aggregating 

cohorts for these three disorders and analyzing genetic correlation as well as shared 

heritability. Then phenotypic dependency-corrected meta-analysis and differential 

enrichment would be applied to investigate further into the issue. 
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Summary 

Monoclonal gammopathy of undetermined significance is the most common plasma cell 

dyscrasia present in as high as 3.2% of general population below 50 years of age and up to 6.6% 

for population aged 80 years or older. It is a premalignant precursor of multiple myeloma, a 

malignant hematological neoplasia. People with monoclonal gammopathy go on to develop 

myeloma at a yearly rate of 0.5 - 1%. With a crude rate of incidence of 6.5 per 100,000 people, 

Europe is set to observe around 48,000 new multiple myeloma diagnosis in 2018. Overall 

prognosis of myeloma has not been very favorable throughout history nonetheless survival of 

myeloma patients is improving incrementally over the past few decades due to better 

management and improved treatment modality. This increased survival led to an increased 

number of second primary cancer diagnosis. Environmental factors, chemotherapy and 

radiotherapy induced DNA damage, wide-spread use of alkylating agents and possible induction 

of immunosuppressed state has been speculated to contribute to this. The fact that both the two 

diseases show familial clustering and all myeloma diagnoses are preceded by monoclonal 

gammopathy indicates that there is a certain amount of inherited susceptibility to these diseases. 

In the current study, the quantity under investigation is inherited genetic susceptibility to 

monoclonal gammopathy and multiple myeloma as well as the familial risk of second cancers. 

Three sets were queried for monoclonal gammopathy consisting genotype data on 243, 82 and 

326 German individuals respectively identified during routine follow-up of unrelated condition. 

These three sets were used to carry out separate case-control and case-only discovery, validation 

and replication studies. For myeloma, patients were recruited from two separate trials in 

Germany and UK. The German trial consisted of 1717 myeloma patients where as the one in UK 

recruited 2282 patients. Controls for the investigations were obtained from Heinz-Nixdorf Recall 

study samples and Welcome Trust Case-Control Consortium samples. For expression 

quantitative trait analysis, gene expression data was obtained from plasma cell samples of 665 

patients enrolled in the German trial. Written consents were obtained from the trial subjects and 

approval for the studies was procured from respective ethics review board. For the observational 

study of second cancers, the Swedish Family Cancer Database was used which includes data on 

all cancer diagnosis in Sweden starting 1958. This database was queried for information on about 

2.1 million Swedish residents with cancers matched with their biological parents (when 

available). 
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The interaction analyses with genotype data identified a number of paired susceptibility loci 

for monoclonal gammopathy and myeloma. These loci were found to have key roles in myeloma 

biology via processes such as and not restricted to Ig trait modulation, osteoclast genesis, Th cell 

development, interleukin secretion, bone marrow microenvironment mediation in creating 

myeloma niche. While subjected to enrichment analyses major biological pathways were 

discovered including EGFR downregulation and B cell receptor signaling pathway for 

monoclonal gammopathy and Circadian rhythm mediation and SMAD dependent TGFβ 

activation pathways in myeloma. As some of the pathways and loci were shown shared between 

monoclonal gammopathy and myeloma, the findings allude to shared inherited susceptibility to 

the two disorders. Interrogating risk of second cancer in myeloma patients stratified by history of 

cancer among first degree relatives, numerous cancers were noted to have excess familial risk 

and overall close to a 1.4-fold increased risk of second cancer was noted among people with an 

existing family history. Concordant family history of leukemia, lung, squamous cell skin cancer 

and melanoma increased risk of second cancers at the same site in myeloma patients by more 

than 5 folds compared to the patients without; whereas that for colorectal cancer is little over 

than 2-fold and for prostate cancer is 1.6-fold. Although family history was found to have a 

strong effect on incidence of second cancers no such effect was found in mortality pattern. No 

linear or multiplicative interaction was found in risks among personal, family history with 

history of myeloma. 

All the results indicate there are certain underlying mechanistic principle relating monoclonal 

gammopathy to myeloma which is regulated by inherited polygenic predisposition to monoclonal 

gammopathy and myeloma. This study speculates about possible pathways and networks that are 

influenced in these diseases but conformational studies need to be carried out before any 

definitive conclusion can be drawn. However, in context of second cancers in myeloma patients, 

family history of cancer was conclusively shown to have morbid impact on incidence but lack of 

any such impact on patient survival was also observed which mean efforts in managing second 

cancer diagnosis by screening with family history information will have positive impact on 

survival in multiple myeloma. 
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Zusammenfassung 

Die Monoklonale Gammopathie unklarer Signifikanz ist mit einer Prävalenz von 3,2% in der 

Bevölkerung unter 50 Jahren beziehungsweise 6,6% in der Bevölkerung über 80 Jahren die häufigste 

Plasmazellerkrankung. Diese Krankheit ist die Vorstufe des Multiplen Myeloms, einer malignen 

hämatologischen Neoplasie. Menschen mit MGUS entwickeln MM mit einer jährlichen Rate von 0,5 - 

1%.Mit einer Inzidenz von 6,5/100.000 sind im Jahr 2018 in Europa 48.000 Neudiagnosen des Multiplen 

Myeloms zu erwarten. Obwohl MM immer noch eine tödliche krankheit ist, hat sich die Prognose von 

Patienten mit Multiplem Myelom  in den letzten Jahrzehnten durch die Entwicklung neuer 

Behandlungsmodalitäten kontinuierlich verbessert. Die erhöhte Überlebensrate hat zu einer erhöhten 

Diagnoserate von zweiten Primärtumoren (second primary cancer) in Myelom-Patienten geführt. Es wird 

spekuliert, dass verschiedene Umweltfaktoren, Chemo- und Radiotherapie-induzierte DNA-Schäden und 

eine mögliche Induktion eines immunsupprimierten Zustands dazu beitragen. Die Tatsache, dass sowohl 

die Monoklonale Gammopathie unklarer Signifikanz als auch das Multiple Myelom familiär gehäuft 

auftreten und alle Myelom-Diagnosen aus einer Monoklonalen Gammopathie unklarer Signifikanz 

hervorgehen, weist darauf hin, dass es eine gewisse erbliche Anfälligkeit für diese Krankheiten gibt. In 

dieser Studie wird diese genetisch bedingte Anfälligkeit für die Monoklonale Gammopathie unklarer 

Signifikanz und das Multiple Myelom sowie das familiäre Risiko eines nach dem Multiplen Myelom 

auftretenden zweiten Primärtumors untersucht. 

Für die Studie der Monoklonale Gammopathie unklarer Signifikanz wurden drei Datensätze mit 

Daten aus den genomweiten Assoziationsstudien analyziert, die aus 243, 82 und 328 Personen deutscher 

Herkunft bestanden. Die Identifikation dieser Personen erfolgte durch routinemäßige Untersuchung eines 

nicht zusammenhängenden Zustands. Diese drei Datensätze wurden angewandt, um Fall-(Kontroll)-

Beobachtungs-, Validierungs- und Replikationsstudien durchzuführen. Für das Multiple Myelom wurden 

Patienten aus zwei separaten Studien in Deutschland und Großbritannien rekrutiert. Die deutsche Studie 

bestand aus 1717 und die englische aus 2282 Patienten. Die Kontrolldaten wurden von der Heinz-

Nixdorf-Recall-Studie für den deutschen Datensatz und von dem Welcome-Trust-Case-Control-

Consortium für den englischen Datensatz erhalten. Für Expression Quantitative Trait Analysis wurden 

Gen-Expressionsdaten von Plasmazellproben von 656 Patienten, eingebunden in der deutschen Studie, 

verwendet. Schriftliche Einverständniserklärungen wurden von den Studienteilnehmern erhalten. Die 

Zulassung der Studien waren von den jeweiligen Ethikkomitees geboten. Für die Beobachtungsstudie von 

zweiten Primärtumoren wurde die Swedish Family Cancer Database verwendet, welche Daten über alle 

Krebsdiagnosen ab 1958 in Schweden umfasst. Diese Datenbank wurde für Informationen von circa 2,1 
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Millionen schwedischen, an Krebs erkrankten Einwohnern mit Einbindung von Informationen der 

biologischen Eltern (wenn vorhanden) befragt.  

Die Interaktionsanalyse mit Genotyp-Informationen identifizierte gepaarte Suszeptibilitäts-Loci 

für die Monoklonale Gammopathie unklarer Signifikanz und das Multiple Myelom. Es wurde festgestellt, 

dass diese Loci eine Schlüsselrolle in der Biologie des Multiplen Myeloms unter anderem über die 

folgende Prozesse spielen: Immunglobulinproduktion, Osteoklastengenese, Entwicklung von T-

Helferzellen, Interleukinsekretion und Knochenmark-Mikroumgebung,. Die Anreicherungsanalysen 

zeigten wichtige biologische Pathways wie die EGFR-Downregulation und den B-Zell-Rezeptor-

Signalweg bei der Monoklonalen Gammopathie unklarer Signifikanz sowie die Mediation des 

zirkadianen Rhythmus und SMAD-abhängige TGFβ-Aktivierungswege beim Multiplen Myelom. Da 

einige dieser Pathways und Genloci sowohl bei der Monoklonalen Gammopathie unklarer Signifikanz, als 

auch beim Multiplen Myelom gefunden werden konnten, legen die Ergebnisse nahe, dass eine 

gemeinsame vererbbare Suszeptibilität beider Krankheiten besteht. Die Risikoabschätzung von zweiten 

Primärtumoren in Multiplen-Myelom-Patienten, stratifiziert nach der Krebsvorgeschichte unter den 

Verwandten ersten Grades, zeigten einige Krebsarten mit einem erhöhten familiären Risiko. Insgesamt 

bestand bei den Individuuen familiärer Vorbelastung ein 1,4-fach erhöhtes Risiko, einen zweiten 

Primärtumor zu entwickeln. Die onkolgische Familiengeschichte von Leukämie, Lungenkrebs, 

Plattenepithelkarzinom der Haut und vom Melanom führte zu einem jeweils fünffach-erhöhten Risiko 

eines konkordanten zweiten Primärtumors in Multiplen-Myelom-Patienten im Vergleich zu Patienten 

ohne familiäre Vorbelastung. Für Kolorektalkrebs war dieses Risiko mehr als zweifach und für 

Prostatakrebs 1,6-fach erhöht. Auch wenn die familiäre Krebsvorgeschichte die Inzidenz eines zweiten 

Primärtumors erhöht, nimmt sie keinen Einfluss auf die Mortalität. Zudem wurde keine lineare oder 

multiplikative Wechselwirkung zwischen individueller Krebsvorbelastung, familiärer Krebsvorgeschichte 

und der Diagnose des Multiplen Myeloms gefunden. 

Die Ergebnisse weisen darauf hin, dass die grundlegenden Mechanismen, welche die 

Monoklonale Gammopathie unklarer Signifikanz mit dem Multiplen Myelom verbinden, von der 

entsprechenden vererbbaren, polygenetischen Prädisposition abhängen. Diese Studie spekuliert über 

mögliche  Pathways und Netzwerke, die in diesen Krankheiten verändert sind. Bevor jedoch endgültige 

Schlussfolgerungen gemacht werden können, sind weitere Bestätigungsstudien notwendig. Dennoch 

konnte abschließend gezeigt werden, dass eine familiäre Krebsvorbelastung bei Multiplen-Myelom-

Patienten mit zweiten Primärtumoren einen Einfluss auf die Inzidenz, aber nicht auf das 

Patientenüberleben hat. Das Ziel ist es, durch ein verbessertes Patientenscreening die Früherkennung 

eines zweiten Primärtumors zu gewährleisten, und dadurch die Überlebenschancen von Multiplen-

Myelom-Patienten zu verbessern.  
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