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Abbreviations 

5-FU 5-fluorouracil 
μl Microliter 
μg Microgram 
ABC ATP binding cassette 
AKT Protein kinase B 
AML Acute myeloid leukemia  
AMP Ampicillin 
AP-1 Activator protein 1 
Apaf-1 Apoptotic Protease Activating Factor 1 
APTX Aprataxin 
ATCC American Type Culture Collection 
ATM Ataxia-Telangiectasia Mutated 
ATP Adensosin Triphosphate 
ATR ATM and Rad3 Related 
ATRIP ATR interacting protein 
BAX Bcl-2 Associated X Protein 
BBC3 BCL2 binding component 3 
BCA Bicinchoninic acid 
Bcl-2 B-cell lymphoma 2 
BER Base Excision Repair 
BH3 Bcl-2 homology 3 
bp Base Pairs 
BRCA1 Breast Cancer 1 
BSA Bovin serum albumin 
CaM Ca2+ binding to calmodulin 
CBP CREB-binding protein 
CDKN1A Cyclin Dependent Kinase Inhibitor 1A 
CDKN2A Cyclin Dependent Kinase Inhibitor 2A 
ChIP Chromatin immunoprecipitation 
Chk1 Checkpoint Kinase 1 
Chk2 Checkpoint Kinase 2 
COUPTF Chicken ovalbumin upstream promoter 

transcription factor 
CSCs Cancer stem cells 
CtBP C-terminal-binding protein 
CTCF CCCTC-binding factor 
°C Degree celcius 
ds Double strand 
DAD Deacetylase activation domain 
DAX1 Dosage-sensitive sex reversal, adrenal hypoplasia 

critical region, on chromosome X, gene 1 
DBD DNA Binding Domain 
DDR DNA damage response 
DISC Death inducing signaling complex 
DKFZ German Cancer Research Center 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
DNA-PKcs DNA-Dependent Protein Kinase catalytic subunit 
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DNMT DNA methyltransferase 
dNTP Deoxyribonucleotides 
Dox Doxorubicin 
DR Death receptor 
DREAM Dimerization partner, RB-like, E2F and multi-vulval 

class B 
DSB DNA double strand break 
E4F1 E4F Transcription Factor 1 
ECM Extra-cellular matrix 
E. coli Escherichia coli 
EGFR Epidermal growth factor receptor 
ER Estrogen receptors 
ESC Embryonic stem cells 
et al. et alteri 
FACS Fluoresence Activated Cell Sorting 
FADD Fas-associated death domain 
FBS Fetal bovine serum 
FDA Food and drug administration 
FITC Fluorescein isothiocyanate 
FOXO Forkhead box O 
g Gram 
GLUT1 Glucose transporter 1 
GO Gene ontology 
GOF Gain-of-function 
GPS2 G Protein Pathway Suppressor 2 
GSH Glutathione 
GST Glutathione S-Transferase 
h hours 
H2AX H2A histone family member X 
HAT Histone acetyltransferase 
HCT116 Human colon cancer cells 
HDAC Histone Deacetylase 
HID Histone interaction domain 
HIPK2 Htiomeodomain-interacting kinase 2 
His Polyhistidine 
hMOF Human males absent on the first 
HR Homologous recombination 
HRP Horseradish peroxidase 
HSCs Hematopoietic stem cells 
ID Interaction domain 
IgG Immunoglobulin G 
INPP5D Inositol Polyphosphate-5-Phosphatase D 
IP Immunoprecipitation 
IPTG Isopropyl β-D-1-thiogalactopyranoside 
IR Ionizing radiation 
kb Kilobase 
kd Kilodalton 
l Liter 
LB Lysogeny Broth 
LBD Ligand-binding domain 
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LisH Lis Homology 
Lys Lysine 
M Molar 
MCF-7 Human breast adenocarcinoma cell line 
MDM2 Murine double minute 2 
min Minute 
ml Milliliter 
MLH1 MutL Homolog 1 
MMR Mismatch Repair 
MRN Mre11-Rad50-Nbs1 
MSCs Mesenchymal stem cells 
MSH2 MutS Homolog 2 
MYBL2 MYB Proto-Oncogene Like 2 
NAFLD Non-alcoholic fatty liver disease 
NCoR Nuclear Receptor Corepressor 
NER Nucleotide Excision Repair 
ng Nanogram 
NGS Next-Generation Sequencing 
NHEJ Non-Homologous End Joining 
nm Nanometer 
Noxa BH-only member of the BCL-2 family 
NR Nuclear Receptors 
ns Not significant 
OASD Ocular Albinism with Sensorineural Deafness 
ON Over night 
p Significance 
PARP Poly ADP ribose polymerase 
PBS Phosphate buffered saline 
PCAF p300/CBP-Associated Factor 
PCR Polymerase Chain Reaction 
PD-1 Programmed cell death protein 1 
PD-L1 Programmed death-ligand 1 
PDAC Pancreatic ductal adenocarcinoma 
Pen/Strep Penicillin/Strptomycin 
PHLDA3 Pleckstrin Homology Like Domain Family A 

Member 3 
PI Propidium Iodide 
PI3K Phosphatidylinositol-3-kinase 
Pit-1 POU Class 1 Homeobox 1 
PPAR Peroxisome proliferator activated receptor 
PTM Posttranslational Modification 
PUMA p53 Upregulated Modulator of Apoptosis 
PVDF Polyvinylidene fluoride 
RC Restrictive combination 
RD Repression domain 
RNA Ribonucleic acid 
ROS Reactive oxygen species 
RPA Replication protein A 
rpm Revolutions per minute 
RT Reverse Transcriptase 
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RT Room Temperature 
SANT SW13/ADA2/NCoR/TFIIB 
SDS Sodiumdodecylsulfate 
SDS-PAGE SDS polyacrylamide gel electrophoresis 
SENP1 SUMO specific protease I 
Ser Serine 
Siah1 seven in absentia homolog 1 
SLC7A11 Solute carrier family 7 member 11 
SMRT Silencing Mediator of the Retinoid and Thyroid 

Hormone Receptors 
ss Single Strand 
SSB Single Strand Break 
SUMO Small Ubiquitin-Related Modifier 
TAD Transactivation Domain 
TAE Tris-Acetate-EDTA 
TE Tris-EDTA 
TBL1 Transducin β-like protein 1 
TBLR1 Transducin β-like related 1 
TEMED Tetramethylethylenediamine 
TET Ten-eleven translocation 
TLS Translesion synthesis 
TNF Tumor Necrosis Factor 
TNFR Tumor Necrosis Factor Receptor 
TNFRSF10C TNF Receptor Superfamily Member 10c 
TopBP1 DNA Topoisomerase II Binding Protein 1 
TR Thyroid Hormone Receptor 
TRADD TNFR-1-associated death domain 
TRAIL TNF related apoptosis inducing ligand 
TS Template switching 
U2OS Human Bone Osteosarcoma Epithelial Cells 
U.S. United States 
UV Ultraviolet 
V Volt 
v/v Volume per volume 
Vol Volume 
wt Wildtype 
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1 Introduction 

1.1 Cancer, cancer treatment and cancer drug resistance 

Cancer is one of the leading causes of death all over the world. There are several 

typical hallmarks of cancer cells, like transformation, metastasis and immortality. 

They do not behave like normal cells, which would die when they grow old or 

become damaged and replaced by new cells. Cancer cells would not stop dividing 

and become more and more abnormal. If tumours are benign, which means they do 

not spread into surrounding tissues, they do not come back if they are removed. 

Unlike benign tumours, malignant tumours can invade nearby tissues. In addition, 

some cancer cells can leave their original site and travel to distant organs through 

the blood or the lymph system and form new tumours, which is a big challenge for 

clinical treatment (Carter et al., 1989, Elston and Ellis, 1991, Maheswaran and 

Haber, 2010).  

In the past several decades, the landscape of tumour treatment has largely changed. 

In addition to surgery, chemotherapy and radiotherapy, targeted cancer therapy and 

cancer immunotherapy have come to the forefront. As the name suggested, targeted 

cancer therapy is to interfere with specific genes or proteins involved in 

tumourigenesis. Monoclonal antibodies, immunomodulators and small molecule 

inhibitors are three main types of targeted therapies. Even though different cancer 

types and the same cancer type in individual people have different driving mutations, 

it is also obvious that some aberrations appear in a broad range of cancers. Since 

2000, the United States (U.S.) food and drug administration (FDA) has approved 

over 15 targeted cancer therapies (Baudino, 2015). 

Cancer immunotherapy is to use immune system to eliminate tumour cells. At the 

moment, several strategies are used to augment the patients’ immune system 

targeting tumour cells, including adoptive cell therapies, vaccines and antibodies 

against immune checkpoint inhibitors, like programmed death-1 (PD-1) receptor on T 

cells and its ligand PD-L1. Although they have shown promising results in only a few 

malignancies to date, now they are further developed in other tumour entities, which 

is expected to broadly benefit patients (Oiseth et al., 2017).  
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Despite its limitations and adverse effects, currently conventional cancer therapies 

are still the most common treatments for cancer. This is mainly due to its good 

effectiveness and comparatively low cost. There are two major ways how 

chemotherapeutic agents inhibit cancer growth: One is to impair mitosis and the 

other is to induce apoptosis by causing DNA damage (Lind, 2011, Makin and 

Hickman, 2000, Malhotra and Perry, 2003). Cancer cells are known to show high 

growth rates and uncontrolled cell division. As chemotherapy affects cell division, 

quickly dividing cancer cells are more sensitive to chemotherapy (Corrie, 2011).  

One of the major challenges in cancer treatment is chemoresistance which often 

results in treatment failure and sometimes makes cancer cells even more aggressive 

(Margaret et al., 2014, Szakacs et al., 2006). There are two types of 

chemoresistance: intrinsic resistance and acquired resistance (Fig. 1). Intrinsic 

resistance means that cancer cells were already chemo-resistant even before they 

were exposed to anti-cancer drugs. Conversely, acquired resistance means that 

initially, the cancer cells are sensitive to anti-cancer drugs but later develop a 

resistance against them (Abdullah and Chow, 2013, Tapia and Diaz-Padill, 2013).  
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Fig. 1: Intrinsic and acquired resistance. The common mechanisms of intrinsic 

chemoresistance include adenosine triphosphate (ATP) binding cassette (ABC) transporters 

to lower drug concentrations within cells, cytochrome p450 and glutathione transferases to 

degrade drugs, poor vascularization and extracellular matrix (ECM) interactions. The 

common mechanisms of acquired chemoresistance include modulation of the expression of 

genes that drive increased anti-apoptotic signaling (e.g. xIAP/cIAP, BCL-2, BCL-XL and 

MCL-1), DNA repair capacity, drug target alteration and changes to ECM-collagen VI surface 

proteins (taken from Robert 2017).  

 

Chemoresistance is a complex network of many different endo- and exogenous 

mechanisms. It was recently hypothesized that a small fraction of cancer stem cells 

(CSCs) with the ability of self-renewal and recreating a full repertoire of cancer cells 

plays an important role in chemoresistance (Abdullah and Chow, 2013). Therefore, it 

is not surprising that tumours can never be completely eliminated upon 

chemotherapy, because CSCs are not targeted by chemotherapy and repopulate 

afterwards, leading to tumour recurrence or relapse. The mutation of oncogenes and 

tumour suppressor genes also contribute to drug resistance (Hanahan and 

Weinberg, 2011). One of the most popular examples is the tumour suppressor gene 

p53 which is a key executor in the DNA damage response (DDR). Many anti-cancer 

drugs directly activate the DDR in order to induce cell cycle arrest or apoptosis in 

cancer cells by regulating p53 activity. However, p53 is mutated or deleted in more 

than half of all human cancers increasing the drug resistance of the cancer cells 

(Khoo et al., 2014). Furthermore, the tumour microenvironment plays an important 

role in the development of chemoresistance in terms of oxygen status, the amount of 

extracellular matrix (ECM) proteins, and the presence of stromal cells (Tadeo et al., 

2017, Mumenthaler et al., 2015, Gentric et al., 2017, Chan et al., 2016). For 

example, ECM proteins could either bind to drugs directly or form barriers impeding 

the delivery of drugs to the centre of the tumour (Gjorevski et al., 2016, Affo et al., 

2017).  

However, chemotherapy non-selectively targets both healthy and cancer cells 

(Partridge et al., 2001). Additionally, because chemotherapy mainly kills rapidly 

dividing cells, the slowly dividing CSCs cannot be effectively eliminated. One 

approach that could potentially reduce chemoresistance is to combine two or more 
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therapeutic agents or methods which could enhance efficiency compared to the 

conventional monotherapy. Combination therapy including agents which target CSCs 

(e.g. gamma-secretase inhibitors and Notch inhibitors) would attenuate drug 

resistance and reduce the risk for tumour recurrence and relapse (Takebe et al., 

2015). Furthermore, since the drugs are already FDA-approved, the overall costs 

would be reduced. In a recent study, researchers investigated and optimized 

combinational administration of chemotherapy and photothermal therapy. They 

found that if chemotherapy is administered before photothermal treatment, 

therapeutic outcomes are much better compared to other administration sequences 

(Zhu et al., 2018). 

The more advanced stage for combination therapy is the so-called restrictive 

combination (RC). This strategy includes a more specific dosing and drug 

administration with the aim to selectively kill cancer cells, but spare out the healthy 

cells. Using the molecular differences between healthy and cancer cells (e.g. 

increased number of growth factor receptors, driver gene mutations, etc.), restrictive 

regimens are designed to specifically target cancer cells (Blagosklonny, 2008). For 

example, cell cycle arrest inducing agents are applied to induce cell cycle arrest in 

normal cells for treating tumours with mutated or deleted p53. Then drugs that have 

targeted cytotoxic effect on quickly dividing cells could be used to eliminate cancer 

cells with high grow rates (Blagosklonny, 2008).  

In order to overcome chemoresistance the development of drugs inducing 

chemosensitivity should be taken into consideration. Conventional cytotoxic agents 

could be used in combination with drugs that effectively circumvent intrinsic and 

adaptive drug resistance in order to improve therapy outcomes (Holohan et al., 

2013). Furthermore, advanced high throughput screening methods can be helpful to 

predict the responses of different tumours to specific combination therapies.  

 

1.2 The DNA Damage Response 

1.2.1 DDR and DDR signaling 

DNA damage is permanently happening in every cell of the human body with a 

frequency of up to 105 DNA lesions per day per cell (Hoeijmakers, 2009). In contrast 
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to DNA mutations which are changes in the nucleotide sequence, DNA damage 

includes changes in the structure of DNA, such as DNA double strand breaks 

(DSBs), DNA single strand break (SSBs) and DNA lesions (Köhler et al., 2016).  

The DDR is an essential system that protects genome stability and prevents cancer 

formation (Jackson and Bartek, 2009) (Fig. 2). In response to DNA damage, DDR 

signaling is activated to induce DNA repair, cell cycle arrest or apoptosis (Bartek et 

al., 2007). Similar to other signaling pathways, there are many sensor, transducer 

and effector proteins involved in DDR (Zhou and Elledge, 2000). The sensor proteins 

first detect the aberrant DNA structures which were induced by DNA damage and 

subsequently activate upstream DDR kinases. The ataxia-telangiectasia mutated 

(ATM), ATM- and Rad3-Related (ATR) and DNA-dependent protein kinase catalytic 

subunit (DNA-PKcs) kinases are the three major upstream DDR kinases (Abraham, 

2001, Caporali et al., 2004, Zhou and Bartek, 2004). In contrast to ATM or ATR, 

DNA-PKcs seems to regulate only a small number of targets and primarily play a role 

in non-homologous end joining (NHEJ ) (Burma et al., 2006).  

ATM is mainly activated by DSBs and recruited by the DSB-recognizing protein 

complex Mre11-Rad50-Nbs1 (MRN). MRN is one of the first factor recruited to DSBs 

and is required for rapid localization of ATM to DSBs site as well as its activation 

(Uziel et al., 2003). ATM phosphorylates a large number of adapter and transducer 

proteins which ultimately activate downstream effectors such as checkpoint kinase 2 

(Chk2), breast cancer 1 (BRCA1) and p53 to mediate the relevant DNA damage 

response (Lavin, 2008, Shiloh, 2003). In addition, ATM also phosphorylates the 

histone variant H2A histone family member X (H2AX) on the chromatin resulting in 

γH2AX which localizes to DSBs and hence is known to be a marker for DSBs. 

Although phosphorylation of H2AX is not essential to activate downstream effectors, 

it is required to recruit DNA repair proteins and chromatin-remodelling complexes 

around DSBs (Lukas et al., 2011).   

ATR is activated by wide range of different DNA lesions, including SSBs. The major 

mechanism of ATR activation is initiated by binding of the replication protein 

A (RPA), which is a single strand (ss) DNA-binding protein complex. ATR interacting 

protein (ATRIP) binds directly to RPA-coated ssDNA and enables ATR-ATRIP 

complex to localize to the site of damage. Ultimately, this leads to the activation of 
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downstream substrates like checkpoint kinase 1 (Chk1) (Tibbetts et al., 2000). 

Furthermore, ATR and some of its substrates are also localized to damaged DNA 

sites in a DDR-independent manner to enhance the local concentrations of these 

proteins (Chen and Sanchez, 2004). Moreover, ATR gets also activated upon the 

junction of ssDNA and double strand (ds) DNA (Ellison and Stillman, 2003).  

Although ATM and ATR have different properties, it has become clear that their DDR 

signaling pathways do overlap to a certain extent. ATR has been shown to 

phosphorylate ATM at Ser1981 in response to DNA replication stress (Stiff et al., 

2006). In contrast, ATM regulates ATR activation via phosphorylation of DNA 

Topoisomerase II Binding Protein 1 (TopBP1) (Cuadrado et al., 2006, Yoo et al., 

2007). Additionally, ATM may also promote the recruitment of TopBP1 to DNA 

damage sites by γH2AX and mediator of DNA damage checkpoint protein 1 (Mdc1) 

(Wang et al., 2011). On the other hand, ATR does phosphorylate H2AX upon DNA 

replication stress which leads to the recruitment of ATM to the chromatin adjacent to 

stressed replication forks (Ward and Chen, 2001). 
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Fig. 2: DNA Damage Response. Schematic overview of DDR including examples of 

sensors, transducers and effectors. Proteins involved in this signaling pathways are 

promising therapeutic targets. However, cancer cells frequently develop genetic variations 

leading to therapy resistance (taken from Li 2016). 

 

1.2.2 Apoptosis 

Irreparable DNA damage induces programmed cell death. Until recently, the terms 

“programmed cell death” and “apoptosis” were used synonymously. However, now 

other types of programmed cell death that are non-apoptotic have been described, 

such as necroptosis, pyroptosis and the recently discovered ferroptosis (Dixon et al., 

2012, Wallach et al., 2016). Apoptosis plays an important role in human physiology 

from embryonic development to execution of immune effector functions (Green, 

2011). However, too much apoptosis can lead to neurodegenerative diseases like 

Parkinson's disease or Alzheimer's disease, whereas too little apoptosis might result 

in autoimmunity (Mattson, 2000, Nagata, 2010). Apoptosis is regulated by a set of 

caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent 

aspartate-directed proteases) which are synthesized as inactive precursor proteins 

and get activated upon specific cleavages when apoptosis is initiated (Taylor et al., 

2008). The caspases 2, 3 and 6-10 are involved in apoptosis while other caspases 

like caspase 1, 4 and 5 mediate pyroptosis (Taylor et al., 2008). The executioner 

caspases 3 and 7 are responsible for ultimately killing cells and the resulting 

apoptotic bodies are removed by macrophages (deCathelineau and Henson, 2003). 

Apoptosis is mediated by two pathways: the intrinsic pathway (also called 

mitochondrial pathway) and the extrinsic pathway (also called death receptor 

pathway) (Riedl and Salvesen, 2007). Different intracellular stimuli like DNA damage 

or lack of growth factor initiate the intrinsic apoptotic pathway, which is regulated by 

the B-cell lymphoma 2 (Bcl-2) protein family. There are three subfamilies of Bcl-2 

proteins: pro-apoptotic Bcl-2 homology 3 (BH3)-only members (Bim, Bid, PUMA, 

Noxa, Hrk, Bmf, and Bad), pro-apoptotic effector proteins (Bax and Bak), and anti-

apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, Mcl1, A1, and Bcl-B) (Czabotar et al., 

2014). Once apoptosis is initiated, BH3-only proteins antagonize the anti-apoptotic 

Bcl-2 family members and activate Bax and Bak that forms pores in the 

https://en.wikipedia.org/wiki/Sequence_homology
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mitochondrial membrane, which permeabilize mitochondrial membrane and stimulate 

the release of cytochrome c from the mitochondrial. The released cytochrome c 

forms a cytoplasmic complex with apoptotic protease activating factor 1 (Apaf-1) that 

induces caspase 3 activation (Tait and Green, 2010). 

The extrinsic pathway is triggered by external factors that are recognized by death 

receptor (DR) family members, such as Fas/CD95, tumour necrosis factor (TNF) 

receptor 1 (TNFR-1) or TNF related apoptosis inducing ligand (TRAIL) receptors DR-

4 and DR-5 (Nowsheen and Yang, 2012). After ligand binding, DRs trimerize and 

transmit the apoptotic signal to their intracellular death domain. Upon binding to the 

TNFR-1-associated death domain (TRADD) or Fas-associated death domain protein 

(FADD), the death inducing signaling complex (DISC) is formed. This complex 

activates caspase 8 and 10 which lead to widespread cleavage of caspase 

substrates and rapid induction of cell death (Elmore, 2007, Roos and Kaina, 2013). 

 

1.2.3 DDR and Chemosensitivity 

Chemotherapeutic agents target rapidly dividing cancer cells by inducing DNA 

damage resulting in stalled replication and cell death. However, cancer cells show 

several mutations in DDR signaling pathways leading to alterations in sensitivity and 

resistance against a range of chemotherapeutics. For example, mutations in MutS 

Homolog 2 (MSH2) and MutL Homolog 1 (MLH1) genes are frequently found in 

relapsed acute myeloid leukaemia (AML) patients with reduced sensitivity to 

chemotherapeutics (Mao et al., 2008). Defects in SSB repair pathways are also 

described to affect chemosensitivity by determining tumour cell sensitivity to 

chemotherapeutic treatment (Banescu et al., 2014, Liddiard et al., 2010). In addition, 

mutations of the tumour suppressor p53 have a dominant-negative effect on wild 

type p53 and hence, reduce the chemosensitivity of cancer cells (Velculescu and El-

Deiry, 1996, Vogelstein and Kinzler, 1992). 

Therefore, the DDR is an important target that could be therapeutically exploited in 

order to increase chemosensitivity of cancer cells. One exemplary approach is to 

restore the p53 function by inhibiting its degradation or by demethylating silenced 

promoter regions of p53 target genes (Baylin and Jones, 2011, Martins et al., 2006, 

Ventura et al., 2007). Another possibility is to override cell cycle checkpoints by 
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inhibiting certain modulators of DDR which would result in mitotic catastrophe and 

cell death (Baylin and Jones, 2011, Squatrito et al., 2010). Furthermore, it is also 

possible to target proteins that are involved in DNA repair, such as poly (ADP-ribose) 

polymerase (PARP) and some specific histone deacetylases (HDACs) (Donawho et 

al., 2007, Miller et al., 2010). 

 

1.3 Tumour Suppressor p53 

1.3.1 Regulation of p53  

p53 was discovered in 1979 as a target of SV40 virus which was found to induce 

tumour formation (Lane and Crawford, 1979, Linzer and Levine, 1979). However, in 

1989 it was found that wild-type p53 represses growth as well as oncogenic 

transformation in cell cultures (Finlay et al., 1989). Later, p53 was found to be 

frequently mutated in human cancers and that p53 deletions in mice induce tumour 

formation at high penetrance (Baker et al., 1990, Donehower et al., 1992). Today, 

p53 is one of the best studied tumour suppressors and its role has been validated in 

numerous studies. 

The p53 tumour suppressor function is primarily based on its role as a transcription 

factor that regulates expression of stress response genes and mediates anti-

proliferative processes (Fridman and Lowe, 2003). Although this has been described 

more than 25 years ago, there are still a lot of unresolved questions concerning its 

mechanism of action. As a typical transcription factor, the p53 protein consists of a 

central DNA binding domain (DBD), two N-terminal transactivation domains (TADs), 

a conserved proline-rich domain, an oligomerization domain required for 

transcriptional activity and a C-terminal regulatory domain for nuclear localization 

signals and for regulation of p53 via posttranslational modifications (PTMs) (Fig. 3) 

(Joerger and Fersht, 2008). p53 functions as a tetramer to recognize and bind to p53 

response elements, which consist of two copies of a 10 base pair motif with the 

consensus 5′-PuPuPuC(A/T)(T/A)GPyPyPy-3′ (el-Deiry et al., 1992). Its stability and 

transcriptional activity are tightly controlled by a variety of PTMs and various 

regulators (Meek and Anderson, 2009, Toledo and Wahl, 2006). Mouse double 

minute 2 homolog (MDM2) is known as a primary negative regulator of p53 (Fig. 3). 
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Early studies demonstrated that p53 is constantly degraded due to its ubiquitylation 

mediated mainly by MDM2 keeping the basal protein levels of p53 rather low (Haupt 

et al., 1997, Honda et al., 1997, Kubbutat et al., 1997). Emerging evidence shows 

that this is not the single mode for the repression of p53 by MDM2. MDM2 recruits 

HDAC1 to inhibit p53 activity via promoting p53 deacetylation (Ito et al., 2002). In 

addition, it has been identified that MDM2 directly represses p53 activity by 

conjugating ubiquitin monomer to the chromatin in the vicinity of p53 binding site and 

forming a transcription repressive atmosphere, which is ubiquitylation independent 

pathway (Minsky and Oren, 2004). 

  

Fig. 3: p53 regulation by MDM2. p53 contains a N-terminal transactivation domain, a 

central DNA-binding domain, a tetramerization domain and a C-terminal regulatory domain. 

In steady state, MDM2 represses p53 activity in both ubiquitination dependent and 

ubiquitination independent pathways (taken from Shi 2012). 

 

It is the fact that p53 regulates genes expression that shows both mRNA 

upregulation and downregulation. But more and more research revealed that its 

repressive effects are indirect and are driven by its target genes like p21 and E2F7. 

More recently, it was demonstrated that p53 indirectly represses transcription via p21 

dependent RB-E2F4 complex and the dimerization partner, RB-like, E2F and multi-

vulval class B (DREAM) complex (Fischer et al., 2015, Quaas et al., 2012). Genome-

wide DREAM chromatin binding data showed that more than 200 genes are 

predicted to be regulated by the p53-p21-DREAM axis (Fischer et al., 2016). 
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In addition to mediating cellular responses via a transcription-dependent mechanism, 

p53 also mediates apoptosis in a transcription-independent way. Hallmark of this 

mechanism is the stress-induced accumulation of p53 in the cytosol or mitochondria 

which inhibits membrane protective and anti-apoptotic members of the Bcl-2 family. 

This leads to the activation of the pro-apoptotic protein Bax stimulating the release of 

cytochrome c, which results in the initiation of the caspase cascade and induction of 

apoptotic cell death. (Khoo et al., 2014). Furthermore, p53 contributes to death 

receptor trafficking and activation of procaspase 8 (Vousden and Lu, 2002). 

The canonical functions of p53 include DNA damage-induced (p53-mediated) DNA 

repair, cell cycle arrest and apoptosis. Upon genotoxic stress, like DNA damage and 

DNA replication stress, p53 dissociates from its negative regulators leading to its 

stabilization and activation of downstream signaling (Horn and Vousden, 2007). 

Several mechanisms lead to p53 activation. For example, upon different extent of 

stresses, p53 is phosphorylated at Ser15 via ATM and ATR as well as at Ser20 by 

Chk1 and Chk2 (Appella and Anderson, 2001, Bode and Dong, 2004). If it is a low 

level of stress, the G1 phase checkpoint is induced, due to the transcriptional 

activation of the p21 cyclin-dependent kinase inhibitor gene which allows DNA repair 

prior to further cell division. Another possible outcome is cellular senescence 

meaning that cells do not longer replicate (el-Deiry et al., 1993). In addition, 

phosphorylation of Thr18 in the TAD of p53 dramatically reduces MDM2 binding that 

stabilizes and activates p53 (Teufel et al., 2009).  

Besides the phosphorylation of p53, acetylation also plays an important role in the 

control of p53 activation. The acetyl transferases human males absent on the first 

(hMOF) and Tat-interactive protein, 60 kD (TIP60) acetylate p53 at Lys120 (Sykes et 

al., 2006, Tang et al., 2006), thereby enhancing pro-apoptotic gene expression (e.g. 

Bax, Noxa or Puma). HDACs can also remove acetyl groups from p53 such as 

HDAC1 and SIRT1. Inhibition of these HDACs leads to increased p53 acetylation 

and p53-dependent activation of apoptosis or senescence (Brooks and Gu, 2011). 

Moreover, p53 Lys320 is acetylated by p300/CBP-associated factor (PCAF) and 

ubiquitinated by E4F1. Both modifications result in increased transcription of genes 

involved in cell cycle arrest like CDKN1A (Le Cam et al., 2006, Liu et al., 1999). 

Furthermore, the acetylation of Lys98 in murine p53 (corresponding to Lys101 in 
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human p53) is crucial for p53-mediated ferroptosis and tumour suppression (Wang 

et al., 2016b).  

 

1.3.2 The Network of p53 

Besides the transcriptional and canonical functions, p53 was also found to be 

involved in a variety of other “non-canonical” pathways. p53 is also involved in 

metabolism, autophagy, reactive oxygen species (ROS) control, cell plasticity and 

pluripotency (Alexandrov et al., 2016, Wang et al., 2016b). For example, p53 was 

found to increase glutamine catabolism, downregulate lipid synthesis and stimulate 

gluconeogenesis (Kruiswijk et al., 2015). Furthermore, it was recently reported that 

p53 is required for the tight regulation of DNA methylation by DNA 

methyltransferases (DNMTs) and enzymes of the ten-eleven translocation family 

(TET) (Tovy et al., 2017). In addition, it has been shown that inactivation of p53 

rescues cultured cells from apoptosis caused by DMNT1 deficiency and subsequent 

genomic demethylation. Hence, p53 seems to be capable of sensing and responding 

to perturbations in the epigenome (Jackson-Grusby et al., 2001). 

Because p53 is involved in a wide variety of cellular processes, the exact 

mechanisms of regulation of different responses are still not clear. However, it is 

widely accepted that the p53 response varies between different cell types and stress 

conditions. One proposed mechanism is similar to its function in DDR, which is 

based on different PTMs depending on different stresses leading to the induction of 

specific targets. However, there are also other factors which affect how the cell 

interprets p53 activation. For example, although p53 is induced to bind to p21 

promoter in embryonic stem cells (ESCs), p21 is not effectively activated due to cell 

type specific repressive histone H3K27me3 marks at the according locus (Itahana et 

al., 2016). Other transcriptional factors like nuclear factor kappa-light-chain-enhancer 

of activated B cells (NF-κB) and forkhead box O (FOXO) can change the p53 target 

spectrum by cooperation with p53 (Cooks et al., 2014, Eijkelenboom and Burgering, 

2013).  

Taken together, all these determining signals and factors create a complex cellular 

system that is essential for the biochemical aspects of p53 activity like 
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phosphorylation status and protein binding, as well as the biological outcomes of a 

p53 response. 

 

1.3.3 p53 based cancer therapies 

The important role of p53 in tumour suppression and the high rate of p53 mutations 

in cancer has encouraged many researchers to develop strategies to directly target 

the p53 network in cancer therapy. Indeed, in vivo mouse studies have shown that 

activation of wild type p53 expression can efficiently initiate tumour elimination 

(Martins et al., 2006, Ventura et al., 2007, Xue et al., 2007). Generally, there are 

three major strategies depending on the p53 status of the tumour: targeting wild type 

p53, targeting mutant p53 and targeting p53 regulators (Fig. 4).  

In many tumours, the main p53 inhibitor MDM2 is aberrantly overexpressed which 

effectively abolishes p53 function. Consequently, one great effort for cancer therapy 

is to inhibit MDM2 in cancers harbouring wild type p53. Nutlin-3 was reported in 2004 

to be a small molecule antagonist of MDM2 which stabilizes p53 by blocking the p53 

binding site in the N-terminal domain of MDM2 (Vassilev et al., 2004). The drug has 

passed phase I and was about to be investigated in several phase II clinical trials. 

This novel treatment approach has been shown to work synergistically with 

adenovirus-mediated gene therapy as well as mutant p53 reactivators (Graat et al., 

2007, Liu et al., 2013).  

Due to the fact that MDM2 inhibitors stabilize p53 and initiate cell cycle arrest in 

normal cells but have no effect on mutant p53 cancer cells, these drugs can also be 

used in order to reduce toxic side effects which are caused by targeting also healthy 

cells by chemotherapy. The underlying mechanism is based on the fact that 

chemotherapy selectively targets actively cycling cells. Hence, the cytotoxins do not 

affect the non-cycling healthy cells resulting in less systemic toxicity and higher 

tolerable doses of the drugs (Cheok and Lane, 2017).  

In order to target mutant p53 in cancer therapy, efforts have been made to identify 

small molecules promoting proper folding of mutant p53 and restoring wild type p53 

function. These molecules stabilize the active conformation of classical structural 

p53 mutants in order to restore sequence-specific DNA binding and activation of p53 
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which finally leads to the induction of cancer cell death. Although p53-directed drug 

design is quite challenging due to the absence of well-defined binding pockets in the 

DBD, several compounds have been identified via chemical library screening, 

molecular modelling and rational drug design. The first small molecule targeting p53 

was CP-31398 which refolds specific p53 mutants and protects wild-type p53 from 

thermal denaturation (Foster et al., 1999). The drug APR-246 was designed to 

reactivate mutant p53 and is now investigated in clinical trials. However, it has 

already been shown to have some off-target effects (Deneberg et al., 2016). 

Another approach to target mutant p53 is to consider it as a tumour-specific 

neoantigen. Several decades ago it has been shown that mutant p53 is highly 

overexpressed in cancer cells and might act as an antigen (Crawford et al., 1982). In 

vivo experiments showed that vaccination against mutant p53 reduced cancer 

progression in mice with xenografted tumours (Roth et al., 1996). Recently, the viral 

vectors and peptide vaccines targeting mutant p53 have been investigated in phase 

I/II clinical trials (van der Burg et al., 2002, Zeestraten et al., 2013). 

An attractive way to target mutant p53 in cancer is to combine p53 immunotherapy 

with so called immune checkpoint blockade in order to enhance T-cell reactivity. It 

has been reported that loss of p53 can protect cancer cells from CD8+ T-cells via 

PD-L1 depression thereby accelerating cancer development. This has been shown 

in mouse models and in human lung cancer (Cha et al., 2016) indicating that this 

combinatorial approach results in the desired cytotoxicity and clinical response 

based on the generation of p53 mutant-specific T-cells.  

Besides the p53 protein itself, its associated regulatory pathways also offer a number 

of potential targets for anti-cancer therapy. For example, tenovins was found to 

induce tumour regression in mouse models with chronic myelogenous leukaemia by 

selectively killing leukaemia stem cells. This function is due to the ability of tenovins 

to inhibit the nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin 

deacetylases SIRT1 and SIRT2 (Lain et al., 2008). SIRT1 is overexpressed in a 

variety of cancer cell lines including chronic myelogenous leukaemia stem cells with 

wild-type p53 and is known to downregulate the transcriptional activity of p53 (Li et 

al., 2012). Therefore, tenovis activates the tumour suppression ability of p53 by 

inhibiting SIRT1. 
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Fig. 4: p53 based cancer therapies. p53 inactivation in cancer is primarily based on MDM2 

amplification, p53 mutation or deletion, and the inhibition of the transcriptional activity of p53 

protein family members (p63 and p73). The figure shows seven strategies for restoration of 

p53 function (taken from Hong 2014).  

 

1.4 Transcriptional Regulator Transducin β-like Protein 1 

1.4.1 TBL1 and Nuclear Receptor Repressors 

Initially, TBL1 was found to play a role in the X-linked human hearing defect Ocular 

Albinism with Sensorineural Deafness (OASD) which might be caused by a C-

terminal microdeletion in the TBL1 gene (Bassi et al., 1999). Later TBL1 was 

reported and confirmed to be a subunit of the nuclear receptor co-repressors nuclear 

receptor co-repressor (NCoR) and silencing mediator for tetanoid and thyroid 

hormone receptors (SMRT) complex (Guenther et al., 2000, Zhang et al., 2002). As 
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the names suggest, co-repressors generally supress gene transcription by binding to 

non-ligand-bound nuclear receptors (NRs). 

NCoR and SMRT are the two most studied co-repressors and were first identified 

through their interaction with nuclear receptors in absence of a ligand (Chen and 

Evans, 1995, Horlein et al., 1995). They share highly homologous domains with an 

overall sequence identity of 40 % and the molecular weight is around 270 kDa. 

Besides TBL1, the corepressor NCoR/SMRT also consists of several other 

components (Fig. 5), such as TBL related 1 (TBLR1), HDAC3, G protein pathway 

suppressor 2 (GPS2) and WD-repeat protein (IR-10) (Guenther et al., 2000, Li et al., 

2000, Yoon et al., 2003, Zhang et al., 2002). Other complexes that include the Class 

II HDACs have also been shown to bind strongly to NCoR and SMRT (Grozinger and 

Schreiber, 2000, Huang et al., 2000, Kao et al., 2000).  

The repression by NCoR/SMRT is initiated through the recruitment of multiple HDAC 

enzymes. It is known that HDAC3 is essential for the repression of the thyroid 

hormone receptor by the NCoR/SMRT complex (Ishizuka and Lazar, 2003). In 

addition, other HDACs such as HDAC1, HDAC4, HDAC7 and Sirt1 also contribute to 

this repression activity (Ariyoshi and Schwabe, 2003, Fischle et al., 2002, Kao et al., 

2000, Picard et al., 2004). 

 

Fig. 5: TBL1 is a subunit of the NCoR/SMRT repressor complexes. A variety of proteins 

have been confirmed to interact with NCoR and SMRT. Alternative complexes like HDAC1-
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Sin3 and HDAC4/5/7 have also been reported to interact with NCoR/SMRT but this has not 

been validated yet.  

 

1.4.2 TBL1 as a Nuclear Exchange Factor 

TBL1 has a highly conserved N-terminal domain that contains a Lis homology (LisH) 

domain which is required for homo- and hetero-dimerization as well as stable 

chromatin targeting (Choi et al., 2008). The C-terminal domain consists of seven 

WD40 repeat domains which provide a platform for protein-protein interactions and 

assembly (Perissi et al., 2004). The centrally located F-Box motif is essential for the 

recruitment of E3 ligases (Perissi et al., 2004). 

At first, TBL1 was thought to be exclusively associated with transcriptional 

repression (Guenther et al., 2000, Yoon et al., 2003, Zhang et al., 2002). However, it 

has been revealed to have co-activating functions in gene expression as well. The 

co-activating activity of TBL1 appears to be attributed to its role as an adaptor 

protein and its ability to recruit the ubiquitin proteasome system which subsequently 

promotes the exchange of transcriptional co-repressors for co-activators (Perissi et 

al., 2004). For example, TBL1 and TBLR1 are required to dismiss C-terminal-binding 

protein (CtBP) and NCoR/SMRT corepressors by recruiting 19S proteasome 

particles to degrade them respectively (Fig. 6) (Perissi et al., 2008). This happens 

not only on NRs but also on c-Jun and NF-κB binding sites of affected genes (Perissi 

et al., 2004, Perissi et al., 2008).  

A potential mechanism could be that TBL1 resides in the co-repressor complex and 

acts as a receptor co-repressor as well as a transcriptional repressor. Once it 

becomes phosphorylated on certain residues, TBL1 is enabled to recruit E3 ligases 

giving rise to the degradation of other co-repressors (Perissi et al., 2008).  
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Fig. 6: TBL1 as a nuclear exchange factor. Upon phosphorylation, TBL1 promotes the 

ubiquitylation and degradation of the co-repressor CtBP. TBLR1 does also dismiss and 

degrade the NCoR/SMRT/HDAC3 co-repressor complex (taken from Perissi 2008).  

 

1.4.3 Functions of TBL1 in different pathways 

Recent studies provided evidence that TBL1 plays an important role in the 

development of obesity-induced non-alcoholic fatty liver disease (NAFLD) as a direct 

target of miR-367 (Li et al., 2017). TBL1 was also described to be overexpressed in 

both human and murine pancreatic ductal adenocarcinoma (PDAC) (Stoy et al., 

2015). Its therapeutic inactivation could prevent and reverse pancreatic tumour 

growth which correlates with diminished glucose uptake, glycolytic flux, and 

oncogenic PI3 kinase signaling. 

Upon tumour necrosis factor alpha (TNF-α) stimulation, TBL1 forms a complex with 

NF-κB and facilitates its recruitment to target gene promoters (Ramadoss et al., 

2011). The mechanism was discovered four years later which is due to the 

SUMOylation of TBL1 and TBLR1 in response to TNF-α treatment. This resulted in 

the formation of the TBL1-TBLR1-NF-κB complex which leads to NF-κB-mediated 

transcriptional activation. Conversely, SUMO-specific protease I (SENP1)-mediated 

deSUMOylation of TBL1 and TBLR1 inhibits NF-κB target gene expression by 

dissociating TBL1 and TBLR1 from the NCoR/SMRT complex (Park et al., 2016).  

TBL1 and TBLR1 were also identified as key players in the Wnt signaling pathway by 

recruiting β-catenin to Wnt target gene promoters and subsequently activating their 
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transcription. A deeper insight into the molecular mechanism of this regulation was 

given three years later: In normal cells, TBL1 plays a role in protecting β-catenin 

from Siah-1-mediated ubiquitination and subsequent degradation leading to Wnt 

target gene expression (Dimitrova et al., 2010). Upon UV irradiation, TBL1 promotes 

Siah1-mediated β-catenin degradation which leads to the inhibition of Wnt signaling. 

Similar to the NF-κB pathway, SUMOylation of TBL1 increases the recruitment of the 

TBL1-TBLR1-β-catenin complex to activate expression of Wnt target genes and 

SENP1 deSUMOylates TBL1/TBLR1 resulting in the dissociation of the β-

catenin/TBL1/TBLR1 complex and inhibition of β-catenin-mediated transcription 

(Choi et al., 2011).  

Furthermore, Ebi, the Drosophila homologue of TBL1, was found to be involved in 

the regulation of apoptosis (Lim et al., 2012). Ebi formed a complex with activator 

protein 1 (AP-1) and was required to suppress AP-1-mediated activation of pro-

apoptotic target genes. Ebi depletion caused late-onset neuronal apoptosis and 

increased sensitivity to oxidative stress. Therefore, Ebi is essential to protect 

photoreceptor neurons from stress-induced apoptosis and age-related degeneration 

which contributes to long-term survival (Lim and Tsuda, 2016).  

 

1.5 Aim of the Project 

TBL1 is associated with metabolic control on one hand and with regulation of 

apoptosis and cell growth pathways on the other hand. Furthermore, the link of 

corepressor complex NCoR/SMRT to p53 suggested a potential connection between 

TBL1 and p53 (Adikesavan et al., 2014, Konduri et al., 2010). 

The aim of this thesis was to identify the role for TBL1 in regulation of p53. This 

involved to investigate if TBL1 regulates p53 transcriptional activity and to 

biochemically characterize the link between these two proteins in order to gain a 

deeper molecular understanding of the underlying mechanism. In addition, the 

function of TBL1 in chemoresistance/chemosensitivity and the interplay between 

TBL1 and p53 in DNA damage response were also studied to provide some 

evidence for the potential clinical application.  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Materials and Kits 

Material   Manufacture 

1.5 ml Eppendorf tube Sarstedt AG 

2 ml Eppendorf tube Sarstedt AG 

15 ml Falcon tube Greiner 

50 ml Falcon tube Greiner 

6 cm cell culture dish Greiner 

10 cm cell culture dish Greiner 

75 cm cell culture flask Greiner 

6-well plate Nunc GmbH 

96-well plate Falcon 

PCR tube Nerbe 

FACS tube BD Biosciences 

Complete protease inhibitor cocktail Roth 

Cryo vials Roche 

Glutathion-Sepharose Amersham Biosciences 

LipofectamineTM 2000 Invitrogen 

Nickel-NTA-Agarose Qiagen 

Protein A/G Plus Sepharose Santa Cruz 

ChIP-Grade Protein G Magnetic Beads Cell Signaling 

PVDF-membrane GE Healthcare 

Pierce ECL-Kits Thermo Fischer Scientific 

Pierce® BCA Protein Assay Kit Thermo Fischer Scientific 

QIAprep® Spin Miniprep Kit Qiagen 

QIAquick® Gel Extraction Kit Qiagen 

QIAquick® PCR Purification Kit Qiagen 

QIAGEN® Plasmid Maxi Kit Qiagen 

X-ray films „Fuji Super FX“ FUJIFILM                                     

RNA Clean & Concentrator – 5 (R1015) ZYMO RESEARCH 

High Capacity RNA-to-cDNA Kit Applied Biosystems 
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Taqman® Gene Expression Master Mix Applied Biosystems 

2.1.2 Chemicals 

Reagent Manufacture 

5-Fluorouracil                                                                                            Sigma Aldrich 

Ampicilin Gerbu 

Nutlin-3a Sigma Aldrich 

Doxycycline Sigma Aldrich 

BSA Servia 

Coomassie brilliant blue G250 BioRad 

Annexin V-FITC BD Pharmingen™ 

Glutathion Sigma Aldrich 

Imidazole Sigma Aldrich 

IPTG Roth 

Propidium Iodide Sigma Aldrich 

RNase Invitrogen 

Goat Serum Sigma Aldrich 

Lysozyme Sigma Aldrich 

MG-132                                                                                                   US Biological 

Sodium Vanadate (Na3VO4) Sigma Aldrich 

Crystal Violet                                                                                      Sigma Aldrich 

TRIzol Reagent                                                                               Invitrogen 

PMSF 

Adriamycin/Doxorubicin 

Complete protease inhibitor cocktail 

Sigma Aldrich 

Sigma Aldrich 

Roche 

Standard chemicals were purchased from Roche Diagnostics, Merck, Roth, Gerbu, 

Sigma Aldrich and Biozol. 

2.1.3 Proteins and enzymes 

Protein/Enzyme Manufacture 

Restriction Enzymes New England BioLabs 

Antarctic phosphastase New England BioLabs 

T4 DNA ligase New England BioLabs 
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Deoxynucleotides (dNTPs) Invitrogen 

Taq DNS Polymerase Invitrogen 

2.1.4 Markers                                                                                                                                                                                                                                                                                          

Marker Manufacture 

PageRulerTM Plus Prestained Protein Ladder Fermentas 

GeneRulerTM 1kb DNA Ladder Fermentas 

2.1.5 Buffers and Solutions 

Buffer Substance Concentration 

Annexin V-FITC Binding Buffer (10x) HEPES pH 7.5 100 mM 

 NaCl 1.4 M 

 CaCl2 25 mM 

PBS Na2HPO4/KH2PO4 12 mM 

 NaCl 137 mM 

 KCl 2.7 mM 

HB Buffer Tris-HCl pH 7.9 20 mM 

 KCl 10 mM 

 MgCl2 1.5 mM 

 PMSF 1 mM 

BC400 Buffer Tris-HCl pH 7.9 20 mM 

 NaCl 400 mM 

 Glycerol 10 % 

 EDTA 0.2 mM 

 Triton X-100 0.5 % 

 PMSF 1 mM 

TSE I Tris-HCl pH 8.0 20 mM 

 EDTA 2 mM 

 NaCl 150 mM 

 SDS 0.1 % 

 Triton X-100 1 % 

TSE II Tris-HCl pH 8.0 1 mM 

 EDTA 2 mM 
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 NaCl 500 mM 

 SDS 0.1 % 

 Triton X-100 1 % 

LiCl Buffer Tris-HCl pH 8.0 10 mM 

 EDTA 1 mM 

 LiCl 250 mM 

 NP40 1 % 

TE Buffer Tris-HCl pH 8.0 10 mM 

 EDTA 1 mM 

Blotting Buffer Potassium Acetate 100 mM 

 HEPES/KOH 30 mM 

 Magnesium Acetate 2 mM 

Crystal Violet Solution Crystal Violet 0.1 % (w/v) 

 Ethanol 10 % (v/v) 

 Acetic Acid 10% (v/v) 

Coomassie-Staining-Solution Coomassie 0.006 % (w/v) 

 Methanol 10 % (v/v) 

 Acetic Acid 10 % (v/v) 

Coomassie-Destain-Solution Methanol 10% (v/v) 

 Acetic Acid 10% (v/v) 

GST-Lysis Buffer HEPES pH 7.5 20 mM 

 NaCl 300 mM 

 EDTA 1 mM 

 Lysozyme 2 mg/ml 

 PMSF 1mM 

GST-Elution Buffer GST-Lysis Buffer 1 x 

 Glutathione 10 mM 

GST dialysis buffer HEPES pH 7.5 30 mM 

 NaCl 150 mM 

HBS Transfection Buffer, 2 x NaCl 275 mM 

 KCl 10 mM 

 Na2HPO4 1.7 mM 

 D-Glucose 10 mM 
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 HEPES pH 7.5 45 mM 

HEMGN Buffer KCl 100 mM 

 HEPES pH 8.0 25 mM 

 EDTA pH 8.0 0.1 mM 

 MgCl2 12.5 mM 

 Glycerol 10 % (v/v) 

His-Elution Buffer HEMGN Buffer 1 x 

 KCl 100 mM 

 Imidazole 10 mM 

TB Buffer EDTA 1 mM 

 KCl 183 mM 

 NaCl 47 mM 

 Tris-HCl 10 mM 

 PMSF 1 mM 

Lysis Buffer NP40/0.1 % SDS Tris-HCl pH 7.4    20 mM 

 NaCl 150 mM 

 NP40 1 % (v/v) 

 SDS 0.1 % (v/v) 

 EDTA 5 mM 

 NaF 25 mM 

 Glycerol 10 % (v/v) 

SDS-PAGE Buffer, 10 x Tris-Base 0.25 M 

 Glycine 1.92 M 

 SDS 1 % (w/v) 

SDS Loading Dye, 5 x Tris/HCl pH 6.8      312.5 mM 

 β-Mercaptoethanol 25 % (v/v) 

 Glycerol 10 % (v/v) 

 SDS 10 % (w/v) 

 Bromophenol Blue 0.01 % (w/v) 

SDS Stacking Gel Solution Tris/HCl pH 6.8 125 mM 

 Acrylamide 5 % (v/v) 

 SDS 0.1 % (w/v) 

 APS 0.04 % (w/v) 
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 TEMED 0.075 % (v/v) 

SDS Resolving Gel Solution Tris/HCl pH 8.8 35 mM 

 Acrylamide 5 % (v/v) 

 SDS 0.1 % (w/v) 

 APS 0.04 % (w/v) 

 TEMED 0.074 % (v/v) 

TAE Buffer, 50 x Tris/HCl pH 8.0 2 M 

 Acetic Acid 1 M 

 EDTA 50 mM 

TBS Tris pH 7.5 50 mM 

 NaCl 150 mM 

TBS-T Buffer TBS 1 x 

 Tween 20 0.1 % (v/v) 

West-Blotting Buffer Tris 25 mM 

 Glycine 190 mM 

 Methanol 10 % (v/v) 

Ponceau S Staining Solution Ponceau S 0.5 % (w/v) 

 Acetic acid 1 % (v/v) 

2.1.6 Media and Supplements for Cell Culture 

Reagent Manufacturer 

DMEM 4.5 g/l Glocose, L-Glutamine Gibco (Invitrogen) 

FBS 10 % PAA Laboratories 

Sodium Pyruvate 100 mM Gibco (Invitrogen) 

HEPES 1 M Gibco (Invitrogen) 

L-Glutamine 200 mM Gibco (Invitrogen) 

Penicillin/Streptomycin Gibco (Invitrogen) 

Opti-MEM® Gibco (Invitrogen) 

Trpsin/EDTA Solution 1 x Gibco (Invitrogen) 

2.1.7 Mammalian Cell Lines 

Cell Line Description Company 

HCT116 WT human Colon Carcinoma Dr. B. Vogelstein, Baltimore 



30 
 

HCT116 p53 KO human Colon Carcinoma Dr. B. Vogelstein, Baltimore 

RPE1 human Retina ATCC 

U2OS human Bone Osteosarcoma ATCC 

MCF7 human Breast Cancer ATCC 

 

2.1.8 Media for Bacteria Cultivation 

LB-Medium 10 g/l Tryptone 

 5 g/l yeast extract 

 5 g/l NaCl 

SOB-Medium 20g/l Tryptone 

 5 g/l yeast extract 

 0.5 g/l NaCl 

 2.5 mM KCl 

 10 mM MgCl2 

                   

2.1.9 Bacterial Strains 

E. coli DH5α (Invitrogen) 

E. coli BL21 pLysS (Novagen) 

E. coli Rosetta (Novagen) 

E. coli Stbl3 (Invitrogen) 

2.1.10 Expression Vectors 

cDNA Backbone    Tag      Source 

p53 wt pcDNA3    HA      T.G. Hofmann 

TBL1X wt pGEX4T.1    GST A. Jones 

2.1.11 Antibodies 

2.1.11.1 Primary Antibodies 

Antibody Species Dilution Company 
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p53 mouse (monoclonal) 1:1000 Santa Cruz 

p53 rabbit (polyclonal) 1:1000 Santa Cruz 

p53 mouse (monoclonal) 1:200 Sigma Aldrich 

p53 pSer46 mouse (monoclonal) 1:1000 BD Pharmingen 

p53 acetyl Lys373/382 rabbit (polyclonal) 1:1000 Millipore (Upstate) 

p21 rabbit (monoclonal) 1:1000 Cell Signaling 

PUMA rabbit (monoclonal) 1:1000 Cell Signaling 

cl-PARP rabbit (polyclonal) 1:1000 Abcam 

Actin mouse (monoclonal) 1:100000 MP Biomedicals 

TBL1 rabbit (polyclonal) 1:1000 Abcam 

TBL1 Guinea pig (polyclonal) 1:500 Gift from Valentina 

Perissi 

Acetyl-H3K9 rabbit (monoclonal) 1:50 Cell Signaling 

Methyl-H3K9 mouse (polyclonal) 1:100 Cell Signaling 

Acetyl-H3K27 rabbit (polyclonal) 1:100 Cell Signaling 

Methyl-H3K27 rabbit (monoclonal) 1:50 Cell Signaling 

Acetyl-H4K16 rabbit (polyclonal) 1:50 Cell Signaling 

The TBL1 Geinea pig polyclonal antibody from Valentina Perissi was only used in 

Fig. 12 for the Co-IP experiment. The TBL1 antibody used in other experiments was 

rabbit polyclonal antibody which is from Abcam.  

2.1.11.2 Senondary Antibodies 

Immunoblot: HRP-conjugated secondary antibodies were obtained from Dianova and 

diluted 1:20000 in 5% milk/TBST. 

2.1.12 siRNA and Oligonucleotides 

siTBL1: Hs-TBL1X_7 FlexiTube siRNA (Qiagen) 

siNCoR1: L-003518-00-0005 (Dharmacon) 

siSMRT: L-020145-01-0005 (Dharmacon) 

siTBLR1: Hs_TBL1XR1_10, (Qiagen) 

siHDAC3: J-003496-09-0010 (Dharmacon) 

siHDAC1: L-003493-00-0005 (Dharmacon) 
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2.1.13 TaqMan Probes 

Gene Description 

CDKN1A Hs00355782_m1 

HPRT1 Hs02800695_m1 

TBL1X Hs00959540_m1 

BBC3 Hs00248075_m1 

NCoR1 Hs01094541_m1 

HDAC3 Hs00187320_m1 

NCoR2 Hs00196955_m1 

 

2.1.14 Primers 

Gene Up Down 

HDAC1 5'-

CTGGGGACCTACGGGATATT

-'3 

5'-

TGTCAGGGTCTTCCTCATCC 

-'3 

GAPDH 5'-

CCAAAGTTGTCATGGATGAC-

'3 

5'-

GTGAAGGTCGGTGTGAACG

G-'3 

CDKN1A 5'- 

GTGGCTCTGATTGGCTTTCT

G -'3 

5'- 

CTGAAAACAGGCAGCCCAA

G -'3 

BBC3 5'- 

GCGAGACTGTGGCCTTGTGT 

-'3 

5'- 

CGTTCCAGGGTCCACAAAG

T -'3 

 

2.1.15 Software 

Application Software 

Virtual Cloning Serial cloner 2.6 

FACS Analysis BD CellQuest™ Pro, BD Biosciences 

Absorbance Detection Ascent Vs. 2.6, Labsystems 
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Statistics Prism 7.0, GraphPad 

 

2.1.16 Instruments 

Instrument Name Company 

Absorbance Detector Multiskan Ms Labsystems 

Developing Machine Curix 60 AGFA HealthCare 

FACS FACS Calibur BD Biosciences 

Spectrophotometer Photometer Ultrospec 3000 

pro 

Amersham Biosciences 

Luminescence Reader Synergy 2 BioTek 

PCR-Cycler T3000 Thermocycler Biometra 

qPCR Cycler LightCycler® Systems Roche 
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2.2 Methods 

2.2.1 Methods of Molecular Biology 

2.2.1.1 Preparation of chemically competent E. coli 

Glycerol stock (E. coli DH5α, Invitrogen; E. coli BL21 pLysS, Novagen; E. coli Stbl3, 

Invitrogen) was scratched to inoculate an overnight culture in 3 ml LB medium. 

Overnight culture was used to inoculate 120 ml SOB medium and grow at 20 °C until 

OD600 of 0.4 - 0.6. Flask was put on ice for 10 min and collected by centrifugation at 

4000 rpm, 10 min at 4 °C. Cells were resuspended gently in 40 ml of ice-cold TB 

buffer and on ice for another 10 min. Cells were collected by centrifugation again and 

resuspended in 10 ml of ice-cold TB buffer. DMSO was added to a final 

concentration of 7 % and the buffer was mixed gently. Cells were placed on ice for 

10 min, aliquoted into 100 µl and frozen in liquid nitrogen and stored in -80 °C. 

2.2.1.2 Transformation of chemically competent E. coli 

100 µl bacteria were thawed on ice and 1 µl plasmid DNA or 1 µl ligation mix was 

added and gently mixed without vortexing. Bacteria were incubated on ice for 30 min 

and then were heated-shock for 45 sec at 42 °C. Immediately they were put on ice 

for 2 min and 400 µl LB medium was added. The bacteria in medium were put in the 

thermomixer at 37 °C for 60 min at 500 rpm. All bacteria were put on selective LB-

plates and incubated at 37 °C, 180 rpm overnight. Single clone was inoculated to LB 

medium the next day. 

2.2.1.3 Plasmid preparation 

For analytical preparation a single bacteria clone was inoculated to 3 ml selective LB 

medium and incubated at 37 °C overnight. Bacteria were collected by centrifugation 

for 5 min at 8000 rpm. Plasmid DNA was extracted using QIAprep Spin Miniprep Kit 

(Qiagen) following the manufacturer’s protocol. 

To get higher amount of plasmid 300 ml selective LB medium was inoculated at 

37 °C, 180 rpm overnight and pelleted for 15 min at 8000 rpm, 4 °C. Extraction of 

plasmid DNA was performed with the QIAGEN Plasmid Maxi Kit (Qiagen) following 

the manufacturer’s protocol.  
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The QIAquick Gel Extraction Kit (Qiagen) was used for extraction of plasmid from 

agarose following manufacturer’s instruction.  

2.2.1.4 RNA isolation and purification 

Total RNA was isolated with TRIzol Reagent (Invitrogen) according to the 

manufacturer’s protocol. RNA was transcribed to cDNA with the High Capacity RNA-

to-cDNA Kit (Applied Biosystems) following the manual. 

To purify RNA isolated from TRIzol, RNA Clean & Concentrator - 5 (R1015) (ZYMO 

RESEARCH) was used according to the manufacturer’s protocol.  

2.2.1.5 Quality control for DNA and RNA 

Concentration and purity were determined with Nano Drop spectrophotometer. 

Only for the DNA precipitated for ChIP, Qubit 4 Fluorometer (Thermo Fisher) was 

used to determine the very accurate concentration.  

4200 TapeStation System (Integrated Sciences) was used to analyze the quality of 

RNA for RNA-seq. 

2.2.1.6 Enzymatic Modification of DNA 

DNA digestion and dephosphorylation 

Restriction enzymes from New England Biolabs were used to perform digestion 

according to the manufacturer’s protocol. For analysis 400 ng plasmid DNA was 

incubated with 0.5 U enzyme in a total volume of 20 µl for 60 min at 37 °C. 

Preparative digestions were performed with 2 µg DNA and 1 U enzyme in a total 

volume of 50 µl at 37 °C for 3 - 4 h. To avoid relegation Antarctic phosphatase (NEB) 

was used for dephosphorylation. 

Ligation 

Ligation of DNA with compatible ends was done with T4 DNA Ligase (NEB) following 

the manual. Basically, 50 ng of the digested and dephosphorylated vector was 

incubated with a 3-fold molar amount of insert DNA fragment and 1 U T4 ligase in 

appropriate buffer containing ATP. The total volume was 20 µl and incubated 

overnight at 16 °C.  
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2.2.1.7 Agarose gel electrophoresis 

Agarose gel electrophoresis was performed to separate DNA fragments of analytic 

and preparative digestions. Ethidium bromide (Roth) was added for visualization with 

a final concentration of 1 µg/ml. 1 kb DNA Ladder GeneRuler (Fermentas) and 100 

bp DNA ladder (Invitrogen) were used to determine the length of DNA fragment. 

2.2.1.8 Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) 

qRT-PCR was performed for expression analysis (e.g. analysis of knockdown 

efficiency) and binding level analysis (e.g. amount of transcription factor on gene 

promoter). Therefore, the TaqMan® Gene Expression Assays from Applied 

Biosystems and iTaqTM Universal SYBR® Green Supermix from BIO-RAD were both 

used following respective instruction. For relative gene expression, analysis was 

done by applying the ΔΔCt method, which is based on the relative quantification 

through compared amplification of an endogenous control gene (HPRT1). For exact 

binding level of proteins to gene promoters, the Percent Input Method and the Fold 

Enrichment Method were used, which are based on the comparison between Ct 

values.  

qRT-PCR Reaction Setup (TaqMan): 

Component Volume for one reaction 

TaqMan® Universal PCR Master Mix (2X) 5 µL 

TaqMan® probe 0.5 µL 

DNA template 1 µL 

Nuclease-free Water 3.5 µL 

Total Volume 10 µL 

 

qRT-PCR protocol (TaqMan): 

Parameter UNG 

incubation 

Polymerase 

activation 

PCR  

(40 cycles) 

Hold Hold Denature Anneal/extend 

Temperature 50 °C 95 °C 95 °C 60 °C 

Time (mm:ss) 02:00 10:00 00:15 01:00 
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qRT-PCR Reaction Setup (SYBR® Green): 

Component Volume for one reaction 

iTaqTM Universal SYBR® Green supermix (2X) 5 µL 

Forward and reverse primers 1 µL 

DNA template 1 µL 

Nuclease-free Water 3 µL 

Total Volume 10 µL 

 

qRT-PCR protocol (SYBR® Green): 

Parameter Polymerase 

activation 

PCR  

(35 cycles) 

Hold Denature Anneal/extend 

Temperature 95 °C 95 °C 60 °C 

Time (mm:ss) 00:30 00:15 01:00 

 

2.2.1.9 Recombinant Protein Expression in E. coli 

Polyhistidine (His-) and glutathione S-transferase (GST-) fusion proteins were 

recombinantly expressed in E. coli BL21 pLysS or E. coli Rosetta and purified via 

affinity chromatography. In general, 3 ml LB medium were inoculated first and 

incubated overnight at 37 °C. Then 100 ml LB medium were inoculated with pre-

cultured bacterial and incubated at 37 °C until OD600 = 0.3 - 0.6. Protein expression 

was induced by adding IPTG (final concentration 1 mM) and incubated for 6 h at 30 

°C. Pellets were collected by centrifugation for 15 min at 8000 rpm and washed once 

with ice cold PBS. Pellets were centrifuged again and resuspended in 10 ml lysis 

buffer with protease inhibitor. Bacteria were sonicated and then added 1 % Triton X 

to incubate on ice for 15 min. Then bacteria were centrifuged to collect supernatants 

and added respective washed beads (Ni-NTA or GSH) to incubate for 3 h under 

constant mixing at 4 °C. Beads were washed three times with lysis buffer and the 

protein amount was determined by SDS PAGE and Coomassie staining. Elution from 

beads was performed by 1 ml elution buffer with PMSF and 1 % Triton X for 1 h 
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under constant mixing at 4 °C. Buffer exchange was done by dialysis or by using 

centricon filters.  

 

2.2.2 Methods of Cell Biology 

2.2.2.1 Cultivation of Mammalian Cells 

Cells were cultivated in T75 flasks at 37 °C, 5 % CO2 and 95 % humidity. All the work 

concerning cell cultivation and treatment was done under sterile condition. DMEM 

medium and additives (see 2.1.6) were prewarmed to 37 °C prior to use. Cells were 

passaged every 2 - 3 days based on the individual proliferation rate. Cells were 

washed with PBS, detached with Trypsin-EDTA, resuspended in fresh culture media 

and transferred into a new flask with respective dilution.   

2.2.2.2 Cryoconservation 

To stock cells in liquid nitrogen or –80 °C freezer, cells were centrifuged at 1800 

rpm, 4 °C for 5 min to get cell pellet and dissolved with freezing media (5 ml FCS, 1 

ml DMSO and 4 ml DMEM). To thaw cells, cells were put quickly into 37 °C water 

bath until they become liquid. Then cells were pipetted into prewarmed culture 

medium and put into the incubator. 

2.2.2.3 Transient Transfection 

HCT116, RPE-1, MCF7 and U2OS cells were transfected with Lipofectamine 

RNAiMax following the manufacturer’s instructions. For siRNA transfection 6 well 

plates were seeded with 2 x 105 cells/well. 24 h later 100 nM siRNA (for TBL1, 

NCoR, SMRT, TBLR1 knockdown) or 50 nM siRNA (for HDAC1, HDAC2 and 

HDAC3 knockdown) and 5 µl or 2.5 µl Lipofectamine were prepared in Opti-MEM 

medium, distributed evenly in each well. Opti-MEM medium was changed to culture 

medium after 4 - 5 h and cells were harvested 24 - 48 h post transfection.  

2.2.2.4 RNA-seq 

HCT116 (wt or p53-deficient) cells were transfected with control siRNA or TBL1 

specific siRNA (Pool of 7 different siRNAs) for 24 h. Each sample group had three 

biological replicates. Total RNA was prepared as said in 2.2.1.4. The RNA quality 

was evaluated as written in 2.2.1.5 and the RNA integrity number (RIN) is more than 
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8. Before performing RNA-seq analysis, a small aliquot of each sample was 

analyzed by qRT-PCR to confirm TBL1 knockdown efficiency. RNA-seq analysis was 

performed at the Genomics and Proteomics Core Facility in German Cancer 

Research Center. Transcriptome-sequencing libraries were prepared from total RNA 

extractions using the TruSEQ RNA sample preparation kit (Illumina). Single-read 50 

bp sequencing was performed on a HiSeq-2000 sequencing machine (Illumina). 

Reads were trimmed by removing stretches of bases at the end of the reads, which 

had a phred quality score of less than 30. Reads were mapped using Tophat 2.0.6 

(Kim et al., 2013) against the hg19 assembly of the human genome. Differential 

expression was quantified using DESeq2 (Love et al., 2014) and subjected to 

multiple testing corrections. Genes with a q-value smaller than 0.05 were considered 

to be differentially expressed. FPKM values were computed using Cuffdiff 2.0 

(Trapnell et al., 2012). Principal Component Analysis (PCA) plots and heatmaps 

were done in R using the FactoMineR or gplot packages, respectively. DAVID 

Functional Annotation Bioinformatics Microarray Analysis was used to predict the 

pathways and biological processes most likely to be affected by the observed gene 

expression changes. 

2.2.2.5 Treatment of Eukaryotic cells 

5-Fluorouracil 

5-Fluorouracil acts principally as a thymidylate synthase (TS) inhibitor. Interrupting 

the action of this enzyme blocks synthesis of the pyrimidine thymidine, which is a 

nucleoside required for DNA replication. In this work it was mainly used to induce 

DNA damage. It was dissolved in DMSO (30 mM 5-FU stock) and diluted with 

medium to 50 µM for indicated time points.  

Nutlin-3a 

Nutlin-3a is a compound that can inhibit the interaction between MDM2 and p53, in 

this way stabilizing p53. In this work it was used to stabilize p53 and activate its 

activity without inducing DNA damage. It was dissolved in DMSO (10 mM stock) and 

diluted with medium to 10 µM for indicated time points. 

Adriamycin/Doxorubicin 
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Adriamycin intercalates into the DNA and inhibits biosynthesis by inhibiting the 

topoisomerase II complex. In this work it was also used to induce DNA damage, in 

which the role of TBL1 was studied. It was dissolved in distilled water (10 mg/ml) and 

diluted with medium to 0.5 µg/ml for indicated time points. 

 

2.2.3 Cell based Assays 

2.2.3.1 Colony Formation Assay 

Colony formation assay was used to analyze cellular proliferation rate and 

cytotoxicity of treatments. Cells were seeded in a certain density (around 1000 

cells/well in 6 well plate) and transfected with siTBL1 to knock down TBL1. Then the 

respective drug in defined concentration was added for the indicated time points. For 

staining, the medium was removed and cells were rinsed carefully with PBS. Then 

PBS was removed, stained for at least 30 min with 2 ml crystal violet staining 

solution. The crystal blue was removed and cells were washed with tap water 

carefully. The plate was dried in normal air at room temperature and the number of 

colonies were calculated.  

2.2.3.2 FITC Annexin V Apoptosis Detection 

Apoptotic and necrotic cells were detected by flow cytometry following Annexin V/PI 

staining (FITC Annexin V Apoptosis Detection Kit I, BD Pharmingen™). Cells were 

seeded and treated in 6 well plate. Then medium was removed and cells were 

detached with Trypsin/EDTA. Cells were collected by centrifugation at 1000 rpm, 4 

°C for 5 min and washed once with ice cold PBS. 50 µl Binding buffer and 2.5 µl 

Annexin V were added to cells. The mixer was incubated 15 min on ice in the dark. 

430 µl Binding buffer was added to the cell mixture and transferred to FACS tube. At 

the end 10 µl PI (50 µg/ml) was added and subsequently measured by FACS (BD 

Biosciences). In general, Annexin V positive cells were combined to a total cell death 

rate and the percentage cell death of an untreated cell fraction was subtracted from 

the one of a treated cell fraction to obtain the specific cell death rate. 
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2.2.4 Methods of Protein Biochemistry 

2.2.4.1 Preparation of Cell Lysates 

For lysis cells were scraped from plates with culture media and centrifuged at 

1800 rpm, 4 °C for 5 min. Cell pellets were washed once with ice cold PBS and 

spinned down again. Cell pellets used for immunoblotting were resuspended in 

NP40/0.1% SDS lysis buffer including protease inhibitors (Complete protease 

inhibitor cocktail, Roche) and incubated on ice for 60 min. Co-immunoprecipitation 

samples were first prepared in HB buffer (see 2.1.5) for the remove of cytosolic 

fraction and BC400 buffer (see 2.1.5) for nuclear fraction. Lysates were then cleared 

by centrifugation at 13000 rpm, 4 °C for 30 min. For immunoblotting 5 x Loading 

buffer was added and samples were heated at 95 °C for 5 min. 

2.2.4.2 Determination of Protein Concentration 

To make an equal loading of samples on SDS-PAGE gel, lysates concentration was 

determined by using the BCA Protein Assay Kit (Thermo Fisher Scientific) following 

the manual and absorbance at 570 nm was measured in a plate reader 

(Labsystems). Reference curves were regenerated by measuring absorbance of 

BSA protein standard solutions.  

2.2.4.3 SDS-PAGE 

Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis under denaturing 

conditions was used to separate proteins according to their electrophoretic mobility. 

The prepared lysates (see 2.2.4.1) and desired protein amount were loaded on 8 - 

12.5 % gel which were self-made. Electrophoresis procedure was accomplished in 

apparatuses purchased from Bio Rad Laboratories (Hercules, USA). 

2.2.4.4 Western blot (Immunoblotting) 

Immunoblotting was performed using PVDF membranes which were activated in 

methanol for 10 sec prior to using. SDS-gel was placed on the membrane and both 

parts were covered by Whatman paper and fiber pads. Wet electrophoretic transfer 

method was used and the condition was 80 V at 4 °C for 1 h and 30 min. After that 

transfer efficiency was checked by Ponceau S staining. Then membranes were 

incubated in 5 % fat-free milk in TBST buffer for around 1 h to block unspecific 

binding sites. Primary antibody (see 2.1.11.1) was added and membranes were 
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incubated on a rotator at 4 °C overnight. The next day membranes were washed 3 x 

with TBST to remove excess primary antibody and Horseradish peroxidase (HRP) 

coupled second antibody was added for 60 min at room temperature on a rotator. 

Membranes were washed again 3 times with TBST and developed by incubating 

with HRP substrate.  

2.2.4.5 Co-immunoprecipitation 

Lysates were precleared with 10 μl protein A/G Plus Sepharose beads (Santa Cruz, 

USA) on a rotator at 4 °C for 1 h. Solid phase was discarded by centrifugation for 5 

min, 4 °C 1800 rpm. 2 µl TBL1 antibody (Abcam) and 25 µl p53 antibody (Santa 

Cruz) against the target protein were added to the lysate and incubated at 4 °C 

overnight. Next day 10 µl washed protein A/G Plus Sepharose beads were added to 

lysates and incubated for 4 h at 4 °C. Beads were washed 3 times with 500 µl lysis 

buffer and finally, resuspended in 1 x SDS sample buffer and heated at 95°C for 5 

min before analyzed on SDS-PAGE gel and western blot. 

2.2.4.6 GST pulldown assay 

To examine protein in vitro interaction, GST pulldown assay was performed. The 

GST-TBL1 protein was expressed in E. coli BL21pLysS-Rosetta, purified, and kept 

bound to glutathione beads. His-p53 protein was purified and eluted (unattached to 

beads). The lysates were precleared 2 x in 500 µl IVB buffer containing 0.2 % NP40 

and 50 µl Glutathione-Sepharose 4 Fast Flow (GSH beads) for 1 h at 4 °C on a 

rotating wheel. Then a constant volume of p53 protein was added to the lysates 

which was incubated at 4 °C for 2 h on rotating wheel. After that beads were washed 

3 times with buffer and samples were separated by denaturing SDS-PAGE. GST 

loading was analyzed by Coomassie staining and Western blot (primary antibody 

used see 2.1.11.1).  

2.2.4.7 Chromatin immunoprecipitation 

10 million cells were fixed with 1% formaldehyde for 10 min at room temperature and 

the fixation was stopped by glycine with a final concentration of 125 mM. Harvested 

cells were lysed first with cell lysis buffer for 10 min at 4 °C. The nuclei were spinned 

down and the pellet was resuspended with ice-cold nuclear lysis buffer for 10 min on 

ice.  The sample was sonicated 20x 30 sec with maximal output. After sonication, the 
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lysates were centrifuged, and the supernatants were collected and pre-cleaned by 

30 µl ChIP-Grade Protein G Magnetic Beads (Cell Signaling Technology, 9006S) in 

dilution buffer for 1 h at 4 °C. The pre-cleaned lysates were aliquoted equally and 

incubated with antibody TBL1 (Abcam, 1:500) or antibody p53 (CST, 1:250) 

overnight at 4 °C. 30 µl Saturated protein G magnetic beads were added to each 

sample and incubated for 2 h at 4 °C. The beads were washed with TSE I, TSE II, 

buffer LiCl, and buffer TE (see 2.1.5), sequentially. The binding components were 

eluted in 1 % SDS and 0.1 M NaHCO3 and reverse cross-linkage was performed at 

65 °C overnight. DNA was extracted using the PCR purification Kit (Qiagen, 28106). 

Real-time PCR was performed to detect relative enrichment of the protein on 

indicated genes.  

 

2.2.5 Statistical analysis 

qRT-PCR, ChIP qRT-PCR and apoptosis detection results are shown as means ± 

Standard Deviation (s.d.). Statistical significance was determined by using two-tailed, 

unpaired Student t-test in all figures except those described below. In Fig. 11, 

significance was determined by 2way Anova with Bonferroni-adjusted posttest. In 

Fig. 17 and Fig. 30, significance was determined by 1way Anova with Dunnetts-

adjusted posttest. All statistical analysis was performed using GraphPad Prism 

software. P < 0.05 and P < 0.01 were denoted as statistically significant. 
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3 Results 

3.1 TBL1 regulates p53 in the absence of cellular stress 

3.1.1 Altered gene expression upon knockdown of TBL1 in HCT116 cells 

Previous findings from our laboratory indicated that there might be a potential link 

between the co-transcriptional factor TBL1 and the tumour suppressor p53. In order 

to find out if there is a connection between TBL1 and p53, the influence of TBL1 on 

p53 target gene expression was first investigated via RNA-seq. Therefore, TBL1 was 

depleted by a pool of seven siRNAs in HCT116 wt and p53-deficient cells. After 24 h, 

RNA was isolated and sent to the Genomics and Proteomics Core Facility of the 

German Cancer Research Centre (DKFZ) for sequencing (Fig. 7 A). Fig 7 B showed 

that a two-dimensional principle component analysis (PCA) was generated to 

visualize the relationship between the samples. It could be seen that the clustering of 

the replicates and clear separation between siCtr and siTBL1 treated cells (PC2) as 

well as between HCT116 wt and p53 deficient cells (PC1). As shown in Fig. 7 C, 

there were 1055 genes upregulated and 1108 genes downregulated upon TBL1 

depletion in HCT116 wt cells, whereas in the HCT116 p53-deficient cells, 1351 

genes were upregulated and 1364 genes were downregulated (Fig. 7 D). By 

rejecting the overlapping genes affected by TBL1 depletion in both HCT116 wt and 

p53-deficient cells, the remaining genes affected in HCT116 wt cells have been 

considered to be p53 dependent and TBL1 regulated genes. As a result, 294 

upregulated and 196 downregulated genes were found to be p53-dependent genes 

upon TBL1 knockdown (Fig. 7 E). As it has been revealed that gene downregulation 

by p53 is indirect, so here upregulated genes are more focused (Allen et al., 2014, 

Brady et al., 2011, Fischer, 2017, Verfaillie et al., 2016). 

Recently, Fisher evaluated over 3000 p53 target genes by performing a meta-

analysis of data sets from the literature and identified 116 genes as high-confident 

p53 targets in at least 6 out of 16 genome-wide data sets. These p53 target genes 

are involved in a variety of cellular responses, including cell cycle arrest, DNA repair, 

apoptosis, autophagy, metabolism and mRNA translation (Fischer, 2017). Hence, I 

compared the 294 upregulated genes with these 116 genes and found 51 

overlapping genes (Fig. 7 F and supplementary data) which strengthened my finding 

that expression of certain p53 targets were suppressed by TBL1.  
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Fig. 7: RNA-seq analysis to identify genes regulated by p53-TBL1 interplay. A 

Experimental outline. B PCA analysis. C Genes regulated upon TBL1 depletion in HCT116 

p53 wt cells. D Genes regulated upon TBL1 depletion in HCT116 p53-/- cells. E 294 

downregulated (1108) downregulated (1364) upregulated (1055) upregulated (1351) 
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upregulated and 196 downregulated p53 target genes are dependent on TBL1 depletion. F 

Heat map of high-confident p53 targets upon TBL1 depletion.  

 

Gene Ontology (GO)-term analysis of biological process was performed on the 1055 

upregulated genes upon TBL1 knockdown (Fig. 8 A) and specified the analysis on 

the 294 p53-dependently upregulated genes (Fig. 8 B). It showed that these TBL1-

regulated p53-dependent genes were indeed involved in p53 signaling pathway.  
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Fig. 8: Functional analysis of TBL1 regulated genes. A GO-term functional analysis of 

1055 upregulated genes upon siTBL1 in HCT116 wt cells. B GO-term functional analysis of 

294 p53-dependently upregulated genes upon siTBL1 in HCT116 wt cells. C Heat map of 

top-12-upregulated p53 target genes by depletion of TBL1 and functional analysis of them. 

 

Fig. 8 C illustrates fold changes in expression of the top 12 TBL1-upregulated p53 

target genes. It turned out that seven of these genes code for pro-apoptotic factors 

and two others are involved in the control of cell cycle arrest. For subsequent 

experiments, two canonical p53 target genes, namely CDKN1A (codes for p21) 

involved in cell cycle arrest and BBC3 (also called PUMA) involved in cell apoptosis, 

were selected as representatives of these cellular processes. 

 

3.1.2 Validation of RNA-seq data by qRT-PCR 

Several genes from top 12 TBL1-regulated genes (Fig. 8 C) were selected to confirm 

the RNA-seq result by qRT-PCR. Fig. 9 showed that these genes expression level 

upon TBL1 knockdown was consistent to the RNA-seq result.  
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Fig. 9: Validation of differentially expressed genes by qRT-PCR. HCT116 cells were 

transfected with 100 nM siCtrl or siTBL1 and expression of the p53 target genes p21, BTG2, 

PHLDA3, INPP5D, TNFRSF10C, PUMA and FDXR (A) was analyzed 24 h after transfection 

by qRT-PCR. B Knockdown efficiency of TBL1 was verified by qRT-PCR; mRNA levels were 

normalized to HPRT1 mRNA expression and mRNA levels of siCtrl cells were set to 1.0. 

Error bars indicate mean ± s.d., n = 3 for biological replicates.  

 

3.1.3 TBL1 depletion has a mild effect on cell growth arrest 

The gene with the highest upregulation upon TBL1 knockdown is the p53 target 

gene CDKN1A which encodes for the cyclin-dependent kinase inhibitor 1 and 

functions as a regulator of cell cycle progression during G1 phase. In order to 

investigate an effect of TBL1 depletion on the cell cycle, propidium iodide (PI) 

staining was performed at different time points after TBL1 knockdown. 24 h later, 

there was almost no change in cell cycle distribution (Fig. 10 A). After 48 h a 

statistically significant increase in the G1 fraction has been detected in HCT116 wt 

cells (Fig. 10 B). There was no further increase in cell cycle status at 72 h after TBL1 

depletion compared with that after 48 h (Fig. 10 C). In HCT116 p53-deficient cells 

there was almost no change in cell cycle distribution upon TBL1 depletion (Fig. 10 D, 

E, F). 
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Fig. 10: Effects of TBL1 depletion on cell cycle progression in HCT116 cells. Cell cycle 

analysis was performed by flow cytometry. A Knockdown of TBL1 by siRNA in HCT116 wt 

cells did not induce cell cycle arrest in G0/G1 phase at 24 h after transfection. Knockdown of 

TBL1 by siRNA in HCT116 wt cells induced cell cycle arrest in G0/G1 phase at 48 h after 

transfection B and 72 h after transfection C. D, E, F Knockdown of TBL1 by siRNA in 

HCT116 p53 -/- cells did not induce cell cycle arrest in G0/G1 phase at 24 h, 48 h and 72 h 

after transfection (knockdown efficiency of TBL1 not shown). Error bars indicate mean ± s.d., 

n = 3 for biological replicates. 
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3.1.4 TBL1 regulates p53 target genes in RPE-1, U2OS and MCF7 cell 

lines 

In order to determine whether p53 target genes induction in response to TBL1 

depletion is also evident in other tumour cell lines and in non-cancerous cells, 

different cell lines were chosen for further gene expression experiments. U2OS is a 

well-established osteosarcoma cell line which is used in many studies (Lauvrak et 

al., 2013). MCF7 is a breast cancer cell line which is the origin of a wide spectrum of 

current knowledge in breast cancer (Levenson and Jordan, 1997). RPE-1 (Retinal 

pigmented epithelial cells) has been used to represent non-cancerous cells. 

In MCF7 and U2OS, the gene expression of p21 and PUMA was highly increased 

upon TBL1 knockdown (Fig. 11 A, B). However, the slight increase in p21 and PUMA 

expression was not statistically significant in RPE-1 (Fig. 11 A, B). This indicated that 

TBL1 might be exploited by tumour cells in order to suppress p53 activity. 
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Fig. 11: Knockdown of TBL1 enhances p21 and PUMA expression in MCF7 and U2OS, 

but not in RPE-1. RPE-1, MCF7 and U2OS cells were transfected with 100 nM siCtrl or 

siTBL1 and expression of the p53 target genes p21 (A) and PUMA (B) was analyzed 24 h 

after transfection by qRT-PCR. C Knockdown efficiency of TBL1 was verified by qRT-PCR; 

mRNA levels were normalized to HPRT1 mRNA expression and mRNA levels of siCtrl cells 

were set to 1.0. Error bars indicate mean ± s.d., n = 3 for biological replicates.  

 

3.1.5 Interaction of TBL1 with p53 in vitro and in vivo 

Investigation of gene regulation revealed that TBL1 regulates a subset of p53 target 

genes. Because of this finding, it was then interesting to explore whether these two 

proteins bind to each other. In order to determine whether these two proteins 

endogenously interact with each other, co-immunoprecipitation (Co-IP) has been 

performed. Fig. 12 A showed that p53 protein was successfully precipitated by the 

corresponding p53 antibody in HCT116 wt cells and that TBL1 could be co-

precipitated with p53. Although TBL1 was found to be co-precipitated in HCT116 wt 

cells, it was not detected in p53-deficient cells. Vice versa, p53 was detected in co-

precipitated binding partners of pulled TBL1 and there was no p53 found from pulled 

control IgG antibody which served as a negative control (Fig. 12 B). 

 

Fig. 12: p53 and TBL1 endogenously interact in HCT116 cells. Co-IP of endogenous 

TBL1 and p53 A HCT116 wt cells and HCT116 p53 -/- cells (as control) were used, anti-p53 

antibody was added and then pulled from total lysate using protein A/G plus-agarose beads, 

TBL1 was found to be co-precipitated. B HCT116 wt cells were used, anti-IgG antibody (as 

negative control) and anti-TBL1 antibody were added and then pulled, p53 was co-
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precipitated; proteins were detected by immunoblotting with anti-TBL1 and anti-p53 

antibodies and HRP-coupled secondary antibodies. TBL1 antibody used here is the Guinea 

pig polyclonal antibody which is from Valentina Perissi. Data are shown as representative of 

three experiments. 

 

To determine whether the interaction is direct or indirect, GST-Pulldown assay was 

performed in vitro. Bacterially expressed GST-TBL1 or GST was incubated with 

bacterially expressed His-p53 respectively and co-precipitation was analyzed by 

western blot. The results shown in Fig. 13 clearly revealed a specific interaction 

between TBL1 and p53, since His-p53 could be only detected with GST-TBL1 

instead of GST. 

  

 

Fig. 13: p53 and TBL1 interact in vitro. In vitro GST-Pulldown with GST-TBL1 and His-

p53: GST and GST-TBL1 were bacterially expressed, purified and incubated with bacterially 

expressed His-p53, co-precipitation was analyzed by western blot. GST-proteins were 

Coomassie stained as loading control, GST served as negative binding control, 5% of the 

His-protein was loaded as input control. Data are shown as representative of three 

experiments. 
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3.1.6 p53 and TBL1 are recruited to p53 target gene promoters in 

unstressed cells 

Based on the findings that TBL1 depletion could induce the expression of a set of 

p53 target genes without any external stress and that TBL1 binds to p53, it was 

hypothesized that p53 and TBL1 were already associated to some of its target 

promoters under unstressed conditions. In order to prove this, chromatin 

immunoprecipitation (ChIP) qRT-PCR was performed analyzing p21 and PUMA as 

representative p53 targets. As expected, p53 and its binding partner TBL1 were both 

found to be bound to the promoter of p21 and PUMA in HCT116 wt cells. But in 

HCT116 p53-deficient cells TBL1 was not bound to the p21 and PUMA promoter 

anymore, which indicated this action was p53 dependent (Fig. 14 A-D).  

 

Fig. 14: Binding of p53 and TBL1 on p53 target promoters by ChIP analysis.). DNA was 

isolated following chromatin immunoprecipitation by A, B anti-p53 antibody and C, D anti-

TBL1 antibody. p21 and PUMA promoter DNA was determined by qRT-PCR. The outcome 

is presented in relation to the extracts precipitated with IgG antibody and set to 1.0. HCT116 

p53-/- cells were used as control. Error bars indicate mean ± s.d., n = 3 for biological 

replicates.  
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3.1.7 TBL1 depletion has virtually no effect on p53 protein level 

Consequently, I wanted to know how TBL1 represses p53 target gene transcription 

and unravel the mechanism behind it. It is known that rapid accumulation of large 

amounts p53 is a marker for p53 activation. At first, whether p53 protein level change 

was investigated upon TBL1 depletion. In four replicates it was shown that there 

were no significant changes in p53 protein level upon TBL1 knockdown (Fig. 15). 

Consistent with the RNA-seq result, protein levels of two p53 targets p21 and PUMA 

were enhanced compared to the control (Fig. 15). Hence, the suppression of p53 

activity is not due to the inhibition of p53 protein accumulation.  

 

Fig. 15: TBL1 knockdown does not increase p53 protein levels. HCT116 wt cells were 

transfected with siCtr and siTBL1 for 48 h. Lysates were analyzed by immunoblotting with 

anti-p53, anti-TBL1, anti-p21, anti-PUMA and anti-β-actin antibodies and specific HRP-

coupled secondary antibodies. The TBL1 antibody from here were all used rabbit polyclonal 

antibody which was from Abcam. Data are shown as representative of three experiments. 
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3.1.8 TBL1 depletion has virtually no effect on p53 modifications 

Post-translational modifications like phosphorylation and acetylation are quite 

essential for p53 activation. It has been shown that acetylation at lysine 373 and 382 

as well as phosphorylation at serine 15 of p53 play an important role in the induction 

of p53 target genes transcription (Zhao et al., 2006, Appella and Anderson, 2001, 

Bode and Dong, 2004). Therefore, these modifications have been detected upon 

TBL1 knockdown. The topoisomerase II inhibitor doxorubicin was used as a positive 

control for p53 activation. However, there were again no significant differences 

between the acetylation and phosphorylation of cells treated with siCtr or siTBL1 

(Fig. 16).  

  

 

Fig. 16: TBL1 knockdown does not affect p53 modifications. HCT116 wt cells were 

transfected with siCtr or siTBL1or treated with 0.5 μg/ml Doxorubicin for 24 h as positive 

control. Lysates were analyzed by immunoblotting with anti-p53AcLys373/382, anti-

p53pSer15, anti-p53, anti-TBL1 and anti-β-actin antibodies and specific HRP-coupled 

secondary antibodies. Data are shown as representative of three experiments. 
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3.1.9 TBL1 depletion has virtually no effect on promoter recruitment of 

p53  

As stated in 3.1.6, p53 binds to several promoters in unstressed cells. Another 

potential mechanism how TBL1 regulates p53 target gene expression could be that 

TBL1 depletion influences p53 binding activity to its target promoters. Hence, ChIP 

was performed using a p53 antibody upon TBL1 knockdown. However, there was 

almost no change for the amount of p53 binding to p21 and PUMA promoters 

between the mock transfected and the TBL1 knockdown cells (Fig. 17 A, B). 

 

Fig. 17: TBL1 knockdown does not influence p53 binding to target promoters. HCT116 

wt cells were transfected with siCtr and siTBL1 for 48 h. Then DNA was extracted following 

chromatin immunoprecipitation by anti-p53 antibody. A p21 and B PUMA promoter DNA was 

determined by qRT-PCR. The outcome is expressed in relation to extract precipitated with 

IgG antibody, which was set to 1.0. ns: not significant. Error bars indicate mean ± s.d., n = 3 

for biological replicates.  

 

3.1.10 TBL1 depletion increases H3K9/27 acetylation at p53 target gene 

promoters 

It becomes more and more clear that epigenetic modifications on the chromatin play 

an important role in the regulation of gene expression. It has been reported that 

H3K9 and H3K27 acetylation at p53 target promoters regulate p53 target genes 

expression at the transcriptional level. Therefore, they were detected to investigate if 
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TBL1 knockdown does increase their binding to p53 target promoters. Fig. 18 A, C 

showed that there was an increase in acetylated-H3K9 and acetylated-H3K27 levels 

on p21 and PUMA promoters upon TBL1 knockdown in HCT116 wt cells. However, it 

has not been found for acetylated-H4K16. In p53-deficient cells, none of the three 

histones showed increased acetylation, indicating that this effect is p53 dependent 

(Fig. 18 B, D).  

 

Fig. 18: TBL1 knockdown increases histone acetylation at p21 and PUMA promoters 

in HCT116 wt cells. A, C HCT116 wt cells and B, D HCT116 p53 -/- cells were transfected 

with siCtr and siTBL1 for 48 h. The chromatin was immunoprecipitated with anti-H3K9-AC, 

anti- H3K27-AC, anti-H4K16-AC and anti-IgG and then was extracted and determined by 

qRT-PCR on p21 and PUMA promoters. The outcome is expressed in relation to extract 

precipitated with IgG antibody which was set to 1.0. Error bars indicate mean ± s.d., n = 3 for 

biological replicates.  
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3.1.11   TBL1 depletion decreases H3K9/27 methylation at p53 target gene 

promoters 

Histone acetylation partly unravels the chromatin to promote gene transcription. 

Conversely, most histone methylations lead to much denser chromatin structures 

which inhibits gene transcription. Based on the above findings of increased histone 

acetylation at p53 target promoters upon TBL1 depletion, correspondingly, this 

should be connected with the decrease of methylation at the same sites. Tri-

methylated H3K9 and H3K27 are two markers for the repression of genes 

transcription. Therefore, these two histone methylation markers were detected via 

ChIP assay. Fig. 19 A, C revealed that methylated H3K9 and H3K27 were 

attenuated on p21 and PUMA promoter in HCT 116 wt cells in response to TBL1 

knockdown, but not in HCT116 p53-deficient cells (Fig. 19 B, D). 

 

Fig. 19: TBL1 knockdown decreases histone methylation at p21 and PUMA promoter 

in HCT116 wt cells. A, C HCT116 wt cells and B, D HCT116 p53-/- cells were transfected 

with siCtr and siTBL1 for 48 h. The chromatin was immunoprecipitated with anti-H3K9-Me, 
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anti-H3K27-Me and anti-IgG antibodies. Upon chromatin extraction, relative enrichment was 

determined by qRT-PCR on p21 and PUMA promoters. The outcome is expressed in 

relation to extract precipitated with IgG antibody which was set to 1.0. Error bars indicate 

mean ± s.d., n = 3 for biological replicates.  

 

3.1.12 Effect of co-repressor depletion on p53 target genes expression 

So far it has been found that induction of p53 target gene expression upon TBL1 

depletion is due to increased histone acetylation at p53 target promoters which 

means the suppression of p53 transcriptional activity by TBL1 in unstressed status is 

regulated via deacetylation on p53 target gene promoters. However, TBL1 has no 

enzymatic histone-deacetylating activity which means that there must be other 

factors recruited by TBL1 to the target promoters which ultimately initiate 

deacetylation. In order to determine these downstream mediators, several co-

repressors that are components of NCoR/SMRT complex were knocked down by 

corresponding siRNAs and the gene expression of the representative p53 targets 

p21 and PUMA was detected. Knockdown of NCoR, HDAC3, and TBL1 all led to a 

significant induction of p21 and PUMA to a similar extent (Fig. 20 A, B).  
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Fig. 20: Knockdown of HDAC3 and NCoR enhances p21 and PUMA expression in 

HCT116 wt cells. HCT116 wt cells were transfected with siCtrl, siTBL1, siTBLR1, siSMRT, 

siNCoR, and siHDAC3. After 24 h, expression of p53 target genes p21 (A) and PUMA (B) 

was analyzed by qRT-PCR. D Knockdown efficiency of TBL1, TBLR1, SMRT, NCoR and 

HDAC3 was verified by qRT-PCR; mRNA levels were normalized to HPRT1 mRNA 

expression and mRNA levels of siCtrl cells were set to 1.0. Error bars indicate mean ± s.d., n 

= 3 for biological replicates. 

 

3.1.13   HDAC3 and NCoR knockdown phenocopies TBL1 depletion   

regarding the increased acetylation of H3K9/K27 at p53 target 

gene promoters 

Another ChIP assay has been performed to analyze the histone acetylation status 

upon co-repressor depletion in comparison to TBL1 knockdown. It turned out that 

siHDAC3 significantly enhanced H3K9 and H3K27 acetylation compared to siCtr on 

p21 (Fig. 21 A) and PUMA promoters (Fig. 21 C). However, this enhancement was 

abolished in HCT116 p53-deficient cells (Fig. 21 B, D).  
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Fig. 21: HDAC3 knockdown increases histone acetylation at p21 and PUMA promoters 

in HCT116 wt cells, but no p53-deficient cells. A, C HCT116 wt cells and B, D HCT116 

p53-/- cells were transfected with siCtr and siHDAC3 for 48 h. The chromatin was 

immunoprecipitated with anti-H3K9-AC, anti- H3K27-AC, or anti-IgG antibodies and then 

extracted and determined by qRT-PCR on p21 and PUMA promoters. The results are 

presented relatively to extract precipitated with IgG antibody which was set to 1.0. Error bars 

indicate mean ± s.d., n = 3 for biological replicates. 

 

Knockdown of NCoR showed a similar result which also significantly enhanced H3K9 

and H3K27 acetylation compared to siCtr on p21 (Fig. 22 A) and PUMA promoters 

(Fig. 22 C). This enhancement was abolished in HCT116 p53-deficient cells as well 

(Fig. 22 B, D).  

 

Fig. 22: NCoR knockdown increases histone acetylation at p21 and PUMA promoters 

in HCT116 wt cells, but no p53-deficient cells. A, C HCT116 wt cells and B, D HCT116 

p53-/- cells were transfected with siCtr and siNCoR for 48 h. The chromatin was 
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immunoprecipitated with anti-H3K9-AC, anti- H3K27-AC, or anti-IgG and then extracted and 

determined by qRT-PCR on p21 and PUMA promoters. The results are presented relatively 

to extract precipitated with IgG antibody which was set to 1.0. Error bars indicate mean ± 

s.d., n = 3 for biological replicates. 

 

3.2 Functional interplay of TBL1 and p53 in response to 

chemotherapeutic drug treatment 

3.2.1 TBL1 depletion chemosensitizes HCT116 cells to 5-fluoroucil 

treatment in a p53-dependent manner 

Based on the fact that TBL1 depletion induced a subset of p53 targets involved in 

cell cycle arrest or cell apoptosis, it was of huge interest to test whether it might also 

increase tumour cell sensitivity to chemotherapeutic agents. Therefore, FITC 

Annexin V Apoptosis assay was performed upon TBL1 knockdown and 5-FU 

treatment in HCT116 cells. As shown in Fig. 23 A, TBL1 depletion significantly 

increased cell apoptosis in comparison to siCtrl. Moreover, TBL1 depletion led to an 

increase of 15 % cell apoptosis compared to control cells in response to 5-FU 

treatment. This indicated that depletion of TBL1 sensitizes cells to chemotherapeutic 

drug treatment. Furthermore, since p53 is an important player in the induction of 

apoptosis upon genotoxic stress, it was essential to determine if the above findings 

are dependent on p53 activity. Fig. 23 C showed that cell apoptosis in HCT116 p53-

deficient cells after knockdown of TBL1 and 5-FU treatment was not significantly 

altered, indicating an important role of p53 in this process.  
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Fig. 23: 5-FU treatment upon TBL1 depletion induces p53-dependent apoptosis. A, C 

HCT116 wt cells and HCT116 p53-/- cells were transfected with siCtrl and siTBL1 and 

subsequently exposed to 50 µM 5-FU for 48 h. Cells were then harvested and stained with 

Annexin V / PI and analyzed via flow cytometry. Apoptosis is the annexin V positive but PI 

negative fraction, % of total population. B, D qRT-PCR confirmed knockdown efficiency; 

mRNA levels were normalized to HPRT1 mRNA expression, mRNA levels of siCtrl cells 

were normalized to 1.0. Error bars indicate mean ± s.d., n = 3 for biological replicates.  

 

During apoptosis, Poly (ADP-ribose) Polymerase (PARP) is known to be activated at 

an intermediate stage of apoptosis and to be cleaved and inactivated at a later stage 

by caspases. Cleaved PARP facilitates cellular disassembly and serves as a marker 

of cells undergoing apoptosis (Oliver et al., 1998). Therefore, protein levels of 

cleaved PARP were detected upon TBL1 knockdown and 5-FU treatment (Fig. 24). 

The amount of cleaved PARP was significantly increased upon TBL1 depletion and 

5-FU treatment in HCT116 wt cells. In addition, protein levels of p21 and PUMA were 

also found to be enhanced by knockdown of TBL1 (Fig. 24).  
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Fig. 24: TBL1 depletion increases levels of cleaved PARP in response to 5-FU. 

HCT116 wt cells and HCT116 p53-/- cells were transfected with siCtrl and siTBL1 and 

subsequently exposed to 50 µM 5-FU for 48 h. Cell lysates were analyzed by 

immunoblotting with anti-cleaved PARP, anti-p53, anti-p21, anti-PUMA, and anti-actin 

antibodies as well as specific HRP-coupled secondary antibodies. Data are shown as 

representative of three experiments. 

 

3.2.2 TBL1 depletion chemosensitizes HCT116 cells to Nutlin-3a in a 

p53-dependent manner 

Nutlin-3a is a novel anti-cancer drug currently investigated in clinical trials which 

activates p53 via inhibition of the interaction between p53 and the E3 ubiquitin ligase 

MDM2. This leads to a stabilization of p53 without inducing a DNA damage 

response. Hence, the same experiment as described in 3.2.1 has been performed 

using Nutlin-3a instead of 5-FU. The results presented in Fig. 25 A showed that 

TBL1 knockdown and Nutlin-3a treatment together significantly enhanced cell death 
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to around 25%. Of note, this phenomenon was almost completely diminished in p53-

deficient cells (Fig. 25 C).  

 

Fig. 25: Nutlin-3a treatment upon TBL1 depletion induces p53-dependent cell 

apoptosis. A, C HCT116 wt cells and HCT116 p53-/- cells were transfected with siCtrl and 

siTBL1 and subsequently exposed to 10 µM Nutlin-3a for 48 h. Cells were harvested and 

stained with Annexin V / PI and analyzed by flow cytometry. Apoptosis is the annexin V 

positive but PI negative fraction, % of total population.  B, D qRT-PCR to confirm knockdown 

efficiency; mRNA levels were normalized to HPRT1 mRNA expression, mRNA levels of 

siCtrl cells were set to 1.0. Error bars indicate mean ± s.d., n = 3 for biological replicates.  

 

Since Nutlin-3a could only activate wild-type p53 and has been proved that there is 

no effect in p53 mutant or p53 deficient cells (Vassilev et al., 2004), the detection on 

the protein level was done in HCT116 wt cells. The elevated level of cleaved PARP 

was clear to be obserbed upon TBL1 knockdown and Nutlin-3a treatment (Fig. 26). 
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Fig. 26: Nutlin-3a treatment upon TBL1 depletion increases levels of cleaved PARP. 

HCT116 wt cells and HCT116 p53-/- cells were transfected with siCtrl and siTBL1 and 

subsequently exposed to 10 µM Nutlin-3a for 48 h. Cell lysates were analyzed by 

immunoblotting with anti-cleaved-PARP, anti-p53, anti-p21, anti-PUMA and anti-actin 

antibodies as well as specific HRP-coupled secondary antibodies. Data are shown as 

representative of three experiments. 

 

3.2.3 TBL1 depletion inhibits cell growth and induces cell death 

In order to test whether TBL1 knockdown affects overall cell survival particularly 

under conditions of genotoxic stress, colony formation assays were performed. 

Therefore, TBL1 was depleted by siRNA transfection and cells were subsequently 

exposed to 5-FU or Nutlin-3a. After two weeks, cells were washed, fixed, and stained 

with crystal violet. Upon TBL1 knockdown HCT116 wt cell number was already 

attenuated in unstressed conditions (Fig. 27 A). This might have been due to the 

inhibition of cell proliferation as well as induction of cell death. With 5-FU or Nutlin-3a 
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treatment, cell numbers were drastically reduced which suggested a huge induction 

of cell death. Upon TBL1 knockdown with additional drug treatment almost no colony 

formation was detected (Fig. 27 A). In HCT116 p53-deficient cells there was a similar 

tendency but with slightly weaker effects (Fig. 27 B). Knockdown efficiency was 

confirmed by western blot (Fig. 27 C).  

 

 

Fig. 27: Knockdown of TBL1 inhibits colony formation and enhances cell death in 

response to 5-FU and Nutlin-3a respectively. Colony formation assay: 1 x 103 HCT116 wt 

cells A and HCT116 p53-/- cells B were seeded in 6 cm dishes and transfected with 100 nM 

siCtrl and siTBL1. Cells were then treated with 50 µM 5-FU or 10 µM Nutlin-3a for 24 h. After 

another 14 days, cells were fixed and stained with crystal violet. C Knockdown efficiency 

was analyzed by western blot. Data are shown as representative of three experiments. 

 

3.2.4 TBL1 interacts with p53 in DDR 

Under unstressed conditions, TBL1 binds to p53 in order to suppress its transcription 

activity via HDAC3-mediated histone deacetylation on p53 target promoters. 

Consequently, it was of very big interest to investigate the status of TBL1 in stressed 

cells. As it is known that p53 is activated in response to DNA damage, I expected 

that TBL1-p53 binding as well as the TBL1-mediated p53 repression would be 

disrupted to allow p53 to transactivate its target genes. Surprisingly, as shown in Fig. 



68 
 

28 A, B, TBL1 and p53 still bind to each other even upon treatment with Doxorubicin 

to induce the DDR. 

 

 

Fig. 28: p53 and TBL1 interact with each other in absence or presence of DNA 

damage. Co-IP of endogenous TBL1 and p53. A HCT116 wt cells treated with 0.5 μg/ml 

Doxorubicin for 24 h to induce the DDR and untreated HCT116 wt cells were analyzed. IgG 

antibody (negative control) and p53 antibody were added and then pulled from total lysate 

using protein A/G plus-agarose beads. B HCT116 wt cells treated with 0.5 μg/ml 

Doxorubicin for 24 h to induce the DDR and untreated HCT116 wt cells were analyzed. IgG 

antibody (negative control) and TBL1 antibody were added and then pulled. As a result, p53 

was co-precipitated. Proteins were detected by immunoblotting with anti-TBL1 and anti-p53 

antibodies as well as HRP-coupled secondary antibodies. Data are shown as representative 

of three experiments. 
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3.2.5 Doxorubicin treatment has virtually no effect on TBL1 protein level 

These results tempted me to investigate if there are any changes in TBL1 protein 

levels during the DDR. Therefore, HCT116 wt cells were treated with Doxorubicin for 

different time periods between 2 h and 24 h. It can be clearly seen that p53 

activation increases with the time after adding the genotoxic stress. However, there 

was no significant change in TBL1 protein levels over time (Fig. 29). 

 

 

 

Fig. 29: DDR does not alter TBL1 protein level. HCT116 wt cells were treated with 

0.5 μg/ml Doxorubicin for 2 h, 4 h, 6 h, 18 h and 24 h respectively. Lysates were analyzed by 

immunoblotting with anti-p53, anti-TBL1 and anti-β-actin antibodies as well as specific HRP-

coupled secondary antibodies. Data are shown as representative of three experiments. 

 

3.2.6 Doxorubicin treatment has virtually no effect on the recruitment of 

TBL1 to p53 target gene promoters 

Based on the results presented above, it seemed that that there would be no change 

in TBL1 recruitment to p53 target promoters upon treatment of Doxorubicin. As a 

positive control recruitment of p53 was analyzed by ChIP. This analysis showed a 

dramatic increase in the p53 promoter binding during Doxorubicin-induced DDR (Fig. 

30 A, B). However, there is no change for TBL1 binding to promoters with or without 

genotoxic stress (Fig. 30 C, D). 
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Fig. 30: Doxorubicin treatment does not influence TBL1 binding to p53 target 

promoters. HCT116 wt cells treated with 0.5 μg/ml Doxorubicin for 24 h were analyzed 

compared to untreated cells as a control. Then DNA was isolated via chromatin 

immunoprecipitation by anti-p53 antibody A, B or anti-TBL1 antibody C, D and p21 and 

PUMA promoter DNA was determined by qRT-PCR. The outcome is presented in relation to 

extract precipitated with IgG antibody which was set to 1.0. ns: not significant. Error bars 

indicate mean ± s.d., n = 3 for biological replicates. 

 

3.2.7 TBL1 depletion increases p53 target gene expression upon 

Doxorubicin treatment  

It is now clear that TBL1 binds to p53 upon genotoxic stress. Hence, if TBL1 was 

depleted after the DDR has already been initiated, it would be able to give rise to a 

higher extent of p53 targets expression. As expected, Fig. 31 A showed that 24 h 

treatment with Doxorubicin upon TBL1 knockdown significantly enhanced p21 

expression. Although the induction for PUMA is not statistically significant, the trend 

shows an increase of PUMA expression (Fig. 31 A).  
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Fig. 31: TBL1 depletion enhances p53 target gene expression upon Doxorubicin-

induced DDR. A HCT116 wt cells were treated with 0.5 μg/ml Doxorubicin for 24 h, then 

transfected with 100 nM siCtrl or siTBL1, and expression of p53 target genes p21 and PUMA 

was analyzed by qRT-PCR 24 h after transfection. B Knockdown efficiency of TBL1 was 

verified by qRT-PCR. mRNA levels were normalized to HPRT1 mRNA expression and 

mRNA levels of siCtrl cells were set to 1.0. Error bars indicate mean ± s.d., n = 3 for 

biological replicates. 
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4 Discussion 

As a key regulator of a number of cellular functions, p53 has been found to interact 

with a variety of co-factors which regulate p53 activity in different signaling networks. 

As a factor regulating transcription, TBL1 is involved in different cellular pathways, 

such as cell growth control (Dimitrova et al., 2010, Li and Wang, 2008, Ramadoss et 

al., 2011), metabolic signaling (Kulozik et al., 2011, Rohm et al., 2013) and cell death 

(Lim et al., 2012). Previous finding from our laboratory suggested that TBL1 might 

also play a role in the regulation of the transcriptional activity of p53 (Adikesavan et 

al., 2014, Dimitrova et al., 2010, Lim et al., 2012, Perissi et al., 2008), which tempted 

me to investigate a possible relation of these two proteins. 

RNA-seq analysis data showed that a subset of p53 target genes was regulated by 

TBL1. However, there were still a lot of questions waiting to be answered. The first 

part of this thesis showed that TBL1 interacts with p53 and suppresses p53 

transcriptional activity by HDAC3-mediated histone deacetylation on p53 target gene 

promoters. In the second part, TBL1 is associated with chemosensitivity of cancer 

cells. But the question remains whether it is involved in DDR directly. 

Taken together, regulating p53 transcriptional activity was identified as a new 

function of TBL1. Furthermore, TBL1 appears to be an attractive molecular target to 

be exploited in the future to chemosensitize cancer cells. 

 

4.1 TBL1 regulates the expression of a subset of p53 target 

genes in the absence of cellular stress 

RNA-seq analysis was used to find out if there are p53 target genes regulated by 

TBL1. Among 1055 genes upregulated upon TBL1 depletion in HCT116 wt cells, 294 

genes were identified as p53 targets (Fig. 7 E). Although a huge number of p53 

target genes have been identified, some of them are poorly investigated. Moreover, 

recent studies support the idea that p53 functions as a transcription activator. The 

downregulation of genes mediated by p53 is indirect and requires p21 (Allen et al., 

2014, Brady et al., 2011, Fischer, 2017, Verfaillie et al., 2016). That is the reason 

why here upregulated p53 target genes were focused on. Fischer summarized most 

of the proposed p53 target genes from literature and defined 116 genes, which were 
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found in at least 6 out of 16 genome-wide data sets, as high-confident p53 target 

genes (Fischer, 2017). Among 294 TBL1 regulated p53 targets there were 51 genes 

that were found among these 116 genes (Fig. 7 F and supplementary data), which 

supports our finding that around one sixth of TBL1 regulated p53 dependent genes 

were “high-confident p53 targets”. However, there are many more p53 target genes 

besides the 116 genes postulated by Fischer. For example, among the top 12 TBL1 

upregulated p53 targets (Fig. 8 C), TNFRSF10C and INPP5D were not among the 

“Fischer genes” but were identified in multiple data sets and have been proven to be 

p53 targets (Leszczynska et al., 2015, Sheikh et al., 1999).  

Functional analysis showed that 9 out of the 12 most TBL1 upregulated p53 targets 

were involved in the inhibition of cell proliferation or induction of cell apoptosis (Fig. 8 

C). Interestingly, Leszczynska et al. found that PHLDA3 and INPP5D (2 of the 12 top 

genes) mediate apoptosis through AKT pathway inhibition. Furthermore, inhibition of 

AKT led to apoptosis in p53-deficient tumours and increased radio-sensitivity 

(Leszczynska et al., 2015). PI3K is known to be the major mode of AKT activation 

and it has been reported that TBL1 was involved in PI3K signaling pathway (Stoy et 

al., 2015). This explains why these two TBL1 regulated genes exert their function via 

AKT signaling pathway. In addition, GO-term analysis was done to 1055 upregulated 

genes in HCT116 wt cells. It was found that TBL1 participated in a number of 

different functions including p53 mediated signal transduction (Fig. 8 A). Moreover, 

GO-term analysis of 294 upregulated p53 targets showed that most of these genes 

were involved in intrinsic or extrinsic apoptotic signaling pathways (Fig. 8 B). 

One of the genes from our RNA-seq list upon knockdown of TBL1, namely SLC7A11 

(solute carrier family 7 member 11) caught my attention. SLC7A11 is a key 

component of the cystine/glutamate antiporter, which imports cystine to support 

elimination of lipid peroxides in the cell (Lewerenz et al., 2013). In case SLC7A11 is 

repressed, the reluctant lipid peroxides cannot be removed which subsequently 

leads to the induction of ferroptosis. Ferroptosis is a specific type of programmed cell 

death which is characterized by iron-dependent accumulation of lipid hydroperoxides 

leading to death (Stockwell et al., 2017). Recently, Jiang et al. found that p53 inhibits 

cystine uptake and sensitizes cells to ferroptosis by repressing the expression of 

SLC7A11, which leads to glutathione reduction and ROS increase which is an 

important component of ferroptosis (Jiang et al., 2015). In my study, however, the 



74 
 

mRNA expression of SLC7A11 was decreased up to 65 % upon TBL1 depletion in 

HCT116 wt cell and to 55 % in HCT116 p53-deficient cells (data not shown). This 

indicated that SLC7A11 is not completely dependent on p53. A study by Ou et al. on 

p53 and ferroptosis showed that p53 alone seems not to be able to induce 

ferroptosis but rather to regulate the threshold of sensitivity to ferroptosis inducers 

(Ou et al., 2016). Nevertheless, the search was ongoing for an elucidation of p53 

regulated ferroptosis and it could be seen the potential of TBL1 depletion to 

contribute to ferroptosis. 

It is worth mentioning that the induction of these p53 target genes is completely 

dependent on the knockdown of TBL1, as it has been observed in the absence of 

additional cellular stresses. This is a very rare phenomenon, because most studies 

focus on the function of p53 after its activation upon genotoxic stress. This finding 

gives rise to a question that what the basal status or basal function of p53 is. For a 

very long time, the activity of p53 under basal conditions (unstressed cells) has 

received relatively little attention. Initially, the basal level of p53 was simply 

determined by averaging over cell populations prior to different treatments and the 

expression of p53 was considered to be dispensable for normal cell survival. 

However, recent studies revealed more and more functions of p53 in the absence of 

cellular stress. For instance, Hafsi et al. showed that an essential role of basal p53 in 

physiological processes such as stem cell maintenance, development, aging and 

senescence, as well as the regulation of basal oxidative cell metabolism (Hafsi and 

Hainaut, 2011). In detail, they found that p53 is required to maintain hematopoietic 

stem cells (HSCs) in a quiescent state via modulating intracellular levels of ROS and 

the expression of growth suppressors. This remarkably impacts stem and progenitor 

cell functions under both normal and pathologic conditions (Asai et al., 2011, Liu et 

al., 2009, Urao and Ushio-Fukai, 2013). Moreover, basal p53 expression is also 

critical in maintaining mesenchymal stem cell (MSC) integrity. Alterations in MSC 

function resulting from p53 inactivation may contribute to the pathophysiology of 

skeletal-related disease more significantly than currently appreciated (Boregowda et 

al., 2018). In the absence of genotoxic stress, cells also suffer from intrinsic transient 

damage from cell replication and metabolic process. Loewer et al. pointed out that 

transient low damage is insufficient to convert inactive p53 to its active form, which is 

mainly because of post translational modifications keeping p53 inactive. When the 
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deacetylase inhibitor JW152 was used to induce the accumulation of acetylated p53, 

p21 expression was activated in the absence of extrinsic damage (Loewer et al., 

2010). This indicated that in non-stressed cells acetylation patterns of p53 could 

increase its transcriptional activity. However, it was not known whether the induction 

of p53 targets upon TBL1 depletion was due to p53 modifications, accumulation or 

other reasons. 

Taken together, TBL1 was identified as a new negative regulator of p53 activity and 

its depletion induced transcription of p53 target genes. This reinforces my hypothesis 

that TBL1 is a promising target for the repression of cancer growth and development. 

 

4.2 TBL1 interacts with p53 in vitro and in vivo 

As the main negative regulator of p53, the E3 ubiquitin ligase MDM2 interacts with 

p53 and constantly degrades it. This prompted me to investigate if there is a similar 

correlation between TBL1 and p53.  

By ectopically expressing TBL1 and p53, a former PhD student in our laboratory 

found that p53 and TBL1 interact with each other in cells (Greiner, 2014). However, 

overexpression experiments are not necessarily representative for the actual 

situation in the cell. These synthetic conditions might lead to specific defects in the 

cell, like promiscuous interactions or pathway modulation associated with the degree 

of overexpression (Moriya, 2015). Therefore, these findings needed to be validated 

on the endogenous level. Although there is comparatively less p53 protein in 

unstressed cells, the endogenous interaction between p53 and TBL1 was confirmed 

in colorectal cancer cells via Co-IP experiments by adapting and optimizing cell 

numbers and techniques (Fig. 12). 

As the Co-IP result could not distinguish between direct or indirect interactions, 

another strategy deployed to investigate this was GST-Pulldown assay. The 

recombinantly expressed proteins GST-TBL1 and His-p53 in E. coli were isolated, 

purified and incubated together and the result showed that TBL1 and p53 directly 

bind to each other (Fig. 13).  

Moreover, it has been shown that p53 is one of the transcriptional factors that is 

associated with the NCoR/SMRT complex, in which TBL1 is a subunit of this 
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complex. For instance, Adikesavan et al. showed that the deacetylase activation 

domain (DAD) of SMRT can directly bind to p53 (Adikesavan et al., 2014). This 

binding blocks HDAC3 interaction with DAD leading to a net increase in HAT activity, 

which contributes to the activation of p53 target genes in response to DNA damage. 

In addition, it was reported that ERα represses p53 mediated transcriptional 

activation in human breast cancer cells by recruiting NCoR/SMRT and HDAC1 

(Konduri et al., 2010). However, SMRT (but not NCoR) has also been shown to act 

as a co-activator for ERα in MCF7 breast cancer cells (Peterson et al., 2007). In 

addition to the fact that there are at least two corepressors in one complex directly 

binding to p53, the single component like SMRT has different functions on the same 

receptor depending on the cellular context. Concerning the role of TBL1 as a nuclear 

factor exchanger, I hypothesized that that TBL1 dissociates from p53 upon DNA 

damage. However, upon Doxorubicin treatment p53 still interacts with TBL1 (Fig. 

28). TBL1 knockdown upon DNA damage led to an additional increase in the 

expression of p53 target genes (Fig. 31). This finding showed that TBL1 is a 

negative regulator of p53 activity during the DNA damage response and thereby 

counteracts the activity of SMRT. Depending on the different conditions and different 

time points, it is expected to see the varying roles of the subunits. Furthermore, it is 

very interesting that during the instant activation of p53 upon DNA damage, TBL1 

still represses p53 activity, presumably in order to prevent it from over-activation. It 

remains to be investigated whether TBL1 permanently inhibits p53 or it dissociates 

upon another trigger, which is not DNA damage.  

There are two possibilities for the interaction between p53 and TBL1 which differ in 

the localization of p53: One is that a small fraction of p53 has already bound to its 

target promoters in an inactive condition which is stabilized by TBL1, the other theory 

is that TBL1 inhibits binding of p53 to the target promoters. In both cases TBL1 

inhibits the expression of p53 target genes. ChIP-p53 analysis proved that p53 

already binds to its target gene promoters even in unstressed cells (Fig. 14), 

reinforcing the first hypothesis. 

In this study, I postulated that a fraction of p53 already binds to its target gene 

promoters in unstressed cells waiting to be instantly initiated upon specific triggers. It 

is known that upon DNA damage, p53 is activated to preserve genome integrity to 

prevent abnormal cell behaviour, otherwise DNA damage may accumulate and result 
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in the cancer formation. Regarding its critical role as a tumour suppressor and 

“guardian of the genome”, a wide range of sensing mechanisms are needed to 

detect cellular damage with extremely high sensitivity which activate the 

corresponding responses, such as cell cycle arrest or apoptosis (Bakkenist and 

Kastan, 2004). Therefore, it is very efficient that a fraction of p53 already binds to the 

promoters of its target genes, as it saves the time for p53 to be recruited to the DNA. 

However, upon constant damage, the accumulation of p53 continues leading to 

increased binding of p53 to the appropriate target promoters and thereby enhancing 

the DDR.  

As TBL1 was found to be a direct binding partner of p53, TBL1 also binds indirectly 

to the p53 target promotes (Fig. 14). The result of ChIP-p53 upon DNA damage is as 

expected since more p53 protein binds to its target gene promoters, which leads to a 

much higher increase compared with that under normal conditions (Fig. 30). 

However, there is no difference for the result of ChIP-TBL1 under unstressed and 

stressed conditions (Fig. 30). Since there is no change of protein level of TBL1 upon 

DNA damage response (Fig. 29), it may interact with a fixed amount of p53. Another 

possibility is that there are no more TBL1 molecules free to interact with the 

increased molecules of p53 upon genotoxic stress. Therefore, even when more p53 

binds to promoters this would not affect the interaction of TBL1 with the original p53 

there. That could be why there was no increased binding of TBL1 to p53 target gene 

promotors observed upon genotoxic stress.  

 

4.3 TBL1 depletion promotes active histone markers on 

p53 target gene promoters 

It is known that p53 is stabilized in response to various cellular stresses, but 

mechanisms leading to p53 activation are stimulus dependent. For instance, DNA 

damage leads to p53 phosphorylation, which blocks MDM2 mediated p53 

degradation (Shieh et al., 1997). Oncogenic signaling activates p53 by inducing the 

ARF tumour suppressor (also known as CDKN2A) to inhibit MDM2 (Pomerantz et 

al., 1998, Zhang et al., 1998). In all cases, p53 degradation mediated by MDM2 is 

inhibited which results in an accumulation of p53 protein. However, what I found is a 

novel MDM2-independent mechanism of p53 regulation via TBL1.  
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Due to the fact that no increase of p53 protein levels could be detected upon TBL1 

knockdown, it seems like this mechanism does not result in p53 stabilization. 

However, the exact mechanism still remains to be investigated. Different PTMs occur 

on the p53 protein, like phosphorylation, acetylation, SUMOylation, glycosylation, 

and prolyl isomerization which all affect protein stability and activity (Kumari et al., 

2014). Among them, phosphorylation and acetylation are the two most prominent 

ways of p53 activation. It has been revealed that Ser15 is phosphorylated by various 

kinases such as ATM, ATR and AMPK. Ser 15 phosphorylation represents an early 

cellular response to a variety of genotoxic stresses (Shieh et al., 1997, Siliciano et 

al., 1997). For example, UV-irradiation and γ-radiation could trigger Ser 15 

phosphorylation (Canman et al., 1994, Lees-Miller et al., 1992, Siliciano et al., 1997). 

In addition, p300 and CBP (CREB-binding protein) mediated C-terminal acetylation 

of K373 and K382 are very common in response to various stresses (Ivanov et al., 

2007). In the present study, these p53 modifications were detected and indeed, there 

was no change upon TBL1 knockdown (Fig. 16).  

Although p53 pre-bound to its target promoters, TBL1 knockdown did not recruit 

more p53 to the promoters (Fig. 17). It is known that not only transcription factors, 

but also chromatin modifications contribute to development and homeostasis by 

initiating and maintaining stable patterns of gene expression (Jaenisch and Bird, 

2003). Among different histone modifications, histone acetylation and methylation 

are two main modifications that responds to various cellular signals as transcription 

regulating marks. A recent study showed that cell-type and state-specific chromatin 

modifications may alter the accessibility of particular genes to p53 transactivation 

(Su et al., 2015). Gomes et al. found that PUMA expression could be determined by 

repressive histone modifications under certain conditions, in which the PUMA locus 

is insulated by CCCTC-binding factor (CTCF) (Gomes and Espinosa, 2010). In 

ESCs, it was revealed that p53 can be induced to bind to the p21 promoter, but that 

efficient p21 activation depends on the loss of cell type specific repressive histone 

H3K27me3 that marks at the locus (Itahana et al., 2016). 

In this study, ChIP analysis showed that TBL1 depletion significantly increased the 

acetylation levels of H3K9 and H3K27 at the p21 and PUMA promoter without 

significantly affecting H4K16 acetylation (Fig. 18). Since coactivators p300/CBP 

mediate H3K27 acetylation and p300/CBP-associated factor (PCAF) mediates H3K9 
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acetylation (Jin et al., 2011). I postulated that they are the potential histone 

acetyltransferases which are recruited after TBL1 depletion and increase histone 

acetylation on p53 target promoters. Histone acetylation is connected with the 

activation of gene transcription. It has been pointed out that H3K9 acetylation leads 

to chromatin decondensation as well as formation of chromatin loops, which makes 

genes from compact chromosome territories more accessible for transcription 

(Chambeyron and Bickmore, 2004). Besides that, H3K27 acetylation also plays an 

important role in the regulation of key developmental genes in stem cells (Creyghton 

et al., 2010). In contrast to histone acetylation, histone methylation can result in 

repression or activation of gene transcription depending on the histone residue that 

is modified. Trimethylation of H3K9 and H3K27 frequently occurs in condensed 

heterochromatin, which is linked to transcriptional repression. Indeed, the results 

showed that TBL1 depletion decreased the trimethylation of H3K9 and H3K27 at p21 

and PUMA promoters in HCT116 wt cells but not in HCT116 p53-deficient cells, 

indicating that this action is p53 dependent (Fig. 19). 

It is clear that the way TBL1 represses p53 activity is via histone deacetylation on 

p53 target gene promoters. Once TBL1 is depleted, the deacetylation on the p53 

target promoters would be attenuated and the corresponding repression on p53 

activity is released. In this way, the pre-bound p53 is free to induce the transcription 

of its target genes.  

Then I inferred that should not be only TBL1, but there are also other factors which 

have similar functions to inhibit p53 activity in unstressed state. Indeed, Wang et al. 

found that the oncoprotein SET interacts with p53 and profoundly represses p53 

transcriptional activity in steady state by inhibiting H3K18 and H3K27 acetylation on 

the p53 target promoters (Wang et al., 2016a). Furthermore, calcineurin binding 

protein 1 (Cabin1) was also shown to impede p53 transcriptional activity via 

regulating H3K9 modification on p53 target promoters in the absence of genotoxic 

stress (Jang et al., 2009). In addition, the transcription factor Bach1 (BTB and CNC 

homology 1) recruits to a subset of p53 target promoters to repress p53 action by 

forming a complex containing HDAC1 and NCoR to promote histone deacetylation 

(Dohi et al., 2008). 
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My findings and these above published data indicated that this mechanism of 

deacetylation-dependent repression of p53 activity in unstressed state is widespread 

in nature. The modulation of p53 activity by these negative regulators is essential for 

cell survival in steady state.  

 

4.4 Corepressors recruited by TBL1 

Since TBL1 is a component of NCoR/SMRT complex, it would be interesting to know 

if other subunits are involved in this process. Indeed, knockdown of NCoR or HDAC3 

phenocopies TBL1 depletion in terms of p53 target genes induction and enrichment 

of histone acetylation on p53 target gene promoters (Fig. 21, 22). 

Based on the fact that TBL1 and NCoR have no histone-deacetylating enzymatic 

activity, this result suggested that HDAC3 is the critical key player which suppresses 

p53 target gene transcription via histone deacetylation on p53 target gene 

promoters. According to the literature, the regulation and mechanisms underlying 

HDAC3 function are linked to the association with the NCoR/SMRT complex. Some 

transcription factors, such as COUP-TF, MAD, Rev-Erb, Pit-1 and DAX1 have been 

reported to be suppressed by NCoR/SMRT recruited HDAC3 (Jepsen and 

Rosenfeld, 2002, Urnov et al., 2000). Now my data showed that there is also a direct 

functional connection between HDAC3 and the transcription factor p53 as I found 

that p53 activity underlies the suppression by HDAC3.  

The role of NCoR and SMRT is not only to be a platform to recruit these 

corepressors, but they also stimulate the enzymatic activity of HDAC3 via its 

deacetylase activation domain. In case the domain is mutated, the deacetylation 

activity of HDAC3 decreases dramatically (Guenther et al., 2001, Wen et al., 2000, 

Zhang et al., 2002). This explains the observation that knockdown of NCoR results in 

a similar phenotype like that upon HDAC3 or TBL1 knockdown. However, SMRT 

knockdown had a much weaker effect on the expression of p53 targets p21 and 

PUMA. In this context, NCoR is more essential than SMRT to repress p53 activity 

with HDAC3 and TBL1 together.  

Combining all of findings from this study, Fig. 32 showed my proposed mechanism of 

how TBL1 regulates p53 activity: Nuclear co-repressor complexes including NCoR 



81 
 

and HDAC3 are recruited by TBL1, leading to inhibition of p53 target gene 

transcription through HDAC3-mediated histone deacetylation of H3K9 and H3K27 

located on p53 target gene promoters. Once TBL1 is depleted, this co-repressor 

complex dissociates from p53. Subsequently, the histone deacetylation on p53 target 

promoters does not occur anymore which leads to an increase in histone acetylation 

of H3K9/27. In parallel, the repressive histone marks, trimethylation of H3K9/27, 

decreases on the p21 and the PUMA promoter. These changes of histone 

modification on p53 target promoters result in chromatin decondensation and 

initiation of p53 target genes transcription.  

 

Fig. 32: Mechanism of TBL1-dependent p53 regulation. TBL1 indirectly represses p53 

transcriptional activity through the recruitment of nuclear co-repressor complexes like NCoR 

and HDAC3. HDAC3 is the direct mediator which inhibits p53 target gene transcription via 

histone deacetylation on p53 target promoters.  

 



82 
 

4.5 TBL1 depletion increases chemosensitivity of cancer 

cell lines in a p53-dependent manner 

Based on these findings, the apoptosis studies showed that TBL1 knockdown 

increased chemosensitivity in colorectal cancer cells and other cell lines. 5-FU is an 

antimetabolite used for anti-cancer therapy which is known to prolong survival of 

patients with various cancers and it has the largest impact in colorectal cancer 

(Longley et al., 2003). Chemoresistance of colorectal cancer to 5-FU has been 

reported and co-treatment with irinotecan and oxaliplatin was applied to improve the 

overall survival of colorectal cancer patients. However, this combination therapy is 

associated with increased toxicity and side effects (Boige et al., 2010, de Gramont et 

al., 2000). In contrast to cytotoxic treatments, TBL1 inhibition would not have this 

kind of side effects. It is quite clear that a strong induction of cell apoptosis was seen 

upon 5-FU and TBL1 knockdown treatment in HCT116 wt cells (Fig. 23). In HCT116 

p53-deficient cells, there is a very mild induction after the combination treatment 

compared with 5-FU treatment alone, although it is not statistically significant. 

Consistent to this, a difference in the expression of cleaved-PARP was found via 

western blot analysis (Fig. 24), which means p53 plays an important role in the 

induction of cell apoptosis under this circumstance, but it is not completely p53-

dependent. p53 is a known target of PARP (Alvarez-Gonzalez, 2007, Malanga and 

Althaus, 2005). But up until now, only one study proposed a reciprocal regulation of 

PARP-mediated cell death by p53. They showed that loss of p53 enhances 

resistance to PARP-mediated cell death and concluded that p53 regulates PARP 

activity (Montero et al., 2013). Besides p53, other factors such as APTX, MYBL2 and 

DNA modifications were found to be involved in the regulation of PARP activity as 

well (Cervellera and Sala, 2000, Gueven et al., 2004). My results indicated an 

additional unknown regulation mechanism of PARP, which implies p53 and TBL1.  

As mentioned earlier, Nutlin-3a is a non-cytotoxic p53 activator which is now 

investigated in phase I/II clinical trials. My results showed that TBL1 knockdown 

could also enhance colorectal cancer cell sensitivity to Nutlin-3a treatment (Fig. 25) 

which was similar to 5-FU treatment. However, the difference is that in HCT116 p53-

deficient cells the combination treatment has no additional cell death induction 

anymore. This is due to the different mechanisms of 5-FU which is not completely 



83 
 

dependent on p53 signaling and Nutlin-3a which exclusively functions via p53 

activation.  

Colony formation assays showed that TBL1 knockdown sensitized colorectal cancer 

cells as the overall cell survival upon 5-FU or Nutlin-3a treatment was significantly 

reduced (Fig. 27). This may be an explanation why TBL1 is upregulated in some 

cancer types like breast cancer (Ramadoss et al., 2011) and pancreatic cancer (Stoy 

et al., 2015). Upregulation of TBL1 expression would have a pro-survival effect in 

cancer cells leading to protection of cells against genotoxic stress. 

The data here is consistent with the function of the Drosophila TBL1 homolog Ebi, 

which was linked to anti-apoptotic regulation. Lim et al. described that Ebi depletion  

induced neuronal cell death and sensitized retina cells to oxidative stress (Lim and 

Tsuda, 2016). Accordingly, Ebi protects these cells from damage induced apoptosis 

and thereby promotes long term survival. 

Conclusively, this study identified the role TBL1 in chemosensitivity/chemoresistance 

of colorectal cancer cells. This was a highly interesting and promising discovery.  

 

4.6 The potential role of other HDACs in TBL1-dependent 

p53 regulation 

The suppression of p53 target gene transcription through TBL1 is mediated by 

histone deacetylation via HDAC3. This tempted me to investigate if other HDACs 

might also participate in the process. In most cases, HDACs are within complexes 

composed of other proteins which are believed to modulate the activity of their 

catalytic subunits. Similar to the NCoR/SMRT complex which associates with 

HDAC3 (Hartman et al., 2005), two other complexes, namely uRD/Mi2/NRD and 

Sin3/HDAC contain both HDAC1 and HDAC2 (Knoepfler and Eisenman, 1999). 

Furthermore, although HDACs usually influence distinct cellular process, they also 

appear to have overlapping functions (Khochbin et al., 2001). It has been shown that 

HDAC1/2 as well as HDAC4/5/7 are all somehow related to NCoR/SMRT (Kao et al., 

2000, Ariyoshi and Schwabe, 2003, Fischle et al., 2002), although it is still not known 

if they also contribute to the repression of p53 target genes expression. Lastly, 

several other HDACs are also known to deacetylate p53 protein. Juan et al. showed 
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that HDAC1 interacts with p53 in vitro and in vivo and this interaction results in the 

downregulation of p53 dependent gene activation (Juan et al., 2000). Similarly, Luo 

et al. showed that HDAC1 containing complex PID/MTA2 associated NuRD 

modulate the deacetylation of p53 (Luo et al., 2000). In addition, it has been reported 

that HDAC2 regulates p53 transcriptional activity by altering p53-DNA binding 

activity (Harms and Chen, 2007). HDAC4 was shown to repress p21 expression in a 

p53-independent mechanism. However, upon DDR, HDAC4 promotes repression of 

G(2)/M genes transcription via deacetylation of C-terminal lysines on p53 which is in 

a p53-dependent way (Basile et al., 2006, Mottet et al., 2009). Considering the report 

that histone-deacetylating enzymatic activity associated with HDAC4 is dependent 

on NCoR/SMRT complex (Fischle et al., 2002), it is very likely that HDAC4 is also 

involved in the repression of p53 target gene transcription. 

Taken together, HDAC activity and its regulation are very complex and diffuse. The 

same is true for the regulation of p53 as many different factors contribute directly or 

indirectly to the transcriptional activity of p53. Hence, further studies are required to 

get a much deeper molecular understanding of the role of other HDACs in TBL1-

dependent p53 regulation. 

 

4.7 Summary and Outlook 

In this thesis, TBL1 was found to suppress p53 transcriptional activity via HDAC3-

mediated deacetylation at p53 target gene promoters in unstressed cells. As an 

indirect transcriptional regulator, TBL1 is also recruited to p53 target gene promoters 

via interaction with p53. Knockdown of TBL1 was able to induce the expression of a 

subset of p53 target genes, most of which were involved in intrinsic or extrinsic 

apoptosis pathways. This might be the reason why TBL1 depletion chemosensitizes 

cancer cells to 5-FU or Nutlin-3a.  

Next step in the project would primarily focus on the role of other HDACs in the 

regulation of p53 activity by TBL1. This would also contribute to figure out how 

HDACs work in different contexts. Meanwhile, the role of NCoR in DDR would be 

investigated to find out if it is like TBL1 which still represses p53 target genes 

transcription in the presence of genotoxic stress. It is also intriguing to find out the 
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potential histone acetyltransferases and histone demethyltransferases recruited after 

TBL1 depletion to increase histone acetylation and decrease histone methylation on 

p53 target promoters. Furthermore, TBL1 expression is upregulated in some cancer 

types such as breast cancer and pancreatic cancer (Ramadoss et al., 2011, Stoy et 

al., 2015). Now the investigation of TBL1 expression in other tumour types especially 

in colorectal cancer is performed in collaboration. Meanwhile, it would be interesting 

to investigate genome-wide binding of p53 to its target gene promotors in unstressed 

cells. Several studies have investigated p53-bound genes in response to different 

stresses (Wei et al., 2006, Riley et al., 2008, Allen et al., 2014, Kenzelmann Broz et 

al., 2013), but the work has not been done in normal conditions without any stress. 

Finally, a potential clinical relevance of these findings should be analyzed in vivo. In 

vitro it has been shown that the chemosensitivity of cancer cells upon TBL1 

depletion with the combination of chemotherapeutic drugs. It would be of particular 

interest to investigate an impact of TBL1 depletion on tumour growth in in vivo 

models.  

In summary, the findings of this project helped to know more about the mechanism 

of p53 regulation. Additionally, it might offer a new strategy to overcome 

chemoresistance in some cancer types and to enhance chemotherapeutic treatment 

efficiency. 
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5 Abstract 

Despite undisputed achievements of cancer research and numerous breakthroughs, 

benefits for patients in terms of prolonged survival time have not been as high as 

expected. Despite the rapid development of new ways to treat cancers, most 

patients are still treated with conventional approaches like radiation therapy or 

chemotherapy. Radio- and chemotherapy induce DNA damage thereby activating 

the DNA damage response and DNA damage response outcomes like apoptosis to 

eliminate cancer cells. However, many tumours become resistant to therapy creating 

a need for new innovative therapeutic strategies. The tumour suppressor p53 is a 

key effector of the DNA damage response and thus plays a pivotal role in cell fate-

decision making upon genotoxic stress. Thus, enhancing p53 activity would be an 

intriguing approach to increase cancer cell chemosensitivity.  

In this study, TBL1 was identified as a novel regulator of p53. In unstressed cells, 

RNA-Sequencing analysis showed that knockdown of TBL1 induced the expression 

of a subset of p53 target genes. Mechanistically, I found that TBL1 and p53 bind to 

each other in vitro and in vivo and that both bind to the promotors of the p53 target 

genes CDKN1A and BBC3 in the absence of p53 activation. Moreover, chromatin 

immunoprecipitation analysis showed that TBL1 depletion increases the presence of 

activating histone marks and in parallel, decreases repressive histone marks on the 

p21 and the PUMA promoter. These findings suggest that (1.) in absence of stress, a 

subset of p53 promoters are pre-occupied by p53 and (2.) the activity of promoter-

bound p53 is suppressed by TBL1 through an epigenetic mechanism. TBL1 is a 

subunit of the NCoR/SMRT repressor complexes. Knockdown of the co-repressor 

NCoR and histone deacetylase HDAC3, which is a part of the complex, phenocopies 

the knockdown of TBL1 and induces p53 target gene expression and increases 

activating histone acetylation at the p21 and the PUMA promoter indicating that 

TBL1 represses p53 target gene expression by recruiting co-repressors. 

Functionally, I found that TBL1 depletion sensitizes colorectal cancer cells to 5-

Fluorouracil or Nutlin-3a treatment.  

Taken together, my work identified TBL1 as a repressor of p53 activity, suggesting a 

novel strategy to be exploited in the future to chemosensitize cancer cells. 
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Zusammenfassung 

Trotz unbestrittener Erfolge in der Krebsforschung und zahlreicher Durchbrüche in 

der Tumortherapie haben sich die Überlebenszeiten von Patienten nicht wie erwartet 

verlängert. Trotz der rasanten Entwicklung neuer Krebsmedikamente werden die 

meisten Patienten noch immer mit konventionellen Methoden wie Strahlen- oder 

Chemotherapie behandelt. Radio- und Chemotherapie induzieren DNA-Schäden, 

welche die DNA-Schadensantwort und Apoptose aktivieren, was zur Eliminierung 

entarteter Zellen führt. Viele Tumore entwickeln jedoch Therapieresistenzen, 

weshalb die Entwicklung neuer innovativer Therapiestrategien erforderlich ist. Der 

Tumorsuppressor p53 ist ein zentraler Regulator der DNA-Schadensantwort und 

spielt eine entscheidende Rolle bei Zellschicksalsentscheidungen nach 

genotoxischem Stress. Eine Steigerung der p53-Aktivität könnte daher ein 

faszinierender Ansatz zur Erhöhung der Chemosensitivität von Tumorzellen sein. 

In dieser Studie wurde TBL1 als ein neuer Regulator von p53 identifiziert. In 

ungestressten Zellen konnte mittels RNA-Sequenzierungsanalyze gezeigt werden, 

dass die Depletion von TBL1 die Expression bestimmter p53-Zielgene wie p21 und 

PUMA induziert. Mechanistisch fand ich heraus, dass TBL1 und p53 in vitro und in 

vivo miteinander interagieren und dass beide an die Promotorsequenzen der p53-

Zielgene p21 und PUMA in Abwesenheit von p53-aktivierenden Stimuli binden. 

Darüber hinaus zeigten Chromatin-Immunopräzipitationsexperimente, dass die 

Reduktion der TBL1-Expression die Histon-Modifikationen in den Promotoren von 

p21 und PUMA beeinflusst: die Depletion von TBL1 führt zu einer Zunahme 

aktivierender Histon-Modifikationen (z. B. H3K9/27-Acetylierung) und zeitlich zu 

einer Abnahme reprimierender Histon-Modifikationen (z. B. H3K9/27-

Trimethylierung). Diese Ergebnisse legen nahe, dass (1.) p53 in Abwesenheit von 

zellulärem Stress an einen Teil seiner Zielgen-Promotoren bindet und (2.) die 

Aktivität von Promotor-gebundenem p53 von TBL1 durch einen epigenetischen 

Mechanismus unterdrückt wird. TBL1 ist eine Untereinheit der NCoR/SMRT-

Repressorkomplexe. Die Depletion des Co-Repressors NCoR oder der Histon-

Deacetylase HDAC3, die Teil des Komplexes sind, zeigen den gleichen Phänotyp 

wie die TBL1-Reduktion: eine Induktion der p53-Zielgenexpression und eine 

Zunahme der Histon-Acetylierung in den Promotoren von p21 und PUMA. Dies weist 
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darauf hin, dass TBL1 durch die Rekrutierung von Co-Repressoren die p53-

Zielgenexpression unterdrückt. Funktionell konnte ich zeigen, dass die Depletion von 

TBL1 Darmkrebszellen für die Behandlung mit 5-Fluorouracil oder Nutlin-3a 

sensitiviert. 

In dieser Arbeit konnte TBL1 als Repressor der p53-Aktivität identifiziert werde. Die 

in dieser Studie gewonnen Ergebnisse zeigen eine neue Strategie auf, die in Zukunft 

zur Chemosensitivierung von Krebszellen genutzt werden könnte. 
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