
DISSERTATION
submitted

to the
Combined Faculty for the Natural Sciences and Mathematics

of
Heidelberg University, Germany

for the degree of
Doctor of Natural Sciences

Put forward by

Nan Fang
Born in: Hubei, China

Oral examination:

Restricted Coding and Betting

Advisor: Privatdozent Dr. Wolfgang Merkle

Acknowledgements

This dissertation was written during my study at the Workgroup of Mathemat-
ical Logic and Theoretical Computer Science of Heidelberg University. It would
not have been possible without a whole list of people.

First of all, I am grateful to my advisor, Wolfgang Merkle, not only in the
scientific aspect, where he guided me in the area of my current research, pro-
vided me opportunities to attend various conferences and workshops and en-
couraged me to give talks there, but also in many other aspects of life, where
without his enormous help my life in Heidelberg would be much more difficult.

I am also deeply indebted to my co-author George Barmpalias, with whom
a large part of the work presented here were achieved. Apart from that I also
benefit a lot from his understanding on many research topics and his idea about
how to do research.

Moreover, I appreciate all the inspiring discussions with other members of
my research group: Klaus Ambos-Spies, Nadine Losert, Martin Monath, Ivan
Titov, and many other visitors to the group: Laurent Bienvenu, Rodney G.
Downey, Yun Fan, Rupert Hölzl, Frank Stephan, Sebastiaan A. Terwijn, Guo-
hua Wu, Liang Yu. I also enjoyed all the casual conversations we had, which
indeed contributed to a relaxed working environment for me.

Especially, I thank Wolfgang Merkle and Martin Monath for proof-reading
part of this dissertation and making lots of suggestions to improve the presen-
tation.

I gratefully acknowledge the financial support for my whole doctoral project
from China Scholarship Council.

Above all, I want to express my eternal gratitude to my parents for their
love.

Abstract

One of the fundamental themes in the study of computability theory are ora-
cle computations, i.e. the coding of one infinite binary sequence into another.
A coding process where the prefixes of the coded sequence are coded such that
the length difference of the coded and the coding prefix is bounded by a con-
stant is known as cl-reducibility. This reducibility has received considerable
attention over the last two decades due to its interesting degree structure and
because it exhibits strong connections with algorithmic randomness. In the first
part of this dissertation, we study a slightly relaxed version of cl-reducibility
where the length difference is required to be bounded by some specific nonde-
creasing computable function h. We show that in this relaxed model some of
the classical results about cl-reducibility still hold in case the function h grows
slowly, at certain particular rates. Examples are the Yu-Ding theorem, which
states that there is a pair of left-c.e. sequences that cannot be coded simulta-
neously by any left-c.e. sequence, as well as the Barmpalias-Lewis theorem that
states that there is a left-c.e. sequence which cannot be coded by any random
left-c.e. sequence. In case the bounding function h grows too fast, both results
don’t hold anymore.

Betting strategies, which can be formulated equivalently in terms of mar-
tingales, are one of the main tools in the area of algorithmic randomness. A
betting strategy is usually determined by two factors, the guessed outcome
at every stage and the wager on it. In the second part of this dissertation we
study betting strategies where one of these factors is restricted. First we study
single-sided strategies, where the guessed outcome either is always 0 or is al-
ways 1. For computable strategies we show that single-sided strategies and
usual strategies have the same power for winning, whereas the latter does not
hold for strongly left-c.e. strategies, which are mixtures of computable strate-
gies, even if we extend the class of single-sided strategies to the more general
class of decidably-sided strategies.

iv

Finally, we study the case where the wagers are forced to have a certain
granularity, i.e. must be multiples of some not necessarily constant betting
unit. For usual strategies, wins can always be assumed to have the two follow-
ing properties (a) ‘win with arbitrarily small initial capital’ and (b) ‘win by sav-
ing’. In a setting of variable granularity, where the betting unit shrinks over
stages, we study how the shrinking rates interact with these two properties.
We show that if the granularity shrinks fast, at certain particular rates,for such
granular strategies both properties are preserved. For slower rates of shrinking,
we show that neither property is preserved completely, however, a weaker ver-
sion of property (a) still holds. In order to investigate property (b) in this case,
we consider more restricted strategies where in addition the wager is bounded
from above.

Zusammenfassung

Ein zentrales Thema berechenbarkeitstheoretischer Untersuchungen sind Orakel-
berechnungen, d. h., die Kodierung einer unendlichen Binärfolge in einer an-
deren. Eine Kodierung der Präfixe der kodierten Folge derart, dass die Längen-
differenz von kodiertem und kodierendem Präfix durch eine Konstante beschränkt
ist, wird als cl-Reduzierbarkeit bezeichnet. Diese Reduzierbarkeit wurde wegen
ihrer interessanten Gradstruktur und den engen Beziehungen zur algorithmis-
chen Zufälligkeit in den letzten beiden Jahrzehnten intensiv untersucht. Im
ersten Teil der Dissertation betrachten wir eine weniger eingeschränkte Vari-
ante der cl-Reduzierbarkeit, bei der die Längendifferenz durch eine spezielle
monotone berechenbare Funktion h beschränkt ist. Wir zeigen, dass einige der
klassischen Ergebnisse über die cl-Reduzierbarkeit in diesem Modell weiter gel-
ten, falls die Funktion h nicht zu schnell, mit bestimmten Geschwindigkeiten
wächst. Dies gilt zum Beispiel für den Satz von Ding und Yu, der besagt, dass
es ein Paar von linksberechenbaren Folgen gibt, die nicht beide durch dieselbe
linksberechenbare Folge kodiert werden können, sowie für den Satz von Barm-
palias und Lewis, nach dem es eine linksberechenbare Folge gibt, die nicht
durch eine zufällige linksberechenbare Folge kodiert werden kann. Beide Re-
sultate gelten nicht mehr, falls die beschränkende Funktion h zu schnell wächst.

Wettstrategien sind eines der wichtigsten Werkzeuge des Gebiets algorith-
mische Zufälligkeit, diese können äquivalent durch Martingale dargestellt wer-
den. Eine Wettstrategie wird üblicherweise durch zwei Faktoren bestimmt, den
in jeder Stufe geratenen Wert und den Einsatz, der auf diesen gewettet wird.
Im zweiten Teil der Dissertation untersuchen wir Wettstrategien, bei denen
einer dieser Faktoren Beschränkungen unterliegt. Zuerst untersuchen wir ein-
seitige Strategien, bei denen der geratene Wert entweder immer 0 oder immer
1 ist. Wir zeigen, dass für berechenbare Strategien einseitige Strategien und
übliche Strategien auf denselben Folgen gewinnen, wohingegen dies nicht für
stark linksberechenbare Strategien gilt, das sind Mischungen aus berechenbaren

vi

Strategien, sogar dann nicht, wenn anstelle der Klasse der einseitigen Strategien
die größere Klasse der effektiv-seitigen Strategien betrachtet wird.

Zuletzt betrachten wir den Fall, dass die Einsätze eine gewisse Granularität
haben müssen, d. h., Vielfaches einer nicht unbedingt konstanten Einsatzeinheit
sein müssen. Für übliche Strategien kann man im Fall eines Gewinns immer
annehmen, dass die beiden folgenden Eigenschaften vorliegen (a) ‘Gewinn bei
beliebig kleinem Anfangskapital’ und (b) ‘Gewinn mit Rücklagen’. Wir unter-
suchen für Modelle mit variabler Granularität, bei denen der Einheitseinsatz
nach und nach schrumpft, wie die Geschwindigkeit des Schrumpfens mit den
beiden Eigenschaften zusammenhängt. Wir zeigen, dass beide Eigenschaften
auch für granulare Strategien gelten, falls die Granularität schnell, mit bes-
timmten hohen Geschwindigkeiten schrumpft. Für niedrigere Geschwindigkeiten
zeigen wir, dass keine der beiden Eigenschaften vollständig erhalten bleibt, je-
doch gilt dann immer noch eine schwächere Version von Eigenschaft (a). Im
Zusammenhang mit der Untersuchung von Eigenschaft (b) für diesen Fall be-
trachten wir stärker eingeschränkte Strategien bei denen der Einsatz zusätzlich
nach oben beschränkt ist.

Table of contents

1 Introduction and Notation 1
1.1 Introduction . 1
1.2 Basic Notation and Facts . 4

2 Oracle Computation as Coding 9
2.1 Effectiveness and Randomness . 9
2.2 Oracle Computation and Redundancy 14
2.3 Coding by Permitting . 17

3 Coding Left-C.E. Reals with Redundancy 21
3.1 Coding with Large Redundancy 22
3.2 A Loading Process . 23
3.3 A Maximal Pair in Coding with Small Redundancy 25
3.4 Random Reals Fail in Coding with Small Redundancy 35
3.5 A.N.C. Degrees and Coding with Small Redundancy 46
3.6 Summary . 47

4 Martingales as Betting Strategies 49
4.1 Martingales and Supermartingales 50
4.2 Computable (Super)martingales and Their Mixtures 53
4.3 Success of (Super)martingales . 55
4.4 Effective Hausdorff Dimension . 60

5 Betting with Preferences on Outcomes 61
5.1 Monotonous (Super)martingales 62
5.2 Computable Single-sided Martingales 66
5.3 Strongly Left-C.E. Separable Supermartingales 70
5.4 Strongly Left-C.E. Decidably-sided Supermartingales 76

viii Table of contents

5.5 Summary . 81

6 Betting with Restrictions on Wagers 83
6.1 Granularity and Timidness of Supermartingales 86
6.2 Fine Granularity and Initial Capital 89
6.3 Coarse Granularity and Initial Capital 90
6.4 Fine Granularity and Saving Strategies 96
6.5 Coarse Granularity and Saving Strategies 99
6.6 Timid Supermartingales of Coarse Granularity 105
6.7 Weakness of Timid Supermartingales 110
6.8 Summary . 116

References 119

Chapter 1

Introduction and Notation

1.1 Introduction
Suppose we are coding one binary sequence A into another binary sequence B.
There are many ways to restrict the coding process, like to limit the compu-
tational time or computational space to code the initial fragments, which are
restrictions on the processing resources. Here we study restrictions on a higher
level. We concern with the coding efficiency in terms of the length of the initial
fragment of B required to successfully code the initial fragment of A of length
n. Obviously, the longer initial fragment of B the coding process requires, the
less efficient it is, in the meanwhile it might be that B is able to code more se-
quences because it has more space to code initial fragments of other sequences
at the same stage.

If it is required that to code the initial fragment of A of length n the length
of the initial fragment of B must not exceed n + g(n) for some nondecreasing
function g, we say it is a coding with redundancy g. In the case g is a con-
stant, we call it coding with constant redundancy, which is also known as cl-
reducibility. Over the last two decades, cl-reducibility has been intensively
studied. Because on the one hand, it is a measure of relative computability,
and the degrees induced by it have a different structure than the structure of
Turing degrees; on the other hand, it relates to Kolmogorov complexity, which
is proved to be a useful tool in the theory of algorithmic randomness.

The first part of this dissertation is devoted to studying coding with redun-
dancy. We observe some dichotomies caused by coding with constant redun-
dancy and with arbitrary redundancy. With these two kinds of redundancy it

2 Introduction and Notation

is indeed true that certain sequences have different coding power. As the gap
between constant redundancy and arbitrary redundancy is quite large, it has
been an interesting question to draw a splitting line in terms of the redundancy
for these dichotomies. For one of the dichotomies, random sequences code all
sequences or not, it has already been found that the splitting line lies between
slow orders, which are nondecreasing functions g such that

∑
n 2

−g(n) diverges,
and fast orders, which are nondecreasing functions g such that

∑
n 2

−g(n) con-
verges.

In Chapter 3 we study the splitting line in terms of redundancy for another
dichotomy, i.e. one left-c.e. random sequence codes all left-c.e. sequences or
there exists one left-c.e. sequence not coded by any left-c.e. random sequences.
Note that this dichotomy is stronger than the first one. Not surprisingly, we
find that the splitting line also lies between slow orders and fast orders. As
byproducts, we also extend some results about coding with constant redun-
dancy to coding with small redundancy. Some of the basic concepts and no-
tions are discussed and reviewed in Chapter 2, where the relevant results are
also introduced.

In the second part of this dissertation we turn to study restricted betting
strategies. In the study of algorithmic randomness, many restrictions of betting
strategies have been studied. However, most of them are about the effective-
ness of the strategies. Less study is about restrictions on the nature of a bet-
ting strategy, i.e. the two factors determining a betting strategy, the guessed
outcome at every stage and the wager on it.

To prepare for our study about betting strategies with one of these two fac-
tors restricted, in Chapter 4 we introduce martingales, as the usual represen-
tation of betting strategies. We review some basic definitions and properties,
and introduce some new notions for later use as well. Especially, we distinguish
between different notions of success for a martingale. Usually a martingale suc-
ceeds (wins) on a sequence means that it can gain unbounded profit along that
sequence. As a stronger notion, we say a martingale successfully saves on a se-
quence if it gains unbounded profit along that sequence by withdrawing them
now and then to a frozen savings account.

Betting strategies with outcomes restricted are studied in Chapter 5. A strat-
egy is 0-sided/1-sided if the guessed outcomes are always 0/1. A separable
strategy is the sum of a 0-sided strategy and a 1-sided strategy. Our study
shows that depending on how we formulate the effectiveness of betting strate-

1.1 Introduction 3

gies, this restriction may have different effects on the winning power for a class
of betting strategies. If we are working with computable strategies, the re-
striction on the outcomes does not reduce the winning power for this strate-
gies class. Actually, given any computable strategy there exists a separable
strategy which is superior to the given one, in the sense that it succeeds on ev-
ery sequence the given strategy succeeds on. However, if we are working with
strongly left-c.e. strategies, which are mixtures of computable strategies, we see
a significant difference of the winning power caused by the outcome restriction.
We construct a sequence of dimension 1/2 such that no strongly left-c.e. sepa-
rable strategy wins on it. As for every sequence of dimension less than 1, there
always exists a (strongly) left-c.e. strategy wins on it, this result reveals a big
gap of winning power between the class of unrestricted strategies and strate-
gies with outcome restricted. Moreover, we also study the weakly restricted
decidably-sided strategies, which are strategies that the guessed outcome at ev-
ery stage is computable by a total function. We also construct a sequence of
dimension 1/2 such that no strongly left-c.e. decidably-sided strategy wins on
it.

Finally, in Chapter 6 we study betting strategies whose wagers are restricted,
in the sense that they are forced to have some granularity, i.e. they need to be
multiples of some betting unit at every stage. We know that the class of usual
strategies processes two properties,

(a) win with small initial capital: given a strategy there exists a strategy
with arbitrary small initial capital which is still superior to the given one.

(b) win by saving: given a strategy there exists a strategy such that it suc-
cessfully saves on any sequence the given strategy succeeds on.

Under a framework of variable granularity, where the betting units shrink over
stages, we find dichotomies for both properties caused by the shrinking rats.
In case the granularity shrinks fast, at certain rate, in the class of such granu-
lar strategies both properties are preserved completely. In case the granularity
shrinks slower, on the one hand, we show that neither property is preserved
completely; on the other hand, for property (a), a weaker version is still pre-
served, i.e. given a strategy there exists a family of strategies with arbitrary
small initial capital such that there is always at least one of them succeeds on
any sequence the given strategy succeeds on. In order to investigate a weak

4 Introduction and Notation

version of property (b), we extend our research to the strategies with stronger
restriction on wagers. A granular strategy is timid if its wagers at every stage
are upper bounded by a constant times the granules. We found that within all
timid strategies, even a weaker version of property (b) is not valid anymore. We
show that there is one sequence such that some timid strategy wins on it, but
no timid strategy could successfully save on it. We also reveal the weakness of
timid strategies by showing that given a timid strategy there exists a family of
granular strategies such that there is always at least one of them successfully
saves on any sequence the given strategy succeeds on.

Basically, Chapters 3, 5 and 6 reflect the original contributions of this disser-
tation.

1.2 Basic Notation and Facts
Strings and sequences

A string usually refers to a finite binary string, which is an element of 2<ω.
While a sequence refers to an infinite binary sequence, which is an element of
2ω.

Given a string σ ∈ 2<ω, its length is denoted by |σ|. The numbering of the
bits of a string starts from 0. Hence given n ≤ |σ|, the first n bits of σ, denoted
by σ ↾ n, are bits σ(0), . . . , σ(n − 1). For an interval of natural numbers [a, b]

such that b < |σ|, σ ↾ [a, b] denotes the bits σ(a), . . . , σ(b). Hence we have

σ ↾ n = σ ↾ [0, n− 1].

The same convention applies to sequences.
The length-lexicographic ordering on 2<ω is defined by saying that σ is less

than τ (written σ <L τ) if either |σ| < |τ | or else both |σ| = |τ |andσ(n) = 0 for
the least n such that σ(n) ̸= τ(n).

The empty string is denoted by λ. Given a nonempty string σ, σ− denotes
the string obtained by removing the last bit of σ,

σ− = σ ↾ (|σ| − 1).

1.2 Basic Notation and Facts 5

Given two strings σ, τ ∈ 2<ω, we say σ is a prefix of τ , denoted by σ ⪯ τ (or
τ ⪰ σ) if

∃n ≤ |τ | such that σ = τ ↾ n.

σ ≺ τ if σ ⪯ τ and σ ̸= τ . The concatenation of σ, τ is denoted by σ ⌢ τ , i.e.

σ ⌢ τ = σ(0), . . . , σ(|σ| − 1), τ(0), . . . , τ(|τ | − 1).

A set V of strings is prefix-free if

∀σ, τ ∈ V σ ⪯ τ =⇒ σ = τ.

Given a string σ ∈ 2<ω, let nσ = num(1 ⌢ σ) − 1, where num(1 ⌢ σ) is the
number with binary expression 1 ⌢ σ. Clearly σ 7→ nσ is a bijection from 2<ω to
N.

Let D0 = ∅. For any n > 0, there is unique list {xi}0≤i≤s of natural numbers
such that n = 2x0 + 2x1 + · · · + 2xs and x0 < x1 < · · · < xs. Then let Dn =

{xi : 0 ≤ i ≤ s}. Clearly, n 7→ Dn is a bijection from N to finite subsets of N.
For the set Dn, we say it is the finite set with canonical index n.

With the above two bijections we can use the terms string, natural number,
and finite set of natural numbers interchangeable.

We will use ⟨x1, x2, · · · , xn⟩ to denote an ordered n-tuple of any countable
objects. For any n, there is a natural bijection from the set of all n-tuples to
natural numbers. We will use this implicitly.

Sequences and reals
Binary sequences are elements of the Cantor space 2ω. In this space, we have

the following notations. The distance between two sequences X,Y is 2−n where
n is the first digit where they differ. The basic open sets in this space are

JσK : = {X ∈ 2ω | σ ⪯ X}, σ ∈ 2<ω.

We denote by µ the uniform measure on 2ω. Then the measure of the basic
open set JσK is

µ(JσK) = 2−|σ|.

6 Introduction and Notation

Given a set V ⊆ 2<ω we define the open set generated by V as

JV K := ∪
σ∈V

JσK.
If V is a prefix-free set then the measure of V is

µ(JV K) =∑
σ∈V

2−|σ|

If it is clear from the context, sometimes we write µ(V) instead of µ(JV K).
The set of all reals is denoted by R and the set of all nonnegative reals is de-

noted by R0+.
Most of the time, a real refers to a binary real in the unit interval [0, 1]. Such

a real can be regarded as a binary sequence, so we usually use them inter-
changeable. Following the same convention as sequences, the positions to the
right of the decimal point of a real are numbered by 0, 1, 2, 3, . . . from left to
right. The first position to the left of the decimal point is numbered by −1.

The following notation of truncation will be used in many places. Basically, a
truncation for a real (might be positive or negative) means cutting off the bits
of the real beyond some position.

Notation (Truncation). For a real γ and a natural number n let JγKn be the
truncation of γ up to position n− 1 of its binary expansion, that is,

JγKn =

⌊γ · 2n⌋ · 2−n if γ ≥ 0,

⌈γ · 2n⌉ · 2−n if γ < 0.

For this truncation notation it is easy to prove the following simple proper-
ties.

Proposition 1.2.1. For α ≤ β ∈ R and n < m ∈ N, the following are true.

1. J−αKn = −JαKn.

2. If α ≥ 0, Jα + βKn ≥ JαKn + JβKn.

3. JαKn ≤ JβKn.

4. JJαKnKm = JJαKmKn = JαKn.

1.2 Basic Notation and Facts 7

5. JαKm − JαKn ≤ 2−n − 2−m.

The following is a lemma about reals from basic analysis. We put it here for
later reference.

Lemma 1.2.2. Let {ai}i∈N be a series of real numbers in [0, 1). Then
∏

i(1 −
ai) > 0 iff

∑
i ai < ∞.

Functions
Given a function f , the domain of f is denoted by dom(f). For a partial

function f : A 7→ B, dom(f) is a subset of A. If dom(f) equals A then it is
total. For a function f , we let f(x) ↓ denote the statement that f is defined at
x, and f(x) ↑ denote the statement that f is undefined at x.

We mainly treat two kinds of functions: functions from natural numbers to
reals and functions from finite strings to reals.

Given a function f : N 7→ R, we say f is nondecreasing (nonincreasing) if
f(n) ≤ f(n+ 1) (f(n) ≥ f(n+ 1)) for all n ∈ N.

Given a function f : 2<ω 7→ R, we say f is nondecreasing (nonincreasing) if
f(σ−) ≤ f(σ) (f(σ−) ≥ f(σ)) for all σ ̸= λ.

For two functions f and g, we write f ≤ g +O (1) if there exists a constant c

such that for all x, f(x) ≤ g(x) + c.

Notation (Order). An order is an unbounded nondecreasing function from N

to N. An order g is a slow order if
∑

n∈N 2−g(n) = ∞; and it is a fast order if∑
n∈N 2−g(n) < ∞.

Intuitively, slow orders are the orders which grow slow. Functions bounded
by ⌊log n⌋ belong to slow orders. While fast orders are the orders which grow
fast. Functions like (1 + ϵ)⌊log n⌋ for any ϵ > 0 belong to fast orders. The
distinction between slow orders and fast orders plays a big role in this disser-
tation. We will see that a large part of the main results concerns about di-
chotomies caused by this separation.

Logic notation
We use standard logic notation, including the following quantifiers:

• ∃∞ denotes “there exist infinitely many”;

• ∀∞ denotes “for all but finitely many”.

Chapter 2

Oracle Computation as Coding

This chapter is intended as a preliminary for later chapters. We discuss some
of the basic notions in computability theory and algorithmic randomness, give
formal definitions for the concepts which will be used later, and also point out
some important or relevant results.

2.1 Effectiveness and Randomness
Effectiveness lies at the basis of the study of computability and randomness.
It formulates how mathematical objects like sets of natural numbers, reals and
functions, can be realized in a computer. One way to get effectiveness is via
Turing machines, which are machines with one tape holding the inputs (in bi-
nary), one output tape, and several internal work tapes. A Turing machine
reads the inputs, operates on these tapes following the instructions of a pre-
described finite program and outputs the result whenever it halts. An object
is considered realizable if there is an effective way to get information about it
through a Turing machine. For example, given a function f : N 7→ N, if there
is a Turing machine on input any natural number n outputs the number f(n),
then we get every value of f though this machine directly. In this case we say
the function is (Turing) computable. For another example, given a function
f : N 7→ R, as all reals is not a countable set, it is not realistic to find a machine
output the exact values of f . However, it is possible to approximate the values
of f by rationals. If there is a Turing machine on input any natural numbers
n outputs a series {fs(n)}s∈ω of rationals, which is increasingly close to f(n),
then we can still get information about f by approximating its values arbitrar-

10 Oracle Computation as Coding

ily close, though there is no way to tell how close they are. In this case we say
f can be approximated from below, or it is left-c.e.

Once we have a formulation of effectiveness, we can then effectively define
other notions, such as complexity and randomness. Below we review some of
the formal definitions. For more details see the monographs by Odifreddi [39],
Li and Vitányi [30] and Downey and Hirschfeldt [21].

Computable functions and sets

Definition 2.1.1. Let ϕ : N 7→ N be a partial function. We say that ϕ is

• partial computable if there is a Turing machine P such that ϕ(x) = y iff
P on input x outputs y;

• computable if ϕ is partial computable and the domain of ϕ is N.

Using computable functions we can define computable sets.

Definition 2.1.2. We say a set A ⊆ N is

• computably enumerable (c.e.) if A is the domain of some partial com-
putable function;

• computable (or decidable) if both A and its complement A = N \ A are
computably enumerable.

Fix an effective list of all Turing machines {Pe}e∈ω. Let Φe denote the par-
tial computable function given by Pe. Let We = dom(Φe), then {We}e∈ω is an
effective list of all c.e. sets. If Φ = Φe then e is called an index for Φ.

A family {fi}i∈ω of functions is uniformly (partial) computable if there is a
(partial) computable function f such that f(⟨n, x⟩) = fn(x) for all n and x.

A family {Ai}i∈ω of sets is uniformly c.e. if there is a c.e. set A such that
An = {x : ⟨n, x⟩ ∈ A}.

A family {Ai}i∈ω of sets is uniformly computable if both {Ai}i∈ω and {Ai}i∈ω
are uniformly c.e.

Definition 2.1.3. We write Φe,s(x) = y if e, x, y < s and the computation
of program Pe on input x yields y in at most s computation steps. We write
Φe,s(x) ↓ if there is some y such that Φe,s(x) = y, and Φe,s(x) ↑ otherwise.
Further, we let We,s = dom(Φe,s).

2.1 Effectiveness and Randomness 11

A computable enumeration of a set A is an effective sequence {As}s∈ω of fi-
nite sets such that As ⊆ As+1 for each s, and A =

∪
sAs.

Each c.e. set We has the computable enumeration {We,s}s∈ω. Conversely, if
A has a computable enumeration then A is c.e.

Left-c.e. reals and functions
For a real α, its left cut is defined as L(α) = {q ∈ Q : q < α}.

Definition 2.1.4. A real α is

• computable if L(α) is computable;

• left-c.e. if L(α) is c.e. .

It is well known that a real α is left-c.e. iff there is a computable sequence of
rationals q0 < q1 < · · · → α. Such a computable sequence {qi}i∈ω of rationals is
also called a computable approximation to α. Note that there is an effective list
of computable approximations to all left-c.e. reals in the unit interval.

If we only care about nonnegative reals, then α is a left-c.e. real iff there is a
computable sequence of nonnegative rationals r0, r1, . . . such that α =

∑
n rn.

For a family of objects (reals or functions), we use the term mixture to refer
to the sum of them and implicitly assume that the sum converges to a finite
value.

Then a left-c.e. nonnegative real is a mixture of a computable sequence of
nonnegative rationals.

A sequence of reals is uniformly computable if the corresponding sequence of
left cuts is uniformly computable, and uniformly left-c.e. if the corresponding
sequence of left cuts is uniformly c.e.

Let D be a countable domain (such as N, 2<ω or Q).

Definition 2.1.5. A function f : D 7→ R is

• computable if its values are uniformly computable reals;

• left-c.e. if its values are uniformly left-c.e. reals.

It can be easily checked that f is left-c.e. iff there are uniformly computable
functions fs : D 7→ Q such that for all s and x ∈ D, we have fs+1(x) ≥ fs(x)

and lims fs(x) = f(x).

12 Oracle Computation as Coding

Note that there is also an effective list of computable approximations to all
left-c.e. functions.

If we only care about nonnegative functions, then it is also true that f is a
left-c.e. function iff there are uniformly computable functions fs : D 7→ Q such
that for all x ∈ D,

∑
s fs(x) = f(x).

Then a left-c.e. nonnegative function is a mixture of uniformly computable
nonnegative functions which take values in Q.

Kolmogorov complexity
Let M be a Turing machine. M computes a partial computable function

2<ω 7→ 2<ω. We define the M-complexity of a string x as

CM(x) = min{|σ| : M(σ) = x}

where min ∅ = ∞.
A machine R is optimal if for every machine M there exists a constant eM

such that
(∀x)[CR(x) ≤ CM(x) + eM]

It is easy to show that there exists an optimal machine. Fix an optimal ma-
chine R. The (plain) Kolmogorov complexity of a string x is defined as

C(x) = CR(x).

We say a machine M is prefix-free if its domain is a prefix-free set. In order
to indicate that a machine M is prefix-free, we write KM(x) instead of CM(x).
Similarly, A prefix-free machine S is optimal if for every prefix-free machine M

there exists a constant eM such that

(∀x)[KS(x) ≤ KM(x) + eM].

An optimal prefix-free machine also exists.
Fix an optimal prefix-free machine U . The prefix-free Kolmogorov complex-

ity of a string x is defined as

K(x) = KU(x).

2.1 Effectiveness and Randomness 13

The halting probability of a prefix-free machine M is denoted by

ΩM =
∑

σ∈dom(M)

2−|σ|.

We define Ω as ΩU . Note that Ω is a left-c.e. real.
Below is a very important theorem about prefix-free Kolmogorov complex-

ity, known as the Kraft-Chaitin Theorem or the Machine Existence Theorem,
which gives us an approach to constructing prefix-free machines.

Definition 2.1.6. A set W = {⟨di, τi⟩}i∈ω ⊂ N × 2<ω is called a request set,
its measure is defined as µ(W) =

∑
i∈ω 2−di ; if µ(W) ≤ 1, then it is called a

bounded request set or KC set.

Theorem 2.1.7 (KC Theorem, Levin [29], Schnorr [44], Chaitin [18]). Given
a bounded request set W = {⟨di, τi⟩}i∈ω, there is a prefix-free machine M and
strings σi of length di such that M(σi) = τi for all i and dom(M) = {σi : i ∈
ω}. Furthermore, an index for M can be obtained effectively from an index for
W .

Corollary 2.1.8. Let W = {⟨di, τi⟩}i∈ω be a KC set. Then

K(τi) ≤ di +O (1) .

Martin-Löf randomness
A subset C of 2ω is a c.e. class if there is a c.e. set W such that C = JW K.

A family {Ci}i∈ω of subsets of 2ω is uniformly c.e. if there is a family {Wi}i∈ω
of uniformly c.e. sets such that Ci = JWiK for all i.

Definition 2.1.9 (Martin-Löf [35]). 1. A Martin-Löf test is a family {Ui}i∈ω
of uniformly c.e. classes such that µ(Ui) ≤ 2−i for all i.

2. A sequence X ∈ 2ω fails a Martin-Löf test{Ui}i∈ω if X ∈
∩

i Ui, otherwise
X passes the test.

3. A sequence X is Martin-Löf random if X passes every Martin-Löf test.

By this definition a sequence is random if there is no effective way to “catch”
it. And the effective way applied here is the Martin-Löf test.

The class of all Martin-Löf random sequences is denoted by MLR.

14 Oracle Computation as Coding

The following theorem shows that this notion of randomness can also be
characterized by prefix-free Kolmogorov complexity.

Theorem 2.1.10 (Schnorr, see [18]). A sequence X is Martin-Löf-random iff

K(X ↾ n) ≥ n−O (1) .

An example of Martin-Löf random real is Ω, i.e. the halting probability of an
optimal prefix-free machine.

Theorem 2.1.11 (Chaitin [18]). K(Ω ↾ n) ≥ n−O (1).

There is yet another characterization of Martin-Löf random sequences by
tests.

Definition 2.1.12 (Solovay [47]). A Solovay test is a sequence {Si}i∈ω of uni-
formly c.e. sets such that

∑
i µ(Si) < ∞.

Theorem 2.1.13 (Solovay [47]). A sequence X is Martin-Löf random iff for
every Solovay test {Si}i∈ω, only finitely many Si contains a prefix of X.

2.2 Oracle Computation and Redundancy
With effectiveness, now we can do effective coding. Suppose there is a Tur-
ing machine with an extra oracle tape, which contains the whole information
of a sequence A, and during the computation the machine can always consult
information on the oracle tape. If this machine on input any natural number
outputs a bit 0 or 1, then it produces a sequence B. In this case, sequence A

Turing computes sequence B, or we say B is effectively coded by A. In this
section we review some definition and facts about oracle computation.

We extend the former definition of Turing machines to oracle Turing ma-
chines. The effective list {Φe}e∈N is now regarded as a list of partial functions
depending on two arguments, the oracle set and the input. We write ΦY

e (x) ↓ if
the program Pe halts when the oracle is Y and the input is x; we write ΦY

e (x),
or Φe(Y ;x) for this output. ΦY

e (x) ↑ stands for the negation of ΦY
e (x) ↓. We

call Φe a Turing functional. Let W Y
e = dom(ΦY

e).

Definition 2.2.1. A total function f : N 7→ N is called Turing reducible to
Y , or computable in Y , if there is an e such that f = ΦY

e . We denote this by

2.2 Oracle Computation and Redundancy 15

f ≤T Y . For a set A, A ≤T Y if the characteristic function of A is Turing
reducible to Y .

The Turing reducibility gives us an equivalence relation by

X ≡T Y ↔ X ≤T Y ≤T X

The equivalence classes are called Turing-degrees, or T-degrees for short. These
T-degrees form a partial order denoted by DT . The structure of Turing degrees
is one of the most important themes in computability theory.

We also extend definition 2.1.3 about computation steps.

Definition 2.2.2. We write ΦY
e,s(x) = y if e, x, y < s and the computation of

program Pe on input x yields y in at most s computation steps, with all oracle
queries less than s. And we let W Y

e,s = dom(ΦY
e,s).

It is easy to observe that a terminating oracle computation only asks finitely
many oracle questions. This is often referred as the use principle. Hence (ΦY

e,s)s∈N

approximates ΦY
e , namely,

ΦY
e (x) = y ↔ ∃sΦY

e,s = y (2.1)

Definition 2.2.3. The use of ΦY
e (x), denoted by ϕY

e (x), is defined if ΦY
e (x) ↓ ,

in which case its value is 1+the largest oracle query asked during this compu-
tation (and 0 if no question is asked at all). Similarly, ϕY

e,s(x) is 1+the largest
oracle question asked up to stage s.

If ΦY
e (x) yields the output y and the use is at most n, for σ = Y ↾ n, we

write Φσ
e (x) = y. Then for each set Y ,

ΦY
e (x) = y ↔ ΦY ↾u

e (x) = y, (2.2)

where u = ϕY
e (x).

Note that in an oracle computation, the use function is not restricted. By
restricting the use function we could get stronger reducibilities. The most well-
known restricted reducibility might be weak truth-table reducibility (wtt-reducibility),
where the use function is required to be bounded by a computable function.

The following result about wtt-reducibility, known as the Kučera-Gács The-
orem, is one of the most important results in algorithmic randomness, which
tells us every real is coded by a Martin-Löf random real.

16 Oracle Computation as Coding

Theorem 2.2.4 (Kučera [28]-Gács [26] Theorem). Every real is wtt-reducible
to a Martin-Löf random real.

The wtt-reducibility is still too weak in some case. If we set a stronger re-
striction on the use bound, we can get a stronger reducibility.

Definition 2.2.5 (Downey, Hirschfeldt, and LaForte [23]). A computable Lip-
schitz reduction (cl-reduction) is a Turing reduction where on any input n the
use is always bounded by n+ c for some constant c.

If the additive constant for a cl-reducibility is 0, it is also called a identity
bounded Turing reduction (ibT- reduction) by Soare [46]. The study by Ambos-
Spies [1] shows that the structure of cl-degrees of c.e. sets has a big difference
compared to the structure of Turing degrees of c.e. sets.

In contrast with the Kučera-Gács Theorem, Downey and Hirschfeldt [21,
Theorem 9.13.2] showed that there is a real which is not cl-reducible to any
random real.

In this dissertation, we are especially interested in cl-reducibility in left-c.e.
reals, in particular, the following two results about it.

Theorem 2.2.6 (Yu-Ding Theorem[52]). There are two left-c.e. reals such that
no left-c.e. real cl-computes both of them.

Theorem 2.2.7 (Barmpalias-Lewis Theorem[6]). There is a left-c.e. real such
that no left-c.e. random real cl-computes it.

The two left-c.e. reals in the Yu-Ding Theorem is usually called a maximal
pair in the cl-degrees of left-c.e. reals. Maximal pairs in the cl-degrees of left-
c.e. reals have been extensively studied by Ambos-Spies et al. [2].

On the other hand, it is easy to prove that every left c.e. real is wtt-reducible
to one left-c.e. Martin-Löf random real, i.e. Ω. That is to say, the information
of every left-c.e. real is coded into Ω by some machine, as long as there is no
efficiency requirement for the coding. However, it might be that to code a short
prefix of the real, a very long prefix of Ω is involved. The Barmpalias-Lewis
theorem says that once we require the coding to be efficient, i.e. the length dif-
ference of the coded and the coding prefix is bounded by a constant, then Ω

is not as powerful as before. Also note that if every left-c.e. real is coded into

2.3 Coding by Permitting 17

Ω, then there exists no maximal pair either. Compared with the global struc-
ture of Turing degrees, the same dichotomy caused by wtt-reducibility and cl-
reducibility appears in the local structure of c.e. Turing degrees as well.

If a sequence A computes B with use function bounded by n+h(n) for a non-
decreasing function h, sometime it is more convenient to say that A computes
(codes) B with redundancy h, which means that during the coding, to code the
first n bits of the coded sequence apart from the first n bits, h(n) many subse-
quent bits of the coding sequence may involved.

With this terminology, cl-reducibility is a coding process with constant re-
dundancy.

2.3 Coding by Permitting
One way to do coding is by permitting. Suppose that we want to construct a
sequence A in an approximating way, and want it to be coded by another se-
quence B. This can be achieved as follows. Whenever we want to change the
approximation to A, before making the change we will ask for permission from
B, only after a permission from B is received we do the scheduled change. In
this way A is coded by B in the sense that every change of A is coded into B

by some permitting mechanism.
The permitting argument is heavily used in the study of the c.e. Turing-

degrees. There are many permitting types developed. One of them is the multi-
ple permitting, which is used in the case where many permissions may be asked
to code one bit of the coded sequence. Multiple permitting is usually imple-
mented by the array non-computable degrees, which was first defined and in-
vestigated by Downey, Jockusch, and Stob [22], and then revised by Downey
and Hirschfeldt [21].

Definition 2.3.1 (Downey et al. [22], Downey and Hirschfeldt [21]).

• A sequence of finite sets {Fn}n∈N is called a strong array if there is a
computable function f such that Fn = Df(n) for every n ∈ N where
Di denotes the finite set with canonical index i.

• A strong array {Fn}n∈ω is a very strong array (v.s.a.) if

(i)
∪

n∈ω Fn = N ,

18 Oracle Computation as Coding

(ii) Fn ∩ Fm = ∅ if n ̸= m, and

(iii) 0 < |Fn| < |Fn+1| for all n ∈ N.

• A c.e. set A is array non-computable if there is a v.s.a. {Fn}n∈ω such that
(∀e)(∃n)[We ∩ Fn = A ∩ Fn]

• A c.e. degree a is array non-computable (a.n.c.) if there is an a.n.c. set A

in a.

Proposition 2.3.2 (Downey, Jockusch, and Stob [22]). If a c.e. degree d is
array non-computable, then for all v.s.a. {Fn}n∈N there is a c.e. set D ∈ d

such that
(∀e)(∃∞n)[We ∩ Fn = D ∩ Fn].

With the above property, a multiple permitting argument by an array non-
computable degree may work as follows. Assume that we want to construct
(in an approximating way) a sequence A satisfying a list of requirements Ri

and at the same time code any change of A into some sequence B in a array
non-computable degree d. First, we make infinitely many copies {Q⟨i,j⟩}j∈ω of
every requirement Ri such that if one of {Q⟨i,j⟩}j∈ω is satisfied, Ri will also
be satisfied. For every requirement Q⟨i,j⟩, we find a block A⟨i,j⟩ of bits of A
such that A⟨i,j⟩ is responsible for Q⟨i,j⟩. Then we will fix some array in advance
and assign A⟨i,j⟩ to the finite set Fj in the array. We will ensure that there are
infinitely many Fj such that the size of Fj is larger than the permissions re-
quested by requirement Q⟨i,j⟩. During the construction of A we also construct a
series {Vi} of c.e. sets. By Proposition 2.3.2, there is a c.e. set B ∈ d such that

(∀i)(∃∞j)[Vi ∩ Fj = B ∩ Fj]. (2.3)

Whenever a requirement Q⟨i,j⟩ asks permission to change some bits in A⟨i,j⟩,
we enumerate a new number into Vi ∩ Fj, in the purpose of violating the rela-
tionship Vi ∩ Fj = B ∩ Fj. If at a later stage Vi ∩ Fj = B ∩ Fj holds again,
we say the permission is received. In this way every change of A in A⟨i,j⟩ is fol-
lowed by a change of B in B ∩ Fj. For every i, by (2.3), there will be infinitely
many j such that the permissions asked by Q⟨i,j⟩ will be all received. Thus, ev-
ery requirement Ri will be satisfied. In the meanwhile every block A⟨i,j⟩ of A is
coded by B ∩ Fj.

2.3 Coding by Permitting 19

Using this multiple permitting argument, the Yu-Ding Theorem 2.2.6 and
the Barmpalias-Lewis Theorem 2.2.7 turn out to be characterizations of array
non-computable degrees.

Theorem 2.3.3 (Barmpalias, Downey, and Greenberg [10]). The following are
equivalent for a c.e. degree d:

1. There are two left-c.e. reals in d such that no left-c.e. real cl-computes
both of them.

2. There is a left-c.e. real in d such that no left-c.e. random real cl-computes
it.

3. There is a set in d such that no left-c.e. random real cl-computes it.

4. d is array non-computable.

Chapter 3

Coding Left-C.E. Reals with
Redundancy

We have already seen in § 2.2 that by the Kučera-Gács Theorem every real is
coded by a Martin-Löf real with a computable redundancy. It is also known
that the latter is not true for coding with constant redundancy. Computable
redundancy could be very large, compared to constant redundancy. In order
to find an optimal bound of the redundancy in the Kučera-Gács Theorem,
Barmpalias and Lewis-Pye [8] analyzed both Kučera’s and Gács’s proofs, and
found that the best redundancy by their proof methods respectively is n log n

in Kučera’s case and
√
n log n in Gács’s case. Another paper by Merkle and

Mihailović [37] achieved the same redundancy as Gács with a direct and sim-
pler method. However, both redundancies turned out to be not optimal by
subsequent papers, where a characteristic criterion for an optimal bound was
revealed.

Theorem 3.0.1 (Barmpalias and Lewis-Pye [9]). Given a computable fast or-
der g, every real is coded by a Martin-Löf random real with redundancy g.

Theorem 3.0.2 (Barmpalias, Lewis-Pye, and Teutsch [13]). Given a com-
putable slow order g, there exists a real which is not coded by any Martin-Löf
random real with redundancy g.

If we distinguish between large redundancy functions, which are fast orders,
and small redundancy functions, which are slow orders or constant functions,
then the above two theorems show that a redundancy function is sufficient for
the Kučera-Gács Theorem if and only if it is a large redundancy function.

22 Coding Left-C.E. Reals with Redundancy

Turning to the local case of left-c.e. reals, a similar but stronger dichotomy
caused by wtt-reducibility and cl-reducibility appears as well, i.e. one single
left-c.e. random real codes all left-c.e. reals with computable redundancy versus
there exists one left-c.e. real not coded by any left-c.e. random real with con-
stant redundancy. Note that result of in the local case usually do not follow
directly from the global case as the constructions are quite different. In this
chapter we show that for the local case, the splitting line for this dichotomy is
also between large redundancy and small redundancy. Moreover, we show that
the extended versions of the Yu-Ding Theorem and the Barmpalias-Lewis The-
orem with relaxed redundancy hold if and only if the redundancy function is
small.

The outline of this chapter is as follows. First, in § 3.1 we show the simpler
side, i.e. every left-c.e. real is coded by the Ω with large redundancy. Thus, the
Yu-Ding Theorem and the Barmpalias-Lewis Theorem cannot be extended to
large redundancy. Then in § 3.2 we explore a process which will be essential for
the proofs in later sections. In § 3.3 the extended Yu-Ding Theorem with small
redundancy is studied. We prove that with small redundancy there are max-
imal pairs of left-c.e. reals such that no left-c.e. real codes both of them, and
moreover, such pairs can be found in every array non-computable c.e. degree.
An analog for the extended Barmpalias-Lewis Theorem is treated in § 3.4. Fi-
nally in § 3.5 we point out that an extended version of Theorem 2.3.3 for small
redundancy holds as well.

Most of the results presented here can be found in the paper by Barmpalias,
Fang, and Lewis-Pye [12], and a subsequent paper which is still in preparation
by Fang and Merkle [25].

3.1 Coding with Large Redundancy
Let us look at the easy case. We show that every left-c.e. real is coded by Ω

with large redundancy.

Theorem 3.1.1 (Barmpalias et al. [12]). Given a computable fast order g, ev-
ery left-c.e. real is coded by Ω with redundancy g.

Proof. Given a left-c.e. real α ≤ 1, let {αs}s∈ω and {Ωs}i∈ω be a computable
approximation of α and Ω, respectively. We construct a Solovay test {Si}i∈ω as
follows.

3.2 A Loading Process 23

At each stage s, search for the least n ≤ s such that αs(n) ̸= αs+1(n).

• If such n exists, enumerate Ωs+1 ↾ (n+ g(n)) into Sn;

• otherwise go to the next stage directly.

Clearly {Si}i∈ω is uniformly c.e. For each n, whenever n is the least number
such that αs(n) ̸= αs+1(n), we have Jαs+1Kn+1 ≥ JαsKn+1 + 2−n−1. As {αs}s∈ω
is nondecreasing and converges to α, {JαsKn+1}s∈ω is also nondecreasing and
converges to JαKn+1. And on the other hand, JαKn+1 ≤ α ≤ 1. Thus the case
that n is the least number such that αs(n) ̸= αs+1(n) can only happens at most
2n+1 many times. Then µ(Sn) ≤ 2n+1 · 2−n−g(n) = 21−g(n). And

∑
i µ(Si) ≤∑

i 2
1−g(n) < ∞. Hence, {Si}i∈ω is a Solovay test.

Since Ω is Martin-Löf random, there exists some m such that for all n ≥ m,
Ω /∈ JSnK. For all n ≥ m, if αs(n) ̸= αs+1(n) for some s, then Ωs+1 ↾ (n+g(n)) ∈
Sn, which implies Ω ↾ (n + g(n)) ̸= Ωs+1 ↾ (n + g(n)). Thus, if Ω ↾ (n + g(n)) =

Ωs+1 ↾ (n + g(n)) for some s, it must be the case that αs(n) = α(n). This gives
us a way to compute α from Ω with use bounded by n + g(n) for all n ≥ m.
For n < m, this finite part of α can be coded by a coding constant given to the
machine in advance.

Theorem 3.1.1 shows that when the coding redundancy is allowed to be a
fast order, every left-c.e. real can be coded into Ω. Then of course there does
not exist maximal pairs either.

Corollary 3.1.2. Given a computable fast order g, there is a no maximal pair
of left-c.e. reals which cannot be simultaneously coded by any left-c.e. real with
redundancy g.

Theorem 3.1.1 and Corollary 3.1.2 show that the Yu-Ding Theorem and the
Barmpalias-Lewis Theorem cannot be extended to coding with large redun-
dancy.

3.2 A Loading Process
Before we study coding left-c.e. reals with small redundancy, we study a spe-
cial process for a real α within interval [a, b). Our argument in later sections
heavily depends on the observation here.

24 Coding Left-C.E. Reals with Redundancy

Definition 3.2.1. Given a left-c.e. real α with computable approximation
{αs}s∈ω and two natural numbers a ≤ b, let f = 2b−a − 1. If there are stages
{ti}0≤i≤f such that

(i) αt0 ↾ [a, b) = 0b−a;

(ii) for each 1 ≤ i ≤ f , ti−1 < ti and αti = αti−1 + 2−b;

(iii) at each stage t ∈ (t0, tf) \ {ti : 0 < i < f}, αt ↾ [a, b) = αt−1 ↾ [a, b).

then the interval of stages (t0, tf] is called an α [a, b)-load process (with loading
stages {ti}1≤i≤f).

Lemma 3.2.2. Let b ≥ a ≥ 0. Given an α [a, b)-load process (t0, tf] with
loading stages {ti}1≤i≤f , the following are true.

1. For all 1 ≤ i ≤ f , αti ↾ [a, b) = αti−1 ↾ [a, b).

2. αtf ↾ [a, b) = 1b−a.

3. For each n ∈ [a, b), there are 2n−a many loading stages where the least
changed bit of α is α(n).

Proof. We proof by induction on b− a.
If b− a = 0, the lemma holds trivially.
Assume the lemma holds for b − a = k ≥ 0. Now suppose b − a = k + 1, and

(t0, tf] is an α [a, b)-load process with loading stages {ti}1≤i≤f .
Let f ′ = 2k − 1, then it is easy to check that (t0, tf ′] is an α [a + 1, b)-load

process with loading stages {ti}1≤i≤f ′ . By induction hypothesis, the following
are true.

i) For all 1 ≤ i ≤ f ′, αti ↾ [a+ 1, b) = αti−1 ↾ [a+ 1, b).

ii) αtf ′
↾ [a+ 1, b) = 1k.

iii) For each n ∈ [a+1, b), there are 2n−a−1 many loading stages within [t1, tf ′]

where the least changed bit of α is α(n).

Moreover, by (iii) of Definition 3.2.1 and i) above we have αtf ′+1−1(a) = αtf ′
(a) =

αt0(a) = 0. That is to say, αtf ′+1−1 ↾ [a, b) = 0 ⌢ 1k. Then as αtf ′+1
= αtf ′+1−1 +

2−b, we have the following.

3.3 A Maximal Pair in Coding with Small Redundancy 25

iv) αtf ′+1
↾ [a, b) = 1 ⌢ 0k.

v) αtf ′+1
↾ [a, b) = αtf ′+1−1 ↾ [a, b)

Thus, it is easy to check that (tf ′+1, tf] is again an α [a+ 1, b)-load process with
loading stages {ti}f ′+2≤i≤f . Again by induction hypothesis, the following are
true.

vi) For all f ′ + 2 ≤ i ≤ f , αti ↾ [a+ 1, b) = αti−1 ↾ [a+ 1, b).

vii) αtf ↾ [a+ 1, b) = 1k.

viii) For each n ∈ [a + 1, b), there are 2n−a−1 many loading stages within
[tf ′+2, tf] where the least changed bit of α is α(n).

Then the following observations complete the induction proof.

• By i), v) and vi) we conclude that for all 1 ≤ i ≤ f , αti ↾ [a, b) = αti−1 ↾
[a, b).

• By (iii) of Definition 3.2.1 and vi) above we have αtf (a) = αtf ′+1
(a) = 1.

Then with vii) we have αtf ↾ [a, b) = 1k+1 = 1b−a.

• Noted that at stage tf ′+1 the least changed bit of α is α(a), while at all
other loading stages within [t1, tf] α(a) remains unchanged. Thus, there
is only one loading stage within [t1, tf] where the least changed bit of α is
α(a). Then given iii) and viii), for each n ∈ [a + 1, b), there are 2n−a−1 +

2n−a−1 = 2n−a many loading stages within [t1, tf] where the least changed
bit of α is α(n).

The main idea of Lemma 3.2.2 is that during the process of repeatedly adding
some weight to a real α, lower positions of α will also be changed, in a con-
trolled way.

3.3 A Maximal Pair in Coding with Small Re-
dundancy

Now we study the extended Yu-Ding Theorem with small redundancy. The
following theorem is originally proved by Barmpalias, Fang, and Lewis-Pye [12],

26 Coding Left-C.E. Reals with Redundancy

and then Fang and Merkle [25] provide a simpler proof. Here we present the
later proof.

Theorem 3.3.1 (Barmpalias, Fang, and Lewis-Pye [12];Fang and Merkle [25]).
Let g be a computable slow order or constant function. There are two left-c.e.
reals such that no left-c.e. real computes both of them with redundancy g.

Our proof idea is based on the idea of the Yu-Ding construction, where it is
noticed that if γ is a left-c.e. real which computes both α and β, then alterna-
tively adding little amount to α and β is sufficient to drive γ to be too large.
Here we analysis this idea a little bit further, and get a more general framework
which not only proves the above theorem, but could also be adapted to prove
other results.

Given g as stated, let h(n) = n+ g(n).
Let {Φi,Ψi, γi}i∈ω be an effective enumeration of all triples of two Turing

functionals with use functions bounded by h and one left-c.e. real in the unit
interval. Then we construct a pair of left-c.e. reals α, β satisfying all of the fol-
lowing requirements,

Re : α ̸= Φγe
e ∨ β ̸= Ψγe

e . (3.1)

During the construction, the values of α, β,Φe,Ψe, γe at stage s are denoted by
αs, βs,Φe,s,Ψe,s, γe,s. We say requirement Re requires attention at stage s+ 1 if

αs = Φγe,s
e,s ∧ βs = Ψγe,s

e,s . (3.2)

Noted that the cost functions of Φe and Ψe are bounded by h, (3.2) actually
implies that for all n ≤ s

JαsKn =
r
Φ

Jγe,sKh(n)
e,s

z
n
∧ JβsKn =

r
Ψ

Jγe,sKh(n)
e,s

z
n
. (3.3)

Now fix a single requirement Re. Whenever Re requires attention, we change
some bit of α or β at a position no greater than n by adding some weight to
it. Then if Re requires attention again, γe must have changed some bit at a
position no greater than h(n).

Lemma 3.3.2. Suppose there are integers s0 < t0 ≤ s1 such that requirement
Re requires attention at stages s0 + 1, s1 + 1 and α(n) (or β(n)) is changed at
stages t0. Then γe,s1 ≥ Jγe,s0Kh(n+1) + 2−h(n+1).

3.3 A Maximal Pair in Coding with Small Redundancy 27

Proof. Assume α(n) is changed at stage t0, then

Jαs0Kn+1 < Jαt0Kn+1 ≤ Jαs1Kn+1. (3.4)

On the other hand, as Re requires attention at stages s0 + 1, s1 + 1, by (3.3) we
have

Jαs0Kn+1 =

s
Φ

Jγe,s0Kh(n+1)
e,s0

{
n+1

and Jαs1Kn+1 =

s
Φ

Jγe,s1Kh(n+1)
e,s1

{
n+1

. (3.5)

(3.4) and (3.5) implies Jγe,s0Kh(n+1) ̸= Jγe,s1Kh(n+1). As γe is left-c.e., we get

γe,s1 ≥ Jγe,s1Kh(n+1) ≥ Jγe,s0Kh(n+1) + 2−h(n+1).

Our observation in Lemma 3.2.2 indicates that a conservative strategy of
adding always the minimal effective weight could be helpful to drive γe to grow
too large. However, if we apply any [a, b)-load process on one real α trivially,
γe could simply copy the behaviors of α, which would make the conservative
behavior of α in vain. The good thing is that we have two reals α, β at dis-
posal. We can add the minimal effective weight to α, β in turns to prevent γe

from copying either one’s behaviors.

Lemma 3.3.3. Suppose there are stages s0 < t0 ≤ s1 < t1 ≤ s2, where
requirement Re requires attention at stages s0 + 1, s1 + 1, s2 + 1, α(n) and β(n)

are changed at stages t0 and t1 respectively. Then γe,s2 > γe,s0 + 2−h(n+1).

Proof. Clearly, by Lemma 3.3.2 we have

γe,s1 ≥ Jγe,s0Kh(n+1) + 2−h(n+1) and γe,s2 ≥ Jγe,s1Kh(n+1) + 2−h(n+1).

Thus,

γe,s2 ≥
rJγe,s0Kh(n+1) + 2−h(n+1)

z
h(n+1)

+ 2−h(n+1)

= Jγe,s0Kh(n+1) + 2−h(n+1) + 2−h(n+1)

> γe,s0 + 2−h(n+1).

28 Coding Left-C.E. Reals with Redundancy

Our strategy for the proof of Theorem 3.3.1 is as follows. Whenever Re re-
quires attention we add the minimal effective weight according to Lemma 3.2.2
to α, β alternatively. We assign an appropriate interval Ie for each requirement
Re according to Lemma 3.3.3, so that if both of α and β complete an Ie-load
process γe would be forced to be larger than 1, which contradicts our assump-
tion that γe ≤ 1. Moreover, we will make sure all Ie disjoint with each other.
Then by the definition of an Ie-load process and Lemma 3.2.2, the actions for
different requirements will work independently without interfering each other.

Proof of Theorem 3.3.1. Let m0 = 0. For e ≥ 0, let me+1 be the least integer
such that ∑

me<n≤me+1

2−g(n) ≥ 21+me .

As
∑

i∈N 2−g(i) = ∞, such integer can always be found. Let qe = 2me+1−me − 1.

Construction:
Let α0 = β0 = 0 and re,0 = 0 for all e. During the construction, for any vari-

able if no new value is specified then its value remains the same as in previous
stage.
At stage s+ 1: Find the least number e ≤ s such that Re requires attention

and re,s < 2qe. If exists, we say it is an e-loading stage and let re,s+1 = re,s + 1.
Then we check and do the following.

• If re,s is even, add 2−me+1 to α;

• if re,s is odd, add 2−me+1 to β.

Otherwise go to the next stage directly.

Verification:
From the construction we have the following trivial observation.

Observation 3.3.3.1. For every e, there are at most 2qe many e-loading stages.
Then our verification is done by the following lemmas.

Lemma 3.3.4. α, β ≤ 1 and they are left-c.e. reals.

3.3 A Maximal Pair in Coding with Small Redundancy 29

Proof. For every e, by Observation 3.3.3.1, 2−me+1 is added to α for at most qe

many times. Thus,

α ≤
∑
e∈N

qe · 2−me+1 =
∑
e∈N

(2−me − 2−me+1) ≤ 20 = 1,

and α is a left-c.e. real. Similarly, the same holds for β.

Lemma 3.3.5. For every e, if at some stage s, re,s = 2qe, then Re will never
require attention at any later stage.

Proof. For a contradiction, suppose for some e, s we have re,s = 2qe and Re

requires attention at some stage s′ > s. Then there are already 2qe many e-
loading stages before stage s′. Let t1 < t2 < · · · < t2f be these e-loading stages,
where f = qe. Let t2f+1 = s′.

For some 1 ≤ i ≤ f , suppose at stage t2i−1 the least changed bit of α within
[me,me+1) is α(n). As α and β add the same amount alternatively, then at
stage t2i the least changed bit of β within [me,me+1) should be β(n). As Re

requires attention at stages t2i−1, t2i, t2i+1 respectively, by Lemma 3.3.3 we have

γe,t2i+1−1 > γe,t2i−1−1 + 2−h(n+1).

On the other hand, 2−me+1 is added to α, β alternatively at all e-loading
stages. It is easy to check that (0, t2f−1] is an α [me,me+1)-load process with
loading stages {t2i−1}1≤i≤f and (0, t2f] is a β [me,me+1)-load process with load-
ing stages {t2i}1≤i≤f . By Lemma 3.2.2 for each n ∈ [me,me+1), there are 2n−me

many loading stages where the least changed bit of α is α(n). Thus,

γe,t2f+1−1 − γe,t1−1 >
∑

me≤n<me+1

2n−me · 2−h(n+1) = 2−1−me ·
∑

me<n≤me+1

2n−h(n) ≥ 1.

Then γe ≥ γe,t2f+1−1 > 1, which contradicts our assumption that γe ≤ 1.

Lemma 3.3.6. For every e, requirement Re requires attention only finitely
many times.

Proof. By Lemma 3.3.5, actually re,s < 2qe already holds when Re requires
attention at stage s+1. Thus, by construction Re may require attention only at
i-loading stages for i ≤ e. As for every i there are only finitely many i-loading
stages, then Re requires attention only finitely many times.

30 Coding Left-C.E. Reals with Redundancy

Lemma 3.3.6 implies that every requirement Re requires no attention from
some stage on, which means that all Re is satisfied eventually. This completes
the proof of Theorem 3.3.1.

Now we modify the above proof to show that actually such maximal pair of
left-c.e. reals can be found in every array non-computable degree.

Theorem 3.3.7 (Barmpalias, Fang, and Lewis-Pye [12];Fang and Merkle [25]).
Let g be a computable slow order or constant function and d be an array non-
computable c.e. degree. There are two left-c.e. reals in d such that no left-c.e.
real computes both of them with redundancy g.

Given g as stated, let h(n) = n+g(n). Let d be an array non-computable c.e.
degree. We construct a maximal pair of left-c.e. reals as in the proof of Theo-
rem 3.3.1 with the extra property that they are coded by some c.e. set in d and
each one codes that set as well. To achieve this, we use the multiple permitting
argument, as explained in § 2.3.

At first, suppose we have already fixed some very strong array {Fn}n∈ω.
Then there is a c.e. set D ∈ d such that (∀e)(∃∞n)[We ∩ Fn = D ∩ Fn]. We
define requirements {Rk}k∈ω the same as (3.1). Our strategy for the proof is
essentially the same as before, except that for every k instead of dealing with
only one requirement Rk now we deal with infinitely many copies of Rk which
are represented by requirements T⟨k,l⟩ defined as follows for all l ∈ N.

T⟨k,l⟩ : Vk ∩ Fl = D ∩ Fl ⇒ Rk is satisfied,

where the set Vk is a c.e. set we will define during the construction do handle
the permission requests from requirement Rk.

To implement the multiple permitting argument, we define a state of being
active or inactive for each requirement T⟨k,l⟩ during the construction. At stage
s+ 1, requirement T⟨k,l⟩ requires attention if

l ≥ k, T⟨k,l⟩ is active, Vk,s ∩ Fl = Ds ∩ Fl and Rk requires attention. (3.6)

As before, we assign an interval I⟨k,l⟩ for every requirement T⟨k,l⟩ and make sure
all of them are disjoint. Whenever a requirement T⟨k,l⟩ requires attention, be-
fore taking any action of adding weight to α or β, we request a permission by

3.3 A Maximal Pair in Coding with Small Redundancy 31

picking some x ∈ Fl which is not yet in Vk and enumerating it into Vk. At
the same time we deactivate T⟨k,l⟩ so that it will not require any further atten-
tion. When at a later stage x enters D, we say the permission is received. Until
then we perform the scheduled action and activate T⟨k,l⟩ again. To make sure
all permissions requests can be handled, the size of the array Fl should be large
enough. Clearly, if Vk ∩ Fl = D ∩ Fl holds for some l, the permissions should
always be received. In this case, T⟨k,l⟩ is a witness for the fact that requirement
Rk is satisfied.

Our strategy ensures that the actions by each requirement T⟨k,l⟩ work inde-
pendently without interfering each other. And α ↾ I⟨k,l⟩, β ↾ I⟨k,l⟩ are recoverable
from D. On the other hand, as we also want D to be recoverable from both α

and β, we will fix a computable set J which is disjoint from every I⟨k,l⟩, and
code the information of D into α ↾ J and β ↾ J .

Proof of Theorem 3.3.7. Let m0 = 0. For e ≥ 0, let me+1 be the least integer
such that ∑

1+me<i≤me+1

2−g(i) ≥ 22+me .

As
∑

i∈N 2−g(i) = ∞, such integer can always be found. Let Ie = [me + 1,me+1)

and J = {me|e ∈ N}. Note that J and all Ie are all disjoint and their union is
the set N. Let qe = 2me+1−me−1 − 1.

We fix a very strong array {Fl}l∈N such that

|Fl| = 1 + |Fl−1|+max{2q⟨k,l⟩ : k ≤ l}.

By Proposition 2.3.2, let D ∈ d be a c.e. set such that

(∀e)(∃∞n)[We ∩ Fn = D ∩ Fn] (3.7)

Without loss of generality, we assume D0 = ∅.

Construction:
Let e = ⟨k, l⟩. Set all requirements Te to be active.
Let α0 = β0 = 0, re,0 = 0 for all e and Vk,0 = ∅ for all k. During the con-

struction, for any variable if no new value is specified then its value remains the
same as in previous stage.
At stage 2s+ 1: For each i ∈ Ds+1 \Ds, let α(mi) = β(mi) = 1.

32 Coding Left-C.E. Reals with Redundancy

Find the least number e ≤ 2s such that Te requires attention and re,2s <

2qe. If exists, we say it is an e-pending stage and set Te to be inactive. Then we
pick some x ∈ Fl \ Vk,2s and let Vk,2s+1 = Vk,2s ∪ {x}. Otherwise go to the next
stage directly.
At stage 2s+ 2: Find the least number e ≤ 2s + 1 such that requirement Te

is inactive and Vk,2s+1 ∩ Fl = D2s+1 ∩ Fl. If exists, we say it is an e-loading
stage and set Te to be active. Then we let re,2s+2 = re,2s+1 + 1, check and do the
following.

• If re,2s+1 is even, add 2−me+1 to α;

• if re,2s+1 is odd, add 2−me+1 to β.

Otherwise go to the next stage directly.

Verification:
From the construction we have the following trivial observation.

Observation 3.3.7.1. For every e, there are at most 2qe many e-pending stages
and at most 2qe many e-loading stages.

Let e = ⟨k, l⟩. Our verification is done by the following lemmas.

Lemma 3.3.8. For each e, for all s, |Fl ∩ Vk,s| < |Fl|.

Proof. First, we notice that |Fl ∩ Vk| increases only at e-pending stages, and at
each such stage it increases by 1.

If l < k, Te never requires attention and there is no e-pending stage. Then
for all s, |Fl ∩ Vk,s| = 0 < |Fl|.

If l ≥ k, by definition we have |Fl| ≥ 1 + 2qe. Then by Observation 3.3.7.1 for
all s, |Fl ∩ Vk,s| ≤ 2qe < |Fl|.

Lemma 3.3.8 ensures that at every e-pending stage s, Fl \ Vk,s−1 ̸= ∅. Thus,
every permission request is handled.

Lemma 3.3.9. α, β ≤ 1 and they are left-c.e. reals.

Proof. For every e, by Observation 3.3.7.1, 2−me+1 is added to α for at most qe

many times. On the other hand, for each e, 2−me−1 is added to α when e enters
D. While as D is a c.e. set, this happens at most once for each e. Thus,

α ≤
∑
e∈N

qe · 2−me+1 +
∑
e∈N

2−me−1 =
∑
e∈N

(2−me−1 − 2−me+1 + 2−me−1) ≤ 20 = 1,

3.3 A Maximal Pair in Coding with Small Redundancy 33

and α is a left-c.e. real. Similarly, the same holds for β.

Lemma 3.3.10. α, β =T D.

Proof. For each e, as 2−me+1 is added to α (or β) for at most qe many times,
the actions for requirement Te do not affect α (or β) outside the interval Ie.
Then for any n ∈ N, D(n) = 1 if and only if α(mn) = 1 if and only if β(mn) =

1. So D ≤T α, β.
Assume now we are given D, fix some n. If n = mp for some number p, then

clearly α(n) = β(n) = D(p). Otherwise, there must be some e such that n ∈ Ie.
We find a stage s where Ds ∩ Fl = D ∩ Fl, then claim that α(n) = αs0(n) and
β(n) = βs0(n), where s0 = s+ 2 +

∑
i<e 4qi.

Suppose not, then there is a stage s′ > s0 such that αs0(n) ̸= αs′(n) or
βs0(n) ̸= βs′(n). That is to say, there should be at least one e-loading stage
within stages (s0, s

′]. Let s1 + 1 be the least e-loading stage within stages
(s0, s

′]. Then Vk,s1 ∩ Fl = Ds1 ∩ Fl.
If there is an e-pending stage s2 + 1 within (s, s1], then

Ds ∩ Fl ⊆ Ds2 ∩ Fl = Vk,s2 ∩ Fl

⊊ Vk,s2+1 ∩ Fl = Vk,s1 ∩ Fl = Ds1 ∩ Fl ⊆ D ∩ Fl,

which contradicts Ds ∩ Fl = D ∩ Fl.
If there is no e-pending stage within (s, s1], then Te is inactive at all stages

within (s, s1] and Vk,t∩Fl does not change for all t ∈ (s, s1]. On the other hand,
as Ds ∩ Fl = D ∩ Fl, Dt ∩ Fl also does not change for all t ∈ (s, s1]. Thus,

Vk,t ∩ Fl = Vk,s1 ∩ Fl = Ds1 ∩ Fl = Dt ∩ Fl.

This implies that for all t ∈ (s, s1], if t is even stage t should be an i-loading
stage for some i < e. As for each i there are at most 2qi many i-loading stages,
then s1 + 1 ≤ s + 2 +

∑
i<e 2 · 2qi = s0, which contradicts the assumption

s1 + 1 > s0.

Lemma 3.3.11. For every e, if at some stage s, re,s = 2qe then Te will never
require attention at any later stage.

Proof. For a contradiction, suppose for some e, s we have re,s = 2qe and Te

requires attention at some stage s′ > s. Then there are already 2qe many e-

34 Coding Left-C.E. Reals with Redundancy

pending and 2qe many e-loading stages before stage s′. Let s1 < s2 < · · · < s2f

be these e-pending stages and t1 < t2 < · · · < t2f be these e-loading stages,
where f = qe. Let s2f+1 = s′. By construction it follows that si < ti < si+1 for
each i ∈ [1, 2f].

For some 1 ≤ i ≤ f , suppose at stage t2i−1 the least changed bit of α ↾ Ie

is α(n). As α and β add the same amount alternatively, then at stage t2i the
least changed bit of β ↾ Ie should be β(n). As Te requires attention at stages
s2i−1, s2i, s2i+1 respectively, which implies that Rk also requires attention at
these stages, by Lemma 3.3.3 we have

γk,t2i+1−1 > γk,t2i−1−1 + 2−h(n+1).

On the other hand, 2−me+1 is added to α, β alternatively at all e-loading
stages. It is easy to check that (0, t2f−1] is an α Ie-load process with loading
stages {t2i−1}1≤i≤f and (0, t2f] is a β Ie-load process with loading stages {t2i}1≤i≤f .
By Lemma 3.2.2 for each n ∈ Ie, there are 2n−me−1 many loading stages where
the least changed bit of α is α(n). Thus,

γk,t2f+1−1 − γk,t1−1 >
∑
n∈Ie

2n−me−1 · 2−h(n+1) = 2−me−2 ·
∑
n∈Ie

2−g(n+1) ≥ 1.

Then γk ≥ γk,t2f+1−1 > 1, which contradicts our assumption that γk ≤ 1.

Lemma 3.3.12. For every e, requirement Te requires attention only finitely
many times.

Proof. By Lemma 3.3.11, actually re,s < 2qe already holds when Te requires at-
tention at stage s + 1. Thus, by construction for odd stages, Te may require at-
tention only at i-pending stages for i ≤ e. As for every i there are only finitely
many i-pending stages, then Te requires attention only at finitely many odd
stages, and after the last such stage it will not require attention any more.

Now fix some k. As Vk is a c.e. set, by (3.7), there are infinitely many l such
that Vk ∩ Fl = D ∩ Fl. Fix some l ≥ k such that Vk ∩ Fl = D ∩ Fl. Then
there is a stage s0 such that Vk,s ∩ Fl = Ds ∩ Fl for all s ≥ s0. As there are only
finitely many ⟨k, l⟩-pending stages, there is a stage s1 ≥ s0 such that there is no
⟨k, l⟩-pending stage after stage s1. Then if T⟨k,l⟩ is active at some stage s′ ≥ s1,
it will remain active thereafter, because it could only become inactive at ⟨k, l⟩-
pending stages. If T⟨k,l⟩ is inactive at stage s1, by the same argument as in the

3.4 Random Reals Fail in Coding with Small Redundancy 35

proof of Lemme 3.3.10, T⟨k,l⟩ will become active and remain active thereafter at
the latest at stage s1 + 2 +

∑
i<⟨k,l⟩ 4qi. Moreover, by Lemma 3.3.12 there is a

stage s2 ≥ s1 + 2 +
∑

i<⟨k,l⟩ 4qi such that for all s ≥ s2, requirement T⟨k,l⟩ does
not require attention, which then implies Rk does not require attention. Thus,
Rk is satisfied eventually. This completes the proof of Theorem 3.3.7.

3.4 Random Reals Fail in Coding with Small
Redundancy

Now we study the extended Barmpalias-Lewis Theorem with small redundancy.
Note that constant redundancy is just a special case here, while the proof here
is even simpler than the proofs shown in [6] and [10] for constant redundancy.

Theorem 3.4.1 (Fang and Merkle [25]). Let g be a computable slow order or
constant function. There is a left-c.e. real such that no left-c.e. random real
computes it with redundancy g.

Given g as stated, let h(n) = n + g(n). Our proof idea is as follows. We
construct a left-c.e. real α such that any left-c.e. real γ computing α with use
function h fails to pass some Martin-Löf test.

Let ⟨Φk, γk⟩ be an effective enumeration of all pairs of a Turing functional
with use function bounded by h and a left-c.e. real in the unit interval. Then
we construct a left-c.e. real α satisfying all of the following requirements,

Rk : α = Φγk
k ⇒ γk ∈

∩
j

Uk,j, (3.8)

where for each k, {Uk,j}j∈N is some Martin-Löf test we specifically define for
requirement Rk. We break each Rk into

Q⟨k,j⟩ : α = Φγk
k ⇒ γk ∈ JE⟨k,j⟩K (3.9)

where {E⟨k,j⟩} are uniformly c.e. sets we will enumerate during the construc-
tion. The idea is that each JE⟨k,j⟩K serves as the jth member of the Martin-Löf
test we define for Rk, so we have the following restriction on them,

(∀k)(∀j) [µ(E⟨k,j⟩) ≤ 2−j]. (3.10)

36 Coding Left-C.E. Reals with Redundancy

Clearly, if all requirements Q⟨k,j⟩ are satisfied then all requirements Rk are also
satisfied.

Let e = ⟨k, j⟩. During the construction, the values of α,Φk, γk, Ee at stage s

are denoted by αs,Φk,s, γk,s, Ee,s. Without loss of generality, we assume that

(∀s) [γk,s = Jγk,sKs]. (3.11)

We say requirement Qe requires attention at stage s+ 1 if

αs = Φ
γk,s
k,s ∧ γk,s /∈ JEe,sK. (3.12)

Noted that the cost function of Φk is bounded by h, (3.12) actually implies that
for all n < s JαsKn =

s
Φ

Jγk,sK
h(n)

k,s

{
n

∧ γk,s /∈ JEe,sK. (3.13)

Now fix a single requirement Qe. The same as before, we use our observa-
tion in Lemma 3.2.2 to drive γk to grow too large. Instead of having two reals
α, β at disposal, now we have a left-c.e. real α and a serials of c.e. sets {Ee}e∈ω.
We want to apply some [a, b)-load process on the real α, while prevent γk from
copying the behaviors of α. With the help of the sets {Ee}e∈ω, this is still pos-
sible.

We define a set

G(e, s,m) = {σ : [|σ| = s] ∧ [γk,s ↾ s ≤L σ <L (γk,s + 2−m) ↾ s]}.

Lemma 3.4.2. If there is a stage s such that γk,s + 2−h(n)−j−1 ≥ Jγk,sKh(n) +
2−h(n) and Ee,s+1 = Ee,s ∪ G(e, s, h(n) + j + 1) then µ(Ee,s+1) − µ(Ee,s) ≤
2−h(n)−j−1; and if further, Qe requires attention at stage t + 1 where t > s, then
γk,t ≥ Jγk,sKh(n) + 2−h(n).

Proof. As γk,s + 2−h(n)−j−1 ≥ Jγk,sKh(n) + 2−h(n) and γk,s = Jγk,sKs, it must
hold that h(n) + j + 1 ≤ s. Then there are 2s−h(n)−j−1 many strings in the set
G(e, s, h(n) + j + 1). Thus,

µ(Ee,s+1)− µ(Ee,s) ≤ µ(G(e, s, h(n) + j + 1)) = 2s−h(n)−j−1 · 2−s = 2−h(n)−j−1.

If requirement Qe requires attention at stages t + 1, then γk,t /∈ JEe,tK. While
Ee,t ⊇ Ee,s+1 = Ee,s ∪ G(e, s, h(n) + j + 1), then γk,t /∈ JG(e, s, h(n) + j + 1)K,

3.4 Random Reals Fail in Coding with Small Redundancy 37

i.e. γk,t ↾ s /∈ G(e, s, h(n) + j + 1). As γk,t ↾ s ≥L γk,s ↾ s, then γk,t ↾ s ≥L

(γk,s + 2−h(n)−j−1) ↾ s. Thus,

γk,t ≥ Jγk,tKs ≥ q
γk,s + 2−h(n)−j−1

y
s
= γk,s + 2−h(n)−j−1 ≥ Jγk,sKh(n) + 2−h(n).

Lemma 3.4.3. If there are integers s1 < t1 ≤ s2 such that requirement Qe

requires attention at stages s1 + 1, s2 + 1 and α(n − 1) is changed at stage t1,
then the following two cases hold.

(i) If γk,s1 + 2−h(n)−j−1 < Jγk,s1Kh(n) + 2−h(n), then γk,s2 − γk,s1 > 2−h(n)−j−1.

(ii) If there is another stage s0 < s1 such that γk,s0 + 2−h(n)−j−1 ≥ Jγk,s0Kh(n) +
2−h(n) and Ee,s0+1 = Ee,s0 ∪ G(e, s0, h(n) + j + 1) then γk,s2 − γk,s0 >

2−h(n) ≥ 2j+1 · (µ(Ee,s0+1)− µ(Ee,s0)).

Proof. By Lemma 3.3.2 we have γk,s2 ≥ Jγk,s1Kh(n) + 2−h(n).
In case (i), directly we get γk,s2 > γk,s1 + 2−h(n)−j−1.
In case (ii), by Lemma 3.4.2, µ(Ee,s0+1) − µ(Ee,s0) ≤ 2−h(n)−j−1 and γk,s1 ≥Jγk,s0Kh(n) + 2−h(n). Thus,

γk,s2 ≥
rJγk,s0Kh(n) + 2−h(n)

z
h(n)

+2−h(n) = Jγk,s0Kh(n)+2−h(n)+2−h(n) > γk,s0+2−h(n).

Then γk,s2 − γk,s0 > 2−h(n) ≥ 2j+1 · (µ(Ee,s0+1)− µ(Ee,s0)).

Our strategy is then that, whenever Qe requires attention, before adding any
weight to α to change α(n− 1), we check whether it is worth to do that, i.e. we
only do that in two cases:

• γk,s1 + 2−h(n)−j−1 < Jγk,s1Kh(n) + 2−h(n), or

• the last time when Qe requires attention, Ee is changed.

We assign an appropriate interval Ie for each requirement Qe according to
Lemma 3.4.3, so that if during the construction the measure of Ee exceeds
2−j or α completes an Ie-load process, γk would be forced to be larger than
1, which then contradicts our assumption that γk ≤ 1. As before, we will
make sure all Ie are disjoint with each other. Then by the definition of Ie-load
process and Lemma 3.2.2, the actions for each requirement will work indepen-
dently without interfering each other.

38 Coding Left-C.E. Reals with Redundancy

Proof of Theorem 3.4.1. Let m0 = 0. For e ≥ 0, let me+1 be the least integer
such that ∑

me<i≤me+1

2−g(i) ≥ 22+j+me .

As
∑

i∈N 2−g(i) = ∞, such integer can always be found. Let qe = 2me+1−me − 1.

Construction:
Let e = ⟨k, j⟩.
Let α0 = 0 and Ee,0 = ∅, re,0 = 0 for all e. During the construction, for

any variable if no new value is specified then its value remains the same as in
previous stage.
At stage s+ 1: Find the least number e ≤ s such that Qe requires atten-

tion and re,s < 2qe. If exists, and supposing by adding 2−me+1 to αs the least
changed bit of α within [me,me+1) will be α(n−1), we check and do the follow-
ing.

• If re,s is even and γk,s + 2−h(n)−j−1 < Jγk,sKh(n) + 2−h(n), or re,s is odd, we
say it is an e-loading stage. Then add 2−me+1 to α and let re,s+1 be the
least even number larger than re,s.

• If re,s is even and γk,s + 2−h(n)−j−1 ≥ Jγk,sKh(n) + 2−h(n), we say it is an
e-testing stage. Then let Ee,s+1 = Ee,s ∪G(e, s, h(n) + j + 1) and re,s+1 =

re,s + 1.

Otherwise go to the next stage.

Verification:
From the construction we have the following trivial observations.

Observation 3.4.3.1. If s is an e-loading stage then re,s is even and if s is an
e-testing stage then re,s is odd.
Observation 3.4.3.2. Between every two e-testing stages there is at least one
e-loading stage.
Observation 3.4.3.3. For every e, there are at most qe many e-loading stages
and at most qe many e-testing stages.

Let e = ⟨k, j⟩. Our verification is done by the following lemmas.

Lemma 3.4.4. α ≤ 1 and it is a left-c.e. real.

3.4 Random Reals Fail in Coding with Small Redundancy 39

Proof. For every e, by Observation 3.4.3.3, 2−me+1 is added to α for at most qe

many times. Thus,

α ≤
∑
e∈N

qe · 2−me+1 =
∑
e∈N

(2−me − 2−me+1) ≤ 20 = 1,

and α is a left-c.e. real.

Lemma 3.4.5. For each e, µ(Ee) ≤ 2−j.

Proof. For a contradiction, suppose µ(Ee) > 2−j.
As there are at most qe many e-testing stages, let s1 < s2 < · · · < sf+1 be all

the e-testing stages. Let s0 = 0. Then µ(Ee,sf+1
) > 2−j and µ(Ee,s0) = 0. As Ee

only changes at e-testing stages, then Ee,si−1 = Ee,si−1
for all 1 ≤ i ≤ f + 1.

By Lemma 3.4.2, µ(Ee,sf+1
)− µ(Ee,sf+1−1) ≤ 2−h(n)−j−1. While h(n) ≥ n ≥ 0,

then µ(Ee,sf) = µ(Ee,sf+1−1) ≥ µ(Ee,sf+1
)− 2−h(n)−j−1 > 2−j−1.

For all 1 ≤ i ≤ f , by Observation 3.4.3.2, let ti be an e-loading stage within
stages (si, si+1), respectively. Then by Lemma 3.4.3,

γk,si+1−1 − γk,si−1 > 2j+1 · (µ(Ee,si)− µ(Ee,si−1)) = 2j+1 · (µ(Ee,si)− µ(Ee,si−1
)).

Thus,

γk,sf+1−1 > γk,s1−1 + 2j+1 ·
∑

1≤k≤f

(µ(Ee,si)− µ(Ee,si−1
)) ≥ 2j+1 · µ(Ee,sf) > 1.

Then γk ≥ γk,sf+1−1 > 1, which contradicts our assumption that γk ≤ 1.

Lemma 3.4.6. For every e, if at some stage s, re,s = 2qe then Qe will never
require attention at any later stage.

Proof. For a contradiction, suppose for some e, s we have re,s = 2qe and Qe

requires attention at some stage s′ > s. Then there are already qe many e-
loading stages before stage s′. Let t1 < t2 < · · · < tf be these e-loading stages,
where f = qe. Let t0 = 0. For each 1 ≤ i ≤ f , if there is an e-testing stage t′

within stages (ti−1, ti), let si = t′; otherwise, let si = ti. Let sf+1 = s′. Then for
any 1 ≤ i ≤ f it holds that si ≤ ti < si+1.

For some 1 ≤ i ≤ f , suppose at stage ti the least changed bit of α within
[me,me+1) is α(n − 1). Note that Qe requires attention at stages si, ti, si+1 re-
spectively (si and ti may be identical). If si is an e-loading stage, si = ti, then

40 Coding Left-C.E. Reals with Redundancy

by case (i) of Lemma 3.4.3, we have

γk,si+1−1 − γk,si−1 > 2−h(n)−j−1.

If si is an e-testing stage, si < ti, then by case (ii) of Lemma 3.4.3, we have

γk,si+1−1 − γk,si−1 > 2−h(n) > 2−h(n)−j−1.

On the other hand, 2−me+1 is added to α at all e-loading stages. It is easy to
check that (0, tf] is an α [me,me+1)-load process with loading stages {ti}1≤i≤f .
By Lemma 3.2.2 for each n ∈ [me,me+1), there are 2n−me many loading stages
where the least changed bit of α is α(n). Thus,

γk,tf+1−1−γk,t1−1 >
∑

me≤n−1<me+1

2n−1−me·2−h(n)−j−1 = 2−me−j−2·
∑

me<n≤me+1

2−g(n) ≥ 1.

Then γk ≥ γk,tf+1−1 > 1, which contradicts our assumption that γk ≤ 1.

Lemma 3.4.7. For every e, requirement Qe requires attention only finitely
many times.

Proof. By Lemma 3.4.6, actually re,s < 2qe already holds when Qe requires
attention at stage s + 1. Thus, by construction Qe may require attention only
at i-loading or i-testing stages for i ≤ e. As for every i there are only finitely
many i-loading stages and i-testing stages, then Qe requires attention only
finitely many times.

Lemma 3.4.7 implies that every requirement Qe requires no attention from
some stage on, which means that it is satisfied eventually. Thus, every require-
ment Rk is satisfied as well. This completes the proof of Theorem 3.4.1.

We can also modify the proof of Theorem 3.4.1 to prove that actually such
left-c.e. real can be constructed in every array non-computable degree.

Theorem 3.4.8 (Fang and Merkle [25]). Let g be a computable slow order or
constant function and d be an array non-computable c.e. degree. There is a
left-c.e. real in d such that no left-c.e. Martin-Löf random real computes it with
redundancy g.

3.4 Random Reals Fail in Coding with Small Redundancy 41

Given g as stated, let h(n) = n+g(n). Let d be an array non-computable c.e.
degree. We construct a left-c.e. real as in the proof of Theorem 3.4.1 with the
extra property that it is coded by some c.e. set in d and also codes that set.
This is also achieved by the multiple permitting argument.

At first, suppose we have already fixed some very strong array {Fn}n∈ω.
Requirements {Q⟨k,j⟩}⟨k,j⟩∈ω are defined the same as (3.9). Then we make in-
finitely many copies of Q⟨k,j⟩ which are now represented by requirements T⟨k,j,l⟩

defined as follows for all l ∈ N.

T⟨k,j,l⟩ : V⟨k,j⟩ ∩ Fl = D ∩ Fl ⇒ Q⟨k,j⟩ is satisfied,

where the set V⟨k,j⟩ is a c.e. set we will define during the construction to handle
the permission requests from Q⟨k,j⟩.

As before, we define a state of being active or inactive for each requirement
T⟨k,j,l⟩ during the construction. At stage s+1, requirement T⟨k,j,l⟩ requires atten-
tion if

l ≥ ⟨k, j⟩, T⟨k,j,l⟩ is active, V⟨k,j⟩,s ∩ Fl = Ds ∩ Fl and Q⟨k,j⟩ requires attention.

Then by replacing Qe with Te, the construction will be almost the same as in
the proof of Theorem 3.4.1, except that before adding weight to α, we always
request a permission as in the proof of Theorem 3.3.7.

Proof of Theorem 3.4.8. Let m0 = 0. For e ≥ 0, let me+1 be the least integer
such that ∑

me+1<i≤me+1

2−g(i) ≥ 23+j+me .

As
∑

i∈N 2−g(i) = ∞, such integer can always be found. Let Ie = [me + 1,me+1)

and J = {me|e ∈ N}. Note that J and all Ie are disjoint and their union is N.
Let qe = 2me+1−me−1 − 1.

We fix a very strong array {Fl}l∈N such that

|Fl| = 1 + |Fl−1|+max{q⟨k,j,l⟩ : ⟨k, j⟩ ≤ l}.

By Proposition 2.3.2, let D ∈ d be a c.e. set such that

(∀e)(∃∞n)[We ∩ Fn = D ∩ Fn] (3.14)

42 Coding Left-C.E. Reals with Redundancy

Without loss of generality, we assume D0 = ∅.

Construction:
Let e = ⟨k, j, l⟩. Set all requirements Te to be active.
Let α0 = 0 and Ee,0 = ∅, re,0 = 0, V⟨k,j⟩,0 = ∅ for all e. During the con-

struction, for any variable if no new value is specified then its value remains the
same as in previous stage.
At stage 2s+ 1: For each i ∈ Ds+1 \Ds, let α(mi) = 1.

Find the least number e ≤ 2s such that Te requires attention and re,2s < 2qe.
If exists, and supposing by adding 2−me+1 to α the least changed bit of α ↾ Ie

will be α(n− 1), we check and do the following.

• If re,2s is even and γk,2s+2−h(n)−j−1 < Jγk,2sKh(n)+2−h(n), or re,2s is odd we
say it is an e-pending stage and set Te to be inactive. Then we pick some
x ∈ Fl \ V⟨k,j⟩,2s and let V⟨k,j⟩,2s+1 = V⟨k,j⟩,2s ∪ {x}.

• If re,2s is even and γk,2s + 2−h(n)−j−1 ≥ Jγk,2sKh(n) + 2−h(n), we say it is
an e-testing stage. Then let Ee,2s+1 = Ee,2s ∪ G(e, 2s, h(n) + j + 1) and
re,2s+1 = re,2s + 1.

Otherwise go to the next stage directly.
At stage 2s+ 2: Find the least number e ≤ 2s + 1 such that requirement Te is

inactive and V⟨k,j⟩,2s+1∩Fl = D2s+1∩Fl. If exists, we say it is an e-loading stage
and set Te to be active. Then add 2−me+1 to α and let re,2s+2 be the least even
number larger than re,2s+1. Otherwise go to the next stage directly.

Verification:
From the construction we have the following trivial observation.

Observation 3.4.8.1. If s is an e-loading stage then re,s is even and if s is an
e-testing stage then re,s is odd.
Observation 3.4.8.2. Between every two e-testing stages s0, s1 there must be
two stages t0 < t1 such that t0 is an e-pending stage and t1 is an e-loading
stage.
Observation 3.4.8.3. For every e, there are at most qe many e-testing stages,
e-pending stages and e-loading stages, respectively.

Let e = ⟨k, j, l⟩. Our verification is done by the following lemmas.

3.4 Random Reals Fail in Coding with Small Redundancy 43

Lemma 3.4.9. For each e = ⟨k, j, l⟩, for all s, |Fl ∩ V⟨k,j⟩,s| < |Fl|.

Proof. First, we notice that |Fl ∩ V⟨k,j⟩| increases only at e-pending stages, and
at each such stage it increases by 1.

If l < ⟨k, j⟩, Te never requires attention and there is no e-pending stage.
Then for all s, |Fl ∩ V⟨k,j⟩,s| = 0 < |Fl|.

If l ≥ ⟨k, j⟩, by definition we have |Fl| ≥ 1 + qe. Then by Observation 3.4.8.3
for all s, |Fl ∩ V⟨k,j⟩,s| ≤ qe < |Fl|.

Lemma 3.4.9 ensures that at every e-pending stage s, Fl \V⟨k,j⟩,s−1 ̸= ∅. Thus,
the permission requests are always handled.

Lemma 3.4.10. α ≤ 1 and it is a left-c.e. real.

Proof. For every e, by Observation 3.4.8.3, 2−me+1 is added to α for at most qe

many times. On the other hand, for each e, 2−me−1 is added to α when e enters
D. While as D is a c.e. set, this happens at most once for each e. Thus,

α ≤
∑
e∈N

qe · 2−me+1 +
∑
e∈N

2−me−1 =
∑
e∈N

(2−me−1 − 2−me+1 + 2−me−1) ≤ 20 = 1,

and α is a left-c.e. real.

Lemma 3.4.11. α =T D.

Proof. For each e, as 2−me+1 is added to α for at most qe many times, the ac-
tions for requirement Te will not affect α outside the interval Ie. Then for any
n ∈ N, D(n) = 1 if and only if α(mn) = 1. So D ≤T α.

Assume now we are given D, fix some n. If n = mp for some number p, then
clearly α(n) = D(p). Otherwise, there must be some e such that n ∈ Ie. We
find a stage s where Ds ∩ Fl = D ∩ Fl, then claim that α(n) = αs0(n), where
s0 = s+ 2 +

∑
i<e 2qi.

Suppose not, then there is a stage s′ > s0 such that αs0(n) ̸= αs′(n). That
is to say, there should be at least one e-loading stage within stages (s0, s

′]. Let
s1 + 1 be the least e-loading stage within stages (s0, s

′]. Then V⟨k,j⟩,s1 ∩ Fl =

Ds1 ∩ Fl.
If there is an e-pending stage s2 + 1 within (s, s1], then

Ds ∩ Fl ⊆ Ds2 ∩ Fl = V⟨k,j⟩,s2 ∩ Fl

44 Coding Left-C.E. Reals with Redundancy

⊊ V⟨k,j⟩,s2+1 ∩ Fl = V⟨k,j⟩,s1 ∩ Fl = Ds1 ∩ Fl ⊆ D ∩ Fl,

which contradicts Ds ∩ Fl = D ∩ Fl.
If there is no e-pending stage within (s, s1], then Te is inactive at all stages

within (s, s1] and V⟨k,j⟩,t ∩ Fl does not change for all t ∈ (s, s1]. On the other
hand, as Ds ∩ Fl = D ∩ Fl, Dt ∩ Fl also does not change for all t ∈ (s, s1]. Thus,
for all t ∈ (s, s1]

V⟨k,j⟩,t ∩ Fl = V⟨k,j⟩,s1 ∩ Fl = Ds1 ∩ Fl = Dt ∩ Fl.

This implies that for all t ∈ (s, s1], if t is even then stage t should be an i-
loading stage for some i < e. As for each i there are at most qi many i-loading
stages, then s1 + 1 ≤ s+ 2 +

∑
i<e 2 · qi = s0, which contradicts the assumption

s1 + 1 > s0.

Lemma 3.4.12. For each e, µ(Ee) ≤ 2−j.

Proof. For a contradiction, suppose µ(Ee) > 2−j.
As there are at most qe many e-testing stages, let s1 < s2 < · · · < sf+1 be all

the e-testing stages. Let s0 = 0. Then µ(Ee,sf+1
) > 2−j and µ(Ee,s0) = 0. As Ee

only changes at e-testing stages, then Ee,si−1 = Ee,si−1
for all 1 ≤ i ≤ f + 1.

By Lemma 3.4.2, µ(Ee,sf+1
)− µ(Ee,sf+1−1) ≤ 2−h(n)−j−1. While h(n) ≥ n ≥ 0,

then µ(Ee,sf) = µ(Ee,sf+1−1) ≥ µ(Ee,sf+1
)− 2−h(n)−j−1 > 2−j−1.

For all 1 ≤ i ≤ f , by Observation 3.4.8.2, let ti < t′i be an e-pending stage
and an e-loading within stages (si, si+1). Then by Lemma 3.4.3,

γk,si+1−1 − γk,si−1 > 2j+1 · (µ(Ee,si)− µ(Ee,si−1)) = 2j+1 · (µ(Ee,si)− µ(Ee,si−1
)).

Thus,

γk,sf+1−1 > γk,s1−1 + 2j+1 ·
∑

1≤k≤f

(µ(Ee,si)− µ(Ee,si−1
)) ≥ 2j+1 · µ(Ee,sf) > 1.

Then γk ≥ γk,sf+1−1 > 1, which contradicts our assumption that γk ≤ 1.

Lemma 3.4.13. For every e, if at some stage s, re,s = 2qe then Te will never
require attention at any later stage.

3.4 Random Reals Fail in Coding with Small Redundancy 45

Proof. For a contradiction, suppose for some e, s we have re,s = 2qe and Te

requires attention at some stage s′ > s. Then there are already qe many e-
pending and e-loading stages before stage s′. Let t′1 < t′2 < · · · < t′f be these
e-pending stages and t1 < t2 < · · · < tf be these e-loading stages, where
f = qe. Let t0 = 0. For each 1 ≤ i ≤ f , if there is an e-testing stage t′ within
stages (ti−1, t

′
i), let si = t′; otherwise, let si = t′i. Let sf+1 = s′. Then for any

1 ≤ i ≤ f it holds that si ≤ t′i < ti < si+1.
For some 1 ≤ i ≤ f , suppose at stage ti the least changed bit of α ↾ Ie is

α(n− 1). Note that Q⟨k,j⟩ requires attention at stages si, t
′
i, si+1 respectively (si

and t′i may be identical). If si is an e-loading stage, si = t′i, then by case (i) of
Lemma 3.4.3, we have

γk,si+1−1 − γk,si−1 > 2−h(n)−j−1.

If si is an e-testing stage, si < t′i, then by case (ii) of Lemma 3.4.3, we have

γk,si+1−1 − γk,si−1 > 2−h(n) > 2−h(n)−j−1.

On the other hand, 2−me+1 is added to α at all e-loading stages. It is easy
to check that (0, tf] is an α Ie-load process with loading stages {ti}1≤i≤f . By
Lemma 3.2.2 for each n ∈ Ie, there are 2n−me−1 many loading stages where the
least changed bit of α is α(n). Thus,

γk,tf+1−1−γk,t1−1 >
∑

n−1∈Ie

2n−1−me−1·2−h(n)−j−1 = 2−me−j−3·
∑

me+1<n≤me+1

2−g(n) ≥ 1.

Then γk ≥ γk,tf+1−1 > 1, which contradicts the assumption that γk ≤ 1.

Lemma 3.4.14. For every e, requirement Te requires attention only finitely
many times.

Proof. By Lemma 3.4.13, actually re,2s < 2qe already holds when Te requires at-
tention at stage 2s+1. Thus, by construction for odd stages, Te may require at-
tention only at i-pending stages for i ≤ e. As for every i there are only finitely
many i-pending stages, then Te requires attention only at finitely many odd
stages, and after the last such stage it will not require attention any more.

Now fix some ⟨k, j⟩. As V⟨k,j⟩ is a c.e. set, by (3.14), there are infinitely many
l such that V⟨k,j⟩ ∩ Fl = D ∩ Fl. Fix some l ≥ ⟨k, j⟩ such that V⟨k,j⟩ ∩ Fl =

46 Coding Left-C.E. Reals with Redundancy

D ∩ Fl. Then there is a stage s0 such that V⟨k,j⟩,s ∩ Fl = Ds ∩ Fl for all s ≥ s0.
As there are only finitely many ⟨k, j, l⟩-pending stages, there is a stage s1 ≥
s0 such that there is no ⟨k, j, l⟩-pending stage after stage s1. Then if T⟨k,j,l⟩ is
active at some stage s′ ≥ s1, it will remain active thereafter, because it could
only become inactive at ⟨k, j, l⟩-pending stages. If T⟨k,j,l⟩ is inactive at stage
s1, by the same argument as in the proof of Lemme 3.4.11, T⟨k,j,l⟩ will become
active and remain active thereafter at the latest at stage s1 + 2 +

∑
i<⟨k,j,l⟩ 2qi.

Moreover, by Lemma 3.4.14 there is a stage s2 ≥ s1 + 2+
∑

i<⟨k,j,l⟩ 2qi such that
for all s ≥ s2, requirement T⟨k,j,l⟩ does not require attention, which then implies
Q⟨k,j⟩ does not require attention. Thus, Q⟨k,j⟩ is satisfied eventually. Therefore
every requirement Rk is satisfied. This completes the proof of Theorem 3.4.8.

3.5 A.N.C. Degrees and Coding with Small Re-
dundancy

By Theorems 3.3.7, 3.4.8 and 2.3.3, it is easy to get the following extension of
Theorem 2.3.3.

Theorem 3.5.1 (Fang and Merkle [25]). Let g be a computable slow order or a
constant function. The following are equivalent for a c.e. degree d:

1. There are two left-c.e. reals in d such that no left-c.e. real codes both of
them with redundancy g.

2. There is a left-c.e. real in d such that no left-c.e. random real codes it
with redundancy g.

3. There is a set in d such that no left-c.e. random real codes it with redun-
dancy g.

4. d is array non-computable.

Thus, for coding with small redundancy, the extended Yu-Ding Theorem 3.3.1
and the extended Barmpalias-Lewis Theorem 3.4.1 are still characterizations of
array non-computable degrees.

3.6 Summary 47

3.6 Summary
In this chapter we showed some examples where theorems about cl-reducibility,
which is coding with constant redundancy, can be extended to coding with low
redundancy. Basically, we extended the Yu-Ding Theorem and the Barmpalias-
Lewis Theorem from coding with constant redundancy to coding with small
redundancy. One the other hand, we also showed that such extensions are valid
only for small redundancy. Moreover, in the same way as showed, the result
that the Yu-Ding Theorem and the Barmpalias-Lewis Theorem are character-
izations of c.e. array non-computable degrees, still holds for the extended ver-
sions of both theorems.

However, there are also examples where such kind of extension fail. Fan and
Yu [24] showed that there is a left-c.e. real not cl-computable from any left-c.e.
complex real. And Ambos-Spies, Losert, and Monath [3] showed that such left-
c.e. reals exist in every not totally ω-c.e. degrees. We cannot extent either of
these results to computations with any unbounded redundancy.

By theorem 3.1.1, with large coding redundancy, all left-c.e. random reals
have the same coding power within all left-c.e. reals. But in general it is not
clear under small coding redundancy, is there necessarily a difference among
left-c.e. random reals in terms of coding power.

As reported in [10, Section 6], Frank Stephan proved that there are two left-
c.e. random reals that one is not coded by the other with constant redundancy.
Barmpalias and Lewis-Pye [7] extended the redundancy bound to ⌊log n⌋. Al-
though ⌊log n⌋ is quite close to low redundancy in general, the following ques-
tion about coding with low redundancy is still open.

Question 1. Is it true that for any computable slow order g, there exists two
left-c.e. random reals such that one is not coded by the other with redundancy
g?

Chapter 4

Martingales as Betting Strategies

In § 2.1, we introduced the notion of Martin-Löf randomness. It is character-
ized both by Martin-Löf tests and Solovay tests, which reflect the typicalness
of a random sequences, and also characterized by prefix-free Kolmogorov com-
plexity, which reflects the incompressibility of a random sequence. Apart from
these two approaches to randomness, there is a third one which characterizes
its unpredictability. Intuitively, in a random process such as repeatedly tossing
a fair coin, results of all the previous tosses should be of no help for predict-
ing the result of the next toss. Then if we are betting on the successive bits
of a random sequence, we should not expect to be able to make much money,
no matter what betting strategy we apply. Usually, in a binary betting game,
a betting strategy determines to which outcome it bets and how much capi-
tal it puts on it, or to what percentage of capital it puts on it. This process
can be presented by a martingale which records the capital after each betting
stage. If along some sequence of bits, the capital recorded by the martingale is
unbounded, we would say such a sequence is not random. In this way, we de-
fine a sequence to be random if there is no martingale reaches unbound value
along it. Of course, to realize this idea we need to specify the effectiveness of
the martingales. Such candidates could be computable martingales or left-c.e.
martingales. Interestingly, as a basic result in algorithmic randomness, in the
case of left-c.e. martingales, the resulting randomness notion coincides with
Martin-Löf randomness.

In this chapter we introduce the standard notion of martingales in detail and
develop some new notions. In the meanwhile we also explore some of the rele-

50 Martingales as Betting Strategies

vant properties of these notions to give a better understanding of them and for
later references as well.

4.1 Martingales and Supermartingales
Let us begin with the formal definition of martingales.

Definition 4.1.1. A function M : 2<ω 7→ R0+ is a martingale if for all σ ∈ 2<ω,

M(σ) =
M(σ ⌢ 0) +M(σ ⌢ 1)

2
. (4.1)

It is a supermartingale if for all σ ∈ 2<ω,

M(σ) ≥ M(σ ⌢ 0) +M(σ ⌢ 1)

2
. (4.2)

We also define some further notions for the analysis of (super)martingales.

Definition 4.1.2. Let M be a (super)martingale.

1. The wager wM of M is defined as

wM(σ ⌢ i) =
M(σ ⌢ i)−M(σ ⌢ (1− i))

2
(4.3)

for all σ ∈ 2<ω and i ∈ {0, 1}; and wM(λ) = 0.

2. The cover M̂ of M is defined as

M̂(σ) = M(λ) +
∑
τ⪯σ

wM(τ) (4.4)

for all σ ∈ 2<ω.

3. The marginal saving M∗ of M is defined as

M∗(σ) = M(σ)− M(σ ⌢ 0) +M(σ ⌢ 1)

2
(4.5)

for all σ ∈ 2<ω.

4.1 Martingales and Supermartingales 51

4. The (accumulated) saving SM of M is defined as

SM(σ) =
∑
τ≺σ

M∗(τ) (4.6)

for all σ ∈ 2<ω.

For a wager function wM , we can interpret wM(σ ⌢ i) as the wager M putting
on outcome i at stage σ. By definition M∗(σ) ≥ 0 for all σ ∈ 2<ω. So SM is
nondecreasing. We have some simple observations for these notations.

Proposition 4.1.3. Given a (super)martingale M , for any σ ∈ 2<ω and i ∈
{0, 1} the following are true.

(i) wM(σ ⌢ i) = −wM(σ ⌢ (1− i)).

(ii) wM(σ ⌢ i) ≥ M(σ ⌢ i)−M(σ), the equality holds when M is a martingale.

(iii) |wM(σ ⌢ i)| ≤ M(σ).

(iv) M̂ is a martingale, and wM(σ) = wM̂(σ).

(v) SM(σ) = M̂(σ)−M(σ).

(vi) If M is a martingale, M̂(σ) = M(σ).

Proof. (i): This is obvious by definition.
(ii): By adding up (4.3) and (4.2) or (4.1) we get wM(σ ⌢ i)+M(σ) ≥ M(σ ⌢ i),

where the equality holds when M is a martingale.
(iii): As M(τ) ≥ 0 for all τ ∈ 2<ω, by (ii) we have wM(σ ⌢ i) ≥ −M(σ) and

wM(σ ⌢ (1− i)) ≥ −M(σ). Then by applying (i) we have |wM(σ ⌢ i)| ≤ M(σ).
(iv): By definition and (i)

M̂(σ ⌢ 0) + M̂(σ ⌢ 1)

2
= M(λ) +

∑
τ⪯σ

wM(τ) +
wM(σ ⌢ 0) + wM(σ ⌢ 1)

2
= M̂(σ).

So M̂ is a martingale. And

wM̂(σ ⌢ i) =
M̂(σ ⌢ i)− M̂(σ ⌢ (1− i))

2
=

wM(σ ⌢ i)− wM(σ ⌢ (1− i))

2
= wM(σ ⌢ i).

52 Martingales as Betting Strategies

(v): We prove by induction. At first, SM(λ) = 0 = M̂(λ) −M(λ). Suppose we
have SM(σ) = M̂(σ)−M(σ). Then

SM(σ ⌢ i) = SM(σ) +M∗(σ)

= M̂(σ)−M(σ) +M(σ)− M(σ ⌢ 0) +M(σ ⌢ 1)

2

= M̂(σ ⌢ i)− M(σ ⌢ i)−M(σ ⌢ (1− i))

2
− M(σ ⌢ 0) +M(σ ⌢ 1)

2

= M̂(σ ⌢ i)−M(σ ⌢ i).

(vi): If M is a martingale, M∗(τ) = 0 for all τ ∈ 2<ω and then SM is constantly
0. By (v), M̂(σ)−M(σ) = SM(σ) = 0.

The following proposition can also be easily verified. It is useful to construct
supermartingales.

Proposition 4.1.4. Given a supermartingale M and a nondecreasing function
f : 2<ω 7→ R, if f(σ) ≤ M̂(σ) for all σ ∈ 2<ω, then M̂ − f is a supermartingale.

Sometimes it is convenient to have the following multiplicative form for a
(super)martingale.

Definition 4.1.5. Let M be a (super)martingale. The betting coefficient of M
is defined as

cM(σ ⌢ i) =


M(σ ⌢ i)
M(σ)

if M(σ) > 0,

1 otherwise,
(4.7)

for all σ ∈ 2<ω and i ∈ {0, 1}; and cM(λ) = 1.

For this notation, the following properties follow obviously.

Proposition 4.1.6. Given a (super)martingale M , for any σ ∈ 2<ω and i ∈
{0, 1} the following are true.

1. 0 ≤ cM(σ) ≤ 2.

2. cM(σ ⌢ 0) + cM(σ ⌢ 1) ≤ 2, the equality holds when M is a martingale.

3. M(σ) = M(λ) ·
∏

τ⪯σ cM(τ).

4. If M is a martingale, wM(σ ⌢ i) = (cM(σ ⌢ i)− 1) ·M(σ).

4.2 Computable (Super)martingales and Their Mixtures 53

If we view a computable martingale M as a function satisfying (4.1), then it
provides a formalization of a betting strategy on an infinite coin-tossing game:
at position σ our capital is M(σ) and we bet wM(σ ⌢ i) (or (cM(σ ⌢ i) − 1) ×
100% of the current capital) on i for i ∈ {0, 1}. Note that either wM(σ ⌢ 0) =

wM(σ ⌢ 1) = 0 (cM(σ ⌢ 0) = cM(σ ⌢ 1) = 1), in which case no bet is placed for
the next bit of σ, or for some i ∈ {0, 1} we have wM(σ ⌢ i) > 0, wM(σ ⌢ (1−i)) <

0, (cM(σ ⌢ i) > 1 > cM(σ ⌢ (1 − i))) which means that the bet is put on i at
this stage. In the same spirit we can turn a supermartingale M into a betting
strategy, while at every stage some capital M∗(σ) is lost, either consumed or
saved into a frozen account. In this sense, supermartingales often model bet-
ting strategies that also incorporate consumption or savings during the game,
or even betting strategies that operate under inflation.

4.2 Computable (Super)martingales and Their
Mixtures

In order to consider realistic betting strategies it is natural to require that the
(super)martingales to be somehow effective. The most common examples are
computable martingales and left-c.e. martingales. For convenience, we denote
the class of all computable martingales by CM, the class of all computable su-
permartingales by CS, the class of all left-c.e. martingales by LM, the class of
all left-c.e. supermartingales by LS.

Inspired by the fact that left-c.e. nonnegative functions are mixtures of uni-
formly computable nonnegative functions, we also define another class of effec-
tive supermartingales.

Definition 4.2.1. A (super)martingale is called strongly left-c.e. if it is a mix-
ture of uniformly computable (super)martingales.

We denote the class of all strongly left-c.e. martingales by SLM, and the
class of all strongly left-c.e. supermartingales by SLS. Table 4.1 summarizes
our notions of classes of effective betting strategies.

Clearly, all strongly left-c.e. (super)martingales are left-c.e. (super)martingales.
In general, we don’t know whether the converse is true, whereas the following
proposition shows that for martingales it is true.

54 Martingales as Betting Strategies

CM the class of all computable martingales
CS the class of all computable supermartingales
LM the class of all left-c.e. martingales
LS the class of all left-c.e. supermartingales

SLM the class of all strongly left-c.e. martingales
SLS the class of all strongly left-c.e. supermartingales

Table 4.1 Classes of effective betting strategies

Proposition 4.2.2. A martingale is left-c.e. if and only if it is a mixture of
uniformly computable martingales.

Proof. If {Mi} is a family of uniformly computable martingales,
∑

i Mi(λ) < ∞
and M(σ) =

∑
iMi(σ), then it is easy to see that M is a left-c.e. martingale.

For the converse, let M be a left-c.e. martingale. We assume M is not a
computable martingale, because otherwise it is trivial. Then there exists a left-
c.e. approximation {Ms} to M such that Ms+1(σ) > Ms(σ) for all s, σ. We
define a family {Ni}i∈ω of uniformly computable martingales as follows. In-
ductively assume that {Ni}i<k have been defined, they are computable martin-
gales, and

Sk(σ) < M(σ) for all σ, where Sk :=
∑
i<k

Ni. (4.8)

Then there is a stage s0 such that Ms0(λ) > Sk(λ). Let Nk(λ) = Ms0(λ)−Sk(λ).
For each σ suppose inductively that we have defined Nk(σ) in such a way that
Nk(σ) + Sk(σ) ≤ Mt(σ) for some stage t > s0. Since M is a martingale, this
means that there exists some larger stage s such that:

Ms(σ
⌢ 0) +Ms(σ

⌢ 1) ≥ 2Nk(σ) + 2Sk(σ) = 2Nk(σ) + (Sk(σ
⌢ 0) + Sk(σ

⌢ 1)).

Then we let Nk(σ
⌢ i), i = {0, 1} be two non-negative rationals such that:

1. Nk(σ
⌢ 0) +Nk(σ

⌢ 1) = 2Nk(σ);

2. Nk(σ
⌢ i) + Sk(σ

⌢ i) ≤ Ms(σ
⌢ i) for each i = {0, 1}.

This concludes the inductive definition of Nk and also verifies the property
(4.8) for k + 1 in place of k. Note that the totality of each Ni is guaranteed

4.3 Success of (Super)martingales 55

by the fact that M is a martingale. It remains to show that

lim
k

Sk(σ) = M(σ) for each σ. (4.9)

By the definition of Ni(λ), it follows that (4.9) holds for σ = λ. Assuming (4.9)
for σ, we show that it holds for σ ⌢ i, i ∈ {0, 1}. We have

M(σ ⌢ 0)+M(σ ⌢ 1)−Sk(σ
⌢ 0)−Sk(σ

⌢ 1) = 2M(σ)−2Sk(σ) = 2(M(σ)−Sk(σ)).

So by (4.9) we have limk Sk(σ
⌢ 0) + limk Sk(σ

⌢ 1) = M(σ ⌢ 0) + M(σ ⌢ 1). By
(4.8) applied to σ ⌢ 0 and σ ⌢ 1 we get limk Sk(σ

⌢ i) = M(σ ⌢ i) for i ∈ {0, 1},
as required. This concludes the inductive proof of (4.9).

By Proposition 4.2.2, we have

LM = SLM. (4.10)

Then clearly, the following holds

CM ⊆ SLM = LM
∩ ∩ ∩
CS ⊆ SLS ⊆ LS

(4.11)

For a class of (super)martingales C, we say it is cover closed if for every (su-
per)martingale M in C its cover M̂ is also in C. Clearly, all classes of martin-
gales are cover closed because the cover of a martingale is itself. Besides that
also note that CS, SLS are cover closed, whereas it is not clear whether LS is
cover closed.

4.3 Success of (Super)martingales
Here we define three notions of success for (super)martingales.

Definition 4.3.1. Given a (super)martingale M and a sequence X, we say M

• succeeds on X, if lim supn→∞ M(X ↾ n) = ∞;

• strongly succeeds on X, if limn→∞ M(X ↾ n) = ∞;

• successfully saves on X, if limn→∞ SM(X ↾ n) = ∞.

56 Martingales as Betting Strategies

Let Succ(M) denote the set of all sequences on which M succeeds; SSucc(M)

denote the set of all sequences on which M strongly succeeds; and Save(M)

denote the set of all sequences on which M successfully saves.
And if C is a class of (super)martingales, we define Succ[C] to be the collec-

tion of all sequences on which some (super)martingale in C succeeds, i.e.

Succ[C] =
∪
M∈C

Succ(M).

SSucc[C] and Save[C] are defined similarly.

For two supermartingales M and N , we say that M is superior to N (or N is
inferior to M) if Succ(N) ⊆ Succ(M). A class C of supermartingales is superior
to N if Succ(N) ⊆ Succ[C].

The following theorem leads to a characterization of Martin-Löf random se-
quences by left-c.e. martingales. More details about this aspect can be found in
[21, §6.3] or the paper by Bienvenu, Shafer, and Shen [15].

Theorem 4.3.2 (Schnorr [42, 43]).

MLR = 2ω \ Succ[LM].

The proof of this theorem is based on the following result.

Theorem 4.3.3 (Kolmogorov’s Inequality, Ville [51]). Let M be a (super)martingale.
For any string σ and any prefix-free set S of extensions of σ, we have∑

τ∈S

2−|τ |M(τ) ≤ 2−|σ|M(σ).

Now we explore some properties about these three success notions. By defini-
tion, it is easy to get the following proposition.

Proposition 4.3.4. For a (super)martingale M , it holds that

SSucc(M) ⊆ Succ(M) and Save(M) ⊆ SSucc(M̂).

By Proposition 4.3.4 the following is also true.

4.3 Success of (Super)martingales 57

Corollary 4.3.5. For a cover closed class C of (super)martingales, it holds that

Save[C] ⊆ SSucc[C] ⊆ Succ[C]

The following proposition is usually referred as “savings trick”. We include a
proof here for later reference.

Proposition 4.3.6 (Folklore). Given any supermartingale M , there exists a
supermartingale N computable from M such that Succ(M) ⊆ Save(N).

Proof. We enumerate a set S of strings as marks to mark all the places where
M doubles its capital with respect to the value of M at the latest marked place.
The set S is enumerated by induction on the length of strings. First enumer-
ate λ into S. Suppose we have already enumerated all the marks of length less
than n into S. For σ ∈ 2n, let τ be the longest prefix of σ in S (note that such
τ always exists as λ ∈ S). If M(σ) ≥ 2M(τ), enumerate σ into S.

Then we construct N according to the same betting coefficient as M , while
saving 1 at the all marked places. Let cM be the betting coefficient of M . For-
mally, we let N(λ) = 2. For all σ ∈ 2<ω and i ∈ {0, 1}, let

N(σ ⌢ i) =

N(σ) · cM(σ ⌢ i) if σ /∈ S;

(N(σ)− 1) · cM(σ ⌢ i) if σ ∈ S.

Lemma 4.3.7. N(σ) ≥ 2 for all σ ∈ S.

Proof. We prove by induction on length of strings. By definition N(λ) = 2.
Suppose N(σ) ≥ 2 for all σ ∈ S ∩ 2<n and we are given σ′ ∈ S

∩
2n. Let τ be

the longest prefix of σ′ in S. By definition, M(σ′) ≥ 2M(τ). Thus,

N(σ′) = (N(τ)− 1)
∏

τ≺γ⪯σ′

cM(γ) = (N(τ)− 1)
M(σ′)

M(τ)
≥ 2(N(τ)− 1) ≥ 2.

By Lemma 4.3.7, it is easy to check that N(σ) ≥ 0 for all σ ∈ 2<ω, thus N is
indeed a supermartingale.

Lemma 4.3.8. N∗(σ) ≥ 1 for all σ ∈ S.

58 Martingales as Betting Strategies

Proof. For all σ ∈ S, we notice that

N∗(σ) = N(σ)− (N(σ)− 1) · cM(σ ⌢ 0) + cM(σ ⌢ 1)

2
≥ 1.

Lemma 4.3.9. If X ∈ Succ(M), then there are infinitely many σ in S such
that σ ≺ X.

Proof. We proof by contradiction. Given X ∈ Succ(M), suppose there are only
finitely many σ in S such that σ ≺ X. Let τ be the longest prefix of X in S.
As X ∈ Succ(M), then lim supn→∞M(X ↾ n) = ∞. Then there must exist
some m > |τ | such that M(X ↾ n) ≥ 2M(τ), which means that X ↾ n or some
of its prefix longer than τ must have been enumerated into S. This contradicts
the choice of τ .

Lemma 4.3.8 and 4.3.9 together show that if X ∈ Succ(M) then X ∈ Save(N).
Thus, Succ(M) ⊆ Save(N).

From Proposition 4.3.6 we conclude that

Succ[CS] ⊆ Save[CS]. (4.12)

However, we can not get something similar for left-c.e. supermartingales by di-
rectly applying Proposition 4.3.6, because a supermartingale computable from
a left-c.e. supermartingale is not necessarily a left-c.e. martingale. However, we
can still get the following proposition by an indirect construction with Martin-
Löf tests, a proof of which can be found at Downey and Hirschfeldt [21, Propo-
sition 6.3.8].

Proposition 4.3.10 (Folklore). Given any left-c.e. supermartingale M , there
exists a left-c.e martingale N such that Succ(M) ⊆ SSucc(N).

From Proposition 4.3.10 we can conclude that

Succ[LS] ⊆ SSucc[LM]. (4.13)

Corollary 4.3.11.

Succ[CM] = SSucc[CM] = Succ[CS] = SSucc[CS] = Save[CS].

4.3 Success of (Super)martingales 59

Proof. By Corollary 4.3.5 and (4.12), we have the following observation which
concludes the above equations:

SSucc[CS]
⊆ ⊆

Save[CS] ⊆ SSucc[CM] Succ[CS] ⊆ Save[CS].
⊆ ⊆

Succ[CM]

Corollary 4.3.12.

Succ[LM] = SSucc[LM] = Succ[SLS] = SSucc[SLS] = Succ[LS] = SSucc[LS].

Proof. By (4.11), (4.10), Corollary 4.3.5 and (4.13), we have the following ob-
servation which concludes the above equations:

SSucc[SLS] ⊆ SSucc[LS]
⊆ ⊆

SSucc[LM] Succ[LS] ⊆ SSucc[LM].
⊆ ⊆

Succ[LM] ⊆ Succ[SLS]

Note that for any martingale M , we always have Save(M) = ∅. So Save[CM] =

Save[LM] = ∅.
Given a class C of (super)martingales, the class of random sequences induced

by C is 2ω \ Succ[C], and such sequences are called C-random sequences. The
above two corollaries indicate that when deal with computable or left-c.e. (su-
per)martingales we can often use martingales or supermartingales interchange-
ably, and use Succ or SSucc interchangeably. Moreover, LM, SLS and LS all
induce the same randomness notion as Martin-Löf randomness. This somehow
justifies our definition of strongly left-c.e. supermartingales as well.

60 Martingales as Betting Strategies

4.4 Effective Hausdorff Dimension
When Schnorr [42, 43] introduced the martingale approach to algorithmic in-
formation theory, he also showed some interest in the rate of success of (su-
per)martingales M , and in particular the classes

Sh(M) =

{
X : lim sup

n

M(X ↾ n)
h(n)

= ∞
}

where h : N 7→ N is a computable non-decreasing function. Later Lutz [32, 33]
showed that the Hausdorff dimension of a class of sequences can be character-
ized by the exponential “success rates” of left-c.e. supermartingales, and in that
light defined the effective Hausdorff dimension dim(X) of a sequence X as the
infimum of the s ∈ (0, 1) such that X ∈ Sh(M) for some left-c.e. supermartin-
gale M , where h(n) = 2(1−s)n.

Surprisingly, there are also characterizations of effective Hausdorff dimension
in terms of Kolmogorov complexity and tests.

Mayordomo [36] showed that

dim(X) = lim inf
n

C(X ↾ n)
n

= lim inf
n

K(X ↾ n)
n

. (4.14)

Given s ∈ (0, 1), an s-test is a family {Vi}i∈ω of uniformly c.e. sets of strings
such that

∑
σ∈Vi

2−s|σ| < 2−i for each i. Then X is said to be weakly s-random
if it avoids all s-tests {Vi}i∈ω, in the sense that there are only finitely many i

such that X has a prefix in Vi. By Tadaki [48], X being weakly s-random is
equivalent to the condition that K(X ↾ n) > s · n − O (1) for all n. Then by
(4.14) we have

dim(X) = sup{s | X is weakly s-random}. (4.15)

Obviously, all Martin-Löf random sequences have effective dimension 1. But
it is also proved that the converse does not hold. On the other hand, there are
computably random (CM-random) sequences of effective dimension 0. More on
the topic of algorithmic dimension can be found in [21, Chapter 13].

Chapter 5

Betting with Preferences on
Outcomes

Many real gambling systems for repeated betting are based on the strategies
where they make elaborate choices for the wagers at each stage, while leaving
the choice of outcome constant. Consider the game of roulette, for example,
and the binary outcome of red/black.1 Perhaps the most infamous roulette sys-
tem is the “martingale”,2 where one constantly bets on a fixed color, say red,
starts with an initial wager x and doubles the wager after each loss. At the
first winning stage all losses are then recovered and an additional profit x is
achieved. Such systems rely on the fairness of the game, in the form of a law
of large numbers that has to be obeyed in the limit (and, of course, require un-
bounded initial capital in order to guarantee success with probability 1). In the
example of the “martingale” the relevant law is that, with probability 1, there
must be a round where the outcome is red. Many other systems have been de-
veloped that use more tame series of wagers (compared to the exponential in-
crease of the “martingale”), and which appeal to various forms of the law of
large numbers.3

1Roulettes have a third outcome 0, which is neither red nor black, and which gives a
slight advantage to the house. For simplicity in our discussion we ignore this additional out-
come.

2for the origin of this term, its use as a betting system and its adoption in mathematics,
see [34] and [45].

3Well-known systems of this kind are: the D’Alembert System, the Fibonacci sys-
tem, the Labouchère system or split martingale, and many others. See, for example,
https://www.roulettesystems.com.

62 Betting with Preferences on Outcomes

In this chapter we discuss effective betting strategies with favorable out-
comes. For such strategies positive wager can only be placed on every favor-
able outcome. If the strategy is a mixture of betting strategies, we also require
that every component has the same favorable outcomes. So we also call them
monotonous betting strategies. One special case is when the favorable out-
comes are constant, i.e. at all stages the favorable outcomes are either always
0 or always 1, in which case we say it is single-sided, or 0-sided and 1-sided,
respectively. There is also a variation where it is not allowed to use earnings
from the successful bets on 0s in order to bet on 1s, and vice-versa. Such a
betting strategy can be presented by the sum of a 0-sided strategy and a 1-
sided strategy. So we call it a separable strategy. We study the question that
whether such a restriction will weaken the power of a class of effective betting
strategies, i.e. reduce their success sequences. It turns out that the answer di-
verges between the class of computable betting strategies and the class of left-
c.e. betting strategies.

Most of the results presented here coincide with the paper by Barmpalias,
Fang, and Lewis-Pye [14], though some of the notion is slightly different.

5.1 Monotonous (Super)martingales
We now formally define strategies that bet in a monotonous fashion, in terms
of (super)martingales. Recall that we denote the wager of a (super)martingale
M by wM .

Definition 5.1.1. A (super)martingale M is

• 0-sided if wM(σ ⌢ 0) ≥ 0 for all σ;

• 1-sided if wM(σ ⌢ 1) ≥ 0 for all σ;

• single-sided if it is either 0-sided or 1-sided;

• separable if it is the sum of a 0-sided and a 1-sided martingale�

With the following notion of prediction function, we can generalize the no-
tion of monotonous (super)martingales.

Definition 5.1.2. A prediction function is a (partial) function from 2<ω to
{0, 1}. Given a prediction function f and a string σ, we say that i < |σ| is a

5.1 Monotonous (Super)martingales 63

correct f -guess along σ if f(σ ↾ i) ↓= σ(i). The f -guess correct rate along σ is
the ratio between the number of correct f -guesses along σ and the length of σ,
i.e. |{i < |σ| : f(σ ↾ i) ↓= σ(i)}|/|σ|.

Definition 5.1.3. Given a prediction function f , a (super)martingale M is

• f -sided if for all σ, wM(σ ⌢ i) > 0 only if f(σ) ↓= i;

• decidably-sided if it is f -sided for a computable prediction function f .

Given a (super)martingale M , we define its preference function as follows,

f(σ) =

i if (∃i ∈ {0, 1})[M(σ ⌢ i) > M(σ ⌢ (1− i))],

↑ otherwise.

Then a supermartingale M with preference function f is an f -sided super-
martingale.

A computable/left-c.e. f -sided (super)martingale is a computable/left-c.e.
(super)martingale which is f -sided. We also define a strongly left-c.e. version of
f -sided (super)martingales.

Definition 5.1.4. A strongly left-c.e. f -sided (super)martingale is a mixture of
uniformly computable f -sided (super)martingales.

Definition 5.1.5. Given a left-c.e. f -sided (super)martingale M with com-
putable approximation {Ms}s∈ω, {Ms}s∈ω is called a canonical approximation if
for every s ≥ 0, Ms+1 −Ms is also an f -sided (super)martingale.

Obviously, every strongly left-c.e. f -sided (super)martingale has a canonical
approximation.

It is clear that f -sided and separable (super)martingales are closed under
(countable, subject to convergence of initial capitals) addition and multiplica-
tion by a constant. Thus, given a canonical approximation {Mi} of a left-c.e.
f -sided (super)martingale M , the intermediate bets Mt − Ms are f -sided for
any s < t.

We know that there is an effective list of computable approximations to all
left-c.e. supermartingales with initial capital less than 1. From this list one can
effectively get an effective list of canonical computable approximations to all

64 Betting with Preferences on Outcomes

sCM the class of all computable single-sided martingales
sCS the class of all computable single-sided supermartingales
sLM the class of all left-c.e. single-sided martingales
sLS the class of all left-c.e. single-sided supermartingales

sSLM the class of all strongly left-c.e. single-sided martingales
sSLS the class of all strongly left-c.e. single-sided supermartingales
dCM the class of all computable decidably-sided martingales
dCS the class of all computable decidably-sided supermartingales
dLM the class of all left-c.e. decidably-sided martingales
dLS the class of all left-c.e. decidably-sided supermartingales

dSLM the class of all strongly left-c.e. decidably-sided martingales
dSLS the class of all strongly left-c.e. decidably-sided supermartingales

Table 5.1 Classes of effective monotonous betting strategies

left-c.e. supermartingales with initial capital less than 1. Note that this list in-
cludes canonical computable approximations to all strongly left-c.e. decidably-
sided supermartingales with initial capital less than 1. Given a computable pre-
diction function f , from the same list one can effectively get an effective list of
all canonical computable approximations to left-c.e. f -sided supermartingales
with initial capital less than 1, which includes canonical computable approx-
imations to all strongly left-c.e. f -sided supermartingales with initial capital
less than 1. Thus, there is a universal strongly left-c.e. f -sided supermartingale
for every total computable prediction function f . Especially, there is a univer-
sal strongly left-c.e. 0-sided supermartingale and a universal strongly left-c.e.
1-sided supermartingale, hence also a universal strongly left-c.e. separable su-
permartingale.

In Table 5.1 we summarize all the classes of effective monotonous (super)martingales
that we will consider in the chapter.

Many of the facts about (super)martingales in § 4.2 and §4.3 also hold for
the restricted (super)martingales introduced above. Analogs of (4.11) still hold
in the monotonous cases:

sCM ⊆ sSLM ⊆ sLM
∩ ∩ ∩

sCS ⊆ sSLS ⊆ sLS
and

dCM ⊆ dSLM ⊆ dLM
∩ ∩ ∩

dCS ⊆ dSLS ⊆ dLS
. (5.1)

5.1 Monotonous (Super)martingales 65

A simple adaptation of the proof of Proposition 4.3.6 leads to the following
proposition.

Proposition 5.1.6. Given any f -sided supermartingale M , there exists an f -
sided supermartingale N computable from M, f such that Succ(M) ⊆ Save(N).

Thus, we get the following analog of Corollary 4.3.11,

Succ[sCM] = SSucc[sCM] = Succ[sCS] = SSucc[sCS] = Save[sCS], (5.2)
Succ[dCM] = SSucc[dCM] = Succ[dCS] = SSucc[dCS] = Save[dCS]. (5.3)

However there is no analog of Proposition 4.3.10 for left-c.e. single-sided su-
permartingales, or left-c.e. decidably-sided supermartingales, because we do
not have a characterization of sLS-randomness or dLS-randomness via effective
tests.

Since a strongly left-c.e. single-sided (decidably-sided) supermartingale is
always covered by a strongly left-c.e. single-sided (decidably-sided) martingale,
sSLS and dSLS are cover closed. Then we still have

Succ[sSLS] = Succ[sSLM] and Succ[dSLS] = Succ[dSLM]. (5.4)

This means that for the strongly left-c.e. versions of monotonous betting strate-
gies, supermartingales are interchangeable with martingales. Thus, sSLM-randomness
is equivalent to sSLS-randomness, and dSLM-randomness is equivalent to dSLS-
randomness.

A crucial property of a strongly left-c.e. f -sided (super)martingale S is that
it is effectively approximated by f -sided computable (super)martingales {Si}
such that for each n < m, the intermediate bets Sm − Sn are also f -sided,
whereas for a left-c.e. f -sided (super)martingale it is not clear whether such
property also exists. One obstacle for this is the fact that the difference of two
single-sided martingales is not always single-sided, even if they both favor the
same outcome and the difference is still a martingale.

In the study of algorithmic randomness, separating different notions of ran-
domness is often a matter of adapting existing methods on this topic, such
examples can be found in [38, Chapter 7]. By adapting the arguments of [38,
§7.4] directly, we can get the following theorem.

66 Betting with Preferences on Outcomes

Theorem 5.1.7. There exists X such that a 0-sided left-c.e. martingale suc-
ceeds on X and no partial computable supermartingale succeeds on X.

Alternatively, this fact can be derived as a corollary of our Theorem 5.3.1
and the fact that the randomness notion induced by partial computable (su-
per)martingales does not imply that the limit of the relative frequency of 0s is
1/2. Our main results in this chapter include:

Succ[sSLM] ̸= Succ[SLM] and Succ[dSLM] ≠ Succ[SLM],

which can also be viewed as results of separating randomness notions. However,
the proofs require a novel argument.

5.2 Computable Single-sided Martingales
In this section we explore the succeeding power of single-sided computable
martingales. First, we give two examples of types of biased sequences which
can be exploited through single-sided or separable computable martingales,
and we also establish basic properties of monotonous martingales that will be
used later. Then we show that every computable martingale is a product of a
0-sided martingale and a 1-sided martingale, which implies that computable
randomness can be characterized by computable single-sided martingales.

Success on Villes’ sequence
A well-known1 debate in the early days of probability occurred between the

competing approaches of Kolmogorov, which won the debate, and the frequentist-
based approach of von Mises, for the establishment of the foundations of prob-
ability. A significant factor for the loss of support to von Mises’ theory was a
certain sequence constructed by Ville [51]2 which is ‘random’ with respect to
any given countable collection of choice sequences (a basic tool in von Mises’

1Short expositions of the debate in relation to the notion of algorithmic randomness can
be found on textbooks on this topic such as the monograph by Li and Vitányi [30, §1.9] or
the monograph by Downey and Hirschfeldt [21, §6.2]. Extended discussions of the philosoph-
ical underpinnings of this debate can be found in the thesis by van Lambalgen [50] and the
more recent thesis by Blando [17].

2At http://www.probabilityandfinance.com/misc/ville1939.pdf an English trans-
lation can be found. Simpler proofs of Ville’s theorem appear in the paper by Lieb et al. [31]
and the monograph by Downey and Hirschfeldt [21, §6.5]

5.2 Computable Single-sided Martingales 67

strictly frequentist approach) but is biased according to a well-accepted statis-
tical test: although the frequency of 0s approaches 1/2, in all initial segments
this frequency never drops below 1/2.

We point out that the bias in Villes’ well-known example is exploitable by
computable monotonous betting. In order to see this, let zn, on be the num-
ber of 0s and 1s respectively, in the first n bits of Ville’s sequence, so that
zn ≥ on for all n. In the case where supn(zn − on) = ∞ our strategy is to start
with capital 1, and bet wager 1 on outcome 0 at each step. In the case where
lim supn(zn − on) := k < ∞, given k and a stage t such that for all n ≥ t we
have zn − on ≤ k, we can use the following strategy: given any stage s0 > t, find
some n ≥ s0 such that zn − on = k and at this n bet on 1. In order to avoid the
dependence of this martingale on the parameters k, t, we can consider a mix-
ture including a martingale for each possible pair (k, t), with initial capital for
the s-th martingale equal to 2−s. (so that the total initial capital is finite.) In
this case, the mixture is still a computable martingale. Note that in the first
case the martingale is 0-sided and in the second case it is 1-sided; moreover in
both cases, under the respective assumption, the martingales are successful on
Ville’s sequence. The mixture of these two strategies is a computable separable
martingale and is successful on Ville’s sequence.

Success on skewed sequences
Now we show that given a sequence X with limiting frequency of 0s different

than 1/2, there is a computable single-sided betting strategy that is successful
on X. Moreover there is a separable martingale which succeeds on every such
X, irrespective of whether the frequency is above or below 1/2, or even how
much it differs from 1/2. A slightly more general version of these facts, is a re-
sult of the following form of Hoeffding’s Inequality, which we prove below via
betting strategies, as it will be used in our later arguments as well.

Lemma 5.2.1 (Hoeffding’s Inequality for prediction functions). Given ϵ > 0,
n ∈ ω and a prediction function f , there are at most r−n

ϵ · 2n many strings of
length n along which the f -guess correct rates are no less than 1/2 + ϵ, where
rϵ > 1 is a function of ϵ. So there are at least (1 − 2r−n

ϵ) · 2n many strings of
length n along which the f -guess correct rates are in the interval (1/2− ϵ, 1/2 +

ϵ).

68 Betting with Preferences on Outcomes

Proof. Given f , we just need to prove the first statement, because it implies
that there are at most r−n

ϵ · 2n many strings of length n along which the (1 −
f)-guess correct rates are no less than 1/2 + ϵ, which also means the f -guess
correct rates are no greater than 1/2 − ϵ. Thus, the second statement in the
lemma follows.

Our proof idea is to find a betting strategy which is successful along any se-
quence whose f -guess correct rate deviates from 1/2. For each σ let pσ be the
f -guess correct rate along σ. For each ϵ > 0 let q = 1/2+ϵ, we define a function
d : 2<ω 7→ R by letting d(σ) = 2|σ| · qpσ |σ| · (1 − q)(1−pσ)|σ|. Then for all σ ∈ 2<ω

we have d(σ) > 0 and

d(σ ⌢ 0) + d(σ ⌢ 1) = 2|σ|+1 ·
(
qpσ |σ|+1 · (1− q)(1−pσ)|σ| + qpσ |σ| · (1− q)(1−pσ)|σ|+1

)
= 2|σ|+1 · qpσ |σ| · (1− q)(1−pσ)|σ| = 2d(σ).

So d is a martingale which bets d(σ ⌢ f(σ)) − d(σ) = (2q − 1)d(σ) on f(σ) at
stage σ.

By considering the derivative, we can see that the function x 7→ xx ·(1−x)1−x

in x ∈ (0, 1) takes its minimum value 1/2 at x = 1/2. Let rϵ = 2(1/2 + ϵ)1/2+ϵ ·
(1/2− ϵ)1/2−ϵ, then as ϵ > 0 we get rϵ > 1.

Let Tn = {σ ∈ 2n : pσ ≥ q}, then for each σ ∈ Tn

d(σ) =
(
2 · qpσ · (1− q)1−pσ

)n ≥
(
2 · qq · (1− q)1−q

)n
= rnϵ ,

where the inequality holds because by considering the derivative the function
x 7→ qx(1 − q)1−x is increasing in x ∈ (0, 1) when q > 1/2. Then from Kol-
mogorov’s Inequality of Theorem 4.3.3 it follows that

1 = d(λ) ≥
∑
σ∈Tn

2−|σ| · d(σ) ≥ |Tn| · 2−n · rnϵ .

Thus, |Tn| ≤ r−n
ϵ · 2n as required.

As rϵ > 1, r−n
ϵ goes to 0 when n goes to infinity. Then Lemma 5.2.1 says

that for each total prediction function f , for long enough strings with high
probability the f -guess correct rate along it is near 1/2.

In fact, there exists a separable computable martingale which succeeds on
every sequence X with the property that the proportion of correct f -guesses

5.2 Computable Single-sided Martingales 69

along X does not reach limit 1/2. For each q ∈ (1/2, 1) define Tq(σ) = 2|σ| ·
qzσ · (1 − q)oσ where zσ is the number of correct f -guesses along σ and oσ is
the number of false f -guesses along σ. By the proof of Lemma 5.2.1, Tq(σ) is a
martingale and lim supn Tq(X ↾ n) = ∞ for each X such that lim supn zX↾n/n >

q. Similarly, Tq(σ) is a martingale for each q < 1/2, and lim supn Tq(X ↾ n) =

∞ for each X such that lim supn zX↾n/n < q. Let qi = 1/2 + 2−i−1 and pi =

1/2− 2−i−1 for each i and define:

N(σ) =
∑
i

2−i · Tqi(σ) +
∑
i

2−i · Tpi(σ).

Then N is a computable martingale and by the properties of Tqi , Tpi , it suc-
ceeds on every X for which the proportion of correct f -guesses does not tend
to 1/2. In the case that f is the constant zero function all Tqi are 0-sided and
all Tpi are 1-sided. Then N is a computable separable martingale, which suc-
ceeds on every X for which the frequency of 0 in the initial segments does not
tend to 1/2.

Decomposition of a martingale

Lemma 5.2.2. Every martingale M is the product of a 0-sided martingale N

and a 1-sided martingale T . Moreover N, T are computable from M .

Recall that we use cM to denote the betting coefficient of a (super)martingale
M .

Proof. Suppose M is a martingale. We define two betting coefficients cN and
cT as follows. Let cN(λ) = cT (λ) = 1. For all σ ∈ 2<ω and i ∈ {0, 1}, let

cN(σ
⌢ i) = cM(σ ⌢ i) and cT (σ

⌢ i) = 1 if cM(σ ⌢ 0) > 1;

cN(σ
⌢ i) = 1 and cT (σ

⌢ i) = cM(σ ⌢ i) if cM(σ ⌢ 0) ≤ 1.

For all σ ∈ 2<ω and i ∈ {0, 1}, as by Proposition 4.1.6 we have cM(σ ⌢ 0) +

cM(σ ⌢ 1) = 2, it holds that

cN(σ
⌢ 0) + cN(σ

⌢ 1) = cT (σ
⌢ 0) + cT (σ

⌢ 1) = 2. (5.5)

And obviously,
cM(σ) = cN(σ) · cT (σ). (5.6)

70 Betting with Preferences on Outcomes

Let N(σ) = M(λ) ·
∏

τ⪯σ cN(τ) and T (σ) =
∏

τ⪯σ cT (τ). Then by (5.5) N and
T are martingales and clearly, they are computable from M .

On the other hand, by (5.6), M(σ) = N(σ) · T (σ) for all σ ∈ 2<ω.

The following thoerem and corollary are direct consequences of Lemma 5.2.2.

Theorem 5.2.3 (Barmpalias, Fang, and Lewis-Pye [14]). Given a computable
martingale M , there exist a computable separable martingale N superior to M .

Corollary 5.2.4. Succ[sCM] = Succ[CM].

5.3 Strongly Left-C.E. Separable Supermartin-
gales

Theorem 5.2.3 says that, in terms of computable martingales, the collection of
all successful sequences of an arbitrary strategy can be covered by a separable
one. Now we explore the situation for strongly left-c.e. supermartingales.

Success on sequences with dimension less than 1/2

Theorem 5.3.1 (Barmpalias, Fang, and Lewis-Pye [14]). There exists a strongly
left-c.e. separable martingale M which succeeds on all sequences with dimension
less than 1/2.

Proof. Let {Vi}i∈ω be a universal 1/2-test. For each σ ∈ 2<ω, we define a 0-
sided martingale Nσ and a 1-sided martingale Tσ. Nσ starts with initial capital
2−|σ|/2 and bets all capital on all the 0s along σ, while placing no bets on other
strings. Formally, Nσ(λ) = 2−|σ|/2 and for every ρ ≻ λ let

Nσ(ρ) =


2 ·Nσ(ρ

−) if ρ− ⌢ 0 ⪯ σ ∧ ρ = ρ− ⌢ 0,

0 if ρ− ⌢ 0 ⪯ σ ∧ ρ = ρ− ⌢ 1,

Nσ(ρ
−) otherwise.

By definition for each ρ ⪰ σ we have Nσ(ρ) = 2zσ−|σ|/2, where zσ denotes the
number of 0s in σ. Hence Nσ(ρ) ≥ 1 for all ρ ⪰ σ whenever at least half of the
bits of σ are 0s. The definition and properties of Tσ is analogous, except that it

5.3 Strongly Left-C.E. Separable Supermartingales 71

bets all capital on all the 1s along σ. Let

N =
∑
i

∑
σ∈Vi

Nσ , T =
∑
i

∑
σ∈Vi

Tσ and M = N + T.

By the measure properties of {Vi}i∈ω the initial capital of N, T is finite. Since
each Nσ is computable 0-sided, N is strongly left-c.e. 0-sided, and in the same
way T is strongly left-c.e. 1-sided. Thus, M is strongly left-c.e. separable. More-
over if there are at least k many members of {Vi}i∈ω containing a prefix of X,
there exists j ∈ {0, 1} such that at least half of these prefixes have at least
half of their digits equal to j. Hence there exists n such that, according to
whether j is 0 or 1, we have N(τ) ≥ k/2 or T (τ) ≥ k/2 respectively for each
τ ⪰ X ↾ n. Given X with dimX < 1/2, by (4.15) it is not weakly 1/2-random.
Then by the universality of {Vi}i∈ω, X has prefixes in infinitely many Vi. It fol-
lows that limn N(X ↾ n) = ∞ or limn T (X ↾ n) = ∞. In any case we have
limn M(X ↾ n) = ∞ as required.

Theorem 5.3.1 shows that no sequence of effective dimension less than 1/2
is sSLM-random. However, we will see below that there exits an sSLM-random
sequence with effective dimension 1/2. The proof idea will be used in next sec-
tion to prove the more generalized results about dSLM.

Failure on a sequence with dimension 1/2

Theorem 5.3.2 (Barmpalias, Fang, and Lewis-Pye [14]). Given a computable
prediction function f , for any strongly left-c.e. f -sided supermartingale M ,
there exists a sequence X with dimension 1/2 on which M does not succeed.

Given a strongly left-c.e. f -sided supermartingale M , let {Mi} be a canonical
approximation to M . Without loss of generality we assume that M(λ) ≤ 2−1.
Let us define M̂(ρ) = max{M(τ) : τ ⪯ ρ}. Our proof idea is to construct a
series of strings {σn}n∈ω such that σ0 = λ, σn ≺ σn+1 and

∀n M̂(σn) ≤ 1− 2−n−1. (5.7)

Then if we define X = limn σn, we get lim supnM(X ↾ n) ≤ 1, i.e. X /∈
Succ(M). On the other hand, during the construction we will also construct
a KC set (bounded request set) V by enumerating ⟨qn · |σn|, σn⟩ into V for ev-
ery newly (re)defined σn, where qn = 1/2 + 2−n−1. Thus, by Corollary 2.1.8 of

72 Betting with Preferences on Outcomes

KC Theorem,
K(σn) ≤ qn · |σn|+O (1) . (5.8)

Then clearly the effective Hausdorff dimension of X is no greater than 1/2.
With Theorem 5.3.1 it imply that dim(X) = 1/2.

At stage s supposing inductively that σn has been determined, to issue a
candidate for σn+1 we will try to find some string extending σn such that

Ms(τ) ≤ Ms(σn) + 2−n−3 for all σn ≺ τ ⪯ σn+1. (5.9)

As M is a left-c.e. supermartingale, in order to keep (5.7) true, we might need
to change the approximation to σn+1 a number of times. Suppose stage t is the
next stage where M̂t(σn+1) > 1 − 2−n−2 and we need change the approximation
to σn+1. However, as σn is still safe, so M̂t(σn) ≤ 1 − 2−n−1 holds. Then there
is σn ≺ τ ⪯ σn+1 such that Mt(τ) > 1 − 2−n−2. By (5.9) we have Ms(τ) ≤
Ms(σn) + 2−n−3 ≤ 1 − 2−n−1 + 2−n−3, then Mt(τ) −Ms(τ) > 2−n−3. That is to
say, our construction tolerates an increase of M(τ) by δn = 2−n−3 for all σn ≺
τ ⪯ σn+1 at later stages. This tolerance will be essential for us to limit the
changing times of the approximation. For convenience we make the following
definition.

Definition 5.3.3. Given a prediction function f , σ ∈ 2<ω, ϵ ∈ {0, 1}, ℓ ∈ N, let
S(f, σ, ϵ, ℓ) be the set of strings extending σ of length |σ| + ℓ along which the
number of correct f -guesses after σ is less than (1/2 + ϵ)ℓ.

Note that the set S(f, σ, ϵ, ℓ) is computable from f, σ, ϵ, ℓ. The property of
the strings in the set S(f, σ, ϵ, ℓ) ensures the following fact.

Lemma 5.3.4. Let M be a left-c.e. f -sided supermartingale with canonical
approximation {Mi}. Given σ ∈ 2<ω, ϵ ∈ {0, 1}, ℓ ∈ N, and ρ ∈ S(f, σ, ϵ, ℓ), for
all t > s if there exist σ ≺ τ ⪯ ρ such that Mt(τ) −Ms(τ) > δ, then it must be
that Mt(σ)−Ms(σ) > δ · 2−(1/2+ϵ)ℓ.

Proof. Fix t > s. Let N = Mt −Ms. As {Mi} is a canonical approximation to
M , N is also an f -sided supermartingale. As the number of correct f -guesses
after σ along ρ is less than (1/2 + ϵ)ℓ, then N(τ) ≤ N(σ) · 2(1/2+ϵ)ℓ for all
σ ≺ τ ⪯ ρ. Thus, if there exist σ ≺ τ ⪯ ρ such that N(τ) = Mt(τ)−Ms(τ) > δ

then Mt(σ)−Ms(σ) = N(σ) ≥ N(τ) · 2−(1/2+ϵ)ℓ > δ · 2−(1/2+ϵ)ℓ.

5.3 Strongly Left-C.E. Separable Supermartingales 73

Let us set two series of parameters ϵn and ℓn which will be fixed later. Our
candidates of σn+1 will be chosen from Sn = S(f, σn, ϵn, ℓn). Then from any
stage on if there exist σn ≺ τ ⪯ σn+1 such that M(τ) increases by δn, at the
same time M(σn) should have already increased by at least δn · 2−(1/2+ϵn)ℓn .
Assuming σn is stable at some stage, by (5.7), M(σn) is bounded above by 1.
Hence the approximation to σn+1 will change at most pn = 2(1/2+ϵn)ℓn/δn many
times from that stage on. That is to say, the approximation to σn+1 changes
at most

∏
0≤i≤n pi many times. As required by (5.8), we need to keep the total

measure of the requests in V bounded above by 1. It suffices to keep the total
measure of the requests enumerated for the approximations of σn+1 bounded
above by 2−n−1. For this, we set the following requirement for our parameters:

2−qn+1·
∑

0≤i≤n ℓi ·
∏

0≤i≤n

pi ≤ 2−n−1. (5.10)

On the other hand, the following lemma ensures that if the set Sn is large
enough, a string satisfying (5.9) can always be found in Sn.

Lemma 5.3.5. Given any supermartingale M, σ ∈ 2<ω, ϵ ∈ (0, 1) and S ⊆
{τ ∈ 2|σ|+ℓ : τ ≻ σ} with |S| ≥ (1 − ϵ) · 2ℓ, there exists some τ ∈ S such that
M(ρ) ≤ M(σ)/(1− ϵ) for all σ ≺ ρ ⪯ τ .

Proof. Towards a contradiction suppose that there exists no such string in S.
For each τ ∈ S let τ ∗ be the shortest initial segment of τ extending σ such that
M(τ ∗) > M(σ)/(1 − ϵ). Then S∗ = {τ ∗ : τ ∈ S} is a prefix-free set of strings.
Since every element of S has an initial segment in S∗ it follows that:

∑
τ∗∈S∗

2−(|τ∗|) ·M(τ ∗) >
M(σ)

1− ϵ
·
∑
τ∗∈S∗

2−|τ∗|

≥ M(σ)

1− ϵ
·
∑
τ∈S

2−|τ |

≥ M(σ)

1− ϵ
· (1− ϵ) · 2ℓ · 2−(|σ|+ℓ)

= 2−|σ| ·M(σ)

which contradicts the Kolmogorov’s Inequality in Theorem 4.3.3.

Moreover, by the following lemma, we can choose ℓn large enough so that
|Sn| ≥ (1− ϵn) · 2ℓn .

74 Betting with Preferences on Outcomes

σn the nth initial segment of X with approximations σn[s]

ℓn length difference of σn+1 and σn, set as (5.12)
ϵn value such that the number of correct f -guesses after σn along σn+1

is no more than (1/2 + ϵn)ℓn and |Sn| ≥ (1− ϵn)2
ℓ, set as 2−n−3

Sn candidates set for σn+1, set as S(f, σn, ϵn, ℓn)

qn bound for K(σn)/|σ|, set as 1/2 + 2−n−1

δn tolerance of increase of M(τ) for all σn ≺ τ ⪯ σn+1, equals 2−n−3

pn maximal σn+1 change times after σn is settled, equals 2(1/2+ϵn)ℓn+n+3

hn lower bound for ℓn to get |Sn| large enough, set as ⌈− log ϵn/ log rϵn⌉

Table 5.2 Parameters for the construction of Theorem 5.3.2

Lemma 5.3.6. |S(f, σ, ϵ, ℓ)| ≥ (1− r−ℓ
ϵ) · 2ℓ, where rϵ > 1 is a function of ϵ.

Proof. Let f ′ be the prediction function defined as f ′(τ) = f(σ ⌢ τ) for all τ ∈
2<ω. Then S(f ′, λ, ϵ, ℓ) = S(f, σ, ϵ, ℓ). By Lemma 5.2.1, we have |S(f, σ, ϵ, ℓ)| =
|S(f ′, λ, ϵ, ℓ)| ≥ (1− r−ℓ

ϵ) · 2ℓ, where rϵ > 1 is a function of ϵ.

Let hn = ⌈− log ϵn/ log rϵn⌉, which implies r−ℓ
ϵn ≤ ϵn for all ℓ ≥ hn. By

Lemmas 5.3.5 and 5.3.6, if we set ϵn and ℓn such that

ϵn = 2−n−3 and ℓn ≥ hn (5.11)

then |Sn| ≥ (1− ϵn) · 2ℓn . In case σn satisfies (5.7) at stage s, there exists τ ∈ Sn

such that for all σn ≺ ρ ⪯ τ we have Ms(ρ) ≤ Ms(σn)/(1−ϵn) ≤ Ms(σn)+2−n−3

which satisfies (5.9).
Combine (5.10) and (5.11), and put in the value of other parameters, we get

ℓn ≥ 2n+2 · (n+ 1)(n+ 8) +
∑

0≤i<n

(2n−i − 2)ℓi.

Thus, it suffices to define ℓn inductively as follows,

ℓn = max

{
2n+2 · (n+ 1)(n+ 8) +

∑
0≤i<n

(2n−i − 2)ℓi , hn

}
. (5.12)

Proof of Theorem 5.3.2. For all n we set the parameters ϵn, ℓn, qn, Sn as in pre-
vious discussion, which are summarized in Table 5.2. We inductively define the

5.3 Strongly Left-C.E. Separable Supermartingales 75

approximations σn[s] of σn for all n, in stages s. At stage s + 1 we say the
segment σn requires attention if either σn[s] ↑, or σn[s] ↓ and M̂s+1(σn[s]) >

1− 2−n−1.

Construction:
Let σ0[s] = λ for all s and σn[0] ↑ for all n > 0. During the construction, at

any stage all unmentioned σn remain unchanged.
At stage s+ 1: Find the least number n ≤ s such that σn+1 requires attention.

Then check and do the following.

• If σn+1[s] ↑, define σn+1[s+1] to be the leftmost string ρ in Sn such that:

Ms+1(τ) ≤ Ms+1(σn[s]) + 2−n−3 for all σn[s] ≺ τ ⪯ ρ. (5.13)

and enumerate a request ⟨qn+1 · |σn+1|, σn+1[s+ 1]⟩ into V .

• if σn+1[s] ↓, set σi[s+ 1] ↑ for all i ≥ n+ 1.

Otherwise go to the next stage directly.

Verification:
By Lemma 5.3.5 and 5.3.6, and by the discussion to follow, during the con-

struction a string ρ satisfying (5.13) can always be found. Thus, the construc-
tion is well defined.

Lemma 5.3.7. Every σn only requires attention for finitely many times.

Proof. Let k ≥ 0. Inductively, suppose for all i < k, σi only requires attention
for finitely many times. We show that σk requires attention for finitely many
times. By assumption there is a stage s0 from which on all σi, i < k do not
require attention. From stage s0 on, whenever σk requires attention it will be
treated at that stage, either from defined to undefined or from undefined to de-
fined. Every two such stages result in a change of the approximation to σk. By
our discussion above, from stage s0 on, the approximation to σk only changes
at most pk−1 many times. Thus, it requires attention for only finitely many
times, which completes our proof.

By Lemma 5.3.7, for each n there is a stage after which σn never requires
attention. That is to say, σn converges and M̂(σn) ≤ 1 − 2−n−1 holds. On the

76 Betting with Preferences on Outcomes

other hand, by the configuration of our parameters, the total measure of the
requests enumerated into V is bounded by 1. Thus, both (5.7) and (5.8) hold,
which completes our proof.

A simple adaption the above proof leads us to the following theorem. The
only attention we need to pay is that now the set Sn is defined as S(0, σn, ϵn, ℓn)∩
S(1, σn, ϵn, ℓn). Then the value of hn needs to be redefined to make sure |Sn| ≥
(1 − ϵn) · 2ℓn still holds for ℓn ≥ hn. This can be easy achieved as |Sn| ≥
(1− 2r−ℓn

ϵn) · 2ℓn .

Theorem 5.3.8 (Barmpalias, Fang, and Lewis-Pye [14]). For any strongly left-
c.e. separable supermartingale M , there exists a sequence X such that dim(X) =

1/2 and X /∈ Succ(M).

Remember that all Martin-Löf random sequences have dimension 1, and
there is an optimal strongly left-c.e. supermartingale which will succeed on all
non-Martin-Löf random sequences, which include all sequences with dimension
less than 1. Also remember that there is a universal strongly left-c.e. separa-
ble supermartingale, so from Theorem 5.3.8 we get the following corollaries di-
rectly. It is instructive to contrast Corollary 5.3.9 with Theorem 5.2.3.

Corollary 5.3.9. There exist a strongly left-c.e. supermartingale M , such that
Succ(N) ⊊ Succ(M) for all strongly left-c.e. separable supermartingale N .

Corollary 5.3.10. Succ[sSLS] ̸= Succ[SLS] = Succ[LM].

5.4 Strongly Left-C.E. Decidably-sided Super-
martingales

Given the fact that there is no optimal decidably-sided supermartingale, from
Theorem 5.3.2 we still cannot conclude that Succ[dSLS] ̸= Succ[SLS]. However,
this can be proved by an adaption and generalization of the proof for Theo-
rem 5.3.2.

Theorem 5.4.1 (Barmpalias, Fang, and Lewis-Pye [14]). There exists a se-
quence X with dimension 1/2 such that no decidably-sided supermartingale suc-
ceeds on it.

5.4 Strongly Left-C.E. Decidably-sided Supermartingales 77

In the proof of Theorem 5.3.2, as the KC set V needs to be c.e. , our con-
struction is computable, especially, all the sets Sn are computable, because that
is where the candidates for σn+1 are chosen. Although Lemma 5.3.6 also holds
for partial predication functions, the set S(f, σ, ϵ, ℓ) is no longer computable for
a partial computable function. Thus, here we opt for a less constructive initial
segment argument, which uses the facts we obtained in § 5.3 in a modular way.

First we prove the following lemma, which will be the main tool for the proof
of Theorem 5.4.1. Let qn = 1/2 + 2−n−3.

Lemma 5.4.2. There exists a prefix-free machine Q such that for every n ∈
N, σ ∈ 2<ω, and M =

∑
i≤nNi where each Ni, i ≤ n is a strongly left-c.e.

fi-sided supermartingale for some total computable prediction function fi, if

M̂(σ) ≤ 1− 2−n−1. (5.14)

then there exists τ ≻ σ such that KQ(τ) ≤ qn · |τ | and

M̂(τ) ≤ 1− 3 · 2−n−3 (5.15)

Proof. To construction such a prefix-free machine Q, we enumerate a KC set
V . Note that V needs to be a c.e. set. As there is an effective list of canonical
computable approximations to all left-c.e. supermartingales with initial capital
less than 1, let H be an effective list of all possible tuples of n ∈ N, σ ∈ 2<ω,
{fi}i≤n and {Ni[s]}i≤n, where each fi, i ≤ n is a partial computable prediction
function, each {Ni[s]}s∈ω, i ≤ n is a canonical computable approximations to
some left-c.e. supermartingales with initial capital less than 1. We will define
an effective map which takes as an input η = ⟨n, σ, {fi}i≤n, {Ni[s]}i≤n⟩ ∈ H

and always outputs a sufficiently small part Vη of V (dealing with the spe-
cific input η) and an approximation τ [s] such that if η meets the hypothe-
sis of Lemma 5.4.2 then τ [s] converges to some τ which satisfies the require-
ments of the lemma. Let g : H 7→ N a one-to-one computable function so that∑

η∈H 2−g(η) < 1. Then to make sure that V is a KC set, i.e. µ(V) ≤ 1 it suf-
fices to make sure µ(Vη) ≤ 2−g(η) for each η ∈ H.

Now we construct the effective map η 7→ (Vη, τ [s]). It is an adaption of the
construction for Theorem 5.3.2 As now the gap between M̂(σ) and M̂(τ) is

78 Betting with Preferences on Outcomes

2−n−3, we will find a candidate τ such that

M̂(τ) ≤ 1− 7 · 2−n−4 (5.16)

Thus, the tolerance to an increase of M̂(τ) is now δn = 2−n−4. In the same
way as before, we will find the candidates for τ in a collection Sn of strings ex-
tending σ of length |σ| + ℓn such that the growth potential is limited. Assume
fi, i ≤ n are total functions and each Ni, i ≤ n is a strongly left-c.e. fi-sided
supermartingale. We define Sn =

∩
i≤n S(fi, σ, ϵn, ℓn), so that Lemma 5.3.4 also

holds for the supermartingale M =
∑

i≤n Ni. Hence the approximation to τ will
change at most pn = 2(1/2+ϵn)ℓn/δn many times. Then to keep µ(Vη) ≤ 2−g(η),
we have the following requirement for our parameters:

2−qn·(ℓn+|σ|) · pn ≤ 2−g(η). (5.17)

On the other hand, by Lemma 5.3.6, |S(fi, σ, ϵn, ℓn)| ≥ (1 − r−ℓn
ϵn) · 2ℓn holds for

each i ≤ n. Thus, |Sn| = |
∩

i≤n S(fi, σ, ϵn, ℓn)| ≥ (1 − (n + 1) · r−ℓn
ϵn) · 2ℓn . Now

define hn = ⌈(log(n+ 1)− log ϵn)/ log rϵn⌉. Then by setting

ϵn = 2−n−4 and ℓn ≥ hn (5.18)

we also get |Sn| ≥ (1− ϵn) · 2ℓn . By Lemma 5.3.5 and (5.14) there exists τ ∈ Sn

such that for all σ ≺ ρ ⪯ τ we have M(ρ) ≤ M(σ)/(1 − ϵn) ≤ M(σ) + 2−n−4 ≤
1 − 2−n−1 + 2−n−4 = 1 − 7 · 2−n−4. As M̂(σ) ≤ 1 − 2−n−1, then M̂(τ) ≤
1−7 ·2−n−4. This means a candidate for τ satisfying (5.16) can always be found
in Sn. Combine (5.17) and (5.18), and put in the value of other parameters, we
get the following appropriate value for ℓn:

ℓn = max
{
2n+4 · (g(η) + n+ 4)− 2|σ| , hn

}
. (5.19)

Construction of the map η 7→ (Vη, τ [s]):
Given η = ⟨n, σ, {fi}i≤n, {Ni[s]}i≤n⟩ ∈ H, let Ms =

∑
i≤nNi[s]. We set

the parameters ϵn, ℓn, qn, Sn as in previous discussion, which are summarized in
Table 5.3. We define the approximations τ [s] of τ , in stages s. At stage s+1 we
say τ requires attention if either τ [s] ↑, or τ [s] ↓ and M̂s+1(τ [s]) > 1− 3 · 2−n−3.

Let τ [0] ↑ and Vη[0] = ∅. Suppose Ni[−1] = 0 for all i ≤ n.

5.4 Strongly Left-C.E. Decidably-sided Supermartingales 79

ℓn length difference of τ and σ, set as (5.19)
ϵn value such that the number of each correct fi-guesses after σ along τ

is no more than (1/2 + ϵn)ℓn and |Sn| ≥ (1− ϵn)2
ℓ, set as 2−n−4

Sn candidates set for τ , set as
∩

i≤n S(fi, σ, ϵn, ℓn)

qn bound for K(τ)/|τ |, set as 1/2 + 2−n−3

δn tolerance of increase of M(τ) for all σ ≺ τ ⪯ τ , equals 2−n−4

pn maximal change times for τ , equals 2(1/2+ϵn)ℓn+n+4

hn one lower bound for ℓn, set as ⌈(log(n+ 1)− log ϵn)/ log rϵn⌉

Table 5.3 Parameters for the construction of the map η 7→ (Vη, τ [s])

At stage s+ 1: If for each i ≤ n, fi[s + 1] is defined on all strings in 2≤(|σ|+ℓn)

and each Ni[j + 1] − Ni[j],−1 ≤ j ≤ s is fi-sided, and τ requires attention,
check and do the following.

• If τ [s] ↑, define τ [s+ 1] to be the leftmost string ρ in Sn such that:

M̂s+1(ρ) ≤ 1− 7 · 2−n−4. (5.20)

and enumerate a request ⟨qn · |τ |, τ [s+ 1]⟩ into Vη.

• If τ [s] ↓, set τ [s+ 1] ↑.

Otherwise go to the next stage directly.

Verification of the map η 7→ (Vη, τ [s]):
In case there is no such a stage s such that for each i ≤ n, fi[s] is defined

on all strings in 2≤(|σ|+ℓn) and each Ni[j + 1] − Ni[j],−1 ≤ j < s is fi-
sided, τ will be never defined and we will never issue any code into Vη, thus,
µ(Vη) = 0 ≤ 2−g(η). In case there is such stage s, then by our configura-
tion of the parameters and the discussion above, during the construction the
string ρ satisfying (5.20) can always be found. Thus, the construction is well
defined. Also following from our configuration of the parameters and the dis-
cussion above, the approximation to τ only changes at most pn many times
and µ(Vη) ≤ 2−g(η) is also ensured. As from stage s on, whenever τ requires
attention it will be treated at that stage, either from defined to undefined or
from undefined to defined. Every two such stages result in a change of the ap-

80 Betting with Preferences on Outcomes

proximation to τ . Thus, there is a stage after which σ never requires attention.
Then by construction τ converges and M̂(τ) ≤ 1− 3 · 2−n−3 holds.

For the proof the Lemma 5.4.2, note that whenever we are given m,σ and
M as stated in the lemma, there is some η = ⟨n, σ, {fi}i≤n, {Ni[s]}i≤n⟩ ∈ H

such that for each i ≤ n, fi is a total computable prediction function, Ni[s] is a
canonical approximation to a strongly left-c.e. fi-sided supermartingale Ni and
M =

∑
i≤n Ni. Then our map η 7→ (Vη, τ [s]) gives the τ as required by the

lemma. This completes the proof of Lemma 5.4.2.

Proof of Theorem 5.4.1. Let {Mi}i∈ω be a (non-effective) list of all strongly
left-c.e. decidably-sided supermartingales with initial capital less than 1 and
with canonical computable approximations {Mi[s]}i∈ω. Thus, to prove Theo-
rem 5.4.1 it suffices to construct a sequence X such that dim(X) = 1/2 and
X /∈ Succ(Mi) for all i.

Construction:
Let σ0 = λ and Q be the machine from Lemma 5.4.2. For each n ≥ 0, induc-

tively define Dn : =
∑

i≤n 2
−|σi|−i−2 ·Mi, and assume that

D̂n(σn) ≤ 1− 2−n−1. (5.21)

Then let σn+1 be an extension of σn given by Lemma 5.4.2 with σ = σn and
M = Dn. Define X = limn σn.

Verification:
First we show that the construction is well-defined. Note that (5.21) holds

for n = 0. For any k ≥ 0 suppose (5.21) holds for n = k. Then by Lemma 5.4.2,
we have D̂k(σk+1) ≤ 1 − 3 · 2−k−3. As M̂k+1(σk+1) ≤ 2|σk+1| ·Mk+1(λ) < 2|σk+1|,
then

D̂k+1(σk+1) ≤ D̂k(σk+1) + 2−|σk+1|−(k+1)−2 · M̂k+1(σk+1)

≤ 1− 3 · 2−k−3 + 2−|σk+1|−(k+1)−2 · 2|σk+1|

= 1− 2−k−2,

which shows that (5.21) also holds for n = k + 1. Thus, the construction is
well-defined and it ensures that (5.21) holds for every n ∈ N.

5.5 Summary 81

By (5.21), for all i ≤ n, 2−|σi|−i−2 · M̂i(σn) ≤ D̂n(σn) ≤ 1 − 2−n−1 < 1. Then
M̂i(σn) ≤ 2−|σi|−i−2 for all i ≤ n. Thus, for each i it holds that lim supnMi(X ↾
n) ≤ 2−|σi|−i−2, i.e. X /∈ Succ(Mi).

On the other hand, by Lemma 5.4.2 we have KQ(σn+1) ≤ qn · |σn+1| for all
n. Then the effective Hausdorff dimension of X is no greater than 1/2. With
Theorem 5.3.1 it implies that dim(X) = 1/2. This completes the proof of Theo-
rem 5.4.1.

Corollary 5.4.3. Succ[dSLS] ̸= Succ[SLS] = Succ[LS].

5.5 Summary
We have studied the strength of monotonous strategies, which bet in a prede-
termined way (decidably-sided martingales). In the case of computable strate-
gies we have seen that they are as strong as the unrestricted strategies, while
in the case of mixtures of computable strategies (strongly left-c.e. supermartin-
gales) they are significantly weaker. On the other hand, for casino sequences
of effective Hausdorff dimension less than 1/2, there exists a universal strongly
left-c.e. separable strategy which succeeds on all of them.

Limitations of our methods and open problems
For the proof of our main results, Theorems 5.3.2 and 5.4.1, Lemma 5.3.4

plays a very essential role. It is the main tool for us to control the potential
growth of a left-c.e. supermartingale. For that, we need a canonical approxima-
tion to the supermartingale. This is the reason that our method only works for
strongly left-c.e. supermartingales, not left-c.e. supermartingales in general.

We have already shown that Succ[dSLS] ̸= Succ[LS] and we also know that

Succ[dSLS] ⊆ Succ[dLS] ⊆ Succ[LS].

However it is still not clear whether either of the inclusion relationship is strict.
Separating the randomness notions induced by these classes of supermartin-
gales still remain open questions.

Question 2. If a left-c.e. supermartingale succeeds on X, does there exist a
left-c.e. decidably-sided (or separable) supermartingale which succeeds on X as
well?

82 Betting with Preferences on Outcomes

Question 3. If a left-c.e. decidably-sided supermartingale succeeds on X, does
there exist a strongly left-c.e. decidably-sided (or separable) supermartingale
which succeeds on X as well?

As already mentioned in § 5.4, another limitation of our methods is that it
only applies to total computable prediction functions, as opposed to partial
computable functions. The notion of decidably-sided supermartingale could be
further generalized. We say an f -sided supermartingale is partially decidably-
sided if f is a partial computable function. So for a partially decidably-sided
supermartingale, when the decision predicate is undefined, there will be no
bias presented on the two outcomes. A left-c.e. partially decidably-sided su-
permartingale is also called a Kastergales. And a strongly left-c.e. partially
decidably-sided supermartingale is more like a Hitchgale. Both notions of su-
permartingales are defined to question the strength of the notion of left-c.e. su-
permartingales. As reported in [20] as well as in [21, §7.9], the following ques-
tions have been asked.

Question 4 (Kastermans). If a left-c.e. supermartingale succeeds on X, does
there exist a Kastergale which succeeds on X as well?

Question 5 (Hitchcock). If a left-c.e. supermartingale succeeds on X, does
there exist a Hitchgale which succeeds on X as well?

At the moment, both of them remain open. Our Theorem 5.4.1 could be seen
as one step to answer these questions.

Chapter 6

Betting with Restrictions on
Wagers

In a real casino, usually the wagers, i.e. the amount of money one player puts
on some outcome, are restricted in many ways. For example,

(i) the wagers are always multiples of some fixed minimum wager, such as
one dollar, which is a natural restriction by real money papers;

(ii) the casinos might set an upper bound for the wagers, to avoid aggressive
strategies, such as the infamous roulette system “martingale” mentioned
at the beginning of Chapter 5.

Restriction (i) inspired one to think about integer-valued (super)martingales,
which are supermartingales that only take integer values. The randomness
notion induced by computable integer-valued martingales is called integer-
valued randomness, which has been investigated in the papers by Bienvenu,
Stephan, and Teutsch [16], and by Herbert [27]. The computational power of
integer-valued random sequences has been studied in the paper by Barmpalias,
Downey, and McInerney [11]. Their work also motivated further studies on the
power of restricted wager strategies, in the case where the wagers are restricted
to a fixed set of arbitrary rationals, not only integers. Given a set of sequences
X, an X-valued strategy is one that is restricted on wagers in X. Given two fi-
nite sets A,B of rationals, by Chalcraft, Dougherty, Freiling, and Teutsch [19],
A-valued strategies can successfully replace any B-valued strategy, if and only
if there exists r ≥ 0 such that B ⊆ r · A (where r · A denotes the multiples of

84 Betting with Restrictions on Wagers

the elements of A with r). This characterization was extended to infinite sets,
with some additional conditions, in the paper by Peretz and Bavly [41].

Remarkably, Teutsch [49] (and Peretz [40] who fixed a small flaw there) demon-
strated a savings paradox by constructing a casino sequence on which allows
integer-wager strategies to succeed, producing unbounded wealth inside the
casino, but any player who attempts to save an unbounded amount by remov-
ing it from the casino, is forced to bankruptcy. In the notions of success from
§ 4.3,

savings paradox: there is a sequence X such that there is an
integer-valued martingale succeed on it, but no integer-valued
supermartingale could successfully save on it.

However, in the proof of Proposition 4.3.6 we demonstrated the following

savings trick: given any supermartingale M , there exists a su-
permartingale N computable from M such that it successfully
saves on every sequence M succeeds on.

So for the class of computable supermartingales with no restriction on wagers,
such a sequence can never be found.

In the purpose of analyzing the role the granularity of betting strategies
plays in such dichotomy, following the line of research with these developments,
we consider general classes of granular betting strategies. Given a nondecreas-
ing function g : N 7→ N, we call 2−g(s) the granule of g at stage s. A g-granular
strategy is a strategy whose wagers at strings of length s are multiples of 2−g(s).
The granule may be interpreted as the value or purchasing power of one cur-
rency unit at certain stage, and decrease of the granules may be interpreted
as the result of inflation. As it comes up during the research, we also consider
classes of timid betting strategies, which are subclasses of granular betting strate-
gies, where the wager at every stage is bounded above by a constant times the
granule. This actually corresponds to the restriction (ii) of a real casino.

Clearly, the absolute values of g are not important when considering classes
of g-granular strategies without restriction on the amount of initial capital.
And as we will see in later sections even with restriction on the amount of ini-
tial capital, the absolute values of g are not important as long as the initial

85

capital allows one to bet at least one granule at some stage. So we only care
about the rate of increase of g, or the rate of the decrease of the granule, which
could also be interpreted as inflation rate. We will distinguish between fine
granularity (where g is a fast order) and coarse granularity (where g is a con-
stant function or slow order).

First in § 6.1 we give formal definitions of granular (super)martingales and
timid (super)martingales and explore some basic properties about them.

Then in § 6.2 and § 6.3 we study how the granularity affects classes of bet-
ting strategies with different initial capitals. We show for a fine granularity
g, the initial capital of a betting strategy does not really matter, as every ev-
ery g-granular supermartingale is inferior to a g-granular supermartingale with
arbitrary small initial capital. While for a coarse granularity g, the picture is
different: on the one hand, we show that there is a g-granular martingale such
that no g-granular supermartingale with less initial capital is superior to it;
on the other hand, we also show that every g-granular supermartingale is in-
ferior to a family of g-granular martingales with arbitrary small initial capital,
as long as the initial capital permits betting one granule at some stage. That is
to say, in terms of a single supermartingale, a coarse granularity really makes
difference for the winning power of supermartingales with different initial cap-
itals; whereas it makes no difference in terms of a class of supermartingales.
This part of results are included in the paper which is still in preparation by
Barmpalias and Fang [4].

Finally we study how the granularity affects the dichotomy between the
“savings paradox” and the “savings trick” demonstrated at the beginning. In
§ 6.4 we show that in the case of a fine granularity, the “savings trick” still
works. For the case of a coarse granularity g, first in § 6.5 we show that a weaker
version of “savings paradox” occurs, i.e. there is a g-granular martingale M

such that for any computable g-granular supermartingale N there exists a se-
quence X on which M succeeds but N cannot successfully saves. It is a weaker
version because the sequence X witnesses the paradox is not uniform as in the
“savings paradox” showed by Teutsch [49] for inter-valued martingales. Al-
though we do not yet have a uniform solution in general, in § 6.6 we found
a uniform “savings paradox” among all g-timid supermartingales. However,
in § 6.7, we show that given an order g, for any g-timid supermartingale M ,
there is always a family {Ni} of g-granular martingales such that there is al-
ways at least one of them successfully saves on sequences M succeeds on. It

86 Betting with Restrictions on Wagers

implies that if there exists a uniform “savings paradox” for a slow order g, the
g-granular supermartingale diagonalizes against all g-granular saving strategies
must not be a g-timid supermartingale, which is indeed the case in the “savings
paradoxes” shown before. This part of results are included in the paper submit-
ted by Barmpalias and Fang [5].

It is also worth mentioning that there is yet another motivation to study
granular strategies. In the paper by Barmpalias, Lewis-Pye, and Teutsch [13],
granular strategies have played a crucial role in the analysis of coding with re-
stricted redundancy by random sequences. Roughly speaking, the coding with
redundancy g we discussed extensively in Chapter 3 correspond to g-granular
strategies. Hence, understanding how the granularity of a betting strategy re-
stricts its power can be used in order to study the impact of restrictions on re-
dundancy functions can have on a coding process.

6.1 Granularity and Timidness of Supermartin-
gales

Generally speaking, the ‘granularity’ of a function f : 2<ω 7→ Q measures how
far the values of f are from being integers. While “timidness” indicates that
the values of f are linearly bounded by the granules.

Definition 6.1.1. Let g : N 7→ N be a nondecreasing function.

• A function f : 2<ω 7→ Q is g-granular if f(σ) · 2g(|σ|) ∈ N for any σ ∈ 2<ω,
and if in addition there is a constant c such that f(σ) ≤ c · 2−g(|σ|) for all
σ ∈ 2<ω, then it is g-timid.

• A (super)martingale M is g-granular or g-timid if its wager wM is g-
granular or g-timid as a function, respectively.

The class of all computable g-granular (g-timid) martingales is denoted by
CMg (CMg∗) . And the class of all computable g-granular (g-timid) supermartin-
gales is denotes by CSg (CSg∗) . We also denote CM0 (CS0) to be the class of
CMg (CSg) with g being the constant function 0. Recall that integer valued
martingales are computable martingales which only take values of integers. By
Lemma 6.1.2 to be proved below, CM0 is actually the same as the class of all
integer valued martingales. As we will also study the interplay of granularity

6.1 Granularity and Timidness of Supermartingales 87

CMg the class of all computable g-granular martingales
CMg∗ the class of all computable g-timid martingales

CMg(l) the class of all computable g-granular martingales
with initial capital l

CSg the class of all computable g-granular supermartingales
CSg∗ the class of all computable g-timid supermartingales

CSg(l) the class of all computable g-granular Supermartingales
with initial capital l

CM0 the class of all computable integer-valued martingales
CS0 the class of all computable integer-valued supermartingales

Table 6.1 Classes of computable strategies with granularity g

and initial capital for supermartingales, we denote the class of all g-granular
computable (super)martingales with initial capital l by CMg(l) (CSg(l)).

All the classes of g-granular (super)martingales we introduced here are sum-
marized in Table 6.1.

Note that for a g-granular (super)martingale M if M(λ) · 2g(0) ∈ N then its
cover M̂ is a g-granular function. Moreover, if its marginal saving M∗ is also a
g-granular function, then M is also a g-granular function.

Actually, we show that any g-granular (super)martingale M can be easily
transformed into a (super)martingale N which is a g-granular function and its
saving function takes integer values, while |M(σ)−N(σ)| = O (1).

Lemma 6.1.2. Given a nondecreasing g : N 7→ N and a g-granular super-
martingale M , there exists a supermartingale N such that N is a g-granular
function, SN(σ) ∈ N for all σ ∈ 2<ω and |M(σ) − N(σ)| = 2. Moreover N is
computable from M, g, and if M is a martingale then N is also a martingale.

Proof. Let M̂ be the cover of M , and SM be the saving. For all σ ∈ 2<ω, let
N(σ) = M̂(σ)− ⌊SM(σ)⌋+ ⌈M(λ)⌉ −M(λ). Clearly N is a g-granular function.
As ⌊SM(σ)⌋ − ⌈M(λ)⌉ + M(λ) ≤ SM(σ) ≤ M̂(σ), by Proposition 4.1.4 N is a
supermartingale. For all σ ∈ 2<ω, SN(σ) = ⌊SM(σ)⌋ ∈ N. And N(σ)−M(σ) =

SM(σ)− ⌊SM(σ)⌋+ ⌈M(λ)⌉ −M(λ) ∈ [0, 2].
Finally, note that N is computable from M and g, and in the case when M

is a martingale we have SM(σ) = 0 for all σ, so N = N̂ is a martingale.

88 Betting with Restrictions on Wagers

As granularity is in conflict with scaling operations on the wagers, so the
saving method in the proof of Proposition 4.3.6 breaks down in the case of
granular strategies. However the following property can be salvaged, albeit
non-uniformly.

Proposition 6.1.3. Given a nondecreasing function g : N 7→ N and a g-
granular supermartingale M , there exists a g-granular supermartingale N com-
putable from M such that Succ(M) ⊆ SSucc(N).

Proof. In the case where limn M(X ↾ n) = ∞ we can simply let N = M .
Otherwise let q be a positive rational upper bound of r := lim infnM(X ↾ n)

and let N have initial capital a rational N(λ) > q − r. Let m−1 be such that
for each n ≥ m−1 we have M(X ↾ n) ≥ r. Then let N produce part of the bets
of M along a given sequence Y as follows: wait until some n0 ≥ m−1 such that
M(Y ↾ n) < q, and then let m0 be the least m > n0 such that M(Y ↾ m) >

q + 1 (if such number does not exist, let m0 = ∞). In the interval [m−1, n0) the
strategy N does not place any bets, while in [n0,m0] it places the same bets
that M does, along Y . Hence N(Y ↾ n)−N(Y ↾ n0) = M(Y ↾ n)−M(Y ↾ n0),
and since r ≥ M(X ↾ n), we have M(Y ↾ n) − M(Y ↾ n0) > r − q for
each n ∈ [n0,m0]. Hence N(Y ↾ n) > N(Y ↾ n0) + (r − q) > 0 for each
n ∈ [n0,m0). Moreover, in the case that m0 < ∞, M(Y ↾ m0) − M(Y ↾
n0) > 1, so N(Y ↾ m0) > N(Y ↾ n0) + 1. This process repeats in the same
way, defining the intervals [mi−1, ni) where N does not bet, and the adjacent
intervals [ni,mi) where N copies the bets of M . If for some i we have mi = ∞
then after position Y ↾ ni strategy N always copies the bets of M along Y .

Inductively, we can show that N is non-negative, and for each i ≥ −1 such
that mi < ∞ and each n > mi we have N(Y ↾ n) > i + 1. Moreover
clearly N is g-granular and computable from M . Finally, in the case where
lim supn M(Y ↾ n) = ∞, the endpoints ni,mi are defined for all i ∈ N, which
means that limn N(Y ↾ n) = ∞.

Corollary 6.1.4. For any nondecreasing function g : N 7→ N,

Succ[CMg] = SSucc[CMg] = Succ[CSg] = SSucc[CSg].

6.2 Fine Granularity and Initial Capital 89

Proof. By Proposition 4.3.4 and 6.1.3, and the fact that CMg ⊂ CSg , we have
the following observation which concludes the above equations:

SSucc[CSg]

⊆ ⊆
SSucc[CMg] Succ[CSg] ⊆ SSucc[CMg].

⊆ ⊆
Succ[CMg]

Remember that the result by Teutsch [49] shows that Succ[CM0] ̸= Save[CS0],
while by Corollary 4.3.11, Succ[CM] = Save[CS]. Whether Save[CSg] = Succ[CSg]

holds under some condition of the granularity g is one of the main questions of
this chapter.

6.2 Fine Granularity and Initial Capital
For a class of (super)martingales, if there is no granularity restriction, the ini-
tial capital of a (super)martingale is actually not important, because one can
easily build another (super)martingale with arbitrary positive initial capital
but the same betting coefficient and then both two (super)martingales have the
same set of success sequences. However, once there is a granularity restriction,
this may no longer possible as larger initial capital permits the use of finer bet-
ting coefficient.

In this section, we show that for a fine granularity g, the class of g-granular
(super)martingales with arbitrary small positive initial capital is still as power-
ful as the class of (super)martingales without any restrictions.

Theorem 6.2.1 (Barmpalias and Fang [4]). Let g be a fast order. Given any
ϵ > 0 and any g-granular supermartingale M there exists a g-granular mar-
tingale N with initial capital ϵ such that Succ(M) ⊆ Succ(N). Moreover, N is
computable from M, g.

Proof. Given any ϵ > 0 and any g-granular supermartingale M . Let wM be the
wager function of M . As

∑
i∈N 2−g(i) < ∞, let n0 = min{n :

∑
i≥n 2

−g(i) < ϵ/2}
and m = max{M(σ) : σ ∈ 2n0−1}.

90 Betting with Restrictions on Wagers

Now we define a g-granular martingale N by induction. Given σ ∈ 2<ω, let

N(σ) =

ϵ if σ ∈ 2<n0 ,

N(σ−) +
q
wM(σ) · ϵ

2m

y
g(|σ|) if σ ∈ 2≥n0 .

By definition for any σ ∈ 2≥n0 , we have

N(σ) > N(σ−) + wM(σ) · ϵ

2m
− 2−g(|σ|)

≥ N(σ ↾ (n0 − 1)) +
∑

n0≤i≤|σ|

(wM(σ ↾ i) · ϵ

2m
− 2−g(i))

≥ ϵ+
ϵ

2m
· (M(σ)−M(σ ↾ (n0 − 1)))−

∑
n0≤i≤|σ|

2−g(i)

≥ ϵ+
ϵ

2m
· (M(σ)−m)− ϵ/2

=
ϵ

2m
·M(σ). (6.1)

As M(σ) ≥ 0, N(σ) > 0. Then it is easy to check that N is a well-defined
g-granular martingale and it is computable from M, g.

Given a sequence X, for any n ≥ n0, by (6.1) we have

N(X ↾ n) > ϵ

2m
·M(X ↾ n).

Then if X ∈ Succ(M), X ∈ Succ(N) as well. Thus, Succ(M) ⊆ Succ(N).

The following corollary follows directly from Theorem 6.2.1.

Corollary 6.2.2. If g be a computable fast order, for any k > 0 it holds
Succ[CSg(k)] = Succ[CS].

6.3 Coarse Granularity and Initial Capital
In contrast to the case of fine granularities, for a coarse granularity g, there is a
computable g-granular supermartingale which is not inferior to any computable
g-granular supermartingales with less initial capital.

At first, we show an example for computable integer-valued supermartin-
gales.

6.3 Coarse Granularity and Initial Capital 91

Theorem 6.3.1 (Barmpalias and Fang [4]). Given l ∈ N+, there exists an
integer-valued computable martingale M with initial capital l + 1 such that
for any integer-valued supermartingale N with initial capital l, SSucc(M) \
Succ(N) ̸= ∅.

Proof. The martingale M is defined as follows. It always bets 1 on side ‘1’ if
possible. Formally,

1. M(λ) = l + 1.

2. For any σ ∈ 2<ω and i ∈ {0, 1},

M(σ ⌢ i) =


M(σ) + 1 if M(σ) ≥ 1 & i = 1,

M(σ)− 1 if M(σ) ≥ 1 & i = 0,

M(σ) if M(σ) < 1.

Now suppose N is a integer-valued supermartingale with initial capital l and
SSucc(M) ⊆ Succ(N).

Lemma 6.3.2. If for some τ ∈ 2<ω and integer k ≥ 1 it holds that N(τ) <

k + 1 ≤ M(τ), then there exists σ ⪰ τ such that N(σ) < k ≤ M(σ).

Proof. Suppose it is wrong, then for all σ ⪰ τ if M(σ) ≥ k then N(σ) ≥ k.
As M(τ) ≥ k + 1, we have M(τ ⌢ 1) ≥ k + 2,M(τ ⌢ 0) ≥ k. Then N(τ ⌢ 1) ≥

k,N(τ ⌢ 0) ≥ k. While N(τ) ≤ k, it must be the case that N(τ ⌢ 1) = N(τ ⌢ 0) =

k.
Now that M(τ ⌢ 11) ≥ k+3,M(τ ⌢ 10) ≥ k+1, then N(τ ⌢ 11) ≥ k,N(τ ⌢ 10) ≥

k. By N(τ ⌢ 1) = k, we have N(τ ⌢ 11) = N(τ ⌢ 10) = k.
In the same way, by induction we have N(τ ⌢ 1i) = k for all i ∈ N. Then

τ ⌢ 1ω /∈ Succ(N). While M(τ ⌢ 1i) ≥ k + i + 1 for all i ∈ N. Thus, τ ⌢ 1ω ∈
SSucc(M), which contradicts the assumption that SSucc(M) ⊆ Succ(N).

As N(λ) < l + 1 ≤ M(λ), by Lemma 6.3.2 there exists σ1 ∈ 2<ω such
that N(σ1) < l ≤ M(σ1). By iteratively applying Lemma 6.3.2, we get σ1 ⪯
σ2 ⪯ · · · ⪯ σl such that N(σl) < 1 ≤ M(σl). That is to say N(σl) = 0 and
M(σl) ≥ 1. Then N(σl

⌢ 1i) = 0 for all i ∈ N and σl
⌢ 1ω /∈ Succ(N). While

M(σl
⌢ 1i) ≥ i + 1 for all i ∈ N and σl

⌢ 1ω ∈ SSucc(M). This contradicts the
assumption that SSucc(M) ⊆ Succ(N). Thus, SSucc(M) \ Succ(N) ̸= ∅.

92 Betting with Restrictions on Wagers

Now we show that the above theorem holds for any coarse granularity as
well. The proof idea is essentially the same, but now we need to pay attention
to the granularity. We will construct the martingale M and a witness X for
each g-granular supermartingale N directly.

Theorem 6.3.3 (Barmpalias and Fang [4]). Let g be a constant function or
slow order. For any l ∈ N+ there exists a g-granular martingale M computable
from g with initial capital l such that for any g-granular supermartingale N

with initial capital less than l, SSucc(M) \ Succ(N) ̸= ∅.

Proof. The g-granular martingale M is defined as follows. It always bets one
granule on side ‘1’ if possible. Formally,

1. M(λ) = l.

2. For any σ ∈ 2<ω and i ∈ {0, 1},

M(σ ⌢ i) =


M(σ) + 2−g(|σ|+1) if M(σ) ≥ 2−g(|σ|) & i = 1,

M(σ)− 2−g(|σ|+1) if M(σ) ≥ 2−g(|σ|) & i = 0,

M(σ) if M(σ) < 2−g(|σ|).

Note that the way we define M makes it a g-granular function computable
from g. So in case M(σ) < 2−g(|σ|), actually M(σ) = 0.

Now suppose N is a g-granular supermartingale with initial capital less than
l. Define a sequence X as follows,

X(n) =

1 if N(X ↾ n ⌢ 0) ≥ N(X ↾ n ⌢ 1),

0 if N(X ↾ n ⌢ 0) < N(X ↾ n ⌢ 1).

Fix some n ∈ N. Note that N(X ↾ n ⌢ 0) +N(X ↾ n ⌢ 1) ≤ 2N(X ↾ n).
In case X(n) = 1: By definition, N(X ↾ n ⌢ 1)−N(X ↾ n ⌢ 0) ≤ 0. Then

N(X ↾ n+ 1) = N(X ↾ n ⌢ 1) ≤ N(X ↾ n).

And

M(X ↾ n+ 1) =

{
M(X ↾ n) + 2−g(n+1) if M(X ↾ n) > 0 (6.2)
M(X ↾ n) if M(X ↾ n) = 0 (6.3)

6.3 Coarse Granularity and Initial Capital 93

In case X(n) = 0: By definition, N(X ↾ n ⌢ 0) − N(X ↾ n ⌢ 1) < 0. As N is
a g-granular supermartingale, wN(X ↾ n ⌢ 0) = N(X↾n⌢ 0)−N(X↾n⌢ 1)

2
is an integer

multiple of 2−g(n+1). Then N(X ↾ n ⌢ 0)−N(X ↾ n ⌢ 1) ≤ −2 · 2−g(n+1). Thus,

N(X ↾ n+ 1) = N(X ↾ n ⌢ 0) ≤ N(X ↾ n)− 2−g(n+1).

And

M(X ↾ n+ 1) =

{
M(X ↾ n)− 2−g(n+1) if M(X ↾ n) > 0 (6.4)
M(X ↾ n) if M(X ↾ n) = 0 (6.5)

In any case N(X ↾ n + 1) ≤ N(X ↾ n) for all n. So limn→∞ N(X ↾ n) ≤
N(λ) < l and X /∈ Succ(N).

And in any case M(X ↾ n + 1) −M(X ↾ n) ≥ N(X ↾ n + 1) − N(X ↾ n) for
all n. So M(X ↾ n) ≥ N(X ↾ n) − N(λ) + M(λ) > 0, which means only (6.2)
and (6.4) apply. Therefore,

M(X ↾ n) = M(λ) +
∑

0≤i<n&X(i)=1

2−g(i+1) −
∑

0≤i<n&X(i)=0

2−g(i+1)

= l +
∑

0<i≤n

2−g(i) − 2
∑

0≤i<n&X(i)=0

2−g(i+1)

≥ l +
∑

0≤i≤n

2−g(i) + 2
∑

0≤i<n

(N(X ↾ i+ 1)−N(X ↾ i))

≥ l +
∑

0≤i≤n

2−g(i) − 2N(λ)

≥
∑

0≤i≤n

2−g(i) − l.

As
∑

i∈N 2−g(i) = ∞, we have limn→∞M(X ↾ n) = ∞. So X ∈ SSucc(M).
Thus, SSucc(M) \ Succ(N) ̸= ∅.

From Theorem 6.3.3 one is tempted to guess that Succ[CSg(k)] ⊊ Succ[CSg(l)]

if k < l, given g as a coarse granularity. However, this turns out to be wrong.

Theorem 6.3.4 (Barmpalias and Fang [4]). Let g be a constant function or
slow order. For any k ∈ N and any g-granular supermartingale M with initial
capital (k + 1) · 2−g(0), there is a countable class C of g-granular martingales
with initial capital k · 2−g(0) such that Succ(M) ⊆ Succ[C]. Moreover, all the
martingales in C are computable from M, g.

94 Betting with Restrictions on Wagers

Proof. Given any supermartingale M as stated in the theorem, let w be the
wager function of M . Inductively, we define a martingale T , which alway bet
all its capital on the side where M prefers.

• T (λ) = k · 2−g(0).

• For τ ∈ 2>0,

T (τ) =

2 · T (τ−) if w(τ) ≥ 0,

0 if w(τ) < 0.

And for each σ ∈ 2<ω, we construct a martingale Nσ. It always bets all its
capital along σ and then at strings extending σ it just bets the same wager as
M as long as it is possible, while for all other strings, it does not put any bet.
The formal definition is by induction as follows.

• Nσ(λ) = k · 2−g(0).

• For τ ∈ 2>0,

Nσ(τ) =


0 if τ ⪯̸ σ ∧ σ ⊀ τ,

2 ·Nσ(τ
−) if τ ⪯ σ,

Nσ(τ
−) + min{|w(τ)|, Nσ(τ

−)} if τ ≻ σ ∧ w(τ) ≥ 0,

Nσ(τ
−)−min{|w(τ)|, Nσ(τ

−)} if τ ≻ σ ∧ w(τ) < 0.

It is easy to check that T and all {Nσ}σ∈2<ω are well-defined g-granular mar-
tingales of initial capital k · 2−g(0) and they are all computable from M, g. We
define C to be {T} ∪

∪
σ∈2<ω{Nσ}.

Lemma 6.3.5. For each σ ∈ 2<ω, the following are true for the martingale Nσ.

(i) Nσ(σ ↾ n) ≥ k · 2n−g(0) for all 0 ≤ n ≤ |σ|.

(ii) If M(σ) ≤ k · 2|σ|−g(0), then Nσ(τ) ≥ M(τ) for all τ ⪰ σ.

Proof. (i): We prove by induction on n. First, for n = 0, by definition we have
Nσ(σ ↾ 0) = Nσ(λ) = k · 2−g(0). Now suppose Nσ(σ ↾ i) ≥ k · 2i−g(0) for some 0 ≤
i < |σ|. Again by definition we have Nσ(σ ↾ (i+1)) = 2 ·Nσ(σ ↾ i) = k ·2i+1−g(0).

(ii): We prove by induction on τ . First, for τ = σ, as M(σ) ≤ k · 2|σ|−g(0),
by (i) we have Nσ(σ) ≥ k · 2|σ|−g(0) ≥ M(σ). Now suppose Nσ(τ) ≥ M(τ) for

6.3 Coarse Granularity and Initial Capital 95

some τ ⪰ σ. Then for any i ∈ {0, 1}, we have |w(τ ⌢ i)| ≤ M(τ) ≤ Nσ(τ). Thus,
by definition Nσ(τ

⌢ i) = Nσ(τ) + w(τ ⌢ i) ≥ M(τ) + w(τ ⌢ i) = M(τ ⌢ i).

Lemma 6.3.6. For each X ∈ Succ(M), if there exists some n ∈ N such that
M(X ↾ n) ≤ k · 2n−g(0) then X ∈ Succ(NX↾n).

Proof. As M(X ↾ n) ≤ k · 2n−g(0), then by Lemma 6.3.5 NX↾n(τ) ≥ M(τ) for all
τ ⪰ X ↾ n. Especially, NX↾n(X ↾ i) ≥ M(X ↾ i) for all i ≥ n. As X ∈ Succ(M),
i.e. lim supi→∞M(X ↾ i) = ∞, then lim supi→∞NX↾n(X ↾ i) = ∞ as well. Thus,
X ∈ Succ(NX↾n).

Lemma 6.3.7. For each X ∈ Succ(M), if M(X ↾ n) > k · 2n−g(0) for all n ∈ N,
then X ∈ Succ(T).

Proof. Given X ∈ Succ(M) such that M(X ↾ n) > k · 2n−g(0) for all n ∈ N, for
all i > 0, let

ci = 1 +
w(X ↾ i)

M(X ↾ (i− 1))
.

Then for all n > 0, we have

M(X ↾ n) ≤ M(λ) ·
∏

0<i≤n

ci.

As M(λ) = (k + 1) · 2−g(0), then

(k + 1) · 2−g(0) ·
∏

0<i≤n

ci > k · 2n−g(0),

i.e. ∏
0<i≤n

ci >
k

k + 1
· 2n ≥ 2n−1.

On the other hand, clearly, for all i > 0, ci ≤ 2. Suppose w(X ↾ n) < 0 for some
n, then cn < 1, ∏

0<i≤n

ci ≤
∏

0<i≤n−1

ci ≤ 2n−1,

which is a contradiction. Thus, w(X ↾ n) ≥ 0 for all n > 0. Then by definition,
T (X ↾ n) = 2n · T (λ) = k · 2n−g(0), i.e. X ∈ Succ(T).

Lemma 6.3.6 and Lemma 6.3.7 together show that Succ(M) ⊆ Succ[C].

96 Betting with Restrictions on Wagers

Corollary 6.3.8. Let g be a constant function or computable slow order. For
any two numbers k < l such that k ≥ 2−g(n) for some n ∈ N, it holds Succ[CMg(k)] =

Succ[CSg(l)].

Proof. Given g and k, l be as stated in the theorem, obviously Succ[CMg(k)] ⊆
Succ[CSg(l)]. Let n0 = min{i : k ≥ 2−g(i)} and d = min{i ∈ N : i ≥ l ·
2n0+g(n0)}. We define a function h : N 7→ N as h(n) = g(n + n0) for all n ∈
N. Clearly, h is a nondecreasing function. By Theorem 6.3.4, Succ[CMh(k ·
2−h(0))] = Succ[CSh((k + 1) · 2−h(0))] holds for all k ∈ N+. By iterating we
obtain Succ[CMh(2

−h(0))] = Succ[CSh(d · 2−h(0))].
Given any X ∈ Succ[CSg(l)], let M be a supermartingale in CSg(l) such that

X ∈ Succ(M). Then we have lim supn→∞M(X ↾ n) = ∞ and M(X ↾ n0) ≤
l · 2n0 ≤ d · 2−h(0). Thus, X ↾ [n0,∞) ∈ Succ[CSh(M(X ↾ n0))] ⊆ Succ[CSh(d ·
2−h(0))] = Succ[CMh(2

−h(0))]. Let N be a martingale in CMh(2
−h(0)) such that

X ↾ [n0,∞) ∈ Succ(N). Now define an another martingale N ′ as follows. For
σ ∈ 2<ω,

N ′(σ) =

2−g(n0) if |σ| ≤ n0,

N(σ ↾ [n0, |σ|)) if |σ| > n0.

Clearly, N ′ is a well-defined martingale in CMg(2
−g(n0)). Moreover, we have

X ∈ Succ(N ′). Thus, X ∈ Succ[CMg(2
−g(n0))] ⊆ Succ[CMg(k)]. Hence,

Succ[CMg(k)] = Succ[CSg(l)]

6.4 Fine Granularity and Saving Strategies
Now we study the interact of granularities and notions of success.

Theorem 6.4.1 (Barmpalias and Fang [5]). Let g be a fast order. Given any
supermartingale M , there exists a g-granular supermartingale N computable
from M, g such that Succ(M) ⊆ Save(N).

Given a supermartingale M , we will construct N directly. N chooses some
large enough initial capital and then bets according to M , by letting its wager
for the next stage be the wager for next stage of M multiplied with the ratio
between the current capital of N and M . Whenever the capital of M becomes
doubled or larger compared to its previous capital marker, N consumes 1 and
sets the current capital of M to be a new capital marker. Then N uses the

6.4 Fine Granularity and Saving Strategies 97

rest of its capital to do the betting according to M . However, there might be
some issue caused by the restriction of granularity. To solve this, N chooses its
wager to be the value which satisfies the granularity requirement and has the
largest absolute value less than or equal to the absolute value of the wager for
next stage of M multiplied with the ratio between the current available capital
of N and M . By this means, we can prove that the ratio between the current
available capital of N and M is bounded from below if the initial ratio is large
enough. And on the other hand, N will successfully save wherever M succeeds.

Proof. Let G be some integer such that G > 2 +
∑

n∈N 2−g(n). Without loss of
generality, we assume M(σ) ≥ 1 for all σ ∈ 2<ω. Because otherwise, we could
define M ′ = M + 1 and use M ′ instead of M in the following argument.

Let wM be the wager of M . For any σ ∈ 2<ω, let I(σ) be the set of all num-
bers ni such that

1. n0 = 0,

2. ni < ni+1 ≤ |σ| and ni+1 is the least number such that M(σ ↾ ni+1) ≥
2M(σ ↾ ni).

We let l(σ) = |I(σ)| − 1.
Now we define three g-granular functions w, N ′ and N by induction.

1. w(λ) = 0, N ′(λ) = N(λ) = ⌊G ·M(λ)⌋+ 1.

2. For any σ ≻ λ, let

w(σ) =

s
wM(σ) · N

′(σ−)− l(σ−)

M(σ−)

{
g(|σ|)

,

N ′(σ) = N ′(σ−) + w(σ),

N(σ) = N ′(σ)− l(σ−).

Clearly that they are g-granular functions and N is computable from M, g.

Lemma 6.4.2. For all σ ∈ 2<ω, N ′(σ)− l(σ) > M(σ).

Proof. For any σ ≻ λ, by definition we have

w(σ) ≥ wM(σ) · N
′(σ−)− l(σ−)

M(σ−)
− 2−g(|σ|).

98 Betting with Restrictions on Wagers

Then

N ′(σ)− l(σ−)

M(σ)
≥

N ′(σ−) + wM(σ) · N ′(σ−)−l(σ−)
M(σ−)

− 2−g(|σ|) − l(σ−)

M(σ−) + wM(σ)

=
N ′(σ−)− l(σ−)

M(σ−)
− 2−g(|σ|)

M(σ)

≥ N ′(σ−)− l(σ−)

M(σ−)
− 2−g(|σ|).

If I(σ) = I(σ−), then we have l(σ) = l(σ−) and

N ′(σ)− l(σ)

M(σ)
≥ N ′(σ−)− l(σ−)

M(σ−)
− 2−g(|σ|).

If I(σ) ̸= I(σ−), then we have |σ| ∈ I(σ), l(σ) = l(σ−) + 1 and M(σ) ≥
2l(σ)M(λ). Then

N ′(σ)− l(σ)

M(σ)
=

N ′(σ)− l(σ−)

M(σ)
− 1

M(σ)

≥ N ′(σ−)− l(σ−)

M(σ−)
− 2−g(|σ|) − 2−l(σ).

Thus,

N ′(σ)− l(σ)

M(σ)
≥ N ′(λ)− l(λ)

M(λ)
−

|σ|∑
n=1

2−g(n) −
l(σ)∑
n=1

2−n

≥ G−
∑
n∈N

2−g(n) − 1

> 1,

which implies N ′(σ)− l(σ) > M(σ).

Lemma 6.4.3. N is a g-granular supermartingale and its saving function is
N ′ −N .

Proof. By Lemma 6.4.2, for any σ ∈ 2<ω, N ′(σ) > l(σ) > 0. And for i ∈ {0, 1},
as l(σ ⌢ i) ≥ l(σ), we also have

N(σ ⌢ i) = N ′(σ ⌢ i)− l(σ) ≥ N ′(σ ⌢ i)− l(σ ⌢ i) > 0.

6.5 Coarse Granularity and Saving Strategies 99

On the other hand, by definition we have for all σ ∈ 2<ω and i ∈ {0, 1},

N ′(σ ⌢ i)−N(σ ⌢ i) = l(σ) ≤ l(σ ⌢ i), (6.6)
N(σ ⌢ 0) +N(σ ⌢ 1) = 2(N ′(σ)− l(σ)) ≤ 2N(σ),

N(σ ⌢ i)−N(σ ⌢ (1− i)) = 2w(σ ⌢ i),

N ′(σ) = N(λ) +
∑
τ⪯σ

w(τ).

Thus, by definition N is a supermartingale, w is its wager and N ′ is its cover.
By Proposition 4.1.3 its saving function SN = N ′ −N .

As w is a g-granular function, N is a g-granular supermartingale.

Given any sequence X ∈ Succ(M), we have lim supn→∞M(X ↾ n) = ∞.
Then the size of the set I(X ↾ n) is unbounded, i.e. limn→∞ l(X ↾ n) = ∞. By
(6.6), we have

lim
n→∞

SN(X ↾ n) = lim
n→∞

l(X ↾ (n− 1)) = ∞.

Thus, X ∈ Save(N).
Therefore, Succ(M) ⊆ Save(N).

Together with Corollary 6.2.2, Theorem 6.4.1 has the following consequence,
which indicates that in the case of fine granularity, any class of computable fine
granular (super)martingales is interchangeable with the class of computable
(super)martingales, and within them the three notions of success are also inter-
changeable.

Corollary 6.4.4. For any computable fast order g,

Save[CSg] = Succ[CMg] = SSucc[CMg] = Succ[CSg] = SSucc[CSg] = Succ[CS].

6.5 Coarse Granularity and Saving Strategies
However, as in the interact of granularities and initial capitals, for the case of
coarse granularity, a difference for the notions of success appears, and the situ-
ation here seems more chaotic.

100 Betting with Restrictions on Wagers

Theorem 6.5.1 (Barmpalias and Fang [5]). Let g be a constant function or
slow order. There exists a g-granular martingale M computable from g such
that for any g-granular supermartingale T it holds that Succ(M) \ Save(T) ̸= ∅.

Proof. The g-granular martingale M is defined the same as in the proof of The-
orem 6.3.3. Suppose T is an arbitrary g-granular supermartingale. By Lemma 6.1.2,
we can assume T is a g-granular function. Let wT and T̂ be its wager and cover,
respectively.

Now we construct a sequence X ∈ Succ(M) \ Save(T). The construction is
done by induction.

Construction of X:
For n ≥ 0, suppose X ↾ n has already been defined. To simplify the expres-

sions we let

m(n) = M(X ↾ n),
t(n) = T (X ↾ n),
w(n) = wT (X ↾ n ⌢ 1),

q(n) = ⌊t(n)/m(n)⌋.

Then we define

X(n) =

1 if w(n) ≤ q(n) · 2−g(n+1)

0 if w(n) > q(n) · 2−g(n+1)
.

Explanation:
Before we come to the verification part, it might be better to explain the in-

tuition behind the construction. Let ST be the saving function of T and r(n) =

t(n)−q(n)·m(n) for all n ≥ 0. The function r(n) is called the remainder at level
q(n). We define a function L to keep record of the total loss of the remainder.

• L(0) = 0.

• L(n+ 1) = L(n) + r(n) + (q(n)− q(n+ 1)) ·m(n+ 1)− r(n+ 1).

The initial capital of T might be much larger than the initial capital of M ,
in which case we say that T has a large advantage over M . Our idea is to con-
struct the sequence X such that along it that advantage will be restrained in
terms of the quotient between the value of T and M .

6.5 Coarse Granularity and Saving Strategies 101

However, the advantage is not measured by the exact quotient, but the inte-
ger part of the quotient q(n) and the remainder r(n). Roughly speaking, q(n)
determines the advantage level, while r(n) is the advantage at that level.

With this intuition in mind, w(n) > q(n) · 2−g(n+1) means that T attempts
to jump to a higher level. In that case we let X go to the other direction to
prevent this. Then T will suffer from this by losing some of its advantage, ei-
ther a loss of advantage at the same level or decreasing its level. And w(n) ≤
q(n) · 2−g(n+1) means that T wants to keep its level or jump to lower level. In
that case we let it go, and T ’s advantage will be restrained. Moreover, in any
case, if T makes any savings, i.e. ST increases, it will directly result in an equal
amount of loss of its advantage.

Whenever T ’s advantage at level k is used up, either by making a wrong at-
tempt to change level or by consumption, its advantage level will then decrease
to k − 1 or lower. Note that the maximal advantage of T at level q(n) is deter-
mined by the capital of M at the stage when T enters that level. We call it the
capacity of the level q(n). By all this setting, we achieves that T ’s total savings
is upper bounded by the total loss of advantages at all levels L. While L is up-
per bounded by the sum of the capacities from level q(0) down to some level
≤ q(0) in which it finally ends up. As it is a finite amount, T cannot archive
infinite savings, i.e. ST reaches a finite limit.

On the other hand, M continually gains capital along X except when T tries
to jump to higher level. While in that case, compared to otherwise smoothly
gain capital, M ’s loss is at most 2 times the loss of T ’s advantage. As T ’s total
loss L is bounded, M will eventually gain infinite capital.

Verification:
The formal verification is done by the following lemmas.

Lemma 6.5.2. For all n ≥ 0, m(n) ≥ 2−g(n+1).

Proof. As M and T are g-granular functions, we have m and t are g-granular
functions and m(n) ≥ 0, t(n) ≥ 0 for all n ≥ 0.

At first by definition m(0) = M(λ) = 1 ≥ 2−g(0). Suppose k is the least
number such that m(k + 1) < 2−g(k+2), then we must have m(k + 1) = 0. Also
as m(k) ≥ 2−g(k+1), it must be the case that g(k) = g(k + 1), m(k) = 2−g(k+1)

and w(k) > q(k) · 2−g(k+1). On the other hand, as m(k) = 2−g(k+1) = 2−g(k) and

102 Betting with Restrictions on Wagers

t is g-granular, we have t(k) = q(k) ·m(k) = q(k) · 2−g(k+1). Thus, w(k) > t(k),
which is a contradiction.

Lemma 6.5.2 ensures that the function q(n) is well defined.

Lemma 6.5.3. For all n ≥ 0, q(n + 1) ≤ q(n) and if q(n + 1) = q(n) then
r(n+ 1) ≤ r(n).

Proof. Fix any n ≥ 0.

In case X(n) = 1: we have

w(n) ≤ q(n) · 2−g(n+1)

m(n+ 1) = m(n) + 2−g(n+1)

t(n+ 1) ≤ t(n) + w(n)

As q(n) = ⌊t(n)/m(n)⌋ ≤ t(n)/m(n), then

q(n+ 1) =

⌊
t(n+ 1)

m(n+ 1)

⌋
≤

⌊
t(n) + t(n)

m(n)
2−g(n+1)

m(n) + 2−g(n+1)

⌋
= ⌊t(n)/m(n)⌋
= q(n).

If q(n+ 1) = q(n), then

r(n+ 1) = t(n+ 1)− q(n) ·m(n+ 1)

≤ t(n) + q(n) · 2−g(n+1) − q(n) · (m(n) + 2−g(n+1))

= t(n)− q(n) ·m(n)

= r(n).

In case X(n) = 0: we have

w(n) > q(n) · 2−g(n+1)

m(n+ 1) = m(n)− 2−g(n+1)

t(n+ 1) ≤ t(n)− w(n).

6.5 Coarse Granularity and Saving Strategies 103

Since w is g-granular, we have w(n) ≥ (q(n) + 1) · 2−g(n+1). As q(n) + 1 =

⌊t(n)/m(n)⌋+ 1 > t(n)/m(n), then

q(n+ 1) =

⌊
t(n+ 1)

m(n+ 1)

⌋
≤

⌊
t(n)− t(n)

m(n)
2−g(n+1)

m(n)− 2−g(n+1)

⌋
= ⌊t(n)/m(n)⌋
= q(n)

If q(n+ 1) = q(n), then

r(n+ 1) = t(n+ 1)− q(n) ·m(n+ 1)

≤ t(n)− (q(n) + 1) · 2−g(n+1) − q(n) · (m(n)− 2−g(n+1))

= t(n)− q(n) ·m(n)− 2−g(n+1)

= r(n)− 2−g(n+1). (6.7)

From Lemma 6.5.3 we know that {q(n)} is a nonincreasing nonnegative inte-
ger sequence. Then it must have a limit. And the value of q(n) changes only
finitely many times. Let n0 < n1 < · · · < nd be all the positions where
q(n+ 1) < q(n) and we denote I = {n0, n1, . . . , nd}.

Lemma 6.5.4. L is nondecreasing and if X(n) = 0, then L(n + 1) − L(n) ≥
2−g(n+1). Moreover, limn→∞ L(n) < ∞.

Proof. By the definition of L, we have

L(n+ 1)− L(n) = r(n) + (q(n)− q(n+ 1)) ·m(n+ 1)− r(n+ 1).

By Lemma 6.5.3, in case q(n + 1) = q(n), we have r(n) − r(n + 1) ≥ 0. Then
L(n+ 1)− L(n) ≥ 0. If X(n) = 0, by (6.7) we have L(n+ 1)− L(n) ≥ 2−g(n+1).
In case q(n + 1) < q(n), as r(n + 1) ≤ m(n + 1) − 2−g(n+1), we also have
L(n + 1) − L(n) ≥ 2−g(n+1). So L is nondecreasing and if X(n) = 0, then
L(n+ 1)− L(n) ≥ 2−g(n+1).

104 Betting with Restrictions on Wagers

On the other hand,

L(n) = L(0) + r(0) +
∑

0<i≤n

(q(i− 1)− q(i)) ·m(i)− r(n)

≤
∑

i∈I∩(0,n]

(q(i− 1)− q(i)) ·m(i).

Thus,
lim
n→∞

L(n) ≤
∑
i∈I

(q(i− 1)− q(i)) ·m(i) < ∞.

The last inequality holds because I is a finite set.

Lemma 6.5.5. For all n ≥ 0, ST (n) ≤ L(n).

Proof. At first we have ST (0) = L(0) = 0. Now fix any n ≥ 0.

In case X(n) = 1:

ST (n+ 1)− ST (n) = w(n) + t(n)− t(n+ 1)

≤ q(n) · 2−g(n+1) + q(n) · (m(n+ 1)− 2−g(n+1)) + r(n)

− q(n+ 1) ·m(n+ 1)− r(n+ 1)

= r(n) + (q(n)− q(n+ 1)) ·m(n+ 1)− r(n+ 1)

= L(n+ 1)− L(n).

In case X(n) = 0:

ST (n+ 1)− ST (n) = −w(n) + t(n)− t(n+ 1)

≤ −q(n) · 2−g(n+1) + q(n) · (m(n+ 1) + 2−g(n+1)) + r(n)

− q(n+ 1) ·m(n+ 1)− r(n+ 1)

= r(n) + (q(n)− q(n+ 1)) ·m(n+ 1)− r(n+ 1)

= L(n+ 1)− L(n).

So ST (n + 1)− ST (n) ≤ L(n + 1)− L(n). By induction, we have ST (n) ≤ L(n)

for all n ≥ 0.

Lemma 6.5.5 and Lemma 6.5.4 together show that ST reaches a finite limit
on X, i.e. X /∈ Save(T).

6.6 Timid Supermartingales of Coarse Granularity 105

Lemma 6.5.6. For any n, m(n) ≥
∑

0≤i≤n 2
−g(i) − 2L(n).

Proof. By the definition of m and Lemma 6.5.4, we have

m(n) = 2−g(0) +
∑

0<i≤n&X(i−1)=1

2−g(i) −
∑

0<i≤n&X(i−1)=0

2−g(i)

=
∑

0≤i≤n

2−g(i) − 2
∑

0<i≤n&X(i−1)=0

2−g(i)

≥
∑

0≤i≤n

2−g(i) − 2
∑

0<i≤n&X(i−1)=0

(L(i)− L(i− 1))

≥
∑

0≤i≤n

2−g(i) − 2L(n).

Lemma 6.5.6 and Lemma 6.5.4 together show that X ∈ Succ(M), which
completes our proof.

Corollary 6.5.7. Let g be a constant function or slow order. There exists a g-
granular martingale M compuatble from g such that for any class of g-granular
supermartingales C with

∑
S∈C S(λ) < ∞ it holds that Succ(M) \ Save[C] ̸= ∅.

Proof. The martingale M is defined the same as in the proof of Theorem 6.5.1.
Given a class of g-granular supermartingales C with

∑
S∈C S(λ) < ∞, we de-

fine a supermartingale T by summing up all supermartingales in C, i.e. T (σ) =∑
S∈C S(σ). Note that T is a g-granular martingale, and Save[C] ⊆ Save(T).
Now we apply Theorem 6.5.1 to the supermartingale T , and get a sequence

X ∈ Succ(M) \ Save(T) ⊆ Succ(M) \ Save[C].

Note that the sum of the initial capitals of all computable g-granular super-
martingales does not converge, and our proof of Theorem 6.5.1 lacks unifor-
mity. It is still a question that whether Succ[CMg] equals Save[CSg] for a com-
putable slow order g.

6.6 Timid Supermartingales of Coarse Granu-
larity

We notice that the martingales we constructed in the proofs of Theorems 6.3.1,
6.3.3 and 6.5.1 are actually g-timid martingale. Our following result shows that

106 Betting with Restrictions on Wagers

within the class of g-timid strategies of coarse granularity, the “savings para-
dox” appears.

Theorem 6.6.1 (Barmpalias and Fang [5]). Let g be a constant function or
slow order. There exists a g-timid martingale M computable from g such that
for any countable class C of g-timid supermartingales Succ(M) \ Save[C] ̸= ∅.

Proof. The g-timid martingale M is defined the same as in the proof of Theo-
rem 6.3.3. Let {Ti} be a list of all the g-timid supermartingales in C. And let
{ci} be a sequence of positive integers such that for each i, the wager of Ti on
strings of length k is upper bounded by (ci − 1) · 2−g(k).

In the same way as in previous section, at stage n ≥ 0, assuming X ↾ n has
already been defined, we will determine X(n). We let

m(n) = M(X ↾ n),
ti(n) = Ti(X ↾ n),
wi(n) = wTi

(X ↾ n ⌢ 1),

ℓ(n) = max
i≤n

m(i).

We will view every stage as a process which consists of a saving step where
strategies {Ti} make savings and a betting step where we choose the next bit
of X. In order to avoid overloaded notation, in the following arguments at a
specific step of a stage when n is clear from the context, we use m, ti, wi, ℓ and
m′

i, t
′
i, w

′
i, ℓ

′ to refer the values of each corresponding functions at the beginning
of the step and at the end of the step (which is also the value at the beginning
of the next step), respectively.

Now let m0 = m, q0 = ⌊t0/m0⌋ and r0 = t0− q0 ·m0. For each i > 0, assuming
that mi−1, ri−1 are defined, define inductively

mi = mi−1 − ri−1,

qi = ⌊(ti + ci · ri−1)/mi⌋,
ri = ti + ci · ri−1 − qi ·mi.

We will ensure that m > 0 at all steps of all states of the process. Then mi >

ri ≥ 0 for all i, and all the divisions are well defined. m′
i, q

′
i, r

′
i will be used

in the same fashion as t′i. Let g∗, g+ denote the current granule and the next

6.6 Timid Supermartingales of Coarse Granularity 107

granule, respectively. We say that ti requires attention at some state if ℓ ≥ i+ 1

and wi ̸= qi · g+.

Construction of X:
At the betting step of stage n let i ≤ ℓ be the least such that ti requires

attention. If no such i exists, let X(n) = 1. Otherwise, if wi < qi · g+ let
X(n) = 1 and if wi > qi · g+ let X(n) = 0.

Verification:
Instead of making a detailed calculation as in the verification of Theorem 6.5.1,

now we will verify it in a more general way. For this nested construction we
have the following observation.

Lemma 6.6.2. At the betting step of stage n, if none of ti, i ≤ k requires atten-
tion but X(n) = 0 is chosen, then mk − rk > g+.

Proof. Given the situation as stated, suppose mk − rk = g+. Then mj = g+ and
rj = 0 for all j > k. Hence wj ≤ tj ≤ tj + cj · rj−1 = qj · g+ for all j > k. This
means that in this case X(n) = 1 will be chosen, which is a contradiction.

Lemma 6.6.2 actually ensures that m > 0 at all stages, thereby mi > ri ≥ 0

for all i and all the divisions are well defined.

Lemma 6.6.3. At each step of stage n, for any k ≤ ℓ, if q′i = qi for all i < k,
then

i) q′k ≤ qk; and if q′k = qk then r′k ≤ rk;

ii) for a saving step, if q′k = qk, then the marginal saving of tk is no more
than rk − r′k;

iii) for a betting step, if q′k = qk and for some i ≤ k, ti requires attention,
then r′j ≤ rj − g+ for all i ≤ j ≤ k.

Proof. For k = 0, just notice that at stages where t0 does not require attention,
we have t′0 = t0 ±w0 = q0 ·m0 + r0 ± q0 · g+ = q0 ·m′

0 + r0. With the observation
from Lemma 6.6.2 we have q′0 ≤ q0 and if q′0 = q0 then r′0 ≤ r0. The rest of the
proof then follows directly from the verification in the proof of Theorem 6.5.1,
as the outcome of X will be chosen in the same way.

108 Betting with Restrictions on Wagers

Now inductively let d > 0 and assume that Lemma 6.6.3 holds for all k < d.
We prove Lemma 6.6.3 for k = d. By applying Lemma 6.6.3 to all k < d, we
get r′i ≤ ri for all i < k.

At a saving step, m′
k = mk. Then

tk − t′k = (rk + qk ·mk − ck · rk−1)− (r′k + q′k ·m′
k − ck · r′k−1)

= rk − r′k − ck · (rk−1 − r′k−1) ≤ rk − r′k,

q′k ·m′
k + r′k = t′k + ck · r′k−1 ≤ tk + ck · rk−1 ≤ qk ·m′

k + rk.

Thus, i) and ii) hold.
At a betting step, depending on the outcome chosen, we have

m′
k =

mk + g+ +
∑

0≤i<k(ri − r′i) ≥ mk + g+ if X(n) = 1,

mk − g+ +
∑

0≤i<k(ri − r′i) ≥ mk − g+ if X(n) = 0,

t′k + ck · r′k−1 ≤

tk + wk + ck · rk−1 = qk ·mk + rk + wk if X(n) = 1,

tk − wk + ck · rk−1 = qk ·mk + rk − wk if X(n) = 0.

We distinguish among the following three cases.

Case a): none of ti, i ≤ k requires attention.
In this case wk = qk · g+. Then

q′k ·m′
k + r′k = t′k + ck · r′k−1 ≤ qk ·m′

k + rk.

Thus, with Lemma 6.6.2 we have q′k ≤ qk and if q′k = qk then r′k ≤ rk.

Case b): tk requires attention.
In this case wk ≤ (qk − 1) · g+ if X(n) = 1,

wk ≥ (qk + 1) · g+ if X(n) = 0,

Then
q′k ·m′

k + r′k = t′k + ck · r′k−1 ≤ qk ·m′
k + rk − g+.

Thus, we have q′k ≤ qk and if q′k = qk then r′k ≤ rk − g+.

Case c): ti requires attention for some i < k.

6.6 Timid Supermartingales of Coarse Granularity 109

By induction hypothesis, we already have r′j ≤ rj − g+ for all i ≤ j < k.
On the other hand,

m′
k ≥ mk − g+ +

∑
0≤i<k

(ri − r′i) ≥ mk,

q′k ·m′
k + r′k = t′k + ck · r′k−1 ≤ tk + (ck − 1) · g+ + ck · (rk−1 − g+)

= tk + ck · rk−1 − g+ = qk ·mk + rk − g+ ≤ qk ·m′
k + rk − g+.

Thus, we have q′k ≤ qk and if q′k = qk then r′k ≤ rk − g+.

This completes the proof of Lemma 6.6.3

Lemma 6.6.4. For each i, there is a stage after which ℓ ≥ i and qj is a con-
stant for all j < i.

Proof. Inductively for any i ≥ 0 assume that there is a stage s0 after which
ℓ ≥ i and qj is a constant for all j < i (for i = 0 this is trivial). At stages after
s0, supposing we always have ℓ < i+1, then tj does not require attention for all
j ≥ i. So m decreases only at betting steps where for some j < i, tj requires at-
tention and the outcome 0 is chosen. By Lemma 6.6.3, in that case m decreases
by g+ and rj decreases by at least g+. Moreover, rj is nonincreasing after stage
s0 for all j < i. So the total decrease of m after stage s0 is at most

∑
j<i ri[s0].

Thus, for any s ≥ s0, M(X ↾ s) ≥
∑

s≥s0
2−g(s+1) −

∑
j<i ri[s0]. Then there

must be some s1 ≥ s0 such that M(X ↾ s1) ≥ i + 1, i.e. ℓ ≥ i + 1. Then
by Lemma 6.6.3 along X after stage s1, qi is a series of nonincreasing posi-
tive integers. Thus, there is a stage later than s1 after which qi is a constant
as well.

Lemma 6.6.5. lim supnM(X ↾ n) = ∞ and for each i, Ti has only finite
savings.

Proof. For each i, by Lemma 6.6.4 there is a stage si after which ℓ ≥ i and qj is
a constant for all j ≤ i. Clearly, we have ℓ → ∞ and then lim supnM(X ↾ n) =
∞. Fix i, by Lemma 6.6.3, after stage si, ri is nonincreasing and at each saving
step Ti saves no more than ri − r′i. It follows that after stage si strategy Ti can
save at most ri[si]. Thus, its total savings is finite.

Lemma 6.6.5 shows that X ∈ Succ(M) \ Save[C], which completes our proof.

110 Betting with Restrictions on Wagers

Corollary 6.6.6. For any constant function or computable slow order g,

Save[CSg∗] ⊊ Succ[CSg∗].

6.7 Weakness of Timid Supermartingales
We have already noticed that, in the proofs of Theorems 6.3.3, 6.5.1 and 6.6.1,
we used the same g-timid martingale, which always bets one granule on ‘1’.
Compared with Theorem 6.6.1, our last theorem reveals that for a slow order
g, the class of g-timid supermartingales are not strong enough to devise a sav-
ing strategy.

Theorem 6.7.1 (Barmpalias and Fang [5]). Let g be an order. For any g-
timid supermartingale M , there is a countable class C of g-granular super-
martingales such that Succ(M) ⊆ Save[C]. Moreover, all the martingales in
C are computable from M, g.

As g is an order, given a g-timid supermartingale M , there exists a non-
increasing h : N 7→ Q which tends to 0 and such that wσ ≤ h(|σ|) for each
σ. We will construct g-granular supermartingales T and {Nρ}ρ∈I , where I is
a certain set of binary strings that will be defined below. Our idea is to use T

as the main supermartingale, and {Nρ}ρ∈I as backup supermartingales. The
first backup supermartingale is Nλ. For a single backup supermartingale Nρ,
it might be closed at some stage σ, which means we will not let it bet at any
string extending σ. But when this happens, we will issue another backup su-
permartingale Nσ which will serve as the active backup supermartingale on
strings extending σ until it might be closed at some further stages. Thus, we
ensure that at every stage there is exactly one backup supermartingale active.
Then for the construction at every stage we only need to specify the wager of
the current active backup strategy, while for all other backup strategies their
wagers are 0. If Nρ is the active backup strategy at stage σ, we define the in-
dex of the stage σ as iσ = ρ. Our construction will ensure that iσ ⪯ iτ when
σ ⪯ τ . For simplicity we often omit the subscript ρ, when it is clear which
backup strategy is the active one for the current stage.

During the construction, at the beginning, the stage will be considered as
neutral. At neutral stages both T and the active backup supermartingale Nρ

follows M identically, in the sense of having the same wager for each bit, until

6.7 Weakness of Timid Supermartingales 111

some condition is met, then we will start a cycle. During cycles, both T and
some backup supermartingale Nρ attempt to gain extra capital and save later.
They follow different policies. T doubles the wager of M on the same outcome.
Nρ multiplies the wager of M by a large coefficient, say b, and put it on the
opposite outcome. We use the difference rσ = r(σ) = T (σ) −M(σ) to monitor
the progress in the cycle. Let cσ denote the value of rσ at the beginning of a
cycle and only update it at the end of each cycle. We end a cycle at η when rη

escapes the interval (cη/2, cη + 1) and let the following stage be neutral until a
new cycle starts.

In case rη ≥ cη + 1, it means that during the cycle T gains extra 1, then
we let T save 1 at the end of this cycle. Note that during such a cycle Nρ loses
(rη − c(η)) · b, which might be quite a lot. To make sure Nρ is a valid super-
martingale, we need to pay attention to the coefficient b. On the other hand,
as Nρ is “heavily damaged” in this cycle, we then close it by setting Nρ(τ) =

Nρ(η) for all τ ≻ η, and initiate a new backup strategy Nη which receives an
initial capital of M(η) and only starts to bet at η.

In case rη ≤ cη/2, it means that during this cycle T loses cη − r(η), but Nρ

gains (cη−r(η))·b. We will set b appropriately such that this value is more than
1. Then we let Nρ save 1 at the end of this cycle. While Nρ continues to serve
as the active backup supermartingale, as Nρ ≥ M still holds after the saving.

By the g-timidness of M , we will ensure that once rσ escaped from (cσ/2, cσ+

1), it is still within (cσ/4, cσ + 2), so that there is always space for starting a
new cycle.

We will ensure that for any path X if lim supnM(X ↾ n) = ∞ then one of
the following will happen.

1. infinitely many backup supermartingales initiated and closed along X: in
this case T successfully saves;

2. there is a last supermartingale Nρ initiated along X, which is never closed
and generates infinitely many cycles along X, each of them ending in fail-
ure for T : in this case Nρ successfully saves.

Proof of Theorem 6.7.1. Given M as in the statement of Theorem 6.7.1, we de-
fine the saving supermartingale T , the set I of strings/stages where new cycles
are initiated, and the family {Nρ}ρ∈I of backup supermartingales. By the above
discussion, for the construction at every stage we only need to specify the wa-

112 Betting with Restrictions on Wagers

wσ wager of M at σ

vσ wager of T at σ

uσ wager of active N at σ

rσ T (σ)−M(σ)

cσ marker of r at the starting stage of a cycle
iσ index ρ of backup strategy Nρ active at σ

st, sn saving functions for T,N respectively
h function with wσ ≤ h(|σ|), limn h(n) = 0

Table 6.2 Parameters for the proof of Theorem 6.7.1.

ger of the current active backup strategy. For the set i, we only need to specify
iσ at every stage σ, because then I = {iρ | iρ ̸= iρ−}.

Stages will be inductively classified as neutral stages or cycle stages. The last
stage of a cycle is also called as (cycle) ending stage. A cycle interval is an in-
terval from the starting stage of a cycle to an ending stage without neutral
stage in between. Our strategies only save on the ending stages. So we divide
each ending stage σ− into two steps, the betting and the saving step. The value
of the parameter r at the end of the betting step is denoted by r0σ, while at the
end of saving step is denoted by rσ.

For simplicity we often omit the subscript ρ, when it is clear which backup
strategy is the active one for the current stage. We now inductively define the
index iσ of current active backup supermartingale N , the wagers vσ, uσ of the
supermartingale T and N along with their saving functions st, sn and the type
of the stage σ. Remember that by our notation, the values are calculated as
follows.

N(σ) = N(σ−) + uσ − sn(σ
−),

T (σ) = T (σ−) + vσ − st(σ
−),

r0σ = T (σ−) + vσ −M(σ),

rσ = T (σ)−M(σ).

The parameters involved here are summarized in Table 6.2.

Construction:

6.7 Weakness of Timid Supermartingales 113

Let T (λ) = M(λ) + 1, Nλ(λ) = M(λ). Let cλ = rλ = 1, iλ = λ, and λ be
neutral.

Given σ ̸= λ, inductively assume that cσ− , iσ− and the type of σ− have been
defined, consider the cases:

1. if σ− is a neutral stage: Let vσ = uσ = wσ, cσ = cσ− , iσ = iσ− . Then

• if N(σ) > 2⌈2/cσ⌉ and h(|σ|) < min{1, cσ/4}, let σ start an iσ-cycle;

• otherwise, let σ be a neutral stage.

2. if σ− is a cycle stage: Let vσ = 2wσ, uσ = −⌈2/cσ−⌉ · wσ. Then

• if r0σ ∈ (cσ−/2, cσ− + 1), let cσ = cσ− , iσ = iσ− and σ be a cycle stage;

• if r0σ ≤ cσ−/2, mark σ− as a T -failed ending stage and let sn(σ
−) =

1, cσ = rσ, iσ = iσ− , and σ be a neutral stage;

• if r0σ ≥ cσ− + 1, mark σ− as a T -successful ending stage and let
st(σ

−) = 1, cσ = rσ, iσ = σ, and σ be a neutral stage.

Verification:

Lemma 6.7.2. For any σ ̸= λ such that σ− is a neutral stage, we have N(σ)−
M(σ) = N(σ−)−M(σ−) and rσ = rσ− = cσ− = cσ.

This lemma is a trivial observation of the construction.

Lemma 6.7.3. For any σ ̸= λ such that σ− is a cycle stage, assuming η is the
starting stage of that cycle interval,

1. if σ− is not an ending stage, then rσ > rη/2 and N(σ) > ⌈2/rη⌉;

2. if σ− is a T -failed ending stage, then rσ > rη/4, N saves 1 and N(σ) −
M(σ) ≥ N(η)−M(η);

3. if σ− is a T -successful ending stage, then rσ ≥ rη, N(σ) > 0 and T saves
1.

Proof. First we observe that cτ does not change at a cycle stage τ . By the con-
struction, for all η ≺ τ ⪯ σ, we have vτ = 2wτ and uτ = −⌈2/cτ−⌉ · wτ =

114 Betting with Restrictions on Wagers

−⌈2/cη⌉ · wτ . then

r0σ − rη =

(
T (η) +

∑
η≺τ⪯σ

vτ

)
−

(
M(η) +

∑
η≺τ⪯σ

wτ

)
− (T (η)−M(η))

=
∑

η≺τ⪯σ

wτ = M(σ)−M(η),

N0(σ)−N(η) =
∑

η≺τ⪯σ

uτ = −
⌈
2

cη

⌉
·
∑

η≺τ⪯σ

wτ = −
⌈
2

cη

⌉
· (r0σ − rη).

On the other hand, by Lemma 6.7.2 cη = rη and by construction

N(η) > 2⌈2/rη⌉, h(|η|) < min{1, rη/4}.

If σ− is not an ending stage, then

rσ > cσ−/2 = cη/2 = rη/2, rσ < cσ− + 1 = cη + 1 = rη + 1,

N(σ) = −⌈2/cη⌉ · (rσ − rη) +N(η) > −⌈2/rη⌉+ 2⌈2/rη⌉ = ⌈2/rη⌉

If σ− is an ending stage, note that |r0σ − rσ− | = |wσ−| < h(|σ−|) ≤ h(|η|) and
rσ− ∈ (rη/2, rη + 1).

In case σ− is a T -failed ending stage, N saves 1 and rσ = r0σ. Then

rσ ≤ cσ−/2 = rη/2, rσ ≥ rσ− − |r0σ − rσ− | > rη/2− h(|η|) > rη/4,

and

N(σ)−N(η) = −⌈2/cη⌉ · (rσ − rη)− 1 ≥ ⌈2/cη⌉ · rη/2− 1 ≥ 0

M(σ)−M(η) = rσ − rη ≤ rη/2− rη < 0.

Thus, N(σ)−M(σ) ≥ N(η)−M(η).
In case σ− is a T -successful ending stage, T saves 1, rσ = r0σ − 1 and

r0σ ≥ cσ− + 1 = rη + 1, r0σ ≤ rσ− + |r0σ − rσ− | < rη + 1 + h(|η|) < rη + 2,

Then rσ ≥ rη and

N(σ) = −⌈2/cη⌉ · (r0σ − rη) +N(η) > −2⌈2/cη⌉+ 2⌈2/cη⌉ = 0.

6.7 Weakness of Timid Supermartingales 115

Lemma 6.7.4. T and all {Nρ}ρ∈I are g-granular supermartingales.

Proof. As the wagers of T and Nρ are always integer multiples of the wagers
of M , the g-granularity of T,Nρ follows from the g-granularity of M . Then by
construction, we only need to verify that T and Nρ are always non-negative.

As rλ = 1 > 0, by Lemma 6.7.2 and Lemma 6.7.3 inductively we easily get
rσ > 0 for all σ. Then T (σ) = M(σ) + rσ > 0 for all σ, as required.

Fix ρ ∈ I, for simplicity we drop the subscript ρ for Nρ for the rest of this
proof. First for all σ ⪰̸ ρ, N(σ) = N(ρ) = M(ρ) ≥ 0. And by Lemma 6.7.3
N(σ) > 0 for all σ such that σ− is a cycle stage but not T -failed ending stage.
Moreover, if σ− is a T -successful ending stage, then on all strings extending σ

N takes the same value as N(σ), which is positive. On the other hand, as ρ is a
neutral stage for N and N(ρ) − M(ρ) = 0, by Lemma 6.7.2 and Lemma 6.7.3
inductively we get that for all σ such that σ− is a neutral stage or T -failed end-
ing stage, N(σ)−M(σ) ≥ 0, i.e. N(σ) ≥ M(σ) ≥ 0.

Lemma 6.7.5. For any X such that lim supnM(X ↾ n) = ∞, there are in-
finitely many cycles starting and ending along X.

Proof. If only finitely many cycles occur along X, one of the following must
hold:

(i) almost all prefixes of X are neutral;

(ii) there exists a cycle along X which never ends.

It remains to show each of the above clauses implies lim supnM(X ↾ n) < ∞.
First assume that (i) holds and that η is the least prefix of X such that all

prefixes of X after η are neutral. If ρ is the index of η, then for all η ⪯ σ ≺ X

we have iσ = ρ and cσ = cη. As h → 0, then there is η ⪯ τ ≺ X such that
h(|τ |) < min{1, cη/4} = min{1, cτ/4}. Moreover, for all τ ⪯ σ ≺ X, h(|σ|) <

min{1, cσ/4}. As no cycle starts at any prefix of X after η, then for all τ ⪯ σ ≺
X, N(σ) ≤ 2⌈2/cσ⌉ = 2⌈2/cη⌉. As showed in the proof of Lemma 6.7.4, at a
neutral stage σ it holds N(σ) ≥ M(σ). Hence M is bounded above along X, as
required.

116 Betting with Restrictions on Wagers

Second, assume that (ii) holds and at ρ ≺ X a cycle starts, which never ends
along X. Then for all η ≺ X after ρ we have rη − rρ = M(η) −M(ρ). By con-
dition for ending a cycle in the construction, it follows that rη remains bounded
above by rρ + 1 along X, hence M is bounded above along X, as required.

Lemma 6.7.6. For any X such that lim supnM(X ↾ n) = ∞, either T success-
fully saves along X or Nρ successfully saves along X for some ρ ∈ I.

Proof. By the assumption on X and Lemma 6.7.5 there are infinitely many
cycles along X. Since a new cycle only starts after the previous one ends, and
since each ending stage is either T -successful or in T -failed, it follows that one
of the following holds:

(a) there are infinitely many T -successful cycles along X;

(b) all but finitely many cycles along X are T -failed.

If (a) holds, then by Lemma 6.7.3, T successfully saves along X. If (b) holds,
the indices of the initial segments of X reach a limit ρ. Hence starting from ρ

and along X, the backup supermartingale Nρ will remain active, and there will
be infinitely many ρ-cycles and all of them will end in T -failure. By Lemma 6.7.3
Nρ successfully saves along X.

Let C = {T} ∪
∪

σ∈I{Nσ}, by Lemma 6.7.6 we have Succ(M) ⊆ Save[C].
Clearly, every supermartingale in C is computable from M, g. This completes
the proof of Theorem 6.7.1.

Corollary 6.7.7. For any computable order g,

Succ[CSg∗] ⊆ Save[CSg].

6.8 Summary
Liquidity in betting situations, in the sense of infinite divisibility of the capital,
allows for certain flexibilities in the strategies, including avoiding bankruptcy
while placing infinitely many bets, and saving an unbounded capital on the
condition that the betting strategy is successful. Such properties are based on
the fact that liquidity allows arbitrary scaling of the strategy, i.e. the imple-
mentation of essentially the original strategy but with arbitrarily small avail-
able capital. We have already seen that in a casino where a fixed betting unit

6.8 Summary 117

is set, things may change, like there exists a casino sequence along which it is
possible to reach unbounded profit but it is not possible to save unbounded
profit by constantly withdraw the profit into some frozen account. While for
a casino without fixed betting unit, such a casino sequence never exists. We
study here to what extent such liquidity is necessary to lead different proper-
ties.

Image a casino with fixed betting units, but the betting units are shrinking
over stages. We study whether the following two properties for classes of bet-
ting strategies with different shrinking rates.

(a) One can win with arbitrary small initial capital along any sequence that
a given strategy wins;

(b) One can win by saving unbounded profit, i.e. withdrawing the profit into
some frozen account, along any sequence that a given strategy reaches
unbounded profit.

We show that in case the shrinking is fast, say with a rate faster than 1/n,
then such a casino shares both properties with a casino without fixed betting
units. However in case the shrinking is slower, on the one hand, either property
is completely possessed by such a casino. On the other hand, a weaker version
(a′) is still preserved.

(a′) A countable family of strategies with arbitrary small initial capital can
win along any sequence that a given strategy wins.

However, whether an analog for property (b) can be found is still an open prob-
lem:

Question 6. For a computable slow order g, given a g-granular supermartin-
gale is there always a countable family of g-granular supermartingales such that
there is always one of them successfully saves on any sequence that the given
supermartingale succeeds on?

In order to know more about this question, we extended our research to the
casinos where a maximal of units is exposed to the wagers. In such a casino,
only “timid” strategies are allow, while “bold” strategies are forbidden. We
found that for such a casino, Question 6 has a negative answer. In the mean-
while, we also show that for Question 6, if the given supermartingale is “timid”,

118 Betting with Restrictions on Wagers

then the required countable family of g-granular supermartingales indeed can
be always found. These might be some steps towards an answer for Question 6,
though the question in general remains open.

References

[1] Klaus Ambos-Spies. On the strongly bounded Turing degrees of the com-
putably enumerable sets. In Computability and Complexity, pages 563–598.
Springer, 2017.

[2] Klaus Ambos-Spies, Decheng Ding, Yun Fan, and Wolfgang Merkle. Max-
imal pairs of computably enumerable sets in the computably Lipschitz de-
grees. Theory of Computing Systems, 52(1):2–27, 2013.

[3] Klaus Ambos-Spies, Nadine Losert, and Martin Monath. Array noncom-
putable left-c.e. reals. In preparation.

[4] George Barmpalias and Nan Fang. The importance of initial capital in
betting. In preparation.

[5] George Barmpalias and Nan Fang. Granularity of wagers in games and the
(im) possibility of savings. Submitted.

[6] George Barmpalias and Andrew E. M. Lewis. A c.e. real that cannot be
sw-computed by any Omega number. Notre Dame Journal of Formal
Logic, 47(2):197–209, 2006.

[7] George Barmpalias and Andrew Lewis-Pye. Computing halting probabil-
ities from other halting probabilities. Theoretical Computer Science, 660:
16–22, 2017.

[8] George Barmpalias and Andrew Lewis-Pye. Limits of the Kucera-Gacs
coding method. In Post-proceedings volume of SEALS 2016 (South Eastern
Logic Symposium). World Scientific, 2017.

[9] George Barmpalias and Andrew Lewis-Pye. Optimal redundancy in com-
putations from random oracles. Journal of Computer and System Sciences,
92:1–8, 2018.

[10] George Barmpalias, Rodney G. Downey, and Noam Greenberg. Working
with strong reducibilities above totally ω-c.e. and array computable de-
grees. Transactions of the American Mathematical Society, 362(2):777–813,
2010.

[11] George Barmpalias, Rodney G. Downey, and Michael McInerney. Integer-
valued betting strategies and Turing degrees. Journal of Computer and
System Sciences, 81:1387–1412, 2015.

120 References

[12] George Barmpalias, Nan Fang, and Andrew Lewis-Pye. Optimal asymp-
totic bounds on the oracle use in computations from Chaitin’s Omega.
Journal of Computer and System Sciences, 82(8):1283–1299, 2016.

[13] George Barmpalias, Andrew Lewis-Pye, and Jason Teutsch. Lower bounds
on the redundancy in computations from random oracles via betting
strategies with restricted wagers. Information and Computation, 251:287–
300, 2016.

[14] George Barmpalias, Nan Fang, and Andrew Lewis-Pye. Monotonous bet-
ting strategies in warped casinos. Information and Computation, Accepted.

[15] Laurent Bienvenu, Glenn Shafer, and Alexander Shen. On the history of
martingales in the study of randomness. Electronic Journal for History of
Probability and Statistics, 5(1), 2009.

[16] Laurent Bienvenu, Frank Stephan, and Jason Teutsch. How powerful are
integer-valued martingales? In Programs, Proofs, Processes, 6th Confer-
ence on Computability in Europe, CiE, 2010, Ponta Delgada, Azores, Por-
tugal, June 30 - July 4, 2010, Proceedings, pages 59–68, 2010.

[17] Francesca Zaffora Blando. From von Mises’ Impossibility of a Gambling
System to Probabilistic Martingales. MSc dissertation, Institute of Logic,
Language and Computation, University of Amsterdam, The Netherlands,
2015.

[18] Gregory J. Chaitin. A theory of program size formally identical to infor-
mation theory. Journal of the ACM, 22:329–340, 1975. ISSN 0004-5411.

[19] Adam Chalcraft, Randall Dougherty, Chris Freiling, and Jason Teutsch.
How to build a probability-free casino. Information and Computation, 211:
160–164, 2012.

[20] Rodney G. Downey. Randomness, computation and mathematics. In How
the World Computes: Turing Centenary Conference and 8th Conference
on Computability in Europe, CiE 2012, Cambridge, UK, June 18-23, 2012.
Proceedings, CiE’12, pages 162–181, Berlin, Heidelberg, 2012. Springer.

[21] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness
and Complexity. Springer, 2010.

[22] Rodney G. Downey, Carl Jockusch, and Michael Stob. Array nonrecursive
sets and multiple permitting arguments. In Recursion Theory Week: Pro-
ceedings of a Conference held in Oberwolfach, FRG, March 19-25, 1989,
pages 141–173. Springer, 1990.

[23] Rodney G. Downey, Denis R. Hirschfeldt, and Geoff LaForte. Randomness
and reducibility. Journal of Computer and System Sciences, 68(1):96–114,
2004.

References 121

[24] Yun Fan and Liang Yu. Maximal pairs of c.e. reals in the computably
Lipschitz degrees. Annals of Pure and Applied Logic, 162:357–366, 2011.

[25] Nan Fang and Wolfgang Merkle. Extending cl-reducibility on left-c.e. reals.
In preparation.

[26] Péter Gács. Every sequence is reducible to a random one. Information and
Control, 70(2):186–192, 1986.

[27] Ian Herbert. Lowness for integer-valued randomness. Computability, 5(2):
103–109, 2016.

[28] Antonín Kučera. Measure, Π0
1-classes and complete extensions of PA. In

Heinz-Dieter Ebbinghaus, Gert H. Müller, and Gerald E. Sacks, editors,
Recursion Theory Week: Proceedings of a Conference held in Oberwolfach,
West Germany, April 15-21, 1984, pages 245–259. Springer, 1985.

[29] Leonid A. Levin. Some Theorems on the Algorithmic Approach to Prob-
ability Theory and Information Theory. Dissertation in mathematics,
Moscow University, 1971.

[30] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and
Its Applications. Springer, third edition, 2008.

[31] Elliott H. Lieb, Daniel Osherson, and Scott Weinstein. Elementary proof
of a theorem of Jean Ville. Unpublished manuscript: arXiv:cs/0607054v1,
2006.

[32] Jack H. Lutz. Gales and the constructive dimension of individual se-
quences. In Automata, languages and programming (Geneva, 2000), vol-
ume 1853 of Lecture Notes in Computer Science, pages 902–913. Springer,
Berlin, 2000.

[33] Jack H. Lutz. The dimensions of individual strings and sequences. Infor-
mation and Computation, 187, 2003.

[34] Roger Mansuy. Histoire de martingales [the origins of the word ‘mar-
tingale’]. Mathématiques & Sciences Humaines [Mathematical Social
Sciences], 169(1):105–113, 2005. Translated from the French by Ronald
Sverdlove, in Electronic Journal for History of Probability and Statistics.
Vol.5, no.1, June 2009.

[35] Per Martin-Löf. The definition of random sequences. Information and
Control, 9:602–619, 1966.

[36] Elvira Mayordomo. A Kolmogorov complexity characterization of con-
structive Hausdorff dimension. Information Processing Letters, 84(1):1–3,
2002.

[37] Wolfgang Merkle and Nenad Mihailović. On the construction of effectively
random sets. The Journal of Symbolic Logic, 69(3):862–878, 09 2004.

122 References

[38] André Nies. Computability and Randomness. Oxford University Press,
2009.

[39] Piergiorgio Odifreddi. Classical Recursion Theory: The Theory of Func-
tions and Sets of Natural Numbers. Studies in Logic and the Foundations
of Mathematics. Elsevier Science, 1992.

[40] Ron Peretz. Effective martingales with restricted wagers. Information and
Computation, 245:152–164, 2015.

[41] Ron Peretz and Gilad Bavly. How to gamble against all odds. Games and
Economic behavior, 94:157–168, 2015.

[42] Claus-Peter Schnorr. A unified approach to the definition of random se-
quences. Mathematical Systems Theory, 5(3):246–258, 1971.

[43] Claus-Peter Schnorr. Zufälligkeit und Wahrscheinlichkeit. Eine algorith-
mische Begründung der Wahrscheinlichkeitstheorie. Springer, Berlin, 1971.
Lecture Notes in Mathematics, Vol. 218.

[44] Claus-Peter Schnorr. Process complexity and effective random tests. Jour-
nal of Computer and System Sciences, 7(4):376–388, 1973.

[45] J. Laurie Snell. Gambling, probability and martingales. The Mathematical
Intelligencer, 4(3):118–124, 1982.

[46] Robert I. Soare. Computability theory and differential geometry. Bulletin
of Symbolic Logic, 10(4):457–486, 2004.

[47] Robert M. Solovay. Handwritten manuscript related to Chaitin’s work.
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 215
pages, 1975.

[48] Kohtaro Tadaki. A generalization of Chaitin’s halting probability Ω and
halting self-similar sets. Hokkaido Mathematical Journal, 31(1):219–253,
2002.

[49] Jason Teutsch. A savings paradox for integer-valued gambling strategies.
International Journal of Game Theory, 43(1):145–151, 2014.

[50] Michiel van Lambalgen. Random Sequences. PhD dissertation, University
of Amsterdam, The Netherlands, 1987.

[51] Jean-André Ville. Étude Critique de la Notion de Collectif. Gauthier-
Villars, Paris, 1939. Monographies des Probabilités. Calcul des Probabil-
ités et ses Applications.

[52] Liang Yu and Decheng Ding. There is no sw-complete ce real. The Journal
of Symbolic Logic, 69(4):1163–1170, 2004.

	Table of contents
	1 Introduction and Notation
	1.1 Introduction
	1.2 Basic Notation and Facts

	2 Oracle Computation as Coding
	2.1 Effectiveness and Randomness
	2.2 Oracle Computation and Redundancy
	2.3 Coding by Permitting

	3 Coding Left-C.E. Reals with Redundancy
	3.1 Coding with Large Redundancy
	3.2 A Loading Process
	3.3 A Maximal Pair in Coding with Small Redundancy
	3.4 Random Reals Fail in Coding with Small Redundancy
	3.5 A.N.C. Degrees and Coding with Small Redundancy
	3.6 Summary

	4 Martingales as Betting Strategies
	4.1 Martingales and Supermartingales
	4.2 Computable (Super)martingales and Their Mixtures
	4.3 Success of (Super)martingales
	4.4 Effective Hausdorff Dimension

	5 Betting with Preferences on Outcomes
	5.1 Monotonous (Super)martingales
	5.2 Computable Single-sided Martingales
	5.3 Strongly Left-C.E. Separable Supermartingales
	5.4 Strongly Left-C.E. Decidably-sided Supermartingales
	5.5 Summary

	6 Betting with Restrictions on Wagers
	6.1 Granularity and Timidness of Supermartingales
	6.2 Fine Granularity and Initial Capital
	6.3 Coarse Granularity and Initial Capital
	6.4 Fine Granularity and Saving Strategies
	6.5 Coarse Granularity and Saving Strategies
	6.6 Timid Supermartingales of Coarse Granularity
	6.7 Weakness of Timid Supermartingales
	6.8 Summary

	References

