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Summary 

The evolutionary conserved Erk Mapk (mitogen activated protein kinase) pathway coordinates essential 

cellular functions including cell survival, division, growth, motility and differentiation [9,61]. To execute 

such intricate functions, Erk regulates transcription factors impinging on gene expression, and a vast 

assortment of cytosolic and nuclear substrates coordinating other aspects of cellular metabolism. As 

part of the polyvalent nature of this pathway’s functionality, Erk Mapk has been firmly established as a 

growth promoter in different contexts [3,69,70,151-153]. However, despite a vast literature, the nature of 

the effectors and interactions underlying Mapk-driven growth remains poorly understood. Therefore, 

the question that sparked this study was- how does Mapk drive growth? Does it invoke a single growth 

mechanism or (like other metabolic decisions) it relies on the concerted action of multiple effectors 

acting at different stages and/or in different developmental contexts?  

Our study brings forward a model according to which Erk Mapk may promote growth in insect cells via 

two mechanisms. A first Mapkapk-driven mechanism (Mapk activated protein kinase) that may directly 

promote translation or activate other effectors (like ToR) in order to do so. And a second ToRC1-de-

pendent mechanism (target of rapamycin complex1) which promotes biosynthetic pathways and even-

tually growth. ToRC1 integrates five major inputs (growth factors, amino acids, energy, stress and oxy-

gen) and accordingly regulates anabolic pathways (like protein and lipid synthesis) as well as catabolic 

pathways (like autophagy) [154]. Our study supports a ToR-dependent mechanism as we learned that in 

cultured insect cells, Ras-Mapk appears to be sufficient and required for ToRC1 activation (II-2, III-4/5), 

while in the animal’s intestine Ras-Mapk depends on ToRC1 activity to fully promote growth (II-3, 

III-6). Furthermore, we found that Ras-Mapk activation in the developing intestine acts as a potent 

growth and proliferation promoter, even under conditions of protein starvation (II-4, III-6)—a pheno-

type previously attributed to ToRC1 [47]. Consistently, both Erk and one of its targets (Rsk) were found 

to positively regulate ToRC1 in mammalian cells [30-36]. As mentioned, Mapk pathways are firmly 

wired into the cell’s metabolic framework by phosphorylating a varied assortment of target proteins in 

the nucleus as in the cytoplasm. Among these substrates are the Mapkapks [10,11]. Our study also sup-

ports a Mapkapk-dependent growth mechanism, as our in vitro assays reveal that three Mapkapks 

(Mnk, Rsk, Msk) are required for insect cell growth under normal and growth factor stimulated condi-

tions (II-1, III-2/3). Furthermore, mammalian studies have attributed a significant extent of Mapk func-

tionalities to the activation of downstream Mapkapks (III-3). 
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There is hardly any cellular stimulus that doesn’t feed into Mapk and ToR pathways. It is easy to see 

how connecting them would be advantageous not only for tissue homeostasis and regeneration but also 

for keeping developmental and metabolic decisions in sync. Mapk and ToR pathways are often hijacked 

by different cancers to initiate and grow tumors, and eventually metastasize. Dysregulation of Map-

kapks is also associated with multiple human diseases including cancer (I-3). The ability of Ras-Mapk to 

drive growth and initiate tumors has been exploited in designing fly-based screening platforms for po-

tential anticancer agents (I-5). The significance of our study and others is therefore far reaching, not 

only for understanding of how cells integrate multiple inputs to grow and dynamically coordinate de-

velopmental with metabolic decisions, but also towards designing more effective therapies targeting 

tumor growth. 
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Zusammenfassung 

Der evolutionär konservierte Erk Mapk-Weg koordiniert wesentliche zelluläre Funktionen, ein-

schließlich Zellüberleben, Teilung, Wachstum, Motilität und Differenzierung [9,61]. Um solche kom-

plizierten Funktionen auszuführen, regelt Erk Transkriptionsfaktoren, die auf die Genexpression auftre-

ffen, und eine ausgedehnte Auswahl an zytosolischen und nuklearen Substraten, die andere Aspekte des 

Zellstoffwechsels koordinieren. Als Teil der polyvalenten Natur dieser Signalweg-Funktionalität ist Erk 

Mapk als Wachstumsförderer in unterschiedlichen Kontexten fest etabliert [3,69,70,151-153]. Trotz einer 

umfangreichen Literatur bleibt die Art der Effektoren und Interaktionen, die dem Mapk-getriebenen 

Wachstum zugrunde liegen, schlecht verstanden. Daher war die Frage, die diese Studie ausgelöst hat: 

Wie funktioniert Mapk Wachstum? Gibt es einen einzigen Wachstumsmechanismus an oder (wie an-

dere metabolische Entscheidungen) beruht er auf der konzertierten Aktion mehrerer Effektoren, die auf 

verschiedenen Stufen und/oder in unterschiedlichen Entwicklungskontexten handeln? 

Unsere Studie bringt ein Modell vor, nach dem Erk Mapk das Wachstum von Insektenzellen über zwei 

Mechanismen fördern kann. Ein erster Mapkapk-getriebener Mechanismus (Mapk-aktivierte Proteinki-

nase), der die Translation direkt fördern oder andere Effektoren (wie ToR) aktivieren kann, um dies zu 

tun. Und ein zweiter ToRC1-abhängiger Mechanismus (Target/Ziel von Rapamycin-Komplex1), der 

Biosynthesewege und schließlich Wachstum fördert. ToRC1 integriert fünf wichtige Inputs (Wachs-

tumsfaktoren, Aminosäuren, Energie, Stress und Sauerstoff) und reguliert dementsprechend anabole 

Wege (wie Protein- und Lipidsynthese) sowie katabolische Wege (wie Autophagie) [154]. Unsere Studie 

unterstützt einen ToR-abhängigen Mechanismus, wie wir gelernt haben, dass in kultivierten Insekten-

zellen Ras-Mapk für die ToRC1-Aktivierung (II-2, III-4/5) ausreichend und erforderlich ist, während im 

Tierdarm Ras-Mapk davon abhängt Auf die Aktivität von ToRC1, um das Wachstum vollständig zu 

fördern (II-3, III-6). Darüber hinaus haben wir festgestellt, dass die Ras-Mapk-Aktivierung im Entwick-

lungsdarm auch unter den Bedingungen des Proteinverhungers (II-4, III-6) als potenter Wachstums- 

und Proliferations-Promotor wirkt - ein Phänotyp, der zuvor ToRC1 zugeschrieben wurde [47]. Konse-

quent wurden sowohl Erk als auch eine der Erk-Targets (Rsk) gefunden, um ToRC1 in Säugetierzellen 

positiv zu regulieren [30-36]. Wie bereits erwähnt, sind Mapk-Wege fest in das metabolische Rahmen 

der Zelle eingebunden, indem sie eine abwechslungsreiche Sortierung von Zielproteinen im Zellkern 

wie im Zytoplasma phosphorylieren. Unter diesen Substraten sind die Mapkapk [10,11]. Unsere Studie 

unterstützt auch einen Mapkapk-abhängigen Wachstumsmechanismus, da unsere in vitro Assays zeigen, 
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dass drei Mapkapks (Mnk, Rsk, Msk) für das Insektenzellwachstum unter normalen und Wachstumsfak-

tor stimulierten Bedingungen erforderlich sind (II-1, III-2/3) ). Darüber hinaus haben Säugetierstudien 

ein signifikantes Ausmaß der Mapk Funktionalitäten zur Aktivierung von Downstream Mapkapks (III-3) 

zugeschrieben. 

Es gibt kaum einen zellulären Stimulus, der sich nicht in Mapk- und ToR-Wege einbringt. Es ist leicht zu 

sehen, wie ihre Verbindung nicht nur für die Gewebshomöostase und die Regeneration vorteilhaft wäre, 

sondern auch für die Entwicklung von Entwicklungs- und Stoffwechselentscheidungen. Mapk- und ToR-

Wege werden oft von verschiedenen Krebsarten entführt, um Tumore zu initiieren und zu wachsen und 

schließlich zu metastasieren. Dysregulation von Mapkapks ist auch mit mehreren menschlichen 

Krankheiten einschließlich Krebs (I-3) assoziiert. Die Fähigkeit von Ras-Mapk, das Wachstum zu 

fördern und Tumore zu initiieren, wurde bei der Gestaltung von Fliegen-basierten Screening-Plattfor-

men für potentielle Antikrebsmittel (I-5) ausgenutzt. Die Bedeutung unserer Studie und anderer ist 

daher weitreichend, nicht nur für das Verständnis davon, wie die Zellen mehrere Inputs integrieren, um 

die Entwicklung mit metabolischen Entscheidungen zu wachsen und dynamisch zu koordinieren, son-

dern auch auf die Entwicklung effektiverer Therapien, die auf das Tumorwachstum abzielen. 
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introduction growth control and pathways

I. INTRODUCTION 

I-1 GROWTH CONTROL AND GROWTH PATHWAYS 

General Growth Control  

In unicellular organisms, cell growth and proliferation are mainly determined by the nutri-

tional content of the surrounding medium. In multicellular organisms, however, growth, pro-

liferation and survival are differentially regulated in different tissues. This is achieved by pro-

viding a relatively constant supply of nutrients through a circulatory system, and an assort-

ment of signals instructive for cell growth, proliferation and survival. Cell growth [mass accu-

mulation] and cell proliferation (cell division) are separable processes controlled through sepa-

rate mechanisms. A cell can grow without dividing, like a postmitotic neurone, or divide with-

out growing, like a fertilised egg undergoing cleavage divisions. Cell cycle progression tends to 

be a all-or-none process triggered by a certain threshold of mitogenic signaling. In contrast, 

most cells, whether in or out from the cycle, must maintain a constant balance between their 

anabolic [biosynthetic] and catabolic (degradative) pathways to maintain their biological func-

tion. A cell’s size and growth rate is determined by a balance between buildup of macromole-

cules (through biosynthesis or uptake) and their loss (through degradation or secretion), 

which is dynamically controlled by changing levels of growth factor signaling. 

Growth Pathways  

One major regulator of cell growth and cell size is the IGF/Pi3k/Akt/ToRC1 pathway. IGF is a 

limiting growth factor acting both systemically (overexpression during development leads to 

larger animals) and locally (overexpression in the adult leads to cell hypertrophy). The key 

growth-regulating pathway activated downstream of IGF is Pi3k/Akt/ToRC1. ToRC1 is a major 

signaling hub receiving inputs from at least four major cues - amino acid levels, stress, energy 

and oxygen - and integrating these with signals from several pathways. Through this concerted 

action, ToRC1 activity promotes multiple biogenic processes, including nutrient uptake and 

protein and lipid synthesis, and also inhibits catabolic processes such as autophagy [154]. An-
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introduction growth control and pathways

other positive regulator of cell growth and cell size is the transcription factor Myc. Myc pro-

motes biogenic pathways by increasing ribosomal RNA levels, nucleolar size, protein biogene-

sis, and the metabolic reprogramming required for cell growth [203,224,225]. Importantly, 

Myc and Pi3k differentially activate biogenic pathways, with Myc driving and increase in cell 

protein and ribosome content, while Pi3k strongly stimulates lipogenesis [224]. The Hippo 

pathway is another regulator of tissue/organ size, controlling cell proliferation and apoptosis, 

and thereby cell number [226]. The main downstream effector of this pathway is the transcrip-

tional co-activator Yap, which functions to promote cell survival and proliferation. Hippo con-

trols production of cells and sustains a certain level of mass likely through integration with 

biogenic pathways. Accordingly, Hippo has been found to crosstalk in drosophila and mam-

mals with ToR signaling (with Yap activating ToR by decreasing Pten levels) and with Myc 

[226-228].  

The ‘Growth Pathways’ figure (next page) illustrates the main pathways promoting growth in 

drosophila as in mammals. They function as part of an interconnected network being em-

ployed differently in different cell types and developmental stages. They are hardwired into the 

cell’s metabolism which is constantly sustained by many millions of reactions occurring every 

second.
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introduction ras mapk pathway

I-2 RAS-MAPK PATHWAY 

Mapk Pathways 

Mitogen activated protein kinase (Mapk) pathways are among the most ancient signaling 

pathways. All eukaryotic cells have multiple Mapk pathways that convert extracellular stimuli 

into a wide range of cellular responses, including survival, growth, proliferation, motility and 

differentiation. 14 Mapks have been characterised so far into 7 groups, though the most stud-

ied among these are the Erk, p38 and Jnk pathways. They are also conserved between mam-

mals and drosophila. These conventional Mapk pathways comprise a cascade of sequentially 

acting kinases: a Mapk (Ser/Thr kinase), a Mapkk (a Thr/Tyr kinase) and a Mapkkk (a Ser/Thr 

kinase). Extracellular stimuli lead to Mapkkk activation as a result of its phosphorylation or 

interaction with a GTP-binding protein of the Ras/Rho family. The Mapkkk then phosphory-

lates and activates the Mapkk. The Mapkk in turn phosphorylates and activates the Mapk at a 

conserved Thr-X-Tyr motif located in the activation loop of the kinase domain [229,230]. 

Activation Mechanisms and Inhibitors 

The Erk Mapk pathway responds to growth factors, including epidermal growth factor (EGF), 

platelet derived growth factor (PDGF) and nerve growth factor (NGF), and in response to in-

sulin [232]. The Erk pathway also responds to ligands of the heterotrimeric G-protein coupled 

receptors (GPCRs), cytokines, osmotic stress and microtubule disorganisation [231]. In 

drosophila, the Egfr Mapk pathway responds to four different ligands: Gurken, Spitz, Keren 

and Vein. Gurken is used during embryogenesis, while the other three are employed at other 

developmental stages [61]. Activation of the Erk module occurs primarily through receptor 

tyrosine kinase receptors (RTKs). Ligand binding triggers receptor dimerisation and activa-

tion, and consequently autophosphorylation of Tyr residues in the intracellular domain [233]. 

These phosphorylations create new binding sites for proteins with SH2 (Src homology 2) or 

PTB (phosphotyrosine binding) domains, such as Grb2 (growth factor receptor bound protein 

2). The primary Ras activation route occurs at the plasma membrane and is initiated by Sos 

[son of sevenless], a guanine nucleotide exchange factor (GEF). Once Sos is recruited to the 

plasma membrane via its interaction with Grb2, it stimulate Ras to exchange its bound GDP 

for GTP and become activated. Activated Ras can then directly interact with its targets, among 

which is the Mapkkk Raf. Activated Raf in turn phosphorylates and activates the Mapkk Mek, 
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introduction ras mapk pathway

that finally phosphorylates the Mapk Erk at Thr and Tyr residues in a conserved Thr-Glu-Tyr 

(TEY) motif in its activation loop.  

Whereas Raf and Mek have a restricted substrate specificity, Erk targets a very broad assort-

ment of cytoplasmic and nuclear targets to execute pathway tasks [234,235]. Multiple RTK 

receptors converge on this signaling cascade in drosophila as in mammals. Different RTKs do 

however use different adaptor proteins. For example, while Grb2 can directly bind to the Egf 

receptor, it requires co-adaptors for binding to other RTKs, like Dof for Fgf receptors and Shc 

for the insulin receptor. However, once Sos is recruited by Grb2, all pathways converge on the 

same signaling cascade [236].  

Mapk inhibitors have been developed since the mid 1990’s and extensively used to implicate 

Mek/Erk in diverse cellular processes. One class of such inhibitors is typified by the Mek in-

hibitor U0126 [237], which is not competitive with respect to ATP and appears to interact 

with the unphosphorylated kinase more strongly than with the phosphorylated species. This 

interaction prevents Mek phosphorylation and/or the conformational transition required for 

its activation [238]. Additional noncompetitive inhibitors were developed through the years 

and have entered clinical trials as potential anticancer agents [80]. 

Substrates and Biological Functions 

In quiescent cells, most if not all Erk Mapk pathway components are located in the cytoplasm. 

Upon activation, a significant proportion of Erk translocates into the nucleus [239,240]. Al-

though not completely understood, studies have revealed multiple facets of this mechanism 

involving release from cytoplasmic anchors, phosphorylation and dimerisation, nuclear reten-

tion and a novel nuclear translocation sequence (NTS) located in the kinase domain [241,242]. 

Upon activation, Erk Mapk phosphorylates a large ensemble of targets in the cytoplasm as 

well as in the nucleus. Many of these targets have been well characterised in mammalian cells. 

Some of them are in the cytoplasm (death associated protein kinase DAPK, Tsc2, Rsk, Mnk), 

some are in the nucleus (Elk1, myocyte enhancer factor 2 Mef2, Stat3, Fos and Myc), whereas 

other are associated with membranes (CD120, Syk, calnexin) or the cytoskeleton (neurofila-

ments and paxillin)[243].  

In drosophila, most Mapk driven phenotypes have been described through its function as a 

transcriptional regulator. Mapk impinges on transcription through two main mechanisms, by 

 9



introduction ras mapk pathway

phosphorylating and stimulating transcriptional activators and by phosphorylating and in-

hibiting transcriptional repressors. One transcriptional activator stimulated by Mapk is Point-

ed (Pnt). Pointed is produced in two alternative forms, PntP2 that requires Mapk phosphory-

lation for activation, and PntP1 who is constitutively active but requires Mapk for its tran-

scriptional induction [244-246]. As mentioned, Mapk also targets transcriptional repressors. 

Two such repressors are Yan and Capicua. Phosphorylation of these repressors by Mapk leads 

to their inactivation and nuclear export, thus allowing expression of many target genes (Yan 

247,248 Cic 249-252). Among these targets is the ETS domain transcription factor Ets21c, 

which is transcriptionally suppressed by capicua in the adult intestine and gains in expression 

following Egfr activation in this tissue [54]. The functional consequences of Mapk cytoplasmic 

targets in drosophila are just beginning to be understood. One example being the RNA-bind-

ing protein How whose phosphorylation by Mapk facilitates its dimerisation and binding of 

target RNAs [253]. 

The Erk Mapk pathway has been implicated in diverse cellular functions, including cell sur-

vival, growth, proliferation, motility and differentiation. In drosophila, Erk Mapk pathway is 

used repeatedly in various context such as dorsoventral patterning, wing vein determination 

and oogenesis [61]. One of the best characterised functions facilitated by the Erk Mapk mod-

ule is cell proliferation. Erk is rapidly activated by mitogenic stimuli and is required for normal 

cells to progress from G1 to S phase of the cell cycle. Erk promotes cell cycle progression 

through several mechanisms [254]. For example, Erk directly interacts with the cyclin depen-

dent kinase Cdc2 [255]. Furthermore, multiple cell cycle genes were found to be transcription-

ally induced in drosophila upon capicua downregulation [a transcription factor normally inhib-

ited upon Erk Mapk activation][54].  
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Mapk Figure 2. The Ras-Erk Mapk module in drosophila. Mitogens and growth factors bind to RTK 

(receptor tyrosine kinase) receptors triggering receptor dimerisation and activation. Egfr (epidermal 

growth factor receptor) is such an RTK receptor functioning upstream of the Ras-Erk module, being 

expressed at various stages during drosophila development and is an integral part of this study’s 

work. As activating ligands for the Egfr receptor, function in drosophila Spitz, Keren, Gurken and 

Vein. Upon activation, the RTK receptors alter their conformation, leading to phosphorylation of 

tyrosine residues on their intracellular domains. This creates binding sites for adaptor proteins, such 

as Grb2 which in turn recruits the GEF (guanine nucleotide exchange factor) protein Sos. Sos 

promotes GDP for GTP exchange on Ras leading to its activation. Active Ras can now interact with 

its substrates among which is the Mapkkk (Mapk kinase kinase) Raf. Activated Raf phosphorylates 

and activates the Mapkk Mek, which in turn phosphorylates and activates the Mapk Erk. Ksr 

functions as a scaffold to increase the efficacy of signaling. Most Ras-Erk functionality in drosophila 

has been attributed to transcriptional regulation. The cardinal transcription factors acting 

downstream of Ras-Erk signaling are the activators PointedP1 and Pointed P2, and the repressors 

Capicua and Yan. PntP2 is activated by Mapk phosphorylation, while PntP1 is constitutively active 

but needs Mapk for its transcriptional induction. Yan and Cic are constitutive repressors which, 

upon Mapk phosphorylation, are inactivated and removed from the nucleus. Argos is part of a 

negative feedback loop initiated by the pathway and acts to sequester active ligands, thereby 

preventing receptor activation. Two additional feedback loops act to attenuate signaling, kekkon 

binds to and prevents receptor activation, whereas sprouty inhibits the intracellular module at 

different steps. Our proposed model adds additional effectors and functionality to the canonical Erk 

Mapk module.

Mapk Figure 1. Mapk signalling cascades leading to activation of Mapkapks. Mitogens, cytokines and 

cellular stresses promote the activation of different Mapk pathways which in turn phosphorylates a 

multitude of cytoplasmic and nuclear substrates. All eukaryotic cells posses multiple Mapk pathways 

which coordinately regulate cell survival, division, growth, motility and differentiation. Each group of 

conventional Mapks consists of a sequentially acting kinase cascade: a Mapk, a Mapk kinase (Mapkk) 

and a Mapkk kinase (Mapkkk). Among the Mapk substrates are members of the Mapkapk (Mapk 

activated protein kinase) family, including Rsk, Mnk and Msk, which act as an additional 

amplification step of the Mapk modules and control a wide range of biological functions.
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I-3 MAPK ACTIVATED PROTEIN KINASES 

As described in the previous section, Mapk pathways are firmly wired into the cell’s metabolic 

mechanisms. To facilitate basic cell functions like survival, proliferation and growth, Erk and 

the other Mapk pathways phosphorylate a varied assortment of target proteins in the nucleus 

as in the cytoplasm. Among these substrates are the Mapk activated protein kinases (Map-

kapks) [10,11]. Two of them were found to be involved in translation control, namely the 

Mnks (Mapk interacting kinases) [12] and the Rsks (p90 ribosomal S6 kinases) [13]. The 

drosophila Rsk ortholog was shown to be involved in modulation of circadian behaviour and 

memory formation [14-16]. Drosophila Mnk homologue is called Lk6, and was shown to be 

important for eIF4E phosphorylation, developmental rate and organism size [104,17-19]. 

Drosophila homologue of another Mapkapk (Msk) is called Jil1, is essential for viability, and it 

functions to maintain euchromatic domains while counteracting heterochromatinisation and 

gene silencing [20,21].  

The Mapk Interacting Kinase, Mnk 

The drosophila Mnk homologue is called Lk6 and it phosphorylates the eukaryotic translation 

initiation factor eIF4E in vivo. In contrast to its mammalian counterparts, Lk6 binds Erk but 

not p38 and is activated by the Erk pathway but not by stress-activated p38 pathway [219]. 

eIF4E controls a crucial step in cap-dependent translation initiation and is  critical for cell 

growth. eIF4E phosphorylation is required in drosophila for normal growth and development 

[256]. Lk6 loss-of-function mutants have reduced eIF4E phosphorylation, reduced viability, 

slower development and reduced adult size, providing evidence that Lk6 is required for organ-

ism growth and development [220]. The effect of Lk6 on growth may be nutrient dependent. 

Accordingly, it was found that Lk6 function is dispensable on a high protein diet (analogous to 

mammals, where loss of Mnk didn’t cause a growth phenotype), whereas Lk6 loss-of-function 

causes a significant growth reduction when the food amino acid content is reduced [221]. At 

the drosophila neuromuscular junction, Mnk has been implicated together with ToR in regu-

lating the synthesis and localisation of synaptic glutamate receptors, a process essential to 

synaptic plasticity [222]. Mnk is suggested to act through its target eIF4E to regulate transla-

tion initiation and synaptic levels of glutamate receptor. Furthermore, Lk6 has been implicat-

ed in the development of Parkinson’s disease [223]. Parkinson’s disease is caused by loss of 

dopaminergic neurons and associated with alpha-synuclein phosphorylation and inclusion 
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body formation. Lk6 has been found to promote alpha-synuclein phosphorylation, to acceler-

ate neurodegeneration and thereby to shorten the lifespan of drosophila [223]. 

Mammals have two Mnk genes, Mnk1 and Mnk2. Both Mnks are expressed in all adult tissues, 

with lower than average levels in the brain and higher levels in the skeletal muscle [105]. Both 

Mnk genes produce two isoforms, a long form (Mnk1A and Mnk2A) with a predominantly cy-

toplasmic localisation, and a short one (Mnk1B and Mnk2B) without a Mapk binding motif, 

equally distributed between the nucleus and the cytoplasm [106-108]. Although their in-

volvement in the general translation control is unclear, several studies in mammalian cell cul-

ture have linked Mnks to the translation initiation complex. Whereas mToRC1 promotes 

eIF4E by inhibiting 4EBP, Mnk may promote cap-dependent translation initiation by directly 

phosphorylating eIF4E [109,110]. Stress and mitogenic stimuli which activate Erk and p38 

promote eIF4E binding to eIF4G in the translation initiation complex, and subsequently Mnk 

dependent phosphorylation of eIF4E [109,111,112]. eIF4E phosphorylation appears to pro-

mote cancer cell proliferation in vitro [113] and enhance the oncogenic potential of eIF4E in 

vivo [114,115]. eIF4E mediated translational regulation of the antiapoptotic protein Mcl1 is 

believed to be important for tumorigenesis [114]. Furthermore, eIF4E phosphorylation was 

shown to be particularly important for the inflammatory response and tumor progression by 

regulating the translation of mRNAs encoding inflammatory molecules (Ccl2 and Ccl7) and 

matrix metalloproteases (Mmp3 and Mmp9), respectively [116]. 

The p90 Ribosomal S6 Kinase, Rsk 

The Rsk family comprises a group of highly related Ser/Thr kinases including four vertebrate 

isoforms and a single orthologue in drosophila. Rsks have been involved in cellular functions 

mediated by the Ras-Mapk pathway, including cell growth, proliferation and survival. Rsks are 

known to be activated by stimuli such as growth factors, peptide hormones and neurotrans-

mitters [257]. Among Rsk nuclear targets are histones and transcription factors like Creb, 

Atf4, Fos and Jun [258].  

One context in which drosophila Rsk has been characterised is the circadian molecular oscilla-

tor. Organisms posses endogenous clocks (or circadian oscillators) that enable them to syn-

chronise their metabolism with diurnal environmental cycles. The circadian molecular clocks 

usually rely on transcriptional and post-transcriptional autoregulatory feedback loops 

in which clock proteins are being modified, translocate to the nucleus and regulate expression 
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of clock genes [259-261]. In drosophila, the molecular clock consists of three feedback loops 

which involve rhythmic changes in the Clock (Clk) transcription factor activity and in the pro-

duction of clock proteins such as Period (Per) and Timeless (Tim) [262,263]. Additionally, the 

molecular clocks in flies and mammals rely on post-transcriptional mechanisms to keep time. 

Prominent among these is the phosphorylation of clock proteins, which regulates their stabili-

ty, nuclear entry and ability to regulate clock gene transcription [264]. Important enzymes 

regulating the drosophila clock feedback loops include casein kinase 1e (CK1e), casein kinase 2 

(CK2), glycogen synthase 3b (Gsk3b), at  least two protein phosphatases (PP2A and PP1) and 

an E3 ubiquitin ligase called Slimb [265,266]. In this context, drosophila Rsk was found to 

bind to casein kinase 2 and to be required in clock neurons for normal circadian periodicity 

[267]. Furthermore, Erk binding to the Rsk protein were shown to be required for normal Rsk 

phosphorylation and modulation of circadian behaviour [268].  

Rsk is considered to be a one of the main effector kinases functioning downstream of the Erk 

Mapk module. Conversely, Rsk was found to  negatively regulate Erk Mapk signaling in 

drosophila. Rsk null mutants are viable, but they exhibit enhanced Erk-dependent differentia-

tion phenotypes, such ectopic photoreceptor and vein cell formation. Conversely, Rsk gain-of-

function mutants strongly suppressed Erk dependent differentiation [14]. Rsk is thought 

to  suppress Erk  activity by acting as a cytoplasmic  anchor and preventing Erk from 

entering the nucleus.  

Rsks have been associated with memory formation in mammals and flies [269,270]. Two stud-

ies in drosophila have indicated that Rsk facilitates normal brain function by regulating 

synapse architecture, and that it does so by inhibiting the Erk Mapk pathway [271,272,274]. 

Both Ras and Erk are enriched at the synaptic boutons of the drosophila neuromuscular junc-

tion (NMJ), and Ras was found to support bouton formation [273]. Drosophila Rsk mutant 

larvae exhibit enhanced bouton numbers, whereas Rsk overexpression in motoneurons re-

duces bouton numbers [274], indicating that Rsk has a negative effect on bouton formation. 

Genetic epistasis studies have further revealed that this inhibitory function is mediated by 

suppressing the Erk Mapk pathway. A second study described Rsk as a regulator Erk activity, 

synaptic function and axonal transport in drosophila motoneurons [272]. Mouse and fly Rsk 

knockout models display various deficits in learning and memory [269,270]. Loss-of-function 

mutations in human Rsk2 cause the Coffin Lowry syndrome, characterised by facial and skele-

tal abnormalities and by mental retardation in affected males [275]. Drosophila Rsk loss-of-
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function mutants display altered neuronal Erk Mapk activity and have defects in synaptic 

morphology and function [272]. An impaired anterograde axonal transport of mitochondria is 

also observed. Loss of Rsk function enhances Erk activity in the neuronal soma, while decreas-

ing Erk activity in axons and the presynapse.  

Rsks are expressed ubiquitously in every human tissue tested, predominantly in the kidney, 

pancreas, lungs, heart, skeletal muscle and brain [82]. Multiple studies in mammalian cells 

have linked Rsk function to translation control. Rsk was originally identified as an in vitro ri-

bosomal protein S6 (rpS6) kinase [83,84]. Later studies have identified S6k as the main rpS6 

kinase, but shown that Rsk also contributes to S6k phosphorylation in vivo, and it does so in a 

ToR independent manner [85]. Rsk mediated rpS6 phosphorylation was found to promote 

cap-dependent translation initiation. A second mechanism through which Rsk may promote 

translation and drive growth is by activating ToRC1. Rsk, and its activator Erk, were found to 

phosphorylate tuberous sclerosis complex component Tsc2, thereby negatively regulating its 

guanine activating protein (GAP) activity towards the small GTPase Rheb [30-33]. Activated 

Rheb, in turn, stimulates ToRC1 activity. Another way in which Rsk and Erk stimulate ToRC1 

is by phosphorylating Raptor, an important interacting partner of ToRC1 [34-36]. A third 

mechanism for Rsk driven translation relies on phosphorylation and inhibition of Gsk3 [86], 

which prevents the suppression of translation initiation factor eIF2B [87]. By phosphorylating 

and inhibiting Gsk3, Rsk may also indirectly promote ToRC1, as Gsk3 and the Lkb1 activated 

kinase Ampk both phosphorylate and activate Tsc2 [88,89]. Finally, Rsk was shown to phos-

phorylate eIF4B and eEF2K, and thereby promote translation inhibition and elongation, re-

spectively [38,90]. 

Mitogen and Stress Activated Kinase, Msk 

The drosophila Msk homologue, Jil1, is essential for viability [96,276] and was found to phos-

phorylate histone 3 at Ser10 (H3S10ph) and thereby maintain gene expression by preventing 

the spread of heterochromatin and gene silencing. Thus, Jil1 localises to euchromatic regions 

of chromosomes and mediates H3S10 phosphorylation at interphase [20,96]. Multiple studies 

have led to a model where gene expression is regulated by a dynamic balance between euchro-

matic marks, such as H3S10ph, and heterochromatic marks, such as H3K9me2 (created by the 

methyltransferase Su(var)3-9)  [277-281]. By creating H3S10ph marks, Jil1 maintains an ac-

tive state of chromatic and prevents the spread of heterochromatic marks (especially 

H3K9me2) and gene silencing. H3S10ph itself is not required for transcription or gene activa-
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tion, but rather to counteract the gene silencing effect of H3K9 dimethylation. A study on sali-

vary glands of drosophila larvae indeed revealed that the H3S10ph mark is enriched at active 

genes whereas the H3K9me2 is largely associated with inactive genes [282]. Jil1 affects a vast 

number of genes, as in Jil1 null mutant larvae about 1500 genes changed their expression lev-

el by at least two fold. About half of these genes were downregulated (and had an increased 

density of H3K9me2 marks) whereas the other half were upregulated (and had a lower density 

of H3k9me2 marks). 

Jil1 is also an important player in the regulation of telomeric chromatin in drosophila. Telom-

ere elongation is needed in all eukaryotes with linear chromosomes as cellular polymerases 

cannot proceed in a 3’ to 5’ direction. Maintaining telomere length is important to avoid pro-

gressive loss of genetic material from the chromosome ends and for the assembly of the 

telomere capping complex (shelterin in telomerase  telomeres or terminin in drosophila) 

[283,284]. Failure of capping complex assembly signals to the DNA damage machinery which, 

by trying to repair the damage, fuses chromosomal ends and thereby creates genomic instabil-

ity [285]. Two mechanisms ensure the elongation of telomeres in eukaryotes, one relying on 

telomerase activity and one relying on transposons activity. Each of these mechanisms has at 

least two additional layers of control providing for their efficacy. A first level of control in-

volves regulation of the expression and function of telomerase subunits [or the transposons], 

while a second level involves epigenetic control of telomeric chromatin [286,287]. The 

drosophila telomere elongation mechanism is based on the transposition of three retrotrans-

posons, HetA, Tart and Tahre [288-290]. The transposition mechanism of these transposons 

involves an RNA intermediate which implies that each transposition will increase the copy 

number of the element and thereby telomere length. The telomeres of most eukaryotes are 

comprised of two modules, a terminal protective cap and the telomeric (distal) domain. The 

telomeric domain is flanked by a subtelomeric (proximal) domain composed of telomere asso-

ciated sequences (TAS) and with different chromatin characteristics [291,292]. The telomeric 

domain is made up by either telomerase repeats (in telomerase organisms) or by retrotranspo-

son repeats (HetA, Tart and Tahre, HTT in drosophila). The subtelomeric TAS sequences nu-

cleate a compacted chromatin state (characterised by the presence of H3K27me3 and Poly-

comb) which is restrictive of gene expression at the telomeres [293,294]. In this context, Jil1 

was found to localise to the HTT array and to positively regulate the expression of telomeric 

retrotransposons [295,296]. Jil1 supports retrotransposon expression by protecting the 
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telomeric domain from the spread of repressive chromatin from the adjacent subtelomeric 

domain [297].  

In mammals, Msk1 and Msk2 are ubiquitously expressed, predominantly in brain, heart, pla-

centa and skeletal muscle [91]. Msks contain a functional NLS conferring them a nuclear local-

isation in both serum starved and stimulated cells [91]. In cells, mitogens and stress stimuli 

lead to Erk and p38 Mapk pathways activation. Both Erk and p38 in turn were found to posi-

tively regulate Msk by phosphorylating the same sites [91-93]. Conversely, expression of Msk 

was found to regulate ectopically expressed p38 and Erk localisation, indicating that Msks may 

control the cellular localisation of their upstream activators. Msks were found to be important 

regulators of gene expression in mammals, by playing active roles in transcriptional regulation 

and chromatin remodelling in response to stress and mitogens [298,299]. Having a similar 

substrate specificity with Rsk, Msk might influence translation through similar targets. For 

example, both Rsk and Msk were found to phosphorylate the transcription factor Creb in 

mammalian cells [91,93]. Activated Creb in turn drives expression of immediate early (IE) 

genes, such as Fos, Jun and Egr1 [100]. Additional transcription factors targeted by Msk in-

clude NFkB and Stat3 [101,102]. Importantly, Msk was suggested to phosphorylate the trans-

lational inhibitor 4EBP1 [103], providing another convergence point between Mapk activated 

kinases and ToRC1 (see also III-5).
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I-4 RAS-MAPK PROMOTES GROWTH IN DROSOPHILA 

In developing organs, such as the eye or the wing, Ras Mapk signaling covers different func-

tionalities. In dividing cells it promotes cell cycle progression and growth, while in postmitotic 

cells, it supports survival and differentiation. 

Ras Promotes Growth in Imaginal Discs 

The Ras GTPase acts as an essential signaling node, linking extracellular signals to intracellular 

mechanisms driving cell growth, proliferation, survival, and identity [70]. Ras was shown to 

promote growth in vivo in the drosophila wing and eye. Reducing Ras activity through null or 

dominant negative mutations, slows growth, decreases cell size, and increases cell death as a 

result of cell competition. While Ras mutant cells can still proliferate to some extent, they 

have poor viability and cannot properly differentiate. Conversely, activating Ras increases the 

growth rate and cell size. Similar to Myc and Pi3k growth promoters, Ras activation shortens 

the G1 cell cycle phase, likely as a consequence of increased growth, but cell division rates re-

main constant due to compensatory G2 elongation. Ras downregulation causes opposing ef-

fects [69,151,152]. 

Active Ras Drives Growth through Myc and Pi3k 

Stimulation of the Egfr receptor in the wing by its ligand Vein, activates Ras signaling and is 

required for growth. Activated Ras drives growth and promotes G1/S progression, in part, by 

activating two growth promoting pathways, Raf/Mapk and Pi3k. Using pathway specific muta-

tions, it was shown that Ras stimulation of either of the two pathways has a similar growth 

promoting effect. Raf/Mapk activation, in turn, further acts to increase Myc protein level, a 

potent growth promoter. Egfr/Mapk/Myc and Insulin/Pi3k signaling, however, do not 

crosstalk in this tissue. Raf/Mapk also determines, independently of Myc, cell identities in 

imaginal discs. Although mutationally activated Ras stimulates both Pi3k and Myc growth 

pathways, endogenous Ras does not increase Pi3k signaling (nor does Pi3k increase Raf/

Mapk), and only modestly increases Myc protein levels, hinting towards additional growth 

promoters. Furthermore, the growth defect caused by loss of Ras activity in the wing can be 

rescued to a large extent by increasing Raf/Mapk, but not Pi3k singling [152]. Cell growth dri-

ven by Raf/Mapk, Myc and/or Pi3k, increases cyclin E protein levels, which is believed to 

stimulate G1/S progression [69,70]. 
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Mapk Phosphorylation is Required for Cell Growth 

Mapk phosphorylation status is also important for cell growth and division in the developing 

wing and eye tissues. Phosphorylated Mapk is able to promote cell growth and division in 

these tissues, while non-phosphorylated Mapk drives division, but fails to promote growth. 

This requirement for Mapk phosphorylation points towards downstream growth effectors, 

responsive to activated Mapk [153,300]. 

Insulin Activates Erk Mapk and Promotes Cell Growth 

Insulin stimulation activates both Pi3k/Akt and Mek/Erk pathways in drosophila schneider 

cells. Pi3k/Akt seems to function upstream of Mek/Erk, as inhibition of Pi3k/Akt lowers both 

basal and insulin-induced Mek/Erk activities. Insulin activation promotes, through both Pi3k/

Akt and Mek/Erk pathways, G1/S progression and proliferation of schneider cells, with Pi3k/

Akt having an additional contribution of increasing cell size. These activities are also required 

for maintaining normal proliferation rates and cell size under basal conditions [7,8]. 

p38 Mapk Promotes Cell Growth via ToRC1 

The stress activated p38 Mapk is a positive regulator of insect and mammalian cell growth, and 

a positive regulator of ToRC1 (ToR complex 1) and MK2 (Mapk activated kinase 2) activities. 

In fact, ToRC1 mediated cell growth requires p38 pathway activity in both insect and mam-

malian cells. p38 promotes growth through two distinct mechanisms, one relying of ToRC1-

S6k activity, and the other on Mk2 activity. The mechanism through which p38 activates ToR-

C1 is not fully understood. p38 appears to function upstream of Rag GTPases (ToRC1 activa-

tors, in response to amino acids) [301], but downstream of, or in parallel to, Rheb GTPase 

(ToRC1 activator, in response to various stimuli) [41]. 

Pvr Activates Erk Mapk and Promotes Cell Growth 

The drosophila homologue of mammalian Pdgf/Vegf receptor family, PVR, was found to pro-

mote cell growth in culture. Pvf2 and Pvf3 ligands act redundantly to activate Pvr and down-

stream Ras signaling. Activated Ras, in turn, drives growth by concomitantly activating Pi3k 

and Mapk, and subsequently, ToR pathway. Normal growth of S2R+ cells in culture does not 

require insulin receptor activation, but it rather depends on ToR and Mapk pathway activities. 

Pvr/Ras driven growth primarily relies on activation of Raf/Mapk pathway, but also on Pi3k/

Akt pathway activation. In turn, both of these pathways are then likely able to stimulate ToR-
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C1 activity and thereby trigger cell growth. An alternate ToR-independent growth-promoting 

mechanism, functioning downstream of Ras, could not be excluded so far [3]. 

Ras-Mapk Drives Proliferation of Adult Midgut Progenitors 

In drosophila as in many other insects, adult appendages and internal organs form from larval 

progenitor cells during metamorphosis. The drosophila midgut [equivalent to the mammalian 

small intestine] develops from a stem cell population called adult midgut progenitors (AMPs). 

AMPs first appear in the embryo along with differentiating enterocytes (ECs), and continue to 

divide and differentiate during larval development, at the end of which the AMPs and their 

daughters fuse to form the adult midgut during metamorphosis. During larval development, 

the AMPs undergo extensive proliferation in two phases, first to expand throughout the tis-

sue, and then to generate AMP cell clusters which eventually fuse at the end of the larval stage 

to bring about the adult midgut during metamorphosis. Two critical pathways regulating the 

proliferation and differentiation of AMPs during development are Notch and Egfr-Mapk. 

Notch functions as a differentiation factor throughout midgut development. In the larval in-

testine, low Notch activity allows formation of enteroendocrine (EE) cells and AMPs, while 

high Notch activity promotes differentiation of enterocytes (ECs) and peripheral cells (PCs) of 

the AMP clusters. Similarly, in the adult intestine, low (or lack of) Notch activity allows ISC 

proliferation and EE cell formation, while high Notch directs EC differentiation [117,118]. The 

second master controller of midgut progenitors is the Egfr-Ras-Mapk pathway, which is neces-

sary and limiting for AMP proliferation. Expression of the Egfr ligand Vein by the visceral 

muscles activates Ras-Mapk and stimulates AMP proliferation in the early larva, while expres-

sion of the stronger Egfr ligands Spitz and Keren by the AMPs themselves assures their prolif-

eration during late larval stages [50,51]. 

Ras-Mapk Drives Growth and Proliferation in the Adult Midgut 

Similar to the mammalian small intestine and colon, the adult drosophila midgut undergoes 

dynamic self-renewal [117,118]. This is accomplished by resident ISCs which divide to gener-

ate new ISCs and committed progenitors called enteroblasts (EBs). Unlike their mammalian 

counterparts, the transit amplifying cells, the EBs don’t usually divide but rather differentiate 

into two functional cell types, the absorptive enterocytes (ECs) and secretory enteroendocrine 

cells (EEs). ECs grow very large and endoreplicate their genomes up to ploidy levels of 32c, and 

therefore constitute the bulk of the intestinal epithelium. A recent study further suggested 

that EEs are not formed from Su(h)+ EBs, but rather from a different pre-EE progenitor, and 
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that the transcription factor Prospero is essential for ISC commitment towards the EE fate 

[302]. The gut turn-over rate is approximated at 1-2 weeks [118]. However, in response to 

midgut damage (mechanical, chemical, bacterial), ISC proliferation and EB differentiation are 

enhanced up to 100 fold to ensure tissue regeneration [119-125]. Egfr pathway acts as a major 

growth and proliferation factor during midgut homeostasis and regeneration. Egfr signaling is 

stimulated by three ligands, Vein produced by muscle cells surrounding the midgut, Spitz and 

Keren produced by the midgut epithelial cells, and shows high levels of activity in the progeni-

tor cells, ISCs and EBs. Furthermore, loss of Egfr signaling blocks ISC growth and division, 

whereas constitutively activated Ras accelerates the growth of ISCs and post-mitotic enterob-

lasts [51-53,126]. Damage or stress to the midgut epithelium increases the expression of Egfr 

ligands and rhomboids (intramembrane proteases that activate some Egfr ligands), and conse-

quently Ras-Mapk activity (especially in ISCs). This increase in Ras-Mapk activity is essential 

for midgut regeneration, especially upon bacterial infection, as it coordinates ISC growth and 

division, proper morphogenesis of new enterocytes, and delamination of damaged enterocytes 

[52,122]. Together with the Jak/Stat pathway, which functions as a major mitogenic and dif-

ferentiation factor in the midgut [119,127-131], Egfr pathway is highly activated by midgut 

damage and essential for tissue regeneration [51-53,126]. Two other damage/stress sensing 

pathways, Hippo and Jnk, were found to promote Egfr and Jak/Stat activation and implicitly 

tissue regeneration [119,123,126,131-134]. 
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I-5 RAS-MAPK PROMOTES CANCEROUS GROWTH 

Mapk Drives Growth and Alters Cell Identities 

A hallmark of tumor development within a tissue is the escape from the stringent homeostatic 

regulation resulting from the continuous exchange of signals between the cells, the extracellu-

lar matrix and the local environment. Such an evasion endows tumor cells with the ability to 

grow and proliferate autonomously, and eventually alter their adhesion and migrate away from 

their site of origin. Clones of cells with elevated Raf-Mapk signaling in developing drosophila 

epithelia are able to mimic such tumor-characteristic transformations, such that they exhibit 

enhanced growth and altered cell adhesion and identities, thereby minimising contact with 

neighbouring wild type cells. In contrast, other growth signals, such as the Pi3k pathway and 

Myc, do not regulate cell adhesion and identities [70]. The ability of Ras/Mapk to exert such 

effects, together with its capacity to stimulate both mentioned growth promoting signals, 

highlight its biological dominancy in regulating cell fate, growth and proliferation, and may 

underly the strong synergy between Ras and other growth promoting oncogenes in vivo. 

Oncogenic Cooperation 

Human tumors display a high degree of heterogeneity in cell types and genetic makeup. Coop-

eration among these tumor cell communities, between the tumor and its microenvironment, 

and between different oncogenic genetic lesions plays a defining role in tumorigenesis and 

cancer progression [303,304]. An epitome of such cooperation aiding tumorigenesis is the de-

velopment of epithelial cancer in the drosophila larval eye epithelium, driven by expression of 

activated alleles of Ras or Notch within clones of tissue mutant for the cell polarity regulator, 

Scribbled (Scrib). Such drosophila born tumors bare remarkable parallels to human cancers, 

including overgrowth, failure to differentiate, invasion and metastasis [305-307]. Clones ex-

pressing activated Ras moderately overgrow [151]. Clones mutant for scribbled lose apico-

basal polarity and die [305,308]. In contrast, scribbled clones also expression activated Ras 

become malignant lethal tumors [305,309]. The ability of activated Ras to convert Scrib mu-

tant clones into cancerous tumors is mediated by the downstream Raf-Mek-Erk cascade, and 

not by cardinal side-pathways, such as Pi3k, Ral, Rho or Rac [305]. Although the oncogenic 

effect of Ras-Raf in these tumors is not completely understood, it involves more than just 

blocking apoptosis and enhancing cell cycle progression [305]. 
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Inflammation and EMT 

Overgrowth and invasion of these tumors is aided by an inflammation response. Hemocytes 

(blood cells) are recruited to the tumors  and secrete an inflammatory cytokine, TNF, which 

activates Jnk in the tumor cells. Jnk activation triggered cell death in Scrib mutant cells [elim-

inating them], but it promotes overgrowth and invasion in Scrib mutant cells harbouring a 

second activating mutation in Ras or Notch [309-311]. Jnk endows tumors with invasive po-

tential by promoting a process called epithelial-to-mesenchymal transition (EMT). EMT is a 

developmental process essential for morphogenesis, organogenesis and wound healing, that is 

frequently coopted by cancer cells to gain stem cell-like properties and metastatic potential 

[312]. Localised inflammation triggered by interactions between tumour cells and associated 

stromal cells plays a defining role in EMT induction. Whereas the Hippo pathway is required 

for tumor overgrowth, Jak-Stat pathway (activated by inflammatory cytokines like Il6 and 

TNF), together with Jnk and TGFb pathways are the main regulators of proliferation and the 

EMT programme [313-316]. These pathways target transcription factors, including the Zeb, 

Snail, Twist and NFkB, that activate EMT associated processes. Such processes include repres-

sion of E-cadherin expression and induction of invasion promoting genes such as matrix 

metelloproteinase 1 (Mmp1), Paxillin and Filamin [317]. 

Jnk-Ras Duo Driving Tumorigenesis 

Jnk is believed to play a more central part in tumor overgrowth and invasion by activating ex-

pression of the invasion genes just mentioned and activating several additional pathways. 

Thus, Jnk promotes expression of Il6-like cytokines, the drosophila unpaireds Upd1-3 (activat-

ing Jak-Stat signaling), expression of Egf-like growth factors (activating Ras-Mapk signaling), 

expression of morphogens like Dpp (activating Tgfb signaling) and Wingless (activating Wnt/

Wg signaling), and finally Jnk stimulates Yorkie activity (transcriptional co-activator in Hippo 

signaling) [318-321]. Among Jnk mobilised targets, two zinc-finger transcription factors, 

chinmo (chronologically inappropriate morphogenesis) and fruitless, are able to prime cells for 

oncogenic transformation in the eye as in the intestine. Both chinmo and fruitless are induced 

by Jnk in the tumors and can cooperate with activated Ras or Notch in promoting eye tumori-

genesis [322]. Together with activated Ras, chinmo can also induce intestinal neoplasia in 

drosophila. 
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Screening Platform for Anticancer Agents 

Using the Ras-driven tumor model, a drosophila-based screening platform was developed for 

rapid and economic identification of potential anti-cancer agents. In vivo screening for such 

compounds using animal tumor models would be much more efficient than the conventional 

pharmaceutical in vitro approach. Arguments pertaining to cost, time constrain, and conser-

vation of signaling pathways make drosophila an ideal system for large-scale screening. One 

such tumor model successfully converted to a screening platform is the Ras-Scrib model men-

tioned above [323]. This model is based on the induction of GFP+ tumors in drosophila larvae 

upon expression of activated Ras in Scrib mutant clones. These tumors engage in uncontrolled 

growth and invade surrounding tissues in late larval stages. Using standard microscopy tech-

niques, thousands of chemicals can be tested for tumor suppressing functions. The extent of 

the GFP signal (produced by the growing tumors) acts as a reproducible parameter to estimate 

the efficacy of these chemicals at blocking tumor growth.  

Ras on the Brain 

Activated Ras drives oncogenic growth also in the mammalian and drosophila brain, where it 

cooperates with activated Pi3k-Akt signaling to generate malignant gliomas. The mammalian 

brain is comprised of neurons and supportive glial cells. Many glial cell types retain their pro-

liferative potential, including differentiated astrocytes, glial progenitors, and multipotent 

neural stem cells. Ras-Mapk and Pi3k-Akt pathways are essential for the proliferation and self-

renewal of these cell types and for overall brain development and function [324]. These path-

ways are, however, also frequently activated in malignant gliomas. Gliomas are the most com-

mon tumors in the central nervous system and can arise from oncogenic genetic lesions in dif-

ferentiated glial cells, glial progenitors or stem cells [325,326]. These tumors rapidly grow and 

infiltrate the brain, are resistant to standard chemotherapies and are largely incurable. Activa-

tion of Ras-Mapk or Pi3k-Akt alone cannot transform glial cells. However, co-activation of 

both pathways in drosophila glia and glial precursors gives rise to neoplastic, invasive glial 

cells that create tumor-like growths. These malignant cells can be transplanted between ani-

mals and represent a cell type specific cancer model mimicking human gliomas. Ras-Mapk and 

Pi3k-Akt initiate malignant neoplastic transformation by coercing additional pathways, com-

monly mutated in human gliomas, including ToR, Myc, G1 Cyclin-Cdks, and Rb-E2F [327]. 

This combinatorial genetic network drives abnormal cell division, growth and migration, even-

tually leading to malignant transformation. Genes within this network represent therefore 

potential therapeutic targets. 
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I-6 TOR PATHWAY 

The ToR Pathway 

All organisms have evolved signaling mechanisms that dynamically regulate anabolic and 

catabolic pathways according to nutrient availability. Perhaps the most important of these 

mechanisms is the one anchored by the protein kinase ToR. The ToR pathway responds to di-

verse environmental cues and strongly impacts most cell behaviours including survival, 

growth and proliferation [154]. Moreover, ToR was implicated in determining lifespan of mul-

tiple organisms, including worms, flies and mice [162]. Due to its outsized role in cell me-

tabolism, many other pathways converge on ToR to exert their own cellular programs. Abnor-

mal ToR pathway functionality is associated with many human diseases, including cancer, obe-

sity, diabetes and neurodegeneration. Consequently, significant efforts are being made to un-

derstand ToR functionality in cell and organism metabolism and aging, as well as to develop 

pharmacological inhibitors as potential anti-cancer agents. 

ToR is the target of rapamycin or sirolimus, a macrolide produced by Streptomyces Hygroscop-

icus bacteria. The ToR kinase pairs with several protein partners and forms two distinct com-

plexes, ToRC1 and ToRC2, which exhibit different sensitivities to rapamycin, as well as differ-

ent upstream inputs and downstream outputs. ToRC1 consists of ToR, Lst8 (lethal with Sec13 

protein 8), Raptor (regulatory associated protein of ToR) and Pras40 (Proline rich Akt sub-

strate of 40kDa). ToRC2 consists of ToR, Lst8, Rictor (rapamycin insensitive companion of 

ToR) and Sin1 (stress activated Mapk interacting protein 1) [163,164]. The mammalian/mech-

anistic ToR complexes (mToRC1/2) share two additional components: Deptor (Dep domain 

containing ToR interacting protein) and the Tti1/Tel2 complex [165,166], with mToRC2 also 

containing Protor (protein observed with rictor)[167].  

Upstream Regulators of ToRC1 

ToRC1 is remarkable in its ability to integrate five major inputs (growth factors, amino acids, 

energy, stress and oxygen) and appropriately coordinate anabolic pathways, including nutrient 

intake, protein and lipid synthesis, as well as catabolic pathways such as autophagy [154]. 

ToRC1 pathway was found to function in drosophila downstream of insulin signaling, and to 

control cell growth in culture [1-3] and in vivo [4,44,45]. 
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Most upstream pathways regulate ToRC1 through the tuberous sclerosis (Tsc) complex, con-

sisting of Tsc1 and Tsc2. The Tsc complex functions as a GTPase activating protein (GAP) for 

the small GTPase Rheb (Ras homologue enriched in brain). GTP-bound Rheb is a strong activa-

tor or ToRC1, whereas Tsc by converting  Rheb to its GDP-bound state acts as an inhibitor of 

ToRC1 [47,168-171].  

Growth factors such as insulin and insulin-like growth factors activate ToRC1 through the 

InR-Pi3k-Akt pathway [172,173]. Additional growth and inflammatory pathways were found 

to activate mToRC1 in mammals. The Erk Mapk and its effector Rsk activate mToRC1 by tar-

geting the upstream Tsc2 and the mToRC1 scaffold Raptor [30-36]. Pro-inflammatory cy-

tokines such as Tnfa (tumor necrosis factor alpha) activate mToRC1 via IKKb (IkB kinase 

beta)-dependent phosphorylation and inhibition of Tsc1 [174]. The Wnt pathway, a major reg-

ulator of cell growth, proliferation, polarity and differentiation, activates mToRC1 by inhibit-

ing Gsk3b which normally phosphorylates and stimulates Tsc2 [175]. 

Amino acids also stimulate ToRC1 and must be present, in order for any upstream signal, in-

cluding growth factors, to activate ToRC1 [176-178]. Their presence stimulates ToRC1 interac-

tion with Rag GTPases which then promotes ToRC1 translocation from a poorly defined cy-

tosolic location to the surface of lysosomes. There, the Rags GTPases dock onto a multiprotein 

complex called the Ragulator and bring ToRC1 into close proximity to the Rheb GTPase, which 

is found throughout the endomembrane system [177,178]. Finally, GTP-loaded Rheb will acti-

vate ToRC1. Thus, Rags and Rheb constitute a molecular AND gate which ensures that up-

stream pathways acting through Tsc/Rheb activate ToRC1 only if amino acids are also present. 

ToRC1 recruitment to the lysosomal surface and downstream signaling also depends on a v-

ATPase dependent mechanism that senses the presence of amino acids in the lysosomal lumen 

[179]. As you can see, amino acid signaling to ToRC1 is a complex process and it implicates 

additional effectors, including Map4k3 (mitogen activated protein kinase kinase kinase kinase, 

180), Vps34 (vacuolar protein sorting 34, 181) and Ipmk (inositol polyphosphate monokinase, 

182), which we are only now beginning to understand. 

Oxygen and energy levels also have a strong impact on ToRC1 activity, as evidenced by multi-

ple studies in mammalian cells. Hypoxia or a low energy state activate the Ampk kinase [AMP 

activated protein kinase] and the transcription factor Redd1, which in turn inhibit mToRC1 

activity [183,184]. Ampk acts by phosphorylating Tsc2 and increasing its GAP activity towards 
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Rheb, and by phosphorylating Raptor and allosterically inhibiting mToRC1. Redd1 stimulates 

Tsc2 through a poorly defined mechanism [185-187]. DNA damage also inhibits mToRC1 via 

several mechanisms, all of which depend on p53-mediated transcription. Notably, induced ex-

pression of Tsc2 and Pten downregulates the entire Pi3k-mToRC1 pathway, whereas the ses-

trin-dependent induction of Ampk inhibits mToRC1 by acting on Tsc2 and Raptor [188,189].  

Finally, phosphatidic acid (PA) was also identified as an activator of mToRC1 acting, at least 

partially, by stabilising the ToR complexes [190,191]. Although its role as a ToRC1 regulator is 

unclear, providing exogenous PA or expressing PA-producing enzymes, like phospholipase D1 

(Pld1) and Pld2, activates ToRC1 [192].  

Cellular Processes Downstream of ToRC1 

Protein synthesis is the best characterised process downstream of ToRC1. Two ToRC1 targets 

implicated in translation control are 4EBP (eIF4E binding protein) and S6k (rpS6 kinase). 

4EBP competes with eIF4G for a shared binding site on eIF4E and thereby prevents assembly 

of the eIF4F translation initiation complex (eIF4A-eIF4G-eIF4E), hindering cap-dependent 

translation initiation [193]. ToRC1 phosphorylates and inhibits 4EBP and thereby promotes 

eIF4F assembly and translation initiation. Although 4EBP null flies grow and develop normal-

ly, expression of an activated form of 4EBP reduces cell size and its co-expression with known 

growth promoters (e.g. Pi3k/Akt) reduces their growth effects [194]. Activation of S6k by 

ToRC1 mediated phosphorylation leads through multiple effectors to an increase in transcrip-

tion, translation initiation and translation elongation [195]. Most flies null for S6k die during 

development, and the ones that survive are smaller then wild-type flies [196]. ToRC1 also 

promotes protein synthesis by stimulating RNA polymerases. ToRC1 phosphorylates and acti-

vates Tif1A, promoting its interaction with PolI and expression of ribosomal rRNA [197]. 

ToRC1 phosphorylates and inhibits Maf1, a PolIII repressor, and thereby promotes expression 

of 5S rRNA and transfer tRNA [198,199]. 

ToRC1 also promotes lipid synthesis, which is required for proliferating cells to generate mem-

branes. SREBP transcription factor is a master regulator of lipogenic genes involved in fatty 

acid and cholesterol synthesis. ToRC1 promotes lipogenesis by stimulating SREBP expression, 

processing and activity [200-203]. Additionally, ToRC1 supports adipogenesis by promoting 

the expression and activity of PPARg (peroxisome proliferator activated receptor gamma)

[182,204]. 
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All these biosynthetic pathways require a significant energy input. The main energy currency 

used in biosynthetic reactions is ATP. ToRC1 promotes ATP production by stimulating glycoly-

sis, which generates the activated carrier molecules ATP and NADH from sugars. ToRC1 

achieves this by increasing the transcription and translation of HIF1a (hypoxia inducible fac-

tor 1 alpha), a positive regulator of glycolytic genes [200,205-207]. Glycolysis generates pyru-

vate which is then imported in mitochondria for further oxidation to CO2 and H2O. ToRC1 

also promotes mitochondrial biogenesis and oxidative function by mediating the nuclear asso-

ciation between PGC1a (PPARg co-activator 1 alpha) and the transcription factor YY1 (ying 

yang 1)[208]. 

ToRC1 also regulates catabolic pathways. Autophagy is the main degradative process in cells. It 

supports normal cellular function by recycling damaged proteins and organelles, and it pro-

motes survival when nutrient levels are low, by generating new building blocks from degraded 

cellular components. Upon starvation or ToRC1 inhibition, autophagosomes form and engulf 

cellular proteins and organelles. They subsequently fuse with lysosomes and break down the 

captured cellular components into new usable building blocks. In mammals, ToRC1 phospho-

rylates and suppresses Ulk1/Atg13/Fip200, a kinase complex required for autophagy 

[209-211]. Additionally, ToRC1 regulates Dap1 (death associated protein 1), a suppressor of 

autophagy [212]. ToR signaling was also shown to be necessary and sufficient to suppress 

starvation induced autophagy in the drosophila fat body (a nutrient storage organ analogous 

to the vertebrate liver)[48]. 

ToRC1 further impacts catabolic pathways by negatively regulating lysosome formation. Lyso-

somes are multifunctional organelles capable of degrading most cellular components. ToRC1 

phosphorylates the transcription factor TFEB and prevents it from entering the nucleus and 

activating lysosomal genes [213].  

The ToRC2 Signaling Network 

The ToRC2 complex is much less studied than ToRC1. ToRC2 is insensitive to acute treatment 

with rapamycin and to nutrients, but does respond to growth factors such as insulin. Upon 

growth factor stimulation, ToRC2 binds ribosomes in a Pi3k-dependent manner and becomes 

activated [214]. ToRC2 regulates multiple cell functions, such as survival, growth, proliferation 

and motility. To achieve this, ToRC2 controls several AGC kinase family members, including 

 30



introduction tor pathway

Akt, Sgk (serum and glucocorticoid induced kinase) and Pkc (protein kinase c) [176]. Akt regu-

lates cell survival, growth and proliferation through multiple targets. For its full activation, 

Akt needs to be phosphorylated by Pdk1 and by ToRC2 [215]. ToRC2 also directly targets Sgk 

in mammalian cells, a regulator of ion transport and growth [216]. In contrast to Akt, Sgk ac-

tivity is completely blocked by ToRC2 loss. Finally, ToRC2 activates Pkc which, together with 

effectors such as paxillin and Rho GTPases, control the actin cytoskeleton and thereby cell 

shape [167,217]. In drosophila, a central component of both ToRC1 and ToRC2 complexes is 

Lst8. Although it is the only ToR binding partner conserved in both complexes, Lst8 is re-

quired for ToRC2 but not for ToRC1 function [218]. Furthermore, ToRC2 was found to pro-

mote cell-autonomous growth in drosophila through a mechanism independent of Akt phos-

phorylation [218]. 
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ToR Figure 2. The key signaling nodes that regulate ToRC1 and ToRC2. ToRC1 is remarkable in 

its ability to integrate five major inputs (growth factors, amino acids, energy, stress and oxygen) 

and appropriately coordinate anabolic pathways, including nutrient intake, protein and lipid 

synthesis, as well as catabolic pathways such as autophagy. Protein synthesis is the best 

characterised process downstream of ToRC1. ToRC1 also promotes lipid synthesis, which is 

required for proliferating cells to generate membranes. All these biosynthetic pathways require 

a significant energy input. ToRC1 promotes ATP production by stimulating glycolysis, which 

generates the activated carrier molecules ATP and NADH from sugars. ToRC1 also regulates 

catabolic pathways. Autophagy is the main degradative process in cells. It supports normal 

cellular function by recycling damaged proteins and organelles, and it promotes survival when 

nutrient levels are low, by generating new building blocks from degraded cellular components. 

ToRC2 is insensitive to acute treatment with rapamycin and to nutrients, but does respond to 

growth factors such as insulin. ToRC2 regulates multiple cell functions, such as survival, growth, 

proliferation and motility. To achieve this, ToRC2 controls several AGC kinase family members, 

including Akt, Sgk (serum and glucocorticoid induced kinase) and Pkc (protein kinase c).

ToR Figure 1. ToRC1 and ToRC2 complexes. The ToR kinase nucleates two distinct protein 

complexes named ToRC1 and ToRC2. ToRC1 responds to growth factors, amino acids, energy 

level, oxygen and stress. It promotes growth by inducing anabolic pathways, such as protein and 

lipid synthesis as well as ATP production, and by repressing catabolic pathways, such as 

autophagy. It also promotes cell cycle progression. ToRC2 responds to growth factors and 

regulates cell survival, metabolism and the cytoskeleton.
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I-7 MAMMALIAN AND DROSOPHILA INTESTINE 

Intestinal Architecture and Cell Types 

The development, growth, regeneration and reproduction of every animal relies on  constant 

structural and functional maintenance of its tissues and organs. Homeostasis of most adult 

organs depends on small populations of tissue specific stem cells that can self-renew and at 

the same time generate differentiated cells to replace the aged or damaged ones. Mammalian 

cellular repertoire comprises more than 200 different terminally differentiated cell types, who 

exhibit great lifespan variability. Examples include the intestinal epithelium (about 5days), 

erythrocytes (about 120days), heart muscle cells, lens cells and most neurons (life long). One 

of the most rapidly renewing tissues is the lining of the small intestine, outpacing all other 

tissues in the vertebrate body. The high turnover rate, the structural and functional conserva-

tion across species, and the availability of corresponding genetic tools make the intestinal ep-

ithelium a very attractive and tractable system for the study of cell proliferation and differen-

tiation, and cell-niche interactions.  

A specialised simple epithelium lines the intestinal lumen and performs the primary function 

of digestion and nutrient absorption. The mammalian intestine is composed of proliferative 

crypts (harbouring the stem cells) and villi (which contain specialised differentiated cell types). 

The crypts contain stem cells and their progeny, the transit amplifying (TA) cells. TA cells 

spend approximately two days in the crypt, during which they divide 4/5 times, before differ-

entiating into other specialised cell types. The progeny of these dividing cells migrate upwards 

from the crypt base towards the surface of the villi (finger-like protrusions into the gut 

lumen), where all the cells seem to be fully differentiated [Wright 1984]. Three types of differ-

entiated epithelial cells cover these villi: absorptive enterocytes, mucus-secreting goblet cells, 

and hormone-secreting enteroendocrine cells.  

The drosophila intestinal (midgut) epithelium bares close resemblance to the mammalian in-

testine, in structural organisation as in signaling mechanisms responsible for tissue ho-

meostasis and regeneration. The availability of powerful genetic tools combined with a rela-

tively simple tissue architecture have allowed the identification of several stem cell population 

retained during adulthood, as well as transient stem cell population functioning during 

drosophila development. The drosophila midgut is maintained throughout adulthood by about 

1000 intestinal stem cells (ISCs) [117,118]. The epithelium has an apico-basal polarity and is 
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composed of a pseudostratified layer of cells projecting into the gut lumen. The ISCs reside on 

the basal surface in direct contact with the basement membrane, which separate the gut ep-

ithelium from the surrounding visceral muscles. The ISCs are the only midgut epithelial cells 

that undergo mitosis under normal homeostatic conditions. ISCs divide asymmetrically to 

generate new stem cells and transient progenitors called enteroblasts (EBs). The immature EBs 

commit towards differentiation and produce absorptive enterocytes (ECs) and hormone-se-

creting enteroendocrine (EE) cells. As they mature, ECs grow and endoreplicate their genomes 

several times, reaching ploidy levels of 32c or more, and take up the bulk of the intestinal ep-

ithelium. A recent study suggested that EEs are not formed from Su(h)+ EBs, but rather from a 

different pre-EE progenitor, and that the transcription factor Prospero is essential for ISC 

commitment toward the EE fate [302].  

The different cell types in the drosophila midgut can be identified based on morphology and 

expression of specific marker genes. ISCs have a small nucleus, are diploid, and express the 

Notch ligand Delta. EBs are diploid, have a small nucleus, and express Su(h) activated Notch 

target genes, such as the transcriptional reporter Su(h)GBE-LacZ. ECs are polyploid, have a 

large nucleus and express the transcription factor Pdm1 and the non-muscle myosin 1A. EEs 

are diploid, have a small nucleus, and express the transcription factor Prospero. The midgut 

epithelium is enveloped on the outside by two layers of mesodermally-derived visceral muscle 

formed by orthogonally oriented actin-myosin fibres, whereas the inside of the midgut is coat-

ed by a chitinous peritrophic membrane, constituting a barrier against ingested food and mi-

croorganisms [328].  
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dorso-lateral aspect. Bottom, line diagram of 

the adult gut showing the intraluminal pH in 

various midgut regions; and the general organi-

sation of the adjacent epithelial cells showing 

the arrangement of the peritrophic membrane 

{in magenta}, epithelial cells {in black}, base-
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red}, stem cells {in light blue} and serosal bar-
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sg~salivary glands, mg~midgut, hg~hindgut, 

mp~malpighian tubules, es~oesophagus, 

cr~crop, gc~gastric caeca, ac~absorptive cell, 
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h~head, c~cardia. Top. Hartenstein, Atlas of 

Drosophila development, 1993. Bottom: 

Shanbhag and Tripathi, J. Exp. Biol. 2009
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Distribution of epithelial cell types in the mammalian small intestine. A villus 

with one of the crypts that contribute to self-renewal of its epithelium. Stem 

cells lie at the crypt base mixed with the Paneth cells. Above the stem cells are 

transit amplifying cells (dividing progenitors, some of them already partially 

differentiated); and above these, in the neck of the crypt and on the villus, lie 

post-mitotic differentiated cells (absorptive cells, goblet cells and enteroen-

docrine cells). There are four classes of terminally differentiated cells. Ab-

sorptive cells have a brush border (a dense array of microvilli) on their apical 

surface. The other three classes are all secretory: goblet cells secrete mucus, 

enteroendocrine cells are smaller and secrete various gut hormones, and 

paneth cells secrete antibacterial proteins. Crosnier et al. Nat. Genetics 2006

Schematic of the adult drosophila midgut. ISCs in the adult drosophila proliferate throughout the life of the 

animal, renewing themselves and also generating transient cells called enteroblasts {EB}, which can differentiate 

directly into enterocytes {EC} or enteroendocrine cells {EE} without division. ECs are large, polyploid absorp-

tive cells, that comprise the bulk of the intestinal epithelium. The Pdm1 TF and non-muscle Myosin 1A are spe-

cific markers for differentiated ECs. EEs are small secretory cells that express neuroendocrine markers such as 

prospero {pros}, and hormones {allatostatin, tachykinin} which drive peristalsis by controlling the contraction 

of a sheath of visceral muscle {VM} that surrounds the intestine. The drosophila midgut maintains about 2000 

ISCs and EBs that can be identified by their small size and basal location, as well as by expression of escargot 

{esg} a TF specific to diploid progenitor cells. H. Jiang and B. A. Edgar Exp. Cell Research 2011
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Intestinal Signaling Pathways 

The intestinal epithelium is constantly being exposed to damaging agents including mechani-

cal and chemical insults from the ingested food, as well as biological attacks from opportunis-

tic microorganisms. Therefore, aged or damaged cells are constantly being replaced to ensure 

the structural and functional integrity of the intestinal epithelium. More than 300 million 

cells are produced in the mouse small intestine every day. The following paragraph briefly de-

scribes the mammalian intestine, while all following paragraphs deal with the signaling path-

ways underlying homeostasis and regeneration in the drosophila intestine (midgut).  

Mammalian Intestine 

In the mammalian small intestine, Wnt and Notch pathways jointly control the proliferation 

and cell fate commitment of intestinal stem cells. Components of both pathways are chiefly 

being expressed in the neighbourhood of the crypt base, in the stem cell region. Wnt ligands, 

including Wnt 3,6,9 and correspond- ing receptors frizzled 5,6,7 and LRP 5,6 are expressed by 

the crypt epithelial cells [329]. The same expression pattern also applies to Notch, Delta and 

Hes proteins [330,331]. Mammalian intestinal stem cells depend on both Wnt and Notch sig-

nals in combination to maintain their proliferative state. Furthermore, Wnt signaling seems to 

be able to switch on Notch activity, whereas the converse does not seem to apply [332,333]. 

Possible explanation for the prevalence of intestinal cancers caused by Wnt pathway muta-

tions, as compared to Notch mutations. With regard to cell fate commitment, Wnt has been 

reported to impart progenitor cells with the potential (but not the obligation) to fallow a se-

cretory fate [334,335]. Notch signaling, on the other hand, promotes secretory fate commit-

ment [332,333]. Thus, within the Wnt activated population, some cells express Dl and escape 

Notch activation (Wnt+Notch-) and become committed to a secretory fate, while others fail to 

express Dl and have Notch activation imposed on them (Wnt+Notch+) and continue to divide 

without differentiating, whereas Wnt-Notch+ cells are converted to absorptive enterocytes 

[336].  

Notch Pathway 

The effect of Notch signalling in mediating asymmetric stem cell divisions and favouring ab-

sorptive fate commitment is conserved in the vertebrate and fly intestine. However, Notch 

influence on ISC self-renewal and proliferation is opposite in the two systems. Notch activa-

tion in the drosophila midgut inhibits ISC proliferation and promotes EC differentiation, 

whereas loss of Notch activity in progenitors blocks EC production and leads to an expansion 
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of ISC-like and EE cell populations [117,118]. Midgut progenitors and early differentiated cells 

all express the Notch receptor, but the Delta ligand is expressed only in the ISCs [118,337]. 

Midgut ISCs delivering high levels of Notch signalling to their EB daughters drive them into 

the EC cell fate, while low (or absent) Notch activation supports ISC self-renewal or EE fate 

specification [337]. 

Wingless Pathway 

Similar to the mammalian system, but less dramatic, drosophila Wnt/Wg pathway activation 

promotes ISC proliferation in the midgut, while its disruption results in ISCs that divide more 

slowly and turn-over faster compared to wild-type [338,339]. However, these effects are much 

milder compared to the phenotypes evoked by other pathways with a mitogenic function in 

the midgut, like Jak/Stat or Egfr. Wg ligand expressing foci include the foregut/midgut and 

the midgut/hindgut boundaries, as well as the visceral muscle surrounding the midgut 

[338,340].  

Jak/Stat Pathway 

One other especially important signaling pathway in the midgut is Jak/Stat (Janus Kinase/

Signal Transducer and Activator of Transcription). It regulates stem cell growth, proliferation 

and differentiation. Major components of the Jak/Stat pathway in drosophila include three 

leptin-like cytokines (unpaireds Upd, Upd2, Upd3) which bind to a transmembrane receptor 

(domeless) and thereby stimulate drosophila Jak (hopscotch) to phosphorylate both the recep-

tor and other Jak molecules. The resulting phosphorylated receptor-Jak complexes form bind-

ing sites for drosophila Stat (Stat92e) which also becomes activated by phosphorylation and 

translocates into the nucleus as dimers to regulate target gene expression [122,341]. Jak/Stat 

acts as a differentiation factor stimulating both EC and EE cell fate commitment. In fact, 

midgut stem cell clones mutant for Jak/Stat pathway fail to undergo normal differentiation 

[119,342]. Another important functional role of Jak/Stat regards its involvement in midgut 

regeneration upon damage. Various types of tissue damage or bacterial infection trigger cy-

tokine expression in the midgut which leads to Jak/Stat activation in the progenitor popula-

tion stimulating both ISC proliferation and EB differentiation [50,51,119,121]. At the same 

time, damaged ECs induce Jak/Stat activation in other neighbouring ECs, triggering produc-

tion of antimicrobial peptides like Drosomycin 3. Upd, Upd2 and Upd3 are secreted by ECs in 

the affected epithelium, with Upd being produced also by progenitors and the visceral muscle, 

leading to Jak/Stat activation in the progenitor compartment, stimulating their proliferation 
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and differentiation in order to repopulate the damaged epithelium [119,121,122,131]. In con-

trast to the requirement for Jak/Stat pathway activity during midgut regeneration, its func-

tion is not essential for stem cell proliferation in healthy animals. However, Jak/Stat pathway 

activity is a constant presence in the progenitor population, which together with its essential 

role in cell fate commitment highlight its importance for normal homeostasis and hint to-

wards additional functions it might perform in the midgut.  

Ras-Mapk Pathway 

A highly conserved mitogenic pathway operating in the midgut is the Egfr-Ras-Mapk pathway. 

Egfr signaling is one of the central pathways coordinating cell remodelling during develop-

ment in a broad range of multicellular organisms, with diverse implications in regulation of 

cell proliferation, differentiation and survival in several Drosophila tissues [61]. Ras-Mapk was 

found to be a key regulator for the proliferation of adult midgut progenitors (precursors of 

midgut epithelial cells, including ISCs) during larval development [50,51]. In the adult midgut, 

Ras-Mapk signaling is essential for ISC proliferation and maintenance [51-53,129]. Midguts 

stained with antibodies against di-phospho-ERK, the activated Mapk, revealed Egfr/Mapk ac-

tivity specifically in the ISCs and EBs. Furthermore, various types of epithelial damage or in-

fection trigger the expression of several Egfr ligands in the Drosophila midgut. Thus, Spitz and 

Keren are expressed in ECs, as well as proteases called Rhomboids which cleave and activate 

these Egfr ligands. Another Egfr ligand, called Vein, is expressed in the visceral muscle and 

acts redundantly with the other ligands to activate Egfr signaling in ISCs and regulate their 

proliferation, as well as in ECs where it is required to coordinate delamination and anoikis 

upon infection. The Jak/Stat and Egfr pathway synergize in ISCs to promote their prolifera-

tion. In fact, these pathways are capable of activating each other’s ligands. Upd2 and Upd3 ex-

pressed by damaged ECs lead to Jak/Stat activation in the muscle and positively stimulate 

growth factor Vein production, indirectly regulating ISC proliferation [52,119,121]. Similar to 

Jak/Stat signaling, the Egfr pathway is required for ISC maintenance and division; but unlike 

Jak/Stat, Egfr signaling is not directly involved in cell fate specification or differentiation to-

ward ECs or EEs. Epistasis analyses reveal that Egfr signaling is required for positive stimula-

tion of ISC proliferation upon Jak/Stat activation, Jnk signaling, as well as for the expansion 

of the progenitor pool observed after Notch inhibition [51-53]. Egfr’s function during devel-

opment and homeostasis seems also to be conserved in the mouse intestine [343]. Further-

more, the Egfr pathway is frequently activated in cancer, making it a prime target for cancer 
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therapy. Various combinatorial approaches employing Egfr and Pi3k inhibitors in conjunction 

with traditional chemotherapy are currently being tested [344,345].  

Jnk Pathway 

Two additional pathways essential for a proper regenerative response to various types of dam-

age or infection of the midgut epithelium are Jnk (Jun N-terminal Kinase) and Hippo path-

ways. Although the initial damage sensing mechanisms are not completely understood, Jnk 

pathway activation and Hippo pathway inactivation both stimulate cytokine and growth factor 

expression, leading to Jak/Stat and Egfr/Mapk activation and thereby initiating a regenerative 

response. A variety of environmental challenges, including oxidative stress, damage the in-

testinal epithelium and activate Jnk signalling which is involved in compensatory cell prolifer-

ation, aiding regeneration and increasing stress tolerance and longevity in flies and worms. 

Furthermore, Jnk also promotes a proliferative response fallowing injury in mammals, and it 

was demonstrated to be required in ISCs to maintain gut homeostasis in aging flies [123,346]. 

Jnk pathway activation in the midgut is part of a complex response tailored to the type of sus-

tained damage. Thus, direct damage to the midgut epithelial cells by bacteria such as 

Pseudomonas entomophila, activates Jnk mostly in ECs, whereas oxidative stress triggered by 

chemicals like paraquat or bleomycin, or by bacteria like Ecc15 lead to Jnk activation in both 

the ECs and the progenitor population [119,121,122,131]. EC-specific activation likely facili-

tates their removal from the epithelium through a caspase-independent mechanism stimulat-

ing ISC division (prolonged Jnk activation leads to significant cell death), whereas stem cell-

specific activation upregulates stress-response genes to deal with the oxidative damage [347]. 

Among Jnk downstream effectors are AP1 transcription factors including Jun and Fos which 

promote its mitogenic effect [53]. A Fos homolog in Drosophila, Kayak, is required by both 

Egfr and Jnk to stimulate ISC proliferation, suggesting that these two pathways may converge 

on the AP1 transcription factors to mediate their effects on stem cell proliferation [123]. In-

trinsic and environmental challenges contribute to the loss of tissue homeostasis in aging an-

imals, mainly due to a decline in the regenerative capacity of the resident stem cells [348]. As 

an integral part of this process, increased Jnk activity in the progenitor population con-

tributes to the loss of homeostasis in the aging drosophila intestine, by promoting excessive 

proliferation and defective differentiation, due to ectopic Notch activation caused by a failure 

to suppress Dl expression in stem cell daughters [53,123]. A tight control of this pathway is 

essential for maintaining a proper balance between stem cell proliferation and tumor suppres-

sor mechanisms carrying an anticancer function. Such a control is partially ensured in healthy 
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animals through expression of a Jnk feedback inhibitor called puckered, preventing excessive 

ISC proliferation [123]. However, in aged or stressed animals, this balance is gradually lost, 

increasing the likelihood of neoplastic transformation.  

Hippo Pathway 

Another evolutionarily conserved pathway regulating cell growth, proliferation and survival, is 

the Hippo pathway. It is implicated in organ size control, tissue regeneration, stem cell self-

renewal, and its deregulation is associated with several types of cancer [349,350]. Hippo 

pathway acts through a kinase cascade, whereby the sterile-20-like kinase Hippo forms a com-

plex with the ww domain adaptor protein Salvador. Hippo phosphorylates and activates the 

DBF family kinase Warts, which forms a complex with the adaptor protein Mats. Warts phos-

phorylates the transcriptional co-activator Yorkie, which is then bound by 14-3-3 proteins and 

excluded from the nucleus. When in the nucleus, Yki collaborates with transcription factors 

like Scalloped, Homothorax and Teashirt, activating transcription of growth-promoting and 

apoptosis-inhibiting genes, like bantam, CycE, Diap1, Expanded and Four jointed. Upstream 

of these kinases is the cadherin Fat and the Ferm domain proteins Expanded and Merlin, and 

a ww domain protein called Kibra that promotes Expanded-Merlin interactions, enhancing 

Hpo signaling [351,352]. Hippo’s extensive functional repertoire also includes a central role in 

regulating intestinal stem cells in drosophila. While under normal homeostatic conditions, 

Hippo restricts ISC proliferation in the adult midgut, its inactivation upon tissue damage trig-

gers, in a similar manner to Jnk pathway, both cytokine and growth factor expression leading 

to Jak/Stat and Egfr/Mapk pathways activation in ISCs, respectively, where they function syn-

ergistically to promote proliferation [349,353]. Hippo pathway inactivation (or Yki overex-

pression) in the ISCs or the differentiated ECs stimulates stem cell proliferation (more strong-

ly in case of ECs), accompanied by a correspondingly increased differentiation rate. Intestinal 

stress upregulates Yki activity both in the progenitor and enterocyte populations as well as Yki 

target gene expression [353,354]. Furthermore, Yki activity is essential in the progenitors in 

order to mount a proper proliferative response to bacterial infection. Hippo pathway inactiva-

tion in turn, triggers expression of cytokines and growth factors further propagating the sig-

naling response to damage (mentioned above). Increased Yki activity upon damage, together 

with its ability to promote non-autonomous cell proliferation when expressed in ECs, suggest 

that Hpo functions as a stress detection system in the midgut, sensing perturbations in cell 

adhesion or structural integrity and setting in motion a regenerative response accordingly 

[353,354]. The Hpo pathway seems to be structurally and functionally conserved also in the 
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mammals, where Yap (Yki orthologue) has been shown to positively stimulate ISC prolifera-

tion and crypt formation, as well as being required for proper regeneration fallowing chemical-

induced damage [355].  

Redox Regulation 

One important factor regulating ISC proliferation in the midgut is the dynamically maintained 

redox state. Two key players mediating such regulation are Nrf2 and its negative regulator 

Keap1, together ensuring low ROS (reactive oxygen species) levels in ISCs under basal ho-

meostasis and a corresponding increase in ROS upon damage. High ROS levels over an ex-

tended period, however, contribute to ectopic proliferation and misdifferentiation of progeni-

tors, culminating with the loss of tissue homeostasis [356].  

Additional Pathways 

More layers of regulation are achieved through additional pathways, including Bmp/Tgfb, 

Hedgehog, InR/Tor and PDGF/VEGF receptor (PVR) signaling. For example, one PVR ligand 

(Pvf2) stimulates ISC proliferation in aged midguts, whereas InR/Pi3k signalling is a known 

activator of cell growth and proliferation in healthy guts, as in regenerating guts following 

damage [55,121,123,357]. Befitting as a major growth promoting pathway, ToRC1 signalling 

also proved to be essential for ISC maintenance and differentiation in the drosophila midgut. 

ToRC1 activity is believed to be low in ISCs and high in EBs, due to Notch-mediated suppres-

sion of Tsc2. ToRC1 activity in ISCs is kept low to prevent their overgrowth and precocious 

differentiation, while higher ToRC1 activity in EBs supports their growth and differentiation 

into ECs. EE cell formation requires low ToRC1 activity [55-57]. 
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Feedback mechanism regulating adult midgut homeostasis and regeneration in drosophila. As in 

humans, differentiated ECs and EEs are short lived and turn-over roughly weekly, though this rate 

varies greatly according to diet, enteric microbiota, and age. Mature midgut cell loss triggers activa-

tion of the Jnk pathway and inactivation of the Hippo pathway in the ECs, both of which are able to 

induce the expression of mitogenic cytokines (Upds) and growth factors (Egfs) in the damaged 

midgut. The cytokines and Egfs, in turn, activate the Jak/Stat and Egfr/Ras/Mapk pathways respective-

ly in the progenitor cells, where these stimuli function synergistically to promote ISC division. In 

addition, the Jak/Stat signaling also promotes EB differentiation. Thus, in response to damage, the 

ISCs rapidly generate new midgut cells to maintain epithelial homeostasis.



introduction aim of study

I-8 AIM OF STUDY 

The evolutionary conserved Ras-Mapk pathway has been associated with cell growth and pro-

liferation in multiple cell types and organisms [3,9,69,70,151-153]. As a central regulator of 

these processes, Mapk is often hijacked by different cancers in mammals and flies to initiate 

and grow tumors, and eventually metastasise (see I-5). However, even with such wide reaching 

implications in development and cancer, a complete mechanism underlying Ras-Mapk growth 

function remains undefined. Therefore, the objectives we wanted to clarify through this study 

were: [1] Test if Ras-Mapk indeed functions as a growth promoter in different drosophila cells 

and tissues. [2] Determine if Ras-Mapk is able to activate the known metabolic driver ToRC1 

(as potential intersection points have been identified in mammalian cells), and if Ras-Mapk 

driven growth depends on ToRC1 activity. [3] Identify any additional mechanisms through 

which Ras-Mapk may drive growth. As potential candidates, the Mapkapks (Mapk activated 

protein kinases) attracted my interest as they are widely used in varied systems as secondary 

effectors of Mapk modules. 

In this study, I employed genetic and molecular tests to reveal that Mapk can indeed promote 

growth in insect cells, in the adult intestine and in the developing (larval) intestine (even un-

der nutrient starvation). Cell culture assays confirmed that Ras-Mapk can stimulate ToRC1 

activity, whereas intestinal assays uncovered a partial dependency of Ras-Mapk driven growth 

on ToRC1 activity. Consistently, both Erk and one of its targets (Rsk) were found to positively 

regulate ToRC1 in mammalian cells [30-36]. Importantly, I also identified three Mapk activat-

ed kinases that function as new growth effectors for the Ras-Mapk module in insect cells. 

These Mapkapks appear to be required for cell growth under normal and growth factor stimu-

lated conditions. 
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II. RESULTS 

II-1 NEW MAPK GROWTH EFFECTORS IN INSECT CELLS 

II-1A Mapk Pathway Activity is Required for Normal Insect Cell Growth in Culture 

context The canonical ToR pathway has been previously shown to control cell growth in 

drosophila S2 cells [1,2], S2R+ cells [3], and  in vivo [4,44,45]. ToR was found to function 

downstream of insulin initiated receptor tyrosine kinase signaling to control drosophila cell 

growth in vivo [4,44,45]. Insulin drives drosophila cell growth in vivo [5], as well as in culture 

[6-8]. However, whereas insulin stimulates drosophila S2R+ cell growth in culture, RNAi medi-

ated knockdown of insulin pathway components (InR, Irs, p60 or p110) does not affect the cell 

size [3]. This indicates that the insulin pathway is not rate-limiting for size control in this cell 

line. On the other hand, Pvr-Ras signaling pathway was found to affect the size of drosophila 

cells in culture. As part of a screen, dsRNAs targeting Pvr (Pdgf/Vegf receptor), Sos, Grb2, Ras, 

Ksr were found to reduce S2R+ cell size in culture [3]. Moreover, insulin stimulation of schnei-

der cells has been observed to activate not only Akt, but also the Erk pathway [7,8]. AIM In 

light of these findings, we wanted to closer investigate the role Ras-Mapk pathway plays in 

regulating drosophila cell growth. 

approach For this purpose, cultured S2R+ schneider cells were treated with growth factors 

and/or inhibitors for different Ras-Mapk pathway components. Modulators of ToR pathway 

activity were used in parallel as positive controls. Changes in proliferation and cell size (mean 

diameters) were subsequently measured for all treatment conditions over time. Parameters 

were acquired using the Nexcelom cellometer system, which employs image based cytometry 

for cell analysis. The schneider cells were cultured in medium with or without serum, and pre-

treated with kinase inhibitors for 40min prior to addition of various growth factors.  

results Cell culture treatments with kinase inhibitors for Mek (U0126, 100 uM) or Erk (GD-

C0994, 50 uM), in absence of serum, significantly lowered the proliferation and average cell 

sizes compared to untreated control samples (figure 1A,B). The same proliferation and cell size 

impairments were observed upon treatment with these Mapk(k) inhibitors in the presence of 
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1% serum (figure 2A-C). Cell culture treatments with ToRC1 inhibitor rapamycin (10 uM) or 

with ToRC1,2 inhibitor torin1 (10 uM), as positive controls, in the presence or absence of 

serum, similarly reduced proliferation and average cell sizes compared to untreated controls 

(figures 1A-B, 2A-C). Treatment of the S2R+ cell cultures with Pdgf (platelet derived growth 

factor, 1ug/ml) or with Vegf (vascular endothelial growth factor, 1ug/ml) in the presence or 

absence of serum did not significantly affect growth rates relative to untreated controls (fig-

ures 1C-D, 2D-F). Consistent with previous data, pre-treatment of cell cultures, in the presence 

or absence of serum, with Mapk pathway inhibitors for Mek (U0126, 100 uM) or Erk (GD-

C0994, 50 uM), prior to addition of Pdgf/Vegf growth factors (1ug/ml), visibly lowered the 

proliferation rates and average cell sizes compared to untreated or growth factor-only treated 

controls (1C-D, 2D-F). Similarly, pre-treatment with ToR pathway inhibitors rapamycin or 

torin, also reduced the growth rates of S2R+ cells in the presence or absence of Pdgf/Vegf 

growth factors (1C-D, 2D-F). All together, these data indicate that Mapk pathway activity is 

required for normal growth of S2R+ cells in culture. 

II-1B Mnk, Rsk, Msk are Required for Normal and Insulin induced Insect Cell Growth 

context Mapks are evolutionary conserved Ser/Thr kinases that control essential cellular 

functions, including gene expression, mitosis, metabolism, mobility, survival, apoptosis and 

differentiation [9]. These functions are performed through phosphorylation of many sub-

strates, among which are members of a Ser/Thr kinase family termed Mapk activated protein 

kinases (Mapkapk) [10,11]. Two of them were found to be involved in the control of transla-

tion, namely the Mnks (Mapk interacting kinases) [12] and the Rsks (p90 ribosomal S6 kinas-

es) [13]. The drosophila Rsk ortholog was shown to be involved in modulation of circadian be-

haviour and memory formation [14-16]. Drosophila homologue for Mnk1,2 is called Lk6, and 

was shown to be important for eIF4E phosphorylation, developmental rate and organismal 

size [17-19]. Drosophila homologue for another Mapkapk (Msk) is called Jil1, it is essential for 

viability, and it functions to maintain euchromatic domains while counteracting heterochro-

matinisation and gene silencing [20,21].  

aim Investigate a potential role for Mapk activated protein kinases in regulating insect cell 

growth in culture. Furthermore, are these kinases involved in driving cell growth downstream 

of established growth promoters, such as the insulin pathway? 
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approach S2R+ cells were cultured in standard insect medium supplemented with 1% serum. 

Cultures were then either left untreated (controls) or pre-treated with various kinase in-

hibitors and further incubated for 40min prior to addition of insulin or Pdgf growth factors. 

Modulators of ToR pathway activity were used in parallel as positive controls. Changes in pro-

liferation and cell size (mean diameters) were subsequently measured for all treatment condi-

tions over time. 

results Addition of Mapkapk kinase inhibitors to growing S2R+ cells in culture strongly re-

duced their proliferation and average cell sizes compared to untreated controls. Such cell 

growth impairment phenotypes were observed upon treatment with the Mnk inhibitor CG-

P57380 (500 uM), Rsk inhibitor BID1870 (500 uM) and with the Msk inhibitor Ro318220 

(500 uM). The Msk inhibitor proved to be the most effective at reducing cell sizes. Treatment 

with the ToRC1 inhibitor rapamycin (10 uM), as a positive control, also consistently reduced 

cell proliferation and sizes (figure 3A-C). Insulin stimulation (10 ug/ml) of the cultured 

schneider cells triggered an increase in proliferation and cell size compared to untreated con-

trol, as previously shown (Lizcano et al 2003). Surprisingly, pre-treatment with Mnk/Rsk/Msk 

inhibitors invoked similar cell proliferation and size reduction effects even in the presence of 

insulin treatment, compared to untreated or insulin-only treated controls. As before, pre-

treatment with the ToRC1 inhibitor rapamycin, as a positive control, consistently impaired cell 

growth (figure 3D-F). Stimulation of S2R+ cell cultures with Pdgf (platelet derived growth fac-

tor) had no significant effect on cell proliferation and average sizes. Consistent with previous 

data (3A-F), pre-treatment of the cell cultures with Mnk/Rsk/Msk inhibitors markedly lowered 

cell proliferation and average cell sizes, regardless of whether Pdgf growth factor was added or 

not (figure 3G-I). Taken together, these data highlight an important role for the Mnk/Rsk/Msk 

Mapk activated kinases in the control of homeostatic and insulin-induced insect cell growth in 

culture. 

II-1C Mnk, Rsk and Msk are Required for Normal and Egfr induced Insect Cell Growth 

context/aim Previous experiments have revealed a determining role for three Mapkapk ki-

nases in the control of drosophila cell growth in culture (see II-1B). Furthermore, the growth 

promoting function of the established insulin pathway also appears to depend on the activity 

of these kinases. To further investigate the role of Mapk pathway and of Mapk activated pro-

tein kinases in growth control, cultured cells were stimulated for native Egfr signalling and 

concomitantly treated with various Mapkapk kinase inhibitors. The scope of these assays be-
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ing to address if native activation of drosophila Egfr pathway promotes cell growth in culture, 

and to establish the requirement of Mapk activated protein kinases for Egfr-driven growth. 

approach Schneider S2 cells stably expressing endogenous drosophila Egf receptor [22] were 

cultured in standard medium supplemented with 1% serum. Cultures were then either left 

untreated (controls) or pre-treated with various kinase inhibitors and further incubated for 

40min prior to addition of Spitz conditioned medium. Modulators of ToR pathway activity 

were used in parallel as positive controls. Changes in proliferation and cell size (mean diame-

ters) were subsequently measured for all treatment conditions over time. 

results As observed in previous experiments (see figure3), treatment of cultured schneider 

cells with kinase inhibitors (500uM) for Mnk (CGP57380), Rsk (BID1870), or Msk (Ro318220) 

reduced the average cell sizes compared to untreated control (figure 4A,B). ToRC1 inhibition 

using rapamycin (10 uM) likewise reduced average cell sizes relative to untreated control. 

Stimulation of the cultured S2 cells with native drosophila Egfr ligand Spitz increased the av-

erage cell size compared to untreated control. Pre-treatment with kinase inhibitors for Mnk/

Rsk/Msk, however, consistently reduced the average cell sizes in both untreated and Spitz-

stimulated cell cultures (figure 4C,D). Taken together, these results further suggest an impor-

tant role for Mnk/Rsk/Msk kinases in the control of cell size downstream of the Egfr pathway 

in drosophila schneider cells. 

In a different experiment, schneider S2 cells were pretreated with rapamycin (10 uM) for 

30min, before insulin or Egf growth factor (10 ug/ml) were added to the preexisting cultures. 

Following overnight incubation, the cells were stained with Hoechst 33342 and analysed by 

flow cytometry. Cell size measurements (based on forward scatter FCS values) show that in-

sulin-stimulated cells are slightly bigger than control untreated cells. Conversely, rapamycin 

treated cells show a negative shift in the acquired histograms, towards smaller cell sizes (figure 

5A). Egf treated S2 cells show a similar mild increase in cell sizes compared to untreated con-

trols, whereas rapamycin treatment reproducibly induced a negative shift in the acquired his-

tograms, towards smaller cell sizes (figure 5B). A comparison of the mean FSC values for S2R+ 

cell samples treated in the same manner revealed similar effects (figure 5C). Cell cycle phase 

distribution analysis of schneider cells stimulated as described above revealed that insulin 

treatment increased the proportion of cells in S and G2, while rapamycin treatment slightly 

increased the G1 cell population in control and Egf-treated samples (figure 5D). Compared to 
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native Egfr stimulation with Spitz ligand, treatments with Egf or Pdgf/Vegf growth factors 

proved less effective at eliciting cell size changes in culture.
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FIGURE 1  Effects of Ras/Mapk and ToR pathway inhibitors on the cell size of cultured schneider cells. 

Mapk pathway controls cell size in a hemocyte-like cell line. S2R+ cell cultures for all indicated 

conditions were established in medium without serum, and pre-treated with inhibitors for 40 min, prior 

to addition of various growth factors. Mean cell diameters were subsequently measured for all samples 

over time. Cell density and diameter measurements were made for a sample population of 1200-1600 

cells for each treatment condition and timepoint.

FIGURE 1A-B Cell size (mean diameter) measurements of inhibitor treated S2R+ cells over time. 1A 

shows the mean cell diameters for every sample over time, and 1B averages the mean diameters for each 

sample over all time points. Average size of control untreated cells (S2R Cont) over time is marked in red. 

Average size of DMSO treated cell samples across the same timepoints is shown in yellow. The cell sizes 

for S2R+ cells treated with Meki (U0126 Mek inhibitor 100 uM) or Erki (GDC0994 Erk inhibitor 50 uM) are 

marked in green. Rapamycin (ToRC1 inhibitor 10 uM) and torin (ToRC1,2 inhibitor 10 uM) treated samples 

are illustrated in blue. Error bars indicate the standard error of the mean. Statistical significance relative 

to untreated control was determined by student’s t test (*p<0.05,**p<0.01,***p<0.001,****p<0.0001).

Treatment of S2R+ cell cultures with Map kinase inhibitors for Mek or Erk significantly lowered the 

average cell sizes compared to control samples. Treatment with ToR pathway inhibitors rapamycin or 

torin (positive controls, color coded in blue) similarly reduced the average cell sizes, as shown before 

(Stocker et al 2003, Patel et al 2003, Sims et al 2009).
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FIGURE 1C-D Effects of Ras/Mapk and ToR pathway inhibitors on the cell size of Pdgf/Vegf growth factor 

treated schneider cells. Cell size (mean diameter) measurements of inhibitor and Pdgf/Vegf treated S2R+ cells 

over time (Pdgf/Vegf = platelet derived/vascular endothelial growth factor 1ug/ml). 1C illustrates average cell 

sizes for Pdgf and inhibitor treated samples over time. 1D shows average cell sizes of Vegf and inhibitor treated 

samples over time. Average size of control untreated cells (S2R Cont) over time is marked in red. Average size 

of Pdgf/Vegf treated cell samples across the same timepoints is shown in yellow. The cell sizes for S2R+ cells 

treated with Pdgf/Vegf and Meki (U0126 Mek inhibitor 100 uM) or with Pdgf/Vegf and Erki (GDC0994 Erk 

inhibitor 50 uM) are marked in green. Samples treated with Pdgf/Vegf and rapamycin (ToRC1 inhibitor 10 uM) 

or with Pdgf/Vegf and torin (ToRC1,2 inhibitor 10 uM) are illustrated in blue. Error bars indicate the standard 

error of the mean. Statistical significance relative to controls was determined by student’s t test 

(*p<0.05,**p<0.01, ***p<0.001,****p<0.0001). Treatment with the Mek or Erk inhibitors (green curves and 

bars) triggered as before a reduction in the average cell sizes compared to controls (marked in red and yellow). 

Treatment with ToR inhibitors (marked in blue) revealed similar effects.
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FIGURE 2  Effects of Ras/Mapk and ToR pathway inhibitors on the cell size of serum and growth factor fed schneider cells. Mapk 

pathway activity is required for growth of cultured insect cells. S2R+ cell cultures for all indicated conditions were established in 

medium with 1% serum. Cell cultures were pre-treated with the indicated inhibitors for 40 min, prior to addition of Pdgf (platelet 

derived growth factor). Cell proliferation and mean diameters were subsequently measured for all samples over time. Cell density 

and diameter measurements were made for a sample population of 1200-1600 cells for each treatment condition and timepoint.

FIGURE 2A-C Cell proliferation and size (mean diameter) measurements of inhibitor treated S2R+ cells over time. 2A displays cell 

counts for each treatment over time, 2B shows the mean cell diameters for every sample over time, and 2C averages the mean 

diameters for each sample over all time points. Proliferation/average size of control untreated cells (S2R Cont) over time is marked 

in red. Proliferation/average size of DMSO treated cell samples across the same timepoints is shown in yellow. The cell 

counts/sizes for S2R+ cells treated with Meki (U0126 Mek inhibitor 100 uM) or Erki (GDC0994 Erk inhibitor 50 uM) are marked in 

green. Rapamycin (ToRC1 inhibitor 10 uM) and torin (ToRC1,2 inhibitor 10 uM) treated samples are illustrated in blue. Error bars 

indicate the standard error of the mean. Statistical significance relative to untreated controls was determined by student’s t test 

(*p<0.05,**p<0.01,***p<0.001,****p<0.0001).

Treatment of S2R+ cell cultures with Map kinase inhibitors for Mek or Erk significantly lowered the cell counts and the cell sizes 

compared to control samples. Treatment with ToR pathway inhibitors rapamycin or torin (positive controls, color coded in blue) 

also reduced proliferation rates and average cell sizes.
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FIGURE 2D-F  Cell proliferation and size (mean diameter) measurements of inhibitor and Pdgf (platelet derived 

growth factor) treated S2R+ cells over time. 2D displays cell counts for each treatment over time, 2E shows the 

mean cell diameters for every sample over time, and 2F averages the mean diameters for each sample over all time 

points. Proliferation/average size of control untreated cells (S2R Cont) over time is marked in red. 

Proliferation/average size of Pdgf treated cell samples (1ug/ml) across the same timepoints is shown in yellow. The 

cell counts/sizes for S2R+ cells treated with Pdgf and Meki (U0126 Mek inhibitor 100 uM) or with Pdgf and Erki 

(GDC0994 Erk inhibitor 50 uM) are marked in green. Samples stimulated with Pdgf and rapamycin (ToRC1 inhibitor 

10 uM) or with Pdgf and torin (ToRC1,2 inhibitor 10 uM) are illustrated in blue. Error bars indicate the standard error 

of the mean. Statistical significance relative to controls was determined by student’s t test 

(*p<0.05,**p<0.01,***p<0.001,****p<0.0001).

Treatment with Mapk pathway inhibitors consistently reduced cell proliferation and sizes compared to untreated 

control (S2R Cont, colored red) or to Pdgf treated control (S2R Pdgf, marked in yellow). Treatment with ToR 

pathway inhibitors (S2R Rapa and S2R Torin, positive controls marked in blue) also significantly reduced growth 

rates compared to controls. 
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FIGURE 3  Effects on Mapkapk inhibitors on the proliferation and size of cultured schneider cells. Mapk activated protein 

kinases (Mapkapk) Mnk, Rsk and Msk control homeostatic and insulin driven growth in insect cells. S2R+ cell cultures for all 

indicated conditions were established in medium with 1% serum. Cell cultures were pre-treated with the indicated inhibitors for 

40 min, prior to addition of various growth factors. Cell proliferation and mean diameters were subsequently measured for all 

samples over time. Cell density and diameter measurements were made for a sample population of 1200-1600 cells for each 

treatment condition and timepoint.

FIGURE 3A-C Cell proliferation and size (mean diameter) measurements of inhibitor treated S2R+ cells over time. 3A displays 

cell counts for each treatment over time, 3B shows the mean cell diameters for every sample over time, and 3C averages the 

mean diameters for each sample over all time points. Proliferation/average size of control untreated cells (S2R Cont) over time 

is marked in red. Proliferation/average size of Mski (Ro318220 Msk inhibitor 500 uM) treated cell samples across the same 

timepoints is shown in yellow. The cell counts/sizes for S2R+ cells treated with Rski (Rsk inhibitor BID1870 500 uM) or Mnki 

(Mnk inhibitor CGP57380 500 uM) are marked in green. Rapamycin (ToRC1 inhibitor 10 uM) treated samples are illustrated in 

blue. Error bars indicate the standard error of the mean. Statistical significance was determined by student’s t test relative to 

untreated control sample (*p<0.05,**p<0.01,***p<0.001).

Treatment of the S2R+ cell cultures with all three Mapkapk inhibitors (colored green and yellow) significantly reduced cell 

proliferation and sizes compared to control untreated cells (marked in red). Treatment with the Msk inhibitor (S2R Mski, shown 

in yellow) had the strongest effect. Treatment with the ToRC1 inhibitor rapamycin (positive control, shown in blue) also 

consistently reduced cell proliferation and sizes.

54

3A 3B

3C

A
ve

ra
ge

 C
el

l D
ia

m
et

er
 (u

m
)



FIGURE 3D-F  Cell proliferation and size (mean diameter) measurements of inhibitor and insulin treated S2R+ cells over 

time. 3D displays cell counts for each treatment over time, 3E shows the mean cell diameters for every sample over 

time, and 3F averages the mean diameters for each sample over all time points. Proliferation/average size of insulin only 

treated cells (S2R Ins, 10 ug/ml) over time is marked in red. Proliferation/average size of insulin and Mski (Ro318220 Msk 

inhibitor 500 uM) treated cell samples across the same timepoints is shown in yellow. The cell counts/sizes for S2R+ 

cells treated with insulin and Rski (Rsk inhibitor BID1870 500 uM) or with insulin and Mnki (Mnk inhibitor CGP57380 500 

uM) are marked in green. Insulin + rapamycin (ToRC1 inhibitor 10 uM) treated samples are illustrated in blue. Error bars 

indicate the standard error of the mean. Statistical significance was determined by student’s t test 

(*p<0.05,**p<0.01,***p<0.001,****p<0.0001).

Treatment with all three Mapkapk inhibitors (Mnki and Rski in green, and Mski in yellow) significantly reduced cell 

proliferation and sizes of untreated (3A-C) and insulin treated (3D-F) samples, compared to controls. As before, 

treatment with the Msk inhibitor (S2R Mski, yellow) had the strongest effect. Treatment with the ToRC1 inhibitor 

rapamycin (positive control, shown in blue) also consistently reduced cell growth.
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FIGURE 3G-I  Cell proliferation and size (mean diameter) measurements of inhibitor and Pdgf (platelet derived 

growth factor) treated S2R+ cells over time. 3G displays cell counts for each treatment over time, 3H shows the 

mean cell diameters for every sample over time, and 3I averages the mean diameters for each sample over all time 

points. Proliferation/average size of Pdgf only treated cells (S2R Pdgf, 1ug/ml) over time is marked in red. 

Proliferation/average size of Pdgf and Mski (Ro318220 Msk inhibitor 500 uM) treated cell samples across the same 

time points is shown in yellow. The cell counts/sizes for S2R+ cells treated with Pdgf and Rski (Rsk inhibitor BID1870 

500 uM) or with Pdgf and Mnki (Mnk inhibitor CGP57380 500 uM) are marked in green. Pdgf + rapamycin (ToRC1 

inhibitor 10 uM) treated samples are illustrated in blue. Untreated sample (S2R Cont) is colored in cyan (3I). Error bars 

indicate the standard error of the mean. Statistical significance was determined by student’s t test 

(*p<0.05,**p<0.01,***p<0.001,****p<0.0001).

Consistent with previous data, treatment with all three Mapkapk inhibitors (Mnki and Rski in green, Mski in yellow) 

significantly reduced cell proliferation and sizes of untreated (3A-C) or Pdgf treated (3G-I) samples compared to 

control samples (shown in red). Treatment with the ToRC1 inhibitor rapamycin (positive control, shown in blue) also 

consistently lowered the values for these parameters. 
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FIGURE 4  Effects of Mapkapk inhibitors on the cell size of untreated and Spitz treated schneider cells. Mapk activated 

protein kinases (Mapkapk) Mnk, Rsk and Msk control homeostatic and Egfr driven growth in insect cells. S2 cell cultures 

for all indicated conditions were established in medium with 1% serum. Cell cultures were pre-treated with the indicated 

inhibitors for 40 min, prior to addition of the Egfr ligand Spitz (Spi). Cell proliferation and mean diameters were 

subsequently measured for all samples over time. Cell density and diameter measurements were made for a sample 

population of 1200-1600 cells for each treatment condition and timepoint.

FIGURE 4A-B Cell size measurements (based on mean cell diameters) of inhibitor treated S2 cells over time. 4A shows the 

mean cell diameters for every sample over time, while 4B averages the mean diameters over all time points for each 

sample. Each measured point in 4A represents the average cell size (diameter) of the respective cell population with the 

indicated treatment at the mentioned time point. The average cell size of control untreated cells (S2 Cont) over time is 

shown in red. The cell sizes for S2 cells treated with Rski (Rsk inhibitor BID1870 500 uM) or Mnki (Mnk inhibitor CGP57380 

500 uM) inhibitors are marked in green. Average sizes of S2 cells treated with Mski (Msk inhibitor Ro318220 500 uM) are 

colored yellow. Rapamycin (ToRC1 inhibitor 10 uM) treated samples are illustrated in blue. Error bars indicate the standard 

error of the mean. Statistical significance was determined by student’s t test relative to untreated control sample 

(*p<0.05,**p<0.01,***p<0.001,****p<0.0001).

Treatment of the cultured schneider cells with the indicated inhibitors significantly reduced the average cell sizes 

compared to control untreated cells. Msk inhibitor proved most effective at reducing the average cell sizes. 
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FIGURE 4C-D  Cell size measurements (based on mean cell diameters) of inhibitor and Spitz treated S2/S2R+ 

cells over time. 4C shows the mean cell diameters for every sample over time, while 4B averages the mean 

diameters over all time points for every sample. Each measured point in 4C represents the average cell size 

(diameter) of the respective cell population with the indicated treatment at the mentioned time point. 

Average sizes of control untreated cells (S2 Cont) are shown in red. Spitz (only) treated cell samples are 

marked in grey. Average cell sizes for samples treated with Spitz and Rski (Rsk inhibitor BID1870 500 uM) or 

with Spitz and Mnki (Mnk inhibitor CGP57380 500 uM) are colored in green. Spitz and Mski (Msk inhibitor 

Ro318220 500 uM) treated samples are shown in yellow, and Spitz + rapamycin (ToRC1 inhibitor 10 uM) 

treated samples in blue. Error bars indicate the standard error of the mean. Statistical significance was 

determined by student’s t test relative to control (*p<0.05,**p<0.01,***p<0.001,****p<0.0001). 

Addition of the Spitz Egfr ligand to the cell cultures significantly increased the average cell size compared to 

control untreated cells. Pre-treatment with the mentioned inhibitors, however, significantly reduced the 

average cell sizes (diameters) of untreated (4A-B) and Spitz treated (4C-D) cell samples compared to 

untreated or spitz-only treated controls. 
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FIGURE 5 Flow cytometric analysis of growth factor-treated schneider cells. (A-D) Schneider S2 cells were 

pretreated with rapamycin (10 uM) for 30min, before insulin or Egf growth factors (10 ug/ml) were added to the 

preexisting cultures. Following overnight incubation, the cells were stained with Hoechst 33342 and analysed by 

flow cytometry. (A) S2 cell size measured by forward scatter (FCS) shows that insulin-stimulated cells (cyan) are 

slightly bigger than control untreated cells (grey). Conversely, rapamycin treated cells (red) show a negative shift 

in the acquired histograms, towards smaller cell sizes. (B) Egf treated S2 cells (green) show a similar mild increase 

in cell sizes compared to untreated controls (grey), whereas rapamycin treatment (red) reproducibly induced a 

negative shift in the acquired histograms, towards smaller cell sizes. (C) The mean FSC values for S2R+ cell 

samples treated in the same manner are shown. Control samples ± rapamycin are shown in orange, insulin-treated 

samples ± rapamycin in blue, and Egf-treated samples ± rapamycin in green. Egf treatment increased the mean 

FSC value of the cell population, whereas rapamycin addition lowered the mean FSC, indicative of reduced cell 

sizes. (D) Cell cycle phase distribution of S2R+ cells is shown. Insulin treatment (S2R Ins) increased the proportion 

of cells in S and G2, while rapamycin treatment slightly increased the G1 cell population in control (S2R Rapa) and 

Egf-treated samples (S2R Egf Rapa). Graphs were generated using the FlowJo software. For determination of cell 

cycle distribution, FlowJo uses the Watson pragmatic model to create gaussian distributions for the G0/G1 and 

G2/M peaks, and an S phase polynomial.

60

RESULTS NEW MAPK GROWTH EFFECTORS



Results mapk activates tor downstream of rtk 

II-2 MAPK ACTIVATES TOR DOWNSTREAM OF RTK IN DROSOPHILA CELLS 

II-2A Mapk Activates ToRC1 in Insect Cell Culture 

context As mentioned, insulin signaling drives cell growth in drosophila in vivo [5, 23-27], as 

well as in cell culture [6-8, 28]. Upon insulin treatment of drosophila schneider cells, S6k, Pi3k 

and Akt as well as Mek and Erk kinases become activated [6-8, 29]. Furthermore, Erk has been 

involved in insulin stimulated schneider cell proliferation [7]. The canonical ToR pathway has 

been previously shown to function downstream of insulin signaling and to control drosophila 

cell growth in vivo [4] and in cell culture [1-3]. Strong activation of Ras-Erk pathway leads to 

mToRC1 activation in mammalian cells through Erk and Rsk signaling to Tsc and Raptor com-

ponents. Egf, phorbol esters and constitutively active Ras mutants promote Erk and Rsk me-

diated phosphorylation of Tsc2, inhibiting its GAP function and thereby stimulating mToRC1 

activity and tumorigenesis [30-33]. Similar stimuli promote Erk and Rsk phosphorylation of 

Raptor, likewise increasing mToRC1 activity [34-36]. AIM Based on these findings, we wanted 

to investigate if these pathways show a similar crosstalk in  drosophila cultured cells. 

approach S2R+ cells were cultured in standard insect medium. Cultures were then either left 

untreated (controls) or pre-treated with rapamycin (ToRC1 inhibitor, 10 uM) and further in-

cubated for 40min prior to addition of insulin, Egf or Pma stimulating factors (10 ug/ml). Cells 

were subsequently lysed and the proteins separated by electrophoresis. Akt and S6k kinase 

phosphorylation was detected through immunoblotting assays with anti-phospho-Akt and 

anti-phospho-S6k antibodies.  

results Insulin treatment of the cultured S2R+ cells triggers a strong induction of Akt phos-

phorylation compared to untreated control. Pre-treatment with rapamycin did not prevent 

insulin-stimulated Akt phosphorylation in these cells. In contrast to insulin treatment, stimu-

lation of cell cultures with Egf epidermal growth factor or with Pma (phorbol-12-myristate-13-

acetate, Mek agonist) had no obvious effect on Akt phosphorylation (figure 6A,C). Treatment 

of cell cultures with insulin or with Egf/Pma Ras-Mapk pathway agonists increased S6k phos-

phorylation compared to untreated control. Pre-treatment with rapamycin prevented the in-

crease in phospho-S6k signal observed upon insulin, Egf and Pma stimulation (figure 6B,D). 

These data indicate that Ras-Mapk pathway agonists stimulate ToRC1 activity towards its tar-

get S6k, without increasing Akt activity. 
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II-2B Mapk Activity is Required for Basal and Growth Factor induced ToRC1 Activity 

context/aim Previous experiments (see II-2A) revealed that Ras-Mapk pathway agonists 

stimulate ToRC1 activity toward S6k, likely independently of Akt activation. One of the next 

logical questions was if Ras-Mapk signaling is also required for ToRC1 activation under basal 

or stimulated conditions. 

approach To tackle this hypothesis, schneider cell cultures were treated in a similar manner as 

described before. S2R+ cells were cultured in standard insect medium without serum. Cultures 

were then either left untreated (controls) or pre-treated with various Ras-Mapk or ToR path-

way inhibitors for 40min. Following this incubation period, different growth factors were indi-

vidually added to the pre-established cultures. All cell samples were subsequently lysed and the 

proteins separated by electrophoresis. Erk and S6k kinase phosphorylations were then detect-

ed through immunoblotting assays with anti-phospho-Erk and anti-phospho-S6k antibodies.  

results Treatment of S2R+ cells with Mek inhibitor (U0126), or with Erk inhibitor (GDC0994) 

strongly reduced Erk phosphorylation levels compared to untreated control. Mek and Erk in-

hibitors triggered a similar reduction in Erk phosphorylation also in growth factor stimulated 

cell cultures, including Pdgf, insulin and Vegf treated cultures (figures 7A, 8A). This confirms 

the specificity and efficacy of these kinase inhibitors. Inhibition of Mek kinase triggered a 

stronger effect than inhibition of Erk kinase in this respect. Inhibition of ToR pathway activity 

with either ToRC1 inhibitor (rapamycin) or with ToRC1,2 inhibitor torin had no obvious influ-

ence on Erk phosphorylation level in untreated as well as growth factor-stimulated cultures 

(figures 7A, 8A).  

Stimulation of cultured S2R+ cells with the well known Pi3k-ToR agonist insulin, increased 

S6k phosphorylation relative to untreated control, indicative of ToRC1 activation. Interesting-

ly, stimulation with the well known Ras-Erk pathway agonist Pdgf, also led to a mild increase 

in S6k phosphorylation (figures 7B, 8B). Significantly, S6k phosphorylation induced by both 

insulin and Pdgf growth factors, was strongly reduced by inhibition of Mek kinase activity 

(and to a smaller extent by Erk inhibition). Treatment with well known ToR pathway in-

hibitors (as positive controls) such as rapamycin and torin, likewise abrogated S6k phosphory-

lation upon growth factor treatment (figures 7B, 8B). Taken together, these results indicate 

that Pdgf-Ras signaling stimulated ToRC1 activity in drosophila schneider cells, as evidenced 
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by an increase in its target S6k phosphorylation. Importantly, ToRC1 pathway activation by 

insulin and Pdgf growth factors depends to some extent on Mek-Erk pathway activation, as 

inhibition of this pathway reduced growth factor stimulated ToR target phosphorylation. 

II-2C Mapk Pathway Activation does not Require ToRC1 or Mapkapk Activities 

context It has previously been shown that insulin stimulation of schneider cells increases Erk 

phosphorylation [7,8]. Likewise, stimulation of schneider cells with the native drosophila Egfr 

ligand Spitz also increases Erk phosphorylation [22]. AIM Based on these findings and our 

previous results (II-2B), we wanted to know if ToRC1 or any of the Mapk activated protein ki-

nases previously tested  might also play a role in Erk activation.  

approach S2 cell cultures expressing the native drosophila Egfr receptor were established in 

medium without serum for all indicated treatments. Cell cultures were pre-treated with kinase 

inhibitors for 40 min, prior to addition of growth factors. The cells were subsequently lysed 

and the proteins separated by electrophoresis. Erk phosphorylation was detected through 

western blotting with anti-phospho-Erk antibody. Kinase inhibitors: Rski (Rsk inhibitor 

BID1870), Mnki (Mnk inhibitor CGP57380), Mski (Ro318220 Msk inhibitor), Rapa (ToRC1 

inhibitor).  

results Treatment of schneider cell cultures with kinase inhibitors for Mnk, Rsk, Msk or ToR-

C1, caused no noticeable change in Erk phosphorylation level compared to untreated control. 

Similarly, no reduction in Erk phosphorylation was detected upon inhibitor treatment of the 

insulin- or spitz-stimulated cell cultures. This would indicate that Mapk pathway activation 

under normal or growth factor stimulated conditions does not require ToRC1 or the Mapk ac-

tivated protein kinases Mnk, Rsk, Msk.
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FIGURE 6 The effects of growth factor treatment on Akt and S6k phosphorylation, and their sensitivity to rapamycin treatment. 

Ras-Mapk pathway activates the ToRC1 complex in schneider cells. S2R+ cell cultures for all indicated conditions were established in 

medium without serum (as not to confound growth factor-triggered effects). Cell cultures were pre-treated with rapamycin (ToRC1 

inhibitor) for 40 min, prior to addition of growth factors. Cells were subsequently lysed and the proteins separated by 

electrophoresis. Akt and S6k kinase phosphorylation was detected through immunoblotting assays with anti-phospho-Akt (pAKT AB) 

and anti-phospho-S6k (pS6k AB) antibodies. Loading controls: tubulin (Tub) and total S6k (tS6k).

FIGURE 6A Insulin treatment (10 ug/ml) of cultured S2R+ cells triggers a strong induction of Akt phosphorylation (S2R Ins) compared 

to untreated control (S2R). Pre-treatment with rapamycin (S2R Ins Rapa, 10 uM) did not prevent insulin-stimulated Akt 

phosphorylation in these cells. Treatment of cell cultures with Egf epidermal growth factor (10 ug/ml) or with Pma 

(phorbol-12-myristate-13-acetate, Mek agonist)(8-10 ug/ml), however, had no obvious effect on Akt phosphorylation (S2R Egf and S2R 

Pma). Tubulin levels were also probed for all samples as a loading control. 

FIGURE 6B Treatment of S2R+ cells with insulin or with Ras-Mapk pathway agonists increases S6k phosphorylation compared to 

untreated control. Insulin treatment (10 ug/ml) triggered a strong increase in S6k phosphorylation (S2R Ins) compared to untreated 

control (S2R). Pre-treatment with rapamycin (10 uM) prevented the increase in phospho-S6k signal observed upon insulin treatment 

(S2R Ins Rapa). Similar to insulin, treatment of schneider cells with Ras-Mapk pathway agonists Egf (10 ug/ml) or Pma (10 ug/ml) 

visibly increased S6k phosphorylation relative to untreated control (S2R). Pre-treatment with rapamycin (10 uM) was again able to 

prevent the increase in S6k phosphorylation triggered by Egf or Pma (S2R Egf Rapa, S2R Pma Rapa). Tubulin levels were also 

determined for all samples as a loading control.
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FIGURE 7 Assessment of Erk and S6k phosphorylation in schneider cells upon treatment with Pdgf growth factor and with 

Ras-Mapk/ToR pathway inhibitors. Mapk activity is required for basal and growth factor induced ToRC1 activity. S2R+ cell cultures for 

all indicated conditions were established in medium without serum. Cell cultures were pre-treated with kinase inhibitors for 40 min, 

prior to addition of Pdgf platelet derived growth factor. Cells were subsequently lysed and the proteins separated by electrophoresis. 

Erk and S6k kinase phosphorylation was detected through immunoblotting assays with anti-phospho-Erk (pErk) and 

anti-phospho-S6k (pS6k) antibodies. Kinase inhibitors: U0126 Mek inhibitor, GDC0994 Erk inhibitor, Rapamycin ToRC1 inhibitor, Torin 

ToRC1,2 inhibitor. Pdgf is platelet derived growth factor.

FIGURE 7A Treatment of S2R+ cells with U0126 Mek inhibitor (100 uM), or with GDC0994 Erk inhibitor (50 uM) strongly reduced Erk 

phosphorylation levels compared to untreated control or to Pdgf treated sample (1 ug/ml), confirming the specificity and e�cacy of 

these kinase inhibitors. The Mek inhibitor U0126 triggered a stronger effect. Treatment with the ToR pathway inhibitor torin (10 uM) 

did not influence Erk phosphorylation in this system. Actin protein levels were also determined as a loading control (Act AB).

FIGURE 7B Treatment of unstimulated and Pdgf-stimulated (1 ug/ml) S2R+ cells with the Mek inhibitor U0126 (100 uM) abrogated 

S6k phosphorylation. Treatment with the ToR pathway inhibitors rapamycin or torin (10 uM) also reduced S6k phosphorylation 

relative to untreated or Pdgf-treated controls. Tubulin -Tub- protein levels were determined as loading control.

FIGURE 6C Similar treatment as described in 6A, S2R+ cells were treated with rapamycin and/or 

growth factors, and probed for Akt phosphorylation through immunoblotting. Insulin treatment, but 

not Egf or Pma treatments, significantly increased Akt phosphorylation compared to untreated 

control. Tubulin (Tub) and actin (Act) antibodies were used as loading controls.

FIGURE 6D Similar treatment as described in 6B, S2R+ cells were treated with rapamycin and/or 

growth factors, and probed for S6k phosphorylation through immunoblotting. Treatment of cell 

cultures with all three mitogenic factors insulin, Egf and Pma, visibly increased S6k phosphorylation 

compared to untreated control. Rapamycin pre-treatment e�ciently abrogated the increase in S6k 

phosphorylation triggered by insulin, Egf or Pma. Total S6k levels (tS6k) were also determined for all 

samples as loading controls.
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FIGURE 8 The effects of insulin and Vegf growth factor treatment on Erk and S6k phosphorylation in schneider 

cells, and their sensitivity to Ras-Mapk/ToR pathway inhibitors. Erk and S6k phosphorylation under basal or growth 

factor treatment conditions depends on Mek kinase activity. S2R+ cell cultures for all indicated conditions were 

established in medium without serum. Cell cultures were pre-treated with kinase inhibitors for 40 min, prior to 

addition of growth factors. Cells were subsequently lysed and the proteins separated by electrophoresis. Erk and 

S6k kinase phosphorylation was detected through immunoblotting assays with anti-phospho-Erk and 

anti-phospho-S6k antibodies. Kinase inhibitors: Meki is U0126 Mek inhibitor, ToRC1i is rapamycin ToRC1 inhibitor, 

ToRC1,2i is torin ToRC1,2 inhibitor. Vegf is vascular endothelial growth factor, Ins is insulin.

FIG 8A Treatment of S2R+ cells with Mek inhibitor (U0126 100 uM) strongly reduced Erk phosphorylation levels in 

unstimulated and insulin (10 ug/ml) or Vegf (1 ug/ml) growth factor stimulated cell cultures. ToR inhibition did not 

trigger such a reduction. Actin levels were used as loading controls. FIG 8B Insulin treatment (10 ug/ml) of cultured 

S2R+ cells increased as before S6k phosphorylation relative to untreated control. Pre-treatment with U0126 Mek 

inhibitor (100 uM), however, partially abrogated the effect of insulin on S6k phosphorylation, and reduced the 

phospho-S6k level compared to insulin-only treated sample. Tubulin protein levels were used as loading controls.

phospho-S6kTubulin
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FIGURE 9 Erk phosphorylation levels in schneider cells upon treatment with insulin or native drosophila Spitz 

ligand, and the effects of Mapkapk (Mapk activated protein kinases) inhibitors. Basal as well as insulin and Egfr 

induced Erk phosphorylation does not require Mnk, Rsk, Msk or ToR kinase activities. S2 cell cultures expressing 

the native drosophila Egfr receptor were established in medium without serum for all indicated treatments. Cell 

cultures were pre-treated with kinase inhibitors for 40 min, prior to addition of growth factors. Cells were 

subsequently lysed and the proteins separated by electrophoresis. Erk phosphorylation was detected through 

western blotting with anti-phospho-Erk antibody. Kinase inhibitors: Rski (Rsk inhibitor BID1870), Mnki (Mnk 

inhibitor CGP57380), Mski (Ro318220 Msk inhibitor), Rapa (ToRC1 inhibitor). Spi is the native Egfr ligand spitz, 

and Ins is insulin. 

FIG 9A Treatment of the cultured schneider cells with Spitz ligand conditioned medium increased Erk 

phosphorylation level compared to untreated control. Pre-treatment with Mnk, Rsk or Msk (500 uM) inhibitors 

or with ToRC1 inhibitor rapamycin (10 uM) did not affect Erk phosphorylation levels in unstimulated or 

Spitz-stimulated cell cultures. Actin protein levels were detected as loading controls.      FIG 9B Treatment with 

Mnk, Rsk, Msk or ToRC1 inhibitors did not reduce Erk phosphorylation levels in insulin-stimulated (10 ug/ml) 

schneider cells. Actin was detected as loading control. 
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Results Growth Effectors in the Intestine

II-3 MAPK GROWTH EFFECTORS IN DROSOPHILA INTESTINE 

II-3A Mapk Driven Growth in the Adult Drosophila Midgut is Partially ToR Dependent 

As described in the introductory part, the conserved Egfr pathway is a key determinant of cell 

growth and proliferation in the midgut, being essential for tissue homeostasis and regenera-

tion [50-54]. A second conserved pathway important for growth and differentiation of midgut 

epithelial cells is ToR, Target of Rapamycin [55-57]. To better delineate the crosstalk between 

these central pathways in vivo, a series of experiments were performed to address ToR depen-

dency for Egfr-driven growth and division in the adult midgut tissue.  

To investigate Egfr-driven growth and division phenotypes and their dependency on ToR, in 

the ISC lineage, the esg-Gal4 UAS-GFP tub-Gal80TS system (here-forth referred to as esgTS) 

was used to express activated Egfr, Ras or Raf alleles in ISCs and their undifferentiated daugh-

ters, the EBs. RasV12 (constitutively active Ras) expression in the progenitor compartment led 

to a pronounced increase in ISC mitotic activity accompanied by an expansion of the GFP-pos-

itive cell population and overall cell density (figure 10A). Area quantifications further revealed 

an overstimulated enterocyte (EC) growth and endoreplication. Additional treatment with the 

ToRC1 inhibitor rapamycin didn’t have a significant effect on mitotic activity or Gfp+ (express-

ing cell) numbers. A noticeable change, however, was a decreased occurrence of large polyploid 

Gfp+ cells, although some large nuclei were still observed.  

Expression of the activated receptor EgfrTop, also with the esgTS driver, had a relatively weak 

phenotype reflected in a mild increase in the ISC mitotic index, Gfp+ cells and EC growth (data 

not shown). This might be due to weaker expression or reduced potency of the transgenic con-

struct, or the fact that its functional output relies on endogenous Ras rather than the trans-

formed activated version. Raf gain-of-function genotypes yielded similar results as in the case 

of Ras mutant guts, although it produced fewer overgrown Gfp+ cells (figure 10B). Rapamycin 

treatment mildly reduced the Gfp+ cell density and average cell size.  

To better characterise the growth promoting activity of Egfr signaling and distinguish it from 

its mitogenic effects, we overactivated Ras-Mapk signaling in the committed enteroblast prog-

enitors. EBs are generally believed to have exited mitotic cycle and follow a differentiation 

pathway to either secretory EEs or commence endocycle and become absorptive ECs. Stimula-

tion of the Mek-Erk pathway in EBs by expressing activated RasV12S35 using the Su(h)TS driver 
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(Su(h)-Gal4, UAS-CD8-GFP; tub-Gal80TS) led to significant increase in the size of the express-

ing cells (appreciated based on nuclear area quantifications), compared to their control GFP-

expressing siblings. The growth phenotype triggered by increased Mapk signaling appeared to 

be partially dependent on ToRC1 activity, as treatment with the inhibitor rapamycin signifi-

cantly decreased the growth effect (figure 11). 

Although rapamycin treatment was performed according to previous publications [55,57], ad-

ditional controls were also tested in this study. Rheb (ToRC1 promoter) overexpression using 

the esgTS progenitor-specific driver markedly increased the phosphorylation of the ToRC1 tar-

gets S6k and 4EBP, as compared to the GFP-expressing control guts. As previously described 

[Ip 2012], the p4EBP signal seems to highlight ToR activity in ECs, as well as in small nuclei-

containing cells. Large polyploid GFP+ cells were also observed in Rheb-expressing guts. Con-

comitant rapamycin treatment of the Rheb-expressing animals partially masked the over-

growth phenotype and led to a reduction in p4EBP staining (figure 12A). Although the in-

crease in phospho-specific signal was quantitatively higher in Rheb-expressing animals and 

lower in rapamycin-treated animals, as compared with controls, the staining pattern was not 

specific enough to warrant further investigation. To assess if there is an activation of ToR sig-

naling downstream of Ras-Erk in this context, immunofluorescence and immunoblotting as-

says were performed. Although largely unsuccessful, some revealed an increase in phospho-

S6k upon expression of activated Raf in the progenitors (figure 12B) 

II-3B Ras-Mapk Drives Growth in the Adult Drosophila Intestine also through Ets21c 

In drosophila as in other species, the ETS transcription factors are considered to be the pre-

dominant RTK-Ras-Mapk nuclear effectors [58]. One of these factors, Ets21c, was found to be 

transcriptionally induced the adult drosophila intestine upon downstream activation of Egfr 

signaling [54]. Additionally, preliminary experiments overexpressing Ets21c in the progenitor 

population revealed an increase in the rate of proliferation (data not shown). Based on this 

knowledge, we addressed Ets21c function in the midgut epithelium, with a focus on its growth 

effects.  

To delineate the role of Ets21c in regulating enteroblast growth, the Su(h)TS driver was used to 

overexpress or knockdown Ets21c (RNAi) in the adult intestine. Additionally, a possible Mapk 

dependency for Ets21c-driven phenotype was tested by co-expressing Mek-RNAi with Ets21c. 

Ets21c gain of function in the committed EB progenitors led to a significant size increase of 
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these cells, in comparison to their wild type siblings expressing GFP alone (figure 13). Sizes of 

the GFP+ expressing cells were measured based on accurate quantifications of individual cell 

areas from confocal z-stack projections. Although the cell size (area) of Ets21c-expressing cells 

is significantly increased compared to control cells, the effect is milder compared to the size 

increase triggered by activated Ras expression under the same conditions (see 10A). 

Interestingly, not only Ets21c expression turned out to be sufficient to promote progenitor cell 

growth, but also required by these cells in order to achieve their normal size under ho-

meostatic conditions. This is evidenced by a significant reduction in cell size prompted by Et-

s21c knockdown. Epistasis experiments revealed that this growth promoting effect triggered 

by Ets21c expression does not depend on Mapk activity, as co-expression of Mek-RNAi did not 

suppress the observed size increase (figure 13). 

II-3C Ras-Mapk Promotes Nutrient Independent Growth in the Larval Intestine 

The precursors for intestinal stem cells, called adult midgut progenitors (AMPs), first appear in 

the embryonic midgut epithelium amongst other epithelial cells that will differentiate into 

functional enterocytes (ECs) or enteroendocrine cells (EEs). AMP proliferation during larval 

development is highly sensitive to Egfr signaling and to changing nutritional conditions 

[50,46]. As the AMPs do not differentiate at these early stages, they constitute a good system 

to study Ras-Mapk mediated effects on growth and proliferation.  

Therefore, we tested the resistance of AMPs to starvation conditions and if Ras-Mapk is able 

to provide an additional growth input dominant to nutrient availability that would allow 

AMPs to expand under starvation. Following 4h egg collection, larvae were allowed to grow 

until 72h AED (after egg deposition, larval stage L2), at which point they were starved of nu-

trients. The animals were then dissected, whether kept on normal diet or starved, at 120h AED 

(L3). Ras-Mapk pathway upregulation was achieved by overexpressing RasV12S35 using the esgTS 

driver, whereas Pi3k and ToR pathways were modulate by p110 or Rheb expression, respective-

ly. Cell growth and division were quantified from z-stack projections, based on cell counts as 

well as cell cluster and area measurements.  

In control animals, at 72h AED (after egg deposition) most AMPs were found in the midgut as 

dividing doublets. A subsequent surge in proliferation then ensured their dispersal through 

the epithelium and formation of characteristic clusters, known as AMP islands, at 120h AED. 

Upon starvation, the wild type controls showed a block in proliferation, with AMPs still pre-
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senting as doublets throughout the tissue at 120h AED. In normally fed animals, providing a 

growth promoting signal in the form of activated Ras, led to a strong proliferative response 

with progenitor cell and cluster sizes (areas) increasing significantly compared to the fed con-

trols (figure 13). In several animals, the AMPs appeared no longer restrained to clusters but 

rather dispersed through the epithelium.  

Interestingly, RasV12S35 expression with the esgTS driver allowed the progenitors to expand 

even under starvation conditions, although the cluster sizes were not quite as big as the ones 

showcased by the fed RasV12S35 expressing animals. Nevertheless, the starved Ras expressing 

guts closely resembled the fed wild type controls. The cell and cluster area quantifications con-

firm these observations (figure 13). Thus, activation of Ras-Mapk signaling in midgut progeni-

tors in the developing intestine is able to provide an additional growth input which is partially 

dominant to nutrient availability.
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FIGURE 10A,B Egfr-Ras-Mapk activation promotes ISC proliferation independently of ToR. (10A) RasV12 expression in ISCs 

and EBs using the esgTS system. Esg+ progenitor cells are marked in green (grey) and nuclei stained with DAPI in blue. 

Esg-WT control guts expressing GFP alone, Esg-RasV12 guts expressing activated Ras during a 5 day induction period at 290C, 

rapa: animals treated with rapamycin during the induction period. Active Ras triggered a significant increase in the midgut 

ISC mitotic index (see 10C) and an expansion of the GFP+ cell population. Rapamycin treatment did not have a significant 

effect on Ras-induced proliferative activity. Fewer overgrown GFP+ cells were, however, observed following rapamycin 

treatment. (10B) Raf GoF expression in ISCs and EBs using the esgTS system. Same color convention as in 10A. Similar as with 

Ras expressing guts, expression of activated Raf in the progenitor compartment significantly enhanced ISC proliferation in 

the midgut, with or without concomitant rapamycin treatment. Scale bars represent 30 µm.
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FIGURE 10C Quantification of pH3+ (dividing), GFP+ (expressing), and DAPI+ cells per 

adult midgut of the indicated genotype. Midguts expressing activated Ras or Raf had 

significantly more mitotic cells and GFP+ cells then controls. Ras/Raf driven 

proliferation was not impaired by concomitant rapamycin treatment. Statistical 

significance was determined by student’s t test (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001). Error bars in each graph represent standard deviation.
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FIGURE 11 Ras driven growth of committed midgut progenitors is partially ToR dependent. The Su(h)TS 

system was used for EB-specific expression of activated Ras (SuhTS-RasV12S35) or GFP alone (SuhTS-WT) during 

a 5 day induction period at 290C. Rapa: rapamycin treatment during the induction period. Nuclei are marked 

by DAPI in blue, progenitor EBs are marked in green. Samples were additionally stained for armadillo (Arm) 

to better reveal cell boundaries. Cell sizes were measured based on accurate quantifications of individual cell 

areas from confocal z-stack projections. Expression of activated Ras in committed progenitors significantly 

stimulated their growth compared to controls. Rapamycin treatment impaired the growth of cells 

expressing RasV12S35. Statistical significance was determined by student’s t test (*p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001). Error bars in each graph represent standard deviation.
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FIGURE 12A phospho-S6k and phospho-4EBP staining patterns in the midgut upon ToRC1 pathway modulation. EsgTs system 

was used to express Rheb or GFP alone in midgut progenitor cells (5 day induction at 290C). Rap indicates rapamycin treatment 

during the induction period. pS6k/p4EBP stainings shown in separate grey images. Merges: DNA in blue, GFP+ expressing cells 

in green, and phospho-S6k/4EBP in red. Rheb expression in the progenitors (ISC/EBs) noticeably enhanced the overall 

phospho-4EBP signal and triggered the appearance of large overgrown GFP+ cells in the midgut, while rapamycin treatment 

reduces the phospho-4EBP staining and the occurrence of overgrown GFP+ polyploid cells. 

FIGURE 12B  Expression of activated Raf in the midgut progenitors induces S6k phosphorylation. EsgTs system was used to express 

Raf GoF (activated Raf allele) in midgut ISC/EBs, over a 3 day induction period at 290C. Following transgene expression, the midguts 

were dissected and homogenised. Proteins were then extracted and separated by size through electrophoresis. Following blotting, 

the indicated antibodies were used to detect protein phosphorylation. Raf gain-of-function in the progenitors promoted S6k 

phosphorylation (pS6k), indicative of increased ToRC1 activity. Additional blots and controls should confirm this result. 

Phosphorylation levels were quantified relative to tubulin loading control.
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FIGURE 13  Ets21c is required and su�cient to drive EB progenitor growth in the adult intestine. The 

Su(h)Ts system was used drive transgene expression specifically in EBs during a 3 day induction period 

at 29C. 13A DAPI marks nuclear DNA in blue, EBs are colored in green, armadillo (Arm) is in red, and 

phospho-Erk in yellow. Row1 (first up) control expressing GFP alone, row2 midguts expressing Ets21c 

in the committed EB progenitors, row3 Ets21c RNAi mediated knockdown in EBs, row4 co-expression 

of Ets21c and Mek-RNAi in EBs. 13B Cell sizes were measured based on accurate quantifications of 

individual cell areas from confocal z-stack projections. Ets21c expression in the committed 

progenitors led to a significant size increase in comparison to their wild type siblings expression GFP 

alone. Furthermore, Ets21c appears to be required by these cells in order to achieve their normal size 

under homeostatic conditions, as Ets21c knockdown triggered a significant reduction in cell size. The 

epistasis test (row4) revealed that the growth promoting effect prompted by Ets21c expression does 

not critically depend on Mek kinase activity, as Mek-RNAi did not significantly impair the 

Ets21c-driven size increase. Statistical significance was determined by student’s t test 

(*p<0.05,**p<0.01,***p<0.001,****p<0.0001). Error bars in each graph represent standard deviation.
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FIGURE 14  Ras-Mapk signaling promotes midgut progenitor cell growth in absence of nutrients in the larval gut. Sample 

preparation: embryos were collected for 4 hours at 25C on grape juice agar plates and transferred to 18C; L1 larvae were 

transferred after hatching at 48h after egg deposition (AED) (24h at 25C) into new vials on standard laboratory food in a density 

controlled manner and maintained at 18C; few hours before 6d AED (132h 5.5d) (72h at 25C), late L2 larvae were transferred into 

20% sucrose solution for the starved condition and maintained at 29C for transgene induction; animals were dissected few hours 

before 10d AED (9.5d) (120h at 25C) for immunofluorescent staining. The esgTs system was used to achieve conditional transgene 

expression in the adult midgut progenitors (AMPs) in the larval gut. (14A) DAPI stained nuclei are in blue, GFP+ progenitors are 

depicted in green, phospho-S6k in red, and pH3+ (dividing) cells in yellow. (14B) Cell and cluster area quantifications were 

performed on confocal z-stack projections for at least 15 guts per sample. Upon starvation, the wild type controls showed a block 

in proliferation, with AMPs failing to expand and remaining as doublets throughout the tissue (14A: esgTs-WT starved, 14B: yellow 

bars). In animals on normal diet, expressing activated Ras in AMP progenitors  led to a strong proliferative response with 

progenitor cell and cluster sizes increasing significantly compared to the fed GFP-expressing controls (14A: esgTs-RasV12S35, 14B: red 

bars). Ras expression allowed the progenitors to proliferate to a certain extent and increase cluster sizes, even in animals deprived 

of nutrients (14A: esgTs-RasV12S35 starved, 14B: green bars). Rheb (positive ToRC1 regulator) expression in the progenitors also 

significantly increased progenitor cell sizes (14B red bar). Statistical significance was determined by student’s t test 

(*p<0.05,**p<0.01,***p<0.001,****p<0.0001). Error bars in each graph represent standard deviation.
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Results mapk PHENOTYPES IN The FAT BODY

II-4 MAPK GROWTH AND AUTOPHAGY PHENOTYPES IN FAT BODY 

II-4A Ras Activation Cannot Rescue Growth Deficiency of Fat Body Cells 

context Reduction of InR/Pi3k activity in differentiated tissues of drosophila larvae leads to 

cell autonomous reduction in cell growth and DNA endoreplication [46]. Reducing ToR activity 

triggers similar inhibitory effects [44,45]. Conversely, activation of InR/Pi3k or of Rheb/ToR 

signaling increases cell size and nuclear DNA content in many larval tissues, including the gut 

and the fat body. Moreover, InR/Pi3k as well as Rheb are capable of bypassing the dietary re-

quirement for cell growth, and can function as growth promoters even in animals starved for 

protein [46,47]. 

aim To better understand Ras-Mapk involvement in growth related processes and its possible 

connection to ToR signaling, we tested its ability to promote cell growth in fat body tissue un-

der fed and nutrient/ToR-deficient conditions. 

approach To determine if Ras-Mapk is able to rescue the growth of cells deficient for ToRC1 

activity, the Adh-Gal4 driver was used to express activated Ras in all fat body tissue concomi-

tant with ToRC1 inhibition via rapamycin treatment. An additional experiment addressed the 

clonal ability of Ras-Mapk activation to induce a growth phenotype in fat body tissue under 

fed or nutrient starved conditions. In this latter experiment, clones hyperactive for Ras-Mapk 

or ToRC1 signaling were generated in fat body tissue using the Flp/Gal4 technique (Basler 

1993, Zipursky 1997, Neufeld 1998). In both experiments, cell sizes of transgene expressing 

and control non-expressing cells were estimated based on individual cell area quantifications 

from confocal projections. 

results A visible change in fat body cells deprived of protein was an aggregation of lipid vesi-

cles, effect also observed upon treatment with rapamycin. Treatment with the known ToRC1 

inhibitor rapamycin led to a decrease in the average cell size in fat body tissue. This size defect 

was not rescued by concomitant ectopic expression of activated Ras using the Adh-Gal4 driver, 

indicating that either Ras alone is not sufficient to promote growth in this tissue, or that it 

requires ToR activity in order to do so (figure 15). The second experiment revealed that clonal 

Rheb overexpression significantly increased the size (cell area) of these endoreplicating cells 

under both fed and starved conditions (figure 16). Fat body cells overexpressing Rheb encom-

passed approximately 1.5x the area of neighbouring control cells. In contrast to the cell size in 
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crease triggered by Rheb, RasV12 expressing cells did not show a significant growth change 

compared to control cells in neither the fed nor the starved conditions (figure 16). 

II-4B Mapk Cannot Suppress Starvation Induced Autophagy in Fat Body Tissue 

context Autophagy is the main degradative process in eukaryotic cells, allowing cells to main-

tain homeostasis by recycling damaged proteins and organelles, and to adapt to nutrient star-

vation by breaking down and recycling cellular components. Starvation induces a rapid au-

tophagic response in the larval fat body, a nutrient storage organ analogous to the vertebrate 

liver. Furthermore, activation of Pi3k-Rheb-ToR signaling is necessary and sufficient to sup-

press starvation-induced autophagy in the fat body [48,49]. 

aim Based on the rapid response of fat body tissue to starvation and the effect of ToR pathway 

activity in this context, we wanted to assay whether clonal Ras-Mapk activation can rescue the 

starvation-induced autophagic response in this tissue. Ras mediated autophagy phenotype 

would give an indication of its influence on ToR activity in this regard.  

approach Clones hyperactive for Ras-Mapk or ToRC1 signaling were generated in fat body 

tissue using the Flp/Gal4 technique (as in II-4A), under both fed and starved conditions. Au-

tophagy induction was detected using Lysotracker Red staining [48]. The lysotracker probes 

are fluorescent acidotropic probes commonly used for labelling and tracking acidic organelles 

in live cells. 

results Upon starvation, larval fat body cell growth is arrested, lipid droplets aggregate and 

autophagy is rapidly induced. Fat body from starved larvae displayed an intense granulated 

lysotracker staining, whereas fed animals showed only a faint diffuse staining pattern (figure 

17). Clonal expression of Rheb suppressed autophagy in starved animals in a cell autonomous 

manner, indicating that ToR signaling is sufficient to prevent starvation-induced autophagy 

(as shown before, 48). Unlike Rheb, however, we found that clonal expression of constitutively 

active Ras did not suppress starvation-induced autophagy, indicating that Ras signaling is not 

capable to circumvent the autophagic response induced by starvation in fat body tissue (figure 

17).
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FIGURE 15 Ras expression in fat body tissue of rapamycin treated 

larvae. The Adh-Gal4 driver was used to achieve transgene 

expression in all fat body cells. Following a 3 hour egg collection, L2 

larvae were transferred at 72 hours AED (after egg deposition) into 

vials with fresh fly food with or without rapamycin. L3 larvae were 

then collected at 90 hours AED for analysis. DAPI stained nuclei are 

depicted in blue, and GFP+ expressing cells in green. Cell sizes were 

measured based on accurate quantifications of individual cell areas 

from confocal z-stack projections. Scale bar represents 50 um. 

Rapamycin treatment led to a significant decrease in the average 

cell size in fat body tissue (15A Adh-WT + Rapa, 15B yellow bar) 

compared to untreated controls (16A Adh-WT, 16B blue bar). This 

growth defect was not rescued by concomitant expression of 

activated Ras (15A Adh-RasV12 + Rapa, 15B green bar). Statistical 

significance was determined by student’s t test (*p<0.05,**p<0.01, 

***p<0.001,****p<0.0001). Error bars in each graph represent 

standard deviation.
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FIGURE 16 See legend on next page.
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FIGURE 16  Activated Ras expression cannot rescue growth defect of protein-deprived fat body cells. Cell clones expressing 

Rheb or RasV12 were induced in fat body tissue using the Flp-Gal4 system. DAPI-stained nuclei are shown in blue, GFP+ 

expressing cell clones are visible in green, and armadillo (bCatenin) in red to better delineate cell boundaries. Animals were 

starved of dietary protein from L2 stage at 80 hours AED until L3 at 94 hours AED. Clonal Rheb overexpression significantly 

increased the size of these endoreplicating cells under both fed and starved conditions (16A ActFO-Rheb middle row, 16B red 

and green bars). Fat body cells overexpressing Rheb encompassed approximately 1.5 times the area of neighbouring control 

cells. In contrast to the cell size increase triggered by Rheb, Ras expressing cells did not show any significant growth change 

compared to neighbouring control cells in neither the fed or the starved conditions (ActFO-RasV12). Cell sizes were measured 

based on accurate quantifications of individual cell areas from confocal z-stack projections. Quantifications are expressed as 

ratios of average GFP+ (expressing Ras/Rheb) cell areas versus the average GFP- non-expressing cell areas. Scale bar represents 

50 um. Statistical significance was determined by student’s t test (*p<0.05,**p<0.01,***p<0.001, ****p<0.0001).
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FIGURE 17 Ras expression cannot rescue starvation induced autophagy in larval fat body tissue. Heat shock independent spontaneous Flp 

induced expression of Gal4 transcription factor was used to clonally activate UAS-controlled transgenes. L3 larvae were starved of dietary 

protein in 20% sucrose at 86h AED for 4h prior to dissection and staining with lysotracker. DAPI-stained DNA is shown in blue, GFP+ 

expressing cells are in green, and lysotracker staining in red as an indicator of autophagy. The lysotracker probe consists of a fluorophore 

linked to a weak base that selectively accumulates in cellular compartments with a low internal pH, and can be used as an indicator of 

autophagy. Upon starvation, larval fat body cell growth is arrested and autophagy is rapidly induced (ActFO-WT, upper row). Fat body tissue 

from starved animals displayed an intense granulated lysotracker staining, whereas fed animals show only a faint diffuse staining pattern 

(upper row, ActFO-WT fed vs starved). Clonal expression of Rheb suppressed autophagy (lysotracker staining) in starved animals in a cell 

autonomous manner (ActFO-Rheb, middle row), as shown before by Scott and Neufeld 2004. Unlike Rheb, however, clonal expression of 

activated Ras didn’t suppressed the starvation induced autophagic response. Scale bar represents 50um.
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discussion mapk implications in growth & cancer

III. DISCUSSION 

III-1 MAPK IMPLICATIONS IN GROWTH AND CANCER 

How Does Mapk Drive Growth? 

The evolutionary conserved Mapk pathways coordinate essential cellular functions, including 

cell survival, proliferation, growth, motility and differentiation [9]. To execute such intricate 

functions, Mapks regulate transcription factors impinging on gene expression, as well as a va-

riety of cytosolic substrates coordinating other aspects of cellular metabolism. As part of the 

polyvalent nature of this pathway’s functionality, Ras-Mapk has been firmly established as a 

growth promoter in different contexts [3,69,70,151-153]. However, despite a vast literature 

on Mapk pathways, the nature of the effectors and interactions underlying Mapk-driven 

growth remains a matter of inference from an assortment of disparate systems. Studies based 

mostly on mammalian systems suggest multiple interactions that may play a role in Mapk dri-

ven growth. In our study we focused on two types of effectors, the ToRC1 complex (target of 

rapamycin complex 1) and the Mapk activated protein kinases Mapkapks. 

ToRC1 is remarkable in its ability to integrate five major inputs (growth factors, amino acids, 

energy, stress and oxygen) and appropriately coordinate anabolic pathways, including nutrient 

intake, protein and lipid synthesis, as well as catabolic pathways such as autophagy [154]. Im-

portantly, both Erk Mapk and one of its targets (Rsk) were found to positively regulate ToRC1 

in mammalian cells through direct and indirect mechanisms [30-36]. Furthermore, mam-

malian studies have attributed a significant extent of Mapk functionalities to the activation of 

downstream Mapkapks. They are presented as an additional amplification step in the Mapk 

catalytic cascades, increasing the range of actions regulated by Mapk modules (III-2). Two of 

the Mapkapk were found to be involved in translation control, namely the Mnks (Mapk inter-

acting kinases])[12] and the Rsks (p90 ribosomal S6 kinases) [13]. 

Proposed Model 

This study suggests a model that describes Mapk-ToR crosstalk in drosophila and brings forth 

new potential Mapk growth effectors, the Mapkapks. According to this model, Erk Mapk may 
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promote growth in insect cells via two mechanisms. A first mechanism relies on Mapkapk acti-

vation that might directly promote translation or activate another pathway, such as ToR, in 

order to do so. The connection to Mapkapks would integrate Ras-Mapk pathway activity with 

nuclear signaling and chromatin remodelling processes (see III-2). A second mechanism may 

rely on ToRC1 activation, which in turn promotes biosynthetic pathways and eventually 

growth. The connection to ToRC1 would integrate Ras-Mapk pathway activity with the cellular 

and systemic metabolic state, and initiate Mapk-driven cell functions (requiring translation) 

only if the nutritional and energetic context is favourable.  

Experimental evidence in support of the first mechanism comes from our in vitro assays, 

which show that three Mapkapks (Mnk, Rsk, Msk) are required for insect cell growth down-

stream of RTK signaling (II-1, III-1, III-2). Although mammalian studies identify these Map-

kapks as Erk Mapk effectors [Rsk 82-85, Msk 91-97, Mnk 105-111], it remains to be experi-

mentally tested if they are indeed directly targeted by Erk Mapk in insect cells. Two of them, 

Rsk and Mnk, were already identified as Erk interaction partners in insect cells [14-16, 17-19, 

104]. 

Experimental evidence in support of the second mechanism relying on ToRC1 comes from our 

in vitro and in vivo assays. In cultured insect cells, Ras-Mapk appears to be sufficient and re-

quired for ToRC1 activation (II-2, III-3, III-4), while in the animal’s intestine Ras-Mapk de-

pends on ToRC1 activity to fully promote growth (II-3, III-5). Furthermore, Ras-Mapk activa-

tion in the developing intestine acts as a potent growth and proliferation promoter, even un-

der conditions of protein starvation (II-4, III-6). Ras-Mapk is thus able to replicate a pheno-

type previously attributed to ToRC1 functionality [47]. If this Ras-Mapk growth phenotype is 

indeed dependent on ToRC1 remains to be seen. 

Both Mapk and ToR pathways are evolutionary conserved and key players in the regulation of 

multiple cellular functions. There is hardly any cellular stimulus that doesn’t feed into these 

pathways. It is easy to see how connecting these pathways would be advantageous not only for 

tissue homeostasis and regeneration but also for keeping developmental and metabolic deci-

sions in sync. Multiple convergence points between these pathways (III-4) seem to argue for 

the validity of this hypothesis. 
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Model for Mapk driven growth in insect cells. Ras-Mapk pathway activation downstream of 

RTK receptors (including InR and Egfr) stimulates ToRC1, a strong promoter of cell growth. 

Additionally, Mapk activated protein kinases (Mnk, Rsk, Msk), previously identified as down-

stream effectors of Mapks*, also function as growth promoters in insect cells. Therefore, de-

pending on the developmental timing, tissue type and regenerative needs, Ras-Mapk may rely 

on multiple effectors to drive growth. *14-16,83-85,91-93,96-99, 109-112
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Mapk Signaling Mechanisms 

Ras-Mapk activation generates two categories of cellular responses: transcriptional and non-

transcriptional. Both types of responses unravel in different stages, involve lateral signaling 

and activate feedback loops which eventually restrict signaling activity. The transcriptional 

response relies on both activators [like Pointed] and inhibitors (like Capicua, Yan and Grou-

cho) of gene expression, and supports functions such as proliferation, survival and differentia-

tion. The sequential nature of the transcriptional response is nicely illustrated during 

drosophila eye development. During photoreceptor recruitment, low and transient Mapk acti-

vation triggers PointedP2 (PntP2) which promotes (directly or indirectly) transcription of the 

constitutively active PntP1 [155]. The system therefore switches from a regime that depends 

on Mapk phosphorylation to one that relies on PntP1 protein stability. Crosstalk at the tran-

scriptional level occurs via convergence of different transcription factors at the promoter/en-

hancer region of target genes [156-158], via transcriptional induction of components of other 

pathways (e.g. InR regulation by Cic, 54), and via regulation of transcription co-factors impli-

cated in other pathways (e.g. Groucho regulation by Cic, 159). 

The non-transcriptional Mapk response mainly relies on phosphorylation of an assortment of 

nuclear and cytoplasmic targets, and supports functions such as survival, chromatin remodel-

ling, cell cycle progression, translation and cytoskeletal organisation. The sequential nature of 

the non-transcriptional responses is nicely illustrated by events triggered in Rat2 cells upon 

Egf stimulation [160]. There, multiple phosphorylation waves of the scaffold protein Shc1 

trigger first the recruitment of the adaptor Grb2 and activation of mitogenic pathways. A sec-

ond phosphorylation wave activates a negative feedback loop via Akt-mediated recruitment of 

a phosphatase. A third Shc phosphorylation wave terminates the signal and leads to cytoskele-

tal reorganisation. Crosstalk at the non-transcriptional level mainly occurs via Mapk mediated 

phosphorylation  of components of other pathways. An epitome of such crosstalk is Ras-Mapk 

activation of ToRC1 and Mapkapk effector kinases (III-1to4). The more elaborate circuitry may 

facilitate a more versatile and adaptable signalling outcome. Mapk growth function is likely 

executed through non-transcriptional mechanisms that may activate effectors including ToR-

C1 and Mapkapks in a context dependent manner, demanded by the tissue type and develop-

mental timing.  
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Cancer Implications 

As key mechanisms for regulating cell growth and proliferation, Mapk and ToR pathways are 

often hijacked by different cancers to initiate and grow tumors, and eventually metastasise. 

Extensive crosstalk between these pathways is advantageous not only in a developmental con-

text but also for cancerous growth. In cases which I describe as collaborative transformation, 

where oncogenesis appears to be driven by both pathways, pathway crosstalk and convergence 

limits the use of single target drugs. For example, cancer cell lines harbouring Pi3k/Pten muta-

tions show a reduced cytostatic response to Akt/ToR inhibitors if they additionally acquire 

Ras/Raf mutations [39,77]. Furthermore, in cases known as oncogene addiction, where trans-

formation appears to be driven by a single pathway, the effectiveness of single agents if limited 

by cross-inhibition mechanisms between Mapk and ToR pathways. For example, treatment of 

breast cancer cell lines harbouring high levels of activated Erk and Egfr with Mek inhibitors 

increases Akt activity and is cytostatic rather then cytotoxic [78,79]. 

As introduced by our model, the Mapkapks may also function as Mapk growth effectors in in-

sect cells. Dysregulation of these kinases is associated with multiple human diseases including 

cancer. For example, Rsk2 mutations are the underlying cause for CLS (Coffin Lowry Syn-

drome), an X-linked mental retardation syndrome characterised by psychomotor retardation 

and facial, hand and skeletal malformations [81]. Furthermore, Mnk directly phosphorylates 

the translation initiation factor eIF4E. eIF4E phosphorylation in turn was found to be impor-

tant for eIF4E oncogenic potential [113]. eIF4E is believed to exert its tumorigenic activity by 

suppressing apoptosis (e.g. via Mcl1, 114) and by promoting translation of inflammatory mol-

ecules (Ccl2 and Ccl7) and matrix metalloproteases (Mmp3 and Mmp9), which play roles in 

inflammation and tumor progression, respectively [116]. 

The significance of studies such as the one described here is therefore far reaching, not only for 

our understanding of how cells integrate multiple RTK-derived signals to grow and dynamical-

ly coordinate developmental with metabolic decisions, but also towards designing more effec-

tive therapies targeting tumor growth.
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III-2 NEW GROWTH EFFECTORS IN INSECT CELLS, THE MAPKAPKS 

This section discusses the results presented in II-1. 

Context 

The dogma. Mapk (mitogen activated protein kinase) and ToR (target of rapamycin) pathways 

are key mechanisms through which cells control their survival, proliferation, growth and 

motility. Both pathways are frequently mutated in a variety of human cancers, and extensive 

signaling crosstalk and convergence between these pathways limits the efficacy of single agent 

therapeutic approaches. The ToR kinase pairs with several protein partners and forms two dis-

tinct complexes, ToRC1 and ToRC2, which exhibit different sensitivities to the macrolide ra-

pamycin, as well as different upstream inputs and downstream outputs. ToRC1 is remarkable 

in its ability to integrate five major inputs [growth factors, amino acids, energy, stress and 

oxygen] and appropriately coordinate anabolic pathways, including nutrient intake, protein 

and lipid synthesis, as well as catabolic pathways such as autophagy [154]. The canonical ToR 

pathway was found in drosophila to function downstream of insulin initiated receptor tyrosine 

kinase RTK signaling, and control cell growth in culture [1-3] as well as in vivo [4,44,45]. For a 

better understanding of general growth control and growth promoting pathways, please refer 

to the introductory chapter. 

It’s not just insulin. As described in the introduction, insulin is not the only growth promoting 

pathway, and knockdown of insulin pathway components (InR, IRS, p60, p110) in insect 

schneider cells does not significantly affect their size [3]. On the other hand, Pvr-Ras signaling 

pathway was found to affect the size of drosophila cells in culture (Pvr, Pdgf/Vegf receptor sig-

naling). As part of a screen, knockdown of Ras-Mapk pathway components, including Pvr, Sos, 

Grb2, Ras, Ksr was found to reduce insect cell size in culture [3]. Moreover, even insulin stimu-

lation of schneider cells has been observed to activate not only Akt, but also the Erk pathway 

[7,8]. 

Conspiring to promote growth. The evolutionary conserved Mapk (mitogen activated protein 

kinase) pathways coordinate essential cellular functions, including cell survival, proliferation, 

growth, motility and differentiation [9]. Although 14 Mapks have been characterised, the 

most extensively studied are Erk, Jnk and p38 isoforms. To execute such intricate functions, 

Mapks regulate transcription factors impinging on gene expression, as well as a variety of cy-

tosolic substrates coordinating other aspects of cellular metabolism. Among these substrates 
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are the Mapk activated protein kinases (Mapkapks) [10,11]. Two of them were found to be 

involved in translation control, namely the Mnks (Mapk interacting kinases) [12] and the Rsks 

(p90 ribosomal S6 kinases) [13]. The drosophila Rsk ortholog was shown to be involved in 

modulation of circadian behaviour and memory formation [14-16]. Drosophila Mnk homo-

logue is called Lk6, and was shown to be important for eIF4E phosphorylation, developmental 

rate and organism size [17-19]. Drosophila homologue of another Mapkapk (Msk) is called 

Jil1, is essential for viability, and it functions to maintain euchromatic domains while coun-

teracting heterochromatinisation and gene silencing [20, 21]. 

Aim 

Emergent scope of study. Although Ras-Mapk pathway was found to promote growth in differ-

ent tissues in drosophila (see introduction chapter), it doesn’t significantly affect the tran-

scription of growth genes [54]. Furthermore, extensive crosstalk between Mapk and other 

growth promoting pathways has been described in mammalian cells. Prominently, Erk Mapk 

activates ToRC1 pathway both directly and indirectly through its effector Rsk [30-36]. In addi-

tion, as stated above, several Mapk activated protein kinases have been associated with trans-

lational control. Together, these lines of evidence point toward non-transcriptional effectors 

stimulated by Mapk to promote cell growth. Therefore, we tested in our study several kinases 

as potential Mapk downstream growth effectors. We also asked if these kinases are involved in 

driving cell growth downstream of different RTK pathways, such as insulin and Egfr.  

New Findings 

Mek/Erk activity is important for growth. Kinase inhibitors for Mek and Erk have been used 

extensively to implicate Erk Mapk in various biological functions. Since their initial introduc-

tion in the mid 1990’s, several Mek inhibitors have been developed and entered clinical trials 

as potential anticancer agents [80]. We found that treatment of schneider cells with kinase 

inhibitors for Mek or Erk, in presence or absence of serum, lowered the proliferation and aver-

age cell sizes [mean diameters] compared to untreated controls (figures 1A,B 2A-C). The same 

effects were observed in the presence of added Pdgf/Vegf growth factors (figures 1C,D 2D-F). 

A similar inhibition of cell proliferation and size was obtained by inhibiting ToR signaling with 

rapamycin of torin, as positive controls. These results indicate that Mek/Erk kinase activity is 

relevant for these cells to maintain proper growth in culture. 
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Mapkapk (Mapk activated protein kinases) are important for normal and insulin stimulated 

growth. In order to investigate some of the connections described above, cell cultures were 

treated under the same conditions with various Mapkapk kinase inhibitors. We discovered 

that some of these, targeting Mnk, Rsk or Msk proved to have similar inhibitory effects on cell 

proliferation and size, as did Mek or ToR inhibition (figure 3A-C). Insulin stimulation of the 

cultured schneider cells triggered an increase in proliferation and cell size compared to un-

treated control, as previously shown [6]. Surprisingly, pre-treatment with Mnk/Rsk/Msk in-

hibitors invoked similar cell proliferation and size reduction effects even in the presence of 

insulin, compared to untreated or insulin-only treated controls. The same effects were ob-

served in the presence of added Pdgf growth factor (figure 3G-I). As before, pre-treatment 

with the ToRC1 inhibitor rapamycin, as a positive control, consistently impaired cell growth 

(figure 3D-F). Taken together, these data highlight an important role for these Mapk activated 

kinases in the control of homeostatic and insulin-induced insect cell growth in culture. 

Mapkapk kinases are important for normal and Egfr stimulated growth. Having observed that 

Mapkapks may act as growth effectors downstream of insulin singling, we also wanted to test 

other RTKs for such a dependency. Thus, we natively activated Egfr-Mapk signaling in cultured 

schneider cells (expressing the receptor) by stimulation with the drosophila Egfr ligand Spitz. 

Previous work showed that stimulation of such Egfr-expressing cells with Spitz does indeed 

lead to Erk Mapk activation [22]. Native activation of drosophila Egfr-Mapk signaling slightly 

increased the cell size (mean diameters measured over several time points) compared to cells 

not treated with Spitz ligand. Inhibition of Mapkapks, however, again reduced cell sizes in 

Spitz treated and non-treated cells (figure 4A-D). This result places these kinases as potential 

growth effectors functioning downstream of drosophila Egfr signaling. 

Significance 

Our findings suggest a considerable involvement of three Mapkapk kinases towards growth 

promoting processes, downstream of insulin and Egfr RTK signaling. Although described as 

Mapk activated kinases in mammals, it remains to be seen if these Mapkapks indeed function 

downstream of Mek/Erk in insect cells. Two of them, Rsk and Mnk, have already been de-

scribed as Erk interacting partners in drosophila [14-19]. The requirement for these kinases 

towards growth in insect cells also reveals a certain degree of conservation between insects 

and mammals with regard to Mapkapk functionalities. 
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Our hypothesis that Mapkapks may be important for insect cell growth fits with previous 

studies, introduced at the beginning of this section and detailed in the following section. These 

studies bring forward three main points: 1. Mapk activity drives growth in vivo and it’s acti-

vated by Egfr and insulin in vitro 2. Mapkapks function downstream of Map kinases and 3. 

Mapkapks have been implicated in promoting transcription (Msk) and translation (Mnk, Rsk).   

Our results, therefore, extend such findings to insect cells and propose a new mechanism of 

Mapk driven growth through activation of Mapkapk kinases. These, in turn, might directly 

promote translation or activate other pathways, such as ToR, in order to do so. The mechanis-

tic framework that may support these processes is described in the following section. The sig-

nificance of these and other findings is far reaching not only for our understanding of how 

cells integrate multiple RTK-derived signals to grow, but also towards designing more effective 

therapies targeting tumor growth. Indeed, several Mapkapks were found to be mutated in dif-

ferent human diseases. For example, Rsk2 mutations are the underlying cause for CLS (Coffin 

Lowry Syndrome), an X-linked mental retardation syndrome characterised by psychomotor 

retardation and facial, hand and skeletal malformations [81].
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III-3 MAPKAPKS IN TRANSLATION AND GROWTH 

The results discussed in the previous section bring forward new potential growth promoters in 

insect cells, the Mapk activated protein kinases (Mapkapks). Mammalian studies have at-

tributed a significant extent of Mapk functionalities to the activation of downstream Map-

kapks. They are presented as an additional amplification step in the Mapk catalytic cascades, 

increasing the range of actions regulated by Mapk modules. The activation mechanisms, sub-

strates and biological functions of these kinases are described in the introduction chapter. 

Here, I emphasise on their ability to promote translation and drive growth, as potential mech-

anisms supporting the results discussed in the previous section. 

One Mapkapk extensively studied in mammals is Rsk (p90 ribosomal S6 kinase). The Rsk fami-

ly includes four vertebrate isoforms and a single drosophila ortholog. Rsks are expressed ubiq-

uitously in every human tissue tested, predominantly in the kidney, pancreas, lungs, heart, 

skeletal muscle and brain [82]. Numerous studies link Rsks to basic cellular functions, includ-

ing cell cycle progression and cell proliferation, protein synthesis and cell growth, and cell sur-

vival. The drosophila Rsk ortholog was shown to be involved in modulation of circadian be-

haviour and memory formation [14-16]. Rsk was originally identified as an in vitro ribosomal 

protein S6 (rpS6) kinase [83, 84]. Later studies have identified S6k as the main rpS6 kinase, 

but shown that Rsk also contributes to S6k phosphorylation in vivo, and it does so in a ToR 

independent manner [85]. Rsk mediated rpS6 phosphorylation was found to promote cap-de-

pendent translation initiation. A second mechanism through which Rsk may promote transla-

tion and drive growth is by activating ToRC1. Rsk, and its activator Erk, were found to phos-

phorylate tuberous sclerosis complex component Tsc2, thereby negatively regulating its gua-

nine activating protein (GAP) activity towards the small GTPase Rheb [30-33]. Activated Rheb, 

in turn, stimulates ToRC1 activity. Another way in which Rsk and Erk stimulate ToRC1 is by 

phosphorylating Raptor, an important interacting partner of ToRC1 [34-36]. A third mecha-

nism for Rsk driven translation relies on phosphorylation and inhibition of Gsk3 [86], which 

prevents the suppression of translation initiation factor eIF2B [87]. By phosphorylating and 

inhibiting Gsk3, Rsk may also indirectly promote ToRC1, as Gsk3 and the Lkb1 activated ki-

nase Ampk both phosphorylate and activate Tsc2 [88, 89]. Finally, Rsk was shown to phospho-

rylate eIF4B and eEF2K, and thereby promote translation inhibition and elongation, respec-

tively [38,90]. 
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A second Mapkapk found to be conserved in mammals and drosophila is Msk (mitogen and 

stress activated kinase). Msk family includes two vertebrate genes (Msk1 and Msk2) and a sin-

gle ortholog in drosophila (Jil1). Similar to Rsk, it is expressed ubiquitously in human tissues, 

with a higher preponderance in the heart, brain, skeletal muscle and placenta [91]. Msks have 

a predominant nuclear localisation and are potently activated by mitogens and stress stimuli 

that promote Erk and p38 activation [91-93]. Although mice deficient for Msk1,2 do not dis-

play obvious phenotypes [94,95], deletion of the Msk ortholog Jil1 in drosophila is lethal, 

perhaps due to lower genetic redundancy [96,97]. In drosophila, Jil1 phosphorylates histone 

H3 at Ser10 and is a key regulator of chromatin structure, by facilitating the nucleosomal re-

sponse and thereby gene relaxation and activation [98,99]. Having a similar substrate speci-

ficity with Rsk, Msk might influence translation through similar targets. For example, both 

Rsk and Msk were found to phosphorylate the transcription factor Creb in mammalian cells 

[91,93]. Activated Creb in turn drives expression of immediate early (IE) genes, such as Fos, 

Jun and Egr1 [100]. Additional transcription factors targeted by Msk include NFkB and Stat3 

[101,102]. Importantly, Msk was suggested to phosphorylate the translational inhibitor 

4EBP1 [103], providing another convergence point between Mapk activated kinases and ToR-

C1 (see also III-4). 

A third Mapkapk documented in our study and tied to translational control is Mnk (Mapk in-

teracting kinase). Mnk family includes two vertebrate genes and a single ortholog in drosophi-

la (Lk6)[104]. Both Mnks are expressed in all adult tissues, with lower than average levels in 

the brain and higher levels in the skeletal muscle [105]. Both Mnk genes produce two iso-

forms, a long form (Mnk1A and Mnk2A) with a predominantly cytoplasmic localisation, and a 

short one (Mnk1B and Mnk2B) without a Mapk binding motif, equally distributed between 

the nucleus and the cytoplasm [106-108]. Whereas ToRC1 promotes eIF4E by inhibiting 4EBP, 

Mnk may promote cap-dependent translation initiation by directly phosphorylating eIF4E 

[109,110]. Stress and mitogenic stimuli which activate Erk and p38 promote eIF4E binding to 

eIF4G in the translation initiation complex, and subsequently Mnk dependent phosphoryla-

tion of eIF4E [109,111,112]. eIF4E phosphorylation appears to promote cancer cell prolifera-

tion in vitro [113] and enhance the oncogenic potential of eIF4E in vivo [114,115]. eIF4E me-

diated translational regulation of the antiapoptotic protein Mcl1 is believed to be important 

for tumorigenesis [114]. Furthermore, eIF4E phosphorylation was shown to be particularly 

important for the inflammatory response and tumor progression by regulating the translation 
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of mRNAs encoding inflammatory molecules (Ccl2 and Ccl7) and matrix metalloproteases 

(Mmp3 and Mmp9), respectively [116].
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III-4 MAPK ACTIVATES TOR IN INSECT CELLS 

This section discusses the results presented in II-2. 

Context 

Insulin signaling activates Erk and promotes cell growth. The insulin pathway constitutes the 

main nutrient sensing mechanism in drosophila, and coordinates cellular metabolism, prolif-

eration and growth [60]. Mutation of insulin pathway components phenocopies the effects of 

nutrient starvation, whereas pathway overactivation can drive growth and proliferation even 

upon lack of nutrients [44,46,59]. Insulin promotes growth in drosophila in vivo [5,23-27] as 

well as in cell culture [6-8,28]. Furthermore, insulin stimulation of cultured schneider cells 

activates several effector kinases, including Akt, S6k, Mek and Erk [6-8,29]. Activation of the 

Mapk Erk contributes to insulin driven proliferation in these cells [7], confirming Erk as one of 

the kinases functioning downstream of this growth promoting pathway. 

Pvr signalling also activates Erk and promotes cell growth. The drosophila homologue of 

mammalian Pdgf/Vegf receptor (PVR) was found to promote schneider cell growth in culture. 

Pvf2 and Pvf3 ligands act redundantly to activate Pvr and downstream Ras signaling. Activat-

ed Ras, in turn, drives growth by concomitantly activating Pi3k and Mapk, and subsequently, 

ToR pathway [3]. Normal growth of S2R+ cells in culture does not require insulin receptor ac-

tivation, but it rather depends on ToR and Mapk pathway activities. 

ToR functions downstream of insulin and Pvr to promote growth. The best characterised effec-

tor pathway activated by insulin and promoting growth is the canonical ToR pathway (intro-

duced in III-1). Thus, ToR promotes cell growth in drosophila in vivo [4] and in cell culture 

[1-3]. Pvr/Ras driven cell growth relies on activation of Raf/Mapk and Pi3k/Akt pathways, and 

is dependent on ToR pathway activity [3]. 

Mapk positively regulates ToR. Strong activation of Ras-Erk pathway leads to mToRC1 activa-

tion in mammalian cells through Erk and Rsk signaling to Tsc and Raptor components. Egf, 

phorbol esters and constitutively active Ras mutants promote Erk and Rsk mediated phospho-

rylation of Tsc2, inhibiting its GAP function and thereby stimulating mToRC1 activity and 

tumorigenesis [30-33]. Similar stimuli promote Erk and Rsk phosphorylation of Raptor, like-

wise increasing mToRC1 activity [34-36]. Furthermore, the stress activated p38 Mapk is a pos-

itive regulator of insect and mammalian cell growth, and a positive regulator of ToRC1 (ToR 
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complex 1). In fact, ToRC1 mediated cell growth requires p38 pathway activity in both insect 

and mammalian cells. The mechanism through which p38 activates ToRC1, however, is not 

fully understood [41]. Further details on Mapk-ToR signaling in the following section ‘Mapk 

ToR Crosstalk and Convergence’. 

Aim 

The findings described above inevitably lead to the consideration that Ras-Mapk may function 

downstream of insulin and Egfr signaling to promote ToRC1 activity and drive growth. Hence, 

we investigated this possibility by stimulating Ras-Mapk signaling in drosophila cell culture 

and quantifying ToRC1 target phosphorylation as a readout of its activity. Additionally, we 

tested if ToRC1 or any of the Mapk activated kinases might play a role in activating the canon-

ical Erk pathway. 

New Findings 

Ras-Mapk signaling is a potential ToRC1 activator in insect cells. Stimulation of cultured 

schneider cells with insulin, a known Pi3k/Akt and ToR pathway agonist, led to a marked in-

crease in activating phosphorylations of the Akt kinase and of the ToRC1 target S6k (figures 6, 

7B), as shown before [6]. Surprisingly, when we stimulated the cells with Egf growth factor or 

with the known Mek agonist Pma, we also observed an increased S6k phosphorylation, with 

no obvious effects on Akt phosphorylation (figure 6). Furthermore, pre-treatment with the 

ToRC1 inhibitor rapamycin prevented the increase in S6k phosphorylation upon stimulation 

with insulin, Egf or Pma. This indicates that Egfr signaling may be able to stimulate ToRC1 

activity toward its target kinase S6k in cultured schneider S2/S2R+ cells. Furthermore, stimu-

lating S2R+ cells with the known Ras-Mapk agonist Pdgf also led to a mild increase in S6k 

phosphorylation (figures 7B, 8B). Thus, it is possible that signalling initiated by several RTK 

receptors, including InR, Egfr and Pvr, may be used in insect cells to stimulate ToRC1 at differ-

ent times and to different extents. This would make sense if we consider the specificity of RTK 

pathways during development, reflected in temporally and spatially restricted activation pat-

terns. Temporally, some RKTs like Torso are specifically expressed at a certain developmental 

stage, whereas others like Egfr are more dynamically expressed. Spatially, some RKTs like Tor-

so and Egfr are broadly expressed, while others like Heartless and Breathless Fgf receptors are 

restricted to particular tissues [61]. Most developmental programs controlled by these RTKs 

rely on cellular growth, and therefore the ability to coordinate developmental decisions with 

growth promoting pathways, like ToR, could prove especially useful. The level of pathway acti-
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vation may depend on factors such as ligand expression, ligand processing and presentation, 

feedback loops, and co-option of a secondary transcriptional response. 

Ras-Mapk is important for ToRC1 activation by growth factors in insect cells. Having seen that 

Egfr signaling may stimulate ToRC1 activity in cultured schneider cells, likely independently of 

Akt, we asked if it might also be required for ToRC1 activation under basal or growth factor 

stimulated conditions. For this purpose, we used Mek and Erk chemical inhibitors to down-

regulate signaling through the Raf/Mek/Erk Mapk pathway. As expected, cell treatment with 

these inhibitors efficiently reduced Erk phosphorylation under normal or growth factor (in-

sulin, Pdgf, Vegf) stimulated conditions (figures 7A, 8A). ToRC1 inhibition with rapamycin or 

ToRC1,2 inhibition with torin had no obvious effect on Erk phosphorylation under these con-

ditions. Significantly, insulin and Pdgf stimulated phosphorylation of the ToRC1 target S6k 

was strongly reduced by the inhibition of Mek (and to a smaller extent by Erk inhibition). 

Treatment with well known ToR pathway inhibitors [as positive controls] such as rapamycin 

and torin, likewise abrogated S6k activation by these growth factors (figures 7B, 8B). Taken 

together, these results indicate that RTK driven Ras-Mapk signaling stimulates ToRC1 activity 

in drosophila schneider cells, as evidenced by an increase in its target S6k phosphorylation. 

Importantly, ToRC1 pathway activation by insulin and Pdgf growth factors depends to some 

extent on Mek-Erk activity, as their inhibition reduced growth factor stimulated ToRC1 target 

phosphorylation. This finding further supports the hypothesis described in the previous para-

graph suggesting an integration of RTK and ToRC1 signaling. 

Mapk pathway activation does not require ToRC1 or Mapkapk activities. It has previously been 

shown that insulin stimulation of schneider cells increases Erk phosphorylation [7,8]. Like-

wise, stimulation of schneider cells with the native drosophila Egfr ligand Spitz also increases 

Erk phosphorylation [22]. Based on these findings and our previous results, we wanted to 

know if ToRC1 or any of the Mapk activated kinases (Mapkapk) previously tested might also 

play a role in Erk activation. Treatment of schneider cells with kinase inhibitors for Mnk, Rsk, 

Msk or ToRC1, did not reduce Erk phosphorylation levels in basal or in growth factor (insulin, 

spitz) stimulated cell cultures (figure 9). This would indicate that Mapk pathway activation 

under normal or growth factor stimulated conditions does not require ToRC1 or the Mapk ac-

tivated protein kinases Mnk, Rsk, Msk. 
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Significance 

Our findings described in the previous sections bring forward several potential mechanisms 

through which Erk Mapk might promote cell growth, namely through stimulation of three 

Mapkapks, previously identified as Erk targets. This section proposes yet another mechanism 

(or an extension of the previous) for Mapk driven growth, namely by stimulation of ToRC1 

activity. Erk Mapk might positively regulate ToRC1 directly, through mechanisms described in 

the following section, and/or indirectly by activating Mapkapks which in turn can activate 

ToRC1, through mechanisms described in the previous section.  

As introduced at the beginning of this section, connection points between Mapk and ToR have 

been previously described in mammalian cells [30-36]. Moreover, the the stress activated p38 

Mapk was also found to function as a positive regulator of ToRC1 in mammalian and insect 

cells [41]. Our findings, therefore, bring yet another piece of the puzzle by showing that Ras-

Mapk signaling is sufficient and required for ToRC1 activation in schneider cells. It appears 

that some level of connectivity between these two pathways that are deeply anchored into the 

cell’s inner workings, has been conserved throughout evolution. Such connectivity may be im-

portant not only for tissue homeostasis and regeneration but also for keeping developmental 

and metabolic decisions in sync. Multiple convergence points between these pathways seem to 

argue for the validity of such thinking. 

Both Mapk and ToR pathways are evolutionary conserved and key players in the regulation of 

multiple cellular functions. There’s hardly any cellular stimulus that doesn’t feed into these 

pathways. Understanding their individual and collaborative contribution to cellular ho-

meostasis is imperative for our scientific advancement and the development of future thera-

peutic approaches.  

Indeed, both Mapk and ToR pathways are frequently mutated in human cancers. Due to cross-

activation and convergence between these pathways [detailed in the following section], tumors 

often develop resistance to drugs targeting only one pathway. For example, cancer cell lines 

harbouring Pi3k/Pten mutations show a reduced cytostatic response to Akt/ToR inhibitors if 

they additionally acquire Ras/Raf mutations [39,77]. Even in cases of oncogene addiction, 

where transformation appears to be driven by a single pathway, the effectiveness of single 

agents if limited by cross-inhibition mechanisms between Mapk and ToR pathways. For exam-
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ple, treatment of breast cancer cell lines harbouring high levels of activated Erk and Egfr with 

Mek inhibitors increases Akt activity and is cytostatic rather then cytotoxic [78,79]. 

Last but not least, primary and immortalised cell lines provide a more versatile and tractable 

system for investigating not only basic cellular functions but also the signaling pathways coor-

dinating these processes. An epitome for their advantages being the use of high throughput 

methods to manipulate and monitor signaling pathways in culture, which led to the identifica-

tion of hundreds of new signaling pathways components, and of new small molecule inhibitors 

for future therapeutic approaches. 

How Mapk ToR crosstalk may occur mechanistically in insect cells, is an important question. 

The intricate ways in which Ras-Mapk may feed into the ToR pathway are briefly described in 

the following section.
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III-5 MAPK TOR CROSSTALK AND CONVERGENCE 

Ras-Mapk and Pi3k-Akt-ToR pathways have been shown to crosstalk extensively in different 

cell types and organisms. A clear and complete definition of the underlying mechanism war-

rants, however, further research. A comprehensive survey of the published literature reveals 

five potential intersection points. 

[i1,i2] Strong activation of Ras-Erk pathway leads to mToRC1 activation in mammalian cells 

through Erk and Rsk signaling to Tsc and Raptor components. Egf, phorbol esters and consti-

tutively active Ras mutants promote Erk and Rsk mediated phosphorylation of Tsc2, inhibit-

ing its GAP function and thereby stimulating mToRC1 activity and tumorigenesis [30-33]. 

Similar stimuli promote Erk and Rsk phosphorylation of Raptor, likewise increasing mToRC1 

activity [34-36]. Our bioinformatic analysis indeed revealed conserved Erk targeted phospho-

rylation sites in drosophila Tsc2 and Raptor. Furthermore, another study pointing in such a 

direction regards Pi3k-Akt input towards ToRC1 activity. It shows that mutating the Akt tar-

geted sites in insect Tsc2 has no impact on Tsc2 function in vivo [67]. This suggests that Pi3k 

may stimulate ToRC1 differently (through Pras40 for example) and/or that additional up-

stream activators feed into the pathway. One could also think that Erk might directly phos-

phorylate S6k and thereby promote transcription as well as translation initiation and elonga-

tion. However, our experiments show that Mapk driven S6k phosphorylation seems to be sen-

sitive to rapamycin, which implies that the effect on S6k depends on ToRC1 activation. This 

doesn’t exclude the possibility that Erk or one of its target kinases phosphorylate other sites 

in S6k which are not detected by this antibody. 

[i3] Another appealing avenue involves phosphorylation and inactivation of another ToRC1 

target, 4EBP (eIF4E binding protein). In support of this hypothesis, we know that Erk activa-

tion in mammalian cells, either by the phorbol ester TPA or by constitutively active Mek, leads 

to phosphorylation of 4EBP1 and its dissociation from eIF4E, which in turn promotes transla-

tion initiation [37]. 4EBP inactivation in this manner is blocked by inhibitors of Mek or ToR-

C1, implying that Mek/Erk may act through ToRC1 to inactivate 4EBP, or that 4EBP inactiva-

tion requires sequential phosphorylation by both kinases.  

[i4] Additional interactions that can bridge Mapk and ToR pathways are mediated by two scaf-

fold proteins. MP1 protein scaffolds Mek and Erk at late endosomes and is required for sus-
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tained Erk activity, but it also scaffolds Rag GTPases to the lysosome, and thereby permits 

ToRC1 activation [62-64]. In response to growth factors, the Mapk scaffold Ksr translocates 

from the cytoplasm to the cell membrane and mediates the co-localisation of Raf, Mek and 

Erk, needed for Erk activation [62]. Well, it turns out that Ksr also interacts with ToR, Raptor, 

Rictor and the Tsc2 activating kinases Ampk and Gsk3 [65,66].  

[i5] A final mechanism through which Ras-Mapk may feed into Pi3k-Akt-ToR pathway involves 

positive regulation of the lipid kinase Pi3k by the GTPase Ras. Ras binding to drosophila Pi3k 

is dispensable for viability, but it is required for maximal Pi3k activation towards growth pro-

cesses. One function highly dependent on growth is egg production, and it is dramatically low-

ered in Pi3k mutant flies. Flies harbouring such Pi3k mutations that prevent Ras binding are 

also underdeveloped compared to their wild type siblings [68]. Two other studies in drosophila 

inspect Ras, Myc and Pi3k crosstalk towards growth. Stimulation of the Egfr receptor in the 

drosophila wing by its ligand Vein, activates Ras signaling and is required for growth. Activat-

ed Ras drives growth and promotes G1/S progression, in part, by activating two growth pro-

moting pathways, Raf/Mapk and Pi3k. Although mutationally activated Ras stimulates both 

Pi3k and Myc growth pathways, endogenous Ras does not increase Pi3k signaling (nor does 

Pi3k increase Raf/Mapk), and only modestly increases Myc protein levels, hinting towards ad-

ditional growth promoters [69,70]. 

In addition to the pathway crosstalk described above, studies in mammals have revealed mul-

tiple convergence points between Erk Mapk and ToR pathways. In fact, Erk, Rsk and S6k often 

target the same substrates to promote survival, proliferation, metabolism and motility. The 

following five convergence points stand out:  

[c1] Foxo (forkhead box O) proteins regulate the expression of apoptotic proteins and cell cycle 

regulators that suppress cell survival and proliferation. Erk phosphorylates Foxo and promotes 

its interaction with the E3 ubiquitin ligase MDM2, thereby directing Foxo’s proteasome medi-

ated degradation [71]. The ToRC2 targets Akt and Sgk [serum and glucocorticoid regulated 

kinase] likewise phosphorylate Foxo promoting its interaction with 14-3-3 proteins. Binding 

by 14-3-3 sequesters Foxo in the cytosol, precluding it from entering the nucleus and initiate 

quiescence and apoptotic gene expression programs [72]. 
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[c2] Myc transcription factor was shown to be activated by oncogenic Ras in the drosophila 

wing [70] and to be an essential effector for ToRC1 driven growth. Myc functions as an oblig-

ate heterodimer with Max to drive survival and growth gene expression programs. The related 

transcription factor Mad1 competes with Max for Myc binding, precluding expression of sur-

vival and growth genes. Erk mediated phosphorylation stabilises Myc [73]. Rsk and S6k phos-

phorylate Mad promoting its ubiquitination and degradation, and thereby induction of pro-

survival and growth genes [74]. 

[c3] Bad is a pro-apoptotic Bcl2 family protein. Hypophosphorylated Bad neutralises Bcl2 pro-

survival proteins, and thereby releases Bax and Bak to induce apoptosis at the mitochondria. 

PKA, PKB (aka Akt), PKC as well as Rsk and S6k promote cell survival by phosphorylating mul-

tiple sites on Bad and stimulating 14-3-3 binding and sequestration in the cytosol, away from 

the mitochondria and Bcl2 family pro-survival proteins [75]. 

[c4] Inactivation of Gsk3 by Wnt, insulin and other growth factors, releases its inhibition of 

pro-survival, proliferation and motility proteins. Gsk3 also inhibits ToRC1 by phosphorylating 

and activating Tsc2 [63]. Erk and Rsk sequentially phosphorylate and inactivate Gsk3 [76]. In 

different cell types, Pka, Pkb, Pkc and S6k also phosphorylate this inhibitory site. 

[c5] Tif1A transcription initiation factor stimulates PolI activity and thereby rRNA synthesis. 

Interestingly, Tif1A is positively regulated by Erk, Rsk and ToRC1 [135,136], which suggests 

that Ras/Mapk may collaborate with ToRC1 to promote rRNA synthesis in response to growth 

factors.

 107



discussion Mapk Needs ToR for midgut growth

III-6 MAPK NEEDS TOR TO FULLY PROMOTE MIDGUT CELL GROWTH 

Context 

The discovery of intestinal stem cells (ISCs) in the adult drosophila midgut has established the 

drosophila intestine as a model system for studying stem cell mediated tissue homeostasis and 

regeneration. Similar to the mammalian small intestine and colon, the adult drosophila 

midgut undergoes dynamic self-renewal [117,118]. This is accomplished by resident ISCs 

which divide to generate new ISCs and committed progenitors called enteroblasts (EBs). Un-

like their mammalian counterparts, the transit amplifying cells, the EBs don’t usually divide 

but rather differentiate into two functional cell types, the absorptive enterocytes (ECs) and 

secretory enteroendocrine cells (EEs). ECs grow very large and endoreplicate their genomes up 

to ploidy levels of 32c, and therefore constitute the bulk of the intestinal epithelium. The gut 

turn-over rate is approximated at 1-2 weeks [118]. However, in response to midgut damage 

(mechanical, chemical, bacterial), ISC proliferation and EB differentiation are enhanced up to 

100 fold to ensure tissue regeneration [119-125]. 

Egfr pathway acts as a major growth and proliferation factor during midgut homeostasis and 

regeneration. Egfr signaling is stimulated by three ligands, Vein produced by muscle cells sur-

rounding the midgut, Spitz and Keren produced by the midgut epithelial cells, and shows high 

levels of activity in the progenitor cells, ISCs and EBs. Furthermore, loss of Egfr signaling 

blocks ISC growth and division, whereas constitutively activated Ras accelerates the growth of 

ISCs and post-mitotic enteroblasts [51-53,126]. Together with the Jak/Stat pathway, which 

functions as a major mitogenic and differentiation factor in the midgut [119,127-131], Egfr 

pathway is highly activated by midgut damage and essential for tissue regeneration 

[51-53,126]. Two other damage/stress sensing pathways, Hippo and Jnk, were found to pro-

mote Egfr and Jak/Stat activation and implicitly tissue regeneration [126, 132-134, 119, 123, 

131]. 

Befitting as a major growth promoting pathway, ToRC1 signalling also proved to be essential 

for ISC maintenance and differentiation in the drosophila midgut. ToRC1 activity is believed 

to be low in ISCs and high in EBs, due to Notch-mediated suppression of Tsc2. ToRC1 activity 

in ISCs is kept low to prevent their overgrowth and precocious differentiation, while higher 

ToRC1 activity in EBs supports their growth and differentiation into ECs. EE cell formation 

requires low ToRC1 activity [55-57]. 
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Aim 

Having seen that Egfr pathway functions as a potent growth and proliferation stimulus in the 

midgut epithelium, and that a link between Egfr/Mapk and ToRC1 has already been estab-

lished in vitro (see III-3/4), we asked if part of its growth effect might be mediated by ToRC1 

activity. Therefore, we replicated some of the phenotypes described in the above references, 

involving Egfr pathway activation, but with concomitant downregulation of ToRC1 signaling. 

New Findings 

In accordance with previous findings [51], over-activating Egfr-Ras-Mapk pathway in the 

midgut had a strong proliferative and growth effect. When we expressed constitutively active 

Ras or Raf in the progenitor cell population (ISCs and EBs), we observed a significant increase 

in ISC mitotic activity and overall cell density. Area quantifications also revealed an enhanced 

growth of polyploid cells, believed to be enterocytes. Treatment of the midguts expressing ac-

tivated Ras/Raf with the ToRC1 inhibitor rapamycin didn’t have a significant effect on the in-

creased mitotic activity, but it visibly reduced the occurrence of overgrown transgene-express-

ing cells (figure 10). 

Having noticed a possible effect of rapamycin treatment on Ras-Mapk driven growth, we test-

ed a similar dependency in the committed progenitor cells (EBs) only. As EBs don’t usually di-

vide, a change in their growth potential will be easier to observe and quantify. And indeed, 

expressing a Mapk-specific activated Ras isoform in the EBs led to a significant increase in the 

size of the expressing cells, compared to their control Gfp-expressing siblings. Importantly, 

this Ras-Mapk driven growth appeared to partially dependent on ToRC1 activity, as treatment 

with rapamycin reduced the growth phenotype (figure 11). 

These findings indicate that Ras-Mapk activation can drive cell cycle progression and cell divi-

sion to some extent independently of ToR. However, for exerting its full growth promoting 

function, Ras-Mapk may need ToRC1 activity. The observed proliferation observed upon Ras-

mapk activation with ToRC1 inhibition may be explained by two mechanisms. A first mecha-

nism relies on additional growth promoting effectors functioning downstream of Ras-Mapk. 

The Mapk activated protein kinases discussed in the sections III-1 and III-2 would make for 

likely candidates. A second mechanism may arise from synthetic interactions that the activat-

ed oncogenic Ras, but not the native endogenous Ras, may allow. Evidence in support of the 

second mechanism come from studies in the developing wing, where it was found that activat-
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ed Ras can indeed coarse both Pi3k and Myc to drive growth, whereas endogenous Ras does 

not increase Pi3k signaling and only modestly increases Myc protein levels [70]. However, in 

our experiments we used a Ras allele specific for the Raf-Mapk pathway, minimising lateral 

signaling. Thus, the first mechanism relying on secondary growth effectors, such as the Map-

kapks, seems more likely. Nevertheless, the growth reduction observed upon ToR inhibition 

clearly points towards a partial ToR dependency (downstream or in parallel) of Ras-Mapk dri-

ven growth in the midgut epithelium.  

Much of Egfr-Mapk pathway functionality in drosophila has been associated with transcrip-

tional regulation, and the ETS transcription factors are considered to be the predominant 

RTK-Ras-Mapk nuclear effectors [58]. Ets transcription factors function downstream of RTK 

pathways to control the expression of a varied assortment of genes with wide reaching effects 

on cellular behaviour. One such factor, Ets21c, is transcriptionally suppressed by capicua in 

the adult intestine and gains in expression following Egfr activation and capicua inhibition 

[54]. Additionally, preliminary experiments overexpressing Ets21c in the progenitor popula-

tion revealed an increase in the rate of proliferation (data not shown). Based on this knowl-

edge, we addressed Ets21c function in the midgut epithelium, with a focus on its growth ef-

fects. Overexpression of Ets21c in the committed progenitors (EBs) led to a small but signifi-

cant size increase of these cells relative to their wild type siblings expressing Gfp alone. Con-

versely, RNAi mediated knockdown of Ets21c in EBs slightly reduced their size (figure 13). 

Thus, as evidenced so far, Ets21c has a mitogenic effect on the intestinal stem cell population 

and appears to be sufficient and required to promote growth of committed non-dividing prog-

enitors. However, the growth phenotypes observed upon Ets21c knockdown or overexpression 

were far less potent than the ones caused by Ras or Raf modulation (e.g. Ras overexpression in 

figure 10A, knockdown data not shown). Furthermore, loss of capicua-mediated target gene 

repression upon Egfr-Mapk activation is considered to be the predominant mechanism for 

Mapk dependent transcriptional regulation in the midgut [54]. Among capicua targets, how-

ever, are mostly cell cycle regulators such as Cdc25 and cyclin E. Moreover, growth genes such 

as those coding for Myc, insulin or ToR pathway components were not found to be upregulated 

in capicua depleted progenitor cells (except for InR, 54). These findings clearly point towards 

non-transcriptional mechanisms for Mapk driven growth, and further support our results 

bringing forward ToRC1 and Mapkapks as potential Mapk growth effectors. 
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Significance 

Mapk pathways are conserved in all eukaryotic cells and are among the core signaling path-

ways fundamental to cellular and organismal functionality. Most adult tissues have resident 

somatic stem cells which are crucial for tissue homeostasis and regeneration upon damage. 

This is particularly evident in high-turnover tissues such as the mammalian intestine or 

drosophila midgut. In these tissues, proliferation of the resident stem cells (ISCs) is dynami-

cally controlled by an assortment of signaling pathways responding to various growth and 

stress stimuli (see also beginning of this section). Egfr signaling is required to maintain the 

normal proliferative and growth capacity of drosophila ISCs, and essential for midgut regener-

ation upon damage [51-53,126]. However, we don’t completely understand how these path-

ways are integrated to maintain tissue functionality and promptly respond to challenges. Our 

findings reveal one aspect of such integration, by exposing a possible dependency of Ras-Mapk 

driven growth on ToRC1 activity in the midgut epithelium. As ToRC1 inhibition didn’t com-

pletely abrogate Ras-Mapk driven growth under normal conditions (figures 10,11) or after 

pathogenic infection (ToR null cell clones activated for Ras, 161), additional growth effectors 

could also be considered. The Mapkapks discussed in sections III-1 and III-2 being potential 

candidates.  

The Egfr pathway is also critical for the development, homeostasis and cancerous transforma-

tion of the mammalian intestine and colon [137-139]. Given its conserved role in regulating 

mammalian and fly ISC proliferation, understanding how Egfr executes its functions in the fly 

midgut will greatly facilitate the development of targeted therapies against colorectal cancer 

(CRC) and other afflictions. One such therapy targeting Egfr with monoclonal antibodies, such 

as cetuximab and panitumumab, is already used for patients with CRC [140,141]. Bellow I will 

discuss the advantages and challenges of targeting Ras-Mapk and Pi3k-ToR pathways as po-

tential anti-cancer therapies. 

One advantage for using pathway inhibitors stems from the fact that Ras-Erk and Pi3k-ToR 

pathways are frequently abnormally regulated in human cancer, and their activation is typical-

ly implicated in unrestricted proliferation and decreased sensitivity to apoptosis-inducing 

agents. Both pathways also crosstalk with Wnt and p53, which are also critically involved in 

cell growth, aging, oncogenesis and metastasis [142]. A second advantage is that inhibitors 

targeting components of Ras-Erk and Pi3k-ToR pathways have been developed and extensively 

tested as potential anti-cancer agents but also for use against other proliferative diseases in-
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cluding premature aging. Oftentimes, cancer cells acquire resistance to single agents due to 

crosstalk and convergence between these pathways, in which case a combined approach simul-

taneously targeting both pathways would be needed. Studies such as ours aimed at clarifying 

the extent and context dependence of such pathway crosstalk are imperative for overcoming 

this challenge. A third advantage that warrants the use of pathway inhibitors comes from their 

use in combating the resistance cancers often acquire to conventional therapies such as 

chemotherapy and radiotherapy, perhaps due to emergence of cancer initiating cells (CICs)

[143-146].  

One challenge of using pathway inhibitors comes from the high number of target genes (easily 

in the 1000’s) regulated by these pathways. Their inhibition, therefore, may be detrimental to 

many cell types, unless one could target the inhibitors specifically to the transformed cells. A 

second challenge is the extensive crosstalk between Ras-Mapk and Pi3k-ToR pathways, and 

between these and other critical pathways including Wnt, p53, Jak/Stat, NFkB and TgfB which 

can be directly and indirectly regulated by Erk and Akt phosphorylation [147]. Thus, inhibition 

of Ras-Mapk and/or Pi3k-ToR may lead to deregulation of these secondary pathways. A third 

challenge is that most inhibitors act as cytostatic and not cytotoxic agents, which avoids mas-

sive toxicity problems but also limited their use as anti-cancer agents. To circumvent this is-

sue, inhibitors could be used together with cytotoxic chemotherapeutic drugs or radiation 

therapy that affect rapidly growing cancer cells.
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III-7 MAPK BYPASSES NUTRITION AND PROMOTES LARVAL CELL GROWTH 

Context 

The drosophila midgut is formed during embryogenesis and retained through the larval devel-

opment. During larval development, the midgut epithelium consists of two distinct cell popu-

lations: differentiated larval enterocytes ECs which grow in both size and ploidy through en-

docycles, and undifferentiated adult midgut progenitors AMPs which remain diploid, divide 

extensively and appear as scattered islets of cells. Towards the end of this stage, the fly enters 

metamorphosis as the larval structures undergo a remodelling process in preparation for pu-

pariation and formation of the adult animal. At this time, most midgut cells delaminate from 

the basement membrane and visceral muscle as they are being shed into the gut lumen. The 

AMPs and their daughters, however, fuse to form the future adult midgut epithelium through 

a series of well coordinated steps which define five phases of AMP activity. During larval de-

velopment, Egfr-Ras-Mapk signaling was shown to be necessary and limiting for AMP prolif-

eration. Early AMP proliferation is stimulated by visceral muscle derived Vein expression 

(weak Egfr ligand), whereas the stronger Spitz and Keren Egfr ligands are produced by the 

AMPs themselves and provide a mitogenic stimulus during late larval stages [46,50]. 

Reduction of InR-Pi3k activity in differentiated tissues of drosophila larvae leads to cell au-

tonomous reduction in cell growth and DNA endoreplication [46]. Reducing ToR activity trig-

gers similar inhibitory effects [44,45]. Conversely, activation of InR-Pi3k or of Rheb-ToR sig-

naling increases cell size and nuclear DNA content in many larval tissues, including the gut 

and the fat body. Moreover, InR-Pi3k as well as Rheb are capable of bypassing the dietary re-

quirement for cell growth, and can function as growth promoters even in animals starved for 

protein [46,47]. 

Aim 

AMP proliferation during larval development is highly sensitive to Egfr signaling and to 

changing nutritional conditions [46,50]. As the AMPs do not differentiate at these early 

stages, they constitute a good system to study Ras Mapk mediated effects on growth and pro-

liferation. Thus, we tested if Ras-Mapk pathway activation could also replicate this starvation-

independent growth observed upon Rheb overexpression.  
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New Findings 

In control animals, at 72h AED (after egg deposition) most AMPs were found in the midgut as 

dividing doublets. A subsequent surge in proliferation then ensured their dispersal through 

the epithelium and formation of characteristic clusters, known as AMP islands, at 120h AED. 

Upon starvation, the wild type controls showed a block in proliferation, with AMPs still pre-

senting as doublets throughout the tissue at 120h AED. In normally fed animals, providing a 

growth promoting signal in the form of activated Ras, led to a strong proliferative response 

with progenitor cell and cluster areas increasing significantly compared to the fed controls 

(figure 13). In several animals, the AMPs appeared no longer restrained to clusters but rather 

dispersed through the epithelium. A novel and surprising finding was that expression of acti-

vated Ras allowed the progenitors to expand to some extent even under starvation. The 

starved Ras expressing guts closely resembled the fed wild type controls. 

Thus, activated Ras acts as a potent growth and proliferation promoter in the larval intestine 

under fed conditions. Particularly promising was our novel result showing that Ras expression 

in the developing intestine is able to provide a growth input which is partially dominant to 

nutrient requirement. Considering that we expressed a Ras allele which specifically activates 

the Raf-Mek-Erk kinase cascade, it is highly likely that the observed growth and proliferation 

phenotypes are a consequence of Erk activation. Based on our previous results (III-1,3,5), we 

could hypothesise that Mapkapk or ToRC1 kinases might act downstream of activated Erk to 

drive the observed growth. Moreover, ToRC1 seems a particularly appealing candidate, as ex-

pression of its activator Rheb in this tissue was previously found to drive a similar phenotype 

[47]. Another important growth promoter and a known convergence point between Mapk and 

ToR signaling is Myc (see III-4). However, it is unlikely that Myc is the main growth driver in 

this context, as its expression in larval tissues fails to promote growth under starvation condi-

tions [46]. Other known pathways including Notch, Hedgehog, Wingless, Dpp and Jak/Stat 

were also tested for driving growth and cell cycle progression in larval endoreplicating tissues 

(which constitute most of the drosophila larva), and found not to be required [148,149]. 

I think that Ras-Mapk exerts its growth promoting function mainly through non-transcrip-

tional mechanisms by activating different effectors, such as ToRC1 and Mapkapk kinases, in a 

context dependent manner demanded by the tissue type and developmental timing. Similarly, 

Mapk nuclear signaling relies on several mechanisms including chromatin remodelling and 

regulation of several transcriptional factors. We know that Ras-Mapk activation and function-
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ality during development is strongly context dependent (see introductory chapter). Therefore, 

it would not be surprising to find that its growth functionality relies on more than one effec-

tor, whose expression might depend on the developmental timing and tissue type. For exam-

ple, if ToRC1 activation by Erk is mediated by Rsk dependent Tsc2/Raptor phosphorylation, 

then Erk activation will not replicate ToRC1 phenotypes in tissues where Rsk expression is 

low. This could be the case for fat body tissue (a nutrient storage organ analogous to the verte-

brate liver). There, we expressed activated Ras but did not observed a significant growth phe-

notype, as we did upon Rheb expression (see II-4). Perhaps Ras-Mapk ability to tap into ToRC1 

activity for promoting growth is restricted to progenitor-like cells which haven’t yet exited mi-

totic cell cycles and differentiated. Thus, a future challenge is to identify the primary context-

specific growth effectors activated by Ras-Mapk, especially in tissues with relevance to human 

health, such as the intestine. Future experiments could employ different ways to activate Ras-

Mapk signaling, with concomitant ToRC1 or Mapkapk modulation, and subject the animals to 

starvation conditions. In a similar context, Pi3k activation cannot drive growth in ToR mutant 

larvae [Lande and Neufeld, personal communication].
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III-8 FUTURE PERSPECTIVES 

Based on the results provided by our study and available literature, the following five avenues 

stand out and are worth further investigation. 

[1] Mapkapks as novel growth promoters. Our results presented in section II-1 and discussed 

in sections III-1,2 bring forward new potential growth effectors in insect cells, the so-called 

Mapk activated protein kinases (Mapkapks). Three of these kinases (Mnk, Rsk, Msk) had ro-

bust growth phenotypes in cultured drosophila schneider cells. Using chemical inhibitors and 

measuring cell numbers and diameters at several time points, we found that these Mapkapks 

are important for normal and insulin stimulated proliferation of schneider cells. A first exten-

sion of these results would be to confirm the specificity of these inhibitors with RNAi-mediat-

ed knockdown of the respective kinases. Also, cells derived from knockout animals (when 

these are not lethal) could prove informative for validating substrates and biological functions. 

A second important aspect to address is whether these Mapkapks are indeed activated by 

Mapks. Two of them, Rsk and Mnk, have already been described as Erk interacting partners in 

drosophila [14-19]. Monitoring phosphorylation of the activation loop of Mapkapk kinase 

domains upon Ras-Mapk modulation should confirm or exclude their identity as Mapk down-

stream effectors. Quantification of Mapkapk target phosphorylation (such as eIF4E for Mnk) 

could also informative in this regard. A third question to ask is how are these Mapkapks pro-

moting growth? Are they activating ToRC1 or do they promote anabolic pathways through 

parallel mechanisms? Chemical or genetic manipulation of Mapkapk activities combined with 

detection of ToRC1 target phosphorylation (such as phospho-S6k and phospho-4EBP) would 

provide such clues. Concomitant modulation of Mapkapk and ToRC1 activities coupled with 

cell division and size measurements would reveal possible dependencies, and if their combined 

phenotypes are synergistic or additive. 

[2] Mapk ToR crosstalk mechanism. The results described in sections II-2/3 and discussed in 

sections III-3/4/5 reveal a connection between Ras-Mapk and ToRC1 pathways that may be 

conserved in cultured insect cells as well as the living animal, and with relevance to Mapk-dri-

ven growth. An integration between Ras-Mapk as a main controller of cell-cycle progression, 

survival, growth and differentiation, and ToRC1 as a main nutrient sensing mechanism em-

ployed by all eukaryotic cells, would be highly advantageous for the dynamic adaptation of 

these cellular function according to the cell’s metabolic state. Mapk-ToR crosstalk probably 
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predates the advent of insulin signaling in the course of evolution, as multicellular organisms 

needed a way to coordinate metabolism in communities of cells. Such an integration is also 

supported by our results in insect cells and similar findings in mammalian systems. In order to 

understand and successfully manipulate the cellular functions controlled by these pathways,  

we need a detailed view of their mechanistic interactions. I described the potential intersec-

tion points between Ras-Mapk and ToR pathways in section III-4. Experimental approaches 

could address the following questions: Does Ras-Mapk modulation disrupt the subcellular lo-

calisation of Tsc1 and Tsc2? Tagged Tsc1 and Tsc2 constructs (available in public stock collec-

tions) could be co-expressed and their subcellular localisation followed by standard mi-

croscopy. Does Ras-Mapk activation lead to Erk-dependent phosphorylation of Tsc2 or Rap-

tor? To address this, Tsc2 and Raptor phosphorylation on Ser/Thr residues could be measured 

by immunoblotting from cells untreated or treated with Ras-Mapk agonists like PMA or Spitz. 

Additionally, cells could be pretreated with Mek/Erk inhibitors (like U0126) or dsRNAs to as-

sess the dependency of the phosphorylation events on Mapk activity. In vitro kinase assays 

using purified proteins could also confirm the observed interactions. If such interactions are 

identified, the next question is which are the targeted sites in Tsc2/Raptor? This can be ad-

dressed by mass spectrometry analysis of immunoprecipitated Tsc2/Raptor from unstimulat-

ed and Ras-Mapk-stimulated cells. One interesting question would then be what are the func-

tional effects of these phosphorylation events? Substitution mutants could then be used to 

assess the effects on ToRC1 target phosphorylation (immunoblotting), ToRC1 complex forma-

tion (co-immunoprecipitation) and overall cell behaviour like growth and proliferation. The 

same series of questions could be asked with regard to Rsk instead of Erk as a potential effec-

tor kinase.  

[3] Measuring translation upon Mapk or Mapkapk modulation. The discordance between 

steady state mRNA levels and protein levels indicates that translational control plays a major 

role in the control of gene expression. This is particularly relevant for cell growth and prolifer-

ation genes. One way to characterise Mapk dependent translational control and its dependen-

cy on ToRC1 or Mapkapks is to monitor nascent protein production upon modulating these 

pathways. This can be achieved with a simple and robust chemical method for imaging nascent 

polypeptide chains in cultured cells or tissue explants. The method relies on a puromycin ana-

log, o-propargyl-puromycin (OP-puro), which forms conjugates with nascent polypeptide 

chains [150]. These conjugates can be visualised or captured via a copper-catalysed azide-

alkyne cycloaddition (CuAAC) reaction with fluorescent- or biotin-labelled azides, respectively. 
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One could test, for example, to what extent Ras-Mapk or Mapkapk modulation affects the rate 

of protein synthesis, and how this is influenced by simultaneous ToRC1 inhibition. 

[4] Growth in the adult intestine. Our findings introduced in section II-3 and discussed in sec-

tion III-5 reveal a possible dependency of Ras-Mapk driven growth in the adult midgut on 

ToRC1 activity. Indeed, Ras-Mapk activation in the committed progenitors led to a significant 

increase in cell size which was dependent to some extent on ToRC1 activity, as rapamycin 

treatment decreased the occurrence of overgrown cells typically associated with expressing 

activated Ras. An extension of these results would be to accurately measure ToRC1 pathway 

activity upon Ras-Mapk modulation in this tissue. I performed several experiments addressing 

this issue (see II-3), and although phospho-4EBP levels appeared to increase (indicative of 

higher ToRC1 activity) upon Ras or Rheb expression, the signal was not specific enough to 

draw reliable conclusions. Refinement of the immunofluorescence protocol may improve de-

tection quality and allow a more accurate assessment of ToRC1 activity. Alternatively, one 

could also measure changes in ToRC1 activity upon Ras-Mapk modulation by using an im-

munoblotting assay. This would give a clear quantitative measure of ToRC1 activity (by detect-

ing phospho-S6k or phospho-4EBP), but provide less information about the identity of the 

cells in which ToRC1 is being activated or inhibited (unless is coupled with cell sorting). Our 

results discussed in sections III-1,2 introduce Mapkapk kinases as potential growth promoters 

in insect cells, probably acting downstream of Mapk pathways. If their functions are conserved 

in the living animal, they may play a role for Ras-Mapk driven growth in the adult intestine. 

Therefore, these kinases could be tested for growth phenotypes in the midgut using constitu-

tively active or null alleles together with cell type specific or clonal expression systems. Chemi-

cal inhibitors could also be used, though the results may be difficult to interpret. 

[5] Nutrient independent growth. Our results presented in section II-4 and discussed in sec-

tion III-6 bring forward a new growth function for Ras-Mapk in the larval intestine. Activation 

of Ras-Mapk triggered progenitor cell growth and proliferation even in animals starved of di-

etary protein. This suggests that Ras-Mapk is able to provide a growth input which is partially 

dominant to nutrient requirement. Although we expressed a Ras allele specifically activating 

the Raf-Mek-Erk pathway, the phenotype should also be confirmed using activated down-

stream components such as Raf. Monitoring Erk activation based on its dual phosphorylation 

status under these conditions could also be informative. The next step would be to identify the 

primary effector responsible for the growth phenotype. As discussed in previous sections, this 
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effector(s) acts likely at a translational rather then a transcriptional level, as part of the initial 

response following pathway activation. Based on our results, one could focus on ToRC1 and 

Mapkapks as potential candidates. Such an approach would employ initiating starvation fol-

lowed by simultaneous activation of Ras-Mapk and inhibition of ToRC1 or Mapkapks in the 

larval intestine (using mutant alleles or chemical inhibitors). Testing if activated Mapkapks are 

capable of driving nutrient independent growth in the larval intestine by themselves would 

also be a novel result and complement the previous assay. Measurements of cell proliferation 

and cell areas would reveal any growth effects exerted by these candidates.
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IV. METHODS 

IV-1 DROSOPHILA LIFE CYCLE AND GENETICS 

One advantage of drosophila melanogaster as a model organism is its rapid development. At 

25C, its whole life cycle takes about 10 days. Flies deposit their eggs in the food, and after 

about 1 day of embryogenesis, the first instar larvae hatches. During the next 4 days, the lar-

vae feeds avidly increasing about 200 times in mass. Following this extreme growth program, 

the third instar larvae stops feeding and searches for a dry place suitable for pupariation. 

Metamorphosis takes place in the pupal case during the next 4/5 days. Thus, after about 10 

days from egg deposition, the adult fly ecloses measuring on average 3mm in length. 

The fly’s genome is distributed among 8 chromosomes: one pair of sex chromosomes (XX in 

females and XY in males) and three pairs of autosomes (denominated 2nd, 3rd and 4th). The Y 

chromosome consists almost entirely of heterochromatin and carries just a few genes required 

for male fertility, but not viability. Each gene is named after the mutant phenotype its disrup-

tion causes, with additional identifiers as superscripts or in brackets used to distinguish differ-

ent alleles.  

Versions of drosophila chromosomes have been developed (so-called balancers) that contain 

multiple inversions so as to suppress meiotic recombination with un-rearranged chromo-

somes. These balancers also harbour dominant mutations with an easily visible phenotype and 

recessive lethal or sterile mutations. Given their usefulness, balancers have been developed for 

each chromosome: the FM6/7 series for the X chromosome (where F stands for first chromo-

some and M for multiple inversions), CyO and SM5/6 for the 2nd chromosome, TM2/3/6 for 

the 3rd. There is no need for a balancer chromosome for the 4th chromosome as it does not 

undergo meiotic recombination - and there is no meiotic recombination in males. 
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IV-2 DROSOPHILA GAL4 GENE EXPRESSION SYSTEM 

The Gal4 system is widely used in drosophila research for expressing any DNA sequence in a  

spatial and/or temporal controlled fashion [358]. The Gal4 system is build upon two compo-

nents: (1) Gal4, a transcriptional activator from yeast that can be expressed in a tissue-specific 

manner and (2) a gene regulatory sequence that can be bound by Gal4 (UAS, upstream activa-

tion sequence). The two components are typically brought together by crossing one transgenic 

line carrying the Gal4 activator (the driver) and a second line carrying the UAS-linked trans-

gene (the responder). The progeny of the cross that inherited both the Gal4 and UAS-trans-

gene will express the transgene only in the tissues where Gal4 is expressed. A common way to 

control when Gal4 is being expressed is by ubiquitously co-expressing Gal80 protein, which 

binds and inhibits Gal4. Gal80 in turn can be made temperature sensitive so as to become in-

active upon raising the temperature from 18C to 29C (commonly used in fly assays). The ex-

pression of any transgene can thus be confined to certain tissues (due to the tissue-specific 

expression of Gal4) and to certain times (due to a temperature shift that inactivates Gal80).  
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IV-3 FLP GAL4 LINEAGE TRACING 

The EsgTS Flip Out (EsgTS F/O) system is an adaptation of the Gal4 expression system just de-

scribed. EsgTS FO is a lineage tracing system in which the expression of the UAS-fused trans-

gene is induced in a cell and its expression is then inherited in all the progeny derived from 

this initial cells [359]. The genotype supporting this type of expression control is detailed be-

low. Briefly, Esg-Gal4 was expressed in ISCs and EBs under the temperature-sensitise control 

of Tub-Gal80TS. Once activated by a temperature shift (from 18C to 29C), Gal4 drives expres-

sion of Flp recombinase which cuts out the CD2 cassette and thereby allows Act-driven Gal4 

expression in all progenitors of that cell. Thus, any UAS-linked sequences will be transcribed in 

that cell lineage. As UAS-GFP is frequently common in these genomes, the system allows for 

an easy way to ascertain tissue renewal rates by simply scoring the fraction of GFP+ (newborn) 

cells. Identification of additional cell type specific markers can also be informative as to what 

types of differentiated cells are generated from the initially labelled cells, and in what propor-

tions.  
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IV-4 GENOTYPES AND GENE INDUCTION 

Flies were grown in vials with standard fly food [0.72% (w/v) agar, 7.2% (w/v) maize, 2.4% 

molasses, 7.2%(w/v) malt, 0.88%(w/v) soya, 1.464% (w/v) yeast and acid mix (1% propionic 

acid + 0.064% orthophosphoric acid)] media on 12-hour day-night cycle. For each cross, 

around 15 female and 5-6 male flies were used. All the fly stocks were maintained at 18°C. The 

expression of transgenes was achieved by using a temperature sensitive inducible UAS-Gal4 

system. Crosses were set up and maintained at 18°C, the permissive temperature. 3-7 days old 

flies were shifted to 29°C for different times (usually 5d, unless otherwise specified).  

Driver Lines 

EsgTS > esg-Gal4/CyO; tubGal80ts UAS-GFP/TM6B (Micchelli and Perrimon 2006) 

EsgTSF/O > esg-Gal4 tubGal80ts UAS-GFP/CyO; UAS-Flp>CD2>Gal4/TM6B (Jiang et al. 2009) 

TubTS > tub-Gal4; tubGal80ts/TM3, ser (Romani et al 2009)(from Valeria Cavaliere lab) 

Su(H)TS > Su(H)GBE‐ Gal4,UAS‐CD8‐GFP/CyO; tubGal80ts/TM6B,Tb 

Adh > w- ; Adh-Gal4 / CyO; UAS-GFP / TM6B (B.A.Edgar lab) 

UAS Transgenes 

UAS-RAS v12s35 (Karim & Rubin, 1998)  

UAS-Ets21c > IF / CyO ; Ets21c / MKRS (B.A.Edgar lab) 

UAS-Ets21c-RNAi (VDRC KK103211)  

UAS-Ets21c-RNAi > UAS-Ets21c-RNAi / CyO; TM6B / MKRS (B.A.Edgar lab) 

UAS-Ets21c, Mek-RNAi > UAS-Mek-RNAi / CyO ; UAS-Ets21c / TM6B (Y. Jin) 

UAS-Ras RNAi (Jiang et al. 2011) 

UAS-RasV12 > y w, hsFlp122 ; UAS-RAS-V12 / CyO act-GFP 

UAS-RasV12G37 > y, w, hsFlp122 ; UAS-Ras-V12G37 ; + (Ulrike Gaul) 

UAS-RasV12S35 > y, w, hsFlp122 ; UAS-Ras-V12S35 ; + (Ulrike Gaul) 

UAS-Raf GoF > w ; Pin / CyO ; TM6b / Raf-GoF (B.A.Edgar lab) 

UAS-Rheb > w-; UAS-Rheb #3; + (A. Teleman Lab) 

UAS-Rheb-RNAi > UAS-Rheb-RNAi ; UAS-Dcr2 / CyO (Aida de la Cruz) 

UAS-Rheb-RNAi > w ; UAS-Dcr2 / CyO ; UAS-Rheb-RNAi / TM6b (Aida de la Cruz) 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IV-5 IMMUNOHISTOCHEMISTRY 

(1) Dissection » 10-15 guts for each genotype in 1xPBS. During the dissections, the guts can be 

gathered already in eppendorf tubes containing 4% PFA and on ice  

(2) Fixation » fresh 4% PFA/PBS (less than a few days old, kept at 40 or better freshly thawed), 

30 minutes, at room temperature, on nutator 

(3) Rinsing and washing » 1xPBS, 2 x 10 minutes 

(4) Permeabilisation » freshly made 0.15% Triton in PBS (75ul Tx100 for 50ml), 30 min 

(5) Rinsing and washing » 2 x 5 minutes with washing solution (0.1% Tween20 in 1xPBS) 

(6) Blocking » 30 minutes in blocking solution (2.5% BSA, 0.1% Tween20, 10% normal goat 

serum, in 1xPBS). Prepare blocking pre-solution: 50ml washing solution + 2.5% BSA (1.2g for 

50ml). Calculate how many samples you have: e.g. 10 x 500ul = 5ml needed, then add serum: 

e.g. 4500ul blocking pre-solution + 500ul normal gout serum 

(7) Primary ABs » incubate o/n, 40C, antibodies diluted in blocking solution with normal goat 

serum; rotate tubes. Alternatively, incubate at RT for 3h rotating 

(8) Next day, rinsed washed » 1xPBS, 0.2% BSA, 0.1% Tween (washing solution), 3 x 20 min           

(9) Secondary antibodies » incubate 3 hours, room temperature (in the dark, covered with 

aluminium foil); secondary antibodies conjugated with Alexa fluorophores and diluted 1:1000 

in blocking solution  

(10) Rinsed then washed » 1xPBS, 0.1% Tween (washing solution), 1 x 20 minutes (in dark!)  

(11) Washed in 1xPBS, 0.1% Tween, DAPI (diluted 1/100 from stock) for 10 minutes 

(12) Washed out DAPI in 1xPBS, 0.1% Tween for 10 minutes 

(13) Embedded in Vectashield (can use Vectashield with DAPI) 

 a. place 4 small drops of lab fat on edges of cover glass 

 b. bring samples on objective slide with a cut 1ml pipette tip 

 c. distribute the samples with a forceps  

 d. remove excess liquid (drain and use tissue) 

 e. put on cover glass with very little pressure 

 f. add Vectashield with the 200ul pipette tip and let it fill by capillary force 

 g. seal with nail polish and store until analysis at 40C in the dark  

(14) Image processing: fluorescence micrographs were acquired with either of two confocal 

systems: Leica® TCS SP5 II and Zeiss® LSM 780 confocal inverted microscopes. Images were 

then processed using ImageJ® Fiji, Adobe Photoshop® and Adobe Illustrator®. Antibodies are 

listed under section IV-7, together with immunoblotting antibodies. 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IV-6 CELL TREATMENT AND PROTEIN EXTRACTION 

Lysis Buffer Preparation 

10ml LB were prepared and stored as 2ml aliquots at -20C. 100ul LB was added to each sample 

(2x50ul aliquots). 

(S1) 2.5ml (Laemmli+DTT; 1/4 of total vol) + (S2) 7.5ml H2O (with inhibitors) = 10ml (LB) 

(S1) mix 900ul Laemmli (4x) with 100ul DTT; boil 5min at 95C; perform similar mix in 3x1ml 

(S2) dissolve in 7.5ml H2O: 6 tablets phosphatase inhibitor cocktail + 6 tablets protease in-

hibitor cocktail + Na3VO4 (sodium orthovanadate)(MW 184, 20mM = 36.8mg) + NaF (MW 

42, 50mM = 21mg) + b-glycerophosphate (optional, MW 216, 0.011 g/ml = 0.11g) 

Cell Seeding 

(1) Initial cultures were set up 2d prior to experiment startup. Cells were seeded in T25 flasks 

in medium without serum at about 70% confluence. 700uM CuSo4 were added to S2:sSpi cells 

to induce ligand production. 

(2) After 2xON, the growing cells were spinned down from initial culture by centrifugation 

(10min 800 rpm). S2:Egfr (S2/S2R+) cells were then seeded in 6well plates, 2ml/well, in medi-

um without serum, 1.5-2x106 cells/ml or semiconfluence. Cells were recovered by incubation 

for 20min in 25C incubator. 

(3) After pelleting the S2:sSpi cells from initial culture, the supernatant was removed and 

stored (Spi conditioned medium), and the S2:sSpi cells passaged for further experiments. 

Store sSpi medium in fridge for about a week (consider NaN3 for long term). 

Inhibitor Pretreatment 

(4) After 20min recovery, inhibitors were added in individual wells, and the cells incubated for 

further 40min in 25C incubator. 

Growth Factor Treatment 

(5) After 40min inhibitor pretreatment, cells were resuspended from each well by pipetting 

and transfer to 15ml falcons. 

(6) Growth factors and Spi-conditioned medium (3ml on top of original culture) were added to 

corresponding tubes, and further incubated for 10min in 25C incubator. 

(7) After 12min GF treatment, falcon tubes were transferred on ice for 1min, before cell lysis. 
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Cell Lysis 

(8) Cells were pelleted quickly by centrifugation at 1’500 rpm for 5min (set centrifuge at 4C, if 

possible), and placed on ice. 

(9) Supernatant was discarded and 100ul lysis buffer added to each sample (for 2x 50ul 

aliquots, each for two gels), mix 10x, transfer to 2ml eppendorf tubes, and place tubes on ice. 

(10) All sample tubes were boiled for 5min at 95C and quickly placed on ice. 

(11) Each sample was aliquoted in 2x 50ul aliquots in two 2ml tubes, snap frozen in liquid ni-

trogen and stored at -80C.  

  

GROWTH FACTOR EFFECTIVE CONC. COMPANY CATALOG NR.

Epidermal growth factor, murine, natural 10 ug/ml Invitrogen 53003018

Recombinant mouse EGF 10 ug/ml Life Tech. PMG8044

Insulin from bovine pancreas 10 ug/ml Sigma Aldrich IO516

Recombinant mouse PDGF 1 ug/ml Life Tech. PMG0044

Recombinant mouse VEGF 1 ug/ml Life Tech. PMG0114

Phorbol 12-myristate 13-acetate, PMA 10 ug/ml Abcam ab120297

INHIBITOR IC50
POTENTIAL 
20 TARGETS

EFF. CONC. COMPANY CATALOG

Mek inhibitor U0126 0.07uM — 100 uM Cell Signaling 9903

Mek inhibitor PD98059 4/50uM — 100 uM Cell Signaling 9900

Erk inhibitor GDC0994 1 nM phosphoRsk 50 uM Selleckchem S7554

cOmplete protease inh. — — 1 tab/1.5ml Roche 4693124001

PhosStop phosphatase inh. — — 1 tab/1.5ml Roche 4906837001

Mnk inhibitor CGP57380 2.2 uM — 500 uM Selleckchem S7421

Rsk inhibitor BID1870 25 nM — 500 uM Selleckchem S2843

Msk+ inhibitor Ro318220 27 nM Pkc Gsk3 S6k 500 uM Selleckchem S7207

ToR inhibitor, Rapamycin 0.1 nM — 10 uM Sigma Aldrich R8781

ToR inhibitor, Torin1 4 nM — 10 uM Tocris 4247
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CELL LINE REFERENCE

[Schneider S2] The S2 cell line was derived from the primary culture of 
late stage (20-24h) drosophila embryos. S2 cells are round and display 

features that indicate an origin in a macrophage-like lineage. S2 cells can 
be grown at room temperature without CO2 as a loose semi-adherent 
monolayer in tissue culture flasks and in suspension in shake flasks.

Schneider I. 1972 Cell lines 
derived from late embry- 

onic stages of Drosophila 
melanogaster. J. Embryol. 
Exp. Morphol. 27: 353-365

[Schneider S2R+] Schneider receptor plus cells are derived from an S2 
cell line. They originate, therefore, also from dissociated embryos near 
hatching. Like the parental S2 cells, they also display a hemocyte-like 

gene expression and are phagocytic. In contrast to the S2 cells which are 
round and semi-adherent, however, the S2R+ cells are flat and adherent 
cells. Moreover, S2R+ cells express the Frizzled receptor and respond to 
extracellular Wingless by upregulating b-catenin and e-cadherin levels.

Yanagawa S.I. et al. 1998 
Identification and charac- 
terisation of a novel line of 

Drosophila Schneider S2 
cells that respond to Wg 
signaling. J Biol. Chem. 273: 
32353-32359

[S2:sSpi] S2 cells transfected with a construct encoding secreted Spitz 
protein, in which a termination codon was used to replace the dibasic 

putative cleavage signal. Expression is controlled by the inducible 
metallothionein promoter. Upon induction, significant amounts of the 
mature Spi protein are secreted in the medium. Cell line was a kind gift 
from Prof. Ben-Zion Shilo, Weizmann Institute of science, Israel.

Schweitzer R. et al. 1995 
Secreted Spitz triggers the 

DER signaling pathway and 
is a limiting component in 
embryonic ectoderm de-
termination. Genes & Dev. 
9(12), 1518–1529

[S2:Egfr] S2 cells transfected with a construct encoding the type II 

drosophila Egf receptor (Der) under the control of the metallothionein 
promoter. Upon treatment with secreted Spi protein, the Egf receptor 
displays a dramatic increase in the level or tyrosine phosphorylation. 
Cell line was a kind gift from Prof. Ben-Zion Shilo, Weizmann Institute of 
science, Israel.

Schweitzer R. et al. 1995 

Secreted Spitz triggers the 
DER signaling pathway and 
is a limiting component in 
embryonic ectoderm de-
termination. Genes & Dev. 

9(12), 1518–1529
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IV-7 IMMUNOBLOTTING 

Reagents and Buffers 

Cells were plated 2 days before treatments, at 70% confluence, in medium without serum to 

enhance GF response. 

WB washing buffer: 1x PBST (0.1% Triton in 1x PBS). 

WB separation buffers: running buffer (for SDS-PAGE, in house 25C), transfer buffer (for WB, 

house 25C). 

WB blocking buffers: 5% Milk  in PBST (membrane and secondary AB block), and 5% BSA in 

PBST (primary AB block). Store buffers at 4C and use for up to three days. 

Gel solutions: APS(4C), Temed (commercial 4C), 30% Acrylamide (commercial 4C), Separating 

gel buffer, stacking gel buffer (in house 25C). 

Inhibitors and growth factors for cell culture treatments. 

Gel Preparation 

Most proteins were separated and detected using 12,5% gels.  

Commonly in lab stock: running buffer, separating gel buffer, stacking gel buffer, 30% acryl-

amide and Temed. 

APS prep: solve 0,1g in 1ml water in a 1,5ml eppendorf tube. Store at 4C for 1-2 months. 

The preparations of 10 ml separating gel and 8 ml stacking gel (table bellow) suffice for 2 gels. 

Separating and stacking gel solutions were prepared acc. to indications in the summary table. 

After APS addition, the separating gel was quickly mixed and poured, and isopropanol added 

to ensure an even surface. 

After the separating gel solidifies (20min), the isopropanol was removed using tissues, APS 

was then added to the stacking gel solution and poured on top of the separating gel. Don’t for-

get to add the plastic comb (with 15 well teeth) after pouring the stacking gel.  

Separate Proteins via Electrophoresis 

12.5% polyacrylamide gels were prepared according to specifications in the gel tables. 

Chamber was filled with 1x running buffer (dilute from 10x stock with dH2O). 

Sample mixing with hamilton (or 20ul pipet) very well. 

20 ul sample (in LB) were loaded, 15 ul marker (PageRuler Plus protein ladder) per lane. 

Electrophoresis run at 20 mA/gel, 200V(optional setting) for 1h. 
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1x LAEMMLI 1x LAEMMLI, PHOSPHO-PROTEINS

78 ul H2O 2 ul Protease inhibitor

2 ul Protease inhibitor mix 2 ul Vanadate

20 ul 5x Laemmli 5 ul NaF

Final Vol 100 ul 5 ul Phosphatase inhibitor

10 ul phospho-b-glycerol

20 ul 5x Laemmli

56 ul H2O

Final Vol 100 ul
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Transfer Proteins to Membrane via Blotting 

PVDF membrane was cut at same size as the gel and marked 

with a pencil one of the corners to recognise the loading order 

and the side with proteins (8.5 x 6.5 cm). 

PVDF membranes were then activated by incubating in MetOH 

for 20s. 

Membranes and gels were then incubated in 1x cold transfer buffer (TB) for 10m on a nutator. 

Transfer sandwich was prepared as pictured, in a dish with TB; avoiding air bubbles between 

gel and membrane. 

The transfer chamber was filled with TB and gel sandwich added (don’t forget the ice box) for 

achieving better transfer, a magnetic bar was added and the transfer chamber was placed on a 

magnetic stirrer in the cold room. 

Western blots were run at 30V overnight at 4C (or 100V 270mA for 1h at 4C). 

Visualise Proteins with Ponceau Red 

Proteins were visualised by incubation for 1min in ponceau red solution. 

Washed 2-3x 10s with desalted water (membranes could be stored in-between filter papers at 

4C for days). 

Optional, to detect the proteins in the gel, place in Coomasie stain with EtOH 5% for few min. 

Membranes were incubated in MetOH for 30s prior to blocking (when using PVDF membrane) 

Block Membranes 

Membranes were then transferred to 50ml eppendorf tubes for blocking and AB incubations.  

Membranes were then incubated for 50min with 15ml membrane blocking buffer MB-BLK (5% 

Milk in 1x PBST = 5g Milk in 100ml PBST) at 25C on a roller. 

Wash Membranes 

Membranes were washed 3x 10min with 1x PBST at 25C on a roller (important to remove the 

milk, as the milk casein interferes with phospho-antibody detection). 

Primary Antibody Incubation 

Prepare 1AB blocking buffer 1AB-BLK: 5% BSA in 1x PBST (2.5g BSA in 50ml PBST). 

Primary antibodies were diluted 1:1’000 in 1AB-BLK (usually two mixes, each in 10ml BLK bff) 
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1AB mixes were then added to corresponding falcon tubes (with membranes) and incubate d 

overnight at 4C on a roller (longer incubation of 2-3 days also possible). Check compatibility 

with IRDye-labelled 2ABs. 

Wash Membranes 

Membranes were washed 3x 10min with 1x PBST at 25C on a roller. Washing removes back-

ground. 

Secondary Antibody Incubation 

2AB blocking buffer 2AB-BLK was prepared: 5% Milk in 1x PBST (same as MB-BLK). 

Dilute IRDye-labelled secondary antibodies 1:10’000 in 2AB-BLK (usually two mixes, each in 

10ml BLK). 

2AB mixes were then added to corresponding falcon tubes (with membranes) and incubated 

for 2h at 25C on a roller. 

Generally, the control protein (tubulin, actin or total protein) is detected with IRDye700-la-

belled 2AB, and the (phospho)protein of interest with IRDye800-labelled 2AB (less back-

ground). 

Wash Membranes  

Membranes were again washed 3x 10min with 1x PBST at 25C on a roller. 

Image Proteins 

Imaging was done with the Odyssey Infrared Analyser. 

Membrane were placed between two transparent plastic foils and with the marked protein side 

facing down on the Odyssey reader, avoiding air bubbles. 

Own workspace was created and used throughout all assays in the Odyssey software. 

Scanning area selected according to the positioning of the membrane on the scanner. 

Scanning quality selected, generally for both 700 and 800 channels simultaneously, max read-

ing options. 

Initiated scan and best signal to noise ratio for each channel from offered scans. 

Adjusted each channel individually, generally by taking the black and white and adjust bright-

ness and contrast to achieve best signal, and save each channel in BW by selecting file > export 

image > save current image view > browse for file location and name. 
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PRIMARY ANTIBODY TARGET HOST DILUTION COMPANY CATALOG

Akt antibody Rabbit 1:1000 Cell Signaling 9272

Phospho-drosophila Akt (Ser505) Rabbit 1:1000 Cell Signaling 4054

Phospho-4EBP1 mAb Rabbit 1:1000 Cell Signaling 2855

Phospho-drosophila p70 S6k Ab Rabbit 1:1000 Cell Signaling 9209

Drosophila S6k antibody Guinea pig 1:2000 A. Teleman Lab —

Phospho-Erk mAb Mouse 1:1000 Sigma Aldrich M9692

p44/42 Erk mAb Rabbit 1:1000 Cell Signaling 4695

aTubulin mAb Mouse 1:800 Sigma Aldrich T9026

Actin Ab Rabbit 1:1000 Sigma Aldrich A2066

Phospho-Mek (Ser 217/221) Rabbit 1:1000 Cell Signaling 9154

GFP (only for IF) Chicken 1:1000 Life Tech. A10262

Phospho-H3 (Ser 10) (IF) Mouse 1:200 Cell Signaling 9706

Phospho-H3 (Ser 10) (IF) Rabbit 1:500 Abcam 5176

Armadillo (IF) Mouse 1:100 DSHB N27A1

SECONDARY ANTIBODY TARGET HOST DILUTION COMPANY CATALOG

Anti-mouse-DyLight680 Donkey 1:10’000 Rockland 610-744-002

Anti-mouse-DyLight800 Donkey 1:10’000 Rockland 610-745-002

Anti-rabbit-DyLight680 Goat 1:10’000 Rockland 611-144-002

Anti-rabbit-DyLight800 Donkey 1:10’000 Rockland 611-745-127

Anti-guineapig-DyLight680 Goat 1:10’000 Rockland 606-144-129

Anti-goat-IRDye700 Rabbit 1:10’000 Rockland 605-430-002

Anti-chicken IgG Alexa 488 (IF) Goat 1:1000 Invitrogen A11039

Anti-mouse IgG Alexa 568 (IF) Goat 1:1000 Invitrogen A11031

Anti-rabbit IgG Alexa 633 (IF) Goat 1:1000 Invitrogen A21070

Anti-guineea pig IgG Alexa 568 (IF) Goat 1:1000 Mol. Probes A11075
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IV-8 FLOW CYTOMETRY 

Schneider S2/S2R+ cells were pretreated with rapamycin (10 uM) for 30min, before insulin or 

Egf growth factor (10 ug/ml) were added to the preexisting cultures. Following overnight in-

cubation, the cells were stained with Hoechst 33342 and analysed by flow cytometry. Cell size 

measurements were based on forward scatter FCS values. FACS analysis was performed with 

BD FACS Canto II. The DAPI channel was chosen. 10000 events were acquired per sample at a 

slow acquisition speed. SSC-A/FSC-A, DAPI-W/DAPI-A and DAPI-A/FSC-A displays were set to 

gate single cell population sequentially. The histogram of FSC-A was used to show the cell size 

population. The histogram of DAPI-A provided a cell cycle profile. 

Preparation of Cell Samples 

(1) Cell seeding and inhibitor/growth factor treatment as described in section IV-6. 

(2) Overnight incubation. 

(3) Resuspended cells from each well by pipetting, transferred to falcons and placed on ice. 

(4) Pelleted the cells by centrifugation at 800 rpm for 10min at 4C 

(5) Discarded supernatant and resuspended cells in 1 ml medium without serum 

(6) Added 10 µl Hoechst 33342 (0,5 mg/ml) 

(7) Incubated 20min in the dark 

(8) Pelleted cells by centrifugation at 800 rpm for 10min at 4C 

(9) Resuspended cells in 1ml medium without serum and transferred to FACS tubes 

(10) Analysed samples with the BD FACSCanto II flow cytometer 

(3*) When working with adherent cells, proper detachment requires trypsinization 

For a well grown T25 flask/dish of cells, add 2 ml trypsin solution 

Incubate 3-5 min at RT 

Inactivate trypsin by adding 5 ml of complete medium 

Use a 5 ml pipette for washing the remaining cells from the walls of the flask 

Transfer to a 15 ml falcon tube 

FlowJo Analysis 

> Basic gating of populations of interest and associated histograms can be generated in the 

DIVA software. However, for more comprehensive processing of the FACS data, experiments 
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were exported as fcs3 files and collated into groups, such that gates and statistics can be de-

fined interactively and shared among members of each group. 

> The common workflow for FlowJo data analysis includes: 1 » Load sample data files into a 

workspace. 2 » Organise sample data into experimental groups. 3 » View one prototype sample 

to define gates and statistics. 4 » Copy the gates and statistics to a group. 5 » Verify the analy-

ses on all samples in s group. 6 » Layout multiple plots for all samples in a group. 7 » Generate 

a graphical report in the layout editor and table of statistics in the table editor. 

> Using curve-fitting algorithms, FlowJo fits the DNA histogram into mathematical distribu-

tions, representing the populations of cells in each of the phases. Fitting parameters can be 

constrained and the percentage of cells in G1/G0, S, G2/M, E1, E2 are automatically calculated 

by applying the Cell Cycle Analysis platform to the gated populations. 

> FlowJo fits the cell cycle data using one of two mathematical models: the Watson Pragmatic 

model or the Dean-Jett-Fox model. Both of them were used to define individual cell cycle 

phases. Both models fit the G1 and G2 with Gaussian curves. For the S-phase distribution, the 

Watson model subtracts the G0/G1 and G2/M portions of the data and builds a function that 

fits what remains, whereas the DJF model fits the S-phase with a second-degree polynomial. 

> For cell cycle analysis, the common procedure includes: Launch the Cell Cycle platform. 1 » 

Choose a model to fit the data. 2 » Adjust the model; the fit of the model can be assessed by 

comparing the model to the DNA histogram and by a low Root Mean Squared (RMS) score. If 

the model does not fit, you can either change the model or constrain one of the model parame-

ters to assist fitting. 3 » Apply the cell cycle node to other samples. 4 » Generate a graphical 

report in the Layout Editor and a statistics report in the Table Editor. 

> For each experiment, control samples were first analysed, and constraining ranges for the 

peaks were initially set based on those samples. Also, the CV values (coefficients of variance) 

for the G1 and G2 peaks were generally set to equal values to minimise cytometer’s measure-

ment errors.
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