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Abstract 
In recent years, three-dimensional (3D) in vitro cell culture models such as spheroids and 

organoids have revolutionized life science research by providing a much more reliable context 

resembling the in vivo microenvironment. These systems yield important cell-to-cell 

interactions and induce cell differentiation. However, no conventional microscopy setup can 

provide sufficient imaging throughput as well as spatial and temporal resolution to enable full 

3D live imaging and analysis down to subcellular processes.  

In this project, we established state-of-the-art light sheet microscopy for live, long-term 

imaging of a short interfering ribonucleic acid (siRNA) treated 3D cell culture model. Due to 

the high temporal and special resolution of the light sheet microscope, we minimized imaging 

artifacts and achieved unprecedented visual representations of spheroids throughout 

development and upon gene knock-down by siRNAs. Furthermore, we deployed a high-

throughput image analysis pipeline and machine learning classification to evaluate global, 

cellular and subcellular features for a precise, quantitative gene knock-down phenotype 

description. The RNA interference (RNAi) induced gene knock-down phenotypes were 

replicated and compared by a novel molecular, site-specific epigenome modifying method.  

Throughout this project, we carefully evaluated every step of the workflow to improved its 

throughput and increased its reproducibility and usability. We addressed the key challenges 

in light sheet microscopy, such as sample preparation, data handling, image processing and 

analysis, thereby establishing quantitative light sheet microscopy screening of 3D cell culture 

models for many research applications. In total, we believe that our workflow can provide the 

basis for high-content analysis of 3D cell culture models for future research, enabling much 

more detailed functional experiments and basic research studies.  
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Zusammenfassung 
Dreidimensionale (3D) in vitro Zellkulturmodelle wie Spheroide und Organoide haben in den 

letzten Jahren den Bereich der Lebenswissenschaften revolutioniert, da sie die zelluläre 

Mikroumgebung in einem deutlich verlässlicheren Kontext wiederspiegeln In diesen 

Zellkulturmodellen können wichtige Zell-Zell-Kontakte ausgebildet und die Zelldifferenzierung 

induziert werden. Dennoch können etablierte Mikroskopie-Methoden bisher keine 

ausreichende Aufnahmegeschwindigkeit erzielen und weder die räumliche noch zeitliche 

Auflösung liefern, um vollständige 3D Aufnahmen und Bildanalyse von sub-zellulären 

Prozessanalysen zu ermöglichen. 

In dieser Arbeit haben wir die neuste Lichtblattmikroskopie für Langzeitaufnahmen von einem 

lebenden 3D Zellkulturmodellen nach einer Behandlung durch siRNA (kleine eingreifende 

Ribonukleinsäure) etabliert. Durch die hohe zeitliche und räumliche Auflösung des 

Lichtblattmikroskops konnten wir Mikroskopieartefakte minimieren und erzielten bisher 

unerreichte visuelle Darstellungen von Spheroiden sowohl während ihrer Entwicklung, als 

auch nach Verminderung der Expression spezifischer Gene durch siRNA Behandlung. Für die 

präzise und quantitative Beschreibung von Phänotypen, die durch die Herunterregulation 

bestimmter Gene hervorgerufen wurde, haben wir eine Hochdurchsatzbildanalyse-Pipeline 

sowie Klassifizierungen mittels künstlicher Intelligenz zur Bewertung von globalen, zellulären, 

sowie subzellulären Eigenschaften etabliert und verwendet. Außerdem wurden die 

interferierende RNA induzierten Phänotypen mittels einer neuen molekularen, zielgerichteten 

Methode zur Modifizierung des Epigenoms repliziert und verglichen. 

Während der gesamten Projektes haben wir jeden Schritt des Arbeitsablaufs kritisch evaluiert 

um Durchsatz, Reproduzierbarkeit und Verwendbarkeit zu verbessern. Die 

Schlüsselprobleme der Lichtblattmikroskopie wie Probenvorbereitung, Datentransfer, 

Bildbearbeitung und Bildanalyse konnten wir durch einen hohen Grad an Automation von der 

Zellpertubation bis hin zur abschließenden Analyse beheben. Dadurch haben wir ein 

quantitatives Lichtblattmikroskopie-Screening von 3D Zellkulturmodellen für weitreichende 

wissenschaftliche Anwendungen etabliert. Insgesamt glauben wir, dass unser Arbeitsablauf 

die Basis für eine Hochdurchsatzanalyse von 3D Zellkulturmodellen für zukünftige 

Forschungsprojekte bereitstellen kann, da er detailliertere funktionale Analysen ermöglicht. 
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1 Introduction 
Naturally arising oxidative damage to the human genome occurs around 10,000 times per day 

in every single cell [1]. Due to DNA repair mechanisms or induced cell death, these mutations 

do not have a detrimental effect on the tissue [2] or organism. Yet, if these mechanisms fail, 

mutations are acquired over time and can induce uncontrolled cellular expansion, resulting in 

cancer development. Growth and spreading of cancer tissue into essential organs can result 

in organ failure and patient death [3]. Today, cancer is still one of the leading causes of death 

despite medical improvements in recent years in developed countries [3]. To understand how 

cancer develops, how it spreads, and how it can be cured, cancer research has to study the 

underlying cellular mechanisms inducing cancer development, and how these changes can 

be reverted, or how cancer tissue can be specifically treated to inhibit cellular growth. Novel 

3D human cell culture models provide a versatile system to study cancer development, tumor 

remission, as well as potential treatments [4].  

 

1.1 Cell culture models in cancer research 
Human and animal cell culture models are an essential, irreplaceable component in any life 

science research from basic research to translational cancer research [5, 6]. The term cell 

culture model refers to living, immortalized cells that live and proliferate under defined culture 

conditions (Figure 1). Cell lines can be established from tumor or somatic tissue [7]. 

Immortality can be acquired through naturally occurring mutations in tumor tissue or through 

introduction of a viral gene or modulated gene expression that deregulates the cell cycle [8]. 

Cell lines resemble properties of the tissue of origin, while xenografts in mice are a common 

method to improve tumor resemblance of the cell line as patient-derived xenografts 

accumulate copy number alterations due to selection of minor clones (Figure 1) [9].  

Cell lines facilitate the study of cellular components, properties, processes, and functional 

responses to internal and external cues in a simple, robust, and easy-to-use setup with many 

established imaging and omics analysis methods. These omics methods allow evaluation and 

quantification of different aspects of RNA and protein biosynthesis, function, localization, 

homeostasis as well as their dynamics (Figure 1) [4, 10, 11]. 

Throughout history, these cost-effective in vitro cell cultures have led to significant insights 

into biological processes, circumventing elaborate work with model organisms as well as 

enabling studies on live human tissue [12]. One of the greatest advantages of cell culture 

research is the abundancy of different cell lines and the possibility to rapidly enlarge sample 

size and the number of cells. Additionally, many methods have been established to modify the 
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genome or transcriptome and to generate transgenic cell lines that express, for example, a 

recombinant protein or lack an endogenous gene of interest. 

 

 

Figure 1 – Cell culture models for molecular and phenotypic analysis 

purposely immortalized with viral genes and subsequently expanded in defined growth media, ensuring high 
proliferation and defined cell characteristics through culture media supplements. An additional step of mice 
xenografts improves viability and tumor properties of the cells. Established cell lines can subsequently be used in 
2D or 3D environments for functional experiments analyzing structural features by immunofluorescence (IF), or 
molecular properties by fluorescent in-situ hybridization (FISH). Functional and omics methods characterize the 
genotype and phenotype of the tissue of origin. 

 

1.1.1 2D cell culture – a basic in vitro model systems for research 

For many decades, two-dimensional (2D) cell culture models have been the state-of-the-art 

system for any in vitro study, even though the physiologically relevant microenvironment is 

missing. In 2D, cells are usually grown on a stiff plastic surface, covered by their respective 

culture medium and passaged every few days, depending on their replication time. The hard 

surface of the culture dish modifies tissue-specific cell architecture and forces a defined 

polarity and cell shape onto the single cells, which alters mechanical and biochemical signals 

and subsequent cell-to-cell communication [13]. Modern alterations of 2D systems like 

transwell polycarbonate membrane cell culture inserts allow for more complex cultivation, as 

for example reconstituting the air-tissue interface of the lung [14]. 

Different implementations of 2D cell culture have helped extensively to understand cellular 

properties, though lacking the 3D context of the in vivo tissue [6, 12, 13]. Important cell-to-cell 

interactions between cells or the extracellular matrix (ECM) are also absent. Differentiation 

inducing or retaining physical microenvironment properties are lacking. Yet, these non-
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physiological culture properties influence gene expression profiles and therefore the 

phenotype of the cells [15]. 

Due to these non-physiological culture conditions, cells grown in monolayer can lose distinct 

properties and features that are potential drug targets in medicine. For instance, primary 

hepatocytes cultured in 2D lose their differential state within a few days and monolayer cells 

silence drug component metabolizing enzymes, which makes 2D models much more sensitive 

to drugs [16]. Administering the same drug concentration that was effective in a 2D cell culture 

model to a patient, it would be highly inefficient and potentially even induce drug resistance in 

the cancer tissue [7]. 

Last but not least, a surrounding tissue can influence availability of nutrition and oxygen, 

limiting the cellular metabolism and replication time, introducing cell differentiation [13, 17] as 

well as influencing the drug permeability to the target cells [7].  

 

1.1.2 3D spheroid cell culture in life science research 

Most of these above mentioned major drawbacks of 2D cell culture models are addressed by 

the application of 3D cell culture models in research, first used in the late nineteen-fifties [18]. 

Today, there are two established nomenclatures for cultured 3D cell clusters – spheroids and 

organoids. While these two 3D cell culture systems differ in size and progress of differentiation 

of single cells within the cluster, but attributes that define the transition from a spheroid to an 

organoid are not clearly outlined and subject to ongoing discussions.  

There is a great variety of tested and continuously improving methods to induce 3D spheroid 

development. Mechanical solutions like the “hanging drop”, “ultra-low attachment plates”, 

“spinner flask culture” or the “rotary cell culture system” [19] do not allow any adhesion of cells 

to a surface and therefore cause cells to aggregate. Other approaches reconstitute the basal 

membrane through a gelatinous protein mixture called Matrigel derived from Engelbreth-Holm-

Swarm mouse sarcoma cells. Matrigel contains essential ECM proteins such as laminin, 

collagen IV, heparin sulfate proteoglycans, entactin or nidogen and a number of selected 

growth factors [12, 13].  

Results obtained from research using 3D cell culture models like spheroids have shown that 

the additional dimension and loss of stiff culture surface changes gene expression 

dramatically, thus resembling more closely the respective (tumor-) tissue [7, 20]. Furthermore, 

key events of cellular development, such as proliferation, migration and induced apoptosis are 

defined by the extra cellular context [17, 21, 22], which means that essential factors and 

physical properties of the ECM need to be established throughout spheroid development, 

simulating the in vivo context. Another strong point for the usage of 3D cell culture models is 
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the high degree of heterogeneity between the cells due to differentiation and sub-type 

development [23], as it can be found in tumor tissue. It was shown by Ghosh and colleagues 

that genes upregulated in tumors match with their gene expression in their respective 3D cell 

culture model [20]. The close imitation of in vivo tissue improves reliability and reproducibility 

of research results, and therefore closes the gap between cell culture and the respective 

physiological in vivo tissue [24]. 

Especially in the field of oncology and the selection of promising drugs in pre-clinical screens, 

the discussed advantages of 3D cell culture models [5] provide the essential context for the 

characterization of cancer subtype and its therapeutic treatment [7, 22].  

 

1.1.3 Tumor initiation 

Cancer development describes a process of successive accumulation of (epi-) genome 

mutations that alter the gene expression profile of a cell and thereby cause this cell to undergo 

an abnormal phenotypic transformation with acquisition of biological capabilities [9, 25]. Post-

mitotic somatic cells can reacquire stem cell like properties re-entering a highly proliferative 

state and invade into other tissues or organs, where the misallocated cells can cause organ 

failure through growth and nutrient deprivation of the physiological tissue [25, 26]. The general 

theory implies that a single mutation is most of the time not sufficient to induce cancer 

development, but it is rather the interplay of accumulated mutations, which change the cell’s 

gene expression. Genes regularly activated in this process are called oncogenes, while genes 

which often repressed throughout oncogenesis are called tumor suppressor genes [27-29].  

Tumor tissue can be separated into two states, benign and malignant [23]. Benign tumors 

remain at the original tumor site and have not (yet) acquired the capability to invade 

neighboring tissue, while malignant tumors are able to migrate and invade other body parts 

[29]. Both groups can show a high degree of cell proliferation, a key hallmark of cancer [25]. 

Further cancer hallmarks include genome instability, evasion of growth suppression and 

immune destruction including apoptosis resistance, replicative immortality, reprogrammed 

metabolism, induced angiogenesis in the tumor tissue, and invasive migration capabilities [5]. 

 

1.1.4 The role of mitotic defects in tumorigenesis 

Cell division or mitosis is a highly regulated, cellular process describing the replication and 

separation of the full genome into two daughter cells, which is a prerequisite for life and growth 

of any organism. The cell cycle can be divided into different stages or phases that separate 

the replicated genome into the two daughter cells. During the prophase, the DNA is 

compacted into chromosomes with two identical sister chromosomes attached at the 



 

 5 

centrosome and the nuclear envelope is being disassembled. The chromosomes are 

subsequently aligned at the mid plane of the cell during the metaphase with the help of the 

mitotic spindle apparatus. These microtubules are attached to the centrosomes and separate 

the sister chromosomes to one pole of the dividing cell during the anaphase. The cell division 

is completed during the telophase, when two daughter cells complete the cytokinesis, 

disassemble the mitotic spindles, decondense the DNA, and reform the nuclear membrane as 

well as acquire normal cellular shape.  

Numerous mechanisms such as the spindle assembly check point and the no-cut checkpoint 

control define steps of the mitosis and ensure accurate distribution of the genome to the 

daughter cells [30]. Minor mistakes throughout mitosis can result in daughter cells with an 

incomplete genome or too many chromosomes, a feature called aneuploidy. Aneuploidy is 

regarded as common trait of cancer cells, arising in almost 70% of solid human tumors, as 

chromosome misdistribution provides cancer cells with a mechanism to lose tumor suppressor 

loci and gain extra copies of oncogenes [31]. Furthermore, features of cancer cells include 

structural alterations such as genome region translocation, amplification or deletion, resulting 

from high proliferation and loss of DNA repair mechanisms. These traits are referred to as 

chromosomal instability and are a leading cause for tumor development [32], from initiation, 

to growth, and acquisition of additional cancer hallmarks. In total, mitotic defects are 

considered the most influential step in tumor initiation and subtype formation, resulting in 

intratumor heterogeneity [23, 33].  

 

1.1.5 Resolving intratumor and intertumor heterogeneity 

Intratumor and intertumor heterogeneity in genotype, epigenotype, phenotype, and underlying 

gene expression are conceived as the most crucial aspects that needs to be analyzed to treat 

cancer patients [23]. The heterogeneity among patients makes it challenging to decide on a 

defined treatment solely by the tumor type. Small differences in tumor initiation and 

progression can cause distinct phenotypes within a single patient and a single tumor, with 

various resistances to one or the other chemotherapy [23, 33-35]. Furthermore, depending on 

the tissue of origin and the tumor microenvironment, a single tumor type could display distinct 

properties [35], drug resistance [36] and relapse properties [37]. For example, although almost 

indistinguishable by histo-cytochemistry, the tumor medulloblastoma displays a high chance 

of remission when originating from the dorsal brainstem, while medulloblastoma arising in the 

cerebellum causes a much shorter life expectancy [38]. To tackle tumor heterogeneity, it is 

not only essential to establish analysis methods that allow a focusing on the individual cell in 

the context of a microenvironment. Furthermore, it is essential to establish 3D cell culture 
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models representing defined tissue characteristics that can be used to analyze the initial steps 

of tumor development as well as tumor progression.  

 

1.1.6 MCF10A – a benign breast epithelia model for tumor initiation studies 

One of the most commonly occurring cancer types for females is breast cancer. In the United 

States in 2017, women in the United States had a 12.4% (1 in 8) lifetime risk to be diagnosed 

with breast cancer [breastcancer.org]. There are two main groups of breast cancer described, 

the ductal carcinoma in situ and lobular carcinoma in situ also known as lobular neoplasia [39]. 

In both breast cancer types, epithelial cells acquire in a stepwise transformation a highly 

proliferative phenotype starting from local hyperplasia to premalignant carcinoma in situ and 

developing into the highly motile, invasive carcinoma [28]. Breast cancer cells invade and 

expand into the ducts and lobules of the breast. Causing mutations are highly probable in the 

BRCA1 and BRCA2 genes [2]. These tumor suppressor genes encode for nuclear 

phosphoproteins that play a key role in maintaining genomic stability by regulating the 

homologous recombination pathway for double-stranded DNA repair [2, 31, 40]. A defect in 

this repair system causes a high likelihood to acquire genetic mutations that cause the 

development of breast cancer.  

Michigan Cancer Foundation 10A cell line (MCF10A) is a benign, in vitro, human breast 

epithelium derived, 3D cell line that develops under 3D culture conditions in Matrigel into 

polarized micro tissue called spheroids [41]. These spheroids represent the acini of the human 

breast and display essential functions such as polarization and differentiation and exhibit the 

cell-to-cell variability found in the respective in vivo organ [12, 22]. These properties make the 

MCF10A cell line the ideal candidate for tumor initiation screens, in which the acquisition of 

(epi-) genetic mutations is replicated and reconstitutes the first steps of tumor development in 

vitro. 

 

1.2 Epigenetics 
Genetic and epigenetic mutations equally contribute to loss or gain of gene expression and 

oncogenic cell transformation [42, 43]. Epigenetics describe all non-genomic but heritable 

DNA modifications that are passed from the mother-cell to the daughter-cells [44]. The 

importance of aberrant DNA modifications and DNA associated protein modifications in 

tumorigenesis and tumor metastasis is highlighted by the increasing number of known tumor 

associated epigenetic alterations [45]. The two principal epigenetic modifications known for 

their significant role in cancer development are DNA methylation at 5-methylcytosine of the 

cytosine guanine dinucleotide (CpG) and covalent post-translational histone modifications 
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[46]. The latter include an addition or removal of a methyl group, acetyl group, phosphorylation, 

ubiquitination and sumoylation at the histone tails of the different subunits of the protein 

complex. And they are mediated by the enzyme group of histone modifiers and the chromatin 

remodeling complex [47-52]. The second main class of epigenetic modifications describes an 

addition of a methyl group to the cytosine of a CpG dinucleotide. Genomic regions that show 

distinct differential DNA methylation levels between tumor or non-tumor tissue at CpGs are 

called differentially methylated regions (DMR) and are regularly associated with CpG islands, 

DNA regions with high percentage (> 60%) of cytosine guanine dinucleotide and a length of 

at least 200 base pairs [53]. The DNA methyltransferase family (DNMT) catalyzes the addition 

of the methyl group to the C5 position of the cytosine ring (5-mC) in CpG dinucleotide. DNMT1 

preferentially binds to replication sites in the S phase and methylates hemimethylated DNA, 

maintaining the methylation pattern on the newly synthesized strand [54] (Figure 2a). DNMT3a 

and DNMT3b catalyze de novo methylation at loci throughout development of an organism or 

a tissue [55] (Figure 2a). DNMT3l is an important stimulatory factor for DNMT3A, which 

regulates the duration of the attachment of methyltransferases to the DNA [56]. 5-mC is a 

reversible DNA modification that can either be lost through semi conservative DNA replication, 

or through a multistep enzymatic process. The initial step of DNA demethylation is catalyzed 

by Ten-eleven translocation methylcytosine dioxygenase 1 (TET1), oxidizing the modified 

DNA base 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC) [57] (Figure 2a). 5-hmC is 

then further processed to 5-carboxylcytosine (5-caC) which is subsequently excised by a 

thymine DNA glycosylase (TDG) generating an abasic site as part of the base excision repair 

(BER) process [58] (Figure 2a).  

 

1.2.1 Epigenetics in tumor development 

Epigenetic modifications at DMRs are able to significantly impact gene expression through 

rearrangement of the nucleosomes, changing the chromatin structure as well as allowing or 

inhibiting the binding of transcription factor and regulating the recruitment of histone modifiers 

(Figure 2b) [59]. DMRs are found mainly in promoter regions, but also in gene bodies and 

intergenic regions. Although not exclusive, hypermethylated DMRs generally correlate with 

gene repression, while hypomethylated promoters are associated with higher gene expression 

[53, 60]. 

 

1.2.2 Epigenome modifying molecular tools 

The fact that epigenetic states are in some genomic regions highly responsive to external 

influences or the cellular, developmental progress in a highly reproducible manner, make 
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epigenetic markers a more promising target for tumor therapy than genome modifications [61-

64]. Genomic locus directed epigenome modifying enzymes in theory allow a complete 

remission of the tumor state, reverting the oncogenic phenotype of the epigenome 

misregulated tumor cell [64] (Figure 2b). Furthermore, epigenome modifying molecular tools 

are able to induce a defined gene expression pattern that drives a cell into apoptosis or inhibit 

certain cancer hallmark phenotypes [65-68]. Epigenome remodeling enzymes have been 

described already in the 1990s, but the key challenge is the accurate positioning of these 

enzymes to a genomic locus for site-specific epigenome remodeling [64, 69, 70]. 

Several molecular tools have been developed over the last years, including Transcription 

Activator-Like Effector Nuclease (TALEN) [71], and zinc finger DNA binding proteins (ZF) [65, 

72] (Figure 2c). These systems have been successfully adapted to modify epigenetic traits at 

a specific genomic locus [49, 73, 74]. Most problematic for these methods were cost and effort 

required to generate a single functional epigenome modifier in relation to the epigenome 

modification success rate [75]. Each target site requires a redesign and protein synthesis of 

the ZF and TALEN with no guarantee of high effectivity [71].  

The clustered regularly interspaced short palindromic repeats (CRISPR) system, described by 

three groups almost simultaneously in 2012 [76-78] was adapted from its function as microbial 

adaptive immune system to a recently broadly used genome editing tool [76]. In the following 

years, the original CRISPR system was adapted to a broad range of additional applications, 

using the deactivated Cas9 (dCas9) to target specific effector domains (dCas9-ED) to a 

specific genomic locus (Figure 2c) [79-84]. In the dCas9 protein, the two endonuclease 

domains RuvC and HNH are mutated in a single residue each (D10A / H840A) [24], forfeiting 

the endonuclease activity of the molecular tool. The greatest advantage of the different al 

CRISPR systems is the high adaptability, since site specificity is defined by the RNA 

component, the single guide RNA (sgRNA), which can be administered separately to the 

dCas9 protein component [85, 86]. This trait enables a fast exchange of genomic targets and 

versatile synthesis. Furthermore, multiple genome sites can be targeted simultaneously [87-

89]. A drawback of the usage of the CRISPR-dCas system for locus specific epigenomic 

editing is the lower target specificity, which allows base pairing with up to 5 mismatches 

between sgRNA and the DNA [90] thus requiring cautious experimental design. Rapid 

development and constant improvement of online target selection and off-targeting prediction 

tools have made sgRNA synthesis and specificity evaluations a relatively easy task [87, 91, 

92].  
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Figure 2 – Gene regulation by methylome modification in tumor tissue 

a) The addition of a methyl group to 5C is catalyzed by DNMT1 (methylation pattern maintenance) or by DNMT3a/b 
(de novo methylation). DNA methylation is a reversible modification that can be actively removed by a multistep 
enzymatic reaction induced by TET1 catalyzing the initial step of demethylation b) Many tumor types are associated 
with aberrant DNA methylation on single CpGs or entire regions. Particular aberrant methylation pattern in DMRs 
of oncogenes and tumor suppressor genes result in tumorigenesis through abnormal gene expression. c) Zinc 
finger DNA binding proteins, TALEN, or CRISPR-dCas9 fused to methylome-modifyingifying enzymes have been 
shown to be functional in site directed methylome modification inducing selected transcription activation or 
repression. 

 

In the last three years, a number of epigenome modifying applications utilizing the CRISPR-

dCas9 system to site-specific epigenome editing have been published (Figure 2c). Hilton and 

colleagues achieved gene activation through histone H3 lysine 27 (H3K27) acetylation by 

fusing the acetyltransferase p300 core domain to the dCas9 [93], while Kearns and colleagues 

described a similar approach with gene repression through coupling of the LSD1 to the dCas 

and targeting H3K4Me2 and H3K27Ac histone modifications around the targeted Tbx3 

enhancer region [94]. Other epigenetic enzymes like KRAB, DNMT3A, and DNM3L and TET1 

also allowed for long-term epigenetic silencing or activation of the target endogenous genes 

through site directed methylation and demethylation of specified genomic regions [63, 95, 96] 

(Figure 2c). Although highly innovative, all these approaches display one common, crucial 

difficulty besides the methylome engineering efficiency. The alterations at the epigenome 

could be analyzed by methods such as pyrosequencing or ChiP-seq technology, but functional 

validations of the effect onto the cellular phenotype were not definite [52, 61, 93].  

 

1.2.3 3D context and epigenetics – a new challenge in cancer research 

Conventional methods like siRNA knock-down functional experiments and the described novel 

epigenome modifying tools can be used to study gene function, regulation, and individual 
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contribution to oncogenesis in 3D model systems. The contribution of the epigenome to 

tumorigenesis as well as the capability of the epigenome modifying molecular tools to precisely 

change these properties provide novel possibilities to revert cancerous characteristics of cells. 

Major challenges for this method are off-targeting effects, insufficient understanding of 

comprehensive regulatory mechanisms and effects of site directed epigenetic modifications 

[73]. The advantage of targeted epigenetic modification over traditional methods such as 

siRNA for a high-throughput knock-down screen needs to be determined, as CRISPR-Cas9 

based targeted epigenetic modifications require a protein component as well as a RNA 

component delivered into each cell to induce genomic site directed epigenome modification.  

Many analysis methods such as (epi-) genome and transcriptome sequencing, metabolism 

analysis and imaging are currently adapted, improved or developed to suite the requirements 

of 3D cell culture models. Especially difficult is the visual representation of the spheroid or 

organoid. Due to light scattering, conventional microscopy techniques such as epifluorescent 

or confocal microscopes are insufficient to visualize and analyze the entirety of these 3D cell 

culture models. Novel imaging techniques such as light sheet microscopy for the first-time 

facilitate full 3D acquisition of spheroids and organoids.  

 

1.3 Fluorescent light sheet microscopy 
To study subcellular processes, development, or interactions between cells of a tissue, light 

microscopes are the most important and powerful analytic tool, as they can resolve subcellular 

components smaller than one micrometer [97]. 

 

1.3.1 Fluorescent microscopy 

The development of the fluorescent microscope improved resolution and enabled a selected 

visualization of single structures and subcellular components. In a fluorescent microscope, the 

specimen is illuminated by a defined wavelength that is absorbed by the fluorophores [97]. 

These excited fluorophores emit the absorbed energy at a longer wavelength than used for 

excitation [98]. This shift between excitation and emitted wavelength is used to split the optical 

signal enabling fluorophore localization [97]. Fluorophores, such as dyes or fluorescent fusion 

proteins enable a visualization of cellular structures or components [99-102].  

Key fluorescent microscopy technologies available to almost all life science researchers are 

conventional epifluorescence microscopy (Figure 3a), confocal laser scanning microscopy 

(CLSM) (Figure 3b) and Spinning-disk (Nipkow disk) confocal microscopy (SDM). Today, 

many different advances in microscopy development such as super resolution microscopy, 

have pushed the resolution limit further, making cellular processes or structures visible that 
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could not have been observed otherwise [103]. Additionally, constant improvement of 

molecular staining tools such as fluorescently labeled antibodies, fluorescent dyes, and 

fluorescent tags for proteins [99] exemplified by the green fluorescent protein (GFP) [102] and 

its deviates, facilitate novel applications and methods.  

Although broadly established, conventional bright field and fluorescent microscopy have a 

substantial disadvantage as the excitation light illuminates the entire specimen, causing photo-

bleaching and phototoxic effects in all planes of the entire sample, while the emitted light is 

detected only in a single plane [104]. With the development of the light sheet microscope, the 

issue of redundant light overexposure of the sample is addressed [10, 104-106].  

 

1.3.2 Light sheet microscopy 

In 1903, Siedentopf and Zsigmondy described the very first concepts of a light sheet 

microscope [107]. The so-called “ultramicroscope” employed a slid aperture to project sun 

light onto a sample at a 90° angle to the detection objective. This setup illuminated only a thin 

section of the sample, providing lateral sectioning. Almost a century later, Voie and colleagues 

reimplemented the orthogonal orientation of excitation and detection path to image the internal 

architecture of the cochlea with their orthogonal-plane fluorescence optical sectioning 

(OPFOS) microscope [108]. Their microscope already comprised many features of today’s 

commercially available light sheet microscopes, such as laser excitation, beam expander for 

light sheet modulation, a cylindrical lens to generate the light sheet and Z-stages to move the 

specimen through the light sheet. Although acknowledged as innovative imaging technique, 

light sheet fluorescent microscopy (LSFM) remained largely unrecognized as method for life 

science research. In 2004, Jan Huisken and colleagues [109] published their single-plane 

illumination microscopy (SPIM) setup, which was capable to visualize in vivo muscles in a 

transgenic Medaka (Oryzias latipes) fish model organism as well as image development of a 

Drosophila melanogaster embryo for up to 17 hours at unmatched spatial and temporal 

resolution. 

Throughout the subsequent years, SPIM imaging was accredited as surpassing imaging 

technique [105] with superior properties to conventional microscopy, which caused a rapid 

development of many different light sheet technology implementations. Many research groups 

developed their own implementation of the optical setup to study mainly embryogenesis of 

different model organisms, focusing on tissue differentiation, organ development and cellular 

positioning throughout the development of the embryo [104].  
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1.3.3 Opto-physical principles of light sheet microscopy 

All light sheet microscopes are based on the same basic, opto-physical principles. But they 

highly differ in light sheet generation, in number and properties of the excitation and detection 

paths, as well as in the orientation of the setup [106, 110]. In comparison to any other 

fluorescent microscope, in which a single objective emits the excitation light along the same 

axis as the fluorescent signal is collected (Figure 3a-b), the light sheet microscope splits 

excitation and detection light path at a commonly 90° angle and illuminates the sample from 

the side (Figure 3c).  

 

 

Figure 3 – Overview on fluorescent imaging techniques 

Schematic (not drawn to scale) of microscopes acquiring a single image (red line) of a 3D spheroid sample. Insets 
describe illumination pattern needed for single slice acquisition. The specimen is illuminated with light at a 
fluorophore-specific excitation wavelength (blue). The fluorophores at ground state absorb the light energy and 
acquire an excitation singlet state. Immediately, fluorophores recover the stable ground state through energy and 
light emission at a longer emission wavelength detected through the detection path (green). Objectives, filters and 
dichroic beamsplitters direct and split the different excitation and emission wavelengths from the light source onto 
the sample and from the sample onto the detection apertures. a) In epifluorescent microscopes, the excitation light 
is transmitted through the sample, which allows for full frame detection, while in a confocal microscope b) the light 
is focused in a single point and scanned over time across the focus plane creating a scanned image. A pinhole 
(black disc) dismisses out-of-focus light. In both microscopes, excitation and detection optical path are passing 
through the same objective. c) In a light sheet microscope, excitation and detection paths are separated by 90°. 
Only a thin sheet of light or Gaussian beam is used to scan across the sample in synchronization with a full frame 
camera, illuminating only a thin layer of the sample per frame.  

 

The light sheet can either be generated by a collimated laser passing through a slit aperture 

and a cylindrical lens forming a static light sheet or a virtual light sheet can be generated by a 

Gaussian beam that is scanned by a Galvo scanning mirror across the field of view [4, 104, 

110-112]. Both technical implementations form a thin sheet of light that illuminates only a thin 

layer within the specimen, reducing the overall light exposure onto the sample drastically [104] 

and provide already a good sectioning of the sample (Figure 3c) [104]. The detection objective 

is placed at a perpendicular angle to the light sheet at focal distance, and transmits the 
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emission signal onto modern, full-frame scientific complementary metal-oxide-semiconductor 

(sCMOS) cameras [113]. 

From the most basic setup of a single excitation and secondary single detection objective, 

many novel implementations of the light sheet technology have evolved [110]. Some 

microscopes combine two detection and two excitation objectives orientated horizontally 

around a vertically placed sample, called a multi view setup [114]. This can be utilized to 

acquire four images of a specimen without rotation, each view acquiring a quarter of the 

sample at the highest resolution [114]. Another custom-built light sheet setup was developed 

to acquire mouse embryos at resolution limit [115]. Strnad and colleagues used an asymmetric 

setup with high numerical aperture (NA) detection objectives combined with a low NA 

excitation objective to acquire developing mouse embryos at the highest possible spatial 

resolution [115] while minimizing light exposure.  

 

1.3.4 Sample mounting in light sheet microscopy 

LSFM imaging requires a higher effort to prepare samples for imaging in comparison to 

standardized sample mounting for conventional microscopy with samples mounted on a 

simple glass slide or culture plate, making sample mounting one of the key challenges for 

SPIM imaging [10, 110, 116]. The optical geometry of a LSFM with two or more objectives at 

an extremely close proximity makes mounting and positioning the sample between the 

objectives an issue [114]. Furthermore, to obtain the optimal imaging conditions, it is essential 

that all components of the optical path and mounting media are adjusted to the refractive index 

(RI) of the sample [117]. Additionally, optimal environmental conditions like temperature, gas 

exchange, and nutrition must be provided without affecting light transition. Samples mounted 

in transparent fluorinated ethylene propylene (FEP) tubes and foils (Figure 4a), that have an 

RI of 1.33 identical to aqueous solutions ensure the continuity of the RI throughout the optical 

paths while also improving position and imaging stability [118, 119]. One major drawback of 

the usage of FEP foil is the reduced gas and nutrition exchange. Translucent gels like agarose 

and Matrigel are broadly used for aqueous imaging media and minimize light scattering (Figure 

4b-c), while constraining the sample to a defined position [10].  

Motorized positioning stages with extremely high precision and long travel range provide the 

capability to position the mounted sample exactly at the focal plane between the objectives for 

imaging. Larger samples with a size of 200 µm like developing embryos, plant roots or large 

organoids require additional imaging strategies like multi view acquisition to compensate for 

in depth light scattering [4, 109, 114].  
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1.3.5 Sample acquisition and acquisition modes 

Jan Husiken et al. [109] were the first to implement a rotary stage that is capable of rotating 

the sample around an orthogonal axis and acquire the sample at multiple angles (Figure 4a). 

Only one excitation and one detection optical path, as exemplified in Figure 3c and Figure 4a, 

are needed for multi view imaging, but multiple excitation and detection paths can reduce 

imaging time.  

Another approach for multi view acquisition, circumventing the rotation of the sample, is the 

usage of multiple, alike excitation and detection paths at either a 90° or 180° angel [112, 120]. 

For these light sheet microscopes, we can distinguish between two distinct imaging techniques 

to acquire a volume (Z-stack) of the specimen. With stage scan acquisition (SSA), the sample 

is translated through a static light sheet. On the one hand, SSA is advantageous for larger 

samples, because less optical components need to be adjusted which reduces vibrations and 

component cost, but on the other hand it is prone to produce excessive single view data for 

smaller samples (Figure 4b). Stage scan acquisition does not require an additional piezo motor 

moving the detection objective in sync with the light sheet. But it relies on a constant, 

uninterrupted and precise movement of the stage, translating the sample through the light 

sheet. SSA is furthermore challenging for image processing as the acquired data is skewed 

when the sample translation is not at an orthogonal angle to the excitation axis (Figure 4b) 

[121]. XY pixel positions do not directly correlate between slices in a Z-stack. And finally, to 

image a volume at multiple views, the Z-stack limits have to be set outside of the field of view 

(FOV), to ensure the acquisition of the FOV from each angle. 

The second method is synchronous piezo/slice acquisition (SyncA) (Figure 4c). Here, the 

stage is stationary, while the light sheet is translated at focal distance in a synchronous 

movement together with the detection objective through the Z-stack [121, 122]. In comparison 

to SSA, SyncA requires more optical components to be adjusted like the position of the 

detection objective and the Z-position of the light sheet [112]. At these small intervals high 

frequency movements cause vibrations, and therefore elongate the minimal time between 

acquisitions of each slice of the Z-stack. However, only a defined volume is acquired from two 

views, restricted by the imaging properties of the objectives, which accelerates and simplifies 

multi view image reconstruction (MVR) (Figure 4c).  

In conclusion, multi view imaging by sample rotation is optimal for large samples like organoids 

and model organism embryos with an extend of 200 µm and larger. Stage scan acquisition is 

highly effective for single sided, large area, thin sample acquisition, while synchronous 

piezo/slice acquisition minimizes acquired data and data processing effort for spheroid sized 

samples.  
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Figure 4 – Light sheet acquisition modes  

a) A stage rotates the sample in an FEP tube to allow for multi view acquisition. One excitation path (light blue 
arrows and single slice light sheet) combined with rotation of the sample reduce light scattering by minimizing the 
distance the light sheet needs to travel through the tissue for each view. Fluorophores are detected at a 90° angle 
(light green arrow). The final sample image is calculated by fusion of the signal from the multiple views. b) SSA 
allows to quickly image a large area, but for smaller samples like a single spheroid mounted in a Matrigel spot 
(gray), a dual view acquisition (red and green bounding box) generates a high ratio of single view, excessive data 
(yellow). Additionally, acquired stacks are skewed, which requires additional image processing steps. c) SyncA 
acquires a defined FOV with fixed parameters, but in comparison to SSA the acquired data displays a higher ratio 
of volume imaged by both views (yellow volume).  

 

1.3.6 Data generation, data handling, and multi view processing  

Light sheet microscopes are equipped with sCMOS cameras that are capable to acquire large 

quantities of data with up to 1 GB/s [113, 123]. Therefore, data management, storage, and 

processing with high performance recourses are essential for SPIM imaging [124]. Restrictive 

acquisition by focusing imaging only on the field of interest (FOI) can reduce data size, but 

intelligent solutions such as intelligent imaging and adaptive optics are shaping the current 

light sheet microscopy development [125]. The term intelligent imaging describes a partly 

automated microscope that can actively change acquisition patterns upon a specific stimulus 

and selectively store or discard data depending on its content [126]. Adaptive optics describes 

microscopes that can evaluate acquired data and actively change the detection path to 

improve image quality and focus on an automatically defined FOI [125].  

As a result of the large data sets acquired by LSFM, data science with focus on high-

throughput image processing and analysis has become an integrated part in the field of light 
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sheet imaging. Image data of multiple views need to be fused and processed [114, 127]. The 

most commonly used processing pipeline is the multi view reconstruction (MVR) plugin 

developed in the group of S. Preibisch [128]. The processing tool detects points of interest 

within all views, like fluorescent beads embedded into the mounting gel and calculates from 

these positions a transformation matrix for each view. The combined image of the specimen 

is subsequently deconvolved and can be used for further analysis. The MVR pipeline is 

especially useful for multi view imaging with two or more acquired views, needed in particular 

for reconstruction of large embryos where the embryo surpasses the FOV multiple times.  

 

1.3.7 Sample handling for light sheet based screens 

The optimal imaging capabilities of the light sheet microscope, shift the key challenges of an 

imaging screen towards sample handling and data processing. Due to the physical positioning 

of the excitation and detection objective at close proximity, commercial high-content plates 

like the 94- or 384-well plates used in 2D cell culture screen are not suited for the multi-

objective setup of some SPIM microscopes. Samples have to be positioned within a confined 

space. Recent development of single objective light sheet microscopes like the ssOPM or 

SCAPE [129, 130], enable the usage of the standard cell culture plates due to the single 

objective setup, but lack spatial resolution in comparison to the dual inverted single plane 

illumination microscope (diSPIM) system and require a positioning of the spheroid near the 

bottom of the well [129, 130]. In comparison, Strnad and colleagues developed a now 

commercially available setup, with a v-shaped FEP channel, carrying up to twenty mouse 

embryos [115]. This setup allowed for high spatial and temporal resolution, but was lacking 

sufficient throughput and suffers from elaborated sample mounting. 

In general, only one commercially available geometry represented by the ASI diSPIM system 

or the Luxendo QuVi microscope allow sufficient sample number as well as spatial and 

temporal resolution to facilitate a light sheet-based, high-content imaging screen of 3D 

spheroids. 

 

1.3.8 Dual inverted single-plane illumination microscopy 

Though originating in the field of developmental biology, novel commercial light sheet 

microscopy provides promising capabilities for many different research applications. The 

development of the diSPIM by Kumar and colleges [112] has provided for the first time a 

commercially available setup that allows to image in a horizontal cell culture setup. Although 

the nomenclature suggests otherwise, the diSPIM was conceived as upright add-on to an 

inverted confocal microscope. The dual view acquisition by two high magnification objectives 
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positioned at an angle of 90°, with a 45° angle between the objective and the stage, facilitate 

upon image processing an isotropic, high spatial resolution in samples of up to 130 µm in 

diameter for subcellular phenotypic analysis. The combination of an upright stage for 

standardized cell culture plates and the strong advantages of a LSFM system, makes the 

diSPIM system the optimal tool for a 3D high-content, live, high temporal and spatial 

resolution, quantitative screen of 3D cell culture models. 

 

1.4 Quantitative imaging screen 
In the last three decades, digital microscopy has evolved with sophisticated acquisition 

automation [126, 131], high quantum efficiency cameras [113, 132], and reproducible 

specimen labeling [100, 101]. To allow an impartial, comparative analysis of different 

specimens, a quantitative image analysis is key and the prerequisite for any imaging screen 

[133]. The comparison can be conducted between treated and untreated specimen or between 

tumor and non-tumorigenic tissue to detect communalities and differences between the 

samples. This analysis allows to characterize protein function [134], potential therapeutic drug 

targets [135], and effective drug combinations [7] as well as describe potential side effects of 

the experimental procedures.  

 

1.4.1 From a digital image to cellular phenotype description 

In a quantitative image analysis, samples are described by numerical descriptors, 

characterizing differential properties, which define the phenotype [136-138]. These can be 

features such as signal intensity, textural features, shape descriptors, quantities or differential 

values analyzed over time describing different biological processes [139]. Traditional machine 

learning methods like random forest (RF) classifier [140] or the advancing convolutional 

neuronal network classification [141-143] allow a stochastic determination of a phenotype 

class to group samples [7, 144].  

A parallelization of many functional experiments with different treatments applied, different cell 

lines, different conditions, concluded with quantitative image analysis is called a high-

throughput imaging screen. The high degree of statistical significance resulting from the high-

throughput of many samples, allows to detect strong target candidates that evoke a desired 

phenotype, but also provide means to detect subtle differences between control and treated 

sample (Figure 5) [7, 145]. Numbers of differential treatments can range from a few tens to 

hundreds of millions of different treatments, as for example applied in drug discovery in pre-

clinical trials [135]. Academic research and the private sector, for example pharmaceutical 

companies, have invested extensively in establishing small molecule inhibitor libraries to test 
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for different effects and their potential use as therapeutic [143, 146]. Other molecular tools 

such as siRNA libraries, or the discussed dCas9 fused to different effector domains and active 

CRISPR-Cas9 are nowadays also evaluated as potential methods to treat cancer cells and 

are already used to study the underlying cellular mechanisms that induce tumor initiation or 

can revert the tumorigenic, cellular phenotype [147]. 

A high degree of automation, reduced experimental volume per treatment and sophisticated 

analysis pipelines are essential to an establishment of such a high-throughput screen [148]. 

Furthermore, a high classification accuracy, rapid processing, and strong statistical 

quantification of the phenotype are essential to a resilient evaluation [149, 150].  

 

 

Figure 5 – Quantitative imaging screen of 3D cell lines for functional evaluation 

a) Cell lines are treated with different molecular perturbation methods such as drugs, siRNA, CRISPR-Cas9 or 
dCas9-effector domains (dCas9-ED) to mediate specific modifications (color-coded). b) Spheroids are imaged in a 
high-content setup with multiple samples (different treatment / different cell line / different target) being acquired at 
the same time at adequate spatial and temporal resolution to follow the process or development of interest (e.g. 
mitosis). c) High-content quantitative image analysis pipeline with phenotype classification and comparative 
evaluation allows elucidating the function of the target protein.  

 

1.4.2 Automated phenotype classification 

Different machine learning (ML) algorithms have been deployed in life science research for 

many years to process, analyze, and evaluated biological data sets. For many years, random 

forest (RF) algorithms were the state-of-the art machine learning implementation to detect 

patterns in large data sets. Image classification by RF algorithms rely on quantitative values 

describing an image such as textural features (Haralicks features), sizes, pixel intensities, 

shapes or other measurable descriptors (Figure 6a), which require a preprocessing step of 

the images to calculate these quantitative values. 

Deep neuronal networks (DNN) have gained in recent years an extensive rise in utilization in 

many everyday applications, such as voice recognition tasks or image processing [151]. A 

subgroup of DNNs is convolutional neuronal networks (CNN) which provide the basis for fast 
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and accurate image processing. In comparison, CNNs do not require extensive preprocessing 

of the images as compared to other ML classification algorithms as they analyze the entirety 

of the visual feature space (Figure 6b). These visual features can be for example the eyes, 

mouth and nose in face recognition software or in a biological related matter the state of the 

chromosomes throughout the cell cycle.  

For research applications, the capability of CNN to process, segment, and classify large image 

data sets [150] at exceeding speeds displays highly promising capabilities [151, 152], 

especially in high-throughput imaging screens [149]. 

Inspired by stimuli processing of neurons in the brain [153], CNNs are complex mathematical 

models of many interconnected nodes, so called neurons ordered in layers (Figure 6b). Each 

neuron receives multiple excitation inputs from the previous layer, called activations. 

Activations are processed in the neuron through the weights and biases (Figure 6b). When 

the sum of all activations reaches a threshold, the neuron emits an activation signal to the next 

layer. The sum of all neurons, layers and their interconnections define the properties of the 

network and how an input is processed [154]. Weights and biases and therefore the properties 

of each neuron are adjusted by the training of the CNN by a large, labeled data set. Functions 

such as gradient descent or back propagation make iterative adjustments to the weights and 

biases to optimize a model. Underlying patterns of the input image, called features, are 

detected and define the output class of the input file. 

Due to different intermediate calculations steps, of pooling multiple neuron layers and 

therefore subsampling the data, CNNs are highly robust and display low signal to noise 

interference [155]. Additional data argumentation of the training data by rescaling, rotation, 

introduction of random noise and signal variance enlarges the training data set [141]. This 

counteracts the problem of over fitting the CNN to the training data [156]. 

For classification of a small image in a DNN, already many computational matrix convolution 

calculations are needed [137, 154]. Therefore, CNNs require extensive computational 

performance power. Only in the last years, high performance graphic processing units (GPUs) 

have obtained sufficient calculation performance to do these calculation steps in parallel in a 

reasonable time frame, making DNN applicable to high-throughput image analysis steps in a 

high-content imaging screen for image classification [157, 158].  
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Figure 6 – Automated classification of mitotic phases by random forest or CNN 

a) Today two main methods allow for automated image classification by analysis of quantitative features (f1 – f13) 
or by analysis of the image. Both require labeled training data to define the classes. b) Random forest consist of 
an ensemble of decision trees. These trees utilize defined quantitative properties of a nucleus such as textural 
features (Haralicks features), shapes, sizes, pixel intensities and others to define the image class. Appropriate 
feature selection for classification and training defines the analysis process. b) In comparison, CNN imports and 
processes full images and calculates the class from pixel values. Class defining features are self-taught during 
network training through weights and biases modulation. The CNN can be seen as a black box as the entirety of 
the network, the interconnected neurons (mathematical calculations) cannot be comprehended and requiring 
extensive computational performance.  

 

1.4.3 Challenges of light sheet microscopy in high-content imaging screens  

For years, the state-of-the art microscopy system to acquire large biological data sets at high 

repetition for screening purposes was the spinning-disk confocal microscope [159]. These 

systems are highly adapted for long-term imaging, high image quality, and culture stability as 

well as equipped with sophisticated adaptive optics-modules [126, 160]. As the field of light 

sheet microscopes develops, no or only early beta adaptations of adaptive optics technologies 

ensuring long-term image quality are available for light sheet microscopes [117, 125, 161] and 

require adjustment to the specific demands of the microscopy system. Furthermore, most of 

the light sheet microscope systems in research were custom made and tailored to a specific 

usage, making a general usage of light sheet microscopes challenging for high-content 

imaging.   
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2 Aim of study 
Cell culture models and functional evaluation upon perturbation are fundamental tools to 

decipher gene function, cell function, development progresses, and tissue characteristics. 3D 

cell lines allow due to the established microenvironment a much more detailed analysis, 

resembling the in vivo physiology.  

In this project, we wanted to establish a high-content imaging screen, with a high degree of 

process automation from cell culture treatment to the final analysis of the effect of the 

treatment. Through the usage of 3D cell culture models and fast, high-content, live light sheet 

microscopy as a screening method, we wanted to optimize treatment induced phenotype 

evaluation and reduce imaging induced phototoxic effects. Additionally, we wanted to harness 

the rapid imaging capabilities of light sheet microscopes to achieve unmatched sample 

numbers.  

The workflow was intended to be applicable both in basic and medical oncology research. To 

display the capabilities in tumor research, we intended to apply the screen to study tumor 

initiation factors and induce by different means of gene regulation an abnormal, tumorigenic 

phenotype in a benign tumorigenic breast epithelia cell line. With the focus on mitotic gene 

knock-down, we aimed to induce abnormal cell divisions, incomplete genome separation, 

chromosomal instability or misdistribution of chromosomes into the daughter cells, which are 

strong hallmarks of cancer. We aimed to detect these phenotypes by high-throughput image 

analysis employing cutting edge deep neuronal network classification for high-throughput 

performance and exceeding classification accuracy. Additionally, we wanted to evaluate 

established and novel methods of gene regulation, such as the CRISPRi gene knock-down or 

dCas9-ED mediated gene regulation, and compare the cellular phenotypic effects of the 

different molecular gene regulation methods. 
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3 Results 
The project was developed and conducted in two major discrete parts that together constitute 

a workflow for high-content perturbation analysis in 3D spheroids. First, we established a high-

content imaging screen utilizing advanced light sheet 3D microscopy to acquire images of 

spheroids at high temporal and spatial resolution. In the second part, we applied this workflow 

to MCF10A and HEK293 3D spheroids and analyzed the effects of epigenomic or 

transcriptomic modifications on global and cellular phenotype. The quantitative image analysis 

of the induced cellular and spheroid characteristics allowed an evaluation of target gene 

function in spheroid development and clonal growth as well as epigenetic regulatory 

mechanisms. 

 

3.1 3D cell culture imaging by diSPIM  
3.1.1 Comparison of light sheet and spinning disc microscopy  

With the development of the commercial dual inverted single plane illumination light sheet 

microscope licensed by Applied Scientific Instrumentation (ASI), the advantages of light sheet 

microscopy were for the first time available for high-content imaging of 3D cell cultures in 

standardized cell culture environments. 

To evaluate the imaging parameters and improve image quality in comparison to high-content 

screen (HCS) microscopy systems, we acquired images of six day old MCF10A H2B-GFP 

spheroids with a diameter of about 80 µm with a spinning disc microscope and the diSPIM 

light sheet system. The stable labeling of histone subunit 2B in the MCF10A cell line with a 

GFP fluorophore enabled us to track the DNA throughout the cell cycle as well as image 

nuclear morphology. 

Following the suggestion by Cole and colleagues [162], we decided to acquire with the diSPIM 

at a three-fold Abbe resolution limit oversampling in all axes, which would optimize image 

quality, but also increase data size, single file acquisition time, and light exposure. In total, a 

single position, single time point, dual view (90° rotated view) acquisition with a single channel 

(excitation wavelength), from now on termed “position scan”, comprised 520 slices (260 slices 

per view) each slice with 1024 x 1024 pixels and a resolution of 0.1625 pixel / µm, resulting in 

a position scan data size of 1.1 gigabyte (GB). When the two orthogonal views per position 

scan were aligned, a total volume of 130 µm x 130 µm x 162.5 µm could be acquired from 

both views. 

For comparability, the SDM system was set to acquire at the same spatial XYZ resolution and 

maximal signal intensity. We optimized the excitation path settings of the diSPIM to form a 



 24 

Gaussian beam with a threefold larger YZ-diameter at the FOV border, in relation to the YZ 

extend at the image center giving us the highest optical sectioning at the X-axis center. 

In comparison to the current spinning disk microscope system used for live, high-content, 3D 

imaging screens, the diSPIM setup outperforms the conventional SDM setup in almost every 

acquisition parameter such as laser power density, acquisition duration and signal-to-noise 

ratio (Table 1), though acquiring at a higher spatial resolution and shorter exposure time. 

The biggest advantage of the light sheet microscope over the SDM became apparent when 

the region of interest is located deeper inside the tissue or spheroid (Figure 7). Due to signal 

scattering as the photons travel through the tissue, we were not able to acquire the strong 

signal of the MCF10A H2B-GFP nuclei deeper than 80 µm inside the sample with the SDM. 

In comparison, using the same specimen, we were able to image throughout the entire 

spheroid with the diSPIM system. By applying image processing and combining visual 

information from both optical paths, we were able to achieve exceptional isotropic image 

quality, essential for quantitative image analysis of the entire spheroid (Figure 7). 

 

Table 1 – Comparison of spinning disc and diSPIM imaging parameter 

Quantitative comparison of acquisition properties and resulting image quality between spinning disc microscopy 
and diSPIM systems. Acquisition parameters were set to generate Z-stacks with close to identical Z-stack 
acquisition properties. Imaging parameters listed describe acquisition parameter, light input (measured at the 
sample) and acquired image properties.  

	 spinning	disc	microscope	 diSPIM		

XYZ	stack	(px	x	px	x	n_slices)	 1004	x	1002	x	233	 dual	(1024	x	1024	x	260)	

XY	pixel	resolution	 0.2	µm	/	px	 0.1625	µm	/	px	

measured	laser	power	 1,320	µW	/	s	 320	µW	/	s	

exposure	/	slice	 50	ms	 1.75	ms	

stack	acquisition	duration	 53.2	s	 4.5	s	(+	15	s	processing)	

signal-to-noise	ratio	 43.25	 127	

avg.	background	signal	 18.4	 0.941	

power	density	/	phototoxicity	 168,000	W/cm2	 40,700	W/cm2	
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Figure 7 – Comparison of spinning disc and light sheet imaging of 3D spheroids 

Direct comparison of spinning disc and light sheet imaging performance of MCF10A histone 2B – GFP spheroids 
acquired six days after seeding of single cells in Matrigel with a size of about 80 µm in diameter. XY and XZ 
maximum projection of full 3D stack (scale bar = 50 µm) represent the XYZ acquisition capabilities of SDM and the 
diSPIM. Inserts represent single nuclei close to the detection objective (green box) or imaged 80 µm inside the 
sample (red box) (scale bar (insert) = 10 µm), with insert Z-stack slice depicted by red and green line.  

 

3.1.2 MCF10A – a valuable model for siRNA knock-down studies 

For this project, we decided to use mainly the MCF10A benign cell line as a model to establish 

the high-content perturbation analysis workflow utilizing light sheet microscopy technology for 

phenotype evaluation. Single MCF10A cells grow clonally under 3D culture conditions to 

multicellular spheroids, following a defined developmental trajectory (Figure 8a), which 

allowed us to study the function of single genes in development and cellular growth by siRNA-

mediated knock-down.  

We used an MCF10A cell line endogenously expressing H2B-GFP proteins that label the DNA 

[163]. This cell line allowed us to follow and describe in detail single nuclei and DNA properties 

throughout the different stages of the cell cycle, as well as analyze the development of the full 

spheroid (Figure 8b). Furthermore, the MCF10A cell line is highly susceptible to the 

transfection of siRNA and therefore allowed an effective influence on cellular homeostasis. 

Initial experiments showed that siRNA solid phase reverse transfection of PLK1 targeting 
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siRNA evoked in 94% of all MCF10A cells a metaphase cell cycle arrest, while only 43 % of 

HEK293 cells displayed this phenotype (Figure 21a). PLK1 is a serine/threonine-protein 

kinase essential for the centrosome maturation and spindle assembly as well as the removal 

of cohesins from chromosome arms. A knock-down of PLK1is known to arrest the cell cycle 

in prometaphase.  

The high transfection efficiency of siRNA into MCF10A cells allowed us to use this benign cell 

culture model in a HCS as only few cells would not be transfected. Therefore this approach 

provided us with a highly reliable readout of the knock-down phenotype. For the low 

transfection efficiency of HEK293 cell lines, many analyzed spheroids would have been 

untransfected and therefore alter the phenotype quantification by showing wildtype properties.  

 

3.1.3 Long-term imaging of 3D spheroids by dual inverted light sheet microscopy 

With the established imaging setup and acquisition parameters, we achieved high image 

quality of our 3D cell culture model (Figure 7), while administrating a low light dose onto the 

spheroids (Table 1). The non-invasiveness of the imaging can best be described by the fitness 

and viability of the imaged MCF10A spheroids throughout high repetition, long-term imaging 

(Figure 8a).  

We were able to image a wild type MCF10A H2B-GFP spheroid, stained with a tubulin live 

dye (SiR-Tubulin) in dual color throughout the entire development from the two-cell stage (five 

hours post seeding) to a full-sized spheroid at an interval of ten minutes for up to six and a 

half days (155.6 hours) (Figure 8a). We could detect cell divisions and cell motility throughout 

the entire time lapse. With the ten-minute time interval, all stages of the mitosis are visible 

(Figure 8b). 

Throughout the acquisition, we only needed to do minor position adjustments to some of the 

acquired spheroids after two days of constant imaging, highlighting the high position stability 

of the microscope, while traveling large distances between different positions. Spheroid 

movement was mostly caused through shrinkage of the Matrigel with an average displacement 

of 13.97 µm in X, Y and Z over 24 hours of imaging at a position approximately 200 µm above 

the plate (Supplementary Figure 1).  

For the purpose of phenotype evaluation upon target gene knock down, we were not able to 

image the full development of six days of each spheroid due to data size constrains. We 

therefore selected day five to six for the 3D high-content screening approach. Spheroid 

“imaged” at a five-minute interval for 24 hours (avg. 62.25 nuclei count) during this defined 

time frame, show the same increase in nuclei total number as “non-imaged” spheroids (avg. 

57.7 nuclei count), analyzed by start- and end-point evaluation (Figure 8c)  
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Figure 8 – Long-term imaging capabilities of the diSPIM 

a) Example untreated MCF10A H2B-GFP spheroid imaged over 156 hours / 936 time points (t) every 10 minutes 
from the two-cell stadium to the fully developed spheroid in dual channel (H2B-GFP / SiR-Tubulin dye) (scale 
bar = 50 µm). b) High temporal and spatial resolution enable a detection of the different cell cycle stages (pro-, 
meta-, anaphase), while distinct features of the cytoskeleton could be detected (scale bar = 25 µm). c) Nuclei count 
mean fold enrichment of imaged and non-imaged spheroids in 24-hour acquisition cycle representing the 
developmental stage of the spheroids during the HCS acquisition time frame of MCF10A spheroid development 
(nimaged = 31 / nnon-imaged = 33, error bars represent standard deviation). 

 

3.2 High-content light sheet imaging screen  
In this project, we aimed to utilize the capabilities of the light sheet microscope to analyze and 

compare multiple different treatments that influence the cellular phenotype associated with 

tumor development. 

 

3.2.1 Target selection  

As imaging screens rely on visual features, we decided to focus on perturbing the cell cycle, 

since alteration in this key cellular process can be visualized by DNA labeling and as described 

in 1.1.4 are a regular cause for cancer initiation.  
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For phenotype validation and comparative analysis, we used different methylome-

modifyingifying effector domains fused to deactivated CRISPR-Cas9 (dCas9-ED) for 

epigenome modulation. In comparison to RNAi, the dCas9-ED relies on a protein component 

(Cas9 fused to a methylome-modifyingifying effector domain) and an RNA component (single 

guide RNA) that need to be introduced into a single cell to induce epigenome alterations 

(1.2.2). Both of these methods can be applied to induce a specific transcriptome alteration, 

targeting only single genes, which allowed us to compare these methods by the phenotype.  

 

 

Figure 9 – Target gene selection 

Target genes for the screen were selected by their role in cell cycle progression, as described by multiple online 
gene data bases (1. genecards.org / 2. mitocheck.org / 3. mitosys.org / 4. cyclebase.org / 5. uniprot.org) and a 
strong correlation of CpG-me level and gene misregulation. This allows a comparison of the knock-down phenotype 
induced at translational level in comparison to the knock-down induced at the transcriptomic level. Regulatory CpGs 
can be correlated (low CpG-me level = reduced gene expression (magenta)) or anti-correlated (high CpG-me 
level = reduced gene expression (cyan)) with expression of the target gene. Single target genes, could display both 
types of CpG-me relations - correlated and anti-correlated regulatory CpGs such as found in AURKA, CEP85, 
MEIS2 and RGMA (white area). Example of correlated and anti-correlated CpG displayed for CDC6 (one of two 
anti-correlated CpGs), RGMA (one of four anti-correlated CpGs and one of three correlated CpGs) and CDCA5 
(one of seven correlated CpGs). Tumor samples are depicted by a blue dot, while control (non-tumorigenic) tissue 
measurement is marked by a red dot. 

 

Due to the fact that siRNAs can be designed specifically for any target gene as well as the 

sgRNA for a site-specific dCas9 targeting of the methylome-modifying effector domain, it was 

essential to select for target genes involved in mitosis with distinct knock-down phenotypes 

and most importantly show a strong correlation of gene expression an alter methylation level 
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at defined regulatory, genomic regions. With the modulation of the methylome at these 

regulatory sites, we expect to induce in comparison to the siRNA regulating at translational 

level, a knock down through the modulation at the transcriptomic level (1.2.1). 

In collaboration with Dr. Carl Herrmann, we bioinformatically selected 28 target genes that 

matched these criteria. These target genes displayed either in the promoter region or a distal 

regulatory region one or multiple CpGs that displayed a high correlation (> 0.5) or anti-

correlation (< -0.5) between CpG methylation level and gene expression (Supplementary 

Tables 1 / Figure 9). The correlation was detected by comparison of tumor- and non-

tumorigenic patient tissue CpG methylation level and gene expression data from a 450k 

Illumina breast cancer patient screening data set [164] available on UCSC genome browser 

[165]. 

 

3.2.2 High-content 3D light sheet screen workflow 

The fundamental aim of this work was the establishment and biological evaluation of a high-

content live imaging screen that can be used in 3D cell culture and efficient perturbation 

assays and tumorigenesis studies. Therefore, we optimized the workflow comprising all steps 

of a HCS from sample preparation, to high-content imaging, to image analysis described in 

detail in Figure 10.  

To conduct an imaging screen using the diSPIM system, we planned to evaluate the 

phenotype of many different modified samples simultaneously, with each spheroid sample 

grown from a single treated cell. The manual preparation of each sample by hand would have 

required an intensive manual effort and led to small individual differences in transfection mix, 

spot size, cell seeding density and preparation duration, which in combination would have 

corrupted the outcome of the screen.  

Due to these reasons, we established a solid-phase reverse transfection mix procedure, 

optimized for maximal siRNA and plasmid transfection efficiency (Figure 21a) of the different 

cell lines (Figure 10): Following transfection in 2D in a 96-well format, we mixed the cells with 

Matrigel and spotted the cell-Matrigel mix of all samples simultaneously with a liquid handling 

robot. The usage of a robot further reduced manual labor, reduced spot volume to a minimum 

of 0.2 µl, and positioned samples precisely in a defined pattern. 

 Furthermore, the usage of the Hamilton liquid handling robot for sample spotting facilitated 

defined pre-screen spheroid position detection as well as reduced the duration of the sample 

mounting in the imaging dish to 30 minutes. Subsequently, spotted samples were relocated to 

the incubator for spheroid development. Five days into 3D spheroid development under 

standard culture conditions, we detected in a low-resolution diSPIM pre-screen each 
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spheroid’s position within each of the 320 Matrigel spots as well as general properties such 

as spheroid size and circularity. These features allowed us to automatically select the maximal 

number of 38 spheroids to be imaged at five minutes interval for the subsequent HCS by the 

optimal imaging position at the apex of the matrigel spot, while eluding 2D cell layers.  

Additionally, we defined manually two dual view stack positions of beads immersed in Matrigel 

essential for point spread function (PSF) detection and dual view registration, giving a total of 

40 positions acquired per HCS at a five-minute interval reaching close to the maximum 

imaging performance of the diSPIM system. 

 

3.2.3 3D spheroid diSPIM imaging screen of siRNA mediated knock down phenotypes 

In total, we used for each of the 28 target gene two distinct siRNAs (siRNA set 1 and set 2) in 

three replicates, giving us a total of six perturbation samples per target gene. These six 

spheroids were subsequently imaged by high-content light sheet imaging. Together with the 

positive and negative transfection control we acquired a total of 228 spheroids in six individual 

experiments.  

 

3.2.4 Image processing pipeline 

The data size produced per HCS of ~10 terabyte (TB) (total of 60 TB in six experiments) raw 

data challenges standard IT infrastructures with regard to storage capacity and data 

processing. Therefore, we developed a data processing tool called “hSPIM”, which ran directly 

on the workstation controlling the diSPIM system (Figure 10, Figure 11a). This tool avoided 

the need for a large data set transfer infrastructure or high performance cluster calculations. 

HSPIM combines the signal information of the two diSPIM views to calculate an estimate of 

the most probable image, given the point spread function provided by the bead reference 

image. As signal quality degrades deeper in the sample tissue due to light scattering (1.3.2), 

the second view was essential to the screen to compensate for signal loss in the large 

spheroids and to provide isotropic resolution to display the spheroid samples.  
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Figure 10 – siRNA konock-down high-content light sheet screen 

There are three key steps of the high-throughout light sheet imaging screen: 

Step 1 – sample preparation: solid-phase reverse transfection of cell line in 2D in a 96-well format with two different 
siRNAs (siRNA set 1 and siRNA set 2) per target gene transfected separately. A total of three complete HCS were 
conducted, resulting in six acquired samples per target gene. Treated cells were subsequently mixed with Matrigel 
and spotted onto a one-well imaging plate. Over five days spotted cells clonally expand into 3D spheroids growing 
in the Matrigel spots. 

Step 2 – diSPIM imaging: In a low-resolution stage scan pre-screen, positions of all spheroids were detected. 
Samples for imaging were selected by position in Matrigel spots, while unsuited spheroid clusters of two or more 
fused spheroids as well as 2D cell layers were excluded. Subsequently, 38 individually treated samples were 
imaged for 24 hours every 5 minutes by dual view light sheet imaging acquiring two full stacks of view A (red) and 
view B (green) at a 90° angle. 

Step 3 – data processing: Raw data was processed by image deconvolution and fusing visual information of view 
A and B together. Additionally, the image bit depth was reduced to 8-bit. This processed data was subsequently 
used to analyze the phenotype of each spheroid throughout the entire screen in regard to global spheroid properties 
as well as single segment (single nuclei) features and development.  
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With the available hardware and most calculations executed in parallel on a high-performance 

GPU, we were able to process the raw data of one position stack file within 8.23 seconds 

which reduced the data size from 1.1 GB to 80.1 megabyte (MB) per position scan with 

significantly improved XYZ isotropic resolution and signal-to-noise ratio (Figure 11a). Because 

the background signal from the surrounding Matrigel could be deducted and foreground signal 

of the nuclei were automatically detected, a reduction from a 16-bit to 8-bit TIF file format did 

not result in significant information loss, as well as a two by two-pixel binning, enabling the 

strong decrease of total data size from 1 GB to 80 MB per single time point position stack. 

The hSPIM tool is in its principle based on the multi-view deconvolution developed by Stephan 

Preibisch and colleagues [128, 166]. Novel in our SPIM image processing approach was the 

separation of beads and sample, meaning that the registration matrix and PSF were detected 

in a dedicated spot of beads mixed in Matrigel (Figure 11a). PSF and registration were 

subsequently applied to all other processing calculations of sample images.  

Even for large distances between individual samples of up to 10 centimeters, the transfer of 

the registration matrix and PSF was highly successful. When we applied the PSF and 

registration of bead position 0 (Pos0) onto a secondary bead position 39 (Pos39) at the end 

of a multi position scan cycle with long traveling ranges of the stage, we found a displacement 

between the two registration matrixes of less than 162 nm (Supplementary Figure 2). The 

transfer of registration matrix and PSF from one position onto others thus produces accurately 

registrated and deconvolved images throughout a full screen in time and space. Thus, the 

approach of separating bead and spheroid positions reduced the background signal in the 

images, avoided the need to subtract the beads from the output image and reduced the 

necessary steps to a single calibration calculation per time point, while retaining optimal quality 

for all other sample images (Figure 11a). 

The hSPIM pipeline provided additionally to the fusion image the possibility to segment nuclei 

and calculate texture features for each nuclear segment, which subsequently can be used for 

segment classification and a quantitative analysis.  

Computation duration in the given hardware framework (6.3.1.1) took 35.6 seconds per time 

point to detect PSF and registration matrix, while image fusion and deconvolution required 

4.8 seconds and the segmentation and feature extraction an additional thirteen seconds of 

computation per position scan. Due to the parallel processing capabilities of the modern GPUs 

with five files being processed in parallel the total duration for the hSPIM pipeline was on 

average eleven hours and fifteen minutes.  
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Figure 11 – diSPIM data processing and analysis 

Raw diSPIM imaging data with 1 GB data size was processed and analyzed quantitatively. a) hSPIM is a 
processing pipeline developed specifically to diSPIM acquisition parameters and data structure. In a calibration 
step, the registration matrix and the PSF are detected in the dedicated bead position. These are subsequently 
applied to process all sample positions by Richardson-Lucy multiview deconvolution. From each processed image, 
nuclei are detected, segmented, and for each segment textural features (Haralicks features) are calculated. The 
processed image (fusion), the features and the label image are stored as output reducing the data to 80 MB per 
spheroid and time point. b) KNIME processing pipeline for high-content quantitative analysis uses the hSPIM output 
data to analyze cellular and global features of the spheroid to evaluate and compare the phenotype of all samples 
resulting in a quantitative description of different global spheroid and single nuclei features stored in a 480 KB sized 
CSV file (scale bar = 50 µm). 
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The output of the hSPIM software package was subsequently imported to a pipeline 

implemented in the Konstanz Information Miner (KNIME) software [167] to compute key 

quantitative properties of the development of the spheroid and each single nucleus 

(Supplementary Tables 2). Together, these properties described in detail the individual 

spheroid’s phenotype and put cellular and subcellular processes into the context of the 

development of the entire spheroid. Differential phenotype analysis of non-targeted control 

siRNA and target gene knock-down spheroids allowed a functional evaluation of each gene of 

interest.  

 

3.2.5 Cell cycle stage classification with a deep neuronal network 

The key feature of the KNIME image analysis pipeline was the detection of the prominent four 

cell cycle stages (inter-, pro-, meta- and anaphase) of every single nucleus. To define the cell 

cycle stage of each nucleus throughout the entire screen, we tested two different means of 

automated image classification: a random forest classifier and deep learning image 

classification using a convolutional neuronal network (Figure 12).  

For RF nuclei classification, we used the thirteen textural Haralick features calculated by the 

hSPIM light sheet data processing software (Figure 12a). Our RF model was trained with these 

features taken from 1,643 manually classified nuclei. With this training set and our 

computational hardware, we achieved a classification accuracy of 83.1% and 4.25 seconds 

computation time per nucleus (Figure 12c).  

In comparison, DL classification performed much faster with only 3.7 ms classification 

calculation time per image with the applied VGG-based convolutional neuronal network [154] 

(Supplementary Figure 3). However, using the maximum intensity projection image of the 

same 1,643 nuclei as for our RF model training as input for the DNN training resulted here in 

a considerably lower prediction accuracy of only 74.75% as compared to the RF classification 

(Supplementary Figure 4). Nonetheless, the accuracy could be dramatically increased by 

increasing the training data set and most notably through the implementation of the “3D-2D 

plane classification” (Figure 12c). In developed 3D-2D plane classification, we preprocessed 

each 3D nucleus stack individually and used the 2D slices of the XY, XZ, and YZ orientation 

for training and later for segment classification (Figure 12a). This preprocessing increased the 

number of images representing each nucleus from a single maximum projection to about 60 

images in three orthogonal view angles.  

Predominantly, we established 3D-2D plane DL classification to avoid misclassifications 

caused by mitosis orientation or maximum projection artifacts. Cells in 3D cell culture divide 

in all 3 dimensions, unlike in 2D cell culture, where the culture dish defines the orientation of 
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division and therefore defines the visual traits of the different cell stages captured by the 

microscope. Only the inter- and prophase are in their respective 3D visual representation 

rotation invariant.  

With this 3D-2D plane classification preprocessing step implemented, we achieved a much 

higher classification accuracy of 95.8% and computation duration of only 88 ms per nucleus 

classification (Figure 12b-c).  

 

 
Figure 12 – Prediction accuracy of machine learning classifications 

a) As input we used the 13 Haralicks features (F1-13) calculated by the hSPIM diSPIM data processing pipeline 
for random forest classification and 2D images of the XY, XZ, and YZ slices of a 3D nucleus for the deep learning 
classification, respectively (scale bar = 5 µm). b) The different input formats of the same nuclei (n=1,643) manually 
classified results in 21,359 data points used for the RF classifier training, while the 3D-2D plane deep learning 
classification training was conducted with a total of 98,580 16-bit images. c) Cross correlation measurement 
describes the classification accuracy and allows an evaluation of potential misclassification. d) In direct 
comparison, classification differences between RF and 3D-2D plane DL classification can be visually detected 
(magenta arrows), when applied to the same data (scale bar = 50 µm). 
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3.2.6 Control MCF10A spheroid cell cycle under screening conditions 

The high accuracy of cell phase detection by DL classification paired with the high temporal 

resolution of the acquisition allowed us to follow a single cell through the different phases of 

the cell cycle (Figure 13a), while the high isotropic spatial resolution allowed us to calculate 

the ratio and size reliably of the different cell cycle stages (Figure 13b-c). In the control sample 

transfected with a non-targeted siRNA, 94.7% of all nuclei throughout the time lapse were 

classified as interphase, 0.9% as prophase, 1.2% as metaphase and respective 3.2% as 

anaphase (Figure 13b / Table 2). When we tracked the average duration of the different cell 

cycle phases, we detected a similar mitotic phase distribution with the prophase progressing 

for an average of 13.3 minutes, the metaphase for 11.25 minutes and the anaphase for 13.75 

minutes (Figure 13a / Table 2) resulting in an average of 38.3 minutes for a cell to transition 

through the four cell cycle stages. Due to the time resolution of five minutes’ acquisition 

intervals a more precise determination of the duration was not possible, but similar stage 

duration times with a total of ~ 50 minutes were also detected by Cai and colleagues [168] in 

HeLa Kyoto and U2OS cells. From the individual segment size, we detected that the prophase 

segments were on average the largest with 28,311 voxels, followed by inter- and metaphase 

nuclei with a size of 17,238 voxels and 16,865 voxels, respectively. Anaphase nuclei were the 

smallest on average with 9,660 voxels per segment (Figure 13c / Table 2). 

Additionally, we analyzed the linear regression of the ratio of the cell phases throughout the 

screen time lapse. On average, none of the cell phases of the control spheroids gained or lost 

significant representations with differences in ratio between start and end of the acquisition of 

less than 0.01% (Table 2). 

Furthermore, we evaluated the position of each segment in relation to the center of the 

spheroid, as it is often speculated that position within the tissue influences cell cycle 

localization [169]. In contrast, we could not find a clear predominant localization of the pro-, 

meta- and anaphase relative to the surface of the spheroid, as all classes are homogenously 

radially distributed in our MCF10A spheroids at day six of clonal development (Figure 13d). 

 

Table 2 – Control sample properties throughout 24 hours development 

developmental	feature	 interphase	 prophase	 metaphase	 anaphase	

average	class	percentage	(%)	 94.7	 0.9	 1.2	 3.2	

class	duration	(min)	 	 13.3	 11.25	 13.75	

segment	size	(voxel)	 17,238	 28,311	 16,865	 9,660	

segment	size	(ratio	to	interphase)	 1	 1.64	 0.98	 0.56	

gain	/	loss	class	percentage	(%)	 -0.0062	 -0.0027	 0.0003	 0.0038	



 

 37 

Throughout the 24-hour imaging time course, control spheroids gained an average of 16.5 

additional nuclei and grew by an average of 46.4% in volume (Figure 13e-f / n = 12 control 

spheroids). 

 

 

 

Figure 13 – Image analysis of processed diSPIM data of control spheroid 

Global spheroid and single nuclei properties of the negative control samples throughout the HC diSPIM imaging 
screen. a) Example time lapse (t (time point) 175 – 187) of a cell undergoing mitosis with the main stages of the 
mitosis detected by deep learning image classification (scale bar = 5 µm) with inter- (white), pro- (green), meta- 
(yellow), anaphase (red). b) Bar plot displaying total class fraction of the different cell cycle stages throughout the 
HCS (n = 205,068). c) Bar plot showing average class segment size and standard deviation from voxel count 
(n = 205,068). d) Violin plot describing class, distance and number of segments in regard to their distance from 
center of the spheroid (n = 205,068). The black dot describes the median and the whiskers the 25%-75% 
interquantile range e) Four exemplary time points (t) of the spheroid development imaged over 24 hours (time point 
1 – 290) with the classified cells, hull and segment maximum projection displayed (scale bar = 50 µm). f) Average 
growth ratio of all control samples (non-targeted siRNA; n = 12) displayed in dot plot with the time points displayed 
in e) highlighted in red.  
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When we analyzed all cell cycle transitions of each of the nuclei in the control samples, where 

we expect a biological cell to transition throughout the cell cycle from interphase to prophase 

to metaphase to anaphase, we detected a ratio of 99% cell cycle transitions that are following 

this normal transition pattern (normal = 146,101 / abnormal: 1,380 cell cycle transitions), again 

displaying the high classification accuracy of the deep learning (Figure 12) classifier 

exemplified in a mitotic cell in Figure 13a and the low effect on the cellular viability during light 

sheet imaging. We observed that single dying cells display a high degree of abnormal 

transition patters as the apoptotic condensed DNA (ACD) is regularly classified as pro- or 

anaphase (Supplementary Figure 5).  

 

3.3 Detection of aberrant mitotic phenotype by automated visual feature 

evaluation 
3.3.1 Screening for siRNA-mediated phenotype induction 

In total, we acquired 3D time laps images of six spheroids per target gene (Supplementary 

Tables 1) of each of the 28 selected target genes. To detect abnormal mitotic phenotypes 

upon gene knock-down in each of the spheroids, we used the different visual features 

(Supplementary Tables 2 / Table 2) to characterize the individual spheroid phenotype. We 

evaluated each spheroid independently and combined all 23 features to rank and group 

phenotypes (Figure 19e-g). We used INCENP as positive transfection control as the siRNA-

mediated knock-down of this gene results in a severe macronuclei phenotype that can be 

easily detected and distinguished (Figure 15b). Non-coding siRNA was used as negative 

control.  

 

3.3.2 Aberrant mitosis duration 

Cell cycle arrest or an elongated mitosis are severe phenotypes describing strong 

perturbations in cell growth and development. To detect an abnormal mitosis duration or a 

prevalent cell phase, describing a possible cell cycle arrest, we analyzed the relation of the 

different cell phases for each sample on average throughout the entire time lapse (Figure 14). 

The non-coding siRNA transfected negative control displayed on average 5.3% of all cells at 

a mitotic class of the cell cycle (Figure 14a). The INCENP positive control on the other hand 

displayed a strong increase of the prophase class to 46%, while the number of nuclei in 

interphase decreases to 44% (Figure 14a). Other gene knock-downs such as PRC1 and 

RGMA also induced an increase in the prophase class, although less pronounced than 

INCENP knock-down (Figure 14b). PLK1 and ESYT2 knock-down spheroids displayed an 

increase in all mitotic classes, indicating an elongated mitosis (Figure 14c). MYC and ATOH8 
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knock-down display an increase in anaphase classed segments, possibly describing an 

increase in apoptosis (Supplementary Figure 5) or cell cycle arrest during chromosome 

segregation (Figure 14d). An overview of all cell cycle class ratios can be found in 

Supplementary Figure 6.  

 

 
Figure 14 – Detection of abnormal mitosis duration induced by different siRNAs 

Bar plot describing the total nuclei count as fraction of the different cell cycle classes. a) Negative control samples, 
transfected with non-coding siRNA (NC) and positive transfection control spheroids (INCENP) display distinct 
mitotic class distributions. b) PRC1 and RGMA showed an increase in prophase, c) PLK1 and ESYT2 show an 
overall increase of all mitotic phases, d) while MYC and ATOH8 displayed an increase of the anaphase class.  

 

3.3.3 Abnormal positioning of cell cycle phases 

Next, we evaluated the localization of the different mitotic phases within the spheroid under 

perturbation conditions. We used the distance to spheroid center measurement and displayed 

these in a violin plot (Figure 15). This analysis method allowed us to evaluate a possible biased 

localization of any class to the surface or inside of the spheroid. Additionally, this analysis 

technique provided us with the possibility to visualize size difference between the control 

siRNA and the target gene knock-down phenotype across each of the different samples.  

The non-coding siRNA transfected spheroid had a mean distance of all segments of 95.8 pixel 

or 31.1 µm from the center of mass. None of the four cell phase classes had a preferred 

localization to the outside or inside of the spheroid (Figure 15a) which would describe an active 



 40 

movement of the nuclei for the purpose of cell division induction, as known in neuronal 

progenitor cells [170]. Additionally, the density plot displays a homogenous distribution within 

the 25%-75% interpercentile range, describing a homogeneous phenotype throughout all six 

replicates.  

The knock-down of INCENP in the positive control sample on the other hand induced reduced 

spheroid growth indicated by a decrease in the median with an average of ~26 px or 8.5 µm 

distance for all nuclei from the center of the spheroid (Figure 15b). Other samples, like DSE 

knock-down spheroids displayed also a reduced growth throughout all imaged samples and 

cell cycle stages (Figure 15c), depicted by the unimodal violin plot, with an average distance 

of ~48 px or 15.6 µm. 

 

Figure 15 – Class positioning describes phenotypes across multiple siRNA knock-down samples 

The class distribution displayed as violin plots of different selected samples with distinct abnormal properties 
appended by two representative images of maximum and minimum sized spheroids of the respective sample at 
the start of the time laps acquisition. a) Negative control (non-targeted siRNA) and b) positive control siRNA 
(INCENP) spheroids. Additional example specimens with abnormal class distribution are displayed for c) DSE, d) 
RGMA, e) AURKA f) PLK1 (scale bar = 50 µm). The black dot describes the median and the whiskers the 25%-
75% interpercentile range. 
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The violin plot of PLK1, RGMA, and AURKA knock-down samples displayed multimodal 

distance-to-center distributions (Figure 15d-f). This distinct distribution described a reduced 

growth of single spheroids, while others develop similar to the negative control without any 

constraints in growth which could represent untransfected cells. A summary of all violin plots 

for each knock-down sample can be found in Supplementary Figure 7.  

 

3.3.4 Cell cycle transitions  

Due to the high temporal resolution of the acquisition, we were able to track single cell 

throughout the time laps and its individual cell cycle. This allowed us to determine whether a 

cell underwent in normal sequence the key phases of the cell cycle with the succession of 

interphase followed by prophase, followed by metaphase, followed by anaphase and back to 

interphase. This biologically “normal” progression can describe a healthy spheroid and no 

“abnormal” cell cycle progression would be expected. The 95% accuracy of the cell cycle 

classification (Figure 12) provided the essential prerequisite for this analysis.  

High amounts of misclassification can occur due to abnormal nuclear shapes or textural 

features as found in abnormal nuclear phenotypes. Macronuclei are often misclassified as 

prophases or apoptotic cells or apoptotic condensed DNA phenotype can be misclassified as 

prophase or anaphase (Supplementary Figure 5). These misclassifications were detected as 

abnormal cell cycle progression. In these cases, a prophase was regularly followed by 

anaphase (ACD phenotype) or a cell transitioned back and forth between a pro- and 

interphase (macronuclei phenotype). The ratio of normal cell cycle progression to an abnormal 

cell cycle progression allowed us to evaluate viability of the sample upon target gene knock-

down and detect cells with abnormal visual features or apoptotic cells (Figure 16). 

In this analysis, beside the positive control of INCENP knock-down (p-value ≤0.001) with the 

described macronuclei phenotype, PLK1 (p-value ≤0.01), EME1 and CEP85 (p-value ≤ 0.05), 

displayed a high degree of false transitions due to cell cycle arrest and apoptosis. Conclusive 

count of normal and abnormal cell cycle transitions for all target genes can be found in 

Supplementary Tables 3. 
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Figure 16 – Normal versus abnormal transitions describe sample viability 

Box blot displaying the ratio of normal and total number of cell transitions of each of the target gene knock-down 
samples with the 95-confidence interval displayed as box, as well as the mean of all samples. Magenta line 
represents average ratio of the negative control sample (NC). t-test describing statistical significance with a p-value 
below 0.05 between the individual sample and the negative control are marked (p-values: *** ≤ 0.001, ** ≤0.01, * 
≤0.05). 

 

3.3.5 Cell cycle class size 

As cells transition through the different stages of the mitosis, we detected a change in the 

segment size of the different mitotic stages described in Figure 13. We also compared on 

average the size in voxel of the different segment classes individually and clustered them by 

their size. This analysis allowed us to describe in comparison to the negative control sample, 

the cellular properties of the knock-down phenotype and detect outliers such as the positive 

control INCENP (cluster V - Figure 17) and BUD31 (cluster IV - Figure 17), which have such 

a distinct difference in size of the inter- and prophase that these phenotypes define a cluster 

each on their own. Increased prophase (cluster III - Figure 17) and respective increased 

interphase (cluster II - Figure 17) nuclei define the other clusters describing individual effects 

on the cell upon target gene knock-down.  
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Figure 17 – Nuclei size throughout the cell cycle 

Ranked based knock-down target gene clustering (cluster I-V) of the different target knock-down samples by the 
average nuclei size in voxel (color gradient) of the different mitotic classes (meta-, ana-, inter-, prophase).  

 

3.3.6 Global spheroid structure evaluation 

In addition to the analysis of single cells and their individual properties, we also analyzed the 

global spheroid appearance and its development over time. A combination of spheroid 

properties such as nuclei count, spheroid volume and the gain in volume as well as spheroid 

roundness allowed a further evaluation and comparison of the phenotypes induced upon 

target gene knock-down. A ranked based clustering of these properties facilitated furthermore 

the detection of samples with similar properties such as spheroid growth, nuclei density, 

abnormal spheroid shape and volume increase (Figure 18). Non-coding siRNA transfected 

negative control spheroids as well as all samples of cluster A displayed in comparison to 

severe knock-down phenotypes of the positive control (INCEMP) a strong growth in segment 

(nuclei) count, while retaining a roundish shape throughout the screen that resembles closely 

a sphere. In comparison, reduced growth and an abnormal shape was detected in samples of 

cluster E (Figure 18) such as CEP85 for example.  
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Figure 18 – Global spheroid properties 

Global spheroid properties such as total nuclei count, spheroid volume at the acquisition start, spheroid growth 
throughout the screen and spheroid shape describe on average the global phenotypes of each target gene. By 
ranked based gene clustering (cluster A – E) of these properties, we achieved a clustering of similar phenotypes. 
Example images for cluster A, C and E display a non-coding negative control, LHFP and CEP85 siRNA transfected 
spheroid, the hull describing the spheroid volume and the individual segments maximum projected onto a single 
plane (scale bar = 50 µm). 

 

3.3.7 Completing the picture – ranked based clustered phenotype analysis 

To complete the picture of the individual effect of the gene knock-down onto spheroid 

development and the individual cell, we compared all 23 features (Supplementary Tables 2) 

from the entire screen of 228 individually evaluated spheroids, describing features of single 

nuclei and global spheroid properties. By ranked based clustering of the results, we obtained 

5 clusters of knock-down phenotypes that correlate in their quantitative (Figure 19a) and visual 

features (Figure 19b-f). The negative control samples transfected with non-coding siRNA 

clusters together with LGR4, TCF7, TUFT1, WBP1 and CTSB (Figure 19 - cluster 1). This 

cluster comprises samples that were not or only slightly affected in their development and 

visual appearance. In comparison to the other clusters, these samples exhibited a high degree 

of growth represented in their growth rate by nuclei count, spheroid volume and high number 

of true transitions. These samples also displayed a high sphericity and migratory speed of the 

cells describing a highly vital phenotype.  

Cluster 2 (Figure 19 – cluster 2) includes samples with minor phenotypes with a strong focus 

on increased prophase size (LRP1, RAN, TOP2A and RGMA) and reduced spheroid volume 

(TOP2A and RGMA) (Figure 19c). 
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Cluster 3 (Figure 19d – cluster 3) comprises knock-down phenotypes with spheroids depicting 

an increased volume growth rate (LHFP, CDC6, CDCA5) and shorter cell phase transition 

times (MYC, CDC6) while exhibiting high degree of false cell cycle transitions (MYC, LMNB2, 

F11R). 

In cluster 4 (Figure 19e – cluster 4) strong phenotypes with reduced spheroid volume growth, 

reduced gain in nuclei count and low total number of cell cycle transitions (MEIS2, ATOH8, 

EME1 and CEP85) are grouped. 

The most distant cluster to the NC phenotype (Figure 19 - cluster 5) includes the positive 

control INCENP, as well as PLK1, MAP7, DSE, PRC1, BUD31, ESYT2 and AURKA. These 

samples showed aberrant phenotypes in up to seven statistically significant features (p-values 

≤ 0.05), describing grave development malfunctions as well as cellular and mitotic defects. 

Most notably were defects in spheroid growth, mitotic arrests, false cell cycle transitions, 

macronuclei formation and apoptotic cells. In comparison to these strong phenotypes, cluster 

2-3 phenotypes comprise mainly singular or low statistical phenotypes (Figure 19a). 
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Figure 19 – Clustered phenotype analysis of all features detected in diSPIM HCS 
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Figure legend continued from previous page: a) Ranked based clustering of the phenotypes by their individual 
features describing the global and nuclei specific properties displays distinct clusters of siRNA target genes. b-f) 
Cluster 1-5 example images of each phenotype. Scale bar = 50 µm 

 

3.3.8 Detected phenotype in comparison to the MitoCheck online data base 

To evaluate the performance of our screening workflow and analysis pipeline, we compared 

the detected phenotypes to the online MitoCheck data base [148] (mitocheck.org), used during 

the planning phase of this project to select for the used target gene targets. In the MitoCheck 

screen only the first two to four cell divisions of HeLa H2B-GFP cells were imaged and 

analyzed for any abnormal phenotypes upon target gene knock-down. In comparison to the 

conducted high-content diSPIM screen, this results for the different MitoCheck screens in a 

focus on severe mitotic defects rather than on long-term development. Additionally, a 

heterogeneous population of cells was analyzed for the MitoCheck screen, whereas in this 

project we clonally expand a single cell and evaluate the single cell development. These 

differences in the two approaches on a high-content screen is reflected in the comparison of 

our results to the MitoCheck data base with a high degree of knock-down phenotype overlap.  

Notably, all of the strong and severe phenotypes identified in our study, such as complete cell 

cycle arrest, apoptosis, growth arrest and macronuclei formation induced by the knock-down 

of INCENP, PLK1, MAP7, DSE, PRC1, BUD31, ESYT2 and AURKA, described by Figure 14, 

Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19 were also described in the MitoCheck 

screen even though a different cell line was used. Minor phenotypes such as the macronuclei 

formation in some spheroids induced by CEP85 and MEIS2 knock-down (Figure 19e) or 

interphase arrest induced by MYC siRNA transfection (Figure 19d) were not described. 

Additionally, TOP2a knock-down induced in our screen a higher ratio of prophase-classed 

segments, characterizing an elongated prophase. This phenotype was also identified by the 

MitoCheck screen, however in a validation experiment, a reduced prophase duration was 

described by the authors.  

 

3.4 Specific methylome modification and analysis of induced aberrant 

mitosis 
To confirm and evaluate the detected phenotypes of the siRNA-mediated knock-down diSPIM 

imaging screen, we modified the gene expression of our target genes by applying a molecular 

tool based on the recently described CRISPR-Cas9 system. This CRISPR-dCas9 methylome-

modifying effector domain fusion protein has been shown to modify the epigenome at a 

targeted genomic location defined by the sgRNA as introduced in 1.2.2.  
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3.4.1 Epigenetic modifiers as gene regulatory method 

We fused the catalytic C-terminal effector domains of epigenome modifying enzyme 

(DNMT3a, TET1) C-terminally to the dCas9 via a linker and added two nuclear localization 

sequences (NLS) for improved nuclear localization and a M2 flag to the N-terminus (Figure 

20a). A dCas9 with no C-terminal addition of an ED was used as binding control (Figure 20a) 

and to physically block binding sites for regulatory factors. The EDs originate from the 

catalytically active C-terminal domains of the respective methylome-modifying enzyme (Figure 

20b). We targeted the different epigenome modifying molecular tools to specific genomic sites 

by combining different sgRNAs with the different effector domains to modify distal or proximal 

regulatory CpGs with regulatory properties (Figure 20c). sgRNA target sites were selected to 

be approximately 33 base pairs away from the CpG to maximize epigenetic modifying 

efficiency following the results on methylome modifications by Vojta and colleagues [171]. 

Based on a 450k Illumina breast cancer patient screening data set comprising gene 

expression and CpG methylation data from human breast cancer patients, we selected CpGs 

that show high correlation (Pearson correlation > 0.5) between the expression of the selected 

target genes and the CpG methylation level (Figure 9 / Supplementary Tables 1). We detected 

up to seven regulatory CpGs per target gene (MEIS2 and RGMA) with correlative and anti-

correlative regulatory properties. From the bioinformatics side, we expected that correlated 

CpGs (low CpG-me results in reduced expression) would show a gene knock-down dependent 

phenotype when these CpGs were targeted by the TET1 dCas9-ED and induce a phenotype 

resembling tumorigenesis in breast cancer, as these CpGs are demethylated in breast cancer. 

Correspondingly, we expected anti-correlated CpGs (high CpG-me results in reduced 

expression) to show the abnormal mitotic phenotype, when targeted by the methyl-group 

transferring DNMT3A.  

Target genes that had only a single regulatory CpG with a correlation between expression 

level and CpG methylation below 0.6 were not further analyzed to focus our effort on most 

significant and promising target genes. Due to these restrictions, ATHOH8, AURKA, BUD31, 

CTSB, DSE, ESYT2, LGR4, RAN, and RBBP4 were not further investigated. 
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Figure 20 – dCas9-ED constructs targeting regulatory CpGs 

a) CRISPR-Cas9 based epigenetic modifiers and binding control were composed of a M2-flag (blue), two nuclear 
localization sequences (orange), the dCas9 (light gray) mutated at residue 10 and 840 (red) deactivating the 
endonuclease function of the Cas9, and the effector protein (green). The effector domains were fused C-terminally 
via a linker (dark grey). b) Effector domains are the catalytically active, C-terminal domains of DNMT3A and TET1 
from residue 1236 (DNMT3a) and 2059 (TET1) to the C-terminus of the protein. c) CRISPR-dCas9 fused with the 
effector domain was located to specific target sites defined by the sgRNA. dCas9-ED and sgRNA combination 
defined gene regulatory properties and targeted correlated or anti-correlated CpGs. Per CpG, we transfected two 
(upstream and downstream) sgRNAs with opposing orientation. CpGs were located in promotor and distal 
regulatory regions. 

 

3.4.2 The selected molecular tool for gene knock-down 

The remaining 18 target genes, had a total of 60 regulatory CpGs (mean Pearson correlation 

> 0.6), with 76% (n = 46) CpGs located in distal regulatory regions, while 23% (n = 14) CpGs 

are within 1 kb of the transcription start site. 42% (n = 25) CpGs show a positive correlation 

between methylation level and gene expression, while 58% (n = 35) are anti-correlated 

(Supplementary Tables 1). The genes CEP85, MEIS2 and RGMA were target genes that 

displayed correlated as well as anti-correlated CpGs making these targets highly interesting 

for quantitative analysis and epigenetic regulation comparison.  

SgRNAs directing the dCas9 effector domain fusion protein to the specific genomic site were 

designed to locate the methylome-modifying enzymes around on average of 33 base pairs 

upstream from their corresponding target CpG, since it was described by Vjota and colleagues 

[171] that the dCas9-ED shows highest epigenome modifying effectivity 27 bp (+/-17 bp) from 

the PAM sequence of the sgRNA. Per regulatory CpG, we designed two opposing sgRNAs, 

one binding to the sense and one binding to the anti-sense strand of the DNA. Furthermore, 

sgRNA target sites were checked to display a minimum of two mismatches to the next off-

target site, which should reduce off-targeting effects.  
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3.4.3 Control constructs to validate the methylome-mediated phenotype 

To verify the induced phenotype and relate the observed effect solely to the modification of 

the methylome rather than the binding of a large protein to a regulatory region, we included in 

the pre-screen a third construct, which was comprised of only the dCas9 protein without any 

further enzyme added to the C-terminus. This construct allowed us, to evaluate the effect of 

the binding of the dCas9 onto the target site and distinguish the effects caused by plasmid 

transfection, site-specific protein binding and the effective methylome modification.  

Furthermore, we wanted to induce and analyze a gene knock-down, through binding of the 

dCas9 to the transcription start site (TSS), a method in this thesis referred to as CRISPRi. We 

used the FANTOM5/CAGE online atlas (http://fantom.gsc.riken.jp/5/) to define the TSS of our 

target genes and selected a single sgRNA binding site at an average of 50 bp upstream of the 

TSS for optimal gene repression effect [70, 172]. 

 

3.4.4 Pre-screen in HEK293 cells 

MCF10A cells are highly susceptible to siRNA transfection, but showed even with specialized 

transfection reagents a strong resistance against transfection with plasmids, displaying a 

transfection efficiency of ~2% detected by GFP expression (Figure 21a). This made it highly 

problematic to introduce both the sgRNA and the protein component of the functional dCas9-

ED into this cell line by means of plasmid transfection for a statistically relevant quantitative 

analysis. We therefore decided to change to another cell culture model, the human embryonic 

kidney 293 cell line (HEK293). This cell line can be easily transfected with sgRNA expressing 

plasmids in comparison to MCF10A cells (Figure 21a). 

When we compared the regulatory CpG methylation levels available from the ENCODE data 

base between MCF10A and HEK293 cells, we detected a good average correlation (0.69 

Pearson correlation / 8.2% mean difference) of the target CpG methylation level between the 

two cell lines. Only individual CpGs displayed a larger than two-fold difference in the CpG-me 

(Figure 21b). Key differences were detected in the MEIS2 expression correlated CpGs, where 

four out of the seven regulatory CpGs showed a stronger decrease in methylation level in 

HEK293 cells than in the respective CpG in the MCF10A cell line. MEIS2 is a homeobox 

protein of the TALE (three amino acid loop extension) protein family involved in transcription 

regulation and shows a 47% higher transcription level in HEK293 cells in comparison to the 

MCF10A cell line (proteinatlas.org). This discrepancy of gene expression had to be considered 

for result evaluation of the MEIS2 target gene. In total, an increase in methylation level at a 

single CpG of more than two-fold was observed for CpGs regulating CDC6, F11R, FOXM1, 

MYC, TCF7 and PRC1 (Figure 21b).  
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To modulate the methylation level at the target CpGs in HEK293 cells, we introduced and 

selected for the stable expression of the different dCas9-ED constructs and evaluated the 

expression and localization of the recombinant protein by immunofluorescent staining (Figure 

21c). The stable cell line expressing the dCas9-ED fusion protein allowed us to introduce in 

the pre-screen only the sgRNA delivering plasmid, to complete the methylome-modifying tool.  

 

 

 

Figure 21 – HEK293 as model for epigenetic remodeling 

a) Average transfection efficiency of MCF10A and HEK293 of siRNA targeting PLK1 (light green) and a sgRNA 
control plasmids (light blue) for a minimum of 1,000 cells. b) Comparison of MCF10A CpG methylation level (X-
axis) to the ratio of the target CpG methylation level of HEK293 and MCF10A cell line (y-axis) for the different target 
genes and their respective regulatory CpG. The light grey area indicates changes in the methylation level less than 
2-fold. c) Immunostaining of HEK293 cells expressing the different dCas-ED molecular tool constructs (scale 
bar = 50 µm).  
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3.4.5 Selection of effective molecular knock-down tools 

Imaging by light sheet microscopy of the phenotype was not feasible, due to the extensive 

data that would have been generated with different combinations of the dCas-ED, dCas9 

control construct, and sgRNA combinations. To circumvent the generation of an 

unmanageable data set, and difficulties arising from 3D immunofluorescent staining of 

samples mounted in Matrigel we decided to select first for significant methylome regulated 

target genes, that showed an abnormal phenotype already in 2D HEK293 cells acquired by 

2D confocal microscopy. Subsequently, we would follow up with in depth analysis of the top 

target by means of high-content 3D live light sheet imaging.  

In this pre-screen, we combined a total of 129 sgRNAs targeting regulatory CpGs or TSS or a 

non-targeting control sgRNA with the two dCas9-ED constructs and the inactive Cas9 

construct stably expressed in HEK293 cells (Figure 21c). As before, we reduced transfection 

and handling artifacts by using solid-phase reverse transfection to deliver the sgRNA 

expressing plasmid into our dCas9-ED expressing cell lines. The sgRNA plasmid could be 

detected by GFP expression in transfected cells (Figure 21). SgRNAs that target correlative 

or respectively anti-correlated CpGs of a single target gene were mixed and transfected 

together, again to reduce the number of samples to 48 per dCas9-ED.  

Although we achieved high transfection efficiencies and used HEK293 that stably express the 

dCas9-ED or the dCas9 constructs, we additionally used immunofluorescent staining to 

validate the presence of the sgRNA and fusion construct in each individual cell, due to varying 

dCas9-ED expression levels, as seen in Figure 21c. If only a single component (sgRNA or 

dCas-ED) was detected within a single cell, this cell was considered as negative and was not 

used for quantitative analysis.  

We evaluated and classified the nuclear phenotype of double positive cells (++ / cells 

expressing dCas9-ED and the sgRNA) at different time points post transfection for up to 8 

days by deep learning classification (Figure 22). Nuclei classes comprised the four main 

stages of the cell cycle (inter-, pro-, meta-, anaphase) as well as two additional phenotypes 

that describe nuclear aberrations. These abnormal nuclear phenotypes were macronuclei and 

apoptotic condensed DNA. A macronuclei phenotype describes a relatively large nucleus, 

displaying polyploidy through cell cycle progression without mitosis, while ACD describes the 

chromatin condensation induced by cell death. These two prominent phenotypes were not 

included in the CNN classification of the diSPIM scree in 3.3, as not sufficient training data 

could be generated prior to the light sheet screen. Additional features such as nuclei size were 

furthermore calculated from the immunofluorescence images. A phenotype was considered 
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strong when a nuclei class or class segment size was 1.5-fold increased over negative cells 

or the control samples transfected with non-targeted sgRNA. 

 

 

Figure 22 – dCas9-ED pre-screen for distinct phenotypes 

a) dCas9-ED expressing HEK293 cells were transfected with sgRNA expression plasmids, completing the active 
fusion protein for methylome remodeling. Immunostaining for GFP (sgRNA) and M2-flag (dCas9-ED) allows to 
detect complete epigenome editing molecular tool present in the cell, while DNA was labeled by DAPI for b) 
segmentation and c) phenotype detection by CNN nuclei classification (scale bar = 5 µm). d) Subsequently, 
analysis detects significantly occurring phenotypes and calculated nuclei features.  

 

3.4.6 Correlation of phenotypes  

A total of 129 possible dCas9-ED-sgRNA combinations were evaluated with an average of 

6856 cells analyzed per combination, giving a total of 2.7 million nuclei that were evaluated in 

this pre-screen summarized in Table 3 for dCas9 genomic localization and in Table 4 for the 

different dCas-ED applied to target regions. 

We detected in a total 18% of all sgRNA-dCas9 combinations strong phenotypes (n = 23) with 

a feature / class increase of more than 1.5-fold in comparison to untransfected (-) cells of the 

same class. 30% (n = 7) of the detected phenotypes were caused solely by localizing the 

deactivate Cas9 to the DNA (Table 3). 43% (n = 10) of 1.5-fold increased phenotypes were 

detected in dCas9-TET1 targeting and 26% (n = 6) in dCas-DNMT3a expressing cells. 

Strong phenotypes included high ratio of apoptotic cells (ACD phenotype) (n = 4; 17%), 

macronuclei formation (n = 10; 43%), metaphase arrest (n = 2; 9%) and prophase arrest (n = 6; 

26%). Additionally, significantly larger macronuclei (n = 2; 7%) and prophase (n = 1; 4%) 

segments were detected in direct comparison to the untransfected cells.  

In conclusion, 88% of the CRISPRi and dCas9-ED evoked phenotypes (n = 22) matched in 

the described nuclei characteristics to the cells with the respective siRNA mediated gene 

knock-down described by the MitoCheck database or the Cyclebase3.0 [173] (Table 3, Table 

4). An additional 85% (n = 17) of the evoked targeted CRISPRi and dCas-ED phenotypes 
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were comparable described as result of the same target gene knock-down in the high-content 

light sheet microscopy screen (3.3), highlighted by the check marks in Table 3 and Table 4. 

 

Comparable phenotypes include an increase in macronuclei phenotype represented by an 

increase in nuclei size or high ratio of prophase. As discussed above (3.3.4), macronuclei 

phenotypes are often misclassified by the convolutional neuronal network as prophase in the 

high-content diSPIM knock-down screen. Severe phenotypes, such as ACD, cell cycle 

elongation or arrest and macronuclei formation correlate with reduced spheroid growth and 

reduced motility as these cells are strongly restricted in their capability to divide and overall 

viability. Furthermore, can a cell cycle arrest at a defined state also prevent proliferation, 

therefore result in a reduced spheroid growth or elongated cell cycle phase duration. 

Although not conclusively analyzed in their mode of action, the high correlation of phenotypes 

between the different methods of gene modulation show a high similarity between the outcome 

on the cell upon three different target gene perturbation. 

 

Table 3 – CRISPRi: evoking a phenotype by dCas localization to target site 

Listing of target genes that show more than 1.5-fold increase phenotype, such as apoptotic condensed DNA (ACD) 
and increase in cell cycle class upon dCas9 positioning (CRISPRi) to anti-correlated (cyan), correlated (magenta) 
regulatory CpGs or transcription start site (orange). Detected CRISPRi phenotypes were compared with online 
databases (CB: Cyclebase.org / MC: MitoCheck.org) and siRNA diSPIM screen results described in Chapter 3.3. 
To the CRISPRi comparable induced spheroid and mitotic phenotypes are highlighted by green check mark, 
correlating the methods. incr. = increased 
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Table 4 – Strong  phenotype induced by dCas9-ED targeting regulatory CpGs 

Listing of target genes that show more than 1.5-fold increase phenotype, such as apoptotic condensed DNA and 
increase in cell cycle class upon a) dCas9-DNMGT3a positioning (CpG methylation) or b) dCas9-TET1 positioning 
(CpG demethylation) to anti-correlated (cyan), correlated (magenta) regulatory CpGs or transcription start site 
(orange). Detected phenotypes were compared with online databases (CB: Cyclebase.org / MC: MitoCheck.org), 
CRISPRi phenotypes and siRNA diSPIM screen results described in Chapter 3.3. To the dCas9-ED comparable 
induced spheroid and mitotic phenotypes are highlighted by green check mark, correlating the methods. DCas9-
DNMT3 is expected to target anti-correlated sgRNA CpGs targets (cyan arrow) while dCas9-TET is expected to 
induce knock-down phenotype in correlated sgRNA CpGs targets (magenta arrow). incr. = increased 

 a) dCas9-DNMT3a site directed epigenome modification 

 

 

b) dCas9-TET1 site directed epigenome modification  
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To evaluate the effectivity of methylome modification, we compared the anticipated effect of 

dCas9-ED targeting correlated CpG, anti-correlated CpG and TSS targeting with the 

measured influence on the cellular phenotype. 50% (n = 6) of the twelve dCas9-DNMT3a 

(Table 4a) and dCas-TET1 (Table 4b) samples with elevated levels of elicited phenotypes, 

targeted CpG properties matched with the bioinformatically predicted gene knock-down effect 

of the methylome modulation. In an additional 4 cases the localization of the dCas9 to the 

transcription start site was sufficient to induce a knock-down phenotype. In the other 27% (n 

= 6) sgRNA and dCas9-ED combinations, the localization in theory would increase the 

expression of the target gene, while still inducing an anticipated knock-down phenotype. The 

underlying cellular processes and reasons these phenotypes evolve cannot be defined 

through the conducted experiments at this point and would need further evaluation and 

differentiated analysis of the effectivity, regulatory mechanisms and capability of the different 

dCas9-ED. 

 

3.4.7 In depth analysis of RGMA regulating dCas9-ED targets  

Subsequently to the conducted pre-screen, we focused on RGMA for a in depth analysis, as 

this gene showed as only target after different methylome modifications a significant, 

predictable and reproducible phenotype (Table 4a, b) correlating in the evoked macronuclei 

phenotype with the online data bases and siRNA mediated segment size increase in the HC 

light sheet siRNA screen. MitoCheck.org describe the RGMA phenotype as strange nuclear 

shape, with nuclei segregation problems and multiple DNA masses, a phenotype that was 

detected as macronuclei class by the deep learning nuclei classifier. Additionally, RGMA is 

highly interesting to study the effectivity and possibilities of targeting different effector domains 

with different properties to defined target CpGs, as RGMA has both, correlated and anti-

correlated CpGs (Supplementary Tables 1). 

The RGMA (Repulsive Guidance Molecule Family Member A) gene encodes a 

glycosylphosphatidylinositol-anchored glycoprotein that has a known function as an axon 

guidance protein in the developing and adult central nervous system. For RGMA we detected 

a total of seven regulatory CpGs, three with correlated and four with anti-correlated regulatory 

properties.  

These regulatory CpGs displayed a high correlation of the methylation level between HEK293 

cells and MCF10A cell lines (Pearson correlation: 0.86) (Figure 21b), giving evidence that the 

different means of RGMA gene knock-down can be directly compared in the different cell lines. 
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When further evaluation the RGMA knock-down phenotype in the conducted pre-screen, we 

detected in three dCas9-ED-sgRNA combinations a high ratio of the cells the macronuclei 

phenotype targeting the TSS, correlative and anti-correlative RGMA regulatory CpGs (Table 

5 / Figure 23b). On average the segment sizes increase by 2.2-fold in the evoked macronuclei 

from 1229 pixels to 2739 pixels (dCas9-DNMT3a targeting anti-correlated CpGs) or by 3.3-

fold to 4111 pixels (dCas-TET1 targeting correlated CpGs) respectively, when compared to 

interphase classed nuclei. The increase in nuclei size and the macronuclei phenotype induced 

by the different sgRNA-dCas9-ED combinations are depicted exemplary in Figure 23. 

Furthermore, the ratio of the macronuclei class increased significantly when anti-correlated 

CpG targeting sgRNA with dCas9-DNMT3a was present in the cells increasing the 

macronuclei count by 56%. dCas9-DNMT3a targeting the TSS mediating CRISPRi increased 

the ratio of macronuclei class segments to 1.94-fold (Table 5). dCas9-TET1 failed to 

significantly increase the ratio of macronuclei found in double positive and negative cells, 

resulting in a 1.36-fold increase of the occurrence of the macronuclei class.  

Finally, to validate the obtained the results, we used any of the highly effective dCas9-ED 

constructs and combined these with a non-targeted sgRNA. In these samples, we could not 

detect a significant difference between double positive and negative cells in class occurrence 

or size increase (Table 5 – non-targeted control). Some sgRNA-dCas9-ED combinations even 

achieved a reduction of the macronuclei class ratio (Table 5 – dCas-TET1 and dCas9 

combined with non-targeted sgRNA).  

 

Table 5 – RGMA is an effective dCas9-ED target 

In-depth comparison of the effect on the macronuclei class by the different active dCas9-ED targeted against 
regulatory elements of the RGMA gene. As control a non-targeted sgRNA was used in combination with all dCas9-
ED. Asterisks labels ratio below 1.5-fold increase between double positive and untransfected cells. Red highlights 
a decrease of the macronuclei class ratio, Occurrences of the macronuclei class depicts ratio of samples 
comprising the phenotype class to total sample count. 
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Figure 23 - RGMA knock-down phenotype in 2D 

a) Screen images of RGMA knock-down in HeLa cells (MitoCheck.org). b) Example images of phenotypes evoked 
in 2D HEK293 cells upon dCas9-ED localization to anti-correlated (cyan), correlated (magenta) regulatory CpGs 
as well as the TSS (orange).  

 

3.4.8 RGMA regulating CpGs targeted in 3D spheroids 

HEK293 cells seeded in Matrigel can develop into multi cellular spheroids, just like MCF10A 

cells described in 1.1.6. This trait of the HEK293 cells allowed us to study the RGMA knock-

down phenotype after methylome modification in 3D under the more physiological growth 

conditions. We therefore used the same sample preparation approach as described in section 

3.2.3, transfecting into the different dCas9-ED cell lines the sgRNA by plasmid solid-phase 

reverse transfection and mounting the cells subsequently in matrigel onto diSPIM one-well 

imaging plates. Three and five days after sgRNA plasmid transfection, we imaged every GFP 

positive (sgRNA positive) spheroid at low temporal resolution. We evaluated the nuclear 

phenotype and spheroid development over time (Figure 24 / Table 6) through Hoechst 

staining. As the dCas-ED fusion protein were not fluorescently labeled, we were not able to 

detect expression levels of these recombinant proteins. 

Similar to the prior conducted experiment, we combined the dCas9-DNMT3a with sgRNAs 

targeting anti-correlated CpGs and the TSS as well as, dCas9-TET1 with sgRNAs targeting 

correlated CpGs as these combinations resulted in a strong phenotype in the pre-screen 

a)

H2B-GFP

MitoCheck:	RGMA	
knock	down	in	HeLa

dCas9-DNMT3a	x
anti-correlative CpG

dCas9-TET1	x
correlative

dCas9-TET1	x
TSS

b)
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(Table 5). Furthermore, we combined the dCas9 without any effector domain with sgRNAs 

targeting either correlated, anti-correlated CpGs or the TSS as control.  

A total of 273 spheroids were imaged by diSPIM light sheet microscopy and evaluated for all 

of the following properties, resembling the same phenotypes described in 3.4: macronuclei 

development, extended mitosis duration (mitotic arrest), reduced growth and ACD 

development.  

The macronuclei phenotype was detected in ~40-50% of all spheroids, that either combine the 

dCas9-DNMT3a with sgRNA targeting anti-correlated CpGs (Figure 24a), dCas9-TET1 

targeting correlated CpGs (Figure 24b) or through positioning the dCas9 and dCas9-DNMT3a 

to the TSS (Figure 24c,f). When the dCas9 control fusion protein was targeted to regulatory 

CpGs, we could not detect a high number of spheroids, incorporating macronuclei (Figure 

24 d, e) with 5.6% and 7.4% of all spheroids showing macronuclei properties. Likewise, the 

phenotype of reduced growth and dying cells were distributed (Table 6), resembling a severe 

effect on the cellular homeostasis upon provisional RMGA knock-down. Elongated mitosis or 

mitotic arrest was detected in every third spheroid of dCas9-TET1 targeting correlated CpGs.  

 

Table 6 – Phenotype analysis of dCas9-ED targeting RGMA regulatory CpGs in 3D HEK293 spheroids 

For different sgRNA-dCas9-ED combinations targeting RGMA regulating CpGs and transcription start site (TSS), 
we replicated the pre-screen (3.4.4) in 3D spheroids and compared the effect of dCas9-ED targeting on different 
phenotypes. We evaluated the percentage of spheroids displaying abnormal cellular and global properties, such 
as macronuclei formation, extended mitosis duration, reduced spheroid growth and apoptotic cells (ACD). Example 
images for each combination are displayed in Figure 24. 

 
 

 In total, these results constitute the bioinformatically predicted target gene knock-down upon 

site directed regulatory CpG methylation modulation and the resulting manifestation of the 

knock-down phenotype in macronuclei formation describing for the RGMA regulatory CpG an 
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effective possibility to regulate RGMA gene transcription. For RGMA, the conducted 

experiments strongly correlate the phenotypes to the suppression of the target gene 

independent of the applied method allowing a provisional correlation and comparison of the 

evoked phenotypes between the different methods and different cell lines. 

For all methods modulating RGMA gene expression either on a transcriptional level by 

modulating regulatory CpGs with dCas-ED, or on the translational level through the siRNA, 

the evoked cellular phenotype represents a macronuclei formation resulting from incomplete 

cytokinesis while replication of the genome is continued, resulting multiple copies of the 

genome in a single cell.  

 

 

Figure 24 – Phenotypes evoked by dCas9-ED targeted against regulatory CpGs in 3D 

Example images of HEK293 spheroids grown in Matrigel after dCas9-ED-sgRNA targeting regulatory CpG. a) Anti-
correlated CpG targeting sgRNA (cyan) combined with dCas9-DNMT3a. b) Correlated CpG targeting sgRNA 
(magenta) combined with dCas9-TET1. c) TSS targeting sgRNA (orange) combined with dCas9-DNMT3a. d) anti-
correlated CpG targeting sgRNA (cyan) combined with dCas9. e) correlated CpG targeting sgRNA (magenta) 
combined with dCas9. f) TSS targeting sgRNA (orange) combined with dCas9 (scale bar = 50 µm). 
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4 Discussion 
In this project, we developed the methodological framework to study spheroid development 

and subcellular phenotypes in 3D cell culture systems in great depth and large number upon 

a perturbation. First, we established light sheet microscopy as tool to image 3D spheroids in 

a high-content screen at unmatched spatial and temporal resolution. Second, we used this 

method to analyze siRNA-mediated knock-down phenotypes in spheroids in a highly 

automated fashion. Third, we compared the siRNA and epigenetic methylation regulatory 

methods for target gene knock-down and the evoked phenotype. Thereby, we were able to 

compare usability, effectivity, and the induced phenotype between the two molecular methods. 

 

4.1 Light sheet microscopy as a method for 3D cell line imaging 
Image-based phenotype analysis is a very established method and has already been used 

extensively in imaging-based screens to detect abnormal phenotypes in cell culture systems 

upon molecular perturbations [126] or drug administration [7, 160]. Key applications of these 

screens can be found in pre-clinical trials in search for novel, effective inhibitor molecules and 

selection of potential treatment targets, as well as in basic research, analyzing individual gene 

functions or the functional interplay of associated genes.  

For many years, spinning disc microscopes were the state-of-the-art system applied in these 

imaging screens due to their superior speed and low light dose in comparison to laser scanning 

confocal microscopes [7, 131, 174, 175], while retaining confocality and image resolution. For 

any imaging application in 2D cell culture models, the SDM or CLSM systems provide an 

effective, easy, usable, and established platform with sophisticated microscope controls and 

optimized incubation appliances. However, all single objective confocal microscopes display 

a major problem with larger samples such as 3D spheroids and organoids. Due to light 

scattering as photons pass through the tissue, these systems are not able to provide isotropic 

resolution deeper within larger tissues (Figure 5). SDM and CLSM systems are not able to 

image the entirety of the 3D cell culture model at high resolution and are restricted to cellular 

analysis on the surface or outline of the specimen. Additionally, acquisition times of seconds 

to minutes restrict high-throughput applications, short imaging intervals and large sample 

count, while intensive light exposure can induce phototoxic effects (Table 1).  

With the commercial development of light sheet microscopes with an inverted geometry such 

as the ASI diSPIM system [112] or the Luxendo QuVi system, the advantages of light sheet 

imaging are now applicable to standardized 3D cell culture formats. Other light sheet 

microscopy geometries such as the multi view SPIM developed by Keller and colleagues [104, 
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176] allow high spatial resolution of large specimens, but lack capability to image more than a 

few samples. Asymmetric light sheet technology implementations such as developed by 

Strnad and colleagues [115] enable acquisition of up to 20 samples but are labor intensive 

and challenging to mount as well as restricted in their in-depth imaging capabilities, making 

the upright, dual-view geometry of the diSPIM the most suited system for high-content 3D cell 

culture imaging (Figure 4).  

Dual view light sheet imaging is, as we have shown, an ideal light sheet geometry to acquire 

3D spheroids with a size up to 100 µm at high temporal and isotropic spatial resolution (Figure 

8). The extremely fast acquisition capabilities of the diSPIM allow a high sample number to be 

imaged at extremely short acquisition intervals (Figure 10). The low light intensity needed to 

provide sufficient signal to noise ratio allows imaging with an undetectable phototoxic effect 

on the sample. Dual view acquisition combined with image fusion and 3D deconvolution 

provides unmatched image quality as well as high, isotropic resolution, with the second view 

compensating for in depth light scattering (Figure 11). In summary, the light sheet microscope 

outperforms the spinning disc microscope in almost every measurable imaging parameter 

(Table 1) and cell viability experiment (Figure 8). 

The ASI diSPIM system displays exceptional performance when handled correctly, but 

usability was restricted by user experience. Further challenges of the diSPIM such as imaging 

stability, sophisticated incubations, data size, and data processing were addressed by us and 

improved to a stage, where the entire development of a spheroid from a single cell could be 

imaged without influencing the development (Figure 8). Acquired data was instantly reduced 

by ~75% through image processing by the hSPIM diSPIM data processing tool, which uses 

state-of-the-art local, parallel GPU processing hardware for maximal performance and 

throughput (Figure 11). This allowed usage of standard IT infrastructure for data transfer in a 

reasonable time frame. Major limitations of the diSPIM system in 3D spheroid acquisition were 

only posed by samples larger than 100 to 120 µm in diameter. These samples outgrew the 

FOV quickly and loss in isotropic resolution was detected due to single view in depth signal 

loss.  

 

4.1.1 Automation and reproducibility 

Our key focus throughout the establishment of the high-content screen was on a high degree 

of reproducibility within the screen and for any possible future imaging application. This meant 

a high degree of automation while retaining flexibility to use different 3D cell culture systems 

and methods of cell culture perturbations. Additionally, any software used in this project was 

open source, with processing workflows quickly adaptable to the individual project focus. 
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With the usage of solid phase siRNA reverse transfection and the liquid handling robot we 

achieved high transfection rate, high precision sample mounting and strong reproducibility of 

the sample preparation minimizing individual human impact. This allows future research to 

apply the developed methods instantly on other cell lines and perturbation methods. 

Additionally, we implemented a pre-screen step to autonomously select samples for 24 hours 

imaging. Not only did this step reduce manual labor in sample selection, but it also provided 

an impartial selection of the spheroid with the only factors that define the sample selection 

being the position in the Matrigel, bypassing any 2D cell layers at the bottom of the dish and 

fused spheroids originating from two consolidated cell clusters. 

 

4.1.2 Optimizing acquisition for a high-content screen  

The fast imaging capabilities and low phototoxic effects of the light sheet microscopes entice 

for excess acquisition of unnecessary data. This can be due to unnecessarily short acquisition 

intervals or excess data covered by only a single view such as produced for small samples by 

the stage scan acquisition. Though possibly not affecting the sample viability, a key focus of 

light sheet microscopy should always be data reduction through data restricted acquisition. 

This will facilitate data handling and shorten data processing time and processing performance 

demand.  

In this project, we therefore assessed every aspect of the screen in regard to data reduction. 

We selected piezo/slice acquisition due to the higher ratio of dual view acquired volume in 

comparison to stage scan acquisition, and for simplified post-acquisition data processing, as 

no deskewing of the data was necessary (Figure 4). Premises for the piezo/slice acquisition 

were the sphericity with a spheroid diameter of at most 100 µm and a confined single position, 

provided by five day old MCF10A spheroids.  

For larger samples beyond 100 µm in width, the optimal acquisition mode is stage scan 

acquisition as it reduces movement of mechanical parts during acquisition and is not limited 

in the stack size by piezo motors, but by the size of the sample. Additionally, imaging speed 

is not limited by microscope mechanics but by camera acquisition capabilities, outperforming 

the SyncA image acquisition by five-fold (Figure 4). Due to skewing of the data, XY pixel 

positions cannot be correlated directly and dual view registration and deconvolution would 

require additional image processing. We utilized this acquisition mode in the low-resolution 

pre-screen, since the aim was to detect a spheroid and its position within the imaging plate 

and not to provide high resolution image quality, which would have required dual view 

acquisition and image registration.  
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The number of acquirable samples during the high-content screen was defined by different 

factors restricting the acquisition speed of the microscope. Stage velocity, data transfer rate, 

and set-imaging parameters defined the acquisition duration per position scan of 4-5 seconds. 

We decided to acquire at three-fold oversampling, since this would support the highest spatial 

resolution, but also increase dual stack acquisition duration. Furthermore, we were limited in 

the stage velocity, as rapid accelerations and decelerations would have resulted in detaching 

of Matrigel spots from the imaging plate. Thirdly, with 1 GB of data acquired every four to five 

seconds, a reliable fast data transfer was essential. Standard local area network performances 

of ~100 MB per second were not sufficient to directly transfer the data onto a server, which 

again highlights the hardware demands and needed infrastructure always required for light 

sheet imaging. With the set imaging parameters and maximal mechanical movements of the 

different stages, we were limited to 40 positions imaged every five minutes. The high temporal 

resolution was essential to track single cells throughout cell division (Figure 11).  

 

4.1.3 Separating beads and samples for image processing 

With multi view imaging, acquired data has to be conjoined through image registration and 

fusion of the different views. Two main methods have been used in the community for image 

registration. In contrast to signal or content based multi view registration detecting local 

intensity maxima within the sample, the registration matrix detection based on single 

fluorescent beads is independent of fast, dynamic intensity changes within the sample as seen 

during cell mitosis as well as intensity differences between the different views. Furthermore, 

bead based registration does not require a large sample with variations of signal intensities, 

but can be performed on single cells, the only requirement is the acquisition of beads in the 

sample or in a separate acquired position. Additionally, the PSF can be extracted from an 

image stack displaying beads for all acquired views. Bead based registration and 

deconvolution allows to applying the PSF directly to the processed image and compensates 

for minor optical aberrations in the detection path, as these are also affecting the PSF and 

therefore deducted from the output image. 

A standard approach in multi view SPIM imaging with bead-based registration would be to mix 

fluorescent beads into the mounting gel of the sample. In this project, we physically separated 

beads from the sample and imaged stacks of beads immersed in Matrigel separately, which 

allowed us to detect registration matrix and PSF independently from any sample. We then 

applied these factors onto all other samples acquired at the same acquisition interval, without 

impairing image quality by high signal beads within the sample (Supplementary Figure 2). 

Furthermore, this meant that the registration matrix only needed to be calculated once per 
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time point, reducing computational demands drastically. Additionally, minor optical artifacts in 

the detection path induced by a small shift in refractive index between culture medium and 

Matrigel were compensated for, as the PSF was not theoretically calculated from the 

wavelength and objective properties but was extracted from imaging data. This improved 

overall image quality in long-term acquisitions, as minor shifts in the excitation and detection 

path originating from microscope de-alignment were compensated for. Additionally, 

registration matrix and PSF can be transferred between different color channels illuminating 

other fluorophores as used in Figure 8 with only minor increase in image blurring, again 

reducing required calculation steps in image processing. Additionally, we were not able to 

purchase fluorescent beads with sufficient signal and required bead size for the blue (405 nm) 

channel primarily used for DAPI / Hoechst (nuclei) staining. The transfer of PSF and 

registration matrix from the green channel (488 nm) to the blue (405 nm) channel allowed us 

to process the short wavelength (blue channel) data in Figure 24. The missing chromatic 

correction of the objective in the short wavelength range did not alter the image quality 

significantly. 

 

4.1.4 High-throughput image processing 

Besides simplifying sample preparation and imaging, we additionally focused on facilitating 

image processing (Figure 11). The established pipelines where developed for processing of 

any large diSPIM data while remaining open-source throughout. In the future, this developed 

workflow will allow any dual view light sheet user to easily process their own data without the 

need to script their own image processing pipeline, a major hindrance and concern for 

researchers to use the novel light sheet technology.  

 

4.1.5 Image classification by deep learning 

Grouping of individual images or subparts of an image, called image classification, is a key 

component of any quantitative image analysis [140, 177, 178]. We compared the effectivity of 

classical machine learning methods (random forest) to the novel convolutional neuronal 

network image classification methods (Figure 12). In terms of accuracy and processing speed, 

the used CNN classifier outperforms the RF classification significantly. On the other hand, 

CNNs provide the challenge to generate a sufficient sized training data set with appropriate 

but diverse sample images. These large data sets need to be generated a priori and with 

accurate selected data, in order to train the CNN to perform accurately. Additionally, CNN 

properties and setup have to match the application, as shallow networks tend to be inaccurate 

while deep networks require too much computational performance [151, 178]. Additionally, 



 66 

empirical knowledge on CNN application in life science and microscopy data analysis is 

restricted, resulting in a trial-and-error approach to CNN implementation in the analysis 

workflow. On the other hand, demands of an imaging screen analysis of high-throughput und 

high accuracy with strong robustness towards minor imaging artifacts, signal loss, and image 

noise are met exceptionally by CNN image classification as seen in the results of this project 

(3.2.5). We believe that any future image segmentation, processing, classification, and 

analysis will be done using CNN as they provide strong performance improvements in 

comparison to classical image processing tools. 

 

4.1.6 Phenotype assessment through feature evaluation  

This project was conceived as a proof-of-concept and evaluation of different methods in gene 

regulation, phenotype imaging, and analysis. Therefore, we selected target genes on the basis 

of correlative knock-down methods (Figure 9). We aimed to induce gene knock-down on a 

transcriptional level through methylome modulation and on a translational level with siRNA to 

be able to compare effectivity and phenotype of these two molecular methods. Throughout, 

we focused on genes involved in the cell cycle, as gene regulation highly influences cell cycle 

progression, the role of mitosis in cancer initiation and cellular development [179, 180]. We 

set a high threshold on plausible effectivity of the knock-down, described by strong knock-

down phenotype and high correlation of CpG-me and gene expression, resulting in 28 possible 

target genes (Supplementary Tables 1). Due to the fact, that we only selected for genes with 

a known knock-down phenotype allowed us to compare the detected results for all methods 

of gene expression reduction to known phenotypes provided by online databases such as 

MitoCheck and CycleBase.  

Upon knock-down of the target genes by siRNA, we analyzed the phenotype by a total of 23 

features that describe both global spheroid features, as well as features describing the single 

nucleus (Supplementary Tables 2). This combination of quantitative features allowed a 

comprehensive understanding of single nuclei and their underlying characteristics as well as 

the context of the spheroid as a global growing tissue by analyzing spheroid growth, 

development in reminiscence of the induced phenotype. 

The negative, non-coding transfection control siRNA used as reference throughout this project 

showed even under the established high-content sample preparation and imaging conditions 

a close to normal development of the five-day old spheroid growing in Matrigel clonally from a 

single cell (Figure 8). The siRNA transfection as well as the described low phototoxicity of the 

diSPIM system did not interfere significantly with the development of the spheroid even when 

imaged at high temporal and spatial resolution. 
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The positive siRNA transfection control targeting INCENP allowed to evaluate the high 

efficiency of the sample preparation and HCS as we could detect and compare the knock-

down phenotype of INCENP in all acquired samples. The macronuclei phenotype detected by 

the large segment size, reduced growth and abnormal cell cycle progression with elongated 

mitotic phases is highly reminiscent with the described gene function in the chromosomal 

passenger complex and knock-down phenotype of INCENP [134, 181-183]. The macronuclei 

formation originates as described and detected in the HCS images through the inhibited 

cytokinesis while the cell enters repeatedly the mitosis as the correct chromosome alignment 

and segregation is misregulated through the loss of function of the chromosomal passenger 

complex. In the INCENP samples, we always detected two separate macronuclei (Figure 19). 

We postulate that after knock-down sufficient functional INCENP protein remained in the cell 

to complete one additional mitosis with completed cytokinesis.  

Other strong knock-down phenotypes of PLK1, MAP7, DSE, PRC1, BUD31, ESYT2 and 

AURKA such as found in cluster 5 (Figure 19) all resulted in significant growth reduction 

through mitotic arrest or prolongation that we were able to detect and quantify by the cell cycle 

analysis, nuclei and spheroid size and growth as well as global feature descriptors (Figure 

14 - 19). These phenotypes strongly resemble in their key elements the described phenotypes 

of the used online databases (genecard.org, MitoCheck.org, cyclebase.org) as well as match 

with known gene functions as discussed below.  

PLK1 is a serine/threonine-protein kinase, which plays an essential role in centrosome 

maturation and spindle assembly as well as the removal of cohesins from chromosome arms 

[184]. A knock-down of PLK1 is known to arrest the cell cycle in prometaphase [134, 148] 

which was described in the HCS by significant increased pro- and metaphase occurence, 

growth arrest and increased abnormal cell cycle transition (Figure 19). 

MAP7, a microtubule-associated protein with a known function in microtubule stabilization, 

microtubule function regulation as well as cell polarization is key in the cell cycle as the correct 

distribution of the chromosomes to the daughter cells relies on the microtubule spindle 

apparatus [185, 186]. We postulate, that the loss of MAP7 proteins in the cell could result in a 

loss of cell polarization prior to the distribution of the chromosomes to the cell poles as well as 

uncontrolled chromosome segregation resulting in loss or gain of chromosome number 

subsequent to the cell division. This hypothesis is underlined by the strong increase of the 

prophase duration as the cell potentially struggles to polarize and form the spindle apparatus 

(Figure 14). 

PRC1 or Protein Regulator of Cytokinesis 1 is a key regulatory protein of cytokinesis and 

spindle formation. PRC1 functions in cross-linking antiparallel microtubules and shows 
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essential functions of defining the spatiotemporal formation of the mid-body. Without the mid-

body defining the region of final separation of the daughter cells, a completion of the mitosis 

is not possible [187]. These two functions have been detected by the siRNA HCS as we found 

a strongly increased ratio of nuclei segments classified as pro- and anaphase (Figure 14, 

Supplementary Figure 6) while samples also failed to grow describing an arrest of the cell 

either at prophase or in the final stage of cytokinesis.  

BUD31 or Functional Spliceosome-Associated Protein 17 has a described function in mRNA 

splicing, an essential step of mRNA maturation and protein synthesis. A loss of all protein 

synthesis in a cell has a dramatic effect on the cellular homeostasis as all cellular processes 

rely on new synthesis of functional proteins due to constant protein turnover [188]. Loss of 

BUD31 results in fast loss of many mitotic proteins as these proteins display a higher turnover 

rate resulting from cell cycle stage specific expression in comparison to other housekeeping 

genes in frequently dividing cell culture model systems. Loss of growth and cell cycle 

progression detected in the HCS (Figure 18) can be the plausible result of mRNA maturation 

defects. 

AURKA or Aurora Kinase A is a serine/threonine kinase with a well-known function in 

regulating the cell cycle. It establishes the mitotic spindle apparatus, induces centrosome 

duplication, centrosome separation as well as maturation. AURKA is essential for 

chromosomal alignment in metaphase, as well as the separation of the daughter cells [189]. 

The detected increased number of all mitotic stages (Figure 14) as well as reduced growth 

capabilities of the samples (Figure 18) allows us to postulate and correlate a complete delay 

of the different steps of mitosis to the function of AURKA in all mitotic phases.  

ESYT2 or Extended Synaptotagmin 2 forms tethers to bind the endoplasmic reticulum to the 

cell membrane but has not been described directly to be associated with the cell cycle or 

mitosis [190]. Also, DSE or Dermatan Sulfate Epimerase has no close relation with the cell 

cycle as it functions as tumor rejection antigen with a specific catalytic function of converting 

D-glucuronic acid to L-iduronic acid during the biosynthesis of dermatan sulfate [191]. 

Downstream associations of DSE or ESYT2 with a specific step of the cell cycle cannot be 

excluded, that could explain the detected reduced growth and prophase arrest, but further 

functional experiments need to be conducted.  

In total, we can correlate in almost all analyzed target genes of cluster 5 the known and 

published gene function with the detected knock-down phenotype, with the exception of 

ESYT2 and DSE. These results highlight the capabilities of the conducted HC screen. In 

comparison to published screens such as the MitoCheck consortium, the 3D cell culture 

models and the light sheet imaging methods provide a more detailed, sensitive and reliable 
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insight onto the target gene function and the knock-down effect onto the phenotype (3.3.8). 

Subtle heterogeneity among evaluated cells in terms of knock-down level and genomic 

heterogeneity in the cell culture model resulted in distinct phenotypes even within a single 

spheroid. This shows the strong and sensitive capability, this screening setup provides to 

study intercellular heterogeneity upon treatment, while also providing conclusive insight into 

the gene knock-down.  

 

4.2 Knock-down using epigenome modifying molecular tools 
A siRNA gene knock-down allows for efficient gene function evaluation, but it is usually 

unresolved how the different methods can influence the readout of gene function and whether 

novel methods can compete in effectivity and usability with established siRNA knock-down 

approaches. Additionally, the mode of action of the molecular tool, targeting the transcription 

or translation of the gene, can allow for compensating mechanisms. We therefore compared 

the detected phenotypes induced by siRNA-mediated gene knock-down to a novel, CRISPR-

dCas9-ED based regulatory molecular tool, as well as compared their practical properties.  

The deactivated CRISPR-Cas9 protein targeting enzymatic effector domains towards defined 

genomic regions allows the genomic site directed application of many different effector 

domains with their defined molecular functions. Site directed modification of the epigenome 

allows potentially lasting modifications of epigenetic properties of the cell, as the epigenome 

is like the genome highly conserved even throughout cell division to retain cellular properties 

and characteristics [82, 192]. 

Problematic in this experimental design is the lack of definite knowledge on regulatory 

mechanisms, feedback between genome and epigenome and how the dCas9-ED is capable 

of influencing the cellular homeostasis [44, 53]. Furthermore, additional or novel compensating 

mechanisms cannot be excluded. Bioinformatic analysis on one hand allow to detect the 

connection between CpG methylation level and gene expression, as well as description of 

other features of the target site such as regulatory factor binding sites or 3D genome 

interactions [193]. But on the other hand, complex regulatory mechanisms, cellular feedback 

cycles, low method effectivity or off-target effects of the CRISPR-dCas9 protein can render 

straightforward theoretic approaches ineffective [52, 194, 195]. 

To date, many different applications of the deactivated CRISPR-Cas9 targeting different 

effector domains such as DNMT3a [61, 171], TET1 [62, 63], Krüppel-associated box (KRAB) 

repressor [196-198] and p300 core protein [93, 196] have been used to modify the epigenome 

while the direct comparison to siRNA-mediated gene regulatory methods are excluded from 

these studies. In this project, we directly compared the effect of both molecular methods on 
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the cellular development focusing on the used set of mitotic target genes. This enabled us to 

evaluate siRNA and dCas-ED site directed targeting in their effectiveness and applicability. 

To detect the methylome modifications and provide the highest success premises, we opted 

to provide the best prerequisites for the experiment. Therefore, we decided to change into 

another cell culture line and conducted a 2D pre-screen to define the most effective effector 

domain and target CpG combinations. The change of model system on the other hand also 

had an impact on the comparability of the evoked effect on the cell and made any correlation 

more questionable. Comparison of methylation level and target gene expression partly can 

compensate the unknown influence of the exchange of the used cell line.  

With the different CRISPR-dCas9-ED stably expressed in HEK293 cells, we could combine 

the active methylome-modifying molecular tool (sgRNA and dCAs9-ED) by simple and 

effective sgRNA expressing plasmid transfection. Developing the same experimental setup in 

MCF10A cells was not easily feasible as well as labor intensive, as this cell line is resilient to 

plasmid transfection and gene integration requires lentiviral transduction of the MCF10A cells 

(Figure 21).  

Through combining different sgRNAs targeting CpGs with identical regulatory properties 

(correlated and anti-correlated CpG methylation and target gene expression level), we 

diminished the individual effect of a CpG methylation modification, but on the other hand we 

also reduced the number of samples to be studied (Table 5 / 3.4.1). Effective sgRNA 

transfection into the established dCas9-ED cell lines, high-throughput image acquisition, and 

image analysis based on deep learning classification allowed for an effective evaluation of 

many different phenotypes in comparison to untransfected cells (3.4.4). Additionally, we 

compared the dCas-ED with the sole localization of the dCas to a target site perturbation 

(Table 3).  

 

4.2.1 Epigenetic modulation detected by cellular phenotype 

In total, we detected only in few (18%) sgRNA-dCas9-ED combinations a strong phenotype 

evoked by dCas9-ED targeting against the genome. All of these evoked, strong, abnormal 

nuclear shapes have been described by online databases or match with results obtained in 

the conducted HC siRNA screen, when the same gene was targeted by different means of 

modulation. 

In 30 % of these cases, a binding of the dCas9 without any effector protein to the regulatory 

site or TSS was sufficient to induce a knock-down phenotype (Table 3) describing the potential 

of CRISPRi. We presume, that binding of the dCas to the genome is on its own capable to 

prevent regulatory proteins from DNA binding at this regulatory domain.  



 

 71 

 

Furthermore, we were successful in applying the different dCAs9-ED to induce a significant 

mitotic aberration that correlate strongly with the known (online data base) and in this project 

described (siRNA HCS utilizing light sheet imaging) phenotypes with very high correlation.  

These results provide the assumption that knock-down of the target gene was successful, 

especially for RGMA but also for other target genes. 

On the other hand, 12% of the phenotypes were evoked with sgRNA-dCas9 combinations that 

theoretically should not be able to have an effect on the methylome and therefore should not 

induce abnormal phenotypes in these cells.  

In conclusion, the methylome modification 2D pre-screen did not display adequate effectivity 

of the dCas-ED comparable to other established methods such as siRNA in inducing target 

gene knock-down phenotypes. CRISPRi, the localization of a large protein to a genomic 

domain deregulating this region shows high effectivity in comparison to the desired effect of 

methylome modulation. Underlying effects of the site-specific methylome alteration need 

further evaluation as well as regulatory mechanisms, that compensate the potential loss of 

gene expression. Potentially, each individual regulatory CpG needs to evaluated separately 

for dCas9-ED mediated deregulation. Furthermore, the obtained results reflect and highlight 

the key concern of the different described dCas9-ED molecular tools named in 4.2. The 

dCas9-ED have been first postulated in 2013 and established now for several years. The 

fusion of a large effector domain to a 160 kDa sized dCas protein results in a large protein that 

is questioned to be transported into the nucleus [199]. Furthermore, sophisticated delivery 

systems that avoid the transfection of two components into a single cell are being tested and 

slowly established but do not exhibit the efficiency of well-established molecular perturbations 

yet. Additionally, the biggest concern to date is the detection and evaluation of off-target 

effects. For gene knock-down studies the novel dCas9-ED tool as shown cannot compete in 

effectivity, usability and reliability with a siRNA knock-down, yet.  

In total, we must conclude that we were able to evoke upon targeted gene deregulation with 

both used methods the same visual phenotype in almost all samples with strong knock-down 

phenotypes, but experimental difficulties and limited understanding of the molecular 

processes of the dCas9-ED described above, make epigenetic remodeling by dCas9-ED 

problematic for screening purposes. 

On the other hand, the methylome modification allows for the first time through their targeted 

localization a functional, experimental evaluation of epigenetic regulatory elements and 

verifies bioinformatics predictions with a functional experiment such as we were able to 

conduct when targeting RGMA regulatory elements. The potentials for single gene 
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modulations are extensive, as the deeper level of transcriptomic modulation adds many 

possibilities to the research, allowing for much more complex genomic and regulatory 

functional evaluations.  

 

4.2.2 dCas9-ED mediated RGMA knock-down 

RGMA is a glycoprotein that exhibits a function as an axon guidance protein [200]. Knock-

down of this protein in cell culture models induced a binucleated or macronuclei phenotype 

([201]/ Mitosys ID: MCG_0007587), as detected in the different knock-down screens. In 2018, 

a study associated RGMA knock-down with high risk of luminal breast cancer and cancer 

progression [202, 203].  

The methylome modification induced down regulation of RGMA did show the strongest 

correlation with the siRNA-mediated gene knock-down in the 2D pre-screen as well as in a 

subsequent in-depth analysis using long-term light sheet live imaging of 3D spheroids (Table 

5). The evoked phenotype constitutes a reduced growth rate, elongated prophase and 

increased nuclei size resembling macronuclei formation described for this gene (Figure 24 / 

[201]).  

For RGMA, the induced phenotype was only achieved in sgRNA-dCas9-ED combinations that 

align with the knock-down prediction by bioinformatics analysis of the target site and the 

appropriate effector domain function. This results in the assumption that we were successful 

in RGMA knock-down by methylome modification of predicted correlated and anti-correlated 

regulatory CpGs. The localization of a large protein to the TSS on the other hand was similarly 

successful.  

The precise function and the effect of the loss of RGMA protein onto the cell cycle progression 

is not yet fully understood. We postulate that the RGMA knock-down phenotype was induced 

through the described altered utilization of the bone morphogenetic protein (BMP) type II 

receptors described by Xia and colleagues [204]. The authors describe a RGMA functions in 

the BMP pathway as co-receptor. A loss of the RGMA protein in the BMP signaling pathway 

can therefore have a dramatic effect on the intercellular interaction and consequently on the 

development of the spheroid model system through the BMP signaling.  

 

4.3 Comparison of siRNA and dCas9-ED as molecular regulator 
In total, we can conclude that in some cases the dCas9 fused with a methylome-modifying 

effector domain can provide the same effectivity as established knock-down methods and 

provides similar insight onto gene functionality as siRNA-mediated knock-down. But these 

results need to be carefully examined, replicated and the cause of the detected phenotype 
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needs to be validated. Comparison of the visual phenotype by light microscopy is insufficient 

to provide conclusive insight into gene function, mode of action and molecular pathways, but 

provides an exceptional assessment of the effect onto cellular processes and allows 

correlating gene function and cellular morphology. A combinatorial approach, such as 

combining RNAi with site directed positioning of epigenetic effector domains can validate and 

enrich knock-down experiments as well as insights into regulatory mechanisms.  

For studies analyzing the individual effect of a single CpG or a regulatory region in the context 

of its epigenetic regulatory properties, the different effector domains provide an exceptional 

opportunity to conduct functional analysis and challenge bioinformatic predictions. Especially 

for these defined functional experiments, the additional effort necessary to introduce a 

functional dCas9-ED in the cell is valid, but for knock-down high-content screens the best and 

simplest method of choice will remain RNAi.  
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5 Conclusion and Outlook 
In vitro cell culture systems are inevitably necessary models for human molecular biology 

research and translational medicine. 3D culture models, an innovative advancement from 2D 

cell culture, display more physiological in vivo characteristics, while posing significant 

challenges to novel and established analysis methods. These challenges have to be overcome 

to utilize the profound advantages of 3D cell culture models.  

The application of light sheet microscopy in this project to study 3D spheroid or organoid 

systems is highly beneficial due to the improved 3D imaging capabilities of the light sheet 

microscopes and the rapid acquisition capabilities provide high-throughput screening 

possibilities. Drawbacks of light sheet microscopy, mostly in data handling and image 

processing were addressed. High-content image processing pipelines, combined with state-

of-the art deep learning image classification are highly accurate and provide quantitative 

readout to evaluate treatment induced phenotype detection. The biggest advantage of the 

described screen was the individual analysis of single cells developing over time to spheroids 

and analyzing their properties.  

Furthermore, we developed and test two highly innovative methods to modify cellular 

properties and study them by the named 3D microscopy and image analysis. Conclusive 

insight on target gene function using the CRISPR-dCas9 based epigenetic modulation were 

not possible. The mode of action for the dCas9-ED requires in-depth evaluation of the 

underlying cellular processes and therefore require target site-specific evaluation. 

In the future, we expect to see a trend towards combining imaging and sequencing tools on a 

single cell level, where the phenotype and transcriptome are analyzed in a correlative manner. 

Additionally, deep learning image processing will be incorporated in many parts of the 

experimental process, from sample selection, to image acquisition, to microscopy control, to 

image analysis of raw data, and finally correlative analysis of sample properties and 

sequencing data, fusing visual and sequencing data into a single analysis step. A direct usage 

of deep learning classification of defined phenotypes such as macronuclei formation, ACE or 

tripolar cell division as well as other phenotypes was not feasible in this work as sufficient 

training data could not be provided, describing the difficulties arising from deep learning 

implementation into image analysis. Improvement in acquisition speed, imaging capabilities 

and integration of state-of-the-art illumination technologies such as structured illumination, will 

further increase throughput and image quality and resolution in HCS. With these technical 

improvements, a more detailed and extensive analysis will be possible by light sheet 

microscopy screening describing subcellular processes, structures and components in 



 76 

unmatched detail. This will allow researchers to comprehensively study in a single experiment 

many different functional aspects in a highly quantitative fashion.  

Furthermore, we addressed the effectivity and capabilities of the novel, site-directed 

methylome-modifying effector domains and compared siRNA and regulatory CpG methylome 

modulation based gene knock-down phenotypes. Though being capable of inducing a gene 

knock-down, the effectivity and usability of the dCas9-ED does not rival that of conventional 

knock-down methods such as siRNA, yet. The long-term capabilities to induce lasting gene 

expression modulations are appealing, but need to be validated. We expect in the future an 

improvement of the site directed methylome modification, by improved protein and RNA 

delivery into the cell through reduced protein size and optimized delivery systems. 

Furthermore, we expect improved understanding and prediction of the dCas9 fused to different 

effector domains and its properties such as effectivity, off-targeting, long-term capabilities and 

application capabilities. The capability of the different effector domains to selectively modify 

epigenetic traits at defined genomic loci will provide in the future significant insights into the 

regulatory networks of the epigenome and the transcriptome as well as detailed descriptions 

of regulatory regions.  
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6 Materials and Methods 
6.1 High-content volumetric imaging screen utilizing advance light sheet 

3D microscopy 
6.1.1 Cell culture of MCF10A H2B-GFP 
MCF10A H2B-GFP cells [41] (P25 to P31) were cultured and passaged in 25 cm2 culture 

flasks (Greiner bio-one) in DMEM/F12 (ThermoFisher Scientific #11039) with supplements 

(5% horse serum, 10 µg/ml Insulin (Life Technologies), 20 ng/ml EGF, 0.5 mg/ml 

hydrocortisone and 100 ng/ml Cholera Toxin (Sigma)) under standard culture conditions (5% 

CO2 / 37 °C) and passaged with 0.05% Trypsin (Life Technologies) in 2D at 80-90% 

confluency every three to four days. 

 

6.1.2 Solid-phase reverse siRNA transfection 

Solid-phase reverse transfection siRNA transfection mix was prepared as described by Erfle 

et al. [181]. In short: 4.00 µl OptiMEM (ThermoFisher Scientific #51985026), containing 1.82 M 

trehalose dehydrate (Merck, #T9531), was added in a single well of a 384-well plate. Then 

2.50 µl Lipofectamine® RNAiMAX (ThermoFisher Scientific #13778075) transfection reagent 

and 5µl of a 5 µM siRNA solution were added and incubated for 5 min at room temperature to 

allow complex formation. Finally, 7.25 µl Collagen type IV solution (Merck #C5533) (1 mg/mL 

in ddH2O) was added and the transfection solution was gently mixed. The solution was diluted 

in 468.75 µl ddH2O of which 35 µl were transferred to a well of a 96-well plate. The plates 

were placed in a -20°C freezer for several hours, followed by a drying step (lyophilization or 

speed-vac), and were stored at room temperature until cell seeding.  

Trypsinated MCF10A H2B-GFP were diluted in growth medium to a density of 5x105 cells/ml. 

10’000 cells in 100 µl cell suspension were added to each well of the solid-phase reverse 

transfection mix. After five hours, cell medium was removed and cells were resuspended by 

directly adding 50 µl 0.25% Trypsin (Life Technologies #25200056) to each well.  

 

6.1.3 High-content cell spotting in Matrigel 

Mixing and spotting of cells into OneWell plate (Greiner bio-one CELLSTAR® OneWell Plate™ 

#670180) with Matrigel (Corning Matrigel Matrix) by an automated liquid handling robot from 

Hamilton Robotics following was conducted, following a customized protocol. In short: From 

each cell suspension transfected with individual siRNA, 60 isolated cells in 3 µl medium were 

mixed with 10 µl Matrigel. Subsequently each mixture was spotted eight times with a single 

spot volume of 0.2 µl in two columns by four rows array, giving a total of 320 spots in 40 

columns and eight rows array centred on the imaging plate. One sub-array of spots was always 
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dedicated for beads (ThermoFisher Scientific #7220) mixed with Matrigel, used for registration 

of the two acquired views. Positioning of each spot is identical with the positions of a standard 

1536-well plate. After 10 minutes at 37°C for Matrigel solidification culture/imaging medium 

was added and samples were incubated under standard culture conditions until imaging.  

 

6.1.4 diSPIM imaging 

Imaging was conducted with a dual-view inverted selective plane illumination microscope 

(diSPIM) as described by Kumar et al., 2014 [112]. The microscope was equipped with LMM5 

laser (Spectral Applied Research Laser Illumination Laser Merge Module 5) and AHF Quand 

Filterset (F59-405 / F73-410 / F57-406). Images were acquired by two water-cooled ORCA-

Flash4.0 Hamamatsu sCMOS cameras. Cooling was provided with Julabo F250 cooling 

circuit. Standard culture conditions were generated by (3i ECS2) and direct airflow over the 

SPIM head was minimized to avoid unnecessary vibrations. All imaging time lapse acquisitions 

were conducted with 320 µW laser power for 488 nm excitation wavelength (measured at the 

sample).  

 

6.1.5 Low resolution pre-screen 

Readjusting the fine alignment of the microscope was conducted shortly before the start of the 

acquisition with special attention to retain temperature within the microscope chamber. 

To detect each spheroid’s positions and select the spheroids to be imaged, we conducted a 

low resolution, fast stage-scan pre-screen. A grid of imaging positions was spanned across 

the imaging plate, each position placed at the center of one column of spots. As the automated 

spotting process resulted in spots with defined positions and sizes, we were able to repeatedly 

use the same grid of stage scan acquisition positions for every pre-screen. Potentially due to 

small manufacturing differences of the imagining plate, we solely needed to adjust the general 

Z-position off-set, underlining the robustness of our sample preparation process. Each position 

acquisition resulted in a X microscope-Stack of 1’200 slices with a step size of 5 µm and a pixel 

resolution of 0.648 µm/px and a field of view of 333 µm.  

The acquisition of the pre-screen took 31 minutes and produced 96’000 images. This pre-

screen data was subsequently analysed by a KNIME image processing workflow detecting 

the XYZ microscope position of each cell cluster, size and shape. Per spot we detected an average 

of 2.6 spheroids. From this data, a ranking of spheroids was conducted, based on their Z-

position, discarding small, flat and elongated cell clusters selecting for the spheroids with the 

maximal Z-coordinates. The KNIME workflow file can be found for review and further 

development on the Isilon server (\diSPIM_prescreen_stagescan_Pos_analysis.knwf).  
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The high positioning of the selected spheroid in the Matrigel spot ensured maximal image 

quality, as no additional cells obstructed the illumination and detection path. These 38 defined 

spheroids with individual treatment plus two positions with fluorescent beads that were 

essential for later image processing steps were imaged with the diSPIM microscope for 24 

hours at maximal temporal and spatial resolution for treatment evaluation. Incubation 

conditions in the microscope were improved to resemble as close as possible the standard 

culture conditions of an incubator.  

 

6.1.6 Position scan acquisition 

Imaging parameters for dual view synchronous piezo/slice scan (stack acquisition) were set, 

to acquire two stacks of 1024 px2 in XY image with the maximal camera resolution of 

0.1625 µm/px centered to the field of view of the camera and 260 slices in Z image with a slice 

interval of 0.5 µm starting with view A (right camera acquisition). Sample exposure was set to 

1.5 ms and the option for “Minimized Slice Period” enabled. The option for “Autofocus during 

acquisition” was enabled with the autofocus running on the registration position imaging beads 

every acquisition cycle with 40 slices acquired every 0.5 µm. The off-set was detected by with 

“Volath” script. 

Preselected positions copied from the KNIME analysis of the pre-screen were checked and if 

necessary manually corrected. An additional registration position was added as first and last 

position, imaging beads mixed in Matrigel.  

Due to the acquisition limitations of the microscope of minimal four to five seconds per position 

scan and stage repositioning, we imaged at an interval of five minutes for 24 hours, resulting 

in a total data volume of 10.06 terabytes (TB), which was stored locally. The high temporal 

resolution was essential for tracking of nuclei as they progressed through the cell cycle. 

Throughout time lapse acquisition, we did not need to adjust for any position off-set introduced 

by deformation of the matrigel or external influences as samples remained almost exclusively 

in the FOV.  

 

6.1.7 Image processing (hSPIM) 

Raw data was processed by a custom software named “hSPIM”, designed specifically to the 

acquisition geometry of the di-SPIM and the separate acquired registration position imaging 

beads in 3D. In short: The registration matrix of the two views is detected for each time point 

of the screen by registration of beads in 3D. Additionally, the PSF is extracted. This registration 

matrix and PSF are stored and used for registration and deconvolution of all other acquired 

positions of this time point. Furthermore, the software performs a segmentation of the nuclei, 

from which different geometrical and textural features are extracted for each segment. 
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Deconvolved fusion images and segment images as well as segment and feature table are 

stored and were used for further image analysis.  

In addition, further functions are implemented into the hSPIM software. These can enable the 

user to directly visualize in 3D a registered and deconvolved snap image or to store a view 

angle and export a 3D movie of a single position.  

 

6.1.8 High-content KNIME analysis workflow 

Following the raw image processing, we have developed a workflow to analyze key cellular 

and global properties of each spheroid throughout the acquired time lapse by image analysis.  

XYZ microscope displacement: By tracking the positions of single beats over time in the beat 

sample we could detect the global offset in all dimensions of the microscope introduced 

through fine displacements of the imaging plate or component expansion of the di-SPIM 

components.  

Cell phase nuclei classification: For a precise nuclei classification, we used a CNN, trained 

with a selection of manually classified images by means of 3D-2D plane DL classification 

described in 3.2.5. The CNN calculated the probability for each of the four distinguishable cell 

cycle phases for each XY, XZ and YZ slices: Interphase, pro- and prometaphase, metaphase, 

anaphase. The class with the highest sum in likelihood for each segment was selected as 

defining class for this nucleus at this time point.  

Clustering of segments into spheroids: To segregate segments from two spheroids 

acquired at a single imaging position into individual spheroid clusters, we analyzed the 

geometric distance of each segment to all others and clustered accordingly.  

Spheroid size: The clustering enabled us to combine all segments of one spheroid for an 

image based size calculation.  

Geometric nuclei class features: In the global context of the single spheroid we analyzed 

the single nuclei size, the intensity, the position of the segment from the center of the spheroid 

and the predicted class, over time. 

Nuclei migration speed: By tracking the position of each segment over time, we also 

analyzed the median migration speed of all cells in each spheroid. 

Time lapse movie: For individual evaluation, we exported the maximum projected time lapse 

movie of each position including cell cycle classification and spheroid hull. 

 

The KNIME workflow file can be found for review and further development on the Isilon server 

(\diSPIM_phenotype_screen_analysis_3D_spheroids.knwf) as well as the template folder 

structure for hSPIM- and KNIME analysis workflow output 
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(\TLXXXX_S_hSPIM_Output_Template) with XXXX being place holders for the screen 

number.  

 

6.1.9 Spheroid feature evaluation 

Selected image features as quantified by the KNIME workflow (Supplementary Tables 2) were 

subsequently subjected to further quantitative analysis in R. Additional quantitative features 

such as cell volume (estimated as the ratio of spheroid volume to nuclei number) and average 

nuclei size in different cell phases were additionally computed from the quantified list of 

features. The fraction of cells detected in different cell cycle phases was averaged across all 

time points.  

To calculate instantaneous spheroid growth rates from nuclei numbers, the number of nuclei 

over time was smoothed using the lowess function with parameters f=1/3, iter=3L, delta=0.01 

* diff(range(NrCells[1:n.rows[[pos]],pos])), and differentiated using the diff function.  

 

All feature measurements from all plates were combined into one matrix, centered by 

subtracting the column means from their corresponding columns, and scaled by dividing the 

centered columns their standard deviations. As mechanical plate drift resulted in spheroids 

lying partially outside the field of view in the case of plate 00941, affected features (nuclei and 

spheroid growth rate, compactness, convexity, sphericity, spheroid volume and cell volume) 

were excluded for this plate. 

 

To identify clusters of siRNAs causing similar phenotypes, rank-based clustering and tSNE 

embedding were performed using the rank, dist, hclust and Rtsne functions. Heatmaps were 

created using the heatmap.2 function from the gplots package or the aheatmap function from 

the NMF package. t-tests for statistical comparisons were performed using the t.test function  

 

6.2 dCas9-effector domains 
6.2.1 Construct synthesis 

All three used dCas-ED constructs (C49 – dCas9; C54 – DNMTA3-dCas9; C57 – TET1-

dCas9) were assembled by Gibson Cloning (NEB #E2611) following manufacturer guidelines. 

Source constructs were obtained from AddGene: dCas9 [85], DNMT3a [171], TET1 [205]. 

Linker (GGGGS), NLS (PKKKRKV) and M2-Flag (DYKDHDG) DNA sequences as well as 

adapter primers were ordered from Eurofins Genomics. Successful cloning was assessed by 

sequencing by GATC Biotech AG following general guidelines, western blot (M2-flag) and 

expression in HEK293 cells detected by immunostaining (6.2.5).  
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Plasmid maps and construct components can be reviewed here 

(\EpiToolConstructs_synthesis) 

 

construct effector domain description 

C49 non pcDNA_Tag_NLS_dCas_linker_STOP 

C54 DNMT3a C54_pcDNA_Tag_NLS_dCas_Linker_Dnmt3a 

C57 TET1 C57_pcDNA_Tag_NLS_dCas_Linker_Tet1 

 

 

6.2.2 Stable dCas9-ED expression in HEK293 cell line 

5 x 105 HEK293 cells were transfected with 5 µg plasmid DNA of the different dCas9-ED 

constructs (C49, C54, C57) with Lipofectamin 2000 (Invitrogen) following manufacturer 

guidelines. 48 hours post dCas9-ED plasmid transfection, transfected cells were selected for 

by addition of G418 (Geneticin) selection antibiotic to the culture medium at a concentration 

of 500 µg / ml. Stock cultures were frozen after four passages under constant G418 selection 

resulting in stable dCas9-ED expressing cell lines. 

 

6.2.3 Single guide RNA synthesis 

SgRNA expression plasmids were designed and synthesized following the recommended 

SAM target sgRNA cloning protocol by Konermann and colleagues [194]. In short: the 

sgRNA(MS2) cloning backbone (AddGene: #61424) was digested with BbsI. Oligos 

representing the sgRNA target site with 20 bases in sense (Os) with an CACCG overhang and 

anti-sense (Oas) with an AAAC overhang were ordered from Eurofins and annealed. For 

genome reference, we used the UCSC Genome Browser on Human Feb. 2009 

(GRCh37/hg19). Backbone and sgRNA defining insert were joined by a Golden Gate reaction. 

The resulting plasmid was expanded by bacterial transformation and assessed by sequencing. 

 

6.2.4 Stable dCas9-ED cell lines sgRNA transfection 

The HEK293 cells were transfected with the different sgRNA constructs by solid-phase 

reverse transfection as described in section 6.1.2, with Lipofectamine RNAiMAX being 

replaced by Lipofectamin 2000 (Invitrogen #11668027).  

 

6.2.5 Immunostaining of HEK293 cells for DNA, sgRNA and dCas9-ED 

HEK293 cells were fixed and stained at different time points between 3 and 9 days after 

transfection for the two components of the functional dCas9-ED by IF staining. Cells were 
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fixed by 4% PFA (Sigma-Aldrich #F8775) for 10 minutes in PBS with 0.5 % triton x-100 and 

blocked subsequently by 1% goat serum in PBS applied overnight. We used the mouse anti-

Flag M2 monoclonal antibody from Sigma (#F1804) as primary and the goat anti-mouse Alexa 

568 secondary antibody from Invitrogen (#A11004) to label the dCas9-ED in red. To detect 

the successful transfection with the sgRNA plasmid we applied rabbit anti-GFP monoclonal 

antibody from Cell Signaling (#2956) as primary and goat anti-rabbit Alexa 488 from Molecular 

Probes (#A11034) as secondary antibody. The DNA was stained by DAPI. Careful 

intermediate washes with PBS removed excess antibodies.  

 

6.2.6 Confocal imaging of IF stained epigenome targeted HEK293 cells 

Confocal imaging was conducted using the Zeiss LSM 780 under the control of 

AutofocusScreen macro (http://www.ellenberg.embl.de/apps/AFS/, 24.02.2016) acquiring 25 

Z-stacks per well with each comprising five slices per dCas9-ED-sgRNA combination (one 

dCas9-ED / one target gene). Each stack was acquired with a bright field image additionally 

to the DAPI (405 nm), sgRNA (488 nm) and dCas9-ED (568 nm) channel.  

 

6.2.7 Image analysis of dCas9-ED HEK293 cells and phenotype evaluation 

Raw HEK293 images of each sgRNA-dCas9-ED combinations were smoothened by Gaussian 

convolution and single nuclei were segmented by Otsu thresholding. Single segments were 

further processed and spitted if necessary by segment erosion. Single nuclei were classified 

by a DNN into cell cycle stages (inter-, pro-, met-, anaphase) as well as significant phenotypes 

(macronuclei and apoptotic condensed DNA). Additionally, the transfection state of the cell 

was evaluated by the presence of an dCas9-ED (M2-flag) and the sgRNA (GFP). Cells with 

both dCas9-ED components present were labeled double positive. KNIME workflow can be 

found here: (\EpiTool_confocal_nuclei_classification.knwf)  

Detected classes were further evaluated in comparison to non-targeted sgRNA transfected 

dCas9-ED cell lines as well as to non-transfected cells. All acquired time points (3, 5, 7 days 

post transfection) were combined during analysis. Cells with a significant increase (> 1.5 ratio) 

of a class between control cells were highlighted. KNIME workflow can be found here: 

(\EpiTool_Class_quantitative_analysis.knwf) 
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6.3 Materials 
6.3.1 Hardware 

6.3.1.1 Workstation 

hardware supplier description 
CPU Intel i9-7980XE 

GPU NVIDIA Titan xp 12 GB  

Hard drive (RAID0) WD WD-Red 8 TB 

RAM ECC 64 GByte DDR-4 PC2400 

Motherboard ASRock X299 Taichi  

Controller Intel SATA Controller, 10x 6 Gbit/s 

Hard drive Samsung 1 TB 960 Pro 

 

6.3.1.2 ASI diSPIM hardware 

hardware supplier description / number 
camera cooling Julabo F250 

quand filterset AHF 
F59-405 
F73-410 
F57-406 

sCMOS cameras Hamamatsu ORCA-Flash4.0 

laser Spectral Applied Research Laser Merge Module 5 (LMM5) 

 

6.3.2 Software and workflows 

6.3.2.1 Software 

name version description 
KNIME 3.5.5 Konstanz Information Miner 

hSPIM 1.0 diSPIM raw image processing tool 

MicroManager 1.4 microscope control software 

diSPIM plugin NB_20180116 nightly build MicroManager diSPIM controller plugin 

 

6.3.2.2 KNIME workflows 

name folder 

diSPIM_prescreen_stagescan_Pos_analysis Group\Bjoern_Isilon\BjoernEismann_PhD_Thesis_Data 

diSPIM_phenotype_screen_analysis_3D_spheroids Group\Bjoern_Isilon\BjoernEismann_PhD_Thesis_Data 

EpiTool_confocal_nuclei_classification Group\Bjoern_Isilon\BjoernEismann_PhD_Thesis_Data 

EpiTool_Class_quantitative_analysis Group\Bjoern_Isilon\BjoernEismann_PhD_Thesis_Data 
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6.3.2.3 Haralick features 

Haralick 
feature discription Haralick 

feature discription 

F1 contrast F8 sum entropy 

F2 angular second moment  F9 entropy 

F3 correlation F10 difference variance 

F4 sum of squares: variance F11 difference entropy 

F5 inverse difference moment F12 measure of correlation I 

F6 sum average F13 measure of correlation II 

F7 sum variance   

 

6.3.3 Source constructs  

construct source description / number 

#46911 AddGene Gilbert_pHR-SFFV-dCas [85] 

#71666 AddGene pdCas9-DNMT3A-EGFP [171] 

#49792 AddGene FH-TET1-pEF [205] 

#61424 AddGene sgRNA(MS2) cloning backbone 

 

6.3.4 Antibodies 

description source number description 

anti-Flag® M2 Sigma F1804 primary mouse anti Flag M2 monoclonal 
antibody 

anti-GFP Cell signaling 2956 primary rabbit anti GFP monoclonal antibody 

Anti-rabbit Alexa 488 Molecular Probes A11034 fluorescent secondary goat anti rabbit 
antibody  

Anti-mouse Alexa 568 Invitrogen A11004 fluorescent secondary goat anti mouse 
antibody 
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6.3.5 Consumables and solutions 

description supplier product number 

beads: PS-Speck™ Microscope  ThermoFisher Scientific P7220 

Cell Culture Plate, 96-Well Eppendorf 0030730119 

CELLSTAR® OneWell Plate™ Greiner bio-one 670180 

Cholera toxin Sigma-Aldrich (Merck)  

Collagen type IV solution Merck C5533 

culture flasks (25cm2) greiner bio-one  

DAPI Sigma-Aldrich (Merck) D9542 

DMEM/F12  ThermoFisher Scientific 11039 

G418 (Geneticin) Sigma-Aldrich (Merck) 4727878001 

Gibson Assembly Master Mix NEB E2611 

Insulin Life Technologies  

Lipofectamin 2000 Invitrogen 11668027 

Lipofectamine® RNAiMAX  ThermoFisher Scientific 13778075 

Matrigel Corning 354248 

OptiMEM ThermoFisher Scientific 51985026 

PCR plate, 96 well Kisker G060  

trehalose dehydrate Merck T9531 

trypsin Life Technologies 25200056 
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6.3.6 siRNA – Ambion 

gene name siRNA ID 1 siRNA ID 2 
ATOH8 s39645 s39643 

AURKA s196 s197 

BUD31 s17010 s17009 

CDC6 s2744 s2746 

CDCA5 s41424 s41425 

CEP85 s34959 s34961 

CTSB s3738 s3739 

DSE s26749 s26750 

EME1 s44946 s44945 

ESYT2 s33138 s33136 

F11R s27152 s27151 

FOXM1 s5250 s5249 

LGR4 s30840 s229314 

LHFP s19847 s19848 

LMNB2 s39477 s39476 

LRP1 s8278 s8280 

MAP7 s17263 s17262 

MEIS2 s8666 s8664 

MYC s9130 s9131 

PLK1 s448 s450 

PRC1 s17268 s17269 

RAN s11769 s11768 

RBBP4 s55169 s56872 

RGMA s32498 s32500 

TCF7 s13877 s13878 

TOP2a s14307 s14308 

TUFT1 s14510 s14509 

WBP1 s24095 s225969 
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7.3 Units 

 abbreviation unit 

weights	

pg picogram 

ng nanogram 

µg microgram 

mg milligram 

volume	

nl nanoliter 

µl microliter 

ml milliliter 

distance	

nm nanometer 

µm micrometer 

mm millimeter 

cm centimeter 

time	

sec seconds 

min minutes 

h hours 

rotation	force	
rpm revolutions per minute 

g relative centrifugal force 

temperature	
°C degree celsius 

RT room temperature (~21 °C) 

optics	
λ wavelength 

NA numerical aperature 

data	

GB gigabyte 

TB terabyte 

MB megabyte 

KB kilobyte 
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7.4 Abbreviations   
2D two-dimensional 

3D three-dimensional 

ASI Applied Scientific Instrumentation 

bNGS bulk next-generation sequencing 

bp base pairs 

BSA bovine serum albumine 

CLSM confocal laser scanning microscopy 

CNNs convolutional neuronal networks 

CO2 carbon dioxide  

CpG cytosine guanine dinucleotide 

CRISPR clustered regularly interspaced short palindromic repeats 

CSC cancer stem cell 

diSPIM dual inverted single plane illumination light sheet microscopy 

DL deep learning 

DNA  deoxyribonucleic acid 

DNMT DNA methyltransferases 

DNN deep neuronal networks 

dNTP deoxynucleotide triphosphate 

dps days post seeding 

ECM extracellular matrix 

ED effector domains 

EGF epidermal growth factor 

FEP fluorinated ethylene propylene 

FOI field of interest 

FOV field of view 

GFP green fluorescent protein 

HC  high-content 

HCS high-content screen 

HEK 293 human embryonic kidney cell line 293 

HeLa Henrietta Lacks cell line 

HT  high-throughput 

HTS high-throughput screen 

IF immunofluorescence 
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KNIME Konstanz Information Miner 

LSFM Light Sheet Fluorescence Microscopy  

me methylation 

MVR multi view reconstruction 

NA numerical aperture 

NB nightly built 

NLS nuclear localization sequence 

OPFOS orthogonal-plane fluorescence optical sectioning  

OTP one-touch-pipeline 

P Passage 

PBS phosphate buffered saline 

PBS phosphate-buffered saline 

PDTXs patient-derived tumor xenografts 

RF random forest 

RI refractive index 

RNA  ribonucleic acid 

RT room temperature 

sCMOS scientific complementary metal-oxide semiconductor 

SCS single cell sequencing 

SDM Spinning-disk (Nipkow disk) confocal microscopes 

sgRNA single guide RNA 

SPIM selective plane illumination microscopy 

ssOPM stage-scanning OPM approach 

SSA stage scan acquisition 

SyncA synchronous piezp/slice acquisition  

TALEN Transcription Activator-Like Effector Nuclease 

TET1 Ten-eleven translocation methylcytosine dioxygenase 1 

TP time point 

tSNE t-distributed stochastic neighbor embedding  

TSS transcription start site 

ZF zinc finger DNA binding proteins 
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9 Supplementary Data 
9.1 Supplementary Figures 

 

Supplementary Figure 1 – Matrigel displacement 

Comparison of the positioning of beads immersed in matrigel at the beginning of the acquisition (TP0 - green) and 
at the last time point (TP298 - red) 24 hours later. Displacement was registered to the center of the image.  

 

 

 

Supplementary Figure 2 – Transfer of registration matrix and PSF between positions 

A key feature of the workflow is the separation of beads and sample. Position 0 and 39 of each acquisition were 
dedicated to beads mixed with Matrigel. When the registration matrix and PSF of both bead positions (Pos0 and 
Pos39) are applied to Pos0 for image processing, the shift in the resulting image is less than a pixel (< 0.325 µm) 
(scale bar = 50 µm).  
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Supplementary Figure 3 – VGG-based convolutional neural network 

Used convolutional neural network for nuclei cell cycle stage classification, comprised of convolutional layers and 
maxpooling layers. The output is combined by two fully-connected layers.  

 

 

 
Supplementary Figure 4 – maximum projection DL classification 

Utilizing the maximum projection of a nuclei segment for a more convenient and less computational costly cell 
phase classification results in a significant decreased accuracy of only 75%.  
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Supplementary Figure 5 – dying cell misclassification 

Cell undergoing apoptosis are classified as prophase (green) and anaphase (red). Sample: Aurora kinase A knock-
down spheroid at time point 1 to 26 of HCS at five minutes’ interval.  
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Supplementary Figure 6 – Ratio of cell phase upon knock-down 

Bar plot for each all knock-down samples depicting the ratio of the four classified cell cycle stages.  
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Supplementary Figure 7 – Violin plot of class distribution within the spheroid 

Summary of the class distribution within the spheroid for all samples depicted by a violin plot.   
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9.2 Supplementary Tables 

Supplementary Tables 1 - Selected target genes 

Target genes were selected due to defined characteristics. They needed to be associated with the cell cyclce. The 
selected target genes also needed to display an expression regulation by either correlated or anti-correlated CpG 
methylation level with high Pearson correlation value (R).  

target	
gene	 name	

Ambion	
siRNA#	

regulatory	
CpG	

CpG	properties	
(expression/-

me)	
Ravg	=	

ATOH8	 Protein	atonal	homolog	8	 s39645	/	
s39643	

1	 anti-correlated	 0.52	

AURKA	 Aurora	kinase	A	 s196	/	
s197	

2	 correlated	/	
anti-correlated	

0.52	

BUD31	 Protein	BUD31	homolog	 s17010	/	
s17009	

1	 correlated	 0.45	

CDC6	 Cell	division	control	protein	6	
s2744	/	
s2746	 2	 anti-correlated	 0.65	

CDCA5	 Sororin	
s41424	/	
s41425	 6	 correlated	 0.70	

CEP85	 Centrosomal	protein	of	85	kDa	
s34959	/	
s34961	 5	

correlated	/	
anti-correlated	 0.64	

CTSB	 Cathepsin	B	 s3738	/	
s3739	 1	 anti-correlated	 0.53	

DSE	 Dermatan	Sulfate	Epimerase	 s26749	/	
s26750	

1	 anti-correlated	 0.54	

EME1	 Essential	Meiotic	Structure-Specific	
Endonuclease	1	

s44946	/	
s44945	

1	 correlated	 0.66	

ESYT2	 Extended	synaptotagmin-2	 s33138	/	
s33136	

2	 anti-correlated	 0.75	

F11R	 F11	Receptor	 s27152	/	
s27151	

6	 anti-correlated	 0.55	

FOXM1	 Forkhead	Box	M1	
s5250	/	
s5249	 1	 correlated	 0.68	

LGR4	
Leucine-Rich	Repeat	G.Prot-Coupled	
Receptor	4	

s30840	/	
s229314	 1	 anti-correlated	 0.61	

LHFP	 Lipoma	HMGIC	Fusion	Partner	
s19847	/	
s19848	 1	 correlated	 0.57	

LMNB2	 Lamin	B2	 s39477	/	
s39476	 1	 anti-correlated	 0.60	

LRP1	 LDL	Receptor	Related	Protein	1	 s8278	/	
s8280	

4	 anti-correlated	 0.70	

MAP7	 Ensconsin	 s17263	/	
s17262	

2	 correlated	 0.67	

MEIS2	 Meis	Homeobox	2	 s8666	/	
s8664	

7	 correlated	/	
anti-correlated	

0.57	

MYC	 Myc	proto-oncogene	protein	 s9130	/	
s9131	

2	 anti-correlated	 0.68	

PLK1	 Polo-like	kinase	1	
s448	/	
s450	 4	 correlated	 0.64	
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PRC1	 Protein	regulator	of	cytokinesis	1	
s17268	/	
s17269	 1	 anti-correlated	 0.73	

RAN	 GTP-binding	nuclear	protein	Ran	
s11769	/	
s11768	 1	 anti-correlated	 0.60	

RBBP4	 Histone-binding	protein	RBBP4	
s55169	/	
s56872	 1	 anti-correlated	 0.57	

RGMA	 Repulsive	Guidance	Molecule	Family	
Member	A	

s32498	/	
s32500	 7	 correlated	/	

anti-correlated	 0.70	

TCF7	 Transcription	factor	7	 s13877	/	
s13878	

2	 anti-correlated	 0.71	

TOP2A	 Topoisomerase	II	Alpha	 s14307	/	
s14308	

2	 correlated	 0.66	

TUFT1	 Tuftelin	 s14510	/	
s14509	

2	 anti-correlated	 0.59	

WBP1	 WW	Domain	Binding	Protein	1	
s24095	/	
s225969	 1	 correlated	 0.52	

 

 

Supplementary Tables 2 – 23 factors describing spheroid phenotype 

A total of 23 factors were calculated to define the phenotype of the spheroid throughout the time lapse. These 
factors describe properties of the whole spheroid, spheroid development and single nuclei features throughout the 
twenty-four hour time laps.  

factor	 name	 Description	
global	or	
nuclei	
feature	

1	 spheroid	growth	rate	(nuclei)	
increase	of	nuclei	count	over	the	course	of	
the	time	lapse	 global	

2	 prophase	ratio	 fraction	of	nuclei	classified	as	“prophase”	
from	all	nuclei		 nuclei	

3	 metaphase	ratio	 fraction	of	nuclei	classified	as	“metaphase”	
from	all	nuclei		

nuclei	

4	 anaphase	ratio	 fraction	of	nuclei	classified	as	“anaphase”	
from	all	nuclei		

nuclei	

5	 avg.	cell	volume	 the	nuclei	size	in	voxel	number	of	all	nuclei	in	
all	cell	phases	

global	

6	 prophase	segment	volume	
the	nuclei	size	in	voxel	number	of	all	nuclei	
classified	as	“prophase”	 nuclei	

7	 metaphase	segment	volume	
the	nuclei	size	in	voxel	number	of	all	nuclei	
classified	as	“metaphase”	 nuclei	

8	 anaphase	segment	volume	
the	nuclei	size	in	voxel	number	of	all	nuclei	
classified	as	“anaphase”	 nuclei	

9	 interphase	segment	volume	
the	nuclei	size	in	voxel	number	of	all	nuclei	
classified	as	“interphase”	 nuclei	

10	 spheroid	volume	 the	spheroids	volume	in	voxel	throughout	
the	time	lapse	 global	

11	 avg.	segment	volume	 the	nuclei	size	in	voxel	number	of	all	nuclei	in	
all	cell	phases	

global	
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12	 spheroid	growth	rate	(volume)	
increase	in	volume	of	the	spheroid	hull	
throughout	the	time	lapse	 global	

13	 spheroid	compactness	
factor	describing	the	volume	in	relation	to	
the	largest	extend	 global	

14	 convexity	
factor	describing	the	volume	in	relation	to	
the	surface	 global	

15	 nuclei	migration	speed	 average	movement	of	all	nuclei	in	3D	space	
in	pixel	per	time	point		 global	

16	 interphase	transition	duration	 average	duration	of	a	nuclei	in	“interphase”	 nuclei	

17	 prophase	transition	duration	 average	duration	of	a	nuclei	in	“prophase”	 nuclei	

18	 metaphase	transition	duration	 average	duration	of	a	nuclei	in	“metaphase”	 nuclei	

19	 anaphase	transition	duration	 average	duration	of	a	nuclei	in	“anaphase”	 nuclei	

20	 total	number	cell	cycle	transitions	 total	number	of	biological	possible	cell	cycle	
phase	transitions		

global	

21	 normal	/	abnormal	transition	 faction	of	cell	cycle	phase	transitions,	that	
are	biological	impossible	

global	

22	 spheroid	roundness	 factor	describing	shape	of	spheroid	 global	

23	 size	/	spheroid	roundness	ratio	 ratio	of	size	and	roundness	 global	

 

 

Supplementary Tables 3 – Number of normal and abnormal transition detected 

target	gene	 normal	transition	 abnormal	transition	 ratio	 n	=	spheroids	

NC	 146,101	 1,380	 0.99	 12	

EMPTY	 192,450	 1637	 0.99	 12	

INCENP	 4,193	 317	 0.92	 12	

ATOH8	 39,421	 514	 0.99	 6	

AURKA	 35,123	 454	 0.99	 6	

BUD31	 33,567	 368	 0.99	 6	

CDC6	 56,024	 1,476	 0.97	 6	

CDCA5	 31,556	 494	 0.98	 6	

CEP85	 23,590	 520	 0.98	 6	

CTSB	 49,919	 1,317	 0.97	 6	

DSE	 24,199	 578	 0.98	 6	

EME1	 21,214	 362	 0.98	 6	

ESYT2	 39,147	 873	 0.98	 6	
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F11R	 63,331	 701	 0.99	 6	

FOXM1	 67,996	 820	 0.99	 6	

LGR4	 47,385	 577	 0.99	 6	

LHFP	 42,949	 630	 0.99	 6	

LMNB2	 67,367	 752	 0.99	 6	

LRP1	 38,655	 571	 0.99	 6	

MAP7	 28,768	 525	 0.98	 6	

MEIS2	 31,524	 1,326	 0.96	 6	

MYC	 42,240	 703	 0.98	 6	

PLK1	 21,475	 450	 0.98	 12	

PRC1	 12,712	 205	 0.98	 6	

RAN	 35,225	 251	 0.99	 6	

RBBP4	 62,204	 465	 0.99	 6	

RGMA	 56,631	 792	 0.99	 6	

TCF7	 53,754	 573	 0.99	 6	

TOP2A	 43,639	 484	 0.99	 6	

TUFT1	 73,423	 782	 0.99	 6	

WBP1	 51,438	 784	 0.98	 6	
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