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Abstract

The detailed mass distribution in galaxies provides important constraints on the

nature of dark matter (DM), especially in relation to the baryonic content and

feedback e�ciency of a galaxy. In this thesis I use multiple kinematic tracers and a

diverse set of dynamical models to simultaneously constrain DM density profiles, halo

shapes and the evolutionary history of galaxies. I first show that the most common

and advanced stellar dynamical models can reproduce the circular velocities (as

traced independently by molecular gas rotation curves), to within ⇠10% accuracy.

I further use high resolution observations to understand the sources (gravitational,

feedback driven) of high velocity dispersion ionised gas. By incorporating realistic

birth conditions for globular clusters (GCs) and flexible, self-consistent velocity

distribution functions for the Fornax dSph, I am able to understand the survival

of its five GCs. The comprehensive evolutionary model suggests that Fornax has

a large DM core (&1.5 kpc) and has undergone a past merger of mass ratio ⇠1:2

to 1:5. Finally, by combining stellar and gas kinematic tracers together in a single

dynamical model, I provide evidence that the isolated dwarf irregular galaxy WLM

has a DM halo that has both an inner density core (� ⇠ 0.3± 0.1), and a prolate axis

ratio of 2:1. The recovered orbit structure (tangential anisotropic) is very similar

to nearby dSph galaxies - suggesting that internal processes rather than tidal origin

may lead to this dynamical configuration. The DM halo profile is consistent with

the ⇤CDM cosmological picture when baryonic feedback is included. The prolate

geometry is di�cult for MOND and at the same time challenges self-interacting

DM (SIDM) theories to create a thermalised DM core of the observed size, without

sphericalising the halo. From both the dynamical models on WLM and Fornax, I

am able to provide constraints on the particle mass of Bose-Einstein condensate

DM models to 1.1 � 1.3 ⇥ 10�22 eV/c2, and interaction cross section for (velocity

independent) SIDM particles of 0.8 . �/mSIDM . 3.1 cm2/g - though it remains to

be seen that these can produce the proper core size and shape in the DM halos we

find. Application of these new techniques and models to more galaxies will provide

even tighter constraints on dark matter particle models.
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Zusammenhang

Die detaillierte Massenverteilung in Galaxien liefert wichtige Einschränkungen für

die Natur der Dunklen Materie (DM), insbesondere in Bezug auf den Baryongehalt

und die Rückkopplungse�zienz einer Galaxie. In dieser Dissertation verwende ich

mehrere kinematische Tracer und verschiedene dynamische Modelle, um gleichzeitig

DM-Dichteprofile, Halo-Geometrie und die Evolutionsgeschichte von Galaxien

einzuschränken. Ich zeige zunächst, dass die gängigsten und fortschrittlichsten

stellaren dynamischen Modelle die Kreisgeschwindigkeiten (unabhängig verfolgt

von molekularen Gasrotationskurven) mit einer Genauigkeit innerhalb von ⇠10%

reproduzieren können. Ich verwende auch hochauflösende Beobachtungen, um die

Quellen (gravitationsbezogen, rückkopplungsgesteuert) von ionisiertem Gas mit

hoher Geschwindigkeitsdispersion zu verstehen. Durch die Einbeziehung realistischer

Geburtsbedingungen für Kugelsternhaufen (GCs) und flexibler, selbstkonsistenter

Geschwindigkeitsverteilungsfunktionen für den Fornax dSph kann ich das Überleben

seiner fünf GCs verstehen. Das umfassende Evolutionsmodell lässt darauf schließen,

dass Fornax einen großen DM-Kern (&1,5 kpc) hat und zuvor eine Verschmelzung

des Massenverhältnisses ⇠1:2 bis 1:5 durchlaufen hat. Schließlich gebe ich durch die

Kombination von Stern- und Gas-Kinematitracern in einem einzigen dynamischen

Modell den Beweis, dass der DM-halo der isolierte unregelmäßige Zwerggalaxie

WLM einen inneren Kern (� ⇠ 0.3 ± 0.1) und ein verlängerte Achsenverhältnis

von 2:1 hat. Die abgeleitete Orbitstruktur (tangential Anisotropie) ist sehr ähnlich

zu nahe gelegenen dSph-Galaxien - was darauf hindeutet, dass interne Prozesse

anstelle des Gezeitenursprungs zu dieser dynamischen Konfiguration führen können.

Das DM-Halo-Profil stimmt mit dem ⇤CDM kosmologischen Bild überein, wenn

baryonisches Feedback enthalten ist. Die verlängerte Geometrie ist für MOND

schwierig und fordert gleichzeitig selbst interagierende DM (SIDM)-Theorien heraus,

einen thermisierten DM-Kern der beobachteten Größe zu erzeugen, ohne den Halo

zu kugeln. Bei beiden dynamischen Modellen von WLM und Fornax kann ich die

Teilchenmasse von Bose-Einstein-Kondensat-DM-Modellen auf 1, 1�1, 3⇥10�22 eV/c2

und die Interaktionswirkungsquerschnitt für (geschwindigkeitsunabhängige) SIDM-

Partikel von 0, 8 . �/mSIDM . 3.1 cm2/g beschränken - obwohl es bleibt abzuwarten,

ob diese die richtige DM-Kerngröße und Halo-Geometrie gleichzeitig produzieren

können, die wir finden. Die Anwendung dieser neuen Techniken und Modelle auf

mehr Galaxien werden noch stärkeren Einschränkungen für Modelle der dunklen

Materie führen.
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Chapter 1

Introduction

1.1 Galaxies: overview

Less than a hundred years ago, distances to ‘clouds’ in the night sky that can be

seen with our naked eyes were first determined. Starting with M31, then known as

the ‘Andromeda nebula’, Opik (1922) estimated a distance of 450 kpc, establishing

the fact that it resides outside of the Milky Way galaxy that we live in. With the

then new 100 inch Mt. Wilson telescope, Hubble (1929) was able to resolve the

outer region of M31 into ‘swarms of faint stars’, confirming its nature as a stellar

system. Many more nebulae were found to be extra-galactic stellar systems during

those years (e.g. M87, M33; Hubble 1923, 1926a). Ba✏ing to the human minds,

these systems are gravitationally bound system that contain more than millions of

stars, as well as interstellar dust and gas, much like our own Milky Way. They are

galaxies outside of our own Galaxy.

These galaxies are found to come in various shape and forms, for which Hubble

(1926b) established a classification known as the Hubble sequence. It classifies

galaxies into two main groups based on their morphologies: the ellipticals (E) that are

spherical or ellipsoidal featureless blobs and the spirals (S) that contains spiral arms;

these classes are often referred to as early and late type galaxies respectively. The

ellipticals are then further labelled based on their observed ellipticity: 10⇥(1-b/a)

where b and a are lengths of the short and long axes respectively, such that an E0

galaxy would be observed as spherical and an E6 galaxy would be observed as more

elliptical. Since such an apparent ellipticity can be the result from pure projection

e↵ects, Kormendy & Bender (1996) revised the classification of ellipticals to include

the boxy-distortion (b) and the disky-distortion (d) as illustrated in Figure 1.1.
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Figure 1.1: A representation of the revised Hubble sequence by Kormendy & Bender

(1996).

On the other hand, spirals are separated into two groups: the barred (SB) and

the unbarred spirals (S), with the barred galaxies consisting of a central bar-shaped

structure composed of stars. Other than bars, common features of spirals include

an extended flat stellar disk and a central round structure primarily composed of

old stars known as the bulge. The spirals are further classified by the tightness of

their spiral arms. Spirals with tightly wounded spiral arms are known as Sa or SBa

and those with open spiral arms are known as Sc or SBc. Connecting the ellipticals

and the spirals are the lenticular galaxies S0. Similar to spirals, lenticulars contain

stellar disks and bulges, giving them lens-like shapes when viewed edge on. Unlike

spirals however, lenticulars do not show signs of spiral arms.

The Hubble sequence is still in use today not only for historical reasons, but

also as various physical parameters are found to be tightly correlated with galaxy

morphologies. The most characteristic ones include: mass or luminosity, colour,

metallicities and age. We shall dive deeper into discussion of the correlations between

galaxy morphologies and other physical parameters in §1.2.1.
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1.1.1 Galaxy formation in the ⇤CDM framework

Galaxies are thought to form hierarchically in an Universe that can be described

by the ⇤ Cold Dark Matter (⇤CDM) model. Multiple lines of evidence suggest

that the Universe began with the big-bang and a subsequent rapid inflation, and

that the universe has been expanding in all directions ever since. The expansion

is thought to be driven by a dark energy with constant energy density ⇤. At the

present-day, such dark energy contributes up to ⇠ 70% of the total energy density

in the Universe (with ⌦⇤ = 0.6889± 0.0056, Planck Collaboration et al. 2018). The

remaining energy density is thought to be composed of baryonic matter (⇠5%), cold

dark matter (⇠26%) and neutrinos (<0.3%). The ‘cold’ in cold dark matter implies

that dark matter has negligible streaming velocities when structure formation is

considered. Standard models for CDM particles also do not interact through any

means other than gravitational forces. Proposed candidates for CDM particles

include for example Weakly Interacting Massive Particles (WIMPs), pressure-less

axions and Massive Compact Halo Objects (MACHOs) such as free floating black

holes.

As the universe is expanding, the overdensities in dark matter (DM) quantum

fluctuations grow through gravitational accretion to form sheets, filaments and

haloes. These DM haloes at first grow through di↵use accretion of dark matter and

gas from the cosmic web (of filaments). The size of a DM halo first grows with the

expansion of the universe until the halo has accreted enough mass to go through

gravitational collapse. The point at which a DM halo reaches its maximum size is

known as ‘turn-around’.

The number density of DM haloes with respect to halo mass is known as the

mass function (n(Mhalo)dMhalo), which is found to be decreasing monotonically with

halo mass, as shown on the left panel of Figure 1.2 (Jenkins et al. 2001). This

means that there are more low-mass haloes than high-mass haloes and this can be

reproduced analytically with the extended Press-Schechter formalism1 (Bond et al.

1991; Lacey & Cole 1993). These haloes are then the locations where galaxies can

1The original Press-Schechter formalism relates the halo mass function to the volume density
of the initial density field fluctuation of above some density threshold (Press & Schechter 1974).
While successful in predicting the form of the halo mass function, its prediction is discrepant with
simulated values by a factor of two. Such discrepancy is caused by ‘cloud-in-cloud’ problem; when
underdense regions are enclosed within overdense regions, they and the surrounding patches of
overdense regions can be counted as parts of one larger collapsed object. The extended Press-
Schechter formalism applies excursion set theory on the Press-Schechter formalism, allowing mass
assignments to virialised objects on various spatial scales.
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form.

In the standard picture of gas accretion, infalling gas onto the haloes is

shock-heated to the haloes’ virial temperature and mixed within the halo until its

virialisation, this is known as the ‘hot-accretion phase’. As the gas cools down, it

then falls onto the centre of the halo and and can contribute to the formation of the

galaxy’s stellar component. High resolution cosmological simulations have however

shown that such virialisation happens only for high mass haloes (e.g. Kereš et al.

2005; Brooks et al. 2009). Haloes of Mhalo . 1011 M� are shown to be dominated

at most redshifts by gas accreted through ‘cold-flows’ that stay well-below the

virial temperature. Even for high mass haloes at particular redshifts, filaments can

develop within the dense haloes to allow cold flow accretion towards the halo centres,

providing high-angular momentum materials for earlier growth of galaxies.

DM haloes and galaxies also grow hierarchically through halo mergers. While

mergers between two DM haloes can happen at all mass ratios, it is seen in

simulations that most of the mass growth through mergers come from mergers

of mass ratio 0.02 . Msat/Mhalo . 0.3 (e.g. Boylan-Kolchin et al. 2008). This is

because minor mergers (Msat/Mhalo . 0.3) happen more often than major mergers

(Msat/Mhalo & 0.3), a direct result from the monotonically decreasing power-law halo

mass function.

After infall, the satellites can survive as substructures in the host. In which

case they serve as useful probes to the accretion history of the halo, providing

information on parameters such as the infall time and orbit types of the satellites.

The survival timescale and subsequent evolution of satellites are influenced by tides

and ram pressure stripping exerted by the host halo, and therefore in turn allow us

to probe the underlying gravitational potential of the host.

1.1.2 DM haloes in pure ⇤CDM cosmological simulations

Density profile

The hierarchical assembly of DM haloes implies self-similarity of structure and

substructure across a wide range of halo masses in a pure DM picture. In particular,

the density profile ⇢(r) of DM haloes of all masses are found, in cosmological N -body

simulations, to ubiquitously follow a Navarro-Frenk-White (NFW) profile (Navarro

et al. 1996):

⇢NFW(r) = ⇢0
⇣ r

rs

⌘�1⇣
1 +

r

rs

⌘�2

, (1.1)
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Figure 1.2: Left: Simulated halo mass function under ⇤CDM cosmology by Jenkins et al.

(2001). Right: Density profile of simulated DM haloes of di↵erent masses under the ⇤CDM

cosmology. The curves through the simulated data are best fitted NFW profiles from

(Navarro et al. 1996).

which is characterised by only two parameters: the scale radius rs and the

characteristic density ⇢0. The characteristic of the NFW profile is a central cusp

with logarithmic slope of @ ln ⇢/@ ln r ⇠ �1 and an outer slope of ⇠ �3., as shown

on the right panel of Figure 1.2. (Modifications to the inner or outer slopes can

occur due to the impact of baryons, more on this in §1.5.2.)

Not only is the density profile of halos of a wide range of masses self-similar in

terms of their density profiles, but ⇢0 and rs are further found to be correlated such

that DM haloes in the universe can be described completely with just one parameter.

Such correlation can be expressed as a mass-concentration (M � c) relation, where

the mass of a DM halo is characterised by the virial mass Mvir, i.e. the spherically

enclosed mass of the halo within virial radius rvir; and the concentration c is defined

for NFW haloes as the ratio between rs and rvir: c ⌘ rvir/rs. The virial radius rvir
itself is often defined as the radius within which the average density of the halo drops

to �c⇢c, where �c is known as the overdensity constant and ⇢c is the critical density

of the Universe2. With a suite of N -body simulations using cosmological parameters

2While �c is formally defined through the density parameter ⌦ ⌘ ⇢/⇢c, the ratio between the
actual observed density of the universe ⇢ relative to the critical density ⇢c, and hence is cosmological
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(e.g., ⌦⇤, ⌦m, �8) derived from the Planck satellite, Dutton & Macciò (2014) found

the M � c relation to be:

log10 c = 1.025� 0.07 log10(Mvir/[10
12h�1M�]). (1.2)

This self-similarity is rather remarkable, as together with the NFW profile, one can

completely describe the density profile of a DM halo through its Mvir.

Halo shape

DM haloes under the ⇤CDM cosmology are found through analytical models of

Gaussian random fields as well as pure DM N -body simulations (e.g. Bardeen et al.

1986; Dubinski 1994) to be triaxial in geometry, and closer to being prolate than

oblate. Given three orthogonal axes: a � b � c as the long, intermediate and short

axes, a prolate halo is characterised by two short axes and one long axis (a > b = c),

as opposed to an oblate geometry, which is characterised by two long axes and one

short axis (a = b > c).

While the angular momentum is generally found to be perpendicular to the

short axis c, the shape of the DM haloes are found not to be rotationally supported

(e.g. Warren et al. 1992; Tormen 1997). Instead, it is proposed that the shapes of

DM haloes are supported by anisotropic velocity dispersion. By following satellite

accretion events through time in their cosmological simulation, Allgood et al. (2006)

suggested that the source of the anisotropic distribution of velocity dispersion is

directional accretion and large scale cosmological torques.

Spin parameter

Another characterisation of a DM halo is its spin, characterised by the dimensionless

spin parameter � as

� ⌘ |J|E1/2

GM5/2
, (1.3)

where G is the gravitational constant, J is the angular momentum, E and M are

the total energy and mass of the halo (Peebles 1969). The spin parameters of DM

haloes in ⇤CDM cosmological simulations have been found to be halo mass- and

environment-independent, with a log-normal distribution that peaks at �mean ⇠ 0.042

Bullock et al. (2001), acquired through tidal interactions with neighbours (e.g.

model dependent, �c = 200 is typically adopted as a common definition. In which case the virial
radius and the virial mass are also labelled as r200 and M200.
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Doroshkevich 1970; White 1984) and mass accretion during mergers (Hetznecker &

Burkert 2006).

The spin acquired by a DM halo is intimately related to the spin of the galaxy

formed within the halo. Shock-heated accreted gas in particular is expected to

have the same angular momentum as the DM halo, setting the available angular

momentum for the formation of rotationally supported disks as well as disk

parameters such as their size and rotation velocities (Mo et al. 1998). Additional

components that come into play include the aforementioned cold flow accretion

which can add pristine high angular momentum material that support larger disks

(Brooks et al. 2009), as well as angular momentum transfer between disks and DM

haloes caused by asymmetric features such as bars and/or triaxial haloes.

1.2 Understanding galaxies through dynamics

1.2.1 Scaling relations in galaxies: relationships between

dynamical, spatial and chemical properties

While galaxies exist over a broad range of sizes, masses and morphologies, as well as

chemical and dynamical properties, their distribution throughout the vast parameter

space is not uniform. Instead, physical laws apply such that the various parameters

of galaxies end up being correlated with one another. Such correlations are known

as scaling relations of galaxies and are useful in understanding the evolutionary

processes that alter galaxies in their lifetime.

The Fundamental Plane

The basic observable global structural parameters of a galaxy are its luminosity

L, apparent size R? and the rotation velocity V . For disk galaxies, these three

properties are found to lie mostly on a specific plane within the 3-dimensional

(L,R?, V ) space such that R? / L1/3, V / R? and L / V 3. Such a plane is known

as the Fundamental Plane (FP) and the latter of the three correlations is also known

as the Tully-Fisher Relation (TFR, Tully & Fisher 1977)3. We show in Figure 1.3

3The more fundamental formation of the TFR is known as the baryonic-TFR (BTFR), which
relates the total baryonic masses Mb to the velocities of galaxies. Lelli et al. (2019) show that
depending on the chosen representative velocity, the power index can range from 3 to 4, with the
tightest relation given by the velocities of the flat part of the rotation curve vf as Mb / v3.85±0.09

f .
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Figure 1.3: The projections of the Fundamental Plane of disk galaxies (Courteau et al.

2007). The di↵erent colours correspond to di↵erent morphologies, the black straight line is

the best-fit to the scaling relations with the dashed lines indicating the 2� scatter.

the 2D projection of the FP assembled by Courteau et al. (2007) using 1300 field

and cluster spiral galaxies, where they have parametrised LI as the total luminosities

in I-band images, RI as the disk scale lengths from I-band images and V as the

maximum velocities reached in HI rotation curves.

The FP of disk galaxies is an observed dynamical phenomenon and can be

rewritten with the more fundamental parameters: stellar mass M? and stellar

specific angular momentum j?, where j? ⌘ |J?|/M? and J? is the total stellar angular

momentum. A correlation between the two: j? / M2/3
? , was first observed by Fall

(1983) with 44 spiral and 44 elliptical galaxies, and extended to larger samples by

Romanowsky & Fall (2012). We show the j? � M? they found on the left panel

of Figure 1.4. Since j? / R?V by definition and assuming that mass follow light

L / M?, one can rewrite j? / M2/3
? as L2/3 / R?V . Under the crude assumption

8
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Figure 1.4: The j? � M? scaling relation from Romanowsky & Fall (2012). Left: The

j?�M? relation in disk galaxies. Right: Grey points are elliptical galaxies, they have lower

angular momentum given the same M? and therefore lie below the j? �M? relation of disk

galaxies.

of spherical symmetry V / M1/3 and by assuming that M?/M = const, one can

recover the FP relations between (L,R?, V ).

This correlation may be expected when one considers a stellar analog to the

halo spin parameter described in §1.1.2:

�? ⌘
|J?|E1/2

GM5/2
?

. (1.4)

By rearranging the terms, the specific angular momentum can be expressed as

j? / �?M
2/3
? . A j? / M2/3

? relation hence implies a stellar mass-independence of �?.

In other words, the fundamental parameters of a disk galaxy: mass, size and

angular momentum, are all interlinked as a result of the mass independence of

�?. The occurrence of such elegance may be understood in two steps. First, as

described in §1.1.2, DM haloes across the wide range of virial masses have the same

distribution of spin �halo. Second, the spin from the DM halo �, would have to be

imparted onto the disk, �? in similar fractions across galaxy masses in order to

preserve the mass independence of the latter. By constructing mass models for a

large sample of disk galaxies of virial masses log10(Mvir/M�) = 11.3� 12.7, Dutton

& van den Bosch (2012) reconfirmed that �?/� ⇠ 0.6 needs to be constant across

halo masses, in order to reproduce observed scaling relations.
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Possible causes for the di↵erence of ⇠ 40% could be loss of angular momentum

due to dynamical friction during galaxy formation or feedback processes (e.g.

Governato et al. 2010). Given the mass-dependent nature of dynamical friction and

feedback processes, the reason behind the required constancy in the spin loss is not

straightforward to understand. More study into the underlying physical mechanism

is needed to understand such phenomena. For example, the inside-out cooling of

gas during the hot-accretion phase is likely to cause the more massive galaxies to

lose more angular momentum. Dutton & van den Bosch (2012) suggested that the

constancy in �? may then be regulated by disk instabilities, which prevent high-mass

systems with too low angular momentum to form disks.

Such a regulation could mean that the mass independence of �? should relax

as we examine galaxies that are not purely disk-like. When closely examining the

left panel of Figure 1.4, the galaxies with a higher bulge fraction such as the Sa-Sab

galaxies seem to be shifted in the j?�M? plane from the thin disks Sc-Sm. The shift

is even more obvious when we compare Sb and Sc galaxies with elliptical galaxies,

as shown as grey points in the right panel of Figure 1.4.

The FP also exists for elliptical galaxies. Due to their relatively low rotation,

gravitational support is provided by random motion instead the amount of which

is characterised by the velocity dispersion. The dynamical parameter used for

the ellipticals’ FP is therefore the central velocity dispersion �0, instead of the

rotation velocity V . Specifically, a relationship between the luminosity and velocity

dispersions in ellipticals is first found by Faber & Jackson (1976) and is known as the

Faber-Jackson relation L / �4. The FP for ellipticals are first introduced by Bender

et al. (1992) as Re / �1.4
0 hIei�0.85 for the ellipticals in the Virgo cluster, where Re is

the e↵ective radius and hIei is the mean surface brightness within Re. As such the

proportionality constants are di↵erent from the ones in the FP of disk galaxies.

Stellar ages, metallicities and their relationship with dynamics

Scaling relations also exist in between the structural and chemical properties of

galaxies. While there is a general trend in which massive galaxies tend to also be

redder, galaxies are known to lie mostly in two areas within the colour-mass plane.

Using >25000 galaxies from the combined data of SDSS, GALEX and Galaxy Zoo,

Schawinski et al. (2014) demonstrate this bimodality in the (u � r) �M? space as

shown in Figure 1.5. Separated by two green lines on the top left panel are the

two populations of galaxies, with the ones above the green lines known as the ‘red

sequence’ and the ones below known as the ‘blue cloud’. Schawinski et al. (2014) also

show that the early-type galaxies lie mostly in the red sequence and the late-type
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Figure 1.5: Top right: The mass metallicity relation of galaxies observed from the CALIFA

survey from González Delgado et al. (2014). Other panels: u� r colour versus M? contour

plots from Schawinski et al. (2014) illustrating the bimodality between the early and late

type galaxies from the SDSS survey.

galaxies lie mostly in the blue cloud, as demonstrated by the left and right panels on

the bottom row of Figure 1.5 respectively.

The di↵erence in colours can be caused by a di↵erence in stellar ages and/or

metallicities. Less massive late-type spiral galaxies may therefore be younger and/or

more metal-rich while the more massive early-type ellipticals may be older and/or

more metal-poor. The correlation between mass with both colours and ages have

been seen with >175000 SDSS galaxies by Gallazzi et al. (2005). González Delgado

et al. (2014) reconfirm the correlations using spectroscopic data of 300 galaxies from

the CALIFA IFU survey, as shown in the top right panel of Figure 1.5.

Other than correlations with overall structure parameters such as stellar mass
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Figure 1.6: Age-velocity relation in the Solar neighbourhood observed by GAIA survey

from Yu & Liu (2018). Here (R,�, z) denote the cylindrical coordinates along the radial,

azimuthal and vertical directions. The stellar velocity dispersion � along all three directions

increases with stellar age. Such relation holds at both low (|z| < 270 pc) and high (|z| >
270 pc) disk heights, as well as for both the metal poor (orange) and metal rich (purple)

stars.

and morphology, chemical properties of galaxies also have correlations with internal

dynamical properties. Within the Milky Way, stellar ages are further found to

be correlated with velocity dispersions such that older stars tend to have a larger

velocity dispersion while younger stars tend to have a smaller velocity dispersion.

This is known as the age-velocity dispersion relation (AVR) and was already known

decades ago from studying stars in the solar neighbourhood (e.g. Strömberg 1946;

Wielen 1977). With recent advancement from GAIA, Yu & Liu (2018) found that

not only does the AVR hold for both metal-rich and metal-poor stars, with the AVR

of the metal-rich stars being steeper, the AVR also holds for all three dispersion

components (z, �, R in cylindrical coordinates, as shown in Figure 1.6).

The AVR can be interpreted as a result of disk heating processes or as a

consequence of stars being born out of more turbulent molecular gas at higher

12
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Figure 1.7: A diagram relating galaxy morphology to dynamics obtained from the SAMI

IFU survey by van de Sande et al. (2018), where the morphology is parametrised through

ellipticity ✏ and the galaxy’s dynamical state is parametrised through the ratio of ordered

to random motion V/�.

redshifts. Martig et al. (2014) showed in their simulations that � can increase

smoothly with time through disk growth as well as processes like minor mergers,

vertical bending waves and overdensities like spiral arms and bars. By fitting

power-laws to their derived AVR for the Milky Way along the three axes separately,

Yu & Liu (2018) find that the in-plane velocity dispersions �� and �R have similar

power-law indices (⇠ 0.3) with respect to stellar age, consistent with the theoretical

expectation from epicyclic approximation where the in-plane velocity dispersions

are coupled (Binney & Tremaine 1987). On the other hand, the vertical velocity

dispersion �z has a higher power-law index (⇠ 0.5), meaning that the vertical

heating rate is higher. The authors suggest that a combination of spiral arms

(provide in-plane heating) and giant molecular clouds (which alone would render a

too high vertical-to-in-plane velocity dispersion ratio, Lacey 1984) heating could be

responsible for such di↵erences.

1.2.2 Dissecting galaxies with their dynamics: structure

correspondences between orbits and shapes

We previously discussed the relationship between angular momentum and mass in

galaxies, the latter of which is also correlated with morphologies, stellar metallicities

and ages. We showed then that ages and metallicities are correlated with the amount

of random motion in stellar orbits. As such, one would expect that these correlations
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should come back in a full circle, such that the angular momentum of stellar orbits

should be correlated with the mass and morphologies of galaxies. Such a correlation

might also be expected, at least in terms of the motion along the z direction, from

looking at images of disk and elliptical galaxies alone. With less stars populating

the space away from the disk plane, stars in disk galaxies clearly have less kinematic

randomness along the z direction than stars in an elliptical galaxies.

The relative contribution of coherent streaming motions, to random dispersion

supported motions of stellar orbits is often quantified using V/�, the ratio between

the rotational motions and the random motions. Using 843 galaxies from the SAMI

IFU survey, van de Sande et al. (2018) found that V/� indeed correlates with the

ellipticity of galaxies ✏, such that galaxies with more ordered stellar motion (higher

V/�) are flatter (high ✏) while galaxies with more random stellar motion (lower V/�)

are rounder (lower ✏). They also found that such V/� � ✏ relation has however an

extra dependence on the galaxy age.

While substructures of galaxies such as thin disks, thick disks, bulges and

bars had been separated through photometry, these substructures should be better

decomposed through dynamics because they are comprised of di↵erent types of

stellar orbits, allowing us to better understand the timescales and mechanisms which

build up these parts of the galaxies. For example, Soubiran et al. (2003) found that

the Milky Way thin disk has a faster net rotation and lower velocity dispersion

compared to the thick disk. In general, flatter structures such as disks should be

composed of stars with more ordered orbits of higher angular momentum J?, while

rounder structures such as bulges should be composed of stars with more randomised

orbits of lower angular momentum. While directly measuring J? of individual

stars of galaxies outside of the Local Group is still a challenge, such decomposition

methods have been applied onto simulated galaxies successfully (e.g. Abadi et al.

2003; Obreja et al. 2016). Dynamical modelling techniques also exist which model

galaxies as composition of various stellar orbits and hence allow such decomposition

for nearby galaxies, which will be discussed in more detail in §1.3.

1.2.3 Velocity anisotropies

Another way of quantifying the dynamical structure of galaxies is with its stellar

velocity ellipsoid. The stellar velocity ellipsoid is defined at each spatial point of

the galaxy and is an ellipsoid with axis ratios defined by the amount of velocity

dispersion in each of the three orthogonal direction. In a spherical coordinate

system, such an ellipsoid would be spanned by the velocity dispersions �r, ��, �✓. In

a cylindrical coordinate system, such ellipsoid would be spanned by �R, �z and ��.
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The shape of the stellar velocity ellipsoid can be parametrised by velocity

anisotropies, which quantify the various ratios between the velocity dispersions4

along di↵erent directions. Various anisotropy parameters have been defined in the

literature and the relevant ones in this thesis are �r ⌘ 1 � (�2
� + �2

✓)/�
2
r defined in

the spherical coordinates and �z ⌘ 1� �2
z/�

2
R defined in the cylindrical coordinates.

In particular �r characterises the relative motion in the tangential versus the radial

direction and �z characterises the relative motion perpendicular and parallel to the

plane along the radial direction. �r > 0, �r = 0 and �r < 0 are also known as radial,

isotropic and tangential anisotropy respectively.

While �z is more sensitive to the overall structure of the gravitational potential

and can be related to hydrostatic equilibrium of the disk self-gravity, �r is more

sensitive to the orbital structure of the stellar system. In particular, the relative

contribution of random motions along tangential and radial direction can shed light

on how the stellar system reaches its current dynamical state, as various processes

can impart random motions along di↵erent directions. For example, in-plane

processes like spiral arms are unlikely to contribute to out-of-plane random motions,

while disk heating processes like bar-buckling can increase �z (e.g. Mayer et al. 2006;

 Lokas et al. 2010). On the other hand, three-dimensional processes such as merger

may isotropise the velocity ellipsoid (see also §1.2.1). In addition, processes like

tidal stripping are thought to be more e↵ective on radial than tangential orbits and

hence should leave behind a tangentially-biased remnant (e.g. Takahashi & Lee 2000;

Baumgardt & Makino 2003).

1.3 Modelling galaxy dynamics

Galaxy dynamics is hence not only useful for tracing the mass distribution in

galaxies, but also for understanding how the various orbital structures in galaxies

come about. The cornerstone of modelling galaxy dynamics lies in two equations:

the Poisson equation and the Boltzmann equation. The Poisson equation states that

the gravitational potential of a system of particles at any spatial location can be

specified through its total mass density at that location:

r2� = 4⇡G⇢, (1.5)

where r2 is the Laplacian operator, � is the gravitational potential, G is the

gravitational constant and ⇢ is the mass density. In cylindrical coordinates (R,�, z),

4Or formally the second velocity moments (e.g. hv2Ri, hv2zi and hv2�i in the cylindrical coordinates),
which equal to the velocity dispersions when streaming motions are negligible.
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the Poisson equation can also be written as

1

R

@

@R

⇣
R
@�

@R

⌘
+

1

R2

@2�

@�2
+
@2�

@z2
= 4⇡G⇢(R,�, z). (1.6)

In a spherically symmetric system, the Poisson Equation (Eq. 1.5) can be rewritten

as:
1

r

d

dr

⇣
r
d�(r)

dr

⌘
= 4⇡G⇢(r), (1.7)

for a test particle moving in a circular orbit subjected to the gravitational potential

�. Multiplying both sides with rdr and integrating gives

GMenc(r)

r
= r

d�(r)

dr
⌘ v2c , (1.8)

where vc is defined as the circular velocity. In cylindrical coordinates the circular

velocity can be similarly defined as v2c ⌘ R(d�/dR).

The Boltzmann equation describes statistically the thermodynamical behaviour

of a system of particles, and in this case the kinematic tracer. The distribution

function f(r,p, t) is defined as dN = fdr3dp3, where N is the number of particle in

a phase space element dr3dp3, a product of the volume in physical space dr3 and

momentum space dp3. The Boltzmann equation states that:

@f

@t
+

p

m
·rf + F · @f

@p
=

⇣@f
@t

⌘

coll
, (1.9)

where m is the mass of the particles, F is the force field that the particles are

subjected to and (@f/@t)coll is the change in the distribution function caused by

collision. In a collisionless system (@f/@t)coll = 0.

1.3.1 Gas as kinematic tracers

The interstellar medium (ISM) consist of gases of di↵erent phases, including

atomic, molecular and ionised gas. The di↵erent ISM phases not only have

di↵erent thermodynamical properties such as temperatures, densities and pressures,

they also have di↵erent spatial distribution and dynamical properties. Gas as a

collisional fluid, dominated by elastic collisions, implies that (1) kinetic energy can

be exchanged through collisions and hence a particular gas phase should achieve

kinetic equilibrium with velocity distribution function approximating a Maxwellian

distribution, (2) other than having velocity dispersions acting as gravitational

support, smaller-scale turbulence, magnetic or thermal pressures could be another

source of velocity dispersion and (3) such velocity dispersions can decay through

dissipation, shocks and turbulent cascades.
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Whether or not a particular ISM phase is supported by random or ordered

motion depends on its source/how it is transformed into that state, and the

respective timescales of dynamical cooling and the lifetime of the gas. Cold gas

accreted from the cosmic web can be heated through various means, such as by

stellar radiation or supernova. Hot gas often has more support from random motions

than cold gas. Thermal broadening from the higher temperature contributes to a

higher velocity dispersion, however in addition kinetic energy can be injected in the

form of random motion due to the heating source itself (e.g. stellar feedback).

Extracting rotation curves from dynamically cold gas

We describe gas that follows near circular, rotationally supported orbits on a

thin disk as dynamically cold gas. Dynamically cold gas should therefore have

rotation velocities that closely follow vc and through Eq. 1.8, allow us to probe the

gravitational potential � directly.

Examples of dynamically cold gas in the ISM include atomic or molecular

gases that has settled in the galaxy disk but not yet turned into stars, such as HI

or CO gas. These gas also have low e↵ective temperatures of .20K. HI can be

observed through the hyperfine emission line at 21 cm and CO can be observed

through emissions from its various rotational transitions at ⇠mm wavelengths.

Galaxies that have their rotation inclined with respect to our line of sight would

be redshifted (shifted to longer wavelength) on one side and blueshifted (shifted

to shorter wavelength) on the other. Such shifts in the observed wavelengths of a

particular emission line would us to trace the rotation velocities Vrot of a particular

tracer in the galaxy.

The long radio wavelength of the cold gas emission implies that single-dish

radio telescope observations would have typically low spatial resolution. In the

first radio observations when the velocity gradient across the galaxy could not be

spatially resolved, the redshifted and blueshifted emission would be seen as broad

integrated spectral line, from which the line width was interpreted to correspond

to two times the maximum rotational velocity - thus providing a good estimate

to the total enclosed mass. As an example, we show an HI spectrum obtained by

Tully & Fisher (1977) using single dish, as part of the sample forming the famous

Tully-Fischer relation on the left panel of Figure 1.8. In order to measure the

spatial variation of the rotational velocity and to better trace the underlying mass

distribution, interferometers are now commonly used. While not recovering the total

flux, interferometry allows the combination of data observed from multiple single

dish telescopes with the distances between them acting as baselines to increase the
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Figure 1.8: Left: HI spectrum of NGC5204 measured using a single-dish telescope from

Tully & Fisher (1977). Right: HI velocity map of NGC224 obtained using interferometer

from Ponomareva et al. (2016), where a spectrum is obtained at each spatial location, from

which the velocity shift (colour-coded) can be mapped.

spatial resolution. With the improved spatial resolution, the rotational velocities

of a galaxie’s gas can be plotted as a two-dimensional map. On the right panel of

Figure 1.8 we show such a map from Ponomareva et al. (2016). Interferometric data

provide a much higher spatial resolution and more information in comparison to the

single dish spectra on the left, and allows the derivation of the rotation velocity as a

function of radius Vrot(R), i.e. the rotation curve.

Dynamically warm/hot gas

There also exist in galaxies ISM phases that have considerable velocity dispersion,

and are considered dynamically warm/hot. Examples of dynamically warm gas

includes ionised gas such as H↵, which is heated by a combination of the ionising

photons from young O and B stars, as well as shocks or collisional ionisation. H↵

has an e↵ective Temperature of ⇠ 105K and emits at the optical wavelengths.

Integral Field Spectroscopy Units (IFUs) are now commonly used to measure the

two dimensional distribution of H↵ kinematics and flux across galaxies disks. These

spectrographs pass light from every spatial element through a dispersing element,

forming a spectrum at each position on the galaxy.

With cold gas transitions being redshifted out of the wavelength range of most
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radio interferometers, and with stellar absorption lines (see §1.3.2) lying below the

sensitivity of present-day instruments, H↵ is often used as a kinematic tracer for

high redshift galaxies. A problem, however, lies in the simultaneous dynamically

warm and collisional nature of the H↵ gas. Being dynamically warm means that one

must take into account the random motion of the gas when deriving the underlying

gravitational potential. Being collisional means however that not all the velocity

dispersion �H↵ goes into gravitational support, i.e. part of it comes from smaller scale

turbulence, and including all of the velocity dispersion can lead to an overestimation

of the enclosed mass. Additionally, �H↵ is typically below the spectral resolution of

most instruments. Nonetheless, parametrisation such as S0.5 =
p

0.5V 2
rot + �2

H↵ or

v2c = V 2
rot + 2�2

H↵(R/Rd), where Vrot is the H↵ rotational velocity and Rd is the disk

scale length, have been used when characterising the gravitational potential from

H↵(e.g. Weiner et al. 2006; Kassin et al. 2012; Übler et al. 2017). We shall attempt

to put observational constraint on the role of �H↵ in using H↵ kinematics for mass

estimation in Chapter 5.

1.3.2 Stellar dynamical models

Given the average distances between stars in galaxies, the stellar systems of galaxies

can be e↵ectively considered as a collisionless system, which are supported against

gravity by both rotation and velocity dispersion. While this means that we cannot

derive the circular velocity directly from the observed rotational velocities of stars

(as has been done from cold gas), the derivation of � from stellar kinematics is still

possible with other methods. Moreover, stellar kinematics allow us to probe galactic

structures, such as disks and bulges, dynamically.

Just like H↵, two dimensional stellar kinematic maps can be obtained through

IFU. Unlike H↵, stellar kinematics are recovered through spectral absorption lines

instead of emission lines. In unresolved integrated light observations of galaxies,

the wavelength shift of the lines directly gives the mean velocity at each spatial

location. The width of a stellar absorption line is however a combination not only of

the instrumental resolution and velocity dispersion, but is also a↵ected by chemical

properties such as metallicities and ages of the stars. Stellar kinematics of unresolved

galaxies studied in integrated light are therefore not obtained through analysing one

spectral line, but instead by fitting the whole spectrum. From this fit, properties

such as the shape of the continuum and relative strengths of di↵erent absorption

lines provide handles on the stellar age and metallicity of the galaxy, in addition to

information on velocity dispersion from the line width.

The Boltzmann Equation, Eq. 1.9 can also be rewritten as the collisionless
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Boltzmann Equation or the continuity equation:

v ·rf +r� · @f
@v

=
@f

@t
. (1.10)

For systems in dynamical equilibrium i.e. @f/@t = 0, rewriting Eq. 1.10 in the

cylindrical coordinates with axis-symmetry (@�/@� = @f/@� = 0) gives:

vR
@f

@R
+
⇣v2�
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� @�

@R

⌘ @f

@vR
+ vz

@f

@z
� @�

@z

@f

@vz
� vRv�

R

@f

@v�
= 0. (1.11)

Since the distribution function f is not observable, one would rewrite Eq. 1.11 in

terms of only the gravitational potential � and the observables: velocity moments

and luminosity density ⌫, by first multiplying the equation by vR and vz and then

integrating over all velocities:

�⌫v2�
R

+
@(⌫v2R)

@R
+
@(⌫vRvz)

@z
= �⌫ @�

@R
⌫vRvz
R

+
@(⌫v2z)

@z
+
@⌫vRvz
@R

= �⌫ @�

@z
.

(1.12)

These two equations are known as the Jeans Equations.

Unlike cold gas that lies on a thin disk plane with the rotation velocity v� being

its primary support against the gravitational potential, the second order velocity

moments describing random motions: v2R, v
2
z and v2z , as well as the cross term vRvz

are non negligible for stars. For each specific ⌫ and � in the axisymmetric case

described using the cylindrical coordinates, there are four unknowns in the two Jeans

Equations.

Various approaches in closing the Jeans Equations can be found in the literature,

all done through various level of assumptions in the underlying geometry of the

system or the stellar velocity ellipsoid. We shall return to validating these methods,

as well as presenting their limitations in Chapter 2. In Chapter 3, we shall present

how these models can benefit from independent constraints on the circular velocities

from cold molecular gas kinematics. Below we provide an overview of these models.

Asymmetric Drift Correction

The simplest of which is the Asymmetric Drift Correction (ADC). ADC assumes

that even though the stars are not following circular orbits, they lie on a thin disk.

The Jeans Equations are then solved on the z = 0 plane. The ADC equation can

then be written as (rearranged from Eq. A3 of Weijmans et al. 2008):

v2c (R) = v�
2 + �2

R

h@ln(⌫�2
R)

@lnR
+ (

�2
�

�2
R

� 1)� R

�2
R

@vRvz
@z

i
, (1.13)
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where v2� = v�2 + �2
�. v� and ⌫ are the rotation velocities and surface brightness

densities, both of which are observables. The individual � components along di↵erent

direction can also be related to the observed line-of-sight velocity dispersion �los
through a free parameter: velocity anisotropy. The last term in 2.6 specifies the

alignment of the velocity ellipsoid with respect to the cylindrical coordinate system

and can be parametrised through a free parameter , where:

vRvz = (�2
R � �2

z)
z/R

1� (z/R)2
, (1.14)

0    1, with  = 0 parametrising a completely cylindrical coordinates-aligned

velocity ellipsoid and  = 1 parametrising a spherical coordinates-aligned one. Even

with the geometry of the velocity ellipsoid assumed to follow certain observed value

(e.g. 0.5 for disk galaxies, Kent & de Zeeuw 1991), the dynamical mass (specified

through the circular velocity vc) is still degenerate with the velocity anisotropy.

This is known as the mass-anisotropy degeneracy, which is often suppressed through

certain parametrisation of the shape of the underlying mass and/or the velocity

dispersion profile.

Jeans models

Jeans models on the other hand, allow the stellar distribution to be described three-

dimensionally with axis ratios that can be constrained through observations. For

comparison with the observed velocity moments, Jeans models perform line-of-sight

integration to obtain the modelled ones from the Jeans Equations. Assumptions

such as vRvz = 0 are often applied. Under spherical symmetry assumption, the Jeans

model up to the second order moments can be written in the spherical coordinates

as:

�2
r(r) =

1

⇢(r)

Z 1

r

⇢(r)
d�

dr0
dr0, (1.15)

the modelled radial velocity dispersion �r(r) can then be projected and integrated

along the line of sight (Merrifield & Kent 1990):

�2
los(r) =

2

µ(r)

Z 1

r

⌫(r0)
⇣
1� �r

r2

r02

⌘
�r(r)

2 r0

(r02 � r2)1/2
dr0, (1.16)

where �r is the velocity anisotropy and

µ(r) = 2

Z 1

r

⌫(r0)
r0

(r02 � r2)1/2
dr0. (1.17)

Jeans models hence still su↵er from mass-anisotropy degeneracy. While in

general such degeneracy persists at any one particular spatial point of a galaxy even
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when we generalise to axisymmetric Jeans models applied on two-dimensional stellar

kinematics maps, the often assumed constancy of �r with respect to radius at a given

inclination and stellar surface density distribution helps constrain the shape of the

velocity dispersion map and hence greatly reduces the mass-anisotropy degeneracy

(Cappellari 2008).

Orbit-based dynamical models

The above approaches using the Jeans Equations model the stellar system as a

statistical system of particles. This can recover the observed kinematics reasonably

well, and provide limited information on the orbit structure, through the anisotropy

parameter. However it provides no further insights into the orbital composition

of the galaxy, as the system is parametrised only in terms of statistical moments

(surface density, velocity, velocity dispersion etc.).

An alternative approach is orbit-based dynamical models. Instead of building

the models with moments, one can represent the stellar system as a superposition

of orbits (Schwarzschild 1979). Conceptually speaking, for every potential, one

can first build a library of possible orbits in that potential and assign a weight to

each orbit. Together the weighted orbits can be integrated and projected to create

moment maps. The weights of the orbits can then be adjusted to fit the observed

moments. The projected moments from the best-fitted orbit weight of each potential

can then be again fitted against the observed moments to obtain the best-fitted

potential. The Schwarzschild model allows therefore not only the modelling of the

total gravitational potential, but also the composition of the stellar system in the

orbital space.

In practice, not all possible orbits in a potential can be included when building

the orbit library for computational reason. Sampling of orbits can be done, for

example on separable potentials5, with a grid in the space of energy-momentum

(E,L) or integrals of motion (E, I2, I3) (e.g. Richstone & Tremaine 1984; Rix et al.

1997) or when the potential is not separable, on the space of initial conditions of

(E, ✓,�) (e.g. Schwarzschild 1993; van den Bosch et al. 2008). Techniques such

as dithering can then be applied to smoothen the orbit sampling and hence the

modelled moment maps.

Zhu et al. (2018b) applied the Schwarzschild model on a homogenous

5A separable potential can be written as a product of three functions, each dependent only on
one of the three dimensional coordinates. All orbits are regular in separable potentials and conserve
three integrals of motions.
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Figure 1.9: Orbital density distribution (grey scale) of 300 CALIFA galaxies over a wide

range of masses and morphological types, obtained by applying the Schwarzschild orbit-

based dynamical model on IFU data (Zhu et al. 2018b); black indicates high densities

and white indicates low densities. It is evident that high-mass early-type ellipticals are

dominated by hot random orbits of low circularity (�z ⇠ 0), while cold ordered disk-like

orbits of high circularity (�z ⇠ 1) begin to dominate in lower-mass late-type galaxies. �z < 0

indicates counter-rotation. Red box indicates the mass range in which the CALIFA sample

is statistically representative.

set of 300 nearby galaxies from the CALIFA IFU survey, covering early-type

ellipticals to late-type disk galaxies, volume-complete in the stellar mass range of

9.7 < log(M?/M�) < 11.4. The derived orbital density distribution is plotted against

stellar masses in Figure 1.9. A clear trend of the increasing ratio of hot-to-cold

orbits from lower-mass late-type galaxies to high-mass early-type galaxies was

demonstrated for the first time. In addition, distinct bulge-like components of low

circularities (�z ⇠ 0) can be identified, suggesting that orbit-based dynamical models

can act as an e↵ective alternative to photometric decomposition when identifying

galaxy components.
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1.3.3 Discrete massive objects as kinematic tracers

Discrete massive objects such as globular clusters (GCs) trace the gravitational

potential not only through their orbits, their survival allows us to probe the

underlying tidal field which in turns puts constraints on the gravitational potential.

Furthermore, unlike stars, star clusters or satellite galaxies can be subjected to

e↵ects of dynamical friction, which should be taken into account when modelling

their orbits. The fact that both dissipation and dynamical friction can cause the

destruction of GCs means that their mere survival at some distances away from

the centre of the galaxy provides some constraints on the underlying gravitational

potential.

Dissipation in a tidal field

The tidal radius of a satellite (rt) of mass Ms is given by (King 1962; Binney &

Tremaine 1987):

rt =
GMs

⌦2(r)� d2�/dr2
, (1.18)

where ⌦(r) is the rotational velocity of the satellite and is given by ⌦2(r) = (d�/dr)/r.

The tidal radius is also known as the Jacobi radius and defines for an entity, the

radius within which it is self-gravitating. in other words, beyond rt, the background

gravitational potential dominates and a satellite can experience substantial mass

loss through tidal stripping.

With the mass and radius of a satellite as measurable quantities, knowing its

location r would allow constraints on the shape of the gravitational potential �.

While the projected galactocentric distance is easily observable, the line-of-sight

distances can be obtained in some cases through RR Lyrae stars, or when the

satellite is close enough, through constraints on the satellite orbit through proper

motion measurements. The inferred location r then allows one to calculate the

tidal radius of the satellite in any gravitational potential � through Eq. 1.18. By

requiring the size of a satellite to be smaller than the tidal radius, certain mass

profiles can be ruled out. For example, Amorisco (2017) suggested that the DM halo

density profile is likely to have a shallow central slope in the galaxies Eridanus II

and Andromeda XXV, by requiring their clusters to have 2rh < rt, where rh is the

half-light radius of the satellite.
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Dynamical Friction

The sea of background particles in a galaxy, including stars and dark matter, provide

a drag onto more massive orbiting objects, reducing their velocities and causing

them to sink towards the centre of the potential well. Such a drag is known as

dynamical friction. Energy partition provides another intuitive way of understanding

dynamical friction, where massive particles sink towards the centre of the potential

well through losing kinetic energies to less massive particles. It has therefore been

suggested that given enough time, star clusters could infall into the galactic centre

to form a nuclear star cluster (e.g. Tremaine 1976; Hernandez & Gilmore 1998).

For an isotropic and homogenous distribution of background particles,

Chandrasekhar (1943) has analytically described dynamical friction as:

d~vs
dt

= �4⇡G2Ms⇢• ln(⇤)f(v• < vs)
~vs
v3s

, (1.19)

where vs is the velocity of the infalling satellite, ⇢• and v• are the density and

velocity of the background particles, ln(⇤) is the Coulomb logarithm (given by

the ratio between the maximum (bmax) and minimum (bmin) impact parameters:

ln(⇤) = ln(bmax/bmin)) and f(v• < vs) is the fraction of background particle that has

a velocity slower the vs.

It is evident already from Eq. 4.11 that the dynamical friction experienced by

a satellite is tightly correlated with the underlying mass distribution of the galaxy.

However, one would need to relate d~vs/dt to observables in order to constrain the

gravitational potential using arguments from dynamical friction. One common

approach is to required the age of a star cluster outside the galactic centre to

be smaller than the timescale of the infall, also known as the dynamical friction

timescale tdf (e.g. Angus & Diaferio 2009). Under the assumption of an isothermal

spherical host and a Maxwellian velocity distribution function for the background

particles, tdf can be written as (Binney & Tremaine 1987):

tdf = 1.17
Mvir

Ms

⌧dyn
ln(⇤)

, (1.20)

where ⌧dyn = Rvir/Mvir is the dynamical timescale of the galaxy.

This approach in principle asserts only that the present-day galactocentric

distance of the satellite ds is >0, one can however put a tighter constraint of ds > dp,

where dp is the observed projected distance. While the orbital evolution of the

infalling satellite through its lifetime can be calculated through Eq. 4.11, one would

need to have a handle on the starting galactocentric distance at its time of formation
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in order to calculate its present day location. Moreover, N -body simulations have

shown that Eq. 4.11 presents too simplistic a picture and fails to reproduce the

infall trajectories under certain DM halo profiles (e.g. Goerdt et al. 2006; Cole et al.

2012; Petts et al. 2015). We shall return building a comprehensive analytic model of

dynamical friction for GCs in Chapter 4.

1.4 Dwarf galaxies

Under the ⇤CDM hierarchical framework, dwarf galaxies are expected to exist in

the highest numbers compared to other galaxy types. With typical stellar masses of

less than a few 108 M�, dwarf galaxies are typically less luminous than MV ⇠ �16

(McConnachie 2012). Just like larger galaxies, dwarf galaxies come in various shapes,

chemistry and dynamics. They can be found as satellites around larger galaxies

and are considered to be the building blocks of larger galaxies under the ⇤CDM

hierarchical cosmological framework. Due to their low metallicities, understanding

their evolution is therefore not only important for explaining the varieties in their

observed properties, but also aids in understanding star formation in low-metallicity

environments. Their shallow gravitational potential also means that they are more

susceptible to, and hence a good candidate for studying baryonic feedback e↵ects.

From abundance matching, dwarf galaxies are also expected to be the most dark

matter dominated objects of the universe and hence serve as excellent testbeds of the

nature of dark matter. Given the low luminosities of dwarf galaxies in general, the

ones lying in the neighbourhood of Milky Way and M31, classically considered to be

within the ‘Local Group’, are therefore the best objects for studying the formation

and evolution of dwarf galaxies.

1.4.1 Dwarf spheroidals and dwarf irregulars

It has been long known that the dwarf galaxies within the Local Group can be

generally classified into two types based on their morphologies. Dwarf spheroidals

(dSph) and dwarf irregulars can be seen as analogous to elliptical and disk galaxies

of higher masses, with the former being thicker and having a rather featureless

smooth luminosity distribution while the latter tend to be thinner with irregular

overdensities of young stars. In Figure 1.10 we show a few examples of images

of dSphs and dIrrs to illustrate their morphological di↵erences. We shall in the

following delve into other chemical and dynamical di↵erences between the two classes

of dwarfs. The readers should however keep in mind that there also exist a class of
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Figure 1.10: Examples of dwarf spheroidals (dSph) and dwarf irregulars (dIrr).6

transition dwarfs (dTrans). This class of dwarfs exhibit properties lying between

the dSphs and dIrrs, indicating that dSphs and dIrrs do not present a dichotomy in

dwarf properties, but instead as two ends of a spectrum.

Chemical Properties

Other than just the morphologies, the analogue between dSphs and dIrrs with

ellipticals and disk galaxies can also be extended to their respective gas contents:

dSphs tend to be gas-poor while dIrrs tend to be richer in gas. And just like

the higher-mass counterparts, one can expect that the di↵erence in gas content

should correspond to di↵erences in star formation histories (SFH) and therefore also

metallicities. In the case of dwarfs in the local group, the ages and metallicities of

stars are often obtained through photometry, from which colour-magnitude diagrams

(CMD) are constructed and isochrones of stellar population models are fitted.

Indeed, Weisz et al. (2014) found that in the early universe (>10-12Gyrs ago),

the SFHs of dIrrs tend to drop quicker than the SFHs on dSphs. After 10Gyrs

however, the SFHs of dIrrs tend to plateau while those of dSphs continue to drop

with the same rate. This also means, while dSphs have already formed most of their

stars 10Gyrs ago, dIrrs formed only ⇠ 30% of their stellar mass by that time and

form stars with an increasing star-formation rate (SFR) until the present time. Such

di↵erence in the sustainability of star formation can be naively expected from the

fact that dIrrs retain gas until the present day while dSphs do not. Interestingly,

such a di↵erence in star formation between the dSphs and dIrrs shows also a radial

6Fornax: By ESO/Digitized Sky Survey 2; Carina: By ESO/G. Bono & CTIO - http:

//www.eso.org/public/images/potw1126a/; WLM: By ESO: VST/Omegacam Local Group Sur-
vey - The WLM galaxy on the edge of the Local Group; LMC: Robert Gendler http://www.

robgendlerastropics.com
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Figure 1.11: Left: Red and blue show the unweighted average of the star formation history

(SFH) of dSphs and dIrrs from Weisz et al. (2014). The SFHs are compared with various

star formation models plotted in black lines; dotted: constant star formation rate (SFR),

dashed: exponentially declining SFR with a timescale ⌧ = 5Gyr. (the grey shaded area

represent exponentially declining SFR with ⌧ = 0.1 � 100Gyr) and solid: a single old

population of stars formed > 12Gyrs ago. Right: Top and bottom are the look-back time

at which 10th and 95th percentile of the stars formed plotted with respect to the scale

radius, plotted in squares are two dSphs and plotted in circles are two dIrrs (Hidalgo 2011).

dependence. While dIrrs tend to have younger stars at all radii when compared to

dSphs, and that both the dSphs and dIrrs tend to have younger stars toward the

centre of the galaxies, the di↵erences in the stellar ages between the dSphs and dIrrs

at a specific radius increases drastically towards the galactic centers. Hidalgo (2011)

have characterised this dependence using
R T

0  (t)dt, where  (t) is the normalised

SFR as a function of look-back time. The right panels of Figure 1.11 (Fig. 3 of

Hidalgo (2011)) shows the 10th (top) and 95th (bottom) percentile of the function,

with the two examples of dSphs (Tucana and Cetus) plotted in squares and the

examples of dIrrs (LGS3 and Phoenix) plotted in circles. It is evident from the plot

of the 95th percentile that the age gradient is much steeper in dIrrs.

The di↵erence in the SFHs of the two classes of dwarfs implies a di↵erence

in their respectively chemical enrichment histories which might lead to di↵erent

metallicity distributions. In particular, the metallicity gradients in the two classes
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of dwarfs can be well distinguished. Using RGB spectroscopic data of nine LG

dwarfs, Leaman et al. (2013) found that dSphs tend to have steeper metallicity

gradients as dIrrs. They found that while dSphs typically have a metallicity gradient

�0.1 . d[Fe/H]/drc . �0.2 (where rc is the core radii of each galaxy), dIrrs have a

much milder gradient of d[Fe/H]/drc ⇠ �0.04. While such dichotomy can possibly

be due to the di↵erence in the total mass (dIrrs tend to be more massive than

dSphs), it can also be hinting at the e↵ects from various internal and external

processes. For example, radial migration of stars can be caused by disk instabilities

and transient spiral structures which are more likely to be found in dIrrs than dSphs.

Also, star formation driven fountain is another mechanism that allows redistribution

of chemically enriched material within the galaxy. On the other hand, ram pressure

or tidal stripping at early times could have preferentially stripped star-forming gas

from the outskirts of the galaxies and hence confine the star-forming region to the

inner part of the galaxies, rendering a preferential chemical enrichment in the inner

parts of the galaxies. Additionally, a wall in [Fe/H] at the metal-rich end is seen in

the metallicity distribution function (MDF) of the most luminous dSphs, which is

not seen in any of the dIrrs, further supporting the scenario of ram pressure stripping

(Kirby et al. 2013).

Dynamical properties

Another possible pathway to the dichotomy between the two morphological classes

of dwarfs lie in their dynamics. It has been shown that the stars in dSphs have little

or no rotation, and are supported with random motions (Vrot/� . 0.5) with a flat

velocity dispersion profile (e.g. Muñoz et al. 2005; Walker et al. 2007). On the other

hand, rotation signatures have been found in gaseous dIrrs, displaying a slightly

higher Vrot/� of ⇠ 1� 1.5 (e.g. Harris & Zaritsky 2006; Leaman et al. 2013). Many

dIrrs have also been demonstrated to have a dynamically cold gas disk, from which

HI rotation velocities, that trace closely the circular velocities, can be extracted (e.g.

Swaters et al. 2009; Iorio et al. 2017).

Related to the above discussion on chemical properties, Schroyen et al. (2011a)

showed with N-body/SPH simulations that angular momentum is an e�cient eraser

of metallicity gradients. They showed that rotation can give rise to a centrifugal

barrier that slow down the infall of gas towards the galactic center, rendering star

formation and thereby chemical enrichment to be less centrally concentrated.

Indeed the di↵erences seen in the metallicity gradients may be mirrored by a

dichotomy of V/� between the dSphs and the dIrrs. We show on the right panel

of Figure 1.12 (Fig. 11 of Leaman et al. 2013) the metallicity gradient of various
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Figure 1.12: Left: Metallicity gradient plotted against radius in terms of the core radii of

dIrrs in blue and dSphs in red of the Local Group (Leaman et al. 2013). Right:Dichotomy

in the metallicity gradient-V/� space between dIrrs (blue) and dSphs (red, orange, yellow

and black) (Leaman et al. 2013).

dwarfs plotted against V/�. It is suggested that the dSphs with steep metallicity

gradients are predominantly dispersion supported (V/� < 1) while the dIrrs with

mild metallicity gradients are predominantly rotationally supported (V/� > 1).

However, it is yet unclear if there is a causal link between the two, as the parameter

space is degenerate also with star formation history, gas content, environment and

mass (Zhuang et al. 2019). Just like the SFHs, such a di↵erence in V/� may be seen

as a natural consequence of the di↵erence in gas content between the two classes of

dwarfs, as explained for galaxies of larger masses in §1.2.2.

In terms of velocity anisotropies, while to date there is no measurements of

such for dIrrs, a wealth of measurements for dSphs had been made using Jeans or

Schwarzschild models. Evidences pointing to an increasingly tangential velocity

anisotropy towards the outskirts of dSphs (e.g. Zhu et al. (2016) for Sculptor,

Kowalczyk et al. (2018) for Fornax) could and have been interpreted a result of tidal

stripping. We shall provide the first measurement for stellar velocity anisotropy in a

dIrr in Chapter 3.

Dwarf galaxy evolution/formation pathways

Other than the above-mentioned di↵erences in morphologies and chemodynamical

properties, another clear di↵erentiation between the two classes of dwarfs is their

relative distances with respect to the host galaxies Milky Way and M31. Figure 1.13
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Figure 1.13: Gas fraction, expressed in terms of the ratio between total mass of HI gas

and V -band luminosities (MHI/LV ), of dwarf galaxies in the LG plotted as a function of

the minimum distance to one of the host galaxies: the Milky Way or M31, min(DG, DM31)

(McConnachie 2012). DSphs are marked with orange solid diamonds with orange arrows

indicating upper limits. DIrrs are plotted in blue open diamonds.

from McConnachie (2012) shows the gas fraction, expressed in terms of the ratio

between the total mass of HI gas and V -band luminosities (MHI/LV ), of each of the

dwarf galaxies in the Local Group with respect to the lesser of the distances to the

Milky Way (DG) and M31 (DM31). Galaxies with low gas fractions are typically

dSphs, as marked with orange diamonds or arrows indicating an upper limit, while

those with high gas fractions are typically dIrrs, as marked with blue open diamonds.

It is evident that gas-poor dSphs tend to lie closer to either of the host galaxies while

the gas-rich dIrrs tend to lie more to the outskirt of the LG. The correlation between

environment and morphology leads to the questions: whether the di↵erence in gas

contents and hence morphologies of these two classes are a purely environmental

e↵ect? Are these two classes born di↵erently or do they transform from one to

another? What are some possible internal/external transformation pathways?
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While we still do not have a complete understanding on whether or not dSphs

and dIrrs are evolutionarily connected, the correlation between the distances to

the host galaxies and gas fraction may suggest that interaction between the dwarf

galaxies and the host galaxies strip away the gas from infalling dIrrs and turn them

into gas-poor dSphs. Possible processes are tidal and ram-pressure stripping. In

addition to gas stripping, tidal e↵ects from the host can also heat up the stellar

component to become more dynamically hot and spheroidal in shape (e.g. Mayer

et al. 2006; Mayer 2010). The observed tangential anisotropies in some dSphs (e.g.

Zhu et al. 2016; Kowalczyk et al. 2018) have also been interpreted as remnants of

system that has gone through tidal interactions, as radial orbits tend to be more

easily tidally stripped. Tidal streams from the Sagittarius dSph have also been found

in the Milky Way halo, traced through its well-defined Age-Metallicity Relation and

chemical signatures (e.g. Majewski et al. 2004; Hasselquist et al. 2019). While it

has been shown in simulations to be an e↵ective mechanism in removing gas from

and thereby quenching star formation in dwarf galaxies (e.g. Mayer et al. 2006;

Simpson et al. 2018), especially during the first infall towards the host galaxy when

the velocity is high, evidence of ram-pressure stripping in the LG remains is scarce.

Ram-pressure stripping occurs when the ram pressure that a dwarf experiences, as it

moves through a dense intra-cluster medium, is stronger than the gravitational force

that holds the gas onto the dwarf itself. An example of ram-pressure stripping in

act is demonstrated by McConnachie et al. (2007). They show that the distribution

of the HI gas in the dwarf Pegasus is evidently di↵erent from its regular elliptical

stellar distribution; the HI gas shows a comet-like distribution characteristic of

ram-pressure stripping.

Additionally, dwarf-dwarf mergers maybe a possible pathway for the

transformation of gas-poor dSphs from gas-rich dwarf irregulars in cosmological

simulations (e.g. Wetzel et al. 2015). Satellites can merge with one another within

the halo of the host galaxies (e.g. Angulo et al. 2009; Wetzel et al. 2009), or they

could have merged through group pre-processing before infalling onto the halo of

the host galaxy (which includes, other than mergers, also other environmental

e↵ects such as tidal and ram stripping, that dwarfs can experience in a group

or cluster before the group as a whole infalls to the current host). Furthermore,

Beńıtez-Llambay et al. (2016) showed with cosmological simulations that mergers

can form dSphs that have metallicity gradients resembling the ones observed in

local group dSphs, with multiple distinct stellar populations of which the older and

metal-poorer component is the most spatially extended - suggesting that mergers

are a viable pathway for dSph formation.

On the other hand, internal processes such as stellar feedback and/or photo-
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evaporation may also expel gas from dwarfs. While the shallow gravitational wells of

dwarfs suggest that gas in dwarfs are more easily driven out by feedback mechanisms

in comparison to more massive galaxies, their relatively lower star-formation rate also

means that less feedback energy is available. In particular, Gatto et al. (2013) show

in their simulation for the dwarf Sextans that by turning on supernova feedback,

the dwarf galaxy lose all its cold gas in <1Gyr as compared to only losing 40%

of the cold gas within the same timescale through external agents (e.g. tidal and

ram-pressure stripping) only. However, as suggested by Geha et al. (2012), the lack

of evidence of isolated quenched dwarf galaxies may indicate that external processes

are necessary to remove gas from dwarfs completely.

1.4.2 Scaling relations in the Local Group

To further understand the inter-relation between the chemical and dynamical

evolution of dwarf galaxies and to place dwarf galaxies into the framework of other

galaxy types, we explore here the various scaling relations observed within the Local

Group.

The stellar mass-metallicity relation (MZR) in galaxies as we have seen in §1.2.1
extends to the low-mass dwarf galaxies. Kirby et al. (2013) have found, using 35

local group dwarf galaxies with spectroscopic stellar abundances, that the MZR for

dwarf galaxies is tightly defined as h[Fe/H]i / M0.30±0.02
? and that such relation holds

for dwarfs across morphologies and with di↵erent metallicity distributions. We show

this MZR in Figure 1.14. The MZR can be partly understood through the process of

baryonic feedback. More massive galaxies have a steeper potential well and therefore

can better retain metals that are produced in stars but then driven away by stellar

winds or supernova ejecta. Indeed Kirby et al. (2011) showed that most dSphs of the

Milky Way may have lost upwards of 96% of their total metals produced in outflows.

Another interesting scaling relation between the chemical and dynamical

properties of dwarf galaxies is the age-velocity relation (AVR). Nearby dwarf galaxies

allow us to study the AVR with spectroscopic data of individual stars. Due to their

low masses and low gas densities, dwarfs are more susceptible to heating by feedback

mechanisms such as supernovae, than more massive galaxies. Unlike their more

massive counterparts, the AVR in dwarfs are more likely to reflect tidally driven

changes in the gravitational potential, therefore allowing us not just to study the

internal but also the external processes throughout the galactic evolution. Leaman

et al. (2017) found that while dIrrs show similar increase in velocity dispersion as a

function of age as found in more massive galaxies such as the Milky Way and M31,

dSphs lack such an evolution, as shown on the left panel of Figure 1.15. By modelling
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Figure 1.14: Bottom left: Mass-metallicity relation (MZR) of dwarfs in the Local Group

(Kirby et al. 2013). Top right : The MZR for more massive galaxies derived from the SSDS

survey by Gallazzi et al. (2005) for comparison.

the cooling of ISM and the scattering of stars caused by disks overdensities, they

are able to reproduce the time evolution of velocity dispersions in dIrrs. To explain

the flat AVR of dSphs on the other hand, may require a better understanding of the

environmental e↵ects such as tidal heating and ram pressure stripping, as well as

internal e↵ects such as stellar feedback.

Within individual dwarf galaxy, the stars also follow a tight age-metallicity

relation (AMR), we show in the right column of Figure 1.15the AMR of a few LG

dwarfs (taken from (Leaman et al. 2013). While younger stars also tend to be more

metal-rich as a general rule, the exact shape of the AMR in each galaxy depends on

its history of gas content and its particular SFH.

1.5 Bigger than just galaxies: galaxy dynamics

and the nature of dark matter

Galaxies dynamics is an important avenue for studying the nature of dark matter.

Through probing the mass distribution of galaxies, one can infer quantities like the

relative ratio of stellar mass M? and DM halo mass Mhalo as a function of M?, as
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Figure 1.15: Left: Age-velocity relation (AVR) of the Local Group dwarfs show a di-

chotomy, where dIrrs (WLM, LMC in solid ilnes) show similar AVRs as more massive

star forming galaxies like the Milky Way (in dark blue) and M31 (in black) while dSphs

(in dashed green lines) show no age dependence in the velocity dispersion (Leaman et al.

2017). Right: Age-metallicity relation in individual dwarfs plotted in black, the best-fitted

’Leaky-Box’ and ‘Pre-enriched’ chemical enrichment models are shown in green and blue

dashed lines Leaman et al. (2013).

well as the density profile and geometrical shape of DM haloes, all of which have

been precisely predicted from cosmological and galactic simulations under ⇤CDM or

alternate models of dark matter.

1.5.1 M? �Mhalo relation

While it might be a natural expectation that more massive DM haloes contain also

a more massive stellar component, the relative ratio between the two M?/Mhalo is

tightly related to the physics behind star formation and feedback processes. By

matching the galaxy stellar mass function n(M?)dM? from Sloan Digital Sky Survey

Data Release 3 (SDSS DR3; with n(M?)dM? derived by Panter et al. 2007) and the

halo mass function n(Mhalo)dMhalo from their own DM only simulation, Moster et al.

35



CHAPTER 1. INTRODUCTION

Figure 1.16: Left: The best-fitt stellar-to-halo-mass ratio plotted against halo mass from

Moster et al. (2010) in black line, the light and dark grey shaded areas represent the 1�

and 2� uncertainties. Right: The same relation but now plotted in the stellar mass vs.

halo mass space. Overlaid in curves on top are models from other authors, and in crosses

are the observed values from galaxy-galaxy lensing.

(2010) show that the M?/Mhalo is a function of Mhalo that can be written as:

M?

Mhalo
(Mhalo) = 2

⇣ M?

Mhalo

⌘

0

h⇣ M?

Mhalo,1

⌘��
+
⇣ M?

Mhalo,1

⌘�i�1

, (1.21)

where (M?/Mhalo)0 = 0.02820+0.00061
�0.00053, log10(Mhalo,1/M�) = 11.884+0.030

�0.023, � =

1.057+0.054
�0.046 and � = 0.556+0.010

�0.004 are the best-fit values. The form of the function is

shown on the left panel of Figure 1.16. To validate their derived M?�Mhalo relation,

Moster et al. (2010) have also overplotted the observationally derived M? and Mhalo

values derived from galaxy-galaxy lensing (right panel of Figure 1.16).

Galaxies therefore have a highest e�ciency in forming stars at log10(Mhalo/M�) ⇠
12, at which M?/Mhalo peaks. The decline in star formation e�ciency towards the

low-mass end and towards the high-mass end is often interpreted as e↵ects from

stellar and AGN feedbacks respectively. Gas in galaxies with shallower potential

well (lower mass) are more susceptible to being blown away or heated by stellar

feedback while the probability of harbouring an AGN is higher in massive galaxies;

the depletion of cold gas then implies the depletion for material for star formation,

and the galaxies end up with proportionally less stars than dark matter.
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1.5.2 Dark matter density profiles: cusp vs. core?

Being the most dark-matter dominated objects in the universe, dwarf galaxies act

as prime laboratories for testing the impact of baryonic feedback and the nature of

dark matter. Various techniques have been adopted to infer the relative contribution

of stellar and dark components in low mass galaxies. For example, decomposition of

rotation curves obtained from HI kinematics has been used to study the fractional

amount of dark matter in low mass galaxies (e.g. Lelli et al. 2010; Swaters et al. 2011;

Adams et al. 2014; Katz et al. 2017). These results typically found that despite the

uncertainties in stellar mass-to-light ratios, the baryonic mass was a small fraction

of that necessary to reproduce the circular velocity profiles. These objects thus can

provide a stringent test also on the nature of dark matter and/or non-Newtonian

dynamics (e.g. Lelli et al. 2010; McGaugh & Milgrom 2013; Vogelsberger et al. 2014).

Various modelling techniques, as described in §1.3, have been adopted to

infer the density profile of galaxy DM haloes. Many of the studies concerning the

decomposition of HI rotation curves, as mentioned above, found inner slopes of DM

haloes to be shallower than the cosmologically predicted cuspy NFW profile (e.g. Oh

et al. 2011; Adams et al. 2014; Brook 2015). This discrepancy comes to be known as

the cusp-core problem.

For Local Group low mass dwarfs, the dark matter density profiles can be

recovered from stellar kinematics either through the virial mass estimates (Walker

& Peñarrubia 2011), the Jeans equations (e.g.  Lokas 2009; Zhu et al. 2016) or

Schwarzschild models (e.g. Breddels et al. 2013; Kowalczyk et al. 2018). Measuring

the mass profile from stellar kinematics su↵ers from uncertainties associated with

the unknown velocity anisotropy, known as the mass-anisotropy degeneracy. To

break the mass-anisotropy degeneracy,  Lokas (2009) have utilised the higher order

moment (kurtosis). And as such degeneracy is found to have a spatial dependence

and is minimal at the half-light radius (Wolf 2010), other authors have separated

stellar kinematics into populations of di↵erent chemistry with di↵erent spatial and

kinematical distributions to serve as a lever arm to understand the host potential

(Walker & Peñarrubia 2011; Zhu et al. 2016).

The constraints on the inner slopes of the dark matter density profiles by stellar

kinematics alone is di�cult however. For example, while Walker & Peñarrubia

(2011) show that there is a large central dark matter core in Fornax, this is only true

under the spherical symmetry assumption. Even with a discrete Jeans model on two

chemically distinct population, Zhu et al. (2016) could only constrain the inner slope

of the dark matter halo of Sculptor to be within � = 0.5± 0.3 (where � parametrises

the inner slope of a generalised NFW profile, with � = 0 corresponding to a cored

37



CHAPTER 1. INTRODUCTION

profile and � = 1 an NFW profile). In another study Kowalczyk et al. (2018) showed

that while a cored profile is preferred by their models for Fornax, cuspy NFW and

Einasto profiles fall within the 1� uncertainties.

Modifications to the dark matter density profile have been shown to occur as

stellar feedback can rapidly eject large quantities of gas and causes a non-adiabatic

expansion of the dark matter and stellar orbits in the centres of low mass dwarf

galaxies (e.g Governato et al. 2012; Di Cintio et al. 2014). This process has been

seen in hydrodynamic simulations including baryonic feedback, and its e�ciency may

depend on sub-grid prescriptions for star formation and energy injection. There are

predictions from these simulations that the e↵ect of the feedback driven core creation

will leave some imprint on the surviving stellar populations. For example, Read

et al. (2016) showed, with hydrodynamical simulations of individual dwarf galaxies,

that the size of the DM core is proportional to the half-light radius of the stellar

disk and that the inner slope itself depends on the star-forming time of the galaxy.

With the hydrodynamical cosmological simulation suite NIHAO, Di Cintio et al.

(2014) showed that the coring of DM haloes by baryonic feedback which changes the

inner slopes of DM haloes, is correlated with the stellar-mass-to-halo-mass fraction

M?/Mhalo:

� = �0.06 + log10[(10
X+2.56)�0.68 + (10X+2.56)], (1.22)

where X = log10(M?/Mhalo), meaning that DM haloes in galaxies at the low- and

high-end of M?/Mhalo are easily cored by baryonic feedback. Such a nonlinear

relation suggests that there is an interplay between the amount of feedback energy

produced by a galaxy’s star formation, and the depth of its total potential well.

1.5.3 Predictions for halo geometry

While in purely ⇤CDM simulations DM haloes are predicted to have prolate

geometries regardless of their halo masses, Butsky et al. (2016) showed with the

NIHAO simulations that such constancy is weakened when baryonic matter is

taken into account. Especially for the inner regions (. 0.5 rvir) of the haloes,

baryonic feedback from massive galaxies can sphericalise the halo. In DM only

simulations, haloes typically have a short-to-long axis ratio of ⇠ 0.4 in the inner

region (. 0.12 rvir) regardless of their mass. When baryonic e↵ects are taken into

account, the c/a of a Milky Way like galaxy would rise to c/a ⇠ 0.8 while that of

dwarf galaxies are mostly una↵ected.

Inferring the three-dimensional mass distribution of the unseen DM halos

is di�cult, however some attempts have been made in individual galaxies. For
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example, the geometry of DM haloes can be constrained through the flaring of the

cold disk, given the gaseous velocity ellipsoid. Such methodology is applicable to

edge-on disk galaxies and was first proposed by Olling (1995). Olling (1996) and

Banerjee & Jog (2008) applied this to constrain the DM halo shape of the Scd

galaxy NGC4244 and M31 and found them both to be highly flattened, axis ratios

c/a ⇠0.2 and ⇠0.4 respectively. Alternatively, the geometry of a DM halo can also

be probed through its stellar dynamics. While again shape and velocity anisotropy

are degenerate in moment-based stellar dynamical models, observations of proper

motions in the future will allow the breaking of such degeneracy.

1.5.4 Alternative DM theories

While the cusp-core problem could be reconciled by baryonic feedback altering the

DM density profile in the CDM paradigm, it could also be viewed as an evidence

to alternative DM theories. In addition to the cusp-core problem, another famous

inconsistency between the pure dark matter ⇤CDM cosmological universe and

observations is the missing satellite problem. This refers to the discrepancy between

the simulated dark matter halo power spectrum at the low-mass end and the

observed number of small satellite galaxies. For example, a simulated Milky Way-like

halo is seen in CDM simulations to host 100-1000 subhaloes that are massive enough

to form galaxies, while we do not observe such a large number of satellites around our

own Galaxy (e.g. Moore et al. 1999; Klypin et al. 1999). Similar under-abundance of

satellites is also found in other nearby galaxies (e.g. Zavala et al. 2009; Zwaan et al.

2010). While the missing satellite problem is not directly tested through dynamics,

it provides a further motivation to study alternative DM theories through galaxy

dynamics.

While CDM models typically interpret the dark matter particle as non-

interacting (e.g., a WIMP), however other options may be possible. Below I discuss

three classes of alternative DM theories (Warm, Wave and Self-Interaction DM),

which successfully predict large scale structures while allowing the small-scale

problems of CDM to be solved without invoking baryonic e↵ects. In contrast to

CDM, which interacts only through gravitational forces, these alternative DM

achieve a central core by being heated up through interaction from other forces

and do not require energy input from baryonic e↵ects. The dependence of the

DM geometry, inner slope and core size with respect to M?/Mhalo or the spatial

distribution of stellar mass as predicted in the CDM paradigm would be expected

to be non-existent or at least di↵erent in such alternative models, and this can be

tested.
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Warm Dark Matter (WDM)

Warm dark matter, for example thermal relic particle theories, relativistically

decouple from overdensities and act to suppress aspects of the matter power

spectrum on small scales. These particle theories could e↵ectively prevent formation

of cusps in DM halos without needing baryonic e↵ects. A high streaming velocity

can be achieved if DM particles have lower masses (mWDM ⇠ keV; in contrast to

mCDM ⇠100-1000GeV for CDM), allowing them to decouple from the hot plasma of

the early universe when it is still relativistic. Other than suppressing density cusps in

DM haloes, the higher streaming velocities of WFM would at the same time suppress

structure formation below the free-streaming length. Allowable free-streaming

lengths can hence be constrained through observation of large-scale structure.

For example, Viel et al. (2013) use observations of the high redshift Lyman-↵

forest7 that mWDM & 3.3 keV. Bozek et al. (2019) showed with hydrodynamical

cosmological simulations that in an universe with WDM, DM haloes and hence stars

are formed later and the stellar distributions are less centrally dense than CDM

haloes, o↵ering a young population of ultra-faint dwarfs (which have not yet been

found observationally and also are not seen in their CDM simulations) as a testable

prediction.

On the other hand, even though WDM allows the formation of cores in DM

haloes, such cores would be rather small given the allowed mWDM constrained from

large-scale structures. Villaescusa-Navarro & Dalal (2011) showed numerically that

the core radii is of the order of . 0.1% of the virial radii, in contrast to the observed

ratio ⇠ 5% in some Low Surface Brightness galaxies (LSB). While this might serve

as a counter argument to WDM, they arrived at this conclusion by assuming that

no haloes can form below the cut-o↵ scale, such an assumption has however, as the

authors pointed out, not been verified with N -body simulations due to numerical

di�culties in simulating a truncated power spectra.

Wave Dark Matter ( DM)

Another popular candidate of alternative DM is made up of ultra-light axions

(m DM ⇠ 10�22 eV), known in the literature also as the Bose-Einstein Condensate

DM, scalar-field DM or Fuzzy DM.  DM is so light that the de Broglie wavelength is

on the order of ⇠kpc, meaning that quantum e↵ects act on galactic scale and support

7Lyman-↵ forest are absorption lines caused by neutral Hydrogen in the intergalactic medium
along the line-of-sight to distant quasars and allows us to trace the large-scale structure/mass power
spectrum at high redshift.
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a DM core in the centre of galaxies. Schive et al. (2014a) performed cosmological

simulation with  DM and find that such DM cores have the form of a soliton,

manifested as a stationary and lowest-energy solution to the Schrödinger–Poisson

equation and is surrounded by a CDM-like envelope. The density profile of the

soliton in  DM halo can be written as:

⇢ DM(r) =
1.9(m DM/10�23)�2(rc/kpc)�4

[1 + 9.1⇥ 10�2(r/rc)2]8
; r < ra, (1.23)

where rc is known as the core radius and beyond ra, the density profile of the  DM

halo can be described by an NFW profile. From their simulations, they find ra ⇠ 3rc
typically.

Just like WDM,  DM also suppress small-scale structure formation. The

Lyman-↵ forest hence provides again a constraint on the mass of the DM particle.

It is found that that the Lyman-↵forestconstrainsm DM = 0.26� 2.5⇥ 10�22 (e.g.

Bozek et al. 2015; Sarkar et al. 2016). Alternatively, m DM can also be constrained

through the core size of DM haloes. As shown in Eq. 1.23, for a soliton of a

particular rc, the normalisation of the density profile of the DM core is set by m DM.

The shape of the DM density profile can be obtained through dynamical means. For

example, using the Jeans Eq. and the stellar kinematics of the Fornax dSph, Schive

et al. (2014a) constrained m DM to 0.8± 0.2⇥ 10�22 eV.

Self-interacting Dark Matter (SIDM)

SIDM particles are a class of particles interact with each other through 2 ! 2

elastic scattering (the case of inelastic scattering was explored in Vogelsberger et al.

2019). Such self-interactions transfer energy from the dynamically hotter outer

region to the dynamically colder inner region of a DM halo and hence allow a

formation of an inner DM halo core. This kinetic thermalisation also drives the

DM halo to become isothermal, with radially uniform velocity dispersion of DM

particles and Maxwell-Boltzmann velocity distribution function (Vogelsberger &

Zavala 2013). Also, the collision between the DM particles, depending on the exact

cross-section, can lead to sphericalisation, erasing the triaxiallity seen in CDM haloes

and predicting spherical DM haloes (e.g. Vogelsberger et al. 2012; Peter et al. 2013).

While it has been suggested that the scattering cross-section constraints

from lensing of galaxy clusters (�/m . 0.02 cm2 g�1, Miralda-Escudé 2002) is too

small to exert any e↵ect on DM halo structure to resolve small scale problems of

CDM in dwarf galaxies (e.g. an inner core), a new class of SIDM particles with

velocity-dependent scattering cross-section circumvent this issue. This is also known
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Figure 1.17: The derived velocity-dependent scattering cross section of SIDM plotted in

orange dashed curve, with constraints from dwarf galaxies (red), LSB galaxies (blue) and

galaxy clusters (green)(Kaplinghat et al. 2016).

as the dark photon model, where the self-interaction between SIDM particles is

described by a Yukawa potential: V (r) = ↵SIDMe�µr/r, where ↵SIDM is in analog

with the EM fine structure constant (↵EM ⇠ 1/137) and µ is the dark photon

(mediator) mass. With a combination of lensing data from galaxy clusters and

Jeans models of dwarf and LSB galaxies, Kaplinghat et al. (2016) constrained µ

to be tied to the mass of SIDM particle (mSIDM) itself and µ ⇠ 10�3mSIDM, with

60MeV< mSIDM <30GeV and 10�6 < ↵SIDM < 10�1. We show their fit of SIDM

scattering cross section over objects of wide range of masses in Figure 1.17.

Another compelling advantage of SIDM is that it allows for the observed wide

variety of rotative curve profiles. For models such as WDM and  DM, one would

expect all dwarfs to have cores in their DM haloes, contrary to the observed diversity.

CDM models predict self-similar haloes such that any halo of a given mass have

remarkably similar structures, it has hence been pointed out that such a diversity

cannot be reproduced through baryonic feedback in the CDM scenario (Oman

et al. 2015). Recently however, Santos-Santos et al. (2018) were able to reproduce

the diversity of observed Vrot in terms of the ratio between the Vrot at 2 kpc and

the outermost measured value, using the NIHAO cosmological hydrodynamical

simulations. They suggest that the diversity in rotation curves enter in the CDM

model through a dependence between M?/Mhalo and the size of the DM core formed

by baryonic feedback. In the case of SIDM, DM density profiles are altered by

thermalisation caused by self-interaction, meaning that the distribution of baryonic
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matter can play an important role when a galaxy is baryon-dominated in the inner

region. In such a case, the isothermal solution would largely determined by the

baryonic density distribution. On the other hand, for DM-dominated systems such

as dwarf galaxies, (Robles et al. 2017) have shown that the inclusion of baryons in

SIDM simulations only induces negligible changes to the DM density profile. By

simply applying isothermal solutions to the Jeans Eq. and inputing the observed

baryonic distribution, Kamada et al. (2017) were able to reproduce the diversity of

the rotation curves of 30 dwarf galaxies with remarkable success.
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Chapter 2

Validating stellar dynamical mass
models with molecular gas
kinematics

Abstract1

Deriving circular velocities of galaxies from stellar kinematics can provide an

estimate of their total dynamical mass, provided a contribution from the velocity

dispersion of the stars is taken into account. Molecular gas (e.g., CO) on the other

hand, is a dynamically cold tracer and hence acts as an independent circular velocity

estimate without needing such a correction. In this work we test the underlying

assumptions of three commonly used dynamical models, deriving circular velocities

from stellar kinematics of 54 galaxies (S0-Sd) that have observations of both stellar

kinematics from the CALIFA survey, and CO kinematics from the EDGE survey.

We test the Asymmetric Drift Correction (ADC) method, as well as Jeans, and

Schwarzschild stellar dynamical models. The three methods each reproduce the

CO circular velocity at 1Re to within 10%. All three methods show larger scatter

(up to 20%) in the inner regions (R < 0.4Re) which may be due to an increasingly

spherical mass distribution (which is not captured by the thin disk assumption in

ADC), or non-constant stellar M/L ratios (for both the JAM and Schwarzschild

models). This homogeneous analysis of stellar and gaseous kinematics provides one

of the first empirical validation that all three models can recover Mdyn at 1Re to

1This chapter originally appeared in the literature as Leung et al. (2018). I hereby a�rm that I
have conducted all the research presented here myself.
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better than 20%, but users should be mindful of scatter in the inner regions where

some assumptions may break down.

2.1 Introduction

The kinematics of stars or gas in galaxies allows one to trace its underlying

gravitational potential and hence the enclosed mass within a particular radius. In

particular, the circular velocity, Vc, defined as V 2
c (R) ⌘ �R(@�/@R), is an optimal

tracer of a galaxy’s potential. The mass profile of galaxies provides insight into, for

example: understanding how baryons and dark matter co-habitate in galaxies, how

the galaxies assemble, and how galaxy evolution proceeds across the Hubble sequence

in a variety of environments (e.g. see reviews: Courteau et al. 2014; Cappellari 2016,

and references therein).

Typical kinematic tracers for galaxies include atomic, molecular or ionised

gas, and stars. While observations of stellar kinematics can be done at high

spatial resolution, the high velocity dispersion intrinsic to the stellar component

renders their dynamical analysis non-trivial. Luminous ionised gas can be similarly

complicated due to turbulent shocks surrounding star formation (of which it is

associated). Molecular gas, such as the CO, which is often used as a tracer of

H2, typically is dynamically cold with an intrinsic dispersion of . 10 km s�1 at

low redshift (Mogotsi et al. 2016). This means that the molecular gas rotation

curves closely follow the circular velocities and therefore is an optimal tracer of the

gravitational potential. However, molecular gas is found in the disk plane and can

often show kinematic features due to perturbations occurring in the disk by a bar

or spiral arms (e.g. Laine et al. 1999; Shetty et al. 2007). A method for removing

these perturbation, for example by fitting tilted rings or by harmonic decomposition

(e.g. Begeman 1987; Wong et al. 2004), is therefore necessary in order to extract a

smooth rotation curve from molecular gas.

As stars are collisionless, their orbits can cross and stars born from the cold

molecular gas eventually dynamically evolve to have large random motions at present

day (Leaman et al. 2017), resulting in velocity dispersions up to a hundred km s�1

at a typical L? mass galaxy’s e↵ective radius and as high as a few hundreds km s�1

in the galactic bulge. Hence when estimating the circular velocity (and dynamical

mass) of a galaxy from stellar kinematics, we must take into account both the

rotation velocity and the velocity dispersion - especially when they are of comparable

magnitude.
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There are various methods to recover Vc from stellar kinematics, typically

either by solving the Jeans equations (e.g Jeans 1922; Binney et al. 1990; Emsellem

et al. 1994), by using orbit-based models such as the Schwarzschild model (e.g.

Schwarzschild 1979; van der Marel et al. 1998; Thomas et al. 2004; Valluri et al.

2004), or by particle-based models such as the Made-to-measure method (e.g. de

Lorenzi et al. 2007; Long & Mao 2010; Syer & Tremaine 1996; Zhu et al. 2014).

Having only the line-of-sight information of the velocity field (e.g., the projected

components of the rotation and dispersion) implies that some assumptions must be

made. The Jeans models often make assumptions on, for example, the geometry of

the underlying potential, the mass-to-light ratio and the velocity anisotropy profile

of the galaxies. Schwarzschild or made-to-measure models, on the other hand, do

not make assumption on the velocity anisotropy, but may still require assumptions

on the geometry of the gravitational potential and the mass-to-light ratio.

This work aims to verify commonly used models for deriving circular velocities

and hence dynamical masses, from stellar kinematics, and calibrate how well each

model works in di↵erent regimes (e.g. over di↵erent radii or galactic properties). We

do so by comparing the circular velocities derived from stellar kinematics to those

extracted from the molecular gas as traced by CO. As the molecular gas and the

stars in a galaxy orbit in the same gravitational potential, the Vc inferred from their

kinematics should match each other. We test three commonly used stellar dynamical

models in this study: (1) the asymmetric drift correction (ADC) (e.g. §4.8 Binney

& Tremaine 1987; Weijmans et al. 2008), (2) the Axisymmetric Jeans Anisotropic

Multi-gaussian expansion (JAM) model (Cappellari 2008), and (3) the orbit-based

Schwarzschild model (Schwarzschild 1979; van den Bosch et al. 2008). Both ADC

and JAM derive Vc by solving the Jeans equations.

Among the three, ADC is the most simplistic model and assumes that stars lie

on a thin disk with either a constant or a parametrised form of velocity anisotropy.

JAM removes the thin-disk assumption and takes into account the full line-of-sight

integration of the stellar kinematics, but still makes assumptions about the velocity

anisotropy and the shape of the velocity ellipsoid. The triaxial Schwarzschild models

we utilise in this work are the state of the art in stellar dynamical modelling. The

Schwarzschild method is an orbit-based model which does not require any assumption

on the shape of velocity ellipsoid, but is expensive in terms of computational power.

By comparing the Vc derived from these three models with that from CO kinematics,

we aim to show if and how the relaxation in assumptions allowed by improved

computational power in stellar dynamical modelling leads to better constraints

in circular velocities. In the remainder of this work we shall refer to the circular

velocities derived from CO, ADC, JAM and Schwarzschild models as VCO, VADC,

47



CHAPTER 2. VALIDATING STELLAR DYNAMICAL MODELS WITH CO

VJAM and VSCH respectively.

Gas and stellar kinematics have been compared in some individual cases, or for

particular applications (e.g. Weijmans et al. 2008; Leaman et al. 2012; Bassett et al.

2014; Pizzella et al. 2004; Johnson et al. 2012; Hunter et al. 2002). In particular,

Davis et al. (2013) show, for a sample of 16 early type galaxies (ETG) from the

ATLAS3D survey, the agreement of CO and stellar kinematics. Over the late type

galaxies, however, a large scale homogeneous test of stellar dynamical models with

cold gas circular velocity curves is still needed.

The EDGE (Bolatto et al. 2017) and CALIFA IFU surveys (Sánchez et al.

2016) respectively provide CO and stellar kinematics over an overlapping sample of

nearby galaxies, allowing us to compare the CO rotation curves and stellar circular

velocities over a large and homogeneous sample for the first time. Moreover, our

sample includes 54 galaxies from type S0 to Scd, allowing us to look for systematic

di↵erences in the kinematic tracers as a function of galaxy morphological type. The

CALIFA survey also provides H↵ kinematics; for a comparison between VCO and the

rotation curves extracted from H↵ kinematics please refer to Levy et al. (2018).

Readers interested in the data sample may refer to section 2.2. In section

2.3, we describe the extraction of rotation curves from the CO velocity field. In

section 2.4, we describe the methods and the underlying assumptions of the three

stellar dynamical models (ADC, JAM and Schwarzschild) and compare the circular

velocities extracted from stars using di↵erent models in section 2.4. In section 2.5,

we compare the circular velocities extracted using gaseous and stellar kinematics and

we characterise the comparisons as functions of radii, local stellar V/�? values and

galactic parameters. In section 2.6, we discuss the plausible causes for the di↵erences

we see. We summarise in section 2.7.

2.2 Data

The CARMA Extragalactic Database for Galaxy Evolution (EDGE) survey consist

of interferometric observations of 126 galaxies, all of which are included in the Calar

Alto Legacy Integral Field Area (CALIFA) survey. The data were obtained using the

Combined Array for Research in Millimeter-wave Astronomy (CARMA) at Owens

Valley Radio Observatory. These 126 galaxies were mapped in 12CO(J = 1 � 0)

using the D and E array configuration. Each galaxy typically had 4.3 hours of

observation, and all galaxies were observed in the period from December 2014 to

April 2015. The velocity resolution of the observations was 20 km s�1, and the typical
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beam has FWHMbeam of ⇠ 3� 5”. In this work, we utilise the integrated intensities,

mean velocities and velocity dispersion maps. The kinematic maps are obtained by

fitting a gaussian to the spectrum observed at each pixel, with the peak of the fitted

gaussian and the standard deviation representing the mean velocity and the velocity

dispersion respectively. Complete details of the observations and reduction for the

survey, as well as all the CO moment maps, can be found in Bolatto et al. (2017)2.

The measured stellar kinematics come from integral field spectroscopic

observations of the CALIFA survey. The observations have a spatial resolution

with a FWHM of ⇠ 2.7”. The stellar kinematics come from the V1200 data set

(Falcón-Barroso et al. 2017)3, with a velocity resolution of � ⇠ 70 km s�1. While

the optical and radio community often follow di↵erent velocity conventions when

extracting kinematics from the observed spectra, both the CO and stellar kinematical

maps presented in this work are converted to: V ⌘ c� ln�, where V is the extracted

velocities, c is the speed of light and �� is the di↵erence between the observed

wavelength and the rest wavelength of any particular lines. This is done to avoid any

systematic di↵erences due to the di↵erent conventions when comparing the circular

velocities extracted from CO and stellar kinematics.

Out of the 126 overlapping galaxies, we select 54 galaxies that provide su�cient

signal to noise in CO for us to trace the galaxy kinematics. We select only the

galaxies from which we can extract at least three rotation velocity measurements

(more on selection criterion in Section 2.3.3). We also exclude merging galaxies as

identified for the CALIFA sample in Barrera-Ballesteros et al. (2015), of which the

interaction may complicate the di↵erences between gaseous and stellar kinematics.

The 54 galaxies of our sample and their parameters as adopted in the CALIFA survey,

including the total stellar mass (M?), distance, inclination (i) and photometric

position angle (PAmorph) are listed in Table 2.1.

2the publicly available data can be downloaded from http://www.astro.umd.edu/EDGE/

3the stellar kinematics can be found in http://califa.caha.es
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2.3 Extraction of the CO Rotation Velocities and

Dispersion Profiles

2.3.1 Beam-smearing correction on CO mean velocity and

velocity dispersion fields

Interferometric observations have a characteristic spatial resolution which depends

on the configuration of antennae and receiver response - known as the primary beam.

This finite spatial resolution can result in blending of velocities from di↵erent areas

of the galaxy, depending on how quickly the velocity fields vary and the spatial scale

of the galaxy with respect to the beam. This is known as beam-smearing.

Before extracting the rotation curves and dispersion profiles, we first applied

a beam-smearing correction to both the CO mean velocity and velocity dispersion

maps. The observed mean velocity field (especially in the inner region) as well as the

velocity dispersion field are a↵ected by beam smearing e↵ect as the observations have

an average beam size of ⇠4.500 (⇠1/5 of the typical e↵ective radii of our sample of

galaxies). To recover the intrinsic V� and �CO (and hence the most precise dynamical

mass to serve as a reference), we need to estimate and remove the e↵ect of beam

smearing on dispersion. This is done in two steps: (1) recover the pre-beam-smeared

mean velocity map and (2) calculate the velocity dispersion caused by the beam

around each pixel from the pre-beam-smeared velocity field.

To recover the pre-beam-smeared mean velocity field, we assume the molecular

gas in the galaxy is a thin disk such that the mean velocity equals the line-of-sight

velocity. We first create a perturbed velocity field V 0 by varying the velocity at

each pixel, within the range Vobs ± �obs (observed velocity dispersion). From V 0

we calculate a modelled velocity field Vmod from the beam weighted average of the

velocities within the two FWHM of the beam around each pixel. This is illustrated

in Figure 2.1, where the black pixel labelled as pixel i is the pixel at which we want

to evaluate the beam-smearing corrected mean velocity, grey ellipse indicates two

FWHM of the beam and the grey pixels indicate the pixels with which we compute

the beam weighed average.

We iterate on this procedure until a V 0 field is found such that its model velocity

Vmod, reproduces the original, beam-smeared observed velocity field, Vobs. This V 0 is

then taken as the intrinsic beam-smearing corrected mean velocity field, Vint, and is
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related to the observed velocity field as:

Vobs,i =

P
j2Xi

wijVint,jP
j2Xi

wij
, (2.1)

with Xi is the set of pixels within a full beam around pixel i (i.e. the grey pixels in

Figure 2.1 and wij being the weight of the beam of pixel i (a 2D gaussian) at the jth

pixel. This relation holds simultaneously for all pixels.

From Vint we can then compute �mod, the amount of dispersion contributed from

beam-smearing. First we take �mod at a certain pixel as the beam-weighted standard

deviation of Vint within a full beam size around the pixel:

�mod,i =

sP
j2Xi

wij(Vint,j � Vint,j)2P
j2Xi

wij
. (2.2)

Finally, we obtain the intrinsic dispersion, �int by performing a quadrature

subtraction of the modelled dispersion, �mod, from the observed dispersion, �obs:

�int =
q
�2
obs � �2

mod. (2.3)

In Figure 2.2, we show as an example the pre- and post- beam-smearing corrected

mean velocity maps, velocity dispersion maps, the observed and beam-smearing

corrected rotation curve VCO (see §2.3.2) and the V/�CO ratio of UGC04132. The

corresponding plots for all 54 galaxies in our sample in Figure A.5 in Appendix A.4.

In Figure 2.3, we show the di↵erences between the rotation curves extracted from

the CO kinematics before and after beam-smearing correction. After beam-smearing

correction, the rotation curves show a larger value, the di↵erences may be negligible

in the outer radii but become significant in the inner region where the gradient

in the velocity field is larger. The modelled beam-smearing contribution to the

dispersion field as well as the beam-smearing corrected dispersion field obtained

using the method described above make it evident that most of the observed velocity

dispersion comes from beam-smearing.

While this method serves as a good estimation of the beam-smearing e↵ect,

a few minor e↵ects may lead to us not fully capturing the beam-smearing e↵ect:

including the simplifying assumption of an uniform gas distribution, and the fact

that instead of applying beam-smearing correction to each and every channel, we

utilise only the mean velocity map. We therefore utilise still only the CO Vc beyond

3�beam for testing the stellar dynamical models, where the e↵ect of beam smearing on

the CO rotation curve is insignificant. Nevertheless, we can see that for most of the
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Figure 2.1: Illustration of selected pixel set Xi (in grey) around pixel i (in black). The

grey ellipse denotes two FWHM of the beam.

observed dispersion field, the patterns that are caused by the beam-smearing e↵ect

can be reproduced in the modelled dispersion field, and hence be subtracted. Such

a correction to the CO velocity dispersion map is however of particular importance

in assuring that CO acts as a dynamically cold tracer for our galaxy sample (see

Section 2.3.4).

2.3.2 Rotation curves

We extract the rotation curves from the CO mean velocity map of each galaxy by first

fitting ellipses to the mean velocity map, stepping outwards along the semi-major

axes, each time determining the kinematic centre and systemic velocity (Vsys) of the

ellipses. The ellipses are extracted with a minimum of 20 pixels per annulus, and a

minimum step size of half FWHMbeam along the semi-major axis. The inclinations

were based on estimates from the ellipses characterising the outer isophotes and

global ellipticity respectively of the r-band photometry from the CALIFA survey and

are the same as the ones adopted in the stellar dynamical models (section 2.4). For

most cases, we fix the kinematic position angle (PAkin) to be the same as PAmorph

(as fitted from the outer isophotes of the r-band photometry). In the few cases

where an adjustment of PAkin is needed, we allow it to be a free parameter in the

extraction of ellipses. Galaxies with adjusted PAkin are marked (with *) in Table

2.1.
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Figure 2.2: Kinematic maps for UGC04132 from the EDGE CO survey. The coloured

maps from left to right are: observed mean velocity map, beam-smearing corrected mean

velocity map, observed dispersion map, modelled dispersion map and beam-smearing cor-

rected dispersion map. The two plots on the right are the extracted rotation curve and V/�

ratio, with the grey dashed line indicating the observed value and black solid line indicate

the beam-smearing corrected value which we adopt in our analysis. The black dashed lines

mark the e↵ective radius Re.

The ellipse parameters and rotation velocity of each ellipse are found by fitting

a velocity field of the form:

Vmod = Vsys + Vrot cos(�) sin(i), (2.4)

to the observed mean velocity map. Here Vmod, Vsys and Vrot are the modelled,

systemic and rotation velocities respectively, � and i are the azimuthal angle

(measured from the major axis) and the inclination respectively. To determine the

global kinematic centre, PAkin and Vsys of each galaxy, we compute the mean of

these parameters over all ellipses. The extracted PAkin and Vsys are listed in Table

2.1.

To remove any non-circular kinematic perturbations that may come from a bar

or spiral arms and could a↵ect our measurement of the rotation curve, we use the

method of harmonic decomposition (e.g. Krajnović et al. 2006; van de Ven & Fathi

2010). We model the velocity fields up to their 3rd order harmonics:

Vmod = Vsys + c1 cos(�) + s1 sin(�) + c2 cos(2�)

+ s2 sin(2�) + c3 cos(3�) + s3 sin(2�),
(2.5)

The obtained value c1/ sin(i) gives us the CO circular velocity (labelled as VCO from

hereon), largely removing e↵ects from high order perturbations such as for example

spiral arms and bars. Whereas the other terms such as s1 (radial flow) and the higher
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Figure 2.3: We show the di↵erences between the CO rotation curves before and after

beam-semaring correction of all the 54 galaxies in grey dots. The black curve and error

bars indicate the error-weighted mean and standard deviation of the di↵erences in each

bin. As shown in the plot, beam-smearing correction increases the rotation curve and the

di↵erences between the two increases inwards.

order terms are not directly related to the rotation curve, they provide an estimate

on the small remaining e↵ects from high order perturbation on c1. The relevant

higher order terms c1, c3 and s1 are . 10% of our extracted VCO. In Appendix A.1,

we estimate the upper limit of the e↵ect of the higher order perturbations in our

VCO and demonstrate that such perturbations are not correlated with any di↵erences

we see between the CO and stellar Vc.

2.3.3 Uncertainty estimates and selection criteria

To estimate the uncertainties in the extracted CO rotation curves, we performed

Monte Carlo perturbations of each pixel with a perturbation randomly sampled from

a gaussian with width corresponding to the mean velocity error in the corresponding

velocity error map. We perform 200 perturbed runs, each time repeating the steps

in Section 2.3.2. As our final CO rotation curve, we take the mean of the rotation

curves extracted from the 200 runs and use that to compare with the CALIFA

stellar circular velocities. The standard deviation of the 200 rotation curves is

taken as the uncertainty of the rotation curves �V . We then remove any rotation

velocity measurements with V/�V < 3. Finally, we remove the rotation velocity
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measurements that come from patchy areas in the map as we find that an uneven

sampling of line-of-sight velocities along the annuli can render a rotation velocity

measurement with large errors (as reflected by a deviation from a smooth rotation

curve) that cannot be captured with our estimation of uncertainties. We quantify

the patchiness of each annuli by the parameter Ppatch = �(n�)/n�, where n� is

the number of pixels with a velocity measurement per degree in � of a particular

annuli, �(n�) and n� are the standard deviation and mean of n�. Rotation velocity

measurements from annuli with Ppatch > 1.5 are removed. After cleaning our sample

with the two criteria mentioned above, the average �V of our galaxy sample is

⇠10 km s�1. The extracted VCO of UGC04132 are shown in Figure 2.2 as an example.

2.3.4 CO as a kinematically cold tracer

Here, we demonstrate that the CO gas is not pressure supported (i.e. by random

motions) and hence our derived rotation curve is a good measure of the circular

velocity. Despite being a dynamically cold gas, the CO gas in our sample of galaxies

can show a velocity dispersion of up to ⇠50 km s�1 in the inner region. At regions

with high velocity dispersion, just like the stellar velocity field, the tangential

velocities (V�) can deviate from the true circular velocity (Vc). To estimate this

deviation, we applied asymmetric drift corrections (ADC) on the CO rotation

curve, which solves the first Jeans equation in the equatorial plane (z=0) such that

(rearranged from Eq. A3 of Weijmans et al. 2008):

V 2
c (R) = V�

2
+ �2

R

h@ln(⌫�2
R)

@lnR
+ (

�2
�

�2
R

� 1)� R

�2
R

@VRVz

@z

i
, (2.6)

where ⌫ is the intrinsic luminosity density, as deprojected from the integrated

intensity map of CO, (VR, Vz, V�) and (�R, �z, ��) are the velocity and velocity

dispersion components in the three dimensions of the cylindrical coordinates (R, z,�).

The last term of equation 2.6 vanish if we assume the velocity ellipsoid is aligned

with the cylindrical coordinate system. Since we do not know how the velocity

dispersion is distributed among turbulent, thermal and gravitational dispersions,

we take into account the full beam-smeared corrected (see Appendix 2.3.1) velocity

dispersion to obtain an upper limit of any possible deviation of the CO V� to Vc due

to support from random motions. We tested the two limiting cases in which the CO

gas is isotropic (i.e. �2
�/�

2
R = 1) and radially anisotropic (i.e. �2

�/�
2
R = 0). In both

cases we assume that the CO gas lies on a thin disk with �z = 0 when deprojecting

the velocity dispersion map, such that: �2
los = �2

R sin�2 sin i2 + �2
� cos�

2 sin i2.

In Figure 2.4, we show for all the galaxies in our sample, the di↵erence between

the CO rotation curves before and after ADC correction in red for the isotropic case
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Figure 2.4: We show the di↵erences between the CO rotation curves before and after ADC

correction of all the 54 galaxies. Each red/blue dot represents one galaxy in that specific

radial bin. The grey slab indicates the average 2� value of the error of all galaxies in our

sample in each radius bin. The green curve and error bars indicate the mean and standard

deviation of the di↵erences in each bin. As shown in the plot, even in the inner region, the

ADC corrections are in fact mostly lying within the uncertainties.

and in blue for the radially anisotropic case, with each dot corresponding to a galaxy

at that particular radial bin. We find that the correction to the CO rotation curve is

insignificant in either cases, mostly lying even within the error of the rotation curve

itself. This suggests that CO is a dynamically cold tracer in our sample of galaxies

and the extracted rotation velocity V� is a good representation of Vc.

2.4 Modelling Vc from stellar kinematics

We consider three commonly used stellar dynamical models, namely: (1) Asymmetric

Drift Correction (ADC), (2) Jeans Anisotropic Models (JAM) and (3) Schwarzschild

models (SCH). As mentioned in the Introduction, out of these three models, ADC is

the most easily implemented and requires the largest amount of assumptions. SCH,

on the other hand, require the fewest assumptions but is the most computationally

expensive method. Below we outline the methods and assumptions behind each of

the models, which we summarise in Table 2.2.
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Figure 2.5: We show Vc of UGC04132 using di↵erent kinematic tracers and models. From

left to right, the tracer used is: CO gas (black dots, with error bars), and stellar kinematics

with the ADC model (green), stellar kinematics with the JAM model (blue) and stellar

kinematics with the Schwarzschild model (red). The grey region indicates 3�beam of the

CO observations. The horizontal line on the top left of each panel indicates the scale of

2 kpc. The vertical dashed line marks the e↵ective radius. These Vc from di↵erent tracers

are stacked on top of each other in Figure 2.8 for easier comparison for each galaxy.

2.4.1 Asymmetric Drift Correction (ADC)

As described in section 2.3.4, ADC solve the Jeans equations utilising the line-of-sight

mean velocity and velocity dispersion maps, adopting a thin disk assumption by

solving the Jeans equation only in the z = 0 plane (i.e. equation 2.6), and in addition

assumes an axisymmetric gravitational potential. In solving equation 2.6, we assume

that the velocity ellipsoid aligns with cylindrical coordinates and that the velocity

anisotropy is constant. We derive VADC for all the galaxies in our sample with

two commonly assumed values of the velocity anisotropy � = 1 � �2
�/�

2
r : � = 0.0

(isotropic) and � = 0.5 (radially anisotropic) (e.g. Hinz et al. 2001; Leaman et al.

2012). To derive smooth surface brightness profiles ⌫, we fitted Multi Gaussian

Expansions (MGEs; Emsellem et al. 1994) to SDSS r-band images. We also fitted a

power law to the extracted V� and an exponential profile to �R to ensure a smooth

Vc. The functional form of the fittings are:

V� = V0
R

(R2
c +R2)0.5+0.25↵

�R = �0e
�R/Rs + �1,

(2.7)

where (V0, Rc,↵) and (�0, Rs, �1) are the free parameters in the fitting of V� and

�R respectively. The fitted MGEs, the extracted and fitted V� and �R (for the case

of � = 0.5) of all the galaxies in our sample can be found in Appendix A.3, those
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Method ADC JAM Schwarzschild

Solving Jeans Equations Orbit-based

Geometric

Assumption

Axisymmetric

Thin Disk

Axisymmetric

3D
Triaxial

Constant

M/L
X Luminous matter

Dark matter

halo
X Spherical NFW

Velocity

Ellipsoid

� = 0.0 or

� = 0.5

Constant

Anisotropy

No

Assumption

Aligned with cylindrical coord.

Table 2.2:: Properties and assumptions of the three stellar dynamical models: ADC, JAM

and Schwarzschild models. ”X” indicates that the respective parameter is not incorporated

in that specific model.

of UGC04132 are shown here in Figure 2.7 as an example. The circular velocities

extracted using ADC are labelled as VADC in the rest of this work, the two specific

cases with � = 0.0 and � = 0.5 are labelled as VADC,�=0.0 and VADC,�=0.5. In Figure

2.5, we show VADC,�=0.0 and VADC,�=0.5 for UGC04132 in light and dark green curves

respectively.

2.4.2 Axisymmetric Jeans Anisotropic Multi-Gaussian

Expansion Models (JAM)

JAM also solves the Jeans equations utilising the line-of-sight mean velocity and

velocity dispersion maps, but under di↵erent assumptions. Just like with ADC, JAM

assumes an axisymmetric gravitational potential and a velocity ellipsoid aligned with

the cylindrical coordinate system. Unlike ADC however, JAM takes into account

a full line-of-sight integration when modelling the observed velocity moments. It

involves two of the Jeans equations (all the terms in the third Jeans equation vanish

due to the axisymmetric assumption):

@(R⌫V 2
R)

@R
+R

@(⌫VRVz)

@z
� ⌫V 2

� +R⌫
@�

@R
= 0,

@(R⌫VRVz)

@R
+R

@(⌫V 2
z )

@z
+R⌫

@�

@z
= 0,

(2.8)
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Figure 2.6: Posterior and covariance distributions return from our MCMC analysis for

parameters in the JAM model of UGC04132. Contours show the 1, 2 and 3� constrains on

each parameter.

where ⌫(R, z) is the intrinsic luminosity density and �(R, z) is the axisymmetric

gravitational potential. Again, (VR, Vz, V�) are the velocity components in the three

dimensions of the cylindrical coordinates (R, z,�). We use the JAM code developed

by Cappellari (2008)4 to construct the modelled kinematics. In our models, the

gravitational potential is composed of two components: a luminous component and

a dark matter halo. For the luminous component, we follow the commonly adopted

mass-follow-light assumption. We again describe the light distribution ⌫(R, z) with

the same MGEs as used in our ADC, and multiply that with a constant stellar

mass-to-light ratio ⌥? to obtain the mass distribution of the luminous matter, which

we assume to be axisymmetric. A spherical NFW (Navarro et al. 1996) dark matter

halo is then added to the potential, with the concentration fixed to be related to the

4we use the python version of code which can be downloaded from http://www-
astro.physics.ox.ac.uk/⇠mxc/software
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virial mass M200 (Dutton & Macciò 2014), defined as the enclosed mass within r200.

In addition, we assume a constant velocity anisotropy �z = 1 � �2
z/�

2
r in our JAM

models. There are hence in total three free parameters in the fitting of the models:

the stellar mass-to-light ratio ⌥?, the virial velocity of the dark matter halo Vvir, and

the velocity anisotropy �z. The modelled kinematics are then fitted to the observed

kinematics via the term Vrms =
p
V 2
los + �2

los, where Vlos is the line-of-sight mean

velocity and �los is the line-of-sight projected velocity dispersion.

We constrain the fitting of the kinematics by the Markov-Chain Monte-Carlo

method (MCMC), implemented with the publicly available software emcee5

(Foreman-Mackey et al. 2013). We employ 100 walkers and 500 steps when modelling

each of the galaxies, with a burn-in phase of 50 steps. We apply uniform priors

of 0.5 < ⌥? < 10, 0 km/s < Vvir < 400 km/s and �2 < �z < 1. We assume that

the observation errors are gaussian and adopt L = exp
�
� �2

2

�
as our likelihood

function. For most galaxies, the free parameters converge well within our imposed

priors. We show in Figure 2.6, the posterior distribution of the parameter space for

galaxy UGC04132 as a representative example. The observed and modelled Vrms of

this particular galaxy is shown in Figure 2.7. The MGE and Vrms fittings for the

rest of the galaxies in our sample are shown in Appendix A.3. We label the circular

velocities extracted using JAM as VJAM from hereon. VJAM of UGC04132 is shown

in blue in Figure 2.5.

5the software can be found on https://github.com/dfm/emcee
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Galaxy ⌥? �z Vvir (km/s) reduced �2

IC0480 5.66 0.73 59.19 2.86

IC0944 5.90 0.43 181.17 3.19

IC1199 5.54 0.54 132.25 1.53

IC1683 3.39 -1.41 223.03 1.45

IC2247 5.15 0.67 98.38 1.87

IC2487 7.52 0.07 48.88 1.17

IC4566 5.04 -0.73 57.20 2.39

NGC0477† 4.99 -1.95 44.88 1.50

NGC0496 2.43 0.40 67.53 0.94

NGC0551 4.32 0.23 34.36 1.98

NGC2253† 2.32 -1.97 98.41 1.26

NGC2347‡ 3.89 -0.74 109.52 2.24

NGC2410 5.68 0.23 18.25 1.28

NGC2639‡ 3.64 0.82 111.16 4.22

NGC2906 4.49 0.13 193.42 0.91

NGC3815 3.57 0.55 122.62 1.74

NGC3994 3.49 0.47 14.53 3.46

NGC4047† 2.58 -1.94 190.30 0.73

NGC4149 5.40 0.44 24.23 8.28

NGC4210† 4.11 -1.94 32.17 2.52

NGC4644† 4.50 -1.90 96.82 2.29

NGC4711 3.66 -0.15 47.95 0.83

NGC4961‡ 2.92 0.40 78.35 1.75

NGC5016 3.15 -0.57 131.73 0.58

NGC5056† 4.09 -1.97 19.85 2.57

NGC5218‡ 7.20 0.61 104.53 1.81

NGC5480† 2.44 -1.90 19.39 1.32

NGC5520 3.74 -0.01 351.46 1.39

NGC5633 3.24 0.47 50.70 1.57

NGC5784‡ 3.84 -0.54 121.16 7.51

NGC5908‡ 5.57 0.51 111.33 10.29

NGC5980 4.50 0.56 15.65 5.45

NGC6060 4.97 0.31 32.34 0.40

NGC6168 2.76 0.88 113.70 0.74

NGC6186 3.53 0.61 14.40 5.36

NGC6301 4.92 -0.86 106.80 3.98

NGC6394 5.14 -0.02 114.90 4.74
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NGC6478 4.48 0.10 94.09 4.82

UGC00809 8.37 0.54 90.07 2.33

UGC03539 5.02 0.89 255.40 1.88

UGC03969 6.36 0.77 71.45 1.98

UGC04029 6.14 0.65 61.95 7.50

UGC04132 6.16 0.16 40.48 2.40

UGC05108 5.89 -0.52 288.76 1.89

UGC05598 4.02 0.73 75.32 1.16

UGC08107 9.91 0.41 175.84 1.80

UGC09067 4.52 0.32 33.67 1.78

UGC09537‡ 6.28 0.10 134.90 5.64

UGC09542 4.05 0.79 83.43 1.87

UGC09665 2.74 0.82 315.18 0.71

UGC09892 3.40 0.12 48.85 0.66

UGC10123 5.19 0.65 340.85 2.25

UGC10384 3.82 0.81 255.11 1.94

UGC10710 4.80 0.47 148.44 2.86

Table 2.3:: Best fitted parameters and reduced �2 of our JAM models. † marks the

galaxies which have best fitted �z < �1.5, and ‡ marks the galaxies for which we impose

an additional stellar-mass-halo-mass relation from Leauthaud et al. (2012).

The best fitted parameters for all the galaxies, and the reduced �2 of our best

fit models are listed in Table 2.3. We note that for 7 galaxies in our sample, �z is

driven to the lower limit of our imposed prior, as marked with † in Table 2.3. Such

behaviours persist even if we allow the inclination to vary, as we show in Appendix

A.2, suggesting the behaviours are intrinsic to the JAM models for these galaxies and

do not arise from incorrect assumptions of inclinations. Additionally, for 7 galaxies

in our sample, Vvir is driven to the upper limit of our imposed prior, as marked with

‡ in Table 2.3. To improve the fits for these galaxies, we further impose constraints

from studies of abundance matching in simulations and empirical stellar-halo mass

relations. We adopt the function form outlined in Leauthaud et al. (2012):

log(Mh) = log(M1) + � log
⇣Ms

M0

⌘
+

(Ms
M0

)�

1 + (Ms
M0

)��
� 0.5, (2.9)

where Mh is the halo virial mass and Ms is the total stellar mass, which is the

integrated mass from the MGEs multiplied by ⌥?. We adopt the parameters

� = 0.456, � = 0.583, � = 1.48, log(M0) = 10.917 and log(M1) = 12.518 from

Leauthaud et al. (2012). We further discuss both issues and how they might a↵ect

our results in Appendix A.2.
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Figure 2.7: Observables and best fit models of stellar dynamical models of UGC04132. Top

from left to right: (1) r-band image from SDSS plotted in black contours with the fitted

MGEs are over-plotted with red contours, (2) observed Vrms from the CALIFA survey,

(3) best fitted JAM modelled Vrms, (4)Vlos from the CALIFA survey, (5) Vlos from the

Schwarzschild model; Bottom from left to right: (6) observed �los, (7) modelled �los, (8)

extracted V� and �R (for the case of � = 0.5) values in solid and open circles, and the fitted

functional forms in solid and dashed red lines respectively.

2.4.3 Schwarzschild Models (SCH)

The Schwarzschild models adopt a di↵erent approach. Instead of solving the Jeans

equations, the Schwarzschild models compute the orbits in a gravitational potential

to recover the observed kinematics. A complete description to the methodology

of our Schwarzschild models can be found in Zhu et al. (2018a) and the resulting

orbital distribution derived for the CALIFA galaxies and their fitted parameters as

adopted here can be found in Zhu et al. (2018b). Here we give a brief overview of our

Schwarzschild models for completeness. First, a set of mock triaxial gravitational

potentials are created. Each of the gravitational potentials is described by two

components: mass from luminous matter and mass from dark matter. The stellar

mass-to-light ratio is assumed to be constant: ⌥?, with the light distribution again
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modelled with MGEs. Unlike in JAM however, the luminous mass distributions in

our Schwarzschild models are allowed to be triaxial. The triaxial luminous mass

distributions are characterised by the two parameters p and q, which are the ratio

between the intermediate axis and short axis with the long axis respectively. Again,

the dark matter component is assumed to follow a spherical NFW profile, with the

same mass-concentration relation as adopted in JAM. The free parameters here

therefore include only the stellar mass-to-light ratio ⌥?, the virial mass M200 and

the triaxial parameters (p, q). For each of the mock potentials, an orbit library is

computed. The orbits in the library are then weighted and used to create mock

line-of-sight mean velocity and velocity dispersion maps. The mock kinematic maps

(both Vlos and �los) are then fitted to the observed kinematic maps to constrain the

weight of each orbit. The gravitational potential with which its best-fitted orbital

weights provide the best fit to the observed map is chosen as the best estimate

of the true gravitational potential. Finally, the circular velocity is calculated

from this best-fit gravitational potential. The Schwarzschild model therefore does

not put assumptions on the velocity ellipsoid but still assumes a constant stellar

mass-to-light ratio and an NFW profile for the dark matter halo. To allow the

readers an assessment to how well the Schwarzschild models are fitted to the

kinematics, we include the observed and best fitted Schwarzschild model kinematics

of our full sample of galaxies in Appendix A.3 and show here in Figure 2.7, those

of UGC04132 as an example. We label the circular velocities extracted from the

Schwarzschild models as VSCH. VSCH of UGC04132 is shown in red in Figure 2.5.

2.5 Di↵erences of Vc extracted from CO and

stellar kinematics

In this section we describe the comparison of Vc extracted using di↵erent kinematic

tracers: dynamically cold molecular tracer CO and dynamically hot stellar

kinematics, including those derived from the Asymmetric Drift Correction (ADC),

Jeans (JAM) and Schwarzschild (SCH) models. All the Vc for our sample of 54

galaxies extracted with the aforementioned kinematic tracers are presented in Figure

2.8. We first compare the di↵erent stellar dynamical models with CO in the following

order: ADC vs. CO, JAM vs. CO and SCH vs. CO. For each model, we begin by

comparing the stellar and CO Vc at one e↵ective radius, and then we characterise the

variation of the di↵erences with respect to galactic radii, stellar V�/�R? values and

galactic properties. We then also examine how the three stellar dynamical models

perform when compared against each other.
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2.5.1 ADC vs. CO

In Figure 2.9(a), we plot in solid circles the values of VADC versus VCO at the e↵ective

radii Re for the 47 galaxies in our sample in which VCO reaches 1Re. For galaxies

where the observed CO kinematics reaches 1Re while the observed stellar kinematics

do not, we extrapolate VADC with the MGEs, the fitted power-law for V� and the

fitted exponential law for �R. The extrapolated VADC are shown as dashed lines

in Figure 2.8. In open circles, we plot VADC versus VCO at the maximum observed

radius (Rmax) for the remaining 9 galaxies for references. We do not extrapolate

VCO.

Light green circles denote VADC,�=0.0 and dark green circles denote VADC,�=0.5.

This plot indicates visually that VADC,�=0.0 is smaller than VCO at Re in general. On

the other hand, VADC,�=0.5 mostly agree well with VCO, with the exception of the few

highest mass galaxies with VCO & 280 km s�1. VADC,�=0.5 tend to overestimate Vc on

the high-mass end at Re. To quantify any biases or agreements, we compute the

relative di↵erence QADC = (1� VADC
VCO

)Re . The histogram of QADC is shown in Figure

2.9(b) in solid lines for galaxies with Rmax > Re, and in dashed line we show the

histogram for all galaxies, with Q being computed at R = Rmax for galaxies which

have Rmax < Re. Considering only the galaxies which are observed beyond 1Re, the

mean and standard deviation of QADC,�=0.0 are 11% and 6% respectively, confirming

VADC,�=0.0 is smaller than VCO on average. VADC,�=0.5 shows a better agreement

with VCO, with the mean and standard deviation of QADC,�=0.5 being �5% and 8%

respectively.

We next investigate how the di↵erence �VADC (= VCO � VADC) varies with

galactic radii. In Figure 2.10(a) and (b), we show the relative di↵erence �VADC/VCO

for � = 0.0 and � = 0.5 respectively, plotted against normalised radii R/Re. Circular

velocities of each galaxy are first binned into radial bins as listed in Table 2.4. Then

we compute a value for �VADC/VCO for each bin in each galaxy, corresponding to

a grey point in Figure 2.10(a). Then for each radial bin, we compute the average

and standard deviation over all galaxies, shown as the black curve and error bars

in Figure 2.10(a), with values listed in Table 2.4. We shall restrict our discussion

to bins that are outside 3� of the radio beam (�beam); even though we already

performed a beam smearing correction, an uneven distribution of CO gas within

the beam can still a↵ect the resulting VCO. We still show the bins within 3�beam for

reference in Figure 2.10 with open circles.

Figure 2.10(a) shows an increasing trend in mean �VADC,�=0.0/VCO towards the

center, indicating that the isotropic ADC increasingly underestimate Vc towards

the central regions of galaxies. Within 1Re, VADC,�=0.0 underestimate Vc by ⇠13%
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on average, with the scatter of �VADC,�=0.0/VCO increasing towards the center to

⇠12%. On the other hand, VADC,�=0.5 perform better than VADC,�=0.0 in all radial

bins with R < Re, as shown in Figure 2.10(b). At R < Re, VADC,�=0.5 and VCO

agree to within 1�. Just like the case with � = 0.0, the scatter in �VADC,�=0.5/VCO

increases towards the inner region to ⇠16%.

We show a similar plot of �VADC/VCO, but against V�/�R?, in Figure 2.11(a) for

� = 0.0 and in Figure 2.11(b) for � = 0.5. V�/�R? represents the amount of ordered

rotation in stellar kinematics and is abbreviated as V/�? from hereon. The average

and standard deviation of �VADC/VCO in each V/�? bin are listed in Table 2.5. In

0.5 < V/�? < 3, VADC,�=0.0 underestimate Vc by up to to ⇠18% in a bin, with both

an increasing �VADC/VCO and an increasing scatter towards the low V/�? regime.

VADC,�=0.5 agrees better with VCO in all the V/�? > 1.0 bins, with a di↵erence

averaging to < 4% in this regime. For V/�? < 1.0, however, VADC,�=0.5 overestimate

Vc by 14%. The scatter in �VADC/VCO for the case of � = 0.5 also increases towards

the low V/�? regime.

To discern any systematics in the di↵erence between VADC and VCO with galactic

properties, we show plots of �VADC/VCO against stellar mass and morphological

types for � = 0.0 in Figure 2.13(a) and 2.13(e), and for � = 0.5 in Figure 2.13(b)

and 2.13(f). Each circle correspond to one grey circle in Figure 2.11, colour coded

here with the respective V/�? bin value, with the lowest V/�? bin (0� 0.5) coloured

red and the highest V/�? bin (3.5� 4.0) coloured grey. We do not find any trends in

�VADC/VCO with respect to these galactic properties.

2.5.2 JAM vs. CO

The values of VJAM are plotted against that of VCO in Figure 2.9(c), and show good

agreement with VCO at R = Re. Again, we extrapolate VJAM to 1Re using the

MGEs and show in open circles Vc at Rmax for galaxies which have Rmax < Re. The

corresponding histogram of QJAM = (1 � VJAM
VCO

)Re is shown in Figure 2.9(d). The

mean and standard deviation of QJAM are �0.3% and 8% respectively, indicating a

good agreement between VJAM with VCO at 1 Re, with no preferential bias (of either

being smaller or larger than VCO). Already, this tells us that without the thin disk

assumption, JAM can well recover Vc.

Again we show the relative di↵erence �VJAM/VCO against R/Re in Figure

2.10(c). The average and standard deviation in each radial bin are listed in Table

2.4. On average, VJAM agrees with VCO to within 1� at all radii, the scatter in

�VJAM/VCO increases towards the centre to up to 17% for R < 0.4Re. Plotting
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�VJAM/VCO against V/�? in Figure 2.11(c) shows similar features, �VJAM/VCO

agrees to within 1� at all bins, with an increasing scatter towards the low V/�?
regime. No specific trend is seen in �VJAM/VCO with respect to V/�?.

Despite �VJAM/VCO agrees to within 1� at all radial and V/�? bins, we see a

large scatter in �VJAM/VCO. In particular towards the inner and low V/�? region.

Again, to better understand this scatter, we investigate how �VJAM/VCO changes

with various galactic properties. In Figure 2.13(c) and Figure 2.13(g), we plot

�VJAM/VCO against the total stellar mass and morphological type of each galaxy

respectively. No systematic trend can be found with respect to these galactic

properties.

2.5.3 SCH vs. CO

VSCH show good agreement with VCO at 1Re, as shown in the one-to-one plot of

VSCH against VCO in Figure 2.9(e). The corresponding QSCH = (1� VSCH
VCO

)Re is shown

in Figure 2.9(f). QSCH has a mean and a standard deviation of �0.2% and 9%

respectively, again showing no preferential bias towards being positive or negative.

We plot the relative di↵erence �VSCH/VCO against R/Re in Figure 2.10(d), and

then against V/�? in Figure 2.11(d). The average and standard deviation in each

radial and V/�? bins are listed in Table 2.4 and Table 2.5. On average, �VSCH/VCO

agrees to within 1� at all radial bins. Just like JAM, the scatter in �VSCH/VCO also

increases towards the centre up to 17% for R < Re. Also, no systemic trend is seen

with respect to V/�? values. We investigate how �VSCH/VCO varies with respect to

total stellar mass in Figure 2.13(d) and morphological type in Figure 2.13(h) but

once again find no systematic trend.

2.5.4 Comparison between the three stellar dynamical

models

In Figure 2.12, we show the di↵erences between the circular velocity obtained

using the three di↵erent methods using the same stellar kinematics. Each grey dot

correspond to the velocity di↵erence measured at a certain V/�? bin of a galaxy.

With the black curve and corresponding error bars we show the average and standard

deviations of the di↵erences in stellar V/�? bins, we list the corresponding values in

Table 2.6.

Comparing the two models that derive Vc by solving the Jeans equation, ADC
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and JAM (Figure 2.12(a) and 2.12(b)), shows that VADC,�=0.0 in general are smaller

than VJAM. Moreover, the di↵erence between the two increases with decreasing V/�?,

the same trend had been found with SAURON late-type spiral galaxies in Kalinova

et al. (2017). Especially at the regime V/�? < 1, where the random motion dominate

over the ordered rotation, the di↵erence between ADC and JAM reaches an average

of ⇠36 km s�1. VADC,�=0.5, on the other hand, agrees with VJAM to within 1� at all

V/�? bins > 0.5. In the lowest V/�? bin of V/�? < 0.5, however, VADC,�=0.5 is larger

than VJAM on average by ⇠21 km s�1.

We next compare VSCH and VADC in Figure 2.12(c) and 2.12(d). Just like when

compared with VJAM, VADC,�=0.0 is smaller than VSCH, with an increasing di↵erence

towards lower V/�? to on average by ⇠33 km s�1 at V/�? < 1. VADC,�=0.5, on the

other hand, agrees with VSCH to within 1� on average except for the V/�? < 0.5 bin.

There, VADC,�=0.5 is larger than VSCH by ⇠22 km s�1 on average.

Both the Jeans and Schwarzschild methods take into account the full line-of-sight

integration when modelling the observed mean velocity and velocity dispersion map.

The two models show good agreement to within 4% bins on average, with scatters of

⇠8-23%.

The biggest di↵erence is shown when comparing the two Vc derived from ADC,

with � = 0.0 and � = 0.5, as shown in Figure 2.12(f). VADC,�=0.0 is always smaller

than VADC,�=0.5, with the average di↵erence increasing towards lower V/�? regimes

up to >50 km s�1.

71



CHAPTER 2. VALIDATING STELLAR DYNAMICAL MODELS WITH CO

72



CHAPTER 2. VALIDATING STELLAR DYNAMICAL MODELS WITH CO

Figure 2.8: Circular velocities of the 54 galaxies. VCO obtained in this work are plotted

in black dots, with the error indicated by the error bars. VADC,�=0.0, VADC,�=0.5, VJAM and

VSCH are plotted in light green, dark green, blue and red curves respectively. The horizontal

line on the top left of each panel indicate the scale of 2 kpc. The vertical dashed line marks

the e↵ective radius. The grey region indicate 3�beam of the CO observations.
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Figure 2.9: Comparison between the stellar and CO circular velocities at 1 Re. Panels

(a), (c) and (e) show VCO plotted against VADC, VJAM and VSCH respectively, with the

black line indicating the one-to-one line. It is shown here that VADC underestimate the

circular velocity with � = 0.0, but agree well with VCO with � = 0.5, except for high-mass

galaxies. Also, both VJAM and VSCH agree well with VCO at Re. Panels (b), (d) and (f)

show the relative di↵erence, QX , for ADC, JAM and SCH respectively. The black vertical

lines indicate Q = 0, to the right of the black lines are galaxies from which the stellar Vc

is smaller than VCO, again a bias is seen for VADC,�=0.0, but none in VADC,�=0.5, VJAM and

VSCH.
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Figure 2.10: Velocity di↵erences between the stellar and CO circular velocity curves in ra-

dial bins. Each grey dot represent a measurement from one galaxy at that specific radial bin.

The error-weighted mean and standard deviation of each bin are shown in black curve and

error bars respectively. VADC,beta=0.0 underestimate Vc at all radii, with increasing disagree-

ment with the intrinsic value towards the inner region. While on average, VADC,beta=0.5,

VJAM and VSCH agree with CO at all radii, a large scatter can be seen in the inner region.

The open grey circles indicate measurements at R < 3�beam, the corresponding mean and

standard deviation are marked with dotted lines.

Figure 2.11: Velocity di↵erences between the stellar and CO circular velocity curves in

V/�? bins. Each grey dot represent a measurement from one galaxy at that specific V/�?
bin. The error-weighted mean and standard deviation of each bin are shown in black curve

and error bars respectively. Again, VADC,beta=0.0 underestimate Vc at all V/�? bins. All

VADC,beta=0.5, VJAM and VSCH agree well with CO on average in all V/�? bins. A large scatter

can be seen towards the low V/�? regime. The open grey circles indicate measurements at

R < 3�beam.
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2.6 Discussion

In this section, we discuss the possible reasons for the disagreements we see between

the Vc obtained from di↵erent stellar dynamical models and CO, as well as their

respective trends with radius and galactic properties. To recap, we find that: (1)

VADC,�=0.0 underestimate Vc by ⇠8-20%, showing a trend of increasing relative

di↵erence �V/V with respect to the VCO, as well as scatter in �V/V , towards the

inner region. (2) On average, VADC,�=0.5, VJAM and VSCH agree with CO to within 1�

over all radii. (3) Towards the inner region (R < 0.4Re) and low V/�?(< 1) regime,

we find a large scatter among our galaxy sample of 15%, 18% and 21% in �V/V , for

VADC,�=0.5, VJAM and VSCH respectively. (4) Within the large scatter, we do not find

any systematic trend with respect to galactic properties such as stellar mass and

morphological type. All of these comparisons are done with data outside of 3�beam of

the CO observations. One should keep in mind that part of the scatter arises from

the noise in both the CO and the stellar kinematics (⇠5% in the innermost region).

Comparing the Vc obtained from the 3 stellar dynamical models directly with each

other gives three main results: (1) VADC,�=0.0 is smaller than VADC,�=0.5, VJAM and

VSCH, with di↵erences increasing towards lower V/�?, (2) while VADC,�=0.5 agree with

both VJAM and VSCH at V/�? > 0.5 to within 1�, it is on average larger than both

by ⇠20 km s�1 at V/�? < 0.5, and (3) that VJAM and VSCH are in excellent agreement

with each other.

2.6.1 E↵ects of model assumptions on derived Vc

The ADC models assume a thin disk distribution of stars and therefore cannot

account for masses distributed away from the z = 0 plane. This is the case for

VADC,�=0.0, which underestimate Vc at all radii. The trend of velocity discrepancies

with radius can also be explained by the fact that thick disks and/or bulges in

galaxies tend to be more prominent in the inner region, both of which imply

masses distributed away from the disk plane and hence reduces the accuracy of the

ADC model. We show however, that by adopting � = 0.5, the ADC models can

reproduce accurate Vc. Such agreement is not surprising when one consider that

the light-weight kinematic measurements are mostly dominated by young bright

stars which lie close to the disk plane. We should emphasis here that the agreement

between VADC,�=0.5 with VCO does not suggest that the intrinsic value of � is 0.5,

but rather, under the incomplete (thin disk) assumption of ADC, � = 0.5 can

empirically provide a good estimate of the true Vc except for the high mass galaxies

(with Vc & 280 km s�1). Similar overestimation of Vc can be seen in at low V/�? (<1)
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Figure 2.12: Comparison between Vc extracted from stellar kinematics using JAM, ADC

and SCH at di↵erent V/�?. Each grey dots represent a measurement from one galaxy at

that specific V/�? bin. The black curve show the mean and the error bars show the standard

deviation of each bin. ADC shows a smaller Vc when compared to either JAM or SCH, and

the di↵erences increases towards lower V/�?. Comparing JAM and SCH also shows a slight

trend: in the low V/�? regime, JAM tends to produce Vc that are higher than SCH while

in the high V/�? regime, JAM tends to produce Vc that are lower than SCH.
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Figure 2.13: Velocity di↵erences between the stellar and gaseous circular velocity curves

plotted against the total stellar mass (top row) and morphological types (bottom row) of

the galaxies. Each dot here correspond to a grey dot in Figure 2.11(a), (b) for ADC, Figure

2.11(c) for JAM and Figure 2.11(d) for SCH. Only points with R > 3�beam are included in

these plots. The points are colour-coded with their respective V/�? value. No systematic

trends can be found in �V/V with respect to galactic properties.
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by VADC,�=0.5. This might indicate that in rounder and hotter systems such as early

type high-mass galaxies or the inner region of disk galaxies, assuming � = 0.5 is an

overkill even when adopting the thin-disk assumption, as such systems are likely to

be more isotropic. The similar di↵erences in the derived Vc at V/�? < 0.5 seen when

VADC,�=0.5 is compared with VJAM and VSCH are likely caused by the same reason.

Since both the Jeans and Schwarzschild models take into account the full

line-of-sight integration of the stellar kinematics, masses distributed away from the

disk plane can also be taken into account in these models. The good agreement

between VJAM and VSCH with VCO at R > 0.5Re suggests that both models are

reliable in recovering the dynamical masses of galaxies at larger radii. For the inner

region, the large scatter between VJAM or VSCH and VCO suggests, however, that one

should be aware of the possible discrepancies when interpreting the result from the

models in these regimes.

Below we suggest the possible reasons causing the ⇠20% scatter in both the

Jeans and Schwarzschild models when being compared with CO in the innermost

region. The stellar mass-to-light ratio is still assumed to be constant in both

models. Stellar mass-to-light ratio tends to increase toward the inner region due

to the increasing stellar age. How the two models compensate for the incorrectly

estimated stellar mass with the dark matter component would a↵ect the resultant

total mass-to-light ratio. In addition, the assumed shape of the underlying mass

distribution can also a↵ect the resulting Vc. In particular, we assume a spherical

dark matter halo and that the stellar mass distribution follows the shape of light

distribution. If the mass distribution assumed is flatter than the true distribution,

one would overestimate the Vc and vice versa (Binney & Tremaine 1987). In galaxies,

the older stars that are scattered higher above the disk plane would have a higher

M/L ratio than the younger stars in the disk plane, leading to a less flattened

distribution in mass compared to light. Although both e↵ects should be more

prominent in the inner region of the older galaxies and rounder systems such as the

earlier type galaxies, the opposite e↵ects can wash out any systematic trend in the

discrepancies with galaxy types.

We would like to warn our readers that even though JAM reproduces Vc in good

agreement with CO (at R & Re and high V/�? regimes) or the Schwarzschild models,

the other extracted parameters such as �z or mass ratio between dark matter and

luminous matter are not necessarily correct or physical. This has been reflected by

the few galaxies with which �z and Vvir reach the boundaries of the parameter space

to unphysical values. In both cases, Schwarzschild models provide well constrained

�z and Vvir. The inability of JAM in recovering �z and Vvir in certain galaxies is likely

caused by the fact that these galaxies do not satisfy additional assumptions in JAM
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models, such as having velocity ellipsoids aligned with the cylindrical coordinate

system.

2.6.2 Implications on high redshift Tully-Fisher relation

The evolution of the Tully-Fisher relation towards high redshift, z, is a subject of

debate. While some authors find no significant evolutions (e.g. Miller et al. 2011;

Molina et al. 2017; Pelliccia et al. 2017), others find an evolution towards a lower

zero-point (in stellar mass) at high-z (e.g. Cresci et al. 2009; Tiley et al. 2016;

Price et al. 2016). When obtaining the rotation velocity from high-redshift galaxies,

emission lines from ionised gas are often used as the kinematic tracer. Such high-z

ionised gas kinematics show similar V/� values as the local stellar kinematics in our

sample (⇠ 0.5 � 4 at z ⇠ 2, Wisnioski et al. 2015). Various authors took di↵erent

approaches in dealing with the high dispersion of the ionised gas kinematics at

high-z, namely, either by disregarding the galaxy with low V/� in their sample, or

by taking an approximated form of Vc such as Vrms =
p
V 2 + �2. Our results suggest

that ADC or JAM may be taken to recover Vc from the high-dispersion ionised gas

kinematics at high-z, we shall provide a calibration to such application using H↵

kinematics from nearby galaxies (from the EDGE-CALIFA survey) in Chapter 4.

2.7 Summary

Stars are present in all galaxies and can serve as a kinematic tracer for the underlying

dynamical masses. The collisionless nature of stellar orbits, however, renders such

task non-trivial and various dynamical models have been developed to solve the

problem. In this work, we test the validity of three commonly used stellar dynamical

models in recovering the underlying total mass in galaxies by comparing the circular

velocities (Vc) obtained from IFU stellar kinematics to that extracted from cold

molecular gas kinematics over a large and homogeneous sample of 54 galaxies. Such

comparison is for the first time enabled by two large surveys of nearby galaxies:

the EDGE and the CALIFA survey. We extracted cold gas rotation curves from

the CARMA EDGE survey CO(J = 1 � 0) line emission. We applied harmonic

decomposition to the mean velocity fields to remove perturbations from, for example,

a bar or spiral arms. For the same galaxies, we show Vc obtained from stellar

kinematics from the CALIFA survey, using the Asymmetric Drift Correction (ADC),

Axisymmetric Jeans Anisotropic Multi-gaussian expansion Models (JAM) and

Schwarzschild (SCH) models. For ADC, we tested the model with two commonly
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adopted constant velocity anisotropy values: � = 0.0 (isotropic) and � = 0.5. For

JAM, we assume a constant anisotropy, a constant stellar mass-to-light ratio and

a spherical NFW dark matter halo, which are obtained from fitting the velocity

moments. The Schwarzschild models adopt an orbit-based approach, with which

we again model both the luminous (assuming a constant mass-to-light ratio) and

dark matter masses (with an NFW halo), but with no assumption on the velocity

anisotropy.

We compare the circular velocities obtained from kinematically cold molecular

gas CO with that obtained from stellar kinematics. At the e↵ective radii (Re), all the

anisotropic ADC (� = 0.5), JAM and Schwarzschild models reproduce VCO to within

<5%, with scatter <10%. Specifically, QADC,�=0.5 = �5± 11%, QJAM = �0.3± 11%

and QSCH = �0.2 ± 14% (where QX = 1 � Vx
VCO

). In the inner regions (R < 0.4Re),

the scatter increases to ⇠ 20% for all methods.

The excellent performance of even ADC, which has the strictest assumptions,

is likely due to the luminosity weighted velocities in our IFU data - for which the

brightest youngest stellar component will be predominantly the dynamically coldest

and thinnest.

Possible reasons leading to such discrepancies between the stellar and CO Vc

in the inner regions are as follows. ADC assumes stars to lie on a thin disk on the

plane z = 0, therefore it cannot capture masses distributed away from this plane. In

particular, in the inner region, the presence of a bulge or a thick disk would render

the ADC models to underestimate the circular velocities even more, as reflected

by the increasing discrepancies between the VADC,�=0.0 and VCO towards the inner

region. By assuming � = 0.5, ADC can empirically recover Vc for galaxies with

Vc < 280 km s�1.

Both the JAM and Schwarzschild models account for the 3 dimensional

distribution of mass, however we suggest that the reasons for ⇠20% scatter in the

relative di↵erence between both models and VCO in the inner region to be: (1) the

deviation of the fitted constant stellar mass-to-light ratio to the intrinsic radially

varying value, and (2) the possibility that the underlying shape of the dark matter

and stellar mass distribution di↵er from the assumed shape of spherical halo and

light distribution respectively.

This work shows therefore that accurate dynamical masses for galaxies can

be recovered from modelling the integrated stellar kinematics with these three

methods. Since VADC,�=0.0 underestimate Vc by ⇠12-20% at R < Re, we advise that

this method is least suitable -instead, the ADC method can still be applied using

� = 0.5 which give a compatible estimate for Vc to within ⇠10% at Re. Significant
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deviations in the recovered values still possible locally due to non-constant baryonic

and dark mass distributions, we hence advise readers to be aware of such possible

discrepancies when interpreting the results from stellar dynamical models.
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Chapter 3

Simultaneous dynamical modelling
of stars and gas in dwarf galaxies

Abstract

We present multi-tracer dynamical models of the low mass (M⇤ ⇠ 107), isolated

dwarf irregular galaxy WLM in order to simultaneously constrain the inner slope

of the dark matter (DM) density profile (�), halo flattening (qDM), and the stellar

orbital anisotropy (�z, �r). For the first time, we show how jointly solving the Jeans’

equations with both a gaseous kinematic tracer and discrete stellar kinematics leads

to a factor of ⇠ 2 reduction in the uncertainties on � and Mvir. The mass-anisotropy

degeneracy is partially broken by independently constraining the mass distribution

from the HI gas rotation curve, leading to reductions of ⇠ 25% in the anisotropy

uncertainties compared to models using the stellar kinematics alone. Our best fit

values for the DM inner density slope, � = 0.3± 0.1 is robust to the halo shape, and

in excellent agreement with predictions of stellar feedback driven DM core creation.

The preferred models have a prolate DM halo with qDM = 2 ± 1 consistent with

⇤CDM simulations of dwarf galaxy halos, but which is problematic for MOND given

the isolation and structure of WLM. While both velocity independent and dependent

self-interacting DM models with �/mX ⇠ 1 can reproduce this cored DM profile,

it is possible the interaction events may sphericalise the halos. The simultaneous

cored and prolate DM halo found for this galaxy may therefore present a challenge

for these frameworks. Finally we find that the radial profile of stellar anisotropy in

WLM (�r) follows a nearly identical trend of increasing tangential anisotropy to the

classical dSphs, Fornax and Sculptor. Given WLM’s extreme isolation, this result

may call into question whether such anisotropy is a consequence of tidal stripping
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and if it instead is a feature of the largely self-similar formation and evolutionary

pathways for some dwarf galaxies.

3.1 Introduction

The shape and radial density profile of dark matter (DM) halos provides a window

into the nature of dark matter, and the e�ciency of baryonic feedback processes

which influence the galaxies residing in these halos (e.g., Di Cintio et al. 2014).

For instance, dark-matter only cosmological and N -body simulations have shown

that, under the ⇤CDM cosmological framework, the dark matter haloes around

galaxies follow a cuspy density profile characterised by an NFW profile (e.g., Navarro

et al. 1996; Dutton & Macciò 2014). With the addition of baryons, hydrodynamic

simulations which incorporate energetic feedback from stars and AGN have shown

that they can not only alter the star formation properties of the host baryonic

disk, but also remove significant amounts of gas on short timescales; resulting in an

expansion of the halo and reducing the central density cusp to a shallower profile

(e.g., Peñarrubia et al. 2012; Pontzen & Governato 2012).

The DM halo properties may hence be correlated with the baryonic content

of the galaxies. For example, Di Cintio et al. (2014) show that the inner slope

of the dark matter haloes correlates with the stellar-mass-to-halo-mass ratio in

their simulated galaxies, while Read et al. (2016) showed with hydrodynamical

simulations that the core size of the dark matter haloes in dwarf galaxies generally

correlates with the half-light radii of the stellar component. Significant variation in

the predicted range of dark matter fractions is seen either directly from cosmological

zoom-in simulations (Brook 2015), or from abundance matching predictions (e.g.,

Leauthaud et al. 2012; Sawala et al. 2013). Understanding this stochasticity is

therefore crucial to gain a better understanding of the e�ciency with which baryonic

feedback can suppress star formation - and simultaneously alter the initial dark

matter halo profiles.

As mentioned in the Introduction, dwarf galaxies are the most dark-matter

dominated objects in the universe and therefore provide excellent laboratories to

investigate the nature of dark matter. In particular, constraining the inner slope of

the density profile of dark matter haloes in relation to the stellar-to-halo mass ratio

can provide insights into whether any deviation from an NFW profile, predicted from

pure dark matter ⇤CDM cosmological simulations, arises from baryonic feedback -

or alternative models for the particle/wave aspects of DM. HI kinematics have been

used to derive circular velocities for gaseous dwarfs, which are then decomposed to
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provide observational constraints on the inner slopes of DM haloes (Lelli et al. 2010;

Adams et al. 2014; Katz et al. 2017). While DM inner slopes shallower than that of

an NFW profile have been suggested from many of these studies, the fidelity of the

results typically su↵er from the uncertainties on the stellar mass-to-light ratio.

On the other hand, stellar dynamical models have been primarily applied

to Local Group dwarf spheroidals due to their lack of gas and close proximity.

As previously discussed, stellar dynamical models su↵ers from mass-anisotropy

degeneracies which can contribute to the uncertainties in the derived DM density

profile. While evidence of cored DM haloes have been suggested, these results

are either inconclusive given the uncertainties (e.g., Zhu et al. 2016; Kowalczyk

et al. 2018), or are geometry-dependent (Walker & Peñarrubia 2011). Given the

di�culties in robustly inferring the profile shape through single or even multiple

population stellar tracers, It is therefore desirable to study low mass dwarf galaxies

with multiple kinematic tracers (e.g., gas and stars) with new analysis methods.

Combining a collisional gas tracer with discrete kinematic stellar tracers in

principle should o↵er a more robust characterisation of the host potential. Despite

their di↵erent orbit structure, the gas and the stellar kinematics should consistently

trace the same potential when all sources of orbital energy are accounted for.

Combining observations of stars and gas kinematics in the same galaxy then o↵ers

a way to break the mass anisotropy degeneracy and better characterise the dark

matter halo properties. Observations of gas and stars in homogenous observations

of a variety of galaxies were presented in Leung et al. (2018) (Chapter 2) and for

8.5 < logL? < 9.5 dwarf galaxies in Adams et al. (2014). However neither of these

studies leveraged the tracers simultaneously to measure halo properties from the

combined information of both tracers. Nevertheless there appears great promise in

exploiting the simultaneous tracers for galaxies where both exist.

Apart from constraints on the underlying gravitational potential, proper

modelling of the stellar kinematics can recover their orbit distribution in the galaxy.

The shape of the velocity ellipsoid, often parameterised in terms of an anisotropy

parameter such as �� = 1 � (��/�R)2 provides an understanding of the relative

amount of random motions in the tangential and radial directions. These quantities

may be intimately tied to the formation and evolutionary pathways of the dwarf

galaxies - either environmental or secular. Characterising the anisotropy profiles of

dwarfs in the Local group is particularly helpful in understanding any evolutionary

connection between dwarf irregulars (dIrr) and dwarf spheroidals (dSph) .

For example, predictions of simple dissipationless collapse result in an isotropic

core surrounded by an envelope of more radial orbits (van Albada 1982). While
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dwarfs with su�ciently radially anisotropic orbits may have undergone bar formation,

which after subsequent buckling and excitation of bending modes, can result in

significant morphological transformations (e.g., Mayer et al. 2006; Raha et al. 1991).

Tidally stripped galaxies are thought to have strongly tangential anisotropy in

their outer regions as the radial orbits with larger apocentres may be preferentially

removed (Klimentowski et al. 2009).

The highly tangential velocity anisotropies found in dSphs (e.g., Zhu et al.

2016; Kowalczyk et al. 2018) may agree with some tidal transformation scenarios

(e.g., Klimentowski et al. 2009), where dIrrs are tidally disturbed and lose their gas

and form dSphs, leaving behind a tangential stellar anisotropy distribution for the

resultant dSph. However there are no comparable estimates of anisotropy in isolated

dwarf galaxies, which would serve as a crucial control sample, and help di↵erentiate

if this signature is caused by environmental e↵ects, or rather something intrinsic to

the formation of any low mass dwarf.

In addition, the recovery of the stellar anisotropy is not trivial and several

degeneracies work to prevent accurate understanding of the stellar orbital, or

dark matter halo properties. In addition to the aforementioned mass-anisotropy

degeneracy, (e.g., Binney & Tremaine 1987) have shown that the derived anisotropy

is highly degenerate with the DM halo geometry. This then means that another

parameter, the halo flattening qDM, needs to be introduced in dynamical models

in order to recover an unbiased estimate of �. For low mass nearby galaxies,

incorporating variable DM profiles (�, qDM) and anisotropy simultaneously, has

not been done as the constraints on parameters of interest get understandably

poorer with the increasing (but necessary) model complexity. The necessity of

understanding DM in low mass dwarfs, breaking anisotropy and halo property

degeneracies, and testing the intrinsic orbit structure of isolated dwarf galaxies,

clearly motivates the need for a new analysis techniques and observations.

In this work we demonstrate a promising way forward, by jointly modelling the

stellar and gaseous kinematics in dwarf galaxies which have both resolved stellar

kinematics, and well described HI gas rotation curves. With an alternate constraint

on the galaxy’s potential from the gas rotation curve, the stellar anisotropy estimate

should be improved. A second necessary aspect of the modelling is to flexibly

parameterise the DM halo’s shape and inner density profile slope.

Often, the nature of the dwarf galaxies prevents observable stellar and gaseous

tracers from co-existing, such as in the case of the nearby, quenched dSphs, or the low

gas fraction transition dwarfs. Alternatively the observational cost of getting stellar

kinematics in gas rich dwarf irregulars (which tend to be located at larger distances)

88



CHAPTER 3. JOINT STARS AND GAS DYNAMICAL MODELS

can be prohibitory. However in a few cases dwarfs with resolved stellar and gaseous

kinematics have been studied (e.g., Leaman et al. 2012; Kirby et al. 2014), and the

dynamical mass estimates from both tracers individually show agreement - provided

contributions of non-circular motions are taken into account (e.g., Hinz et al. 2001).

One of the prime targets, which is near enough for obtaining su�cient

stellar kinematics, and massive enough to have a well defined gaseous rotation

curve, is the isolated dIrr Wolf-Lundmark-Melotte (WLM; Wolf (1910); Melotte

(1926)). WLM lies at a distance of ⇠ 1Mpc from both the Milky Way and M31.

The distance between WLM and its nearest neighbour, a low-mass dSph Cetus

(Mdyn ⇠ 9⇥ 107M�; Walker et al. (2009)), is ⇠250 kpc (Whiting et al. 1999). With

a velocity of vLG ⇠ �32 km s�1 towards the barycentre of the local group, Leaman

et al. (2012) suggested that WLM has just passed its apocentre and would have

at most one pericentre passage in its lifetime, which occurred at least 11Gyrs ago.

Constructing our proposed dynamical model of a dwarf galaxy in such extreme

isolation would provide a null test on the e↵ects external influences, such as tides

and ram pressure, and provide one of the most detailed views of the DM halo and

orbit structure of a low mass dwarf. Also, WLM’s isolated location (together with

its comprehensive constraints on thickness, stellar dispersion and circular velocity)

renders it as an excellent test case for modified gravity, as external field e↵ects

cannot be invoked.

In the following, we first describe our HI and stellar data in Section 3.2. We

then lay out the observational and model ingredients, including our construction of

the dynamical model, the spatial distribution of the kinematic tracers, the baryonic

and dark matter density profile, and the steps of our parameter estimation in Section

3.3. We present the obtained dark matter halo parameters and velocity anisotropies

of WLM in Section 3.4. In Section 3.5, we discuss the cosmological implications of

the derived dark matter halo profile and flattening, as well as the meaning of the

derived orbital structure in terms of the evolution of dwarf galaxies. We conclude in

Section 3.6.

3.2 Data

3.2.1 HI interferometric data

We have taken the HI integrated intensity map and the circular velocity Vc estimated

using HI kinematics originally presented in Kepley et al. (2007) and re-analyzed by

Iorio et al. (2017). The interferometric data is taken using the Very Large Array,
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with a beam size of ⇠ 1000 and a velocity resolution of ⇠ 2.6 km s�1. The integrated

intensity map is shown as black contours on the left panel of Figure 3.1, the velocity

map from which the circular velocities are derived from is shown on the right panel

of Figure 3.1. From the velocity map, Iorio et al. (2017) have derived an inclination

of i=74 and a position angle of  =174, which we would adopt throughout this work.

Their derived Vc is shown in the left panel of Figure 3.2.

3.2.2 Photometric Data

The I band photometry was obtained using the INT Wide Field Camera and

presented initially in McConnachie et al. (2005) and covers a 36
0 ⇥ 36

0
field of view.

We used the resolved radial stellar number density profiles constructed from this

data and presented in Leaman et al. (2012) in both I band, and the JHK photometric

observations of Tatton et al. (2011). We refer the reader to Leaman et al. (2012) for

details of the profile construction.

In addition we utilise photometric observations in the I band taken with the

MOSAIC-II imager formerly installed on the 4m Blanco telescope at CTIO. These

observations were taken in excellent seeing conditions (⇠ 0.8”) on September 11 -12,

2009 (PI: Leaman 2009B-0337). The CCD has a pixel scale of 0.27”/pixel and the

images were processed and co-added through the NOAO Science Archive pipelines.

The co-added stacked image which was used to build the stellar contribution to the

mass distribution, covers a field of view of 0.63⇥ 0.67 degrees. Further details of the

observations and reductions will be presented in Hughes et al. (in prep.).

3.2.3 Resolved stellar spectroscopy

We utilise a discrete set of velocity measurements from 180 member giant branch stars

obtained using FORS2 on VLT and DEIMOS on Keck. The typical uncertainties on

velocity are �V ⇠ 6 � 9 km s�1, and the reader is referred to Leaman et al. (2009,

2012, 2013) for details on the data reduction and observations. This sample has

already been cleaned form non-member contaminants on the basis of radial velocity

and position metrics. The position and line of sight velocities of the stellar kinematic

members are plotted in Figure 3.1(e).
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Figure 3.1: Photometric and kinematic data. (a) and (b): HI surface density and velocity

maps (Iorio et al. 2017). (c): Greyscale and black contours are the smoothed I band image

of WLM. The fitted MGEs are overlaid in red. (d) Discrete velocity measurements.

3.3 Discrete Jeans Model

Given a total gravitational potential �, a velocity anisotropy and an inclination,

the Jeans equations (Jeans 1922) specify the projected second velocity moment

V 2
RMS = V 2

mean + �2 of a kinematic tracer of known density, where Vmean and � are

the mean velocity and velocity dispersion. To begin, we assume axisymmetry for

WLM and utilise Jeans Axisymmetric Models (JAM, Cappellari 2008) to solve

for the predicted velocity moments. The Jeans equations, under the axisymmetric

assumptions, can be written as:
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Figure 3.2: Left: Circular velocities derived by Iorio et al. (2017) with the velocity map

shown in Figure 3.1(b) in blue, with uncertainties shown by the light blue band. The binned

stellar mean velocity (v�,star) and velocity dispersion (�star) profiles are shown in solid and

dotted black lines. Right: The RGB star counts are shown in red circles, with the open

circles indicating points that are excluded due to crowding and background contamination

in the fitting of exponential profile as adopted in Leaman et al. (2012), the fitted exponential

profile is shown in the black dashed line. The individual MGEs fitted to the exponential

profile are shown in red dotted lines and the total MGE is shown in a red solid line.

where ⌫(R, z) is the surface density of the kinematic tracer and �(R, z) is the

axisymmetric gravitational potential. Again, (vR, vz, v�) are the velocity components

in the three dimensions of the cylindrical coordinates (R, z,�).

3.3.1 Constructing the potential

We construct the gravitational potential � with three components, namely,

the gaseous component (Mgas,tot ⇠ 1.54 ⇥ 108M�), the stellar component

(M?,tot ⇠ 1.1⇥ 107M�) and the dark matter component. Each of the components is

parametrised by a set of Multi-Gaussian Expansions (MGEs) (Emsellem et al. 1994)

as required for our Jeans model. Below we provide details on the distributions of the

various components.

Gaseous component

We fit MGEs to the HI integrated intensity map using the python code provided

by Cappellari (2008). When fitting the MGEs, we fixed the inclination to be 74,
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I0,gas (M� pc�2) �gas (00) qgas

3.775 40.58 0.28

1.854 91.71 0.30

Table 3.1:: Multi-Gaussian Expansions of the gaseous component obtained from HI surface

brightness.

consistent with the derived inclination from the HI rotation by Iorio et al. (2017).

Figure 3.1 shows the best-fitted MGEs in red contours overlaid on the HI gas

density contours. We normalised the MGEs to the total neutral gas mass of WLM,

1.1⇥ 108 M�, which is taken from from the single dish observations of Hunter et al.

(2011). We apply a correction factor of 1.4 to account for the presence of Helium.

The resultant gaseous MGE parameters, the peak surface density I0,gas, the width

�gas and flattening qgas, of each of the constituent gaussians are presented in Table

3.1. The flattening paramete q is given by the ratio between the short and long axis

of each gaussian.

Stellar component

To obtain a smooth stellar distribution, we utilise the I-band photometry which

tracers evolved stars and avoids the irregular light density profiles of bluer bands.

We first smooth the I-band image with a gaussian of width 500 in order to remove

the stochasticity inherent in the nearby resolved systems, and then fit MGEs

to the smoothed surface brightness. The MGEs are then normalised to a total

stellar mass. The fitted MGEs are overlaid on top of the I band image in Figure

3.1(c). The resultant stellar MGEs parameters I0,?, �?, and q?, as normalised to

M? = 1.1 ⇥ 107M� (Jackson et al. 2007) are presented in Table 3.2. Despite the

presence of some foreground stars in the image, we find that their presence does not

change the MGE fits.

Dark matter component

To model the dark matter contribution to the potential of WLM, we utilise a

generalised NFW (gNFW; Zhao 1996) profiles to describe our dark matter halo.

This has a radial density profile of:

⇢(r) =
⇢s

(r/rs)�(1 + r/rs)3��
, (3.2)
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I0,? (M� pc�2) �? (00) q?

2.750 14.74 0.50

14.72 130.8 0.41

6.239 199.0 0.42

Table 3.2:: Multi-Gaussian Expansion of the smoothed I-band stellar surface brightness

profiles used to constrain the stellar mass distribution, normalised to a total stellar mass of

M? = 1.1⇥ 107M�.

with ⇢s, rs and � being the scale density, scale radius and slope of the dark matter

profile respectively. To test the influence and degeneracy of non-spherical mass

distributions, we also allow the dark matter halo to be axisymmetric with a flattening

qDM (with qDM = 1 � b/a, where b and a are the short and long axis of the dark

matter halo respectively). We normalise our DM haloes with the circular velocities

at rs (Vc(rs)) such that dark matter haloes with the same (rs, �, ⇢s) but di↵erent qDM

would have the same Vc(rs). This normalisation is done so that the parameter qDM

is only sensitive to the shape of the dark matter halo but not the overall enclosed

mass. A dark matter halo parametrised by a particular set of (rs, �, ⇢s and qDM)

can then be decomposed into MGEs - which together with the gaseous and stellar

MGEs, provides a representation of the total gravitational potential of WLM.

3.3.2 Surface density of the kinematic tracer

To obtain the density profile of the kinematic tracer ⌫, we utilise the discrete giant

branch star counts from Leaman et al. (2012). These star counts are constructed

from photometric catalogues which have had a comparable colour and magnitude

selection to the spectroscopic sample - thus providing the most representative density

distribution for the kinematic tracer population. The stellar density profile for the

kinematic tracers is shown in the right panel of Figure 3.2 in red circles. The inner

flattened number count profile is potentially caused by crowding and we correct for

it by fitting first an exponential profile to the star counts beyond the crowded region

(& 30000), as shown in the black line. We then fit MGEs to the black dashed line.

The resultant MGE fit is shown by the red solid line and the MGE parameters are

listed in Table 3.3. These MGEs are adopted as the surface density of the kinematic

tracer in our models throughout the rest of this work. Readers interested in how

robust our results are with respect to the choice of di↵erent profiles can refer to

Appendix B.1, where we show the impact of this incompleteness correction on our

final results.
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I0,? (M� pc�2) �? (00) q?

1.601 64.769 0.422

1.882 135.675 0.422

1.259 232.891 0.422

0.430 348.873 0.422

7.029⇥ 10�2 476.647 0.422

5.344⇥ 10�3 611.309 0.422

1.893⇥ 10�4 749.823 0.422

2.986⇥ 10�6 893.630 0.422

1.233⇥ 10�8 1057.583 0.422

Table 3.3:: Multi-Gaussian Expansion of the RGB star counts fitted by an exponential

profile to measurements within 27900-81300to avoid bias caused by crowding, normalised to

a total stellar mass of M? = 1.1⇥ 107M�.

parameter distribution range

M? normal 1.1± 0.56⇥ 107 M�

Mgas normal 1.54± 0.77⇥ 108 M�

�z uniform [-2.0, 1.0]

 uniform [0.0, 1.5]

qDM uniform/fixed [0.1, 5.0]

rs uniform [500, 10000] pc

� uniform [0.0, 1.0]

⇢s uniform [0.001, 0.15]M� pc�3

Table 3.4:: The adopted priors on each of the model parameters.

3.3.3 Model parameters

The relevant velocity anisotropy for the JAM model is �z = 1 � hv2zi/hv2Ri, where
hv2zi and hv2Ri are the second velocity moments along the z and R axes respectively

of the cylindrical coordinate system.1

Typically the modelled V mod
RMS can be compared directly with the observed V obs

RMS

1We note that under the assumptions of the JAM model, the vertical velocity dispersion is
intrinsically coupled to the self-gravity of the disk plane, in a quasi-hydrostatic equilibrium, and
thus �z primarily reflects the vertical density distribution of the galaxy - however we show later the
insight that other components of the velocity ellipsoid provide on the orbital structure of WLM
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for spatially binned data. In the case of nearby dwarf galaxies, spherical Jeans

models have often been applied on the observed V obs
RMS in spatial bins along the

major axis of the galaxy (e.g., Battaglia et al. 2011). However for fully axisymmetric

models, it is more flexible to fit to the discrete stellar kinematic data directly. To do

this, we compare the observed line-of-sight velocity VLOS,i of each star i 2 N , to the

probability distribution function of the model line-of-sight velocity VLOS,mod at their

projected location on the sky-plane (xi, yi). The discrete data are by construction,

only providing a single VLOS value, while the relative contributions of V mod
mean and

�mod to V mod
RMS are not constrained by the Jeans model itself. We therefore follow

Satoh (1980) and Cappellari (2008) and introduce  as another free parameter to

characterize the amount of rotation the system has relative to an isotropic rotator,

where  = hv�i/
q

hv2�i � hv2Ri. As described in Cappellari (2008),  = 1 is a rotating

system with with an symmetric velocity ellipsoid in the R� � plane (and spherically

isotropic in cases where �z = �R, while  approaches zero 0 when the system angular

momentum drops, or the anisotropy increases. While not a direct analogue for

angular momentum, the parameterisation allows for a flexible way to fit the discrete

velocity field.

Assuming a gaussian velocity probability distribution function, the probability

of VLOS,i at the position of each star i can be written as:

lnP (VLOS,i) = ln
1p

(�VLOS,i)2 + (�mod)2
� 1

2

(VLOS � V mod
mean,i)

2

(�VLOS,i)2 + (�mod)2
, (3.3)

where �VLOS,i is the error of the observed VLOS,i.

With the inclination and the position angle fixed (i=74, PA=174), the inputs

for calculating the likelihood P (Vlos,i) through the JAM model with Eq. 3.3 are: (1)

the gravitational potential � specified by MGEs, (2) the tracer density distribution

specified by the stellar MGEs, (3) the velocity anisotropy �z and (4) the  parameter.

The free parameters in constructing � are the total stellar mass M?,tot, qDM, rs, �

and ⇢s. We assume that �z and  are constant with radius. We therefore have seven

model parameters: (M?,tot,Mgas,tot, �z,, qDM, rs, �, ⇢s) (see Table 4).

3.3.4 MCMC sampling

To obtain marginalised distributions and covariances between the parameters of the

most likely models, we sample the likelihood space using the a�ne-invariant MCMC

ensemble sampler implemented in the python package EMCEE (Foreman-Mackey et al.

2013). We employ 200 walkers, each iterated through 300 steps; the burn-in phase is
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100 steps for each walker.

We constrain M?,tot and Mgas,tot with their observed values, 1.1 ⇥ 107 M�

and 1 ⇥ 108 M� respectively, through a prior with a normal distribution of width

specifying the measurement error of 50%:

lnPr1(M?,tot,Mgas,tot)

= ln
1p

2⇡(0.5⇥ 1.1⇥ 107)2
� (M?,tot � 1.1⇥ 107)2

2⇥ (0.3⇥ 1.1⇥ 107)2

+ ln
1p

2⇡(0.5⇥ 1.54⇥ 108)2
� (Mgas,tot � 1.54⇥ 108)2

2⇥ (0.3⇥ 1.54⇥ 108)2
.

(3.4)

For the other model parameters, we apply an uniform prior, the explored ranges

of each of the parameters are listed in Table 3.4.

We run two sets of MCMC processes; one which only uses information from

the stellar kinematics (‘Stars only’) and one with the observed HI Vc (Vc,HI) as a

constrain on the gravitational potential (‘Stars + Gas’). In the case for which we

include Vc,HI as a constrain on the gravitational potential, we introduce additionally

a second prior term, which evaluate

lnPr2(M?,tot, qDM, rs, �, ⇢s, Rj)

= ln
1p

2⇡(�Vc,HI(Rj))2
� (Vc,�(Rj)� Vc,HI(Rj))2

2⇥ �Vc,HI(Rj)2
.

(3.5)

� = �(M?,tot, qDM, rs, �, ⇢s) is computed through the MGEs, which gives us

V 2
c,�(R) = �R(@�/@R). Vc,� is then evaluated at R = Rj, where we have

measurements of Vc,HI from the HI kinematics.

The total likelihood for the 180 stars can be written as a sum of the probability

and the prior, i.e. lnL = ⌃i(lnP (VLOS,i)) + lnPr1 for the ‘Stars only’ case and

lnL = ⌃i,j(lnP (VLOS,i)) + lnPr1 + lnPr2(Rj)) for the ‘Stars + Gas’ case.

3.4 Results

The marginalised model parameters for the set of MCMC runs with free qDM are

shown in the corner plots in Figure 3.3. Black contours show the dark matter halo

and stellar anisotropy parameters constrained from the ‘Stars only’ models, and

red contours show the distributions recovered from the ‘Stars + Gas’ models. The

corresponding best-fitted parameters and their 1-� uncertainties are listed in Table

3.5.
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Figure 3.3: Marginalised parameters from the discrete Jeans models: stellar dynamical

parameters �z, , and dark matter halo parameters qdm, rs, � and ⇢s. Black contours

show the marginalised parameter values with the models using only stellar kinematics, with

contour levels 1, 1.5 and 2�. Red contours show the models run using stellar kinematics

and Vc derived from HI kinematics as a prior.
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3.4.1 DM halo properties

Both the ‘Stars only’ and the ‘Stars + Gas’ models consistently prefer moderately

cored DM profiles, with the posterior distributions showing � = 0.34+0.26
�0.21 and

� = 0.34+0.12
�0.13 respectively. A prolate DM halo is preferred in both the the ‘Stars

only’ and ‘Stars + Gas’ model, with the ‘Stars + Gas’ model indicating a best fit

qDM = 2.1+1.3
�0.9.

While the two models prefer parameters that agree with each other within the

uncertainties, it is evident that the dark halo parameters (rs, �, ⇢s) are much better

constrained in the ‘Stars + Gas’ models when the HI kinematics are used to jointly

constrain the total potential. The uncertainties in the ‘Stars + Gas’ models in rs,

�, ⇢s are smaller than the ‘Stars only’ model by 29%, 48% and 54% respectively.

The halo flattening also shows a 15% reduction in its uncertainty and drives towards

more physical prolate values2.

3.4.2 Stellar orbital properties

Within JAM, the stellar orbital properties are described by �z and . �z describes

the velocity anisotropy and is the best fit models find �z = 0.61+0.07
�0.12 and 0.65+0.06

�0.09

respectively for the ‘Stars only’ and the ‘Stars + Gas’ models. The inclusion of gas

kinematics allow a 24% improvement in the constraint of �z. It is evident that such

an improvement is enabled by breaking the degeneracy between �z and several DM

halo parameters such as qDM, rs and �.  is constrained to 0.83+0.09
�0.11 and 0.88+0.10

�0.11

respectively for the ‘Stars only’ and the ‘Stars + Gas’ models. The uncertainties of

 in both models are similar due to the fact that  is a property that is intrinsic to

the stellar kinematical map itself and is not constrained by the Jeans model.

While the anisotropy is described in JAM by �z, we can study the

more informative link with tangential velocity dispersion by computing �r =

1 � (�2
� + �2

✓)/2�
2
r . From each of the JAM models we made in the MCMC process,

one can compute the individual velocity dispersions in three dimensions: ��, �R and

�z in cylindrical coordinates, which can then be transformed into ��, �✓ and �r in

spherical coordinates. Such a calculation can be made following Eqs. 19-23, 32 and

37 from Cappellari (2008) with input MGEs describing the gravitational potential

�(R, z) and the density profile of the kinematic tracers ⌫(R, z), �z and . Even

2Stability analysis for prolate, pressure supported collisionless systems has suggested that axis
ratios greater than 5:2 will result in radial orbit instabilities which quickly increase the vertical
velocity distribution and reduce the eccentricity (Merritt & Hernquist 1991)
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though we have assumed a radially constant �z and , the radially varying � and ⌫

render a radially varying �r.

Figure 3.4 shows the derived �r(R, z = 0), ��(R, z = 0), �r(R, z = 0) and

�✓(R, z = 0) profiles derived from 5000 randomly selected individual MCMC steps

in the ‘Stars only’ model in thin lines, with the best-fitted profile indicated by a

thick black line and the 1-� uncertainties by a black band. The corresponding

profiles for the ‘Stars + Gas’ models are shown in red. The �r profile transitions

from a mildly radial central region to a tangentially anisotropic system in the outer

regions. �r goes from 0.32+0.03
�0.04 at r = 0 to �r = �0.35+0.57

�0.90 at two half light radius

(2rh ⇠ 3300 pc) for the ‘Stars + Gas’ models. At r = 2 rh, the constraint on �r
improves by 27% when incorporating gas kinematics in our model.
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Figure 3.4: The derived �r(R), ��(R), �r(R) and �✓(R) at z = 0 from our dynamical

models. Thin black and red lines show the profiles of individual MCMC steps for the ‘Stars

only’ and ‘Stars + Gas’ models respectively. The thick black and red lines show the best

fitted profile and the bands show the corresponding 1� uncertainties.
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CHAPTER 3. JOINT STARS AND GAS DYNAMICAL MODELS

3.4.3 Dependence on qDM

While both the ‘Stars only’ and the ‘Stars + Gas’ model prefer a prolate halo, the

flattening of the dark matter halo qDM has some of the most important correlations

with other parameters. We would therefore like to understand the degeneracies

between the choice of halo flattening and other parameters of interest. To asses this

we run models where the DM halo flattening is fixed to values over a grid of qDM;

(0.25 < qDM < 4.0, at intervals of 0.25), in order to evaluate the e↵ect of qDM on the

stellar dynamical and dark matter properties.

The best-fit parameters for these constrained models are plotted as a function

of qDM in Figure 3.5 in solid lines, with the respective 1-� uncertainties indicated

by dashed lines. The free parameters are then reported in intervals of qDM = 0.5 in

Table 3.5. Black lines show the parameters constraints from the ‘Stars only’ models

and the red lines show the parameters constraints from the ‘Stars + Gas’ models.

The best fit parameters from the models where qDM is free to vary are also shown by

the error bars for reference.

In both the ‘Stars only’ and ‘Stars + Gas’ cases, �z shows a well known

degeneracy with qDM at qDM . 1; a flatter dark matter halo gives a lower �z. Similar

degeneracies also exist between qDM and �r. The derived �r at r = 0, r = rh and

r = 2 rh are listed in Table 3.5. The degeneracies are stronger at large radii (r & rh),

with a higher qDM corresponding to a lower �r (more tangential anisotropies). Also,

the degeneracies between qDM and �r extend to much higher qDM, all the way up to

qDM = 4. Curiously, such �r � qDM degeneracy is only present in the ‘Stars + Gas’

models but not in the ‘Stars only’ models. The other stellar orbital parameter  also

show a degeneracy in the direction of higher qDM- lower , again such a degeneracy

is only present in the ‘Stars + Gas’ models.

Reassuringly, the inner slope of the DM density profile, � appears robust to

the choice of halo shape. As in the case of the freely varying qDM models, the dark

matter parameters, rs, � and ⇢s, are better constrained on average by 27%, 39% and

46% at all qDM when we include Vc,HI as a constraint.

3.5 Discussion

Using discrete Jeans models, together with circular velocity constraints from the

HI gas rotation curve, we have derived tight constraints on the DM halo shape

and density profile. Additionally, we derive, for the first time, the stellar velocity
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CHAPTER 3. JOINT STARS AND GAS DYNAMICAL MODELS

Figure 3.5: The best-fitted (solid line) and 1-� uncertainties (dashed lines) of the param-

eters constrained from the MCMC process with qDM fixed between 0.5 and 1.5. Models are

ran at intervals of 0.1 in qDM. Black lines show the results from the ‘Stars only’ models and

red lines show the results from the ‘Stars + Gas’ models.
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CHAPTER 3. JOINT STARS AND GAS DYNAMICAL MODELS

anisotropy profile of a dIrr. Below we discuss the implications of our results for

modified gravity and dark matter theories, and formation models of dwarf galaxies.

3.5.1 WLM’s dark matter halo properties in the context of

⇤CDM cosmology

The halo parameters from our best fit models can be used to reconstruct the three

dimensional mass distribution in WLM with high confidence. Here we examine

the inner density profile and flattening of the dark matter halo with respect to

simulations of galaxy formation in a ⇤CDM framework.

Dark matter density profile

Figure 3.6 shows the dark matter and stellar mass profiles derived from our ‘Stars

+ Gas’ and qDM free dynamical model in green and purple respectively. The

dark matter virial mass, Mvir, is constrained to within 2.50+1.75
�1.23 ⇥ 1010 M� in

the ‘Stars + Gas’ model and 2.10+3.32
�1.32 ⇥ 1010 M� in the ‘Stars only’ model - in

good agreement with Leaman et al. (2012), who used an SIS and NFW fit to the

asymmetric-drift-corrected stellar kinematics.

The derived stellar to halo mass ratio is therefore log10(M?/Mvir) = �3.4± 0.3,

which is slightly higher than the stellar-mass-halo-mass (SMHM) relation found by

Moster et al. (2010) log10(M?/Mvir) = �3.1 ± 0.1 using the same M? value, but

consistent within the uncertainties. When we run models with a prior on the stellar

mass ofM? = 4.3⇥107 M�(±50%), a larger value favoured from star formation history

studies of WLM (Leaman et al. 2017), we derive a higher log10(M?/Mvir) = �2.8±0.2.

In Figure 3.7e we show the log10(M?/Mvir) from the ’Stars only’ and ‘Stars+Gas’

models with a prior M? = 1.1⇥107 M?(±50%) in black and red, and for completeness

a ‘Stars+Gas’ model with prior M? = 4.3⇥ 107 M�(±50%) in orange.

The dark matter halo concentration (c ⌘ rvir/r�2 where rvir is the virial

radius and r�2 the radius at which the logarithmic slope of the dark matter

density is d ln ⇢DM/d ln r = �2) for our best fit models is close to the expected

mass-concentration (Mvir � c) relation from dark-matter-only simulations (Dutton

& Macciò 2014). Given our derived Mvir, the Mvir � c relation found by Dutton &

Macciò (2014) would suggest c = 12.1+0.9
�0.6. Our dynamical models infer a slightly

lower halo concentration of c = 11.4± 1.6. Such small discrepancies may be caused

by the impact of stellar feedback, and correlated with the change in the inner slope

of the DM density profile.
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Our analysis suggests that WLM has a relatively cored DM density distribution

with a best fit to the inner slope of the density profile � = 0.34± 0.12. This value is

robust to the recovered DM halo shape (qDM), and has an expected correlation with

the scale length and normalisation of the dark matter halo, rs and ⇢s. The central

density profile of low mass dwarfs is an important tracer of internal and external

evolutionary processes in dwarf galaxies (e.g., Zolotov et al. 2012; Brooks & Zolotov

2014; Oñorbe et al. 2015). Using hydrodynamical simulations, Di Cintio et al. (2014)

found that the feedback process which alters the inner slope of dark matter haloes

also modifies the final stellar-to-halo-mass ratio (M?/Mvir), and a relation between

the two was parameterised as:

� = �0.06 + log10[(10
X+2.56)�0.68 + (10X+2.56)], (3.6)

where X = log10(M?/Mvir).

In the mass range of WLM, a higher M?/Mvir would translate to a flatter inner

slope (smaller �) - as the stellar feedback is proportionally more e↵ective at causing

halo expansion due to rapid gas expulsion in the relatively shallow potential well.

For our derived M?/Mvir, the Di Cintio et al. (2014) predicts � = 0.5 ± 0.2, higher

than the � derived from our models (� = 0.34 ± 0.12), but consistent within the

errors. If we use the ‘Stars + Gas’ model ran with M? = 4.3 ⇥ 107, the derived

value from Di Cintio et al. (2014): � = 0.25 ± 0.16 is in excellent agreement with

our modelled value: � = 0.23 ± 0.12 (as shown in orange contours in the bottom

panel of Figure 3.7). To compare to the simulations from Read et al. (2016), we

have also fit our derived dark matter density profile with a cored-NFW profile and

found a core size of rcore = 1257+318
�269 pc. In those simulations the typical core size

was found to scale with the stellar half mass radius as rc ⇠ 1.75 rh. Our derived core

size is slightly smaller than this finding, with the ratio 0.6  rc/rh  1.0 for our best

fit models. However we note that taking the exponential scale length of the disk

(rd = 987 pc; Leaman et al. 2012) gives 0.98  rc/rd  1.65.

In the context of ⇤CDM galaxy formation, WLM appears to have been able to

e�ciently convert its presumably primordial NFW dark matter cusp into a shallower

density profile over a Hubble time of star formation and feedback. This process has

occurred, and yet left the system with: an exponential and smoothly distributed

intermediate age population (Leaman et al. 2012), no quenched SFH (Weisz et al.

2014), a metallicity distribution function and age-metallicity relation in agreement

with a simple leaky box model (Leaman et al. 2013), and a stellar age-velocity

dispersion relation consistent with gradual dynamical cooling of the gas (Leaman

et al. 2017). These all suggest that the core-creation process need not always quench

the system, nor be catastrophic to the structural, dynamical or chemical properties
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DM 

Stars 

Gas 

Rvir 

Figure 3.6: Enclosed mass profiles. The stellar, gas and dark matter profile from the best

fit ‘Stars + Gas’ model are plotted in magenta, blue and green respectively. Vertical lines

indicate the virial radius. Width of the bands give the 1� uncertainties. Dotted lines show

the corresponding constraints from the ‘Stars only’ dynamical models.

of the galaxy - at least in this virial mass range. A more detailed joint analysis of the

chemical and kinematic properties may help disentangle whether the core creation

process was bursty as expected from feedback scenarios (e.g., El-Badry et al. 2017),

or more gradual as in the case of self interacting dark matter.

Previous numerical studies have also explained many of WLM’s properties

in terms of a feedback based alteration to the underlying NFW profile. For

example, using a set of hydrodynamical simulations for dwarf galaxies, Teyssier

et al. (2013) were able to reproduce the spatial and dynamical structural properties

of WLM, while at the same time transforming the dark matter halo from cusped

to core by stellar feedback from bursty star formation. Two WLM-like galaxies

with exponential stellar disks of V/� ⇠ 1 were also formed in the study by Shen

et al. (2014) from a fully cosmological high-resolution ⇤CDM simulation, again

with baryonic feedback playing an important role. The dwarf galaxies from their

simulation lie on the observed mass-metallicity relation observed in the Local Group

dwarfs, suggesting that the feedback process can operate in a non-destructive fashion

for isolated dwarfs.

This provides a counter example to systems such as Ultra-di↵use Galaxies
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Figure 3.7: Contours showing the constrained values as labeled from models with prior

M? = 1.1⇥ 107M?(±50%) ‘Stars only (black) and ‘Stars+Gas’ (red), and with prior M? =

4.3⇥107M?(±50%) ‘Stars + Gas’ in orange. Overlaid are the M?�M?/Mvtr relation from

Moster et al. (2010) left, the mass-concentration relation from Dutton & Macciò (2014)

middle and the M?/Mvit � � relation from Di Cintio et al. (2014) right are shown as thick

black lines.

(UDGs), which may acquire their extended structure and old stellar populations

partly due to the same feedback processes (Di Cintio et al. 2017), but with more

extreme consequences on the system. Given that some UDGs are estimated to

be comparable virial mass to WLM (Beasley & Trujillo 2016), understanding

what di↵erent conditions during the galaxy’s lifetime (e.g., star formation density,

environment) lead to such disparate final states is an avenue worth further study.

For example, the resultant decrease in central density and gas concentration may be

extremely important for evolutionary changes of dwarf satellites, as demonstrated

by Brooks & Zolotov (2014). Finding present day observational signatures which

can trace the rapidity and strength of the potential fluctuations may provide further

insight into the timescales, and mechanisms with which the DM core is growing, and

can potentially di↵erentiate feedback driven or particle scattering processes (e.g., gas

and stellar spatial distributions; Mondal et al. 2018). This will be discussed in the

subsequent section, however to first order the DM halo density profile we derive is

in excellent agreement with the predictions from simulations which incorporate the

e↵ect of feedback driven halo expansion in a CDM framework.

Dark matter halo flattening

We now turn to the shape (axial ratio) of the dark matter halo inferred from our

dynamical models. Table 3.5 shows that in the ‘Stars + Gas’ model, a prolate dark

matter halo (qDM ⇠ 2) is preferred, with an uncertainty of �qDM ⇠ 1. Pure dark
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matter ⇤CDM cosmological simulations show that dark matter haloes with our

derived Mvir for WLM have an average short-to-long axis ratio of ⇠ 0.7 at the virial

radii rvir (Macciò et al. 2008). Butsky et al. (2016) find similar qDM at rvir with

high-resolution dark matter only simulations. They however extend the analysis

towards the inner region and show that over the radii where our stellar kinematics

cover (< 5% rvir), dark matter haloes of Mvir ⇠ 1010 M� have an even lower average

short-to-long axis ratio of ⇠0.5 and are predominantly prolate.

Those authors used a suite of high-resolution hydrodynamical simulations and

showed that while baryonic feedback does not have noticeable e↵ects on qDM at the

virial radii, it may change qDM in the inner region of the halo depending on the Mvir

of the galaxy. The inner region (< 0.12 rvir) of DM haloes evidently become more

spherical for galaxies with Mvir > 1011 M�. For galaxies with Mvir similar to the one

we derived for WLM however, qDM does not significantly di↵er from dark matter

only simulations, meaning that a prolate halo with short-to-long axis ratio of ⇠0.5

is still expected, corresponding to a qDM of ⇠2. This is in excellent agreement with

the qDM derived from our ‘Stars + Gas’ model. Although a spherical/oblate halo

has been ruled out at the 1-� level, such geometries are still possible within the 2-�

level. Given the evident qDM � � (especially �r) degeneracies, future proper motion

measurements will help us to further constrain the halo geometry.

As we shall see below, the halo shape measurement is a strong prediction of

our models, and together with the DM density slope, may o↵er one of the most

powerful lever arms to di↵erentiate baryonic feedback plus CDM scenarios, from

self-interacting dark matter models.

3.5.2 WLM as a test of self-interacting dark matter models

and modified gravity

The simultaneous recovery of a density core and a prolate DM halo is extremely

important in understanding the viability of models of non-standard dark matter,

e.g., thermal relic, self-interacting (SIDM), Bose-Einstein condensate (BECDM or

“fuzzy”) dark matter. We have previously seen the good agreement between our

observations and predicted values for the DM inner density profile slope and axial

ratios in CDM simulations with baryonic feedback. These models work under the

assumption that the DM itself is collisonless and the modifications to the density

profile arise indirectly due to stellar feedback rapidly changing the potential well

through gas expulsion (c.f., Pontzen & Governato 2012).

Galaxy formation simulations where the dark matter particle may have a
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self-interaction cross section, can also produce modifications to the central density

profile. In this case the particle self-interactions, which have a higher rate of

occurrence in the denser central regions, result in elastic (or inelastic; Vogelsberger

et al. 2019) scattering of particles (of order one event per particle per Hubble

time) and the formation of a density core in the galaxy dark matter distribution

(Vogelsberger et al. 2012; Peter et al. 2013).

To place our results in the context of such SIDM theories, we compute the

model DM density at the core radius ⇢(rc) using the best fit ‘Stars + Gas’ profile

parameters, and derive the likely velocity weighted interaction cross section for

SIDM models to produce this cored profile:

h�vi
mX

= {⇢(rc)thalo}�1 (3.7)

where mX is the mass of the SIDM particle candidate and thalo is the collapse time of

the DM halo, here taken to be 13 Gyr. Figure 3.8 plots the constraints on the cross

section using our derived halo properties for WLM. Also shown are the limits on the

same quantity for the Fornax dSph (Chapter 4), based on modelling of that dwarf

galaxy’s GC dynamics. Velocity independent scattering predictions for di↵erent

SIDM cross sections are shown as the background colour bar and lines. Constraints

from high mass galaxy clusters indicate that such velocity independent SIDM models

require �/mX . 0.1 cm2 g�1 (e.g., Kaplinghat et al. 2016) which is the lowest line

shown in our figures. Those studies and others suggest that local dwarf galaxies are

more consistent with �/mX ⇠ 1� 2 cm2 g�1, and indeed the two dwarfs reported in

our studies are consistent with this value.

The mismatch between the required velocity independent cross sections needed

for local dwarfs and high mass galaxy clusters has led to velocity dependent scattering

models to be preferred. We show three examples as the red, green and blue lines

in Figure 3.8, all of which pass through the combined constraints of WLM and

Fornax, but which only the one with the high peak velocity dependence (vmax = 400

km s�1) is also consistent with the cluster measurements of Leaman et al. (2012).

The constraints posed by WLM do not a priori prefer a velocity dependence to the

self-interacting DM models - however as we shall see, the simultaneous finding of a

core and a prolate halo may rule out the velocity independent models, as these are

reported to become thermalised and spherically symmetric in their inner regions for

the values needed here (Peter et al. 2013).

The final core sizes generated from DM scattering can be ⇠ 1 kpc, just as in

baryonic feedback + CDM scenarios. Therefore additional signatures may be needed

to di↵erentiate whether a detected DM core is a unique consequence of baryonic
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Figure 3.8: Velocity averaged interaction cross sections as a function of characteristic halo

velocities. The self-interacting DM particle cross section necessary to reproduce the density

profile of WLM is shown as the black data point. Limits for the Fornax dSph from Leung

et al. 2019 are shown in grey. Colour bar and background shows the cross section for

velocity independent SIDM models, with �/mX = 0.1 and 1 cm2 g�1 indicated with dashed

lines. The latter value, which is favoured by galaxy clusters is ruled out by the dwarfs,

while the former value is excluded as it is unable to simultaneously preserve prolate halo

shapes. Velocity dependent SIDM models are shown in thick coloured lines, with parameters

indicated. While all three vSIDM models are compatible with the dwarf galaxy limits, only

the red curve can also reproduce the constraints from galaxy clusters - however whether

they also preserve aspherical geometries is not yet quantified in simulations.

111



CHAPTER 3. JOINT STARS AND GAS DYNAMICAL MODELS

feedback, or self-interaction modifications to the DM density profile. The timescale

for the core to form may be longer in SIDM, however this depends on the particular

baryonic sub-grid prescriptions adopted (e.g., star formation or feedback injection

e�ciencies). For example, Fry et al. (2015) showed that the growth rate and final

size of the DM core in halos with Vmax  30 km s�1 may be largely the same in

self interacting dark matter with or without baryonic feedback - though this again

depends on the mass range and adopted cross section. While there could be chemical

and/or phase space signatures which may help understand the precise mechanism(s)

better, the sparsity of detailed abundances and numbers of observed stars in low

mass galaxies makes this a daunting process. What then may be a potential way

to understand whether self-interacting dark matter or feedback scenarios have

generated observed cores in dwarf galaxies?

The scattering process that generates a core in self-interaction models may

potentially sphericalise the mass distribution, as the interactions are isotropic.

This means that the core formation process in pure self-interaction dark matter

models could result in spherical mass distributions in the inner regions of the halos.

The simultaneous quantification of DM density profile slope and axis ratio has

unfortunately only been reported as far as we can tell, in simulations of high mass

(Mvir � 1011) halos (Schive et al. 2014b). In these simulations, halos with �/mX = 1

which form increasingly cored density distributions (approaching � ⇠ 0.4) become

approximately spherical (c/a ⇠ 0.9). For lower cross sections of �/mX = 0.1, density

profiles slopes of � = 0.8 still retain axis ratios of c/a ⇠ 0.6, but these values are not

nearly as cored as what we find, and are only reported for halos of Mvir ⇠ 1013�14.

Most importantly, these low values for the cross section are already ruled out on the

basis of the WLM DM density profile.

Simulations which explore the halo shape of velocity independent SIDM models

in the presence of baryons have found that the core creation process can occur with

non-spherical final halo shapes in the inner regions (Sameie et al. 2018). However in

that case the inner halo progressed towards the axis ratios of the embedded baryonic

distribution, which in the case of WLM would be oblate with c/a = 0.4 � 0.6

(Leaman et al. 2012). Fitts et al. (2018) simulated dwarf galaxies in our halo

mass range with SIDM and baryonic components and found similar behaviour,

whereby baryons were the dominant process in altering the DM halo profiles (either

indirectly through feedback, or afterwards through contraction) - however there

was no reported characterisation of the halo shapes. Velocity dependent SIDM

models presented in Zolotov et al. (2012) show indications that high mass halos can

preserve their shapes in the presence of central density modifications, however these

simulations were again with MW mass halos.
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There is clear need for numerical simulations to quantify the simultaneous

evolution of the DM density inner slope and halo shape in the presence of baryons for

halos of mass Mvir ⇠ 1010. WLM’s recovered prolate DM halo with qDM = 2, density

slope of � = 0.34 and core of size rc = 1257 pc may provide a strong constraint which

velocity dependent self-interacting dark matter models need to satisfy.

Axion mixed DM models or BECDM models also predict a relation between the

core size and halo mass - however in this case the core is inherent to the structure

formation in these models. Following Vogelsberger et al. (2012), in the case of

ultra-light BECDM, the soliton core size is related to the halo virial mass and

e↵ective particle mass (m ) as:

rc, = 1.6kpc

✓
M350

109M�

◆�1/3 ⇣ m 

10�22 eV/c2

⌘�1

, (3.8)

where rc, is the DM core radius defined through a soliton and M350 is the viral mass

calculated as M350 = (4⇡/3r3vir)�c⇢c with ⇢c being the critical density and �c = 350.

For WLM’s constraints on the core size and virial mass we find 1.1+0.2
�0.1⇥ 10�22 eV/c2,

consistent with constraints from large scale structure studies. Similar to the above

SIDM studies more work is needed to quantify the halo axis ratios in low mass halos

(with non-negligible baryon fractions), in these or other alternative cosmological

models (e.g., ETHOS; Vogelsberger et al. 2016).

Finally, we comment briefly on the implications of our inferred dark mass

distribution on theories of modified gravity such as MOND (Milgrom 1983). WLM

is an interesting test case in that it has well defined inclination and measurements

of a circular velocity curve from HI kinematics (Iorio et al. 2017), stellar velocity

dispersion and anisotropy (Leaman et al. 2012 and this work) and an intrinsic

thickness (Leaman et al. 2012). Our discrete Jeans model for WLM suggests that

there is an extended dark mass distribution around WLM, with a prolate axis ratio

of 2:1. MOND will reproduce the contributions to the observed circular velocity

field by altering the acceleration field in the outer regions - however this can only

mimic a mass distribution with q = 0.9. WLM is in the deep MOND regime and its

extreme isolation means that an external field e↵ect can not be invoked to alleviate

discrepancies with MOND predictions in the outer disk. The prolate dark mass

distribution inferred for WLM may represent a significant obstacle for describing the

dynamics and structure of this dwarf galaxy with MOND. A more detailed discussion

and analysis of WLM’s stellar structure, dynamics and enclosed mass profile with

respect to MOND is beyond the scope of this work and will be presented in a follow

up paper.
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3.5.3 Tangential velocity anisotropy in an evolutionary

context for dwarf galaxies

Determining velocity anisotropy in systems with a single type of kinematic tracer

has long assumed to be di�cult due to the mass-anisotropy degeneracy inherent

to spherical Jeans equations. For a couple of well studied dSphs, authors have

used discrete Jeans models, or orbit based Schwarzschild superposition models to

better constrain the velocity anisotropy, and found that the anisotropy becomes

increasingly more tangential with radius, for both Sculptor (Zhu et al. 2016) and

Fornax (Kowalczyk et al. 2018). Subsequent work using proper motions measured

from GAIA, Massari et al. (2018) determined a median radial anisotropy of �r ⇠ 0.46

for Sculptor, but only for the inner region r . 0.35 rh.

Interestingly, WLM also demonstrates a mild radial anisotropy in the inner

region of r . 1 rh, which turns tangential towards larger radii (�r ⇠ �0.5). To

demonstrate the similarities between the �r profile we obtained from the dIrr WLM

and the dSphs, we overlay the �r profiles obtained by Zhu et al. (2016) for Sculptor

(blue) and Kowalczyk et al. (2018) for Fornax (green) on top of the one we obtained

from the ‘Stars + gas’ qDM free model (red) in Figure 3.9. There are clear similarities

in all three dwarfs, with the anisotropy profile becoming increasingly tangential in

the outer regions.

The interpretation of any anisotropy profile is not straightforward, nor unique.

For example, dissipationless gravitational collapse can lead to an isotropic core,

surrounded by an envelope of radially anisotropic orbits (van Albada 1982) - however

the same configuration is seen to occur in simulations of dwarfs which undergo

bar-buckling (Mayer 2010). There, bar formation can be triggered by strongly

radial anisotropy, before undergoing a bending instability which erases the radial

anisotropy (preferentially increasing the vertical velocity dispersion). In higher mass

halos, the reconfiguration of stellar orbits due to minor merging can reproduce

the typically radial anisotropic profiles seen for MW mass galaxies, with transient

tangential anisotropy appearing due to recent major accretion or flybys of satellites

(Loebman et al. 2018).

Alternatively, simulations have shown that tangential anisotropy can be caused

by preferential stripping of stars on radial orbits in a tidal field (e.g., Baumgardt

& Makino 2003; Hurley & Shara 2012). The tangential anisotropy in some dSphs,

found especially at large radii (r & re↵ , the e↵ective radius), has often been used to

support the scenario in which dIrrs are transformed into dSphs via tidal processing.

The negative �r derived at large radii from our dynamical models for WLM puts
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Fornax (Kowalczyk et al. 2018) 

Sculptor metal-poor (Zhu et al. 2016) 

WLM (Leung et al. 2018) 

Sculptor metal-rich (Zhu et al. 2016) 

Figure 3.9: Derived WLM �r profile (in red) overlaid on the �r profiles of two dSphs,

Sulptor in blue (Zhu et al. 2016) and Fornax in green (Kowalczyk et al. 2018), as an

illustration of the similarities in their overall trend. The metal-poor population of Sculptor

plotted in cyan has more radial anisotropy but is only dominant in the inner ⇠ 1.5 rh.

such the last scenario into question. The velocity anisotropy profiles we find in the

dIrr WLM, being nearly isotropic in the centre and increasingly tangential towards

the outskirts of the galaxy (reaching �r = �0.5+0.6
�1.0 at r = 2 rh), are very similar

to those found in the aforementioned dSphs. WLM is an extremely isolated galaxy

(DMW,M31 ⇠1Mpc; see Fig. 1 Leaman et al. (2012)), with Local Group barycentric

velocity suggesting it has last been in the proximity of a massive neighbour ⇠11Gyrs

ago.

WLM’s derived �r profile thus provides an environmentally unprocessed baseline

for using stellar kinematics to understand the evolutionary similarities or links

between dIrrs and dSphs. First of all, the similarity of �r between these dSphs and

an isolated dIrr implies that the negative �r seen in dSphs needs not be a result of

tidal stripping. The orbital information of both Sculptor and Fornax inferred from

proper motion measurements done with GAIA also have weakened the case that

they have been tidally stripped (Fritz et al. 2018), as the derived pericentre of these

two galaxies are both 50 kpc.
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Given the other evidence in its dynamical and chemical evolution for a quiescent

existence, it would seem that the tangential anisotropy in this case is either

primordial, or imparted through some other mechanism. Whatever the mechanism

to form or impart this anisotropy profile, the similarity between the dIrr and dSphs

may also suggest that the transformation from dIrr to dSph is not a violent or

dynamical one. Indeed the stellar kinematics, chemistry and SFHs of some of the

massive dSphs are becoming increasingly similar to the dIrrs where studies of both

are done to comparable depths (e.g., Kirby et al. 2013; Leaman et al. 2013; Wheeler

et al. 2017). In that case the present day di↵erences may only become extreme where

there is significantly early infall, for example for more low mass nearby dSphs - and

in other cases perhaps the di↵erence is only quenching of the SF due to gentle ram

pressure in the outer halo of the MW’s CGM.

If extreme tidal processing is not playing a role in determining the anisotropy

profile, we might ask if it it something intrinsic to the formation of galaxies of this

mass regime? Some studies have looked at the relative role of gas pressure support

in the initial gas disk of dwarfs (Kaufmann et al. 2007) or spatial distribution of star

formation and stellar populations in dwarf galaxies (Schroyen et al. 2011b). However

neither study provided quantification of the newly formed stellar anisotropy profiles.

The details of how any aspects of the gas inflow history (e.g Kereš et al. 2005) or

turbulence map into 3-D stellar kinematics needs additional study, but may provide

help in understanding the similarities in Figure 3.9.

If the anisotropy at formation is not preserved until present day, the similar

profiles for two of the bright classical dSphs and WLM indicate that any evolutionary

process which generates tangential anisotropy, may need to operate in a generic

galaxy of this mass. Such processes could either be connected to dynamical scattering

of stars, or the dynamical mixing of gas at the epoch of formation of the surviving

stellar populations.

For example, Christensen et al. (2016) showed how the re-accretion of gas in the

outskirts of MW mass galaxies could introduce flows which have di↵erent angular

momentum than the local reservoirs. It is unclear if this would lead to preferential

mixing of the newly formed stellar orbits in the tangential direction, or if it could

apply in low mass galaxies where there is evidence that a significant amount of the

metals in the system may not have been retained or recycled (Kirby et al. 2011).

Latent dynamical heating of the stellar orbits in dwarf galaxies may be another

mechanism to impart changes in the orbit distribution. Leaman et al. (2017) showed

that the SFHs of Fornax, Sculptor and WLM were largely consistent with the

age-velocity dispersion being a result of dynamical cooling of the ISM as the gas

116



CHAPTER 3. JOINT STARS AND GAS DYNAMICAL MODELS

fractions declined over time, however low level scattering of stars was still expected

during epochs where the gas and newly formed stellar dispersion was  5 km s�1.

Individual stars can scatter o↵ of over-densities (e.g., GMCs, spiral arms) in the

molecular mid-plane of any galaxy.

GMC scattering is largely thought to result in both planar and vertical heating

and isotropises the stellar velocity ellipsoid, as the stellar disks are much thicker than

the molecular gas layers. Scattering from spiral arms or bars is predominantly planar

and so could increase the dispersion in the radial or tangential directions. However

dwarfs of this mass are much too thick and dynamically hot to form spiral arms.

Bar formation has been invoked as an agent important in dwarf galaxy evolution,

however the simulations tend to predict either strongly radial (before bar buckling)

or vertical (after bar buckling) anisotropies.

Other processes for which increasing evidence is being assembled are the

aforementioned feedback driven DM core creation, and dwarf-dwarf mergers. The

non-adiabatic change to the potential induced by the expulsion of gas in the centres

of dwarf galaxies, is suggested to result in preferentially larger orbit expansion for

stars on circular orbits. If the response of these stars to the largely symmetric change

to the potential is a net increase in their orbital radius, then could it be possible

that the migrating stars enter final orbits with azimuthal velocities di↵ering from

the locally formed stars? Kaplinghat et al. (2016) studied the changes in anisotropy

induced by potential fluctuations for dwarf galaxies of this mass, but even though

they showed there could be variations, the anisotropy profiles were all significantly

radial at all times and locations.

Mergers have been shown to temporarily induce tangential anisotropy in MW

mass galaxies, provided the merging satellite remains coherent in the outskirts

(Loebman et al. 2018). However, while there is increasing evidence for dwarf-dwarf

mergers in the Local Group, and indeed Fornax (though not recent mergers; Leung

et al. 2019), there is no concrete evidence presented in literature for mergers in the

other two dwarf galaxies showing tangential anisotropy. A final speculative idea may

be that the tangential anisotropy is a consequence of the prolate shape of the DM

halo. This will be discussed in a follow up paper.

While the exact cause of the anisotropy profile in WLM, and its similarities to

those seen in the dSphs is yet unclear, it is clear that the disparate environment

posed by WLM o↵ers an important constraint that simulations of isolated field

dwarfs (and their potential transformation into dSphs) may want to reproduce.

WLM is an optimal candidate for the analysis we have presented here as

its mass and isolation are both large enough that a significant dynamically cold
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gaseous component exists. It is observationally expensive to get stellar kinematics

for such objects, but as we illustrate here, the improvement on the recovered dark

matter properties are significant. Amoung other Local Group dwarf irregulars,

few have as well defined HI rotation curves or existing stellar kinematic data sets.

Irregular dwarfs with gas such as IC1613, NGC 6822, Sextans A/B and Pegasus have

more chaotic gas kinematic fields or non-optimal inclinations, however Aquarius,

Sagittarius dIrr, VV124 may all be possible targets to repeat this type of joint

stellar-gaseous dynamical modelling.

3.6 Conclusions

We performed Jeans Axisymmetric Models (JAM) on a discrete set of stellar

kinematics, consisting of 180 stars, of an isolated dwarf irregular galaxy (dIrr) WLM.

The discrete stellar kinematics is obtained using FORS2 on VLT and DEIMOS on

Keck, as reported by Leaman et al. (2009, 2012). Our models incorporated cold

HI gas kinematics from Kepley et al. (2007) by introducing the measured circular

velocities from HI, Vc,HI, as a prior to the total gravitational potential. We model

the dark matter halo with the generalised NFW profile (Zhao 1996), characterised

by the inner slope �, the scale radius rs and the characteristic density ⇢s. We

allow the flattening of the dark matter halo, qDM, to be a free parameter in our

models. The velocity anisotropy is described by �z = 1 � �2
z/�

2
R, which we take to

be radially constant for our JAM models. We constrain our model parameters by

employing Bayesian statistics. We show that all parameters are better constrained

when including Vc,HI as a prior in our model; the 1� uncertainties of the parameters

(�z, qDM, rs, �, ⇢s) improve by 24%, 15%, 29%, 48% and 54% respectively.

The dark matter halo is shown to be cored, with � = 0.34 ± 0.12. Such a

cored dark matter halo is robust against variations in the dark matter flattening

qDM and di↵erent M? values from the literature. Our inferred � is also consistent

with predictions by hydrodynamical CDM simulations, which suggest a relationship

between the stellar-to-halo-mass ratio M?/Mhalo and the inner slope � of the dark

matter halo (Di Cintio et al. 2014). For our inferred value of, when adopting

M? = 4.3 ⇥ 107 M�, log(M?/Mhalo) = �2.8 ± 0.2, our derived inner slope of

� = 0.23± 0.12, in excellent agreement with inner slope inferred by Di Cintio et al.

(2014) of � = 0.25± 0.16.

We infer the radial anisotropy profile �r(r) = 1 � (�2
� + �2

✓)/2�
2
r from our

JAM models and found that the orbital structure of WLM is characterised by a

mildly radially anisotropy core with �r(r = 0) = 0.32+0.03
�0.04 at the centre, which

118



CHAPTER 3. JOINT STARS AND GAS DYNAMICAL MODELS

become increasingly tangential and reaches �r(r = 2 rh) = �0.35+0.57
�0.90 at 2 half-light

radius. Such �r profile is very similar to ones obtained from nearby dwarf spheroidal

galaxies (dSphs), such as Sculptor and Fornax. While it has been suggested that

the tangential anisotropy in dSph were caused by preferential tidal stripping of the

radial orbit, the isolated nature of WLM suggests that the tangential anisotropy

in dwarf galaxies can be of primordial origin and may not be informative on the

evolution between dIrrs to dSphs.

Our model shows that a prolate dark matter halo is preferred in WLM, albeit

with relatively high uncertainties: qDM = 2.1+1.3
�0.9. The best-fit value in good

agreement with the dark matter flattening found in ⇤CDM cosmological simulations,

both from dark matter only or hydrodynamical simulations, both of which suggest

a prolate dark matter halo with qDM ⇠ 2.0 over the radii covered by our kinematic

tracers (. 5% rvir) (Butsky et al. 2016). The derived prolate halo suggests challenges

to MOND and some self-interacting DM models. Such implication however is

inconclusive given the large uncertainties inferred for qDM. Additionally, we show

a qDM � � degeneracy that extend from qDM = 0.5 to qDM = 4.0 in the ‘Stars +

Gas’ models, which provides a window into a better-constrained qDM if � can be

constrained by other means such as proper motion measurements in the future.
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Chapter 4

Dynamical friction as a tool for
understanding dark matter and
dwarf galaxy evolution

Abstract1

The five globular clusters (GCs) of the Fornax dSph are puzzling for two reasons; the

mass in GCs is high with respect to the galaxy’s old stellar mass, and their survival

and large distance (> 1 kpc) is at odds with naive expectations of dynamical friction.

We present here a semi-analytic model, simultaneously addressing both problems in

a comprehensive evolutionary framework for Fornax. Key to the model is inclusion

of: 1) hydrodynamical constraints on the GC formation locations, 2) self-consistent

velocity distribution functions in the dynamical friction calculations and 3) expansion

of GC orbits due to a past dwarf-dwarf merger in the orbit integrations. The latter

is crucial for reconciling the dynamical survival of the clusters, and their chemical

properties with respect to the Fornax field stars. We find that in order for four of

the GCs to survive at their observed projected location, a dark matter core of size

rc > 1.5 kpc and a dwarf merger with dynamical mass ratio of 1:5  ⌘ 1:2 with

Fornax is required. We support the merger scenario by showing that aspects of the

field star metallicity distribution function and anomalous chemical properties of

GC5, are representative of a merging galaxy which is ⇠1/3 less massive than Fornax.

1This chapter has been submitted in similar form to the journal MNRAS and is currently under
peer review process. I am the first author of the paper and I hereby a�rm that I have conducted
all the research presented here myself.
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Together the chemical and dynamical models suggest a scenario where three in-situ

GCs in proto-Fornax were ejected to the outskirts during the merger, a GC4 formed

during the merger at about 10Gyrs ago, with GC5 being brought in by the merging

galaxy to Fornax.

4.1 Introduction

As mentioned in Chapter 1, cosmological and N -body dark matter only simulations,

under the standard cold dark matter (CDM) paradigm, have found that the density

profiles of dark matter haloes tend to have cuspy profiles in the inner regions (e.g.

Navarro et al. 1996). The scale free nature of dark matter suggests that these

typically cuspy NFW halos are characteristic of all bound structures in a ⇤CDM

universe. However, the predicted steep inner slope of the DM density profile is at

odds with several observational constraints in low mass galaxies.

There are two possible solutions to this problem. It has been shown that

baryonic feedback can remove the central density cusps in CDM haloes of dwarf

galaxies to produce central cores (e.g. Peñarrubia et al. 2012; Pontzen & Governato

2012). These simulations indicate that bursty star formation histories can make

cores in the DM density distribution comparable in size to the e↵ective radii of

the stellar distribution (Read et al. 2016). On the other hand, existing alternative

theories such as warm dark matter (WDM), Bose-Einstein condensate dark matter

( DM) and self-interacting dark matter (SIDM) predict shallow inner density slopes

even in pure DM simulations. The inner slope and the size of the dark matter core

vary between di↵erent species of DM particles, between di↵erent DM particle masses

within each species (e.g. Lovell et al. 2014; Schive et al. 2014a), and in the case of

SIDM, and also between di↵erent DM interaction cross-sections (Kaplinghat et al.

2016). Precise observational constraints on the shape and the core size of dark

matter haloes can therefore help us understand the impact of baryonic feedback, and

the nature of dark matter itself.

The low-mass dwarf spheroidal galaxies (dSph) around the MW and M31

provide excellent test beds for the nature dark matter, as they are highly dark

matter dominated objects. Methodologies such as the rotation curve decomposition

and dynamical modelling with stellar kinematics are typically used to infer the DM

mass distribution, but have limitations such as uncertainties in stellar mass-to-light

ratio and mass-anisotropy degeneracies. As an alternative, the survival of globular

clusters (GCs) in dwarf galaxies has also been used to understand the dark matter

halo shape, as the tidal forces and dynamical friction forces are sensitive to the total
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density that the GC sees.

For example, Amorisco (2017) suggested that the survival of low-density star

clusters in Eridanus II and Andromeda XXV favours cored dark matter density

profiles as a cuspy dark matter halo would exert too large a tidal force and hence

disrupt the clusters. Together with considerations of dynamical friction and stellar

evolution, Contenta et al. (2018) also found that the size and projected position of

the low-density cluster in Eridanus II suggest a cored dark matter halo.

Of the classical dSphs, Fornax contains five GCs, which, together with extensive

ancillary data of the host (e.g. stellar velocity, age and metallicity measurements),

makes it a unique test case for probing the nature of its dark matter halo. All

but one of the five GCs have masses of > 105 M�, the massive GCs in Fornax are

therefore not subjected to destruction by the tidal field of the host galaxy, unlike the

GCs in Eridanus II. The large projected distances of 240 to 1600 pc between the GCs

and the center of Fornax, however, pose another challenge. With ages > 10Gyr, they

are naively expected to have already been brought to the center of the galaxy via

dynamical friction from the field stars and the dark matter halo to form a nuclear

star cluster (e.g. Tremaine 1976; Hernandez & Gilmore 1998). This is known as the

‘Fornax timing problem’. This discrepancy poses a challenge to our understanding

of not only the N -body problem, but also the nature and structure of dark matter.

N -body simulations have shown that the shape of the density profile of

the underlying background particles has a profound impact on the orbital decay

trajectory and therefore the time it takes for a massive infalling object to reach

the galactic center (e.g. Read et al. 2006; Inoue 2009, 2011; Cole et al. 2011). In

particular, cored dark matter halo profiles are found to allow slower decay than

cuspy halo profiles. In addition, the orbital decay is found to stall in cored halo

profiles, before the massive infalling object reaches the galactic center.

Semi-analytic prescriptions for dynamical friction (e.g. Chandrasekhar 1943)

have shown some success at reproducing the orbital decay of a massive object under

a background particle distribution. Several works have studied and verified the

orbital decay of massive object under background particles of various density profiles.

Notably, Petts et al. (2015) and Petts et al. (2016) have successfully reproduced

the slower decay and the core-stalling e↵ect of cored halo profile with the inclusion

of tidal stalling and by adopting more a radially varying impact parameters. With

detailed treatments of dynamical friction, the timing problem can therefore provide

a constraint on the dark matter halo profile and hence allow a glimpse into the

nature of dark matter.

Several solutions to the Fornax timing problem have been proposed in the
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literature. Oh et al. (2000) suggested that the survival of GCs in Fornax can be

resolved by invoking massive black holes which scatter the GCs to large radii, or a

strong external tidal field from the Milky Way. There is however a lack of evidence

for the existence of such black holes in Fornax. More problematic is that the proper

motion of Fornax suggests that the dSph had never been closer to the Milky Way

than its present location (Lux et al. 2010; Gaia Collaboration et al. 2018), implying

that Fornax had never encountered a su�cient tidal field from the Milky Way to

expand its GCs’ orbit to their observed locations.

With N -body simulations of the Fornax system, it has been shown that the

GCs in Fornax would not reach the galactic center within a Hubble time with a

cored profile (Goerdt et al. 2006; Read et al. 2006; Cole et al. 2012). Cole et al.

(2012) have also reported a ’dynamical buoyancy’ in their N -body simulations of the

five GCs in Fornax orbiting in a dark matter halo with a core radius rc of 1000 pc.

Such dynamical buoyancy would act as a force that pushes the GCs outwards,

acting against the dynamical friction. While Cole et al. (2012) have performed the

N -body simulations on four di↵erent halo profiles, only the profile with a large

core shows noticeable dynamical buoyancy. With such a profile, two out of the

five GCs can survive outside of the observed galactocentric distance. Interestingly,

Sánchez-Salcedo et al. (2006) have also ruled out MOND using the Fornax timing

problem, as the GCs would fall into the galactic center too quickly (⇠1Gyr) under

MOND. Conversely, Hui et al. (2017) show that dynamical friction would be largely

reduced if dark matter is made up of the  DM superfluid. In addition to the cored

density profile of  DM, the wave nature of  DM would suppress the over-densities

formed behind the infalling GCs, leading to a weaker dynamical friction.

Without a constraint on the starting position of the GC’s initial orbit, modelling

the orbital decay due to dynamical friction provides an incomplete and unconstrained

picture of the GCs history and origin of their present-day location. Previous studies

therefore either focus on whether the dynamical friction timescale is larger than the

age of the GCs (e.g. Goerdt et al. 2006; Sánchez-Salcedo et al. 2006; Hui et al. 2017),

or reproducing the observed distance by forcing the GCs to be formed at >1000 pc

or even at the current tidal radius (⇠2000 pc) (e.g. Angus & Diaferio 2009; Cowsik

et al. 2009; Arca-Sedda & Capuzzo-Dolcetta 2016). Given the measured age of the

GCs (10-13Gyrs), it is unclear whether the gas density would have been high enough

at those redshifts to support the formation of the GCs at such large galactocentric

distance - especially given the more compact size expected for the high-redshift

progenitor of Fornax. It is therefore crucial to incorporate gaseous and stellar disk

evolution models when estimating the galactocentric distances at which the GCs are

formed, when addressing the present day position of the GCs.
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For example, Kruijssen (2015) suggested that once formed in a central high

(local) gas density environment, the GCs have to be ejected out of their formation

environment to avoid disruption due to the strong chaotic tidal field of the gaseous

interstellar medium. Such an ejection could be caused by dynamical interactions with

gas clumps, stellar feedback or a merger. In particular, past merger events might

be expected in dSphs like Fornax as they are found also as a possible pathway for

the transformation of gas-poor dSphs from gas-rich dwarf irregulars in cosmological

simulations (e.g. Wetzel et al. 2015). Specifically to Fornax, past merger events

have been suggested in order to account for its complex metallicity distribution

function, multiple stellar populations and di↵erential internal dynamics between the

populations (e.g. Walker et al. 2009; Amorisco & Evans 2012). The large total mass

of the GCs relative to the mass of metal poor field stars would also be alleviated if

one or more of the GCs are accreted via a merger as pointed out by Larsen et al.

(2012). It is therefore crucial to incorporate possible influences on the positions of

the GCs in Fornax due to the past merger event. Depending on the nature of the

merger, the orbit of the GCs can undergo either an expansion or a contraction (e.g.

Naab et al. 2009). For a non-dissipative (dry) merger, the GCs’ orbits would gain

energy from the merger and expand according to the mass ratio between the host

and the merging galaxies.

An additional aspect contributing to the orbital evolution which has been

neglected in previous semi-analytic models of the GCs’ orbital trajectories in Fornax

is the aforementioned dynamical buoyancy as reported in Cole et al. (2012). The

dynamical buoyancy e↵ect is particularly crucial if the formation location of the GC

was at a galactocentric distance less than the current day location. Clearly a holistic

approach which takes into account, dynamical buoyancy/friction, along with physical

constraints on the formation position and merger history of Fornax is necessary to

provide a better understanding of the evolution of this unique galaxy. This would

require an exploration of a wide range of halo profiles and merger mass ratios, which

can be too computationally expensive to be done with N -body simulations.

The goal of this work is to build the first semi-analytical model that includes

the aforementioned ingredients: (1) a physically-motivated formation location of

the GCs, (2) the e↵ect of dynamical buoyancy and (3) a past merger, and then

infer the underlying dark matter halo profile of Fornax by requiring the modelled

current galactocentric distances of the five GCs to be outside of their observed

projected distance (dp; see Table 4.1). In the following sections, we first present the

ingredients of our semi-analytical model in Section 4.2. This includes the estimation

of the formation location of the GCs, the density profiles of background dark matter

and stellar particles, the dynamical friction treatment with dynamical buoyancy
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Figure 4.1: Schematic diagram of our semi-analytical model. Our model includes con-

straints on the formation location of the GCs (dform), an analytical prescription for dynam-

ical friction and an orbit expansion caused by a merger. The modelled present-day positions

of the GCs (dfinal) are then compared to the observed projected distance (dp) to constrain

the dark matter halo profile.

implementation, and orbital expansions caused by mergers. We then present the

result in Section 4.3, which is followed by a discussion on how the dark matter halo

parameters we obtained compare with respect to ⇤CDM cosmological simulations

and whether the required merger mass ratio in our model is consistent with the

observed metallicity distribution function in Section 4.4. We summarise our key

findings and conclude in Section 4.5.

4.2 Semi-analytic Model

In the following section we will describe the ingredients that go into building our

semi-analytic model of the co-evolution of Fornax and its GCs. The model is unique

in that it provides physically motivated expressions for the GC formation distance,

an updated dynamical friction/buoyancy prescription and the e↵ect of a dwarf-dwarf
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merger on the orbits of the GCs. A schematic representation of all the ingredients of

our model can be found in Figure 4.1.

4.2.1 Constructing the host galaxy Fornax

We represent Fornax with two components: a dark matter halo and a spherical

stellar distribution. The dark matter halo is parametrised by a ‘cored NFW’ profile

(cNFW), which was found to be a good description of simulated dark matter haloes

on dwarf galaxies which were altered by baryonic feedback mechanisms (Read et al.

2016):

⇢NFW(r) = ⇢0
⇣ r

rs

⌘�1⇣
1 +

r

rs

⌘�2

⇢cNFW(r) = fn⇢NFW +
nfn�1(1� f 2)

4⇡r2rc
MNFW

McNFW = MNFWfn,

(4.1)

where ⇢0 is the characteristic density, rs is the scale radius, rc is the core radius, ⇢

and M represent the density and enclosed mass profile of the respective halo, fn

renders the profile at r < rc to be shallower than an NFW profile and can be written

as:

fn =
h
tanh

⇣ r

rc

⌘in
, (4.2)

and n is a parametrisation of how ’cored’ a profile is with n = 0 representing an

NFW profile and n = 1 representing a completely cored profile. In this work we test

the limiting case of n = 1 for all dark matter profiles.

The surface brightness profile of the stellar component, ⌃?(R), is described

using a Sersic profile as fitted by Battaglia et al. (2006):

⌃?(R) = ⌃0,? exp
h⇣ R

Rs

⌘1/mi
, (4.3)

where R is the 2D-projected radius, Rs=694.5 pc, m=0.71, and ⌃0,? is obtained

through a normalisation to the total stellar mass in Fornax of 4.3⇥107M� (de Boer

et al. 2012). The surface brightness profile is then deprojected to a density profile

⇢?(r) using Eq. 17-19 of Lima Neto et al. (1999). The density profile of the stellar

component takes the following form throughout this chapter:

⇢?(r) = ⇢0,?
⇣ r

Rs

⌘�p

exp
h
�
⇣ r

Rs

⌘1/mi
, (4.4)
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with ⇢0,?=0.015M� pc�3 and p=0.252. The stellar density and enclosed mass

profiles are plotted in the middle and bottom panel of Figure 4.3 respectively.

While the density distribution of the stellar component is fixed in our semi-

analytic model, the rs and rc of the dark matter halo remain as free parameters.

For each (rs, rc), the corresponding ⇢0 is obtained through a normalisation to the

observed stellar velocity dispersion �?(R) from Battaglia et al. (2006). The �?(R)

for each halo profile is estimated with the Jeans equation under the spherical and

isotropic assumption:

�2(r) =
1

⇢(r)

Z 1

r

⇢(r)
d�

dr0
dr0, (4.5)

where �(r) and ⇢(r) in this case is the intrinsic velocity dispersion and density profile

of the tracer particle, i.e. �?(r) and ⇢?(r) and � is the corresponding gravitational

potential computed from the density distribution of the background particles (dark

matter and/or stars). The binned stellar velocity dispersion for each of the total

potentials is shown in Figure 4.3. As examples we over-plotted the �?(R) (obtained

through the 2D-projection of �?(r))3 of six di↵erent profiles in Figure 4.3. We

summarise our steps in normalising the dark matter halo profiles in Figure 4.2. This

is not an attempt to get a ‘best-fit’ dark matter profile from the observed �?(R)

profile, but rather, to illustrate the degeneracies between various profiles when using

just the observed �?(R) as a constraint and to show that the normalisation of our

dark matter halo profiles are reasonable.

4.2.2 Constraining the formation location of the Globular

Clusters

While the detailed formation physics of dense star clusters is currently debated, there

are simple analytic estimates for the necessary environment of the gaseous regions

which they are expected to form from. In particular, Elmegreen & Efremov (1997)

suggested that the star clusters kinematic density may form in pressure equilibrium

with the mid-plane pressure of the surrounding molecular gas phase. To constrain

the starting location of the GCs, we consider a pressure equilibrium scenario at their

formation. In such scenario, the external pressure of the galactic disk (Pext) should

2Here ⇢0,? is obtained again through the normalisation of the total stellar mass and p is given as
a function of m (as defined in Eq. 4.3) in Lima Neto et al. (1999).

3Once again, r and R here provide the distinction between the 3D and 2D projected radii respec-
tively.
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Figure 4.2: A flow chart showing the steps for normalising dark matter halo profiles with

various (rs, rc). The purple and green paths show how the gravitational potential is obtained

in the dark matter only and the dark matter + stars case respectively.

be equal to the internal pressure of the GC (Pin) itself. Pin can be written as:

Pin = 4⇡G⌃2
GC = 4⇡G(

MGC

⇡R2
GC

)2, (4.6)

where G is the gravitational constant, ⌃GC, MGC and RGC are the surface density,

mass and half-mass radius of the GC respectively. MGC and RGC are listed in Table

4.1. Pext is related to the gas surface density (⌃gas), stellar surface density (⌃?) and

the ratio between the velocity dispersion of gas and star (f� = �gas/�?) by:

Pext = 4⇡G
⇡

2
⌃gas(⌃gas + f�⌃?). (4.7)

To obtain the gas and stellar surface density at the formation epoch of the GCs,

we utilise the star formation history of Fornax dSph. We obtained the star formation

history from de Boer et al. (2012). We then assume that the star formation rate
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Figure 4.3: Top: the observed stellar velocity dispersion radial profile of Fornax (Battaglia

et al. 2006) is plotted in black diamonds with error bars. Overlaid in grey are all the dark

matter profiles we tested in our (rs, rc) grid. We show in colour six examples of the �?
profiles from our normalised dark matter profiles. Middle and bottom: the corresponding

density and enclosed mass profiles.
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GCs MGC Age [Fe/H] dp RGC

(105 M�) (Gyr) (pc) (pc)

GC1 0.37 12.1 -2.5 1600 10.03

GC2 1.82 12.2 -2.5 1050 5.81

GC3 3.63 12.3 -2.5 430 1.60

GC4 1.32 10.2 -1.2 240 1.75

GC5 1.78 11.5 -1.7 1430 1.38

Table 4.1:: Properties of the five globular clusters of Fornax dSph. The masses (MGC) are

taken from Mackey & Gilmore (2003b). The ages are taken from de Boer & Fraser (2016).

Metallicities are taken from de Boer & Fraser (2016). The projected distances (dp) of GC1,

2, 3 and 5 are taken from Mackey & Gilmore (2003a) and that of GC4 taken from Greco

et al. (2007). The radii of the GCs (RGC) listed here are the fitted core radii of a King

model from Mackey & Gilmore (2003a).

has an exponential profile with radius at any time epoch and create star formation

rate profiles ⌃SFR(R) for t = tGC, where tGC is the age of the globular cluster. From

⌃SFR(R) we can obtain the gas surface density of the disk ⌃gas,disk(R) by adopting

a depletion timescale ⌧dep such that ⌃gas,disk(R) = ⌧dep⌃SFR(R). We adopt the

cosmological model from Dutton & van den Bosch (2009) to allow the scale radius

of the exponential profile of the gaseous disk to grow with time. To account for the

fact that GCs often form in overdense regions of giant molecular clouds, the final

⌃gas we adopt for Equation 4.7 is (Kruijssen 2015; Krumholz & McKee 2005):

⌃gas = 3.92⌃gas,disk(5� 4(1.+ 0.025(⌃gas,disk/100)
�2)�1)1/2 (4.8)

The stellar surface density profile ⌃?(R) is then obtained by integrating the star

formation history from t = 13.6Gyr to t = tGC.

To provide physical constraints to the formation location of the GCs, we

then adopt a range of possible ⌧dep, f� and RGC. With 0.3Gyr < ⌧dep < 3Gyr,

0.2 < f� < 1.0 and 2 pc < RGC < 10 pc (Leaman et al. 2017), we calculated the

range of possible MGC formed at di↵erent galactic radii at di↵erent time epoch. The

results are shown in Figure 4.4, with the red and blue region indicating the possible

MGC at di↵erent radii for the old GCs (GC1, GC2, GC3, GC5) and young GC4

respectively. We then consider the maximum possible formation location for each

GCs, given their observed MGC, as the most optimistic formation distance (dform)

from which to evolve the orbit of the GC. We derive dform  1144, 863, 740, 1344

and 866 pc respectively for GC1, GC2, GC3, GC4 and GC5.
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Figure 4.4: Hydrodynamic constraints on the formation location of the GCs in Fornax.

The red and blue shaded regions show the allowed mass range of a GC to be formed at

each galactic distance, at epochs representative of the formation of the 12±1Gyr (red) and

10± 1Gyr GCs (blue). The mass of each GC and the maximum galactic distance at which

each GCs can be formed are marked with red and blue dots for the co-eval and younger

GCs respectively.

4.2.3 GC Orbital Evolution

Dynamical friction implementation

In the seminal paper on dynamical friction by Chandrasekhar (1943), the dynamical

e↵ect of an infalling object of mass Ms and velocity vs through a halo of background

particles moving with velocities v• is described analytically as:

adf =
d~vs
dt

= �⇡
2
G2Ms⇢•

~vs
v3s

Z vesc

0

1

v•
J(V )4⇡v2•f(v•)dv•, (4.9)

where ⇢• is the density of the background particles (dark matter and/or stars), vesc
is the escape velocity, f(v•) is the velocity distribution function of the background

particles and V is the relative velocity between the background particle and the

satellite. Due to di↵erent directions of encounter, for each v•, V ranges from |vs � v•|
to vs + v•. J(V ) is an integral characterising the e↵ect that a background particle

can exert on the satellite given the di↵erent relative velocities and can be written as:

J(V ) =

Z vs+v•

|vs�v•|

⇣
1 +

v2s � v2•
V

⌘
ln(1 +

b2maxV
4

G2M2
s

)dV, (4.10)
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where bmax is the maximum impact parameter. Equations 4.9 and 4.10 can be found

as Equations 25 and 26 in Chandrasekhar (1943).

By assuming that the e↵ect of fast-moving background particles (with v• > vs)

is negligible, Equations 4.9 and 4.10 are often simplified as (e.g. Binney & Tremaine

1987):

adf =
d~vs
dt

= �4⇡G2Ms⇢• ln(⇤)f(v• < vs)
~vs
v3s

, (4.11)

where ln(⇤) is the Coulomb logarithm, which is given by the ratio between the

maximum (bmax) and minimum (bmin) impact parameters as ln(⇤) = ln(bmax/bmin)

and f(v• < vs) is the fraction of background particle that has a velocity slower

the vs. When taking a simple assumption of the Maxwellian velocity distribution

function (e.g. Angus & Diaferio 2009; Petts et al. 2015), the fraction f(v• < vs) can

be expressed as:

f(v• < vs) = erf
⇣ vsp

2�•

⌘
�

p
2vsp
⇡�•

exp
⇣
� v2s

2�2
•

⌘
, (4.12)

with �•, the velocity dispersion of the background particles, being estimated by

Equation 4.5. While such assumptions are generally su�cient for a cuspy dark

matter profile, Petts et al. (2016) have recently pointed out that this is not true for

cored dark matter haloes.

To show the e↵ects of fast-moving background particles in di↵erent halo profiles,

we calculated adf for GC3 with MGC = 3.63 ⇥ 105 M� for a cuspy and a cored

dark matter profile. For demonstration purpose, we adopt here the NFW profile as

obtained by Amorisco & Evans (2011) with phase-space modelling, with rs = 1090 pc

and compare the derived adf with a cNFW profile of the same rs and rc = 1260 pc,

which is equal to 1.75 times the stellar half-mass radius as suggested by Read et al.

(2006). The mass of the cNFW profile is normalised to the mass of the NFW profile

at r = rc. These two test profiles are labelled as ‘nfw0’ and ‘cored0’ from hereon and

are shown on the left column of Figure 4.5. We note here that there is a wide range

of halo profiles derived for Fornax using various dynamical modelling technique, the

nfw0 and cored0 profiles are merely adopted here for demonstrating the di↵erent

e↵ects of our dynamical friction treatment on cuspy and cored profiles.

The adf are then derived for both profiles under the Maxwellian assumption and

plotted with respect to the galactic radii in dashed lines on the left panels in Figure

4.6. adf calculated with only the e↵ects of slow background particles (SS) are plotted

in blue and that calculated with e↵ects from both fast and slow background particles

(FS) are plotted in red. In both profiles, adf is negative at large r, representing a

dynamical friction. Where adf = 0, we shall expect the in-spiral of the GCs due to
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Figure 4.5: Left and middle columns: the density profiles ⇢(r) and velocity distribu-

tion functions f(v) derived from Eddington equation (solid) and assumed as a Maxwellian

(dashed) distribution, for the nfw0 (top) and cored0 (bottom) profiles. The di↵erent colours

in the middle panels represent the velocity distribution functions evaluated at radii of, red:

200 pc, orange: 400 pc, green: 600 pc, blue: 800 pc, and purple: 1000 pc.The velocity distri-

bution function estimated with a Maxwellian assumption is increasingly erroneous towards

the small galactic radii. Right: the fraction of slow background particles (f(v < vs)). In

general, the Maxwellian assumption underestimates the fraction of slow background parti-

cles.
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dynamical friction to stall. Towards the inner region, adf becomes positive for both

haloes, albeit at very di↵erent radii. The positive adf means that when starting at

these radii, the satellite will be pushed outward to where adf = 0. The corresponding

orbital decay calculated through orbital integration for GC3 starting with a circular

orbit on the right panels. The orbit decays stalled at where adf = 0 as expected.

We therefore see here, that the dynamical buoyancy as found by Cole et al.

(2012) in a Fornax-like system, can be reproduced analytically by including

fast-moving background particles. While it appears at first as an exotic dynamical

phenomena, it is more understandable when considering dynamical friction as a

manifestation of energy equipartition, where fast-moving background particles are

able to transfer kinetic energies to the infalling object. Dynamical buoyancy has

a much more prominent e↵ect in the cored0 halo, as also found by Cole et al.

(2012). In contrast to the cored0 profile, in which dynamical buoyancy exists up to

r ⇠ 500 pc, the dynamical buoyancy occurs at a much smaller radius of r ⇠ 200 pc

in the NFW profile. This is because of the higher fraction of fast-moving particles

in the inner region of the cored0 profile, which are calculated using Eq. 4.12 and

shown in the right column of Figure 4.5 in dashed lines.

In addition to the stalling e↵ects produced by the fast stars, we also include tidal

stalling as shown in N -body simulations by Inoue (2011) and described analytically

by Petts et al. (2016). When the GC approaches the galactocentric distance dg = rt
(where rt is the tidal radius of the satellite itself) the satellite will become una↵ected

by dynamical friction and stall. This is implemented by setting adf = 0 when

dg = rt. While tidal stalling is not important for the FS cases as dg = rt happens

within the stalling radii defined by dynamical buoyancy, it is the primary stalling

mechanism for the SS cases. As pointed out by Petts et al. (2016), tidal stalling is

more prominent in a cored dark matter halo than a cuspy one. The same e↵ect is

seen in our models; GC3 in the SS model in the cored0 profile stalls at ⇠200 pc in

the cored0 halo but <50 pc in the nfw0 halo.

Velocity distribution function

Both simulations and theoretical analyses have shown that dark matter haloes do

not typically have a Maxwellian velocity distribution (e.g. Evans & An 2006; Hansen

et al. 2005; Kuhlen et al. 2010). Petts et al. (2016) showed that such an assumption

can lead to an error in f(v• < vs) by up to ⇠80% depending on the halo profile. To

have a more accurate handle on the velocity distribution function of various dark

matter halo profiles at di↵erent radii, we therefore compute the distribution function

self-consistently for an arbitrary potential by using the Eddington equation (Binney
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nfw0 nfw0 

cored0 cored0 

Figure 4.6: Left: Acceleration due to dynamical friction, adf , experienced by GC3 under

di↵erent profile shapes and for di↵erent velocity distribution functions. Red lines denote

dynamical friction treatments including fast stars (FS). Blue lines denote slow stars only

(SS). Solid and dashed lines are runs using velocity distribution functions from the Ed-

dington equation 4.13 (EDD) and Maxwellian assumptions (MAX) respectively. Right: the

orbital decay of GC3 under the same four dynamical friction prescriptions. The green lines

mark the observed galactic distance dp of GC3, a lower limit of the galactocentric distance

of GC3. Top and bottom row show the corresponding figures for the nfw0 and the cored0

profile.
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& Tremaine 1987):

f(E) =
1p
8⇡2

Z E

0

d2⇢

d�2

d�p
E � �

, (4.13)

where E is the relative energy, E = � �mv2/2.

As an example, we show in Figure 4.5, the di↵erence in velocity distribution

functions derived using the Eddington equation and that calculated by assuming a

Maxwellian distribution for two di↵erent profiles. We show in the middle column

the velocity distribution function for the nfw0 and cored0 halo profile at di↵erent

radii, as labelled with di↵erent colours. The solid lines show the velocity distribution

function as derived using Equation 4.13 and the dashed line show a Maxwellian

distribution. The Maxwellian distribution function tend to under-predict the

amount of slow background particles but over-predict the amount of fast background

particles.

We than go on to show f(v•) at di↵erent radii on the right column, where vs is

taken as the circular velocity under the particular dark matter halo at each radii.

For both the velocity distributions derived using the Maxwellian assumptions and

from the Eddington equation, we see a progressively decreasing amount of slow

background particles towards the centre of the haloes. Furthermore, within radius of

r < rc, the cored0 profile clearly has a smaller fraction of slow background particles,

suggesting already that a GC would undergo less dynamical friction within r < rc
for a cored0 profile than an nfw0 profile.

We then show adf calculated for GC3 in the nfw0 and cored0 profiles with the

the Eddington velocity distribution function in solid lines. Again, the blue curve

shows the results obtained for the SS case and the red curve shows the results

obtained for FS case. Notice here that adopting a Maxwellian assumption will lead

to an overestimation of the stalling radius by a factor of 2 in the NFW halo. For the

rest of the chapter, we shall adopt the improved dynamical friction treatment using

velocity distribution function calculated from the Eddington equation and taking

into account the e↵ects from fast stars (i.e. case EDD+FS).

Orbit integration

Starting at a galactocentric distance in Fornax determined as described in

Section 4.2.2, we then integrate the orbit of each GC, subjecting to dynamical

friction/buoyancy as described in Section 4.2.3, as well as the gravitational

acceleration given by the underlying potential of Fornax. The orbit integration

continues for the respective ages of each of the GCs. The positions, velocities and
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accelerations are updated at every time step of 1 kyr, with a precision of 0.01 pc and

0.01 km s�1. We assume circular orbits for the GCs to study the most conservative

case as GCs on more eccentric orbits would simply be subjected to a severer

dynamical friction. The numerical integrations are done with the Python module

odeint from scipy.

Comparing the dynamical buoyancy e↵ect from semi-analytical model to

simulations

Dynamical buoyancy was first demonstrated in N -body simulations by Cole et al.

(2012). Cole et al. (2012) used these N -body simulations to study the orbital decay

of the five GCs in Fornax dSph under four di↵erent dark matter halo profiles,

which are labelled as strong-cusp (SC), intermediate-cusp (IC), weak-cusp (WC)

and large-core (LC), and are progressively less cuspy in the order listed here. The

details of these four profiles can be found in Cole et al. (2012). Here we compare the

stalling position of the GCs in the two extreme cases: SC and LC profiles, obtained

from our analytical dynamical friction implementation with the ones obtained from

N -body simulations by Cole et al. (2012), to provide further support to our analytic

model for dynamical friction.

Figure 4.8 shows the dynamical e↵ects exerted on GC3 by the background dark

matter particles for the SC and LC profiles. Just like Figure 4.6, GC3 experience

dynamical friction at radii with adf < 0 and dynamical buoyancy at radii with

adf > 0. The stalling radius is the radius at which adf = 0. Cole et al. (2012)

showed that the stalling radius of GCs in their LC profile occurs at ⇠800 pc, inside

which the GCs experiences dynamical buoyancy. This result is well-reproduced

by our analytical model including the e↵ects of fast-moving background particles

and a velocity distribution calculated from the Eddington equation, as shown in

the red solid line on the right panel of Figure 4.8. The stalling radius of LC is

underestimated by ⇠ 25% if we assume Maxwellian velocity distribution (red-dashed

curve) and the dynamical buoyancy cannot be reproduced at all if we only consider

slow-moving background particles (blue curves). We note that for the SC profile, our

analytical model has predicted a stalling radius of ⇠ 100 pc, while the simulations

of Cole et al. (2012) suggest that the GCs can sink below 10 pc. Even without the

inclusion of fast-moving particles, tidal stalling alone predicts a stalling radii of

⇠ 50 pc (blue curves). The discrepancies between analytic description of dynamical

friction and the simulations could be caused by the lack of spatial resolution of the

simulations, or that the velocity distributions in the innermost part of the halo

cannot be captured by our simple assumptions. In either case, since the present-day
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SC LC 

Figure 4.7: Left: The four dark matter profiles tested by Cole et al. (2012), from top to

bottom are the density profiles, enclosed mass profiles and the slope of the density profiles,

with the SC (cuspy) profile plotted in cyan and the LC (cored) profile plotted in green. The

error bars in the middle panel show the mass estimates from Walker & Peñarrubia (2011)

from using two chemically-distinct stellar populations. Middle: The apocentric radii of the

five GCs after 10Gyrs of evolution inside the SC DM halo plotted against their starting

radii in dots. The grey band indicates where the current tidal radius of Fornax is. The five

coloured horizontal lines are the observed projected distances dp of the five GCs, with GC1

in red, GC2 in navy, GC3 in green, GC4 in magenta and GC5 in cyan. The dashed line

indicate where the starting radii are equal to the radii at 10Gyrs. The dots lying below the

dashed line indicates correspond to the dynamical friction e↵ect exerted by the underlying

SC DM halo. Right: Same as the middle panel but for the LC profile. Dots that are lying

above the dashed line correspond to the dynamical buoyancy e↵ect. The GCs stalls at

&800 pc under the LC DM halo.
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Figure 4.8: Same as the left column of Figure 4.6 but for the SC (left) and LC (right)

profiles used in Cole et al. (2012).

location of the GCs are much greater than 100 pc, especially for GC1, GC2, GC3

and GC5, which provide the strongest constraints on the halo profile and merger

history, such discrepancies at small radii would not a↵ect our results.

Figure 4.9 shows the velocity distribution function f(v•) of the dark matter

particles of the SC and LC profiles tested in Cole et al. (2012). Just like when

comparing the nfw0 and cored0 profiles, the cuspy profile SC has a larger fraction

of slow particles (with v• < vs, here vs is the velocity of the infalling satellite and is

taken to be the circular velocity of the considered dark matter halo) than the cored

profiles LC.

4.2.4 A past merger event

The complex stellar morphology, metallicity and age distribution of Fornax suggests

the galaxy might have experienced a significant merger event. A dry merger

can significantly expand the final system size, given that the dominant stellar

and dark matter components are non-dissipative. This could cause the GC (and

stellar and DM) orbits to expand. In other words, a non-dissipative merger would

have allowed the GCs to acquire a larger present-day galactic distance than the

pressure equilibrium criteria allow for. To estimate this e↵ect, we adopt the analytic
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Figure 4.9: Same as Figure 4.5 but for the SC (top) and LC (bottom) profiles used in Cole

et al. (2012).

expansion derived in Naab et al. (2009):

rf
ri

=
(1 + ⌘)2

(1 + ⌘✏)
, (4.14)

where ri and rf are the position of the GCs before and after the merger, ⌘ and ✏ are

determined by the merger ratio with:

⌘ =
Macc

Mhost
; ✏ =

hv2acci
hv2hosti

, (4.15)

where Macc, hv2acci, Mhost and hv2hosti are the mass and velocity dispersion of the

accreted and host galaxies. We have assumed the Faber-Jackson relation of M / �4

(Faber & Jackson 1976) when calculating hv2acci and hv2hosti.4

4It has been suggested that the index of the Faber-Jackson relation ↵ in low-mass galaxies can
be as low as ⇠2 (e.g. Kourkchi et al. 2012). The di↵erences in rf/ri between ↵ = 4 and ↵ = 2 can
be written as (1 + ⌘1.5)/(1 + ⌘2). Within our tested range of 0.0 < ⌘ < 0.5, it amounts to an 8%
change in the final to initial position ratio.
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nfw0%

merger%

Figure 4.10: Orbital evolution of GCs in the nfw0 halo with various merger histories. The

green lines mark the observed present day distance dp of each GC, a lower limit of the their

galactocentric distances.Under this profile, only GC4 can survive outside of its observed

distance without a merger, GC1 would need an 1:5 merger and GC2 an 1:2 merger. Both

GC3 and GC5 would need a merger with an even more substantial mass ratio than 1:2 to

exist outside of its dp under this profile.
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cored0'

merger'

Figure 4.11: Same as Figure 4.10, but for the cored0 halo profile. Under this profile, both

GC3 and GC4 can survive outside of its observed distance without a merger. As with the

NFW profile, GC1 would need an 1:5 merger and GC2 an 1:2 merger. GC5 would however

still need a merger with a mass ratio smaller than 1:2 to exist outside of its dp under this

profile.
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Given the younger age and significantly higher metallicity of GC4 (de Boer &

Fraser 2016), we consider the case in which a dry merger happened 10Gyrs ago

which triggered the formation of GC4 from small amounts of residual gas in the

total system5. GC1, GC2, GC3 and GC5 will hence experience an orbital expansion

due to the merger while GC4 will not. We demonstrate how our simple analytic

expansion from Equation 4.14 would a↵ect the final GCs positions in Figure 4.10

and 4.11 for the nfw0 and cored0 profiles respectively. We tested four di↵erent

scenarios: no merger (solid lines), an 1:10 merger (dotted lines), an 1:5 merger

(dashed lines) and an 1:2 merger (dash-dotted lines). GC1, GC2, GC3 and GC5

would hence for the first 2Gyrs orbit through a dark matter halo with a viral mass

1 � ⌘ times the current day virial mass, the rs and rc of the dark matter profile

before the merger also scale as Equation 4.14. As shown in Figure 4.10 and 4.11,

the expansion experienced by the GCs increases as the mass ratio between the host

and accreted galaxy decreases. By comparing the modelled present location of the

GCs with the observed projected presented-day position dp (horizontal dashed line),

the nfw0 profile can be ruled out because both GC3 and GC5 end up inside their

respective dps even with an 1:2 merger. As for the cored0 profile, GC3 can survive

out of its dp but GC5 still fails to do so even with an 1:2 merger.

4.3 Results

In this section we will show the results of the orbital evolution for the GCs in Fornax.

We run our semi-analytic model on a grid of dark matter halo profiles with rs and rc
each drawn from 1000�6000 pc in steps of 1000 pc. For each halo profile we include

a ‘no merger’ case and three merger cases with merger mass ratios of 1:10, 1:5 and

1:2. We then compare the modelled present day galactic distance of each GCs with

the observed dp.

The results are presented in Figure 4.12. The size of the squares represents the

merger ratio. The colour coding represents the di↵erence between the final model

galactocentric distance and the current projected distance, dp for each GCs. Blue

implies that the modelled distance is outside of the observed dp, meaning that the

dark matter halo with parameters (rs, rc) is plausible given the corresponding merger

with mass ratio ⌘ had happened.

5Naively assuming a star formation e�ciency per free-fall time for a molecular cloud of ✏ff = 0.03,
this would require Mgas � 5⇥ 106 M� in Fornax at the time. This is reasonable given that Fornax
continued to form another 5⇥ 106 M� of field stars at a low level for another ⇠9Gyrs after this and
so clearly retained some gas.
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Figure 4.12: Summary of orbit integration for the grid of DM halos and merger mass

ratios. Each plot is for a di↵erent GC and shows the grid of DM halo scale radii rs and core

radii rc for that trial. For each (rs, rc) pair, we have run the dynamical friction model under

the assumption that Fornax has experienced no merger (filled squares), a 1:10 merger, a 1:5

merger, and a 1:2 merger, with the merger mass ratio indicated by the size of the square.

In each trial, the final position oof the GC relative to its observed present day is indicated

by the colour of the box. The models marked with blue means that the GC is found

to survive outside the dp (as marked by tick on the colour bar) and hence suggesting the

particular parameters (rs, rc, ⌘) represent a plausible dark matter profile and merger history

for Fornax. The halo parameters which follow an Mvir-concentration relation inferred from

cosmological simulations (Dutton & Macciò 2014) are shown in the background marked

with black contours, the dashed contours mark the 5-� values.
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The observed galactocentric distance of both GC3 and GC4 can be well

reproduced with any of the dark matter halo profile, without the need for any

merger. The addition of a past merger event does not significantly change the

required (rs, rc) for GC3. This is because of the large mass of GC3, which implies

that the dynamical friction timescale is relatively short compared to the other GCs.

Therefore, GC3 reaches its stalling radius within a Hubble time regardless of the

merger. This is also reflected in Figure 4.11, which shows that the final position of

GC3 under di↵erent merger ratios all converge to the stalling radius of the cored0

profile. It is di↵erent for GC1, GC2 and GC5 because their masses are a half to

an order of magnitude smaller than GC3, allowing them to have a much longer

dynamical timescale. The orbital expansion given by the merger event therefore has

more importance on these final GC positions.

Given a merger with mass ratio 1:2, the observed dp of GC1 can also be

reproduced with any of the dark matter profiles. Without that, none of the tested

profile can reproduce the observed dp for GC1. The minimum (rs, rc) required for

GC2 is (5000, 3000) pc in the ’no merger’ case, (3000, 2000) pc with an 1:10 or an

1:5 merger and (3000, 1000) pc for a 1:2 merger. Finally, the observed dp of GC5 can

only be reproduced with a merger of mass ratio 1:2 at (rs, rc) > (6000, 4000) pc. The

minimum rs and rc as required by each GC is plotted in Figure 4.15, with the case

for a 1:1 merger marked as an additional reference in this plot.

While these results are run with only the dark matter halo contributing to the

potential, the stellar contribution within the tidal radius of Fornax is expected to be

non-negligible. Therefore we repeat the exercise and include the stellar component as

described in Section 4.2.1. The dark matter haloes of each (rs, rc) are renormalised

with the inclusion of the stellar component using the observed �?(R) as described

also in Section 4.2.1. The corresponding stellar velocity dispersion profiles, density

profiles and mass profiles are shown from top to bottom in Figure 4.13. In general,

either a larger (rs, rc) or a smaller mass ratio in the merger is required due to the

fact that the stellar component tends to steepen the overall density profile. This is

true in particular for GC2, GC3 and GC5, where the profile shape has a noticeable

e↵ect on the final location of the GC. GC4 is still permitted under all halo profiles,

due to its small present-day galactocentric distance. As for GC1, the small GC mass

leads to a long dynamical friction timescale, which means that the merger ratio

has a more prominent e↵ect on the final GC location than the underlying density

profile. As in the case of DM only, GC1 requires a merger ratio of 1:2 to allow the

final location of the GC to be outside of the present-day observed distance dp. GC2

requires at least an 1:2 merger, with which a (rs, rc) of (2000, 2000) pc is su�cient

for the GC to end up outside of dp. GC3 requires a minimum merger mass ratio of
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Figure 4.13: Same as Figure 4.3 but the dark matter profiles are normalised together

with a stellar component. The dotted black lines in the middle and bottom panel show the

stellar density and enclosed mass profiles respectively.
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Figure 4.14: Same as Figure 4.12, but with a stellar component included in the background

mass profile.

1:10 at (rs, rc) of (3000, 2000) pc, a mass ratio of 1:2 allows a (rs, rc) of as small as

(2000, 1000) pc. GC5 now becomes problematic under all halo profiles and they are

not permitted to exist outside of dp with any merger with mass ratios larger than

1:2.

4.4 Discussion

With constraints from the dp of the GCs in Fornax, our semi-analytic orbital

evolution model suggests that there is a dark matter core of size no smaller than

1000 pc in Fornax, and that the galaxy has experienced a past merger of mass ratio

more substantial than 1:5. In this section, we first present a self-consistent picture for
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Figure 4.15: Minimum rs (top panel) and rc (bottom panel) of Fornax dark matter halo as

constrained by the five GCs under the various merger scenarios. The grey lines correspond

to the DM only case while the black lines correspond to the DM+stars case.

the co-evolution of Fornax and its GCs in Section 4.4.1. We then provide additional

evidences from the chemistry of Fornax to support the merger scenario in Section

4.4.2 and our proposed origins of the GCs in Section 4.4.3. Section 4.4.4 concerns

with evidences of dwarf-dwarf mergers both from cosmological simulations and

observed interactions between dwarfs. In Section 4.4.5 we compare our derived dark

matter halo profile with cosmological simulation results and discuss the implications

of the apparent large dark matter core on the nature of dark matter. We close this

section by presenting some caveats of this work.
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4.4.1 A self-consistent picture for the co-evolution of Fornax

and its GCs

GC5 stands out as the only GC that would require a (rs, rc) larger than our explored

range of value. The younger age and higher metallicity of GC5 when compared with

GC1, GC2 and GC3 also might be hinting at a di↵erent origin of this GC (Section

4.4.2). We propose the following scenario for the co-evolution of Fornax and its GCs:

(1) GC1, GC2 and GC3 were formed in a proto-Fornax at ⇠12Gyrs ago, (2) GC5

was formed ⇠11Gyrs ago in the lower mass dwarf galaxy that will go on to merge

with the proto-Fornax, and (3) the merger which happened ⇠10Gyrs ago triggered

the formation of GC4, and at the same time deposits GC5, and scatters GC1,2,3 to

larger orbits conducive to their survival.

The existence of a sixth GC has recently been re-discussed by Wang et al.

(2019), where they show with deep DECam imaging data that a past association of

stars is likely to be a star cluster with stellar mass of M⇤ ⇠ 104 M�. This object has

a projected distance of dp of 270 pc and its metallicity is inferred through photometry

to be similar to GC4 ([Fe/H]⇠ �1.4). Notably, its low mass but small projected

distance is at odds with naive expectations for dynamical friction (especially relative

to the higher mass, but further out GCs). While further work on the orbit and

ages of this GC will be necessary to fully understand its role in the evolution of

Fornax, we note that its central position and relatively high metallicity (compared

to other GCs) can be naturally explained with our merger scenario: just like GC4,

GC6 would be a product of triggered star formation due to compression of gas in

the dwarf-dwarf merger approximately 10Gyrs ago and reside close to the center of

Fornax after that event.

4.4.2 Support for the merger scenario from Fornax’s

chemical evolution

We consider here whether a merger with mass ratios of 1:5 to 1:2 are supported

(or even permitted), given the observed metallically distribution function (MDF) of

Fornax’s field stars. For this exercise, we take the observed metallicity measurements

of individual RGB stars within several local group dwarf galaxies (Leaman et al.

2013, and references therein, as recalibrated by Starkenburg et al. (2010)), perform

superpositions of pairs of dwarf galaxies and then compare the combined metallicity

distribution with that of Fornax. To avoid possible systematics introduced by

binning, we apply this analysis on the cumulative distribution function (CDF)

instead of the MDFs themselves.
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Figure 4.16: Left: Normalised MDF of Fornax in grey, the mass-weighted MDFs of

WLM+Carina (top) and WLM+Sculptor (bottom) in red and blue respectively. Right:

1000 Monte-Carlo realisations of the CDF of Fornax in black and that of the corresponding

combined dwarfs in magenta. The mean and 1-� KS-test values are show in the bottom

right corner.

To demonstrate the feasibility and support the premise of a past merger for

Fornax, we show in Figure 4.16 the combined stellar metallicity CDF for two

sets of galaxy pairs which satisfy the mass ratio requirements: WLM+Carina and

WLM+Sculptor, in the top and bottom rows respectively. With stellar masses of

1.1⇥107 M� (WLM; Jackson et al. 2007), 3.8⇥105 M� (Carina; McConnachie 2012)

and 2.3⇥106 M� (Sculptor; McConnachie 2012), a merger between WLM+Carina

and WLM+Sculptor would constitute a 1:5 and a 1:2 merger respectively if we

consider the stellar-mass-halo-mass (SMHM) relation from Moster et al. (2010) at

redshift zero.

We show the observed MDF of Fornax in grey in the left panel of Figure 4.16,

and those of WLM and Carina in red and blue respectively. When computing

the CDFs of each galaxy, we also take into account the measurement errors of
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the metallicities of individual stars. We did a Monte-Carlo sampling with 1000

realisations, each time varying the metallicity of each stars within a gaussian

distribution with width equal to the star’s measurement error.

We construct the combined CDF of Carina and WLM by drawing N1 and N2

stars from the normalised CDFs of the two galaxies, where N1 and N2 are determined

by the stellar mass ratio between the two galaxies and Ntot = N1 +N2 is constrained

by the total number of stars to be equal to the number of stars measured in Fornax.

We again do a Monte-Carlo sampling with 1000 realisation, each time varying the

total stellar mass within the measurement error, which we take to be 30% of the

measured value.

The resultant 1000 realisations of the combined CDF is plotted in magenta and

that of Fornax is plotted in black on the top-right panel of Figure 4.16. We next

perform a Kolmogorov-Smirnov test between the combined WLM+Carina, and the

Fornax metallicity CDFs for each realisation – deriving a KS-test value of 0.12+0.08
�0.04.

As a plausible representation of a dwarf-dwarf merger with mass ratio of 1:2,

we compute a similar CDF of Sculptor and WLM as a comparison. We plot the

MDF of Sculptor in blue on the bottom-left panel of Figure 4.16. We perform the

same exercise as in WLM+Carina to obtain a combined CDF of Sculptor and WLM,

with the Monte-Carlo realisations of the combined CDF shown in magenta on the

bottom-right panel of Figure 4.16. The analysis of the simulated MDFs of these

mergers show comparable K-S statistics within the uncertainties. Our exercise, while

simple, gives independent support from empirical chemical properties that a merger

with mass ratio anywhere between 1:5 to 1:2 could have happened in the past of

Fornax, plausibly giving rise to its field star MDF.

4.4.3 Resolving the tension between the stellar mass in GCs

and field stars in Fornax

In addition to a surprisingly large number of GCs, Fornax notably shows an

extremely high fraction of mass in star clusters relative to low metallicity field stars

(Larsen et al. 2012). This provides strong constraints on the amount of mass loss

and initial mass of GCs, which is of extreme importance for the multiple population

phenomena in GCs (c.f., Bastian 2017).

The top panel of Figure 14 shows the cumulative mass in the five GCs relative

to field stars with metallicities lower than that (MGC/M?,gal <[Fe/H]). Here we

have used the observed SFH of Fornax (corrected for spatial completeness) and the

152



CHAPTER 4. GC DYNAMICAL FRICTION

Figure 4.17: Top: the cumulative mass in GC stars (grey dots) relative to Fornax fields

stars below that [Fe/H] value; Middle: observed age-metallicity relation of the RGB field

stars in Fornax (orange). In the top and middle panel, the blue band represents the change

in the plotted quantities for a dwarf of mass ratio ⌘, ranging from 0 (light blue) to 1 (dark

blue), which had a single GC. Bottom: The o↵set location of GC 5 in the top and middle

panels suggests a required mass ratio close to the one derived from our dynamical model.

The contours are in fractions of [0.1, 0.5, 0.7, 0.9,0.95,0.99] of the maximum likelihood.
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observed mean Age-Metallicity relation (AMR) of the field stars (Battaglia et al.

2006; Leaman et al. 2013) to compute M? as function of [Fe/H]. We plot this versus

the age of the stellar populations (from the field star AMR) and the age of the

GCs from isochrone fitting (de Boer & Fraser 2016). Larsen et al. (2012) computed

the mass fraction based in GCs relative to field stars by analysing the MDF of the

field stars directly and making corrections for sample selection and stellar evolution

e↵ects. Here we find comparable qualitative results when using the stellar mass

growth for the galaxy itself derived from the SFH of Fornax and the spectroscopic

AMR.

The orange line shows the values for a galaxy with the observed SFH and

chemical enrichment who formed a single GC of MGC = 2⇥ 105 at any point in time.

The blue lines show what values would be expected if you formed the same mass

GC in a dwarf galaxy that was some stellar mass ratio 1 : 10  ⌘⇤  1 : 1 less than

Fornax. This is computed by simply shifting the AMR by an amount based on the

observed Local Group mass metallicity relation (e.g. Kirby et al. 2013). It is clear

that a dwarf with stellar mass ⇠ 1/3 of that of Fornax and a single GC would have

values similar to where GC5 sits on this diagram.

Another way to compare the GC and field stellar population is by looking at

their AMRs. In the middle panel of Figure 4.17 we show the observed AMR of the

Fornax RGB stars as the orange band. The observed AMR closely follows a leaky

box analytic chemical evolution model, and similar to the top panel, we show in blue

the implied AMR for dwarf galaxies of smaller total stellar masses using the same

shifted empirical mass-metallicity relations. As above, the corresponding observed

ages and metallicities for the GCs are plotted in grey dots. Once again GC5 is an

outlier with respect to the field stars’ AMR, and corresponds more closely to the

chemistry of a dwarf galaxy of mass ⇠1/3 of Fornax.

The bottom panel shows a summary of the implied mass ratios which are more

chemically consistent with GC5. Merger ratios of 1:2, 1:3 and 1:5 are marked by

magenta dashed lines. The analysis here suggests that not only would a merger of

mass ratio 1:2 to 1:5 allow GC5 to survive outside of it observed projected distance,

but that it also relieve the tension between the mass and stellar populations in GC5

and those of the field stars in Fornax.

4.4.4 Additional evidence of dwarf-dwarf mergers

It has been shown in cosmological zoom-in simulations that group processing

such as mergers of gas-rich dwarf irregulars (dIrrs) is a formation pathway for
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gas-poor dSphs like Fornax (e.g. Wetzel et al. 2015). With cosmological simulations,

Beńıtez-Llambay et al. (2016) show that such a process can explain the metallicity

gradients found in dSphs, where young and concentrated metal-rich components

are surrounded by older and metal-poorer stars, as seen in for example Sextans

(Tolstoy et al. 2004; Battaglia et al. 2011), Sculptor (Battaglia et al. 2008), as well

as Fornax (Battaglia et al. 2006). This is because the older and more metal-poor

stars are dispersed by mergers, leading to a larger spatial distribution and lower

central density as compared with the younger metal-rich population.

Observational evidence of dwarf-dwarf mergers is also becoming increasingly

common. The TiNy Titans Survey (TNT) found evidence of interactions between

isolated pairs of dwarf galaxies, such as disturbed optical and HI morphologies, as

well as images of dwarf pairs on the verge of merging (Stierwalt et al. 2015). The

Magellanic Clouds have been shown to host a rich satellite system in recent surveys,

such as the Dark Energy Survey (DES; Bechtol et al. 2015; Koposov et al. 2015) and

the Survey of the MAgellanic Stellar History (SMASH; Martin et al. 2015). These

works suggest that dwarf galaxies can have satellites of their own that may later

be assimilated. Amorisco et al. (2014) kinematically detected a stellar stream in

the dSph Andromeda II (And II) of which the progenitor is possibly a dwarf galaxy

with similar mass as And II, indicating a past major merger. Di↵erential rotation

between the metal-rich and metal-poor stars in the dSph Sculptor is also possibly

a result of a past merger (Zhu et al. 2016). Cicuéndez & Battaglia (2018) also

found merger evidences in the dSph Sextans, where a ring-like stellar feature shows

higher-than-average line-of-sight velocities and lower-than-average metallicities,

while Kacharov et al. (2017) found evidence of prolate rotation in the Phoenix dSph.

Specifically to Fornax, Amorisco & Evans (2012) (AE12 hereafter) suggest

signatures of three stellar populations from its complex MDF, and show that

there is a 40 di↵erence in the rotation axes between the metal-poor (MP) and

the intermediate-metallicity (IM) populations which imply counter-rotation. The

authors have attributed such complexities to a merger of a bound pair, with the

companion, represented by the MP population, comprising a fraction of 0.31± 0.06

of the spectroscopic sample of stars. Given the uncertainties on the complete

spectroscopic selection function for Fornax, to compare to our work we bound the

possible mass fraction of this population by: 1) multiplying this fraction directly

with the total stellar mass of Fornax (likely an upper limit), or by 2) following

AE12 and multiplying the observed luminosity of the RGBs in the MP population

by 66 and then applying a mass-to-light ratio M?/L of 2 (McConnachie 2012). This

6AE12 assume that 1/3 of the MP giants reside in the metal poorest tail and that the RGB
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analysis yields a stellar mass of 3⇥ 106 � 1.5⇥ 107 M� for the MP population, which

could comprise the lower mass merging fragment. Given the observed age-metallicity

relation for Fornax, the pre-merger proto-Fornax is plausibly represented by the IM

population, which comprises a fraction of 0.56 ± 0.05 of the spectroscopic sample.

A similar computation for this population results in a proto-Fornax stellar mass

1 ⇥ 107 � 2.5 ⇥ 107 M�. Our suggested candidates in Section 4.4.2; with Sculptor

as the companion and WLM as proto-Fornax , have stellar masses of 7 ⇥ 106 M�

(Bermejo-Climent et al. 2018) and 0.9 � 1.8 ⇥ 107 M� (Leaman et al. 2017)

respectively at z ⇠ 2, falling right into the ranges suggested by the chemodynamical

analysis of AE12. With a dynamical mass ratio of ⇠1:3 at z ⇠ 2 (Leaman et al.

2017; Bermejo-Climent et al. 2018, and the references therein), the merger mass ratio

of 1:2 to 1:5 inferred from our dynamical friction analysis is therefore consistent with

the results from AE12. Given that Battaglia et al. (2006) can associate most of the

more metal poor component with an old age of >10Gyrs, it is therefore plausible

that the merger fragment stopped forming stars at ⇠10Gyrs ago, indicating an

early merger around that time for Fornax. While there is additional evidence for

substructures in the central region of Fornax (Coleman et al. 2005), the young ages

and high metallicities of these features, as pointed out by Amorisco & Evans (2012),

necessitate that it formed from self-enriched gas of Fornax itself at late times, rather

than due to an accretion event.

4.4.5 Implication for the nature of dark matter from the

derived halo profile

The conditions for GC survival in Fornax require a particular form of the dark matter

halo. Here we briefly discuss how this may place constraints on the self-interacting

nature of dark matter. To provide a comparison of the required (rs, rc) with respect

to dark matter halo parameters in ⇤CDM cosmological simulations, we show the

mass-concentration (M � c) relation as seen in such simulations as a black contour

in Figure 4.12 and 4.14. We adopt here the M � c relation from Dutton & Macciò

(2014). The concentration of our dark matter haloes are calculated as c = r200/r�2,

where r�2 is the radius at which the logarithmic slope of the density profile equals

-2. With a merger mass ratio of 1:2, GC1, GC2, GC3 and GC4 can all survive

outside their respective dp with a dark matter profile that lies on the M � c relation,

of (rs, rc)⇠(2000, 2000) pc.

We next check whether the required core size is compatible with dark matter

luminosities is 1/2 of the total luminosity.
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cores created by baryonic feedback processes, such as those seen in ⇤CDM

hydrodynamical simulations of dwarf galaxies. As Read et al. (2016) have shown,

the dark matter core size in their simulations is approximately 1.75 times of the

half-light radius. In the case of Fornax, that would mean a rc of 1260 pc. To check

whether such core size would allow the GCs to survive outside of their dp, we rerun

our orbital evolution model on a finer grid of rs, rc in between 1000 pc and 2000 pc,

in steps of 100 pc, with the inclusion of a stellar disk. We find that the minimum

required (rs, rc) is (1600, 1500) pc in order for all GC1 to GC4 to survive outside of

their dp. Such a core size is larger than expected from the coring of the dark matter

halo due to baryonic feedback alone in the CDM scenario, given the feedback recipe

in Read et al. (2016). Observationally, Bermejo-Climent et al. (2018) have shown

that given the star-formation history of Fornax derived by de Boer et al. (2012), to

produce such a large DM core from stellar feedback alone would imply that & 30% of

that energy is used in the coring of the DM halo, which is & two times the maximum

fraction of energy from stellar feedback that can be coupled to the retained gas.7

However given that the merger required for Fornax may also cause some expansion

of the DM profile such DM core size might still be possible in the CDM scenario,

and should be tested with simulations.

The halo profile constraints may have implications for non-standard DM particle

theories as well. With respect to the ultra-light Bose-Einstein condensate dark

matter ( DM), our result can provide constraints on the dark matter particle mass.

With cosmological simulations, Schive et al. (2014b) found that the core size of a

 DM halo (rc, DM) should obey a scaling with the total halo mass Mvir:

rc, DM = 1.6 kpc
⇣ Mvir

109M�

⌘�1/3

m�1
22 , (4.16)

where m22 is related to the dark matter particle mass m DM as:

m22 ⌘
m DM

10�22 eV/c2
. (4.17)

From the fitting to the observed �?(R), the derived ⇢c for a dark matter halo of (rs,

rc) = (1700, 1500) pc is 0.03M� pc�3. The Mvir of such a profile is 2.93⇥ 109 M�
8.

7Note that when using the star-formation history (SFH) obtained by del Pino et al. (2013),
Bermejo-Climent et al. (2018) derived a lower required energy fraction of ⇠ 10% for the creation
of a DM core of size ⇠1.5 kpc. Although this SFH comes from a deeper photometric data obtained
using VLT/FORS (as compared to the CTIO/Mosaic II data used to derive the SFH in de Boer
et al. (2012)), the spatial coverage is tiny.

8While the M200 of our dark matter halo is 3.24 ⇥ 109 M�, here we calculate the virial mass
as Mvir = (4⇡/3r3vir)�c⇢c with ⇢c being the critical density and �c = 350 following Schive et al.
(2014b)
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We have also fitted the derived cNFW density profile with that characterised for

 DM by Schive et al. (2014a) and obtained rc, DM ⇠ 1006 pc9. Using Eq.4.16, we

derive a m22 of ⇠ 1.1, which is within the constraint of m22 = 0.26 � 2.5 obtained

from large-scale structures (e.g. Bozek et al. 2015; Sarkar et al. 2016). We note that,

however, in the  DM case, dynamical friction is suppressed by the wave nature of

the dark matter particles (Hui et al. 2017) and hence our analysis is not directly

applicable. With the suppressed dynamical friction, the required rc is likely smaller

and hence allows for a larger m22. Our work hence still refines the complementary

constraints from large-scale structures on m22.

In the case of self-interacting dark matter (SIDM), the dark matter halo core

size is correlated with the scattering cross-section � as:

h�vi
mSIDM

⇢(r1)tage ⇠ 1, (4.18)

where v and mSIDM is the velocity between the DM particles and the mass of the

DM particles, tage is the age of the halo, and r1 is the characteristic radius beyond

which, the DM particles are scattered less than once per particle on average over tage
(Kaplinghat et al. 2016). The dark matter halo can be described by an NFW profile

beyond r1 and hence this characteristic radius would correspond to the core radius

rc in the cNFW profiles that we adopted. ⇢(rc) of the profile with the minimum

required (rs, rc) of (1600, 1500) pc is 0.0095M� pc�3, corresponding to a h�vi
mSIDM

of

⇠ 36 (cm2/g ⇥ km/s). Our derived value for Fornax is comparable to other dwarfs

or low-surface brightness galaxies in Kaplinghat et al. (2016).

4.4.6 Caveats

In attempting to incorporate several evolutionary aspects of Fornax in one model,

there will necessarily be caveats and simplifications. We outline these here, and

hope this work motivates future studies to produce idealised numerical simulations

which can test this scenario. When estimating the dform of the GCs, we assume

a well ordered, exponential disk, while the current structure is much more of a

thick oblate blob of stars. Although such a structure could have resulted from the

past merger event, in the case where the structure of the stellar component was

9The  DM density profile is characterised by an inner soliton that transit abruptly to an outer
NFW halo. When fitting our derived DM density profile with that of  DM, we have fixed the
transition radius to be 3 rc, DM, a cosmic average found by Schive et al. (2014a). Our derived
rc, DM is comparable with their derived value of rc, DM = 920+150

�110 pc, found by using the velocity
dispersion from three di↵erent stellar population in Fornax.
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already pu↵y when the GCs are formed, we would have overestimated the maximum

galactocentric distance at which the GCs can be formed. This is because given the

same scale radius and mass, a thicker disc would render a lower density at each

specific location. A smaller dform would only increase the required (rs, rc) in order for

the GCs to survive outside of its present-day dp and hence our derived dark matter

parameters would still serve as a lower-bound as intended.

Although the underlying dark matter profile is expected to vary due to

cosmological halo growth, within the timescales (after the first Gyr since the

beginning of the universe) and radial range (dform < 2000 pc) relevant for the orbital

decay of the GCs, the change of dark matter profile under cosmological halo growth

has a negligible impact for our orbit calculations when we tested orbit integration in

a growing potential.

Baryonic feedback can additionally cause the coring of the dark matter profile,

and lead to the expansion of the GCs’ orbit in additional ways. Just like dark

matter particles, the GCs gain energy indirectly from stellar feedback ejecting gas

in the inner regions of the galaxy and rapidly altering the potential. The repetitive

deposition of such energy and subsequent ejection of gas leads to an irreversible

non-adiabatic heating of the orbits of the particle in the potential (Pontzen &

Governato 2012). While Pontzen & Governato (2012) provide analytic expressions

for how the overall spatial scale of a system of (e.g. dark matter) particles would

be altered given an amount of energy, the e↵ect on an individual particle (e.g. a

GC) by such deposition of energy is not well understood and hence not included

in our model. Secondly, the GCs would move outwards due to the gradual (rather

than instantaneous) shallowing of the gravitational potential. The resultant position

of GCs in a coring profile would still lie between the final position under an NFW

and a cored profile of the same rs and rc, with that from the cored profile giving an

upper bound. The exact position would depend on the timescale for core creation.

Since we do not possess information on the timescale at which the dark matter

halo change from a cuspy to a cored profile, we only consider the completely cored

(n = 1) cases to obtain an upper limit of the final GCs positions for each set of dark

matter parameters (rs, rc).

Lastly, we have also considered a spherical system where both the geometry

of the gravitational potential as well as the velocity anisotropy is isotropic. How

axisymmetric or triaxial potentials with anisotropic velocity dispersions would a↵ect

our result is beyond the scope of this work.
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4.5 Conclusions

We present an analysis on how the present day location of the five globular clusters

in the dwarf spheroidal galaxy Fornax provides constraints on its dark matter

halo profile. In particular, we incorporate a careful consideration on the formation

location of the GCs based on pressure equilibrium arguments, and allow for orbital

expansion due to a past merger. We also consider the e↵ect of dynamical buoyancy

by including the e↵ect of fast-moving background particles in our dynamical friction

treatment, and adopt a velocity distribution function computed self-consistently from

each gravitational potential using the Eddington equation (instead of the commonly

adopted assumption of a Maxwellian distribution). With these ingredients we study

the orbital decay of Fornax’s five GCs in a self-consistent framework with their

co-evolution of the dynamics and chemistry of the host galaxy. Our main findings

from this joint analysis are as follows:

1. Our joint analysis shows that survival of three of the GCs (1, 2, 3) in Fornax

is possible for halo profiles with minimum scale and core radii of 1700 and

1500 pc respectively - provided that Fornax has had a merger of mass ratio

(1:5  ⌘  1:2) in its past. The younger GC4 can survive in any halo profile

provided the same merger occurs, we suggest it may have been triggered during

the merger (⇠10Gyrs ago).

2. GC5 can not survive in a halo unless there is a core radii larger than 6 kpc (3

times the tidal radius). As stellar feedback based mechanisms for core creation

can not produce a change outside the tidal radius, we posit that GC5 could

have been brought in with the merging galaxy to the Fornax host.

3. Consistent with this, we show that GC5 is unique among the five GCs in that

it lies o↵ the Fornax field star age-metallicity relation, with a lower metallicity

at fixed age, suggestive of being born in a galaxy with 1/3 the mass of Fornax.

4. This is also supported by empirical chemical evolution arguments. The MDF

of Fornax’s fields stars are shown to be consistently reproduced by a weighted

super-position of pairs of Local Group dwarfs with the necessary mass ratio.

5. This merger origin for the evolution and survival of Fornax and its GCs

reconciles the large number of GCs within Fornax, and alleviates the problem

of Fornax having an extremely high mass in GC stars relative to metal poor

field stars, as well as its high specific globular cluster frequency of SN = 29

(van den Bergh 1998).
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6. We have compared the required dark matter core size with several dark matter

models and find that a dark matter core of 1600 pc is larger than that expected

from baryonic feedback alone in the CDM paradigm. Even though we did

not incorporate the wave nature of  DM in our dynamical friction model,

our derived particle mass of m22 ⇠0.7 is still marginally consistent with the

lower limit from large-scale structure constraints. Lastly, we find a scattering

cross-section of h�vi
mSIDM

of ⇠ 55 (cm2/g⇥ km/s) for SIDM, consistent with values

obtained for other dwarf and low-surface brightness galaxies in the literature.

This scenario, whereby Fornax and its GC populations were assembled by merging

dwarfs (with 1 GC coming in through the merger, 1 formed during the merger and

three pre-exisiting in the proto-Fornax) can be tested with high resolution idealised

simulations, and may provide constraints on how common this mechanism is for

dwarfs in a cosmological framework.
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Chapter 5

Understanding the sources of
ionised gas velocity dispersion

5.1 Introduction

H↵ gas in galaxies, both locally and at high redshift, can show velocity dispersions

of the order of ⇠ 30 � 200 km s�1 (e.g. Weijmans et al. 2008; Kassin et al. 2012).

This velocity dispersion is driven by a combination of thermal, turbulent (including

for example, shocks from supernova and stellar winds) and gravitational e↵ects,

such that �2
tot = �2

thermal + �2
turb + �2

grav. The thermal contribution can be estimated

trivially given the ionised gas temperature with �2
thermal = kT/m (where k is the

Boltzmann constant, T the gas temperature and m the gas particle mass) and are

typically only ⇠ 10 km s�1. It is currently unknown whether the observed large �tot
is dominated by �turb or �grav, as it is not a priori possible to decompose the ratio

of these two sources from ionised gas observations. Understanding this balance of

�grav/�turb as a function of star formation rate (SFR), gas fraction (fgas) or stellar

mass (M?) is of the utmost importance for interpreting the growth of galaxy disks

at high redshift (e.g. Wisnioski et al. 2015).

In addition, galaxy formation simulations typically require energetic feedback

from stellar winds and supernovae to produce realistic galaxies (e.g. Dalla Vecchia &

Schaye 2012; Zolotov et al. 2012; Di Cintio et al. 2014). However, the coupling of the

feedback energy to the gas is typically implemented in an ad hoc sub-grid manner

(e.g., various prescriptions for thermal or kinetic energy, how they are distributed

and over what timescales from a star particle). Therefore characterising the fraction

of �tot that is due to �turb would represent a crucial constraint for simulations of
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galaxy formation and evolution.

Understanding the source of velocity dispersion in ionised gas is also important

for galaxy dynamics. For example, when deriving a galaxy’s enclosed mass

from its H↵ kinematics, we need to compute the circular velocity, defined as

Vc ⌘ �R(d�/dR), where � is the gravitational potential. When the ratio of rotation

velocity to gravitational velocity dispersion (V�/�grav) is small, a correction must

be made (using �grav) to infer the Vc value it would have if the orbital energy were

purely rotational. Understanding how much of the observed velocity dispersion is

due to gravitational perturbations, is therefore crucial in getting an accurate measure

of the enclosed mass using H↵ kinematics. H↵ is typically used for high-z galaxies

due to the lack of alternative/better observations from kinematic tracers such as

cold gas and/or stars. As V�/�grav is expected to be smaller for galaxies of higher

redshifts, such correction becomes especially important. The common approach of

assuming �grav,H↵ = �tot,H↵ or �grav,H↵ = 0 in the derivation of Vc,H↵ respectively

over- and underestimates the enclosed mass.

These incomplete assumptions can both lead to significant changes in the

implied astrophysical interpretation. Understanding the balance of �grav/�turb
using nearby galaxies is therefore an essential calibration for obtaining accurate

mass profiles for high-z galaxies. In particular, accessing how the intrinsic ratio of

�grav/�turb systematically varies with global parameters such as the star formation

rate (SFR), disk scale height (hz), or gas fraction (fgas), would provide an extremely

useful set of prescriptions to analyse other galaxies where detailed observations are

not possible.

The decomposition of H↵ velocity dispersion (�H↵) into its contributing sources

can be done if one has circular velocity measurements from other independent

kinematic tracers such as stars and molecular gas. Such calibration is possible

for nearby galaxies which can be observed kinematically through multiple tracers.

Stellar kinematics are not a↵ected by turbulent or thermal e↵ects, meaning that its

velocity dispersion is solely contributed by the gravitational component, and so one

can recover Vc,⇤ by directly applying stellar dynamical models such as the asymmetric

drift correction (ADC, Weijmans et al. 2008), axisymmetric Jeans dynamical models

(JAM, Cappellari 2008), and Schwarzschild models (Schwarzschild 1979) onto the

observed velocity moments (see Chapter 2). Since the stars and the H↵ gas of each

galaxy are moving through the same gravitational potential, the derived circular

velocities obtained using stellar or H↵ kinematics should agree. Therefore once the

circular velocity is determined from the stellar or molecular data, the H↵ velocity

dispersion can be decomposed as follows: First, from the observed H↵ dispersion,

subtract o↵ the contribution from the thermal contribution (�thermal ⇠ 10 km s�1).
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Figure 5.1: The panel on the left shows the rotational velocities in black and the asymmet-

ric drift corrected Vc in orange. The asymmetric drift correction is assumed to be constant

for H↵ with the value taken to be ⇠ 120 km s�1 (asymptotic value at large radius). The

panel on the right shows the decomposition of H↵. (Figure from Weijmans et al. (2008))

The remaining velocity dispersion is some mixture of the turbulent and gravitational

components. Only the gravitational component goes into the asymmetric drift

correction to the H↵ rotation velocity. Thus one can ask what fraction of the

remaining H↵ dispersion is needed in order for the ADC to produce the Vc given by

the independent stellar tracer. This exercise of using an external kinematic tracer to

set Vc, allows one to decompose the sources of the H↵ dispersion into turbulent and

gravitational.

Such a decomposition has been done on only one galaxy so far. Using both

the SAURON stellar and H↵ observations, Weijmans et al. (2008) decomposed the

H↵ dispersion of NGC2974. As shown in Figure 5.1 left panel, the H↵ rotation

curve (V�,H↵, black open diamonds) is below the circular velocity derived from

stellar kinematics (Vc,?, orange crosses). This di↵erence can only be due to random

non-circular motions providing additional support to the gas in the gravitational

potential, and is proportional to �grav,H↵. By subtracting this best fitting �grav,H↵
contribution,which recovers the circular velocity, and �thermal in quadrature from

�tot,H↵, they could obtain the contribution to the total velocity dispersion from

turbulent sources, �turb,H↵ – which turned out to follow an exponential profile (Figure

5.1, right panel). Although for NGC 2947 the ADC is radially constant and �turb,H↵
shows a neat exponential profile, this result of a single galaxy can not be extended

to the generic galaxy population.

Motivated by this, we identified galaxies within our EDGE-CALIFA dataset
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VHα > Vc,CO VHα < Vc,CO 

Figure 5.2: Comparison between the V�,H↵ and Vc,CO at 1Re similar to Figure 2.9. Left:

V�,H↵ plotted against Vc,CO, with the black line indicating the one-to-one line. Right: The

relative di↵erence, QH↵. The black vertical lines indicate Q = 0, to which most of the

galaxies lie on the right, meaning that there is a bias towards VH↵ < Vc,CO.

which might have high velocity dispersions in their ionised gas components. From

the sample of 54 EDGE-CALIFA galaxies we examined in Chapter 2, we find

similarly that V�,H↵ (derived in the same way as with Vc,CO through harmonic

decomposition as described in §2.3) tend to lie below the circular velocities derived

from both CO (Vc,CO) and stellar kinematics (V?). When compared at 1Re, V�,H↵
is systematically lower than Vc,CO on average by ⇠ 10%. In Figure 5.2, we show

comparison plots between V�,H↵ and Vc,CO at R = Re, similar to the ones between

Vc,? and Vc,CO as shown in Figure 2.9. Such a bias towards VH↵ < Vc,CO is evidence

of the contribution of �grav,H↵ in providing orbital support. Given the morphology,

SFR and mass diversity in the CALIFA parent sample, our data set provides a large

sample of galaxies to study the physical origin of the ionised gas velocity dispersion.

Unfortunately a similar exercise as done for NGC2947 is not possible

with the CALIFA data alone in our galaxies. Although CALIFA also provide

kinematic measurements in H↵, the spectral resolution of the instrument of R⇠850

(⇠ 140 km s�1) is too low for decomposing the H↵ velocity dispersion.

Instead, H↵ kinematics of a selected subset of the CALIFA galaxies may be

analysed with a higher spectral resolution instrument – for example a Fabry-Perot

spectro-imager. With a spectral resolution of R=250,000 (a few km s�1), Fabry-Perot

instruments can provide su�cient precision in measurements of both the mean

velocity and velocity dispersion that are seeing-limited, and cover a wide field of
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view. The large sample of CALIFA galaxies, when complimented by the Fabry-Perot

H↵ measurements, will provide the optimal data set to understand the relative

contribution of turbulent support in ionised gas, and how it depends on the star

forming and gas content of the host galaxies.

We have, as a pilot project, obtained H↵ kinematics for four galaxies from

the CALIFA sample using the Fabry-Perot instrument GH↵Fas from the William

Herschel Telescope. In this work, we present the decomposition of �H↵ of four of

the observed galaxies and is laid out as the following: in §5.2 we explain how a

Fabry-Perot spectrometer works, the details of the observations, as well as show the

data we obtained. In §5.3, we explain in details how we decompose �H↵. We present

the results and limitation to our current methodologies in §5.4. We summarise and

present possible ways forward in §5.5.

5.2 Data and Observations

Our selected galaxies are drawn from a sample of 300 CALIFA galaxies across

the Hubble sequence. These galaxies have high-quality stellar kinematics from

which we have already derived Vc,? (using methods as described in §2). We then

select galaxies by their expected relative contribution of turbulent and gravitational

dispersion to the total ionised gas velocity dispersion budget. This was done

following analytic arguments which suggest �grav ⇠ Vc ⇥ fgas and �SN ⇠ SFR1/3 (c.f.

Krumholz & Burkert 2010; Wisnioski et al. 2015). In order to get enough signal

to noise from the observations, we had to consider only galaxies with an H↵ flux

FH↵ > 7 ⇥ 10�13 erg s�1 cm�2. This gave a sample of 12 galaxies which we planned

to observe and submitted an observing proposal for. While six nights were granted,

the bad weather on a few of the nights reduced our sample to six galaxies. The

observed galaxies cover stellar masses of 109.8  M?/M�  1010.2, star formation

rates of �0.2  log SFR (M� yr�1) 0.6 and gas fractions of 0.01  fgas  0.08. We

list in Table 5.1 the four observed galaxies which had su�cient observed H↵ flux to

analyse, with their relevant parameters.

5.2.1 Fabry-Perot Spectrometer

The observations were carried out on the William Herschel 4.2m Telescope (WHT)

at Observatorio del Roque de los Muchachos on La Palma in March 6-9, 13-16 2017.

To achieve the required velocity resolution in order to observe �H↵, we utilised the

Fabry-Perot Instrument at the Nasmyth focus of WHT: the Galaxy H↵ Fabry-Perot
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galaxy logM?/M� log SFR (M� yr�1) fgas Type

IC11151 9.82±0.10 -0.20±0.06 0.01 Scd

NGC3811 10.44±0.11 0.35±0.07 0.07 Sbc

NGC5056 10.64±0.09 0.57±0.06 0.06 Sc

UGC09476 10.23±0.11 0.05±0.06 0.08 Sbc

Table 5.1:: The galaxy sample. Stellar mass (logM?/M�), star formation rate (SFR) and

gas fraction (fgas) are taken from Bolatto et al. (2017).

Spectrometer (GH↵Fas). GH↵Fas provides a FOV of 3.40 ⇥ 3.40, with seeing limited

spatial resolution. This is one of the only instruments in the world with the large

enough field of view and spectral resolution to do this kind of analysis.

A Fabry-Perot etalon consists of two parallel reflecting surfaces, the distance

between which (�d) can be controlled through the supplied voltage. As parallel light

shines through, the Fabry-Perot etalon produces ring-like spatial interference pattern

such that at each particular �d, each ring on the sky correspond to a particular

wavelength. The correspondence between �d and the observed wavelength at each

ring can be calibrated through emission of known wavelength. At GH↵Fas, this is

done with a neon lamp with Ne [6598] emission.

The etalon at GH↵Fas operates at the interference order of 765, which gives

a Free Spectral Range (FSR) of ⇠ 8 Å, depending on the central wavelength of

the particular observation session. Filters are applied according to each galaxy’s

redshift to allow measurements of the H↵ emission in galaxies with high spectral

resolution across their entire extent. We list the FSR for observations of each galaxy

in Table 5.2. Throughout an observation, the etalon then steps through di↵erent �d,

allowing each ring to be observed at di↵erent wavelengths throughout the FSR. In

our observations, the etalon steps through 64 di↵erent �d at each cycle, allowing a

velocity resolution �v of � 6.2 km/s. Each step has an exposure time of 10 seconds

and we observed our galaxies at a minimum of 16 cycles (⇠3 hours). The photons are

then collected by an image photon-counting system (IPCS) camera with 0.200/pixel

resolution. This yields a set of channel maps showing the flux across the field of

view at each wavelength interval. The advantage of the Fabry-Perot spectro-imager

is much higher spectral resolution, over a large field of view compared to optical

spectrographs. The total exposure time and the velocity resolution of each of the

observed galaxies are listed also in Table 5.2.
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galaxy texp(hh:mm:ss) seeing (00) FSR (Å) �v (km/s)

IC11151 02:50:40 2.000 8.69 6.20

NGC3811 03:12:00 2.000 8.73 6.24

NGC5056 03:01:20 1.300 8.88 6.34

UGC09476 03:22:40 1.500 8.75 6.24

Table 5.2:: Details of the observation of each galaxy. From left to right: Integrated expo-

sure time, seeing, full spectral range (FSR) in wavelengths and channel width in velocities.

5.2.2 Data reduction

Before each observation session, we measure the spatial-spectral correlation of the

GH↵Fas instrument using a neon lamp. The corresponding calibration map is

then input into the data reduction pipeline to assign each of the 64 steps into a

wavelength at a particular spatial location. Since no de-rotator is available for

GH↵Fas, the whole image cube needs to be de-rotated after the observations. This

spatial de-rotation needs to be done simultaneously with the wavelength calibration

due to the interlinked nature between the spatial and spectral dimensions of a

Fabry-Perot Spectrometer. The de-rotation is done through tracking the position

of bright stars or compact H↵ regions in the FOV. The wavelength calibration and

the de-rotation together then allow us to transfer the raw data into a cube with two

spatial dimension and one velocity dimension.

We then apply smoothing both spatially and spectrally. The spatial smoothing

is done with a two-dimensional Gaussian with a width of 3 pixels and the spectral

smoothing is done with a Gaussian with a width of 1 channel. To obtain the moment

maps, we then fit a Gaussian to the line-of-sight velocity distribution (LOSVD) at

each pixel. The fitted continuum is taken as the sky emission and its square-root

is taken as the root-mean-square noise. From the Gaussian fit to the LOSVD at

each pixel, we obtain the (sky-subtracted) amplitude, mean velocity and velocity

dispersion of the H↵ emission at each pixel. We clip away pixels from the moment

maps which have a fitted-amplitude-to-noise ratio <5. The resultant maps are shown

in Figure 5.3.
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5.3 Decomposing the ionised gas velocity disper-

sion

As described in §5.1, the ionised gas velocity dispersion we measure (�H↵) can

be decomposed through comparison between H↵ rotation curve V�,H↵, and an

independent measurement of the circular velocity, Vc. Since not all the galaxies in

our sample have well-observed CO kinematics (which provide a useful proxy for the

circular velocity), we employ the circular velocities derived from stellar kinematics

using Schwarzschild models of the CALIFA galaxies (Zhu et al. 2018b,a). The Vc

of each galaxies is plotted in dashed lines in the bottom right panels of Figure 5.3.

V�,H↵ is derived from the GH↵Fas mean velocity maps using the ellipse fitting and

harmonic decomposition procedure as described in §2.3.2. When fitting for the

rotation curves, we adopt the same inclination and position angle as adopted in

the Schwarzschild models. The modelled velocity maps and the derived V�,H↵ (grey

diamonds) are shown in the bottom panels in Figure 5.3. In purple diamonds we

overlay the V�,H↵ derived from the CALIFA data. Except for NGC3811, the V�,H↵
derived from GH↵Fas and CALIFA agree well with one another, indicating that no

biases in our measured H↵ kinematic maps on large scales. The di↵erences between

the two in NGC3811 may be caused by the patchy nature of the emission, which has

been smoothed over to fill the whole FOV in the CALIFA data (a similar discrepancy

is see also in the inner region of NGC5056, where there is an inner hole to the H↵

emission).

Next, we derive the contribution to the velocity dispersion from gravitational

perturbations (�grav), using the asymmetric drift correction (Weijmans et al. 2008):

V 2
c (R) = V�

2 � �2
grav,R

h @ ln ⌫
@ lnR

+
@ ln �2

grav,R

@ lnR
+ 1�

�2
grav,�

�2
grav,R

+
R

�2
grav,R

@VRVz

@z

i
, (5.1)

where ⌫ is the surface density of the H↵ emission, V� is the H↵ rotation curve and

�grav,R and �grav,� are the radial and azimuthal components of the gravitational

velocity dispersion of H↵ in the cylindrical coordinates. For the tracer flux density

⌫, we take the integrated H↵ flux and compute a radial profile of this along the

galaxy’s major axis, sampled at each ellipse (from which we fitted for V�,H↵). The

integrated flux map and the derived ⌫ profiles (in grey diamonds) are shown on the

top panels of Figure 5.3. To avoid numerical e↵ects due to the data stochasticity, we

parameterise the profiles with an exponential and a power-law profile to ⌫ and V�,H↵
respectively, such that:

⌫ = ⌫0 exp
⇣
� R

R0

⌘
+ ⌫1 (5.2)
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Figure 5.3: Ionised gas moment maps. From left to right: amplitude, mean velocity and

velocity dispersion of the four galaxies in our sample. The scale of the colour-coding is

shown on the right of each image.
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and

V�,H↵ = V0
R

(R2
c +R2)0.5+0.25↵

, (5.3)

with ⌫0, R0, ⌫1, V0, Rc and ↵ being the free parameters. The fitted profiles are

shown in black curves in the right panels of Figure 5.3. We exclude some of the

inner ellipses from NGC3811 and NGC5056 due to their patchiness in the center.

NGC5056 is furthermore problematic, as the derived V�,H↵ is very eratic with some of

the ellipses having V�,H↵ even higher than Vc. We still include it here as a reference,

using only ellipses that have V�,H↵ < Vc. We note that there is no physical reason

why the turbulent component could not inject enough energy to make V�,H↵ > Vc

prior to the decomposition. In such cases (perhaps relevant for low mass dwarf

galaxies) this exercise would only provide a limit on the ratio of �grav/�turb.The

ellipses that are used for fitting are marked with black diamonds. The fits to the the

CALIFA V�,H↵, using the form in Equation 5.3, are shown with purple curves.

With these parametrisation of ⌫ and V�,H↵, Eq. 5.1 can then be inverted and

solved analytically to obtain the contribution to the observed ionised gas dispersion

from gravitational sources (along the radial axis R) �grav,R:

u(R) =

Z
(
1

R

d ln ⌫

d lnR
+ �� + �z

⌘
dR,

�2
grav,R = � 1

exp(u(R))

Z
1

R
exp(u(R))(V 2

c � V 2
�,H↵)dR,

(5.4)

where ��, �z and  are free parameters that describe the velocity anisotropy of the

ionised gas (�� = 1� �2
grav,�/�

2
grav,R, �z = 1� �2

grav,z/�
2
grav,R) and the alignment with

respect to the cylindrical coordinates such that (Eq. A4 of Weijmans et al. 2008):

VRVz = (�2
grav,R � �2

grav,z)
z/R

1� (z/R)2
. (5.5)

 = 0 describes a cylindrically aligned system and  = 1 describes a spherically

aligned system and 0    1. The integrals are then closed by requiring �grav,R to

vanish at infinity. The total velocity dispersion �tot can be obtained by deprojecting

the observed �Ha (when deprojecting we assumed that the velocity anisotropy is the

same for the gravitational dispersion and the total dispersion), which then gives us

the ratio of gravitational to total velocity dispersion �grav/�tot.

5.4 Results

We perform the �H↵ decomposition as described above in a grid of �1.0  ��  1.0,

�1.0  �z  1.0 and 0    1, all in steps of 0.5. We show in Figure 5.4, 5.5
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Figure 5.3: Observed integrated flux profile and H↵ rotation curves of the four galaxies in

our sample. Top left: Integrated flux map. Top right: Integrated flux profile at each ellipse

plotted in grey opened diamonds. Black line shows the fitted exponential profile and black

diamonds show the ellipses used for the fitting. Bottom left: Modelled velocity map from

harmonic decomposition. Bottom right: derived V�,H↵ from the GH↵Fas observations shown

in grey diamonds, fitted power-law profile shown with black curve and black diamonds show

again the ellipses used for the fitting. Purple diamonds and curve show the V�,H↵ derived

from the CALIFA observations and the corresponding fitted power-law profile. Dashed

black line is Vc derived from stellar kinematics using Schwarzschild models.
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and 5.6 the results from  = 0.0,  = 0.5 and  = 1.0 respectively. The rows show

the results of IC1151, NGC3811, NGC5056 and UGC09476 from top to bottom.

The obtained �grav,R are shown in coloured solid curves in the left panels and the

deprojected �tot,R are shown in coloured dashed curves. The observed �obs derived

along the major axis of each ellipse extracted through harmonic decomposition is

shown in grey diamonds, with the employed ellipses marked with black diamonds

(as described in §5.3). Curves in di↵erent colours indicate the di↵erent (��, �z)

assumed and the corresponding (��, �z) of each colour is shown on the right panels.

The corresponding decomposition of the ionised gas velocity dispersion �grav/�tot,

are shown in the middle panels in solid coloured lines. The vertical dashed lines in

the middle panels show the radii of the innermost ellipses where we have a derived

V�,H↵. Beyond these radii, we require �grav/�tot < 1 (as marked by the horizontal

dashed lines). The (��, �z) pairs that satisfy this requirement for each galaxy are

marked with white dots on the right panel.

5.4.1 Dependence on velocity anisotropy

While varying  does not significantly alter the derived �grav/�tot ratios, varying

(��, �z) varies the ratio significantly. In general, the higher the assumed velocity

anisotropies (��, �z), the lower �grav/�tot. This degeneracy between the assumed

velocity anisotropy and the required �grav,R to recover Vc from V�,H↵, together with

our requirement of �grav/�tot < 1, constrain the �� and �z to be always � 0 and

in some cases even > 0.5, as shown by the position of the white dots in the right

panels of Figure 5.4, 5.5 and 5.6. We note here however, if the velocity anisotropy

varies with radius, then negative �� and �z are still possible at the outer region of

the galaxies.

While this degeneracy does not allow us currently to pinpoint the �grav/�tot, our

results show that even with the highest �� and �z (=1), �grav/�tot & 0.5 in the inner

region and decreases towards larger radii. Even though such a result is robust with

respect to the velocity anisotropy, an uncertainty of ��grav/�tot & 0.5 still prevails

due to the lack of knowledge in (��, �z).

The constraint on having (��, �z)� 0 can be understood as the result of the

relative higher di↵erences between the Vc derived from Schwarzschild models and

the H↵ rotation curves V�,H↵ in comparison to the observed H↵ velocity dispersion.

One may ask if this can be caused by the Schwarzschild models overestimating Vc, as

is indeed shown in Chapter 2 that while on average Schwarzschild models can well

recover Vc, there is still a scatter of ⇠ 10% and given our small number statistics, it

is possible that all four galaxies lie in the regime where the Schwarzschild models
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IC1151

NGC3811

NGC5056

UGC09476

IC1151

NGC3811

NGC5056

UGC09476

Figure 5.4: Results for  = 0.0. Left: Required �grav,R derived from the di↵erence between

Vc and V�,H↵ by using ADC shown in solid curves. The deprojected �tot,R shown in dashed

curves. The colour-coding denotes di↵erent (��,�z) assumed and the correspondence is

shown on the right panel. Grey and black diamonds show the extracted and employed �obs
from ellipse fitting. Middle: The derived �grav/�tot ratios. Vertical dashed lines show the

location of the innermost employed ellipse. Right: White dots indicate the (��,�z) pairs

that satisfy the requirement �grav < �tot (as shown with horizontal dashed line in the middle

panel). 176
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IC1151

NGC3811

NGC5056

UGC09476
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Figure 5.5: Same as Figure 5.4 but for  = 0.5.
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IC1151

NGC3811

NGC5056
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NGC3811

NGC5056
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Figure 5.6: Same as Figure 5.4 but for  = 1.0.
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overestimate Vc. While this is a possibility to ponder upon, we can check from Figure

2.8 that at least for the galaxy NGC50506, for which we have also derived Vc from

cold gas CO kinematics, that such a doubt can be eliminated. The derived Vc from

CO and Schwarzschild agree well with one another for NGC5056, at least at the radii

where we applied �H↵ decomposition (beyond the central ⇠500 where beam-smearing

factor can come into play for the Vc,CO and where there is also a central hole in our

H↵ map). We would need a larger sample of galaxies to determine whether or not a

radial anisotropy (�� > 0) is generally true for disk galaxies.

It remains unclear what is the source of anisotropic dispersions in ionised gas

kinematic fields - and if they are merely transient descriptions of the gas which

should shock if orbits cross. Added complications could arise if the gas motions

are confined by denser regions of the ISM, and interactions with cosmic rays and

magnetic fields. It would be interesting to characterise the three-dimensional

deviations from non-circular motions within high resolution simulations of isolated

regions of galaxy disks.

5.5 Summary and future work

In order to better understand the source of velocity dispersion in the ionised

gas phase of star forming galaxies (e.g, due to stellar feedback or gravitational

perturbations) we have obtained H↵ kinematics with both high spatial and spectral

resolution (<6.5 km/s) using the Fabry-Perot instrument on GH↵Fas for four

nearby disk galaxies. By comparing the derived H↵ rotation curve V�,H↵ with the

circular velocity (Vc) derived independently using Schwarzschild models from stellar

kinematics obtained as part of the CALIFA survey, we attempt to measure the

contribution of the H↵ velocity dispersion from non-turbulent (i.e. gravitational)

sources, �grav. This measure can then be used to study the relative contribution

of gravitational and turbulent velocity dispersion (�turb) by comparing �grav with

the observed total velocity dispersion (�tot), and to asses how it varies with galaxy

properties.

While the ratio �grav/�tot is found to be degenerate with the assumed velocity

anisotropies (��, �z), �grav/�tot & 0.5 in the inner region of all four galaxies and

decreases towards larger radii, independent of (��, �z). Also, by simply requiring

that �grav  �tot, we are able to rule out the (��, �z) values being negative. In

some cases, �� and �z are even required to be > 0.5. While we have shown that

such results is conclusive for NGC5056, as the circular velocities derived from the

Schwarzschild model and CO agree well with one another, a larger sample of galaxies
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with well measured CO Vc is needed to conclude whether the unilateral radial

anisotropy (�� > 0) constraints we find is robust for disk galaxies in general.

The derived anisotropic nature of ionised gas velocity dispersion can be a puzzle

given their expected collisional nature. One might imagine the velocity anisotropy

being maintained through non-circular orbits of confined ionised gas clumps, and

indeed the anisotropic nature of ionised gas might provide a glimpse on how clumpy

the gas needs to be in order to maintain the anisotropy. We will however still need

advices from simulations to answer questions such as: where does the anisotropy

arise from, is it related to stellar velocity anisotropy and if so how, and to constraint

the required phase-space distribution of ionised gas/timescale for orbit crossing such

that a velocity anisotropy can be maintained.

Simulations may also provide the better handle on the velocity anisotropy we

need, in order to further pinpoint the relative composition of �grav and �turb. From

the analytical side, one possible way forward is to obtain higher order velocity

moments from Gaussian-Hermite fitting to the data cube. As has already been

demonstrated in the literature for stellar Jeans modelling, having the higher order

velocity moments will allow us to use also the higher order Jeans Equations to break

the degeneracy between the total mass and velocity anisotropy.

Similarly, we can, instead of just using the radial profiles of ⌫, V�,H↵ and �obs,

move on to two-dimensional modelling using the whole maps. Just like moving from

one-dimensional to two-dimensional Jeans Modelling, the relative distribution of �H↵
along the azimuthal direction would advise us on the H↵ velocity anisotropies.
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Chapter 6

Conclusion and Outlook

To contribute to our continued understanding of galaxy evolution and the nature of

dark matter, this thesis has undertaken an exploration based on galaxy dynamics.

Out of the wealth of dynamical tracers, four have been touched upon: cold molecular

gas, ionised gas, stars and globular clusters (GCs). The di↵erent nature of these

tracers implies that di↵erent modelling techniques are required. Also, while the

kinematics of the di↵erent tracers could be a↵ected by e↵ects that are specific

to those components (e.g. ionised gas by gas turbulence, stars by stellar orbital

structure, and GCs by dynamical friction), they all in the end are moving in the

same gravitational potential. Thus, while these e↵ects can sometimes cloud our

recovery of the enclosed mass distribution in the galaxy, incorporating kinematic

information from multiple tracers would allow us to disentangle them; to derive

tighter constraints on the dark matter halo, and simultaneously recover much more

information on the host galaxy evolution and orbital structure.

By developing innovative modelling techniques and leveraging data products

from multiple kinematic tracers, we are able to 1) provide a homogenous test of

stellar dynamical models on the largest sample of galaxies in the literature, 2) explain

the curious abundance and location of GCs in the dSph Fornax, 3) derive for the first

time the velocity anisotropy profile of a dIrr and 4) unprecedented constraints on

the inner slope and the geometry of the DM halo of a dwarf galaxy. The last point

in particular has helped us learn about the impact of stellar feedback in modifying

galaxy dark matter profiles and constraints on the type of interacting DM particles

which may be consistent with high resolution dwarf galaxy observations.
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6.1 Summary of results

Validity of stellar dynamical mass models

As mentioned in the introduction, cold gas provides the most straight-forward and

potentially most accurate tracer of the underlying gravitational potential, as it is

nearly entirely rotationally supported and in a thin disk configuration. On the other

hand, when modelling stellar kinematics, considerations must be taken to account for

the stellar velocity dispersion and anisotropy (i.e. non-circular motions). In addition,

assumptions on spatial or kinematic geometries are made due to the incomplete

knowledge of the full 6D velocity phase space. To demonstrate the validity of these

stellar dynamical models, we therefore first tested three commonly used models:

Asymmetric Drift Correction (ADC), Jeans Model (JAM) and Schwarzschild Model

(SCH), by comparing their derived mass distribution to the ones derived from CO

(cold gas) kinematics in the same galaxies. This analysis was done on 54 galaxies

from the EDGE-CALIFA survey, and was one of the first comparisons of gas and

stellar dynamical models on such a large and homogeneous sample. We found that

for all of the dynamical models we considered, the CO and stellar circular velocities

exhibit excellent agreement (to within ⇠10%) at large radii (& 1Re). Larger

discrepancies in the inner region (& 50%), on the other hand, suggest that when

deriving the inner DM density profiles, these stellar dynamical models may su↵er

from degeneracies (such as the mass-anisotropy degeneracy) and/or over-simplistic

assumptions on the geometry or mass to light ratio variations. With the inclusion

of gaseous kinematics, one may fare better in both the derivation of the underlying

gravitational potential and the stellar orbital structure.

Constraining the orbital structure and testing dark matter theories with

multi-tracer dynamical models of an isolated dwarf galaxy

After demonstrating that Jeans stellar dynamical models are performing well for

galaxies of a wide range of masses, we next attempted to combine multiple kinematic

tracers in the same galaxy. When combining the stellar and gaseous kinematics,

not only is the stellar dynamical model benefiting from the knowledge of the

circular velocities from the cold gas, the overall model also benefits from the three

dimensional nature of stars, allowing us to probe the geometry of the DM halo shape

at the same time. As dwarf galaxies provide the best test beds for understanding the

nature of dark matter and impact of baryonic feedback, we have focused on a low

mass dwarf for the first application of this novel method. The isolated dIrr WLM is

one of the few candidates that is both close enough for obtaining stellar kinematics
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and of the right mass and distance to retain a rotationally supported gas disk.

Interestingly, we find a prolate, cored DM halo with a short-to-long-axis ratio of

⇠0.5 and a density profile of inner slope � ⇠ 0.3, both in excellent agreement with

that of haloes of the M?/Mhalo of WLM in ⇤CDM cosmological and hydrodynamical

simulations. The simultaneous finding of a prolate DM halo geometry and a central

density core, is potentially problematic or constraining for theories of self-interacting

dark matter. This result illustrates the power and leverage that multi-tracer

dynamical models have in studying DM physics when applied to isolated dwarf

galaxies.

Additionally, for the first time in a dIrr galaxy, we derived a stellar velocity

anisotropy profile. We found that the velocity anisotropy transitions from mildly

radial in the inner region (. 1Re) towards increasingly tangential at larger

radii. Such a shape in the velocity anisotropy profile has been seen in dSphs and

was typically interpreted as signatures of tidal stripping. By showing that the

velocity anisotropy of the isolated dwarf WLM also has a similar profile, we have

demonstrated that external interaction is not necessary in creating such tangential

anisotropy. Instead, the tangential anisotropy in WLM might be intrinsic to its

formation process, or might have been imparted by other internal mechanisms.

Reproducing this orbital structure in an isolated dwarf will be a critical test for

future simulations, and will shed further light on the dominant mechanisms for dwarf

galaxy evolution.

Using star clusters to trace the merger history and DM halo of a dwarf

galaxy

The Fornax dSph galaxy has long posed an interesting problem for star cluster and

dwarf galaxy evolutionary pictures, due to its large number of globular clusters

(GCs). Understanding how they have survived until present allows a better

understanding on the underlying gravitational potential. Here we incorporated a

novel treatment of dynamical friction, with the first self-consistent treatment of the

e↵ect of mergers on the co-evolution of Fornax and its GCs. Together with a more

realistic estimates of their formation location, we came to the conclusion that the

DM halo of Fornax contains a large core, with core size rc � 1.5 kpc. We further

showed how this DM density profile exceeds that predicted from baryonic feedback

alone, but is consistent with the expectations for the galaxy structure after it has

undergone a merger with another dwarf galaxy. This merger plays a crucial role in

helping the GCs survive orbital decay, by kicking them out to further distances, thus

solving a long-standing problem with the Fornax dSph.
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Our dynamical friction model suggests that the past merger in Fornax likely

occurred with another dwarf galaxy with mass ratio of 1:5 to 1:2. We show that this

is supported by the metallicity distribution function (MDF) of the field stars and

their metal contribution relative to the GC stars in Fornax. In particular we suggest

that, GC1, GC2 and GC3 have similar ages and metallicities and are likely to be

inherent to proto-Fornax before the merger. GC5 is slightly younger and more metal

rich and could have come from the merging fragment. The formation of youngest

GC4 could have been triggered by the merger itself if the merger happened around

the time when GC4 was formed (⇠10Gyrs ago). This work is one of the first to place

the GC formation and survival in the context of a larger picture of the evolution of

its host galaxy, and its dark matter halo.

Understanding the contribution of baryonic feedback to gas kinematics

Finally, we undertook an observational campaign to constrain the energetics of

baryonic feedback in galaxies through high resolution observations of the kinematic

structure of the ionised gas component. The aim was to decompose the velocity

dispersion of the ionised gas �H↵ into its turbulent component �turb,H↵ and

gravitational component, �grav. Understanding the relative contribution of the

two is crucial to improve the accuracy of dynamical models at high redshift, and

understand how stellar feedback impacts gas in galaxies.

We proposed for and observed the ionised gas velocity dispersion �H↵, for four

galaxies in the EDGE-CALIFA survey, with the high spectral resolution (⇠6 km s�1)

Fabry-Perot spectrometer (GH↵Fas), mounted on the William Herschel 4.2m

Telescope. As these galaxies span a range of star formation rates and gas fractions,

understanding their �turb,H↵ provides important constraints to the feedback recipes

used in hydrodynamical simulations (a key factor in controlling the DM inner slope

and core size produced by baryonic feedback in a CDM halo).

The ionised gas velocity dispersion decomposition was done by constraining

the enclosed mass profile with independent circular velocity estimates from stellar

dynamical models. This then lets us derive the required gravitational component

of velocity dispersion �grav,H↵ that reproduces the total potential in combination

with the rotation curves of H↵. �turb,H↵ is then estimated from the remaining/excess

velocity dispersion seen in the gas.

We found that the contribution of the gravitational component to the total

velocity dispersion, �grav,H↵/�tot,H↵, is dependent on the assumed velocity anisotropy

of the ionised gas. And for all four galaxies, except for the very outer regions.
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radial anisotropies are required such that the needed gravitational components do

not exceed the total observed dispersion. However, given the lack of insights on

the parametrisation of velocity anisotropies of H↵, more sophisticated modelling

techniques are required to further pinpoint �grav,H↵/�tot,H↵.

6.2 Implications

6.2.1 Evolution of dwarf galaxies

The similarity between the velocity anisotropy profiles of the dIrr WLM and

other dSphs: a mildly radially anisotropic central region that becomes increasingly

tangential towards larger radii, suggests that such signatures could be imprints from

the formation of the dwarfs or secular processes, instead of a result of environmentally

driven morphological transformation. Possible internal processes that can impart

velocity dispersions in a galaxy include scattering from spiral arms, bars and GMCs.

However, as already discussed in Chapter 3, spiral arms are not likely to be formed

in dwarfs while GMCs tend to isotropise the velocity anisotropies and bars tend

to impart radial anisotropies. On the other hand, the e↵ects of feedback and gas

accretion on the velocity anisotropies of dwarfs is still unknown and could be a

possible source of tangential anisotropies.

This also means that the transformation process either (i) does not impart

significant dynamical influence on the stellar structure or (ii) is a three dimensional

agent that imparts equal amount of heating in all direction and hence keeping

the anisotropy intact (if it was tangential at formation). Possible gentle processes

belonging to the first case include for example gas expulsion through stellar feedback

and/or gradual ram pressure stripping. Star formation are found to be more e�cient

in some of the dwarfs than in others (Bermejo-Climent et al. 2018), leading to

increased periods of feedback and quicker exhaustion of gas to form dSphs.

The results we obtained from the modelling of dynamical friction and chemistry

of GCs in the dSph Fornax, would suggest that dwarf-dwarf interactions may also

play a role in the evolution of dwarf galaxies. These mergers can help alter the

DM and stellar orbital structure, and in principle could modify the anisotropy as

well. A more complete census of observational signatures of dwarf-dwarf mergers,

and quantification of the frequency in all environments from simulations would help

better understand their role.

Another possibility is that a prolate dark matter halo naturally leads to
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tangential velocity anisotropies. An aspherical potential imparts gravitational torque

which causes orbital precession (Erkal et al. 2016), and a radial variation in the

net potential geometry may possibly increase the tangential velocity dispersion. If

velocity anisotropy in dwarfs is indeed linked intimately with the geometry of the

potential, the general shape of the velocity anisotropy profiles can also be explained

as a natural consequence of the radial variation of the relative contribution to the

overall geometry from the oblate stellar component to the prolate DM halo. In

this case, since dwarf galaxies are expected to have prolate DM haloes in ⇤CDM,

the tangential velocity anisotropy might after all not provide meaningful constraint

on the evolution of dwarfs, except acting as a baseline from which stellar velocity

anisotropies evolve from.

6.2.2 Nature of Dark Matter

Both our WLM and Fornax results show that their DM haloes are not cusped as

predicted by pure ⇤CDM cosmological simulations. It has been shown that under

the CDM paradigm, such shallow inner density slopes in DM haloes can be caused

by baryonic feedback. Indeed, in the case of WLM, our derived inner slope of its

DM halo, as well as the prolate halo geometry, are in excellent agreement with that

shown by ⇤CDM cosmological simulations that incorporate baryonic feedback (Di

Cintio et al. 2014; Butsky et al. 2016). On the other hand, the core size we derived

for the DM halo of Fornax is beyond the prediction of simulations of baryonic

feedbacks in CDM haloes.

The large core in Fornax might be indicating an alternative nature of DM. From

the core size, we were able to constrain the DM particle mass in the Fuzzy Dark

Matter ( DM) model to be m DM ⇠ 1.1 ⇥ 10�22 eV/c2. For the Self-Interacting

Dark Matter (SIDM) model, we constrained the scattering cross section to be

h�vi/mSIDM ⇠ 36 (cm2/g⇥km/s).

Similar constraints can be obtained using the result from WLM. The

good agreement between our derived DM halo parameters with that predicted

from hydrodynamical simulations under the CDM paradigm of course does not

immediately rule out the possibility of alternative DM models. For the case of

SIDM however, it is known that a large scattering cross section could thermalise

and isotropise the DM halo, leading to a more spherical DM halo. From the derived

DM halo parameters of WLM, we constrained the SIDM scattering cross section to

be h�vi/mSIDM ⇠ 22 (cm2/g⇥km/s). Whether such a scattering cross section can

simultaneously allow a prolate DM halo of qDM ⇠ 2 is to be tested with future SIDM

simulations.
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6.3 Outlook

A few open questions remain. One of which is the source of tangential anisotropies

in dwarfs. Applying our joint gas-and-star dynamical models on more nearby dwarfs

will allow us to consolidate whether a prolate dark matter halo and a tangential

velocity anisotropy are indeed correlated. Possible candidates include Aquarius,

Sagittarius dIrr and VV124, which just like WLM these dwarfs lie in the sweet spots

of being close enough for us to obtain stellar kinematics but still contain enough

cold gas for deriving the circular velocities. Further analytical models can be done

to address quantitatively how the prolateness of DM haloes can impart tangential

velocity anisotropies.

Similarly, the joint gas-and-star dynamical model can be applied onto the 54

CALIFA-EDGE galaxies, of which we have already derived the circular velocities

from CO kinematics. This would allow us to investigate the geometry of DM haloes

across a wider range of galaxy mass. In particular questions such as, if DM haloes

become more spherical towards larger mass as predicted by CDM simulations, or

if there is one particular SIDM model that fits through the qDM variation through

galaxy masses, might allow us to better distinguish between the DM models. To

answer the latter, one would also need the predicted dependence of qDM with galaxy

mass to be provided by SIDM cosmological simulations.

And in the case of Fornax, questions such as: what orbital parameters of a

merger can preserve a tangential velocity anisotropy, if the tangential anisotropy is

removed by a merger, what is the timescale for the prolate DM halo to restore the

tangential anisotropy, should be answered through simulations.

Another issue that can be addressed simultaneously is whether the large DM

core in Fornax can be induced by a merger of our derived mass ratio, and if possible,

whether such a large core is stable in the CDM paradigm. In general, understanding

the correlation between the merger mass ratio and the radial expansion of DM halo

core can provide orthogonal constraint to our semi-analytic model. From our current

model, there is a degeneracy between the constrained DM core size and the merger

mass ratio: the positions of the GCs can be reproduced by a smaller DM core if

amore massive merger has occurred. However such a larger mass merger event, may

actually cause a larger expansion of the DM core in Fornax. Hence by characterising

the core expansion at each merger mass ratio with simulations, we could break the

current degeneracy between the merger mass ratio and the DM core size.

Further work on decomposing ionised gas velocity dispersion will provide a

better handle on feedback energetics, which is closely related to the process of
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creating density cores in CDM haloes. Proposed ways to break the aforementioned

degeneracy with gas velocity anisotropies include: incorporating higher order velocity

moments and utilising the azimuthal variation of the observed �H↵ in our model.

To have a better understanding of the source of anisotropy in ionised gas and/or

better parametrisation of the gas dispersion would also require help from future high

resolution simulations.

Finally, we have demonstrated that dynamical models are superb tools for

studying the tiny ‘clouds’ that we see in the night sky – allowing us to recover

signatures of a galaxy’s evolutionary history from the present day motions of its gas,

stars and star clusters. When these techniques are applied to the tiniest ‘clouds’ of

all – dwarf galaxies, we are able to glimpse the unseen – dark matter, unveiling one

of the biggest mysteries of the universe.
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Chapter 2 Appendix

A.1 Possible e↵ects of m = 2 perturbation on VCO

We extracted VCO with harmonic decomposition:

Vmod = Vsys + c1 cos(�) + s1 sin(�) + c2 cos(2�)

+ s2 sin(2�) + c3 cos(3�) + s3 sin(2�),
(A.1)

From here, we take c1/ sin(i) as V� = VCO. In fact, although most of the high-order

perturbation can be removed using this method, perturbation of m = 2 mode can

still have an e↵ect on on c1. As described in Spekkens & Sellwood (2007), the e↵ect

on m=2 mode perturbation on c1 can be estimated as c1 = V� + c3(s1 � Vrad)/s3,

where Vrad is the first order radial flow. All the galaxies in our sample have average

s1, c3 and s3 terms of .10% of c1. While we do not have independent handle on

Vrad, s1 in general should be dominated by radial flow such that s1 ⇠ Vrad. To

put an upper limit on how much c1/ sin(i) deviate from V�, we assume that s1 is

completely dominated by m = 2 perturbation, i.e. Vrad = 0. In Figure A.1, we plot

for each stellar dynamical model, �V/V versus V/�? (as in Figure 2.11), colour

coded with the corresponding |(c3s1/s3)/c1| value for each galaxy in the specific

V/�? bin. |c3s1/s3| gives an upper limit to how much c1/ sin(i) deviate from the true

V�. We show here the high �V/V points for each models in the low V/�? regime

are not caused by possible contribution of higher order perturbation in VCO as the

corresponding points have low |(c3s1/s3)/c1| values. The large scatters in �V/V in

the low V/�? regime are also not caused by higher order perturbations as there are

no trends seen with respect to |(c3s1/s3)/c1|.
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Figure A.1: �V/V plotted against V/�?, colour coded with the corresponding

|(c3s1/s3)/c1| value for each galaxy in the specific V/�? bin. No trends in �V/V are

seen with respect to |(c3s1/s3)/c1|.
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Figure A.2: Best-fitted kinematic maps with fixed �z and inclination i. Individual panels

in the bottom row shows the derived Vc for di↵erent fixed inclinations, as marked on the

top left corner of each panel. At the bottom right corner, we show the reduced �2 of each

model. Within each panel, Vc derived with di↵erent fixed �z are plotted with di↵erent

colours. Vertical dashed lines mark the e↵ective radius.
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Figure A.3: VJAM for the seven galaxies marked with ‡ in Table 2.3 between when we

impose the stellar-mass-halo-mass relation (solid lines) and when we impose an uniform

prior of 0�400 km s�1 to Vvir (dotted lines). On the top right corner of each panel, we show

the relative di↵erence between the two VJAM at 1Re.

A.2 Issues with unphysical parameters with JAM

As discussed in Section 2.4.2, seven galaxies in our sample converge towards the

boundary condition of �z = �2 and 7 other galaxies converge towards the boundary

condition of Vvir = 400 km s�1 when a stellar vs. halo mass condition is not applied.

We quantify here how such unphysical solutions a↵ect our results.

We first show that the �z < �1.5 cases (i.e. the seven galaxies marked

with † in Table 2.3) are not merely caused by an incorrect inclination estimate.

As an example we show in Figure A.2, the best-fitted Vrms maps at fixed �z of

[�2.0, �1.5, �1.0, �0.5, 0.0, 0.5] and vary the inclination with respective to i = 48.3
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(as derived from the ellipticity of the outer isophotes of r-band photometry) with

�i of [�20, �10, 0, 10, 20]. In every point of the grid (�z, i) are fixed, but (⌥?,

Vvir) are free parameters. The value of the best-fit (�z, i) of individual galaxies are

determined by the shape of the Vrms map. There are degeneracies between (�z, i), in

the sense that a more negative �z and a higher i have similar e↵ects on the shape of

the Vrms field. We find that for the seven galaxies marked with † however, even with

a �i of 20, the best fitted model still have �z  �1.5. This suggest that the low �z
values we find are not just an e↵ect of an incorrectly estimated inclinations, but are

intrinsic to the JAM models.

We also show how di↵erent �z and i value a↵ect the derived VJAM on the

bottom row of Figure A.2. For �z < �0.5, VJAM agree to within ⇠1% at 1Re for any

inclinations, suggesting that a highly negative �z has only negligible e↵ect on the

derived Vc. The VJAM derived also provide good agreement with VCO. We therefore

do not impose further constrain on �z. Restricting �z > 0 for example, on the other

hand, would change the shape of the derived Vc to deviate from VCO and therefore

we do not suggest such practice.

We show in Figure A.3 VJAM for the 7 galaxies which has Vvir driven to the

upper boundary of 400 km s�1 (marked with ‡ in Table 2.3). The best fit Vc when

we impose a uniform prior of 0 < Vvir < 400 km s�1 is shown in dotted lines. The

Vc in models where we impose an additional stellar-mass-halo-mass relation (Eq.

2.9) are plotted in solid lines. In 4 of the galaxies, NGC2639, NGC4961, NGC5218

and NGC5784, the di↵erences between the two Vc are only 3%. For the other 3

galaxies, NGC2347, NGC5908, and UGC09537, however, VJAM shows a steep rise

towards large radii. Such steep rises suggest that an unphysically high Vvir can have

an e↵ect on the derived Vc and therefore it is necessary to impose Eq. 2.9 to galaxies

which do not have Vvir converging within the imposed prior.

A.3 Observed and modelled stellar photometry

and kinematics

A.4 Observed and modelled CO kinematics
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Figure A.4: The eight figures for each galaxy from left to right are: (1) observed SDSS

r-band image in black and the fitted MGEs over-plotted in red contours, (2) observed Vrms,

(3) best-fitted JAM Vrms, (4) observed Vlos, (5) best-fitted Schwarzschild modelled Vlos, (6)

observed �, (7) best-fitted Schwarzschild modelled �, all colour coded in scales of km s�1

as denoted by the colour bars; (8) the extracted observed kinematics: V� and �R plotted in

filled and open circles respectively. The fitted form used in ADC as mentioned in the main

text are over-plotted in solid red lines for V� and red dashed lines for �R (for � = 0.5). The

vertical dashed line represent 1Re.
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Figure A.5: The seven figures for each galaxy from left to right are: (1) observed velocity

field, (2), beam-smearing corrected velocity field, (3) observed dispersion field, (4) modelled

dispersion field, (5) beam-smeared corrected dispersion field, all colour-coded in units of

km s�1; (6) CO rotation curve and (7) V/�CO plot, where the grey line represent the ob-

served value and the solid black line represent the corrected value, and the vertical dashed

line marks the e↵ective radius.
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B.1 Dependence on the chosen density profile of

kinematic tracer

Here we investigate the e↵ects of the chosen input surface density profile of the

kinematic tracer. In the main text we have chosen the RGB star counts, fitted with

an exponential profile excluding the inner region (⇠50) of the galaxy that might be

a↵ected by crowding, to represent the density profile of the kinematic tracer, as

shown in Figure 3.2 and the corresponding MGEs listed in Table 3.3. We label this

profile as ‘Rexp’. We then rerun the discrete Jeans models on four other density

profiles: (1) the uncorrected RGB star counts ‘R’, (2) total star counts with again

exponentially corrected profile ‘Aexp’, (3) uncorrected total star counts ‘A’ and (4)

I-band photometry, ‘I’; the fitted MGE parameters of (1)-(3) are shown in Tables

B.1 to B.3, and (4) in Table 3.2 in the main text. The fitting of the MGEs to

the star-count profiles (1) to (3) are shown in Figure B.1. The best-fitted and 1-�

uncertainties of the MCMC parameters constrained from the discrete Jeans model

made with each of the profiles are shown in Figure B.2 in black for the ‘Stars only’

case and in red for the ‘Stars + Gas’ case.

Under all the tested density profiles, a cored dark matter halo with � < 0.5 is

recovered. Furthermore, except for the models ran with I-band photometry as the

kinematic tracer’s density, a prolate dark matter halo with qDM & 2 is preferred.

Such a discrepancy is likely caused by the spatial scale at which the density profiles

drop o↵. Its integrated-light nature causes the I-band photometry to drop o↵ at

a smaller scale than the other density profiles, which are by nature discrete. The

I-band photometry is also shown to have a much smaller spatial coverage than our
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Figure B.1: Fitted MGEs to RGB stars (red) and C stars (blue), left: when all mea-

surements are used and right: the inner measurements are disregarded to avoid bias from

overcrowding, an exponential profile is fitted instead to extrapolate to the inner region.

Solid circles show the observed radial profile of the number density of the respective star

type. The solids line show the best fitted MGEs and the dotted lines show the individ-

ual MGEs. The MGEs fitted from RGB stars are used for both the middle-aged and old

populations and the ones from C stars are used for the young population.

kinematic tracers (see Figure 3.1(c) and (d)). The derived �z from the model using

‘I’ as the tracer density profile is also slightly higher than those derived using the

other profiles.

B.2 Comparison to spherical Jeans Model

Here we compare the dynamical and dark matter parameters as constrained from our

JAM model with spherical Jeans model that are commonly used for dwarf galaxies.

I0,? (M� pc�2) �? (00) q?

1.318 278.772 0.422

0.134 622.446 0.422

9.280⇥10�3 1660.687 0.422

Table B.1:: Multi-Gaussian Expansion of the RGB star counts (‘R’), normalised to a total

stellar mass of M? = 1.1⇥ 107M�.
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I0,? (M� pc�2) �? (00) q?

1.035 58.378 0.422

1.389 120.767 0.422

1.218 211.198 0.422

0.603 326.504 0.422

0.147 460.855 0.422

1.621⇥10�2 607.298 0.422

8.153⇥10�4 759.947 0.422

1.838⇥10�5 918.728 0.422

1.156⇥10�7 1100.052 0.422

Table B.2:: Multi-Gaussian Expansion of the exponentially corrected total star counts

(‘Aexp’), normalised to a total stellar mass of M? = 1.1⇥ 107M�.

I0,? (M� pc�2) �? (00) q?

1.372 249.495 0.422

3.581⇥10�2 668.103 0.422

0.131 842.278 0.422

Table B.3:: Multi-Gaussian Expansion of the total star counts (‘A’), normalised to a total

stellar mass of M? = 1.1⇥ 107M�.
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Figure B.2: Constrained parameters from discrete Jeans models using di↵erent density

profiles as representation of the kinematic tracer’s density profile, with black representing

the results from the ‘Stars only’ and red representing the results from the ‘Stars + Gas’ mod-

els. The y-axis of each panel shows the constraints of a free parameter in the model, from

left to right: velocity anisotropy �z, , dark matter halo flattening qDM, dark matter halo

scale radius rs, inner slope of the dark matter density profile � and the characteristic den-

sity ⇢s. The x-axis correspond to the five density profiles that we tested; ‘Rexp’: RGB star

counts fitted with an exponential profile excluding the inner region that might be a↵ected

by crowding; ‘R’: RGB star counts; ‘Aexp’: total star counts fitted with an exponential

profile excluding the inner region; ‘A’: total star counts; and ‘I’: I-band photometry.
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Figure B.3: Binned stellar mean velocity and velocity dispersion. Top left : The binned

mean velocity Vmean(dashed line) and velocity dispersion � (dotted line) of all the stars in

our discrete sample. The solid line show the second velocity moment VRMS =
p
V 2
mean + �2

as an input to the Jeans model. The binned Vmean, � and VRMS profiles of the young (top

right), middle (bottom left) and old (bottom right) populations are shown in blue, green and

red respectively.

We use radially binned mean velocity (Vmean) and velocity dispersion (�)of our

discrete kinematics and the spherical Jeans equation, implemented using the publicly

available code by Cappellari (2008). The Vmean and � profiles are shown in dashed

and dotted lines respectively on the top left panel of Figure B.3, the corresponding

observed second moment VRMS =
p

V 2
mean + �2 and the error bars are plotted in solid

lines. The gaseous and stellar MGEs used are the same as the ones listed in Table

3.1 and Table 3.2, but with q = 1 and renormalised to the total stellar and gaseous

masses respectively. The dark matter haloes are parametrised with a gNFW profile.

We again use MCMC to fit the spherical Jeans models to the data, adopting

the ‘Rexp’ as the density profile of the kinematic tracer with q = 1 for all MGEs.

The number of walkers, steps and burn-in are the same as the ones we adopt in the

axisymmetric case. theSince we are using binned data, there is no need to specify .
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I0,? (M� pc�2) �? (00) q?

2.426 54.426 0.422

2.801 107.155 0.422

1.980 178.505 0.422

0.774 263.719 0.422

0.157 358.019 0.422

1.611⇥10�1 458.012 0.422

8.175⇥10�4 561.771 0.422

1.982⇥10�5 668.999 0.422

1.986⇥10�7 782.365 0.422

4.608⇥10�10 912.600 0.422

Table B.4:: Multi-Gaussian Expansion of the exponentially corrected C star counts

(‘Cexp’), normalised to a total stellar mass of M? = 1.1⇥ 107M�.

The relevant velocity anisotropy in the Jeans model is �� = �✓ = 1 � �2
�/�

2
R.

1 The

free parameters are therefore M?, ��, rs, � and ⇢s, we assume �� to be constant. We

again perform two sets of models, one with constrains from Vc,HI and one without.

The constrained parameters are plotted in Figure B.4, in black are the models from

the ‘Stars only’ runs and in red the models from the ‘Stars + Gas’ runs.

Just like in the axisymmetric models, the dark matter parameters are much

better constrained when we include Vc,HI as a constraint on the total gravitational

potential. The result from the axisymmetric model of a cored dark matter halo

remains robust under the spherical Jeans model, which derives a � of 0.37+0.11
�0.14 in

the ‘Stars + Gas’ case. Although �� is poorly constrained in both the ‘Stars only’

and the ‘Stars + Gas’ cases, it is confirmed here that the stars have a tangential

velocity anisotropy, with ��(= �r) being highly negative (�1.67+1.03
�1.66 in the ‘Stars +

Gas’ case), just as we find from our discrete JAM models. There is no significant

improvement in the constraint on stellar velocity anisotropy by including Vc,HI,

rea�rming our interpretation that the improvement of the constraint of �z in the

axisymmetric models when including Vc,HI comes mainly from breaking the qDM � �

degeneracy.

1Under spherical symmetry, this would correspond to the radial anisotropy parameter defined in
Section 3.4.2: �r = �� = �✓.
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Figure B.4: Marginalised parameters from the spherical Jeans models, adopting the ‘Rexp’

profile as the surface density profile of the kinematic tracer: the dynamical parameters

��, and the dark matter parametersrs, � and ⇢s. Black contours show the marginalised

parameter values with Jeans models performed on stellar kinematics only. Red contours

show the ones constrained by using Vc derived from HI kinematics as a prior.
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B.2.1 Multi-population spherical Jeans models

It has been shown that the stellar velocity anisotropy depends on their metallicity,

and by separating the stars into a metal-rich and a metal-poor population one can

obtain a better constrain on the velocity anisotropy (e.g. Battaglia et al. 2006, 2011).

We test here whether we can obtain an even better constrain by adding the Vc,HI

constrain to the multi-population models.

Leaman et al. (2009) have shown that the metal-rich and metal-poor populations

in WLM share similar spatial distributions. Here we instead separate the stars into

three populations by their ages and characterise their spatial distributions with

density profiles from C and RGB stars. The C stars profile is used for the young

population (<2Gyr), the RGB stars profile used for the middle (2-10Gyr) and old

populations (>10Gyr). We adopt here the ‘Rexp’ and ‘Cexp’ (an exponential fit to

the C stars profile neglecting the inner 20 for which the fitted MGE parameters are

listed in Table B.4) profiles which avoid issues with over-crowding of stars at the

center of the galaxy. We then fit MGEs to the derived exponential profiles. The

MGE fittings are shown in Figure B.1 in red for the RGB stars and blue for the C

stars. The Vmean, � and VRMS for the young, middle and old populations are shown

in Figure B.3 in blue, green and red respectively. The free parameters here are the

velocity anisotropies for the young, middle and old age populations: ��,y, ��,m and

��,o, and the dark matter parameters �, rs and ⇢s.

The constrained parameters are plotted in Figure B.5, again with black

showing the ‘Stars only’ case and red the ‘Stars + Gas’ case. Compared to

the single-population models, only the middle-aged population shows a better

constrained ��,m of 0.13+0.48
�1.19, while both the young- and old-aged populations show

similar �� of ��,y = �1.16+1.06
�1.82 and ��,o = �1.15+1.34

�1.81. The derived inner slope of the

DM halo in the ‘Stars + Gas’ case is 0.29± 0.12, again rea�rming the cored density

profile.
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Figure B.5: Marginalised parameters from the spherical Jeans models: the velocity

anisotropy for the young (��,y), middle-aged (��,m) and old population (��,o), and the

dark matter parametersrs, � and ⇢s. Black contours show the marginalised parameter val-

ues with Jeans models performed on stellar kinematics only. Red contours show the ones

constrained by using Vc derived from HI kinematics as a prior.
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791, L16

Governato, F., Brook, C., Mayer, L., et al. 2010, Nature, 463, 203

226



REFERENCES

Governato, F., Zolotov, A., Pontzen, A., et al. 2012, MNRAS, 422, 1231

Greco, C., Clementini, G., Catelan, M., et al. 2007, ApJ, 670, 332

Hansen, S. H., Egli, D., Hollenstein, L., & Salzmann, C. 2005, , 10, 379

Harris, J., & Zaritsky, D. 2006, AJ, 131, 2514

Hasselquist, S., Carlin, J. L., Holtzman, J. A., et al. 2019, ApJ, 872, 58

Hernandez, X., & Gilmore, G. 1998, MNRAS, 297, 517

Hetznecker, H., & Burkert, A. 2006, MNRAS, 370, 1905

Hidalgo, S. L. 2011, in EAS Publications Series, Vol. 48, EAS Publications Series,

ed. M. Koleva, P. Prugniel, & I. Vauglin, 37–42

Hinz, J. L., Rix, H.-W., & Bernstein, G. M. 2001, AJ, 121, 683

Hubble, E. 1923, PASP, 35, 261

—. 1926a, Contributions from the Mount Wilson Observatory / Carnegie

Institution of Washington, 310, 1

—. 1926b, Contributions from the Mount Wilson Observatory / Carnegie

Institution of Washington, 324, 1

Hubble, E. P. 1929, ApJ, 69, doi:10.1086/143167

Hui, L., Ostriker, J. P., Tremaine, S., & Witten, E. 2017, Phys. Rev. D, 95, 043541

Hunter, D. A., Rubin, V. C., Swaters, R. A., Sparke, L. S., & Levine, S. E. 2002,

ApJ, 580, 194

Hunter, D. A., Zahedy, F., Bowsher, E. C., et al. 2011, AJ, 142, 173

Hurley, J. R., & Shara, M. M. 2012, MNRAS, 425, 2872

Inoue, S. 2009, MNRAS, 397, 709

—. 2011, MNRAS, 416, 1181

Iorio, G., Fraternali, F., Nipoti, C., et al. 2017, MNRAS, 466, 4159

Jackson, D. C., Skillman, E. D., Gehrz, R. D., Polomski, E., & Woodward, C. E.

2007, ApJ, 656, 818

Jeans, J. H. 1922, MNRAS, 82, 122

227



REFERENCES

Jenkins, A., Frenk, C. S., White, S. D. M., et al. 2001, MNRAS, 321, 372

Johnson, M., Hunter, D. A., Oh, S.-H., et al. 2012, AJ, 144, 152

Kacharov, N., Battaglia, G., Rejkuba, M., et al. 2017, MNRAS, 466, 2006

Kalinova, V., van de Ven, G., Lyubenova, M., et al. 2017, MNRAS, 464, 1903

Kamada, A., Kaplinghat, M., Pace, A. B., & Yu, H.-B. 2017, Physical Review

Letters, 119, 111102

Kaplinghat, M., Tulin, S., & Yu, H.-B. 2016, Physical Review Letters, 116, 041302

Kassin, S. A., Weiner, B. J., Faber, S. M., et al. 2012, ApJ, 758, 106

Katz, H., Lelli, F., McGaugh, S. S., et al. 2017, MNRAS, 466, 1648

Kaufmann, T., Wheeler, C., & Bullock, J. S. 2007, MNRAS, 382, 1187

Kent, S. M., & de Zeeuw, T. 1991, AJ, 102, 1994

Kepley, A. A., Wilcots, E. M., Hunter, D. A., & Nordgren, T. 2007, AJ, 133, 2242
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Krajnović, D., Cappellari, M., de Zeeuw, P. T., & Copin, Y. 2006, MNRAS, 366,

787

Kruijssen, J. M. D. 2015, MNRAS, 454, 1658

Krumholz, M., & Burkert, A. 2010, ApJ, 724, 895

Krumholz, M. R., & McKee, C. F. 2005, ApJ, 630, 250

Kuhlen, M., Weiner, N., Diemand, J., et al. 2010, , 2, 030

Lacey, C., & Cole, S. 1993, MNRAS, 262, 627

Lacey, C. G. 1984, MNRAS, 208, 687

Laine, S., Kenney, J. D. P., Yun, M. S., & Gottesman, S. T. 1999, ApJ, 511, 709

Larsen, S. S., Strader, J., & Brodie, J. P. 2012, A&A, 544, L14

Leaman, R., Cole, A. A., Venn, K. A., et al. 2009, ApJ, 699, 1

Leaman, R., Venn, K. A., Brooks, A. M., et al. 2012, ApJ, 750, 33

—. 2013, ApJ, 767, 131

Leaman, R., Mendel, J. T., Wisnioski, E., et al. 2017, MNRAS, 472, 1879

Leauthaud, A., Tinker, J., Bundy, K., et al. 2012, ApJ, 744, 159

Lelli, F., Fraternali, F., & Sancisi, R. 2010, A&A, 516, A11

Lelli, F., McGaugh, S. S., Schombert, J. M., Desmond, H., & Katz, H. 2019,

MNRAS, 484, 3267

Leung, G. Y. C., Leaman, R., van de Ven, G., et al. 2018, MNRAS, 477, 254

Levy, R. C., Bolatto, A. D., Teuben, P., et al. 2018, ApJ, 860, 92

Lima Neto, G. B., Gerbal, D., & Márquez, I. 1999, MNRAS, 309, 481

Loebman, S. R., Valluri, M., Hattori, K., et al. 2018, ApJ, 853, 196

 Lokas, E. L. 2009, MNRAS, 394, L102

 Lokas, E. L., Kazantzidis, S., Klimentowski, J., Mayer, L., & Callegari, S. 2010,

ApJ, 708, 1032

Long, R. J., & Mao, S. 2010, MNRAS, 405, 301

229



REFERENCES

Lovell, M. R., Frenk, C. S., Eke, V. R., et al. 2014, MNRAS, 439, 300

Lux, H., Read, J. I., & Lake, G. 2010, MNRAS, 406, 2312
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Walker, M. G., & Peñarrubia, J. 2011, ApJ, 742, 20

Wang, M.-Y., Koposov, S., Drlica-Wagner, A., et al. 2019, arXiv e-prints,

arXiv:1902.04589

234



REFERENCES

Warren, M. S., Quinn, P. J., Salmon, J. K., & Zurek, W. H. 1992, ApJ, 399, 405

Weijmans, A.-M., Krajnović, D., van de Ven, G., et al. 2008, MNRAS, 383, 1343

Weiner, B. J., Willmer, C. N. A., Faber, S. M., et al. 2006, ApJ, 653, 1027

Weisz, D. R., Dolphin, A. E., Skillman, E. D., et al. 2014, ApJ, 789, 147

Wetzel, A. R., Cohn, J. D., & White, M. 2009, MNRAS, 395, 1376

Wetzel, A. R., Deason, A. J., & Garrison-Kimmel, S. 2015, ApJ, 807, 49

Wheeler, C., Pace, A. B., Bullock, J. S., et al. 2017, MNRAS, 465, 2420

White, S. D. M. 1984, ApJ, 286, 38

Whiting, A. B., Hau, G. K. T., & Irwin, M. 1999, AJ, 118, 2767

Wielen, R. 1977, A&A, 60, 263

Wisnioski, E., Förster Schreiber, N. M., Wuyts, S., et al. 2015, ApJ, 799, 209

Wolf, J. 2010, Highlights of Astronomy, 15, 79

Wolf, M. 1910, Astronomische Nachrichten, 183, 137

Wong, T., Blitz, L., & Bosma, A. 2004, ApJ, 605, 183

Yu, J., & Liu, C. 2018, MNRAS, 475, 1093

Zavala, J., Jing, Y. P., Faltenbacher, A., et al. 2009, ApJ, 700, 1779

Zhao, H. 1996, MNRAS, 278, 488

Zhu, L., van de Ven, G., Watkins, L. L., & Posti, L. 2016, MNRAS, 463, 1117

Zhu, L., Long, R. J., Mao, S., et al. 2014, ApJ, 792, 59

Zhu, L., van den Bosch, R., van de Ven, G., et al. 2018a, MNRAS, 473, 3000

Zhu, L., van de Ven, G., Bosch, R. v. d., et al. 2018b, Nature Astronomy, 2, 233

Zhuang, Y., Leaman, R., van de Ven, G., et al. 2019, MNRAS, 483, 1862

Zolotov, A., Brooks, A. M., Willman, B., et al. 2012, ApJ, 761, 71

Zwaan, M. A., Meyer, M. J., & Staveley-Smith, L. 2010, MNRAS, 403, 1969

235


