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Zusammenfassung 
 

Hutchinson-Gilford Progeria Syndrome (HGPS) ist eine seltene genetische Erkrankung, in der 

typischerweise altersassoziierte Symptome wie Arthritis, Lipodystrophie und Arteriosklerose 

bereits in jungem Alter auftreten. Zellen von HGPS Patienten exprimieren eine mutante Version 

des nukleären Hüllenproteins Lamin A, besser bekannt als Progerin. Gleichzeitig zeigen diese 

Zellen charakteristische Veränderungen an Histonmodifikationen, jedoch ist unklar, ob und 

inwieweit selbige einen Einfluss auf die Chromatinzugänglichkeit, DNA Methylierung sowie 

Genexpression in betroffenen Zellen haben. 

In der vorliegenden Arbeit wurden epigenetische Veränderungen in primären Hautfibroblasten 

von HGPS Patienten mittels ‘Assay for Transposase-Accessible Chromatin using Sequencing’ 

(ATAC-seq), DNA Methylierunsanalysen und ‘DNA Adenine Methyltransferase Identification 

using Sequencing’ (Dam ID-seq) untersucht. Die Ergebnisse dieser Experimente zeigen, dass 

HGPS-spezifische Chromatinzugänglichkeits- und DNA Methylierungsveränderungen in so 

genannten ‚Lamina-assoziierten Domänen’ (LADs), d.h. Genomregionen, welche in Kontakt mit 

der nukleären Lamina sind, angereichert vorkommen. Eine mechanistische Erklärung für diese 

Beobachtung lieferten gleichzeitige Veränderungen in der Lamin A-assoziierten LAD 

Landschaft, welche, in Kombination mit der epigenetischen Deregulierung der LADs, zur 

krankheitsspezifischen Genexpression von HGPS Fibroblasten beitragen. Unabhängig davon 

ließen sich die untersuchten Zellen anhand ihrer DNA Methylierungsprofile in zwei Subgruppen 

unterteilen, wovon eine ein im Durchschnitt rund ∼ 10 Jahre höheres epigenetisches Alter als 

das durchschnittliche chronologische Alter aufwies. Dies lässt darauf schließen, dass zumindest 

in einem Teil von HGPS Patienten Merkmale eines fortgeschrittenen Alters auch auf 

epigenetischer Ebene manifestiert sind. 

Zusammengenommen identifizieren die hierin gemachten Beobachtungen die epigenetische 

Deregulierung von LADs als ein kritisches und zuvor unerkanntes Merkmal von HGPS Zellen, 

welches einen Einfluss auf die krankheitsspezifische Genexpression hat. Daher erweitern diese 

die Forschung an dem Alterssyndrom nicht nur um eine neue epigenetische Komponente, 

sondern verbessern gleichzeitig unser Verständnis der ihm zugrundeliegenden molekularen 

Mechanismen.   
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Abstract 
 

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic disorder characterized by the 

onset of some age-related phenotypes including arthritis, lipodystrophy and atherosclerosis at a 

very early age. Cells from HGPS patients express a mutant version of the nuclear envelope 

component Lamin A (termed Progerin) and have previously been reported to exhibit 

characteristic histone modification changes. However, how these alterations affect the 

landscape of chromatin accessibility and global DNA methylation patterns or whether they are 

linked to disease-specific gene expression changes, is still unknown. 

In this work, HGPS-specific epigenetic changes were analyzed in primary dermal fibroblasts 

using ‘Assay for Transposase-Accessible Chromatin using Sequencing’ (ATAC-seq), DNA 

methylation profiling and ‘DNA Adenine Methyltransferase Identification using Sequencing’ 

(Dam ID-seq). Importantly, HGPS cells exhibited chromatin accessibility and DNA methylation 

alterations enriched in lamina-associated domains (LADs). Strikingly, the epigenetic 

deregulation of LADs corresponded to changes in the Lamin A-associated LAD landscape in 

HGPS fibroblasts, thus yielding a mechanistic explanation for the observed dynamics. By 

integrating RNA-sequencing data into the analysis, both the epigenetic deregulation of LADs 

and the HGPS-specific changes in the LAD interactome were found to contribute to the 

pathological gene expression signature of patient fibroblasts. Independently of this, HGPS 

patients could be stratified into two subgroups based on their DNA methylation profiles, with one 

subgroup revealing an average epigenetic age acceleration of ∼ 10 years. This confirms that at 

least in a subset of HGPS patients, characteristics of an advanced age are also manifested at 

the epigenetic level. 

Taken together, the findings made herein identify the epigenetic deregulation of LADs as a 

critical and previously unrecognized feature of HGPS that is associated with disease-related 

gene expression patterns. Hence, they not only add a novel layer to the study of epigenetic 

changes in the progeroid disease but also significantly advance our understanding of its 

molecular pathology. 
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1. Introduction  

1.1. Epigenetic changes are a hallmark of aging 
 

The process of aging is characterized by a continuous loss of function at the cellular, tissue 

and organismal level. Epigenetic changes represent one of the hallmarks of this process 

(López-Otín et al., 2013). They involve molecular alterations that are not encoded in the 

underlying genomic sequence but instead control gene expression ‘epi-‘ genetically, i.e. 'on top 

of’ the level of the DNA. A cell's epigenome is much more dynamic than the more static 

genome; in fact, epigenetic changes can occur in response to external stimuli, allowing the 

organism to adapt to a changing environment. As such, the epigenome needs to be stringently 

controlled and demands a sophisticated regulatory landscape, which involves DNA methylation, 

post-translational modifications of histones, chromatin remodeling and non-coding RNAs 

(ncRNAs). During aging, this multilayered regulatory system is subject to a loss of fidelity and 

functional decline, culminating in altered gene expression, the activation of transposable 

elements and genomic instability. 

 

1.1.1. DNA methylation dynamics during aging 

DNA methylation involves the transfer of a methyl group from the donor S-

adenosylmethyonine to the 5' position of a cytosine, creating 5-methylcytosine. In mammals, 

this reaction is catalyzed by the activity of the DNA methyltransferases (DNMTs) DNMT1, 

DNMT3A and DNMT3B, and occurs predominantly in the context of CpG dinucleotides (Bird, 

2002; Lyko, 2018). 28 million CpGs are present in the human genome, 60-80 % of which are 

methylated in somatic cells (Smith and Meissner, 2013). The remaining 20-40 % are frequently 

clustered in regions known as CpG islands, which are often found in or close to regulatory 

elements (Deaton and Bird, 2011). Historically, the presence of the modification has been linked 

to the suppression of transposable elements, X-chromosome inactivation, genomic imprinting 

and heterochromatin formation (Li, Beard and Jaenisch, 1993; Singer-Sam J, 1993; Jones and 

Takai, 2001; Smith and Meissner, 2013; Rose and Klose, 2014). However, more recent data 

suggest that it also has a role in transcriptional regulation, marking regions of active gene 

expression and preventing aberrant transcription initiation (Baubec et al., 2015; Neri et al., 

2017). 
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DNA methylomes become more divergent with age (Fraga et al., 2005; Heyn et al., 2012; 

Bormann et al., 2016). This process includes the accumulation of stochastic changes, 

commonly referred to as epigenetic drift, as well as the occurrence of more directional 

alterations (Figure 1) (Horvath, 2013; Teschendorff, West and Beck, 2013; Issa, 2014; Zampieri 

et al., 2015). For example, in various aging mammalian cells and tissues, DNA methylation 

levels tend to decline at megabase scale in AT-rich, lamina-associated genomic regions (Heyn 

et al., 2012; Pérez et al., 2018; Zhou et al., 2018). This hypomethylation also occurs at repetitive 

sequences like Alu elements, possibly contributing to increased genomic instability (Figure 1) 

(Bollati et al., 2009; Jintaridth and Mutirangura, 2010; Zampieri et al., 2015). In addition, aging 

DNA methylomes are frequently characterized by site-specific DNA hypermethylation, 

Figure 1: DNA methylation changes occurring during aging. Mammalian DNA methylomes 
become more divergent with age. This process includes stochastic changes (referred to as 
‘epigenetic drift’) as well as more directional ones. Hypomethylation occurs at lamina-
associated domains (LADs) and repetitive sequences like transposable elements, whereas 
promoter-associated CpG islands frequently gain DNA methylation, thus silencing gene 
expression. Many of the underlying dynamics can be tracked with recently developed 
epigenetic age predictors, which use the methylation status of a selected number of ‘clock 
CpGs’. Adapted from Köhler and Rodriguez-Paredes, 2019. meth. = methylation. 
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predominantly at promoter-associated CpG islands (Figure 1) (Heyn et al., 2012; Yuan et al., 

2015). Interestingly, both large-scale DNA hypomethylation, as well as localized 

hypermethylation are also observed in many cancer cells, thus underscoring the intricate 

relationship between aging and tumorigenesis (Lister et al., 2009; Hansen et al., 2011; Pérez et 

al., 2018; Rodríguez-Paredes et al., 2018).  

Some of these age-associated changes can be tracked by so-called DNA methylation clocks. 

Using the methylation status of a few hundred CpGs, these algorithms predict the epigenetic 

age for a variety of tissues and organisms with high accuracy (Hannum et al., 2013; Horvath, 

2013; Stubbs et al., 2017; Thompson et al., 2017; Horvath et al., 2018). The original pan-tissue 

predictor, for instance, used the methylation status of 353 human CpGs for the estimation of a 

DNA methylation age with an average error of 3.6 years (Horvath, 2013). Based on deviations 

between chronological and DNA methylation age, this and other clocks also yield information 

about the biological age of a tissue or individual, allowing the identification of an advanced or 

decelerated aging process (Field et al., 2018; Horvath and Raj, 2018). An age acceleration has, 

for example, been reported in Alzheimer’s disease, ‘human immunodeficiency virus’ (HIV) 

infection or obesity, while an age deceleration is a characteristic of many cancers (Horvath et 

al., 2014; Horvath and Levine, 2015; Quach et al., 2017; Rodríguez-Paredes et al., 2018). At the 

same time, an accelerated DNA methylation clock is associated with an increased risk of 

cancer, cardiovascular disease and all-cause mortality (Marioni et al., 2015; Christiansen et al., 

2016; Zheng et al., 2016; Ambatipudi et al., 2017; Durso et al., 2017). Importantly, the dynamics 

underlying these changes are not restricted to the relatively small sets of CpGs selected to yield 

the most accurate age prediction but instead reflect broader trends in the DNA methylome 

affecting thousands of candidate clock sites (Figure 1) (Wang et al., 2017; Field et al., 2018; 

Horvath and Raj, 2018).  As such, they likely represent a part of a more general aging signature, 

which also involves other layers of the epigenome (Booth and Brunet, 2016; Horvath and Raj, 

2018).  

 
 

1.1.2. Chromatin alterations during aging 

One of these additional epigenomic layers is the functional organization of chromatin. 

Structurally, chromatin is composed of nucleosomes, which are formed by 147 base pairs of 

DNA wrapped around an octamer of core histones containing dimers of each of the four histone 

proteins H2A, H2B, H3 and H4 (Kornberg, 1974; Luger et al., 1997). Additional components like 

the linker histone H1 or the ‘Heterochromatin Protein 1’ (HP1) facilitate the formation of higher-
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order structures and the condensation into inaccessible heterochromatin (Maison and Almouzni, 

2004; Hergeth and Schneider, 2015). In contrast to the highly accessible euchromatic parts of 

the genome, repressive heterochromatic regions ensure the silencing of genes and 

transposable elements, the 3D organization of the genome and the suppression of 

recombination (Grewal and Jia, 2007; van Steensel and Belmont, 2017; Allshire and Madhani, 

2018). The condensation of chromatin is also facilitated or impeded by post-translational 

modifications on protruding amino (N)-terminal histone tails. Most prominently, methylation of 

lysine 9 and 27 on histone H3 (H3K9me2/3 and H3K27me3, respectively), and methylation of 

lysine 20 on histone H4 (H4K20me3) are associated with a heterochromatic status (Black, 

Van Rechem and Whetstine, 2012; Hyun et al., 2017; Wiles and Selker, 2017). On the other 

hand, methylation of lysine 4, 36 and 79 (H3K4me3, H3K36me3 and H3K79me2/3, 

respectively), as well as acetylation of lysine 27 (H3K27ac), on histone H3 are related to 

accessible, transcriptionally active chromatin or active enhancers (Creyghton et al., 2010; 

Wagner and Carpenter, 2012; Farooq et al., 2016; Hyun et al., 2017). 

Many of these chromatin marks undergo profound changes in aging cells. Diminishing levels 

of core histone proteins, for example, are a conserved feature of cellular aging that has been 

observed in yeast, worms and human primary fibroblasts (Feser et al., 2010; O’Sullivan et al., 

2010; Ni et al., 2012). Furthermore, histone modifications are subject to age-associated 

alterations, as the function and abundance of the underlying enzymes change. Levels of the 

H4K16ac, a modification associated with open chromatin and transcription (Verdone, Caserta 

and Mauro, 2005; Zhang, Erler and Langowski, 2017), increase during cellular aging of yeast 

and human fibroblasts, whereas levels of H3K56ac, a marker of elevated nucleosome turnover 

(Li et al., 2008), decrease (Dang et al., 2009; O’Sullivan et al., 2010). These dynamics have 

been identified as drivers of cellular aging in yeast (O’Sullivan et al., 2010; Pal and Tyler, 2016). 

Consistently, restoring the activity of sirtuins, a conserved class of histone deacetylases, 

through chemical interventions or caloric restriction is associated with health- and lifespan 

extension in mammalian cells (Cantó and Auwerx, 2009; Giblin, Skinner and Lombard, 2014; 

Bonkowski and Sinclair, 2016). Age-related trends in the level of histone methylation primarily 

involve the loss of heterochromatic marks (Booth and Brunet, 2016). H3K9me3 levels are 

reduced in aging invertebrates, as well as in dermal fibroblasts from aged human donors and in 

mesenchymal stem cells (MSCs) from the premature aging disease Werner syndrome (Scaffidi 

and Misteli, 2006; Wood et al., 2010; Ni et al., 2012; Zhang et al., 2015). Depletion of H3K9me3 

in these cells is frequently accompanied by a loss of the alpha and gamma isoforms of HP1 

(Scaffidi and Misteli, 2006; Benayoun, Pollina and Brunet, 2015; Zhang et al., 2015), which is 
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unsurprising, given the close interaction between the two heterochromatic marks (Lehnertz et 

al., 2003; Watanabe et al., 2018). Similarly, large-scale losses of H3K27me3 occur in senescent 

fibroblasts (Shah et al., 2013), although in aging non-senescent hematopoietic stem cells these 

changes appear to be context-dependent (Sun et al., 2014). Together, these alterations are part 

of a more global redistribution of heterochromatin in aging and senescence (Tsurumi and Li, 

2012; Sun et al., 2018). However, age-related histone modification changes also include the 

active chromatin marks H3K4me3 and H3K36me3. H3K4me3 shows distinct deposition patterns 

in aging murine hematopoietic stem cells and senescent human fibroblasts (Shah et al., 2013; 

Sun et al., 2014), while loss of H3K36me3 in yeast and worms is correlated with diminished 

transcriptional fidelity and shorter lifespan (Pu et al., 2015; Sen et al., 2015). These examples 

represent only a minuscule fraction of the age-associated histone modification changes that 

have been identified in model organisms to date and that will likely be discovered in the future. 

In sum, they underlie the functional disorganization of chromatin observed during aging and 

contribute to the deregulation of transcriptional programs characteristic of aged cells (Sen et al., 

2016).  

 

1.2. The nuclear lamina - a fibrous layer with complex functions 
 

Metazoan nuclear envelopes are composed of an inner nuclear membrane, a 40-50 

nanometer (nm) perinuclear space spanned by nuclear pore complexes, and an outer nuclear 

membrane (Grossman, Medalia and Zwerger, 2012; Burke and Stewart, 2013). Whereas the 

outer nuclear membrane connects the nucleus with the endoplasmic reticulum, the inner nuclear 

membrane is lined at its nuclear face by a thin protein network called the nuclear lamina 

(Fawcett, 1966; Gerace and Huber, 2012; Burke and Stewart, 2013).  

 

1.2.1. Structure and function of the nuclear lamina 

The nuclear lamina is a fibrous meshwork, whose main components are type V intermediate 

filament proteins called lamins (Fawcett, 1966; Parry, Conway and Steinert, 1986). These 

proteins contain a central α-helical rod domain flanked by a short (~ 30 amino acids) N-terminal 

and a long (185-277 amino acids) carboxy (C)-terminal globular domain, the latter of which 

includes a immunoglobulin-like fold (Fisher, Chaudhary and Blobel, 1986; Dhe-Paganon et al., 

2002; Capell and Collins, 2006). In solution, lamin monomers form parallel homodimers, which 

further assemble into head-to-tail polymers in a partly staggered fashion to form ~ 3.5 nm thick 
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filaments (Figure 2A) (Stuurman, Heins and Aebi, 1998; Ben-Harush et al., 2009; Turgay et al., 

2017). 

Two types of lamins have been identified in mammalian nuclei, A- and B-type lamins (Peter et 

al., 1989; Vorburger et al., 1989). In human cells, a single gene, LMNA, encodes the A-type 

lamins Lamin A, Lamin AΔ10, Lamin C and Lamin C2. An alternative splice site in intron 10 

generates Lamin C, which is produced in similar amounts as Lamin A (Lin and Worman, 1993; 

Capell and Collins, 2006).  The expression of Lamin C2 is restricted to testis, while Lamin ΑΔ10, 

generated through the deletion of exon 10, has only been found in cells from colon, lung and 

breast carcinomas (Machiels et al., 1996; Hutchison, 2002). 

The B-type lamins Lamin B1 and B2, on the other hand, are encoded by LMNB1 and LMNB2, 

respectively, with the latter coding for an additional, testis-specific variant (Lamin B3) through 

alternative splicing (Peter et al., 1989; Vorburger et al., 1989; Furukawa and Hotta, 1993; Lin F 

and Worman HJ, 1995).  

Interestingly, A- and B-type lamins are not equally expressed throughout development. That is,  

early mouse embryonic cells express B-type but not A-type lamins, the latter of which do not 

emerge until the appearance of differentiated tissues (Stewart and Burke, 1987; Rober, Weber 

and Osborn, 1989). From the above observation, as well as knock-down studies in cultured 

mammalian cells, it was initially concluded that B-type lamins represent essential cellular 

factors, while A-type lamins might be dispensable (Stewart and Burke, 1987; Harborth et al., 

2001). However, mice lacking Lmnb1 and Lmnb2 were later reported to survive until birth, 

suggesting that B-type lamins are not essential during embryonic development, although their 

absence leads to postnatal defects, especially in neuronal lineages (Kim et al., 2011; Yang et 

al., 2011). At the tissue level, Lamin A and C are present in differentiated somatic cells but 

absent from certain cells of the hematopoietic system, embryonic stem cells (ESCs) and 

induced pluripotent stem cells (iPSCs) (Rober et al., 1990; Constantinescu et al., 2006; Dechat 

et al., 2008; Liu et al., 2011). Conversely, B-type lamins are expressed in all nucleated cell 

types but become downregulated during replicative and oncogene-induced senescence (Shimi 

et al., 2011; Freund et al., 2012; Burke and Stewart, 2013).  

High-resolution microscopy studies have revealed that A- and B-type lamins are similar with 

respect to their structural assembly but that they form separate meshworks at the nuclear rim 

(Goldberg et al., 2008; Shimi et al., 2015; Turgay et al., 2017). More specifically, the ~ 3.5 nm 

thick polymers form distinct meshworks containing filaments of different length and regions of 

varying density (Figure 2B) (Turgay et al., 2017). Furthermore, there is evidence that both lamin 

meshworks interact and influence each other’s organization, although they may serve different 
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structural functions (Dechat et al., 2008; Guo et al., 2014; Shimi et al., 2015). Loss of Lamin A/C 

renders nuclei more sensitive to mechanical stress, which is why it has been suggested that A-

type lamins are responsible for the stiffness of the nucleus (Sullivan et al., 1999; Lammerding et 

al., 2006; Swift et al., 2013). The structural role of B-type lamins, in contrast, is less well defined, 

but they are likely to contribute to the elasticity of the nuclear envelope (Swift and Discher, 

2014; Osmanagic-Myers, Dechat and Foisner, 2015). Intriguingly, there is an additional, highly 

dynamic fraction of A-type lamins in the nuclear interior (Dechat, Gesson and Foisner, 2010). 

Initially considered as a transient, non-assembled pool, it has more recently been linked to 

functions fundamentally distinct from the mechanical role at the nuclear periphery, including 

transcriptional signaling and higher-order chromatin organization (Dechat, Gesson and Foisner, 

2010; Gesson, Vidak and Foisner, 2014; Naetar, Ferraioli and Foisner, 2017). 

Aside from their role as structural building blocks, lamins participate in multiple nuclear 

processes including DNA replication, transcription, DNA repair and chromatin organization 

(Dechat et al., 2008; Burke and Stewart, 2013; de Leeuw, Gruenbaum and Medalia, 2018). B-

type lamins, for example, assemble into a matrix-like network during mitosis, ensuring proper 

microtubule and spindle assembly (Tsai et al., 2006). At the same time, an intact Lamin B1 

nucleoskeleton is essential for the maintenance of RNA Polymerase II-dependent transcription 

Figure 2: A-type lamin filament structure and assembly. (A) Cryo-electron tomography-
based model of lamin filament assembly showing 3.5 nm rod filament (grey) and lateral globular 
domains (red). Adapted from Turgay et al., 2017. (B) Cryo-electron tomography-based model of 
lamin meshwork at the nuclear envelope. Lamin filaments (as shown in (A), in dark grey) 
assemble into a thin fibrous meshwork at face of the inner nuclear membrane. The outer and 
inner nuclear membrane (transparent grey layers) are permeated by nuclear pore complexes 
(blue). Adapted from Turgay et al., 2017.  
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(Dechat et al., 2008; Tang et al., 2008). A-type lamins also regulate transcription, as 

transcription factors such as the activating protein 1 (AP1) family member c-Fos, retinoblastoma 

protein (pRb), and sterol regulatory element-binding protein 1 (SREBP1) colocalize with Lamin 

A/C at the nuclear lamina (Johnson et al., 2004; Capanni et al., 2005; Ivorra et al., 2006; 

Heessen and Fornerod, 2007). Moreover, genome integrity is dependent on functional lamins, 

as they stabilize telomeres and regulate the DNA damage response by interacting with DNA 

repair factors like ‘TP53 binding protein 1’ (53BP1) (Gonzalo, 2014; Gibbs-Seymour et al., 2015; 

Gonzalo and Eissenberg, 2016). Finally, by binding directly and indirectly to chromatin, they 

exert a central role in chromosome organization inside the nucleus (Dechat et al., 2008; Dechat, 

Adam and Goldman, 2009).   

 

1.2.2. The role of the nuclear lamina in epigenetic regulation 

Lamins directly and indirectly tether chromatin to the nuclear envelope. The observation that 

human A- and B-type lamins interact with DNA in vitro (Shoeman and Traub, 1990; Gruenbaum 

and Foisner, 2015), led to the belief that lamins directly sequester chromatin to the nuclear 

periphery. This view is supported by findings in Drosophila cells, where multiple genes become 

detached from the nuclear lamina in response to the depletion of a single B-type lamin 

(Shevelyov et al., 2009; Kohwi et al., 2013), and in C.elegans, where a transgene array can be 

sequestered to the nuclear lamina by the only lamin, LMN-1 (Mattout et al., 2011). It was later 

demonstrated that in mammalian cells, peripheral heterochromatin is anchored at the nuclear 

envelope through a Lamin A/C-dependent mechanism but is complemented by a ‘Lamin B 

receptor’ (LBR)-dependent one (Yokochi et al., 2009; Kind et al., 2013; Solovei et al., 2013). 

This redundancy likely explains, why a depletion of all lamins does not significantly alter the 

landscape of lamina-located genomic loci or the expression of lamina-associated genes in 

mouse embryonic stem cells (Amendola and van Steensel, 2015; Zheng, Kim and Zheng, 2015; 

Zheng et al., 2018). In fact, in addition to LBR, several non-lamin proteins, including ‘Barrier-to-

autointegration’ (BAF), the nuclear lamina component ‘Proline-rich 14’ (PRR14) and the 

transmembrane protein emerin, have been reported to contribute to chromatin tethering to the 

nuclear envelope (Berk, Tifft and Wilson, 2013; Poleshko et al., 2013; Amendola and van 

Steensel, 2015; Jamin and Wiebe, 2015; Zheng, Kim and Zheng, 2015). 

Crucially, heterochromatin plays a central role in directing DNA to the nuclear lamina. Both 

PRR14 and LBR bind to HP1 (Olins et al., 2010; Poleshko et al., 2013), a heterochromatin mark 

known to be associated with H3K9me2/3 (Bannister et al., 2001; Lachner et al., 2001). In line 

with this, depletion of ‘Suppressor Of Variegation 3-9 Homolog 1/2’ (SUV39H1/2) and 
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‘Euchromatic Histone Lysine Methyltransferase 2’ (EHMT2/G9A), the enzymes that catalyze 

methylation of H3K9, relaxes or abolishes chromatin-lamina interactions, indicating that 

methylation of this histone mark is critical for lamina binding (Pinheiro et al., 2012; Bian et al., 

2013; Kind et al., 2013; Harr et al., 2015). Likewise, the heterochromatic histone marks 

H3K27me3 and H4K20me3 have been reported to be involved in lamina tethering, although 

their role remains less well defined (Olins et al., 2010; Harr et al., 2015). It is important to note, 

however, that lamins can also interact with euchromatin, as the nucleoplasmic fraction of Lamin 

A/C associates with euchromatic regions through an interaction with ‘Lamina-associated 

polypeptide 2α’ (LAP2α) (Gesson et al., 2016). 

Genomic regions in contact with the nuclear lamina are known as ‘Lamina-associated 

domains’ (LADs) (Figure 3). Mammalian nuclei contain between 1,000 and 1,500 of such 

domains, typically 10 kb - 10 Mb in size (van Steensel and Belmont, 2017). In some human and 

murine cell types, they can constitute up to one-third of the genome, thus making them an 

important characteristic of mammalian epigenomes (van Steensel and Belmont, 2017). LADs 

are enriched for AT-rich DNA and are characterized by low gene density, low transcriptional 

levels and an enrichment of the heterochromatin marks H3K9me2/3, as well as H3K27me3 at 

their boundaries (Figure 3) (Guelen et al., 2008; Wen et al., 2009; Peric-Hupkes et al., 2010; 

Kind et al., 2013; Harr et al., 2015). Some LADs are conserved between different cell types 

(constitutive LADs), whereas others vary (facultative LADs) (Peric-Hupkes et al., 2010; 

Meuleman et al., 2013). Constitutive LADs are enriched for AT-rich DNA sequences and ‘Long 

interspersed nuclear elements’ (LINEs), and are especially gene-poor (Meuleman et al., 2013; 

van Steensel and Belmont, 2017). Although the underlying DNA sequences differ, the genomic 

position and sizes of constitutive LADs are highly conserved between human and mouse 

genomes (Meuleman et al., 2013), suggesting that they represent a structural backbone 

anchoring chromatin to the nuclear lamina at specific positions (van Steensel and Belmont, 

2017). Facultative LADs, on the other hand, are more gene-dense and less conserved 

(Meuleman et al., 2013). Importantly, many LADs also vary between mother and daughter cells, 

indicating a certain randomization after mitosis (Figure 3) (Kind et al., 2013). In fact, single-cell-

based experiments with human myeloid leukemia cells have revealed that every LAD has a 

specific contact frequency at the nuclear lamina (Kind et al., 2015). One explanation for this 

phenomenon comes from the observation, that LADs partially overlap with nucleoli-associated 

domains and that the two can switch positions after mitosis (van Koningsbruggen et al., 2010; 

Kind et al., 2013; van Steensel and Belmont, 2017). 
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An important question with regard to the LAD interactome is how relative gene positioning 

affects gene expression. While 5-10 % of LAD-related genes are expressed at high levels, the 

large majority of them are transcriptionally silent (Guelen et al., 2008; Peric-Hupkes et al., 

2010). Consistently, genes gaining nuclear lamina contact during differentiation often get 

downregulated, whereas genes released to the nuclear interior become activated (Pickersgill et 

al., 2006; Peric-Hupkes et al., 2010; Lund et al., 2013; Robson et al., 2016). These dynamics 

seem to be dependent on the heterochromatic nature of LADs, as artificial tethering of reporter 

genes to the nuclear lamina results in their downregulation (Akhtar et al., 2013), and depletion 

of H3K9me2 leads to an upregulation of LAD-located genes in mouse embryonic stem cells 

(Yokochi et al., 2009). 

Interestingly, despite their heterochromatic nature, LADs do not contain high levels of cytosine 

methylation. In fact, they largely overlap with ‘Partially methylated domains’ (PMDs), i.e., 

expansive genomic regions with <70 % average methylation, and thus differ strongly from 

‘Highly methylated domains’ (HMDs), which feature >70 % average methylation levels (Lister et 

al., 2009; Schroeder et al., 2011). PMDs have been shown to become hypomethylated as a 

consequence of accumulated cell divisions during cell culture, as well as in aging and cancer 

Figure 3: Schematic model of conserved and variable lamina-associated domains 
(LADs). Genomic regions in contact with the nuclear lamina are enriched for AT-rich DNA 
and are characterized by low gene density, low transcriptional levels and an enrichment of 
the heterochromatin marks H3K9me2/3, as well as H3K27me3 at their boundaries. Some 
LADs are conserved between different cell types, whereas others vary. Additionally, many 
LADs are shuffled between mother and daughter cells, giving each LAD its own contact 
frequency. ONM = outer nuclear membrane, INM = inner nuclear membrane.  
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(Lister et al., 2009; Berman et al., 2012; Salhab et al., 2018; Zhou et al., 2018). This 

phenomenon has been attributed to both their replication late in S-phase and the absence of 

H3K36me3 (Aran et al., 2011; Salhab et al., 2018; Zhou et al., 2018).  

 

1.2.3. Nuclear lamina alterations in aging and disease 

Due to its central role in various cellular processes, it is not surprising that malfunction of the 

nuclear lamina has been associated with a multitude of human disorders, collectively called 

laminopathies. In fact, more than 400 mutations are described for LMNA alone, making it one of 

the genes with the largest known number of disease-causing mutations in the human genome 

(Burke and Stewart, 2013; Briand and Collas, 2018). Diseases involving mutations in this gene 

share an accumulation of symptoms in mesenchymal tissues and comprise forms of 

lipodystrophy, muscular dystrophy, cardiomyopathy and progeria (Dittmer and Misteli, 2011). 

Prominent examples of LMNA-related conditions are atypical Werner syndrome, mandibuloacral 

dysplasia, Emery-Dreifuss muscular dystrophy, restrictive dermopathy and Hutchinson-Gilford 

Progeria Syndrome (Capell and Collins, 2006). 

Significantly less mutations have been reported for B-type lamins, which has been interpreted 

as a reflection of their importance for cell viability (Dittmer and Misteli, 2011). The few known 

laminopathies involving LMNB1/2 mutations include autosomal-dominant leukodystrophy, a 

neurological disorder that is caused by a duplication of LMNB1, and acquired partial 

lipodystrophy, which is driven by a number of rare missense mutations in LMNB2 (Hegele et al., 

2006; Padiath et al., 2006).  

Lamins also play a role in malignancies. In general, an altered nuclear morphology is a 

recognized characteristic of cancer cells and many cancer types show differential expression of 

lamins, although these changes are not unidirectional (Zink, Fischer and Nickerson, 2004; 

Irianto et al., 2016). Instead, they appear to be dependent on the tumor context: whereas higher 

A- and B-type lamin expression confers increased mechanical resistance in solid tumors, their 

downregulation results in lower nuclear rigidity and increased deformability, allowing migrating 

cells to squeeze through interstitial spaces or capillaries (Ho et al., 2012; Irianto et al., 2016; 

Alvarado-Kristensson et al., 2019). Additionally, reduced lamin expression has been associated 

with lower levels of differentiation in tumor cells and poor prognosis (Foster et al., 2010; Chow, 

Factor and Ullman, 2012; Sakthivel and Sehgal, 2016).  

As lamins do not only serve mechanical purposes but also function in chromatin regulation, 

alterations in the LAD structure may also be of crucial importance in aging and disease. For 

example, the hypomethylation of PMDs, overlapping to a large extent with LADs, is a well 
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established characteristic of cancer epigenomes (Salhab et al., 2018; Zhou et al., 2018). Initially 

identified in colon cancer (Berman et al., 2012), PMD hypomethylation has recently been 

demonstrated to represent an almost universal feature of 33 different cancer types, specifically 

in the context of single CpGs that are flanked by an A or T (solo-WCGWs) (Zhou et al., 2018). 

Tracking the mitotic history of a cell or tissue, the trend arises during fetal development, 

becomes more apparent with age, and is thought to allow the mobilization of retrotransposons 

like LINE-1 (Lee et al., 2012; Tubio et al., 2014; Salhab et al., 2018; Zhou et al., 2018). This, in 

turn, can lead to chromosomal aberrations and tumorigenesis (Solyom et al., 2012; Helman et 

al., 2014). A dramatic redistribution of LAD-related heterochromatin is also observed in 

senescent cells, ultimately driving the formation of ‘senescence-associated heterochromatin 

foci’ (SAHF), a prominent senescence marker (Chandra et al., 2015; Lenain et al., 2017). 

Interestingly, whether comparable changes occur in laminopathies, is still an open question. In 

fact, very few studies have investigated the consequences of lamin mutations on the LAD 

interactome to date. Considerable LAD rearrangements have been identified in cells carrying 

LMNA mutations that cause congenital muscle dystrophy, lipodystrophy and Emery-Dreifuss 

muscle dystrophy, respectively (Perovanovic et al., 2016; Barateau et al., 2017; Oldenburg et 

al., 2017). However, the limited availability of data in this field emphasizes the need for further 

studies to help address the question whether similar epigenomic changes occur in progeroid 

diseases or during physiological aging. 

 

1.3. The progeroid disease Hutchinson-Gilford Progeria Syndrome 
(HGPS) 

1.3.1. Background, course and phenotype 

Hutchinson-Gilford Progeria Syndrome (HGPS), first described by Dr. Jonathan Hutchinson in 

1886 and again in more detail in 1897 by Dr. Hastings Gilford (Hutchinson, 1886; Gilford, 1904), 

is a segmental and rare genetic disorder that is characterized by the onset of some age-related 

phenotypes at a very early age (Hennekam, 2006; Merideth et al., 2008). It has been estimated 

to affect between one in four to eight million live births, although newer evidence suggests that 

the actual prevalence might be lower (Hennekam, 2006; The Progeria Research Foundation, 

2019). Worldwide, 350-400 children are thought to live with the disease at any time, with similar 

prevalence in both sexes and all races (The Progeria Research Foundation, 2019). 

HGPS patients usually appear normal at birth and are diagnosed within the first years of life 

owing to a failure to thrive and a loss of subcutaneous fat and hair (Hennekam, 2006). 
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Additional symptoms develop gradually, including a characteristic facial appearance (Figure 4), 

more severe lipodystrophy, loss of muscle mass and the stiffening of joints (Hennekam, 2006; 

Merideth et al., 2008). Premature death occurs at an average age of 14.6 years due to 

progressive atherosclerosis in the vascular system, resulting in an increased risk of myocardial 

infarction and stroke (Hennekam, 2006; Merideth et al., 2008; Hamczyk, del Campo and 

Andrés, 2018). 

Symptoms are generally concentrated in tissues of mesenchymal origin, with adipose tissue, 

bone, cartilage and the cardiovascular system among the most affected. For example, 

osteolysis of the phalanges, clavicles, mandible or cranium is present in almost all patients, as 

are the thinning and drying of skin, causing blood vessels to become prominently visible 

(Hutchinson, 1886; Hennekam, 2006; Merideth et al., 2008). Decreased joint mobility and 

contractures are equally common, resulting in a limited range of motion (Hennekam, 2006; 

Merideth et al., 2008). Some of the most severe disease-associated alterations, however, occur 

in the cardiovascular system. Structural and functional HGPS-specific cardiovascular changes 

include vascular stiffening, calcification and fibrosis, atherosclerosis, ventricular hypertrophy, as 

well as cardiac fibrosis (Merideth et al., 2008; Hamczyk, del Campo and Andrés, 2018). 

Complications arising from these, i.e., myocardial infarctions and intracranial bleeding, are the 

Figure 4: Phenotypic characteristics of Hutchinson-Gilford Progeria Syndrome (HGPS). 
Manifestation of characteristic facial appearance, alopecia and lipodystrophy in an HGPS 
patient (adapted from Hennekam 2006).  
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most common causes of death in HGPS patients (Hennekam, 2006; Hamczyk, del Campo and 

Andrés, 2018). 

Interestingly, cognitive development is unaffected and individuals with HGPS do not suffer 

from neurodegenerative diseases. This may be a consequence of the expression of micro RNA-

9 (miR-9), which specifically represses neuronal expression of Lamin A and Progerin (Nissan et 

al., 2012). Likewise, other typically age-related maladies, such as diabetes, chronic kidney 

failure or malignancies, are rare in classical HGPS patients (Kubben and Misteli, 2017), thus 

underscoring the segmental nature of the disease. 

 

1.3.2. Disease mechanism and molecular characteristics of HGPS cells 

The molecular basis of HGPS remained unknown until 2003, when two research groups 

discovered that the disorder is caused by mutations in the LMNA gene (De Sandre-Giovannoli 

et al., 2003; Eriksson et al., 2003). At least six mutations in the gene can cause HGPS, but 

more than 90 % of patients carry a heterozygous substitution in exon 11 (1824C>T) (De 

Sandre-Giovannoli et al., 2003; Eriksson et al., 2003; Capell and Collins, 2006). The de novo 

mutation alters splicing of the LMNA transcript, resulting in the deletion of 150 base pairs, i.e., 

50 amino acids, near the carboxyl-terminus of Lamin A, leaving Lamin C unaffected (De 

Sandre-Giovannoli et al., 2003; Eriksson et al., 2003). Crucially, the truncated part of the protein 

contains an endoproteolytic cleavage site, which is used by the protease ‘Zinc Metallopeptidase 

STE24’ (ZMPSTE24) to remove a farnesyl residue added to pre-Lamin A during post-

translational processing (Figure 5) (Sinensky et al., 1994; Bergo et al., 2002; Pendás et al., 

2002). Similar to Ras proteins, pre-Lamin A, Lamin B1 and B2 usually undergo farnesylation by 

protein farnesyltransferase at a C-terminal CAAX motif (C = cysteine, A = an aliphatic amino 

acid, X = any amino acid), a modification facilitating their interaction with the hydrophobic 

nuclear membrane (Zhang and Casey, 1996; Capell and Collins, 2006; Young et al., 2013). 

Because this residue cannot be removed during the processing of mutant pre-Lamin A in 

HGPS, the protein, commonly referred to as ‘Progerin’, remains permanently farnesylated and 

attached to the nuclear lamina. There, its accumulation leads to a characteristic molecular 

phenotype that involves lobulation and wrinkling of the nuclear envelope (Eriksson et al., 2003; 

Goldman et al., 2004; Scaffidi and Misteli, 2005) (Figure 6). Intriguingly, Progerin is also 

expressed in cultured normal fibroblasts (Scaffidi and Misteli, 2006; Cao et al., 2007) and in 

aging skin (McClintock et al., 2007), thus suggesting that the mutant protein might have role in 

physiological aging, as well.  
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Although very few patient-derived cell lineages are available for studying, some success has 

been made with regard to characterizing the expression of Progerin in different cell types. 

Mesodermal lineages including MSCs, fibroblasts, vascular smooth muscle cells (VSMCs) and 

endothelial cells exhibit high levels of the protein, whereas iPSCs and neural progenitors 

express only low amounts (Liu et al., 2011; Zhang et al., 2011). These variations result from the 

inherent tissue-related differences in the expression of A-type lamins (Zhang et al., 2011), the 

general downregulation of A-type lamins in pluripotent cell types (Constantinescu et al., 2006) 

and, as mentioned before, the expression of lineage-specific ncRNAs regulating LMNA 

transcript levels (Nissan et al., 2012). How they lead to the severe pathologies observed at the 

organismal level is a matter of ongoing research. The exhaustion of mesenchymal stem cell 

pools, as a consequence of altered Wnt signaling and increased hypoxia sensitivity, has been 

suggested to thwart the substitution of cells in affected tissues, for example (Halaschek-Wiener 

and Brooks-Wilson, 2007; Meshorer and Gruenbaum, 2008; Hernandez et al., 2010; Zhang et 

al., 2011; Kubben et al., 2016). Additionally, with regard to atherosclerosis in particular, the 

Figure 5: Post-translational processing of Lamin A and Progerin. Pre-lamin A is 
farnesylated by farnesyltransferase at its C-terminal CAAX motif (the polypeptide contains the 
C-terminal amino acids cysteine (C), serine (S), isoleucine (I) and methionine (M)). 
Subsequently, the three terminal amino acids are cleaved off by ZMPSTE24, and the 
farnesylated cysteine undergoes carboxymethylation. A second cleavage step by the same 
enzyme removes the 15 C-terminal amino acids plus the farnesyl group. This final step 
cannot occur in the processing of mutant Pre-lamin A, as aberrant splicing results in the 
absence of 50 amino acids that contain the endoproteolytic cleavage site (in red). 
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Progerin-related premature death of VSMCs has recently been demonstrated to constitute a 

central driving force (Zhang, Xiong and Cao, 2014; Hamczyk, del Campo and Andrés, 2018).  

At the cellular level, the dominant-negative role of Progerin at the nuclear lamina has been 

linked to a multitude of disease-related changes (Broers et al., 2006; Vidak and Foisner, 2016; 

Kubben and Misteli, 2017). Most prominent are characteristic malformations of the nuclear 

envelope (Eriksson et al., 2003; Goldman et al., 2004; Scaffidi and Misteli, 2006), but other 

structural aberrations have been demonstrated in HGPS nuclei. They include a clustering of 

nuclear pores (Goldman et al., 2004), altered nuclear mechanical properties such as increased 

stiffness and thickening of the lamina (Dahl et al., 2006), as well as higher susceptibility to 

physical stress (Verstraeten et al., 2008; Zhang et al., 2011). Molecularly, these are 

accompanied by an impaired mobility of the nuclear envelope component ‘Sad1 And UNC84 

Domain Containing 1’ (SUN1), a decrease in the levels of Lamin B1, and a loss of the 

nucleoplasmic fraction of Lamin A/C, all of which have been reported in Progerin-expressing 

nuclei (Scaffidi and Misteli, 2005; Shimi et al., 2011; Chen et al., 2014; Vidak et al., 2015). 

 Aside from structural alterations, HGPS fibroblasts are characterized by abnormal 

Figure 6: Nuclear malformation and characteristic epigenetic alterations in Progerin-
expressing cells. Lamin A-staining (in red) reveals characteristic nuclear lobulation in HGPS 
fibroblasts. H3K9me3 (A, B) and H3K27me3 (C, D) levels are reduced in HGPS nuclei, 
whereas H4K20me3 (E, F) levels are elevated (all in green). The arrowhead indicates the 
inactive X chromosome, which is enriched in H3K27me3. Scale bar = 10 µm. Adapted from 
Dechat et al., 2008. 



1. Introduction   1.3 The progeroid disease Hutchinson-Gilford Progeria Syndrome (HGPS) 

 41 

chromosome segregation and mitotic defects (Goldman et al., 2004; Cao et al., 2007), as well 

as a compromised DNA damage response. The latter involves the persistence of DNA damage 

foci marked by phosphorylated histone H2AX, the delayed recruitment of the repair factors 

53BP1 and Rad51, and a mislocalization of the nucleotide excision repair factor ‘Xeroderma 

Pigmentosum Group A’ (XPA) to DNA double-strand breaks (Liu et al., 2005, 2008; Scaffidi and 

Misteli, 2006). Disrupted DNA damage signaling in HGPS cells is especially prominent at 

telomeres, triggering chromosomal aberrations, increased telomere shortening and premature 

senescence (Allsopp et al., 1992; Decker et al., 2009; Gonzalez-Suarez et al., 2009; Benson, 

Lee and Aaronson, 2010; Kan Cao et al., 2011; Wheaton et al., 2017). These changes are 

aggravated by heightened oxidative stress, as Progerin reduces antioxidant expression by 

sequestering ‘nuclear factor erythroid 2-like 2’ (NRF2), a central transcriptional activator of 

antioxidant genes (Lewis et al., 2010), away from its target genes in the nuclear interior (Viteri, 

Chung and Stadtman, 2010; Datta, Snow and Paschal, 2014; Kubben et al., 2016). The damage 

to proteins by reactive oxygen species and the accumulation of Progerin place additional stress 

on the proteasome, whose activity is decreased in HGPS cells (Viteri, Chung and Stadtman, 

2010; Kubben et al., 2016).  

 

1.3.3. Known epigenetic alterations in HGPS  

Epigenetic changes are one of the hallmarks of aging and have also been identified in 

Progerin-expressing cells, although predominantly at the level of histone modifications. In 

analogy to physiological aging, a global loss of heterochromatin-specific factors has been noted 

in HGPS fibroblasts (Scaffidi and Misteli, 2006). More specifically, HGPS cells display lower 

levels of the repressive chromatin marks H3K9me3, H3K27me3 and HP1 (Figure 6) (Scaffidi 

and Misteli, 2006; Shumaker et al., 2006; Dechat et al., 2008), and electron microscopy-based 

studies have determined that these changes are especially prominent near the nuclear lamina 

(Goldman et al., 2004; McCord et al., 2013). These dynamics are accompanied by a 

downregulation of the enzymes responsible for the methylation of H3K9 and H3K27, 

SUV39H1/2 and ‘Enhancer Of Zeste 2 Polycomb Repressive Complex 2’ (EZH2), respectively 

(Shumaker et al., 2006; McCord et al., 2013). Conversely, H3K4me3, a heterochromatic mark 

primarily associated with centromeres and telomeres (Schotta et al., 2004; Gonzalo et al., 

2005), accumulates and clusters in late-passage HGPS cells (Figure 6) (Shumaker et al., 2006; 

Dechat et al., 2008), thus emphasizing that the landscape of chromatin alterations in Progerin-

expressing cells is complex. In this respect, Hi-C experiments revealed that late-passage HGPS 
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fibroblasts are characterized by disrupted chromatin organizational patterns involving the loss of 

active and inactive chromatin compartments (McCord et al., 2013; Chandra et al., 2015). 

It has also been reported that fibroblasts from HGPS patients express lower levels of ‘Sirtuin 6’ 

(SIRT6), a histone and non-histone protein acetylase contributing to the repair of DNA double-

strand breaks (Mao et al., 2011), and that Progerin compromises SIRT6 activity (Endisha et al., 

2015; Ghosh et al., 2015). Similarly, Progerin impairs SIRT6-mediated mono-ADP ribosylation 

of ‘Poly(ADP-Ribose) Polymerase 1’ (PARP1) (Zhang, Xiong and Cao, 2014; Ghosh et al., 

2015), a critical step in ‘non-homologous end joining’ (NHEJ)-mediated DNA repair (Mao et al., 

2011). Histone SUMOylation may also be affected, as HGPS fibroblasts reveal reduced nuclear 

SUMO2/3 levels and a relocalization of Ubc9, an enzyme responsible for the SUMOylation of 

histones (Shiio and Eisenman, 2003), to the cytoplasm (Kelley et al., 2011). 

Less is known about the role of DNA methylation in HGPS. An initial study by Liu and 

colleagues identified 586 differentially methylated autosomal genes in HGPS fibroblasts (Liu et 

al., 2011) but was restrained by the technological limitations of bisulfite padlock probes, which 

allow the targeted quantification of DNA methylation at a limited number of CpGs (Deng et al., 

2009). Another analysis using the more advanced Infinium HumanMethylation450 BeadChip 

arrays demonstrated substantial DNA methylation alterations in a set of aging-related genes in 

progeria patients (Heyn, Moran and Esteller, 2013). Nevertheless, this work could not answer 

the question of HGPS-specific DNA methylation changes, because the authors used a set of 

adult onset, i.e., non-classical progeria samples for their comparisons (Heyn, Moran and 

Esteller, 2013). Finally, the most compelling evidence for the existence of considerable DNA 

methylation changes in the disease comes from the recent observation that fibroblasts from 

some HGPS patients exhibit an elevated 'DNA methylation age' (Horvath et al., 2018). However, 

no further specification of these changes has been performed to date, thus highlighting the need 

for a technologically more advanced and comprehensive characterization of DNA methylation 

aberrations in the disease. 



  
 

  43 

2. Aims of the thesis 
 

Some epigenetic changes have been identified in HGPS, however, primarily at the level of 

histone modifications. How they affect chromatin accessibility in the disease has not been 

specified to date. Similarly, although there is some evidence for DNA methylation alterations in 

patient cells, their nature and quantity has yet to be comprehensively studied. Lastly, it is 

unknown whether HGPS-specific changes in these layers contribute to the pathology of the 

disease. 

2.1. Characterization of epigenetic changes in HGPS 
 

To answer these questions, the central aim of this work was to characterize HGPS-specific 

epigenetic changes genome-wide with the use of high-throughput technology. To this end, 

chromatin accessibility dynamics in primary HGPS cells were profiled using the ‘Assay for 

Transposase-Accessible Chromatin using sequencing’ (ATAC-seq). Disease-associated DNA 

methylation patterns, on the other hand, were assessed using MethylationEPIC BeadChips, i.e., 

‘state-of-the-art’ epigenomic arrays, which interrogate the DNA methylation status of more than 

850,000 CpGs. 

2.2. Defining the HGPS-specific LAD interactome 
 

The LAD interactome represents a key epigenomic regulatory layer and is likely to play a 

crucial role in laminopathies. Surprisingly, the nature and extent of changes in the LAD structure 

of HGPS primary cells is still unknown. Another goal of the present study was therefore to 

quantitatively and qualitatively characterize the LAD landscape of Progerin-expressing cells, 

and to address the question whether potential changes at this level coincide with alterations in 

chromatin accessibility and DNA methylation.  

2.3. Exploring the role of epigenetic changes in HGPS pathology  
 

While some expression changes have been identified in HGPS, previous studies were 

performed with a relatively small number of samples and restricted by the technological limits of 

gene expression arrays. Hence, another aim of this work was to analyze the HGPS 

transcriptome using high-throughput bulk RNA sequencing (RNA-seq) with one of the largest 

sets of primary samples studied to date. Ultimately, integrating these observations with the 

HGPS-specific LAD-, chromatin accessibility and DNA methylation data was going to better 

define the role epigenomic aberrations play in the pathology of the disease.  
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3. Results 

3.1. Characterization of the fibroblast model system 
 

For the experimental analyses, primary skin fibroblasts from nine patients diagnosed with the 

classic form of Hutchinson-Gilford Progeria Syndrome, as well as six unaffected controls (see 

Table 10), were obtained. The group of controls contained fibroblasts from four age-matched, 

i.e., young donors, and fibroblasts from two genetically matched individuals, i.e., parents of one 

of the HGPS patients. The HGPS samples were divided into an HGPS young (<8 years) and an 

HGPS old (>8 years) subgroup whenever appropriate. Furthermore, all cell lines were initially 

tested for the presence of the classic HGPS mutation (1824C>T), characteristic nuclear 

morphology changes and Progerin expression at the transcript and protein levels.  

 

3.1.1. Verification of mutational status and Progerin expression 

Using Sanger sequencing with primers amplifying the region of interest in the LMNA gene, all 

cell lines were analyzed for the presence of the classic HGPS mutation (1824C>T). As 

expected, HGPS samples revealed mixed cytosine/thymine signals at position 1824 (Figure 

S34), indicative of the heterozygous presence of the mutation. Control cell lines, in contrast, 

exhibited uniform cytosine-specific signal, verifying the absence of the mutation (Figure S34). 

Subsequently, expression of the mutant Δ150 LMNA mRNA and Progerin protein was 

quantified in all cell lines. Using primers designed to specifically amplify either Δ150 LMNA or a 

control LMNA mRNA (Figure 7A), strong expression of the progerin-specific transcript was 

detected in HGPS cells from both young and old patients (Figure 7B and C). Interestingly, the 

Δ150 LMNA transcript  was also detected in some of the control samples, albeit at considerably 

lower levels (Figure 7B). However, it did not result in the expression of detectable amounts of 

Progerin protein, which was restricted to HGPS samples only (Figure 8).  
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Figure 7: Δ150 LMNA mRNA expression in the sample set. (A) Schematic representation 
of the LMNA gene, exons 3-12. The location of the 1824C>T mutation (in dark grey) and 
those of the oligos used for the amplification of the Δ150 LMNA mRNA, as well as an 
unaffected control mRNA, are indicated. (B) Detection of Δ150 LMNA and control mRNA in 
sample set using RT-PCR. (C) qRT-PCR-based quantification of Δ150 LMNA and control 
mRNA levels relative to SRSF4 and TBP levels in the sample set. 
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3.1.1. HGPS fibroblasts reveal characteristic nuclear morphology changes 

Alterations in the structure of the nuclear lamina resulting from the expression of Progerin are 

one of the most characteristic and commonly used phenotypic markers of HGPS cells (Eriksson 

et al., 2003; Liu et al., 2011; Zhang et al., 2011; Shimi, Butin-Israeli and Goldman, 2012; Miller 

et al., 2013). To verify their presence or absence in the primary fibroblasts, immunofluorescence 

experiments using an α-Lamin A/C antibody were performed. As shown in Figure 9A and Figure 

S35, HGPS nuclei were characterized by a wide range of malformations including characteristic 

Figure 8: Progerin protein expression in the sample set. Immunoblot of total protein 
extracts (20 µg) from all samples. Lamin A, Progerin and Lamin C were detected using a 
mouse α-Lamin A/C antibody. Lamin C signal was used as a loading control. 

Figure 9: Nuclear malformation in HGPS fibroblasts. (A)  Immunofluorescence of Lamin 
A/C confirms characteristic nuclear malformations in HGPS nuclei. The range of nuclear 
morphologies scored as ‘malformed’ is shown in Figure S35. Scale bar = 10 µm. 
Magnification: 10x. (B) Quantification of (A) in fibroblast samples. Bars represent the mean 
of three technical replicates with 100 cells counted per replicate. *P<0.01, unpaired t-test. 
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wrinkling and lobulation of the nuclear lamina. These morphologies were substantially more 

frequent in patient-derived cells:  In HGPS samples, the fraction of cells with dysmorphic nuclei 

ranged from 30-89 %, whereas only 3-15 % of control cells exhibited similar changes (P<0.01, 

unpaired t-test; Figure 9B). Additionally, despite a slight trend towards higher levels of 

malformation in samples from older patients, no correlation between patient age and the fraction 

of dysmorphic nuclei was found (Figure 9B and Table 10). These results confirm that the 

reported nuclear alterations, while mostly absent in control samples, are indeed present in the 

obtained HGPS fibroblasts.  

 

3.1.2. HGPS cells exhibit minimal cell cycle changes 

In addition to the distinctive nuclear phenotype, HGPS cells are characterized by premature 

cellular senescence and persistent DNA damage foci (Allsopp et al., 1992; Liu et al., 2005; 

Scaffidi and Misteli, 2006). However, early-passage HGPS fibroblasts have been reported to 

divide normally, without obvious defects (Bridger and Kill, 2004; Goldman et al., 2004; Paradisi 

et al., 2005). This raises the question whether cell cycle dynamics are noticeably altered in 

HGPS fibroblasts. To answer this question, HGPS and control samples were subjected to a 

Propidium Iodide (PI) staining, followed by ‘Fluorescence-activated Cell Sorting’ (FACS) 

analysis of DNA content. In brief, despite minor variations in the proportion of cells in G1, S or 

G2/M phase, respectively (Figure 10A), no significant differences were found when comparing 

cell cycle populations from two HGPS and two control samples (Figure 10B, unpaired t-test for 

all). The large majority of HGPS fibroblasts contained DNA content indicative G1 phase, a 

minority exhibited intermediate DNA content reflecting ongoing S phase, and a slightly larger 

fraction revealed DNA content characteristic of G2/M phase (Figure 10A and B). However, 

control cells were characterized by a highly similar distribution, thus indicating that population-

scale cell cycle differences in the obtained HGPS samples are limited and should not constitute 

a decisive factor in the analysis of epigenetic alterations.  
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3.2. HGPS-specific chromatin accessibility changes are enriched in 
LADs 

 
Widespread histone modification changes are an established characteristic of HGPS 

fibroblasts (Scaffidi and Misteli, 2006; Shumaker et al., 2006; McCord et al., 2013). Moreover, 

cells from affected individuals show a decompaction of heterochromatin similar to senescent 

cells (McCord et al., 2013; Chandra et al., 2015). The question therefore arises, to which extent 

these epigenetic alterations change the chromatin accessibility landscape in the disease. To 

address this question, ATAC-see/seq experiments were performed in early-passage fibroblasts 

from HGPS patients and control individuals. 

 

3.2.1. ATAC-see reveals single-cell-dependent chromatin accessibility changes 

in HGPS fibroblasts 

Chen et al. recently developed a method to visualize the accessible fraction of the genome in 

individual cells (Chen et al., 2016). The technique, referred to as ‘ATAC-see’, is based on the 

Figure 10: Propidium iodide (PI) staining reveals no broad cell cycle changes in 
HGPS cells. (A) PI staining of two HGPS and two control cell lines analyzed by FACS. The 
percentages of cells in G1, S and G2/M phase are indicated. (B) Quantification of (A). P-
values as indicated (all: unpaired t-test). 
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integration of fluorescent oligos into accessible chromatin by Tn5 transposase, enabling the 

visualization of decompacted regions under the microscope. To find out whether the epigenetic 

changes reported in HGPS cells entail significant changes at the level of chromatin accessibility, 

ATAC-see experiments were performed with HGPS and control fibroblasts. As shown in Figure 

11A and in Figure S36, normal nuclei revealed a number of clearly distinguishable, bright foci, 

signaling high chromatin accessibility, as well as broad regions with low signal intensity, 

representing more heterochromatic fractions of the genome. Importantly, these foci did not 

overlap with Lamin A/C signal, confirming that regions associated with the nuclear lamina are 

predominantly heterochromatic and low in transcriptional activity (Figure 11A and Figure S36). 

In striking contrast, in many visibly malformed nuclei, ATAC-see foci were entirely absent and 

Figure 11: ATAC-see reveals loss of highly accessible chromatin foci in severely 
malformed HGPS nuclei. (A) Representative ATAC-see signal in control and severely 
malformed HGPS nuclei. Note the loss of bright foci, i.e., highly accessible chromatin in 
HGPS. Scale bar = 10 µm. (B) Quantification of the fraction of cells with ATAC-see foci in 
HGPS and control samples (P=0.01, unpaired t-test). (C) Correlation of (B) with the fraction 
of cells with malformed nuclei (R2 = 0.30, P<0.0001).  
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the nucleoplasm revealed more intermediate signals, indicating at least a partial loss of eu- and 

heterochromatic compartments (Figure 11A and Figure S36). HGPS samples exhibited 

significantly (P=0.01, unpaired t-test) less cells with ATAC-see foci (Figure 11B) and, consistent 

with the previous observations, substantially more nuclei with malformations. Accordingly, the 

fraction of cells containing ATAC-see foci was significantly (P<0.0001, R2 = 0.30) negatively 

correlated with the fraction of cells showing severe nuclear malformation (Figure 11C), thus 

suggesting a link between lamina integrity and chromatin accessibility in dermal fibroblasts. 

In summary, these findings indicate that the reported HGPS-specific epigenetic changes are 

indeed accompanied by significant chromatin accessibility changes, at least in the 

subpopulation of cells with severe lamina anomalies.  At the same time, they reveal 

considerable variation at the single-cell level and thus highlight the potential impact of 

population heterogeneity on the study of epigenetic alterations in HGPS fibroblasts. 

 

3.2.2. ATAC-seq: Genome-wide chromatin accessibility changes are limited but 
enriched in LADs 

To quantify chromatin accessibility changes in HGPS fibroblasts genome-wide, the accessible 

genome of two control and six HGPS fibroblast samples was profiled using ATAC-seq. In 

contrast to ATAC-see, this technique relies on the transposase-based integration of sequencing 

adaptors into open chromatin sites, followed by next-generation sequencing (Buenrostro et al., 

2015). 

As shown for chromosome 11 in Figure 12A, global accessibility profiles of HGPS and control 

cells appeared highly similar, indicating limited population-level alterations. Likewise, the two 

groups were not clearly distinguishable in a principal component analysis (PCA) (Figure S37). 

Nevertheless, after removal of sex chromosome-associated peaks, 545 significantly (q<0.05, 

Benjamini-Hochberg) differentially accessible autosomal regions were identified, 397 and 148 of 

which gained and lost accessibility in HGPS, respectively (Figure 12B and C). About half of 

these were located in genes, about one third mapped to intergenic regions and a minor fraction 

to active and poised enhancers (Figure 13A).  
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Given the role of the nuclear envelope in the disease and the previously reported alterations to 

the peripheral heterochromatin landscape in affected cells (Scaffidi and Misteli, 2006; Shumaker 

et al., 2006; McCord et al., 2013), major accessibility changes could be expected in regions 

proximal to the nuclear lamina. Importantly, analyzing the spatial distribution of HGPS-specific 

chromatin accessibility alterations yielded several lines of evidence in support of this hypothesis: 

first, Lamin A LAD-associated peaks were strongly and significantly (P<0.05, Fisher’s exact test) 

Figure 12: ATAC-seq reveals defined population-level changes in HGPS fibroblasts. 
(A) Average scaled ATAC-seq signal for chromosome 11 in HGPS and control cells with 
locations of previously identified LADs (1Lund et al., 2015, 2Guelen et al., 2008). Stars 
indicate the location of visible differences between both tracks. (B) 545 regions were found 
to exhibit significant (q < 0.05, Benjamini-Hochberg) differences in chromatin accessibility 
between HPS and control cells. (C) Heat map representation of the 545 differentially 
accessible regions (peaks) in all samples. 
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overrepresented among regions that gained (2.6-fold) or lost (3.3-fold) accessibility in HGPS, 

respectively (Figure 13B). Interestingly, accessibility changes in regions overlapping with Lamin 

B were also slightly above expected levels (Figure 13B) - likely a result of the partial overlap of 

Lamin A- and Lamin B-associated LADs (Figure 12A).  

Second, the relatively gene-poor chromosome 18, which shows multiple LAD contacts in 

proliferating cells and is often found near the nuclear periphery (Meaburn et al., 2007; Kind et 

al., 2015), exhibited over 7 times more differentially accessible regions than the similarly sized, 

gene-rich and more centrally located chromosome 19 (Figure 13C).  

Third, chromatin accessibility changes were slightly, but significantly (P=5.61e-04 and 

P=2.66e-05, Fisher’s Exact test) enriched in genomic regions characterized by the presence of 

Figure 13: Genome-wide chromatin accessibility changes are enriched in Lamina-
associated domains (LADs). (A) Distribution of ATAC-seq peaks across genes, promoters 
and enhancers. (B) Distribution of ATAC-seq peaks across Lamin A-(1Lund et al., 2015), 
Lamin B-(2Guelen et al., 2008) and non-LAD-associated regions (*P<0.05; Fisher’s Exact 
test). Ctr = control. (C) Relative distribution of differentially accessible regions (peaks) 
across chromosomes. Chromosome 18 revealed 7.6 times more differentially accessible 
regions than chromosome 19. Mean = 1.66e-07 peaks per chromosome. 
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H3K9me2 and H3K9me3 (Figure 14A), two prominent LAD markers (Guelen et al., 2008; Wen 

et al., 2009; Kind et al., 2013). In contrast, differentially accessible regions were significantly 

underrepresented in parts of the genome containing markers of active transcription, including 

promoter-associated H3K4me3 (P<2.20e-16), H3K27ac (P=1.27e-03) or gene body-associated 

H3K36me3 (P=3.15e-06) (Figure 14A, Fisher's Exact test for all).  

Fourth, a HOMER transcription factor binding site (TFBS) enrichment analysis revealed that 

the differentially accessible regions are highly enriched (q<0.01, Benjamini-Hochberg) with 

Figure 14: Chromatin accessibility changes are enriched in regions marked by 
H3K9me3 and the presence of AP1 transcription factor binding sites (TFBSs). (A) 
Overlap of ATAC-seq peaks with the indicated histone modifications (Fold changes as 
indicated, *P<0.05, Fisher's Exact test). The expected number of peaks was calculated 
based on the fraction of all (including non-significant (q<0.05, Benjamini-Hochberg)) peaks 
overlapping with a certain histone modification normalized to the number of peaks 
significantly (q<0.05, Benjamini-Hochberg) gaining or losing accessibility, or both. No. = 
number. (B) NRF2 binding motifs are among the TFBSs enriched in the differentially 
accessible regions (NRF2: q=1.80e-03, Benjamini-Hochberg). (C) Motif density plot showing 
an enrichment of AP1 family member TFBSs in the differentially accessible regions. Motif 
densities were calculated using the HOMER motif density tool for top de novo motifs.  
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binding sites of ‘Activator Protein 1’ (AP1) family members, which have previously been shown 

to be associated with the nuclear lamina in mammalian cells (Ivorra et al., 2006) (Figure 14B 

and C). In addition, this analysis identified several members of the ‘TEA Domain’ (TEAD) family 

of transcription factors, which play key roles in the Hippo signaling pathway, a developmental 

signaling pathway controlling organ size (Zhao et al., 2010), and regulate development, tissue 

homeostasis and tumorigenesis (Pobbati and Hong, 2013; Lin, Park and Guan, 2017).  Finally, 

binding sites of ‘Nuclear factor erythroid 2-related factor 2’ (NRF2), whose sequestration to the 

nuclear lamina has recently been reported as a key driver of oxidative stress in HGPS cells 

(Kubben et al., 2016), were also found significantly (q<0.01, Benjamini-Hochberg) enriched in 

the differentially accessible regions (Figure 14B).  

Taken together, these results provide evidence that population-level HGPS-specific chromatin 

accessibility changes, while limited in quantity, are concentrated in regions of the genome that 

are in contact with the nuclear lamina, depleted of markers of active transcription and that 

contain binding sites of several transcriptional regulators.  

 

3.3. HGPS cells show widespread DNA methylation changes 
enriched in LADs 

 
HGPS-specific DNA methylation patterns have not been comprehensively analyzed to date. 

To obtain a clearer picture of the HGPS methylome and to investigate whether the LAD-related 

chromatin accessibility changes are accompanied by alterations at the level of DNA methylation, 

Infinium MethylationEPIC BeadChip-mediated methylome profiling was performed. These 

arrays capture the methylation status of more than 850,000 single CpGs in the human genome 

and therefore represent a cost-effective method to comprehensively investigate potential 

genome-level methylation changes. 

 

3.3.1. General features of the HGPS DNA methylome  

Genomic DNA from nine HGPS patients and six healthy controls was submitted for 

MethylationEPIC BeadChip-mediated analysis of DNA methylation patterns. After normalization 

(see Methods, Section 6.2.15.2), 19,759 significantly (P<0.05, F-test) differentially methylated 

autosomal probes were identified, 15,554 and 4,205 of which were hyper- and hypomethylated 

in HGPS, respectively (Figure 15A). HGPS samples also clustered separately from control 

samples in a PCA based on the methylation of all probes, albeit with limited differences (Figure 
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15B). In line with this, median methylation levels of individual HGPS samples were similar to 

those of control samples, showing no general trend towards HGPS-specific hyper- or 

hypomethylation and substantial between-sample variation (Figure 15C).  

Figure 15: General features of the HGPS DNA methylome. (A) Scatter plot comparing the 
methylomes of HGPS and control fibroblasts. Differentially (P<0.05, F-test) methylated 
probes are shown in blue. (B) Principal component analysis (PCA) of HGPS and control 
samples using all probes. The variances explained by Principal Component (PC) 1 and 2 are 
given in brackets. (C) Differential methylation (β value) of all probes in sample set with 
median indicated as a black line. (D) Distribution of differentially methylated probes across 
North (N) and South (S) Shelves and Shores, as well as CpG Islands and Open Sea regions. 
(E) Correlation of HGPS-specific chromatin accessibility changes (Significant (q<0.05, 
Benjamini-Hochberg) ones in dark grey; non-significant ones in light grey) with DNA 
methylation (β value) changes in non-CpG island-associated regions. Linear regression of all 
data in red (Pearson correlation r=-0.32, P<2.20e-16). FC=Fold Change. (F) ELMER 
transcription factor binding site (TFBS) enrichment analysis reveals that members of the AP1 
family are enriched in the differentially methylated (P<0.05, F-test) regions (95 % Confidence 
Interval). 
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Most of the differentially methylated probes were located in open sea regions; CpG island-, 

shore- and shelf-associated probes, on the other hand, only made up small proportions of the 

differentially (P<0.05, F-test) methylated probes, with little differences between the hyper- and 

hypomethylated fractions (Figure 15D). 

Importantly, the DNA methylation changes were also negatively correlated with the HGPS-

specific alterations in chromatin accessibility, as regions with lower chromatin accessibility 

tended to show increased DNA methylation and vice versa (Pearson correlation r=-0.32, 

P=2.20e-16, excluding CpG island probes) (Figure 15E). In addition, an analysis of TFBSs 

enriched in the differentially methylated regions using ELMER (Yao et al., 2015; Silva et al., 

2018) revealed that AP1 family member TFBSs are overrepresented in parts of the genome that 

contain HGPS-specific differential methylation (Odds ratio >2.1, 95 % confidence interval, 

Figure 15F). The latter findings thus point towards the possibility that the DNA methylation 

alterations are involved in the epigenetic deregulation of LADs.  

 

3.3.2. DNA methylation changes are enriched in LADs 

Based on the previous findings, differential DNA methylation in regions associated with the 

nuclear lamina was analyzed. Interestingly, as shown in Figure 16A, probes located in Lamin A-

associated regions exhibited a substantial and significant (P<0.01, Welch’s Two Sample t-test) 

increase in median methylation levels. While this hypermethylation was also apparent in probes 

located in Lamin B-associated regions, it was less pronounced and more similar to the slight 

increase observed for non-LAD regions, as well as for all probes (Figure 16A). In line with these 

observations, Lamin A-associated probes were more strongly enriched (2.06-fold, P<2.20e-16, 

chi-squared test) than Lamin B-associated ones (1.54-fold, P<2.20e-16, chi-squared test) 

among the 19,759 differentially methylated probes (Figure 16B). Intriguingly, this largely 

resulted from an overrepresentation of both types of LAD-associated probes among 

hypermethylated (2.44- and 1.68-fold, P<2.20e-16 for both, chi-squared test), but not 

hypomethylated probes, indicating that HGPS-specific DNA methylation changes in LADs are 

dominated by hypermethylation (Figure 16B). 

Furthermore, probes overlapping with ‘solo-WCGW’ PMDs, a recently identified subset of 

PMDs especially vulnerable to hypomethylation during development and aging (Zhou et al., 

2018), exhibited a significant (P<0.01, Welch’s Two Sample t-test) increase in median 

methylation, potentially due to the large sequence overlap with LADs (Zhou et al., 2018). In 

contrast, ‘solo-WCGW’ HMDs showed little differences between HGPS and control samples 

(Figure 16A). This result suggests that mitotic age-related hypomethylation of LADs, as 
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observed in a multitude of developmental lineages and aged tissues (Zhou et al., 2018), is not a 

feature of the HGPS genome.  

LADs are marked by an enrichment of H3K9me2 and H3K9me3 (Guelen et al., 2008; Wen et 

Figure 16: DNA methylation changes are enriched in lamina-associated domains 
(LADs). (A) Differential (β value) methylation of all probes (P<2.20e-16) and those 
overlapping with non-LAD (P<2.20e-16), Lamin A- (Lund et al., 2015) (P<2.20e-16), Lamin B 
- (Guelen et al., 2008) (P<2.20e-16), ‘solo-WCGW’-HMD- (P=4.42e-15) or ‘solo-WCGW’-
PMD-associated (P<2.20e-16) regions (all: Welch Two Sample t-test). Median indicated as a 
black line. (B) Enrichment of LAD-associated probes among all differentially (P<0.05, F-test) 
methylated probes, as well as those hyper- or hypomethylated in HGPS samples (*P<0.01; 
chi-squared test). Expected numbers were calculated based on the fraction of LAD-
associated probes among all probes normalized to the number of differentially methylated 
probes. Sign = significantly. (C) Differential (β value) methylation of probes overlapping with 
different histone modifications with median indicated as  black line (H3K4me1: P<2.20e-16, 
H3K4me2: P<2.20e-16, H3K4me3: P<2.20e-16, H3K27ac: P<2.20e-16, H3K36me3: 
P<8.68e-15, H3K9me2: P<2.20e-16, H3K9me3: P<2.20e-16, H3K27me3: P<2.20e-16; all: 
Welch Two Sample t-test). (D) Enrichment of probes overlapping with different histone 
modifications as in (B) (*P<0.01; chi-squared test). Expected numbers as in (B). Sign = 
significantly. 
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al., 2009; Kind et al., 2013), while H3K27me3 is found at LAD boundaries of various cell types 

(Guelen et al., 2008; Harr et al., 2015). Hence, it was tested whether probes located in regions 

that are characterized by these and other histone modifications are significantly differentially 

methylated in HGPS cells. Consistent with the LAD probe-related findings described above, 

probes overlapping with regions marked by H3K9me3 showed a strong and significant 

(P<2.20e-16, Welch’s Two Sample t-test) increase in median methylation levels (Figure 16C) 

and were enriched 1.76-fold (P<2.20e-16, chi-squared test) among hypermethylated probes 

(Figure 16D). Probes associated with H3K27me3 domains, on the other hand, showed less 

changes in median methylation and were slightly (1.30-fold, P<2.20e-16, chi-squared test) 

enriched among the hypomethylated fraction (Figure 16C and D). Interestingly, strong and 

significant (P<0.01, Welch’s Two Sample t-test) increases in median methylation were also 

observed in regions marked by H3K4me1 (Figure 16C), which are generally associated with the 

presence of enhancers (Heintzman et al., 2009). H3K4me1-associated probes also showed a 

significant enrichment among both hyper-and hypomethylated probes (P<2.20e-16 for both, chi-

squared test) (Figure 16C), thus indicating considerable changes in the HGPS-specific 

enhancer landscape. Finally, probes overlapping with histone modification marks associated 

with active transcription, H3K4me2, H3K4me3, H3K27ac and H3K36me3, displayed little 

HGPS-specific DNA methylation changes (Figure 16C) and were either considerably 

underrepresented (H3K4me3 and H3K36me3) among the 19,759 differentially methylated 

probes, or in line with expectations (H3K4me2 and H3K27ac) (Figure 16D). The latter indicates 

that, while existent, HGPS-specific DNA methylation changes are not concentrated in regions 

characterized by active histone modification marks. 

 

3.3.3. The HGPS methylome contains progeroid features 

To better understand the DNA methylome changes in HGPS cells, the differential methylation 

patterns were further examined. For this purpose, the 5,000 most variable clusters of probes 

were determined and analyzed by unsupervised clustering (see Methods, Section 6.2.15.3). 

This separated the samples into three subgroups, with control samples forming one subgroup 

and HGPS samples being split into two subgroups (Figure 17A). Additionally, using the 5,000 

most variable probe clusters allowed a better separation of HGPS and control samples in a PCA 

(Figure 17B). It is also worth noting that the probe clusters mostly contained probes located in 

gene bodies and intergenic regions, while only a minor number were overlapping with CpG 

islands, promoters, Lamin A- or Lamin B-associated regions (Figure 17A). This indicates that, 
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despite the considerable LAD-specific DNA methylation changes described above, many 

methylation changes occur in other parts of the HGPS genome.   

Intriguingly, the subclassification of HGPS samples was not associated with strength of 

Progerin expression, sex, patient age, body site of sampling or passage number. However, with 

the exception of HGADFN122, it was in agreement with a subgrouping of HGPS samples based 

on DNA methylation age, as calculated by a recently published age predictor with improved 

Figure 17: Progeroid features of the HGPS DNA methylome. (A) Consensus clustering 
based on 5,000 most variable probe clusters between HGPS and control samples (1= CpG 
islands, 2 = promoter, 3 = gene body, 4 = intergenic, 5 = Lamin A LAD-, 6 = Lamin B LAD-
associated). β values are colored from β=0 (blue) to β=1 (red). (B) Principal component 
analysis (PCA) of HGPS and control samples using the 5,000 most variable probe clusters. 
The variances explained by Principal Component (PC) 1 and 2 are given in brackets. The two 
HGPS subgroups identified in (A) are indicated as HGPS_1 and HGPS_2. (C) Skin & Blood 
Clock classifies HGPS subgroups as accelerated and non-accelerated. The difference (= Δ 
age) between DNA methylation age (as calculated by the Skin & Blood Clock (Horvath et al., 
2018)) and chronological age in years [y] is depicted for all samples. (D) Spatial correlation of 
DNA methylation marks. Lines represent smoothened medians of distance-dependent β value 
differences for the indicated subgroups. 
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accuracy for human dermal fibroblasts (Horvath et al., 2018). More precisely, one group of 

HGPS samples exhibited a median age acceleration of 9.73 (±1.85) years, whereas the other 

exhibited a slight decrease of -1.51 (±2.91) years (Figure 17C). Of note, even after adjustment 

for passage number, control fibroblasts obtained from the Coriell biorepository (GM05659, 

GM01864, GM00969, GM02036) also showed a substantial age acceleration (Figure 17C). This 

was in contrast to control samples obtained from the Progeria Research Foundation (PRF) 

(HGMDFN090 & HGFDFN168) and might result from differences in body site of origin, fibroblast 

subpopulation or culturing.  

Loss of spatial correlation is a major characteristic of aging DNA methylomes (Bormann et al., 

2016). Owing to the observed differences in DNA methylation age, it was tested whether the two 

HGPS groups also differ with respect to the age-related erosion of DNA methylation patterns. 

As shown in Figure 17D, the age-accelerated group of HGPS samples showed the highest 

median methylation differences (Δ β value), i.e., the strongest decrease in spatial correlation of 

DNA methylation patterns, followed by the non-accelerated group. Control samples, in contrast, 

exhibited considerably lower median methylation differences, thus indicating that the loss of 

spatial correlation is first and foremost a feature of the HGPS methylome, and only secondarily 

associated with the age-acceleration in HGPS samples. 

Altogether, the analysis of DNA methylation changes in HGPS fibroblasts reveals two 

overarching trends: while global HGPS-specific alterations in the DNA methylome seem to be 

limited and mostly located in gene bodies and intergenic regions, parts of the genome that are 

characterized by Lamin A/B-binding and the presence of H3K9me3/H3K4me1 or AP1 TFBSs 

show an enrichment of changes. On the other hand, features associated with an aging DNA 

methylome in normal cells are also present in the HGPS methylome, at least in a subgroup of 

patients, thus reflecting the progeroid nature of the disease.  

 

3.4. Epidermal cancers are characterized by LAD hypomethylation 
and a decreased DNA methylation age 

 
In contrast to what was observed for HGPS fibroblasts, LADs frequently become 

hypomethylated in cancer cells (Lister et al., 2009; Hansen et al., 2011; Berman et al., 2012; 

Zhou et al., 2018). In a contribution to a different work, LAD methylation patterns in cutaneous 

squamous cell carcinoma (cSCC), the second most common type of skin cancer, and its 

precancerous lesion, actinic keratosis (AK), in comparison with healthy epidermal keratinocytes 

was investigated.  For this purpose, genomic DNA from 12 normal epidermis, 16 AK epidermis 
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and 18 cSCC epidermis samples was analyzed using Infinium MethylationEPIC BeadChips 

(Rodríguez-Paredes et al., 2018). As shown in Figure 18A, both AK and cSCC samples showed 

a strong and significant (P<2.20e-16, Welch Two Sample t-test) hypomethylation of Lamin B 

LAD-associated probes. This confirmed that the LAD hypomethylation observed in multiple 

other cancers (Hansen et al., 2011; Berman et al., 2012; Hon et al., 2012; Hovestadt et al., 

2014; Zhou et al., 2018) is also present in this epidermal cancer and in its non-cancerous 

precursor. Furthermore, a comparison of the chronological age of the donor with the DNA 

methylation age of the sample, as calculated by the original pan-tissue age estimator (Horvath, 

2013), revealed that both AK and cSCC samples are characterized by a strong age deceleration 

(Figure 18B). These results not only confirm the previously observed DNA methylation age 

decrease in cancer cells (Horvath, 2013) but also underscore that the DNA methylation patterns 

of dermal HGPS cells are phenotypically distinct from those of skin cancer cells.  

 

3.5. DNA adenine methyltransferase (Dam)-assisted profiling of 
LADs in HGPS reveals defined population-level changes 

 
Up until this point, the identification of LAD-associated epigenetic changes in this work was 

based on the assumption that the dimension and distribution of LADs are conserved in the 

HGPS genome. However, to date Lamin A-associated genomic regions have not been 

Figure 18: The epidermal cancer-specific DNA methylome differs from that of HGPS 
cells. (A) Probes within Lamin B LADs are significantly (P<2.20e−16, Welch Two Sample t-
test) hypomethylated in AK and cSCC when compared to healthy epidermis. (B) Mean 
difference between DNA methylation age and chronological age for healthy, AK, and cSCC 
samples in years [y]. 



3. Results   3.5 DNA adenine methyltransferase (Dam)-assisted profiling of LADs in HGPS 
reveals defined population-level changes 

 63 

characterized in patient cells. To solve this problem, Lamin A-bound parts of the DNA were 

profiled in primary HGPS fibroblasts using the Dam ID technology. This technique relies on the 

temporary expression of a fusion protein between E.coli DNA adenine methyltransferase (Dam), 

which generates N6-methyladenine - a modification abundant in the transcriptome but absent 

from most eukaryotic genomes (Yue, Liu and He, 2015), and a protein of interest (here: Lamin 

A) (van Steensel and Henikoff, 2000).  Analyzing adenine methylation in target cells by next-

generation sequencing then allows the identification of regions bound by the protein of interest. 

Conveniently, it can be performed with a relatively small number of ∼106 starting cells (Vogel, 

Peric-Hupkes and van Steensel, 2007), thus making it especially suited for the study of  DNA-

protein interactions in primary and disease cells.   

 

3.5.1. The LAD landscape in the fibroblast model system 

To profile regions of the HGPS fibroblast genome that are in contact with Lamin A, a Dam ID-

seq experiment was performed with three HGPS and three control fibroblast samples as 

described in Methods, Section 6.2.19. For Dam-Lamin A samples, 20.7-33.1 million mappable 

reads were obtained, while for Dam-only samples, 19.5-54.2 million mappable reads were 

generated. Importantly, one HGPS sample had to be excluded from the analysis, due to low-

quality sequencing data (see Methods, Section 6.2.19.3 and Figure S38). As a result, all HGPS 

LAD subsets referred to in this work represent the average of two samples, whereas control 

LADs were determined by averaging signal from three samples. 

Figure 19 shows the chromosome-specific Lamin A enrichment calculated for both HGPS 

(orange) and control (blue) fibroblasts. Upon visual inspection, three major observations 

became evident: first, overall, the enrichment tracks of HGPS samples appeared highly similar 

to those of controls, with good correlation present on all chromosomes (Figure 19).  Second, 

high similarity was also observed between regions with enriched Lamin A signal and previously 

published dermal fibroblast-specific LAD locations (Figure 19, grey tracks), specifically those 

identified with the same technique (Guelen et al., 2008). This implies that LADs are largely 

conserved in the fibroblasts studied in this work. Third, however, some differences existed 

between HGPS- and control-specific tracks, on the one hand, and between previously identified 

LADs and the Lamin A enrichments obtained in this work, on the other hand (Figure 19). These 

deviations suggest that despite the general overlap, small and potentially important population-

level LAD changes are detectable in HGPS cells.  
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Figure 19: HGPS and control cells show similar global Lamin A enrichment profiles.  
Smoothed Lamin A enrichment (Dam-Lamin A / Dam) signal from HGPS (orange, top) and 
control (blue, bottom) samples plotted for all chromosomes. Previously identified Lamin A 
(top, Lund et al., 2015) and Lamin B (bottom, Guelen et al., 2008) LADs are shown in grey. 
Centromere locations are indicated with black triangles.  
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3.5.2. HGPS-specific LAD changes 

To further characterize these differences, the differential LAD enrichment between HGPS and 

control samples was calculated and displayed for each chromosome (Figure 20). Intriguingly, 

the large majority of regions on all chromosomes, especially those previously identified as LADs 

(Guelen et al., 2008; Lund et al., 2015), displayed reduced Lamin A-binding in HGPS cells, as 

evidenced by the slight, but widespread reduction in differential Lamin A enrichment (Figure 20). 

Conversely, some parts, especially telomere-proximal and pericentromeric regions, gained LAD 

contact in HGPS cells (Figure 20). It is also worth noting, that the similarly sized chromosomes 

18 and 19, whose HGPS-specific relative chromatin accessibility changes varied drastically 

(Figure 13C), exhibited similarly prominent differences in differential Lamin A enrichment. While 

the former displayed an almost uniform reduction of Lamin A-association in HGPS cells, the 

latter was characterized by a more heterogeneous distribution of both gains and losses (Figure 

20).  Collectively, these results point towards a picture, in which the LAD landscape, while 

overall similar to that of unaffected dermal fibroblasts, is traceably altered in HGPS cells. Most 

prominently, this includes the weakening of Lamin A-binding in regions previously identified as 

LADs, as well as novel, but locally restricted contact sites.  

As these alterations could underlie the observed DNA methylation and chromatin accessibility 

changes, the epigenetic data were re-analyzed with the new LAD information. For this purpose, 

HGPS- and control-specific LADs were defined from the respective Lamin A enrichments, 

applying a method developed by Gatticchi and colleagues (Gatticchi et al., 2019). This resulted 

in the specification of distinct LAD domains for HGPS and control fibroblasts, an example of 

which is shown for chromosome 11 in Figure 21A. Confirming the previously described similarity 

in the overall Lamin A LAD landscape, HGPS and control LADs largely overlapped and closely 

resembled previously published LAD tracks (Guelen et al., 2008; Lund et al., 2015). 

Consistently, on a genome-scale, the total number of base pairs covered by HGPS and control 

LADs, closely resembled that of published Lamin B LAD tracks, while the extent of LADs 

overlapping between both groups was very similar to that of published Lamin A LADs (Figure 

21B). Regions exclusive to HGPS or control cells, representing fractions of the genome that 

either lost (‘control-only’) or gained contact with the nuclear lamina (‘HGPS-only’), made up 

roughly one quarter of control and HGPS LADs, respectively, with slightly more regions lost than 

gained (Figure 21A and Figure 21B). Since these genomic stretches may provide critical insight 

into the disease-associated epigenetic patterns, the distribution of methylation and chromatin 

accessibility changes across the newly identified LAD subsets was analyzed next.  
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Figure 20: Differential enrichment reveals weak, but widespread HGPS-specific loss of 
Lamin A-binding. Smoothed differential (HGPS-control) Lamin A enrichment (Dam-Lamin A 
/ Dam) signal plotted for all chromosomes. Positive signal (orange) indicates stronger, 
negative signal (blue) indicates weaker Lamin A-binding in HGPS. Previously identified 
Lamin A (top, Lund et al., 2015) and Lamin B (bottom, Guelen et al., 2008) LADs are shown 
in grey. Centromere locations are indicated with black triangles. 
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3.5.3. Alterations in the LAD landscape help explain epigenetic changes 
observed in HGPS 

The use of previously reported locations of Lamin A-associated LADs pointed towards a partial 

relaxation of peripheral chromatin in HGPS, as not only losses but also gains in chromatin 

accessibility were enriched in these regions (Figure 13B). Importantly, the HGPS-specific LAD 

data generated in the Dam ID-seq experiment helped to better resolve this situation.   

First, based on the new information, HGPS-specific chromatin accessibility increases were not 

enriched in regions associated with the nuclear lamina in HGPS cells (Figure 22A, middle row), 

suggesting that these stretches of the genome do not undergo substantial relaxation. In fact, 

significant (P<0.05, Fisher’s Exact test) chromatin accessibility gains solely occurred in regions 

losing LAD association in the disease, i.e. ‘control-only’ LADs (Figure 22A, middle row).  

Second, the Dam ID-seq data more directly confirmed the heterochromatic nature of HGPS 

LADs, as lamina-associated regions lost chromatin accessibility. More precisely, both HGPS 

LADs and those overlapping between disease and control cells revealed significantly (P<0.05, 

Fisher’s Exact test) enriched accessibility decreases (Figure 22A, bottom row). However, the 

strongest decreases occurred in parts of the genome that were identified as LADs exclusively in 

HGPS cells (Figure 22A, bottom row), thus indicating a heterochromatic nature of disease-

specific LADs.  

Figure 21: Definition of lamina-associated domains (LADs) in HGPS and control 
samples. (A) Schematic representation of LAD subsets defined using a pipeline developed 
by Gatticchi et al. (Gatticchi et al., 2019) for chromosome 11. (B) Total genome coverage of 
LAD subsets shown in (A) in base pairs (bp). 1 Lund et al., 2015, 2 Guelen et al., 2008. 
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Figure 22: Dam ID-seq-defined lamina-associated domain (LAD) subsets better resolve 
HGPS-specific epigenetic changes. (A) Distribution of ATAC-seq peaks across LAD 
subsets identified in this work. The arrows indicate the observed enrichment of HGPS-specific, 
significantly differentially accessible regions (right) in a given LAD subset (*P<0.05; Fisher’s 
Exact test). Ctr = control. (B) Differential methylation (β value) of probes overlapping with the 
different LAD subsets with median indicated as a black line (HGPS LADs: P<2.20e-16, 
overlapping LADs: P<2.20e-16, HGPS-only LADs: P=3.26e-12, control-only LADs: P<2.20e-
16, non-LAD: P<2.20e-16) (Welch Two Sample t-test for all). (C) Enrichment of LAD subset-
associated probes among differentially (P<0.05, F-test) methylated probes (*P<0.01; chi-
squared test). Expected numbers were calculated based on the fraction of LAD subset-
associated probes among all probes normalized to the number of differentially methylated 
probes.  
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Intriguingly, when the DNA methylation patterns were re-analyzed with the new LAD 

information, a different picture emerged: in agreement with the results obtained with the 

previously published LAD datasets (Figure 16A and B), probes located in the HGPS and 

overlapping LAD subsets were significantly (P<2.20e-16 for both, Chi-squared test) enriched 

among differentially methylated probes and showed strong and significant (P<2.20e-16 for both, 

Welch two sample t-test) HGPS-specific increases in median methylation (Figure 22B and C). 

Furthermore, non-LAD associated probes exhibited relatively little group-specific differences 

and higher overall methylation levels (Figure 22B). Unexpectedly, however, probes overlapping 

with the ‘HGPS-only’ and ‘control-only’ LAD subsets, i.e., regions gaining and losing lamina 

contact in HGPS cells, respectively, revealed intermediate overall methylation levels and 

smaller, yet significant (P=3.26e-12 and P<2.20e-16, Welch two sample t-test), disease-specific 

increases in median DNA methylation (Figure 22B). Consistently, they were only very slightly 

overrepresented among the differentially methylated probes (P<2.20e-16 and P=6.27e-08, Chi-

squared test) (Figure 22C). Together, these findings imply that, at the DNA methylation level, 

HGPS- and control-specific LADs represent an intermediate state between the ones conserved 

in both groups and those not associated with the nuclear lamina. 

In summary, the above data help to better resolve the landscape of epigenetic alterations in 

HGPS fibroblasts. More precisely, they point towards a scenario, in which the majority of HGPS 

LADs, including those shared with control cells, are characterized by low chromatin 

accessibility, partial methylation levels and HGPS-specific hypermethylation. Newly established 

LADs and those lost in the disease, on the other hand, exhibit methylation patterns more similar 

to non-LAD parts of the genome and less HGPS-specific hypermethylation but differ drastically 

with regard to chromatin accessibility. The latter was found to be slightly elevated in LADs lost in 

HGPS but to be considerably diminished in newly created ones, thus hinting at a conservation 

of their repressive nature in the disease.  

 

3.6. Profiling of the HGPS transcriptome using RNA-seq  
 

To investigate whether the identified HGPS-specific epigenomic changes affect gene 

expression patterns in the disease, RNA-seq was performed with fibroblasts from six HGPS 

patients and three controls. As shown in Figure S39, HGPS samples clustered separately from 

control samples in a PCA based on the transcriptomic profiles, indicating significant expression 

differences between both groups. These differences were subsequently further characterized. 
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3.6.1. The HGPS transcriptome and comparisons with earlier studies 

After preprocessing (see Methods, Section 6.2.18.2), 343 genes were found to be significantly 

(q<0.05, Benjamini-Hochberg) differentially expressed between the HGPS and control groups, 

of which 160 were upregulated and 183 were downregulated in the disease, respectively (Figure 

23A). Importantly, the list of differentially expressed genes included factors known to be 

deregulated in HGPS such as the osteoblast maturation factor ‘Twist Family BHLH Transcription 

Factor 2’ (TWIST2), the extracellular matrix (ECM) protein ‘Dermatopontin’ (DPT) or several 

collagens including ‘Collagen Type IV Alpha 1 Chain’ (COL4A1) and ‘Collagen Type IV Alpha 5 

Chain’ (COL4A5) (Csoka et al., 2004; Plasilova et al., 2011). Further confirming the overlap with 

earlier studies, the data generated herein were in good correlation with data from two previous 

array-based reports (GSEA3860: Pearson correlation r=0.37, P<2.20e-16 (Csoka et al., 2004), 

GSEA69391: Pearson correlation r=0.23, P<2.20e-16 (Kubben et al., 2016)), especially for 

genes, whose expression was found to be more strongly deregulated in HGPS (Figure 23B, 

upper panels). Likewise, despite some deviation, many of the significantly up- or downregulated 

genes overlapped with genes identified in either of the two studies, or both (Figure 23B, lower 

panels).  

In the HGPS-specific transcriptome, several processes were significantly (False Discovery 

Rate (FDR) q<0.05) overrepresented as measured by Gene Set Enrichment Analyses (GSEAs). 

Highest enrichments were observed for ‘Hippo signaling’ (NES=1.91, FDR q-val=0.002), a 

developmental signaling pathway controlling organ size (Zhao et al., 2010), ‘extracellular matrix 

receptor interaction’ (NES=1.93, FDR q-val=0.01), confirming the disruption of extracellular 

matrix homeostasis in HGPS (Csoka et al., 2004; Prokocimer, Barkan and Gruenbaum, 2013; 

Vidak et al., 2015), and ‘vascular smooth muscle contraction’ (NES=1.82, FDR q-val=0.03), 

representing genes involved in vasoconstriction (Figure 23C). Similarly, ‘UV response down’ 

(NES=1.55, FDR q-val=0.02), containing genes downregulated upon ultraviolet (UV) light 

exposure such as collagens and members of the insulin-like growth factor signaling pathway, 

and ‘Notch signaling’ (NES=1.65, FDR q-val=0.03), which plays a crucial role during cardiac 

development (Niessen and Karsan, 2008), were significantly enriched in the transcriptome of 

HGPS fibroblasts (Figure 23C). Intriguingly, target genes of the AP1 transcription factor family, 

whose members were overrepresented in the HGPS-specific differentially accessible and 

differentially methylated regions (Figure 14B/C and Figure 15F), also revealed an enrichment-

like pattern, despite not reaching the significance threshold (NES=1.05, FDR q-val=0.285) 

(Figure 23C). In accordance with this, a TRANSFAC analysis of upstream regulators driving the 

gene expression changes of HGPS fibroblasts included AP1 family members (Figure 23D).  
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Figure 23: General features of the HGPS-specific transcriptome. (A) 50 most 
differentially (q<0.05, Benjamini-Hochberg) expressed genes in six HGPS vs. three control 
samples. Lowly expressed genes are shown in blue, highly expressed ones in red. FPKM = 
Fragments Per Kilobase of transcript per Million mapped reads. (B) Comparison of RNA-seq 
data with previous HGPS expression studies. Log Fold Changes (FC) of genes in 
GSE3860A vs. our data (Pearson correlation r=0.37, P<2.20e-16), and in GSE69391 vs. our 
data (Pearson correlation r=0.23, P<2.20e-16), respectively, are given in upper panels. 
Lower panels show the overlap of genes up- or downregulated, respectively, between our 
and the aforementioned studies. (C) Selection of Gene Ontology (GO), Kyoto Encyclopedia 
of Genes and Genomes (KEGG) and hallmark gene sets enriched (False Discovery Rate 
(FDR) q<0.05) in HGPS fibroblasts. NES=Normalized Enrichment Score.  (D) TRANSFAC 
transcription factor (TF) network analysis of upstream factors controlling the observed 
expression changes (P<0.05 for all). 
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Simultaneously, it identified NRF2 as the main transcription factor behind these changes (Figure 

23D), confirming an earlier report that established NRF2 as one of the key factors behind the 

HGPS-specific transcriptome alterations (Kubben et al., 2016).  

In summary, these results confirm the gene expression changes previously reported for HGPS 

fibroblasts and further point towards the possibility that the epigenetic changes identified herein 

contribute to the disease-specific transcriptome alterations.  

Given the rapid progression of age-related pathologies in HGPS patients, the question arises 

whether cells from older patients exhibit a larger number of deregulated genes when compared 

to control cells. Therefore, differences in the expression patterns of fibroblasts from old and 

young patients were analyzed. Indeed, cells from older patients (>8 years) were characterized 

by the largest number of differentially expressed genes (n=397, Figure 24A). After removal of 

Figure 24: Transcriptomic differences between HGPS subgroups. (A) Venn diagram 
showing numbers of genes overlapping between HGPS young (<8 years) vs. control samples 
and HGPS old (>8 years) vs. control samples, respectively. The Gene Ontology (GO) 
processes characteristic of each comparison are given. (B), (C) & (D) GO processes 
enriched among the differentially (q<0.05, Benjamini-Hochberg) expressed genes for (B) 
HGPS old (>8 years) vs. control, (C) HGPS young (<8 years) vs. control and (D) genes 
overlapping between HGPS old vs. control and HGPS young vs. control, respectively. 
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those genes that were also found deregulated in cells from younger patients, the 286 remaining 

‘old-specific’ genes were analyzed for enrichment of Gene Ontology (GO) terms.  Interestingly, 

this yielded processes characteristic of HGPS-related pathologies such as 'glomerulus 

development', 'endothelium development', 'regulation of blood pressure', 'angiogenesis', and 

'muscle system process' (Figure 24A and B). In contrast, the 159 genes deregulated in younger 

patients (<8 years), i.e., ‘young-specific’ ones, were associated with the GO terms 'embryonic 

skeletal system development' and 'anterior/posterior pattern specification' (Figure 24A and C). 

Lastly, the set of genes overlapping between both groups (n=111), i.e., those independent of 

patient age, was characterized by developmental, organismal and metabolic processes (Figure 

24A and D). These results illustrate that both HGPS-related developmental changes and the 

aggravation of the clinical phenotype can be recapitulated at the level of gene expression in 

vitro. 

 

3.6.2. Epigenetic changes are associated with a subset of HGPS-specific 

expression changes 

To find out whether changes in the LAD landscape and accompanying epigenetic alterations 

contribute to the gene expression patterns observed in HGPS fibroblasts, the generated gene 

expression data were compared with the DNA methylation and ATAC-seq datasets. Out of the 

343 genes with significant expression changes, 21 showed simultaneous changes in chromatin 

accessibility, the majority of which (n=16) gained accessibility in HGPS (Figure 25A). In 

comparison, 14 genes exhibited simultaneous alterations in DNA methylation, with about half 

(n=8) becoming hypermethylated in patient cells (Figure 25B). Finally, three genes (EDIL3, 

RELN and ZNF423) were characterized by both differential DNA methylation and differential 

accessibility. These limited numbers suggest that only a subset of differentially expressed genes 

is directly affected by the epigenetic alterations in HGPS cells.  

A genomic reorganization of LADs can underlie gene expression changes in both development 

and disease (Perovanovic et al., 2016; Poleshko et al., 2017; Cheedipudi et al., 2019). This 

raises the possibility that the epigenetic changes observed in the abovementioned gene subsets 

are associated with their intranuclear relocalization. To test this, fluorescence in situ 

hybridization (FISH) experiments were performed in HGPS fibroblasts. More specifically, the 

distance of specific FISH signals to the nuclear lamina was measured for a set of five genes in 

HGPS and control cells (Figure 25C and D, Figure S40). Two of the tested genes, ‘EGF Like 

Repeats And Discoidin Domains 3’ (EDIL3) (P=3.03e-08, Welch Two Sample t-test) and ‘Insulin 

Like Growth Factor Binding Protein 7’ (IGFBP7) (P=2.75e-13, Welch Two Sample t-test) were  
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consistently localized further away from the nuclear periphery in HGPS compared with control 

cells (Figure 25D&E), with the strongest locational changes occurring in cells from older  

patients.  EDIL3 encodes an integrin ligand with an important role in angiogenesis, vessel wall 

remodeling and development (Hidai et al., 1998; Aoka et al., 2002). IGFBP7, on the other hand, 

encodes a member of the insulin-like growth factor-binding protein family and is related to 

cellular senescence and modulation of angiogenesis (Wilson et al., 2002; Pen et al., 2008; 

Wajapeyee et al., 2008). The increased expression of both genes in HGPS cells was 

subsequently verified using quantitative RT-PCR (Figure 25F). These results yield proof-of-

principle evidence that intranuclear relocalization can indeed underlie both epigenetic and 

expression alterations observed in the disease.  

To evaluate the consequences of such LAD-localization changes on a broader scale, the 

genomic position of genes in relation to the different HGPS-specific LAD subsets was 

investigated. As shown in Figure 26A, both differentially expressed genes undergoing 

accessibility changes, as well as those undergoing DNA methylation changes, tended to be 

located closer to all HGPS LAD subsets than the entirety of differentially expressed genes. 

Seen in isolation, this suggests that the subset of genes with epigenetic changes is 

predominantly located near the nuclear periphery in HGPS cells.  

However, integrating the dynamics of differential Lamin A-binding (cp. Figure 20) for the same 

subset of genes into the analysis, better resolved this observation. Specifically, differentially 

expressed genes with accessibility changes showed a significant (P=2.49e-04, Wilcoxon test) 

reduction of Lamin A-binding in patient fibroblasts (Figure 26B). The same tendency was  

Figure 25: Epigenetic deregulation of lamina-associated domains (LADs) contributes to 
aberrant gene expression in HGPS. (A) Differentially (q<0.05, Benjamini-Hochberg) 
expressed genes that show concomitant HGPS-specific chromatin accessibility changes in 
their promoter or gene body. Lowly expressed genes are shown in blue, highly expressed 
ones in red. FPKM = Fragments Per Kilobase of transcript per Million mapped reads. (B) 
Differentially (q<0.05, Benjamini-Hochberg) expressed genes that show concomitant HGPS-
specific DNA methylation changes in their promoter or gene body. FPKM as in (A). (C) 
Representative EDIL3 FISH images in HGPS and control nuclei. A telomeric probe (red) on 
chromosome 5 (Chr5) was used as a positive staining control. The distance (d) from the FISH 
signal to the nuclear periphery was measured in the focal plane in cells exhibiting a clear 
biallelic signal. (D) & (E) Quantification of (C) for EDIL3 and IGFBP7 loci in two control and 
three HGPS cell lines for 60 cells per sample. EDIL3: P=3.03e-08, Welch Two Sample t-test. 
IGFBP7: P=2.75e-13, Welch Two Sample t-test. (F) EDIL3 and IGFBP7 expression levels 
relative to those of GAPDH, SRSF4 and TFB in control (blue), HGPS young (<8 years, 
orange) and HGPS old (>8 years, red) cells as measured by RT-qPCR (*EDIL3: P=2.00e-03, 
IGFBP7: P=4.00e-04, unpaired t-test). 
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Figure 26: Lamina-associated domain (LAD) alterations are associated with a subset 
of HGPS-specific transcriptomic changes. (A) Distance plot showing the distance from 
the closest LAD for the indicated gene subsets with median indicated as a black line. Colors 
represent the different LAD subsets identified in this work. *P=3.79e-04 (overlapping vs. 
HGPS-only), *P=8.89e-07 (HGPS-only vs. control-only), Wilcoxon test for all. (B) Differential 
Lamin A enrichment (HGPS-control) (cp. Figure 20) for the different gene subsets with 
median indicated as a black line. *P=2.49e-04 (Diff.acc. vs. diff. expr.), *P=6.17e-05 
(Diff.acc. vs. all), Wilcoxon test for all. (C) Number of differentially expressed genes 
overlapping with the different LAD subsets. The chart size reflects the fold enrichment of 
observed/expected (given in brackets, with Fisher’s Exact test P-values). Numbers and 
percentages of genes up-/downregulated are also given. (D) Correlation of differential 
expression (Log2FC) and differential Lamin A enrichment (HGPS-control) on a per-gene 
basis. Red and blue dots represent the 100 genes exhibiting the strongest increases in 
expression (based on Log2 FC) and the lowest differential Lamin A enrichment in HGPS, or 
vice versa. (E) Gene Ontology processes significantly (P<0.05, Fisher’s Exact test) enriched 
among the 100 genes exhibiting the strongest increases in expression (based on Log2 FC) 
and the lowest differential Lamin A enrichment in HGPS (shown in red in (D)).  
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present for differentially expressed genes with DNA methylation changes, despite not reaching 

statistical significance (P=0.11, Wilcoxon test) (Figure 26B).  

In agreement with the proof-of-principle findings for EDIL3 and IGFBP7, these results thus 

indicate that the epigenetic changes for both sets of genes tend to coincide with a detachment 

from the nuclear lamina. At the same time, the analysis revealed that the differential expression 

in patient fibroblasts is not associated with new HGPS-specific nuclear lamina contacts, as the 

343 differentially expressed genes were located significantly further away from newly 

established HGPS LADs than from those lost in the pathology (P=8.89e-07, Wilcoxon test) or 

those overlapping between both groups (P=3.79e-04, Wilcoxon test) (Figure 26A).   

Further evidence for these dynamics came from the quantification of differentially expressed 

genes in the different LAD subsets. Generally, the number of differentially expressed genes 

overlapping with one of the identified LAD subsets was low (Figure 26C), which is in agreement 

with the gene-poor nature of LADs. Nevertheless, some expression changes were found to be 

enriched in lamina-associated regions: while significantly (P=0.02, Fisher’s Exact test) less 

genes than expected (-1.38-fold) were differentially expressed in LAD regions common between 

HGPS and control cells, significantly (P=0.02, Fisher’s Exact test) more than expected (1.35-

fold) were located in DNA stretches losing LAD contact in the disease (Figure 26C). Crucially, 

the majority of these genes (34 out of 57) were upregulated in HGPS (Figure 26C). Regions 

exclusively bound to Lamin A in disease fibroblasts, in contrast, contained a majority of 

downregulated genes (19 out of 31) (Figure 26C). Together, these findings reinforce the notion 

that LADs are transcriptionally inactive and that regions losing lamina association in HGPS cells 

become available to elevated gene expression, as observed in a proof-of-principle manner in 

the FISH experiments. 

Finally, the set of genes, whose expression was most strongly affected by the altered lamina 

association in HGPS cells, was further investigated. For this purpose, the identified gene 

expression fold changes were correlated with the differential enrichment in Lamin A-binding 

(Figure 20). Overall, differential expression was weakly, but significantly negatively correlated 

with differential Lamin A-binding (Figure 26D, Pearson’s correlation r=-0.10, P<2.20e-16), which 

is in agreement with the generally low expression levels of lamina-associated genes. More 

interestingly, analyzing the most affected genes for enrichment of GO terms yielded a striking 

result: no processes were significantly (P<0.05, Fisher Exact test with Bonferroni correction) 

enriched among the 100 genes most strongly downregulated upon increased lamina association 

(Figure 26D in blue). Conversely, the 100 most upregulated genes upon loss of Lamin A-binding 

revealed a significant enrichment of GO processes associated with cardiovascular development 
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(Figure 26D in red, and Figure 26E), i.e., processes involved in the formation of one of the most 

severely affected organ systems in the disease. These data illustrate that the increased 

availability of previously LAD-associated genes is an important contributor to the disease-

specific gene expression. 

Collectively, these results provide evidence that the HGPS-specific epigenomic changes 

contribute to the pathological gene expression observed in the disease. While only a subset of 

differentially expressed genes appears to be affected by significant chromatin accessibility and 

DNA methylation changes, alterations in the Lamin A-associated LAD landscape help explain a 

more substantial part of the HGPS fibroblast-specific transcriptome.  

 

3.7. Lonafarnib treatment does not revert HGPS-specific DNA 
methylation changes 

 
Different compounds have been shown to improve the molecular phenotype of HGPS cells 

(Capell et al., 2005; Yang et al., 2006; K. Cao et al., 2011; Gabriel et al., 2015; Pellegrini et al., 

2015; Gabriel, Gordon and Djabali, 2016; Kreienkamp et al., 2016; Xiong et al., 2016; Park and 

Shin, 2017), however, treatment with the farnesyltransferase inhibitor (FTI) Lonafarnib is 

currently the only intervention with demonstrated life-extending benefits for HGPS patients 

(Gordon et al., 2014). By blocking the farnesylation step in the post-translational processing of 

Lamin A, this treatment has been shown to drive the accumulation of pre-Lamin A but also to 

activate autophagy and Progerin removal, resulting in an amelioration of the characteristic 

nuclear phenotype and other improvements at the cellular level (Capell et al., 2005; Young et 

al., 2013; Gabriel et al., 2017). This raises the question whether treatment with a FTI alleviates 

the epigenetic deregulation of LADs observed in HGPS fibroblasts. 

To answer this question, three HGPS and three control fibroblast cell lines were treated with 

0.06 µM Lonafarnib for 7 days (see Methods, Section 6.2.2), a treatment regimen that has 

previously been reported to improve the nuclear phenotype of HGPS fibroblasts (Gabriel et al., 

2017). As expected, HGPS fibroblasts showed lower levels of Progerin and an increase in pre-

Lamin A levels at the end of the treatment period (Figure 27A). Additionally, a significant 

(P<0.01, unpaired t-test) decrease in the number of lobulated nuclei was observed in two out of 

three HGPS samples but none of the controls (Figure 27B), hence confirming the drug’s efficacy 

in mitigating the nuclear phenotype of HGPS fibroblasts.  

Genomic DNA from DMSO- and FTI-treated cells was then tested for DNA methylation 

changes using Infinium MethylationEPIC arrays. Interestingly, despite the tangible phenotypic 
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improvement, no significantly (P<0.05, F-test) differentially methylated probes were found 

between FTI- and DMSO-treated HGPS cells. Consistently, no significant (P<0.05, Welch two 

sample t-test) methylation differences were observed between FTI- and DMSO-treated HGPS 

fibroblasts for probes located in the different LAD subsets, and HGPS cells retained their LAD-

specific hypermethylation (Figure 27C).  

Fitting this overall picture, FTI-treated HGPS cells did not show uniform or expected 

expression changes of some of the most strongly HGPS-specific deregulated genes (Figure 

Figure 27: Lonafarnib treatment does not alleviate epigenetic deregulation of lamina-
associated domains (LADs) in HGPS. (A) Left panel: Immunoblot of total protein extracts 
(20 µg) from HGPS (HGADFN164) and control (HGMDFN090) samples treated with DMSO 
or 0.06 µM Lonafarnib for 7 d. Lamin A, Progerin and Lamin C were detected using a mouse 
α-Lamin A/C antibody (sc7292, Santa Cruz, 1:500). Right panel: Quantification of Progerin 
levels relative to the amount of Lamin C in HGPS sample (triplicate measurement). *P<0.01, 
unpaired t-test. (B) Left panel: Quantification of lobulated nuclei in HGPS and control cells 
after 7d treatment with DMSO or 0.06 µM Lonafarnib. *P<0.01, unpaired t-test. Right panel: 
Representative images of normal and lobulated nuclei. (C) Differential methylation (ß value)  
of probes overlapping with the indicated LAD subsets after 7d treatment with DMSO or 0.06 
µM Lonafarnib. Median indicated as a black line. HGPS LADs: P=0.11 (HGPS) and P=2.20e-
16 (control); overlapping: P=0.12 (HGPS) and P=2.20e-16 (control); HGPS-only: P=0.73 
(HGPS) and P=4.79e-10 (control); control-only: P=0.63 (HGPS) and P=4.38e-15 (control). 
Welch Two sample t-test for all. 
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S41). These results suggest that the Lonafarnib treatment, while effective in ameliorating the 

nuclear phenotype, does not alter the epigenetic and gene expression changes observed in 

disease cells. 

3.8. A global picture emerges - epigenetic deregulation of LADs in 
HGPS fibroblasts 

 
In summary, the data generated in this work paint the following picture: in normal fibroblasts, 

the peripheral epigenomic landscape is characterized by partially methylated, but largely 

inaccessible heterochromatic domains that are distinct from the highly accessible, more 

centrally located euchromatic compartments. In contrast, substantial remodeling takes place in 

lamina-associated regions of Progerin-expressing cells (Figure 28).  

Figure 28: Epigenetic deregulation of lamina-associated domains (LADs) in HGPS. 
Progerin-driven nuclear malformation in HGPS nuclei causes substantial, but potentially 
locally stochastic epigenetic reconfiguration of LAD-specific chromatin. Chromatin 
accessibility and DNA methylation changes accompany a reorganization of Lamin A-binding 
regions. Some of the affected regions gain a more relaxed chromatin environment that is 
more permissive to the binding of transcription factors and might thus facilitate differential 
expression (Gene A). In other cases, chromatin decondensation and disease-specific 
differential expression of formerly LAD-associated loci coincides with a relocalization within 
the nucleus, as detected in the case of EDIL3 and IGFBP7 (Gene C). A third set of regions 
gains new LAD contact, followed by downregulation of the underlying genes (Gene B). 
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These parts of the genome exhibited significant DNA hypermethylation and chromatin 

accessibility changes in the HGPS populations. Critically, a widespread genomic reorganization 

of Lamin A-binding seems to underlie these changes; however, with different outcomes: regions 

losing lamina association in disease cells experience profound accessibility gains, which, in 

some cases, coincide with significant increases in gene expression, as detected for EDIL3 and 

IGFBP7 in a proof-of-principle manner (Figure 28, Gene A). Becoming detached from the 

nuclear lamina, derepressed and available to the gene expression machinery, factors unrelated 

to the fibroblast lineage may start to be expressed as part of this process. 

Another set of loci gains LAD contact in HGPS fibroblasts, accompanied by slight decreases in 

chromatin accessibility and the downregulation of underlying genes (Figure 28, Gene B). 

Interestingly, this set of genes does not include any enriched biological processes. 

Finally, the expression of a third set of genes is affected by the decondensation of peripheral 

heterochromatin and accompanying changes to regulatory elements and binding sites of 

transcription factors like AP1 and NRF2, whose differential localization can affect expression in 

the periphery and the nuclear interior alike (Figure 28, Gene C). 
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4. Discussion 
 

Previous studies have investigated epigenetic alterations in HGPS cells but were either 

focused on histone modification changes (Scaffidi and Misteli, 2006; Shumaker et al., 2006; 

McCord et al., 2013) or limited by the technology of earlier DNA methylation assays (Liu et al., 

2011). It is therefore still unclear how global DNA methylation patterns are shaped in HGPS and 

whether the reported histone modification changes affect the chromatin accessibility landscape. 

Similarly, a link between aberrations in these regulatory layers and the pathological gene 

expression signature observed in Progerin-expressing cells remains to be demonstrated.  

To address these questions, this work was aimed at exploring the nature and extent of HGPS-

specific epigenomic alterations at the level of DNA methylation and chromatin accessibility. For 

this purpose, primary dermal fibroblasts from different HGPS patients were subjected to an 

integrated analysis using ATAC-see/-seq, DNA methylation profiling and Dam ID-seq of Lamin 

A-associated regions. These data were complemented with RNA-seq information, in order to 

identify gene expression changes that are related to the HGPS-specific epigenetic alterations.  

The data obtained herein identify epigenetic deregulation of LADs as a novel, defining feature 

of the HGPS epigenome, which is associated with a global reorganization of the Lamin A LAD 

landscape and contributes to aberrant gene expression in the disease. 

 

4.1. Chromatin accessibility and DNA methylation changes are 
enriched in LADs and reveal different facets of the HGPS 
epigenome 

 
The central finding of this work is that HGPS-specific chromatin accessibility and DNA 

methylation changes are significantly enriched in genomic regions that are in contact with the 

nuclear lamina. This was evidenced by an accumulation of changes in both layers in regions 

marked by Lamin A-binding, the presence of Fos/Jun TFBSs and the absence of the active 

histone modification marks H3K4me3, H3K27ac and H3K36me3. The implied epigenetic 

reconfiguration of the nuclear periphery in HGPS fibroblasts is, in general terms, in agreement 

with previous reports demonstrating epigenetic changes concentrated near the nuclear lamina 

in Progerin-expressing cells (Goldman et al., 2004; McCord et al., 2013). However, a closer 

inspection of the nature of these changes reveals some critical differences between the two 

layers.  
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Chromatin accessibility changes were found enriched in Lamin A LADs, but the DamID-seq 

experiment demonstrated that they are not homogeneously distributed across the different 

HGPS-specific LAD subsets; instead, they reflect the underlying HGPS-specific LAD dynamics. 

For example, decreases in chromatin accessibility were strongly enriched in ‘HGPS-only’ LADs, 

and to a lesser extent in those conserved between HGPS and control cells. This finding 

suggests that lamina-associated stretches of the DNA maintain their inaccessible, i.e., 

compacted chromatin identity in HGPS fibroblasts, despite the widespread loss of peripheral 

heterochromatin in those cells (Goldman et al., 2004; McCord et al., 2013).  

Regions losing Lamin A contact in HGPS cells, on the other hand, showed a slight, but 

significant enrichment of chromatin accessibility gains, implying that previously inaccessible, 

i.e., heterochromatic regions lose their repressive nature as they move away from the nuclear 

lamina. These changes are most prominently exemplified by the dynamics of intranuclear 

localization observed for chromosome 18. Usually located at the nuclear periphery with multiple 

LAD contacts in various proliferating human cell types (Croft et al., 1999; Meaburn et al., 2007; 

Kind et al., 2015), this chromosome exhibited some of the highest relative changes in chromatin 

accessibility and a widespread decrease in Lamin A-binding in patient cells, strongly suggesting 

its relocalization to the nuclear interior. Not coincidentally, cytological studies have found that 

chromosome 18 is indeed located in the nuclear center in fibroblasts from different 

laminopathies including HGPS (Meaburn et al., 2007; Mehta et al., 2011). Moreover, the active 

relocalization of formerly LAD-associated loci in HGPS cells does also not appear to be 

restricted to single chromosomes, as the genomic loci of IGFBP7 and EDIL3, located on 

chromosomes 4 and 5, respectively, were proven to be relocated in HGPS nuclei using FISH. 

Instead, these dynamics likely symbolize a larger-scale reshuffling of the LAD environment in 

progerin-expressing cells. 

Interestingly, HGPS-specific DNA methylation changes, which were also enriched in Lamin A 

LADs, reveal a different characteristic of the HGPS epigenome. In contrast to the chromatin 

accessibility data, the highest enrichment of methylation changes, as well as considerable 

HGPS-specific hypermethylation, was found in Lamin A LADs conserved between HGPS and 

control cells. This is surprising, given that LADs largely overlap with PMDs, which have been 

reported to undergo progressive hypomethylation during aging in a variety of cells and tissues 

(Aran et al., 2011; Vandiver et al., 2015; Zhou et al., 2018). Crucially, the decrease in DNA 

methylation within PMDs has been observed to coincide with an increase in heterochromatic 

histone marks (Salhab et al., 2018), thus making it tempting to speculate that an opposite 

scenario may be active here. In other words, the observed HGPS-specific DNA 
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hypermethylation of lamina-associated regions could represent a compensatory response to the 

well documented decompaction of peripheral heterochromatin in HGPS cells (Goldman et al., 

2004; McCord et al., 2013; Chandra et al., 2015). Mechanistically, the loss of methylation in 

PMDs has been attributed to the absence of the H3K36me3 modification, which is recognized 

by DNMT3B’s PWWP domain (Baubec et al., 2015), and late replication timing in S-phase, 

leaving the methylation machinery with less time for the remethylation of the newly synthesized 

DNA strand (Aran et al., 2011; Salhab et al., 2018; Zhou et al., 2018). Extending the above 

hypothesis, one would therefore expect a shift in replication timing and H3K36me3 enrichment 

for the loci found to be hypermethylated in HGPS cells. This seems unlikely given their 

conserved LAD nature. Alternatively, the relaxation of peripheral heterochromatin could render 

them more susceptible to the action of DNA methyltransferases in the nuclear periphery. Future 

experiments should therefore address the question whether these enzymes directly or indirectly 

interact with Lamin A or Progerin, and whether these dynamics are altered in progeria cells.  

In comparison with the LAD subset discussed above, HGPS-exclusive LADs exhibited higher 

overall methylation levels and less pronounced HGPS-specific hypermethylation, as did those 

regions that lost their LAD identity in HGPS cells. From a DNA methylation perspective, both of 

these might therefore constitute intermediate states between the HMD-like, transcriptionally-

active non-LAD regions and the more PMD-like, transcriptionally silent, conserved LADs.  In 

other words, they could represent a fraction of more variable LAD contacts than the one 

overlapping between HGPS and control cells.  

Altogether, although HGPS-specific differential DNA methylation and accessibility were both 

found to be enriched in LADs, they likely illustrate different facets of the HGPS-specific 

epigenome.  Whereas the observed chromatin accessibility changes correlate well with 

alterations in the LAD landscape, the DNA methylation better define the epigenetic status of 

lamina-proximal DNA in HGPS fibroblasts. In combination, they underscore the pronounced 

deregulation of the peripheral epigenetic landscape in HGPS fibroblasts. 

 

4.2. Additional epigenetic alterations define the progeroid nature of 
the HGPS epigenome 

 
In addition to the spatial enrichment of epigenetic changes in lamina-associated parts of the 

genome, HGPS fibroblasts were characterized by a number of non-LAD-associated epigenetic 

alterations. Interestingly, these strongly suggest that the HGPS epigenome also bears 

characteristics, which would normally be associated with physiologically aged cells. 
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Most prominently, the ATAC-see experiment revealed that a significant number of HGPS 

nuclei are characterized by a noticeable decrease of chromatin compartmentalization. Critically, 

the observed loss of highly accessible regions, accompanied by an opening of previously 

inaccessible parts, is in agreement with previous studies showing a reduction of chromatin 

compartments in progeria fibroblasts based on Hi-C data (McCord et al., 2013; Chandra et al., 

2015). Similar trends have been observed during replicative and oncogene-induced senescence 

(Chandra et al., 2015; Criscione et al., 2016), hence suggesting that some of the mechanisms 

contributing to this phenomenon are conserved. 

Characteristics of a progeroid epigenome were also present at the level of DNA methylation. 

Specifically, one subgroup of HGPS fibroblasts revealed a dramatic DNA methylation age 

increase - an indication of an advanced biological age. As noted before, this age acceleration 

was not associated with the strength of Progerin expression, patient age, passage number or 

other parameters, thus leaving the question of the underlying mechanism unanswered. It is 

important to point out, that a similar age acceleration was observed in some control fibroblasts; 

specifically, those obtained from the Coriell biorepository. While simple biological variation may 

account for a portion of these observations, they might also be based on repository-related 

differences in cell culture and passaging procedures. To be more precise, although raw DNA 

methylation age estimates were corrected with a passage factor as previously suggested 

(Horvath et al., 2018), distinctions in the number of cells seeded and harvested, for example, 

may still have added substantial bias, especially if aggravated over multiple passages. Support 

for this argument comes from the fact that samples obtained from the Coriell biorepository had 

significantly higher average passage numbers than those obtained from the PRF (data not 

shown). Validating the HGPS-specific age increases, however, the calculated data closely 

resemble recently reported DNA methylation age estimates for the same HGPS fibroblast 

samples (Horvath et al., 2018). The minor deviations from the published data may, in turn, be 

attributable to differences in data preprocessing or the number of population doublings (Horvath 

et al., 2018; McEwen et al., 2018). Beyond that, HGPS fibroblasts have also been demonstrated 

to exhibit an age acceleration of 9-10 years at the transcriptomic level (Fleischer et al., 2018), 

thus closely matching the median age difference (9.73 years) identified for the age-accelerated 

subset in this work.  

Interestingly, a similar phenomenon has been noted in other progeroid syndromes. For 

example, Werner syndrome, a form of progeria with onset during adolescence (Salk, 1982), and 

Down syndrome, which is characterized by a number of premature aging symptoms (Devenny 

et al., 2005; Patterson and Cabelof, 2012), are associated with average DNA methylation age 
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increases of 6.4 and 6.6 years, respectively (Horvath et al., 2015; Maierhofer et al., 2017). While 

the underlying age-related methylome alterations are likely to be conserved, it is interesting to 

see that HGPS, which is arguably characterized by the most severe progeroid phenotype as 

well as the shortest life expectancy of the three disorders (Yamamoto et al., 2003; Coutinho et 

al., 2009; Kazemi, Salehi and Kheirollahi, 2016), also exhibits the strongest age acceleration. 

Given that a DNA methylation age acceleration has been shown to be connected with increased 

mortality (Marioni et al., 2015; Levine et al., 2018), this appears plausible, even if only a 

subgroup of HGPS patients revealed this deviation. Emphasizing the importance of further 

research in this area, however, no apparent differences with regard to the severity, disease 

progression, or the age of death have been observed for HGPS patients to date (personal 

communication with PRF).  

 

Based on the extent of epigenetic alterations in lamina-associated regions in HGPS 

fibroblasts, the question arises whether the epigenetic deregulation of LADs, including altered 

DNA methylation, contributes to the HGPS-specific acceleration of the epigenetic clock. 

Previous studies have shown that the majority CpG probes used in the DNA methylation age 

estimators are not overlapping with PMDs (Vandiver et al., 2015; Zhou et al., 2018). It is 

therefore hard to imagine that the HGPS-specific LAD deregulation is directly linked to the DNA 

methylation age acceleration of HGPS patients. Instead, it has been speculated that one of the 

contributing factors to an epigenetic age acceleration is increased epigenetic drift (Field et al., 

2018), i.e. the tendency of methylomes to diverge over time (Fraga et al., 2005; Heyn et al., 

2012; Issa, 2014). During aging, these changes result in an erosion of DNA methylation 

patterns, which in young cells are characterized by sharply defined genomic regions with either 

high or low methylation (Zampieri et al., 2015; Bormann et al., 2016). Intriguingly, the HGPS 

methylome, especially of individuals with age acceleration, exhibited a decrease in spatial 

correlation of DNA methylation levels of neighboring CpGs, indicating that the distinct 

methylation patterning characteristic of young cells is diminished in progeria fibroblasts. Similar 

findings have been made in T-cells and keratinocytes from normal, but significantly older 

individuals (Heyn et al., 2012; Bormann et al., 2016), thus reinforcing the notion that the HGPS 

methylome carries characteristics of advanced biological age.  

DNA methylation and chromatin regulation through the modification of histone tails are tightly 

interconnected (Robertson, 2002; Cedar and Bergman, 2009; Rose and Klose, 2014; Yan et al., 

2015). Targeting of DNA methylation, for example, is mechanistically linked to H3K9me3 

through SUV39H1/HP1 (Fujita et al., 2003; Fuks et al., 2003) and the methylation of gene 
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bodies by DNMT3B is associated with intragenic H3K36me3 (Baubec et al., 2015). The 

presence of H3K4me3 in promoters, on the other hand, is thought to block DNA methylation 

(Ooi et al., 2007; Weber et al., 2007). Given this broad cross-linkage, it is conceivable, that the 

progeroid DNA methylation patterns identified in this work are connected with the histone 

modification changes previously demonstrated for HGPS cells (Shumaker et al., 2006; McCord 

et al., 2013). In fact, the erosion of ‘youthful’ DNA methylation patterns is reminiscent of the loss 

of chromatin compartmentalization, observed in the ATAC-see experiment and in previous 

studies (McCord et al., 2013; Chandra et al., 2015). Evidence for such a connection comes from 

the observation that chromatin compartments can be directly predicted from DNA methylation 

data (Fortin and Hansen, 2015; Zhang et al., 2017). However, to elucidate the specific interplay 

between the loss of heterochromatin markers and the erosion of DNA methylation patterns in 

progeria cells, future single-cell-based approaches combining the analysis of both layers are 

needed. 

 

The gradual loss of DNA methylation from PMDs is a conserved characteristic of aging 

mammalian cells and tissues, which is aggravated in cancer cells (Lister et al., 2009; Hansen et 

al., 2011; Berman et al., 2012; Vandiver et al., 2015; Salhab et al., 2018; Zhou et al., 2018). As 

noted before, this loss has been attributed to a failure of the DNA methylation machinery to 

maintain methylation levels late during S-phase or in the absence of H3K36me3 (Zhou et al., 

2018). Consequently, the gradual decrease in median PMD methylation levels reflects the 

mitotic history of a cell or tissue. cSCC and AK cells, which were studied as part of a 

contribution to a different work, exhibited exactly this phenomenon. This is unsurprising, given 

the malignant nature of cSCC and the fact that AK displays other typical, cancer-related 

features including a decreased DNA methylation age and CpG island-associated 

hypermethylation (Rodríguez-Paredes et al., 2018). Intriguingly, HGPS fibroblasts, on the other 

hand, were not characterized by PMD hypomethylation but instead revealed a hypermethylation 

of probes in these regions, which, as discussed above, likely reflects the reorganization of the 

LAD landscape in Progerin-expressing cells. This underscores a key distinction between the 

DNA methylome changes in HGPS cells and those occurring during aging and tumorigenesis. 

Another characteristic hallmark of aging DNA methylomes is the hypermethylation of 

promoter-associated CpG islands (Heyn et al., 2012; Zampieri et al., 2015; Xie et al., 2018). 

However, HGPS cells did not show any noticeable hypermethylation of promoter-associated 

CpG probes, as measured by the methylation of probes overlapping with promoter-enriched 

H3K4me3. In addition, DNA methylation and chromatin accessibility changes were 
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underrepresented in regions marked by the presence of H3K4me3. Hence, in contrast to the 

dynamics observed during physiological aging and tumorigenesis, the epigenetic reconfiguration 

of promoter-associated CpG-islands does not seem to represent a feature of the HGPS 

epigenome.  

 

One of most fascinating questions behind this work was whether the epigenetic changes in 

HGPS resemble those observed during physiological aging. In summary, even though some 

characteristic features of aging methylomes were not detected in HGPS, there is clear evidence 

for the presence of an epigenomic signature associated with physiological aging. Despite the 

prominent nature of LAD-related alterations, which likely reflect the underlying remodeling of the 

LAD landscape, the HGPS epigenome also exhibits characteristics of cells from older 

individuals such as an increased DNA methylation age or the erosion of DNA methylation 

patterns.  

 

4.3. Reorganization of the LAD landscape in HGPS 
 

A question that arises when studying genomic and epigenomic alterations in HGPs cells, is 

how the expression of the mutant version of Lamin A affects the landscape of interactions 

between DNA and the nuclear lamina. Interestingly, while Lamin A-binding regions have been 

profiled in murine cardiac myocytes and embryonic fibroblasts expressing Progerin (Kubben et 

al., 2012), these domains have never been characterized in human HGPS cells. A part of this 

work was therefore aimed at answering the question how the Lamin A LAD landscape is shaped 

in primary cells from HGPS patients.  

 

Overall, the obtained LAD tracks were in good agreement with Lamin A and Lamin B LAD data 

from previous studies of human fibroblasts from skin (Lund et al., 2015) or lung (Guelen et al., 

2008). Unexpectedly, the quantity and, to a lesser extent, the distribution of the Lamin A LADs 

identified herein more closely resembled that of previously profiled Lamin B LADs (Guelen et al., 

2008). From a technical perspective, this may simply represent a consequence of the 

methodological similarities to the work that identified Lamin B LADs, namely the Dam ID-seq 

method, whereas the data for Lamin A were produced using ChIP-seq (Lund et al., 2015). 

Critically, the Dam ID method is based on the low-level expression of a fusion protein over a 

window of time (here: 48 hours), thus generating averaged binding profiles (van Steensel and 

Henikoff, 2000). The crosslinking-based ChIP-seq method, on the other hand, yields a picture of 
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temporary interactions, which likely reduces the number of consensus regions owing to the 

heterogeneity of cell-specific binding profiles (Kind et al., 2013, 2015). From a biological 

perspective, there is evidence for a partial overlap of Lamin A and Lamin B LADs (Meuleman et 

al., 2013; Kind and van Steensel, 2014; Gesson et al., 2016; Forsberg et al., 2019), as the two 

subtypes form separate, but interacting meshworks at the nuclear boundary (Shimi et al., 2008, 

2015; Turgay et al., 2017). Taken together, the data obtained in this work likely constitute an 

accurate representation of the Lamin A LAD landscape in dermal fibroblasts. 

 

Strikingly, HGPS cells exhibited a weak, but widespread loss of Lamin A enrichment that was 

present on almost all chromosomes. It is important to emphasize that this reduction does not 

represent the loss of real, bona-fide LADs but rather a decrease in the probability that a certain 

region is associated with Lamin A in a given cell. Nevertheless, the sheer extent of this effect 

raises the central question whether it represents true biological variation or a technical artifact. 

Arguing against methodological causes, both HGPS and control-specific Lamin A enrichments 

were normalized against their group-specific Dam-only background using an established read-

count-based method (Marshall and Brand, 2015). Secondly, and more unambiguously, the 

losses in differential enrichment were not randomly distributed but exhibited biologically 

meaningful patterns, especially when viewed in combination with the independently obtained 

ATAC-seq data. For example, chromosome 18 was characterized by a widespread decrease of 

Lamin A-binding, which is in agreement with the relative concentration of chromatin accessibility 

changes on this chromosome, as well as its relocalization to the nuclear interior in HGPS 

fibroblasts (Meaburn et al., 2007; Mehta et al., 2011). In contrast, the gene-dense chromosomes 

17 and 19, which in various cell types are located in the nuclear center and show little contact 

with the nuclear lamina (Boyle et al., 2001; Mehta et al., 2013; Kind et al., 2015), exhibited more 

balanced differential enrichment signals. Together, these arguments strongly support the 

conclusion that the HGPS-specific Lamin A LAD patterns represent true biological alterations, 

rather than technical noise. Hence, the altered dynamics of lamina binding should be 

experimentally validated in HGPS cells, for example by FISH of candidate regions exhibiting the 

strongest disease-specific changes.  

 

Assuming their validity, these data raise the intriguing question why such a large number of 

loci show reduced Lamin A-binding in Progerin-expressing cells. In mammals, peripheral 

heterochromatin is tethered to the nuclear envelope through a LBR- and a Lamin A/C-

dependent mechanism (Yokochi et al., 2009; Kind et al., 2013; Solovei et al., 2013). H3K9 
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methylation plays a critical role in this process, as depletion of the enzymes that catalyze these 

modifications relaxes or abolishes chromatin-lamina interactions (Pinheiro et al., 2012; Bian et 

al., 2013; Kind et al., 2013; Harr et al., 2015). Given that peripheral heterochromatin marks, 

including H3K9me3, are drastically diminished in HGPS fibroblasts (Goldman et al., 2004; 

McCord et al., 2013), this points towards the exciting possibility that the widespread decrease in 

Lamin A-binding is a consequence of the heterochromatin loss at the nuclear envelope. Support 

for such a conclusion comes from the observation that the decrease in Lamin A-binding largely 

overlapped with previously published LAD tracks, i.e., regions characterized by H3K9me2/3.  

Another fascinating possibility is that diminished Lamin A-binding is, at least in part, 

compensated by the presence of Progerin in the nuclear envelope. In fact, in murine cardiac 

myocytes and embryonic fibroblasts expressing Progerin, the overwhelming majority of Lamin 

A-associated genes is bound by both proteins (Kubben et al., 2012). One could therefore 

envision a scenario, in which Progerin competes with Lamin A for binding to a given genomic 

locus, thus diminishing the average Lamin A enrichment when analyzed in a large number of 

cells. A future Dam ID-seq experiment characterizing the Progerin LAD interactome should give 

better insight into this possibility. 

Finally, the intranuclear fraction of Lamin A could also be involved in these changes. The 

nucleoplasmic fraction of Lamin A binds to euchromatic parts of the genome via LAP2alpha 

(Gesson et al., 2016) but is diminished upon Progerin expression (Vidak et al., 2015). Loss of 

interaction in these previously Lamin A-LAD-associated regions could therefore contribute to the 

reduced Lamin A-binding in HGPS cells.  

Ultimately, it is important to keep in mind that, in comparison with control cells, HGPS 

fibroblasts were not characterized by a drastically decreased number of Lamin A-associated 

LADs, as detected through an established domain detection algorithm (Gatticchi et al., 2019). 

This implies that, despite the striking trend towards decreased Lamin A-binding, the overall LAD 

structure is maintained in the population of patient fibroblasts. 

 

The second major finding of the Dam ID-seq experiment is that pericentromeric and telomere-

proximal regions show increased Lamin A-binding in HGPS fibroblasts. In somatic cells, 

telomeres are distributed throughout the nucleus and not preferentially located near the nuclear 

lamina (Crabbe et al., 2012; Wood et al., 2014; Moye et al., 2015); however, subtelomeric 

repeats have been associated with peripheral localization (Ottaviani et al., 2009; Gonzalo and 

Eissenberg, 2016). Intriguingly, this seems to be facilitated by an interaction of Lamin A/C with 

the shelterin component ‘telomere repeat-binding factor 2’ (TRF2) (Wood et al., 2014). In 
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contrast, TRF2 does not bind to Progerin, leading to destabilization and, ultimately, loss of 

telomeres in HGPS cells (Decker et al., 2009; Wood et al., 2014; Gonzalo and Eissenberg, 

2016). Given the results obtained in this work, it would therefore be interesting to test whether 

the competitive presence of Progerin in HGPS cells enhances the association of telomeric 

regions with the remaining fraction of Lamin A, or whether other factors are responsible for the 

observed increase in Lamin A-binding.  

One of such factors could be the heterochromatin mark H4K20me3. It is enriched in telomeric 

and pericentromeric heterochromatin (Schotta et al., 2004; Gonzalo et al., 2005), and has been 

shown to accumulate in late-passage HGPS fibroblasts (Shumaker et al., 2006). No direct 

interaction between Lamin A/C and H4K20me3 is known to date, but pericentromeric regions 

show a preferential positioning at the nuclear periphery (Solovei et al., 2004; Guelen et al., 

2008) and the histone modification has been found to be associated with the nuclear lamina 

through binding to LBR (Olins et al., 2010). It is therefore conceivable, that the HGPS-specific 

increase in H4K20me3 at pericentromeric and telomeric regions drives a stronger interaction 

with the nuclear lamina and, by association, Lamin A in patient cells. Further complicating the 

situation, however, pericentromeric heterochromatin undergoes relaxation and transcriptional 

activation in HGPS fibroblasts (Shumaker et al., 2006). Additional experiments will therefore be 

necessary to elucidate how these regions interact with the nuclear envelope in progerin-

expressing cells. 

 

Finally, it is important to emphasize that there are some limitations to the data obtained with 

the Dam ID-seq technique in this work. First, while three samples were averaged to create the 

control tracks, the HGPS data were generated from only two samples. Although they likely give 

a good general impression of the HGPS-associated changes, they are somewhat biased 

towards the genetic and epigenetic background of the two samples and do not allow a 

statistically robust analysis of the disease-specific differences. Moreover, they probably do not 

capture the full extent of disease-specific changes in the LAD architecture. A future analysis of 

the LAD interactome in HGPS should therefore include additional samples, as well as a 

validation of the observed alterations using independent methodology such as FISH.  

Second, although well established for the mapping of DNA-nuclear envelope interactions 

(Guelen et al., 2008; Kind and van Steensel, 2014; Amendola and van Steensel, 2015), the 

Dam ID technique relies on the expression of an artificial fusion protein and may thus have 

created a certain amount of artifacts in the data, i.e., false-positive or -negative Lamin A-binding 
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sites. At the same time, the relatively long expression window of 48 hours may have contributed 

to generating false-positive findings.  

Third, the data obtained are specific to cultured dermal fibroblasts. As with the rest of the 

results obtained in this work, their scope is limited and should be confirmed in other cell types 

and primary tissues to better evaluate their role in the pathology of the disease.  

Fourth, and most importantly, it is critical to remember that the LAD data generated herein 

represent population averages from a large number of cells. On the one hand, this ensures the 

comparability with other population-scale data produced in this work, but, on the other hand, it 

probably underestimates the extent of LAD alterations occurring in the highly heterogeneous 

HGPS fibroblast population. Assuming that the integration of Progerin obeys at least some 

degree of stochasticity, a significant number of alterations are likely being missed due to an 

averaging over the entire cell population. Future studies will allow the study of single-cell LAD 

interactomes, which, in combination with other single-cell data, will not only give a better 

overview of the extent of aberrations in HGPS cells but also allow a better understanding of how 

the nuclear envelope-chromatin interplay contributes to the pathology of the disease. 

 

4.4. Epigenetic changes have a limited direct effect on gene 
expression 

 
Aside from DNA methylation, chromatin accessibility and changes in the LAD landscape, 

alterations at the transcriptomic level were analyzed in this work. The obtained results highlight 

a substantial deregulation of gene expression in HGPS fibroblasts, including an enrichment of 

pathways associated with key pathological features as well as an aggravation in cells from older 

patients.  

 

Gene expression in progeria fibroblasts has been profiled before (Ly et al., 2000; Park et al., 

2001; Csoka et al., 2004; Kubben et al., 2016). Importantly, the data generated in this work 

were in good correlation with those of previous genome-scale expression studies, especially for 

more strongly deregulated genes. In addition, they confirmed the deregulation of developmental, 

morphological, ECM- and cardiovascular function-related processes, as well as the central role 

of the transcriptional regulators NRF2 and AP1 in the disease (Csoka et al., 2004; Pereira et al., 

2008; Marji et al., 2010; Kubben et al., 2016). A comparison with a more recent study 

establishing a transcriptome-based age predictor using HGPS fibroblasts (Fleischer et al., 2018) 

was not performed. However, the fact that an age increase of about 10 years was identified for 
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HGPS cells in the same study (Fleischer et al., 2018), which closely matches the DNA 

methylation-based age acceleration identified herein (9.73 years), suggests a good overlap with 

that work, as well.   

One key benefit of the expansive sample set available for the present study is that gene 

expression profiles from HGPS samples of different age groups could be analyzed. In general, 

the finding that fibroblasts from older patients show an enrichment of pathology-related features 

is expected, as symptoms progressively worsen with advanced patient age (Merideth et al., 

2008). For instance, HGPS patients are affected by alopecia and severe skin abnormalities 

including changes in pigmentation, skin dimpling, loss of subcutaneous fat and the development 

of sclerotic skin (Merideth et al., 2008; Rork et al., 2014). The observed deregulation of core 

dermal fibroblast functions, such as ECM maintenance and collagen production (Sorrell and 

Caplan, 2004), is therefore unsurprising and may actually contribute to the skin phenotype in 

HGPS patients. More intriguing is the observation that HGPS fibroblasts show a deregulation of 

genes involved in cardiovascular development, i.e., a function not classically associated with 

dermal fibroblasts. Crucially, the differential expression of these genes was found to be 

correlated with differences in Lamin A-binding, thus offering a potential mechanistic explanation 

for the activation of lineage-unspecific genes, which may be conserved in other cell types. 

In this respect, one of the central findings of this work is that an activation of non-dermal 

fibroblast-specific genes, through the redistribution of the LAD landscape in Progerin-expressing 

cells, contributes to the HGPS-related transcriptome changes. Conceptually, this conclusion 

confirms the central role that Lamin A mutations play in the reconfiguration of the LAD and 

chromatin layers in laminopathies (Briand and Collas, 2018). In fact, a similar mechanism, 

including an induction of lineage-unspecific genes, has recently been described for fibroblasts 

carrying a LMNA mutation that causes Emery-Dreifuss muscular dystrophy (Perovanovic et al., 

2016). Additionally, mutations in the LMNA gene lead to a drastic redistribution of the LAD 

landscape and accompanying gene expression changes in cardiac myocytes from dilated 

cardiomyopathy patients (Cheedipudi et al., 2019). Given this evidence, it is tempting to 

speculate that the same mechanism may also contribute to the severe pathology affecting other 

Progerin-expressing cell types such as VSMCs and endothelial cells. In this respect, it has to be 

noted, however, that Progerin expression in endothelial cells has recently been reported to 

cause cardiovascular pathology more directly through an impaired mechanoresponse 

(Osmanagic-Myers et al., 2018). In this work, the authors showed that Progerin-induced 

changes in mechanosignaling at the nuclear envelope contribute to excessive fibrosis and the 

cardiovascular pathology of HGPS mice. Although both explanations are not mutually exclusive, 
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future experiments with primary, non-fibroblast cell populations and HGPS in vivo models will be 

necessary to better define the role of these mechanisms in the disease.  

 

Interestingly, the gene expression changes were only partially reflected by alterations at the 

chromatin accessibility and DNA methylation level in HGPS fibroblasts. In other words, the 

limited number of differentially expressed genes with simultaneous HGPS-specific differences in 

DNA methylation or chromatin accessibility appears surprising. A number of technical and 

biological factors may have contributed to this.  

From a technical perspective, simple biological variation may have limited the effect size, as a 

relatively small number of samples was used for the analyses, with some HGPS samples not 

overlapping between different experiments. Likewise, many of the fibroblast samples were 

obtained from different sites of the body. Given that fibroblasts are a highly heterogeneous cell 

type (Sorrell and Caplan, 2004; Driskell and Watt, 2015), lineage-specific differences between 

the fibroblast populations may thus have hindered the detection of further HGPS-related 

epigenetic alterations. 

From a biological perspective, the extensive population heterogeneity of HGPS cells may have 

had a strong impact on the observed effect size. More precisely, the ATAC-see and Lamin A/C 

immunofluorescence experiments revealed high degrees of cell-to-cell variation regarding 

nuclear malformation and chromatin accessibility in the fibroblasts. This probably limited the 

number of regions identified as significantly differentially accessible, which represent a 

consensus shared by a certain number of Progerin-expressing cells in the population. Future 

single-cell-based studies utilizing single-cell ATAC-seq, single-cell RNA-seq and combinatorial 

methods will allow us to better capture the scope of epigenetic alterations in HGPS cells and 

their effect on individual transcriptomes. 

Another potential explanation for the relatively small effect size comes from the fact that LADs 

are generally gene-poor (Guelen et al., 2008; van Steensel and Belmont, 2017). An 

accumulation of epigenetic changes in these regions may hence have little direct impact on the 

gene expression patterns in affected cells. But, as LADs function in the 3D organization of the 

genome, changes in the peripheral architecture can have consequences deep inside the 

nuclear interior. For example, Zheng and colleagues recently demonstrated that a knockout of 

all lamins in mouse embryonic stem cells leads to global transcriptional alterations not restricted 

to genes in LADs (Zheng et al., 2018). Mechanistically, such changes can be catalyzed through 

altered interactions between topologically-associated chromatin domains (Zheng et al., 2018) or 



4. Discussion   4.5 FTI treatment does not reverse epigenetic deregulation of LADs 

 96 

the release of sequestered enhancers from the nuclear lamina (Robson et al., 2017), both of 

which were not investigated in this work.  

Alternatively, the epigenetic reconfiguration of the nuclear periphery may be accompanied by 

an altered binding of transcription factors in these regions. The finding that binding sites of AP1 

family members were highly enriched in both differentially accessible and differentially 

methylated regions, for instance, indicates that a special role may belong to this transcription 

factor family in HGPS fibroblasts. Supporting such a hypothesis, c-Fos, a member of the AP1 

family, has been reported to be negatively regulated by binding to Lamin A/C at the nuclear 

lamina (Ivorra et al., 2006). The epigenetic deregulation of the underlying binding sites may 

therefore explain, why AP1 target genes revealed an enrichment pattern among the HGPS-

specific differentially expressed genes. Consistently, IGFBP7 and EDIL3, both characterized by 

differential accessibility and differential expression in the disease, contain consensus binding 

sites for AP1 family members in their respective promoter (Wajapeyee et al., 2008) or enhancer 

(Fishilevich et al., 2017). 

Another transcription factor appears to drive the HGPS-specific gene expression changes 

through an altered interaction with the nuclear lamina. By binding more strongly to Progerin at 

the nuclear rim, NRF2, a transcriptional activator of antioxidant genes (Lewis et al., 2010; Ma, 

2013), is sequestered away from its transcriptional targets in the nuclear interior, thus limiting 

the oxidative stress response in HGPS cells (Kubben et al., 2016). Confirming its crucial role in 

the disease, the transcription factor was identified in the present work as the central driver 

behind the transcriptional changes of patient fibroblasts.  Furthermore, NRF2 TFBSs were also 

enriched among the most differentially accessible regions. Together, these points underpin the 

conclusion that the disease-specific epigenetic deregulation of LADs affects the HGPS 

transcriptome at a much larger scale than the limited direct effect on gene expression might 

suggest.  

 

4.5. FTI treatment does not reverse epigenetic deregulation of LADs 
 

The farnesyltransferase inhibitor Lonafarnib is currently the only treatment option with life-

extending benefits for HGPS patients (Gordon et al., 2014). At the molecular level, the drug has 

been shown to ameliorate the characteristic nuclear phenotype by blocking Progerin 

farnesylation and activating autophagy (Capell et al., 2005; Young et al., 2013; Gabriel et al., 

2017). This supported the rationale that Lonafarnib treatment may reduce the epigenetic 

alterations observed in patient cells. Unexpectedly, the treatment regimen utilized in this work 
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did neither abolish the HGPS-related hypermethylation of LAD probes, nor normalize the 

expression patterns of a selected set of genes. The absence of an effect on these layers is 

surprising, as the drug proved effective in reducing Progerin protein levels and improving the 

characteristic nuclear phenotype. Furthermore, it raises the question why the treatment might 

have failed and whether alternative strategies could be used to mitigate the HGPS-specific 

epigenetic deregulation of LADs. 

To maintain adequate growth of the HGPS and control cells, a relatively low concentration of 

Lonafarnib was used in this work. Previous studies were based on treatments with significantly 

higher concentrations of FTIs (Capell et al., 2005; Marji et al., 2010; Gabriel et al., 2017). It is 

therefore theoretically possible, that higher concentrations of the drug are necessary to elicit a 

noticeable improvement of the studied parameters in HGPS fibroblasts. As the treatment was 

performed over a relatively long time period and proved effective in ameliorating nuclear 

lobulation, however, a strong improvement with higher FTI concentrations appears 

questionable. 

Instead, it is plausible that the epigenetic changes are independent of the nuclear phenotype 

in individual cells. In support of this, loss of the heterochromatin markers H3K27me3, H3K9me3 

and HP1 has been shown to precede the occurrence of nuclear malformation in patient 

fibroblasts (Shumaker et al., 2006). It is thus conceivable that the epigenetic deregulation of 

LADs is elicited by minor levels of Progerin and likewise arises before detectable changes in the 

nuclear architecture. Testing such a time- and / or dosage-dependency will require further 

experiments, including the temporary expression of Progerin in non-HGPS cells or the titration 

of different Progerin levels using inducible constructs. 

To circumvent the epigenetic deregulation of LADs and its potential downstream 

consequences, an efficient treatment approach should consequently be centered around limiting 

the expression of mutant Lamin A. While reducing ∆150 LMNA mRNA levels using lentivirally 

delivered short-hairpin RNAs (shRNAs) has proven effective in restoring proliferative capacities 

in HGPS fibroblasts in vitro (Huang et al., 2005), significant advances in blocking Progerin 

expression in vivo will likely have to be based on the systemic application of gene editing 

techniques such as CRISPR/Cas9. Intriguingly, two recent studies in mice demonstrated that a 

single-dose administration of CRISPR/Cas9 components targeting Lamin A / Progerin is 

effective in improving some HGPS phenotypes, including weight loss, mobility and both median 

and maximum survival (Beyret et al., 2019; Santiago-Fernández et al., 2019). These studies 

provide an early impression of the direction the treatment of HGPS is going to take in the near 

future. 
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4.6. A novel layer for the understanding of HGPS disease 
mechanisms 

 
In summary, the results obtained in this work establish the epigenetic deregulation of LADs as 

a previously unrecognized characteristic of the HGPS epigenome and add a novel layer to our 

understanding of the disease’s molecular pathology. Based on the integration of different 

epigenomic approaches and gene expression profiling, they indicate that disease-related 

changes in the LAD architecture, accompanied by alterations in DNA methylation and chromatin 

accessibility, contribute to the pathological transcriptomic signature observed in patient 

fibroblasts. Illustrating the crucial role of the nuclear lamina in transcriptional regulation, these 

findings thus demonstrate that a disease mechanism, which has been observed in cells from 

other laminopathies before (Perovanovic et al., 2016; Cheedipudi et al., 2019), is also involved 

in the molecular pathology of HGPS. While requiring additional experimental verification, this 

mechanistic insight represents an attractive starting point for future studies of the effect that the 

presence of Progerin exerts on the global LAD structure, and thus, the HGPS transcriptome. If 

experimentally validated and confirmed in other cell types typically affected in HGPS patients, it 

will help close a significant gap in our understanding of the molecular foundation underlying the 

disease.  

 

At the same time, these results raise a number of intriguing mechanistic and translational 

questions, the answers to which should help to better define the importance of HGPS-related 

epigenomic alterations in the future. Some of these, including the question of the mechanism 

behind the disease-specific PMD hypermethylation or the interconnection with previously 

observed histone modification changes, have already been discussed herein and will 

accordingly require further experimental efforts. Others, however, constitute more conceptual 

questions that have not been touched upon hitherto.  

One of such questions, for example, is whether some parts of the LAD landscape are more 

vulnerable to epigenetic deregulation upon Progerin expression than others. Assuming that the 

accumulation of the mutant protein at the nuclear envelope obeys a somewhat stochastic 

pattern - an interesting question in and of itself - one would theoretically expect different LAD 

stretches to become deregulated in different cells. Crucially, the population-scale analyses 

performed in this work demonstrate that a number of loci are preferentially affected in HGPS 

fibroblasts and it will be interesting to discover the underlying mechanisms. In conjunction with 
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this, the question arises whether the relationship between the cellular quantity of Progerin and 

the occurrence of LAD alterations is linear and / or whether a certain threshold concentration of 

the mutant protein precedes the appearance of changes in the LAD structure. In the case of the 

latter, one would expect a sufficiently large reduction of Progerin levels below this threshold to 

normalize gene expression patterns in individual cells. Closely related is the question whether 

the observed changes in the LAD landscape are reversible, i.e., whether a reduction of Progerin 

levels would restore a normal LAD architecture, thereby allowing a mitigation of the pathological 

gene expression. While this was not tested after FTI-treatment in this work, it generally appears 

plausible and could be examined using Progerin knock-down/-out cells or constructs for the 

inducible expression of the mutant protein.  

Regarding the DNA methylation dynamics observed in HGPS cells in the present study, it is 

surprising to see that they culminate in an epigenetic age acceleration for only a subset of 

patients. Although the obtained data represent a good starting point for a more thorough 

characterization of the two subgroups at the level of DNA methylation, a conclusive answer to 

this question may also involve genetic factors and will therefore require additional studies. 

These will also be beneficial for finding out whether the observed alterations ultimately result in 

differences in survival between the two subgroups.  

Finally, one of the most fascinating questions with respect to the results obtained in this study 

is whether the epigenetic deregulation of LADs as identified in HGPS cells could also play a role 

in healthy aging. Such a possibility is not inconceivable, given that Progerin is expressed in 

healthy cells and that HGPS-related phenotypic alterations including those in the cardiovascular 

system resemble the ones observed in aged, unaffected individuals (McClintock et al., 2007; 

Scaffidi and Misteli, 2006; Olive et al., 2010). The available evidence for an involvement of this 

mechanism in physiological aging is further discussed in section 4.7. 

 

The process of finding answers to some of the questions raised above will profit substantially 

from the establishment of single-cell analysis technologies in the near future. As highlighted 

throughout this work, the heterogeneity of individual cells in the fibroblast samples represented 

a key limitation of the population-based analyses performed as part of this study. Enabling the 

deciphering of individual changes in such highly heterogeneous populations, single-cell-based 

profiling methods therefore have the potential to tremendously advance our understanding of 

HGPS-specific mechanisms of disease.  

 As noted before, single-cell Dam ID-seq has already been employed successfully (Kind et al., 

2015). In addition, the establishment of single-cell ATAC-seq and single-cell-based DNA 
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methylation sequencing techniques such as single-cell bisulfite sequencing (Clark et al., 2017) 

or single-nucleus methylcytosine sequencing (Luo et al., 2017) will significantly aid in capturing 

the extent and nature of epigenetic alterations in the disease. Single-cell RNA-seq of primary 

patient cells, on the other hand, will provide further valuable information about the deterioration 

of gene expression patterns in cells from older patients and allow the identification of disease-

specific subpopulations. Most excitingly, by connecting multiple of these layers, combinatorial 

approaches including the recently developed single-cell nucleosome, methylation and 

transcription sequencing (Clark et al., 2018) will eventually permit a coherent analysis and 

correlation of these aberrations in individual cells.  

 

4.7. A framework for the study of physiological aging 
 

Progerin expression is not a feature that is exclusive to HGPS patients. Instead, as results of 

this work have shown, it can be detected based on the presence of the Δ150 LMNA in normal 

dermal fibroblasts, and, as others  have demonstrated, at the protein level in skin biopsies from 

aged unaffected individuals (McClintock et al., 2007). At the same time, some of the disease-

specific features including the characteristic nuclear malformation, the loss of heterochromatin 

markers and aspects of the cardiovascular pathology also manifest as consequences of the 

normal aging process (Scaffidi and Misteli, 2006; Olive et al., 2010). Given these analogies, it is 

conceivable that some of the mechanisms discovered herein play a role during physiological 

aging, as well.  

Surprisingly little is known about the nature of changes in the LAD landscape in the context of 

healthy aging. Aging Drosophila fat bodies exhibit a loss of heterochromatin and derepression of 

LAD-located immune response genes as a consequence of an age-related reduction in Lamin 

levels (Chen, Zheng and Zheng, 2014), but data for mammalian cells is scarce. Senescent 

human fibroblasts and keratinocytes have been demonstrated to experience a drastic 

rearrangement of chromatin and a downregulation of Lamin B1 (Dreesen et al., 2013; Shah et 

al., 2013; Chandra et al., 2015) but these changes may be consequential, not causative 

(Dreesen et al., 2013). Additionally, while cellular senescence represents one outcome of the 

aging process in individual cells and may even contribute to it at the tissue level (Collado, 

Blasco and Serrano, 2007; Childs et al., 2015; McHugh and Gil, 2018), it does not represent the 

aging process per se. In other words, studies with healthy, aged and non-senescent cells are 

needed to better decipher the importance of alterations in the LAD landscape during aging.  
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In the absence of such data, surrogate readouts may provide further insight into the functional 

role of LAD changes in the aging process. For example, an increasing transcriptomic disorder is 

a key characteristic of aging cells (Sen et al., 2016). Given the role of the nuclear lamina in 

transcriptional regulation, it is conceivable that a deregulation of LADs due to structural changes 

at the nuclear lamina or dysfunctional heterochromatin maintenance at least partially contributes 

to the transcriptional noise observed in aging cells. Such a framework would predict the 

derepression of lineage-unspecific genes in aged cells, evidence of which exists for certain cell 

types. A loss of functional identity related to transcriptional changes has, for instance, been 

reported in aging neurons (Dönertaş et al., 2017), and in both human and murine dermal 

fibroblasts (Salzer et al., 2018; Solé-Boldo et al., 2019). In the latter, advanced age results in a 

decrease of the expression of genes involved in ECM homeostasis and a simultaneous increase 

in pro-adipogenic traits (Salzer et al., 2018). Whether and how alterations in the LAD 

interactome contribute to these changes, has yet to be defined, but it is plausible that they are 

part of the derepression of lineage-unspecific genes in affected cells.  

Hence, while data on the presence of progeria-specific LAD dynamics are still limited, 

anecdotal evidence suggests that they might have a role during physiological aging, as well. A 

better understanding of these changes in laminopathies and the subsequent development of 

effective intervention strategies may therefore also advance the management of complications 

arising as consequences of a healthy aging process. 
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5. Conclusion 
 

In this work, an integrated analysis of alterations in chromatin accessibility, DNA methylation, 

LAD interactome and gene expression was performed using primary dermal fibroblasts from 

HGPS patients. Its central finding is that both DNA methylation and chromatin accessibility 

changes are enriched in regions associated with the nuclear lamina in progeria cells, which 

establishes the epigenetic deregulation of LADs as a novel characteristic of the HGPS 

epigenome. Crucially, these dynamics are not only related to structural alterations in the 

landscape of nuclear lamina contacts but also contribute to the pathological gene expression 

signature observed in patient fibroblasts. Altogether, these data expand the study of cellular 

changes in the progeroid syndrome by a novel layer and significantly advance our 

understanding of the disease's molecular basis. 
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6. Materials and Methods 

6.1. Materials 
6.1.1. Chemicals, reagents and enzymes 

Table 1: Chemicals, reagents and enzymes used in this work. Misc. = miscellaneous, Prep 
= preparation. 

Name Experiment/Purpose Source Reference # 

ABsolute qPCR SYBR 
Green Mix qRT-PCR Thermo AB1159A 

Acetic Acid Misc. Merck 100063 
Advantage cDNA 
polymerase mix  

Dam ID-seq Library 
Prep Clontech 639105 

Ampicillin Molecular Cloning Sigma-Aldrich A1593 

Boric Acid TBE Buffer  Sigma-Aldrich B0394 

Chitin Resin ATAC-see NEB S6651s 

Chloroform RNA Extraction VWR Chemicals 22711.260 

Coomassie Blue WB SERVA 35081.01 

ddH2O Misc. Invitrogen 10977-035 

Dextran Sulfate FISH G Biosciences RC-043 

DpnI Dam ID-seq Library 
Prep NEB R0176S 

DpnII Dam ID-seq Library 
Prep NEB R0543S 

DTT ATAC-see Sigma-Aldrich 10197777001 

EcoRI Cloning/Dam ID-seq NEB R0101S 

EDTA Misc. Gerbu #1034 

Ethanol Misc. Fisher Scientific E/0650DF/C17 

Formamide FISH Merck 109684 
Gateway LR Clonase II 
Enzyme Mix 

Dam ID-seq Gateway 
Cloning Invitrogen 11791-020 

Genomic DNA Reagents Library Preparation Agilent 5067-5366 

Glycerol Misc. Sigma-Aldrich 15523 

HCl pH Adjustment Sigma-Aldrich 30721 

HF buffer 5x (Phusion) PCR NEB M0530 
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Name Experiment/Purpose Source Reference # 

Human Cot-1 DNA FISH Invitrogen 15279011 

HyperLadder 1kb DNA Gel Marker Bioline BIO-33053 

HyperLadder 50bp DNA Gel Marker Bioline  BIO-33054 

IGEPAL CA-630 Misc. Sigma-Aldrich 13021 

IPTG ATAC-see Sigma-Aldrich I6758 

Isopropanol Misc. Fisher Scientific P/7500/PC17 

KCl Misc. Roth 6781.1 

Laemmli Pre-Mix WB/Sample Loading BioRad 161-0747 
MESA GREEN qPCR 
MasterMix Plus qRT-PCR Eurogentec RT-SY2X-

03+NRWOU 
Methanol FISH Fisher Scientific M/4000/PC17 

MgCl2 Misc. Sigma-Aldrich M8266 

Na2HPO4 FISH neoLab 4820.1000 

NaCl Misc. Sigma-Aldrich 31434 

Na Citrate FISH Fluka 71405 

NaH2PO4 FISH AppliChem A1939.1000 

NaOH pH Adjustment Fluka 35256 

Paraformaldehyde Cell Fixation Roth 0335.3 

PBS 1x Misc. Gibco 10010023 

PEI 10 % ATAC-see Sigma-Aldrich P3143 

Phusion Polymerase PCR NEB M0530 

Ponceau Staining WB Sigma-Aldrich P7170 

Propidium Iodide PI staining Sigma-Aldrich P4170 

Proteinase K DNA Extraction Qiagen 1019138 
Protein Assay Dye 
Reagent Concentrate Bradford Assay BioRad 500-0006 

RNase away RNA extraction Molecular 
BioProducts 7002 

RNaseA DNA Extraction Sigma-Aldrich R6513 

SDS Misc. Roth CN30.3 
SEEBRIGHT Green 496 
dUTP FISH Enzo ENZ-42831 
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Name Experiment/Purpose Source Reference # 

SEEBRIGHT Red 580 
dUTP FISH Enzo ENZ-42844 

Skim Milk Powder WB Gerbu #1602.0500 

Sodium Acetate FISH Roth 6773.2 

Spectinomycin Molecular Cloning Sigma-Aldrich S4014 
Super Optimal Broth 
(S.O.C.) medium  

Bacterial 
Transformations Invitrogen 15544034 

Taq polymerase FireTaq 
Blue + buffer PCR Steinbrenner SL-FT blue-

2500 
Tris Misc. Sigma-Aldrich T1503 

Triton-X 100 Misc. Gerbu 2999,0050 

TRIzol RNA extraction Invitrogen 15596018 

Tryptone/Peptone LB Agar Roth 8952.3 

Tween 20 Misc.  Sigma-Aldrich P1379 

Vectashield with DAPI FISH/Immunostainings Vector Laboratories H-1200 
Western Lightning TM 
Plus-ECL Substrate Chemiluminescence Perkin Elmer NEL103001EA 

Yeast Extract LB Agar Fluka 70161 

β-Mercaptoethanol WB/Sample Loading Sigma-Aldrich M7154 
 

6.1.2. Consumables 

Table 2: Consumables used in this work. Misc. = miscellaneous, WB = Western Blot. 

Name Experiment used in Source Reference # 

0.45 µm Minisart Cellulose 
Acetate Filter Viral Transduction Sartorius 16555 

Amicon Ultra-15 Filters 30K ATAC-see Milipore UFC903024 

Cell Culture Dish 100/20 mm Cell Culture Greiner Bio-One 664160 

Cell Culture Flask 250 ml, 75 cm2 Cell Culture Greiner Bio-One 658175 

Cell Culture Flask 50 ml, 25 cm2 Cell Culture Greiner Bio-One 690175 
Cell Culture Multiwell Plate, 6 
Well Cell Culture Greiner Bio-One 657160 

Covaris MicroTUBEs Dam ID-seq Covaris PN 520045 

Cover Slips ATAC-see / FISH/ 
Immunofluorescence Thermo 004711180 
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Name Experiment used in Source Reference # 

Cryotube Vials Cryopreservation Thermo 377267 

Microcentrifuge Tubes 1.5 ml Misc. Sarstedt 72690 

Microcentrifuge Tubes 2 ml Misc. Sarstedt 72691 

Genomic DNA ScreenTape Library Preparation Agilent 5067-5365 

Glass Slides ATAC-see / FISH/ 
Immunofluorescence Thermo J2800AMNZ 

Mini-PROTEAN TGX Precast 
protein gels  SDS-PAGE BioRad 4561024/44 

Needles Agani Protein Extraction Terumo 160825 

Parafilm Misc. Bemis PM-996 

PCR Plate, 96 Well Misc. Thermo AB0600 

PCR Plate, 384 Well Misc. 4titude 4ti-0382 

PD10 Columns ATAC-see GE 17-0435-01 

Slide-A-Lyzer Dialysis Cassettes ATAC-see Thermo 66380 

Syringes Protein Extraction SOFT-JECT 5010.200V0 

Syringes Terumo 10 ml Viral Transduction Th. Geyer 6088211 
Trans-Blot Turbo Transfer 
Mini/Midi Nitrocellulose 
Membranes 

SDS-PAGE / WB BioRad 1704158/59 

Tube, 0.2 ml Misc. Thermo AB0620 

Tube, 15 ml Misc. Greiner Bio-One 188271 

Tube, 50 ml Misc. Greiner Bio-One 227261 

Tube, FACS PI staining Falcon 352059 
 
 

6.1.3. Equipment and devices 

Table 3: Equipment and devices used in this work. Misc. = miscellaneous.  

Name Experiment used in Manufacturer Model 

Balance Misc.  AND / Sartorius EK-200i / CP64 

Cell Culture Hood Cell Culture Thermo Herasafe KS 

Centrifuge Misc. Eppendorf 5804R, 5415D, 
5424R, 5804 

Chemiluminescence WB Intas ECL ChemoStar 
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Name Experiment used in Manufacturer Model 
Imager 

CO2 Incubator Cell Culture Sanyo MCO-20AIC 

Confocal Microscope FISH/ ATAC-see / 
Immunostainings Olympus FluoView FV1000 

Flow Cytometer PI staining BD Biosciences BD FACSCanto II 

Gel Imager Misc. Syngene U:Genius 3 

Incubator Misc. New Brunswick 
Scientific Innova 4200 

Microcentrifuge Tube 
Centrifuge Misc. neoLab 3-1810 

Microcentrifuge Tube 
Vortexer Misc. IKA MS3 

Microscope Cell Culture Zeiss Axiovert A1 & 
Axiovert 40 CFL 

Microscope + 
Camera 

FISH/ ATAC-see / 
Immunostainings Zeiss Axioskop 2 Plus + 

MRc AxioCam 
Nanodrop Misc. Thermo Nanodrop 2000 

pH Meter Misc. Hanna Instruments HI2211 

Photometer SDS-PAGE Eppendorf BioPhotometer 

Power Source Electrophoresis Consort EV265 

Qubit Fluorometer Misc. Invitrogen 3.0 

Shaker  Misc. Heidolph Unimax 1010 

Sonicator ATAC-see Branson 450  

TapeStation Misc. Agilent 2200 

Thermocycler PCR MJ Research / 
Biometra PTC-200 / T3000 

Thermocycler qRT-PCR Roche LightCycler 480 
Instrument II 

Thermomixer Misc. Eppendorf Thermomixer 
compact 

Trans-Blot Turbo 
Transfer System  WB BioRad #1704150 

Ultrasonicator Dam ID-seq Covaris M220 

UV Illuminator Misc. Analytik Jena FirstLight UV 
Illuminator 

Vortexer Misc. neoLab 7-2020 

Water Bath FISH Julabo ME-12 

Water Bath Cell Culture Julabo TW-12 
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6.1.4. Kits 

Table 4: Commercial kits used in this work.  

Name Experiment/Purpose Source Catalog # 

HiSpeed Plasmid 
Midi Midi Prep Qiagen 12643 

MinElute PCR 
Purification ATAC-seq Qiagen 28004 

Nextera DNA Library 
Prep ATAC-see/-seq Illumina 15028212 

Nick Translation DNA 
Labeling System 2.0 FISH Enzo ENZ-GEN111-0050 

pCR™8/GW/TOPO® Dam ID-seq Invitrogen K250020 
QIAprep Spin 
Miniprep Mini Prep Qiagen 27106 

QIAquick Gel 
Extraction Gel Extraction Qiagen 28706 

QIAquick PCR 
Purification PCR Purification Qiagen 28104 

RNA Clean & 
Concentrator-5 RNA Purification Zymo Research R1013 

SuperScript III First-
Strand Synthesis 
System 

Reverse 
Transcription Invitrogen 18080051 

 

6.1.5. Buffers and solutions 

Table 5: Buffers used in this work. * = For tagmentation, 2x TD buffer (Nextera, 15028212) 
from Illumina was used. g = grams. 

Name Experiment/Purpose Composition Comments 

Carnoy’s Fixative FISH Methanol : acetic acid = 3:1  

Dialysis Buffer ATAC-see 

100 mM HEPES-KOH pH 
7.2, 0.2 M NaCl, 0.2 mM 
EDTA, 2 mM DTT, 0.2 % 
Triton-X 100, 20 % (v/v) 
glycerol 

 

HEGX ATAC-see 
20 mM HEPES-KOH, 0.8 
M NaCl, 1 mM EDTA, 10 % 
(v/v) glycerol, 0.2 % (v/v) 
Triton-X 100 

 

HEPES-KOH ATAC-see for 1 M: 238 g HEPES in 1 l 
ddH2O 

adjusted to pH 7.2 
with KOH pellets 

Hybridization Buffer FISH 10 % (w/v) dextran sulfate, 
50 % (v/v) formamide, 2x  
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Name Experiment/Purpose Composition Comments 
SSC pH 7.0 

Loading Buffer 4x WB 
900 µl Laemmli pre-mix 
(BioRad), 100 µl β-
mercaptoethanol 

 

Lysis Buffer ATAC-see 
10 mM TRIS-HCl pH 7.4, 
10 mM NaCl, 3 mM MgCl2, 
0.01 % IGEPAL CA-630 

 

Lysis Buffer ATAC-seq 
10 mM TRIS-HCl pH 7.4, 
10 mM NaCl, 3 mM MgCl2, 
0.1 % IGEPAL CA-630 

 

PBD Washing Buffer FISH 
0.1 M NaH2PO4, 0.1 M 
Na2HPO4, 0.1 % (v/v) 
IGEPAL CA-630 

 

PBT Blocking 
(Immunostainings) 

10 % (v/v) FBS in 1x PBS 
with 0.1 % (v/v) Tween 20  

PFA 3.8% Cell Fixation 3.8 % (w/v) PFA in PBS adjusted to pH 7.4 
with NaCl/HCl 

Pre-Lysis Buffer Genomic DNA 
Extraction 

10 mM Tris-HCl pH 8.0, 5 
mM EDTA, 100 mM NaCl 

adjusted to pH 8.0 
with NaCl/HCl 

Running Buffer WB 25 mM Tris, 192 mM 
glycine, 0.1 % (w/v) SDS  

SSC 20x FISH 175.3 g of NaCl, 88.2 g 
sodium citrate in 1 l ddH2O adjusted to pH 7.0 

TAE 50x Gel Electrophoresis 40 mM Tris, 2 mM EDTA, 
20 mM acetic acid adjusted to pH 8.5 

Tagmentation buffer ATAC-see - from Nextera kit* 

TBE 5x Gel Electrophoresis 
54 g Tris, 27.5 g boric acid, 
20 ml 0.5 M EDTA pH 8.0 
in 1 l ddH2O 

 

Triton X-100 0.3% Cell Permeabilization 0.3 % (v/v) Triton X-100 in 
1x PBS  

Urea Buffer WB 8 M Urea, 10 mM Tris-HCl 
pH 8.0  

Washing Buffer I FISH 0.4x SSC, 0.3 % (v/v) 
IGEPAL CA-630  

Washing Buffer II FISH 2x SSC, 0.1 % (v/v) 
IGEPAL CA-630  

 
 

6.1.6. Vectors 

Table 6: Vectors used in this work. 

Vector Experiment Description Source ID 

pLgw-EcoDam-V5 Dam ID-seq Expression of Dam-only Addgene #59210 
pLgw-EcoDam-V5-
Lamin A Dam ID-seq Expression of Dam-Lamin A cloned - 
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Vector Experiment Description Source ID 

pLgw-EcoDam-V5-
RFC1 Dam ID-seq 

Destination vector for LMNA 
cDNA; Expression of Dam-
fusion protein 

Addgene #59209 

pMD2.G Viral 
Transductions Expression of VSV-G envelope  Addgene #12259 

psPAX2 Viral 
Transductions 

Expression of HIV-1 gag and 
pol Addgene #12260 

pTXB1-Tn5 ATAC-see Expression of hyperactive Tn5 
transposase Addgene #60240 

 

6.1.7. Antibodies 

Table 7: Antibodies used in this work. * = for the detection of the Dam-V5-Lamin A fusion 
protein after transient transfection, the α-Lamin A antibody was used in a 1:200 dilution. IF = 
Immunofluorescence, HRP = Horseradish peroxidase. 

Antibody Experiment Source Species Reference Dilution 

Alexa Fluor 488 IF Invitrogen goat A11017 1:500 

α-Lamin A WB Santa Cruz mouse sc7292 1:500* 
α-ms HRP-
coupled IgG WB Jackson 

ImmunoResearch goat 115-035-003 1:10,000 

α-V5 WB Santa Cruz mouse sc58052 1:200 
 
 

6.1.8. BACs 

Table 8: Bacterial Artificial Chromosomes (BACs) used in this work. All BACs were 
obtained from the Children's Hospital Oakland Research Institute (CHORI) (Oakland, CA, USA). 

BAC Name Reference Chromosome Location 

Chr5 control RP11-82M24 5 telomere 

EDIL3 RP11-845G7 5 EDIL3 gene 

IGFBP7 RP11-589G9 4 IGFBP7 gene 

KCNK1 RP11-349N15 1 KCNK1 gene 

RELN RP11-57M15 7 RELN gene 

SMAD9 RP11-354L15 13 SMAD9 gene 

SOX11 RP11-103F8 2 SOX11 gene 
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6.1.9. Primers and Oligos 

Table 9: Primers and oligos used in this work. For qPCR primers, the cDNA dilution (here: 
for a 0.05 µg/µl stock concentration) yielding a successful amplification is given in brackets. * = 
Phosphorothioate linkage. Seq. = sequencing. Amplif. = amplification. 

Experiment Name Purpose Sequence (5'→3') 

ATAC-see Tn5MErev Transposome 
assembly 

*CTGTCTCTTATACACATCT 

 Tn5ME-ATTO595N-A Transposome 
assembly 

/ATTO590/TCGTCGGCAGCGTCAGATGTGTATA
AGAGACAG 

 Tn5ME-ATTO590N-B Transposome 
assembly 

/ATTO590/GTCTCGTGGGCTCGGAGATGTGTAT
AAGAGACAG 

ATAC-seq PCR Primer f PCR AATGATACGGCGACCACCGAGATCTACACTCG
TCGGCAGCGTCAGATGTG 

 PCR Primer 
r_TAAGGCGA PCR CAAGCAGAAGACGGCATACGAGATTCGCCTTA

GTCTCGTGGGCTCGGAGATGT 

 PCR Primer r_ 
CGTACTAG PCR CAAGCAGAAGACGGCATACGAGATCTAGTACG

GTCTCGTGGGCTCGGAGATGT 

 PCR Primer r_ 
AGGCAGAA PCR CAAGCAGAAGACGGCATACGAGATTTCTGCCT

GTCTCGTGGGCTCGGAGATGT 

DamID-seq AdRt dsAdR Adaptors CTAATACGACTCACTATAGGGCAGCGTGGTCG
CGGCCGAGGA 

 AdRb dsAdR Adaptors TCCTCGGCCG 

 DamID_PCR PCR GGTCGCGGCCGAGGATC 

 F-Prog-CDS Dam ID-seq 
Cloning 

ATGGAGACCCCGTCCCAGC 

 R-Prog-CDS Dam ID-seq 
Cloning 

TTACATGATGCTGCAGTTCTGG 

Sanger 
Seq. M13-RP  AACAGCTATGACCATG 

 pCasper-hs  GCAACTACTGAAATCTGCCAAG 

qRT-PCR Prog_RTPCR_1f Δ150 LMNA 
amplif. (1:5) 

ACCCCGCTGAGTACAACC 

 Prog_RTPCR_1r Δ150 LMNA 
amplif. (1:5) 

TGGCAGGTCCCAGATTACAT 

 LMNA_RTPCR_2f LMNA amplif. 
(1:5) 

CTCCCCTGTGAGCACTAGAG 

 LMNA_RTPCR_2r LMNA amplif. 
(1:5) 

TGCCATCTACCATAGCCTCAG 

 EDIL3_RTPCR_1f EDIL3 amplif. 
(1:50) 

CCCGAGGATTTAATGGGATT 

 EDIL3_RTPCR_1r EDIL3 amplif. 
(1:50) 

GTGGGCCTGAGCATTTGTAT 

 IGFBP7_RTPCR_1f IGFBP7 amplif. 
(1:50) 

AGCTGTGAGGTCATCGGAAT 

 IGFBP7_RTPCR_1r IGFBP7 amplif. 
(1:50) 

CAGCACCCAGCCAGTTACTT 

 F2R_RTPCR_1f F2R amplif. (1:5) GCAGGCCAGAATCAAAAGCA 
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Experiment Name Purpose Sequence (5'→3') 

 F2R_RTPCR_1r F2R amplif. (1:5) CACAACGATGGCCATGATGT 

 OLFM2_RTPCR_1f OLFM2 amplif. 
(1:5) 

TCGCGACCTCCAGTATGTAC 

 OLFM2_RTPCR_1r OLFM2 amplif. 
(1:5) 

GCACCCATCTCCTCCTGAAT 

 IL13RA2_RTPCR_2f IL13RA2 amplif. 
(1:5) 

CTGTTCTTGGAAACCTGGCA 

 IL13RA2_RTPCR_2r IL13RA2 amplif. 
(1:5) 

CTGGCGGCAAAGGTTTAACT 

 KCNS3_RTPCR_1f KCNS3 amplif. 
(1:5) 

AAGGGCAGAGCTTCTTGGAT 

 KCNS3_RTPCR_1r KCNS3 amplif. 
(1:5) 

GAGGGTGCTTTGGTCAACAG 

 POSTN_RTPCR_1f POSTN amplif. 
(1:50) 

CCCAAATGTCTGTGCCCTTC 

 POSTN_RTPCR_1r POSTN amplif. 
(1:50) 

GGCAGCCTTTCATTCCTTCC 

 NTN4_RTPCR_2f NTN4 amplif. 
(1:5) 

CCAAAGTTCAGGAGCAGCTG 

 NTN4_RTPCR_2r NTN4 amplif. 
(1:5) 

CGGTCATTGTATAACGGGGC 

 DPT_RTPCR_2f DPT amplif. (1:5) GACAATGGAACTACGCCTGC 

 DPT_RTPCR_2r DPT amplif. (1:5) AGTAAAACTGCCACTCCCGA 

 S1PR1_RTPCR_4f S1PR1 amplif. 
(1:5) 

TGCGGGAAGGGAGTATGTTT 

 S1PR1_RTPCR_4r S1PR1 amplif. 
(1:5) 

TGCAGTTCCAGCCCATGATA 

 DPP4_RTPCR_3f DPP4 amplif. 
(1:5) 

CTCAGCTCAGTCACCAATGC 

 DPP4_RTPCR_3r DPP4 amplif. 
(1:5) 

TCTTCCAACCCAGCCAGTAG 

 F-SRSF4-qRT-PCR	 SRSF4 amplif.  
(1:50) 

TGCAGCTGGCAAGACCTAAA	
 

 R-SRSF4-qRT-PCR SRSF4 amplif.  
(1:50) 

TTTTTGCGTCCCTTGTGAGC	
 

 F-TBP-qRT-PCR TBP amplif.  
(1:50) 

CCGGCTGTTTAACTTCGCTT	
 

 R-TBP-qRT-PCR TBP amplif.  
(1:50) 

ACGCCAAGAAACAGTGATGC	
 

 F-GAPDH-qRT-PCR GAPDH amplif.  
(1:50) 

CGACCACTTTGTCAAGCTCA 

 R-GAPDH-qRT-PCR GAPDH amplif. 
(1:50) 

GGTGGTCCAGGGGTCTTACT 
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6.1.10. Cell lines and bacterial strains 

Primary HGPS patient (HGADFN155, HGADFN271, HGADFN188, HGADFN164, 

HGADFN122, HGADFN178, HGADFN167, HGADFN169 and HGADFN143) and parental skin 

fibroblasts (HGMDFN090 and HGFDFN168) were obtained from the PRF Cell and Tissue Bank 

(Boston, MA, USA).  Age-matched primary skin fibroblasts (GM05659, GM02036, GM01864 

and GM00969) were obtained from the Coriell Cell Repository (Camden, NJ, USA). A detailed 

overview of the cells used for each experiment is given in Table 10. Table 11 contains an 

overview of the bacterial strains used in this work. 

 
Table 10: Human cells used in this work. PRF = Progeria Research Foundation, CCR = 
Coriell Cell Repository, DKFZ = German Cancer Research Center, 1 = DNA methylation 
profiling, 2 = ATAC-see, 3 = ATAC-seq, 4 = RNAseq, 5 = Lonafarnib, rapamycin & metformin 
treatment, 6 = virus production; f = female, m = male, unspecif. = unspecified, post. = posterior. 

Sample ID Status Gender Age 
[years] Tissue Origin Source Experiments 

HGADFN155 HGPS f 1.17 skin unspecif. PRF 1,2,3,4,5 

HGADFN271 HGPS m 1.25 skin leg PRF 1,3 

HGADFN188 HGPS f 2.25 skin arm PRF 1,2,3,4,5 

HGADFN164 HGPS f 4.67 skin unspecif. PRF 1,4,5 

HGADFN122 HGPS f 5.00 skin right forearm PRF 1 

HGADFN178 HGPS f 6.92 skin left forearm PRF 1 

HGADFN167 HGPS m 8.42 skin left post. 
lower trunk PRF 1,3,4 

HGADFN169 HGPS m 8.50 skin upper back of 
right arm PRF 1,3,4 

HGADFN143 HGPS m 8.83 skin unspecif. PRF 1,3,4 

GM05659 control m 1.00 skin chest CCR 1,2,5 

GM00969 control f 2.00 skin unspecif. CCR 1,4 

GM01864 control m 11.00 skin unspecif. CCR 1 

GM02036 control f 11.00 skin unspecif. CCR 1 

HGMDFN090 control f 37.83 skin unspecif. PRF 1,3,4,5 

HGFDFN168 control m 40.42 skin unspecif. PRF 1,2,3,4,5 

HEK293T healthy f fetus kidney embryonic DKFZ 6 
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Table 11: Bacterial strains used in this work.  

Strain Species Name Source Reference # Purpose 

Stbl3 E.coli One Shot 
Stbl3 Invitrogen C737303 

Dam ID-seq-related 
cloning, amplification of 
psPAX2 & pMD2.G 

TOP10 E.coli One Shot 
TOP10 Invitrogen C404010 Dam ID-seq-related 

cloning 

T7 Express E.coli T7 Express NEB C3013l Hyperactive Tn5 
production (ATAC-see) 

 
 

6.1.11. Cell culture reagents 

Table 12: Cell culture reagents used in this work. Pen/Strep = Penicillin/Streptomycin. 

Name Experiment/Purpose Source Catalog # 

DMEM high glucose Cell Culture Gibco 41965-039 

DMSO Drug Treatment Sigma-Aldrich D2650 

FBS Cell Culture Gibco 10500-064 

Lipofectamine 2000 Transfection Invitrogen 11668030 

Lonafarnib Drug Treatment Cayman Chemical 11746 

Metformin Drug Treatment Sigma-Aldrich 317240 

Opti-MEM Transfection Gibco 31985070 

PBS 1x Cell Washing Gibco 10010023 

Pen/Strep 1 % Cell Culture Gibco 15140-122 

Polybrene Viral Transduction Merck TR-1003-G 

Rapamycin Drug Treatment Enzo  BML-A275 

Trypsin 0.25 % Cell Detachment Gibco 25200-056 
 
 

6.1.12. Software 

Table 13: Software used in this work. Misc. = miscellaneous. Apr. = April. * = Software 
version 3.5.2 was used for the bioinformatic analysis of Dam ID-seq data. 

Name Experiment/Purpose Source Version 

AmiGO2 GO Analyses www.geneontology.org 2.4/2.5 
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Name Experiment/Purpose Source Version 

Axiovision Image Acquisition Zeiss 4.9.1.0 

Chromas Sanger sequencing 
analysis www.technelysium.com.au 2.4.4 

Clustal Omega Oligonucleotide Design 
(Sequence Alignment) www.ebi.ac.uk/Tools/msa/clustalo Web Version 

from 2016 
Fiji/ImageJ ATAC-see, FISH, IF Wayne Rasband (NIH) 1.51g/k 

FlowJo PI staining FlowJo X 10.0.7 

FluoView Image Acquisition Olympus 4.1.2.2 

Genome Browser Dam ID-seq UCSC hg19/Apr. 2019 

GSEA GSEA Analyses Broad 3.0 

HOMER  Motif Analyses http://homer.ucsd.edu/homer/ 4.1 

Illustrator Figure Creation Adobe 17.0.0 

LightCycler 480  qRT-PCR Experiments 
& Analysis Roche 1.5.0 

Office 
Professional Plus 
2010 

Misc. Microsoft 14.0.7232.5000 

Photoshop Figure Processing Adobe 2015.0.0 

Primer3 Oligonucleotide Design www.bioinfo.ut.ee/primer3/ 4.1.0 

Prism Misc. GraphPad 5.0 

R Bioinformatic Analyses The R Foundation 3.3.1/3.5.2* 
SnapGene 
Viewer Cloning  www.snapgene.com 2.4.3 

Zen Image Acquisition Zeiss Blue 2011 
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6.2. Methods 
6.2.1. Cell Culture 

Cells were cultured in DMEM high glucose medium (Gibco, 41965-039) supplemented with 10 

% fetal bovine serum (FBS) (Gibco, 10500-064) and 1 % penicillin/streptomycin (Gibco, 15140-

122) under standard 37°C and 5% CO2 conditions in a CO2 incubator (Sanyo, MCO-20AIC).  

Fibroblasts were passaged every other day or upon reaching 80-90 % confluence as follows: 

culture medium was removed and the cells were washed once in 1x PBS (Gibco, 10010023). 

Then, a small volume of Trypsin (for big flasks: 1 ml, for 10 cm plates: 1 ml, for small flasks: 0.5 

ml, for six-well-plates: 2 drops / well) was added and the respective flask or plate was incubated 

at 37°C for 5-7 min. Subsequently, trypsinized cells were resuspended in an appropriate amount 

of fresh growth medium and split in 1:4-1:2 ratios (depending on growth behavior) to new flasks 

/ plates. 

For cryostorage, cells were trypsinized as described above, resuspended in 1.5 ml freezing 

medium (complete growth medium containing 10 % (v/v) DMSO) and transferred to cryotubes 

(Thermo, 377267). To ensure gentle cooling, cryotubes were isolated with several layers of 

paper tissue and stored at -80°C overnight. The next day, they were transferred to liquid 

nitrogen for long-term storage. 

To start culture after long-term storage in liquid nitrogen, fibroblasts were allowed to slowly 

thaw at room temperature. They were then resuspended in 10 ml culture medium, gently 

pelleted (850 g for 5 min) and resuspended in complete growth medium, before being seeded to 

appropriate culture plates or flasks. The next day, the culture medium was exchanged and cells 

were cultured as outlined above.  

In general, early-passage cells were used for all experiments (Progeria Research Foundation: 

8-12 passages, Coriell: 9-15 passages); however, details about the cells used for each 

experiment and their passage numbers are given in the respective sections. 

 

6.2.2. Lonafarnib treatment 

Early-passage fibroblasts from three HGPS patients and three unaffected donors 

(HGADFN155: p10, HGADFN188: p10, HGADFN164: p11, HGFDFN168: p12, HGMDFN090: 

p11, GM05659: p15) were grown for 7 d in the presence of either DMSO (Sigma-Aldrich, 

D2650) or 0.06 µM Lonafarnib (Cayman Chemical, 11746).  The latter is sufficient to block a 

fraction of prelamin A maturation and to increase autophagy in HGPS cells while minimizing 

toxicity (Gabriel et al., 2017). Starting with ∼250,000 cells per flask, HGPS and control 
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fibroblasts were cultured in triplets of T25 flasks (Greiner Bio-One,  690175) per condition under 

standard 37°C and 5 % CO2 conditions with growth medium changes every other day, and 

harvested after 7 d for DNA, RNA and protein analyses. Simultaneously, fibroblasts from every 

cell line (starting number: ∼250,000) were grown on glass cover slips (Thermo, 004711180) in 

six-well-plates (Greiner Bio-One, 657160), followed by Lamin A/C immunostainings after 7 d.  

 

6.2.3. Extraction of genomic DNA 

For the extraction of genomic DNA, cell pellets were washed once in 1x PBS (Gibco, 

10010023), spun down (850g, 5 min, room temperature) and resuspended in 2.25 ml pre-lysis 

buffer (10 mM Tris-HCl pH 8.0, 5 mM EDTA, 100 mM NaCl, adjusted to pH 8.0) in 15 ml tubes 

(Greiner Bio-One, 188271). 0.25 ml SDS 10 %, 25 µl Proteinase K (10 mg/ml) (Qiagen, 

1019138) and 2 µl RNase A (50 mg/ml) (Sigma-Aldrich, R6513) were added and the tubes were 

inverted several times and incubated at 37°C overnight. The next day, 1.25 ml 5 M NaCl were 

added. After shaking the mixture, the tubes were centrifuged at 5,000 g for 15 min at room 

temperature (if a correct separation of the phases was not achieved, this procedure was 

repeated in microcentrifuge tubes). In a new 15 ml tube, 2.8 ml isopropanol (Fisher Scientific,

 P/7500/PC17) were added to the supernatant. After gently inverting the tubes several times, 

DNA was pelleted at 5,000 g for 10 min at room temperature. Then the supernatant was 

removed and the DNA pellet was washed with 1 ml of 70 % (v/v) EtOH (Fisher Scientific,

 E/0650DF/C17). Finally, the DNA pellet was spun down as before, air-dried and resuspended 

in 50-100 µl ddH2O (Invitrogen, 10977-035). 

 

6.2.4. Propidium iodide (PI) staining  

Trypsinized and PBS-washed cells (1x105 cells per sample) were resuspended in 0.5 ml 70 % 

(v/v) ethanol (pre-cooled to -20°C overnight) (Fisher Scientific, E/0650DF/C17) and fixed on ice 

for 1 h. Cells were then spun down for 2 min at 4,000 g and resuspended in 0.5 ml 1x PBS 

(Gibco, 10010023) containing 0.25 % (v/v) Triton X-100 (Gerbu, 2999,0050). After a 15 min 

incubation on ice, they were spun down as before and resuspended in 0.5 ml PBS containing 10 

µg/ml RNase A (Sigma-Aldrich, R6513) and 20 µg/ml PI stock solution (Sigma-Aldrich, P4170). 

Subsequently, the solution was transferred to FACS tubes (Falcon, 352059) and incubated at 

room temperature in the dark for 30 min. Finally, cell fluorescence was assessed on a FACS 

Canto II (BD Biosciences) cytometer and analyzed using FlowJo (FlowJo) software.   
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6.2.5. Extraction of total RNA 

Trypsinized and 1x PBS-washed cells were resuspended in 1 ml of TRIzol reagent (Invitrogen, 

15596018) in 2 ml microcentrifuge tubes (Sarstedt, 72691). After addition of 200 µl chloroform 

(VWR Chemicals, 22711.260) per ml of TRIzol, samples were centrifuged at 13,000 g for 15 min 

at 4°C. The upper phase was then transferred to a new 1.5 ml tube (Sarstedt, 72690) and 500 

µl of isopropanol (Fisher Scientific, P/7500/PC17) were added, followed by centrifugation for 10 

min at 10,000 g (4°C). In the next step, the RNA pellets were washed with 70 % (v/v) ethanol 

(Fisher Scientific, E/0650DF/C17) in RNase-free ddH2O (Invitrogen, 10977-035) and finally 

resuspended in 20-100 µl of RNase-free ddH2O. 

 

6.2.6. Reverse transcription 

Isolated total RNA was quantified on a Nanodrop (Thermo) and cleaned using the RNA Clean 

& Concentrator-5 kit (Zymo Research, R1013) following the supplied manual. Subsequently, 

RNA was quantified again and 1-2 µg total RNA were reverse-transcribed with the SuperScript 

III First-Strand Synthesis System (Invitrogen, 18080051) applying the manufacturer's 

instructions, yielding 0.05-0.1 µg/µl cDNA stocks. Generated cDNA was stored at -20°C until 

use in downstream applications. 

 

6.2.7. qPCR 

6.2.7.1. Experimental procedures  

After conversion of total RNA into cDNA as outlined above, cDNA samples were diluted 1:5-

1:100 (depending on amount of RNA reverse-transcribed and gene-specific primers; see Table 

9) and used as templates in a qPCR reaction with ABsolute qPCR SYBR Green Mix (Thermo, 

AB1159A) or MESA GREEN qPCR MasterMix Plus (Eurogentec, RT-SY2X-03+NRWOU) and 

gene-specific primers (see Table 9; tested for generation of a single amplicon prior to use) 

according to the manufacturer’s instructions. The experiment was performed on a LightCycler 

480 Instrument II (Roche) with the following reaction settings: 
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qPCR protocol: 
 

 
Step 1: 

Step 2: 

Step 3: 

Step 4: 

95°C for 15 min 

95°C for 15 s  

60°C for  40 s  

40°C for  10 min

 

 

6.2.7.2. Relative quantification and calculation of standard errors  

Results were then analyzed using the LightCycler 480 software (Roche). Specifically, 𝐶" 

values from triplicate measurements were obtained from the software using the ‘Abs Quant/2nd 

Derivative Max for All Samples’ analysis option and utilized to determine a ∆𝐶" value by 

subtracting the average 𝐶" of one of the reference genes (𝐶"$) from the average 𝐶" of the gene 

of interest (𝐶"%): 

 

∆𝐶" = 𝐶"' − 𝐶"$ 

 

with 𝐶")/+ equaling the average of a triplicate measurement. The expression value 𝑧 of the gene 

of interest is then: 

 

𝑧 = 	 2(0∆12) 

 

which was subsequently normalized to the average expression value in control samples (i.e., 

expression of the gene of interest in control samples was set to equal 1) as follows: 

 

𝑅𝑒𝑙. 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 	
𝑧@ABCDE
𝑧FGHI$GD

 

 

Finally, the relative expression values from different reference genes were averaged. Standard 

errors were calculated using the standard deviation 𝑠 of 𝐶"$ and 𝐶"%, respectively, given by 

(here: 𝑥% = individual 𝐶" , 𝑥 = 𝐶")/+):  

 

50 cycles 
  



6. Materials and Methods   6.2 Methods 

 122 

𝑠 = 	
1

𝑛 − 1
	 ∙ 	 (𝑥% − 𝑥)L

H

%MN

 

 

in order to calculate the error 𝑒 of the expression value 𝑧 utilizing Gaussian error propagation: 

 

𝑒	 𝑧 = 	 (
𝜕𝑧
𝜕𝐶"$

	 ∙ 𝑠 𝐶"$ )L + (
𝜕𝑧
𝜕𝐶"%

	 ∙ 𝑠 𝐶"% )L 

 

 

6.2.8. Extraction of proteins 

First, trypsinized and 1x PBS-washed cells were resuspended in an appropriate volume (100 – 

300 µl) of urea buffer (8 M Urea, 10 mM Tris-HCl pH 8.0). The mixture was then repeatedly 

aspirated through a needle (Terumo, 160825) into a syringe (SOFT-JECT, 5010.200V0) to 

shear DNA. Subsequently, the extracts were transferred to a new 1.5 ml microcentrifuge tube 

(Sarstedt, 72690) and the amount of protein was determined by Bradford assay using Protein 

Assay Dye Reagent Concentrate (BioRad, 500-0006) and a Biophotometer (Eppendorf). 

 

6.2.9. SDS-PAGE and Western Blotting 

Protein samples were prepared by mixing the desired amount of protein (determined in 

Bradford assay) from the extracts with 4x Loading buffer and ddH2O (Invitrogen, 10977-035), 

followed by 5 min incubation at 95°C on a thermomixer (Eppendorf). Samples were then loaded 

onto 7.5 % or 12 % Mini-PROTEAN TGX Precast protein gels (BioRad, 4561024/44), run for ∼ 4 

h at 100 V and blotted onto Trans Blot R TurboTM Mini Nitrocellulose membranes (Biorad, 

1704158/59)  using a Trans-Blot Turbo Transfer System (BioRad, 1704150) with the 

manufacturer’s predefined ‘Mixed MW’ transfer protocol.   

The membranes were then stained with Ponceau solution (Sigma-Aldrich, P7170) to verify 

successful protein transfer, blocked with 5 % (w/v) milk in PBT (0.1 % (v/v) Tween 20 in 1x 

PBS) for 1 h at room temperature, and incubated with primary antibody (see Table 7) overnight 

at 4°C. The next day, they were washed three times in PBT (10 min per wash) and incubated 

with secondary antibody  (α-mouse HRP-coupled IgG (Jackson ImmunoResearch, 115-035-

003) (1:10000) in 5 % milk in PBT) for 1 h at room temperature. Ultimately, they were washed 

another three times in PBT, incubated with Western Lightning TM Plus-ECL Substrate (Perkin 
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Elmer, NEL103001EA) according to the supplier’s instructions and imaged on a 

chemiluminescence imager (Intas). 

The quantification of individual bands was performed with Fiji/ImageJ (Schindelin et al., 2012; 

Rueden et al., 2017), followed by statistical testing (unpaired t-test) in Graphpad Prism 

(Graphpad Software).  
 

6.2.10. Transformations 

All bacterial transformations performed as part of the methods described in this work were 

carried out as follows (unless noted otherwise). 30 µl of chemically competent E.coli cells (see 

Table 11) were mixed with 50 ng of the vector of interest (e.g. after ligation) and chilled on ice 

for 5 min. Bacterial cells were then heat-shocked by incubation at 42°C for 2 min on a 

thermomixer (Eppendorf) and immediately placed on ice for 5 min. Then, 1 ml of Super Optimal 

Broth (S.O.C.) medium (Invitrogen, 15544034) was added and the mix was incubated at 37°C 

for 1 h (shaking on a thermomixer). After spinning down the transformed cells (6000 rpm, 1min) 

in a tabletop centrifuge (Eppendorf), 900 µl of S.O.C medium were removed and Lysogeny 

Broth (LB) agar plates containing 100 µg/ml ampicillin (Sigma-Aldrich, A1593) were inoculated 

with the remaining 100 µl of bacteria. Finally, the LB agar plates were incubated at 37°C 

overnight in an incubator (New Brunswick Scientific) and analyzed for colony growth the next 

day. 

 

6.2.11. Transfections 

For transient transfections, fibroblasts were grown to 70-80 % confluence in 6-well-plates 

(Greiner Bio-One, 657160) and transfected using Opti-MEM reduced serum medium (Gibco, 

31985070) and Lipofectamine 2000 (Invitrogen, 11668030) according to the protocol supplied 

by the manufacturer. 24 h after transfection, the growth medium was exchanged.  

 

6.2.12. Transductions 

For packaging and virus production, HEK293T cells (see Table 10) were transfected with the 

vector of interest, as well as psPAX2 (Addgene, #12260), pMD2.G (Addgene, #12259), as 

outlined above. More precisely, for transfection of cells in a 6-well-plate (Greiner Bio-One, 

657160), 1 µg psPAX2 (Addgene), 0.3 µg pMD2.G (Addgene) and 1.3 µg of the vector of 

interest were mixed with 170 µl Opti-MEM medium (Gibco, 31985070) in a sterile 
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microcentrifuge tube (Sarstedt, 72690) (per well) and vortexed briefly. In another tube, 8 µl 

Lipofectamine 2000 (Invitrogen, 11668030) were mixed with 170 µl Opti-MEM medium (per well) 

and vortexed briefly. Subsequently, both solutions were mixed, incubated for 10 min and added 

dropwise to one well of HEK293T target cells. Cultureware containing transfected HEK293T 

cells was then transferred to a security level 2 (S2) area. 48 hours after transfection, the growth 

medium of transfected cells was filtered through a 0.45 µm Minisart cellulose acetate filter 

(Sartorius, 16555), and used to replace the growth medium of to-be-transduced fibroblasts. To 

maximize transduction efficiency, polybrene (Merck, TR-1003-G) was added to a final 

concentration of 8 µg/ml. Another 48 h later, the virus-containing medium was removed, the 

cells were washed twice with growth medium and, finally, grown in the same medium until 

downstream use. One day later, cells were transferred back to security level 1 (S1) conditions. If 

needed, cells were afterwards expanded to 10 cm plates (Greiner Bio-One,  664160). 

 

6.2.13. ATAC-see 

The ATAC-see experiment was performed in two stages: in the first stage, hyperactive Tn5 

transposase was produced and custom transposomes containing fluorescently-labelled 

oligonucleotides were assembled. A detailed account of this procedure is given in the 

Supplementary Methods, Section 7.1.1. The second stage comprised the actual ATAC-see 

experiment, which is outlined below. 

The ATAC-see experiment was performed by following a previously published protocol (Chen 

et al., 2016). Specifically, early-passage fibroblasts (HGADFN188, HGADFN155 & 

HGFDFN168: p9, GM05659: p10) were grown on cover slips (Thermo,  004711180) until 70-80 

% confluence and fixed with 3.8 % (w/v) paraformaldehyde (PFA) in 1x PBS (Gibco, 10010023) 

for 10 min at room temperature. They were then permeabilized with lysis buffer (10 mM TRIS-

HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.01 % IGEPAL CA-630), washed with 1x PBS twice 

and incubated with the transposome mixture (100 nM assembled Tn5-Atto-590N-transposomes, 

25 µl 2x TD buffer (Tagmentation Buffer, Illumina, 15028212), ddH2O to 50 µl) at 37°C for 30 

min. Subsequently, cover slips were washed three times (15 min each) with 1x PBS containing 

0.01 % (v/v) SDS and 50 mM EDTA (Gerbu, #1034) at 55°C, and immunostained as outlined in 

Section 6.2.17. Imaging was performed using a FluoView FV1000 (Olympus) microscope.  

For each sample, 50 cells from three technical replicates were analyzed using Fiji/ImageJ 

(Schindelin et al., 2012; Rueden et al., 2017) to determine nuclear malformation and the 

presence of ATAC-see foci. A nucleus was scored as malformed when lobulation characteristic 
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of HGPS cells (as shown in Figure S35) was present. Statistical significance of differences 

between HGPS and control cells was assessed using an unpaired t-test in GraphPad Prism 

(GraphPad Software). 

 

6.2.14. ATAC-seq 

6.2.14.1. Library Preparation and sequencing 

ATAC-seq was performed as described previously (Buenrostro et al., 2015). Specifically, 

50,000 cells from early-passage fibroblasts (all: p9) were washed with ice cold 1x PBS (Gibco, 

10010023) and resuspended in 50 µl lysis buffer (10 mM TRIS-HCl pH 7.4, 10 mM NaCl, 3 mM 

MgCl2, 0.1 % IGEPAL CA-630). The lysis reaction was carried out while spinning down the 

samples at 500 g for 10 min at 4°C. Samples were then resuspended in transposition buffer (25 

µl 2x TD buffer (Tagmentation Buffer, Illumina, 15028212), 2.5 µl TDEI (Tagment DNA Enzyme, 

Illumina, 15028212) and 22.5 µl ddH2O) and incubated for 30 min at 37°C. Subsequently, 

samples were purified using the MinElute PCR Purification kit (Qiagen, 28004). The libraries 

were then PCR-amplified according to instructions given in (Buenrostro et al., 2015), purified 

again as described above and quantified on a 2200 TapeStation (Agilent). Finally, they were 

submitted to the High-Throughput Sequencing Core Facility (DKFZ) for 125 bp paired-end 

sequencing on a HiSeq 4000 platform (Illumina). 

 

6.2.14.2. Bioinformatic analyses 

Raw reads were first trimmed by removing stretches of bases with a quality score of <30 at the 

ends and mapped against the hg19 assembly of the human genome using Bowtie 2 (Langmead 

and Salzberg, 2012). Subsequently, peaks were called using MACS2 (Zhang et al., 2008), 

followed by the determination of differential peaks using DESeq2 (Love, Huber and Anders, 

2014). Peaks with a q-value of less than 0.05 after multiple testing correction (Benjamini-

Hochberg) were considered significantly differentially accessible. Peaks mapping to sex-

chromosomes and haplotypes were not considered in the downstream analysis. 

The distribution of significant, non-sex chromosome-associated ATAC-seq peaks across the 

genome was determined using the ‘subsetByOverlaps’ and ‘Genomic Regions’ functions with 

the ‘TxDb.Hsapiens.UCSC.hg19.knownGene’ Bioconductor annotation package (version 3.2.2) 

in R (The R Foundation). For the determination of peaks overlapping enhancer regions, poised 

enhancers were defined as regions containing pairs of H3K4me1 peaks in close proximity 
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(<1,500 bp) using ENCODE ChIP-seq data for dermal fibroblasts (ENCSR000ARV), while 

active enhancers were obtained directly from ENCODE (ENCSR871EJM). The overlap with 

histone modifications and Lamin A or B LADs was quantified in the same way using previously 

published ENCODE (ENCSR000ARX, ENCSR000ARV, ENCSR000APR, ENCSR000APN, 

ENCSR000APP, ENCSR000APQ, ENCSR000APO) and ChIP-seq (Guelen et al., 2008; Lund et 

al., 2015) datasets.  

Significance testing of ATAC-seq peak enrichment in the respective regions was performed 

using Fisher's Exact test in R (The R Foundation).  

Transcription factor binding sites enriched in significant, non-sex chromosome-associated 

ATAC-seq peaks were determined using the HOMER motif analysis tool (Heinz et al., 2010) 

with ‘known motifs’ (Figure 14B) or ‘de novo motifs’ (Figure 14C) using the hg19 background 

and the following parameters: -size: 2000, -hist: 20.   

 

6.2.15. DNA methylation profiling 

6.2.15.1. Preparation and DNA submission 

For DNA methylation profiling, genomic DNA was extracted from early-passage HGPS and 

control fibroblasts (HGADFN122: p8, all other HGPS: p9, HGFDFN168/HGMDFN090: p9, 

GM01864: p11, GM05659: p9, GM00969: p12, GM02036: p13) as described in Section 6.2.3 

and submitted to the Microarrays Core Facility (DKFZ). DNA methylation profiles were 

generated using Infinium MethylationEPIC BeadChips (Illumina), following the manufacturer’s 

instructions.  

 

6.2.15.2. Preprocessing and identification of significantly differentially methylated 

probes 

Methylation data analysis was performed using the R Bioconductor package Minfi (v1.20.2) 

(Aryee et al., 2014). Specifically, raw .IDAT files were read into R (The R Foundation) and 

preprocessed as follows: first, methylation loci (probes) with high detection p-values (P>0.01, as 

provided by Minfi),  a location on sex chromosomes, the ability to self-hybridize, and those with 

potential SNP contamination were filtered out. Then, array normalization was carried out using 

the ‘preprocessFunnorm’ function, available in Minfi (Aryee et al., 2014). After every 

preprocessing step, quality control was performed.  
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Differentially methylated probes were identified by fitting a linear model, followed by statistical 

analysis with an empirical Bayes method to moderate standard errors. Finally, differentially 

methylated probes were selected by significance threshold (P<0.05, F-test, after correction for 

multiple testing using the Benjamini–Hochberg method). The bioinformatic pipeline for 

preprocessing and identification of differentially methylated probes was programmed by Dr. 

Julian Gutekunst (Division of Epigenetics, German Cancer Research Center, Heidelberg, 

Germany). 

 

6.2.15.3. Consensus Clustering 

Probe clusters for consensus clustering were identified using the Minfi (Aryee et al., 2014) 

function ‘boundedClusterMaker’ with a maximum cluster width of 1,500 bp and a maximum gap 

of 500 bp. Utilizing the ‘ConsensusClusterPlus’ package (Wilkerson and Hayes, 2010), 

consensus clustering was performed with the 5,000 most variable probe clusters, i.e., the 5,000 

probe clusters with the highest standard deviation, using the following parameters: maxK = 6; 

reps = 1,000; pItem = 0.8; and pFeature = 1. Subsequently, samples were assigned to the 

optimal number of clusters, and, for the purpose of visualization, β values were sorted by 

hierarchical clustering. Finally, a PCA was created from the probe clusters with the R package 

FactoMineR (Lê, Josse and Husson, 2008). The Consensus Clustering analysis pipeline was 

programmed by Dr. Felix Bormann (Division of Epigenetics, German Cancer Research Center, 

Heidelberg, Germany).  

 

6.2.15.4. Analysis of histone & LAD methylation and enrichment of TFBSs 

Using the ‘IlluminaHumanMethylationEPICmanifest’ manifest (Hansen, 2016) and 

‘IlluminaHumanMethylationEPICanno.ilm10b2.hg19’ annotation (Hansen, 2016), 

MethylationEPIC probes overlapping with a region of interest were determined in R (The R 

Foundation). For the comparison of LAD and ‘solo-WCGW’ CpG probe methylation levels, 

previously published locations of Lamin A LADs (Lund et al., 2015), Lamin B LADs (Guelen et 

al., 2008) and ‘solo-WCGWs’ CpGs (Zhou et al., 2018) were used. Regions overlapping with 

histone modifications were obtained from previously published ENCODE datasets for dermal 

fibroblasts (ENCSR000ARX, ENCSR000ARV, ENCSR000APR, ENCSR000APN, 

ENCSR000APP, ENCSR000APQ, ENCSR000APO, ENCSR328AVV). The significance of 

methylation differences between groups was analyzed using Welch’s Two Sample t-test in R 

(The R Foundation), while the significance of a probe enrichment in a region of interest was 
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assessed using Pearson's Chi-squared test with Yates' continuity correction in R (The R 

Foundation). TFBS enrichment among the differentially methylated regions was tested using 

ELMER 2.0 (Yao et al., 2015; Silva et al., 2018) with a minimum motif quality ‘B’ and a minimum 

incidence of 10.  

 

6.2.15.5. DNA methylation age calculation 

DNA methylation age estimates were obtained using a recently published algorithm (Skin & 

Blood Clock (Horvath et al., 2018)) and corrected for passage numbers by multiplying them with 

a passage factor ρ, with ρ = passage number*(3.32*log(cells harvested/cells seeded)) with cells 

harvested = 1x106 and cells seeded = 0.25x106. They were then displayed as delta (Δ) age, i.e., 

the difference between DNA methylation age and chronological age.  

 

6.2.15.6. DNA methylation of AK and SCC samples 

For the DNA methylation analysis of epidermal cancers, genomic DNA from 12 normal 

epidermis, 16 AK epidermis and 18 cSCC epidermis samples was analyzed using Infinium 

MethylationEPIC BeadChips (further details in Rodríguez-Paredes et al., 2018). LAD 

methylation (Lamin B LAD probes) and DNA methylation age were calculated as described 

above. Statistical testing was performed in R (The R foundation). 

 

6.2.16. DNA Fluorescence In Situ Hybridization (FISH) 

Bacterial Artificial Chromosomes (BACs) were obtained from the Children's Hospital Oakland 

Research Institute (CHORI) (Oakland, CA, USA). Table 8 contains a list with all BACs used and 

the genes they cover. BACs were labeled with the ENZO Nick translation DNA labeling system 

2.0 (ENZO, ENZ-GEN111-0050) using SEEBRIGHT Red 580 dUTP (ENZO, ENZ-42844) and 

SEEBRIGHT Green 496 dUTP (ENZO, ENZ-42831), following the manufacturer's instructions. 

Subsequently, 500 ng of each probe were precipitated by adding 5 µl of Cot-1 DNA (1 mg/ml) 

(Invitrogen, 15279011), 3 µl 3 M sodium acetate pH 5.2 (Roth, 6773.2) and 150 µl EtOH (Fisher 

Scientific, E/0650DF/C17) and incubating the mixture at -80°C for 30 min. DNA was then 

pelleted by centrifugation (13,000 g at 4°C for 30 min), air-dried and resuspended in 15 µl of 

hybridization buffer (10 % (w/v) dextran sulfate, 50 % (v/v) formamide, 2x SSC pH7).  

For the preparation of metaphase spreads, >1,000,000 cells were trypsinized, washed with 1x 

PBS (Gibco, 10010023) and resuspended drop by drop in 0.075 M KCl (Roth, 6781.1). After 
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incubation at room temperature for 20 min, they were spun down (850 g, room temperature, 5 

min) and washed with 10 ml Carnoy’s Fixative (methanol:acetic acid = 3:1). They were then 

centrifuged as before and resuspended in 1-2 ml Carnoy’s Fixative for long-term storage at -

20°C. 

Finally, FISH was performed as previously described (Schlegelberger, B, Metzke S, Harder S, 

Zühlke-Jenisch R, Zhang Y, 1999). In brief, 1 µl (afterwards adjusted according to signal 

strength) of both red and green probes were mixed with 4 µl of hybridization buffer and 

incubated at 37°C for 30 min. Meanwhile, metaphase spreads were created by applying 

Carnoy-fixated cells dropwise to glass slides (Thermo, J2800AMNZ) from a height of >50 cm, 

air-dried and washed sequentially in 70 %, 80 % and 100 % (v/v) ethanol (5 min each wash). 

Glass slides were then air-dried thoroughly. Subsequently, the hybridization mixture was added 

onto the metaphase spreads, covered with cover slips (Thermo, 004711180) and incubated for 

2 min on the metal surface of Thermomixer (Eppendorf) set to 78°C, before being wrapped with 

parafilm (Bemis, PM-996) and incubated at 37°C overnight in a humid chamber (protected from 

light). The next day, slides were washed once in washing buffer I (0.4x SSC 0.3 % (v/v) IGEPAL 

CA-630) (75°C, 2 min) and once in washing buffer II (2x SSC 0.1 % (v/v) IGEPAL CA-630) 

(room temperature, 5 min). After another wash with PBD washing buffer (0.1 M NaH2PO4, 0.1 M 

Na2HPO4, 0.1 % (v/v) IGEPAL CA-630) (room temperature, 2 min), they were air-dried, 

mounted with Vectashield containing 1 µg/µl DAPI (Vector Laboratories, H-1200) and stored at 

4°C until imaging.  

Slides were imaged using Axioskop 2 (Zeiss) and FluoView FV1000 (Olympus) microscopes. 

For each probe, images were acquired for 60 cells. Distance measurements were performed 

with Fiji/ImageJ (Schindelin et al., 2012; Rueden et al., 2017) using confocal sections with a 

clear biallelic FISH signal. For group-specific comparisons, the respective HGPS and control 

sample data were pooled and subjected to a Welch Two Sample t-test with a 95 % confidence 

interval in R (The R Foundation). 

 

6.2.17. Immunostainings 

For Lamin A immunostainings, cells were grown on coverslips (Thermo, 004711180), fixed 

with 3.8 % (w/v) PFA (Roth, 0335.3) in 1x PBS (Gibco, 10010023) for 10 min at room 

temperature and permeabilized with 0.3 % (v/v) Triton X-100 (Gerbu, 2999,0050) in 1x PBS for 

15 min at room temperature. Coverslips were subsequently washed three times with 1x PBS (10 

min each) and blocked with 10 % (v/v) FBS (Gibco, 10500-064) in 1x PBS with 0.1 % (v/v) 
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Tween 20 (Sigma-Aldrich, P1379) for 1 h at room temperature. They were then incubated with a 

1:250 dilution of Lamin A/C primary antibody (Santa Cruz, sc7292) in the same solution for 90 

min, washed three times with 1x PBS (10 min each) and incubated with a 1:500 dilution of Alexa 

488 secondary antibody (Invitrogen, A11017) in the same solution at room temperature for 45 

min. Finally, coverslips were washed three times with 1x PBS (10 min each) and mounted onto 

glass slides (Thermo, J2800AMNZ) with Vectashield containing 1 µg/µl DAPI (Vector 

Laboratories, H-1200). Slides were imaged using Axioskop 2 (Zeiss) and FluoView FV1000 

(Olympus) microscopes.  

Malformed nuclei were quantified by counting the number of severely misshapen nuclei (on 

the basis of significant blebbing and wrinkling, cp. Figure S35) in three technical replicates with 

100 cells analyzed per replicate. An example of the range of nuclear aberrations scored as 

‘malformed’ is given in Figure S35. After treatment with Lonafarnib, rapamycin or metformin, 

nuclear lobulation was assessed by counting the number of nuclei with ≥1 clearly visible lobules 

in three technical replicates with 100 cells analyzed per replicate. Significance testing was 

performed using an unpaired t-test in GraphPad Prism (GraphPad Software). 

 

6.2.18. RNA-seq 

6.2.18.1. Library preparation and sequencing 

For RNA sequencing, total RNA was isolated from early-passage HGPS and control 

fibroblasts (HGADFN122: p8, all other HGPS: p9, HGFDFN168/HGMDFN090: p9, GM01864: 

p11, GM05659: p9, GM00969: p12, GM02036: p13) as described in Section 6.2.5. Total RNA 

was then purified with the RNA Clean & Concentrator-5 kit (Zymo Research, R1013) and 

reverse-transcribed using the SuperScript R III First-Strand Synthesis System (Invitrogen, 

18080051), following the manufacturer's instructions. Finally, libraries were quantified on a 2200 

TapeStation (Agilent) and submitted to the High-Throughput Sequencing Core Facility (DKFZ) 

for sequencing on a HiSeq 4000 machine (Illumina) using 50 bp single reads.  

 

6.2.18.2. Preprocessing and identification of differentially expressed genes 

Reads were trimmed by removing stretches of bases having a quality score of <30 at the ends. 

They were then mapped against the hg19 assembly of the human genome using Tophat 2.0.6 

(Kim et al., 2013). Differential expression analysis was performed using DESeq2 (Love, Huber 

and Anders, 2014) and Cuffdiff 2.0 (Trapnell et al., 2013) with multiple testing corrections 
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(Benjamini-Hochberg). Genes with a q-value of less than 0.05 were considered significantly 

differentially expressed. The bioinformatic pipeline containing all these processing steps was 

programmed by Dr. Günter Raddatz (Division of Epigenetics, German Cancer Research Center, 

Heidelberg, Germany).  

 

6.2.18.3. Gene Ontology, Gene Set Enrichment and TRANSFAC analyses 

For Gene Ontology (GO) analyses, the AmiGO 2 database, version 2.4/2.5 (Ashburner et al., 

2000; Carbon et al., 2009, 2017) was used. TRANSFAC analyses were performed using the 

TRANSFAC® Public 6.0 database in Match - 1.0 (Matys, 2006). Gene Set Enrichment Analysis 

(GSEA) (Subramanian et al., 2005) was carried out by analyzing the RNA sequencing datasets 

of HGPS and control fibroblasts with the 'hallmark' (v5.0, Arthur Liberzon (Liberzon et al., 2015), 

Broad Institute) and 'KEGG' (KEGG (Kyoto Encyclopedia of Genes and Genomes)) gene set 

collections from the Molecular Signatures Database (MSigDB), supplemented with the 

'NRF2_01' (v6.0, Xiaohui Xie, Broad Institute) and 'AP1_01' (v6.0, Xiaohui Xie, Broad Institute) 

gene sets. Permutation parameters were set to 'gene_set permutation' and '1000 permutations'. 

Gene signatures with a false discovery rate (FDR) q-value of <0.05, as obtained by the 

software, were considered enriched. 

 

6.2.19. Dam ID-seq 

The Dam ID-seq experiment was performed in three stages: in the first stage, a Dam-Lamin A 

expression vector was cloned using Gateway technology; in the second stage, the Dam ID NGS 

libraries were prepared and sequenced; the third stage comprised the bioinformatic analysis of 

obtained sequencing data. 

 

6.2.19.1. Generation of the Dam-Lamin A expression vector using Gateway cloning 

and verification of EcoDam-V5-Lamin A expression in dermal fibroblasts 

The Dam-Lamin A expression vector (pLgw-EcoDam-V5-LaminA) was generated through 

Gateway cloning. A detailed account of the cloning procedure is given in the Supplementary 

Methods, Section 7.1.2. In brief, LMNA cDNA was first cloned into the the pCR™8/GW/TOPO® 

entry vector using the pCR™8/GW/TOPO® kit (Invitrogen, K250020), and strictly following the 

manufacturer’s instructions. The pCR™8/GW/TOPO® entry vector containing LMNA cDNA 

together with the pLgw EcoDam-V5-RFC1 destination vector (obtained from Addgene, #59209) 
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was then used to generate the expression vector in an LR clonase reaction using the Gateway® 

LR Clonase® II Enzyme Mix (Invitrogen, 11791-020), again following the manufacturer’s 

instructions. Additionally, a pLgw-EcoDam-V5 expression vector (for the expression of a Dam-

only control) was obtained from Addgene (#59210).  Both pLgw-EcoDam-V5-LaminA and pLgw-

EcoDam-V5 were then sequence-verified and midi-prepped using the HiSpeed Plasmid Midi kit 

(Qiagen, 12643) in order to generate sufficient amounts of plasmid for downstream applications.  

Expression of the EcoDam-V5-Lamin A fusion protein was then assessed through transient 

transfection of both HGPS and control fibroblasts. For this purpose, dermal fibroblasts were 

transfected with pLgw-EcoDam-V5-Lamin A as described in Section 6.2.11 and the expression 

of the fusion protein was verified using both α-Lamin A (Santa Cruz, sc7292) and α-V5 (Santa 

Cruz, sc58052) antibodies (see Supplementary Methods, Section 7.1.3).   

 

6.2.19.2. Dam ID NGS library preparation and sequencing 

Overall, Dam ID NGS libraries were prepared as previously described (Vogel, Peric-Hupkes 

and van Steensel, 2007) and adapted for next generation sequencing. Specifically, early-

passage HGPS and control fibroblasts (passage numbers: HGFDFN168: p9, HGMDFN090: p8, 

GM05659: p10, HGADFN188: p9, HGADFN155: p9, HGADFN164: p9) were lentivirally 

transduced as outlined in Section 6.2.12 with either pEcoDam-V5 or pEcoDam-V5-Lamin A.  

Genomic DNA was extracted 72 h after infection as described in Section 6.2.3. 1.5 µg of 

genomic DNA were then DpnI-digested and, after ligation of dsAdr adaptors, DpnII-digested and 

PCR-amplified using the Advantage cDNA polymerase mix (Clontech, 639105), closely 

following the instructions given in Vogel, Peric-Hupkes and van Steensel, 2007. The libraries 

were then purified using a PCR purification kit (Qiagen, 28104), quantified using a Qubit 3 

fluorometer (Invitrogen) and a 2200 TapeStation (Agilent), and sonicated on a focused-

ultrasonicator (Covaris, M220) following the manufacturer's instructions to obtain a median peak 

size of 400 bp (400 ng/sample, 50 W Peak Incident Power, 10 % Duty Factor, 200 Cycles per 

Burst, 70 s Treatment Time, 130 µl microTUBEs). Finally, they were submitted to the High-

Throughput Sequencing Core Facility (DKFZ) for preparation of sequencing libraries (protocol: 

ChIPSeq, Index Type: TruSeq HT / NEBNext Dual, Fragment Size: 400 bp) and sequenced on 

a HiSeq 4000 system (Illumina) using a single-read 50 bp protocol. 
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6.2.19.3. Bioinformatic analysis 

The bioinformatic analysis was performed in collaboration with Bioinformatics.Expert UG (Dr. 

Felix Bormann, Berlin). In brief, adaptor sequences were first trimmed from raw reads and 

aligned with (v2.2.9) Bowtie 2 (Langmead and Salzberg, 2012) using the reference sequence 

GRCh37.87. The binary alignment files (bam-files) were then processed using the 

‘damidseq_pipeline’ (v.1.4.5) (Marshall and Brand, 2015) with kernel density normalization and 

a gatc-fragment file created from the same reference (GRCh37.87). The HGPS-and control 

specific Dam-only backgrounds were created by merging the bam-files of Dam-only signal from 

two HGPS (HGADFN188 and HGADFN155) and two control (HGMDFN090 and GM05659) cell 

lines, respectively, prior to the analysis (Figure S38). Then, group-specific Lamin A enrichments 

were determined by averaging the normalized Lamin A/Dam-only signals within each group 

(HGPS: HGADFN188 and HGADFN164; control: HGMDFN090, HGFDFN168 and GM05659) 

and the differential Lamin A enrichment was calculated by subtracting the averaged Lamin 

A/Dam-only signal of controls from that of HGPS samples. Finally, group-specific and differential 

enrichments were separated by chromosome, smoothed utilizing the ‘loess’ function with a 

smoothing factor of 0.015, and plotted in R (The R Foundation). 

For the definition of sample-specific LADs with a pipeline developed by Gatticchi et al. 

(Gatticchi et al., 2019), the output bedgraph-file, which contains the enrichment of Lamin A- to 

Dam-only signal for each gatc-fragment, was used as a starting point. This pipeline includes a 

peak identification step called circular binary segmentation and uses the R (3.5.2, The R 

Foundation) package DNAcopy (1.56.0). Afterwards, not annotated genomic regions were 

excluded and negative values in the identified peaks were removed. Finally, the LAD peaks 

were merged, if they were closer than 5 kb, and filtered out, if they were smaller than 30 kb 

(Gatticchi et al., 2019).  

Subsequently, group-specific LADs were determined by overlapping sample-specific LADs 

within each group (HGPS: HGADFN188 and HGADFN164; control: HGMDFN090, HGFDFN168 

and GM05659), followed by a second round of filtering (filtered out: LADs ≤30 kb in size; 

merged: LADs with ≤5 kb distance). The resulting control LADs were then subtracted from 

HGPS LADs to determine overlapping, HGPS-only or control-only LADs, which were filtered 

once again as outlined above. Finally, these sets were used as ‘HGPS-only, ‘control-only’ or 

‘overlapping’ LADs for the analysis of chromatin accessibility and DNA methylation changes (as 

described in Section 6.2.14 and Section 6.2.15).   
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6.2.20. Statistical analyses 

Fisher’s Exact test, Welch Two Sample t-test, Wilcoxon test, Chi-squared test and Pearson 

correlation were carried out in R (The R Foundation, version 3.3.1). Unpaired t-tests were 

performed in Graphpad Prism (Graphpad Software). A value of P<0.05 (95 % confidence 

interval) was considered statistically significant.  
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7. Appendix 

7.1. Supplementary Methods 
7.1.1. ATAC-see hyperactive Tn5 production and transposome assembly 

Hyperactive Tn5 transposase production was performed using a previously published method 

(Picelli et al., 2014), the details of which are given in the following.  

First, a pTXB1-Tn5 vector (Addgene, #60240) encoding Tn5 transposase was obtained from 

Addgene and sequence-verified using Sanger sequencing. It was then transformed into C3013 

E.coli cells (T7 Express, NEB, C3013l), of which 1 l of culture were grown at 37°C to an OD600 of 

0.9 (∼ 7 h). The culture was then chilled to 10°C on ice and 0.25 mM IPTG (Sigma-Aldrich, 

I6758) was added. Subsequently, the culture was grown at 23-26°C for 4 h. Bacterial cells were 

then harvested by centrifugation (13,000 g for 8 min at 4°C) of 50 ml aliquots and frozen at -

80°C until further use. After thawing, pellets were kept on ice, resuspended in 80 ml HEGX 

buffer (20 mM HEPES-KOH pH 7.2, 0.8 M NaCl, 1 mM EDTA, 10 % (v/v) glycerol, 0.2 % (v/v) 

Triton-X 100) and lysed by sonication on a Branson 450 sonifier (40-45 bursts of 1 s with 1 s 

breaks, 10-12 cycles, output 50 %). After pelleting the lysate by centrifugation (11,000 g for 30 

min at 4°C), 2.1 ml 10 % PEI (Sigma, P3143) were added to the supernatant whilst stirring and 

the precipitate was spun down (11,000 g for 15 min at 4°C). During centrifugation, 10 ml of a 

chitin resin (NEB, S6651s) were loaded onto a PD-10 column (GE, 17-0435-01) and washed 

with 40 ml HEGX; then, the supernatant was loaded at a rate of ∼0.5 ml/min. Subsequently, the 

resin was washed with 200 ml HEGX at the same rate, 20 ml HEGX containing 100 mM DTT 

(Sigma-Aldrich, 10197777001) were added and 11 ml of eluate were allowed to flow-through.  

The column was then capped, sealed and incubated at 4°C for 42 h. After uncapping the 

column, the eluate was collected in 1 ml fractions (6 ml of HEGX buffer with 100 mM DTT were 

added to obtain 12 fractions), tested for presence of proteins using Bradford solution (BioRad, 

500-0006) and dialyzed with dialysis buffer (100 mM HEPES-KOH pH 7.2, 0.2 M NaCl, 0.2 mM 

EDTA, 2 mM DTT, 0.2 % Triton-X 100, 20 % (v/v) glycerol) using Slide-A-Lyzer dialysis 

cassettes (Thermo, 66380) according to the manufacturer’s instructions. The dialyzed protein 

solution was then concentrated using Amicon Ultra-15 30K filters (Milipore, UFC903024) 

following the manufacturer’s instructions, diluted to OD280 = 3.0 with dialysis buffer and stored in 

55 % (v/v) glycerol at -20°C. The presence of Tn5 transposase in the 55 % (v/v) glycerol mixes 

was then verified using Coomassie Blue (SERVA, 35081.01) staining (Figure S29).  
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Then, Tn5 transposome assembly using Atto-590N-labeled oligonucleotides was performed as 

described previously (Chen et al., 2016). Specifically, 20 µl of Tn5MErev (100 µM in ddH2O) 

oligonucleotides were mixed with 20 µl of either Tn5ME-ATTO590N-A (100 µM in ddH2O) or 

Tn5ME-ATTO590N-B (100 µM in ddH2O) oligonucleotides, denatured by incubation at 95°C for 

5 min on a thermocycler (MJ Research / Biometra) and reannealed by gentle cooling to room 

temperature after turning off the thermocycler (∼ 30 min). Subsequently, Tn5 transposomes 

were assembled by mixing 20 µl of Tn5MErev/Tn5ME-ATTO590N-A, 20 µl of 

Tn5MErev/Tn5ME-ATTO590N-B and 240 µl Tn5 transposase in 55 % (v/v) glycerol (OD280 = 

3.0), and incubating this mixture at room temperature for 1 h. Assembled Tn5-Atto-590N-

transposomes were then stored at -20°C until being used in the transposition reaction (see 

Methods, Section 6.2.13), for which they were diluted 71.5-fold to 100 nM.    

 

7.1.2. Dam ID Gateway cloning 

First, LMNA cDNA was cloned into the the pCR8/GW/TOPO entry vector using the 

pCR8/GW/TOPO kit (Invitrogen, K250020). For this purpose, LMNA was amplified from HGPS 

cDNA using the following PCR protocol:  

 

Phusion PCR reaction: 

40 ng cDNA 

1.25 µl PROG f primer (10 µM) 

1.25 µl PROG r primer (10 µM) 

2 µl dNTP (40 µM) 

5 µl 5x HF buffer 

0.5 µl Phusion 

to 25 µl ddH2O 

 

Phusion PCR protocol: 

98°C for 30 s 

98°C for 10 s 

70°C for  20 s 35 cycles 

72°C for  50 s 

72°C for  10 min 

4°C  for  ∞

Figure S29: Detection of Tn5 transposase after dialysis. Mixes 1-5 (different 55 % (v/v) 
glycerol stocks) contain the ∼ 55 kDa Tn5 transposase as revealed by Coomassie Blue 
staining. 
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The PCR products were placed on ice and 3’-A overhangs were generated by adding 1 µl 

FireTaq polymerase (Steinbrenner, SL-FT blue-2500) to 25 µl PCR product, incubating the 

reaction for 9 min at 72°C and again placing it on ice. It was then used directly in the following 

TOPO® Cloning reaction: 1 µl salt solution  and 1 µl pCR8/GW/TOPO  entry vector were mixed 

with 4 µl PCR product, incubated for 20 min at room temperature and transformed into One 

Shot TOP10 E.coli cells (Invitrogen, C404010) (see Methods, Section 6.2.10). Bacterial colonies 

were grown on Spectinomycin (Sigma-Aldrich, S4014)-containing (100 µg/ml) LB Agar plates, 

picked and mini-prepped using the QIAprep Spin Miniprep kit (Qiagen, 27106). They were then 

digested with EcoRI (NEB, R0101S) following the manufacturer’s instructions and run on a 0.8 

% agarose gel. Colony #8 had integrated LMNA cDNA, while other colonies revealed the 

presence of Progerin-, both or no cDNA (Figure S30). The correct integration and orientation of 

LMNA cDNA into the pCR8/GW/TOPO vector in colony #8 was subsequently verified by Sanger 

sequencing using M13-RP. 

 
The pCR8/GW/TOPO entry vector containing LMNA cDNA was then used together with a 

destination vector (pLgw EcoDam-V5-RFC1; see Table 6) (150 ng each) in an LR clonase 

reaction strictly following the instructions of the pCR8/GW/TOPO kit. After incubation for 4 h at 

25°C, the plasmids were transformed into One Shot Stbl3 E.coli cells (Invitrogen, C737303), 

plated onto Ampicillin (Sigma-Aldrich, A1593)-containing (100 mg/ml) LB agar plates and 

colonies were picked, mini-prepped as before, and tested for successful integration using the 

following PCR reaction: 

Figure S30: EcoR1-digested pCR8/GW/TOPO from nine different bacterial colonies run 
on a 0.8 % agarose gel. *Colony #8 showed successful integration of LMNA cDNA and, after 
sequence verification using Sanger sequencing, was used in downstream LR clonase 
reaction. M = HyperLadder 1kb (Bioline, BIO-33053). Expected sizes: LMNA cDNA: 2105 bp, 
Progerin cDNA: 1953 bp. 
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PCR reaction: 

5 µl plasmid from colony 

0.5 µl PROG f primer (10 µM) 

0.5 µl PROG r primer (10 µM) 

2 µl dNTP (40 µM) 

2.5 µl 10x buffer 

0.5 µl FireTaq polymerase 

to 25 µl ddH2O  

PCR protocol: 

95°C for 5 min 

95°C for 25 s 

70°C for  20 s 35 cycles 

72°C for  140 s 

72°C for  10 min 

4°C  for  ∞

 

As shown in Figure S31, in about half of the analyzed colonies the LR clonase reaction had 

not occurred, i.e., LMNA cDNA was still present in the pCR8/GW/TOPO entry vector, while 

colonies #8.2 and #8.20 showed a different amplification pattern. Sanger sequencing using 

pCasper-hs and PROG r primers verified that they contained the pLgw-EcoDam-V5-Lamin A 

expression vector with intact and correctly integrated LMNA cDNA. Both pLgw-EcoDam-V5-

LaminA and the Dam only control vector (pLgw-EcoDam-V5; see Table 6) were then midi-

prepped using the HiSpeed Plasmid Midi Kit (Qiagen, 12643) in order to generate sufficient 

amounts of plasmid for downstream applications. 

 
 

Figure S31: LMNA cDNA PCR with PROG cds f and r primers showing a successful LR 
clonase reaction in half of the analyzed colonies. While colonies 8.8 and 8.14 generated 
the same amplicon pattern as the control (pCR8/GW/TOPO containing LMNA cDNA), colonies 
8.2 and 8.20 generated a different amplicon pattern and were, therefore, likely to contain a 
different plasmid, i.e., pLgw-EcoDam-V5-Lamin A. M = HyperLadder 50bp (Bioline, BIO-
33054). 
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7.1.3. Verification of EcoDam-V5-Lamin A expression in dermal fibroblasts 

Before the lentiviral transduction of target cells, expression of a fusion protein with the 

expected molecular weight was tested after transient transfection of HGPS and control 

fibroblasts. For this purpose, cells were transfected with pLgw-EcoDam-V5-Lamin A as 

described in Methods, Section 6.2.11 and total protein extracts were taken at different time 

points after transfection and analyzed by SDS-PAGE (as described in Methods, Section 6.2.9). 

As shown in Figure S32, the EcoDam-V5-Lamin A fusion protein was readily detected using an 

α-V5 antibody (Santa Cruz, sc58052) in both HGPS and control fibroblasts at different time 

points, with maximum expression 24 h after transfection. Similarly, despite considerably weaker 

signal due to the presence of Lamin A, Lamin C and Progerin and low transfection efficiency, 

the fusion protein was also detected using an α-Lamin A/C antibody (Santa Cruz, sc7292) with 

total protein extracts of HGADFN188 (Figure S33). Hence, expression of the desired fusion 

protein was considered successful and the Dam ID-seq protocol was continued with the 

lentiviral transduction of fibroblasts with pLgw-EcoDam-V5-Lamin A, in order to ensure stable, 

low-level expression (see Methods, Section 6.2.19).  
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Figure S32: Detection of EcoDam-V5-Lamin A expression using an α-V5 antibody. The 
fusion protein was detected in total protein extracts from HGPS (HGADFN188) and control 
(HGFDFN168) cells at different time points after transient transfection with pLgw-EcoDam-
V5-Lamin A using an antibody binding to the V5-linker (Santa Cruz, sc58052, 1:200). As 
expected, untransfected cells (‘control’, HGADFN188) do not express the fusion protein. 



7. Appendix   7.1 Supplementary Methods 

 140 

 
 
  

𝛂-Lamin A/C 
 

Ponceau 

Lamin A 

Lamin C 

Progerin 

EcoDam-V5-Lamin A  

Figure S33: Detection of EcoDam-V5-Lamin A expression using an α-Lamin A/C 
antibody. The fusion protein was detected in total protein extracts 36 h after transient 
transfection of HGADFN188 with pLgw-EcoDam-V5-Lamin A but not control cells (‘control’, 
untransfected HGADFN188) using an antibody binding to Lamin A/C (Santa Cruz, sc7292, 
1:200). 
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7.2. Additional Figures 
 
 
 
 
 

 
 
 
 
 
 

Figure S34: Verification of mutational status in fibroblast lines. A region of the LMNA gene 
spanning exon 11 was amplified with gene-specific primers and Sanger-sequenced. Presence 
of the heterozygous 1824C>T mutation in HGPS samples is shown in red, its absence in 
control samples in blue. 
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Figure S35: Range of nuclear malformations in HGPS cells. α-Lamin A/C 
immunofluorescence in one HGPS (HGADFN188, p9) and one control (HGMDFN090, p9) cell 
line. The various nuclear aberrations scored as ‘malformed’ are depicted for HGPS cells. Scale 
bar = 10 µm. Ctr = control. 
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Figure S36: Typical ATAC-see signal in HGPS and control fibroblasts. Most perceivably 
malformed HGPS nuclei exhibited loss of bright ATAC-see foci and intermediate signal 
intensities, i.e., reduced dynamic range (HGADFN188 and HGADFN155). However, as shown 
for HGADFN143, some retained brighter regions. Scale bar = 10 µM. 
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Figure S37: Principal Component Analysis (PCA) of ATAC-seq samples. Principal 
Component Analysis (PCA) of HGPS (with age groups as indicated) and control ATAC-seq 
samples. The variances explained by Principal Component (PC) 1 and 2 are given in brackets. 
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Figure S38: Dam ID-seq: Exclusion of low-quality samples. Upon visual inspection of the 
Dam-Lamin A vs. Dam-only enrichment tracks, three samples revealed unspecific (HGFDFN168 
and HGADFN164, due to low coverage of respective Dam-only samples as marked in red) or 
fragmented (HGADFN155, due to low quality of Dam-Lamin A sample) binding patterns and 
were excluded from the analysis. Because of this, group-specific Dam-only backgrounds were 
created by averaging Dam-only signal from the two unaffected control and the two unaffected 
HGPS samples, respectively. Additionally, the HGADFN155 sample was excluded from the 
analysis, due to its sub-quality Dam-Lamin A signal. As a result, all HGPS LAD subsets referred 
to in this work were calculated using two samples (HGADFN188 and HGADFN164), whereas 
control LADs were determined by averaging signal from three samples (GM05659, 
HGFDFN168, HGMDFN090). 
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Figure S39: Principal Component Analysis (PCA) of RNA-seq samples. Principal 
Component Analysis (PCA) of HGPS (with age groups as indicated) and control RNA-seq 
samples. The variances explained by Principal Component (PC) 1 and 2 are given in 
brackets. 
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Figure S40: Additional genes tested for intranuclear relocalization using Fluorescence In 
Situ Hybridization (FISH). Upper panels: Representative FISH images of KCNK1, SMAD9 and 
SOX11 loci in HGPS and control nuclei. The distance from the FISH signal to the nuclear 
periphery was measured in the focal plane in cells exhibiting a clear biallelic signal. Lower 
panels: Quantification of the average distance from the periphery for in the indicated genes in 
two control and three HGPS cell lines (60 cells per sample). For these loci, HGPS-specific 
differences were found to be insignificant (P<0.05, Welch Two Sample t-test). 
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Figure S41: Lonafarnib treatment does not alter HGPS-specific expression changes. (A) 
& (B) Expression of indicated genes relative to GAPDH, SRSF4 and TBP in HGPS and control 
cells after 7 d treatment with DMSO or 0.06 µM Lonafarnib for genes found to be upregulated 
(A) or downregulated (B) in HGPS. 
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