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Tissue quantification based on Magnetic Resonance Fingerprinting
Quantification of tissue properties including the relaxation parameters has long been a goal of
magnetic resonance imaging (MRI), to provide a basis for inter-patient comparability. However,
extended acquisition times have hindered the usage of quantification for clinical applications.
Magnetic Resonance Fingerprinting (MRF)was introduced as a promisingmethod for simultaneous
and fast quantification of multiple tissue parameters. Most MRF methods rely on spiral k-space
trajectories, though they are well known to suffer from detrimental effects on the image quality,
caused by gradient inaccuracies. The aim of thisworkwas to develop an implementation of theMRF
paradigm for quantitative imaging based on Cartesian k-space readout, potentially increasing its
usability and robustness. In a first step, a single slice MRF method based on echo-planar imaging
(MRF-EPI) was developed, acquiring 160 gradient-spoiled EPI images with Cartesian readout.
By varying the flip angle, echo times and including an inversion pulse, fluctuating signal paths
were created. T1 and T∗2 were quantified through matching the fingerprints with a precomputed
dictionary. The quantification accuracy was validated in phantom scans showing good agreement
of MRF-EPI with reference measurements, with average deviations of −2 ± 3% and 2 ± 3% for T1
and T∗2 , respectively. In vivo maps were of high visual quality and comparable to in vivo reference
measurements, despite the substantially shortened scan times of 10 s per slice. In a second step,
MRF-EPI was modified for improved volumetric coverage by using a slice-interleaved acquisition
scheme. In addition to the T1 and T∗2 maps, proton density (PD) maps could be created without the
need of additionalmeasurements. In vivowhole-brain coverage ofT1,T∗2 and PDwith 32 sliceswere
acquired within 3:36 minutes, resulting in parameter maps of high visual quality and comparable
performance with single-slice MRF-EPI at 4-fold scan-time reduction. In a final step the motion
sensitivity of MRF methods was studied. Simulations demonstrated that MRF sequences based
on spiral and Cartesian readout exert sensitivity to motion. To correct for motion, the individual
measurements of MRF-EPI were corrected by co-registering them with an intensity-based co-
registration method. Phantom and in vivo measurements demonstrated that motion artefacts were
successfully mitigated with intensity-based co-registration, leading to motion-robust artefact-free
T1 and T∗2 maps. Combining the developments of this work resulted in a fast and robust method for
multi-parametric whole brain quantification in clinically acceptable scan time.

Gewebequantifizierung mittels Magnetic Resonance Fingerprinting
Die Quantifizierung der Gewebeeigenschaften einschließlich der Relaxationsparameter ist seit
langem ein Ziel der MRT und bildet eine Grundlage für die Klassifikation von Krakheitsstadien.
Lange Messzeiten haben jedoch den Einsatz der Quantifizierung im klinischen Alltag verhin-
dert. Als vielversprechende Methode zur simultanen und schnellen Quantifizierung mehrerer
Gewebeparameter wurde vor einigen Jahren die Idee von Magnetic Resonance Fingerprinting
(MRF) publiziert. Die meisten MRF-Methoden beruhen auf spiraler k-Raum Auslese, obwohl
sie bekanntermaßen unter nachteiligen Auswirkungen auf die Bildqualität leiden, die durch Gra-
dientenungenauigkeiten verursacht werden. Das Ziel dieser Arbeit war die Entwicklung einer
Implementierung des MRF-Paradigmas für quantitative Bildgebung auf der Basis kartesischer
k-Raum Auslese, um potenziell klinische Anwendbarkeit und Robustheit zu erhöhen. In einem er-
sten Schritt wurde ein MRF-Verfahren auf Basis von Echo-Planar Imaging (MRF-EPI) entwickelt,
welches 160 EPI-Bilder mit kartesischer Auslese erfasst. Durch Variation des Anregungswinkels,
der Echozeiten und eines Inversionspulses wurden die Signale so variiert, dass T1 und T∗2 durch
abgleichen der Signale mit einer Datenbank quantifiziert werden konnten. Die Quantifizierungs-
genauigkeit wurde in Phantommessungen validiert, die eine gute Übereinstimmung des MRF-EPI
mit Referenzmessungen zeigten (durchschnittliche Abweichungen von −2 ± 3% und 2 ± 3% für
T1 bzw. T∗2 ). In vivo Parameterkarten waren von hoher visueller Qualität und vergleichbar mit
den Referenzmessungen, trotz der deutlich verkürzten Messdauer von 10 s pro Schicht. In einem
zweiten Schritt wurde das MRF-EPI für eine verbesserte Abdeckung modifiziert. Zusätzlich zu
den T1 und T∗2 Karten konnten Protonendichtekarten (PD) ohne zusätzliche Messungen erstellt
werden. Die Messung von 32 Schichten mit jeweils resultierenden T1, T∗2 und PD Parameterkarten
wurde innerhalb von 3:36 Minuten erreicht. Die Parameterkarten waren von hoher visueller Qual-
ität. In einem letzten Schritt wurde die Bewegungsempfindlichkeit vonMRF-Methoden untersucht.
Simulationen zeigten, dassMRF-Sequenzen auf der Basis von spiraler und kartesischer Auslese be-
wegungsempfindlich sind. Zur Korrektur der Bewegung wurden die individuellen Messungen des
MRF-EPI durch Co-Registrierung mit einer intensitätsbasierten Registrierungsmethode korrigiert.
Phantom- und in vivo Messungen zeigten, dass Bewegungsartefakte durch eine intensitätsbasierte
Co-Registrierung erfolgreich korrigiert wurden, was zu bewegungsrobusten artefaktfreien T1 und
T∗2 -Karten führte. Die Sequenzen dieser Arbeit führten zu einer schnellen und robusten Methode
zur multiparametrischen Ganzhirnquantifizierung in klinisch akzeptabler Scanzeit.
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Introduction and Outline 1
1.1 Introduction

Following the introduction of Magnetic Resonance Imaging (MRI), which was
paved by the noble laureate winning work of Lauterbur and Mansfield in 1973,
MRI has been gaining significance in the clinical imaging practice, growing to be
one of the major imaging modalities. As MRI provides in vivo medical images
without the need for ionizing radiation in contrast to e.g. computer tomography
or positron emission tomography. It is used for a wide range of clinical applica-
tions, including neurological diseases, stroke and cancer. However, clinical MRI
traditionally uses qualitative or ’weighted’ measurements and the quantification
of underlying physical parameters is rarely performed. As such, the same subject
measured with a qualitative sequence with various coils or on different MRI
scanners can lead to intensity variations, depending on the scanner setup, which
limits the comparability between different scans.

Quantification of tissue properties including the relaxation parameters such
as T1, T2, and T∗2 has been a long standing goal in MRI research, to facilitate
improved tissue characterization and providing a basis for inter-patient compa-
rability. Further, quantitative measurements have the potential for the detection
of diseases and staging in multiple clinical scenarios, such as differentiating cir-
rhotic from noncirrhotic liver (Kim et al., 2012), providing surrogate markers of
function in native and transplanted kidneys (Huang et al., 2011) or investigating
the iron content in the brain of patients suffering from Huntington’s, Parkinson’s
and Alzheimer’s disease (Ordidge et al., 1994; Vymazal et al., 1999). Several
measurement methods have been proposed to quantify a variety of physical pa-
rameters e.g. the Look-Locker sequence for T1 mapping which acquires data at
multiple time points along the signal recovery curve after either an inversion or
a saturation pulse. Equally for T2 and T∗2 , the gold standard sequences are the
Carr-Purcell-Meiboom-Gill spin echo sequence for T2 (Carr and Purcell, 1954)
and a gradient echomethod forT∗2 , sampling theT2 andT∗2 decay curve at different
echo times (TE). Due to measurement times that are beyond what is clinically
acceptable, several accelerated acquisition techniques have been proposed, such
as variable flip angle methods for fastT1 quantification (Cheng andWright, 2006;
Zhu and Penn, 2005) and fast low angle shot based methods for T2 quantification
(Deichmann et al., 1995). However, the accuracy and precision of the estimated
parameters of these accelerated sequences are prone to signal variations caused
by motion and undersampling artefacts (Jiang et al., 2015). Other approaches
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for decreasing measurement time include simultaneous quantification of multiple
parameters (Warntjes et al., 2007a), though long scan times and high sensitivity
to the measurement set-up limit their practical implementation (Ma et al., 2013).
While the quantification of tissue characteristics parameters has achieved clinical
impact in a few select fields of MRI, such as myocardial T1 mapping, the clear
majority of MRI measurements are based on qualitative imaging, particularly in
clinical MRI.

Recently, a novel imaging technique termedMagnetic Resonance Fingerprint-
ing (MRF) has enforced the interest in parameter mapping due to its potential
for fast quantification of multiple physical parameters (Ma et al., 2013). Unlike
typical quantification sequences which sample the exponential decay at multi-
ple time points, the general concept of MRF is to excite the magnetization in a
pseudo-random fashion, thereby generating unique signal paths, called ’finger-
prints’, based on their underlying MRI properties. The fingerprints are generated
by the rapid acquisition of numerous highly undersampled images. Signal vari-
ations are induced by varying the sequence parameters such as flip angle, TE,
repetition time (TR) and including an inversion pulse in the sequence. Matching
these fingerprints to a precomputed dictionary allows the acquisition of param-
eter maps for a variety of physical parameters. The original MRF method was
based on a balanced steady state free precession sequence design, allowing for
joint T1 and T2 mapping. Subsequently, an unbalanced fast imaging with steady
state precession (FISP) sequence was introduced to overcome sensitivity to inho-
mogeneities of the main magnetic field at the expense of measurement SNR and
has been used as a template for a number of MRF sequences (Assländer et al.,
2017; Buonincontri and Sawiak, 2015; Jiang et al., 2017b, 2015). However,
most previously proposed methods base their readout on highly undersampled
spiral k-space trajectory, to facilitate rapid image readout as required in an MRF
sequence. Recently, initial data indicated a high sensitivity of MRF sequences
to gradient deviations, due to the inherent properties of the non-Cartesian image
readout (Hong et al., 2016). Especially spiral trajectories, as used in most MRF
sequences, are well known to suffer from detrimental effects on the image quality,
caused by gradient inaccuracies. This greatly limits its availability at present and
still prevents the wide-spread use of spiral imaging in clinical protocols.

The aim of work is to develop a novel MRF method based on Cartesian
readout for T1 and T∗2 quantification for clinical practice, facilitating improved
robustness and increased usability within clinically acceptable scan times.

1.2 Outline
This work is written cumulatively. Chapters 3 to 5 present self-contained scien-
tific studies with an introduction to the topic, description of the methods and the
presentation of the results and a discussion.

Chapter 2 aims to provide a brief overview of the physical background as
a basis for understanding the presented methods. This further includes corre-
sponding technical developments and relevant imaging techniques in the field of
quantitative imaging and provides an introduction to MRF.

In chapter 3, a novelMRFmethod for quantitative imaging is introduced using
echo-planar imaging (EPI) for simultaneous assessment of T1 and T∗2 relaxation
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times. The proposed MRF method (MRF-EPI) combines an inversion recovery
pulse with varying flip-angles, TEs and TRs and accelerated EPI readouts to
generate unique signal traces. Matching these traces to a precomputed dictionary
with integrated B+1 correction enable T1 and T∗2 quantification.

Chapter 4 presents a slice-interleaved extension of theMRFmethod proposed
in chapter 3 to improve volumetric coverage while reducing scan time. The
original sequence ismodified to acquire several slices in a randomized interleaved
manner. The number of interleaved slices is optimized in numerical simulations
and validated in phantom measurements and feasibility is demonstrated in vivo.

In chapter 5 the motion sensitivity of MRF methods based on spiral and
Cartesian k-space trajectories are studied in simulationswith regard to the severity
of translational and rotational motion. The results are validated in phantom and
in vivo scans with the MRF method presented in chapter 3. Furthermore, a
correction scheme is developed for the MRF-EPI to mitigate motion artefacts,
increasing its clinical usability of the sequence. The quality of the correction
scheme and the resultingT1 andT∗2 maps are qualitatively compared to the results
of motion free reference scans.

Chapter 6 provides an overview of the relevant results from the scientific
studies presented in chapters 3 through 5.

Chapter 7 contains an outlook on future research perspectives and clinical
relevance of the methods that are proposed in this thesis.

1.3 Citation of previous publications
Most of the thesis has been published elsewhere or is currently submitted for
publication. The following chapters have been published:

Chapter 3: Rieger, B., Zimmer, F., Zapp, J., Weingärtner, S. and Schad, L.
R. (2017). Magnetic resonance fingerprinting using echo-planar imaging: Joint
quantification of T1 and T2* relaxation times. Magn Reson Med 78, 1724–1733

Chapter 4: Rieger, B., Akçakaya, M., Pariente, J. C., Llufriu, S., Martinez-
Heras, E., Weingärtner, S. and Schad, L. R. (2018). Time efficient whole-brain
coverage with MR Fingerprinting using slice-interleaved echo-planar-imaging.
Sci. Rep. 8, 6667.

Chapter 5: Rieger, B., Wenning, M., Weingärtner, S. and Schad, L. R.
(2018). Improved motion robustness for EPI-based MR Fingerprinting using
intensity based image registration. Sci. Rep. submitted, Date of submission:
01.06.2018





Background 2
This chapter provides an introduction and overview of the principles of nuclear
magnetic resonance (NMR), the fundamentals of magnetic resonance imaging
(MRI) and magnetic resonance fingerprinting (MRF) techniques.

2.1 MRI Physics
Nuclear magnetic resonance was independently investigated and published by
Felix Bloch (Bloch, 1946) and EdwardMills Purcell (Purcell et al., 1946) in 1946,
describing the specific magnetic resonance property of nuclei in a magnetic field,
for which they were honoured with the Nobel Prize in Physics in 1952. MRI
was developed in 1973 by Lauterbur (Lauterbur, 1973) andMansfield (Mansfield
and Grannell, 1975), when they proposed to spatially encode the NMR signal
with magnetic field gradients and developed the methods for fast conversion of
the NMR signals into imaging data, for which they shared the Nobel Prize in
Physiology or Medicine in 2003.

This chapter aims to provide a short overview of the principles of NMR and
the basics of MRI. A more comprehensive description of the topic can be found
in (Haacke, 1999; Levitt, 2008).

2.1.1 Microscopic and Macroscopic Magnetization
The single nucleons composing an atomic nucleus have an intrinsic spin and
combine to a spin quantum number S. If the number of protons and neutrons
are both even, there is no overall spin, therefore S = 0. However, otherwise the
angular momentum ®S of the spin is associated with a magnetic moment ®µ through
the gyromagnetic ratio γ

®µ = γ ®S. (2.1)

When placing a nucleus with a magnetic moment ®µ in an external static
magnetic field ®B, it will be subject to a torque ®τ causing a change in the expectation
value of the magnetic moment

®τ = ®µ × ®B =
1
γ

d ®µ
dt

(2.2)

resulting in
d ®µ
dt
= γ ®µ × ®B (2.3)
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Assuming a constant external magnetic field ®B = (0, 0, B0)
T along the z-axis,

quantum mechanics states that the magnetic field splits the energy ground states
into (2S +1) energy levels Em given by

Em = −γ~mB0 (2.4)

proportional to the magnetic quantum number m and the reduced Planck constant
~. When dealing with nuclei which have a spin of S = 1/2, such as 1H, two energy
levels are valid, E+1/2 with m = +1/2 and E−1/2 with m = -1/2. For nuclei in
an external magnetic field in z-direction, whose magnetic moment align either
parallel or anti-parallel to the magnetic field, the energy difference between the
two energy states equals to

∆E = E−1/2 − E1/2 = γ~B0 = ~ω0 (2.5)

Transitions between the two energy levelsmay be induced by photons carrying
the energy ∆E . The difference in energy between the two states in proportional
to the Larmor frequency

ω0 = γB0. (2.6)

In the state of thermal equilibrium, the distribution ratio of the nuclei in the
different energy states is given by the Boltzmann distribution

Nupper

Nlower
= e−∆E/kT (2.7)

with k being the Boltzmann constant, T the absolute temperature in Kelvin and
Nupper and Nlower corresponding to the population of nuclei in the higher and
lower energy states. For protons in a 3T magnetic field at room temperature,
the ratio will be about 0.999998, meaning that only very few excess nuclei are
in the lower energy state than in the upper state. Most physical samples consist
of many atoms, in one cubic millimeter there are in the order of ≈ 1020 nuclei.
Therefore, the notion of macroscopic magnetization ®M is introduced as the sum
of all individual moments ®µi per Volume V within the external magnetic field
along the z-axis

®M =
1
V

∑
i

®µi . (2.8)

For protons at body temperature (T ≈ 310K), the net magnetization based on
the Boltzmann statistics is given by

M0 ≈
N
V
γ2~2S (S + 1) B0

3kT
(2.9)

N being the number of individual magnetic moments in the volume V. The NMR
signal is therefore proportional to the magnetic field B0 and the spin density N/V .
As hydrogen has a high gyromagnetic ratio compared to other stable nuclei and
as the human body has abundant water, NMR based on protons is especially well
suited.
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2.1.2 Radiofrequency Excitation
The behavior of a macroscopic magnetization (Eq. 2.8), which is the sum of the
nuclei in a static external magnetic field (Eq. 2.3) and assuming that the spins
are not interacting with their environment, can be described by

d
dt
®M(t) = γ ®M(t) × ®B0 (2.10)

expressing the precession of the magnetization about the magnetic field with the
Larmor frequency ω0 = γB0. If an external circularly polarized radio frequency
(RF) field ®B1(t)with the amplitude B1 and the frequencyω1 is applied perpendic-
ular to the B0 field, which is aligned with the z-axis, a transverse magnetization
can be created

®B1(t) = B1
©«

cos(ω1t)
sin(ω1t)

0

ª®¬ . (2.11)

Assuming a frame of reference rotating around the z-axis with the frequency
ω1 and combining the magnetic fields ®B0 and ®B1 to an effective magnetic field
®Be f f , the motion of the macroscopic magnetization can be described by equation

d
dt
®M′(t) = γ ®M′(t) × ©«

B1
0

B0 −
ω1
γ

ª®¬ = γ ®M′(t) × ®Be f f . (2.12)

If the frequency of the excitation pulse is chosen such, that it corresponds to
the frequency of the main magnetic field ω1 = γ ®B0, the resulting effective field
®Be f f = (B1,0,0) causes a rotation of the macroscoptic magnetization away from
the z-direction. Applying the magnetic field B1 only for a duration of τ causes
the rotation of the magnetization by a flip angle of α

α = γ

∫ τ

0
B1(t)dt (2.13)

Applying the B1 for a short moment of time is referred to as RF pulse, as the
frequency is in the same order of magnitude as commonly used radio signals.
The magnetic field of the precessing magnetization in the xy plane (transversal
plane), caused by the RF pulse, can be measured with a coil, in which a voltage
V(t) = V0(ω0t) is induced. The amplitude V0 of the voltage is dependent on the
dimensions of the coil and the properties of the electric circuit.

2.1.3 Relaxation and Bloch Equations
In the year 1946, Felix Bloch proposed the Bloch equations, which describe the
interaction of the magnetization with the surrounding spins and environment
within the external magnetic field (Bloch, 1946). After applying an excitation
field ®B1, the magnetization converges back to the equilibrium state. This process
is called relaxation. In the case of a constant magnetic field, the Bloch equations
are given as

d
dt

Mx = γ( ®M(t) × ®B(t))x −
Mx(t)

T2
(2.14)
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d
dt

My = γ( ®M(t) × ®B(t))y −
My(t)

T2
(2.15)

d
dt

Mz = γ( ®M(t) × ®B(t))z −
Mz(t) − M0

T1
(2.16)

where T1 denotes the longitudinal and T2 the transversal relaxation time.

Figure 2.1: Relaxation after excitation with a 90◦ pulse. The images depict the tem-
poral evolution of the magnetization vector with its longitudinal T1 relaxation and the
transversal T2 relaxation. The magnetization vector precesses around the static mag-
netic field ®B0 with the frequency ω

T1 Relaxation

Equation 2.16 describes the spin-lattice relaxation mechanism, often referred to
as longitudinal or T1 relaxation. This mechanism describes the rate by which the
component of the magnetization vector parallel to the main magnetic field B0
reaches the thermodynamic equilibrium. The rate of regrowth is characterized
by the time constant T1, which arises from the interaction between the spins
and their atomic neighborhood, the lattice. The nuclei can transfer the energy
they obtained from the RF pulse to the surrounding lattice. The solution of the
differential Equation 2.16 for an initial equilibrium magnetization Mz,0 can be
expressed as

Mz(t) = Mz,0 − (Mz,0 − Mz(0))e−t/T1 (2.17)

Figure 2.1 shows the T1 and T2 relaxation after a 90◦ pulse, flipping the
magnetization into the transversal xy plane and then rleaxing to the equilibrium
state.

T2 Relaxation

The decay of the transversal component, perpendicular to the main magnetic
field, is described by Equation 2.14 and 2.15. This mechanism is referred to
as spin-spin or T2 relaxation. This relaxation type, which is often a lot faster
than the T1 relaxation (T2 ≤ T1), is caused by the interaction with local magnetic
field inhomogeneities on the micro- and nanoscales, dispersing the phases due
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to varying precessional frequencies. This dephasing results in a decay of the
macroscopic magnetization in the transversal plane. The explicit solution of the
differential Equations 2.14 and 2.15 with the initial value Mx,y(0) is

Mx,y(t) = Mx,y(0)e−t/T2 . (2.18)

T∗2 Relaxation

All nuclei would precess with the same frequency in an idealized system. How-
ever, due to additional static inhomogeneities in the main magnetic field B0 e.g.
due to minor differences in the chemical environment, the MR signal decays
faster than the T2-Relaxation. The locally varying field ∆B0 leads to a dispersion
of the magnetic spin vectors, inducing a phase and with that the T′2 relaxation.
As the locally varying field ∆B0 is static, it is not a true relaxation process, only
a phase shift between the spin vectors is induced and the signal can be recovered.
The complete dephasing of the transversal magnetization is described by the T∗2
relaxation

1
T∗2
=

1
T2
+

1
T ′2
. (2.19)

2.1.4 Spatial Encoding
Spatial encoding relies on successively applying magnetic field gradients to
achieve spatially resolved signal maps. This spatial encoding is accomplished by
overlaying the main magnetic field ®B0 = (0, 0, B0)

T with a linear magnetic field
gradient ®G

®G(t) = ©«
Gx(t)
Gy(t)
Gz(t)

ª®¬ (2.20)

which results in a modified magnetic field

®B(®r, t) = ®B0 + ®B′(®r, t) = ®B0 +
©«

0
0
®G(t)®r

ª®¬ (2.21)

As a result, the Larmor frequency becomes spatially dependent by the super-
position of both magnetic fields

ω(®r, t) = γ(B0 + ®G(t)®r) = ω0 + ωG(®r, t) (2.22)

An additional phase φ is accumulated during the application of the gradients
for a given time t at the position ®r

φ(®r, t) = −
∫ t

0
ωG(®r, t′)dt′ = −γ®r

∫ t

0
®G(t)dt′ = −®k(t)®r (2.23)

The spatial wave vector ®k is located in k-space and is given by

®k(t) = γ
∫ t

0
®G(t′)dt′ (2.24)
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The signal S that is detected by the coil is proportional to a magnetic field
Breceive,xy from the transversal magnetization and is related to it’s transversal
component with it’s initial phase angle ΦB and the additional phase φ(®r) from
the gradients

S(®k(t), t) ∝ ω0

∫
e−t/T2(®r)Mxy(®r, 0)Breceive,xy(®r)e−i(ω0t+®k(t)®r+ΦB(®r)+φ(®r))d®r

(2.25)
Without the effects of the transversal magnetization decay and assuming a

homogeneous Breceive field, the overall signal contribution S(®k, t) of a sample can
be described by

S(®k(t), t) ∝
∫

Mxy(®r)e−i(®k(t)®r)d®r (2.26)

The overall signal is therefore proportional to the Fourier transform of Mxy of the
spatial distribution of the transversal magnetization. In order to obtain spatially
resolved images in the transversal plane, the signal needs to be acquired for
multiple k-space values, which is performed by varying the gradients ®G. A
spatially distributed image can be calculated by an inverse Fourier transform

Mxy(®r) ∝
∫

S(®k(t), t)ei®k(t)®r d®r (2.27)

For the generation of a 2D image, three encoding techniques are needed called
slice selection, phase encoding and frequency encoding.

Slice Encoding

Figure 2.2: Principle of slice selection: By applying a gradient Gz , each location
along the z-axis has a defined resonance frequency. If an excitation pulse is applied
with the bandwidth ∆ω around the central frequency ω0, a slice with the specific posi-
tion ∆z is excited

To acquire an image, a single thin slice is excited by combining gradient fields
and spatially selective RF pulses. Without the application of a field gradient, the
RF pulse would excite the complete imaging volume, prohibiting the acquisition
of a 2D slice. Therefore, a slice selection gradient is applied perpendicular to
the slice while transmitting the RF pulse. The slice selection gradient causes
the resonance frequency to be a linear function corresponding to the selected
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axis (compare Figure 2.2). For a slice excitation in the transversal xy plane, a
gradient is applied along the z-axis, modifying the local resonance frequency by
ω(z) = γ(B0 + Gzz). The slice thickens ∆z is a function of the bandwidth ∆ f of
the RF pulse and the applied gradient

∆z =
∆ f
γGz

(2.28)

The base frequencyω0 determines the location of the slice within the imaging
volume in z-direction. To obtain a uniform flip angle across the slice, the
frequency profile must be proportional to the boxcar function rect( f /∆ f ) with
the bandwidth ∆ f . As the inverse Fourier transform of the frequency profile is a
sinc function, the RF pulse B1(t) in the time domain is given by

B1(t) ∝ sinc(π∆ f t) (2.29)

Phase and Frequency Encoding

After the excitation of a specific slice, both directions of the 2D image need to be
encoded, called the phase and frequency encoding. In the case of a slice selection
in the transversal xy plane, a gradient is applied along the y-axis, such that the
magnetization acquires an additional phase depending on its location. The phase
of the magnetization is dependent on the location, the amplitude and the time
of the applied phase encoding gradient. Figure 2.3 illustrates the principle of
phase-encoding

Figure 2.3: Following RF excitation, the phase encoding gradient Gy is applied along
the y-axis, introducing a phase depending on the location of the magnetization in y-
direction. Adapted from (Glover, 2005)

The third linear gradient is called frequency or readout encoding and is
applied along the x-axis during the time the signal is acquired. The frequency
encoding linearly modifies the frequency along the x-direction, assigning each
point along the x-axis a unique frequency. The signal acquired during one
frequency encoding step is commonly referred to as a k-space line, due to the
nature of filling the k-space, therefore gaining the name readout encoding.
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2.1.5 k-Space Characteristics and Image Resolution
It is not possible to cover the whole k-space in a continuous manner due to
technical and temporal limitations; therefore, it needs to be sampled in a discrete
manner. To sample a k-space line using a constant gradient G in the time interval
∆t, the distance of the k-space points is given by

∆k = γG∆t. (2.30)

Discrete sampling u(®k) of the k-space can be described by an infinite set of
equally spaced Dirac delta functions δ. Therefore, the sampled signal Ssampled(®k)
is a multiplication of the continuous signal S(k) with the sampling function

Ssampled(®k) = S(k) · u(®k) = S(®k)∆k
+∞∑

n=−∞

δ(k − n∆k). (2.31)

Combining the Equation 2.26 with the convolution theorem, which states that
the Fourier transform of a pointwise product is the convolution of the inverse
Fourier transform, the reconstructed image Msample(r) can be expressed by:

Msampled(®r) = F −1[Ssampled(®k)] = M(®r) ⊗ F −1[u(®k)] (2.32)

The inverse Fourier transform of the Dirac comb function with a period of
∆k is once again a Dirac comb function, using the Fourier series identity results
in

Msampled(®r) = Mxy(®r) ⊗
+∞∑

n=−∞

δ(x −
n
∆k
). (2.33)

As the Dirac comb function has a periodicity of 1/∆k, the images are period-
ically repeated and equally spaced at the positions 1/∆k. As the images should
not overlap, as this would cause artefacts called aliasing (compare Figure 2.4),
the field of view (FOV) = 1/∆k has to be chosen larger than the object size L,
therefore the Nyquist criterion has to be fulfilled:

∆k =
1

FOV
≤

1
L

(2.34)

Figure 2.4: If the sampling rate is chosen too low, such that the Nyquist criterion has
not been fulfilled, the images overlap, causing aliasing. a) Fully sampled image fulfill-
ing the Nyquist criterion, b) k-space was subsampled by factor of two in phase encod-
ing and c) frequency encoding direction
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2.2 MR Pulse Sequences
In MRI, a pulse sequence consists of a specific series of events comprising of
RF excitations, gradient waveforms and data acquisitions, manipulating the mag-
netization to retrieve the desired signal and with that image contrast weighting.
While pulse sequences consist only of few basic building blocks, they can be
combined to many different pulse sequences, each with their own advantages
and disadvantages, suitable for the desired medical or research purpose. Here,
the most relevant pulse sequences for the following chapters of this work are
presented.

2.2.1 Spin Echo

Figure 2.5: Principle of creating a spin echo (upper plot) and corresponding time
course (lower plot): At t = 0, a 90◦ pulse is applied along the x-axis, rotating the lon-
gitudinal magnetization into the transversal plane. Due to T∗2 relaxation, the spins start
to dephase. At the time t = TE/2 a 180◦ pulse is applied, rotating the magnetization
around the x-axis. The dephasing process is now inverted, therefore the spins rephase,
creating an echo at the time t = TE. The signal strength is limited by the T2 envelope.
Therefore the signal acquired at t = TE is T2 weighted.

Figure 2.5 illustrates the principle of a spin echo (SE). After flipping the
longitudinal magnetization into the transversal xy plane with a 90◦ pulse, the
magnetization starts to dephase due to the microscopic field inhomogeneities
causing the T∗2 relaxation. Applying a 180◦ refocusing pulse at the time t =
TE/2, the magnetization is flipped around the x-axis, causing the magnetization
to rephase as the precession is inverted. The refocused transversal magnetization
is however still subject to the T2 relaxation.

The sequence diagram of a 2D SE acquisition is shown in Figure 2.6. First,
a slice is excited by applying the slice selective gradient Gz and a 90◦ excitation
pulse. Following the excitation, the moment of the slice selective gradient is
compensated and the phase and frequency encoding gradients are applied. At
the time t = TE/2, a 180◦ refocusing pulse in combination with the slice selection
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gradient flips the magnetization within the selected slice. The crusher gradients
surrounding the slice selective gradient minimize image artefacts arising from
the refocusing pulse. During readout, the frequency encoding gradient is applied,
sampling one k-space line. This sequence is repeated for each k-space line until
the desired k-space coverage is reached.

Figure 2.6: Sequence diagram (left) and k-space trajectory (right). Following a 90◦
RF pulse (1), the spins are dephased due to T∗2 relaxation. Next, the moment of the
slice selection gradient during the excitation is compensated (z-direction), simultane-
ously the phase and frequency encoding gradients are applied (2). At t = TE/2, a 180◦
refocusing pulse is applied, inverting the magnetization, in k-space corresponding to
point reflection with respect to the k-space centre (3). During the time of the readout,
a constant frequency encoding is used, such that the signal rephases at TE in the kx-
space centre, creating an echo (4)

2.2.2 Inversion Recovery

Inversion recovery (IR) is used to either create T1 weighted images or to quantify
the underlying relaxation timeT1. From an equilibrium state, a 180◦ pulse inverts
the longitudinal magnetization, such that no transversal magnetization is created,
though the longitudinal magnetization shows in opposite z-direction along the
main magnetic field. After waiting for t = TI (inversion time), the longitudinal
magnetization is rotated into the transversal plane with a 90◦ pulse and acquired
with an imaging sequence. Here, a number of imaging sequences can be used
to acquire the T1 weighted images, e.g. an inversion recovery spin echo (IR-SE).
This sequence inverts the magnetization with a 180◦ pulse, waits the time TI
and then uses the spin echo sequence described in section 2.2.1 to acquire each
k-space line, resulting in T1 weighted images. The T1 contrast weighting of an
image is heavily dependent on the relaxation time T1 and TI, given by

Mz(T I) = M0

(
1 − 2e−T I/T1

)
(2.35)

Figure 2.7 shows the recovery of the longitudinal magnetization of two ex-
emplary T1-times.
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Figure 2.7: The magnitude signal of the
longitudinal magnetization during an in-
version recovery seqeuence with two differ-
ent T1 times.

2.2.3 Gradient Echo
Gradient echo (GRE) pulse sequences are commonly used due to their short ac-
quisition times. Unlike the spin echo sequences, which use a 180◦ RF refocusing
pulse to generate the echo, GRE sequences only change the polarity of their gra-
dient on the frequency encoding axis to generate the same effect. As depicted in
Figure 2.8, following an excitation pulse, the readout gradient dephases the spins,
which are then rephased by changing the polarity of the gradient. Typically, the
moment of the dephasing is chosen such that it is half as large as the readout
moment, as in that case the echo is formed in the middle of the data acquisition.

Figure 2.8: Sequence diagram (left) and k-space trajectory (right). Following an RF
pulse with the flip angle α (1), the spins are dephased caused through the negative gra-
dient prior to readout (2). During the time of the readout, a constant frequency encod-
ing is used, such that the signal rephases at TE in the kx-space center (3)

As the GRE acquisition doesn’t use any refocusing pulses, the magnetization
is never inverted, leading to undisturbed T1 recovery. Further, as the excitation
pulse typically uses small flip angles, the longitudinal magnetization is hardly
affected, offering the possibility of using short TR times. As the GRE cannot
compensate for magnetic field inhomogeneities, the signal is T∗2 weighted during
the acquisition.

2.2.4 Fast Low-Angle Shot
Fast Low-Angle Shot (FLASH) is a GRE sequence with low flip-angles, spoiling
the transverse magnetization after each acquisition. Spoiling refers to the disrup-
tion of the transverse phase coherence, eliminating the transverse magnetization



16

Figure 2.9: Pulse sequence di-
agram of the spoiled FLASH
sequence. After a typical GRE
readout, spoilers are applied on
all three-gradient axes, causing
the transversal magnetization to
dephase, such that only longitu-
dinal magnetization is left over
prior to the next RF excitation.

Mxy while keeping the longitudinal magnetization Mz. Spoiling can be achieved
in multiple ways, including choosing T R ≥ 4 ·T2, therefore waiting for the trans-
versemagnetization to naturally decay to nearly zero, due toT2 relaxation. As this
method prohibits short acquisition times due to the need for long TRs, FLASH
sequences use gradient spoiling, dephasing the transversal magnetization after
the readout of each gradient echo. The gradients used to dephase the transversal
magnetization are called spoilers.

Figure 2.9 shows the sequence diagram of the FLASH sequence for the
acquisition of one k-space line. The RF pulse converts some of the longitudinal
magnetization into transversal magnetization, which is de- and rephased through
the frequency encoding gradient and after readout, the transversal magnetization
is spoiled. Repeating the acquisition scheme in short succession, the longitudinal
magnetization reaches a steady state. Here, the reduction of the longitudinal
magnetization due to the RF pulse equals the T1 recovery during TR. Given the
flip angle α, the repetition time T R and the echo time TE , the magnetization
signal in steady state MSS can be described by

SFL ASH ∝ MSS = M0
sin(α)(1 − e−T R/T1)

(1 − cos(α)e−T R/T1)
e−TE/T∗2 (2.36)

The signal SFL ASH can be maximized by choosing the Ernst angle, setting the
first derivative to zero:

αE = arccos(e−T R/T1) (2.37)

2.2.5 Balanced Steady State Free Precession
The balanced steady state free precession (bSSFP) technique, also called True-
FISP or FIESTA, is a GRE measurement sequence keeping both the transversal
and longitudinal magnetization in steady state. In contrast, the FLASH sequence
only drives the longitudinal magnetization into steady state, spoiling the transver-
sal component prior to each excitation.

The sequence diagram is shown in Figure 2.10 left. The RF excitation ro-
tates part of the longitudinal magnetization into the transversal plane. Following
the dephasing of the transversal magnetization through the frequency encoding
gradient, the magnetization is rephased through the positive gradient lobe. The
magnetization will rephase at TE. After readout, the magnetization will be out of
phase, which is compensated once again by the gradients through switching their
polarity. Therefore, all gradient fields are compensated prior to the application
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of the next RF pulse. Each consecutive RF pulse is applied with the opposite po-
larity, flipping the transversal magnetization within the transversal plane, acting
as a kind of refocusing pulse.

As the transversal magnetization is not spoiled but refocused before the ap-
plication of another RF pulse, the bSSFP exhibits a relative complicated contrast
including contributions of T1 and T2. The resulting steady state signal function
is further determined by the repetition time T R and flip angle α

MSS = M0

√
e−T R/T2(1 − e−T R/T1)sin(α)

1 − (e−T R/T1 − e−T R/T2)cos(α) − e−T R/T2e−T R/T1
. (2.38)

As the transversal magnetization is not spoiled, the signal of the bSSFP is gen-
erally stronger than that of the FLASH. However, bSSFP is sensitive to off-
resonance effects, potentially causing banding artefacts in the images.

Figure 2.10: Sequence diagram within one TR period for a balanced SSFP (left) and
an non-balanced SSFP (right). The sum of all gradient moments of the bSSFP on each
axis are compensated, leading to a single magnetization vector at the end of TR. For
the unbalanced SSFP, the magnetization after each period is dephased

2.2.6 Steady State Free Precession

The (non-balanced) steady state free precession goes by a variety of commercial
names, including FISP and GRASS. The sequence is similar to the bSSFP, only
that the gradients are not balanced prior to the RF pulse (Figure 2.10 right).
To avoid spoiling the steady state, the accumulated phase of the transversal
magnetization needs to be equal in each TR. Further, TR needs to be smaller than
T2. If these conditions are met, a steady state is reached, producing two types of
signals. The first signal is a T∗2 -like signal decay, just after the RF pulse and the
second is a time-reversed T∗2 -like signal decay before each RF pulse. Depending
if the pre- or post-excitation signal is acquired, the signal has different contrast
weightings. The post-excitation contrast weighting, which have the commercial
names FISP and GRASS, can be derived by a recursive process. The contrast
weithing includes contributions of T1 and T2, depending further on TR and the
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flip angle α

MSS = M0tan
(α
2

) ©«1 −

√
(e−T R/T1 − cos(α))2(1 − e−2T R/T2)

(1 − e−T R/T1)2 − e−2T R/T2(e−T R/T1 − cos(α))2
ª®¬ e−TE/T∗2

(2.39)
The resulting signal comprises of a complicated overlap of the gradient echo

and stimulated echoes. The contrast is highly dependent on the flip angle,
especially for short TR times. Compared to the FLASH, the advantage of the
steady state sequence includes higher signal-to-noise and contrast-to-noise ratio,
improving acquisition speed.

2.2.7 Echo Planar Imaging
TheEcho Planar Imaging (EPI) sequence collects all necessary data to reconstruct
a complete imagewith one single RF excitation and one readout train. Figure 2.11
shows the sequence diagram and the corresponding k-space coverage. Following
the excitation pulse, all k-space lines are acquired subsequently with short phase
encoding gradient pulses, called blips. As the images are collected with just one
RF excitation and without any spin echoes, the contrast is determined by spin
density and T∗2 weighting. EPI sequences have short acquisition times Tacq, as
the k-space is fully sampled within one readout

Tacq = Tr f /2 + t0 + Ny−1(Tblip + NyTline). (2.40)
The times Tr f ,Tblip and Tline are the duration of the excitation pulse and

the application of the phase encoding and readout gradients. Ny represents the
number of k-space lines to be acquired. t0 is the time required for gradient
dephasing or rephasing along slice, phase and frequency encoding direction.

Figure 2.11: Echo planar imaging sequence diagram (left) and k-space trajectory
(right). After a single excitation with the application of the slice selection gradient
Gz (1), the complete k-space is sampled on a Cartesian grid, using the phase and fre-
quency encoding gradients (2-4)

2.3 Magnetic Resonance Fingerprinting
Magnetic Resonance Fingerprinting (MRF) is a new approach for quantitative
MRI, allowing the simultaneousmeasurement ofmultiple tissue propertieswithin
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a single measurement. The process of creating quantitative maps with MRF can
be split into three steps: data acquisition, dictionary simulation and pattern
matching. The data acquisition sequences used in MRF are designed to delib-
erately vary the MR system parameters, e.g. by choosing pseudo random flip
angles and repetition times, to generate unique signal paths, termed ‘fingerprints’,
depending on the underlying tissue. The acquired fingerprint of each voxel is
compared to a large dictionary of simulated fingerprints generated specifically for
the respective measurement sequence. The best match between each measured
fingerprint of the voxel and the simulated dictionary fingerprints is determined
with a pattern matching process. The combination of tissue properties, such as
T1 and T2, used to simulate the fingerprint that matched best with the fingerprint
of the voxel is identified as the underlying tissue properties of that specific voxel,
creating quantified maps.

The following subsections offer an introduction to quantitative MRI and give
an overview of the state of the art MRF methods.

2.3.1 Quantitative MRI
Clinical MRI commonly uses qualitative imaging, acquiring the transversal mag-
netization of one single excitation, which is influenced by a number of param-
eters. These include the coil sensitivities, proton density and other parameters
determined through the measurement setup or acquisition method. This compli-
cates and even prohibits inter-patient comparability, as the measurements don’t
necessarily reflect the underlying absolute physical properties.

However, it is possible to quantitatively collect physiological information
with MRI by quantifying the physical parameters such as the longitudinal (T1)
or transversal relaxation times (T2, T∗2 ), proton density, diffusion or perfusion.
One idea to quantify the underlying physical properties is to acquire multiple
images in such a way, that the contrast weighting in each voxel changes with each
subsequent measurement. In the case of quantifying the relaxation parameters,
the same voxel will need to be acquired at multiple time points over the range of
the T1 and T2 values. As the SNR of the images is a function of the relaxation
parameters, each tissuewill have its own SNR response curve. Therefore, the data
points need to be appropriately spaced such that the curve is adequately sampled.
The sampled data points are included into an appropriate physical model, such
as a(1 − 2e−t/T1) for T1. Using a least squares fit or other fitting algorithms,
the relaxation parameters can be extracted. For T1 estimation, typically multiple
inversion recovery spin echo measurements are used with varying inversion
times TI. To quantify T2 or T∗2 , a spin echo sequence or FLASH sequence is used,
acquiring the same slice at multiple echo times. Full magnetization relaxation
needs to be ensured prior to the acquisition of the next slice with a varying TI or
TE, leading to long acquisition times for the quantification of a single slice, far
beyond what is clinically acceptable.

2.3.2 MRF data acquisition
In comparison to traditional quantitative MRI, where all acquisition parameters
are kept constant except for one such as the timing or the flip angle that is varied
to induce contrast weighting, MRF varies simultaneously several acquisition
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Figure 2.12: (a) Variable density spiral k-space trajectory commonly used for MRF
sequences, including bSSFP and SSFP. If the full resolution image (b) gets undersam-
pled in k-space with the spiral trajectory (a), the result is a baseline image with strong
artefacts (c).

parameters throughout the measurement. This includes the RF excitation flip
angle, the timing of the sequence including TR and TE and the sampling of the
k-space trajectory. The aim of the variation is to generate a unique signal for each
tissue. Therefore the requirement for the sequence design is to generate these
unique fingerprints in a time efficient manner.

MRF acquiresmanymeasurements per slicewith different contrast weighting.
The single measurements will be referred to as ’baseline images’. The time signal
of one voxel throughout the measurement with multiple baseline images is the
desired fingerprint. MRF needs multiple baseline images per slice to generate
a unique fingerprint. In most MRF sequence designs between 500 and 1500
baseline images are acquired per slice. As the reduction of acquisition time
is important for volumetric coverage, the repetition time is minimized. For
most sequences, the data acquisition of the k-space is the most time-consuming
element. Therefore, in MRF the k-space is undersampled, acquiring only parts
of the k-space. In many MRF implementations a spiral readout is chosen (Figure
2.12 a), sampling only 1/48th of a full image data set. Further k-space sampling
schemes used in MRF sequences include partial Fourier imaging with Cartesian
readout or radial trajectories. The undersampling of the k-space can lead to severe
artefacts in the baseline images, as depicted in Figure 2.12 c. While the artefacts
add a level of noise to the fingerprints, it is of no concern if the undersampling
artefacts don’t comprise the matching process with the dictionary. The sequences
are designed in such a way, that the undersampling artefacts are not stationary
in each baseline image, but change their position throughout the measurement,
therefore minimizing their effect on the matching process.

The concept of MRF provides a framework for acquiring data and retriev-
ing the quantified values through dictionary matching. Theoretically, any MRI
sequence type can be adopted to generate unique signals for specific tissue proper-
ties. The original MRF implementation was based on a balanecd steady state free
precision (bSSFP) method, as this sequence design is sensitive to both T1 and T2.
Figure 2.13 shows the sequence diagram of the bSSFP MRF acquisition method.
Following an initial inversion pulse to increase T1 sensitivity of the parameter
estimation, multiple bSSFP measurements are acquired in rapid succession. TR
and the flip angles are varied throughout the measurement (Figure 2.13 b-c) to
induce changes in contrast weightings, generating unique fingerprints. As the
original MRF sequence proved to be sensitive to B0 inhomogeneities, causing
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Figure 2.13: (a) Sequence diagram of a bSSFP MRF implementation. Following an
initial 180◦ inversion pulse for increased T1 sensitivity, bSSFP measurements are ac-
quired in rapid succession, each measurement with a different flip angle α and repeti-
tion time TR. By varying the flip angle and repetition time, the baseline images have
varying contrast weightings, leading to unique fingerprints for each tissue. Exem-
plary values for TR and α are shown in (b) and (c), respectively. The basic sequence
designs of all MRF methods are similar as shown in (a), always acquiring multiple
measurements within a short time span, varying the flip angles and times TR and TE.
The differences between the MRF methods are mainly the base sequence type, such as
replacing the bSSFP by a SSFP or other readout method.

banding artefacts in the parameter maps, subsequent MRF methods have been
proposed to overcome certain limitations, such as a non-balanced steady state
free precision MRF (Jiang et al., 2015) or MRF based on pseudo steady-state
free precision (Assländer et al., 2017).

2.3.3 MRF Dictionary
To determine the underlying physical parameters of the acquired fingerprint, it
is compared with many simulated signals. As all the relevant MRF sequence
parameters are known, such as the flip angles α, echo times TE and repetition
times TR, the time course signals corresponding to the fingerprints can be simu-
lated. For example, in the case of the original MRF bSSFP sequence, the signals
can be simulated with the Bloch Equation to predict the magnetization behavior.
The magnetization mi = (mx,my,mz)

T at the end of the i-th measurement can be
iteratively simulated with the following equation:

mi = Ei Rx(αi)mi−1 + (I − Ei)[0, 0, 1]T (2.41)

with the rotation matrix Rx(αi) around the x-axis,

Rx(αi) =


1 0 0
0 cos(αi) − sin(αi)

0 sin(αi) cos(αi)

 (2.42)
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Figure 2.14: Simulated fingerprints of the bSSFP sequence from Figure 2.13. The
fingerprints were simulated with the Bloch equations for a range of T1=1000 ms and
T2=10-300 ms in steps of 20 ms. Fingerprints strongly differentiate from each other
only due to varying T2 times, offering the benefit that each tissue has a unique finger-
print. One exemplary fingerprint with T1=1000 ms and T2 = 96 is highlighted (dark
gray), showing the time course of a single fingerprint

the diagonal relaxation matrix

Ei =


e−T Ri/T2

e−T Ri/T2

e−T Ri/T1

 (2.43)

and the identity matrix I. The only unknown parameters in the Equation 2.41
are T1 and T2, which should be determined. A range of T1 and T2 is chosen,
covering the expected parameter range of the acquired tissue (e.g. T1 values
from 100 ms to 5000 ms, in steps of 10 ms, as this covers the range of in vivo
T1 times). For each T1 and T2 combination a fingerprint is simulated and added
to the dictionary. As each combination is simulated, the dictionary dimensions
can become quite large, e.g. if 100 T1 and T2 values are chosen, the dictionary
consists of 10,000 fingerprints. Figure 2.14 shows a few exemplary simulated
fingerprints of the original bSSFP sequence with the flip angles and repetition
times shown in Figure 2.13 b-c.

For some sequence types the Bloch equations cannot be used, as the single
isochromat method doesn’t represent the magnetization correctly. For SSFP
sequences, the extended phase graph formalism is used to generate the dictionary.
With ASL-MRF (Wright et al., 2018) and MR vascular fingerprinting, more
complex models are used to create dictionaries of fingerprints.

2.3.4 MRF Pattern matching
The parameter maps are determined via pattern matching. The measured finger-
print of each voxel is compared to each simulated fingerprint in the dictionary
and the dictionary element with the highest correlation is chosen as the best fit
(Figure 2.15). All the parameters that were used to simulate the fingerprint in
the dictionary are retrieved and assigned to the corresponding voxel.

The most common template matching method between the fingerprint and
each simulated signal of the dictionary is the vector-dot product. The dictionary
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Figure 2.15: MRF pattern matching: (a) The fingerprint of each pixel is matched with
all the dictionary elements by calculating the inner product . (b) shows the pattern
matching of the fingerprint with the dictionary element with the highest correlation.
(c) The parameters, in this case T1 and T2, of the dictionary element with the highest
correlation are determined on a pixel-by-pixel basis and converted into quantitative
maps

entry with the highest dot product is considered the best match and the corre-
sponding simulation parameters, e.g. T1 or T2, are assigned as the quantitative
parameter to that voxel. As the maximum dot product is defined as the decision
criterion, each dictionary element Dk of the dictionary D = {Dk} needs to be
normalized prior to matching, preventing a bias towards dictionary elements with
a higher average signal power. The dictionary element which best matches the
fingerprint f of a voxel is determined by

k = arg max
k

〈Dk, f 〉
‖ Dk ‖2

(2.44)

As the MRF dictionary can be very large, in some cases up to ≈ 500,000
fingerprints with each 1,000 data points (Ma et al., 2013), the computational
complexity of matching each voxel with the dictionary can be time consuming.
Since the method needs to be fast, robust and accurate for possible clinical
impact, a number of suggestions have been put forth to speed up the matching
process. These methods include compressing the time dimension by means of
singular value decomposition (McGivney et al., 2014) or using group matching
algorithms (Cauley et al., 2015), such that only parts of the dictionary need to
be matched, reducing complexity. These methods have yielded time-reduction
factors of up to 5.

The resulting quantitative maps of the matching process have high preci-
sion and accuracy, which has been shown in repeatability studies on phantoms,
resulting in T1 and T2 variations of less than 2%.
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3.1 Introduction
Quantification of tissue properties including the relaxation parameters such as
T1, T2 and T∗2 using magnetic resonance imaging has long been a major research
goal in order to facilitate inter-patient comparability and quantitative diagnosis
(Deoni, 2010; Warntjes et al., 2007b). The detection and staging of several
diseases have been improved by the possibility to quantify relaxation parame-
ters. Examples include T1 and T∗2 mapping to investigate the iron content in
the brain of patients suffering from Huntington’s, Parkinson’s and Alzheimer’s
disease (Ordidge et al., 1994; Vymazal et al., 1999). Further, T∗2 is used for
blood oxygenation imaging of the brain and kidneys (Sadowski et al., 2010) and
T1 for multiple system atrophy (Vymazal et al., 1999) and for diffuse ischemic
an non-ischemic cardiomyopathy (Bulluck et al., 2015). However, long acquisi-
tion times prevent the integration of relaxation parameter mapping into clinical
brain scan protocols (Warntjes et al., 2008). Recently, an emerging technique,
called magnetic resonance fingerprinting (MRF) (Ma et al., 2013), and various
extensions thereof (Assländer et al., 2017; Buonincontri and Sawiak, 2015; Jiang
et al., 2017b, 2015; Ye et al., 2015), have been introduced and show exceptional
promise for the simultaneous, rapid and robust quantification of multiple tissue
characteristics (Chen et al., 2016; Gao et al., 2015). In MRF the acquisition of
numerous baseline images with varying imaging parameters such as repetition
time (TR) or flip angles (FA) yield spatially resolved, characteristic signal evo-
lutions, which depend on the physical properties of the underlying tissue, such
as relaxation times. Matching this ’fingerprint’ to a precomputed dictionary that
contains simulated signal profiles yields quantitative parameter maps.

The original implementation of the MRF paradigm was based on a balanced
steady-state free precession (bSSFP) sequence design (Ma et al., 2013). The
contrast in a bSSFP sequence allows for joint quantification of T1, T2, proton
density and off-resonance. However, the spin echo character of this sequence
induces sensitivity to the choice of flip-angles (Assländer et al., 2017). Also the
quantification based on a balanced sequence design has reported to be sensitive
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to field inhomogeneities (Assländer et al., 2017). The use of a non-balanced
SSFP imaging readout has been introduced to mitigate banding artefacts for the
trade-off against decreased signal-to-noise ratio (SNR) (Jiang et al., 2015).

Non-Cartesian imaging is commonly employed to facilitate rapid image read-
out as required in a MRF sequence. Recently, initial data indicated a high sensi-
tivity of MRF sequences to gradient deviations, due to inherent properties of the
non-Cartesian image readout (Hong et al., 2016). Especially spiral trajectories,
as used in most MRF sequences, are well known to suffer from detrimental ef-
fects on the image quality, caused by gradient inaccuracies. This greatly limits its
availability at present and still prevents the wide-spread use of spiral imaging in
clinical protocols (Block and Frahm, 2005). A Cartesian realization of the MRF
paradigm has recently been proposed with promising image quality in a pre-
clinical setting (Buonincontri and Sawiak, 2015), potentially mitigating some
of the sensitivities that are inherent to non-Cartesian acquisitions. However,
this specific implementation suffered from long scan-times, far beyond, what is
clinically acceptable.

Echo-planar imaging (EPI) has been introduced as the firstmethod to allow for
single-shot imaging employing the rapid generation of multiple gradient echoes
after a single excitation pulse (Mansfield, 1977). Its fast scan-time in the order
of ten milliseconds per slice established EPI as clinical gold-standard for almost
all functional neuro-imaging applications, such as diffusion (Chilla et al., 2015),
perfusion (Logothetis, 2008) and BOLD imaging (Hennig et al., 2003). Simple
corrections for gradient delay errors and eddy-current induced deviations, and
distortion corrections, are readily available on most MRI systems (Schmithorst
et al., 2001). Recently, initial results in phantommeasurements at ultra-low fields
have demonstrated the potential of multi gradient echo techniques for generating
fingerprints (Sarracanie et al., 2015).

In this study we present a sequence for acquiring MRF data based on spoiled
EPI readouts for joint T1 and T∗2 quantification, as an alternative to balanced non-
Cartesian imaging, potentially facilitating improved robustness and increased
usability. The quantification accuracy of the proposed method was evaluated in
phantom scans and in vivo validation was performed in healthy volunteers.

3.2 Methods

3.2.1 Pulse sequence design
The proposed MRF strategy (MRF-EPI) is based on the acquisition of a series of
GE-EPI images with varying flip angles (FAs) and echo times (TEs) to enable the
joint quantification of T1 and T∗2 . To optimize scan-time, minimal TR was chosen
for any given TE. As shown in the sequence diagram in Figure 3.1, a single non-
selective adiabatic hyperbolic secant inversion pulse is applied at the beginning
of the sequence followed by multiple EPI readouts. To suppress chemical-shift
artefacts commonly observed with EPI sequences (Edelman et al., 1994), a fat
suppression using spectrally-selective saturation is applied before each excita-
tion (Haase et al., 1985). To eliminate residual transverse magnetization from
the non-selective excitation, crusher gradients with equal polarity are performed
before and after the saturation pulse. Additionally, RF spoiling was included in
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the excitation pulse with a phase increment of 50° (Preibisch and Deichmann,
2009).
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Figure 3.1: (A) Schematic diagram of the MRF-EPI with multiple EPI readouts, each
with a different echo time and flip angle. (B) Each EPI excitation and readout is pre-
ceded by a fat saturation module including gradient spoiling. (C,D) Profiles of the flip
angle and echo time variations used for the MRF measurements.

The flip angles of the baseline images were chosen with a pattern previously
proposed by (Jiang et al., 2015). A range of TEs from 14-75 ms was chosen,
which results in additional T1 and T∗2 weighting in the proposed sequence design.
The distribution of TEs (see Figure 3.1 d) was empirically selected with 1) a
majority of short TEs to result in good SNR and short scan-times 2) a few long
TEs to increase sensitivity to tissues with long T∗2 values and 3) an alternating
pattern to create large contrast variations.

3.2.2 Dictionary
The dictionary was generated off-line using MATLAB (The MathWorks; Natick,
MA) by simulating the evolution of themagnetizationm based on Bloch-equation
simulations. The magnetization vector

(
mx

l ,m
y

l ,m
z
l

)T
ε R3, describes the initial

magnetization after the inversion pulse as ®m0 = [0, 0,−1]T , assuming perfect
inversion. The magnetization at the end of the lth measurement can then be
described as

®ml = S
(
El Rx (kαl)ml−1 + (Id − El) [0, 0, 1]T

)
(3.1)

where Rx (kα) denotes a rotation about the x-axis by the angle α induced by the
excitation pulse. To compensate for deviations from the nominal flip angle due
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to imperfect excitation slice-profiles and inhomogeneities in the transmit field,
a B+1 correction was implemented within the dictionary as previously proposed
by (Buonincontri and Sawiak, 2015): the dictionary was extended to allow for a
B+1 amplitude correction using a linear scaling factor k in the range of 0.6-1.4 in
steps of 0.1. The step size was set to 0.1 to limit the size of the dictionary, as
the dictionary size scales linearly with the number of steps. Idε R3×3 denotes the
identity matrix, S = [0 0 0; 0 0 0; 0 0 1] represents the spoiling of the transverse
magnetization at the end of each measurement and El is the diagonal relaxation
matrix:

El =
©«
e−T Rl/T∗2

e−T Rl/T∗2

e−T Rl/T1

ª®¬ (3.2)

While T∗2 dephasing is generally described by a non-exponential signal decay
(Dahnke and Schaeffter, 2005; Yablonskiy and Haacke, 1994), the use of a single
exponential decay as approximate signal model is the most used method (An-
derson et al., 2001; Ellingson et al., 2013; Mamisch et al., 2011). To allow for
comparability to this method, single exponential mapping was used for T∗2 quan-
tification. The MRF dictionary consisted of 157,938 entries with the following
parameter range: T1 = 20-2,000 ms in steps of 10 ms, and 2,000-6,000 ms in
steps of 500 ms; T∗2 = 10-100 ms in steps of 2 ms, and 100-300 ms in steps of 5
ms. Unrealistic entries with T1<T∗2 were discarded.

3.2.3 Pattern validation
The maximum TE of the TE pattern was chosen by calculating the quantification
precision of T∗2 in dependence of various TE patterns. Fingerprints in the range
of T1 = 1000 ms and T∗2 = 50-250 ms were simulated by linearly scaling the
TE pattern so that TEmax was in the range of 14-100 ms and matched to the
dictionary in the presence of noise. The SNR was set to 10, each fingerprint was
matched 10,000 times with different noise, remaining sequence parameters were
simulated as described above. To ensure separability of the dictionary elements
in the presence of noise, the stability of the parameter quantification from MRF
data was studied, thereby testing the influences of noise on the fingerprints. For
this the inverse problem describing the parameter extraction from MRF data f
was locally linearized. Two exemplary relaxation constants set in the in vivo
range and the noise amplification, induced by the inverse problem as a function
of the overall number of images in the fingerprint, was analyzed. The MRF
system was linearized for variable fingerprint length m

fm (θ + ∆θ) = fm (θ) + J f m (θ)∆θ + o (|∆θ |) (3.3)

Here fm : R3 7→ Rm describes the Bloch-simulation, just as commonly used in
MRF to generate the magnitude fingerprints, from simulated parameter values
θ =

[
T1,T∗2 , M0

]
. fm is a continuous function in θ. J f m (θ) denotes the corre-

sponding Jacobian Matrix for the parameters θ. In linear approximation the error
amplification in the recovery of parameters (θ + e) from the noisy fingerprint
(v + n) can be described as

v + n = fm (θ + e) = fm (θ) + J fm (θ) e + o (|e|)
fm(θ)=v
=====⇒ e = J f m (θ)

† n + o (|e|)
(3.4)
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Where J fm (θ)
† denotes the pseudo-inverse of the Jacobian. The noise vector

n is assumed to be normally distributed with zero mean and standard-deviation
n ∼ N

(
0, σ2) . For sufficiently large SNR, o (|e|) can be neglected and is ignored

for the rest of the analysis. To represent equal scan time, the noise variance σ2 is
normalized by the number of images

(
σ2 = m σ0

2) , i.e. a lower number of images
can be acquired with increased SNR. In the linear approximation, it follows that
the components of e are normally distributed, as a sum of normal distributions
in the noise input. Specifically, eT1 ∼ N

(
0, σT1

2) and eT∗2 ∼ N
(
0, σT∗2

2
)
. The

variance of the error vector can then be described, as a result from the sum of
normal distributions:

σT1
2 = σ2

m∑
i=1

��� j†1i (θ)
���2 (3.5)

with j†ik (θ) denoting the elements of the pseudo inverse of the Jacobian matrix,
J fm (θ)

†. Normalized by the variance of the input noise, it follows

σT1

σ0
=

√√
m

m∑
i=1

�� j+1i (θ)
��2, σT∗2

σ0
=

√√
m

m∑
i=1

�� j+2i (θ)
��2 (3.6)

and
σT∗2
σ0

were used to describe the noise amplification in the parameter recov-
ery from MRF data, at various number of images. To study the noise amplifi-
cation, two linearization points θG, θW, were chosen to correspond to gray- and
white-matter (T1, T2, M0 = 1800 ms, 50 ms, 1/1000 ms, 40 ms, 1) and the noise
amplification σT1

σ0
and

σT∗2
σ0

was calculated for fingerprint length of 3 ≤ m ≤ 3000.

3.2.4 Pattern matching
Dictionary matching was performed by calculating the inner product between
the magnitude of the dictionary entries and the magnitude of the measured
signal. Dictionary matching based on correlation corresponds to a grid search
minimization of the least squares error. This represents a maximum likelihood
estimator for Gaussian noise. Hence, the Rician noise distribution, commonly
observed in MRI magnitude data (Gudbjartsson and Patz, 1995), potentially
induces inaccuracy in the parameter estimation. To study the effect of Rician
noise on the accuracy of the magnitude based dictionary matching, numerical
simulations have been performed. Rician in noise was added to a simulated signal
with relaxation times the in vivo range (T1/T∗2 = 1000-2000 ms/30-130 ms) to
generate SNR values between 2 and 10. For each SNR value, 5,000 signals with
added noise were matched to the dictionary and the average difference between
the matched and original relaxation parameters was calculated.

3.2.5 Sequence Parameters
Imaging was performed on a 3 T whole-body scanner (Magnetom Trio; Siemens
Healthcare, Erlangen, Germany) using the whole body coil for transmission. A
32-channel head receiver array was used for in vivo measurements and a flex
coil in combination with the spine coil for phantom scans. This study was
approved by the local institutional review board (IRB) and all subjects provided
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written informed consent, prior to examination. The following image parameters
were used for all MRF-EPI phantom and in vivo measurements: bipolar k-Space
trajectory, TE/TR = 14-75ms/48-109ms, flip angle = 0-58◦, matrix/FOV = 128×
128/220 × 220 mm2, BW = 1395 Hz/pixel, slice thickness = 5 mm, total gradient
moment per spoiler = 69.6 mT/m*ms, partial-Fourier = 6/8, parallel imaging
factor = 3 with GRAPPA reconstruction (Griswold et al., 2002), reference lines =
60 acquired in-place for each baseline image, gradient delay correction based on
three navigator echoes, acquired prior to each readout, static geometric distortion
correction (Wang et al., 2004), adaptive reconstruction of phased array (Walsh
et al., 2000), frames = 160, acquisition time per slice = 10 s.

Reference values for T1 were obtained using an inversion recovery turbo spin
echo (IR-TSE) sequence with the following sequence parameters: 5 images, TI =
50-1600 ms, TE/TR = 6 ms/15 s, turbo factor = 16, matrix/FOV = 128 × 128/220
× 220 mm2, BW = 399 Hz/pixel, scan time = 10 min 0 sec. To estimate T∗2
times in phantoms, a spoiled gradient echo sequence (GRE) was employed and
six images were acquired using the following parameters: TE = 5-80 ms, TR
= 1000 ms, alpha = 15◦, matrix/FOV = 128 × 128/220 × 220 mm2, BW = 391
Hz/pixel, scan time = 12 min 48 sec. For in vivomeasurements, a multi-gradient
echo (GRE) sequence was employed due to shorter scan time, twelve images
were acquired using the following parameters: TE = 5-80 ms, TR = 300 ms,
alpha = 25◦, matrix/FOV = 128 × 128/220 × 220 mm2, BW = 391 Hz/pixel,
echo spacing: 7 ms, scan time= 39 sec. Reference values for T1 and T∗2 were
determined voxel-wise, fitting a three-parameter model for T∗2

(
ae−t/T∗2 + c

)
and

two-parameter model for T1

(
a

(
1 − e−t/T1

))
to the image magnitudes using a

nonlinear least-squares fitting algorithm.
In each MRF-EPI acquisition one slice was acquired as proof of concept. In

vivo measurements consisted of three consecutive single MRF-EPI acquisitions.

3.2.6 Phantom Experiments
The effectiveness of gradient and RF spoiling of the MRF-EPI was tested in
phantoms. The spoiling gradients were played with equal polarity both before
and after the fat saturation pulse. In order to validate the thorough suppression of
fat and water frequency components, 10 MRF-EPI measurements of a two com-
partment phantom containing fat and water were obtained. SNR for phantom and

in vivo measurements was calculated as following: SNR = Smean/

(√
2

4−π σstdv

)
, where Smean is the average signal in the magnitude image, σstdv is the standard
deviation in a noise area of the magnitude images and

√
2

4−π is a correction factor
for the Rayleigh distribution of background noise in magnitude images (Dietrich
et al., 2007).

To validate the quantification accuracy of MRF-EPI, phantom experiments
were performed and compared to gold standard sequences. Separate mea-
surements of nine phantoms were preformed, each with a single gadoterate-
meglumine (Dotarem; Guerbet, Villepinte, France, concentration: 0.075-0.15
µmol/ml) doped agarose compartment (concentration: 0.5-1.5 w/w % ). The
accuracy of MRF-EPI was assessed by comparing the mean relaxation times
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in manually drawn ROIs delineating each phantom. Average deviations from
the reference sequences were evaluated for both MRF data with and without B+1
correction.

The difference between complex and magnitude matching was tested by ac-
quiring 10 complex valued EPI-MRF measurements of each phantom. T1 and T∗2
were quantified using both complex and magnitude matching. The correspond-
ing precision defined as the variation across the 10 repetitions was calculated
for each matching method. For complex matching, the dictionary equation was
extended for off resonance by including the factor Rz (ϕl)

®ml = S
(
El Rz (ϕl) Rx (k αl) ®ml−1 + (Id − El) [0, 0, 1]T

)
(3.7)

which denotes rotation about the z-axis by the angle ϕl = 2π f T Rl with the
off-resonance frequency f in a range of 0-40 Hz in steps of 2 Hz.

3.2.7 In vivo experiments
In vivo images of six volunteers (4 females, 2males 26±2 years old) were acquired
in three imaging slices each. In vivo parameters maps were obtained with the
proposed MRF-EPI and compared with the IR-TSE and the GRE sequence, for
T1 and T∗2 measurements, respectively. To quantitatively compare the accuracy,
T1 and T∗2 values were obtained for white and gray matter by manually placing
ROIs in the parietal lobe and in the cortex of the frontal lobe and comparing the
mean relaxation times. The images were masked for displaying purpose.

3.3 Results

3.3.1 Pattern Validation
All dictionaries were computed in approximately 10 minutes using a standard
desktop computer.

Figure 3.2: (A) Exemplary fingerprints from the simulated dictionary for a range of T1
and T∗2 values. (B) Quantification precision in dependence of the maximum TE time of
the TE pattern for a variety of T∗2 values (T1 = 1000 ms), T∗2 = 150 ms in red. For short
T∗2 values a TE pattern with small TEmax provides sufficient precision, this does not
hold for long T∗2 values.
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Figure 3.3: Condition-
ing of the inverse problem
involved in parameter re-
covery from MRF data,
analyzed as noise ampli-
fication. Low numbers of
measurements lead to ill
conditioning, convergence
of the noise amplification
is observed at higher num-
bers of measurements. Measurement #
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Figure 3.2 a) shows exemplary fingerprints of 40 dictionary elements with
varyingT1 (500-3000ms) andT∗2 (10-100ms) values. Major contrast variations in
the fingerprints are observed at various simulated T1 and T∗2 . Figure 3.2 b) shows
the dependency of the precision from TEmax. For short T∗2 values a TE pattern
with small TEmax provides sufficient precision, for long T∗2 values > 200 ms, the
gradient of the precision curve has not saturated at TEmax = 100 ms. TEmax = 75
ms was chosen as a compromise between precision and measurement time which
gives sufficient precision in the in vivo range of T∗2 (< 150 ms). Figure 3.3 shows
the estimated noise amplification in the linearized MRF system in dependence of
the number ofmeasurements forT1 andT∗2 parameters. For an insufficient number
of measurements (< 3), the system is ill-conditioned. However, at larger number
of measurements the conditioning of the system quickly converges, showing
minor differences for very high numbers of baseline images.

3.3.2 Pattern Matching
Figure 3.4 shows the inaccuracies to the parameter estimation based on the
dictionary matching induced by the Rician noise distribution. The resulting fit
accuracy is dependent on the underlying relaxation parameters (Figure 3.4 a))
and the imaging SNR (Figure 3.4 b)). At very low values (SNR = 2), deviations
up to 8.9 % are observed, where T1 measurements tend to be overestimated
while T∗2 is underestimated for small values and overestimated for large values.
However, at noise levels observed in the in vivo experiments (SNR> 30) it induces
inaccuracies well below 1 %.

3.3.3 Phantom Experiments
Figure 3.5 shows SNR of water and fat compartment throughout the measure-
ment, after fat suppression, gradient spoiling and RF-pulse. Visually complete
spoiling of the transverse magnetization can be observed in frame 106, while
fat suppresion using spectrally selective saturation can be seen in both frames
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Figure 3.4: (A) Simulation of
fit accuracy (relative deviation:
∆T1/T1, ∆T∗2 / T∗2 ) of the MRF-
EPI method with noise (SNR =
5) in dependence of T1 and T∗2 .
T1 fit error with noise is sim-
ilar for all T1 and T∗2 values.
For small T∗2 values, the same
noise increases the fit error in
comparison to larger T∗2 values.
(B) Simulation of fit accuracy
of the MRF-EPI method in de-
pendence of SNR for a given T1
and T∗2 (1400 ms, 40 ms). With
higher SNR values the deviation
of the matched from the original
relaxation parameter becomes
smaller.
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Figure 3.5: (A) Average SNR (of a ROI across 10 measurements) per base line image
of water and fat phantom throughout the measurement. (B) Efficient fat suppression
using spectrally selective saturation can be seen in both frames (59,106). Effective gra-
dient spoiling can be observed in frame 106, as no residual water signal from previous
excitation can be detected after alpha = 0◦ pulse.

59 and 106. Figure 3.6 shows the T1 and T∗2 maps of the phantom experiments
using MRF-EPI with B+1 correction. The proposed method with B+1 correction
yields homogenousT1 estimates within the phantoms. AllT∗2 maps show a higher
degree of variation than T1 maps, due to unavoidable susceptibilities and large
field inhomogeneities influencing the T∗2 values. Without B+1 correction, both T1
andT∗2 times are substantially underestimated usingMRF-EPI (T1 deviation from
IR-TSE in the range from -18 % to -5 %, T∗2 deviations from GRE in the range
from -15 % to 13 %). This trend is mitigated by including a B+1 correction in the
matching of the MRF-EPI sequence, resulting in slight, residual underestimation
ofT1 values (deviation: -2±3 % [min: -5 % max 2 %]), and a decreased deviation
from the reference T∗2 (deviation: 2±3 % [min: -4 %, max 4 %]), times.

Figure 3.7 a) shows that complex matching results in a 2-fold (2.2±0.7)
and 3-fold (3.0±1.0) higher quantification variance than magnitude matching in
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Figure 3.6: (A) T1 and T∗2 maps obtained in phantom measurements using MRF-EPI
and the respective reference method IR-TSE and GRE. Visually comparable image
quality is observed between MRF-EPI and the gold standard in the T1 maps. Slightly
decreased homogeneity throughout the phantom compartments is obtained in the T∗2
maps, due to unavoidable field inhomogeneitites. (B) Comparison of T1 and T∗2 values
of MRF-EPI with the reference methods, showing good agreement between the average
relaxation times in all phantoms.

Figure 3.7: (A) Quantification
variance of the phantoms for
complex and magnitude match-
ing. Complex dictionary match-
ing leads to a higher quantifi-
cation variance than magni-
tude matching. (B) Quantified
relaxation times T1 and T∗2 of
the phantoms are nearly identi-
cal for complex and magnitude
matching. σmagnitude
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phantom scans, forT1 andT∗2 respectively. Figure 3.7 b) shows that the quantified
relaxation times of the phantoms are nearly identical for magnitude and complex
matching (deviation of complex from magnitude matching T1/T∗2 : 0±1 %/-2±2
%.

3.3.4 In vivo Experiments
MRF-EPI data was successfully acquired in all volunteers. The achieved image
quality allowed for further post-processing of all data sets. Figure 3.8 shows
an exemplary fingerprint of a healthy subject. MRF baseline images show high
image quality with no visible imaging artefacts. Strongly varying T1 and T∗2
weighting can be observed over the course of the measurement. The signal
intensity periodically increases and decreases due to the sinusoidal choice of the
FAs.

Figure 3.9 shows representative T1 and T∗2 maps of the MRF-EPI and the gold
standard measurements from one healthy subject. The meanT1 andT∗2 values ob-
tained with MRF-EPI and gold standard sequences measured in manually drawn
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Figure 3.8: Fingerprint from one voxel of a healthy subject (male, 30 years old) and
exemplary images with corresponding TE, TI (scan time since inversion pulse) flip an-
gle α and SNR, reconstructed from individual EPI readouts showing highly varying
contrast over the course of the measurement. Strongly T1 weighted contrast is observed
in the beginning of the measurement (#4, #10), while increasing T∗2 weighting is ob-
served at the end of the sequence (#121, #160).

ROIs were: white matter 831±62 ms/50±1 ms (MRF-EPI), 790±56 ms/48±3
ms (gold standard), gray matter: 1818±175 ms/50±4 ms (MRF-EPI), 1751±131
ms/48±6 ms (gold standard). T1 maps are homogenous throughout gray and
white matter, respectively. T∗2 maps show detailed structures and intracerebral
susceptibilities. Strong T∗2 shortening is apparent close to tissue / air interface at
the auditory canal or the sinus.

3.4 Discussion
In this study we have proposed an EPI based MRF method, that allows for rapid
quantification of T1 and T∗2 times in 10 seconds per slice. Good quantification
accuracy was shown in phantom scans, comparable to previously proposed meth-
ods (Jiang et al., 2015). In vivo scans yielded robust and artefact free parameter
maps, with in vivo relaxation parameter values that are in good agreement with
the reference scans.

In comparison to the spiral readout of the bSSFP-MRF proposed by (Ma et al.,
2013), the EPI-MRF single shot acquisition is considerably slower, as it does not
allow for the same level of undersampling. Therefore, only a reduced number
of frames can be acquired during a 10 second measurement, despite the use of
parallel imaging to accelerate data acquisition. However, the fewer frames benefit
from higher SNR. The noise resilience of the parameter maps is a function of the
number and the SNR of the baseline images, and the net effect of this trade-off
is to be assessed in future studies, in order to allow for optimized acquisition
strategies. To ensure robust parameter quantification by the means of dictionary
matching despite the greatly reduced number of baseline images compared to (Ma
et al., 2013), we analyzed the conditioning of the inverse problem involved in an
MRF reconstruction. The minor difference in the noise amplification between
MRF systems with 160 and 1000 images indicates robust dictionary matching
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Figure 3.9: T1, T∗2 and
B+1 maps generated
with MRF-EPI and the
reference methods IR-
TSE (T1) and GRE (T∗2
) in a healthy volunteer
(female, 25 years old).
Good homogeneity is
observed within the
gray and white matter
of the MRF-EPI T1 map.
The T∗2 maps clearly
reflect intra-cerebral
susceptibilities, and
shortened T∗2 times are
observed in the vicinity
to tissue air transitions,
e.g. at the auditory
canal or the sinus
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with the proposed approach. Further dedicated optimization of the conditioning
of the inverse problem combined with the sequence parameters should offer
further improvements of the method.

Numerous strategies for increased undersampling and scan-time reduction
in EPI have been proposed (Holdsworth et al., 2008; Jeong et al., 2013), with
particularly high-undersampling potential for the acquisition of series of EPI
(Kellman et al., 2001; Madore et al., 1999). Among these, the introduction of
simultaneous multislice imaging (SMS), has recently received widespread atten-
tion, as it facilitated acceleration factors up to 16 in EPI acquisitions (Barth et al.,
2016; Moeller et al., 2010). This acceleration potential has also been leveraged
in quantitative imaging with non-Cartesian MRF (Ye et al., 2015). Further, multi
shot acquisition is a way to shorten the acquisition window, however full mag-
netization relaxation is required between different acquisitions. Therefore, the
integration of undersampling strategies in the proposed EPI-MRF, bears great
potential to reduce scan-time, or increase the number of imaging frames, and
warrants investigation in future studies.
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Spiral imaging requires accurate calibration and complex post-processing
algorithms to alleviate effects of hardware inaccuracies (Block and Frahm, 2005).
Despite excellent readout gradient efficiency and good undersampling properties
(Glover, 2012), spiral imaging has rarely found integration into clinical scan-
protocols. This highly restricts the availability of the required calibration and
necessary post-processing schemes to a limited number of centers world-wide
(Block and Frahm, 2005). EPI and accompanying post-processing techniques to
reduce distortion and gradient deviation induced image quality deterioration, on
the other hand, are readily available for clinical usage and highly accessible at
almost all clinical MRI systems.

Recent data indicated sensitivity of MRF parameter quantification to system
imperfections, due to inherent properties of the non-Cartesian data acquisition,
as shown for radial imaging (Hong et al., 2016). Spiral imaging is well known to
also suffer from substantial image quality degradation in the presence, of gradient
deviations and trajectory mismatches, for example caused by eddy current effects
(Alley et al., 1998). This could potential translate into quantification errors
in a MRF acquisition. Bipolar EPI imaging on the other hand, is commonly
performed with auto-calibration to compensate for gradient delay errors and
eddy current effects, providing a certain degree of robustness to this source of
system imperfection (Schmithorst et al., 2001).

In our numerical simulations, we observed compromised quantification ac-
curacy, at very low SNR values, due to non-zero mean noise characteristics in the
magnitude data. While, MRF-EPI was shown to provide sufficient baseline SNR,
to circumvent this problem, previously reported techniques used high undersam-
pling and showed substantially lower SNR in the baseline images. To ensure
optimal quantification accuracy at ultra-low SNR values, it seems essential that
zero-mean characteristic is maintained in the noise from all sources, including
thermal noise, as well as undersampling induced noise.

Previously proposed realizations of the MRF idea were based on SSFP
sequences, which potentially cause additional hardware specific inaccuracies.
Firstly, this introduces susceptibility to banding artefacts. Therefore, most recent
MRF sequences were based on non-balanced SSFP sequences alleviating off-
resonance sensitivity for the trade-off against a drop in SNR (Jiang et al., 2015).
Secondly, to obtain uncompromised signal in a SSFP acquisition, the spin echo
character of the sequence needs to be maintained, despite varying flip-angles.
Assländer et al. formulated a smoothness condition for the flip-angle pattern
to ensure uncompromised quantification accuracies in SSFP MRF-acquisitions
(Assländer et al., 2017). However, this does not allow for alternating flip-angle
patterns, which have previously shown to greatly improve intrinsic B+1 correc-
tion (Buonincontri and Sawiak, 2015). Thirdly, long trains of SSFP sequences
are known to suffer from incomplete gradient refocusing, potentially introducing
phase accumulation errors (Barmet et al., 2008). However, especially in the pres-
ence of spiral gradients accurate rewinding poses a challenging problem (Kim
et al., 2004). The proposed method is based on gradient and RF spoiled imaging,
which is resilient to banding-artefacts and incomplete gradient refocusing, and
potentially allows for arbitrary flip-angles. Sequences based on EPI readout suf-
fer from their own set of challenges. The most common artefacts are geometric
distortions due to mistiming or inaccuracy in the gradient amplitude induced
by residual eddy currents (Chen and Wyrwicz, 1999). Field inhomogeneities
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can further lead to blurring, Nyquist ghosting (Tsao, 2010) and signal loss, the
latter often seen in the temporal and frontal lobes (Ojemann et al., 1997). As
these effects have long been target of research, robust algorithms are available for
most of the named artefacts, such as acquiring flied maps (Chen and Wyrwicz,
1999) to correct geometric distortions. With the presence of solid correction
algorithms, EPI compatible MRI hard- and software is installed worldwide and
supported by commercial vendors throughout the world, providing robust EPI
sequences used in clinical routine (Poustchi-Amin et al., 2001). Given the distinct
profile of artefacts and sensitivity to hardware inaccuracies compared with spiral
SSFP MRF sequences, the proposed implementation might offer a complimen-
tary approach to study and utilize the MRF paradigm. The overall performance
compared with existing MRF sequences in various clinical or research settings,
is to be evaluated in future studies. The proposed method was used to jointly
assess T1 and T∗2 tissue characteristics. Both have been shown to be of clinical
interest as highly specific biomarkers for distinct pathologies (Anderson et al.,
2001; Dahnke and Schaeffter, 2005; Yablonskiy and Haacke, 1994). The origi-
nal MRF method proposed the joint quantification of T1 and T2 maps. This can
also be achieved in MRF-EPI by employing refocused EPI readouts to induce T2
weighting. Increased SNR can be expected in refocused EPI readouts and the
real part of the imaging data, can be readily used in post-processing due to the
elimination of off-resonance dependencies. Hence, MRF-EPI bares promise for
robust T1 and T2 quantification, and should be subject of further research.

This study and the proposed method have several limitations. No direct
comparison to the originally proposed MRF method could be performed, due
to the lack of robust spiral imaging at our center. Also, only a small number
of healthy subjects were scanned to prove the in vivo feasibility. Larger cohorts
with increased coverage of the complete brain and specific diseases are to be
evaluated in order to test the specificity of the parameter quantification provided
by MRF-EPI.

The proposed method employed a simplified B+1 correction compared to
previous studies (Buonincontri and Sawiak, 2015), where the authors proposed to
alter the flip-angle scheme in order to increase B+1 estimation accuracy. However,
to demonstrate feasibility in a comparable fashion to the original MRF method,
the original flip-angle scheme was employed, accepting a slight drop in accuracy.
Nevertheless, incorporating B+1 estimation in the dictionary greatly improved
parameter estimation, while the resulting B+1 mappossibly suffers from systematic
errors, as shown by (Buonincontri and Sawiak, 2015). Furthermore, to avoid
the susceptibility to off-resonances the magnitude data was used for pattern
matching. Complex matching of the data can be employed to derive additional
off resonance maps. However, the increased number of fit parameters results in
lower quantification precision. Therefore, magnitude matching was chosen for
MRF-EPI in this study. As the correlation based pattern matching requires zero
mean noise, a violation of this assumption potentially compromises the accuracy.
However, due to sufficient base-line SNR, the detrimental effect can be expected
to be small. Alternative reconstructions based on a Rician noise maximum
likelihood estimation could be used to further mitigate this effect. However, the
potential gain in accuracy comes at the cost of greatly increased computational
time.
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3.5 Conclusion
In the study we have proven the feasibility of a MRF sequence with spoiled EPI
readout. Rapid T1 and T∗2 quantification is performed within 10 seconds per
slice and yields in vivo relaxation parameter maps of high quality. Using EPI for
MRF fosters its usability and offers a complementary approach to existing MRF
sequences.

Statement of Contribution
In this study I was responsible for the sequence programming, simulations, all
data acquisition and analysis. Further, I did the literature research and wrote the
manuscript.
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4.1 Introduction
Quantification of tissue properties has long been an overarching goal in Mag-
netic Resonance Imaging (MRI) research, allowing for inter-patient and inter-scan
comparability (Tofts, 2005). Recently, signal quantification has achieved major
clinical impact in multiple fields of MRI (Baksi and Pennell, 2013; Bulluck et al.,
2015; Feng et al., 2018; Radenkovic et al., 2017; Ross et al., 2013). Neurological
applications of quantitative MRI have gained interest with the introduction of
magnetic resonance fingerprinting (MRF) (Ma et al., 2013), due to the premise
of fast simultaneous multi-parameter quantification. MRF is based on generating
unique signal signatures, termed ’fingerprints’, for different tissue types based
on their underlying MRI properties. This is achieved by the rapid acquisition
of numerous images with varying contrast weightings induced by the variation
of sequence parameters including flip angle and echo time (TE). Matching these
fingerprints to a precomputed dictionary allows parameter mapping of relaxation
parameters including T1, T2 and T∗2 (Jiang et al., 2015; Rieger et al., 2017b),
tissue properties such as perfusion (Christen et al., 2014) and system parameters
such as B+1 (Buonincontri et al., 2017). MRF has been used in clinical studies
to evaluate the range and progression of MRF-derived relaxometry values in the
brain as a function of the age of healthy volunteers (Badve et al., 2015). Recently,
a study demonstrated that MRF can differentiate common types of adult brain
tumors, providing initial evidence for its clinical utility (Badve et al., 2017). The
original MRF method was based on a balanced steady state free precession (Ma
et al., 2013) sequence design with highly undersampled spiral readout allowing
for joint T1 and T2 mapping. Unbalanced fast imaging with steady state preces-
sion (FISP) (Assländer et al., 2017; Buonincontri and Sawiak, 2015; Jiang et al.,
2017b, 2015) was subsequently introduced to overcome sensitivity to B0 field
inhomogeneities at the expense of reduced signal-to-noise ratio (SNR). Recently,
we introduced an alternative MRF sequence for simultaneous T1 and T∗2 mapping
based on spoiled gradient echo imaging with Cartesian echo-planar imaging k-
space readout (MRF-EPI) (Rieger et al., 2017b), potentially fostering robustness
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towards gradient deviations and trajectory inaccuracies compared with unspoiled
spiral readouts (Block and Frahm, 2005). While MRF has successfully enabled
efficient multi-parameter quantification in a single-slice, its applicability with
improved coverage has been limited. Conventionally, full magnetization relax-
ation needs to be ensured prior to the acquisition of the next slice in order to
use the same signal model for each measurement. A recent study has proposed
shortened relaxation intervals, maintaining similar quantification accuracy at the
cost of compromised precision due to lower SNR in the baseline images (Amthor
et al., 2017). Further, simultaneous multi-slice (SMS) imaging (Barth et al.,
2016) has been incorporated into MRF (Jiang et al., 2017a; Ye et al., 2017) by
creating time-varying phase modulation between the acquired slices, in order to
alleviate the problem of confined coverage and to increase scan-time efficiency.
While obtaining an acceleration factor up to 3, computationally complex kernel
fitting is needed for complete slice separation and additional training data must
be acquired prior to the measurement, increasing overall measurement time. Fur-
ther, quantification precision is compromised due to overlapping coil-geometries
in the SMS reconstruction (Ye et al., 2017). Most recently, 3D MRF methods
were also proposed for improved spatial coverage (Liao et al., 2017; Ma et al.,
2018). In these studies highly regularized image reconstructions (Ma et al.,
2018) or repeated acquisition from the steady-state (Liao et al., 2017) were used
to enable reconstruct of a continuous imaging volume from a 3D stack-of-spirals
k-space. Slice-interleaved acquisition is a complimentary approach for volumet-
ric imaging and clinical standard in numerous applications (Fautz et al., 2004),
including diffusion MRI, fMRI and gradient echo sequences. Slice-interleaved
schemes achieve similar SNR compared to 3D (Johnson et al., 1999) acquisi-
tions, while allowing arbitrary slice spacing. Compared to single-slice imaging
scan-efficiency is substantially improved due to increased effective TR, leading
to higher SNR for each slice. However, the need for coherent signal-paths limits
the effective TR in balanced sequence designs (Nielsen and Nayak, 2009), so
far preventing the use of slice-interleaved acquisitions in MRF. In this study, we
sought to increase scan-time efficiency of volumetric coverage in MRF parame-
ter mapping by integrating a slice-interleaved acquisition scheme in MRF-EPI.
Spoiled gradient echo readouts enable increased effective TRs, ultimately en-
abling whole-brain coverage in clinically acceptable scan-times. The number
of interleaved slices is numerically optimized to provide a trade-off between
scan-time and quantification precision. Phantom experiments are performed to
validate quantification accuracy of joint T1, T∗2 and proton density (PD) mapping.
In vivo images in healthy subjects and patients suffering from multiple sclerosis
are obtained in order to study feasibility of whole-brain quantification for clinical
usage and compare image quality to single-slice acquisitions.

4.2 Methods

4.2.1 Pulse sequence design
MRF-EPI (Rieger et al., 2017b) is modified to allow for slice-interleaved ac-
quisition of multiple slices (Figure 4.1 a). Following a global inversion pulse,
numerous single-slice EPI readout modules are acquired in rapid succession. The
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Figure 4.1: (A) Schematic diagram of the slice-interleaved MRF-EPI comprising mul-
tiple consecutive slice groups, each acquiring four slices with multiple EPI readouts;
slice order is randomized within each measurement. Profiles of the repetition time (B)
echo time (C) and flip angle variations (D) used for the proposed MRF measurements.

slice position is varied in a pseudo-random fashion. The randomization is per-
formed block-wise for groups containing the acquisition of each slice once. Slice
order within these groups is randomly permuted. This ensures that each slice is
sufficiently sampled throughout the measurement, while creating pseudo-random
signal traces. Especially in the initial stages of the acquisition this guarantees
that the sampling frequency of each slice is similar during the early part of the
inversion recovery, ensuring comparable sensitivity. The pseudo-randomization
influences the effective slice-TR (Figure 4.1 b), which includes the acquisition
time of the other slices, leading to higher signal dissimilarities of the resulting
fingerprints. As shown in Figure 4.1 c-d, TE and flip-angles are also varied to
obtain sensitive tissue fingerprints as previously proposed (Rieger et al., 2017b).
Fat-suppression was included to minimize EPI imaging artefacts; gradient spoil-
ing was incorporated by using crusher gradients of equal polarity performed
before and after the fat-suppression pulse. For whole-brain coverage multiple
interleaved slice-group acquisitions were performed, each simultaneously mea-
suring four slices (Figure 4.1 a), separated by a 10 second pause to guarantee full
magnetization recovery due to the global inversion pulse.

4.2.2 Dictionary
The dictionary was generated off-line using MATLAB (The MathWorks; Natick,
MA) by simulating the evolution of the magnetization based on Bloch-equation
simulations on a per-slice basis, as detailed by (Rieger et al., 2017b). B+1 com-
pensation was integrated by simulating a scaling factor to the flip-angle excitation
pulse (Buonincontri and Sawiak, 2015). Dictionary matching was performed by
choosing the entry with the highest inner product between the magnitude of the
dictionary entry and the magnitude of the measured signal. Due to the varying
TR pattern of each slice within a slice group, a separate dictionary was precom-
puted for each unique TR pattern. Each per-slice MRF dictionary consisted of
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157,938 entries with the following parameter range: B+1 amplitude correction
(Buonincontri and Sawiak, 2015) using a linear scaling factor in the range of
0.6-1.4 in steps of 0.1, T1 = 20-2000 ms in steps of 10 ms, and 2000-6000 ms in
steps of 500ms; T∗2 = 10-100 ms in steps of 2ms, and 100-300 ms in steps of 5
ms. Unrealistic entries with T1 < T∗2 were discarded.

4.2.3 Proton Density (PD) Mapping
Numerous factors influence the voxel intensity in anMRImeasurement, and need
to be accounted for when quantifying the tissue PD (Tofts, 2005). In the present
sequence, relaxation induced signal changes are incorporated as T1 and T∗2 in
the dictionary model. Transmit radiofrequency field B+1 inhomogeneities are
compensated using scaling of the effective flip-angle as described above. Semi-
quantitative M0 maps, can be calculated from the matching dictionary entry f
and the measured signal k, using a least-square fit with the closed form solution
of

M0 =

��kT k
����kT f
�� (4.1)

Here, the semi-quantitative M0 is characterized as

M0 = C · ρ · S, (4.2)

depending on PD ρ, coil sensitivities S and a constant scaling factor C
that includes spatial-invariant scaling such as receiver gain and DICOM export
window-leveling. The coil sensitivity maps S were obtained with the method
described by Volz et al., based on the idea, that the proton density map is a com-
bination of the data set M0 with full spatial resolution and a bias field comprising
of low spatial frequencies (Volz et al., 2012). It was shown that the coil sensitivity
S can be calculated with a probabilistic framework including optimised param-
eters (Ashburner and Friston, 2005), by which in vivo images are registered,
segmented and bias-corrected. The model incorporates a smoothness intensity
variation estimation termed field bias, which is proportional to S (Volz et al.,
2012). The field bias map was calculated from the M0 map using the segmenta-
tion toolbox of the SPM12 software package (http://www.fil.ion.ucl.ac.uk/spm),
using the default toolbox parameters: Regularization = 0.001, FWHM = 60 mm
cutoff. To quantify ρ, C is calculated using cerebrospinal fluid (CSF) as a refer-
ence point, such that 100 percentage units (pu) corresponds to the known PD of
110.3 mol/l at 37◦ (Warntjes et al., 2007a). The scaling factor was determined
by manually placing regions of interests (ROIs) in CSF and normalizing these
areas to 100 pu.

4.2.4 Numerical Simulations
For a given scan-time the proposed sequence requires a trade-off between number
of slices per slice group and number of baseline images per slice. However, an
increased number of slices also increases the average effective slice TR, leading
to higher baseline SNR. To determine the optimal number of slices for a given
measurement time of 17 seconds per slice group, the stability of the parameter
quantification from the MRF data was evaluated in dependence of the number



45

of baseline images by estimating the noise amplification in the linearized MRF
system for T1 and T∗2 parameters as described by (Rieger et al., 2017b). The
average normalized noise amplification was calculated for fingerprints generated
from 18 pairs of relaxation times in the in vivo range (T1: 1000-2500 ms T∗2 : 50-
70 ms) for 1 to 160 baseline images, each. The TE and flip angle patterns were
interpolated according to the number of measurements and TR was maximized
to reach a measurement time of 17 seconds.

To verify the analysis based on linearization, Monte-Carlo simulations were
performed to determine the quantification accuracy. The same set of fingerprints,
TE, TR and flip angles patterns were used as in the noise amplification simula-
tion. Noise was added (n = 1000) to the simulated patterns and matched with
the dictionary. The mean normalized quantification accuracy was calculated
depending on the number of baseline images.

The randomization of the slice order was performed to achieve more ho-
mogenous quantification characterization across the slices, as compared with
sequential order. Numerical simulations comparing the quantification precision
between these slice ordering schemes are provided in Supplementary Informa-
tion.

4.2.5 Acquisition
To test the performance of the sequence, phantom and in vivo data were acquired
on a 3 T whole-body scanner (Magnetom Trio; Siemens Healthcare, Erlangen,
Germany) using a standard 32-channel head array coil for in vivo measurements
and 30-channels of a body and spine array for phantom scans. This study was
approved by the local institutional review board (Institutional Review Board II,
Medical Faculty Mannheim, Germany), all subjects provided written informed
consent prior to examination and all methods were performed in accordance with
the relevant guidelines and regulations. For the proposed slice-interleaved MRF
acquisition, following parameters were used: 4 slices per slice group, TE/TR
= 17-78 ms/80-755 ms, flip angle = 4-58◦, FOV = 220×220×140 mm3, slice-
gap = 0.9 mm, voxel size = 1.0×1.0×3.0 mm3, band-width = 1136 Hz/pixel,
partial-Fourier = 5/8, parallel imaging factor 3 with GRAPPA reconstruction,
reference lines = 48 acquired in-place for each baseline image, acquisition time
per slice group = 17 s, total number of baseline images = 160 (4 slices with 40
images each). The single-slice MRF-EPI used the same parameters, though only
acquiring one slice with 160 baseline images and an acquisition time per slice =
17 s.

4.2.6 Phantom Experiments
The accuracy and precision of the sequence were evaluated in phantom experi-
ments and compared to reference measurements, inversion recovery turbo spin
echo for T1 (IR-TSE, 6 images, TI = 50-4000 ms, TE/TR = 6 ms/15 s, turbo factor
= 16, matrix/FOV = 64×128/110×220 mm2, slice thickness = 3 mm, BW = 399
Hz/pixel, scan-time = 4min 30 s, two-parameter fit) and spoiled gradient echo for
T∗2 (GRE, 6 images, TE = 5-300 ms, TR = 1000 ms, alpha = 15◦, matrix/FOV =
64×128/110×220 mm2, slice thickness = 3 mm, BW = 390 Hz/pixel, scan-time =
6 min 18 s, three parameter fit). Each phantom was acquired 10 times in separate



46

measurements with the slice-interleaved MRF-EPI and single-slice MRF-EPI.
Reference measurements were acquired once per phantom. The nine phan-
toms consisted of a single gadoterate-meglumine (Dotarem; Guerbet, Villepinte,
France, concentration: 0.075-0.15 µmol/ml) doped agarose compartments each
(concentration: 0.5-1.5 %). The mean relaxation times were determined by
manually drawing ROIs in the phantoms. The accuracy of the slice-interleaved
MRF-EPI was determined by comparing the average deviation and the normal-
ized root-mean-square error (NRMSE) between the method and the reference
measurements. A two sample Student’s t-test was used to conclude if the single-
slice and slice-interleaved MRF-EPI have significantly different means. P values
less than 0.05 were considered to be significant.

Consistency within a slice group was tested to study quantification differ-
ences among the slices caused by different acquisition parameters. For each
phantom four separate measurements (A, B, C, D) were performed with the slice-
interleaved MRF sequence, each acquiring four slices (A1,...,A4, and B1,...B4,
...). The slice group location was shifted among the four measurements in such
a way that the center of the phantom was covered by a different one of the four
slices in each measurement (i.e. the center of the phantom was covered by A1,
B2, C3 and D4). Consistency among the four slices was defined as the difference
between the measurement in A1, B2, C3 and D4, using the same manually drawn
ROI.

PDmapping was evaluated in a phantom consisting of gadoterate-meglumine
doped water. Reference PDmaps were acquired using multiple GRE images with
long TR to avoid T1 weighting, and varying echo-time to compensate for T∗2 de-
cay (GRE, 5 images, TE = 3-60 ms, TR = 1500 ms, alpha = 90◦, matrix/FOV
= 64×64/220×220 mm2, BW = 390 Hz/pixel, scan-time = 7 min 50s, three pa-
rameter fit). Imaging was performed with the body coil, which was used both
for transmit and receive. B+1 maps were acquired using a double-angle method
(GRE, 2 images, TE = 10 ms, TR = 1500 ms, alpha = 45◦/90◦). Given the reci-
procity assumption, as transmit and receive were performed with the same body
coil, B+1 maps were also used for receive coil profile correction. Accordingly,
PD maps were calculated with ρ = C · I · B+1 · S/e

−TE/T∗2 . The reference and
slice-interleaved measurements were performed with a slice thickness of 10 mm
with varying amounts of water and air within the slice, thus changing the PD
depending on the water-air ratio. PD values of the slice-interleaved EPI and the
reference measurements were compared by placing ROIs within the PDmaps and
acquiring average values in each. The constant scaling factor was chosen such
that 100 % water is normalized to 100 pu in manually drawn ROIs in a full water
compartment. The B+1 maps acquired using a double-angle method were also
used in the correction of the MRF-EPI PD instead of bias field correction, as the
latter probabilistic method is known to be unsuitable for phantom measurements
(Volz et al., 2012).

4.2.7 In vivo experiments
Whole-brain in vivo MRF quantifications were acquired with the proposed
method in 6 healthy volunteers (4 men, 31±6 years old) and 4 multiple sclerosis
(MS) patients (2 men, 42±5 years old). T1, T∗2 and PD values were obtained for
white matter and grey matter by segmenting a slice of each healthy volunteer with
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the segmentation toolbox of SPM12. To avoid partial voluming effects in small
structures, the masks were eroded with MATLAB image erosion algorithm (disk
radius = 1 pixel). T1, T∗2 and PD for MS patients were determined by manually
placing ROIs in the lesions, as identified on separate clinical measurements.

4.3 Results

4.3.1 Numerical Simulations
Figure 4.2 a shows the average noise amplification in the parameter recovery from
MRF data as a function of the number of baseline images. The combined average
noise amplification of T1 and T∗2 (thick blue curve) has a similar amplitude for 40
to 160 baseline images. The noise amplification increases rapidly, when reducing
the number of images below 40. The separate T1 and T∗2 curves have different
characteristics, while theT∗2 noise amplification is lowest with 29 baseline images,
it increases slightly with more images, implying that for T∗2 quantification fewer
higher SNR baseline images have higher noise resilience than many low SNR
images. T1 has lowest noise amplification with a high number of baseline images
with a slight increase until 20 baseline images. For less than 20 images, the
amplification is rapidly rising, as a too low number of baseline images causes
the inversion recovery curve to be sampled sparsely, decreasing noise resilience.
Figure 4.2 b shows the normalized quantification precision in the Monte-Carlo
simulations as a function of the number of baseline images. The results show the
same characteristics as the noise amplification using the linearized system (Figure
4.2 a) with similar average precision for 40 to 160 baseline images. Reducing
the number of baseline images increases the effective TR, thereby enabling the
acquisition of other slices during these pauses. As the average noise amplification
has a similar value for the baseline images between 40 and 160, acquiring 4 slices
for each slice group in the proposed acquisition results in the highest acceleration
factor with only marginal loss of precision.

4.3.2 Phantom Experiments
Figure 4.3 a shows the T1 and T∗2 maps of the phantom experiments using MRF-
EPI and reference measurements. The proposed method yields homogeneous
T1 estimates within the phantoms. T∗2 maps show a higher degree of variation
than T1 maps, due to magnetic susceptibilities and large field inhomogeneities
influencing the T∗2 values, both in the reference and MRF measurements. Figure
4.3 b depicts the T1, T∗2 and PD quantification using the slice-interleaved MRF-
EPI as compared to the reference method. Proposed MRF-EPI shows slight
underestimation of T1 (deviation: -2.4±1.1 % [min: -4.5 %, max -0.8 %],
NRMSE: 3.0 %), T∗2 (-0.5±1.5 % [min: -2.7 %, max 1.6 %], NRMSE: 1.5
%) and PD (-0.5±7.2 pu [min: -11.6 pu, max 6.3 pu], NRMSE: 6.5 %) values
compared to the reference measurements.

The Bland-Altman plots in Figure 4.3 c compare the quantification accuracy
of the single-slice MRF-EPI to the slice-interleaved MRF-EPI for T1 and T∗2 . As
originally introduced (Rieger et al., 2017b) no PD mapping was performed with
the single-sliceMRF-EPI. No significant difference was found between the single
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Figure 4.2: A) Average normal-
ized noise amplification and B)
dictionary matching precision of
a Monte-Carlo simulation for a
range of T1 (1000-2500 ms) and
T∗2 (50-70 ms) values in depen-
dence of the number of baseline
images. Both graphs show only
minor variations between 40-160
baseline images, corresponding
to 1-4 slices.
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and slice-interleaved MRF (p ≤ 0.05). The slice-interleaved implementation
results on average in slightly higher values for T1 (24±9 ms [min: 12 ms, max:
38 ms])) and T∗2 (2±1 ms [min: 0 ms, max 3 ms]) maps.

Precision and accuracy were not affected by different TR patterns among the
4 slices within a slice group, resulting in a deviation of less than 1 % for all
parameters when quantifying the exact same slice location in a phantom as a test
for inter-slice consistency.

4.3.3 In vivo Experiments
Full brain MRF data with 32 slices was successfully acquired in all healthy
volunteers and patients. Figure 4.4 shows representative T1, T∗2 and PD maps
from a healthy volunteer. The mean T1/T∗2 /PD values of all healthy volunteers
of an exemplary slice are: white matter: 746±57 ms/57±6 ms/72±7 pu, grey
matter 1200±100 ms/53±6 ms/92±18 pu. While T2 values are generally higher
in grey than white matter, similar values for T∗2 in grey and white matter are
obtained. This is well in line with previous studies and attributed mostly to
magnetic susceptibility (Wansapura et al., 1999).

4.3.4 In vivo Experiments
Figure 4.5 shows two example slices of a healthy volunteer acquiredwith the slice-
interleaved and single-slice MRF-EPI. Both methods yield visually comparable
T1 and T∗2 maps. The volunteer has intracranial calcifications in the frontal lobe
of the brain (white arrow), leading to signal dropouts in the region in T1 as well
as T∗2 maps, which is visible in both methods. Results from a patient scan are
depicted in Figure 4.6 (female, 40 years). The lesion of the MS-patient is clearly
visible in T1, T∗2 and PD maps (Figure 4.6 a, further images in Supplementary
Figure 4.8). Exemplary T1, T∗2 and PD values (of lesions from three MS patients



49

00

A)

T1

T2*

MRF-EPI IR-TSE / GRE 

ms

22

0

ms

250
Difference

ms

220

0

ms

2500

0 1000 2000
0

1000

2000

Reference (ms)

E
P

I-
M

R
F

 (
m

s)

E
P

I-
M

R
F

 (
p

u
)

0 100 200
0

100

200

M
R

F
-E

P
I(

m
s)

0 50 100
0

50

100T1 T2
* PD

B)

500 1000 1500 2000
0

20

40

60

Mean T1SI, T1SS (ms)

T
1

S
I
-

T
1

S
S

(m
s)

Mean

+1.96SD

-1.96SD

0 50 100 150
-2

0

2

4

Mean T2*SI, T2*SS (ms)

T
2

*
S

I
-

T
2

*
S

S

(m
s) Mean

+1.96SD

-1.96SD

p
u

S
I
-

p
u

S
S

1000 50

-5

0

5
+1.96SD

-1.96SD

Mean puSI, puSS

Reference (ms) Reference (pu)C)

Mean

Figure 4.3: (A) T1 and T∗2 maps obtained in phantom measurements using slice-
interleaved MRF-EPI and the respective reference method IR-TSE and GRE. (B) Com-
parison of T1, T∗2 and proton density (PD) values of slice-interleaved MRF-EPI with the
reference methods showing nearly identical average quantification in all phantoms. (C)
Bland-Altman plot showing good agreement between the slice-interleaved MRF-EPI
(T1SI , T∗2 SI ) and the single-slice MRF-EPI (T1SS , T∗2 SS).

are higher compared to surrounding tissue (1285±200 ms/95±17 ms/62±0 pu,
1528±11 3ms/121±21 ms/62±0 pu, 1270±66 ms/81±12 ms/60±0 pu), allowing
clear quantitative discrimination especially in the T∗2 maps. Sample fingerprints
of the MS patient retrieved from manually placed ROIs in grey matter, white
matter and a lesion display clearly differentiable signal paths (Figure 4.6 b). The
same trend and good differentiability is observed across all subjects, despite
minor subject specific variations.

4.4 Discussion

In this work, we integrated slice-interleaved scanning in the MRF-EPI method to
increase scan-time efficiency, enabling quantification with increased volumetric
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Figure 4.4: T1, T∗2 and proton density maps acquired with slice-interleaved MRF-EPI,
32 slices with a resolution of 1×1×3 mm were measured within a total measurement
time of 3:36 minutes.
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Figure 4.5: Exemplary in vivo T1 and T∗2 maps acquired in one subject with slice-
interleaved and single-slice MRF-EPI. Both techniques achieve visually comparable
image quality, with good white/grey matter delineation in the T1 maps and susceptibil-
ity contrast weighting in the T∗2 maps. Intracranial calcification is clearly depicted by
signal dropout in the T∗2 map of both sequences (white arrow).

coverage with an acceleration factor of 4 compared to single-slice MRF. Ac-
quisition of slice groups with four slices provided high quantification accuracy
in phantom experiments, comparable to the single-slice implementation and in
agreement with reference measurements. Whole-brain in vivo scans with 32
slices were acquired within 3:36 minutes in multiple volunteers, resulting in
robust and artefact-free T1, T∗2 and PD parameter maps.

In comparison to the original MRF-EPI with 160 baseline images, a reduced
number of 40 baseline images were acquired per slice. Our numerical simu-
lations of noise amplification and phantom experiments showed that a reduced
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number of baseline images with longer TR and therefore higher SNR can lead to
comparable quantification precision compared with a high number of low SNR
baseline images. The results indicate that by reducing the number of baseline
images while increasing TR, T∗2 accuracy is enhanced due to the higher SNR
images. T1 accuracy declines slightly, as less data is acquired during the inver-
sion recovery period at the start of the measurement. Our simulations indicate
that acquiring four interleaved slices sharing a global inversion pulse leads to
the highest scan-time efficiency gain for values in the in vivo range, without
compromising accuracy. The T1 precision could possibly be improved by in-
cluding further inversion pulses during the acquisition of the slices, facilitating
even higher acceleration. Alternative sequence designs incorporating this idea
warrant investigation in future studies.

Simultaneous multi-slice imaging has recently received increasing interest,
including quantitative applications (Setsompop et al., 2012; Weingärtner et al.,
2017), as it provides means for scan-time acceleration where the only loss in
SNR is due to coil geometries. SMS has recently been applied to trueFISP-based
MRF in two studies (Ye et al., 2017, 2015). While gaining a 3-fold acceleration,
higher factors are currently limited by noise amplification and signal leaking.
Further, the sequence needs to acquire additional training data per slice and
the computationally intensive regridding algorithms pose a challenge, while the
quantification precision is compromised. Combining SMS with EPI by applying
a cyclic phase-shift among the k-space lines allows for an intuitive interpretation
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of the CAIPIRINHA approach as FOV shifts induced in separate bands. SMS-
EPI is commercially available from a major vendor and is successfully integrated
into several clinical and large scale cohort studies with previously reported accel-
eration rate of up to 16 (Moeller et al., 2010). Therefore, the combination of SMS
with the proposed slice-interleaved scheme bears great promise for ultra-rapid
whole-brain quantification of multiple parameters.

Several methods have been recently proposed to shorten reconstruction times
by altering the process of dictionary matching (Cauley et al., 2015; McGivney
et al., 2014; Yang et al., 2018). These can be readily incorporated in the quantifi-
cation step of the proposed method, replacing conventional dictionary matching,
in order to speed up post-processing. However, due to a lower number of baseline
images, reconstruction times are typically less of a concern, as compared with
other MRF methods. In the proposed scheme, as well as in other MRF tech-
niques, spatial resolution is limited by the readout duration per image. Advanced
undersampling and reconstruction or denoising techniques have been recently
proposed in the context of MRF (Assländer et al., 2018; Doneva et al., 2017;
Liao et al., 2016; Pierre et al., 2016; Wang et al., 2016; Yang et al., 2018; Zhao
et al., 2018, 2016) to facilitate increased undersampling rates or to improve noise
performance, by exploiting structure or inter-dependencies mainly along the tem-
poral dimension. As these approaches are applicable to a variety of sampling
schemes or have specifically been demonstrated for EPI (Davies et al., 2014), they
are fully compatible with the proposed slice-interleavedMRFmethod. Due to the
increased baseline SNR in the proposed approach, these reconstruction methods
promise large gains in the feasible undersampling factor at minor loss in quan-
tification quality. This may ultimately facilitate high-resolution quantification
without scan-time penalty and warrants investigation in future studies.

Volumetric MRF sequences based on highly undersampled stack of spirals
trajectories have demonstrated the feasibility of whole-brain quantitative T1 and
T2 imaging. (Liao et al., 2017) minimized scan time by including Cartesian
GRAPPA with a factor of 3 in kz direction and simultaneously reducing the
baseline images to 420 per slice, compared to 1000 in the original MRF-FISP
sequence. However, to allow for sufficient k-space data to reconstruct a 3D
volume per imaging contrast, repeated acquisitions of the signal train are per-
formed from a steady-state. This enabled whole-brain quantification with 1 mm
isotropic resolution within 7.5 min, although with extensive reconstruction com-
plexity amounting to 20 h computation time. (Ma et al., 2018) used an interleaved
sampling pattern, acquiring 4 interleaved slices per group and sequentially mea-
suring multiple groups, while also reducing the number of baseline images per
slice to 480 to decrease scan time. Further, the relaxation time between the
slice groups was set to 3 seconds to reduce scan time, therefore preventing full
relaxation before the acquisition of the next slice group, as previously proposed
(Amthor et al., 2017). Within 5 min T1 and T2 maps of 48 slices with a resolution
of 1.2×1.2×3.0 mm3 were acquired, though an additional B1 measurement was
needed to correct for B1 inhomogeneity effects and improve the accuracy of T1
and T2 estimates. To achieve reconstruction of an imaging volume without the
need for repeated acquisitions per contrast, image regularization was integrated
with a sliding window reconstruction across multiple images. Several recent
works have enabled 3D EPI or echo volumar imaging (EVI), based on highly,
accelerated imaging Cartesian readouts (Afacan et al., 2012; Posse et al., 2013).
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Readout-times could be further shortened by exploiting dependencies between
the acquisition of multiple images (Afacan et al., 2012), or by employing image
regularization (Jung et al., 2009). These methods offer interesting potential to en-
able the acquisition of multiple interleaved 3D volumes in the proposed sequence
scheme, similar to the method of Ma et al. The combination of slice-interleaving
and volumetric coverage allows to synergistically benefit of the SNR gain of both
methods and will be subject of future studies.

Slice-interleaved 2D and 3D acquisitions are complimentary techniques for
volumetric coverage, each offering a distinct profile of advantages. The SNR
gain is reported to be very similar in many practical applications (Johnson et al.,
1999). Comparing the proposed slice-interleaved MRF-EPI to a hypothetical
3D acquisition with varying coverage but constant scan time, the 3D acquisition
would achieve constant SNR, due to SNR ∼ dxdydz

√
Tacq (Glover, 2005). For

1 to 4 slices, no drawback in terms of SNR is observed for the slice-interleaved
implementation as shown by the simulations (Figure 4.2). Hence, in this regime
the slice-interleaved MRF-EPI provides comparable to SNR to an idealized 3D
implementation. While 3D sequences commonly allow for lower minimal slice
thickness and improved slice profiles, they often result in higher undersampling
of the k-space and might require more elaborate reconstructions schemes, while
conventional reconstructions are applicable to the proposed scheme. Further,
3D sequences are limited to the acquisition of a continuous volume. Multislice
2D allow for arbitrary slice spacing, enabling time efficient coverage of larger
volumes without compromising resolution, by using slice gaps. Thus slice-
interleaved acquisitions are often preferred in clinical applications, including
scout and overview scans, which have the highest demand in terms of volumetric
coverage.

In the present sequence, relaxation periods are required between different
slice-groups due to the application of a non-selective adiabatic inversion-pulse.
This can be circumvented by the application of slice-selective inversion. How-
ever, this requires a multi-band inversion pulse covering all spatially separated
slices within the slice group and introduces substantial contrast weighting on the
B+1 profile of the inversion-pulse. B+1 correction of the inversion similar to the one
in proposed by (Buonincontri and Sawiak, 2015) can be integrated, and warrants
further studies. Recently, it was shown that the relaxation periods can be signif-
icantly shortened between MRF pulse train repetitions by starting the repetition
using a non-relaxed initial spin state (Buonincontri and Sawiak, 2015). While
quantification accuracy is maintained, increased computational complexity is
needed as the shortened relaxation times must be accounted for within the Bloch
simulations. This approach might be used in combination with slice-interleaved
MRF in future studies to minimize wait times and reduce acquisition time, at the
cost of reduced precision due to lower baseline SNR.

Integrating B+1 compensation in MRF has been shown to improve quantifi-
cation precision. This has been done by either using a Bloch-Siegert reference
scan prior to the MRF measurement (Ma et al., 2017) or by integration a scal-
ing factor to the flip-angle excitation pulse in the dictionary simulation. As
previously evaluated in MRF-EPI, the latter method was chosen as to increase
quantification accuracy in the presence of imperfect excitation slice profiles and
inhomogeneities in the transmit field without the need for additional scan time.
However, this scheme assumes a single flip-angle representative of the slice-
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profile. This has been shown to be a valid approximation for small flip-angles in
steady-state conditions (Weingärtner et al., 2015). To further overcome residual
inaccuracies which might be observed with high flip-angles or pseudo-random
acquisitions, actual slice-profile simulations can also be integrated in the dictio-
nary, albeit at increased computational complexity.

The present slice-interleaved implementation has a similar computational
complexity for the dictionary matching process to the single-slice MRF-EPI. On
the one hand, four dictionaries need to be calculated, as each slice in a slice
group has a unique TR pattern, while on the other hand the dictionary size per
slice is reduced. Including slice-interleaved acquisitions in MRF favors a non-
balanced spoiled sequence design, as the acquisition of interleaved slices hereby
does not affect the signal paths of the other slices. MRF methods based on a
balanced sequence design require coherent signal-paths limiting the effective TR,
prohibiting the application in slice-interleaving without major adaptation.

PD mapping has a number of clinical applications, including multiple scle-
rosis (Laule et al., 2004) and brain tumors (Neeb et al., 2006). However, PD
mapping is challenging, as traditionally a number of separate measurements need
to be performed to compensate for contrast induced intensity variation. These
variations include relaxation processes, inhomogeneous transmit and receive
fields, as well as potentially other contrast mechanisms (Tofts, 2005). MRF has
been proposed as a promising method for fast, joint quantification of a number of
parameters. Previous studies have included a first-step towardsMRFPDmapping
by providing semi-quantitative M0 maps (Ma et al., 2013). However, to achieve
PD quantification additional bias correction for B+1 and coil sensitivity maps is
required. Furthermore, in a balanced sequence design as previously proposed the
M0 measurement is confounded by residual contrast sensitivity towards molec-
ular diffusion (Buxton, 1993) and magnetization-transfer (Gloor et al., 2008),
potentially necessitating further corrections to obtain reliable PD maps. Due to
the spoiled gradient echo contrast in MRF-EPI all necessary bias corrections can
be performed in a two-step process without the need of additional measurements.
A B+1 correction scheme was suggested by (Buonincontri and Sawiak, 2015),
including flip angle correction in the dictionary matching process, which has
been integrated in MRF-EPI (Rieger et al., 2017b). Coil sensitivity correction
can be performed by calculating the field bias maps (Volz et al., 2012) based
on a probabilistic per-image framework (Ashburner and Friston, 2005). The
bias field maps have been shown to have a high in vivo accuracy compared to
separately measured coil sensitivity maps (Weiskopf et al., 2011). As spoiled
gradient-echo imaging is commonly not associated to other contrast sensitivities,
the proposed approach compensates for the portfolio of confounders commonly
considered in previous PD mapping studies (Volz et al., 2012). However, resid-
ual inaccuracies can be induced by deviations from the assumed signal model,
including non-monoexponential transverse signal decay, as previously reported
for complex tissue structures such as lung alveolus (Zapp et al., 2017).

Patient motion is one of the main causes of artefacts in clinical MRI. While
MRFhas been shown to be partially resilient to certain kinds of patientmovement,
initial results demonstrate that generic motion can induce significant intra-image
variance to the MRF signal trace, resulting in motion artefacts in parameter maps
(Cruz et al., 2017; Mehta et al., 2017; Rieger et al., 2017a). This effect can be
exacerbated if increased scan time is necessary for volumetric coverage. In the



55

proposed scheme, the total duration between first and last data acquisition for any
given slice, is comparable to previously proposed single slice sequences. Hence,
the sensitivity to patient motion can be expected to be comparable to other MRF
techniques. Furthermore, MRF seems well suited for correction of residual in-
plane motion using co-registration of the baseline data, due to the rapid image
acquisition. Motion correction schemes that are insensitive to contrast variation
among the baseline images have been previously proposed (Roujol et al., 2015;
Xue et al., 2012). Hence, further mitigation of in-plane motion effects using
contrast invariant motion correction of the baseline images prior to dictionary
matching warrants future investigation.

While the proposed method is used for joint T1 and T∗2 quantification, it could
be extended for T1 and T2 quantification by incorporating refocusing pulses prior
to the readout. This is commonly performed inmultiple applications of EPI (Tyler
et al., 2004), benefiting from increased SNR at the expense of increased minimal
TE and longer scan times. However, this would also allow for an integrated
assessment of diffusion biomarkers by including randomized diffusion gradients.
Extending the portfolio of simultaneous quantification of biomarkers with the
proposed method is subject of further research, and may facilitate the usage of
these methods for a wider range of diseases

The study and the proposed method have limitations regarding comparability
with other methods and the number of patients. The proposed method uses the
same TE and flip angle scheme as the single-slice MRF-EPI method, subsampled
by a factor of four. To further increase accuracy or accelerate the sequence,
optimization of sequence parameters may be necessary, which will be subject of
further research. Due to the lack of the original MRF sequence at our center, no
direct comparison could be performed regarding accuracy and precision. Further,
in this study only a small number of subjects were scanned to prove the in vivo
feasibility. Larger cohorts with specific diseases remain to be evaluated.

4.5 Conclusion
In the study, we have demonstrated the feasibility to accelerate the MRF-EPI for
volumetric coverage by a factor of four while maintaining quantification accuracy
using a slice-interleaved acquisition scheme. Within 17 seconds four slices with
a resolution of 1x1x3 mm3 are acquired, resulting in artefact free T1, T∗2 and PD
maps.

4.6 Supplamentary Information

4.6.1 Materials and Methods
The quantification precision of the randomized slice acquisition scheme was
compared against a sequential acquisition scheme. For this purpose, a variety
of noisy fingerprints (T1 = 100-6000 ms, T∗2 = 10-100 ms) were simulated based
on the Bloch-equations on a per-slice basis with SNR = 90 (compared to ther-
mal equilibrium). T1 and T∗2 were quantified from the noisy fingerprints using
dictionary matching. Monte-Carlo simulation (n = 1000 iterations) were used to
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measure quantification precision, defined as the standard deviation of the quanti-
fied value across the different iterations for each slice separately. The fingerprints
were simulated with following parameters: TE = 17-78 ms, TR = 80-755 ms,
flip angle = 4-58◦. While for the sequential scheme the TR was constant within
each slice-group, the randomized sequence scheme yields TR variation as shown
in Figure 4.1 b. The mean and standard-deviation across the four slices was
compared between the two slice schemes.

Figure 4.7: Quantification precision of a Monte-Carlo simulation for a range of fin-
gerprints of the randomized and sequential slice shift scheme. Improved homogene-
ity of the precision across the slices, as represented by smaller standard deviation, is
achieved with the randomized scheme.

4.6.2 Results
The quantification accuracy of the randomized and sequential acquisition schemes
were virtually identical (Randomization / Sequential: T1 0.07±1.77%/0.07±1.76
% T∗2 : 1.37±5.35 %/1.37±5.39 % mean±std across slices). However, quan-
tification precision was more homogenous across slices with the randomized
acquisition scheme resulting in lower standard-deviation across the slices com-
pared with the sequential acquisition scheme (Randomization / Sequential: T1
1.77±0.09 %/1.76±0.14 % T∗2 : 5.35±0.13 %/5.39±0.23 % mean±std across
slices) This indicates, that randomizing the slice order during acquisition leads
to improved consistency of the quantification precision within a slice group.

Statement of Contribution
In this study I was responsible for the sequence programming, simulations,
partially for the data acquisition and all data analysis. Further, I did the literature
research and wrote the manuscript.
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Figure 4.8: T1, T∗2 and corrected proton density map of three MS patients with clearly
visible lesions (black arrows).





“Improved motion robustness for
EPI-based MR Fingerprinting using

intensity based image registration” Sci.
Rep., submitted 5

5.1 Introduction

Quantification of physical tissue properties such as the relaxation times T1, T2
and T∗2 has been a long-standing goal in MRI research (Bottomley et al., 1987;
Deoni, 2010; Radenkovic et al., 2017). While fast quantification methods have
been proposed (Cohen and Polimeni, 2018; Heule et al., 2018; Sumpf et al.,
2014), the scan times of these sequences is nonetheless far beyond qualitative
imaging methods, prohibiting the wide spread use of quantification in clinical
routine. Magnetic resonance fingerprinting (MRF) has recently reinforced the
interest in quantitative MRI due the premise of fast multiparameter quantifica-
tion (Assländer et al., 2017; Jiang et al., 2015; Ma et al., 2013; Rieger et al.,
2017b). The underlying idea of MRF is to obtain a series of rapidly acquired
baseline images, while inducing contrast variation by using pseudo randomized
sequence parameters such as flip angles and echo times (TE). This generates a
characteristic signal trace dependent on underlying physical parameters of the
tissue and allows for parameter mapping by matching this signal evolution to a
precomputed dictionary.

Patient motion is one of the most dominant confounders in clinical MRI,
frequently leading to non-diagnostic image quality and increased measurement
time due to the necessity of scan repetition. A recent study has shown that 20%
of all clinical acquisitions needed to be repeated due to patient motion in one
randomly selected full calendar week of MRI examinations (Andre et al., 2015).
Particularly quantitative MRI sequences are prone to be corrupted by patient
motion due to the long scan times. The intrinsic design of MRF, having a high
number of rapidly acquired baseline images per measurements, offers a beneficial
position to correct for patient motion. While the short readout times in the order
of 10 ms per baseline images limits intra-image motion, patient movement can
induce significant inter-image motion-related variance to the MRF signal trace
and disrupts the spin excitation history of the acquisition1 (Friston et al., 1996;
?), leading to motion artefacts in parameter maps (Cruz et al., 2017; Mehta
et al., 2017; Xu et al., 2017). Offline image registration was previously shown to
mitigate most motion artefacts in other time-series data (Cox and Jesmanowicz,
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1999; Friston et al., 1995), potentially facilitating retrospective motion correction
on the individual baseline images in MRF.

Hence, in this study, we aim to evaluate the motion sensitivity of two MRF
methods; 1) a balanced steady-state free precession with spiral readout (MRF-
bSSPF) (Ma et al., 2013) and 2) spoiled gradient echo imaging with Cartesian
echo-planar readout (MRF-EPI) (Rieger et al., 2017b). Further, we alleviate the
issue of motion sensitivity in MRF-EPI by intensity based motion correction of
the baseline images. Simulations and phantom experiments are performed to
evaluate the accuracy of parameter mapping in the presence of various motion
patterns. Motion corrupted phantom measurements and in vivo scans in healthy
subjects with and without deliberate motion are obtained in order to study the
feasibility, correctness and accuracy of the correction algorithm.

5.2 Methods

5.2.1 Numerical Simulations

In order to evaluate translational and rotational motion sensitivity ofMRF-bSSFP
and MRF-EPI, MRF measurements were simulated for T1 and T (∗)2 (T2 for MRF-
bSSFP and T∗2 for MRF-EPI) maps from in vivo head images. For each pixel the
fingerprint was simulated based on the Bloch-equations for the corresponding T1
and T (∗)2 values. The simulations for the MRF-bSSFP were based on the code
provided in the supplementary information by Ma et al. (Ma et al., 2013), the
fingerprints of the MRF-EPI were simulated based on the equations described
in (Rieger et al., 2017b). Following sequence parameters were chosen for the
fingerprint simulations of the MRF-bSSFP: TR=10.5-14 ms, flip angle=0-65◦,
number of baseline images=1000, scan-time=12.2s , TR and flip angle pattern
were chosen as described by Ma et al. (Ma et al., 2013). MRF-EPI: TR=48-109
ms, TE=14-74 ms, flip angle=0-58◦, number of baseline images=160, scan-
time=10 s, TR, TE and flip angle pattern were used as previously described
(Rieger et al., 2017b). To account for the highly undersampled spiral readout in
the case of the MRF-bSSFP, a variable-density spiral trajectory was used, which
was rotated by 7.5◦ in each TR. In the case of the MRF-EPI subsampling of
the k-space was not needed, as the baseline images are based on fully sampled
k-space.

Two sets of experiments were performed to study 1) the motion sensitivity
depending on the time of onset of motion and 2) to assess the effect of rotational
and translational motion and parameter quantification.

Motion sensitivity depending on the time of motion onset was evaluated by
corrupting one second worth of images, resembling sneezing or swallowing,
with a fixed rotation of 14◦ around the image center and translation of 5 pixels
in each direction, corresponding to 100 and 16 images for the MRF-bSSFP and
MRF-EPI, respectively. The time of onset was varied from the beginning to the
end of the simulated measurement in steps of 250 ms. The resulting T1 and T (∗)2
maps from the motion corrupted fingerprints were calculated and the deviation
from the ground truth was assessed using the normalized root-mean-square error
(NRMSE).
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To assess the effect of rotational and translational motion, the first second
worth of images was corrupted by rotating or translating the images by 1-20◦ in
steps of 1◦ and 1-20 pixel in steps of 1 pixel, and the NRMSE of the T1 and T (∗)2
maps from the ground truth was calculated.

5.2.2 Motion Correction
Retrospective motion correction was performed by co-registering each baseline
image to the first image, which was chosen as reference, due to the highest base-
line SNR. As previously proposed for co-registration of images with different
contrasts, putative image similarity was assessed as mutual information between
two baseline images, by examining the joint probability distribution of a subset
of pixel intensities from both images (Maes et al., 1997). To speed up registra-
tion, a random voxel subset was used, as previously shown to result in negligible
difference compared to full image analysis (Klein et al., 2005). The registration
was performed by maximizing the mutual information, thereby minimizing the
entropy between the relative probability distributions of the images, using an evo-
lutionary optimization algorithm. The algorithmwas based on a (1+1)-Evolution
Strategy (Schwefel, 1993), by which in each optimization step the current value
(parent) was randomly mutated to select a new position (child) in the parameter
space. If the child’s fitness was as least as good at the parents, it became the new
parent, otherwise it was discarded, such that the fittest individual survived. The
mutation was performed by adding a multi-dimensional random variable to the
parent (Styner et al., 2000). The covariance matrix of the multi-dimensional nor-
mal distribution was updated each step by increasing or decreasing the covariance
matrix by a growth factor=1.05, depending if the child (increasing) or adult (de-
creasing) was fitter. The parameters for the evolutionary algorithm were chosen
as follows: maximum iteration=1000, initial size of search radius=15.6×10−3,
minimum size of search radius =1.5×10−8. To reduce computational cost, image
similarity was calculated based on 500 randomly chosen pixels, as commonly
employed in image registration. This set of pixels was kept constant for the dura-
tion of the maximization. Prior to the co-registration, all images were low-pass
filtered with a 2D Gaussian smoothing kernel with standard deviation of 2 to
reduce the influence of noise.

5.2.3 Measurement parameters
To test the effect of motion on the parameter maps of MRF-EPI, phantom and in
vivo data were acquired on a 3 T whole-body scanner (Magnetom Trio; Siemens
Healthineers, Erlangen, Germany) using a 32-channel head array coil for in vivo
measurements and 30-channels of a body and spine array for phantom scans.
This study was approved by the local institutional review board (IRB) and all
subjects provided written informed consent prior to examination. MRF-EPI
was performed with the following parameters: TE/TR=14-75 ms/48-109 ms,
flip angle=0-58◦, FOV=220 × 220 × 5 mm3, voxel size=1.7 × 1.7 × 5.0 mm3,
band-width=1395 Hz/pixel, partial-Fourier=6/8, parallel imaging factor 3 with
GRAPPA reconstruction, reference lines=24 acquired in-place for each baseline
image, acquisition time / slice=10s, total number of baseline images=160.
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5.2.4 Phantom experiments
The effect of translational motion on the parameter estimation of MRF-EPI was
evaluated in phantom scans. For this purpose, the phantom was acquired twice in
the coronal plane withMRF-EPI and then successively moved with the automatic
table movement from the original position by following distances: 2, 4, 6, 8, 12,
16, 24 mm. At each position the phantom was acquired twice. The phantom
consisted of three tubes with a diameter of 30 mm, each containing a single
gadoterate-meglumine (Dotarem; Guerbet, Villepinte, France, concentration:
0.39-1.5625 µmol/ml) doped water compartment. The first 17 baseline images
of each of the moved phantom measurements were combined with the unmoved
phantom measurements to mimic a movement after the first second of the scan.
T1 and T (∗)2 maps were calculated from the hybrid motion corrupted fingerprints
and the NRMSE and standard deviation from the ground truth uncorrupted data
was calculated.

5.2.5 In vivo experiments
In vivo data of 8 healthy volunteers (5 male, 27±3 years) was acquired with
MRF-EPI to evaluate the application of the motion correction method for in
vivo measurements. The same slice position was acquired twice in each volun-
teer: 1) without subject motion 2) with motion artefacts induced by instructing
all volunteers to move their head by approximately 20◦ after 2 seconds of the
acquisition. T1 and T∗2 maps with and without motion correction were qualita-
tively compared. To evaluate the quality of the motion correction of the baseline
images, the Dice index (Dice, 1945) was computed before and after motion
correction. For two segmented regions A and B, the Dice index is defined
as Dice (A, B) = 2 × area (A ∩ B)/(area (A) + area (B)). The regions A and
B were calculated by segmenting the baseline images by means of the unified
segmentation described by (Ashburner and Friston, 2005) (included in SPM12
software package http://www.fil.ion.ucl.ac.uk/spm). The area enclosed by the
brain masks was used for evaluation. Image segmentation was manually curated
to avoid masking artefacts arising from residual ghosting signal or low SNR in
some baseline images. The DICE coefficient with reference to the first image
was calculated for two selected images for evaluation across the population: the
10th image which was prior to motion onset in all subjects and the 99th image
which was displaced in all subjects. These Dice coefficients of all volunteers
were statistically compared among the three-measurement series (reference, cor-
rupted and corrected) independently for both images using two-way analysis of
variance with balanced design (ANOVA) after using log-transformation to re-
store normality in the value distribution. In case of significant differences on the
group level Student’s t-test was used for paired comparisons between methods.
P values less than 0.05 were considered to be significant. For one exemplary
volunteer, the Dice coefficient of each baseline image compared to the first image
was calculated to show the evolution of the index throughout the measurement.
This was done for the reference measurement without any movement, a motion
corrupted and corrected measurement. Baseline images with very low SNR (flip
angle < 5◦) were discarded from the time series analysis, as image segmentation
was heavily impaired for these images.
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5.3 Results

5.3.1 Numerical Simulations
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Figure 5.1: (A) Quantification error due to 1 second of motion with variable onset of
motion during the scan. Quantification error as a function of the translation (B) and
rotation (C). (D) Exemplary T1 and T (∗)2 maps and baseline images of motion corrupted
numerical phantom with a rotation of 15◦ within the first second of the scan. Motion
artefacts, such as blurring, are visible in all T1 and T (∗)2 maps

Figure 5.1 a shows the average NRMSE quantification error of the T1 and
T (∗)2 maps in the presence stepwise motion occurring during one second of the
acquisition depending on the time of motion onset. T1 quantification is highly
sensitive to motion in the first 1-2 seconds of the scan for both MRF methods
(NRMSE up to 28%). T (∗)2 is sensitive to motion throughout the measurement for
both methods. The quantification error of both MRFmethods correlates strongly
with the amount of rotation and translation for both T1 and T (∗)2 (Figure 5.1 b-c
NRMSE up to 32%). A steep slope indicates high susceptibility even to small
motion. Motion artefacts are visible in exemplary parameter maps of both bSSFP
and MRF-EPI (Figure 5.1 d).

5.3.2 Phantom experiments
Figure 5.2 shows the average T1 and T∗2 quantification error of phantom mea-
surements depending on translational motion for phantom motion one second
after the start of the measurement. Phantom results largely mimic the trend
in numerical simulations (compare Figure 1b). Both T1 and T∗2 error increase
characteristically with larger translation, while T1 has higher average error as the
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Figure 5.2: Quantification error in phantom measurements with MRF-EPI depending
on translation motion. Displacement induces clear ghosting artefacts and leads to
progressively increasing quantification errors

motion occurs in the early stage of the measurement. Blurring and artefacts are
clearly visible in the T1 map of the measurements effected by motion.

5.3.3 In vivo experiments
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Figure 5.3: T1 and T (∗)2 maps of a measurement with patient movement and exemplary
uncorrected and corrected fingerprints from two brain regions (red and blue circle).
Baseline images are shown as reference. Substantially corrupted signal paths are ob-
served in the presence of motion.

Example motion corrupted and corrected fingerprints of two representative
voxels (Figure 5.3) depict distinctly different signal paths. Motion-corrupted
MRF maps show major quality deterioration in both T1 and T∗2 maps, with visual
blurring and edge artefacts (Figure 5.4). Improved image quality with visually
ameliorated artefacts and increased co-registration of the quantitative maps are
observed after image registration.

Figure 5.5 a shows the Dice index throughout the acquisition of a representa-
tive volunteer, comparing the reference measurement without any movement, a
motion corrupted and motion corrected measurement. For the motion corrupted
measurement, a steep drop is observed at baseline image 20, which corresponds
to the time point of motion onset. No such stepwise decrease is observed in
the motion corrected data. The average Dice indices of the reference / mo-
tion corrupted / motion corrected measurement are 98.0±1.3%, 85.6±2.3% and
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Figure 5.4: Example T1 and T∗2 maps acquired in two healthy subjects. The first col-
umn depicts a motion free reference scan, the second and third column are generated
from a motion corrupted measurement without and with using the proposed motion
correction scheme, respectively. The last two columns shows the differences between
reference and corrected / uncorrected images. artefacts are clearly visible in the mo-
tion corrupted data set, especially at tissue interfaces as indicated by the red arrow
and in the difference maps. Motion corrected maps depict visually comparable image
quality to the motion free reference scan

97.0±1.4%, respectively. Here, Dice values of 100% are rarely achieved even in
the motion free reference, due to imperfect segmentation. The sum of the base-
line image segmentation masks of the reference scan and the motion corrected
data are visually comparable (Figure 5.5 b), depicting sharp edges of the head.
Motion can be clearly seen in the uncorrected baseline images, showing major
displacement in addition to blurry edges, which indicate poor co-registration.
Figure 5.5 c shows the average Dice index of all volunteers at the beginning of
the measurement without motion (baseline image 10) and towards the end of
the measurement after motion (baseline image 99). No significant difference
in the Dice index of the three series (reference, corrupted and corrected) was
observed for the 10th image (ANOVA: p = 0.56). However, group analysis and
pair wise comparison show significantly decreased DICE coefficients at image
99 in the corrupted series (ANOVA: p < 0.0004, corrupted vs reference: p <
0.05). Image registration as proposed successfully restores the DICE coefficient,
providing comparable image quality to the reference data (corrected vs reference:
p = 0.26), while being significantly improved compared to the motion corrupted
data (corrected vs corrupted: p < 0.002).
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Figure 5.5: : (A) Dice index between the first image and the other baseline images, of
a motion free reference, a motion corrupted but uncorrected and a corrected in vivo
measurement. The motion induced drop in the dice index, as observed in the motion
corrupted data, is successfully alleviated using the proposed image registration. (B)
Sums of baseline images from different data sets visualize the different level of over-
lap, of the motion free, motion corrupted and motion corrected data in the same subject
as (A). Uncorrected motion leads to blurry edges and poor alignment of the baseline
images, while the proposed correction scheme results in sharp delineation of the skull
comparable to the motion free reference. (C) Average Dice index across all volunteers
for a baseline image without movement (#10) and with movement (#99), showing sig-
nificantly higher Dice values using the proposed image registration, as compared to the
uncorrected data in the presence of motion.

5.4 Discussion

In this study, we have demonstrated thatMRF exhibits residualmotion-sensitivity.
Simulation data shows parameter map quality deterioration for both spiral and
Cartesian-EPI readout. Phantom and in vivo parametermaps acquiredwithMRF-
EPI suffer from severe edge artefacts in the presence of motion corruption. The
motion sensitivity, however, can be successfully mitigated with intensity based
image co-registration. Motion insensitivity of MRF has been observed in several
studies for specific motion types. This include motion that occurs very late
within the measurement (Ma et al., 2013) or if only few non-consecutive baseline
images are corrupted by motion, such as induced by the rapid respiratory motion
of small animals (Anderson et al., 2018; Gao et al., 2015). The simulations and
experiments in this study show that MRF is generally sensitive to motion, though
the sensitivity varies depending on the onset and severity of motion. Due to
the strong contrast variation of the baseline images throughout the measurement,
the intensity of the artefacts in the T1 and T (∗)2 parameter maps exert different
sensitivity profiles to the time point of motion within the acquisition. T1 is highly
sensitive during the beginning of a measurement, likely caused by dominant
longitudinal magnetization recovery following the inversion pulse. Simulations
demonstrate that already small translations at the beginning of the measurements
results in considerableT1 quantification errors, showing strong artefacts including
ghosting and blurring in the parameter maps for both MRF methods. T (∗)2 is
considerably less sensitive tomotion thanT1 in the initial stages of the acquisition,
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possibly due to the predominantT (∗)2 weighting in the majority of baseline images
and the more homogeneous spread of this contrast information throughout the
measurement. The high number of baseline images acquired in MRF offers a
unique position to correct for patient motion. Short readout times of the baseline
images limit artefacts that are induced by motion during the readout, as patient
motion is slow compared to the readout time. This facilitates retrospectivemotion
correction by compensating for inter-image motion on the individual baseline
images, as it is routinely performed for fMRI (Power et al., 2014) and diffusion
(Kober et al., 2012). However, the vast differences in contrast weighting among
the baseline images throughout themeasurement and the low SNR comparedwith
traditional MRI images pose a challenge to image registration algorithms (Roujol
et al., 2015; Xue et al., 2012). Intensity based image co-registrations based on
mutual information is well suited for correcting images with different contrast
(Woo et al., 2015). The first baseline image was chosen as the reference image,
as this image has the highest SNR within the measurement, though choosing
other or multiple reference images could lead to improved results. The intensity
based image registration failed in few images with very low SNR. However, due
to the inner product matching of the fingerprint with the dictionary, these very
low SNR images carry little weight for the parameter mapping. Accordingly, no
detriment in the in vivo image quality was visually observed in these cases. While
intensity based image registration is the most commonly used similarity measure
(Oliveira and Tavares, 2014), other registration methods such as feature based
similaritymeasures (Faber and Stokely, 1988; Oliveira et al., 2009) or prospective
motion correction via an optical tracking systems (Callaghan et al., 2015) could
improve correction quality. Performing intensity based motion correction on
the baseline images of the MRF-EPI leads to artefact-free parameter maps of
high quality, except some susceptibility artefacts in the T∗2 maps due to air-
tissue interface, which are also visible in the reference maps. Dice index of
corrected baseline images show good agreement with reference measurement
without motion. As the algorithm is independent of the slice location and the
patient, the parameters of the algorithm do not require patient specific adjustment.
Hence, a single set of registration parameters was successfully used throughout
the study. Due to the higher SNR of the MRF-EPI compared to MRF based
on spiral readout, MRF-EPI is particularly well-suited for image registration of
baseline images. Undersampling artefacts might cause image registration to fail
in MRF based on spiral readout. However, averaging-window reconstructions,
as previously proposed (Cao et al., 2017), may be employed to overcome this
limitation and foster motion robustness in spiral MRF. This study has several
limitations. Due to the lack of a spiral MRF sequence at our center, no direct
comparison could be performed regarding phantom and in vivomotion sensitivity,
as well as suitability for motion-correction. Furthermore, in this study only a
small number of healthy subjects were scanned as proof of concept. The subjects
were asked to execute a single displacement during the scan, which might not be
representative to all motion patterns observed in clinical patient scans. Larger
cohorts with specific diseases and characteristic motion remain to be evaluated.
Additional, only in-plane motion was evaluated and corrected for, due to the
single-slice implementation of MRF-EPI. To correct for through-plane motion,
volumetric implementations ofMRF, such as recently proposed (Liao et al., 2017;
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Ma et al., 2018) are to be evaluated, and will be subject of future studies. In this
study the MRF-bSSFP was chosen as an example of a MRF sequence with spiral
readout, though other method have been proposed and their motion sensitivity
should be subject to further research to gain a wider understanding of motion
sensitivity of MRF.

5.5 Conclusion
Numerical simulations show that MRF exhibits residual motion-sensitivity, for
spiral and Cartesian-EPI based MRF. Phantom and in vivo measurements using
MRF-EPI confirmed this trend. The proposed intensity-based correction method
can be used for MRF-EPI to foster motion-robustness and successfully obtain
artefact-free T1 and T∗2 maps in the presence of subject motion.

Statement of Contribution
In this study Iwas responsible for the conceptual design andwas partially involved
in the data acquisition and analysis. Further, I did the literature research andwrote
the manuscript.



Summary 6
In recent years, quantitative MRI has gained increasing attention due to the in-
troduction of novel measurement methods, possibly offering the opportunity for
quantitative imaging to be integrated into clinical routine. As quantitative MRI
can be used for a range of biomarkers for tissue characterization, such as for can-
cer studies, to support therapy planning and patient management, clinical MRI
diagnostics could benefit from quantitative imaging. While some quantitative
methods have already been integrated into clinical routine, such as diffusion and
perfusion, the quantification of relaxation times is generally not used due to the
relative time-consuming methods needed. Magnetic resonance fingerprinting
was introduced as a promising method for fast quantification of multiple physio-
logical parameters including the relaxation times T1 and T2. First clinical studies
withMRFmethods based on spiral readout have demonstrated the utility ofMRF,
mainly focusing on brain and prostate quantification of relaxation parameters.

In this work a novel MRF technique was developed for simultaneous quan-
tification of T1 and T∗2 relaxation times based on Cartesian readout, potentially
fostering usability and robustness, while offering the possibility to quantify T∗2
with MRF. Using gradient-spoiled EPI images with rapid, parallel-imaging ac-
celerated Cartesian readout, quantitative maps could be acquired within 10 s per
slice. Tissue specific signal traces were generated using an initial inversion pulse
for enhancedT1 weighting and varying the flip-angles, echo-times and repetition-
times throughout the sequence, leading to parameter maps of high visual quality.
The method was shown to have high quantification accuracy and precision, both
in phantom and in vivo measurements. However, the method initially required
full magnetization relaxation after the measurement of each slice which extended
the measurement times and limited the clinical applicability. Therefore, the tech-
nique was improved regarding acquisition efficiency and volumetric coverage by
developing a slice interleaved implementation of theMRF-EPI. Slice interleaving
increased the effective repetition time of the spoiled gradient echo readout acqui-
sition in each slice, hence increasing the SNR of the baseline images. Numerical
simulations suggested that the acquisition of four slices as an optimal trade-off
between quantification precision and scan-time, resulting in a 4-fold scan-time
reduction with comparable performance to the single-slice MRF-EPI.

Having developed robust and rapidMRFmethods forT1 andT∗2 quantification,
the third scientific study in chapter 5 focused on analysing the motion sensitivity
of MRF and developed a correction scheme for the MRF-EPI methods. In the
first step, the motion sensitivity was evaluated in simulations for the original
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MRF implementation by (Ma et al., 2013) and our MRF-EPI, showing that
both methods are sensitive to motion, causing blurring and ghosting artefacts.
These motion artefacts could be mitigated both in simulations and in in vivo
measurements by using an intensity-based co-registration of the baseline images.

A more detailed summary is provided in the following subsections.

Magnetic Resonance Fingerprinting using Echo-Planar Imaging: Joint
Quantification of T1 and T∗2 Relaxation Times
Magn Reson Med, doi: 10.1002/mrm.26561

In the third chapter, a novel MRF method was introduced based on spoiled
echo-planar imaging readout for simultaneous assessment of T1 and T∗2 . The
method was based on the acquisition of 160 spoiled gradient EPI images. To
shorten measurement times, the EPI readout was accelerated by using partial
Fourier, acquiring only 5/8 of the k-space. Further, parallel imaging with an
acceleration factor of 3 was used to shorten the readout time. An inversion
pulse was included in the sequence to enhance T1 sensitivity. Additional contrast
variations were induced among the baseline images by varying the flip angles
and echo times thorough the measurement, increasing the dissimilarity of the
fingerprints depending on the underlying tissue. The dictionary simulations
were based on the Bloch equations, accounting for imperfect slice excitation by
including B+1 correction in the magnetization simulations. Pattern matching of
the acquired fingerprints with the dictionary elements was performed with the
magnitude data, choosing the dictionary element with the highest inner product as
the best match. While other MRF implementations use complex matching of the
data to derive additional off-resonance maps, the quantification precision of the
proposedmethod decreases using complex data due to the increased number of fit
parameters while increasing computational complexity. The proposed sequence
was implemented on a 3 T magnet using a 32-channel head coil.

MRF-EPI was evaluated in phantom scans and the quantification precision
and accuracy of the MRF method was compared to the reference sequences: an
IR-SE for T1 mapping and GRE for T∗2 quantification. MRF-EPI showed good
agreement with the reference T1 and T∗2 measurements with average deviations
of -2±3 % and 2±3 % for T1 and T∗2 , respectively. In vivomaps acquired with the
proposed sequence in 6 healthy subjects were of high visual quality and free of
artefacts, comparable to the maps of the reference measurements. T1 maps were
homogeneous throughout grey and white matter and detailed structures were
clearly visible on the T∗2 maps. In vivo relaxation times compared well to the
reference acquisitions despite the substantially shortened scan time of only 10 s
per slice.

MRF-EPI showed promising results for combining the MRF paradigm with
Cartesian readout, simultaneously acquiringT1 andT∗2 maps. With similar acqui-
sition time as other single slice MRF methods, the Cartesian readout potentially
increased usability and robustness.
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Time efficient whole-brain coverage with MR Fingerprinting using slice-
interleaved echo-planar-imaging
Sci. Rep., doi: 10.1038/s41598-018-24920-z

The fourth chapter described a slice-interleaved implementation of the MRF-
EPI from the third chapter, increasing volumetric coverage while decreasing the
average acquisition time per slice. TheMRF-EPI was modified to acquire several
slices in a randomized interleaved manner. Increasing the number of interleaved
slices lead to an effective increase of the slice repetition time, resulting in higher
SNR baseline images. Simulations demonstrated that four slices were the optimal
number to acquire in an interleaved manner, given a target measurement time of
17 seconds. Acquiring less than four slices increased the overall measurement
time, however acquiring more than four slices resulted in a loss of quantification
precision, both for T1 and T∗2 . This was attributed to insufficient sampling rate of
the signal variations.

In addition to the T1 and T∗2 quantification, PD maps were created with the
proposed method. The PD maps were calculated in a two-step process without
the need for additional measurements: First, the semi-quantitative M0 maps
were calculated from the fingerprints and the corresponding matched dictionary
element. The M0 maps were subsequently compensated for B+1 and the coil
sensitivity profile, the latter calculated from the M0 maps by means of the bias
field. Finally, the corrected M0 maps were normalized to the cerebrospinal fluid,
which allowed for quantitative proton density mapping for the first time with an
MRF sequence.

Due to the higher resolution of the slice interleaved sequence with 1.0 ×
1.0 × 3.0 mm3 compared to the single slice MRF-EPI with 1.7 × 1.7 × 5.0 mm3,
the readout times of each baseline image increased. This prolonged the overall
measurement time from 10 to 17 seconds for one slice for the MRF-EPI and
four slices for the slice interleaved implementation. Nevertheless, phantom scans
demonstrated that the proposed sequence had comparable precision and accuracy
to the single slice MRF-EPI and gold standard sequences, despite using higher
resolution. In vivo whole-brain coverage of T1, T∗2 and PD with 32 slices was
acquired in 6 healthy volunteers and 4 multiple sclerosis patients, within 3:36
minutes. The lesions of the MS patients were clearly visible, with higher T1, T∗2
and PD values than the surrounding tissue, allowing quantitative discrimination.

The slice-interleaved MRF-EPI allowed for volumetric analysis of quantita-
tive T1, T∗2 and PD values, offering the possibility of quantitative tissue char-
acterization, as it was shown exemplary with the lesions of multiple sclerosis
patients. The sequence demonstrated an acceleration factor of four compared to
the MRF-EPI, while maintaining quantification accuracy, despite offering higher
resolution of 1.0 × 1.0 × 3.0 mm3.

Improved motion robustness for EPI-based MR Fingerprinting using inten-
sity based image registration
Sci. Rep., submitted

The fifth chapter of this thesis explored the motion sensitivity of MRF meth-
ods and a correction scheme for the MRF-EPI was developed. The motion
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sensitivity of the original bSSFP-MRF based on spiral readout and the MRF-
EPI from the third chapter were evaluated though simulations, determining the
quantification accuracy in presence of rotational and translational motion and
the time of motion onset. In simulations, a subset of the baseline images were
corrupted by motion and the motion corrupted fingerprints were matched with
the dictionary. While both MRF methods exhibited residual motion sensitivity,
resulting in imaging artefacts and quality deterioration of the parameter maps,
sensitivity varied depending on the onset and severity of motion. While T1 was
highly sensitive during the beginning of a measurement, T2 and T∗2 were sensitive
throughout the measurement.

A motion correction scheme based on a retrospective intensity-based co-
registration of the individual baseline images was implemented for the MRF-EPI
and validated in phantom and in vivo measurements on 8 healthy volunteers.
All images were co-registered to the first baseline image, as this image had the
highest SNR within the measurement. The correction algorithm was based on
maximizing the mutual information, using an evolutionary optimization algo-
rithm to align the images. The Dice index was used to evaluate the quality of
the motion correction. The corrected parameter maps were compared to the
reference measurements without motion and the motion corrupted maps. Ap-
plying the intensity-based motion correction method on the baseline images led
to artefact-free parameter maps of high quality, visually comparable to the refer-
ence maps, both in phantom and in vivomeasurements. Dice indices of corrected
baseline images showed good agreement with reference measurements without
motion.

As both MRF methods were found to exhibit residual motion-sensitivity,
leading to quantification errors and artefacts in the parameter maps, motion
correction schemes should prove useful in the clinical application of MRF to
limit the need for scan repetition due to motion corrupted images. The proposed
intensity-based correctionmethod forMRF-EPI should foster motion-robustness,
making the sequence more applicable in clinical routine.



Outlook 7
MRI is one of the major imaging modalities, still gaining significance in the
clinical practice, as it provides medical in vivo images without the need for
ionizing radiation. In the field of MRI, a large number of technological de-
velopments and improvements are proposed every year, ranging from better
hardware, increasingly faster acquisition techniques, to new reconstruction algo-
rithms. Incorporating some of these ideas into the proposed MR fingerprinting
technique, such as simultaneous multislice imaging or faster dictionary matching
algorithms, will increase the acquisition speed and improve robustness of the
parameter estimation, facilitating the usage of MRF for clinical routine.

While the MRF-EPI was developed for neurological applications, optimizing
the sequence parameters and motion correction algorithms for this purpose, the
method is not limited to the quantification of brain tissue. The quantitative
diagnosis of other organs is of high clinical interest, such as the prostate or
the liver. However, most body parts are subject to respiratory motion, leading
to deformation and movement in all spatial directions. The developed MRF
sequence is well suited to be used for many other body parts, only minor changes
to the sequence design and parameter choice would be needed. To compensate
for motion, elaborate retrospective motion correction algorithms can be used to
mitigate the respiratory motion, to ensure artefact free parameter maps.

For widespread clinical usage of the proposedmethod, short acquisition times
and direct and fast reconstruction on theMRI is useful, such that the clinicians can
directly evaluate the quantified maps. The slice interleaved MRF-EPI sequence
already has clinically acceptable acquisition times, taking less than four minutes
for whole-brain coverage. Themeasurement efficiency could be further improved
by including new technical developments inMRI, such as simultaneousmultislice
imaging, enabling the simultaneous acquisition of multiple slices. Our initial
experiments show that the acquisition time could be reduced by a factor of
four without loss of precision. Pattern matching was implemented on the MRI
hardware, such that the maps can be directly viewed and processed on the MRI
consoles. While the dictionary matching took multiple minutes, faster matching
algorithms and improved hardware will shorten the matching process, resulting
in nearly instantaneous reconstruction of the parameter maps.

The proposed methods offer the possibility for model free quantification.
While currently the fingerprints are matched to a precomputed dictionary for the
quantification of the tissue parameters, the fingerprints could be matched to a
reference tissue instead of simulations. By acquiring MRF data from multiple
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volunteers and determining a reference signal for each tissue type, e.g. gray
and white matter, direct tissue matching could be performed with the acquired
fingerprints. This could prove as a fast and robust method for tissue segmentation
and anomaly detection, e.g. for tumors or lesions.

One of the shortcomings of MRI compared to other imaging modalities is
the lack of quantification, relying mainly on weighted images for diagnostic pur-
poses. With the development of new quantification methods for MRI, such as the
methods presented in this work, the likelihood increases that quantitative diag-
nosis will become the standard clinical practice. The proposed slice-interleaved
MRF-EPI sequence offers multi-parametric quantification in clinically accept-
able scan time. Further, the motion correction increases the robustness of the
parameter maps in real-world setting. For these reasons, the sequence is currently
being used in two clinical trials on multiple sclerosis patients to gain insights on
the relaxation times in lesions, with the aim to function as biomarkers for staging
of the disease. With the insights from these first clinical studies, the sequence
can be further optimized with regard to usability and accuracy. This will offer
the opportunity to use the method for other diseases and body parts, promoting
the usage of full quantitative diagnosis in clinical routine by means of MRF-EPI.
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