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Simulating Strongly Interacting Quantum Spin Systems–From Critical Dy-
namics Towards Entanglement Correlations in a Classical Artificial Neural
Network:
Approximate simulation methods of quantum many-body systems play an important role
for better understanding quantum mechanical phenomena, since due to the exponentially
scaling Hilbert space dimension these systems cannot be treated exactly. However, a
general simulation approach is still an outstanding problem, as all efficient approximation
schemes turn out to struggle in different regimes. Hence, a detailed knowledge about the
limitations is an important ingredient to approximation methods and requires further
studies. In this thesis we consider two simulation approaches, namely the discrete
truncated Wigner approximation as a semi-classical phase-space method, and a quantum
Monte Carlo method based on a quantum state parametrization via generative artificial
neural networks. We benchmark both schemes on sudden quenches in the transverse-field
Ising model and point out their limitations in the quantum critical regime, where strong
long-range interactions appear. Furthermore, we study the combination of the quantum
state representation in terms of artificial neural networks with the neuromorphic chips
present in the BrainScaleS group at Heidelberg University. The goal of this combination
is to simulate entangled quantum states on a classical analog hardware. We then
expect a more efficient way to approximately simulate quantum many-body systems by
overcoming the limitations of conventional computation architectures, as well as further
insights into quantum phenomena.

Simulationen von stark wechselwirkenden Quanten-Spinsystemen – Von kri-
tischer Dynamik zu Verschränkungskorrelationen in klassischen künstlichen
neuronalen Netzen:
Approximative Simulationsmethoden für Quanten-Vielteilchensysteme tragen einen
wichtigen Teil zum besseren Verständnis quantenmechanischer Phänomene bei, da diese
Systeme aufgrund der exponentiell skalierenden Dimension des Hilbertraums nicht exakt
berechnet werden können. Allerdings ist ein allgemeiner Ansatz für solche Simulationen
noch immer ein offenes Problem, da alle effizienten Approximationsmethoden in unter-
schiedlichen Bereichen Limitierungen aufweisen. Daher ist ein detailliertes Verständnis
dieser Grenzen eine wichtige Grundlage für näherungsweise Simulationsverfahren und
erfordert weitergehende Untersuchungen. In dieser Arbeit analysieren wir die „dis-
crete truncated Wigner approximation“ als semi-klassische Phasenraummethode, sowie
eine Quanten-Monte-Carlo Methode, welche auf der Parametrisierung der Quanten-
zustandsvektoren mittels eines generativen künstlichen neuronalen Netzwerks basiert.
Hierfür betrachten wir Simulationen von plötzlichen Quenches im Ising Modell in einem
transversalen Feld und zeigen die Grenzen der beiden Methoden im quantenkritischen
Bereich auf, in dem starke, langreichweitige Korrelationen auftreten. Weiterhin un-
tersuchen wir die Kombination der Quantenzustandsdarstellung mittels künstlicher
neuronaler Netzwerke mit den in der BrainScaleS-Gruppe an der Universität Heidelberg
entwickelten neuromorphen Chips mit dem Ziel, quantenverschränkte Zustände auf
der klassischen, analogen Hardware zu simulieren. Hiervon erwarten wir eine effiziente,
näherungsweise Simulation von Quanten-Vielteilchensystemen durch Überschreiten der
Limitierungen von herkömmlichen Computerarchitekturen, sowie weitere Einblicke in
Quantenphänomene.





Contents

List of Abbreviations 1

I Introduction 3

Background 13

II Quantum Mechanics and Spin Systems 15
II.1 Concepts of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . 15
II.2 Properties of Spin Systems . . . . . . . . . . . . . . . . . . . . . . . . . 20
II.3 Quantum Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . 24
II.4 Entangled Spin-1/2 States . . . . . . . . . . . . . . . . . . . . . . . . . 26

II.4.1 Bell State and Bell’s Inequality . . . . . . . . . . . . . . . . . . 26
II.4.2 GHZ State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

II.5 The Transverse-Field Ising Model . . . . . . . . . . . . . . . . . . . . . 30
II.5.1 Ground-State Properties . . . . . . . . . . . . . . . . . . . . . 30
II.5.2 Dynamics After Sudden Quenches . . . . . . . . . . . . . . . . 33
II.5.3 Adding a Longitudinal Field . . . . . . . . . . . . . . . . . . . 39

II.6 Exact Diagonalization and tDMRG . . . . . . . . . . . . . . . . . . . . 39

III Artificial Neural Networks 45
III.1 Discriminative Models: Feed-Forward Neural Networks . . . . . . . . . 45
III.2 Generative Models: The Restricted Boltzmann Machine . . . . . . . . 49

III.2.1 Setup and Properties . . . . . . . . . . . . . . . . . . . . . . . 49
III.2.2 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III.3 Training Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 54
III.3.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 54
III.3.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . 57
III.3.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 61

III.4 Overview: Machine Learning in (Quantum) Physics . . . . . . . . . . . 62
III.5 Neuromorphic Hardware in the BrainScaleS Group . . . . . . . . . . . 64

Simulations of Quantum Many-Body Systems 67

IV Discrete Truncated Wigner Approximation 69
IV.1 Truncated Wigner Approximation . . . . . . . . . . . . . . . . . . . . . 69

ix



Contents

IV.2 Discrete Quantum Phase Space . . . . . . . . . . . . . . . . . . . . . . 73
IV.3 Truncating the Time Evolution . . . . . . . . . . . . . . . . . . . . . . 75
IV.4 Simulating Sudden Quenches in the TFIM . . . . . . . . . . . . . . . . 79

IV.4.1 Preparing the Ground State . . . . . . . . . . . . . . . . . . . . 79
IV.4.2 Dynamics of Correlations . . . . . . . . . . . . . . . . . . . . . 81
IV.4.3 Correlation Length: Short-Distance Behavior . . . . . . . . . . 86

IV.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

V RBM-Based Wave Function Parametrization 91
V.1 RBM Parametrization Ansatz . . . . . . . . . . . . . . . . . . . . . . . 91

V.1.1 Quantum State Representation . . . . . . . . . . . . . . . . . . 91
V.1.2 Finding Ground States and Unitary Time Evolution . . . . . . 94
V.1.3 Evaluating Expectation Values . . . . . . . . . . . . . . . . . . 98
V.1.4 Including Translation Invariance . . . . . . . . . . . . . . . . . 99
V.1.5 Metropolis-Hastings Sampling . . . . . . . . . . . . . . . . . . 101

V.2 Simulating Sudden Quenches in the TFIM . . . . . . . . . . . . . . . . 102
V.2.1 Setup of the Parametrization . . . . . . . . . . . . . . . . . . . 102
V.2.2 Finding Ground States . . . . . . . . . . . . . . . . . . . . . . 104
V.2.3 Sudden Quenches in Small Systems . . . . . . . . . . . . . . . 107
V.2.4 Going to Longer Spin Chains . . . . . . . . . . . . . . . . . . . 111

V.3 Performance in the TFIM in a Longitudinal Field . . . . . . . . . . . . 113
V.3.1 Benchmarking Short-Chain Simulations . . . . . . . . . . . . . 113
V.3.2 Monte Carlo Sampling in Large Systems . . . . . . . . . . . . . 117

V.4 Limitations of the RBM Parametrization . . . . . . . . . . . . . . . . . 119
V.4.1 Representational Power . . . . . . . . . . . . . . . . . . . . . . 119
V.4.2 Adding Hidden Layers . . . . . . . . . . . . . . . . . . . . . . . 122

V.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Relating Quantum Systems and Neuromorphic Hardware 127

VI Deep Neural Networks and Phase Reweighting 129
VI.1 The Phase Reweighting Ansatz . . . . . . . . . . . . . . . . . . . . . . 129
VI.2 Measurements in Different Bases . . . . . . . . . . . . . . . . . . . . . 132
VI.3 Representation of TFIM Ground States . . . . . . . . . . . . . . . . . . 135
VI.4 Sampling a Bell State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

VI.4.1 Representing a Bell State with an RBM . . . . . . . . . . . . . 138
VI.4.2 Violating Bell’s Inequality . . . . . . . . . . . . . . . . . . . . . 142
VI.4.3 Variations in the Weights . . . . . . . . . . . . . . . . . . . . . 147

VI.5 Going to Larger Systems: The GHZ State . . . . . . . . . . . . . . . . 149
VI.5.1 RBM Representation of the GHZ State . . . . . . . . . . . . . 149
VI.5.2 Sampling the GHZ State . . . . . . . . . . . . . . . . . . . . . 154

VI.6 Facing the Sign Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 157
VI.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

x



Contents

VII Towards Neuromorphic Sampling of Quantum States 163
VII.1 From Complex to Real Probabilities . . . . . . . . . . . . . . . . . . . . 163

VII.1.1 Positive-Operator Valued Measures . . . . . . . . . . . . . . . 163
VII.1.2 The Tetrahedral POVM . . . . . . . . . . . . . . . . . . . . . . 166
VII.1.3 Representing Spin States with a Real RBM Using POVM . . . 169

VII.2 Simulating Entangled Bell States Using Classical Networks . . . . . . . 172
VII.2.1 Tetrahedral POVM Representation of the Bell State . . . . . . 172
VII.2.2 Training the RBM . . . . . . . . . . . . . . . . . . . . . . . . . 173
VII.2.3 Outlook: Building the Way Towards Neuromorphic Hardware . 176

VIII Conclusion 179

Publications by Stefanie Czischek 183

Bibliography 185

Acknowledgments 199

xi





List of Abbreviations

ANN artificial neural network

BBGKY Bogoliubov-Born-Green-Kirkwood-Yvon

CDk contrastive divergence of order k

CHSH Clauser-Horne-Shimony-Holt

(t)DMRG (time-dependent) density-matrix renormalization group

dNN deep neural network

dTWA discrete truncated Wigner approximation

fNN feed-forward neural network

GGE generalized Gibbs ensemble

GHZ Greenberger-Horne-Zeilinger

LIF leaky integrate-and-fire

LTFIM transverse-field Ising model in a longitudinal field

MPS matrix product state

POVM positive-operator valued measure

QMC quantum Monte Carlo

RBM restricted Boltzmann machine

TFIM transverse-field Ising model

TWA truncated Wigner approximation

1





I Introduction

In the age of quantum computers and quantum simulators appearing in the daily news,
a proper understanding and controllability of quantum many-body systems forming the
underlying principles becomes more and more important, albeit it is far from complete.

In 1936, Alan Turing introduced the Turing machine as a universal simulator of other
existing computational models, providing insights into understanding their behavior
and their underlying methods. In an analogous way, people nowadays investigate in
the use of ordinary computers for simulating quantum mechanical systems, expecting
further insights into the so-far not well understood quantum world. However, Richard
Feynman stated already in 1982 that there exist fundamental difficulties in setting up
simulations of quantum systems on classical computers. Even in these early days he
suggested to build computers based on quantum mechanics [1]. This statement got
further approved since then, as even until today quantum many-body systems cannot
be simulated efficiently on a classical computer. Here the term efficiently refers to the
computational costs of the simulation method scaling polynomially in the problem size,
rather than super-polynomially or even exponentially [2].

A first ansatz to overcome this problem are experimental quantum simulators, where
a well-understood and controllable experiment is used to simulate the behavior of a
more complex quantum system [3]. This enables observations of these complex quantum
systems and even of dynamics happening therein, for example after quenching the system
out of equilibrium. Different ways and ideas to build such quantum simulators exist and
have been implemented. Considering spin models, they can for example be simulated
by controlled experiments based on trapped ions [4–7], Rydberg atoms [8–11], polar
molecules [12], or ultracold atoms in continuum and lattice traps [13–18].
To ensure that such quantum simulators are describing the desired model, they can

be benchmarked on approximate numerical simulations in regimes where those are still
known to work well, as it is done in [15] for strongly interacting Bose gases. This
emphasizes the importance of numerical methods to efficiently approximate quantum
systems, at least in some regimes. To develop and evolve efficient numerical methods
which approximately simulate the behavior of a quantum system with high accuracy, one
can start by considering simple systems, specifically spin-1/2 systems. Those consist of
binary “particles” which can take two possible states, often referred to as spin up and
spin down. Even though having such a simple structure they still show fundamental
physical phenomena. They appear in many condensed-matter problems since they can
be related to magnetism and they can be considered as a limiting case of Bose-Hubbard
models for certain parameter regimes.

The crucial point making these systems interesting is the analytical solvability which is
still given for some of them, especially for small system sizes, and hence enables a simple
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I. Introduction

H

Single Spin

2 States

H

Two Spins

4 States

. . .
H

Physical
States

N Spins

2N States

Figure I.1: Schematic illustration of the curse of dimensionality. The Hilbert space of
a quantum spin-1/2 system contains all states the system can be found in
and is illustrated by the blue regimes (indicated by H). The individual spin
particles are depicted by the arrows, where the directions (up and down)
illustrate the two possible states the particle can take. For a single spin,
the Hilbert space contains two possible basis states (depicted on the left),
while it already contains four possible basis states for a system of two spin
particles (depicted in the center). This shows the exponential scaling of the
Hilbert space dimension, so that for the general case of N spins 2N possible
basis states exist (depicted on the right, states are not shown anymore). The
subset of physical states is illustrated for this general case. Those are the
states the system is found in with significant probabilities. The dimension
of this subspace is reduced compared to the full Hilbert space dimension,
since several states, such as, e.g., strongly entangled states, are not contained.
If the dimension of this subspace scales polynomially with the system size,
which is true in some cases, the full system can be approximated efficiently
by only considering those physical states and neglecting the remaining ones.

benchmark for approximate numerical simulation methods. Furthermore, spin-like models
appear in many different fields and hence spins have various interpretations. Physical
spins are defined as an intrinsic angular momentum of particles, where for example an
electron is a spin-1/2 particle. Often also polarizations of photons, or particles in a
ground or excited state, such as Rydberg atoms, are referred to as pseudo-spins. These
describe two-level systems and are hence binary. Coming back to quantum computers,
their binary units are known as qubits (quantum-bits), so that in principle quantum
computers are systems of many spin-1/2 particles. This emphasizes the urge of efficient
numerical simulation methods of quantum spin-1/2 models to gain further insights into
quantum computation.
However, even though being urgent, efficient simulations of quantum spin systems

and especially of their dynamics are still an outstanding problem due to the Hilbert
space dimension scaling exponentially with system size, as illustrated in Fig. I.1. This
phenomenon is known as the curse of dimensionality. Due to superpositions being
present in quantum mechanics, an exponentially growing Hilbert space dimension leads
to exponentially growing computational costs to exactly simulate the system. Thus,

4



multiple ways to approximate spin-1/2 models have been introduced. For some models
efficient exact (within numerical errors) simulation methods exist, as used in, e.g., [19],
but there is no general ansatz.

Many of these approximation methods belong to the class of tensor-network states, the
probably most famous one being the (time-dependent) density-matrix renormalization
group ([t]DMRG), which is based on matrix product states (MPS) [20]. It has been
introduced in [21], with an extension to simulate dynamics in [22], and a detailed overview
is given in [23] and [24]. This method is applied frequently, especially to simulate dynamics
in quantum systems [25–27]. Several extensions have been proposed, for example [28, 29].
The basic ansatz of the DMRG method is the observation that for many quantum

states not the whole Hilbert space needs to be considered. Instead, the Hilbert space
contains a huge number of configurations of which only a small subgroup yields states
the quantum system can be found in with significant probabilities. To those we refer as
physical states and they are illustrated on the right in Fig. I.1. The remaining states
(dimensions) can be neglected when approximating the system. In some cases the number
of physical states grows polynomially with the system size, enabling an efficient way to
approximately simulate the system with good accuracy [23, 24].
The problem is hence shifted from solving the model with exponentially growing

dimensionality to finding the relevant states. The DMRG approaches this problem using
a variational ansatz and truncating the density matrix at a fixed order. By varying the
order of truncation, the so-called bond dimension, it can be checked if the approximation
still represents the model accurately. For this case increasing the bond dimension further
does not yield any changes. Thus, the (t)DMRG is a controllable approximation method
for ground states and dynamics in spin-1/2 systems [23, 24]. However, such MPS-based
methods are limited to one-dimensional systems and they only work efficiently if the
system is not strongly entangled. Otherwise the bond dimension still scales exponentially
with the system size. A discussion on the applicability is given in [23, 24].

Another class of approximate simulation methods are phase-space methods, like the
truncated Wigner approximation (TWA), which is a semi-classical simulator, as discussed
in detail in [30] and [31]. These methods are used to describe quantum dynamics, for
example after quenching a system out of equilibrium. They are based on applying classical
equations of motion to initial quantum states sampled in phase space. By averaging the
outcomes of multiple classical trajectories resulting from different sampled initial states,
the dynamics of the quantum system are approximated in a semi-classical fashion.

The applicability of those phase-space methods is not limited in the system dimension
and they have been found to perform well at short time scales, while struggling at
strong interacting regimes and long times. Being semi-classical, they might not capture
all quantum mechanical effects. However, they are applied commonly, for example to
simulate bosonic systems out of equilibrium [14, 32, 33].

The TWA has been extended to simulate discrete quantum systems, such as spin-1/2
systems, using a discrete phase space as proposed in [34] with an extension in [35]. This
discrete truncated Wigner approximation (dTWA) has been introduced in [36, 37] and
a truncation at higher orders has been studied in [38]. Furthermore, the method has
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I. Introduction

been widely extended, for example to derive a general discretization of quasi-probability
distributions [39], or to simulate scattering of light in atomic clouds [40]. Moreover, a
generalized dTWA has been introduced recently in [41], enabling semi-classical simulations
not only of spin-1/2 particles, but arbitrary spin systems. A cluster TWA has been
introduced in [42], which uses a generalization of the TWA to a higher-dimensional phase
space.
In contrast to the TWA, the dTWA has been found to perform well even at longer

time scales and in strongly correlated systems [38]. Showing such a remarkable accuracy,
the dTWA is used frequently, for example to simulate Heisenberg spin systems [43],
spin-boson models [44], Rydberg systems [45], or lattices of dipolar molecules [46]. It
has furthermore been used to investigate many-body localization and thermalization
[47]. However, it is not yet clearly understood how accurately the dTWA can capture
quantum effects such as quantum entanglement, or how it performs in quantum critical
regimes. Therefore, in this thesis we benchmark the dTWA on sudden quenches in the
transverse-field Ising model (TFIM), which defines a quantum phase transition. We point
out the limitations of the simulation method for quenches close to the quantum-critical
point in Chapter IV according to [48].
A third famous family of approximate simulation schemes for quantum many-body

systems are quantum Monte Carlo (QMC) methods, which are commonly used to
study fermion systems where semi-classical approximation methods are in general not
applicable. Detailed reviews for QMC methods are given in [49] and [50]. Those methods
are based on considering the basis states of the quantum system and the probability
distribution underlying those, which is defined via the squared wave function evaluated
at the individual basis states. This probability distribution provides a measure for the
importance of the basis states to describe the full system. Hence, a Monte Carlo sampling
scheme (importance sampling) can be used to draw the physical states according to
the underlying distribution while neglecting the remaining ones. Expectation values
of observables can be approximated by evaluating them at the sampled states and
normalizing the outcome, where the complex phases of the wave function need to be
considered.

As it is still exponentially hard to calculate the wave function, this is as well considered
in an approximate manner. To do so, a suitable parametrization of the coefficients in a
basis expansion of the state vector can be chosen. With the help of a variational ansatz
this parametrization can be adapted such that it represents the desired spin state [51].
Multiple possible choices for parametrizations exist, where it depends on the considered
model which of them is most suitable. Those variational QMC schemes can moreover
be extended to simulate dynamics in quantum systems, yielding the time-dependent
variational Monte Carlo ansatz, as introduced and applied in [52, 53].

During the last years, a parametrization of the state vector based on artificial neural
networks, specifically restricted Boltzmann machines (RBM), has been introduced and
caught great attention [56, 57]. An RBM is a two-layer neural network with one visible
and one hidden layer and only inter-layer interactions, as illustrated in Fig. I.2(a) [54].
The visible and hidden neurons follow a Boltzmann distribution defined by the strengths
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Figure I.2: (a) Illustration of a restricted Boltzmann machine (RBM). The network
contains a layer of binary visible neurons (orange) and binary hidden neurons
(green, in shaded region) with arrows denoting the two possible states (up
and down). All-to-all connections are applied between the two layers. The
strengths of the connections are variational parameters and define a Boltzmann
distribution underlying all neurons [54]. By adjusting the connection strengths,
any probability distribution can be modeled given a sufficient amount of hidden
neurons [55]. By identifying the visible neurons with particles in a spin-1/2
system, the probability distribution underlying spin configurations in a specific
state can be modeled, providing a way to sample physical states from the
Hilbert space [56, 57]. We analyze this ansatz in more detail in this thesis.
(b) Photograph of a wafer containing neuromorphic chips in the BrainScaleS
system at Heidelberg University. This mixed-signal neuromorphic hardware
can be used to emulate an RBM via physically implemented spiking neurons
and can efficiently draw samples from the Boltzmann distribution underlying
the visible and hidden neurons. The wafer consists of 48 units (reticles) of 8
HICANN (High Input Count Analog Neural Network) chips each. Every chip
contains 512 neurons and one such chip is enlarged on the right. The neurons
on the chips are connected via synapses found in the two large regions and
the individual units are connected externally [58]. In this thesis we analyze
the way towards simulating entangled quantum systems with the help of
such neuromorphic hardware, from which we expect an immense speedup in
computation time. The images were provided by A. Baumbach (BrainScaleS,
Heidelberg University) and the figure setup is inspired by [58].
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I. Introduction

of the connections in the network, which can be trained to represent the distribution
underlying the basis states in a quantum spin-1/2 system. This parametrization has
been studied and applied frequently for pure [59–62] and mixed states [63–67], where the
representation of quantum states is found from given data [63, 68–70] or via a variational
ansatz [57, 64–67, 71] for either purely positive states or with different ways to include
complex phases. Furthermore, different representations of quantum states based on
feed-forward neural networks have been introduced in [72, 73].

The representational power of the RBM parametrization has been studied in detail, for
example how accurately quantum entangled states [61], topological states [74], strongly
correlated systems [62], or chiral topological phases [75] can be represented. Moreover,
the effect of going to deep neural networks on the representational power has been studied
in [60, 76, 77] and an extension to different network architectures has been introduced
in [78]. The connection of the RBM-based parametrization to tensor-network states
caught great attention as well and has been analyzed in [79–82]. In this thesis we perform
further benchmarking of the RBM parametrization method for simulations of sudden
quenches in the TFIM with and without an additional longitudinal field. We point out
the limitations of the ansatz for quenches into regimes of large correlation lengths in
Chapter V according to [83].
While the applicability of such QMC-based methods is not limited in the system

dimension, problems appear in capturing the complex phases of the basis expansion
coefficients. As these cannot be directly considered in the sampling scheme, they need to
be treated separately. Besides various existing specific methods to deal with the phases for
individual parametrizations, a common general ansatz is to sample from the distribution
given by the real amplitudes of the basis expansion coefficients. The observables evaluated
at the sampled states are then explicitly multiplied with the corresponding phases, which
can be extracted from the parametrization.
This so-called (phase) reweighting approach can be computationally expensive de-

pending on the chosen parametrization ansatz. Additionally, it leads to the famous
sign problem for states with strongly fluctuating phase factors. This problem causes an
exponential scaling of the sample size necessary to reach a certain accuracy for increasing
system sizes, rendering the ansatz inefficient as discussed in [84–87]. Several approaches
have been introduced to deal with the sign problem [88–90]. In the case of the RBM
parametrization the phases can be included by choosing complex connection strengths
in the neural network. This circumvents the sign problem but causes limitations in
changing the network structure and hence in increasing the representational power of the
parametrization ansatz [57]. In this thesis we benchmark the sampling via the (phase)
reweighting scheme from a complex-valued RBM parametrizing entangled quantum states.
We show in Chapter VI according to [91] that the necessary number of samples to reach
a desired accuracy indeed scales exponentially with the system size for certain states,
indicating the existence of the sign problem.

A further limitation of (variational) QMC-based methods is that it is not clear if any
arbitrary wave function can be represented by the chosen parametrization. In the case
of the RBM-based ansatz, its representational power can be increased by adding more
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nearest-neighbor interaction J

transverse field ht

longitudinal
field hl

T

ht
Jht,c

J = 1
0

quantum critical

magnetic
long-range order

quantum
paramagnet

Figure I.3: (a) Schematic illustration of the one-dimensional Ising model with nearest-
neighbor Ising interactions of strength J in a transverse field ht and a lon-
gitudinal field hl. The arrows denote the quantum spin-1/2 particles in the
basis where interactions are applied and their orientation denotes the two
possible states (up and down). The system is shown in a fully polarized state
as an example. (b) Phase diagram of the transverse-field Ising model with
hl = 0 (picture from [92]). The model undergoes a quantum phase transition
at temperature T = 0 and ht/J = 1. As the model is integrable, we use
it in this thesis to benchmark approximate simulation methods of quantum
spin-1/2 systems in the vicinity of the quantum critical point, i.e., we only
consider the case of zero temperature.

hidden neurons, but this also increases the computational costs. While it has been shown
that a real RBM can approximate any probability distribution arbitrarily well given
enough hidden neurons [55], it is not clear if this is also true for an RBM with complex
connections. Furthermore, if the necessary number of hidden neurons scales exponentially
with the system size, the QMC method is not efficient anymore.

Comparing the three introduced simulation approaches, MPS-based methods are
best understood and controllable. For those it can be checked via increasing the bond
dimension whether the simulations have converged or not. If they have converged, they
describe the exact solution accurately. Such a controlled approximation error is not given
for phase-space and QMC methods, so that these still require further benchmarking.

A standard model to consider when benchmarking approximate simulation methods for
spin-1/2 systems is the one-dimensional TFIM. This is a spin chain with nearest-neighbor
Ising interactions in a transverse field, as illustrated in Fig. I.3(a). The model describes
a quantum phase transition between a para- and a ferromagnetic phase at a quantum
critical point, see Fig. I.3(b), and is integrable. Thus, it is an exactly solvable system
on which simulations can be benchmarked at quantum criticality. Properties of the
model as well as its phase diagram have been studied in detail on the analytical solution
[92–94]. Dynamics after sudden quenches of the transverse field have been analyzed
a lot in, e.g., [95–100]. Thus, the TFIM is a commonly chosen model to benchmark
simulation approaches such as phase-space or QMC methods for arbitrary system sizes
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I. Introduction

also in (quantum) critical regimes.
While huge effort is expended in finding and benchmarking such approximate simulation

methods of quantum systems, a further approach to overcome the limitations of classical
computers in quantum simulations is to use different computing devices, exceeding the
von-Neumann architecture. Quantum computers are obviously not an option here as the
problems arise due to the motivation of getting further insights into quantum computation.
Instead, more architectures exist, such as neuromorphic chips. Those emulate artificial
neural networks on physical models of neurons connected via synapses, implemented by
mixed-signal microelectronics, as depicted in Fig. I.2(b) [101–104].
Given the RBM-based parametrization, it seems a reasonable motivation to use such

neuromorphic chips for simulations of quantum many-body systems. Furthermore, the
BrainScaleS group at Heidelberg University is evolving and using such a neuromorphic
hardware, from which the photographs in Fig. I.2(b) are taken, with a general overview
given in [102]. This enables us to directly implementat a suitable algorithm. The hardware
can sample efficiently from a Boltzmann distribution, as has been shown in [58, 103, 105].
For this task a speedup of at least one order of magnitude is expected compared to
sampling on a classical computer, with about three orders of magnitude less energy
consumption [106]. Thus, from a combination of quantum systems and neuromorphic
chips we expect an efficient way to sample quantum states in a QMC-based approach
if the underlying distribution can be expressed in a Boltzmann form. Furthermore, by
emulating strongly entangled states on the classical analog hardware we expect further
insights into quantum mechanical effects.

However, as wave functions of quantum systems are complex-valued quantities, a trans-
lation to the real-valued signals flowing through a neuromorphic hardware causes troubles,
since it is not clear how to include the complex phases. Thus, a direct implementation of
the RBM-based parametrization with complex-valued connections on the neuromorphic
hardware is not possible, even though it sounds like a trivial task. This problem can
be overcome by using the general reweighting ansatz, where the real amplitudes of the
basis expansion coefficients are parametrized by the RBM structure containing the real
parts of the connection strengths. The imaginary parts provide the complex phases
which are used to reweight the observables when calculating expectation values. We
discuss and analyze this ansatz further in Chapter VI based on [91]. Alternatively, the
parametrization can be modified in a way to match the network structure present on
the neuromorphic chips, meaning that the quantum system is represented by a purely
real RBM. This modification we discuss further in Chapter VII. With this, we provide
and analyze two ways towards simulating quantum spin-1/2 systems with the help of
physically implemented neurons in the neuromorphic hardware in this thesis.

The thesis is structured as follows. In Chapter II we give a more detailed background
on quantum mechanics and spin-1/2 systems, as well as on the transverse-field Ising
model and quantum entanglement. For this we take the strongly entangled Bell state
and its generalization to larger spin systems, the Greenberger-Horne-Zeilinger (GHZ)
state, as examples. Those states have been introduced and discussed in [107–109] and
[110], respectively. We discuss the analytical solution of the TFIM according to [92–100]
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and consider the (t)DMRG method according to [23, 24]. Then exact diagonalization, a
simulation method for small system sizes, is considered in detail. With this we gather all
ingredients to enable a systematic benchmarking of approximate simulation methods.
In Chapter III we discuss the background of general artificial neural-network setups

and their applications in machine learning. For the profit of better understanding the
RBM-based parametrization of quantum states, we provide a general overview containing
approaches which are used in later chapters of this thesis. This chapter furthermore builds
the foundations of adapting the parametrization ansatz to enable an implementation
on the neuromorphic hardware, which is also discussed thoroughly within this chapter.
Additionally, an overview of machine learning applications in physics is given.

Chapter IV introduces the dTWA in detail according to [36–38] and shows benchmarks
on sudden quenches in the TFIM. The quenches start from a fully polarized initial state
and go to different transverse fields in the para- and ferromagnetic phase, as well as into
the vicinity of the quantum critical point. For quenches close to the quantum phase
transition we find strong long-range correlations and volume-law entanglement. We show
that these are limiting factors for the dTWA at late times, while the short-time behavior
is still captured well.
In Chapter V we analogously benchmark the RBM-based QMC method on sudden

quenches in the TFIM after having introduced the setup and properties of the method in
detail according to [56, 57]. We again consider sudden quenches from a fully polarized
state into both phases and close to the quantum phase transition and provide direct
comparisons to dTWA results. Furthermore, we study the representational power of the
parametrization ansatz by varying the number of hidden neurons in the RBM. We again
find limitations close to the quantum critical point in the regime of strong correlations
and volume-law entanglement. However, we find convergence when increasing the number
of hidden neurons up to the size of the Hilbert space dimension, providing again an
exponential scaling with system size. We also add a longitudinal field to the TFIM, as
illustrated in Fig. I.3(a), making the model non-integrable. We then benchmark the
dTWA and the RBM-based QMC ansatz on exact diagonalization and tDMRG results.
This yields analogous observations as in the TFIM.

Thus, we show that the dTWA, as well as the RBM-based QMC ansatz do not exceed
the limitations of MPS-based methods which struggle in regimes of strong entanglement
due to an exponentially growing bond dimension. However, in contrast to MPS-based
methods, these two approaches are applicable to higher dimensional systems. There they
are expected to perform analogously well in regimes with weak (quantum) correlations.

In Chapter VI we approach the task of using neuromorphic chips to make simulations
of spin systems more efficient. We apply the reweighting scheme to deal with the complex
phases in the RBM-based parametrization. We furthermore introduce an extension to
deep neural networks to enable measurements of general operators in different cartesian
bases by observing the visible layer of the network. We show that with this ansatz the
ground state of the TFIM at the quantum critical point can be represented with good
accuracy and expectation values of operators in the z-basis can be evaluated efficiently.
Nevertheless, exponentially many samples are necessary to approximate measurements
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in the x-basis accurately. Moreover, when we turn to representing strongly entangled
states, such as Bell and GHZ states, we experience the sign problem for measurements in
both the x- and z-basis. This appears to render the simulation method inefficient and to
limit its applicability to small system sizes. However, the introduced ansatz provides an
efficient way to represent quantum states of small spin systems on neuromorphic chips.
From this we expect that the limitations are shifted to larger system sizes due to the
speedup in the sampling procedure.

Chapter VII discusses a different ansatz of adapting the RBM-based parametrization
to enable an implementation on the neuromorphic hardware. This method is based
on positive-operator valued measures (POVM) and has been introduced in [63]. With
the POVM ansatz, a general quantum state can be transformed into a basis where
it is represented with a purely real wave function, so that all complex phases vanish.
This enables a parametrization with a standard RBM as applied in machine learning
tasks, which can be emulated by the neuromorphic hardware. The authors in [63] have
shown already that strongly entangled states, specifically Bell and GHZ states, can be
represented accurately this way. We discuss the method in detail according to [63] and
train an RBM to represent a Bell state on a classical computer. Furthermore, we discuss
the steps towards an implementation on neuromorphic chips in the BrainScaleS group
as an outlook. With this we provide an ansatz to simulate strongly entangled quantum
states with the help of classical analog hardware.
We close the thesis with a summary and conclusions in Chapter VIII.
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II Quantum Mechanics and Spin Systems

With the basic content of this thesis being simulations of quantum spin-1/2 systems,
we start introducing the underlying concepts and properties of those and of quantum
mechanics in general. Clarifying the basics, we provide a starting point to perform ap-
proximate simulations of these computationally unfeasible problems. An entire summary
of the rudiments of quantum mechanics is given in [2, 111, 112], on which Sect. II.1 is
based. Section II.2 builds on [2, 111, 113], where the properties of quantum spin systems
are discussed in detail. To introduce quantum entanglement, Sect. II.3 is based on a
detailed summary in [2, 111].
Furthermore, we introduce in this chapter the models considered later in this thesis

for benchmarking simulation methods. In particular these are the Bell and Greenberger-
Horne-Zeilinger states, as well as the transverse-field Ising model with and without an
additional longitudinal field. We also introduce the commonly used simulation method
exact diagonalization and the approximate time-dependent density-matrix renormal-
ization group method. Both are well understood and suitable for benchmarking new
approximation schemes.

II.1 Concepts of Quantum Mechanics
In quantum mechanics we consider systems of particles with different properties being
represented as vectors of a complex Hilbert space H. This is a complete vector space
under the norm induced by its scalar product. Thus, a pure state of an N -particle
quantum system can be described via a vector |Ψ〉 = (Ψ1, . . . ,ΨN )T which is called the
state vector and is an element of the Hilbert space H. We here use the Dirac (bra-ket)
notation, where the “ket” |Ψ〉 denotes a column vector and the “bra” 〈Ψ| is its conjugate
transpose. It is hence the row vector 〈Ψ| = (Ψ∗1, . . . ,Ψ∗N ) with the star denoting complex
conjugation.

The state vectors of quantum systems can be chosen normalized,

‖|Ψ〉‖ =
√
〈Ψ| Ψ〉

= 1,
(II.1)

and they can be expanded in the basis states |vi〉 of the Hilbert space,

|Ψ〉 =
dH∑
i=1

cvi |vi〉, (II.2)

with complex coefficients cvi ∈ C and Hilbert space dimension dH. The state vector is
thus a superposition of basis states.
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Furthermore, we introduce the wave function Ψ(v) as the overlap of the state vector
with a basis vector 〈v|,

Ψ (v) = 〈v |Ψ〉 , (II.3)

which provides a complex-valued amplitude for each basis state. A probability amplitude
P (v) for the corresponding basis state is given by the squared wave function,

P (v) = |Ψ (v)|2 , (II.4)

emphasizing the choice of normalized wave functions, since then also P (v) describes a
normalized probability.
Another possibility to describe the state of a quantum system is to introduce the

density matrix as

ρ̂ = |Ψ〉〈Ψ|, (II.5)

with the hat denoting that ρ̂ is a matrix. Plugging the expansion of the state vector in
terms of the basis states [Eq. (II.1)] into Eq. (II.5) shows that the density matrix has the
diagonal entries |cvi |2. These describe the probabilities of the system to be in the state
|vi〉, so that we get the property

Tr [ρ̂] =
dH∑
i=1

ρ̂i,i = 1, (II.6)

stating that all probabilities sum up to one. Additionally, the density matrix is Hermitian
by construction and it is positive definite, since all probabilities are positive.
Given the possibility to express a quantum state via the state vector or the density

matrix, we can introduce a procedure to perform measurements on the system, which
corresponds to calculating observables. Any observable acting on a quantum system can
be represented by a self-adjoint linear operator Ô acting on elements of the Hilbert space.
As the Hilbert space is a vector space, this operator can be represented by a Hermitian
matrix. Here and in the remainder of this chapter we use hats to denote operators, as
already done for the density matrix in Eq. (II.5). We will omit the hats again by the end
of this chapter, when the basic concepts of quantum mechanics have become clear and it
is obvious from the context which quantities are matrices.
When applying such an operator onto a state vector of a quantum system, which we

call performing a measurement, the state is transformed into an eigenstate of the operator.
It is then represented by a state vector which is an eigenvector of the corresponding
matrix with the measurement outcome being the corresponding eigenvalue. Thus, the
state of the system is changed when a measurement is performed.

In contrast to classical systems, the outcome of a measurement is not deterministic. If
the system is in a superposition of different eigenstates of the operator, each measurement
provides exactly one possible outcome. While each measurement can lead to a different
result, the outcome of infinitely many measurements is distributed according to the
probability distribution underlying the probabilistic superposition of states.
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II.1 Concepts of Quantum Mechanics

We are hence interested in the average outcome of measuring an observable Ô, which
can be calculated using the state vector or the density matrix,〈

Ô
〉

= 〈Ψ|Ô|Ψ〉

=
dH∑
i=1
〈Ψ|Ô|vi〉 〈vi| Ψ〉

=
dH∑
i=1
〈vi| Ψ〉 〈Ψ|Ô|vi〉

= Tr
[
ρ̂Ô
]
,

(II.7)

with brackets 〈Ô〉 denoting expectation values. The trace is given by the sum over all
basis states,

Tr
[
Ô
]

=
dH∑
i=1
〈vi|Ô|vi〉, (II.8)

and we multiply with one in the second line,
dH∑
i=1
|vi〉〈vi| = 1. (II.9)

Due to the fact that after a measurement the state of a system is changed into
an eigenstate of the corresponding operator, two observables whose operators do not
commute, ÔAÔB 6= ÔBÔA, cannot be measured at the same time as they have different
eigenbases. This leads to Heisenberg’s uncertainty relation, which states that position and
momentum of a quantum particle cannot be measured exactly at the same time. They
are only accessible within some uncertainty, ∆x̂∆p̂ ≥ ~/2 due to [x̂, p̂] = x̂p̂− p̂x̂ = i~,
with the reduced Planck’s constant ~ = h/(2π).

Knowing how to apply operators onto a state vector of a quantum system, we can
also calculate the system’s time evolution under some Hamiltonian operator Ĥ. The
corresponding equation of motion is given by the Schrödinger equation,

i~
∂

∂t
|Ψ (t)〉 = Ĥ|Ψ (t)〉. (II.10)

For the case of the system being in a stationary state, this equation simplifies to the
time-independent Schrödinger equation,

Ĥ|Ψ〉 = E|Ψ〉, (II.11)

where E is the energy of the system and an eigenvalue of Ĥ. Equation (II.10) can also
be generalized to provide the von-Neumann equation of motion for the density matrix,

i~
∂

∂t
ρ̂ (t) =

[
Ĥ, ρ̂ (t)

]
, (II.12)
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II. Quantum Mechanics and Spin Systems

with the commutator [Â, B̂] = ÂB̂ − B̂Â.
For a quantum system where each single particle lives in a Hilbert space of dimension

d, the total Hilbert space H of a system with N distinguishable such particles is the
tensor product of all individual Hilbert spaces H(n),

H = H⊗N =
N⊗
n=1
H(n)

=H(1) ⊗H(2) ⊗ · · · ⊗ H(N).

(II.13)

Thus, the total Hilbert space has dimension dH = dN , where d is referred to as the local
dimension of a single particle. Hence, dN basis states are necessary to fully describe the
total Hilbert space. This demonstrates the so-called curse of dimensionality in quantum
mechanics, which states the problem of the exponentially growing Hilbert space, where
superpositions of all states can appear.
If we instead consider indistinguishable particles, exchanging two of them must not

change the system state. Thus, the wave functions of the states with two interchanged
particles can at most differ by an overall phase, as this does not change the probability
amplitude. So, if we consider two particles in states |v1〉 and |v2〉, we get

Ψ (v1,v2) = (〈v1| ⊗ 〈v2|) |Ψ〉
= 〈v1,v2| Ψ〉
= exp [iϕ] Ψ (v2,v1) ,

(II.14)

with a global phase exp[iϕ]. In three spatial dimensions, exchanging two particles twice
yields

Ψ (v1,v2) = exp [2iϕ] Ψ (v1,v2) (II.15)
⇒ exp [2iϕ] =± 1 (II.16)
⇒ Ψ (v2,v1) =±Ψ (v1,v2) . (II.17)

Here we also experience the case that we have to exchange the particles four times to get
back the original wave function without an overall phase. We can divide the space of
states into two orthogonal sub-spaces, one containing the states where exchanging two
particles yields a minus sign (anti-symmetric under permutations) and one where it does
not (symmetric under permutations). Particles in the first subspace are called fermions,
while particles in the second subspace are called bosons. Since the wave function of
fermions is anti-symmetric under permutations, two such particles cannot be in the same
state, as

Ψ (v1,v1) =−Ψ (v1,v1) (II.18)
⇒ Ψ (v1,v1) = 0. (II.19)

Thus, the probability for such a configuration is zero.
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A quantum many-body system with an unknown number of particles can be described
in the so-called Fock space F , which is the product state of the n-particle Hilbert spaces
for all possible n,

F =
∞⊕
n=0

Ŝ±H⊗n. (II.20)

Ŝ± denote the symmetrization or anti-symmetrization operators used for bosonic or
fermionic systems, respectively. A basis of the Fock space is given by the so-called
occupation-number-basis, which specifies how many particles occupy a single-site wave
function. The basis states are hence characterized by these occupation numbers. For
bosonic systems the particle number can generally take any integer value between zero
and infinity, while for fermionic systems the occupation number is restricted to either
zero or one, as no two fermions can be in the same state.

Using the Fock space representation, one can define creation operators â†i , which create
a particle in state i. Their conjugate transpose, âi, are the annihilation operators which
annihilate a particle in state i. Thus, any state in the occupation-number-basis can be
expressed in terms of creation operators,

|n1, . . . , nK〉 =
K∏
i=1

(
â†i

)ni |0〉. (II.21)

Here we consider a system with K possible states each individual particle can be in
and the values n1, . . . , nK are the occupation numbers of the individual states. Thus,
|0〉 = |0, . . . , 0〉 is the vacuum state with all single-site wave functions being unoccupied.
The eigenstate |α〉 of the annihilation operator,

â†|α〉 = α|α〉, (II.22)

is called a coherent state.
These creation and annihilation operators look differently for bosonic and fermionic

systems and they even have different properties. They all satisfy canonical commutation
relations, which for bosonic systems are given by[

âi, âj
]

=
[
â†i , â

†
j

]
= 0,[

âi, â
†
j

]
= −

[
â†i , âj

]
= δi,j ,

(II.23)

and for fermionic systems they read{
â†i , âj

}
=
{
âi, â

†
j

}
= δi,j ,{

âi, âj
}

=
{
â†i , â

†
j

}
= 0,

(II.24)

with the curly brackets denoting the anti-commutator {Â, B̂} = ÂB̂ + B̂Â. Thus, when
expressing a state in the occupation-number-basis in terms of the creation operators as
stated in Eq. (II.21), it is important for fermionic systems in which order the operators
are applied, as interchanging them yields a minus sign. The order can be chosen freely
once, but it must be kept consistent during further calculations.
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II.2 Properties of Spin Systems
Considering elementary particles, such as electrons, Otto Stern and Walter Gerlach found
in 1922 that they have a discrete intrinsic angular momentum [112, 114]. Nowadays this
experiment is known as the Stern-Gerlach experiment. The intrinsic angular momentum,
referred to as the spin of a particle, is closely related to the angular momentum of a
classical spinning object, except for it being discretized. Therefore, it can be described
via spin operators Ŝ, which show the same properties as angular momentum operators,
i.e., they satisfy[

Ŝα, Ŝβ
]

= i~Ŝγεαβγ , (II.25)

with α, β, γ ∈ {x, y, z} and the fully anti-symmetric Levi-Civita tensor εαβγ . The sum
over repeated indices is implied. Furthermore, the spin operators satisfy[

Ŝz, Ŝ2
]

= 0, (II.26)

for Ŝ2 = (Ŝx)2 + (Ŝy)2 + (Ŝz)2.
Considering a single particle, its state is uniquely defined in terms of quantum numbers.

In order to fully describe the spin state of a particle, we use the spin quantum number l,
which is an integer or a half integer, and the spin projection quantum number s, whose
value runs from −l to l in steps of one. Thus, we can express a spin state as |l, s〉, where
l is a fixed property of the considered particle, for an electron l = 1/2.

If we express the quantum system in the eigenbasis of the spin operator Ŝz, applying
it to a spin state yields the spin projection quantum number,

Ŝz|l, s〉 = ~s|l, s〉. (II.27)

On the other hand, the spin quantum number can be obtained by applying Ŝ2,

Ŝ2|l, s〉 = ~2l (l + 1) |l, s〉. (II.28)

Here we choose without loss of generality the spin states as basis states of Ŝz. The
operators Ŝx and Ŝy do not commute with Ŝz and hence have different eigenbases.
In the remainder of this thesis we consider spin-1/2 systems, so we discuss those in

more detail. For a spin-1/2 particle, such as an electron, the quantum numbers are
l = 1/2, s = ±1/2. Hence, only two possible spin states exist,

|l = 1/2, s = 1/2〉 =: | ↑〉 ≡ |1〉, (II.29)
|l = 1/2, s = −1/2〉 =: | ↓〉 ≡ | − 1〉. (II.30)

These are commonly referred to as the spin-up and spin-down states, so we introduce the
notation with arrows pointing up or down. Another common notation is to enumerate
the states by | − 1〉 and |1〉.
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The two basis states are defined to be normalized and orthogonal,

〈↑| ↑〉 = 〈↓| ↓〉 = 1,
〈↑| ↓〉 = 〈↓| ↑〉 = 0,

(II.31)

and we consider the spin in the basis of the Ŝz operator, so that

Ŝz| ↑〉 = ~
2 | ↑〉,

Ŝz| ↓〉 =− ~
2 | ↓〉.

(II.32)

Analogously to the creation and annihilation operators in the Fock space representation
we can define raising and lowering operators Ŝ± for the spin states,

Ŝ+| ↑〉 = Ŝ−| ↓〉 = 0,
Ŝ+| ↓〉 = | ↑〉,
Ŝ−| ↑〉 = | ↓〉.

(II.33)

Any spin-1/2 particle can be in an arbitrary superposition of the two basis states,

|Ψ〉 = α| ↑〉+ β| ↓〉,
|α|2 + |β|2 = 1,

(II.34)

where the condition in the second line ensures that the state vector is normalized.
To make the quantum spin state description more concrete we can define the basis

states in a two-dimensional Hilbert space H = C2, where a common choice is

| ↑〉 =
(

1
0

)
, (II.35)

| ↓〉 =
(

0
1

)
. (II.36)

It can be shown that for this choice the spin operators can be defined via the Pauli
matrices σ̂x, σ̂y, σ̂z as

Ŝx = ~
2 σ̂

x = ~
2

(
0 1
1 0

)
, (II.37)

Ŝy = ~
2 σ̂

y = ~
2

(
0 −i
i 0

)
, (II.38)

Ŝz = ~
2 σ̂

z = ~
2

(
1 0
0 −1

)
. (II.39)

These fulfill the properties in Eqs. (II.25)–(II.28), as can be checked straightforwardly.

21



II. Quantum Mechanics and Spin Systems

In the remainder of this thesis we set ~ = 1 if not stated otherwise, fixing the units.
We furthermore switch to the representation of spin-1/2 systems using the spin values
±1 instead of ±1/2, so that we can directly use the Pauli matrices as spin operators,
Ŝα = σ̂α, α ∈ {x, y, z}. This is possible since the eigenvalues of σ̂z are ±1, so that
σ̂z| ↑〉 = | ↑〉 and σ̂z| ↓〉 = −| ↓〉. This step can be done without loss of generality but
needs to be kept consistent. We can then introduce raising and lowering operators as

Ŝ± = 1
2
(
Ŝx ± iŜy

)
. (II.40)

The time evolution of a single spin state under a Hamiltonian Ĥ can be calculated
using unitary operators Û ,

Û = exp
[
−itĤ

]
, (II.41)

with Û Û † = 1̂. Here Û † denotes the conjugate transpose (adjoint) and 1̂ is the identity
matrix. The Hamiltonian operator acting on a single spin state can moreover be expressed
in terms of the Pauli spin operators,

Ĥ =
∑
α∈

{0,x,y,z}

nασ̂
α, (II.42)

with some unit vector n and identity operator σ̂0 = 1̂. In this case the unitary operators
Û form a group SU(2), with the generators given by the spin operators, and provide a
solution to the Schrödinger equation, Eq. (II.10).

If larger systems consisting of many spins are considered, the Hilbert space of the full
system is the tensor product of the Hilbert spaces of the individual particles. Thus, these
systems can be treated the way introduced in Sect. II.1. The Hilbert space dimension of
a system of N spin-1/2 particles is 2N , so it scales exponentially with the system size.
This makes computations in these systems extremely expensive and unfeasible for large
system sizes, even though particles with the smallest individual Hilbert space dimension
are considered.
Measurements can in general also be performed only on a part of the spins in the

system, so we can measure the spin values at sites i and j in the chain via the operator

Ŝzi Ŝ
z
j ≡ 1̂⊗ 1̂⊗ · · · ⊗ σ̂zi ⊗ · · · ⊗ σ̂zj ⊗ · · · ⊗ 1̂, (II.43)

with identity matrices 1̂ applied to all remaining spins. This we abbreviate as Ŝzi Ŝzj =
σ̂zi σ̂

z
j , leaving out the identity matrices for convenience sake.

A common way to visualize a single spin-1/2 state is via the so-called Bloch sphere.
Since a general state vector of a single spin-1/2 particle,

|Ψ〉 = α| ↑〉+ β| ↓〉, (II.44)

is normalized, we get the restriction stated in Eq. (II.34). Furthermore, the state vector
is invariant under a global phase as this does not influence the probabilities |α|2 and |β|2.
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z

x

y

θ

φ

|↑〉

|↓〉

Figure II.1: Visualization of the state vector of a single spin-1/2 particle on a Bloch
sphere according to Eq. (II.46). The spin state is fully described by the two
angles θ and φ, which are defined as depicted. The green arrow denotes a
possible state vector. Any spin state can be represented by a point on the
sphere, where all points must lie on the surface due to the normalization of
the state vectors [Eq. (II.34)]. The north pole of the Bloch sphere corresponds
to the state | ↑〉, while the south pole corresponds to | ↓〉.

Expressing the complex parameters α, β in terms of real amplitudes rα, rβ and phases
ϕα, ϕβ, we get

|Ψ〉 = rαexp [iϕα] | ↑〉+ rβexp [iϕβ] | ↓〉
= exp [iϕα] {rα| ↑〉+ rβexp [iϕβ − iϕα] | ↓〉}
= rα| ↑〉+ rβexp [i (ϕβ − ϕα)] | ↓〉

=: rα| ↑〉+ rβexp [iϕ] | ↓〉,

(II.45)

where we use the invariance under a global phase when going from the second to the
third line.
The normalization constraint, Eq. (II.34), then corresponds to the equation of a unit

sphere in cartesian coordinates. We can hence express Eq. (II.45) in spherical coordinates
with azimuthal angle θ and polar angle φ,

|Ψ〉 = cos
[
θ

2

]
| ↑〉+ exp [iφ] sin

[
θ

2

]
| ↓〉. (II.46)

The half-angles result from the fact that opposite states in the upper and lower hemisphere
differ by a phase factor of −1, so that points on the upper hemisphere can be mapped
onto the whole sphere.

With these two angles θ and φ, any single spin state can be represented as one point on
the surface of a sphere, defined as the Bloch sphere, as depicted in Fig. II.1. The north
pole of the Bloch sphere corresponds to the state | ↑〉 and the south pole corresponds
to | ↓〉, while any other point on the surface is defined by the angles θ and φ. The spin
can only live on the surface of the sphere due to the normalization condition, Eq. (II.34).
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There is, however, no general method to visualize a system of N spins. Considering
a system in a separable state, i.e., an N -spin state that can be expressed as a tensor
product of the individual spin states, each spin can be represented by an individual
Bloch sphere. Nevertheless, there is no ansatz to include (quantum) correlations into the
visualization. Thus, the Bloch sphere picture is basically used to only visualize single
spin particles.

II.3 Quantum Entanglement

So far, we have considered quantum systems whose states can be described by a single
state vector, which are referred to as pure states. However, most times in nature quantum
systems are not in pure states, but in probabilistic mixtures of pure states, so-called
mixed states. These can be described by a density matrix which is the sum of many pure
density matrices. The contribution of each individual matrix to the mixture is weighted
by the probability pi, with which the system is in the corresponding state,

ρ̂mixed =
∑
i

piρ̂
pure
i

=
∑
i

pi|Ψi〉〈Ψi|.
(II.47)

Here the sum runs over all contributing pure density matrices and the index i denotes
the individual pure contributions. This state can then not be expressed by a single state
vector anymore.

It can even be measured how pure a quantum state is. To derive a measure for the
purity, we consider the squared density matrix,

(
ρ̂mixed

)2
=
∑
i,j

pipj ρ̂
pure
i ρ̂pure

j

=
∑
i,j

pipj |Ψi〉 〈Ψi |Ψj 〉 〈Ψj |

=
∑
i,j

pipj |Ψi〉〈Ψj |δi,j

=
∑
i

p2
i ρ̂

pure
i ,

(II.48)

using the orthogonality of the basis states and their normalization. Taking into account
that for a pure state there exists one pure density matrix ρ̂pure

i in which the system is
found with probability pi = 1, while for all other j 6= i we have pj = 0, it follows,

(ρ̂pure)2 = ρ̂pure, (II.49)

Tr
[
(ρ̂pure)2

]
= Tr

[
ρ̂pure

]
= 1. (II.50)
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For mixed states we find,

Tr
[(
ρ̂mixed

)2
]

=
∑
i

p2
iTr [ρ̂pure

i ]

=
∑
i

p2
i

< 1.

(II.51)

Thus, Tr[ρ̂2] can be used as a measure for the purity of a state. A maximally mixed state
hence minimizes this purity. This is the case if the density matrix is an identity matrix
normalized by the Hilbert space dimension dH = dN with local dimension d of a single
particle (d = 2 for a spin-1/2 particle),

ρ̂ = 1̂
dN

(II.52)

⇒ Tr
[
ρ̂2
]

= 1
dN

, (II.53)

which is the smallest possible value of the purity.
Another phenomenon found in quantum systems is so-called quantum entanglement,

which led to a lot of confusion since it has been experienced by Einstein, Podolsky and
Rosen [115]. Here we introduce entanglement and show how to measure it, while details
and properties are discussed in Sect. II.4.1. A general pure state |Ψ〉 of a multi-particle
system is called separable if it can be written as the tensor product of state vectors of
two subsystems A and B resulting from bi-partitioning the system,

|Ψ〉 = |ΨA〉 ⊗ |ΨB〉. (II.54)

If this is not possible, the state is called entangled.
If we look at a system consisting of two spin-1/2 particles, they can be in the pure

state

|Ψ〉 = 1√
2

[| ↓↓〉+ | ↑↑〉] . (II.55)

The state vector can be expressed in terms of the basis states as

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉
= (α1| ↓〉+ β1| ↑〉)⊗ (α2| ↓〉+ β2| ↑〉)
= α1α2| ↓↓〉+ α1β2| ↓↑〉+ β1α2| ↑↓〉+ β1β2| ↑↑〉,

(II.56)

but there is no possibility to find values for the coefficients α1, β1, α2, β2 such that
α1α2 = β1β2 = 1/

√
2 and α1β2 = β1α2 = 0. Hence, this state is not separable, and we

call it entangled.
To generally see if a system is entangled or not, we introduce the reduced density

matrix ρ̂A of the subsystem A, which can be calculated from the total density matrix by
tracing over the subsystem B,

ρ̂A = TrB [ρ̂] . (II.57)
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The reduced density matrix of a separable pure state is again pure, so that we find
entanglement if

Tr
[
ρ̂2
A

]
< 1. (II.58)

A measure for the amount of entanglement is given by the entanglement entropy, which
is the entropy of the subsystem. In quantum mechanics different definitions for entropy
exist. A common choice to consider is the Rényi entropy of order n, where n > 1 is an
integer,

Sn (ρ) = 1
1− n ln [Tr (ρ̂n)] . (II.59)

For n→ 1, this expression converges to the von-Neumann entropy,

SvN (ρ̂) =− Tr [ρ̂ln (ρ̂)] . (II.60)

Calculating the entropy of a subsystem A, no matter which definition of entropy is used,
yields zero if the system is separable. Moreover, it grows with increasing entanglement in
the system. If the entanglement entropy grows proportional to the boundary between
the two subsystems, the system is said to have area-law entanglement. On the other
hand, it is said to have volume-law entanglement if the entropy grows proportional to
the volume of the subsystem A.

A maximally mixed state with ρ̂ = 1̂/dN has von-Neumann entanglement entropy

SvN (ρ̂A) =− Tr
[

1̂
dN

ln
(

1̂
dN

)]
= N ln [d] ,

(II.61)

which is the maximum value that can be reached.

II.4 Entangled Spin-1/2 States
II.4.1 Bell State and Bell’s Inequality
Having introduced quantum spin-1/2 systems and quantum entanglement, we study
examples of small entangled spin systems. These serve as toy-models for analyzing
entanglement as they can be solved analytically and are hence fully understood. The
smallest of such systems is the Bell state, commonly also referred to as Bell pair, which
consists of N = 2 spin-1/2 particles with state vector

|ΨBP〉 := 1√
2

(| ↑↓〉+ | ↓↑〉) . (II.62)

This spin pair is highly entangled as can already be seen from the state vector since,
when performing a measurement on one particle and finding it in a specific state, the
state of the other particle is fixed [107–109].
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This is a property that has been discussed intensively by J. S. Bell in coherence with the
Einstein-Podolsky-Rosen (EPR) paradox. In this gedanken experiment the entanglement
between two particles is used to determine position or momentum of one particle with
certainty by only measuring the corresponding observable on the other particle. While
the EPR paradox could not be explained by the existing quantum mechanics at that time,
Einstein, Podolsky and Rosen concluded that the theory is incomplete as physical reality
needs a theoretical counterpart in any situation [115]. The theory at this time was based
on locality and realism, together often known as “local hidden-variable theory”. Here
locality refers to the idea that particles cannot be entangled over causally disconnected
distances since the correlations are assumed to be encoded by means of locally acting
hidden variables. (Local) realism, on the other hand, refers to the assumption that for
any “particle”, there is a pre-existing value for the outcome of any kind of measurement.
While there were many debates about the theory of local hidden variables at those

times, Bell showed that quantum entanglement cannot be caused by such local hidden
variables. This he did by finding a quantity for a system consisting of two spin-1/2
particles that has an upper limit when measured in a classical system, while this limit is
violated when considering systems with quantum entanglement [107–109].

While Bell’s inequality in its original form is restricted to specific cases and not
straightforwardly realizable in experiments, Clauser, Horne, Shimony and Holt introduced
a more general and directly measurable form of it, the CHSH-inequality [116, 117]. The
quantity considered in the CHSH-inequality is

B :=
〈
Â1B̂1

〉
+
〈
Â1B̂2

〉
+
〈
Â2B̂1

〉
−
〈
Â2B̂2

〉
. (II.63)

Here Â1, Â2 are two possible observables whose measurements can be performed on the
first particle and B̂1, B̂2 are two observables whose measurements can be performed on
the second particle. The system is prepared in an initial state and causally separated
measurements are performed on the two particles [116, 117].
As this quantity is defined for spin-1/2 particles, all measurements have two possible

outcomes, namely ±1. This implies |〈Âi〉| ≤ 1, |〈B̂i|〉 ≤ 1 for i ∈ {1, 2} using the
triangular inequality. Applying this inequality once more, we find

|B| =
∣∣∣〈Â1B̂1

〉
+
〈
Â1B̂2

〉
+
〈
Â2B̂1

〉
−
〈
Â2B̂2

〉∣∣∣
≤
∣∣∣〈Â1B̂1

〉∣∣∣+ ∣∣∣〈Â1B̂2
〉∣∣∣+ ∣∣∣〈Â2B̂1

〉∣∣∣− ∣∣∣〈Â2B̂2
〉∣∣∣

≤ 2

(II.64)

⇒ |B| ≤ 2. (II.65)

This inequality provides an upper limit for the CHSH-observable B and is referred to as
the CHSH-inequality.
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We can now take a look at a direct quantum mechanical example and choose

Â1 = σ̂x1 ,

Â2 = σ̂z1 ,

B̂1 = 1√
2

(σ̂x2 − σ̂z2) ,

B̂2 = 1√
2

(σ̂x2 + σ̂z2) ,

(II.66)

with Pauli matrices σ̂αi acting on site i of a two-site spin-1/2 system. With this, we define
the specific CHSH-observable BBP,

BBP = 1√
2

[〈σ̂x1 σ̂x2 〉 − 〈σ̂x1 σ̂z2〉+ 〈σ̂x1 σ̂x2 〉+ 〈σ̂x1 σ̂z2〉

+ 〈σ̂z1σ̂x2 〉 − 〈σ̂z1σ̂z2〉 − 〈σ̂z1σ̂x2 〉 − 〈σ̂z1σ̂z2〉]
=
√

2 [〈σ̂x1 σ̂x2 〉 − 〈σ̂z1σ̂z2〉] .

(II.67)

We can choose the state vector of the Bell pair, |ΨBP〉, and calculate BBP by plugging it
in,

BBP = 1√
2

[〈↑↓ |+ 〈↓↑ |] σ̂x1 σ̂x2 [| ↑↓〉+ | ↓↑〉]

− 1√
2

[〈↑↓ |+ 〈↓↑ |] σ̂z1σ̂z2 [| ↑↓〉+ | ↓↑〉]

= 2
√

2,

(II.68)

where we use
σ̂x| ↑〉 = | ↓〉, σ̂x| ↓〉 = | ↑〉,
σ̂z| ↑〉 = | ↑〉, σ̂z| ↓〉 = −| ↓〉,

〈↑ | ↑〉 = 〈↓ | ↓〉 = 1, 〈↑ | ↓〉 = 〈↓ | ↑〉 = 0.
(II.69)

Here we find∣∣∣BBP
∣∣∣ = 2

√
2 > 2. (II.70)

Thus, the CHSH-inequality is violated. This is why we choose the upper index “BP” here,
referring to an observable which violates the CHSH-inequality for the Bell pair. The
violation shows that the Bell state is an entangled state and exhibits quantum correlations.
It can hence not be described by the theory of locally acting hidden variables [116, 117].
It has further been shown that |B| = 2

√
2 is the upper limit of general CHSH-observables

for quantum states, so that for the Bell state the CHSH-inequality is maximally violated
[118].
Considering measurements on the Bell state, we find that the magnetizations in the

σ̂x- and σ̂z-basis are both zero,

〈σ̂xi 〉 = 〈σ̂zi 〉 = 0, (II.71)
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where the operators act on site i ∈ {1, 2}. The correlations between the two spins are
given by

〈σ̂x1 σ̂x2 〉 = 1,
〈σ̂z1σ̂z2〉 =− 1.

(II.72)

II.4.2 GHZ State
A generalization of a Bell state to larger spin systems was introduced by Greenberger,
Horne and Zeilinger in 1989 and is accordingly called the Greenberger-Horne-Zeilinger
(GHZ) state [110]. A Bell state can also be constructed with the state vector

|Ψ̃BP〉 := 1√
2

(| ↑↑〉+ | ↓↓〉) , (II.73)

as this is also a two-spin system in a superposition between two macroscopically different
states. Thus, the two spins are strongly entangled, and the state maximally violates the
CHSH-inequality, which can be checked straightforwardly by choosing the corresponding
observables. A generalization to a system with N > 2 spins is then given by the state
vector of the so-called GHZ state

|ΨGHZ〉 := 1√
2

(| ↑↑ . . . ↑↑〉+ | ↓↓ . . . ↓↓〉) . (II.74)

This is a superposition of the state with all N spins being in the up and the state with all
N spins being in the down state. The state is hence strongly entangled [110, 119, 120].

If we consider expectation values of measurements in the z-basis, one can straightfor-
wardly see from the state vector that an even number of σ̂zi -operators acting on different
sites yields an expectation value of one. On the other hand, the action of an odd number
of σ̂zi -operators on different sites results in an expectation value of zero,

〈ΨGHZ|
K⊗
i=1

σzi |ΨGHZ〉 = 1
2〈↑↑ . . . ↑↑ |

K⊗
i=1

σ̂zi | ↑↑ . . . ↑↑〉

+ 1
2〈↓↓ . . . ↓↓ |

K⊗
i=1

σ̂zi | ↓↓ . . . ↓↓〉

= 1
2 + 1

2 (−1)K .

(II.75)

We can, without loss of generality, apply the σ̂zi -operators to the spins on the first K
sites due to symmetry reasons.

In the x-basis, a σ̂xi -operator flips the spin on site i it is acting on. Thus, expectation
values of operators in the x-basis can only be non-zero if a σ̂xi -operator acts on all sites.
In this case the expectation value is one,

〈ΨGHZ|
K⊗
i=1

σ̂xi |ΨGHZ〉 =
{

1 if K = N,

0 else.
(II.76)
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II.5 The Transverse-Field Ising Model

II.5.1 Ground-State Properties

The one-dimensional transverse-field Ising model (TFIM) is an integrable model for spin-
1/2 particles. It is defined on a chain of N sites with nearest-neighbor Ising interactions
of strength J in the σ̂x-basis in an external field of strength ht in the σ̂z-basis. The
Hamiltonian reads

ĤTFIM =− J
N∑
j=1

σ̂xj σ̂
x
(j+1)%N − ht

N∑
j=1

σ̂zj , (II.77)

where (j + 1)%N = (j + 1)modN denotes the modulo N calculation that accounts for
periodic boundary conditions applied [92–96, 100].
The model can be solved analytically via a Jordan-Wigner fermionization, where it

is mapped onto non-interacting fermions which provide the exact spectrum and energy
eigenstates [93, 94]. From this analytical solution it can be seen that the model describes
a second-order phase transition, or quantum phase transition, at ht = ht,c = ±J between
a paramagnetic (|ht| > J) and a ferromagnetic phase (|ht| < J). These quantum critical
points are characterized by a gapless dispersion relation. The order parameter of the
quantum phase transition is 〈σ̂x〉 [92, 121].

We sketch the Jordan-Wigner fermionization according to [93, 94, 122] and derive an
expression for the dispersion relation to see the vanishing gap at the quantum critical
points. Therefore, we first fix the energy scale by choosing J = 1, which can be done
without loss of generality. Furthermore, we have to distinguish between chains with an
even and an odd number of spins during the fermionization procedure. Here we only
consider the case of an even number of sites, for which we show simulation results later.
The calculations for an odd number of sites can be done analogously, but provide slightly
different results, which however in the end lead to the same quantum critical points
[93, 94, 122].
In the Jordan-Wigner fermionization framework, Pauli spin operators are mapped

to fermionic Jordan-Wigner operators âj , â†j . These can be straightforwardly shown to
satisfy the canonical commutation relations as stated in Eq. (II.24). The mapping can be
done via

â†j := exp

iπ j−1∑
k=1

σ̂+
k σ̂
−
k

 σ̂+
j , (II.78)

âj = σ̂−j exp

−iπ j−1∑
k=1

σ̂+
k σ̂
−
k

 , (II.79)

with σ̂±j = 1/2(σ̂xj ± iσ̂
y
j ).
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In terms of these fermionic operators, the Pauli spin operators can be expressed as

σ̂xj = exp

iπ j−1∑
k=1

â†kâk

(â†j + âj
)
, (II.80)

σ̂zj = 1̂− 2â†j âj , (II.81)

and the Hamiltonian becomes [93, 94, 122]

ĤTFIM =−
N∑
j=1

[
2htâ

†
j âj +

(
â†j − âj

) (
â†(j+1)%N + â(j+1)%N

)]

+ htN +
(
â†N − âN

) (
â†1 + â1

)1̂ + exp

iπ N∑
j=1

â†j âj

 .
(II.82)

Given this expression, a discrete Fourier transform can be applied to express the system
in momentum space. For this we introduce the operators

b̂p := 1√
N

N∑
j=1

âjexp [ipj] , (II.83)

b̂†p = 1√
N

N∑
j=1

â†jexp [−ipj] , p ∈ π

N
Z, (II.84)

where p is the discrete Fourier mode. With a bit of algebra, the Hamiltonian can be
expressed in momentum space as [93, 94, 122]

ĤTFIM =−
∑
p>0

[
(2ht + 2cos [p])

(
b̂†pb̂p − b̂−pb̂

†
−p

)
+2isin [p] b̂−pb̂p − 2isin [p] b̂†pb̂

†
−p

]
=−

∑
p>0

[
b̂†p b̂−p

] [2 (ht + cos [p]) −2isin [p]
2isin [p] −2 (ht + cos [q])

] [
b̂p
b̂†−p

]
.

(II.85)

The matrix form in the last line is used in order to diagonalize the Hamiltonian by a
Bogoliubov transformation defined as

ĉp := upb̂p + vpb̂
†
−p, (II.86)

which yields new fermionic operators ĉp, ĉ†p sufficing Eq. (II.24). The coefficients up and
vp are given by

up =

0 if p ∈ 2π
(
Z + 1

2

)
,

1 if p ∈ 2πZ,
(II.87)

vp =

−i if p ∈ 2π
(
Z + 1

2

)
,

0 if p ∈ 2πZ.
(II.88)
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Figure II.2: Plot of the dispersion relation ωp [Eq. (II.90)] as a function of momentum
p inside the Brillouin-zone for the TFIM with different transverse fields ht.
For comparison a horizontal line is drawn at ωp = 0 to visualize that the
dispersion relation gets gapless for ht = ±1. The gap closes in the middle
of the Brillouin-zone for ht = 1 and at the edges for ht = −1, indicating
quantum phase transitions at these two quantum critical points.

In terms of these operators the Hamiltonian reads [93, 94, 122]

ĤTFIM =
∑
p

ωp

(
ĉ†pĉp + 1

2

)
, (II.89)

with frequency

ωp = 2
√

1 + h2
t − 2htcos (p). (II.90)

The Hamiltonian is now in a non-interacting diagonal form, so that ωp describes the
single particle energy spectrum and thus the dispersion relation between frequency ω
and momentum p [93, 94, 122].

In Fig. II.2 we plot this dispersion relation for different values of ht and it can be seen
that it becomes gapless for ht = ±1. For ht = 1 the gap closes in the middle of the
Brillouin-zone, while it closes at its edges for ht = −1. Thus, at both transverse fields
we find a quantum phase transition [92, 121, 122]. At these quantum critical points, the
entanglement entropy reaches its maximum and scales exponentially with the system
size [123]. Figure II.3 shows the resulting phase diagram, where it needs to be noticed
that the quantum phase transition only occurs at zero temperature, which is also the
case we consider in the following [92, 121].
From the energy spectrum we can calculate the ground state energy per particle E0

32



II.5 The Transverse-Field Ising Model
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Figure II.3: Phase diagram of the TFIM indicating the two quantum critical points (QCP)
at ht = ±1 at which quantum phase transitions between a ferromagnetic and
a paramagnetic phase appear. These quantum phase transitions only exist
at zero temperature, which is what we consider in this thesis. The phase
diagram for non-zero temperatures is illustrated in gray for ht > 0, as it is
discussed in [92], from where this part of the phase diagram is adapted.

for finite system sizes as [93, 94, 122]

E0 =− 1
N

∑
p∈PN

√
1 + h2

t − 2htcos (p), (II.91)

PN = 2π
N

{
−N − 1

2 ,−N − 3
2 , . . . ,

N − 1
2

}
. (II.92)

In the thermodynamic limit, N → ∞, we find the ground state energy per site ε0 for
infinitely long chains [93, 94, 122],

ε0 =− 1
2π

∫ π

−π

√
1 + h2

t − 2htcos (p)dp. (II.93)

As the TFIM can be solved analytically and additionally shows quantum phase transitions,
it is a toy model for benchmarking approximate simulation methods, since the simulation
outcomes can be compared with the exact solution for arbitrary system sizes and in
quantum critical regimes.

II.5.2 Dynamics After Sudden Quenches

In the TFIM dynamics after sudden quenches can be calculated analytically [95, 96, 100].
Here a sudden quench refers to the procedure of preparing the system in the ground state
of the TFIM Hamiltonian with some initial transverse field ht,i and suddenly changing
it to a final value ht,f at time t = 0. In the system where ht = ht,f , the prepared initial
state is an out-of-equilibrium state that reveals non-equilibrium dynamics.

The dynamics in the xx-correlation function after such a quench in the TFIM,

Cxxd (t, ht,i, ht,f) = 〈σ̂x0 σ̂xd 〉 , (II.94)
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can be calculated analytically by evaluating the determinant of a matrix which we do
not derive here, for more detailed information see [95, 100, 122]. Instead we state the
final result,

Cxxd (t, ht,i, ht,f) = C0 (ht,i, ht,f) exp
[
− d

ξ1 (ht,i, ht,f)

]

+
(
h2

t,f − 1
)1/4√

4ht,f

∫ π

−π

dk
π

[
nBF (k)

1− nBF (k)

]1/2 sin [2ωBF (k, ht,f) t− kd]
ωBF (k, ht,f)

× exp
(∫ π

0

dk
π

ln |1− 2nBF (k)|

× {d+ Θ [d− 2vBF (k, ht,f) t] [2vBF (k, ht,f) t− d]}
)
,

(II.95)

with Heaviside step function Θ(x) and amplitude

C0 (ht,i, ht,f) =

(ht,i − ht,f)ht,f
√
h2

t,i − 1
(ht,i + ht,f) (ht,iht,f − 1)

1/2

, (II.96)

for ht,i > ht,f .
Furthermore, we introduce the inverse correlation length,

ξ−1
1 (ht,i, ht,f) = Θ (ht,f − 1) Θ (ht,i − 1) ln |min (ht,i, ht,1)|

− 1
2π

∫ π

−π
dkln [1− 2nBF (k)] ,

(II.97)

ht,1 =
1 + ht,fht,i +

√(
h2

t,f − 1
) (
h2

t,i − 1
)

ht,f + ht,i
, (II.98)

and the mode occupation numbers of the Bogoliubov fermions diagonalizing the TFIM
Hamiltonian,

nBF (k, ht,i, ht,f) = 1
2 − 2ht,iht,f + 1− (ht,i + ht,f) cos (k)

ωBF (k, ht,f)ωBF (k, ht,i)
. (II.99)

The mode frequencies take the form as stated in Eq. (II.90),

ωBF (k, ht) = 2
√
h2

t + 1− 2htcos (k). (II.100)

From these we get the group velocity [95, 100, 122],

vBF (k, ht) = dωBF (k, ht)
dk . (II.101)

In the following we focus on the special case of quenches from a very large initial transverse
field, ht,i →∞, into the vicinity of the quantum critical point within the paramagnetic
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Figure II.4: (a) Correlation function Cxxd [Eq. (II.95)] as a function of relative distance
d at different times t after a sudden quench to ht,f = 1.1 in a chain with
N = 100 sites and periodic boundary conditions. For small relative distances
stationarity is reached at short times and an exponential decay defining a
correlation length ξ1 is found (blue regime). At larger relative distances
oscillations appear whose envelope decays exponentially, defining a second
correlation length ξ2 (orange regime). At even larger relative distances a
Gaussian fall-off is observed which propagates outwards with time (green
regime). Outside the cone the correlations fall to zero (black regime). (b)
Color plot of the correlation function Cxxd [Eq. (II.95)] as a function of relative
distance d and time t after a sudden quench to ht,f = 1.1 in a chain with
N = 100 sites and periodic boundary conditions. The propagating light cone
is clearly visible, where inside the cone the correlations decay exponentially,
while outside of it the correlations fall to zero. Figure adapted from [48].

regime, ht,f → 1, ht,f > 1. This case has been studied in detail albeit the exact solution
can be used for any initial and final transverse field as long as ht,i > ht,f [95, 100, 122].

Since we cannot set the initial transverse field to infinity, we choose it large, ht,i ≥ 100.
We have checked that a fully z-polarized state, as would be the ground state for an
infinitely large transverse field, is approximated accurately. For the ground state with
large transverse field the largest value in the xx-correlation is reached for nearest neighbors
due to the correlation function showing an exponential decay as a function of the relative
distance d. Numerical calculations give values around Cxxd=1 ≈ 5× 10−4 for the ground
state at ht = 100, which is sufficiently close to zero within machine precision. Thus, the
fully z-polarized state where all xx-correlations are zero is approximated with suitable
accuracy [100].
Figure II.4(a) shows the exact correlation function at different times after a sudden

quench from ht,i = 1000 to a final transverse field ht,f = 1.1 as a function of the relative
distance d between the spins whose correlation is calculated. There it can be seen that for
short relative distances, in the blue regime, the correlation function reaches stationarity
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already at very short times after the quench. At larger relative distances the correlations
vanish, and one can see a Gaussian fall-off between the non-vanishing and the vanishing
correlations, as indicated in green in Fig. II.4(a). The scale at which this Gaussian fall-off
starts propagates outwards to larger relative distances. Hence, a light-cone-like behavior
can be observed which is more clearly visible in Fig. II.4(b), showing the time evolution
of the correlation function in a color plot as function of the relative distance d [95, 100].

One can see that the propagation in time is roughly linear and the corresponding velocity
is given by the propagation velocity of the elementary excitations in the system. This
reaches its maximum for the maximum occupation number in the fermion distribution.
Thus, the velocity of the propagating cone is given by the maximum group velocity,
defined in Eq. (II.101). Its maximum is given by

vmax (ht) = max [v (k, ht) |k ∈ [−π, π] ]
= 2min [ht, 1] ,

(II.102)

and since we consider quenches within the paramagnetic phase, ht ≥ 1, the cone
propagates with velocity [122]

vcone ' 2. (II.103)

Inside the cone, one can see a stationary exponential fall-off for short relative distances,
indicated in blue in Fig. II.4(a). This stationary behavior at short relative distances is
special for quenches into the vicinity of the quantum critical point. For quenches further
away from it, oscillations in the correlation function have been found to be superimposed
[95, 100].
At larger relative distances, time-dependent oscillations can be found, indicated in

orange in Fig. II.4(a). The propagation of the oscillating regime is much slower than
the one of the Gaussian fall-off. Considering the envelope of the oscillating regime in
the correlation function after a sudden quench close to the quantum critical point, it
also shows an exponential fall-off with relative distance d. Thus, we can extract two
correlation lengths. The first one, ξ1(t, ht,f), is defined by the exponential decay at small
relative distances. The second one, ξ2(t, ht,f), we can extract from the envelope of the
oscillating regime at larger relative distances [95, 100, 122].
In the following we focus on the first correlation length, which we can extract from

the correlation function by fitting an exponential function to the short-distance regime,
d ≤ 3,

Cxxd (t, ht,f) ∝ exp
[
− d

ξ1 (t, ht,f)

]
. (II.104)

As for quenches into the vicinity of the quantum critical point stationarity is reached
already after short times, the correlation length rather depends on the final transverse
field ht,f than on time. The stationary correlation length is given by the diagonal elements
of the initial-state density matrix, which is set up from the fermion expectation numbers.
These depend only on the initial and final transverse field, as they remain stationary after
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Figure II.5: Correlation length ξ1 [Eq. (II.104)] at times t = 2 and t = 18 after a sudden
quench to different distances ε [Eq. (II.106)] from the quantum critical point
in a chain with N = 100 sites and periodic boundary conditions. The
expected behavior at stationarity described by a generalized Gibbs ensemble
(GGE) is shown for comparison according to Eq. (II.105). While stationarity
is reached already at short times for small and large distances from the
quantum critical point, longer times are necessary to reach stationarity at
intermediate ε. There the GGE behavior appears only in the long-time limit.
Figure adapted from [48].

the sudden quench [100]. Thus, the matrix takes the form of a so-called generalized Gibbs
ensemble (GGE) and in the case of a very large initial transverse field the stationary
correlation length is found to follow the GGE behavior described by the universal function
[95, 96, 100, 124, 125]

ξGGE (ht,f) = [ln (2ht,f)]−1 . (II.105)

A GGE is a generalization of a canonical ensemble which describes classical systems in
thermal equilibrium. A system with constant particle number in a fixed volume inside
a heat bath at thermal equilibrium is represented by a Gibbs ensemble in (classical)
statistical physics. In this representation the statistical entropy of a canonical state is
maximized under the constraint of energy conservation and the state can be described
by a Boltzmann distribution. This property can be translated to quantum mechanics
via replacing the statistical entropy by the von-Neumann entropy of the density matrix,
introduced in Eq. (II.60). However, it is maximized under more constraints of conserved
quantities than only the energy, causing the expression “generalized” Gibbs ensemble
[124, 125].
In Fig. II.5 the GGE behavior of the correlation length according to Eq. (II.105) is
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The entanglement entropy grows linearly with time for quenches close to
the quantum critical point, where the first three lines lie on top of each
other, while it grows slower further away from the quantum phase transition.
The entanglement entropy is calculated using time-dependent density-matrix
renormalization group (tDMRG). Figure adapted from [83].

plotted as a function of the distance,

ε = ht,f − ht,c
ht,c

= ht,f − 1,
(II.106)

of the final transverse field from the quantum critical point at ht,c = 1. It is compared
with correlation lengths extracted from the exact correlation function at different times t
after a sudden quench in a chain with N = 100 sites. It can be seen that for quenches
close to the quantum critical point stationarity is reached already after very short times.
At larger distances from the quantum critical point long times are necessary until the
correlation length gets stationary and follows the GGE behavior. Thus, in this regime
the GGE behavior is an asymptotic long-time limit [95, 96, 100, 122].

However, it is interesting to see that already after short times the correlation function
at short relative distances shows the near-critical behavior expected at late times after
the quench. Thus, these results can even be used to probe thermal equilibrium critical
properties already at short times [100]. This is an important and useful property, since
the quantum critical regime is hard to capture with existing simulation methods due to
the entanglement growing linearly as a function of time after the sudden quench.
Figure II.6 shows the von-Neumann entanglement entropy, Eq. (II.60), calculated for

a chain with N = 40 sites split in two equally sized subsystems, as a function of time
after sudden quenches to different distances ε from the quantum critical point. The
von-Neumann entanglement entropy is calculated using time-dependent density-matrix
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renormalization group (tDMRG), a simulation method working still well at these times
and system sizes, see Sect. II.6 [23].

One finds that the entanglement entropy grows linearly with time close to the quantum
critical point. Comparing different chain lengths, one finds that the entanglement entropy
saturates in this regime at values increasing extensively with the system size, showing
volume-law behavior. Further away from the quantum phase transition the entanglement
entropy grows much slower. Thus, large entanglement is reached already at short times
after quenches into the quantum critical regime. This is a limit for many existing
simulation methods, such as tDMRG, so that in such cases only short-time dynamics are
accessible [23].

II.5.3 Adding a Longitudinal Field

Integrability is lost when applying an additional longitudinal field of strength hl in the
σ̂x-basis to the TFIM [126], a model that we abbreviate with LTFIM. The Hamiltonian
then reads

ĤLTFIM =− J
N∑
j=1

σ̂xj σ̂
x
(j+1)%N − ht

N∑
j=1

σ̂zj − hl

N∑
j=1

σ̂xj . (II.107)

We can again fix the energy scale by setting J = 1.
We still find the system in a paramagnetic phase for large ht and small hl and in a

ferromagnetic phase for small ht, but between the phases there is no quantum phase
transition anymore. The ferromagnetic state is not degenerate here due to the longitudinal
field and thus no symmetry is broken when going to the paramagnetic regime [126].

If we again consider sudden quenches from a large transverse field and no longitudinal
field, (ht,i = 100, hl,i = 0), to different final values, (ht,f , hl,f 6= 0), as we did in the TFIM,
we expect oscillations in the correlation length. These we expect to result from Rabi
oscillations between the spin states caused by the interaction of the longitudinal and the
transverse field.

As the model is not integrable anymore, we can only access an exact solution for very
small system sizes, where the Hamiltonian can be diagonalized exactly. For larger system
sizes we need to deal with approximate numerical simulations instead.

II.6 Exact Diagonalization and tDMRG

In contrast to the TFIM, most spin systems, like the LTFIM, are not integrable and
hence no closed-form solution can be found. Therefore, to get an impression of the system
behavior, such models require numerical approximations which are well understood and
known to represent the exact solution accurately in the considered regimes.

For small system sizes, up to N ∼ 10 – 20 sites, a complete exact diagonalization of the
Hamiltonian operator can still be applied numerically. Thus, we can get exact solutions
for the whole state spectrum and the dynamics [127]. A complete diagonalization of the
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Hamiltonian operator provides the eigenstates and eigenenergies, which corresponds to
solving the stationary Schrödinger equation,

Ĥ|Ψ〉 = E|Ψ〉. (II.108)

The ground state is then given by the eigenstate with the smallest eigenenergy and can
be expressed in a suitable basis.
To calculate the time evolution after a sudden quench, we can evolve each eigenstate

via

|Ψ (t)〉 = e−iĤt|Ψ (0)〉, (II.109)

which can be calculated given the diagonalized Hamiltonian [127]. Computing the exact
diagonalization for the system is very expensive but enables the possibility to calculate
all desired properties.

The diagonalization can be computed more efficiently if symmetries reducing the Hilbert
space dimension are taken into account. Additionally, several numerical approaches exist
to iteratively diagonalize the Hamiltonian in an efficient way, such as the Lanczos and the
Jacobi-Davidson algorithm [127–129], or the Krylov methods for dynamics [127]. These
provide approximations of the exact result with good accuracy. With these approximate
methods, only ground states or lowest-lying excited states can be calculated, which
is sufficient in most cases. By applying appropriate operators, dynamics can still be
calculated from the ground state only [127–129].

As the Hilbert space grows exponentially with system size, this diagonalization ansatz
is still limited to small spin systems even though such approximate methods exist. To
deal with larger system sizes, we need different approximation schemes. We can make
use of the fact that in many cases not all states in the Hilbert space are physical states,
which we call states the system can be found in with significant probabilities. Neglecting
spin states with sufficiently small probabilities provides a reasonable approximation of
the system. This reduces the effective Hilbert space dimension and shifts the problem
to finding an efficient way to extract those physical states. Such an ansatz cannot
approximate arbitrary states efficiently, but only those for which the number of physical
states scales polynomially with the system size. However, for these states methods based
on this ansatz turn out to be very helpful since they capture the non-generic properties
of the quantum system [21–24, 130].
Here we consider specifically the (t)DMRG, which is a simulation method for one-

dimensional quantum many-body systems whose precision is controllable via truncation.
The principle ansatz of DMRG to find ground states is an iterative procedure, starting
with considering only two sites at the borders of the system and increasing the chain length
block-wise. Thus, in each iteration step, a part of the chain is considered consisting of
two equally sized blocks. One site is then added to each block at the inner end, shrinking
the distance between the two, as illustrated in Fig. II.7. This iteratively increases the
considered chain length. The Hamiltonian operator resulting from the combination of
both blocks is then diagonalized numerically to find the eigenstates of the system. A
variational ansatz can be used for this to make the calculations cheaper [21, 23, 130–132].
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Figure II.7: Schematic visualization of the DMRG approach. Arrows denote the workflow.
The dots represent the spins on the chain, where the ones not taking part in
the DMRG at this step are gray. Boxes denote the blocks which are increased
by one site in each iteration and which are directly connected, neglecting
the gray sites in between. One full iteration step consists of adding one site
to each block A, giving A· and ·A, finding the eigenstates via a variational
ansatz, calculating and truncating the density matrix and changing the basis,
where the new blocks are defined as the old blocks plus the added site. This
is repeated until the actual system size is reached and the whole chain is
contained in the two blocks. At this point more iterations can be applied to
increase the accuracy via shifting sites from one block to the other, sweeping
through the chain, where all possible block-shifts need to be considered
[21, 23, 130].

From these eigenstates, the density matrix can be calculated, and it can be truncated
by applying a singular-value decomposition. This factorizes a matrix into two unitary
matrices and a diagonal matrix containing the singular values. Taking only the D
largest singular values into account and setting the others to zero truncates the range of
the matrix. The decomposition can then be reversed again to get the reduced density
matrix. This reduces the range of the density matrix and the effective dimension of the
Hilbert space under consideration cannot exceed the so-called bond dimension D. Due
to the splitting algorithm in the DMRG process, this bond dimension can be controlled
dynamically. Moreover, information about the error made in the truncation can be
extracted, telling how to adapt the bond dimension [21, 23, 24, 130].
After this truncation, the basis of the considered system is changed by redefining

the two blocks including the additional sites and two more sites of the chain are added
between the blocks. The iteration process is illustrated in Fig. II.7. If the combined size
of the two blocks reaches the actual chain length, the iteration can still be proceeded
by sweeping from left to right and back. The size of one block is then increased while
decreasing the size of the other block, where all sets need to be kept track of [21, 23, 130].
The variational search for the eigenstates can be expressed in the matrix product

state (MPS) formulation, which is an efficient representation of low energy states in
one-dimensional quantum systems [20]. The coefficients cv in the basis expansion of
the state vector can be understood as elements of a rank-N tensor for a spin system
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with N sites. Using a singular-value decomposition, that tensor can be successively split
into local tensors Ã(vi)

i of rank one acting on particle i in state |vi〉. One then obtains
the Schmidt decomposition of the full tensor, where the local tensors are connected via
diagonal matrices containing the Schmidt coefficients. These diagonal matrices can be
pulled into the local tensors and this combination can be denoted as rank-one tensor
A

(vi)
i to yield the MPS formulation [23, 24, 133, 134],

|Ψ〉 =
∑
{v}

cv|v〉

=
∑
{v}

A
(v1)
1 A

(v2)
2 . . . A

(vN )
N |v〉.

(II.110)

For translational invariant systems this expression gets simplified since A(vi)
i = A(vi) for

all i ∈ {1, . . . , N}. The connecting matrices containing the Schmidt coefficients quantify
the entanglement between the two particles whose connection got cut. If not all Schmidt
coefficients are non-zero, which is the case for low energy states with small entanglement,
the MPS representation can be truncated by neglecting the (close to) zero Schmidt
coefficients. This provides an ansatz to efficiently approximate quantum many-body
systems with good accuracy [24].
It can directly be seen that this MPS form underlies the block form used in DMRG

and an equivalence between MPS and DMRG is given in the thermodynamic limit [131].
The explicit form of the matrices can be determined via a variational ansatz and provides
the eigenstates of a block in the DMRG procedure [23].

The MPS expression in Eq. (II.110) is true for systems with open boundary conditions,
while a connection between the first and last spin sites needs to be added when considering
periodic boundary conditions. This is computationally more expensive, so that open
boundary conditions can be simulated more efficiently in the MPS representation. It
has been shown that a bond dimension D in open boundary simulations corresponds to
a bond dimension D2 in periodic boundary simulations to reach comparable accuracy
[23, 130].
To simulate dynamics, a Trotter-Suzuki decomposition can be used, where the time

evolution operator is approximated via a decomposition into operators Ĥj acting on
individual links between sites j and j + 1 in an N -site spin chain [23, 25, 133],

exp
[
−itĤ

]
≈
N−1∏
j=1

exp
[
−itĤj

]

= exp
[
−itĤ1

2

]
exp

[
−itĤ2

2

]
. . . exp

[
−itĤN−1

]
. . .

× . . . exp
[
−itĤ2

2

]
exp

[
−itĤ1

2

]
.

(II.111)

This decomposition is often referred to as trotterization. Using the MPS representation
of the states, Eq. (II.110), an operator acting only on sites j and j + 1 can be applied
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Figure II.8: Von-Neumann entanglement entropy SvN(t) [Eq. (II.112)] as a function of
time and final transverse field after sudden quenches from initial fields
ht,i = 100, hl,i = 0 to longitudinal fields hl,f = 0 [(a)], hl,f = 1 [(b)], hl,f = 2
[(c)] and hl,f = 3 [(d)] in a system with N = 42 sites. The entanglement
entropy is calculated via tDMRG where for regimes of strong entanglement
larger bond dimensions need to be chosen to get accurate results, which is
the case in all panels for regimes of small transverse fields. Figure adapted
from [83].

to the wave function exactly in the DMRG step where the two blocks are separated by
the sites j and j + 1. Thus, each of the individual operators can be applied exactly in
the corresponding DMRG step. The action of the trotterized time evolution operator
can then be calculated via a sweep from site one to site N and back [25]. This is the
extension of DMRG to tDMRG, enabling the simulation of dynamics, for example after
sudden quenches.
The DMRG approximation works best in regimes where the eigenvalues decay ex-

ponentially, as this makes a truncation possible without losing too much information
[21, 23, 130]. However, if the eigenvalues decay only slowly, a truncation is harder, since
many eigenstates play an important role in the system and cannot be neglected. This
behavior is found if the individual sites are strongly entangled. Thus, the entanglement
entropy is a quantity giving an estimate how large the bond dimension needs to be
chosen. In the worst case, the system is strongly entangled, and the necessary bond di-
mension grows exponentially with the system size, so that the DMRG becomes inefficient
[21, 23, 24, 130].
The same limitation applies to the dynamics in tDMRG. If the entanglement grows

linearly in time, the tDMRG is limited to short times and an exponentially growing bond
dimension is necessary to capture the dynamics at later times [23, 25].

Figure II.8 shows the von-Neumann entanglement entropy,

SvN =− Tr [ρ̂Alogρ̂A] , (II.112)

with half-chain reduced density matrix ρ̂A, as a function of time after sudden quenches in
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the LTFIM. This entanglement entropy can be calculated within the tDMRG procedure.
The dynamics are shown after sudden quenches at time t = 0 from an effectively fully
z-polarized state, ht,i = 100, hl,i = 0, to final longitudinal fields hl,f = 0 [Fig. II.8(a)],
hl,f = 1 [Fig. II.8(b)], hl,f = 2 [Fig. II.8(c)] and hl,f = 3 [Fig. II.8(d)]. The final transverse
field ht,f is varied along the y-axis.

For quenches in the TFIM [Fig. II.8(a)], volume-law entanglement can be found at the
quantum critical points, as already discussed in the context of Fig. II.6. If a longitudinal
field is present, the entanglement entropy also grows in time for quenches to small
transverse fields, while it remains small at larger transverse fields. Thus, to simulate
sudden quenches to small transverse fields a large bond dimension is necessary in the
tDMRG calculations.
Having introduced the basics of quantum mechanics we do not use hats to indicate

operators anymore in the following. It should now be clear from the context which
quantities are operators.
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During the last years much effort was expended to combine (quantum) physics with
machine learning methods. This has led to many useful and interesting results. One of
those was an ansatz to parametrize quantum spin-1/2 systems with a generative artificial
neural network, specifically the restricted Boltzmann machine. We further analyze this
ansatz within this thesis.
In this chapter we therefore introduce the basic rudiments of machine learning tech-

niques based on artificial neural networks. This provides the foundation to introduce
the parametrization ansatz of spin-1/2 systems. Albeit not all the concepts discussed
here are employed further within this thesis, we give a detailed overview. The concepts
of feed-forward neural networks are discussed in Sect. III.1 based on [135–137], which
provide an introduction to artificial neural networks. Sect. III.2 discusses the restricted
Boltzmann machine in detail and is based on [54, 135–137], while in Sect. III.3.1 we
introduce supervised learning according to [135–138]. The basics of unsupervised learning
are discussed in Sect. III.3.2 based on [54, 135–137, 139] and we consider reinforcement
learning in Sect. III.3.3 according to [136, 140].
Besides the introduction of the basic methods, we give a review of applications of

machine learning methods in (quantum) physics in Sect. III.4, which is based on two
detailed reviews given in [137, 140]. We end the chapter with discussing the neuromorphic
hardware present in the BrainScaleS group at Heidelberg University, which emulates an
artificial neural network on an analog hardware with hardwired spiking neurons. We are
interested in combining this hardware with the quantum state parametrization based on
artificial neural networks.

III.1 Discriminative Models: Feed-Forward Neural Networks
Nowadays, machine learning has become a famous approach in many regimes of technology
and has found a wide range of applications, where it has shown significant improvements.
To name a few examples, machine learning led to impressive progress in the fields of
autonomous driving, text or speech recognition, and playing computer games. A famous
application is also Google’s AlphaGo, a machine which bet the European champion Fan
Hui [141], as well as world champion Lee Sedol in the game “Go”. All these applications
are based on the task to recognize patterns in huge amounts of data [140].

While many approaches and methods of machine learning exist, which perform differ-
ently depending on the tasks considered, methods based on artificial neural networks
(ANN) show remarkable results. This is especially true since people started to compose
deep networks showing more internal structure. An illustrating example for the power
of these models is image recognition, where the network can decide whether a cat (or

45



III. Artificial Neural Networks

any other object) can be found in a given picture. For this example, the ANN takes the
pixels of a given image as input and propagates the information through a network. This
is done in a way such that all information is mapped to a single output, telling whether
there is a cat in the picture or not. Given some labeled data, the way of propagating the
information can be modified such that a desired output is created, which is referred to as
training the network. Once trained, the ANN can be applied to new input data and still
provides the right classification [140].

The original idea of the ANN ansatz is to find a way to mimic the information processing
found by biologists in brains of humans and animals via a mathematical description.
However, on the way to the ANN models used nowadays, the biological plausibility got
lost in most cases, as it turned out that the practicality of the mathematical ansatz
implies restrictions which do not appear in real brains. Nevertheless, these restrictions
allow ANN approaches to become practical models for performing machine learning with
a remarkably efficient behavior.
A famous ANN ansatz is the feed-forward neural network (fNN) model, which we

introduce as an example in this section. The fNN is the most general example for the class
of discriminative models, which take some input and create an output that is observed.
These models appear useful in applications such as regression, where values of target
variables are predicted given some input variables, or classification, where an input vector
is assigned to a discrete class. We introduce fNN networks and then discuss modifications
of the network structure providing different discriminative ANN setups. Another class
of ANN are generative models, such as the restricted Boltzmann machine, where a full
model distribution is represented by the network. Thus, also new data points in the
input space can be created. We discuss these models in more detail in Sect. III.2.
The setup of an fNN is shown in Fig. III.1(a), where the network consists of many

neurons, denoted by the circles, which can take continuous real values. The neurons can
be grouped into different layers. Here neurons within one layer are placed below each
other, such that each vertical set depicts one layer. The leftmost set is the input layer,
whose neurons represent the given input data. The rightmost set is the output layer,
containing the prediction of the network. In the example of the cat classification in an
image, this output layer would consist of a single neuron telling whether there is a cat in
the picture or not. The layers in between are referred to as hidden layers, whose neurons
have no clear interpretation. Nevertheless, these layers are important for increasing the
performance of the algorithm, where it has been found that more hidden layers increase
the reachable accuracy of the network in predicting an output. One commonly also
refers to the neurons as input, hidden or output variables and in this thesis we use these
expressions synonymously.

The network structure is then defined via connections between the neurons of different
layers. In an fNN, each neuron vi of the input layer with N input neurons, v =
(v1, . . . , vN ), is connected to each neuron h(1)

j of the first hidden layer with M1 hidden
neurons, h(1) = (h(1)

1 , . . . , h
(1)
M1

), via weights W (1)
i,j . Every neuron h(1)

j in the first hidden
layer has an additional bias b(1)

j . Analogously, each neuron h
(1)
j of the first hidden
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Figure III.1: (a) Schematic representation of an fNN with an input layer consisting of N
input neurons v, L hidden layers consisting of Ml hidden neurons h(l) each
and an output layer with K output neurons y. Information is processed
from left to right, as indicated by the arrows, where each neuron gets as
input a(l)

j the value of each neuron h(l−1)
i of the previous layer multiplied by

some weightW (l)
i,j plus some bias b(l)j . (b) Two common choices for activation

functions are the sigmoid function φσ(a) = 1/(1 + exp[−a]) and the rectified
linear unit (ReLU) function φReLU(a) = 0, if a < 0, and φReLU(a) = a, else.
Both are plotted as a function of neuron input a to show that they reach
values larger than zero for a ≥ 0, which leads to an activation of the neuron.
The sigmoid function is already non-zero for negative a close to zero, but
there it takes small values, so that it is a smooth version of the Heaviside
step function.

layer is connected to every neuron h
(2)
k of the second hidden layer with M2 neurons,

h(2) = (h(2)
1 , . . . , h

(2)
M2

), via weights W (2)
j,k , and so on for the following hidden layers. The

biases are analogously present for all neurons in all hidden layers. The last hidden layer
is connected to the output layer with K output neurons, y = (y1, . . . , yK).
The values of the hidden variables are calculated via non-linear functions depending

on the neurons in the previous layer and the weights connecting them, as well as the
biases. Considering a neuron in the first hidden layer, h(1)

j , it gets the input

a
(1)
j =

N∑
i=1

W
(1)
i,j vi + b

(1)
j , (III.1)

which is the sum over all incoming weights multiplied with the connected input variables
plus the bias of the hidden neuron. The value of the neuron is then derived via applying
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III. Artificial Neural Networks

an activation function φ(a) onto its input,

h
(1)
j = φ

[
a

(1)
j

]
. (III.2)

Common choices for activation functions are the sigmoid function,

φσ (a) = 1
1 + exp [−a] , (III.3)

or the rectified linear unit (ReLU) function,

φReLU (a) =
{

0, if a < 0,
a, else.

(III.4)

Both are plotted in Fig. III.1(b), where it can be seen that they are zero for a < 0, or
small for a negative but close to zero, and non-zero otherwise. Thus, the hidden neuron
gets activated if its input crosses the threshold of zero.
The hidden neurons in the following layer are activated by the activation functions

depending on the connections to the previous layer, and so on for further layers. The
values of the neurons in the output layer are finally given by the total network function,

yk = φ

b(L)
k +

ML∑
j=1

W
(L)
k,j φ

(
. . . φ

[
b(1)
m +

N∑
i=1

W
(1)
m,ivi

]
. . .

) , (III.5)

where we consider a network with L hidden layers. The values of the hidden variables
are plugged in iteratively as the activation function φ(a) of the input a, as stated in
Eq. (III.1), until the dependence on the input layer is reached. Thus, information is
processed through the network from the input to the output neurons via the hidden
layers, causing the name feed-forward neural network. This is indicated by the arrows in
Fig. III.1(a).
In total, the output neurons are highly non-linear functions depending on the input

neurons with the weights and biases being adjustable parameters. These free parameters
are adapted such that the network provides the desired output, where the procedure of
finding the right parameters is called the training or learning of the network. Several
methods to perform this training exist and can be chosen depending on the considered
task. We discuss the training procedures in detail in Sect. III.3.

It has been mathematically proven that an fNN can approximate any function arbitrarily
well due to its high non-linearity, given enough hidden neurons. This can become inefficient
and computationally expensive if too many hidden layers are needed, but in principle a
suitable network can be trained for any input data set.
The choice of weights to get a certain output is not unique, as many symmetries can

be found in the weight space. For example, the hidden neurons can be interchanged and
the weights can be chosen such that the network still provides the same outcome. This is
also true for changing the sign of the weights. Thus, many possible choices of weights
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III.2 Generative Models: The Restricted Boltzmann Machine

provide the same network output and it is hard to interpret the weights found during
training.
We have introduced the fNN model in a general way with an arbitrary number of

hidden layers and also arbitrary numbers of neurons per layer. These numbers, as well as
the activation functions chosen for the individual layers, are ingredients which define the
network structure. They build a set of hyper-parameters which can be adapted suitably
to find a well-performing network but cannot be derived generally. Due to the simple
correspondence of the network structure to the underlying mathematical formula for the
network function, the setup can straightforwardly be generalized further to more complex
structures.

While the fNN ansatz is a commonly used one, there exist many other discriminative
ANN models with different properties. To name a few, convolutional neural networks
use kernels which are scanned over the input data and the weights of these kernels are
learned in the training procedure. This way, features which are learned at one position
in the data can also be recognized in other parts of it, so that translational invariance is
directly included in the network structure. This is for example useful in face recognition
tasks.

Another example are recurrent neural networks, which have an internal memory. Thus,
each neuron can also depend on its state when given some previous input data. This can
for example be helpful when analyzing or training words or sentences for text generation,
where each word or letter also depends on the previous data. These networks are
furthermore useful when considering robot controls, where each action depends on the
previous one.

III.2 Generative Models: The Restricted Boltzmann Machine

III.2.1 Setup and Properties

Having introduced the discriminative ANN models, we now consider generative ANN
models. These encode probability distributions underlying the neurons in the network.
From such networks also data in the input space can be created, showing the same
structure as the data the network is trained on. An example for an application of such
a generative ANN would be completing fragmentary input data. The network can for
example be trained on a set of hand-written digits, where it learns the probability of
each pixel in the image to be black or white when a certain digit is in the picture. The
network can then be used to fill up an image where a part of a written digit is missing,
since new data can be created from the learned probabilities for the pixels in the input
space.

As a general example of generative ANN models, we consider the restricted Boltzmann
machine (RBM). This consists of two layers of neurons, the N visible neurons, v =
(v1, . . . , vN ), and the M hidden neurons, h = (h1, . . . , hM ). We again synonymously
use the expressions visible and hidden variables for the corresponding neurons within
this thesis. A scheme of the RBM setup is shown in Fig. III.2. Here the visible layer
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Figure III.2: Schematic visualization of a two-layer restricted Boltzmann machine with N
binary visible variables vi and M binary hidden variables hj . Each visible
variable is connected to each hidden variable via a weight Wi,j and each
neuron has an additional bias, di for the visible and bj for the hidden neurons.
The weights and biases provide the network energy which is considered to
describe a Boltzmann distribution.

corresponds to the input layer in the fNN models discussed in Sect. III.1 and contains
the observed data. While every neuron vi in the visible layer is connected to each neuron
hj in the hidden layer via some weight Wi,j , no connections within the layers exist. This
restriction to inter-layer connections is reflected by the term “restricted” in the name of
the model. It leads to various simplifications in dealing with the network compared to a
general Boltzmann machine with all-to-all interactions. Each variable furthermore has a
bias, analogously to the fNN model, where the visible variables have biases di and the
hidden variables have biases bj .

The visible and hidden neurons in the RBM are usually both chosen binary and we
here make the choice that they can take the variables vi, hj ∈ {±1}. There are also works
where the variables are chosen to be zero or one, but both choices can be transferred into
each other. The RBM can also be expressed with variables taking general discrete values,
which turns out to be useful for some applications. This can be reached by combining
multiple binary neurons to one neuron with more possible states [142].

Considering the binary variables and the setup of the RBM, one can find an analogy to
physical spin-1/2 systems, in particular to the Ising model in a field. Since the particles
in a spin-1/2 system are binary, they can be identified with the neurons in the RBM. The
spin-interactions in the Ising model can be mapped to the weights in the RBM. Thereby
the biases of the neurons correspond to an external magnetic field acting on each spin.
Thus, training the RBM can be interpreted as learning the values of interactions and
magnetic fields in an Ising model.

In thermal equilibrium the spin system converges to a state which is described by a
Boltzmann distribution. Hence, the probability distribution over the state space of the
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III.2 Generative Models: The Restricted Boltzmann Machine

spin-1/2 system converges to

P (s) = 1
Z

exp
[
−E (s)
kBT

]
, (III.6)

Z =
∑
{s′}

exp
[
−E (s′)
kBT

]
, (III.7)

with spin configurations s, system energy E(s), Boltzmann factor kB and temperature
T . Z denotes the normalization factor with the sum running over all possible spin
configurations. This explains why the considered ANN model is called (restricted)
Boltzmann machine, since we expect the configurations of the neurons to follow a
Boltzmann distribution in thermal equilibrium.
Using this analogy to the Ising model, the energy of a network configuration can be

defined as

E (v,h;W) =−
N∑
i=1

divi −
M∑
j=1

bjhj −
N∑
i=1

M∑
j=1

viWi,jhj , (III.8)

with the set of all weights and biases W = (d,b,W ). Since the RBM is defined
independent of the temperature, we can put kBT = 1, so that the probability distribution
over the network configurations can be expressed as [140]

PW (v,h) := P̃W (v,h)
Z (W)

= exp [−E (v,h;W)]
Z (W) ,

(III.9)

Z (W) =
∑
{v},{h}

exp [−E (v,h;W)] . (III.10)

Here we distinguish between the unnormalized distribution P̃W(v,h) and the distribution
PW(v,h) normalized by the factor Z(W). This is already the output we expect from a
generative model, providing a probability distribution underlying all neurons. However,
the most common application of an RBM is to model probability distributions. Hence, the
learning procedure consists of adapting the weights such that a probability distribution
underlying some input data is reproduced. This distribution is in most cases only defined
for the visible variables, as these are the given input parameters of the network and
hence correspond to samples following the target distribution. Thus, we also need to
know PW(v) in order to minimize its difference from the desired distribution during the
network training.

The quantity PW(v) is given by the marginalization over the hidden variables,

PW(v) = 1
Z (W)

∑
{h}

P̃W (v,h) . (III.11)
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Here the sum runs over all 2M possible configurations of hidden variables. Analogously,
the distribution underlying the hidden variables is given by a marginalization over the
visible variables,

PW (h) = 1
Z (W)

∑
{v}

P̃W (v,h) . (III.12)

Calculating this distribution again includes a sum over exponentially many terms, the 2N
configurations of the visible variables. The so-called block Gibbs sampling scheme, which
we introduce further in Sect. III.2.2, can be used to iteratively create samples of the
visible and hidden variables from the underlying distributions. These can approximate
the sums in Eqs. (III.11)–(III.12), so that the probability distributions can be calculated
efficiently in an approximate manner.
An unsupervised learning scheme as introduced in Sect. III.3.2 can be used to train

the weights and biases in the RBM such that PW(v) represents a probability distribution
underlying the given input data accurately. Therefore, the target distribution is not
needed to be known explicitly. By drawing samples from PW(v) via a Monte Carlo
approach, new data can be created in the input space, which represents the structure
of the given input data. Analogously to the fNN, it has been shown that the RBM can
represent any probability distribution given enough hidden neurons [55].
By stacking multiple RBM models on top of each other, a so-called deep Boltzmann

machine with multiple hidden layers can be created. Thereby the hidden layer of the
lower RBM acts as a visible layer for the RBM on top of it. This increases the number
of variational parameters in the network and thus improves its representational power.

III.2.2 Gibbs Sampling

To sample both, the visible and the hidden neurons in an RBM, a common choice is the
Gibbs sampling approach. This is an ansatz that can be applied efficiently to networks
with no intra-layer interactions. It makes use of the fact that neurons of one layer depend
only on neurons of a different layer and thus each layer can be fully updated at once to
create a new sample.
The Gibbs sampling scheme is a Markov chain Monte Carlo method, meaning that

a chain of samples is created with each new sample depending only on the previous
one. Here the visible and hidden variables are updated alternatingly. Thus, the iterative
sampling procedure of a two-layer network with one visible and one hidden layer takes
the form

· · · → (vt,ht)→ (vt+1,ht)→ (vt+1,ht+1)→ . . . , (III.13)

where t is the index counting the sampling steps.
Considering the RBM setup, the unnormalized joint probability of a configuration of

neurons is given by P̃W(v,h), as defined in Eq. (III.9). From this we can derive transition
probabilities for the visible variables to change from v to ṽ while keeping the hidden
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variables fixed,

T [(v,h)→ (ṽ,h)] ≡ T (v→ ṽ)

:= P̃W (ṽ,h)∑
{ṽ} P̃W (ṽ,h)

= PW (ṽ |h) ,

(III.14)

where we introduce the conditional probability PW(v|h). From this expression we can
derive the acceptance probability A(v→ ṽ). In the creation of the Monte Carlo Markov
chain, some configuration v is given and a new configuration ṽ is proposed. This new
configuration is then either accepted with probability A(v→ ṽ), so that ṽ is added to
the sample set, or rejected with probability 1 − A(v → ṽ) so that v is added to the
sample set. The acceptance probability reads

A (v→ ṽ) = min
[
1, P̃W (ṽ,h)
P̃W (v,h)

T (ṽ→ v)
T (v→ ṽ)

]
= 1,

(III.15)

where we use Eq. (III.14) to arrive at the last line. This tells us that each proposed
configuration is accepted.
The new configuration can be sampled from the transition probability T (v→ ṽ), as

this provides samples following the desired distribution. Thus, for the sampling procedure
we need the conditional probabilities,

PW (v |h) = PW (v,h)∑
{v′} PW (v′,h)

=
N∏
i=1

exp
[∑M

j=1 viWi,jhj + divi
]

∑
v′i=±1 exp

[∑M
j=1 ṽiWi,jhj + ṽidi

]
=

N∏
i=1

PW (vi |h) ,

(III.16)

showing that the individual visible variables are conditionally independent. This provides
the conditional probabilities for each visible neuron,

PW (vi = 1 |h) = 1
1 + exp

[
−2
∑M
j=1Wi,jhj − 2di

] , (III.17)

PW (vi = −1 |h) = 1
1 + exp

[
2
∑M
j=1Wi,jhj + 2di

] . (III.18)

Using the analogous steps, we can also write down the conditional probabilities for the
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hidden neurons,

PW (hj = 1 |v) = 1
1 + exp

[
−2
∑N
i=1 viWi,j − 2bj

] , (III.19)

PW (hj = −1 |v) = 1
1 + exp

[
2
∑N
i=1 viWi,j + 2bj

] . (III.20)

We can then use a standard importance sampling scheme to sample from the conditional
distributions, where we iteratively update the visible and the hidden variables. This
yields the following procedure for the Gibbs sampling scheme,

1. start with random configurations for the hidden variables,

2. generate N uniformly distributed random variables ri ∈ [0, 1),

3. if ri ≤ PW(vi = 1|h) set ṽi = 1, else set ṽi = −1 for all i ∈ {0, . . . , N − 1},

4. generate M uniformly distributed random numbers rj ∈ [0, 1),

5. if rj ≤ PW(hj = 1|ṽ) set h̃j = 1, else set h̃j = −1 for j ∈ {0, . . . ,M − 1},

6. add the created samples to the sample sets for visible and hidden neurons and
repeat from 2 until a desired size of the sample sets is reached.

When dealing with deep networks, we can make use of the fact that each layer is only
connected to the directly neighboring layers, so that layer one does not directly depend
on layer three and so on. Thus, we can always create samples of the neurons in all odd
layers at once and given those we can create samples of the neurons in all even layers at
once, yielding two steps in the iteration scheme. The Gibbs sampling is hence an efficient
sampling scheme when considering neural networks in the RBM structure.
Given this efficient sampling procedure, an RBM can be used to perform stochastic

inference, as it can be trained to represent a desired probability distribution and samples
can be drawn efficiently from it.

III.3 Training Neural Networks

III.3.1 Supervised Learning

Training neural networks is the procedure of adjusting the network weights and biases
such that a desired output of the network is reached for fNN models, or such that a desired
probability distribution is represented by an RBM [54]. Depending on the problem under
consideration, different methods for training the network exist. These can be grouped as
supervised learning, unsupervised learning and reinforcement learning. In the examples
of classification or regression, where labeled data is given and the task of the network is
to label unknown data, a supervised learning scheme is used [140].
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Given some labeled data set, we can train an fNN to predict labels for unseen data
according to some structure in the input. In the case of regression, the data has continuous
real labels, so that training the network basically corresponds to fitting a function to
data. The activation function of the output layer is then an identity function [140].

In the case of classification, the data labels take discrete values, so that each data point
is allocated to one of the possible classes. The activation function of the output layer is
then a so-called softmax function, which is a generalization of the sigmoid function to
multiple dimensions,

φ (ak) = exp [ak]∑K
j=1 exp [aj ]

. (III.21)

The sum in the denominator runs over all variables in the layer considered. Here these
are the K output variables, with each output neuron representing one of the possible
classes. This way, the output layer provides a probability for the input data to belong to
each class.
To train the network, some training data v needs to be given, which already carries

labels yl. The network parameters can be adapted such that the difference between a
label predicted by the network for a given input data vi, yi = fW(vi), and the true label,
yl,i = f(vi), is minimized for all data in the training set. The predicted label depends on
all weights and biases in the network, which we summarize in the set W. Thus, we can
define a so-called cost function

C (W) = 1
2
〈
||fW (v)− f (v)| |2

〉
≈ 1

2S

S∑
i=1
||fW (vi)− f (vi)| |2,

(III.22)

where the sum in the second line runs over all S data points in the training data set,
approximating the exact expectation value. This cost function is the sum-of-squares
function and by minimizing it we can find network weights and biases such that the
labels in the training data are best represented.

The most common way to train the fNN via minimizing the cost function is to use the
gradient descent method. The idea of this ansatz is to follow the negative gradient of the
cost function, which equals sliding down the hill in parameter space. This converges to
the weights representing a minimum of the cost function.

If we consider one weight (or bias) Wλ and change it by some small amount δWλ,

Wλ →Wλ + δWλ, (III.23)

the cost function changes accordingly as

C (W)→ C (W + δWλ) = C (W) + δλC (W) , (III.24)

δλC (W) := δWλ
∂

∂Wλ
C (W) . (III.25)
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Stationarity is reached for ∂C(W)/∂Wλ = 0, which corresponds to an optimum or a
saddle point.
From this it follows that the weights can be adapted according to

W(τ+1)
λ = W(τ)

λ − ε ∂

∂Wλ
C
(
W(τ)

)
, (III.26)

where τ counts the iteration steps when updating the weights. Moreover, ε is a step size
of the update, called the learning rate, which needs to be chosen appropriately. This
formula denotes the gradient descent scheme. After each update of the weights, the cost
function needs to be re-evaluated.
Calculating the gradient of the cost function is a non-trivial task for the highly non-

linear network function fW(v). An efficient way to calculate this gradient in the fNN is
the so-called back-propagation procedure. Based on the chain rule, this scheme provides
a single backward propagation through the network giving all derivatives [140].
To derive a way to evaluate the derivative of the cost function with respect to the

network weights, we consider an arbitrary weight W (l)
i,j connecting neuron i from layer

l−1 with neuron j from layer l. We take into account that the cost function only depends
on the weight via the input a(l)

j which is fed into neuron h(l)
j , so that we can write

∂C (W)
∂W

(l)
i,j

= ∂C (W)
∂a

(l)
j

∂a
(l)
j

∂W
(l)
i,j

. (III.27)

Here we consider a connecting weight, but an analogous expression can be written down
for the biases. As the input a(l)

j is a weighted sum of the neurons h(l−1)
k in the previous

hidden layer,

a
(l)
j =

Ml−1∑
k=1

W
(l)
k,jh

(l−1)
k + b

(l)
j , (III.28)

we get

∂a
(l)
j

∂W
(l)
i,j

= h
(l−1)
i . (III.29)

By applying the chain rule, one gets an iterative expression for the derivative of the cost
function with respect to the neuron input,

∂C (W)
∂a

(l)
j

=
Ml+1∑
k=1

∂C (W)
∂a

(l+1)
k

W
(l+1)
j,k

∂φ
(
a

(l)
j

)
∂a

(l)
j

. (III.30)

Here φ(a) is the activation function which needs to be chosen continuously so that the
derivative can be calculated. Hence, the derivative of the cost function can be calculated
given the expressions for the derivatives with respect to the inputs of all neurons in the
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following layer. Considering the output layer, l = L, the label predicted by the network
is given as the activation function applied to the output layer. Thus, for this case the
derivative of the cost function is given by the absolute deviation between the predicted
and the true label.
This way, starting from the explicit expression for the output layer, the error can be

propagated backwards through the network to calculate the update rules for all weights
and biases, where one pass yields all derivatives. Therefore, this procedure is called the
error back-propagation scheme. In total, the weight update in the supervised learning
thus consists of two steps. First the derivatives of the cost function are calculated via
back-propagation and then all weights are updated according to the gradient descent
procedure.
While the gradient descent is a reasonable ansatz, it still performs poorly in many

cases. The main problem is that the parameter space is highly complex, so that many
local minima and saddle-points exist in which the gradient descent can get stuck. We are
interested in finding the global minimum of the cost function, but due to symmetries in
the weight space, as discussed in Sect. III.1, also the global minimum is highly degenerate.
Thus, it is helpful to run the gradient descent multiple times starting from different initial
points and compare the minima found.
Another ansatz to make the gradient descent more efficient is to use the so-called

stochastic gradient descent. There not all data points in the training set are used at once
to calculate the cost function, but only a few are considered at a time. These sets of
few data points are called mini-batches and the gradient descent procedure according to
Eq. (III.26) can be applied on them. To calculate the gradients, the back-propagation
scheme is applied for each mini-batch individually and in the end the results are summed
up. Using this ansatz, it is still possible to get stuck in local optima or saddle points, but
it is more likely to escape from those. The gradients in each update step point in different
directions since the corresponding cost function can vary depending on the mini-batches,
adding stochasticity to the gradient descent algorithm.

In the gradient descent scheme in Eq. (III.26) we introduce the learning rate ε, which is
another hyper-parameter next to the number of layers or neurons per layer, so it needs to
be chosen appropriately. While a too small learning rate leads to very slow convergence,
with a too large learning rate the update procedure can jump across the minimum in
parameter space, leading to lower accuracy and divergences. Choosing the right learning
rate is often a hard task and it is in many cases helpful to choose an adaptive learning
rate, for example an exponentially decaying one. For this example, the convergence is
fast in the beginning, and at the end the minimum is found with good accuracy.

III.3.2 Unsupervised Learning
An unsupervised learning scheme can be applied if no labeled data is given, as in the
case of the RBM discussed in Sect. III.2. This scheme can for example be used to find
clusters in data or to model a probability distribution from which samples can be drawn.
These are then statistically similar to the input data. The ansatz finds applications in
de-noising, filling in of missing data or discrimination [140].
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Considering the RBM, the goal of training the neural network is to represent a given
probability distribution in the visible layer. Analogously to the case of supervised learning,
to get an update for the network weights and biases we need to define a cost function
which we can minimize. In the example of modeling a probability distribution, we
thus need to find a difference between two distributions, which should be minimal for
a well-trained network. Such a difference is given by the Kullback-Leibler divergence,
which is defined as

KL [P (v) ||Q (v)] :=
∑
{v}

P (v) log
[
P (v)
Q (v)

]
. (III.31)

P (v) is the target distribution over a data set {v} and Q(v) is the represented distribution.
This Kullback-Leibler divergence tends to zero if the represented distribution approaches
the target distribution and is otherwise positive, so that it can be considered as a distance
measure between the distributions. It is important to notice that the Kullback-Leibler
divergence is not symmetric, the target and the represented distribution cannot be
exchanged.

Considering the RBM with the underlying distribution of the visible variables as stated
in Eq. (III.11),

PW (v) = 1
Z (W)

∑
{h}

exp

 N∑
i=1

M∑
j=1

viWi,jhj +
N∑
i=1

divi +
M∑
j=1

hjbj

 ,
Z (W) =

∑
{h}

∑
{v}

exp

 N∑
i=1

M∑
j=1

viWi,jhj +
N∑
i=1

divi +
M∑
j=1

hjbj

 ,
(III.32)

and the distribution P (v) underlying the input data, we can write the cost function as
the Kullback-Leibler divergence of the two,

C (W) = KL [P (v) ||PW (v)]

=
∑
{v}

P (v) log
[
P (v)
PW (v)

]
.

(III.33)

While minimizing this cost function provides a reasonable weight update, considering
a slightly different cost function leads to the more efficient contrastive divergence (CD)
learning, which is commonly used. Instead of directly minimizing the difference between
the target and the represented probability distribution, the tendency of running away
from the target distribution when drawing a single sample via Gibbs sampling can be
minimized. This provides a reasonable ansatz, since in the Gibbs sampling scheme
the probability of the sampled states cannot decrease during the chain creation, see
Sect. III.2.2. Thus, we define the cost function as the difference between two Kullback-
Leibler divergences, the one of the represented distribution at equilibrium PW(v) and
the target distribution P (v), and the one of the represented distribution at equilibrium
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PW(v) and after a single sampling step, P (1)
W (v). The cost function then reads

CCD (W) = KL
[
P (v) ||PW (v)

]
−KL

[
P

(1)
W (v) ||PW (v)

]
=
∑
{v}

P (v) log
[
P (v)
PW (v)

]
−
∑
{v}

P
(1)
W (v) log

[
P

(1)
W (v)
PW (v)

]

=
〈

log
[
P (v)
PW (v)

]〉
P (v)
−
〈

log
[
P

(1)
W

PW (v)

]〉
P

(1)
W (v)

.

(III.34)

The brackets denote expectation values which can be approximated by samples distributed
as P (v) or P (1)

W (v), respectively. To minimize the cost function we can apply the gradient
descent algorithm. The derivative with respect to a general weight or bias Wλ is given by

∂CCD (W)
∂Wλ

=−
〈
∂log

[
P̃W (v)

]
∂Wλ

〉
P (v)

+
〈
∂log

[
P̃W (v)

]
∂Wλ

〉
P

(1)
W (v)

− ∂P
(1)
W (v)
∂Wλ

∂KL
[
P

(1)
W (v) ||PW (v)

]
∂P

(1)
W (v)

,

(III.35)

with unnormalized expressions P̃W(v) = Z(W)PW(v). Here we use

∂log [PW (v)]
∂Wλ

=
∂log

[
P̃W (v)

]
∂Wλ

−
∑
{ṽ}

PW (ṽ)
∂log

[
P̃W (ṽ)

]
∂Wλ

, (III.36)

and the fact that the terms resulting from the derivative of the normalization cancel.
The last term in Eq. (III.35) is found to be small compared to the remaining terms, so
that we can neglect it and get

∂CCD (W)
∂Wλ

≈ −
〈
∂log

[
P̃W (v)

]
∂Wλ

〉
P (v)

+
〈
∂log

[
P̃W (v)

]
∂Wλ

〉
P

(1)
W (v)

. (III.37)

The derivatives in Eq. (III.37) can be calculated explicitly for the RBM and yield for
the case of connecting weights,

∂log
[
P̃W (v)

]
∂Wk,l

=
∑
{h}

P̃W (h| v) vkhl, (III.38)

so that we can write the weight updates in the training procedure as

W
(τ+1)
k,l = W

(τ)
k,l − εδWk,l, (III.39)

δWk,l = ∂CCD (W)
∂Wk,l

=− 〈vkhl〉P (v)P (1)
W (h|v) + 〈vkhl〉P (1)

W (v,h) .
(III.40)
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Analogous expressions can be derived straightforwardly for the derivatives with respect
to the biases. Here we can use the concept of Gibbs sampling, where the hidden variables
are sampled from the conditional distribution PW(h|v). With this we can create the
values of the hidden variable appearing in the first term of Eq. (III.40) by performing a
single Gibbs sampling step on the given input data.
Thus, we get the following procedure to perform CD,

1. pick a sample from the given training data set and use it as a configuration of the
visible variables v,

2. sample a configuration of hidden variables h from PW(h|v) via a single Gibbs
sampling step,

3. sample a configuration of visible variables ṽ from PW(ṽ|h) via a single Gibbs
sampling step,

4. sample a configuration of hidden variables h̃ from PW(h̃|ṽ) via a single Gibbs
sampling step,

5. calculate the weight updates,

δWk,l =− vkhl + ṽkh̃l,

δdk =− vk + ṽk,

δbl =− hl + h̃l,

W(τ+1)
λ = W(τ)

λ − εδWλ

(III.41)

In this procedure, one training sample is used at a time to calculate the weight update.
A modification of this method would be to average over multiple training samples before
calculating the weight update, which can make the training faster. On the other hand,
it can also lead to cancellations in the averages, so that the learning rate needs to be
adapted accordingly.
The ansatz introduced here is often referred to as CD1, since only a single Gibbs

sampling step is performed to see if the represented probability distribution stays close
to the given one. For better accuracy, k steps of Gibbs sampling can be performed here,
which leads to the general method called CDk, but this also makes the computations
more expensive. The learning rate in the update scheme can be treated in the same way
as in the supervised learning approach, so that a suitable value needs to be found for
this hyper-parameter and also an adaptive ansatz might be helpful.

Besides RBM models, also ANN models called auto-encoders use unsupervised learning,
which try to reproduce the given input in the output layer. However, the hidden layers
in between have smaller numbers of variables, so that only the important features to
reproduce the data are kept.

60



III.3 Training Neural Networks

Agent Environment

Action

Observation

Figure III.3: Schematic visualization of the setup used for reinforcement learning. An
artificial software agent can perform actions in a fully or partially observed
environment. It observes the environment and decides which action to
perform next depending on the environment’s state. The environment can
then react on the agent’s action by changing its state. For some actions or
sequences of actions the agent gets a reward. The probability for the actions
to be chosen given the environment’s state is represented by an ANN which
can be trained such that the reward gaining is maximized.

III.3.3 Reinforcement Learning

The third method to train an ANN is reinforcement learning, where an artificial software
agent is considered acting in an environment and reacting on a reward he gets for several
actions. This is for example used to train robots.

The artificial agent in the reinforcement learning scheme can perform different actions
in a fully or partially observed environment. The agent observes the state of the
environment and based on this observation chooses its next action which can again affect
the environment, as schematically visualized in Fig. III.3. Here it is not known what
the correct actions are, but after some actions or in some cases only after a sequence of
actions, the agent gets a reward which can also be negative. The ANN is then trained
such that the reward is maximized, for example in game playing the agent gets a positive
reward at the end of the game if he won it and the probability to win is maximized.
As the reaction of the environment to the agent’s actions is not directly known, we

cannot optimize the final reward. Instead we can train the network by making the
performed actions more likely if a high reward is received and making them less likely
otherwise. In the case of getting the reward only after a sequence of actions, this can
also make bad actions more likely, since the whole sequence gets a higher probability if a
positive reward is obtained. However, taking many possible trajectories of actions into
account, the bad ones are still suppressed in the sum. This training ansatz is known as
policy gradient since the reward is in the end maximized using the stochastic gradient
descent.

The probability for a certain trajectory τ = (a, s) consisting of a sequence of actions a
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and states of the environment s at different times can then be written as

PW (τ) =
tend∏
t=1

P (st+1| at, st)PW (at| st) . (III.42)

Here the product runs over all time steps. P (st+1|st, at) is the probability of the
environment to change to a state st+1 in the next time step given the actual state and
action. Furthermore, PW(at|st) is the probability of the agent to perform the action at
at time t given the environment is in state st. This probability can be represented by
the ANN, as denoted by the sub-index W, which is the set of all weights and biases
in the network. These can be optimized, while the reaction of the environment is an
ingredient to the network. The overall expected reward is then given by summing over all
trajectories weighted according to their underlying distribution as stated in Eq. (III.42).
The stochastic gradient descent can be applied to adapt the weights such that trajectories
providing high rewards become more likely and others are suppressed. This way the
reward is maximized during training.

III.4 Overview: Machine Learning in (Quantum) Physics
During the last years huge effort has been made in pointing out connections between
artificial neural networks, or machine learning in general, and physics. In the following
we give a brief overview of these connections, even though we can by far not make this
overview complete here.
The basic and powerful difference between machine learning and other simulation

methods is the statistical learning from examples instead of a logic-based approach. To
better understand this statistical behavior, an analogy to statistical physics is used, for
example given by considering neural networks as spin glasses [143–145]. Such glassy
dynamics are useful when studying the complex energy landscapes of gradient descent
methods in supervised learning schemes [146–149]. Statistical physics also helps to better
understand unsupervised learning schemes such as contrastive divergence [139, 150].

Since there is a direct connection between the Boltzmann machine and the Ising model,
the Boltzmann machine is often referred to as the “inverse Ising model”. This connection
is used to study the physical properties of the ANN, providing a better understanding
[146, 151]. The training of the Boltzmann machine is additionally studied in the context
of (non-)equilibrium and thermodynamic physics [150, 152–154], and a mean-field theory
is used to further study deep Boltzmann machines [155].
While these are examples where one uses physics to gain a better understanding of

machine learning methods, one can also use applications of machine learning methods
to study physical problems. Considering statistical physics, machine learning is used to
locate phase transitions [156–160] or to classify the corresponding phases [161–163]. It
even finds applications in renormalization group theory [164].

Further applications of machine learning can be found in particle physics and cosmology,
where one uses them for classification or regression tasks and moreover applies generative
models [165, 166]. Here machine learning is applied for gravitational wave analysis [167]
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or black hole detection [168]. Considering the field of chemistry and materials, machine
learning is used for data set generation or to analyze free-energy surfaces.
Another field where artificial neural networks find many applications is quantum

physics [169, 170]. Here machine learning is used for quantum control [171, 172], to
detect order in low-energy product states [173], or to find ground states [174]. Moreover,
machine learning is applied to learn correlations in Einstein-Podolsky-Rosen (EPR) states
[175], or to extract spatial geometry from entanglement [176]. Even the future trends
of research in quantum physics are predicted via a neural-network-based scheme [177].
Furthermore, considering quantum many-body systems, a way to parametrize quantum
states with neural networks has been developed and studied intensively. Especially a
parametrization based on an RBM caught great attention. The representational power
of this RBM-based parametrization has been studied in detail for wave functions of pure
states as well as for mixed states [56, 57, 59–67, 71, 83]. Moreover, the effects of going to
deeper networks in the parametrization, as well as different underlying network models
have been analyzed [72, 73, 76, 77, 178–183].
Two main ansätze exist to learn the explicit representation of the states. One way

is to use given numerical or experimental data and learn to represent it with an RBM,
corresponding to quantum state tomography. Unsupervised [63, 68–70] or supervised
[72, 73] learning schemes are used for this, where either only states with positive amplitudes
are considered or different approaches are used to include the complex phases.
Another way to find the representation of states is a variational ansatz [57], which is

mainly used to find ground states. Moreover, an extension to find first excited states
has been introduced [178]. This variational learning scheme has been applied to find
representations of wave functions for spin systems [57, 74, 80, 184] or bosonic [72, 179, 185]
and fermionic [62, 186, 187] systems, and it has even been used for two-dimensional
systems [57, 62, 71, 187]. Dynamics after sudden quenches can as well be represented
via this variational learning ansatz [57, 188] and it finds applications when considering
dissipative systems [64–67].

We further discuss and analyze this quantum state parametrization based on an RBM
and the variational learning of the representation in this thesis. However, artificial neural
networks find even more applications, such as classifying phases in quantum systems
[88, 156, 158, 180, 189] or emulating basic quantum operations [190]. They are also
used to improve existing simulation methods such as quantum Monte Carlo schemes
[191–196]. Furthermore, they help in some cases to circumvent general problems, like the
sign problem, in existing approximation methods [88–90].

The other way around, also ideas from quantum physics are used to inspire new machine
learning methods. Tensor networks are considered as a basis for generative or discrimina-
tive learning [79, 82, 197, 198] and matrix product states are used for classification tasks
[199–201], or even in generative models [186, 202, 203]. When considering quantum com-
putation, machine learning finds applications as well in controlling and preparing qubits
[204, 205] or in error correction [206–210]. This provides help in building and studying
quantum computers. The approach can again be turned around, as an acceleration in
machine learning methods can be achieved by using classical or quantum hardware beyond
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Figure III.4: Duck-rabbit optical illusion. The interpretation of the seen picture switches
between a rabbit (ears pointing to the left), or a duck (bill pointing to
the left). This can be interpreted as drawing samples from a uniform
distribution underlying the two interpretations and motivates performing
statistical inference with spiking neural networks. Figure taken from [214].

the von-Neumann architecture. Examples for this are quantum computers [211, 212] or
neuromorphic chips, which we further discuss in Sect. III.5 [101–103].

While a lot of work has been done already on the connection between artificial neural
networks and especially quantum physics, the field still leaves many open questions for
further studies. This motivates us to analyze the parametrization of quantum states with
an RBM and reachable benefits using support from neuromorphic hardware.

III.5 Neuromorphic Hardware in the BrainScaleS Group
The BrainScaleS group at Heidelberg University is working on a neuromorphic hardware
with physical models of neurons and synapses connecting them, which is implemented
via mixed-signal microelectronics [102–104, 213]. Their setup is based on so-called
leaky integrate-and-fire (LIF) neurons with the neuron’s membrane being modeled as a
capacitance with an associated membrane potential. The potential is time-dependent
and driven by inputs via synapses, the connections to other neurons. If the membrane
potential crosses some threshold, the neuron emits an action potential, meaning its
membrane shortly depolarizes (spikes) and by that sends a signal via the outgoing axon
triggering the synapses of the connected downstream neurons [102, 103].

Considering a human brain, it happens that it has to deal with incomplete information.
For example, when seeing Fig. III.4 it is not clear whether a rabbit or a duck is shown.
The brain needs to interpret the given information and decide what animal it sees. The
interpretation can vary in time, so the status flips between seeing a duck or a rabbit. This
behavior can be interpreted as drawing samples from a probability distribution. In the
example both interpretations are equally probable. This observation led to the motivation
of performing statistical inference via an ensemble of spiking neurons [102, 103, 105].

An implementation of Markov chain Monte Carlo sampling via spiking neurons has been
derived in [105] and it has been translated to the LIF neurons in [103]. Its applicability
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Figure III.5: Dynamical evolution of the membrane potential found for a spiking LIF
neuron. The effective potential u (t) is shown by the red line, while the
actual membrane potential is depicted in blue, showing the reset to the
potential ρ for a refractory time τref after each spike, indicated by the gray
regions. A spike is emitted if the threshold ϑ depicted by the black line is
crossed from below. If the effective potential is still above the threshold
after the refractory time, the neuron spikes again, yielding a burst of spikes.
The pink areas denote the transition probability P (ui+1 |ui ), illustrating a
prediction for the effective membrane potential. Figure taken from [102].

has been benchmarked in [58]. In these implementations single binary random variables
are represented by the single neurons. Via some temporal noise the network is driven such
that it samples from a target probability distribution in the limit of large sampling times.
The noise is implemented as high-frequency Poisson sources representing unmodeled
parts of the brain, where a typical neuron has 104 synaptic inputs.

The activity of a single neuron encodes the state of the corresponding random variable,
where a spike of the neuron is interpreted as a switch of the binary variable from zero
to one. Alternatively, this spike can also be interpreted as a switch from -1 to 1. This
provides a conditional probability which can be used to define a Markov chain Monte Carlo
sampling. As the membrane potential in the LIF neurons is deterministic, Poissonian
noise can be added to make the sampling process stochastic [58, 102, 103, 105, 215].

Considering the membrane potential u(t) of the LIF neurons, it can be approximately
described by the following equation of motion [213],

du (t)
dt = θ [µ− u (t)] + ση (t) . (III.43)

Here θ is the strength of an attractive force pulling the potential to a mean value µ and σ
is given by the contribution of the Poissonian background. η(t) is Gaussian random noise.
The neuron emits a spike if the membrane potential u(t) crosses a threshold ϑ from below
and after the spike the membrane potential is set to a value ρ for a refractory time τref ,
before it evolves further in time. Here only the actual membrane potential is affected.
The effective potential given by the synaptic input is evolved further and can cause
another spike right after the refractory time, as illustrated in Fig. III.5 [102, 103, 213].
Equation (III.43) has the form of an Ornstein-Uhlenbeck process, a combination of a

Wiener process and an attractive force term. The attractive force is given by the first
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term in Eq. (III.43). A Wiener process is a continuous generalization of a random walk
and thus corresponds to the second term in Eq. (III.43). The probability distribution
generated by an Ornstein-Uhlenbeck process is a unique solution of a Fokker-Planck
equation, which is obeyed by the distribution of the synaptic input of LIF neurons
[102, 103, 213].

This correspondence between the neuron dynamics and the Ornstein-Uhlenbeck process
can be used to perform stochastic inference. To get the probability P (z = 1) of a neuron
z to be in an active state, the burst lengths and the mean first passage times can be
considered [102, 103, 213]. Burst lengths are defined as the numbers of spikes a neuron
performs in a row, so it spikes again directly after the refractory time. On the other hand,
mean first passage times are defined by the mean duration until the threshold is crossed
again from below after a spike. Evaluating these quantities for the Ornstein-Uhlenbeck
process yields [102, 103, 213]

P (z = 1) =
∑
n Pnnτref∑

n Pn
(
nτref +

∑n−1
k=1 τ̄

b
k + Tn

) , (III.44)

where the sum runs over the burst lengths n with underlying distribution Pn. Tn is the
distribution underlying the mean first passage times, and τ̄ bk is the mean drift time to cross
the threshold when starting from the potential ρ after the refractory time [102, 103, 213].
A neuron in a high conductance state is defined as experiencing strong synaptic

stimulation and thus shows accelerated membrane dynamics, symmetrizing the neural
activation function. For such neurons, the probability of being active can be approximated
with good accuracy by a sigmoid function,

P (z = 1 |u) ≈ 1
1 + exp

[
−u−u0

α

] , (III.45)

with neuron potential u, a relative offset u0 and a rescaling factor α ensuring the right
units. This corresponds to the activation function used in Markov chain Monte Carlo
sampling from Boltzmann distributions and can be generalized to a network of LIF
neurons in the high conductance state. It has been shown that such a network can be
configured to sample from a Boltzmann distribution [58, 102, 103, 213].
To train the weights in the implemented neural network such that they provide a

desired Boltzmann distribution on which the sampling can be performed, the contrastive
divergence scheme can be used, see Sect. III.3.2, which runs on an external computer.
An on-chip implementation based on Spike Time Dependent Plasticity could be used on
future hardware platforms [58].
As BrainScaleS implements the sampling network in analog circuits, its runtime is

only dependent on the time constants of the model. Using the typical parameters from
[58, 102, 103] this means that a new sample is generated every micro second, independent
of the system size that is emulated. This leads to an expected speedup of at least
one order of magnitude in the sample creation compared to simulations on a classical
computer, while using about three orders of magnitude less energy [102, 106].
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IV Discrete Truncated Wigner Approximation

One approach to approximate dynamics of quantum systems is to consider the classical
time evolution of initial configurations which are sampled from the Wigner function,
a (quasi-)probability distribution in phase space underlying the initial quantum state.
This ansatz is called the truncated Wigner approximation and it can be adapted for
spin-1/2 systems providing the discrete truncated Wigner approximation. In comparison
to mean-field approximations, this simulation method includes quantum fluctuations
resulting from sampling the initial configuration and averaging over the outcome of many
classical trajectories calculated from different initial states.
We introduce the general truncated Wigner approximation in Sect. IV.1 based on

detailed discussions in [30, 31]. Afterwards, we introduce the modifications to obtain
the discrete truncated Wigner approximation and benchmark this method on sudden
quenches in the transverse-field Ising model.

The chapter contains discussions and results based on [48].

IV.1 Truncated Wigner Approximation
In contrast to classical mechanics, according to Heisenberg’s uncertainty principle there
are always fluctuations present in quantum mechanical systems. Thus, the state of a
quantum system can never be fully determined, e.g., position and momentum cannot be
measured exactly at the same time. These so-called quantum fluctuations are included
in the density operator representation of the states. The expectation value of a general
operator O can be calculated as stated in Eq. (II.7),

〈O〉 =
∑
{v}

∑
{ṽ}
〈ṽ|O|v〉c∗ṽcv

= Tr [Oρ] ,
(IV.1)

ρ =
∑
{v}

∑
{ṽ}
|v〉〈ṽ|c∗ṽcv. (IV.2)

We express the density operator ρ in terms of the basis states weighted by the amplitudes
c∗ṽcv. The form of Eq. (IV.1) shows a direct connection to calculating expectation values
in statistical physics via an integral over a variable, weighted by the underlying probability
distribution. This gives the motivation to consider quantum mechanics in a statistical
language [216–218].

Quantum systems can be represented in terms of quantum phase-space variables, which
leads to an efficient way of dealing with quantum fluctuations in a statistical language.
The quantum phase space can be used to describe quantum mechanics analogously to the
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classical phase space in classical physics. Hence, a general quantum operator corresponds
to a classical function of phase-space variables [219]. Quantum fluctuations can then be
captured by statistical fluctuations, where the underlying probability distribution is given
by the expression of the density matrix in this phase-space language. This is, however,
not necessarily a positive definite function. In the phase-space representation dynamics
near the classical limit, in regimes of small quantum fluctuations, can also be calculated
efficiently, leading to the semi-classical truncated Wigner approximation (TWA).

Analogously to the phase space of classical systems, the quantum phase space can be
represented in the position-momentum basis. It is also possible to span it by coherent
states as eigenstates of the annihilation operator, and all of the following calculations
can also be applied for this case. For convenience sake we stick to the example of the
position-momentum basis in the following.

For the remainder of this section we denote quantum operators using hats to distinguish
them from classical variables. To map a general quantum operator Ô uniquely into the
phase space, we introduce its Weyl symbol OW, which is a classical function in phase
space. A one to one mapping can be defined via

OW (x,p) =
∫

dDξ
〈

x− ξ2

∣∣∣∣ Ô (x̂, p̂)
∣∣∣∣x + ξ

2

〉
exp

[
i

~
p · ξ

]
. (IV.3)

The position coefficients of the phase space are here given by x, where x̂ is the position
operator. Analogously, p is the momentum coefficient with momentum operator p̂. The
vectors are D-dimensional, with D = Nd for N -particle systems in d spatial dimensions.
The phase space has then dimension 2D.

One special Weyl symbol is the Wigner function, W (x,p), which results from mapping
the density matrix into phase space [220],

W (x,p) := ρW (x,p)

=
∫

dDξ
〈

x− ξ2

∣∣∣∣ ρ̂ ∣∣∣∣x + ξ

2

〉
exp

[
i

~
p · ξ

]
.

(IV.4)

It shows properties of a probability distribution, specifically it is normalized,∫ ∫ dDxdDp
(2π~)D

W (x,p) = 1, (IV.5)

but it can take negative values and is therefore called a quasi-probability distribution. The
Wigner function can be used as the weighting distribution when calculating expectation
values of Weyl symbols, since it results from the density matrix and thus includes the
quantum fluctuations. The definition of the Weyl symbols and the Wigner function
provides a complete description of a quantum state, so that expectation values of operators
can be calculated via〈

Ô (x̂, p̂)
〉

=
∫ ∫ dDxdDp

(2π~)D
W (x,p)OW (x,p) . (IV.6)
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For many important classes of quantum states the Wigner function is even positive or
can at least be approximated by a positive function. In these cases a Monte Carlo scheme
can be used to draw Q samples (xq,pq) from the Wigner function and approximate the
expectation value of a quantum operator,

〈
Ô (x̂, p̂)

〉
≈ 1
Q

Q∑
q=1
OW (xq,pq)

= 〈OW (x,p)〉W (x,p) .

(IV.7)

The last line denotes the expectation value according to the underlying distribution
W (x,p).
Given an efficient way to approximately evaluate expectation values of quantum

operators in phase space, we are interested in simulating dynamics in the phase-space
representation. Therefore, we derive the equations of motion in the quantum phase-space
language. Using the definition in Eq. (IV.3) it can be shown that the Weyl symbol of an
operator product is given by

(O1O2)W (x,p) = O1,W (x,p) exp
[
− i~2 Λ

]
O2,W (x,p) , (IV.8)

with the simplectic operator,

Λ =
←−
∂

∂p

−→
∂

∂x −
←−
∂

∂x

−→
∂

∂p , (IV.9)

where the arrows denote in which direction the derivatives are applied. This simplectic
operator also appears in the definition of the classical Poisson bracket,

{A,B}PB =−AΛB. (IV.10)

Given these expressions, we can derive the Weyl symbol of the commutator,

Ôc :=
[
Ô1, Ô2

]
, (IV.11)

Oc,W = (O1O2)W − (O2O1)W

=− 2iO1,Wsin
[~

2Λ
]
O2,W

= i~ {O1,W,O2,W}MB .

(IV.12)

Here we leave out the dependencies for convenience sake and introduce the Moyal bracket,

{A,B}MB =− 2
~
Asin

[~
2Λ
]
B. (IV.13)
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In the limit of small quantum fluctuations, ~→ 0, this Moyal bracket takes the form of
the classical Poisson bracket,

sin
[~

2Λ
]

= ~
2Λ +O

(
~3
)
, (IV.14)

{A,B}MB =−AΛB +O
(
~2
)

= {A,B}PB +O
(
~2
)
,

(IV.15)

with big-O-notation O(~2). The Weyl symbol of the commutator can thus be approxi-
mated by

Oc,W (x,p) = i~ {O1,W (x,p) ,O2,W (x,p)}PB +O
(
~3
)
. (IV.16)

Given an expression for the Weyl symbol of the commutator, we can derive the represen-
tation of quantum dynamics in phase space. Let us therefore consider the von-Neumann
equation,

i~
∂ρ̂ (t)
∂t

=
[
Ĥ (t) , ρ̂ (t)

]
, (IV.17)

which leads to the equation of motion for the Wigner function,

i~Ẇ (x [t] ,p [t]) = {HW (x [t] ,p [t]) ,W (x [t] ,p [t])}MB

= {HW (x [t] ,p [t]) ,W (x [t] ,p [t])}PB +O
(
~3
)
.

(IV.18)

As the commutator reduces to the classical Poisson bracket in the limit of small fluctua-
tions, the Wigner function acts as a classical probability distribution and is conserved in
time. Hence, classical trajectories of the quantum phase-space variables are given by the
characteristics of Eq. (IV.18), along which the Wigner function is conserved.

The expectation value of a quantum operator at a time t can thus be approximated in
a semi-classical manner,〈

Ô (x̂, p̂, t)
〉
≈
∫ ∫

dDx0dDp0W (x0,p0)OW (xcl [t] ,pcl [t]) . (IV.19)

The indices “cl” denote classical time evolution and the index “0” denotes the initial
values at t = 0. This way, a semi-classical approximation of quantum dynamics is given
by sampling initial configurations from the Wigner function of the initial quantum system
and evolving these samples classically in time. Averaging the outcomes at a desired time
over the fluctuations in the initial configurations then provides the simulation outcome.
This is the so-called truncated Wigner approximation, where the term “truncated” refers
to the truncation of the equations of motion at first order in quantum fluctuations. This
procedure gives insights into the relation between a classical and a quantum description
and can in principle even be expanded to higher orders in ~, where the calculations
get more complicated. Therefore, since higher order corrections can be calculated, the
truncated Wigner approximation is controlled.
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Nevertheless, the Wigner function is only a quasi-probability distribution, so the
ansatz is still limited. As already discussed, the Wigner function is positive for most
important classes of quantum systems, but if it takes negative values we cannot sample
the initial states. Additionally, as the Wigner function is conserved during the classical
time evolution, it can also not reach negative values at later times so that not all quantum
states can be represented. This might lead to wrong correlation functions at later times
in the simulations. The ansatz is used frequently for simulations of several quantum
systems, e.g., bosonic systems at low temperatures [14, 32, 33]. Furthermore, it gives
accurate results in many cases, especially at short time scales and for weakly interacting
systems.

From now on we omit the indication of operators by hats again.

IV.2 Discrete Quantum Phase Space

To represent discrete spin systems, such as spin-1/2 systems, in a quantum phase space,
also the phase space can be chosen in a discrete manner. For the specific example of
a spin-1/2 system, which we consider in the following, a discrete quantum phase space
can be defined as a real-valued finite field spanned by four points. Each point represents
one state in phase space and can be expressed as a two-dimensional vector α = (a1, a2),
a1, a2 ∈ {0, 1}, over the finite field. The four points can then be connected via three sets
of two parallel lines each, as illustrated in Fig. IV.1(a),(c) [34, 35].
In the continuous case, with each set of parallel lines one observable is associated,

where usually momentum p and position x are chosen for the horizontal and vertical
lines, respectively. For the discrete case we analogously associate the Pauli operators
σx, σy and σz with the three sets of parallel lines [34, 35]. Each line of each set is then
identified with one eigenvalue of the corresponding operator. This is analogous to the
continuous case and corresponds to the eigenvalues ±1 for the Pauli operators [34, 35].
The whole setup is illustrated in Fig. IV.1(a),(c).

To map operators O from the Hilbert space onto the Weyl symbols OW in the discrete
phase space, phase-point operators Aα can be defined [34, 35]. These map every point in
the Hilbert space onto a point in the phase space, and the Weyl symbols are given by

OW (α) = 1
2 Tr [OAα] . (IV.20)

Note that the choice of Aα is not unique [34, 35, 37, 38]. A convenient choice for the
phase-point operators is

Aα = 1
2
[
(−1)a1 σx + (−1)a1+a2 σy + (−1)a2 σz + 1

]
, (IV.21)
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sx−1 1

sy
1

−1

sz

−1

1

0

1

a2

0 1 a1

0

1

a2

0 1 a1

(a) (b) (c)

Figure IV.1: Setup of the discrete quantum phase space for a single spin-1/2 particle.
Panels (a) and (c) show two different phase-space representations created
by two different phase-point operators Aα from Eq. (IV.21) and A′α from
Eq. (IV.23). The dashed lines denote the three sets of two parallel lines each.
The mapping between the spin state and the phase-space representation is
pictured by the arrows pointing to the corners of the cube in panel (b), which
denotes the eight possible configurations of the spin state with sµ = ±1,
µ ∈ {x, y, z}. Mapping the density matrix into phase space provides the
Wigner function, a quasi-probability distribution underlying the phase-space
points. In the case of a non-negative Wigner function spin configurations
can be sampled from it. Figure adapted from [48].

which results in the mapping

(sx = 1, sy = 1, sz = 1)→ (a1 = 0, a2 = 0) ,
(sx = −1, sy = −1, sz = 1)→ (a1 = 1, a2 = 0) ,
(sx = 1, sy = −1, sz = −1)→ (a1 = 0, a2 = 1) ,
(sx = −1, sy = 1, sz = −1)→ (a1 = 1, a2 = 1) ,

(IV.22)

where sµ denote the eigenvalues of the Pauli operator σµ, µ ∈ {x, y, z}. The state of a
single spin-1/2 particle can be uniquely described in terms of these eigenvalues, which
yield 23 = 8 possible states the spin can be found in. These can be depicted as corners
of a cube, see Fig. IV.1(b). The mapping defined via the phase-point operators Aα is
depicted in Fig. IV.1(a). This way, only four of the eight possible spin configurations
shown in Fig. IV.1(b) are represented in the phase space [38].

Since the phase-point operators are not unique, additional operators can be derived
via unitary transformations, A′α = UAαU

† [38]. One possible transformation leads to

A′α = 1
2
[
(−1)a1 σx − (−1)a1+a2 σy + (−1)a2 σz + 1

]
, (IV.23)
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giving the mapping

(sx = 1, sy = −1, sz = 1)→ (a1 = 0, a2 = 0) ,
(sx = −1, sy = 1, sz = 1)→ (a1 = 1, a2 = 0) ,
(sx = 1, sy = 1, sz = −1)→ (a1 = 0, a2 = 1) ,

(sx = −1, sy = −1, sz = −1)→ (a1 = 1, a2 = 1) .

(IV.24)

This maps the remaining four spin states onto a discrete phase-space representation,
as depicted in Fig. IV.1(c). By combining the two phase-space representations all spin
configurations can be represented and with this the full single-particle spin state is
expressed in terms of two discrete quantum phase spaces [38].

The Wigner function is then defined as the Weyl symbol of the density matrix,

Wα = 1
2 Tr [ρAα] . (IV.25)

Similar to the continuous case, it shows properties of a probability distribution and
defines a quasi-probability, which can take negative values, for each point in the phase
space [30, 34, 35, 220]. If the Wigner function has only non-negative entries, it represents
a proper probability distribution from which spin configurations can be sampled. This
way, initial spin configurations can be drawn for each site of the spin system individually
from a separate discrete phase space. However, since the discrete quantum phase spaces
are defined for single spin particles, no (quantum) correlations between the spins can be
represented. Thus, this ansatz can only be used to represent spin systems in separable
states, where the full state can be expressed as a tensor product of the individual spin
states.
For entangled states, it is in principle possible to construct a large discrete quantum

phase space and sample full state configurations from it by mapping the total density
matrix onto the phase space. However, since the density matrix scales exponentially with
the system size, the size of the quantum phase space and with this the computational
costs for this mapping also scales exponentially with the system size. This renders the
ansatz inefficient and limits the quantum phase-space representation to separable states
for large system sizes.
Combining the ansatz with a truncated time evolution of the initially sampled states

provides the discrete truncated Wigner approximation (dTWA) analogously to the TWA
[36–38, 44].

IV.3 Truncating the Time Evolution
Similar to the TWA, the initial configurations sampled from the discrete Wigner function
in the dTWA can be evolved in time to simulate dynamics in spin systems. We consider
the dynamics in the Heisenberg picture, so that the phase-point operators become
time-dependent while the Wigner function remains stationary, and derive the truncated
equations of motion within this section.
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Since one discrete quantum phase space is defined for each site in the spin system,
the total phase-point operator can be written as a tensor product of the individual
phase-point operators,

Aα = Aα1 ⊗ · · · ⊗AαN , (IV.26)

for a system with N sites. The time-dependent phase-point operator A1,...,N (t) is then
given by applying unitary time evolution operators solving the Schrödinger equation, as
stated in Eq. (II.41),

A1,...,N (t) = exp [−iHt] (Aα1 ⊗ · · · ⊗AαN ) exp [iHt] . (IV.27)

For convenience sake we drop the explicit notation of the time-dependence in the following
equations. The equations of motion for the phase-point operators are given by means of
the von-Neumann equation,

iȦ1,...,N = [H,A1,...,N ] . (IV.28)

This differential equation cannot be solved exactly in general and we thus need to
approximate the time evolution. We do this by expanding A1,...,N in a BBGKY-hierarchy
(named after Bogoliubov, Born, Green, Kirkwood and Yvon) and truncating it at first or
second order [38].
For the derivation of the truncated time evolution we introduce reduced phase-point

operators analogously to reduced density matrices,

A1,...,s = Trs+1,...,N [A1,...,N ] . (IV.29)

Furthermore, we define first-, second- and third-order reduced phase-point operators,

Aj = Tr
�j
[A1,...,N ] , (IV.30)

Aj,k = Tr
�j,�k

[A1,...,N ] , (IV.31)

Aj,k,l = Tr
�j,�k,�l

[A1,...,N ] , (IV.32)

where the trace runs over all sites except for j, j and k, or j, k and l, respectively
[38, 221, 222]. Considering a general Hamiltonian with on-site interaction part Hj and
pair-interaction part Hj,k,

H =
N∑
j=1

Hj +
N∑

j,k=1
Hj,k, (IV.33)

the equations of motion can be written down for Aj and Aj,k [38],

iȦj = [Hj ,Aj ] +
N∑
l=1
l 6=j

Trl ([Hj,l,Aj,l]) , (IV.34)

iȦj,k = [Hj +Hk +Hj,k,Aj,k] +
N∑
l=1
l 6=j,k

Trl ([Hj,l +Hk,l,Aj,k,l]) . (IV.35)
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These expressions can be derived from Eq. (IV.28). To get expressions only in terms of
first-order reduced phase-point operators, we introduce correlation operators Cj,k, Cj,k,l
such that

Aj,k = AjAk + Cj,k, (IV.36)
Aj,k,l = AjAkAl +AjCk,l +AkCj,l +AlCj,k + Cj,k,l. (IV.37)

Plugging these expressions into Eqs. (IV.34)–(IV.35), we get

iȦj = [Hj ,Aj ] +
N∑
l=1
l 6=j

Tr ([Hj,l,AjAl] + [Hj,l, Cj,l]) , (IV.38)

iĊj,k = [Hj +Hk, Cj,k] + [Hj,k,AjAk + Cj,k]

+
N∑
l=1
l 6=j,k

Trl ([Hj,l,AjCk,l]) +
N∑
l=1
l 6=j,k

Trl ([Hk,l,AkCj,l])

+
N∑
l=1
l 6=j,k

Trl ([Hj,l +Hk,l,AlCj,k])−AkTrk ([Hj,k,AjAk + Cj,k])

−AjTrj ([Hk,j ,AkAj + Ck,j ]) +
N∑
l=1
l 6=j,k

(Trl [Hj,l, Cj,k,l] + Trl [Hk,l, Cj,k,l]) .

(IV.39)

Truncating the BBGKY-hierarchy at first order sets Cj,k = 0 for all j, k and gives the
equations of motion

iȦj = [Hj ,Aj ] +
N∑
l=1
l 6=j

Trl ([Hj,l,AjAl]) , (IV.40)

which are the mean-field equations of motion [30]. A truncation at second order is
achieved by setting Cj,k,l = 0 for all j, k, l and can be read from Eqs. (IV.38)–(IV.39) [38].

If we consider a spin-1/2 system, as we do in the following, the phase-point operators
and correlation operators can be expressed in terms of the Pauli matrices σµj ,

Aj = 1
2 (1 + ajσj) , (IV.41)

Cj,k = 1
4

∑
µ,ν∈{x,y,z}

cµ,νj,k σ
µ
j σ

ν
k , (IV.42)

with expansion coefficients aj and cj,k [38]. A general Hamiltonian with on-site and pair
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interactions for such a system can also be written in terms of the Pauli matrices,

H =
N∑
j=1

Hj +
N∑

j,k=1
Hj,k

=
N∑
j=1

hjσj +
N∑

j,k=1

∑
β∈{x,y,z}

Jβj,kσ
β
j σ

β
k .

(IV.43)

Plugging Eqs. (IV.41)–(IV.43) into Eqs. (IV.38)–(IV.39), the first-order equations of
motion for the expansion coefficients result in

ȧµj =− 2
∑

γ,δ∈{x,y,z}

hγj aδjεµγδ +
N∑
l=1
l 6=j

Jγj,la
δ
ja
γ
l ε
µγδ

 , (IV.44)

which are the classical equations of motion for a spin system [36–38].
The second-order equations of motion then yield [38]

ȧµj =− 2
∑

γ,δ∈{x,y,z}

hγj aδjεµγδ +
N∑
l=1
l 6=j

Jγj,l

(
aδja

γ
l ε
µγδ + cδ,γj,l ε

µγδ
) , (IV.45)

ċµ,νj,k = 2

− ∑
γ∈{x,y,z}

(
Jνj,ka

γ
j − J

µ
j,ka

γ
k

)
εµνγ

−
∑

δ,γ∈{x,y,z}


hγj +

N∑
l=1
l 6=j,k

Jγj,la
γ
l

 cδ,νj,kεγδµ +

hγk +
N∑
l=1
l 6=j,k

Jγk,la
γ
l

 cµ,δj,k εγδν


−
∑

δ,γ∈{x,y,z}

N∑
l=1
l 6=j,k

[
Jγj,la

δ
jc
νγ
k,lε

γδµ + Jγk,la
δ
kc
µγ
j,l ε

γδν
]

+
∑

δ,γ∈{x,y,z}
Jγj,k

[
aµj

(
cγ,δj,k + aγj a

δ
k

)
εγδν + aνk

(
cδγj,k + aδja

γ
k

)
εγδµ

] .
(IV.46)

Expectation values of one- and two-spin functions can be calculated from the expansion
coefficients as

〈
σµj

〉
≈ 1
Q

Q∑
q=1

aµj;q, (IV.47)

〈
σµj σ

ν
k

〉
≈ 1
Q

Q∑
q=1

(
cµ,νj,k;q + aµj;qa

ν
k;q

)
. (IV.48)
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Q is the total number of initial configurations sampled from the Wigner function and the
index q denotes the expansion coefficient resulting from sample q [38]. For first-order
truncated simulations, expectation values of two-spin functions can be evaluated via

〈
σµj σ

ν
k

〉
≈ 1
Q

Q∑
q=1

aµj;qa
ν
k;q, (IV.49)

as the second-order expansion coefficients are set to zero.
Thus, in the dTWA a set of initial configurations of expansion coefficients aµj is

sampled from the Wigner function on the discrete phase space and each configuration
is evolved in time, where the time evolution is truncated at first or second order. The
expansion coefficients cµ,νj,k are set to zero as initial configuration. By averaging the
resulting observables at different times, dynamics of expectation values can be simulated
approximately in a semi-classical manner [36–38, 44].

IV.4 Simulating Sudden Quenches in the TFIM

IV.4.1 Preparing the Ground State

Having introduced the rudiments of the dTWA, we are interested in benchmarking it on
sudden quenches in the transverse-field Ising model (TFIM). Thus, we take a spin-1/2
system and prepare it in the ground state of a TFIM Hamiltonian with initial transverse
field ht,i,

HTFIM = −
N∑
i=1

σxi σ
x
(i+1)%N − ht,i

N∑
i=1

σzi , (IV.50)

with (i+ 1)%N = (i+ 1)modN denoting modulo N calculations and implying periodic
boundary conditions. N denotes the chain length. We then abruptly bring the system
out of equilibrium by changing the transverse field to a final value ht,f , describing a
sudden quench. The dynamics in the system after the quench can be simulated using the
dTWA and the results can be compared with exact solutions as discussed in Sect. II.5.2
[93–96].

As an initial state we choose the ground state of a TFIM Hamiltonian with infinitely
large transverse field, ht,i →∞, which is the fully z-polarized state,

|Ψ〉 =
N⊗
i=1
| ↑〉i, (IV.51)

with | ↑〉i denoting the spin at site i in the up-state. For this state the single-spin density
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matrix reads

ρ = | ↑〉〈↑ |

=
(

1
0

)(
1 0

)
=
[
1 0
0 0

]
.

(IV.52)

We can now calculate the Wigner functions on the two discrete phase spaces introduced
in Sect. IV.2 via Eq. (IV.25) using the corresponding phase-point operators [34–38, 44].
For the first discrete phase space, defined by the phase-point operators Aα [Eq. (IV.21)],
we get

W(0,0) = 1
2 ↔ (sx = 1, sy = 1, sz = 1) ,

W(1,0) = 1
2 ↔ (sx = −1, sy = −1, sz = 1) ,

W(0,1) = 0 ↔ (sx = 1, sy = −1, sz = −1) ,
W(1,1) = 0 ↔ (sx = −1, sy = 1, sz = −1) .

(IV.53)

For convenience sake we state the spin state corresponding to the considered point in
phase space. For the second phase space, defined by the phase-point operators A′α
[Eq. (IV.23)], we get the Wigner function [38]

W ′(0,0) = 1
2 ↔ (sx = 1, sy = −1, sz = 1) ,

W ′(1,0) = 1
2 ↔ (sx = −1, sy = 1, sz = 1) ,

W ′(0,1) = 0 ↔ (sx = 1, sy = 1, sz = −1) ,
W ′(1,1) = 0 ↔ (sx = −1, sy = −1, sz = −1) .

(IV.54)

This shows that the initial state for the dTWA is sampled equally from the four states
sx = 1
sy = 1
sz = 1

 ,
sx = −1
sy = −1
sz = 1

 ,
 sx = 1
sy = −1
sz = 1

 ,
sx = −1
sy = 1
sz = 1


 , (IV.55)

which are all states with sz = 1. For this initial state the Wigner function is always
positive, so that it is a probability distribution and we can sample the initial spin
configurations. We can then evolve these samples in time by numerically integrating
Eq. (IV.44) or Eqs. (IV.45)–(IV.46), providing simulations truncated at first or second
order, respectively. For this we plug the Hamiltonian, Eq. (IV.50), with the final transverse
field ht,f into the equations of motion and use a fourth order Runge-Kutta scheme for
the integration [223].
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IV.4.2 Dynamics of Correlations
As an observable for benchmarking the dTWA simulation of dynamics after sudden
quenches in the TFIM we choose the correlation function in the x-basis,

Cxxd (t, ht,f) = 〈σx0 (t)σxd (t)〉 , (IV.56)

where d is the distance between the spins whose correlation is calculated. The correlation
function is evaluated at time t after a sudden quench to the final transverse field ht,f
from a fully z-polarized initial state. We can compare the dTWA simulations with
exact solutions as discussed in Sect. II.5.2, where the initial state is an effectively fully
z-polarized state with ht,i = 100. We have checked that this state approximates the
initial state chosen in the dTWA simulations with good accuracy.

Due to translation invariance in the spin chain with periodic boundary conditions, we
can without loss of generality choose one of the two considered spins at position i = 0
when calculating the exact correlations. The outcome only depends on the distance
between the two spins and not on their absolute positions. In the numerical simulations,
translation invariance is not exactly given. We can thus average over all positions to get
better statistics,

Cxxd,dTWA (t, ht,f) = 1
N

N∑
i=1

〈
σxi (t)σx(i+d)%N (t)

〉
. (IV.57)

In the following we compare the exact dynamics after sudden quenches within the
paramagnetic phase (ht > 1) with dTWA results, truncating at first and second order
using two different sample sets for the initial states. In the first sampling scheme we
consider the initial configurations S4, which are obtained by applying only the phase-point
operator Aα [Eq. (IV.21)], as introduced in Sect. IV.2. These are only four configurations,
so that only half of the state space is covered and only two states with sz = 1 are
drawn. In the second sampling scheme, we use the initial configurations S8, which are
the spin states obtained when applying the two sets of phase-point operators Aα and A′α
[Eq. (IV.23)], as depicted in Fig. IV.1. Here the whole state space is covered.
Figure IV.2 shows the absolute value of the correlation function in a spin chain with

N = 20 sites at three different times after a sudden quench to ht,f = 1.0001, very close
to the quantum critical point. The same-site correlation function at d = 0 is given by
the normalization of the state due to σxi σxi = 1 [38]. The initial state is reproduced
exactly up to statistical fluctuations due to the finite sample size, as it is sampled from
the exact underlying distribution. Here we choose R = 10000 samples for the first-order
and R = 1000 samples for the second-order calculations. At later times, deviations from
the exact solution appear, which result from using the semi-classical approximation of
the dynamics. In the calculations with truncation at second order, these deviations are
smaller than in the results with truncation at first order. This comes expected since the
equations of motion are closer to the exact quantum ones.
One can already see in Fig. IV.2 that the correlation function decays exponentially

with distance d at later times after the quench. For a better visualization, Fig. IV.3 shows
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Figure IV.2: Correlation function Cxxd (t, ht,f) [Eq. (IV.57)] at three times t = 0 [(a)],
t = 0.5 [(b)] and t = 1 [(c)] after a sudden quench to ht,f = 1.0001. Discrete
truncated Wigner approximation (dTWA) simulations of first (dots) and
second (crosses) order with the initial state sampled from S4 (blue, single
phase space) and S8 (orange, two combined phase spaces) are plotted
together with the exact solution (black line) as a function of the relative
distance d between the spins. Error bars are of the size of data points
and hence not shown. The exact solution is captured well at short times,
especially when sampling from S8. Figure adapted from [48].

the absolute value of the correlation function in a log-scale [Fig. IV.3(a)]. Moreover, it
shows the absolute error [Fig. IV.3(b)],

∆xx
d (t, ht,f) =

∣∣∣Cxxd,exact (t, ht,f)− Cxxd,dTWA (t, ht,f)
∣∣∣ , (IV.58)

and the residual [Fig. IV.3(c)],

Rxxd (t, ht,f) =
∣∣∣∣∣C

xx
d,exact (t, ht,f)− Cxxd,dTWA (t, ht,f)

Cxxd,exact (t, ht,f)

∣∣∣∣∣ , (IV.59)

for different times t after a sudden quench to ht,f = 1.0001. In Fig. IV.3(a) one can
observe that the dTWA results reach a plateau at correlations of a size Cxxd,dTWA ≈ 10−3,
where the exact solution at short times is much smaller. This plateau is due to statistical
fluctuations and results from the finite sample size, so that no smaller values can be
reached. Thus, these data points are rendered transparent in Fig. IV.3, as they cannot
represent the exact solution.
The plateau can be shifted to smaller values by increasing the sample size R. The

analysis of the scaling of the plateau with R shows that it goes as ∝ R−1/2, what
is expected from general statistical arguments [224]. To capture correlations of the
size Cxxd ≈ 10−5, we would need R ≈ 106 samples, which leads to excessively large
computation times. Thus, we cannot increase R far enough to capture the exponential
decay at large distances, but we have to focus on the short-distance behavior. It is hence
sufficient to consider spin chains with N = 20 sites. If not stated otherwise, all following
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Figure IV.3: Correlation function Eq. (IV.57) [(a)], absolute deviation Eq. (IV.58) [(b)]
and relative error Eq. (IV.59) [(c)] at different times after a sudden quench
to ht,f = 1.0001. DTWA simulations with initial samples from S4 (blue) and
S8 (orange), and truncation at first (dots) and second (crosses) order are
plotted as a function of relative distance d. In panel (a) the exact solution
is plotted for comparison (black line) together with an exponential function
fitted to the first three points (green line). Points appearing in the limiting
plateau due to finite sample sizes are transparent. Error bars are of the size
of data points. Figure adapted from [48].
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simulations within this chapter are done for N = 20 sites and R = 10000 samples for the
first-order or R = 1000 samples for the second-order dTWA.

At times t ≈ 1, one finds clear deviations from the exact solution for the first order
simulations in Fig. IV.3, while the second-order simulations still describe the dynamics
well, as can be observed more clearly in Fig. IV.3(b) and Fig. IV.3(c). However, for
later times the second-order results are not shown anymore. They have diverged due to
instabilities in the equations of motion, as discussed in [225, 226]. For this reason, we
focus on the first-order simulations in the following, as we are interested in late-time
dynamics.

In Fig. IV.3(a) an exponential function is fitted to the first three points of the exact
correlation function and plotted as a green line. One can see that at late times the
correlation function decays exponentially with distance d, since it converges to the
exponential fit even for larger d. The deviations at large distances for t ≥ 3 result from
finite-size effects appearing at these times already.

The absolute errors in Fig. IV.3(b) are always around . 0.1, while the relative error in
Fig. IV.3(c) diverges for large d, so that it is not plotted anymore, especially for short
times after the quench. These divergences result from the plateau due to finite sampling.
Even at later times it can be observed that the relative error for the first two points is
smaller than for larger d.

We now investigate how the performance of the dTWA depends on the final trans-
verse field ht,f after the quench. Therefore, Fig. IV.4 shows the correlation function
[Fig. IV.4(a)], as well as the absolute deviation from the exact solution [Fig. IV.4(b)]
and the relative errors [Fig. IV.4(c)] at a fixed time t = 2 after sudden quenches to
different ht,f . At these times, the second-order simulations have already diverged due to
instabilities and are hence not shown anymore. One finds that the absolute error is again
around . 0.1 for all ht,f , and even the relative errors show the same behavior as discussed
earlier. The residuals of the first two points are small, whereas for larger distances d the
relative deviation grows.

Again, an exponential function fitted to the first three points of the exact correlation
function is shown in green in Fig. IV.4(a). One can see that for short d this decay is
always represented by the correlation function. For quenches to larger values of ht,f , a
plateau, which does not follow the exponential function anymore, builds up at longer
relative distances d in the correlations. Here one finds the second exponential behavior
at intermediate distances, as discussed in Sect. II.5.2. The dTWA captures the plateau
at large relative distances d in the exact solution for larger values of ht,f well, while the
relative errors are still at the order of ∼ 1. This we expect to be improvable by increasing
the sample size R. Given our computational resources, this is out of reach for now, as
discussed earlier.
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Figure IV.4: Correlation function [(a), Eq. (IV.57)], absolute deviation [(b), Eq. (IV.58)]
and relative error [(c), Eq. (IV.59)] at a fixed time t = 2 after sudden
quenches to different transverse fields ht,f within the paramagnetic regime.
The first order dTWA with initial sampling from S4 (blue) and S8 (orange) is
shown as a function of relative distance d, while 2nd order dTWA simulations
have diverged at these times. In (a) the simulations are plotted on a
semi-logarithmic scale together with the exact solution (black line) and an
exponential function (green line) fitted to points at d < 3. Error bars are of
the size of data points and hence not shown. Figure adapted from [48].
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Figure IV.5: Correlation length ξ1(t, ht,f) [Eq. (IV.60)] as a function of time after sudden
quenches to different final transverse fields ht,f within the paramagnetic
phase (different colors). Panel (a) shows dTWA simulations of first order
with initial sampling from S8, while panel (b) shows the exact solution. For
quenches to intermediate distances from the quantum critical point large
deviations are found in the long-time limit. Shaded regions denote the
fitting uncertainty when extracting the correlation length. Figure adapted
from [48].

IV.4.3 Correlation Length: Short-Distance Behavior
From the exponential decay in the correlation function at short distances we can extract
the correlation length ξ1, as introduced in Sect. II.5.2 [95, 96, 100, 122],

Cxxd (t, ht,f) ∝ exp
[
− d

ξ1 (t, ht,f)

]
, for d < 3. (IV.60)

Here we focus on the behavior of only the first three points, since in this regime the
exponential decay is still present for quenches to larger final transverse fields. By
considering the correlation length ξ1 we can analyze the accuracy of the dTWA at short
relative distances. To obtain the dynamics of the correlation length we fit an exponential
function to the decay in the correlation function at distances d < 3 for different times
after sudden quenches to different transverse fields ht,f [95, 96, 100, 122].

Figure IV.5 shows the time evolution after quenches within the paramagnetic regime to
different distances from the quantum critical point, where the same values as in Fig. IV.4
are chosen for the transverse field. Figure IV.5(a) shows the dTWA simulations and
Fig. IV.5(b) shows the exact result, where the correlation length is extracted from a fit
to the short-distance behavior of the exact correlation function. The shaded regions in
Fig. IV.5(a) denote the fitting uncertainty.
The exact short-time behavior is captured well in the dTWA results. This comes

expected, since we have already observed in Fig. IV.4 that the simulations represent the
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IV.4 Simulating Sudden Quenches in the TFIM

exact correlation function very well at short times and small relative distances between
the spins. The correlation length only reflects this short-distance behavior.

Around the first maximum of the damped oscillations observed in the correlation length
dynamics deviations from the exact solution start to appear in the simulations. Even
though the dTWA does not capture these oscillations well, it saturates at approximately
the same values as the exact solution at late times, especially for quenches close to
the quantum critical point. At intermediate distances, here for ht,f = 2, the long-time
behavior deviates strongly from the exact solution, while it gets better again even further
away from the quantum critical point.
As discussed in Sect. II.5.2, for the case of taking the initial transverse field in the

limit of infinity, the late-time correlation length can be described by a generalized Gibbs
ensemble (GGE). At stationarity, the correlation length is thus expected to follow the
universal function [95, 100]

ξGGE (ε) = 1
ln (2ε+ 2) , (IV.61)

with distance ε of the final transverse field from the quantum critical point,

ε = ht,f − ht,c
ht,c

= ht,f − 1.
(IV.62)

To check if the dTWA can capture the convergence to ξGGE(ε) at late times, Fig. IV.6
shows the exact and simulated correlation lengths at a fixed time t = 2 after sudden
quenches as a function of the final distance ε from the quantum critical point on a
logarithmic scale, together with ξGGE(ε). The correlation length saturates at a finite
value at the quantum critical point and does not diverge, which is due to the fact that
the quantum phase transition vanishes for non-zero temperatures in the one-dimensional
TFIM [100].

One can observe that for small and large ε both the exact solution and the simulations
have converged to ξGGE(ε). At intermediate distances stationarity is not yet reached, not
even in the exact solution. To show this more clearly, we also plot the exact solution at a
later time t = 18 after the quench, where we have to choose a larger chain-size to avoid
finite-size effects. It can be observed that the exact solution converges to ξGGE(ε) for all
quenches at long enough times, as discussed in Sect. II.5.2 [100, 122]. However, we find
deviations in the dTWA from the exact result even at later times, so that these do not
converge to ξGGE (ε) at intermediate distances from the quantum critical point.
To also consider quenches across the quantum critical point, Fig. IV.7 shows the

correlation length at a fixed time t = 2 after a sudden quench to different final transverse
fields ht,f . Quenches are considered within the paramagnetic and into the ferromagnetic
phase. The shaded regions denote the temporal oscillations around the final value
appearing at earlier times, while the dashed vertical line indicates the quantum phase
transition. Small transverse fields can be considered as perturbations in the classical
Ising model without a transverse field, which explains why the dTWA captures the exact
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Figure IV.6: Correlation length ξ1(t, ε) [Eq. (IV.60)] at a fixed time t after sudden
quenches within the paramagnetic regime as a function of the final dis-
tance ε from the quantum critical point [Eq. (IV.62)]. DTWA simulations
of first order with initial sampling from S8 (blue dots) are compared to
exact solutions (orange dots) for a spin chain with N = 20 sites at t = 2
on a semi-logarithmic scale. The behavior of the GGE, which is expected
for the exact solution at late times, is also shown according to Eq. (IV.61)
(black line). This behavior is not captured in the dTWA simulations at
intermediate ε. For completeness the exact solution of a spin chain with
N = 100 sites at time t = 18 after the quenches is plotted to show the
convergence to the GGE-function at late times in large systems (green dots).
Error bars denote the fitting uncertainty when extracting the correlation
length. Figure adapted from [48].

solution very well in this region. These dynamics can also be described via a low-order
cumulant expansion, which corresponds to a perturbation approach [188].

One finds the deviations from the exact solution around the quantum critical point as
discussed earlier in the paramagnetic regime, but they also appear in the ferromagnetic
regime. Further away from the quantum critical point, for large ht,f , the simulations rep-
resent the exact solution well again. From these observations we conclude that the dTWA
is limited in the vicinity of the quantum critical point, where large correlation lengths
and hence strong long-range correlations appear. Furthermore, quantum entanglement is
expected in this regime, which is here not captured in the semi-classical simulations.

IV.5 Summary

In this chapter we have pointed out the limitations of the semi-classical discrete truncated
Wigner approximation (dTWA) in a quantum critical regime by benchmarking the
approach on sudden quenches in the transverse-field Ising model (TFIM). We have
studied dynamics after sudden quenches from an effectively fully polarized state into the
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Figure IV.7: Correlation length ξ1(t, ht,f) [Eq. (IV.60)] at a fixed time t = 2 after sudden
quenches within the paramagnetic and into the ferromagnetic regime. DTWA
simulations (green line) are plotted together with the exact solution (black
line). The dashed vertical line denotes the quantum phase transition. Shaded
regions show the amplitude of temporal oscillations in the correlation lengths
at times between t = 1.3 and t = 2, where upper and lower limits correspond
to maximum and minimum values reached, respectively. The dTWA shows
deviations from the exact solution in the quantum critical regime in both
phases. Figure adapted from [48].

vicinity of the quantum critical point. Hereby we have focused on the regime around
the quantum critical point. Strong long-range interactions appear in this region and the
half-chain entanglement entropy grows linearly with time up to a saturation value that
scales extensively with the system size (volume-law), see Sect. II.5.2. As this is a regime
where other existing simulation methods, such as the time-dependent density-matrix
renormalization group, struggle, it is even more important to find simulation methods
valid in this quantum critical region.

Considering the dTWA with equations of motion truncated at first and second order, we
have shown that at short times after the quench both approaches show a good agreement
with the exact solution. The second-order simulations have turned out to be more
accurate than the first-order ones. However, we found the equations of motion truncated
at second order to experience instabilities at later times. These led to divergences in the
simulated correlation functions.
We have shown that the first-order calculations provide stable results even at later

times and that they reproduce the exact correlation function well for quenches both close
to the quantum critical point and far away from it. Nevertheless, they show deviations
at intermediate distances. We have found this behavior especially for short-distance
correlations. The dTWA has turned out to show a restriction to a minimum reachable
value of the correlation function. Due to statistical errors resulting from the finite sample
size, the simulated correlations cannot reach values below this limit. The lower bound
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can be shifted to smaller values by increasing the sample size, but we have found that
it is computationally very expensive to reach smaller correlations. This has limited our
simulations to regimes with large correlations, which is the short-distance regime in the
exponentially decaying correlation function.
As the correlation length ξ1 extracted from the correlation function in the TFIM is

characterized by the short-distance behavior, see Sect. II.5.2, we have shown that it is
also captured well by the first-order dTWA. However, we have not found the correlation
length ξ2 at large relative distances in the simulated results. This can be extracted
from the secondary oscillatory behavior with exponential envelope for quenches further
away from the quantum critical point, as discussed in Sect. II.5.2 [95, 100]. The second
correlation length probably goes beyond the capabilities of the semi-classical simulations.
It might require more quantum effects to be included in the approximation method, such
as the conservation of additional quantities [227]. This is not necessarily given in the
simulations. Furthermore, this correlation length appears at larger relative distances in
the correlation function, which we have pointed out to be hard to capture in the dTWA
due to finite sample size.
We have shown that the short-time dynamics of the correlation length are captured

well by the semi-classical simulations for all quenches. However, when considering the
late-time saturation, we only found accurate results close to the quantum critical point
and far away from it. For quenches to intermediate distances from the quantum phase
transition, 0.1 . ε = ht,f − 1 . 10, the simulations have saturated at different values
than the exact solution. Because of that, the behavior of a generalized Gibbs ensemble
found in the long-time limit of the exact correlation length could not be captured by the
first-order dTWA.
In summary, we have pointed out the limitations of the dTWA in the vicinity of

the quantum critical point, in regimes of strong long-range correlations. At the same
time, we have shown that it captures the exact dynamics well far enough away from
the quantum phase transition even for quenches across the quantum critical point into
the ferromagnetic regime. We have furthermore found the short-time dynamics to be
captured well for all quenches.
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Having benchmarked the discrete truncated Wigner approximation in the quantum
critical regime, we now consider the performance of an ansatz based on quantum Monte
Carlo methods to approximately simulate the same quenches in the transverse-field Ising
model. Those methods are based on sampling states from a probability distribution
underlying the Hilbert space to approximately evaluate expectation values of quantum
operators. The task is then to efficiently find an expression representing this probability
distribution. This suggests a connection to generative artificial neural network models
which can be trained to represent probability distributions underlying given data. From
those distributions, samples in the input space can be drawn. An approach using a
restricted Boltzmann machine to parametrize quantum state vectors and apply Monte
Carlo sampling of those states has been introduced in [57], where representations of
ground states and dynamics are found via a variational ansatz.

In this chapter we recapitulate this ansatz in detail and benchmark its representational
power for ground states and dynamics after sudden quenches in the transverse-field Ising
model, with and without longitudinal field. We end the chapter with pointing out the
limitations of the method.

This chapter contains discussions and results based on [83].

V.1 RBM Parametrization Ansatz

V.1.1 Quantum State Representation

Quantum Monte Carlo methods are a common approach to approximately simulate
quantum many-body systems in an efficient manner. They are based on using Monte
Carlo techniques to sample basis states from a probability distribution underlying the
Hilbert space and, with this, approximate expectation values of quantum operators [51].

The underlying probability distribution is defined via the basis expansion coefficients
cv of the state vector,

|Ψ〉 =
∑
{v}

cv|v〉, (V.1)

with basis states |v〉 = |v1, . . . , vN 〉 for an N -particle system. The sum runs over all 2N
basis states. The coefficients are generally complex, cv ∈ C, and their squares |cv|2 define
probabilities for the basis states v [2, 111, 112]. This can be seen when considering the
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expectation value of an operator Odiag, which is diagonal in the considered basis,〈
Odiag

〉
=
〈

Ψ
∣∣∣Odiag

∣∣∣Ψ〉
=
∑
{v}

∑
{ṽ}

〈
ṽ
∣∣∣Odiag

∣∣∣v〉 cvc
∗
ṽ

=
∑
{v}

∑
{ṽ}
Odiag (v) δv,ṽcvc

∗
ṽ

=
∑
{v}
Odiag (v) |cv|2

≈ 1
Q

Q∑
q=1
Odiag (vq) .

(V.2)

In the last line the sum over all basis states weighted by the probabilities |cv|2 is
approximated by Q samples vq drawn from this distribution. The approximation error is
given by the variance.

To make these approximate simulations applicable, an efficient way to find and express
the underlying probability distribution is necessary, as generally the full distribution is
not known. Thus, a suitable parametrization of the squared basis expansion coefficients,
depending on the basis state v, needs to be found. Several possible parametrization
schemes exist and it depends on the problem of interest which of them is a wise choice.
The task of finding a suitable parametrization suggests a connection to generative

artificial neural networks, such as the restricted Boltzmann machine (RBM) introduced
in Sect. III.2.1. These models can be trained to represent a probability distribution
underlying some input data, where the explicit target distribution does not need to be
known. Since a general RBM uses binary variables as neurons, parametrizing squared
basis expansion coefficients of quantum spin-1/2 systems is straightforward.

A general RBM defines a non-normalized Boltzmann distribution PW(v,h) underlying
the N visible and M hidden neurons (or variables) v and h, respectively. It depends on
the weights and biases W = (d,b,W ), as discussed in Sect. III.2.1,

PW (v,h) = exp

 N∑
i=1

divi +
M∑
j=1

bjhj +
N∑
i=1

M∑
j=1

viWi,jhj

 . (V.3)

Thus, the squared basis expansion coefficients of a spin-1/2 system can be parametrized
by an RBM,

|cv (W)|2 =
∑
{h}

P (v,h;W) , (V.4)

with the sum running over all 2M configurations of hidden variables. The visible variables
are then identified with the spins in the system.

The sum over exponentially many hidden variable configurations can be approximated
efficiently by sampling the hidden neurons from the underlying distribution and summing
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over those samples. This can be done in an efficient way via standard RBM methods,
such as the block Gibbs sampling, which also provides samples for the visible variables
according to |cv(W)|2, see Sect. III.2.2. Thus, the RBM can be trained such that it
represents the probability distribution underlying the basis states in a certain quantum
state. Expectation values of diagonal operators in this basis can then be evaluated
efficiently in an approximate manner according to Eq. (V.2) by performing block Gibbs
sampling to create the samples vq.
However, since the basis expansion coefficients cv are in general complex quantities,

parametrizing the squared coefficients with an RBM does not capture the complex phases
and hence does not fully represent the quantum state. Due to this, only expectation
values of operators which are diagonal in the corresponding basis can be approximated
with the parametrization of the squared coefficients. For general operators O, we need to
include the complex phases,

〈O〉 =
∑
{v}

∑
{ṽ}
〈ṽ |O|v〉 c∗ṽcv. (V.5)

This expectation value cannot be approximated via sampling from a real probability
distribution. In the most relevant cases, non-diagonal operators can still be evaluated
efficiently, as we discuss in Sect. V.1.3, but an explicit expression needs to be given for
the complex coefficients cv.
To overcome the problem of missing complex phases in the parametrization, several

ways to include them have been introduced [57, 68, 69]. In the following we consider
the ansatz of using complex weights and biases in the RBM to directly parametrize the
complex basis expansion coefficients [57],

cv (W) =
∑
{h}

exp

 N∑
i=1

vidi +
M∑
j=1

hjbj +
N∑
i=1

M∑
j=1

viWi,jhj

 , (V.6)

where now W ∈ CN+M+NM .
In contrast to a real RBM as discussed in Sect. III.2.1, the exponential of the network

energy in the complex RBM does not define a probability distribution over the visible
and hidden variables anymore, but it rather yields a complex quantity. Only its square
after summing over the hidden variables, |cv(W)|2, gives a probability distribution from
which spin configurations can be sampled [57]. Thus, there is no probability distribution
defined for the hidden variables, but the sum over all of their configurations can be
evaluated efficiently in an RBM,

cv (W) = exp
[
N∑
i=1

vidi

]
M∏
j=1

 ∑
hj=±1

exp
[
hjbj +

N∑
i=1

viWi,jhj

]
= exp

[
N∑
i=1

vidi

]
M∏
j=1

2cosh
[
bj +

N∑
i=1

viWi,j

]
.

(V.7)
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With this expression, the probabilities |cv(W)|2 can be evaluated efficiently and visible
variables can be sampled. Additionally, an expression for the complex coefficients cv(W)
is still given.
The weights and biases in the RBM are free parameters and need to be adapted to

represent a certain quantum state, which can be done with a variational ansatz. This
corresponds to the training procedure in the real RBM. However, new learning rules need
to be defined for the complex network, which we discuss in Sect. V.1.2 [57].

The number of hidden variables is a hyper-parameter which can be chosen appropriately.
As in a real RBM, a larger number of hidden neurons increases the representational
power. In contrast to a real RBM, we cannot make the complex network deeper by
adding hidden layers, since there is no rule to sample the hidden variables. The efficient
summation as in Eq. (V.7) is only possible for a single hidden layer.

With this, an RBM-based parametrization of quantum spin-1/2 state vectors has been
introduced, on which Monte Carlo methods can be applied to approximately evaluate
expectation values of quantum operators. Using a variational ansatz, the complex RBM
can be trained to represent ground states or even unitary dynamics in spin systems given
some Hamiltonian H [57].

V.1.2 Finding Ground States and Unitary Time Evolution
To find the right complex weights and biases representing certain ground and unitarily
evolving states parametrized with a complex RBM in the form of Eq. (V.6), a variational
ansatz has been proposed in [57]. This ansatz can be accomplished by using a stochastic
reconfiguration procedure, which can be interpreted as an unsupervised learning scheme
[228, 229]. We first introduce the training scheme and then discuss in Sect. V.1.3 how it
can be applied efficiently.
In a variational ansatz the free parameters, which are here the weights and biases W

in the RBM, are updated iteratively via some small variations δW,

Wp+1
λ = Wp

λ + εδWλ. (V.8)

The step size ε here corresponds to the learning rate. The index p counts the iterations,
and the index λ refers to one element of W, which can be a connecting weight or a bias.
Thus, given a state vector |Ψ(W)〉 parametrized with the RBM ansatz,

|Ψ (W)〉 =
∑
{v}

cv (W) |v〉, (V.9)

it can be iteratively updated according to the variations in the weights. We can update
the state vector via

|Ψ′ (W)〉 = exp
[
∆

K∑
λ=1

δWλ
∂

∂Wλ

]
|Ψ (W)〉

=
(

1 + ∆
K∑
λ=1

δWλ
∂

∂Wλ

)
|Ψ (W)〉+O

(
∆2
)
,

(V.10)
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with a small update step size ∆, which is not necessarily related to ε. The sum runs over
all K = N +M +NM variational parameters in the RBM and |Ψ′(W)〉 is the new state
vector [228, 229].

To find an expression for the variational updates we define a projected state |ΨP (W)〉
by applying a small imaginary time step of size ∆ with Hamiltonian H on the given state
|Ψ(W)〉,

|ΨP (W)〉 = exp [−∆H] |Ψ (W)〉

= (1−∆H) |Ψ (W)〉+O
(
∆2
)
.

(V.11)

This imaginary time evolution applies a unitary time evolution operator solving the
Schrödinger equation, analogously to Eq. (II.41) for the case of real-time evolution. The
time variable t is set to an imaginary time variable τ = it. With this replacement the
evolution is expected to converge to the ground state of the system, as eigenstates with
large eigenenergies are suppressed during the evolution. If we choose the step size ∆
small enough, truncating at first order provides a valid approximation. The variations
δW can thus be derived by minimizing the deviation between |ΨP (W)〉 and |Ψ′(W)〉, as
the update then drives the state into the direction of the imaginary time evolution and a
convergence to the ground state is expected for the parametrized state vector [228, 229].

For convenience sake we introduce the variational derivatives Oλ,

Oλ (v) := 〈v |Oλ|v〉

= ∂

∂Wλ
ln [〈v |Ψ (W)〉]

= ∂

∂Wλ
ln [cv (W)] ,

(V.12)

so that the updated state vector, Eq. (V.10), can be expressed as [228, 229]

|Ψ′ (W)〉 =
[
1 + ∆

K∑
λ=1

δWλOλ

]
|Ψ (W)〉+O

(
∆2
)
. (V.13)

Considering the RBM parametrization of the basis expansion coefficients, Eq. (V.6), the
variational derivatives are given by [228, 229]

Odi
(v) = 1

cv (W)
∂

∂di
cv (W) = vi,

Obj
(v) = 1

cv (W)
∂

∂bj
cv (W) = tanh

[
bj +

N∑
i=1

viWi,j

]
,

OWi,j (v) = 1
cv (W)

∂

∂Wi,j
cv (W) = vi tanh

[
bj +

N∑
i=1

viWi,j

]
.

(V.14)
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To minimize the deviation of the updated state vector from the projected state vector,
we can maximize the overlap between the two,

〈Ψ′ (W) |ΨP (W)〉〈ΨP (W) |Ψ′ (W)〉
〈Ψ′ (W) |Ψ′ (W)〉〈ΨP (W) |ΨP (W)〉

!= 1. (V.15)

Solving for the variations δWλ to first order in ∆ yields

K∑
µ=1

δWµ

(
〈O∗λOµ〉 − 〈Oλ〉〈O∗µ〉

)
=− 〈O∗λH〉+ 〈O∗λ〉〈H〉 ∀ λ = 1, . . . ,K. (V.16)

The expectation values are calculated using the RBM parametrization of the wave
function,

〈O〉 =〈Ψ (W) |O|Ψ (W)〉
〈Ψ (W) |Ψ (W)〉

=
∑
{v}

∑
{ṽ} c

∗
ṽ (W) cv (W) 〈ṽ|O|v〉∑
{v} |cv (W)|2

.

(V.17)

The denominator is necessary as the RBM-parametrized state vectors are generally not
normalized. Equation (V.16) can be simplified by introducing a covariance matrix S and
a force vector F with entries

Sλ,µ = 〈O∗λOµ〉 − 〈O∗λ〉 〈Oµ〉 ,
Fλ = 〈O∗λH〉 − 〈O∗λ〉 〈H〉 .

(V.18)

Considering the vector δW containing the variations of all weights and biases,

δW =

 δW1
...

δWK

 , (V.19)

the weight update in Eq. (V.16) can be expressed as

SδW =


∑K
λ=1 δWλSλ,0

...∑K
λ=1 δWλSλ,K

 = −F. (V.20)

This can be solved for the variations in the weights,

δW =− S−1F. (V.21)

The update rule for the weights is thus

Wp+1 = Wp − εS−1F, (V.22)
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V.1 RBM Parametrization Ansatz

which adjusts the variational parameters such that they follow the imaginary time
evolution and converge to the ground state representation [57].

The update rule for the weights and biases to calculate a unitary time evolution can be
derived in an analogous way, resulting in a scheme similar to time-dependent variational
Monte Carlo approaches [52, 53, 230]. Here we define the projected state by applying
the real time evolution,

|Ψt
P (W)〉 = exp [−i∆H] |Ψt (W)〉

= (1− i∆H) |Ψt (W)〉+O
(
∆2
)
,

(V.23)

where we again choose a small step size ∆, which is now a real time step. The updated
state is given using the derivative of the now time-dependent weights and biases,

|Ψt′ (W)〉 = exp
[
i∆ ∂

∂t

]
|Ψt (W)〉

=
(

1 + ∆ ∂

∂t

)
|Ψt (W)〉+O

(
∆2
)

=
(

1 + ∆
K∑
λ=1

∂Wλ

∂t
Oλ

)
|Ψt (W)〉+O

(
∆2
)
.

(V.24)

The variational derivatives as defined in Eq. (V.12) have been plugged in. Again, for
small ∆ a truncation at first order provides a valid approximation. By maximizing the
overlap, as in Eq. (V.15), we arrive at an expression analogous to Eq. (V.21),

∂W
∂t

=− iS−1F. (V.25)

The covariance matrix S and the force vector F are defined as in Eq. (V.18). Note that
the only difference to the update equation for the imaginary time evolution, Eq. (V.21),
is a factor i. This shows the analogy between the imaginary time evolution to find the
ground state and the unitary real time evolution [57].

The covariance matrix S does not necessarily have full rank and is hence not necessarily
invertible. To calculate the inverse for the weight updates, two methods can be used [57].
First, a regularization can be applied, which adds a diagonal matrix with infinitesimal
entries to S. It then has full rank but does not change significantly, so that the updates
are still well approximated. The regularization is defined as

Sreg
λ,µ = Sλ,µ + κ (p) δλ,µSλ,µ, (V.26)

where κ(p) = max(κ0m
p, κmin) is a function starting at a small value κ0 and decaying

exponentially to a minimum value κmin according to mp, m < 1. Here p counts the
iterative weight update steps. The choice of κ0, κmin and m depends on the model
considered and hence needs to be specified for different simulations [57].

The second ansatz is to calculate the Moore-Penrose pseudo-inverse instead of the exact
inverse of S. This pseudo-inverse is calculated by applying a singular-value decomposition,
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V. RBM-Based Wave Function Parametrization

S = UΣV ∗, with unitary matrices U , V and a diagonal matrix Σ containing the singular
values. The inverse is given as S−1 = V Σ−1U∗. If S does not have full rank, neither does
Σ. The pseudo-inverse of Σ can be calculated by inverting the non-zero entries while
leaving the rest unchanged. Undoing the decomposition yields the pseudo-inverse of S
[57].
In our simulations we find that it is best to apply both methods when calculating

S−1 to get a stable result. The stability depends on the choice of the parameters in the
regularization with good choices varying for different spin models.

V.1.3 Evaluating Expectation Values

To calculate the covariance matrix and the force vector appearing in the weight updates
in Eq. (V.21) and Eq. (V.25), expectation values of the variational derivatives and of the
Hamiltonian are needed. We also consider expectation values when measuring general
observables. For a general operator O, these are given by

〈O〉 = 〈Ψ|O|Ψ〉
〈Ψ|Ψ〉 =

∑
{v},{ṽ} c

∗
v (W) cṽ (W) 〈v|O|ṽ〉∑
{v} |cv (W)|2

. (V.27)

The denominator compensates for the fact that the state vectors parametrized in the
complex RBM are generally not normalized. The sums run over all possible configurations
and hence the numerator includes 2N ×2N terms for an N -site spin-1/2 system. For large
N , this sum cannot be calculated explicitly anymore due to the exponentially growing
number of operations. Moreover, no efficient way to rewrite the sums exists.

Therefore, the expectation values need to be approximated in a quantum Monte Carlo
fashion by not summing over all possible configurations of the spin system. Instead the
sum runs only over a subset containing those configurations with large contributions to
the expectation value, while those with small contributions can be neglected [57]. To
create such a subset Monte Carlo sampling is used. We are given the unnormalized
probability distribution over the visible variables, PW(v) = |cv(W)|2, from the complex
RBM. From this, spin configurations can be sampled via the Metropolis-Hastings scheme,
which is a basic importance sampling method we introduce in detail in Sect. V.1.5 [57].

Diagonal operators in the considered spin basis (here the z-basis), such as the variational
derivatives Oλ, can then be evaluated approximately via

〈Oλ〉 =
∑
{v} |cv (W)|2 Oλ (v)∑
{v} |cv (W)|2

≈ 1
Q

Q∑
q=1

Oλ (vq) .
(V.28)

Here we use 〈v|ṽ〉 = δv,ṽ and draw Q configurations vq of visible variables from the
probability distribution |cv(W)|2. Expectation values of general observables O, which
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V.1 RBM Parametrization Ansatz

are not necessarily diagonal, can be approximated by [57]

〈O〉 =
∑
{v}

∑
{ṽ} |cv (W)|2 cṽ(W)

cv(W)〈v|O|ṽ〉∑
{v} |cv (W)|2

=
∑
{v} |cv (W)|2Oloc (v)∑

{v} |cv (W)|2

≈ 1
Q

Q∑
q=1
Oloc (vq) .

(V.29)

Q configurations vq are sampled from |cv(W)|2 and we introduce local observables

Oloc (v) =
∑
{ṽ}

cṽ (W)
cv (W) 〈v |O| ṽ〉 . (V.30)

For diagonal operators this reduces to the expression in Eq. (V.28). If it is known for
which states ṽ the expression 〈v|O|ṽ〉 is non-zero, one can sum up the contributions
for these states instead of summing over all configurations in Eq. (V.30). This is more
efficient if the operator O is sparse, so that 〈ṽ|O|v〉 vanishes for all but a polynomially
scaling number of matrix elements for increasing system sizes. This property is given for
the most commonly considered operators in quantum physics.
The approximation of expectation values via local observables and Monte Carlo

sampling provides an efficient way to calculate the weight updates and evaluate the action
of quantum operators on the represented spin system for large system sizes. However,
the basis expansion coefficients cv(W) still need to be evaluated explicitly, which can
here be done via calculating the network energy of the RBM according to Eq. (V.6) [57].

V.1.4 Including Translation Invariance
Having introduced the basics of the RBM parametrization of quantum spin-1/2 state
vectors and the quantum Monte Carlo methods to evaluate expectation values of quantum
operators, we discuss how this ansatz can be adapted to make it more efficient. Symmetries
in spin systems can be used to reduce the number of degrees of freedom and thus make
simulations computationally cheaper. For a spin chain with periodic boundary conditions
translation invariance is often found, as it is the case in the transverse-field Ising model
(TFIM). This means that the spins can be shifted around the ring without changing the
system behavior.
These symmetries can also be implemented in the RBM parametrization of the state

vector, resulting in certain weights and biases being equal. By determining these
variational parameters and setting them equal explicitly, the RBM is forced to satisfy
the symmetry and the number of variational parameters is reduced. This results in a
more efficient representation [57, 231].

To include the translation invariance into the parametrization, we use the transforma-
tion invariant RBM as defined in [231]. The transformation is here given by a translation
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Figure V.1: Visualization of the translation invariant RBM for N = 4 visible and M = 4
hidden neurons. The network represents a spin chain with periodic boundary
conditions. Same colors denote equal values for the variational parameters.
The ring of hidden variables denotes the set of N neurons in the hidden layer.
For convenience sake only α = M/N = 1 is shown here, a larger α would
add more rings of hidden variables in an analogous way. Not all connecting
weights are shown for better visibility.

of the visible variables by some shift s along the ring, so that N possible transformations
can be applied. Thus, the hidden variables can be grouped into sets of N neurons each,
where the jth hidden variable compensates a shift by j sites along the ring. The network
energy can then be expressed as

E (v,h;W) =−
N∑
s=1

(
N∑
i=1

v(i+s−1)%Ndi

)
−

α∑
j=1

N∑
s=1

bjhj,s

−
α∑
j=1

N∑
s=1

(
N∑
i=1

v(i+s−1)%NWi,jhj,s

)

=− d
N∑
i=1

vi −
α∑
j=1

N∑
s=1

bjhj,s −
α∑
j=1

N∑
s=1

(
N∑
i=1

v(i+s−1)%NWi,jhj,s

)
,

(V.31)

with d :=
∑N
i=1 di. Here we have α sets of N hidden variables each, M = Nα, where α

can be chosen freely to set the number of variational parameters. The first index of hj,s
corresponds to the set the hidden variable is in, while the second index corresponds to
the number of sites the spins are shifted by around the circle.

Figure V.1 visualizes the setup, where one can see that the visible biases are all equal.
Furthermore, the hidden biases are equal within the sets of N hidden variables and the
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V.1 RBM Parametrization Ansatz

connecting weights only depend on the distance between the connected visible and hidden
variables and on the set of hidden variables they belong to [57, 231]. With this energy,
the RBM parametrization of a state vector in a translationally invariant spin system is
given by the coefficients [57]

cv (W) =
∑
{h}

exp

d N∑
i=1

vi +
α∑
j=1

N∑
s=1

bjhj,s +
α∑
j=1

N∑
s=1

N∑
i=1

v(i+s)%NWi,jhj,s

 (V.32)

= exp
[
d
N∑
i=1

vi

]
α∏
j=1

N∏
s=1

2 cosh
[
bj +

N∑
i=1

v(i+s)%NWi,j

]
. (V.33)

The variational derivatives as defined in Eq. (V.12) then take the form

Od (v) =
N∑
i=1

vi,

Obj
(v) =

N∑
s=1

tanh
[
bj +

N∑
i=1

v(i+s)%NWi,j

]
,

OWi,j (v) =
N∑
s=1

v(i+s)%N tanh
[
bj +

N∑
i=1

v(i+s)%NWi,j

]
.

(V.34)

With this, the network can be trained to represent ground states or unitary dynamics
just as introduced in Sect. V.1.2. Moreover, expectation values of operators can be
approximated in the same way as introduced in Sect. V.1.3. Using M = αN hidden
variables this symmetrization ansatz reduces the number of variational parameters from
N+M+MN in the parametrization as stated in Eq. (V.6) to 1+α+αN = 1+M/N+M
in the translation invariant parametrization.

The translation invariance is also represented by certain weights taking approximately
equal values when finding the corresponding parameters variationally in the general
parametrization. Thus, both representations are expected to give the same accuracy for
the same number of hidden variables. Including the translation invariance hence makes
the parametrization more efficient and less parameters need to be determined.

V.1.5 Metropolis-Hastings Sampling
A common approach to sample from a general probability distribution is the Metropolis-
Hastings sampling, which is a Markov chain Monte Carlo method. This implies that a
chain of samples is created where each sample depends only on the previous one [57, 232].
In the limit of long sampling times, or equivalently in the limit of many samples drawn,
this chain of configurations moves to elements with large probabilities in the state space.
These are the states which have large contributions to expectation values. To sample
configurations of binary variables such as states in a spin-1/2 system, vi ∈ {±1}, from
the underlying distribution P (v), the procedure of the Metropolis-Hastings sampling
consists of the following steps [135, 232],
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1. start with a random spin configuration v,

2. flip the variable at a random position i in configuration v to create a new configu-
ration ṽ, with ṽi = −vi, ṽj = vj for j 6= i,

3. accept the new configuration with probability A(v, ṽ) = min[1, P (ṽ)/P (v)],

• if the new configuration is accepted: ṽ→ v,

• else: v→ v,

4. add v to the set of sampled states and repeat the procedure from step 2. until the
sample set reaches the desired size.

This scheme starts at a random point in the state space and for a large number of samples
converges to a regime of states with large P (v). This way, states with large contributions
to the expectation values are sampled more often than states with smaller contributions,
providing a weighting of the configurations according to P (v). Here P (v) does not need
to be normalized, as only the ratio of two probabilities is considered [57, 135, 232].
To make the sampling procedure more efficient, the first samples can be neglected

and the set creation starts only after Qi steps, such that the starting point is not totally
random but already in a regime with large P (v). Additionally, only every Qth

n sample
can be added to the sample set to reduce the correlations between the individual samples
and make them more independently distributed. The parameters Qi and Qn are hyper-
parameters and can be chosen appropriately for the model considered, as can also be the
size Q of the sample set [57, 135, 232].
This sampling scheme can be applied in the RBM parametrization to draw spin

configurations from PW(v) = |cv(W)|2. As the probability distribution used in the
Metropolis-Hastings sampling does not need to be normalized, the sampling from the
unnormalized distribution represented by the RBM can be implemented straightforwardly
in an efficient way.

V.2 Simulating Sudden Quenches in the TFIM

V.2.1 Setup of the Parametrization

To benchmark the complex RBM parametrization of ground state wave functions and
dynamics in spin-1/2 systems, we consider sudden quenches in the TFIM and compare
the simulation results with the exact solutions as stated in Sect. II.5 [93, 95, 96]. To
simulate the dynamics after the quenches, we first need to find the initial ground state
parametrization via imaginary time evolution.
Given the TFIM Hamiltonian

HTFIM =− J
N∑
i=1

σzi σ
z
(i+1)%N − ht

N∑
i=1

σxi , (V.35)
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the update rules for the weights to find the ground state can be derived using Eq. (V.22),

Wp+1 = Wp − εS−1F,

Sλ,µ = 〈O∗λOµ〉 − 〈O∗λ〉 〈Oµ〉 ,
Fλ = 〈O∗λHTFIM〉 − 〈O∗λ〉 〈HTFIM〉 .

(V.36)

Here we have rotated the system, so that the interaction in the TFIM is in the z-basis and
the transverse field is applied in the x-basis. This can be done without loss of generality
and provides the same analytical results.

As σx operators appear in the Hamiltonian, we need to consider local operators when
calculating energy expectation values,

〈HTFIM〉 =
∑
{v}

Eloc (v) |cv (W)|2 , (V.37)

Eloc (v) =
∑
{ṽ}

cṽ(W)
cv (W) 〈v|HTFIM |ṽ〉 . (V.38)

The variational derivatives are diagonal, they can be calculated as stated in Eq. (V.34)
and their expectation values can be evaluated according to Eq. (V.28). In the Hamiltonian
we apply periodic boundary conditions, so that the model is translationally invariant.
We can straightforwardly include this invariance into the RBM parametrization to reduce
the number of parameters per hidden variable, as discussed in Sect. V.1.4 [57, 231].

The same relations can be used to derive the update rules for the weights to learn the
dynamics after a sudden quench of the transverse field, ht,i → ht,f . The update rules are
given by integrating Eq. (V.25) numerically using the (direct) Euler integration scheme,
yielding

Wt+∆t = Wt − i∆tS−1F. (V.39)

To simulate the dynamics, we first find the ground state parametrization using the
Hamiltonian with the initial transverse field ht,i and then start with these weights and
biases to simulate the time evolution using the final transverse field ht,f . Each update
step corresponds to one time step [57].

In the end, we calculate correlation functions in the z-basis, Czzd (t, ht,f), and compare
them with the exact solutions. As these operators are diagonal, we can directly calculate
the expectation values and do not need to consider local observables,

Czzd (t, ht,f) = 〈σz0 (t)σzd (t)〉
=
∑
{v}

v0 (t) vd (t) |cv (W)|2 . (V.40)

Here we make use of the translation invariance in the TFIM, due to which we can choose
one of the considered spins at site 0. The correlation function only depends on the
relative distance between the two considered spins and not on their absolute positions.
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In the following we consider two cases, one with a small system size and one with a
longer spin chain. In the first case we can calculate the expectation values by explicitly
summing over all possible spin states and we do not need the Monte Carlo sampling. We
then have to weight each term with the probability |cv (W)|2 defined by the weights in
the RBM. This way the expectation values can be calculated exactly. Deviations from
the exact solution can then only result from the limited representational power of the
RBM approach and from the accuracy of the weights therein. Thus, we can benchmark
the ansatz itself.
In the second case we choose a large spin chain, so that we cannot sum over all spin

configurations. Instead we use Metropolis-Hastings sampling, as introduced in Sect. V.1.5,
and approximate the expectation values of general operators O via

〈O〉 ≈ 1
Q

Q∑
q=1
Oloc (vq) ,

Oloc (vq) =
∑
{v}

cv (W)
cvq (W) 〈vq |O|v〉 .

(V.41)

Q is the number of samples drawn from |cv(W)|2 and vq is the qth sampled configuration.
This sampling procedure needs to be applied analogously when calculating the expectation
value of the local energy and of the variational derivatives in the weight update procedure.
By comparing the two cases of small and large system sizes, we can see how much the
sampling affects the accuracy of the simulation method.

V.2.2 Finding Ground States
We first consider finding the ground state in the RBM-based parametrization and analyze
the representational power by comparing the minimum energy reached after convergence
in the optimization scheme with the exact ground state energy in the TFIM.
The exact ground state energy per spin-site can be calculated analytically via

ETFIM
0 (ht, J) =− 1

N

∑
p∈PN

√
J2 + h2

t − 2Jhtcos [p],

PN = 2π
N

{
−N − 1

2 ,−N − 3
2 , . . . ,

N − 1
2

}
,

(V.42)

as discussed in Sect. II.5.1 [93, 94]. We fix the energy scale by setting J = 1 and consider
ground states for different transverse fields. We choose points in the ferromagnetic
phase (ht = 0.5), directly on the quantum phase transition (ht = 1), and deep in the
paramagnetic phase (ht = 100). The last choice is already the initial condition for
the sudden quenches we study in the following, as we have checked that it accurately
approximates a fully x-polarized state with state vector

|Ψ〉 =
N⊗
i=1

[ 1√
2

(| ↑〉i + | ↓〉i)
]
. (V.43)
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Here | ↑〉i denotes the spin at site i being in the up-state. This would be the ground
state for an infinitely large transverse field, ht →∞.
To find the weights representing the ground states at these three points in the RBM

approach, we start with some randomly chosen initial weights, which we draw from a
uniform distribution in the region [−0.001, 0.001]. We then apply the update rules in
Eq. (V.36) to minimize the energy and converge to the ground state. For the step size (or
learning rate) we choose ε = 0.01 for ht = 0.5 and ht = 1, and ε = 0.0001 for ht = 100,
which we find to provide stable results. To invert the covariance matrix S in the update
rule, we combine the regularization approach and the Moore-Penrose pseudo-inverse as
discussed in Sect. V.1.2. We find suitable parameters m = 0.9, κ0 = 100 and κmin = 10−4

for the regularization after trying different values.
Figure V.2 shows the results for benchmarking the ground state representation. The

three panels (a), (b) and (c) show the different transverse fields ht = 0.5, ht = 1 and
ht = 100, respectively. In each panel the upper row shows the relative deviation from the
exact energy defined as

RE (ht) =
∣∣∣∣∣ERBM

0 (ht)− ETFIM
0 (ht)

ETFIM
0 (ht)

∣∣∣∣∣ , (V.44)

where ETFIM
0 (ht) is the exact ground state energy given by Eq. (V.42) and ERBM

0 (ht)
is the energy resulting from the RBM parametrization. The lower row of the panels in
Fig. V.2 shows the simulated energy ERBM

0 (ht) as a function of iteration steps together
with the exact solution ETFIM

0 (ht). Different colors denote different values of α = M/N .
With larger α the number M of hidden variables and with this the number of variational
parameters is increased.

In the left column of each panel the results are shown for a system with N = 10 spin
sites, where no Monte Carlo sampling is necessary and the expectation values can be
calculated exactly. The right column shows the results for N = 42 sites for which Monte
Carlo sampling in the evaluations is required. This can directly be seen in the statistical
fluctuations appearing, which result from the approximation via sampling.

In the simulations with N = 10 sites one can see that the energy always converges to
the exact solution. The relative deviations decrease for increasing α, but already for α = 1
high accuracy is reached, since the maximum deviation is found to be RE (ht = 1) ≈ 10−3.
When going from α = 4 to α = 6 the gain in accuracy is small so we do not expect more
benefits from increasing α further.

This behavior can be understood by considering the number of free parameters in the
system. The exact spin-1/2 state with N = 10 sites has 2N = 210 free parameters due to
the 2N possible spin configurations. If we subtract those parameters which are fixed by
symmetries, such as translation invariance or spin-flip invariance, we end up with a total
Hilbert space dimension of dH = 108. The RBM parametrization including translation
invariance has 1 + α+ αN weights which correspond to the variational parameters. For
N = 10, α = 4 this gives 45, for α = 6 it gives 67 parameters, which is of the order of dH.
Thus, adding more variational parameters does not increase the accuracy much, as the
degrees of freedom are mainly covered already.
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Figure V.2: Ground state search in the RBM parametrization of the TFIM with ht = 0.5
[(a)], ht = 1 [(b)] and ht = 100 [(c)]. The upper row of each panel shows the
relative deviation of the simulated energy from the exact value [Eq. (V.44)],
while the lower row shows the simulated and exact energy [Eq. (V.42)]
together, visualizing the convergence to the exact value. Left columns show
results in a system with N = 10 sites and right columns show outcomes for
N = 42 sites as functions of the iteration steps. Different colors correspond
to results for different numbers of hidden variables, α = M/N . For N = 42,
Monte Carlo sampling needs to be applied to calculate expectation values.
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The highest accuracy is reached for ht = 100 and one can see that already the initial
energy resulting from the randomly chosen weights is close to the exact energy. This is
due to the initial weights being random but small. One can see from the parametrization
form that the fully x-polarized state is represented if all weights are close to zero, since
all states in the z-basis are equally probable. This justifies the high accuracy found for
ht = 100 and is also the reason why we rotate the TFIM here. Then the initial state to
perform quenches can be approximated with high accuracy.
In the right column with N = 42 we find the fluctuations resulting from the Monte

Carlo sampling, where we draw Q = 1000 samples. If not stated otherwise, we use this
amount of samples for all upcoming simulations in this thesis. This approximation makes
it also possible for the energy to go below the ground state energy, but in the limit of
many iterations it always converges to the exact solution. While the relative deviation
is always larger than in the N = 10 case, its behavior is still the same. The highest
accuracy is reached for ht = 100 while RE (ht) is larger for ht = 0.5 and ht = 1, but is
still around RE (ht) ≈ 10−3 and thus captures the exact energy well.
The effect of increasing α is much smaller than in the left column, for ht = 0.5 and

ht = 1 more hidden variables even lead to larger relative deviations. Here the number of
free parameters in the exact state is many orders of magnitude larger than the number
of weights in the RBM parametrization. Thus, small changes in α are not significant
compared to the large Hilbert space dimension. Slightly changing α does hence not have
much influence and a much larger α is expected to be necessary to significantly increase
the accuracy. This, however, is also computationally much more expensive. The larger
relative deviations for increasing α result from the non-reproducibility of the calculations
due to the Metropolis-Hastings sampling scheme. This means that the final energy still
varies from run to run and the differences in the resulting energies are within these
fluctuations.

In summary we can conclude that the ground states in the TFIM can be represented
with sufficient accuracy in both the paramagnetic and the ferromagnetic phase and
also directly at the quantum critical point, considering large as well as small system
sizes. Expectation values are then calculated with and without Monte Carlo sampling,
respectively. Especially for ht = 100 the exact ground state can be represented very well
for all values of α, meaning that it can be used as an initial state to study dynamics after
sudden quenches.

V.2.3 Sudden Quenches in Small Systems
We start with benchmarking the approximate simulation of dynamics using the RBM
parametrization by considering sudden quenches in the TFIM with N = 10 spin sites.
We do not need Monte Carlo sampling but can directly benchmark the representational
power of the ansatz. We evaluate the correlation function,

Czzd (t, ht,f) = 〈σz0 (t)σzd (t)〉 , (V.45)

and compare the simulations with the exact results for quenches from an initial state deep
in the paramagnetic phase, ht,i = 100, to different final transverse fields ht,f [95, 96, 100].
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Figure V.3: Correlation function Czzd (t, ht,f) [Eq. (V.45)] as a function of time after a
sudden quench to final fields ht,f = 0.5 [(a)], ht,f = 1 [(b)] and ht,f = 2 [(c)].
RBM simulations for different numbers of hidden variables α = M/N are
compared to the exact solution for relative distances d = 1 (solid lines), d = 2
(dashed lines) and d = 3 (dotted lines) in a system with N = 10 sites. At
the quantum critical point (ht,f = 1) convergence is reached for α = 6, where
the variational parameters cover the Hilbert space dimension. For the other
cases α = 1 is sufficient to represent the exact dynamics. DTWA results are
shown for completeness. Figure adapted from [83].

Figure V.3 shows the correlation function as a function of time after sudden quenches
into the ferromagnetic regime [Fig. V.3(a)], onto the quantum-critical point [Fig. V.3(b)]
and within the paramagnetic regime [Fig. V.3(c)]. The RBM simulations for α = 1,
α = 2, α = 4 and α = 6 are plotted together with the exact solution. For completeness
also the results of the semi-classical discrete truncated Wigner approximation (dTWA)
as discussed in Chapter IV are shown. The correlations are calculated for three relative
distances between the two spins, d = 1 corresponding to nearest-neighbor correlations
(solid lines), d = 2 being next-to-nearest-neighbor correlations (dashed lines), and d = 3
(dotted lines).

For the quenches into the ferromagnetic and within the paramagnetic regime [panels
(a) and (c)], the RBM ansatz works well and captures the exact solution accurately at all
times, even for α = 1. Considering the quench onto the quantum critical point [panel
(b)], clear deviations from the exact solution appear for small α, while convergence to the
analytical curve is observed when increasing α. Choosing α = 6 the simulation follows the
exact solution. As discussed already for the ground state search, for these α the number
of variational parameters is of the order of the Hilbert space dimension after taking
symmetries into account. Thus, it does not come unexpected that the exact solution
is represented well, since almost all degrees of freedom are covered by the variational
parameters. The dTWA results only capture the exact solution well at short times. For
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Figure V.4: Correlation length ξ1(t, ht,f) [Eq. (V.46)] at a fixed time t = 1 after sudden
quenches within the paramagnetic, into the ferromagnetic and across the
ferromagnetic regime as a function of ht,f . RBM simulations for different
numbers of hidden variables α = M/N with N = 10 are compared to the
exact solution and dTWA results. Dashed vertical lines denote the quantum
critical points. At those the correlation length reaches its maximum and
large α need to be chosen, while everywhere else α = 1 describes the exact
solution accurately. Figure adapted from [83].

later times clear deviations appear, while the RBM approach captures the exact solution
at long and short times.
To analyze the performance of the RBM parametrization as a function of the final

transverse field ht,f , we look at the short-distance correlation length ξ1(t, ht,f) as intro-
duced in Sect. II.5.2 [95, 96, 100]. This correlation length can be extracted by fitting an
exponential function to the correlation function at d < 3,

Czzd (t, ht,f) ∝ exp
[
− d

ξ1 (t, ht,f)

]
. (V.46)

We have already shown in Fig. V.3 that the RBM parametrization captures the exact
dynamics well for these small relative distances. Thus, it is reasonable to study the
correlation length for quenches to different final fields for a more detailed benchmark.

Figure V.4 shows the correlation length at a fixed time t = 1 after sudden quenches as
a function of the final transverse field ht,f . Again, the RBM representations for α = 1,
α = 2, α = 4 and α = 6 are plotted together with the exact solution and the dTWA
result.

Deviations can be found for almost all ht,f in the dTWA, except for very small ht,f ≈ 0,
where also the RBM approach works well. In this regime the transverse field is a small
perturbation to the classical Ising model, so that the system can be described by a
perturbation approach [188]. The RBM ansatz captures the exact solution well in most
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Figure V.5: Correlation length ξ1(t, ε) [Eq. (V.46)] at a fixed time t = 1 after sudden
quenches within the paramagnetic regime as a function of the final distance
ε [Eq. (V.47)] from the quantum critical point in a system with N = 10 sites.
RBM simulations for different α are compared to the exact solution (dashed
black line) and dTWA results. Convergence to the exact solution is found
for α = 6 in the regime of small ε. The GGE behavior, to which the exact
solution converges at late times in large systems, is plotted for completeness
according to Eq. (V.48) (brown dashed line). Figure adapted from [83].

cases. Already for α = 1 the simulations follow the exact solution closely everywhere
except for the quantum critical points, which are indicated by dashed vertical lines.
Around these points, at ht,f = 1 and ht,f = −1, convergence to the exact solution is
found with increasing α and for α = 6 the exact result is captured. This is what we
have already observed when considering the correlation function. Here we can see that
the RBM parametrization struggles at the maxima of the correlation length and larger
α are necessary. This suggests that strong long-range correlations require more hidden
variables to be captured.

Figure V.5 shows the correlation length at a fixed time t = 1 after quenches within the
paramagnetic regime as a function of the distance ε,

ε =
∣∣∣∣∣ht,f − ht,c

ht,c

∣∣∣∣∣
= ht,f − 1,

(V.47)

from the quantum critical point ht,c = 1 on a logarithmic scale. As discussed in Sect. II.5.2,
for the quenches from an effectively fully polarized state we expect the behavior of the
correlation length to be determined by a generalized Gibbs ensemble (GGE),

ξGGE (ε) = 1
ln (2ε+ 2) . (V.48)
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Thus, we expect it to saturate in the vicinity of the quantum critical point instead of
diverging due to the quantum phase transition being only present for zero temperature
[95, 96, 100]. To study if these effects are captured in the RBM parametrization the
simulation results for different α are plotted together with the exact solution and the
expected GGE behavior. DTWA results are shown for completeness. We find that the
GGE behavior is not captured by the dTWA simulations. Again, α = 6 is necessary in
the RBM parametrization to capture the exact solution in the vicinity of the quantum
critical point, but then the simulations follow the exact curve for all ε.

At these short times even the exact solution does not show the GGE behavior, which is
plotted for comparison by the brown dashed line in Fig. V.5. For those small system sizes
it is not even possible to find the GGE behavior at later times due to finite-size effects
appearing [95, 96, 100]. For larger spin systems we expect the RBM parametrization to
show the GGE behavior for large enough α given that the simulations work in the same
way, since they follow the exact solution so well in small systems. When simulating longer
spin chains, on the one hand Monte Carlo sampling is necessary to calculate observables,
and on the other hand it is not clear how large α needs to be chosen to capture the exact
solution in larger systems.
The Hilbert space dimension dH scales exponentially with the system size and for

N = 10 we find that the number of weights in the RBM parametrization needs to be
of the order of dH. To analyze how the necessary α scales with the system size, we
consider the correlation function after a sudden quench onto the quantum critical point
in a system with N = 12 sites. We still do not need Monte Carlo sampling but can sum
over all spin states to calculate expectation values.
Figure V.6 shows the resulting correlation function for d = 1, d = 2 and d = 3 as a

function of time, together with the exact solution and the dTWA. We consider different
values of α and find deviations for small α, as well as a convergence to the exact curve
with increasing α. However, we find that we need to choose larger values than in the
previous case with N = 10 sites. We even have to choose α = 15 to capture the exact
solution with high accuracy, which corresponds to 1+α+M = 196 variational parameters.
This is again of the order of the Hilbert space dimension after symmetries have been
subtracted, which is dH = 352 for N = 12 sites. This shows that the required α does not
scale linearly with the system size, suggesting that the Hilbert space dimension needs
to be covered by the number of variational parameters. We have checked that, far from
the quantum phase transition, α = 1 is sufficient to capture the exact solution also for
N = 12 sites.

V.2.4 Going to Longer Spin Chains
After benchmarking the representational power of the RBM parametrization on small
spin chains, we can check how the Metropolis-Hastings sampling affects the results, as
this is necessary to calculate expectation values for general large spin systems. To analyze
this we consider the same quenches as for the small systems and study the dynamics of
the correlation function in a spin chain with N = 42 sites.
Figure V.7 shows the resulting dynamics for quenches to ht,f = 1 [Fig. V.7(a)] and
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Figure V.6: Correlation function Czzd (t, ht,f) [Eq. (V.45)] as a function of time after a
sudden quench to ht,f = 1 onto the quantum critical point in a system with
N = 12 sites. Results from the RBM parametrization for different α are
compared to the exact solution and to dTWA calculations. The correlations
are shown for relative distances d = 1 (solid lines), d = 2 (dashed lines) and
d = 3 (dotted lines). To capture the exact solution, α = 15 is necessary,
where the variational parameters cover the Hilbert space dimension. This
suggests an exponential scaling of the number of hidden neurons with the
system size. Figure adapted from [83].

ht,f = 2 [Fig. V.7(b)]. The correlation function is shown for three relative distances, d = 1
(solid lines), d = 2 (dashed lines) and d = 3 (dotted lines). The RBM results for α = 1,
α = 2, α = 4 and α = 6 are plotted together with exact and dTWA results.

Compared to the simulations for small system sizes in Fig. V.3, the RBM results show
small fluctuations which result from the Monte Carlo sampling and also appear in the
ground state search in Fig. V.2. They can be reduced further by increasing the sample
size, but then also the computations become more expensive.

Apart from that, we find the same behavior as for N = 10. For the quench to ht,f = 2,
α = 1 is sufficient to capture the exact dynamics accurately while deviations appear for
the quench onto the quantum critical point. Increasing α does not have much influence
here. This is probably due to the fact that compared to the Hilbert space dimension
the number of variational parameters is still very small, even for α = 6, as discussed in
Sect. V.2.2 for the ground state search.

We have already observed for N = 12 in Fig. V.6 that α does not scale linearly with the
system size in the quantum critical regime, so here we expect a much larger α necessary
to converge to the exact solution. This fact renders the RBM parametrization inefficient
in the quantum critical regime, since the computational cost seems to grow exponentially
with the system size. This is analogous to the exact calculations and hence limits the
simulations to small system sizes.
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Figure V.7: Correlation function Czzd (t, ht,f) [Eq. (V.45)] as a function of time after a
sudden quench onto the quantum critical point [(a), ht,f = 1] and within the
paramagnetic regime [(b), ht,f = 2] in a system with N = 42 sites. Results
of the RBM parametrization for different numbers of hidden variables are
compared to the exact solution and dTWA results for relative distances d = 1
(solid lines), d = 2 (dashed lines) and d = 3 (dotted lines) between the sites.
Convergence to the exact solution is not reachable at the quantum critical
point, while away from it choosing α = 1 is sufficient. Figure adapted from
[83].

V.3 Performance in the TFIM in a Longitudinal Field
V.3.1 Benchmarking Short-Chain Simulations
Having pointed out the limitation of the RBM parametrization to small system sizes for
quenches into the quantum critical regime, we next benchmark it in a non-integrable
model. Therefore we consider the TFIM in an additional longitudinal field hl, a model
we refer to as LTFIM,

HLTFIM = −
N∑
i=1

σzi σ
z
(i+1)%N − ht

N∑
i=1

σxi − hl

N∑
i=1

σzi . (V.49)

We first simulate short spin-chains with N = 10 sites, where we can compare our
simulation results with exact diagonalization outcomes.

In the following we consider dynamics after sudden quenches from an effectively fully
x-polarized state, choosing ht,i = 100 and hl,i = 0 as initial fields. We then quench the
system to different final transverse and longitudinal fields ht,f and hl,f , respectively, as
depicted in Fig. V.8. For the longitudinal field the model is symmetric around hl = 0, so
that we only consider quenches to positive hl > 0.
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Figure V.8: Illustration of sudden quenches in the TFIM with an additional longitudinal
field hl. The quantum phase transition only exists for hl = 0 at the quantum
critical points (QCP). We consider sudden quenches from a large transverse
field and zero longitudinal field to different final values for both, ending up
in the paramagnetic (large ht, hl) or ferromagnetic (small ht) phase.

When simulating the dynamics of the correlation function after the quench, we find an
exponential decay at short relative distances d < 3, so that we can extract a correlation
length ξ1(t, ht,f , hl,f) in the same way as in the TFIM case, see Eq. (V.46) [95, 96, 100].
Thus, in the following we study the dynamics of this correlation length. Figure V.9
shows the dynamics in a color-plot as a function of time t and final transverse field ht,f
for quenches to longitudinal fields hl,f = 0 [Fig. V.9(a)], hl,f = 1 [Fig. V.9(b)], hl,f = 2
[Fig. V.9(c)] and hl,f = 3 [Fig. V.9(d)]. Each row consists of four plots, where the first
plot shows the exact diagonalization result and the remaining three show the absolute
deviation,

∆ξ1 (t, ht,f , hl,f) =
∣∣∣ξexact

1 (t, ht,f , hl,f)− ξsim
1 (t, ht,f , hl,f)

∣∣∣ , (V.50)

of the simulated correlation length ξsim
1 (t, ht,f) from the exact solution ξexact

1 (t, ht,f). The
different plots correspond to the RBM parametrization with α = 1 and α = 10, and to
dTWA results, respectively, from left to right.

Figure V.9(a) shows the result for the TFIM and one can clearly see the deviations at the
quantum critical points in the RBM simulations for α = 1. One can furthermore observe
that these deviations vanish for α = 10. The dTWA shows deviations in all regimes, but
they get smaller further away from the quantum critical point, as already observed in
Sect. V.2.3 and Sect. IV.4. In Fig. V.9(b), (c) and (d) a longitudinal field hl,f > 0 is
present after the quench, but the same observations can be made. Even though there is
no quantum phase transition in this model, we find regimes with maximum correlation
lengths around ht,f ≈ 0. In these regions, deviations in the RBM parametrization for
α = 1 appear which get smaller for α = 10, but do not vanish completely. For α = 10
the number of variational parameters is 1 + α+M = 111 and exceeds the dimension of
the Hilbert space, dH = 108, after symmetrization.
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Figure V.9: Correlation length ξ1(t, ht,f , hl,f) [Eq. (V.46)] as a function of time and final
transverse field ht,f after sudden quenches to different final longitudinal fields
hl,f = 0 [(a)], hl,f = 1 [(b)], hl,f = 2 [(c)] and hl,f = 3 [(d)] in the LTFIM with
N = 10 sites. Each row shows from left to right the exact solution calculated
via exact diagonalization (ED) and absolute deviations from it [Eq. (V.50)]
resulting from the RBM parametrization with α = 1 and α = 10 as well as
from dTWA. Figure partly adapted from [83].
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Figure V.10: Correlation length ξ1(t, ht,f , hl,f) [Eq. (V.46)] as a function of time and final
transverse field ht,f after sudden quenches to final longitudinal fields hl,f = 0
[(a)], hl,f = 1 [(b)], hl,f = 2 [(c)] and hl,f = 3 [(d)] in the LTFIM with
N = 10 sites. Each row shows the exact solution calculated via exact
diagonalization (ED), as well as results from the RBM parametrization
with α = 1, α = 10, and from dTWA simulations, from left to right. Green
lines in the exact solution show contours of the von-Neumann entanglement
entropy [Eq. (V.51)] as plotted in Fig. II.8. Figure adapted from [83].
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The correlation lengths reach larger values with increasing longitudinal field and the
regimes of deviations appearing in the RBM parametrization with α = 1 grow, indicating
a relation between the correlation length and the performance of the RBM approach.
The dTWA shows deviations for all transverse fields and only works well at very short
times.

In the exact diagonalization result we find the expected Rabi-oscillations, as discussed
in Sect. II.5.3, in the dynamics of the correlation length. These result from the interplay
of the transverse and the longitudinal field. To analyze the oscillations in more detail,
Fig. V.10 has the same setup as Fig. V.9. Instead of the absolute deviations, the
correlation lengths resulting from the RBM parametrization with α = 1 and α = 10 and
from the dTWA are plotted. One can see that the oscillations are captured well in the
RBM simulations.
The green lines in the exact diagonalization plots in Fig. V.10 show the contours of

the corresponding von-Neumann entanglement entropy,

SvN = − Tr [ρAlogρA] , (V.51)

with ρA being the reduced density matrix of one part in the bipartite system. The
von-Neumann entanglement entropy is calculated via time-dependent density-matrix
renormalization group (tDMRG) and is also plotted in Fig. II.8. From the contours one can
see that the entanglement entropy also gets large in the regime where deviations appear
in the RBM approach. In these regions of large entanglement also methods based on
matrix product states struggle, so that our results suggest that the RBM parametrization
shows limitations in the same regime as other existing simulation methods.

V.3.2 Monte Carlo Sampling in Large Systems

Considering longer spin chains with N = 42 sites, we cannot use exact diagonalization
anymore. We can, however, compare the RBM simulations with tDMRG results. Those
are known to represent the exact solution with good accuracy, as discussed in Sect. II.6
[21–23, 27–29]. We analyze the performance of the RBM parametrization in a regime
where the tDMRG method struggles and a large bond dimension D is required to be
chosen for convergence. This is the case for regimes of strong quantum entanglement and
hence we consider a sudden quench to ht,f = 0.5, hl,f = 1. We know from Fig. II.8 that
the von-Neumann entanglement entropy reaches large values in this regime [21–23, 27–29].
From Fig. V.9 we still expect the RBM ansatz to work well for these fields.
Figure V.11(a) shows the resulting nearest-neighbor (solid lines) and next-to-nearest-

neighbor (dashed lines) correlation functions depending on time t after the quench. The
RBM results for α = 1 and α = 2 are plotted together with tDMRG results with bond
dimensions D = 5 and D = 128. Figure V.11(b) shows the von-Neumann entanglement
entropy [Eq. (V.51)] calculated using tDMRG with different bond dimensions as a function
of time after the quench. When the simulations have converged, nothing changes when
increasing D and the different lines lie on top of each other. This justifies the choice
of D = 128 in Fig. V.11(a), as we see that up to the times considered the tDMRG has
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Figure V.11: Correlation function Czzd (t, ht,f , hl,f) [Eq. (V.45)] as a function of time after
a sudden quench to (ht,f = 0.5, hl,f = 1) in the LTFIM with N = 42 sites
[(a)]. RBM simulations with α = 1 and α = 2 are compared to tDMRG
results with bond dimensions D = 5 and D = 128. D = 128 approximates
the exact solution with good accuracy for the times considered. The results
for D = 5 are shown as the number of variational parameters is of the
same order as in the RBM simulations. For this case both approximation
methods show comparable behavior. Correlations are shown for relative
distances d = 1 (solid lines) and d = 2 (dashed lines). Panel (b) shows the
von-Neumann entanglement entropy [Eq. (V.51)] resulting from tDMRG
calculations with different bond dimensions as functions of time after the
same quench. Overlapping curves denote convergence of the approximation
method. Figure adapted from [83].

already converged for smaller bond-dimensions. Thus, we can interpret these calculations
as exact solutions.
The calculation with D = 5 is shown since this bond dimension provides 50 varia-

tional parameters, which is of the order of the number of free parameters in the RBM
parametrization with α = 1 (44 variational parameters) and α = 2 (87 variational param-
eters). Thus, these results are fairly comparable with the RBM results in Fig. V.11(a). In
the comparison we find that deviations from the tDMRG calculation with D = 128 appear
around the same times for both the RBM calculations and the tDMRG simulations with
D = 5. This suggests that the RBM parametrization struggles in the same regime as
existing methods based on matrix product states given the same number of variational
parameters. As we find exponential scaling in the bond dimension of the tDMRG in
regimes with strong entanglement, we also expect exponential scaling of α in the RBM
approach there. However, the tDMRG can be implemented in a much more efficient way
than the RBM parametrization, so that we cannot increase α as far as we can increase
D due to limited computational power. Thus, the numerical precision reachable by
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the RBM parametrization falls behind the results of existing methods based on matrix
product states on comparable computational resources.

In summary we have made the same observations as in the TFIM also in the simulations
of the LTFIM. In regimes of large correlation lengths and strong entanglement entropy
the required number of hidden variables to reach a certain accuracy scales exponentially
with the system size. Again, the whole Hilbert space dimension needs to be covered by
the variational parameters, rendering the RBM ansatz inefficient and limiting it to small
system sizes. In regimes of weak correlations, however, the method performs well and
requires only a small amount of hidden variables, even for large system sizes.

V.4 Limitations of the RBM Parametrization

V.4.1 Representational Power

When benchmarking the RBM parametrization representing ground states and dynamics
of quantum spin-1/2 systems, we have experienced the limits of this simulation ansatz.
From the results shown so far, we have found that in regimes of large correlation lengths
the method becomes inefficient, as exponentially many hidden variables are necessary
to capture the dynamics accurately. To further analyze where these deviations result
from, we can first check whether the limiting factor lies in the representational power
of the parametrization ansatz or in the way the time evolution is calculated. To study
this we use exact diagonalization to find the state |Ψ(t)〉 the system is in at a time t
after a sudden quench, and then find the weights representing this state in the RBM
parametrization.
To be able to apply exact diagonalization we consider a small system with N = 10

sites and prepare it in a fully x-polarized initial state,

|Ψ0〉 =
N⊗
i=1

[ 1√
2

(| ↑〉i + | ↓〉i)
]
, (V.52)

with | ↑〉i denoting the spin at site i in the up-state. We then perform a sudden quench
onto the quantum critical point ht,f = 1 in the TFIM. We can see in Fig. V.3 that for this
quench α = 6 is necessary in the RBM parametrization to capture the exact dynamics
of the nearest-neighbor correlation function Czzd=1(t, ht,f) = 〈σz0(t)σz1(t)〉 at times t ≥ 0.5.
Thus, in the following we consider the state at time t = 1 after the quench and analyze
whether it can generally be represented by the RBM ansatz and how the accuracy scales
with α.

Exact diagonalization provides the basis expansion coefficients cex
v of the exact state

for each spin configuration,

|Ψ (t = 1)〉 = exp [−iH] |Ψ0〉

=
∑
{v}

cex
v (t = 1) |v〉. (V.53)
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To find the weights to represent this state in the RBM parametrization, we make use of the
fact that the squared coefficients |cex

v (t)|2 give the probability of the system to be in the
corresponding state. Thus, we can consider the Kullback-Leibler divergence as stated in
Eq. (III.31), which is a measure for the distance between two probability distributions. It
hence should be minimized when considering the exact and the represented distributions.
By defining the exact probability P (v) and the unnormalized probability PW(v) resulting
from the RBM parametrization,

P (v) = |cex
v (t = 1)|2 , (V.54)

PW (v) = |cv (W)|2 , (V.55)
(V.56)

the Kullback-Leibler divergence can be written as

Ξ (W) := KL
[
P (v) ||PW (v)

Z (W)

]
=
∑
{v}

P (v) log
[
P (v)Z (W)
PW (v)

]
,

(V.57)

with the normalization factor Z(W) for PW(v),

Z (W) =
∑
{v}

PW (v) . (V.58)

The distribution P (v) is normalized by construction.
To find weights in the RBM parametrization minimizing the Kullback-Leibler divergence

we can use a gradient descent approach. The derivative of Ξ(W) with respect to the
individual weights is given by

∂

∂Wα
λ

Ξ (W) =
∑
{v}

[
− P (v)
PW (v)

∂

∂Wα
λ

PW (v) + P (v)
Z (W)

∂

∂Wα
λ

Z (W)
]
, (V.59)

where Wα
λ denotes one element of the weight vector W = WR + iWI, considering the

real and imaginary parts individually, α ∈ {R, I}. We can also express PW(v) in terms
of the real and imaginary parts of the weights,

PW (v) = exp
[
2
N∑
i=1

dR
i vi

]
M∏
j=1

2
(

cosh
[
2
N∑
i=1

WR
i,jvi + 2bRj

]

+ cos
[
2
N∑
i=1

W I
i,jvi + 2bIj

])
,

(V.60)

where the derivatives with respect to the individual parts can be calculated. These can
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Figure V.12: Convergence of the RBM parametrization to the probability distribution
defined by the state at time t = 1 after a sudden quench onto the quantum
critical point in the TFIM with N = 10 sites. Weight updates are done
via minimizing the Kullback-Leibler divergence Ξ(W) [Eq. (V.57)]. The
evolution of the Kullback-Leibler divergence is shown in panel (a) as a
function of the weight update iterations for parametrizations with different
numbers of hidden variables α = M/N . Panel (b) shows the nearest-
neighbor correlation function Czzd (t = 1, ht,f = 1) [Eq. (V.45)] reached after
105 iterations. The main plot shows the absolute deviation from the exact
solution as a function of α, while the inset shows the direct evaluation of the
correlation on the y-axis with the x-axis being the same as in the main plot.
The exact solution is shown for comparison in the inset. For all calculations
five individual runs are made to find the weights and are averaged, where
the shaded regions in (a) and the error bars in (b) denote the statistical
fluctuations. The plots show that the probability distribution underlying
the basis states can in principle be represented well by the RBM.

then be plugged into the update equation of the gradient descent ansatz, yielding

Wα
λ (p+ 1) = Wα

λ (p)− ε
∑
{v}

{
P (v)

PW (v, p)
∂

∂Wα
λ

PW (v, p)

− P (v)∑
{ṽ} PW (ṽ, p)

∑
{ṽ}

∂

∂Wα
λ

PW (ṽ, p)

 ,
(V.61)

where p is the iteration step and ε is the step width, or learning rate.
For such small system sizes with N = 10 sites no sampling is necessary, so we always

sum over the whole state space. Figure V.12(a) shows the Kullback-Leibler divergence as
a function of the total number of iterations for finding the RBM parametrization with
different numbers of hidden variables, α = M/N . All simulations are run five times and
the results are averaged, with the shaded regions denoting statistical fluctuations. One
can clearly see a convergence to zero for all α. One moreover observes that for α = 1 the
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V. RBM-Based Wave Function Parametrization

Kullback-Leibler divergence saturates at a larger value than for α > 1. Increasing the
number of hidden variables further does not provide any improvement. This is not in
accordance with the previous observations in Sect. V.2.3, where we needed at least α = 6
to capture the exact solution, while here α = 2 appears to be sufficient.

In Fig. V.12(b) the nearest-neighbor correlation resulting from the saturated probability
distribution after 105 training iterations is plotted as a function of α together with the
exact solution in the inset. The main plot shows the absolute deviation between the two.
The exact solution is calculated via exact diagonalization and error bars again denote
statistical fluctuations of averaging five simulation runs. There one can see that the exact
correlation is captured well for α = 1, which is again in contradiction to the results in
Sect. V.2.3. However, the deviation still gets smaller with increasing α, but saturates
around 10−4. The larger value at α = 8 is due to strong statistical fluctuations and is
expected to vanish when averaging more simulation runs, as can be seen in the large
error bars.

We have to keep in mind that we do not find the weights representing the full quantum
state when minimizing the Kullback-Leibler divergence. Instead, we only find weights
representing the exact amplitude, or probability distribution underlying the states. The
phases of the coefficients cv(W) can still differ from the exact solution. To also get the
phases right, we would need to perform measurements in all possible bases, meaning that
each spin needs to be measured in the x-, y- and z-basis and all possible combinations of
measurements are necessary. This exceeds our computational resources, so that we do
not run simulations finding the weights to represent the full state.
Thus, from Fig. V.12 we can conclude that in principle it is possible to efficiently

represent a spin state with the right amplitude and the right zz-correlation at time t = 1
after a sudden quench onto the quantum critical point. Nevertheless, it is not clear
whether also the phases can be captured and hence whether the full quantum state can
be represented. Deviations in the phases might cause the deviations found in Sect. V.2.3
and would explain the convergence with increasing α.
On the other hand, it might also be possible that this state at time t = 1 after the

quench can be represented with good accuracy for α = 1, but a different state at an
earlier time cannot. As during the simulation of the time evolution the weights are always
updated depending on their previous values, a deviation from the exact solution at an
early time can lead to deviations also appearing at later times.
Thus, from our simulations we cannot directly tell whether the deviations found in

Sect. V.2.3 result from the limited representational power of the network or from problems
appearing in the way the dynamics are simulated. However, the convergence we find
when increasing α motivates us to further analyze the representational power of the
parametrization.

V.4.2 Adding Hidden Layers
A different ansatz to modify the representational power of the RBM parametrization is
to make the network deeper by adding another hidden layer with M̃ hidden variables h̃.
These are connected to the variables in the already existing hidden layer via weights W̃

122



V.4 Limitations of the RBM Parametrization

0.0 0.5 1.0 1.5 2.0

t

0.0

0.2

0.4

0.6

C
z
z

d
(t
,
h
t
,f

=
1
)

Exact

2-layer RBM

3-layer dBM

ht,f = 1

Figure V.13: Simulation of the nearest-neighbor zz-correlation function [Eq. (V.45)] as a
function of time after a sudden quench from an effectively fully x-polarized
state onto the quantum critical point, ht,f = 1, in the TFIM with N = 10
sites. Simulations are done with a three-layer deep Boltzmann machine
(dBM) using M = M̃ = 10 hidden variables per layer (blue line). Outcomes
of five runs are averaged, where the shaded regions denote statistical fluctu-
ations. The exact solution is plotted for comparison (black line), as well
as the results of simulations using a two-layer RBM with M = 10 hidden
variables (orange line). Using the deeper network deviations from the exact
solution are found at earlier times than in the simulations with the two-layer
RBM.

and have biases b̃. The network energy of this so-called deep Boltzmann machine then
reads

E
(
v,h, h̃

)
=−

N∑
i=1

M∑
j=1

viWi,jhj −
M∑
j=1

M̃∑
l=1

hjW̃j,lh̃l −
N∑
i=1

vidi −
M∑
j=1

hjbj −
M̃∑
l=1

h̃lb̃l,

(V.62)

and the coefficients cv(W) of the basis states are parametrized as

cv (W) =
∑
{h}

∑
{h̃}

exp
[
−E

(
v,h, h̃

)]
, (V.63)

where we need to sum over both layers of hidden variables.
However, in contrast to the two-layer RBM considered so far this sum over both layers

of hidden variables cannot be performed analytically anymore for large spin systems.
Only the sum over one of the two layers can be rewritten as a product over the hidden
variables similar to Eq. (V.7), while the remaining sum over 2M (or 2M̃ ) terms needs
to be calculated explicitly. Thus, we are limited to small numbers of hidden variables,
where we can still sum over all of them to perform simulations with such a deep network.
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To study the effect of the additional layer, we simulate sudden quenches from an
effectively fully x-polarized initial state onto the quantum critical point in the TFIM,
similar to Sect. V.2.3. We consider the time evolution of the nearest-neighbor zz-
correlation function parametrized with a three-layer network in a system with N = 10
spin sites. Choosing M = M̃ = 10 hidden variables per layer, we can still sum them out
explicitly.

Figure V.13 shows the result of the simulation, where we let the calculations run for five
times and average the outcome, yielding statistical fluctuations depicted by the shaded
regions. The exact solution is shown for comparison, as well as the results of simulations
using a two-layer RBM. We find that deviations in the three-layer simulations appear
already at earlier times than for the two-layer RBM. This comes unexpected, since the
representational power of the RBM should increase with an additional layer [60].
We can assume here that the earlier breakdown results from the way the weights are

updated to describe the time evolution rather than from the representational power. It is
probably harder to train the deeper networks accordingly. Furthermore, small deviations
appearing at some point in time can be even more amplified at later times than in the
case of shallower networks. This would also explain the larger fluctuations found at later
times after the quench. However, we can again not check where exactly these deviations
result from. We can only conclude that deeper network structures are not necessarily
helpful here.

V.5 Summary

In this chapter we have benchmarked quantum Monte Carlo simulations of quantum
many-body systems based on a parametrization of the state vectors via a restricted
Boltzmann machine (RBM) [57]. We have considered simulations of ground states and
dynamics after sudden quenches in the transverse-field Ising model (TFIM). As the
model is integrable, we have compared the simulations with exact solutions [95, 96]. We
have first analyzed the convergence to ground state energies and afterwards considered
sudden quenches from an initial state deep in the paramagnetic phase to different final
transverse fields. For the dynamics we have also shown a direct comparison to discrete
truncated Wigner approximation (dTWA) results for completeness, which led to the
same observations as in Chapter IV.
When benchmarking the ground state search, we have considered states in both the

paramagnetic and the ferromagnetic phase, as well as directly on the quantum critical
point. We have shown that the exact ground state energy can be represented with good
accuracy in all regimes, for small and large spin chains. For the latter case we have
applied a Metropolis-Hastings sampling scheme. We have shown that the precision of
the results is high in both cases.

To benchmark the representation of dynamics, we have considered small system sizes,
where expectation values can be calculated by exactly summing over all spin configurations.
We have shown that the efficiency of the method is limited for quenches into the vicinity
of the quantum critical points. There the whole Hilbert space dimension needs to be
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covered by the number of network parameters to capture the exact solution accurately.
However, far from the quantum phase transitions, the RBM parametrization captures
the dynamics after quenches well, even for as many hidden as visible variables.
Going to larger spin systems and using Metropolis-Hastings sampling to calculate

expectation values, we have shown that the necessary number of hidden variables does
not scale linearly with the system size in the vicinity of the quantum critical point. Thus,
the RBM parametrization does not perform efficiently in these regimes. Further away
from the quantum phase transition we have found the exact dynamics to be captured
well again, even for a small and linearly scaling number of hidden variables.

For a more general benchmark, we have added a longitudinal field to the TFIM and made
the model non-integrable [126]. We have considered sudden quenches from an initial state
with large transverse and zero longitudinal field to different final fields. We have again
considered small and large system sizes with Metropolis-Hastings sampling for the latter
case. We have compared the results with exact solutions obtained via exact diagonalization
for the small system sizes or time-dependent density-matrix renormalization group
(tDMRG) for the larger system sizes. We have shown that still a large number of hidden
variables, exceeding the Hilbert space dimension, is necessary to capture the exact solution
accurately in regimes of large correlation lengths. At regimes of smaller correlation lengths
we have found the RBM parametrization to represent the exact solution accurately even
with a small number of hidden variables.

We have further considered a sudden quench into a regime where we know that tDMRG
methods struggle and need an exponentially increasing bond-dimension to converge to
the exact solution [21–23, 27–29]. We have pointed out that comparable results for the
RBM parametrization and the tDMRG can be reached when using approximately equal
numbers of variational parameters. Thus, the RBM approach seems to struggle in the
same regime as existing methods based on matrix product states. However, the tDMRG
can be implemented in a more efficient way. Given comparable computational resources
the bond dimension in the tDMRG can hence be increased further than the number of
hidden variables in the RBM parametrization. Thus, the RBM approach cannot compete
with the numerical performance of methods based on matrix product states.

At the end of the chapter we have studied the deviations appearing in the simulations
of sudden quenches in the TFIM with the RBM parametrization. We have checked
whether they result from the limited representational power of the parametrization ansatz
or rather from the way the weights are updated to simulate dynamics. In this context we
have shown that adding another small hidden layer does not improve the performance of
the method, but we were not able to make a conclusion about what causes the limitations.
In summary we have pointed out the struggling of the RBM parametrization ansatz

for quenches into regimes of strong long-range correlations. This is also a problematic
regime for other approximate simulation methods, such as tDMRG [23, 24] or dTWA, see
Chapter IV. Nevertheless, the RBM method can also be applied in higher dimensional
systems, where a similar performance is expected and where existing simulation methods
are scarce. Thus, the ansatz is expected to enable an efficient simulation of weakly
correlated spin systems in higher spatial dimensions.
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VI Deep Neural Networks and Phase Reweighting

Having pointed out the limitations of approximate simulation methods for quantum spin-
1/2 systems on classical computers, we are motivated to study whether other computing
devices going beyond the von-Neumann architecture are more suitable for these tasks.
One such device is the neuromorphic hardware present in the BrainScaleS group at
Heidelberg University, which we introduced in Sect. III.5. This hardware can efficiently
produce samples from Boltzmann distributions underlying the visible and hidden variables
in (restricted) Boltzmann machines [58, 102, 103, 105]. Furthermore, we have introduced
the parametrization of quantum spin-1/2 state vectors via complex restricted Boltzmann
machines in Sect. V.1. There states are sampled from the represented probability
distribution to approximate expectation values of quantum operators. This suggests that
the sampling can be implemented on the neuromorphic chips, from which we expect
an immense speedup. However, since the restricted Boltzmann machine used for the
parametrization consists of complex weights and biases, the spin states do not follow a
Boltzmann distribution and can thus not straightforwardly be sampled on the hardware.
Hence, to enable an implementation we need to adapt the state sampling ansatz and
recover a Boltzmann distribution for the visible and hidden neurons in the complex
restricted Boltzmann machine. Additionally, we need to find a way to include the complex
phases.

We suggest such an adaptation, the phase reweighting sampling scheme [84–87], in this
chapter and discuss its benefits and limitations. Furthermore, we introduce deep neural
networks to perform measurements of operators in any cartesian basis by only evaluating
visible variables. We then benchmark the ansatz on ground states in the transverse-field
Ising model, as well as on Bell and Greenberger-Horne-Zeilinger states.

This chapter contains discussions and results based on [91].

VI.1 The Phase Reweighting Ansatz
In Sect. V.1 we have introduced the state vector parametrization of quantum spin-1/2
systems via a complex restricted Boltzmann machine (RBM). We are now interested
in implementing the sampling of spin configurations from the represented probability
distribution on the neuromorphic hardware of the BrainScaleS group, as introduced in
Sect. III.5. From this we expect a speedup in creating samples to approximately evaluate
expectation values of general quantum operators. Since the hardware can efficiently draw
samples from Boltzmann distributions, we propose a sampling scheme for the complex
RBM which absorbs the complex phases into the sampled observables. Thus, it defines a
Boltzmann distribution underlying the visible and hidden variables. This so-called phase
reweighting scheme is commonly used in quantum Monte Carlo methods [84–87] and
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enables the application of block Gibbs sampling in the complex RBM, as introduced in
Sect. III.2.2. Furthermore, it allows an extension to deep networks, since it defines a
probability distribution for the hidden variables. This was the limiting factor for such
an extension in the complex RBM as discussed in Sect. V.1.1. We make use of this
possibility in Sect. VI.2 where we directly parametrize spin states in any cartesian basis
using deep neural networks.

Despite these advantages the phase reweighting scheme is known to experience the sign
problem, which leads to an exponentially scaling number of samples necessary to reach
a certain accuracy and is caused by highly fluctuating phase factors. This makes the
sampling computationally expensive and limits the ansatz to small system sizes [84–87].
On the other hand, an implementation of the sampling on neuromorphic hardware can
still provide a proportional speedup compared to classical computers.
To derive the phase reweighting scheme, we take a closer look at the complex RBM

introduced in Sect. V.1. The exponential of the network energy provides the complex
coefficients,

p (v,h;W) = exp

 N∑
i=1

M∑
j=1

viWi,jhj +
N∑
i=1

vidi +
M∑
j=1

hjbj

 . (VI.1)

These can be expressed as the product of a term depending on the real parts of the
weights and a term depending on the imaginary parts of the weights,

p (v,h;W) = exp

 N∑
i=1

M∑
j=1

viW
R
i,jhj +

N∑
i=1

vid
R
i +

M∑
j=1

hjb
R
j


× exp

i
 N∑
i=1

M∑
j=1

viW
I
i,jhj +

N∑
i=1

vid
I
i +

M∑
j=1

hjb
I
j


=: P̃

(
v,h;WR

)
eiϕ̃(v,h;WI),

(VI.2)

with W =WR + iWI. Here we introduce the phase ϕ̃(v,h;WI) and a real non-negative
function P̃ (v,h;WR). The latter defines a probability distribution over the visible and
hidden neurons, since it takes the form of the unnormalized probability distribution
defined by a real RBM.
Considering the RBM parametrization of a wave function as introduced in Sect. V.1,

the complex basis expansion coefficients cv(W) can be expressed as

cv (W) =
∑
{h}

P̃
(
v,h;WR

)
eiϕ̃(v,h;WI). (VI.3)

Thus, they are a sum over a product of an unnormalized probability distribution and a
complex phase factor. Expectation values of operators Odiag, which are diagonal in the
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considered basis, can be calculated via〈
Odiag

〉
= 1
Z (W)

∑
{v}
Odiag (v) cv (W) c∗v (W)

= 1
Z (W)

∑
{v}

∑
{h}

∑
{h̃}

[
Odiag (v) eiϕ̃(v,h;WI)−iϕ̃(v,h̃;WI)]

× P̃
(
v,h;WR

)
P̃
(
v, h̃;WR

)

= 1
Z (W)

∑
{v}

∑
{h}

∑
{h̃}

[
Odiag (v) eiϕ(v,h,h̃;WI)]P (v,h, h̃;WR

)
,

(VI.4)

Z (W) =
∑
{v}

∑
{h}

∑
{h̃}

eiϕ(v,h,h̃;WI)P
(
v,h, h̃;WR

)
, (VI.5)

where we introduce

ϕ
(
v,h, h̃;WI

)
:= ϕ̃

(
v,h;WI

)
− ϕ̃

(
v, h̃;WI

)
, (VI.6)

P
(
v,h, h̃;WI

)
:= P̃

(
v,h;WR

)
P̃
(
v, h̃;WR

)
. (VI.7)

In Eq. (VI.4) the division by the factor Z (W) yields the right normalization. In both
the numerator and the denominator we sum over all configurations of visible and hidden
neurons. In the sum also a probability distribution underlying the states of all vari-
ables appears, so that we can approximate the sums by sampling visible and hidden
configurations from P (v,h, h̃;WR),

〈
Odiag

〉
≈
∑Q
q=1Odiag (vq) eiϕ(vq ,hq ,h̃q ;WI)∑Q

q=1 e
iϕ(vq ,hq ,h̃q ;WI) , (VI.8)

where Q samples (vq,hq, h̃q) are drawn. To approximate expectation values of the
diagonal operator hence not only the observable itself is evaluated at the sampled
configurations, but also the phase ϕ(v,h, h̃;WI). In the end the product of the evaluated
observable and the complex phase factor is averaged. For the normalization we divide by
the average of the evaluated phase factors, where we need to keep in mind that these can
also take negative values, so that they can cancel each other. In the limit of large sample
sizes they converge to the correct normalization factor.
As the observable is thus reweighted by a phase factor, this ansatz is referred to as

the phase reweighting scheme, which is a standard approach in quantum Monte Carlo
methods [84–87]. However, for strongly fluctuating phase factors the method is known
to suffer from the sign problem due to cancellations appearing in the sum over the
factors. This leads to an uncontrolled growth of the variance, which we study further in
Sect. VI.4.2 [84–87].
To create samples from the distribution P (v,h, h̃;WR), a Gibbs sampling scheme

as introduced in Sect. III.2.2 can be used [54], since the probability distribution is
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represented by a real RBM. In Eq. (VI.4) we have to sum over the hidden variables twice,
denoted by the sum over h and h̃, with one of the sets having complex conjugate weights.
This corresponds to the evaluation of the bra- and the ket-states, respectively, and can
be interpreted as the neural network consisting of twice as many hidden neurons which
need to be sampled individually.
With this we have introduced an approach to deal with the complex weights, where

general RBM methods, such as Gibbs sampling, can be applied [54]. Thus, we get the
classical network structure with Boltzmann distributions for the variables, which can
hence be sampled by leaky integrate-and-fire (LIF) neurons in the neuromorphic hardware
[58, 102, 103, 105]. Additionally, this enables a generalization to deeper networks with
more hidden layers.
There exist also works on representing the complex phase via an additional hidden

layer in the RBM [68, 69]. As this changes the network structure, we do not consider
those here but stick to the explicit evaluation of the phases.

VI.2 Measurements in Different Bases

So far, we have introduced a way to approximately evaluate diagonal operators by
sampling from a Boltzmann distribution via the phase reweighting scheme. We now
derive a method to evaluate non-diagonal operators by only observing visible variables
in a complex RBM parametrization, without the use of local operators as discussed
in Sect. V.1.3. This overcomes the limitation to sparse operators and the necessity of
explicitly evaluating the basis expansion coefficients. The ansatz uses a deep complex
network to parametrize spin states in arbitrary cartesian bases in the visible variables.
Combining it with the phase reweighting approach introduced in Sect. VI.1, the sampling
of the basis states can be implemented on the neuromorphic hardware, since only the
states of the visible variables and the corresponding phases need to be evaluated.
Considering a general Hermitian operator O, we can decompose it into a string of

Pauli matrices σαi
i ,

O =
∑
{α}

Dασ
α1
1 ⊗ · · · ⊗ σ

αN
N , (VI.9)

with αi ∈ {0, 1, 2, 3} and σαi
i acting on spin i, using σ1

i = σxi , σ2
i = σyi , σ3

i = σzi and
σ0
i = 1. Dα are expansion coefficients. Considering a single spin-1/2 particle, we express

it in the z-basis, such that the operator σzi acting on the single spin at site i is diagonal,
just as the identity operator 1. Thus, any operator which is a combination of only σzi
and the identity is diagonal in the z-basis.
To perform a measurement of the operator σxi acting on a single particle, which is

a non-diagonal operator in the z-basis, we can locally rotate the spin such that it is
expressed in the x-basis and σxi becomes a diagonal operator. This can be done for each
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spin individually via a basis transformation,

|vxi 〉 =
∑
{vz

i }
|vzi 〉〈vzi |vxi 〉

=
∑
{vz

i }
uz→x (vxi , vzi ) |vzi 〉,

(VI.10)

with |vαi 〉 denoting the basis state of a single particle at site i in the α-basis, α ∈ {x, y, z}.
We introduce the rotation matrix,

Uz→x = 1√
2

[
1 1
1 −1

]
, (VI.11)

with entries uz→x(vxi , vzi ) = 〈vzi |vxi 〉. An analogous expression is given for a rotation into
the y-basis,

|vyi 〉 =
∑
{vz

i }
uz→y (vyi , v

z
i ) |vzi 〉, (VI.12)

with

Uz→y = 1√
2

[
1 i
i 1

]
, (VI.13)

resulting from uz→y(vyi , vzi ) = 〈vzi |v
y
i 〉.

We can thus perform a measurement of σxi or σyi acting on a single spin by rotating
it into the corresponding basis and evaluating the diagonal observable σzi . The single
particle basis states |vzi 〉 in the expansion of the state vector,

|Ψ〉 =
∑
{vz}

czv|vz1〉 ⊗ · · · ⊗ |vzN 〉, (VI.14)

are then replaced by Eq. (VI.10) or Eq. (VI.12), respectively, introducing a sum over
all configurations of vzi . The entries of the two rotation matrices can be expressed as
exponential functions,

uz→x (vxi , vzi ) = 1√
2

exp
[
i
π

4 (vxi vzi − vxi − vzi + 1)
]
, (VI.15)

uz→y (vyi , v
z
i ) = 1√

2
exp

[
i
π

4 (1− vyi v
z
i )
]
. (VI.16)

It can straightforwardly be checked that this yields the entries of the rotation matrices
Uz→x and Uz→y.

These exponential functions take the form of network energies as defined for an RBM.
The products iπ/4vxvz and iπ/4vyvz indicate connecting weights of strength iπ/4 between
two neurons and the terms iπ/4vx and iπ/4vz correspond to biases. We thus introduce

133



VI. Deep Neural Networks and Phase Reweighting

(a) (b) (c)
. . .

. . .
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−iπ4

Figure VI.1: Visualization of the RBM and dNN setup to perform measurements in the
z- [(a)], x- [(b)] and y-basis [(c)], where always the lowest layer contains the
visible variables while all others are hidden neurons. The additional neurons
vxi and vyi are only connected to the corresponding vzi via an imaginary
weight and for the extension into the x-basis additional biases appear. Figure
partly adapted from [91].

visible neurons which correspond to the spin states in different bases, so that we denote
them with an additional index α ∈ {x, y, z}. The overall bias of iπ/4 in Eq. (VI.15) as
well as the overall factor 1/

√
2 in front of Eqs. (VI.15)–(VI.16) can be neglected as they

vanish in the normalization. The summation over all states of vzi appearing in Eq. (VI.10)
and Eq. (VI.12) then corresponds to a marginalization over the hidden variables in the
RBM, so that vzi turns into a hidden neuron. This yields a deep neural network (dNN)
structure with two hidden layers to represent spin states in the x- or y-basis. The ansatz
can be generalized to spin systems with N sites, where the variables vxi , v

y
i can be added

to any spin which is measured in the corresponding basis.
The full network takes the form as illustrated in Fig. VI.1, where Fig. VI.1(a) shows

the standard setup with visible variables corresponding to spin states in the z-basis. (b)
shows the dNN extension with visible variables corresponding to spin states in the x-basis
and (c) shows the setup with visible variables corresponding to spin states in the y-basis.
The neurons vxi (or analogously vyi ) are added for each spin separately in a way such that
the desired measured operator is represented in a diagonal basis.

Hence, a new network needs to be constructed for measurements of any non-commuting
operators. This is analogous to experimental measurements, since a new sampling
procedure (a new measurement) needs to be performed on a different network structure
(a different experimental setup) for any operator that is measured and does not commute
with a previously measured operator.

Using the phase reweighting ansatz, expectation values of the diagonal operators can
be calculated by sampling from the Boltzmann distribution represented by the real parts
of the weights and biases in the dNN. The observables are then evaluated at the samples
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and reweighted with the corresponding phase factors given in terms of the imaginary
parts of the weights and biases. The expectation value of σxi acting on spin i is then as
an example given by

〈σxi 〉 =
∑
{vx}

∑
{vz},
{ṽz}

∑
{h},
{h̃}

[
vxi e

iϕ(vx,vz ,ṽz ,h,h̃;WI)]P (vx,vz, ṽz,h, h̃;WR
)
, (VI.17)

with unnormalized probability P (vx,vz, ṽz,h, h̃) and phase ϕ(vx,vz, ṽz,h, h̃). These
are obtained from the complex dNN similarly to the RBM discussed in Sect. VI.1. As
the vzi -variables are now hidden neurons, they need to be summed over twice, according
to Eq. (VI.4). Analogous expressions are true for measurements in the y-basis.

We have thus introduced a general dNN setup to perform measurements of any desired
Pauli string operator, where the phase reweighting scheme can be applied to create
samples from the network. With this, standard RBM methods, as introduced in Chapter
III, can be used and the sampling of the network can in principle be implemented on the
neuromorphic hardware.

VI.3 Representation of TFIM Ground States
As a first benchmark of the dNN ansatz in combination with the phase reweighting
scheme we consider the transverse-field Ising model (TFIM). We stick to ground states
since we are interested in the performance of the sampling scheme itself and not in the
representational power or performance of the RBM parametrization. We know from
Sect. V.2.2 that TFIM ground states can be represented with good accuracy.

We consider the TFIM Hamiltonian,

HTFIM =−
N∑
i=1

σzi σ
z
(i+1)%N − ht

N∑
i=1

σxi , (VI.18)

with periodic boundary conditions, and parametrize the ground state at the quantum
critical point, ht = ht,c = 1. For this transverse field the entanglement entropy grows
logarithmically with the system size and reaches its maximum [123]. This way we
can check whether quantum effects are represented in the dNN ansatz. To find the
representation of this state in the RBM parametrization, we set up a network with
N visible and M = N hidden variables. We perform the training of the weights by
minimizing the system energy via stochastic reconfiguration, as discussed in Sect. V.1.2.
Since the Hamiltonian of the TFIM is stoquastic, meaning that it only has non-positive
off-diagonal entries, its ground states can be expressed with purely real basis expansion
coefficients [233, 234]. In the following we choose a real RBM to parametrize the TFIM
ground state and only the weights and biases coming up when going to a dNN to perform
measurements in the x- or y-basis take imaginary values.
We consider moderate system sizes, N ≤ 10, so that the training of the RBM can be

done without sampling, but with explicitly summing over all possible spin configurations.
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This provides a more accurate representation of the ground state, see Sect. V.2.2. We
then fix the learned weights and biases and perform the phase reweighting scheme with
block Gibbs sampling in a dNN to approximate expectation values of magnetizations
and nearest-neighbor correlations in the x- and z-basis.
When benchmarking these software simulations, two sources of imperfections need

to be distinguished. On the one hand, as seen in Sect. V.2.2, the representation of the
ground state in the RBM is not exact and leads to a representation error. On the other
hand, statistical errors due to finite sample sizes appear in the evaluation of operators,
causing sampling errors. We analyze both errors individually in the following, focusing
on the sampling error.

The results are shown in Fig. VI.2, where we vary the system size from N = 2 to N = 10
in steps of one. Panel (a) analyzes the sampling error and shows the absolute deviations
between sampling from the dNN with phase reweighting (〈O〉dNN) and summing over all
configurations explicitly in the RBM parametrization (〈O〉sum). The deviations are plotted
as functions of the sample size for magnetizations and nearest-neighbor correlations in the
x- and z-basis. When summing over all spin states operators in the x-basis are evaluated
via the local operator approach, as discussed in Sect. V.1.3. Here we only consider the
magnetizations of the first spin and the correlations between the first two spins since we
explicitly include translation invariance in the RBM parametrization, as discussed in
Sect. V.1.4.

The sampling is performed ten times for each system size and the absolute deviations
are averaged, with shaded regions denoting statistical fluctuations. We find convergence
of the absolute deviations towards zero proportional to 1/

√
# Samples for measurements

in both bases, as it is expected from statistical arguments [224]. When considering
measurements in the z-basis (upper row), where the weights and biases in the RBM are
purely real, we do observe approximately no dependence of the absolute deviation on the
system size. When considering measurements in the x-basis (lower row) where imaginary
weights and biases appear in the dNN, larger deviations are found. This is reasonable,
since the complex phase factors can cancel each other in the normalization factor Z(W),
see Eq. (VI.4). Large fluctuations can then lead to the sign problem, which causes an
exponential scaling of the amount of samples necessary to reach a certain accuracy with
the system size. The absolute deviation is indeed found to grow with the system size in
the lower row of Fig. VI.2(a), but a convergence to the exact solution is still observed for
the system sizes considered.
To analyze this dependency further, panel (b) shows the same data evaluated at 108

samples (indicated by the upper index 〈O〉108
dNN) as a function of the system size. As

expected, the measurements in the z-basis approximately follow a constant line, while the
absolute deviations of measurements in the x-basis scale exponentially with the system
size. This renders the ansatz inefficient, even though the number of necessary samples
to reach good accuracy is smaller than the number of possible configurations. This is
here 25N , since we choose M = N and we have two hidden layers which are summed
over twice according to Eq. (VI.4). Thus, the ansatz is limited to small system sizes,
but it is possible to simulate spin chains slightly longer than what is possible with exact
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〈σz
1〉 〈σz

1σ
z
2〉

〈σx
1 〉 〈σx
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x
2 〉

(a) (b)

(c)

Figure VI.2: RBM representation of the ground state in the TFIM at the quantum
critical point, ht,c = 1, using the dNN ansatz with phase reweighting scheme,
where Gibbs sampling is applied. Panel (a) analyzes the sampling error
and shows absolute deviations of simulations when evaluating the RBM
parametrization via sampling (〈O〉dNN) or via explicitly summing over all
possible configurations (〈O〉sum). Expectation values of magnetizations of
the first spin and of the correlations between the first two spins in the x- and
z-basis are considered, and deviations are plotted as functions of the sample
size. The chain length is varied from N = 2 to N = 10 sites, indicated by
the different colors, and for each system size the sampling is performed ten
times and averaged, with shaded regions denoting statistical fluctuations.
For measurements in the z-basis (upper row) approximately no dependence
on the system size is observed, while the deviations increase with the chain
length for measurements in the x-basis (lower row). Panel (b) shows the
absolute deviation of the same simulation data evaluated at 108 samples
(〈O〉108

dNN) from the solution when summing over all configurations as a
function of system size, with error bars again denoting statistical fluctuations.
An exponential scaling of the deviations with the system size is clearly visible
for measurements in the x-basis. Panel (c) analyzes the representation
error of the RBM parametrization by showing the absolute deviation when
explicitly summing over all configurations in the RBM parametrization
(〈O〉sum) and the exact result calculated via exact diagonalization (〈O〉exact).
The representational error is found to dominate the sampling error for N ≥ 4.
Figure adapted from [91].
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diagonalization using comparable resources.
Figure VI.2(c) shows the absolute deviation of the correlations and magnetizations in

the x- and z-basis when explicitly summing over all states in the RBM parametrization
(〈O〉sum) from the exact expectation values calculated via exact diagonalization (〈O〉exact).
This corresponds to the representation error and we find a sudden increase in the deviation
when going from N = 3 to N = 4 sites for all observables. The deviations then saturate
around 10−2 for larger system sizes, still showing good accuracy. The sudden increase
results from the representational power of the RBM parametrization, so up to N = 3
the TFIM ground state can be represented with good accuracy and for larger N it is
harder to represent this state. The behavior for larger system sizes shows that it is not
necessary to draw as many samples as considered in the phase reweighting simulations,
since we cannot exceed the representational accuracy.
In summary we show that the ground state of the TFIM at the quantum critical

point can be represented by the dNN ansatz in combination with sampling via the phase
reweighting scheme and expectation values of observables in the x- and z-basis can be
approximated with good accuracy. However, the necessary number of samples to reach
a certain accuracy scales exponentially with the system size for measurements in the
x-basis, rendering the ansatz inefficient and limiting it to small system sizes.

VI.4 Sampling a Bell State

VI.4.1 Representing a Bell State with an RBM

Having benchmarked the dNN ansatz with phase reweighting on the ground state of the
TFIM at the quantum critical point, we are now interested in the performance of the
ansatz for strongly entangled states. Therefore, we consider the Bell state as introduced
in Sect. II.4.1,

|ΨBP〉 = 1√
2

(| ↑↓〉+ | ↓↑〉) . (VI.19)

To represent this state with an RBM, we can construct a network with two visible
variables corresponding to the two spin particles. We additionally show in the following
that it is sufficient to use one hidden variable. We again focus on analyzing whether
sampling the deep network with the phase reweighting scheme works well and efficiently.
Therefore, we do not variationally search for the weights to parametrize the Bell state,
but we calculate them analytically and fix them.
The ansatz for finding the weights parametrizing a Bell state is given by the state

vector and its RBM representation,

|ΨBP〉 =
∑
{vz}

cvz (W) |vz〉

= 1√
2

[| − 1, 1〉+ |1,−1〉] ,
(VI.20)
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where we encode the up- and down-state of the spins in binary values with | ↑〉 = |1〉,
| ↓〉 = | − 1〉. This yields

cvz=(±1,±1) (W) != 0, (VI.21)

cvz=(±1,∓1) (W) != 1√
2
. (VI.22)

Using the definition of cvz (W) according to Eq. (V.6) gives

cvz (W) =
∑
{h}

exp

 N∑
i=1

M∑
j=1

vziWi,jhj +
N∑
i=1

div
z
i +

M∑
j=1

bjhj


= exp

[
N∑
i=1

div
z
i

]
M∏
j=1

2cosh
[
N∑
i=1

vziWi,j + bj

]
,

(VI.23)

which yields

exp [± (d1 + d2)] 2cosh [± (W1,1 +W2,1) + b1] != 0, (VI.24)

exp [± (d1 − d2)] 2cosh [± (W1,1 −W2,1) + b1] != 1√
2
. (VI.25)

In the last lines we use the network structure of the Bell state with N = 2, M = 1, and
plug it into Eqs. (VI.21)–(VI.22).

There are many possible solutions to Eqs. (VI.24)–(VI.25), but we are only interested
in finding at least one of them. Therefore, we use Eq. (VI.24) to choose the ansatz

cosh [± (W1,1 +W2,1) + b1] != 0 (VI.26)

⇒ b1 ± (W1,1 +W2,1) = iπ

(
n± + 1

2

)
, n± ∈ Z. (VI.27)

This yields the expressions

b1 = iπ

(
n+ + n−

2 + 1
2

)
, (VI.28)

W1,1 +W2,1 = iπ
n+ − n−

2 . (VI.29)

Those can be plugged into Eq. (VI.25) and by introducing n(±) = n+ ± n− we get

cosh [b1 ± (W1,1 −W2,1)]

=

±i (−1)n
(+)/2 sinh [W1,1 −W2,1] , if n(±) even,

(−1)(n
(+)+1)/2 cosh [W1,1 −W2,1] , if n(±) odd.

(VI.30)

We consider the two cases individually in the following.
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Using

exp [± (d1 − d2)] = cosh [d1 − d2]± sinh [d1 − d2] , (VI.31)

we get from Eq. (VI.22) for the case of even n(±) two equations,

i (−1)n
(+)/2 cosh [d1 − d2] sinh [W1,1 −W2,1] != 0, (VI.32)

i (−1)n
(+)/2 sinh [d1 − d2] sinh [W1,1 −W2,1] != 1√

8
. (VI.33)

Thus,

cosh [d1 − d2] != 0 (VI.34)

⇒ d1 − d2 = iπ

(
me + 1

2

)
, me ∈ Z (VI.35)

⇒ (−1)n
(+)/2+1+me sinh [W1,1 −W2,1] != 1√

8
(VI.36)

⇒ W1,1 −W2,1 = (−1)n
(+)/2+me+1 arsinh

( 1√
8

)
, (VI.37)

where we use sinh[iπ(me + 1/2)] = i(−1)me .
Putting this together with Eqs. (VI.28)–(VI.29), we obtain the result

d1 − d2 = iπ

(
me + 1

2

)
, me ∈ Z,

b1 = iπ

(
n+ + n−

2 + 1
2

)
, n± ∈ Z,

W1,1 = (−1)n
(+)/2+me+1 1

2arsinh
[ 1√

8

]
+ i

π

4n
(−), n(±) = n+ ± n−,

W2,1 = (−1)n
(+)/2+me

1
2arsinh

[ 1√
8

]
+ i

π

4n
(−).

(VI.38)

Analogously, we get for the case of odd n(±),

(−1)(n
(+)+1)/2 cosh [d1 − d2] cosh [W1,1 −W2,1] != 1√

8
, (VI.39)

(−1)(n
(+)+1)/2 sinh [d1 − d2] cosh [W1,1 −W2,1] != 0, (VI.40)

which yields

sinh [d1 − d2] = 0 (VI.41)
⇒ d1 − d2 = iπmo, mo ∈ Z. (VI.42)
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Using cosh[iπmo] = (−1)mo , we obtain from Eq. (VI.39),

(−1)(n
(+)+1)/2+mo cosh [W1,1 −W2,1] != 1√

8
(VI.43)

⇒ W1,1 −W2,1 = i

[
π

(
n(+) + 1

2 +mo

)
+ (−1)(n

(+)+1)/2+mo arccos
( 1√

8

)]
.

(VI.44)

In the end this provides the result for odd n(±),
d1 − d2 = iπmo, mo ∈ Z,

b1 = iπ

(
n+ + n−

2 + 1
2

)
, n± ∈ Z, n(±) = n+ ± n−

W1,1 = i

[
(−1)(n

(+)+1)/2+mo
1
2arccos

( 1√
8

)
+ π

4 (2n+ + 1 + 2mo)
]
,

W2,1 = i

[
(−1)(n

(+)+1)/2+mo+1 1
2arccos

( 1√
8

)
− π

4 (2n− + 1 + 2mo)
]
.

(VI.45)

These expressions for even and odd n(±) give infinitely many possible weight configurations
to parametrize the Bell state due to periodicity in the hyperbolic cosine. Thus, the same
state can be represented with infinitely many choices, providing a degeneracy in the
quantum state representation.

In the expressions for the weights one can see that they can be chosen either complex
or even purely imaginary. These are two cases we consider in the following, where in the
purely imaginary case all spin configurations are sampled with equal probabilities in the
phase reweighting scheme.

To represent a Bell state with purely imaginary weights, we choose n+ = −1, n− = 0,
so that n(±) is odd. Together with mo = 0 this gives,

d1 − d2 = 0 ⇒ d1 = d2 = 0,
b1 = 0,

W1,1 = i

(
−1

2arccos
[ 1√

8

]
− π

4

)
,

W2,1 = i

(1
2arccos

[ 1√
8

]
− π

4

)
.

(VI.46)

To represent the Bell state with complex weights we choose n+ = 1, n− = −1, so that
n(±) is even. We additionally choose me = 0, so that we get

d1 − d2 = i
π

2 ⇒ d1 = i
π

2 , d2 = 0,

b1 = i
π

2 ,

W1,1 =− 1
2arsinh

( 1√
8

)
+ i

π

2 ,

W2,1 = 1
2arsinh

( 1√
8

)
+ i

π

2 .

(VI.47)

141



VI. Deep Neural Networks and Phase Reweighting

These are two choices of weights we use to benchmark the phase reweighting sampling
scheme and the dNN approach in the following. Since these weights have been derived
analytically, they represent the Bell state exactly and no representation error appears.

VI.4.2 Violating Bell’s Inequality
Given the network structure and the weights to represent the Bell state we can check how
the sampling via phase reweighting performs. As the system consists only of two sites, it
can straightforwardly be solved exactly and we can calculate the expected magnetizations
and correlations in the z- and x-basis,

〈σz1〉 = 〈σz2〉 = 0,
〈σz1σz2〉 =− 1,
〈σx1 〉 = 〈σx2 〉 = 0,

〈σx1σx2 〉 = 1.

(VI.48)

We implement the RBM with the weights as derived [Eqs. (VI.46)–(VI.47)] and apply
Gibbs sampling to draw the visible and hidden variables from the Boltzmann distribution
defined by the real parts of the weights. We then explicitly calculate the corresponding
phases using the imaginary parts of the weights and apply the reweighting scheme when
calculating expectation values.
The results for measurements in the z-basis, where we only have a shallow two-layer

RBM, are shown in Fig. VI.3. Calculations for complex and purely imaginary weights
are plotted for the magnetization of each spin [Fig. VI.3(a), (b)] and their correlation
[Fig. VI.3(c)]. The insets show the direct outcomes of the measurements together with the
exact solution as a function of sample size. The main plots show the absolute deviations
from the exact result together with a function proportional to 1/

√
# Samples, indicating

the expected convergence for Monte Carlo sampling [224].
As we consider small system sizes, the proportionality factor in the expected convergence

behavior can be calculated explicitly. The absolute deviation of the expectation value
of an observable X, approximated via Monte Carlo sampling, from the exact solution
Xexact is given by [224]

|〈X〉 −Xexact| =
√
σ2 [X]√
N

, (VI.49)

with variance

σ2 [X] =
〈
X2
〉
−
〈
X
〉2
. (VI.50)

The angular brackets denote expectation values calculated using Q Monte Carlo samples
Xq,

〈X〉 = 1
Q

Q∑
q=1

Xq. (VI.51)
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(a) 〈σz
1〉 (b) 〈σz

2〉 (c) 〈σz
1σ

z
2〉

Figure VI.3: Expectation values resulting from the RBM representation of a Bell state
using the phase reweighting scheme. We consider the magnetization 〈σzi 〉 of
the first [(a)] and the second spin [(b)] and the correlation 〈σz1σz2〉 between
the two [(c)] in the z-basis. Results are shown for the purely imaginary
(orange) and the complex (green) choice of weights [Eqs. (VI.46)–(VI.47)].
Main plots show the absolute deviations of the simulations from the exact
solution, while the insets show the direct measurement outcome as a function
of sample size together with the exact solution. x-axes of the insets are the
same as in the main plots and hence show the number of samples, while the
y-axes of the insets directly correspond to the evaluated observables. Shaded
regions denote statistical fluctuations from averaging ten simulation runs.
The blue line in the main plot is a function proportional to 1/

√
# Samples,

indicating the expected convergence, where the proportionality factor is
calculated explicitly [Eq. (VI.55)]. Figure partly adapted from [91].

In the case of evaluating a general diagonal operator 〈O〉dNN via averaging over samples
drawn from the RBM representation, error propagation yields

σ [〈O〉dNN] =
∣∣∣∣∣σ [Re 〈Ψ |O|Ψ〉dNN]

Re 〈Ψ |Ψ〉dNN

∣∣∣∣∣
+
∣∣∣∣∣Re 〈Ψ |O|Ψ〉dNN

Re 〈Ψ |Ψ〉2dNN
σ [Re 〈Ψ |Ψ〉dNN]

∣∣∣∣∣ .
(VI.52)

Here we use

〈O〉dNN = Re
[
〈Ψ |O|Ψ〉dNN
〈Ψ |Ψ〉dNN

]

= Re


∑
{v,h,h̃} O (v) p (v,h;W) p

(
v, h̃;W∗

)
∑
{v,h,h̃} p (v,h;W) p

(
v, h̃;W∗

)
 , (VI.53)
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with the network energy as defined in Eq. (VI.1) or the corresponding expression for deep
networks. Here v denotes the basis states in an arbitrary cartesian basis and h, h̃ denote
all hidden variables, even if they correspond to different hidden layers in deep networks.
We can calculate the variances explicitly,

σ2 [Re (〈Ψ |O|Ψ〉dNN)] = 1
2N

∑
{v,h,h̃}

Re
[
O (v) p (v,h;W) p

(
v, h̃;W∗

)]2

−

 1
2N

∑
{v,h,h̃}

Re
[
O (v) p (v,h;W) p

(
v, h̃;W∗

)]
2

,

σ2 [Re (〈Ψ |Ψ〉dNN)] = 1
2N

∑
{v,h,h̃}

Re
[
p (v,h;W) p

(
v, h̃;W∗

)]2

−

 1
2N

∑
{v,h,h̃}

Re
[
p (v,h;W) p

(
v, h̃;W∗

)]
2

.

(VI.54)

Since we only evaluate operators in the bases where they are diagonal, these expressions
are generally true. For small system sizes the sum over all configurations can be evaluated
explicitly, so that we can calculate the variances exactly. This exact sum over all
basis states also results in the imaginary parts of the expectation values to vanish with
high accuracy, which is why we do not consider them in the calculations above. For
large enough sample sizes, when the effects resulting from fluctuating phase factors are
suppressed, we expect the absolute deviations of the simulations from the exact solution
to decrease as predicted by the variances,

|〈O〉dNN − 〈O〉exact| =
σ [〈O〉dNN]√
# Samples

. (VI.55)

We have evaluated the variances explicitly for the Bell state and the blue lines in
Fig. VI.3 show the results. There we only plot the expected convergence calculated for
the case of purely imaginary weights, as the complex weights provide similar results. A
convergence to the exact solution is clearly visible and the absolute deviations decay
as expected, following the blue line accurately. Increasing the sample size further
leads to even smaller absolute deviations but is also computationally more expensive.
The deviation decreases slowly with the number of samples according to the observed
convergence behavior. No clear difference between the cases of complex and purely
imaginary weights is visible. They both converge equally well, even though the variables
are sampled from uniform distributions for purely imaginary weights, while a different
distribution is given by the real parts of the complex weights.
After having shown that we can represent the state correctly in the z-basis, we also

need to check the x-basis to be sure that we capture the full quantum state. Therefore,
we use a deep network with an additional layer and measure the magnetization of each
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(a) 〈σx
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2 〉

Figure VI.4: RBM representation in the x-basis using the dNN ansatz and the phase
reweighting scheme to represent a Bell state. Results are shown for the case
of purely imaginary (orange) and complex (green) weights [Eqs. (VI.46)–
(VI.47)], where the main plots show the absolute deviation of the simulations
from the exact solution and insets show the direct outcome of the mea-
surements as functions of the number of samples together with the exact
solution. The magnetizations 〈σxi 〉 of the first [(a)] and the second spin
[(b)], as well as their correlation 〈σx1σx2 〉 [(c)] are evaluated. x-axes in the
insets show the sample size and are the same as in the main plots, while
on the y-axes the direct observables are plotted. The blue line in the main
plots denotes the explicitly calculated convergence according to Eq. (VI.55),
which is expected from statistical arguments [224]. Shaded regions show
statistical fluctuations resulting from averaging ten simulation runs. Figure
partly adapted from [91].

spin and the correlation between the two in the x-basis. Results are shown in Fig. VI.4,
which has the same structure as Fig. VI.3.

Here we can make the same observations as for the measurements in the z-basis,
convergence is found for large sample sizes and the absolute deviation decays as expected.
We again calculate the variance explicitly to get the expected behavior. However, the
deviations are larger than for the measurements in the z-basis in Fig. VI.3. This is
reasonable since the network size has increased and more neurons need to be sampled,
leading to larger variances. There is still no clear difference between the two cases of
complex and purely imaginary weights. Furthermore, we find fluctuations for small
sample sizes in the inset plots, which are caused by the sum over the complex phase
factors appearing in the denominator to get the right normalization, see Eq. (VI.4). The
individual terms appearing there can cancel each other so that the denominator can get
very small and causes divergences. This is especially a problem when not enough samples
exist to overcome such cancellations.
Having shown that correlations in the x- and z-basis are represented well by the
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Figure VI.5: CHSH-observable BBP as a function of sample size in the phase reweighting
scheme applied to the RBM representation of the Bell state using purely
imaginary (orange) and complex (green) weights [Eqs. (VI.46)–(VI.47)]. The
main plot shows the absolute deviation of the simulation outcome from the
exact result together with the explicitly calculated expected convergence
[Eq. (VI.55)], while the inset shows the CHSH-observable [Eq. (VI.56)] as
a function of the sample size together with the exact solution. Thus, the
x-axis is the same as in the main plot, while the CHSH-observable is plotted
on the y-axis. The classical limit of BBP is shown by the red dashed line to
make the violation of the CHSH-inequality visible. In the main plot this
line shows the deviation of the classical limit from the exact solution, so
that the CHSH-inequality is violated if the simulation goes below this line.
Figure adapted from [91].

dNN approach, we expect that also the Clauser-Horne-Shimony-Holt-inequality (CHSH-
inequality) is violated. An observable violating this inequality is given by the two
correlations in the case of the Bell state, as discussed in Sect. II.4.1,

BBP =
√

2 [〈σx1σx2 〉 − 〈σz1σz2〉] . (VI.56)

The accuracy of the simulated correlations is large enough to expect a violation.
Figure VI.5 shows the convergence of the CHSH-observable towards the exact value as

a function of sample size. The main plot shows the absolute deviation from the exact
solution and the inset shows the explicit measurement outcome. The classical limit is
depicted by the red dashed line. In the main plot this line corresponds to the absolute
deviation of the classical limit from the exact result, 2

√
2− 2. Thus, when the absolute

deviation goes below this line, the CHSH-inequality is violated, which is the case here
for approximately 105 and more samples. This is in agreement with observations in
the inset. We hence find quantum entanglement in the state simulated via the dNN
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ansatz. However, explicitly summing over all configurations of the variables in the
network representing the Bell state in the z-basis requires 2N+2M = 24 terms. Note
that the hidden variables are summed over twice to represent the bra- and ket-states
according to Eq. (VI.4). Analogously, the network representing the Bell state in the
x-basis can take 2N+2N+2M = 28 possible configurations in the weights. Compared to
these numbers, we need many samples to violate the CHSH-inequality. This makes the
ansatz computationally expensive, since for each sample the phase needs to be evaluated
in the reweighting scheme. Furthermore, we need to keep in mind that we calculate the
phases explicitly, so we do not get quantum entanglement directly out of the samples
drawn from a classical network.

VI.4.3 Variations in the Weights

To analyze the performance of the phase reweighting scheme in more detail, we vary the
weights representing a Bell state in the RBM by some factor ∆W. We then check how
accurately the sampled spin configurations can approximate exact expectation values
of quantum operators. For such small systems we can calculate the exact expectation
values by explicitly summing over all possible configurations instead of sampling them.

We first consider the purely imaginary weights parametrizing the Bell state as stated
in Eq. (VI.46) and set the connecting weight W1,1 to

W̃1,1 =W1,1 + i∆W1,1, (VI.57)

so that we vary it around the representation of the Bell state. Results for this are shown
in Fig. VI.6, where the weight is varied in the range ∆W1,1 ∈ [−4, 4]. The Bell state is
represented for ∆W1,1 = 0 and, due to the periodicity of the wave function representation
in the weights, also for ∆W1,1 = ±π. Figure VI.6 shows the simulation results evaluated
after P = 105 samples in comparison to the exact solution for different observables. Main
panels show the absolute deviations of the simulation from the exact result and insets
show the direct evaluations of the observables together with the exact solution.

Due to symmetry reasons, the exact magnetization is the same for both spins, so that
we plot the results of both magnetizations in one figure, Fig. VI.6(a) for measurements in
the z-basis and Fig. VI.6(d) for measurements in the x-basis. Figure VI.6(b) shows the
correlation between the two spins measured in the z-basis and Fig. VI.6(e) accordingly
shows the correlation in the x-basis. The combination of these two correlations provides
the CHSH-observable BBP, which is shown in Fig. VI.6(c). In the inset the classical
limit, BBP = 2, is shown by the dashed line, so that the violation of the CHSH-inequality
becomes visible.
One can observe that the accuracy reached for the measurements in the z-basis is

higher than for measurements in the x-basis. This is reasonable since more variables need
to be sampled in the deep network for the x-measurements. It also matches our previous
observations. For the weights which represent the Bell state, the absolute deviation from
the exact solution is larger than in other regimes of ∆W1,1. These larger deviations can
even be seen when considering the magnetization in the z-basis or the correlation in the
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Figure VI.6: Simulation outcomes using the phase reweighting scheme in an RBM rep-
resenting a Bell state with purely imaginary weights, where weight W1,1 is
varied by i∆W1,1 around the Bell state representation [Eq. (VI.46)]. Mag-
netizations of both spins are measured in the z- and x-basis [(a), (d),
respectively] besides the correlations between the two spins [(b) z-basis, (e)
x-basis] and the CHSH-observable according to Eq. (VI.56) [(c)]. The main
plots show the absolute deviations of the simulations from the exact solution
summed over all basis states, while the insets show the direct evaluations of
the observables together with the exact solution. The x-axes in the insets
show the variation ∆W1,1 and are the same as in the main plots, while
the direct measurement outcomes are plotted on the y-axes. In the inset
of panel (c) the classical limit is shown by the dashed line to make the
violation of the CHSH-inequality visible. The results are calculated using
P = 105 samples, where ten sample sets are averaged. Shaded regions show
the statistical fluctuations of the averages. Simulations of Bell states are
found to show larger deviations than simulations of other states which do
not violate the considered CHSH-inequality.
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x-basis, which are both constant when varying the weights. Thus, it is harder to sample
the entangled Bell state than other states which do not violate the CHSH-inequality
with the observable considered here. However, these can still be entangled states, as they
might violate Bell’s inequality for a different choice of observables.

Figure VI.7 has the same structure as Fig. VI.6 and shows the results for varying the
weight W1,1 of the analytically calculated complex weights representing the Bell state
[Eq. (VI.47)] according to

W̃1,1 = W1,1 + i∆W1,1. (VI.58)

Due to periodicity, we again find the weights representing a Bell state for ∆W1,1 = 0 and
∆W1,1 = ±π. In these simulations we can make the same observations as for the purely
imaginary case in Fig. VI.6. We again find a larger absolute deviation from the exact
solution for the weights representing the Bell state than for other choices of ∆W1,1.

Given the complex weights, we can also make the variations of W1,1 in the real space,
namely considering

W̃1,1 = W1,1 + ∆W1,1. (VI.59)

Results for such simulations are shown in Fig. VI.8, which has the same structure as
Figs. VI.6–VI.7. Here we do not find the periodic behavior in the weights since we vary
the real part. Thus, the Bell state is only represented for ∆W1,1 = 0. We again find a
peak in the absolute deviation from the exact solution at the weights representing the
Bell state, so that in the end we can conclude that it is harder to sample this state than
sampling the other states we represent by varying the weights.

In Fig. VI.8 we additionally find that the absolute error increases at the corners of the
plots. From this we can conclude that if the absolute value of the real part of the weights
gets too large, it is also hard to sample the states. This relation to the size of the real
weights is confirmed by the fact that the variations are stronger in the magnetization
of the first spin, 〈σα1 〉, whose connecting weight is varied. The effect is probably caused
by the unnormalized probabilities reaching large values in these regimes, as the weights
appear in an exponential function. So, for the Gibbs sampling we need to consider the
ratio of two large values to get a normalized probability, which leads to larger numerical
uncertainties than for the case of considering the ratio of two smaller values.
We can conclude from the variations in the weights that we should not choose the

absolute values of the real parts of the weights too large to keep numerical uncertainties
small. Additionally, the phase reweighting scheme shows lower accuracy for the Bell
state, where Bell’s inequality is maximally violated, than for states where the considered
CHSH-inequality is not violated.

VI.5 Going to Larger Systems: The GHZ State
VI.5.1 RBM Representation of the GHZ State
We now analyze the performance of the phase reweighting sampling scheme applied to
an RBM representing larger spin systems in strongly entangled states. This provides
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Figure VI.7: Expectation values of the magnetization of both spins in the z- [(a)] and the
x-basis [(d)], as well as the correlation between the two spins in the z- [(b)]
and the x-basis [(e)] and the CHSH-observable as stated in Eq. (VI.56) [(c)]
are plotted as functions of variations in the RBM weights. Simulations are
made using the phase reweighting sampling, where the evaluation is done
with P = 105 samples. Ten sample sets are evaluated and averaged for each
observable, shaded regions denote the statistical fluctuations. The weights
are chosen complex and such that they represent a Bell state [Eq. (VI.47)],
where weight W1,1 is varied by i∆W1,1 in the imaginary space around the
analytically calculated value. The main plots show the absolute deviations
of the simulations from the exact solution summed over all basis states,
while the insets show the direct evaluations of the observables together with
the exact solution. In the inset of panel [(c)] the dashed line shows the
classical limit of the CHSH-observable. x-axes in the insets are the same as
in the main plots and show the variation ∆W1,1, while the observables are
plotted on the y-axes.
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Figure VI.8: Real variation of the weight W1,1 in the RBM representation by ∆W1,1
around the Bell state with complex weights [Eq. (VI.47)] using the dNN
approach. Expectation values of the magnetizations of both spins in the z-
[(a)] and x-basis [(d)], of the correlations between the two spins [(b) z-basis,
(e) x-basis] and of the CHSH-observable according to Eq. (VI.56) [(c)] are
calculated using the phase reweighting approach and plotted as functions of
the weight variations. For calculating the expectation values, ten sample
sets with P = 105 samples each are created and the measurement outcomes
are averaged. Shaded regions denote statistical fluctuations. Main plots
show the absolute deviations of the simulations from the exact solution
summed over all basis states, while the insets show the direct measurement
outcomes together with the exact solution. The x-axes in the insets show
the variations ∆W1,1 and are the same as those of the main plots, while on
the y-axes the corresponding observables are plotted. In the inset of panel
(c) the dashed line denotes the classical limit of the CHSH-observable to
make the violation of the CHSH-inequality visible. Deviations are found
to increase towards the edges of the plots, where the weights take large
absolute values, leading to larger numerical uncertainties.
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further information about the scaling of the necessary sample size with the system size.
Therefore we consider the Greenberger-Horne-Zeilinger (GHZ) state as introduced in
Sect. II.4.2 as a generalization of the Bell state to larger spin systems,

|ΨGHZ〉 = 1√
2

[| ↑ . . . ↑〉+ | ↓ . . . ↓〉] . (VI.60)

To parametrize the GHZ state in the RBM we derive the weights analytically and no
representation error appears. We can then benchmark the phase reweighting scheme by
checking whether it can capture the exact expectation values.
We first consider the smallest possible system with N = 3 spins. We construct a

neural network with M = 2 hidden variables and consider its state vector representation
according to Eq. (V.6),

|Ψ〉 =
∑
{vz}

cvz (W) |vz〉

=
∑
{vz}

exp
[
N∑
i=1

div
z
i

]
M∏
j=1

2cosh
[
N∑
i=1

Wi,jv
z
i + bj

]
|vz〉

(VI.61)

⇒ cvz=(±1,±1,±1) (W) != 1√
2
,

cvz 6=(±1,±1,±1) (W) != 0.
(VI.62)

This provides the set of equations

exp [± (d1 + d2 + d3)]4cosh [± (W1,1 +W2,1 +W3,1) + b1]

× cosh [± (W1,2 +W2,2 +W3,2) + b2] != 1√
2

(VI.63)

exp [± (d1 + d2 − d3)]4cosh [± (W1,1 +W2,1 −W3,1) + b1]

× cosh [± (W1,2 +W2,2 −W3,2) + b2] != 0
(VI.64)

exp [± (d1 − d2 + d3)]4cosh [± (W1,1 −W2,1 +W3,1) + b1]

× cosh [± (W1,2 −W2,2 +W3,2) + b2] != 0
(VI.65)

exp [± (−d1 + d2 + d3)]4cosh [± (−W1,1 +W2,1 +W3,1) + b1]

× cosh [± (−W1,2 +W2,2 +W3,2) + b2] != 0
(VI.66)

There are many possibilities to solve these equations, but for now we are only interested
in finding at least one possible solution. Therefore, we demand from Eq. (VI.64),

cosh [b1 ± (W1,1 +W2,1 −W3,1)] != 0 (VI.67)

⇒ b1 = iπ

(
n+

1 + n−1
2 + 1

2

)
, n±1 ∈ Z, (VI.68)

W1,1 +W2,1 −W3,1 = iπ
n+

1 − n
−
1

2 . (VI.69)
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Analogously, from Eq. (VI.65) we can choose

cosh [b2 ± (W1,2 −W2,2 +W3,2)] != 0 (VI.70)

⇒ b2 = iπ

(
n+

2 + n−2
2 + 1

2

)
, n±2 ∈ Z, (VI.71)

W1,2 −W2,2 +W3,2 = iπ
n+

2 − n
−
2

2 , (VI.72)

and from Eq. (VI.66)

cosh [b2 ± (−W1,2 +W2,2 +W3,2)] != 0 (VI.73)

⇒ −W1,2 +W2,2 +W3,2 = iπ
n+

2 − n
−
2

2 , (VI.74)

by inserting Eq. (VI.71).
This provides infinitely many solutions due to the freely choosable integers n±1 and n±2 .

For simplicity, and as we only need one solution, we choose n±1 = n±2 = 0 in the following.
Thus,

b1 = b2 = i
π

2 ,

W1,1 +W2,1 −W3,1 = 0,
W1,2 = W2,2,

W3,2 = 0.

(VI.75)

This can be plugged into Eq. (VI.63) to get

cosh
[
i
π

2 ± (W1,1 +W2,1 +W3,1)
]

cosh
[
i
π

2 ± 2W1,2

]
= (±isinh [W1,1 +W2,1 +W3,1]) (±isinh [2W1,2])
=− isinh [W1,1 +W2,1 +W3,1] ,

(VI.76)

where we fixW1,2 = iπ/4 to simplify the expression in the last line. With this, Eq. (VI.63)
becomes

−iexp [± (d1 + d2 + d3)] sinh [W1,1 +W2,1 +W3,1] != 1
4
√

2
. (VI.77)

Using

exp [± (d1 + d2 + d3)] = cosh [d1 + d2 + d3]± sinh [d1 + d2 + d3] , (VI.78)

we get two equations,

−icosh [d1 + d2 + d3] sinh [W1,1 +W2,1 +W3,1] != 1
4
√

2
, (VI.79)

−isinh [d1 + d2 + d3] sinh [W1,1 +W2,1 +W3,1] != 0. (VI.80)

153



VI. Deep Neural Networks and Phase Reweighting

These can be solved by
d1 + d2 + d3 = 0,

W1,1 +W2,1 +W3,1 = iarcsin
[ 1

4
√

2

]
.

(VI.81)

From these constraints together with Eq. (VI.69) we can extract a set of weights,

d1 = d2 = d3 = 0,

b1 = b2 = i
π

2 ,

W1,1 = W2,1 = i

4arcsin
[ 1

4
√

2

]
,

W3,1 = i

2arcsin
[ 1

4
√

2

]
,

W1,2 = W2,2 = i
π

4 ,

W3,2 = 0.

(VI.82)

From the structure of these expressions we can observe that the weights connecting to
the first hidden neuron guarantee the normalization of the state vector if all spins are
equal. Furthermore, they give zero coefficients if the third spin is flipped compared to
the other two. On the other hand, the weights connecting to the second hidden neuron
guarantee that the basis expansion coefficients are zero if the first and second spin have
opposite signs.

Having understood this structure, we can generalize it to larger spin systems and write
down weights to parametrize the GHZ state as a function of the system size N , where
we always choose M = N − 1 hidden variables,

dl = 0,

bj = i
π

2 ,

Wl 6=N,1 = i

2 (N − 1)arcsin
[ 1

2N−1/2

]
,

WN,1 = i

2arcsin
[ 1

2N−1/2

]
,

Wl,j 6=1 = i
π

4 (δl,j−1 + δl,j) , ∀ l ∈ {1, . . . , N} , j ∈ {1, . . . ,M} .

(VI.83)

For small system sizes (N ≤ 5), it has been checked numerically that these weights
provide the basis expansion coefficients of a GHZ state. Thus, we have found a set of
purely imaginary weights to represent strongly entangled states of arbitrary system sizes
in the RBM. We can now generally benchmark the phase reweighting scheme on those.

VI.5.2 Sampling the GHZ State
For a first benchmark, we slightly increase the system size compared to Sect. VI.4 by
considering N = 3 spin-1/2 particles in a GHZ state. For this we need M = 2 hidden
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variables, which need to be summed over twice with complex conjugate weights in
the RBM parametrization to represent the bra- and ket-state according to Eq. (VI.4).
Expressing this double sum via twice as many hidden variables with complex conjugate
weights, the network consists of N + 2M = 7 neurons when parametrizing states in the
z-basis and of 3N + 2M = 13 neurons when parametrizing states in the x-basis. This is
slightly more than in the network parametrizing the Bell state, which had 4 or 8 neurons,
respectively.
We set up the RBM with weights and biases as stated in Eq. (VI.82) and produce

samples using the phase reweighting scheme with block Gibbs sampling. With this we
can measure the average magnetization per spin, the average correlation between two
spins and the expectation value of operators acting on all three spins in both the x- and
the z-basis. From the exact solution we expect

〈σxi 〉 =
〈
σxi σ

x
j

〉
= 〈σzi 〉 = 〈σz1σz2σz3〉 = 0, (VI.84)

〈σx1σx2σx3 〉 =
〈
σzi σ

z
j

〉
= 1, ∀ i, j ∈ {1, 2, 3} , i 6= j. (VI.85)

Due to symmetries in the spin system we can average all possible combinations of spins i
and j to calculate the expectation values, providing improved statistics in the simulations.
Figure VI.9 shows the measurements of all six observables as functions of the sample
size, where the plots have the same structure as those in Figs. VI.3–VI.5. One can see a
clear convergence to the exact solutions for all cases in the insets and converging absolute
deviations from the exact solution in the main plots. These follow the behavior expected
from statistical arguments, where we can again calculate the variances explicitly, similar
to the Bell state in Sect. VI.4.2 [224]. The deviations in the simulations are even slightly
below the expected errors, but it can be seen that they approach the blue curve for
large system sizes. For observables in the x-basis deviations are again larger due to the
increased network size. Furthermore, large fluctuations resulting from the canceling phase
factors in the denominator are visible, even though we consider 107 samples. This is a
huge number compared to the 27 or 213 possible network configurations for representing
spin states in the z- or x-basis, respectively. We expect that even larger sample sizes
would be necessary to get rid of these fluctuations and reach stable results. This shows
that for the GHZ state the phase reweighting scheme is computationally expensive, as
a huge amount of samples is necessary to avoid fluctuations by summing up the phase
factors in the right way.

To further analyze the scaling of the necessary number of samples with the system or
network size we next consider a spin chain with N = 5 sites in a GHZ state. Here we
need M = 4 hidden variables, so that the neural network representing this state consists
of 13 neurons for measurements in the z-basis and of 23 neurons for measurements in
the x-basis. We set up the RBM with the corresponding weights and biases to represent
a GHZ state according to Eq. (VI.83) and use the phase reweighting scheme to sample
from it. This time we consider measurements of the average magnetization per site, the
average correlation between two sites and the expectation value of operators acting on
all five spins in the z- and x-basis. We can again average over all spins due to symmetry
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Figure VI.9: Measurements in the RBM parametrization of a GHZ state with N = 3 sites
evaluated via the phase reweighting sampling scheme in the dNN approach.
Expectation values of the single-spin magnetization and of the correlation
between two spins in z- and x-basis, as well as the expectation value of σz-
and σx-operators acting on all three spins are shown. Due to translation
invariance we average over all possible combinations of spins to perform
the measurements on. The results are plotted as a function of the number
of samples, where the main plots show the absolute deviation from the
exact solution together with the explicitly calculated expected convergence
behavior and insets show the direct evaluation of the observables on the
y-axis with the x-axis being the same as in the main plots. The exact
solution is shown for comparison. Five sampling chains are created and
evaluated individually, where the average is considered for each observable
and shaded regions show the statistical fluctuations. Figure partly adapted
from [91].
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reasons. For the magnetizations and the two-spin correlations the exact solutions are the
same as in the case of N = 3 spins, while for the measurements of all five spins we expect

〈σz1σz2σz3σz4σz5〉 = 0, (VI.86)
〈σx1σx2σx3σx4σx5 〉 = 1. (VI.87)

Figure VI.10 has the same structure as Fig. VI.9 and shows the simulation results of the
five-spin GHZ state. We find the expected convergence for measurements in the z-basis,
but the results in the x-basis show large fluctuations and do not converge to the exact
solution. Here much more samples are expected to be necessary to get a stable result,
which is in accordance with the explicitly calculated error decay. We already consider
1010 samples compared to 213 or 223 possible network configurations when representing
spin states in the z- or x-basis, respectively. Increasing the sample size further is not
possible with the computational setup we are given. This suggests an exponential scaling
of the necessary sample size with the system size, rendering the phase reweighting ansatz
inefficient for strongly entangled states. Due to the exponential scaling of the sample
size the ansatz is limited to small systems.

VI.6 Facing the Sign Problem

Applying the dNN approach with phase reweighting sampling, we have found that the
number of samples necessary to reach a certain accuracy scales exponentially with the
system size. We have shown that this is also in accordance with the expected behavior
due to statistical reasons [224]. This observation suggests the existence of a sign problem,
which commonly appears in quantum Monte Carlo studies in which the problem of
having complex coefficients instead of probabilities is solved by reweighting with the
phase [84–87, 89, 90].

The sign problem comes from summing or integrating over highly fluctuating functions,
so it also appears when calculating path integrals in quantum field theory. The main
problem with the highly oscillating functions is that their signs also fluctuate heavily.
When calculating the sum or the integral numerically, the individual terms can hence
cancel or nearly cancel each other and it is hard to approximate the correct result
accurately [88]. Considering the phase reweighting scheme, we sum up the phases
corresponding to the samples drawn from the underlying real distribution. These phases
can have different signs and thus they can also cancel each other and convergence to the
exact expression requires a huge amount of samples [84–90].
If we consider the calculation of expectation values, as stated in Eq. (VI.4), we find

that we also sum over the phases in the denominator to normalize the outcome. Thus, the
cancellations can lead to divergent results. This shows that if the phases have absolute
values close to each other but different signs, it is difficult to sum them up in the right
way [84–87, 89, 90].

As this is the behavior we find in the phase reweighting simulations of spin systems,
we analyze the phases in more detail. To do so we consider the individual states that can
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Figure VI.10: RBM representation of a GHZ state with N = 5 spins using the dNN
approach with phase reweighting. Expectation values of the single-site
magnetization in z- and x-basis, of the correlation between two spins in
z- and x-basis and of σz- and σx-operators acting on all five spins are
considered as a function of the number of samples. Five sample sets are
created and averaged to calculate the individual expectation values, where
the shaded regions denote the statistical fluctuations. The main plots show
the absolute deviations from the exact solution together with the explicitly
calculated expected convergence behavior, while the insets show the direct
evaluation of the expectation values together with the exact solution. On
the y-axes of the insets the corresponding observables are plotted, while
on the x-axes the sample sizes are plotted, so these are the same as those
of the main plots. Figure partly adapted from [91].
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Figure VI.11: Scatter plot of the real and imaginary parts of the phase factors [Eq. (VI.88)]
belonging to the possible state configurations in an RBM representing the
z-basis of the Bell state, the 3-spin GHZ state and a state reached via
varying the weight W̃1,1 = W1,1 + i∆W1,1 in the purely imaginary Bell
state representation [Eq. (VI.46)] by i∆W1,1 = −iπ/2. The factors are
distributed symmetrically with respect to the real axis and some of them
are even symmetric with respect to the imaginary axis for the Bell and
GHZ states. Thus, summing them up can lead to cancellations causing
the sign problem. This is not the case for the shifted state, which has only
positive real parts.

be represented by the complex RBM parametrizing spin states in the z-basis. Figure
VI.11 shows the phase factors,

eiϕ(vz ,h,h̃;WI) = exp

i N∑
i=1

M∑
j=1

vziW
I
i,j

(
hj − h̃j

)
+ i

M∑
j=1

bIj

(
hj − h̃j

) , (VI.88)

of the individual neuron configurations for a Bell state represented with purely imaginary
weights and the GHZ state with N = 3 spins, where the weights are also purely imaginary.
Furthermore, the phase factors for a state represented via varying the weight W̃1,1 =
W1,1 + i∆W1,1 by i∆W1,1 = −iπ/2 in the purely imaginary representation of the Bell
state are shown. This corresponds to a state that can be represented more accurately,
as observed in Fig. VI.6. It is not visible in Fig. VI.11 which phase factor belongs to
which basis state, but so far we only have a look at which factors exist. The points are
scattered in the complex plane, where some states have the same phases. Thus, some of
the 16 configurations for the two-spin states represented by a network with 4 neurons,
or of the 128 configurations for the GHZ state represented by an RBM with 7 neurons,
have phase factors lying on top of each other.
For all cases we can see that the distribution is symmetric with respect to the real

axis. Hence, phase factors with same absolute values but different signs in the imaginary
part exist. These factors need to be summed up in the right way to cancel the imaginary
parts. Considering the imaginary axis for the Bell and GHZ states, most phase factors
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are also symmetric with respect to it, except for one pair of states for each of the two
systems. Thus, also the sums of the real parts can get small in total and they need to be
summed up in the right ratio. As the weights are purely imaginary, we sample all states
with equal probabilities, so that cancellations can appear when calculating expectation
values.

The phase factors for the shifted state are also symmetric with respect to the real axis,
but they all have positive real values. Thus, their real parts cannot cancel, which makes
the simulations more stable as divergences cannot appear. This explains why these states
can be approximated much more accurately with the phase reweighting scheme. From
having a look at the phase factors we hence observe that we experience a sign problem
in the phase reweighting scheme as expected, which also matches our simulation results
[84–87, 89, 90].
We have furthermore seen in the simulations of the TFIM ground state that the sign

problem also appears in the dNN extension representing states in the x-basis. Hence,
even for states with purely positive real basis expansion coefficients only measurements
in the z-basis can be evaluated efficiently. For measurements in the x-basis we observe a
sign problem coming up.

VI.7 Summary

In this chapter we have adapted the scheme for sampling from the complex restricted
Boltzmann machine (RBM) used to parametrize state vectors of quantum spin-1/2
systems. With the introduced phase reweighting sampling scheme, the visible and hidden
variables are sampled from a Boltzmann distribution. This enables the efficient evaluation
of deep networks with more than one hidden layer, as well as a direct implementation of
the sampling on neuromorphic hardware. In the phase reweighting scheme samples are
drawn from the distribution defined by the absolute values of the complex basis expansion
coefficients. When calculating expectation values, the observables are reweighted by the
corresponding phases, which need to be calculated explicitly. This is a common approach
in quantum Monte Carlo methods [84–87].

For the calculation of expectation values of diagonal operators we have shown that the
hidden layers need to be summed over twice with complex conjugate weights and biases.
This corresponds to the representation of the bra- and ket-states in the evaluation of
quantum measurements. Furthermore, we have derived a deep neural network (dNN)
setup which enables evaluations of Pauli string operators in all different cartesian bases
by introducing vx- and vy-layers. A separate network needs to be created for each basis a
measurement is performed in. The dNN setup in combination with the phase reweighting
scheme enables the applicability of standard RBM methods (Chapter III) and also a
sampling on the neuromorphic hardware (Sect. III.5). However, we have run into new
problems, conserving the amount of difficulty.

Besides such reweighting approaches being computationally expensive for large sample
sizes, as the phases need to be calculated explicitly, they are also known to experience
the sign problem. This is a problem resulting from heavily fluctuating phase factors,
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so that they have different signs and can cancel each other [84–90]. As we also have to
normalize with the sum over the phase factors in the reweighting ansatz, this can lead
to divergences in the expectation values. Only in the limit of infinitely many samples,
when the factors add up in the desired way, convergence to the right stable solution is
guaranteed. However, the necessary number of samples to reach a certain accuracy can
get huge and in the case of the sign problem it grows exponentially with system size.
Thus, only small systems can be considered within suitable computation time.

When simulating small strongly entangled quantum states, such as Bell or GHZ states,
with the phase reweighting scheme applied to the dNN ansatz, we have pointed out that
we need exponentially many samples. This indicates the expected presence of a sign
problem, which is in accordance with previous works [84–90]. Simulating other states,
such as the ground state of the transverse-field Ising model (TFIM) at the quantum
critical point, we have found better convergence to the exact solution. Less fluctuations
have appeared and smaller numbers of samples were necessary to reach a certain accuracy.
However, even for the ground state of the TFIM we have shown that the number of
necessary samples scales exponentially with the system size for measurements in the
x-basis, rendering the ansatz inefficient.
In summary the dNN ansatz is a simple and general way to parametrize quantum

states, whose representational accuracy can be improved by adding more hidden variables
or even layers. Furthermore, the ansatz can be applied in higher spatial dimensions
and the weights are trainable. The phase reweighting sampling scheme can even be
implemented on neuromorphic hardware. However, the ansatz is limited to small system
sizes as it experiences the sign problem. From an implementation on a neuromorphic
hardware we expect a shift of this limit to larger system sizes due to the efficient sampling
procedure yielding a speedup. Hence, such an implementation would enable the creation
of larger sample sets within suitable computation time. Even though the phases still need
to be evaluated for each sample on a classical computer, limiting the speedup gained by
using neuromorphic computing architectures, we expect that larger system sizes can be
simulated on this hardware compared to a classical computer.
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States

Making use of the phase reweighting scheme to enable an implementation of sampling from
a complex restricted Boltzmann machine parametrizing a quantum spin-1/2 state vector
on neuromorphic hardware, we have experienced the sign problem. As this problem arises
from the complex coefficients in the basis state expansion, we now consider an ansatz to
circumvent the sign problem by choosing basis states such that these coefficients become
purely real. The ansatz is based on positive-operator valued measures and has been
discussed in [63]. There the authors show that this way a Bell state can be parametrized
with a real-valued restricted Boltzmann machine. Furthermore, even mixed states can be
represented with this ansatz, which was not possible with the parametrization based on
a complex-valued restricted Boltzmann machine discussed in Sect. V.1.
We discuss the application of positive-operator valued measures to parametrize state

vectors with real-valued restricted Boltzmann machines in detail within this chapter and
provide the way towards an implementation of sampling a Bell state representation with
the neuromorphic hardware as an outlook.

VII.1 From Complex to Real Probabilities
VII.1.1 Positive-Operator Valued Measures
A way towards parametrizing quantum many-body systems with a real-valued restricted
Boltzmann machine (RBM) is to get rid of the complex phases in the coefficients of
the basis state expansion, using so-called positive-operator valued measures (POVM).
These can be chosen such that quantum states are fully described in a basis where they
only have real basis state expansion coefficients [2, 63, 235]. The POVM formalism is
commonly used to perform measurements on a system if one is not interested in the
state after the measurement, but only in the measurement outcome itself [2, 235]. We
introduce the formalism in more detail in the following and then discuss how to use it for
an RBM parametrization of spin-1/2 state vectors in the upcoming sections, before we
apply it to simulate a spin system in a Bell state in Sect. VII.2.
General measurements can be described by a set of Hermitian operators Oa. The

probability to get the outcome a given the state vector |Ψ〉 of the system can be calculated
via

P (a) =
〈

Ψ
∣∣∣O†aOa∣∣∣Ψ〉 . (VII.1)

By defining M (a) = O†aOa we introduce a positive semi-definite operator M (a) whose
expectation value gives the probability of getting the measurement outcome a [2, 235].
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From this we can define a set of positive semi-definite operators M (a), which give
identity when summing over all possible measurement outcomes,∑

{a}
M (a) = 1, (VII.2)

so that they form a general quantum measurement. The probability of the system to
obtain outcome a can then generally be expressed using the density matrix,

P (a) = Tr
[
ρM (a)

]
. (VII.3)

It can be shown that the operators M (a) can be chosen such that P (a) fully characterizes
the density matrix and Eq. (VII.3) is invertible [2, 63, 235].
A general d-dimensional quantum state is characterized by d2 − 1 real parameters,

so that a full description requires measurements with at least d2 linearly independent
outcomes to ensure normalization. Such a measurement is called informationally complete
[235]. Thus, if we choose a set {M (a)} of d2 projection operators, it can provide an
informationally complete measurement. If we do so with the positive semi-definite
operators, this provides a full description of a quantum state in the POVM representation
with purely real amplitudes for each measurement outcome [2, 63, 235]. This is the basic
idea of the POVM ansatz. The set {M (a)} of operators is then called the POVM, while
the individual operators M (a) are the POVM elements. In the following we only consider
cases where M (a) are projectors, which corresponds to a rank-1 POVM [2, 63, 235].
The POVM method is often used for quantum state tomography, since it requires

a minimal number of expectation values, which reduces the redundancy and leads to
faster convergence [235]. However, here we use a different application, namely we express
a quantum state in terms of its POVM probabilities such that we can represent the
underlying probability distribution with a real RBM. Therefore, we focus on the POVM
representation of a spin-1/2 system in the following [63, 235].

Considering a single spin-1/2 particle, it can either be up or down and hence its Hilbert
space dimension is d = 2. An informationally complete POVM {M (a)} for the single
particle thus needs to have d2 = 4 possible measurement outcomes, which we can index
with a variable having four possible values, a ∈ {0, 1, 2, 3}. The POVM is then generally
given by [63]{

M (a)
}

=
{
M (0),M (1),M (2),M (3)

}
. (VII.4)

The POVM elements are factorable, so that for a system of N spin-1/2 particles the total
elements are given by the tensor products of the individual elements, [63]

M (a) =M (a1) ⊗M (a2) ⊗ · · · ⊗M (aN ). (VII.5)

As the POVM is chosen informationally complete, any operator O in the spin basis can
be expanded as

O =
∑
{a}

QO (a)M (a). (VII.6)

164



VII.1 From Complex to Real Probabilities

QO(a) are, so far, unknown general coefficients and the sum runs over all possible
configurations of single-particle POVM elements, indexed by a ∈ {0, 1, 2, 3}N [63].
If we consider the density matrix, it can be expanded as

ρ =
∑
{a}

Qρ (a)M (a), (VII.7)

so that we get from Eq. (VII.3),

P (a) =
∑
{a′}

Qρ
(
a′
)

Tr
[
M (a)M (a′)

]
=
∑
{a′}

Qρ
(
a′
)
Ta,a′ .

(VII.8)

Here we introduce the overlap matrix T with elements

Ta,a′ = Tr
[
M (a)M (a′)

]
. (VII.9)

The POVM can be chosen such that T is invertible and the POVM is called symmetric if
the elements of T are constant between distinct off-diagonal elements. As the POVM
elements are factorable, T is factorable as well and with this also T−1 [63].

Assuming that T is invertible, we can calculate the coefficients Qρ(a′) as

Qρ
(
a′
)

=
∑
{a}

P (a)T−1
a,a′ , (VII.10)

so that we get an expression for the density matrix in terms of POVM elements [63],

ρ =
∑
{a}

∑
{a′}

P (a)M (a′)T−1
a,a′ . (VII.11)

This enables the calculation of expectation values of general operators O defined in the
spin basis using the representation in terms of POVM elements,

〈O〉 = Tr [Oρ]

=
∑
{a}

∑
{a′}

P (a)T−1
a,a′Tr

[
OM (a′)

]
. (VII.12)

The trace can be rewritten as

Tr
[
OM (a′)

]
=
∑
{a′′}

QO (a)Ta′,a′′ , (VII.13)

by expanding O in the POVM representation according to Eq. (VII.6). The expectation
value is thus given by [63]

〈O〉 =
∑
{a}

P (a)QO (a) , (VII.14)
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Figure VII.1: Illustrative projection of the state space of a single spin-1/2 particle from
the Bloch sphere onto the tetrahedral POVM [Eq. (VII.17)]. While in the
spin basis the state can be described by any point on the surface of the
Bloch sphere, where it can take the two values ±1 in the z-direction and
has an additional complex phase according to the coordinates in x- and
y-direction, it can take one of the four possible states at the corners of the
tetrahedron spanned by the measurement outcomes of the POVM elements.
Each corner corresponds to one measurement outcome. The representation
of one possible spin configuration is illustrated by the green arrow.

using∑
{a′}

T−1
a,a′Ta′,a′′ = δa,a′′ . (VII.15)

The coefficients QO(a) need to be calculated for each operator O individually. Since we
assume T to be invertible, this can be done via

QO (a) =
∑
{a′}

Tr
[
OM (a′)

]
T−1
a′,a. (VII.16)

The POVM elements are factorable, so that the coefficients can be calculated for single
spin operators when considering locally acting operators, such as Pauli strings, which are
used most commonly. The total coefficients are then the products of the individual single
site coefficients. Thus, expectation values of local operators can be evaluated efficiently
and we do not have to back-transform the state from the POVM representation to the
spin basis and create the full density matrix [63].

VII.1.2 The Tetrahedral POVM
One possible choice to represent a spin-1/2 particle with a POVM which is informationally
complete, symmetric and has an invertible overlap matrix is the tetrahedral POVM Mtetra.
The corresponding POVM elements project a single spin onto the corners of a tetrahedron
lying in the Bloch sphere, as depicted in Fig. VII.1. The choice of the tetrahedron is not
unique, as it can be rotated inside the Bloch sphere. Also, the tetrahedral POVM is only
one possible choice of a POVM with the properties stated above, more possible choices
can exist [63, 235].
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In the following, we focus on the tetrahedral POVM, which is given for a single spin
by [63, 235]

Mtetra =
{
M (a) = 1

4
(
1 + s(a)σ

)}
a∈{0,1,2,3}

, (VII.17)

s(0) = (0, 0, 1) ,

s(1) =
(

2
√

2
3 , 0,−1

3

)
,

s(2) =
(
−
√

2
3 ,

√
2
3 ,−

1
3

)
,

s(3) =
(
−
√

2
3 ,−

√
2
3 ,−

1
3

)
,

(VII.18)

with Pauli matrices σ = (σx, σy, σz). The POVM elements take the form

M (0) = 1
2

(
1 0
0 0

)
,

M (1) = 1
6

(
1
√

2√
2 2

)
,

M (2) = 1
12

(
2 −

√
2−
√

6i
−
√

2 +
√

6i 4

)
,

M (3) = 1
12

(
2 −

√
2 +
√

6i
−
√

2−
√

6i 4

)
,

(VII.19)

giving the overlap matrix

T = 1
4


1 1/3 1/3 1/3

1/3 1 1/3 1/3
1/3 1/3 1 1/3
1/3 1/3 1/3 1

 , (VII.20)

with inverse

T−1 =


5 −1 −1 −1
−1 5 −1 −1
−1 −1 5 −1
−1 −1 −1 5

 . (VII.21)

The POVM elements for systems of multiple spin-1/2 particles can be calculated via the
tensor product of the single-particle POVM elements, which is analogously true for the
overlap matrix and its inverse [63].

167



VII. Towards Neuromorphic Sampling of Quantum States

To perform measurements, we can use Eq. (VII.14), where we calculate the coefficients
QO(a) for a specific operator O acting on a single spin according to Eq. (VII.16) using
the tetrahedral POVM [63]. Considering the σz-operator,

σz =
[
1 0
0 −1

]
, (VII.22)

we get the coefficients

Qσz (0) = 3,
Qσz (1) =− 1,
Qσz (2) =− 1,
Qσz (3) =− 1.

(VII.23)

This gives

〈σz〉 = 3P (a = 0)− P (a = 1)− P (a = 2)− P (a = 3) . (VII.24)

Analogously, we can consider the σx-operator,

σx =
[
0 1
1 0

]
, (VII.25)

which provides the coefficients

Qσx (0) = 0,
Qσx (1) = 2

√
2,

Qσx (2) =−
√

2,
Qσx (3) =−

√
2,

(VII.26)

so that we obtain

〈σx〉 = 2
√

2P (a = 1)−
√

2P (a = 2)−
√

2P (a = 3) . (VII.27)

Given these two expressions, any Pauli string operator which is a combination of the two
operators acting on multiple spin particles can be measured, since the QO(a) factorize
[63].

Taking a closer look at the calculated coefficients, these can reach values which are not
possible when considering measurements in the spin basis. As an example we assume the
single-particle state represented by a tetrahedral POVM with

P (a = 0) = 1,
P (a = 1) = P (a = 2) = P (a = 3) = 0.

(VII.28)

Performing a measurement with σz yields the expectation value

〈σz〉 = 3. (VII.29)
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In the spin basis, this measurement can only give two possible outcomes,

σz| ↑〉 = 1,
σz| ↓〉 =− 1,

(VII.30)

so that

|〈σz〉| ≤ 1. (VII.31)

Thus, the state represented by the POVM is not a physical state. We can calculate its
density matrix using Eq. (VII.11), which gives

ρ =
[
2 0
0 −1

]
. (VII.32)

This matrix is not positive definite, which is however a property of the density matrix.
Thus, we can conclude that all physical states can be represented by the tetrahedral
POVM since it is informationally complete. Nevertheless, not all probability distributions
underlying the measurement outcomes of the tetrahedral POVM elements represent
physical states. The state space in the POVM representation is hence larger than the
Hilbert space in the spin basis.

Further constraints on the probabilities P (a) would be necessary to restrict the state
space to physical states, but these constraints require knowledge of the full density
matrix. Thus, they are exponentially hard to calculate for large spin systems, so that
they cannot be applied efficiently. However, it can straightforwardly be shown that the
density matrices corresponding to states represented by the tetrahedral POVM are always
Hermitian and have trace one. Hence, the positive definiteness is the only property of
the density matrix which is not generally fulfilled.

VII.1.3 Representing Spin States with a Real RBM Using POVM
A spin state expressed in the POVM representation can be fully described using the
real probabilities P (a) defined by the POVM elements. The corresponding probability
distribution can directly be represented by an RBM with real-valued weights and biases
[63]. Thus, the spin state can be parametrized by a real-valued RBM. Analogously to
the RBM parametrization introduced in Sect. V.1 the visible variables of the real-valued
RBM then correspond to the states in the POVM representation, which we index by
a. Each element ai can take four possible values, ai ∈ {0, 1, 2, 3}, so that we have to
modify the RBM ansatz to get non-binary visible variables. This is in general possible,
since in a classical RBM with binary variables one can always combine two of those to a
single neuron, which can then take four possible states. Therefore, twice as many visible
neurons are required [54, 142].

While this is a general argument how to encode four-state variables in a binary RBM,
in the software simulations this can be done more efficiently by using the so-called one-hot
encoding scheme, where each visible variable corresponds to a vector vi = (v0

i , v
1
i , v

2
i , v

3
i )
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with four binary entries, vki ∈ {0, 1}. Each entry then denotes whether the neuron is in
one of the four possible states, which leads to the restriction that exactly one of the four
entries is one, denoting the state the neuron is in, while the remaining three are zero [63].
We use this one-hot encoding for the simulations in the following. The relation

between visible variables vi and variables ai indexing the configuration in the POVM
representation is then given by

vki =
{

1 if k = ai,

0 else,
(VII.33)

with k ∈ {0, 1, 2, 3}. The other way around we get the relation

ai = v1
i + 2v2

i + 3v3
i . (VII.34)

Even though the hidden variables are still binary, we encode them via the one-hot scheme
similar to the visible variables to keep the ansatz consistent. The one-hot encoded hidden
neurons are then vectors with two elements where exactly one is zero and the other is
one. The translation from the binary state into the one-hot encoding works similarly as
for the visible variables.
The energy of the adapted RBM takes a slightly different form, since the connecting

weights and biases can take different values depending on which state the visible variable
is in. Thus, each connecting weight takes four indices, two indicating which visible and
which hidden neuron it connects and two indicating in which state the visible and the
hidden neuron are, respectively. The biases need to be adapted similarly, so that each
bias takes two indices [63].

The energy of an RBM with N visible and M hidden variables in the one-hot encoding
is then given by

E (v, h;W) =−
N∑
i=1

M∑
j=1

3∑
k=0

1∑
l=0

vkiW
k,l
i,j h

l
j −

N∑
i=1

3∑
k=0

vki d
k
i −

M∑
j=1

1∑
l=0

hkj b
k
j . (VII.35)

The indices k and l run over the four or two elements of each visible or hidden neuron,
respectively. There is always exactly one of these elements which is one and the others
are zero, indicating which state the neuron is in [63]. Thus, the sets of all visible and
hidden neurons are given by matrices v = (v1, . . . ,vN ), h = (h1, . . . ,hM ), respectively.
The corresponding network setup is visualized in Fig. VII.2.

The probability distribution underlying the visible variables in the RBM is then given
by

PW (v) =
∑
{h}

exp [−E (v, h;W)] , (VII.36)

and can be normalized with the factor

Z (W) =
∑
{h}

∑
{v}

exp [−E (v, h;W)] . (VII.37)

170



VII.1 From Complex to Real Probabilities

. . .

. . .

h1 h2 hM

v1 v2 vN
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W k,l
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3
i

)
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1
j

)

Figure VII.2: Illustration of the real RBM representing the probability distribution
underlying a spin state in the POVM representation. The visible variables
can take four possible values which are implemented using a one-hot
encoding, so that each variable is represented by a four-element vector with
exactly one entry being one and the others zero. The hidden variables are
binary but are also implemented via the one-hot encoding. Due to this
encoding the weights and biases get extra indices stating which element of
the variable vectors is considered.

The sums run over all possible states of visible and hidden neurons.
Since we now consider a real-valued RBM, standard procedures from machine learning

such as the contrastive divergence scheme, CD1, as introduced in Sect. III.3.2 can be
used to train the network [63]. Since the network is supposed to represent the probability
distribution P (a) underlying the states in the POVM representation, we need to translate
this distribution into the one underlying the one-hot encoded visible variables of the
RBM, P (v). To do so, we use the relation

P
(
vl11 = 1, vl22 = 1, . . . , vlNN = 1

)
= P (a1 = l1, a2 = l2, . . . , aN = lN ) , (VII.38)

with li ∈ {0, 1, 2, 3}. Here we only denote the variable vector entries which are one in the
argument on the left-hand side, implying that the remaining three entries are zero.
Furthermore, to sample state configurations of visible and hidden variables in the

RBM, standard Gibbs sampling as introduced in Sect. III.2.2 can be applied. Here we
also have to keep in mind that we use the one-hot encoding. This slightly changes the
conditional probabilities from which the visible and hidden configurations are drawn via
importance sampling. The conditional probability for a visible variable vi, PW(vki = 1|h),
is defined for all four possible states, k ∈ {0, 1, 2, 3}, via

PW
(
vki = 1

∣∣∣h) =
exp

[∑M
j=1

∑1
l=0W

k,l
i,j h

l
j + dki

]
∑3
m=0 exp

[∑M
j=1

∑1
l=0W

m,l
i,j h

l
j + dmi

] . (VII.39)

From the corresponding probability distribution, a state can be sampled for each visible
variable, providing a full configuration v. The hidden variables are still binary and the
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underlying conditional probabilities are given by

PW
(
hlj = 1

∣∣∣ v) =
exp

[∑N
i=1

∑3
k=0 v

k
iW

k,l
i,j + blj

]
∑1
m=0 exp

[∑N
i=1

∑3
k=0 v

k
iW

k,m
i,j + bmj

] . (VII.40)

Given these expressions, the Gibbs sampling can be performed according to the binary
scheme in Sect. III.2.2.

We still need to keep in mind that the POVM representation can also yield unphysical
states, as discussed earlier. Therefore, we cannot use this ansatz to find ground states
by training the real RBM via energy minimization as introduced in Sect. V.1.2. This
scheme can end up in states which have minimum energy but are not valid states in the
spin system, as they do not have a positive definite density matrix. However, we can
use this real-valued RBM parametrization to learn the representation of a given density
matrix in a representation with only real coefficients.
The ansatz can hence be used for quantum state tomography, where the state of a

system is represented in the RBM parametrization trained on some set of measurement
data. Further samples according to the underlying distribution can then be created.
This is for example helpful when training the network on experimental data, since then
experimentally unachievable operators can be measured. As a real RBM is used here, the
sampling can be implemented on the neuromorphic hardware, which can sample efficiently
from Boltzmann distributions. Since such a distribution underlies the visible and hidden
variables in the RBM parametrization of spin states in the POVM representation, an
implementation is straightforward and we expect a speedup in the sampling process from
it [58, 102, 103].

VII.2 Simulating Entangled Bell States Using Classical
Networks

VII.2.1 Tetrahedral POVM Representation of the Bell State

As a first example for simulating the RBM parametrization of a spin system in the POVM
basis we consider the Bell state,

|ΨBP〉 = 1√
2

(| ↑↓〉+ | ↓↑〉) . (VII.41)

This is a strongly entangled state and we can thus check whether the CHSH-inequality
(named after Clauser, Horne, Shimony and Holt) can be violated in simulations based on
a classical network. The Bell state is a two-spin system, so it requires 42 = 16 POVM
elements. We use a tetrahedral POVM for each spin and since there are not many
elements we can calculate the probability distribution P (a) analytically using Eq. (VII.3).
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The density matrix of the Bell state can be calculated from the state vector,

ρ = |ΨBP〉〈ΨBP|

=


0 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 0

 . (VII.42)

Using the tetrahedral POVM elements, Eq. (VII.19), and the property that they factorize,

M (a1,a2) = M (a1) ⊗M (a2), (VII.43)

we can calculate the probabilities P (a) of the 16 POVM basis states indexed by a =
(a1, a2), a1, a2 ∈ {0, 1, 2, 3}, via Eq. (VII.3). For convenience sake we express the result
in a matrix P with elements Pa1,a2 = P (a = [a1, a2]) and get

P =


0 1/12 1/12 1/12

1/12 1/9 1/36 1/36
1/12 1/36 1/9 1/36
1/12 1/36 1/36 1/9

 . (VII.44)

We can now create a real RBM according to Fig. VII.2 and train it to represent this
probability distribution after translating it into the language of one-hot encoded variables
using Eq. (VII.38).

VII.2.2 Training the RBM
To train the real RBM we can use the contrastive divergence scheme, CD1, as introduced in
Sect. III.3.2, since the network learns to represent the probability distribution underlying
a given input data set. To create the input data, we apply a Metropolis-Hastings sampling
scheme as introduced in Sect. V.1.5 to sample from the exact distribution P (a). Every
component ai is now not binary but can take one of four possible values. Thus, the
proposed state ã in the Metropolis-Hastings sampling is created by choosing a random
component ai in the given state a and changing it to one of the remaining three possible
values. This value is chosen randomly, where all three possibilities are equally probable.
The new configuration is accepted with probability A(a, ã) = min[1, P (ã)/P (a)] or
otherwise rejected. The sampled configuration is then added to the sample set.
Given this input data set we can apply CD1 to update the weights in the real-valued

RBM. This training scheme requires samples of the visible and hidden variables drawn
from the conditional probabilities, according to Gibbs sampling introduced in Sect. III.2.2.
Here we use the conditional probabilities as stated in Eqs. (VII.39)–(VII.40) for the
one-hot encoded variables.

The training procedure then takes the following form,

1. use Metropolis-Hastings sampling to create a data set S of measurement outcomes
of the POVM elements according to the target distribution P (a),
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2. apply CD1 to update the weights,
a) choose a mini-batch of configurations a from S,
b) transform each configuration a in the mini-batch into the one-hot encoded

form, yielding the visible variables v, and perform one Gibbs sampling step to
create a sample of hidden variables h,

c) for each configuration h perform one Gibbs sampling step to create a sample
of visible variables ṽ given the configuration h,

d) for each configuration ṽ perform one Gibbs sampling step to create a sample
of hidden variables h̃ given the configuration ṽ,

e) calculate the weight update, ∆W k,l
i,j = −〈vki hlj〉 + 〈ṽki h̃lj〉, with analogous

expressions for the biases, where the average is taken over all configurations
resulting from the elements in the mini-batch,

f) update the weights according to W k,l
i,j →W k,l

i,j − ε∆W
k,l
i,j , and analogously for

the biases,
g) repeat from a) until all mini-batches have been taken into account,

3. repeat from 1. until the weights converge.

Once the network is trained, or even during the training procedure, expectation values
of operators can be calculated. For this, a sample set of R visible configurations vr is
created using multiple Gibbs sampling steps and the considered operator is evaluated at
each sample. Averaging over the whole sample set then approximates the sum over all
configurations in Eq. (VII.14),

〈O〉 ≈ 1
R

R∑
r=1

3∑
k=0

3∑
l=0

QO
(
vk1,r, v

l
2,r

)
vk1,rv

l
2,r. (VII.45)

We have substituted the variables a in Eq. (VII.14) by the one-hot encoded variables v.
The lower index r denotes the samples.

We have implemented the training procedure of a real RBM to represent a Bell state
and the results are shown in Fig. VII.3. We plot there the magnetizations of the first
spin and the correlations between the two spins in the x- and z-basis as functions of the
training epochs. One epoch refers to one full CD1 step, corresponding to point 2. in the
training procedure stated above. Furthermore, we plot the CHSH-observable

BBP =
√

2 [〈σx1σx2 〉 − 〈σz1σz2〉] , (VII.46)

and the Kullback-Leibler divergence

Ξ (W) =
∑
{v}

P (v) log
[
P (v)Z (W)
PW (v)

]
, (VII.47)

with normalization factor Z(W) as stated in Eq. (VII.37) and unnormalized distribution
PW(v) as stated in Eq. (VII.36). These quantities are also plotted as functions of the
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Figure VII.3: Training process of the RBM learning to represent a Bell state in the
POVM representation. Magnetizations of the first spin (〈σx1 〉, 〈σz1〉), as well
as correlations between the two spins (〈σx1σx2 〉, 〈σz1σz2〉) in the x- and z-basis
are plotted as functions of training epochs in the CD1 scheme. Furthermore,
the convergence of the Kullback-Leibler divergence Ξ(W) [Eq. (VII.47)]
and of the CHSH-observable BBP [Eq. (VII.46)] is shown. The number of
hidden variables is varied from M = 1 to M = 5 in steps of one, indicated
by the different colors. For each M the network is trained ten times from
random initial weights. The results are averaged, and shaded regions denote
statistical fluctuations. For each observable the expected value is indicated
by the black line and in the lower right plot the red dashed line denotes the
classical limit of the CHSH-inequality, indicating its violation. The exact
solution is found to be represented well for M ≥ 3 and the Bell inequality
is violated. A Kullback-Leibler divergence around Ξ(W) / 0.002 appears
to indicate a representation of the Bell state with high accuracy.
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training epochs and all results are compared with the expected solutions. We vary the
number of hidden variables in the network from M = 1 to M = 5 in steps of one to find
convergence towards the exact results with increasing M .
The simulations are done on a training data set containing 105 samples drawn via

Metropolis-Hastings sampling from the probability distribution representing the Bell
state, Eq. (VII.44). The weight updates are calculated on this training data during
each epoch using the CD1 scheme. We divide the whole training data into mini-batches
containing 10 samples each. To calculate the expectation values, 105 samples are drawn
from the Boltzmann distribution underlying the RBM via block Gibbs sampling. The
network is trained ten times for each value of M and the results are averaged with the
shaded regions denoting statistical fluctuations. The learning rate is set to ε = 10−4.

We find good convergence for all observables forM ≥ 3 in Fig. VII.3, while the expected
correlations are not reached for M < 3 and even the Kullback-Leibler divergence remains
larger for these cases. This shows that a Kullback-Leibler divergence of Ξ(W) / 0.002 is
necessary to capture the expected correlations. The magnetizations are always represented
with good accuracy. The CHSH-inequality is violated for M ≥ 2 already, even though
the solution does not fully reach the exact values for M = 2. However, full convergence
is not yet reached for M = 2 and the exact solution might be captured more accurately
after more training epochs. Nevertheless, calculating more training epochs requires more
computation time than increasing the number of hidden variables here, so that we do
not analyze this behavior further.
With this we demonstrate that the POVM ansatz can indeed be used to represent a

Bell state given a sufficient amount of hidden neurons, which is in accordance with results
in [63]. From these observations we expect that this strongly entangled state can also be
simulated on the neuromorphic hardware providing a speedup in the sampling procedure.
However, the weights still need to be trained on a classical computer, as discussed in
Sect. III.5.

VII.2.3 Outlook: Building the Way Towards Neuromorphic Hardware
As we have found an approach to represent a Bell state with a purely real RBM, the
next step is to bring the sampling procedure onto the neuromorphic hardware of the
BrainScaleS group as introduced in Sect. III.5. We can then compare software and
hardware simulations. On the way to simulations on the neuromorphic chips, several
differences to the software implementation as used in Sect. VII.2.2 arise.
First, the leaky integrate-and-fire (LIF) neurons can only represent binary variables,

since the sampling is defined via the ratio of a spiking neuron being in a refractory state
or not, as discussed in Sect. III.5 [58, 102, 103]. Thus, on the hardware we need twice as
many visible variables compared to the software implementation and each two visible
neurons are combined to represent one four-state neuron. While this translation works in
principle it yields a different representation. Thus, the two implementations converge to
different weights and biases and it is not clear if the same number of hidden neurons is
sufficient for both cases and how well the convergence performs.

Furthermore, the weights on the neuromorphic hardware in the BrainScaleS group can
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only take discretized values as they can only be implemented in a four-bit representation.
This limits the representational power of the RBM, but we still expect that the desired
probability distribution can be represented with sufficient accuracy, given that we choose
enough hidden variables [236]. As only the sampling is performed with the spiking
neurons, the training of the network can still be done via contrastive divergence, CD1,
just as in the software simulation. However, the learning rate can differ between the two
implementations and thus needs to be adapted.

According to previous applications of the BrainScaleS hardware [58, 102, 103] we do not
expect these differences to cause any problems, as the network can be adapted accordingly.
We still expect a speedup in the sampling [106]. However, we have found that a small
Kullback-Leibler divergence is necessary, Ξ(W) / 0.002, to capture the correlations
accordingly. It is not clear whether such a high precision in representing a probability
distribution is reachable on the neuromorphic hardware, as for other applications it has
not been necessary yet [58].
The implementation itself is still outstanding, but we have provided a way to sample

entangled two-particle quantum states on classical analog networks, which can straight-
forwardly and efficiently be generalized to larger system sizes. With this we provide an
ansatz to perform quantum state tomography on neuromorphic hardware.
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VIII Conclusion

In this thesis we have studied approximate simulation methods of ground states and
dynamics in quantum many-body systems, specifically spin-1/2 systems, where general
efficient simulation techniques are still missing. We have considered the discrete truncated
Wigner approximation (dTWA) as a semi-classical phase-space method [36–38], as well as
an approach based on quantum Monte Carlo techniques. The latter uses a parametrization
of quantum state vectors in terms of a complex-valued restricted Boltzmann machine
(RBM) [57]. We have benchmarked the two simulation methods on dynamics after sudden
quenches in the transverse-field Ising model (TFIM) by comparison with analytical
results. The TFIM defines a quantum phase transition between a paramagnetic and
a ferromagnetic phase. We have simulated sudden quenches from an effectively fully
polarized initial state deep in the paramagnetic phase to different distances from the
quantum critical point. Here we have considered both, quenches within one regime and
quenches across the quantum phase transition [95, 96, 100].

The equilibrated correlation function after a sudden quench within the paramagnetic
phase in the TIFM shows an exponential decay as a function of the relative distance
between the considered spins. From this decay, two correlation lengths can be extracted.
The first correlation length is found at short relative distances for all quenches, while the
second appears at larger relative distances and only for quenches to larger distances from
the quantum phase transition. We have studied whether the two simulation techniques
can capture these correlation lengths in the long-time limit [95, 96, 100].

In Chapter IV we have analyzed the performance of the dTWA with truncation at first
and second order. We found that at short times the dynamics are always captured well,
and the second-order simulation performs more accurately. However, at later times the
second-order equations of motion experience instabilities leading to divergences in the
simulations. The truncation at first order remains stable, so that we have studied it in
more detail. We have, however, found deviations from the exact solution appearing at
later times. These deviations we found especially for quenches to intermediate distances
from the quantum critical point. The short-distance correlation length we found to be
captured with good accuracy close to and far away from the quantum critical point. At
intermediate distances from the quantum phase transition the correlation length saturates
at different long-time limits. The second correlation length was not captured at all in
the dTWA simulations.

In Chapter V we have analogously benchmarked the RBM parametrization approach
on sudden quenches in the TFIM and have given a direct comparison with the dTWA
results. We have found that the exact solution can be captured accurately with this
ansatz if only enough free parameters, which are adapted variationally, are chosen in
the parametrization. However, when analyzing the scaling of the necessary number
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of variational parameters with system size we have experienced that the Hilbert space
dimension needs to be fully covered for quenches into the quantum critical regime. Further
away from the quantum phase transition a small number of variational parameters turned
out to be enough. Thus, we found this ansatz to be inefficient for quenches close to the
quantum critical point, where strong long-range correlations and volume-law entanglement
are expected. In those regimes the number of variational parameters scales exponentially
with the system size.

We have furthermore added a longitudinal field to the TFIM and have benchmarked
the two simulation methods in this non-integrable model [126]. Here we have again
considered sudden quenches from an effectively fully polarized state to different final
fields and have experienced the same behavior as for quenches in the TFIM. We have
compared the simulation results with exact diagonalization for small system sizes or with
time-dependent density-matrix renormalization group (tDMRG) for lager system sizes.
The latter is known to describe the exact solution well [23, 24]. We have found that the
dTWA captures the short-time dynamics accurately but shows deviations in all regimes
at later times. The RBM parametrization ansatz has shown deviations in regimes of large
correlation lengths, which could be minimized by increasing the number of variational
parameters. However, this leads to an exponential scaling of the number of variational
parameters with the system size, rendering the ansatz inefficient in regimes of strong
long-range correlations. These are regimes where also other existing simulation methods,
such as tDMRG, struggle and behave inefficiently. We have furthermore demonstrated
that the performance of the RBM ansatz is comparable with tDMRG results when
choosing an approximately equal number of variational parameters. Since the tDMRG
method can be implemented much more efficiently, the RBM parametrization stands
behind it, as it struggles in the same regimes. Nevertheless, this method can be applied in
higher dimensional systems where a similar performance is expected. This is not possible
for tDMRG methods.
Summing up, we have pointed out limitations of approximate simulation methods

of quantum spin-1/2 systems on classical computers in regimes of strong long-range
correlations. This motivated us to study whether computing devices going beyond the
von-Neumann architecture can help to circumvent these limitations. For this we have
considered the neuromorphic hardware in the BrainScaleS group at Heidelberg University,
which emulates a neural network with analog circuits and can efficiently create samples in
an RBM [58, 102, 103, 106]. This brought up the idea of combining the complex-valued
RBM parametrization of quantum state vectors with the hardware, from which we expect
an efficient way to create samples of spin states to approximately evaluate expectation
values of quantum operators. Moreover, we hope to get further insights into quantum
effects by the simulation of quantum states on a classical analog hardware. However,
since the RBM used in the state vector parametrization is complex-valued it cannot
directly be implemented on the neuromorphic hardware but needs to be adapted first.
We have analyzed two approaches which in principle enable such an implementation
and have benchmarked their applicability on simulating entangled quantum states. We
have analyzed their benefits and limitations and thus showed a way towards using the
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neuromorphic hardware for simulations of quantum many-body systems.
In Chapter VI we have introduced the phase reweighting ansatz to sample spin states

from the complex-valued RBM parametrization in a way that can also be implemented on
the neuromorphic hardware. This ansatz absorbs the complex phases into the evaluated
observables, so that samples are drawn from the Boltzmann distribution defined by the
real parts of the weights in the RBM [84–87]. Additionally, this sampling scheme allows
an extension to deep neural networks by adding hidden layers. This we have used to
introduce a parametrization allowing an efficient evaluation of observables in any cartesian
basis by only considering visible variables of the network. We have benchmarked this
approach on the ground state in the TFIM at the quantum critical point, as well as on
the strongly entangled Bell and Greenberger-Horne-Zeilinger (GHZ) states. We have
found that for several states, especially for the strongly entangled ones, an exponential
amount of samples is necessary to approximate expectation values of quantum operators
with good accuracy. This phenomenon is known as the sign problem and it appears in
phase reweighting approaches in quantum Monte Carlo schemes due to heavily fluctuating
phase factors [84–87, 89, 90].
Considering operators which are diagonal in the spin basis parametrized via the

shallow RBM, we have found that some states, like the ground state in the TFIM at the
quantum critical point, can be sampled efficiently with the phase reweighting scheme.
For these states the number of necessary samples to reach a certain accuracy is small and
does not significantly depend on the system size. In contrast to this, when performing
measurements in different cartesian bases parametrized via deep neural networks, we
have always experienced the sign problem. Thus, the deep networks cannot be sampled
efficiently as the necessary sample size to reach a certain accuracy scales exponentially
with the system size. Even though this problem limits the simulation ansatz to small
systems, we argue that the neuromorphic hardware can enable simulations of larger
systems due to the efficient implementation of the sampling procedure. This enables
a sampling of more spin states in shorter time. However, also with the help of the
neuromorphic hardware the ansatz is still limited in the system size. The limit can at
best be shifted to longer spin chains.

In Chapter VII we have used a representation of quantum states via positive-operator
valued measures (POVM), in which any quantum state can be expressed with purely
non-negative basis state expansion coefficients [63]. Thus, this representation provides a
real-valued probability distribution fully describing a spin state which can be represented
by a real-valued RBM. The sampling from this network can directly be performed on
the neuromorphic hardware. We have implemented an RBM in a standard software
simulation and have trained it to represent a strongly entangled Bell state. We have
analyzed the performance of this ansatz to get further insights into the requirements
on the neuromorphic hardware to simulate such a state. Based on these observations
we have discussed the upcoming steps towards an implementation on the BrainScaleS
hardware as an outlook.

In summary we have experienced that quantum many-body systems cannot generally
be simulated on classical computers in an efficient way, but most approximate simulation
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VIII. Conclusion

methods struggle in regimes of strong long-range correlations and quantum entanglement.
We hence have started to devise ways towards implementing such simulations on neuro-
morphic hardware, analyzing whether this different architecture can help to overcome
these problems. Here we have experienced further difficulties. As we have by far not
found a general way to realize such an implementation, but only made first steps in this
direction, a lot of future work remains open. While the POVM ansatz shows promising
results, its performance still needs to be analyzed on the neuromorphic hardware and for
more general systems. Moreover, a connection to experimental data, corresponding to
quantum state tomography, yields an interesting task. An ansatz to find ground states
or even simulate dynamics in this representation is as well still pending.
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