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Abstract

The thermal evolution of the low density intergalactic medium (IGM) is a major diag-
nostic tool for understanding the nature and evolution of the predominant component
of baryonic matter in the universe. In this study I present different approaches for
measuring the thermal state of the IGM at different ages of the universe, in order to
understand how it is affected by reionization processes. The main observable used to
probe the thermal state of the gas is the so-called Lyman-« forest. This observable
consists of a series of absorption lines in the spectra of distant quasi-stellar objects
(QSOs) which arise due to the presence of residual intervening neutral hydrogen in the
IGM between the observer and the QSO. Decomposing the Lyman-« forest into discrete
absorption profiles allows one to explore how the distribution of Lyman-a absorption
line widths and column densities (b-Ny1 distribution) depends on the thermal state of
the gas, which is characterized by a temperature-density relation.

In this thesis, I quantify the parameters of the temperature-density relation using high
quality UVES and HIRES QSO spectra and state of the art cosmological hydrodynamic
simulations. In the first part of this study, I apply a traditional cutoff fitting method
to the b-Ny1 distribution of the QSO spectra. Using simulations, I calibrate how the
position of the cutoff in the b-Ny; distribution relates to the thermal state of the IGM. I
find that the thermal evolution of the IGM shows clear signatures of He II reionization
at 2 < z < 3.4. In the second part of this thesis, I present a novel statistical method for
constraining the thermal state of the IGM using the full shape of the b-Nyy distribution.
I show that this method is more accurate and precise than the traditional cutoft fitting
approach, by applying it to mock data realizations. I confirm this by applying it to
observational data at z = 2. Finally, using this novel method, I quantify for the first
time the parameters of the temperature-density relation at low redshift (z = 0.1) using
the b-Ny1 distribution, and find broad agreement with theoretical expectations.

Overall, this thesis demonstrates that the b-Nyy distribution is a powerful statistical
tool for studying the intergalactic medium and can place strong constraints on the
evolution of its thermal state.
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Zusammenfassung

Die thermische Entwicklung des diffusen intergalaktischen Mediums (IGM) ist einer der
wichtigsten Indikatoren, um die Natur und Entwicklung des grof3ten Teils an baryonis-
cher Materie im Universum zu diagnostizieren. In dieser Arbeit stelle ich verschiedene
Methoden vor, um die thermische Entwicklung des IGM zu messen und seine Reaktion
auf Reionisationsphasen zu verstehen. Die wichtigste Beobachtungsgrofie, die Infor-
mationen iiber den thermischen Zustand des IGM tragt, ist der sogenannte Lyman-a
Wald. Dieser besteht aus mehreren Absorptionslinien in den Spektren von weit entfer-
nten Quasaren (QSO), die aufgrund von verbliebenem neutralen Wasserstoff zwischen
dem Beobachter und den Quasaren entstehen. Die Zerlegung des Lyman-a Waldes
in einzelnen Absorptionsprofile ermoglicht die Analyse der Verteilung des Doppler-
Verbreiterungsparameters und der Sdulendichte (b-Ny-Verteilung) sowie wie diese
im Zusammenhang zum thermischen Zustand des IGM stehen. Dieser wird durch ein
wohldefiniertes Temperatur-Dichte-Verhaltnis beschrieben.

In dieser Arbeite quantifiziere ich die Parameter des Temperatur-Dichte-Verhaltnisses
mit Hilfe von hochwertigen UVES und HIRES QSO Spektren in Kombination mit
modernen hydrodynamischen Simulationen. Im ersten Teil wird eine traditionelle
Methode angewandt, bei welcher eine Verteilungsrandlinie an die b-Ny1 Verteilung
angepasst wird. Mit Hilfe von Simulationen wird der Zusammenhang zwischen der
Position der Verteilungsrandlinie und den thermischen Parametern kalibriert. Ich
stelle fest, dass die thermische Entwicklung des IGM im Rotverschiebungsintervall
2 < z < 3.4 klare Anzeichen von He II Reionisation zeigt. Im zweiten Teil prasentiere
ich eine neue statistische Methode, um den thermischen Zustand des IGM anhand der
vollstandigen Form der b-Nyj-Verteilung zu messen. Ich zeige, dass diese Methode
praziser als die Methode der Verteilungsrandlinien-Anpassung ist und tiber eine hohere
Richtigkeit verfiigt. Das zeige ich, indem ich mehrere Messungen mit simulierten Daten
durchfiihre. Ich bestitige die Genauigkeit dieser neuen Methode, indem ich sie auf
z = 2 Daten anwende. Weiterhin wird diese neue Methode benutzt, um zum ersten
Mal den thermischen Zustand des IGM bei niedriger Rotverschiebung (z = 0.1) aus der
b-Ny1-Verteilung zu messen. Das damit erhaltene Resultat ist in gutem Einklang mit
theoretischen Erwartungen.

Die vorliegende Arbeit zeigt, dass die b-Ny1-Verteilung ein machtiges statistisches
Mittel ist, um den thermischen Zustand des intergalaktischen Gases und dessen En-
twicklung zu entschliisseln.



Preface

Some days I wake up

Thinking and wanting to know
From whence comes

Our impulse

To probe space

- Jorge Ben, Errare Humanum Est 1974

Often as a scientist one is faced with the question, mostly by a curious friend, "What
is your research about exactly"? To which I typically answer "I try to understand the
properties of the very diffuse gas that lies between galaxies". Normally, I will add a
simple explanation of what galaxies are and how gigantic the space between them is.
Knowing the efforts and resources involved in scientific research, I always fear that the
next question will be "Why would you do that?". A question to which I personally do
not have a better short answer to than "because why not" or "because it could have a
return to society... eventually". To my surprise however, most of the time the person I
am talking to will nod and ask "How is it even possible to see this gas?".

This reaction makes me happy for different reasons: for one, all of a sudden the blood,
sweat and tears that I and many others invested into understanding this component of
the universe does not appear as absurd as I might have initially feared. The listener
seems to have some sympathy for our struggles, which is in itself remarkable. And
secondly, because I know that the method I use to study this gas is actually very intuitive
and that the listener may be surprised by the simplicity of it.

The typical answer I give is as follows: Imagine there is a very distant object that is
not in our galaxy and that it is so bright that it is visible from Earth even though it is
incredibly distant. Imagine there is absolutely nothing between us and this bright light.
From Earth we could observe this object by simply collecting its light. Imagine now
that we add this intergalactic gas between us and the bright object. Now, as light travels
to us it will interact with this gas and whatever light arrives at the observer will be
affected by the presence of the intervening medium. If one has knowledge about how
the object is supposed to shine and has observed how it is shining after passing through
this gas, then it is possible to learn about the gas that is responsible for this difference.
This allows us to study the major reservoir of baryonic matter in the universe and the
fuel for the formation of galaxies, the intergalactic medium.

iii
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Suddenly a new world opens up for the listener. We all have been exposed to beautiful
imagery of the night-sky consisting of majestic bright objects such as stars, galaxies
and colorful nebulae, but the general listener might never have been exposed to the idea
of using bright objects to study what lies between us and it. Exactly in these moments,
when I see the realization in the face of others is when I mostly appreciate the work
that I am allowed to be part of. And often it takes a good question to put things in
perspective and to learn to appreciate the beauty and tangibility of one’s research.

The kind of technique I described in simple terms above is by no means new. Kir-
choft’s third law of spectroscopy states that an absorption line spectrum is seen when
a source of a continuous spectrum is viewed behind a cool gas under pressure. This
approach has found use in many fields of physics and chemistry and beyond that
in biology, medicine and even forensics. Absorption spectroscopy in astronomy and
cosmology has proven itself as an invaluable tool, especially in light of the great im-
provements in modern instrumentation that allow us to infer the detailed physical
characteristics of the gas responsible for the absorption. The other essential piece of the
puzzle that has seen major improvements are the techniques that allow one to simulate
the evolution of the intergalactic gas in the universe.

The objective of this thesis is to combine information gathered from the observed
universe (as seen through the light of absorption profiles) and compare it to the output
of simulated universes where we have control over the global parameters defining
the physical characteristics of the intergalactic gas. This approach allows us to quan-
tify what scenarios are more likely to be driving the evolution of this gas, i.e. what
parametrization of the thermal state of the gas is preferred given observed data. In
detail, the questions I wish to address are: do we see evidence for heating events during
the cosmic evolution of intergalactic matter and if yes, what are the sources driving
it? Can we reproduce past observations of the thermal evolution of the intergalactic
medium when using classic methods combined with new and more abundant datasets
and simulations? Can we go beyond the classic methods and develop a new approach
that provides better constrains and is less prone to systematic effects?

This thesis presents an endeavor to find answers to some of these questions. During
the course of my PhD I used absorption line catalogs generated from state of the art
simulations and observed data in order to:

+ Quantify two billion years of evolution of the thermal state of the intergalactic
gas

« Develop, test and apply a novel statistical method for carrying out thermal state
measurements in the intergalactic medium

Ultimately, the goal of my field of study is to refine our understanding of the thermal
evolution of baryonic matter in the universe and the sources that are driving it. So,



if a curious person should ask "Why would you do that?", I guess maybe I could say:
"We are curious to know how exactly things around us came to be". In other words,
understanding the history of the fuel of galaxy formation is essential for understanding
where we come from.

July 29th 2019, Hector Hiss
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1. Introduction

Accept the universe

As the gods gave it to you.

If the gods wanted to give you something else
They’d have done it.

If there are other matters and other worlds
Then there are

- Alberto Caeiro, Aceita o Universo 1917

1.1. Context

The intergalactic medium (IGM) is the low density reservoir of baryonic matter that
serves as fuel for the formation of galaxies. The evolution of the thermal state of the
diffuse IGM provides us with insight into the nature and evolution of the bulk (> 90% at
z > 2) of baryonic matter in the universe (Meiksin 2009; McQuinn & Upton Sanderbeck
2016; de Graaff et al. 2019; Tanimura et al. 2019). In order to understand the history of
this gas’ thermal state, it is important to understand all the different processes that can
affect it during the evolution of the universe.

In the current cosmological paradigm all baryonic matter was initially highly ionized.
It is not until 350.000 years after the Big Bang (at redshift z ~ 1100) that the universe
expanded and thus cooled down enough in order to allow free electrons to bind to
protons for the first time, resulting in the first neutral hydrogen atoms in the universe.
Before that, the mean free path of photons in the cosmic plasma was very short, due
to the high density of free electrons. Thus this transition of the universe to bound
electrons allowed photons to travel freely for the first time, i.e. the universe became
transparent. This major phase transition of baryonic matter (predominantly hydrogen
and helium) is known as recombination and it is characterized by the emission of a highly
homogeneous global radiation field that we now observe ubiquitously in the micro-wave
regime (Alpher & Herman 1948). This so-called Cosmic Microwave Background (CMB)
is one of the most important cosmological probes, as small amplitude fluctuations within
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this background proved to be very sensitive to the parameters driving cosmological
expansion (Smoot et al. 1992; Hinshaw et al. 2013; Planck Collaboration et al. 2014).

After recombination, the baryonic matter stayed neutral for about another billion
years (down to z ~ 6 through the "dark ages", see Pritchard & Loeb (2012) for a review).
During the dark ages, this pristine gas was able to cool and collapse into hierarchically
growing dark matter (DM) halos, which culminated in the formation of the first galaxies,
consisting of the first population III stars (Faucher-Giguere et al. 2008a; Robertson et al.
2015). These galaxies are in all likelihood the main contributors powering another global
phase transition of baryonic matter in the universe (Bouwens et al. 2015; Finkelstein et al.
2015), the so-called reionization (or hydrogen reionization) phase. Before reionization,
all baryonic matter was in a neutral state and there were no sources of photons that
could separate the electrons from their nuclei. This picture changed when the first
galaxies formed.

Galactic emission of photons with sufficient energy to ionize hydrogen Ex—pyn 2
13.6 eV is expected to have driven hydrogen reionization (HI—-HII)! which is a process
that is believed to be completed by redshift z ~ 6 (Fan et al. 2006; McGreer et al. 2015;
Becker et al. 2015; Bosman et al. 2018; Eilers et al. 2018) (for reviews about the hydrogen
reionization epoch see Loeb & Barkana (2001); Mesinger (2016)). Recent measurements
based on damped absorption in the spectra of the highest redshift spectrum also indicate
that the IGM at z ~ 7 is mostly neutral (Bafiados et al. 2018; Davies et al. 2018).
When a hydrogen atom is ionized by a photon with energy higher than the ionization
threshold, the energy difference will be deposited into the photoelectron in the form
of kinetic energy. This will result in a net heating of the gas. During this process the
temperature of this gas is expected to increase from a few Kelvin to a temperature on
the order of 10 000 K. Spatially, hydrogen reionization is expected to be an inside-out
process, meaning that individual galaxies will first ionize their surroundings, such that
reionization will happen in a patchy way. Eventually these ionized regions will overlap,
giving rise to an ultraviolet background (UVB), an integrated global ionizing field of
photons that are not locally absorbed by the neutral gas (Haardt & Madau 2012).

During the next 2 billion years, the population of very luminous active galactic
nuclei (AGN) galaxies, i.e. quasi-stellar objects (QSO), builds up. This means that
during this time high energy photons released by AGN become increasingly available
to power a second phase transition (Furlanetto & Oh 2008; McQuinn et al. 2009), namely
the second reionization of helium , He [I—-He III with a higher ionizing threshold of
E 2 Exensuem = 54.4 eV (see e.g. Madau & Meiksin 1994; Miralda-Escudé et al. 2000;
Dixon & Furlanetto 2009; Compostella et al. 2013, 2014; Syphers & Shull 2014; Dixon

'Due to comparable ionization thresholds, and Epermer = 24.6 €V, it is normally assumed that helium
is singly ionized (He [->HeII) along with HI.
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et al. 2014).2 Due to the requirement of high-energy photons from this QSO population,
this process becomes only possible at much later times and is expected to be completed
by z =~ 2.7 (see e.g. Worseck et al. 2011, 2018). During this second reionization phase,
the temperature of the IGM is expected to increase by another 5000 K.

The key aspect for this work is that these reionization epochs are expected to signifi-
cantly alter the thermal history of the IGM. Furthermore, the exact timing and evolution
of these reionization processes is dependent on the properties of the gas and the sources
responsible for powering them. Ultimately, understanding the detailed evolution of the
temperature of the IGM will allow us to test our models and simulations and enhance
our understanding of the history of the baryonic component of the universe.

In this thesis I will present different approaches for measuring the temperature of
the IGM at different ages of the universe. This chapter will focus on the introduction of
the parameters that govern the thermal state of the IGM and how they are affected by
reionization processes. The main observable that is used to probe the thermal state of
the gas, the so-called Lyman-a (Lya) forest, and the method by which we decompose
it into individual absorption profiles from which we can infer temperatures, will be
introduced in the remainder of this chapter.

In chapter 2 I will apply a classic method of inferring the temperature of the IGM
from absorption profiles to a large number of observed spectra and state of the art
cosmological simulations. This method will be used to measure the temperature evo-
lution in the redshift range 2 < z < 3.4 (covering the time of HeIl reionization). In
chapter 3 I will develop, test and apply a new method at z = 2 that is statistically
more powerful and less prone to systematic errors for constraining temperatures using
the same observable. In chapter 4 I will explore the possibility of applying this new
approach to low redshift data (z = 0.1). Finally I will conclude this thesis in chapter 5.

1.2. Reionization and Thermal Evolution of the IGM

1.2.1. The Temperature-Density Relation in the IGM

The thermal state of the IGM is mainly dictated by three major factors®. The major
source of heating is the aforementioned UVB, while the adiabatic expansion of the
universe and Compton cooling of the gas are the major sources of cooling. The combined
effects of photoionization heating and cooling effects result in a tight power law

temperature-density relation (TDR) (Hui & Gnedin 1997; McQuinn & Upton Sanderbeck

Note that current discussions exist considering that early QSO might have played a role in the process
of hydrogen reionization (Madau & Haardt 2015; Khaire et al. 2016)

3This is true when the major photoionization source is the UVB, i.e. long after reionization effects
where local ionizing sources are driving photoionization
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2016) of the form:

P\
T(p) =To (—) = ToA' ™, (1.1)
PO

where Tj is the temperature at mean baryonic density py and the power law index
y sets the temperature difference between overdensities (A > 1) and underdensities
(A < 1). It can be shown that the index y is expected to approach ~ 1.7 asymptotically
if no major reionization processes are taking place (Hui & Gnedin 1997; McQuinn &

Upton Sanderbeck 2016).
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Figure 1.1. Temperature-density distribution from a Nyx hydrodynamic simulation run (Alm-

gren et al. 2013; Lukic et al. 2015) which will be introduced in § 2.2. The distribution
of temperatures and densities in a snapshot at z = 3 is color-coded using the log-
arithm of the number of cells within a bin, i.e. the volume weighted probability
distribution. The majority of the intergalactic gas (with overdensities around the
mean log A = 0) lies on a well defined power law relation (Hui & Gnedin 1997;
McQuinn & Upton Sanderbeck 2016). The mean density (log A = 0) is indicated
by a blue circle. A TDR (eqn. 1.1) with Tp = 11500K and y = 1.54 is shown as a
white dashed line. Gas may be heated up to temperatures greater than 10% K when
mechanisms other than photoionization and adiabatic expansion, such as shock
heating, are taking place (Warm Hot IGM or WHIM). Overdense cold halo gas at
log A % 2 is able to cool efficiently and is not well described by the relation. The top
right portion of the distribution represents the hot halo gas that in in the process
of virialization.
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An intuitive way of understanding the density dependence of the temperature is by
picturing that denser gas has a higher optical depth and will more likely experience
heating. Also, high density clouds of gas are less coupled to expansion and therefore
experience less cooling. Since the majority of baryonic matter is in the IGM, for most
of the cosmic history, the majority of baryons is well described by this relation.

Note that although the TDR is expected to have positive (y — 1) values in the standard
scenario, the index y allows for an isothermal IGM when y = 1, i.e. all gas has a constant
temperature independent of density. Inverted TDRs, where underdensities have higher
temperatures than overdensities, are described by values of y < 1. Although the TDR
favors positive values of y in the standard photo-heating vs expansion scenario, there
are other postulated heating mechanisms such as Blazar Heating that are capable of
inverting the TDR (see Puchwein et al. 2012; Pfrommer et al. 2013; Lamberts et al. 2015)
through electron-positron pair production from very high energy photons.

Figure 1.1 illustrates the thermal state of the IGM by showing the distribution of
the temperature and the density of gas cells in a snapshot of a Nyx cosmological
hydrodynamic simulation (see § 3.1) that includes all necessary cooling and heating
mechanisms. The majority of the low density gas with overdensities A < 10 is well
described by the TDR shown as a white dashed line. This gas corresponds to very low
densities and is expected to be far from collapsing into galaxies.

Figure 1.1 also roughly illustrates the other three phases of the IGM that are not well
described by a global TDR (Luki¢ et al. 2015):

1. Warm hot IGM (WHIM): a fraction of the rarefied gas is heated up to temperatures
higher than 10° K due to accretion driven shock heating. This phase is specially
present at low redshift (z < 1) when underdensities are increasingly fed to
overdensities.

2. Cold halo or condensed gas: collapsing high density (A > 100) gas that is able to
cool efficiently.

3. Hot halo gas: high density gas in the process of virialization, i.e. systems of
gravitationally interacting gas that are not stable.

1.2.2. The Effect of Cosmic Reionization Processes

The intergalactic gas is believed to have undergone two major reionization processes,
namely the reionization of HI and Hel, followed later by the reionization of He Il
The TDR can be used as a diagnostic tool for understanding these reionization phase
transitions. This is possible, because the photoionization heating during these phases
will affect the thermal state of the gas which is described by the TDR.
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Figure 1.2. Evolution the TDR based on the output of a Nyx cosmological hydrodynamic
simulation. Top panel: The evolution shows how Tj increases during the events of
HIand He I reionization (from z ~ 12 to 8.). The gas proceeds to cool down slightly
from z ~ 6 to z ~ 4 due to expansion until the increasing QSO population initiates
He Il reionization. This second reionization process is responsible for the second
peak in Ty at z ~ 3. Bottom panel: The power law index y also responds to global
reionization processes. Heating the IGM at all densities results in a flattening of
the TDR, i.e. it approaches an isothermal state during HI and He I reionization.

For illustration, the evolution of the TDR parameters for a simulated reionization
model is shown in Figure 1.2. In essence, gas moves into hotter (higher Tj) and flatter
(lower y) TDRs as reionization processes proceed. The first temperature peak, with
To = 10 000K, occurs at z ~ 6 due to the photoheating of the IGM during H I reionization.
When H 1 reionization is complete, cosmic expansion causes the gas to cool until He II
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reionization initiates a new heating process, which peaks at z ~ 3 with Tp ~ 15000 K.
During this heating phase, i.e. before Ty peaks, y stays below the asymptotic value of
1.7, which is expected when the gas is heated at all densities. After He II reionization is
complete (z < 3), the IGM is expected to cool down adiabatically and y will approach
its asymptotic value of 1.7.

Here we should note that, in reality, reionization can not be treated as a homogeneous
and instantaneous process. This means that the gas will not leave the pre-reionization
TDR all at once everywhere, but rather with some delay and spatial dependency. These
effects will inevitably affect the temperature-density distribution of the gas by adding
scatter around the TDR? or even by creating multivalued relations (McQuinn et al. 2009;
Compostella et al. 2013). Although these effects play a role during reionization, analytic
calculations (McQuinn & Upton Sanderbeck 2016) suggest that the gas is expected to
relax back into the tight TDR from eqn. 1.1 after several hundred Myr.

Another assumption frequently used in reionization studies is that of photoionization
equilibrium. While true at most times in the IGM’s thermal history, this assumption
might break down amidst an epoch of intense thermal heating, as the IGM gas does not
react instantaneously to sudden changes in the thermal state. However, this effect is
also expected to play a minor role long after reionization epochs (Puchwein et al. 2012,
2019).

1.3. The Lyman-« Forest

We have reviewed the thermal evolution of the IGM and how it is sensitive to reioniza-
tion processes. Unfortunately, there is no way of measuring the temperature or density
of the intergalactic gas directly. Thus, we have to rely on other observables that are
sensitive to the TDR, such as the distribution of absorption line shapes in the so-called
Ly« forest. In this section we will introduce the Ly« forest, while the technique used
will be discussed in detail in § 1.5.

The diffuse nature of the IGM renders emission lines difficult to observe, so one must
rely on the absorption features caused by the IGM in order to gain insights into its
properties. Although predominantly photoionized, residual neutral hydrogen in the
diffuse IGM gives rise to Lya’ absorption. This series of Lya absorption profiles is
called Ly« forest and has been established as the premier probe of the IGM and cosmic
structure at redshifts z < 6. The Lya forest was first identified by Lynds (1971) based on
observed hydrogen absorption towards the QSO 3C 9 (Gunn & Peterson 1965) and is a

4These fluctuations can be due to temperature (D’Aloisio et al. 2015) and/or UVB fluctuations (Davies
et al. 2017)

SLya refers to the hydrogen transition from the ground state n = 1 to n = 2, with n being the principal
quantum number
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spectral feature generally observed in the spectra of QSOs. It consists of a series of Lya
absorption lines that lie at shorter wavelengths (blueward) of the Lya emission spike of
a QSO. The most interesting property of these lines is that they are not intrinsic to the
QSO spectra, but originate in the resonant absorption of photons by the intervening
residual HI in the IGM. In this thesis I will explore the thermal evolution of the IGM
through its effect on the shape of Lya absorption lines in QSO spectra.

Lya absorption comes about when a photon with energy of Eyy, ~ 10.2 eV (corre-
sponding to Ay, ~ 1215.67 A) released by the QSO excites the electron in a neutral
hydrogen atom in the IGM from the ground-state into the first excited state. In a static
universe, this would mean that all Lya absorption by the intervening gas would fall
at ALy, = 1215.67, but in the context of an expanding universe the QSO spectrum
is redshifted as its light travels through the IGM. Due to cosmic expansion, the QSO
emission at a given wavelength Ag ., emitted at redshift zg will be shifted toward a
longer wavelength when it arrives at the observer:

AQ.obs = Agem (1l + 2g), (1.2)

where Agops is the wavelength as perceived by the observer.

This redshifting of the QSO’s spectrum due to cosmic expansion happens gradually
as light is traveling to the observer. This implies that the absorption wavelength for
Lya will be shifted to different positions in the QSO continuum as the light travels.
Intervening gas will simply absorb photons at its rest-frame Ly« transition wavelength,
resulting in absorption profiles in the QSO continuum at different wavelengths, de-
pending on how long after emission it took for the absorption to take place. Note
that the absorption signal is caused by neutral hydrogen in a predominantly ionized
IGM (at z < 6), i.e. a neutral fraction of the order of ny; ~ 1072 is responsible for this
absorption. Luckily the Ly« transition has a high oscillator strength (see § 1.4.1) and
will absorb strongly despite the low neutral fraction.

A graphic depiction of the origin of the Ly« forest is shown in Figure 1.3. A QSO emits
its continuum plus a Lya emission line (labeled “a”, upper panel) which are perceived
later by an observer (in an expanding universe). There are three Lya absorbing clouds
(labeled “b”, “c” and “d”) between the observer and the QSO. At the timestep t; = 0
we see the QSO spectrum as observed at its position. It consists of a continuum with
a Lya emission peak of the QSO at A =~ 1216. As light is traveling from the QSO to
cloud “b”, the universe expands causing the QSO continuum to be redshifted. At the
timestep t2 > 0 we see that once the QSO light arrived at cloud “b”, the Ly« absorption
wavelength does not match that of the QSO emission peak anymore. Due to the QSOs
redshifting, cloud “b” will absorb at a shorter wavelength relative to the QSO emission.
Analogously, in timestep t3 > to, due to further redshifting, both the QSO emission and
the absorption feature left by cloud “b” will move toward longer wavelengths. Cloud
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Figure 1.3. Simplified sketch of how the Ly« forest originates. As light from a QSO travels to
the observer, residual clouds of neutral hydrogen result in absorption profiles. The
fact that the universe is expanding during the time the light is traveling causes the
QSO continuum to be redshifted and the clouds to absorb at different positions in
wavelength relative to the QSO emission peak.

“c” will absorb at a wavelength that is shorter relative to “b” and even shorter relative
to the QSO emission peak. At the timestep t4 > t3 we observe the same effect for
absorption for cloud “d”. With the above picture in mind, the Ly« forest is essentially a
one-dimensional map of the neutral hydrogen distribution between observer and the

=
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QSO. It is worth noting that at high redshift (z > 5), the hydrogen neutral fraction in
the IGM is high enough to completely absorb the QSO continuum (so-called “Gunn-
Peterson troughs®). Therefore this picture is a good description of the Ly« forest for
low redshift.

We should keep in mind that this framework is a simplification of the process and that
there are other effects that distort this picture. One example is that the absorbing clouds
might not be at rest, i.e. they have a net peculiar velocity. This results in an additional
shifting of the absorption position in redshift space (Weinberg et al. 2003) toward shorter
or longer wavelengths depending on the direction of the line-of-sight component of
the peculiar velocity. Such an effect can also cause lines to overlap. Peculiar velocity
effects make a one-to-one relation between gas density and underlying DM density
fields rather challenging to measure using the Ly« forest.

In Figure 1.4, I present an actual observed QSO spectrum at redshift z ~ 2.89. The
expected QSO continuum is shown in red and the observed spectrum is shown in
black. There are a number of features in this spectrum that are not explained by our
simple picture from before. First, one might notice that there are absorption lines that
fall at longer wavelengths than the QSO Lya emission peak. In the example of the
absorption features at 4850 (right of the QSO Ly« emission peak), if these lines would
appear redshifted due to peculiar velocities, it would require a Lya absorber to have
line-of-sight velocity away from the observer higher than 40 x 10% km s™!in order to
absorb at these wavelengths. Therefore, these absorbers can not be due to hydrogen. In
fact, these features are caused by intervening metals present in the IGM that absorb at
different wavelengths. These are often associated with high density hydrogen absorbers,
presumably star forming galaxies, but might also be seen in the low density IGM itself.
Metals can appear anywhere in the spectrum (also within the Ly« forest), and have to
be accounted for so they are not mistaken with real Lya absorption. Later in § 2.1.4 I
will discuss in detail how we remove this sort of contamination from our dataset.

Another caveat that should be considered is the fact that there are higher order
hydrogen transitions (indicated in Figure 1.4 with vertical lines) associated with the
absorbers, namely the Ly (rest frame 1025 A), Lyy and higher order transitions. Natu-
rally, one should expect that each of these transitions would result in a particular forest
and that they should eventually overlap after Ly °. In this thesis I will focus on the
part between Lya and Ly which should have no other hydrogen transitions in it than
Lya.

Imagine an absorber at z = 2: it will absorb Lya at 3648 A and Ly at 3075 A. If the same line of sight
encounters another hydrogen absorber at z ~ 1.53 there will be a Lya absorption feature at 3075
A and Lyp at 2593 A. The wavelengths of Lya and Ly absorption can thus overlap, but, assuming
peculiar velocities are small, Ly cannot be redshifted into the Ly« forest region.
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The Ly« forest in the sightline of the QSO HE2347-4342 at z ~ 2.89. The broad Ly«
emission peak of the QSO is redshifted as described in eqn 1.2 to a wavelength of
4730 A. The absorption lines at shorter wavelengths than the Lya peak are caused
by the intervening residual neutral hydrogen in the line of sight. The Ly« forest
is a result of redshifting of the observed Lya wavelength with respect to the QSO
spectrum as seen by the absorbers in the IGM. HI absorption systems generate a
series of absorption profiles of higher order Lyman transitions. Each transition will
have a corresponding forest, and different forests can overlap. Metal line absorption
can be present throughout the whole spectrum, but is easily visible at wavelengths
larger than the QSO’s Lya emission peak. At lower wavelengths than 3410 A there
is complete absorption of Lyman limit photons by an intervening high density
absorber. We will discuss how this comes about in § 1.4.4.

1.3.1. Thermal Sensitivity of the Lya forest

As introduced previously, the Ly« forest is a distorted non-linear probe of the distribu-
tion of gas along the line of sight in the intervening IGM. In addition, and especially
important in this work, the Ly« forest also carries information about the thermal state
of the IGM. This will be discussed in more detail in § 1.4.2, but it should be noted that

in general,

the shape of the absorption profiles is influenced by the random thermal

motions of the gas.

In the literature, different approaches have been used for measuring the parameters
of the TDR of the IGM using the Ly« forest. These can be categorized in two groups:
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1. Statistical measures of the smoothness of the Ly« forest transmission. This in-
cludes various statistical measures such as the power spectrum of the transmitted
flux (e.g. Theuns et al. 2000; Zaldarriaga et al. 2001; McDonald et al. 2006; Walther
et al. 2018; Khaire et al. 2019; Walther et al. 2019; Boera et al. 2018), the curvature
of the smoothed flux field (Becker et al. 2011; Boera et al. 2014), the flux probability
distribution function (e.g. Bolton et al. 2008; Viel et al. 2009; Lee et al. 2015), as
well as wavelet decompositions of the forest (e.g. Theuns et al. 2002; Lidz et al.
2010; Garzilli et al. 2012).

2. Methods that treat the Ly« forest as a superposition of multiple discrete absorp-
tion profiles (Schaye et al. 1999; Ricotti et al. 2000; McDonald et al. 2001; Rudie
et al. 2012a; Bolton et al. 2014; Hiss et al. 2018, 2019).

In this work I will study the Ly« forest using the second method, i.e. as a superpo-
sition of individual absorption profiles in order to infer the thermal state of the IGM
at different redshifts. More specifically, I will fit absorption lines to the Ly« forest of
observational and simulated data via Voigt profiles. An introduction to Voigt profiles
and their sensitivity to the temperature of the absorbing gas will follow in the next
section.

1.4. Voigt Profiles and Transmission in the IGM

The aim of this study is to constrain the evolution of the parameters that govern the
thermal state of the IGM using the Ly« forest. In order to do so, I will apply a technique
that is based on decomposing the Ly« forest into individual absorption (Voigt) profiles.

This approach was presented by Haehnelt & Steinmetz (1998) and developed by
Schaye et al. (2000); Bryan & Machacek (2000); Ricotti et al. (2000); McDonald et al.
(2001) for constraining thermal parameters in the early 2000’s. A decade later, in
light of an increasing number of high resolution and signal-to-noise ratio (SNR) QSO
observations, as well as advancements in hydrodynamic simulations, this method was
revisited in studies by Rudie et al. (2012a); Bolton et al. (2014).

The shape of an absorption line is given by the convolution of a Gaussian profile
with an Lorentzian profile, i.e.

V(x) = f G(y)L(x - y)dy, (13)

where

il ) (1.4)
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is a Gaussian function with standard deviation ¢ and

is a Lorentzian profile with scale-parameter y (not to be confused with the power law
index y of the TDR in eqn. 1.1).

Depending on the contribution of the two measures of dispersion ¢ and y, the
convolution described in eqn. 1.3 will result in three characteristic shapes: i) y ~ o:
the resulting Voigt profile has a Gaussian core with Lorentzian wings; ii) y < o: the
resulting Voigt profile resembles the Gaussian curve; iii) y > o: the resulting Voigt
profile resembles the Lorentzian curve. The first two cases are illustrated in Figure 1.5.

1.4.1. The Intrinsic and Thermal Line Profiles

The Voigt profile serves as a good physically motivated shape for absorption profile
in our context. This is so, because the intrinsic absorption line shape given by the
scattering cross-section of the Lya transition is approximately Lorentzian. Further, it
can be safely assumed that random thermal motions within the absorbing clouds follow
a Maxwell-Boltzmann velocity distribution that has a Gaussian shape. This will be
discussed in detail for the example of the Ly« transition in the following paragraphs.

The Thermal Line Profile

The hydrogen atoms that give rise to the Ly« forest are not at rest during the absorption.
The motion of the atoms with respect to the incoming photons will shift the energy
needed to excite their electrons. This process is equivalent to a Doppler shift of the
photon’s frequency (and therefore energy) from the perspective of the hydrogen atom
due to the relative motion.

The distribution of velocities p, of particles in an ideal gas in thermal equilibrium
can be described by the (Gaussian shaped) Maxwell distribution:

1 —(v - z)0)2)
Y, = exp | ——— |, 1.6
P om0, p ( 702 (1.6)

where vy is the mean velocity of the gas particles and the standard deviation can be
written as o, = 4/(kgT /m) for pure thermal motion, where m is the particle mass, T the
temperature and kg the Boltzmann constant. Note that only line-of-sight velocities will
be important in terms of absorption profile broadening, so we are treating the velocity
distribution in one dimension. Throughout this thesis I will use a slightly different
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Figure 1.5. Convolutions of Lorentzian and Gaussian profiles and the resulting Voigt profiles.
Top: A Gaussian profile with Doppler parameter b = 13 kms~! and a Lorentzian
profile with scale parameter y = 3 kms~!. If b and y are comparable, then the
resulting Voigt profile has Lorentz wings but a Gaussian core. Bottom: A Lorentz
profile with y based on the intrinsic profile of the Ly« transition (eqn. 1.11). This
illustrates the approximation used in eqn 1.13, i.e. a Lorentz profile with y < b is
approximated by a d-function. The resulting Voigt profile strongly resembles the
Gaussian profile.

convention for the broadening of this distribution, namely the Doppler parameter

b, = V20, so that:
1 —(v - 00)2)
v = . 1.7

bo= b, P ( b2 1.7)

In essence, eqn. 1.7 describes the probability of encountering an atom with velocity v.
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In the case of a typical Lya absorber in the IGM, the broadening of the thermal profile
b, should be of the order of 13kms~! for hydrogen atoms at 10 000 K.

The Intrinsic Line Profile

One of the fundamental principles of quantum mechanics, the time-energy uncertainty
relation, relates the lifetime of an excited state to the uncertainty of the state’s en-
ergy. More specifically, an excited state with a long lifetime will have a small energy
uncertainty which results in a narrow emission or absorption profile.

Quantum mechanic uncertainty in the energy levels of transitions allow for a range
of photon energies to excite an electron from a lower state [ to an upper state u (with a
certain probability). This cross-section for the electron-photon scattering is described

as:
e
oy =

me

2
C) fud™, (1.8)
where c is the speed of light, m, is the mass of an electron and e is the elementary
charge. The amplitude of the probability for the transition is given by the oscillator
strength f},. Note that f, is characteristic for each transition and its value for the Lya
transition was measured in the laboratory fj, 1y = 0.4146 (Draine 2011; Meiksin 2009).
The line profile #™ is a function that describes the probability for a photon with a
certain frequency (energy) to excite the electron.

It can be shown that "™ can be generalized to a Lorentzian profile for atoms at rest.

Its form is:
4}/141

1672(v — viw)2 + v

¢intr — (1 9)

This distribution is centered around the transition frequency v, and has a scale-
parameter y,;, that is dependent on the lifetime of the excited state.

In the following, we motivate that the intrinsic line profile is very narrow for the
Lya transition. The width of the intrinsic profile is often given as the full-width at half
maximum:

i Yul
Avpshng = i (1.10)

One can easily transform the frequency v,; into a velocity scale by using AU?&;HM Jc=

intr
AV;WHM/ Vil-
- c ., AulYul

intr _ intr _ ulfu

Avpwpm = ——AVewnm =

e 1.11
Vul 21 ( )

If we use laboratory values of Ayjyui = Ayayiya = 7616cm/s for the Lya transition
(Draine 2011), this will result in Avli:‘&,rHM = 0.0121 kms~!. The intrinsic line width is
clearly smaller than the typical thermal broadening of Lya absorption profiles in the
IGM described above. The implications of this fact will be discussed in the next section.
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1.4.2. The Voigt-Profile

The Voigt profile described in eqn. 1.3, can be expressed by combining eqns. 1.6 (thermal
line profile) and 1.9 (intrinsic line profile):

Voigt i
Volg — fpv A ¢1ntr dov

1.12
4)/ul ( )

1 do —0?
= — —exp 5 5 2 2°
Vor o 205 ) 1674(v — (1 —v/c)vy)* + Yl

To a good approximation, one can treat the intrinsic profile with a §-function, as the
scale parameter of the intrinsic line profile is typically much smaller than the thermal
broadening of Lya absorbers in the IGM (see § 1.4.1). The resulting line profile can be a

approximated as
1 1c¢ v?
bv v vqueXp (_172) 7 (1

which is again Gaussian shaped. This is illustrated in the lower panel of Figure 1.5.
A Gaussian approximation is appropriate for most of the optically thin (r < 3) Ly«
absorbers in the IGM, but fails for high column-density absorbers, since treating the
intrinsic profile as a d-function does not account for the prominent wings of the
Lorentzian profile (this is discussed in more detail in § 1.4.4).

1.4.3. Transmission in the IGM

Knowing the shape of the scattering cross-section, we can now explore how one can
parameterize the shape of an absorption profile in an observed transmission spectrum.

Optical Depth

The previous section showed that the scattering probability as a function of frequency
follows a very specific profile (eqn. 1.12). Observationally, it is interesting to determine
how the absorption profile would appear in a spectrum in the context of the emission of
a background continuum source (a QSO) passing through a medium (neutral hydrogen
in the IGM). The quantity that describes the opacity of an intervening medium is the
so-called optical depth 7. Given the frequency dependency of the scattering process’
cross-section (see eqn. 1.8), one also expects the resulting optical depth to be a function
of frequency. Furthermore, the opacity of the gas will depend on the column-density of
gas in the lower state Nj, in other words, the more atoms in the line of sight, the more
likely it is for absorption to take place. With this in mind and under the assumption
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that stimulated emission can be neglected in the IGM, the optical depth as a function of
frequency can be written as:

Ty = Ulu(V)Nl =

$vNI. (1.14)

Using the approximation for the line profile from eqn. 1.13, and v,;; = ¢/A,, this equation
can be rearranged to

.
T, = To eXp (—b—z) : (1.15)

The velocity v corresponds to the frequency shift v = ¢ - (v, — v)/vy,. The optical depth
at line center 719, is defined as:

\/_e

ﬁu lu . (1-16)

For the Lya transition in particular, using the values A;, = Ay = 1215.67A and
oscillator strength f, = 0.4164, this equation can be written as

(1.17)

N 10kms™!
aye = 0.7580 (0 )( ms )

1013cm—2 b

This equation already illustrates some of the most important effects of temperature
and density on the optical depth at the profile center. A high column-density Ny will
result in high 7y and increasing the Doppler parameter b will decrease 7.

Transmission

Once the optical depth profile for a scattering process is known, it can be easily trans-
formed into a transmission spectrum T,,. The observed transmission is simply

T, = =~ =exp(-1,), (1.18)
Cy
where C, is the original non-absorbed flux spectrum (the continuum) and F, is the
observed flux spectrum. It is also common to refer to T, as the continuum normalized
spectrum.

Note that so far the central position of the line has been treated as being zero in a
velocity scale. A shift in line-of-sight velocity vy can be added by simply using v — vg
instead of v in the equations above. In terms of redshift, this corresponds to an absorber
with observed wavelength Ag = Ary, - (1 + z) and it follows that v — vy = (A — Ag)/Ao.
So the position of the line in a given spectrum can be described in terms of redshift.
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Altogether, an absorption profile in a transmission spectrum can be parameterized
by a column-density Nj of the absorbing gas, a thermal’ broadening Doppler parameter
b and its position z in redshift space.

1.4.4. The Curve of Growth

In this section we will explore how the column density of an absorber affects the
absorption profile in a spectrum. To this end, I will use one measure for the absorbed
flux in a spectrum which is given by the equivalent width:

W = f 3—;/ (1 - g—:) = f 3—;/(1 —exp(-1y)), (1.19)

where vy is the central frequency of the absorption profile. The equivalent width is
defined so that a rectangular integral of the flux over the width W corresponds to the
integral over the line profile. The dependency of the equivalent width on the column
density N is described by the so-called curve of growth.

The curve of growth is divided in three main regimes, which are separated by the
different sensitivities of W on N. The three main cases are shown in Figure 1.6.

« When the absorption profile has a relatively small 7 (black line), then W o N,
i.e. the equivalent width will increase linearly with column density. This linear
regime corresponds to most of the absorption caused by optically thin lines in
the IGM with 12 < log(Ng1/ecm™2) < 14.

« Once the optical depth at line center increases and absorption features start
to saturate (gray line), the curve of growth enters the flat regime. Typically
this is the case for lines in the IGM with log(Ny1/cm™2) > 14 (with the exact
point of turnover being dependent on b). Due to the nearly rectangular shape
of the absorption, increasing the column density does not affect the line profile
significantly, resulting in a dependency W o VIn N. Interestingly, this causes the
shape of lines to become strongly sensitive to changes in b.

« For higher values of N, the Lorentzian wings of the Voigt profile become increas-
ingly important (light gray line). Although the scattering cross section is nearly
Gaussian, the exponentiation of the optical depth used to generate the flux (see
eqn. 1.18) will amplify these subtle differences. Damped absorbers in the IGM
typically have column densities of log(Ny1/cm=2) 2 20. Due to the Lorentzian
wings, the column density is discernible and becomes sensitive to the equivalent
width as W « VN.




1.4. VOIGT PROFILES AND TRANSMISSION IN THE IGM 19

= linear = Flat Damped

1.0
c
Re]
7]
L
£
2
s 0.5 A
|_

0.0 A

-100 -50 0 50 100
vikm/s

Figure 1.6. lllustration of the three cases of the curve of growth. The black line represents an
absorption line with g ~ 1 as an example for the linear part of the curve of growth.
An example of a saturated line with 7y ~ 50 in the flat regime is shown in dark gray.
Damped absorption with 7y ~ 10 is shown in light gray. The Voigt profile used for
generating these absorption features is the same as shown in the lower panel of
Figure 1.5. The absorption profile was transformed into flux using eqn. 1.18.

The curve of growth sets a limitation on how well one is able to measure absorption
line parameters from a particular line transition. However, if one combines different
transitions of the same gas, that have different oscillator strengths and therefore different
column density thresholds for the different dependencies of the curve of growth, one
can still determine line parameters. In this study I will focus on the Ly« transition alone,
as I will rely on automatization of the line fitting procedure in the upcoming chapters,
which becomes substantially more complicated once higher transitions are taken into
account. I will also concentrate on absorbers with 11.5 < log(Ny1/cm™2) < 16, which
correspond to the diffuse low density IGM.

In the literature one separates between IGM absorbers, Lyman limit systems (LLS) and
damped Lya (DLA) systems. LLSs® are absorbers with log(Ng1/ em™2) > 17, that are in
the flat regime of the curve of growth. DLAs are absorbers with log(Ny1/cm™2) 2 20.3

"We will discuss in § 1.5 that there are other contributions to the broadening of a line, but that these
can be treated jointly with one single Doppler parameter.

8The name Lyman limit system refers to the lack of transmission after the Lyman limit that is associated
with these absorbers due to self-shielding. See discussion in the text.
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that show prominent Lorentzian wings and are in the damped regime. These high
column density absorbers are self-shielding, i.e. they have high enough enough density
to preserve a neutral hydrogen core that is protected from the UVB. In the case of
DLAs these hydrogen column densities are comparable to that of the Milky Way (MW),
making them presumably star forming (Fumagalli et al. 2014) proto-galaxies in the line
of sight.

These high density objects have to be carefully removed from our sample, as we are
interested in measuring the thermal state of the low density IGM. Damped systems
are easily identified due to the Lorentzian wings and associated metal line absorp-
tion. LLS, in contrast, are not easily discriminated from strong absorbers or blended
absorbers originating in the IGM. Most of time, LLS are detected via corresponding
metal absorption. If the spectral coverage is large enough, self-shielding absorbers will
completely absorb photons blueward of the Lyman limit (rest frame 912 A, shifted to
the absorber’s position in redshift), due to the high scattering probability at such high
densities. Therefore, these systems can also be identified by complete absorption at
short wavelengths.

In fact, this is visible in Figure 1.4 at 3410 A, which indicates that there is a self
shielding absorber at z = 2.74 causing Lyman limit absorption. The corresponding Ly«
absorber should be at 4546 A. When inspecting this part of the spectrum in Figure 1.7,
we find the Ly« signature of these absorbers.

I will discuss in detail how we remove these objects from observed datasets in § 2.1.4.

1.5. The b-Ny, distribution

In this thesis I will explore different methods of extracting the parameters that govern
the TDR in the IGM from the distribution of absorption line parameters of Lya absorbers
in the Ly« forest (see § 1.3). As described in the previous sections, absorbers in the
IGM can be described by their position in redshift space z,ps, their column-density Nyt
and their Doppler parameter b. I will explore in detail how the joint distribution of Ny
and b (the b-Ny distribution) is sensitive to the thermal state of the IGM and how it
evolves as a function of time (redshift).

1.5.1. Thermal Sensitivity of the b-Ny | distribution

The b-Ny distribution is one of the primary observables that are sensitive to the thermal
state of the IGM, because the column-density N1 can be treated as a proxy for the
neutral hydrogen density and the Doppler parameter can be treated as a proxy for
temperature. In detail, the Doppler parameter b of an absorber is determined by the
contributions from its thermal state, but is expected to have additional contributions.
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Figure 1.7. The same spectrum as shown in Figure 1.4, normalized by its continuum, and
showing only the region around 4546 A, where total absorption beyond the Lyman
limit indicates that there should be a self-shielding Ly« absorber. In fact, we see two
neighboring LLS, the rightmost of which causes the lack of transmission, leaving
no Lyman-limit photons to be absorbed by the rightmost. These absorbers have no
prominent Lorentzian wings and are therefore not DLAs.

As discussed earlier, the thermal contribution consists of microscopic random thermal
motions in the gas, or thermal broadening

by = 2kpT (1.20)
V my

and is simply a result of blue and redshifting of the absorption wavelength due to
Maxwell-Boltzmann velocity distributions in the gas. In addition to thermal broadening,
one also expects the kinematic structure in the absorber to affect the width of absorption
profiles. This is often (rather confusingly) referred to as turbulent broadening by, .
Additionally, the differential Hubble flow across the spatial extent of an absorbing
cloud, which is set by the so-called pressure smoothing scale Ap (Gnedin & Hui 1998;
Schaye 2001; Rorai et al. 2013; Kulkarni et al. 2015; Rorai et al. 2017b) will contribute
to the line widths. This effect is often referred to as Hubble broadening by. One can
motivate Ap by assuming that the overdensities probed by the Ly« forest are close to
hydrostatic equilibrium (Schaye 2001). This means that the sound crossing time, which
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is the timescale of the pressure support t,. = L/cs, is comparable to the free-fall time
tg=1/ \/G_ , with L being the radial extent of the cloud, ¢, the sound speed and G is the
gravitational constant. This condition results in a characteristic smoothing scale, the
Jeans-scale A; = L = ¢,/ \/G_ , which is related to Ap (see definition of Ap by Kulkarni
et al. 2015, discussed in § 2.2). Hubble broadening due to the spatial extent of an
absorber scales as by ~ H(z) A;, where H(z) is the Hubble parameter. This broadening
mechanism is expected to be comparable to the thermal broadening at mean density
and should be taken into account Garzilli et al. (2015, 2018).

To a good approximation, the total Doppler parameter of an absorber is given by

bt20t. = blz“ + b2

tur

b, + br. (1.21)

Figure 1.8 illustrates the thermal sensitivity of the b-Ny distribution, based on
the output of Voigt profile fitting of simulated sightlines, i.e. with known thermal
parameters. Note that instead of showing a cloud of points we plot a color coded map
with the probability P(log Ny1, log b) (labeled as PDF) for better visibility. The method
used to generate these maps will be discussed in detail in Chapter 3.

The left and center panels of Figure 1.8 show typical b-Ny distributions of the
intergalactic gas. This distribution has many interesting features that will be discussed
in this thesis. For one, we observe that there is a sharp cutoff towards low b values
in all distributions. This cutoff comes from the lower b limit at each density that is
imposed by the temperature of the gas. Because of all the other contributions to the
broadening of absorbers, we see a spread in b toward higher values. However, the
cutoff simply reflects that some absorbers might have negligible kinematic contribution
if the peculiar velocities have no contribution to the broadening along the line of
sight. At very low Ny the cutoff has a turnaround toward higher b. As discussed
in Garzilli et al. (2015, 2018) this is caused by Hubble broadening across the spatial
extent of the absorber becoming comparable to the thermal broadening for the lowest
column density absorbers. One also observes a diagonal cutoff towards low Ny1. This
is simply an observational effect. As discussed earlier, the optical depth at line-center is
70,1 © Nu1/b which illustrates that lines that have low Nyt and/or high b will be less
likely to be detected depending on the SNR of the spectra at hand.

The top panels of Figure 1.8 show how the b-Ny distribution reacts to a change of
Tp in our simulations. One sees that increasing the temperature at mean-density shifts
the cutoff of the distribution toward higher b values. The bottom panels show the effect
of changing y. In the TDR, y regulates the contrast in temperature between over and
underdensities. This is also reflected in the b-Ny1 distribution. Increasing y results in a
tilt of the lower cutoff of the distribution, as overdensities (higher Ni1) become hotter.
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Figure 1.8. Sensitivity of the b-Ny distribution on the TDR parameters imposed onto simula-
tions. Note that instead of showing a cloud of points we plot a color coded map
with the probability P(log Ny, log b) (labeled as PDF) for better visibility. Left:
P(log Ny, log b) from as simulation with log Ty = 4.09 and y = 1.33. Middle:
P(log Ny, log b) from the same simulation but with higher log Ty (bottom) and
higher y (bottom). Right: The difference between the distributions illustrates that
increasing log Ty shifts P(log Ny, log b) toward higher b (top), while increasing y
mainly tilts the distribution at log(Ng/cm~2)> 13 (bottom).
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1.6. Scope of This Thesis

In this thesis I will carry out measurements of Ty and y as a function of redshift. This will
be done by carefully comparing the b-Ny distributions retrieved from observational
data to the b and Ny output of state of the art hydrodynamic simulations. All detailed
statistical methods, data, simulations, manipulations and results will be discussed in
three different chapters:

« In Chapter 2 I present a new version of a classic approach of measuring thermal
parameters from the b-Ny distribution, namely by quantifying the position of
the lower cutoff in the distribution. I expand on previous work by significantly
increasing the number of observed sightlines used (75 Ultraviolet and Visual
Echelle Spectrograph (UVES) and High Resolution Echelle Spectrometer (HIRES)
spectra) and carefully calibrating the relationship between cutoff and thermal
parameters with the help of hydrodynamic simulations. Furthermore, considera-
tion is given to the effect of the pressure smoothing scale Ap on the uncertainty
of our measurements. With this method I measure the evolution of Ty and y in
the redshift range 2 < z < 3.4. The results of this work have been published in
Hiss et al. (20138).

+ In Chapter 3 I develop, test and apply a new method of carrying out measure-
ments of thermal parameters using the b-Ny1 distribution that goes beyond the
cutoff and instead treats the b-Ny1 distribution as a whole. This approach is
more accurate when compared with cutoff fitting and delivers measurements
with significantly smaller statistical uncertainties for current dataset sizes. This
method is applied to observational data at z = 2. The results of this work are
published in Hiss et al. (2019).

« In Chapter 4 I measure the thermal state of the IGM at z = 0.1 by applying the
method of Chapter 3 to spectra from the Hubble Space Telescope (HST)/Cosmic
Origins Spectrograph (COS) instrument. This study is in preparation and its
results will be submitted for publication in the near future.
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The color of the sun composes me
The blue sea dissolves me

The equation proposes me

The computer solves me

- Os Mutantes, 2001 1969

In this Chapter we will apply the cutoff fitting method discussed in § 1.5.1 in order
to carry out a measurement of the parameters Ty and y of the TDR. This method is
based on the idea that, if we observe many absorption features, we will occasionally
encounter lines from gas clouds which have a line of sight velocity component near
zero, i.e. the velocity field is close to a caustic (McDonald et al. 2001). As the broadening
of these absorbers is dominated by the thermal contribution, this results in a thermal
state dependent cutoff in the distribution of Doppler parameters of the form

-1
Nu1 )r

(2.1)

where b is the minimal Doppler parameter at the column density Ny and I' is the
power law index that regulates the contrast in minimal broadening for different column
densities. The quantity Ny refers to the column density that corresponds to an
absorber with the mean density pg. The formalism behind this cutoff form will be
discussed in more detail in § 2.3.1.

Assuming that the cutoff is primarily set by the thermal state of the gas, its position
will be dependent on the gas density due to the temperature-density relation, or in
observable terms, the absorption-line column density Nyi. This in turn means that
there is a correlation between the position of the lower cutoff in the distribution of
Doppler parameters as a function of column densities (b-Ny distribution) and the
thermal state of the gas. The strategy we will adopt is to calibrate the relationship
between by and Ty, as well as I" and y using the Voigt profile fit output of hydrodynamic
simulations. Once the calibration is known, we can apply it to cutoff measurements in
the b-Ny distributions of observational data, allowing us to constrain Ty and y.

25
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Figure 2.1. Overview of this chapter.

This method has been explored in the literature (see Schaye et al. 1999; Ricotti et al.
2000; McDonald et al. 2001), but recent development in both the observational and
computational front pointed for the need of revisiting cutoff fitting techniques. A few
years ago, a measurement of the thermal state of the IGM based on the cutoff of the
b-Ny distribution was performed at z = 2.4 by Rudie et al. (2012a) using a sample
of 15 high-quality QSO sightlines. Using the analytic relations between the cutoff of
the b-Ny1 distribution and the temperature-density relation derived by Schaye et al.
(1999), Rudie et al. (2012a) measured a temperature at mean density Ty = 1.94 x 10K
at z ~ 2.4 (in a broad redshift bin spanning 2.0 < z < 2.8), which was ~ 9000K
higher than the value implied by flux curvature measurements at z = 2.4 by Becker
et al. (2011). This discrepancy motivated Bolton et al. (2014) to revisit the cutoff fitting
technique. Using hydrodynamic simulations, they calibrated the relationship between
the b-Ny1 distribution cutoff and the temperature-density relation. Applying this
updated calibration to the Rudie et al. (2012a) b-Nyy1 distribution cutoff measurement,
Bolton et al. (2014) determined a lower temperature To(z = 2.4) = [1.00+0'32] x 104K

-0.21
that is consistent with Becker et al. (2011), and argued that the much higher temperature
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measured by Rudie et al. (2012a) resulted from incorrect assumptions in the calibration.

With the knowledge that calibration using simulations yields more reliable measure-
ments, we carried out this study of the b-Ny distribution of an extensive sample of
75 high quality QSO spectra, which allows us to measure the redshift evolution of Tj
and y over the redshift range 2.0 < z < 3.4 with a much finer binning §z = 0.2 than
previous work. At each redshift we use mock Ly« forest data from 26 hydrodynamic
simulations with different thermal histories to calibrate the relationship between the
cutoff in the b-Ny distribution and the thermal parameters (T, y, Ap) governing the
IGM. The Ly« forest of both the data and the simulations are decomposed into individ-
ual absorption lines using the Voigt profile fitting algorithm VPFIT (Carswell & Webb
2014), and we adopt a forward-modeling approach whereby the same algorithms are
self-consistently applied to both data and simulations.

This chapter is structured as follows (see Figure 2.1). We introduce our dataset, Voigt-
profile, and cutoff fitting procedure and resulting probability density function (PDF)s
p (bo,T)in§ 2.1. An overview of our hydrodynamic simulations, with known parameters
Tp, y and pressure scale Ap, as well how we measure by and y from them is described in
§ 2.2. In this section we also introduce the THERMAL (Thermal History and Evolution in
Reionization Models of Absorption Lines) suite. In § 2.3 we discuss how we calibrate our
method, i.e. how we relate by to Ty and I' to y, by applying the same fitting procedures
to simulated sightlines. Our final result, a Monte Carlo combination of the calibration
values p(x), p(D, C) and the cutoff measurements p (bg, I'), is a measurement of the
evolution of the thermal state p(Tp, y) of the IGM at 2 < z < 3.4. It is presented and
discussed in § 2.4. We summarize our results in § 2.5.

2.1. Data Processing

2.1.1. QSO Sample

For this study, we used a sample of 75 publicly available QSO spectra with SNR better
than 20 per 6 kms™! bin and resolution varying between FWHM = 3.1 and 6.3 km s~
with a typical value around 6 km s~!. This ensures that the Ly forest is resolved and
that we can detect lines with Nyg; =~ 10'2% cm™2 at the 30 level (Herbert-Fort et al.
2006). Part of the sample consists of QSO spectra from the Keck Observatory Database
of Ionized Absorbers toward QSOs (KODIAQ) sample (Lehner et al. 2014; O’Meara et al.
2016, 2017). The other spectra were acquired with the UVES instrument (Dekker et al.
2000) at the Very Large Telescope (Dall’Aglio et al. 2008).

The KODIAQ sample used in this work consists of 36 QSO sightlines chosen from
DR1 and DR2. These QSOs were observed between 1995 and 2012 using the HIRES
(High Resolution Echelle Spectrometer: Vogt et al. 1994) instrument on the Keck-I
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telescope. All the spectra were homogeneously reduced and continuum-fitted by the
KODIAQ team using the HIRedux code'. Multiple exposures of the same spectra were
co-added in order to increase the SNR. The detailed reduction steps are described in
O’Meara et al. (2015).

The UVES spectra consist of 38 sightlines from the ESO archive. These objects
were chosen to have complete, or nearly complete, Ly« forest coverage and at least 10
exposures each. The data were reduced by Dall’Aglio et al. (2008) using the MIDAS
environment ECHELLE/UVES and procedures described in Kim et al. (2004). Each
frame was bias- and background-subtracted. The Echelle spectra were extracted order
by order assuming a Gaussian profile along the spatial direction. The final spectra have
very high SNR per pixel > 40 and a resolution of 6 kms~! in the Ly« forest region
after co-adding. Continua were fitted by Dall’Aglio et al. (2008) using a cubic-spline
interpolation method. We used 38 spectra from the 40 available in this sample. One
characteristic of the UVES pipeline is that the estimated errors at flux values close to
zero are underestimated by a factor of roughly two (Carswell et al. 2014). Therefore,
Voigt profile fitting algorithms will struggle to achieve a satisfactory y? for these regions.
To compensate for this, we used a dedicated tool implemented in RDGEN? (Carswell
et al. 2014), a front- and back-end program for VPFIT. This tool multiplies the error
of each pixel with a value that is 1 if the corresponding normalized flux is 1 and 2 if
the normalized flux is 0. For this purpose, we used the default parameterization from
RDGEN.

The region of the spectra used for fitting lies between 1050 and 1180 A rest frame
inside the Ly« forest. This region was chosen to avoid proximity effects, i.e. regions
dominated by the local QSO radiation rather than the metagalactic UVB. This choice is
consistent with studies by Palanque-Delabrouille et al. (2013) and Walther et al. (2019).

For a complete list of the spectra analyzed in this work and the essential information
about them, refer to Tables 2.1 and 2.2. The chunks of spectra used are plotted in Figure
2.2 and colored based on the dataset they belong to. Our analysis of the thermal state of
the IGM will be done in redshift bins of size 6z = 0.2, indicated with vertical blue lines.
We discuss the effects of continuum misplacement in our data in the appendix A.1.

2.1.2. Voigt-Profile Fitting

Voigt profiles are fitted to our data using VPFIT version 10.2° (Carswell & Webb 2014).
We wrote a fully automated set of wrapper routines that prepares the spectra for the
fitting procedure and controls VPF IT with the help of the front-end/back-end programs

'HIRedux: http://www.ucolick.org/~xavier/HIRedux/
’RDGEN:http://www.ast.cam.ac.uk/~rfc/rdgen.html
SVPFIT: http://www.ast.cam.ac.uk/~rfc/vpfit.html
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Table 2.1. QSO spectra used in this work. The signal-to-noise value
refers to the median value inside the Ly« forest.

Object ID Zgso SNR/6 kms~! Sample
HE1341-1020 2.137 58 UVES
Q0122-380 2.192 56 UVES
J122824+312837 2.2 87 KODIAQ
J110610+640009 2.203 59 KODIAQ
PKS1448-232 2.222 57 UVES
PKS0237-23 2.224 102 UVES
HE0001-2340 2.278 66 UVES
J162645+642655 2.32 104 KODIAQ
J141906+592312 2.321 37 KODIAQ
Q0109-3518 2.406 70 UVES
HE1122-1648 2.407 172 UVES
HE2217-2818 2.414 94 UVES
Q0329-385 2.437 58 UVES
HE1158-1843 2.459 67 UVES
J005814+011530 2.495 36 KODIAQ
J162548+264658 2.518 44 KODIAQ
J121117+042222 2.526 34 KODIAQ
J101723-204658 2.545 70 KODIAQ
Q2206-1958 2.567 75 UVES
J234628+124859 2.573 75 KODIAQ
Q1232+0815 2.575 46 UVES
HE1347-2457 2.615 62 UVES
J101155+294141 2.62 130 KODIAQ
J082107+310751 2.625 64 KODIAQ
HS1140+2711 2.628 89 UVES
J121930+494052 2.633 90 KODIAQ
J143500+535953 2.635 65 KODIAQ
Q0453-423 2.663 78 UVES
J144453+291905 2.669 134 KODIAQ
PKS0329-255 2.705 48 UVES
J081240+320808 2.712 49 KODIAQ
J014516-094517A 2.73 77 KODIAQ
J170100+641209 2.735 82 KODIAQ
Q1151+068 2.758 49 UVES
Q0002-422 2.768 75 UVES
HE0151-4326 2.787 98 UVES
Q0913+0715 2.788 54 UVES

J155152+191104 2.83 30 KODIAQ
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Table 2.2. QSO spectra used in this work (continued).

Object ID Zgso SNR/6 kms ™1 Sample
Q1409+095 2.843 25 UVES
Q0119+1432 2.87 33 KODIAQ
J012156+144820 2.87 55 KODIAQ
Q0805+046 2.877 27 KODIAQ
HE2347-4342 2.886 152 UVES
J143316+313126 2.94 54 KODIAQ
J134544+262506 2.941 35 KODIAQ
Q1223+178 2.955 33 UVES
Q0216+08 2.996 37 UVES
HE2243-6031 3.011 119 UVES
CTQ247 3.026 69 UVES
J073621+651313 3.038 26 KODIAQ
J194455+770552 3.051 30 KODIAQ
HE0940-1050 3.089 70 UVES
J120917+113830 3.105 31 KODIAQ
Q0420-388 3.12 116 UVES
CTQ460 3.141 41 UVES
J114308+113830 3.146 32 KODIAQ
J102009+104002 3.168 36 KODIAQ
02139-4434 3.208 31 UVES
Q0347-3819 3.229 84 UVES
J1201+0116 3.233 30 KODIAQ
J080117+521034 3.236 43 KODIAQ
PKS2126-158 3.285 64 UVES
Q1209+0919 3.291 30 UVES
J095852+120245 3.298 45 KODIAQ
J025905+001126 3.365 26 KODIAQ
Q2355+0108 3.4 58 KODIAQ
J173352+540030 3.425 57 KODIAQ
J144516+095836 3.53 25 KODIAQ
J142438+225600 3.63 29 KODIAQ
Q0055-269 3.665 76 UVES
Q1249-0159 3.668 70 UVES
Q1621-0042 3.708 78 UVES
Q1317-0507 3.719 42 UVES
PKS2000-330 3.786 151 UVES

J193957-100241 3.787 66 KODIAQ
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Figure 2.2. KODIAQ and UVES Ly« forest sightlines used in this work. The sample is described
in § 2.1. Sightlines from the KODIAQ sample are marked in red, and UVES sightlines
are marked in blue. The corresponding QSO redshifts are marked as colored points.
The DLAs and bad regions that were excluded are shown as gaps. The blue vertical
lines show the bins that will be used for the cutoff fitting analysis. Gray regions are
not used because of lower coverage. Figure credit: Hiss et al. (2018).

RDGEN and AUTOVPIN. These are used to generate initial guesses for the absorption-
line parameters, output tables and determine which segments to fit separately. For
each segment VPFIT computes the best fitting superposition of absorption profiles
that describes a given spectrum. Each profile is described by three parameters: line
redshift z,ps, Doppler parameter b, and column density Nij1 corresponding to the desired
absorbing gas transition (here Ly-&). The parameter space chosen for VPFIT to look
for lines was set to go from 1 to 300 km s~! in b and 11.5 to 16.0 in log(Ng/cm™2). Then
VPFIT varies these parameters and searches for a solution that minimizes the y?2. It
will add components until the fit converges or no longer improves. In order to minimize
computational time, this fitting procedure is done in different segments of the spectra at
a time. The front-end programs allow us to automatically find regions that are between
sections of the spectra where the flux meets the continuum (unabsorbed regions) and
fit them separately. For each spectrum VPFIT outputs a list of line parameters.

Damped Ly« systems (DLAs), i.e. Lya absorbers with Ny 2 102%cm™2, were identi-
fied by eye and are excluded from our analysis. The DLAs were chosen to enclose a
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Figure 2.3. Voigt profile fitting results for the Lya forest of the UVES QSO HE1158-1843 at z =~ 2.46. Top panel: the measured

spectrum (black line) is well described by the best fitting superposition of Voigt profiles estimated by VPFIT (blue
line). The position of individual lines is shown by gray rugs in the top part of the panel. In the bottom panel, we plot
the corresponding y = (Fspec — Fit)/0F;, as a measure for the performance of the fit. Bottom Panel: zoom in of the
area of the spectrum marked in red in the top panel.
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region between the two points where the damping wings reach the QSO continuum
within the flux error. Additionally, regions larger than 30 pixels previously masked in
the data (bad pixels, gaps, etc.) were also excluded. We simply cut out the regions in
which these rejections apply and feed the usable data segments into VPFIT separately.

In order to avoid chopping our spectra into too many small segments, small regions
(< 30 pixels) that were previously masked in the data were cubically interpolated. These
pixels were given a flux error of a 100 times the continuum, so the Voigt profile fitting
procedure is not influenced.

One complication is that VPFIT often has difficulty fitting the boundaries of spectra.
To solve this problem, we artificially enlarge the spectral chunks. For this purpose,
we append a mirrored version of the first quarter of the spectra to the beginning of it.
We do the same with the last quarter to the end of the spectrum. These regions and
the absorption profiles within them are later ignored. This method ensures that the
unreliable fits at the boundaries happen in an artificial environment that is discarded.
The disadvantage is that the spectrum that is Voigt profile fitted is 50% longer than the
original and will therefore need more time to be processed.

An example of the Voigt profile fitted spectrum of a UVES sightline is shown in
Figure 2.3.

2.1.3. The b-Ny, Distribution

The output of VPFIT can be used to generate a log b vs. log(Ny1/cm™2) diagram (b-
Ny distribution). Note that for a comparatively small number of lines, VPFIT might
output error estimates that are zero, nan or “******”, When generating diagrams, we
exclude these lines, because they normally appear in blended regions and noisy parts
of the spectra.

In order to illustrate the effect of SNR on the b-Nyy1 distribution, we generate 2 b-Ny1
distributions by Voigt profile fitting mock Lya forest absorption spectra at z = 2.4 with
different SNR applied to them. For this simple exercise, we used mock Ly« forest spectra
based on collisionless DM only simulations®. The resulting distributions are shown in
Figure 2.4. In one case (red) we added a constant and extremely high SNR/6 kms™! of
280, while in the other case (black) a SNR based on the data at z = 2.4 (with a median
of SNR/6 kms~'=64) was applied. Some of the features are identical, especially the
existence and position of a cutoff at log Nyr/cm™2 > 12.5 and log b/(kms™!) ~ 1.2.
The main difference is that the high SNR distribution is more complete toward low
log Nig1 and high log b values. At column densities log Nyjj/cm™2 > 12.5 and Doppler

* These simulations use an updated version of the TreePM code from White et al. (2002), similar to Rorai
et al. (2013, 2017b), that evolves N, = 20483 collisionless, equal-mass particles (Mp =25 x 10°Mo)
in a periodic cube of side length Lp,x = 30 Mpc/h, adopting a Planck Collaboration et al. (2014)
cosmology.
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Figure 2.4. Simulated b-Nyy distributions at z = 2.4 with different SNR applied to lines of sight.
The b-Ny1 distributions were generated by Voigt profile fitting the same 80 mock
skewers from collisionless simulations and adding noise and resolution effects. The
b-Ny distribution based on high SNR skewers (red) has a higher number of fitted
lines than the distribution created based on the SNR distribution of our data at
this redshift (black). The high SNR distribution is more complete at low log Ny
and high logb. The blue box shows the region chosen for our further analysis.
The completeness is comparable within this box. The thermal parameters used in
these mocks are y = 1.5, log Tp/K = 4.04 and the smoothing length is Ap = 47 kpc.
Figure credit: Hiss et al. (2018).

Therefore, for the cutoff fitting procedure, we will only use the part of the b-Ny;
distribution with log Nii/em™2 > 12.5, which is the convention adopted in Schaye
et al. (2000) and Rudie et al. (2012a). We also want to avoid saturated absorbers, i.e.
Nup > 10'5em™2, to make sure that we are using only well-constrained column
densities. Lines with b < 8 kms~! are excluded, because these are most likely metal-
line contaminants or VPFIT artifacts. Lines with b > 100 km s~! are excluded as well,
because the turbulent-broadening component dominates over thermal broadening for
such broad lines. This is the same convention used in Rudie et al. (2012a) and is shown
as a blue box.

Additionally, we decided, based on Schaye et al. (1999), to exclude points that have
relative errors worse than 50% in b or Ny1. This is done to avoid using weakly con-

parameters 8kms™' < b < 100kms~! both distributions are similarly populated.
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strained absorption line parameters in the procedure, as they lie mostly in the part
of the b-Ny distribution that is affected by the SNR effects described in Figure 2.4 at
high b and low Ny Lines with b < 11kms™, i.e. below the low-b envelope of the
distribution, are generally not excluded by this procedure.

2.1.4. Metal Masking

It is well known that narrow absorption lines arising from ionic metal-line transitions
contaminate the Lya forest and will particularly impact the lower b < 10kms™!
region of the b-Nyj1 distribution if treated as Lya absorption, thus possibly making the
determination of the position of the lower envelope of the b- Ny distribution ambiguous.
To address this issue, we remove lines from our sample that are potentially of metal
origin.

However, narrow absorption lines are not necessarily metal-line contaminants. We
visually inspected the absorption lines with b < 10kms~! in every sightline and found
that although many could be identified as metal lines wrongly fit as Lya absorption, a
comparable number are simply narrow components that VPFIT adds to obtain the best
fit to complex Lya absorption features. The latter are a property of the fitting procedure
and should not be excluded, as they are present in both data and the simulated spectra
that we use to conduct our analysis®. In order to diminish the problem of metal-line
contamination we remove metal-line contaminants combining automated and visual
identification methods, which we describe in detail below.

Metals are typically associated with strong HI absorption, or they can be identified
via associations with other ionic metal line transitions. Therefore, we identified DLAs
based on the damping wings of the absorption profiles and determined their redshifts
with the help of associated metal absorption redward of the Lya emission peak of the
QSO in question. The redshifts of other strong metal-absorption systems not associated
with a DLA within the data coverage or significantly shifted from a DLA are determined
by searching for typical doublet absorption systems (mostly SiIV, CIV, Mg II and AlIII)
redward of the QSO’s Lya emission peak. In both cases, the doublets are identified
based on their characteristic AA (see Table 2.3) and line ratios.

Additionally, we selected lines with Doppler parameters b < 11 km s % (Ngr /
101295¢m=2)(1-15-1) ip the b-Ny distributions (red line in Figure 2.5) and traced them
back to their positions in the spectra. This relation was chosen based on visual inspection
of the b-Ny distributions at all redshift bins and chosen to lie underneath the lower
envelope of the full dataset. We checked wether we could find a match for different
doublet ionic transitions within the Lya forest for these lines (typically SiIV, CIV

>For a discussion about how to circumvent the ambiguities associated with line deblending, see Mc-
Donald et al. (2001).
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Table 2.3. List of masked metal transitions.

Absorber  Aest/A  Absorber  Apest/A

oVvr? 1031.9261 SiIv? 1402.770
Cl 1036.3367 Sill 1526.7066
OVI 1037.6167 CIv? 1548.195
NI 1083.990 CIve 1550.770
Felll 1122.526 Fell 1608.4511
Fell 1144.9379 Alll 1670.7874
Sill 1190.4158 AlTII 1854.7164
Sill 1193.2897 AlTIl 1862.7895
NI 1200.7098 Fell 2344.214

Sillr® 1206.500 Fell 2374.4612
NV 1238.821 Fell 2382.765
NV 1242.804 Fell 2586.6500

Silr* 1260.4221 Fell 2600.1729
Ol 1302.1685 Mgll 2796.352
Sill 1304.3702 Mgll 2803.531
cll 1334.5323 Mgl 2852.9642
cm 1335.7077 Cal 3934.777
SiIva 1393.755 Cal 3969.591

aStrongest transitions. The technique based on
high density Lya systems filters only for these
transitions.

and MgII) by testing for the AA and line ratios. We then confirmed them by finding
corresponding absorption of other metals redward of the Ly emission peak of the QSOs
at the same redshift. We then tested if the remaining lines below the lower envelope of
the b-Nyj1 distribution were any of the metal transitions listed in Table 2.3 by checking
if other metal transitions and Ly« absorption appear at the same redshift. The redshifts
of systems positively identified as a metal-line absorption with this method are stored.
Candidate metal-line absorbers only identified via a single metal feature or a doubtful
doublet feature, i.e. with one of the components possibly within a superposition of
absorption features, were not considered as secure metal identification and thus are
not masked. Given that it targets the absorbers found during the Voigt profile fitting
procedure, this method has the advantage that it allows us to identify metal absorbers
within the Lya forest region.
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To further refine our metal-line search, we used a semiautomated procedure to
identify high column density (Nj;/cm™2 ~15) HI absorbers in our sample,® as these
might also be associated with strong metal absorption. This algorithm identifies groups
of pixels in a spectrum that have flux at the relative positions of Lya, f, y and higher
orders (if available) within a 1o threshold of zero. The detected systems are then visually
compared to theoretical line profiles of absorbers with log(Ngr/cm™2) = 15, 16, 17
in Lya and higher transitions up to Lyy. If the absorption profile resembles that of a
strong absorber, the redshift of the absorption system is saved. If the absorption was
stronger than the log(Ngy /em™2) = 15 profile, then associated metals were masked (not
the HI absorption).

Once we have the redshifts of the metal-absorption systems, we create a mask based
on the relative wavelength positions of the metal transitions listed in Table 2.3. All
listed transitions are used for generating masks, except for the systems identified with
the automated method, i.e. the ones associated with log(Ny/ cm_2) > 15. In this case,
we opted for a reduced list of strong ionic transitions (indicated in Table 2.3). In case
the position of any line from the VPFIT output falls within +30kms~! of a potential
metal line, it is removed from the line list. Additionally, Galactic Call (3968, 3933A)
absorption was masked with a +150 km s~ window.

Figure 2.5 shows normalized contours for all lines rejected using the narrow-line
rejection method described above (gray contour lines) and the lines that were kept (red
filled contours) in our sample. We also show the fraction of points rejected in different
regions of the b-Ny distribution. Our metal line filtering approach will inevitably
also filter out lines that are genuine Lya absorption because of the window size of
30 kms~! used in the narrow-line rejection, removing 24% of the absorbers that are
not narrow. This effect is visible in the overlap of rejected and accepted absorbers at
logb > 11 km s~1. Nevertheless, we identified and removed 65% of all absorbers in our
dataset that are likely to be metal-line contamination within our cutoff fitting range.

2.1.5. Narrow-Line Rejection

Even after a careful metal-line masking procedure, many unidentified narrow lines still
remain in our line lists. These are narrow lines in blends and unidentified metal lines.

One option to avoid these lines is by simultaneously fitting absorption profiles in
the Lyp (or higher transitions) forest, as in Rudie et al. (2012a). While this approach
may deliver cleaner b-Ny distributions, reproducing the same procedure applied to
the data on simulations is very complicated, as it requires modeling of higher-order
Lyman series absorption as well. Furthermore, the Rudie et al. (2012a) selection of lines
was not completely automated, and decisions about what lines to keep were made by

®This algorithm was written and tested by John O’Meara.
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Figure 2.5. All lines in our QSO sample divided into two groups: the ones that were rejected

using our narrow-line rejection methods (gray contour lines) and the ones that
were kept and will be used for further analysis (red filled contours). For the sake
of visibility, we plot the two clouds of points as continuous and normalized den-
sity distributions, calculated using a kernel density estimation method. The lines
correspond to five equally spaced bins in density, i.e. the 80th, 60th, 40th and 20th
percentiles of the corresponding density distributions. The blue square corresponds
to our cutoff fitting region. The solid red line broadly represents the dividing
line between the bulk of the distributions of broad and narrow lines with with
b < 11kms™! x (Ng1/10'2%cm=2)(1-15=1) The orange area illustrates the region
mostly affected by narrow lines in our cutoff fitting procedure. The fact that the red
contours have little density below the red line indicates that our metal-rejection
methods exclude most of the contamination. This happens at the cost of fraction of
the usable data, i.e. the lines in the gray contours that are not narrow. The total
(both rejected and accepted together) number of lines N within the blue square is
shown above and below the solid red line, as well as the percentage of these lines
that were rejected as possible metal absorbers. Figure credit: Hiss et al. (2018).

eye, which cannot be automatically applied to simulations (see Rudie et al. 2012b, for
more details). Therefore, in this work, we chose to use only the Ly« forest region.

Since there is no obvious way of filtering the remaining narrow lines, we need to

come up with a rejection mechanism to filter them and diminish their impact on our
cutoff fitting procedure. To account for this problem, Schaye et al. (1999) removed all
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the points in the b-Ny distribution where the best-fitting Hui-Rutledge function’ to
the b-distribution dropped below 10~* at the low-b end. In Rudie et al. (2012a), the
authors applied a more sophisticated algorithm that iteratively removes points from
the b distributions (with b < 40 kms™') in log Nij1 bins in case they are more than 2¢
away from the mean.

In this chapter, we approach this problem in a very similar way as in Rudie et al.
(2012a) Our rejection algorithm bins the points within 12.5 < log(Ny/cm™2)< 14.5
into six bins of equal size in log(Ngy/cm™2). Only points with b < 45 kms™! are ® used
for the 20 rejection process. For each of the column-density bins, we compute the mean
and the variance of b. Points below 20 of the mean are excluded. This procedure is
iterated until no points are excluded. Finally, after the last iteration, we fit a line to the
log by, values of each log(Nyr) bin. Once the position of this line is determined, we
exclude all points below it from the original sample. We have tested this algorithm for
the effect of varying the o threshold and found that the end results are consistent with
each other within the errors.

In Figure 2.6, we show a histogram with the number of absorbers in every redshift
bin of our data sample and the effects of rejections. Here we see that the 2¢ rejection
excludes a relatively small fraction of the points in the b-Ny distribution.

2.1.6. Fitting the Cutoff in the b-Nyj1 Distribution

Once we have the b-Ny distributions, we want to determine where the thermal state
sensitive cutoff is positioned. The position of the cutoff is calculated using our version
of an iterative fitting procedure first introduced by Schaye et al. (1999) and also used in
Rudie et al. (2012a). The function used for the cutoff of the b-Ny distribution is given
by

log bin = log by + (I' — 1) log(Nu1/Nrr)- (2.2)

where by is the minimal broadening value at column density Ny and I is the index of
this power-law relation.

Although the value of Ny is essentially just a normalization, as we will motivate
further in our discussion of the estimation of Ny in § 2.3.2, it is convenient to choose
it so that it corresponds to the column density of a typical absorber at the mean density

7 A one parameter function that describes the distribution of Doppler parameters b under the assumptions
that In 7 is a Gaussian random variable, where 7 is the optical depth, and that absorption lines arise
from peaks in the optical depth (Hui & Rutledge 1999).

8The cut in b < 45 kms~! was chosen to be higher than the one used in Rudie et al. (2012a), because
lower values were causing the rejection at 20 to lie too close to the estimated position of the cutoff at
some of the redshift bins. The higher cut in b increases the dispersion per bin, making our rejection
more conservative.
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Figure 2.6. Number of absorbers identified by VPFIT per redshift bin. The histogram shows
the number of lines within the cutoff fitting range after metal lines rejection and
the 20 rejection were applied. Figure credit: Hiss et al. (2018).

of the IGM. Schaye (2001) showed that an absorber corresponding to an overdensity
A = p/po with size of order of the IGM Jeans scale will have a column density

T—O.22 1 9/2
Nigp = 1013 2em2p3/2 4 (ﬂ) , (2.3)
i \ 3.4

where Ijj1 is the photoionization rate of HI (in units of 10712 s_l) and Ty is the temper-
ature of the absorbing gas in units of 10* K. We compute Niro = Nui(A = 1) at each
redshift using this eqn. and discuss how it impacts our calibration in § 2.3.2.

In our iterative cutoff fitting procedure, we fit eqn. 2.2 to points in the b-Ny distri-
bution using a least squares (LS) minimization algorithm that takes into account the
errors reported by VPFIT. Note that previous works (Schaye et al. 1999; Bolton et al.
2014; Rorai et al. 2018) have used an least absolute deviation (LD) minimization method
for fitting. For a method comparison and discussion, see § 2.4.4.

The first step of the cutoff fitting procedure is to fit eqn. 2.2 to all points that are
within 10'2%¢cm™2 < N1 < 10M%cm=2 and 8 kms™ < b < 100 kms™!. The first
iteration results in a fit that falls somewhere close to the mean of the distribution.
Then we compute the mean absolute deviation in terms of log b of all N absorbers with
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Figure 2.7. The b-Ny distributions in the redshift range 1.9 < z < 3.5 in §z = 0.2 bins
(corresponding to the sightlines in Figure 2.2). The best cutoff fits (red) and 20-
rejection (black) lines are overplotted. The shaded blue region represents the 68%
confidence region of the fits to bootstrap realizations at every column density. The
corresponding Ny is plotted as an open red point and is calculated by plugging in
the bin center redshift into eqn. 2.12. These measurements allow us to access the
evolution of by and T as a function of redshift. Figure credit: Hiss et al. (2018).
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respect to the first fit:

N
1
(I8logbl) = Z | log b; — log by (Nipi)|. (2.4)

Notice that this takes the deviations both above and below the fit into account. All the
points that have a Doppler parameter with log b > log by, + (|6 log b|) are excluded in
the next iteration. This process is repeated without the points excluded in the previous
iteration until no points are more than one absolute mean deviation above the fit, which
defines convergence. After convergence, the absorbers that are more than one mean
deviation below the last fit are excluded. The remaining points are used for the final fit.

2.1.7. Data Cutoff Fitting Results

Figure 2.7 shows the log b(z)-log Nyj1(z) distributions resulting from the Voigt profile
fitting procedure and the respective cutoff fits (red) and 20 rejection lines (black). The
values of Ny chosen for each cutoff fit are calculated using eqn. 2.12 at the central
redshift of each bin. Their values are plotted as open red circles. We determine the
uncertainty in the cutoff fit parameters via a bootstrap procedure. For this purpose,
we generate the PDF p (by, I') by bootstrapping the cutoff fitting procedure 2000 times
using random realizations of the b-Ny distribution points with replacement. This
results in a list with 2000 pairs of (bg, I'). The 68% confidence region of the bootstrap
cutoff fits is shown in light blue. For illustration, a kernel density estimation of p (bg, I)
at every redshift is shown in Figure 2.8. The anticorrelation between by and I is evident.

2.2. Hydrodynamic Simulations

In this section, we describe how we generate Ly« forest mock spectra from Nyx hydro-
dynamic simulations (Almgren et al. 2013; Lukic¢ et al. 2015) with different combinations
of the underlying thermal parameters Ty, y and Ap. We apply the exact same Voigt
profile and b-Nyy; distribution cutoff fitting algorithms as for the data in order to cali-
brate the relations between the parameters that describe the cutoff (by and I') and the
thermal parameters (Tp and y) while marginalizing over different values of the pressure
smoothing scale Ap.

The evolution of DM in Nyx is calculated by treating DM particles as self-gravitating
Lagrangian particles, while baryons are treated as an ideal gas on a uniform Cartesian
grid. Nyx uses a second-order accurate piecewise parabolic method (PPM) to solve
for the Eulerian gas dynamics equations, which accurately captures shock waves. For
more details on the numerical methods and scaling behavior tests, see Almgren et al.
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(2013) and Lukic et al. (2015). These simulations also include the physical processes
needed to model the Ly« forest. The gas is assumed to be of primordial composition,
with hydrogen and helium contributing 75% and 25% by mass. All relevant atomic
cooling processes, as well as ultraviolet (UV) photoheating, are modeled under the
assumption of ionization equilibrium. Inverse Compton cooling off the microwave
background is also taken into account. We used the updated recombination, cooling,
collision ionization, and dielectric recombination rates from Lukic et al. (2015).

As is standard in hydrodynamic simulations that model the Ly« forest forest, all cells
are assumed to be optically thin to radiation. Radiative feedback is accounted for via a
spatially uniform but time-varying UVB radiation field, input to the code as a list of
photoionization and photoheating rates that vary with redshift (e.g. Katz et al. 1992). We
have created a grid of models that explore very different thermal histories combining
different methodologies. First, we have used the approach presented in Ofiorbe et al.
(2017), which allows us to vary the timing and duration of reionization and its associated
heat injection, enabling us to simulate a diverse range of reionization histories. This
method allows us to create the HI, He I and He Il photoionization and photoheating
rates, which are inputs to the Nyx code, by volume-averaging the photoionization
and energy equations. We direct the reader to Ofiorbe et al. (2017) for the details of
this method. On top of this, we also use the methodology first introduced by Bryan &
Machacek (2000) of rescaling the photoheating rates by factor, A, as well as making the
heating depend on density according to AB (Becker et al. 2011), with B also being a free
parameter. Combining all these approaches allows us to build a large set of different
thermal histories and widely explore the thermal parameter space of Ty, y and Ap at
different redshifts.

The Thermal History and Evolution in Reionization Models of Absorption Lines
(THERMAL)’ suite consists of more than 60 Nyx hydrodynamic simulations with
different thermal histories and Lpox = 20 Mpc/h and 10243 cells based on a Planck
Collaboration et al. (2014) cosmology Q,, = 0.3192, Q5 = 0.6808, Q;, = 0.04964,
h = 0.6704, n; = 0.96, og = 0.826. As shown in Lukic et al. (2015) for a Haardt &
Madau (2012) model, simulations of this box size and larger ones result in nearly the
same distribution of column densities and Doppler parameters for the range of these
parameters used in this study. The suite also has some extra simulations with different
cosmological seeds, box size, resolution elements, and/or cosmology to provide a reliable
test bench for convergence and systematics associated with different observables. For
all simulations, we have data for every Az = 0.2 from z = 6.0 down to z = 1.6, as well
asatz =1.0, 0.5 and 0.2.

In this chapter, we use a subset of 26 simulations from the THERMAL suite that were
selected to optimize the space of the thermal parameters (described below) within the

Url: thermal. joseonorbe.com
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redshift range in which we are interested: 2.0 < z < 3.4. The thermal parameters Tj
and y are extracted from the simulations by fitting a power-law T-p relation to the
distribution of gas cells as described in Luki¢ et al. (2015). In order to determine the
pressure smoothing scale Ap, the cutoff in the power spectrum of the real-space Lya
flux Fieq is fitted. Here Fey) is the flux each position in the simulation would have
given its temperature and density but neglecting redshift space effects (see Kulkarni
et al. 2015).

2.2.1. Skewer Generation

In order to model lines of sight through the IGM, we extract a random subset of
hydrogen density skewers from our simulations that run parallel to the box axes.
These are transformed into Ly« optical depth skewers (we refer to Lukic¢ et al. 2015
for specific details about these calculations). The corresponding flux skewer F, i.e. a
transmission spectrum along the line of sight, is calculated from the optical depth using
F = exp(—A, 7). Here we introduce a scaling factor A, used for matching our lines of
sight to observed mean flux values. This rescaling of the optical depth accounts for
the lack of knowledge of the precise value of the metagalactic ionizing background
photoionization rate. To this end, we choose A, so that we match the mean flux
evolution shown in Onorbe et al. (2017), which is a fit at 0.2 < z < 5.85 based on
measurements of various authors (Fan et al. 2006; Kim et al. 2007; Faucher-Giguere et al.
2008a; Becker et al. 2013). Given the extremely high precision with which the mean flux
has been measured by these authors, we do not consider the impact of uncertainties in
the rescaling value A,. A discussion of the effects of mean flux rescaling in the models
on our results is presented in the Appendix A.2.

2.2.2. Thermal Parameter Grid

We used simulation snapshots at eight different redshifts from z = 2.0 to 3.4 in 6z = 0.2
steps, which matches the redshift distribution of our data. We then generated 150
skewers for 2.0 < z < 3.0 and 75 skewers for 3.2 < z < 3.4 for each of the 26
combinations of thermal parameters (Ty, y and Ap). Figure 2.9 shows the distribution of
thermal parameters chosen. We chose to model the thermal parameters on an irregular
grid covering the range 47kpc < Ap < 120kpc, which is well within the range of
measurements by Rorai et al. (2013, 2017b) of 40kpc < Ap < 130kpc for 2 < z < 3.6.
For this comparison, we scaled the measurements of Rorai et al. (2013, 2017b) to match

19These numbers of skewers were chosen based on the computation time needed for Voigt profile fitting
z > 3.2 mock spectra at high SNR. Adopting these numbers results in nearly the same amount of
absorbers in the b-Nyp distribution used for cutoff fitting as in our data bins from z = 2 to 2.6 and
~ 2500 absorbers from z = 2.8 to 3.4.
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Figure 2.9. Combinations of parameters Ty, y and Ap used for generating model skewers used
in the calibration process. This grid was generated at redshifts 2.0 to 3.4 in §z = 0.2
steps to match our data. The evolution of the grid with redshift reflects the thermal
history of the Nyx simulations chosen. Figure credit: Hiss et al. (2018).

Ap as defined in Kulkarni et al. (2015). The grid of parameters of the temperature-density
relation covers 0.97 < y < 1.9 and 5600 K < Tp < 25700 K.

2.2.3. Forward-modeling Noise and Resolution

To create mock spectra, we add the effects of resolution and noise, both based on our
data, to our simulated skewers. We model instrumental resolution by convolving the
simulated lines of sight with a Gaussian with FWHM = 6 km s~ which is our typical
spectral resolution, and rebinning to 3 kms™! pixels afterward. To make our mock
spectra comparable to the data, we added noise to the flux based on the error distribution
as provided by the data reduction pipelines. First, a random Ly« forest at the same
redshift interval is chosen from our QSO sample. A Gaussian PDF is constructed
based on the median and a rank-based estimate of the standard deviation of the error
distribution of the chosen data segment. Then, for every pixel i in the skewer, we draw
random errors €; from this PDF. We rescale the errors so that¢; , = VA data/ M skewer X €i,
where AA is the median wavelength distance between pixels. This accounts for the
difference in sampling between data and skewers. Finally, we add a random deviate
to the flux F; drawn from a normal distribution with ¢ = ¢; ,, which is the error bar
attributed to the flux. We do not account for metal-line contaminants in our mock
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Figure 2.10. Voigt profile fitted simulated line of sight at z = 2.4. The blue line is the Voigt
profile fitted spectrum, while the black line is the forward modeled skewer. Noise
was generated based on our data to achieve a SNR of 52 per pixel at continuum
level. The simulation used had a best-fit temperature-density relation with y=1.52,
log Tp/K = 4.07 and a pressure smoothing scale of Ap = 70 kpc. Underneath, we
plot the corresponding y = (Fspec — Fit)/0F, - Figure credit: Hiss et al. (2018).

spectra, as these are explicitly masked in our data (see § 2.1.4).

2.2.4. Voigt Profile Fitting Simulations

We apply the exact same Voigt profile fitting scheme described in § 2.1.2 to the forward-
modeled simulated skewers generated for different combinations of Tp, y and filtering
scale Ap. A Voigt profile fit of a mock spectrum is shown in Figure 2.10. We then
generate a b-Ny distribution for all our models and apply the same cutoff fitting
algorithm described in § 2.1.6. We have checked for the effect of applying the 2o
rejection algorithm (as described in § 2.1.5) to b-Ny distributions from simulated
spectra and found that, given that there are a few outliers and no metal contamination,
the effect is negligible. Therefore, we decided not to apply the 20 rejection algorithm
to simulated b-Nyg1 distributions.

In Figures 2.11 and 2.12, we compare the b-Ny distributions and the respective cutoff
fits of the observational data (with metal lines excluded; see section 2.1.4) and mock
spectra at all redshift bins. In both data and simulations, a cutoff in the distribution
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Figure 2.11. Comparison of b-Ny distributions and cutoff fits for the redshift bins z = 2, 2.2, 2.4 and 2.6. At each redshift, our
data are shown in the left panel, while simulations are shown in the right panel. The simulated distributions shown are
the ones that have Tj and y closest to our final results (introduced in § 2.4). The best cutoff fits (red) and 20 rejection
(black dashed, data only) lines are overplotted. The light blue region represents the 68% confidence region of the fits to
bootstrap realizations at every Nyp. The value of Ny (z) is plotted as an open red circle (Nyy is motivated in § 2.3.2).
The cutoff fitting algorithm responds similarly to data and models once the contamination in the data is removed
using the 20 rejection algorithm. The remaining contamination in the data is still more severe than in the models.
This affects how the cutoff fitting procedure reacts to different bootstrap realizations.
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is evident. We also overplot the best-fit cutoff (red) and the 68% confidence regions
(light blue) determined by bootstrapped fits, as described in § 2.1.7. To illustrate the
similarities of the data and models, the model shown at each redshift is one that has T
and y closest to our final measurement presented in § 2.4.

The main difference is that the b-Nygg distribution of the data exhibits more lines
underneath the cutoff, i.e. in the low-b and low-Nyy; part of the panels in Figures 2.11
and 2.12. As the SNR distribution is comparable in both diagrams, as well as the amount
of blended absorption systems, we conclude that, if the model assumptions are right,
these are most likely metal lines wrongly identified as Lya absorption lines. Most of
these narrow lines are excluded using the 20 rejection described in § 2.1.5, as indicated
by the black dashed lines in the left panels of Figures 2.11 and 2.12. This leads to the
conclusion that we are able to generate b-Ny1 distributions from our simulations that
are similar to those retrieved from data in terms of the cutoff.

2.3. Calibration of the Cutoff Measurements

In this section, we want to use our simulations to quantify how our cutoff observables
by and T are related to the thermal parameters Ty and y. Once this calibration is known,
it can be applied to our data and, under the assumption that simulated and measured
b-Ny distributions are similar, we can retrieve Ty and y from the data.

2.3.1. Formalism

To motivate this calibration, we start with the temperature-density relation (Hui &
Gnedin 1997; McQuinn & Upton Sanderbeck 2016), which states that the temperature
distribution as a function of gas density is set by the temperature at mean density
To = T(po) and the index y:

log T =log Tp + (y — 1) log(p/po) (2.5)

where y adjusts the contrast level of how much overdensities are hotter/cooler than
underdensities.

In order to construct a relation between by and Ty as well as between I" and y we
follow the Ansatz presented by Schaye (2001). It states that the overdensity (p/pp) and
the overdensity in terms of the column density (Ny1/Nmio), where N is the column
density corresponding to the mean density pg, are connected via a power law

log(p/po) = A+ Blog(Nu1/Nu1o)- (2.6)

Furthermore, for absorbers along the cutoff for which turbulent line broadening is neg-
ligible, the line broadening is purely thermal, resulting in power-law relation between
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b, and T
logT = C 4 Dlog by, (2.7)

where by, is the thermal Doppler broadening. Combining eqns. (2.5)-(2.6) and (2.7)
results in a power-law relation between by}, and Nyy (eqn. 2.2), which is the functional
form that we fit to the cutoff of the b-Ny distribution. The coefficients in eqn. 2.2 can
be written as

log by = %(log To—-CH+A(y - 1)) (2.8)
(C-1)= -1 9)

Eqn. 2.2 represents the line of minimal broadening at a given column density Ny
(therefore by},), because absorbers in this relation are strictly thermally broadened. If
the normalization constant Ny is chosen so that it represents the column density
value of a cloud with mean density, then A = 0 (see eqn. 2.6), i.e. the dependency on y
disappears from log by in eqn. 2.8. Taking this into account and redefining k = % we

can rewrite these equations as:
log To = Dlog by + C (2.10)

y-1)=xT-1) (2.11)

We can calibrate these relations by fitting the cutoff of mock datasets extracted from
our simulations in combination with the same cutoff fitting algorithm we applied to
the data. This approach has the advantage that it does not require the assumption
that gas is only thermally broadened. Thus, we can account for the effects of pressure
smoothing and thermal broadening on the position of the cutoff in a generalized way.

2.3.2. Estimation of Ny

The motivation for normalizing the Ny values with Ny, is that it simplifies the
calibration between the b-Ny relation and the T-p relation to be a one-to-one mapping
between by-Ty and y — I (equations (2.10) and (2.11)), with the former governed by two
parameters (C, D) and the latter governed by a single parameter x. In other words, any
y dependency is removed from eqn. 2.10.

However, in general, the mapping between Lya optical depth and density, and hence
between N1 and density, depends on the thermal parameters and the metagalactic
photoionization rate Iy;. This means that in principle, N1 =Ny (I, To, y), which
can be seen directly from eqn. 2.3, as the temperature is a function of Ty and y. This
would require determining Ny for every single thermal model in order to calibrate
the simple relations of eqns. 2.10 and 2.11. Luckily, eqn. 2.3 illustrates that the thermal
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Figure 2.13. Values of Ny (z) from our simulations. The black points are calculated based on
the mean flux correction from Becker et al. (2011) applied to our skewers using
eqn. 2.3. The error bars reflect the variance in the mean flux rescaling value (i.e,
the strength of the UVB) and Tj in the 26 models used in this work. The blue line
is a linear fit to the black points, which will be used for estimating Ny (z) in this
chapter. For comparison, we show Nyj(z = 2.4) from Bolton et al. (2014) from
hydrodynamic simulations (red square). Figure credit: Hiss et al. (2018).

parameter dependency is quite weak, scaling as T~"-?2. Instead, the primary dependency
is on Iy1. Furthermore, because one always adjusts the mean UVB to give the same
mean flux for different thermal models, the variation of Nyj1 with thermal parameters
is even further reduced. We will explicitly show that eqn. 2.3 holds in our simulations
in the appendix A 4.

The approach that was used in Rudie et al. (2012a) to compute N1 was to adopt a
fixed value of 111 and compute Ny analytically, i.e. Nu1o = Ngi(A = 1). Bolton et al.
(2014) instead adopted the average value of Ny associated with gas at mean density in
their simulations. In this chapter, we compute Ny o analytically using eqn. 2.3 evaluated
at mean density, i.e. A = 1, for the parameters Iy and Ty from our simulations. Note
that we use the effective UVB Iyy1 = Iiy1sim/Ar, because our simulations were rescaled
to give the correct mean flux at a given redshift (see section 2.2.1). Figure 2.13 shows the
average and 1o range of our Ny values over all of our thermal models as a function
of redshift. This confirms that the variation of Nyt over the different thermal models
is small, as also argued by Bolton et al. (2014).

Finally, we applied a fit to the mean values of Ny over the 26 different simulations,
taking the standard deviation as an estimate for the error. The best-fit linear function
has the form

log(Niro/em™2)(z) = a(1 +z) + ¢ (2.12)

with a = 0.6225 and ¢ = 11.1068. Throughout this chapter, we will use this function to
compute Ny values at fixed redshifts.
Our best-fit value of Ny at z = 2.4, Ny = 101322 ¢m™2, is inconsistent with the
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Figure 2.14. The two parameters controlling the relation between column density and density
in the IGM (see eqn. 2.3), and therefore the column density at mean density
Nu1,0. Left: Comparison of the value of Iy at each redshift for the simulations
used in our thermal grid to models (Haardt & Madau 2012; Puchwein et al. 2019)
and measurement by Becker & Bolton (2013). The value of Ij; used in Bolton
et al. (2014) is shown as a red square. The value chosen in Bolton et al. (2014) is
significantly higher than expected and this discrepancy is driving the difference
in Ny we have with Bolton et al. (2014). Right: Comparison of the value of
Tp at each redshift for the simulations used in our thermal grid to Ty from the
simulation in Bolton et al. (2014). This panel illustrates that the values of Ty are
comparable and therefore not driving the difference we see in Ny 0.

value measured by Bolton et al. (2014) Ny = 101295 ¢cm™2. This is, see Figure 2.14,
presumably because of the high values of I they needed to match the opacity mea-
surements by Becker & Bolton (2013). Part of this possible discrepancy could be due
to the lower temperature in Bolton et al. (2014), but the dependency of Nyp on Ty is
too small to drive this difference. While the Bolton et al. (2014) simulations require a
value of Tiy;/10712s71 = 1.86 to match Ny to the optical depth weighted density using
eqn. 2.3 (this values were derived from their Figure 1), we use the rescaled values of
our simulations, which are consistent with Becker & Bolton (2013) to directly calculate
Nu1,0. This difference of ~ 0.3 dex will certainly lead to inconsistent values of by, but
since the calibration process is carried out using the same values of Ny for both the
data and simulations, the calibration will cancel out differences due to Nyro when
dealing with Tj as long as the scatter due to y dependency in eqn. 2.10 remains small
compared to our statistical error in bg. We further discuss this in § 2.4.3 when we
compare our final measurements to Bolton et al. (2014).
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Figure 2.15. Calibration of the log by vs. log Ty relation. Each point corresponds to a simulated
b-Ny1 distribution. The points are colored based on their y value. The green lines
are the best two-parameter fits to the points. The blue dashed lines represent
the case when the value of by is due to pure thermal broadening. The scatter is
due to unmodeled Ap effects, as well as deviations due to y-dependency of this
relation when Ny does not exactly correspond to the mean density. At redshift
z = 2.4 we show the line corresponding to the calibration carried out by Bolton
et al. (2014) using hydrodynamic simulations (black dashed). Figure credit: Hiss
et al. (2018).

2.3.3. Calibration Using Simulations

In order to generate the calibration between by-Tp and I'-y we ran our cutoff fitting
algorithm on simulated b-Ny1 distributions, each constructed from 100 mock spectra
drawn from all of our 26 thermal models at each redshift. The results are shown in
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Figure 2.16. Calibration of the (I'—1) vs. (y —1) relation. Each point corresponds to a simulated
b-Ny distribution. The points are colored based on their Ty value. The green lines
represent the best one-parameter fits to the points. This calibration seems to be
independent of the corresponding Ty and Ap values. At redshift z = 2.4 we show
the line corresponding to the calibration carried out by Bolton et al. (2014) using
hydrodynamic simulations (black dashed). Figure credit: Hiss et al. (2018).

Figures 2.15 and 2.16, respectively. There we see the simulation input values of Ty
and (y — 1) for our 26 thermal models plotted against the values of by and (I' — 1)
extracted from cutoff fits to each b-Ny distribution. Each panel corresponds to a
different redshift, which allows us to capture the evolution of the calibration. The green
lines are the fits using eqns. (2.10) and (2.11) at every redshift. For comparison, we show
the calibration of Bolton et al. (2014) at z = 2.4 in black. In the log Ty-log by diagrams,
we additionally plot the case in which by arises purely due to thermal broadening, i.e.
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by = V2kgTo/mu1.

The points shown in the diagrams are the median values of by and I" from 500 random
realizations of the b-Ny1 distributions with replacement rather than the best-fit value
of the cutoff parameters of the mock b-Nyy distribution. We chose this approach for
consistency with how we treated the data, but the results are essentially insensitive to
this choice.

Our 26 models have different contributions to the thermal broadening by due to
the different values of the pressure smoothing scale Ap. Similarly, the fact that we
assumed one value of Nyt for all models with the same redshift will introduce a small
y dependency in the log Ty-log by relation. We want to include our lack of knowledge
about Ap and additional effects in the calibration by quantifying the amount of scatter
that they add into the calibration relations. This is done by simultaneously fitting
equations (2.10) and (2.11) to the same 2000 bootstrap realizations of the points in the
log Ty-log by and (y — 1)-(I' — 1) diagrams with replacement. The best-fit values for
every bootstrap realization are stored, giving us the approximated PDFs p(D, C) and
p(x). We will quantify to what degree systematic dependencies in our calibration affect
our final measurements in the appendix A.3.

For illustration, the calibration values as a function of redshift are shown in Figure
2.17. The error bars correspond to the 68% confidence intervals of p(x) and the marginal
distributions of p(D, C). The errors in k are small because the scatter in the (y—1)-(I'-1)
relation is only slightly driven by dependencies on Ty or Ap.

While we agree with the measurements of C, D from Bolton et al. (2014) at z = 2.4 in
terms of the marginalized distributions of C, D, their calibration values are about 2¢ off
in terms of the joint PDF p(C, D) as shown in Figure 2.18. This could be attributed to
the difference in method used for cutoff fitting (Bolton et al. 2014 uses LD minimization,
while we use a LS minimization approach for the cutoff fitting), as well as the difference
in Nyr0. The calibration constant x between (y — 1) and (I' — 1) we derived agrees
within 1o with the value reported by Bolton et al. (2014).

The impact of the calibration differences is further discussed when we compare our
To and y results to previous works in § 2.4.3.

2.4. Results

2.4.1. Evolution of Ty and y

Concerning the evolution of y, the first conclusion we can draw directly from the data
cutoff measurements shown in Figure 2.7 is that a positive (I' — 1) is preferred for all
redshift bins. This implies (see eqn. 2.11) that a positive temperature-density relation
index (y — 1) is favored at all redshifts probed. In the p (bp, I')(z = 3) panel in Figure 2.8
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Figure 2.17. Upper panels: bootstrapped fit values to the log by vs. log Ty relation. The
error bars reflect the 68% confidence levels of the marginal distributions of the
bootstrapped p(D, C) PDF at each redshift. Lower panel: bootstrapped fit values
to the (I' — 1) vs. (y — 1) relation. The error bars reflect the 68% confidence levels of
the bootstrapped p(x) PDF at each redshift. The blue lines are linear fits to guide
the eye. Figure credit: Hiss et al. (2018).

about 4% of the points in p (bg, T') are consistent with ' < 1.

Having both the cutoff measurements and the calibration in hand, we can now
estimate Tp and y. It is clear from Figure 2.8 that covariance in the cutoff fits will
lead to a similar covariance between Ty and y, and furthermore, that the scatter in our
calibration quantified in Figure 2.17 has to be incorporated into the error budget. To
include all of these effects and arrive at the joint probability distribution p(Ty, y) we
adopt a Monte Carlo approach as follows. We combine 2000 bootstrapped by and I’
pairs in p (bg, I') with every one of the 2000 points in the bootstrapped calibration PDFs
p(D, C) and p(x) from simulations using eqns. (2.10) and (2.11) at every redshift bin. The
contours of the 20002000 points in p(Tp, y)(z) estimated via kernel density estimation
at every redshift are shown in Figure 2.19. Comparison with Figure 2.8 indicates that
the shapes of the Ty-y contours are qualitatively similar to those of the by-I" contours,
which results from noise and degeneracy in fitting the cutoff. This is expected from
eqns. 2.10 and 2.11. The contours are slightly broadened by the calibration uncertainty.

-
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Note that uncertainties in Ty and y are dominated by the statistical errors of by and I'
due to the high precision of the calibration process.

The evolution of the temperature at mean density Ty and index of the temperature-
density relation y measured in this chapter is shown in Figures 2.20 and 2.21. The error
bars are calculated using the 16th and 84th percentiles of the marginal distributions
of Ty and y from p(Tp, y). The main features are that the temperature at mean density
increases from z = 3.4 to z = 2.8 (peaking at Ty =~ 20000 K), while y has its lowest
value, y = 1.12, at z = 3.0. From z = 2.8 to 2.0, Ty decreases again toward Ty ~ 10000
K, while y increases gradually toward y =~ 1.6.

2.6
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Figure 2.18. Comparison of the by-Tj calibration values with Bolton et al. (2014) at z = 2.4 in
terms of the joint distribution of C, D. The 68% confidence levels are plotted in
dark green and 95% in light green. Figure credit: Hiss et al. (2018).

We tested if the evolution of Ty/y is consistent with a peak/dip by comparing y?
distributions P( y?|dof) of fits to our measurements, where dof is the number of degrees
of freedom. For this purpose, we use a four-parameter piecewise linear function f(z)
of the form

f(z) = (2.13)

si(z—zp) +0  zZ < zpy
$2(z = zbr) + 0z 2z,

shown in light gray in Figure 2.20, that describes two linear functions parameterized
with two slopes s; and s, an offset 0 and a break redshift z},,. For comparison, we
also compute the best fits for a two-parameter linear evolution and a constant. For the
evolution of Ty, a piecewise linear function with a best-fit break at zj,, = 2.9 results
in a P(y?|dof) = 0.097 for 4 dof. The best-fit linear evolution results in P(y?|dof) =
6.5 % 1074 for 6 dof, while no evolution in Ty results in P( y%|dof) = 2.4 x 107 for 7 dof.
This provides some indication that our measurements prefer a model with a peak in
the temperature. In the case of y, a piecewise linear function with a break at z},, = 3.0
results in a P(y?|dof) = 0.12. This is only slightly better than the P(y?|dof) = 0.06
that we observe for the linear evolution model and best-fit constant y = 1.4 with
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Table 2.4. Goodness of fit for different models.

Function Param. dof  P(y?|dof) Xfe d
Constant Ty 7 2.4 x 1074 3.67
y 7 0.01 2.13

Linear Ty 6 6.5 x 1074 3.56
Y 6 0.6 1.42

Piecewise Linear Ty 4 0.097 1.30
Y 4 0.12 1.11

Fit for different model types (first column) to the evolution
of the parameters of the temperature-density relation (second
column) measured in this chapter. The goodness of the fit
is expressed as the value of the y? distribution given the
number of degrees of freedom (dof, third column), P( y?|dof)
(fourth column). Additionally, we show the reduced y? (fifth
column).

P(x?*|dof) = 0.01. This suggests that a dip in the evolution of y is slightly preferred
given the size of our error bars. A comparison of all fits, including the reduced y?, is
given in Table 2.4.

The peak in Tj is suggestive of a late-time z ~ 3 process heating the IGM. The
reionization of singly ionized helium He II (He IT — He III) by a QSO-driven metagalactic
ionizing background is the most obvious candidate that would produce such an effect.
It has also been argued that He Il reionization ends around z ~ 3 (Worseck et al. 2011,
2018), which coincides with the redshift at which our measurements of Ty appear to
peak (Upton Sanderbeck et al. 2016; Puchwein et al. 2015; Ofiorbe et al. 2017).

Additionally, if the temperature increase comes about independently of the density
of the IGM, i.e. the photoionization rate is much higher than the recombination rate
everywhere, then the IGM is driven to a temperature-density relation that is close
to isothermal (see nonequilibrium simulations in Puchwein et al. 2015). This causes
a flattening of the temperature-density relation, which corresponds to a dip in the
evolution of y. In case that the amount of heating is proportional to the neutral fraction
of the gas, e.g. high-density regions with higher recombination rates experience more
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heating, then the flattening of y is expected to be less prominent (Puchwein et al.
2015). Given that our data only slightly prefer a dip in y over a constant evolution, we
cannot clearly disentangle these scenarios. Furthermore, the evolution of y seems to be
consistent with a constant if we apply an LD minimization method for the cutoff fitting
(see § 2.4.4).

After Hell reionization and its concomitant heat injection are complete, the IGM
is expected to cool down on a timescale of several hundred Myr (Hui & Gnedin 1997;
McQuinn & Upton Sanderbeck 2016), or Az ~ 1.0, and asymptote to a Ty and y set by
the interplay of the photoionization heating and adiabatic cooling, independent of the
details of reionization. Due to this process, the IGM is heated by photoionization and
then left to cool by cosmic expansion once most of the He Il is ionized. This physical
picture is consistent with our measured evolution of Ty and y.

2.4.2. Comparison with Models

In Figure 2.20, we compare our measurements to a semi-analytical model by Upton
Sanderbeck et al. (2016) constructed by following the photoheating history of primordial
gas (red solid line) and nonequilibrium reionization simulations by Puchwein et al. (2015).
We also compare to different thermal histories from the THERMAL suite (blue curves
from Nyx simulations; Almgren et al. 2013; Lukic¢ et al. 2015). Each Nyx simulation was
run using different UVB and applying different heat inputs to create three different
thermal histories following the method introduced in Ofiorbe et al. (2017): (1) no He II
reionization (blue solid line), (2) He II reionization ending at z = 3 with a temperature
input ATienr = 3 X 10K (blue dashed line), and (3) He II reionization ending at z = 5.5
with a temperature input ATy = 1.5 X 10*K (blue dot-dashed line).

First, we note that if He Il reionization never happened or ended at high redshift,
then the simulations suggest that Tp would be ~ 10000 K lower than our measurements
at z = 3. Furthermore, in agreement with the models, the temperature at mean density
decreases at z < 3. Our measurements suggest that Tj is higher than the Upton
Sanderbeck et al. (2016) fiducial model and Puchwein et al. (2015) nonequilibrium
simulation, with the difference that the nonequilibrium simulation peaks at higher
redshift.

The evolution of y from Upton Sanderbeck et al. (2016) shows a dip at z = 3 at
nearly the same position as our lowest measurement. The y dip in the nonequilibrium
simulation appears at higher redshifts, coinciding with the corresponding peak in Tj.
The thermal evolution of the Nyx simulation (2), with He Il reionization at z = 3, shows
a larger y at this redshift because the heating due to He II reionization in the model is
more extended and already started at higher redshift (see Ofiorbe et al. 2017 for more
details on the models and their intrinsic limitations). In summary, our measurements
of Ty are suggestive of a heating event taking place between z = 3.4 and 3.
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Figure 2.20. Evolution of y(z) and Ty(z) compared to models. The measurements come from
the marginal distributions of p(Ty, y) generated by combining all points in the
bootstrapped PDF p (by, ') from the data cutoff fits with all points in the calibra-
tion PDFs p(C, D) and p(x) using eqns. 2.10 and 2.11. The error bars are estimated
using the 16th and 84th percentiles of the marginal distributions of p(Tp, y). For
comparison, we plot three different Nyx simulations from Ofiorbe et al. (2017), a
semi-analytical model by Upton Sanderbeck et al. (2016), and a nonequilibrium
reionization simulation by Puchwein et al. (2015). A best-fit four-parameter piece-
wise linear function (described in § 2.4.1) is shown in light gray. Figure credit:
Hiss et al. (2018).

2.4.3. Comparison with Previous Work

We can directly compare our cutoff fitting results at z = 2.4 with those presented
in Rudie et al. (2012a), shown in the z = 2.4 panel of Figure 2.7. At z = 2.4, our
bootstrapped cutoff position measurement yields I' = 1.17 + 0.03, which is in good
agreement with I' = 1.156 + 0.032 measured by Rudie et al. (2012a). If we evaluate
their measurement bog = b(Nppo = 106 cm=2) = 17.56 + 0.4 kms~! at the position
of our Nypo(z = 2.4) = 101322 cm~2 while keeping their I fixed, this measurement
becomes b, = 15.32 + 0.55 km s~1. Our measurement p (bg, ') marginalized over
I' (with by = 18.681?:3;1 kms~!) is more than 3¢ higher than this value, indicating
tension between our measurements and those of Rudie et al. (2012a) in terms of by.
This discrepancy is probably due to a different implementation of the cutoff and Voigt
profile fitting algorithms used. We performed a cutoff fit our data at z = 2.4 using an
LD minimization algorithm and although it tends to lead to smaller values of by, we
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Figure 2.21. Evolution of y(z) and Ty(z), based on the marginal distributions of the p(Ty, y)
PDFs, compared to previous measurements. Figure credit: Hiss et al. (2018).

cannot reproduce this low cutoff.

The left panel of Figure 2.21 shows a comparison of our Tj evolution with previous
measurements. Our measurements of Ty are in good agreement with those of Schaye
et al. (2000). We disagree with Ricotti et al. (2000) at z > 2.4, where we tend to measure
significantly lower temperatures.

Note that our Tp measurement agrees with that of Bolton et al. (2014), who recalibrated
the cutoff measurement of Rudie et al. (2012a) at z = 2.4. The fact that we measure
inconsistent values of by should lead to inconsistent values in Ty. However, given the
difference in our calibration values D, C, this inconsistency is alleviated. Furthermore,
Bolton et al. (2014) added a systematic error contribution to their statistical uncertainty
in T due to scatter in the Nyg-overdensity relation in their simulations that led to a 0.2
dex uncertainty in Ny1o. When adopting values of Ny that are 0.2 dex above/below
the values determined in § 2.3.2 self-consistently in our simulations and data, we observe
that the calibration compensates for the choice of Ny, leading to negligible changes in
the final results. This is explicitly tested in the appendix A.5. In other words, choosing
a higher value of Ny will increase the value of by almost equally in the data and
simulations. Note that this is only true as long as the y-dependency in eqn. 2.10 remains
small. Since our uncertainty in Ty is dominated by the statistical error of by, we adopt
no systematic uncertainty term for Nyt .

Our measurements are in good agreement with the wavelet amplitude PDF measure-
ments by Garzilli et al. (2012). Comparison with wavelet decomposition measurements
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by Lidz et al. (2010) in our redshift range shows agreement at intermediate redshifts
but > 20 disagreement at z ~ 2.2 and 3.4. An analogous disagreement was observed
previously in Becker et al. 2011 (in the context of curvature measurements), but its
source remains unclear.

We show a comparison of our y values with other measurements in the literature in
the right panel of Figure 2.21. Our measurements of y agree with those of Schaye et al.
(2000) and Ricotti et al. (2000). We also observe a low values of y at redshifts around
z=23.

Our measurement of y at z ~ 2.4 agrees with that of Bolton et al. (2014). This was
expected, given the agreement with Rudie et al. (2012a) in terms of T..

= This Work (Hiss et al. 18)
Rorai et al. 18

0.6 0.8 1.0 1.2 14 1.6 1.8 2.0 2.2
logb/km/s (12.5 <logNp; < 13.5)

= This Work (Hiss et al. 18)
—— Rorai etal. 18

06 08 10 12 14 16 18 20 22
logb/km/s (13.5 < logNy; < 14.5)

Figure 2.22. Comparison of normalized log b distributions of data in Rorai et al. (2018) in the

redshift bin 2.55 < z < 2.95 and this work in the redshift bin 2.7 < z < 2.9.
Figure credit: Hiss et al. (2018).

2.4.4. Detailed Comparison with Rorai et al. (2018)

Recently, a study by Rorai et al. (2018) reported measurements of the thermal state of
the IGM in the redshift interval 2.55 < z < 2.95 that resulted in values of Ty and y
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Figure 2.23. Comparison of T and y contours in Rorai et al. (2018) and this work (LS method
in green, LD method in purple) at z = 2.8. The contours correspond to the 68%
and 95% confidence regions. Figure credit: Hiss et al. (2018).

that are only marginally consistent with our measurement at 2.7 < z < 2.9. To test
if the source of this discrepancy originates from the way in which the Voigt profile
algorithm was applied to the respective datasets, we plotted the line-width distributions
for both our line lists for two intervals of 1 dex in N1 within the cutoff fitting range.
The distributions shown in Figure 2.22 are essentially identical. Thus, any difference in
the resulting thermal parameters must originate in the cutoff fitting procedure due to
contamination, spurious lines, or differences in the calibration.

In Figure 2.23 a direct comparison of the contours of Tp and y shows that Rorai
et al. (2018) measured a multimodal joint distribution p(Ty, y) (orange) while our mea-
surement (green) recovers only the peak with the highest Ty and lowest y. The main
difference between the two methods is that we perform a LS minimization fit at each
iteration of the cutoff fitting procedure, while Rorai et al. (2018) performs an LD mini-
mization fit. Our algorithm tends to converge to the peak corresponding to high by and
low T', resulting in this difference.

For comparison we rerun our measurements, this time applying an LD minimization
fit for both our data and simulations. Due to unstable behavior of the LD minimization
method at some redshifts, we applied no 2o outlier rejection (§ 2.1.5) to our data b-Ny
distribution when applying this method. We show the resulting p(Tp, y) contours at
z = 2.8 in purple in Figure 2.23. The results of the evolution of Ty and y are shown in
Figure 2.24. Essentially, the main difference between the two methods when applied to
our data is that we see extended uncertainties at z = 2.6 and z = 2.8 that originate from
multimodal distributions p(Tj, y). Furthermore, the redshift evolution of y is consistent
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with a constant y ~ 1.4.

As in Rorai et al. (2018), when using the LD minimization method, we observe a
multimodal p(Tp, y) distribution at z = 2.8 (also at z = 2.6) in the data that results from
a multimodal p (bg, I') measurement. When dealing with simulated b-Ny distributions,
both methods lead to unimodal solutions. This opens up the question of whether
these multiple peaks in the inference of the cutoff parameters are a real feature due to
multimodality in the temperature or an artifact of the cutoff fitting procedure due to
unknown systematics in the data.

22000
20000
18000
« 16000 i i
~ 14000 ? E
12000
10000
8000
2.0 B Hissetal. 18 LS-method
T @ Hissetal. 18 LD-method
® Roraietal. 17 LD-Method
1.8
1.6 15
>
1.4 £ { i H
1.2 ;
1.0

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
Redshift

Figure 2.24. Comparison of the marginalized Ty and y in Rorai et al. (2018) (red) and this work
(blue). We also ran our procedure using an LD minimization cutoff fitting proce-
dure (black). The main difference between the methods is that the LS minimization
method used in this chapter does not show a multimodal structure at z = 2.6 and
z = 2.8. Also, the evolution of y is consistent with a constant, not showing a dip
at z = 3. Figure credit: Hiss et al. (2018).
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2.4.5. Evolution of the Temperature at Optimal Density

The temperature-density relation is traditionally normalized at mean density. However,
at different redshifts, an optical depth of ~ 1 in the Ly« forest traces different overden-
sities. Based on this, Becker et al. (2011) introduced the mean curvature statistic (|x|),
which is a probe of the thermal state of the IGM that is related to the temperature at
optimal density T(A) = T(popt/po) independent of y.

For a fair comparison of our measurements with those from Becker et al. (2011), we
apply another transformation on our measurements so we can look at the evolution of

the temperature of the IGM in terms of the temperature at the optimal density T(A). If
we rewrite the temperature-density relation in terms of T'(A),

T(A) = TyA' ™! (2.14)

we are able to combine our p(Tp, y) PDF with measurements of A by Becker et al. (2011),
which have no reported uncertainties. Plugging in all pairs of (Tp, y) from p(To,y)
into eqn. 2.14 in combination with a fixed value of A (linearly interpolated based on
Becker et al. 2011 to match our redshift bins) allows us to generate p(T(A), y) PDFs for
each redshift. This approach takes into account any covariance with respect to y in
our measurements. The resulting p(T(A), y) contours are shown in Figure 2.25. We
note that covariance between T(A) and y is diminished compared to that between T
and y (see Figure 2.19 for comparison) when taking our measurements to T(A) space.
However, note that our T(A) contours are correlated with y in most redshift bins.

Given p(T(A), y) joint distributions, we can marginalize out y and compare T(A)
directly to Becker et al. 2011 and Boera et al. 2014 (also computed using the mean
curvature method). Our 68% confidence regions for T(A) as a function of redshift
are shown in Figure 2.26. A comparison with Becker et al. (2011) is not completely
straightforward, given that the redshift bin sizes are different, and we are also linearly
interpolating their A values. Broadly speaking, we see agreement with Becker et al.
(2011) and Boera et al. (2014) at 1o level at z < 2.4, 3.0, and 3.4, as well as generally
higher temperatures at 2.4 < z < 3.2 that disagree at the > 2¢ level. Given the
method dependency (see § 2.4.4) and other systematics associated with cutoff fitting,
the difference might not be as significant as it appears, once these effects are properly
quantified. Additionally, if one included uncertainties in A, it would further alleviate
this tension. One possible effect that could be playing a role is that the curvature
statistic is sensitive to metals in the Ly« forest that do not get masked; i.e. metal
contamination leads to lower values of T(A) (Boera et al. 2014). This effect is potentially
more prominent at higher redshifts, where blending of Ly« forest lines makes it more
difficult to identify all metals. Our analysis is, in principle, less sensitive to metals given
our 20 rejection procedure adopted before cutoff fitting, but the exact source of this
discrepancy remains unclear.
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Figure 2.25. Resulting p(T(A), y) PDFs. This is the combination of our calibrated p(Ty, y) PDFs at every redshift with the measure-
ments of A by Becker et al. (2011). The 68% confidence levels are plotted in dark green and 95% in light green. The
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An overview of all quantities measured and adopted in this chapter is given in
Table 2.5. A subset of the measurements on which the distributions p (bg, T'), p(D, C),
p(x) and p(Tp,y) are based is available in machine-readable form for all redshifts
presented and can be obtained in the Zenodo repository Hiss et al. (2018)'!.

45000 4 ¢ Beckeretal. 2011

¢ Boeraetal 2014
40000 - - B This Work I
A= 569 4.39 3.35 2.62 2.02

35000 - |

S RLINY

20000 -

'y

10000 T T T T
2.0 25 3.0 3.5
Z

Figure 2.26. Comparison to Becker et al. (2011) and Boera et al. (2014) after combining our
p(Ty, y) with the Becker et al. (2011) measurements of A. We measure a hotter
IGM at higher redshifts. Figure credit: Hiss et al. (2018).

Uyrl: https://zenodo.org/record/1285569
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2.4.6. Caveats

It should be noted that there are a number of assumptions adopted in this study that
we summarize as follows.

We assume that the simulated b-Ny1 distributions are comparable to the ones ex-
tracted from the data, or in other words, that the cutoff fitting algorithm will respond
similarly in both cases. This is an especially problematic assumption, because metals
have to be rejected from our data, which are, by construction, not present in the sim-
ulated mock spectra. Therefore, we observe that the b-Ny; distributions from mock
spectra generate much more concentrated cutoff fitting bootstraps (see Figures 2.11 and
2.12). This effect increases the errors measured in by and I in the data, which dominate
the error budget of Ty and y. Furthermore, our simulations do not account for effects
such as multimodality in the temperature-density relation which could play a role,
especially at z > 2.8.

Another assumption is that the calibrations for Ty and y can be done separately, i.e.
p(D,C,x) = p(D,C)p(x). This is not necessarily true, as these parameters could be
correlated. As we calculated the calibration values on the same bootstrap samples, any
correlation is still preserved. We inspected the distributions of p(x, C) and p(x, D) and
did not find significant correlation.

In this work, we utilize a LS minimization fitting algorithm in every iteration of the
cutoff fitting process. This is a different approach than in previous works, and our final
results are sensitive to the method chosen. This aspect is further discussed in § 2.4.4 in
the context of the comparison of our work with the results of Rorai et al. (2018).

As mentioned in Schaye et al. (1999), if the reionization process has large spatial
fluctuations and the gas has not settled into one temperature-density relation (see
Compostella et al. 2013; McQuinn & Upton Sanderbeck 2016), the measurement of the
position of the cutoff will be sensitive to the gas with the lowest temperature. If this
is the case, the temperature measurements should be treated as lower limits to the
average temperature.

2.5. Summary

In this chapter, we assessed the thermal state of the IGM and its evolution in the redshift
range 2.0 < z < 3.4 using 75 high SNR and high-resolution Ly« forest spectra from the
UVES and HIRES spectrographs. We exploited the fact that absorbers that are primarily
broadened due to the thermal state of the gas have the smallest Doppler parameters,
which results in a low-b cutoff in the b- Ny distribution. We decomposed the Ly« forest
of these spectra into a collection of Voigt profiles and measured the position of this cutoff
as a function of redshift. We calibrate this procedure using 26 combinations of thermal

=
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parameters at each redshift from the THERMAL suite of hydrodynamic simulations
with different values of the IGM pressure smoothing scale. We conduct an end-to-end
analysis whereby both data and simulations are treated in a self-consistent way, and
uncertainties in both the cutoff fitting and the calibration procedure are propagated
into our analysis.

The primary results of this chapter are as follows:

1.

We see suggestive evidence for a peak in IGM temperature evolution at z =~ 2.9.
The temperature at mean density Tj increases with decreasing redshift over the
range 2.9 < z < 3.4, peaks around z =~ 2.9, and then again decreases with redshift
over the range 2.0 < z < 2.9.

. When applying our cutoff fitting procedure, the redshift evolution of y suggests

a dip around z =~ 3.0 over a linear or constant evolution model when using a
simple piecewise linear evolution model that decreases in the redshift interval
2.9 < z < 3.0 and increases in the interval 2.0 < z < 3.0.

. We observe significantly higher temperatures at mean density Tp =~ 15000 —

20000K at 2.4 < z < 3.4 than the much lower Ty =~ 6000 K predicted by models
for which He II reionization did not take place or compared to the Ty ~ 10000 K
expected if He Il reionization ended at very high redshift (z = 5.5).

In contrast to previous analyses based on the flux PDF (Bolton et al. 2008; Viel
et al. 2009), our measurements disfavor negative values of y — 1 at high statistical
significance. Assuming that the IGM follows a temperature-density relation
closely, this means that inverted temperature-density relations are unlikely at
2.0 < z < 3.4. Note that the discrepancies with flux PDF measurements can be
attributed to an upturn in temperature at low densities and whether the IGM
temperature-density relation is multiphased at low densities (Rorai et al. 2017a).

. Our measurements of Ty and y can also be phrased as measurements of T(A),

which is the quantity measured by curvature studies. We find broad agreement
with the Becker et al. (2011) and Boera et al. (2014), curvature measurements
at z < 2.4, 3.0, and 3.4, but we observe higher values of T(A) in the interval
24<z<3.2

In summary, both the suggestive peak in the redshift evolution of Ty at z ~ 2.9 and
the relatively high IGM temperatures T ~ 10000 — 20000 at 2.0 < z < 3.4 provide
evidence for a process that heated the IGM at z ~ 3 — 4. The most likely candidate
responsible for this thermal signature is He II reionization.




3. A Novel Method for Fitting the
b-Ny | distribution

You don’t feel or even see it

But I can’t help saying, my friend,

That a new change will soon happen.
And what some time ago was new, young,
Today is old,

And we all need to rejuvenate

- Belchior, Velha Roupa Nova 1976

The conventional method for measuring thermal parameters using the joint distribu-
tion of column densities and Doppler parameters (b-Ny distribution) of absorbers in
the Lya forest in a particular redshift interval relies on the measurement of the thermal
state dependent lower cutoff in this distribution (see Schaye et al. 1999; Ricotti et al.
2000; McDonald et al. 2001; Schaye et al. 2000; Rudie et al. 2012a; Bolton et al. 2014;
Garzilli et al. 2015; Rorai et al. 2018; Hiss et al. 2018; Telikova et al. 2018; Garzilli et al.
2018), set primarily by the minimal broadening associated with the temperature of the
absorbers. We explored this method extensively in Chapter 2.

Although it constitutes a powerful tool for measuring the thermal state of the gas, the
cutoft fitting technique has a series of inherent disadvantages, the main one being that
the position of the cutoft is fitted using an iterative technique which excludes absorbers
from the distribution. This means that a small number of absorbers is effectively used
for measuring the position of the cutoff. This results in a diminished sensitivity of the
method on the total number of absorbers in the dataset, once the distribution is well
populated (Schaye et al. 1999). In addition, narrow metal line absorbers, which are
difficult to completely identify and mask, can result in significant contamination around
the cutoff. These features can compromise the precision with which the cutoff can be
determined, and add systematic uncertainties which are difficult to control. Another
complication of this method, as shown in § 2.4.4 in the context of the comparison
with the results by Rorai et al. (2018), is that the choice of cutoff fitting method (i.e.
least-squares or mean-deviation minimization) can lead to significantly different Tj
and y measurements. All of these problems call for a new method for interpreting the
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information about the thermal state of the IGM encoded in the b-Ny1 distribution.

In this chapter we introduce, test, and apply a new method for constraining Ty and
Y using the b-Ny distribution. The main difference with the traditional cutoff fitting
approach is that we model the entire distribution, and thus bypass the complications
associated with quantifying the position of a lower cutoff. While other studies em-
ployed a parametric description of the full b-Ny distribution in order to carry out
measurements of the parameters of the TDR (see e.g. Ricotti et al. 2000; Telikova et al.
2018), we instead construct smooth probability density functions (PDF) of simulated
b-Ny distributions using a non-parametric approach. These PDFs can then be used as
models for conducting inference. Here we should note that all results presented in our
proof of concept concern Ty and y alone and do not marginalize over other parameters.
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Figure 3.1. Overview of this chapter.

The scope of this study is to demonstrate the capabilities of this new approach.

This chapter is divided into two parts (see Figure 3.1 !). All the tests in the first part

IFor readability, we avoided log quantities in this diagram as well as in its description in this introduction.

In actuality, we will work with log Ny, log b and log Tj
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are carried out using DM-only simulations for convenience, while the second part uses
hydrodynamic simulations. This chapter’s structure is as follows:

1. We introduce our DM-only simulations with different input Ty and y values, as
well as the mock data generation procedure in § 3.1. From these mock data we
measure b-Ny distributions { Ny, b;} by applying Voigt profile fitting. Our new
method for constructing a smooth model of the P(log Ny, log b) based on the
discrete {Nu1,, b;} using kernel density estimation is described in § 3.2. We also
discuss how it can be used to carry out inference of p(Tp, y). In § 3.3, we carry
out an inference test by measuring p(Tp, y) from many mock data realizations to
explore the robustness of this technique.

2. We apply the workflow described in the first part to observational data at z = 2
in § 3.4, with the difference that THERMAL hydrodynamic simulations are used
for generating model b-Ny distributions.

We discuss and summarize our results in § 3.5.

3.1. Simulations

In this section we describe how we generate simulated Ly« forest spectra with different
combinations of the underlying thermal parameters that govern the IGM. Specifically,
we wish to generate a grid of T, y at a fixed Ap to understand how the corresponding
shape of the b-Ny distribution changes as a function of the thermal parameters Ty, y,
i.e. P(log Nir, logb | log Ty, y). Certainly the choice of Ap has an effect on the shape
of the b-Ny distribution, as shown in Garzilli et al. (2015), meaning that one should
consider P(log Ny, log b|Ty, y, Ap). For the sake of simplifying the analysis for an initial
proof of concept, we will test our method at a fixed Ap. Note that all cosmological
length scales in this chapter are given in comoving units.

For generating our Ty, y grid, we create mock spectra using a snapshot of a DM-only
simulation at z = 2. Although it is well known that spectra based on approximations
to a full hydrodynamic simulation are limited in their ability to accurately represent
the IGM (Gnedin & Hui 1998; Meiksin & White 2001; Viel et al. 2006; Sorini et al.
2016), we opt to use DM only simulations first, as they allow us to run large numbers
of thermal models in a computationally feasible time, allowing us to generate dense
thermal grids. This approach should suffice for initial tests, as both mock data and
models are generated from the same sort of simulation and we are mainly interested
in generating a method that is sensitive to thermal-state-dependent changes in the
shape of the b-Ny distribution. We expand our analysis with the use of hydrodynamic
simulations in § 3.4, which is a necessary step when dealing with actual observational
data.
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Our simulation provides the DM density and velocity fields calculated using an
updated version of the TreePM code from White et al. (2002) that evolves N), = 20483
collisionless, equal-mass particles (M, = 2.5 X 10°My) in a periodic cube of side length
Lpox = 30 Mpch~! with a Plummer equivalent smoothing of 1.2 kpch™! (similar to Rorai
et al. 2013). The cosmology used in the simulations is consistent within 1o with the
2013 Planck release (Planck Collaboration et al. 2014) with Q = 0.691, Q,, = 0.309,
os = 0.829, Qph? = 0.022, ny = 0.961, and h = 0.678.

In order to model lines of sight through the IGM, we extract skewers from our
simulation that run parallel to one of the box axes and apply the recipe described below.
A pseudo-baryonic field is generated by smoothing the DM density and velocity fields.
This smoothing mimics the effect of Jeans pressure smoothing of the gas, i.e. accounts
for the fact that small-scale structure is suppressed in the baryonic matter distribution
owing to finite gas pressure (Gnedin & Hui 1996, 1998; Kulkarni et al. 2015). We choose
to smooth the DM field with a constant (instantaneous) filtering scale Ap. This is done
by convolving the density and velocity fields in real space with a cubic spline kernel of
the form

1-60() +0(%) <}

8 3
Kir Re) = 5 12(1- ;) lerl <t (3.1)
JZ'RP 0 P g 11’
R

with a smoothing parameter Rp. This function closely resembles a Gaussian with
o ~ Rp/3.25 in the central regions, which defines our pressure smoothing scale Ap =
Rp/3.25. Given the characteristics of our simulations, the mean interparticle separation
Al = Lpox/ Np1 /3 allows us to resolve values of Ap 2 20 kpc (Rorai et al. 2013). For all DM-
only-related models used in this chapter, we will adopt a fixed value of Ap = 73.3 kpc,
which is consistent with the measurement by Rorai et al. (2013) at z = 2.

Under the assumption that the IGM is highly ionized and in photoionization equilib-
rium, we can construct an Ly« optical depth field in real space based on the smoothed
DM density field using the fluctuating Gunn-Peterson approximation (FGPA Weinberg
et al. 1997; Croft et al. 1998)

T(X) o nHI(x) o T()—0.7p(x)2—0.7()/—1)’ (32)

where x is the particle position in real space. In order to account for the effects of thermal
broadening and peculiar velocities of the gas on the optical depth, we compute the
redshift-space optical depth by convolving the real-space optical depth with a Gaussian
profile. This is an approximation to the actual Voigt profile and is characterized by
a thermal width b = V2kgT/my1, (Where myyr is the hydrogen atom mass, k; the
Boltzmann constant, and T the temperature) and a shift from its real-space position by
the longitudinal component of the peculiar velocity. This way we can choose Ty and
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Y, i.e. impose a deterministic power-law TDR onto the simulation. This allows us to
generate mock spectra with different sets of underlying thermal parameters Ty and y.
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Figure 3.2. Grid of thermal parameters applied to a DM-only simulation at z = 2 used to
construct a model of the b- Ny distribution. The black points show the combinations
of log Ty and y imposed on our simulation (“standard grid”). The square marks the

area that will be used for inference tests. The blue points indicate where further

models were generated for testing the robustness of the method presented in this

chapter (“test grid”). Figure credit: Hiss et al. (2019).

The corresponding flux skewer F, the transmission spectrum along the line of sight, is

calculated from the optical depth 7 using F = exp(—A, 7). Here we introduce a scaling

factor A, that allows us to match our lines of sight to observed mean flux values F. The

mean flux normalization is computed for the full snapshot, i.e. the factor A, is iteratively
changed until the mean flux of the snapshot converges to a desired (measured) mean

flux. We apply that value of A, to all the spectra when generating skewers, so there is
one mean flux normalization of the whole box and sight-line-to-sight-line variations are

still present in our models. This rescaling of the optical depth accounts for our lack of
knowledge of the precise value of the metagalactic ionizing background photoionization

rate, and it is done simply to generate more realistic skewers. To this end we choose A,
so that we agree with the effective opacity teg = — In(F) at z = 2 from Faucher-Giguére
et al. (2008b), namely, z.g = 0.127.
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Figure 3.3. Left: A b-Nyy; distribution illustrated as a cloud of points generated by concatenat-
ing the VPFIT output for 6000 skewers from a DM-only simulation snapshot at
z = 2 with thermal parameters (log Ty, y) = (4.011, 1.333). This distribution con-
sists of ~ 1.5 X 10° absorbers. Right: The KDE-based PDF of the same distribution
(as described in § 3.2.1).

3.1.1. Thermal Parameter Grid

Using our simulation snapshot at z = 2, we generated 6000 skewers for each of 100
combinations of thermal parameters log Ty and y at a fixed Ap = 73.3kpc. Figure 3.2
shows the distribution of thermal parameters chosen (black points). We chose to model
the thermal parameters on a 10x 10 regular grid covering the range 3.7 < log(Tp/K) <
4.4 and 0.5 < y < 2.0, which is dense enough to sample typical uncertainties in
To and y. The number of skewers at each grid point was chosen so that we have
enough absorbers to ensure that our estimation of the shape of the b-Ny1 distribution is
converged. This is important, as we will use the absorbers in the b-Ny1 distribution to
estimate P(log Nyi, log b | log Ty, y) which we will introduce in § 3.2.1. In this chapter
we will refer to this grid as the “standard grid”

In addition, we generated 16 models between the grid points in the central region
of our grid (region marked with the square and blue points in Figure 3.2). These were
randomly chosen from a regular grid twice as fine as the standard grid, excluding the
points that coincide with it. These additional models will be used in § 3.2.3 to test the
robustness of our procedure for generating model b-Ny1 distributions, as well as our
statistical inference (see § 3.3.2). We will refer to these extra models as the “test grid.”
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3.1.2. Forward Modeling Noise and Resolution

The technique presented in the following section is based on the sensitivity of the shape
of the b-Ny distribution on the thermal state of the IGM. Therefore, it is important
that instrumental effects that can also affect the shape of the b-Nyp distribution, such
as noise and spectroscopic resolution, are properly included in the models we wish to
compare to data.

To mimic instrumental resolution, we convolve the skewers with a Gaussian with
FWHM = 6 km s~!, which is the typical resolution delivered by echelle spectrometers
(see e.g. the HIRES and UVES dataset presented in § 2.1). Further, we add Gaussian
random noise to the skewers assuming a fixed SNR of 63 per resolution element for the
purpose of choosing a value comparable to the SNR of the dataset from § 2.1 at z = 2.

We apply the exact same Voigt profile fitting scheme described in § 2.1.2 to the 6000
forward-modeled simulated skewers generated for 100 different combinations of Tp, y.
To summarize, Voigt profiles were fitted to our simulated data using VPFIT version
10.2% (Carswell & Webb 2014). We wrote a fully automated set of wrapper routines that
prepare the spectra for the fitting procedure and control VPFIT with the help of the
VPFIT front-end/back-end programs RDGEN and AUTOVPIN.

VPFIT decomposes segments of spectra into a set of Voigt profiles characterized by
three parameters each: line redshift z,,s, Doppler parameter b, and column density Ny
for the hydrogen Ly« transition. We set up VPFIT to explore the range of parameters
1 < b/kms™! <300 and 11.5 < log(Ng1/ecm™?) < 16 when fitting absorption profiles.
We chose to fit in this Ny range in order to encompass typical optically thin Ly«
absorbers ranging from low column densities (where most of the lines are comparable
to noise) to very rare high column densities. Concerning the Doppler parameter, the
chosen fitting region ranges from narrow absorbers, which are unphysical and have
broadening comparable to the UVES/HIRES resolution element, to broad absorbers that
are substantially broader than the typical absorber around the cutoff for all log Ty and y
combinations in our grid. This choice of fitting range is appropriate, as the probability
of encountering absorbers close to the edge of our fitting range drops to nearly zero at
this redshift.

VPFIT finds the best fit by varying the profile parameters and searching for a
solution that minimizes the y2. If the y? is not satisfying, then further absorption
components are added until the fit converges or no longer improves. We take into
account that VPFIT often has difficulty fitting the boundaries of spectra by artificially
increasing the length of the sight lines. For this purpose we append the first (last)
quarter of the spectra to the end (beginning) of it, therefore making the spectra longer
by 50%. This manipulation does not cause discontinuities in the flux, as the simulation
box is periodic. We later ignore absorbers within the artificially enlarged areas.

2VPFIT: http://www.ast.cam.ac.uk/~rfc/vpfit.html
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Additionally, in order to avoid using badly constrained absorber parameters, we
exclude points that have relative uncertainties worse than 50% in b or Nyy1. These lines
are rejected in order to remove absorbers that are badly constrained. As discussed in
§ 2.1.3, most of these lines arise in blended and noisy regions. Additionally, as the
log errors are proportional to the relative errors, we expect a 50% relative error to be
dlogx = In(10)-dx/x = In(10)-0.5 ~ 1.15 (x being either Ny or b). These uncertainties
are substantially larger than our Kernel Density Estimation (KDE) bandwidth used in
this study (see § 3.2.1) which additionally motivated us to to exclude these absorbers.
Finally, filtering these lines consistently in data and models should not bias our results,
as these are mostly VPFIT artifacts and will consistently arise whenever there is noise
and blending.

For every combination of log Ty and y, a b-Ny1 distribution can be generated from
all absorbers found for all skewers. One example with (log Ty, y) = (4.011,1.333) is
shown in the left panel of Figure 3.3.

3.2. Method for Emulating the Full b-Ny,
Distribution

In this section, we introduce the method used to generate PDFs of b- Ny distributions at
any location in thermal parameter space based on our grid of simulated thermal models.
For each thermal model, we perform KDE to determine P(log Ny, logb) from the
discrete absorbers identified by VPFIT. To interpolate the b- Ny distribution between
points in our parameter grid, we modified the emulation technique of Heitmann et al.
(2006) and Habib et al. (2007), initially developed for power spectrum analysis, to our
purpose. Note that this approach has also been used in the context of measurements of
the evolution of the thermal state of the IGM in Rorai et al. (2013, 2017b) and Walther
et al. (2019).

We apply principal component analysis (PCA) to decompose this set of probability
distribution maps onto a set of basis vectors, yielding a set of coefficients ®;(T, y) for
each thermal model corresponding to principal component vectors e;. We then use
Gaussian process (GP) interpolation to evaluate these coefficients at arbitrary locations
in parameter space, which, combined with the basis vectors, results in a model for
P(log Nu1, logb | log Ty, y).

Finally, we present a Bayesian method for determining the posterior distribution
of thermal parameters from an observed set of log Nij1 and logb. We refer to this
procedure of model construction and inference, based on PCA decomposition of KDE
estimates of a PDF, as the PKP method. The details of each step are discussed in what
follows.
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3.2.1. Kernel Density Estimation of the b-Ny;| Distribution’s
Probability Distribution

In the first step of the PKP approach we use KDE to construct the probability density
distribution from which points in the b-Nyy; distributions of our models were drawn.
This is achieved by treating each data point {log Ny ;, log b;} as a smooth kernel cen-
tered at the measurement positions log Ny ; and log b;. We use a Gaussian kernel of
the form

1

Ki(o-logNHp Ulogb) = 277-'0'logN Clog b X (3.3)
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P173 ) o2 ,
log N1 log b

characterized by a bandwidth (610 Ny;;» Tl0g 5) that regulates how much one wishes to
smooth a measurement in each dimension. Note that the kernel used in eqn. 3.3 assumes
no correlation between log Ny ; and log b; for a given pair. This assumption should not
significantly affect the estimated PDFs, because the single kernels overlap substantially.

With every measurement described as a smooth distribution, we can generate
an estimate for the probability density function from which a set of measurements
{log Nutj ,log bj} with j = 1, ..., N, was drawn:

N
1
P(log Ny, log b) = = > Kj(G1og Nur» Olog )- (34)
j=1

In other words, we compute P(log Ny, log b) by replacing each measurement with a
Gaussian kernel with a constant bandwidth, summing them up and normalizing the
distribution.

In this study, we compute KDEs using the package KDEMultivariate from the
statsmodels python module (Seabold & Perktold 2010). An example of this method
applied to one of our b-Ny distributions is shown in the right panel of Figure 3.3 for
one particular combination of thermal parameters (log Ty, y) = (4.011, 1.333), which
can be compared to the points in the b-Ny1 distribution determined by VPFIT in the
left panel.

We generate KDE-based P(log Ny, log b) for every thermal parameter combination
in our standard thermal grid by applying KDE to the points in the b-Ny distribution
determined by VPFIT, using a bandwidth of (010 nyyp Ologs) = (0.08,0.032) for each
dimension. We tuned our bandwidth using mock datasets in order to avoid oversmooth-
ing of P(log Ny , log b | log Ty, y), which can wash out structure in the distribution.
Additionally, oversmoothing shifts the peak of P(log Ni1,logb | log Ty, y) toward high

=
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b owing to the asymmetry of the distribution, resulting in a distribution that has its
maximum clearly shifted from the highest concentration of absorbers in the cloud of
points used to generate it. At the same time we were careful not to undersmooth the
distribution, which leads to a noisy PDF.

For comparison, a Silverman estimation of the optimal bandwidth (Silverman 1986)
for our dataset, which assumes that the underlying distribution is Gaussian, typically
yields a bandwidth of (0.1,0.04). This choice resulted in a very slight bias in our
measurements for mock data in the context of the inference test described in § 3.3.2,
indicating that this choice of bandwidth oversmoothes our distributions.

To illustrate the sensitivity of our PDF to thermal parameters, we show P(log Ny ,
log b | log Tp, y) for different log Ty and y combinations in Figure 1.8. We observe that, as
expected, most of the sensitivity of the b-Ny1 distribution with respect to the parameters
of the TDR lies in its lower b envelope. Therefore, in the limit of a measurement of Tj
and y, our approach can be interpreted as an alternative way of retrieving the cutoff
(although without many of the problems associated with iterative cutoft fitting as
discussed in § 2.4.6). Nevertheless, our method can be expanded to any changes in the
general form of the b-Nyyp distribution, provided that these are properly modeled in
the simulations. The example of Ty and y is an interesting starting point to apply our
method to, but should not be seen as its sole application. We know, for instance, that Ap
(Garzilli et al. 2015, 2018), the fraction of the gas in the warm-hot phase (Danforth et al.
2016) and galactic feedback (Viel et al. 2017) affect the shape of the b-Ny1 distribution
above the location of the cutoff. In principle, our method should be sensitive to these
parameters as well.

For better intuition about the thermal sensitivity of the b-Ny distribution we also
added Figures, constructed from the output of hydrodynamic simulations described in
§ 3.4.1, to appendix B.1. These can be be viewed as animations in the HTML version of
this manuscript.

3.2.2. Decomposition of the PDF into Principal Components

Given the nonparametric nature of KDE, there is no direct way to generate P(log Ny ,
log b | log Ty, y) for combinations of log Ty and y between points in our thermal grid
positions. For this to be possible, we have to parameterize the P(log Ny1,log b | log Ty, y)
maps. To this end, we evaluate the KDE of each b-Ny distribution on a 100 x 100
mesh in the b-Np plane and then decompose these pixelized PDFs onto a set of linear
independent principal components, thus parameterizing the KDE-based P(log Ny ,
log b | log Ty, y) with PCA coefficients and a set of basis vectors.

Specifically, we discretized the PDFs in the region 11.5 < log(Ngi/cm™?) < 16.
and 0.8 < log(b/kms™!) < 2.2), adopting a pixel size (0.04,0.014) in (log Ni1,log b),
which is a factor of 2 smaller than the bandwidth chosen for the KDE. Then, we compute
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the (natural) logarithm of the probabilities at every pixel. Given our small pixels, we
expect no significant change in the shape of the b-Ny distribution due to pixelization.
All examples of smooth b-Ny1 distributions shown in this chapter and in chapter 1 are
pixelized on this grid (see e.g. Figures 3.3, 1.8, and 3.5).

The PCA is performed by decomposing our discrete maps into a basis of principal
component vectors e;, which makes it possible to recover any model in our grid by
linearly combining the principal component vectors, using the coefficients ©;(log Tp, y)
and adding them to the mean map p(Nui, b):

In P(log Ny, log bllogTo, y) = p(log Nui, log b) (3.5)

N
+ > ©;(log Ty, y)e;(log Nuy, log b),
=1

where N is the number of models available, in this case N = 100, and the components
are ranked by their contribution to the cumulative variance of the dataset. In short, the
PCA decomposes a matrix of all vectorized InP(log Ny, log b) maps into a basis of 100
principal component vectors with 100 coefficients each.

In Figure 3.4 we show the p(log Ny, log b) map and the first three principal com-
ponent vectors (reshaped to an image of 100x100 pixels) and coeflicients from our
analysis. Note that PCA is a standard method for dimensionality reduction, as it al-
lows one to choose the principal components that encompass most of the variance
within the data by ignoring components that do not contribute substantially to the
cumulative variance. The cumulative contribution to the total variance is computed
by first dividing the eigenvalues from the singular value decomposition method used
in the PCA by their sum, ordering them in descending order, and computing their
cumulative sum. For illustration, the first three components shown in Figure 3.4 already
account for 83.1% of the cumulative variance in the models. At present, we are not
interested in dimensionality reduction, and keeping all 100 PCA components is not
computationally prohibitive for the current case. By PCA-decomposing the KDEs in
our grid, we are simply describing each of the discretized P(log Ny1, logb | log Ty, y)
with a set of coefficients ©;(Ty, y) and basis vectors, enabling a parametric description
of P(log Nyi,logb| log Ty, y).

There are two reasons why we carried out the PCA on InP(log Ny, log b): first,
because we will interpolate PCA components of In P(log Ny , log bllogTp, y) maps
(§ 3.2.3) in thermal parameter space, and these PDFs have sharp features (such as the
low b-cutoff). Computing the natural logarithm is desirable to reduce interpolation
errors; second, we do this for a practical reason, as we will ultimately tie this analysis
to a Markov chain Monte Carlo (MCMC) algorithm that works with the log-likelihood.

The disadvantage of working with the natural logarithm of P(log Ny1,log b | log T, y)
is that the probability fluctuations around zero are amplified, which can destabilize the




CHAPTER 3. ANOVEL METHOD FOR FITTING THE b-Ny; DISTRIBUTION

84

logb/(km s™1)

¥,

-

PCA Comp. 1 PCA Comp. 2 PCA Comp. 3
Cum. Var.: 59.9% ] Cum. Var.: 73.0% Cum. Var.: 83.1%
12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15
logNy/cm=2 logN/cm=2 logN/cm=2 logN/cm=2
(| — |
-8 -6 -4 -2 0 -08 -04 0.0 0.4 0.8
Mean Map PCA vector value
20 OO00000000 | COOO0C00000 | 000000 0000
18| OOO000 0000 | OCOOGO0OO00 | 00000 CO00®
16 | OOOOO0000e | OCOO000000C | 900000000
.. | 9000000000 | COOC00000ee | ©@000CCC0e
71 ©O0OO0O0O0O00 | COOOO0000ee | @OOOCOOOO0®
21 @O000000O0 | @OOO0000ee | OCOOOOOO0e®
10| @OO000OOO0 || @GOOCOOOO0® || COOOOOO00®
08 | @@OOOOOOO0 || @@GOOOOOO0 || COOOOO000®
05 | @OOOOOOOO0 || @@GOOOOOO0 || COOOOO00ee
o4 0000000000 (| @@®@OOCOCO | OCOOOOO000®
3.8 4.0 4.2 4.4 3.8 4.0 4.2 4.4 3.8 4.0 4.2 4.4
logTo logTo logTo
| aa— |
-2 -1 0 1 2

PCA coefficient value

Figure 3.4. Top row: The mean map p(log Nu1, log b) and the first three principal component vectors e; from our PCA of our
model maps. Note that the decomposition was carried out in the natural logarithm of the probability. The vectors were
reshaped to the map form of 100 x 100 pixels and are sorted by contribution to the cumulative variance (see text for
details). Bottom row: The corresponding principal component coefficients © (log Ty, y) for each map.
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Figure 3.5. Comparison of interpolated and measured P(log Ny , log b | log Ty, y) for a model
in our test grid, i.e. not included in the grid used for constructing the In P(log Ny,
log b|logTy, y) emulator. Thermal parameters are (log Tp, y) = (3.972,1.0). Left:
P(log Ny, log b | log Ty, y) constructed by interpolating PCA components using
GP interpolation. Middle: P(log Ny, logb | log Ty, y) generated from KDE of the
PDF directly from the VPFIT output at the same thermal parameters. Right: the
difference of emulated and original b-Ny; distribution relative to the original b-Ny
distribution illustrates that we are able to accurately emulate the PDF between
our grid points. The fact that we see no relative difference in the edges of the
rightmost diagram comes from the fact that we set a density threshold under which
the probability was set to zero (see § 3.2.2).

interpolation process in the low-probability regions. To avoid interpolation artifacts in
the low-probability regime, we simply apply a probability threshold to all our discrete
In P(log N1 , log b|logTy, y) maps under which all probabilities are set to zero. We
chose to set this threshold at the value of the 20th percentile of the probability values
for each map. Typically this threshold corresponds to a probability < 0.003, i.e. it only
affects the lowest probabilities of P(log Ni1,log b | log Ty, y) and does not vary strongly
from model to model. Varying this threshold did not affect our emulated distributions
substantially for values lower than the 40th percentile of the probability values for each
map, as the cut involves the lowest-probability regions.

3.2.3. Emulating the PDF

Finally, we train a GP on the PCA coefficients for our discrete model grid (using
GEORGE Ambikasaran et al. 2016). This allows us to generate InP(log Ny, log b) at
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arbitrary log Tp and y combinations.

A GP is basically a stochastic process for which every finite subset of random variables
is normally distributed, i.e. it can be fully described by its mean and a covariance
function. The covariance function is a measure of how much two points in parameter
space 3; and &, are covariant, & being a vector with (log Ty, y) in our parameter space.
We adopt a standard choice for the covariance C, which is a squared-exponential kernel
plus an additional white-noise contribution, with the form

C(31, ) = exp (=0.5 (9 = ) Gy (91 = Fm)) + Cudim, (3.6)

where Cp, is chosen to be a diagonal matrix with a smoothing length h; for every
dimension, i.e. the characteristic distance beyond which the covariance between two
points drops, and o, parameterizes the white-noise term. We chose h; to be a constant
with the value of 20% of our standard thermal grid length in each dimension® (larger
than the typical grid separation). This guarantees that the interpolation will correlate
coefficients ©;(Ty ;, y;) from neighboring points in the grid.

There are an infinite number of functions that satisfy a GP with a specific mean and
covariance, but the interpolation (or regression) part comes in once we only select the
subset of functions that are constrained to pass through a particular set of points. In our
case, we have a vector of 100 PCA coefficients ©;(Tj ;, y;) for each model combination
i in our grid of 100 simulations. Although GP interpolation can be generalized for
the case in which the computed PCA coefficients have uncertainties by having the
white-noise term 0,5;; in eqn. 3.6, we decided to assume that these PCA coefficients
have no uncertainty, i.e. we force the interpolation to pass nearly perfectly through
the measured ©;(Ty ;, ;) by setting o, to nearly zero*. This means that our emulator
essentially recovers the b-Nyp distribution maps perfectly at the thermal grid positions.

We illustrate the accuracy of our procedure in Figure 3.5. In the left panel we show
an emulated P(log Ny1 , logb | log Ty, y) for a (log Ty, y) = (3.972,1.0) combination
between points in our standard grid. The middle panel shows the true KDE-based PDF
from the VPFIT output for this thermal model (taken from our test grid). The right
panel shows the relative difference between the two PDFs, which scatters around 0 and
is typically of the order of 3% in probability in the high-probability regions, indicating
that we can successfully interpolate between models. The difference drops to zero in
the far edges owing to the thresholding of the density described in § 3.2.2. There are
some peaks in the relative difference close to the edges that arise simply because the
20th percentile density thresholding did not affect the exact same pixels in the real vs.
the emulated distribution.

3More specifically, prior to the interpolation, our thermal grid was renormalized to the range 0-1 in
each dimension and a kernel size of 0.2 was used. See appendix B.2.1 for a motivation of this choice.

“The emulation would not converge when setting o, = 0, so we adopted the default TINY noise value
1.25 x 1072 from the GEORGE library.
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We will further discuss the effect of the GP interpolation when performing mock
measurements in § 3.3.2.

3.2.4. Parameter Inference

We use the In P(log Ny, log b|logTp, y) emulator as a basis for calculating the likelihood
of a dataset given model parameters. The probability of measuring a single absorption
line (Ny1,, b;) is given by the PDF P(log Nui , log b | log Ty, y). Thus, the likelihood for
measuring a set of N absorption lines log Ny, log b is

N
£ =[ | Plog Nur s log billogTy, ), (37)

or in terms of log-likelihood

N
In £ = Z In P(log Nt 11, log billogTo, y). (3.8)

Given that our emulator is able to generate model PDFs at any given point within the
thermal parameter grid, we simply couple this log-likelihood to an MCMC algorithm
to perform Bayesian inference of the model parameters. For this purpose we use the
python package emcee (Foreman-Mackey et al. 2013) which implements the affine-
invariant sampling technique (Goodman & Weare 2010). We assumed flat priors for
both parameters that are truncated at the edges of our standard thermal grid for all
MCMC runs presented in this study.

The key assumption of the likelihood above is that we treat the Ly« forest as being
an uncorrelated distribution of lines such that we can look upon each log Ny1, logb
measurement as a random draw from P(log Ny, log b | log Ty, y). We expect that this
assumption does not affect our likelihood substantially given the low level of spatial
correlations in the Lya forest (McDonald et al. 2006). We will carry out an inference
test in § 3.3.2 and asses wether this affects mock measurements carried out with the
PKP method.

3.3. Testing the Robustness of Our Inference

In this section we test the PKP method by carrying out mock measurements of log Ty
and y using MCMC. First, we show one example of a measurement, and then we test
the robustness of our method by examining how the MCMC posteriors behave for
measurements based on many random realizations of mock datasets for the models in
our test grid.
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Figure 3.6. A mock realization of a data b-Nyy distribution composed of the absorbers from
eight randomly chosen skewers from a simulation with (log Ty, y) = (4.050, 1.333).
An emulated P(log Ny,log b | log Ty, y) based on the median values of the marginal
distributions of the corresponding MCMC posterior (log Ty = 4.054 and y = 1.303,
see Figure 3.7) is shown for comparison. Figure credit: Hiss et al. (2019).

3.3.1. Measurement Example

As an example of a mock measurement we select the absorbers from a sample of eight
random skewers extracted from a model with (log Ty, y) = (4.050, 1.333) in our test
grid (the blue points in Figure 3.2). The corresponding dataset is shown as black points
in Figure 3.6. For reference, this mock dataset is comparable in terms of path length to
the redshift range 1.9-2.1 provided by a single QSO spectrum in the analysis presented
in § 2. Specifically, this dataset is generated from a pathlength of 240Mpc. While a single
Ly« forest at this redshift (between Lya and Lyf emission peaks) covers ~ 620Mpc
(from z = 2.1 to 1.7), the redshift bin used in § 2.1 ranged from 1.9-2.1, so each QSO
contributed ~ 295Mpc. Effectively, due to the masking applied to the data in order to
filter possible metal contaminants and the path-length reduction associated with it, our
mock dataset corresponds to nearly two sight lines in terms of number of absorbers at
this redshift range.

The results of our MCMC inference for this particular mock dataset are shown in
Figure 3.7. We observe the well-known strong degeneracy in the measurement of log Ty
and y, which is a result from setting the pivot point of the TDR at mean density (see
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Figure 3.7. MCMC posterior for a mock dataset composed of eight randomly chosen skewers
(absorbers shown in Figure 3.6) extracted from a model in our test grid with thermal
parameters shown in red. A zoomed-in part of the thermal grid used for constructing
the emulator on which this measurement is based is shown in blue. The model from
which the mock data were chosen (red circle) is not included when constructing
the In P(log N1, log b|logTy, y) emulator.Figure credit: Hiss et al. (2019).

e.g. Lidz et al. 2010; Becker et al. 2011; Walther et al. 2019; Hiss et al. 2018). We obtain
log Ty = 4.054f8.'g§§ and y = 1.303fg_'8i’§, whereby the errors are calculated based on
the 16th and 84th percentiles of the marginalized distributions of the MCMC posterior.
One observes that this is remarkably close to the true model that the dataset was drawn
from (indicated by the red circle and lines in Figure 3.7). We can illustrate the inferred
model PDF by inputting these measured thermal parameters (i.e. the median of the
individual marginalized posteriors) into into our emulator, retrieving the corresponding
In P(log Ny , log b|logTy, y) and computing exp(In P(log Ny , log b|logTp, y)), which
is shown by the color-coded distribution in Figure 3.6.

3.3.2. Inference Test

In order to further test the robustness of our method, we perform measurements of
log Ty and y using 10 mock data realizations of b-Ny distributions (based on eight
random skewers each) for each of the 16 models in the test grid. Our uncertainties
are quantified based on the two-dimensional MCMC posteriors (see e.g. Figure 3.7).

=
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Figure 3.8. Distribution of the difference between the true values and the medians of MCMC

posteriors for 10 random realizations of mock datasets with eight skewers each for
all the 16 test models (blue in Figure 3.2). The likelihoods for these measurements
were calculated based on P(log Ny ,logb| log Ty, y) generated using our emulator,
which did not include these models. The differences between true values and
MCMC-based estimates are shown as blue points in the bottom panels for each
realization. A histogram of all measurements put together is shown in blue, while
the blue line corresponds to a 1D KDE of the differences in the histogram. The red
dashed line illustrates a perfect measurement. Figure credit: Hiss et al. (2019).

Testing our measurements by inspecting many realizations of mock datasets will reveal
wether our method is returning valid posterior probability distributions.

Given that we are dealing with models exactly between our standard grid points,
this test will show wether interpolation errors in In P(log N1 , log b|logTy, y) result
in biased measurements. This is a crucial test given that our typical MCMC contours
have uncertainties that are comparable to the characteristic separation between models
in our thermal grid, which is illustrated by the blue grid points shown in Figure 3.7.
Furthermore, an inference test will fail, for instance, if our assumption that we can
neglect spatial correlations in the Ly« forest in the likelihood in eqn. 3.8 is incorrect.

We test wether the uncertainties derived from the MCMC posteriors are sensible by
carrying out the following exercise. For all of the 160 posteriors, i.e. 16 distinct models
times 10 mock realizations of each model, we quantify how often the true values of
the thermal parameters used land within the 68% and 95% confidence regions of the
corresponding 2D MCMC posterior. We observe that the true values are within the
68% confidence region 68.7% (110/160) of the time and that they are within the 95%
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confidence region 96.9% (155/160) of the time. This convincingly indicates that our
posterior distributions are robust and that we are not over- or underestimating our
uncertainties.

As a further test of whether our inference is significantly biased, we examine the
distribution of the difference between the true values of log Ty and y and the median
of the marginalized distributions of the MCMC posteriors: AlogTy = log To true —
log To Mcmc and Ay = Yirue — Ymcmc- The distributions of these differences are presented
in Figure 3.8. We see that the distributions are centered around zero, indicating that
any bias associated with our method is smaller than the resulting uncertainties. Note
that in this initial experiment we are deliberately only carrying out our tests for the
measurement of Ty and y, not taking into account the correlations with other parameters
such as pressure smoothing scale A, or amplitude of the UVB. While certainly important,
adding these dimensions to our analysis is beyond the scope of introducing and testing
our new approach.

3.4. Pilot Study: A Measurement of Thermal
Parameters at z=2

The DM-only models used for our inference test in § 3.3.2 use an approximation for gen-
erating flux skewers that does not capture the full physical picture necessary to properly
represent the IGM (Sorini et al. 2016). While DM-only simulations were sufficient for
our initial tests (see § 3.1), for a realistic measurement involving real observational
data, one has to use hydrodynamic simulations to generate model distributions. In this
section we apply the PKP method to real Ly« forest absorption-line data using a grid
of hydrodynamic simulations to model P(log Nyi, log b | log Ty, y).

3.4.1. The b-Ny, Distribution Conditional Probability Density
Function from Hydrodynamic Simulations

Following the approach described in § 3.1 and 3.2, we now generate models of P(log Ny1,
log b | log Ty, y) by applying VPFIT to simulated skewers drawn from hydrodynamic
simulations of different thermal models. Hydrodynamic simulations provide the general
physical conditions that give rise to the Ly« forest directly from first principles, with
the exception of reionization effects, thus resulting in realistic b-Ny1 distributions.
Additionally, pressure smoothing of absorbers is accounted for in a physical way as
opposed to the artificial smoothing of the density field that was used in the DM models.
The disadvantage associated with hydrodynamic simulations is that, unlike the DM-
based model, it is costly to generate large grids in Ty and y at a given redshift, which

=
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could pose a problem given the high precision our method can achieve. Nevertheless,
grids of ~ 30 hydrodynamic simulations are computationally feasible (see below).
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Figure 3.9. Thermal grid from snapshots of hydrodynamic simulations from the THERMAL
suite at z = 2 used in this pilot study. The points are colored based on the pressure
smoothing scale Ap. For comparison with the characteristic grid separation, we
show the measurements (see § 3.4.3) achieved using the full dataset at z = 2 shown
in § 2.1.3 (black contour lines) and a subset of 200 absorbers from this dataset (green
contours). Figure credit: Hiss et al. (2019).

For the purpose of generating a basis of model b-Ny distributions, we use part
of the publicly available THERMAL?® suite of Nyx simulations (Almgren et al. 2013;
Lukic¢ et al. 2015) presented in § 2.2. The THERMAL suite consists of more than 60
Nyx hydrodynamic simulations with different thermal histories and Lyox = 20 Mpc/h
and 10243 cells based on a Planck Collaboration et al. (2014) cosmology Q,, = 0.3192,
Qp = 0.6808, Qp = 0.04964, h = 0.6704, ny; = 0.96, o5 = 0.826. We chose a grid
consisting of a subset of 36 simulation snapshots at z = 2 with different combinations
of Tp, y and Ap that result from different thermal evolutions (Ofiorbe et al. 2017), shown
in Figure 3.9.

Note that although arbitrary Ap values could be generated in principle, it would
require substantial computing power to fine-tune the reionization histories to do so.
As discussed in Walther et al. (2019), it is difficult to generate physically realistic

SUrl: http://thermal. joseonorbe.com/
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models without correlating the TDR parameters and Ap, because the pressure smoothing
scale depends on the integrated thermal history of the IGM. Due to computing time
restrictions, we generate only physically motivated Ap that are correlated with the TDR
parameters, i.e. high (low) Ty and y combinations generate large (small) values of Ap.

Following our discussion in § 3.2.1, we apply the same KDE procedure to the VP -
FIT output of our simulations and then construct a In P(log Ny , log b|logTy, y) em-
ulator based on simulated b-Ny distributions (as in § 3.2.3). For the In P(log Ny ,
log b|logTy, y) emulation we apply the same PCA and GP interpolation scheme, adopt-
ing smoothing lengths h in the covariance (see eqn. 3.6) for the interpolator that is 50%
of the grid size in the log Ty direction and 20% in the y direction. Additionally, for the
white-noise term in eqn. 3.6 we chose g, = 0.01, which allows for small deviations in
the interpolation at the grid points. These changes relative to the DM only emulation
were arrived at via visual inspection of the emulated PDFs. Specifically, we changed
these parameters until no interpolation artifacts were present throughout the grid. A
motivation of this choice of white noise contribution is presented in the appendix B.2.2.
Additionally, similar to the analysis of mock datasets in § 3.3.2, we checked wether
we accurately recover the thermal parameters at the grid positions and found that the
results were unbiased. This indicates that the different GP smoothing parameters and
white-noise term added when using hydrodynamic simulations do not significantly
bias our inference.

3.4.2. Absorption-line Dataset

In order to carry out a measurement, we use the absorption-line data presented in
§ 2.1.3 which consists of 1246 absorption lines® at 1.9 < z < 2.1.

One problem that could bias the results of our method are outliers with low b in the
b-Ny distribution. In § 2.1.5 we argue that these are narrow lines added by VPFIT in
order to decrease the y? of the fit in blended absorption features and unidentified metal
absorbers wrongly assumed to be Ly« lines (as observed by Schaye et al. (1999); Rudie
et al. (2012a)). Blending artifacts should not have a severe impact on our measurements,
as a proper forward modeling of the simulated sight lines should include the same sort
of contamination in our model P(log Nu1, logb | log Ty, y).

As for dealing with metal line contamination, the dataset used was carefully masked
for metal absorption systems, as described in § 2.1.4. The severity of metal line con-
tamination is strongly redshift dependent, as the identification of metal absorbers in
the Lya forest becomes increasingly difficult at higher redshift (and nearly unfeasible
at z > 3.5) owing to line blanketing as the effective optical depth of the Lya forest

®In line with the approach presented presented in § 2.1.3, we excluded absorbers that have relative
uncertainties worse than 50% in b or Ny from the observational dataset. For consistency, the same
recipe was applied to the lines of sight extracted from our hydrodynamic simulations.
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increases. In our case, the contamination should be relatively mild, given that metal
line absorbers are more easily identified at lower redshifts and that these data were
previously masked for potential contaminants using different automatic and interactive
techniques. Nevertheless, there are remaining unidentified contaminants that have to
be excluded with some sort of outlier rejection.

As in § 2.1.5 we implement an iterative 20 rejection procedure based on Rudie
et al. (2012a) that rejects potential narrow-line contaminants in the range 12.5 <
log Nigr/em™2 < 14.5. For simplicity, we decided to extrapolate the 20 rejection line
calculated in § 2.1.5 to the region 11.5 < log Niy/em™2 < 16 (shown as a gray dashed
line in Figure 3.10) and discard all absorbers with log b lower than this line. Alternatively,
one could implement a more elegant outlier modeling method such as the one used by
Telikova et al. (2018), but here we opt for this simpler approach.
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Figure 3.10. Subset of the b-Ny distribution at z = 2 presented in § 2.1.3 composed
of 200 randomly chosen absorbers (black points). To avoid possible narrow-
line contaminants (gray points), only absorbers with b above the extrapolated
20 rejection line from § 2.1.5 were chosen (gray dashed line). An emulated
P(log Nu1 , logb| log Ty, y) based on the median values of the marginal distri-
butions of the corresponding MCMC posterior is shown for comparison. Figure
credit: Hiss et al. (2019).

The z = 2 dataset from § 2.1.3 has a size of 1246 absorbers, and we have intuition
from § 3.3.2 that this dataset size would result in percent-level precision, i.e. smaller
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than the spacing between our thermal grid points, making our inference susceptible to
interpolation uncertainties. We thus decided to randomly choose a set of 200 absorbers
from this dataset, hence with a similar number of lines to the mock dataset of eight
skewers described in § 3.3. In contrast to the SNR modeling done in § 3.1.2 using a
constant value of 63 per 6 km s~!, we randomly chose the SNR from the real sight lines
for the mock spectra from hydrodynamic simulations to better represent the noise
distribution within the data (exactly as was done in § 2.2.3). Because of this approach,
it makes more sense to chose a random subset of absorbers rather than selecting a
random subset of QSO sight lines. For a discussion about how our results differ if we
randomly choose QSO sight lines instead of absorbers, please refer to the appendix B.3.

To understand how our uncertainties compare to the typical separations between
points in our thermal parameter grid, we show two sets of log Tp-y measurements
in Figure 3.9. We will explain in detail how these contours were measured in the
next section. But for the sake of the current discussion, note that the green contours
result from analyzing a dataset of 200 absorbers, resulting in a precision comparable to
our characteristic grid separation, whereas the black contours show a measurement
using the complete dataset of 1246 absorbers. Clearly, using the full dataset results
in an uncertainty substantially smaller than our grid spacing, which indicates that
interpolation errors could be a significant issue. Given the exquisite precision delivered
by the PKP method and the size of existing datasets, it is challenging to generate a grid
of hydro simulations fine enough to do justice to the implied precision. Nevertheless,
we believe that this is computationally within reach and will enable measurements of
the thermal state of the IGM with unprecedented precision.

3.4.3. Results

In order to measure log Ty and y, we carry out the same Bayesian measurement as
described in § 3.3, this time using real data combined with P(log Ny, log b) emulated
from hydrodynamic simulations. The subset of 200 absorbers from § 2.1.3 are shown as
black points in Figure 3.10, whereas the five gray points are the corresponding fraction of
absorbers that are rejected. The green contours in Figure 3.9 show the MCMC posterior

resulting from analyzing these data, from which we measure log Ty = 4.092f3'g§g and
Yy = 1.49:?.'8772, whereby the errors are calculated based on the 16th and 84th percentiles

of the marginalized distributions. We explore how this inference behaves for different
random realizations of 200 absorbers in the appendix B.3. As before, we emulate the
P(log N1,log b | log Ty, y) at these measured values, which is shown as the color-coded
distribution in Figure 3.10.

Additionally, we carried out the same measurement using the full dataset of 1264
lines presented in § 2.1.3. As discussed in § 3.4.2, due to the current separations in our
model grid, we have concerns about interpolation error at such a high level of precision.
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Nevertheless, we wanted to illustrate the kind of precision achievable using existing
data. With these caveats, we measure log Ty = 4.034f8‘812§ andy = 1.576f8‘8§26 . The
corresponding contours are shown in black in Figure 3.9. Importantly, compared to the
measurement using a subset of these data, the uncertainties are smaller by a factor of

approximately V6, which is the expected scaling due to the relative sizes of the datasets.

Comparison with Cutoff Fitting Results

These PKP-based results can be compared to the measurements presented in § 2.4 from
the same dataset using the cutoff fitting approach. From the marginalized distributions of
the Monte Carlo-based posteriors presented in § 2.4, we measured log Tp = 4.137f8'8$2

andy = 1‘4745(())’.113 at z = 2 using the 1264 Lya absorbers.

20000
18000
16000
14000

12000 \

10000

To/K

8000
—— Cutoff Fitting Hiss et al. 2018 (1200 absorbers)

© PKP Method (subset 200 absorbers)
6000

1.0 1.2 1.4 1.6 1.8
Y

Figure 3.11. Comparison of the thermal parameter constraints from § 2 using the cutoff fitting
method (purple contour lines) and our measurement using the PKP method (green
contours). While the original dataset presented in § 2.4 has a size of 1246 absorbers,
only 845 are actually used for cutoff fitting as a result of the fact that only absorbers
with 12.5 < log(Ng/em™2) < 14.5and 8 < b/kms~! < 100 are used. The cutoff
fitting results are shown as purple contour lines. When using the PKP method
described in this study, we achieve higher precision (green contours) while using
a random subset of 200 absorbers from their data. Figure credit: Hiss et al. (2019).

As stated in § 3.4.3, when applying our new method to a subset of 200 absorbers from

their dataset, we measure log Ty = 4.0921“8’8?5? andy = 1.491'8_‘8774‘;)’. In Figure 3.11 we
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compare our PKP-based measurement using just 200 absorbers from § 2.1.3 at z = 2
(green shaded contours) to the cutoff fitting measurement from § 2.4 (Figure 2.19) using
the full dataset (purple contours).

A direct comparison of these measurements based on the size of the dataset used
is challenging because both methods use different cuts in the data. While we use all
absorbers within the allowed fitting range, the cutoff fitting method only uses the
absorbers within 12.5 < log(Ny/cm™2) < 14.5 and 8 < b/kms™' < 100. In § 2.1.5
(Figure 2.6) this reduces the initial dataset of 1264 at z = 2 to 845 absorbers that are
effectively used for cutoff fitting.

As described in § 3.4.3, using the complete dataset results in a dramatic improvement
in the precision compared to the measurements presented in § 2.4”. This improvement
comes from the fact that the constraining power of the cutoff method depends only
weakly on the number of absorbers in the b-Nyy; distribution, as discussed in detail by
Schaye et al. (1999) (see their Figure 14), and hence its precision does not scale as VN
as one would naively expect. In contrast, the advantage of the PKP method is that it
delivers a precision that scales approximately as VN, delivering higher precision for
larger datasets.

For a more direct comparison one can calculate what uncertainties we would expect
for a dataset of 845 absorbers, i.e. the exact number of absorbers effectively used for
cutoff fitting. Under the assumption of VN scaling, our representative uncertainties
for a dataset of 200 absorbers, for example, 017, = 0.055 and o, = 0.074, become
smaller by a factor of v845/200, i.e 0og 1, = 0.027 and o, = 0.036. In this case our
result would be around a factor of two in log Ty and a factor of nearly three in y more
precise than cutoff fitting for 845 absorbers.

Indeed, the main limitation in PKP precision, which we have already encountered
for the current dataset, is the number of simulations required to generate a model
grid dense enough to deliver the implied precision. However, we believe that this is a
surmountable problem given currently available computational resources.

Finally, we note that another complication associated with the cutoff fitting method is
that one has to adopt a value of the column density Ny that corresponds to the mean
density in order to relate the minimal Doppler parameter at this density by = bpin(Nu1,0)
to Tp. With this new approach we circumvent this issue, as we are sensitive to the
shape of the b-Ny1 distribution at all column densities. Furthermore, we show in § 2.4.4
that cutoft fitting is sensitive to the details of the iterative cutoff fitting method (least-
squares or mean-deviation minimization), which can lead to differences in the results.
In contrast, the Bayesian likelihood (eqn. 3.8) that provides the underpinnings of PKP

"This comparison may seem unfair since we marginalized our results over different pressure smoothing
scales Ap in § 2, which we do not do in this chapter. Nevertheless, this marginalization did not
significantly impact their measurement precision, i.e. their uncertainties in Tp and y are dominated
by the statistical error on the cutoff parameters.
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does not require that one make these somewhat arbitrary choices.

3.5. Discussion and Summary

In this chapter we introduced a new method for inferring thermal parameters from
the b-Ny1 distribution of Ly« forest absorbers in the IGM, the PKP method. In contrast
to a large body of previous work focused on analyzing a small subset of lines to fit
the lower cutoff of the b-Nyj1 distribution, our new approach utilizes all available data
and exploits the parameter sensitivity encoded in the full shape of this distribution.
We generated a large grid of simulations of the Lya forest encompassing a range of
different thermal parameter models, and we fit the resulting mock spectra with VPFIT,
generating a large database of absorption lines for each model. Our new method applies
KDE to sets of discrete absorption lines to generate model b-Nyy; distribution PDFs
and then uses a PCA decomposition to create an emulator for this distribution that
can be evaluated at any location in thermal parameter space. Using this emulator, we
introduced a Bayesian likelihood formalism enabling parameter inference via MCMC.
We conducted a pilot study demonstrating the efficacy of this new approach in the
limit of a two-dimensional Ty and y measurement, whereby real observational data at
z = 2 were compared to a grid of hydrodynamic simulations. The primary results of
this chapter are as follows:

1. Using 160 mock measurements, we demonstrated that our statistical inference
procedure delivers unbiased estimates of thermal parameters and reports valid
uncertainties.

2. Our new method was applied to real observational data to measure the parameters
of the TDR at z = 2. We found log Ty = 4.()92f3’855§ and y = 1.49f8.‘877§’ using
just a subset of 200 absorbers from the dataset presented in § 2, which roughly

corresponds, in terms of path length, to a single Ly« forest spectrum at z =~ 2.

3. For current dataset sizes at z=2, the PKP method can already deliver a precision
on log Ty (y) nearly two (three) times higher than the cutoff fitting method.




4. Thermal State of the IGM atz = 0.1

I always live in the present. I don’t know the
future and no longer have the past. The former
oppresses me as the possibility of everything,
the latter as the reality of nothing.

- Bernardo Soares, Livro do Desassossego 1930

In chapter 1, we discussed that the evolution of the thermal state of the IGM at low
redshift is relatively simple, as no further reionization processes are expected to affect it.
The thermal state of the intergalactic gas is dominated by cooling due to the universe’s
expansion and heating by photoionization. In this scenario the temperature at mean
density is expected to drop as the universe expands, while y approaches its asymptotic
value of 1.7 (see Figure 1.2 for the evolution of the parameters of the TDR toward low
redshift).

In the previous chapters of this thesis, we analyzed the Ly« forest in spectra of
QSOs at 2 < z < 3.4. This redshift range allows us to observe the Ly« forest in the
optical using ground-based telescopes. However, the Lya transition at z < 1.7 is
shifted into the UV, where the atmosphere’s transmission cuts off at around 3300 A.
Therefore, observations of the Ly« forest at low redshift require substantially more
costly spectroscopic observations from space. Currently, there are two instruments
on HST that are capable of performing UV spectroscopy in space, namely the space
telescope imaging spectrograph (STIS) and the cosmic origins spectrograph (COS). STIS
is sensitive in the near UV that probes the Ly« forest at z ~ 1. COS on the other hand
is sensitive to the far UV, probing the Ly« forest at z < 0.5.

In this study we will measure the TDR parameters (T and y) as well as the HI
photoionization rate Iy at z = 0.1 using publicly avilable HST/COS data’, with the
goal of testing theoretical predictions of the evolution of the thermal state of the IGM.
Additionally, a measurement of I3 at these redshift will reveal if we also observe a

1 As no space based UV spectroscopy instrument is planned for the foreseeable future, these data might
represent the last spectroscopic observations of the Ly« forest at low redshift in the near future. Note
however, that there are missions planned such as the large UV optical infrared surveyor (LUVOIR)
which is expected to launch sometime in the 2030’s and Spektr-UV planned to launch in the middle
of the 2020’s that could fill this observational gap.
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much higher I3 than predicted by models. This effect has been observed by Kollmeier
et al. (2014) based on the distribution of column densities of absorbers in the low redshift
Lya forest and was dubbed the “photon underproduction crisis”.

Here we apply a similar approach for inference as in Chapter 3, i.e. comparing the
b-Ny1 distributions of data and models by modeling the full distribution, but using
a different estimator for the conditional probability density estimation. A new low
redshift analysis of the Ly« forest is an interesting exercise to carry out, because the
b-Ny1 distribution has been previously used to study the effect of galactic feedback on
the IGM (Viel et al. 2017; Gaikwad et al. 2017), but never in the context of measuring
the parameters of the b-Ny distribution.

This chapter is structured as follows. We introduce our dataset in § 4.1. Our hy-
drodynamic simulations, thermal parameter grid, and forward modeling approach are
described in § 4.2. We describe our method for generating conditional probability distri-
butions for our thermal grid in § 4.3. We perform the first low redshift measurements
of Ty, y and Ijg using the b-Ny distribution in § 4.4. We summarize the results of this
chapter in § 4.5.

4.1. Observational Data

Our observational dataset is composed of the publicly available version” of the high-
quality medium resolution HST/COS survey presented in Danforth et al. (2016). Con-
sisting of 82 spectra observed between 2009 and 2013 using the G130M and G160M
gratings, this dataset represents the largest low redshift UV survey of the Ly« forest
to date. The nominal resolution of COS is R ~ 15000 — 20000, which corresponds
to roughly 15kms~!, and has a non-Gaussian line spread function (LSF). Individual
spectra were co-added taking into account both gratings in case they were available. In
Danforth et al. (2016) these data were continuum fitted and absorption and emission
lines were identified.

Although we will identify our own set of Lya absorption profiles in § 4.1.1, we will
mask out all intervening metal absorbers found by Danforth et al. (2016), which include
both intervening and z = 0 MW absorbers.

We mask all emission lines, whereas the mask is adjusted by eye to include the full
emission profile, and gaps in the wavelength coverage. An example of one spectrum
and the metal masking procedure is shown in Figure 4.2. The continuum normalized
spectrum is plotted in gray. The spectrum was fitted using VPFIT as will be described
in § 4.1.1. The parts of the fitted spectrum shown in orange illustrate the segments that
were masked based on the Danforth et al. (2016) line identifications. The unmasked
fitted spectrum is shown in blue and consists of identified Lya absorbers. To generate a

http://archive.stsci.edu/prepds/igm/
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Table 4.1.  COS sightlines

D Zgso SNR/pix.  LP D Zem SNR  LP
PG1011 0.0583 21.0 1 HE0056* 0.1641 17.0 1
RBS144 0.0628 15.0 1 H2356* 0.1651 10.0 2
PG1229 0.063 11.0 1 PG1048* 0.1671 13.0 1
MRK1513 0.063 20.0 1 1SJ1032% 0.1731 6.0 1
MR2251 0.064 26.0 1 PG2349* 0.1737 13.0 1
RX]J0503 0.064 11.0 1 PG1116* 0.1763 27.0 1
PG0844 0.064 13.0 1 PG1309* 0.1829 7.0 1
PKS2005 0.071 16.0 1 P1103* 0.186 10.0 1
TON1187 0.0789 12.0 1 PHL1811* 0.192 26.0 1
MRK478 0.0791 14.0 1 PHL2525% 0.199 11.0 2
PG0804 0.1 44.0 1 RBS1892% 0.2 12.0 2
122456 0.1 35.0 1 PG1121* 0.225 11.0 1
UKS0242 0.1018 10.0 1 S50716% 0.2315 24.0 1
RBS542 0.104 52.0 1 PG0953? 0.2341 26.0 1
TONS210% 0.116 27.0 1 S$092909% 0.24 10.0 1
PKS2155% 0.1165 36.0 2 RXJ0439* 0.243 11.0 1
Q1230* 0.117 41.0 1 F1010? 0.2558 10.0 1
MRK106* 0.123 17.0 1 PKS1302? 0.2784 18.0 1
PG1435% 0.126 9.0 1 TON580? 0.2902 13.0 1
1062292 0.129 19.0 1 H1821? 0.2968 36.0 1
MRK876* 0.129 45.0 1 S09255B* 0.3295 10.0 1
PG0838* 0.131 18.0 1 PG1001? 0.3297 14.0 1
PG1626* 0.133 18.0 1 PG0832* 0.3298 10.0 1
Q0045% 0.134 21.0 1 PG1216* 0.3313 14.0 1
PKS0558? 0.1372 10.0 1 3C66A* 0.3347 12.0 2
PG0026* 0.142 10.0 1 RXJ2154* 0.344 15.0 1
S$135712% 0.15 9.0 1 B0117% 0.3489 16.0 1
PG1115% 0.1546 14.0 1 PG1049* 0.3599 8.0 1
RXJ0956% 0.155 11.0 1 1ES1028* 0.3604 10.0 1
PG1307? 0.155 12.0 1 S$0949522 0.3656 7.0 1
3C273% 0.1583 65.0 1 1ES1553? 0.414 17.0 1
PG0157% 0.1631 11.0 1 HE0435% 0.43 5.0 1

#These sightlines contribute to the pathlength 0.06 < z < 0.16.
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Table 4.2. COS sightlines

ID Zgso SNR/pix.  LP ID Zem SNR  LP
PG1222%  0.432 13.0 2 PMN2345  0.621 7.0 2
TON236* 0.45 8.0 1 HE0238 0.631 11.0 1
PG0003%  0.4509 11.0 1 3C263 0.646 12.0 1
HE0153*  0.451 11.0 1 PKS0637 0.65 10.0 1
PG1259 0.4778 14.0 1 $080908 0.6563 6.0 1
HE0226 0.4934 14.0 1 3C57 0.6705 6.0 1
HS1102 0.5088 7.0 1 PKS0552P 0.68 0 1
PKS0405  0.574 19.0 1 SBS1108”  0.7666 0 1
PG1424 0.6035 11.0 1 SBSllZZb 0.852 0 1

2These sightlines contribute to the pathlength 0.06 < z < 0.16.

PThese sightlines have very small coverage of the Lya forest, as the COS instrument
cuts off at 1800 A.
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mask, a window was adjusted by eye in order to remove each metal absorber based on
its central wavelength positions. The species of each metal absorber is written in the
corresponding position. This masking is done in post-processing, which means that we
first apply VPFIT to the spectra and then remove the absorbers that fall within the
masked regions. In contrast to high redshift (z > 1) spectra, the low redshift Ly« forest
consists of mostly unabsorbed continuum and few, mostly isolated, absorption lines.

In Figure 4.1 we show the redshift path that is covered by the data (after all rejections).
The lines are color coded based on the sightline SNR and gaps in the spectra correspond
to masked regions. It is noticeable that some gaps appear at the same wavelength for
different sightlines. These are due to metal absorbers in the MW that fall always at
z ~ 0, contrary to intervening metals that could be at any redshift between the MW
and the QSO.

4.1.1. Voigt-Profile Fitting

We used our fully automated VPFIT wrapper described in § 2.1.2 for fitting absorption
profiles to the COS dataset described above. This time we applied the current VPFIT
version 11.1°. As described in § 2.1.2 our wrapper routine controls VPFIT with the help
of the VPFIT front-end/back-end programs RDGEN and AUTOVPIN. Each absorption
line is parametrized as follows: absorption redshift z,,s, Doppler parameter b, and
column density Ny corresponding to the Lya transition. We set up VPFIT to explore
the range of parameters 1 < b/kms™! < 300 and 11.5 < log(Ng1/cm™2) < 18. VPFIT
will vary these parameters and potentially fit for additional lines until the y? with
respect to the data is minimized. For more details on the fitting procedure refer to
section 2.1.2.

One important difference with respect to the UVES/HIRES spectra fitted in Chapters 2
and 3 is that the LSF of the COS instrument has a moderate resolution of 15kms~!
(compared to a resolution of 6km s~! in the UVES/HIRES dataset). The COS resolution
is of the order of the typical Doppler broadening parameter in the Ly« forest. The
COS LSF is also non-Gaussian in shape and exhibits significant wings which result in
pixel-to-pixel correlations across larger scales. Therefore, it is particularly important
to take into account the instrument’s LSF, otherwise one might be overestimating the
width of absorbers due to LSF effects. We do this by splitting all spectra at observed
A = 1460 A and retrieving the instrument’s LSF for both of COS arms separately at
1300 A for the G130M grating and 1600 A for the G160M grating with the help of the
linetools package®. The effective resolution will also be dependent on the lifetime
position of the observation, which we take into account when running VPFIT. For

SVPFIT: http://www.ast.cam.ac.uk/~rfc/vpfit.html
‘https://github.com/linetools/linetools
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Figure 4.1. COS Ly« forest sightlines used in this chapter. The sample is described in § 4.1.
The corresponding QSO redshifts are marked as black points. Regions that were
excluded are shown as gaps. The white area indicates the bin 0.06 < z < 0.16 that
will be used in this analysis. Gray regions are not used.

simplicity we assume that the LSF does not vary as a function of wavelength. For the
spectra analyzed in this chapter, only the G130M grating resolution is used, as the
Ly« forest at z = 0.1 lies completely in this region.

After fitting the entirety of the COS dataset, we select all the absorbers in the range
0.06 < zgps < 0.16 for further analysis of the thermal state of the IGM at z = 0.1. An
example of the VP-fitted spectrum of the COS sightline PHL1811 is shown in Figure
4.1 in blue (segments of the spectra previously flagged as metal absorption are marked
in orange). The b-Ny1 distribution of all absorbers in this redshift range is shown in
Figure 4.6.

4.2. Simulations

In order to generate a set of model b-Ny distributions for carrying out a measurement
of the thermal paramters at z = 0.1, we use part of the publicly available THERMAL
suite of Nyx simulations (Almgren et al. 2013; Lukic et al. 2015) as introduced in § 2.2
and 3.1. Because of peculiarities in the COS LSF we perform a slightly different forward
modeling approach.
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Figure 4.2. llutration of the COS spectrum PHL1811. Each panel depicts a segment of the QSO

spectrum. The original spectrum is shown in gray, while a model spectrum based
on line fitting (described in § 4.1.1) is shown in blue (masked spectrum) and orange
(only masked regions of the spectrum). The line IDs used to generate the mask
are from Danforth et al. (2016) and the metal species is denoted at the absorber
wavelength.

4.2.1. Skewer Generation

Our previous approaches for generating skewers was based on rescaling the optical
depth field of our simulations to match a given mean transmission, which corresponds




106 CHAPTER 4. THERMAL STATE OF THE IGM AT Z = 0.1

to rescaling the total ionization rate by a factor’. This is acceptable at high redshift,
as the gas is predominantly photoionized. At low redshift one expects a substantial
increase in the abundance of collisionally heated gas. Rescaling the optical depth would
effectively result in a rescaling of the collisional ionization rate by the same factor.

Therefore, in order to generate skewers at these redshifts, we have to apply a slightly
different recipe. Note that we cannot treat the amount of collisional ionization as a
free parameter, as it is strongly dependent on the hydrodynamic properties of the gas.
We generate skewers by recomputing the optical-depth field 7 through the simulations
assuming different values of Iy11 and keeping collisional ionization fixed.

4.2.2. Thermal Parameter Grid

We construct a thermal grid consisting of a subset of 48 simulation snapshots at z = (.1
with different combinations of Ty (spanning 3.3 < logTp < 4.1) and y (spanning
1.2 <y < 2.4). This grid is shown in the left panel of Figure 4.3 and its irregular shape
simply reflects that the thermal parameters result from different thermal history inputs
in the simulations. For each of these models we generate skewers using 7 different
values of the HI photoionization rate Iy (from Iy = 10713383 g~ t0 107129325~ jn
logarithmic steps of 0.075 dex, see right panel of Figure 4.3). In total our 3D grid consists
of 336 models.

Any of the effects of reionization are expected to fade out at redshifts z < 0.4, which
results in Ap becoming fully degenerate with T and y. Note that in order to add the
pressure smoothing scale Ap as a parameter in the previous chapters, we used the
technique described in Kulkarni et al. (2015) that consists of fitting the cutoff in the
power spectrum of the real-space Lya flux Fe, (see details in § 2.2). These have not
yet been computed for our current grid, so this first exploration of the low redshift IGM
will include Ty, y and Iy

4.2.3. Forward Modeling of Noise and Resolution

Before convolving the skewers with the LSF, we chose a random COS spectrum and
stitched as many simulated lines of sight as necessary to fill the pathlength of chosen
observed QSO. Next, this stitched together spectrum is binned to the wavelength scale
of the chosen COS sightline.

As discussed in § 4.1, the COS instrument has a particular LSF shape. Therefore, we
have to account for the peculiarities of the COS resolution in our forward models in
order to be able to compare the models with the data. We modeled the wavelength

SThis is true only in the optically thin regime where the Voigt profile can be well approximated by a
Gaussian, but most of the Ly« forest absorbers fulfill this criterion.
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Figure 4.3. Thermal grid from snapshots of hydrodynamic simulations from the THERMAL
suite at z = 0.1 used in this low redshift study.

dependency of the COS LSF by modeling each output pixel as a convolution between the
input skewer and the LSF for this wavelength as obtained from 1inetools, taking
into account grating and lifetime position. The LSF is tabulated for up to 160 pixels in
each direction and was interpolated to the pixel scale of the simulation.

We propagate the noise properties of the data to our simulated spectra on a pixel-
by-pixel basis by sampling from a Gaussian with o = ¢;, with ¢; being the data noise
vector value at the current pixel.

For each simulation snapshot we computed 6000 of these stitched together simulated
skewers in order to generate a well populated b-Ny1 distribution.

4.3. Method for Emulating the Full b-Ny, Distribution

In order to model the b-Nyp distribution as a whole, we follow the same approach
as in Chapter 3 and estimate P(log Ny, logb | log Ty, y) from the VPFIT output of
forward modeled spectra from hydrodynamic simulations. The main difference is in the
method used for density estimation. While in Chapter 3 we estimated and interpolated
PDFs using a combination of KDE, PCA and GP, in this chapter we will use the density-
estimation likelihood-free inference (DELFI) method (Alsing et al. 2018, 2019) for this
task.

DELFI uses neural density estimation (NDE), based on a masked autoregressive flow
technique (Papamakarios et al. 2017), to learn the sampling distribution of the data as
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Figure 4.4. Illustration of one of our forward modeled spectra. Each panel depicts a segment

of the spectrum. The original spectrum is shown in gray, while a model spectrum
based on line fitting (described in § 4.1.1) is shown in blue. Our simulated spectra are
not masked, given that metal absorption is not modeled. This particular model was
forward modeled in order to reproduce the noise properties of the COS sightline

RXJ0439.

a function of parameters P(d|6), with 6 being log Ty, y and log Iy and data d being
log Ni1 and log b in our thermal grid®.

SDELFI also has the option to apply different data compression and active learning methods to optimize
the data and parameter space sampling which we do not use as we have pre-chosen our summary
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As a sanity check, we compare the 2D inference carried out in § 3.4 to a new measure-
ment performed using the same models and data, but with DELFI as an emulator. The
comparison of the resulting contours are shown in Figure 4.5. Using DELFI we measure
log Ty = 4.1041“8’85’31 and y = 1.446f8:8ﬁ, whereby the uncertainties are calculated
based on the 16th and 84th percentiles of the marginalized distributions. Both density
estimation and emulation approaches deliver consistent results, with DELFI having
smaller statistical uncertainties. This is presumably because DELFI does not apply a
global smoothing for every point in the distribution and therefore delivers more precise
unsmoothed PDFs.

1.70 1 @ KDE/PCA (z=2)
DELFI (z=2)
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Figure 4.5. Comparison of the MCMC posterior of measurements using the same observational
data at z = 2 (§ 3.4), but different methods for emulating the b-Ny distribution
models. The 10 and 20 contours are shown for the measurement using PKP (green)
and DELFI (black lines) as an emulator. We achieve better constrains using DELFI,
presumably because it does not require a global smoothing length and can therefore
model P(log Ny1, logb| log Ty, y) more precisely.

statistics (the b-Ny distribution) at a fix grid of thermal parameters.
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4.4. A Measurement of Thermal Parameters at z=0.1

4.4.1. Likelihood

In this study we expand upon our likelihood definition from § 3.2.4 and additionally
model the number of absorbers as an additional piece of data using a model for the
Poisson rate of absorbers in the simulations.

Assuming that the PDFs are normalized such that

ffp(b, Ngp) dNgrdb =1, (4.1)

the likelihood of observing one or zero absorbers in an infinitesimally small grid in b
and N1 with n + m number of cells, whereas n is the number of cells populated by one
absorber and m is the number of unpopulated cells, under the assumption of a Poisson
distribution, can be written as

L =P(datalmodel) (4.2)
n m+n
— [l—[ ,Uie_'ui) l—[ e Hil.
i=1 j=n+1
The rate y; of populating a cell is defined as:
N
pi = AZmOddell P(bi, Nur;) ANuy; Ab; Azdata, (4.3)
mode

where the Nyodel, AZmodel and Azgat, are the total number of lines (sets of b and Ny
values), the total redshift path in the simulations and the total redshift path covered by
the data, respectively.

Using the logarithm, we can reduce eqn. 4.2 to

n m—+n
L= (n(w)—m) - > (4.4)
i=1 j=n+1
n m—+n
= Z In(p;) - Z ik
i=1 k=1

(4.5)

The sum over k is simply an integral over eqn. 4.3, and since the integral over P(b, Nyj1)
dNpg db is unity (eqn. 4.1), we finally derive

n Nm
L= ) In(u) = 7 Azgata, (4.6)
i=1

model
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which is the likelihood formalism that will be used in this chapter.

In order to use the above likelihood, we will limit the simulation and data output
to the region 12.5 < log Ng1 < 14.5” and 0.5 < logb < 2.3. This ensures that the
quantities ANyy; and Ab; are not model dependent and can be safely ignored in the
inference procedure. Furthermore it ensures that eqn. 4.1 is satisfied for all models.
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Figure 4.6. The b-Ny distribution from the COS dataset at 0.06 < z < 0.16 (black circles).
An emulated P(log Ny , log b | log Ty, v, log I1y1) based on the median values of
the marginal distributions of the corresponding MCMC posterior (log Ty = 3.628,
y = 1.990 and log Iyy; = —13.115, see Figure 4.7) is shown for comparison.

The total redshift pathlength of the dataset Azy,t, Was calculated from the COS
dataset at 0.06 < z < 0.16 and is zqata = 2.058. For each model in our thermal grid we
calculated the total redshift pathlength Azy,4e to be used for Voigt profile fitting, as
well as the total number of absorbers Nio4el. During inference, we emulate the quantity
Niodel/ Azmodel Using a similar Gaussian process interpolation scheme as described in
§ 3.2.3. We constructed the emulator using smoothing lengths of 40% of our thermal
grid length in each dimension and used a white-noise term of 1073.

7 As discussed in § 2.1.3 this region in Ny is sensible, because it avoids barely detected lines at low
N1, as well as saturated lines and LLS at high Ny that are not modeled in the simulations, but are
present in the data.
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4.4.2. Parameter Estimation

We perform inference by sampling the parameter space via MCMC using the python
package emcee (Foreman-Mackey et al. 2013) which implements the affine-invariant
sampling technique (Goodman & Weare 2010) to sample the posterior probability
distribution. As discussed in 4.2, we do not treat Ap as a free parameter in this first
exploration of the low redshift data. Furthermore, we assume uniform (flat) priors for
log Ty, y and log Iy1. The algorithm is tied to the likelihood definition from eqn. 4.4
which takes into account the number of absorbers per pathlength in the data and
simulations. This means that the Nyodel/ AZmodel GP emulator is evaluated at the current
walker positions during the MCMC sampling.

logTo = 3.628+3189

y = 1.99018833

loglyy = —13.115+9388

|09 rU\/

—13.3 jecs o @meccase o

logTy y loglyy

Figure 4.7. MCMC posterior for the fit of the b-Ny distribution from the COS dataset at
0.06 < z < 0.16 (absorbers shown in Figure 4.6) based on models of P(log Ny ,
log b | log Ty, v, log Iy1) estimated using DELFI (see § 4.3). Projections of the ther-
mal grid used for generating models are shown as blue circles.
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The b-Ny distribution retrieved for the observational data is shown in Figure 4.6 as
black points. We illustrate the model P(log Nu1, logb | log Ty, y, log I111) estimated by
DELFI at the position of the median values of the MCMC posterior as a color-coded
map. The MCMC posterior distributions are presented in Figure 4.7.

We obtain log Ty = 3.628 15 1.990 12955 and log Tir = —13.11579%8 from

rain ) = 9020 _g100 >V = ~0.095 ~0.067
the marginalized distributions. In Figure 4.8 we illustrate how our measurements com-
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Figure 4.8. Comparison of our measurements (black circles) with models, simulations and other
measurements from the literature. In the upper and middle panels we plot a region
with the maximum and minimum Ty and y values in the thermal histories of all Nyx
runs that include He Il reionization (blue, the dashed line is an extrapolation of the
evolution) as well as an evolution where no He II reionization happens (orange, the
dashed line is an extrapolation of the evolution). We compare our Iy to a variety
of models and measurements in the bottom panel.
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pare with model expectations and measurements in the literature. The measurements
carried out in this work are shown as black circles. In the upper and middle panels we
plot a region with the maximum and minimum Ty and y values in the thermal histories
of all Nyx runs that include He II reionization (blue) as well as an evolution where no
He Il reionization happens (orange). These simulations were run down to z = 0.2. For
illustration, an extrapolation of the evolution is plotted as a dashed line in both cases.
The lower panel shows the evolution of I}y as a function of redshift. The predictions by
Puchwein et al. (2019) (dashed gray), Khaire & Srianand (2019) (solid gray), and Haardt
& Madau (2012) (dotted gray) are also shown, as well as the I};; measured by Khaire
et al. (2019) (red, using the power spectrum), Kollmeier et al. (2014) (green, using the
distribution of Ny1), and Gaikwad et al. (2017) (blue, using the power spectrum).

Our measurement of T is in general agreement with expectations that the IGM at
low redshift should have cooled down to a temperature at mean density below ~10000 K
due to cosmic expansion. The current precision, given the size of our dataset, indicates
that the measured Ty does not distinguish between the scenarios of HeIl reionization
and no He Il reionization. Our measurement of y is significantly higher than theoretical
expectations, which indicates a higher temperature contrast between overdensities and
underdensities in the IGM. Our measurement of Ijj1 is consistent with the prediction
by Puchwein et al. (2019) and slightly lower than the prediction by Khaire & Srianand
(2019). When comparing our measurement to Kollmeier et al. (2014), we do not see
evidence for a photon underproduction crisis in UVB models at z = 0.1.

4.5. Discussion and Summary

In this chapter, I performed a measurement of the thermal state of the IGM for the
first time using the b-Ny1 distribution at low redshift. This was achieved by applying
the new method described in Chapter 4 that is sensitive to the full shape of the b-Ny
distribution. We measure a value of T that is in agreement with theoretical expectations
but does not clearly distinguish between the scenarios of where He II reionization took
place or not. The value of y is significantly higher than expected. In this analysis I
also included the hydrogen photoionization rate I3y as a free parameter and recovered
a value that is in good agreement with current predictions. Our measurement of Iy
disfavors claims of a photon underproduction crisis in current models of the UVB.




5. Conclusions and Outlook

And in the end
The love you take
Is equal to the love you make

- Lennon/McCartney, The End 1969

In this thesis I carried out measurements of T and y, the parameters that describe the
temperature-density relation (TDR) of the intergalactic gas (introduced in Chapter 1),
as a function of redshift. These parameters were retrieved by carefully studying the
distribution of Doppler parameters b and column densities Ny (b-Ny1 distribution) of
absorbers in the Ly« forest. The approach I followed consists of comparing observa-
tional data to the b and Ny output of state of the art hydrodynamic simulations. The
methodology of each chapter can be summarized as follows:

« In Chapter 2 I presented a new version of a classic approach of measuring
thermal parameters from the b-Ny distribution, namely by quantifying the
position of the lower cutoff in the distribution. I expanded on previous work by
significantly increasing the number of observed sightlines used (75 UVES and
HIRES spectra) and by carefully calibrating the relationship between cutoff and
thermal parameters with the help of hydrodynamic simulations. Furthermore,
consideration is given to the effect of the pressure smoothing scale Ap on the
measurement uncertainties. With this method I constrained the evolution of T
and y in the redshift range 2 < z < 3.4.

+ In Chapter 3 I developed, tested and applied a new method for carrying out
measurements of thermal parameters using the b-Ny distribution that goes
beyond the cutoff and instead treats this distribution as a whole. This approach
is more accurate when compared with cutoff fitting and delivers measurements
with significantly smaller statistical uncertainties for current dataset sizes. This
method was applied to observational data at z = 2.

« In Chapter 4 I performed a measurement of the thermal state of the IGM at
z = 0.1 for the first time using the b-Nyy distribution by applying the approach
of Chapter 3 to spectra from the HST/COS instrument.
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The individual measurements of the parameters of the TDR that were obtained in
each chapter are summarized in Figure 5.1. I compare these to the range of mini-
mum/maximum values of y and Ty allowed by different thermal histories from the
Nyx hydrodynamic simulation runs that include He Il reionization (blue area). For
comparison, I show the simulated thermal evolution without He Il reionization in or-
ange. The measurements from Chapter 2 (blue, using the cutoff fitting technique) are
strongly inconsistent with a scenario where He Il reionization does not happen, due to
significantly higher Ty. Furthermore, these measurements indicate that inverted TDR
(with y < 1) are disfavored. The result of Chapter 3 (red) indicates that, if one uses
the whole shape of the b-Ny1 distribution I measure a TDR at z = 2 that is consistent
with the measurement from Chapter 2. Furthermore, one can achieve better constraints
with this novel method, even when using a fraction of the available data. In Chapter 4
(black), I carried out measurements of the thermal state of the IGM for the first time
using the b-Nyyp distribution at low redshift. This was done by using the new method
described in Chapter 3, combined with neural density estimators, that is sensitive to
the full shape of the b-Nyy; distribution. I recover a value of Tj that is in agreement
with theoretical expectations, but does not distinguish between the scenarios of He Il
reionization. The value of y is significantly higher than expected, indicating a stronger

Range Hell reion. models
20000 No Hell reionization 2:00 t
@ Chapter 2: Cutoff Fitting
® Chapter 3: Full Distribution +
@ Chapter 4: Full Distribution * + 175
16000

RRN i
Q ++4 :

4000 l 1.00

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5
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Figure 5.1. Summary of all measurements of the parameters of the TDR presented in this thesis.
The measurements performed in each chapter are plotted as circles. For comparison,
the range of minimum/maximum values of y and Tj allowed by different thermal
histories from the Nyx hydrodynamic simulation runs that include He Il reionization
is shown in blue. Additionally, the simulated thermal evolution without He Il
reionization is shown in orange.
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temperature contrast between overdensities and underdensities in the low redshift
IGM. In this analysis I also included the hydrogen photoionization rate I} as a free
parameter and recovered a value that is in good agreement with current predictions,
disfavoring claims of a photon underproduction crisis in current UVB models.

This thesis demonstrates the statistical power of the b-Ny1 distribution and shows
that it is one of the most powerful tools for studying the evolution of the thermal state
of the IGM at redshifts z < 4.

Outlook

In Chapter 3 I have presented a new method for constraining thermal parameters in the
IGM based on the full shape of the b-Ny1 distribution. This method can be expanded
to include other parameters that affect the shape of this distribution (provided that
these can be modeled in simulations). One interesting case would be to include a
measurement of the pressure-smoothing scale Ap, as only few studies were able to
measure Ap at z > 1.8 (Rorai et al. 2017b; Walther et al. 2019).

Furthermore, one could use the b-Nyy distribution in order to analyze IGM models
with additional physics such as blazar heating (Puchwein et al. 2012; Sironi & Giannios
2014; Lamberts et al. 2015) or galaxy formation feedback (Sorini et al. 2018), as these
are expected to affect the shape of absorption profiles in the Ly« forest.

This new methodology is readily applicable to the 2 < z < 4 Lya forest, as shown
by the study at z = 2, as well as to existing Hubble Space Telescope Cosmic Origins
Spectrograph (HST/COS) UV spectra (e.g. Danforth et al. 2013, 2016) that probe the
Lya forest at z < 0.5. In order to fill the redshift gap in the measurements presented
here, this approach could also be applied on STIS data that probe the Ly« forest around
z=1

The methods for conditional density estimation presented in this thesis can be applied
to any set of observable summary statistics in simulations that change smoothly with the
parameters of interest. This includes fields outside of cosmology where the comparison
between forward modeled simulations and observed data are an important tool, such
as galactic archeology, galactic dynamics or planetary disk formation.
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A. Cutoff Fitting

A.1. QSO Continuum Placement Effect on the Cutoff
Measurement

The continua of the QSOs in our sample were placed based on the regions of the spectra
that have no clear absorption and are therefore subject to uncertainty. A misplacement
of the continua could certainly have an effect on the corresponding optical depth of a
line (and therefore on the line-profile parameters). Different studies show that for high
SNR and resolution data, the statistical uncertainty of the continuum placement is of
the order of a few percent at z < 4 (Kirkman et al. 2005; Kim et al. 2007; Dall’Aglio et al.
2008; Faucher-Giguere et al. 2008b). We assume that our typical continuum uncertainty
is of the order of ~ 2% / ~ 5% for z < 3/ z > 3 sightlines.

To address the effect of continuum misplacement in our study, we analytically esti-
mate how a shift of 2% and 5% in the continuum affects the typical line in our sample.
This is done by calculating the optical depth at line center (Meiksin 2009) using eqn. 1.16
for lines with different column densities and a typical width of b = 19kms~!, and
converting it to flux at line center Fj. = exp (—7;). This flux is shifted by 2% and 5% to
mimic the effect of misplacement of the continuum; then, doing the reverse operations
and keeping b fixed, we compute the corresponding log N1 values.

As illustrated in Figure A.1, for a continuum shift of 2% the corresponding shift
in log Ny is generally smaller than the uncertainty in log Ny reported by VPFIT
within our cutoff fitting range. For a continuum misplacement of 5%, the VPFIT
uncertainty becomes comparable to the continuum misplacement effect at column
densities log(Ng1/cm™2) = 13 and exceeds it at lower Ny

Given the small effects on the column densities at lower redshift, the errors due
to continuum placement can be neglected. At lower continuum placement precision
(z > 3) this effect can influence the lower column densities, but our cutoff fitting
algorithm is likely not very sensitive to this, because it is driven by absorbers with
better constrained parameters at higher column densities.
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Figure A.1. Estimation of the relative shift in Ny caused by a misplacement of the continuum
for 2% (red solid) and 5% (red dashed) and the VPFIT error distributions for our
list of absorbers with z > 3 (blue) and z < 3 (light-blue). With a continuum
uncertainty of 2%, the effect is smaller than the typical error in Ny reported by
VPFIT. A continuum uncertainty of 5% affects column densities log Nyy; < 13.
Figure credit: Hiss et al. (2018).

A.2. Impact of Uncertainties in the Mean Flux

We describe in § 2.2 how our simulations are rescaled in terms of flux in order to
match the mean flux evolution fit F(z) from Ofiorbe et al. (2017). This rescaling is a
standard procedure for accounting for our lack of knowledge of the precise value of
the metagalactic ionizing background photoionization rate.

In Figure A.2 we show a comparison of the mean flux values inferred from our data
set (black squares), the values in Becker et al. (2013) (red) and the fit to diverse mean
flux measurements from Orforbe et al. (2017) (dashed line) which was used as a basis
for rescaling the mean flux of simulated spectra in Chapter 2. Only pixels that were
not flagged as metals, high column density absorbers, or bad pixels were used for the
calculation of the mean flux in our data. When looking at the mean flux of the data, we
observe that they scatter around the mean flux used in the simulations in the range
z = 2.0-3.0.

To motivate the fact that we do not take into account uncertainties in the mean
flux rescaling of our simulations at 2 < z < 3, we ran our measurements at z = 2.4
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Figure A.2. Comparison of the mean flux evolution from Oforbe et al. (2017) (dashed line,
used as a basis for rescaling the mock skewers in Chapter 2), the measurements by
Becker et al. (2013) (red points) and the mean flux of the data from § 2.1 at each
redshift bin. The mean flux values used in for the test in Figure A.3 are shown in
blue. Figure credit: Hiss et al. (2018).

for different values of the flux rescaling: F, i.e. our measurement, and F + 20F, where
F = 0.8136 is the value interpolated between the measurements of F by Becker et al.
(2013) at z = 2.35 and 2.45. For the purpose of being conservative, the value of o5
adopted is the error reported by Becker et al. (2013) at z = 2.35, o5 = 0.0093. These
values are plotted as blue dots in Figure A.2. The corresponding p(Tp, y) measurements
are shown in Figure A.3. Shifting F by 20 results in a negligible shift of our final results
at this redshift.

At our highest-redshift bins, z = 3.2 and 3.4 we observe a stronger discrepancy
between the mean flux of our models and data. In order to directly examine the effect of
this discrepancy on our measurements, we generated the models used in the calibration
once again, with the difference that we rescaled the optical depths to match the mean
flux values measured in the data at these redshifts. We then applied the calibration
based on these new models to our cutoff fit results. The results are shown in Figure A 4.
We observe that the calibrations at these redshifts are only slightly sensitive to this
change, as our results basically do not change.
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Figure A.3. Comparison of results at z = 2.4 for our data calibrated using simulations that
are scaled to three different mean flux values: Becker et al. (2011) mean flux (gray
filled contours), Becker et al. (2011) mean flux +20 (red contour lines), and Becker
et al. (2011) mean flux -2¢ (black contour lines). The contours correspond to the
68% and 95% confidence regions. Figure credit: Hiss et al. (2018).
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Figure A.4. Final marginalized Ty and y measurements after rescaling our models to match
the mean flux of our data at z = 3.2 and 3.4 (red) compared to our original
measurements (black). Figure credit: Hiss et al. (2018).
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A.3. Calibration Bias

In § 2.3.3 we carry out a calibration that relates the cutoff parameters by and I to the
parameters of the TDR. Figure 2.15 shows a systematic dependency of the log Typ/log by
calibration on y. The theoretically expected value of y, as well as the value we measured,
lie toward the upper end of the range used. Therefore calibrating with the mean value
of the simulations might bias our results.

In order to quantify how significant this bias can be, we generated our log by vs log Ty
calibration again, this time using models with y around the original measurements (blue
in Figure A.5). This is done to ensure that the mean y of the simulations lie in a range
comparable to our final measurements. The comparison between the measurements
of Tp with different calibrations is shown in Figure A.6. Using the whole grid biases
the results slightly towards higher temperatures at low redshift. Generally speaking,
the bias is smaller than 10. At z = 3 there is a larger discrepancy. Given that this is
the redshift where we measure the smallest value of y, the number of models that we
could use for the test (See the 6th panel of Figure A.5) is relatively small and is likely
the cause for this effect. Given the small effect we observe, we conclude that this bias is
not strong in our measurements.

A.4. The Ny -A Relation in our Simulations

In § 2.3.2 we used the Nyj1-A from Schaye (2001) in order to estimate Ny1,0= Nur(A = 1)
for the cutoff fitting procedure. In this section we will demonstrate that this relation
is reproduced in our simulations by comparing the A skewers in our simulations to
the Nip1 found by VPFIT in the corresponding flux skewers. This approach has one
complication, namely that peculiar velocities in our simulations will shift lines in
redshift space causing them to not match the density peaks in the simulations. To
overcome this problem, we follow the approach by Schaye et al. (1999) and use the
optical depth weighted density A; as a proxy for the actual overdensity field, as this
will mitigate the fact that the absorption lines are shifted in redshift space and do not
match the density field in real space.

In order to show how well our simulations reproduce the optical depth weighted
density Nyj1-A; relation, first we calculate A, = % as defined in Bolton et al. (2014)
for our simulation that uses the standard Haardt & Madau (2012) UV-background at
z = 2.4. The sum was computed over all pixel positions i in real space that have a
contribution to 7 in redshift space.

We show that our simulation presents a clear relation by plotting A; versus the
corresponding flux F = exp(—7) for all pixels. This relation is shown in Figure A.7 and
illustrates that most of the gas is following a clear A, versus flux relation, indicating
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Figure A.5. Smaller grid chosen around final y values used to test the systematic dependency
of the log by-log Ty calibration.

that A; is a good proxy for the overdensity field. To test if we reproduce eqn. 2.3 we
match A; to Ny found by VPFIT at the pixel position of the absorption line centers
(See Figure A.8 for an example of how the matching was done). The matching of Ny
and A; is shown in Figure A.9.

We plot eqn. 2.3 using the parameters Ty, I, z = 2.4 from our simulation (black
solid line). This figure illustrates that our simulations reproduce this relation very
closely. A difference of 0.14 dex is seen in Ny1,0 when comparing the analytical relation
to a linear fit to the median of the points in log A; bins. As will be shown in A.5, this
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Figure A.6. Comparison of our final measurements of Tp when using our complete model
grid calibration and when using the models with y shown in Figure A.5 in the
log by-log Ty calibration.
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Figure A.7. The relation of Flux and A; in a Nyx simulation at z = 2.4. Figure credit: José
Oriorbe).

difference does not play a role when the same Ny is applied both to the data and to
the simulations when calibrating.

We also plot this relation for another simulation in our grid at z = 2.4, with slightly
different thermal parameters (especially higher T and slightly lower Iy which are
indicated in the figure) and Iy (Figure A.10). While reproduce eqn. 2.3 reasonably well,
the difference in Ny between the relation and a linear fit to the median of the points
in log A; bins is of around 0.25 dex. The differences we would see in T and y due to a
difference in Ny of 0.25 dex, are also expected to be small (compare to the effect of
a difference of 0.2 dex in Ny, on our measurements which we will discuss in Figure
A.13).

To summarize, we quantified how the column densities of absorption profiles identi-
fied for two models in our simulations at z = 2.4 match the corresponding optical depth
weighted density. We find that we reproduce eqn. 2.3 fairly well and that the difference
between assuming the analytical form or calculating it directly from the diagram is
of the order of 0.2 dex in Ny, for the two examples. As will be discussed in the next
section, this is a difference for which the effect on Ty and y was explicitly tested and
showed to be not significant.
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A.5. Effect of Ny o on the Cutoff Measurements

The fact that we chose to use the analytic relation' from eqn. 2.3, was initially to
motivate our choice of N1 in a somewhat physical way. Afterward we found that
the choice does not matter when using our machinery, as will be shown in this section.
In principle we could have chosen a fixed Ny, value, say logNg1,0=13.2 throughout
our whole redshift range, avoiding eqn. 2.3 altogether, and the results would remain
unchanged in terms of Tj.

We argued that the choice of Ny does not affect our measurements significantly.
This is the case because we choose the same values of Ny for computing by in the
data, as well as for the by-Tj relation in the simulations. Using this relation as the basis
of the calibration will neutralize the effect of N1 in the final result. We will elaborate
on this in more detail in the text below. In the case of Rudie et al. (2012a) the choice of
Ny1o made a critical difference, as the authors in this work did not use simulations as a
basis for their calibration and instead chose a fixed analytical calibration.

The main motivation for choosing to normalize the column densities by Ny is that
it makes by-Ty calibration relation independent of y, which simplifies the calibration.
However, even if one chooses to normalize the column densities by a value which is
not exactly Nyp, the impact on our analysis would be to simply add a scatter (and
covariance with y) to the calibration.

In order to investigate the effect of the choice of Ni1¢ on our measurements, first we
calculated Ny with the analytical formula from Schaye (2001) (based on the value
of Iyy1 and temperature of our hydrodynamic simulations). The results are shown in
Figure 2.13 and in the rightmost panel of Figure 2.14. As discussed, our Nypo(z = 2.4)
from Nyx is about 0.3 dex higher than Bolton et al. (2014). As discussed in § 2.3.2, this
discrepancy can be explained by the different values of I3;; used in their simulations
and ours.

To understand the effects of N1 our inference, we compare the final Ty and y when
adopting three different Nyj1o curves. Note that in each case whatever N1 convention
is chosen is used consistently in the data as well as in the simulations:

1. Nyro based on hydrodynamic simulations (blue line in the right panel of Fig-
ure 2.14), shown in blue, i.e. our results from § 2.4.

2. Ny based on hydrodynamic simulations with an offset of +0.2 dex, shown in
light-blue.

3. Nuio based on hydrodynamic simulations with an offset of -0.2 dex, shown in

dark-blue.

INote that we explicitly show how well our simulations reproduce this relation in § A.4
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The effect of the change of N1 on the cutoff parameters is shown in Figure A.11.
By definition, higher Ny o results in higher by. As expected, the choice of Ny, being
simply a pivot point, should not affect the values of ' and therefore not y.

In Figure A.12 we illustrate how the change of + 0.2 dex in Ny affects the cutoff
fitting of our simulations, in terms of the calibration values D, C and k. Here we see
that the values D and C that parametrize the relation between log Ty and log by in the
simulations also change with the choice of N1 0. This means, that we not only have
bo(NH1,0), we also have D(Nn10) and C(Ny1p), i.e. the relations (shown in Figure 2.15)
will change with the choice of Ny . Interestingly, we see that the variance in the
calibration becomes smaller when increasing Ny 0, but this does not affect our final
results as our uncertainty in Tj is dominated by the bootstrap estimated uncertainty in
bo.

The corresponding results (cutoff plus calibration) on the thermal parameters is
shown in Figure A.13. We observe that the Tp measurements are consistent with
each other for all three conventions adopted for Ny1o. The choice of Nyio changes
the calibration factors D and C along the degeneracy direction, compensating for the
different choices of Ni1o. The applied calibration results in Figure A.13 illustrating that
the choice of N1 does not affect our final results if applied self-consistently to data
and simulations (as long as the variance in the calibration is sub-dominant in the final
error budget). In other words, the calibration compensates for the shift in Nyy.

An exact measurement of Ny1 9 would be necessary if we wanted to carry out an
absolute calibration of by, i.e. if we were directly linking the model calibrations to
something like by o V/Ty which can only be done when by actually corresponds to py.
For a Ty measurement, what we are doing currently is sufficient, as we are calibrating
a correlation between by and Tj in simulations and applying this calibration to the
data using the same Ny, i.e. not necessarily expecting by to correspond to the mean
density.

Note that the different choices of N1 lead to more or less scatter in the log Tp-log by
calibration and that the choice of Ny becomes important only if this scatter is large.
Therefore we argue that our measurements are in essence insensitive to the choice of

NH1,0.
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Figure A.8. Comparison of different physical properties of one skewer in our simulation. In
descending order: temperature, line of sight velocity, optical depth, real space
overdensity A (blue solid) compared to A; (red dashed) and the Flux skewer that
was fitted by VPFIT. The position of absorbers in redshift space with 12.5 <
log Ny < 14.5 are shown as dashed lines.
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Figure A.9. A, versus Ny relation for the simulation with thermal history using the Haardt &
Madau (2012) UVB at z = 2.4.
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Figure A.10. A versus Ny relation for a simulation with a different thermal history at z = 2.4.
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B. Modeling the Full b-Ny,
Distribution

B.1. Thermal Sensitivity Animations

In § 1.5.1 we illustrate in Figure 1.8 how changing the TDR parameters of DM-only
models affects the shape of the b-Ny1 distribution. This thesis comes with a special
feature illustrating the sensitivity of the b-Ny distribution to the parameters of the
TDR: by flipping the pages of this thesis the reader can watch two animations showing
b-Ny1 distributions (now based on the hydrodynamic simulations from § 3.4.1) as a
function of the parameters of the TDR. Flipping the pages and looking at the bottom
right plots will show an animation of the effect of changing y from 0.9 to 1.9 and back.
Flipping the pages and looking at the bottom left plots will show an animation of the
effect of changing Ty from 4300 K to 18000 K and back.

B.2. Choice of Emulation Hyperparameters

B.2.1. Emulator Smoothing Length A

To motivate the choice of h; = 0.2 for our emulator smoothing length for the DM-
only models (see § 3.2.3), we compare the true PDF for a model with log Ty = 4.128
and y = 1.4165 to the emulated PDF at the same thermal parameters using different
smoothing lengths in Figure B.1. This particular model is not included in the emulator
building process, but it is part of our test grid (see Figure 3.2), and was chosen to lie as far
away from grid points as possible. We show the true PDF, i.e. the one computed directly
from the b-Ny distribution, in the top left panel and the difference between emulated
and real PDF for different h; in the other panels. Essentially, the emulated PDF differs
substantially from the true one when choosing very small (smaller than grid separation,
i.e. emulator does not correlate neighboring models) and very large h; (factor of >3
grid separation). The emulator shows a stable performance in the intermediate range
0.03 < h; < 0.3, which implies that the choice of h; = 0.2 is adequate. Note that this
example shows the worst-case scenario where the emulated PDF is the farthest away
from the grid points and the interpolation has the highest uncertainty.
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Figure B.1. Difference between true and emulated maps for a model with log Ty = 4.128 and

y = 1.4165 (not included in the DM-only emulation grid and maximally far away
from points in the grid). The emulated PDFs were constructed from emulators
using different smoothing lengths. Using a smoothing length that is too small
results in an interpolation that does not take into account close grid points, while
a large smoothing length introduces artifacts. We observe small fluctuations in
comparison with the true PDF for intermediate 0.03 < h; < 0.3 for our DM-only
emulation scheme. Figure credit: Hiss et al. (2019).
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B.2.2. White-Noise Contribution o,

In § 3.4.1 we state that we chose the value o, = 0.01 for the hydrodynamic simulation
grid based on visual inspection, because we observed clear interpolation artifacts in
a few places inside the thermal grid when adopting no white-noise contribution. To
explore the effect of this choice, we show in Figure B.2 one example with log Tp = 3.9
and y = 1.19 that generated such artifacts. The top left panel shows the color-coded
map and contours for the choice used in this study. All other panels represent different
choices of white-noise contribution. Note that this choice of log Ty and y represents the
worst case of artifacts we encountered within the grid, and it corresponds to a location
where the interpolation covers a substantial gap in parameter space. Unfortunately,
we do not have the option of generating extra models as we did with the DM-only
simulations, i.e. the true PDF at this grid position is unknown, but Figure B.2 indicates
that (in this worst-case scenario) the general shape of the emulated b- Ny distribution
does not present artifacts for o, > 0.005 and keeps its general shape until o, is large
(> 0.1) and that the interpolation has so much freedom in the grid points that the shape
of the b-Ny distribution loses information about the thermal state of the gas.

B.3. Effect of Different Data Subsampling Methods

As stated in § 3.4.2, we chose to draw 200 absorbers randomly from the dataset from
§ 2.1 at z = 2, because the models used to construct the b-Ny distribution PDFs have a
mixed SNR with a distribution based on our data. This approach could pose a problem,
as random picking across the full dataset essentially removes correlations between
absorbers in the same spectra. We showed in § 3.3.2, using DM-only simulations,
that our inference is robust in the case of a fixed SNR and mock datasets composed
of eight randomly drawn skewers, i.e. correlations are included and the SNR does
not affect our inference test. To determine wether these effects play a role in the
measurement presented in § 3.4.3, one should investigate the effects of picking random
QSO sightlines instead of random absorbers, given that our likelihood is agnostic to
correlations between absorption lines. In the following paragraphs we will explore
both approaches.

To test wether our inference is influenced by randomly choosing absorbers, we gen-
erated another 200 realizations of 200 randomly chosen absorbers from the full dataset
and carried out the same inference as in § 3.3.1. Note that while the same absorbers are
present in different realizations, absorbers are picked without replacement such that
the same absorber does not appear more than once in each individual realization. As a
measure for how consistent the measurements of all these realizations are with each
other, given that we do not know the true value, we compare the measurements of each




140 APPENDIX B. MODELING THE FULL b-Ny; DISTRIBUTION

22

20

14
1.2

12 13 14 15 16 12 13 14 15 16 12 13 14 15 16
|O(_:]N;.”/Cm_2 IOgNH,/cm‘2 lOgNH//Cm_2
[ — [ S|

00 02 04 06 08 1.0 1.2 14 16 0.0 02 04 06 0.8 1.0 1.2 14 16 0.0 02 04 06 0.8 1.0 1.2 14 16
White Noise 0= 0.01 White Noise 0 =0.000 White Noise 0 = 0.005

logb/(km s~1)

logb/(km s~1)

12 13 14 15 16 12 13 14 15 16 12 13 14 15 16
IogNH,/cm‘z IogNH,/cm‘2 logNH,/cm‘2

[ — [ — ]
00 02 04 06 08 1.0 1.2 14 16 0.0 02 04 06 0.8 1.0 1.2 14 16 0.0 02 04 06 0.8 1.0 1.2 14 16
White Noise 0 = 0.05 White Noise 0= 0.1 White Noise 0 =1

Figure B.2. Emulated b-Ny; distribution for log Ty = 3.9 and y = 1.19 using the hydrodynamic
grid for different values of the white-noise term o,,. The emulated PDF resulting
from an emulation using our fiducial choice of o, = 0.01 is shown in the top left
panel as a color-coded map and corresponding contours. All other panels show
the b-Ny distribution, but emulated using different white-noise contributions.
The contours of our fiducial choice are shown for comparison in all panels. This
figure illustrates that allowing no freedom for the interpolation at the grid points
results in interpolation artifacts in this particular position (between grid points).
Additionally, allowing too much freedom results in loss of information about the
thermal state. Figure credit: Hiss et al. (2019).
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Figure B.3. The 10 and 20 contours for 6 measurement realizations (out of 200), each consisting
of 200 unique randomly chosen absorbers from the dataset from § 2.1 at z = 2.
The black circle illustrates the median of the measurements using the full dataset.
Figure credit: Hiss et al. (2019).

realization to the measurement using the full dataset presented in § 3.4.3. We observe
that the measurements from the full dataset (log Ty = 4.034 and y = 1.576) are within
the 10 contour of the 2D posteriors of these realizations 65% (129/200) of the time and
within the 20 contour of the 2D posterior 96% (192/200) of the time. This implies that
our inference is consistent in the limit of random realizations based on absorbers. For
illustration, the posteriors for six realizations are shown in Figure B.3. For reference we
also plot the measurement from the full dataset as a black circle.

We ran a similar test, this time choosing random QSO sightlines instead of random
absorbers. Due to metal line masking, at z = 2 each QSO in our sample contributes
with ~ 100 absorbers, which means that we would carry out a measurement using
around two sightlines each time (see discussion in § 3.3.1). To test wether we achieve
results that are consistent with the full dataset, we carried out this experiment using 11
quasars that span or nearly span the pathlength within 1.9 < z < 2.1, which results in
55 unique pairs of quasars and therefore measurement realizations. We observe that
the reference values measured using the full dataset are within the 1o contours of the
2D MCMC posteriors of these realizations about 33% (18/55) of the time. This implies
that there is some bias associated with choosing QSO sightlines randomly instead of
absorbers. Note that we do not have sufficient statistics to quantify the behavior of the
95% contours with a sample size of 55 realizations.

One possible reason for failing this inference test when choosing the pairs of QSO
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sightlines is the fact that we are choosing nonrepresentative SNR values by picking
random QSOs and comparing their b-Ny1 distributions to models that were constructed
to match the SNR distribution of the whole dataset. The proper approach to remove
a possible SNR bias would be to generate a set of models with the matching SNR for
each data subsample separately, i.e. generate a set of forward models for every quasar
pair in the example above. This approach would require applying VPFIT to our full
model grid and recreating a b-Ny1 distribution emulator for every MCMC posterior
we wish to generate. We have considered this approach, but we concluded that it
implies a significant computational effort, given that the current calculations are already
extremely resource consuming when done once. Additionally, real physical sightline-
to-sightline variations in the TDR could also contribute to the poor performance of this
inference test. If present, these variations would mean that subsampling by choosing
random absorbers essentially results in a measurement of the average TDR in that
specific subsample.
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