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Abstract 

Blood pressure is one of the vital signs and its regulation is crucial for survival. 

Several mechanisms contribute to maintain it in a physiological range: renin-angiotensin-

aldosterone system, the autonomous nervous system and specialized baroreceptors 

neurons. In this study, we demonstrate the existence of a new population of sensory 

neurons marked by TrkC and TH that innervate blood vessels and are important in the 

control of blood pressure, blood flow and heart rate. Using an inducible Cre line driven 

from the TrkC locus, we show that TrkC is expressed in 30% of DRG neurons and that a 

fourth of these neurons are TH+ and project to blood vessels. Activation of TrkC+ TH+ 

neurons leads to high blood pressure, decreased blood flow and increased heart rate 

variability. Loss of function experiments revealed that TrkC+ TH+ sensory neurons are 

crucial for life. Ablation of TrkC+ neurons results in low blood pressure, alteration of 

blood flow and increased heart rate variability. All these cardiovascular alterations lead 

ablate mice to death within 48 hours. We also demonstrate that TrkC+ neurons do not act 

directly on blood vessels, but they exert their functions through a circuit with the 

sympathetic nervous system. We thus identified a new population of sensory neurons 

involved in the regulation of blood pressure, blood flow and heart rate and we hope that 

this can lead to the development of new therapeutic strategies in the near future.  

  



 Abstrakt 

Der Blutdruck ist eines der Vitalzeichen und seine Regulation ist für das Überleben 

von entscheidender Bedeutung. Mehrere Mechanismen tragen dazu bei, es in einem 

physiologischen Bereich zu halten: Renin-Angiotensin-Aldosteron-System, das autonome 

Nervensystem und spezialisierte Barorezeptor-Neuronen. In dieser Studie zeigen wir die 

Existenz einer neuen Population von sensorischen Neuronen, die durch TrkC und TH 

markiert sind und die Blutgefäße innervieren und für die Kontrolle des Blutdrucks, des 

Blutflusses und der Herzfrequenz wichtig sind. Mit einer induzierbaren Cre-Linie, die vom 

TrkC-Locus gesteuert wird, zeigen wir, dass TrkC in 30% der DRG-Neuronen exprimiert 

wird und ein Viertel dieser Neuronen TH+ sind und in Blutgefäße projizieren. Die 

Aktivierung von TrkC+ TH+-Neuronen führt zu hohem Blutdruck, vermindertem Blutfluss 

und erhöhter Herzfrequenzvariabilität. Experimente zum Funktionsverlust ergaben, dass 

die TrkC+ TH+-Sinnesneuronen lebenswichtig sind. Die Ablation von TrkC+-Neuronen 

führt zu niedrigem Blutdruck, Blutflussänderung und erhöhter Herzfrequenzvariabilität. 

Alle diese kardiovaskulären Veränderungen führen dazu, dass Mäuse innerhalb von 48 

Stunden zum Tode gebracht werden. Wir zeigen auch, dass TrkC+-Neuronen nicht direkt 

auf Blutgefäße wirken, sondern ihre Funktionen über einen Kreislauf mit dem 

sympathischen Nervensystem ausüben. Wir haben daher eine neue Population von 

sensorischen Neuronen identifiziert, die an der Regulation des Blutdrucks, des Blutflusses 

und der Herzfrequenz beteiligt sind, und wir hoffen, dass dies in naher Zukunft zur 

Entwicklung neuer Therapiestrategien führen kann. 
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1.     Introduction 

During my PhD I focused my attention on TrkC+ neurons. While neurons 

expressing other members of the tropomyosin receptor kinases (Trk) family are fairly well 

characterised, TrkC+ neurons are the least studied. For this reason, we decided to 

investigate their role in the context of somatosensation, expecting to further characterise 

their role in proprioception and mechanosensation, as already reported in literature. 

Surprisingly, we found that a class of TrkC+ neurons projects to blood vessels and we 

demonstrated that these neurons are sensory. Gain and loss of function experiments 

revealed their importance in the regulation of blood flow and blood pressure and we proved 

that they exert their function thanks to a circuit with the sympathetic nervous system.  

In the following pages, I will provide an introduction to the different systems 

involved in blood pressure control so that our findings can be easily placed in the context 

of the state-of-the-art knowledge. 

1.1   The peripheral nervous system 

  The interaction with the environment and the ability to detect and react to different 

stimuli are fundamental for survival. The Peripheral Nervous System (PNS) allows the 

brain and spinal cord to receive information from both the external and internal 

environment and to send information to all areas of the body.  

  It was first described by Ancient Greek philosophers and physicians during the 5th 

Century BC (Lloyd, 1975) and only a century later Herophilus realised that motor nerves 

were joined to muscles and sensory nerves to organs of sensation (Staden, 1989). The 

knowledge of the PNS as we know it nowadays was mostly discovered during the 
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Renaissance and the following centuries, when the different branches of the PNS started to 

be described.  

1.1.1   The autonomic nervous system 

  The PNS can be divided into three parts: the autonomic nervous system (ANS), the 

somatic nervous system (SNS) and the enteric nervous system (ENS). The ANS regulates 

involuntary body functions like digestion, blood flow or breathing. This system can be 

further divided into two branches:  

1. The parasympathetic system helps to keep the body in a “rest and digest” state. 

Using acetylcholine (Ach) as a neurotransmitter, parasympathetic neurons decrease 

heart rate, slow breathing and reduce blood flow to muscles, keeping the organism at 

a resting state.  

2. The sympathetic system regulates the so-called “fight or flight” responses. In case 

of danger or mental stress, heart rate and blood flow to certain areas of the body, like 

muscles, increase thanks to the action of neurotransmitters like epinephrine and 

norepinephrine (NE) (vonEuler, 1946). This allows the body to respond quickly to 

situations that require an immediate action.  

1.1.1.1 Tyrosine Hydroxylase 

Tyrosine Hydroxylase (TH) is considered a classical marker for sympathetic 

neurons. It is the rate-limiting enzyme of catecholamines synthesis and it converts tyrosine 

to L-DOPA (Molinoff and Axelrod, 1971). This step is fundamental in the biosynthesis of 

dopamine, epinephrine and norepinephrine and a deficit of TH can give rise to several 

pathological conditions such as addiction, bipolar disorders and high blood pressure 

(Cousins et al., 2009; Grobecker H, 1978; Koob and Volkow, 2010). Given the importance 
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of TH role, this enzyme is very tightly regulated by transcriptional mechanisms, 

phosphorylation (Bobrovskaya et al., 2004; Dunkley et al., 2004; Saraf et al., 2010), 

negative feedbacks by catecholamines (Gordon et al., 2008; Gordon et al., 2009; Ramsey 

and Fitzpatrick, 1998) and degradation in the proteasome (Doskeland and Flatmark, 2002).  

Apart from its role in the sympathetic nervous system, TH is expressed also in a 

class of sensory neurons that act as mechanoreceptors (Li et al., 2011) that will be discussed 

with further details in the next sections of the thesis.  

1.1.2   The somatic nervous system 

The SNS has the fundamental function of carrying sensory and motor information 

to and from the central nervous system (CNS). Sensory neurons have the cell bodies located 

within the Dorsal Root Ganglia (DRG)  and are pseudounipolar: their axons branch and 

one part innervates the target organs (skin, muscles, blood vessels etc.), while the other 

terminates at the level of the spinal cord that acts as the integration port for the signals (Fig. 

1).      

 

Figure 1. Schematic of sensory neurons. 
Sensory neurons are pseudounipolar: on one side their axons innervate target organs, on 
the other they reach the spinal cord. Each DRG contains a heterogeneous group of sensory 
neurons that are able to detect different kinds of stimuli and transduce them in different 
laminae of the spinal cord. Image taken from Caspary & Anderson (Caspary and Anderson, 
2003). 
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  Sensory neurons can detect several distinct sensory modalities thanks to the 

heterogeneity of fibre types and can be broadly categorized as mechanoreceptors, 

nociceptors, proprioceptors, thermoreceptors and pruriceptors. During development, their 

specialization is controlled by several transcription factors (neurogenin1 and 2, Runx1 and 

Runx3) (Ma et al., 1999), neurotrophic growth factors such as Nerve Growth Factor (NGF), 

Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin 3 (NT-3) and 4 (NT-4) 

(Ernsberger, 2009) and by some tyrosine kinase receptors (Ret, TrkA, TrkB and TrkC) 

(Huang et al., 1999; Mu et al., 1993).  

1.1.2.1 Sensory neurons classification 

At the level of the SNS, the expression of specific tyrosine kinase receptors 

determines the development of definite neuronal populations (Mu et al., 1993). However, 

Ret, TrkA, TrkB, TrkC and their ligands have also been used as molecular markers to 

distinguish different sets of sensory neurons. Recently, Linnarsson’s group confirmed this 

by using single cell RNA sequencing to classify neurons in an unbiased way (Usoskin et 

al., 2015; Zeisel et al., 2018). Concerning sensory neurons, five main classes emerged from 

their analysis (Fig. 2): myelinated Low-Threshold Mechanoreceptors (LTMRs), 

proprioceptors, non-peptidergic and peptidergic nociceptors and unmyelinated C-LTMRs. 

All these neuronal populations express a combination of different markers that have been 

validated with immunohistochemical analysis.  
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Figure 2. Classification of sensory neurons subtypes.  
Unbiased classification of sensory neurons based on single cell RNAseq data. Five main 
classes can be identified with different subclasses (columns). For each subclass, the 
characterizing genes are indicated. Image taken from Usoskin et al. (Usoskin et al., 2015). 

 As briefly mentioned previously, TH is a marker for a subset of mechanosensitive 

sensory neurons. In particular, it is expressed in a class of C-LTMRs, the most abundant 

mechanoreceptors in hairy skin. C-LTMRs can be divided into MrgprB4+ and Vglut3+ 

neurons. Vglut3+ neurons can be further classified as TH- and TH+ (Liu et al., 2007; Lou 

et al., 2013). The first form free nerve-endings in the epidermis of the skin, while the latter, 

also characterized by the expression of Ret, form longitudinal lanceolate endings around 

most hairs and they are activated by skin indentation and slow movements across the skin 

(Li et al., 2011; Vrontou et al., 2013).  

1.1.2.2 TrkC role in sensory neurons 

 As depicted in Fig. 2, TrkC (Tropomyosin receptor kinase C) is expressed in some 

classes of myelinated mechanoreceptors, giving rise to lanceolate endings, that respond to 

hair deflection, as well as Merkel cells, essential to perceive fine textures (Funfschilling et 

al., 2004; Hasegawa and Wang, 2008). Recently a new type of TrkC+ mechanoreceptor has 
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been discovered. These myelinated neurons, defined as A field-LTMRs, are characterized 

by the concomitant expression of Ret. A single neuron can form more than 150 

circumferential endings surrounding the majority of hair follicles and is important to detect 

gentle stroking over a large area of skin. Its receptive field can be 3-4 mm2.  A field 

mechanoreceptors are insensitive to hair deflection or light indentation (Bai et al., 2015).   

In addition to its role in mechanoreceptors, the NT-3/TrkC axis is fundamental for 

proprioceptive neuron development and survival (Patapoutian and Reichardt, 2001).  NT-

3 acts as a chemoattractant for proprioceptive axons during the final phase of their target-

directed pathfinding (Genc et al., 2004). Without this neurotrophin, TrkC+ neurons extend 

their axons arriving close to their targets, but fail to innervate them.  

As for all Trk receptors, also TrkC expression in DRG is broader at early stages of 

development, short after neurogenesis. Genetic tracing of TrkC+ neurons, using a 

TrkCCre::reporter line, revealed the expression of the reporter not only in TrkC+ neurons, 

but also in most TrkB+ and some TrkA+ (Funfschilling et al., 2004).  

Despite the broader expression of TrkC during early life, mice deficient for NT-3, 

TrkC, or TrkC+ neuron-specific transcription factor Runx3 display a very well-defined 

phenotype with severe ataxia, associated with the absence of muscle spindles, and loss of 

proprioceptive neurons in DRG or their axons (Ernfors et al., 1994; Inoue et al., 2002; 

Klein et al., 1994; Levanon et al., 2002; Tessarollo et al., 1994).  

In particular, in mice lacking Runx3, TrkC+ DRG neurons do not develop, resulting 

in a loss of connectivity between sensory afferents and motor neurons at the level of the 

spinal cord. Furthermore, also muscle spindles, the muscles stretch sensors that are 

important to provide spatial information about the position of the limbs, do not develop. 

Most homozygous Runx3 knockout mice die before 2 weeks of age (Levanon et al., 2002).  
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Homozygous mice lacking TrkC or NT-3 display a similar phenotype. The 

disruption of the NT-3/TrkC axis results in a decreased number of large myelinated neurons 

in DRG and in locomotor problems and ataxia due to the loss of proprioceptive afferents 

and their peripheral sense organs (Klein et al., 1994). Interestingly, mice heterozygous for 

a mutant inactive form of NT-3 presented half of the number of muscle spindles compared 

to controls, demonstrating that the concentration of the neurotrophin is crucial during 

development (Ernfors et al., 1994). It is well known, in fact, that target areas produce 

restricted amounts of neurotrophins, giving rise to a competition between afferent neurons 

(Levi-Montalcini, 1987; Oppenheim, 1991) and this appears to be the case also for 

proprioceptive TrkC+ neurons. NT-3 is the only crucial neurotrophin for TrkC+ neurons 

development, as muscle spindles and proprioceptive neurons are rescued by the transgenic 

expression of NT-3 in mice deficient for this neurotrophin (Wright et al., 1997).  

Remarkably, homozygous mutant mice for TrkC or NT-3 exhibit a high mortality 

rate, dying mostly by postnatal day 21 (P21) (Ernfors et al., 1994; Klein et al., 1994). The 

cause of death remains uncertain, but it is highly probable that it is linked to a non-neuronal 

function of NT-3. The TrkC/NT-3 axis, in fact, is fundamental for cardiac development 

(Donovan et al., 1996; Werner et al., 2014) and thus its role in the cardiovascular system 

may explain the low survival rate.  

1.2      Vascular smooth muscle cells 

Vascular Smooth Muscle Cells (vSMCs) are a crucial structural component of 

blood vessels. They contribute to the wall integrity and are fundamental to regulate the 

vessels diameter in response to different physiological stimuli (Bakker et al., 2005; 

Hayward et al., 1995; Martinez-Lemus et al., 2009). Together with pericytes, they are 

considered mural cells and they have a very different morphology according to the type of 
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blood vessel they are wrapping around (Fig. 3) (Armulik et al., 2011). In arterioles and 

precapillary arterioles, vSMCs completely encircles the vessels, even if with a slightly 

different cyto-architecture: in the former ones, they have a spindle-shaped appearance and 

a very compact aspect, while in the latter ones the cell bodies are more visible and they 

extend more cytoplasmic processes. At the level of capillaries and venules, instead, vSMCs 

are not present and are replaced by pericytes.  

                                     

Figure 3. Mural cells cyto-architecture. 
Mural cells have a very different morphology according to the vessel type they are wrapping 
around. vSMCs are found around arterioles and precapillary arterioles, pericytes lie on the 
walls of capillaries, postcapillary venules and venules. Image adapted from Armulik et al. 
(Armulik et al., 2011). 

 During development, vSMCs originate from heterogeneous precursors (Majesky, 

2007; Tian et al., 2014). In particular, vSMCs of the kidneys, lungs and abdominal aorta 

arise from various mesodermal lineages (Wasteson et al., 2008), while vSMCs of the aortic 

arch and branchial arch arteries derive from the neural crest (Jiang et al., 2000; Xie et al., 

2013).  
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vSMCs oscillate between two distinct phenotypes: a quiescent one where vSMCs 

are differentiated and express contractile proteins like -smooth muscle actine (-SMA), 

fundamental for the contraction of blood vessels wall, and a dedifferentiated phenotype 

(Salmon et al., 2012). In this latter state, vSMCs contractile proteins are not present 

anymore, but the cells express a series of markers fundamental for proliferation, migration 

and extracellular matrix (ECM) protein synthesis (Yoshida et al., 2008). This phenotypic 

switch is crucial when repairing a vascular injury and also during some pathological 

conditions like atherosclerosis (Ross, 1993).  

vSMCs of small arteries play a crucial role in the control of blood flow and arterial 

pressure, acting on blood vessels diameter. In particular, the myogenic response is the 

contraction of small arteries in response to the increased intraluminal pressure and the 

relaxation following a pressure decrease (Bayliss, 1902; Davis, 1993). vSMCs depend on 

Ca2+ influx to start contraction (Knot and Nelson, 1998), but the mechanosensors 

component still remains elusive. Probably the myogenic mechanosensor is at the level of 

the cell membrane and the deformation induced by the increased intraluminal pressure 

determines a conformational change that initiates signal transduction events. Putative 

myogenic mechanosensors interact with the ECM, cytoskeleton or intercellular junctions 

(Hill et al., 2007). vSMCs contraction is controlled by feedback mechanisms mediated by 

the endothelium. Thanks to the presence of gap junctions, Ca2+ passes from vSMCs to 

endothelial cells hyperpolarizing them. This in turn leads to a hyperpolarization of vSMCs 

and as a consequence to the vasodilation with a feedback mechanism (Garland et al., 2017). 

Because of their crucial functions, vSMCs are involved in the pathogenesis of 

several cardiovascular diseases like atherosclerosis, restenosis or hypertension 

(Allahverdian et al., 2012; Bauters and Isner, 1997; Hill et al., 2015; Luo et al., 2012; 
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Thyberg, 1998) and diabetes (Yamazaki et al., 2018) and they are starting to be addressed 

as potential therapeutic targets (Guan et al., 2012; Han et al., 2015; Liu et al., 2015; Liu et 

al., 2017).  

Even if their functions are fairly well established, there is still a lack of specific 

markers to identify vSMCs unambiguously. Most markers used nowadays (-SMA, NG2, 

desmin, PDGFR-) detect the entire set of mural cells, namely pericytes and vSMCs (Nehls 

et al., 1992; Smyth et al., 2018).  

1.3       Blood vessels innervation 

Apart from vSMCs, another crucial component for blood flow and blood pressure 

control is blood vessels innervation. Blood vessels are innervated by sensory, sympathetic 

and parasympathetic fibres at the same time. While sensory and parasympathetic nerves 

travel along the vessels, sympathetic neurons form a mesh-like network around the vessel 

wall. Electron microscopy experiments revealed a similar number of sympathetic and 

parasympathetic fibres associated with the same vessel and showed that autonomic fibres 

are more closely associated with endothelial or smooth muscle cells compared to sensory 

fibres (Ruocco et al., 2002).  

The close association of peripheral nerves and blood vessels is defined as 

“neurovascular congruence”. Two opposite mechanisms have been proposed for its 

development: nerves follow specific factors secreted by blood vessels to reach their targets 

(Glebova and Ginty, 2005) or, in contrast, peripheral nerves grow first, guiding the 

development of arteries and arterioles (Mukouyama et al., 2005; Mukouyama et al., 2002). 

The latter hypothesis is supported by studies where mice lacking cutaneous nerves do not 

develop proper skin arteriogenesis (Mukouyama et al., 2002). Cutaneous nerves secrete the 

Cxcl12 factor that is essential for vascular remodelling (Li et al., 2013) and at a later stage 
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vascular endothelial growth factor A (VEGF-A) to trigger arterial differentiation 

(Mukouyama et al., 2005). This mechanism is crucial for peripheral arteries and arterioles 

innervating the skin, but it has still to be demonstrated for major arteries and veins 

throughout the body.  

All components of vascular innervation are crucial to regulate blood flow and blood 

pressure and act together to ensure tissue and organ homeostasis. Their functions will be 

discussed more in detail in the next sections of the thesis.  

1.4       Blood pressure and heart rate control 

Blood pressure (BP) is one of the vital signs, along with respiratory rate, heart 

rate, oxygen saturation, and body temperature. Normal resting blood pressure in humans is 

approximately 120 millimetres of mercury (mm Hg) systolic and 80 mm Hg diastolic and 

it is very important keeping it in this range. Low blood pressure (hypotension) or high 

blood pressure (hypertension) are risk factors for many diseases and affect more than 20% 

of the global population (Kearney et al., 2004).  

BP is related to cardiac output (CO) and systemic vascular resistance (SVR), 

according to the equation: 

BP = CO x SVR                                                       

Because of the steep inverse relationship between vessel radius and vascular 

resistance (r4), as described in Poiseuille’s law, pressure and flow are mainly regulated at 

the level of small resistance arteries (SRAs) that have a diameter of 50-300 m. In these 

vessels, vSMCs play a pivotal role.  

Because of its vital importance, BP is very tightly regulated and several different 

mechanisms contribute to maintain it in a physiological range.   
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1.4.1    Autonomous nervous system regulation 

The autonomic nervous system (ANS) is one of the key players in keeping BP 

homeostasis. Sympathetic and parasympathetic perivascular nerves release several 

neurotransmitters that act on endothelial cells or vSMCs to regulate vascular tone and 

contractility. In turn, endothelial cells produce different factors that influence the ANS 

effects.  

Norepinephrine 

Norepinephrine (NE) is the most abundant neurotransmitter released by 

sympathetic fibres. It acts on different adrenergic receptors that can give rise to opposite 

effects (Furchgott, 1959; Insel, 1996; Molinoff, 1984). 1 receptor, expressed on vSMCs, 

mediates the increase of Ca2+ levels leading to contraction (Colucci and Alexander, 1986; 

Colucci et al., 1984), while activation of the endothelial 2 receptor results in vasodilation 

(Tesfamariam et al., 1992; Vanhoutte and Miller, 1989). The same effect is obtained 

stimulating -adrenergic receptors on vSMCs (O'Donnell and Wanstall, 1984). NE acts 

also on -adrenergic receptors at the level of the heart, increasing heart rate and 

contractility and thus cardiac output.  

ATP  

Adenosine triphosphate (ATP) is stored in the same synaptic vesicles as NE 

(Burnstock and Kennedy, 1986) and its release leads to vasoconstriction, acting on 

purinergic receptors expressed on vSMCs and endothelial cells (Draid et al., 2005; 

Rummery et al., 2007).   
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Neuropeptide Y 

Neuropeptide Y (NPY) is a sympathetic neurotransmitter that is often released with 

NE (Ekblad et al., 1984; Hakanson et al., 1986). It induces vasoconstriction acting on 

vSMCs and endothelial cells and may also lead to vSMCs proliferation (Edvinsson, 1985).  

Acetylcholine 

Acetylcholine (ACh) is released from parasympathetic fibres that innervate both 

endothelial and vSMCs. Through the activation of muscarinic receptors 2 and 3 (M2 and 

M3) on vSMCs, Ach induces vascular contraction inhibiting the production of nitric oxide 

(NO), an endothelial-derived relaxing factor. Acting on the endothelium, instead, Ach has 

the opposite effect, regulating the release of NO and thus mediating vasodilation (Bolton 

and Lim, 1991; van Zwieten et al., 1995).   

As described before, several neurotransmitters can act on different components of 

blood vessels, but also endothelial cells can influence the ANS through the synthesis of  

factors like NO and endothelin.  

NO is produced by the endothelium in response to shear stress. It diffuses into 

vSMCs and increases cGMP concentration, resulting in vessels dilation. This mechanism 

can inhibit NE-induced vasoconstriction (Tesfamariam and Cohen, 1988; Thorin and 

Atkinson, 1994).  

Endothelin is a peptide mainly produced by endothelial cells that has a key role in 

vascular homeostasis. High levels induce vasoconstriction, enhancing vSMCs sensitivity 

to NE, while low concentrations inhibit sympathetic activity, resulting in vasodilation 

(Nakamaru et al., 1989; Tabuchi et al., 1990). 

While historically the relationship between the ANS and blood vessels has often 

been investigated, less is known about the interaction of blood vessels and sensory neurons.  
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Perivascular sensory nerves can be identified with immunostaining for calcitonin 

gene-related peptide (CGRP) and substance P (SP) (Grasby et al., 1999; Ruocco et al., 

2002). CGRP is the main neurotransmitter of these fibres. It causes vasodilation targeting 

CGRP1 receptors on the endothelium (Hagner et al., 2001) and stimulating the synthesis 

of NO. It also acts on vSMCs leading to the opening of K+ channels and thus to vascular 

dilatation (Nelson et al., 1990; Standen et al., 1989). SP seems to exert the same effect, 

increasing NO synthesis (Bolton and Clapp, 1986), but its functions remain more 

controversial, as several studies suggest that its concentration may not be sufficient to affect 

vessels diameter (Brain, 1997; Kawasaki et al., 1988).  

Although several groups are trying to unravel the complex interaction between 

sensory neurons and blood vessels, much remains to be elucidated.  

1.4.2    Baroreceptors 

 Responding to changes in BP is crucial for normal vital functions. Some 

mechanisms, that will be described in the next section, control long-term BP regulation by 

changing blood volume. To counteract BP changes within seconds and minutes, instead, 

baroreceptors are the key players. They are stretch-sensitive neurons with cell bodies 

located in nodose and petrosal ganglia that extend their peripheral projections primarily in 

the wall of the aortic arch and in each of the carotid sinuses (Kirchheim, 1976; Wehrwein 

and Joyner, 2013). The vagus and glossopharyngeal nerves convey information from the 

baroreceptors of the aortic arch and carotid sinuses respectively, to the nucleus of the 

solitary tract and from there further projections reach the medulla oblongata. Sympathetic 

and parasympathetic motor neurons from the medulla oblongata innervate heart and 

vasculature to execute the cardiovascular response initiated by the baroreceptors (Critchley 

and Harrison, 2013; Thayer et al., 2009) (Fig. 4).  
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Figure 4. Schematic of baroreceptors circuit. 
Baroreceptors located in the aortic arch and the carotid sinuses transmit information to the 
CNS through the vagus nerve and the glossopharyngeal nerve. From there, sympathetic 
and parasympathetic motor neurons arise to act on heart and vasculature to respond to 
baroreceptors signals. Image taken from nataliescasebook.com. 

If BP increases, baroreceptors nerve endings are stretched and thus baroreceptors 

increase their firing rate. The cardioinhibitory centre in the central nervous system is 

stimulated and this results in an increased vagal tone that leads to a reduced heart rate (HR). 

At the same time, the vasomotor centre is inhibited and so a reduced sympathetic tone 

results in vasodilation. Reduced HR and reduced vascular resistance lead to BP reduction 

within minutes from the initial increase. In case of low BP, baroreceptors decrease their 

firing rate causing vasoconstriction and increased heart rate that will lead to a restoration 

of physiological BP (Duschek et al., 2007; Duschek et al., 2009).  

From a molecular point of view, several ion channels have been proposed as the 

baroreceptors mechanosensors (Drummond et al., 1998; Lau et al., 2016; Lu et al., 2009; 

Sun et al., 2009).  
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ASIC2, an acid sensing ion channel required for mechanosensation in some 

cutaneous and gastrointestinal fibres (Garcia-Anoveros et al., 2001; Page et al., 2005; Price 

et al., 2000), seems implicated in baroreceptor sensitivity. ASIC2 null mice develop 

hypertension and exhibit a disrupted regulation of the circulation by the autonomic nervous 

system (Lu et al., 2009), thus supporting the hypothesis of a role in baroreceptors sensing.   

Transient receptor potential (TRP) channels are other putative baroreceptor 

mechanosensors. They play this role in several cell types and are expressed in nerve 

terminals at the level of the aortic arch (Glazebrook et al., 2005). Mice lacking TRP 

Vanilloid 1 (TRPV1) display an impaired inhibition of the sympathetic nerve activity 

following an increase in BP (Sun et al., 2009). Similarly, TRPC5 knockout mice present 

an attenuated baroreflex response and BP instability, with severe fluctuations during the 

day (Lau et al., 2016).  

However, in all the previous studies a residual baroreflex was always observed, 

implicating the presence of other mechanosensors. Recently, Zeng et al. demonstrated that 

the ion channels Piezo1 and Piezo2 are the crucial elements for baroreceptors function 

(Zeng et al., 2018). Selective knockout of both channels in nodose and petrosal ganglia 

abolished the baroreflex, i.e. a BP increase did not result in a HR decrease. Strikingly, mice 

knockout for a single channel did not display any change in baroreceptors functionality. 

Double knockout mice displayed also higher HR and BP during active times and increased 

BP variability.  

A further evidence of Piezo channels importance in baroreceptors function is the 

decrease in HR and BP following Piezo2 optogenetic stimulation in Piezo2Cre+::ChR2-

eYFP mice. The light-induced activation of Piezo2+ afferents in the aortic arch and carotid 

sinuses causes a sudden decrease in both BP and HR. These effects are attenuated by the 
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administration of a -adrenergic blocker, proving the involvement of the sympathetic 

nervous system (Zeng et al., 2018).  

1.4.2.1 Piezo channels 

 Piezo1 and Piezo2 belong to an evolutionarily conserved ion channel family. They 

are mechanically activated non-selective cation channels and their opening results in Na+ 

and Ca2+ influx (Gnanasambandam et al., 2015; Zhao et al., 2016). Piezo1 and Piezo2 have 

a 50% identity at the amino acid level and both are arranged as homotrimers to form a pore 

(Ge et al., 2015). Membrane tension activates the channel altering the lipid-protein 

interactions and thus opening the pore (Syeda et al., 2016). 

 Piezo1 is mainly expressed in non-neuronal cells, while sensory neurons and some 

specialized mechanosensory structures express Piezo2.   

 Piezo1 

 Piezo1 is crucial for cardiovascular mechanotransduction. Lack of this channel is 

incompatible with life: mice develop until mid-gestation, when blood flow should start. In 

the absence of Piezo1, endothelial cells are not able to reorganize to form new blood 

vessels, causing embryo death (Li et al., 2014; Ranade et al., 2014a).  

 Being expressed on the endothelium, Piezo1 provokes Ca2+ influx in response to 

shear stress. This in turn leads to ATP release that results in NO synthesis, causing 

vasodilation (Wang et al., 2016).  

 Piezo1 is also expressed on vSMCs. In these cells, the stretching-induced Ca2+ 

influx activates the enzyme transglutaminase that is important for vascular remodelling: 

vessel diameter decreases and the wall thickness increases in response to Piezo1 activation 

(Retailleau et al., 2015).  
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 A recent study suggested that Piezo1 is fundamental to keep high BP during 

physical activity, but not inactivity and that it has a different effect according to the specific 

vascular bed (Rode et al., 2017). During whole body physical activity, mesenteric 

resistance arteries shrink to redirect blood flow towards skeletal muscles (Joyner and 

Casey, 2015) and far from the gastrointestinal tract (Qamar and Read, 1987). In mesenteric 

arteries the activation of Piezo1 on vSMCs leads to vasoconstriction, while in saphenous 

and carotid arteries Piezo1 activation do not cause any effect, allowing the vessels to 

increase blood flow to improve physical performance (Rode et al., 2017). 

 Piezo1 activity is fundamental also to regulate red blood cells (RBCs) volume. In 

this case, Ca2+ causes the activation of a potassium channel resulting in the efflux of K+ 

and water. The dehydration and volume decrease counteract the stretch-induced activation 

of Piezo1 channels (Cahalan et al., 2015).   

 Apart from the cardiovascular system, Piezo1 role is crucial also for epithelial 

homeostasis. Knockdown studies in zebrafish showed epithelial mass formation 

(Eisenhoffer et al., 2012) and attenuated cell division in the absence of Piezo1 (Gudipaty 

et al., 2017). These pathways could be conserved across species and could be involved in 

tumorigenesis, as some mutations of the channel were identified in patients with colorectal 

adenomatous polyposis (Spier et al., 2016).   

 Recently, Piezo1 has also been implicated in the differentiation of neural stem cells. 

Lack of this channel drives the differentiation towards astrocytes, inhibiting the ability to 

differentiate into neurons (Pathak et al., 2014). 

 Piezo2 

 Unlike Piezo1, Piezo2 is mainly expressed in neuronal cells, where it is crucial to 

detect light touch and proprioception.  
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 Piezo2 is expressed in low-threshold mechanoreceptors, fundamental for the 

sensation of innocuous touch, and in Merkel cells, specialized epithelial cells essential to 

perceive fine textures (Ranade et al., 2014b; Woo et al., 2014).  

 Piezo2 is also the main mechanotransduction channel for proprioception, the ability 

to sense body position, body orientation and body and limb motion. Lack of these channels 

results in severe locomotor deficits with abnormal limb position and loss of coordination. 

In the absence of Piezo2, proprioceptive neurons decrease their stretch-induced activity, 

giving rise to this phenotype (Florez-Paz et al., 2016; Woo et al., 2015).   

 Piezo2 is expressed also in sensory neurons innervating the lungs, where it is crucial 

for an efficient respiration. Mice lacking these channels display a severe decrease of 

stretch-induced firing of lungs sensory neurons and develop respiratory distress 

(Nonomura et al., 2016).  Specific activation of Piezo2+ vagal sensory neurons, instead, 

causes apnoea. This mechanism is conserved through evolution, as some gain of function 

mutations cause a restrictive lung disease in humans (Coste et al., 2013; Okubo et al., 

2015).  

1.4.3    Renin-angiotensin-aldosterone system 

 Another key player in BP regulation is the renin-angiotensin-aldosterone system 

(RAAS). Among its various functions, it regulates the extracellular fluid volume, thus 

acting on water, blood, lymph and interstitial fluid (Navar, 2014).  

 Low BP, low plasma concentration of NaCl and sympathetic nervous system 

activity, especially through 1-adrenoreceptros, lead to the expression of renin 

(Drenjancevic-Peric et al., 2011). Renin is produced by the kidney granular cells (Kopp 

and DiBona, 1993) as a precursor and then it is proteolitically cleaved in the kidney by 

cathepsin B. Once activated, renin hydrolyses angiotensinogen, produced by the liver in 
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response to corticosteroids, estrogen or thyroid hormones (Verdecchia et al., 2008), to 

angiotensin I. Angiotensin I is then further processed into angiotensin II by the endothelial 

angiotensin-converting enzyme (ACE) (Crisan and Carr, 2000). Angiotensin II has several 

crucial functions (Peach and Dostal, 1990):  

 it causes vasoconstriction acting on vSMCs. Binding the G-protein-coupled 

receptor AT1, it activates phospholipase C leading to increased concentration of 

Ca2+ and so to vessels shrinkage and increased BP (Feener et al., 1995). 

 It influences the release of prostaglandins by the kidney, influencing renal 

vasoconstriction and renal water retention and K+ excretion (Cao et al., 2012). 

 It stimulates the secretion of aldosterone by the cortex of the adrenal gland (Yatabe 

et al., 2011). Aldosterone increases Na+ reabsorption at the level of the kidney 

proximal tubules, leading to water retention.  

 It also stimulates the posterior lobe of the pituitary gland to secrete the antidiuretic 

hormone (ADH) to reabsorb water (Sands and Layton, 2009).  

All the angiotensin II-mediated effects lead to water retention and so to an increase 

in blood volume that counteract the initial low BP.  

The RAAS is regulated also by some hormones. Thyroid hormones activate the 

system by binding to thyroid hormone response elements (REs) that increase the level of 

renin mRNA (Kobori et al., 2001). Similarly, estrogen binds to other REs regulating the 

expression of renin (Lu et al., 2016).  

1.4.4    Exercise pressor reflex 

 BP needs to adjust to several different situations during everyday life. One of the 

most common activities that leads to BP regulation is muscle exercise (Alam and Smirk, 

1937; Coote et al., 1971). All kinds of persistent exercise result in increased heart rate, BP 
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and ventilation. This is due to a reflex originating from skeletal muscles, known as “the 

exercise pressor reflex”.  During muscle contraction, several receptors are activated by 

mechanical forces or metabolic products. From a molecular point of view not much is 

known about the receptors: ATP purinergic receptors (Hanna and Kaufman, 2003), TRPV1 

or ASIC channels have been proposed as putative metabolic receptors (Li et al., 2004), but 

their molecular identity still needs to be elucidated. Despite the poorly understood 

characterization, it is known that these receptors are found on both thinly myelinated (group 

III) and unmyelinated (group IV) nerve fibres in skeletal muscles that are the afferent fibres 

responsible for the exercise pressor reflex (Kaufman et al., 1982; Tibes, 1977). While group 

III fibres are mainly mechanically sensitive, group IV predominately sense metabolic 

products (Kaufman et al., 1983). Signals from both groups of fibres reach the nucleus 

tractus solitarii and the ventrolateral medulla where they activate the sympathetic nervous 

system, resulting in increased BP and HR (Hill et al., 1996; Kaufman, 2012; Matsukawa et 

al., 1994).  

 The exercise pressor reflex behaves differently in different types of muscles. Some 

muscles contain slow twitch fibres that express oxidative enzymes, are highly vascularized 

and resistant to fatigue. Others are made of fast twitch fibres expressing glycolytic 

enzymes, are less vascularized and susceptible to fatigue. The exercise pressor reflex gives 

rise to a robust BP increase mainly in fast twitch muscles, whereas slow twitch fibres 

respond to exercise to a smaller extent (Iwamoto and Botterman, 1985). This is due to 

afferent sensory neurons that respond differently to metabolic stimuli in slow-twitch or 

fast-twitch fibres (Xing et al., 2008).  
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1.5       General aims 

 In this study we have: 

 characterized TrkC expression in the different classes of peripheral neurons. 

 Focused our attention in particular to TrkC+ sensory neurons innervating blood 

vessels. 

 Performed gain and loss of function experiments to understand their role and 

contribution in the control of blood pressure. 

 Understood the mechanism by which they exert their functions, i.e. if they directly 

act on blood vessels or if they need a circuit with other neurons.  
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2.     Materials and methods 

2.1      Generation of TrkCCreERT2 mice 

            A bacterial artificial chromosome (BAC) containing the TrkC mouse locus was 

obtained from SourceBioscience (RP23-38E14) and a modified CreERT2-pA-Frt-

Ampicillin-Frt cassette was inserted into the ATG of TrkC. The positive clones were 

confirmed by PCR and a full-length sequencing of the inserted cassette was performed. 

The ampicillin cassette was then removed using bacterial Flp and the accomplished 

removal was confirmed by sequencing analysis. Purified BAC DNA was then dissolved 

into endotoxin-free TE and prepared for intracytoplasmic sperm injection (ICSI). The 

method successfully produced offspring and the mice genotype was determined by 

performing PCR using the following primers: gcactgatttcgaccaggtt (fwd) and 

gagtcatccttagcgccgta (rev), yielding products of 408 bp. 

(Note: the above-mentioned mouse line was generated by the Heppenstall laboratory 

before my arrival at EMBL Rome). 

2.2       AvilhM3Dq-mCherry mice 

            For gain of function studies, AvilhM3Dq-mCherry mice as described previously 

(Dhandapani et al., 2018) were crossed to TrkCCreERT2 to generate TrkCCreERT2::AvilhM3Dq-

mCherry heterozygous mice. Thanks to the knock-in of hM3Dq-mCherry in the sensory 

neurons-specific Advillin locus, only TrkC+ sensory neurons will express the hM3Dq 

DREADD receptor. For all the experiments, littermates lacking Cre were used as controls. 
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2.3       Rosa26ChR2-YFP mice 

            For optogenetic experiments, TrkCCreERT2 mice were crossed to Rosa26ChR2-YFP 

mice (The Jackson Laboratory, 024109) to generate TrkCCreERT2::Rosa26ChR2-YFP mouse 

line. In these mice, the tamoxifen-inducible Cre drives the expression of 

Channelrhodopsin2-Yellow Fluorescent Protein fusion protein (ChR2-YFP), permitting 

the activation of TrkC+ cells with blue light and also their visualization thanks to the 

endogenous expression of YFP. For this reason, TrkCCreERT2:: Rosa26ChR2-YFP mice have 

also been used as a reporter line for histological characterization. 

2.4       AviliDTR mice 

            For diphtheria toxin-mediated ablation, AviliDTR mice, as described in (Stantcheva 

et al., 2016), were crossed to TrkCCreERT2 to generate TrkCCreERT2::AviliDTR heterozygous 

mice. As in the case of TrkCCreERT2::AvilhM3Dq-mCherry mice, the inducible diphtheria toxin 

receptor (iDTR) is under the Advillin promoter and so only TrkC+ sensory neurons will 

express it upon Cre recombination.  

            Triple transgenic mice were also generated by crossing TrkCCreERT2::AviliDTR to 

Rosa26ChR2-YFP mice. The obtained TrkCCreERT2::AviliDTR::Rosa26ChR2-YFP mice were used 

as a reporter line in ablation experiments, thanks to the endogenous expression of YFP in 

TrkC+ cells.  

            All mice were housed in the EMBL Epigenetics and Neurobiology Unit, Rome, 

according to the Italian legislation (Art. 9, 27 Jan 1992, no 116) under licence from the 

Italian Ministry of Health and in compliance with the ARRIVE guidelines. 
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2.5      Tamoxifen treatment 

            To induce the expression of Cre, adult mice (older than 8 weeks of age) were treated 

intraperitoneally (i.p.) with 75 mg/kg of body weight of tamoxifen (Sigma Aldrich, T5648) 

dissolved in sunflower seed oil (Sigma Aldrich, S5007) for 3 consecutive days. Mice were 

then used for experiments at least one week after the last injection. 

             In some cases, to restrict the expression of Cre to DRG neurons, 

TrkCCreERT2::Rosa26ChR2-YFP mice were treated with a single intrathecal (i.t.) injection of 90 

ng of 4-hydroxytamoxifen (4-OH Tamoxifen, Sigma Aldrich, H7904). Experiments were 

performed at least one week after the treatment. 

2.6       Immunofluorescence 

            DRG were dissected and fixed in 4% PFA overnight at 4°C. Ganglia were then 

embedded in 2% agarose (Sigma Aldrich, A9539) and cut in 50 m sections using a 

vibratome (Leica, VT1000S). After an incubation of 30 minutes with a blocking solution 

containing 5% goat serum and 0.01% Tween-20 in PBS, the sections were incubated with 

one or more primary antibodies (Table 1) in blocking solution overnight at 4°C. The next 

morning, secondary antibodies in blocking solution were added and the sections were 

incubated for 1 hour and 30 minutes at room temperature (RT). After some washes with 

PBS, slides were mounted with prolong gold (Invitrogen, P36930). 

            To examine TrkC+ peripheral afferents, mice were injected intravenously (i.v.) with 

a solution of 2% Evan’s Blue (Sigma Aldrich, E2129) in PBS. After 30 minutes, the skin 

of the hind limb was carefully dissected and fixed in 4% PFA overnight at 4°C. After a 

permeabilization step with PBS-T (0.3% TritonX in PBS) of 30 minutes at RT, the tissue 

was incubated in a blocking solution (10% goat serum in PBS-T) for 2 hours at RT and 

then with one or more primary antibodies (Table 1) in blocking solution overnight at 
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4°C. Secondary antibodies were added in blocking solution for 1 hour and 30 minutes at 

RT and then the tissue was whole-mounted using prolong gold.  

            For immunofluorescence experiments, the following primary antibodies were used: 

Antibody Concentration Supplier/catalog number 

Rabbit anti-TH 1:1000 Millipore, AB152 

Mouse anti-CGRP 1:500 Rockland, 200-301-D15 

Rabbit anti-PV 1:1000 Swant, PV27 

Isolectin GS-B4-biotin XX-

conjugate 

1:100 Invitrogen, I21414 

Rabbit anti-desmin  1:200 Abcam, Ab32362 

Table 1. List of primary antibodies used for immunohistochemical experiments. 

            All secondary antibodies were Alexa-conjugated and were used at a concentration 

of 1:1000. Streptavidin-conjugated secondary antibodies were used at a concentration of 

1:500.  

            All images were acquired using a Leica SP5 confocal microscope and analysed 

using ImageJ.  

2.7       Ex-vivo live imaging 

            Mice were injected i.v. with a solution of 2% Evan’s Blue. After 30 minutes, the 

skin of the hind limb was carefully dissected and placed in a bath chamber where 

physiological conditions were maintained (32°C, 5% CO2, synthetic interstitial fluid: 108 
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mM NaCl, 3.5 mM KCl, 0.7 mM MgSO4, 26 mM NaHCO3, 1.7 mM NaH2PO4, 1.5 mM 

Cacl2, 9.5 mM sodium gluconate, 5.5 mM glucose and 7.5 mM sucrose at a pH of 7.4).  

            In the case of TrkCCreERT2::AvilhM3Dq-mCherry mice, 50 M of Clozapine-N-oxide 

(CNO, Tocris, 4936) were added in the chamber. As a positive control, L-norepinephrine 

hydrochloride (Sigma Aldrich, 74480) was used at a concentration of 10 mM.  

            For TrkCCreERT2::Rosa26ChR2-YFP mice, the skin was stimulated for 40 seconds every 

minute for 15 minutes with the built-in 488 nm laser of the microscope we used. 

            All tissues were imaged using a Nikon Ti Eclipse spinning disk microscope. Images 

were acquired every minute for 15 minutes and analysed using ImageJ. For each blood 

vessel, the change in diameter was measured by randomly selecting three areas and 

comparing the initial diameter with the diameter at the end of the acquisition. Averaging 

the results, we obtained the mean diameter change for each vessel that was expressed as 

the percentage of the initial diameter.  

2.8       Administration of DREADD ligands 

            In order to have a systemic activation of TrkC+ neurons, TrkCCreERT2::AvilhM3Dq-

mCherry mice were injected i.p. with 2.5 mg/kg of body weight of the DREADD agonist 

compound 21 dihydrochloride (C21, Hello Bio, HB6124). 

            For a local activation, instead, 2.5 mg/kg of CNO were injected subcutaneously in 

the hind paw. 

2.9       Propranolol administration 

            The nonselective -blocker propranolol hydrochloride (Sigma Aldrich, P0884) was 

injected i.p. at a concentration of 5 mg/kg of body weight or locally with a subcutaneous 



 
_________________________________________________________________________ 

 

Identification of a new population of TrkC+ sensory neurons that regulates blood pressure. 
 

28 

injection in the hind paw at a dosage of 2.5 mg/kg. Both administrations were always 

performed immediately after the administration of the DREADD ligand. 

2.10     Diphtheria toxin injection 

            TrkCCreERT2::AviliDTR mice were injected i.p. with 40 ng/g of body weight of 

diphtheria toxin (DTX, Sigma Aldrich, D0564). All mice were monitored during the 

injection period and blood pressure, heart rate and blood flow were measured before the 

injection of DTX and 16, 24 and 32 hours after.  

2.11     Blood pressure measurements 

            Mice were anesthetized with a 2% isoflurane and medical air mixture through a 

nose cone and placed on a heat pad at 37°C. Blood pressure (BP) was measured using a 

Non-Invasive Blood Pressure (NIBP) system (AD Instruments) paired with a PowerLab 

4/20 ML840 (AD Instruments) and LabChart 4 software to acquire and analyze data. For 

each measurement, BP was registered four times per mouse with a 1-minute interval and 

the mean value was recorded. To calculate BP variation, the baseline mean value was 

subtracted to each time point measurement.  

2.12     Heart rate measurements 

            Mice were anesthetized with 2% isoflurane and kept at 37°C using a heat pad. Their 

heart rate was monitored for 30 or 60 minutes using a PhysioSuite MouseSTAT (Kent 

Scientific) and Free Serial Port Terminal 1.0.0.710 software that detected the beats per 

minute (BPM) every half a second. All data were analysed with gHRV 1.6 software 

(Rodriguez-Linares et al., 2014).  
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To measure the heart rate trend, we averaged the BPM acquired every 2 minutes 

and for each time point we subtracted the baseline BPM acquired in the 2 minutes before 

the treatment. We thus obtained a measure of the HR variation. 

The HR variability was assessed measuring the standard deviation of the NN 

intervals (SDNN; Normal-to-normal (NN) intervals are the time gaps between consecutive 

QRS complexes in a continuous ECG recording) (1996). HR variability was measured also 

by plotting the beats per minute in a Poincaré plot. The output of this analysis are two 

standard deviation (SD) parameters that indicate how stable or variable are the beat-to-beat 

events. SDNN and Poincaré plots parameters were calculated using the gHRV 1.6 software. 

2.13     Laser Speckle Contrast Imaging 

            To analyse blood flow, recordings were performed using a 780 nm, 100mW laser 

(LaserLands) at a working distance of 5 cm and a Leica Z16 Apo microscope with a high 

resolution camera (AxioCam MRM, Carl Zeiss) with 5 ms exposure time at maximum 

speed for 100 cycles. Data were then analyzed using ImageJ as previously described (Briers 

and Webster, 1996). Briefly, speckle contrast is defined as: 

                                               speckle contrast K = s / I                                                        

where s is the standard deviation of the spatial intensity variations measured in the speckle 

pattern and I is the average intensity. To obtain the speckle contrast, raw images were 

analyzed in order to get s and I and their ratio was calculated.  

            The output images were then subjected to a densitometry analysis using ImageJ. 

For each image, two areas containing a blood vessel were randomly selected. The mean 

grey value of the pixels was calculated and the background of the nearby area where the 

blood vessel was not present was subtracted. The obtained values were averaged in order 
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to get one speckle contrast value (K) per image. Then, the ratio between K before treatment 

and K at each time point was calculated. 

            For gain of function experiments, mice were anesthetized with an i.p. injection of 

90 mg/kg ketamine (Lobotor, Acme) and 0.5 mg/kg medetomidine (Domitor, Orion 

Pharma) and their hind paw was attached using double-sided tape to a plastic platform for 

better imaging. Images were acquired before the treatment with CNO to get a baseline and 

after its administration every 2 minutes for 30 minutes.  

            For ablation experiments, mice were anesthetized with 2% isoflurane and their ear 

was attached to a plastic platform with the external side up, facing the camera. Images were 

acquired before the injection of DTX and 16, 24 and 32 hours after.  

2.14     Behavioural testing 

            All behaviour experiments were performed on adult male mice (>8 weeks of age). 

Littermates not expressing Cre were used as controls. Unless otherwise specified, all tests 

were performed 1 hour after local injection of CNO. 

2.14.1  Von Frey test 

            Mice were placed on an elevated platform with a mesh floor and habituated for 30 

minutes. The hind paw was poked with calibrated von Frey filaments (North coast medical, 

NC12775-99) and the 50% withdrawal thresholds were calculated using the Up-Down 

method previously described (Chaplan et al., 1994). Briefly, the plantar side of the paw 

was stimulated by a certain filament. If mice were sensitive to that filament, the test 

continued stimulating the paw using a lower filament, while if mice did not respond a 

filament corresponding to a higher force was used. 
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            To measure the sensitivity to mechanical pain over time, the hind paw of 

TrkCCreERT2::AvilhM3Dq-mCherry mice was stimulated with a 0.02 g filament five times, 10 

minutes, 25 minutes and 40 minutes after the local injection of CNO. The percentage of 

withdrawals was calculated per each time point. 

2.14.2  Acetone drop test 

            Mice were habituated on an elevated platform with a mesh floor for 30 minutes. A 

single drop of acetone was sprayed on the hind paw with a blunt syringe making sure not 

to touch the paw. The test was repeated 5 times per mouse and the behavioural responses 

were scored as follows: 

0 = no response 

1 = paw withdrawal or single flick 

2 = repeated flicking 

3 = licking of the paw 

2.14.3  Paintbrush test 

            After a habituation of 30 minutes as described before, the hind paw of mice was 

stimulated with a paintbrush in the heel-to-toe direction. The responses were scored 

according to Duan et al. (Duan et al., 2014): 

0 = no response 

1 = paw withdrawal 

2 = flicking of the paw 

3 = licking of the paw 
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2.15     Statistical analysis 

            All statistical data are represented as standard error of the mean (SEM). Student’s 

t-test and/or 2-way repeated measures ANOVA were used and p<0.05 was considered 

statistically significant. 
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3.     Results 

3.1      Molecular characterisation of TrkC+ neurons 

3.1.1   TrkC expression in DRG 

           In order to characterize TrkC expression pattern in the DRG, we used 

TrkCCreERT2::Rosa26ChR2-YFP mice, exploiting the fact that upon administration of 

tamoxifen only TrkC+ cells will express the Yellow Fluorescent Protein (YFP) reporter.  

We found that TrkC is expressed in around 30% of all DRG neurons, marking neurons of 

both big and small size (Fig. 5A).  

           We next co-labelled DRG neurons with well-known markers of different 

populations of sensory neurons and, as expected, we found a strong co-localization of TrkC 

and parvalbumin (PV), marker for proprioceptors (Fig. 5B). 9.6% of all DRG neurons 

expressed both TrkC and PV. Instead, TrkC+ neurons were only minimally overlapping 

with nociceptors markers like CGRP (marker of peptidergic nociceptors; 1.8% overlap) 

and IB4 (marker of non-peptidergic nociceptors; 0.7% overlap) (Fig 5C-D).  
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Figure 5. Expression of TrkC in DRG neurons. 
TrkC expression was investigated using TrkCCreERT2::Rosa26ChR2-YFP reporter mouse line.  
(A) TrkC expression in DRG sections showing that 30% of all DRG neurons are TrkC+. 
The brightfield image is shown in the inset. (B-E) Immunofluorescence of DRG sections 
with markers of different neuronal populations: PV (B), CGRP (C), IB4 (D) and TH (E). 
Double positive neurons are indicated by arrows. Scale bar is 50 m. (F) Quantification of 
TrkC co-localization with different markers, expressed as percentage of the total number 
of DRG neurons.  

Surprisingly, we found that around 7% of all DRG neurons were expressing both 

TrkC and TH (Fig. 5E). TH is a marker for a subset of mechanoreceptors that are known 

to express Ret as well. To understand if TrkC+ TH+ neurons were belonging to the same 
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population, we used TrkCCreERT2::RetGFP mice, where the Green Fluorescent Protein is 

expressed only in TrkC+ Ret+ cells. Labelling of DRG neurons from TrkCCreERT2::RetGFP 

mice showed no overlap at all between TH+ and TrkC+ Ret+ neurons (Fig. 6A), 

demonstrating that TrkC+ TH+ and TrkC+ Ret+ neurons are two different populations. As 

expected, TrkC+ Ret+ neurons do not express PV either (Fig. 6B). 

 

Figure 6. TrkC marks three mutually exclusive DRG populations.  
Immunofluorescence of DRG sections from TrkCCreERT2::RetGFP mice. Labelling with anti-
TH antibodies (A) and anti-PV antibodies (B) revealed 0% overlap between these neuronal 
populations. Scale bar 50 m. 

           Taken together, these results suggest that TrkC is expressed in three different 

populations of DRG neurons: TrkC+ PV+ neurons, known to be proprioceptors, TrkC+ Ret+ 

neurons, that are a class of mechanoreceptors, and TrkC+ TH+ neurons, small neurons that 

were never described before and whose role I will try to clarify in the course of this thesis. 

These three TrkC populations are mutually exclusive: there is 0% overlap between neurons 

belonging to one population and neurons belonging to the others.  

TrkC+ TH+ neurons are significantly smaller than TrkC+ TH- neurons and slightly 

bigger than TrkC- TH+ (Fig. 7). 
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Figure 7. TrkC+ TH+ DRG neurons are medium-sized. 
TrkC+ TH+ DRG neurons have a diameter of 21.28 ± 0.52 m that is significantly bigger 
than TrkC- TH+ neurons (18.03 ± 0.24 m) and smaller than TrkC+ TH- neurons (35.43 ± 
0.62 m). (n=129 for TrkC+ TH- neurons, n=139 for TrkC- TH+ neurons, n=30 for TrkC+ 
TH+ neurons; ***p<0.001). 

 Additional characterization showed that TrkC+ TH+ neurons are more prevalent in 

lumbar DRG (5.9% of all neurons) than thoracic (1.2%) or cervical (0.7%) (Fig 8). 

 We also further analyzed a published dataset of DRG neurons single cell RNAseq 

data (Zeisel et al., 2018). We confirmed the presence of a population of TrkC+ TH+ DRG 

neurons that are unmyelinated and do not express PV or peptidergic genes. Interestingly, 

they express Piezo2, a mechanically activated channel required for light touch and 

proprioception, and Asic2, fundamental for baroreceptive function (Supplementary Fig. 1). 
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Figure 8. Differential expression of TrkC along the spinal cord. 
(A-C) Immunofluorescence of DRG sections from TrkCCreERT2::Rosa26ChR2-YFP mice 
labelled with anti-TH antibodies. TrkC expression was investigated in cervical DRG (A), 
thoracic DRG (B) and lumbar DRG (C). Double positive neurons are indicated by arrows. 
Scale bar is 50 m. (D) Quantification of the number of neurons co-expressing TrkC and 
TH in the different segments of the spinal cord, expressed as percentage of the total number 
of DRG neurons. 

3.1.2   TrkC expression in the sympathetic chain 

           Since TH is a classical marker for sympathetic neurons, we decided to investigate 

TrkC expression also in this branch of the nervous system. Using TrkCCreERT2::Rosa26ChR2-

YFP mouse line, we examined the presence of TrkC in the Superior Cervical Ganglion 

(SCG) and in the Nodose-Petrosal-Jugular ganglion (NPJ) complex. No TrkC expression 

was detected in the SCG, nor in the NPJ complex, while almost all neurons were TH+ (Fig. 

9).  
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Figure 9. TrkC expression in sympathetic neurons. 
Immunofluorescence of sections of ganglia from TrkCCreERT2::Rosa26ChR2-YFP mice. 
Labelling with anti-TH antibodies revealed a high expression of TH, but no expression of 
TrkC, neither in the superior cervical ganglion (A), nor in the NPJ complex (B). Scale bar 
50 m. 

3.1.3   TrkC expression in the skin 

           We next investigated TrkC expression in the skin using TrkCCreERT2::Rosa26ChR2-YFP 

mouse line. As expected, TrkC marked some mechanoreceptive structures, in particular 

circumferential endings surrounding the majority of hair follicles (Fig. 10A, arrows), that 

are important to detect stroking over a large area of skin.  

           Surprisingly, we found that TrkC is also expressed in vascular Smooth Muscle Cells 

(vSMCs) wrapping around blood vessels (Fig. 10A, arrowheads). The presence of TrkC in 

vSMCs is consistent throughout the body, not only in skin blood vessels (Fig. 10B), but 

also in vSMCs surrounding the aorta (Fig. 10C) or other arteries like the saphenous one 

(Fig. 10D). Interestingly, immunohistochemical analysis with anti-desmin antibodies, 

marking all mural cells, revealed that TrkC does not mark all mural cells, but only vSMCs. 

Pericytes are TrkC- (Fig. 10E). 

 Apart from being expressed in vSMCs, TrkC marks also some nerves innervating 

blood vessels (Fig. 10F). 
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Figure 10. TrkC is expressed in vSMCs and nerves projecting to blood vessels. 
All images were acquired using TrkCCreERT2::Rosa26ChR2-YFP reporter mouse line. (A) 
Whole-mount skin showing TrkC expression in circumferential endings (arrows), and 
vSMCs (arrowheads). Scale bar 100 mm. (B-D) TrkC is expressed in vSMCs throughout 
the body: skin (B), aorta (C), saphenous artery (D). Mice were injected with EB i.v. to 
visualize blood vessels. Scale bar 50 mm (B-C) or 100 mm (D). (E) TrkC marks only 
vSMCs, but not pericytes. Both vSMCs and pericytes are desmin+. (F) TrkC is expressed 
in some perivascular nerves.   

           All the results mentioned so far were achieved using TrkCCreERT2::Rosa26ChR2-YFP 

mice treated with tamoxifen i.p. Upon systemic administration of tamoxifen, all TrkC+ cells 

throughout the body express the Cre recombinase and thus the YFP reporter.  
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 Since we were more interested in TrkC+ neurons than in vSMCs, we decided to 

administer tamoxifen intrathecally (i.t.) to restrict Cre expression to DRG neurons. As a 

result of such treatment, only TrkC+ neurons express YFP, while vSMCs do not express 

the reporter anymore. At the level of DRG, TrkC expression remains unaltered 

(Supplementary fig. 2). 

 Using TrkCCreERT2::Rosa26ChR2-YFP mice treated with tamoxifen i.t., we demonstrated 

that all TrkC+ perivascular nerves express also TH. Some TrkC- TH+ nerves were also 

present around blood vessels, indicating a sympathetic innervation (Fig 11).  

 

Figure 11. TrkC+ perivascular nerves are marked by TH. 
Whole-mount skin of TrkCCreERT2::Rosa26ChR2-YFP mice treated with tamoxifen i.t. All 
TrkC+ fibres express also TH. Some nerves are TrkC- TH+ and represent sympathetic 
innervation. 

3.2      Functional characterization of TrkC+ neurons 

3.2.1   Activation of TrkC+ neurons 

 To understand the role of TrkC+ neurons, we first performed some gain of function 

experiments using TrkCCreERT2::AvilhM3Dq-mCherry mouse line. In these mice, the Cre-

dependent expression of the hM3Dq DREADD is driven from the sensory neuron-specific 

Advillin promoter and so only TrkC+ sensory neurons express the modified muscarinic 
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receptor. Upon administration of specific DREADD ligands, only TrkC+ sensory neurons 

are activated.  

 For ex-vivo live imaging experiments, we also used TrkCCreERT2::Rosa26ChR2-YFP 

mice, activating TrkC-expressing cells with optogenetic. 

3.2.1.1 TrkC+ neurons do not act directly on blood vessels 

 To understand if TrkC+ neurons have a direct action on blood vessels, we conducted 

some ex-vivo live imaging experiments. The hind limb skin from TrkCCreERT2::AvilhM3Dq-

mCherry mice was dissected and kept under physiological conditions. Adding CNO to the 

imaging chamber to activate TrkC+ neurons, we monitored what happened at the level of 

blood vessels. No statistically significant changes in vessels diameter were observed. Using 

norepinephrine (NE) as a positive control, instead, we observed a significant vessel 

shrinkage (Fig. 12A).  

 The same experiment was repeated using TrkCCreERT2::Rosa26ChR2-YFP mouse line. 

Mice treated with tamoxifen i.p. expressed the light-gated ion channel channelrhodopsin 

(ChR2) in TrkC+ neurons and vascular Smooth Muscle Cells (vSMCs). Photostimulation 

of their skin with blue light (488 nm) resulted in a statistically significant shrinkage of 

blood vessels (Fig. 12B). TrkCCreERT2::Rosa26ChR2-YFP mice injected with tamoxifen i.t., 

instead, expressing ChR2 only in TrkC+ neurons, upon stimulation with blue light did not 

display any change in blood vessels diameter (Fig. 12C). 

  These results suggest that TrkC+ neurons do not act directly on blood vessels and 

that the shrinkage we observed was due to the action of vSMCs.  
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Figure 12. TrkC+ neurons do not act directly on blood vessels. 
Ex-vivo live imaging of hind limb skin prep. (A) Stimulation of TrkC+ neurons in 
TrkCCreERT2::AvilhM3Dq-mCherry mice (red bar, n=19) do not result in blood vessels diameter 
changes compared to controls (black bar, n=22) (p>0.05). As a positive control, treating 
the skin prep with NE caused a statistically significant reduction in vessels diameter (green 
bar, n=3, **p<0.01, ***p<0.001). (B-C) Activation of TrkC+ cells with 488 light in 
TrkCCreERT2::Rosa26ChR2-YFP mice treated with tamoxifen i.p. (B) or i.t. (C). The 
statistically significant diameter change in panel B (p<0.01) is due to the contribution of 
vSMCs. Removing them (C) no change is detected anymore (p>0.05). For both 
TrkCCreERT2::Rosa26ChR2-YFP experiments, n=4. 

3.2.1.2 Systemic activation leads to increased blood pressure 

 TrkCCreERT2::AvilhM3Dq-mCherry mice were injected systemically with Compound 21 

(C21) to specifically activate TrkC+ sensory neurons. Mice were monitored for 40 minutes 

after the injection. Already after 10 minutes, blood pressure increased by around 40 mm 

Hg compared to the baseline before C21 administration and remained high for the whole 

time course measurements. Control mice injected with C21 did not show any statistically 

significant increase or decrease of blood pressure over time (Fig. 13). 

 When we repeated the experiment injecting, together with C21, 5 mg/kg of 

propranolol, a nonselective -adrenoreceptor blocker, we did not observe any statistically 

significant change in blood pressure values (Fig. 13).  
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Figure 13. Activation of TrkC+ neurons results in increased BP. 
Stimulation of TrkC+ neurons in TrkCCreERT2::AvilhM3Dq-mCherry mice causes a BP increase 
by around 40 mm Hg (red line) compared to control mice (black line) (n=6). This result is 
reverted by the administration of propranolol (yellow line) (n=6). **p<0.01, ***p<0.001. 

3.2.1.3 Systemic activation leads to increased heart rate variability 

 The heart rate (HR) of TrkCCreERT2::AvilhM3Dq-mCherry mice, treated with C21 as 

described before, was also monitored for 1 hour after the DREADD ligand administration. 

On average, the HR of TrkCCreERT2::AvilhM3Dq-mCherry mice increased compared to controls, 

becoming statistically significant between 32 and 46 minutes after the treatment with C21 

(Fig. 14A). Additionally, most TrkCCreERT2::AvilhM3Dq-mCherry mice exhibited an increase or 

decrease of around 100 beats per minute (BPM) several times during the experimental time 

course (Fig 14B), while the HR of control mice was stable.  

  The variability, and so the presence of oscillations in an electrocardiogram (ECG), 

can be assessed using different parameters, like the standard deviation of the NN intervals 

(SDNN). Normal-to-normal (NN) intervals are the time gaps between consecutive QRS 

complexes in a continuous ECG recording and their variability is an index of the overall 

HR variability. TrkCCreERT2::AvilhM3Dq-mCherry mice SDNN almost doubled after C21 
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administration, while it did not change if TrkCCreERT2::AvilhM3Dq-mCherry mice were treated 

with both C21 and propranolol (Fig. 14C).  

 Another indication of heart rate variability can be obtained by plotting the measured 

beats per minute in a Poincaré plot. The output of this analysis are two standard deviation 

(SD) parameters that indicate how stable or variable are the beat-to-beat events. As 

displayed in Fig. 14D, the scattergram of control mice is very different from the one of 

TrkCCreERT2::AvilhM3Dq-mCherry mice and the SD2 is statistically higher in the latter ones, 

indicating that their heart rate is much more variable over time (Fig. 14D).   

 These results can be reverted by the administration of propranolol. Mice injected 

i.p. with both C21 and the -blocker do not display any heart rate variability (Fig. 14 C-

D). 
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Figure 14. Activation of TrkC+ neurons causes heart rate variability. 
(A) TrkCCreERT2::AvilhM3Dq-mCherry mice treated systemically with C21 display an increased 
average HR (n=6, p<0.05) between 32 and 46 minutes after the treatment. (B) Most mice 
show sudden increases and decreases of around 100 BPM (red lines), while control mice 
are stable (black lines). Each mouse is represented by one line. (C-D) HR variability 
increases in TrkCCreERT2::AvilhM3Dq-mCherry mice after C21 treatment (red bar) compared to 
controls (black bar) (n=6, p<0.01) and it is reverted by administration of propranolol (green 
bar) (p<0.05), (C) Standard deviation of NN intervals. (D) SD1 and SD2 derived from 
Poincaré plot analysis. The upper inset shows a representative Poincaré plot of a control 
mouse treated with C21. The lower inset displays a representative Poincaré plot of a 
TrkCCreERT2::AvilhM3Dq-mCherry mouse treated with C21. 

3.2.1.4 Local activation leads to decreased blood flow 

 Apart from the systemic activation, we also activated TrkC+ sensory neurons locally 

using an injection of clozapine-N-oxide (CNO) in the palm of the hind paw. In this case, 
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we monitored the local blood flow using Laser Speckle Contrast Imaging (LSCI). This 

technique allows the visualization of blood vessels with a high spatial and temporal 

resolution. Starting from 10 minutes after CNO injection, TrkCCreERT2::AvilhM3Dq-mCherry 

mice displayed a massive blood flow reduction in the fingers and palm of the hind paw 

(Fig. 15). Controls treated with CNO, instead, did not show any change in local blood flow.  

 As in the case of systemic activation, local administration of propranolol impaired 

blood flow changes. No differences were observed in the 30 minutes following the injection 

compared to the blood flow baseline at time 0.  

 

Figure 15. TrkC+ neurons activation causes decreased blood flow. 
(A-F) Representative LSCI images depicting blood vessels in the hind paw of 
TrkCCreERT2::AvilhM3Dq-mCherry (B-C; E-F) and control mice (A; D) treated with local CNO 
(A-B; D-E) or CNO + propranolol (C; F). The upper panels (A-C) show blood flow before 
the treatment, the lower panels show blood flow after 30 minutes from local injections. (G) 
Densitometry analysis of LSCI images (n=3, ***p<0.001, **p<0.01).  

 Taken together, these results suggest that TrkC+ neurons are important in the control 

of blood pressure, heart rate and blood flow and that they act through a circuit with the 

sympathetic nervous system. 
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3.2.1.5 Local activation leads to increased sensitivity to mechanical pain 

 Upon local activation of TrkC+ sensory neurons, TrkCCreERT2::AvilhM3Dq-mCherry mice 

were subjected to a series of behavioural tests to examine if TrkC+ neurons play a role in 

different sensory modalities. One hour after CNO injection, mice showed normal responses 

to evaporative cooling of the hind paw evoked by acetone (Fig. 16A) as well as to dynamic 

mechanical stimulation of the skin achieved by brushing the plantar surface of the paw with 

a paintbrush (Fig. 16B).  

 Instead, a striking increase in sensitivity to mechanical pain was observed with the 

Von Frey test (Fig. 16C). Most TrkCCreERT2::AvilhM3Dq-mCherry mice perceived as painful the 

lightest Von Frey filament, corresponding to a force of 0.02 g. None of the controls did. 

 For this reason, we decided to measure the sensitivity to this calibrated Von Frey 

filament over time. Already 10 minutes after CNO injection in the paw, 

TrkCCreERT2::AvilhM3Dq-mCherry mice became hypersensitive and the hypersensitivity 

persisted for the whole time course of the experiment (Fig. 16D). None of the controls 

displayed a statistically significant increase in sensitivity. 
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Figure 16. TrkC+ neurons activation causes increased sensitivity to mechanical pain.  
Behavioural tests following local CNO injection showed no differences between 
TrkCCreERT2::AvilhM3Dq-mCherry (red bars) and control mice (black bars) in acetone drop test 
(n=6, p>0.05) (A) and paintbrush test (p>0.05) (B). TrkCCreERT2::AvilhM3Dq-mCherry mice 
developed hypersensitivity to mechanical pain (p<0.01) (C) that started 10 minutes after 
CNO treatment and persisted for more than 40 minutes (*p<0.05, **p<0.01) (D). 

3.2.2   Ablation of TrkC+ neurons 

 Next, to clarify the function of TrkC+ neurons, we performed some loss of function 

experiments, genetically ablating them. We used a Cre-dependent diphtheria toxin receptor 

(iDTR) knocked-in to the sensory neuron-specific Advillin locus to precisely ablate only 

TrkC+ neurons in the peripheral nervous system.   
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3.2.2.1 TrkC+ neurons are fundamental for life 

 As expected, upon systemic administration of diphtheria toxin (DTX) 

TrkCCreERT2::AviliDTR mice displayed severe locomotor deficits (Supplementary fig. 3), due 

to the fact that with this method all TrkC+ peripheral neurons are removed, including 

proprioceptors. However, surprisingly, all TrkCCreERT2::AviliDTR mice died within 48 hours 

from the injection (Fig. 17A). None of the controls was affected by DTX treatment.  

 Using triple transgenic TrkCCreERT2::AviliDTR::Rosa26ChR2-YFP mice, we confirmed 

the complete ablation of TrkC+ neurons at the level of DRG (Fig. 17C). We also noticed a 

marked reduction of TrkC+ TH+ fibres innervating blood vessels in ablated mice (Fig. 17E). 

 

Figure 17. DTX-mediated ablation of TrkC+ neurons. 
(A) Survival rate of TrkCCreERT2::AviliDTR (red line) and control mice (black line) upon 
administration of DTX (n=9). (B-E) Immunofluorescence of DRG sections (B-C) and 
whole-mount skin (D-E) from TrkCCreERT2::AviliDTR::Rosa26ChR2-YFP mice with anti-TH 
antibodies in untreated mice (B; D) and after ablation (C; E). Scale bars 50 m. 

3.2.2.2 Blood pressure decreases upon ablation 

 Already 16 hours after DTX administration, TrkCCreERT2::AviliDTR mice displayed 

a statistically lower blood pressure compared to the baseline values recorded before DTX 
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injection. This trend was confirmed at 24 hours and 32 hours post-injection (Fig. 18). 

Control mice treated with DTX showed no changes in blood pressure values over time.   

 

Figure 18. Ablation of TrkC+ neurons causes BP decrease. 
Upon DTX injection, TrkCCreERT2::AviliDTR mice display low blood pressure (red line). 
Control mice are not affected (black line) (n=6, p<0.001). 

3.2.2.3 Heart rate variability increases in ablated mice 

 After DTX treatment, the heart rate of TrkCCreERT2::AviliDTR mice was monitored 

for 30 minutes at different time points. While before DTX injection and 16 hours post-

injection TrkCCreERT2::AviliDTR mice showed a stable HR over the 30 monitored minutes, 

24 and 32 hours after the injection most TrkCCreERT2::AviliDTR mice displayed a very 

variable HR, with sudden increases or decreases of more than 80 BPM (Fig. 19). 
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Figure 19. HR oscillations following DTX treatment. 
HR fluctuations over 30 minutes before DTX injection (A), 16 hours post-injection (B), 24 
hours post-injection (C) and 32 hours post-injection (D). Each line represents a single 
mouse:  TrkCCreERT2::AviliDTR mice in red, control mice in black. 

 As for ablation experiments, HR variability was measured with the standard 

deviation of NN intervals (SDNN) and the SD extrapolated from Poincaré plots. Twenty-

four hours after DTX injection, ablated mice showed a striking increase of the heart rate 

variability, with a statistically significant increase of SDNN (Fig. 20A). SD2 derived from 

Poincaré plots showed a statistically significant HR variability at 24 hours post-injection 

that was maintained also at 32 hours (Fig. 20B). Control mice, instead, had a stable heart 

rate during the entire monitored period. 
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Figure 20. DTX-mediated ablation causes HR variability. 
(A) TrkCCreERT2::AviliDTR mice (red line) display increased HR variability compared to 
controls (black line) 24 hours after DTX injection (n=6, p<0.001). 32 hours post-treatment 
HR variability is not statistically significant (p=0.055). (B) SD1 and SD2 derived from 
Poincaré plot analysis. SD2 values show a statistically significant HR variability at 24 h 
(p<0.01) and 32 hours after DTX treatment (p<0.05) in TrkCCreERT2::AviliDTR mice 
compared to controls (n=6). The left inset shows a representative Poincaré plot of a control 
mouse treated with DTX. The right inset displays a representative Poincaré plot of a 
TrkCCreERT2::AviliDTR mouse treated with DTX. 

3.2.2.4 Alterations of blood flow during ablation 

 TrkC+ neurons ablation influenced also peripheral blood flow. Ear blood vessels 

were imaged before DTX treatment and 16, 24 and 32 hours after post-injection. At 16 

hours, TrkCCreERT2::AviliDTR mice showed a 20% decrease in blood flow that was reverted 

24 hours post-injection. Thirty-two hours after DTX treatment, instead, the blood flow in 

the ears of ablated mice increased by 20% compared to the baseline condition (Fig. 21). 
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Figure 21. TrkC+ neurons ablation causes blood flow alterations. 
(A-D) Representative LSCI images of the ear of a TrkCCreERT2::AviliDTR mouse before DTX 
treatment (A) and 16 h (B), 24 h (C) and 32 h post-injection (D). Densitometry analysis of 
LSCI images (n=6, *p<0.05, **p<0.01).   

 Taken together, these results prove that the loss of TrkC+ neurons has a strong 

impact on the physiology of the cardiocirculatory system. The ablation of such neurons 

results in fact in an increase of heart rate variability, a decrease of blood pressure and 

alterations of peripheral blood flow. The impact on the cardiocirculatory system is lethal, 

leading to mice death within 48 hours from the treatment with DTX.   
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4.      Discussion 

 Regulation of blood pressure is essential for whole body homeostasis. Amongst 

different systems, the innervation of blood vessels plays a crucial role in keeping BP in a 

physiological range. While the role of the autonomous nervous system is well established, 

with sympathetic neurons mainly mediating vasoconstriction through the action of NE and 

parasympathetic neurons causing vasodilation, less is known about sensory neurons. Apart 

from specialized baroceptors, only sensory peptidergic neurons have been described to 

innervate blood vessels.  

 In this study, we identify a new population of sensory neurons marked by TrkC and 

TH that project to blood vessels. With gain of function and ablation experiments, we 

demonstrate their importance in regulating BP, blood flow and heart rate and we show that 

they act through a circuit with the sympathetic nervous system. 

 4.1       TrkC is expressed in a population of sensory neurons innervating blood vessels 

 Sensory neurons are essential to detect several kinds of stimuli, both from the 

external and the internal environment. Their molecular heterogeneity gives rise to different 

classes of neurons that respond to specific stimuli. During development and adult life, most 

DRG neurons express one or more tyrosine kinase receptors. While Ret, TrkA and TrkB-

expressing neurons are fairly well characterized, less is known about TrkC+ neurons. For 

this reason, the Heppenstall laboratory generated a tamoxifen-inducible mouse line where 

the expression of Cre is driven by TrkC promoter. Crossing TrkCCreERT2 mice with a 

reporter line, we found that in adult mice 30% of all DRG neurons express TrkC. We 

identified three classes of TrkC+ neurons: large proprioceptors neurons co-labelled by PV, 

a subset of mechanoreceptors that express Ret as well and a new class of medium-sized 
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neurons identified by the marker TH. While TrkC+ proprioceptors and mechanoceptors 

have already been described, TrkC+ TH+ neurons have never been identified before. These 

neurons are medium-sized, unmyelinated and more prevalent in lumbar DRG compared to 

thoracic or cervical.  

 We next investigated the presence of TrkC+ TH+ neurons in other peripheral 

ganglia. While TH is highly expressed in the nodose-petrosal-jugular ganglion complex 

and in the sympathetic neurons of the superior cervical ganglia, no TrkC expression was 

detected and this is consistent with previous studies (Funfschilling et al., 2004). This means 

that TrkC+ TH+ neurons are sensory neurons that are only present in DRG.  

 Proprioceptive neurons innervate muscle spindles and Golgi tendon organs to send 

information about the position and orientation of the body in space. Mechanoreceptive 

afferents innervate different end organs in the skin to detect light touch, vibration and other 

sensory modalities. To understand the target organs of TrkC+ TH+ sensory neurons we first 

examined the skin. As expected, we found TrkC+ circumferential endings wrapping around 

most hair follicles, identifying A-field mechanoreceptors, crucial to detect stroking over 

a large area.  

 Surprisingly, we also noticed TrkC+ vascular smooth muscle cells (vSMCs) 

wrapping around blood vessels. These cells are known to regulate vessels diameter and 

play a crucial role in the control of blood flow and arterial pressure. Given their important 

role in physiological and pathological processes, it would be useful to identify them 

unambiguously. Several markers are known to recognise mural cells, but it is often difficult 

to mark only vSMCs or only pericytes. TrkC could be used as a univocal marker for vSMCs 

as it is not expressed in pericytes. The expression of TrkC in vSMCs is consistent 
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throughout the body, as it has been demonstrated in blood vessels of the skin, in the aorta 

and also in other peripheral arteries like the saphenous one.  

 TrkC not only marks vSMCs, but it is also expressed in fibres innervating blood 

vessels.  

 While the initial experiments were carried out using TrkCCreERT2 mice treated 

systemically with tamoxifen, to remove vSMCs contribution we injected the active 

metabolite of tamoxifen intrathecally. Doing so, we obtained a Cre-dependent 

recombination only in DRG neurons. At the level of the skin, we observed a clear blood 

vessels innervation by TrkC+ neurons, but no more vSMCs. Immunostaining with TH 

revealed that all TrkC+ neurons were TH+ as well, while some fibres, presumably 

sympathetic, were TrkC- TH+.   

4.2     TrkC+ neurons are involved in the control of blood pressure, heart rate and 

blood flow 

 Blood pressure regulation is crucial for survival. If BP values go out of the 

physiological range, hypotension or hypertension arise and consequently several 

cardiovascular-related diseases develop. Nowadays around a quarter of the global 

population is considered hypertense (Kearney et al., 2004) and it has been predicted that if 

hypertension was controlled in all patients, the incidence of stroke and other ischemic heart 

diseases would be reduced by more than 30% (He and MacGregor, 2003). Keeping BP in 

the physiological range is thus fundamental to improve the world health status.  

 Current treatments for hypertension include inhibitors of the renin-angiotensin-

aldosterone system such as angiotensin receptors blockers or ACE inhibitors (Investigators 

et al., 1991), diuretics (Moser and Feig, 2009), calcium channels blockers (Tamargo and 

Ruilope, 2016) and - and -receptors blockers (Cruickshank, 2017). Currently around 
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25% of patients require treatment with three or more anti-hypertensive drugs belonging to 

different classes (Dusing et al., 2017). Despite this combinational treatment, 9-18% of 

patients develop resistant hypertension, failing to decrease BP with all the proposed anti-

hypertensive drugs (Epstein, 2007). The discovery of new regulatory systems could thus 

help to develop new therapeutic strategies.  

 To understand the function of TrkC+ neurons we first investigated if they could act 

directly on blood vessels. Using ex vivo live imaging techniques, we demonstrated that 

activation of TrkC+ neurons has no direct effect on blood vessels diameter and thus we 

hypothesized a purely sensory role. Up to date, the only sensory neurons known to 

innervate blood vessels are peptidergic neurons and baroreceptors. With histology analysis 

we showed that TrkC+ neurons do not belong to these two classes, as they do not express 

CGRP and they are not present in the NPJ ganglion complex, where baroreceptors cell 

bodies are known to be found (Kirchheim, 1976). Therefore, TrkC+ neurons seem to be a 

new class of sensory neurons innervating blood vessels.  

 Gain of function experiments revealed the importance of TrkC+ neurons in the 

control of blood pressure, heart rate and blood flow. Activation of TrkC+ sensory neurons 

with a systemic injection of C21 in TrkCCreERT2 mice expressing the DREADD hM3Dq 

receptor under the sensory-specific promoter Advillin (Dhandapani et al., 2018) resulted in 

a BP increase that persisted for more than 40 minutes. Also the HR was affected by the 

activation of TrkC+ neurons: the average BPM and the HR variability increased, with 

oscillations of around 100 BPM.  

 Local activation of TrkC+ neurons in the paw showed a marked reduction in blood 

flow starting 10 minutes after CNO administration and lasting around 30 minutes.  
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 Behavioural tests revealed that TrkCCreERT2::AvilhM3Dq-mCherry mice became 

hypersensitive to mechanical pain upon local activation of TrkC+ sensory neurons in the 

paw. The hypersensitivity developed already 10 minutes after CNO treatment and persisted 

for more than 40 minutes. Other sensory modalities, like sensitivity to cold or to dynamic 

mechanical stimuli, remained unaltered.  

 Taken together, these findings suggest a role of TrkC+ neurons in the control of 

blood flow, blood pressure and heart rate. Upon activation, TrkC+ neurons send signals to 

the central nervous system that result in blood vessels shrinkage. This in turn leads to 

diminished blood flow and increased blood pressure because of a higher vascular 

resistance. Systemically also the heart rate is affected by the stimulation of TrkC+ neurons: 

BPM increase and HR variability becomes evident. Locally, the mechanical pain 

hypersensitivity may be explained by the reduced blood flow leading to tissue hypoxia. 

Lack of oxygen starts anaerobic glycolysis, resulting in decreased ATP levels and increased 

concentration of lactate (Birklein et al., 2000b). Low tissue pH could thus trigger the 

hypersensitivity with the same mechanism described in complex regional pain syndromes 

(CRPS) patients where pain has been linked to low tissue pH (Birklein et al., 2000a; Koban 

et al., 2003). Also in animal studies it has been shown that skin low pH acts on nociceptors 

exciting them and thus contributing to pain sensitivity (Steen et al., 1995) and in case of 

TrkCCreERT2 mice this could be the result of the hypoxia generated by TrkC+ neurons-

induced vessels shrinkage. 

 The importance of TrkC+ neurons in the control of blood flow, blood pressure and 

heart rate has been further demonstrated with ablation experiments. DRG specific ablation 

of TrkC+ neurons using diphtheria toxin receptor driven from the Advillin locus (Stantcheva 

et al., 2016) revealed that these neurons are fundamental for life. TrkCCreERT2::AviliDTR 
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mice treated with DTX died within 48 hours. Several studies showed that homozygous 

mutant mice for TrkC, NT-3 or TrkC+ neurons-specific transcription factor Runx3 exhibit 

a high mortality rate, probably linked to abnormal cardiac development (Ernfors et al., 

1994; Klein et al., 1994; Levanon et al., 2002). With our study, we demonstrated that TrkC+ 

neurons are crucial not only for development, but also for adult life. In fact, removing 

TrkC+ neurons in fully developed adult mice caused death. With DTX, we ablate all TrkC+ 

peripheral neurons: proprioceptors, mechanoceptors and blood vessels-innervating 

neurons. It is well known that mice lacking crucial components of proprioceptive neurons 

develop locomotor problems (Woo et al., 2015), but their survival rate is not affected. The 

same holds true in case of the ablation of some classes of mechanoreceptors: only the 

sensitivity to different stimuli is impaired, but mice survive (Dhandapani et al., 2018; 

Shields et al., 2010). Taking into consideration this evidence, we can hypothesize that 

TrkCCreERT2 mice die because they lack the crucial population of TrkC+ TH+ neurons 

innervating blood vessels. Histological characterization showed a marked reduction of TH+ 

fibres around blood vessels and lack of TrkC+ DRG neurons. Ablated mice displayed 

decreased blood pressure already after 16 hours from DTX administration and increased 

heart rate variability starting 24 hours post-injection. Also blood flow was affected by the 

ablation. While soon after DTX treatment the flow decreased, after 32 hours it became 

higher than before the ablation. Probably the organism tries to compensate the BP drop 

with an initial vasoconstriction, but with the ongoing loss of TrkC+ neurons the whole 

system is altered and by 32 hours the BP decrease cannot be contrasted anymore. We have 

thus a systemic vasodilation leading to an exacerbation of the overall condition that 

becomes fatal. Further studies are necessary to elucidate the mechanism leading to the mice 

death and the interplay between TrkC+ neurons and the different BP regulatory systems. 
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4.3     TrkC+ neurons act on blood vessels through a circuit with the sympathetic 

nervous system 

Sensory neurons transmit signals from the periphery to the central nervous system. 

Circuits with the autonomous nervous system are particularly important to regulate whole 

body homeostasis, affecting blood flow, breathing and heart rate. Sympathetic and 

parasympathetic perivascular nerves act on endothelial cells or vSMCs regulating vascular 

tone and contractility. Up to date, only specialized baroreceptors and peptidergic sensory 

neurons have been described to directly interact with blood vessels. We have demonstrated 

that a new population of sensory neurons marked by TrkC and TH innervate blood vessels 

and that they sense the vessels state, without acting directly on vessels, but sending signals 

to the central nervous system. Gain of function and loss of function experiments showed 

that these neurons affect the whole cardio-circulatory system. Given the fact that activation 

led to increased BP and reduced blood flow and that ablation resulted in low BP and 

vasodilation, we hypothesized that TrkC+ TH+ neurons act through a circuit with the 

sympathetic nervous system. Sympathetic perivascular nerves release NE, ATP and NPY 

that mostly cause vasoconstriction acting on endothelial cells and vSMCs. To investigate 

if TrkC+ neurons play their role interacting with the sympathetic nervous system, we 

repeated gain of function experiments in presence of propranolol, a nonselective -blocker 

that counteracts the sympathetic-mediated effects. Administering propranolol together with 

the DREADD ligand, TrkCCreERT2::AvilhM3Dq-mCherry mice did not develop high blood 

pressure and did not display any heart rate variability. Similarly, propranolol impaired 

changes at the level of blood flow. These results demonstrate that TrkC+ neurons exert their 

actions through the sympathetic nervous system. Although further experiments are needed 

to investigate the molecular mechanisms of this interaction, this is a first important step to 
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unravel the interplay of these systems. It is not the first time that TrkC is linked to 

catecholaminergic neurons. At the level of the central nervous system, overexpression of 

TrkC gives rise to an increased number of TH+ neurons (Dierssen et al., 2006). The NT-

3/TrkC axis is important for the development of catecholaminergic nuclei, but little is 

known about other central functions. Lack of NT-3 in the central nervous system causes 

attenuation of functional and behavioral aspects regulated by noradrenergic neurons 

(Akbarian et al., 2001), but these interplay has never been demonstrated in the peripheral 

nervous system.   

Taken together our findings demonstrate the existence of a new population of 

sensory neurons innervating blood vessels that are marked by TrkC and TH. These neurons 

are small, unmyelinated and nonpeptidergic. Gain and loss of function experiments have 

proven their importance in the control of blood pressure, blood flow and heart rate. TrkC+ 

TH+ neurons do not act directly on blood vessels, but they exert their functions through a 

circuit with the sympathetic nervous system. The activation of these neurons has also been 

linked to the development of hypersensitivity to mechanical pain. Although the molecular 

mechanisms need to be further investigated, we hypothesize that tissue hypoxia resulting 

from decreased blood flow could play an important role, together with sympathetic nervous 

system stimulation, that is known to be linked to pain and hyperalgesia in some cases 

(Drummond et al., 2001). TrkC+ neurons have also proven to be fundamental for life. 

Ablated mice died within 48 hours for cardio-circulatory problems due to low blood 

pressure and high heart rate variability. Given that TrkC+ TH+ neurons express Piezo2, we 

could hypothesize that their function is to sense the vessels state thanks to these 

mechanically activated channels and then to act through a circuit with the sympathetic 

nervous system to help keeping whole body homeostasis. Further studies are necessary to 



 
_________________________________________________________________________ 

 

Identification of a new population of TrkC+ sensory neurons that regulates blood pressure. 
 

62 

unravel the molecular mechanisms through which TrkC+ TH+ neurons act, but our findings 

are a first step in the discovery of a new system to regulate blood pressure. Given the 

prevalence of hypertension in the world population, we hope that these results one day 

could help to develop new therapeutic strategies.  
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5.      Conclusion 

In this study we identified a new population of sensory neurons projecting to blood 

vessels that are important in the control of blood pressure, blood flow and heart rate.  

In conclusion: 

1. TrkC is expressed in 30% of all DRG neurons. TrkC+ neurons can be divided 

into 3 different populations: proprioceptors, mechanoreceptors and TrkC+ TH+ 

neurons that were never described before.  

2. The new class of TrkC+ TH+ neurons innervate blood vessels. 

3. Ex-vivo live imaging experiments show that TrkC+ neurons do not act directly 

on blood vessels. 

4. Activation of TrkC+ neurons leads to high blood pressure, increased heart rate 

variability and decreased blood flow. Mice develop also an increased sensitivity 

to mechanical pain. 

5. Ablation of TrkC+ neurons causes reduced blood pressure, increased heart rate 

variability and oscillations in blood flow. Strikingly, all ablated mice die within 

48 hours. 

6. TrkC+ neurons exert their functions on blood vessels through a circuit with the 

sympathetic nervous system.  

 Further experiments need to be carried out to understand the molecular mechanisms 

of TrkC+ TH+ neurons function. Nevertheless, I hope that with this study we made a first 

step in the characterization of a new blood pressure regulatory system. Hopefully our 
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findings one day could be translated in the development of new therapeutic strategies to 

control hypertension, a pathology that affects more than a quarter of the global population.  
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7. Supplementary figures 

 

 

Supplementary figure 1. Gene expression analysis of TrkC+ TH+ neurons. 
This analysis is based on the dataset produced by single cell RNAseq in Linnarsson’s group 
(Zeisel et al., 2018). The upper panel shows a dendrogram made of 265 clusters identifying 
the different cellular populations. Using the online resource made available on 
http://mousebrain.org/, we checked the expression of genes of interest in all the 265 
clusters. We identified only one population of DRG neurons expressing TrkC and TH 
(highlighted in red). As shown in the lower panel, this population, apart from TrkC and 
TH, expresses Piezo2 and Asic2. Extremely low or no expression of NF200, PV, CGRP, 
substance P or neuropeptide Y was detected.  
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Supplementary figure 2. Differential expression of YFP reporter in 
TrkCCreERT2::Rosa26ChR2-YFP mice following tamoxifen administration i.p. or i.v. 
Systemic administration of tamoxifen via intraperitoneal (i.p.) injection results in YFP 
expression in DRG (A), vSMCs and perivascular nerves (B). Intrathecal injection of 4-OH 
tamoxifen causes Cre-driven recombination and YFP expression only in DRG neurons (C). 
At the level of blood vessels only perivascular nerves are YFP+, while vSMCs do not 
express the reporter (D). Scale bar 50 m. 
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Supplementary figure 3. Ablated mice display severe locomotor problems. 
Representative images showing TrkCCreERT2::AviliDTR (A-C) and control mice (D-F) 
treated with DTX. TrkCCreERT2::AviliDTR mice display locomotor problems with lack of 
coordination and unnatural limb positions due to loss of proprioceptors (A-C). Control 
mice are not affected by DTX (D-F). 
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8. Appendix 

In parallel with the characterization of TrkC+ sensory neurons, during my PhD I 

have also worked, together with Dr. Mariano Maffei, on the development of a new 

technology to selectively target specific cell populations to deliver enzymes, nucleic acids 

or small chemical compounds.  

Below you can find a draft of the manuscript that we are about to submit, written 

by Dr. Mariano Maffei and Dr. Paul Heppenstall, where I will be a co-first author.   

I have mainly contributed to the assessment of the system both in vitro and in vivo 

using Cre as an effector (Fig. 2 and Fig. 3) and to in vivo experiments with Cas9 (Fig. 6).  

A ligand-based system for delivery of proteins in the skin 

Mariano Maffei‡,, Chiara Morelli‡, Ellie Graham, Stefano Patriarca, Laura Donzelli, Balint 
Doleschall, Fernanda de Castro Reis, Linda Nocchi, Cora Hallie Chadick, Luc Reymond, 
Ivan Correa, Kai Johnsson, Jamie Hackett & Paul A. Heppenstall 
‡Co-authors 

INTRODUCTION 

Intracellular delivery of material is of fundamental importance for many research and 

clinical applications. The direct access to the interior of a cell enables, among others, gene 

editing (Zuris et al., 2015), modulation of gene expression (Dong et al., 2018) or ex-vivo 

therapies (Rosenberg and Restifo, 2015). Realization of those applications is commonly 

achieved by delivery of exogenous nucleic acids or virus-based methods. Despite their great 

use, those techniques often present many technical and safety drawbacks such as 

immunogenicity, risk of permanent integration (genotoxicity) or off-target effects. 

Moreover, viral vectors have limitations in cargo size narrowing their efficacy. In contrast, 

protein-based approaches substantially reduce those risks. During the last three decades, 

proteins have emerged as a new class of therapeutic drugs (Baumer et al., 2016; Leader et 

al., 2008; Mullen et al., 2014; Owens, 2017). There are two major obstacles for direct protein 

delivery: cellular internalization and the ability to reach the cytosol of the cell. To overcome 

these hurdles, proteins can be delivered via physical (e.g. electroporation, microinjection) 
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and biochemical modalities (e.g. pore-forming agents, cell-penetrating peptides) (Du et al., 

2018). However, those methodologies are often restricted to in-vitro applications or can 

expose the cell to harsh treatments that are toxic. Most importantly, they lack selectivity, a 

critical parameter for specific targeting of cells, especially in clinical applications. Thus, 

efficient intracellular delivery of functional, intact proteins still remains a major challenge, 

reason why there is an urgent need of developing alternative methods. Recent studies have 

employed a ligand-mediated approach for targeted delivery of large cargoes in-vitro. In a 

first study Chen and collaborators conjugated the human transferrin to a zinc-finger nuclease 

to perform cell-type specific genome editing (Chen et al., 2013b). Similarly, an engineered 

version of Cas9 fused to the asialoglycoprotein ligand was selectively delivered in liver cells 

trough a receptor-mediated internalization mechanism (Rouet et al., 2018). Both works 

highlighted the many advantages of using a ligand-based platform including strong 

selectivity, low cell-toxicity and better temporal control. However, the employment of this 

system in-vivo represents the next challenge.  

Skin is a highly extended organ, which is mainly constituted by keratinocytes. These cells 

constantly cycle to maintain a functional barrier that protects us against invading pathogens 

such as virus or bacteria. Moreover, keratinocytes are extremely hard to target and are not 

amenable to most of the standard delivery methodologies, thus limiting the strategies for 

effective therapies towards skin-related diseases. In this perspective, a ligand-based system 

could represent the key to get access to those cells enabling novel therapeutic applications. 

We previously reported that a SNAP-tagged non-signaling version of the cytokine 

interleukin-31 (IL-31) is able to bind primary keratinocytes via its natural heterodimeric 

receptors composed of IL31 Receptor A (IL31RA) and Oncostatin M Receptor (OSMR) 

(Nocchi et al., 2018), which are both highly expressed on keratinocytes surface (Dillon et 

al., 2004; Diveu et al., 2004). Intriguingly, this ligand was used for targeted delivery of a 

small benzylguanine-derivatized photosensitizer in the skin enabling itch control for the 

treatment of inflammatory skin diseases (Nocchi et al., 2018).  

Here we demonstrate that IL-31SNAP is translocated to the nucleus of primary murine 

keratinocytes upon internalization. We further identify a second ligand (Nerve growth factor; 

NGF) able to bind keratinocytes and be internalized through a receptor-mediated process. 

Because both SNAP-ligands migrate to the nucleus, we reasoned that conjugation of large 

functional cargoes to IL-31 or NGF might allow for their intracellular uptake in primary 
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keratinocytes. Since production of large chimeric proteins failed, we decided to use a 

chemistry-based conjugation approach to link ligand with cargoes of interest.  

In our strategy, we generate a recombinant version of the CRE recombinase fused to a CLIP-

tag, which would allow for its chemical modification with benzylcytosine derivatives 

(Gautier et al., 2008). CLIP-tagged CRE is conjugated to SNAP-tagged ligands via a 

chemical cross-linking reaction. We show that cross-linked complexes are selectively 

delivered in primary keratinocytes both in-vitro and in-vivo. Similarly, we expand our 

approach to Cas9 nuclease achieving cell-type specific gene editing including homology-

directed repair in-vivo.    

RESULTS AND DISCUSSION 

Nuclear translocation of IL31SNAP and NGFSNAP mutants in keratinocytes 

A critical step for the delivery of functional proteins is the ability to get access to the interior 

of a cell upon uptake. Based on previous observations (Nocchi et al., 2018), we aimed to 

characterize IL-31 binding and internalization process in primary keratinocytes cultures. A 

recombinant IL-31K138ASNAP (IL-31SNAP) was in-vitro labelled with a BG-derivative 

fluorophore (BG-Surface549) (Figure S1A) and applied in-vitro to primary keratinocytes 

isolated from a C57BL/6J WT mouse. Intriguingly, nuclear translocation was observed after 

2 hours incubation by live cell imaging (Figure 1A and C). Similarly, we decided to expand 

our binding studies to a second ligand, NGF, previously reported to selectively bind its 

natural receptor Tyrosine-Receptor Kinase A (TrkA) which is also highly expressed in 

murine adult keratinocytes (Botchkarev et al., 2006),(Dechant, 2001). A pain-less 

recombinant version of NGF (Shaikh et al., 2018) (NGFR121WSNAP; NGFSNAP) was 

efficiently labeled with a BG-Surface549 (Figure S1B) and applied to primary mouse 

keratinocytes in culture at an increasing range of concentrations (Figure 1A and B). After 

extended incubation, a fluorescent signal was visible inside the cells suggesting that 

NGFR121WSNAP was internalized upon binding to its natural TrkA receptor. Similar to IL-

31K138ASNAP uptake, nuclear staining was also detected for NGFR121WSNAP (Figure 1D). 

In contrast, no cellular labeling was observed when cells were treated with labelled SNAP-

tag alone or with BG-Surface549 (Figure 1B and Figure S1C and S1D). Internalization of 

SNAP-ligands was further assessed by Western blotting (Figure S1E). Thus, we 

demonstrated that IL-31K138ASNAP and NGFR121WSNAP ligands bind to primary 

keratinocytes and are successively translocated to the nucleus, enabling intracellular access. 
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Chemical cross-linking of SNAP-ligands to CLIP-Cre 

We reasoned that SNAP-ligands might allow targeted delivery and nuclear translocation of 

proteins of interest (cargoes) in primary keratinocytes. To that end, we first aimed to use 

large chimeric proteins (ligands fused to CRE recombinase). Unfortunately, production fell 

into several technical problems including extremely low yields, precipitation issues and 

failure to recover active intact proteins (data not shown). We therefore asked whether 

selective cross-linking (S-CROSS) (Gautier et al., 2009) could be employed to bind 

molecules of interest. S-CROSS is based on self-labeling tags (SNAP and CLIP), which 

covalently bind synthetic probes. S-CROSS has been already used to detect protein-protein 

interactions in living cells (Gautier et al., 2009),(Lemercier et al., 2007). A recombinant 

version of the CRE recombinase fused to an N-terminal CLIP-tag (CLIP-Cre) was produced 

in E. Coli. CLIP activity was successfully confirmed by selective labelling with a BC-

derivative fluorophore (Figure S1F). S-CROSS was next assessed in-vitro by mixing CLIP-

Cre with SNAP-ligands together with cross-linker molecules carrying both BG and BC 

moieties on their ends (Figure 1E). We first screened several cross-linker candidates in order 

to identify the synthetic probe that allowed the highest yield of S-CROSS (Table S1 and 

Figure S1G). We determined that long linkers (> 25 Å; linker #2, #3, #5, #6) were more 

effective for S-CROSS most likely because they reduce steric hindrance thus allowing the 

reactive groups (BG and BC) to be better accessible to the SNAP and CLIP tags. Particularly, 

linker #5 (Table S1) was shown to display the highest rate of S-CROSS. Finally, 

optimization of the cross-linking process was achieved through a two-step reaction (Figure 

1F): CLIP-tagged cargo was firstly saturated with the cross-linker (linker #5) and, after 

elimination of the unbound compound, it was reacted with the SNAP-ligands. Up to 60% of 

cross-linked proteins were obtained with no excess of free SNAP-ligand present in the final 

product (Figure 1G and H). 
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Figure 1. Binding of SNAP-tagged ligands to keratinocytes and selective cross-linking to CLIP-
tagged enzymes. (A) Schematic representation of keratinocytes expressing receptors of interest and 
ligands used. (B) Quantification of labeled IL-31K138ASNAP-BG549 (C) and NGFR121WSNAP-BG549 (D) 
binding to primary keratinocytes. Nuclear localization was observed after 2 hours treatment. The nuclei 
were stained with Hoechst. Scale bars, 20 m. The insets represent corresponding brightfield images. (E) 
3D structures showing selective cross-linking of NGF-SNAP and CLIP-Cre through a BG-TMR-PEG6-
BC linker (PDB ID codes: 1BET, 1KBU, 3KZY). (F) Schematic representation of S-CROSS optimized 
chemical reaction. (G) Representative Coomassie gel showing cross-linking complexes (red asterisks). 
First lane (#1) is IL-31SNAP::CLIPCRE, second lane (#2) is NGFSNAP::CLIPCRE and third lane (#3) is 
SNAP::CLIPCRE. (H) Quantification of cross-linking from Coomassie gel (G). 

Ligand-mediated selective delivery of CLIP-Cre in-vitro 

To assess whether targeted delivery of cross-linked CLIP-Cre to ligands of interest was 

functional, we applied S-CROSS complexes to primary adult murine keratinocytes cultured 

from a Rosa26LSL-ChR2-YFP reporter mice. CLIP-Cre, cross-linked in-vitro to either IL-

31K138ASNAP (IL-31SNAP::CLIPCRE; linker #5) or NGFR121WSNAP (NGFSNAP::CLIPCRE; 

linker #5) was applied to keratinocytes and after 5 days YFP expression was assessed (Figure 

2A). Upon a single in-vitro treatment, we observed 26.5% ± 4.9 expression of reporter YFP 

for IL-31SNAP::CLIPCRE complex and 20.0% ± 2.6 when cells were treated with 

NGFSNAP::CLIPCRE S-CROSS (Figure 2B). Of note, the percentage of targeted cells was 

similar to the number of keratinocytes labelled with free SNAP-ligands (Figure 1C, 1 M 

condition). Importantly, negligible YFP expression (0-3%) was detected upon incubation 

with a cross-linked binary complex lacking ligands of interest (SNAP::CLIPCRE; linker #5) 

or when CLIP-Cre alone was applied to keratinocytes (Figure 2B) suggesting that S-CROSS 

internalization is primarily driven by ligands. To confirm the selectivity of our system, we 
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sought to use a reporter mouse model lacking the Interleukin 31 receptor alpha subunit 

(IL31RA-/- Knock-out) (Nocchi et al., 2018). Rosa26LSL-ChR2-YFP mice were crossed with 

IL31RA-/- mice and primary keratinocytes were in-vitro cultured. Next, S-CROSS (IL-

31SNAP::CLIPCRE or NGFSNAP::CLIPCRE; linker #5) was applied to keratinocytes and YFP 

expression was assessed. Strikingly, no YFP activation was detected on cells treated with 

the cross-linking complex carrying the IL-31 ligand, while NGF S-CROSS displayed a 

similar YFP activation as for wild-type Rosa26LSL-ChR2-YFP keratinocytes (15.2% ± 0.8) 

(Figure 2C). Thus, SNAP-tagged ligands mediate selective intracellular delivery of CLIP-

Cre in-vitro. 

 

Figure 2. Ligand-mediated delivery of cross-linked CLIP-Cre. (A) Schematic of in-vitro keratinocytes 
treatment with cross-linked complexes. (B) Images and quantification (% of cells) of YFP positive 
primary keratinocytes from Rosa26LSL-ChR2-YFP mice 5 days after treatment with 2 M of cross-linked 
complexes or CLIP-Cre alone. Scale bars, 20 m. The insets represent corresponding brightfield images. 
Representative data from n=3 independent experiments. (C) Representative images and quantification of 
YFP positive primary keratinocytes from double transgenic Rosa26LSL-ChR2-YFP::IL31RA-/- mice 5 days after 
treatment with 2 M of cross-linked complexes or CLIP-Cre alone. Scale bars, 20 m. The insets 
represent corresponding brightfield images. Representative data from n=3 independent experiments. 

Ligand-mediated selective delivery of CLIP-Cre in-vivo 

We next investigated whether IL-31K138ASNAP or NGFR121WSNAP ligands can drive 

intracellular delivery of CLIP-Cre in-vivo in mice. S-CROSS reactions (IL-31SNAP::CLIPCRE 

or NGFSNAP::CLIPCRE; linker #5) were injected subcutaneously into the ear of Rosa26LSL-

ChR2-YFP reporter mice and after 3 weeks YFP expression was assessed by confocal 

microscopy on whole mount samples (Figure 3A). Upon a single treatment, broad YFP 
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expression was detected in keratinocytes both in mice injected with IL-31SNAP::CLIPCRE and 

NGFSNAP::CLIPCRE (Figure 3B and C). Of note, no YFP signal was observed after injection 

with SNAP::CLIPCRE complex or CLIP-Cre alone (Figure 3B and C and Figure S2A). 

Importantly, subcutaneous injection of a recombinant cell-permeant peptide fusion CRE-

recombinase protein (Peitz et al., 2002),(Nolden et al., 2006) led to a non-cell specific YFP 

expression and displayed lower efficiency compared with ligand-driven delivery (Figure 3B 

and C). We further validated cell-type specific delivery by injecting S-CROSS into the ear 

of double transgenic IL31RA knockout/reporter mice (Rosa26LSL-ChR2-YFP::IL31RA-/-). No YFP 

signal was observed upon injection with IL-31SNAP::CLIPCRE complex whereas reporter 

activation was maintained for NGF-mediated delivery of CLIP-Cre (Figure 3C and D). 

These results demonstrate that ligand-mediated delivery is functional and selective also in-

vivo. 
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Figure 3. Selective delivery of cross-linked CLIP-CRE in-vivo. (A) Schematic of in-vivo treatment 
with cross-linked complexes. (B) Quantification (number of cells per mm2) of YFP+ keratinocytes from 
Rosa26LSL-ChR2-YFP mice (C) and from double transgenic Rosa26LSL-ChR2-YFP::IL31RA-/- mice (D) 3 weeks 
after subcutaneous injection with 5 M of cross-linked complexes or TAT-Cre. The nuclei were stained 
with DAPI. Scale bars, 40 m. The insets show the zoom of representative areas. Green arrows indicate 
YFP+ keratinocytes. Red arrows indicate non-selective YFP expression. Data from n=3 independent 
experiments. 
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Chemical cross-linking of functional CLIP-Cas9 

We next expanded cross-linking approach to Cas9 nuclease. Similar to CLIP-Cre, a 

recombinant version of the Cas9 nuclease fused to an N-terminal CLIP-tag (CLIP-Cas9) was 

produced in E. Coli. Efficient labeling with a BC derivative fluorophore was observed 

indicating that the CLIP-tag was active (Figure S3A). Preliminary in-vitro digestion assay 

(IDA) (Aida et al., 2015) using Atat1 PCR product and chemically synthesized dual RNAs 

(Atat1 crRNA and trRNA) showed that   CLIP-tagged Cas9 nuclease was functional (Figure 

S3E). We further confirmed recombinant CLIP-Cas9 nuclease activity in-cell by direct 

electroporation of preassembled CLIP-Cas9::sgRNA (Atat1 crRNA and trRNA) 

ribonucleoprotein (RNP) complexes in primary keratinocytes isolated from C57BL/6J WT 

adult mice (Figure 4A). Gene editing was observed by tracking of indels by decomposition 

analysis (TIDE) (Brinkman et al., 2014) of the PCR amplicons from the Atat1 genomic locus 

and supported by T7 endonuclease 1 (T7E1) assay (Figure 4B and Figure S3B). Of note, 

CLIP-Cas9 gene editing efficiency (45.2%) was comparable to native Cas9 activity (60.2%) 

when the latter was electroporated together with sgRNA (Cas9::sgRNA) in keratinocytes 

(Figure S3C). We finally assessed selective cross-linking of ligands with recombinant CLIP-

Cas9. Similar to CLIP-Cre S-CROSS, we obtained up to 35% of cross-linked CLIP-Cas9 to 

IL-31K138ASNAP (IL-31SNAP::CLIPCas9, linker #5) and about 55% to NGFR121WSNAP 

(NGFSNAP::CLIPCas9, linker #5) (Figure S3D). Thus, validation assays showed that CLIP-

Cas9 was functional and efficiently conjugated to ligands of interest. 

Internalization of ligand cross-linked CLIP-Cas9 complexes 

Large protein complexes can suffer of poor cellular internalization. To determine whether 

Cas9 S-CROSS could be internalized in keratinocytes, CLIP-Cas9 was cross-linked in-vitro 

to either IL-31K138ASNAP (IL-31SNAP::CLIPCas9) or NGFR121WSNAP (NGFSNAP::CLIPCas9) 

using a linker carrying a TMR fluorophore (linker #6; Table S1) in order to monitor 

internalization (Figure S4A). IL-31SNAP::CLIPCas9 or NGFSNAP::CLIPCas9 were applied to 

cultured murine WT keratinocytes and after 2 hours of incubation, S-CROSS uptake was 

assessed via live cell imaging. Red fluorescence was observed inside the cells, mostly 

localized in the nuclei suggesting that the protein complex was internalized (Figure 4C and 

D, condition #1). We next investigated whether ribonucleoprotein complexes (IL-

31SNAP::CLIPCas9 or NGFSNAP::CLIPCas9 bound to sgRNA) were taken up by keratinocytes. 

Ligand cross-linked CLIP-Cas9 complexes were first incubated in-vitro with sgRNA (Atat1 



 
_________________________________________________________________________ 

 

Identification of a new population of TrkC+ sensory neurons that regulates blood pressure. 
 

87 

crRNA and trRNA; IL-31SNAP::CLIPCas9::sgRNA or NGFSNAP::CLIPCas9::sgRNA) and 

successively applied to cultured cells. Internalization was imaged live after 2 hours. 

Compared to ligand-Cas9 complexes alone, a strong reduction of the fluorescent intracellular 

signal was observed for both complexes (Figure 4C and D, condition #2), suggesting that 

addition of sgRNA affects cellular internalization. Decrease of S-CROSS internalization in 

the presence of sgRNA was further confirmed by Western blotting analysis (Figure S4B). 

To circumvent this, we thought to test two candidate peptides that could promote RNP 

internalization: Protamine and ppTG21. 

Protamine is a small positively charged peptide which binds with high affinity to nucleic 

acids and it has been previously employed for small and long RNA delivery (Baumer et al., 

2016),(Kauffman et al., 2016) (Figure S4C). ppTG21 is an endosomolytic peptide showed 

to enhance endosomal escape of Cas9 RNP complexes whilst maintaining selectivity (Rouet 

et al., 2018). Preassembled IL-31SNAP::CLIPCas9::sgRNA or NGFSNAP::CLIPCas9::sgRNA were 

incubated in-vitro with an excess of Protamine and then applied to cultured cells. After 2 

hours of treatment, an increase of fluorescent signal was observed in the nuclei of live cells 

suggesting that co-incubation with protamine can favor cellular internalization of RNP 

complexes (Figure 4C and D, condition #3). We then examined S-CROSS::sgRNA complex 

internalization in the presence of ppTG21. Preassembled IL-31SNAP::CLIPCas9::sgRNA or 

NGFSNAP::CLIPCas9::sgRNA were co-incubated in-vitro with 30 molar equivalent of ppTG21 

peptide. Next, cultured cells were treated for 2 hours and imaged live. Compared to 

protamine, ppTG21 did not improve RNP internalization (Figure 4C and D condition #4). 

Importantly, negligible internalization was observed in the absence of ligand when TMR-

labelled CLIP-Cas9 (CLIP-Cas9 + linker #6) was incubated with cultured cells with or 

without sgRNA and in presence of Protamine or ppTG21 (Figure S4D and S4E, conditions 

#1-4).  

Finally, we assessed in-cell gene editing (Atat1 locus) using ligand-Cas9 complexes 

delivered under the conditions described above. No detectable gene editing was observed 

for both ligand cross-linked CLIP-Cas9 RNP complexes supporting the observation that the 

presence of sgRNA can interfere with internalization mechanisms (Figure S4F). Although 

co-incubation with Protamine suggested favoring internalization, no gene editing was 

detected. We therefore hypothesized that Protamine sequesters the sgRNA making RNP 

complexes unable to edit the target gene.  
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Figure 4. CLIP-Cas9 activity and internalization in keratinocytes. (A) Schematic of CLIP-
Cas9::sgRNA electroporation strategy. (B) Indel spectrum determined by TIDE of primary keratinocytes 
electroporated with CLIP-Cas9::sgRNA targeting the Atat1 gene. The inset show T7 endonuclease 1 assay 
performed on genomic DNA from electroporated keratinocytes. t.e.= total efficiency. (C) Quantification 
(% cells) and representative images (D) of TMR positive cells upon 2 hours treatment with 2 M of ligand 
cross-linked Cas9 (#1 no sgRNA; #2 with sgRNA; #3 with sgRNA + Protamine; #4 with sgRNA + 
ppTG21). Nuclei were stained with Hoechst. Scale bars, 20 m.  

Ligand-mediated delivery of CLIP-Cas9 in-vitro 

We have shown that single guide RNA affects internalization thus limiting efficacy. 

However, ligands efficiently delivered CLIP-Cas9 in cells when the guide was absent 

(Figure 4C and D, condition #1). We therefore investigate whether ligand cross-linked CLIP-

Cas9 could allow for cell-targeted gene editing in keratinocytes already expressing the 

sgRNA of interest. To achieve this, adult primary keratinocytes were isolated from a 

C57BL/6J WT mouse and, prior to culturing, electroporated with a plasmid encoding for a 

Blue Fluorescent Protein (BFP) and an enhanced single guide RNA driven by U6 promoter 

(U6-sgRNA) (Chen et al., 2013a) targeting the Atat1 locus (Figure 5A). After 36 hour, BFP 
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expression was assessed by live imaging. Electroporation efficiency was further verified by 

fluorescence activated cell sorting (FACS) indicating that 10% of the cells expressed the 

BFP reporter. Next, CLIP-Cas9 was cross-linked to either IL-31K138ASNAP (IL-

31SNAP::CLIPCas9) or NGFR121WSNAP (NGFSNAP::CLIPCas9) in-vitro and applied to transfected 

keratinocytes. S-CROSS was carried out using 3 different cross-linkers (linker #3, #5 and 

#6, Table S1). In parallel, electroporated cells were also treated with IL-31SNAP::CLIPCas9 or 

NGFSNAP::CLIPCas9 cross-linking (linker #3, #5 and #6, Table S1) in the presence of 30 molar 

equivalent of ppTG21 peptide. Indeed, live imaging showed that co-incubation with ppTG21 

enhanced ligand cross-linked Cas9 internalization in the absence of sgRNA while no uptake 

was observed for TMR-labelled CLIP-Cas9 (Linker #6) in the presence of the endosomolytic 

peptide. After treatment, BFP positive keratinocytes were sorted by flow cytometry and 

genomic DNA was extracted to assess genome editing of target of interest (Atat1) (Figure 

5A). Gene editing was observed with comparable efficiency across ligands at significantly 

greater levels than under control conditions (6.2%  0.5 indels for IL-31SNAP::CLIPCas9; 6.6% 

 2.4 indels for NGFSNAP::CLIPCas9; 1.9%  0.2 indels for control conditions; Figure 5B). No 

substantial gene editing improvement was detected in presence of ppTG21 peptide (6.6%  

3.0 indels for IL-31SNAP::CLIPCas9; 11.8%  4.9 indels for NGFSNAP::CLIPCas9) except for 

NGFSNAP::CLIPCas9 with linker #5 (19.8% indels) (Figure 5B).  

Ligand-mediated selective delivery of CLIP-Cas9 allows for HDR in-vitro 

We next investigated whether ligand-mediated delivery of CLIP-Cas9 could also be 

employed for precise sequence replacement through homology-directed repair (HDR) 

(Sander and Joung, 2014) mechanism. HDR needs the employment of a guide RNA and a 

donor DNA template that must be present together with Cas9 inside the target cell. To 

achieve this, we decided to use a previously described strategy employing an adeno-

associated virus (AAV) containing a U6-sgRNA targeting the mouse ß-Actin gene and a 

donor template encoding for the monomeric Green Fluorescent Protein (mEGFP) 

(Nishiyama et al., 2017) (Figure 5C). This approach allows for inserting the mEGFP 

sequence into the ß-Actin gene, producing a recombinant fluorescent ß-Actin protein. 

Keratinocytes are resistant to viral infection (Orthwein et al., 2015; Saleh-Gohari and 

Helleday, 2004; Suzuki et al., 2016). We therefore decided to test HDR-mediated gene 

editing by delivering ligand cross-linked Cas9 in Neuro-2a (N2a) cells, a murine 

neuroblastoma cellular line (McMorris and Ruddle, 1974) expressing NGF receptors. As 
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expected, we observed labeled NGFR121WSNAP binding to N2a cells by live imaging upon 

2 hours treatment (Figure S5A). To assess HDR in-vitro, cultured N2a were infected with 

AAV, packaged with a chimera serotype 1/2 capsid (AAV1/2::HDR) 1/2::HDR, and 

successively treated with NGF cross-linked CLIP-Cas9 (NGFSNAP::CLIPCas9) (Figure 5C). 

Again, efficiency was compared across 3 different cross-linkers (linker #3, #5 and #6, Table 

S1) and by co-incubation with the ppTG21 peptide. Cells were imaged 72-96 hours post-

treatment and the percentage of mEGFP expressing cells was evaluated. A mEGFP 

fluorescent signal was observed upon a single treatment with NGF cross-linked CLIP-Cas9 

suggesting that the donor sequence was correctly inserted into the genome (Figure 5E). We 

observed 3.9% ± 0.7 of mEGFP positive cells with no effective improvement when 

complexes were co-incubated with the ppTG21 peptide (3.4% ± 0.6, Figure 5F). Importantly, 

no mEGFP signal was detected in cells transduced only with AAV1/2::HDR (0.1% ± 0.1) or 

treated with CLIP-Cas9 alone (Figure 5D and 5E and Figure S5B).  

TrkA overexpression enhanced HDR-mediated gene editing in N2a cells 

We reasoned that over-expression of TrkA receptor could promote higher internalization of 

NGF cross-linked complexes. Indeed, N2a cells binding by labeled NGFR121WSNAP was 

enhanced when TrkA over-expression occurred (Figure S5C). To assess HDR, NGF cross-

linked CLIP-Cas9 (linker #3, #5 and #6, Table S1) was applied to AAV1/2::HDR transduced 

N2a cells previously transfected with a plasmid encoding for the NGF receptor, TrkA 

(Figure 5G). Remarkably, the proportion of targeted N2a cells expressing mEGFP-ß-Actin 

was higher compared to non-transfected cells. The percentage of green-fluorescent positive 

cells after a single treatment with NGFSNAP::CLIPCas9 was 8.9% ± 2.1 (Figure 5H). Cross-

linked complex carrying linker #3 (Table S1) displayed the highest efficiency (~15%) while 

S-CROSS (linker #5) and S-CROSS (linker #6) were shown to be less effective (~5-7%) 

(Figure 5H). Importantly, no significative effect was observed when ppTG21 co-incubation 

occurred (10.2% ± 1.5), except for NGFSNAP::CLIPCas9 with linker #5. Again, no mEGFP 

positive cells were found upon infection only with AAV1/2::HDR (0.7% ± 0.1). 
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Figure 5. Ligand-mediated delivery of cross-linked CLIP-Cas9 in-vitro. (A) Schematic of plasmid 
electroporation strategy in primary keratinocytes. (B) % of indels detected from DNA sequencing of BFP-
sorted keratinocytes expressing Atat1 U6-sgRNA treated with: cross-linked complex IL-31SNAP::CLIPCas9 
(3rd column from left), NGFSNAP::CLIPCas9 (5th column from left) and in presence of ppTG21 peptide (IL-
31SNAP::CLIPCas9 + ppTG21; 4th column from left) (NGFSNAP::CLIPCas9 + ppTG21 peptide; 6th column from 
left). Untreated controls and untreated BFP-sorted keratinocytes are shown in column 1 and 2, 
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respectively. (C) Graphical representation of AAV1/2::HDR and N2a cells experimental strategy. (D) 
Zoom of mEGFP-ß-Actin N2a positive cell. The inset represents corresponding brightfield images. (E) 
Confocal images of AAV1/2::HDR transduced N2a WT cells or overexpressing TrkA receptor (G) treated 
with NGFSNAP::CLIPCas9 alone (upper panels) or in presence of ppTG21 peptide (lower panels). First 
images on the left show control N2a cells infected only with AAV1/2::HDR. Scale bars, 40 m. The 
insets represent corresponding brightfield images. (F) and (H) Quantification (% cells) of mEGFP 
positive cells from (E) and (G), respectively. The horizontal black lines mark the geometric mean and the 
error bars mark the standard error. Black triangles: cross-linking complexes carrying linker #5 (Table S1); 
green squares: cross-linking complexes carrying linker #3 (Table S1); red circles: cross-linking 
complexes carrying linker #6 (Table S1).  

Ligand-mediated selective delivery of CLIP-Cas9 allows for HDR in-vivo 

We finally investigated whether CLIP-Cas9 S-CROSS could also allow for Homology-

directed repair in the skin using the previously described approach. Although keratinocytes 

are highly resistant to viral infection, AAV serotype 1 was shown to mediate viral 

transduction of those cells (Ellis et al., 2013). Indeed, co-infection of primary keratinocytes 

isolated from a C57BL/6J WT mouse with AAV1/2::HDR and AAV1/2::Cas9 induced 

mEGFP knock-in in-vitro, albeit with scarce efficiency (<5%) (Figure S5D). To assess 

HDR-mediated gene editing in-vivo, IL-31SNAP::CLIPCas9 or NGFSNAP::CLIPCas9 (linker #5, 

#3, #6) were subcutaneously injected together with AAV1/2::HDR into the ear of C57BL/6J 

WT mice (Figure 6A). 2-3 weeks post-treatment, we evaluated mEGFP-ß-Actin expression 

by confocal microscopy on whole mount samples (Figure 6A). Remarkably, mEGFP 

positive keratinocytes were observed in mice injected with ligand cross-linked complexes 

suggesting that HDR occurred in-vivo (Figure 6B). Clusters of mEGFP positive cells were 

detected around the injection site, probably sprang from a targeted progenitor (Figure S6). 

S-CROSS with linker #3 showed the highest efficiency especially for NGF-mediated 

delivery (Figure 6B, green square). HDR was also observed, at lower frequency, in samples 

injected with cross-linked complexes carrying linker #6 (Figure 6B, red circle) while no 

HDR event was detected for S-CROSS linker #5 (Figure 6B, black triangle). We finally 

benchmarked our ligand-based system against viral delivery of Cas9. AAV1/2::HDR and a 

second AAV carrying the Cas9 sequence under the control of an EFS short promoter 

(AAV1/2::Cas9) (Nishiyama et al., 2017) were subcutaneously injected into the ear of WT 

mice. Of note, no mEGFP-ß-Actin expression was detected after 2-3 weeks from the initial 

treatment (Figure 6B). 

Although observed HDR events mediated by ligand cross-linked Cas9 occurred sparsely, 

our system showed better efficiency than Cas9 viral delivery and, importantly, its feasibility 

in-vivo.  
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Further improvements and targeted studies for its therapeutic applications are still required, 

but the use of ligands as carriers to deliver Cas9 or other gene-editing enzymes could 

represent a potential tool for future gene therapies in the skin. 

 

Figure 6. Ligand-mediated delivery of cross-linked CLIP-Cas9 in-vivo. (A) Schematic of 
subcutaneous injection of cross-linked CLIP-Cas9 and AAV1/2::HDR. (B) Confocal images of mEGFP 

positive keratinocytes 2-3 weeks after subcutaneous injection with CLIP-Cas9 cross-linked to IL-31 (left) 
or NGF (right). First upper images show control samples injected only with AAV1/2::HDR (left frame) 
or with dual AAV system AAV1/2::HDR + AAV1/2::Cas9 (right frame). The nuclei were stained with 
DAPI. Scale bars, 40 m. The insets show enlarged representative areas with mEGFP-ß-Actin positive 
cells. Black triangles: cross-linking complexes carrying linker #5 (Table S1); green squares: cross-linking 
complexes carrying linker #3 (Table S1); red circles: cross-linking complexes carrying linker #6 (Table 
S1). 

CONCLUSIONS 

Here we present an efficient method for non-viral cell-type selective delivery of large 

cargoes based on natural ligands. We have identified two ligands able to selectively target 

keratinocytes: IL-31 and Nerve growth factor. We have exploited the ability of those 

molecules to be translocated to the nucleus upon a receptor-based internalization, to deliver 

2 different types of cargo proteins: CRE recombinase and Cas9 nuclease. We covalently 

cross-linked ligands to proteins of interest by the employment of self-modifying and 
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biologically inert small enzymes together with long bio-orthogonal linkers that were shown 

to reduce steric hindrance effects. The main advantage of this approach is versatility, 

allowing combinations of “protein building blocks” by using a two-step simple chemical 

reaction and avoiding issues related to the production of large fusion proteins. We 

demonstrated that this ligand-based system is efficient and, most importantly, selective, a 

feature that is crucial for cell-specific delivery. Moreover, it enabled access to keratinocytes, 

which constitute the major cellular component of the skin and the first barrier from the 

external environment. Keratinocytes have been shown to be highly resistant to viral infection 

or to standard established delivery methods (e.g. lipid-based reagents), making them a 

challenging target. To that end, our system is a viable and powerful tool to target the skin. 

The most promising application is the intracellular delivery of Cas9 nuclease, which allows 

for cell-specific gene editing in-vivo. Many keratinocyte-associated genetic disorders have 

been described (Duchatelet et al., 2014; Hu et al., 2012; Lin et al., 2010) with no effective 

therapies available on the market. In this perspective, the technology we describe here could 

represent a promising platform for treating those diseases. Furthermore, the direct delivery 

of Cas9 as a protein has the main advantage to minimize the risk of potential integration into 

genomic DNA that are normally related to other delivery methods (viral vectors or plasmid-

based technologies), making it a safer alternative. Future developments will focus on 

improving delivery efficiency and on expanding the types of cargoes (siRNA, therapeutic 

proteins) for broader biological and clinical applications. We also expect that the 

employment of other ligands could allow for selective targeting of distinct cellular 

populations offering new options to current methodologies. 
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SUPPLEMENTARY FIGURES 

 
Supplementary Figure 1. Representative Coomassie and fluorescence gel showing IL31K138ASNAP (A) 
and NGFR121WSNAP (B) binding to a BG549 fluorophore at an increasing range of concentration. (C) 
Labelled SNAP-BG549 binding to primary keratinocytes. The inset represents the corresponding 
brightfield image. Scale bars, 20 m. (D) BG549 incubation with primary keratinocytes. The inset 
represents the corresponding brightfield image. Scale bars, 20 m. (E) Western blots showing 
IL31K138ASNAP (lane #1) and NGFR121WSNAP (lane #2) internalization in primary keratinocytes after 2 
hours incubation with 2 M of each ligand. (F) Representative Coomassie and fluorescence gel showing 
CLIP-Cre binding to a BC488 fluorophore at an increasing range of concentration. (G) Coomassie gel 
showing S-CROSS of IL31K138ASNAP and CLIP-Cre. Red asterisks indicate cross-linking. Condition 1: 
linker #1 BG-BC; Condition 2: linker #2 BGPEG-649-PEGBC; Condition 3: linker #3 BGPEG-(S-SPEGBT)-
PEGBC; Condition 4: linker #4 BG-647-BC; Condition 5: linker #5 BGPEG-biotin-PEGBC; Condition 6: 
linker #6 BG-TMR-PEGCP (Supplementary Table 1).  

 
Supplementary Table 1. Table showing the cross-linker compounds tested for S-CROSS reactions. (I 
need the right structures). 
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Supplementary Figure 2. YFP expression from Rosa26LSL-ChR2-YFP mice (A) and from double transgenic 
Rosa26LSL-ChR2-YFP::IL31RA-/- mice (B) 3 weeks after subcutaneous injection with 5 M of CLIP-Cre. The 
nuclei were stained with DAPI. Scale bars, 40 m. Red arrow indicates non-selective YFP expression.  

 

 

Supplementary Figure 3. (A) Representative Coomassie and fluorescence gel showing CLIP-Cas9 
binding to a BCTMR fluorophore. Lane #1 protein ladder. (B) Sequencing chromatograms showing the 
targeted Atat1 locus. Control sample (upper chromatogram) and treated sample (+ CLIP-Cas9; lower 
chromatogram). (C) Indel spectrum determined by TIDE of primary keratinocytes electroporated with 
Cas9::sgRNA targeting the Atat1 gene. The inset show T7 endonuclease 1 assay performed on genomic 
DNA from electroporated keratinocytes. t.e.= total efficiency. The estimated composition of the inserted 
base for the +1 insertion is also shown. (D) Representative Coomassie gel and quantification (% S-
CROSS) showing cross-linking complexes (red asterisks). First lane (#1) is IL-31SNAP::CLIPCas9, second 
lane (#2) is NGFSNAP::CLIPCas9. (E) In-vitro digestion assay of the PCR products amplified from the Atat1 
locus and incubated with: Cas9::sgRNA (lane #2), CLIP-Cas9::sgRNA (lane #3), Cas9 (lane #4), CLIP-
Cas9 (lane #5). Atat1 undigested PCR product is shown in lane #1.   
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Supplementary Figure 4. (A) Schematic representation of S-CROSS using linker #6. (B) Western blots 
showing IL-31SNAP::CLIPCas9 and NGFSNAP::CLIPCas9 internalization in primary keratinocytes in absence 
(lanes #1 and #3) and in presence (lanes #2 and #4) of Atat1 dual sgRNA after 2 hours incubation with 2 
M of each ligand. (C) RNA gel shift assay in presence of increasing molar ratio (mRNA:NP) of native 
protamine. (D) Quantification of (E) TMR positive cells upon 2 hour treatment with 2 M of CLIP-Cas9 
(#1 no sgRNA; #2 with sgRNA; #3 with sgRNA + Protamine; #4 with sgRNA + ppTG21). The nuclei 
were stained with Hoechst. Scale bars, 20 m. (F) Percentage of indels measured from genomic DNA 
sequencing. 
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Supplementary Figure 5. (A) Labelled NGFR121WSNAP-BG549 binding (left frame) and only to BG549 

N2a cells.  The insets represent the corresponding brightfield image. Scale bars, 20 m. (B) 
Representative images of AAV1/2::HDR transduced N2a cells treated only with CLIP-Cas9 (left frame) 
or in presence of ppTG21 peptide (right frame). The insets represent corresponding brightfield images. 
(C) Labelled NGFR121WSNAP-BG549 binding (left frame) and only to BG549 N2a cells over-expressing 
TrkA receptor. The insets represent the corresponding brightfield image. Scale bars, 20 m. (D) Confocal 
images of AAV1/2::HDR transduced (left frame) and AAV1/2::HDR + AAV1/2::Cas9 double transduced 
(right frame) primary murine keratinocytes. Scale bars, 40 m. The lower frame shows an enlarged 
imaged of mEGFP-ß-Actin positive keratinocyte. 
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Supplementary Figure 6. Mosaic representation (1.07 mm x 1.43 mm) of mEGFP-ß-Actin positive cells 
from WT mice 2-3 weeks after subcutaneous injection with NGFSNAP::CLIPCas9 (linker #3). The nuclei 
were stained with DAPI. White dashed circles mark mEGFP positive targeted cell clusters. Green arrows 
indicate mEGFP positive cells starting to express mEGFP. 
 
 

 

 

 

 


