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SUMMARY 

Over the last decade, the field of gene and cell therapy has experienced a major turning 

point and has finally begun to fully realize its potential as a very attractive, versatile and 

innovative platform for the development of gene-based drugs. Gene therapy encompasses a 

spectrum of approaches, ranging from supplying missing genes to the correction of diseases 

at their molecular level, that all have in common the need of a vehicle (“vector") for specific 

and efficient delivery of therapeutic DNA or RNA. One branch of small viruses - the 

parvoviruses - have gained increasing attention as such vectors due to their non-pathogenicity, 

ease of engineering and low genotoxicity. Particularly, the adeno-associated virus (AAV) 

emerged as a top candidate, culminating in the authorization of three AAV-based gene therapy 

products, Glybera, Luxturna and Zolgensma. However, despite all the successes using 

recombinant (r)AAVs, there is still a demand for more specific vectors with larger DNA cargo 

capacity and lower immunogenicity. This need defined the scope of this doctoral thesis, which 

aimed at the construction and evaluation of new parvoviral vectors (derived from bocaviruses 

[BoVs]) and to increase the safety of vector application in humans. 

 The first part of this work was fueled by a seminal study by Ziying Yan and colleagues 

in 2013, who used parvovirus cross-genera pseudotyping to combine an oversized rAAV2 

genome of 5.5 kilobases (kb) with the capsid of the human bocavirus 1 (HBoV1). As reported, 

the rAAV2/HBoV1 vector could be produced efficiently and potently transduced primary human 

airway epithelial cells (pHAE). Here, we have validated and expanded on these intriguing 

findings by more comprehensively exploring the upper DNA packaging limit of the HBoV1 

capsid. Notably, we found that up to 6.2 kb single-stranded (ss) - or 3.2 kb self-complementary 

(sc) - AAV genomes can be efficiently packaged into the HBoV1 capsid, as compared to only 

5.1 (ssAAV) and 2.8 kb (scAAV) for AAV2, which has important ramifications for the delivery 

of complex rAAV vector DNA.   

Next, we further expanded this system to other primate BoV serotypes - three from 

humans (HBoV2, 3 and 4) and one from Gorilla (GBoV) - that have not been studied as vectors 

before. To this end, we successfully assembled the capsid genes of HBoV2-4/GBoV and 

produced chimeric rAAV/BoV vectors of all studied serotypes. With the help of reporter genes, 

we subsequently started to study and unravel the so-far unknown tropism of the new viral 

vectors. Strikingly, our screens on various primary cells and cell lines revealed that BoVs 

(especially GBoV) have a much wider tropism in vitro than previously anticipated. We found a 

wide range of primary and therapeutically relevant cells to be amenable to BoV infection, 

including human hepatocytes, T-cells and skeletal muscle cells. In addition, we obtained the 

first evidence that pseudotyped rAAV/BoV vectors also differ in their reactivity to pooled human 
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antibodies (intravenous immunoglobulin, IVIg), which implies the possibility of vector re-dosing 

in rAAV/BoV-treated human gene therapy patients. Finally, we aimed to increase the fitness 

of BoV vectors and therefore employed a high-throughput diversification method called DNA 

family shuffling (DFS), to create the first library of chimeric BoV capsids. As hoped for, the 

library was packaging-competent, increased in titer over selection rounds and acquired a 

unique footprint when cycled in pHAE.  

Despite an excellent safety record of rAAV vectors, undesirable toxicity resulting from 

permanent gene expression represents a clinical concern. So far, the ensuing need to gain 

temporal control over vector persistence or expression has been addressed by using Cre 

recombinase or inducible systems that necessitate complex vector re-engineering. Thus, in 

the second part of this work, we aimed to overcome these limitations by introducing novel rAAV 

vectors that harbor a kill-switch (KS) based on the bacterial CRISPR II system (clustered 

regularly interspaced short palindromic repeats). This approach has two major components: 

(i) a (g)uide RNA expressed from the rAAV vector and (ii) the CRISPR/Cas9 endonuclease, 

which is supplied in trans and directed by the gRNA to a target site in the vector/transgene 

itself. We tested our KS system extensively in vitro and show a 10- to 100-fold reduction in 

transgene expression (Firefly luciferase) after supplying Cas9 in trans using ss and scAAV 

vectors for the expression of full-length and split Cas9, respectively. Moreover, we expanded 

our study to an in vivo application in mice, where we could recapitulate our findings in cell 

culture and trigger an up to 50% reduction in transgene expression. Finally, we devised a 

universal approach to inactivate any rAAV vector without further modifications. Therefore, we 

developed and experimentally validated self-inactivating (SIN) CRISPR vectors based on split 

Cas9 and ssAAVs that harbor the anti-target and anti-Cas9 gRNA and hence allow concurrent 

targeting of both. Moreover, we utilized different RNA polymerase III promoters (Pol III) to study 

and eventually optimize the effect of differential gRNA expression on the kinetics of both 

processes.  

Collectively, this work has yielded original BoV helper constructs and chimeras that 

represent valuable new tools to investigate fundamental and applied aspects of bocaviral 

biology, from the discovery of antigenic domains to the construction of designer viral vectors. 

Concomitantly, we have implemented and validated novel concepts to increase the safety of 

recombinant vectors including rAAV KS or SIN constructs that can be harnessed in future work, 

either alone or in combination with BoV capsids, to form the next generation of parvoviral 

vectors.
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ZUSAMMENFASSUNG 

Das Fachgebiet der Gen- und Zelltherapie hat im letzten Jahrzehnt immens an 

Bedeutung gewonnen, und sein Potenzial als vielseitige und innovative Plattform für die 

Entwicklung genbasierter Arzneimittel wird nun endlich voll ausgeschöpft. Die Gentherapie 

umfasst ein breites Spektrum therapeutischer Ansätze, die vom Ersatz fehlender Gene bis hin 

zur Therapie von Krankheiten auf molekularer Ebene reichen. Allen gemeinsam ist die 

Verwendung eines Trägervehikels („Vektors“) für die gezielte und effiziente Einschleusung 

therapeutischer DNA oder RNA. Eine Familie kleiner Viren, der Parvoviren, hat aufgrund ihrer 

Apathogenität, ihrer technischen Unkompliziertheit und ihrer geringen Genotoxizität bei der 

Herstellung von Vektoren zunehmend an Bedeutung gewonnen. Insbesondere das Adeno-

assoziierte Virus (AAV) hat sich zu einem Spitzenkandidaten entwickelt, der die Zulassung 

von drei AAV-basierten Gentherapeutika ermöglichte, Glybera, Luxturna und Zolgensma. 

Trotz aller Erfolge mit rekombinanten (r)AAVs besteht nach wie vor ein Bedarf an 

spezifischeren Vektoren mit größerer DNA-Ladekapazität und geringerer Immunogenität. 

Diese offenenen Punkte waren die Motivation für die vorliegende Dissertation, deren Ziel die 

Entwicklung neuer Vektoren war, die von anderen Parvoviren (den Bocaviren [BoV]) abgeleitet 

werden und die die Anwendungssicherheit im Menschen erhöhen. 

Der erste Teil dieser Arbeit wurde durch die Pionierarbeit von Ziying Yan im Jahr 2013 

inspiriert, der mit Hilfe der gattungsübergreifenden Parvovirus-Pseudotypisierung ein über-

dimensionales rAAV2-Genom von 5,5 Kilobasen (kb) mit dem Kapsid des humanen 

Bocavirus 1 (HBoV1) kombinierte. Der resultierende rAAV2/HBoV1-Vektor konnte effizient 

hergestellt werden und erwies sich als äußerst wirksam bei der Transduktion primärer 

menschlicher Epithelzellen der Atemwege („primary human airway epithelial cells“ - pHAE). In 

dieser Arbeit haben wir diese faszinierenden Ergebnisse validiert und weiter ausgearbeitet, 

indem wir die obere DNA-Verpackungsgrenze des HBoV1-Kapsids genauer untersuchten. 

Insbesondere stellten wir fest, dass bis zu 6,2 kb einzelsträngige (ss) - oder 3,2 kb selbst-

komplementäre (sc) - AAV-Genome effizient in das HBoV1-Kapsid verpackt werden können, 

verglichen mit nur 5,1 kb (ssAAV) bzw. 2,8 kb (scAAV) für AAV2, was bedeutende 

Auswirkungen auf die Übertragung von komplexer rAAV-Vektor-DNA hat.   

Als nächstes weiteten wir dieses System auf andere Serotypen des Primaten-Bocavirus 

aus - drei vom Menschen (HBoV2, 3 und 4) und einer vom Gorilla (GBoV) - die bisher nicht 

auf ihre Eignung als Vektoren untersucht worden waren. Zu diesem Zweck assemblierten wir 

die Kapsidgene von HBoV2-4/GBoV erfolgreich und stellten chimäre rAAV/BoV-Vektoren aller 

untersuchten Serotypen her. Mit Hilfe von Reportergenen begannen wir, den bisher 

unbekannten Tropismus der neuen viralen Kapside zu erforschen und zu entschlüsseln. 
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Erstaunlicherweise zeigten unsere Analysen verschiedener primärer Zellen und Zelllinien, 

dass Bocaviren (insbesondere GBoV) in vitro einen viel breiteren Tropismus aufweisen als 

bisher angenommen. Wir fanden heraus, dass eine Vielzahl von primären und therapeutisch 

relevanten Zellen für eine BoV-Infektion zugänglich ist, darunter menschliche Hepatozyten, T-

Zellen und Skelettmuskelzellen. Des Weiteren konnten wir erstmals belegen, dass sich 

pseudotypisierte rAAV/BoV-Vektoren auch im Hinblick auf ihre Reaktivität gegenüber 

humanen Antikörpern (intravenöses Immunglobulin, IVIg) unterscheiden, was die Möglichkeit 

impliziert, mit rAAV/BoV behandelte Menschen mehrfach zu therapieren. Darüber hinaus war 

unser Ziel eine Erhöhung der Fitness von BoV-Vektoren, weshalb wir eine Hochdurchsatz-

Diversifikationsmethode namens „DNA family shuffling“ (DFS) einsetzten, um die erste 

Bibliothek für chimäre BoV-Kapside zu erstellen. Wie erhofft, erwies sich die Bibliothek als 

verpackungskompetent, verzeichnete im Laufe der Selektionsrunden einen Titeranstieg und 

erwarb bei wiederholter Amplifikation in pHAE ein einzigartiges Profil.  

Trotz der ausgezeichneten Sicherheitsbilanz der rAAV-Vektoren stellt eine 

unerwünschte Toxizität aufgrund permanenter Genexpression ein klinisches Sicherheitsrisiko 

dar. Bisher wurde die daraus resultierende Notwendigkeit, die Vektorpersistenz oder -

expression zeitlich zu steuern, durch den Einsatz von Cre-Rekombinase oder induzierbaren 

Systemen gelöst, die allerdings eine komplexe Vektor-Modifikation erfordern. Daher 

versuchten wir im zweiten Teil dieser Arbeit, diese Einschränkungen zu überwinden, indem 

wir neuartige rAAV-Vektoren mit einem „Kill-Switch" (KS) einführten, der auf dem bakteriellen 

CRISPR-II-System („clustered regularly interspaced short palindromic repeats") basiert. 

Dieser Ansatz besteht aus zwei Hauptkomponenten: (I) einer Guide-RNA (gRNA), exprimiert 

aus dem rAAV-Vektor und (ii) der CRISPR/Cas9-Endonuklease, die in trans geliefert und von 

der gRNA an eine Zielstelle im Vektor/Transgen selbst gelenkt wird. Die umfassende 

Erprobung unseres KS-Systems in vitro zeigte eine 10- bis 100-fache Reduktion der 

Transgenexpression (Leuchtkäfer-Luciferase) nach Zuführen von Cas9 in trans unter 

Verwendung von ss und scAAV-Vektoren für die Expression von volllständigem oder geteiltem 

("split") Cas9 Protein. Darüber hinaus weiteten wir unsere Studie auf eine in vivo Anwendung 

bei Mäusen aus, im Rahmen derer wir eine bis zu 50% Reduktion der Transgenexpression 

erreichten. Anschließend entwickelten wir einen universellen Ansatz, mit dem jeder rAAV-

Vektor ohne weitere Modifikationen deaktiviert werden kann. Zu diesem Zweck entwarfen und 

testeten wir selbst-inaktivierende (SIN) CRISPR-Vektoren auf der Basis von split Cas9 und 

ssAAVs, die sowohl die Anti-Target- als auch die Anti-Cas9-gRNA enthalten und somit eine 

gleichzeitige Inaktivierung beider (Vektorgenom und Cas9) ermöglichen. Darüber hinaus 

verwendeten wir verschiedene Promotoren der RNA-Polymerase III (Pol III), um die Wirkung 

der differentiellen gRNA-Expression auf die Kinetik beider Prozesse zu untersuchen und 

gegebenenfalls zu optimieren.  
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Zusammengefasst hat diese Arbeit BoV-Helferkonstrukte und -Chimären 

hervorgebracht, die wertvolle neue Werkzeuge darstellen, um grundlegende und angewandte 

Aspekte der Biologie des Bocavirus zu untersuchen, von der Entdeckung antigener Domänen 

bis zur Konstruktion von Designer-Virusvektoren. Gleichzeitig haben wir neuartige Konzepte 

zur Verbesserung der Sicherheit rekombinanter Vektoren implementiert und validiert, 

einschließlich rAAV-SIN-Konstrukte, die in zukünftigen Arbeiten entweder allein oder in 

Kombination mit BoV-Kapsiden zur Bildung der nächsten Generation parvoviraler Vektoren 

genutzt werden können. 
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1 INTRODUCTION 

Over five decades ago, scientists began to use microinjection to introduce foreign DNA 

and RNA into eukaryotic cells - a technology that eventually revolutionized our understanding 

of biology and diseases 1. Soon after, the term “genetic engineering” was coined, which 

describes the change in the genetic landscape of a cell triggered by the direct transfer of 

foreign DNA 2. Originally, these DNA molecules were composed of any desired nucleotide 

sequences in any combination and were synthesized using recombinant DNA technology. The 

DNA was then either directly introduced to the organisms using physical methods (e.g. the 

aforementioned microinjection) or indirectly through a carrier, also known as a “vector”. Among 

the different vector systems, viral vectors are nowadays considered as the most efficient and 

thus in the focus of the current doctoral thesis. The success of gene transfer culminated in the 

creation of the first gene-modified organism (GMO) in 1973 3 and the first transgenic mouse in 

1974 4. At the same time, scientists realized the potential of gene transfer for treatment of 

diseases at their molecular level. This especially applies to monogenic diseases, which are 

caused by one defective gene copy and would only require its replacement by a healthy 

equivalent. To this end, French Anderson performed the first therapeutic use of gene transfer 

in 1990 to treat severe combined immunodeficiency (SCID) in a child 5, 6. 

Since then, several viruses have been developed as vectors for human gene therapy 

including (i) RNA viruses, such as retroviruses and lentiviruses, and (ii) DNA viruses, such as 

adenoviruses, herpes simplex virus (HSV) and parvoviruses. The latter have gained increasing 

attention due to their broad applicability and unique characteristics, including the anti-

oncogenicity of autonomous parvoviruses 7 or the non-pathogenicity and long-term expression 

of dependoviruses 8. Moreover, the establishment of methods for efficient vector production 

was a milestone and prerequisite for diverse in vitro and in vivo applications.  

One particular Dependovirus - the adeno-associated virus or short AAV - has emerged 

as a lead candidate for sustained clinical gene expression, due to its amenability to genetic 

manipulation and the excellent safety profile. However, one limitation of the so-called 

recombinant (r)AAV vectors is their small cargo capacity of 4.7 kb DNA as compared to other 

parvoviruses (e.g ~5.5 kb for bocaviruses [BoVs] or ~6 kb for densoviruses 9). Moreover, the 

typically broad cell specificity of natural AAVs requires the administration of high doses to reach 

a therapeutic benefit in a given cell or tissue type. Therefore, methods for the development of 

a new generation of rAAVs were established, and other parvoviruses with larger packaging 

ability and/or higher specificity were concurrently studied and vectorized. One example is a 

recent study 10, in which the parvovirus human BoV1 (HBoV1) has been utilized, for the first 

time, as a vector for gene transfer. This vector showed a unique ability to cross-package 5.5 
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kb rAAV genomes and to efficiently target primary human airway epithelia (pHAE). This 

advance in vector technology inspired the first aim of this doctoral thesis, which was to expand 

on this published data and to characterize other primate BoV serotypes with as-of-yet unknown 

tropisms that can be harnessed, and may be useful, for therapeutic gene transfer. 

Next to size, a second potential limitation of AAV and BoV vector-delivered DNA is that 

remains extra-chromosomal in the cells and consequently gets lost during cell division. This 

restricts the application to mainly non-dividing but long-living cells like, for instance, liver and 

muscle cells. The target range of these vectors could, however, be extended to dividing cells 

by packaging a cargo that introduces a permanent change in the DNA that is subsequently 

transmitted to the daughter cells. Here, the adaptation of the bacterial CRISPR machinery 

(clustered regularly interspaced short palindromic repeats) for gene editing in eukaryotes set 

a milestone in the history of genetic engineering and opened new possibilities for gene therapy 

of human diseases (see sections 1.4 to 1.8).  

To date, CRISPR has already been used in combination with rAAV vectors (rAAV-

CRISPR) to permanently and efficiently modify genes with clinical relevance in cells of the 

brain 11, liver 12, eye 13 and muscle 14, thereby correcting disease-causing genotypes in these 

cells. Still, packaging of all the CRISPR components (expression cassettes for Cas9 and 

gRNA, and, if desired, also a DNA repair template for homologous recombination) into one 

rAAV vector is challenging and only possible if minimal forms of promoters and regulatory 

elements are used. Consequently, a second seminal goal in this thesis was to address and 

resolve the size issue, by harnessing the larger cargo capacity of the HBoV1 capsid to package 

all-in-one rAAV-CRISPR cassettes. Moreover, we aimed at increasing the safety of our 

applications by constructing simple but powerful genetic circuits that allow controlling both, 

Cas9 and transgene expression from rAAV vectors.  

The following chapters will provide an overview of parvovirus biology and associated 

vectors for gene transfer, with a special focus on pseudotyped and chimeric parvoviral vectors. 

The second part of the introduction will focus on the emerging role of CRISPR technology, 

especially its clinical translation for treatment of human diseases.  

1.1 The biology of parvoviruses 

The Parvovirinae family includes small, non-enveloped viruses with a single-stranded 

(ss)DNA genome. The name of the family is derived from the Latin term “parvus”, which means 

small and describes the hallmark of these viruses, i.e. their diminutive size. The viral capsid is 

around 23 – 25 nm in diameter and encapsidates a genome with a length between 4.7 – 6 kb. 

Because of the limited size, the genome is tightly packed with overlapping open reading frames 

(ORFs), which comprise two major genes (Figure 1) encoding: (i) the non-structural proteins 
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(NS, Rep or NP1) and (ii) the capsid proteins (VP or Cap). Consequently, parvoviruses are 

strongly dependent on the host cell for providing factors for their genome replication and gene 

expression. Extreme examples are the dependoviruses, which even require the help of other, 

more complex viruses to be able to replicate and form progeny. 

  Primate parvoviruses are classified into four genera: Parvovirus, Dependovirus, 

Erythrovirus and Bocavirus. The genome organization across the genera is similar but there 

are differences in the numbers of promoters (from 1 to 3) and of expressed VP or Cap proteins 

(from 2 to 3), as shown in Figure 1. 

The total genome size of the shown parvoviruses ranges from 4.7 to 6 kb, including the (inverted) 

terminal repeats that flank the coding region and that were omitted here. There are two major open 

reading frames encoding structural (VP or Cap) and non-structural (NS, NP1 or Rep) proteins. The 

number of promoters (p) at different genomic map units ranges from 1 to 3. ns = non-structural; vp = 

viral (cap) protein; rep = replication protein, aap = assembly-activating protein; np 1 = nuclear 

phosphoprotein 1; BocaSR = Bocaviral non-coding small RNA. Modified from reference 9. 

1.1.1 Dependovirus 

The genus Dependovirus includes three main members: the AAV, the goose parvovirus 

(GPV) and the muscovy duck parvovirus (MDPV).  

AAV was first discovered in 1965 as a contaminant of an adenovirus preparation, when 

it appeared as small, icosahedral particles in electron microscopy images 15. In this original 

work, Atchison and co-workers showed that these particles were infectious and exhibited a 

different immunological profile than adenovirus. Moreover, they also reported that AAV is 

incapable of replicating in the absence of adenovirus and consequently stated that the virus 

might be defective 15. Later, several reports revealed that other viruses can also act as helpers 

Figure 1. Genome organization of different genera in the Parvovirinae family. 
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for AAV replication such as herpes simplex virus (HSV) 1 and 2 16, papilloma virus 17, vaccinia 

virus 18 and, discovered most recently, HBoV1 19.  

In 1966, Hoggan et al. reported another important feature of the AAV life cycle. As soon 

as AAV starts replicating, it forms a negative-feedback loop that inhibits the further replication 

and propagation of the helper virus. This has been observed for adenovirus 20 and later also 

for HSV 21. By contrast, HBoV1 infection seems not to be influenced by the presence of AAV 

19. This is interesting since HBoV1 has not been clearly associated with diseases in humans, 

in contrast to adenovirus and HSV, implying that natural AAV infection may protect against co-

infection with certain viral pathogens.  

In the absence of a helper virus, AAVs establish latency by persisting as episomes or by 

integrating into specific loci in the host chromosome (e.g. the AAVS1 locus for AAV2 22). Here, 

the AAV Rep proteins play an important role by facilitating the site-specific integration 23, 24 and 

silencing of the integrated genome 8. Recently, a study by Nault et al. 25 associated wtAAV2 

integration in human liver with insertional mutagenesis in hepatocellular carcinomas (HCC). 

Interestingly, a study by Logan and colleagues 26 identified a region in the 3’ UTR of wtAAV2 

that contains an enhancer–promoter element composed of binding sites for liver-specific 

transcription factors. Importantly, this element was found to be part of the integrated wtAAV2 

stretch in 10 of the 11 reported HCC cases and was thus suggested as a cause of HCC-

associated gene dysregulation. This challenges all published studies to date, which 

consistently showed that infection with wtAAV was not associated with any pathology and, on 

the contrary, might even protect from cancer 27-29. Collectively, while these two mentioned 

studies 25, 26 certainly revealed interesting biological observations, they could neither prove the 

involvement of wtAAV in promoting HCC, nor exclude a secondary integration after the 

initiation of tumorgenesis 30. The integration propensity of AAV-based viral vectors and the 

development of systems that integrate in a specific and safe manner 31, 32 are discussed in 

section 1.2.2. 

The genome of AAV contains three promoters (p5, p19 and p40) that drive the 

expression of the three viral genes: rep, cap and aap (as shown in Figure 1). Two of the 

promoters (p5 and p19) regulate the expression of the rep gene, which encodes four Rep 

proteins designated Rep78, Rep68, Rep52 and Rep40. The p40 promoter drives the 

expression of the cap gene, which encodes the three capsid proteins VP1/VP2/VP3 and the 

recently discovered AAP 33. 

AAVs have been found in all animal species studied so far, including various mammals, 

snakes or birds 34-36. Among the primate AAVs, 13 serotypes and hundreds of variants have 

been isolated and shown to have a wide cell and tissue tropism. The latter can partly be 

explained by the ubiquitous expression of the known AAV receptors. For example, two 

common cell surface molecules, heparan sulfate proteoglycans (HSPG) 37 and sialic acids, 
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were identified as receptors for AAV2, 3, 6 and AAV1, 4, 5, 6 38, respectively. Even more 

remarkable was the discovery of a universal (and broadly distributed) AAV receptor (AAVR) 

that governs the infectivity of a majority of AAV serotypes 39, 40. From an evolutionary 

perspective, it is unclear why AAV displays such a large tissue distribution as compared to 

other parvoviruses such as B19. It has been hypothesized that the promiscuity might offer an 

advantage for the virus because it increases the probability of meeting a helper virus to support 

its replication 41. On the other hand, the host also benefits from a broad tropism, as the ability 

of AAVs to suppress their helper viruses increases the host's chances of surviving infection 

with a range of pathogenic viruses that target different tissues 27-29.  

Unlike AAVs, GPV and MDPV can autonomously replicate in permissive and dividing 

cells 42. Curiously, in contrast to other autonomous parvoviruses, GPV is also able to replicate 

in resting cells but only in the presence of a helper virus. These two viruses were still classified 

as dependoviruses because of their close phylogenetic relationship to AAV2 43. In 2005, Qiu 

et al. performed a detailed analysis of the transcriptional landscape of GPV and revealed, not 

surprisingly, features of both dependo- and autonomous parvoviruses 44. 

1.1.2 Autonomous parvoviruses 

Helper-independent or autonomous parvoviruses, contrary to AAVs, can replicate and 

spread in the absence of any helper viruses. The first autonomous parvoviruses were detected 

in tumor tissue and thus, for a long time, considered as etiologic agents for cancer. However, 

a role for these viruses in provoking tumorigenesis could never be shown in vitro or in vivo 45. 

By contrast, several early in vivo studies in laboratory animals proved that autonomous 

parvoviruses can actually interfere with tumor formation and act as oncosuppressive agents in 

two different ways: (i) a protective manner by reducing the incidence of spontaneous tumor 

formation 45, 46 or (ii) a strong inhibition of tumor growth 47 up to complete regression 48.  

The autonomous parvoviruses belong to four genera: Parvovirus, Erythrovirus, 

Bocavirus and the more distantly related Amdovirus. The Parvovirus genus includes a variety 

of viruses with different cell tropisms that infect vertebrates and non-vertebrates. Among the 

most studied members of this genus are the minute virus of mice (MVM), the rat parvovirus H1 

and LuIII. By contrast, viruses in the Erythrovirus genus have a very specific tropism for red 

blood cell progenitors. The first isolated member is B19, a pathogenic erythrovirus responsible 

for the fifth disease in humans 49. Parvoviruses belonging to the genus Bocavirus have a 

unique additional ORF that encodes the protein NP1 (see Figure 1), whose function and 

relevance will be further discussed in section 1.1.2.3. The Amdovirus genus includes only one 

highly pathogenic member, namely, the Aleutian mink disease virus (AMDV). 

The permissiveness of cancer cells for many autonomous parvoviruses, especially 

members belonging to the Parvovirus genus, is complex and was shown to be dependent on 

different factors comprising the tissue of origin 50, 51, the expressed oncogenes 52, 53 or the 
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combination thereof 54. A detailed discussion of all these factors is beyond the scope of this 

introduction but can be found in numerous excellent reviews (see references 55, 56). In 

general, the oncotropism can be linked to the coupling of the viral life cycle to the S-phase of 

the cell 7, 56. Particularly, the replication of the single-stranded parvoviral DNA is strictly 

dependent on cyclin A, which is induced when a cell enters the S-phase 57. The mechanisms 

by which these viruses induce dell death in later stages are not well understood. It has been 

shown, however, that certain oncoproteins increase the replication and expression of 

parvovirus proteins, some of which undergo changes in post-translational modifications (e.g. 

phosphorylation state 58) and accumulate to cytotoxic levels in the cells 52, 53. 

The next chapter will focus on the biology of members of the Bocavirus genus, which are 

extensively studied and utilized as gene transfer vectors in the first part of this work. 

1.1.2.1 Bocavirus 

BoVs are composed of a small icosahedral capsid with a ssDNA genome of ~5.5 kb. The 

genus name “Boca” stems from the first isolated animal bocaparvoviruses, (Bo)vine parvovirus 

(BPV) and (ca)nine minute virus (CnMV), which were described in 1960 59 and 1970 60, 

respectively. Both viruses were associated with reproductive failure and neonatal respiratory 

diseases 61-63. Since then, many other BoVs have been discovered in primates (such as HBoV 

64, 65 and GBoV 66 in human and gorilla, respectively) and non-primates including pigs, dogs, 

mice, rabbits, bats and sea lions 67. Primate BoVs share ~40% sequence identity with all animal 

BoVs but more than 70% among each other. BPV is the most distinct bocaparvovirus with a 

capsid composed of four VP proteins 68. By contrast, the capsid in the more closely related (to 

each other) CnMV and HBoV1 is composed of only three capsid proteins, VP1-3 69, 70. 

1.1.2.2 The primate BoV 

The first discovered primate BoV is HBoV1, which was isolated in 2005 from human 

respiratory samples 64. Since then, the virus was extensively studied to unravel its role as an 

etiologic agent of lower respiratory tract infections. Many studies have revealed a global 

prevalence with infection rates of up to 10% 71. However, studies of disease association have 

yielded very conflicting results and, surprisingly, more than one decade later, it is still unclear 

whether the virus is a true pathogen or not. Notably, the high degree of coinfections with 

disease-causing agents and the lack of animal models or easy-to-handle cell culture systems 

further hampered the true classification of the virus. Fortunately, the discovery that HBoV1 

replicates in pHAE allowed for the study of its transcriptional profile and pathogenesis. For 

example, Huang et al. reported a loss of cilia and a disruption of the tight junctions upon 

infection with HBoV1 72. Moreover, Luo and Liu et al. 73, 74 showed that infection with HBoV1 

results in an innate immune response, which the virus escapes in different ways to establish 

latency (see discussion section 4.1.4). 
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In the years following the report of HBoV1, other human BoVs called HBoV2-4 were 

discovered in stool and were readily linked to gastroenteritis 65. These viruses show a high 

sequence identity to HBoV1 (>74% for the ns, np1 and cap ORFs) but were not or only 

sporadically detected in respiratory samples 75. At the same time of their discovery, Kantola et 

al. described the first gorilla BoV (GBoV), which was detected in stool 66. This variant shares a 

high sequence identity with the human isolates but was shown to carry a unique ns ORF that 

encodes an extended version of the NS protein 66. As for HBoV1, it is unclear whether these 

BoVs are true pathogens or innocent bystanders.  

1.1.2.3 The transcriptional landscape of HBoV1 

The transcriptional profile of HBoV1 is similar to the one observed in other animal 

bocaparvoviruses such as BPV 76 and CnMV 77. A single promoter drives the transcription of a 

precursor (pre)-mRNA that is alternatively spliced and polyadenylated to generate the different 

non-structural (NS/NP) and structural (VP) proteins. 

In HBoV1, the pre-mRNA is transcribed from the p5 promoter and alternatively spliced 

using the different donor (D) and acceptor (A) sites shown in Figure 2. The non-structural 

genes ns and np1 encode numerous major transcripts that translate into four (NS1-4) and one 

(NP1) protein(s), respectively. Transcription can be terminated at the proximal (pA)p or distal 

(pA)d polyA signal, which results in a short (S) or long (L) mRNA transcript, respectively. There 

are also minor forms (m) of mRNA that retain the D2/A2 intron, which generates an in-frame 

stop codon. This results in the formation of smaller NS proteins such as NS1-70 (Figure 2) 

and NS2‘, NS3‘ and NS4‘ 78 (not shown but described in more detail in reference 78). The 

abundance of these proteins is low and their function remains enigmatic. Moreover, additional 

small proteins NS1/2*35-40 and NS3*50 were detected during a productive infection of pHAE 

with wild-type (wt) HBoV1. Likewise, the nature and function of these proteins is not well 

understood 78.  

The unspliced NS protein (NS1) contains a DNA-binding/endonuclease domain, a 

helicase-activity domain, a potential oligomerization site and several transactivation (TAD) 

domains 78. This protein is critical for efficient viral replication in HEK293T cells, whereas NS2-

4 are dispensable. Curiously, NS2 is strictly required for wtHBoV1 replication in pHAE, which 

may reflect a cell-dependent protein function. The exact roles of NS3 and NS4 are currently 

unknown. 

The unique BoV protein NP1 is expressed from an ORF in the middle of the genome that 

overlaps with the ns and cap ORFs. This protein has been shown to be important for replication 

of the viral DNA and regulation of transcription 77, 79, 80. In more detail, Zou et al.70 showed that 

in the HBoV1 genome, NP1 regulates VP expression by (i) mediating splicing at the A3 

acceptor site, which is a prerequisite for production of VP-encoding transcripts and (ii) 



Introduction 

 

25 
 

suppression of the (pA)p signal, which lies within the cap ORF. This allows the transcription 

machinery to reach the (pA)d signal, which consequently results in the production of full-length 

Cap polycistronic pre-mRNA. The mechanism by which NP1 interacts with the transcriptional 

machinery remains obscure. 

This VP pre-mRNA expresses the three viral capsid proteins, VP1/VP2/VP3, by using 

distinct initiation codons. This is different to what has been observed for CnMV, where VP3 

results from the proteolytic cleavage of VP2 by host proteases 69. 

Another role for NP1 in CnMV was reported by Fasina et al. 80. In this study, three novel 

NS transcripts that fuse their carboxy termini in frame to the carboxy terminus of NP1 were 

identified. NP1 regulates the expression of these transcripts by mediating splicing of the pre-

mRNA. In HBoV1, a similar subset of NS proteins has not been reported so far.  

Shown is the wtHBoV1 genome with the different splice donor (D) and acceptor (A) sites that allow for 

alternative splicing of mRNA (the numbers indicate the nucleotide positions within the genome). This 

results in the shown mRNA splice forms R1 to R8 that express the different indicated proteins. LEH, 

REH = Left-end and right-end hairpin, respectively. Modified from reference 70. 

Figure 2. The transcriptional profile of HBoV1. 
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Little is known about how protein expression is regulated in HBoV1 to result in the 1:1:10 

ratio observed for VP1:VP2:VP3. In AAVs, which use the same protein stoichiometry, the VP 

pre-mRNA is produced from the p40 promoter and spliced into a minor (for VP1) and a major 

(for VP2/VP3) form. Then, a non-canonical start codon (ACG) is used for VP2 to limit the 

expression of this protein. Likewise, VP2 of HBoV1 also uses a less efficient start codon (GTG). 

However, a similar splicing mechanism within the HBoV1 cap gene was not observed. 

Recently, it has been shown that upper (u)ORFs residing in the 5‘ untranslated (UTR) region 

of the HBoV1 Cap mRNA play an important role in the regulation of alternative translation of 

VP proteins, a process which might involve leaky scanning of ribosomes 81.  

An additional unique feature of primate BoVs as compared to the animal 

bocaparvoviruses is the presence of a small non-coding RNA (BocaSR) in the 3‘ UTR region 

82. Notably, the sequence and structure of this RNA is highly conserved: HBoV2-4 and GBoV 

share 97% sequence identity, while the sequence is more divergent in HBoV1 with only 87% 

sequence similarity. Moreover, BocaSR is closely related to the adenovirus viral-associated 

RNA I and II (VAI and VAII, ~60% sequence identity) and to the Epstein-Barr virus-encoded 

small RNAs 1 and 2 (~57% identity). BocaSR is also expressed at levels close to the adenoviral 

VAI in cells but unlike VAI, it accumulates in the nucleus at sites of viral DNA replication. 

Interestingly, it has been shown that this localization plays an important role in the regulation 

of viral DNA replication and expression of the non-structural proteins NS1-3 and NP1 but not 

NS4. The molecular mechanisms by which BocaSR facilitates these events are still unclear.  

1.2 Parvovirus vectorization 

1.2.1 Helper-independent parvovirus vectors 

The cancer-specific cytopathic effect exerted by autonomous parvoviruses in cancer 

tissue fueled the first attempts to harness these viruses for medical applications. From the wt 

parvovirus (Figure 3A), three types of vector systems have been derived. The first are (i) cap-

replacement vectors (Figure 3B) in which ~800 bp in the cap region are replaced by a 

transgene of interest. The deletion of larger sequences is also possible but results in a dramatic 

drop in infectious viral titers 83. One application of this type of vectors is their use for 

vaccination. For example, Palmer et al. 84 replaced a part of the cap gene with the Borrelia 

burgdorferi outer surface protein A (OspA) and injected these vectors into naive mice. A single 

dose already resulted in high and sustained levels of specific anti-OspA antibodies. In another 

application, therapeutic interleukins or chemokines were incorporated to increase the 

antineoplastic effect of the cognate wt viruses 85, 86. The second vector type are (ii) "gutted" 

vectors (Figure 3C) in which the complete genome comprising the whole ns and cap ORFs is 

deleted and replaced with a transgene of interest. These types of vectors have so far only been 



Introduction 

 

27 
 

used in combination with reporter genes such as luciferase and β-galactosidase to allow a 

transient expression of transgenes 87-89. Finally, there are (iii) promoter-replacement vectors, 

in which the endogenous p4 promoter of rodent parvoviruses has been modified or replaced 

to add a new level of regulation. This feature was then combined with either wt viruses 51 or 

vectors. For example, Maxwell et al. 90 replaced the p4 promoter in a recombinant LuIII with a 

liver-specific promoter to drive the expression of a luciferase transgene (Pol II promoter in 

Figure 3C). This resulted in preferential luciferase expression in a human hepatoma cell line 

(HepG2). Moreover, transgene expression could be turned on or off by adding tetracycline-

responsive elements (combination of binding sites with the promoters in Figure 3).  

(A) Schematic representation of the genome of wt autonomous rodent parvoviruses that encompasses 

two major genes encoding non-structural (NS) and structural (VP) proteins. The terminal repeats (TR) 

are asymmetric and required for packaging of the genome. (B) cap-replacement vectors. A part of the 

vp ORF is replaced by a transgene of interest. (C) Complete genome deletion ("gutted") vectors. The 

ns and vp ORF are completely replaced by a transgene of interest driven by an RNA pol II promoter. 

Custom binding sites can be combined with A, B or C to allow cell-type-specific or inducible expression. 

1.2.2 Helper-dependent parvovirus vectors 

Helper-dependent parvovirus vectors have so far been exclusively based on AAV. As 

previously mentioned in section 1.1.1, the site-specific Rep-mediated integration of wtAAV 

decreases the risk of insertional mutagenesis (as compared e.g. to lentiviruses 91) and thus 

inspired the development of AAV-based vectors for integration of transgenes 31, 32. In these 

types of vectors, the Rep proteins were usually supplied in trans to promote the integration into 

the target genome 92-94. In a study by Henckaerts and colleagues 95, such an AAV2-based 

Figure 3. Genome organization of wt and recombinant rodent autonomous parvoviruses. 
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vector was used to integrate a GFP reporter into mouse embryonic stem cells. This resulted in 

strong transgene expression, which persisted throughout the differentiation of the cells in vitro 

and in vivo. One additional interesting finding in this study was a partial duplication of the target 

sequence at the integration site, which suggests the possibility that AAV has evolved a 

mechanism for targeted integration into a gene-rich area in the human DNA while avoiding 

site-directed mutagenesis. 

Despite the promise of Rep-mediated gene targeting, the cytostatic and anti-proliferative 

effect of Rep protein expression 96, 97 hampers the generation of AAV vectors that express Rep 

in cis. Consequently, currently used AAV vectors are typically gutted, i.e., devoid of all viral 

ORFs (Figure 4). Accordingly, the cap and rep genes are replaced by a transgene of interest 

and the endogenous viral promoters are exchanged with ubiquitous or tissue-specific 

promoters, such as the cytomegalovirus (CMV) promoter or the liver promoter 1 (LP1), 

respectively. The only remaining viral elements are the inverted terminal repeats (ITRs), which 

are strictly required for the replication of the viral genome and its packaging into the capsid. 

The production requirements for rAAV vectors are further discussed in section 1.2.5.1. 

Importantly, gutted AAV vectors lose their ability to integrate in a site-specific manner 98 and 

show a different integration profile than the cognate wt viruses 99, 100. A preferential integration 

of rAAV into the Rian locus has been observed in mice and shown to increase the incidence 

of HCC 101, 102. Integration at this site was especially reported in neonatal mice that received 

high doses of rAAV with strong promoter/enhancer elements 101, 103, which raises important 

considerations for vector design and time of application. Importantly, numerous long-term 

studies in primates showed that integration events rarely result in insertional mutagenesis 104-

106 and that the majority of rAAV genomes persist episomally as concatemeric structures 107. 

Thus, despite the importance of animal disease models for the optimization of vector design 

and proof-of-concept studies, it remains questionable how far these studies can predict the 

outcome of a certain strategy in humans. 

The majority of rAAV plasmids used nowadays are based on AAV serotype 2, i.e. they 

carry the AAV2 ITRs. The ITRs are also the only sequence element required for release of the 

viral genome from the plasmid backbone during production of rAAV vectors in HEK293T cells. 

This process is believed to resemble the rescue of AAV from its genomic integration site in a 

latently infected cell 108. Interestingly, it has been shown that the ITR sequences among the 

different AAV serotypes are highly conserved and that the Rep proteins are interchangeable 

(except for AAV5 109). This enabled a universal packaging of the same AAV backbone into AAV 

capsids from different serotypes. This process of cross-packaging is called pseudotyping and 

will be further discussed in section 1.2.3. 
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1.2.2.1 Next-generation AAV vectors 

The promiscuity of AAVs represents a hurdle in the application of the natural serotypes 

for gene therapy, where tissue or cell specificity is of critical importance. Moreover, the high 

seroprevalence of AAV antibodies in the human population (especially to AAV2 110) further 

restricts their use in individuals, even in those with a low antibody titer. Thus, rational or random 

approaches have been applied to generate new AAV variants with unique assets for gene 

transfer and gene therapy. Rational approaches have been of limited success because they 

require a profound understanding of virus biology including cell entry and trafficking. By 

contrast, random methods do not require such comprehensive knowledge but rather rely on 

the power of selection. The latter usually starts with a library of highly diverse AAV capsids, 

generated through e.g. DNA family shuffling (DFS), random mutagenesis, peptide display or a 

combination thereof. The libraries are then subjected to various positive and/or negative 

selection pressures to enrich promising candidates 111. In DFS, the cap genes of multiple AAV 

serotypes are first fragmented and then reassembled based on their partial homologies, 

resulting in libraries of chimeric AAV capsids. One example of a successful DFS approach is 

AAV-DJ 111, which displays an increased specificity for hepatocytes and an improved 

immunological profile. Another example is AAV2.5T 112, a potent transducer of pHAE, which 

resulted from a combination of DFS and random mutagenesis. 

In AAV peptide display, small peptide sequences are incorporated into exposed loops in 

the AAV capsid. This often involves insertions at or close to the native receptor binding site 

(e.g. the heparin binding motif in AAV2 113) to ablate the natural tropism and concomitantly 

redirect the capsid to another cellular target. Peptide sequences either involved common 

motifs like RGD (for integrin binding) 114 or were completely randomized at the start of a 

selection campaign 113. Peptide display resulted in highly specific AAV variants such as AAV2-

ESGHGYF 115 and AAV-PHP.B 116, which selectively transduce the mouse lung and brain, 

respectively. 

1.2.3 Pseudotyped parvoviral vectors 

Pseudotyping refers to the packaging of the genome of one parvovirus into the capsid of 

another. The majority of rAAV vectors available today are produced by packaging of an AAV2-

based genome into an AAV capsid of interest. The first report of a pseudotyped rAAV vector 

was by Beck et al. 117 in an attempt to bypass neutralizing antibodies and allow vector re-

administration. In this work, an AAV2-CFTR cassette (cystic fibrosis transmembrane 

conductance regulator) was efficiently packaged into an AAV3 capsid using the Rep proteins 

from AAV2. Thereafter, it became clear that the Rep proteins from AAV2 support the packaging 

of AAV2-based genomes not only into AAV2 and AAV3 but also into all other AAV serotypes 

118, 119. Consequently, most of the AAV vector plasmids used nowadays for pseudotyping rely 

on an AAV2 background despite the fact that other AAV genotypes have also been harnessed 
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for vector construction 118, 120. Interestingly, the Rep proteins displayed a high plasticity and 

were largely interchangeable across AAV serotypes. This was probably facilitated by the high 

sequence identity of the AAV ITRs, to which the Rep proteins bind and which they cleave 

during AAV genome replication (>95%) 119, 121. One exception is AAV5, whose Rep proteins 

and ITRs are distinct from other AAV serotypes. Thus, AAV5 Rep proteins do not support 

packaging of AAV2-based genomes and vice versa, AAV2 Rep proteins fail to package AAV5-

based genomes 122. This is especially due to significant differences in the terminal resolution 

site (TRS) in the AAV5 ITR sequence, which its nicked by Rep78/68 during AAV replication 

109. 

Maxwell and co-workers were the first to perform autonomous parvovirus pseudotyping, 

in order to elucidate tropism determinants of rodent parvoviruses. Therefore, a recombinant 

LuIII genome (encoding luciferase) was packaged into the capsids of numerous autonomous 

parvoviruses such as MVM. Transduction of mouse lymphocytes and fibroblasts with the two 

MVM strains, MVMi and MVMp, revealed that the capsid is the sole determinant of virus 

tropism 123. A similar observation was made by Spitzer et al. who pseudotyped a LuIII genome 

with the capsids of canine parvovirus (CPV) and the feline panleukopenia virus (FPV) 123. Also 

in these experiments, the resulting virus tropism was determined by the virus capsid but not 

by the packaged genome. Still, genomic determinants might also be important for virus tropism. 

For example, the murine species-specificity of H1 parvovirus is determined by DNA elements 

in the viral genome 124. 

Most autonomous parvoviruses predominantly package minus rather than plus strand 

genomes (~90:10), while others encapsidate both strands with equal efficiencies (e.g. LuIII). 

Pseudotyping was used to study the determinants of viral genome packaging. For example, 

when rLuIII genomes were pseudotyped with MVM capsids, the packaging polarity of LuIII was 

retained 125. Likewise, pseudotyping a rAAV genome with a HBoV1 capsid results in equal 

packaging of minus and plus genomes, which is a feature of AAV but not of HBoV1 10. These 

observations hint at an intrinsic property in the viral genomes that determines packaging 

polarity. 

Finally, pseudotyping was utilized to create new cross-genera viral vectors for 

therapeutic gene transfer. The underlying idea is to combine the best properties of two genera, 

e.g. the low genotoxicity or immunogenicity of AAV with the more specific tropism or enlarged 

packaging capacity of another parvovirus (e.g. B19 or HBoV1).  

The ability to package a rAAV genome into the B19 capsid was first demonstrated in an 

attempt to simplify the study of B19 biology. In this work, Srivastava et al. packaged a chimeric 

viral genome composed of AAV2 ITRs and the whole B19 genome into an AAV2 capsid 126 (for 

more details, see section 1.2.4). In another study, Ponnazhagan et al. 127 used this unique 

property in an inverted approach, by packaging rAAV genomes into the B19 capsid. The 
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pseudotyped rAAV2/B19 viral vector very efficiently and specifically transduced erythroid 

progenitor cells. One limitation of these vectors was the low viral titers of 107 genome copies 

per mL (gc/mL), which in general restricted their application to small-scale in vitro experiments. 

For example, the pseudotyped vector was used to study B19 tropism and cell entry 128.   

The most recent report of a cross-genera parvoviral vector was published in 2013 10. In 

this study, Yan et al. packaged a rAAV2 genome into the capsid of HBoV1, yielding 

rAAV2/HBoV1 vectors that potently transduced pHAE 10. Moreover, an oversized (with respect 

to AAV capsids) ssAAV2 vector genome of up to 5.5 kb could be efficiently packaged into the 

HBoV1 capsid. 10. Further increasing the attractiveness of this latest pseudotyped parvoviral 

vector is the high viral titers that were obtained (> 2×1011 gc/mL) as compared to the 

rAAV2/B19 vectors. 

1.2.4 Chimeric parvoviral vectors 

The genomes of chimeric parvoviral vectors are composed of elements belonging to 

more than one parvovirus, which distinguishes them from pseudotyped vectors where the 

genome is derived from a single viral isolate (see previous chapter). Because of their hybrid 

nature, these vectors usually share minimal or no homology to the packaging-helper plasmids. 

Thus, this strategy was commonly used to eliminate contaminating replication-competent wt 

virus in parvoviral vector stocks by reducing the risk of recombination between vector and 

helper plasmids 124.   

Chimeric parvoviral vectors were also used to answer questions surrounding the 

parvoviral life cycle. As shortly mentioned in section 1.2.3, the first chimeric parvoviral vector 

was constructed by Srivastava et al. 126, who packaged a hybrid rAAV2-B19 genome (AAV2 

ITRs flank the whole B19 genome) into an AAV2 capsid (rAAV2-B19/AAV2). This vector was 

able to autonomously and specifically replicate in erythroid progenitor cells. Strikingly, despite 

the distant phylogenetic relationship of AAV2 and B19, the hybrid genome was able to replicate 

in the sole presence of B19 proteins. The was only possible in the B19 target cells because of 

the restricted activity of the p6 promoter. Importantly, production of the hybrid vector was not 

restricted to the B19 target cells because the B19 genome was flanked by AAV2 ITRs, which 

are the only viral requirement for standard rAAV production (see section 1.2.2). In view of the 

strict growth requirements of wtB19 virus 129, the construction of a rAAV-based, infectious and 

replication-competent B19 clone that can be easily produced in standard human KB cells (and 

probably also in HEK293 cells) represented a major advance, which simplified the dissection 

of B19 biology. In a subsequent report, Wang et al. 130 used a different hybrid vector to assess 

the role of the B19 p6 promoter in B19 infectivity and cell specificity. Therefore, the p5 promoter 

in wtAAV2 was replaced by the B19 p6 promoter. Interestingly, the B19 promoter was sufficient 

to allow autonomous replication of the rAAV genome in erythroid progenitor cells 130. 
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Krüger et al. 131 followed a similar approach with the aim to specifically target and kill 

tumor cells. The idea here was to combine the oncolytic properties of the H1 parvovirus with 

the broad tissue tropism of AAV2. Therefore, the p4/p38 promoters and the ns gene from the 

H1 virus were first cloned between rAAV2 ITRs. The H1 cap gene driven by the p38 promoter 

was then replaced with the suicide gene thymidine kinase from herpes simplex virus (HSV-tk). 

This enables an inducible killing of HSV-TK-expressing cells by the addition of the prodrug 

ganciclovir 132. 

Flanking the H1 hybrid vector with AAV ITRs allowed the packaging of the genome into 

an AAV2 capsid (rAAV2-H1/AAV2). Importantly, the p4 promoter, which drives the expression 

of the ns gene, has a higher activity in transformed cells owing to the binding of specific 

transcription factors 133. Yet, in contrast to the rAAV2-B19/AAV2 hybrid vector, the rAAV2-

H1/AAV2 vector was unable to replicate autonomously. This missing feature is, however, 

believed to be important for an efficient oncolytic effect. Accordingly, the vector showed a 

preference for transformed cells but no advantage over a CMV promoter-driven standard AAV 

vector.  

1.2.5 Production of parvoviral vectors 

The different parvoviral vectors described in the previous chapters can be produced by 

flanking the modified genomes by terminal repeats and supplying the missing viral proteins in 

trans from separate plasmids. For example, cap-replacement vectors (Figure 3B) would 

require the trans-complementation of the cap ORF, whereas gutless vectors (Figure 3C) 

devoid of all viral genes require both cap and ns genes in trans. Importantly, the degree of 

homology between the different plasmids should be as low as possible to prevent 

recombination events that could lead to the contamination of the vector stocks with wt viruses. 

As noted above, chimeric viruses and pseudotyping were used as efficient approaches to 

diminish this type of contamination 88, 123, 124.  

In this work, we used pseudotyped AAV and BoV vectors for gene transfer into primary 

cells and cell lines. Thus, their production and purification will be in the focus of the next two 

chapters. 

1.2.5.1 Production of pseudotyped rAAV vectors 

In standard AAV vectors, the complete AAV genome is usually replaced by a transgene 

of interest, i.e., they are gutted. Only the ITRs are kept as they are the sole sequences required 

for DNA replication and packaging of the genomes into the capsids (AAV vector in Figure 4). 

The cap and the rep genes are provided in trans together with the genes from adenovirus (AAV 

and Ad helpers in Figure 4, respectively).  

In this work, all AAV vector backbones were based on the AAV2 genotype. Pseudotyping 

with different capsids was performed by simply replacing the cap ORF in the helper plasmid. 
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AAV vectors were then produced by co-transfecting the three plasmids into HEK293T cells 

(see method section 2.2.5.2) 

Interestingly, it has been shown that reduced Rep protein expression favours the 

production of AAV vectors 134, 135. This led to the development of AAV helper plasmids that 

express lower levels of Rep78/68 than conventional helper constructs, due to a shift of the 

AAV2 p5 promoter (in plasmid pWHC2 136) or its replacement with the weaker MMTV promoter 

(in plasmids pDG and pDG∆VP) 135, 137. 

 

 

Shown are the three plasmids needed for 

AAV vector production. The plasmids are 

co-transfected into 70% confluent 

HEK293T cells. The x denotes the used 

AAV serotype, which can be 1-13 for 

naturally occurring primate AAVs. 

 

1.2.5.2 Production of pseudotyped rAAV2/HBoV1 vectors 

Pseudotyped rAAV2/HBoV1 vectors were first described by Yan et al. 10 in 2013. In this 

original report, the vectors were produced by co-transfection of four plasmids (Figure 5, 

plasmids 1 to 4). Notably, at that time, the factors strictly required for pseodotyped vector 

production were still unknown. Thus, all non-structural proteins of BoV and AAV2 were 

supplied in trans (Figure 5, plasmids 2 and 3). Moreover, an adenoviral helper plasmid was 

co-transfected that expresses the adenovirus genes needed for AAV production (Figure 5, 

plasmid 4). Pseudotyped vectors could be produced at ~1.25×1011 gc/mL, which is around 5 – 

10% of cognate rAAV2/AAV2 preparations 10. 

Recently, Yan and colleagues have reported an optimized rAAV2/HBoV1 production 

system that results in higher yields than the prototype system 138. This system was rationally 

developed based on the increased understanding of parvovirus, especially bocaparvovirus 

biology. The authors showed that overexpression of the non-structural proteins (from a CMV 

promoter) negatively influences the production of viral particles. Consequently, deletion of the 

NS1-4 proteins resulted in a 9-fold increase in vector yields. 

Figure 4. Recombinant AAV production 
system. 
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 The NP1 protein is the only non-structural protein in HBoV1 which is strictly required for 

VP expression. Curiously, despite its important role, overexpression of NP1 resulted in a 

reduction in the viral titer 138. Thus, along their aim to optimize the rAAV2/HBoV1 production 

system, the authors sought to design a HBoV1 helper that is independent of NP1. This was 

achieved by introducing a silent mutation into the (pA)p site that lies within the cap ORF 70. 

The resulting bocaviral helper carrying the (pA)p mutation and lacking all NS/NP1 proteins 

promoted higher cap expression but a 3-fold lower virus production. This led the authors to 

conclude that the 1:1:10 stoichiometry of the VP1:VP2:VP3 proteins was disturbed and that 

NP1 may play a role in its regulation.  

The prototype production protocol as described by Yan et al. in 2013 10 involves plasmids 1 to 4. The 

transgene of interest (1) is expressed from a standard rAAV vector with AAV2 ITRs. The non-structural 

proteins required for AAV replication and packaging are supplied in trans from the AAV and Ad helpers 

(2 and 4, respectively). The HBoV1 structural and non-structural proteins are provided from the BoV 

helper (3). The improved rAAV/HBoV1 production system includes plasmids 1, 5 and 6 138. The non-

structural proteins from BoV are not needed. Instead, the BoV cap ORF was split onto two new helpers 

(5 and 6; codon-optimized vp1 to vp3). Moreover, the non-structural proteins required for AAV replication 

and packaging (rep and adenoviral helper genes) are included. 

The silencing of the (pA)p signal made it possible, for the first time, to express the HBoV1 

cap ORF independently and in the absence of any non-structural proteins. The major Cap 

protein is VP3 with 60 copies in the viral capsid. VP1 is the largest VP protein and plays an 

important role in the infectivity of the viral particles, because of its N-terminal phospholipase A 

domain and the nuclear localization sequence (NLS) 68. The role of the VP2 protein in HBoV1 

infectivity is still unknown. However, it is believed that VP2 in parvoviruses participates in 

receptor recognition and cell entry 68. Consistent with this, Yan and colleagues experimentally 

verified that VP2 is not limiting, whereas high levels of VP1 and VP3 are important for infectious 

HBoV1 virus particle formation 138.  

To restore the correct stoichiometry of viral protein expression, the authors mimicked the 

mechanism used by AAV, which is to uncouple VP1 expression from VP2/VP3. This was 

Figure 5. Pseudotyped rAAV/HBoV1 production system. 
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achieved by juxtaposing the VP1 ORF on one plasmid with the Rep proteins from AAV2 

(Figure 5, plasmid 5), whereas the VP2/VP3 ORFs and the adenoviral helper genes were 

placed on a second plasmid (Figure 5, plasmid 6). Moreover, the GTG start codon of VP2 and 

the surrounding sequence were replaced by a stretch from AAV2 that includes the Kozak 

consensus sequence and the start codon ACG. Akin to the original start codon GTG in HBoV1, 

ACG is a non-canonical start site that results in reduced VP2 protein levels. This hybrid 

constellation was successful and resulted in a 16-fold increase in viral production (~4.5×1012 

gc/mL) as compared to the prototype production system.     

1.3 Clinical application of parvoviral vectors  

AAV vectors have many advantageous traits such as their low immunogenicity, distinct 

tissue tropism and high vector yields. This makes them the most attractive parvoviral vectors 

available to date for many pre-clinical and clinical applications. The success of AAV vectors 

was reflected in the licensing of the first European AAV gene therapy product, Glybera, in 2012 

for the treatment of lipoprotein lipase deficiency. Since then, impressive therapeutic efficacy 

has been frequently reported in numerous clinical trials for treatment of ocular 139, neurological 

140 and other monogenic diseases (e.g. alpha-1 antitrypsin deficiency 141 and hemophilia B 142). 

Most recently, the FDA approved the first two AAV gene therapy products in the US, namely, 

Luxturna for the treatment of various forms of retinal dystrophy 143, or Zolgensma for the 

treatment of spinal muscular atrophy 140, 144. 

Replication-competent autonomous parvoviruses showed promising results in targeting 

and resolving different types of cancer in mice 48, 145. The first clinical trial involving oncolytic 

parvoviruses (ParvOryx 01) started in 2011 and used the murine H1 parvovirus. The study 

involved 18 patients and revealed a good safety profile of the virus, broad distribution and an 

immunostimulatory property against tumor cells 146. Despite all these promising aspects, 

complete remission was not obtained. The efficacy of the treatment was now enhanced with 

the inclusion of immune-modulating agents 147. This showed a promising synergistic oncolytic 

effect in 78% of patients with two complete responses. In 2016, a second clinical trial was 

initiated for the treatment of inoperable pancreatic cancer (NCT02653313).  

1.4 A brief history of CRISPR discovery 

In 1987, Ishino and co-workers reported a very unusual cluster of repetitive sequences 

near the 3’ end of the iap gene in E. coli. Despite the absence of any sequence similarity to 

the previously identified repetitive extragenetic palindromic (REP) sequences, the authors 

speculated that they might share a similar function because of their repetitive nature, which is 

believed to contribute to mRNA stability 148, 149.  

https://clinicaltrials.gov/ct2/show/NCT02653313
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A few years later, the mysterious repetitive regions were also found in other bacteria 

such as Shigella dysenteriae, Salmonella typhimurium 150 and Mycobacterium bovis 151. In 

1993, Mojica et al. 152 made the first observation of a similar cluster in halophilic archaea 

(Haloferax mediterranei). Thereafter, many researchers detected similar clusters in a variety 

of microbes, archaea and even mitochondria, implying a high biological relevance.  

Different terminologies were proposed to describe these sequences: regularly spaced 

repeats 152 and spacers interspersed direct repeats (SPIDR) 153. Eventually, the naming conflict 

was resolved and the acronym CRISPR for clustered regularly interspaced short palindromic 

repeats was adopted and is still in use, although it is nowadays known that the repeats are not 

always palindromic. The unknown ORFs next to CRISPR were found to encode proteins that 

directly interact with the repeats and were hence named CRISPR-associated proteins (Cas) 

154. 

With the development of bioinformatic tools and the availability of broadly-accessible 

databases of full-length genomes, the spacer sequences that separated the highly conserved 

repeats could be matched to sequences from phages and mobile genetic elements. This 

revealed that the CRISPR locus maintains a memory of previous invaders 155 and thus might 

represent an adaptive immune system. However, initially, it was thought to resemble the 

eukaryotic RNA interference (RNAi) mechanism. 

Bolotin et al. showed in 2005 156 that there is a correlation between the number of spacers 

and the resistance to infection. Moreover, they identified a short and conserved motif next to 

the target sequence (the protospacer) in the invader, which was later named the protospacer-

adjacent motif (PAM). This PAM sequence is important for self- and non-self-recognition that 

protects the organism form attacking its own genome 157. Moreover, the PAM sequence was 

shown to be seminal for both, spacer acquisition and interference 158. It is noteworthy that some 

CRISPR systems have evolved to function without a specific PAM sequence, by using different 

levels of complementarity between the CRISPR (cr)RNAs and the target sequences 159.  

The first experimental evidence that CRISPR is indeed an adaptive immune system in 

prokaryotes was provided by Barrangou and co-workers in 2007 160, who showed that the 

addition or deletion of spacer sequences into the CRISPR locus changed the response of S. 

thermophilus to infection with phages carrying the corresponding protospacer sequences. 

They moreover demonstrated a pivotal role of the Cas proteins in this process. 

1.5 CRISPR interference in nature 

Currently, there are six known CRISPR-Cas systems, which differ in their protein 

components and mode of action 161. Due to the complexity of the topic, the focus here will be 
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on the best-characterized CRISPR types I to III. A comprehensive review of all these systems 

and their subtypes can be found in reference 161. 

In all the described CRISPR systems, there are three levels of CRISPR interference: 

adaptation, expression and interference. In the adaptation phase, spacer sequences are 

acquired from invaders and inserted at the leader end of the CRISPR locus. The mechanism 

underlying this process is poorly understood and varies between the different CRISPR systems 

162. However, two universal key players are known to be involved: Cas1 and Cas2 158. These 

two proteins are believed to originate from transposon-like elements and to function similar to 

viral integrases and transposases in mediating the insertion of the DNA into the genome 163. 

There are two types of spacer acquisition: (i) naive, when an invader has not been previously 

encountered 164, and (ii) primed, following a pre-exposure to the invader 165. The latter is usually 

more efficient and results in insertion of additional spacers from one invader, increasing the 

resistance of the organism to this invader.  

The CRISPR locus encodes a long primary transcript called the pre-crRNA (the 

precursor CRISPR RNA), which is expressed by the host RNA polymerase and is subsequently 

processed into short mature crRNAs 166. This process varies across the different CRISPR 

systems and subtypes but in general involves endoribonucleases originating from the cas ORF 

(such as Cas6 in type I and III 167) or from a different region (RNase III for type II 168). Next, the 

crRNAs are loaded into the respective Cas proteins to form a ribonucleoprotein complex. This 

involves the CRISPR-associated complex for anti-viral defense (Cascade), Cas9 or the 

Cascade-like effectors (Csm/Cmr) for type I, II and III CRISPR systems, respectively.  

In the last stage of interference, the Cas/RNA ribonucleoprotein complexes target and 

cleave a complementary sequence of foreign DNA. Also here, differences were observed 

among the CRISPR systems. For example, type I and II require the presence of the PAM 

sequence next to the target site, whereas type III systems use a different mechanism for self- 

and non-self-discrimination. Here, a part of the repeat sequences, which are usually only 

present in the host CRISPR locus, are included in the crRNA and result in inhibition of the 

endonuclease activity if the complementarity to the target site is high enough. Moreover, the 

protein responsible for cleaving the target DNA is different. In the type II system, only the Cas9 

protein is required for interference and DNA cleavage together with an additional small RNA 

called the trans-activating CRISPR RNA (tracr) RNA 168. By contrast, in type I CRISPR 

systems, different proteins in the Cascade complex are involved in crRNA binding, DNA 

targeting and PAM recognition. The endonuclease Cas3 is believed to be recruited later for a 

processive cleavage of target DNA 169, 170. Type III CRISPR systems are even more complex 

and less well understood, involving numerous proteins (such as Cas10) and an ability to target 

both, DNA and RNA 171.  
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Apart from its function in bacterial immunity, the CRISPR system has proved to be 

involved in many other regulatory functions in bacteria such as virulence 172, DNA repair and 

gene expression regulation 173. 

1.6 Anti-CRISPR mechanisms 

Bacteriophages are viruses that infect bacterial cells, which can result in lysis and death 

of the host organism. Phages are the most abundant forms of life on the planet. It has been 

estimated that in seawater, there are at least 10 bacteriophages for each bacterial cell 174, 175. 

Therefore, bacteria have evolved different ways to defend themselves against bacteriophage 

infection including: (i) the change or masking of surface receptors 176, (ii) Sie (superinfection 

exclusion) and RM (restriction modification) systems that block phage DNA injection or destroy 

the incoming viral DNA through self/non-self discrimination, respectively 177, and (iii) the use of 

the previously described CRISPR-Cas system. 

The wide distribution of CRISPR in ~50% of bacteria puts a high selection pressure on 

phages to develop anti-CRISPR mechanisms to breach these barriers 178. The same applies 

to viruses infecting eukaryotic cells, which evolved RNA silencing suppressors (RSS) to 

counteract the host’s RNAi machinery and hence promote infection 179. Thus, it came as no 

surprise when the first anti-CRISPR type I proteins (Acr F1-5) were discovered in phages 

infecting Pseudomonas aeruginosa 180. Later studies demonstrated the existence of Acr 

proteins in a wide range of gram-positive- or -negative bacteria 181. The expression of these 

proteins from lysogenic phages (i.e. integrated in the bacterial genome) that harbor targets for 

the bacterial CRISPR system became an essential requirement for the cell’s and the phage’s 

survival 182.  

The mechanisms by which Acr proteins inhibit CRISPR activity are diverse but usually 

involve a physical interaction between the Acr protein and subunits of the Cas complex or the 

endonuclease component 183. Consequently, Acr proteins perturb different steps of CRISPR 

interference from target binding to target degradation. Moreover, some types of interactions 

were also shown to impede new spacer acquisition 184. 

Most of the Acr proteins discovered so far are directed against the CRISPR I and II 

systems. Two of these proteins (AcrIIA2 and AcrIIA4) inhibit the Cas9 protein derived from 

Streptococcus pyogenes (SpCas9) 185. The ability to heterologously express these proteins in 

eukaryotic cells along with the SpCas9 (see section 1.7) has been harnessed to allow for 

spatial and temporal control of Cas9 activity 186. 
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1.7 Mammalian genome editing using CRISPR/Cas9  

In 2011, Sapranauskas et al. showed that CRISPR regions can be transferred between 

bacteria as completely functional units, which demonstrated their autonomous nature 187. Two 

years later, the machinery was expressed in eukaryotic cells and used for genome editing 188, 

189.   

Of all the CRISPR systems described so far, the type II systems are the simplest, as they 

rely on only one protein (the Cas9) for DNA targeting and cleavage 191. Moreover, and in 

contrast to the other CRISPR types, the target DNA has been shown to be cleaved in a specific 

manner, 3 bp upstream of the PAM sequence 191. Both characteristics facilitated the 

development of this CRISPR type as a tool for genome editing. The ability to fuse the crRNA 

and tracrRNA into one chimeric gRNA further increased the simplicity and applicability of the 

system 190. Consequently, Jinek et al. showed that only two components were required to 

efficiently target plasmid DNA in vitro (Figure 6): (i) the endonuclease Cas9 and (ii) the 

chimeric gRNA composed of the crRNA and the tracrRNA. The crRNA confers the specificity 

by directing the Cas9 to a complementary target sequence, whereas the tracrRNA plays a role 

in recruiting and binding of the Cas9. Once the gRNA/Cas9 complex finds its target sequence, 

the Cas9 protein uses two endonuclease homologous domains HNH and RuvC to cleave the 

target and non-target strand, respectively 191, 192. Thereby, any DNA sequence can be chosen 

as target for Cas9 as long as it harbors a compatible PAM sequence at its 3’ end.  

When Cas9 cuts its defined target sequence, the result is a double-stranded DNA break. 

The cell attempts to repair its DNA by using either homologous recombination (HR) or non-

homologous end-joining (NHEJ). HR is template-dependent and results in high-fidelity repair, 

whereas NHEJ is error-prone and can eventually result in gene knockout 193. Usually, NHEJ is 

the dominant repair pathway in eukaryotic cells, especially when mutations are biallelic and no 

repair template is supplied in trans.  

The desired outcome of gene editing always depends on the application. For example, 

Cas9-mediated knockout allows loss-of-function studies while the ability of gRNA multiplexing 

  

Figure 6. Mammalian genome editing 

using the CRISPR type II system. 

The Cas9 protein is directed to its target 

DNA sequence (the protospacer) using a 

chimeric gRNA, which is composed of the 

crRNA and a tracrRNA. The 5’-PAM 

sequence is crucial for target recognition.  

Two endonuclease domains, HNH and 

RuvC, cleave the target and non-target 

strand, respectively. (Adopted from 

reference 190) 
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facilitates parallel genome-wide knock-out screens, as demonstrated by reports studying 

cellular signalling 194 and tumor growth 195. On the other hand, HR is beneficial when the aim 

is to introduce defined changes in target DNA sequences (knock-in). However, the intrinsic 

frequency of HR in eukaryotic cells is very low, which poses an obstacle for harnessing its full 

potential. Therefore, several strategies have been implemented to increase the incidence of 

HR events by e.g, using inhibitors of the NHEJ pathway 196 or by physically positioning the 

donor DNA close to the cut site 197.  

Noteworthy, a catalytically inactive form of Cas9, the (d)ead Cas9, has been constructed 

and used alone or in combination with transcription activators/repressors to introduce 

transcriptional or epigenetic changes at various sites in the genome 198, 199. 

1.7.1 Cas9 delivery for in vivo genome editing  

The simplicity and flexibility of the CRISPR/Cas9 system led to its widespread use for in 

vitro genome editing. Soon, the promise of the technology for in vivo gene editing and medical 

applications was recognized. The challenge here was to find a suitable carrier for the delivery 

of all CRISPR components in vivo. In first attempts, hydrodynamic injection of plasmid DNA 

200, 201 was used to deliver the Cas9, a gRNA and a repair template. In a study by Yin et al. 200, 

low rates of Fah mutation correction were obtained in mouse hepatocytes. Importantly, an 

expansion of the corrected cells resulted in alleviation of the pathogenic phenotype of 

hereditary tyrosinemia. 

The process of hydrodynamic injection is now widely applied for delivery of proteins, 

oligonucleotides and small molecules 202. However, due to the invasiveness of the method, it 

is only applicable in rodents and not considered for gene delivery in humans 203.  Instead, other 

methods are currently under investigation, which show great promise for human gene therapy: 

(i) non-viral carriers including lipid nanoparticles (LNP) 204, gold nanoparticles 205 and polymeric 

vectors such as polyethylamine (PEI) 206, as well as (ii) the previously mentioned viral vectors 

including adenoviruses 207, lentiviruses 208 and AAVs 12, 209, 210 (the latter is discussed in detail 

in section 1.2.2).  

Non-viral methods are attractive because of their low immunogenicity and safety 

advantage. However, the specificity and the resulting editing efficiencies were lower than those 

obtained so far with viral vectors. Therefore, most applications nowadays focus on viral 

vectors, especially rAAVs that show a high transduction efficiency, but low immunogenicity as 

compared to adeno- and lentiviruses. As mentioned in section 1, one hurdle is the small 

packaging capacity of rAAVs of only 4.7 kb, which makes the packaging of both CRISPR 

requirements - the Cas9 and the gRNA - challenging. This especially applies to the first 

identified SpCas9 variant with a size of 4.1 kb. Still, all-in-one vectors that carry both parts on 

one vector were possible when minimized forms of promoters were used 209. High expression 

levels are, however, required to achieve phenotypic changes or clinical benefit. Thus, to 
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overcome the AAV packaging limit, several approaches have been applied: (i) packaging of 

Cas9 and the gRNA expression cassette into two separate rAAV capsids 11, or (ii) the 

identification and use of smaller Cas9 orthologs including those from Streptococcus 

thermophilus 188, Neisseria meningitidis 211 and Staphylococcus aureus (SaCas9) 12. The latter 

is now most commonly used because of its comparable cutting efficiencies to SpCas9 14, 212. 

Moreover, (iii) split Cas9 variants were developed in which the N-terminal part of the Cas9 is 

expressed from one AAV capsid and the C-terminal part from another 213. After co-transduction, 

the Cas9 is reconstituted in the cell and results in editing efficiencies that can be comparable 

to a full-length Cas9, depending on the target cells and specific splicing strategy. The split 

Cas9 approach is discussed in more detail in the next section due to its high relevance for this 

work. 

1.7.2 Split Cas9 approaches for overcoming AAV size restrictions 

Several previous studies have attempted to overcome the packaging limit of rAAVs by 

distributing larger transgenes over two or even three separate rAAV vectors (called split AAVs) 

214. When a cell is co-transduced by all the different rAAVs, the transgene is reconstituted on 

the DNA level via recombination or trans-splicing, which consequently restores transgene 

expression 214. Despite many promising results, transgene expression remained less than that 

observed with full-length versions of the gene. Nevertheless, this certainly represented a 

promising approach to deliver transgenes that surpass or exceed the AAV packaging capacity.  

With a length of 3.1 to 4.2 kb, the Cas9 ORF belongs to the larger transgenes, which, 

when packaged into rAAVs, only leave little space for regulatory elements or additional 

cassettes (e.g., fluorescent reporters or gRNA cassettes). Therefore, many research groups 

harnessed the split AAV approach to distribute Cas9 on two or three different rAAVs. In more 

detail, one can distinguish three different strategies, the first being (i) physical methods. Here, 

the SpCas9 was split in two parts that assembled only in the presence of a suitable and 

modified gRNA 215. The second strategy is (ii) rapamycin-inducible assembly, whereby the N- 

and C-termini of Cas9 are fused to FK506-binding protein 12 (FKBP) or FKBP rapamycin-

binding (FRB) domains, respectively. Addition of rapamycin triggers the dimerization of the two 

domains and hence reconstitutes full Cas9 expression 216. Finally, (iii) the split Cas9 parts were 

fused to intein moieties. When the two split parts are expressed in one cell, the inteins 

recognize each other, splice themselves out and join the two protein halves to recover the full-

length Cas9.  

As seen before with other split transgenes, the split Cas9 variants were usually less 

efficient than a full-length Cas9 216, 217. However, the lower level of activity might still be 

sufficient for distinct applications that are only possible with a split rather than a full-length 

Cas9. One example is the combination of Cas9 with a variety of biologically active modules for 

transcriptional perturbation or inducible expression. These CRISPR on/off systems usually 
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exceed the packaging limit of standard AAV vectors but were readily combinable with a split 

Cas9 216. Moreover, tight spatial control of Cas9 expression should be possible using different 

cell-type specific promoters for the split parts, which would restrict Cas9 activity to a defined 

subset of cells.  

1.8 Clinical trials for genome editing 

Over the last few years, CRISPR has been used successfully for ex vivo gene therapy 

applications. One of the most intriguing examples is the so-called CAR-T therapy for children 

with B-cell acute lymphoblastic leukemia and for adults with advanced lymphomas 218, 219. CAR-

T stands for chimeric antigen receptor T cells, which are cells taken from patients and 

engineered ex vivo to express a modified receptor (CAR) that targets the T cells to the cancer 

cells. First-generation CAR-T cells were created using lentiviruses or the Sleeping Beauty 

transposon system. Both integrate exogenous DNA sequences randomly into the genomic 

DNA and hence allow for a stable expression of the chimeric receptor 220. Recently, the FDA 

authorized Kymriah, a CAR-T therapy directed against CD19+ tumor cells 221.  

To enhance the safety and to broaden the applicability of CAR-T technology, several 

laboratories around the world are now using the CRISPR/Cas9 system to knock out the 

endogenous T-cell receptor and knock in an exogenous CAR cDNA at the same time. The 

resulting T-cells are allogeneic, which reduces the risk of immune rejection (graft-versus-host 

disease) 222, 223. Another improvement to CAR-T cell therapy was the combination with blocking 

antibodies against surface molecules such as PD-1, whose expression causes an immune 

exhaustion and loss of functional activity of the T-cells 224. The clinical benefit of these 

strategies is currently being studied in multiple clinical trials (NCT03399448, NCT03166878, 

NCT03398967 and NCT02650999). 

Another ex vivo clinical trial was announced in 2018 by CRISPR Therapeutics and Vertex 

Pharmaceuticals in Canada and Europe (NCT03655678). The medication called CTX001 is a 

CRISPR-based modification of human hematopoietic stem and progenitor cells (hHSPCs). 

This therapy is proposed for individuals with β-thalassemia or sickle-cell disease, who suffer 

from abnormalities in hemoglobin production. The molecular target of the approach is a gene 

called BCL11A, which represses the production of fetal hemoglobin. The quintessential hope 

is that when this repression is lifted, enough hemoglobin will be produced to alleviate the 

disease phenotype.  

Editas Medicine and Allergan plan the first in vivo CRISPR gene-editing trial (EDIT-101) 

in 2019 225. Here, the gene editing machinery will be packaged into a rAAV vector and delivered 

by subretinal injection to directly reach the photoreceptor cells. CRISPR should then target and 

https://clinicaltrials.gov/ct2/show/NCT02650999
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correct the point mutation IVS26 in the gene CEP290, which is believed to play a role in Leber's 

congenital amaurosis type 10.  

Seven years after its adaptation to mammalian cells, the CRISPR technology broke a 

record for entering the first clinical trials faster than any other technology before. Whilst the 

true clinical value has yet to be proven, there is every reason to be excited about this rapidly 

emerging and broadly applicable technology.  

1.9 Aim 

The gene therapy field has a growing demand for new vector systems that efficiently and 

specifically deliver any cargo of interest. Recently, a novel lung-specific pseudotyped 

rAAV2/HBoV1 system has been described that relies on the use of the HBoV1 capsid and a 

rAAV2 genome. The advantages of this system are manifold, including the larger packaging 

capacity of the BoV capsid as compared to AAV, the compatibility with all available rAAV 

vectors and the high vector yields in contrast to other previously reported chimeric systems. 

Intrigued by this advance in vector technology, we focused in the first part of this work on BoVs 

as potential tools for delivery of transgenes that exceed the packaging capacity of AAVs. To 

this end, we aimed to: (i) establish and optimize the pseudotyped rAAV/BoV production system 

in our lab, (ii) extend the genome size of both ss and scAAVs to examine the upper HBoV1 

packaging capacity, and (iii) study the impact of targeted tyrosine-to-phenylalanine mutations 

in the viral capsid on the transduction with rAAV2/HBoV1 vectors. 

Subsequently, we aimed to expand the repertoire of bocaviral vectors by exploiting four 

newly discovered primate BoVs, namely, HBoV2-4 and GBoV. Importantly, despite the high 

homology to HBoV1, these viruses were only sporadically detected in the airways and hence 

believed to have a different tropism. Thus, the first goal was to de novo assemble the cap 

ORFs of the four primate BoVs based on published sequences and to create hybrid helper 

plasmids for efficient pseudotyping with rAAV genomes. The success of the first goal laid the 

foundation for the second step, which was to test the cell tropism and thereby prove the 

functionality of the viral vectors. The final goal was to extend the DNA family shuffling 

approach, commonly applied to AAV vectors, to all five BoV capsids in order to create chimeric 

libraries that should serve as valuable tools for both, vector development and dissection of the 

biology of BoV infection. 

In the second major part of this work, we aimed to increase the safety of rAAV vectors in 

gene therapy through two different approaches. The first concept was to integrate a “safety 

switch” into the rAAV vector, which, when needed, can inactivate the expression of the 

encoded transgene from the vector. To this end, we exploited the CRISPR/Cas9 system to 

target the vector DNA, leading to a permanent knock-out of gene expression and - in the best 
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scenario - a complete degradation of the target vector. Here, two components are needed, the 

first being a gRNA complementary to a site in the transgene. To create an activatable kill-

switch, the gRNA expression cassette (Pol III promoter and gRNA) is cloned into the vector 

harboring the transgene. The second component is the Cas9 endonuclease that is supplied in 

trans when the activation of the kill-switch is required and then loads the gRNA and triggers 

vector degradation. Another goal in this part of the work was to optimize Cas9 delivery in terms 

of expression amplitude and duration. Therefore, we aimed to construct and validate a self-

inactivating (SIN) rAAV-CRISPR system based on a split Cas9 approach in which the two parts 

of the split Cas9 (N- and C-parts) are positioned on two distinct rAAV vectors. To create a SIN 

circuit, an anti-Cas9 gRNA targeting the N-terminus of the Cas9 is added to the vector 

harboring the C-terminal part. This overcomes a previous hurdle in the construction of SIN 

CRISPR vectors, which is the mutation and inactivation of Cas9 during vector production. The 

smaller size of the split parts offers additional advantages, such as (i) a flexibility in choice of 

promoters and regulatory elements, which is crucial towards optimization of in vivo Cas9 

expression. Moreover, (ii) it allows packaging of Cas9 and the gRNA into scAAVs, which result 

in higher transgene expression than ssAAVs 226.  

In summary, this doctoral work addresses and unites two central aspects of viral vector 

development, which are capsid and genome engineering. Importantly, these two parts are 

complementary and readily combinable. For example, the larger packaging capacity of the 

BoV capsid can be harnessed in future work to optimize the SIN vectors by (i) making use of 

promoters, regulatory elements and functional domains which allow higher or tissue-restricted 

expression and which usually do not fit together with the full-length Cas9 into standard rAAVs, 

and by (ii) including all required elements for DNA editing and repair, i.e., the Cas9, the gRNAs 

and a homology repair template. Beyond CRISPR applications, we envision that different 

pseudotyped bocaviral vectors will expand the range of primary cells and tissues, which are 

refractory to efficient rAAV transduction, but which could be targeted using our new generation 

natural or synthetic BoV vectors and thus also become amenable to therapeutic intervention. 
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2 MATERIALS AND METHODS 

2.1 Materials 

 Bacterial strains 

Strain Description Source 

E. coli ccdB SurvivalTM T1R Chemocompetent Thermo Fisher Scientific 

(Massachusetts, USA) 

E. coli MAX Efficiency DH5αTM Chemocompetent Thermo Fisher Scientific 

(Massachusetts, USA) 

SURE2 supercompetent cells Chemocompetent Agilent Technologies (California, 

USA) 

E. coli MegaX DH10BTM T1R Electrocompetent Thermo Fisher Scientific 

(Massachusetts, USA) 

E. cloni 10G elite/supreme  Electrocompetent Lucigen (Madison, USA) 

 Cell lines 

Cell line Origin Description 

HEK293T H. sapiens Human embryonic kidney cells expressing the SV40 

large T-antigen 227 

Panc-I H. sapiens Cell line established from a human carcinoma of the 

exocrine pancreas 228 

HeLa H. sapiens Cell line derived from a cervical carcinoma 229 

Huh7 H. sapiens Human hepatoma cell line 230 

RAW 264.7 M. musculus Macrophage mouse cell line derived from a tumor 

induced by Abelson murine leukemia virus 231 

LX-2 H. sapiens Human hepatic stellate cell line established by 

spontaneous immortalization under low serum 

conditions (1% FBS) 232  

MCF-7 H. sapiens Human cell line derived from a breast carcinoma 233  

T84  H. sapiens Human cell line derived from immortalized HAE of a 

CF genotype 234 

Cufi-8  

 

H. sapiens Cell line derived from a colorectal carcinoma 235 
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 Primary cells 

Cell type Origin Description 

Saphenous vein endothelial cells H. sapiens Purchased from PromoCell, Heidelberg, 

Germany #C-12231 

Skeletal muscle cells H. sapiens Purchased from PromoCell, Heidelberg, 

Germany #C-12530 

Pulmonary fibroblasts H. sapiens Purchased from PromoCell, Heidelberg, 

Germany #C-12360 

Cardiac myocytes H. sapiens Purchased from PromoCell, Heidelberg, 

Germany #C-12810 

Primary human hepatocytes 

(pHep) 

H. sapiens Purchased from Cytes Biotechnologies, 

Barcelona, Spain 

pHAE  H. sapiens Provided by Marc Schneider, Thoraxklinik, 

Heidelberg University Hospital, 

Heidelberg, Germany  

Primary T cells H. sapiens Provided by Manuela Nickl, Dept. of 

Infectious Diseases/Virology, Heidelberg 

University Hospital, Heidelberg, Germany  

Primary peripheral blood 

mononuclear cells (PBMCs) 

H. sapiens Provided by David Bejarano, Dept. of 

Infectious Diseases/Virology, Heidelberg 

University Hospital, Heidelberg, Germany 

Primary macrophages H. sapiens Provided by David Bejarano and Kathleen 

Börner, Dept. of Infectious 

Diseases/Virology, Heidelberg University 

Hospital, Heidelberg, Germany 

Primary gut organoids H. sapiens Provided by Megan Stanifer, Dept. of 

Infectious Diseases/Virology, Heidelberg 

University Hospital, Heidelberg, Germany 

Primary lung organoids H. sapiens Provided by Jens Puschhof, Hubrecht 

Institute, Utrecht, the Netherlands 

 Viruses 

Virus type Description Source 

rAAV2 Recombinant adeno-associated virus type 2 

encoding Firefly and Renilla luciferase 

and/or different CRISPR components 

Produced in this study 
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rAAV8 Recombinant adeno-associated virus type 8 

encoding different transgenes: Firefly and 

Renilla luciferase, the KS reporter or Cre 

recombinase 

Produced in this study 

rAAV2/HBoV1 Pseudotyped virus composed of a HBoV1 

capsid and a rAAV2 genome encoding 

Gaussia luciferase or YFP 

Produced in this study 

rAAV2/HBoV2 Pseudotyped virus composed of a HBoV2 

capsid and a rAAV2 genome encoding 

Gaussia luciferase or YFP 

Produced in this study 

rAAV2/HBoV3 Pseudotyped virus composed of a HBoV3 

capsid and a rAAV2 genome encoding 

Gaussia luciferase or YFP 

Produced in this study 

rAAV2/HBoV4 Pseudotyped virus composed of a HBoV4 

capsid and a rAAV2 genome encoding 

Gaussia luciferase or YFP 

Produced in this study 

rAAV2/GBoV Pseudotyped virus composed of a GBoV 

capsid and a rAAV2 genome encoding 

Gaussia luciferase or YFP 

Produced in this study 

 Chemicals and reagents 

 Product Company 

Chemicals Iodixanol (OptiprepTM) Progen (Heidelberg, Germany) 

 Agarose Biozym Scientific GmbH 

(Hessisch Oldendorf, Germany) 

 10× TGS (tris/glycine/SDS)  Bio-Rad (Hercules, USA) 

 Polyethylenimine (PEI) Polysciences Europe GmbH 

(Eppelheim, Germany) 

 Albumin fraction V (BSA) Roth (Karlsruhe, Germany) 

 Calcium chloride (CaCl2) Roth (Karlsruhe, Germany) 

 Magnesium chloride (MgCl2) Applichem (Darmstadt, 

Germany) 

 Magnesium sulphate (MgSO4) MERCK (Darmstadt, Germany) 

 Cesium chloride (CsCl) Roth (Karlsruhe, Germany) 

 Sodium chloride (NaCl) GRÜSSING GmbH (Filsum, 

Germany) 
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 Potassium acetate (KAc) GRÜSSING GmbH (Filsum, 

Germany) 

 Potassium chloride (KCl) GRÜSSING GmbH (Filsum, 

Germany) 

 di-Potassium hydrogen 

phosphate (K2HPO4) 

Applichem (Darmstadt, 

Germany) 

 Potassium dihydrogen 

phosphate (KH2PO4) 

MERCK (Darmstadt, Germany) 

 Monopotassium phosphate 

(KPO4) 

MERCK (Darmstadt, Germany) 

 Sodium hydroxide (NaOH) MERCK (Darmstadt, Germany) 

 Hydrochloric acid (HCl) MERCK (Darmstadt, Germany) 

 Ethidium bromide Roth (Karlsruhe, Deutschland) 

 Milk powder Roth (Karlsruhe, Germany) 

 EDTA GRÜSSING GmbH (Filsum, 

Germany) 

 EGTA Roth (Karlsruhe, Germany) 

 1,4-dithiothreitol (DTT) Roth (Karlsruhe, Germany) 

 Bromophenol blue Chroma Technology Corp. 

(Bellows Falls, USA) 

 Glycerol VWR chemicals (Fenenay-sous-

Bais, France) 

 Phenol red MERCK (Darmstadt, Germany) 

 Tween 20 Roth (Karlsruhe, Germany) 

 Tris-EDTA (TE) solution Thermo Fisher Scientific 

(Waltham, USA) 

 Tris (hydroxymethyl)-

aminomethan (TRIS) 

Roth (Karlsruhe, Germany) 

 β-mercaptoethanol Roth (Karlsruhe, Germany) 

 Hoechst 3000 Dianova (Hamburg, Germany) 

 Dimethyl sulfoxide (DMSO) MERCK (Darmstadt, Germany) 

 Dodecylsulfate-Na-salt pellets 

(SDS) 

SERVA Electrophoresis GmbH 

(Heidelberg, Germany) 

 Triton X-100 MERCK (Darmstadt, Germany) 

 Sodium azide Roth (Karlsruhe, Germany) 

 IGEPAL® CA-630 (NP-40) MERCK (Darmstadt, Germany) 

 Paraformaldehyde (PFA) MERCK (Darmstadt, Germany) 
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 Glucose MERCK (Darmstadt, Germany) 

 MOPS SERVA Electrophoresis GmbH 

(Heidelberg, Germany) 

 Lipofectamine 2000 Life Technologies GmbH 

(Paisley, UK) 

 Isopropanol MERCK (Darmstadt, Germany) 

 Ethanol absolute MERCK (Darmstadt, Germany) 

 Methanol MERCK (Darmstadt, Germany) 

 Nuclease-free water Ambion, Life Technologies 

GmbH (Paisley, UK) 

 PonceauS MERCK (Darmstadt, Germany) 

 Acetic acid VWR chemicals (Fenenay-sous-

Bais, France) 

 Trisodium citrate Applichem (Darmstadt, 

Germany) 

 Ficoll (Type 400) MERCK (Darmstadt, Germany) 

 Maleic acid Roth (Karlsruhe, Germany) 

 Sodium deoxycholate MERCK (Darmstadt, Germany) 

 cOmpleteTM, EDTA-free 

Protease Inhibitor Cocktail 

Roche (Penzberg, Germany) 

 BactoTM yeast BD (Franklin Lakes, USA) 

 BactoTM tryptone BD (Franklin Lakes, USA) 

 BactoTM agar BD (Franklin Lakes, USA) 

 Rotiophorese® Gel 40 Roth (Karlsruhe, Germany) 

 UltraPureTM TEMED Thermo Fisher Scientific 

(Waltham, USA) 

 Ammonium persulfate (APS) GRÜSSING GmbH (Filsum, 

Germany) 

 Coelenterazine p.j.k GmbH (Kleinblittersdorf, 

Germany) 

 D-luciferin p.j.k GmbH (Kleinblittersdorf, 

Germany) 

 Doxorubicin Santa Cruz Biotechnology 

(Dallas, USA) 

 Calpain inhibitor 1 ALLN G-Biosciences (St. Louis, USA) 

 Cultrex® growth factor reduced 

BME type 2 

Trevigen (Gaithersburg, USA) 
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Kits QIAquick Gel Extraction Kit QIAGEN (Hilden, Germany) 

 QIAquick PCR Purification Kit QIAGEN (Hilden, Germany) 

 QIAprep Spin Miniprep Kit QIAGEN (Hilden, Germany) 

 DNeasy Blood & Tissue Kit QIAGEN (Hilden, Germany) 

 DNA Clean & Concentrator Zymo research (Irvine, USA) 

 Dual-Luciferase® Reporter 

Assay System 

Promega (Madison, USA) 

 PureYieldTM Plasmid Midiprep 

System 

Promega (Madison, USA) 

 NucleoBond® Xtra Midi / Maxi Macherey-Nagel (Hoerdt, 

France) 

 SensiMixTM II Probe Kit Bioline (London, UK) 

 Western Lightning® PLUS-ECL PerkinElmer (Waltham, USA) 

 DIG High Prime DNA Labeling 

and Detection Starter Kit II 

Roche (Basel, Switzerland) 

 Qubit dsDNA BR Assay Kit Thermo Fisher Scientific 

(Waltham, USA) 

 Pierce BCA Protein Assay Kit Thermo Fisher Scientific 

(Waltham, USA) 

 Fixable Aqua Dead Cell Stain Kit Thermo Fisher Scientific 

(Waltham, USA) 

Enzymes Restriction enzymes NEB (Ipswich, USA) / 

Fermentas (St. Leon-Rot, 

Germany) 

 Benzonase MERCK (Darmstadt, Germany) 

 DNaseI Roche (Basel, Switzerland) 

 OneTaq® 2× Master Mix with 

Standard Buffer 

NEB (Ipswich, USA) 

 Phusion Hot Start II DNA 

Polymerase 

Thermo Fisher Scientific 

(Waltham, USA) 

 Antarctic Phosphatase NEB (Ipswich, USA) 

 RNase A QIAGEN (Hilden, Germany) 

 Proteinase K Roche (Basel, Switzerland) 

 T4 DNA ligase NEB (Ipswich, USA) 

Nucleotides dNTPs (dATP, dCTP, dGTP, 

dTTP) 

NEB (Ipswich, USA) 



Materials and Methods 

 

51 
 

Standard 

markers 

100 bp DNA ladder Thermo Fisher Scientific 

(Waltham, USA) 

 1 kb Plus DNA ladder  Thermo Fisher Scientific 

(Waltham, USA) 

 PageRulerTM Plus Prestained 

Protein Ladder 

Fermentas (St. Leon-Rot, 

Germany) 

 DNA Molecular Weight Marker 

VII, DIG-labeled 

MERCK (Darmstadt, Germany) 

 Equipment 

Device Company 

Centrifuges and rotors 

Allegra X-12R centrifuge 

Avanti J-26 XP centrifuge 

Benchtop centrifuge 5415R 

Optima L-90K ultracentrifuge 

Neuation iFuge BL08VT 

Fixed angle type 70 Ti rotor 

Fixed angle type 70.1 Ti rotor 

JA-10 rotor 

Beckman tube sealer 

Beckman Coulter (Brea, USA) 

Beckman Coulter (Brea, USA) 

Eppendorf (Hamburg, Germany) 

Beckman Coulter (Brea, USA) 

Neuation Technologies (Gandhinagar, India) 

Beckman Coulter (Brea, USA) 

Beckman Coulter (Brea, USA) 

Beckman Coulter (Brea, USA) 

Beckman Coulter (Brea, USA) 

Beckman rotor NVT 65 Beckman Coulter (Brea, USA) 

Electrophoresis systems 

PowerPac basic/HV/HC 

Mini-PROTEAN Tetra cell chamber 

Mini-Sub cell GT 

Sub-Cell GT 

Bio-Rad (Hercules, USA) 

Bio-Rad (Hercules, USA) 

Bio-Rad (Hercules, USA) 

Bio-Rad (Hercules, USA) 

Western and Southern blotting 

Trans-Blot SD semi-dry transfer cell 

PeqLab PerfectBlot hybridization oven 

Film developing cassettes 

Tube roller TRM-V 

Tube rotator 

Bio-Rad (Hercules, USA) 

VWR (Radnor, USA) 

Dr. Goos-Suprema (Heidelberg, Germany) 

NeoLab (Heidelberg, Germany) 

VWR (Radnor, USA) 

DNA/Protein detection  

UV-transilluminator Biostep GmbH (Jahnsdorf, Germany) 

Gel Doc XR Bio-Rad (Hercules, USA) 

Mitsubishi P93D Mitsubishi Electric (Cypress, USA) 
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ChemoCam (ECL Imager) INTAS Science Imaging Instruments 

(Göttingen, Germany) 

X-OMAT 2000 processor 

(film developer) 

KODAK (Rochester, USA) 

PCR 

FlexCycler Analytik Jena (Jena, Germany) 

C1000 Touch thermal cycler Bio-Rad (Hercules, USA) 

Corbett RG 6000 QIAGEN (Hilden, Germany) 

Vapo protect Eppendorf (Hamburg, Germany) 

Luciferase assays 

GloMax 96 microplate luminometer Promega (Madison, USA) 

Sterile cell culture 

HERA cell 150 incubator Thermo Fisher Scientific (Waltham, USA) 

HERA safe sterile work bench Thermo Fisher Scientific (Waltham, USA) 

Countess automated cell counter Thermo Fisher Scientific (Waltham, USA) 

Bacterial incubators 

Heraeus function line incubator Thermo Fisher Scientific (Waltham, USA) 

Shaking incubator (Multitron) INFORS HT (Basel, Switzerland) 

Microscopes 

CKX 419F  

U-RPL-T 

OLYMPUS (Hamburg, Germany) 

OLYMPUS (Hamburg, Germany) 

Spectrophotometers 

NanoVue spectrophotometer Thermo Fisher Scientific (Waltham, USA) 

NanoDrop 2000 Thermo Fisher Scientific (Waltham, USA) 

BioPhotometer plus Eppendorf (Hamburg, Germany) 

Qubit fluorometer Thermo Fisher Scientific (Waltham, USA) 

TECAN Infinite M200 Tecan Group (Männedorf, Switzerland) 

Mixing blocks and magnetic stirrers 

Rotilabo magnetic stirrer with heating Roth (Karlsruhe, Germany) 

Mixing block MB-102 Bioer Technology (Hangzhou, China) 

MSH Basic - magnetic stirrer with 

stainless steel heating plate 

IKA Laboratory Equipment (Staufen, 

Germany) 

Other applications 

Shaker DOS-10 L neoLab (Heidelberg, Germany) 

Sonorex ultrasonic bath Bandelin (Berlin, Germany) 

Vacuum pump Promega (Madison, USA) 
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Gene Pulser Xcell Bio-Rad (Hercules, USA) 

FACSVerse BD (Franklin Lakes, USA) 

Vortex Genie 2 Scientific Industries (Bohemia, USA) 

Water bath TW12 Julabo Labortechnik (Seelbach, Germany) 

Microwave Sharp Electronics (Hamburg, Germany) 

Weighing scale KERN & SOHN GmbH (Balingen, Germany) 

Bunsen burner Carl Friedrich Usbeck KG (Radevormwald, 

Germany) 

Accujet pro BrandTech Scientific (Essex, UK) 

pH meter PB-11 Sartorius (Göttingen, Germany) 

Pipettes Gilson (Middleton, Germany) / Eppendorf 

(Hamburg, Germany) 

Refractometer Exacta Optech (San Prospero, Italy) 

Bio-Dot® SF microfiltration apparatus Bio-Rad (Hercules, USA) 

 Materials 

Material Description Company 

Pipet tips 2.5 / 10 / 100 / 200 / 

1,000 (µL) 

Sarstedt (Nümbrecht, Germany) / 

Greiner Bio-One (Kremsmünster, 

Austria) / Kisker (Steinfurt, Germany) 

PCR tubes  0.2 mL 8-Strip STARLAB (Hamburg, Germany) 

Microcentrifuge tubes 0.5 / 1.5 / 2.0 / 5 (mL) SARSTEDT (Nümbrecht, Germany), 

Eppendorf (Hamburg, Germany) 

Tubes 15 / 50 (mL) Greiner Bio-One (Kremsmünster), 

Austria), BD (Franklin Lakes, USA) 

Amicon Ultra-15  Centrifugal filter units  

(100,000 NMWL) 

MERCK (Darmstadt, Germany) 

Centrifuge tubes 500 mL capacity Corning (New York, USA) 

Petri dishes 15 cm Greiner Bio-One (Kremsmünster), 

Austria) 

Cell culture dishes 15 cm Nunc, Thermo Fisher Scientific 

(Waltham, USA) 

Cell culture flasks 75 / 175 (cm2) Greiner Bio-One (Kremsmünster, 

Austria) 

Cell culture plates 6 / 24 / 48 / 96 (wells) Greiner Bio-One (Kremsmünster, 

Austria) 

https://www.google.de/search?newwindow=1&q=Kremsm%C3%BCnster&stick=H4sIAAAAAAAAAOPgE-LWT9c3NDLKTk5OT1Li0s_VNzAyLSksMtLSyk620s8vSk_My6xKLMnMz0PhWGWkJqYUliYWlaQWFQMA15BEqUcAAAA&sa=X&ved=2ahUKEwj65M-kyN7eAhXMDcAKHRBiBSgQmxMoATAPegQIBRAH
https://www.google.de/search?newwindow=1&q=Kremsm%C3%BCnster&stick=H4sIAAAAAAAAAOPgE-LWT9c3NDLKTk5OT1Li0s_VNzAyLSksMtLSyk620s8vSk_My6xKLMnMz0PhWGWkJqYUliYWlaQWFQMA15BEqUcAAAA&sa=X&ved=2ahUKEwj65M-kyN7eAhXMDcAKHRBiBSgQmxMoATAPegQIBRAH
https://www.google.de/search?newwindow=1&q=Kremsm%C3%BCnster&stick=H4sIAAAAAAAAAOPgE-LWT9c3NDLKTk5OT1Li0s_VNzAyLSksMtLSyk620s8vSk_My6xKLMnMz0PhWGWkJqYUliYWlaQWFQMA15BEqUcAAAA&sa=X&ved=2ahUKEwj65M-kyN7eAhXMDcAKHRBiBSgQmxMoATAPegQIBRAH
https://www.google.de/search?newwindow=1&q=Kremsm%C3%BCnster&stick=H4sIAAAAAAAAAOPgE-LWT9c3NDLKTk5OT1Li0s_VNzAyLSksMtLSyk620s8vSk_My6xKLMnMz0PhWGWkJqYUliYWlaQWFQMA15BEqUcAAAA&sa=X&ved=2ahUKEwj65M-kyN7eAhXMDcAKHRBiBSgQmxMoATAPegQIBRAH
https://www.google.de/search?newwindow=1&q=Kremsm%C3%BCnster&stick=H4sIAAAAAAAAAOPgE-LWT9c3NDLKTk5OT1Li0s_VNzAyLSksMtLSyk620s8vSk_My6xKLMnMz0PhWGWkJqYUliYWlaQWFQMA15BEqUcAAAA&sa=X&ved=2ahUKEwj65M-kyN7eAhXMDcAKHRBiBSgQmxMoATAPegQIBRAH
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Lumitrac microplate 96 well, white Greiner Bio-One (Kremsmünster, 

Austria) 

ThinCert cell culture 

inserts 

24 well plates, 0.4 µm 

pore size 

Greiner Bio-One (Kremsmünster, 

Austria) 

Sterile filters 0.22 µm pore size Greiner Bio-One (Kremsmünster, 

Austria) 

Steritop filter  0.22 µm pore size MERCK (Darmstadt, Germany) 

Serological pipettes 5 / 10 / 25 (mL) Greiner Bio-One (Kremsmünster, 

Austria) 

Countess cell 

counting chamber 

slides 

- Thermo Fisher Scientific (Waltham, 

USA) 

Coster reagent 

reservoir 

50 mL Corning (New York, USA) 

Cell lifter - Corning (New York, USA) 

Glass culture tubes - DWK life sciences (Wertheim, 

Germany) 

Beckman OptiSeal 

tubes 

26×77 mm 

16×67 mm 

Beckman Coulter (Brea, USA) 

Beckman Quick-Seal 

centrifugation tubes 

14×89 mm 

25×89 mm 

Beckman Coulter (Brea, USA) 

Erlenmeyer flasks 250 / 500 / 1,000 / 

2,000 (mL) 

Simax (Křížová, Czech Republic) 

Cuvettes  Polystyrene Sarstedt (Nümbrecht, Germany) 

Electroporation 

cuvettes  

25×1 mm gap Peqlab (Erlangen, Germany) 

VacConnectors - QIAGEN (Hilden, Germany) 

Pasteur capillary 

pipettes  

230 mm NeoLab (Heidelberg, Germany) 

BD plastipak syringes 3 / 5 / 10 (mL) BD (Franklin Lakes, US) 

BD microfine syringes 300 µL BD (Franklin Lakes, US) 

Microlance canules 21G 0.8×40 mm, 19G 

1.1×40 mm 

BD (Franklin Lakes, US) 

Glass hybridization 

bottles 

- Wheaton DWK life sciences (Wertheim, 

Germany) 

Slide-A-Lyzer dialysis 

cassette  

MWCO 20,000 Thermo Fisher Scientific (Waltham, 

USA) 

https://www.google.de/search?newwindow=1&q=Kremsm%C3%BCnster&stick=H4sIAAAAAAAAAOPgE-LWT9c3NDLKTk5OT1Li0s_VNzAyLSksMtLSyk620s8vSk_My6xKLMnMz0PhWGWkJqYUliYWlaQWFQMA15BEqUcAAAA&sa=X&ved=2ahUKEwj65M-kyN7eAhXMDcAKHRBiBSgQmxMoATAPegQIBRAH
https://www.google.de/search?newwindow=1&q=Kremsm%C3%BCnster&stick=H4sIAAAAAAAAAOPgE-LWT9c3NDLKTk5OT1Li0s_VNzAyLSksMtLSyk620s8vSk_My6xKLMnMz0PhWGWkJqYUliYWlaQWFQMA15BEqUcAAAA&sa=X&ved=2ahUKEwj65M-kyN7eAhXMDcAKHRBiBSgQmxMoATAPegQIBRAH
https://www.google.de/search?newwindow=1&q=Kremsm%C3%BCnster&stick=H4sIAAAAAAAAAOPgE-LWT9c3NDLKTk5OT1Li0s_VNzAyLSksMtLSyk620s8vSk_My6xKLMnMz0PhWGWkJqYUliYWlaQWFQMA15BEqUcAAAA&sa=X&ved=2ahUKEwj65M-kyN7eAhXMDcAKHRBiBSgQmxMoATAPegQIBRAH
https://www.google.de/search?newwindow=1&q=Kremsm%C3%BCnster&stick=H4sIAAAAAAAAAOPgE-LWT9c3NDLKTk5OT1Li0s_VNzAyLSksMtLSyk620s8vSk_My6xKLMnMz0PhWGWkJqYUliYWlaQWFQMA15BEqUcAAAA&sa=X&ved=2ahUKEwj65M-kyN7eAhXMDcAKHRBiBSgQmxMoATAPegQIBRAH


Materials and Methods 

 

55 
 

Whatman paper 3 mm Whatman (Maidstone, UK) 

Mini-PROTEAN 

precast gels  

15 / 50 (µL) capacity Bio-Rad (Hercules, USA) 

Nitrocellulose 

membrane 

- Whatman (Maidstone, UK) 

Nylon membrane Positively charged GE Healthcare (Chicago, USA) 

X-ray films Amersham Hyperfilm 

ECL 

GE Healthcare (Chicago, USA) 

 Buffers and solutions 

Name Composition 

Buffers for virus production and purification 

PEI 0.323 g Polyethylenimine (25 kDa) in 1 L ddH2O 

autoclaved and subjected to 3 freeze-thaw cycles 

Benzonase buffer (pH 8.5) 50 mM Tris / HCl (pH 8.0), 150 mM NaCl, 2 mM 

MgCl2 

10 mM Tris-HCl Prepared from 1 M Tris-HCl stock (Thermo Fisher 

Scientific, Waltham, USA) 

PBS-MK 1× PBS, 1 mM MgCl2, 2.5 mM KCl 

PBS-MK-NaCl 1× PBS, 1 mM MgCl2, 2.5 mM KCl, 1 M NaCl 

Phenol red solution 0.5% (w/v) in ddH2O 

Iodixanol (Optiprep) stock 60% iodixanol solution (Progen, Heidelberg, 

Germany) 

Iodixanol (15%) 12 mL 60% iodixanol and 36 mL 1 M PBS-MK-NaCl 

buffer 

Iodixanol (25%) 20 mL 60% iodixanol, 28 mL 1× PBS-MK buffer, 

phenol red (for red color) 

Iodixanol (40%) 30 mL 60% iodixanol and 15 mL 1× PBS-MK buffer 

Iodixanol (60%) 60% iodixanol plus 2.5 μl/mL phenol red 

10% DOC 100 g sodium deoxycholate in 1 L H2O 

Buffers for mini-preps of plasmid DNA 

P1 buffer (pH 8.0) 50 mM Tris/HCl (pH 8.0), 10 mM EDTA, 100 µg/mL 

RNase A 
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P2 buffer  200 mM NaOH, 1% SDS 

P3 buffer (pH 5.1) 2.8 M KAc 

Buffers for alkaline gel electrophoresis 

Gel casting buffer (pH 7.5) 30 mM NaCl, 2 mM EDTA 

Alkaline electrophoresis buffer 30 mM NaOH, 2 mM EDTA 

Alkaline gel-loading buffer 300 mM NaOH, 6 mM EDTA, 18% (w/v) Ficoll (Type 

400), 0.25% (w/v) Xylene cyanol 

Buffers for Southern blotting 

20× SSC (pH 7.0) 3 M NaCl, 300 mM trisodium citrate (in ddH2O) 

Depurination buffer 0.2 M HCl 

Gel-denaturation buffer 1.5 M NaCl, 0.5 M NaOH 

Gel-neutralization buffer (pH 7.5) 3 M NaCl, 0.5 M Tris HCl 

Maleic acid buffer (pH 7.5) 0.1 M Maleic acid, 0.15 M NaCl 

Washing buffer Maleic acid buffer, 0.3% (v/v) Tween 20 

Detection buffer (pH 9.5) 0.1 M Tris-HCl, 0.1 M NaCl 

Stringency wash-buffer I  2× SSC, 0.1% (v/v) SDS 

Stringency wash-buffer II 0.5× SSC, 0.1% (v/v) SDS 

Buffers for protein Isolation, SDS-PAGE and Western blotting 

RIPA buffer 50 mM NaCl, 25 mM Tris-HCl (pH 8.0), 0.5% NP40 

0.1% (v/v) SDS plus protease inhibitor prior to use 

Stacking gel buffer (pH 8.8) 1.5 M Tris-HCl, 0.4% (v/v) SDS 

Running gel buffer (pH 6.8) 0.5 M Tris-HCl, 0.4% (v/v) SDS 

Protein sample buffer (2×) 2 mM EDTA, 100 mM Tris-HCl (pH 8.0) 4% SDS, 

20% glycerol, 10% β-mercaptoethanol, 0.02% 

Bromophenol blue 

Running buffer 1× TGS (Bio-Rad, Hercules, USA) 

Transfer buffer 1× TGS, 20% methanol 

10× TBS 0.25 M Tris-HCl, 1.25 M NaCl 
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Washing buffer (TBST) 1× TBS, 0.05% (v/v) Tween 20 

Buffers for preparation of chemocompetent bacteria 

TFBI (pH 5.8) 30 mM KAc, 80 mM MgCl2, 25 mM KCl, 16 mM 

CaCl2, 13% glycerol 

TFBII (pH 7.0) 10 mM MOPS, 75 mM CaCl2, 2.5 mM KCl, 13% 

glycerol 

Buffers for cultivation of bacteria 

LB medium (pH 7.0) 1% (w/v) BactoTM tryptone, 0.5% (w/v) BactoTM yeast 

extract, 1% (w/v) NaCl 

SOB medium (pH 7.0) 2% (w/v) BactoTM tryptone, 0.5% (w/v) BactoTM yeast 

extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2 

SOC medium (pH 7.0) 2% (w/v) BactoTM tryptone, 0.5% (w/v) BactoTM yeast 

extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 20 

mM Glucose 

Solution for bacterial glycerol 

stocks 

50% (v/v) in ddH2O, autoclaved 

Buffers for agarose gel electrophoresis 

50× TAE (pH 8.3) 2 M Tris Base, 50 mM EDTA, 1 M acetic acid 

Gel casting and running buffer 1× TAE 

10× DNA loading dye 50 mM Tris pH 7.6, 60% glycerol, 0.25% (w/v) 

bromophenol blue 

6× Purple loading dye NEB (Ipswich, USA) 

Buffers for Hirt extract 

Proteinase K solution 20 mg/mL stock solution in ddH2O 

Hirt extraction buffer 10 mM Tris-HCl (pH 8.0), 10 mM EDTA, 1% SDS 

Buffers for luciferase assays 

Firefly luciferase buffer 25 mM Glycylglycine, 15 mM KPO4 buffer (pH 7.8),  

15 mM MgSO4, 4 mM EGTA 

Freshly added before use: 1 mM DTT, 2 mM ATP, 

70 µM Luciferin 

Renilla/Gaussia luciferase buffer 1.1 M NaCl, 2.2 mM, Na
2
EDTA, 0.22 M KxPO 

(mixture of KH
2
PO

4
 und K

2
HPO

4
), 0.44 mg/mL BSA, 

1.3 mM NaN
3
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 Cell culture media and additives 

Product Company 

1× DPBS Thermo Fisher Scientific 

(Waltham, USA) 0.25% Trypsin / EDTA 

Dulbecco’s modified eagle medium (DMEM) GlutaMAX™ 

high Glucose (4.5 g/l) without sodium pyruvate 

Fetal bovine serum gold (FBS) 

Penicillin / Streptomycin (P/S) 

RPMI 1640 medium with GlutaMAX™ supplement 

PneumaCult ALI 10× Supplement  Stemcell technologies 

(Vancouver, Kanada) PneumaCult ALI Basal Medium  

Heparin Solution 0.2%  

PneumaCult ALI Maintenance Supplement 100×  

Hydrocortisone 200×  

ROCK Inhibitor  

Phytohemagglutinin (PHA) Merck (Darmstadt, Germany) 

Interleukin-2 Biomol (Hamburg, Germany) 

Fibroblast Growth Medium 2  PromoCell (Heidelberg, 

Germany) Supplement Mix / Fibroblast Growth Medium 2  

Myocyte Growth Medium  

Supplement Mix / Myocyte Growth Medium  

Endothelial Cell Growth Medium  

Supplement Mix / Endothelial Cell Growth Medium  

Skeletal Muscle Cell Growth Medium  

Supplement Mix / Skeletal Muscle Cell Growth Medium  

Maintenance media for primary human hepatocytes 

(Williams medium, P/S, ITS+, GlutaMAX™,  

Dexametason 10 nM in DMSO) 

Cytes Biotechnologies 

(Barcelona, Spain) 

 Oligonucleotides and Gene blocks 

All oligonucleotides used in this work were synthesized by Sigma Aldrich (now Merck 

KGaA, Darmstadt, Germany) or Integrated DNA Technologies (Coralville, USA). Probes used 

for qPCR analysis and BoV gene blocks were synthesized by Integrated DNA Technologies. 
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 Software 

Software Reference 

MUSCLE (Chojnacki et al., 2017) 236 

Serial cloner 2.6 Freeware by Franck Perez (2013) 

http://serialbasics.free.fr/Serial_Cloner.html 

ApE v2.0.55 Freeware by M. Wayne Davis (2018) 

http://jorgensen.biology.utah.edu/wayned/ape/ 

ImageJ (Schneider et al. 2012) 237 

MEGAX (Kumar et al. 2018) 238 

Quantity One Bio-Rad (Hercules, USA) 

Flowing software v2.5 Freeware by Perttu Terho (2013) 

http://flowingsoftware.btk.fi/ 

Salanto v3 (Schürmann et al. 2013) 239 

2.2 Methods 

 Cloning procedures 

 Construction of HBoV1 tyrosine-phenylalanine mutants 

All the tyrosine cap mutants generated in this work are based on a previously reported 

HBoV1 helper plasmid (pCMVNS1*HBoV1) 70 encoding the complete HBoV1 genome (except 

for the terminal repeats). Point mutations in the cap ORF were generated by overlap extension 

PCR (2.2.3.4). For each mutant, two fragments (5’ and 3’) were amplified by regular PCR using 

the external (#1 and #2) and overlapping primers (#3 to #14) listed in Table 1 and the primer 

combinations shown in Table 2. Next, the two fragments served as templates in a second PCR 

to generate full-length products using only the external primers #1 and #2 that contain BstBI 

and NotI restrictions sites, respectively.  

Table 1. Primers used in OE-PCR for cloning of HBoV1 tyrosine mutants. 

No. Oligo Name Sequence (5‘- 3‘) 

#1 HBoV1_BstbI_fwd CACTGCTTCGAAGACCTCA 

#2 HBoV1_NotI/EagI_rev ATGAGCGGCCGCTCTAGAT 

#3 HBoV1_Y147F_fwd GACACAACATTCAACAATGACCTCA 

#4 HBoV1_Y147F_rev TGAGGTCATTGTTGAATGTTGTGTC 

#5 HBoV1_Y274F_fwd GAAGAGTTCAGTTCATAAGACAAAACG 

#6 HBoV1_Y247F_rev CGTTTTGTCTTATGAACTGAACTCTTC 

#7 HBoV1_Y355F_fwd CTAACCTAGAATTCAAACTTCAGTGGTAC 
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#8 HBoV1_Y355F_rev GTACCACTGAAGTTTGAATTCTAGGTTAG 

#9 HBoV1_Y394F_fwd AAACCAAACCACATTCAATCTAGTG 

#10 HBoV1_Y394F_rev CACTAGATTGAATGTGGTTTGGTTT 

#11 HBoV1_Y466F_fwd TGCAGACTCATTCCTAAACATATACTGTAC 

#12 HBoV1_Y466F_rev GTACAGTATATGTTTAGGAATGAGTCTGCA 

#13 HBoV1_Y528F_fwd AGCCCACGTCATTCGATCAGT 

#14 HBoV1_Y528F_rev CACTGATCGAATGACGTGG 

Bold: restriction sites. 

 The PCR reactions were loaded onto a 1% agarose gel and the correctly sized 

fragments were extracted from the gel using the QIAquick Gel Extraction Kit (Qiagen) following 

the manufacturer’s instructions. Next, the purified fragments and the vector 

(pCMVNS1*HBoV1) were digested with BstBI / NotI O/N (as described in section 2.2.3.5). The 

digested vector was loaded onto an agarose gel, the required fragment was cut out and 

extracted from the agarose as described above. By contrast, the digested PCR products were 

purified over columns using the Zymo DNA clean & concentrator kit according to the supplied 

protocol.  

Digested fragments were ligated to the vector as described in section 2.2.3.6 to yield the 

HBoV1 cap mutants listed in Table 2. All sequences were verified by Sanger sequencing 

(section 2.2.3.1) 

Table 2. List of HBoV1 tyrosine to phenylalanine mutants.  

No. Mutant 
PCR 

fragment 
Template 

Forward 

primer 

Reverse 

primer 

#2261 pCMVNS*HBoV1 Y147F 5‘ #2224 #1 #4 

3‘ #2224 #3 #2 

#2262 pCMVNS*HBoV1 Y274F 5‘ #2224 #1 #6 

3‘ #2224 #5 #2 

#2263 pCMVNS*HBoV1 Y355F 5’ #2224 #1 #8 

3’ #2224 #7 #2 

#2264 pCMVNS*HBoV1 Y394F 5’ #2224 #1 #10 

3’ #2224 #9 #2 

#2265 pCMVNS*HBoV1 Y466F 5’ #2224 #1 #12 

3’ #2224 #11 #2 

#2266 pCMVNS*HBoV1 Y528F 5’ #2224 #1 #14 

3’ #2224 #13 #2 

#2267 pCMVNS*HBoV1 Y147F + Y394F 5’ #2261 #1 #10 
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3’ #2261 #9 #2 

#2268 pCMVNS*HBoV1 Y147F + Y528F 5’ #2261 #1 #14 

3’ #2261 #13 #2 

#2269 pCMVNS*HBoV1 Y274F + Y394F 5’ #2262 #1 #10 

3’ #2262 #9 #2 

#2270 pCMVNS*HBoV1 Y274F + Y528F 5’ #2262 #1 #14 

3’ #2262 #13 #2 

#2271 pCMVNS*HBoV1 Y394F + Y528F 5’ #2264 #1 #14 

3’ #2264 #13 #2 

Numbers refer to the internal AG Grimm library. Primer sequences are listed in Table 1. 

 Construction of BoV helper plasmids 

To allow for seamless cloning of the different HBoV2-4 and GBoV cap ORFs, an 

intermediate acceptor plasmid for cloning was first generated by deleting the entire 2 kb HBoV1 

cap ORF in the HBoV1 helper plasmid (pCMVNS1*HBoV1) and replacing it with two BsmBI 

sites, which were positioned in an inverted orientation to each other (starting at nucleotide 

position 646, np1 numbering). To this end, an OE-PCR was performed using the two flanking 

primers #15 / #18 and the two overlapping primers #16 / #17 (all primers are listed in Table 3). 

The resulting 1918 bp fragment was cloned into pCMVNS1*HBoV1 using HindIII and NotI 

restriction sites (also present in primer #15 or #18, respectively). This resulted in the cap 

acceptor plasmid pCMVNS*ΔVP-2×BsmBI. 

Each BoV cap ORF (GenBank IDs: HBoV2 FJ170278, HBoV3 EU918736, HBoV4 

FJ973561, GBoV HM145750) was ordered as two gene blocks (each ~1,000 bp) from IDT. For 

HBoV3 and HBoV4, one PCR reaction was performed to amplify each gene block, using 

primers #19 to #22 (HBoV3) and #23 to #26 (HBoV4). For the first and second gene block of 

HBoV2 and GBoV, respectively, no PCR product could be obtained possibly due to secondary 

structures in the sequence. This was solved by performing three separate PCR reactions for 

each bocaviral isolate. Accordingly, gene block I of GBoV was amplified using primers #27 and 

#28, while gene block II was amplified in two separate reactions using primers #29 to #32. 

Likewise, gene block I of HBoV2 was amplified in two separate reactions using primers #33 to 

#36, and gene block II was amplified using primers #37 and #38. All PCR reactions were gel-

purified using the QIAquick Gel Extraction Kit (Qiagen) following the manufacturer’s 

instructions. For each bocaviral cap ORF, the fragments were assembled and cloned via a 

Golden Gate reaction into an empty pBSII-KS (+) plasmid (#48) using NotI and ClaI restriction 

sites. Correct assembly and integrity of the resulting 2004 to 2016 bp long cap ORFs were 

validated by Sanger sequencing (section 2.2.3.1). Next, the complete cap ORFs were 

amplified using primers #39 to #46 with BsmbI restriction sites. This type IIS restriction enzyme 
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cleaves outside of its recognition sequence and thereby allows a seamless subcloning into 

pCMVNS*ΔVP-2×BsmBI using Golden Gate cloning (see Figure 7 for a schematic 

representation). This last step resulted in the final helper plasmids pCMVNS*HBoV2-4 and 

pCMVNS*GBoV (Table 4, plasmids #2272 to #2275). 

Gene blocks (GB) 1 and 2 were PCR-amplified with primers including the BsmBI recognition sites 

(green): 5’ CGTCTCN 3’. The enzyme cuts outside of its recognition sequence and results in a sticky 

end with a 4 bp overhang. The overhangs generated for GB 1 and 2 are compatible and thus allow a 

directional assembly of the two fragments into a full-length cap ORF using standard ligation or Golden 

Gate cloning. In a next step, the cap ORFs were PCR-amplified again and cloned likewise into the final 

acceptor plasmid pCMVNS*ΔVP-2×BsmBI. A closer view of the acceptor site with the two inverted 

BsmBI sites is shown. 

Table 3. Primers used for Golden Gate cloning of BoV cap sequences. 

No. Oligo Name Primer sequence (5‘- 3‘) 

#15 F1_HIND III GACAATAAAGCTTTACAGCTTTTG 

#16 R1_2xBsmbI CAAAAAAGAGGCTTATAAGATGAG

ACGCTGTCGTCTCACTGCTTCCAT

GCTTTCAGC 

#17 F2_2xBsmbI TGCTGAAAGCATGGAAGCAGTGAG

ACGACAGCGTCTCATCTTATAAGC

CTCTTTTTTGCTTCTGC 

Figure 7. Golden Gate strategy used for cloning of BoV cap sequences. 
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#18 R2_NotI ATGAGCGGCCGCTCTAGATGTA 

#19 Boca3_partI_notI_fwd ATTAGGCGGCCGCATGCCTCCAAT

TAAAAGGCAAC 

#20 Boca3_partI_bsmbI_rev GATCCGTCTCGCTTCCATTTCTGC

AAGTTCATG 

#21 Boca3_part2_BsmBI fwd GATCCGTCTCGGAAGACTCCAATG

CAGTAGAAAAAGCA 

#22 Boca3_part2_claI_rev GATCATCGATTTACAACACTTTATT

GATGTTTGTTTTAACTGG 

#23 Boca4_partI_notI_fwd GATCGCGGCCGCATGCCTCCAATT

AAACGC 

#24 Boca4_partI_bsmbI_rev GATCCGTCTCGCTTCCATTTCAGC

AAGTTCATG 

#25 Boca4_part2_BsmbI_fwd GATCCGTCTCGGAAGACTCAAATG

CTGTAGAAAAAGCA 

#26 Boca4_part2_claI_rev GATCATCGATTTACAACACTTTATT

GATGTTTGTTTTAACTGGAAAG 

#27 BocaGo_partI_notI_fwd GATCGCGGCCGCATGCCTCCAATT

AAAAGGCA 

#28 BocaGo_partI_BsmbI_rev GATCCGTCTCGTTCCATCAAGATC

GGCAAGC 

#29 BocaGo_part2_BsmbI_fwd GATCCGTCTCGGGAACTACTGCTG

GAGGAACTGC 

#30 JBocaGo_part2.1_BsmbI_rev GATCCGTCTCGCTCTGTAGAGGAG

TTGGTCTCTAAGC 

#31 Goboca_part2.2_BsmbI_fwd GATCCGTCTCGAGAGGAAACCAAA

CAACATAC 

#32 BocaGo_part2_claI_rev GATCATCGATTTACAACACTTTATT

GATGTTTGTTTTTACAGGCATA 

#33 Boca2_partI_notI_Fwd ATTAGGCGGCCGCATGCCTCCAAT

TAAACGC 

#34 Boca2_sub1_BsmBI rev GATCCGTCTCGCCAG 

ATGGTTGTTGGTCTTG 

#35 Boca2_sub2_BsmbI_fwd GATCCGTCTCGCTGG 

CTCCATGGAGGAGCGAGG 

#36 Boca2_partI_BsmbI_rev GATCCGTCTCGCGTCTTCCATTTC

AGCCAGT 
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#37 Boca2_part2_BsmbI_Fwd GATCCGTCTCGGACGCAAATGCTG

TAGAAAAAGCTATAGC 

#38 Boca2_part2_ClaI_rev GATCATCGATTTACAACACTTTATT

GATGTTTGTTTTGA 

#39 JF_boca4_BsmbI_fwd GTTACGTCTCTGCAGATGCCTCCA

ATTAAACGC 

#40 JF_boca4_BsmbI_rev GTTACGTCTCTAAGATTACAACACT

TTATTGATGTTTGTTTTAAC 

#41 JF_boca3_BsmbI_fwd GTTACGTCTCTGCAGATGCCTCCA

ATTAAAAGGCAAC 

#42 JF_boca3_BsmbI_rev GTTACGTCTCTAAGATTACAACACT

TTATTGATGTTTGTTTTAAC 

#43 JF_Goboca_BsmbI_fwd GTTACGTCTCTGCAGATGCCTCCA

ATTAAAAGGCA 

#44 JF_Goboca_bsmbI_rev GTTACGTCTCTAAGATTACAACACT

TTATTGATGTTTGTTTTTAC 

#45 JF_boca2_BsmbI_fwd GTTACGTCTCTGCAGATGCCTCCA

ATTAAACGC 

#46 JF_boca2_BsmbI_rev GTTACGTCTCTAAGATTACAACACT

TTATTGATGTTTGTTTTG 

Bold: restriction sites. 

For cloning of the infectious variants of the BoV helper plasmids (i.e., #2277 to #2280, 

Table 4) the respective cap ORFs were subcloned from plasmids (#2272 to #2275) into 

pIFHBoV1 72 using a BstBI and BsmBI double digest. The integrity of the BoV terminal repeats 

was ensured by performing a digest with SalI and XhoI. 

Table 4. BoV helper and replication-competent plasmids. 

No. Plasmid Name Description Origin 

#48 a pBSII-KS (+)  Standard cloning vector with a multiple 

cloning site 

Agilent, 

Waldbronn, 

Germany 

#2224 pCMVNS*HBoV1 Helper plasmid with ns 3-4, np 1 (both 

HBoV1 origin) and the HBoV1 cap ORFs. 

Used for production of chimeric 

rAAV2/HBoV1 particles 

Ref. 70 

#2225 a pCMVNS*ΔVP-

2×BsmBI 

Acceptor plasmid derived from #2224 for 

cloning of BoV gene blocks. The HBoV1 

This study 
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cap ORF was deleted and replaced by 

two inverted BsmBI sites 

#2272 pCMVNS*HBoV2 Same as #2224 but with a HBoV2 cap 

ORF. Used for production of chimeric 

rAAV2/HBoV2 particles 

This study 

#2273 pCMVNS*HBoV3 Same as #2224 but with a HBoV3 cap 

ORF. Used for production of chimeric 

rAAV2/HBoV3 particles 

This study 

#2274 pCMVNS*HBoV4 Same as #2224 but with a HBoV4 cap 

ORF. Used for production of chimeric 

rAAV2/HBoV4 particles 

This study 

#2275 pCMVNS*GBoV Same as #2224 but with a GBoV cap 

ORF. Used for production of chimeric 

rAAV2/GBoV particles 

This study 

#2276 pIFHBoV1 Plasmid harbouring the ns 1-4, np 1 

(both HBoV1 origin) and the HBoV1 cap 

ORF. HBoV1 LEH and REH flank the 

viral genome. Used for production of 

infectious HBoV1 particles 

Ref. 72 

#2277 pIFHBoV2 Same as #2276 but with a HBoV2 cap 

ORF. Used for production of infectious 

HBoV2 particles 

This study 

#2278 pIFHBoV3 Same as #2276 but with a HBoV3 cap 

ORF. Used for production of infectious 

HBoV3 particles 

This study 

#2279 pIFHBoV4 Same as #2276 but with a HBoV4 cap 

ORF. Used for production of infectious 

HBoV4 particles 

This study 

#2280 pIFGBoV Same as #2276 but with a GBoV cap 

ORF. Used for production of infectious 

GBoV particles 

This study 

Numbers refer to the AG Grimm database. a intermediate plasmids used for cloning. 

 Cloning of BoV shuffling acceptors 

The wt pTR-BoV shuffling acceptor (#2281) was derived from pIFHBoV1 by first deleting 

the cap ORF and inserting a BsmBI site at nucleotide position 592 (np 1 numbering). To this 

end, an OE-PCR with overlapping primers #47 / #49 and flanking primers #48 / #15 was 
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performed as described in section 2.2.3.4 (see Table 5 for a list of primers). The resulting 

fragment was then gel-purified and cloned into pIFHBoV1 using HindIII / BsmBI restriction 

sites. The wt shuffled-capsid acceptor harbours the terminal repeats (TR) and thus should 

theoretically allow the autonomous packaging of a BoV library.  

Next, the complete NSΔVP-1×BsmBI sequence was PCR-amplified using primers #50 / 

#51. The PCR product was digested with EagI / PacI and cloned into plasmid #1914 - a 

derivative of pSSV9 240, i.e., a conventional AAV vector construct harboring two AAV2 ITRs. 

This resulted in the second shuffled-capsid acceptor pAAVNSΔVP-1×BsmBI (#2282). This 

plasmid can replicate as a conventional AAV vector, i.e., in the presence of the adenovirus 

helper genes and the Rep proteins from AAV. 

For the cloning of shuffled BoV cap sequences into #2281 or #2282, primers #52 and 

#48 were used to PCR-amplify the ~2 kb fragments. Next, O/N digest of the inserts and vectors 

with BsmBI allowed for a seamless cloning of the fragments. 

Table 5. Primers used for cloning of BoV shuffling acceptors. 

No. Oligo Name Sequence (5‘- 3‘) 

#47 Acceptor shuffling fwd1 GACAGAAGAGAGACGCGGAAAGTGAAGGGTGACTG 

#48 HBoV1 BsmBI Rev1 GGCTAGGTTCGAGACGGTAAC 

#49 Acceptor shuffling Rev2 CCCTTCACTTTCCGCGTCTCTCTTCTGTCTGTGAGG

AAACA 

#50 HBoV1 wt EagI fwd GATTCCGGCCGCCACAAGGAGGAGTGGTTATA 

#51 HBoV1 wt PacI rev AGTTCTTAATTAAATAAGCAAACAAAACAGCTCC 

#52 Fwd_chimBoV_BsmbI AATGACGTCTCCGAAGCAGACGAGATAACTGACGA

GG 

#53 HBoV1_cap_PacI_Fwd GATGC TTAATTAAATGCCTCCAATTAAGAGACA 

#54 HBoV1_cap_AscI_Rev AGTTCGGCGCGCCTTACAACACTTTATTGATGTT 

Bold: restriction sites. 

To test whether a hybrid system composed only of AAV rep and BoV cap can work, 

plasmid #2283 was created by PCR amplification of HBoV1 cap from plasmid #2224 using 

primers #53 / #54 with restriction sites PacI / AscI, respectively. The PCR amplicon was 

digested with PacI / AscI and cloned into plasmid #1608 (PacI / AscI digested). Plasmids used 

for cloning and final products are listed in Table 6. 

 

 

 



Materials and Methods 

 

67 
 

Table 6. List of BoV shuffling-acceptors and plasmids used for cloning. 

No. Plasmid Name Description Origin 

#1608 apSSV9_Pac_A

sc_ccdB 

AAV shuffling acceptor plasmid with the rep 

ORF from AAV2 followed by a ccdB 

resistance cassette 

Anne-Kathrin 

Herrmann 

#1914 apSSV9_VECB_

YFP 

ssAAV backbone plasmid with AAV2 ITRs 

and PacI/EagI restriction sites for cloning 

Anne-Kathrin 

Herrmann 

#2281 pTR-BoV 

shuffling 

acceptor 

BoV shuffling acceptor plasmid with ns 1-4, 

np 1 (both HBoV1 origin). The HBoV1 cap 

was deleted and replaced by a BsmBI site. 

HBoV1 LEH and REH flank the viral 

genome. Used for production of an 

autonomously replication- competent BoV 

library 

This study 

#2282 pAAVNSΔVP-

1×BsmBI 

Same as #2281, except that AAV2 ITRs (5’ 

and 3’) were used to flank the viral genome 

instead of BoV TRs. Used for production of a 

packageable but not autonomously 

replication-competent BoV library 

This study 

#2283 pAAV-rep Cap1  Plasmid encoding the rep ORF from AAV2 

and the HBoV1 cap instead of AAV2 cap 

This study 

Numbers refer to the internal AG Grimm library. a plasmid used for cloning. 

 Cloning of oversized AAV vectors 

To obtain oversized scAAV constructs, portions of the lacZ cDNA ranging from 100 to 

500 bp were PCR-amplified from plasmid pIRES-LacZ #960 using forward primer #55 in 

combination with reverse primers #56 to #59 (Table 7). All PCR products were digested with 

EcoRI, which enabled cloning into an EcoRI site downstream of the yfp (yellow fluorescent 

protein) ORF in pBSUF3rev-YFP-sds (#552), resulting in plasmids #2284 to #2287 and #2334 

(see Table 8 for the list of all plasmids). In this backbone, two AAV ITRs, one of which carries 

a mutation of the terminal resolution site, flank the expression cassettes and allow for their 

packaging as self-complementary (sc) AAV genomes 241. The other oversized scAAV-YFP 

constructs used in this work (plasmids #554 to #556) were cloned by Eike Kienle. 
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Table 7. Primers used for cloning of oversized AAV constructs. 

No. Oligo Name Sequence (5‘- 3‘) 

#55 LacZ fwd CGGAATTCGTGCCGGAAAGCTGGCTGGAG 

#56 LacZ 100 rev ACTTGAATTCGTGTATCTGCCGTGCACTGCA 

#57 LacZ 200 rev ACTTGAATTCGACCACTACCATCAATCCGGTAG 

#58 LacZ 300 rev ACTTGAATTCGTTTACCCGCTCTGCTACCTGC 

#59 LacZ 500 rev ACTTGAATTCGTAGCGGCTGATGTTGAACTGG 

#60 CMV_pacI_fwd GTTACTTAATTAATTCGGTACCCGTTACATAACTTACGG 

#61 SV40_Intron_NheI GTTACGCTAGCGGTGGCGACCGGTGCGG 

Bold: restriction sites. 

The cloning of over-sized ssAAV vector constructs expressing SpCas9 was performed 

together with Yannik Voss (BSc. thesis). Therefore, plasmid #1543 containing the SpCas9 

cDNA from the Zhang lab (Addgene plasmid #52961) was used as an acceptor plasmid for 

cloning. The full-length and minimal CMV promoters (from plasmids #1187 and #1521, 

respectively) were directly cloned into #1543 by PacI / NheI digest. CMV+I, a CMV promoter 

with a SV40 intron, was PCR-amplified from plasmid #552 using primers #60 and #61 (Table 

7) and cloned into #1543 using a PacI / NheI digest. The polymerase III promoters (Pol III; U6 

and H1) together with their gRNA expression scaffold 242 carrying two inverted BbsI restriction 

sites were directly cloned as AscI / NotI fragments. The resulting plasmids are listed in Table 

8 (#2288 to #2291). 

Table 8. Oversized sc- and ssAAV vectors generated or used in this work. 

No. Plasmid Name Description Origin 

#552 pBSUF3rev-

YFP-sds 

scAAV vector with yfp expression 

cassette 

Eike Kienle 

#2334 #552-100 bp Same as #552 with 100 bp stuffer  This study 

#2284 #552-200 bp Same as #552 with 200 bp stuffer This study 

#2285 #552-300 bp Same as #552 with 300 bp stuffer This study 

#2286 #552-400 bp Same as #552 with 400 bp stuffer This study 

#2287 #552-500 bp Same as #552 with 500 bp stuffer This study 

#554 #552-800 bp Same as #552 with 800 bp stuffer Eike Kienle 

#555 #552-1200 bp Same as #552 with 1200 bp stuffer Eike Kienle 

#556 #552-1600 bp Same as #552 with 1600 bp stuffer Eike Kienle 

#1543 EFS_ZhangCas

9_H1_mFIX1.1_

F+E scaffold 

Single-stranded AAV plasmid encoding 

the SpCas9 and H1-gRNA cassette 

against the murine Factor IX 

Chronis  

Fatouros 
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Numbers refer to the internal AG Grimm library. 

 Cloning of gRNAs 

gRNAs were expressed from the U6 or H1 Pol III promoters and cloned using Golden 

Gate assembly and type II restriction enzymes (BbsI or BsmBI) as previously described 244. 

Oligonucleotides (sense and anti-sense) were annealed and cloned as described in section 

2.2.3.6. The length of the used oligonucleotides (Table 9) varied from 24 nt (for SpCas9, 20 nt 

target sequence and 4 nt overhangs for cloning) to 25 nt (for SaCas9, 21 nt target sequence 

and 4 nt overhangs). The acceptor plasmids for cloning of the gRNAs used in this work are 

listed in Table 10 (#1529, #1514 for SpCas9 and #1578, #1581 for SaCas9). The acceptor 

plasmids were designed to always generate the same 4 nt overhangs upon digestion with 

BsmBI or BbsI (CACC and AAAC). Some plasmids included a ccdB cassette (#1578, #1581) 

to increase the efficiency of cloning. 

Likewise, the shRNAs used in this work were ordered as forward and reverse 

oligonucleotides (#98 to #101). Oligos were annealed and cloned as described for gRNAs into 

plasmid #67 behind the U6 promoter to generate plasmids pBS RSV-GFP-U6-shRNA luc 1 

and pBS RSV-GFP-U6-shRNA luc 2 (#2356). 

 

 

#2288 pSSV9-miCMV-

spCas9-H1-

gRNA CFTR 

ssAAV plasmid encoding the SpCas9 

(Shalem et al. 2014 243) driven by a 

miCMV promoter. A second cassette 

encodes a H1 promoter followed by a 

gRNA against CFTR  

Yannik Voss 

(BSc. thesis) 

#2289 pSSV9-miCMV-

spCas9-U6-

gRNA CFTR 

Same as #2288. The gRNA was 

expressed from the U6 promoter   

Yannik Voss 

(BSc. thesis) 

#2290 pSSV9-CMV-

spCas9-U6-

gRNA CFTR 

Same as #2288. The SpCas9 cDNA 

was expressed from the CMV 

promoter. The gRNA was expressed 

from the U6 promoter   

Yannik Voss 

 (BSc. thesis) 

#2291 pSSV9-CMV+I-

spCas9-U6-

gRNA CFTR 

Same as #2288. The SpCas9 cDNA 

was expressed from the CMV promoter 

followed by the SV40 intron. The gRNA 

was expressed from the U6 promoter   

Yannik Voss  

(BSc. thesis) 
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Table 9. Oligonucleotide sequences used for cloning of gRNAs. 

No. Oligo Name Sequence (5‘- 3‘) 

#62 Firefly_Luci_saG1_21mer_fwd CACCGCACTGGCATGAAGAACTGCA 

#63 Firefly_Luci_saG1_21mer_rev AAACTGCAGTTCTTCATGCCAGTGC 

#64 Firefly_Luci_saG2_21mer_fwd CACCGTCAACGAGTACGACTTCGTGC 

#65 Firefly_Luci_saG2_21mer_rev AAACGCACGAAGTCGTACTCGTTGAC 

#66 Firefly_Luci_saG3_21mer_fwd CACCGAGACAGGTCGTACTTGTCGAT 

#67 Firefly_Luci_saG3_21mer_rev AAACATCGACAAGTACGACCTGTCTC 

#68 Firefly_Luci_saG4_21mer_fwd CACCGCTCTTAGCGAAGAAGCTGAA 

#69 Firefly_Luci_saG4_21mer_rev AAACTTCAGCTTCTTCGCTAAGAGC 

#70 JF_SV40polA_gRNA1_fwd CACCGTTGTTTATTGCAGCTTATAA 

#71 JF_SV40polA_gRNA1_rev AAACTTATAAGCTGCAATAAACAAC 

#72 JF_SV40polA_gRNA2_fwd CACCGTATGTTTCAGGTTCAGGGGG 

#73 JF_SV40polA_gRNA2_rev AAACCCCCCTGAACCTGAAACATAC 

#74 JF_SV40polA_gRNA3_fwd CACCGATAAGATACATTGATGAGTT 

#75 JF_SV40polA_gRNA3_rev AAACAACTCATCAATGTATCTTATC 

#76 JF_gRNA1_hLuc_fwd CACCGCATCTCGAAGTACTCGGCAT 

#77 JF_gRNA1_hLuc_rev AAACATGCCGAGTACTTCGAGATGC 

#78 JF_gRNA2_hLuc_fwd CACCGGACTCTAAGACCGACTACC 

#79 JF_gRNA2_hLuc_rev AAACGGTAGTCGGTCTTAGAGTCC 

#80 JF_gRNA3_hLuc_fwd CACCGTTGCCGAAAATAGGGTCGC 

#81 JF_gRNA3_hLuc_rev AAACGCGACCCTATTTTCGGCAAC 

#82 JF_gRNA4_hLuc_fwd CACCGCGACACCGCTATTCTGAGCG 

#83 JF_gRNA4_hLuc_rev AAACCGCTCAGAATAGCGGTGTCGC 

#84 JF_G3sp_Luci_scr_fwd CACCACCACTACGACTAACGGCGT 

#85 JF_G3sp_Luci_scr_rev AAACACGCCGTTAGTCGTAGTGGT 

#86 JF_G1sa_Luci_scr_fwd CACCAGTAATAAGCCGTACCGGACG 

#87 JF_G1sa_Luci_scr_rev AAACCGTCCGGTACGGCTTATTACT 

#88 saRNA1_against N saCas9_fwd CACCGGTGATGCCGATGTCCAGGCC 

#89 saRNA1_against N saCas9_rev AAACGGCCTGGACATCGGCATCACC 

#90 saRNA2_against N saCas9_fwd CACCGCTGAAGCGGCGGAGGCGGCA 

#91 saRNA2_against N saCas9_rev AAACTGCCGCCTCCGCCGCTTCAGC 

#92 saRNA1_against C saCas9_fwd CACCGAAACCTTCAAGAAGCACATC 

#93 saRNA1_against C saCas9_rev AAACGATGTGCTTCTTGAAGGTTTC 

#94 saRNA2_against C saCas9_fwd CACCGCCCTTGCCCTTGGCCAGATT 
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#95 saRNA2_against C saCas9_rev AAACAATCTGGCCAAGGGCAAGGGC 

#96 sc(sa) gRNA1_N saCas fwd CACCGCAGTCAATTGCCGGGCGCTG 

#97 sc(sa) gRNA1_N saCas rev AAACCAGCGCCCGGCAATTGACTGC 

#98 JF_hLuc21-siRNA-1-fwd CACCGAGAAGGAGATCGTGGACTATTCAA

GAGATAGTCCACGATCTCCTTCTC 

#99 JF_hLuc21-siRNA-1-rev AAAAGAGAAGGAGATCGTGGACTATCTCT

TGAATAGTCCACGATCTCCTTCTC 

#100 JF_hLuc21-siRNA-2-fwd CACCGAGCACCCTGATCGACAAGTATCAA

GAGTACTTGTCGATCAGGGTGCTC 

#101 JF_hLuc21-siRNA-2-rev AAAAGAGCACCCTGATCGACAAGTACTCTT

GATACTTGTCGATCAGGGTGCTC 

Bold: Overhangs. 

Table 10. Plasmids used for cloning or expression of gRNAs. 

No. Plasmid Name Description Origin 

#1529 scAAV-RSV-GFP-U6-2×BbsI 

(sp) scaffold 

Acceptor plasmid for cloning 

of (sp) gRNAs after the U6 

promoter 

Dirk Grimm 

#2292 scAAV-RSV-GFP-U6-anti Luc 

gRNA1 (sp) scaffold 

Plasmid based on #1529 with 

gRNA1 (sp) against Firefly 

luciferase (hluc+) 

This study 

#2293 scAAV-RSV-GFP-U6-anti Luc 

gRNA2 (sp) scaffold 

Plasmid based on #1529 with 

gRNA2 (sp) against Firefly 

luciferase (hluc+) 

This study 

#2294 scAAV-RSV-GFP-U6-anti Luc 

gRNA3 (sp) scaffold 

Plasmid based on #1529 with 

gRNA3 (sp) against Firefly 

luciferase (hluc+) 

This study 

#2295 scAAV-RSV-GFP-U6-anti Luc 

gRNA4 (sp) scaffold 

Plasmid based on #1529 with 

gRNA4 (sp) against Firefly 

luciferase (hluc+) 

This study 

#1514 pBS-H1_F+E RSV:GFP Acceptor plasmid for cloning 

of (sp) gRNAs after the H1 

promoter 

Florian 

Schmidt 

#2296 pBS-H1-luc gRNA3 (sp) scaffold Plasmid based on #1514 with 

the gRNA3 (sp) against 

Firefly luciferase (hluc+) 

This study 
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#1578 scAAV-RSV-GFP-U6-2×BsmBI 

ccdB (sa) scaffold 

Acceptor plasmid for cloning 

of (sa) gRNAs after the U6 

promoter 

Florian 

Schmidt 

#2297 scAAV-RSV-GFP-U6-anti Luc 

gRNA1 (sa) scaffold 

Plasmid based on #1578 with 

gRNA1 (sa) against Firefly 

luciferase (hluc+) 

This study 

#2298 scAAV-RSV-GFP-U6-anti Luc 

gRNA2 (sa) scaffold 

Plasmid based on #1578 with 

gRNA2 (sa) against Firefly 

luciferase (hluc+) 

This study 

#2299 scAAV-RSV-GFP-U6-anti Luc 

gRNA3 (sa) scaffold 

Plasmid based on #1578 with 

gRNA3 (sa) against Firefly 

luciferase (hluc+) 

This study 

#2300 scAAV-RSV-GFP-U6-anti Luc 

gRNA4 (sa) scaffold 

Plasmid based on #1578 with 

gRNA4 (sa) against Firefly 

luciferase (hluc+) 

This study 

#1581 scAAV-RSV-GFP-H1-2×BsmBI 

ccdB (sa) scaffold 

Acceptor plasmid for cloning 

of (sa) gRNAs after the H1 

promoter 

Florian 

Schmidt 

#2356 pBS RSV-GFP-U6-shRNA luc 2 Plasmid based on #67 with 

shRNA2 against Firefly 

luciferase (hluc+) 

This study 

Numbers refer to the internal AG Grimm library. Sequences of gRNA and shRNA oligos can 

be found in Table 9. 

 Cloning of luciferase reporters and kill-switch vectors 

All reporter constructs were derived from plasmid #714, which was originally cloned by 

Dominik Niopek by transferring the two luciferase expression cassettes from the psiCheck-2 

reporter (Promega) into a derivative of pSSV9 240. 

The first generation of kill-switch reporters (#2301 to #2304) were constructed by PCR-

amplifying the respective H1-gRNA cassettes using common primers #102 and #103 (Table 

11) with ClaI restriction sites. The fragments were gel-purified, digested and inserted into ClaI 

digested #714 vector (see Table 12 for a list of plasmids). 

Plasmid #2342 was constructed by first PCR-amplifying the TTR promoter sequence 

from plasmid #1693 using forward primer #104 and reverse primer #105 with BstZ17I and 

HindIII overhangs, respectively. The digested and gel-purified fragment was then cloned into 

BstZ17I / HindIII-digested plasmid #2305. The kill-switch luciferase reporters #2306 and #2343 

were derived from #2342 by cloning the respective gRNA oligos using Golden Gate cloning as 

described in 2.2.3.6 (see also Table 9 for oligo sequences). 
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Table 11. Primers used for cloning of luciferase reporters. 

No. Oligo Name Sequence (5‘- 3‘) 

#102 H1_promoter-claI-fwd GTACATCGATGCCCATATTTGCATGTCG 

#103 ClaI_E+F_scaffold_rev GTTACCATCGATAAAAAAAGCACCGACTCG 

#104 Fwd_BstZ17I TTR GATATGTATACGGATCTGTAATTCACGCGAG 

#105 Rev_HIND III TTR GATATAAGCTTCAGCTGGGCTTCTCCTGGT 

#106 hLuc+_notI_fwd TAGATGCGGCCGCATGGCCGATGCTAAGAACAT 

#107 SV40 polA_sphI_rev TGCATGCATGCGTTTATTGCAGCTTATAATG 

Bold: restriction sites. 

For the generation of scAAV-luciferase reporters #2307 to #2309, the Firefly luciferase 

ORF was PCR-amplified using primers #106 and #107 with NotI / SphI restriction sites, 

respectively. Next, the bfp ORF was replaced in plasmids #1690, #1693 and #1697 by cloning 

the digested and purified hLuc fagment into the respective SphI / NotI-digested vectors.  

Table 12. List of conventional and SIN luciferase reporters. 

No. Plasmid Name Description Origin 

#714 pSSV9_pSi ssAAV plasmid encoding Firefly and 

Renilla luciferase 

Dominik 

Niopek 

#2301 pSSV9_pSi_H1_anti 

Luc (sp)_3 

ssAAV plasmid based on #714 with the 

H1-(sp) gRNA3 cassette against Firefly 

luciferase (hluc+) 

This study 

#2302 pSSV9_pSi-H1-scr 

control (sp) 3 

ssAAV plasmid based on #714 with a H1-

(sp) scr gRNA3 control cassette against 

Firefly luciferase (hluc+) 

This study 

#2303 pSSV9_pSi-H1-anti Luc 

(sa) 1 

ssAAV plasmid based on #714 with the 

H1-(sa) gRNA1 cassette against Firefly 

luciferase (hluc+) 

This study 

#2304 pSSV9_pSi-H1-scr 

control (sa) 1 

ssAAV plasmid based on #714 with the 

H1-(sa) scr gRNA1 control cassette 

against Firefly luciferase (hluc+) 

This study 

#2305 ssAAV-TK-hLuc-U6-

2×BbsI (sa) gRNA 

scaffold 

ssAAV plasmid encoding Firefly luciferase 

under TK promoter and U6-2×BbsI (sa) 

gRNA scaffold 

Carolin 

Schmelas 

#2342 ssAAV-TTR-hLuc-U6-

2×BbsI (sa) gRNA 

scaffold 

ssAAV plasmid based on #2305 encoding 

Firefly luciferase under TTR promoter and 

U6-2×BbsI (sa) gRNA scaffold 

This study 
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#2343 ssAAV_TTR-hLuc-U6-

scr control (sa) 1 

Plasmid based on #2342 encoding Firefly 

luciferase under TTR promoter and U6-

(sa) scr gRNA1 control  

This study 

#2306 ssAAV_TTR-hLuc-U6-

anti Luc (sa) 1 

Plasmid based on #2342 encoding Firefly 

luciferase under TTR promoter and U6-

(sa) gRNA1 cassette against Firefly 

luciferase (hluc+) 

This study 

#1693 scAAV_TTR_BFP scAAV Plasmid encoding blue fluorescent 

protein under TTR promoter 

Florian 

Schmidt 

#1690 scAAV_LP1_BFP scAAV Plasmid encoding blue fluorescent 

protein under LP1 promoter 

Florian 

Schmidt 

#1697 scAAV_TBG_BFP scAAV Plasmid encoding blue fluorescent 

protein under TBG promoter 

Florian 

Schmidt 

#2307 scAAV_TTR_hLuc scAAV Plasmid encoding Firefly 

luciferase (hluc+) under TTR promoter 

This study 

#2308 scAAV_LP1_hLuc scAAV Plasmid encoding Firefly 

luciferase (hluc+) under LP1 promoter 

This study 

#2309 scAAV_TBG_hLuc scAAV Plasmid encoding Firefly 

luciferase (hluc+) under TBG promoter 

This study 

Numbers refer to the internal AG Grimm library. 

 Cloning of SIN split Cas9 constructs 

Original split Cas9 plasmids that served as templates for cloning were received from 

Carolin Schmelas. First, to optimize the size of these vectors for packaging as ssAAV 

genomes, 1.2 or 1.7 kb stuffer sequences were PCR-amplified from plasmid pBSII-KS (+) #48, 

using primer combinations #108 / #109 or #108 / #110, respectively (see Table 13 for a list of 

primers). Gel-purified and PacI-digested PCR amplicons were cloned into plasmid #2314 (the 

1.7 kb stuffer) or #2322 (the 1.2 kb stuffer) to yield plasmids #2315 and #2323, respectively 

(Table 14). The final genome sizes of the vectors (including the ITRs) were 3.9 kb for #2315 

and 4.0 kb for #2323. 

Next, the gRNA acceptor cassettes under the H1 or U6 promoters were PCR-amplified 

using common primers #111 to #119 with different restriction sites: 

A H1-2×BsmBI ccdB-sa scaffold cassette was PCR-amplified from plasmid #1581 using 

primers #111 and #112. The fragment was gel-purified, digested with PacI and cloned into 

plasmid #2310 (using the PacI restriction site) to yield plasmid #2311 (together with Daniel 

Heid).  
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The ccdB cassette in plasmid #1781 was replaced by annealed oligonucleotides 

harboring two inverted BbsI sites and compatible overhangs using Golden Gate cloning (with 

restriction enzyme BsmBI). The resulting plasmid served as a template for PCR amplification 

of the U6 gRNA acceptor cassette using primers #118 / #119 (ClaI / EcoRV sites). The ClaI / 

EcoRV-digested fragment was cloned into plasmids #2315 and #2323 (both digested with ClaI 

/ EcoRV) to yield plasmids #2316 and #2324, respectively.  

A H1-2×BbsI-sa scaffold cassette was PCR-amplified from plasmid #1533 using primer 

combinations #113 / #114 (NotI sites) or #117 / #119 (ClaI / EcoRV sites). PCR amplicons 

were gel-purified and digested with the respective restriction enzyme(s). Next, the NotI-

digested products were cloned into the #2331 vector (digested with NotI), close to the AAV2 

ITR to yield the plasmid scAAV-mCMV-NLS-flag-SaCas9(C)-split3-gp41_miniPolA-H1-

2×BbsI. This plasmid served as a template for cloning of the anti-Cas gRNA against the Cas9 

N terminal (#1) and the scr control RNA (listed in Table 9). These plasmids were used for the 

initial validation experiments described in section 3.4.4 but were replaced afterwards by 

optimized constructs following the recommendations of Xie et al. 245 . In this study, the authors 

showed that the incorporation of cassettes with small hairpins in scAAV vectors close to the 

non-mutated ITR can be disadvantageous, leading to truncations in the packaged genomes. 

Therefore, the H1-2×BbsI-sa cassette was re-cloned into the AscI site next to the mutated 

AAV4 ITR using the same strategy as before (primers #115 / #116), to yield plasmids #2332 

to #2334. These optimized plasmids were then used in all transduction experiments (section 

3.4.5). 

Table 13. Primers used for cloning of SIN split Cas9 vectors. 

No. Oligo Name Sequence (5‘- 3‘) 

#108 Fwd pB KS (+) PacI GTACCTTAATTAAGTGTGGTGGTTACGCGCA 

#109 Rev 1200 pB KS (+) PacI GTACCTTAATTAACCTCTGACTTGAGCGTCGAT 

#110 Rev 1700 pB KS (+) PacI GTACCTTAATTAAGGTTTGTTTGCCGGATCAAG 

#111 H1_PacI_fwd TGTACTTAATTAAGCAAAAAAATCTCGCCA 

#112 JF_PacI_sa_scaffold_rev AGATTTAATTAAGCAAAAAAATCTCGCCA 

#113 H1_NotI_fwd TGTACGCGGCCGCGCCCATATTTGCATGTCG 

#114 sa scaffold_NotI_rev TGTACGCGGCCGCGCAAAAAAATCTCGCCA 

#115 H1_AscI_fwd ATATAAGGCGCGCCGCCCATATTTGCATGTCGC 

#116 sa scaffold_AscI_rev TATATGGCGCGCCAAAAAAATCTCGCCAACAAGT

TGAC 

#117 H1_ClaI_fwd TGTACATCGATGCCCATATTTGCATGTCG 

#118 U6_ ClaI_fwd TGTACATCGATAGATCTGATATCGGCGCGCC 

#119 sa scaffold_EcoRV_rev TGTACGATATCGCAAAAAAATCTCGCCA 

Bold: restriction sites. 
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The H1-2×BbsI-sa ClaI / EcoRV-digested fragment was cloned into plasmids #2315 and 

#2323 (both digested with ClaI / EcoRV) to yield plasmids #2319 and #2327.  

The gRNA sequences against Firefly luciferase or SaCas9 (sequences shown in Table 

9) were then cloned as described in section 2.2.3.6 to yield plasmids #2312-13, #2317-18, 

#2320-21, #2325-26, #2328-29, or #2333-34 (Table 14). 

Table 14. Split Cas9 plasmids used and SIN variants generated in this work. 

No. Plasmid Name Description Source 

 ssAAV split Cas9 vectors  

#2310 ssAAV-mCMV-NLS-

flag-SaCas9-NLS-

miniPolyA 

Single-stranded AAV vector with full-

length SaCas9 expression cassette 

driven by a minimal CMV promoter 

Carolin 

Schmelas 

#2311 ssAAV-H1-ccdB (sa) 

scaffold-mCMV-NLS-

flag-SaCas9-NLS-

miniPolyA 

Same as #2310. A H1 promoter and a 

ccdB cassette were directly cloned 

before the mCMV promoter into the 

PacI site 

Daniel Heid 

#2312 ssAAV-H1-anti Cas 

gRNA-mCMV-NLS-

flag-SaCas9-NLS-

miniPolyA 

Same as #2311 with a gRNA 

sequence against SaCas9 (N1; sa 

gRNA1 against the N terminal) 

This study 

#2313 ssAAV-H1-scr Cas 

gRNA-mCMV-NLS-

flag-SaCas9-NLS-

miniPolyA 

Same as #2311 with a scrambled anti-

Cas9 gRNA N1 control sequence 

This study 

#2314 ssAAV-mCMV-NLS-

flag-SaCas9(N)-split3-

gp41-flag-NLS 

Single-stranded AAV vector that 

encodes the N-terminal part of a split 

Cas9 driven by a minimal CMV 

promoter. 

Carolin 

Schmelas 

#2315 ssAAV-Stuffer-mCMV-

NLS-flag-SaCas9(N)-

split3-gp41-flag-NLS 

Same as #2314. A stuffer with a 

multiple cloning site was inserted 

before the mCMV promoter to 

optimize the size and allow for 

subsequent cloning steps 

This study 

#2316 ssAAV-U6-2×BbsI 

(sa) scaffold-mCMV-

NLS-flag-SaCas9(N)-

split3-gp41-flag-NLS 

Acceptor plasmid based on #2315 

with U6 Pol III promoter followed by 

two inverted BbsI sites for cloning of 

gRNA cassettes 

This study 
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#2317 ssAAV-U6- anti Luc 

gRNA (sa) scaffold-

mCMV-NLS-flag-

SaCas9(N)-split3-

gp41-flag-NLS 

Plasmid based on #2316 with sa 

gRNA1 against Firefly luciferase 

(hluc+) 

This study 

#2318 ssAAV-U6- scr Luc 

gRNA (sa) scaffold-

mCMV-NLS- flag-

SaCas9(N)-split3-

gp41-flag-NLS 

Plasmid based on #2316 with a 

scrambled anti-luc (sa) gRNA1 control 

sequence 

This study 

#2319 ssAAV-H1-2×BbsI 

(sa) scaffold-mCMV-

NLS-flag-SaCas9(N)-

split3-gp41-flag-NLS 

Acceptor plasmid based on #2315 

with H1 Pol III promoter followed by 

two inverted BbsI sites for cloning of 

gRNA cassettes 

This study 

#2320 ssAAV-H1- anti Luc 

gRNA (sa) scaffold-

mCMV-NLS-flag-

SaCas9(N)-split3-

gp41-flag-NLS 

Plasmid based on #2319 with (sa) 

gRNA1 against Firefly luciferase 

(hluc+) 

This study 

#2321 ssAAV-H1- scr Luc 

gRNA (sa) scaffold-

mCMV-NLS- flag-

SaCas9(N)-split3-

gp41-flag-NLS 

Plasmid based on #2319 with a 

scrambled anti-luc (sa) gRNA1 control 

sequence 

This study 

#2322 ssAAV-mCMV-NLS-

flag-SaCas9(C)-split3-

gp41-flag-NLS 

Single-stranded AAV vector that 

encodes the C-terminal part of a split 

Cas9 driven by a minimal CMV 

promoter 

Carolin 

Schmelas 

#2323 ssAAV-Stuffer-mCMV-

NLS-flag-SaCas9(C)-

split3-gp41-flag-NLS 

Same as #2322. A 1700 bp stuffer 

with a multiple cloning site was 

inserted before the mCMV promoter 

to optimize the size and allow for 

subsequent cloning steps 

This study 

#2324 ssAAV-U6-2×BbsI 

(sa) scaffold-mCMV-

NLS-flag-SaCas9(C)-

split3-gp41-flag-NLS 

Acceptor plasmid based on #2323 

with U6 Pol III promoter followed by 

two inverted BbsI sites for cloning of 

gRNA cassettes 

This study 
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#2325 ssAAV-U6- anti Cas 

gRNA (sa) scaffold-

mCMV-NLS-flag-

SaCas9(C)-split3-

gp41-flag-NLS 

Plasmid based on #2324 with gRNA 

N1 against SaCas9 

This study 

#2326 ssAAV-U6- scr Cas 

gRNA (sa) scaffold-

mCMV-NLS- flag-

SaCas9(C)-split3-

gp41-flag-NLS 

Plasmid based on #2324 with a 

scrambled anti-Cas9 gRNA N1 control 

sequence 

This study 

#2327 ssAAV-H1-2×BbsI 

(sa) scaffold-mCMV-

NLS-flag-SaCas9(C)-

split3-gp41-flag-NLS 

Acceptor plasmid based on #2323 

with H1 Pol III promoter followed by 

two inverted BbsI sites for cloning of 

gRNA cassettes 

This study 

#2328 ssAAV-H1- anti Cas 

gRNA (sa) scaffold-

mCMV-NLS-flag-

SaCas9(C)-split3-

gp41-flag-NLS 

Plasmid based on #2327 with gRNA 

N1 against SaCas9 

This study 

#2329 ssAAV-H1- scr Cas 

gRNA (sa) scaffold-

mCMV-NLS- flag-

SaCas9(C)-split3-

gp41-flag-NLS 

Plasmid based on #2327 with a 

scrambled anti-Cas9 gRNA N1 control 

sequence 

This study 

 scAAV split Cas9 vectors  

#2330 scAAV-mCMV-NLS-

flag-SaCas9(N)-split3-

gp41_miniPolA 

Self-complementary AAV vector that 

encodes the N-terminal part of a split 

Cas9 driven by a minimal CMV 

promoter 

Carolin 

Schmelas 

#2331 scAAV-mCMV-NLS-

flag-SaCas9(C)-split3-

gp41_miniPolA 

Self-complementary AAV vector that 

encodes the C-terminal part of a split 

Cas9 driven by a minimal CMV 

promoter 

Carolin 

Schmelas 

#2332 scAAV-H1-2×BbsI-

mCMV-NLS-flag-

SaCas9(C)-split3-

gp41_miniPolA 

Acceptor plasmid based on #2331 

with H1 Pol III promoter followed by 

two inverted BbsI sites for cloning of 

gRNA cassettes 

Together with 

Carolin 

Schmelas 
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#2333 scAAV-H1- anti Cas 

gRNA (sa) scaffold-

mCMV-NLS-flag-

SaCas9(C)-split3-

gp41_miniPolA 

Plasmid based on #2332 with gRNA 

N1 against SaCas9 

This study 

#2334 scAAV-H1- scr Cas 

gRNA (sa) scaffold -

mCMV-NLS-flag-

SaCas9(C)-split3-

gp41_miniPolA 

Plasmid based on #2332 with a 

scrambled anti-Cas9 gRNA N1 control 

sequence 

 

This study 

#1533 ssAAV_CMV_SaCas9

_BgH_H1_(BbsIx2) 

Sa-scaffold 

All-in-one SaCas9 vector 'empty', BbsI 

sites for gRNA cloning (H1 promoter) 

Chronis 

Fatouros 

#1781 scAAV-RSV-GFP-U6-

2×BsmBI ccdB (sa) 

scaffold 

Acceptor plasmid for cloning of (sa) 

gRNAs after the U6 promoter 

Florian Schmidt 

Numbers refer to the internal AG Grimm library. 

 Microbiological methods 

 Production of CaCl2 chemocompetent bacteria 

For the preparation of standard (MAX Efficiency DH5αTM, section 2.1.1) or 

recombination-deficient chemocompetent cells (SURE), an aliquot from the frozen glycerol 

stock was resuspended in 50 µL LB medium under sterile conditions. From this suspension, a 

1:10 dilution was streaked on an agar plate without antibiotics and was incubated at 37°C O/N. 

The next day, one colony was picked and inoculated in 6 mL LB medium O/N. Around 16 h 

later, 3 flasks (250 mL SOC medium each) were inoculated with 1 mL of the O/N culture and 

were then incubated at 37°C, 180 rpm. The cultures that reached an appropriate OD600 of 0.5 

were then centrifuged at 4°C, 1,800×g for 15 min. The cell pellet was resuspended in 40 mL 

TFB I buffer and incubated for 10 min on ice. Next, cells were pelleted again (4°C, 1,800×g for 

15 min) and resuspended in 10 mL of TFB II. After an incubation period of 10 min on ice, cells 

were distributed with a stepper pipette into 50 µL aliquots and snap-frozen in liquid nitrogen. 

The aliquots were then stored at -80°C or directly used for transformations. To test the 

transformation efficiency, ~50 pg of the supplied pUC plasmid (section 2.1.1) were transformed 

and the efficiency was calculated as described in section 2.2.2.3. 
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 Heat shock 

For the transformation of plasmid DNA or ligation reactions, 50 µL aliquots of 

chemocompetent bacteria were thawed on ice for 5 min. The plasmid DNA (~10 ng) or ligation 

reaction (75-100 ng) was added to the cells and the tube was gently flicked. After a 20 min 

incubation on ice, heat shock was performed by shifting the bacteria to 42°C for 45 sec. Next, 

a “cold-shock” was achieved by shifting the cells to 4°C for 5 min. To allow recovery of bacteria 

and production of antibiotic resistance proteins, 1 mL of antibiotic-free LB media was added to 

the tubes and cells were grown for 40 min at 37°C, 660 rpm. The tubes were then centrifuged 

at 400×g, 5 min, and the pellets were resuspended in 100 µL LB medium and streaked on 

antibiotic-containing agar plates.  

For ampicillin-encoding plasmids, the 40 min incubation step was not critical and 

therefore omitted. All plates were incubated at 37°C O/N. 

 Production of electrocompetent bacteria 

To produce electrocompetent bacteria, MegaX DH10BTM T1R cells (section 2.1.1) were 

streaked on agar plates as described in 2.2.2.1. One colony was inoculated in 30 mL LB 

medium and incubated O/N at 37°C, 180 rpm. Four flasks with 400 mL antibiotic-free LB were 

inoculated with 5 mL of the overnight culture and were further incubated at 37°C, 180 rpm until 

an OD600 of 0.5 was reached. The bacteria were then transferred to pre-cooled 500 mL flasks 

and incubated on ice for 15 min. Next, the flasks were centrifuged at 4°C, 4,000×g for 10 min 

and the pellet was subsequently resuspended in 60 mL ice cold sterile H2O. The bacteria were 

then transferred into pre-cooked dialysis tubings (Type 20/32 inch) and dialyzed against 4-8 L 

ddH2O at 4°C O/N. The next day, cells were transferred to 50 mL tubes and centrifuged at 4°C, 

4,000×g for 15 min. Afterwards, the pellet was suspended in 900 µL 10% glycerol and the 

OD600 was measured. By the gradual addition of 10% glycerol, the OD600 was adjusted to 1 

(which corresponds to ~2.5×1010 cells). Electrocompetent bacteria were aliquoted in 100-300 

µL aliquots, snap-frozen in liquid nitrogen and stored at -80°C. To determine the transformation 

efficiency, the pUC19 control plasmid and the transformation protocol supplied with the MegaX 

DH10BTM T1R cells (see section 2.1.1) were used. Therefore, 50 pg of pUC19 were added to 

a 50 µL aliquot of bacteria and electroporation was performed as described in section 2.2.2.4. 

Transformation efficiency (colony forming units [CFU] / µg) was calculated according to the 

following formula: 

CFU

µg
=

number of colonies

50 pg
×

1×10
6
 pg

µg
×

total bacterial volume

plated volume
× dilution factor(s) 
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 Electroporation 

Chemocompetence was sufficient for most regular cloning applications in this work. 

However, if the amount of DNA was limiting and/or high transformation efficiencies were 

required, electroporation was performed. Therefore, bacteria prepared as described in 2.2.2.3 

were used. For chimeric BoV library production, even higher transformation efficiencies were 

needed. Thus, transformations were carried out with commercial electrocompetent bacteria 

(E. cloni SUPREME electrocompetent cells, section 2.1.1). 

In both cases, electroporation cuvettes were cooled on ice and SOC medium pre-

warmed at 37°C. Aliquots of competent cells of 300 µL were thawed on ice for 10 min. In the 

meantime, the ligation reactions were dialyzed against ddH2O using MF-Millipore™ Membrane 

Filters. Next, the ligation reaction was mixed with the bacteria (~150 ng DNA per 30 µL 

bacteria) and placed on ice. Into each 1 mm electroporation cuvette, 35 µL DNA/bacteria mix 

was transferred and the electroporation was performed in a Gene Pulser Xcell device at 1,800 

V, 25 μF and 200 Ω. To allow recovery, bacteria were directly resuspended in 1 mL of SOC 

medium, transferred into a 1.5 mL tube and shaken at 37°C, 600 rpm for 40 min. For small-

scale (1-2) electroporations, cells were spun down after recovery, resuspended in 100 µL 

medium and directly plated on agar plates with appropriate antibiotics for selection. For library 

production (6-10 electroporations), bacteria were pooled after recovery and 100 µL of this 

suspension (undiluted as well as 1:10 and 1:100 dilutions) were plated on LB-ampicillin agar 

plates, to estimate the number of clones in the library. The rest of the transformation 

suspension was grown overnight in 400 mL LB-ampicillin to amplify the plasmid library.  

 Molecular biology methods 

 DNA sequencing 

Sequences of plasmids or cloned PCR products were verified using Sanger sequencing 

analysis, which was performed by GATC (now Eurofins), Konstanz, Germany. One tube 

contained ~400 ng plasmid DNA and 5 µM of an appropriate sequencing primer in 20 µL total 

volume.  

 Standard PCR  

For PCR amplification of target sequences in plasmid or genomic DNA, Phusion HS II 

polymerase (Thermo Fisher Scientific) was used according to the manufacturer’s instructions. 

Briefly, one reaction mix (50 µL) contained template DNA, 2.5 µL of each forward and reverse 

primer (10 µM), 10 µL Phusion buffer (5×, HF or GC), 1 µL dNTP (10 mM), 0.5 µL Phusion 

DNA polymerase and H2O up to 50 µL. The amount of template DNA varied from ~20 ng 

(plasmid DNA) to 200 ng (genomic DNA). The PCR cycling conditions were as follows: an 

initial denaturation step at 98°C for 10 min, followed by 35-40 cycles of (i) denaturation at 98°C 
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for 30 sec, (ii) annealing at 56-60°C for 30 sec, (iii) extension at 72°C (for 30 sec/kb) and finally 

a last elongation step for 8 min at 72°C. The appropriate annealing temperature was 

determined for every primer set using the online Phusion Tm calculator 246, 247. In case of low 

amplification efficiency or unspecific bands, a gradient PCR was performed to determine the 

best annealing temperature.  

 Colony PCR 

For a quick test of cloning efficiency after transformation, a PCR was directly performed 

from the bacterial colony (usually 10-30 colonies were tested in parallel). Therefore, the Quick-

Load Taq 2× Master Mix (NEB) was used according to the manufacturer’s instructions. A 

smaller reaction volume of 10 µL was found to be sufficient for efficient amplification. 

Therefore, 5 µL of 2× Master Mix were mixed with 0.2 µL forward primer (10 µM), 0.2 µL 

reverse primer (10 µM) and 4.6 µL H2O. A colony was picked with a pipet tip, gently streaked 

on a replica agar plate with appropriate antibiotics (as a backup) and then dispersed into the 

PCR tube containing the reagent mix. The replica plate was then incubated at 37°C for several 

hours. PCR reactions were performed with the following conditions: an initial denaturation step 

at 95°C for 30 sec, followed by 35-40 cycles of (i) denaturation at 95°C for 30 sec, (ii) annealing 

at 45-68°C for 15 sec, (iii) extension at 68°C (for 1 min/kb) and a final elongation step for 8 min 

at 68°C. The appropriate annealing temperature was determined for every primer set using the 

online NEB Tm calculator (https://tmcalculator.neb.com). 

PCR reactions were directly loaded and separated on 1% agarose gels containing 

ethidium bromide. Next, PCR products were visualized under UV light and positive colonies 

identified. Correct clones were picked from the replica plate and cultured in selective growth 

media O/N. 

 Overlap extension PCR (OE-PCR) 

To introduce mutations, deletions or insertions at specific sites in a sequence, overlap 

extension PCR was performed. Therefore, two complementary primers (sense and anti-sense) 

harbouring the desired change were designed. Two additional external primers (forward and 

reverse) flanking the region of interest and including restriction sites for cloning were needed. 

In a first step, two separate PCRs were performed using the Phusion DNA polymerase as 

described in 2.2.3.2 by combining sense and anti-sense with the external reverse and forward 

primers, respectively. The PCRs were loaded on a 1% agarose gel and the correct fragments 

were gel extracted using the QIAquick Gel Extraction Kit. Next, equal amounts of each 

fragment (PCR 1 and 2) were used in a primer-less PCR for 10 cycles, in which the overlapping 
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sequences act as primers. For the next 30 cycles, the forward and reverse primers were added 

to amplify the fusion product. PCR reactions were carried out as described in Table 15.  

 Restriction enzyme digestion 

To prepare DNA for cloning, a digest with restriction enzymes was performed that 

generates compatible ends. This was accomplished by incubating 6-10 µg of plasmid DNA or 

PCR amplicons with restriction enzymes (10 U) for 3 h or O/N at the recommended 

temperature (usually 37°C). Next, the digest was loaded onto a 1% agarose gel and the 

required fragments were cut out and purified using the QIAquick Gel Extraction Kit. For 

standard test digests to assess the success of cloning, 300-500 ng of plasmid DNA was 

incubated with restriction enzymes (1-2 U) in the respective buffers for 1 h at the recommended 

temperature.  

Table 15. PCR reaction mix and protocol for OE-PCR. 

 

The inverted terminal repeats (ITRs) harbor the packaging signals of AAV. These 

sequences are unstable in standard E. coli 248. Therefore, plasmids were always assessed for 

the presence of both ITRs after retransformation and after every cloning step. For ssAAVs with 

two identical ITRs (both from AAV2), a digest with XmaI was used that cuts within the ITR 

sequences. For scAAVs with two distinct ITRs (from AAV2 and AAV4), XmaI and BsaI were 

used for the AAV2 and AAV4 ITR, respectively. 

PCR protocol  PCR reaction  

Temperature Time  Amount (µL) Component  

98˚C 30 sec 

10× 

5 5× HF buffer  

98˚C 10 sec 2.5 dNTPs  

72°C 30 sec / kb 1 PCR 1  

Addition of external primers 
 1 PCR 2  

30× 

0.25 Phusion HS II  

98°C 10 sec 15,25 H2O  

55-60°C 30 sec 
Addition of external primers 

72°C 30 sec / kb 

72°C 4 min 5 5× HF buffer  

4°C hold  2.5 dNTPs  

   2.5 Primer forward  

   2.5 Primer reverse  

   0.25 Phusion HS II  

   12.25 H2O  
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Likewise, replication-competent BoV plasmids include the 5’- and 3’-end hairpins and 

could only be propagated in recombination-deficient SURE cells. The integrity of these 

sequences was confirmed with SalI and XhoI for the 5’- and 3’-end hairpins, respectively.   

 Ligation 

For standard cloning procedures, digested and purified DNA fragments (according to 

section 2.2.3.5) were mixed in a molar ratio of 1:3 or 1:5 vector to insert (total of 80-200 ng of 

DNA). Next, 10× Ligation buffer, 0.5 µL of T4 DNA ligase and H2O were added to a final volume 

of 10 or 20 µL (depending on the volumes of DNA fragments). 

For the introduction of short sequences (e.g. gRNAs or shRNAs), two oligonucleotides 

(sense and anti-sense) were ordered with compatible overhangs for cloning. For annealing of 

the two strands, a mix was prepared including 2.5 µL forward oligo (100 µM), 2.5 µL reverse 

oligo (100 µM), 5 µL NEB buffer 2 and 40 µL H2O. The mix was placed at 95°C for 5 min and 

then cooled down slowly to room temperature (by switching off the heating block). Next, a 

1:200 dilution was made and 2 µL were used in the ligation reaction. 

All ligations were performed for 2 h at RT or at 16°C O/N. Finally, 5-10 µL of the ligation 

mix were transformed into 50 µL chemocompetent E. coli (section 2.2.2.2). 

 Amplification and purification of plasmid DNA  

For amplification of plasmid DNA, chemocompetent bacteria were first transformed with 

~10 ng of plasmid DNA as described in section 2.2.2.2. One clone was picked from the agar 

plate and inoculated in 3 mL, 80 mL or 350 mL LB media supplied with the appropriate 

antibiotic for mini-, midi- and maxi-preps, respectively. The cultures were incubated at 37°C in 

a shaking multitron at 180 rpm for 16 h.  

For small-scale (mini) plasmid isolation, 2 mL bacterial culture was centrifuged at 8,000 

rpm for 5 min at RT. The plasmid DNA was then extracted using the alkaline lysis method and 

house-made buffers. Therefore, the bacterial pellet was resuspended in 300 µL of neutral 

buffer (P1). Next, the cells were lysed by adding 300 µL of alkaline lysis buffer (P2). The tubes 

were carefully inverted several times and incubated at RT for not more than 5 min. Proteins 

and high-molecular weight DNA were precipitated by adding neutralizing buffer (P3). The 

lysate was cleared by centrifugation at 13,200 rpm, 15 min and the DNA was precipitated by 

mixing 800 µL of the supernatant with 600 µL isopropanol. The DNA was then pelleted at 

13,200 rpm, 20 min and washed with 70% ethanol. After a final centrifugation step (13,200 

rpm, 5 min), the pellet was air-dried and dissolved in 50 µL H2O. The plasmid DNA prepared 

using this method was used for subsequent cloning steps and sequencing analysis. 

For the preparation of high-purity small-scale plasmid DNA needed for transfection 

experiments, the QIAprep Spin Miniprep Kit (Qiagen) was used according to the 

manufacturer’s instructions. If larger amounts of plasmid DNA were required, midi-preps (for 
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~150-240 µg) using the PureYield™ Plasmid Midiprep kit (Promega) or maxi-preps (for ~600-

1,500 µg) using the NucleoBond® Xtra Maxi kit (Macherey-Nagel) were performed according 

to the manufacturer’s protocols. 

 Genomic DNA and RNA isolation  

 In-house protocol applied for DNA isolation from the mouse liver 

Around 200 mg liver pieces were first homogenized in 3 mL genomic DNA lysis buffer 

supplied with 20 µL (100 mg/mL) RNase A and then incubated for 30 min at 37°C. Next, 15 µL 

proteinase K (20 mg/mL) were added, and the tubes were inverted several times and incubated 

at 55°C O/N. To precipitate contaminating proteins, the tissue lysate was mixed with 1.8 mL 6 

M LiCl and centrifuged at 13,000 rpm for 30 min. The supernatant was transferred to a new 15 

mL tube, and 2.8 mL isopropanol were added and mixed by inverting the tube several times. 

Precipitating genomic DNA was visible by eye and could be fished out using a P1000 pipette 

tip. The DNA was transferred to a new 1.5 mL tube and centrifuged at 13,000 rpm for 5 min. 

The pellet was washed with 70% ethanol (13,000 rpm, 5 min) and carefully dissolved in 100-

200 µL H2O. When the pellet was too dry, the dissolving of genomic DNA in water was 

performed O/N at 4°C. 

 Isolation of genomic DNA from pHAE 

Cells growing on transwells were incubated with PBS from both, apical and basolateral 

sides for 20 min at 37°C. This step reduced the amount of mucus that interferes with the trypsin 

digest. Next, 150 µL 0.25% Trypsin-EDTA solution was added to the apical compartment. After 

10-15 min at 37°C, the trypsin was inactivated with 500 µL 3% BSA or medium and the cells 

were transferred into 1.5 mL tubes. Next, the tubes were centrifuged at 500×g for 10 min and 

washed once with PBS (500×g, 10 min). DNA was extracted from the cell pellet using the 

DNeasy Blood & Tissue Kit (Qiagen) according to the manufacturer’s instructions. 

 Low-molecular weight (Hirt) DNA extracts  

To detect the rescue and proper replication of viral genomes during recombinant virus 

production, low-molecular weight DNA was extracted following a modified Hirt protocol 249. 

Therefore, HEK293T cells were seeded in 6-well plates at a density of 5×105 cells/well. After 

24 h, cells were PEI-transfected for production of rAAV2 or rAAV2/HBoV1 as summarized in 

Table 16. Cells were harvested 72 h post-transfection in 1 mL Hirt lysis buffer supplied with 

12.5 µL proteinase K (20 mg/mL) and then incubated at 55°C for 3 h. Next, samples were put 

on ice for 10 min and 5 M NaCl was added dropwise to precipitate high-molecular weight DNA. 

The mixture was immediately inverted several times and incubated overnight at 4°C. The next 

day, the tubes were centrifuged for 1 h at 13,200 rpm and the supernatant was carefully 



Materials and Methods 

 

86 
 

transferred to a new 1.5 mL tube. The solution was centrifuged again (13,200 rpm, 15 min) 

and stored at -20°C or further processed for low-molecular weight DNA isolation. Therefore, 

700 µL of the supernatant were mixed with 700 µL (i.e. one volume) of 

phenol/chloroform/isoamyl alcohol and vortexed well. Then, the tubes were centrifuged for 5 

min at 13,200 rpm and 600 µL of the upper aqueous phase were transferred to a new 1.5 mL 

tube containing 420 µL isopropanol. Tubes were then centrifuged again (30 min, 13,200 rpm) 

and the resulting DNA pellet was washed with 500 µL 70% ethanol. After a last centrifugation 

step (5 min, 13,200 rpm), the pellet was dissolved in 18 µL H2O. To digest residual plasmid 

DNA, a DpnI digest was performed for 1 h at 37°C. The DNA was then either stored at -20°C 

or loaded on a neutral 1% agarose gel.  

Table 16. PEI transfection protocol for small-scale AAV and BoV production. 

Plasmid rAAV/BoV rAAV/AAV2 Transfection mix (µL) 

rAAV vector 175 ng 850 ng DNA mix 

adeno-helper - 850 ng 45 NaCl 

pDG∆VP 1312 ng - 45 H2O 

AAV-helper  -  850 ng PEI mix 

BoV-helper 1400 ng - 45 NaCl 

   27 H2O 

   22 PEI 

 Neutral agarose gel electrophoresis 

Standard (neutral) gel electrophoresis was performed to separate DNA molecules by 

size for subsequent purification of defined fragments or visualization of restriction digest 

patterns. Therefore, the appropriate amount of agarose was melted in 1× TAE buffer and 

cooled down to 55°C to obtain 1% or 2% agarose gels. Ethidium bromide was added to the 

solution (1 µg/mL) before pouring into the gel chambers and inserting the comb. Samples were 

mixed with 6× purple loading dye (NEB) and loaded together with an appropriate size marker 

on the gel. Electrophoresis was performed at 90-120 V for 20-30 min, depending on the size 

and concentration of the gel. DNA was visualized on a Gel Doc XR system or a UV 

transilluminator. If DNA fragments had to be excised from the gel, UV exposure was minimized 

and the DNA was purified from the gel using the QIAquick Gel Extraction Kit (Qiagen) 

according to the manufacturer’s protocol. To enhance the elution of DNA from the columns, 

H2O was preheated to 55°C and added directly to the filter. After an incubation period of 4 min, 

the columns were centrifuged at 13,000 rpm for 2 min. 
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 Alkaline agarose gel electrophoresis   

Alkaline agarose gel electrophoresis was used to denature and separate ssDNA 

molecules (rAAV genomes in this work).  

For virus production, HEK293T cells were seeded in 150 cm2 dishes and then PEI-

transfected as described in section 2.2.5.2. Three days later, cells were harvested in 1 mL 50 

mM Tris-HCl and subjected to five freeze-thaw cycles. To digest contaminating plasmid DNA, 

540 µg DNase I, 5 µL 1 M MgCl2 and 5 µL 1 M CaCl2 were added and the cell lysate was 

incubated for 3 h at 37°C. To inactivate the DNase I, 10 µL 0.5 M EDTA and 20 µL 0.25 M 

EGTA were added and the cell lysate was incubated at 70°C for 20 min. Viral DNA was then 

purified using the DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s 

instructions. The isolated DNA was additionally digested with DpnI for 1 h prior to mixing with 

6× alkaline loading dye and loading on 0.7% alkaline agarose gels. Gel electrophoresis was 

performed in alkaline buffer for ~6 h at 30 V.  

 Southern blot analysis of rAAV vector genomes. 

Southern blot analysis was performed to detect DNA molecules not directly visible by 

ethidium bromide staining and UV light exposure.  

Following alkaline or neutral gel electrophoresis, the gel was washed once with ddH2O 

and immersed in 0.2 M HCl solution for 7 min. This improves the transfer of larger DNA 

fragments (ssAAV genomes and replication intermediates >5 kb). Next, the gel was denatured 

with gel-denaturation buffer on a rocking platform for 30 min, followed by immersion in gel-

neutralization buffer (pH 7.5) for additional 30 min. Then, the Southern blot was assembled by 

first placing the gel (inverted) on a Whatman paper bridge soaked in 20× SSC and connected 

to a tank with 20× SSC solution. A nylon membrane was soaked in 2× SSC and placed on top 

followed by three Whatman papers soaked in 20× SSC. Finally, a pile of thick paper cut to size 

was placed on top and the transfer was performed O/N. The next day, the blot was 

disassembled, and the membrane soaked in 20× SSC for 20 min. Then, the membrane was 

air-dried and the DNA UV cross-linked for 2 min at 100 J/cm2. 

Random digoxigenin-labelled probes against SpCas9 or yfp were generated using the 

DIG Starter Kit II (Roche) according to the manufacturer’s instructions. The membranes were 

incubated with the probes (~25 ng/mL) O/N at 40°C. Stringency washes, blocking and antibody 

incubation were performed according to the manufacturer’s protocol. Blots were exposed to X-

ray films and developed in an X-OMAT 2000 x-ray film processor. 

 Dot blot analysis for detection of viral genomes 

Dot blot analysis was performed to identify the virus-containing fractions in cesium 

chloride (CsCl) density gradients. Per fraction, 15 µL were mixed with 189 µL Tris-HCl (50 mM, 
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pH 8), 1 µL 1 M MgCl2, 1 µL 1 M CaCl2, 2 µL 1 mg/mL DNase I and 2 µL 1 mg/mL RNase A, 

and the entire mixture was incubated for 30 min at 37°C. DNase I was inactivated by adding 2 

µL 0.5 M EDTA, 4 µL 0.25 M EGTA and 10 µL 10% sarcosine, and by additionally heating the 

samples to 70°C for 20 min. Next, 10 µL proteinase K (20 mg/mL) were added and samples 

incubated O/N at 55°C. The next day, each sample was mixed with 40 µL 5 M NaOH, 20 µL 

0.5 M EDTA and 225 µL H2O, and incubated at 55°C for 10 min before loading on the Bio-Dot® 

Microfiltration Apparatus. A nylon membrane was cut to size, soaked in 6× SSC for 10 min and 

assembled into the dot blot device (Bio-Rad) according to the manufacturer´s protocol. The 

samples were then applied in two aliquots, followed by a final wash with 200 µL 2× SSC per 

well. Membranes were placed on a Whatman paper soaked in 10× SSC, and the DNA was 

cross-linked with a UV-cross linker for 2 min at 100 J/cm2. A probe binding in the yfp transgene 

was generated using the DIG Starter Kit II (Roche) according to the manufacturer’s 

instructions. The blots were pre-hybridized and incubated with the probe (~25 ng/mL) O/N. 

Blots were exposed to X-ray films and developed in an X-OMAT 2000 x-ray film processor. 

After background subtraction, dot blots were analyzed using Fiji software. 

 Cell culture methods 

 Culturing conditions 

All standard cell lines (HEK293T, HeLa, Huh7, LX-2, Panc-I, MCF-7 and RAW 264.7) 

were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with GlutaMAXTM 

supplemented with 10% fetal bovine serum (FBS) and 100 U/mL penicillin-streptomycin P/S 

(37°C with 5% CO2 incubation). The T84 human colon carcinoma cell line was cultured in a 

50:50 mixture of DMEM and F12 medium supplemented with 10% FBS and 1% penicillin. 

The following primary cells were purchased from PromoCell and grown as monolayers: 

Saphenous vein endothelial cells, skeletal muscle cells, pulmonary fibroblasts and cardiac 

myocytes. Primary human hepatocytes were purchased from Cytes Biotechnologies. All 

primary cells were maintained following the supplier’s instructions.  

pHAE cells were kindly provided by Marc Schneider (Section Translationale Forschung 

STF, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany) and maintained in 

DMEM/Ham's F-12 medium supplemented with Airway Epithelial Cell Growth Medium 

Supplement Pack and ROCK inhibitor. 

PBMCs, primary T-cells and macrophages were isolated and purified at the Department 

of Infectious Diseases, Virology of the University Hospital Heidelberg, Heidelberg, Germany. 

Macrophages were maintained in RPMI 1640 with GlutaMAX™ medium supplemented with 

10% FBS and 100 U/mL penicillin-streptomycin. T-cells and PBMCs were maintained under 

the same conditions but additionally supplemented with phytohemagglutinin and interleukin-2. 
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Human lung organoids were expanded by Jens Puschhof (Hubrecht Institute, Utrecht, 

the Netherlands) as previously described 250. Differentiation was induced five days prior to viral 

vector microinjection through medium change as described earlier 250.  

For experiments involving primary intestinal organoids, culturing of cells was performed 

by Megan Stanifer (Boulant lab, Department of Infectious Diseases, Virology of the University 

Hospital Heidelberg, Heidelberg, Germany). Briefly, human tissue was received from colon 

and small intestine resections from the University Hospital Heidelberg. Stem cells containing 

crypts were isolated following 2 mM EDTA dissociation of tissue sample for 1 hr at 4C. Crypts 

were spun and washed in ice-cold PBS. Fractions enriched in crypts were filtered with 70 µM 

filters and observed under a light microscope. Fractions containing the highest number of 

crypts were pooled and spun again. The supernatant was removed, and crypts were re-

suspended in Matrigel. Crypts were passaged and maintained in basal or differentiated state 

for 5 days in differentiation culture media. 

 Splitting of cells 

The standard cell lines used in this work were passaged when they reached confluency 

(typically, 2-3 days after seeding). First, the medium was removed, and the cells were washed 

with 1× PBS. Trypsin-EDTA (0.25%) was added to the cells at a volume sufficient to cover the 

cells (1-2 mL), depending on the size of the flask. Cells were then incubated at 37°C for 2-10 

min (depending on cell type) until all cells detached. Trypsin activity was stopped by adding at 

least 4 volumes of medium containing FBS. The mixture was pipetted up and down several 

times to obtain a single cell suspension. Cells were then diluted 1:5 or 1:10 (depending on cell 

type) in 30 mL (for 175 cm2 flasks) or 10 mL (75 cm2 flaks) of growth media. For suspension 

cultures, addition of trypsin-EDTA was not needed. Instead, cells were suspended well with a 

pipette and directly diluted in fresh media. 

To determine the number of cells per mL, a 10 µL aliquot was taken and mixed with 10 

µL Trypan blue, which stains dead cells. Next, 10 µL of the mix were transferred into a 

Countess cell counting chamber slide and cells were automatically counted using the Countess 

automated cell counter. 

 Transfection of cells with Lipofectamine 2000 

For luciferase assays, HEK293T cells were seeded in 96-well plates at a density of 3×104 

cells per well. For Western blot analysis, HEK293T cells were grown in 24-well plates at a 

density of 1.25×105 cells per well. Transfections were performed using Lipofectamine 2000 

(Thermo Fisher Scientific) following the manufacturer’s instructions. Typically, a total of 100 or 

800 ng DNA was used per well for 96- or 24-well plates, respectively. From the luciferase 

reporter constructs (including the SIN variants), 2 or 6 ng of DNA per well were transfected for 
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96- or 24-well format, respectively. Cells were harvested at 24, 48 or 72 h post-transfection (as 

indicated in the respective figure legends). 

 Measurement of Gaussia luciferase (GLuc) expression  

GLuc secretion in the cell medium was determined by using a GloMax96 microplate 

luminometer equipped with an automatic injector. Twenty µL of the sample medium were 

pipetted into each well, and the machine injected 100 µL Renilla luciferase quenching buffer 

supplied with coelenterazine at a final dilution of 11.7 µM. All parameters (speed of injection 

and integration / interval time) were set as default. 

 Measurement of Firefly (FLuc) and Renilla (RLuc) luciferase activities 

HEK293T cells were cultured in 96-well plates and transfected as described in section 

2.2.4.3. After 72 h, cells were lysed in passive lysis buffer (1:5 diluted in H2O) on a rocking 

platform for 20 min. From each lysate, 10 µL were pipetted into a Lumitrac 96-well microplate 

and a dual-luciferase assay was performed in a GloMax96 microplate luminometer. The 

automatic injectors first pipetted 50 µL of the Firefly luciferase assay buffer (supplemented with 

luciferin). Subsequently, FLuc activity was estimated by the amount of emitted light units. Next, 

Firefly luciferase activity was quenched with the Renilla luciferase assay buffer (supplemented 

with coelenterazine) to measure the activity of RLuc. 

 Virological methods 

 Small-scale virus production 

To produce rAAV vectors in small-scale or as “crude lysates”, 5×105 HEK293T cells per 

well were seeded in 6-well plates and cultured in DMEM containing 10% FBS and 1% P/S one 

day before transfection. After 24 h, the PEI-DNA transfection mixes were prepared as depicted 

in Table 16. After combining the DNA and PEI mixes, the solution was vortexed well and the 

transfection mix was added dropwise to the cells. The plate was gently shaken and placed at 

37°C. After 72 h, the medium was removed, and the cells were harvested in 1 mL PBS by 

pipetting up and down using a P1000 pipette. Next, the cells were centrifuged in 1.5 mL 

microcentrifuge tubes at 800×g for 10 min at 4°C. The PBS was then discarded and the cell 

pellet resuspended in 300-500 μL PBS. 

To release the viral particles, the cell suspension was subjected to five freeze-thaw 

cycles by alternating between liquid nitrogen and a 37°C water bath. The crude cell lysate was 

centrifuged again (13,200 rpm, 4°C) for 10 min to remove cell debris. The vector-containing 

supernatant was transferred to a 1.5 mL microcentrifuge tube and used directly to transduce 

cells or stored at -80°C. 



Materials and Methods 

 

91 
 

 Large-scale virus production  

For large-scale production of purified AAV or BoV vectors, HEK293T cells were 

expanded in a sufficient number of 175 cm2 flasks (7×106 cells per flask). After 48 h, the 

medium was completely removed, and the cells were harvested and counted as described in 

section 2.2.4.2. Next, 4×106 cells were seeded per 150 cm2 dish in 22 mL medium. The plates 

were then further incubated for 48 h at 37°C to reach the optimal density (70-80%) for 

transfection. PEI-DNA transfection mixes were prepared as depicted in Table 17 and added 

dropwise to the cells. After 72 h, the cells were harvested in the medium using a cell scraper 

and were transferred into 50 mL Falcon tubes or 500 mL centrifuge buckets (depending on the 

final volume of each virus preparation). Next, the cells were pelleted in a Beckman Avanti® 

centrifuge at 800×g for 15 min. The medium was completely discarded and the cell pellet(s) 

resuspended in 5 mL benzonase or Tris-HCl buffer for small gradients (up to 10 plates of cells) 

or in 20 mL for larger gradients (up to 50 plates). The cell suspension was either stored at -

80°C or further processed to obtain the crude cell lysate. Therefore, the suspension was 

vortexed well and subjected to five freeze-thaw cycles by alternating between liquid nitrogen 

and 37°C. To remove residual and unwanted plasmid DNA, benzonase (in benzonase buffer, 

50 U/mL) or DNase I (in Tris-HCl buffer, 270 µg per plate) was added and the mixture was 

incubated at 37°C for 1 h, while inverting the tubes every 15 min. To remove cell debris, 

samples were centrifuged twice for 15 min at 4,000×g and 4°C, always saving the virus-

containing supernatant. The virus was purified using gradient ultracentrifugation or frozen at -

20°C. 

Table 17. PEI transfection protocol for large-scale AAV and BoV production. 

Plasmid rAAV/BoV rAAV/AAV Transfection mix (mL) 

(µg) 3 components 4 components  DNA mix 

rAAV vector 3.2 2.87 14 0.8 NaCl 

Adeno-helper - 19.97 14 0.8 H2O 

pDG∆VP 24 - - PEI mix 

AAV-helper - - 14 0.8 NaCl 

AAV2-rep - 6.07 - 0.4 H2O 

BoV-helper 18 15.19 - 0.4 PEI 

 Chimeric BoV/AAV purification using CsCl density gradients  

HEK293T cells were expanded and seeded as described in sections 2.2.4.1 and 2.2.4.2. 

PEI transfection was performed as described above (section 2.2.5.2). Cells were harvested for 

virus purification in 10 mM Tris-HCl (pH 8) and subjected to five freeze-thaw cycles. Plasmid 

DNA was removed by adding 270 µg of DNase I per plate to the cell lysate (for 1 h, 37°C). To 

optimize cell lysis and to increase virus yields, 1.5 mL 0.25% Trypsin-EDTA and 1.5 mL 10% 
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sodium deoxycholate were added for 30 min at 37°C. Next, 13.2 g of CsCl were dissolved in 

the mixture and vortexed well. To assist the dissolving of CsCl, the mix was incubated at 37°C 

for 15-30 min. Then, the cell debris was removed by centrifugation at 3,000×g for 30 min. The 

refractive index (RI) of the supernatant was measured and adjusted to 1.372 by adding Tris-

HCl or CsCl if the initial value was too high or too low, respectively. The clarified lysate was 

then transferred to a Beckman ultracentrifugation tube (26×77 mm, 29.9 mL capacity) and 

centrifuged at 35,000 rpm for 32 h at 4°C. After the completion of the run, the gradients were 

fixed, and the bottom of each tube was punctured with a 21G needle. To permit air inflow, a 

second needle was inserted at the top corner of the gradient. With this second needle, the flow 

of the gradient could be adjusted from fast at the beginning (collection of 2 mL for the first 

fraction) to slow afterwards (collection of ~30-40 fractions per gradient, each 0.5 mL). The RI 

of each fraction was measured and the virus-containing fractions (determined by dot blot 

analysis, section 2.2.3.13) were pooled and pipetted into a Beckman ultracentrifugation tube 

(16×67 mm, 11.2 mL capacity) to perform a second CsCl gradient by repeating the above-

mentioned steps. After completion of the second round, the collected virus-containing fractions 

are pipetted into a dialysis cassette. The cassettes were then transferred into a beaker and 

dialyzed against 1 L 1× PBS for 30 min at RT. The PBS was exchanged after 1 h and the 

dialysis was performed at 4°C on a magnetic stirrer (lowest speed of stir bar spin). After an 

additional hour, the buffer was changed again and then left O/N. The following day, PBS was 

changed twice every 2 h, followed directly by the concentration of the sample. Therefore, an 

Amicon Ultra-15 centrifugal filter unit was washed 2× with 15 mL PBS before the vector-

containing solution from the dialysis cassette was applied. Several centrifugation steps at 400-

2,000×g allowed for the concentration of the viral vector to ~1,000 µL. The vector was aliquoted 

and stored at -80°C. 

 Virus purification using iodixanol gradients 

Beckman ultracentrifugation tubes (14×89 mm for small gradients or 25×89 mm for large 

gradients) were arranged in a holder and a sterile Pasteur pipette was inserted into each. The 

vector cell lysates described in section 2.2.5.2 were pipetted through the Pasteur pipette into 

the tubes. Next, the different iodixanol solutions were applied in the following order, taking care 

to avoid air bubbles at any stage: 

- 1.5 mL (small) or 7 mL (large) 15% iodixanol solution 

- 1.5 mL (small) or 5 mL (large) 25% iodixanol solution 

- 1.5 mL (small) or 4 mL (large) 40% iodixanol solution 

- 1.5 mL (small) or 4 mL (large) 60% iodixanol solution 

In cases where the tubes were not completely full, benzonase buffer was carefully added 

using a 3 mL syringe and 19G needle to top off the tube. The tubes were closed with metal 
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caps and sealed using a Beckman tube sealer. Next, the tubes were centrifuged at 4°C for 2 

h at 230,000×g in a Beckman 70.1 Ti rotor (small gradients) or at 257,000×g in a Beckman 70 

Ti rotor (large gradients). The acceleration was set to “max” and the deceleration to “slow” to 

allow a gentle stop and prevent the mixing of the phases. After centrifugation, the tubes were 

fixed well in an appropriate holder and a 21G needle was inserted at the top of the tube to 

allow inflow of air. A second 21G needle attached to a 3-5 mL syringe was carefully inserted 

below the 60-40% interface. Then, 1 mL (for small gradient) or 2.5 mL (for large gradients) was 

collected from the 40% phase, taking care not to touch the 25-40% interface that contains the 

empty capsids. The resulting vector stocks were either stored in aliquots at -80°C or further 

processed to exchange the iodixanol with PBS. This was achieved by mixing the virus in 

iodixanol with 13 mL PBS and applying the mixture onto Amicon Ultra-15 centrifugal filter units. 

After each centrifugation step, the Amicon tubes had to be inverted several times to mix the 

iodixanol. Depending on the starting amount of iodixanol (1-2.5 mL), two to three washing and 

concentration steps were needed as previously described (section 2.2.5.3). 

 TaqMan RT-PCR titration of purified virus  

To assess the number of genome-containing particles (=vector titer), quantitative (q)PCR 

analysis (probe-based) was used with appropriate primers binding in the transgene or 

promoter region (Table 18). The vector stocks were inverted several times before a 10 μL 

sample was mixed with 10 μL Tris-EDTA (TE) buffer and 20 μL 2 M NaOH, vortexed well, and 

incubated at 55°C for 30 min. This step denatures the viral particles and releases the 

encapsidated viral DNA. Next, the solution was neutralized by adding 38 μL 1 M HCl. At this 

step, the samples were either stored at -80°C or further processed for subsequent qPCR 

analysis. Therefore, the mixtures were diluted by adding 922 μL H2O to obtain a 1:100 dilution. 

For virus stocks in iodixanol, an additional 1:10 dilution was needed because iodixanol can 

interfere with the absorbance in the qPCR process.  

Each sample was pipetted in triplicates. The master mix for each triplet contained: 17.5 

µL SensiMixTM II probe kit, 1.4 μL of each forward and reverse primer (10 µM), 0.35 μL probe 

(10 µM), 9.35 µL H2O and 5 µL sample (=1:7 dilution). To estimate the viral titer (genome 

copies/mL), a standard curve with known amounts of appropriate plasmid DNA was used. For 

this, a stock containing 3.5×1011 molecules per mL of the AAV vector plasmid used for 

transfection was prepared. From this stock, serial 1:10 dilutions ranging from 3.5×1011 down 

to 3.5×106 molecules per mL were made.  

Samples and standards were measured on a Corbett RG6000 qPCR instrument using 

the following conditions: an initial heating step of 10 min at 95°C to activate the polymerase 

followed by 40 cycles of (i) denaturation for 10 sec at 95°C and (ii) a combined annealing and 

elongation step for 20 sec at 60°C. To create the standard curve, the Ct values of the standard 
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samples were plotted on the y-axis and the logarithm of the number of molecules per mL 

(concentration) on the x-axis. The resulting linear equation of the standard curve and the Ct 

values of the samples was then used to determine the concentration. As the samples had been 

diluted 1:100 (or 1:1,000 for iodixanol-purified vectors) with H2O after neutralization and 1:7 

during the preparation of triplicates, the concentration values were multiplied with 700 or 7,000. 

For the titration of ssAAV constructs, this value was further multiplied by two, because the 

plasmid used to create the standard curve is double-stranded.  

Table 18. Primer and probe sets used for qRT-PCR. 

Primer/Probe sets Sequence 5’- 3’ 

NP1_fwd GCACAGCCACGTGACGAA  

NP1_rev TGGACTCCCTTTTCTTTTGTAGGA  

BoV_NP1_Probe FAM-TGAGCTCAGGGAATATGAAAGACAAGCATCG-BHQ1  

CMVenh_fwd AACGCCAATAGGGACTTTCC 

CMVenh_rev GGGCGTACTTGGCATATGAT 

CMVenh_Probe FAM-CGGTAAACTGCCCACTTGGCAGT-BHQ1 

YFP_fwd GAGCGCACCATCTTCTTCAAG  

YFP rev TGTCGCCCTCGAACTTCAC  

YFP_probe FAM-ACGACGGCAACTACA-BHQ1 

hluc+ fwd CGCCCGCGACCCTATTTTCG 

hluc+ rev CAGGTAGCCCAGGGTGGTGAAC 

hluc+ probe FAM-AACCAGATCATCCCCGACACCGCTATTCTGAGCGT-BHQ1         

SaCas9_fwd CCGCCCGGAAAGAGATTATT 

SaCas9_rev CGGAGTTCAGATTGGTCAGTT 

SaCas9_probe FAM-AGCTGCTGGATCAGATTGCCAAGA- BHQ1 

TTR fwd TGTTCCGATACTCTAATCTCCC 

TTR rev TATACCCCCTCCTTCCAACC 

TTR probe FAM-TTTGGAGTCAGCTTGGCAGGGATCA-BHQ1 

miCMV_fwd GCACCAAAATCAACGGGAC 

miCMV_rev AGCAGGCTCTTTCGATCAC 

miCMV_probe FAM- TTCCAAAATGTCGTAATAACCCCGCCCCG -BHQ1 

 Transductions 

For transduction of cell lines and primary cells in monolayers, cells were seeded in 96-

well plates one day prior to transduction at densities of 5×103 or 1×104 cells per well.  
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The next day, the different vectors were added at MOIs ranging between 2×104 and 

2×105 for scAAV-YFP/BoV or 1×104 to 5×104 for scAAV-GLuc/BoV (as indicated in the 

respective figure legends). Transductions with rAAV/BoV were always performed in the 

presence of 0.5-1 µM doxorubicin. Viruses and inhibitors were left on the cells O/N and the 

medium was replaced on the next day. Cell lines were further incubated for a maximum of 72 

h and primary cells up to 12 days (as indicated for each experiment).  

Likewise, transductions of pHAE with rAAV/BoV were performed in the presence of 

proteasome inhibitors (5 µM doxorubicin and 40 µM Calpain inhibitor I). Usually transductions 

were performed for ~16 h by applying the vectors to the apical side of the transwell. For 

basolateral transduction, the transwell inserts were flipped and scAAV-GLuc/BoV particles 

were directly added to the surface of the filter at a MOI of 2×104. After 1 h at 37°C, the 

recombinant virus was removed, and inserts were inverted again into the medium. In both 

cases, cells were further incubated with the two proteasome inhibitors O/N. The next day, the 

medium was replaced on the basolateral side with fresh medium without any inhibitors and 

transgene expression was assessed over the following 12 days. 

For transduction of lung organoids, luminal access was provided to the viral vectors by 

either mechanical shearing or direct microinjection. Mechanical shearing was performed by 

first detaching the organoids from the well and then resuspending them in culture medium 

using a flame-narrowed glass pipette. Next, 5×109 scAAV-GLuc/BoV particles and three 

volumes of Cultrex® growth factor reduced BME type 2 were added to the culture medium and 

mixed by pipetting. After solidifying for 30 min, 1 mL of differentiation medium 250 with 1 µM 

doxorubicin was added. Organoids were then kept in culture for 12 days and assessed for 

transgene expression. 

To transduce intestinal organoids, 5×109 scAAV-GLuc/BoV or 1×1011 scAAV-YFP/BoV 

particles were added to each well and incubated overnight in the presence of 0.5 µM 

doxorubicin. The next day, the media was changed. For transductions with scAAV-GLuc/BoV, 

aliquots were taken at various time points for luciferase activity measurements. 

For transduction experiments with SaCas9-encoding vectors, HEK293T cells were co-

transduced with AAV2 particles carrying a full-length or split SaCas9 at a MOI of 1×105 per 

construct and the KS-luciferase or control reporter at a MOI of 1×104.  

 Protein biochemistry methods  

 Protein amount measurement in cell lysates 

Protein amounts were measured in cell lysates prior to SDS-polyacrylamide gel 

electrophoresis using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) according 

to the manufacturer’s instructions. The BSA protein standard dilutions were prepared in RIPA 
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buffer. Samples and standards were measured on a TECAN plate reader. To obtain 

measurements within the linear range, a 1:5 dilution of the samples was prepared. 

 SDS-Polyacrylamide Gel Electrophoresis (PAGE)  

SDS-PAGE was used to separate proteins according to their molecular masses. Mini-

PROTEAN precast polyacrylamide gels (Bio-Rad) were used according to the manufacturer’s 

instructions. For the self-made gels used in this work, Bio-Rad cassettes were employed to 

assemble the SDS-PAGE gels. First, 8-12% resolving gel components were mixed as 

indicated in Table 19. The solution was poured between the two glass plates and then covered 

with isopropanol until complete polymerization. Next, the stacking gel components were mixed 

(as shown in Table 19) and poured onto the resolving gel (after removal of the isopropanol). 

A comb was inserted, and the gels were either stored at 4°C or loaded directly with extracted 

proteins and a protein ladder (PageRuler). Electrophoresis was performed in 1× TBS buffer at 

90 V for ~2 h (until the loading dye front leaves the gel).  

Table 19. Components for SDS gel electrophoresis. 

Resolving Gel (5 mL) 8% 12% Stacking Gel (3 mL) 5% 

ddH2O 2.65 mL 2.15 mL ddH2O 2.65 mL 

Rotiphorese® Gel 40 (19:1) 1 mL 1.5 mL Rotiphorese® Gel 40 (19:1) 1 mL 

1.5 M Tris HCl (pH 8.8) 1.25 mL 1.25 mL 0.5 M Tris HCl (pH 6.8) 1.25 mL 

10% SDS 50 µL 50 µL 10% SDS 50 µL 

1% APS 50 µL 50 µL 1% APS 50 µL 

TEMED 3 µL 2 µL TEMED 3 µL 

 Western blotting 

After SDS-PAGE electrophoresis, proteins were transferred onto a nitrocellulose 

membrane using semi-dry Western blot transfer. Therefore, Whatman paper and a 

nitrocellulose membrane were soaked in transfer buffer and a sandwich was assembled in a 

Trans-Blot® SD Semi-Dry Transfer Cell in the following order: Three pieces of Whatman paper, 

one nitrocellulose membrane, polyacrylamide gel, three additional pieces of Whatman paper. 

A falcon tube was used to roll out any entrapped air bubbles. Blotting was performed at 4°C, 

150 mV for 1 h. Next, the blot was disassembled, and the proteins were reversibly stained with 

Ponceau S to verify proper transfer. The membrane was washed in 1× TBST to remove the 

Ponceau dye, followed by blocking in 5% milk for 1 h at RT. Primary antibodies were diluted in 

5% milk (as indicated in Table 20) and incubated with the membrane at 4°C O/N. The next 

day, the membrane was washed three times with TBST, and an appropriate horseradish 

peroxidase-conjugated secondary antibody was added for 1 h at RT (see Table 20 for a list of 

antibodies used and their dilutions).  
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To visualize protein bands, Western Lightning Plus-ECL reagent was used and the 

emitted signal was detected with (i) a chemiluminescent imager (Intas ChemoStar) or (ii) X-ray 

films, which were developed in an X-OMAT 2000 X-ray film processor. 

 Detection of Capsid proteins in purified virus stocks 

From each purified virus stock (iodixanol or CsCl), 4-10 µL were mixed with an equal 

volume of 2× SDS sample loading buffer and boiled for 5 min at 95°C. Then, the samples were 

separated on 8% SDS-PAGE gels and transferred onto a nitrocellulose membrane using semi-

dry transfer. Membranes were blocked with 5% milk for 1 h at RT and incubated O/N with an 

anti-VP polyclonal primary rabbit antibody recognizing the three bocaviral capsid proteins VP1, 

VP2 and VP3. For detection, a horseradish peroxidase-conjugated secondary donkey anti-

rabbit antibody was used (see Table 20).  

 Detection of SaCas9 after plasmid transfection or transduction with rAAV 

vectors 

To measure the expression level of SaCas9 under different experimental conditions, 

HEK293T cells were seeded in 24-well plates at a density of 1.25×105 cells per well. After 24 

h, cells were either transfected or transduced with full-length or split SaCas9 expression 

constructs as described in sections 2.2.4.3 and 2.2.5.6, respectively. 

In both cases, cells were harvested in PBS at different time points (as indicated in the 

respective figure legends) and centrifuged at 500×g for 10 min at 4°C. PBS was removed and 

cells were gently resuspended in 20 µL PBS. Next, RIPA buffer with protease inhibitor cocktail 

(1:25) was added to the cells (to a finale volume of ~50 µL) and the mixture was incubated on 

ice for 15 min. Tubes were then centrifuged again at 10,000 rpm to remove remaining cell 

debris and the supernatants were transferred to new 1.5 mL microcentrifuge tubes. From these 

supernatants, a small aliquot was diluted 1:5 in RIPA buffer and subsequently used for 

measurement of protein amounts as previously described (section 2.2.6.1). Next, 1 volume of 

2× SDS buffer was added to the lysates and the solution was boiled at 95°C for 5 min. The 

lysates were then cooled down and either stored at -20°C or loaded on SDS polyacrylamide 

gels followed by Western blot analysis. 

Table 20. List of antibodies and their dilutions. 

Primary Antibodies Dilution Origin 

Anti-VP polyclonal primary rabbit 

antibody 

1:1,000 Kind gift from Maria Söderlund-

Venermo, University of Helsinki 

(Helsinki, Finnland) 
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S. aureus CRISPR/Cas9 mouse 

monoclonal antibody 

1:4,000 Diagenode (Liège, Belgium) 

#C15200230 

(FITC)-coupled goat polyclonal 

antibody against GFP/YFP  

1:1,000 Novus Biologicals (Littleton, USA) 

#NB100-1771 

Anti-β-Actin mouse monoclonal 

antibody 

1:300 Santa Cruz Biotechnology (Dallas, 

USA) #C0916 

Anti-Cytokeratin 5 mouse monoclonal 

antibody 

1:50 Santa Cruz Biotechnology (Dallas, 

USA) #RCK103 

Anti-Mucin 5AC mouse monoclonal 

antibody 

1:100 Abcam (Cambridge, UK) 

#ab3649 

Anti-CC16 rabbit polyclonal antibody 1:200 BioVendor (Heidelberg, Germany) 

#RD181022220-01 

Anti-β-Tubulin IV mouse monoclonal 

antibody 

1:100 Merck (Darmstadt, Germany) 

#T7941 

Secondary Antibodies   

AF-645 donkey anti-rabbit  1:2,000 Dianova (Hamburg, Germany) 

#711-605-152 

AF-647 goat anti-mouse 1:2,000 Thermo Fisher Scientific (Waltham, 

USA) #A21235 

AF-488 rabbit anti-goat  1:400 Thermo Fisher Scientific (Waltham, 

USA) #A11078 

HRP-conjugated donkey anti-rabbit 

antibody 

1:10,000 GE Healthcare (Chicago, USA) 

#NA934V 

HRP-conjugated goat anti-mouse 

antibody 

1:10,000 Dianova (Hamburg, Germany) 

#115-035-068 

 Immunostaining and microscopy 

Cells transduced with recombinant viruses were fixed with 4% PFA for 15 min at various 

time points post-transduction (as indicated for each experiment). The cells were then washed 

three times with PBS and were permeabilized with 0.1% Triton X-100 for 15 min. Next, 3% 

BSA in PBS was added to the cells, and the plates were blocked for 1 h in the dark. To enhance 

the YFP signal, 100 to 200 µL of 1:1,000 diluted primary Fluorescein isothiocyanate (FITC)-

coupled anti-GFP antibody were added to each well. After O/N incubation at 4°C, plates were 

washed three times with PBS before a secondary AF-488 rabbit anti-goat antibody was added 

for 1 h at RT (see Table 20 for a list of antibodies used). Plates were washed again three times 

with PBS and Hoechst was added at a 1:3,000 dilution to the PBS from the last wash. Finally, 

plates were stored with 200 µL PBS per well in the dark at 4°C until microscopy analysis. 
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Microscopy pictures were taken with an Olympus inverted fluorescence microscope IX-81 and 

processed using Fiji. 

 Flow cytometry analysis 

The apical surface of pHAE cells was washed with PBS for 20 min at 37°C to remove 

cell-associated mucus. Cells were then detached by adding 0.25% Trypsin/EDTA to the apical 

side for 10-15 min at 37°C. Trypsinization was stopped by adding 1% BSA/PBS, and four 

transwells (from different donors) were pooled and centrifuged at 400×g for 15 min. Next, cells 

were washed twice with PBS and resuspended in PBS to a final concentration of 1×106 

cells/mL. To distinguish live from dead cells, 1 µL of Fixable Aqua Dead Cell Stain was added 

to the cell suspension (for 1×106 cells) for 30 min in the dark at 4°C. Cells were washed twice 

with PBS and then fixed with 4% PFA for 15 min at RT, followed by permeabilization with 1% 

Triton X-100 for 20 min. Cells were washed twice again with 0.5% BSA/PBS, and a FITC-

coupled antibody against GFP/YFP was added to all samples (including the negative controls) 

to enhance the signal in YFP-expressing cells or to estimate the background (in the controls).  

To stain the different cell types in the airway epithelia, primary antibodies against the 

following markers were used: (i) goblet cell marker MUC5A/C, (ii) ciliated cell marker β-Tubulin 

IV, (iii) basal cell marker Cytokeratin5, or (iv) Clara (club) cell marker CC16 at the dilutions 

listed in Table 20. The primary antibodies were incubated for 1 h at 4°C, followed by treatment 

with secondary AF-647 goat anti-mouse or AF-645 donkey anti-rabbit antibody for 30 min at 

RT. Cells were measured in a FACSVerse and analysis was performed using Flowing Software 

(section 2.1.7.4). Only living cells were used for the analysis and gates were placed according 

to the following control conditions: (i) cells transduced with scAAV-GLuc/HBoV1 and then 

stained with FITC-coupled anti-GFP antibody, the different cell-specific primary antibody and 

the respective secondary antibody, (ii) cells transduced with scAAV-YFP/HBoV1 and then 

stained with each secondary antibody alone and FITC-coupled anti-GFP antibody, or (iii) cells 

transduced with scAAV-YFP/HBoV1 and only stained with FITC-coupled anti-GFP antibody. 
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3 RESULTS 

3.1 Packaging of rAAV genomes into the HBoV1 capsid 

 Development of a new streamlined protocol for bocaviral vector 

production  

In the original report of rAAV2/HBoV1 vectors by Yan et al. 10, rAAV genomes were 

pseudotyped with the HBoV1 capsid by co-transfecting four plasmids into HEK293T cells 

(Figure 8A, plasmids 1 to 4). Proteins that were expressed from these plasmids include the 

Rep proteins from AAV2 and the structural/non-structural proteins from HBoV1 (NS, NP1 and 

VP1-3). Moreover, a plasmid encoding the adenovirus helper genes was supplied, which is 

strictly required for rAAV replication and protein expression. The resulting viral vectors were 

purified from the cell lysates using two rounds of CsCl density ultracentrifugation. This process 

results in stocks of high purity but is laborious and time-consuming (2-3 days). Therefore, we 

tested whether the faster process of iodixanol gradient centrifugation (2.5 h) that is commonly 

used for rAAV purification irrespective of serotype can also be applied to rAAV/BoV vectors 

(Figure 8A, right). Indeed, we found that the majority of viral particles (up to ~70%) 

accumulated in the 40% iodixanol phase, as detected by TaqMan qPCR analysis of the 

different iodixanol fractions (Figure 8B). 

Two of the plasmids used for the generation of pseudotyped rAAV2/HBoV1 particles 

(plasmids 2 and 3 in Figure 8A) are major components of the rAAV production system. In 

essence, the standard AAV helpers combine the AAV rep and cap ORF on one plasmid, which 

is then co-transfected with the rAAV vector and adenoviral helper plasmids. Notably, the 

Kleinschmidt lab reported a series of different AAV helper plasmids that express the AAV and 

adenoviral helper functions from a single backbone. This includes pDG 135, a plasmid harboring 

the whole AAV2 genome except for the AAV2 ITRs, as well as pDG∆VP that was derived from 

pDG by deleting the AAV2 cap ORF 137. The latter was interesting for the chimeric 

rAAV2/HBoV1 production system because it combines two plasmids (2+3) in one and hence 

reduces the total number of plasmids needed. Moreover, in pDG∆VP, the AAV2 p5 promoter 

was replaced with the weaker MMTV-LTR promoter, which results in reduced levels of Rep 

expression. This was found to result in increased rAAV titers 135 and to favor encapsidation of 

intact scAAV genomes 251. These advantages tempted us to perform a side-by-side 

comparison of the 1-plasmid (pDG∆VP, plasmid 2+3) and 2-plasmid (plasmids 2 and 3) AAV 

helpers for rAAV2/HBoV1 production. Accordingly, we packaged a scAAV-YFP genome into 

the HBoV1 capsid using either the two separate helpers (standard 4-plasmid system) or the 
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combined helper pDG∆VP (3-plasmid system) and purified the resulting vectors using 

iodixanol gradient centrifugation. The two approaches resulted in largely comparable viral 

yields in a range of 5×109 to 1×1010 vector genomes per mL from five 15 cm plates of HEK293T 

cells (Figure 8C). These titers are consistent with previous reports that the original 4-plasmid 

production system gives yields reaching 10% of rAAV vectors 10.  

 Moreover, we tested the infectivity of iodixanol-purified scAAV-YFP/HBoV1 stocks. 

Therefore, pHAE were transduced at a MOI (multiplicity of infection, i.e., viral particle number 

per cell) of 2×104 and transgene expression was monitored over time (Figure 8D). YFP 

expression became visible two days post-transduction and the efficiency was largely 

comparable or even higher than the one obtained after transduction with CsCl-purified vectors 

(see section 3.2.5). 

(A) Plasmids for rAAV2/HBoV1 vector production using the 4-plasmid (1 to 4) or 3-plasmid (1, 2+3, 4) 

production systems. Plasmids are co-transfected into HEK293T cells and the viral vectors in the cell 

lysates are purified with iodixanol gradient centrifugation. The 40% iodixanol phase contains the full (i.e., 

DNA-containing) viral particles. (B) Different iodixanol fractions were analyzed for the presence of 

genome-containing particles (mean ± SD; n = 3) using TaqMan qPCR analysis. (C) Comparison of the 

3- and 4-plasmid transfection protocols. Viruses were purified using iodixanol gradient centrifugation 

and the amount of genome copies per mL (mean ± SD; n = 3) was determined by TaqMan qPCR 

analysis. NEG = H2O control. (D) Transduction of pHAE with 2×1010 genome copies of scAAV-

YFP/HBoV1 purified using iodixanol gradient centrifugation. Transduction was performed in the 

presence of LLnL and doxorubicin at concentrations of 40 µM and 5 µM, respectively. Images were 

taken at day 15 post-transduction. Magnification = 10×. Panels A-C were published and adapted from 

Fakhiri et al. 252. 

 

Figure 8. Triple-plasmid transfection and iodixanol purification of rAAV/BoV vectors. 
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 Analysis of rAAV2/HBoV1 packaging capacity using single-stranded or 

self-complementary rAAV vectors 

One therapeutically relevant feature of HBoV1 is the larger genome size of ~5.5 kb as 

compared to AAV, which only packages genomes of ~4.7 kb in size. Yan et al. 10 harnessed 

this property in the rAAV2/HBoV1 vector system to package an oversized ssAAV genome 

carrying a full-length CFTR cassette under a strong chicken β-actin (CBA) promoter. In 

addition, other previous reports have shown that many autonomous parvoviruses can package 

genomes that exceed the wt length to a certain level 83, 253.  

Here, we aimed (i) to validate the reported packaging capacity of HBoV1 and (ii) to 

determine the maximal genome size that allows efficient packaging with the fewest truncations 

possible. To this end, we designed a set of oversized ssAAV genomes encoding all-in-one 

CRISPR constructs. They included two components, namely, the SpCas9 from Streptococcus 

pyogenes and a gRNA, which were expressed from different RNA Pol II and Pol III promoters, 

respectively (Figure 9A). The resulting genome sizes varied between 5.1 and 6.1 kb, 

corresponding to 92-110% of the 5.5 kb wtHBoV1 genome, or 109-130% of the 4.7 kb wtAAV2 

genome, with gradual increases between 300 and 400 bp. These rAAV-CRISPR constructs 

are very attractive tools for gene editing but have been shown to represent a challenge for 

standard rAAV vectors, due to the limited packaging capacity of AAV 209, 254. Indeed, packaging 

of these genomes into AAV2 particles revealed encapsidation only of the smallest genome 

tested (5.1 kb), consistent with previous reports 254-256 (Figure 9B, upper gel). All the other, 

larger genomes did not result in distinct bands at the expected heights, but produced a smear 

of low-molecular-weight DNA, most likely representing truncated genomes, again congruent 

with prior reports 254, 255. To exclude any defects in the rescue and replication of the viral 

genomes during vector production, we performed and analyzed Hirt DNA extracts (Figure 9B, 

lower gel). As hoped for, monomeric (M) and dimeric (D) ssAAV replication forms could be 

detected for all the tested constructs, ruling out deficiencies at the steps prior to encapsidation. 

In parallel, we analyzed the capacity of AAV2 to package oversized scAAV genomes. 

Therefore, we cloned stuffer sequences of various lengths, i.e. 100-300 bp (in 100 bp 

increments) and 500-1600 bp (in 300-400 bp increments), into the C-terminal end of the yfp 

ORF in our standard scAAV backbone (Figure 9C). The resulting genome lengths varied 

between 2.0 and 3.6 kb, corresponding to 72-131% of the wtHBoV1 genome, or 85-153% of 

the wtAAV2 genome. Then, we again packaged all the different genomes into AAV2 capsids 

and analyzed the encapsidated viral DNA using neutral gel electrophoresis followed by 

Southern blotting (Figure 9D, upper gel). Our results show that scAAV genomes larger than 

2.8 kb could not be packaged into AAV2 capsids. Notably, it was shown that the maximum 

packaging size of scAAVs can be further pushed to 3.2 kb, by optimizing the genome sequence 
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and structure 251, as discussed later in more detail (section 4.1.1) We also confirmed proper 

rescue and replication of all oversized scAAV genomes (Figure 9D, lower gel).  

The same experiments were repeated using the HBoV1 capsid (Figure 10). In contrast 

to AAV2, HBoV1 capsids could package oversized ssAAV and scAAV genomes up to 6.1 

(Figure 10A, upper gel) and 3.2 kb (Figure 10B, upper gel), respectively. This implies that the 

HBoV1 capsid can package 0.5 kb scAAV DNA and 1 kb ssAAV DNA more than AAV2 capsids. 

Importantly, proper rescue and replication of the rAAV genome occurred during packaging into 

the HBoV1 capsid for all the constructs tested (Figure 10A-B, lower gels). Notably, the fraction 

of monomeric to dimeric replication forms seemed to be equal in the rAAV2/HBoV1 system, 

whereas we observed a preference for the monomeric form in the rAAV production system 

(compare lower gel pictures in Figure 9B-D and Figure 10A-B). 

 

 

  

(A) Schematic representation of the 

ssAAV-CRISPR genomes used in 

this work. Different combinations of 

the indicated RNA Pol II and Pol III 

promoters were used, which 

resulted in the total genome sizes 

listed in the third column. (B) Upper 

gel: Alkaline gel electrophoresis and 

Southern blot analysis of the 

indicated ssAAV-CRISPR genomes, 

which were packaged into, and 

isolated from, AAV2 particles. Lower 

gel: Southern blot analysis of low-

molecular-weight (Hirt) extracts  

corresponding to the indicated 

constructs. (C) Illustration of the 

scAAV genomes used in this work. 

Stuffer sequences of different 

lengths were cloned downstream of 

the yfp cassette to result in the 

indicated genome sizes.  

(D) Upper gel: Neutral gel electrophoresis and Southern blot analysis of the indicated scAAV-YFP 

genomes, which were packaged into, and isolated from, AAV2 particles. Lower gel: Southern blot 

analysis of low-molecular-weight (Hirt) extracts corresponding to the indicated constructs. Brackets 

indicate monomeric (M) and dimeric (D) AAV replicative forms. ss, single-stranded. Parts of this figure 

were published and adapted from Fakhiri et al. 252. 

Figure 9. Packaging of oversized 
ssAAV and scAAV genomes into 
the AAV2 capsid. 
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Figure 10. Packaging of oversized ssAAV and scAAV genomes into the HBoV1 capsid. 

(A) Upper gel: Alkaline gel electrophoresis and Southern blot analysis of the ssAAV-CRISPR genomes 

shown in Figure 9A, which were packaged into, and isolated from, HBoV1 particles. Lower gel: Southern 

blot analysis of low-molecular-weight (Hirt) extracts corresponding to the indicated constructs. (B) Upper 

gel: Alkaline gel electrophoresis and Southern blot analysis of the indicated scAAV-YFP genomes, which 

were packaged into, and isolated from, HBoV1 particles. Lower gel: Southern blot analysis of low-

molecular-weight (Hirt) extracts corresponding to the indicated constructs. Brackets indicate monomeric 

(M) and dimeric (D) AAV replicative forms. ss, single-stranded. Panel A and a part of panel B were 

published and adapted from Fakhiri et al. 252. 

 HBoV1 tyrosine-phenylalanine mutants show distinct transduction 

abilities 

One limitation of rAAV2/HBoV1 vectors is their low transduction ability in the absence of 

proteasome inhibitors (PIs) (shown in Figure 11 and also reported elsewhere 10). This 

dependency represents a major hurdle in the clinical application of these vectors for gene 

therapy. Interesting in this context is the observation that phosphorylation of surface-exposed 

tyrosine residues in the capsids of various AAV serotypes targets the viral particles for 

ubiquitination and proteasome-mediated degradation 257. Thus, mutations of these tyrosines 

(Y) to phenylalanines (F) reduced capsid degradation and enhanced transduction ability in vitro 

and in vivo (as for example shown for residues Y700 and Y730 in the AAV2 capsid) 258. 

Interestingly, when the same two residues were converted to alanines, capsid assembly no 

longer occurred 259, which reflects their biological relevance for different steps in the viral life 

cycle.  

Based on these findings, we wondered whether surface-exposed tyrosines in the HBoV1 

capsid might play a similar role. Therefore, we cooperated with the group of Mavis Agbandje-

McKenna (University of Florida, USA), which predicted these Y residues based on the 3D 
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capsid structure of the HBoV1 capsid that the group has determined by cryo-electron 

microscopy 260. Accordingly, we conducted site-directed mutagenesis of six predicted surface 

tyrosines to phenylalanines, as outlined in Figure 11A.  

 To study the effect of each mutation on particle assembly and transduction ability, we 

first packaged a scAAV-YFP vector into the different HBoV1 capsid mutants and purified the 

resulting particles using iodixanol gradient centrifugation. Analysis of the 40% phase via qPCR 

revealed the presence of DNase I-resistant particles at levels comparable to HBoV1 (data not 

shown), implying that virus assembly was not compromised.  

(A) Tyrosine (Y) to phenylalanine (F) mutations in the HBoV1 cap ORF. Numbers refer to the amino 

acid positions in VP2. The corresponding nucleotide sequence is shown with the changed nucleotide 

underlined. (B-C) Transduction of pHAE with the indicated Y-to-F single mutants in the presence (B) or 

absence (C) of proteasome inhibitors. (D) Transduction of pHAE with the indicated Y-to-F double 

mutants in the absence of proteasome inhibitors. GLuc activity in the medium was measured at the 

indicated time points (mean + SEM, n ≥ 3 independent transwells) and plotted on the y-axis as arbitrary 

light units (ALU). For all tested constructs, a MOI of 2×104 was used. ctrl = HBoV1 cap sequence without 

mutations; neg = lysates from untransduced cells.  

Next, to test whether the Y-to-F mutations had alleviated the dependency on proteasome 

inhibition, we transduced pHAE from the apical side at a MOI of 2×104 (data of this pre-screen 

are not shown). In the presence of PIs, transgene expression could be detected for Y147, 

Y274, Y394 and Y528, but not for Y355 and Y466. In the absence of PIs, only a low number 

Figure 11. Single and double HBoV1 tyrosine-to-phenylalanine mutants. 
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of YFP+ cells could be detected (except for Y355 and Y466), which hampered the 

quantification of these events. Nonetheless, the best-performing candidates from this 

experiment were juxtaposed in double mutants, to test whether this might further augment 

transduction in the absence of PIs (see Table 2 for a list of mutants). 

To allow for a better quantification of transduction efficiencies, we packaged the GLuc 

reporter that has a higher sensitivity and a larger dynamic range of activity than the YFP 

reporter used in the pre-screens into all single and double HBoV1 Y-to-F mutants. Again, all 

the tested single and double mutants resulted in titers comparable to the HBoV1 control (ctrl), 

as estimated from TaqMan qPCR analysis of viral stocks (data not shown). 

To investigate the impact of the single and double Y-to-F mutants, we transduced pHAE 

with all the different variants or the ctrl in the presence or absence of PIs (Figure 11B-D). In 

concordance with our results of the pre-screen using the YFP reporter (data not shown), the 

single Y-to-F mutants Y147, Y274, Y394 and Y528 resulted in highest transgene expression, 

which was slightly better or comparable to the ctrl (Figure 11B-C). In contrast, the two other 

mutants Y355 and Y466 were impaired in their transduction ability at all time points (6.8- and 

4.5-fold reduction, as compared to the ctrl). The double Y-to-F mutants showed a transduction 

ability similar to the underlying single mutants and ctrl in the absence of PIs (Figure 11D). 

Also, among each other, the double Y-to-F mutants gave a similar transduction in the presence 

of proteasome inhibition (data not shown).  

Collectively, all tyrosine mutants (single and double; except for Y355 and Y466) were 

comparable in their transduction ability in the presence or absence of PIs, respectively. The 

tested Y-to-F mutations could, however, not improve transduction in the absence of PIs and 

displayed a similar reduction in transgene expression to the ctrl (~200-fold). 

Of note, after completion of these experiments, a refinement of the HBoV1 capsid 

structure (personal communication by M.A.-M.) revealed that only three of the studied tyrosine 

residues, namely, Y147, Y274 and Y466, are indeed located on the capsid surface. 

Interestingly, Y355, whose mutation resulted in the strongest phenotype, is buried inside the 

capsid, which implies a unique function beyond assembly and receptor binding. Moreover, 

based on this new structure, other surface-exposed tyrosine residues were predicted: Y218, 

Y360, Y387 and Y510. The site-directed mutagenesis of these residues is currently ongoing 

and was beyond the time frame of this thesis. 
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3.2 Creation of new BoV helper plasmids for rAAV/BoV vector 

production  

 Phylogenetic and sequence analysis of primate BoVs 

Due to their higher packaging capacity and their potent transduction of primary airway 

epithelia, pseudotyped rAAV2/HBoV1 vectors are presently being developed as attractive tools 

for gene delivery into the lung 10, 261. Importantly, HBoV1 is not the only BoV variant that can 

be harnessed for gene transfer, as many other serotypes and variants were detected in both, 

primates and non-primates. Interestingly, this broad distribution has also been observed for 

AAVs. The first rAAV vector was derived from the AAV serotype 2, which was isolated from 

human tissue 240. Later, 12 other serotypes and hundreds of variants were described, many of 

which have been engineered as vectors and tested in vitro and in vivo 118, 119. Thus, we here 

aimed to test whether these promising findings with AAV vectors can be recapitulated with 

BoV, and therefore focused our attention on four additional primate BoVs, namely, HBoV2-4 

and GBoV and on their as-of-yet unknown tropism.  

First, we determined the degree of sequence identity in the non-structural and structural 

ORFs by performing a sequence alignment using the Clustal Omega online tool 236 (Figure 

12A). The results revealed a generally high degree of conservation and at least 70% of 

sequence identity. Especially HBoV2 and HBoV4 share 92, 94 and 87% of sequence identity 

in the np1, ns1 and cap ORFs, respectively. Interestingly, HBoV1 is mostly related to GBoV, 

sharing >80% of sequence identity in all non-structural and structural genes.    

On the other hand, HBoV3 shares the highest level of sequence identity with HBoV1 and 

GBoV in the np and ns region (>84%) but less in cap (77% and 80%, respectively). HBoV1 

cap seems to be more closely related to that of HBoV2 and HBoV4, with 87% and 88% identity, 

respectively. This discrepancy in loci association has been observed before 262 and was linked 

to possible recombination events between HBoV1 and HBoV2 that led to the emergence of 

HBoV3. 

To gain a better understanding of the evolutionary relationship of these primate BoVs, 

the alignment was used to conduct a phylogenetic analysis (Figure 12B). Here, we were 

especially interested in the viral cap ORF, which determines the cell and tissue tropism. To 

this end, the cap ORFs used in this study (black circles in Figure 12B) were compared to 

different representative animal BoV sequences obtained from GenBank.  
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Figure 12. Sequence alignment and phylogenetic analysis of primate BoVs. 

(A) Percentage of sequence identity between the different indicated primate BoV in the ns, np1 and cap 

ORFs. (B) Phylogenetic analysis of BoV cap sequences used in this work (marked with black circles). 

The evolutionary history was inferred in MEGAX by using the Maximum Likelihood method based on 

the Tamura-Nei model 263. The percentage of replicate trees in which the associated taxa clustered 

together in the bootstrap test (1,000 replicates) are shown next to the branches. The scale bar 

represents the average number of nucleotide substitutions per site. Panel B was adapted from Fakhiri 

et al. 252. 

As expected from the high sequence identity, HBoV1/GBoV and HBoV3/HBoV4 

clustered together in one clade each. The analysis also revealed an interesting relationship of 

all primate BoVs to (i) the canine minute virus (GenBank: AB518884), a pathogenic BoV linked 

to gastrointestinal and lung diseases in fetal and young dogs 67, (ii) the canine BoV3 (GenBank: 

KC580640), a newly identified canine BoV detected in the liver 264, and (iii) a bat BoV 

(GenBank: JQ814850) with unknown tropism and properties. From this, we concluded that 
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cells from the lung, liver or intestine might represent interesting targets for HBoV2-4 or GBoV 

vectors (see also later chapter 3.2.5).  

 Assembly and iodixanol-based purification of five chimeric rAAV/BoV 

vectors 

Based on the high conservation of the ns and np1 ORFs between primate BoVs, we 

speculated that these proteins may complement each other and support the packaging of rAAV 

genomes into capsids from different BoV serotypes. This has previously been shown for 

rAAVs, where the Rep proteins from AAV2 supported the packaging of not only AAV2 genomes 

but also genomes derived from all other AAV serotypes, except for AAV5 118. Accordingly, we 

only replaced the cap ORF of HBoV1 in a seamless manner by the cap sequences from 

HBoV2-4 and GBoV (Figure 13A). 

Notably, the small part of np1 (14 nt) that overlaps with the cap ORF is highly conserved 

among primate BoVs and thus remains intact after insertion of the new cap sequences. This 

resulted in the new helpers pCMVNS*NP1Capx, where x denotes the BoV serotype used. 

Importantly, all BoV helpers used in this work only encode the smaller NS proteins (NS3-4 and 

NP1) from HBoV1. The knockout of NS1-2 (NS*) resulted in higher viral titers than in the 

original rAAV/HBoV1 production system (personal communication by Ziying Yan [University of 

Iowa, USA] at the time when the work was performed). A recent report by Yan et al. in 2018 

provided a comparison of both systems and showed that viral titers were indeed negatively 

affected by high expression of NS1/NS2 but not NS3/NS4 138.  

Next, we applied the triple-transfection protocol described in section 3.1 to test whether 

intact viral particles could be produced. Briefly, the helper constructs were transfected into 

HEK293T cells along with pDG∆VP and a scAAV-YFP plasmid. For purification of the viral 

particles from the cell lysate, we employed iodixanol gradient ultracentrifugation as described 

for rAAV2/HBoV1 vectors (section 3.1.1, Figure 8 and methods sections 2.2.5.2 and 2.2.5.4). 

TaqMan qPCR analysis of the 40% iodixanol fractions revealed the presence of DNase 

I-resistant particles for all rAAV/BoV preparations in comparable numbers of ~5×1011 genome 

copies per mL (Figure 13B). Moreover, correct expression of the three Cap proteins VP1-3 

was confirmed by Western blot analysis of the 40% virus-containing fractions (Figure 13C). 
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(A) Schematic representation of BoV helper constructs. The cap1 ORF from HBoV1 was replaced by 

the cap sequences from HBoV2-4 and GBoV. The CMV promoter drives the expression of all shown 

ORFs. BocaSR = bocaviral noncoding small RNA. ∆ ns = encodes only the NS3 and NS4 proteins. (B) 

TaqMan qPCR analysis of iodixanol-purified scAAV-YFP/BoV vectors. The mean genome copy number 

per mL (± SEM, n = 4) of the 40% iodixanol fraction is plotted on the y-axis. (C) Western blot analysis 

of the viral stocks shown in B. Detected are the three capsid proteins VP1-3. NEG = iodixanol gradient 

from untransfected cells (negative control). Panels B-C from this figure were adapted from Fakhiri et al. 
252. 

After we had succeeded to produce all five bocaviral vectors from the hybrid helpers, we 

asked whether this approach can also be used to produce replication-competent BoVs. As 

benchmarks, we performed side-by-side comparisons to the BoV vectors to test whether and 

to which extent the vectors reflect the behaviour of the wt viruses. Thus, we transferred the 

cap ORFs to the HBoV1 infectious clone 72 as shown in Figure 14A. In this context, the original 

viral p5 promoter drives the expression of transcripts encoding the NS, NP1 and Cap proteins. 

Moreover, in contrast to the helper plasmids for recombinant virus production, all NS proteins 

are expressed, which has been shown to be important for wtHBoV1 replication in pHAE 78. 

Finally, the genomes are flanked by the HBoV1 asymmetrical terminal repeats (TRs), which 

are required for replication and packaging of the wtBoV genome 72, 265. 

For virus production, we transfected the infectious clones into HEK293T cells and 

purified the viral particles using iodixanol gradients. Next, we quantified the amount of 

encapsidated viral genomes using TaqMan qPCR analysis (Figure 14B). Intriguingly, the wt 

viruses produced at efficiencies comparable to the pseudotyped viral vectors, except for 

HBoV2 and HBoV4, which gave 10-fold lower titers. The comparable efficiencies obtained with 

HBoV3 and GBoV support the previously observed advantage of the pseudotyped cross-

Figure 13. Construction and production of rAAV/BoV vectors. 

 



Results 

 

111 
 

genera approach (rAAV/HBoV1) as compared to a system using recombinant genomes based 

on HBoV1 TRs (rHBoV1/HBoV1). The latter was tested in the above-mentioned study by Yan 

et al. and has been shown to produce less efficiently that wtHBoV1 (viral yields were ~20% of 

wtHBoV1) 10.  

 rAAV/BoV vector purification using cesium chloride (CsCl) density 

ultracentrifugation 

CsCl density ultracentrifugation is one of the standard methods used for rAAV vector 

purification 266, 267. Despite being more laborious and time-consuming than standard iodixanol 

centrifugation, rAAV stocks purified by CsCl gradients were shown to contain fewer empty 

particles (<1% versus ~20% for iodixanol 268). Empty particles represent an inadvertent 

contaminant and interfere with efficient in vivo applications 269. Therefore, we studied the 

migration of the different bocaviral capsids in a CsCl gradient. To this end, we packaged a 

scAAV-YFP construct into the different BoV capsids or an AAV2 control and purified the 

resulting viral vectors as described earlier 10, 138 with two rounds of CsCl density centrifugation 

(for more details see methods section 2.2.5.3).  

Concurrent with previous studies 10, rAAV/AAV2 vectors banded at a density of ~1.421 

g/mL. By contrast, all rAAV/BoV vectors migrated at higher densities ranging from 1.438 to 

1.489 g/mL (Figure 15). This shift compared to AAVs is in line with previous reports of 

rAAV2/HBoV1 vector preparations 10 and can be explained by the larger size and thus different 

density of the BoV capsids. To increase the purity and further concentrate the virus, the 

collected virus-containing fractions were subjected to a second round of CsCl density 

centrifugation using a smaller volume for the gradient (as exemplified for AAV2 in Figure 16A-

B). After dialysis and concentration of the viral preparations, the number of viral genomes per 

mL was determined using TaqMan qPCR analysis. From these values, the number of genome 

copies per cell was estimated, to allow for a comparison between the two purification methods 

 

 

 

(A) Genome organization of the HBoV1-4 and 

GBoV infectious clones. All viral elements 

except for the cap ORF are derived from 

HBoV1. cap x is derived from one of the BoV 

serotypes, i.e. x = HBoV1 to 4, or GBoV. (B) 

Wild-type bocaviral stocks purified by 

iodixanol gradient ultracentrifugation. The 

number of viral genome copies (gc) per mL 

was determined by TaqMan qPCR analysis 

(n = 1). 

 

 

Figure 14. Construction of wt and 

replication-competent bocaviral plasmids. 
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(iodixanol versus CsCl) in cases where different numbers of 15 cm dishes had been used. Our 

results showed a slightly but consistently higher yield of viral genomes per cell following 

iodixanol-based purification (Figure 16C). This is, however, expected considering the typical 

loss of viral particles in the second round of CsCl centrifugation and during the concentration 

step using Amicon columns.  

In conclusion, iodixanol purification was chosen as a method of choice for the majority 

of vector preparations in this work because of its many advantages: (i) the comparable or 

higher viral yields (Figure 16C) and infectivity (Figure 8D), (ii) the ease of handling and the 

short run time of 2 h (compared to 24 h for CsCl), (iii) the inert properties of iodixanol, which 

allow for direct application in cells 270, 271, and (iv) the broad applicability for purification of 

different BoV serotypes that, in contrast to CsCl (Figure 15), all accumulate in the same 40% 

phase (Figure 13B). This eliminates the need for extensive fractionation and refractometry.  
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From each gradient, 30 to 32 fractions were collected and analyzed for the presence of packaged viral 

genomes (scAAV-YFP) using DNA dot blot analysis with a probe against the yfp cassette. The intensity 

of each dot was measured using ImageJ after background subtraction and the fold increase to fraction 

Figure 15. Purification of pseudotyped rAAV/HBoV1 vectors using CsCl density 

ultracentrifugation. 
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1 was plotted on the y-axis. The density range (g/mL) in which the full viral particles accumulated is 

denoted in each graph. This data set was published and adapted from Fakhiri et al. 252. 

 

(A-B) Representative example of a two-step purification of a rAAV/AAV2 control vector. Gradients 1 (A) 

and 2 (B) were fractionated and analyzed for the presence of viral genomes (scAAV-YFP) using DNA 

dot blot analysis with a probe against the yfp cassette. For the second gradient (B), 14 fractions were 

collected. The last four indicated dots in the corresponding dot blot are dilutions of a positive control 

(linearized CMV-YFP plasmid). (C) Titers of rAAV/BoV and rAAV/AAV2 vectors in genome copies (gc) 

per cell after one-step iodixanol (average; n = 4, except for AAV2, n = 2) or two-step CsCl 

ultracentrifugation (average; n = 2). Panel A and C were adapted from Fakhiri et al. 252. 

 Electron microscopy analysis of rAAV/BoV vectors 

To further characterize our rAAV/BoV vectors and wtBoV stocks, we used electron 

microscopy analysis to study virus morphology (Figure 17). This was done in collaboration 

with Robin Burk from the group of Hans-Georg Kräusslich (Virology Department, University 

Hospital Heidelberg, Heidelberg, Germany). As hoped for, all rAAV/BoV stocks were 

composed of particles displaying the typical icosahedral structure observed before for HBoV1 

10. Intriguingly, for all rAAV/BoV vectors, we mainly detected full viral particles, i.e. capsids 

Figure 16. Two-step purification of pseudotyped rAAV/BoV and rAAV/AAV2 vectors using CsCl 
density ultracentrifugation. 
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containing a viral genome (Figure 17, upper panel). Note that because the HBoV1 wt and 

vector preparations were of low quality, respective images are not shown; however, exemplary 

images can be found in references 10, 72, 272.  In contrast to the recombinant vectors, we 

found that the stocks of hybrid replication-competent (wt) HBoV2-4 predominantly contained 

empty particles (Figure 17, lower panel). Surprisingly, the opposite was true for the wtGBoV 

stock, which contained more full than empty capsids. This might indicate a better compatibility 

of the GBoV Cap with the HBoV1 NS proteins and terminal repeats (TRs). Notable in this 

context are also the consistently higher titers obtained with the rAAV/GBoV vector (Figure 

16C). 

Interestingly, we noticed smaller particles in our viral preparations (wt and recombinant), 

which most probably correspond to proteasome 20S subunits 273. Proteasomes were also 

found as low-level contaminants in AAV preparations but to a much lower extent 272.  

 

Figure 17. Negatively stained electron micrographs of recombinant and wild-type BoVs. 

The indicated rAAV/BoV vectors or hybrid wild-type constructs were purified using iodixanol gradient 

centrifugation. Particles were negatively stained with 1% uranyl acetate and examined by electron 

microscopy. Empty particles are stained and evidenced by a dark core. The numerous smaller structures 

visible in the GBoV sample are most likely 20S proteasomes that co-purified with the viral particles. In 

the lower panel, empty particles are marked with yellow circles, while genome-containing particles are 

highlighted with a red circle. Scale bar = 200 nm. Images were taken by Robin Burk. 

 Assessment of BoV transduction in pHAE and CuFi-8 cell line 

The ability to efficiently produce all the five pseudotyped rAAV/BoV vectors laid the 

foundation for the second aim of this part of the thesis, which was to test the functionality and 

to define the as-of-yet unknown cell tropism of the new HBoV2-4 and GBoV vectors/viruses. 



Results 

 

116 
 

Initially, the incomplete knowledge of the natural tropism of these BoV isolates prevented 

us from rationally selecting specific cells for testing and for use as benchmarks. Interestingly, 

though, animal BoVs have been extensively studied and linked to many diseases (see section 

1.1.2.1). Thus, we determined the closest relatives to primate BoVs in the animal kingdom to 

indirectly predict promising target cells. As shown above, this was achieved by performing a 

phylogenetic analysis of the cap ORF, which contains the hypervariable regions, i.e., the most 

likely determinants of the viral tropism (Figure 12). One interesting target revealed by the 

analysis was the lung, which was further supported by the sporadic detection of some of the 

primate BoVs in nasopharyngeal aspirates 75.  

Accordingly, we tested whether our established pHAE cell culture system was permissive 

to transduction with any of the newly generated viral vectors and/or to infection with, and 

replication of, the corresponding wild-type viruses, respectively. To this end, scAAV-YFP or 

scAAV-GLuc genomes were packaged into BoV capsids or AAV2 as control. The use of two 

different reporters allowed for the visualization (YFP) or consecutive monitoring (GLuc) of 

transgene expression over time. Transductions were always performed in the presence of two 

proteasome inhibitors (LLnL and doxorubicin), which was shown to increase the transduction 

with rAAV/HBoV1 by a factor of 1,000 10.  

Bronchial sections from different donors were used to cultivate pHAE on transwells as a 

polarized, pseudostratified epithelium. The transwells were inoculated from the apical side with 

equal amounts of viral particles. Transgene expression became detectable at 48-72 h post-

transduction (data not shown) and sustained over the course of the experiment (day 14, Figure 

18A). Interestingly, we observed that not only HBoV1 but also HBoV4 and GBoV transduced 

pHAE to different extents, whereas HBoV2 and HBoV3 remained at background level. Since 

GLuc is an excreted protein, we were able to monitor the increase in expression over time 

(Figure 18B) and found that it reached a peak after 12-14 days in culture (not shown).  

Moreover, we could confirm our findings in CuFi-8 cells, which is a cell line derived from 

a cystic fibrosis patient and was shown to be permissive for HBoV1 infection, albeit to a lesser 

extent than pHAE 10 (Figure 18C). 

Previous studies have shown that HBoV1 displays a preference for the apical side of the 

airway epithelia 10. Thus, we asked whether this polarity also applies to HBoV4/GBoV and may 

even have hampered transduction with HBoV2/HBoV3 in the previous experiment. To test this, 

transwells were incubated with equal amounts of viral particles either from the apical or 

basolateral side, as described in methods section 2.2.5.6. In accordance with prior 

observations 10, HBoV1 displayed the expected polarity of transduction (apical >> basolateral, 

100-fold). Likewise, GBoV was 10-fold more efficient at transducing from the apical than from 

the basolateral side (Figure 18D). This is intriguing in view of the close phylogenetic 
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relationship of these two viruses. Overall, delivery from the basolateral side could not improve 

the transduction of any of the tested viruses.  

(A) Transduction of pHAE from the apical side with scAAV-YFP/BoV vectors or AAV2-YFP as control 

(CsCl purified) at a MOI of 4×104. Images were taken 14 days post-transduction. Gray = Hoechst 

staining of nuclei. Scale bar = 50 µm. (B) Transduction of pHAE with scAAV-GLuc/BoV vectors 

(iodixanol purified) at a MOI of 2×104. Aliquots of medium were collected 4 and 9 days post-transduction. 

GLuc activity was measured and plotted on the y-axis (mean ± SEM, n = 3) as arbitrary light units (ALU). 

(C) Transduction of CuFi-8 cells with the indicated scAAV-GLuc/BoV vectors or AAV2-GLuc as control. 

A total of 2×1010 viral genomes was added to the apical side of the transwell and transduction was 

performed O/N in the presence of 1 µM doxorubicin and 8 nM LLnL. GLuc activity was measured at the 

indicated time points and plotted on the y-axis (average of two independent transwells). (D) Transduction 

of pHAE from the apical (A) or basolateral side (B) with the indicated scAAV-GLuc/BoV vectors at a MOI 

of 2×104. GLuc activity was measured at day 9 post-transduction and plotted on the y-axis (mean ± 

SEM, n = 5). Transduction of pHAE was always performed in the presence of LLnL and doxorubicin at 

concentrations of 40 µM and 5 µM, respectively. NEG = untransduced cells (negative control). n = 

number of independent transwells per condition. Transduction of CuFi-8 cells in panel C was performed 

by Verena Schildgen (Institute for Pathology, Kliniken der Stadt Köln gGmbH, Hospital of the Private 

University Witten/Herdecke, Cologne, Germany). This data set was published and adapted from Fakhiri 

et al. 252.  

Notably, in contrast to previous observations 10, transduction with rAAV2 was more 

efficient than with HBoV1 from both, the apical and basolateral side of the transwell. This 

discrepancy can be explained by differences in the experimental set-up, such as the incubation 

time of 1 h here compared to 16 h in the previous study. Moreover, the extent of polarization 

Figure 18. Transduction of pHAE and CuFi-8 cells with rAAV/BoV vectors. 
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and tight-junction formation in pHAE may also have especially influenced transduction with 

rAAV2, which can transduce from both sides of the membrane and is supposedly more efficient 

from the basolateral side. Finally, the application of proteasome inhibitors during the 

transduction can particularly boost transduction of rAAV2 from the apical side 274 and hence 

lead to the loss of the expected basolateral polarity 214. 

Next, we asked whether the hybrid wild-type viruses would recapitulate the transduction 

patterns seen with the BoV vectors. Therefore, we infected pHAE with the replication-

competent BoVs described in section 3.2.2 at a MOI of 1×104. Apical washes were collected 

over different time points to detect the presence of released viral particles. As expected, the 

highest number of viral genomes could be detected for HBoV1 16 days post-infection (~7×108 

gc/µL), followed by HBoV4 and GBoV with an average of ~1×106 and 2×106 gc/µL, respectively 

(Figure 19A). By contrast, HBoV2 and HBoV3 were only detected at very low levels, which 

were close to the background of the assay. The trend obtained with the wtBoV infection of 

pHAE is similar to what we have previously observed using the BoV vector system (Figure 

18A-C). Notable, however, is the ratio to HBoV1, which differs between transduction (vectors) 

and infection (wt viruses). For example, wtGBoV is 300-fold less efficient than wtHBoV1 but 

only ~10-fold in the vector system. 

   We furthermore assessed viral VP protein expression, which was shown to be high 

during a productive infection of pHAE with wtHBoV1 72. Therefore, the cells were detached at 

day 16 and proteins were extracted for Western blot analysis (Figure 19B). Congruent with 

previous observations 72, wtHBoV1 replication led to a high expression of VP1-3 proteins. By 

contrast, protein expression was below the detection limit of the Western blot for all other 

isolates, including the two that had yielded detectable genomic titers (HBoV4 and GBoV). 

(A) pHAE were infected from the apical side with the indicated wtBoVs at a MOI of 1×104. Apical washes 

(in PBS) were collected 16 days post-infection and the viral DNA was extracted and quantified using 

qPCR analysis (mean; n ≥ 3). (B) Western blot analysis of cells infected with the indicated wtBoVs. 

Detected are the three BoV capsid proteins VP1, VP2 and VP3. Actin served as a loading control. gc = 

genome copies. Infections were performed in the absence of PIs. 

Figure 19. Infection of primary HAE with hybrid wild-type BoVs. 
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 Transduction of primary lung organoids reproduces findings in pHAE  

Over the last years, many organoid systems have been established as models that 

represent the in vivo situation better than 2D cell cultures 275. These organoids are usually 

composed of different organ-specific cell types, which arrange to form a three-dimensional 

architecture.  

 For this reason, we started a collaboration with the group of Hans Clevers (Hubrecht 

Institute, Utrecht, the Netherlands), who has established multiple types of primary organoids 

derived from a variety of tissues, such as liver, pancreas, lung and intestine 276. We focused 

our attention on lung organoids and tested whether we can reproduce the data observed in 

pHAE in this alternative type of cell culture system. Therefore, lung organoids were transduced 

with equal amounts of the different scAAV-YFP/BoV or scAAV-GLuc/BoV vectors. Since we 

knew that two of the BoVs that we had functionally characterized prefer the apical side of the 

organoids, which lies on the inside, luminal access was provided by using two different 

methods: (i) breaking (br) of the organoids using mechanical shearing or (ii) direct injection (in) 

of vectors into the organoids (Figure 20A). Individual YFP+ cells were detected after three 

days in culture for HBoV1, HBoV4 and GBoV (Figure 20B), which agrees with our previous 

observations in pHAE (Figure 18B).  

(A) Illustration of the two methods used for transduction of primary lung organoids: (1) In mechanical 

shearing, organoids are gently suspended and broken with a pipet tip to expose the apical surface. The 

broken organoids are then incubated with the virus solution O/N. (2) In direct microinjection, a small 

volume of virus is mixed with a green dye and the mix is directly injected into the lumen of the organoids. 

Successfully injected organoids are marked with a green color. (B) Transduction of primary lung 

organoids using mechanical shearing with 6.6×109 viral particles of scAAV-YFP/BoV. Pictures were 

taken by Jens Puschhof at day 5 for GBoV and day 6 for HBoV1 and HBoV4. (C) Transduction of primary 

Figure 20. Transduction of primary lung organoids using rAAV/BoV vectors. 
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lung organoids with the indicated scAAV-GLuc/BoV vectors. Multiple organoids from one donor were 

either mechanically broken (br) and incubated with 5×109 viral genomes or microinjected (in) with 5×108 

to 1×109 viral particles. GLuc activity was measured at different time points post-transduction and plotted 

on the y-axis as ALU. Transductions were performed in the presence of 1 µM doxorubicin. This data set 

was published and adapted from Fakhiri et al. 252. 

These data were further supported using the second reporter GLuc, which allowed us to 

follow transgene expression over a period of 12 days (Figure 20C). Likewise, HBoV1, HBoV4 

and GBoV displayed the highest levels of transgene expression, which increased with time. 

Noteworthy, we saw striking differences between the two application methods, which reflects 

the complexity of virus-cell interactions. For example, HBoV2 and HBoV3 preferred the 

injection method, whereas GBoV transduction was exclusively observed with broken organoids 

(compare “in” with “br” in Figure 20C). 

During our transduction experiments in pHAE and primary lung organoids, we observed 

that only a few cells were targeted by the BoV vectors as compared to a broader transduction 

with rAAV2. Thus, we asked whether BoVs prefer a certain cell type in the airway. Therefore, 

we collaborated with Marc Schneider (Thoraxklink, University Hospital Heidelberg, Heidelberg, 

Germany) to perform cryosections and immunohistochemistry of transwells transduced with 

scAAV-YFP/HBoV1. Sections were stained using antibodies against cell type-specific markers, 

namely, MUC5AC for goblet cells, CC10 for Clara (club) cells, ß-Tubulin IV for ciliated cells 

and KRT5 for basal cells (Figure 21). Most of the YFP+ (hence HBoV1+) cells displayed 

markers either typical for Clara or ciliated cells. Arguably, a cell-membrane staining (e.g. 

against E-cadherin) would substantially increase the quality of the data and allow for a more 

solid assignment of cell types. Here, however, we did not optimize the staining because the 

low rate of transduction and the significant loss of sample during sectioning further hampered 

a quantitative readout. Instead, to overcome these limitations, we validated our preliminary 

assumption of a specificity of HBoV1 for Clara and ciliated cells with a more sensitive method, 

namely, flow cytometry analysis (Figure 22-23). 

For the generation of pHAE, around 9×104 undifferentiated epithelial cells are seeded 

per transwell. From this population, a small number of progenitor cells (Figure 22A) start to 

differentiate into the four major cell types: ciliated, Clara (club), goblet and basal cells. This 

results in an invasion of the filter and the formation of a polarized, multi-layered structure. The 

nature of these progenitor cells and the process of lung tissue regeneration are not well 

understood and differ between mouse and human tissue. In humans, a subset of basal cells 

(KRT5+ KRT14+) are believed to be early progenitors, which give rise to many different cell 

types 277. Moreover, some differentiated cells such as Clara cells have also been reported to 

self-renew or to generate ciliated cells 278. Here, the unravelling of all the subtypes was beyond 

the scope of this work. Instead, we focused on the establishment of a flow cytometry protocol 

that allows the detection of the four major cell types in pHAE (see methods section 2.2.6.5).  



Results 

 

121 
 

 

Polarized pHAE were transduced with scAAV-YFP/HBoV1 at a MOI of 6×104. Cryosections and 

stainings were performed 10 days after transduction by Marc Schneider. (A) and (B) represent 

exemplary immunofluorescence staining of transwells derived from two different patients. Shown in (A) 

are immunofluorescence co-stainings with anti-CC10 and anti-MUC5AC (Mucin) or anti-ß-Tubulin IV 

antibodies. In (B), a co-staining was performed with anti-ß-Tubulin IV and anti-CC10 or anti-KRT5 

antibodies. Images at the bottom are merged images (two different magnifications) of the indicated cell-

type-specific markers and the YFP+ (and hence HBoV1+) cells. 

To this end, we transduced pHAE with scAAV-YFP/HBoV1 or scAAV-GLuc/HBoV1 as 

control and analyzed the cells after 10 days in culture. This time point was chosen because it 

combined good transgene expression with acceptable cell viability. Importantly, scAAV-

GLuc/HBoV1 served as a negative control because our preliminary data consistently showed 

a change in the characteristics of the cell population after transduction, which was evidenced 

by a shift in the side and forward scattering (data not shown). Consequently, untransduced 

cells represented an unsuitable negative control for the analysis.  

The graph in Figure 22B shows the low background of the assay when no primary 

antibodies are used. Staining with primary antibodies against the different cell type-specific 

molecules (Figure 22C) revealed two major populations, which were KRT5+ (~41-55%) and 

ß-Tubulin IV+ (~31-40%). These were followed by CC10+ cells (~30%) and finally MUC5AC+ 

cells (~13-20%). Notably, these values sum up to more than 100%, which is, however, 

expected given the fact that a pool of transwells from different donors was used for the analysis 

Figure 21. Immunohistochemical staining of scAAV-YFP/HBoV1–transduced transwells. 

 



Results 

 

122 
 

and that some cells may express more than one marker, which impedes their proper  

identification and unanimous classification (Figure 22A). 

 

 

Figure 22. Flow cytometry analysis of pHAE transduced with rAAV/HBoV1. 

(A) Model of basal stem cell self-renewal or differentiation into the indicated cell types (adapted from 

reference 277). (B) Two control graphs to set the gates used in all experiments. Cells were transduced 

with either scAAV-YFP/HBoV1 or scAAV-GLuc/HBoV1 (both at a MOI of 5×104) and fixed 10 days post-

transduction. Next, the cell suspension was incubated with a FITC-coupled anti-GFP antibody and the 

Alexa-coupled secondary antibodies. (C) Cells were co-stained for YFP and the primary antibodies 

against the indicated cell type-specific markers: ß-Tubulin IV (ciliated cells), MUC5AC (goblet cells), 
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CC10 (club cells) or KRT5 (basal cells). The percentage of double-positive cells is shown in the upper 

right quarter. For all conditions, four transwells from different donors were pooled. Parts of this data set 

were published and adapted from Fakhiri et al. 252. 

A FITC-coupled anti-GFP primary antibody was used to enhance the signal from virus-

transduced cells (or to estimate the background in the negative controls) and co-stainings with 

the respective primary antibodies were performed (Figure 22C). The overall transduction 

efficiency with HBoV1 was between 5% (in this experiment) and 15% (Figure 8D, flow 

cytometry data not shown). Overall, KRT5+, CC10+ and ß-Tubulin IV+ cells were transduced 

with scAAV-YFP/HBoV1 to comparable efficiencies, whereas MUC5AC+ cells were less 

amenable to transduction (compare the upper right quarters, which show the double-positive 

cells).  

Next, we asked whether a different preference may be detected for HBoV4 and GBoV, 

which would explain the lower total transduction efficiencies as compared to HBoV1 (Figure 

23). As expected, the overall transduction efficiencies of GBoV and HBoV4 were less than 

those of HBoV1 with around 3% and 2% YFP+ cells, respectively. Interestingly, GBoV showed 

a pattern similar to HBoV1, whereas HBoV4 seemed to prefer KRT5+ cells and was less 

efficient at transducing ß-Tubulin IV + cells.  

pHAE were transduced with scAAV-YFP/HBoV4 or scAAV-YFP/GBoV at a MOI of 5×104. The gates in 

the graphs were set according to a scAAV-GLuc/HBoV1 negative control shown in Figure 22B. Four 

transwells from different donors were pooled and fixed 10 days post-transduction. Next, the cell 

suspension was co-stained for YFP and the indicated cell type-specific markers: ß-Tubulin IV (ciliated 

cells), MUC5AC (goblet cells), CC10 (club cells) or KRT5 (basal cells). The percentage of double-

positive cells is shown in the upper right quarter. This data set was published and adapted from Fakhiri 

et al. 252. 

Figure 23. Flow cytometry analysis of pHAE transduced with rAAV/HBoV4 and rAAV/GBoV. 



Results 

 

124 
 

 Differential effect of IVIg on pHAE transduction with rAAV/BoV 

One hurdle in the application of viral vectors is the immune response of the host or the 

pre-existence of neutralizing antibodies (NAbs). The latter are particular problematic for gene 

therapies where the vectors are delivered via the blood, as pre-existing Nabs will neutralize 

the viral capsid and hence negatively influence the delivery and transduction efficiency of a 

viral vector. For example, ~70% of the human population have detectable antibodies against 

the most studied rAAV vector serotype 2 (AAV2) 110 and may thus be refractory to rAAV2 gene 

therapies. HBoV infections have also been detected globally and the amount of NAbs is 

estimated to be around 59%, 34%, 15% and 2% for HBoV1, HBoV2, HBoV3 and HBoV4, 

respectively 279.  

In this part of the project, we asked whether the least seroprevalent HBoV4 and the non-

human bocavirus GBoV display less reactivity than HBoV1 with human antibodies. Therefore, 

we adapted a previously described in vitro neutralization assay 280. Briefly, virus particles were 

mixed with different dilutions of human serum (Figure 24A) or commercially available human 

intravenous immunoglobulins (IVIg), which is a pool of human IgG (Figure 24B). Next, the 

samples were incubated for 1 h at 37°C and were subsequently added to the apical surface of 

pHAE. Importantly, we used a serum sample from a hospitalized child, who suffered from a 

HBoV1 infection 281 and whose serum contained HBoV1-specific IgM and IgG antibodies, 

indicating an acute phase of the infection. An aliquot of this serum sample was kindly provided 

by Paul Schnitzler from the Diagnostic section of the Virology Department, University Hospital 

Heidelberg, Heidelberg, Germany. 

The undiluted serum completely inhibited transduction with all three BoV vectors tested 

(HBoV1, HBoV4 and GBoV). As expected, increasing dilutions of the serum resulted in less 

inhibition of BoV transduction, as reflected in the increase of GLuc expression (Figure 24A). 

Notably, 100% and 68% of HBoV4 and GBoV transduction, respectively, were detected at the 

1:3200 dilution of serum, compared to only 12.8% for HBoV1. These preliminary results imply 

a lower reactivity of HBoV4 and GBoV towards IgG-specific HBoV1 antibodies, which is in 

concordance with previous enzyme-linked immunosorbent assay (ELISA) data showing a 

certain degree of cross-reactivity of human antibodies to HBoV1-4 279. However, the impact of 

these interactions on functionality had not been shown prior to this doctoral work.  

Next, we used our established assay to investigate the reactivity of HBoV1, HBoV4 and 

GBoV to IVIg at a concentration of 25 mg/dl, which represents a ~1:40 dilution of the normal 

average IgG concentration in adults. Due to the high variability of pHAE, a dilution of IVIg was 

chosen that results in a significant log-change in HBoV1 transduction, while remaining over 

background level (results of the pre-test are not shown). We observed a strong reduction of 

HBoV1 transduction (>10-fold) after incubation with IVIg. In contrast, HBoV4 and GBoV 

remained entirely unaffected (Figure 24B).   
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(A) A serum sample from a child with acute HBoV1 infection was mixed with PBS at the indicated 

dilutions and incubated with equal amounts (1×109) of viral particles. A negative control included virus 

only mixed with PBS (NEG). In vitro neutralization assays were performed as described above. GLuc 

activity was measured after nine days in culture and plotted on the y-axis as ALU. Numbers over the 

columns represent the mean percent transduction of the NEG control (n = 1). (B) In vitro neutralization 

assay using IVIg. Equal amounts of viral particles (5×109) were mixed with a 25 mg/dl IVIg solution or 

PBS as control. GLuc activity in the medium was measured after five days. Shown is the mean GLuc 

activity + SEM, n = 4; except for HB1 (-), n = 3. For statistical analysis, a one-way ANOVA with Tukey’s 

multiple comparison test was used. Significance at p<0.001 is indicated by a triple asterisk. ns, non-

significant. Panel B was adapted from Fakhiri et al. 252. 

 High susceptibility of primary human hepatocytes to BoV infection 

The interesting connection of the BoV isolates studied here to the canine BoV3 revealed 

by the phylogenetic analysis of the cap ORFs (Figure 12B) tempted us to test primary human 

hepatocytes (pHeps) for their susceptibility to chimeric rAAV/BoV transduction. Therefore, 

monolayers of pHeps were transduced with equal amounts of viral particles at three different 

MOIs (2×104, 6×104 or 1.2×105). YFP expression started two days post-transduction (not 

shown) and was dependent on the applied MOIs (Figure 25A). Using GLuc as a reporter, we 

detected an increase in transgene expression from day 3 to day 6 in culture (Figure 25B), 

which is consistent with our previous data in pHAE (Figure 18B). Moreover, we found equal 

transduction efficiencies for all tested BoV vectors. This is especially intriguing for HBoV2 and 

HBoV3, which showed little to no expression in pHAE, implying different cellular specificities 

of the five BoV isolates.  

 Robust transduction of CD4+ cells by rAAV/BoV vectors 

The hematopoietic system plays an important role in the dissemination of viruses in the 

body. This transport is usually mediated in the form of free virions or virus-infected cells. For 

Figure 24. Effect of neutralizing antibodies on transduction efficiencies of HBoV1, HBoV4 and 
GBoV. 
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example, some arboviruses transiently infect blood cells in the acute phase of infection 282,  

whereas HIV causes a persistent infection 283. 

   

 

 

The detection of virus particles in the bloodstream is called “viremia” and can be either 

primary or secondary, depending on the course of infection. Several studies reported the 

presence of HBoV1 in the blood of symptomatic and asymptomatic individuals 284. Based on 

this, we tested the ability of rAAV/BoV vectors to transduce three cell types in the blood 

(macrophages, PBMCs and CD4+ T-cells), which are common targets for virus infection.  

Measurements of GLuc activity at different time points post-transduction showed that 

macrophages were not susceptible to infection and PBMCs displayed low to no GLuc 

expression (Figure 26A-B). 

By contrast, CD4+ T-cells were highly permissive to BoV transduction. In particular 

HBoV4 and GBoV resulted in high transgene expression levels comparable to AAV2 (Figure 

26C). Importantly, in concordance with our previous observations in pHAE and pHeps (Figure 

18B and Figure 25B), transgene expression increased over time in culture (compare day 3 

with day 12 in Figure 26C). 

 We next aimed to validate this striking pattern observed in primary T-cells by transducing 

the cells with scAAV-YFP/BoV vectors. As hoped for and in line with the GLuc assay, YFP+ 

Figure 25. Transduction of pHeps with 
rAAV/BoV.  

 
(A) Transduction of pHeps with scAAV-YFP at the 

indicated MOIs. Pictures were taken at day 5 post-

transduction (n = 3 donors). Cells were fixed and 

stained with a FITC-coupled anti-GFP antibody. Gray 

= Hoechst staining of nuclei. Scale bar = 50 µm. (B) 

GLuc activity measured in the medium of cells 

transduced with the indicated scAAV-GLuc vectors 

(MOI of 1×104) at the specified time points after 

transduction. Data represent the mean and range of 

two independent measurements (n = 2 donors). This 

data set was published and adapted from Fakhiri et 

al. 219. 
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cells could be detected for all vectors. Particularly notable is the performance of HBoV4 and 

GBoV, which resulted in the highest number of YFP+ cells (13-15%) and nearly matched the 

efficiency of rAAV2 (16%) (Figure 26D). 

(A-C) Transduction of the indicated primary cells with scAAV-GLuc/BoV vectors or rAAV2 as control. 

Macrophages were incubated with a total of 5×108 viral genomes (n = 2 donors). PBMCs or T-cells were 

transduced at MOIs of 6×104 (n = 2 donors) or 1×104 (n = 3 donors), respectively. GLuc activity was 

measured in the medium at the indicated time points post-transduction. Plotted is the mean GLuc activity 

(± range for n = 2 or ± SEM for n = 3). (D) Flow cytometry analysis of primary T-cells transduced with 

the indicated scAAV-YFP/BoV vectors or rAAV2 as control at a MOI of 6×104. Transductions were 

performed in the presence of 1 µM doxorubicin. This data set was published and adapted from Fakhiri 

et al. 252. 

 Transduction of colon-derived cells and organoids with rAAV/BoV 

vectors 

HBoV1 was frequently detected in surgically excised colorectal cancer specimen, which 

suggests a shedding of the virus from its primary site of replication (the lower respiratory tract) 

to the intestine 285, 286. 

This assumption was strengthend by the ability of wtHBoV1 to infect and replicate in two 

colon cancer cell lines, namely, T84 287 and Caco-2 288. However, the replication and amount 

of released progeny virus was less than in pHAE and the infectivity of the released progeny 

virus was not tested. In contrast to HBoV1, the other three human bocaviruses 2 to 4 were 

Figure 26. Transduction of primary blood cells with BoV vectors. 
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commonly linked to gastroenteritis and thus believed to primarily infect the gastrointestinal tract 

65, 262, 289. In view of all these previous findings, we tested T84 cells and primary organoids from 

the intestine for their susceptibility to rAAV/BoV transduction.  

In contrast to the study performed by Schildgen et al. 287, T84 cells were not polarized 

but maintained as monolayers under standard culturing conditions. Cells were incubated with  

equal amounts of scAAV-GLuc/BoV or AAV2 as control (MOI = 5×104). All vectors resulted in 

GLuc expression levels over background, with HBoV2-4 showing a slightly higher transduction 

ability than HBoV1 and the best results being obtained with GBoV.  

Yan et al. showed that rAAV/HBoV1 vectors result in 1,000-fold higher transduction 

efficiencies in pHAE, compared to the polarized CuFi-8 cell line 10. Therefore, we tested 

whether the observed transduction in T84 cells could be enhanced in a primary organoid 

culture of polarized intestinal epithelium. Accordingly, we collaborated with the group of Steeve 

Boulant (Department of Infectious Diseases, University Hospital Heidelberg, Heidelberg, 

Germany), who has established a protocol for cultivation and transduction of intestinal 

organoids. Three different types of organoid systems were tested: (i) undifferentiated ileum, 

(ii) differentiated ileum, and (iii) colon organoids.  

Interestingly, undifferentiated and differentiated ileum showed the lowest levels of GLuc 

activity for all rAAV/BoV vectors tested. Moreover, in contrast to our previous observations, 

transgene expression was decreasing and reaching background levels after 12 days in culture 

(Figure 28A-B). Colon organoids also showed this decrease in GLuc expression between day 

3 and day 6 but resulted in a more robust and sustained expression after the initial drop (Figure 

28C). This result was further extended by using YFP as reporter, which showed YFP+ cells in 

all colon organoids (Figure 28D) but not in the ileum organoids (data not shown).  

 

 

T84 cells were cultured as monolayers 

and transduced with the indicated scAAV-

GLuc/BoV vectors at a MOI of 5×104. 

GLuc activity in the medium was 

measured at the defined time points post-

transduction. Plotted is the mean GLuc 

activity (± SEM for n = 3). This data set 

was published and adapted from Fakhiri 

et al. 252. 

Figure 27. Transduction of T84 cell line 

with rAAV/BoV vectors. 
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(A-C) Transduction of the indicated intestinal organoids with 5×109 genome copies of scAAV-GLuc/BoV 

or rAAV2 as control. Plotted is the mean GLuc activity (± range for n = 2 donors in A and B or ± SEM 

for n = 3 donors in C). (D) Transduction of colon organoids with the indicated scAAV-YFP/BoV vectors 

or AAV2 as control (1×1011 genome copies per well). Cells were fixed at day nine post-transduction and 

then stained with a FITC-coupled anti-GFP antibody (n=2). Gray = Nuclei stained with Hoechst. Scale 

bar = 50 µm. The exposure was reduced three times for AAV2 to avoid saturation of the signal. 

Transductions were performed in the presence of 1 µM doxorubicin. Dashed lines indicate the assay 

background. This data set was published and adapted from Fakhiri et al. 252. 

 Detection of a broad cell tropism of primate BoV vectors in vitro 

 Transduction of an additional panel of primary cell types 

 Motivated by our previous finding of three primary cell types (pHAE, pHep and T-cells) 

that were efficiently and distinctly transduced with rAAV/BoV vectors, we further extended our 

screen for target cell types. Consequently, four additional cell types were tested, namely: (i) 

primary skeletal myoblasts and myotubes, (ii) cardiomyocytes, (iii) pulmonary fibroblasts, and 

(iv) vein endothelial cells.  

Interestingly, undifferentiated muscle cells (myoblasts) showed the highest 

permissiveness for scAAV-GLuc/BoV transduction, especially for HBoV2 and GBoV (Figure 

29A). Differentiated muscle cells (myotubes) were also highly susceptible to scAAV-YFP/BoV 

transduction (Figure 29B). This is intriguing in view of the fact that BoV infection has so far 

Figure 28. Transduction of undifferentiated and differentiated intestinal organoids. 
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never been associated with myopathies, in contrast to other muscle-infecting viruses such as 

rabies 290 and influenza 291. By contrast, in two recent studies, HBoV1 DNA has been detected 

in heart tissue and linked to myocarditis 292, 293. In our screening, all scAAV-GLuc/BoV vectors 

transduced cardiomyocytes to a comparable extent (except for HBoV3). However, the 

efficiencies were 10- to 200-fold lower than in skeletal muscle cells (Figure 29A).   

(A) Heat map showing the transduction of the indicated primary cells with the different scAAV-

GLuc/BoVs at a MOI of 5×104. The values used for the generation of the heat map correspond to the 

measured GLuc activity in the medium nine days post-transduction (n=1 donor). (B) Transduction of 

primary myotubes with 1×109 viral genomes of scAAV-YFP/BoV vectors. Cells were fixed five days post-

transduction and stained with a FITC-coupled anti-GFP antibody. Gray = Hoechst staining of nuclei. 

Scale bar = 50 µm. SK, skeletal muscle cells; Cardio, cardiomyocytes; Pul, pulmonary fibroblasts; Vein, 

saphenous vein endothelial cells. Transductions were performed in the presence of 0.5 µM doxorubicin. 

This data set was published and adapted from Fakhiri et al. 252. 

We moreover tested non-polarized pulmonary fibroblasts, which produce the 

extracellular matrix and thus play an important role in the physical support and function of the 

lung 294. In our initial experiments, only three out of the five tested vectors, namely, HBoV1, 

HBoV4 and GboV, were able to transduce pHAE (see Figure 18A-B). In primary fibroblasts, 

however, this pattern was not maintained, and a nearly equal transduction efficiency was 

detected for all rAAV/BoV vectors.  

Finally, we tested vein endothelial cells, which are a known target cell type for the 

replication of many viruses 295. These cells were, however, the hardest to transduce with little 

to no measured GLuc activity.  

Figure 29. Transduction of numerous primary cells with rAAV/BoV vectors. 
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 Transduction of cell lines  

One hurdle in the application and pre-clinical study of rAAV/BoV vectors is their 

preference for primary cells, which are limiting, expensive and usually difficult to culture. Thus, 

we tested several immortalized cell lines from different tissues for their susceptibility to 

rAAV/BoV transduction (Figure 30).  

Consistent with our data in primary hepatocytes, the two liver-derived cell lines Huh 7 

(hepatocytes) and LX-2 (stellate cells) were permissive to rAAV/BoV vectors, albeit at lower 

efficiencies than the primary cells. In contrast, PancI (pancreatic cancer cells) and Raw 267.4 

(murine macrophages) cells were largely resistant to BoV infection. Notably, transduction of 

the latter mouse cell line could have been hampered by the pronounced species-specificity of 

BoV infection.  

 

 

The indicated cell lines were transduced with scAAV-YFP/BoV vector or rAAV2 as control at a MOI of 

2×105. Cells were fixed five days post-transduction and stained with a FITC-coupled anti-GFP antibody 

(n=3). Nuclei were stained with Hoechst (gray). Scale bar = 50 µm. This data set was published and 

adapted from Fakhiri et al. 252. 

Surprisingly, two additional human cell lines, MCF-7 (breast cancer) and HeLa (cervix 

carcinoma), displayed many YFP+ cells, especially for HBoV4 and GBoV. This efficiency in 

HeLa cells is of note in view of an ongoing debate about the association of BoV infection with 

miscarriage based on sporadic detection of HBoV DNA in placenta and aborted tissue 296. 

Figure 30. Transduction of cell lines with rAAV/BoV vectors. 
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 Development of a shuffled BoV library 

The tropism of a virus is defined as its specificity for particular cells within a host. During 

the course of evolution, viruses can change their tropism, host range and virulence to adapt to 

new environments. It has been shown that these evolutionary mechanisms can be mimicked 

and accelerated by harnessing the power of directed evolution 111, 297. This process starts with 

the creation of a highly diverse pool of viruses, which is then subjected to a negative and/or 

positive selective pressure to enrich viral particles with a specific feature. These pools 

(libraries) can be generated either (i) from single serotypes, for example, by random 

mutagenesis of the cap gene 298, or (ii) through combining different serotypes using in vitro 

recombination 111, 297 (DFS, DNA family shuffling). Both approaches have been shown to be 

highly promising for the generation of novel AAV vectors for gene therapy 299. 

Here, we tested whether DFS can be applied to the primate BoVs used in this work akin 

to AAVs. To this end, we adopted a protocol previously reported for AAV family shuffling 111. 

Briefly, the BoV cap sequences were PCR-amplified and then fragmented using a DNase I 

digest. The fragments were loaded on a 1% agarose gel and a range of fragment sizes 

between 100 bp and 1 kb was excised, to serve as input for a second assembly PCR that 

results in chimeric, full-length fragments of ~2 kb (Figure 31A). This part was performed 

together with Stefan Holderbach, and details about the optimization of the process can be 

found in his BSc. thesis as well as in Fakhiri et al. 252. 

Next, the chimeric cap sequences were cloned into the acceptor plasmid pAAVNSΔVP-

1×BsmBI, which resulted in a chimeric BoV plasmid library (hereafter referred to as 5-

component library to indicate the five underlying parental serotypes), and 10 randomly picked 

clones were sent for sequencing analysis. The obtained sequences were then aligned in 

MEGA-X (using MUSCLE) and saved as a FASTA file. This file was subsequently uploaded 

into our in-house shuffling alignment analysis tool (SALANTO) 239 to perform a quantitative and 

qualitative analysis of the library (Figure 31A). 

As hoped for, the high sequence identities between the primate BoV cap sequences (see 

Figure 12A and Figure 31B) enabled frequent recombination events (on average, nine per 

clone). Importantly, we observed a similar distribution of HBoV2, 3, 4 and GBoV (23%, 21%, 

28% and 18%, respectively), whereas HBoV1 was less frequent with 8%. Moreover, congruent 

with previous observations with AAV cap shuffling 300, the numbers of cross-over events 

positively correlated with the degree of sequence identity and was thus highest among HBoV2-

4, which share 87-88% identity (Figure 31B). 
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Figure 31. DNA family shuffling of BoV cap sequences and construction of 5-component library. 

(A) The indicated BoV cap ORFs were PCR-amplified and fragmented using a DNase I digest. Then, 

the fragments were loaded on a 1% agarose gel and excised, to serve as a template for the assembly 

PCR. The ~2 kb cap product was used for the generation of the displayed chimeric library. Shown are 

the sequence compositions of 10 clones (5’ to 3’) with the BoV variable regions (VR) indicated. The 

assignment of sequences to the most likely parental sequence was done in SALANTO. (B) The first 

heat map shows the DNA sequence identity of the different BoV cap sequences. The second heat map 

shows the pairwise crossover events calculated from the displayed representative clones. Gel pictures 

origin: Stefan Holderbach, BSc. thesis. Light gray = ambiguous sequences. This data set was published 

and adapted from Fakhiri et al. 252. 

The acceptor plasmid pAAVNSΔVP-1×BsmBI harbours a modified HBoV1 viral genome 

flanked by AAV2 ITRs and encodes the HBoV1 NS and NP1 proteins. Seamless insertion of 
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the chimeric BoV cap ORFs resulted in a chimeric plasmid library. When this library was 

transfected along with pDGΔVP into HEK293T cells, DNase I-resistant particles (i.e. 

encapsidated viral genomes) could be detected in a density range of 1.47 to 1.35 g/mL, as 

revealed by dot blot analysis of different fractions of the CsCl gradient (Figure 32, upper 

panel). This matches the density range previously observed for the different single BoV capsids 

(Figure 15). To study the diversity of the library after virus production, viral DNA was isolated 

from the virus stock and used as a template for amplification of the cap ORF. Several PCR 

reactions were needed to gain enough PCR product for cloning into an acceptor plasmid. Five 

positive clones could be identified and were sent for sequencing analysis (Figure 32, lower 

panel). Despite the low number of clones, which hampers a quantitative analysis, we noted a 

site-specific accumulation of both, HBoV4 and HBoV3, especially HBoV4-derived sequences 

in the variable region 3 (VR III). 

   After confirming the diversity of the viral library, we performed several selection rounds 

in pHAE to enrich for candidates with novel properties like enhanced transduction and/or 

packaging ability (Figure 32, lower panel). 

The chimeric BoV plasmid library (represented here by 10 clones) was transfected into HEK293T cells 

for virus production followed by CsCl density centrifugation. Fifty-two fractions were collected and tested 

for the presence of DNase I-resistant particles using DNA dot blot analysis. The viral library was then 

analyzed for its clonal composition, which is exemplified here with five clones. Concurrently, pHAE were 

incubated with ~5×108 viral genomes O/N. The next day, cells were washed to remove unbound virus 

and lysed for extraction (rescue) of viral DNA. This served as a template for PCR amplification of 

enriched cap sequences followed by cloning of these sequences into an acceptor plasmid. The resulting 

plasmid library was then used to generate a second viral library. Gray = HBoV1, red = HBoV2, green = 

HBoV3, yellow = HBoV4, blue = GBoV. White = unsequenced areas and light gray = ambiguous 

sequences. 

Figure 32. Production and screening of chimeric BoV libraries. 
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3.3 Cycling of a recombinant BoV library in primary airway epithelia  

 Selection in the presence or absence of proteasome inhibitors 

Transduction of pHAE with the chimeric BoV library described in 3.2.12 was done in the 

presence or absence of the two PIs, doxorubicin and LLnL (Figure 33A-B). These were 

typically added to ensure and enhance transduction with rAAV/BoV vectors (Figure 11A-B). 

Interestingly, in both conditions, the observed site-specific accumulation of HBoV4 in the VR 

III after packaging (Figure 32, lower panel) was retained in >50% of the clones. By contrast, 

HBoV3 became less abundant and was mostly replaced by HBoV4-derived sequences (VR-

IV to VR-VI). The only difference between the two conditions was observed in VR-VIIIB and 

VR-IX. In the presence of PIs, we noted an enrichment of HBoV2 sequences at the C-terminus, 

which was not evident in the absence of PIs. In the next experiments, we thus focused on 

selections in the presence of PIs as this gave the most striking pattern, with the aim to validate 

and further extend these results.  

Figure 33. Analysis of chimeric BoV cap sequences after the first round of selection in pHAE. 

Transductions of pHAE with the 5-component BoV library were performed either in the presence (A) or 

absence (B) of LLnL and doxorubicin at 40 µM and 5 µM concentrations, respectively. Alignments were 

performed in MEGA-X, while assignment of sequences to the underlying BoV serotypes was done in 

SALANTO. Gray = HBoV1, red = HBoV2, green = HBoV3, yellow = HBoV4 and blue = GBoV. White = 

unsequenced areas, light gray = ambiguous sequences. 
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 Additional rounds of molecular evolution revealed new emerging 

patterns in the BoV capsid 

Already in the unselected, viral BoV library, we had observed a first layer of selection 

that has probably occurred during production of the packaged viral library and has resulted in 

a bias towards sequences derived from HBoV3 and HBoV4 (Figure 32, “viral library” in lower 

panel). Over the following three selection rounds in pHAE (Figure 33A and Figure 34), the 

selective accumulation of HBoV4 in VR III was retained and culminated in a dominant presence 

in all sequenced clones after selection round 3. Moreover, the overall percentage of HBoV4-

derived sequences increased from 18% in selection round 1 to 34% after round 3 and included 

VR-VI and VR-VII. 

The unselected library refers to the BoV plasmid library before virus production and has already been 

shown in Figure 32. Likewise, the library composition after round 1 has already been shown in Figure 

33A. Both are reprinted here for direct comparison with the results after rounds 2 and 3. Each “selection 

round” included three steps: (i) inoculation of pHAE with the virus O/N, (ii) harvest of the cells and 

isolation of viral DNA, and (iii) amplification of rescued cap sequences and preparation of a new virus 

library. Alignments were performed in MEGA-X. Regions were assigned using SALANTO. HBoV1 = 

gray, HBoV2 = red, HBoV3 = green, HBoV4 = yellow, GBoV = blue. White = unsequenced areas, light 

gray = ambiguous sequences. 

Figure 34. Cycling of chimeric BoV library in pHAE. 
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Another interesting observation is the emergence of HBoV1 and GBoV at the C-terminal 

part of the cap ORF, involving VR-VIIIB and VR-IX, while these two serotypes were rather 

underrepresented in the original library. By contrast, the N-terminal part of cap including VR-I 

and VR-II remained diverse with no clear serotype or sequence preference. This region 

involves the highly conserved C-terminal end of NP1 and the phospholipase 2A domain 301. 

The VR-II showed a slight bias towards HBoV3 (which has a V instead of a T at amino acid 

position 146, VP2 numbering) but it is highly conserved in sequence and structure among 

primate BoVs. This is in line with its important function in externalization of the VP1u domain 

and packaging of the viral genome 302. In contrast to VR-II, VR-I is highly heterogenous among 

BoVs. 

Moreover, we noted a 40- to 180-fold increase in the overall viral titer, from 5×109 gc/mL 

of the unselected library to 2-9×1011 for the libraries generated after rounds 1 and 2 (qPCR 

data not shown).  

 Chimeric BoV capsids show improved packaging efficiency but less 

potent transduction 

One aim and hope underlying our shuffling and selection approach was to select for 

viruses that are more infectious. To test whether this applies to the variants we had gained 

after selection round 3, we randomly chose five candidates and cloned the respective cap 

sequences into our BoV helper (pCMVNS1*HBoV1) that lacks AAV or BoV TRs. Next, a 

scAAV-GLuc reporter was packaged into each capsid and the number of viral genomes per 

mL was determined using qPCR analysis of the 40% fraction after iodixanol purification of viral 

particles (Figure 35A). 

 

Figure 35. Packaging and transduction efficiency of single chimeric BoV capsids. 

(A) Five randomly selected BoV cap variants were used to package scAAV-GLuc and the vector stocks 

were titrated using TaqMan qPCR (n=1). (B) Transduction of pHAE at a MOI of 1×104. GLuc activity 

was measured in the medium five days post-transduction and plotted on the y-axis as ALU. wt = 

benchmark vector based on wild-type HBoV1 cap (n=1 donor). 
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Interestingly, all the tested chimeras showed an enhanced, 2- to 4-fold higher packaging 

efficiency, as compared to the wild-type counterpart (scAAV-GLuc/HBoV1, denoted as wt in 

Figure 35A). This is congruent with the overall increase in library titers after the first selection 

round. By contrast, transduction of pHAE with equal amounts of viral particles revealed a lower 

transduction ability of the chimeric capsids as compared to the HBoV1 capsid, which gave the 

highest transduction (Figure 35B). Possible reasons for this unexpected but informative and 

thus important result will be discussed later (chapter 4).  

3.4 Development of CRISPR-based approaches to control rAAV 

vector persistence 

One of the major hurdles in clinical gene therapy using rAAV or other viral vectors with 

the capacity to persist in cells is the limited ability to control transgene expression at will, 

including the option of a complete shutdown, if needed. Thus, a major goal in this second part 

of the work was to develop regulatory genetic circuits that would permit to terminate an ongoing 

therapy or to restrict the duration of transgene expression from rAAV vectors. Importantly, 

because these technologies act on the level of the vector genome, they are independent of the 

capsid and thus fully compatible with the rAAV/BoV vectors developed in the first part of this 

doctoral work.  

The particular approach we pursued here was to take advantage of the CRISPR/Cas9 

technology, by developing two types of Cas9-inactivatable rAAV vectors: (i) a so-called "KS" 

(kill switch) rAAV vector that expresses a transgene and a gRNA towards the vector itself, thus 

allowing transgene expression to be shut off by introducing Cas9 in trans, or (ii) "SIN" (self-

inactivating) rAAV-CRISPR constructs that simultaneously target the transgene and the Cas9. 

The latter concurrently allows to control gene expression from rAAV vectors and prevents long-

term Cas9 expression, which is crucial since the persistent presence of Cas9 has been shown 

to increase the risk of adverse off-target activity 303 and to provoke a cellular immune response 

304. 

 Screening for functional gRNAs against Firefly luciferase 

It has been shown that rAAV vectors predominantly persist in transduced cells as 

episomes or large concatemers 107. Thus, to first test whether these structures can be targeted 

by Cas9, we chose Firefly luciferase (FLuc) as a “transgene” because of its high sensitivity and 

broad dynamic range as compared to other reporters.  

Next, we designed seven gRNAs against different regions of the FLuc ORF or the poly 

A tail by using the CRISPR MIT tool (https://zlab.bio/guide-design-resources). Targeting a 

region outside the transgene (here, the poly A signal) whose disruption leads to an efficient 
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knockout of associated transgene expression would allow the design of universal gRNAs that 

control different transgenes sharing the same regulatory elements.  

The functionality of the selected gRNAs was tested in HEK293T cells by using triple 

plasmid transfection of (i) a gRNA, (ii) psiCheck-2TM (a dual-luciferase reporter plasmid 

expressing both, FLuc and Renilla luciferase (RLuc)), and (iii) SpCas9. A luciferase assay was 

performed three days after transfection, and FLuc activity was divided by that of RLuc (which 

remained unaffected by the gRNA and could thus be used for normalization) to account for 

differences in transfection efficiencies between the wells. Next, these values were further 

normalized to a control gRNA targeting exon 10 of the CFTR locus to calculate the knockout 

efficiency (normalized Firefly activity, Figure 36A-B).  

Figure 36. Functional validation of Sp gRNA cleavage in vitro. 

(A-B) HEK293T cells were seeded in 96-well plates at a density of 3×104 cells/well. After 24 h, the cells 

were triple-transfected with (i) a gRNA (gRNA1-4, pol1-3 or control), 75 ng/well, (ii) the SpCas9, 125 

ng/well and (iii) psiCheck-2, 10 ng/well. SpCas9 cleavage efficiencies with the seven anti-luciferase 

gRNAs targeting the FLuc ORF in (A) or the poly A signal in (B) were evaluated by dual-luciferase assay. 

FLuc and RLuc activities were measured in the cell lysates three days post-transfection. Data represent 

the mean relative FLuc activity per well (mean ± SD, n = 3) normalized to RLuc activity as well as to the 

negative control gRNA (set to 1). (C) DNA target region of gRNA3 in the FLuc ORF. The target sequence 

is 20 nt in length and is adjacent to a 5’-NGG PAM sequence (N can be any nucleotide; here it was A). 

Cleavage occurs three nt upstream of the PAM, as indicated by the arrow. Numbers refer to the 

nucleotide position within the FLuc ORF.  

Intriguingly, all gRNAs were functional and resulted in a robust decrease in FLuc activity 

of ~40-95%. Notably, the gRNAs targeting the FLuc ORF were on average 10-fold more 

efficient than those targeting the poly A signal. One of the best performing gRNAs (gRNA3, 

Figure 36C) was cloned together with the H1 promoter into a ssAAV vector expressing both, 
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FLuc and RLuc flanked by AAV2 ITRs (ssAAV-FLuc-RLuc), resulting in construct ssAAV-FLuc-

RLuc-H1-g3-SP (below referred to as KS Sp reporter; KS for kill switch). 

During the course of this study, an alternative Cas9 ortholog from Staphylococcus aureus 

(SaCas9) was described, which is ~1.1 kb smaller than SpCas9 and thus offers a size 

advantage in the AAV context, while displaying a similar level of activity 12. Consequently, we 

implemented and tested this system in parallel, by designing four compatible gRNAs targeting 

the same FLuc ORF. As observed with the SpCas9 system, all the tested gRNAs were 

functional and resulted in varying degrees of FLuc knockout efficiencies (Figure 37A). Also 

here, one of the best performing gRNAs (gRNA1, Figure 37B) was cloned under the H1 

promoter and the entire cassette was subcloned into the ssAAV-FLuc-RLuc plasmid, resulting 

in construct ssAAV-FLuc-RLuc-H1 g1 Sa (below referred to as KS Sa reporter).  

(A) HEK293T cells were seeded in 96-well plates at a density of 3×104 cells/well. After 24 h, the cells 

were triple-transfected with (i) a gRNA (gRNA1-4 or a control gRNA), 75 ng/well, (ii) the SaCas9, 125 

ng/well and (iii) psiCheck-2, 25 ng/well. SaCas9 cleavage efficiencies with four anti-luciferase gRNAs 

targeting the FLuc ORF were evaluated by dual-luciferase assay. FLuc and RLuc activities were 

measured in the cell lysates three days post-transfection. Data represent the mean relative luciferase 

activity per well (mean ± SD, n = 3) normalized to RLuc activity as well as to the negative control gRNA 

(set to 1). (B) DNA target region of gRNA1 in the FLuc ORF. The target sequence is 21 nt in length and 

is adjacent to a 5’-NNGRRT PAM sequence (note that it is shown in reverse here, since the 3'-5' strand 

is targeted). Cleavage occurs at the indicated site, three nt upstream of the PAM. Numbers refer to the 

nucleotide position within the FLuc ORF.  

Figure 37. Functional validation of Sa gRNA cleavage in vitro. 
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One observation we made during these initial experiments is that RLuc activity was also 

significantly decreased under our Cas9/gRNA cleavage conditions, as compared to the 

negative control (Figure 38A). As none of the gRNAs was predicted to bind in the RLuc ORF, 

we speculated that the loss in RLuc activity might reflect the complete degradation of the 

FLuc/RLuc co-encoding plasmid after Cas9 cleavage. To test this hypothesis, we designed 

two short-hairpin (sh)RNAs that target the FLuc mRNA and tested their activity in HEK293T 

cells (Figure 38B). Our underlying rationale was that this would allow us to specifically 

suppress FLuc expression using an independent trigger and to then assess whether RLuc 

expression would again be co-affected, which would have suggested their coupling (by 

unknown means) on the mRNA or protein level. One of the two shRNAs (sh2) significantly 

reduced FLuc activity by ~70%, without affecting the expression of RLuc. Accordingly, we 

concluded that the expression of FLuc is not coupled to RLuc and that the concurrent 

downregulation of FLuc and RLuc observed with CRISPR but not RNAi is indeed related to the 

loss of the common plasmid DNA. Thus, having learned that RLuc expression is automatically 

affected in the Cas9 cleavage assays, we omitted the RLuc normalization step in all 

subsequent experiments. 

Figure 38. Comparison of knockout and knockdown experiments in HEK293T cells using the 

dual-luciferase reporter. 

HEK293T cells were seeded in a 96-well at a density of 3×104 cells/well. After 24 h, cells were 

transfected for Cas9 knockout experiments in (A) or shRNA-mediated knockdown in (B). For the FLuc 

knockout experiments, a triple transfection was performed (gRNA or control 75 ng/well, SpCas9 125 

ng/well and psiCheck-2 10 ng/well). Ctrl = Control non-targeting gRNA against CFTR exon 10. For the 

knockdown experiments in (B), 40 ng/well of the indicated shRNAs (sh1-2) or non-silencing control 

(NSC) was transfected. FLuc and RLuc activities were measured in the cell lysates three days post-

transfection. Plotted is the mean luciferase activity as ALU (mean ± SD, n = 3). For statistical analysis, 

a one-way ANOVA with Dunnett‘s multiple comparison test was used. Significance is indicated by: **, 

p<0.01, ***, p<0.001, ns, non-significant.  
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 In vitro validation of the rAAV KS reporter  

The above-mentioned KS Sa and KS Sp reporters were called kill-switch vectors 

because they constitutively express a gRNA complementary to a sequence in the FLuc ORF. 

Importantly, the whole system can be deliberately “switched on” at any given time by 

expressing or providing Cas9 in trans, which then, together with the gRNA, triggers the 

degradation of the vector and thus ablates transgene expression (Figure 39A). 

The knockout efficiencies of both reporters were measured and compared in a dual 

plasmid transfection of reporter and cognate Cas9 (Sp or Sa) in HEK293T cells (Figure 39B-

C). As hoped for, we detected high and comparable knockout efficiencies of 161- and 218-fold 

for KS Sp and KS Sa, respectively. Moreover, the coupling of the gRNA cassette and target 

gene in the KS reporter resulted in a 10-fold higher knockout as compared to the standard 

triple transfection, where target and gRNA were provided by separate plasmids (compare H1 

gRNA3 with KS Sp in Figure 39B). 

(A) Schematic representation of the KS circuit. Shown is the KS vector, which is a rAAV genome that 

encodes a transgene of interest (in this work, FLuc) and a self-targeting gRNA. The gRNA is 

constitutively expressed from the vector (1), but an active ribonucleoprotein complex (RNP) is formed 

only in the presence of the Cas9 (2). This RNP then directs the Cas9 to the complementary target DNA 

sequence (shown as a red line within the “Target gene”), thereby promoting cleavage of the vector (3). 

Depending on the location of the binding site and the resolution of the cleavage by error-prone NHEJ, 

this can lead to debilitating perturbations in mRNA (4) or protein expression (5) and thus ultimately result 

in vector inactivation. (B-C) In vitro validation of the indicated KS reporters. HEK293T cells were either 

transfected with two plasmids, i.e., the KS reporter and Cas9 (KS Sp and KS Sa conditions), or three 

plasmids: (i) encoding a gRNA against FLuc (or control), (ii) the psiCheck-2 reporter, and (iii) expressing 

the Cas9 (conditions H1 gRNA3 and control gRNA). In the "Reporter only" control, the KS reporter was 

co-transfected with stuffer DNA. All gRNA and reporter constructs were used at an amount of 25 ng/well. 

Figure 39. Functional validation of KS reporters in vitro. 
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The Cas9 expression plasmid (Sa or Sp) was transfected at 125 ng/well. FLuc and RLuc activities were 

measured in the cell lysates three days post-transfection (mean ± SD, n = 3). For statistical analysis, 

one-way ANOVA with Dunnett’s post-test was used. Significance is indicated by: **, p<0.01, ***, 

p<0.001.  

 Potent reduction of Firefly luciferase expression from the rAAV KS 

vector in vivo  

To test the activity and inactivation of our rAAV KS vectors in a physiologically more 

relevant setting, we performed a pilot in vivo experiment in mice, using the AAV8 capsid to 

direct transgene expression to the liver. FLuc activity was monitored in living animals after 

intraperitoneal injection of the D-Luciferin substrate. To be able to perform these experiments, 

we cooperated with the group of Michael Boutros (DKFZ, Heidelberg, Germany) who has 

access to Cre-dependent SpCas9-expressing C57BL/6 mice. While this setting where the 

Cas9 gene is already embedded in the host genome does not genuinely reflect the in vivo 

situation in a human patient, the rationale behind this first experiment was to test whether Cas9 

can target the KS vector in vivo at all and, if so, at which efficiencies. To this end, mice were 

injected with either 2×1011 gc of the AAV KS Sp vector alone (Cre- mice) or with a  combination 

of this vector with 1×1011 gc of scAAV-TTR-Cre vector (TTR [transthyretin] is a strong liver-

specific promoter), to activate the endogenous Cas9 expression (denoted as Cre+ mice). FLuc 

expression was followed over time using the Xenogen IVIS100 imaging system (Figure 40A). 

At different time points (two days as well as one and two weeks post-injection), we 

measured the total number of photons/second/cm2/radian (i.e. total photon flux) emitted from 

each mouse (Figure 40B-C). Intriguingly, FLuc expression from the ssAAV KS vector was 

already observed two days post-injection (at 1×106 - 1×107 light units) and further increased 

after one week in both, Cre- and Cre+ animals. After two weeks, the signal continued to 

increase in the Cre- animals (Figure 40B), whereas it declined significantly in the Cre+ mice 

(Figure 40C).  



Results 

 

144 
 

   

(A) C57BL/6 mice encoding a Cre recombinase-dependent SpCas9 were co-injected with the KS Sp 

vector and a scAAV-TTR-Cre vector (upper panel; Cre+) or the KS Sp vector alone as control (lower 

panel; Cre-). Images were taken by Iris Augustin (Boutros lab, DKFZ, Heidelberg, Germany) at the 

indicated time points post-injection. (B-C) Total photon flux induced by FLuc activity at the depicted time 

points for the Cre- control animals in (B) and the Cre+ animals in (C). M1-3: mice 1-3, d = days.  

This decrease in FLuc activity may well correspond to the activation of SpCas9 

expression through rAAV vector-encoded Cre recombinase, followed by loading of the (Sp) 

gRNA3 into SpCas9 and cleavage of the FLuc-encoding gene. To clarify whether the sharper 

and earlier decrease in signal after week 2 in the Cre+ animals was a direct consequence of 

SpCas9 expression (as intended) or rather an effect of uneven vector doses, as previously 

reported for hFIX 305, the mice were sacrificed after week 5 and the livers isolated for DNA 

extraction and sequencing. 

Figure 40. In vivo imaging of FLuc expression after tail vein injection of rAAV vectors. 
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From the total liver DNA, the FLuc target region was PCR-amplified and cloned into an 

acceptor plasmid (Figure 41A). Next, 13 positive clones were sent for Sanger sequencing 

analysis. As hoped for, we detected mutations in eight clones at the expected gRNA cleavage 

site, which ranged from a few nucleotides to large deletions (see Figure 41B for a 

representative sequencing result from one mouse). By contrast, no mutations were detected 

in the Cre- control group (data not shown). 

  

Figure 41. Analysis of Cas9-mediated cleavage of rAAV-KS Sp vector in vivo. 

(A) The FLuc ORF was PCR-amplified from liver DNA and cloned into a pBS KS (+) acceptor plasmid. 

Several clones were picked from the plate and tested for the presence of an insert using BamHI / HindIII 

digest. The expected band is 1.6 kb in length and corresponds to the complete FLuc ORF. Cas9 

cleavage can result in large deletions leading to smaller bands (e.g., clone 6 and 8). M = 1 kb plus DNA 

ladder, x = negative clones devoid of insert. (B) Positive clones were sent for Sanger sequencing and 

aligned to the reference (ref) sequence. Numbers in brackets denote the number of deleted nucleotides 

at the target site. wt = wild-type reference sequence. 
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 Construction and initial validation of rAAV SIN split SaCas9 vectors 

One additional advantage of SaCas9 is the ability to split this ortholog into two halves, 

each of which is small enough to be packaged into, and delivered by, scAAV vectors. The latter 

are modifications of original ssAAV vectors that typically yield much faster and often also more 

robust transgene expression 226. The split SaCas9 variant used in this work was originally 

constructed and provided by a current PhD student in our lab (Carolin Schmelas). The two 

parts of the split SaCas9 (Cas9 N and C) are expressed from two separate vectors and form 

a full-length protein upon co-expression and intein-mediated splicing.  

To create a self-inactivating (SIN) variant of this vector design, we added a gRNA 

cassette targeting either the N- or C-terminal part of the split SaCas9 (denoted as N1-2 and 

C1-2, respectively) into the vector encoding the split Cas9 C-terminal part (Figure 42A). The 

resulting constructs were validated by transfection into HEK293T cells along with the KS Sa 

vector. In this experiment we measured: (i) FLuc knockout efficiencies (Figure 42B-C) using 

the SIN Cas9 system compared to the controls (split Cas9 or full-length Cas9 vector; both 

without inactivating gRNA) and (ii) efficiency of Cas9 knockout by the anti-Cas9 gRNAs 

(Figure 42D).  

(A) Schematic diagram of a SIN split SaCas9 system: The SaCas9 N and C parts are expressed from 

two separate vectors and form a full-length protein upon co-expression and intein-mediated splicing. A 

gRNA directed towards the Cas9 itself (Anti-Cas) was cloned under the H1 promoter to form the SIN 

system, while a negative control expressed no gRNA. (B-C) SaCas9 cleavage efficiencies with four SIN 

gRNAs (N1-2, C1-2) as evaluated by luciferase assay. HEK293T cells were seeded in 96-well plates at 

a density of 3×104 cells/well. In each condition, three plasmids were co-transfected: (i) the N-Cas part 

Figure 42. Characterization of SIN split Cas9 vectors. 
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(50 ng/well), (ii) the C-Cas part (50 ng/well) with an anti-Cas gRNA (N1-2, C1-2) or without gRNA as 

control (-), and (iii) the KS Sa luciferase reporter (2 ng/well). C = control for each luciferase knockout 

condition using a scrambled version of the anti-Fluc gRNA. FL = Full-length SaCas9 control (50 ng/well) 

expressed from the same promoter as the split SaCas9 (here, mi[nimal]CMV). Firefly luciferase activity 

was measured thee days post-transfection and plotted on the y-axis as ALU (mean ± range, n=2). (C) 

Alternative illustration of the data presented in (B). FLuc expression from the (-) control condition was 

set to 1 to calculate the fold difference in SaCas9 activity. (D) SaCas9 expression levels as determined 

by Western blotting using an antibody raised against the SaCas9 N terminus. HEK293T cells were 

cultured in 24-well plates and transfected with the KS Sa reporter (8 ng/well) and the two halves of the 

split Cas9 (400 ng each per well) with the indicated SIN gRNAs or without gRNA as control (-). Cells 

were harvested at 24, 48 and 72 h post-transfection for analysis (n = 2). N = N-terminal split Cas9 part. 

Out of the four gRNAs tested, the two designed against the Cas9 N-terminus (N1 and 

N2) resulted in a clear decrease in full-length and N-terminal part Cas9 expression, as revealed 

by Western blot analysis at different time points (Figure 42D). Notably, the C-terminal part was 

not detected in this assay because the used anti-Cas9 antibody was raised against the N-

terminus of SaCas9. Moreover, all of the tested constructs mediated up to 100-fold knockout 

of FLuc expression (Figure 42B). This is especially intriguing for the SIN split Cas9 vectors 

(N1 and N2) that showed in the same robust FLuc knockout when compared to the controls, 

despite their efficient self-inactivation of Cas9 expression (Figure 42C-D). 

 Towards a customizable system for concurrent target and SaCas9 

inactivation using rAAV SIN split Cas9 vectors 

One remaining disadvantage of the above-mentioned approach is the need to modify the 

rAAV target vectors to include a gRNA cassette, which complicates the application of this 

strategy to already available vectors. One solution would be to supply the anti-target gRNA on 

an additional vector, which results in a three- instead of a two-vector system. Moreover, in the 

setting where target and gRNA are encoded on the same vector, the anti-Cas9 gRNA can 

typically only be expressed from the small and weak H1 promoter because of the size limitation 

of scAAV vectors. Thus, in the last part of this work, we aimed to generate a tool box of 

customizable and thus more user-friendly ssAAV SIN CRISPR vectors. These vectors were 

designed to include both gRNAs (anti-target and anti-Cas), hence allowing simultaneous 

targeting of the transgene- and Cas9-encoding vectors in the same cell. In addition, we used 

different combinations of two RNA Pol III promoters to drive the expression of the gRNAs (U6 

for stronger or H1 for weaker expression). The idea behind this was to become able to modify 

and optimize the kinetics and efficiencies of both cleavage reactions, targeting and thus 

inactivating the transgene and the Cas9 itself.  

Because of the size of the U6 promoter as well as of the N-terminal SaCas9 part, the 

new constructs only fit into a ssAAV vector. Hence, their activity was compared to that of the 

existing cassettes that are encoded in the scAAV context (Figure 43). 
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Figure 43. Schematic representation of all rAAV SIN Cas9 vectors used in this work. 

Construct #1 is a control composed of a full-length (FL) SaCas9 and a gRNA cassette targeting the 

SaCas9 itself. Constructs #2 and #3 express the two parts of the split SaCas9 (N and C) from scAAV 

vectors. A gRNA cassette against the SaCas9 N-terminal part is embedded into the vector encoding the 

C-terminal part. Constructs 1 to 3 are always used with the KS Sa luciferase reporter. Constructs 4-7 

encode the two parts of the split SaCas9 (N and C) from ssAAV vectors. gRNA cassettes against the 

SaCas9 itself (anti-Cas) or the target (anti-target) are located on the same vectors and are expressed 

from the H1 or U6 promoters. The ssAAV split SaCas9 constructs are always used with a standard 

luciferase reporter ssAAV-psiCheck-2. The anti-Cas9 gRNA used is the gRNA N1 (see Figure 42). ITRΔ 

= mutated AAV4 ITR that allows the packaging of rAAV vector genomes as scAAVs 241. Pol II = RNA 

polymerase II promoter (here, miCMV). Stars denote the anti-Cas or anti-target gRNA binding sites 

within SaCas9 and the target gene, respectively. 

We first validated the functionality of all the constructs shown in Figure 43 by transfection 

into HEK293T cells (Figure 44, upper graph). Two conditions served as controls: (i) the ssAAV 

vector encoding the full-length SaCas9 and a gRNA cassette targeting the SaCas9 itself 

(construct #1 in Figure 43), and (ii) the SIN split SaCas9 in a scAAV context (constructs #2 
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and #3 in Figure 43). The anti-target gRNA was either embedded into the new ssAAV SIN 

CRISPR vectors (constructs 4-7 in Figure 43) or was expressed from the KS Sa reporter in 

the control conditions.  

 

Upper panel: HEK293T cells grown in 96-well plates (seeded at 3×104 cells/well) were transfected with 

the indicated combinations of plasmids (conditions 1 to 4+7). In all conditions, 10 ng/well reporter and 

50 ng/well split or full-length (FL) SaCas9 were used. For 1, 1* and 2+3, the KS Sa reporter was co-

transfected. 1* = condition 1 with twice the amount of FL SaCas9 plasmid DNA (i.e. 100 ng). In all other 

conditions, a luciferase reporter without an extra gRNA cassette was co-transfected (psiCheck-2). The 

constructs included either the indicated gRNAs (+) or scrambled (scr) controls (-). The remaining 

luciferase activity is plotted as percentage of the control (-/- condition) with two scrRNAs derived from 

anti-FLuc and anti-Cas9 (mean + SD, n = 3). Lower panel: Western blot analysis of the indicated 

conditions. HEK293T cells were cultured in 24-well plates (seeded at 1.25×105 cells/well). In all 

conditions, 40 ng/well reporter and 400 ng/well of each split SaCas9 half or FL SaCas9 were transfected. 

1* = condition 1 with twice the amount of FL SaCas9 plasmid DNA (i.e. 800 ng). The Western blot shows 

the expression levels of the SaCas9 protein. neg = untransfected cells; N = N-terminal split SaCas9 part 

(n = 3). Luciferase assay and Western blot analysis were performed three days post-transfection. 

As hoped for, all the constructs were functional and expressed sufficient amounts of 

SaCas9 that led to comparable knockout of FLuc activity, irrespective of the reporter used 

(standard or KS reporter). Also, inactivation of SaCas9 expression was detected in all cases 

as shown by Western blot analysis (Figure 44, lower panel). Importantly, as previously 

observed in the initial validation experiments (Figure 42), FLuc knockout efficiency in the 

Figure 44. In vitro validation of ssAAV SIN CRISPR constructs. 
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presence of an anti-Cas9 gRNA was indistinguishable from the control condition (with a non-

targeting scrRNA against SaCas9). 

Having proved the functionality of all our plasmid constructs, we moved to the system of 

interest in this work, which is the rAAV vector context. Thus, all the constructs shown in Figure 

43 (including the KS Sa reporter and the dual-luciferase cassette from the standard psiCheck-

2 plasmid) were packaged into AAV2 and tested in HEK293T cells via transduction (Figure 

45). Importantly, all the SIN split SaCas9 vectors were functional and provided robust on-target 

activity (FLuc knockout; Figure 45, upper graph). Likewise, all conditions (except for 4+7) 

resulted in knockout of SaCas9 expression (Figure 45, Western blot analysis at the bottom).  

Overall, in the ssAAV SIN system, the best FLuc knockout was achieved when the U6 

promoter was used to drive anti-target gRNA expression (conditions 4+7 and 5+7). In contrast, 

the best SaCas9 knockout was achieved in conditions 4+6 and 5+6, where the anti-target 

gRNA was expressed from the H1 promoter and the anti-Cas gRNA from the H1 or U6 

promoter. This is followed by condition 5+7 where both gRNAs were expressed from strong 

U6 promoters. Interestingly, this last condition was comparable in its efficiency to the SIN split 

SaCas9 in the scAAV context, in which both gRNAs were driven by the H1 promoter, which 

might reflect higher expression levels of gRNAs from scAAV vectors 

 

Upper panel: ss and scAAV constructs shown in Figure 43 were packaged into AAV2 and 3×104 

HEK293T cells (96-well format) were transduced with the indicated combinations at a MOI of 1×105 per 

SaCas9 construct and 1×104 for the luciferase reporters (KS Sa and standard psiCheck-2 dual-

Figure 45. Functional analysis of SIN split Cas9 rAAV constructs after transduction. 
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luciferase cassette). For 1, 1* and 2+3, the KS Sa reporter was co-transduced. 1* = condition 1 with 

twice the MOI of the SaCas9 vector. In all other conditions, a luciferase reporter without an extra gRNA 

cassette was co-transduced (standard psiCheck-2). Moreover, the constructs included either the 

indicated gRNAs (+) or scrambled (scr) control (-). The remaining luciferase activity (mean + SD, n = 3) 

is plotted as percentage of the control with two scrRNAs (anti-Cas and anti-FLuc; condition -/-). Lower 

panel: Representative Western blot analysis showing expression levels of the SaCas9 protein for the 

indicated conditions (n = 3). HEK293T cells were cultured in 24-well plates (1.25×105 cells/well) and 

transduced at the same MOIs mentioned in the upper panel. FL = full-length SaCas9; neg = 

untransduced cells; N = N-terminal split SaCas9 part. Luciferase assay and Western blot analysis were 

performed five days post-transduction. 
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4 DISCUSSION 

The field of human gene and cell therapy is currently at its all-time high, exemplified by 

the numerous breakthroughs that we have witnessed over the last few years, from (near) 

eradication of certain cancers 306 to restoration of sight 307 and cure of patients from hemophilia 

142, and culminating in the first three market authorizations for gene therapy products based on 

recombinant AAVs (Glybera, Luxturna and, most recently, Zolgensma). As another striking 

evidence, the annual 2019 meeting of the American Society of Gene and Cell Therapy 

(ASGCT), the world's largest and most influential respective community, hit a new record with 

over 2000 additional attendees from academia and industry as compared to last year 308, 309. 

Triggered by these successes and the rapid expansion of the field, there is now an 

unprecedented momentum and an urgent desire to further broaden the spectrum of diseases 

for which these technologies can provide therapeutic benefit. This, in turn, demands new, more 

potent, less immunogenic and more specific viral and non-viral vectors that concurrently 

provide maximum control over patient safety, which altogether fueled the concepts and studies 

presented here.  

4.1 Development and characterization of novel primate bocaviral 

vectors 

In the first part of this work, we expanded on a previously described pseudotyping 

approach 10 to study the utility of four, so-far uncharacterized primate BoV isolates as viral 

vectors. In essence, we successfully packaged rAAV reporter constructs into the BoV capsids 

to generate five pseudotyped rAAV/BoV vectors, namely, HBoV1-4 and GBoV. These 

rAAV/BoV vectors were then used to transduce different types of cells, from suspension 

cultures to monolayers and organoids, which surprisingly revealed a broad tropism in vitro, 

akin to what has been observed for rAAVs. This was not only intriguing from a biological 

standpoint, but also demonstrates the utility of the pseudotyped vectors for gene transfer into 

multiple different targets. Moreover, we present, for the first time, the successful application of 

DNA family shuffling (DFS) to a parvovirus other than AAV. The chimeric BoV cap library 

generated in this work was highly diverse and produced packaging-competent viral progeny. 

Cycling of this library in pHAE revealed interesting sequence patterns and enrichment of 

domains that might play a role in capsid assembly and function.  

Altogether, by shedding light on the previously enigmatic tropism of primate BoVs, we 

not only advanced our understanding of BoV biology but also extended the range of application 

of BoV vectors. Moreover, we demonstrated the applicability of DFS to the BoV cap sequences 
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and envision a great value of this technique in future investigations of structure-function 

relationships, trafficking and distribution of antigenic domains. 

 rAAV2/HBoV1 vectors can be efficiently produced and package intact 

oversized rAAV genomes  

rAAVs are among the most commonly used vectors for gene transfer, but one limitation 

is the small packaging capacity of ~4.7 kb, which restricts their application to smaller transgene 

cassettes 255. Importantly, previous work has shown that rAAVs can package ssAAV vectors 

larger than their wt genome size 254-256. The optimal length was, however, estimated to be 

between 4.1 and 4.9 kb because larger genomes were accompanied with a sharp reduction in 

packaging and/or transduction efficiency 254, 255. In concordance with this, we could efficiently 

package genomes up to 5.1 kb into the AAV2 capsid, whereas larger genomes (5.5-6.1 kb) 

only resulted in a low-molecular-weight DNA smear in gels. In contrast, we show that the 

optimal genome length for packaging into the HBoV1 capsid is ~5.8 kb. Genomes of 6.1 kb 

were also encapsidated without truncations, which was evidenced by a distinct band in gels at 

the expected height. However, the intensity and hence packaging efficiency was lower as 

compared to smaller genomes. This is in line with and extends previous observations that the 

HBoV1 capsid can package a rAAV-CFTR cassette of ~5.4 kb 10.  

This gain of ~800 bp in size is the first notable advantage of pseudotyped rAAV/HBoV1 

vectors that we illustrated here. We harnessed this extra space to package complete CRISPR 

cassettes including the SpCas9 and a gRNA against the CFTR locus, both expressed from 

strong ubiquitous promoters. Smaller Cas9 proteins, such as the SaCas9 ortholog used in this 

work, would additionally allow the embedding of a DNA template of ~1 kb for homology-

directed repair. This ability to readily package all-in-one CRISPR cassettes is remarkable and 

would not be possible using standard AAV capsids because of their size limitation 209.  

Irrespective of size, a drawback of single-stranded AAV genomes is their need to be 

converted inside the nucleus into transcriptionally active double-stranded DNA. This process 

is rate-limiting and dependent on the cell type 310, 311. Consequently, scAAV vectors have been 

developed that bypass the cell cycle-dependent conversion step and thus result in faster and 

more potent transgene expression 226. However, the size of the packageable genomes is 

reduced by ~50% (~2.4 kb), which again limits the coding capacity. Thus, we asked whether 

the HBoV1 capsid can also package oversized scAAV genomes and, if so, to which extent. 

Our results show that up to 2.8 kb and 3.2 kb can be efficiently packaged into AAV2 and HBoV1 

capsids, respectively. These extra 400 bp correspond to half the length gained for the ssAAV 

vector DNA, which supports and strengthens our above-mentioned observations. Curiously, 

Wu et al. reported that scAAV genomes up to 3.3 kb can be packaged into the AAV2 capsid 

251. Yet, in contrast to the smaller genomes also tested in their study, the 3.3 kb vector resulted 

in the least intense band, which might reflect less efficient packaging. It was also speculated 
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that the GC content and secondary structure of the vector genome play a role in the efficiency 

of the encapsidation process, which can further explain differences between laboratories 251, 

254. Another important observation in the above-mentioned study was that lowering Rep 

expression not only increases AAV packaging efficiency (as previously shown 134, 135) but also 

favors the encapsidation of intact sc over ss molecules. This is congruent with our own 

observations of >95% intact scAAV genomes. Notably, here we used two different helpers with 

reduced Rep protein expression: pDGΔVP 137 and the conventional AAV helper (pWHC2) 136 

for HBoV1 and AAV2 vector production, respectively (for more details, see section 1.2.5). 

Further important to note is that the sc- or ss-vector plasmids were kept constant for both, AAV 

and BoV vector production, ensuring that the observed increase in packaging capacity for 

HBoV1 was only due to the viral capsid.  

In parallel to these experiments, we established a new 3-plasmid production system and 

compared it to the originally reported 4-plasmid transfection protocol. Both methods produced 

comparable rAAV2/HBoV1 viral titers of ~5×1010 gc/mL, congruent with previous observations 

of a reduced packaging efficiency in the pseudotyped vector system (5-10% of cognate AAV 

vectors) 10, 261. Important to mention in this context is that Yan et al. independently reported an 

optimized 3-plasmid production system in 2018 138. In this study, the authors showed that 

rAAV2/HBoV1 vectors can be produced in the complete absence of BoV non-structural 

proteins to high viral titers (>4×1012 gc/mL). It will be interesting to test whether a combination 

of the two systems reported by Yan et al. or us, in particular a reduction of Rep expression in 

the NS-free system, will even further boost viral yields.  

One interesting observation in our study of vector genome replication in HEK293T 

producer cells was that the rAAV2 control vectors produced in parallel exhibited the expected 

bias 312, i.e., an excess of monomeric over dimeric replication forms (Figure 9B-D, lower gels). 

This was shifted in the rAAV2/HBoV1 system to a reduced accumulation of monomeric DNA 

replication forms for all the tested ss and scAAV constructs, which may reflect a less efficient 

resolution of replication intermediates (Figure 10A-B, lower gels). This has not been observed 

before using the adenoviral helper pAd4.1 10, making it an important task for future work to 

clarify whether the effect results from an inherent property of pDGΔVP. Also notable in this 

context is that the larger scAAV genomes tested in this work (≥2.5 kb) seemed to result in 

more monomeric replication forms and fewer concatemers. 

 The less efficient resolution of concatemers has been previously reported for smaller 

ssAAV genomes and linked to fast preinitiation of replication without resolution of the terminal 

ends 312. Thus, the effect was more prominent for small ssAAV genomes between 0.7 and 2.4 

kb (corresponding to 15-50% of the wt AAV genome size) 312. Importantly, these differences in 

monomeric:dimeric ratio neither affected the viral titers nor the functionality of capsids carrying 
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the smaller scAAV genomes, as determined by qPCR analysis and transduction of pHAE, 

respectively (data not shown). 

For the future, it remains crucial to determine the repercussions that the oversized ss- 

and scAAV vector genomes have on HBoV1 infectivity. Interestingly, the above-mentioned 

study by Grieger et al. 254 revealed that DNA encapsidation not always correlates with efficient 

transduction. The reduced infectivity of particles encapsidating larger rAAV genomes was 

found to be related to preferential proteasomal targeting and degradation. This created a 

complication in our study that prevented us from directly addressing the effect of genome size 

on infectivity, since our current rAAV2/BoV generation strictly depends on proteasome 

inhibition, irrespective of the encapsidated genomes (reported for HBoV110 and also seen here 

for all tested BoV serotypes; data not shown). Thus, a solid conclusion on the infectivity of BoV 

particles carrying oversized rAAV genomes has to await the next generation of BoV vectors 

that is no longer or less dependent on proteasome inhibitors (see also chapter 4.1.4 below). 

 BoV production is supported by different helpers and is most efficient 

and unbiased using the rAAV/BoV pseudotyping approach 

Over the last five decades, many BoV serotypes and variants have been discovered in 

non-primates and linked to different diseases and tissue distribution. Only in the last 15 years, 

however, primate BoVs were also detected in humans (HBoV1-4), Gorilla (GBoV) and 

Chimpanzee (CPBoV; GenBank: KT223502) with an unknown pathophysiological relevance 

for the host. This abundance of known BoV sequences fueled our second aim, which was to 

characterize and harness different variants for gene transfer. Here, we were inspired by the 

modularity of the AAV vector system in which the ITRs, cap, aap and rep ORFs are largely 

interchangeable between the serotypes (except for AAV5, see section 1.2.5.1). This high 

genome flexibility is intriguing and facilitated the development of multiple hybrid AAV vector 

systems 117-119, 313, 314. For example, the most broadly used AAV helper plasmids nowadays co-

express AAV2 rep together with a cap ORF derived from a different serotype or a synthetic 

cap variant. 

Akin to the AAV Rep proteins, primate BoVs share a high sequence identity of >70% in 

the non-structural ORFs. Thus, we asked whether the BoV genomes offer a similar plasticity 

as AAV. To this end, we constructed hybrid BoV expression plasmids composed of the ns/np1 

ORF of HBoV1 and the cap ORF of a different BoV variant. Moreover, the genomes were either 

flanked by HBoV1 TRs to create wtBoV plasmids or devoid of TRs, yielding BoV helper 

plasmids. Indeed, from all the various plasmids, we were able to detect correct expression of 

the three viral Cap proteins (VP1-3) at the expected 1:1:10 stoichiometry 70, 302. This reflects 

correct processing and splicing of the pre-mRNA and a retained regulation of expression ratios. 

This, in turn, indicates a similar functional organization of the BoV genomes, especially 

concerning the dependency of correct VP expression on upper genomic regulatory sequences 
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81. The presence of not only free VPs but also correctly assembled capsids was confirmed by 

electron microscopy analysis of the viral stocks. Interestingly, we detected an excess of empty 

over full particles in wtHBoV2, 3 and 4, in contrast to HBoV1 (not shown) and GBoV. A qPCR 

analysis of the viral stocks supported this observation in particular for HBoV2 and 4, where we 

detected ~10-fold lower titers. This implies that the NS1 proteins and/or TRs of HBoV1 might 

conflict with efficient packaging into HBoV2-4 capsids and suggests routes for future 

optimization, including e.g. the cloning and characterization of alternative BoV TR sequences 

akin to prior work in the AAV field 305. In fact, the terminal repeat sequences play a crucial role 

in the packaging of viral genomes 315. Alas, despite the wealth of information collected in the 

last years about BoVs, most TR sequences remain elusive. An alignment of the available 

partial sequences revealed a generally high sequence conservation, which is probably 

required for the formation of the complex secondary structures of the termini 289. Importantly, 

the structure of the HBoV1 3' TR is slightly different from the ones in HBoV2-3 regarding the 

length of the stem loops 289, which further supports the idea to clone and study different BoV 

TR sequences.  

Finally, the superior packaging of wt genomes into GBoV capsids is intriguing and 

underlines its close phylogenetic relationship to HBoV1. Interesting in this context is that the 

basket below the five-fold channel, which is unique to BoV and has been proposed as a portal 

for genome packaging 302, is highly conserved yet HBoV1 and GBoV carry a substitution of 

valine with isoleucine. It will be interesting to test in follow-up work whether the mutation of this 

amino acid can rescue the packaging defect in wtHBoV2-4. 

In striking contrast to our findings with the replication-competent constructs, all BoV 

helper plasmids were readily compatible with cross-genera pseudotyping, akin to what was 

reported for HBoV1 10. Proof is that all scAAV reporters used in this work were packaged to 

comparable efficiencies into the different BoV capsids and resulted in high vector titers of >1012 

gc/mL.  

Noteworthy, another chimeric BoV helper plasmid was constructed in this work by 

flanking the HBoV1 genome with AAV2 ITRs. This helper was tested by Stefan Holderbach, 

who showed that packaging of rAAV2 genomes in the presence of only BoV NS proteins is 

impossible. The packaging defect was, however, rescued when the adenoviral helper and the 

Rep proteins were supplied in trans, implying that the Rep but not the NS proteins are the key 

players in this chimeric system (S. Holderbach, BSc. thesis, 2017). This observation was 

supported in the above-mentioned study of Yan et al. in 2018 138 and served as a basis for the 

construction of the chimeric BoV libraries, which are discussed below. This exclusive 

dependency on the AAV Rep proteins and the comparable packaging efficiencies in the 

rAAV2/BoV cross-genera packaging system are remarkable. They not only reflect a greater 

flexibility of the AAV Rep proteins than previously anticipated but also imply a different mode 
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of Rep-Cap interaction that probably involves structurally conserved motifs on the BoV 

capsids. A similar observation has been made in the chimeric B19/rAAV system, where Rep 

proteins were strictly required for packaging of rAAV2-based genomes into the B19 capsid 126, 

127. 

 BoV vectors show a broad tropism in vitro and a differential reactivity 

to IVIg 

After the successful construction of BoV helper constructs and the production of DNA-

containing virions, we tested the functionality of the new rAAV/BoV vectors. Therefore, we 

pseudotyped two reporter constructs, namely, scAAV-YFP or scAAV-GLuc, with each BoV 

capsid. The first allowed for a direct visualization while the second permitted to monitor 

transgene expression over time. Based on our own phylogenetic analysis and the sporadic 

detection of HBoV2 in the lung 75, we first tested our variants in pHAE. This already confirmed 

the functionality of two vectors based on HBoV4 and GBoV. We moreover tested a panel of 

primary cells and cell lines, grown in monolayers or complex organoid structures, for their 

susceptibility to BoV infection. Interestingly, BoVs displayed a preferential transduction of 

primary cells and organoids as compared to cell lines. While the underlying reasons remain 

unknown, this preference has also been observed before for HBoV1 in its recombinant or wild-

type form 10. 

We found that many of the tested primary cells supported transduction with the 

pseudotyped vectors, including primary human T cells, hepatocytes and skeletal muscle cells. 

The equal and high transduction efficiencies in primary hepatocytes and skeletal muscle cells 

are notable for three reasons. First (i), they provided the first evidence for the integrity and 

functionality of all tested BoV variants, especially HBoV2 and HBoV3, which showed inferior 

transduction efficiencies in many other cell types. In addition, (ii) these data suggested that all 

BoV vectors can be considered in the future for gene transfer into the liver or skeletal muscle 

cells, and that, vice versa, (iii) the liver and skeletal muscle should be considered as off-targets 

in case of another on-target. This particularly applies to HBoV1 vectors, which are currently 

developed for in vivo gene transfer to the lung 261. Also intriguing is the transduction profile 

achieved in primary human T cells. In contrast to pHAE, HBoV1 was inferior to HBoV4 and 

GBoV, which displayed high transduction efficiencies nearly reaching rAAV2 levels. This is 

interesting from the perspective of natural BoV biology because these target cells were rarely 

associated with HBoV infection 316, 317.  

Finally, we detected different BoV cell-type specificities within a complex co-culture of 

pHAE, where HBoV4 was less efficient at transducing ciliated cells, as compared to HBoV1 

and GBoV. This implies that HBoV4 is a more suitable serotype for gene transfer into non-

ciliated cells, such as basal and club cells.  
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Collectively, our data demonstrate a broad in vitro tropism and unique expression profiles 

for all tested BoV serotypes. Combined with the larger packaging capacity, this opens up a 

wealth of intriguing future applications, such as the delivery of all-in-one CRISPR cassettes for 

ex vivo gene editing of (CAR-)T cells or in vivo targeting of pathogens that infect specific cells 

in the body, such as hepatitis viruses and liver cells, or HIV and T cells. 

Further increasing the attractiveness of our new vectors is our notion of a lower reactivity 

of HBoV4 and GBoV with pooled human sera (IVIg), as compared to HBoV1. Our findings are 

compatible with the fact that GBoV is a non-human BoV variant, and they are also in line with 

data that HBoV4 is the least seroprevalent variant in the human population (~2%) 279. NAbs 

can recognize and inactivate a viral vector before reaching its intended target organ or cells. 

Accordingly, variants with lower immunogenicity and lower prevalence in the human population 

are preferred for clinical gene transfer. It should thus be very interesting to validate and extend 

these findings by testing different concentrations of IVIg or individual (patient) sera. This would 

allow for a more comprehensive determination of virus-neutralizing antibody titers in the 

population, which will in turn provide important insights into the clinical applicability of bocaviral 

vectors 280.  

 rAAV2/BoV vectors are dependent on proteasome inhibition 

Yan and colleagues reported in 2013 10 that transduction with rAAV2/HBoV1 in pHAE 

can be enhanced up to 1,000-fold by the application of two proteasome inhibitors (PIs), namely, 

LLnL and doxorubicin. This is in line with our own observation that PIs are required for efficient 

transduction not only with HBoV1-based vectors but with all other rAAV/BoV vectors tested in 

this work (data not shown).  

Importantly, the ubiquitin/proteasome pathway has previously been shown to be critical 

in the life cycle of different parvoviruses including MVMp 318 and AAV 257, 319. Modulation of this 

pathway by mutating surface-exposed tyrosine residues 258 or by the application of 

pharmacological agents has informed innovative strategies for enhancing rAAV transduction. 

For example, Douar et al. 319 showed a 50-fold enhancement of rAAV2 transduction following 

treatment with the PI MG-132 in HeLa, HEK293 and HepG2 cells. This is consistent with our 

data showing a potent enhancement of rAAV and rAAV/BoV transduction in all cell types 

tested. In pHAE, it has been shown that the application of PIs enhances rAAV transduction 

from the apical, but not from the basolateral side 274. Duan et al. 320 demonstrated that this 

synergistic effect also occurs in vivo in the mouse lung after co-administration of rAAV2 and 

the PI Z-LLL. Transduction efficiency in this setting was enhanced from non-detectable to 

~10% of bronchial epithelial cells. Finally, Yan and colleagues 261 detected efficient transgene 

expression in the ferret lung after treatment with rAAV2/HBoV1 and the PI doxorubicin. 

Notably, in both in vivo studies, no local or systemic toxicity was detected after the application 

of PIs, implying clinical relevance of this strategy.  
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Another example of a commonly used PI is bortezomib, a US Food and Drug 

Administration-approved PI for treatment of multiple myeloma. This agent has been used in 

combination with oversized rAAVs for delivery of a 5.6 kb factor VIII cassette in hemophilia 

mouse and dog models 321. The study showed a striking adjuvant effect of the combination 

therapy, which resulted in an enhancement of expression of up to 600% and persistent 

correction of the disease phenotype. Importantly, and supported by the observations in this 

work, only a single dose of PI was needed to augment transduction and no further application 

was required.  

In conclusion, the dependency on PIs would not essentially prevent the use of our 

reported rAAV/BoV vectors in vivo. Nevertheless, in view of the complexity of combination 

therapies in terms of costs and safety considerations, one aim in this work was to generate 

vectors that can escape proteasomal degradation and thus transduce independently of PIs. 

Akin to the strategy applied in the rAAV field 258, 322, we mutated six tyrosine residues in the 

VP2 Cap protein of HBoV1 to phenylalanines, two of which were located on the capsid surface. 

While none of the HBoV1 mutants mediated an escape in the absence of PIs, two mutants 

(Y355 and Y466; VP2 numbering) were 10- to 6-fold less efficient at transducing primary HAE. 

Interestingly, residue Y355, which resulted in the strongest phenotype, lies on the capsid 

surface and is highly conserved among primate BoVs. Moreover, it directly flanks VR-VI and 

thus may contribute to loop formation and stability. By contrast, residue Y466 lies inside the 

capsid in close proximity to VR-VIIIB, which is a highly variable region linked to particle 

assembly, genome packaging and intracellular trafficking in AAVs 302, 323. Of note, the Y466 

residue is also highly conserved among HBoV1-3 and GBoV but is substituted by a 

phenylalanine in HBoV4, which might reflect a certain degree of tolerance that explains the 

milder effect on transduction. Notably, not only surface-exposed tyrosines play a role in the 

proteasomal processing of AAVs. Several studies have shown that also serine, lysine and 

threonine residues could be hotspots for ubiquitination and phosphorylation 324, 325. The 

recently reported higher-resolution structure of HBoV1 302 is likely to facilitate the future 

mapping and testing of such residues that are truly located on the surface. 

Next to targeted capsid modification, additional options for improving rAAV/BoV vectors 

may arise as our understanding of wtHBoV biology increases. Recently, several studies 

reported how HBoV1 interacts with different cellular pathways to promote its infection, 

including the degradation of host proteins that would otherwise impede viral growth. For 

example, the NP1 protein was shown to interact with IRF-3 and interrupt its binding to the IFNB 

(interferon beta) promoter, thereby downregulating promoter activity. This, in turn, reduces IFN 

I signalling and promotes infection 326. Consequently, np1 was suggested as an early gene in 

the viral life cycle. Another study showed that the VP2 protein upregulates IFN production by 

inhibiting the proteasome-dependent degradation of RIG I 74. It was speculated that this 
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benefits the establishment of latency, as previously observed with other viruses such as EBV 

327. Also, this suggests that vp2 may act as a late gene in the viral life cycle.  

Finally, it has been shown that the NS non-structural proteins also play a role in infection. 

NS1 and NS1-70 negatively regulate the NF-κB pathway by directly interacting with the p65 

subunit of the NF-κB proteins 73. Interesting in this context is our observation of accumulated 

20S proteasome cores in the wt and recombinant BoV preparations (see e.g. GBoV/Gluc in 

Figure 17), which may reflect a stimulation of the immunoproteasome in response to IFN 

production 328. Altogether, this implies that HBoV1 infection elicits a tightly controlled and 

multifactorial immune response, which the virus evades to some degree using an equally tightly 

regulated expression of early and late viral genes. Consequently, this raises the question 

whether the deletion of viral elements and ORFs in the vector system is the cause for the strict 

dependency of BoV transduction on the presence of PIs.  

While a dissection of these possibilities was beyond the scope of this thesis, one can 

readily anticipate that a deeper understanding of fundamental BoV biology including 

endosomal escape, proteasome interactions, capsid uncoating or immune responses will 

inform and benefit the design of enhanced, next-generation bocaviral vectors. To this end, 

strategies used in the autonomous parvovirus field could be applied to entangle the effect of 

different viral proteins on transduction. For example, it would be interesting to test whether 

cap-replacement vectors 83-86, in which only a part of the cap gene is replaced by a transgene 

of interest, could restore transduction efficiency in the absence of PIs (see section 1.2.1 and 

Figure 3B for more details).  

 DNA family shuffling allows the creation of large, packaging-

competent and chimeric BoV libraries 

As discussed above, a deeper understanding of BoV biology is likely to enable rational 

approaches to increase viral fitness in the future. Until then, high-throughput screening 

methods such as random mutagenesis, domain swapping or DFS can already be applied to 

yield functional insights. Moreover, a combination of these methods with a specific enrichment 

approach that involves iterative selection rounds should enable the identification of novel 

variants with desired properties for therapeutic gene transfer.   

In this work, we studied the applicability of DFS as a method to create a library of chimeric 

BoV particles. This was fueled by the tremendous success of this technology in the rAAV field, 

where it led to the discovery of chimeric capsid variants with distinct tropism, enhanced 

specificity and/or immunological profile 111, 297, 329. Chimeric viral libraries also advanced our 

knowledge of AAV biology by revealing important information regarding antigenic domains and 

receptor binding 111, 329.  

One prerequisite for the successful application of DFS is the high sequence identity 

between parental genes, which is ideally in a range of 50% or higher. Fortunately, with >70% 



Discussion 

 

161 
 

sequence identity, BoV cap ORFs represent suitable candidates for such an approach. Indeed, 

the BoV library created in this work was highly diverse with an average of nine cross-overs per 

clone, which is comparable to what is typically achieved using AAV cap sequences 300. 

Importantly and congruent with previous reports 330, we detected an over-representation of 

parental sequences with higher identity to each other (HBoV2-4).    

After the successful generation of a chimeric BoV plasmid library, the first question we 

asked was whether chimeric viral particles can be produced that retain their structural and 

functional integrity. Many previous studies have shown that structural integrity of proteins is 

typically not destroyed during the process of DFS, due to the recombination of functionally 

relevant domains 111, 331, 332. Indeed, in the present study, BoV particles containing a viral 

genome were detected using DNA dot blot and qPCR analysis. Moreover, the titer of the viral 

library increased by ~200-fold after the first selection round. This is in line with previous studies 

using shuffled AAV libraries and reflects a selection for packaging-competent chimeric viruses 

329. This result was further supported by testing individual candidates from selection round 

three, which gave higher viral yields than rAAV2/HBoV1 vectors.  

In the next step, we tested the infectivity of the candidates in pHAE. All tested chimeras 

were inferior to HBoV1 in their transduction ability and resulted in 10-fold lower transgene 

expression. This was unexpected in view of the promising data with shuffled AAV cap 

sequences, whose selection in cells frequently resulted in superior capsids 111, 297. One reason 

for the observed phenotype might be the under-representation of HBoV1-derived sequences 

in the initial library, which could have severely compromised the functionality of the library in 

pHAE. Luckily, the abundance of certain sequences in the library can easily be improved by 

careful adjustment of input fragment concentrations. Another way to enhance library quality 

and thereby foster chances of success is to apply codon-optimization to the cap ORFs that 

increases the sequence similarity and thus the DNA recombination frequency 239.  

Despite the sequence bias and the low functionality of the chimeras, it is intriguing that 

the C-terminus of VP3 was nearly entirely composed of HBoV1-derived sequences after the 

third selection round. Particularly interesting and thus discussed further is VR-VIIIB, which 

shows the highest sequence divergence in HBoV1 and GBoV. This VR corresponds to the so-

called HI loop in AAV, which was shown to play a dynamic function in the virus infection 

pathway by controlling the exposure of the VP1 N terminus and the incorporation of VP1 

subunits at the 5-fold axis. Notable in this context is also the above-mentioned change in 

HBoV1 of a conserved tyrosine residue flanking the HI loop (Y466) into a phenylalanine, which 

resulted in a 6-fold loss in transduction (see sections 3.1.3 and 4.1.4) and thus reflects the 

importance of this loop in HBoV1 infection. Importantly, it was shown that polarized cells can 

shuttle viruses into different endocytic compartments, some of which are “dead ends” and do 

not contribute to transduction 333. Thus, it will now be interesting to investigate whether this 
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region plays a role in proper post-entry processing of HBoV1, which may in turn underlie its 

higher transduction in pHAE as compared to the other BoV isolates tested here.  

 Moreover, the HI loop was linked to capsid assembly and genome packaging. For 

example, substitution of the HI loop in AAV2 with that from AAV1 or 8 (both 83% identical to 

AAV2 on the capsid amino acid sequence) resulted in 2-fold lower viral titers 323. By contrast, 

swapping the HI loop from a less homologous AAV serotype (AAV4 and AAV5, having 61% 

and 59% amino acid identity to AAV2, respectively) resulted in a 1-log reduction in virus titer 

(AAV4 HI) or complete absence of capsid assembly (AAV5 HI). Importantly, the infectivity of 

the HI loop swap mutants was not compromised (except for AAV2 carrying the HI loop from 

AAV5) which initially suggested that this loop might be less important for infection. Mutations 

of highly conserved residues within the loop, however, led to improper trafficking, which 

resulted in a substantial decrease in infectivity 323.   

This is also particularly interesting in view of a mutation that we recently reported in 

patient samples at amino acid position 590 (VP1 numbering), which lies in the VR-VIIIB region 

and affected viral serum load 281. In the course of this other study, we experimentally verified 

that the presence of a serine versus a threonine at position 590 affects viral titers but not 

infectivity (Kai-Philipp Linse, MD thesis), which is strikingly congruent with what was reported 

for AAV2 323 and supports the hypothesis of an evolutionarily conserved function of this region. 

Collectively, our data suggest a critical role of the HI loop and flanking amino acids in the 

infectious pathway of HBoV1. It should now be intriguing to perform site-directed mutagenesis 

or to swap the HI loop in the HBoV1 capsid with orthologs, to study whether it has implications 

for wtHBoV1 infectivity and assembly as well. 

The VR-IX region also showed a preference for HBoV1-derived sequences. This might 

be a result of the lower recombination rates between VR-IIIB and VR-IX in the unselected 

library. Interestingly, despite the high heterogeneity of this region, the structural arrangement 

of the loops is conserved among HBoVs 302. Therefore, this region and VR-VIII were suggested 

as determinants of the host tropism 302. This, however, does not rule out an as-of-yet undefined 

role in the HBoV1 infection pathway, akin to what was reported for MVMp 334.  

After one selection round in pHAE, another striking pattern was the site-specific, nearly 

exclusive accumulation of HBoV4-derived sequences in VR-III to VR-IV, which extended to 

involve VR-V after the third selection round. Notably, this pattern was equally observed in the 

presence and absence of PIs. VR-III is similar among HBoV2-4, whereas the highest 

divergence is observed in VR-IV and VR-V 302. Thus, in view of the higher transduction ability 

of HBoV4 as compared to HBoV2 and HBoV3, VR-IV and VR-V might be important for HBoV4 

cell binding and/or internalization.  

Important to mention is that VR-III is extended in HBoV1 and GboV, and has been 

suggested as a determinant of the respiratory tropism of HBoV1 302. In our study, we could not 



Discussion 

 

163 
 

find evidence for this hypothesis. In fact, the HBoV1/GBoV VR-III was completely depleted 

after three selection rounds. However, this does not rule out an important role in transduction, 

in view of the 10-fold lower transduction ability of HBoV4 as compared to HBoV1 and GBoV. 

One explanation for the nonetheless striking preferential accumulation of HBoV4 VR-IV and 

VR-V is that these domains might trigger a superior binding to the cell surface, which, however, 

leads to a less efficient entry pathway. The under-representation of HBoV1 and GBoV 

sequences in the initial library and the low selection pressure for a productive transduction 

might have further supported the loss of these sequences. 

Interesting was also the enrichment of HBoV2 in VR-VIII to VR-IX in the presence of PIs 

but not in their absence, and the gradual disappearance of this pattern over the selection 

rounds. One possible explanation could be an initial accumulation of variants that produced 

better but had a lower infectivity and were thus lost with an increased selection pressure for 

infectivity. The presence of PIs could have protected these viral capsids from degradation and 

thereby favored their accumulation in the library after the first selection round. Supporting this 

hypothesis is the reduction in library titers from 9×1011 (after selection round 1) to 2×1011 gc/mL 

(after selection round 2), which is congruent with previous observations with AAV libraries 329.  

While initially surprising, the reduced infectivity of the resulting chimeric capsids is an 

important result as it highlights crucial considerations about library construction and study 

design, and thus provides a roadmap for future work. For instance, the loss of HBoV1 

sequences during the initial assembly may have negatively influenced library performance and 

selection in pHAE. It would thus be interesting and crucial to now test this BoV library in other 

cell types to gather information about its general viability and applicability, and to assess 

whether the result obtained here is truly specific for pHAE. Concurrently, to increase chances 

of isolating a good transducer, a selection step on the RNA level can be included, as this will 

inherently enrich particles that mediate complete transduction, rather than capsids that merely 

deliver their DNA cargo to cells but may not express the encoded transgene. Luckily, the 

implementation of such a RNA- instead of DNA-based selection scheme should be possible in 

view of the ubiquitous and high activity of the bocaviral p5 promoter, which will drive robust 

cap mRNA expression in library-infected cells and thus facilitate RNA rescue and reverse 

transcription for subcloning into a secondary library 335.  

4.2 KS and SIN are promising designs for inactivation of transgene 

expression from rAAV vectors 

Among all viral vectors that are currently used in the gene therapy field, rAAVs have 

proved an outstanding potential and have thus become lead candidates for in vivo applications. 

This success is particularly due to their high safety profile, which is characterized by a low 
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genotoxicity and a mild host immune response 336. Nevertheless, it would be important for the 

next vector generation to incorporate a system that allows to efficiently shut off transgene 

expression from rAAV vectors in the event of adverse side effects or toxicity. The latter has 

indeed been observed e.g. after rAAV-mediated shRNA delivery into the mouse liver, which 

ultimately led to hepatotoxicity and even animal fatalities because of saturation of the 

endogenous miRNA pathway 241. Moreover, it was shown that AAV9-based vectors could also 

elicit severe hepatotoxicity in non-human primates when administered at a high dose and that 

this toxicity seems to result from oxidative stress 337. Importantly, the latter study continues to 

be discussed very controversially in the field because of the low number of animals and the 

lack of toxicity in other studies that involved the same dosages in humans. Regardless of the 

exact reasons for these discrepancies (that certainly require clarification and independent 

validation), the observed toxicities were unexpected and, in some of the animals, even life-

threatening. 

These two examples and other similar findings clearly highlight the urgent need for the 

implementation and preclinical evaluation of new safety measures in rAAV vectors, including 

switches that allow for a rapid vector incapacitation in the event of adverse patient reactions. 

Thus, in this part of the work, we focused on establishing and validating different novel means 

for deliberate inactivation of gene expression from rAAV vectors subsequent to transduction. 

To this end, we constructed both, “kill switch” (KS) and “self-inactivating” (SIN) rAAV vectors 

as two innovative approaches to control the duration of transgene expression. Two critical 

components in both systems are the endonuclease Cas9 and customized gRNAs that are 

directed against the vector-encoded transgene. Our successful demonstration of the great 

potential of these systems for in vitro and in vivo inactivation of rAAV transgene expression 

allows us to envision numerous future applications in biological research and gene therapy, as 

further discussed below. 

 Kill-switch rAAV vectors can be efficiently inactivated in vitro and in 

vivo 

To build a simple yet effective kill switch that permits to inactivate transgene expression 

at any given time, two plasmids were constructed (see Figure 39A and Figure 46A): (i) a KS 

reporter that constitutively expresses a transgene (FLuc) together with a gRNA directed 

against this transgene, and (ii) the Cas9 endonuclease. In combination, these form an off-

switch because transgene expression is switched off only when the Cas9 is expressed or 

delivered in trans. As two alternative strategies, the gRNA cassette can also be expressed (i) 

from the same vector as the Cas9 or (ii) from a third, separate plasmid. We did not further 

pursue the first of these two alternative approaches because it was hardly compatible with the 

size limit of rAAV vectors (~4.7 kb), especially when the SpCas9 (4.1 kb) is used (as in the first 

validation experiments of the KS reporter, sections 3.4.2 and 3.4.3). We compared, however, 
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the second approach to our original KS system (see above; transgene and gRNA are on the 

same vector) and showed a superior inactivation of the FLuc transgene in the KS reporter 

(~10-fold). This is conceivable in view of the smaller number of plasmids that have to enter the 

same cell (two in the case of the genuine KS versus three in the alternative approach).  

Interestingly, we detected a reduced expression of the RLuc reporter, which is co-

expressed from the same KS plasmid as FLuc but was not targeted by the Cas9. Also, T7 

assays performed on the gRNA target region revealed a very low editing efficiency that did not 

correlate with the robust FLuc functional knockout (data not shown). Since the T7 assay 

reflects the degree of NHEJ (the most common DNA repair pathway in the cell) and since 

NHEJ of FLuc should not have affected the RLuc reporter, we concluded that the plasmid DNA 

is preferably degraded after Cas9 cleavage rather than being repaired by NHEJ.  

Next, we transferred our system into a rAAV context and asked whether AAV vector 

genomes can be targeted in vivo in a similar way. This was important to test because rAAV 

vector genomes can assume various molecular forms in which they persist and express 305, 

and because it was unclear whether the predominant forms - episomal, circular monomers or 

concatemers - can be recognized and cleaved by CRISPR/Cas9 akin to plasmid DNA. To this 

end, we packaged the KS reporter into AAV8 and injected it into transgenic mice expressing 

Cas9 in a Cre-dependent fashion. Hence, to activate the endogenous Cas9 expression, we 

co-delivered an AAV8 vector expressing Cre under a liver-specific promoter. While following 

the kinetics of FLuc transgene expression over time, we detected a “pulse-like” profile 

characterized by an initial accumulation of the reporter and a subsequent degradation phase 

because of Cas9 activation and cleavage of the reporter.  

Interestingly, the FLuc expression kinetics in our in vivo study and the degradation of 

plasmid DNA in transfection experiments were congruent with a previous in vitro study by 

Moore et al., who used a “self-destructive” one-plasmid system composed of: (i) a reporter 

gene, (ii) the Cas9 endonuclease and (iii) a gRNA cassette directed against the reporter. In 

this study, the authors noted a bell-like expression of the Cas9-targeted reporter gene and a 

concomitant knockout of another reporter, which was co-expressed from the same plasmid. 

The latter strengthens our own data and hypothesis of plasmid DNA degradation after Cas9-

mediated cleavage. Another interesting observation in this reported study is that the amplitude 

and duration of reporter expression can be controlled by altering the Cas9-gRNA affinity to 

their target sequence. We envision that a similar adjustment of transgene expression from our 

kill-switch circuit might be of particular value in the field of regenerative medicine. There, it was 

shown that cellular reprogramming factors can be delivered by rAAV 100 or Sendai virus vectors 

338 to various organs in vivo to induce the formation of pluripotent stem cells. However, it was 

also noted that short-term cyclic induction of their expression is required to promote safe tissue 

regeneration and to reduce the incidence of adverse teratoma formation 339. Thus, it will be 
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very interesting to restrict and control the expression of these potent factors by including self-

targeting gRNAs. In this context, it might not only be important to restrict the transgene 

expression, but also to control the duration and amplitude of the pulse. Here, it would be 

promising to test gRNAs with different affinities to their targets as this would permit vector fine-

tuning in vivo. 

Taken together, our data clearly motivate the future expansion of these experiments and 

the continued development of the overall concept towards application in humans. In this 

respect, we acknowledge that the clinical relevance of the Cas9-transgenic mice that we used 

in our pilot work is obviously limited, yet this experiment provided us with the first seminal proof-

of-principle that rAAV vectors can indeed be efficiently targeted in vivo using the SpCas9 

endonuclease. Important to mention in this context is that after we had obtained these results, 

a study by Li et al. was published in 2018 340 that independently supports our data and 

conclusion, by also showing efficient cleavage of rAAV vectors in the mouse liver. Further 

noteworthy is that in our own study, we had used the relatively weak H1 RNA Pol III promoter 

to drive gRNA expression. Thus, it should be possible to even further improve the observed 

~50% reduction in transgene expression by using stronger RNA Pol III promoters, such as U6. 

Another intriguing option for future improvement towards use in humans is to deliver 

Cas9 mRNA in vivo using LNPs (lipid nanoparticles) instead of encoding it in viral vectors 341-

343. The advantages of such an alternative Cas9 delivery system are manifold and include e.g., 

the high tolerability of LNPs and the transient expression of the Cas9, which was shown to 

decrease the risk of off-targeting 303. Even more encouraging is that a new generation of LNPs 

has now be formulated that allows for concomitant delivery of Cas9 mRNA and chemically 

synthesized gRNAs. The promise of this approach has recently been exemplified by Finn et 

al. 341, who targeted the Ttr gene in the mouse liver. TTR protein levels started to go down 

significantly 20 h after intravenous LNP administration and reached their lowest levels after 

180 h. This fast onset, good safety profile and small window of Cas9 expression make this new 

system very attractive for future applications in humans. However, it remains to be tested 

whether such a system can target rAAV vectors that persist in multiple copies in a cell and, if 

so, with the same efficiency as an endogenous target. Until then, there is consensus that rAAV 

vectors remain the most attractive tools for Cas9 delivery to different organs in vivo 12, 14, 209.  

Collectively, the rAAV KS vector constructed in this work could be potently targeted and 

inactivated by Cas9 in vitro and in vivo, illustrating its great potential for a large variety of future 

applications including but not limited to human gene therapy. In fact, we have recently also 

reported that the rAAV KS reporter is a sensitive sensor with a large dynamic range and that 

it could be used as a tool to answer fundamental biological questions beyond its use in 

therapeutic applications  186.  
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 KS rAAV vectors can be combined with scAAV SIN split Cas9 vectors 

to mediate potent reduction in transgene and Cas9 expression 

Despite all the encouraging prospects of using Cas9 mRNA or RNP complexes, the 

delivery of these molecules to target cells is still inefficient, especially in in vivo applications. 

While the latter can be solved by expressing Cas9 from rAAV vectors, one limitation and readily 

conceivable disadvantage in their application is the long-lasting expression, which, as noted 

above, increases the risk of Cas9 off-targeting and immune responses. Here, we therefore 

devised and validated a new generation of self-inactivating (SIN) AAV/CRISPR vectors that 

combine efficient in vivo delivery with restricted and thus safer Cas9 expression.  

To this end, it was important to realize that two parameters predominantly govern the 

efficiency of in vivo delivery and expression of rAAV vectors: (i) the AAV capsid and (ii) the 

rAAV genome. For example, AAV8 and AAV6 capsids efficiently transduce hepatocytes and 

blood cells, respectively 344, 345, making them preferred candidates for gene transfer into these 

types of cells. This is also reflected by the use of AAV8 in various liver-directed gene therapy 

trials in humans 345, and by the frequent pre-clinical exploitation of AAV6 for ex vivo delivery of 

CRISPR repair templates in e.g. hematopoietic stem cells 346. Similarly, the currently available, 

AAV-based gene therapy products harness the efficiency of AAV1 in the muscle (Glybera) or 

AAV2 in the eye (Luxturna), or the ability of AAV9 to potently cross the blood-brain barrier 

(Zolgensma) 140, 144. Complementing these efforts to fine-tune AAV vector efficiency and activity 

on the capsid level, others including us have shown that similar improvements can be obtained 

on the rAAV genome level. In particular, it was shown that scAAV vectors result in a faster and 

often more potent transgene expression as compared to ssAAVs 226.  

Based on these two criteria, we aimed to optimize the Cas9 expression levels by first 

harnessing a novel split SaCas9 variant from our group that can be packaged into two scAAV 

vectors and therefore potentially results in faster onset and higher Cas9 expression than 

conventional ssAAV-Cas9 vectors (Carolin Schmelas; MSc. Thesis). Using this split Cas9 as 

a template, we added an anti-Cas9 gRNA cassette on top that is directed towards the N-

terminal part of the Cas9 itself, to create a two vector-based scAAV SIN CRISPR system (see 

Figure 46B). Next, we packaged our constructs into the AAV2 capsid, which potently 

transduces HEK293T cells (up to 100%; data not shown). When these cells were co-

transduced with the scAAV SIN CRISPR vectors and our KS reporter, a remarkably high 

concomitant anti-target and anti-Cas9 editing was achieved (section 3.4.5).  

Importantly, we have also already transferred our system into an in vivo context and 

performed a pilot experiment in mice to test the performance of our scAAV SIN split Cas9 

system in comparison to conventional, full-length Cas9-expressing ssAAV vectors (ssAAV 

FLCas9). In this experiment, we aimed to predominantly target the mouse liver and thus 

packaged our constructs into AAV8, which is, as mentioned above, a potent AAV serotype in 
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the liver. Strikingly, our preliminary data imply superior Cas9 expression levels not only in the 

liver but also in nearly all other organs that we analyzed in parallel (work performed together 

with Carolin Schmelas; data not shown). The varying degrees of increases in Cas9 expression 

that we measured are congruent with previous reports showing that the improvement in 

expression observed with scAAV vectors is cell- 226 and tissue-type-dependent 347. In the liver, 

the knockout efficiency of the KS-luciferase reporter was ~2-fold higher when the scAAV split 

Cas9 system was used as compared to ssAAV FLCas9. This fold increase in efficiency is in 

concordance with previous observations 348, showing a moderate increase in transgene 

expression (1.5- to 2.6-fold) from scAAV vectors in the mouse liver as compared to ssAAVs. 

The higher expression from scAAVs was linked to a larger number of transduced cells, 

improved vector stability and the preferable formation of circular monomeric forms 345, 347, 349 , 

which are the transcriptionally active forms of rAAV vectors in cells.  

A particularly intruiguing and thus noteworthy observation in our most recent pilot study 

was the up to 300-fold increased expression of split Cas9 from SIN scAAV vectors in the 

mouse skeletal muscle, as compared to ssAAV FLCas9. This is well in line with a study by 

Wang et al. 347 that revealed a 15-fold higher expression from scAAV as compared to ssAAV 

vectors in the mouse muscle. Thus, we are now planning a more comprehensive and further 

optimized study to test whether the superior performance of our system in this tissue will also 

translate into better in vivo knockout efficiencies. If observed, it will then be very tempting to 

test our vectors in animal models of human muscle disorders that are amenable to treatment 

with CRISPR, such as mdx or Ex50 mice which recapitulate frequent mutations that cause 

Duchenne muscular dystrophy in humans and that can, in principle, be repaired by 

AAV/CRISPR-induced exon skipping 350, 351.  

Yet another interesting target for scAAV split Cas9 application is the eye, based on data 

by e.g., Yoki et al. who showed that scAAV vectors outperformed ssAAVs in photoreceptor 

cells within the mouse eye 352. By contrast, the improvement in transduction efficiency in retinal 

pigment epithelial cells was only moderate, which again supports the existence of a cell-type 

dependent effect. 

Notably, in parallel to our work and that by Li et al. in AAV vectors 340, several other 

research groups have also begun to restrict Cas9 expression in a lentiviral vector context by 

applying, e.g, the “lentiSLiCES” 303 or the “KamiCas9” strategy 353. In both approaches, the 

Cas9 is inactivated by supplying an anti-Cas9 gRNA but they differ in the positioning of the 

gRNA cassette. In the lentiSLiCES system, a lentiviral vector was engineered that 

simultaneously expresses the Cas9, the target gRNA and the anti-Cas9 gRNA. To prevent 

Cas9 cleavage during vector production, the expression of Cas9 is regulated using 

tetracycline-responsive elements and producer cell lines stably expressing the Tet repressor. 

By contrast, in the KamiCas9 system, the Cas9 nuclease and the gRNAs were expressed from 
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separate transfer vectors. Importantly, regardless of gRNA positioning and the vector system 

used, all the above-mentioned studies and our own data consistently show high and 

comparable on-target activities in vitro and in vivo, with and without the SIN genotype. 

Finally, it is pivotal to mention that Cas9 activity could also be inhibited on the protein 

level using phage-derived anti-CRISPR inhibitors (Acr proteins) that have recently been 

discovered and adapted for use in mammalian cells 186, 354, 355 (see section 1.6). One interesting 

application of these proteins in the future is to e.g., prevent Cas9 activity during vector 

production, in case this process would be rate-limited by premature self-cleavage of the Cas9-

encoding vector. Acr proteins can also be utilized for spatio-temporal control of Cas9 

expression, as discussed in section 4.2.3 and as jointly reported by colleagues and us in two 

recently published studies 186, 356. 

 Towards a costumizable all-in-one rAAV SIN split Cas9 system for 

temporal and/or spatial control of Cas9 expression  

The perhaps most critical improvement of the current AAV/CRISPR vector generation 

including our new SIN split Cas9 variants towards clinical use will be to implement features 

that allow to spatially and temporally control Cas9 expression in treated patients using 

endogenous or exogenous triggers. As discussed in section 4.2.2, the split Cas9 scAAV 

vectors that were implemented here can outperform ssAAV counterparts in terms of Cas9 

expression; however, they are concurrently more limited with respect to the incorporation of 

regulatory elements owing to the limited size of scAAV vectors. Therefore, we aimed to further 

expand the power and potential of the split Cas9 systems by transferring the split halves into 

ssAAV vectors, along with the anti-target gRNA and the anti-Cas9 gRNA. As compared to the 

scAAV context, this setting provides multiple additional and beneficial features, such as: (i) a 

higher flexibility in the choice of promoters and regulatory elements, and (ii) an enhanced 

spatial and/or temporal control that can be acquired by coupling functional modules to the split 

halves of Cas9, or by expressing other components in trans, which do not fit into scAAVs. 

Importantly, we showed that the ssAAV SIN split Cas9 vectors constructed in this work can 

mediate potent knockout of both, target gene and Cas9. In addition, we demonstrated that 

these processes can be optimized by regulating the kinetics of anti-Cas and anti-target gRNA 

expression. 

For future work, we envision several combinatorial approaches that will further restrict 

and control Cas9 activity, and hence increase the safety index of CRISPR applications (see 

Figure 46C). For example, as discussed in section 1.7.2, there are several options to control 

the process of reconstitution of the split Cas9 into a full-length protein, including induction by 

using different triggers and by fusing Cas9 with cognate elements, such as those responding 

to ligands (e.g. rapamycin 216) or to the exposure to light 357. While the first approach requires 

the application (typically injection) of chemicals, which is an invasive procedure, light-based 
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strategies are usually safer and are currently only limited by the low tissue penetration, 

especially of the most-commonly applied green and blue light.  

Indeed, photoactivatable domains have already been shown to be readily combinable 

with the split Cas9 itself or the Acr proteins (Figure 46C; inducible systems). In the first 

approach, Nihongaki et al. 357 constructed a photoactivatable split Cas9 (paCas9) by fusing 

light-sensitive proteins (called magnets) to each split Cas9 half. Only upon exposure to blue 

light, these domains can dimerize and hence reconstitute a functional full-length Cas9. In the 

second strategy, Bubeck 186 in collaboration with our lab followed a different indirect approach 

to restrict Cas9 activity, which is to engineer a photoactivatable domain (LOV2) into the 

SpCas9 inhbitor AcrIIA4. Co-expression of this hybrid inhibitor together with the SpCas9 

allowed for spatio-temporal and light-dependent control of Cas9 protein activity. One 

advantage of this latter approach is that it does not require any further modifications of the 

Cas9 or gRNA (as compared to e.g., paCas9), rendering it compatible with all commonly used 

full-length and split Cas9 versions available to date.  

In conclusion, the optogenetic regulation of AAV/CRISPR activity is highly promising and 

would confer an additional level of regulation to our SIN split Cas9 system. However, further 

optimization is still required to reach tissues that are deeper in the body without the use of 

invasive strategies. Until then, we and others are engineering alternative Cas9 systems that 

are restricted in their expression by endogenous triggers or that can autonomously regulate 

themselves. For example, our ssAAV SIN CRISPR vectors would be readily combinable with 

strategies using miRNA-dependent regulation, to specifically turn off (mir-OFF) 358 or activate 

(mir-ON) 356 Cas9 expression (Figure 46C; post-transcriptional or translational control). 

Particularly exciting in this respect is the on-switch approach that has resulted from 

collaborative work of our group with the Niopek lab and has recently been jointly reported by 

Hoffman et al. 356. In this approach, miRNAs were used to regulate the expression of Acr 

proteins, by fusing the acr cDNA with cognate miRNA binding sites. Consequently, Cas9 

expression can be turned on in the presence of certain cell-specific miRNAs that downregulate 

the expression of the Acr protein. The acr ORF could be easily cloned into our ssAAV SIN split 

Cas9 vectors, which would permit tissue-specific (as defined by the selected miRNA) but 

transient Cas9 expression and thus combine the best of both worlds.  

The encouraging in vitro data reported for regulated Acr protein expression 186, 356 

furthermore support their future application for Cas9 inhibition in vivo, as a novel and perhaps 

clinically relevant option to spatio-temporally control Cas9 activity and, thus, therapeutic gene 

editing or chromatin modification. However, it should be considered that, similar to the bacterial 

Cas9 359, (i) Acr proteins can elicit an immune response because of their phage origin, and/or 

that (ii) the pre-existing immunity in humans may hamper the in vivo application of these 

proteins. Moreover, in contrast to the SIN CRISPR approach, the inhibition of Cas9 expression 



Discussion 

 

171 
 

can occur on multiple levels (dependent on the Acr protein 182, 183) but the Cas9 vector DNA 

and its expression remain unaltered. Therefore, it is most likely that a combination of different 

techniques and strategies will ultimately be needed to maximize control over AAV/CRISPR 

vectors in vivo and to hence maximize patient safety. 

Finally, Shen et al. have recently described an autonomous Cas9 system that combines 

a SIN approach with translational control 360. Therefore, akin to miRNA-dependent regulation, 

K-turn motifs were placed at the 5′ UTR of the Cas9 mRNA, to which the L7Ae protein can 

bind in order to prevent Cas9 translation (Figure 46C; translational control). In contrast to 

miRNAs, the L7Ae protein is not endogenously expressed and has to be encoded on the 

same Cas9 vector in cis. Strikingly, the combination of a SIN full-length Cas9 with K-

turn/L7Ae translational control resulted in a synergistic effect (>95% reduction of Cas9 

protein). It should now be interesting to investigate whether such an extra inhibition on the 

level of Cas9 translation is also beneficial when juxtaposed with our AAV SIN split Cas9 

approach. 

In the context of therapeutic gene editing, all the above-mentioned approaches to 

spatially and temporally control Cas9 expression serve a common ultimate purpose, which is 

patient safety. One important parameter that has briefly been mentioned before (section 3.4) 

is the immune response against the Cas9, which can lead to serious adverse side effects 304, 

359. While many of the discussed strategies offer a confinement of Cas9 activity, Cas9 

expression (mRNA/protein) itself is often not controlled. This highlights an additional 

advantage of the self-targeted SIN CRISPR systems including the one reported in this work, 

which target the Cas9 on the DNA level and thus further impede mRNA and protein expression. 

Important to mention along these lines is that the immunogenicity of the split parts and/or intein 

residues used in this work is currently unknown and requires further investigation. Our analysis 

of Cas9 protein expression / degradation kinetics revealed a high stability of the split Cas9 N 

part in HEK293T cells (the split C part is not recognized by the antibody, see sections 3.4.4 

and 3.4.5). Consequently, another layer of safety can be introduced by reducing the stability 

of the free split parts. This can be achieved, for instance, by fusing the inteins to protein-

destabilizing domains, such as SopE, ER50 or ddFKBP 361. Then, intein-mediated protein 

splicing excises out the inteins and the destabilizing domains, thereby rescuing the 

reconstituted protein from degradation. Importantly, this approach can only be applied to 

split Cas9 in the ssAAV context because the smallest of these domains (SopE) is around 

~300 bp and thus cannot be used together with scAAV split Cas9 vectors.  

As a whole, we have successfully constructed SIN split Cas9 vectors and confirmed 

efficient on-target activity and self-inactivation of these vectors. Moreover, we demonstrated 

the applicability of both, ss- and scAAV vectors for the delivery of the SIN CRISPR 

components. Importantly, the choice of one of the discussed systems over the other is highly 
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dependent on the intended application, route of delivery and site of activity (see Figure 46 for 

an overview of designs and applications). For example, scAAV split Cas9 vectors would be a 

good choice for target tissues that are hardly transduced with conventional ssAAV vectors. 

Optogenetic control might be an option for applications in the eye or other sites within the body 

that are easy to access by non-invasive means, such as skin or the gums. Finally, translational 

regulation using miRNAs might be especially promising in tissues with specific and high miRNA 

expression levels, e.g., miR-122 in the liver 362.  
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Figure 46. Deliberate inactivation of rAAV vectors using CRISPR/Cas9 and means for optimized 
spatio-temporal control of Cas9 expression. 

(A) Kill-switch rAAV vectors as described in this work. An anti-self gRNA is constitutively expressed and 

promotes the cleavage of the vectors upon expression of Cas9 in trans (viral-/non-viral-mediated 

delivery). The dose of the rAAV-transgene vector defines the “amplitude” of expression. In addition, the 

affinity of the Cas9/gRNA complex to the target site affects both, the kinetics and amplitude. (B) SIN 

split Cas9 vectors expressed from a scAAV backbone. The gRNA expression cassette against the Cas9 

N-terminus is positioned on the C-terminal split Cas9 vector. Expression from scAAV is usually faster 
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and more potent than from ssAAV because these vectors bypass the second-strand DNA synthesis 

step. The degree of fold increase is cell- and organ-dependent. (C) SIN split Cas9 vectors expressed 

from a ssAAV backbone. The anti-self and anti-target gRNAs are positioned on the split Cas C and split 

Cas N halves, respectively. Because ssAAV genomes are twice the size of scAAVs, additional modules 

can be incorporated to allow for a control on the level of protein translation and/or formation of 

functionally active Cas9 protein. This figure contains free clipart from https://smart.servier.com/ and 

https://www.vecteezy.com/.  
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