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Untersuchungen von Ladungsaustausch nackter und wasserstoff-artiger Io-
nen kleiner Kernladungszahl in den Röntgen- und extremen Ultraviolett-
Bereichen innerhalb einer Elektronenstrahl-Ionenfalle:
In der vorliegenden Arbeit wurde eine kryogene Elektronenstrahl-Ionenfalle für das
Ladungsbrüten seltener, kurzlebiger, radioaktiver Isotope an der ARIEL Einrichtung
am TRIUMF für zukünftige Untersuchungen astrophysikalischer Prozesse entworfen und
gebaut. Diese wurde bei einem maximal erreichten Elektronen-Strahlstrom von 1A
charakterisiert. Des Weiteren wurden Ladungsaustausch-Prozesse, die relevant für die
Schnittstelle von heißen Plasmen und kalter Gase in astrophysikalischen Umgebungen ist,
ausgiebig analysiert. In diesen Experimenten wurden ursprünglich wasserstoff-artige und
nackte Schwefel-, Argon- und Sauerstoff-Ionen, nach Einfang von Elektronen aus neutralen
Gas-Teilchen in hoch angeregte Zustände und anschließenden radiativen Relaxation durch
Emission von Röntgen-Photonen untersucht. Dabei wurde eine mögliche Erklärung für die
kürzlich beobachtete Emissionslinie bei 3.5 keV in Galaxienhaufen, mit einem vorgeschla-
genen Ursprung im Zerfall steriler Neutrinos, in Form von Ladungsaustausch induzierter
K-Schalen-Emission von wasserstoff-artigem Schwefel gegeben. Zusätzlich wurden Mes-
sungen von extrem ultravioletten L-Schalen-Übergängen nach Ladungsaustausch von
hoch geladenem Sauerstoff in einem Bereich von 8 nm und 20 nm unter Verwendung eines
Extrem-Ultraviolett-Gitterspektrometers präsentiert. Die Ergebnisse wurden mit ver-
schiedenen Ladungsaustausch-Modellen, die größtenteils auf der Multikanal Landau-Zener
Methode basieren, verglichen. Signifikante Unstimmigkeiten wurden sowohl zwischen
diversen Experimenten und Modellen, als auch zwischen den Modellen untereinander
festgestellt und ausgiebig diskutiert.

Charge-exchange studies of bare and hydrogen-like low-Z ions in the X-ray
and extreme-ultraviolet ranges inside an electron beam ion trap:
In this work, a cryogenic electron beam ion trap (EBIT) for charge breeding of rare,
short-lived isotopes at the ARIEL facility at TRIUMF was designed and assembled for
future investigations of astrophysical processes. It was characterized at a maximum
electron-beam current of 1A. Furthermore, charge-exchange (CX) processes, which are
relevant for the interface between hot plasmas and cold gases in astrophysical environments,
were extensively studied. In these experiments, hydrogen-like and bare sulfur, argon,
and oxygen ions capturing electrons from various neutral gas targets into highly-excited
states with subsequent radiative relaxation via emission of X-rays were investigated.
Thereby, a possible explanation for the recently observed emission line at 3.5 keV in galaxy
clusters, with a proposed origin in the decay of sterile neutrinos, was given, in the form
of CX induced K-shell emission from hydrogen-like sulfur. Additionally, measurements
of extreme-ultraviolet L-shell transitions following CX into highly ionized oxygen in the
range between 8 nm and 20 nm, utilizing a grating spectrometer, is presented. The results
are compared with different CX models, mainly based on the multichannel Landau-Zener
approach. Significant discrepancies between various experiments and models, as well as
the models among each other, were ascertained and are extensively discussed.
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1 Introduction

Mit der Theorie […] mit den Atomen mit mehr als einem Elektron ist es momentan
ein großer Jammer!1

Wolfgang Pauli, 19232

In ancient China 240 BC, a celestial apparition of a “broom star” was reported in the
Records of the Grand Historian [159, 147]. This descriptive term with several others like
“sweeping star”, “long star” or “candle-flame star” [127] implies the presence of a tail of
this celestial object nowadays classified as a comet. It was the first of the hitherto 25
sightings of Halley’s comet, named after the English astronomer Edmond Halley, who
determined the periodicity of this object in 1705. As an explanation for this phenomenon, a
broad spectrum of theories over several centuries ranging from meteorological phenomena,
exhalations from Earth, to optical illusions caused by reflections of sunlight was suggested
[147]. A comet, derived from the ancient Greek term komētēs (“wearing long hair”), is a
celestial body that is formed in the outermost, colder regions of the solar system within
the Kuiper belt or the Oort cloud. Due to the condensation of hydrogenic and carbonic
compounds in these regions, it consists mainly of water, carbon monoxide, carbon dioxide,
and formaldehyde molecules [14]. At large distances from the sun, the direct detection
of comets is challenging due to the small size of the nucleus in the order of typically
kilometers. Moreover, the surface of the nucleus consists of dense crystalline ice with a
mixture of organic compounds reducing the albedo to ∼ 4% [106]. The interior of a comet
is typically less solid. At a distance of ∼ 5 astronomical units, a comet interacts with the
solar wind and solar radiation leading to the formation of a coma by sublimation of ice
and dust particles. Evaporation and outpouring of volatile material cause the formation of
a dust tail and the ionization of those particles a gas tail, following magnetic field lines
and typically pointing in a slightly different direction than the dust tail.
Since the discovery of Halley’s comet, hundreds of other comets have been observed

and studied with earthbound telescopes. Not only comets are the subject of interest for
astronomical observations. With telescopes in the radio-frequency domain, galaxy clusters
and clouds of hydrogen were found. With visible-light telescopes, star constellations,
planets, and small celestial bodies were observed. However, the universe is hot and

1Engl.: The theory […] with atoms having more than one electron, it is currently such a great misery!
2Letter from Pauli to Sommerfeld, 1923 [88].
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dominated by high-energetic X-ray emission, since most of the matter is present in form of
highly ionized plasmas [66], where the majority of bound electrons compared to the neutral
matter are removed. Such hot environments prevail in active galactic nuclei, neutron stars,
binary systems, supernova remnants, and the solar corona. The observation of these objects
is impossible on the Earth’s surface since the emitted X-ray radiation is absorbed by the
atmosphere, and thus, space technology was required. With the launch of rockets in 1949
and satellites equipped with instruments for the detection of X-ray photons [120, 178]
beginning from 1977, the X-ray astronomy was founded in order to unveil the hot and
violent universe.
X-rays are mainly produced by the interaction of ions with high-energetic electrons.

One contribution is the Bremsstrahlung, where an electron is deflected by the electric
field of the nucleus losing its kinetic energy by emission of X-rays with a continuous flux
distribution as a function of the photon energy. The second mechanism is the excitation of
atomic transitions, leading to discrete and characteristic emission lines. This X-ray energy
is determined by the energetic difference of the initial excited and the final atomic state.
Besides the imaging of these hot sources to locate their position in the cosmos, spectro-

scopic investigations allow for the determination of the physical properties of astrophysical
plasmas. The position of spectral lines or transition energies provides information about
the elemental composition and corresponding charge state. From the intensity ratio of
specific spectral lines, the ion density and temperature can be determined. With these
parameters, atomic processes and physical conditions in hot astrophysical plasmas can be
investigated.
However, it was surprisingly found that X-ray emission is not exclusively restricted to

hot objects. In 1996 the comet C/Hyakutake 1996 B2, which passed by the Earth at a
distance of 0.109 astronomical units was investigated by Lisse et al. [115] with the German
Röntgen X-ray Satellite (ROSAT) and by Mumma et al. [125] with the Extreme Ultraviolet
Explorer (EUVE). With an average daytime surface temperature of 200K [65], a comet is
comparably cold, and thus, X-ray emission was not expected in the beginning. Nonetheless,
X-ray and extreme ultraviolet (EUV) emission from a volume surrounding the comet was
observed with the ROSAT satellite, equipped with X-ray and EUV cameras [41], see figure
1.1.
The X-ray image (a)) was acquired with the High-Resolution Imager (HRI) in a photon

energy range of 0.1 – 2.0 keV and the EUV image (b)) with the Wide-Field Camera (WFC)
in a range of 0.09 – 0.2 keV. The subfigure c) shows an optical image superimposed with
the X-ray and the EUV emission represented by white/black and yellow contour lines,
respectively.
Several explanations for the unexpected soft X-ray emission were proposed, including

thermal Bremsstrahlung [115], magnetic-field-line reconnection [128], Fermi acceleration
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Figure 1.1: Images from the comet C/Hyakutake 1996 B2 taken simultaneously on March,
27th, 1996 by the X-ray satellite ROSAT. a) X-ray image acquired with the High-Resolution
Imager. b) Extreme Ultraviolet image obtained with the Wide Field Camera. c) Overlay of
an optical image with EUV and X-ray emission, shown as yellow and black/white contour
lines, respectively. The nucleus of the comet is marked in each image. The sun is located
on the right-hand side, and the motion of the comet inclined by 45%. Adapted from Ref.
[1, 115, 131] and modified.

[81, 82], X-ray scattering from small dust particles [125], and charge transfer mechanisms
between the solar wind ions and the neutral gas surrounding the comet [49, 125]. The
latter approach was confirmed by Ref. [103] where the first cometary emission spectrum
in a wavelength range between 8 nm and 70 nm of the comet Hyakutake, was obtained by
EUVE equipped with a grating spectrometer. The dominant process was determined to be
charge exchange (CX), where a loosely bound electron of the neutral target is captured
into an excited state of highly charged O4+ . . .O6+, C4+ and He+ projectile ions of the
solar wind, with subsequent deexcitation and emission of a photon, reducing the charge of
the initial ion by one after the interaction.
Subsequent to the discovery of X-rays emitted from the comet Hyakutake, charge

exchange emission from other comets was observed [134, 102, 114].
In order to interpret the astrophysical observations, theoretical models have been de-

veloped for the charge-exchange process. Since the cross-sections for electron-capture are
not well known, laboratory measurements became crucial for benchmarking the theory. In
the field of plasma physics already in the late 1970s, total charge exchange cross-sections
for some elements in various charge states were measured utilizing accelerators and gas
targets [138]. However, the knowledge about the total CX cross-sections, solely, is not
sufficient in order to understand astrophysical spectra. Therefore, systematic spectroscopic
measurements are required for the investigation of cometary X-rays in the laboratory.
One of the first experiments mimicking the cometary CX process is presented in Ref. [22]

where an electron beam ion trap (EBIT), equipped with a high-resolution micro-calorimeter
as an X-ray detector, was utilized for production and storage of highly charged ions
interacting with a beam of neutral gas. In figure 1.2, the cometary emission spectrum of



12 Chapter 1. Introduction

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
In

te
n

si
ty

 (
a

rb
. u

n
its

)

X-ray energy (keV)

C4+ C5+ N5+ N6+ O6+ O7+

Figure 1.2: X-ray spectrum of the comet Linear C/1999 S4 obtained by the Chandra
X-ray space telescope. The intensity as a function of the photon energy. The crosses
represent the observation and the solid line the best fit utilizing the charge exchange
induced X-ray emission from EBIT measurements of C6+, C5+, N6+, N7+, O7+ and O8+

interacting with neutral CO2. Adapted from Ref. [22] and modified.

Linear C/1999 S4 and the laboratory-simulated spectrum using the EBIT is illustrated.
In these measurements highly charged carbon, nitrogen and oxygen ions, produced in the
EBIT interacted with a beam of neutral CO2. The resulting charge-exchange induced
X-ray emission is plotted as a function of the photon energy. The black crosses indicate
the observation of the Chandra X-ray space telescope, the solid black line the best fit
utilizing the single emission lines of C4+, C5+, N6+, N7+, O7+ and O8+, illustrated with
color traces, after charge exchange with the target gas inside the EBIT. The simulation
indicates a high abundance of hydrogen-like oxygen and carbon in the solar wind from 14
July 2000, followed by fully ionized carbon and hydrogen-like oxygen. This measurement
has also shown that charge exchange emission could be utilized as a diagnostic tool to
determine the composition of coronal mass ejection.

Further works were performed on the studies of cometary X-rays in laboratories utilizing
ion sources and gas targets where the highly charged ions interact with neutral gas [36].
Here, mainly L-shell transitions from principal quantum number states n = 3, 4, 5 to n = 2

of highly ionized oxygen and carbon ions induced by charge exchange were investigated in
the extreme-ultraviolet domain between 6 nm and 30 nm.

The discovery of CX from comets has attracted particular attention in the astrophysical
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community and gave rise to a number of publications concerning the interaction of the
solar wind with the Martian exosphere [101, 57], with Jupiter [171, 40], with the “dark side
of the moon” [174] and with the atmosphere of the Earth [73]. Outside the solar system, a
possible observation of charge exchange in the outer rims of the Cygnus Loop supernova
remnant (SNR) was reported in Ref. [99]. An enhanced emission feature at ∼ 0.7 keV
in the spectrum of the SNR was proposed to have an origin in K-shell transitions from
principal quantum number states n = 3, 4, 5, . . . to the ground state n = 1 of helium-like
oxygen O6+, but other possible sources are not excluded hitherto.

In 2014 the detection of an unidentified line-like emission feature at ∼ 3.5 keV in the
Perseus galaxy cluster and independent observations in other galaxy clusters with X-ray
space telescopes was reported. This feature was proposed to have an origin in a decaying
dark matter particle candidate, the sterile neutrino [39, 42, 170] since this line could not
be assigned to an atomic transition in standard wavelength databases. An explanation
for this emission line was given in Ref. [83], where a fully-ionized sulfur ion captures an
electron from atomic hydrogen into a high Rydberg state n. A direct radiative relaxation
from n ≥ 7 to the ground state n = 1 leads to emission of an X-ray photon with an energy
of ∼ 3.47 keV. These transitions are often missing in standard wavelength catalogs. The
fact that high-energetic states can be efficiently populated by charge exchange was not
considered in the model utilized in Ref. [39, 42, 170]. Since the hot galactic plasmas contain
significant amounts of hydrogen-like and fully-stripped sulfur ions [126] interacting with
clouds of atomic hydrogen, the CX process has to be considered in astrophysical modeling.
In this work, the scenario of CX between fully-stripped sulfur with neutral gas [83, 149]
is investigated and strongly supported. This measurement demonstrates the necessity of
laboratory X-ray measurements in order to explain anomalous X-ray emission in observed
astrophysical spectra of hot objects outside the solar system.

Besides the astrophysical motivation for investigation of the CX process, it is fun-
damentally crucial to understand the atomic processes of ion-atom collisions. For the
charge exchange process, a broad spectrum of theoretical models exists, ranging from
straightforward classical approaches, like the classical over-the-barrier (COB) model [142],
numerical quantum-mechanical two-state methods like Landau-Zener [179, 107] or mul-
tichannel Landau-Zener (MCLZ) to more sophisticated quantum mechanical molecular
orbital close-coupling (QMOCC) calculations. The most established model in the astro-
physical community for simulation of CX spectra is the MCLZ approach. To generate
reliable synthetic CX spectra a full knowledge of the principal quantum number state n,
angular momentum l and spin s of the captured electron, and the radiative transition rates
of all possible decay channels to the ground state is required. For non-bare projectiles,
the calculated cross-section for CX is resolved in n and l of the captured electron, but
the reliability with systems containing more than one electron is limited. For bare ion



14 Chapter 1. Introduction

collisions resulting in a hydrogen-like system after CX, only n-resolved cross-sections can
be calculated with MCLZ [53], and an l-distribution must be applied. Depending on the
collision velocity between projectile and target different angular momentum distributions
are applicable. To benchmark these approaches and theories, systematic spectroscopic
laboratory measurements are necessary.
In addition to the charge exchange process, other various atomic processes in highly

ionized plasmas are present in hot astrophysical environments, including interaction with
high-energetic photons and free electrons. In hotter environments present in stars located at
the asymptotic giant branch of the Hertzsprung-Russel diagram, or in supernova explosions
and neutron star mergers, heavy elements of the periodic table are formed by slow or
rapid neutron capture, denoted as the s-process and the r-process, respectively. In order to
understand the relevant processes in astrophysical plasmas, various laboratory experiments
have been performed in storage rings [180], in electron beam ion traps [26, 15], and other
facilities.
In this work, an electron beam ion trap acting as a charge breeder at the rare-isotope

facility at TRIUMF was developed, assembled and characterized. It will provide highly
charged, rare, short-lived isotopes in a specific charge state for the investigation of the
stellar nucleosynthesis, in particular, the r-process and the s-process, among others.
Furthermore, systematic charge exchange measurements in the X-ray range of fully ionized

ions interacting with different neutral target gases were performed utilizing the FLASH
electron beam ion trap, equipped with photon detectors in the EUV and X-ray regime. To
benchmark the models, the spectra of Ar18+ colliding with various neutrals are compared
to different theoretical approaches, including a cascade model for the reconstruction of the
angular momentum distribution of the captured electrons, developed within the scope of
this thesis. Moreover, CX measurements of fully ionized sulfur interacting with neutral
CS2 were conducted in order to investigate the proposed explanation of Ref. [83] for the
origin of the 3.5 keV dark matter line. Additionally, an in-situ charge exchange experiment
in the EUV range in an electron beam ion trap is presented. Here, the CX interaction of
O8+, O7+, and O6+ with neutral O2 was investigated with a grating spectrometer in a
wavelength range of 8 – 20nm.
This thesis is structured as follows. In the second chapter, the theoretical fundamentals

relevant for the description of charge exchange and atomic processes in an electron beam ion
trap, in general, are provided. In the third chapter, the single components and the function
principle of an EBIT are briefly described with the focus on the CANREB-EBIS, which
was developed and characterized within the scope of this work. In the fourth chapter,
the experimental setup, the data acquisition, and the charge exchange measurements
of highly charged argon, sulfur, and oxygen are presented with subsequent analysis and
interpretation. The last chapter is dedicated to the summary of the experimentally obtained
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results and comparison to theoretical models, a discussion of the interpretation and an
outlook with regards to future experiments and space missions investigating the process of
charge exchange.





2 Theoretical fundamentals

In this chapter, a brief description of the theoretical fundamentals relevant to this work
will be provided. Since ionic systems with one electron, hereafter denoted as hydrogen-like,
or H-like systems are investigated in the measurements, the starting point will be the
quantum-mechanical description of the hydrogen atom followed by the expansion of the
approach to multi-electron systems. In the third part, explanations of atomic processes in
plasmas with a focus on the process of charge exchange, which is the central component of
this thesis, will be provided.

2.1 Fundamentals of quantum mechanics

2.1.1 The hydrogen atom

The simplest atomic system is atomic hydrogen composed of an electron in a Coulomb
potential V of a proton described by

V = − Ze2

4πε0|~r|
(2.1)

with atomic number Z = 1, elementary charge e, the permittivity of free space ε0 and the
distance r between the proton and the electron. According to N. Bohr [37], the energy
level of a bound electron in the shell n can be calculated to

En = −Ry
Z2

n2
, Ry =

mee
4

8h2ε20
, n = 1, 2, 3, ...N (2.2)

with electron mass me, Planck constant h, the principal quantum number n, and Rydberg
energy Ry = hcR∞ ≈ 13.6 eV where R∞ is the Rydberg constant. The Schrödinger
equation [144, 145, 146]

ĤΨ(~r, t) = i~
∂

∂t
Ψ(~r, t) (2.3)

for this system has an analytical solution where the eigenvalues of the Hamilton operator

Ĥ = − ~
2me

∆r + V (~r, t) (2.4)
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are equivalent to equation 2.2. The major difference to the approach in 2.2 is the consider-
ation of wave functions Ψ(~r, t). By separation of Ψ(~r, t) into a radial part Rnl(r) and an
angular part Ylm(Θ,Φ) the solution of the Schrödinger equation is given by

Ψ(~r, t) = Rnl(r)Ylm(Θ,Φ) (2.5)

with the spherical harmonics Ylm and

Rnl = Dnl exp
(
− Zr

na0

)(
2Zr

na0

)l

L2l+1
n+l

(
2Zr

na0

)
(2.6)

with Laguerre polynomials L2l+1
n+l , a normalization constant Dnl, and a constant a0 which

can be interpreted as the classical Bohr radius for the ground state. The wave functions
describe electron probability densities instead of discrete orbits. For high principal quantum
numbers n the system is in a so-called Rydberg state which approaches a classical orbital
according to the correspondence principle. The energy levels are n2-fold degenerated,
and the system is fully described by the principal quantum number n = 1, 2, 3, . . . , N ,
the angular quantum number l = 0, 1, 2, . . . n − 1 and the magnetic quantum number
m = −l,−l + 1, . . . , l − 1,+l.

In first-order approximation, the theory provides accurate values for the energy levels, but
within the frame of the theory of special relativity, this approach is not Lorentz-invariant.
In 1928 P. Dirac presented a covariant formulation of the Schrödinger equation. Here the
relativistic energy-momentum relation

E2 = ~p2c2 +m2
0c

4 (2.7)

has to be satisfied. The most straightforward approach is an introduction of a Hamilton
operator

Ĥ = c~α~p+ βmc2 (2.8)

where ~α and β are 4 × 4 matrices that fulfill the relation ~α2 = 1 and β2 = 1. The
eigenvalues of the Hamilton operator are given by

E = ±
√
c2~p+m0c4, (2.9)

where the negative solution of the energy describes the anti-particles. By consideration of
the Coulomb potential, the complete Dirac equation can be written as

EΨ =

(
c~α~p+ βmec

2 − Zα

|~r|

)
Ψ. (2.10)
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with the Sommerfeld’s fine-structure constant α = e2/4πε0ch. An expansion of those
eigenvalues in terms of Zα leads to

Enj = m0c
2

[
1− (Zα)2

2n2
− (Zα)4

2n3

(
1

j + 1/2
− 3

4n

)
+ . . .

]
(2.11)

with the total angular momentum j = l ± 1
2 . The first term describes the rest energy of

the electron, the second term the binding energy in the Coulomb potential and the third
term can be interpreted as the relativistic increase of the mass and the interaction between
the spin and the angular momentum of the electron. Due to this spin, a magnetic moment
~µS is induced which can interact with external magnetic fields or magnetic moments of
other electrons. The interaction of ~µS with the induced magnetic moment due to the
motion of the electron in the Coulomb potential of the nucleus is denoted as the spin-orbit
coupling (LS-coupling) where the non-relativistic energy levels are split. The splitting is
termed as the fine structure which scales with a factor (Zα)2

n concerning the binding energy.
The interaction of the spin and the angular momentum with the nuclear spin leads to a
splitting which is called hyperfine structure, which is smaller by a factor of 2000 than the
fine-structure splitting.

By including the interactions with the quantized electromagnetic field more effects which
shift the energy levels manifest, referred to as quantum-electrodynamics (QED). In the
first-order approximation, only interactions with one single virtual photon are considered
leading to two effects: the self-energy and the vacuum polarization. The self-energy is
denoted as the interaction between an electron with itself by emission and subsequent
absorption of a virtual photon where the trajectory of the electron is slightly perturbed.
The vacuum polarization is a short-termed creation and annihilation of electron-positron
pairs leading to a slight deviation from the Coulomb interaction resulting in a cancellation
of the degeneracy of the 2s1/2 and the 2p1/2 state which was experimentally shown in 1947
by Lamb and Retherford [105]. This effects scale with a factor of Zα2/n3.

2.1.2 Multi-electron systems

For systems containing more than one electron, the interaction between the electrons
among each other has to be considered. Therefore an analytical solution of the Schrödinger
equation can not be provided in general. In the non-relativistic case, the Hamiltonian for
an N -electron system is given by

ĤTot =

N∑
i=1

(
p̂2

2me
+ V (~ri)

)
+
∑
i<j

e2

|~ri − ~rj |
(2.12)
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with total number N of electrons, the momentum operator p̂, electron mass me, charge
e and position vector ~ri of the i-th electron. The corresponding Schrödinger equation
can be solved by a Hartree-Fock approximation [87, 69]. The approach is an assignment
of a wave function to each electron with a modified nuclear potential by the remaining
electrons. The total wave function |Ψ(1, . . . , N)〉 of the system can be written as a product
of the single-electron wave functions ψ(i), by the satisfaction of the Pauli principle which
prohibits two electrons from populating the same quantum state. Thus the wave function
can be represented by a slater determinant

|Ψ(1, . . . , N)〉 = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(1) ψ2(1) · · · ψN (1)

ψ1(2) ψ2(2) · · · ψN (2)
...

... . . . ...
ψ1(N) ψ2(N) · · · ψN (N)

∣∣∣∣∣∣∣∣∣∣
. (2.13)

The solution of the Schrödinger equation is obtained by a numerical method, where the
single wave functions are iteratively varied in order to minimize the energy of the system.
In each iteration the nuclear potential is adjusted for the wave functions ψ(i), considering
the screening effects. The relative uncertainty of this approach is in the order of 0.5%.
For a relativistic treatment of the system, the Hamiltonian has to be modified. The
Dirac-Coulomb-Breit operator

ĤDCB =

N∑
i=1

ĤDirac +
∑
i<j

e2

rij
−
∑
i<j

B̂ij (2.14)

is a composition of the Dirac-Hamilton operator ĤDirac, Coulomb repulsion e2

rij
of two

electrons and the Breit operator B̂ij . The latter two operators are represented by

ĤDirac =
(
cα×

(
p̂− e

c
~A
)
+ βmc2 + eΦ

)
(2.15)

B̂ij =
e2

2rij

(
~αi~αj +

(~αirij)(~αjrij)

|~rij |2

)
, (2.16)

respectively. The Dirac operator describes the coupling to an electrical field with a vector
potential ~A, a scalar potential eΦ and the Dirac matrices ~α and β, described in equation
2.8. The magnetic interaction between the electrons and the retardation of the magnetic
and electric potentials are considered by the Breit operator in the first-order approximation
in αZ. Second-order quantum electrodynamical (QED) effects like vacuum polarization
where an electron interacts via a virtual photon with a virtual electron-positron pair, are
disregarded.

Modern theoretical many-body QED approaches utilize perturbational and variational
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calculus to determine the properties of many-electron systems. The method relevant for
this work is the configuration interaction method (CI), where the total wave function is
composed of a linear combination

ΨTot =
n∑

i=1

ciΦi (2.17)

of n states with the electron configurations Φ, which is a combination of single-electron wave
functions, in analogy to the Slater determinant in equation 2.13, and the mixing coefficients
ci. By variation of the mixing coefficients with predetermined Φi, the total energy of the
many-body system is minimized. This method is applied by the flexible atomic code (FAC)
[85] utilized in this work. Other approaches like the Multi-Configuration-Hartree-Fock
(MCHF), Multi-Configuration-Dirac-Fock (MCDF) or perturbation theoretical methods
like the Relativistic Many-Body Perturbation Theory (RMBPT) [121] are not discussed
within the frame of this thesis.

2.2 Fundamentals of plasma physics

2.2.1 Highly charged ions

Atoms, where most of the electrons with regard to their atomic number are detached, are
denoted as highly charged ions (HCI). Like a neutral atom, it is a system consisting of
a nucleus with a specific charge and one or multiple bound electrons. A particular case
of an HCI is a fully ionized atom, where all electrons are removed, and only the nucleus
remains. One of the established notations for the specification of the charge state is the
spectroscopic notation, where the ionization state of the ion is given by the symbol of
the regarded element followed by a Roman numeral, where I represents the neutral. An
argon atom with the atomic number Z = 18 and one remaining electron, for example, is
denoted as ArXVIII. The charge state can also be described by an isoelectronic notation
of the number of the remaining electrons N to the corresponding neutral element with N
electrons. In the case of ArXVIII, it can be termed as hydrogen-like. Another notation
of the charge state is the symbol of the element with the superscripted Arabic number
of removed electrons or remaining positive charges with a following plus sign. For the
example of hydrogen-like argon, it is Ar17+. Analogous to neutral atomic systems the
electronic shell of HCIs can interact with photons, free electrons or loosely bound electrons
of neutral systems. The latter interaction is denoted as charge exchange and is the main
subject of this thesis. In the following sections, these interactions will be briefly described.
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2.3 Atomic processes in plasmas

2.3.1 Excitation

An ion can be excited to a higher energetic state by the addition of energy into the system.
Thereby a bound electron is elevated into a higher energetic level if the added energy is
sufficient to induce this transition.

2.3.1.1 Electron-impact excitation

In the case of energy transfer by a free electron to the ionic system, the process is designated
as electron-impact excitation of the form

A+ e−kin → A∗ + e−kin′ , (2.18)

where A represents the ion and e−kin a free electron with a specific kinetic energy. After the
collision the ionic system is in an excited state A∗. The cross-section σEIE for this process
is given by the Bethe approximation [140]

σEIE =
8π√
3

1

Ekin

IH
Ej − Ei

fijga
2
0 (2.19)

with the kinetic energy of the free electron Ekin, the threshold ionization energy of atomic
hydrogen IH, the classical Bohr radius a0, Gaunt factor g, and the corresponding oscillator
strength fij of the transition from an initial level j to the final level i with energies Ej and
Ei, respectively. The Gaunt factor is a quantum-mechanical correction for the classical
absorption cross-section and describes the probability of the transition of an incident
electron to an energetic state Ekin′ as a function of the initial kinetic energy Ekin.

2.3.1.2 Photoexcitation

If a photon transfers the energy for the excitation with energy hν, the process is denoted
as photoexcitation with the corresponding reaction equation

A+ hν → A∗. (2.20)

In contrast to electron-impact excitation, the photoexcitation is a resonant process that
only occurs if the energy of the incident photon matches the energy difference of the
initial and excited state. This process can be considered as an interaction of the electronic
shell with a radiation field. On the other hand, a transition from an excited state to an
energetically lower state can occur by the emission of one or multiple photons. This process
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is given by
A∗ → A+ nhνn (2.21)

with an integer number n of photons with energy hν. Since no laser-spectroscopic mea-
surements are performed and the energy spectral densities of the radiation field in the
plasma are comparably low, this process will not be discussed further.

2.3.1.3 Ion-Ion collisions

In general energy transfer by inelastic ion-ion collision is possible, but due to strong
Coulomb repulsion, the bound electron experience a small energy change and thus only
energetically adjacent states can be populated [172]. For higher collision energies above
10 keV, ion-ion collisions become essential. In Ref. [172], the cross-section for this process
is derived analogously to the Bethe approximation for electron-impact excitation, modified
with certain scaling relations. Since the collision energies investigated in this work are
comparably small, this process will be neglected.

2.3.2 Ionization

The primary mechanism for the production of highly charged ions in the following exper-
iments is electron-impact ionization, where an initially neutral atom interacts with free
electrons with a specific kinetic energy. The loosely bound electrons of the system are
subsequently detached by impact with the free electrons until their kinetic energy does not
suffice to exceed the ionization potential. The reaction mechanism is described by

Aq+ + e− → A(q+1)+ + 2e− (2.22)

with an ion A in charge state q. The cross-section for this process as a function of the
kinetic energy Ekin of the free electron is given by the semi-empirical Lotz formula [116]

σEII =
N∑
i=1

aiki
ln (Ekin/EB)

EkinEB

{
1− bi exp

[
−ci

(
Ekin
EB

− 1

)]}
(2.23)

with the binding energy EB ≤ Ekin of the released electron and the number ki of electrons
in the subshell i. The parameters ai, bi and ci depend on the element and have to be
determined experimentally. For Ekin < EB no ionization can occur. For Ekin = EB the
cross-section is zero and achieves a maximum at Ekin ≈ 2.3EB. For high collision energies
Ekin � EB equation 2.23 can be simplified to

σEII ≈
lnEkin
EB

. (2.24)
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Furthermore, a bound electron can be detached by absorption of a photon with sufficient
energy according to

Aq+ + hν → A(q+1)+ + e− (2.25)

with a photon energy hν ≥ EB. This process is denoted as photoionization.

2.3.2.1 Auger-Meitner decay

The detachment of an electron by interaction with a photon can also occur resonantly via
an autoionizing state. This process is denoted as Auger-Meitner decay and is illustrated
schematically in figure 2.1. In the first step an inner-shell electron can be excited to a
higher energetic level by absorption of the photon resulting in a doubly excited state as
shown in panel 1) of the Auger decay in the figure. Relaxation to the ground state can
proceed non-radiatively by transfer of the energy to an excited electron, releasing it into
the continuum (panel 2)).

2.3.3 Recombination of ions with electrons

The time inverse processes to the corresponding ionization mechanisms discussed in
the previous section, ceasing with a free electron into the continuum, are indicated as
recombination processes. In general, the reaction is given by

Aq+ + e− → A(q−1)+ + hν. (2.26)

2.3.3.1 Radiative recombination

A capture of a free electron into a bound state of an ion is denoted as radiative recombination
(RR), which is the time-inverse process of photoionization (compare RR panel of figure 2.1).
Here a free electron with kinetic energy Ekin recombines into a bound state by emission of
a photon with an energy corresponding to the sum of the kinetic energy and the binding
energy of the captured electron with

hν = Ekin + EB. (2.27)

The cross-section of this non-resonant process is given by a modified Kramers formula [100]

σRR =
8π

3
√
3

α5

n3
Z4
Eff

EkinEγ
, (2.28)

where n represents the principal quantum number of the state in which the electron is
captured, ZEff the effective charge and Eγ the photon energy.
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Figure 2.1: Schematic illustration of the process of dielectronic recombination (DR),
radiative recombination (RR) and Auger decay.

2.3.3.2 Resonant recombination

Electron capture can also occur resonantly. Here a free electron with kinetic energy Ekin

recombines into a bound state by simultaneous excitation of one or several inner-shell
electrons as illustrated in the first step of the DR panel in figure 2.1). The first-order
recombination process, where one inner-shell electron is excited, is denoted as dielectronic
recombination, according to the scheme

Aq+ + e− → A((q−1)+)∗∗ → A(q−1)+ + hν (2.29)

with an intermediate doubly excited state A((q−1)+)∗∗. Here, the sum of the kinetic energy
of the electron and the binding energy of the state, in which the electron is captured, has
to match the energetic difference between the ground state and the excited state of the
excited electron. By emission of a photon with a characteristic energy corresponding to
the energetic difference between the excited and final state, the system stabilizes to the
ground state.

Analogously to the Auger notation, the shell of the initial state of the excited electron is
termed first, followed by the shell of its final state and at last the shell in which the free
electron recombines. For example, a free electron is captured into the L-shell by excitation
of a K-shell electron into the L-shell. This specific resonant capture process is denoted as
K-LL dielectronic recombination. Processes of higher orders like trielectronic recombination
have been investigated in other works [30, 29, 28, 27] and will not be discussed further.
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2.3.4 Charge exchange

Charge exchange (hereafter denoted as CX) is a semi-resonant atomic process where a
highly charged ion interacts with a neutral molecule or atom in proximity, leading to a
transfer of one or more loosely bound electrons of the neutral target to an excited state of
the highly charged projectile followed by radiative stabilization to the ground state. This
process can be described as

Aq+ +B → A(q−n)+∗ +Bn+ → A(q−n)+ +Bn+ +mhν, (2.30)

where A is the atomic number of the projectile ion with charge q, B the atomic number of
the neutral target and n the number of captured electrons.
During the CX process, the highly charged projectile approaches the neutral target

leading to a superposition of their electrostatic potentials and thus to a distortion of the
energy levels. At certain internuclear distances Rn of the donor and the projectile, the
energy levels overlap, and the system forms a quasi-molecule. At this so-called “curve
crossings”, the electron of the donor may be transferred non-radiatively to the projectile
[173]. Curve crossings occur at different internuclear distances Rn leading to a possible
capture of the electron into different energy states. Preferably those energy levels of the
HCI are populated which match approximately the binding energy of the loosely bound
electron of the donor resulting in a capture into a high Rydberg state peaked around a
principal quantum number nCX. The distribution of the angular momentum states and
spin states strongly depends on the species of the projectile, the donor, the relative collision
velocity between both and the number of transferred electrons [95].
In case that the donor has more than one electron, multi-electron capture is also possible

introducing additional processes and interactions like auto-ionization, true double capture,
correlated double capture, interatomic auger decay, et cetera increasing the complexity
of the describing model tremendously. Signatures of multi-electron capture have been
observed by other groups [93, 9, 10], but only single-electron capture will be considered
within the scope of this thesis.
The quasi-molecule dissociates due to a Coulomb explosion resulting in a highly charged

ion with a reduced charge and an initially neutral with increased charge. CX between
an HCI and an ion is also possible, but the cross-section for this process is small due to
Coulomb repulsion and therefore will be neglected in this work.
The shape of the spectra resulting from charge exchange is highly sensitive to the

quantum numbers of the state in which the electron is captured. The population of low
angular momentum states predominantly leads to emission of photons with somewhat
higher energy (compare to figure 2.2). Due to selection rules, an electron in the initial state
np can decay directly to the ground state 1s. An electron in ns may decay to (n− 1)p and
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Figure 2.2: Electron capture in lower angular momentum states will lead to emission of
photons with comparably higher energy.

subsequently to the ground state.
However, an electron in a high angular momentum state nl would reduce its angular

momentum by radiative cascades with ∆n = −1 and ∆l = −1 to the ground state resulting
in the emission of several comparably low energetic photons (compare to figure 2.3).
In order to understand the CX spectra of astronomical observations or laboratory

measurements, detailed state-resolved models are required. In the following, a brief
description of the most common theoretical models which are applied for different ranges
of collision velocities between target and projectile will be given.

2.3.4.1 The classial over-the-barrier model (COB)

A simple approximation applicable for collision energies between the highly charged
projectile and the neutral target in the range between 100 eV/amu and 10 keV/amu [36]
is given by the classical over-the-barrier (COB) model [142]. The basic principle is that
a highly charged projectile together with a neutral target in proximity form a joint
electrostatic potential, where the captured electron can move freely inside this potential
well leading to the formation of a quasi-molecule. The requirement for this process is that
the height of the potential well between projectile and target is lower than the ionization
energy of the target electron.
The joint potential V between the two nuclei with an internuclear distance R can be
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Figure 2.3: Electron capture into higher angular momentum states will lead to emission
of several photons with comparably lower energy.

written as
V (r) = − q

|R− r|
− 1

|r|
for 0 < |r| < |R|, (2.31)

where r represents the distance to the target nucleus and q the charge of the projectile.

Calculating the zero-crossing of the first derivative of V (r) provides both, the position
r0 of the top of the potential with

r0 =
R

√
q + 1

(2.32)

and the height of the potential barrier Vmax with

Vmax = −
(
√
q + 1)2

R
. (2.33)

The loosely bound electron of the neutral has at infinite distance R = ∞ a binding
energy of IP, which is increased due to the Stark shift caused by the approaching Coulomb
potential of the projectile:

I(R) = IP − q

R
. (2.34)
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The electron is transferred if Vmax is lower than its binding energy:

−
(
√
q + 1)2

R
≤ IP − q

R
. (2.35)

Setting this condition leads to the internuclear separation RCX, where the charge exchange
occurs with

RCX =
2
√
q + 1

−IP
. (2.36)

After dissociation of the quasi-molecular state, the potential barrier increases with increasing
distance of both collision partners and the initial binding energy of the captured electron
at the barrier crossing is lowered due to the Stark shift. The charge of the projectile is
reduced, and the charge of the target is increased by one, respectively:

If = IP(RCX) +
1

RCX
= IP − q − 1

RCX
. (2.37)

With a classical approximation of the energy levels En = q/n2, the principal quantum
number nCX in which the electron is captured can be estimated to

nCX =
q√
|If|

=
q√∣∣∣−IP (1 + q−1

2
√
q+1

)∣∣∣ (2.38)

with the argument inside the square root given in atomic units. The cross-section for this
process can be determined geometrically from equation 2.36 with

σ = πR2
CX = π

(
2
√
q + 1

−IP

)2

, (2.39)

which is typically in the order of 10−15 − 10−14 cm2. As an example, a collision between an
Ar18+ ion and neutral argon is illustrated in figure 2.4. The initial ionization potential of
the neutral is IP = −15.76 eV. At an internuclear distance of RCX = 8.2 a.u., the electron
is captured in a quasi-molecular state with a binding energy of IP = −45.65 eV. After
transfer of the electron to the projectile and dissociation of the quasi-molecular state
the final binding energy is If = −44.0 eV corresponding to a principal quantum number
nCX = 10 according to equation 2.38, in which the electron is captured.
In figure 2.5, the calculated principal quantum number nCX is plotted as a function of

the charge state of the projectile for collisions with different targets.
The COB gives a reasonable estimate of the cross-section for CX and the most probable

level nCX for electron capture, but it does not provide an n− or l-distribution. The
incorporation of conservation of the angular momentum l of the captured electron to the
COB model is given in Ref. [43]. This extension is based on the principle that an electron
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Figure 2.4: Top left: An Ar18+ is approaching a neutral argon atom at R = 0. Top
right: At R = RCX = 8.2 a.u. the potential barrier is lowered, and the electron of the
neutral may be transferred. Bottom left: The system forms a quasi-molecular state where
the binding energy of the shared electron does not change. Bottom right: Dissociation
of the quasi-molecular state. The charge of the projectile is lowered, and the charge of the
target increased by one, respectively. The binding energy of the captured electron in the
final state is lowered due to the Stark shift caused by the charged target.
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Figure 2.5: Most probably quantum number nCX in which an electron is captured during
CX as a function of the charge of the argon projectile for collisions with different targets,
according to the classical over-the-barrier model.
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of the target has an angular momentum in the order of bv with respect to the co-moving
frame of the projectile, where b represents an impact parameter and v the relative velocity
of the collision partners. The total CX cross-section σl is given by

σl = A2π

∫ RCX

0
Wl(b)bdb (2.40)

with a proportionality factor A and the probability distribution Wl(b) as a function of the
impact parameter b. The distribution Wl(b) can be written as

Wl(b) = Θ(l + 1− bv)Θ(bv − l), (2.41)

where the step function Θ represents the conservation of the angular momentum.

Including the centrifugal potential of the captured electron with angular momentum l

leads to a modified internuclear separation R′
CX where charge exchange occurs with

R′
CX(nCX(l)) =

2(q − 1)

−2|IP|+ q2/nCX(l)
2 . (2.42)

The principal quantum number nCX(l) as a function of the angular momentum l is given
by

nCX(l) = q

√
2
√
q + 1

2|IP|(q + 2
√
q)

×

√
1 +

(q − 1)(q +
√
q)2|IP|l2

2q(2
√
q + 1)3

. (2.43)

Additionally, a proportionality factor A is introduced, which represents an angular mo-
mentum distribution with

A =
2l + 1

2l + 1 + n2
. (2.44)

The normalization of Wl(b) leads to

Wl(b) =
1√
π∆l

[
exp

(
− l

′ − vb

∆l

)2

+ exp
(
− l

′ + vb

∆l

)2
]
, (2.45)

where∆l = RCX
√
2/(3

√
π)∆E represents the width of the l-distribution around l′ = l+1/2

with the uncertainty of the barrier height ∆E.

With equation 2.40,2.44, and 2.45 the l-resolved cross-section σl can be calculated to

σl =
2l + 1

2l + 1 + n2
2
√
π

∆l

∫ RCX

0
bdb

[
exp

(
− l

′ − vb

∆l

)2

+ exp
(
− l

′ + vb

∆l

)2
]
. (2.46)

The theoretical cross-sections, according to equation 2.46, are presented in figure 2.6 for
a collision of O6+ and atomic hydrogen as a function of the relative collisional velocity.
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Figure 2.6: Calculated cross-section for collisions between O6+ and atomic hydrogen as a
function of the relative collision velocity vrel for different angular momentum states. The
data is extracted from Ref. [43].

Higher angular momentum values appear at higher collision velocities.
Further extensions of the COB model like multiple electron capture and for partially

charged ions, are given in Ref. [129] and will not be covered within the scope of this work.

2.3.4.2 The classical trajectory Monte Carlo method (CTMC)

A different, more sophisticated approach is given in Ref. [7] by utilizing a Monte Carlo
method. The model is based on tracing a three-body system consisting of two protons and
an electron by determination of the time-dependent phase space of each particle for a large
number of particles from a microcanonical ensemble and employment of Kepler’s equations
and the Bohr-Sommerfield model for atomic hydrogen. An improved model for collisions
between highly ionized atoms and atomic hydrogen is described in Ref. [132]. This method
is applicable for high collision energies above ∼ 5 keV/u and not in a good agreement for
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relatively low collision energies as predominant in an EBIT plasma [55].

2.3.4.3 The multichannel Landau-Zener approximation (MCLZ)

An accurate model for low-energy collisions is given by the multichannel Landau-Zener
approximation (MCLZ) [107, 179] by consideration of quasi-molecular energy configurations
between an ion and a neutral for single-electron capture. It provides nlS-resolved cross
sections for charge exchange processes [123]. The justification for the quasi-molecular
state is the relative low collision velocity v � v0 between projectile and target, where v0
represents the speed of an electron on a classical orbit. The velocity of those electrons is
high enough to adjust their motion steadily relative to the position of the two approaching
nuclei. The adiabaticity of this collision process is affected by the electron transition time,
which is determined by the relation of the time the electron is bound and being transferred
between both nuclei [95]. For high collision velocities, the process can be considered as
diabatic, for slow collision velocities it becomes adiabatic [113]. At larger internuclear
distances R between the neutral target and the highly charged projectile, the interaction
can be described by a diabatic potential curve [123] with

Vi = A exp (−BR)− αq2

2R4
, (2.47)

where A and B in the first term are coefficients estimated in Ref. [44] and the second
term describes the polarization potential with the dipole polarizability α of the target and
charge q of the projectile. During their approach, the target and the projectile move on
an adiabatic potential curve represented as a dashed gray line in figure 2.7. Due to the
non-crossing rule, according to Wigner and von Neumann [177], the potential curves of the
adiabatic states will never cross. At a particular internuclear distance RC, a transition from
one curve to the other might occur with a specified transition probability which describes
the process of a transfer of an electron from the target to the projectile. After transfer
of the electron, both collision partners are positively charged, and the Coulomb repulsion
dominates, leading to a movement of the system on the outgoing diabatic Coulomb potential
curve described by

VCoulomb =
(q − 1)

R
−∆V = Vf (2.48)

with initial charge q of the projectile and the potential energy difference ∆V at the avoided
curve crossing. ∆V = Vif is given by the Olson-Salop-Taulbjerg formula [133, 163]

∆V = Vif =

(
9.13fnl√

q

)
exp

(
−1.324RCa√

q

)
(2.49)
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Figure 2.7: Illustration of the MCLZ approximation. At large internuclear distances, the
system moves on an ingoing diabatic polarization potential curve represented in orange, and
at small distances, the system moves on an adiabatic curve. At the avoided curve crossing
distance RC, a transition between both adiabatic curves can occur. Here the electron is
transferred to the projectile. After the collision both, target and projectile are positively
charged, and the system moves on a diabatic Coulomb potential curve represented in blue.
Adapted from Ref. [53] and modified.
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with a correction factor fnl for electron capture in non-degenerate l-states given by

fnl = (−1)n+l−1 ×
√
2l + 1Γ(n)√

Γ(n+ l + 1)Γ(n− l)
(2.50)

and a multiplicative factor a =
√
2IP for a non-hydrogenic target with ionization potential

IP.

The total probability of a transition from the incoming potential curve to the outgoing
curve is given by 2p(1− p) for one reaction channel, where p represents the probability of
a single curve-crossing given by

p = exp

(
−2πV 2

if

∆Fvrad

)
(2.51)

with the difference in the slopes ∆F at R = RC of the diabatic potential curves and
the radial velocity vrad which is a function of the impact parameter b. To generalize the
approach for more than one final state, the total transition probability Pn [95] into the
n-th final state for a system with N crossings can be expressed by

Pn = p1p2 . . . pn(1− pn)[1 + (pn+1pn+2 . . . pN )2+

(pn+1pn+2 . . . pN−1)
2(1− pN )2+

(pn+1pn+2 . . . pN−2)
2(1− pN−1)

2+

. . . p2n+1(1− pn+2)
2 + (1− pn+1)

2].

(2.52)

This process is illustrated in figure 2.8 where the incoming polarization potential is
labeled as state 0, and the N final outgoing Coulomb potential states are labeled by state
n, respectively, as a function of the internuclear distance R. The pseudo-crossings pn which
occur between the initial and the final state at R = RC,n are marked by red circles.

The total cross-section for a transition for more than two channels can be calculated by
integration over all impact parameters b with

σtot =

N∑
n=1

2π

∫ RC

0
Pf (b)bdb. (2.53)

For a bare ion collision, the critical internuclear distance RC where the avoided curve
crossing occurs [94] can be approximated by

RC ≈ 2n2(Z − 1)

Z2 − n2
. (2.54)

With the MCLZ method, only n-resolved cross-sections can be calculated for bare ion
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collisions. To extract information about the population of the l-states the n-resolved
cross-sections have to be multiplied by a distribution function Wnl. For high collision
energies above 1 keV/u, the angular momenta for each n-state are distributed statistically
with

W stat
nl =

2l + 1

n2
. (2.55)

For lower collision energies a low-energy weighting function is derived in Ref. [6, 95] with a
distribution given by

W lowe
nl = (2l + 1)

[(n− 1)!]2

(n+ l)!(n− 1− l)!
. (2.56)

This distribution has a maximum at l = 1, 2 for n ≤ 8. For higher values of the principal
quantum number n the Stirling formula can be applied for the expressions of the factorials
in equation 2.56 deducing the so-called separable distribution

W sep
nl =

(2l + 1)

q
exp

(
l(l + 1)

q

)
(2.57)

with a maximum of the distribution at l ≈
√
n. To notice is the explicit dependence on

the charge q of the projectile. Another distribution that is applicable for very low collision
energies [95] is the modified low energy weighting function (Eq. 2.56):

W lowe,mod
nl = l(l + 1)(2l + 1)

(n− 1)!(n− 2)!

(n+ l)!(n− l − 1)!
. (2.58)

Here, preferably intermediate angular momentum states are populated, and the s-state
(l = 0) provides a zero population.

2.3.4.4 Kronos model for charge exchange

In this work, the Kronos code [124] is utilized for the generation of synthetic charge
exchange spectra. It was developed in 2016 by the Stancil research group and is a
stand-alone charge-exchange cross-section database containing cross-sections for collisions
of various projectiles with different charge states with some neutral targets for a broad range
of collision energies. The calculations are mainly based on the multichannel Landau-Zener
approach, and the energies of the levels are extracted from the NIST database. In the case
of the absence of available data, in particular, for highly excited states, the energy levels
are extrapolated by scaling relations. After calculating the nl-resolved cross-sections, a
cascade model is applied to generate a theoretical CX spectrum. For this, the branching
ratios for all possible transitions from |n, l〉 to the ground state |1, 0〉 are calculated, and the
corresponding spectral lines are convoluted with a Gaussian with a width of the equivalent
instrumental resolution. Examples of synthetic CX spectra obtained with the Kronos code
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are shown in figure 2.9 for a collision of bare argon with atomic hydrogen at 25 eV/u for
the distribution functions for the angular momenta presented in equations 2.55, 2.56, 2.57,
and 2.58. Proper knowledge of the collision velocities and the principal quantum number n
in which the electron is captured is required. Also, the capture of more than one electron
is not considered in this model.

2.3.4.5 The Flexible Atomic Code radiative cascade model

Within the framework of this thesis, a cascade model based on calculations performed
with the Flexible Atomic Code (FAC) [85] for the generation of theoretical CX spectra
was developed together with S. Bernitt for the reconstruction of the angular momentum
distribution for measured spectra. This model is based on the calculation of the branching
ratio for all possible transition from an excited state |n, l〉 to the ground state |1, 0〉. By
plotting the convolution of all possible spectral lines with their relative intensity with a
Gaussian corresponding to the effective resolution of the utilized detector as a function of
the transition energy, a synthetic spectrum can be generated. Every single initially excited
state |n, l〉 will produce a characteristic spectrum that serves as a spectral basis vector. An
example of the cascade spectra up to l = 7 for a population of n = 9 states of hydrogen-like
argon is shown in figure 2.10. In general, the linear combination

S =

n=f∑
n=i

n−1∑
l=0

an,l |n, l〉 (2.59)

of all basis vectors |n, l〉 with coefficients an,l for all considered initially populated principal
quantum numbers from ni to nf will produce a synthetic spectrum S. Here the spectra of
the two possible spin states are averaged. By fitting the spectral basis vectors with the
coefficients an,l as free parameters to the experimentally obtained spectrum, the extraction
of the angular momentum distribution becomes possible.
For verification of the predictive efficiency of this model, the four l-distribution models

described by equation 2.55, 2.56, 2.57, and 2.58 are applied for the population of the n = 9

principal number state in hydrogen-like argon. The results are presented in figure 2.11.
The cascade model is in a good agreement with the MCLZ calculation, although exclu-

sively capture in one single n-state is assumed by the cascade model. The slight difference
for lower-energetic transitions into the M -shell and the L-shell could be explained by a
non-zero fraction in adjacent principal quantum number states calculated by the MCLZ
approach since the cross-section for capture into the single n-states of initially fully ionized
systems is velocity-dependent. Thus, an assumption of capture into one unique principal
quantum number state by the cascade model does not provide information about the
relative collision velocity between projectile and target.
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Figure 2.9: Synthetic CX spectra obtained by an MCLZ calculation performed with
the Kronos code for a collision of Ar18+ with atomic hydrogen at a collision velocity of
25 eV/u convoluted with an effective resolution of FWHM = 153 eV. The relative intensity
is plotted in logarithmic representation as a function of the photon energy. Different
angular momenta distributions are multiplied for the n-resolved cross-sections. Top left:
Statistical distribution for high collision velocities above 1 keV/u. Top right: Separable
distribution for capture into high n-states. Bottom right: Low energy weighting function
for low collision velocities below 1 keV/u. Bottom left: Modified low energy weighting
function for the population of intermediate angular momenta. The insets in the four
spectra represent the relative fraction of the angular momentum as a function of l.
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hydrogen-like argon up to l = 7 employing the flexible atomic code, where J represents the
total angular momentum quantum number.
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Figure 2.11: Calculated spectra with the FAC cascade model for l-distributions according
to equations 2.55, 2.56, 2.57, and 2.58 for a population in n = 9 for hydrogen-like argon
with the corresponding relative fractions of angular momenta shown in the insets. The
overlayed shaded solid lines represent the Kronos calculation from figure 2.9, respectively.
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For a second test of validity of the cascade model a CX spectrum is calculated with
MCLZ for a collision of Ar18+ with atomic hydrogen at 100 eV/u collision energy and
a separable l-distribution given in equation 2.57. A fit as described in equation 2.59 is
performed by utilizing the least-square method to determine the coefficients of the spectral
basis vectors given by the FAC cascade model for n = 9. The results are presented in
figure 2.12.
The reconstruction result is overall in a good agreement to the distribution of angular

momenta assumed by the MCLZ approach. Since the number of free parameters for the fit
is 9 for n = 9 and the number of lines is in the same order, the fit results are reliable. Only
a difference of the population of the s-state is observed which could originate from non-zero
fractions of the population of adjacent n-states as discussed before since the population
for one single principal quantum number is considered in the cascade model. This model
calculates only the branching ratios for transitions of a given l-distribution of excited states
into the ground state, not the charge exchange cross-sections. Within this work, this model
is applied for hydrogen-like systems and helium-like systems after electron capture.
Furthermore, the charge exchange code which, was recently implemented in the flexible

atomic code package is utilized for comparison with experimentally obtained charge
exchange spectra, and with the Kronos code. The approach is also based on multichannel
Landau-Zener method, but in contrast to Kronos, FAC performs ab-initio calculations for
the charge exchange cross-sections, for the energy levels, and the corresponding transition
rates.
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Figure 2.12: Validation of the FAC cascade model for the reconstruction of the angular
momentum distribution. The orange curve represents an MCLZ calculation performed by
the Kronos code for electron capture into Ar18+ with a collision energy of 25 ev/u and a
low-energy l-state distribution. This spectrum serves as an input for the reconstruction for
capture into n = 9 by determination of the spectral basis vector coefficients, depicted by a
blue curve. The corresponding angular momentum distribution of the MCLZ calculation
and the reconstruction is shown by orange and blue bars in the inset, respectively.



3 The electron beam ion trap

In the hot universe, most of the matter is present in a highly ionized form, where X-rays
are produced mainly by the interaction of highly charged ions with free electrons. In order
to interpret astrophysical X-ray spectra of these hot environments prevailing in active
galactic nuclei, neutrons stars, supernova remnants, and many more, precise investigation
of atomic processes in controlled laboratory plasmas are crucial. In the following, a brief
description of devices for the production of highly charged ions, in particular, the electron
beam ion traps, will be provided.

3.1 Production and trapping of highly charged ions

For the production of highly ionized plasmas, several experimental techniques are available
whereby most of them are based on the interaction of high-energetic charged particles with
matter. However, also production with intense laser radiation focussed onto a solid [122],
droplets [165] or even with interaction synchrotron or free-electron-laser radiation with gas
has been demonstrated [141, 153, 154, 52].
In both cases, the energy of the projectile has to be higher than the binding energy

of the bound electron in the ion or atom. In a storage ring [72, 86, 5, 56, 158], a lowly
charged ion is accelerated to relativistic kinetic energies and impinged onto a stripper
foil or gas cell leading to ionization of the ion to higher charge states. Those ions are
electro-statically confined in the storage ring. The advantage of this method is very high
charge states and high ion currents, but this requires accelerator facilities and large-scale
projects. Another device to produce HCIs is an electron-cyclotron-resonance ion source
(ECRIS) which uses electrons kept on a cyclotron orbit by irradiation with microwaves in
an inhomogeneous magnetic field to exceed the ionization potential of the bound electron.
High ion currents can be reached with the disadvantage of a relatively broad distribution
of the kinetic energy of the electrons which limits the maximum accessible charge state.
To achieve a narrow range of the charge-state distribution and high ionization states with
a high degree of control, an intense mono-energetic electron beam is crucial.
One of the first application of an electron beam to ionize neutrals and keep the ions

radially confined by the negative space charge of the electron beam was described by L.
M. Field et al. in 1947 [67]. Decades later the first electron beam ion source (EBIS) was
successfully commissioned by E. D. Donets et al. in Dubna, U.S.S.R. [61] where the electron
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beam is compressed to small diameters by utilization of a solenoid coil. In 1988 the concept
of an electron beam ion trap (EBIT) was presented, which was a further development of
the EBIS for production and trapping of highly charged ions [111, 119, 112]. Instead of
a solenoid coil, a magnetic system in Helmholtz configuration is used which allows for
spectroscopic access to the trap. In the following sections, the principle of operation of an
EBIT is described.

3.2 Fundamentals of electron beam ion traps

3.2.1 Function principle

A schematic principle of operation is depicted in figure 3.1. The electrons are emitted
from the cathode surface and accelerated by a potential difference between cathode and
trap towards the trap center. By propagation along the magnetic field, the electron beam
is being compressed due to the cyclotron motion of the electrons. In the central trap,
the electron beam intersects a beam of neutrals gas atoms or molecules and ionizes them
by electron impact ionization. The produced ions are trapped in the axial potential well
of the trap electrodes and the radial potential of the electron beam. After passing the
trap, the electron beam is dumped onto the surface of the collector. The semi-Helmholtz
configuration of the coils of the superconducting magnet allows for direct observation of
the ion cloud for spectroscopic investigations.

3.2.2 Electrostatic potential

The electrostatic potential in which the ions are located is defined by the voltages applied
to the trap electrodes and by the superposition of the negative space charge generated by
the electrons and the positive space charge generated by the ions, trapped in the radial
negative space-charge potential. The contribution of the space charge Φ of the electron
beam is given by the solution of the Poisson equation

~∇2Φ = −ρe
ε0

(3.1)

with the local charge density ρe of the electrons and the permittivity of free space ε0. The
density ρe can be determined by consideration of an infinitely elongated cylindrical electron
beam with radius rH with

ρe =
Ie

πr2Hv
, (3.2)

where Ie and v represents the electron-beam current and v the longitudinal velocity of
the electrons, respectively. Due to the cylindrical symmetry of the concentrically located
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Figure 3.1: Scheme of the function principle of an electron beam ion trap. Adapted and
modified from Ref. [60].
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central trap electrode enclosing the electron beam, equation 3.1 reduces to

1

r

∂

∂r

(
r
∂

∂r
Φ

)
= −ρe

ε0
. (3.3)

The boundary condition of a well-defined potential ΦD at the surface of the trap electrode
with inner radius rD leads to an analytical solution of the potential as a function of the
radial distance r from the symmetry axis

Φ(r) =


ΦD +Φ0

[(
r
rH

)2
+ 2 ln

(
rH
rD

)
− 1

]
r ≤ rH

ΦD +Φ02 ln
(

r
rD

)
r > rH

(3.4)

where the constant Φ0 is defined as

Φ0 =
Ie

4πε0v
. (3.5)

Hence, the total acceleration potential of an emitted electron from the surface of a cathode
at a potential ΦC in the center of the trap is defined by

Ukin = ΦD − ΦC +Φ02 ln
(
rH
rD

)
+ΦI +ΦA (3.6)

along the symmetry axis for r = 0. ΦI is the positive space-charge potential of the ions
and ΦA a potential which is a composition of material-dependent properties like the work
function of the electrons from the surface of the cathode. Therefore, a higher space-charge
potential generated by the electron beam reduces the total kinetic energy of the electrons.

3.2.3 Electron beam

The theory of a non-laminar long cylindrical electron beam, compressed by a homogeneous
magnetic field is given in Ref. [89, 55]. The electron beam is considered as a perfect optical
system with an initial thermal Maxwell distribution of the transverse electron velocities at a
corresponding temperature TC at the surface of a cathode. Also, the residual magnetic field
BC at the origin of the electrons is considered. The average over time of the electron-beam
radius rH is determined by

rH =

√√√√ meIe
πε0evB2

+

√(
meIe

πε0evB2

)2

+
8kTCme
e2B2

r2C +
B2
C

B2
r4C (3.7)
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at a location with a corresponding magnetic field B and the radius rC of the cathode. The
velocity v of the electron has to be described relativistically with

v = c

√
1−

(
mec2

mec2 + eU

)
, (3.8)

where c represents the speed of light in vacuum and U the total acceleration potential
presented in equation 3.6. A non-relativistic approach of the velocity would lead to an
uncertainty of ∼ 1.2% at a typical acceleration voltage of 8000V.

3.3 Setup of CANREB-EBIS

In 2006 the FLASH-EBIT [64, 63], the first transportable cryogenic EBIT for experiments
at ultra-brilliant light sources was built by S. W. Epp at the Max-Planck-Institut für
Kernphysik. Four years later the HYPER-EBIT [20] was developed by T. M. Baumann for
operation at higher electron-beam energies and currents.
The CANREB-EBIS (CANadian Rare isotope facility with Electron Beam ion source)

[34] is based on a similar design as the FLASH-EBIT and the HYPER-EBIT, but in
contrast to those, it is specialized for charge breeding of singly-charged rare, short-lived
isotopes. A sectional view is presented in figure 3.2. An efficient and fast charge breeding
requires high electron-beam currents. The CANREB-EBIS is designed for operation with
an electron beam with energies up to 15 keV and currents up to 1000mA. Bunches of
singly charged ions with a longitudinal length of 1 µs and kinetic energy of 15 keV at a
repetition rate of up to 100Hz shall be accepted.
It consists basically of a high-current electron gun, a superconducting magnet in semi-

Helmholtz configuration encasing the trap electrode assembly and an electron collector.
The gun can be biased together with the collector to voltages from 0 kV up to 15 kV
depending on the desired electron-beam energy. The common trap voltage will be set to
15 kV to match the energy of the incoming ion bunches.
Hereafter, the single components of the EBIS will be described. During the commissioning

phase, the device acted mostly as a trap and not as a source, and therefore, it will be
designated as CANREB-EBIT.

3.3.1 Vacuum system

The vacuum inside the EBIT is in the order of 10−9− 10−10mbar in the room-temperature
environment. In the cryogenic region, it is estimated to be in the order of 10−13mbar. An
ultra-high vacuum (UHV) is crucial for the operation of the EBIT. Lower pressure means
less residual gas atoms or molecules which would lead to an increased charge exchange rate
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Figure 3.3: Schematic of the vacuum system of the EBIT. On the left-hand side, the main
vacuum system and on the right-hand side, the injection vacuum system is depicted. The
blue highlighted path is the bypass for pumping the magnet and collector independently of
the gun in case of maintenance.

resulting in less production of ions in higher charges states. Additionally, the amount of
contaminant ions in extraction is reduced.
The covering of the EBIT consists of three main chambers in total. Two cubic-shaped

chambers with a side length of 325mm enclosing the collector during operation and the
gun during storage. Both chambers are connected to the cylindrical enclosure with a
diameter of 470mm of the superconducting magnet by two additional cylindrical chambers
with 210mm length. During the operation of the EBIT, the vacua of those chambers are
connected. For maintenance of the magnet or collector, the gun can be retracted into the
storage chamber and can be pumped independently by separating the gun vacuum from
the main vacuum by a CF200 gate valve.
The schematic setup of the vacuum system of the EBIT is depicted in figure 3.3.
A 300 l turbomolecular pump (TMP) is attached to each chamber, respectively. The

pre-vacuum of ∼ 10−6mbar is provided by a 70 l TMP attached to the joined exhaust of
the three TMPs leading to an increase of the compression rate for molecular hydrogen,
which is the main contribution of the residual gas which remains at cryogenic temperatures.
The pre-vacuum TMP is backed by a scroll pump.
To provide a target for ionization, a gas injection system was developed and attached to a

45 ° radial access port of the magnet chamber. The vacuum of this system can be separated
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Figure 3.4: Sectional view of the electron gun. Adapted and modified from Ref. [34].

with a CF63 gate valve from the main vacuum of the EBIT either for maintenance or to
obstruct the path of the atomic gas beam to the interaction region with the electron beam
in the trap center. A more detailed description of the injection system will be provided in
section 3.3.7.

3.3.2 Electron gun

The electron beam is emitted from the electron gun, which is depicted in a sectional view in
figure 3.4. The design is based on the gun of FLASH-EBIT and HYPER-EBIT with minor
modifications. To reach higher electron-beam currents, a larger cathode with a diameter of
6.35mm was installed which can emit up to 10A/cm2 at a temperature around 1000 °C.
The gun consists of electrostatic and magneto-static components arranged in a Pierce-

type geometry [139]. In order to achieve high electron-beam currents, a thermionic barium
dispenser cathode with type M-coating and a spherical radius of 10mm is installed. The
cathode material has a relatively low work function of ∼ 2 eV and emits at temperatures
around 1000 °C providing better electron-beam compression according to Herrmann optical
theory of electron beams [89]. The cathode is mounted concentrically to a holder (repre-
sented in purple in figure 3.4) with the same spherical radius as the cathode surface and is
made out of molybdenum to withstand operation temperatures up to 1300 °C by indirect
heating with currents up to 1.9A at voltages of ∼ 6V. The holder including the cathode is
encircled by the next element, the focus electrode, with 10mm inner diameter. Due to the
high sensitivity of the emission characteristics of the cathode surface to contaminations
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with several elements, compounds and metals, and insensitive only to a limited number
of materials, the focus electrode is made of molybdenum. By biasing this electrode, the
emission current can be accurately controlled.
All electrodes are mounted on a holder made of an insulating machinable ceramic (Macor).

Additionally, an OFHC anode is mounted at a distance of ∼ 5mm to the focus electrode
in order to reach higher electron-beam currents. It is attached to a Macor spacer which is
connected indirectly to the water-cooled surface of the electromagnetic coil inside the gun
head. The magnetic field produced by this coil can be adjusted by the application of a
certain current to compensate for the residual magnetic field of the superconducting magnet
at the surface of the cathode to facilitate the emission of electrons. Additionally, a soft-iron
yoke is located between the cathode and the coil. The heat produced by impingement
of the electrons on the collector surface, by the current flow through the coil inside the
gun, and inside the collector is dissipated into a water-cooled circuit by means of a 2 kW
water-to-air-chiller.
For precise adjustment of both, electron-beam energy and electron-beam current at

maximum transmission and compression, the gun can be positioned precisely by an
xyz-tilt-manipulator. Additionally, the 100 cm long neck is supported by two linear manip-
ulators insulated with a 45mm thick rod of ceramics.
During the commissioning of the EBIT, a maximum electron-beam current of 1000mA

at an electron-beam energy of 6 keV was achieved which was only limited by the 3 kV power
supply of the cathode platform.

3.3.3 Superconducting magnet

For higher compression of the electron beam in the trap center, a custom-made super-
conducting magnet, manufactured by Cryogenic Ltd., is installed, reaching magnetic
field strengths up to 6T. It consists of two superconducting NbTi coils with a critical
temperature of 11K in semi-Helmholtz configuration with a separation of 60mm. The
separation is slightly larger than in real Helmholtz-configuration, leading to a minimum of
the magnetic field in axial direction in the center of the trap and a maximum inside the
two coils (compare figure 3.6), respectively. This allows for a more extended homogeneous
region of the magnetic field along the axis of the central trap electrode. In the gap between
the coils in total seven radial access bores are incorporated. Three of them with a diameter
of 50mm in a 90 ° arrangement and four of them with a diameter of 35mm rotated in a
45 ° pattern with respect to the horizontal plane.
Concentrically aligned vacuum flanges and holes in the 40K shield with respect to the

bores allow for direct access to the ion cloud for spectroscopic investigations. The magnet
is suspended with 12 tie rods attached to the inside of the vacuum chamber of the magnet,
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Figure 3.5: The superconducting magnet of the CANREB-EBIT. The front and the back
covers of the 40K heat shield are removed in this photograph.
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8 in the radial direction and 4 in the axial direction. They are made of thermally low
conducting stainless steel to reduce the heat load of the room temperature environment to
the cold magnet.
The superconducting coils are cooled by a Sumitomo RDK-415D Gifford-McMahon type

two-staged cold head with a cooling power of 35W at 40K and 1.5W at 4K, respectively.
The silver-plated cylindrical heat shield is directly attached to the 40K stage of the cold
head and the magnet itself to the 4K stage. Between the heat shield and the faces magnet
chamber, respectively, an additional floating shield is attached to reduce the temperature
gradient between room temperature and the 40K stage. An additional thermal link via an
OFHC sheet connects the drift tube assembly to the 4K stage. The cold head is supplied
by a Sumitomo F-50H helium compressor with a supply gas pressure of ∼ 20 bar.
The superconducting magnet is charged by an external power supply by slowly increasing

the current flow through the coils. A magnetic field of 6T corresponds to a current of
∼ 120A. After charging the magnet, the system can be operated either in persistent mode
by breaking the electrical contact to the power supply or under a constant current feed
from the power supply.

3.3.4 Trap electrodes

A central component of an EBIT is the trap assembly (compare figure 3.7), denoted
hereafter as drift tubes (DT) which is concentrically located on the symmetry axis between
the both Helmholtz coils of the superconducting magnet. It consists of 11 cylindrical
trap electrodes made of high-purity, oxygen-free copper (OFHC, oxygen-free high thermal
conductivity) with a purity of 99, 996% which are thermally connected via three high
heat-conductive sapphire insulators to two half-shells, respectively (compare figure 3.8).
This half-shells encase 9 of the 11 trap electrodes and ensure a good centering of the
electrodes with respect to the symmetry axis and furthermore a parallel heat transport
from the electrodes to the 4-K stage which results in a homogeneous cooling of the whole
trap assembly. The half-shells are however connected via a sapphire insulator directly to
the 4-K stage.
Four trap electrodes (C1 to C4) are located on the collector side of the central trap

electrode (CDT) and four further electrodes on the gun side (G1 to G4). Two additional
outermost electrodes, the so-called trumpets (TC and TG), are thermally connected to the
40-K stage of the magnet and mounted via three low heat-conducting polyether ether ketone
(PEEK) insulators to the half-shells, respectively. The trumped-like, radially expanding
shape of the electrodes additionally blocks direct irradiation of the trap region. These
approaches lead to a reduction of thermal radiation to the 4-K region of the trap.
The half-shells are centered by two Macor insulators with respect to a high-voltage shield
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Figure 3.6: A sectional view of the upper half of the main components of the EBIT along
the symmetry axis (z-axis). The setup is rotationally symmetric around the z-axis .The
magnetic field of the superconducting magnet (red) is simulated with a finite-element
method. Elements in green represent magneto-static components and in blue electrodes
and enclosures. Left: residual magnetic field inside the electron gun. The field is reduced
to zero at the cathode surface. Right: magnetic field of the semi-Helmholtz configuration
with a minimum in the center and a maximum at the position of the coils, respectively.
Bottom: residual magnetic field inside the collector.
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Figure 3.7: Sectional view of the assembly of the trap electrodes.

Figure 3.8: Assemebly of the drift tube. Nine single electrodes are connected via three
sapphire insulators, respectively, to two half-shells. The top one is removed for the
photograph. The two outermost electrodes (TG and TC) are not mounted yet.
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(HV-shield) which is connected to the common electrical ground of the vacuum chamber to
protect the magnet from being damaged in case of a spark-over. This assembly is mounted
and centered via six Macor insulators on each side to the magnet shaper.
The central trap electrode has a total length of 80.5mm, an inner diameter of 14mm

and seven slits in the axial direction for radial view access to the trap center. The other
electrodes have a length between 9mm and 30mm, where the inner diameter increases
conically from 6mm to 15mm with increasing distance from the central drift tube. The
total length of the drift tube assembly is 382mm. To increase the electron-beam energy
the whole drift tube assembly can be biased up to 15 kV with respect to the ground
potential of the EBIT and an additional voltage up to 3 kV can be applied to the single
trap electrodes. By application of different voltages to the individual trap electrodes, the
potential landscape of the trap can be shaped arbitrarily, which allows for optimization of
the trap settings for different experimental purposes. The convenience of having 11 trap
electrodes implicates that the effective length of the trapping region can be extended up to
268mm. For external injection of spatially long bunches of singly charged isotopes into the
trap an extended trapping region is crucial to increase the efficiency of the charge breeding.
Additional connections on the half-shells allow for the installation of eight radio-frequency

(RF) electrodes which can be extended into the central trap electrode. An application
of an RF voltage to this octopole allows for removing ions with a certain charge-to-mass
ratio, especially residual gas ions from the trap [108]. Within the scope of this work, these
RF electrodes were not installed.
9 of the 11 electrodes are connected to a stainless-steel wire with a diameter of 0.6mm.

These wires are encased by a PTFE (polytetrafluoroethylene) sleeving with a wall thickness
of 1mm for electrical insulation. The two remaining electrodes (CDT and C1) are supposed
to be switched in the order of microseconds between two high voltages for efficient trapping
of externally injected ion beams or extraction of highly charged ions (compare figure 3.9).
To avoid crosstalk to other electrodes and reduce its influence on the electrostatic potential
of the trap, both are connected to a semi-rigid coaxial wire with a stainless-steel sheath and
a beryllium-copper conductor. All wires are guided by drillings in a Macor-feedthrough ring.
It keeps the cables in position and prevents spark-overs between wires and the common
electrical ground. The grooves in the ring increase the path of undesirable creeping current.
To reduce the heat load on the trap caused by the thermal conductivity of the wires,

those are thermally linked to the 40K region. All wires are glued inside ceramic tubes
with a thermally good conducting epoxy (Stycast 2850FT), suitable for ultra-high vacuum
(compare figure 3.11) and for cryogenic operation. Those ceramics are radially glued to a
feedthrough-ring made of aluminum which is directly connected to the front cover of the
40K heat shield. The wires are guided by ducts made of PEEK to prevent an electrical
contact to the shields. With this approach, the heat input into the trap is reduced from
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Figure 3.9: Electrical connections of the trap electrodes.

Figure 3.10: Electrical connections of the
trap electrodes. 9 of the 11 electrodes
are connected via stainless steel wires en-
cased with PTFE hoses. The remaining
two (CDT and C1) are supposed to be
switched fast between two high voltages
and therefore connected with semi-rigid
coaxial cables to reduce the crosstalk. All
cables are guided by drillings in the Macor-
feedthrough and the insulator surrounding
the drift-tube assembly.
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Figure 3.11: Thermal connection of the wires of the trap electrodes to the 40K stage and
electrical insulation.

30mW to 0.5mW compared to a system without thermal anchoring to the 40K stage.

3.3.5 Electrostatic lens

Between the drift tube assembly and the collector, an ion-optical element is installed to
optimize for the trajectories of the injected or extracted ions. The plainest method is an
application of an Einzel lens. It consists of three hollow cylinders in series. The outermost
is biased to a different potential than the one in the center, which allows for manipulation
of the focusing properties. In this setup, a more advanced configuration has been chosen.
The so-called Sikler lens [78, 152, 151] is based on the principle of an Einzel lens with the
major difference that the central electrode is segmented into four parts. This allows for
focusing as well as for steering of the charged particle beam in the horizontal and vertical
direction. The advantage of the geometry of a segmented hollow cylinder compared to
deflection plates is a significant reduction of aberrations.

The central cylinder is cut diagonally, rotated by 90 ° around the symmetry axis, and the
cut is repeatedly performed, resulting in four individual segments (compare figure 3.12).
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Figure 3.12: Schematic representation of the manufacturing of a four-fold segmented
central electrode of a steerer lens (Sikler lens). Adapted from Ref. [152].
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Figure 3.13: Sectional view of the model of the collector. Adapted and modified from
Ref. [34].

3.3.6 Electron collector

The electrical circuit is closed by the impingement of the diverging electron beam on the
surface of the hollow cylinder-shaped collector electrode. The remaining kinetic energy
of the electrons is in the order of Ekin = eUcathode ≈ 3 keV, which corresponds to a heat
load of ∼ 3 kW at an electron-beam current of 1A on the collector electrode. For an
efficient dissipation of the heat, the collector electrode is equipped with cooling fins on the
atmospheric pressure region of the collector to enhance the effective area of the surface.
This surface is directly cooled by a constant flow of water by means of a water-to-air chiller.
To increase the divergence of the electron beam to distribute the power dissipation on a
larger surface a counteracting field to the residual field of the superconducting magnet
can be generated by the application of current flow (typically 5A at a voltage of 0.5V)
through the collector coil.
At the front of the collector electrode a ring-shaped, slightly negative-biased suppressor

electrode is attached in order to repel secondary electrons, emitted by impingement of the
electron beam on the collector surface. On the rear side of the collector, an also second
ring-shaped extractor electrode is mounted and biased to a more negative potential than
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Figure 3.14: Measured temperature on the outermost surface of the collector coil with
constant cooling-water flow as a function of the coil current.

the cathode (typically −4 kV) to prevent electrons from escaping through the collector and
eventually to damage downstream elements, e.g. glass windows. For a smoother transition
of the electrostatic potential two polished shields of stainless steel terminate the entrance
and exit of the collector assembly, so so-called front shield and back shield. Both can be
biased to optimize for injection and extraction of ions or optimization of the electron beam
trajectories.
The major change to the previous collector models is the use of a different epoxy with

higher thermal conductivity (OMEGABOND 200) to adhere the coil windings to each
other. The simulated heat dissipation is 51W/layer (6 layers in total with 24.5 windings
per layer on average) leading to a temperature increase to 44 °C on the outermost surface
of the coil at a current of 50A which is in a good agreement with the measured value
(compare figure 3.14). In this measurement, a temperature sensor is attached to the surface
of the outermost layer of the collector coil, and the temperature is monitored as a function
of the current flowing through the coil. The system is cooled by means of a water-to-air
chiller.

3.3.7 Gas-injection system

For the provision of a target for ionization and spectroscopic investigation, a gas-injection
system was developed. The design is based on the existing gas-injection system of the
FLASH-EBIT [63] with some modifications. The sectional view is depicted in figure 3.15.
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Figure 3.15: Sectional view of the model of the two-staged differentially pumped gas-
injection system. Adapted and modified from Ref. [34].
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(a) Support structure for the capillaries. (b) Heatable capillaries for gas injection.

Figure 3.16: Internal parts of the first stage of the gas-injection system.

It is a two-staged differentially pumped system with the possibility of injecting two gas
species into the trap. An aperture separates the first stage from the second stage, and the
second stage from the EBIT, respectively. Each stage is pumped by a 70 l TMP whereby
the exhausts are connected to a joint pre-vacuum system backed by a scroll pump.

Two needle-valves are attached to the 6-way cross of the first injection stage. A capillary
in guided from the needle valve to a support structure mounted in front of an aperture in
the first stage (compare figure 3.16a), respectively. Both capillaries are heatable (compare
to figure 3.16b) to prevent condensation of injected e.g., organometallic compounds. At low
pressures in the order of 10−6mbar in the first stage, the mean free path of the molecules is
large compared to the dimensions of the gas injection system. Thus the trajectories can be
considered as ballistic, and the interaction between the molecules becomes negligible. Only
a small fraction of the initial number of molecules enters the second stage as a collimated
gas jet through an aperture with a size of ∼ 12 × 4mm2. A second aperture between
the second stage and the magnet chamber lets the gas jet enter into the radial bore of
the magnet former after passing a third aperture attached to the 40K heat shield and
finally intersect the electron beam in the trap center where the molecules are dissociated by
electron impact. By assuming an injection pressure in the second stage of ∼ 1× 10−9mbar,
and by geometrical considerations, a particle density of ∼ 300/cm2 can be estimated, which
corresponds at cryogenic temperatures of 4K to a gas pressure of ∼ 1× 10−13mbar.

After crossing the electron beam, the gas jet exits the magnet on the opposite side of
the injection system keeping the gas load inside the trap relatively low.
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3.3.8 X-ray detector

The transition energies in highly charged ions are typically in the X-ray regime with photon
energies in the keV range. Suitable systems for the detection of emitted X-ray photons are
semiconductor detectors consisting of high purity germanium or silicon. These devices are
expedient tools for the diagnostic of the trap content in an EBIT. The information about
the investigated element, as well as the charge state, can be inferred from distinct spectral
features. In this work, three different X-ray detectors were utilized, which will be briefly
described in the following sections.

3.3.8.1 Silicon-drift detector

The charge exchange measurements were performed with the FLASH-EBIT, equipped with
a silicon-drift detector. For the detection of K-shell photons whose energies are usually
in the keV range, a silicon drift detector (SDD) is mounted to a 45 ° radial port of the
FLASH-EBIT with the silicon wafer protruding into the 40K stage and thus positioned in
141mm distance from the trap center leading to an increase of the solid angle for higher
detection efficiency. To be even capable of investigating L-shell transitions a windowless
SDD model (KETEK VITUS SDD) with an active detection area of 80mm2 [80] has to be
chosen allowing for the detection of photons in the range between 0.2 keV and 30 keV. The
extension, where the crystal is positioned, is covered by a polished aluminum tube that is
attached to the 40K shield to reduce the thermal load from the SDD on the trap. The
principle is based on the semiconductor diode consisting of a tetravalent IV main-group
element like silicon in the utilized model. The setup of an SDD is depicted in figure
3.17. If the energy of an incoming photon is sufficient to overcome the band gap of the
semiconductor material an electron can be raised from the valence band to an unoccupied
energy level in the conduction band. This primary electron can cause a cascade effect
by creating further electron-hole pairs. With this, the number of electron-hole pairs is
proportional to the energy of the incoming photon. By the application of a high voltage,
those pairs can be separated before they can recombine, and the electric current can be
measured at the anode. Additionally, a drift field is applied parallel to the surface by
biasing the outermost drift ring to a more negative potential UOR than the innermost ring
with UIR. Due to this field gradient, the electrons are transported to the anode and the
holes to the drift rings or the back electrode, respectively. The relatively small surface of
the anode causes a reduction of the capacity and thus to a minimization of the electric
noise [76].
To prevent optical light being detected, a carbon filter with a thickness of 900 nm was

installed between trap and SDD. The detector-efficiency curve of the SDD with a beryllium
window of 8 µm thickness provided by the manufacturer [80] is shown in figure 3.18. Since
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Figure 3.17: Schematic representation of the working principle of an SDD. Adapted and
modified from Ref. [60].

the efficiency for a windowless model is not known, an estimation has been made based on
calculations of the transmission through the carbon filter, a SiO2 layer of 150 nm thickness
and absorption in the 450 µm thick silicon waver. The single contributions are shown in
figure 3.19. The total detector efficiency is the product of these contributions and is
presented in figure 3.20. In the range between 2 keV and 10 keV where the measurements
of this work are performed, the efficiency of the SDD is nearly constant.

3.3.8.2 Germanium detector

During the commissioning of the CANREB-EBIS, X-ray measurements have been carried
out in order to characterize the setup. In the first observations, a high-purity germanium
detector (model GL1010), manufactured by Canberra [117], was positioned externally in
front of a beryllium window, mounted at a horizontal view port of the magnet chamber.
Due to a relatively large effective thickness of the beryllium window on the EBIT and the
window covering the detector and the air gap in between, the detector has a low-energy
cut-off at ∼ 2.5 keV. The photon-energy resolution is 300 eV at 5.9 keV. In the second
campaign, a low-energy germanium IGLET detector, manufactured by ORTEC with higher
energy resolution was connected directly to the EBIT vacuum to a horizontal viewport.
The cut-off energy is lower than of the Canberra-type detector allowing for the detection
of X-ray photons above ∼ 1 keV energy. The detector crystal is mounted behind a 25 µm
thick beryllium window on top of a retractable cold-finger. This allows for the positioning
of the detector with an effective diameter of 11mm close to the trap center, increasing the
solid angle. The function principle of both detectors is illustrated in figure 3.21.
Two opposite surfaces of a high-purity germanium crystal are p- and n-doped, respectively.

By the application of a positive voltage to the n-doped with respect to the p-doped layer,
the setup is operated like a reverse-biased semiconductor diode. By absorption of a
high-energetic photon in the highly depleted region of the crystal, an electron can be
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Figure 3.18: X-ray detection efficiency as a function of the photon energy with a Si wafer
thickness of 450 µm and a 8 µm Be window. Adapted and modified from Ref. [80].

transferred from the valence band into the conduction band, leading to the production
of electron-hole and a temporary electric flux. The amplitude of this pulse is directly
proportional to the number of electron-hole pairs, and indirectly proportional to the photon
energy. The resulting signal is amplified. Simultaneous detection of two independent
photons within a pulse width can lead to assignment to one single event with the sum of
the photon energies, which is denoted as a pile-up. In order to reduce the thermal noise and
to increase the signal-to-noise ratio and the energy resolution, the crystal is liquid-nitrogen
cooled.

3.3.9 EUV flat-field spectrometer

For the observation of charge-exchange-induced transitions not directly to the ground
state, an extreme-ultraviolet (EUV) spectrometer, developed by T. M. Baumann within
the scope of his diploma thesis in 2008 [19], was utilized by detection of EUV photons.
The measurements were performed with the FLASH-EBIT, where the spectrometer was
mounted to a radial port of the magnet. The setup is based on the concept of grazing
incidence on the surface of a diffraction grating. Due to the strong absorption of EUV
light by air, the imaging system is installed inside a UHV environment. The grating itself
consists of a glass substrate with carved grooves under a blaze angle θ with variable line
spacing along the length of the grating and is coated with a layer of gold to optimize for
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Figure 3.19: Estimation of the silicon drift detector efficiency with transmission through
a 900 nm thick carbon foil, a 150 nm thick SiO2 layer and absorption in the silicon wafer
with a thickness of 450 µm as a function of the X-ray energy. The transmission curves are
obtained from Ref. [2].
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Figure 3.21: Illustration of
the operation principle of a
germanium detector. A pho-
ton absorbed in the highly-
depleted region generates
electron-hole pairs. Appli-
cation of high voltages to
the p- and n-doped surfaces
leads to a temporary elec-
tric flux, which amplitude is
proportional to the photon
energy. Adapted and modi-
fied from Ref. [31].
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Figure 3.22: Sectional view of the EUV spectrometer equipped with a 1200 grooves/mm
diffraction grating and a Peltier-cooled CCD camera.

the reflectivity for soft X-rays. On average the grating has 1200 grooves/mm. Additionally,
a concave curvature with radius R is incorporated to the surface of the grating. This
results in a focusing of the light on the surface of a plane, in contrast to a Rowland-circle
configuration, where the light diffracted by a curved grating is focused on a circle [17]. By
this approach, imaging errors like aberration and coma are reduced.

After diffraction, the EUV light is focused on the plane of a charge-coupled device (CCD)
chip with 2048× 2048pixel on area of 27.6× 27.6mm2. To ensure optimal focusing, the
grating is manipulable in all three spatial dimensions as well as in azimuthal and elevation
angle of the grating surface with respect to the radiation emitted by the ion cloud. The
setup is a combination of an xy-stage and a goniometer. Additionally, the CCD camera
which is mounted to a CF100 bellow, can be moved and tilted along the path of the
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Figure 3.23: Schematic representation of the diffraction on a grating with the most
important quantities. Adapted and modified from Ref. [19].

Table 3.1: Geometrical properties of the 1200 grooves/mm Hitachi-grating and the EUV
spectrometer. Adapted from Ref. [20].

R (mm) θ (°) r (mm) r′ (mm) α (°) β1 (°) β2 (°) λ2 − λ1 (nm) L (mm)

13450 1.9 564 563.2 87 75.61 83.04 5− 25 75.73

diffracted light to match the focal plane.
Within one acquisition, a spectral range of 6 nm can be mapped onto the CCD sensor

simultaneously. By the vertical movement of the camera, a wavelength range between 5 nm
and 30 nm can be imaged.
A schematic representation of the diffraction on the grating is depicted in figure 3.23.

An ion cloud with a diameter of ∼ 100 µm acts as an elongated cylindrical light source in
a distance of r = 564mm from the grating. The angle of incidence α of the emitted light
with respect to the normal of the surface of the grating is kept constant at α = 87 °. The
light with a wavelength of λi is diffracted under an angle βi with respect to the normal of
the surface of the grating and focused on a plane in a distance of r′. Due to the geometry
of the setup the grating equation

mλ = d0(sinα− sinβ) (3.9)

with diffraction order m and the distance between neighboring grooves d0 can be revealed.
This serves in first order as a geometrical calibration for the wavelength-dependent position
of a spectral line on the CCD sensor by calculating the distance L between two wavelengths
λ1 and λ2.

3.3.9.1 CCD camera

The spectral lines are imaged with a back-illuminated CCD camera manufactured by
Andor. The vacuum-compatible chip is equipped with 2048×2048pixel, each with a size of
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13.5 µm×13.5 µm, on an area of 27.6×27.6mm2. In front-illuminated models, the readout
electrodes are mounted on top of the light-sensitive pixels which are directly attached to
a silicon wafer with a thickness of 500 µm. This leads to absorption of EUV photons by
the readout electrodes. In the back-illuminated version, the silicon wafer is thinned by
removing material down to a thickness of 10 µm and mounted in a way that the photons
have first to pass the waver before being detected inside the pixels.
Every single pixel can be considered as an individual semiconductor diode. An absorbed

photon can excite an electronic transition from the valence band to the conduction band
if the mean photon energy of 3.65 eV is exceeded. The resulting signal is amplified and
processed by an analog-to-digital converter (ADC). A digital event is registered with 0.7

electrons at a typical digitalization rate of 31 kHz, and thus, the number of digital events
as a function of the photon energy is described by NA/D = Eγ/0.7 · 3.65 eV. The total
efficiency depicted in figure 3.24, is defined as the ratio of the detected photon flux and the
incoming photon flux impinging on the grating surface of a specific wavelength. It is the
composition of the efficiency of the grating, which is strongly dependent on the spectral
properties of the utilized materials (Si and Au) and the quantum efficiency of the CCD
sensor. The total efficiency NA/D(Eγ) is composed of

NA/D = D(Eγ)Nγ(Eγ)
Eγ

2.555 eV
, (3.10)

where D(Eγ) represents the quantum efficiency of the CCD, and Nγ(Eγ) the total number
of impinged photons.
In order to detect weak spectral features, the signal-to-noise ratio has to be increased

by reducing the noise. The electronic noise of a CCD is composed of the readout noise
with typically two electrons per pixel at a digitalization rate of 31 khZ, the statistical noise
and the dark current. The latter is produced by thermal excitation of electrons from the
valence band to the conduction band. By cooling the CCD to ∼ −95 °C with a Peltier
element, the dark current is reduced to 8× 10−5 electrons/pixel/s.

3.3.9.2 EUV shutter

Charge exchange (CX) becomes dominant in the magnetic trapping mode. To investigate
CX in the EUV range with the CCD camera with a long exposure time one has to extract
the photons emitted during the magnetic-trapping mode by suppressing the contribution
of the photons when the electron beam is switched on. This is performed by means of a
rotating shutter in front of the aperture of the grating mounted to a zero-length CF100
reducer with a 30mm bore in the center. The schematic setup is shown in figure 3.25.
The shutter installed in the horizontal plane consists basically of a disc with 27mm

diameter with a rectangular hole of 19 × 15mm2 mounted on a shaft actuated by a
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Figure 3.24: Efficiency of the grating, the CCD and the combination of both as a function
of the wavelength. Adapted and modified from [20].
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Figure 3.25: Schematical experimental setup. The EUV light emitted by the ion cloud in
the central trap electrode, passes an aperture and is blocked by the mechanical shutter
during the electron-beam on mode. In the magnetic-trapping mode, the shutter opens,
and the diffraction grating is irradiated by the light. The interference pattern is acquired
by the CCD camera.

rotary feedthrough. The feedthrough itself is driven by a stepper motor operated by a
microcontroller (Arduino). When the electron beam is switched on, the shutter is in a
closed position. Whenever the electron beam is switched off, a TTL pulse is transmitted to
the Arduino, and the shutter opens within 55ms, ensuring that no photons emitted during
the electron-beam-on mode are detected. With these mechanisms, EUV photons emitted
in the magnetic-trapping mode and electron-beam on mode are acquired separately by a
CCD camera. Simultaneously, the X-rays emitted during the whole switching cycle are
recorded by an SDD mounted to a 45 ° view port.

3.3.10 Laser ion source

For the characterization of ion injection properties and determination of suitable parameters
for singly-charged ion injection at the designated end station at ARIEL of the EBIT, a
laser ion source (LIS) [167, 176] has been attached directly to the CANREB-EBIT on the
collector side at a distance of 1.4m from the center of the trap.
The principle of operation is depicted in figure 3.26. An intense laser pulse in the order of

1× 1011W/cm2 with a duration of 7 ns, a wavelength of λ = 532 nm and energy of 30mJ
is focused to ∼ 50 µm onto the surface of a target leading to the production of a hot dense
plasma. After a specific time after the laser pulse, an HV pulse can be applied to the
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Figure 3.26: Illustration of the function principle of a laser ion source. The distances and
lengths are not to scale. Adapted and modified from Ref. [176].

extraction grid, basically a set of two meshes with a separation of 3mm, by utilization of a
Behlke-type fast HV switch in order to separate the electrons from the ions and accelerate
the latter towards the EBIT. An additional Einzel lens between EBIT and LIS can be
utilized for focusing of the ion bunches into the trap center of the EBIT.
An additional feature is a rotatable revolver-shaped target holder for up to 5 targets

which allows faster switching between different elements without breaking the vacuum.

3.3.10.1 Ion-detection unit

Between the laser ion source and the CANREB-EBIT, a detection chamber with a re-
tractable Faraday cup and a pick-up ring was installed (compare figures 3.27b and 3.27a)
in order to detect injected ions with the origin in the LIS or highly charged ions extracted
from the EBIT.
After passing the Einzel lens of the LIS, the ion bunches enter the pick-up ring and

induce image currents which can be detected. The pick-up ring is a cylindrical electrode
with an inner diameter of 10mm and is mounted inside a shielding which is connected to
the electrical ground of the vacuum chamber to reduce electrical noise.
Behind the pick-up ring, a Faraday cup is mounted to a linear manipulator. It consists of

an inner disc with a diameter of 5mm and a concentrically aligned punched disk with an
outer diameter of 20mm, both separated and insulated by PEEK spacers. The geometry
of the Faraday cup allows for bi-directional operation to detect either injected or extracted
ions without rotating the cup and for a rough estimation of the transversal size of the ion
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(a) Bi-directional, concentrical two-segmented
Faraday cup for detection of injected ions or
extracted ions.

(b) Ion-detection unit with the Faraday cup
and a shielded pick-up ring in front of it. The
Faraday cup is retractable.

Figure 3.27: Detection of injected or extracted ions.

bunches.

For an estimation of the transversal size of an injected ion bunch, the Faraday cup
was inserted inside the beam, and the signal on the Faraday cup was measured with an
oscilloscope by measuring the voltage as a function of the position of the cup. For each
position, the signal was averaged over 100 shots. The results are shown in figure 3.28. The
red curve represents the smoothed voltage measured on the inner ring and the blue curve
for the outer ring.

The resulting signal S is a convolution of a rectangular-shaped signal rect(x) correspond-
ing to the detector cross-section and a Gaussian G(x) corresponding to the transversal
shape of the ion bunch.

S = rect(x) ∗G(x) (3.11)

The distributional derivative of a convolution D(f ∗ g) can be written as

D(f ∗ g) = (Df) ∗ g = f ∗Dg. (3.12)

Therefore, the derivative of the signal measured on the cup is

DS(x) = D(rect(x)) ∗G(x) = (D(rect(x))) ∗G(x). (3.13)

The distributional derivative of a rectangular function can be represented as a Dirac delta
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Figure 3.28: Estimation of the transversal size of an injected ion bunch. The Faraday
cup was inserted stepwise inside the path of the ion bunches, and the voltage drop was
measured as a function of the absolute position of the cup with an oscilloscope. Every
data point was averaged over 100 shots of the LIS. The signal measured on the inner ring
is represented in red and on the outer ring in blue.
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Figure 3.29: Estimation of the transversal ion bunch width by the first derivative of the
signal measured on the inner ring (figure 3.28) of the ion detection system. The width is
calculated to FWHM = 2.45(7)mm at a distance of ∼ 0.4m from the external ion source.

distribution. With this relations, the derivative of the signal S is a convolution of a Dirac
delta distribution with a Gaussian which is again a Gaussian with the same properties.
By application of the first derivative of the signal, the shape of the Gaussian-shaped ion
bunch can be extracted directly. Figure 3.29 shows the derivative of the signal on the inner
ring represented by the black curve and a Gaussian fit in red. The width of the ion bunch
is estimated to FWHM = 2.45(7)mm at a distance of ∼ 0.4m from the surface of the
target of the LIS. By assumption of an initial diameter of the bunch at the surface of the
target of 0.2mm which corresponds to the focal spot size of the laser beam, the transversal
divergence of the beam can be estimated to ∼ 5.6 × 10−2mm/cm. Extrapolating the
divergence leads to a transversal size of the ion bunch of ∼ 8mm in the center of the trap
at a distance of 1.4m from the surface of the target.
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Figure 3.30: Emission current of the cathode plotted as a function of the bias of the
cathode with focus electrode and anode at 0V. The red curve represents a fit according to
the Child law. Adapted from Ref. [34].

3.4 Characterization of the CANREB-EBIS

In this chapter, the characterization of the CANREB-EBIS regarding the properties of the
electron beam, charge breeding and ion injection, and extraction will be presented [34].
The charge-breeding studies, mainly based on the process of dielectronic recombination
of highly ionized argon ions, were performed by the utilization of X-ray detectors. The
extraction of ions detected with a Faraday cup and a time-of-flight method will be described
qualitatively.

3.4.1 Electron-beam studies

An essential quantity for the characterization of an electron gun is the perveance, which is
a measure of the emittance of the cathode. This parameter has been determined within
the scope of the bachelor thesis of C. Warnecke [175] by setting the anode and the focus
electrode to 0V, the central drift tube to 2800V and varying the bias Ucath of the cathode
stepwise. In figure 3.30, the emission current of the cathode is plotted as a function of the
extraction potential.
The Child equation [47]

j̄ =
I

πr2C
=

4ε0
9

√
2e

me

U3/2

d2
(3.14)

describes the mean current density j̄ in the space-charge limit caused by the negative space
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charge of the electron beam. The electrons are emitted from a cathode with radius rC
in an extraction potential U between cathode and anode with a spatial separation d. By
fitting the reduced equation

I(Ucath) = A · (Ucath − U0)
p (3.15)

to the data, the perveance of A = (4.11 ± 0.04) × 10−6A/Vp or 4.11 µPerv with p =

1.491 ± 0.001 and U0 = 15(1)V can be extracted.

3.4.2 Charge-breeding studies

The first X-ray spectra were obtained in March 2017 by means of a liquid-nitrogen-cooled
germanium detector manufactured by Canberra in order to determine the space charge
generated by the electron beam.

In figure 3.31 the number of detected photons is plotted as a function of the X-ray photon
energy with a fixed acceleration voltage of 5.8 kV, predefined by the potential difference
between the cathode and the central trap electrode, and a trapping potential of 100V at
different electron beam currents.

The unresolved structure below 5 keV arises due to direct excitation and subsequent
relaxation between electronic shells of trapped highly charged ions, mostly Ba and W.
Photons with energies above 5.8 keV can only be produced by recombination processes of
ions with free electrons. This photon energy is given by the sum of the ionization potential
of the ion and the kinetic energy of the recombining free electron.

Peaks due to radiative capture into open shells n = 3, 4, 5, 6 of highly stipped tungsten
are indicated in the spectrum at 502mA by red, yellow, orange and green vertical lines,
respectively. The recombination into the n = 3 shell releases a photon with the highest
energy due to the higher binding energy of the ion. The charge states of the tungsten
ions can be determined to a range of 46 ≤ q ≤ 52. With higher electron-beam currents,
the negative space charge increases and affects the kinetic energy of the free electrons.
Therefore the released photons appear at lower energies. By plotting the peak positions as
a function of the electron beam current the space charge ∆Ve can be extracted from the
slope of the linear fit to

∆Ve = (−1.64 ± 0.07) eV/mA. (3.16)

It should be remarked that ∆Ve is partially compensated by the positive space charge of
the ion cloud.
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Figure 3.31: X-ray spectra of radiative recombination and direct excitation of highly
charged tungsten ions for different electron-beam currents at 5.8 keV acceleration potential.
The red, yellow, orange and green curves indicate recombination into the open n = 3, 4, 5, 6
shell of tungsten 46 ≤ q ≤ 52, respectively. Adapted from Ref. [34, 175].
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Figure 3.32: The spectrum of KLL dielectronic recombination of N-like up to He-like
argon ions with 60mA electron-beam current. The X-ray flux is displayed as a function
of the electron-beam energy on the abscissa and the photon energy on the ordinate. The
shift of the MCDF calculation (red curve) towards higher electron-beam energies indicate
a combined space-charge potential of the electron beam and the ions of 47 eV. Adapted
from Ref. [34].

3.4.2.1 Space-charge compensation

For the determination of the space-charge compensation of the HCIs, a technique based
on the process of dielectronic recombination (DR) of highly stripped argon was chosen.
Neutral argon was injected into the trap with an axial depth of 100V and was ionized
by the crossing electron beam with a current of 64mA. The electron-beam energy was
cyclically ramped between 2100 eV and 2750 eV, and the X-ray spectrum was simultaneously
recorded. This results in a two-dimensional spectrum with the X-ray photon energy as a
function of the electron-beam energy, as shown in figure 3.32.
Resonant recombination into N-like up to He-like argon can be observed. By comparison

to the integrated Kα emission (solid red curve) obtained by a multi-configuration Dirac-Fock
(MCDF) theory, a shift of 47 eV produced by the combined space charge of the electron
beam and the HCIs can be determined.
This technique is the basis for investigation of the contribution of the space charge of the
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Figure 3.33: Resonance energy of KLL dielectronic recombination of highly charged argon
(N-like to He-like) as a function of the axial trapping potential for an electron-beam current
of 110mA and 200mA. With higher trap depth, higher space-charge compensation can be
observed, which shifts the resonance energy to lower values. Adapted from Ref. [34].

HCIs. In figure 3.33, the position of different dielectronic resonances from N-like to He-like
argon is recorded as a function of the trap depth at different electron-beam currents. In
this measurement, the trap depth was increased by increasing the potential of the first
electrodes surrounding the central drift tube.
With higher axial trapping potential, the resonance energies of the DR shift towards

lower electron-beam energies. Due to the higher amount of ions in the trap, the negative
space charge of the electron beam is highly compensated by the contribution of the positive
space charge of the ions which increases the total kinetic energy of the free electrons.
For an electron-beam current of 110mA, the space charge compensation by the ions is
∆Vions = −0.29 ± 0.01 eV/V.

3.4.2.2 Temporal evolution of charge states

In order to investigate the filling of the trap in more detail, the temporal evolution
of the charge state distribution was observed by utilizing the technique of dielectronic
recombination. A cyclic measurement with a period of one second of emptying the trap by
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a short HV puls on the central trap electrode with a fast HV switch (Behlke GHTS-60) and
observing the filling of the trap was performed while simultaneously ramping the electron
beam energy from 2.1 keV to 2.75 keV over the DR resonances within 20 minutes.
By projecting the region of Kα emission in a photon energy range from 2750 eV to 3250 eV

as in figure 3.32 onto the abscissa and plotting it as a function of the time after emptying
the trap, a two-dimensional spectrum as in figure 3.34 can be obtained.
In this measurement, the electron-beam current was 64mA. Directly after the dump,

the resonances appear at higher electron beam energy due to the low amount of ions in
the trap and thus almost no space-charge compensation. After a specific time, the trap
is filled with more ions which compensate for the negative space charge of the electron
beam. After ∼ 400ms a steady state is reached where the loss due to evaporation is in
equilibrium with the saturation of the trap, a total shift of ∼ −160 eV with respect to the
uncompensated space charge of the electron beam can be observed.
From the information this plot provides, the electron beam radius can be estimated.

Directly after emptying the trap and at the beginning of the charge breeding process, the
strong Ar14+ DR resonance appears at ∼ 2500 eV. According to the MCDF calculation,
the resonance should appear at 2303 eV.
The electrostatic potential Φ(r) of an infinitely long electron beam is represented by

equation 3.4 with

Φ0 =
1

4πε0
· Ib
ż

(3.17)

and the velocity of the electrons along the trap axis

ż = c0

√
1−

(
eU

mec20
+ 1

)−2

, (3.18)

where me represents the electron mass, e the electron charge and c0 the speed of light
in vacuum, Φ0 can be calculated to Φ0 = 20(1)V by assuming an electron velocity
ż = 2.84(2)× 107m/s at an energy of 2303(20) eV where the resonance should appear.
Φ0 represents the potential difference between the center of the electron beam and its
boundary. With an inner diameter 2rD = 14mm of the central trap electrode, equation
3.4 can be solved for the electron beam radius and estimated to re ≈ 54(3)µm .

3.4.3 Ion production rate and trap filling

An essential characteristic of the trap is the filling rate, which is the amount of produced and
trapped ions per time unit. Singly charged ions are captured efficiently due to the negative
space charge of the electron beam, and thus, the trap is filled instantly. In contrast, the
production and trapping of injected neutrals depend strongly on the electron-beam-current
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Figure 3.34: KLL-DR of highly charged argon as a function of the time after emptying
the trap. At time t = 0 s, the contribution of the space charge arises only from the electron
beam with a beam current of 64mA. With progressed time the trap starts filling with HCIs
which compensate partially for the negative space charge of the electron beam, increasing
their kinetic energy. Thus, the resonances appear at lower electron-beam energies with
increasing time. Adapted from Ref. [34].
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Figure 3.35: Trap filling with argon ions at different injection pressures of 5.1× 10−9mbar,
2.2× 10−7mbar, and 9.3× 10−7mbar, respectively. The measurement technique and data
acquisition are the same as described in figure 3.34, but with an electron-beam current of
125mA. Adapted from Ref. [34].

density and the density of the injected compound, and therefore, the filling rate is lower.

To investigate the filling rate of neutral argon, the measurement technique described in
section 3.4.2.2 was utilized with an electron-beam current of 125mA, an axial trap depth of
100V and cycle duration of 300ms for different injection pressures (compare figure 3.35).
The scanning range of the electron-beam energy is reduced to 2300 eV to 2750 eV. The red
dashed line indicates the slope of the filling of the trap for Ar13+ ions resulting from the
beryllium-like dielectronic resonance. With higher injection pressures (measured at the
second stage of the injection system), the ions are accumulating faster.

The space-charge shift is determined to 0.6 ± 0.02, 1.4 ± 0.1, and 2.6 ± 0.1 eV/ms for
the injection pressures of 5.1× 10−9, 2.2× 10−9, and 9.3× 10−7mbar, respectively. These
rates correspond to a filling of 4.3× 105, 1.0× 106 and 1.9× 106 Ar13+ per millisecond,
respectively. By integrating over the number of ions until the saturation of the trap is
achieved, leads to a total trap capacity for these specific settings of ∼ 5.7× 109 elementary
charges. With higher electron-beam currents and a deeper axial trapping potential, this
value can be exceeded by at least one order of magnitude.
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3.4.4 Ion extraction measurements

For the characterization of extraction of HCIs from the EBIT, the voltage on the central
trap electrode was switched between a value below and above the potential barrier of the
downstream electrode by a Behlke GHTS-60 fast HV switch module. The charge-bred and
extracted ions were detected on the Faraday cup in the ion-detection chamber between
EBIT and LIS. The voltage drop over a 500Ω resistor was measured as a function of the
time after emptying the trap under various conditions with repetition rates of 1Hz up to
100Hz. The signal was averaged over 30 single shots.

The electron-beam current was set to 200mA at a beam energy of ∼ 4500 eV and an axial
trapping potential of 100V in these measurements. The base pressure with closed injection
was ∼ 4× 10−9mbar. In figure 3.36 the extraction signal is recorded for different injection
pressures of 1.2× 10−6mbar (panel b)), 1.7× 10−7mbar (panel c)) and 7× 10−9mbar
(panel d)), respectively of neutral argon (red curves) and closed injection (black curve)
with a digital storage oscilloscope. The subfigures b), c) and d) represent the time-of-flight
(TOF) spectrum for injection pressures of 1.2 × 10−6, 1.7 × 10−7, and 7.0 × 10−9mbar,
respectively. In subfigure a) the total charge is integrated for six different injection pressures
over a window of 4 µs including the highest peak of the TOF spectrum by the assumption
of a charge-state distribution of Ar10+ up to Ar16+. The black circles indicate a closed
injection, the red circles injection of neutral argon with the corresponding injection pressure
in the second stage. Those values for the integrated charge of the extracted ion bunch is
the lowest limit due to a non-complete geometrical interception with the Faraday cup.

In figure 3.37, a similar measurement was performed by recording the Faraday-cup signal
as a function of the axial trapping potential in the range between −100V above and 500V
below the potential barrier with a beam current of 200mA, beam energy of ∼ 4500 eV,
and an injection pressure of ∼ 5× 10−7mbar during open injection.

The subfigure a) is obtained by the same approach as in figure 3.36. Subfigures b), c)
and d) represent the TOF spectrum of argon with an axial trap depth of 300V, 50V,
and −100V, respectively. The black curve represents the spectrum with a closed injection
valve. A deeper axial trapping potential prevents ions from leaking out by evaporation
effects, which leads to an increased yield of HCIs. Hereby the highest peak in the TOF
spectrum shifts towards lower time-of-flight, which indicates higher charge states. Also,
the TOF resolution for different charge states is reduced, which can be observed with an
inverted trap in subfigure d).

However, in contrast to the fast pulsed extraction scheme producing short bunches of
HCIs, the bunch length can be increased to seconds by slowly decreasing the axial potential
barrier allowing a fraction of hottest ions to evaporate, as shown in Ref. [155, 154, 153].
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Figure 3.36: Measured signal of extracted argon ions on a faraday cup across a resistor of
500Ω for different injection pressures of neutral argon into the EBIT with 1.2× 10−6mbar
(b)), 1.7× 10−7mbar (c)) and 7× 10−9mbar (d)), respectively. Subfigure a) shows the
integrated number of charges for six different injection pressures with closed injection
(black circles) and neutral argon injection with the corresponding injection pressure (red
circles). The electron-beam current was 200mA. Adapted from Ref. [34].
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axial trap depths. Negative values represent an inverted trap, where the central trap
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and d) show time-of-flight spectra obtained at trap depths of 300V, 50V, and −100V,
respectively. Panel a) represents the integrated charges extracted from the EBIT as a
function of the trapping potential. The beam current was set to 200mA at an energy of
∼ 4500 eV. The injection pressure during open injection was ∼ 5× 10−7mbar. Adapted
from Ref. [34].
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Figure 3.38: KLL-DR measurements of highly ionized iron. The measurement technique
is the same as presented in figure 3.34. Lowly charged iron ions were provided by the
laser-ion source, synchronized with the switching cycle of the voltage of the collector-sided,
adjacent electrode of the central drift tube. The electron-beam current was 200mA and
the axial trapping potential 300V. Adapted from Ref. [34].

3.4.5 Ion injection from the laser ion source

The CANREB-EBIS will be utilized as a charge breeder at the ARIEL facility at TRIUMF.
Bunches of singly charged, rare isotopes will be injected into the EBIT in order to breed
them to higher charge states. For a proof-of-principle test and determination of suitable
parameters for ion injection, a laser ion source (see section 3.3.10) was utilized. The laser
is focused to a diameter of ∼ 0.2mm onto an iron target.
In figure 3.38 a similar measurement technique as in 3.4.2.2 was used with an electron-

beam current of 200mA, an axial trapping potential of 300V, and a scanning range of the
electron-beam energy from 5000 eV to 5500 eV where the KLL-DR of highly charged iron
including space-charge effects is expected and a cycle period of 1000ms.
By the application of a 3 kV pulse to the acceleration grid with a delay of 3.75 µs with
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respect to the laser pulse, the produced iron ions were guided into the trap with an open
potential-barrier on the collector side electrodes. 18 µs after the trigger of the laser pulse
the potential on the next downstream electrode of the central trap electrode was switched
to a higher value employing a fast HV switch (Behlke GHTS-60) in order to raise the
potential barrier while the ion bunch is inside the trap to prevent those ions from escaping.
This is denoted as the beginning of the cycle at t = 0 s. The trapped ions were ionized to
higher charge states of Fe24+ up to Fe20+ undergoing resonant dielectronic recombination
with free electrons. A similar behavior of the compensation of the negative space charge of
the electron beam by positively charged HCIs, as shown in figure 3.34, was observed. The
breeding times are considerably high, and the statistics are relatively low. This can be
referred to the fact of a faulty electrical connection of the Sikler lens (chapter 3.3.5) which
therefore could not be used for focussing or steering, leading to a bad intersection of the
ion trajectories with the electron beam and a decreased charge breeding efficiency.

3.4.6 Integration of the EBIS into the CANREB facility

In January 2018 the EBIS has been shipped and installed at the designated end station
in the ARIEL experimental hall at TRIUMF. After three days of pumping, a pressure
in the higher 1× 10−7mbar range in the magnet chamber, and 6.5× 10−9mbar in the
gun chamber has been achieved. The manufacturing and installation for the high voltage
cages and ducts surrounding the electron gun and the collector and the common electrical
platform for the trap assembly have been performed by scientists and technicians at
TRIUMF. In July 2019 the integration of the CANREB-EBIS as a charge breeder at
the CANREB facility has been initialized. In figure 3.39 an overview of the project is
illustrated. The singly-charged rare isotopes provided by ISAC or ARIEL are bunched and
pre-cooled by a radio-frequency cooler/buncher and transported to the EBIS where the
charge breeding to a specific charge state occurs. Subsequently, the highly charged ions
are extracted and transported to a NIER spectrometer where the composition and charge
states of a bunch are analyzed. In this photograph, the EBIS and the beamline have been
separated due to maintenance.
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Figure 3.39: The integration of the CANREB-EBIS into the CANREB project of the
ARIEL facility at TRIUMF. The main components are highlighted: the radio-frequency
cooler/buncher, the EBIS and the NIER-spectrometer. The photograph was acquired in
July 2019.





4 Experiments on charge exchange

4.1 Experimental setup

The charge-exchange measurements are performed at the FLASH-EBIT equipped with a
grazing incidence EUV-spectrometer described in chapter 3.3.9 for a wavelength range of
5 nm and 35 nm, a 3-meter normal incidence VUV-spectrometer for ∼ 40 nm to 250 nm in
Rowland configuration and a silicon drift detector for the X-ray range as shown in figure
4.1. The technical details on the VUV spectrometers will not be given within the scope of
this work. Further information can be found in [33].

4.1.1 Data acquisition system

For data acquisition and signal processing the commercial MPA3-system (multi-parameter
data acquisition system) from FAST ComTec [79] was used. The system provides up to 16
ADCs (analog-to-digital converter) with a digital resolution of 13 Bit each converting an
analog signal to a digital signal and allocate it to an integer value between 0 and 8191.
Each ADC can be operated in three different modes.
The SVA (sampling voltage analyzer) mode digitizes an input voltage between zero

and ten volts. In this mode usually, signals are processed which can be represented by
a continuous voltage characteristic like the electron beam energy for measurements of
dielectronic recombination, or time for cyclically repeated measurement schemes. For the
allocation of a voltage to a specific channel, the SVA has to be triggered externally.
In the PHA (pulse height analyzer) mode, the height of a signal pulse is digitized and

assigned to the corresponding channel. In this mode, usually, the energy of a detected
photon is mapped where the height of a pulse is proportional to the energy of the photon.
The TDC (time-to-digital converter) allocates a time difference between a start pulse

and a stop pulse between 50 ns and 20 µs with a resolution of 0.025 ns. This mode is often
utilized for determination of the spatial information of an event on a position-sensitive
photon detector like a microchannel plate with a delay-line anode. Here the time difference
between a start and a stop pulse in the two delay lines, respectively, can be converted into
a position on the detector where the photon was impinged on.
The acquired data can be processed in real-time with the program MPANT where

conditions for coincidences can be defined to create one- or two-dimensional spectra.
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Figure 4.1: Photograph of the experimental setup. The image was acquired along the
electron-beam axis from the collector side. On the left-hand side, the 3-meter normal-
incidence VUV spectrometer [33] is attached to a radial viewport of the EBIT, equipped
with a spherical grating at three meters distance from the trap center and an MCP detector
at a distance of three meters from the surface of the grating in order to detect VUV
photons. On the right-hand side, the extreme-ultraviolet grazing-incidence spectrometer
is installed. On the 45 ° port with respect to the horizontal plane, an X-ray detector is
mounted.

Additionally, a file with all relevant information about every single registered event is
written in a file in a binary format.

4.1.2 Measurement scheme

The experimental setup is illustrated in figure 4.2 schematically. For the charge exchange
measurements, it is necessary to separate the detected photons emitted during interaction
with free electrons and interaction with neutral gas. Extraction of the contribution of the
latter is only possible by producing the HCIs of interest by electron-impact ionization,
subsequent switching off the electron beam and keeping those ions magnetically confined
inside the trap. The only process in the so-called magnetic trapping mode (MTM) which
can lead to emission of photons on a longer timescale is charge exchange. Here it is crucial
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Figure 4.2: Schematical illustration of the experimental setup and the data acquisition
system. Three channels of arbitrary function generators were utilized to provide information
of the time within the switching cycle of the electron beam, the signal for switching on
and off the beam, and for the rotation of the mechanical shutter attached in front of the
EUV grating. Further details are described in the text.

to have a precise knowledge if a photon was detected during the beam-on or the magnetic
trapping mode. For this purpose, the electron beam was switched off cyclically, and the
X-ray photon energy was recorded as a function of the time within the period P . To provide
this time information, an arbitrary function generator (AFG1) served as an output for a
linear ramp signal between 0V and 10V with period P , where a specific voltage corresponds
to a particular time within the period. This parameter was fed into the SVA. A second
function generator (AFG2) controlled the electron-beam current. A rectangular-shaped
signal was amplified by a factor of 1000 by a high voltage amplifier manufactured by
TREK (model 623B) where the output was connected to the focus electrode. Applying a
highly positive voltage leads to emission of an electron beam, and a highly negative value
switched it off. This function generator was triggered by the trigger output of AFG1 to
ensure a constant phase between both signals. The photons detected by a silicon-drift
detector (SDD) (compare section 3.3.8.1) were processed by an Ortec 672 spectroscopy
amplifier which served as an amplifier and a constant fraction discriminator to provide a
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rigorous timestamp independent of the height for every single pulse. Every single event was
analyzed subsequently by the PHA. Simultaneously a monitor output signal from the PHA
was fed into the SVA as a trigger to assign a detected event to a time within the cycle.
The outputs of the PHA and the SVA were connected to the MPA module. By setting
certain conditions of coincidences, a two-dimensional spectrum with the X-ray energy on
the abscissa and the time within the cycle on the ordinate can be extracted.
In addition, a third function generator (AFG3) controlled the shutter between the EBIT

and the grating of the EUV-spectrometer (compare section 3.3.9). It was triggered by
AFG1 and provided a rectangular-shaped signal which was delayed with respect to the
signal of AFG2. To ensure that the CCD is only exposed during the electron-beam-off
mode a 5V signal was transmitted on the falling edge of the signal of AFG2 to an Arduino
microcontroller that controlled a stepper motor outside the vacuum which rotated the
shutter. After 50ms, the shutter was completely open. At the end of the cycle, the shutter
was closed 0.5 s before the electron beam was switched on again.
The events detected by the MCP of the VUV-spectrometer were fed simultaneously into

the MPA data acquisition system and therefore it can also be assigned to a corresponding
time within the cycle.
An example of all three AFG signals is presented in figure 4.3. The green signal is the

linear ramp signal of AFG1 to provide time information within the switching cycle, the
blue curve is the rectangular signal of AFG2 for switching of the electron beam, and the
orange curve shows the 5V pulse of AFG3 to rotate the shutter.

4.1.3 Switching the electron beam

During the electron-beam on mode, the X-ray spectrum is dominated by the interaction
of ions with free electrons. In the magnetic trapping mode, where no free electrons are
present, charge exchange is the dominant process. In order to separate those processes and
to eliminate the contribution of the interaction with free electrons, the electron beam has
to be switched off rapidly. For the fast switching of the electron beam, a pure rectangular
signal in the range of −3V and 3V was fed into the input of the power supply of the focus
electrode and amplified by a factor of 1000.
The time required for the switching can be estimated by measuring the collector current

directly as a function of time. The result for switching on and off the electron beam is
shown in figure 4.4. The time tOn required to switch on the electron beam from 0mA
to 167mA is tOn = 305 µs and the time tOff to switch off the beam tOff = 230 µs. This is
an upper limit because the measured signal was not corrected for the capacitance of the
collector as well as the capacitance of the coaxial leads, which results in apparently higher
switching times.
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Additionally, the dynamics of the ion cloud has been investigated by observation of the
zeroth-order diffraction with the VUV spectrometer as a function of the time within the
switching cycle. In this charge exchange measurement neutral argon was injected into the
trap and ionized by an electron beam with a nominal beam energy of 4520 eV and a beam
current of 200mA with an axial trapping potential of 500V. In figure 4.6 the temporal
evolution of the ion cloud is presented as a function of time within the cycle.
Here, the spectra were acquired with a microchannel-plate (MCP) detector equipped with

a delay-line anode which provided temporal and spatial information about the impinging
photons. Since the orientation of the delay line was not perfectly aligned with respect to
the dispersive axis of the diffraction grating, the resulting image of the cloud is intrinsically
inclined, as illustrated in figure 4.5. The inclination angle is determined to φ ≈ 14.2 °.
After correction for the inclination, the image is collapsed onto the dispersive axis. By
plotting the resulting one-dimensional histogram as a function of the time within the
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time within the CX cycle acquired with the VUV spectrometer. After switching off the
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compressed ion cloud, can be observed.

switching cycle of the electron beam, the dynamics of the ion cloud can be extracted, as
shown in figure 4.6. Since the diameter of the active area of 40mm is known, and the VUV
spectrometer setup provides a 1 : 1 magnification of the object size, the diameter and the
centroid position of the ion cloud can be extracted directly from a Gaussian fit. The initial
size of the ion cloud is determined to FWHM = 378(3)µm. After switching off the electron
beam at t = 4 s, the cloud expanded to 1680(12)µm and moved by 305(40)µm. This shift
could be caused by a non-perfect alignment of the propagation axis of the electron beam
with respect to the central axis of the magnetic field. A similar result was observed with
different electron-beam energies. The increase of the width can be explained by diffusion
processes in the magnetic field. In the case of non-interacting particles, the transversal
motion of the ions with respect to the magnetic field does not change. The diameter of the
cloud is characterized by the cyclotron radius. For collisions between like particles, the
center-of-mass remains stationary, which does not affect the overall transversal trajectories
[46]. Collisions between charged particles and neutrals cause a diffusion of the ions across
the magnetic field. After each collision, the guiding center shifts randomly in the order of
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a cyclotron radius of the corresponding ion. Collisions between unlike particles also shift
the center-of-mass towards lower ion density. These effects lead to slow expansion of the
ion cloud as a function of time. The behavior of the ion density can be described by a
model based on the simplified Vlasov equations with the absence of an electron beam [54].
The density ρ as a function of time t and position r is then given by

∂ρ(r, t)

∂t
= −K∂ρ(r, t)

∂r

∂

∂r

(
1

ρ(r, t)

∂2ρ(r, t)

∂r2

)
, (4.1)

where K represents the diffusion constant

K ≈ 8
√
kTm3/2

387π
√
πB4ε20

lnΛ (4.2)

with the Coulomb logarithm Λ, ion mass m and ion temperature T . In this experiment
the temperature is given by T ≈ 0.2qV0 = 1700 eV, where V0 represents the axial trapping
potential and q the charge of the ion. To remark is a scaling of the diffusion time with the
fourth power of the magnetic field in the denominator. Thus, the diffusion in a magnetic
field of 6T is effectively reduced by a factor of 16 compared to a magnetic field of 3T.

A careful investigation of the ion-cloud dynamics is presented in figure 4.7. Here, the
plot from figure 4.6 is segmented into several temporal slices with a width of 0.1 s directly
before and 0.1 s after switching off the electron beam and 0.5 s for the other consecutive
slices. Within each slice, all detected events are projected onto the dispersive axis, and
a Gaussian fit is performed in order to determine the width and the position of the ion
cloud. The values extracted for the position and the width of the ion cloud for each slice
are presented in figure 4.8 as a function of the time within the switching cycle in the
bottom panel and the top panel, respectively. Also, the values during the electron-beam on
mode are displayed, where t = −4 s is the time where the beam was switched on. Directly
after switching on the electron beam, the ion cloud moved steadily by 0.1mm before it
shifted abruptly due to the absence of the electron beam after switching off the beam.
The width increased correspondingly before the expansion of the ion cloud at t = 0 s.
This measurement indicates a slight misalignment of the electron gun with respect to the
magnetic field axis.

An estimation of the kinetic energy can be performed by the utilization of the cyclotron
motion with a radial velocity of

vc =
q

m
rB, (4.3)

where r is the cyclotron radius, B the magnetic field, and q and m the charge and the
mass of the ion, respectively. The diameter of the ion cloud in the steady-state after the
expansion is FWHM = 1.8(1)mm. By the assumption of hydrogen-like argon as ionic
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species, the kinetic energy can be estimated to E = 1/2mv2c ≈ 254(14) eV/u. To remark
is, that this value represents the upper limit since the ion cloud was observed in the zeroth
diffraction order. Thus, hydrogen-like argon does not exclusively contribute to the observed
radiation. Since oxygen is a highly-abundant contaminant, for instance, from previous
measurements, an intense transition of beryllium-like oxygen at 62.6 nm could constitute a
significant fraction of observed photons.

4.2 Charge exchange in highly charged sulfur

4.2.1 An unidentified X-ray emission line-like feature at 3.5 keV

In 2014 independent observations of an X-ray emission-like line feature at a photon energy
of 3.5 keV in several spectra of galaxy clusters have attracted particular attention in the
astrophysical community. The first detection of this line is reported in [39] where the
feature was observed in the Perseus galaxy cluster and the galaxy M31 (Andromeda
Galaxy) with X-ray instruments of the XMM-Newton space telescope. An independent
analysis of 73 stacked X-ray spectra of galaxy clusters obtained by XMM-Newton given
in [42] confirmed the existence of the unidentified line feature (ULF). The reason for the
excitement was a lack of a direct assignment to a known atomic transition in standard
wavelength databases which gave rise to a tide of speculations and publications about the
origin of this line, particularly about a possible dark matter origin. Among those, the
hypothesis of a decaying dark matter particle candidate - the sterile neutrino, has been
emphasized. The argumentation for this supposition is based on a non-availability of an
atomic transition in this wavelength region in standard databases for thermal plasmas [42,
70].
Further investigations have been carried out by observations of the Perseus cluster core

[170] employing the Suzaku X-ray space telescope [120] and the Galactic center [38]. In
these publications, an upper limit for the flux of the ULF has been estimated, but due to
model and statistical uncertainties, no coherent evidence for the existence of the line could
be provided.
While other alternative models propose decay of dark matter into other exotic candidates

like the axion-like particle which is converted to a photon inside the magnetic field of
galaxies and clusters [48], other groups report a non-detection of the ULF [8, 16, 92, 118,
77, 161]. Another publication even rules out the origin of the ULF in the decay of dark
matter due to the incompatibility of the observed spheroidal dwarf galaxies Draco with
the expected distribution of dark matter within this system [96]. A recent study from the
∼ 30Ms observation of the ambient halo of the Milky Way utilizing the XMM-Newton
telescope strongly disfavors the decay of sterile neutrino by setting a firm limit on the
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lifetime of dark matter in the expected mass range between 6.7 keV and 7.4 keV [58]. To
investigate the issue cautiously, all possible sources leading to X-ray emission in this
spectral range have to be excluded. The models utilized for the description of thermal
plasmas rely on standard spectral databases, and atomic structure calculations since the
catalog of laboratory spectra is far away from completeness [26].
One possible explanation of the ULF with an origin in an atomic process which is strongly

supported in this thesis is given in [83]. The cautious explanation is based on the process
of charge exchange, where an entirely-stripped sulfur ion captures an electron from neutral
atomic hydrogen, leading to the population of a high principal quantum number state of
n = 9 leading to emission of 3.5 keV photon from a subsequent Rydberg-transition into the
ground state. Since the hot plasma present in galaxy clusters contains significant amounts
of hydrogen-like and fully-stripped sulfur ions [126] interacting with clouds of hydrogen, the
process has to be investigated and furthermore considered in astrophysical modeling. Other
publications suggest 1s22l – 1s2l3l′ transitions at 3.62 keV of lithium-like argon induced by
dielectronic recombination [75], which is a resonant electron capture process where a free
electron recombines into a bound state by excitation of a core electron. However, the issue
of the origin of this emission line is not fully resolved hitherto, and further theoretical and
experimental investigations are required.
In this work the scenario of electron-capture by fully-ionized sulfur ions with subsequent

K-shell emission is investigated.

4.2.2 X-ray measurements

The measurements were carried out in January 2016 [149] with FLASH-EBIT [63], utilizing
the same technique as described in section 4.1. CS2 gas was injected into the EBIT acting
as well as a source of the highly charged projectiles S15+ and S16+ and as a target of neutral
gas. The ions produced by electron-impact ionization were kept magnetically confined
after switching off the electron beam and interacted with the constant inflow of the neutral
target CS2 inside the trap region.
A comparably deep axial trapping voltage of Utrap = 1100V was chosen, corresponding

to an ion temperature of ∼ 0.2qUtrap = 110 eV/u, where q is the charge of the ion. The
electron beam current was 150mA at an electron beam energy of Ee ∼ 4.6 keV, above
the ionization threshold for the production of bare sulfur and Ee ∼ 3.6 keV, below the
threshold, respectively. The total cycle time of switching the electron beam was 16 s with
6.6 s in the magnetic trapping mode subcycle, corresponding to a duty cycle of 40%. The
photons emitted during the beam-on mode and the MTM were detected by an SDD with
a resolution of FWHM ∼ 150 eV, close to the detector resolution of the XMM-Newton
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X-ray space telescope, equipped with a MOS (metal oxide semiconductor) CCD-array
behind the X-ray telescope with a grating spectrometer [169, 178] and a pn CCD-camera
[160]. A high-resolution measurement of the transitions could be achieved employing a
microcalorimeter as presented in CX measurements at the Lawrence Livermore National
Laboratory (LLNL) [22, 109] with a disadvantage of a comparably small solid angle
compared to an SDD and significantly longer acquisition time.
The energy calibration of the SDD was performed using a set of measurements of

dielectronic recombination of highly charged sulfur, argon and barium ions. Dominant
resonant K-shell X-ray transition energies of helium-like argon and sulfur, and direct
excitation of L-shell transitions (n = 3 → n = 2) of Ba46+ were studied and assigned to
calculated transitions obtained by the flexible atomic code (FAC) [85]. A good agreement
of those calculations with previous experimental results of dielectronic recombination
[148, 150] makes the calculated transition energies sufficiently confidable for the present
calibration of this experiment.
The theoretical uncertainty for the transition energies was chosen conservatively to

10 eV due to a not precisely known distribution of charge states of the trapped ions. The
raw spectra are one-dimensional histograms, where the number of detected events are
represented as a function of the corresponding channel of the ADC, which is proportional
to the energy of the photons detected. The number of ADC channels was binned by a
factor of 8, resulting in 1024 channels in this experiment. Gaussian distributions were fitted
to each known transition to determine the centroid position in terms of ADC channels
precisely. The result is shown in figure 4.9, where the calculated transition on the ordinate
is assigned to an ADC channel on the abscissa with the corresponding residuals of the
linear fit. A reduced χ2 of 1.33 indicates slightly underestimated uncertainties. The linear
scaling factor of 9.34 eV/ADCchannel and an offset of 102.7 eV is determined.
A two-dimensional spectrum, as in section 4.1, with an electron-beam energy of Ee =

4.6 keV, above the ionization threshold for fully ionized sulfur with Ip = 3494.2 eV, is shown
in figure 4.10.
During the beam-on mode at an electron beam energy of 4.6 keV, various principal

quantum number states of hydrogen-like sulfur, helium-like sulfur, and lower charge states
are populated by electron-impact excitation. By subsequent decay into the ground state,
K-shell photons are emitted with energies between 2 keV and 3.5 keV where the latter
represents the series limit or the binding energy of a K-shell electron. These transitions
are indicated by labels a) to e) in the figure. Photons at higher energies than the
electron-beam energy are produced by recombination processes with mono-energetic free
electrons. Radiative recombination into the n = 2 state of S15+ and S16+, labeled with
f) leads to emission of a photon with an energy of ∼ 5 keV consisting of the sum of the
binding energy of an L-shell electron after recombination and the kinetic energy of the free
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Figure 4.9: Energy calibration of the X-ray detector. Top: calculated resonant K-shell
transitions of helium-like argon and sulfur ions and direct excitation of transitions n = 2 →
n = 3 of Ba46+ are represented as a function of the ADC channel of the data acquisition
system. Bottom: corresponding residuals of the linear fit.
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Figure 4.10: Two-dimensional charge exchange spectrum of highly charged sulfur with
an electron-beam energy above the ionization threshold for the production of bare sulfur.
The photon energy detected with an SDD is plotted as a function of the time within
the switching cycle of the electron beam. The experimental technique was performed
analogously to the results shown in figure 4.21. The magnetic-trapping subcycle is plotted
from 0.2 s to 6.8 s of a total cycle time of 16 s.
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electron. Radiative recombination into the ground state of S15+ and S16+ is indicated by
label g) and f), respectively providing X-rays with energies up to 8 keV.

From the radiative recombination of S16+ with a free electron of the nominal kinetic
energy of 4.6 keV, the contribution of the negative space charge induced by the electrons can
be estimated. The binding energy of an electron in the ground state of S15+ is 3494.2 eV.
The photon energy released during this process at the beginning of the breeding cycle
at t ≈ 6.8 s is approximately 7.65 keV. At this time the number of ions produced which
partially compensate for the negative space charge of the electron beam is comparably low.
Consequently, the measured photon energy of h) is the sum of the nominal kinetic energy
Ee of the electron, the binding energy Ip of the captured electron into the ground state
and the space charge ESC with a negative sign

7650 eV = Ee + Ip − ESC (4.4)

Therefore the negative space charge can be estimated to ESC = 444 eV.

At the end of the breeding subcycle, the photon energy appears at slightly higher energies
of ∼ 7.8 keV. As mentioned before, the ions produced over the time compensate partially
for the negative space charge of the electron beam. From the difference of the photon
energy at the beginning and the end of the subcycle, this contribution of the positive space
charge ESC,Ion of the ions is determined to 150 eV, which corresponds to a compensation
of ∼ 34%.

During the magnetic-trapping mode, the contribution of excitation processes and recom-
bination processes of free electrons vanishes and the only process leading to the emission of
X-rays is charge exchange of S15+ and S16+ with CS2. The metastable states populated by
electron-impact excitation, decay comparably fast into the ground state, for He-like sulfur
less than one micro second [51] which is much smaller than the resolution of the TDC of
∼ 8ms with the settings used in this experiment. Long-termed emission of K-shell photons
in the MTM requires a vacancy in the K-shell that only fully-stripped sulfur and hydrogen-
like sulfur can fulfill. Highly excited principal quantum numbers nCX = 15 . . . nCX = 3 are
populated by the capture of a weekly bound electron of the CS2 molecule in the MTM
resulting in subsequent X-ray transitions from nCX → n = 1 in a range from ∼ 2.75 keV
to ∼ 3.5 keV. Other transitions where the electron can not decay directly into the ground
state due to selection rules feed the n = 2 state resulting in a Lyα transition at ∼ 2.6 keV
and an intense Kα line at ∼ 2.4 keV for capture into fully ionized sulfur and hydrogen-like
sulfur, respectively.

A set of measurements, as shown in figure 4.10, was performed for different electron-beam
energies between 3.4 keV up to 7 keV at a constant injection pressure of CS2 in the second
stage of ∼ 1× 10−8mbar. Collapsing all the events detected by the SDD in the MTM onto
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Figure 4.11: X-ray emission induced by charge exchange of highly charged sulfur in the
magnetic trapping mode as a function of the electron-beam energy in the breeding subcycle.
The normalized X-ray flux is represented by a logarithmic color scale.

the axis of the photon energy yields one-dimensional histograms with the X-ray energy
on the abscissa. Representing the spectra as a function of the electron beam energy on
the ordinate provides a two-dimensional spectrum, as shown in figure 4.11, where the
normalized intensity to Kα is represented by a logarithmic color scale. The yellow insets
depict the generic one-dimensional spectra at electron-beam energies of 3.6 keV, 5 keV, and
6 keV, respectively.

The minimum real electron-beam energy required to produce fully-stripped sulfur is
3494.2 eV. By the addition of the combined space charge potential USC;comb. composed of the
negative contribution of the electron beam with 444 eV and the positive contribution of the
ions with 150 eV yielding USC,comb. ≈ 294 eV, leads to an uncorrected electron-beam energy
of ∼ 3.79 keV. A distinct appearance of Rydberg transitions nCX ≈ 15 . . . n = 4 → n = 1

in the range between 3.3 keV to 3.5 keV can be seen at uncorrected electron-beam energies
above 3.8 keV, indicating the presence of S16+.
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Figure 4.12: X-ray emission induced by charge exchange of highly charged sulfur in
the magnetic trapping mode as a function of the injection pressure of CS2 gas in the
second stage of the differentially pumped injection system. The normalized X-ray flux is
represented by a logarithmic color scale.

Additionally, a similar measurement as presented in figure 4.11 was performed by variation
of the injection pressure in the second stage of the differentially pumped injection system
at a fixed electron beam energy of 5 keV. Spectra in the magnetic trapping mode of six
different pressures between 1.15× 10−6mbar and 2.7× 10−9mbar were recorded. In figure
4.12, the logarithm of the injection pressure on the ordinate is plotted as a function of the
photon energy on the abscissa, detected by the SDD. The normalized intensity to Kα is
represented by a color scale.

The injection pressure affects the recombination rate of S16+ and the number of ions
produced. The higher the injection pressure, the higher the recombination rate with neutral
gas resulting in a reduced production of fully-stripped sulfur. Apart from that, the total
number of ions produced is increased. A balance between a relatively high fraction of
S16+ and a comparably high count rate was found at injection pressures in the order of
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Figure 4.13: Two-dimensional charge exchange spectrum of highly charged sulfur with
an electron-beam energy below the ionization threshold for the production of fully-ionized
sulfur. The measurement was performed analogously to the results shown in figure 4.10.

∼ 1× 10−8mbar.
By choice of an electron-beam energy below the threshold for ionization of fully ionized

sulfur, a CX spectrum of pure S15+ can be obtained. The two-dimensional spectrum shown
in figure 4.13 was acquired with the same conditions as in figure 4.10 with an injection
pressure of ∼ 1× 10−8mbar and an electron-beam current of 150mA.
The contribution of the Rydberg transitions above 3.2 keV as in figure 4.11 of hydrogen-like

sulfur vanishes and the spectrum of charge exchange of pure hydrogen-like sulfur with CS2
remains.
By collapsing all events acquired during the MTM in the spectrum with an electron-beam

energy of 4.6 keV, which is above the ionization threshold for production of fully-ionized
sulfur, yields a one-dimensional histogram in figure 4.14 a). The choice of an electron-beam
energy below this threshold provided a CX spectrum of pure hydrogen-like sulfur with
CS2 in figure 4.14 b). For the extraction of a CX spectrum of pure S16+, the respective
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Table 4.1: Extracted transition energies of S15+ after the capture of an electron from the
centroid positions obtained by fitting Gaussian distributions to the experimental spectrum
in figure 4.14 c). The theoretical transition energies are calculated by FAC.

Transition Transition energy (eV) Theory (eV)

Lyα n = 2 → n = 1 2610± 1 2619.832
Lyβ n = 3 → n = 1 3110± 5 3105.922

Lyγ n = 4 → n = 1 3280± 20 3275.938

Lyδ,ε n = 5, 6 → n = 1 3400± 44 3370.459

Lyζ,η,... n ≥ 7 → n = 1 3470± 60 ≥ 3423.013

contribution of S15+ has to be eliminated from figure 4.14 a). The Kβ transition of S15+

at ∼ 2.87 keV is present in both spectra and is well-separated from other transitions which
establish it to a well-chosen candidate for normalization. After subtraction of both spectra,
the contribution of CX of fully ionized sulfur is obtained in figure 4.14 c).
The blue vertical lines represent the calculated transition energies with the corresponding

oscillator strengths of radiative cascades obtained by FAC for energy levels up to n = 15

for both, S15+ and S14+ after recombination. For experimental determination of the
transition energies of the cascades, a fit of five Gaussian distributions to the experimental
data is performed by fixing the shared width to the corresponding instrumental resolution
of FWHM = 150 eV, and treating the centroid positions and the amplitudes as free fit
parameters. The reduced χ2 value of the fit is 1.06 indicating a good agreement with the
data. The result is summarized in table 4.1. The obtained transition energies for the
various Lyman transitions are in a good agreement with the values predicted by theory.
The results are also compatible with the high-resolution CX measurements performed

with a microcalorimeter at the LLNL-EBIT [32] where He and SF6 served as targets for
collisions with S16+.
The hardness ratio H as defined in equation 4.7 in section 4.3.2 is determined in the

present measurements to HCS2 = 0.72± 0.02 which is in a good agreement with the result
of HSF6 = 0.714± 0.116 given in [32] for collisions of S16+ with SF6.

4.2.3 Comparison with charge-exchange models

4.2.3.1 Comparison with the SPEX package

The experimentally obtained spectrum for capture by bare sulfur is compared in figure
4.15 to calculations described in [83] as implemented as an independent model in the
SPEX package [98], which provides velocity-dependent cross sections for charge exchange
with n, l- and S-resolved final states. The calculation is based on an MCLZ method
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Figure 4.14: The procedure of extraction of the contribution arising from CX of fully-
stripped sulfur with CS2. a) Spectrum in the MTM above the ionization threshold for
S16+ shows a mixture of capture into S16+ and S15+. b) CX spectrum below the ionization
threshold for S16+ yields a pure CX spectrum of S15+. c) Normalizing the spectra from a)
and b) to the Kβ transition of S15+ and subtraction provides an extracted CX spectrum of
pure S16+. The blue vertical lines indicate theoretical transition energies obtained by FAC.
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Figure 4.15: Charge exchange spectrum of fully ionized sulfur as a projectile and CS2 as
a target. The black curve is the data from figure 4.14 c) with the corresponding statistical
uncertainties plotted in orange. Modeling with the SPEX package provides synthetic CX
spectra of S16+ with H for a low-energy weighting l-distribution presented in equation 2.56
(green dashed line), scaled for a CS2 target (magenta solid line), S16+ with H with an
s-dominant l-distribution (violet dashed line), and scaled for a CS2 target (blue solid line).

with the assumption of single-electron capture and an atomic hydrogen target. Since the
most abundant element in the universe is atomic hydrogen, the assumption is reasonably
representative for astrophysical modeling. After determination of the n- and l-resolved
capture cross-section based on atomic data, radiative relaxation channels to the ground
state are calculated. Since the catalog of n- and l-resolved cross-sections is incomplete,
intrinsic scaling relations allow for interpolation for missing data.

For the modeling of the distribution of angular momenta l, the low-energy weighting
function described in equation 2.56 was utilized with a high population of l = 1, 2.
This distribution is valid for low collision energies between 10–100 eV/u [95, 6, 102]
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as prevailed in an EBIT environment. The green-colored dashed line in figure 4.15
represents the calculation for collisions of fully-stripped sulfur with atomic hydrogen based
on the low-energy weighting distribution of angular momentum states as described above,
convolved with a Gaussian distribution with a width corresponding to the instrumental
resolution of FWHM = 150 eV. The prediction of this model is a pile-up of higher Rydberg
transitions at ∼ 3450 eV, which is slightly shifted to higher energies compared to the
experimental data shown as a black line with the corresponding uncertainty band in
orange. To achieve a better agreement with the measurement speculations of an enhanced
population of the s-states have to be anticipated. Since the relaxation to the ground state
of an initial s-population of n has to bypass via transitions to p-states of adjacent lower
principal quantum states n−1 in the electric dipole approximation, the peak should appear
at slightly lower X-ray energies. The approach is to introduce an s-dominant distribution
by modifying the low-energy weighting function to W lowe′

nl′ with l′ = l − 1, as reported in
[123, 130]. The result of this distribution is depicted as a violet-colored dashed line.
Since the target was not atomic hydrogen, but CS2 the most populated n has to be

scaled according to equation 2.38 leading to an estimation of n = 12 with an ionization
potential of CS2 with Ip = 10.1 eV [68].
The predictions of the scaled model are depicted in figure 4.15 as a magenta-colored

solid line for the low-energy weighting function and as a blue-colored solid line for the
s-dominant distribution of angular momenta. The latter provides a better agreement to
the measured spectrum in terms of centroid positions and intensity ratios.

4.2.3.2 Comparison with the FAC cascade model

For comparison, the radiative cascade model presented in section 2.3.4.5 is applied to the
experimentally obtained spectrum for the collision between S16+ and CS2. As described
above, the most populated principal quantum number state of n = 12 according to equation
2.38 is assumed. The result of the fitting algorithm for all possible angular momentum
states is shown in figure 4.16.
The fit is represented by a solid magenta-colored line, the inset in the figure shows

the relative fraction of the population of angular momentum states determined by the
coefficients of the spectral basis vectors obtained by the fit. As predicted by the SPEX model
with an assumed s-dominant l-distribution the capture of the electron occurs predominantly
into the |n = 12, l = 0〉 state shifting the peak as expected to slightly lower photon energies
compared to the synthetic spectrum obtained with a low-energy distribution of angular
momenta. However, in contrast to the l-distribution of the s-dominant capture model, the
population of adjacent angular momentum states is highly suppressed. Furthermore, a
small fraction of the population of higher angular momenta contradicts the decrease of the
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Figure 4.16: Comparison of the measured spectrum with the radiative cascade model
calculated by means of FAC, as described in section 2.3.4.5. The magenta-colored solid line
represents the least-squares fit, and the inset shows the relative fraction of the population
of angular momentum determined by the fitting coefficients.
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Figure 4.17: Charge-exchange spectrum of S15+ with CS2 in magnetic-trapping mode
is illustrated in black with the corresponding uncertainties in orange. The synthetic CX
spectrum calculated by the MCLZ approach of FAC with atomic hydrogen as a target is
shown in blue.

population to higher angular momenta resulting from equation 2.56 with l′ = l−1. However,
those populations are not significantly different from zero within the 3σ uncertainty.
Additionally, the charge exchange spectrum of S15+ + CS2 is compared in figure 4.17 to

the MCLZ calculation provided by FAC for collisions of hydrogen-like sulfur with atomic
hydrogen, since CS2 is not available as a target.
The FAC model for collisions of hydrogenic systems with neutral gas overestimates the

relative intensity of the higher Rydberg transitions and underestimates the Kβ transition.
Although an ab-initio calculation for the l-distribution is performed, instead of a multi-
plication of established distribution functions to the total n-resolved cross-section as for
initially bare systems, the agreement with the experiment is deficient.

4.2.3.3 Comparison with the KRONOS code

The experimentally obtained spectrum for CX of fully ionized sulfur is compared to the
MCLZ calculation performed by the Kronos code. The synthetic spectra for different
distributions of angular momenta at low collision energies of 25 eV/u are overlayed with the
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Figure 4.18: Comparison between the experimental CX spectrum of S16+ with CS2 and
different MCLZ approaches with different angular momentum distributions for collision
with atomic hydrogen.

data in figure 4.18. As a target species, atomic hydrogen is assumed. The corresponding
angular momentum distributions were described in chapter 2.3.4.3. Furthermore, a synthetic
CX spectrum provided by the MCLZ approach of FAC for S16+ +H at a collision energy
of 10 eV/u with a low-energy l-distribution is shown as a dashed curve.
To note is a discrepancy between the MCLZ approach performed by the Kronos code

and the MCLZ method of the SPEX package for the same assumption of a low-energy
distribution of the l-states, illustrated by a light blue and a light green curve, respectively.
Also, a slight discrepancy between both approaches and the FAC MCLZ calculation is
observed. In particular, the relative intensities of transitions from n ≥ 3 to the ground
state with respect to the Lyman-α transition is predicted significantly higher by Kronos
than by the calculation of SPEX and FAC. The discrepancy can not be explained by
different transition rates utilized by Kronos, SPEX, and FAC since hydrogenic systems can
be calculated accurately. Different collision velocities do not change the overall shape of
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the spectrum significantly. The only explanation remaining, is a possible difference in the
numerical calculation of the multichannel transition probabilities of both approaches.
Furthermore, the peak at higher Rydberg transitions at ∼ 3460 eV is shifted by one

principal quantum number towards higher energies with respect to the experiment. As
already pointed out in subsection 4.2.3.1, the agreement between model and experiment
improves by the inclusion of an s-dominant capture leading to a shift of the peak to lower
Rydberg transitions. Since the nl-states are degenerate for hydrogen-like systems after
capture, the cross-sections for capture into specific angular momenta can not be calculated
ab-initio by the MCLZ approach, as already discussed in chapter 2.3.4.3. Nevertheless,
to extract information about the l-state resolved cross-sections, ordinarily the total CX
cross-section is multiplied with certain distribution functions. Such unique s-dominant
distributions are not included in most charge exchange codes.

4.2.4 Comparison with astrophysical observations

In this measurement, the higher Rydberg transitions n ≥ 7 → 1 were determined to
3.47(6) keV. Since the experimental investigations are consistent with theoretical pre-
dictions, models and other publications [32] for transition energies of the high Rydberg
transitions, the model presented in section 4.2.3 and the corresponding data is compared
to recent astrophysical observations. As described in the introduction, an unidentified line
feature (ULF) at a photon energy of Eγ = 3.5 keV has been reported in [42, 39, 38, 170]
with a proposed origin in the decay of sterile neutrinos with a mass of mS = 2Eγ = 7.1 keV.
In [42] spectra of 73 different galaxy clusters including Perseus, Centaurus, Ophiuchus and
others obtained by the MOS [169] and PN [160] instruments of the XMM-Newton X-ray
space telescope [178] were stacked and a centroid position of the ULF was determined to
3.51–3.57 keV with a statistical significance greater than 3σ. In the spectrum of the Perseus
galaxy cluster [170], the centroid position of the ULF was determined to 3.51–3.59 keV, in
the Andromeda nebula and the Perseus cluster to 3.46–3.53 keV [39] and in the Galactic
center to 3.54 keV [38].
The residuals presented in figure 4.19 are constructed by subtraction of a model from

the data and normalized by the model. The model itself is based on a thermal plasma
approach [42] with a multi-temperature collisional equilibrium plasma [156] and atomic
transition energies extracted from the AtomDB database [70].
For comparison, the CX model shown in figure 4.2.3 is plotted in each residual spectrum

as a light blue dotted line for the s-dominant angular momentum distribution and as a
magenta-colored dashed line for the low-energy weighting function. To note is, that the
Kβ transition of hydrogen-like sulfur at 3.12 keV predicted by the charge exchange models
is not present in the residuals of the models of [42, 170, 39]. This is due to the fact that
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Figure 4.19: Residuals of thermal plasma modeling of astrophysical observations reported
in [42, 170, 39] with excess at 3.5 keV. The centroid of this unidentified line is indicated by
a blue circle with the corresponding uncertainty. Overlayed in each image are the synthetic
CX-induced spectra of S16+ +H, presented in figure 4.15 for a low-energy distribution of
angular momenta, depicted in magenta and for the s-dominant capture in light-blue.
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a strong transition of helium-like argon was included in the thermal plasma models at
the position where the Kβ transition of S15+ was expected. Since the thermal plasma
models were optimized for zero excess of the residuals, comparably weak charge-exchange
induced transitions coinciding with the energies of strong collisional-induced transitions
were suppressed. Moreover, the contribution of the transition at 3.31 keV of hydrogen-like
argon can be overestimated by the model due to a coincidence with the transition energy
of charge exchange induced transitions from n = 4, 5 → n = 1 of S15+. This overestimation
leads to an apparent shift of the centroid of the 3.5 keV line to slightly higher photon
energies with respect to the actual value. This displacement can be roughly estimated by
considering a Gaussian with a centroid at an energy of the S15+ transition at 3.47 keV,
which was observed in the CX experiment, and a blend of an Ar16+ transition and
CX-induced S15+ transitions at ∼ 3.31 keV with corresponding X-ray fluxes in the order
of 5 × 10−3–1.5 × 10−2 photons cm−2 s−1 keV−1 presented in [42]. An overestimation of
the argon transition by 20% leads to an apparent shift of the peak after subtraction by
∼ 10 eV to higher energies. A slight uncertainty of the astrophysical observation in this
order could explain the discrepancy between the 3.5 keV line and the proposed CX-induced
S15+ Rydberg transitions.
In February 2016, the high-resolution X-ray satellite Hitomi was launched, equipped

with a soft X-ray spectrometer (SXS) consisting of a microcalorimeter array with 35 pixels
and a spectral resolution of FWHM = 4.9 eV. One of the few accomplished missions of
Hitomi, before it broke down in March 2016, was the observation of the Perseus galaxy
cluster in order to investigate the origin of the 3.5 keV line. The acquired X-ray spectrum
is shown in figure 4.20. In the top panel, the X-ray flux is plotted as a function of the
photon energy in the observer frame [8].
The red curve represents the best-fit model assuming a plasma temperature of kT =

3.5 keV, a velocity dispersion of 180 km/s and a solar abundance of the elements of 0.54.
Strong X-ray transitions of highly charged chlorine, sulfur, argon potassium, and calcium
ions are indicated by labels at the corresponding transition energies on the top. The red
and the blue bracket indicates the position and uncertainty band of the observed line
feature at 3.5 keV by the XMM-Newton MOS instrument [169] in the 74 stacked spectra of
galaxy clusters and the Perseus galaxy cluster presented in [42]. In the bottom panel, the
residuals of the fit, which are the ratios of the data and the model, are presented.
The line feature at 3.5 keV detected in previous observations of XMM-Newton is not

present in this spectrum. Furthermore, the reported flux for the line at a relatively high
level is not visible in the present spectrum. Proposed X-ray fluxes of an adjacent Kα

transition of K17+ and Kβ satellite lines of Ar16+ at an exceptional level [42] were also
not observed. Weak spectral features with a significance of 1.5σ at 3.4 keV indicate high-n
transitions to the ground state of S15+ supporting the explanation of the charge exchange
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Figure 4.20: High-resolution X-ray observation of the Perseus galaxy cluster obtained
by the Hitomi X-ray satellite. In the top panel, the observed X-ray spectrum with the
photon energy in the observer frame is illustrated. The overlayed red curve represents the
best-fit of the model. The bottom panel shows the residuals of the fit. The red and the
blue brackets indicate the uncertainty bands of the observed 3.5 keV line reported in [42]
by means of the XMM-Newton MOS instrument in the stacked-cluster spectrum and the
Perseus cluster, respectively. Adapted from [8].
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mechanism proposed by [83]. However, the signal is comparably weak and requires longer
exposure times to approve or discount the charge exchange scenario. This process was not
observed so far in the intracluster medium, and a conclusive detection of this process would
be of particular importance for the astrophysical community. The launch of the X-Ray
Imaging and Spectroscopy Mission (XRISM) [3] is planned for 2021 as a successor X-ray
satellite of Hitomi. In the long term an independent mission of the European space agency
(ESA) is planned for 2031 where the Advanced Telescope for High ENergy Astrophysics
(ATHENA) X-ray satellite [18], equipped with a microcalorimeter with a spectral resolution
of FWHM = 2.5 eV [135] should be launched in order to investigate hot gas structures and
to search for supermassive black holes.

4.3 Charge exchange in highly charged argon

In this work, extensive charge-exchange measurements on highly ionized argon were carried
out in addition to the sulfur CX measurements in order to understand the population of
the angular-momentum states after electron capture. Argon is a noble gas, which enables
a straightforward injection into the trap, serving as a target and a projectile, likewise. For
a better understanding of the CX process, it is a suitable candidate, since a large variaty
of comparative measurements were already performed [78, 24, 11, 91, 32, 109] in an EBIT
and in extraction measurements, where the argon ions interacted with neutral targets in a
gas cell. Argon is a well-studied element, where the transition energies are documented in
standard databases, which simplifies the identification of spectral lines. Furthermore, the
chare-exchange recombination spectroscopy with highly charged argon is a well-established
technique for plasma diagnostics in magnetically-confined fusion plasmas [143, 104, 21].

4.3.1 X-ray measurements

Within the frame of this work charge exchange measurements of highly stripped argon
were performed in the X-ray range according to a measurement scheme described in section
4.1.2. Here the time of a switching cycle of the electron beam was 10 seconds in total with
a breeding time of 4 seconds and a measurement time of 6 seconds in the magnetic trapping
mode. The electron-beam current was switched between 0mA and 220mA. The axial trap
depth was set to 500V by application of a positive voltage to the neighboring electrodes of
the central drift tube. Neutral argon was injected into the trap with an injection pressure
of ∼ 2× 10−7mbar in the second injection stage corresponding to 4× 107 atoms/cm3 in
the center of the trap, serving as a source for the production of highly charged argon and
as a constant supply of neutral gas which interacts in the magnetic trapping mode with
the HCIs. A two-dimensional spectrum with a nominal electron-beam energy of 6.02 keV
which suffices to produce bare argon ions with the production-threshold energy of 4.42 keV
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is shown in figure 4.21, where the X-ray photon energy acquired with an SDD is plotted as
a function of the time within the switching cycle. The photon energy was calibrated with
Lyα and Lyβ transitions calculated with FAC and the energy of the silicon escape peak at
the low-energetic part of the spectrum, using a linear fit.

At time t = 0 s the electron beam was switched on. Ions were produced, and the trap
started to fill with ions. From the radiative recombination of hydrogen-like argon and bare
argon into with a free electron into n = 1 labeled with i) and j), respectively, the time where
the trap is in equilibrium between production of ions and loss of ions was approximately
2.5 s. The photon energy is the sum of the binding energy of the corresponding shell in
which the electron is captured and the kinetic energy of the free electron. With progressing
time the trap was filled with more positively charged ions which increased the kinetic
energy of the free electrons due to higher compensation of the negative space charge of the
electron beam (which has a maximum at t = 0) resulting in higher photon energy for the
radiative recombination process.

At time t = 0 no ions were trapped, and thus the only space-charge contribution
arised from the electron beam. The RR of H-like argon appears in the spectrum at
ERR,H−like = 9825(25) eV which is the sum of the binding energy of the He-like argon of
EB,He-like = 4121 eV after the capture of the free electron and the real kinetic energy of
its, which can be calculated to ERR, H-like − EHe-like = 5704(25) eV. The nominal kinetic
energy of 6020 eV was reduced by the contribution of the negative space charge of the
electron beam, which can be estimated to 316(25) eV. With a relativistic consideration of
the velocity of the free electrons

v = c0

√
1−

(
eUe

mec20
+ 1

)−2

, (4.5)

where c0 represents the speed of light in vacuum, Ue the real kinetic energy of the free
electrons and me the mass of the electron, the velocity can be calculated to 4.4 × 107m/s.
Inside the central trap electrode with a length of ∼ 8 cm, a free electron requires 1.8 ns to
traverse it. With the time of flight and a total beam current of 220mA, the total number
of electrons inside the trap can be estimated to Ne = 2.5 × 109. The negative space charge
of 316(25) eV caused by Ne electrons corresponds in first-order approximation to a space
charge of ρe = 1.3(1)× 10−7 eV induced by one electron.

From the slope of 258 eV/s of the increasing photon energy due to the compensation of the
negative space charge by the increasing number of positively charged ions inside the trap,
the filling rate can be estimated to (258 eV/s)/ρe = 2.0(2)× 109 charges/s corresponding to
1.3(1)× 108Ar16+/s after recombination. The equilibrium of the ion production rate and
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Figure 4.21: Two-dimensional charge exchange spectrum of highly charged argon with
an electron-beam energy above the ionization threshold for bare argon. The photon energy
detected with an SDD is plotted as a function of the time within the switching cycle of the
electron beam. From zero to four seconds, the electron beam was switched on leading to
the emission of photons due to different processes of recombination and direct excitation.
After switching off the beam at four seconds, the only contribution which can lead to
emission of photons is charge exchange. The red curves overlayed are the projection of the
beam-on mode and the magnetic trapping mode, respectively to the axis of the photon
energy in logarithmic representation.
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the ion-loss rate was reached after 1.5 seconds, where the photon energy of i) did not change
anymore. Thus the total trap capacity can be estimated approximately to 2.0(2) × 108

ions with a trap depth of 500V used in this measurement. In this equilibrium, the photon
energy during the RR process was 10 250 eV, which is 425 eV higher than directly after
switching on the electron beam. Also, radiative recombination into n = 2, labeled with h)
and into n = 3, 4, 5, ..., labeled with g) can be seen. Due to an instrumental resolution of
the silicon-drift detector of FWHM = 153 eV, the recombination into those shells is not
charge-state resolved anymore.
During the beam-on mode, also direct excitation of several transitions can be seen. At

the beginning of the cycle, mainly Li-like and He-like argon ions were produced and K-shell
transitions like Kα (n = 2 → n = 1), Kβ (n = 3 → n = 1), and Kγ (n = 4 → n = 1),
denoted by b), d) and e), respectively can be observed. After two seconds a signature
c) of the Lyα transition (n = 2 → n = 1) of hydrogen-like argon becomes visible. In the
low-energetic region a), mainly transitions into the L-shell and transitions between high
Rydberg states are present. The horizontal line k) is the so-called silicon escape peak
which is an instrumental artifact caused by recombination of an electron into the K-shell
of silicon leading to the emission of a photon with an energy, reduced by the Kα transition
of silicon of 1.74 keV [4].
After four seconds the electron beam was switched off, and all contributions of interactions

between free electrons with ions vanished. The only processes which can lead to emission
of photons are metastable states and charge exchange of the ions with neutrals. In this
energy range, the metastable states have a comparably short lifetime in the order of several
∼ µs [50, 166]. The process which is responsible for the long term emission of photons is,
therefore, charge exchange. Here, an electron from initially neutral argon is captured into
a Rydberg state of the highly charged projectile. In the magnetic trapping mode line b) is
the result of the last step of a cascade from n = 2 → n = 1 of initially hydrogen-like argon
and helium-like after capture into a high n-state. Line c) results from the n = 2 → n = 1

transition of an initially bare argon ion and hydrogen-like after the capture at the end
of the cascade. Transitions from higher principal quantum number states can be seen in
the MTM in d) and e). The line labeled with f) represents the transitions near to the
series limit of 4.42 keV of hydrogen-like argon. Transitions above this photon energy are
not possible in the MTM.
Transitions from Rydberg states into the L-shell, M -shell, and transitions between those

can be observed in a). The red curve represents the projection of the corresponding mode
of the switching cycle onto the axis of the photon energy in the logarithmic scale.
Collapsing all events detected within the region of the Kα,Lyα,Kβ,Lyβ, and Lyγ,δ,...

onto the time axis, respectively, yields figure 4.22. After switching off the electron beam at
4 s, the number of photons decreased by two orders of magnitude. One contribution to the
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Figure 4.22: Projection of the regions of Kα,Lyα,Kβ,Lyβ, and Lyγ,δ,... from figure 4.21
onto the time axis. The longer time constant of the Kα transition results from feeding
of the helium-like charge state by subsequent capture of two electrons into initially fully
ionized argon.
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decay of the count rate is the absence of the electrons which excite the K-shell transitions.
A second effect is the loss of high energetic ions from the trap. On a longer timescale, the
decay is dominated by charge exchange. By fitting a double exponential decay to the data
provides the timescale of the loss of the ions of ∼ 100ms. The second exponential decay
yields the timescale of the loss of ions due to charge exchange. For the Lyα transition,
the time constant is determined to τ = 2.17(2) s and for the Kα transition τ = 2.03(2) s.
The longer decay time of the helium-like transitions can be explained by recombination of
initially fully ionized argon decaying to the ground state by emission of Lyα radiation and
subsequent capture of a second electron feeding the helium-like charge state.
A similar measurement, as presented in figure 4.21, was performed with an electron-beam

energy below the ionization threshold for bare argon at Ee = 4.4 keV at an electron-beam
current of 200mA. The highest charge state possible is, therefore, hydrogen-like. The
spectrum is shown in figure 4.23.
The radiative recombination appears at lower photon energies due to the lower electron

beam energy. The spectral feature of RR into n = 1 of bare argon shown in figure 4.21
as j) vanished and only the contribution of RR into n = 1 of hydrogen-like argon can be
seen now in j). The intensity of the direct excitation of the Lyα transition at 3320 eV is
comparably low because less hydrogen-like ions were produced at 4.4 keV electron-beam
energy than at 6 keV. In the MTM this line vanishes because in this mode it can only be
produced by capture of an electron into a bare agon which was not produced with the
nominal electron-beam energy 4.4 keV in this measurement. An additional spectral feature
at ∼ 11.5 keV in the beam-on mode which was not visible in figure 4.21, because it was
outside of the range of the ADC, is a pileup signal of the Kα line at ∼ 3.1 keV and the RR
line j) at ∼ 8.4 keV.

By projecting all events within the magnetic trapping mode onto the axis of the photon
energy, a one-dimensional histogram with the photon energy on the abscissa can be obtained
as presented in figure 4.24.
All transitions presented here can only be induced if a vacancy in the K-shell is available.

Since all metastable states are already decayed on this time scales, all lines have their
origin in the bare and the hydrogenic charge state. The blue curve is extracted from the
two-dimensional spectrum below the ionization threshold for bare argon, the orange curve
above the threshold. The blue spectrum is scaled by a factor of 4.8 to normalize it to the
Kβ line of He-like argon at 3.68 keV which is present in both spectra. A subtraction of the
spectra leads to the extraction of the pure contribution of charge exchange of bare argon,
which is presented in figure 4.25.
The black curve represents the data of CX of the pure bare argon, the orange lines

are the statistical uncertainties, and the vertical dashed lines are calculations of the
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Figure 4.23: Two-dimensional charge exchange spectrum of highly charged argon with
an electron-beam energy below the ionization threshold for bare argon. The photon energy
detected with an SDD is plotted as a function of the time within the switching cycle of the
electron beam. The spectral features are described in figure 4.21. The maximal reachable
charge state is hydrogen-like. Therefore the RR or CX into bare argon is not present in
this spectrum.
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Figure 4.25: Charge exchange spectrum of pure Ar18+ with neutral argon by subtracting
the spectra in the magnetic trapping mode above and below the ionization threshold for
the production of bare argon as presented in figure 4.24. The data is shown in black with
the corresponding error bars in orange, a collisional-radiative model in green and a fit of 6
Gaussian distributions with fixed centroids and the amplitude as a free parameter.
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theoretical line position performed with FAC. The Gaussian distributions of the transitions
n = 2 → 1, n = 3 → 1, ..., n = 7, 8, 9, ...→ 1 are fitted with fixed centroids according to the
FAC calculation with the amplitude as a free fit-parameter. The width of all Gaussians,
except for n = 7, 8, 9, ...→ 1, is shared. The green curve is a synthetic collisional-radiative
(CR) spectrum calculated with FAC which would be expected for a thermal plasma with a
mono-energetic electron beam of 6 keV kinetic energy. Compared to the CRM, the intensity
of the transitions from higher Rydberg states n = 7, 8, 9, . . . to the ground state in the CX
spectrum is higher by a factor of ∼ 7. Thus, charge exchange is an efficient mechanism for
the population of higher energetic states.

A cautious inspection of the temporal, spectral evolution in the magnetic trapping
mode by projecting sequential slices with a width of 148ms from 74ms to 1850ms in the
two-dimensional spectrum 4.21 after switching off the electron beam onto the axis of the
photon energy provides a cumulatively stacked spectrum, as illustrated in figure 4.26. It
shows the mixed spectrum of Ar18+ +Ar and Ar17+ +Ar above the ionization threshold
for fully-stripped argon. The spectra at times beyond 1850ms are not evaluated due to a
lack of statistics because at these times, most of the ions were lost or recombined to lower
charge states.

The same procedure was performed for the spectrum below the ionization threshold for
bare argon with the same width of the temporal slices, as shown in figure 4.27.

Normalization to Kβ , as presented in figure 4.24 for each slice above and below threshold
and subtraction of both spectra provides the temporal evolution of the pure contribution
of fully-stripped argon, which is shown in figure 4.28.

The dashed light gray line indicates a total shift of the peak at higher photon energies
of 28 eV within 1776ms to lower energies. As described in chapter 2.3.4, capture into
low angular momentum states in a specific principal quantum number state would cause
an increase of the photon flux at higher energies because the electron can decay directly
from a |n, l = 1〉 state to the ground state |1, l = 0〉. If the electron is captured into higher
angular momentum states, it has to decay via several cascades to the ground state leading
preferably to the emission of several lower energetic photons. Therefore, the shift of the
peak in this spectrum to lower energies indicates capture into higher angular momentum
states or decrease of the principal quantum number state with increasing time. The shift of
28 eV corresponds at these energies to a shift of the principal quantum number by ∆n = −2

which can be achieved by the population of angular momentum states with an increase of
∆l = +2 with respect to the initial l at t = 0.
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Figure 4.26: Temporal evolution of the CX spectrum of Ar17+ and Ar18+ with neutral
argon and residual gas in MTM from figure 4.21 obtained by projection of consecutive
slices with a width of 148ms onto the X-ray energy axis. The X-ray flux is plotted as
a function of the X-ray energy for each slice for starting from 74ms up to 1850ms after
switching off the electron beam.
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Figure 4.27: Temporal evolution of the CX spectrum from figure 4.23 for CX of Ar17+
with neutral argon and residual gas. The plotting is performed analogously to figure 4.26.



138 Chapter 4. Experiments on charge exchange

3 0 0 0 3 2 5 0 3 5 0 0 3 7 5 0 4 0 0 0 4 2 5 0 4 5 0 0 4 7 5 0

1 0 1

1 0 2

1 0 3

1 0 4

X-r
ay

 flu
x (

arb
. u

nit
s)

P h o t o n  e n e r g y  ( e V )

 1 8 5 0  m s
 1 7 0 2  m s
 1 5 5 4  m s
 1 4 0 6  m s
 1 2 5 8  m s
 1 1 1 0  m s
 9 6 2  m s
 8 1 4  m s
 6 6 6  m s
 5 1 8  m s
 3 7 0  m s
 2 2 2  m s
 7 4  m s

Figure 4.28: Temporal evolution of the CX spectrum of the pure contribution of Ar18+
with neutral argon and residual gas. For each temporal slice above and below the ionization
threshold of Ar18+ from figures 4.26 and 4.27, respectively, the corresponding spectrum is
normalized to the Ar16+ Kβ transition with subsequent subtraction of both spectra. The
dashed gray line indicates a shift of the higher energetic X-ray peak to lower energies with
increasing time after switching off the electron beam.
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4.3.2 Argon charge exchange at different axial trapping potentials

A systematic investigation of charge exchange of Ar18+ at different axial trapping potentials
has been performed. The times of the electron-beam on mode and magnetic-trapping
mode within the measurement cycle were modified with respect to the cycle described
in section 4.3.1. Here the breeding time was extended to 6 s to get a higher yield of
fully ionized argon ions. The magnetic-trapping cycle was decreased to 4 s since the
exponential decay time is in the order of 0.4 s. The constant injection pressure of neutral
argon in the second injection stage was between 1× 10−7mbar and 4× 10−7mbar and the
electron-beam current 200mA.

The charge exchange spectrum of Ar18+ + Ar is presented as a function of the axial
trapping potential V0 above the ionization threshold for the production of fully-stripped
argon in figure 4.29 for V0 = 3, 45, 100V and 500V, and below threshold in figure 4.30 for
V0 = 45, 100 and 500V, respectively. Trapping of ions below the ionization threshold with
an electron-beam energy of 4.4 keV and a trap depth of 3V was not possible.

For the K-shell transition in figure 4.30, no significant difference of the line intensities
as a function of the axial trap depth can be observed. Only a slight increase of line
intensities at ∼ 800–1000 eV with shallower trapping potentials is noticeable. Since several
of hundreds argon L-shell transitions for different charge states and K-shell transitions of
other elements, i.g. oxygen, are present in this energy range, it was not possible to resolve
them with the utilized X-ray detector. Although the investigation of L-shell transitions
would be fruitful for the understanding of the radiative cascades from high Rydberg states,
this subject will not be evaluated quantitatively within the frame of this work due to a
lack of spectral resolution. Furthermore, the detector efficiency was roughly estimated by
energy-dependent absorption properties of materials with not well-known thicknesses and
varies strongly by orders of magnitudes in this energy range (compare to figure 3.20) which
challenges an expressive analysis of the data. To remark is, that the spectrum was not
corrected for the detector efficiency. For the K-shell transitions, a correction is not relevant
because the efficiency is almost one in this energy range. However, other groups report
signatures of iron L-shell CX of oxygen-like up to helium-like iron ions [25], high-resolution
L-shell CX measurements of helium-like sulfur [71] and neon-like nickel [32].

In both spectra, the photons detected in the range between 1200 eV and 2900 eV have
most-likely an origin in various M -shell transitions of lower charge states of residual barium
and tungsten ions emitted from the cathode co-trapped with argon. Since the transitions
are energetically close to each other and can not be resolved by the SDD, it results in a
quasi-continuous band with enhanced count rate in this energy range.
In contrast to the measurement below the ionization threshold, an increase of hydrogen-like
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Figure 4.29: CX spectra of Ar18+ and Ar17+ with neutral argon at different axial trapping
potentials between 3V and 500V in the full photon energy range covered by the X-ray
detector and normalized to the Lyα transition of Ar17+. The structure at an X-ray energy
of ∼ 900 eV are nCX → n = 2 transitions of argon with a blend of emission lines from
residual oxygen.
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Figure 4.30: CX spectrum of Ar17+ and neutral argon below the ionization threshold
for fully ionized argon at different axial trapping potential. The measurement scheme is
performed analogously, as presented in figure 4.29.
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line intensities after capture and an overall decrease of the line intensities at ∼ 800–1000 eV
with shallower axial trap depths was observed above the ionization threshold in figure 4.29.
Lower charged ions rather escape from shallow traps than higher charged ions, which could
explain the decrease of intensity. The peak at ∼ 600 eV decreased with lower trap depths
and an appearance of a peak at ∼ 940 eV was observed, which could be possibly assigned
to transitions of hydrogen-like argon ions from n ≥ 5 → n = 2. For quantitative analysis,
more systematic measurements and an X-ray detector with a higher spectral resolution
like a microcalorimeter are required.

4.3.3 Comparison with charge-exchange models

First and foremost, the X-ray spectrum obtained for collisions of Ar17+ with a mixture
of neutral argon and residual gas from figure 4.24 and the CX spectrum of Ar17+ +H2 is
compared to the multichannel Landau-Zener approach of FAC in figure 4.31.
The model assumes collisions with molecular hydrogen with an ionization potential of

15.42 eV at a collision energy of 40 eV/u. The axial trap depth in the present measurements
was V0 = 500V, corresponding to a collision energy of Ecoll ≈ 42 eV/u according to
Ecoll = 0.2qV0 [55]. The data can not be represented by the calculation. As already
demonstrated in section 4.2.3, the FAC model for collisions of hydrogenic systems with
neutral gas overestimates the relative intensity of the higher Rydberg transitions from 1sn

with n ≥ 5 to 1s2, and underestimates the Kβ transition. The spectrum of Ar17+ +H2 is
in a better agreement with the MCLZ calculation, but the intensities of higher Rydberg
transitions are overestimated by the model.
The helium-like hardness ratio HHe is defined as the ratio of all transitions from 1sn with

n ≥ 3 to 1s2 and the Kα transition with 1s2l to 1s2. In this experiment, it was determined
to HHe = 0.137±0.001 for Ar17++Ar and res. gas and H′

He = 0.140±0.004 for Ar17++H2

by fitting four Gaussians in total to the experimental spectrum and calculating the ratio
of the areas of the peaks. The total error was calculated with an error propagation of the
uncertainties of the corresponding single areas. According to the MCLZ calculation, the
hardness ratio is HHe = 0.171, which is significantly higher than the experimental value.
One influence could be the fact that only single-electron capture is considered by theory. A
double capture with subsequent autoionization would decrease the most probable quantum
number n in which the second electron is finally captured, leading to a decrease of the
hardness ratio. However, it is doubtful if this effect can solely cause a discrepancy of
∼ 25%.
The charge exchange spectrum from figure 4.25 of the pure contribution of Ar18+ with

neutral argon and residual gas and the comparison to the MCLZ approach of the Kronos
code with atomic hydrogen as a target is shown in figure 4.32 for different distributions
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Figure 4.31: Charge exchange spectrum of Ar17+ with neutral argon and residual gas in
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CX measurement of Ar17+ with a gas pulse of molecular H2. The synthetic CX spectrum
calculated by the MCLZ approach of FAC with molecular hydrogen as a target is shown in
orange.
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of angular momenta at a collision energy of 25 eV/u. The synthetic spectra assuming
a low-energy, separable, and modified low-energy l-distribution are illustrated by solid
green, blue, and yellow lines normalized to the Lyα transition, respectively. The ab-initio
calculation performed with FAC for a low-energy l-distribution is shown as a dashed curve.
The synthetic spectra generated with Kronos and FAC are in good agreement with each
other. Only a slight difference in the intensity of the transition at ∼ 4380 eV can be
observed, which could be explained by slightly different theoretical transition rates. To
note is, that none of the assumed l-distributions of the MCLZ calculations can describe
the experimental results satisfactorily. The model assuming a low-energy distribution of
angular momenta overestimates the intensity of the higher Rydberg transitions to the
ground state. The separable distribution, by contrast, underestimates the relative intensity
Lyβ transition. The modified low-energy distribution calculates, in general, a comparably
low contribution of transitions from n ≥ 2 → n = 1. Furthermore, the peaks at higher
X-ray energies are slightly shifted by ∼ 30 eV towards higher energies with respect to the
experiment, indicating an overestimation of the maximum quantum number n in which the
electron is captured. The experiment indicates a peaking around ∼ 4346 eV corresponding
to a n = 7, 8 → n = 1 transition, whereas the maximum of the peak of the calculation is
around ∼ 4375 eV corresponding to n = 10 → n = 1.

The inset on the right-hand side of the figure illustrates the reconstruction results of the
l-distribution for a given principal quantum number n = 9 by the FAC cascade model.
The blue-colored bars represent the reconstruction without any restrictions to the fitting
parameters, particularly all angular momenta l = 0, . . . 8 for n = 9 are included. Since the
energy resolution of the SDD detector did not suffice to resolve at least nine lines, the fit is
overdetermined with nine free parameters. By restricting the number of allowed angular
momenta up to l = 5, a more reliable reconstruction can be performed. The exclusion of
higher angular momenta is legit since the relative fraction decreases with higher l.

Furthermore, a higher population of higher angular momentum states is expected
for comparably high collision energies, which is not given in an EBIT. However, the
reconstruction results for l = 0. . . . 5 are plotted as magenta-colored bars in the inset with
the corresponding fit, shown as a solid, magenta-colored curve overlayed with the data.
The results of both reconstruction approaches do not differ within the error bars, which are
estimated by a Monte-Carlo approach. Here the standard deviation of reconstruction results
for 20 spectra with a slight randomly distributed variation in the X-ray flux is considered
as the uncertainty. To notice is a weak agreement with the separable angular momentum
distribution assumed by the MCLZ model. The population of the l = 0 and l = 2 state is
underestimated by the MCLZ model in comparison to the FAC reconstruction, whereas the
relative fraction of the l = 1 and l = 4 state is slightly higher. Since the separable l-state
distribution depends explicitly on the charge and not the principal quantum number n,
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Figure 4.32: Comparison between the experimentally obtained CX spectrum of Ar18+
interacting with neutral argon and residual gas. The MCLZ calculations performed by
Kronos for collisions of Ar18+ with atomic hydrogen assuming three different l-distributions
are shown as solid green, blue, and yellow curves, respectively. The MCLZ spectrum
generated with FAC is shown as a dashed curve. The inset on the left-hand side illustrates
the relative fraction of angular momenta for the separable l-distribution. The inset on the
right-hand side represents the reconstruction results of the FAC cascade model for inclusion
of all possible angular momenta as blue and a restriction up to l = 5 as magenta-colored
bars.
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Figure 4.33: Charge exchange cross-section for collisions of Ar18+ with different neutral
targets and capture into different principal quantum number states n as a function of the
collision energy between projectile and target. The yellow rectangle illustrates the region
of typical collision energies in an EBIT. The calculations are performed with the Kronos
code [124].

the relative fractions are not affected by electron capture into several principal quantum
number states. However, about the physical interpretation of the discontinuity of the
distribution, it can be only speculated and will not be discussed further.

In figure 4.33, the absolute CX cross-sections obtained by MCLZ calculations of Kronos
for electron capture from different targets into different n-states are plotted as a function
of the collision energy between the fully ionized Ar18+ and the neutral target. The
yellow-colored rectangle indicates the region of collision energies typically predominant in
an electron beam ion trap. For neutrals with low ionization energy, the electron capture
occurs mostly into the n = 10 and n = 11 state. For higher ionization potentials, the
electron is captured into lower principal quantum number states of n = 8 and n = 9.

In figure 4.34 the synthetic MCLZ CX spectra utilizing the corresponding n-resolved
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cross-section from figure 4.33 with the assumption of a separable distribution of angular
momenta is shown for atomic hydrogen, molecular hydrogen, water molecule, and helium as
a neutral target for different collision energies in a range between 2.5 eV/u and 2500 eV/u.
Since MCLZ provides only n-resolved cross sections for CX of fully ionized projectiles, the
l-distribution has to be multiplied to the CX cross-section. The choice of this distribution
does not affect the overall intensity ratios of the nCX → n = 1 transitions. Different neutral
targets result only in a slight change of the most probable principal quantum number
n, in which the electron is captured, which affects the centroid position of the peak at
higher X-ray energies. This is due to different polarizabilities of the neutral species since
an incoming polarization potential is assumed by the MCLZ approach, as described by
equation 2.47. With increasing collision energy, the peak of the distribution of the most
probable state n shifts to lower values. Since the typical range of collision energies in
an EBIT is in the order ∼ 1 eV/u to ∼ 100 eV/u, the expected shift can not be observed
within the resolution of the X-ray detector.
However, the main composition of the neutral target gas was represented by argon atoms

in this experiment, but it is not provided as a donor species in the database of the MCLZ
calculation. Since the ionization energy for neutral argon is 15.76 eV, molecular hydrogen
with an ionization potential of 15.42 eV can be instead utilized as a collision partner in
the MCLZ calculation. However, the most probable principal quantum number in which
the electron is captured after interaction with molecular hydrogen is n = 10 in the typical
collision energy range in an EBIT, which was not observed in the experiment. One possible
explanation could be a significant amount of residual gas atoms with comparably high
ionization energy, like helium, which would lead to a population of lower principal quantum
number states.

4.3.4 Argon charge exchange with different targets

In figure 4.35, the charge exchange spectra of fully ionized argon with different neutral
targets are compared. The interaction with a mixture of residual gas in the magnet with
a pressure of 3× 10−9mbar and neutral argon with an axial trapping potential of 500V
as shown in figure 4.32 is displayed in a) and the interaction with a pulse of H2 with an
axial trap depth of 1000V in b). Technical details on the pulsed injection system can be
extracted from the bachelor thesis [13], which has been supervised within the scope of this
work. CX between Ar18+ and neutral argon in represented in d) with a residual magnet
pressure below a measurable range of < 5× 10−10mbar at an axial trap depth of 500V.
For the measurement of fully-stripped argon with neutral neon, the argon gas bottle was
removed and replaced by a bottle of neon. The argon in the injection system and the
magnet chamber remained for a certain amount of time allowing for the production of
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Figure 4.34: Synthetic CX spectra for collisions of Ar18+ with different neutral targets
and a separable l-distribution based on MCLZ calculation performed by Kronos. The
intensities are normalized to the Lyα transition of hydrogen-like argon. In each panel,
the dependence of the resulting CX spectrum for each target is illustrated for different
collision energies between 2.5 eV/u and 2500 eV/u. For comparison, the experimental result
is shown in each panel. The vertical grey dashed line represents the transition energy from
n = 7 to n = 1 of 4336.1 eV calculated with FAC as a reference.
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Ar18+ projectiles which interacted with a constant inflow of neutral neon. The trap content
was therefore a mixture of neon and argon. This measurement was performed with the
same settings as in the measurement of a). For determination of the ratio of the number
density of neon ions and argon ions, the intensity of the radiative recombination lines
during the electron-beam on mode into the n = 1 level of fully ionized argon and neon ions,
respectively, was compared to radiative recombination cross-sections calculated by means of
the flexible atomic code for an electron-beam energy of 6000 eV. The intensity IiRR ∝ niσRR

is proportional to the product of the number density ni and the RR cross-section of the
corresponding species i. The relative fraction of the number density of neon and argon
ions is therefore

nNe
nAr

=
INeRRσ

Ar
RR

IArRRσ
Ne
RR

=
INeRR
IArRR

3.7× 10−24 cm2

5.1× 10−25 cm2 ≈ 6.5. (4.6)

The relative fraction of argon ions in the gas mixture is determined to 14%. By subtraction
of the corresponding fraction of spectrum d) for collisions of Ar18+ with neutral argon from
the mixed spectrum, the pure contribution of the interaction between Ar18+ and neon can
be extracted. The result is shown in c).

The electron-beam energy for the production of fully ionized argon was 6015 eV for the
measurement of spectra a), c) and d) and 8010 eV for spectrum b). The beam energy
below this ionization threshold for the production of a maximum achievable hydrogenic
charge state was 4420 eV for normalization and subtraction of this contribution to extract
the pure spectrum of CX of fully-stripped argon as described in section 4.3.1. The higher
electron-beam energy does not change the overall shape of the CX spectrum. The reason
for this choice was a higher yield of Ar18+ ions in the second measurement campaign where
spectrum b) was acquired with a pulsed gas jet during MTM of molecular hydrogen.

Since no significant dependence of the trap depth on the ratio of Lyman-α and higher
Rydberg transitions was observed, it is legit to compare the charge exchange spectrum a)
to b), c) and d).
For each spectrum, the cascade model described in section 2.3.4.5 with a population
of the most probable principal quantum number state n = 9 is fitted to the data and
represented as a solid magenta-colored line. The corresponding relative fractions of the
l-state population determined by the coefficients of the spectral basis vectors are represented
as a magenta-colored bar chart. For comparison, the synthetic spectrum calculated by an
MCLZ method implemented in the Kronos code [124] with a collision energy of 25 eV/u
and with a separable distribution (compare equation 2.57) for spectrum a) and b) and
with a low-energy distribution (equation 2.56) for spectrum c) and d) is plotted in light
blue. The corresponding relative fractions of the angular momenta are illustrated as
bar charts with the respective color code. To remark is, that the number of free fitting
parameters of the FAC cascade model exceeds the number of resolved spectral lines. Thus,
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Figure 4.35: Charge exchange spectra of collisions of Ar18+ with a mixture of argon and
residual gas (a)), with molecular hydrogen (b)), with neon (c)) and with neutral argon (d)).
The magenta-colored solid line represents the fit according to the radiative cascade model
described in section 2.3.4.5 with the corresponding relative fraction of the population of
angular momenta shown as a magenta-colored bar chart. The light-blue curve is a model
calculated by an MCLZ approach with Kronos for different l-distributions.
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Table 4.2: Extracted hardness ratios and Lyman-α to Lyman-η ratios from figure 4.35
for CX between Ar18+ and different neutral targets.

res. gas&Ar H2 Ne Ar

H 0.656± 0.001 0.54± 0.02 0.75± 0.08 0.804± 0.030
Lyα/Lyη 4.515± 0.006 3.70± 0.13 3.0± 0.3 2.05± 0.08

the fit is overdetermined, and the discontinuities in the extracted relative fractions of
angular momenta will not be discussed further. Only a qualitative tendency of the relative
population can be examined. For each spectrum five Gaussians, plotted as green-colored
dashed lines are fitted to the data for determination of the hardness ratio H which is
defined as the ratio of the flux F of highly excited transitions with n ≥ 3 → n = 1 to the
flux of Lyman-α with n = 2 → n = 1:

H =

∑∞
i=3 Fn→1

Fn=2→n=1
, (4.7)

where F represents the flux of the corresponding transition. The corresponding error bars
are determined by the uncertainty of the areas of the Gaussians. The hardness ratio is
a non-monotonic function of collision energy with either a maximum or a minimum at a
specific energy, dependent on the projectile species [53]. This energy dependence could be
utilized as a diagnostic tool for ion velocities in astrophysical environments like solar flares
[23].
The determined hardness ratios are listed in table 4.2. Additionally, the ratio of Lyman-α

and Lyman-η is shown since the hardness ratio solely does not represent the shape of the
spectrum, especially the qualitative l-distribution. A lower Lyα/Lyη indicates a capture
predominantly into lower angular momentum states.
In figure 4.36, the hardness ratios from table 4.2 are plotted as a function of the ionization

potential of the corresponding target. The values calculated by an MCLZ approach utilizing
the Kronos code are presented in light blue for all available neutral targets for a collision
energy of 45 eV/u and with a low-energy distribution of angular momenta according to
equation 2.56. Additionally, all known measurements of CX in an EBIT of Ar18+ with A,
where A is the target, are depicted. The green triangle represents the CX measurement
of Ar18+ and neutral argon [12], the dark cyan colored star the measurement of Ar18+

and molecular hydrogen [109] and the orange triangle [24], as well as the magenta-colored
lozenge [32] Ar18+ and neutral argon. The latter two measurements were performed at the
LLNL-EBIT [26] equipped with a microcalorimeter for high-resolution detection of X-rays
[110]. The hardness ratios from collisions of Ar18+ and molecular hydrogen, neutral argon
and neutral neon determined in this work are shown as black circles. From this plot, no
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Figure 4.36: Hardness ratios for collisions between Ar18+ and different targets as a
function of the ionization potential of the corresponding target. All measurements were
obtained in the magnetic-trapping mode in an EBIT. The calculation was performed with
an MCLZ approach utilizing the Kronos code for a collision energy of 45 eV/u with a
low-energy l-distribution.

obvious scaling of the hardness ratio with the ionization potential of the target can be
extracted.

Furthermore, the four CX measurements of Ar18+ with Ar, although performed at similar
collision energies between 10 eV/u and 45 eV/u, the values for H determined in this work
and [32] differ significantly from [24, 12]. This discrepancy already indicates unknown
systematic effects in these measurements. The axial trap depths used in this experiments
are in the order of 45V up to 1000V, which determines the collision energies. On the other
hand, the axial trap depth had a small effect on the change of the hardness ratio in this
experiment. A similar observation is reported in [12].

Additionally, the hardness ratios obtained by different Ar18+ + Ar CX measurements
in magnetic trapping mode inside an EBIT as well as in extraction mode are presented
as a function of the collision energy between projectile and target in figure 4.37. For
the measurements performed within the frame of this work, the collision energy Ecoll is
estimated by the semi-empirical formula

Ecoll = 0.2qV0 (4.8)
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Figure 4.37: Hardness ratio as a function of collision energy between projectile and target
obtained from Ar18+ +Ar CX measurements in magnetic-trapping mode and extraction
mode (light-blue box). An MCLZ calculation for Ar18++H with a low-energy l-distribution
is represented in gray and a CTMC calculation [24] in cyan.

given in [55], where q represents the charge of the ion species and V0 the axial trapping
potential. The corresponding error bars are estimated conservatively to 25% for higher
axial trapping potentials and to 50% for lower voltages due to uncertainties in the power
supply voltages and electric field penetrations.

All extraction measurements are highlighted inside the light-blue box. The theoretical
hardness ratio shown in grey is calculated by an MCLZ method utilizing the Kronos code
for collisions of fully ionized argon and atomic hydrogen with a low-energy distribution
of angular momenta. First of all, a significant deviation between the measurements
inside an EBIT and between extracted ions is conspicuous. Furthermore, the hardness
ratios in magnetic-trapping mode do not show a systematic dependence on the collision
energy. Second, the theory predicts an increase of H with increasing collision energy,
which contradicts the observations of a decreasing hardness ratio. Another model based
on classical-trajectory Monto-Carlo calculations [24], plotted as a dark cyan line, predicts
a decrease of the hardness ratio with increasing collision energy.

Besides the discrepancy of similar EBIT experiments among each other, a significant
difference between EBIT and extraction measurements, a non-trivial scaling with the
ionization potential of the target and the neglection of multi-electron capture another
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issue is reported in [109]. A simultaneous charge exchange measurement with co-trapped
fully ionized argon and phosphorous ions with molecular hydrogen was performed. The
hardness ratio of the phosphorous Lyman-series was higher by a factor of two compared to
the argon Lyman-series.
In conclusion, further systematic experimental and detailed quantum-mechanical investi-

gations of target and projectile are crucial in order to understand the nature of the charge
exchange process.

4.3.5 Discussion of possible error sources

4.3.5.1 Magnetic field

A technical difference between this experiment and the measurements presented in [12, 24,
32] is the magnetic field of the EBIT in the trap center. The EBIT used in [12, 24, 32] has
a magnetic field of 3T, and the EBIT utilized in this work a field of 6T. The estimation
of the upper-velocity limit of the cyclotron motion in the magnetic field of argon ions with
charge q = 18 and atomic mass m = 40 by consideration of a lower limit of the cyclotron
radius of r = 50 µm yields an orbital velocity

v =
q

m
rB (4.9)

in the order of 10 km/s for the B = 6T magnetic field. The typical axial velocity due to
the axial trapping potential well is in the order of 100 km/s. Since no strong dependence
of the overall shape of the X-ray spectrum on the collision velocity in this energy range is
expected, the contribution of the velocity due to the motion in a magnetic field is negligible.
A decrease of the magnetic field by a factor of two had no significant effect on the overall
shape of the CX spectra.

4.3.5.2 Switching off the electron beam

After switching off the electron beam, the initially compressed ion cloud expands abruptly
due to Coulomb repulsion of the positive charges, since the radial potential of the negative
space charge of the electron beam vanishes. This Coulomb explosion could result in an
increase in the kinetic energy of the ions. The energy-release can be estimated by the
negative space charge of the electron beam, which was typically in the order of ∼ 300 eV.
The conversion of this potential energy to the kinetic energy of the ions leads to an
increase of the kinetic energy of ∼ 25 eV/u, which is not sufficient to explain the significant
discrepancies. On the other hand, it has been experimentally shown, that switching off
the electron beam requires ∼ 300 µs, which is comparably long with respect to the orbital
period of the cyclotron motion in the order of t = 1/fC ≈ 1/40MHz = 25 ns with the
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cyclotron frequency fC. Thus, this process can be considered as adiabatic and no heating
should occur. Additionally, the ion cloud is evaporatively cooled by escaping hot ions from
the trap. However, neither the heating nor the cooling of the confined plasma can cause
the required difference in the collision velocity in order to explain the discrepancies.

4.3.5.3 Collision energy

According to the MCLZ calculation, a difference of several orders of magnitudes in the
collision energy is necessary in order to explain the discrepancies in the hardness ratios.
Since the maximum applicable axial trapping potential is 3000V in this setup, the maximum
difference in the collision energy would be in the order of ∼ 300 eV/u.

4.3.5.4 Charge exchange with singly-charged ions

Another possible effect could be the charge exchange between singly charged ions and
highly charged ions resulting from the primary CX of highly charged ions and neutrals.
To estimate the thermal energy required to overcome the Coulomb barrier, the moment
of the electron transfer is considered. Directly after this transfer, an Ar16+ and an Ar2+,
separated by ∼ 8 atomic units, remain. The Coulomb potential between both ions is in the
order of VCoulomb ≈ 70 eV. The typical thermal energy of the ions in magnetic-trapping
mode is sufficient to overcome this barrier. This could result in the population of different
n-states and l-states than for electron capture of neutrals. However, the maximum number
of singly charged ions is equal to the number of highly charged ions after the primary
CX. Thus, the number density of singly charged targets is negligible compared to the
neutral-gas density in the interaction region. Therefore, this effect can be considered as
negligible.

4.3.5.5 Residual gas

The pressure in the magnet chamber was in the extreme case in the order of 3× 10−9mbar,
measured with an ionization gauge located at room temperature, corresponding to a
particle density of ∼ 1× 106 /cm3 in the cryogenic region. The target gas pressure in the
second gas injection stage is typically in the order of ∼ 3× 10−7mbar. From geometrical
considerations, the particle density of the target gas in the interaction region of the
trap is ∼ 6× 107 /cm3, which is 1.5 orders of magnitude higher than the residual gas
density. The difference of the hardness ratios in the two CX measurements with neutral
argon as target gas and with a mixture of argon and residual gas, respectively, is 19%,
which could be conceivably explained by the amount of the contamination. Since in
subsequent measurements the residual gas pressure improved to less than 5× 10−10mbar
in the magnet chamber, the contribution of possible contaminations is even smaller by
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one order of magnitude. Thus, this effect can be considered as negligible for relatively low
residual gas pressures in the EBIT.

4.3.5.6 Ionization potential

A trivial scaling of the hardness ratio with the ionization potential was not found, al-
though the MCLZ theory predicts a steady increase with higher ionization energies for
single-electron capture. Furthermore, other publications report CX of Mg12+ with different
neutral targets [110], measured with a microcalorimeter. The hardness ratio extracted
from the CX spectrum of Mg12+ +He was higher by a factor of two compared to collisions
with H2, CO2, and Ne. A significant difference in the hardness ratio is also observed with
two different bare projectiles and neutral helium [109]. This anomaly is still not fully
understood, and further sophisticated charge exchange models are required in order to
investigate this collision process.

4.4 Charge exchange in highly charged oxygen

4.4.1 X-ray measurements

Since oxygen ions are highly abundant in solar flares, interacting with neutral matter, the
spectroscopic investigation of the charge exchange process for this ion species is of great
interest to the astrophysical community. A similar measurement procedure, as presented
in section 4.1.2, was performed for charge exchange measurements in the X-ray regime for
highly charged oxygen with neutral O2. The total switching cycle of the electron beam
was 10 s with 8 s in beam-on mode and 2 s in magnetic-trapping mode. The electron-beam
current was 200mA at a nominal beam energy of 1.72 keV, above, and 1.02 keV, below
the ionization threshold for the production of fully ionized oxygen in this measurement.
The real electron-beam energy was reduced by the negative space charge of the electron
beam below 871.3 eV, which is required for the production of O8+. An axial trapping
potential of 550V and an injection pressure of 2× 10−7mbar in the second injection stage
was utilized. A projection onto the photon energy axis of the spectrum in the MTM above
the ionization threshold is illustrated in light blue in the top panel of figure 4.38 and
red below the threshold. The energy-dependent intensity was corrected for the estimated
detector efficiency described in chapter 3.3.8.1.
After normalization to the helium-like Kα transition, which is present in both spectra,

the pure hydrogen-like contribution can be extracted after subtraction. The acquisition
time and the count rate in the measurement below the ionization threshold were much
lower; thus, the number of detected events had to be multiplied by a factor of 1760. The
statistical uncertainties are represented in shaded colors. The resulting spectrum is shown



Chapter 4. Experiments on charge exchange 157

in the bottom panel of figure 4.38. The Lyα,Lyβ, and Lyγ,δ,... transitions are represented
by Gaussian fits in blue, orange, and green, respectively.

Since the roughly estimated detector efficiency described in chapter 3.3.8.1 could deviate
significantly from the actual efficiency in the investigated energy regime, no quantitative
analysis concerning intensity ratios will be performed.

If the electron-beam energy is reduced to a value below the ionization threshold for
the production of hydrogen-like oxygen, still helium-like X-ray transitions are observed in
MTM, although a minimum charge state of hydrogen-like is required to provide a vacancy in
the K-shell for recombination in n = 1. During the electron-beam on mode, the metastable
1s2s 3S1 level of helium-like oxygen is populated with a lifetime of 956 µs [50]. The excited
electron can be ionized by a free electron of the electron beam, if the interaction occurs
within the lifetime, although the kinetic energy of a single electron does not suffice for
ionization. By reducing the electron-beam energy below the excitation threshold for this
level with an energy of 560.984 eV [62], the M1 transition 1s2s 3S1 – 1s2 1S vanishes in the
MTM.

Due to a relatively long lifetime of this metastable state, the decay can be measured
with the utilized data-acquisition system. To gain higher statistics, the duty cycle of the
switching of the electron beam was increased to 50% with a repetition rate of 10Hz and
a beam current of 200mA at 1.72 keV nominal electron-beam energy. The axial trapping
potential was the same as in the CX measurement described before. The number of events
detected within the region of interest, including this transition is plotted as a function of
the time within the switching cycle in figure 4.39. As already described in chapter 4.1.3,
the upper limit of the time required to switch off the electron beam was in the order of
300 µs. At 56ms the beam can be considered as switched off. Afterward, the decay in
intensity was caused by transitions of metastable states. On much longer time scales in
the order of seconds, the decay is dominated by charge exchange. This contribution can be
considered as constant for the narrow time window in MTM in this measurement.

A fit of a single exponential decay function yields a lifetime of 1027(71)µs which is
in a good agreement with the experimental result presented in [50] and with theoretical
predictions [62, 97] within the statistical 1σ-uncertainty.

However, for expressive analysis of charge exchange of highly charged oxygen, followed by
K-shell emission, a detector with a higher energy resolution is required. Such measurements
utilizing a microcalorimeter with a resolution < 10 eV are presented in Ref. [22] simulating
X-ray emission from comets in an EBIT.
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4.4.2 Extreme ultraviolet measurements

Since the measurements in the X-ray regime suffer from a poor spectral resolution, only
a limited number of spectral lines can be resolved. Thus, the application of the FAC
cascade model for extraction of the l-state distribution can not be performed reliably,
since the number of free fitting parameters exceeds the number of resolved transitions. A
sophisticated solution is the investigation of the extreme-ultraviolet regime, where more
spectral lines can be resolved. The transitions are mostly from higher energetic states to
the L-shell or M -shell, dependent on the ionic species, and not directly to the ground state.

In addition to the X-ray measurements, the first simultaneous in-situ CX measurement
in the EUV range in an EBIT was performed utilizing the setup described in section
3.3.9. The mechanical shutter was triggered by the falling slope of the rectangular signal
controlling the emission current. Immediately after switching off the electron beam, the
shutter opened entirely within ∼ 70ms exposing the CCD only in the magnetic trapping
mode. The total time of the switching cycle was 8 s with two seconds of breeding time and
6 s in the MTM. The shutter was closed before switching on the beam, ensuring that no
photons emitted during interaction with the electron beam are detected. The corresponding
duty cycle of the EUV setup in the MTM was, therefore, 68.8%.

The CCD camera utilized for all EUV measurements was slightly inclined with respect
to the plane of the grating resulting in a tilt of the spectral lines. For each measurement
with a typical duration of 1800 s, the two-dimensional image was corrected for the tilt
and the slight bend of the spectral lines. Additionally localized, intense events caused
by cosmics, were removed, and a projection of the spectrum onto the dispersive axis
was performed yielding one-dimensional histograms with the CCD pixel number on the
abscissa and the arithmetic average of the events per pixel per time unit. The acquisition
of the background was performed by closing the valve to the gas injection system in CX
mode leading to a substantial reduction of projectile ions and neutral targets. Closing the
shutter to the EUV spectrometer would obstruct stray light from the trap resulting in a
distortion of the real background conditions. The same background was also used for the
measurements during the beam-on mode. In this case, closing the valve to the injection
system would affect the trap content and increase the number of fluorescent residual gas
ions. The resulting one-dimensional histograms are corrected for the wavelength-dependent
spectrometer efficiency presented in section 3.3.9.

For the acquisition of spectra during the beam-on mode serving as a calibration for
the spectrometer, only the cycle of the shutter was inverted to expose the CCD only
during the beam-on mode and retain otherwise the experimental conditions. The nominal
electron-beam energy is 1350 eV at a beam current of 170mA. As a calibration species,
highly charged oxygen from beryllium-like to helium-like charge states was deployed. In
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Figure 4.40: Top: Calibration of the EUV spectrometer. Transition wavelengths of highly
charged oxygen are plotted as a function of the dispersive position on the CCD for three
different positions of the CCD camera with overlapping regions. Bottom: Corresponding
residuals of the second-order polynomial fits. Blue triangles, magenta squares, and red
circles represent the residuals of the calibration fits at camera positions of 143mm, 131mm,
and 124mm, respectively.

figure 4.40 the wavelength extracted from the NIST database [45, 137, 168, 35, 90] is
plotted as a function of the position of the corresponding spectral line on the dispersive axis
of the CCD for three different positions of the CCD camera to cover a broader wavelength
range. The calibration at a camera position of 131mm is utilized for the argon charge
exchange measurements in EUV portrayed in chapter 4.4.3.

The calibration lines are summarized in table 4.3. The error of the pixel position results
from the fitting error of the centroid of the Gaussian. In the presence of a blend of
several lines, the weighted average of the transition wavelength incorporating the resonance
strength of the transitions is considered. The calibration polynomials of second order are
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determined to

λ143mm = 1.995(21)× 10−7x2 + 3.4772(43)× 10−3x+ 12.2339(16) (4.10)

λ131mm = 2.049(64)× 10−7x2 + 3.157(13)× 10−3x+ 9.5148(61) (4.11)

λ124mm = 1.90(10)× 10−7x2 + 2.94(3)× 10−3x+ 7.737(22) (4.12)

for CCD camera positions of 143mm, 131mm and 124mm, respectively, where x represents
the pixel number on the CCD.

4.4.2.1 Charge exchange of highly ionized oxygen in the EUV range

In figure 4.41 the comparison of the EUV spectrum of highly charged oxygen in the beam-on
mode (top panel), the corresponding CX measurement in the magnetic-trapping mode
(center panel) and the CX mode below ionization threshold for production of hydrogen-like
oxygen are illustrated. The composed spectrum consists of spectra acquired at two different
CCD camera positions of 124mm and 143mm covering a spectral range of ∼ 7.5 nm to
∼ 20 nm with an overlapping region between 12 nm and 14 nm. The electron-beam energy
in this measurement of 1350 eV at a beam current of 170mA was sufficient to produce fully
ionized oxygen. The neutral target for charge exchange was provided by the constant inflow
of molecular oxygen from the gas-injection system with a pressure of ∼ 4× 10−7mbar
in the second injection stage. The measurements below the ionization threshold were
performed with a nominal electron-beam energy of 730 eV and a beam current of 75mA.
The axial trapping potential was 500V in all measurements.
To note is the broadening of the spectral lines in CX mode due to an expansion of the

ion cloud by a factor of ∼ 4.4 resulting from the absence of the negative line-charge of the
electron beam which has the highest contribution to the radial confinement of the ions in
the beam-on mode. Furthermore, a shift of the ion cloud has been observed in the MTM
mode with respect to the beam-on mode as shown in figure 4.6 which results in a spectral
shift in the EUV range of ∼ 0.02 nm according to the geometrical calibration [19] derived
from the grating equation.
Transitions of the hydrogen-like, helium-like, lithium-like and beryllium-like charge states

are labeled by red, orange, violet, and blue numbers, respectively. Lines 8) and 10) could
not be assigned to highly charged oxygen and result probably from residual gas ions.
The other identified lines are presented in table 4.4 with the corresponding wavelength
extracted from the NIST database. The line centroids and uncertainties of blends of several
lines are calculated by a weighted average with the corresponding Einstein coefficients.
Transitions marked with an asterisk are not listed as transitions in the database. These
wavelengths are calculated from the energetic difference of the corresponding states. All
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Table 4.3: Calibration of the EUV spectrometer with highly charged O6+ to O4+ for three
different positions of the CCD camera to cover a broader wavelength range. The transition
wavelengths are extracted from Ref. [45, 137, 168, 35, 90] with a minimum uncertainty of
1× 10−4 nm. Larger errors originate from a weighted averaged transition wavelength for a
blend of several transitions.

Transition NIST wavelength Pixel position Charge state
(nm)

CCD camera at 124mm:
1s5d – 1s2p 8.6113± 0.009 291.2± 0.1 He-like blend
1s24p – 1s22s 11.5826± 0.001 1214.3± 0.1 Li-like blend
1s25d – 1s22p 11.6391± 0.003 1230.8± 0.5 Li-like blend

1s22s5p (J = 1) – 1s22s2 (J = 0) 12.4616± 0.001 1469.64± 0.12 Be-like
1s3d – 1s2p 12.8449± 0.005 1576.9± 0.1 He-like blend
1s24d – 1s22p 12.9837± 0.004 1616.7± 0.1 Li-like blend
1s3s – 1s2p 13.2805± 0.007 1702.06± 0.12 He-like blend

1s22s4p (J = 1) – 1s22s2 (J = 0) 13.5523± 0.001 1776.6± 0.9 Be-like
1s3d (J = 2) – 1s2p (J = 1) 13.5820± 0.001 1783.7± 1.8 He-like
1s3s (J = 0) – 1s22p (J = 1) 13.7510± 0.001 1832± 0.12 He-like

1s22s5d – 1s22s2p 13.8073± 0.004 1846.8± 0.7 Be-like blend

CCD camera at 131mm:
3l – 2l′ 10.2362± 0.004 226.45± 0.04 H-like blend

1s24p – 1s22s 11.5826± 0.001 629.21± 0.14 Li-like blend
1s25d – 1s22p 11.6391± 0.001 645.9± 0.2 Li-like blend

1s22s5p (J = 1) – 1s22s2 (J = 0) 12.4616± 0.001 882.3± 0.1 Be-like
1s24d – 1s22p 12.9837± 0.004 1029.44± 0.06 Li-like blend
1s3s – 1s2p 13.2805± 0.007 1112.23± 0.09 He-like blend

1s3s (J = 0) – 1s2p (J = 1) 13.751± 0.001 1242.18± 0.11 He-like
1s22s5d – 1s22s2p 13.8073± 0.004 1257.17± 0.26 Be-like blend

1s23p – 1s22s 15.0107± 0.001 1578.04± 0.07 Li-like blend

CCD camera at 143mm:
1s22s5p (J = 1) – 1s22s2 (J = 0) 12.4616± 0.001 65.28± 0.09 Be-like

1s24d – 1s22p 12.9837± 0.004 211.97± 0.08 Li-like blend
1s23p – 1s22s 15.0107± 0.002 766.1± 0.05 Li-like blend

1s22s4d – 1s22s2p 15.1545± 0.001 802.65± 0.13 Be-like blend
1s23d – 1s22p 17.302± 0.008 1353.91± 0.04 Li-like blend
1s23s – 1s22p 18.4057± 0.005 1624.86± 0.03 Li-like blend

1s22s3d – 1s22s2p 19.2906± 0.001 1836.01± 0.04 Be-like blend
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Figure 4.41: EUV spectra of highly charged oxygen in magnetic-trapping mode with initial
electron-beam energy above the ionization threshold for fully ionized oxygen (center),
the corresponding spectrum in the direct-excitation mode (top) and below the ionization
threshold for production of hydrogen-like oxygen (bottom). Further details are described
in the text.
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EUV spectra in magnetic-trapping mode have been accordingly corrected for the spectral
shift caused by the displacement of the ion cloud. The spectra presented in the center
panel are arithmetic averages of 112 signal spectra in the MTM and 30 background spectra
at the camera position of 124mm (dark blue). For the camera position of 143mm 37 signal
images and four background images (light blue) were acquired. Analogously, 30 spectra in
CX mode and four background images were acquired for the CX measurement below the
ionization threshold for hydrogen-like oxygen in the bottom panel for a camera position
of 124mm (red). At 143mm, 34 single CX spectra and four background measurements
were acquired (orange). For the calculation of the uncertainty, a Poisson distribution
can not be utilized because the CCD camera provides an arbitrary offset and thus the
detected number of events does not correspond to real counts. The average number of
detected events in the background measurements was in the order of 210 counts/pixel in
1800 s with an unknown intrinsic offset. The number of counts in the signal measurements
was slightly higher by 0.4 counts/pixel. The uncertainty was calculated by determination
of the standard deviation σ of the distribution of events in an arbitrary single background
measurement. By subtraction of the averaged background from the averaged signal, the
overall uncertainty is estimated according to

err =

√√√√( σ√
Nsig

)2

+

(
σ√
NBG

)2

, (4.13)

where Nsig and NBG are the number of single spectra of the signal and the background
measurements, respectively. The error bars are plotted in shaded colors. Only two
transitions of hydrogen-like oxygen could be identified. One spectral line is located at
∼ 10.2 nm (line 6)), the other at ∼ 17.1 nm (line 24)). In the magnetic trapping mode, only
the strong 10.2 nm transition 3l–2l′ is observed, which indicates that the n = 6 state is not
populated by charge exchange. In the bottom panel, the spectrum below the threshold for
production IP,H of hydrogen-like oxygen is illustrated in red. Therefore, only helium-like
and beryllium-like transitions after capture can be observed.

In contrast to the CX measurements in the X-ray regime, where the electron-beam
energies were set above and below the threshold of the fully-stripped projectile to extract
the contribution of capture into the bare charge state, the lower bound of the beam
energy in this measurement only allows for the production of helium-like oxygen. The
ambition of the experiment was to investigate electron capture into the hydrogen-like state
because only two transitions of capture into O8+ are expected. However, the reason for the
choice of the energy above IP,Bare is a higher yield of hydrogen-like ions at higher beam
energies and therefore higher count rates. The most intense transitions are 1s24l – 1s22l′

and 1s23l – 1s23l′. Transitions from higher states like 1s25l – 1s22l′ are not present in
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this spectrum, indicating that n = 4 is the highest excited principal quantum number
state, which can be populated by charge exchange for this system. The spectral line at
∼ 15.6 nm which was not present in the spectrum of the electron-beam on mode appears
in magnetic-trapping mode. It can be speculated that the line could originate from a
dipole-forbidden beryllium-like transition, but a proper assignment to a known transition
can not be performed. Furthermore, the intensity ratio of line 20) to line 11) seems to be
higher in the spectrum below the ionization threshold IP,H than above. An explanation
could be a decreased yield of beryllium-like ions with higher electron-beam energies. Since
a beryllium-like transition (line 21)) is in direct proximity of line 20) the overall apparent
intensity of the 15 nm line could be increased in the spectrum with an initially lower
electron-beam energy.
For the sake of completeness and illustration of possible electronic cascades in dependence

of the populated level, a Grotrian diagram of the CX induced transitions of helium-like
oxygen after electron capture is presented in figure 4.42 with the first electron in the ground
state and the second electron in an excited state nl. The energy of the configurations on
the ordinate is plotted as a function of the corresponding angular momentum l. Each
panel shows an initial population of n = 5 with the corresponding angular momenta of
100%. All possible dipole-allowed transitions are color-coded by the branching ratio, where
red arrows represent strong transitions with maximum 100% probability and blue arrows
comparably weak transitions in logarithmic scale. Triplet and singlet states are separated
in this depiction.
A high population of 1s5d leads to an enhancement of the expected 1s4l → 1s2l′

transitions in the EUV range.

4.4.2.2 Comparison with charge exchange models

For comparison of the data to theoretical models, both CX spectra in figure 4.41 are
normalized to an isolated lithium-like transition (line 11)) which is present in both spectra.
Since no MCLZ calculations for CX of helium-like systems and lower charge states exist so
far, and no transitions of helium-like oxygen after electron capture were detected above
14 nm, the spectra acquired at a camera position of 124mm, covering a wavelength range of
8 – 14nm are compared to theory. After normalization, the spectrum below the ionization
threshold IP,H is subtracted from the spectrum above IP,Bare. The spectral lines which
remain have an origin in initially fully ionized and hydrogen-like charge states of oxygen.
The subtracted result is shown in the bottom panel of figure 4.43.
In the top panel, synthetic spectra of electron capture into fully ionized oxygen calculated

employing the flexible atomic code (light blue) (chapter 2.3.4.5) and by an MCLZ approach
using Kronos (chapter 2.3.4.4) for a collision energy of 20 eV/u (orange) is shown. Capture
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Table 4.4: Identified transitions of highly charged oxygen. The transition wavelengths
are extracted from the NIST database. The values which are nor listed in the database are
calculated from the theoretical energetic difference of the energy levels provided by NIST,
are labeled with an asterisk. In the last three columns, the Einstein coefficients extracted
from NIST are compared to calculations performed by FAC and to the values provided by
the Kronos code. The Einstein coefficients of the hydrogenic system, calculated by Kronos,
could not be extracted and are labeled by a dagger symbol.

Line Transition NIST wavelength Aki,NIST Aki,FAC Aki,Kronos
(nm) (1010 s−1) (1010 s−1) (1010 s−1)

1 1s5p 3P – 1s2s 3S 8.1914* * 1.10 1.23
2 1s5l – 1s2l′ 8.6113± 0.009 8.55 8.46 3.63

3 1s4p 3P – 1s2s 3S 9.1078* * 2.23 2.38

4 1s28p – 1s22s 9.5082* * – –
5 1s4d 3D – 1s2p 3P 9.614± 0.004 18.22 15.79 5.32
6 3l – 2l′ 10.24± 0.01 74.0 74.1 †
7 1s25p – 1s22s 10.4813* * – –
9 1s26l – 1s22l′ 11.04± 0.03 – – –
11 1s24p – 1s22s 11.5826± 0.001 – – –
12 1s3p 3P – 1s2s 3S 12.033* * 5.18 5.32
13 1s22s5p 1P – 1s22s2 1S 12.4616± 0.001 – – –
14 1s3d – 1s2p 12.8449± 0.005 53.5 48.11 16.12
15 1s24d – 1s22p 12.9837± 0.004 – – –
16 1s24s – 1s22p 13.227± 0.005 – – –
17 1s3s – 1s2p 13.2805± 0.007 2.51 2.14 2.26
18 1s3d 1D – 1s2p 1S 13.5820± 0.001 15.23 14.99 15.23
19 1s3s 1S – 1s22p 1P 13.7510± 0.001 2.01 2.02 2.01
20 1s23p – 1s22s 15.0107± 0.002 – – –
21 1s22s4d – 1s22s2p 15.1545± 0.001 – – –
22 1s22p3p – 1s22s2p 16.799± 0.001 – – –
23 1s22s4d – 1s22s2p 17.022± 0.001 – – –
24 6l – 3l′ 17.07± 0.01 4.35 4.36 †
25 1s22s3p – 1s22s2 17.217± 0.001 – – –
26 1s23d – 1s22p 17.302± 0.008 – – –
27 1s22s4s 1S – 1s22s2p 1P 17.456± 0.001 – – –
28 1s22p3p 1S – 1s22s2p 1P 18.220± 0.001 – – –
29 1s23s – 1s22p 18.4057± 0.005 – – –
30 1s22s4p – 1s22p2 19.15± 0.01 – – –
31 1s22s3d – 1s22s2p 19.2906± 0.001 – – –
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Figure 4.42: Grotrian diagram for transitions of helium-like oxygen with an initial
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Figure 4.43: Comparison between synthetic CX spectra of O8+ and O7+ with H2O
obtained by the MCLZ approaches of Kronos and by FAC (top panel) and the experiment
with the extracted contribution of CX between O8+ and O7+ with molecular oxygen
(bottom panel). Additionally, the results of the reconstruction with the FAC cascade
model for n = 5 are shown as a solid orange curve.
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into the hydrogenic state is depicted in green for the MCLZ approach and in magenta for
the FAC calculation. The delta-function-like lines with their theoretical line positions and
intensities are convolved with a Gaussian with a width corresponding to the experimental
resolution. The choice of H2O as a target for the Kronos calculation is based on a lack of
data for O2 in the intrinsic database of collisional cross-sections. Since H2O has the smallest
difference in the ionization potential of the targets available with IP,H2O = 12.65 eV [157]
to O2 (IP,O2 = 12.0697 eV [164]), it is a valid approach to compare both targets.

To remark is a slight discrepancy between both models. For modeling of the cascade
spectra Kronos utilizes the energy levels of helium-like oxygen from the NIST database
whereas FAC performs an ab-initio calculation of those energy levels. Some of the calculated
levels have a slight deviation in the order of 1 eV from the NIST values, which affects the
transition energies. Since the calibration of the spectrometer is based on theoretically and
experimentally determined transition wavelengths from five different references from the
NIST database and the residuals of the calibration fit are smaller than 5× 10−3 nm, the
transition energies provided by Kronos seem more confidable than the values from FAC.
Both models predict an increased intensity of transitions 1snl – 1s2l′ with n ≥ 4 compared
to the experiment.
Furthermore, the MCLZ approach of Kronos predicts electron capture almost into one

single principal quantum number state n = 5. In the bottom panel of figure 4.44, the
n-resolved single-electron capture cross-section into the hydrogenic charge state of oxygen
is plotted as a function of the collision energy between O7+ and H2O. At lower collision
energies which are expected in an electron-beam ion trap, the probability of capture of an
electron into n = 5 is three orders of magnitude higher than capture into higher or lower
n-states.
For the application of the FAC cascade model described in section 2.3.4.5, the calculated

transition rates provided by FAC are retained, but as a consequence of the discrepancy
between the transition energies of FAC and Kronos, the energy levels from NIST are
incorporated. Finally, the reconstruction of the angular momentum states with the CX fit
model for n = 5 is overlayed in orange with the experimental data in the bottom panel.
For lower wavelengths, a good agreement between the data and model can be noticed. For
higher wavelengths, the intensities of the transitions 1s3p – 1s2s (line 12)) and 1s3s – 1s2p
(line 17)) are underestimated by the fit of the cascade model. By inclusion of the principal
quantum number states n = 3, 4 into the cascade model, the agreement between the CX
fit model and the experiment improves as illustrated in figure 4.45. The hydrogen-like
line at ∼ 10.2 nm is not included in the fit of the helium-like system. Since only one
transition of capture into fully ionized oxygen is observed, it would be unsubstantial to
extract any information about the distribution of angular momentum. Although both
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Figure 4.44: Principal quantum number n-resolved single-electron cross-section of O8+ +
H2O (top panel) and O7+ + H2O (bottom panel) as a function of the collision energy
between projectile and target calculated with an MCLZ approach utilizing the Kronos
code.
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Figure 4.45: Charge exchange spectrum of O8+ and O7+ with molecular oxygen. The
orange curve represents the reconstruction of the angular momentum distribution with
the FAC cascade model by consideration of population of n = 3, 4, 5. The corresponding
relative fractions of populated l-states are illustrated in the inset by orange, blue and
magenta-colored bars, respectively.

models predict a comparably high population of n = 6 and a strong 6l – 3l′ transition of
the hydrogenic system at ∼ 17.08 nm for lower collision energies (compare top panel of
figure 4.44), no line is observed in the experiment which indicates that the n = 6 state
is not populated by charge exchange in contradiction to the MCLZ approach. However,
the classical-over-the-barrier method described in chapter 2.3.4.1 anticipates the highest
principal quantum number state n = 5 in which the electron is captured. Unfortunately,
the 5l – 3l′ transition is outside of the investigated spectral range.

The reconstruction indicates an underestimation of the cross-section of the population of
the n = 3 and n = 4 state by CX with the MCLZ approach. In table 4.4, the transition
rates Aki of the observed lines are listed. The values from NIST, FAC calculations, and
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from the database of Kronos are compared in the last three columns. An underestimation
of some transitions by a factor of three between FAC and Kronos is observed. In contrast,
the agreement between NIST and FAC is satisfactory. The most considerable difference is
in the order of 14%. To remark is, that Kronos does not implement S-resolved transitions,
whereas FAC provides transitions between different total angular momentum states of the
initial level and the final level. This could explain the mismatch of both synthetic spectra,
although a similar approach for the calculation is utilized. A second effect that is not
included in both models is double-electron capture (DEC) and subsequent autoionization.
This process has already been investigated by other groups [93, 59, 9, 10] with the conclusion
that the cross-section of DEC is comparably high in the order of 1× 10−15 cm2. DEC with
autoionization leads to the same final charge state after electron capture as single-electron
capture (SEC) but with an increased population of lower principal quantum number states
n. For example, a double capture into n = 5 of an initially hydrogen-like system can
occur, leading to the formation of a doubly-excited lithium-like system. The energy in the
order of ∼ 45 eV of the transition of one electron from n = 5 to n = 3 can be transferred
non-radiatively to the second electron. This energy is sufficient to ionize the latter electron
with a binding energy of ∼ 35 eV. The energy of ∼ 17 eV released by a n = 5 to n = 4

transition does not suffice to ionize the second electron. Also, a radiative channel of
the doubly-excited state is possible where no autoionization occurs. Here the initially
hydrogen-like system becomes a lithium-like system after capture leading to an increase of
the intensity of lithium-like lines compared to SEC.

A direct comparison between the MCLZ approach for collisions between O7+ and H2O
at energies of 20 ev/u calculated by Kronos and the reconstruction of the distribution of
angular momenta with the FAC cascade model is presented in figure 4.47 as an orange
and a blue solid line, respectively. As outlined in figure 4.44, the most populated principal
quantum number state is n = 5. The synthetic MCLZ charge exchange spectrum, convolved
with the instrumental resolution in MTM serves as an input for the reconstruction for
capture into n = 5 with the FAC cascade model. The relative l-population from the
reconstruction is deduced from the coefficients of the spectral basis vectors described in
chapter 2.3.4.5, whereas the l-distribution of the Kronos code is extracted from the MCLZ
calculation presented in figure 4.46. The capture cross-section into triplet and singlet
angular momentum states for n = 5 is plotted as a function of the collision energy between
projectile and target.

The results for the relative fraction of different angular momenta are presented in the inset
of the figure as orange bars for the MCLZ approach and as blue bars for the reconstruction
method. Here the population of the singlet and triplet states for each angular momentum is
summarized. In an ideal case, the reconstruction of the distribution with the cascade model
should provide the same results for the relative fractions. Since the transition wavelengths
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Figure 4.47: Synthetic CX spectrum of O7+ + H2O at a collision energy of 20 eV/u,
calculated with the MCLZ approach utilizing the Kronos code (solid orange curve) and the
reconstruction of the angular momentum distribution by the FAC cascade model (solid blue
curve) for single-electron capture into n = 5. The inset represents the relative fractions of
angular momenta in the corresponding colors. The cross-sections for the l-state capture
used by the MCLZ approach are extracted from figure 4.46.
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are fixed, and the only fitting parameter for each spectral basis vector is the intensity, the
number of degrees of freedom of the cascade model is five. The number of fitted transitions
is higher by a factor of two, and thus the model is not overdetermined, leading to a reliable
fit. The fact of the large discrepancy of the population of s- and d-states could originate
from the mismatch of the transition rates of the FAC and the MCLZ calculation as outlined
in table 4.4.

4.4.3 Charge exchange of argon in the EUV range

In earlier CX measurements of Ar17+ and Ar18+ with neutral argon as a donor, no lines
were visible in MTM in the EUV range in contrast to the oxygen measurements. The
spectral lines investigated within the framework of the oxygen EUV measurements, are
exclusively transitions from nl-states into the L-shell. Transitions expected for highly
ionized argon in this energy range are mostly from nl-states to n = 4, 5, which are less
probable than the L-shell transitions, although the CX cross-sections increase with a higher
charge of the projectile. In order to increase the photon yield of the argon transitions in
this energy range, the EUV measurements have been carried out simultaneously to the
X-ray measurements of Ar17+ and Ar18+ with a pulse of molecular hydrogen utilizing the
pulsed gas injection system [13].
In figure 4.48, the EUV measurements are presented. In the top panel, spectral lines

of highly charged oxygen during the electron-beam on mode, as presented in table 4.3
are used for calibration. In the middle panel, the spectrum of highly ionized argon was
obtained during electron-beam on mode with an electron-beam energy of 8000 eV in order to
produce fully ionized argon ions. Some spectral lines resulting from residual oxygen injected
during previous measurements are indicated by vertical, dashed lines. The corresponding
spectrum in MTM is presented in the bottom panel, according to the measurement scheme
described in section 4.4.2 with an analogous estimation of the error bars. Since the pulsed
injection system was not fully optimized hitherto, the gas inflow rate was higher than the
pumping rate leading to a slow increase of the pressure in the trap and thus to unstable
experimental conditions. Therefore, the number of acquired spectra, in total five, in
magnetic trapping mode with pulsed injection were comparably low, causing an increase of
the statistical uncertainty. The total length of the measurement cycle was 10 s with 6 s in
the electron-beam on mode in order to efficiently produce Ar18+ with a current of 200mA
and an axial trapping potential of 800V. The subcycle of the magnetic-trapping mode was
4 s whereas the EUV shutter was open for 3.5 s in order to exclude possible contributions
from metastable states. The line positions were corrected for the displacement of the ion
cloud, as discussed in section 4.4.2.
The dominant spectral line at 15 nm results from a lithium-like charge state of residual
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Figure 4.48: Top panel: calibration spectrum of highly charged oxygen ions presented
in table 4.3. Center panel: direct excitation of a mixture of highly charged argon
and oxygen during the electron-beam on mode with a nominal beam energy of 8015 eV.
Bottom panel: corresponding charge exchange spectrum in magnetic-trapping mode with
pulsed H2 injection as the donor species.
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Table 4.5: Comparison between transition wavelengths of 1s5l – 1s4l′ transitions of helium-
like argon extracted from the energetic difference of levels provided by the NIST database
and calculated directly by FAC.

Transition NIST wavelength (nm) FAC wavelength (nm)

1s5p 3P J = 2 – 1s4s 3S J = 1 13.5056 13.5176
1s5d 3D J = 3 – 1s4p 3P J = 2 13.7900 13.8011
1s5d 1D J = 2 – 1s4p 1P J = 1 14.0233 13.7584
1s5s 3S J = 1 – 1s4p 3P J = 2 14.1080 14.1087
1s5s 1S J = 0 – 1s4p 1P J = 1 14.1664 14.1752

oxygen, which was injected in a previous measurement. A cautious investigation of the
CX spectrum in magnetic-trapping mode is illustrated in figure 4.49. In the top panel,
synthetic collisional-radiative spectra calculated employing the Flexible Atomic Code for an
electron-beam energy of 8015 eV is presented for hydrogen-like, helium-like, and lithium-like
charge states of argon. The middle and the bottom panel shows the same spectra during
electron-beam on mode and the corresponding magnetic-trapping mode as in figure 4.48.
The gray areas represent spectral lines of highly charged oxygen identified in the previous
section. Due to a lack of transitions of highly charged ions in the EUV range in standard
wavelength catalogs, it is challenging to identify the spectral lines observed.

4.4.3.1 Helium-like argon

Theoretical energy levels are given in those databases for principal quantum numbers
up to n = 5. Calculations performed by FAC provide transition energies between two
excited states of argon ions containing more than one electron with comparably high energy
levels in the order of ∼ 4000 eV. Assuming a relative uncertainty of 0.01% of the energy
level calculations yields an uncertainty in the transition energy in the order of 1 eV which
corresponds to a wavelength uncertainty of ∼ 0.2 nm which is larger than the width of an
observed line. For instance, FAC calculations of a transition of helium-like argon from
1s5d 1D J = 2 to 1s4p 1P J = 1 yield a transition wavelength of 13.5176 nm, whereas the
NIST database provides 14.0233 nm extracted from the energy difference of both levels.
A direct comparison between expected 1s5l – 1s4l′ transitions up to l = 2 in the observed
wavelength range is given in table 4.5.

Absolute energy levels higher than 1snl with n > 5 are not available in the NIST
database, although 1snl – 1s5l′ transitions with n = 7, . . . , 11 are expected.
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Figure 4.49: Top panel: collisional-radiative model for hydrogen-like, helium-like, and
lithium-like transitions of argon ions with an electron-beam energy of 8015 eV. Center
panel: direct excitation of highly charged argon from figure 4.48. Bottom panel:
corresponding CX spectrum in MTM. The gray areas indicate transitions of highly charged
oxygen investigated in section 4.4.2. Vertical dashed lines represent the transition wave-
lengths calculated with FAC in the top panel.



180 Chapter 4. Experiments on charge exchange

4.4.3.2 Hydrogen-like argon

For hydrogenic systems transitions from n = 7, 8, 9 –n = 5 and n = 10 –n = 6 are predicted
in a wavelength range between 9 nm and 17 nm. Transitions from higher states are not
expected, since the highest populated level, according to MCLZ calculations, is n = 10 for
the interaction of Ar18+ with H2 (compare to figure 4.33). However, only the wavelength
for the 5p J = 1/2 – 4s J = 1/2 transition is identified in MTM to λ = 12.445(1)nm. The
value extracted from the NIST database is λNIST = 12.446 152(10)nm, and the calculation
performed with FAC yields λFAC = 12.4462 nm, which is in a good agreement with the
experimentally obtained transition wavelength. Nonetheless, according to the MCLZ
calculation performed by the Kronos code, this transition is predicted to be the most
intense. The predicted n = 10 → n = 6 transition of hydrogen-like argon after capture at
∼ 15.7 nm was not observed, indicating that the n = 10 state is not populated by charge
exchange for this collision.
In figure 4.50, the theoretical CX spectra for initially fully ionized and for hydrogen-like

argon ions is compared to the experimentally obtained spectrum. In the top panel, the
spectrum provided by the Kronos code for collisions of Ar18+ with molecular hydrogen at
a collision energy of 10 eV/u and a low-energy l-distribution is illustrated as a solid green
line. For comparison, a synthetic spectrum generated with FAC for the same collision
with the same parameters is shown in orange. The corresponding transitions are labeled
in green. Although the resulting ion after the reaction is hydrogenic, both codes yield
diverging results, in particular, a difference in the transition wavelengths and moreover
in intensity ratios can be observed. Cross-sections for CX of initially hydrogen-like argon
are not available in the Kronos database. Instead, the charge exchange cross-section for
collisions of Ar17+ is provided by the flexible atomic code CX model and illustrated in
violet for collision with atomic hydrogen and blue for molecular hydrogen at a collision
energy of 25 eV/u, respectively.
In contrast to the predictions for the K-shell emission, significant differences in the

line ratios are predicted for interaction with different neutral targets. However, no
definite identification of spectral lines could be performed hitherto due to a lack of
atomic transitions in standard databases and due to relatively high uncertainties in atomic
structure calculations. An assignment of spectral lines would be highly speculative, and
further analysis is not expressive and will not be performed within the frame of this work.
Anyhow a first proof-of-principle measurement of charge exchange has been demonstrated
for heavier elements in the EUV range where more cautious systematic investigations are
crucial in order to identify the remaining transitions.
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Figure 4.50: Top panel: Synthetic spectra for charge exchange between Ar18+ with
molecular hydrogen in the EUV range, generated with Kronos and FAC. Calculation of
Ar17+ with H and H2 are performed with the FAC code. The cross-sections for this reaction
are not available in the Kronos database. The hydrogenic transitions after electron capture
are labeled correspondingly. Bottom panel: Experimental CX spectrum from figure 4.49.
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In this work, a cryogenic electron beam ion trap for charge breeding of short-lived, rare
isotopes was designed, assembled, characterized, and installed at the designated end station
at the CANREB facility at TRIUMF in Vancouver, Canada. The compression of the
electron-beam in the trap center was determined to 700A/cm2 at a beam current of 64mA
and radius of 54 µm and extrapolated to 11 000A/cm2 at a maximum achieved electron-
beam current of 1000mA, which is crucial in order to breed ions within a short time to
high charge states. Furthermore, various studies were performed in order to investigate
and characterize the properties of the electron beam, ion injection, ion extraction, and
charge breeding of highly charged ions. The final commissioning of the EBIT as a charge
breeder and integration into the CANREB facility will be completed in 2019.

Secondly, extensive investigation of the charge exchange process, where highly charged
ions interact with neutral gas, was performed utilizing the FLASH-EBIT in Heidelberg,
equipped with an extreme-ultraviolet spectrometer covering a wavelength range from 7nm
to 35 nm, a vacuum-ultraviolet normal-incidence spectrometer for 35 nm to 150 nm and an
X-ray detector for detection of higher energetic photons in an energy range of 350 eV to
30 keV. The first proof-of-principle in-situ measurement of charge exchange in the EUV
range in an electron-beam ion trap was presented. X-ray measurements were carried out for
interaction of fully ionized and hydrogen-like argon with different target gases at different
collision velocities.
Significant discrepancies between CX measurements of fully ionized argon interacting

with neutral argon, compared to the results published by other groups [24, 32, 12, 11] using
an EBIT were observed. Besides, a disagreement with prevailing theories of hydrogen-like
systems after electron capture, like the multichannel Landau-Zener approach, as well as a
disparity between theories among each other, were ascertained. These discrepancies were
discussed extensively.
Furthermore, X-ray charge exchange measurements were performed with fully ionized

sulfur as a projectile in order to provide a possible explanation for the observed emission-like
line feature in galaxy clusters at 3.5 keV with a proposed origin in the decay of sterile
neutrinos, which is a potential dark matter candidate. The capture of an electron from
neutral gas into high Rydberg states and subsequent decay into the ground state leads to
emission of an X-ray photon with an energy of 3.47(6) keV. Since hydrogen-like and fully
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ionized sulfur is highly abundant in the interstellar medium, it can interact with atomic
hydrogen and produce an emission line at this energy.
In addition, a comparison to various charge exchange models was performed. The

theories are in a weak agreement with the experimental data, although the product ion
after the reaction is a hydrogenic system. With the multichannel Landau-Zener approach,
it is not possible to calculate the cross sections for electron capture into different angular
momentum states, and thus, a distribution function has to be applied to the n-resolved
cross-sections. In order to investigate capture into different l-states, a cascade model based
on the flexible atomic code was developed, by reconstructing the experimental data. To
extract conclusive information, the number of resolved lines has to be equal or larger than
the number of the fit parameters, in particular, the number of allowed angular momenta,
which is not given in most of the cases due to a poor spectral resolution of the detectors.

In the following, the results obtained from the measurements performed in this work will
be discussed briefly.

X-ray charge exchange measurements of highly charged ions

In general, charge exchange measurements of fully ionized and hydrogen-like ions were
performed by observation of K-shell X-rays with a silicon drift detector with a spectral
resolution of FWHM ≈ 150 eV. The spectra were acquired by switching the electron beam
on and off cyclically and simultaneously recording the X-ray spectrum as a function of
the time within the cycle. During the beam-on mode, the ions were excited by electron
impact. During the beam-off mode, the ions were magnetically confined, and only charge
exchange led to emission of photons. The spectra were obtained for an initial electron-beam
energy above the ionization threshold for the production of fully ionized ions. Here,
initially entirely stripped and hydrogen-like systems emit K-shell X-rays. To extract the
contribution of the initially bare system, a second spectrum slightly below this ionization
threshold is acquired, normalized to a transition that is present in both spectra, and
subtracted from the mixed spectrum.

Sulfur

Charge-exchange measurements were carried out with fully ionized and hydrogen-like sulfur
interacting with molecular CS2, according to the experimental technique described above.
Systematic measurements with a variation of the injection pressure and electron-beam
energy were performed. It has been demonstrated, that the observed unidentified emission
line at ∼ 3.5 keV in galaxy clusters with a proposed origin in the decay of sterile neutrinos,
could be caused by charge exchange between fully ionized sulfur and atomic hydrogen, which
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are both highly abundant in these astrophysical environments. A capture of an electron
into a high Rydberg state of n ≥ 7 in S16+ with subsequent decay into the ground state
n = 1 produced an X-ray photon with an energy of 3.47(6) keV in this measurement. In
the astrophysical modeling, performed in the publications of the proponents of dark matter
decay, the included atomic data is lacking atomic transitions, in particular transitions from
states n ≥ 5. Since charge exchange is an efficient mechanism to populate this states,
it should be included in the models in order to understand and interpret astrophysical
spectra.
Furthermore, the data obtained during this work was compared to charge exchange

models. The established distributions of angular momenta for capture into a specific
principal quantum number n utilized by the multichannel Landau-Zener approach do
not represent the experimental CX spectrum. The centroid of the high-energetic peak is
overestimated to higher photon energies by the models. Only modification of the low-energy
l-distribution, where the s-state is highly populated, could provide a good agreement with
the experiment. This s-dominant capture is confirmed by the independent application
of the Flexible-Atomic-Code cascade model in order to reconstruct the l-distribution.
Almost 75% of the electrons are captured into the l = 0, n = 12 state, according to the
reconstruction results.

Argon

Accordingly, extensive studies of the interaction of the highly ionized species with neutral
argon in the X-ray regime were carried out by variation of the axial trapping potential V0
between 45V and 1000V in order to observe the change of the nl-population of the captured
electron as a function of the collision energy, which is defined by V0. No significant differences
were observed, neither in the intensity ratios of the K-shell transitions nor in the hardness
ratio, which is defined as the ratio of the integrated flux of n ≥ 3 → n = 1 transitions to
the Lyman-α transition. Only a slightly increasing tendency of the hardness ratio with
higher collision energies could be observed within the uncertainty range, contradicting
the decreasing trend predicted by the classical-trajectory Monte-Carlo model, but in good
accordance with the multichannel Landau-Zener approach. Furthermore, the significant
discrepancy by a factor of two in the hardness ratio as a function of collision energy
between various CX measurements of Ar18+ with neutral argon in EBITs and extraction
measurements in gas cells is still an unresolved issue. The under- or overestimation of the
collision energy is improbable since the slopes of the hardness ratio as a function of the
collision energies are relatively flat with an absolute value of ∼ 4× 10−3 /eV in the extreme
case of the CTMC model. Polarized emission induced by CX is also most unlikely since
the predicted [74] and the measured degree of polarization [162] is in the order of ∼ 0.05
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for O5+ ions. Models or measurements for highly ionized argon ions are not available, so
far. The influence on the hardness ratio by the magnetic field of the EBITs could also
be excluded since no significant difference between measurements performed at B = 6T
and B′ = 3T was observed either in this experiment or in other experiments [11] with
B = 3T and B′ = 1T. Another concern is the fact that the same measurement performed
with similar experimental parameters in the same EBIT [24, 32] differed by ∼ 70% in
the hardness ratio. In conclusion, an unknown systematic effect causes the discrepancy
between the charge exchange measurements, discussed above. This issue could not be
resolved within the scope of this work.
Besides, no angular momentum distribution utilized by the MCLZ approach for collision

with various neutral targets could represent the experimental spectrum. The most probable
principal quantum number state is overestimated by the model. Only for CX of Ar18+

with neutral helium at high collision velocities in the order of ∼ 1000 eV/u, the center
of the high-energetic peak is in agreement with the experiment, but the X-ray flux of
n ≥ 3 → n = 1 is highly underestimated. However, this scenario is unrealistic, since
the maximum applicable axial trapping potential is in the order of 3000V, resulting in a
maximum collision energy of ∼ 270 eV/u. Furthermore, the relative fraction of residual gas
was estimated to ∼ 1% for the measurement Ar18+ +Ar, and no significant effect of the
residual gas, even if helium is the only contaminant, is expected.
Additionally, the interaction between Ar18+ and additional neutral targets, including

molecular hydrogen, neon, and a mixture of neutral argon with residual gas, was studied.
The hardness ratios with an axial trapping potential of ∼ 500V were determined to
0.54± 0.02, 0.75± 0.08, and 0.656± 0.001, respectively. No trivial scaling of the hardness
ratio as a function of the ionization potential of the targets was observed, whereas the
MCLZ approach predicts an increase with higher ionization energies.
For the injection of molecular hydrogen as a target, a dual injection system was installed

and commissioned, consisting of a gas dosing valve for continuous projectile gas injection
and a pulsed supersonic valve which provides gas pulses of a target gas with a duration of
∼ 60 µs. Since the pulsed system was not correctly adjusted in these measurements, the
residual gas pressure in the magnet chamber increased steadily, leading to deteriorated
trapping conditions.

Oxygen

Analogously, the charge exchange process of fully ionized and hydrogen-like oxygen with
neutral O2 was investigated in the X-ray domain. Oxygen is a low-Z ion, where the
energetic difference between the Lyman-α transition at 653 eV and the highest expected
Rydberg transition from n = 5 to the ground state at ∼ 836 eV is comparably small, only
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two lines, in particular, Lyman-α and Lyman-β could be resolved with the silicon drift
detector. Since the actual energy-dependent quantum efficiency of the detector is not
known and varies by two orders of magnitude in this energy range, quantitative analysis in
terms of line ratios could not be performed conclusively.

EUV charge exchange measurements

Oxygen

To bypass the issue of low spectral resolution present in the X-ray domain, the investigated
spectral domain was extended to longer wavelengths of 7 nm to 20 nm, where a larger
number of spectral lines can be observed. In this work, a first proof-of-principle in-situ
charge exchange measurement in an electron beam ion trap, utilizing a high-resolution
grazing-incidence EUV spectrometer equipped with a mechanical shutter, was demon-
strated. Here the spectra during the electron-beam on mode and the magnetic trapping
mode of highly charged oxygen were separated. The spectral resolution was improved by a
factor of two compared to other publications [36] where the oxygen ions were impinged
onto a gas cell. One spectral line resulting from an n = 3 → n = 2 transition of initially
fully-ionized oxygen following charge exchange with molecular oxygen was observed at
10.24 nm. The n = 6 → n = 3 transition at ∼ 17.1 nm was not observed, indicating that
the n = 6 state is not populated by charge exchange, contradicting the MCLZ theory,
which predicts a population of n = 5 and n = 6 at the typical collision energies in an
EBIT. In contrast, the classical over-the-barrier model anticipates the population of n = 5.
For single-electron capture into the initially hydrogen-like oxygen, the predicted state

with a population of ≥ 99.9% by MCLZ is 1s5l. In magnetic-trapping mode 1s5l – 1s2l′,
1s4l – 1s2l′, and 1s3l – 1s2l′ transitions were identified. Transitions from higher excited
states are outside of the investigated spectral range. However, a direct comparison to
synthetic spectra obtained from MCLZ calculations and with the FAC cascade model
indicates, that the population of n = 3 is underestimated by theory. This suggests that
either the assumption of capture into n = 5, exclusively, is not correct, or that double-
electron capture with subsequent autoionization, leading to an increased population of
n = 3, is underestimated. For more expressive assertions, further systematic investigations
are required.

Argon

Analogously, charge-exchange measurements in the EUV range in highly charged argon
interacting with molecular hydrogen were carried out. Only one transition from initially
fully ionized argon, in particular, the 5p (J = 1/2) – 4s (J = 1/2) transition, has been
identified in the magnetic-trapping mode to λ = 12.445(1)nm. Due to a lack of atomic
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transitions in standard wavelength catalogs, it was not possible to identify most of the
electronic transitions. Calculations of transitions between excited states are not reliable
with an uncertainty in the order of ∼ 0.2 nm in order to identify the spectral lines assuredly.
Furthermore, the CX spectrum contains signatures from residual oxygen from previous
measurements. The remaining unidentified spectral lines could also originate from other
charge states. For further analysis, it is crucial to identify all transitions in a systematic
study. A combination of the measurements in the EUV range and simultaneously in the
X-ray range could serve in future experiments as a basis for the extraction of the relative
nl-population.

Comparison with charge exchange models

As demonstrated in various charge exchange measurements, in particular, observation of
K-shell X-rays [24, 32, 12, 11, 110, 109], the intensity ratios of spectral lines are strongly
dependent on the initial population of the angular momentum states of the captured
electrons. Thus, detailed knowledge of this distribution is crucial in order to understand
the nature of the charge-exchange process.
All measurements presented in this thesis were compared to different charge-exchange

models, in particular, the multichannel Landau-Zener method. For capture into an initially
fully ionized system, the nl-states in which the electron is captured, are degenerate. Thus,
established distributions of angular momenta have to be multiplied to the total n-resolved
cross-section. Dependent on the collision energy, different l-distributions are applicable.
However, this approach is not always valid and does not necessarily represent the actual
relative population. As demonstrated in the X-ray measurements of fully-stripped sulfur,
the electron is captured preferably into l = 0. This has been confirmed by a modified
low-energy distribution applied with the MCLZ approach, and by the cascade model for
the reconstruction of the l-population.
Nevertheless, the developed FAC reconstruction model has to be utilized cautiously. If

the number of free parameters exceeds the number of spectral features, which is the case
for the X-ray measurements due to a comparably low spectral resolution of the SDD, the
extracted information of the l-distribution is possibly not conclusive. At least a tendency of
the most probable l-states can be extracted. Besides, the different X-ray and EUV spectra
could not be represented by the MCLZ approach with the established l-state distributions.
Furthermore, different collisional-energy dependent l-distributions had to be applied to
receive at least a qualitative agreement of the ratio between higher Rydberg transitions n
to the ground state n = 1 and Lyman-α, although the trapping conditions, in particular,
the collision energy, were kept relatively constant. This indicates that the l-distribution is
not exclusively defined by the collision energy. According to the MCLZ approach, only
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the n-resolved cross sections depend on the collision energy. The choice of the neutral
target in the MCLZ calculation does not affect the theoretical shape of the spectrum,
in contradiction to the present measurements and the measurements performed with a
microcalorimeter [109, 110]. Only the most probable principal quantum number n in which
the electron is captured, according to the model, is affected.
Furthermore, only a few neutral targets and highly ionized projectiles are available in

the Kronos database, reducing the possible combinations in order to benchmark the theory
with experimental data. Also, the cross-sections for the most probable n-states are not
well represented by the MCLZ approach, as demonstrated in the EUV CX measurements
with O8+ colliding with O2. According to the theory, the n = 5 and n = 6 states should be
populated almost equally at the given collision energies. The n = 6 to n = 3 transition was
not observed in the experiment, implying that the population of n = 6 can be considered as
negligible. Information on the n = 5 population can not be provided, because the n = 5 to
n = 3 transition is outside of the low-energetic and the n = 5 to n = 2 transition outside of
the high-energetic investigated spectral range. For further comparisons the measurement
has to be studied systematically, covering a broader wavelength range.
Additionally, independent MCLZ approaches utilized by different codes were compared in

this work. Although all models are based on the same numerical approach and the resulting
system after electron transfer is hydrogenic, significant discrepancies in the synthetic
K-shell spectra were observed for equal parameters and l-distributions. The disagreement
is even more drastic for helium-like systems after electron capture, as demonstrated in the
chapter about oxygen and argon charge exchange in the EUV range. One contribution
of this discrepancy can be explained by different approaches of the implementation of
the energy levels of the final states and the corresponding transition rates. The values
utilized by the Kronos MCLZ model are extracted from the NIST database. In the
case of missing data, in particular, for highly excited states, the values are extrapolated
by scaling relations. To remark is, that not all possible transitions are implemented in
the Kronos code. Only l-resolved and not J-resolved transitions are considered, which
reduces the number of possible, allowed transitions. By contrast, the levels and rates
implemented in the FAC model are based on ab-initio calculations. Since the transitions
expected in the EUV range are between two excited states, the relative uncertainty of
the transition wavelength becomes comparably large, which makes a reconstruction of the
l-state distribution challenging, although the absolute uncertainty of the energy levels is in
the order of less than 1 eV for helium-like system.
Moreover, the hardness ratio has been investigated, which is commonly used to provide

qualitative information on the collision energy. According to MCLZ, the hardness ratio
should increase with higher collision velocities. By contrast, the classical-trajectory
Monte-Carlo method predicts a decrease for the same reaction. Although the projectile is a
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one-electron system after the collision, the two well-established theories predict contradicting
results. A comparison with an approach describing the system as a quasi-molecule during
the collision would be profitable. Models like the quantum-mechanical molecular-orbital
close-coupling (QMOCC) require fewer approximations and assumptions than MCLZ,
but unfortunately, such calculations are only present for relatively light projectiles, so
far. However, a single quantity like an intensity ratio, in particular, the hardness ratio,
should be utilized cautiously since it was introduced historically by the community of X-ray
astronomy as an auxiliary quantity due to a limited spectral resolution [136].

Conclusion

In this work, it has been shown, that a recently observed emission line at 3.5 keV in galaxy
clusters with a proposed origin in dark matter decay, most likely originates from charge
exchange of fully ionized sulfur with neutral gas. High-energetic states are populated
efficiently, leading to emission of X-ray photons with comparably high energy. These
transitions are mostly missing in standard wavelength catalogs and databases. This effect
is usually ignored in astrophysical modeling resulting in misidentification of spectral lines
and misinterpretation of astrophysical spectra. In order to understand and interpret these
spectra, the charge-exchange process has to be included in the modeling procedure. For
reliable modeling, a well-understood theory of charge exchange is required, in particular,
the population of angular momenta of the captured electron since the intensities of
high-energetic transitions are highly sensitive to this l-distributions. In order to benchmark
those theories, laboratory charge-exchange measurements are crucial. Electron beam ion
traps are suitable devices for production and trapping of ions for spectroscopic investigations.
However, with the argon CX measurements performed in this work, it has been shown
that similar measurements in various EBITs provided different results, which indicate
unidentified systematics.
Furthermore, the commonly used theoretical l-state distributions for capture into initially

bare ions in CX models, like the MCLZ approach, are not reliable, and the spectral resolution
of the X-ray detectors in the investigated range ofK-shell transitions is insufficient to extract
conclusive information. This issue can be bypassed by investigation of a spectral range with
more spectral lines, like the L-shell orM -shell transitions in the extreme-ultraviolet domain.
For this purpose, charge-exchange measurements of highly charged oxygen and argon ions
were performed inside an electron beam ion trap by utilization of an extreme-ultraviolet
spectrometer. For the argon CX measurements, only a few lines could be identified due to a
lack of atomic data and high uncertainties of theoretical transition energies. For the oxygen
measurements, a discrepancy between the theoretical and experimentally obtained n-state
population has been observed. Since more than one n-state was populated, contradicting
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the theory, the number of fit parameters for the reconstruction of the l-state distribution
exceeded the number of observed spectral lines. To obtain conclusive information about
this distribution, simultaneous measurements in the EUV and X-ray domain by the use of
a high-resolution X-ray detector are required in future experiments.
Finally, a tabulated overview of the charge-exchange measurements performed in this

work is given in table 5.1, where the projectile ion, the target species, the investigated
spectral domain, and brief comments are given.

Outlook

Various studies have been performed in this work in order to investigate the charge-exchange
process. The obtained spectra could not be adequately represented by charge-exchange
models, in particular, due to a lack of knowledge of the initial distribution of angular
momentum states for single-electron capture. To investigate this process cautiously and to
obtain quantitative results for the l-distribution, extensive systematic measurements by
utilization of high-resolution detectors, such as microcalorimeters are crucial in the future.
Furthermore, simultaneous measurements in different wavelength ranges in-situ and in
extraction experiments with controlled conditions of the ion charge state and collision
energy would provide profitable results to resolve the still existing discrepancy.
Finally, to demonstrate that a reconstruction of the distribution of angular momenta is

possible, at least for hydrogenic projectiles after electron transfer, a synthetic spectrum,
mimicking an expected charge-exchange spectrum, as expected for microcalorimeter mea-
surements, is presented in figure 5.1 with the corresponding reconstruction results. The
synthetic CX spectrum of fully ionized argon with an overlayed artificial noise is generated
with FAC, convolved with a Gaussian with a width of FWHM = 4.7 eV corresponding to
the spectral resolution of a microcalorimeter is represented by an orange curve. Thereby,
the coefficients of the spectral basis vectors, described in chapter 2.3.4.5 for capture into
different angular momentum states of n = 9, are multiplied with the corresponding fraction
of the low-energy distribution, shown as orange bars in the inset of the figure. For the
reconstruction of the l-state distribution, only the blue-shaded regions of the K-shell
X-rays observed in the experiment and the investigated EUV range between 8 nm and
25 nm are considered as an input. The reconstruction results show a good agreement of
the initial and the reconstructed l-state distribution. Furthermore, this approach enables
the prediction of the relative intensities of the L- and M -shell transitions between 200 eV
and 1100 eV. These results suggest the reliability of the developed cascade model for
hydrogenic systems in order to extract information about the initial distribution of angular
momenta of the transferred electron. To obtain such conclusive results in real experiments,
simultaneous investigations of charge exchange in the X-ray range with a microcalorimeter
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Figure 5.1: A synthetic CX spectrum of Ar18+, which is expected in simultaneous EUV
measurements with a grating spectrometer and X-ray measurements with a microcalorimeter
is plotted in orange with the corresponding relative fraction of angular momenta of the
captured electrons. The blue curve represents the reconstruction results by consideration
of the blue-shaded regions, only.
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and the EUV range are required in future measurements. Additionally, it has been shown,
that it is possible to investigate charge exchange in the VUV domain with the 3-meter
normal-incidence spectrometer in the zeroth-order diffraction. In future experiments a
scheme will be developed, which allows for CX measurements in the the ∼ 30 nm– 200 nm
range, which is of great interest for the astrophysical community, in particular for possible
charge-exchange induced transitions at the interface between hot and cold galactic matter
[84]. These experiments are crucial to benchmark the theories, which are utilized for
astrophysical modeling. Improvements from the experimental side, as well as from the
theoretical side, are neccessary in order to understand and interpret astrophysical spectra
obtained by future space missions, like Athena or XRISM.
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Abbreviations

ADC Analog-to-digital converter

AFG Arbitrary function generator

ARIEL Advanced Rare IsotopE Laboratory

CANREB Canadian rare isotope facility with electron beam ion source

CCD Charge-coupled device

COB Classical over-the-barrier

CTMC Classical trajectory Monte-Carlo

CX Charge exchange

DEC Double-electron capture

DR Dielectronic recombination

DT Drift tube

EBIS Electron beam ion source

EBIT Electron beam ion trap

eLINAC Electron linear accelerator

EUVE Extreme Ultraviolet Explorer

FAC Flexible atomic code

HV High voltage

EUV Extreme ultraviolet

HCI Highly charged ion

HRI High Resolution Imager

HV High voltage

LZ Landau-Zener

LIS Laser ion source

MCDF Multi-configuration Dirac-Fock
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MCHF Multi-configuration Hartree-Fock

MCLZ Multichannel Landau-Zener

MCP Microchannel plate

MOS Metal oxide semi-conductor

MPA Multi-parameter data acquisition

MTM Magnetic-trapping mode

OFHC Oxygen-free high thermal conductivity

PEEK Polyether ether ketone

PHA Pulse height analyzer

PTFE Polytetrafluoroethylene

QMOCC Quantum Mechanical Molecular-Orbital Close-Coupling

RF Radio frequency

RMBPT Relativistic Many-Body Perturbation Theory

ROSAT Röntgen Satellite

RR Radiative recombination

SDD Silicon drift detector

SEC Single-electron capture

SNR Supernova Remnant

SVA Sampling voltage analyzer

TDC Time-to-digital converter

TMP Turbomolecular pump

TOF Time-of-flight

TRIUMF Orig.: TRI University Meson Facility

UHV Ultra-high vacuum

ULF Unidentified line feature

VUV Vacuum ultraviolet

WFC Wide Field Camera
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Symbols

Angular momentum L

Atomic mass unit u = 1.660539040(20)× 10−27 kg

Bohr radius a0 ≈ 0.52917721067(12)× 10−10m

Boltzmann constant kB ≈ 1.38064852(79)× 10−23 J/K

Dirac matrix ~α

Electric current I

Electric field ~E

Electron mass me = 9.109 383 56(11)× 10−31 kg

Electrostatic potential V , Φ

Elementary charge e = 1.602 176 620 8(98)× 10−19C

Energy E

Fine-structure constant α = e2/ (4πε0~c) ≈ 0.0072973525664(17)

Frequency ν

Hamilton operator Ĥ

Imaginary number i =
√
−1

Kinetic energy Ekin

Magnetic field ~B

Momentum p

Nuclear charge Z

Orbital quantum number l

Pauli matrix σi

Permittivity of free space ε0 = 1/µ0c20 ≈ 8.854 187 817 6× 10−12As/(Vm)

Planck constant h = 6.626 070 150(81)× 10−34 J s

Proton mass mP ≈ 1.672621898(21)× 10−27 kg

Reduced Planck constant ~ = h/2π

Rydberg energy Ry = 1/2α2mec
2 ≈ 13.605693009(84) eV

Speed of light in vacuum c0 = 299 792 458m/s

Spin ~S

Spin quantum number s
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Total angular momentum ~J

Total ~J quantum number j

Vacuum permeability µ0 = 4π × 10−7H/m

Voltage U

Wavelength λ
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